Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from model import predict
|
| 4 |
+
|
| 5 |
+
def classify_image(img: Image.Image):
|
| 6 |
+
label, confidence, probs = predict(img)
|
| 7 |
+
|
| 8 |
+
return (
|
| 9 |
+
label,
|
| 10 |
+
round(confidence, 3),
|
| 11 |
+
{k: round(v, 3) for k, v in probs.items()}
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
demo = gr.Interface(
|
| 15 |
+
fn=classify_image,
|
| 16 |
+
inputs=gr.Image(type="pil", label="Upload an image"),
|
| 17 |
+
outputs=[
|
| 18 |
+
gr.Label(label="Predicted Class"),
|
| 19 |
+
gr.Number(label="Confidence"),
|
| 20 |
+
gr.JSON(label="All Probabilities")
|
| 21 |
+
],
|
| 22 |
+
title="Animal Image Classifier",
|
| 23 |
+
description="Upload an image and the model will predict the animal."
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
if __name__ == "__main__":
|
| 27 |
+
demo.launch()
|