|
|
import os |
|
|
from dotenv import load_dotenv |
|
|
|
|
|
from evoagentx.benchmark import MBPP, AFlowMBPP |
|
|
from evoagentx.benchmark import SciCode, AFlowSciCode |
|
|
from evoagentx.optimizers import AFlowOptimizer |
|
|
from evoagentx.models import LiteLLMConfig, LiteLLM, OpenAILLMConfig, OpenAILLM |
|
|
|
|
|
api_key = "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" |
|
|
|
|
|
import os |
|
|
os.environ["OPENAI_API_KEY"] = api_key |
|
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
|
|
|
|
EXPERIMENTAL_CONFIG = { |
|
|
"humaneval": { |
|
|
"question_type": "code", |
|
|
"operators": ["Custom", "CustomCodeGenerate", "Test", "ScEnsemble"] |
|
|
}, |
|
|
"mbpp": { |
|
|
"question_type": "code", |
|
|
"operators": ["Custom", "CustomCodeGenerate", "Test", "ScEnsemble"] |
|
|
}, |
|
|
"hotpotqa": { |
|
|
"question_type": "qa", |
|
|
"operators": ["Custom", "AnswerGenerate", "QAScEnsemble"] |
|
|
}, |
|
|
"gsm8k": { |
|
|
"question_type": "math", |
|
|
"operators": ["Custom", "ScEnsemble", "Programmer"] |
|
|
}, |
|
|
"math": { |
|
|
"question_type": "math", |
|
|
"operators": ["Custom", "ScEnsemble", "Programmer"] |
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
class SciCodeSplits(AFlowSciCode): |
|
|
|
|
|
def _load_data(self): |
|
|
|
|
|
|
|
|
mbpp_test_data = SciCode().get_dev_data() |
|
|
|
|
|
import numpy as np |
|
|
np.random.seed(42) |
|
|
permutation = np.random.permutation(len(mbpp_test_data)) |
|
|
|
|
|
dev_data_task_ids = [mbpp_test_data[idx]["task_id"] for idx in range(0,30)] |
|
|
super()._load_data() |
|
|
full_data = self._dev_data + self._test_data |
|
|
self._dev_data = [example for example in full_data if example["task_id"] in dev_data_task_ids] |
|
|
empty_list = [] |
|
|
|
|
|
for item in range(len(self._dev_data)): |
|
|
selectitem = self._dev_data[item] |
|
|
selectitem['task_id'] = selectitem['task_id'] + '-' +str(item) |
|
|
empty_list.append(selectitem) |
|
|
self._dev_data = empty_list |
|
|
|
|
|
def main(): |
|
|
|
|
|
openai_config = OpenAILLMConfig( |
|
|
model="gpt-4o-mini", |
|
|
openai_key=OPENAI_API_KEY |
|
|
) |
|
|
|
|
|
claude_config = LiteLLMConfig( |
|
|
model="gpt-4o-mini", |
|
|
openai_key=OPENAI_API_KEY |
|
|
) |
|
|
executor_llm = OpenAILLM(config=openai_config) |
|
|
optimizer_llm = LiteLLM(config=claude_config) |
|
|
|
|
|
|
|
|
mbpp = SciCodeSplits() |
|
|
mbpp.error_list = {} |
|
|
|
|
|
|
|
|
optimizer = AFlowOptimizer( |
|
|
graph_path = "examples/aflow/code_generation", |
|
|
optimized_path = "examples/aflow/scicode_full/optimized", |
|
|
optimizer_llm=optimizer_llm, |
|
|
executor_llm=executor_llm, |
|
|
validation_rounds=3, |
|
|
eval_rounds=1, |
|
|
max_rounds=10, |
|
|
**EXPERIMENTAL_CONFIG["mbpp"] |
|
|
) |
|
|
|
|
|
|
|
|
optimizer.optimize(mbpp) |
|
|
|
|
|
|
|
|
optimizer.test(mbpp) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |