|
|
import os |
|
|
import json |
|
|
import dotenv |
|
|
from dotenv import load_dotenv |
|
|
from langgraph.graph import START, StateGraph |
|
|
from langgraph.prebuilt import ToolNode,tools_condition |
|
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
|
from langchain_community.document_loaders import WikipediaLoader,ArxivLoader |
|
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
|
from langchain.tools.retriever import create_retriever_tool |
|
|
from langchain_core.tools import tool |
|
|
from supabase.client import Client, create_client |
|
|
from langchain.chat_models import init_chat_model |
|
|
import random |
|
|
from typing import Annotated,TypedDict |
|
|
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage,SystemMessage |
|
|
from langgraph.graph.message import add_messages |
|
|
|
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
with open('metadata.jsonl', 'r') as jsonl_file: |
|
|
json_list = list(jsonl_file) |
|
|
|
|
|
json_QA = [] |
|
|
for json_str in json_list: |
|
|
json_data = json.loads(json_str) |
|
|
json_QA.append(json_data) |
|
|
|
|
|
random.seed(42) |
|
|
random_samples = random.sample(json_QA, 1) |
|
|
|
|
|
supabase_url = os.environ.get("SUPABASE_URL") |
|
|
supabase_key = os.environ.get("SUPABASE_SERVICE_KEY") |
|
|
supabase: Client = create_client(supabase_url, supabase_key) |
|
|
|
|
|
system_prompt = """ |
|
|
You are a helpful assistant tasked with answering questions using a set of tools. |
|
|
If the tool is not available, you can try to find the information online. You can also use your own knowledge to answer the question. |
|
|
You need to provide a step-by-step explanation of how you arrived at the answer. |
|
|
========================== |
|
|
Here is a few examples showing you how to answer the question step by step. |
|
|
""" |
|
|
for i,sample in enumerate(random_samples): |
|
|
system_prompt += f"\nQuestion {i+1}: {sample['Question']}\nSteps:\n{sample['Annotator Metadata']['Steps']}\nTools:\n{sample['Annotator Metadata']['Tools']}\nFinal Answer: {sample['Final answer']}\n" |
|
|
system_prompt += "\n==========================\n" |
|
|
system_prompt += "Now, please answer the following question step by step.And if you can, please answer in Vietnamese.\n" |
|
|
|
|
|
with open('system_prompt.txt', 'w') as f: |
|
|
f.write(system_prompt) |
|
|
|
|
|
with open('system_prompt.txt', 'r') as f: |
|
|
system_prompt=f.read() |
|
|
print(system_prompt) |
|
|
|
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
|
tavily_key = os.getenv("TAVILY_API_KEY") |
|
|
|
|
|
|
|
|
vector_store = SupabaseVectorStore( |
|
|
client=supabase, |
|
|
embedding=embeddings, |
|
|
table_name="documents", |
|
|
query_name="match_documents_langchain", |
|
|
) |
|
|
retriever = vector_store.as_retriever() |
|
|
|
|
|
create_retriever_tool = create_retriever_tool( |
|
|
retriever = vector_store.as_retriever(), |
|
|
name= "Question_Retriever", |
|
|
description= "Find similar questions in the vector database for the given question." |
|
|
) |
|
|
|
|
|
@tool |
|
|
def multiply(a:int,b:int)->int: |
|
|
"""Multiply two numbers |
|
|
Args: |
|
|
a: first int |
|
|
b: second int |
|
|
""" |
|
|
return a*b |
|
|
|
|
|
@tool |
|
|
def subtract(a:int,b:int)->int: |
|
|
"""Subtract two numbers: |
|
|
Args: |
|
|
a: first int |
|
|
b: second int |
|
|
""" |
|
|
return a-b |
|
|
|
|
|
@tool |
|
|
def add(a:int,b:int)->int: |
|
|
"""Add two numbers |
|
|
Args: |
|
|
a: first int |
|
|
b: second int |
|
|
""" |
|
|
return a+b |
|
|
|
|
|
@tool |
|
|
def divide(a:int,b:int)->int: |
|
|
"""Divide two numbers. |
|
|
Args: |
|
|
a: first int |
