Spaces:
Sleeping
Sleeping
Commit
·
4448508
1
Parent(s):
0a78f5f
RAG: fix mojibake via ftfy; descoped-mode to keep tabular lines; better AZ→EN handling
Browse files- app/rag_system.py +83 -112
app/rag_system.py
CHANGED
|
@@ -8,147 +8,117 @@ from typing import List, Tuple
|
|
| 8 |
|
| 9 |
import faiss
|
| 10 |
import numpy as np
|
| 11 |
-
from ftfy import fix_text
|
| 12 |
|
| 13 |
# Prefer pypdf; fallback to PyPDF2 if needed
|
| 14 |
try:
|
| 15 |
from pypdf import PdfReader
|
| 16 |
-
except Exception:
|
| 17 |
from PyPDF2 import PdfReader # type: ignore
|
| 18 |
|
| 19 |
from sentence_transformers import SentenceTransformer
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
# ===================== Paths & Cache (HF-safe) =====================
|
| 23 |
-
# Writable base in HF Spaces is /app. Allow ENV overrides for local runs.
|
| 24 |
ROOT_DIR = Path(os.getenv("APP_ROOT", "/app"))
|
| 25 |
DATA_DIR = Path(os.getenv("DATA_DIR", str(ROOT_DIR / "data")))
|
| 26 |
UPLOAD_DIR = Path(os.getenv("UPLOAD_DIR", str(DATA_DIR / "uploads")))
|
| 27 |
INDEX_DIR = Path(os.getenv("INDEX_DIR", str(DATA_DIR / "index")))
|
| 28 |
-
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache")))
|
| 29 |
|
| 30 |
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR):
|
| 31 |
d.mkdir(parents=True, exist_ok=True)
|
| 32 |
|
| 33 |
-
|
| 34 |
-
# ============================= Config ==============================
|
| 35 |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
| 36 |
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower()
|
| 37 |
|
| 38 |
-
|
| 39 |
-
# ============================ Helpers ==============================
|
| 40 |
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ")
|
| 41 |
NUM_TOKEN_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE)
|
| 42 |
|
| 43 |
-
STOPWORDS = {
|
| 44 |
-
"the","a","an","and","or","of","to","in","on","for","with","by",
|
| 45 |
-
"this","that","these","those","is","are","was","were","be","been","being",
|
| 46 |
-
"at","as","it","its","from","into","about","over","after","before","than",
|
| 47 |
-
"such","can","could","should","would","may","might","will","shall"
|
| 48 |
-
}
|
| 49 |
-
|
| 50 |
AZ_LATIN = "A-Za-zƏəĞğİıÖöŞşÇç"
|
| 51 |
_SINGLE_LETTER_RUN = re.compile(rf"\b(?:[{AZ_LATIN}]\s+){{2,}}[{AZ_LATIN}]\b")
|
| 52 |
|
| 53 |
-
KEYWORD_HINTS = [
|
| 54 |
-
"descoped", "out of scope", "exclude", "excluded", "scope change",
|
| 55 |
-
"çıxar", "çıxarılan", "daxil deyil", "kənar", "silin", "dəyişiklik",
|
| 56 |
-
]
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
def _fix_mojibake(s: str) -> str:
|
| 60 |
-
"""Fix common UTF-8-as-Latin-1 mojibake artifacts."""
|
| 61 |
-
if not s:
|
| 62 |
-
return s
|
| 63 |
-
if any(ch in s for ch in ("Ã", "Ä", "Å", "Ð", "Þ", "þ")):
|
| 64 |
-
try:
|
| 65 |
-
return s.encode("latin-1", "ignore").decode("utf-8", "ignore")
|
| 66 |
-
except Exception:
|
| 67 |
-
return s
|
| 68 |
-
return s
|
| 69 |
-
|
| 70 |
-
|
| 71 |
def _fix_intra_word_spaces(s: str) -> str:
|
| 72 |
-
"
|
| 73 |
if not s:
|
| 74 |
return s
|
| 75 |
return _SINGLE_LETTER_RUN.sub(lambda m: re.sub(r"\s+", "", m.group(0)), s)
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
def _split_sentences(text: str) -> List[str]:
|
| 85 |
-
|
| 86 |
-
return [s.strip() for s in re.split(r'(?<=[\.\!\?])\s+|[\r\n]+', text) if s.strip()]
|
| 87 |
-
|
| 88 |
|
| 89 |
def _mostly_numeric(s: str) -> bool:
|
| 90 |
-
"""Treat a line as numeric/tabular if >60% of alnum chars are digits."""
