hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
a2cef5581d6639f72a0f834dc67419807bab8ec4
759
py
Python
dear_petition/petition/migrations/0008_auto_20200208_0222.py
robert-w-gries/dear-petition
35244afc8e967b41ae5265ae31fd13b26e4e835a
[ "MIT" ]
4
2020-04-01T14:42:45.000Z
2021-12-12T21:11:11.000Z
dear_petition/petition/migrations/0008_auto_20200208_0222.py
robert-w-gries/dear-petition
35244afc8e967b41ae5265ae31fd13b26e4e835a
[ "MIT" ]
142
2019-08-12T19:08:34.000Z
2022-03-29T23:05:35.000Z
dear_petition/petition/migrations/0008_auto_20200208_0222.py
robert-w-gries/dear-petition
35244afc8e967b41ae5265ae31fd13b26e4e835a
[ "MIT" ]
8
2020-02-04T20:37:00.000Z
2021-03-28T13:28:32.000Z
# Generated by Django 2.2.4 on 2020-02-08 02:22 from django.db import migrations def move_batch_fks(apps, schema_editor): Batch = apps.get_model("petition", "Batch") CIPRSRecord = apps.get_model("petition", "CIPRSRecord") for batch in Batch.objects.all(): print(f"Adding batch {batch.pk} to {batch.records.count()} records") batch.records.update(batch=batch) first_batch = Batch.objects.order_by("pk").first() for record in CIPRSRecord.objects.all(): if not record.batch: record.batch = first_batch record.save() class Migration(migrations.Migration): dependencies = [ ("petition", "0007_auto_20200208_0221"), ] operations = [migrations.RunPython(move_batch_fks)]
29.192308
76
0.671937
172
0.226614
0
0
0
0
0
0
187
0.246377
a2cf483b7a318378a4b51126b7de177267f4c55e
23
py
Python
auto_ml/_version.py
amlanbanerjee/auto_ml
db8e1d2cfa93f13a21e55739acfc8d99837e91b0
[ "MIT" ]
1,671
2016-08-09T04:44:48.000Z
2022-03-27T01:29:23.000Z
auto_ml/_version.py
amlanbanerjee/auto_ml
db8e1d2cfa93f13a21e55739acfc8d99837e91b0
[ "MIT" ]
428
2016-08-08T00:13:04.000Z
2022-01-19T10:09:05.000Z
auto_ml/_version.py
amlanbanerjee/auto_ml
db8e1d2cfa93f13a21e55739acfc8d99837e91b0
[ "MIT" ]
334
2016-08-29T12:34:18.000Z
2022-01-31T09:14:30.000Z
__version__ = "2.9.10"
11.5
22
0.652174
0
0
0
0
0
0
0
0
8
0.347826
a2d07750f771787adbd733681780afac8dc73bc5
3,442
py
Python
maya/libs/sceneutils.py
bhsingleton/dcc
9ad59f1cb8282df938062e15c020688dd268a722
[ "MIT" ]
1
2021-08-06T16:04:24.000Z
2021-08-06T16:04:24.000Z
maya/libs/sceneutils.py
bhsingleton/dcc
9ad59f1cb8282df938062e15c020688dd268a722
[ "MIT" ]
null
null
null
maya/libs/sceneutils.py
bhsingleton/dcc
9ad59f1cb8282df938062e15c020688dd268a722
[ "MIT" ]
1
2021-08-06T16:04:31.000Z
2021-08-06T16:04:31.000Z
import maya.cmds as mc import os import logging logging.basicConfig() log = logging.getLogger(__name__) log.setLevel(logging.INFO) def isNewScene(): """ Method used to check if this is an untitled scene file. :rtype: bool """ return len(mc.file(query=True, sceneName=True)) == 0 def isSaveRequired(): """ Method used to check if the open scene file has changes that need to be saved. :rtype: bool """ return mc.file(query=True, modified=True) def currentFilePath(): """ Convenience method used to retrieve the path of the open scene file. :rtype: str """ if not isNewScene(): return os.path.normpath(mc.file(query=True, sceneName=True)) else: return '' def currentFilename(): """ Convenience method used to retrieve the name of the open scene file. :rtype: str """ return os.path.split(currentFilePath())[1] def currentDirectory(): """ Convenience method used to retrieve the directory of the open scene file. :rtype: str """ return os.path.split(currentFilePath())[0] def removeUserAttributes(): """ Convenience method used to removed any user attributes that have carried over using fbx. :rtype: None """ # Iterate through selection # nodeNames = mc.ls(sl=True) for nodeName in nodeNames: # Check if node has any user attributes # attrNames = mc.listAttr(nodeName, userDefined=True) if attrNames is None: continue for attrName in attrNames: log.info('Removing "%s.%s" attribute.' % (nodeName, attrName)) mc.deleteAttr('%s.%s' % (nodeName, attrName)) def unloadTurtlePlugin(): """ Convenience method used to unload the turtle plugin from the open scene file. :rtype: None """ # Check if turtle is loaded # isLoaded = mc.pluginInfo('Turtle', query=True, loaded=True) if not isLoaded: log.info('Could not locate "Turtle" in the open scene file.') return # Remove all node types associated with turtle # nodeTypes = mc.pluginInfo('Turtle', query=True, dependNode=True) for nodeType in nodeTypes: # List all nodes by type # nodeNames = mc.ls(type=nodeType) numNodeNames = len(nodeNames) if numNodeNames == 0: continue # Unlock and remove nodes # mc.lockNode(nodeNames, lock=False) mc.delete(nodeNames) # Flush undo queue # mc.flushUndo() # Remove shelf from tab bar # if mc.shelfLayout('TURTLE', query=True, exists=True): log.info('Removing "TURTLE" from the shelf tab!') mc.deleteUI('TURTLE', layout=True) # Unlock plugin # mc.unloadPlugin('Turtle') def resetWindowPositions(): """ Method used to move all of the active maya windows to the top left corner. :rtype: None """ # Collect all windows # windowNames = mc.lsUI(windows=True) for windowName in windowNames: log.info('Resetting "%s" window...' % windowName) mc.window(windowName, edit=True, topLeftCorner=[0, 0]) def resetStartupCameras(): """ Method used to fix the startup cameras when they're thrown out of wack. :rtype: None """ mc.viewSet('top', home=True) mc.viewSet('front', home=True) mc.viewSet('side', home=True)
20.011628
92
0.621732
0
0
0
0
0
0
0
0
1,446
0.420105
a2d10542879056ad7800cdebe98204d350251551
346
py
Python
diffir/__init__.py
capreolus-ir/diffir
90906ce4b7d5f23d6190eea26020f9e4096cb0cd
[ "Apache-2.0" ]
12
2021-03-10T17:04:05.000Z
2022-01-13T15:44:34.000Z
diffir/__init__.py
capreolus-ir/diffir
90906ce4b7d5f23d6190eea26020f9e4096cb0cd
[ "Apache-2.0" ]
7
2021-05-19T21:28:52.000Z
2021-12-16T16:01:40.000Z
diffir/__init__.py
capreolus-ir/diffir
90906ce4b7d5f23d6190eea26020f9e4096cb0cd
[ "Apache-2.0" ]
null
null
null
__version__ = "0.2.0" from diffir.weight import Weight from diffir.weight.custom import CustomWeight from diffir.weight.unsupervised import ExactMatchWeight from diffir.measure import Measure from diffir.measure.qrels import QrelMeasure from diffir.measure.unsupervised import TopkMeasure from diffir.weight.weights_builder import WeightBuilder
34.6
55
0.858382
0
0
0
0
0
0
0
0
7
0.020231
a2d1763a00e0070a7178e1445d0a7e1fdef3a6a9
34,160
py
Python
tool/pylib/generator/output/PartBuilder.py
mever/qooxdoo
2bb08cb6c4ddfaf2425e6efff07deb17e960a050
[ "MIT" ]
1
2021-02-05T23:00:25.000Z
2021-02-05T23:00:25.000Z
tool/pylib/generator/output/PartBuilder.py
mever/qooxdoo
2bb08cb6c4ddfaf2425e6efff07deb17e960a050
[ "MIT" ]
3
2019-02-18T04:22:52.000Z
2021-02-21T15:02:54.000Z
tool/pylib/generator/output/PartBuilder.py
mever/qooxdoo
2bb08cb6c4ddfaf2425e6efff07deb17e960a050
[ "MIT" ]
1
2021-06-03T23:08:44.000Z
2021-06-03T23:08:44.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################################ # # qooxdoo - the new era of web development # # http://qooxdoo.org # # Copyright: # 2006-2010 1&1 Internet AG, Germany, http://www.1und1.de # # License: # MIT: https://opensource.org/licenses/MIT # See the LICENSE file in the project's top-level directory for details. # # Authors: # * Sebastian Werner (wpbasti) # * Thomas Herchenroeder (thron7) # * Richard Sternagel (rsternagel) # ################################################################################ ## # PartBuilder -- create packages and associates parts to packages, from parts configuration and class list # # Interface: # - PartBuilder.getPackages() ## from misc.Collections import OrderedDict from misc.Collections import DefaultOrderedDict from generator.output.Part import Part from generator.output.Package import Package from generator.code.Class import CompileOptions from generator.config.Config import ConfigurationError class PartBuilder(object): def __init__(self, console, depLoader): self._console = console self._depLoader = depLoader ## # interface method def getPackages(self, partIncludes, smartExclude, jobContext, script): # Get config settings jobConfig = jobContext["jobconf"] self._jobconf = jobConfig minPackageSize = jobConfig.get("packages/sizes/min-package", 0) minPackageSizeForUnshared = jobConfig.get("packages/sizes/min-package-unshared", None) partsCfg = jobConfig.get("packages/parts", {}) collapseCfg = jobConfig.get("packages/collapse", []) boot = jobConfig.get("packages/init", "boot") script.boot = boot # Automatically add boot part to collapse list if boot in partsCfg and not boot in collapseCfg: collapseCfg.append(boot) # Preprocess part data script.parts = {} # map of Parts script.parts = self._getParts(partIncludes, partsCfg, script) self._checkPartsConfig(script.parts) script.parts = self._getPartDeps(script, smartExclude) # Compute packages script.packages = [] # array of Packages script.packages = self._createPackages(script) self._checkPackagesAgainstClassList(script) script.sortParts() self._printPartStats(script) # Collapse parts by collapse order self._console.info("Collapsing parts ", feed=False) self.collapsePartsByOrder(script) # Collapse parts by package size self.collapsePartsBySize(script, minPackageSize, minPackageSizeForUnshared) # Size collapsing might introduce new dependencies to the boot part # try to assure a single package if len(script.parts[script.boot].packages) > 1: quickCollapseConfig = { 0 : set((script.parts[script.boot],))} self.collapsePartsByOrder(script, quickCollapseConfig) assert len(script.parts[script.boot].packages) == 1 self._printPartStats(script) # Post process results resultParts = self._getFinalPartData(script) # re-sort part packages, to clean up ordering issues from merging # - (the issue here is that part packages are only re-sorted during merges # when actually new packages are added to the part, but *not* when existing # packages receive a merge package whos package dependencies are already # fullfilled in the part; still package dependencies among the existing # packages might change so a re-sorting is necessary to support proper # load order) script.sortParts() script = self._getFinalClassList(script) #resultClasses = util.dictToList(resultClasses) # turn map into list, easier for upstream methods self._console.dotclear() if True: #self._console.getLevel() < self._console._levels["info"]: # - not working! self.verifyParts(script.parts, script) # Return # {Map} resultParts[partId] = [packageId1, packageId2] # {Array} resultClasses[packageId] = [class1, class2] #return boot, resultParts, resultClasses return resultParts, script ## # Check head lists (part.initial_deps) are non-overlapping # @param {Map} { partId : generator.code.Part } def _checkPartsConfig(self, parts): headclasses = dict((x.name,set(x.initial_deps)) for x in parts.values()) for partid, parthead in headclasses.items(): for partid1, parthead1 in ((x,y) for x,y in headclasses.items() if x!