|
|
--- |
|
|
license: llama2 |
|
|
base_model: codellama/CodeLlama-13b-Instruct-hf |
|
|
tags: |
|
|
- security |
|
|
- cybersecurity |
|
|
- secure-coding |
|
|
- ai-security |
|
|
- owasp |
|
|
- code-generation |
|
|
- qlora |
|
|
- lora |
|
|
- fine-tuned |
|
|
- securecode |
|
|
datasets: |
|
|
- scthornton/securecode |
|
|
library_name: peft |
|
|
pipeline_tag: text-generation |
|
|
language: |
|
|
- code |
|
|
- en |
|
|
--- |
|
|
|
|
|
# CodeLlama 13B SecureCode |
|
|
|
|
|
<div align="center"> |
|
|
|
|
|
 |
|
|
 |
|
|
 |
|
|
 |
|
|
|
|
|
**Security-specialized code model fine-tuned on the [SecureCode](https://huggingface.co/datasets/scthornton/securecode) dataset** |
|
|
|
|
|
[Dataset](https://huggingface.co/datasets/scthornton/securecode) | [Paper (arXiv:2512.18542)](https://arxiv.org/abs/2512.18542) | [Model Collection](https://huggingface.co/collections/scthornton/securecode) | [perfecXion.ai](https://perfecxion.ai) |
|
|
|
|
|
</div> |
|
|
|
|
|
--- |
|
|
|
|
|
## What This Model Does |
|
|
|
|
|
This model generates **secure code** when developers ask about building features. Instead of producing vulnerable implementations (like 45% of AI-generated code does), it: |
|
|
|
|
|
- Identifies the security risks in common coding patterns |
|
|
- Provides vulnerable *and* secure implementations side by side |
|
|
- Explains how attackers would exploit the vulnerability |
|
|
- Includes defense-in-depth guidance: logging, monitoring, SIEM integration, infrastructure hardening |
|
|
|
|
|
The model was fine-tuned on **2,185 security training examples** covering both traditional web security (OWASP Top 10 2021) and AI/ML security (OWASP LLM Top 10 2025). |
|
|
|
|
|
## Model Details |
|
|
|
|
|
| | | |
|
|
|---|---| |
|
|
| **Base Model** | [CodeLlama 13B Instruct](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) | |
|
|
| **Parameters** | 13B | |
|
|
| **Architecture** | Llama 2 | |
|
|
| **Tier** | Tier 3: Large Model | |
|
|
| **Method** | QLoRA (4-bit NormalFloat quantization) | |
|
|
| **LoRA Rank** | 16 (alpha=32) | |
|
|
| **Target Modules** | `q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj` (7 modules) | |
|
|
| **Training Data** | [scthornton/securecode](https://huggingface.co/datasets/scthornton/securecode) (2,185 examples) | |
|
|
| **Hardware** | NVIDIA A100 40GB | |
|
|
|
|
|
Meta's code-specialized Llama variant at 13B parameters. Deeper security reasoning with strong code understanding. |
|
|
|
|
|
## Quick Start |
|
|
|
|
|
```python |
|
|
from peft import PeftModel |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig |
|
|
import torch |
|
|
|
|
|
# Load with 4-bit quantization (matches training) |
|
|
bnb_config = BitsAndBytesConfig( |
|
|
load_in_4bit=True, |
|
|
bnb_4bit_quant_type="nf4", |
|
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
|
) |
|
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
|
"codellama/CodeLlama-13b-Instruct-hf", |
|
|
quantization_config=bnb_config, |
|
|
device_map="auto", |
|
|
) |
|
|
tokenizer = AutoTokenizer.from_pretrained("scthornton/codellama-13b-securecode") |
|
|
model = PeftModel.from_pretrained(base_model, "scthornton/codellama-13b-securecode") |
|
|
|
|
|
# Ask a security-relevant coding question |
|
|
messages = [ |
|
|