|
| 91 |
alnum = [c for c in s if c.isalnum()]
|
| 92 |
if not alnum:
|
| 93 |
return True
|
| 94 |
digits = sum(c.isdigit() for c in alnum)
|
| 95 |
-
return digits / max(1, len(alnum)) > 0.
|
| 96 |
-
|
| 97 |
|
| 98 |
def _tabular_like(s: str) -> bool:
|
| 99 |
-
"""Heuristic for table-ish lines; relax threshold so we don't drop everything."""
|
| 100 |
hits = len(NUM_TOKEN_RE.findall(s))
|
| 101 |
-
return hits >=
|
| 102 |
-
|
| 103 |
|
| 104 |
def _clean_for_summary(text: str) -> str:
|
| 105 |
out = []
|
| 106 |
for ln in text.splitlines():
|
| 107 |
t = " ".join(ln.split())
|
|
|
|
| 108 |
if not t or _mostly_numeric(t) or _tabular_like(t):
|
| 109 |
continue
|
| 110 |
out.append(t)
|
| 111 |
return " ".join(out)
|
| 112 |
|
| 113 |
-
|
| 114 |
def _sim_jaccard(a: str, b: str) -> float:
|
| 115 |
-
aw = set(a.lower().split())
|
| 116 |
-
bw = set(b.lower().split())
|
| 117 |
if not aw or not bw:
|
| 118 |
return 0.0
|
| 119 |
return len(aw & bw) / len(aw | bw)
|
| 120 |
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
def _keywords(text: str) -> List[str]:
|
| 123 |
toks = re.findall(r"[A-Za-zÀ-ÖØ-öø-ÿ0-9]+", text.lower())
|
| 124 |
return [t for t in toks if t not in STOPWORDS and len(t) > 2]
|
| 125 |
|
| 126 |
-
|
| 127 |
def _looks_azerbaijani(s: str) -> bool:
|
| 128 |
has_az = any(ch in AZ_CHARS for ch in s)
|
| 129 |
non_ascii_ratio = sum(ord(c) > 127 for c in s) / max(1, len(s))
|
| 130 |
return has_az or non_ascii_ratio > 0.15
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
-
def
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
t = fix_text(_fix_intra_word_spaces(_fix_word_breaks(_fix_mojibake(text))))
|
| 139 |
-
for line in t.splitlines():
|
| 140 |
-
s = " ".join(line.split())
|
| 141 |
-
if not s or len(s.split()) < 4:
|
| 142 |
-
continue
|
| 143 |
-
lo = s.lower()
|
| 144 |
-
if any(k in lo for k in keys):
|
| 145 |
-
hits.append(s)
|
| 146 |
-
if len(hits) >= limit:
|
| 147 |
-
return hits
|
| 148 |
-
return hits
|
| 149 |
-
|
| 150 |
|
| 151 |
-
#
|
| 152 |
class SimpleRAG:
|
| 153 |
def __init__(
|
| 154 |
self,
|
|
@@ -168,7 +138,7 @@ class SimpleRAG:
|
|
| 168 |
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim)
|
| 169 |
self.chunks: List[str] = []
|
| 170 |
self.last_added: List[str] = []
|
| 171 |
-
self._translator = None # lazy
|
| 172 |
|
| 173 |
self._load()
|
| 174 |
|
|
@@ -202,13 +172,9 @@ class SimpleRAG:
|
|
| 202 |
pages: List[str] = []
|
| 203 |
for p in reader.pages:
|
| 204 |
t = p.extract_text() or ""
|
|
|
|
| 205 |
if t.strip():
|
| 206 |
-
t = _fix_mojibake(t)
|
| 207 |
-
t = fix_text(t)
|
| 208 |
-
t = _fix_word_breaks(t)
|
| 209 |
-
t = _fix_intra_word_spaces(t)
|
| 210 |
pages.append(t)
|
| 211 |
-
|
| 212 |
chunks: List[str] = []
|
| 213 |
