File size: 7,226 Bytes
50c0210
 
 
396d6f7
50c0210
396d6f7
50c0210
 
396d6f7
50c0210
396d6f7
50c0210
 
 
 
 
4c024a3
 
50c0210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1062e3
 
50c0210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1062e3
d9fbcde
df57d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9843ba
df57d0c
 
 
 
 
 
 
 
 
 
 
 
e1062e3
 
df57d0c
 
 
 
 
 
50c0210
 
e1062e3
50c0210
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import json
import dotenv
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph
from langgraph.prebuilt import ToolNode,tools_condition
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader,ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain.tools.retriever import create_retriever_tool 
from langchain_core.tools import tool
from supabase.client import Client, create_client
from langchain.chat_models import init_chat_model
import random
from typing import Annotated,TypedDict
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage,SystemMessage
from langgraph.graph.message import add_messages


load_dotenv()

with open('metadata.jsonl', 'r') as jsonl_file:
    json_list = list(jsonl_file)

json_QA = []
for json_str in json_list:
    json_data = json.loads(json_str)
    json_QA.append(json_data)

random.seed(42)
random_samples = random.sample(json_QA, 1)

supabase_url = os.environ.get("SUPABASE_URL")
supabase_key = os.environ.get("SUPABASE_SERVICE_KEY")
supabase: Client = create_client(supabase_url, supabase_key)

system_prompt = """
You are a helpful assistant tasked with answering questions using a set of tools.
If the tool is not available, you can try to find the information online. You can also use your own knowledge to answer the question.
You need to provide a step-by-step explanation of how you arrived at the answer.
==========================
Here is a few examples showing you how to answer the question step by step.
"""
for i,sample in enumerate(random_samples):
  system_prompt += f"\nQuestion {i+1}: {sample['Question']}\nSteps:\n{sample['Annotator Metadata']['Steps']}\nTools:\n{sample['Annotator Metadata']['Tools']}\nFinal Answer: {sample['Final answer']}\n"
system_prompt += "\n==========================\n"
system_prompt += "Now, please answer the following question step by step.And if you can, please answer in Vietnamese.\n"
# save the system_prompt to a file
with open('system_prompt.txt', 'w') as f:
    f.write(system_prompt)

with open('system_prompt.txt', 'r') as f:
  system_prompt=f.read()
print(system_prompt)


embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
tavily_key = os.getenv("TAVILY_API_KEY")

# Tạo hoặc truy cập bảng vector
vector_store = SupabaseVectorStore(
    client=supabase,
    embedding=embeddings,
    table_name="documents",  
    query_name="match_documents_langchain",  
)
retriever = vector_store.as_retriever()

create_retriever_tool = create_retriever_tool(
    retriever = vector_store.as_retriever(),
    name= "Question_Retriever",
    description= "Find similar questions in the vector database for the given question."
)

@tool
def multiply(a:int,b:int)->int:
  """Multiply two numbers
  Args:
      a: first int
      b: second int
  """
  return a*b

@tool
def subtract(a:int,b:int)->int:
  """Subtract two numbers:
  Args:
      a: first int
      b: second int
  """
  return a-b

@tool
def add(a:int,b:int)->int:
  """Add two numbers
  Args:
      a: first int
      b: second int
  """
  return a+b

@tool
def divide(a:int,b:int)->int:
  """Divide two numbers.
  Args:
      a: first int
      b: second int
  """
  return a/b

@tool
def modulus(a:int,b:int)->int:
  """Get the modulus of two numbers.
  Args:
      a: first int
      b: second int
  """
  return a%b

@tool
def wiki_search(query:str) -> str:
  """Search Wikipedia for a query and return maximum 2 results.

    Args:
        query: The search query."""
  search_docs = WikipediaLoader(
      query= query,
      load_max_docs=2
  ).load()

  formatted_search_docs = "\n\n---\n\n".join(
      [
          f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
          for doc in search_docs
      ]
  )
  return {'wiki_results' : formatted_search_docs}

@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.

    Args:
        query: The search query."""
    search_docs = TavilySearchResults(max_results=3,tavily_api_key=tavily_key).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.

    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}

tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
    create_retriever_tool
]

def build_graph():
    """Build the graph"""
    llm = init_chat_model("google_genai:gemini-2.0-flash",google_api_key=os.environ["GOOGLE_API_KEY"])
    llm_with_tools = llm.bind_tools(tools)
    
    sys_msg = SystemMessage(content=system_prompt)
    
    class MessagesState(TypedDict):
      messages: Annotated[list[AnyMessage], add_messages]
    # Node
    def assistant(state: MessagesState):
        """Assistant node"""
        return {"messages": [llm_with_tools.invoke(state["messages"])]}
    def retriever(state: MessagesState):
            """Retriever node"""
            similar_question = vector_store.similarity_search(state["messages"][0].content)
            example_msg = HumanMessage(
                content=f"Here I provide a question and answer using query for reference if it is similar to question below:  \n\n{similar_question[0].page_content}\n\nNO MORE EXPLAIN, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER].",
            )
            return {"messages": [sys_msg] + state["messages"] + [example_msg]}
    
    # Build graph
    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges(
        "assistant",
        # If tool call -> tools_condition routes to tools
        # If not a tool call -> tools_condition routes to END
        tools_condition,
    )
    builder.add_edge("tools", "assistant")
    
    # Compile graph
    return builder.compile()

if __name__ == "__main__":
    question = "What is the capital of Vietnam?"
    # Build the graph
    graph = builder.compile()
    # Run the graph
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages})
    for m in messages["messages"]:
        m.pretty_print()