{"role": "user", "content": "How do I implement JWT authentication with refresh tokens in Python?"} |
|
|
] |
|
|
|
|
|
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device) |
|
|
outputs = model.generate(inputs, max_new_tokens=2048, temperature=0.7) |
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
|
``` |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Dataset |
|
|
|
|
|
Trained on the full **[SecureCode](https://huggingface.co/datasets/scthornton/securecode)** unified dataset: |
|
|
|
|
|
- **2,185 total examples** (1,435 web security + 750 AI/ML security) |
|
|
- **20 vulnerability categories** across OWASP Top 10 2021 and OWASP LLM Top 10 2025 |
|
|
- **12+ programming languages** and **49+ frameworks** |
|
|
- **4-turn conversational structure**: feature request, vulnerable/secure implementations, advanced probing, operational guidance |
|
|
- **100% incident grounding**: every example tied to real CVEs, vendor advisories, or published attack research |
|
|
|
|
|
### Hyperparameters |
|
|
|
|
|
| Parameter | Value | |
|
|
|-----------|-------| |
|
|
| LoRA rank | 16 | |
|
|
| LoRA alpha | 32 | |
|
|
| LoRA dropout | 0.05 | |
|
|
| Target modules | 7 linear layers | |
|
|
| Quantization | 4-bit NormalFloat (NF4) | |
|
|
| Learning rate | 2e-4 | |
|
|
| LR scheduler | Cosine with 100-step warmup | |
|
|
| Epochs | 3 | |
|
|
| Per-device batch size | 2 | |
|
|
| Gradient accumulation | 8x | |
|
|
| Effective batch size | 16 | |
|
|
| Max sequence length | 2048 tokens | |
|
|
| Optimizer | paged_adamw_8bit | |
|
|
| Precision | bf16 | |
|
|
|
|
|
**Notes:** Reduced max sequence length (2048) to fit A100 40GB memory. Strong at multi-turn security reasoning. |
|
|
|
|
|
## Security Coverage |
|
|
|
|
|
### Web Security (1,435 examples) |
|
|
|
|
|
OWASP Top 10 2021: Broken Access Control, Cryptographic Failures, Injection, Insecure Design, Security Misconfiguration, Vulnerable Components, Authentication Failures, Software Integrity Failures, Logging/Monitoring Failures, SSRF. |
|
|
|
|
|
Languages: Python, JavaScript, Java, Go, PHP, C#, TypeScript, Ruby, Rust, Kotlin, YAML. |
|
|
|
|
|
### AI/ML Security (750 examples) |
|
|
|
|
|
OWASP LLM Top 10 2025: Prompt Injection, Sensitive Information Disclosure, Supply Chain Vulnerabilities, Data/Model Poisoning, Improper Output Handling, Excessive Agency, System Prompt Leakage, Vector/Embedding Weaknesses, Misinformation, Unbounded Consumption. |
|
|
|
|
|
Frameworks: LangChain, OpenAI, Anthropic, HuggingFace, LlamaIndex, ChromaDB, Pinecone, FastAPI, Flask, vLLM, CrewAI, and 30+ more. |
|
|
|
|
|
## SecureCode Model Collection |
|
|
|
|
|
This model is part of the **SecureCode** collection of 8 security-specialized models: |
|
|
|
|
|
| Model | Base | Size | Tier | HuggingFace | |
|
|
|-------|------|------|------|-------------| |
|
|
| Llama 3.2 SecureCode | meta-llama/Llama-3.2-3B-Instruct | 3B | Accessible | [`llama-3.2-3b-securecode`](https://huggingface.co/scthornton/llama-3.2-3b-securecode) | |
|
|
| Qwen2.5 Coder SecureCode | Qwen/Qwen2.5-Coder-7B-Instruct | 7B | Mid-size | [`qwen2.5-coder-7b-securecode`](https://huggingface.co/scthornton/qwen2.5-coder-7b-securecode) | |
|
|