for txt in pages:
|
| 214 |
for i in range(0, len(txt), step):
|
|
@@ -259,33 +225,35 @@ class SimpleRAG:
|
|
| 259 |
device=-1,
|
| 260 |
)
|
| 261 |
outs = self._translator(texts, max_length=400)
|
| 262 |
-
return [o["translation_text"].strip() for o in outs]
|
| 263 |
except Exception:
|
| 264 |
return texts
|
| 265 |
|
| 266 |
# ---------- Fallbacks ----------
|
| 267 |
-
def _keyword_fallback(self, question: str, pool: List[str], limit_sentences: int = 4) -> List[str]:
|
| 268 |
qk = set(_keywords(question))
|
| 269 |
if not qk:
|
| 270 |
return []
|
| 271 |
candidates: List[Tuple[float, str]] = []
|
| 272 |
-
for text in pool[:
|
| 273 |
-
cleaned =
|
| 274 |
for s in _split_sentences(cleaned):
|
| 275 |
-
if
|
| 276 |
-
|
|
|
|
| 277 |
toks = set(_keywords(s))
|
| 278 |
if not toks:
|
| 279 |
continue
|
| 280 |
overlap = len(qk & toks)
|
| 281 |
-
if overlap == 0:
|
| 282 |
continue
|
| 283 |
-
length_penalty = max(
|
| 284 |
-
score = overlap + min(0.5, overlap / length_penalty)
|
| 285 |
candidates.append((score, s))
|
| 286 |
candidates.sort(key=lambda x: x[0], reverse=True)
|
| 287 |
out: List[str] = []
|
| 288 |
for _, s in candidates:
|
|
|
|
| 289 |
if any(_sim_jaccard(s, t) >= 0.82 for t in out):
|
| 290 |
continue
|
| 291 |
out.append(s)
|
|
@@ -298,19 +266,24 @@ class SimpleRAG:
|
|
| 298 |
if not contexts and self.is_empty:
|
| 299 |
return "No relevant context found. Index is empty — upload a PDF first."
|
| 300 |
|
| 301 |
-
|
| 302 |
-
contexts = [fix_text(_fix_intra_word_spaces(_fix_word_breaks(_fix_mojibake(c or "")))) for c in (contexts or [])]
|
| 303 |
|
| 304 |
-
# Build candidate sentences from nearby contexts
|
| 305 |
local_pool: List[str] = []
|
| 306 |
-
|
| 307 |
-
|
|
|
|
| 308 |
for s in _split_sentences(cleaned):
|
| 309 |
w = s.split()
|
| 310 |
-
if not (8 <= len(w) <= 35):
|
| 311 |
-
continue
|
| 312 |
-
if _tabular_like(s) or _mostly_numeric(s):
|
| 313 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
local_pool.append(" ".join(w))
|
| 315 |
|
| 316 |
selected: List[str] = []
|
|
@@ -320,34 +293,32 @@ class SimpleRAG:
|
|
| 320 |
scores = (cand_emb @ q_emb.T).ravel()
|
| 321 |
order = np.argsort(-scores)
|
| 322 |
for i in order:
|
| 323 |
-
s = local_pool[i].strip()
|
| 324 |
if any(_sim_jaccard(s, t) >= 0.82 for t in selected):
|
| 325 |
continue
|
| 326 |
selected.append(s)
|
| 327 |
if len(selected) >= max_sentences:
|
| 328 |
break
|
| 329 |
|
| 330 |
-
# keyword-based sentence-level selection across corpus
|
| 331 |
if not selected:
|
| 332 |
-
selected = self._keyword_fallback(
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
|
|
|
| 337 |
|
| 338 |
if not selected:
|
| 339 |
return "No readable sentences matched the question. Try a more specific query."
