BEVFusion: Optimized for Qualcomm Devices
BeVFusion is a machine learning model for generating a birds eye view represenation from the sensors(cameras) mounted on a vehicle.
This is based on the implementation of BEVFusion found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.
Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.
Getting Started
There are two ways to deploy this model on your device:
Option 1: Download Pre-Exported Models
Below are pre-exported model assets ready for deployment.
| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| PRECOMPILED_QNN_ONNX | float | Snapdragon® X Elite | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Gen 3 Mobile | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| PRECOMPILED_QNN_ONNX | float | Qualcomm® QCS9075 | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| QNN_CONTEXT_BINARY | float | Snapdragon® X Elite | QAIRT 2.42 | Download |
| QNN_CONTEXT_BINARY | float | Snapdragon® 8 Gen 3 Mobile | QAIRT 2.42 | Download |
| QNN_CONTEXT_BINARY | float | Qualcomm® SA8775P | QAIRT 2.42 | Download |
| QNN_CONTEXT_BINARY | float | Snapdragon® 8 Elite For Galaxy Mobile | QAIRT 2.42 | Download |
| QNN_CONTEXT_BINARY | float | Snapdragon® 8 Elite Gen 5 Mobile | QAIRT 2.42 | Download |
For more device-specific assets and performance metrics, visit BEVFusion on Qualcomm® AI Hub.
Option 2: Export with Custom Configurations
Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations
This option is ideal if you need to customize the model beyond the default configuration provided here.
See our repository for BEVFusion on GitHub for usage instructions.
Model Details
Model Type: Model_use_case.driver_assistance
Model Stats:
- Model checkpoint: camera-only-det.pth
- Input resolution: 1 x 6 x 3 x 256 x 704
- Number of parameters: 44M
- Model size: 171 MB
Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |
|---|---|---|---|---|---|---|
| BEVFusionDecoder | PRECOMPILED_QNN_ONNX | float | Snapdragon® X Elite | 13.201 ms | 24 - 24 MB | NPU |
| BEVFusionDecoder | PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Gen 3 Mobile | 9.916 ms | 17 - 25 MB | NPU |
| BEVFusionDecoder | PRECOMPILED_QNN_ONNX | float | Qualcomm® QCS9075 | 24.227 ms | 21 - 24 MB | NPU |
| BEVFusionDecoder | PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 7.889 ms | 12 - 19 MB | NPU |
| BEVFusionDecoder | PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 6.201 ms | 17 - 28 MB | NPU |
| BEVFusionDecoder | QNN_CONTEXT_BINARY | float | Snapdragon® X Elite | 13.08 ms | 5 - 5 MB | NPU |
| BEVFusionDecoder | QNN_CONTEXT_BINARY | float | Snapdragon® 8 Gen 3 Mobile | 9.848 ms | 5 - 12 MB | NPU |
| BEVFusionDecoder | QNN_CONTEXT_BINARY | float | Snapdragon® 8 Elite For Galaxy Mobile | 7.597 ms | 5 - 14 MB | NPU |
| BEVFusionDecoder | QNN_CONTEXT_BINARY | float | Snapdragon® 8 Elite Gen 5 Mobile | 5.729 ms | 5 - 15 MB | NPU |
| BEVFusionEncoder1 | PRECOMPILED_QNN_ONNX | float | Snapdragon® X Elite | 816.0 ms | 97 - 97 MB | NPU |
| BEVFusionEncoder1 | PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Gen 3 Mobile | 618.339 ms | 33 - 45 MB | NPU |
| BEVFusionEncoder1 | PRECOMPILED_QNN_ONNX | float | Qualcomm® QCS9075 | 835.545 ms | 12 - 28 MB | NPU |
| BEVFusionEncoder1 | PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 508.583 ms | 21 - 33 MB | NPU |
| BEVFusionEncoder1 | PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 432.064 ms | 50 - 61 MB | NPU |
| BEVFusionEncoder1 | QNN_CONTEXT_BINARY | float | Snapdragon® X Elite | 683.073 ms | 12 - 12 MB | NPU |
