Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| 4.0 |
|
| 2.0 |
|
| 3.0 |
|
| 0.0 |
|
| 1.0 |
|
| Label | Accuracy |
|---|---|
| all | 1.0 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc23")
# Run inference
preds = model("마이비 피부에순한 유아섬유유연제 (리필 1600ml) 출산/육아 > 유아세제 > 유아세탁비누")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 8 | 15.3086 | 31 |
| Label | Training Sample Count |
|---|---|
| 0.0 | 70 |
| 1.0 | 70 |
| 2.0 | 70 |
| 3.0 | 70 |
| 4.0 | 70 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0145 | 1 | 0.4811 | - |
| 0.7246 | 50 | 0.4993 | - |
| 1.4493 | 100 | 0.4843 | - |
| 2.1739 | 150 | 0.276 | - |
| 2.8986 | 200 | 0.0128 | - |
| 3.6232 | 250 | 0.0 | - |
| 4.3478 | 300 | 0.0 | - |
| 5.0725 | 350 | 0.0 | - |
| 5.7971 | 400 | 0.0 | - |
| 6.5217 | 450 | 0.0 | - |
| 7.2464 | 500 | 0.0 | - |
| 7.9710 | 550 | 0.0 | - |
| 8.6957 | 600 | 0.0 | - |
| 9.4203 | 650 | 0.0 | - |
| 10.1449 | 700 | 0.0 | - |
| 10.8696 | 750 | 0.0 | - |
| 11.5942 | 800 | 0.0 | - |
| 12.3188 | 850 | 0.0 | - |
| 13.0435 | 900 | 0.0 | - |
| 13.7681 | 950 | 0.0 | - |
| 14.4928 | 1000 | 0.0 | - |
| 15.2174 | 1050 | 0.0 | - |
| 15.9420 | 1100 | 0.0 | - |
| 16.6667 | 1150 | 0.0 | - |
| 17.3913 | 1200 | 0.0 | - |
| 18.1159 | 1250 | 0.0 | - |
| 18.8406 | 1300 | 0.0 | - |
| 19.5652 | 1350 | 0.0 | - |
| 20.2899 | 1400 | 0.0 | - |
| 21.0145 | 1450 | 0.0 | - |
| 21.7391 | 1500 | 0.0 | - |
| 22.4638 | 1550 | 0.0 | - |
| 23.1884 | 1600 | 0.0 | - |
| 23.9130 | 1650 | 0.0 | - |
| 24.6377 | 1700 | 0.0 | - |
| 25.3623 | 1750 | 0.0 | - |
| 26.0870 | 1800 | 0.0 | - |
| 26.8116 | 1850 | 0.0 | - |
| 27.5362 | 1900 | 0.0 | - |
| 28.2609 | 1950 | 0.0 | - |
| 28.9855 | 2000 | 0.0 | - |
| 29.7101 | 2050 | 0.0 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}