Update app.py
Browse files
app.py
CHANGED
|
@@ -4,12 +4,15 @@ from PIL import Image
|
|
| 4 |
from model import predict
|
| 5 |
from datasets import load_dataset
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
dataset = load_dataset(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
def classify_image(img: Image.Image):
|
| 11 |
|
| 12 |
-
# Handle empty input safely
|
| 13 |
if img is None:
|
| 14 |
return "No image uploaded", 0, {}
|
| 15 |
|
|
@@ -21,14 +24,16 @@ def classify_image(img: Image.Image):
|
|
| 21 |
{k: round(v, 3) for k, v in probs.items()}
|
| 22 |
)
|
| 23 |
|
| 24 |
-
#
|
| 25 |
def random_example():
|
| 26 |
|
| 27 |
-
|
| 28 |
-
item = dataset
|
| 29 |
|
| 30 |
img = item["image"].convert("RGB")
|
| 31 |
label = item["label"]
|
|
|
|
|
|
|
| 32 |
label_str = dataset.features["label"].int2str(label)
|
| 33 |
|
| 34 |
return img, label_str
|
|
@@ -43,18 +48,15 @@ with demo:
|
|
| 43 |
input_img = gr.Image(type="pil", label="Upload an image")
|
| 44 |
rand_img = gr.Button("Random Dataset Image")
|
| 45 |
|
| 46 |
-
|
| 47 |
-
pred_btn = gr.Button("Predict")
|
| 48 |
|
| 49 |
output_label = gr.Label(label="Predicted Class")
|
| 50 |
output_conf = gr.Number(label="Confidence")
|
| 51 |
output_probs = gr.JSON(label="All Probabilities")
|
| 52 |
|
| 53 |
-
# Display random dataset sample
|
| 54 |
rand_display = gr.Image(type="pil", label="Random Dataset Sample")
|
| 55 |
rand_label = gr.Textbox(label="Sample Label")
|
| 56 |
|
| 57 |
-
# Actions
|
| 58 |
pred_btn.click(
|
| 59 |
classify_image,
|
| 60 |
inputs=input_img,
|
|
|
|
| 4 |
from model import predict
|
| 5 |
from datasets import load_dataset
|
| 6 |
|
| 7 |
+
# Streaming dataset (SAFE for large datasets)
|
| 8 |
+
dataset = load_dataset(
|
| 9 |
+
"AIOmarRehan/AnimalsDataset",
|
| 10 |
+
split="train",
|
| 11 |
+
streaming=True
|
| 12 |
+
)
|
| 13 |
|
| 14 |
def classify_image(img: Image.Image):
|
| 15 |
|
|
|
|
| 16 |
if img is None:
|
| 17 |
return "No image uploaded", 0, {}
|
| 18 |
|
|
|
|
| 24 |
{k: round(v, 3) for k, v in probs.items()}
|
| 25 |
)
|
| 26 |
|
| 27 |
+
# Random example for streaming dataset
|
| 28 |
def random_example():
|
| 29 |
|
| 30 |
+
# Shuffle streaming buffer then take first item
|
| 31 |
+
item = next(iter(dataset.shuffle(buffer_size=100)))
|
| 32 |
|
| 33 |
img = item["image"].convert("RGB")
|
| 34 |
label = item["label"]
|
| 35 |
+
|
| 36 |
+
# streaming dataset keeps features
|
| 37 |
label_str = dataset.features["label"].int2str(label)
|
| 38 |
|
| 39 |
return img, label_str
|
|
|
|
| 48 |
input_img = gr.Image(type="pil", label="Upload an image")
|
| 49 |
rand_img = gr.Button("Random Dataset Image")
|
| 50 |
|
| 51 |
+
pred_btn = gr.Button("Predict")
|
|
|
|
| 52 |
|
| 53 |
output_label = gr.Label(label="Predicted Class")
|
| 54 |
output_conf = gr.Number(label="Confidence")
|
| 55 |
output_probs = gr.JSON(label="All Probabilities")
|
| 56 |
|
|
|
|
| 57 |
rand_display = gr.Image(type="pil", label="Random Dataset Sample")
|
| 58 |
rand_label = gr.Textbox(label="Sample Label")
|
| 59 |
|
|
|
|
| 60 |
pred_btn.click(
|
| 61 |
classify_image,
|
| 62 |
inputs=input_img,
|