| DeepSeek Coder SecureCode | deepseek-ai/deepseek-coder-6.7b-instruct | 6.7B | Mid-size | [`deepseek-coder-6.7b-securecode`](https://huggingface.co/scthornton/deepseek-coder-6.7b-securecode) | |
|
|
| CodeGemma SecureCode | google/codegemma-7b-it | 7B | Mid-size | [`codegemma-7b-securecode`](https://huggingface.co/scthornton/codegemma-7b-securecode) | |
|
|
| CodeLlama SecureCode | codellama/CodeLlama-13b-Instruct-hf | 13B | Large | [`codellama-13b-securecode`](https://huggingface.co/scthornton/codellama-13b-securecode) | |
|
|
| Qwen2.5 Coder 14B SecureCode | Qwen/Qwen2.5-Coder-14B-Instruct | 14B | Large | [`qwen2.5-coder-14b-securecode`](https://huggingface.co/scthornton/qwen2.5-coder-14b-securecode) | |
|
|
| StarCoder2 SecureCode | bigcode/starcoder2-15b-instruct-v0.1 | 15B | Large | [`starcoder2-15b-securecode`](https://huggingface.co/scthornton/starcoder2-15b-securecode) | |
|
|
| Granite 20B Code SecureCode | ibm-granite/granite-20b-code-instruct-8k | 20B | XL | [`granite-20b-code-securecode`](https://huggingface.co/scthornton/granite-20b-code-securecode) | |
|
|
|
|
|
Choose based on your deployment constraints: **3B** for edge/mobile, **7B** for general use, **13B-15B** for deeper reasoning, **20B** for maximum capability. |
|
|
|
|
|
## SecureCode Dataset Family |
|
|
|
|
|
| Dataset | Examples | Focus | Link | |
|
|
|---------|----------|-------|------| |
|
|
| **SecureCode** | 2,185 | Unified (web + AI/ML) | [scthornton/securecode](https://huggingface.co/datasets/scthornton/securecode) | |
|
|
| SecureCode Web | 1,435 | Web security (OWASP Top 10 2021) | [scthornton/securecode-web](https://huggingface.co/datasets/scthornton/securecode-web) | |
|
|
| SecureCode AI/ML | 750 | AI/ML security (OWASP LLM Top 10 2025) | [scthornton/securecode-aiml](https://huggingface.co/datasets/scthornton/securecode-aiml) | |
|
|
|
|
|
## Intended Use |
|
|
|
|
|
**Use this model for:** |
|
|
- Training AI coding assistants to write secure code |
|
|
- Security education and training |
|
|
- Vulnerability research and secure code review |
|
|
- Building security-aware development tools |
|
|
|
|
|
**Do not use this model for:** |
|
|
- Offensive exploitation or automated attack generation |
|
|
- Circumventing security controls |
|
|
- Any activity that violates the base model's license |
|
|
|
|
|
## Citation |
|
|
|
|
|
```bibtex |
|
|
@misc{thornton2026securecode, |
|
|
title={SecureCode: A Production-Grade Multi-Turn Dataset for Training Security-Aware Code Generation Models}, |
|
|
author={Thornton, Scott}, |
|
|
year={2026}, |
|
|
publisher={perfecXion.ai}, |
|
|
url={https://huggingface.co/datasets/scthornton/securecode}, |
|
|
note={arXiv:2512.18542} |
|
|
} |
|
|
``` |
|
|
|
|
|
## Links |
|
|
|
|
|
- **Dataset**: [scthornton/securecode](https://huggingface.co/datasets/scthornton/securecode) |
|
|
- **Research Paper**: [arXiv:2512.18542](https://arxiv.org/abs/2512.18542) |
|
|
- **Model Collection**: [huggingface.co/collections/scthornton/securecode](https://huggingface.co/collections/scthornton/securecode) |
|
|
- **Author**: [perfecXion.ai](https://perfecxion.ai) |
|
|
|
|
|
## License |
|
|
|
|
|
This model is released under the **llama2** license (inherited from the base model). The training dataset ([SecureCode](https://huggingface.co/datasets/scthornton/securecode)) is licensed under **CC BY-NC-SA 4.0**. |
|
|
|