import os from dotenv import load_dotenv from evoagentx.benchmark import MBPP, AFlowMBPP from evoagentx.benchmark import SciCode, AFlowSciCode from evoagentx.optimizers import AFlowOptimizer from evoagentx.models import LiteLLMConfig, LiteLLM, OpenAILLMConfig, OpenAILLM api_key = "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" # Function to encode the image import os os.environ["OPENAI_API_KEY"] = api_key OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") EXPERIMENTAL_CONFIG = { "humaneval": { "question_type": "code", "operators": ["Custom", "CustomCodeGenerate", "Test", "ScEnsemble"] }, "mbpp": { "question_type": "code", "operators": ["Custom", "CustomCodeGenerate", "Test", "ScEnsemble"] }, "hotpotqa": { "question_type": "qa", "operators": ["Custom", "AnswerGenerate", "QAScEnsemble"] }, "gsm8k": { "question_type": "math", "operators": ["Custom", "ScEnsemble", "Programmer"] }, "math": { "question_type": "math", "operators": ["Custom", "ScEnsemble", "Programmer"] } } class SciCodeSplits(AFlowSciCode): def _load_data(self): # load the original MBPP data mbpp_test_data = SciCode().get_dev_data() # split the data into dev and test import numpy as np np.random.seed(42) permutation = np.random.permutation(len(mbpp_test_data)) # radnomly select 50 samples for dev and 100 samples for test (be consistent with other models) dev_data_task_ids = [mbpp_test_data[idx]["task_id"] for idx in range(0,30)] super()._load_data() full_data = self._dev_data + self._test_data self._dev_data = [example for example in full_data if example["task_id"] in dev_data_task_ids] empty_list = [] for item in range(len(self._dev_data)): selectitem = self._dev_data[item] selectitem['task_id'] = selectitem['task_id'] + '-' +str(item) empty_list.append(selectitem) self._dev_data = empty_list def main(): openai_config = OpenAILLMConfig( model="gpt-4o-mini", openai_key=OPENAI_API_KEY ) claude_config = LiteLLMConfig( model="gpt-4o-mini", openai_key=OPENAI_API_KEY ) executor_llm = OpenAILLM(config=openai_config) optimizer_llm = LiteLLM(config=claude_config) # load benchmark mbpp = SciCodeSplits() mbpp.error_list = {} # create optimizer optimizer = AFlowOptimizer( graph_path = "examples/aflow/code_generation", optimized_path = "examples/aflow/scicode_full/optimized", optimizer_llm=optimizer_llm, executor_llm=executor_llm, validation_rounds=3, eval_rounds=1, max_rounds=10, **EXPERIMENTAL_CONFIG["mbpp"] ) # # run optimization optimizer.optimize(mbpp) # run test optimizer.test(mbpp) # use `test_rounds: List[int]` to specify the rounds to test if __name__ == "__main__": main()