=partid): #print "Checking %s - %s" % (partid, partid1) overlap = parthead.intersection(parthead1) if overlap: raise ConfigurationError("Part '%s' and '%s' have overlapping includes: %r" % (partid, partid1, list(overlap))) ## # Check all classes from the global class list are contained in # *some* package. def _checkPackagesAgainstClassList(self, script): allpackageclasses = set([]) for package in script.packages: allpackageclasses.update(package.classes) missingclasses = set(script.classesObj).difference(allpackageclasses) if missingclasses: raise ValueError("These necessary classes are not covered by parts: %r" % list(missingclasses)) def verifyParts(self, partsMap, script): def handleError(msg): if bomb_on_error: raise RuntimeError(msg) else: self._console.warn("! "+msg) self._console.info("Verifying parts ", feed=False) self._console.indent() bomb_on_error = self._jobconf.get("packages/verifier-bombs-on-error", True) allpartsclasses = [] # 5) Check consistency between package.part_mask and part.packages self._console.debug("Verifying packages-to-parts relations...") self._console.indent() for package in script.packages: for part in partsMap.values(): if package.part_mask & part.bit_mask: if package not in part.packages: handleError("Package '%d' supposed to be in part '%s', but isn't" % (package.id, part.name)) self._console.outdent() self._console.debug("Verifying individual parts...") #self._console.indent() for part in partsMap.values(): if part.is_ignored: # skip ignored parts continue self._console.debug("Part: %s" % part.name) self._console.dot() self._console.indent() # get set of current classes in this part classList = [] classPackage = [] for packageIdx, package in enumerate(part.packages): # TODO: not sure this is sorted for pos,classId in enumerate(x.id for x in package.classes): classList.append(classId) classPackage.append((package.id,pos)) allpartsclasses.extend(classList) # 1) Check the initial part defining classes are included (trivial sanity) for classId in part.initial_deps: if classId not in classList: handleError("Defining class not included in part: '%s'" % (classId,)) # 2) Check individual class deps are fullfilled in part # 3) Check classes are in load-order # alternative: check part.deps against classSet classIdx = -1 for packageIdx, package in enumerate(part.packages): for clazz in package.classes: classIdx += 1 classDeps, _ = clazz.getCombinedDeps(script.classesAll, script.variants, script.jobconfig) loadDeps = set(x.name for x in classDeps['load']) ignoreDeps = set(x.name for x in classDeps['ignore']) # we cannot enforce runDeps here, as e.g. the 'boot' # part necessarily lacks classes from subsequent parts # (that's the whole point of parts) for depsId in loadDeps.difference(ignoreDeps): try: depsIdx = classList.index(depsId) except ValueError: handleError("Unfullfilled dependency of class '%s'[%d,%d]: '%s'" % (clazz.id, package.id, classIdx, depsId)) continue if depsId in loadDeps and classIdx < depsIdx: handleError("Load-dep loaded after using class ('%s'[%d,%d]): '%s'[%d,%d]" % (clazz.id, package.id, classIdx, depsId, classPackage[depsIdx][0], classPackage[depsIdx][1])) #if missingDeps: # there is a load dep not in the part # self._console.warn("Unfullfilled load dependencies of class '%s': %r" % (classId, tuple(missingDeps))) self._console.outdent() #self._console.outdent() # 4) Check all classes from the global class list are contained in # *some* part missingclasses = set(x.id for x in script.classesObj).difference(allpartsclasses) if missingclasses: handleError("These necessary classes are not covered by parts: %r" % list(missingclasses)) self._console.dotclear() self._console.outdent() return ## # create the set of parts, each part with a unique single-bit bit mask # @returns {Map} parts = { partName : Part() } def _getParts(self, partIncludes, partsCfg, script): self._console.debug("Creating part structures...") self._console.indent() parts = {} for partPos, partId in enumerate(partIncludes): npart = Part(partId) # create new Part object npart.bit_mask = script.getPartBitMask() # add unique bit initial_deps = list(set(partIncludes[partId]).difference(script.excludes)) # defining classes from config minus expanded excludes npart.initial_deps = initial_deps # for later cross-part checking npart.deps = initial_deps[:] # own copy, as this will get expanded if 'expected-load-order' in partsCfg[partId]: npart.collapse_index = partsCfg[partId]['expected-load-order'] if 'no-merge-private-package' in partsCfg[partId]: npart.no_merge_private_package = partsCfg[partId]['no-merge-private-package'] parts[partId] = npart self._console.debug("Part #%s => %s" % (partId, npart.bit_mask)) self._console.outdent() return parts ## # create the complete list of class dependencies for each part def _getPartDeps(self, script, smartExclude): parts = script.parts variants = script.variants globalClassList = [x.id for x in script.classesObj] self._console.debug("") self._console.info("Assembling parts") self._console.indent() for part in parts.values(): self._console.info("part %s " % part.name, feed=False) # Exclude initial classes of other parts partExcludes = [] for otherPartId in parts: if otherPartId != part.name: partExcludes.extend(parts[otherPartId].initial_deps) # Extend with smart excludes partExcludes.extend(smartExclude) # Remove unknown classes before checking dependencies for classId in part.deps[:]: if not classId in globalClassList : part.deps.remove(classId) # Checking we have something to include if len(part.deps) == 0: self._console.info("Part #%s is ignored in current configuration" % part.name) part.is_ignored = True continue # Finally resolve the dependencies # do not allow blocked loaddeps, as this would make the part unloadable partClasses = self._depLoader.classlistFromInclude(part.deps, partExcludes, variants, script=script, allowBlockLoaddeps=False) # Remove all unknown classes -- TODO: Can this ever happen here?! for classId in partClasses[:]: # need to work on a copy because of changes in the loop #if not classId in globalClassList: if not classId in script.classes: # check against application class list self._console.warn("Removing unknown class dependency '%s' from config of part #%s" % (classId, part.name)) partClasses.remove(classId) # Store self._console.debug("Part #%s depends on %s classes" % (part.name, len(partClasses))) part.deps = partClasses self._console.outdent() return parts ## # Cut an initial set of packages out of the set of classes needed by the parts # @returns {Array} [ Package ] def _createPackages(self, script): ## # Collect classes from parts, recording which class is used in which part # @returns {Map} { classId : parts_bit_mask } def getClassesFromParts(partObjs): allClasses = DefaultOrderedDict(lambda: 0) for part in partObjs: for classId in part.deps: allClasses[classId] |= part.bit_mask # a class used by multiple parts gets multiple bits return allClasses ## # Create packages from classes # @returns {Array} [ Package ] def getPackagesFromClasses(allClasses): packages = {} for classId in allClasses: pkgId = allClasses[classId] # create a Package if necessary if pkgId not in packages: package = Package(pkgId) packages[pkgId] = package # store classId with this package #packages[pkgId].classes.append(classId) packages[pkgId].classes.append(classesObj[classId]) return packages.values() # --------------------------------------------------------------- self._console.indent() parts = script.parts.values() classesObj = OrderedDict((cls.id, cls) for cls in script.classesObj) # generate list of all classes from the part dependencies allClasses = getClassesFromParts(parts) # Create a package for each set of classes which # are used by the same parts packages = getPackagesFromClasses(allClasses) # Register packages with using parts for package in packages: for part in parts: if package.id & part.bit_mask: part.packages.append(package) # Register dependencies between packages for package in packages: # get all direct (load)deps of this package allDeps = set(()) for clazz in package.classes: classDeps, _ = clazz.getCombinedDeps(script.classesAll, script.variants, script.jobconfig) loadDeps = set(x.name for x in classDeps['load']) allDeps.update(loadDeps) # record the other packages in which these classes are contained for classId in allDeps: for otherpackage in packages: if otherpackage != package and classId in (x.id for x in otherpackage.classes): package.packageDeps.add(otherpackage) self._console.outdent() return packages def _computePackageSize(self, package, variants, script): packageSize = 0 compOptions = CompileOptions() compOptions.optimize = script.optimize compOptions.format = True compOptions.variantset = variants self._console.indent() for clazz in package.classes: packageSize += clazz.getCompiledSize(compOptions, featuremap=script._featureMap) self._console.outdent() return packageSize ## # Support for merging small packages. # # Small (as specified in the config) packages are detected, starting with # those that are used by the fewest parts, and are merged into packages that # are used by the same and more parts. def collapsePartsBySize(self, script, minPackageSize, minPackageSizeForUnshared): if minPackageSize == None or minPackageSize == 0: return variants = script.variants self._console.debug("") self._console.debug("Collapsing parts by package sizes...") self._console.indent() self._console.debug("Minimum size: %sKB" % minPackageSize) self._console.indent() if minPackageSizeForUnshared == None: minPackageSizeForUnshared = minPackageSize # Start at the end with the sorted list # e.g. merge 4->7 etc. allPackages = script.packagesSorted() allPackages.reverse() # make a dict {part.bit_mask: part} allPartBitMasks = {} [allPartBitMasks.setdefault(x.bit_mask, x) for x in script.parts.values()] oldpackages = set([]) while oldpackages != set(script.packages): oldpackages = set(script.packages) allPackages = script.packagesSorted() allPackages.reverse() # Test and optimize 'fromId' for fromPackage in allPackages: self._console.dot() # possibly protect part-private package from merging if fromPackage.id in allPartBitMasks.keys(): # fromPackage.id == a part's bit mask if allPartBitMasks[fromPackage.id].no_merge_private_package: self._console.debug("Skipping private package #%s" % (fromPackage.id,)) continue packageSize = self._computePackageSize(fromPackage, variants, script) / 1024 self._console.debug("Package #%s: %sKB" % (fromPackage.id, packageSize)) # check selectablility if (fromPackage.part_count == 1) and (packageSize >= minPackageSizeForUnshared): continue if (fromPackage.part_count > 1) and (packageSize >= minPackageSize): continue # assert: the package is shared and smaller than minPackageSize # or: the package is unshared and smaller than minPackageSizeForUnshared self._console.indent() mergedPackage, targetPackage = self._mergePackage(fromPackage, script, script.packages) if mergedPackage: # mergedPackage == fromPackage on success script.packages.remove(fromPackage) self._console.outdent() self._console.dotclear() self._console.outdent() self._console.outdent() ## # get the "smallest" package (in the sense of _sortPackages()) that is # in all parts mergePackage is in, and is earlier in the corresponding # packages lists def _findMergeTarget(self, mergePackage, packages): ## # if another package id has the same bits turned on, it is available # in the same parts. def areInSameParts(mergePackage, package): return (mergePackage.id & package.id) == mergePackage.id ## # check if any of the deps of mergePackage depend on targetPackage - # if merging mergePackage into targetPackage, this would be creating # circular dependencies def noCircularDeps(mergePackage, targetPackage): for package in mergePackage.packageDeps: if targetPackage in package.packageDeps: return False return True ## # check that the targetPackage is loaded in those parts # where mergePackage's deps are loaded def depsAvailWhereTarget (mergePackage, targetPackage): for depsPackage in mergePackage.packageDeps: if not areInSameParts(targetPackage, depsPackage): return False return True # ---------------------------------------------------------------------- allPackages = reversed(Package.sort(packages)) # sorting and reversing assures we try "smaller" package id's first addtl_merge_constraints = self._jobconf.get("packages/additional-merge-constraints", True) for targetPackage in allPackages: if mergePackage.id == targetPackage.id: # no self-merging ;) continue if not areInSameParts(mergePackage, targetPackage): self._console.debug("Problematic #%d (different parts using)" % targetPackage.id) continue if not noCircularDeps(mergePackage, targetPackage): self._console.debug("Problematic #%d (circular dependencies)" % targetPackage.id) if addtl_merge_constraints: continue # why accept this by default? if not depsAvailWhereTarget(mergePackage, targetPackage): self._console.debug("Problematic #%d (dependencies not always available)" % targetPackage.id) if addtl_merge_constraints: continue # why accept this by default? yield targetPackage yield None ## # Support for collapsing parts along their expected load order # # Packages are merged in parts that define an expected load order, starting # with the boot part and continuing with groups of parts that have the same # load index, in increasing order. Within a group, packages are merged from # least used to more often used, and with packages unique to one of the parts # in the group to packages that are common to all parts. # Target packages for one group are blocked for the merge process of the next, # to avoid merging all packages into one "monster" package that all parts # share eventually. def collapsePartsByOrder(self, script, collapse_groups=None): def getCollapseGroupsOrdered(parts, ): # returns dict of parts grouped by collapse index # { 0 : set('boot'), 1 : set(part1, part2), 2 : ... } collapseGroups = {} # pre-define boot part with collapse index 0 boot = self._jobconf.get("packages/init", "boot") collapseGroups[0] = set((parts[boot],)) # get configured load groups for partname in parts: part = parts[partname] collidx = getattr(part, 'collapse_index', None) if collidx: if collidx < 1 : # not allowed raise RuntimeError, "Collapse index must be 1 or greater (Part: %s)" % partname else: if collidx not in collapseGroups: collapseGroups[collidx] = set(()) collapseGroups[collidx].add(part) return collapseGroups def isUnique(package, collapse_group): return sum([int(package in part.packages) for part in collapse_group]) == 1 def isCommon(package, collapse_group): return sum([int(package in part.packages) for part in collapse_group]) == len(collapse_group) def getUniquePackages(part, collapse_group): uniques = {} for package in part.packages: if isUnique(package, collapse_group): if (package.id == part.bit_mask and # possibly protect "private" package part.no_merge_private_package): pass else: uniques[package.id] = package return uniques getUniquePackages.key = 'unique' def getCommonPackages(part, collapse_group): commons = {} for package in part.packages: if isCommon(package, collapse_group): commons[package.id] = package return commons getCommonPackages.key = 'common' def mergeGroupPackages(selectFunc, collapse_group, script, seen_targets): self._console.debug("collapsing %s packages..." % selectFunc.key) self._console.indent() curr_targets = set(()) for part in collapse_group: oldpackages = [] while oldpackages != part.packages: oldpackages = part.packages[:] for package in reversed(part.packagesSorted): # start with "smallest" package selected_packages = selectFunc(part, collapse_group) # re-calculate b.o. modified part.packages if package.id in selected_packages: (mergedPackage, targetPackage) = self._mergePackage(package, script, selected_packages.values(), # TODO: How should areInSameParts() ever succeed with uniquePackages?! seen_targets) if mergedPackage: # on success: mergedPackage == package script.packages.remove(mergedPackage) curr_targets.add(targetPackage) seen_targets.update(curr_targets) self._console.outdent() return script.parts, script.packages # --------------------------------------------------------------------- self._console.debug("") self._console.debug("Collapsing parts by collapse order...") self._console.indent() if collapse_groups == None: collapse_groups = getCollapseGroupsOrdered(script.parts, ) seen_targets = set(()) for collidx in sorted(collapse_groups.keys()): # go through groups in load order self._console.dot() collgrp = collapse_groups[collidx] self._console.debug("Collapse group %d %r" % (collidx, [x.name for x in collgrp])) self._console.indent() script.parts, script.packages = mergeGroupPackages(getUniquePackages, collgrp, script, seen_targets) script.parts, script.packages = mergeGroupPackages(getCommonPackages, collgrp, script, seen_targets) self._console.outdent() self._console.dotclear() self._console.outdent() return ## # Try to find a target package for <fromPackage> within <packages> and, if # found, merge <fromPackage> into the target package. <seen_targets>, if # given, is a skip list for pot. targets. # # On merge, maintains package.dependencies and part.packages, but leaves it # to the caller to pot. remove <fromPackage> from script.packages. # @return (<fromPackage>,<toPackage>) on success, else (None,None) def _mergePackage(self, fromPackage, script, packages, seen_targets=None): def updatePartDependencies(part, packageDeps): for package in packageDeps: if package not in part.packages: # add package part.packages.append(package) # update package's part bit mask package.part_mask |= part.bit_mask # make sure the new package's dependencies are also included updatePartDependencies(part, package.packageDeps) return def mergeContAndDeps(fromPackage, toPackage): # Merging package content toPackage.classes.extend(fromPackage.classes) # Merging package dependencies depsDelta = fromPackage.packageDeps.difference(set((toPackage,))) # make sure toPackage is not included self._console.debug("Adding packages dependencies to target package: %s" % (map(str, sorted([x.id for x in depsDelta])),)) toPackage.packageDeps.update(depsDelta) toPackage.packageDeps.difference_update(set((fromPackage,))) # remove potential dependency to fromPackage self._console.debug("Target package #%s now depends on: %s" % (toPackage.id, map(str, sorted([x.id for x in toPackage.packageDeps])))) return toPackage # ---------------------------------------------------------------------- self._console.debug("Search a target package for package #%s" % (fromPackage.id,)) self._console.indent() # find toPackage toPackage = None for toPackage in self._findMergeTarget(fromPackage, packages): if toPackage == None: break elif seen_targets != None: if toPackage not in seen_targets: break else: break if not toPackage: self._console.outdent() return None, None self._console.debug("Merge package #%s into #%s" % (fromPackage.id, toPackage.id)) self._console.indent() # Merge package content and dependencies toPackage = mergeContAndDeps(fromPackage, toPackage) # Update package dependencies: # all packages that depended on fromPackage depend now on toPackage for package in script.packages: if fromPackage in package.packageDeps: # replace fromPackage with toPackage package.packageDeps.difference_update(set((fromPackage,))) package.packageDeps.update(set((toPackage,))) # Update part information: # remove the fromPackage from all parts using it, and add new dependencies to parts # using toPackage for part in script.parts.values(): # remove the merged package if fromPackage in part.packages: # we can simply remove the package, as we know the target package is also there part.packages.remove(fromPackage) # check additional dependencies for all parts if toPackage in part.packages: # this could be a part method # if the toPackage is in part, we might need to add additional packages that toPackage now depends on updatePartDependencies(part, fromPackage.packageDeps) # remove of fromPackage from global packages list is easier handled in the caller self._console.outdent() self._console.outdent() return fromPackage, toPackage # to allow caller check for merging and further clean-up fromPackage def _getFinalPartData(self, script): parts = script.parts packageIds = [x.id for x in script.packagesSorted()] resultParts = {} for toId, fromId in enumerate(packageIds): for partId in parts: if fromId in parts[partId].packages: if not partId in resultParts: resultParts[partId] = [toId] else: resultParts[partId].append(toId) return resultParts def _getFinalClassList(self, script): packages = script.packagesSorted() for package in packages: # TODO: temp. kludge, to pass classIds to sortClasses() # sortClasses() should take Class() objects directly classMap = OrderedDict((cls.id, cls) for cls in package.classes) classIds = self._depLoader.sortClasses(classMap.keys(), script.variants, script.buildType) package.classes = [classMap[x] for x in classIds] return script ## # <currently not used> def _sortPackagesTopological(self, packages): # packages : [Package] import graph # create graph object gr = graph.digraph() # add classes as nodes gr.add_nodes(packages) # for each load dependency add a directed edge for package in packages: for dep in package.packageDeps: gr.add_edge(package, dep) # cycle check? cycle_nodes = gr.find_cycle() if cycle_nodes: raise RuntimeError("Detected circular dependencies between packages: %r" % cycle_nodes) packageList = gr.topological_sorting() return packageList def _printPartStats(self, script): packages = dict([(x.id,x) for x in script.packages]) parts = script.parts packageIds = packages.keys() packageIds.sort() packageIds.reverse() self._console.debug("") self._console.debug("Package summary : %d packages" % len(packageIds)) self._console.indent() for packageId in packageIds: self._console.debug("Package #%s contains %s classes" % (packageId, len(packages[packageId].classes))) self._console.debug("%r" % packages[packageId].classes) self._console.debug("Package #%s depends on these packages: %s" % (packageId, map(str, sorted([x.id for x in packages[packageId].packageDeps])))) self._console.outdent() self._console.debug("") self._console.debug("Part summary : %d parts" % len(parts)) self._console.indent() packages_used_in_parts = 0 for part in parts.values(): packages_used_in_parts += len(part.packages) self._console.debug("Part #%s packages(%d): %s" % (part.name, len(part.packages), ", ".join('#'+str(x.id) for x in part.packages))) self._console.debug("") self._console.debug("Total of packages used in parts: %d" % packages_used_in_parts) self._console.outdent() self._console.debug("")
42.593516
157
0.600907
33,084
0.968501
2,378
0.069614
0
0
0
0
10,618
0.310831
a2d2d2628caff1c2156c6ad988dc74d14a5fd8cd
6,486
py
Python
factorizer/datasets/wmh.py
pashtari/factorizer
730f295b403a90c1c691f99b529d5d32b635d0c6
[ "Apache-2.0" ]
7
2022-03-05T00:43:29.000Z
2022-03-07T01:23:08.000Z
factorizer/datasets/wmh.py
pashtari/factorizer
730f295b403a90c1c691f99b529d5d32b635d0c6
[ "Apache-2.0" ]
null
null
null
factorizer/datasets/wmh.py
pashtari/factorizer
730f295b403a90c1c691f99b529d5d32b635d0c6
[ "Apache-2.0" ]
1
2022-03-21T05:28:23.000Z
2022-03-21T05:28:23.000Z
