Update model.py
Browse files
model.py
CHANGED
|
@@ -1,18 +1,8 @@
|
|
| 1 |
-
import random
|
| 2 |
import gradio as gr
|
| 3 |
from PIL import Image
|
| 4 |
from model import predict
|
| 5 |
-
from datasets import load_dataset
|
| 6 |
-
|
| 7 |
-
# Load dataset (NO streaming → allows len() and indexing)
|
| 8 |
-
dataset = load_dataset("AIOmarRehan/AnimalsDataset", split="train")
|
| 9 |
|
| 10 |
def classify_image(img: Image.Image):
|
| 11 |
-
|
| 12 |
-
# Handle empty input safely
|
| 13 |
-
if img is None:
|
| 14 |
-
return "No image uploaded", 0, {}
|
| 15 |
-
|
| 16 |
label, confidence, probs = predict(img)
|
| 17 |
|
| 18 |
return (
|
|
@@ -21,50 +11,17 @@ def classify_image(img: Image.Image):
|
|
| 21 |
{k: round(v, 3) for k, v in probs.items()}
|
| 22 |
)
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
demo = gr.Blocks()
|
| 38 |
-
|
| 39 |
-
with demo:
|
| 40 |
-
gr.Markdown("## Animal Image Classifier with Random Dataset Samples")
|
| 41 |
-
|
| 42 |
-
with gr.Row():
|
| 43 |
-
input_img = gr.Image(type="pil", label="Upload an image")
|
| 44 |
-
rand_img = gr.Button("Random Dataset Image")
|
| 45 |
-
|
| 46 |
-
with gr.Row():
|
| 47 |
-
pred_btn = gr.Button("Predict")
|
| 48 |
-
|
| 49 |
-
output_label = gr.Label(label="Predicted Class")
|
| 50 |
-
output_conf = gr.Number(label="Confidence")
|
| 51 |
-
output_probs = gr.JSON(label="All Probabilities")
|
| 52 |
-
|
| 53 |
-
# Display random dataset sample
|
| 54 |
-
rand_display = gr.Image(type="pil", label="Random Dataset Sample")
|
| 55 |
-
rand_label = gr.Textbox(label="Sample Label")
|
| 56 |
-
|
| 57 |
-
# Actions
|
| 58 |
-
pred_btn.click(
|
| 59 |
-
classify_image,
|
| 60 |
-
inputs=input_img,
|
| 61 |
-
outputs=[output_label, output_conf, output_probs]
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
rand_img.click(
|
| 65 |
-
random_example,
|
| 66 |
-
outputs=[rand_display, rand_label]
|
| 67 |
-
)
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|
| 70 |
demo.launch()
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from PIL import Image
|
| 3 |
from model import predict
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
def classify_image(img: Image.Image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
label, confidence, probs = predict(img)
|
| 7 |
|
| 8 |
return (
|
|
|
|
| 11 |
{k: round(v, 3) for k, v in probs.items()}
|
| 12 |
)
|
| 13 |
|
| 14 |
+
demo = gr.Interface(
|
| 15 |
+
fn=classify_image,
|
| 16 |
+
inputs=gr.Image(type="pil", label="Upload an image"),
|
| 17 |
+
outputs=[
|
| 18 |
+
gr.Label(label="Predicted Class"),
|
| 19 |
+
gr.Number(label="Confidence"),
|
| 20 |
+
gr.JSON(label="All Probabilities")
|
| 21 |
+
],
|
| 22 |
+
title="Animal Image Classifier",
|
| 23 |
+
description="Upload an image and the model will predict the animal."
|
| 24 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
if __name__ == "__main__":
|
| 27 |
demo.launch()
|