Transformers documentation
ExecuTorch
You are viewing main version, which requires installation from source. If you'd like
regular pip install, checkout the latest stable version (v5.1.0).
ExecuTorch
ExecuTorch is a lightweight runtime for model inference on edge devices. It exports a PyTorch model into a portable, ahead-of-time format. A small C++ runtime plans memory and dispatches operations to hardware-specific backends. Execution and memory behavior is known before the model runs on device, so inference overhead is low.
Export a Transformers model with the optimum-executorch library.
CLI
Python
optimum-cli export executorch \
--model "HuggingFaceTB/SmolLM2-135M-Instruct" \
--task "text-generation" \
--recipe "xnnpack" \
--output_dir="./smollm2_exported"Transformers integration
The export process uses several Transformers components.
- from_pretrained() loads the model weights in safetensors format.
- Optimum applies graph optimizations and runs torch.export to create a
model.ptefile targeting your hardware backend. - AutoTokenizer or AutoProcessor loads the tokenizer or processor files and runs during inference.
- At runtime, a C++ runner class executes the
.ptefile on the ExecuTorch runtime.
#include <executorch/extension/llm/runner/text_llm_runner.h>
using namespace executorch::extension::llm;
int main() {
// Load tokenizer and create runner
auto tokenizer = load_tokenizer("path/to/tokenizer.json", nullptr, std::nullopt, 0, 0);
auto runner = create_text_llm_runner("path/to/model.pte", std::move(tokenizer));
// Load the model
runner->load();
// Configure generation
GenerationConfig config;
config.max_new_tokens = 100;
config.temperature = 0.8f;
// Generate text with streaming output
runner->generate("The capital of France is", config,
[](const std::string& token) { std::cout << token << std::flush; },
nullptr);
return 0;
}Resources
- ExecuTorch docs
- torch.export docs
- Exporting to production guide