import sys import numpy as np import torch from monai import transforms, data from ..data import DataModule, ReadImaged, Renamed, Inferer ################################### # Transform ################################### def wmh_train_transform( spacing=(1.0, 1.0, 1.0), spatial_size=(128, 128, 128), num_patches=1 ): train_transform = [ ReadImaged(["image", "label"]), transforms.Lambdad("label", lambda x: (x == 1).astype(np.float32)), transforms.AddChanneld("label"), transforms.CropForegroundd(["image", "label"], source_key="image"), transforms.NormalizeIntensityd("image", channel_wise=True), transforms.Spacingd( ["image", "label"], pixdim=spacing, mode=("bilinear", "bilinear"), ), transforms.SpatialPadd(["image", "label"], spatial_size=spatial_size), transforms.RandCropByPosNegLabeld( ["image", "label"], label_key="label", spatial_size=spatial_size, pos=1, neg=1, num_samples=num_patches, image_key="image", image_threshold=0, ), transforms.RandAffined( ["image", "label"], prob=0.15, spatial_size=spatial_size, rotate_range=[30 * np.pi / 180] * 3, scale_range=[0.3] * 3, mode=("bilinear", "bilinear"), as_tensor_output=False, ), transforms.RandFlipd(["image", "label"], prob=0.5, spatial_axis=0), transforms.RandFlipd(["image", "label"], prob=0.5, spatial_axis=1), transforms.RandFlipd(["image", "label"], prob=0.5, spatial_axis=2), transforms.RandGaussianNoised("image", prob=0.15, std=0.1), transforms.RandGaussianSmoothd( "image", prob=0.15, sigma_x=(0.5, 1.5), sigma_y=(0.5, 1.5), sigma_z=(0.5, 1.5), ), transforms.RandScaleIntensityd("image", prob=0.15, factors=0.3), transforms.RandShiftIntensityd("image", prob=0.15, offsets=0.1), transforms.RandAdjustContrastd("image", prob=0.15, gamma=(0.7, 1.5)), transforms.AsDiscreted("label", threshold=0.5), transforms.ToTensord(["image", "label"]), Renamed(), ] train_transform = transforms.Compose(train_transform) return train_transform def wmh_val_transform(): val_transform = [ ReadImaged(["image", "label"], allow_missing_keys=True), transforms.Lambdad( "label", lambda x: (x == 1).astype(np.float32), allow_missing_keys=True, ), transforms.AddChanneld("label", allow_missing_keys=True), transforms.NormalizeIntensityd( "image", nonzero=True, channel_wise=True ), transforms.ToTensord(["image", "label"], allow_missing_keys=True), Renamed(), ] val_transform = transforms.Compose(val_transform) return val_transform def wmh_test_transform(): return wmh_val_transform() def wmh_vis_transform(spacing=(1.0, 1.0, 1.0)): vis_transform = [ ReadImaged(["image", "label"], allow_missing_keys=True), transforms.Lambdad( "label", lambda x: (x == 1).astype(np.float32), allow_missing_keys=True, ), transforms.AddChanneld("label", allow_missing_keys=True), transforms.NormalizeIntensityd("image", channel_wise=True), transforms.Spacingd( keys=["image", "label"], pixdim=spacing, mode=("bilinear", "nearest"), ), transforms.ToTensord(["image", "label"], allow_missing_keys=True), Renamed(), ] vis_transform = transforms.Compose(vis_transform) return vis_transform ################################### # Data module ################################### class WMHDataModule(DataModule): def __init__( self, data_properties, spacing=(1.0, 1.0, 1.0), spatial_size=(128, 128, 128), num_patches=1, num_splits=5, split=0, batch_size=2, num_workers=None, cache_num=sys.maxsize, cache_rate=1.0, progress=True, copy_cache=True, seed=42, ): dataset_cls_params = { "cache_num": cache_num, "cache_rate": cache_rate, "num_workers": num_workers, "progress": progress, "copy_cache": copy_cache, } dataset_cls = (data.CacheDataset, dataset_cls_params) train_transform = wmh_train_transform( spacing, spatial_size, num_patches ) val_transform = wmh_val_transform() test_transform = wmh_test_transform() vis_transform = wmh_vis_transform(spacing) super().__init__( data_properties, train_dataset_cls=dataset_cls, val_dataset_cls=dataset_cls, test_dataset_cls=dataset_cls, train_transform=train_transform, val_transform=val_transform, test_transform=test_transform, vis_transform=vis_transform, num_splits=num_splits, split=split, batch_size=batch_size, num_workers=num_workers, seed=seed, ) # alias WMH = WMHDataModule ################################### # Inference ################################### class WMHInferer(Inferer): def __init__( self, spacing=(1.0, 1.0, 1.0), spatial_size=(128, 128, 128), post=None, write_dir=None, output_dtype=None, **kwargs, ) -> None: # postprocessing transforms if post == "logit": post = transforms.Lambdad("input", lambda x: x) output_dtype = np.float32 if output_dtype is None else output_dtype elif post == "prob": post = transforms.Lambdad("input", torch.sigmoid) output_dtype = np.float32 if output_dtype is None else output_dtype elif post == "class": post = transforms.Lambdad("input", lambda x: x >= 0) output_dtype = np.uint8 if output_dtype is None else output_dtype else: post = post super().__init__( spacing=spacing, spatial_size=spatial_size, post=post, write_dir=write_dir, output_dtype=output_dtype, **kwargs, )
31.033493
79
0.561671
2,489
0.38375
0
0
0
0
0
0
773
0.11918
a2d721ef72b39de52022137d721dac292cbddcad
890
py
Python
Python/Topics/Sending-Email/05-pdf-attachment.py
shihab4t/Software-Development
0843881f2ba04d9fca34e44443b5f12f509f671e
[ "Unlicense" ]
null
null
null
Python/Topics/Sending-Email/05-pdf-attachment.py
shihab4t/Software-Development
0843881f2ba04d9fca34e44443b5f12f509f671e
[ "Unlicense" ]
null
null
null
Python/Topics/Sending-Email/05-pdf-attachment.py
shihab4t/Software-Development
0843881f2ba04d9fca34e44443b5f12f509f671e
[ "Unlicense" ]
null
null
null
import imghdr import smtplib import os from email.message import EmailMessage EMAIL_ADDRESS = os.environ.get("GMAIL_ADDRESS") EMAIL_PASSWORD = os.environ.get("GMAIL_APP_PASS") pdfs = ["/home/shihab4t/Downloads/Profile.pdf"] with smtplib.SMTP_SSL("smtp.gmail.com", 465) as smtp: smtp.login(EMAIL_ADDRESS, EMAIL_PASSWORD) reciver = "shihab4tdev@gmail.com" msg = EmailMessage() msg["Subject"] = "Grab dinner this weekend? 2" msg["From"] = EMAIL_ADDRESS msg["To"] = reciver msg.set_content("How about dinner at 6pm this Saturday") for pdf in pdfs: with open(pdf, "rb") as pdf: pdf_data = pdf.read() pdf_name = pdf.name msg.add_attachment(pdf_data, maintype="application", subtype="octet-stream", filename=pdf_name) smtp.send_message(msg) print(f"Email was sented to {reciver}")
26.969697
69
0.665169
0
0
0
0
0
0
0
0
258
0.289888
a2d7927bd74ff2bc70037658a7110cb4dffa918c
43
py
Python
rcds/project/__init__.py
jordanbertasso/rcds
d3d655a59a350042d65476793db84e761de04829
[ "BSD-3-Clause" ]
5
2020-07-13T12:40:02.000Z
2021-08-21T11:18:28.000Z
rcds/project/__init__.py
jordanbertasso/rcds
d3d655a59a350042d65476793db84e761de04829
[ "BSD-3-Clause" ]
144
2020-07-06T11:26:49.000Z
2022-02-01T14:33:28.000Z
rcds/project/__init__.py
jordanbertasso/rcds
d3d655a59a350042d65476793db84e761de04829
[ "BSD-3-Clause" ]
7
2020-07-22T12:38:32.000Z
2021-12-21T14:27:54.000Z
from .project import Project # noqa: F401
21.5
42
0.744186
0
0
0
0
0
0
0
0
12
0.27907
a2d972366674ffee05dbeed1f54a9dc88de6bb40
163
py
Python
MyEircode.py
MrBrianMonaghan/mapping
1b525eaaad3b22709a53167b46c901ece365ecab
[ "Apache-2.0" ]
null
null
null
MyEircode.py
MrBrianMonaghan/mapping
1b525eaaad3b22709a53167b46c901ece365ecab
[ "Apache-2.0" ]
null
null
null
MyEircode.py
MrBrianMonaghan/mapping
1b525eaaad3b22709a53167b46c901ece365ecab
[ "Apache-2.0" ]
null
null
null
import selenium from selenium import webdriver try: browser = webdriver.Firefox() browser.get('mikekus.com') except KeyboardInterrupt: browser.quit()
18.111111
33
0.742331
0
0
0
0
0
0
0
0
13
0.079755
a2d986e45466635f24a005d6cc044f9cdfb62b88
740
py
Python
tests/test_rotor/rotor_test.py
axevalley/enigma
fdfa5a85dbd4675f195e00e4b7e22d976a3d9015
[ "MIT" ]
null
null
null
tests/test_rotor/rotor_test.py
axevalley/enigma
fdfa5a85dbd4675f195e00e4b7e22d976a3d9015
[ "MIT" ]
28
2019-07-30T16:15:52.000Z
2022-03-14T19:14:25.000Z
tests/test_rotor/rotor_test.py
lukeshiner/enigma
917066c8f33f67b43f092800ba46220d107f622b
[ "MIT" ]
null
null
null
"""Base class for rotor tests.""" import unittest from enigma.rotor.reflector import Reflector from enigma.rotor.rotor import Rotor class RotorTest(unittest.TestCase): """Provides tools testing rotors.""" def get_rotor( self, wiring="EKMFLGDQVZNTOWYHXUSPAIBRCJ", ring_setting=1, position="A", turnover_positions=["R"], ): """Return Rotor object.""" return Rotor( wiring=wiring, ring_setting=ring_setting, position=position, turnover_positions=turnover_positions, ) def get_reflector(self, wiring="YRUHQSLDPXNGOKMIEBFZCWVJAT"): """Return Reflector object.""" return Reflector(wiring=wiring)
24.666667
65
0.631081
603
0.814865
0
0
0
0
0
0
187
0.252703
a2deabeee99e67fa9e9a47d417ca86a406f16c31
2,186
py
Python
kyu_8/check_the_exam/test_check_exam.py
pedrocodacyorg2/codewars
ba3ea81125b6082d867f0ae34c6c9be15e153966
[ "Unlicense" ]
1
2022-02-12T05:56:04.000Z
2022-02-12T05:56:04.000Z
kyu_8/check_the_exam/test_check_exam.py
pedrocodacyorg2/codewars
ba3ea81125b6082d867f0ae34c6c9be15e153966
[ "Unlicense" ]
182
2020-04-30T00:51:36.000Z
2021-09-07T04:15:05.000Z
kyu_8/check_the_exam/test_check_exam.py
pedrocodacyorg2/codewars
ba3ea81125b6082d867f0ae34c6c9be15e153966
[ "Unlicense" ]
4
2020-04-29T22:04:20.000Z
2021-07-13T20:04:14.000Z
# Created by Egor Kostan. # GitHub: https://github.com/ikostan # LinkedIn: https://www.linkedin.com/in/egor-kostan/ # FUNDAMENTALS ARRAYS NUMBERS BASIC LANGUAGE FEATURES import unittest import allure from utils.log_func import print_log from kyu_8.check_the_exam.check_exam import check_exam @allure.epic('8 kyu') @allure.parent_suite('Beginner') @allure.suite("Data Structures") @allure.sub_suite("Unit Tests") @allure.feature("Lists") @allure.story('Check the exam') @allure.tag('FUNDAMENTALS', 'ARRAYS', 'NUMBERS', 'BASIC LANGUAGE FEATURES') @allure.link(url='https://www.codewars.com/kata/5a3dd29055519e23ec000074/train/python', name='Source/Kata') class CheckExamTestCase(unittest.TestCase): """ Testing check_exam function """ def test_check_exam(self): """ Testing check_exam function The function should return the score for this array of answers, giving +4 for each correct answer, -1 for each incorrect answer, and +0 for each blank answer(empty string). :return: """ allure.dynamic.title("Testing check_exam function") allure.dynamic.severity(allure.severity_level.NORMAL) allure.dynamic.description_html('<h3>Codewars badge:</h3>' '<img src="https://www.codewars.com/users/myFirstCode' '/badges/large">' '<h3>Test Description:</h3>' "<p></p>") with allure.step("Enter arr1 and arr2 and verify the output"): data = [ (["a", "a", "b", "b"], ["a", "c", "b", "d"], 6), (["a", "a", "c", "b"], ["a", "a", "b", ""], 7), (["a", "a", "b", "c"], ["a", "a", "b", "c"], 16), (["b", "c", "b", "a"], ["", "a", "a", "c"], 0), ] for arr1, arr2, expected in data: print_log(arr1=arr1, arr2=arr2, expected=expected) self.assertEqual(expected, check_exam(arr1, arr2))
34.15625
94
0.531565
1,512
0.691674
0
0
1,886
0.862763
0
0
1,001
0.457914
a2dec2415ed78800e66aae16391df2b37d8f56eb
1,193
py
Python
pysoup/venv/__init__.py
illBeRoy/pysoup
742fd6630e1be27c275cb8dc6ee94412472cb20b
[ "MIT" ]
4
2016-02-21T12:40:44.000Z
2019-06-13T13:23:19.000Z
pysoup/venv/__init__.py
illBeRoy/pysoup
742fd6630e1be27c275cb8dc6ee94412472cb20b
[ "MIT" ]
null
null
null
pysoup/venv/__init__.py
illBeRoy/pysoup
742fd6630e1be27c275cb8dc6ee94412472cb20b
[ "MIT" ]
1
2020-07-16T12:22:12.000Z
2020-07-16T12:22:12.000Z