|
| 340 |
|
| 341 |
-
#
|
| 342 |
-
if OUTPUT_LANG == "en"
|
| 343 |
-
|
|
|
|
|
|
|
| 344 |
|
| 345 |
bullets = "\n".join(f"- {s}" for s in selected)
|
| 346 |
return f"Answer (based on document context):\n{bullets}"
|
| 347 |
|
| 348 |
|
| 349 |
-
__all__ = [
|
| 350 |
-
"SimpleRAG",
|
| 351 |
-
"UPLOAD_DIR",
|
| 352 |
-
"INDEX_DIR",
|
| 353 |
-
]
|
|
|
|
| 8 |
|
| 9 |
import faiss
|
| 10 |
import numpy as np
|
|
|
|
| 11 |
|
| 12 |
# Prefer pypdf; fallback to PyPDF2 if needed
|
| 13 |
try:
|
| 14 |
from pypdf import PdfReader
|
| 15 |
+
except Exception:
|
| 16 |
from PyPDF2 import PdfReader # type: ignore
|
| 17 |
|
| 18 |
from sentence_transformers import SentenceTransformer
|
| 19 |
+
from ftfy import fix_text
|
| 20 |
|
| 21 |
+
# ---------------- Paths & Cache (HF-safe) ----------------
|
|
|
|
|
|
|
| 22 |
ROOT_DIR = Path(os.getenv("APP_ROOT", "/app"))
|
| 23 |
DATA_DIR = Path(os.getenv("DATA_DIR", str(ROOT_DIR / "data")))
|
| 24 |
UPLOAD_DIR = Path(os.getenv("UPLOAD_DIR", str(DATA_DIR / "uploads")))
|
| 25 |
INDEX_DIR = Path(os.getenv("INDEX_DIR", str(DATA_DIR / "index")))
|
| 26 |
+
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache")))
|
| 27 |
|
| 28 |
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR):
|
| 29 |
d.mkdir(parents=True, exist_ok=True)
|
| 30 |
|
| 31 |
+
# ---------------- Config ----------------
|
|
|
|
| 32 |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
| 33 |
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower()
|
| 34 |
|
| 35 |
+
# ---------------- Helpers ----------------
|
|
|
|
| 36 |
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ")
|
| 37 |
NUM_TOKEN_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE)
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
AZ_LATIN = "A-Za-zƏəĞğİıÖöŞşÇç"
|
| 40 |
_SINGLE_LETTER_RUN = re.compile(rf"\b(?:[{AZ_LATIN}]\s+){{2,}}[{AZ_LATIN}]\b")
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
def _fix_intra_word_spaces(s: str) -> str:
|
| 43 |
+
# "H Ə F T Ə" -> "HƏFTƏ"
|
| 44 |
if not s:
|
| 45 |
return s
|
| 46 |
return _SINGLE_LETTER_RUN.sub(lambda m: re.sub(r"\s+", "", m.group(0)), s)
|
| 47 |
|
| 48 |
+
def _fix_mojibake(s: str) -> str:
|
| 49 |
+
# Try to undo latin-1/utf-8 mess, then ftfy as final pass
|
| 50 |
+
if not s:
|
| 51 |
+
return s
|
| 52 |
+
try:
|
| 53 |
+
if any(ch in s for ch in ("Ã", "Ä", "Å", "Ð", "Þ", "þ")):
|
| 54 |
+
s = s.encode("latin-1", "ignore").decode("utf-8", "ignore")
|
| 55 |
+
except Exception:
|
| 56 |
+
pass
|
| 57 |
+
s = fix_text(s)
|
| 58 |
+
s = _fix_intra_word_spaces(s)
|
| 59 |
+
return s
|
| 60 |
|
| 61 |
def _split_sentences(text: str) -> List[str]:
|
| 62 |
+
return [s.strip() for s in re.split(r"(?<=[\.!\?])\s+|[\r\n]+", text) if s.strip()]
|
|
|
|
|
|
|
| 63 |
|
| 64 |
def _mostly_numeric(s: str) -> bool:
|
|
|
|
| 65 |
alnum = [c for c in s if c.isalnum()]
|
| 66 |
if not alnum:
|
| 67 |
return True
|
| 68 |
digits = sum(c.isdigit() for c in alnum)
|
| 69 |
+
return digits / max(1, len(alnum)) > 0.3
|
|
|
|
| 70 |
|
| 71 |
def _tabular_like(s: str) -> bool:
|
|
|
|
| 72 |
hits = len(NUM_TOKEN_RE.findall(s))
|
| 73 |
+
return hits >= 2 or "Page" in s or len(s) < 20
|
|
|
|
| 74 |
|
| 75 |
def _clean_for_summary(text: str) -> str:
|
| 76 |
out = []
|
| 77 |
for ln in text.splitlines():
|
| 78 |
t = " ".join(ln.split())
|
| 79 |
+
t = _fix_mojibake(t)
|
| 80 |
if not t or _mostly_numeric(t) or _tabular_like(t):
|
| 81 |
continue
|
| 82 |
out.append(t)
|
| 83 |
return " ".join(out)
|
| 84 |
|
|
|
|
| 85 |
def _sim_jaccard(a: str, b: str) -> float:
|
| 86 |
+
aw = set(a.lower().split()); bw = set(b.lower().split())
|
|
|
|
| 87 |
if not aw or not bw:
|
| 88 |
return 0.0
|
| 89 |
return len(aw & bw) / len(aw | bw)
|
| 90 |
|
| 91 |
+
STOPWORDS = {
|
| 92 |
+
