GPUNet: Optimized for Qualcomm Devices

GPUNet is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This is based on the implementation of GPUNet found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.

Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.

Getting Started

There are two ways to deploy this model on your device:

Option 1: Download Pre-Exported Models

Below are pre-exported model assets ready for deployment.

Runtime Precision Chipset SDK Versions Download
ONNX float Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
ONNX w8a16 Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
ONNX w8a8 Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
QNN_DLC float Universal QAIRT 2.42 Download
QNN_DLC w8a16 Universal QAIRT 2.42 Download
QNN_DLC w8a8 Universal QAIRT 2.42 Download
TFLITE float Universal QAIRT 2.42, TFLite 2.17.0 Download
TFLITE w8a8 Universal QAIRT 2.42, TFLite 2.17.0 Download

For more device-specific assets and performance metrics, visit GPUNet on Qualcomm® AI Hub.

Option 2: Export with Custom Configurations

Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:

  • Custom weights (e.g., fine-tuned checkpoints)
  • Custom input shapes
  • Target device and runtime configurations

This option is ideal if you need to customize the model beyond the default configuration provided here.

See our repository for GPUNet on GitHub for usage instructions.

Model Details

Model Type: Model_use_case.image_classification

Model Stats:

  • Model checkpoint: Imagenet
  • Input resolution: 224x224
  • Number of parameters: 10.49M
  • Model size (float): 45.28MB
  • Model size (w8a8): 21.3MB