import os.path from twisted.internet import defer import pysoup.utils class Virtualenv(object): def __init__(self, display_pip, path): self._display_pipe = display_pip self._path = path @property def path(self): return self._path @property def venv_path(self): return os.path.join(self._path, 'venv') @property def source_path(self): return os.path.join(self.venv_path, 'bin/activate') @defer.inlineCallbacks def create(self): self._display_pipe.log('Ensuring virtualenv environment at {0}'.format(self._path)) code = yield pysoup.utils.execute_shell_command('mkdir -p {0} && virtualenv --no-site-packages -q {0}'.format(self.venv_path)) if code != 0: self._display_pipe.error('Failed to setup virtualenv at target! ({0})'.format(self._path)) raise Exception('Could not create virtualenv') self._display_pipe.notify('Virtualenv is ready') @defer.inlineCallbacks def execute_in_venv(self, command): code = yield pysoup.utils.execute_shell_command('source {0} && {1}'.format(self.source_path, command)) defer.returnValue(code)
29.097561
134
0.668064
1,118
0.937133
665
0.557418
952
0.797988
0
0
228
0.191115
a2df2293ad90461c1622171c3d5669f2f6f7fd84
2,791
py
Python
yggdrasil/metaschema/datatypes/InstanceMetaschemaType.py
astro-friedel/yggdrasil
5ecbfd083240965c20c502b4795b6dc93d94b020
[ "BSD-3-Clause" ]
null
null
null
yggdrasil/metaschema/datatypes/InstanceMetaschemaType.py
astro-friedel/yggdrasil
5ecbfd083240965c20c502b4795b6dc93d94b020
[ "BSD-3-Clause" ]
null
null
null
yggdrasil/metaschema/datatypes/InstanceMetaschemaType.py
astro-friedel/yggdrasil
5ecbfd083240965c20c502b4795b6dc93d94b020
[ "BSD-3-Clause" ]
null
null
null
from yggdrasil.metaschema.datatypes import MetaschemaTypeError from yggdrasil.metaschema.datatypes.MetaschemaType import MetaschemaType from yggdrasil.metaschema.datatypes.JSONObjectMetaschemaType import ( JSONObjectMetaschemaType) from yggdrasil.metaschema.properties.ArgsMetaschemaProperty import ( ArgsMetaschemaProperty) class InstanceMetaschemaType(MetaschemaType): r"""Type for evaluating instances of Python classes.""" name = 'instance' description = 'Type for Python class instances.' properties = ['class', 'args'] definition_properties = ['class'] metadata_properties = ['class', 'args'] extract_properties = ['class', 'args'] python_types = (object, ) cross_language_support = False @classmethod def validate(cls, obj, raise_errors=False): r"""Validate an object to check if it could be of this type. Args: obj (object): Object to validate. raise_errors (bool, optional): If True, errors will be raised when the object fails to be validated. Defaults to False. Returns: bool: True if the object could be of this type, False otherwise. """ # Base not called because every python object should pass validation # against the object class try: ArgsMetaschemaProperty.instance2args(obj) return True except MetaschemaTypeError: if raise_errors: raise ValueError("Class dosn't have an input_args attribute.") return False @classmethod def encode_data(cls, obj, typedef): r"""Encode an object's data. Args: obj (object): Object to encode. typedef (dict): Type definition that should be used to encode the object. Returns: string: Encoded object. """ args = ArgsMetaschemaProperty.instance2args(obj) if isinstance(typedef, dict) and ('args' in typedef): typedef_args = {'properties': typedef['args']} else: typedef_args = None return JSONObjectMetaschemaType.encode_data(args, typedef_args) @classmethod def decode_data(cls, obj, typedef): r"""Decode an object. Args: obj (string): Encoded object to decode. typedef (dict): Type definition that should be used to decode the object. Returns: object: Decoded object. """ # TODO: Normalization can be removed if metadata is normalized typedef = cls.normalize_definition(typedef) args = JSONObjectMetaschemaType.decode_data( obj, {'properties': typedef.get('args', {})}) return typedef['class'](**args)
34.036585
78
0.636331
2,455
0.879613
0
0
2,023
0.72483
0
0
1,284
0.46005
a2df9c5cd443a1cdbe81e54c4e448271480f6781
368
py
Python
battleships/migrations/0004_auto_20181202_1852.py
ArturAdamczyk/Battleships
748e4fa87ed0c17c57abbdf5a0a2bca3c91dff24
[ "MIT" ]
null
null
null
battleships/migrations/0004_auto_20181202_1852.py
ArturAdamczyk/Battleships
748e4fa87ed0c17c57abbdf5a0a2bca3c91dff24
[ "MIT" ]
null
null
null
battleships/migrations/0004_auto_20181202_1852.py
ArturAdamczyk/Battleships
748e4fa87ed0c17c57abbdf5a0a2bca3c91dff24
[ "MIT" ]
null
null
null
# Generated by Django 2.1.3 on 2018-12-02 17:52 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('battleships', '0003_auto_20181202_1832'), ] operations = [ migrations.RenameField( model_name='coordinate', old_name='ship', new_name='ship1', ), ]
19.368421
51
0.589674
283
0.769022
0
0
0
0
0
0
110
0.298913
a2e147bc50d8522b84f76610398b1cf2e73d60bb
11,168
py
Python
jme/stagecache/text_metadata.py
jmeppley/stagecache
a44f93b7936e1c6ea40dec0a31ad9c19d2415f3a
[ "MIT" ]
null
null
null
jme/stagecache/text_metadata.py
jmeppley/stagecache
a44f93b7936e1c6ea40dec0a31ad9c19d2415f3a
[ "MIT" ]
null
null
null
jme/stagecache/text_metadata.py
jmeppley/stagecache
a44f93b7936e1c6ea40dec0a31ad9c19d2415f3a
[ "MIT" ]
null
null
null
""" Functions for storing and retrieving cache metadata from text files. Each Cache asset is a path: /path/filename There are four metadata files in the cache for each: /path/.stagecache.filename/size The size of the asset in bytes /path/.stagecache.filename/cache_lock The requested end time of the cache /path/.stagecache.filename/log A record of past requests /path/.stagecache.filename/write_lock Exists if cache being updated There are also global metadata files in cache_root: .stagecache.global/asset_list list of assets in this cache .stagecache.global/write_lock Usage: Initialize TargetMetadata() class with cache_root and target paths. Initialize CacheMetadata() class with cache_root path TargetMetadata Functions: get_cached_target_size(): returns size and date from file set_cached_target_size(size): writes size to file get_last_lock_date(): returns the most recent lock end date set_cache_lock_date(date): writes new date to lock file get_write_lock(): mark file as in progress (wait for existing lock) release_write_lock(): remove in_progress mark CacheMetadata Functions: get_write_lock() iter_cached_files(locked=None): return list of assets with sizes and lock dates remove_cached_file(path): remove record of asset add_cached_file(path): add record of asset All functions take cache=cache_root as a kwarg All get_ functions throw FileNotFound exception if asset not yet in cache """ import logging import os import time import stat from contextlib import contextmanager LOGGER = logging.getLogger(name='metadata') def get_cached_target(cache_root, target_path): return os.path.abspath(cache_root + target_path) def makedirs(path, mode=509): if not os.path.exists(path): makedirs(os.path.dirname(path), mode) try: os.mkdir(path) os.chmod(path, mode=mode) except FileExistsError as f_e_e: # competing threads? pass class Lockable(): def __init__(self, cache): self.umask = cache.config['cache_umask'] self.umask_dir = self.umask + 0o111 @contextmanager def lock(self, sleep_interval=3, force=False, dry_run=False): """ Aquire and relase lock as a context manager. EG: with target.lock(): ... see get_write_lock for arguments """ try: self.get_write_lock(sleep_interval, force, dry_run) yield None LOGGER.debug('Done with lock...') finally: # only release lock if it was NOT a dry run if not dry_run: self.release_write_lock() def get_write_lock(self, sleep_interval=3, force=False, dry_run=False): """ mark file as in progress (wait for existing lock) """ LOGGER.debug('Creating lock...') if os.path.exists(self.write_lock): if force: os.remove(self.write_lock) if dry_run: return LOGGER.info('Waiting for lock...') LOGGER.debug("force is "+ str(force)) while os.path.exists(self.write_lock): time.sleep(sleep_interval) if dry_run: return with open(self.write_lock, 'wt') as LOCK: LOCK.write('locked') os.chmod(self.write_lock, self.umask) def release_write_lock(self): """ remove in_progress mark """ LOGGER.debug('Releasing lock (%s)...', self.write_lock) try: os.remove(self.write_lock) except: pass class TargetMetadata(Lockable): def __init__(self, cache, target_path, atype): super().__init__(cache) self.cache_root = os.path.abspath(cache.cache_root) self.target_path = target_path self.atype = atype self.cached_target = get_cached_target(self.cache_root, self.target_path, ) cache_dir, cache_name = os.path.split(self.cached_target) self.md_dir = os.path.join(cache_dir, '.stagecache.' + cache_name) if not os.path.exists(self.md_dir): makedirs(self.md_dir, mode=self.umask_dir) self.write_lock = os.path.join(self.md_dir, 'write_lock') LOGGER.debug("""created TargetMetadata: cache_root=%s target_path=%s cached_target=%s cache_dir=%s md_dir=%s write_lock=%s""", self.cache_root, self.target_path, self.cached_target, cache_dir, self.md_dir, self.write_lock) def get_md_value(self, md_type, delete=False): """ returns mtime of md file and int value from file """ md_file = os.path.join(self.md_dir, md_type) if not os.path.exists(md_file): # file not in cache! return (0, None) mtime = os.path.getmtime(md_file) with open(md_file, 'rt') as md_handle: value = int(md_handle.readlines()[0].strip()) if delete: os.remove(md_file) return value, mtime def set_md_value(self, md_type, value): """ writes value to md file """ md_file = os.path.join(self.md_dir, md_type) if os.path.exists(md_file): self.catalog(md_type) with open(md_file, 'wt') as SIZE: SIZE.write(str(int(value))) os.chmod(md_file, self.umask) def catalog(self, md_type): """ archives old md and returns value """ log_file = os.path.join(self.md_dir, 'log') value, mtime = self.get_md_value(md_type, delete=True) with open(log_file, 'at') as LOG: LOG.write("\t".join(( md_type, str(mtime), time.ctime(mtime), str(value), )) + "\n") os.chmod(log_file, self.umask) return value def get_cached_target_size(self): """ returns size and date """ return self.get_md_value('size') def set_cached_target_size(self, size): """ writes size to file """ self.set_md_value('size', size) def get_last_lock_date(self): """ returns the most recent lock end date """ lock_date = self.get_md_value('cache_lock')[0] return lock_date def set_cache_lock_date(self, date): """ writes new expiration date to file """ self.set_md_value('cache_lock', date) def is_lock_valid(self): """ checks if lock date has passed """ lock_date = self.get_last_lock_date() return lock_date > time.time() def remove_target(self): """ archive metadata for this asset """ self.catalog('cache_lock') return self.catalog('size') class CacheMetadata(Lockable): def __init__(self, cache): super().__init__(cache) self.cache = cache self.md_dir = os.path.abspath( os.path.join(self.cache.cache_root, '.stagecache.global') ) self.write_lock = os.path.join(self.md_dir, "write_lock") self.asset_list = os.path.join(self.md_dir, "asset_list") if not os.path.exists(self.md_dir): makedirs(self.md_dir, self.umask_dir) LOGGER.debug("""created CacheMetadata: cache_root=%s md_dir=%s write_lock=%s""", self.cache.cache_root, self.md_dir, self.write_lock) def iter_cached_files(self, locked=None): """ return list of assets with sizes and lock dates """ LOGGER.debug("Checking asset list: %s", self.asset_list) for target_path, atype in self.list_assets(): target_metadata = TargetMetadata(self.cache, target_path, atype) if locked is None or target_metadata.is_lock_valid() == locked: yield target_metadata def list_assets(self): """ return list of path, type tuples in cache """ LOGGER.debug("Fetching asset list: %s", self.asset_list) if os.path.exists(self.asset_list): asset_list = list() with open(self.asset_list) as assets: for asset_line in assets: asset_line = asset_line.strip() if len(asset_line) == 0: continue asset = tuple(a.strip() for a in asset_line.split('\t')) if len(asset) != 2: raise Exception("Asset tuple is NOT length 2!\n%r" % (asset,)) asset_list.append(asset) LOGGER.debug("Found %d assets in %s", len(asset_list), self.asset_list, ) return asset_list else: return [] def remove_cached_file(self, target_metadata): """ remove record of cached file, return size """ count = 0 # read asset list asset_list = self.list_assets() # write new (edited) asset list with open(self.asset_list, 'wt') as assets: for target_path, atype in asset_list: if target_path != target_metadata.target_path: assets.write(target_path + "\t" + atype + "\n") else: count += 1 os.chmod(self.asset_list, self.umask) if count == 0: LOGGER.error("No match for " + target_metadata.target_path) raise Exception("Error recording assets") if count > 1: LOGGER.warning("Found {} listings for {}".format(count, target_metadata.target_path)) return target_metadata.remove_target() def add_cached_file(self, target_metadata, target_size, lock_end_date): """ add record of asset """ # add to global md paths_in_cache = set(a[0] for a in self.list_assets()) if target_metadata.target_path not in paths_in_cache: LOGGER.debug("%s not in %s, adding...", target_metadata.target_path, paths_in_cache) # add to list if not there yet with open(self.asset_list, 'at') as assets: assets.write(target_metadata.target_path + "\t" \ + target_metadata.atype + "\n") os.chmod(self.asset_list, self.umask) added_to_list = True else: LOGGER.debug("%s alread in asset list", target_metadata.target_path) added_to_list = False # add file specific md target_metadata.set_cached_target_size(target_size) target_metadata.set_cache_lock_date(lock_end_date) return added_to_list
