Spaces:
Sleeping
Sleeping
Commit
·
0a78f5f
1
Parent(s):
1fb5688
RAG: fix mojibake/word-breaks; relax tabular filter; keyword-line fallback for scope changes
Browse files- app/rag_system.py +85 -57
app/rag_system.py
CHANGED
|
@@ -8,55 +8,36 @@ from typing import List, Tuple
|
|
| 8 |
|
| 9 |
import faiss
|
| 10 |
import numpy as np
|
|
|
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
try:
|
| 14 |
-
from ftfy import fix_text as _ftfy
|
| 15 |
-
except Exception: # ftfy yoxdursa, no-op
|
| 16 |
-
def _ftfy(x: str) -> str:
|
| 17 |
-
return x
|
| 18 |
-
|
| 19 |
-
# pypdf -> PyPDF2 fallback
|
| 20 |
try:
|
| 21 |
from pypdf import PdfReader
|
| 22 |
-
except Exception:
|
| 23 |
from PyPDF2 import PdfReader # type: ignore
|
| 24 |
|
| 25 |
from sentence_transformers import SentenceTransformer
|
| 26 |
|
| 27 |
-
|
| 28 |
-
#
|
| 29 |
-
|
| 30 |
-
ROOT_DIR = Path(os.getenv("APP_ROOT",
|
| 31 |
DATA_DIR = Path(os.getenv("DATA_DIR", str(ROOT_DIR / "data")))
|
| 32 |
UPLOAD_DIR = Path(os.getenv("UPLOAD_DIR", str(DATA_DIR / "uploads")))
|
| 33 |
INDEX_DIR = Path(os.getenv("INDEX_DIR", str(DATA_DIR / "index")))
|
| 34 |
-
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache"))) # transformers
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
try:
|
| 39 |
-
pth.mkdir(parents=True, exist_ok=True)
|
| 40 |
-
except PermissionError:
|
| 41 |
-
pass
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
|
| 46 |
-
INDEX_DIR.mkdir(parents=True, exist_ok=True)
|
| 47 |
-
except PermissionError:
|
| 48 |
-
DATA_DIR = Path("./data"); DATA_DIR.mkdir(parents=True, exist_ok=True)
|
| 49 |
-
UPLOAD_DIR = DATA_DIR / "uploads"; UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
|
| 50 |
-
INDEX_DIR = DATA_DIR / "index"; INDEX_DIR.mkdir(parents=True, exist_ok=True)
|
| 51 |
-
|
| 52 |
-
# ---------------- Config ----------------
|
| 53 |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
| 54 |
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower()
|
| 55 |
|
| 56 |
-
|
|
|
|
| 57 |
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ")
|
| 58 |
-
AZ_LATIN = "A-Za-zƏəĞğİıÖöŞşÇç"
|
| 59 |
-
_SINGLE_LETTER_RUN = re.compile(rf"\b(?:[{AZ_LATIN}]\s+){{2,}}[{AZ_LATIN}]\b")
|
| 60 |
NUM_TOKEN_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE)
|
| 61 |
|
| 62 |
STOPWORDS = {
|
|
@@ -66,14 +47,17 @@ STOPWORDS = {
|
|
| 66 |
"such","can","could","should","would","may","might","will","shall"
|
| 67 |
}
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
def _fix_mojibake(s: str) -> str:
|
| 76 |
-
"""UTF-8-
|
| 77 |
if not s:
|
| 78 |
return s
|
| 79 |
if any(ch in s for ch in ("Ã", "Ä", "Å", "Ð", "Þ", "þ")):
|
|
@@ -83,19 +67,39 @@ def _fix_mojibake(s: str) -> str:
|
|
| 83 |
return s
|
| 84 |
return s
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
def _split_sentences(text: str) -> List[str]:
|
| 87 |
-
|
|
|
|
|
|
|
| 88 |
|
| 89 |
def _mostly_numeric(s: str) -> bool:
|
|
|
|
| 90 |
alnum = [c for c in s if c.isalnum()]
|
| 91 |
if not alnum:
|
| 92 |
return True
|
| 93 |
digits = sum(c.isdigit() for c in alnum)
|
| 94 |
-
return digits / max(1, len(alnum)) > 0.