Performance Summary

Model Runtime Precision Chipset Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit
GPUNet ONNX float Snapdragon® X Elite 1.12 ms 24 - 24 MB NPU
GPUNet ONNX float Snapdragon® 8 Gen 3 Mobile 0.955 ms 0 - 126 MB NPU
GPUNet ONNX float Qualcomm® QCS8550 (Proxy) 1.231 ms 0 - 198 MB NPU
GPUNet ONNX float Qualcomm® QCS9075 1.509 ms 1 - 3 MB NPU
GPUNet ONNX float Snapdragon® 8 Elite For Galaxy Mobile 0.739 ms 0 - 99 MB NPU
GPUNet ONNX float Snapdragon® 8 Elite Gen 5 Mobile 0.636 ms 0 - 99 MB NPU
GPUNet ONNX w8a16 Snapdragon® X Elite 0.974 ms 12 - 12 MB NPU
GPUNet ONNX w8a16 Snapdragon® 8 Gen 3 Mobile 0.777 ms 0 - 131 MB NPU
GPUNet ONNX w8a16 Qualcomm® QCS6490 102.34 ms 18 - 33 MB CPU
GPUNet ONNX w8a16 Qualcomm® QCS8550 (Proxy) 0.995 ms 0 - 25 MB NPU
GPUNet ONNX w8a16 Qualcomm® QCS9075 1.223 ms 0 - 3 MB NPU
GPUNet ONNX w8a16 Qualcomm® QCM6690 53.444 ms 28 - 36 MB CPU
GPUNet ONNX w8a16 Snapdragon® 8 Elite For Galaxy Mobile 0.556 ms 0 - 114 MB NPU
GPUNet ONNX w8a16 Snapdragon® 7 Gen 4 Mobile 40.754 ms 30 - 37 MB CPU
GPUNet ONNX w8a16 Snapdragon® 8 Elite Gen 5 Mobile 0.463 ms 0 - 114 MB NPU
GPUNet ONNX w8a8 Snapdragon® X Elite 0.713 ms 12 - 12 MB NPU
GPUNet ONNX w8a8 Snapdragon® 8 Gen 3 Mobile 0.583 ms 0 - 125 MB NPU
GPUNet ONNX w8a8 Qualcomm® QCS6490 16.722 ms 4 - 18 MB CPU
GPUNet ONNX w8a8 Qualcomm® QCS8550 (Proxy) 0.827 ms 0 - 26 MB NPU
GPUNet ONNX w8a8 Qualcomm® QCS9075 0.947 ms 0 - 3 MB NPU
GPUNet ONNX w8a8 Qualcomm® QCM6690 10.135 ms 11 - 19 MB CPU
GPUNet ONNX w8a8 Snapdragon® 8 Elite For Galaxy Mobile 0.507 ms 0 - 107 MB NPU
GPUNet ONNX w8a8 Snapdragon® 7 Gen 4 Mobile 7.572 ms 9 - 17 MB CPU
GPUNet ONNX w8a8 Snapdragon® 8 Elite Gen 5 Mobile 0.469 ms 0 - 113 MB NPU
GPUNet QNN_DLC float Snapdragon® X Elite 1.391 ms 1 - 1 MB NPU
GPUNet QNN_DLC float Snapdragon® 8 Gen 3 Mobile 0.947 ms 0 - 62 MB NPU
GPUNet QNN_DLC float Qualcomm® QCS8275 (Proxy) 4.721 ms 1 - 33 MB NPU
GPUNet QNN_DLC float Qualcomm® QCS8550 (Proxy) 1.297 ms 1 - 105 MB NPU
GPUNet QNN_DLC float Qualcomm® SA8775P 1.713 ms 1 - 36 MB NPU
GPUNet QNN_DLC float Qualcomm® QCS9075 1.569 ms 1 - 3 MB NPU
GPUNet QNN_DLC float Qualcomm® QCS8450 (Proxy) 2.408 ms 0 - 64 MB NPU
GPUNet QNN_DLC float Qualcomm® SA7255P 4.721 ms 1 - 33 MB NPU
GPUNet QNN_DLC float Qualcomm® SA8295P 2.283 ms 0 - 33 MB NPU
GPUNet QNN_DLC float Snapdragon® 8 Elite For Galaxy Mobile 0.707 ms 0 - 32 MB NPU
GPUNet QNN_DLC float Snapdragon® 8 Elite Gen 5 Mobile 0.565 ms 1 - 37 MB NPU
GPUNet QNN_DLC w8a16 Snapdragon® X Elite 1.234 ms 0 - 0 MB NPU
GPUNet QNN_DLC w8a16 Snapdragon® 8 Gen 3 Mobile 0.768 ms 0 - 57 MB NPU
GPUNet QNN_DLC w8a16 Qualcomm® QCS6490 3.257 ms 2 - 4 MB NPU
GPUNet QNN_DLC w8a16 Qualcomm® QCS8275 (Proxy) 2.494 ms 0 - 41 MB NPU
GPUNet QNN_DLC w8a16 Qualcomm® QCS8550 (Proxy) 1.065 ms 0 - 2 MB NPU
GPUNet QNN_DLC w8a16 Qualcomm® SA8775P 1.293 ms 0 - 43 MB NPU
GPUNet QNN_DLC w8a16 Qualcomm® QCS9075 1.226 ms 2 - 4 MB NPU
GPUNet QNN_DLC w8a16 Qualcomm® QCM6690 6.566 ms 0 - 160 MB NPU