36.980132
86
0.576916
9,065
0.811694
1,039
0.093034
553
0.049516
0
0
3,480
0.311605
a2e1fed84d2ed3d71ec400a1f6a513cfa6d50f07
3,858
py
Python
lib/roi_data/minibatch.py
BarneyQiao/pcl.pytorch
4e0280e5e1470f705e620eda26f881d627c5016c
[ "MIT" ]
233
2019-05-10T07:17:42.000Z
2022-03-30T09:24:16.000Z
lib/roi_data/minibatch.py
Michael-Steven/Crack_Image_WSOD
4e8591a7c0768cee9eb7240bb9debd54824f5b33
[ "MIT" ]
78
2019-05-10T21:10:47.000Z
2022-03-29T13:57:32.000Z
lib/roi_data/minibatch.py
Michael-Steven/Crack_Image_WSOD
4e8591a7c0768cee9eb7240bb9debd54824f5b33
[ "MIT" ]
57
2019-05-10T07:17:37.000Z
2022-03-24T04:43:24.000Z
import numpy as np import numpy.random as npr import cv2 from core.config import cfg import utils.blob as blob_utils def get_minibatch_blob_names(is_training=True): """Return blob names in the order in which they are read by the data loader. """ # data blob: holds a batch of N images, each with 3 channels blob_names = ['data', 'rois', 'labels'] return blob_names def get_minibatch(roidb, num_classes): """Given a roidb, construct a minibatch sampled from it.""" # We collect blobs from each image onto a list and then concat them into a # single tensor, hence we initialize each blob to an empty list blobs = {k: [] for k in get_minibatch_blob_names()} # Get the input image blob im_blob, im_scales = _get_image_blob(roidb) assert len(im_scales) == 1, "Single batch only" assert len(roidb) == 1, "Single batch only" blobs['data'] = im_blob rois_blob = np.zeros((0, 5), dtype=np.float32) labels_blob = np.zeros((0, num_classes), dtype=np.float32) num_images = len(roidb) for im_i in range(num_images): labels, im_rois = _sample_rois(roidb[im_i], num_classes) # Add to RoIs blob rois = _project_im_rois(im_rois, im_scales[im_i]) batch_ind = im_i * np.ones((rois.shape[0], 1)) rois_blob_this_image = np.hstack((batch_ind, rois)) if cfg.DEDUP_BOXES > 0: v = np.array([1, 1e3, 1e6, 1e9, 1e12]) hashes = np.round(rois_blob_this_image * cfg.DEDUP_BOXES).dot(v) _, index, inv_index = np.unique(hashes, return_index=True, return_inverse=True) rois_blob_this_image = rois_blob_this_image[index, :] rois_blob = np.vstack((rois_blob, rois_blob_this_image)) # Add to labels blob labels_blob = np.vstack((labels_blob, labels)) blobs['rois'] = rois_blob blobs['labels'] = labels_blob return blobs, True def _sample_rois(roidb, num_classes): """Generate a random sample of RoIs""" labels = roidb['gt_classes'] rois = roidb['boxes'] if cfg.TRAIN.BATCH_SIZE_PER_IM > 0: batch_size = cfg.TRAIN.BATCH_SIZE_PER_IM else: batch_size = np.inf if batch_size < rois.shape[0]: rois_inds = npr.permutation(rois.shape[0])[:batch_size] rois = rois[rois_inds, :] return labels.reshape(1, -1), rois def _get_image_blob(roidb): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) # Sample random scales to use for each image in this batch scale_inds = np.random.randint( 0, high=len(cfg.TRAIN.SCALES), size=num_images) processed_ims = [] im_scales = [] for i in range(num_images): im = cv2.imread(roidb[i]['image']) assert im is not None, \ 'Failed to read image \'{}\''.format(roidb[i]['image']) # If NOT using opencv to read in images, uncomment following lines # if len(im.shape) == 2: # im = im[:, :, np.newaxis] # im = np.concatenate((im, im, im), axis=2) # # flip the channel, since the original one using cv2 # # rgb -> bgr # im = im[:, :, ::-1] if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = blob_utils.prep_im_for_blob( im, cfg.PIXEL_MEANS, [target_size], cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale[0]) processed_ims.append(im[0]) # Create a blob to hold the input images [n, c, h, w] blob = blob_utils.im_list_to_blob(processed_ims) return blob, im_scales def _project_im_rois(im_rois, im_scale_factor): """Project image RoIs into the rescaled training image.""" rois = im_rois * im_scale_factor return rois
33.842105
80
0.630897
0
0
0
0
0
0
0
0
1,106
0.286677
a2e200b1e2fac4ccc713c3e1526076efebc09cea
1,288
py
Python
src/PrimaryInputs.py
elastacloud/input-output-tables
82f932c8627071bc245e178f5b47a7c1104c4e4c
[ "Apache-2.0" ]
null
null
null
src/PrimaryInputs.py
elastacloud/input-output-tables
82f932c8627071bc245e178f5b47a7c1104c4e4c
[ "Apache-2.0" ]
null
null
null
src/PrimaryInputs.py
elastacloud/input-output-tables
82f932c8627071bc245e178f5b47a7c1104c4e4c
[ "Apache-2.0" ]
null
null
null
import abc import os import pandas as pd import numpy as np from EoraReader import EoraReader class PrimaryInputs(EoraReader): def __init__(self, file_path): super().__init__(file_path) self.df = None def get_dataset(self, extended = False): """ Returns a pandas dataframe containing domestic transactions from the input-output table """ value_add_coefficients = [] primary_inputs = [] industry_count = self.industry_header.count("Industries") primary_inputs_pos = 0 line = self.file.readline().strip().split('\t') while line[2] != "Primary Inputs": line = self.file.readline().strip().split('\t') while line[2] == "Primary Inputs": primary_inputs.append(line[3]) value_add_coefficients.append(line[4:(4 + industry_count)]) line = self.file.readline().strip().split('\t') numpy_data = np.array(value_add_coefficients) df = pd.DataFrame(data = numpy_data, index = primary_inputs) df.columns = self.industries[0:industry_count] if extended: df.loc[:, 'year'] = self.year df.loc[:, 'country'] = self.country self.df = df self.extended = extended return df
35.777778
96
0.615683
1,192
0.925466
0
0
0
0
0
0
183
0.142081
a2e589c4ee6ca6ac8b468da944e0f2d14d31872f
695
py
Python
toto/methods/client_error.py
VNUELIVE/Toto
6940b4114fc6b680e0d40ae248b7d2599c954f81
[ "MIT" ]
null
null
null
toto/methods/client_error.py
VNUELIVE/Toto
6940b4114fc6b680e0d40ae248b7d2599c954f81
[ "MIT" ]
null
null
null
toto/methods/client_error.py
VNUELIVE/Toto
6940b4114fc6b680e0d40ae248b7d2599c954f81
[ "MIT" ]
null
null
null
import logging from toto.invocation import * @requires('client_error', 'client_type') def invoke(handler, parameters): '''A convenince method for writing browser errors to Toto's server log. It works with the ``registerErrorHandler()`` method in ``toto.js``. The "client_error" parameter should be set to the string to be written to Toto's log. Currently, the "client_type" parameter must be set to "browser_js" for an event to be written. Otherwise, this method has no effect. Requires: ``client_error``, ``client_type`` ''' if parameters['client_type'] != 'browser_js': return {'logged': False} logging.error(str(parameters['client_error'])) return {'logged': True}
36.578947
91
0.723741
0
0
0
0
648
0.932374
0
0
502
0.722302
a2e5b6c37644bb0cda6e0ffc3d078b3332260604
1,945
py
Python
parallelformers/policies/gptj.py
Oaklight/parallelformers
57fc36f81734c29aaf814e092ce13681d3c28ede
[ "Apache-2.0" ]
454
2021-07-18T02:51:23.000Z
2022-03-31T04:00:53.000Z
parallelformers/policies/gptj.py
Oaklight/parallelformers
57fc36f81734c29aaf814e092ce13681d3c28ede
[ "Apache-2.0" ]
16
2021-07-18T10:47:21.000Z
2022-03-22T18:49:57.000Z
parallelformers/policies/gptj.py
Oaklight/parallelformers
57fc36f81734c29aaf814e092ce13681d3c28ede
[ "Apache-2.0" ]
33
2021-07-18T04:48:28.000Z
2022-03-14T22:16:36.000Z
# Copyright 2021 TUNiB inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers.models.gptj.modeling_gptj import GPTJBlock from parallelformers.policies.base import Layer, Policy from parallelformers.utils import AllReduceLinear class GPTJPolicy(Policy): @staticmethod def replace_arguments(config, world_size): return { # 1. reduce hidden size "attn.embed_dim": config.hidden_size // world_size, # 2. reduce number of heads "attn.num_attention_heads": config.n_head // world_size, } @staticmethod def attn_qkv(): return [ Layer(weight="attn.q_proj.weight"), Layer(weight="attn.k_proj.weight"), Layer(weight="attn.v_proj.weight"), ] @staticmethod def attn_out(): return [ Layer( weight="attn.out_proj.weight", replace=AllReduceLinear, ), ] @staticmethod def mlp_in(): return [ Layer( weight="mlp.fc_in.weight", bias="mlp.fc_in.bias", ), ] @staticmethod def mlp_out(): return [ Layer( weight="mlp.fc_out.weight", bias="mlp.fc_out.bias", replace=AllReduceLinear, ), ] @staticmethod def original_layer_class(): return GPTJBlock
28.188406
74
0.607712
1,204
0.619023
0
0
1,144
0.588175
0
0
801
0.411825
a2e61afbf4f6a03e376d0464c7acf87dc5bb080e
503
py
Python
app/modules/checkerbox.py
hboueix/PyCheckers
c1339a004f30f76a33461b52f9633bbbd1204bb0
[ "MIT" ]
null
null
null
app/modules/checkerbox.py
hboueix/PyCheckers
c1339a004f30f76a33461b52f9633bbbd1204bb0
[ "MIT" ]
null
null
null
app/modules/checkerbox.py
hboueix/PyCheckers
c1339a004f30f76a33461b52f9633bbbd1204bb0
[ "MIT" ]
null
null
null
import pygame class Checkerbox(pygame.sprite.Sprite): def __init__(self, size, color, coords): super().__init__() self.rect = pygame.Rect(coords[0], coords[1], size, size) self.color = color self.hovered = False def draw(self, screen): pygame.draw.rect(screen, self.color, self.rect) def set_hovered(self): if self.rect.collidepoint(pygame.mouse.get_pos()): self.hovered = True else: self.hovered = False
23.952381
65
0.606362
485
0.964215
0
0
0
0
0
0
0
0
a2e6d1a1d562ff46afccc16626cb0e1d9bd964d4
1,319
py
Python
tests/python/test_talos_walk_sl1m_topt.py
daeunSong/multicontact-locomotion-planning
0aeabe6a7a8d49e54d6996a6126740cc90aa0050
[ "BSD-2-Clause" ]
31
2019-11-08T14:46:03.000Z
2022-03-25T08:09:16.000Z
tests/python/test_talos_walk_sl1m_topt.py
pFernbach/multicontact-locomotion-planning
86c3e64fd0ee57b1e4061351a16e43e6ba0e15c2
[ "BSD-2-Clause" ]
21
2019-04-12T13:13:31.000Z
2021-04-02T14:28:15.000Z
tests/python/test_talos_walk_sl1m_topt.py
pFernbach/multicontact-locomotion-planning
86c3e64fd0ee57b1e4061351a16e43e6ba0e15c2
[ "BSD-2-Clause" ]
11
2019-04-12T13:03:55.000Z
2021-11-22T08:19:06.000Z