|
|
|
|
| 95 |
|
| 96 |
def _tabular_like(s: str) -> bool:
|
|
|
|
| 97 |
hits = len(NUM_TOKEN_RE.findall(s))
|
| 98 |
-
return hits >= 2
|
|
|
|
| 99 |
|
| 100 |
def _clean_for_summary(text: str) -> str:
|
| 101 |
out = []
|
|
@@ -106,6 +110,7 @@ def _clean_for_summary(text: str) -> str:
|
|
| 106 |
out.append(t)
|
| 107 |
return " ".join(out)
|
| 108 |
|
|
|
|
| 109 |
def _sim_jaccard(a: str, b: str) -> float:
|
| 110 |
aw = set(a.lower().split())
|
| 111 |
bw = set(b.lower().split())
|
|
@@ -113,16 +118,37 @@ def _sim_jaccard(a: str, b: str) -> float:
|
|
| 113 |
return 0.0
|
| 114 |
return len(aw & bw) / len(aw | bw)
|
| 115 |
|
|
|
|
| 116 |
def _keywords(text: str) -> List[str]:
|
| 117 |
toks = re.findall(r"[A-Za-zÀ-ÖØ-öø-ÿ0-9]+", text.lower())
|
| 118 |
return [t for t in toks if t not in STOPWORDS and len(t) > 2]
|
| 119 |
|
|
|
|
| 120 |
def _looks_azerbaijani(s: str) -> bool:
|
| 121 |
has_az = any(ch in AZ_CHARS for ch in s)
|
| 122 |
non_ascii_ratio = sum(ord(c) > 127 for c in s) / max(1, len(s))
|
| 123 |
return has_az or non_ascii_ratio > 0.15
|
| 124 |
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
class SimpleRAG:
|
| 127 |
def __init__(
|
| 128 |
self,
|
|
@@ -176,13 +202,13 @@ class SimpleRAG:
|
|
| 176 |
pages: List[str] = []
|
| 177 |
for p in reader.pages:
|
| 178 |
t = p.extract_text() or ""
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
if t:
|
| 185 |
pages.append(t)
|
|
|
|
| 186 |
chunks: List[str] = []
|
| 187 |
for txt in pages:
|
| 188 |
for i in range(0, len(txt), step):
|
|
@@ -272,15 +298,12 @@ class SimpleRAG:
|
|
| 272 |
if not contexts and self.is_empty:
|
| 273 |
return "No relevant context found. Index is empty — upload a PDF first."
|
| 274 |
|
| 275 |
-
#
|
| 276 |
-
contexts = [
|
| 277 |
-
re.sub(r"\s+", " ", _fix_intra_word_spaces(_fix_mojibake(_ftfy(c)))).strip()
|
| 278 |
-
for c in (contexts or [])
|
| 279 |
-
]
|
| 280 |
|
| 281 |
-
#
|
| 282 |
local_pool: List[str] = []
|
| 283 |
-
for c in (contexts or [])[:
|
| 284 |
cleaned = _clean_for_summary(c)
|
| 285 |
for s in _split_sentences(cleaned):
|
| 286 |
w = s.split()
|
|
@@ -304,13 +327,18 @@ class SimpleRAG:
|
|
| 304 |
if len(selected) >= max_sentences:
|
| 305 |
break
|
| 306 |
|
|
|
|
| 307 |
if not selected:
|
| 308 |
selected = self._keyword_fallback(question, self.chunks, limit_sentences=max_sentences)
|
| 309 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
if not selected:
|
| 311 |
return "No readable sentences matched the question. Try a more specific query."
|
| 312 |
|
| 313 |
-
# EN
|
| 314 |
if OUTPUT_LANG == "en" and any(ord(ch) > 127 for ch in " ".join(selected)):
|
| 315 |
selected = self._translate_to_en(selected)
|
| 316 |
|
|
|
|
| 8 |
|
| 9 |
import faiss
|
| 10 |
import numpy as np
|
| 11 |
+
from ftfy import fix_text
|
| 12 |
|
| 13 |
+
# Prefer pypdf; fallback to PyPDF2 if needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
try:
