SqueezeNet-1.1: Optimized for Qualcomm Devices
SqueezeNet is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
This is based on the implementation of SqueezeNet-1.1 found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.
Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.
Getting Started
There are two ways to deploy this model on your device:
Option 1: Download Pre-Exported Models
Below are pre-exported model assets ready for deployment.
| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| ONNX | w8a8 | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| QNN_DLC | float | Universal | QAIRT 2.42 | Download |
| QNN_DLC | w8a8 | Universal | QAIRT 2.42 | Download |
| TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | Download |
| TFLITE | w8a8 | Universal | QAIRT 2.42, TFLite 2.17.0 | Download |
For more device-specific assets and performance metrics, visit SqueezeNet-1.1 on Qualcomm® AI Hub.
Option 2: Export with Custom Configurations
Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations
This option is ideal if you need to customize the model beyond the default configuration provided here.
See our repository for SqueezeNet-1.1 on GitHub for usage instructions.
Model Details
Model Type: Model_use_case.image_classification
Model Stats:
- Model checkpoint: Imagenet
- Input resolution: 224x224
- Number of parameters: 1.24M
- Model size (float): 4.73 MB
- Model size (w8a8): 1.30 MB
Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |
|---|---|---|---|---|---|---|
| SqueezeNet-1.1 | ONNX | float | Snapdragon® X Elite | 0.489 ms | 2 - 2 MB | NPU |
| SqueezeNet-1.1 | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 0.431 ms | 0 - 100 MB | NPU |
| SqueezeNet-1.1 | ONNX | float | Qualcomm® QCS8550 (Proxy) | 0.601 ms | 0 - 50 MB | NPU |
| SqueezeNet-1.1 | ONNX | float | Qualcomm® QCS9075 | 0.882 ms | 1 - 3 MB | NPU |
| SqueezeNet-1.1 | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.327 ms | 0 - 87 MB | NPU |
| SqueezeNet-1.1 | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.274 ms | 0 - 91 MB | NPU |
| SqueezeNet-1.1 | ONNX | w8a8 | Snapdragon® X Elite | 0.496 ms | 0 - 0 MB | NPU |
| SqueezeNet-1.1 | ONNX | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.454 ms | 0 - 99 MB | NPU |
| SqueezeNet-1.1 | ONNX | w8a8 | Qualcomm® QCS6490 | 3.777 ms | 5 - 9 MB | CPU |
| SqueezeNet-1.1 | ONNX | w8a8 | Qualcomm® QCS8550 (Proxy) | 0.563 ms | 0 - 40 MB | NPU |
| SqueezeNet-1.1 | ONNX | w8a8 | Qualcomm® QCS9075 | 0.682 ms | 0 - 3 MB | NPU |
| SqueezeNet-1.1 | ONNX | w8a8 | Qualcomm® QCM6690 | 2.928 ms | 0 - 7 MB | CPU |
| SqueezeNet-1.1 | ONNX | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.336 ms | 0 - 93 MB | NPU |
| SqueezeNet-1.1 | ONNX | w8a8 | Snapdragon® 7 Gen 4 Mobile | 2.13 ms | 0 - 7 MB | CPU |
| SqueezeNet-1.1 | ONNX | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.302 ms | 0 - 93 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | float | Snapdragon® X Elite | 0.783 ms | 1 - 1 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 0.446 ms | 0 - 31 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 0.656 ms | 1 - 2 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | float | Qualcomm® SA8775P | 0.952 ms | 0 - 22 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | float | Qualcomm® QCS9075 | 0.864 ms | 1 - 3 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 1.27 ms | 0 - 32 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | float | Qualcomm® SA8295P | 1.145 ms | 0 - 18 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.326 ms | 0 - 24 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.239 ms | 1 - 25 