# Copyright (c) 2020, CNRS # Authors: Pierre Fernbach <pfernbac@laas.fr> import unittest import subprocess import time from mlp import LocoPlanner, Config from utils import check_motion from hpp.corbaserver.rbprm.utils import ServerManager class TestTalosWalkSl1mTopt(unittest.TestCase): def test_talos_walk_sl1m_topt(self): cfg = Config() cfg.load_scenario_config("talos_flatGround") cfg.contact_generation_method = "sl1m" cfg.centroidal_method = "momentumopt" cfg.IK_store_centroidal = True cfg.IK_store_zmp = True cfg.IK_store_effector = True cfg.IK_store_contact_forces = True cfg.IK_store_joints_derivatives = True cfg.IK_store_joints_torque = True cfg.ITER_DYNAMIC_FILTER = 0 cfg.TIMEOPT_CONFIG_FILE="cfg_softConstraints_timeopt_talos.yaml" with ServerManager('hpp-rbprm-server'): loco_planner = LocoPlanner(cfg) loco_planner.run() check_motion(self, loco_planner) self.assertNotEqual(loco_planner.cs.contactPhases[-1].timeFinal, loco_planner.cs_com.contactPhases[-1].timeFinal) self.assertEqual(loco_planner.cs_com.contactPhases[-1].timeFinal, loco_planner.cs_wb.contactPhases[-1].timeFinal) if __name__ == '__main__': unittest.main()
36.638889
125
0.718726
1,028
0.779378
0
0
0
0
0
0
176
0.133434
a2e7779c3e2b321cf059e7d364c94dc2593aa13c
212
py
Python
definitions.py
elpeix/kaa
b840613cb5eba876d937faf32031651332e5b5f6
[ "MIT" ]
null
null
null
definitions.py
elpeix/kaa
b840613cb5eba876d937faf32031651332e5b5f6
[ "MIT" ]
null
null
null
definitions.py
elpeix/kaa
b840613cb5eba876d937faf32031651332e5b5f6
[ "MIT" ]
null
null
null
import os import logging ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) DEBUG = True LOG = logging.getLogger() NAME = 'Sample Server' VERSION = 'v1.0' SERVER = 'example.SampleServer' ENABLE_CORS = True
16.307692
53
0.740566
0
0
0
0
0
0
0
0
43
0.20283
a2e9b6f6bd695b4f20c44aff1b1aeaa6c236f680
9,567
py
Python
uncertainty_baselines/datasets/smcalflow.py
y0ast/uncertainty-baselines
8d32c77ba0803ed715c1406378adf10ebd61ab74
[ "Apache-2.0" ]
null
null
null
uncertainty_baselines/datasets/smcalflow.py
y0ast/uncertainty-baselines
8d32c77ba0803ed715c1406378adf10ebd61ab74
[ "Apache-2.0" ]
null
null
null
uncertainty_baselines/datasets/smcalflow.py
y0ast/uncertainty-baselines
8d32c77ba0803ed715c1406378adf10ebd61ab74
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2021 The Uncertainty Baselines Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SMCalflow dataset builder. The SMCalFlow dataset is from the following paper: Task-Oriented Dialogue as Dataflow Synthesis (Andreas et al., 2020) The MultiWoz 2.1 dataset is the released version from the following paper: Task-Oriented Dialogue as Dataflow Synthesis (Andreas et al., 2020) The dataset is originally published at: MultiWOZ 2.1: A Consolidated Multi-Domain Dialogue Dataset with State Corrections and State Tracking Baselines (Eric et al., 2019) The released version is processed by: Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems (Wu et al., 2019) Processed following the directions in: https://github.com/microsoft/task_oriented_dialogue_as_dataflow_synthesis """ import os.path from typing import Any, Dict, Optional, Type import seqio import t5.data import tensorflow as tf import tensorflow_datasets as tfds from uncertainty_baselines.datasets import base _NUM_TRAIN_SMCALFLOW = 121200 _NUM_VAL_SMCALFLOW = 13499 _NUM_TRAIN_MULTIWOZ = 56668 _NUM_VAL_MULTIWOZ = 7374 _NUM_TEST_MULTIWOZ = 7368 _FEATURES = [ 'encoder_input_tokens', 'decoder_target_tokens', 'decoder_input_tokens', 'encoder_segment_ids', 'decoder_segment_ids' ] def _get_num_examples(name: str) -> Dict[str, int]: """Retrieves the number of examples and filenames according to task name.""" if name == 'smcalflow': num_examples = { tfds.Split.TRAIN: _NUM_TRAIN_SMCALFLOW, tfds.Split.VALIDATION: _NUM_VAL_SMCALFLOW, } elif name == 'multiwoz': num_examples = { tfds.Split.TRAIN: _NUM_TRAIN_MULTIWOZ, tfds.Split.VALIDATION: _NUM_VAL_MULTIWOZ, tfds.Split.TEST: _NUM_TEST_MULTIWOZ, } else: raise ValueError('"name" can only be one of "smcalflow" or "multiwoz". ' 'Got "{}".'.format(name)) return num_examples def _has_test_split(name: str) -> bool: return name == 'multiwoz' class _SMCalflowDatasetBuilder(tfds.core.DatasetBuilder): """Minimal TFDS DatasetBuilder for SMCalflow and MultiWoZ, does not support downloading.""" VERSION = tfds.core.Version('0.0.0') def __init__(self, name: str, data_dir: str, max_seq_length: int, vocabulary: seqio.Vocabulary, feature_converter_cls: Type[seqio.FeatureConverter], **unused_kwargs: Dict[str, Any]): self._max_seq_length = max_seq_length self._task = self._build_task(name, data_dir, vocabulary) self._feature_converter = feature_converter_cls() super().__init__( data_dir=data_dir, **unused_kwargs) # We have to override self._data_dir to prevent the parent class from # appending the class name and version. self._data_dir = data_dir def _download_and_prepare(self, dl_manager, download_config=None): """Downloads and prepares dataset for reading.""" raise NotImplementedError def _build_task(self, task_name: str, data_dir: str, vocabulary: seqio.Vocabulary) -> seqio.Task: split_to_filepattern = { tfds.Split.TRAIN: os.path.join(data_dir, 'train.tfr*'), tfds.Split.VALIDATION: os.path.join(data_dir, 'valid.tfr*') } if _has_test_split(task_name): split_to_filepattern[tfds.Split.TEST] = os.path.join( data_dir, 'test.tfr*') source_features = { 'inputs': tf.io.FixedLenFeature([], tf.string, ''), 'targets': tf.io.FixedLenFeature([], tf.string, '') } data_source = seqio.TFExampleDataSource( split_to_filepattern=split_to_filepattern, feature_description=source_features, num_input_examples=_get_num_examples(task_name)) output_features = { 'inputs': seqio.Feature(vocabulary=vocabulary, add_eos=True, required=False), 'targets': seqio.Feature(vocabulary=vocabulary, add_eos=True) } task = seqio.Task( name=task_name, source=data_source, output_features=output_features, preprocessors=[ seqio.preprocessors.tokenize, seqio.preprocessors.append_eos ], shuffle_buffer_size=None # disable shuffling. ) return task def _as_dataset(self, split: tfds.Split, decoders=None, read_config=None, shuffle_files=False) -> tf.data.Dataset: """Constructs a `tf.data.Dataset`.""" del decoders del read_config del shuffle_files task_feature_lengths = { 'inputs': self._max_seq_length, 'targets': self._max_seq_length } dataset = self._task.get_dataset( sequence_length=task_feature_lengths, split=split, shuffle=False) return self._feature_converter(dataset, task_feature_lengths) def _info(self) -> tfds.core.DatasetInfo: """Returns the `tfds.core.DatasetInfo` object.""" features = { feature_name: tfds.features.Tensor(shape=[self._max_seq_length], dtype=tf.int32) for feature_name in _FEATURES } info = tfds.core.DatasetInfo( builder=self, description=self._task.name, features=tfds.features.FeaturesDict(features), metadata=None) # Instead of having a single element shard_lengths, we should really have a # list of the number of elements in each file shard in each split. splits = [tfds.Split.TRAIN, tfds.Split.VALIDATION] if _has_test_split(self._task.name): splits.append(tfds.Split.TEST) split_infos = [] for split in splits: split_infos.append( tfds.core.SplitInfo( name=split, shard_lengths=[self._task.num_input_examples(split)], num_bytes=0, )) split_dict = tfds.core.SplitDict(split_infos, dataset_name=self.name) info.set_splits(split_dict) return info class _SMCalflowDataset(base.BaseDataset): """SMCalflow dataset builder class.""" def __init__( self, name: str, split: str, data_dir: Optional[str] = None, max_seq_length: int = 512, vocabulary: Optional[seqio.Vocabulary] = t5.data.get_default_vocabulary(), feature_converter_cls: Optional[Type[ seqio.FeatureConverter]] = seqio.EncDecFeatureConverter, is_training: Optional[bool] = None, num_parallel_parser_calls: int = 64, shuffle_buffer_size: Optional[int] = None): """Create a SMCalflow tf.data.Dataset builder. Args: name: the name of this dataset. split: a dataset split, either a custom tfds.Split or one of the tfds.Split enums [TRAIN, VALIDAITON, TEST] or their lowercase string names. data_dir: Path to a directory containing the Criteo datasets, with filenames train-*-of-*', 'validate.tfr', 'test.tfr'. max_seq_length: the maximum sequence length for the input and target of an example. vocabulary: the vocabulary used for tokenization. Must be a subclass of seqio.Vocabulary. feature_converter_cls: the type of the feature converter converting examples of {'input', 'target'} into model specific outputs. Must be a subclass of seqio.FeatureConverter. is_training: Whether or not the given `split` is the training split. Only required when the passed split is not one of ['train', 'validation', 'test', tfds.Split.TRAIN, tfds.Split.VALIDATION, tfds.Split.TEST]. num_parallel_parser_calls: the number of parallel threads to use while preprocessing in tf.data.Dataset.map(). shuffle_buffer_size: the number of example to use in the shuffle buffer for tf.data.Dataset.shuffle(). """ super().__init__( name=name, dataset_builder=_SMCalflowDatasetBuilder( name=name, data_dir=data_dir, max_seq_length=max_seq_length, vocabulary=vocabulary, feature_converter_cls=feature_converter_cls), split=split, is_training=is_training, shuffle_buffer_size=shuffle_buffer_size, num_parallel_parser_calls=num_parallel_parser_calls) def _create_process_example_fn(self) -> base.PreProcessFn: """Create a pre-process function to return labels and sentence tokens.""" def _example_parser(example: Dict[str, tf.Tensor]) -> Dict[str, Any]: """Parse sentences and labels from a serialized tf.train.Example.""" return {feature: example[feature] for feature in _FEATURES} return _example_parser class SMCalflowDataset(_SMCalflowDataset): """SMCalflow dataset builder class.""" def __init__(self, data_dir: Optional[str] = None, **kwargs: Dict[str, Any]): super().__init__( name='smcalflow', data_dir=data_dir, **kwargs) class MultiWoZDataset(_SMCalflowDataset): """MultiWoZ dataset builder class.""" def __init__(self, data_dir: Optional[str] = None, **kwargs: Dict[str, Any]): super().__init__( name='multiwoz', data_dir=data_dir, **kwargs)
35.831461
93
0.691126
7,010
0.732727
0
0
0
0
0
0
3,764
0.393436
a2eb8907fa9fa5c982005554035cbb22b3ce7287
1,098
py
Python
1-FrequencyDivisionMultiplexing.py
mahnooranjum/Demo_CommunicationSystems
6c3be46f9ad4a38bfe553b9a01855156713e49d9
[ "MIT" ]
null
null
null
1-FrequencyDivisionMultiplexing.py
mahnooranjum/Demo_CommunicationSystems
6c3be46f9ad4a38bfe553b9a01855156713e49d9
[ "MIT" ]
null
null
null
1-FrequencyDivisionMultiplexing.py
mahnooranjum/Demo_CommunicationSystems
6c3be46f9ad4a38bfe553b9a01855156713e49d9
[ "MIT" ]
null
null
null
''' ============================================================================== Author: Mahnoor Anjum Description: Digital Multiplexing Techniques: 1- Frequency Division Multiplexing Contact: manomaq@gmail.com ============================================================================== ''' import numpy as np import matplotlib.pyplot as plt x = np.arange(0, 10, 0.1); m1 = np.sin(x)*1000 m2 = np.array(x*x)*10 m3 = np.array(80*x) plt.plot(x, m1) plt.plot(x, m2) plt.plot(x, m3) plt.title('Sine wave') plt.xlabel('Time') plt.ylabel('Messages') plt.axhline(y=0, color='k') plt.show() ''' We will send all the signals at the same time through the channel but at different frequencies. Here we show frequency bands by the numbers on rcv1, rcv2, rcv3 ''' rcv1 = [] rcv2 = [] rcv3 = [] for i in range(x.size): rcv1.append(m1[i]) rcv2.append(m2[i]) rcv3.append(m3[i]) plt.plot(x, rcv1) plt.plot(x, rcv2) plt.plot(x, rcv3) plt.title('FDM') plt.xlabel('Time') plt.ylabel('Received') plt.axhline(y=0, color='k') plt.show()
21.115385
78
0.547359
0
0
0
0
0
0
0
0
577
