Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,6 @@ from PIL import Image
|
|
| 4 |
from model import predict
|
| 5 |
from datasets import load_dataset
|
| 6 |
|
| 7 |
-
# Streaming dataset (SAFE for large datasets)
|
| 8 |
dataset = load_dataset(
|
| 9 |
"AIOmarRehan/AnimalsDataset",
|
| 10 |
split="train",
|
|
@@ -24,19 +23,16 @@ def classify_image(img: Image.Image):
|
|
| 24 |
{k: round(v, 3) for k, v in probs.items()}
|
| 25 |
)
|
| 26 |
|
| 27 |
-
# Random example for streaming dataset
|
| 28 |
def random_example():
|
| 29 |
|
| 30 |
-
# Shuffle streaming buffer then take first item
|
| 31 |
item = next(iter(dataset.shuffle(buffer_size=100)))
|
| 32 |
|
| 33 |
img = item["image"].convert("RGB")
|
| 34 |
label = item["label"]
|
| 35 |
|
| 36 |
-
# streaming dataset keeps features
|
| 37 |
label_str = dataset.features["label"].int2str(label)
|
| 38 |
|
| 39 |
-
return img, label_str
|
| 40 |
|
| 41 |
|
| 42 |
demo = gr.Blocks()
|
|
@@ -65,7 +61,7 @@ with demo:
|
|
| 65 |
|
| 66 |
rand_img.click(
|
| 67 |
random_example,
|
| 68 |
-
outputs=[rand_display, rand_label]
|
| 69 |
)
|
| 70 |
|
| 71 |
if __name__ == "__main__":
|
|
|
|
| 4 |
from model import predict
|
| 5 |
from datasets import load_dataset
|
| 6 |
|
|
|
|
| 7 |
dataset = load_dataset(
|
| 8 |
"AIOmarRehan/AnimalsDataset",
|
| 9 |
split="train",
|
|
|
|
| 23 |
{k: round(v, 3) for k, v in probs.items()}
|
| 24 |
)
|
| 25 |
|
|
|
|
| 26 |
def random_example():
|
| 27 |
|
|
|
|
| 28 |
item = next(iter(dataset.shuffle(buffer_size=100)))
|
| 29 |
|
| 30 |
img = item["image"].convert("RGB")
|
| 31 |
label = item["label"]
|
| 32 |
|
|
|
|
| 33 |
label_str = dataset.features["label"].int2str(label)
|
| 34 |
|
| 35 |
+
return img, img, label_str
|
| 36 |
|
| 37 |
|
| 38 |
demo = gr.Blocks()
|
|
|
|
| 61 |
|
| 62 |
rand_img.click(
|
| 63 |
random_example,
|
| 64 |
+
outputs=[input_img, rand_display, rand_label]
|
| 65 |
)
|
| 66 |
|
| 67 |
if __name__ == "__main__":
|