|
| 15 |
from pypdf import PdfReader
|
| 16 |
+
except Exception: # pragma: no cover
|
| 17 |
from PyPDF2 import PdfReader # type: ignore
|
| 18 |
|
| 19 |
from sentence_transformers import SentenceTransformer
|
| 20 |
|
| 21 |
+
|
| 22 |
+
# ===================== Paths & Cache (HF-safe) =====================
|
| 23 |
+
# Writable base in HF Spaces is /app. Allow ENV overrides for local runs.
|
| 24 |
+
ROOT_DIR = Path(os.getenv("APP_ROOT", "/app"))
|
| 25 |
DATA_DIR = Path(os.getenv("DATA_DIR", str(ROOT_DIR / "data")))
|
| 26 |
UPLOAD_DIR = Path(os.getenv("UPLOAD_DIR", str(DATA_DIR / "uploads")))
|
| 27 |
INDEX_DIR = Path(os.getenv("INDEX_DIR", str(DATA_DIR / "index")))
|
| 28 |
+
CACHE_DIR = Path(os.getenv("HF_HOME", str(ROOT_DIR / ".cache"))) # transformers prefers HF_HOME
|
| 29 |
|
| 30 |
+
for d in (DATA_DIR, UPLOAD_DIR, INDEX_DIR, CACHE_DIR):
|
| 31 |
+
d.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
|
| 34 |
+
# ============================= Config ==============================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
MODEL_NAME = os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
| 36 |
OUTPUT_LANG = os.getenv("OUTPUT_LANG", "en").lower()
|
| 37 |
|
| 38 |
+
|
| 39 |
+
# ============================ Helpers ==============================
|
| 40 |
AZ_CHARS = set("əğıöşçüİıĞÖŞÇÜƏ")
|
|
|
|
|
|
|
| 41 |
NUM_TOKEN_RE = re.compile(r"\b(\d+[.,]?\d*|%|m²|azn|usd|eur|set|mt)\b", re.IGNORECASE)
|
| 42 |
|
| 43 |
STOPWORDS = {
|
|
|
|
| 47 |
"such","can","could","should","would","may","might","will","shall"
|
| 48 |
}
|
| 49 |
|
| 50 |
+
AZ_LATIN = "A-Za-zƏəĞğİıÖöŞşÇç"
|
| 51 |
+
_SINGLE_LETTER_RUN = re.compile(rf"\b(?:[{AZ_LATIN}]\s+){{2,}}[{AZ_LATIN}]\b")
|
| 52 |
+
|
| 53 |
+
KEYWORD_HINTS = [
|
| 54 |
+
"descoped", "out of scope", "exclude", "excluded", "scope change",
|
| 55 |
+
"çıxar", "çıxarılan", "daxil deyil", "kənar", "silin", "dəyişiklik",
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
|
| 59 |
def _fix_mojibake(s: str) -> str:
|
| 60 |
+
"""Fix common UTF-8-as-Latin-1 mojibake artifacts."""
|
| 61 |
if not s:
|
| 62 |
return s
|
| 63 |
if any(ch in s for ch in ("Ã", "Ä", "Å", "Ð", "Þ", "þ")):
|
|
|
|
| 67 |
return s
|
| 68 |
return s
|
| 69 |
|
| 70 |
+
|
| 71 |
+
def _fix_intra_word_spaces(s: str) -> str:
|
| 72 |
+
"""Join sequences like 'H Ə F T Ə' -> 'HƏFTƏ' without touching normal words."""
|
| 73 |
+
if not s:
|
| 74 |
+
return s
|
| 75 |
+
return _SINGLE_LETTER_RUN.sub(lambda m: re.sub(r"\s+", "", m.group(0)), s)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def _fix_word_breaks(s: str) -> str:
|
| 79 |
+
"""Repair hyphen/newline word-breaks and collapse excessive spaces."""
|
| 80 |
+
s = re.sub(r"(\w)-\s*\n\s*(\w)", r"\1\2", s) # join hyphen breaks
|
| 81 |
+
return re.sub(r"[ \t]+", " ", s)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
def _split_sentences(text: str) -> List[str]:
|
| 85 |
+
# sentence-ish splitter that also breaks on line breaks
|
| 86 |
+
return [s.strip() for s in re.split(r'(?<=[\.\!\?])\s+|[\r\n]+', text) if s.strip()]
|
| 87 |
+
|
| 88 |
|
| 89 |
def _mostly_numeric(s: str) -> bool:
|
| 90 |
+
"""Treat a line as numeric/tabular if >60% of alnum chars are digits."""
|
| 91 |
alnum = [c for c in s if c.isalnum()]
|
| 92 |
if not alnum:
|
| 93 |
return True
|
| 94 |
digits = sum(c.isdigit() for c in alnum)
|
| 95 |
+
return digits / max(1, len(alnum)) > 0.6
|
| 96 |
+
|
| 97 |
|
| 98 |
def _tabular_like(s: str) -> bool:
|
| 99 |
+
"""Heuristic for table-ish lines; relax threshold so we don't drop everything."""