"the","a","an","and","or","of","to","in","on","for","with","by",
|
| 93 |
+
"this","that","these","those","is","are","was","were","be","been","being",
|
| 94 |
+
"at","as","it","its","from","into","about","over","after","before","than",
|
| 95 |
+
"such","can","could","should","would","may","might","will","shall"
|
| 96 |
+
}
|
| 97 |
def _keywords(text: str) -> List[str]:
|
| 98 |
toks = re.findall(r"[A-Za-zÀ-ÖØ-öø-ÿ0-9]+", text.lower())
|
| 99 |
return [t for t in toks if t not in STOPWORDS and len(t) > 2]
|
| 100 |
|
|
|
|
| 101 |
def _looks_azerbaijani(s: str) -> bool:
|
| 102 |
has_az = any(ch in AZ_CHARS for ch in s)
|
| 103 |
non_ascii_ratio = sum(ord(c) > 127 for c in s) / max(1, len(s))
|
| 104 |
return has_az or non_ascii_ratio > 0.15
|
| 105 |
|
| 106 |
+
# ---- Descoped/out-of-scope heuristics ----
|
| 107 |
+
DESCOPED_KWS = [
|
| 108 |
+
"descoped","out of scope","out-of-scope","exclude","excluded","exclusion",
|
| 109 |
+
"çıxarılan","çıxarıl","çıxarıldı","daxil deyil","sökül","demontaj","kəsilmə",
|
| 110 |
+
]
|
| 111 |
+
def _descoped_mode(question: str) -> bool:
|
| 112 |
+
ql = (question or "").lower()
|
| 113 |
+
return any(k in ql for k in DESCOPED_KWS) or "descop" in ql
|
| 114 |
|
| 115 |
+
def _is_descoped_line(s: str) -> bool:
|
| 116 |
+
sl = s.lower()
|
| 117 |
+
if any(k in sl for k in DESCOPED_KWS):
|
| 118 |
+
return True
|
| 119 |
+
return bool(re.search(r"\b(out[-\s]?of[-\s]?scope|descop)", sl))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
# ---------------- RAG Core ----------------
|
| 122 |
class SimpleRAG:
|
| 123 |
def __init__(
|
| 124 |
self,
|
|
|
|
| 138 |
self.index: faiss.Index = faiss.IndexFlatIP(self.embed_dim)
|
| 139 |
self.chunks: List[str] = []
|
| 140 |
self.last_added: List[str] = []
|
| 141 |
+
self._translator = None # lazy
|
| 142 |
|
| 143 |
self._load()
|
| 144 |
|
|
|
|
| 172 |
pages: List[str] = []
|
| 173 |
for p in reader.pages:
|
| 174 |
t = p.extract_text() or ""
|
| 175 |
+
t = _fix_mojibake(t)
|
| 176 |
if t.strip():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
pages.append(t)
|
|
|
|
| 178 |
chunks: List[str] = []
|
| 179 |
for txt in pages:
|
| 180 |
for i in range(0, len(txt), step):
|
|
|
|
| 225 |
device=-1,
|
| 226 |
)
|
| 227 |
outs = self._translator(texts, max_length=400)
|
| 228 |
+
return [fix_text(o["translation_text"].strip()) for o in outs]
|
| 229 |
except Exception:
|
| 230 |
return texts
|
| 231 |
|
| 232 |
# ---------- Fallbacks ----------
|
| 233 |
+
def _keyword_fallback(self, question: str, pool: List[str], limit_sentences: int = 4, allow_numeric: bool = False) -> List[str]:
|
| 234 |
qk = set(_keywords(question))
|
| 235 |
if not qk:
|
| 236 |
return []
|
| 237 |
candidates: List[Tuple[float, str]] = []
|
| 238 |
+
for text in pool[:400]:
|
| 239 |
+
cleaned = _fix_mojibake(" ".join(text.split()))
|
| 240 |
for s in _split_sentences(cleaned):
|
| 241 |
+
if not allow_numeric:
|
| 242 |
+
if _tabular_like(s) or _mostly_numeric(s):
|
| 243 |
+
continue
|
| 244 |
toks = set(_keywords(s))
|
| 245 |
if not toks:
|
| 246 |
continue
|
| 247 |
overlap = len(qk & toks)
|
| 248 |
+
if overlap == 0 and not _is_descoped_line(s):
|
| 249 |
continue
|
| 250 |
+
length_penalty = max(6, min(60, len(s.split())))
|
| 251 |
+
score = overlap + (0.3 if _is_descoped_line(s) else 0.0) + min(0.5, overlap / length_penalty)
|
| 252 |
candidates.append((score, s))
|
| 253 |
candidates.sort(key=lambda x: x[0], reverse=True)
|
| 254 |
out: List[str] = []
|
| 255 |
for _, s in candidates:
|
| 256 |
+
s = fix_text(s).strip()
|
| 257 |
if any(_sim_jaccard(s, t) >= 0.82 for t in out):
|
| 258 |
continue
|
| 259 |
out.append(s)
|
|
|
|
| 266 |
if not contexts and self.is_empty:
|
| 267 |
return "No relevant context found. Index is empty — upload a PDF first."