|
|
b: second int |
|
|
""" |
|
|
return a/b |
|
|
|
|
|
@tool |
|
|
def modulus(a:int,b:int)->int: |
|
|
"""Get the modulus of two numbers. |
|
|
Args: |
|
|
a: first int |
|
|
b: second int |
|
|
""" |
|
|
return a%b |
|
|
|
|
|
@tool |
|
|
def wiki_search(query:str) -> str: |
|
|
"""Search Wikipedia for a query and return maximum 2 results. |
|
|
|
|
|
Args: |
|
|
query: The search query.""" |
|
|
search_docs = WikipediaLoader( |
|
|
query= query, |
|
|
load_max_docs=2 |
|
|
).load() |
|
|
|
|
|
formatted_search_docs = "\n\n---\n\n".join( |
|
|
[ |
|
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
|
for doc in search_docs |
|
|
] |
|
|
) |
|
|
return {'wiki_results' : formatted_search_docs} |
|
|
|
|
|
@tool |
|
|
def web_search(query: str) -> str: |
|
|
"""Search Tavily for a query and return maximum 3 results. |
|
|
|
|
|
Args: |
|
|
query: The search query.""" |
|
|
search_docs = TavilySearchResults(max_results=3,tavily_api_key=tavily_key).invoke(query=query) |
|
|
formatted_search_docs = "\n\n---\n\n".join( |
|
|
[ |
|
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
|
for doc in search_docs |
|
|
]) |
|
|
return {"web_results": formatted_search_docs} |
|
|
@tool |
|
|
def arvix_search(query: str) -> str: |
|
|
"""Search Arxiv for a query and return maximum 3 result. |
|
|
|
|
|
Args: |
|
|
query: The search query.""" |
|
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
|
formatted_search_docs = "\n\n---\n\n".join( |
|
|
[ |
|
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
|
for doc in search_docs |
|
|
]) |
|
|
return {"arvix_results": formatted_search_docs} |
|
|
|
|
|
tools = [ |
|
|
multiply, |
|
|
add, |
|
|
subtract, |
|
|
divide, |
|
|
modulus, |
|
|
wiki_search, |
|
|
web_search, |
|
|
arvix_search, |
|
|
create_retriever_tool |
|
|
] |
|
|
|
|
|
def build_graph(): |
|
|
"""Build the graph""" |
|
|
llm = init_chat_model("google_genai:gemini-2.0-flash",google_api_key=os.environ["GOOGLE_API_KEY"]) |
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
|
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
|
|
class MessagesState(TypedDict): |
|
|
messages: Annotated[list[AnyMessage], add_messages] |
|
|
|
|
|
def assistant(state: MessagesState): |
|
|
"""Assistant node""" |
|
|
return {"messages": [llm_with_tools.invoke(state["messages"])]} |
|
|
def retriever(state: MessagesState): |
|
|
"""Retriever node""" |
|
|
similar_question = vector_store.similarity_search(state["messages"][0].content) |
|
|
example_msg = HumanMessage( |
|
|
content=f"Here I provide a question and answer using query for reference if it is similar to question below: \n\n{similar_question[0].page_content}\n\nNO MORE EXPLAIN, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].", |
|
|
) |
|
|
return {"messages": [sys_msg] + state["messages"] + [example_msg]} |
|
|
|
|
|
|
|
|
builder = StateGraph(MessagesState) |
|
|
builder.add_node("retriever", retriever) |
|
|
builder.add_node("assistant", assistant) |
|
|
builder.add_node("tools", ToolNode(tools)) |
|
|
builder.add_edge(START, "retriever") |
|
|
builder.add_edge("retriever", "assistant") |
|
|
builder.add_conditional_edges( |
|
|
"assistant", |
|
|
|
|
|
|
|
|
tools_condition, |
|
|
) |
|
|
builder.add_edge("tools", "assistant") |
|
|
|
|
|
|
|
|
return builder.compile() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
question = "What is the capital of Vietnam?" |
|
|
|
|
|
graph = builder.compile() |
|
|
|
|
|
messages = [HumanMessage(content=question)] |
|
|
messages = graph.invoke({"messages": messages}) |
|
|
for m in messages["messages"]: |
|
|
m.pretty_print() |
|
|
|
|
|
|