|
| 100 |
hits = len(NUM_TOKEN_RE.findall(s))
|
| 101 |
+
return hits >= 3 # was 2; set to 3 to be less aggressive
|
| 102 |
+
|
| 103 |
|
| 104 |
def _clean_for_summary(text: str) -> str:
|
| 105 |
out = []
|
|
|
|
| 110 |
out.append(t)
|
| 111 |
return " ".join(out)
|
| 112 |
|
| 113 |
+
|
| 114 |
def _sim_jaccard(a: str, b: str) -> float:
|
| 115 |
aw = set(a.lower().split())
|
| 116 |
bw = set(b.lower().split())
|
|
|
|
| 118 |
return 0.0
|
| 119 |
return len(aw & bw) / len(aw | bw)
|
| 120 |
|
| 121 |
+
|
| 122 |
def _keywords(text: str) -> List[str]:
|
| 123 |
toks = re.findall(r"[A-Za-zÀ-ÖØ-öø-ÿ0-9]+", text.lower())
|
| 124 |
return [t for t in toks if t not in STOPWORDS and len(t) > 2]
|
| 125 |
|
| 126 |
+
|
| 127 |
def _looks_azerbaijani(s: str) -> bool:
|
| 128 |
has_az = any(ch in AZ_CHARS for ch in s)
|
| 129 |
non_ascii_ratio = sum(ord(c) > 127 for c in s) / max(1, len(s))
|
| 130 |
return has_az or non_ascii_ratio > 0.15
|
| 131 |
|
| 132 |
+
|
| 133 |
+
def _extract_keyword_lines(question: str, pool: List[str], limit: int = 6) -> List[str]:
|
| 134 |
+
"""Directly lift lines containing descoped/scope-change hints."""
|
| 135 |
+
keys = set(_keywords(question)) | {k.lower() for k in KEYWORD_HINTS}
|
| 136 |
+
hits: List[str] = []
|
| 137 |
+
for text in pool[:200]:
|
| 138 |
+
t = fix_text(_fix_intra_word_spaces(_fix_word_breaks(_fix_mojibake(text))))
|
| 139 |
+
for line in t.splitlines():
|
| 140 |
+
s = " ".join(line.split())
|
| 141 |
+
if not s or len(s.split()) < 4:
|
| 142 |
+
continue
|
| 143 |
+
lo = s.lower()
|
| 144 |
+
if any(k in lo for k in keys):
|
| 145 |
+
hits.append(s)
|
| 146 |
+
if len(hits) >= limit:
|
| 147 |
+
return hits
|
| 148 |
+
return hits
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# ============================ RAG Core =============================
|
| 152 |
class SimpleRAG:
|
| 153 |
def __init__(
|
| 154 |
self,
|
|
|
|
| 202 |
pages: List[str] = []
|
| 203 |
for p in reader.pages:
|
| 204 |
t = p.extract_text() or ""
|
| 205 |
+
if t.strip():
|
| 206 |
+
t = _fix_mojibake(t)
|
| 207 |
+
t = fix_text(t)
|
| 208 |
+
t = _fix_word_breaks(t)
|
| 209 |
+
t = _fix_intra_word_spaces(t)
|
|
|
|
| 210 |
pages.append(t)
|
| 211 |
+
|
| 212 |
chunks: List[str] = []
|
| 213 |
for txt in pages:
|
| 214 |
for i in range(0, len(txt), step):
|
|
|
|
| 298 |
if not contexts and self.is_empty:
|
| 299 |
return "No relevant context found. Index is empty — upload a PDF first."
|
| 300 |
|
| 301 |
+
# Fix mojibake in contexts, normalize spacing
|
| 302 |
+
contexts = [fix_text(_fix_intra_word_spaces(_fix_word_breaks(_fix_mojibake(c or "")))) for c in (contexts or [])]
|
|
|
|
|
|
|
|
|
|
| 303 |
|
| 304 |
+
# Build candidate sentences from nearby contexts (use more windows)
|
| 305 |
local_pool: List[str] = []
|
| 306 |
+
for c in (contexts or [])[:8]:
|
| 307 |
cleaned = _clean_for_summary(c)
|
| 308 |
for s in _split_sentences(cleaned):
|
| 309 |
w = s.split()
|
|
|
|
| 327 |
if len(selected) >= max_sentences:
|
| 328 |
break
|
| 329 |
|
| 330 |
+
# keyword-based sentence-level selection across corpus
|
| 331 |
if not selected:
|
| 332 |
selected = self._keyword_fallback(question, self.chunks, limit_sentences=max_sentences)
|
| 333 |
|
| 334 |
+
# final direct-line extraction if still empty
|
| 335 |
+
if not selected:
|
| 336 |
+
selected = _extract_keyword_lines(question, self.chunks, limit=max_sentences)
|
| 337 |
+
|
| 338 |
if not selected:
|
| 339 |
return "No readable sentences matched the question. Try a more specific query."
|
| 340 |
|
| 341 |
+
# translate to EN if needed
|
| 342 |
if OUTPUT_LANG == "en" and any(ord(ch) > 127 for ch in " ".join(selected)):
|
| 343 |
selected = self._translate_to_en(selected)
|
| 344 |
|