File size: 1,632 Bytes
eb4c49e
390c589
 
 
eb4c49e
 
 
 
390c589
 
 
 
 
 
 
 
 
eb4c49e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
390c589
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import random
import gradio as gr
from PIL import Image
from model import predict
from datasets import load_dataset

# Load the HF dataset once
dataset = load_dataset("AIOmarRehan/AnimalsDataset", split="train")

def classify_image(img: Image.Image):
    label, confidence, probs = predict(img)
    return (
        label,
        round(confidence, 3),
        {k: round(v, 3) for k, v in probs.items()}
    )

# Pick a random example
def random_example():
    # Choose a random row
    idx = random.randint(0, len(dataset) - 1)
    item = dataset[idx]
    img = item["image"].convert("RGB")  # PIL Image
    label = item["label"]  # numeric label from dataset
    label_str = dataset.features["label"].int2str(label)  # class name
    return img, label_str

demo = gr.Blocks()

with demo:
    gr.Markdown("## Animal Image Classifier with Random Dataset Samples")
    
    with gr.Row():
        input_img = gr.Image(type="pil", label="Upload an image")
        rand_img = gr.Button("Random Dataset Image")
    
    with gr.Row():
        pred_btn = gr.Button("Predict")
    
    output_label = gr.Label(label="Predicted Class")
    output_conf = gr.Number(label="Confidence")
    output_probs = gr.JSON(label="All Probabilities")
    
    # Display random dataset sample
    rand_display = gr.Image(type="pil", label="Random Dataset Sample")
    rand_label = gr.Textbox(label="Sample Label")
    
    # Actions
    pred_btn.click(classify_image, inputs=input_img, outputs=[output_label, output_conf, output_probs])
    rand_img.click(random_example, outputs=[rand_display, rand_label])

if __name__ == "__main__":
    demo.launch()