| BEVFusionEncoder1 | QNN_CONTEXT_BINARY | float | Snapdragon® 8 Gen 3 Mobile | 521.79 ms | 13 - 20 MB | NPU |
| BEVFusionEncoder1 | QNN_CONTEXT_BINARY | float | Snapdragon® 8 Elite For Galaxy Mobile | 420.381 ms | 0 - 10 MB | NPU |
| BEVFusionEncoder1 | QNN_CONTEXT_BINARY | float | Snapdragon® 8 Elite Gen 5 Mobile | 350.55 ms | 12 - 21 MB | NPU |
| BEVFusionEncoder2 | PRECOMPILED_QNN_ONNX | float | Snapdragon® X Elite | 3251.893 ms | 1058 - 1058 MB | NPU |
| BEVFusionEncoder2 | PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Gen 3 Mobile | 2619.194 ms | 516 - 524 MB | NPU |
| BEVFusionEncoder2 | PRECOMPILED_QNN_ONNX | float | Qualcomm® QCS9075 | 3309.274 ms | 476 - 478 MB | NPU |
| BEVFusionEncoder2 | PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 2390.471 ms | 546 - 558 MB | NPU |
| BEVFusionEncoder2 | PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 2189.505 ms | 509 - 520 MB | NPU |
| BEVFusionEncoder2 | QNN_CONTEXT_BINARY | float | Snapdragon® X Elite | 3419.442 ms | 17 - 17 MB | NPU |
| BEVFusionEncoder2 | QNN_CONTEXT_BINARY | float | Snapdragon® 8 Gen 3 Mobile | 2697.193 ms | 17 - 25 MB | NPU |
| BEVFusionEncoder2 | QNN_CONTEXT_BINARY | float | Snapdragon® 8 Elite For Galaxy Mobile | 2439.831 ms | 3 - 16 MB | NPU |
| BEVFusionEncoder2 | QNN_CONTEXT_BINARY | float | Snapdragon® 8 Elite Gen 5 Mobile | 2186.323 ms | 0 - 10 MB | NPU |
| BEVFusionEncoder3 | PRECOMPILED_QNN_ONNX | float | Snapdragon® X Elite | 513.549 ms | 610 - 610 MB | NPU |
| BEVFusionEncoder3 | PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Gen 3 Mobile | 457.232 ms | 578 - 590 MB | NPU |
| BEVFusionEncoder3 | PRECOMPILED_QNN_ONNX | float | Qualcomm® QCS9075 | 538.716 ms | 608 - 1220 MB | NPU |
| BEVFusionEncoder3 | PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 374.412 ms | 596 - 609 MB | NPU |
| BEVFusionEncoder3 | PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 335.284 ms | 509 - 520 MB | NPU |
| BEVFusionEncoder3 | QNN_CONTEXT_BINARY | float | Snapdragon® X Elite | 700.145 ms | 610 - 610 MB | NPU |
| BEVFusionEncoder3 | QNN_CONTEXT_BINARY | float | Snapdragon® 8 Gen 3 Mobile | 591.369 ms | 609 - 621 MB | NPU |
| BEVFusionEncoder3 | QNN_CONTEXT_BINARY | float | Snapdragon® 8 Elite For Galaxy Mobile | 499.751 ms | 609 - 623 MB | NPU |
| BEVFusionEncoder3 | QNN_CONTEXT_BINARY | float | Snapdragon® 8 Elite Gen 5 Mobile | 369.428 ms | 609 - 620 MB | NPU |
| BEVFusionEncoder4 | PRECOMPILED_QNN_ONNX | float | Snapdragon® X Elite | 12.081 ms | 19 - 19 MB | NPU |
| BEVFusionEncoder4 | PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Gen 3 Mobile | 9.452 ms | 32 - 39 MB | NPU |
| BEVFusionEncoder4 | PRECOMPILED_QNN_ONNX | float | Qualcomm® QCS9075 | 15.331 ms | 18 - 39 MB | NPU |
| BEVFusionEncoder4 | PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 8.075 ms | 12 - 19 MB | NPU |
| BEVFusionEncoder4 | PRECOMPILED_QNN_ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 7.115 ms | 30 - 40 MB | NPU |
| BEVFusionEncoder4 | QNN_CONTEXT_BINARY | float | Snapdragon® X Elite | 11.877 ms | 19 - 19 MB | NPU |
| BEVFusionEncoder4 | QNN_CONTEXT_BINARY | float | Snapdragon® 8 Gen 3 Mobile | 9.138 ms | 18 - 25 MB | NPU |
| BEVFusionEncoder4 | QNN_CONTEXT_BINARY | float | Snapdragon® 8 Elite For Galaxy Mobile | 7.783 ms | 18 - 27 MB | NPU |
| BEVFusionEncoder4 | QNN_CONTEXT_BINARY | float | Snapdragon® 8 Elite Gen 5 Mobile | 6.77 ms | 18 - 28 MB | NPU |
License
- The license for the original implementation of BEVFusion can be found here.
References
- BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