GPUNet QNN_DLC w8a16 Qualcomm® QCS8450 (Proxy) 1.458 ms 0 - 61 MB NPU
GPUNet QNN_DLC w8a16 Qualcomm® SA7255P 2.494 ms 0 - 41 MB NPU
GPUNet QNN_DLC w8a16 Qualcomm® SA8295P 1.656 ms 0 - 39 MB NPU
GPUNet QNN_DLC w8a16 Snapdragon® 8 Elite For Galaxy Mobile 0.528 ms 0 - 40 MB NPU
GPUNet QNN_DLC w8a16 Snapdragon® 7 Gen 4 Mobile 1.284 ms 0 - 42 MB NPU
GPUNet QNN_DLC w8a16 Snapdragon® 8 Elite Gen 5 Mobile 0.434 ms 0 - 45 MB NPU
GPUNet QNN_DLC w8a8 Snapdragon® X Elite 0.732 ms 0 - 0 MB NPU
GPUNet QNN_DLC w8a8 Snapdragon® 8 Gen 3 Mobile 0.452 ms 0 - 56 MB NPU
GPUNet QNN_DLC w8a8 Qualcomm® QCS6490 1.969 ms 0 - 2 MB NPU
GPUNet QNN_DLC w8a8 Qualcomm® QCS8275 (Proxy) 1.427 ms 0 - 39 MB NPU
GPUNet QNN_DLC w8a8 Qualcomm® QCS8550 (Proxy) 0.607 ms 0 - 3 MB NPU
GPUNet QNN_DLC w8a8 Qualcomm® SA8775P 0.797 ms 0 - 40 MB NPU
GPUNet QNN_DLC w8a8 Qualcomm® QCS9075 0.691 ms 0 - 2 MB NPU
GPUNet QNN_DLC w8a8 Qualcomm® QCM6690 3.448 ms 0 - 42 MB NPU
GPUNet QNN_DLC w8a8 Qualcomm® QCS8450 (Proxy) 0.846 ms 0 - 58 MB NPU
GPUNet QNN_DLC w8a8 Qualcomm® SA7255P 1.427 ms 0 - 39 MB NPU
GPUNet QNN_DLC w8a8 Qualcomm® SA8295P 1.073 ms 0 - 37 MB NPU
GPUNet QNN_DLC w8a8 Snapdragon® 8 Elite For Galaxy Mobile 0.338 ms 0 - 37 MB NPU
GPUNet QNN_DLC w8a8 Snapdragon® 7 Gen 4 Mobile 0.794 ms 0 - 38 MB NPU
GPUNet QNN_DLC w8a8 Snapdragon® 8 Elite Gen 5 Mobile 0.294 ms 0 - 44 MB NPU
GPUNet TFLITE float Snapdragon® 8 Gen 3 Mobile 0.941 ms 0 - 97 MB NPU
GPUNet TFLITE float Qualcomm® QCS8275 (Proxy) 4.701 ms 0 - 63 MB NPU
GPUNet TFLITE float Qualcomm® QCS8550 (Proxy) 1.275 ms 0 - 3 MB NPU
GPUNet TFLITE float Qualcomm® SA8775P 7.192 ms 0 - 63 MB NPU
GPUNet TFLITE float Qualcomm® QCS9075 1.574 ms 0 - 27 MB NPU
GPUNet TFLITE float Qualcomm® QCS8450 (Proxy) 2.401 ms 0 - 93 MB NPU
GPUNet TFLITE float Qualcomm® SA7255P 4.701 ms 0 - 63 MB NPU
GPUNet TFLITE float Qualcomm® SA8295P 2.255 ms 0 - 62 MB NPU
GPUNet TFLITE float Snapdragon® 8 Elite For Galaxy Mobile 0.713 ms 0 - 61 MB NPU
GPUNet TFLITE float Snapdragon® 8 Elite Gen 5 Mobile 0.564 ms 0 - 66 MB NPU
GPUNet TFLITE w8a8 Snapdragon® 8 Gen 3 Mobile 0.34 ms 0 - 54 MB NPU
GPUNet TFLITE w8a8 Qualcomm® QCS6490 1.649 ms 0 - 15 MB NPU
GPUNet TFLITE w8a8 Qualcomm® QCS8275 (Proxy) 1.12 ms 0 - 37 MB NPU
GPUNet TFLITE w8a8 Qualcomm® QCS8550 (Proxy) 0.422 ms 0 - 2 MB NPU
GPUNet TFLITE w8a8 Qualcomm® SA8775P 0.62 ms 0 - 40 MB NPU
GPUNet TFLITE w8a8 Qualcomm® QCS9075 0.524 ms 0 - 14 MB NPU
GPUNet TFLITE w8a8 Qualcomm® QCM6690 2.998 ms 0 - 39 MB NPU
GPUNet TFLITE w8a8 Qualcomm® QCS8450 (Proxy) 0.685 ms 0 - 55 MB NPU
GPUNet TFLITE w8a8 Qualcomm® SA7255P 1.12 ms 0 - 37 MB NPU
GPUNet TFLITE w8a8 Qualcomm® SA8295P 0.865 ms 0 - 35 MB NPU
GPUNet TFLITE w8a8 Snapdragon® 8 Elite For Galaxy Mobile 0.276 ms 0 - 36 MB NPU
GPUNet TFLITE w8a8 Snapdragon® 7 Gen 4 Mobile 0.627 ms 0 - 36 MB NPU
GPUNet TFLITE w8a8 Snapdragon® 8 Elite Gen 5 Mobile 0.237 ms 0 - 43 MB NPU

License

  • The license for the original implementation of GPUNet can be found here.

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for qualcomm/GPUNet