|
| 268 |
|
| 269 |
+
desc_mode = _descoped_mode(question)
|
|
|
|
| 270 |
|
| 271 |
+
# Build candidate sentences from nearby contexts
|
| 272 |
local_pool: List[str] = []
|
| 273 |
+
scan_n = 8 if desc_mode else 5
|
| 274 |
+
for c in (contexts or [])[:scan_n]:
|
| 275 |
+
cleaned = _fix_mojibake(" ".join(c.split()))
|
| 276 |
for s in _split_sentences(cleaned):
|
| 277 |
w = s.split()
|
| 278 |
+
if not ( (6 if desc_mode else 8) <= len(w) <= (60 if desc_mode else 35) ):
|
|
|
|
|
|
|
| 279 |
continue
|
| 280 |
+
if not desc_mode:
|
| 281 |
+
if _tabular_like(s) or _mostly_numeric(s):
|
| 282 |
+
continue
|
| 283 |
+
else:
|
| 284 |
+
# allow numeric/tabular if it looks like descoped line
|
| 285 |
+
if not _is_descoped_line(s) and (_tabular_like(s) or _mostly_numeric(s)):
|
| 286 |
+
continue
|
| 287 |
local_pool.append(" ".join(w))
|
| 288 |
|
| 289 |
selected: List[str] = []
|
|
|
|
| 293 |
scores = (cand_emb @ q_emb.T).ravel()
|
| 294 |
order = np.argsort(-scores)
|
| 295 |
for i in order:
|
| 296 |
+
s = fix_text(local_pool[i]).strip()
|
| 297 |
if any(_sim_jaccard(s, t) >= 0.82 for t in selected):
|
| 298 |
continue
|
| 299 |
selected.append(s)
|
| 300 |
if len(selected) >= max_sentences:
|
| 301 |
break
|
| 302 |
|
|
|
|
| 303 |
if not selected:
|
| 304 |
+
selected = self._keyword_fallback(
|
| 305 |
+
question,
|
| 306 |
+
self.chunks,
|
| 307 |
+
limit_sentences=max_sentences,
|
| 308 |
+
allow_numeric=desc_mode, # relax numeric filter for descoped Qs
|
| 309 |
+
)
|
| 310 |
|
| 311 |
if not selected:
|
| 312 |
return "No readable sentences matched the question. Try a more specific query."
|
| 313 |
|
| 314 |
+
# Translate to EN if needed (and requested)
|
| 315 |
+
if OUTPUT_LANG == "en":
|
| 316 |
+
needs_tr = any(_looks_azerbaijani(s) for s in selected) or any(ch in "".join(selected) for ch in ("Ã","Ä","Þ"))
|
| 317 |
+
if needs_tr:
|
| 318 |
+
selected = self._translate_to_en(selected)
|
| 319 |
|
| 320 |
bullets = "\n".join(f"- {s}" for s in selected)
|
| 321 |
return f"Answer (based on document context):\n{bullets}"
|
| 322 |
|
| 323 |
|
| 324 |
+
__all__ = ["SimpleRAG", "UPLOAD_DIR", "INDEX_DIR"]
|
|
|
|
|
|
|
|
|
|
|
|