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | w8a8 | Snapdragon® X Elite | 0.49 ms | 0 - 0 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.263 ms | 0 - 30 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | w8a8 | Qualcomm® QCS6490 | 1.076 ms | 0 - 2 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | w8a8 | Qualcomm® QCS8275 (Proxy) | 0.944 ms | 0 - 21 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | w8a8 | Qualcomm® QCS8550 (Proxy) | 0.379 ms | 0 - 9 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | w8a8 | Qualcomm® SA8775P | 0.543 ms | 0 - 21 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | w8a8 | Qualcomm® QCS9075 | 0.443 ms | 0 - 2 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | w8a8 | Qualcomm® QCM6690 | 1.461 ms | 0 - 19 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | w8a8 | Qualcomm® QCS8450 (Proxy) | 0.438 ms | 0 - 31 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | w8a8 | Qualcomm® SA7255P | 0.944 ms | 0 - 21 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | w8a8 | Qualcomm® SA8295P | 0.717 ms | 0 - 18 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.178 ms | 0 - 23 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | w8a8 | Snapdragon® 7 Gen 4 Mobile | 0.382 ms | 0 - 20 MB | NPU |
| SqueezeNet-1.1 | QNN_DLC | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.149 ms | 0 - 22 MB | NPU |
| SqueezeNet-1.1 | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 0.45 ms | 0 - 34 MB | NPU |
| SqueezeNet-1.1 | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 5.915 ms | 0 - 27 MB | GPU |
| SqueezeNet-1.1 | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 0.67 ms | 0 - 2 MB | NPU |
| SqueezeNet-1.1 | TFLITE | float | Qualcomm® SA8775P | 4.018 ms | 0 - 25 MB | NPU |
| SqueezeNet-1.1 | TFLITE | float | Qualcomm® QCS9075 | 0.878 ms | 0 - 5 MB | NPU |
| SqueezeNet-1.1 | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 1.273 ms | 0 - 34 MB | NPU |
| SqueezeNet-1.1 | TFLITE | float | Qualcomm® SA7255P | 5.915 ms | 0 - 27 MB | GPU |
| SqueezeNet-1.1 | TFLITE | float | Qualcomm® SA8295P | 1.167 ms | 0 - 20 MB | NPU |
| SqueezeNet-1.1 | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.33 ms | 0 - 27 MB | NPU |
| SqueezeNet-1.1 | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.237 ms | 0 - 27 MB | NPU |
| SqueezeNet-1.1 | TFLITE | w8a8 | Snapdragon® 8 Gen 3 Mobile | 0.15 ms | 0 - 28 MB | NPU |
| SqueezeNet-1.1 | TFLITE | w8a8 | Qualcomm® QCS6490 | 0.516 ms | 0 - 3 MB | NPU |
| SqueezeNet-1.1 | TFLITE | w8a8 | Qualcomm® QCS8275 (Proxy) | 0.63 ms | 0 - 23 MB | NPU |
| SqueezeNet-1.1 | TFLITE | w8a8 | Qualcomm® QCS8550 (Proxy) | 0.2 ms | 0 - 1 MB | NPU |
| SqueezeNet-1.1 | TFLITE | w8a8 | Qualcomm® SA8775P | 0.374 ms | 0 - 22 MB | NPU |
| SqueezeNet-1.1 | TFLITE | w8a8 | Qualcomm® QCS9075 | 0.268 ms | 0 - 3 MB | NPU |
| SqueezeNet-1.1 | TFLITE | w8a8 | Qualcomm® QCM6690 | 0.919 ms | 0 - 18 MB | NPU |
| SqueezeNet-1.1 | TFLITE | w8a8 | Qualcomm® QCS8450 (Proxy) | 0.264 ms | 0 - 29 MB | NPU |
| SqueezeNet-1.1 | TFLITE | w8a8 | Qualcomm® SA7255P | 0.63 ms | 0 - 23 MB | NPU |
| SqueezeNet-1.1 | TFLITE | w8a8 | Qualcomm® SA8295P | 0.501 ms | 0 - 17 MB | NPU |
| SqueezeNet-1.1 | TFLITE | w8a8 | Snapdragon® 8 Elite For Galaxy Mobile | 0.105 ms | 0 - 23 MB | NPU |
| SqueezeNet-1.1 | TFLITE | w8a8 | Snapdragon® 7 Gen 4 Mobile | 0.208 ms | 0 - 19 MB | NPU |
| SqueezeNet-1.1 | TFLITE | w8a8 | Snapdragon® 8 Elite Gen 5 Mobile | 0.097 ms | 0 - 22 MB | NPU |
License
- The license for the original implementation of SqueezeNet-1.1 can be found here.
References
- SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
