Update app.py
Browse files
app.py
CHANGED
|
@@ -4,11 +4,17 @@ from PIL import Image
|
|
| 4 |
from model import predict
|
| 5 |
from datasets import load_dataset
|
| 6 |
|
| 7 |
-
# Load
|
| 8 |
-
dataset = load_dataset("AIOmarRehan/AnimalsDataset", split="train"
|
| 9 |
|
| 10 |
def classify_image(img: Image.Image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
label, confidence, probs = predict(img)
|
|
|
|
| 12 |
return (
|
| 13 |
label,
|
| 14 |
round(confidence, 3),
|
|
@@ -17,14 +23,17 @@ def classify_image(img: Image.Image):
|
|
| 17 |
|
| 18 |
# Pick a random example
|
| 19 |
def random_example():
|
| 20 |
-
|
| 21 |
idx = random.randint(0, len(dataset) - 1)
|
| 22 |
item = dataset[idx]
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
return img, label_str
|
| 27 |
|
|
|
|
| 28 |
demo = gr.Blocks()
|
| 29 |
|
| 30 |
with demo:
|
|
@@ -46,8 +55,16 @@ with demo:
|
|
| 46 |
rand_label = gr.Textbox(label="Sample Label")
|
| 47 |
|
| 48 |
# Actions
|
| 49 |
-
pred_btn.click(
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
if __name__ == "__main__":
|
| 53 |
demo.launch()
|
|
|
|
| 4 |
from model import predict
|
| 5 |
from datasets import load_dataset
|
| 6 |
|
| 7 |
+
# Load dataset (NO streaming → allows len() and indexing)
|
| 8 |
+
dataset = load_dataset("AIOmarRehan/AnimalsDataset", split="train")
|
| 9 |
|
| 10 |
def classify_image(img: Image.Image):
|
| 11 |
+
|
| 12 |
+
# Handle empty input safely
|
| 13 |
+
if img is None:
|
| 14 |
+
return "No image uploaded", 0, {}
|
| 15 |
+
|
| 16 |
label, confidence, probs = predict(img)
|
| 17 |
+
|
| 18 |
return (
|
| 19 |
label,
|
| 20 |
round(confidence, 3),
|
|
|
|
| 23 |
|
| 24 |
# Pick a random example
|
| 25 |
def random_example():
|
| 26 |
+
|
| 27 |
idx = random.randint(0, len(dataset) - 1)
|
| 28 |
item = dataset[idx]
|
| 29 |
+
|
| 30 |
+
img = item["image"].convert("RGB")
|
| 31 |
+
label = item["label"]
|
| 32 |
+
label_str = dataset.features["label"].int2str(label)
|
| 33 |
+
|
| 34 |
return img, label_str
|
| 35 |
|
| 36 |
+
|
| 37 |
demo = gr.Blocks()
|
| 38 |
|
| 39 |
with demo:
|
|
|
|
| 55 |
rand_label = gr.Textbox(label="Sample Label")
|
| 56 |
|
| 57 |
# Actions
|
| 58 |
+
pred_btn.click(
|
| 59 |
+
classify_image,
|
| 60 |
+
inputs=input_img,
|
| 61 |
+
outputs=[output_label, output_conf, output_probs]
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
rand_img.click(
|
| 65 |
+
random_example,
|
| 66 |
+
outputs=[rand_display, rand_label]
|
| 67 |
+
)
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|
| 70 |
demo.launch()
|