0.525501
a2ebe5b887b32f0561c68f37282697177b6753ec
3,880
py
Python
deep-rl/lib/python2.7/site-packages/OpenGL/GL/ATI/text_fragment_shader.py
ShujaKhalid/deep-rl
99c6ba6c3095d1bfdab81bd01395ced96bddd611
[ "MIT" ]
210
2016-04-09T14:26:00.000Z
2022-03-25T18:36:19.000Z
deep-rl/lib/python2.7/site-packages/OpenGL/GL/ATI/text_fragment_shader.py
ShujaKhalid/deep-rl
99c6ba6c3095d1bfdab81bd01395ced96bddd611
[ "MIT" ]
72
2016-09-04T09:30:19.000Z
2022-03-27T17:06:53.000Z
deep-rl/lib/python2.7/site-packages/OpenGL/GL/ATI/text_fragment_shader.py
ShujaKhalid/deep-rl
99c6ba6c3095d1bfdab81bd01395ced96bddd611
[ "MIT" ]
64
2016-04-09T14:26:49.000Z
2022-03-21T11:19:47.000Z
'''OpenGL extension ATI.text_fragment_shader This module customises the behaviour of the OpenGL.raw.GL.ATI.text_fragment_shader to provide a more Python-friendly API Overview (from the spec) The ATI_fragment_shader extension exposes a powerful fragment processing model that provides a very general means of expressing fragment color blending and dependent texture address modification. The processing is termed a fragment shader or fragment program and is specifed using a register-based model in which there are fixed numbers of instructions, texture lookups, read/write registers, and constants. ATI_fragment_shader provides a unified instruction set for operating on address or color data and eliminates the distinction between the two. That extension provides all the interfaces necessary to fully expose this programmable fragment processor in GL. ATI_text_fragment_shader is a redefinition of the ATI_fragment_shader functionality, using a slightly different interface. The intent of creating ATI_text_fragment_shader is to take a step towards treating fragment programs similar to other programmable parts of the GL rendering pipeline, specifically vertex programs. This new interface is intended to appear similar to the ARB_vertex_program API, within the limits of the feature set exposed by the original ATI_fragment_shader extension. The most significant differences between the two extensions are: (1) ATI_fragment_shader provides a procedural function call interface to specify the fragment program, whereas ATI_text_fragment_shader uses a textual string to specify the program. The fundamental syntax and constructs of the program "language" remain the same. (2) The program object managment portions of the interface, namely the routines used to create, bind, and delete program objects and set program constants are managed using the framework defined by ARB_vertex_program. (3) ATI_fragment_shader refers to the description of the programmable fragment processing as a "fragment shader". In keeping with the desire to treat all programmable parts of the pipeline consistently, ATI_text_fragment_shader refers to these as "fragment programs". The name of the extension is left as ATI_text_fragment_shader instead of ATI_text_fragment_program in order to indicate the underlying similarity between the API's of the two extensions, and to differentiate it from any other potential extensions that may be able to move even further in the direction of treating fragment programs as just another programmable area of the GL pipeline. Although ATI_fragment_shader was originally conceived as a device-independent extension that would expose the capabilities of future generations of hardware, changing trends in programmable hardware have affected the lifespan of this extension. For this reason you will now find a fixed set of features and resources exposed, and the queries to determine this set have been deprecated in ATI_fragment_shader. Further, in ATI_text_fragment_shader, most of these resource limits are fixed by the text grammar and the queries have been removed altogether. The official definition of this extension is available here: http://www.opengl.org/registry/specs/ATI/text_fragment_shader.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GL import _types, _glgets from OpenGL.raw.GL.ATI.text_fragment_shader import * from OpenGL.raw.GL.ATI.text_fragment_shader import _EXTENSION_NAME def glInitTextFragmentShaderATI(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
46.190476
71
0.802835
0
0
0
0
0
0
0
0
3,485
0.898196
a2ed46d6b33e4e8573f56ac8afc0ade0ec58667b
7,311
py
Python
vhog3d.py
parthsuresh/3dvhog
9a439687a0ce30b86b7730a61733b3f3845d27c5
[ "MIT" ]
3
2021-05-18T07:48:39.000Z
2021-12-23T06:35:41.000Z
vhog3d.py
parthsuresh/3dvhog
9a439687a0ce30b86b7730a61733b3f3845d27c5
[ "MIT" ]
null
null
null
vhog3d.py
parthsuresh/3dvhog
9a439687a0ce30b86b7730a61733b3f3845d27c5
[ "MIT" ]
null
null
null
import numpy as np import math from scipy.ndimage import convolve from tqdm import tqdm def hog3d(vox_volume, cell_size, block_size, theta_histogram_bins, phi_histogram_bins, step_size=None): """ Inputs vox_volume : a [x x y x z] numpy array defining voxels with values in the range 0-1 cell_size : size of a 3d cell (int) block_size : size of a 3d block defined in cells theta_histogram_bins : number of bins to break the angles in the xy plane - 180 degrees phi_histogram_bins : number of bins to break the angles in the xz plane - 360 degrees step_size : OPTIONAL integer defining the number of cells the blocks should overlap by. """ if step_size is None: step_size = block_size c = cell_size b = block_size sx, sy, sz = vox_volume.shape num_x_cells = math.floor(sx / cell_size) num_y_cells = math.floor(sy / cell_size) num_z_cells = math.floor(sz / cell_size) # Get cell positions x_cell_positions = np.array(list(range(0, (num_x_cells * cell_size), cell_size))) y_cell_positions = np.array(list(range(0, (num_y_cells * cell_size), cell_size))) z_cell_positions = np.array(list(range(0, (num_z_cells * cell_size), cell_size))) # Get block positions x_block_positions = (x_cell_positions[0: num_x_cells: block_size]) y_block_positions = (y_cell_positions[0: num_y_cells: block_size]) z_block_positions = (z_cell_positions[0: num_z_cells: block_size]) # Check if last block in each dimension has enough voxels to be a full block. If not, discard it. if x_block_positions[-1] > ((sx + 1) - (cell_size * block_size)): x_block_positions = x_block_positions[:-2] if y_block_positions[-1] > ((sy + 1) - (cell_size * block_size)): y_block_positions = y_block_positions[:-2] if z_block_positions[-1] > ((sz + 1) - (cell_size * block_size)): z_block_positions = z_block_positions[:-2] # Number of blocks num_x_blocks = len(x_block_positions) num_y_blocks = len(y_block_positions) num_z_blocks = len(z_block_positions) # Create 3D gradient vectors # X filter and vector x_filter = np.zeros((3, 3, 3)) x_filter[0, 1, 1], x_filter[2, 1, 1] = 1, -1 x_vector = convolve(vox_volume, x_filter, mode='constant', cval=0) # Y filter and vector y_filter = np.zeros((3, 3, 3)) y_filter[1, 0, 0], y_filter[1, 2, 0] = 1, -1 y_vector = convolve(vox_volume, y_filter, mode='constant', cval=0) # Z filter and vector z_filter = np.zeros((3, 3, 3)) z_filter[1, 1, 0], z_filter[1, 1, 2] = 1, -1 z_vector = convolve(vox_volume, z_filter, mode='constant', cval=0) magnitudes = np.zeros([sx, sy, sz]) for i in range(sx): for j in range(sy): for k in range(sz): magnitudes[i, j, k] = (x_vector[i, j, k] ** 2 + y_vector[i, j, k] ** 2 + z_vector[i, j, k] ** 2) ** ( 0.5) # Voxel Weights kernel_size = 3 voxel_filter = np.full((kernel_size, kernel_size, kernel_size), 1 / (kernel_size * kernel_size * kernel_size)) weights = convolve(vox_volume, voxel_filter, mode='constant', cval=0) weights = weights + 1 # Gradient vector grad_vector = np.zeros((sx, sy, sz, 3)) for i in range(sx): for j in range(sy): for k in range(sz): grad_vector[i, j, k, 0] = x_vector[i, j, k] grad_vector[i, j, k, 1] = y_vector[i, j, k] grad_vector[i, j, k, 2] = z_vector[i, j, k] theta = np.zeros((sx, sy, sz)) phi = np.zeros((sx, sy, sz)) for i in range(sx): for j in range(sy): for k in range(sz): theta[i, j, k] = math.acos(grad_vector[i, j, k, 2]) phi[i, j, k] = math.atan2(grad_vector[i, j, k, 1], grad_vector[i, j, k, 0]) phi[i, j, k] += math.pi # Binning b_size_voxels = int(c * b) t_hist_bins = math.pi / theta_histogram_bins p_hist_bins = (2 * math.pi) / phi_histogram_bins block_inds = np.zeros((num_x_blocks * num_y_blocks * num_z_blocks, 3)) i = 0 for z_block in range(num_z_blocks): for y_block in range(num_y_blocks): for x_block in range(num_x_blocks): block_inds[i] = np.array( [x_block_positions[x_block], y_block_positions[y_block], z_block_positions[z_block]]) i += 1 num_blocks = len(block_inds) error_count = 0 features = [] for i in range(num_blocks): full_empty = vox_volume[int(block_inds[i, 0]):int(block_inds[i, 0] + b_size_voxels), int(block_inds[i, 1]):int(block_inds[i, 1] + b_size_voxels), int(block_inds[i, 2]):int(block_inds[i, 2] + b_size_voxels)] if np.sum(full_empty) != 0 and np.sum(full_empty) != full_empty.size: feature = np.zeros((b, b, b, theta_histogram_bins, phi_histogram_bins)) t_weights = weights[int(block_inds[i, 0]):int(block_inds[i, 0] + b_size_voxels), int(block_inds[i, 1]):int(block_inds[i, 1] + b_size_voxels), int(block_inds[i, 2]):int(block_inds[i, 2] + b_size_voxels)] t_magnitudes = magnitudes[int(block_inds[i, 0]):int(block_inds[i, 0] + b_size_voxels), int(block_inds[i, 1]):int(block_inds[i, 1] + b_size_voxels), int(block_inds[i, 2]):int(block_inds[i, 2] + b_size_voxels)] t_theta = theta[int(block_inds[i, 0]):int(block_inds[i, 0] + b_size_voxels), int(block_inds[i, 1]):int(block_inds[i, 1] + b_size_voxels), int(block_inds[i, 2]):int(block_inds[i, 2] + b_size_voxels)] t_phi = phi[int(block_inds[i, 0]):int(block_inds[i, 0] + b_size_voxels), int(block_inds[i, 1]):int(block_inds[i, 1] + b_size_voxels), int(block_inds[i, 2]):int(block_inds[i, 2] + b_size_voxels)] for l in range(b_size_voxels): for m in range(b_size_voxels): for n in range(b_size_voxels): cell_pos_x = math.ceil(l / c) - 1 cell_pos_y = math.ceil(m / c) - 1 cell_pos_z = math.ceil(n / c) - 1 hist_pos_theta = math.ceil(t_theta[l, m, n] / t_hist_bins) - 1 hist_pos_phi = math.ceil(t_phi[l, m, n] / p_hist_bins) - 1 if phi_histogram_bins >= hist_pos_phi > 0 and theta_histogram_bins >= hist_pos_theta > 0: feature[cell_pos_x, cell_pos_y, cell_pos_z, hist_pos_theta, hist_pos_phi] += ( t_magnitudes[l, m, n] * t_weights[l, m, n]) else: error_count += 1 feature = np.reshape(feature, ((b * b * b), theta_histogram_bins, phi_histogram_bins)) l2 = np.linalg.norm(feature) if l2 != 0: norm_feature = feature / l2 else: norm_feature = feature norm_feature = np.reshape(norm_feature, ((b * b * b), (theta_histogram_bins * phi_histogram_bins))) features.append(norm_feature) features = np.array(features) return features
43.778443
117
0.591164
0
0
0
0
0
0
0
0
804
0.109971
a2ee6d19098aed822e580f589bbcc0c4df0bf0c1
320
py
Python
tests/urls.py
skioo/django-datatrans
c2159b08935cd0c70355ca6e8ff92bbe86d372cd
[ "MIT" ]
9
2017-09-12T12:45:30.000Z
2022-03-30T13:53:57.000Z
tests/urls.py
skioo/django-datatrans
c2159b08935cd0c70355ca6e8ff92bbe86d372cd
[ "MIT" ]
null
null
null
tests/urls.py
skioo/django-datatrans
c2159b08935cd0c70355ca6e8ff92bbe86d372cd
[ "MIT" ]
1
2021-11-08T10:21:01.000Z
2021-11-08T10:21:01.000Z
from django.urls import include, path from datatrans.views import example urlpatterns = [ path(r'^datatrans/', include('datatrans.urls')), path(r'^example/register-credit-card$', example.register_credit_card, name='example_register_credit_card'), path(r'^example/pay$', example.pay, name='example_pay'), ]
32
111
0.7375
0
0
0
0
0
0
0
0
122
0.38125
a2f252e2b9ab4a63f342c14ab8d8666d4956f841
11,160
py
Python
gibbs/minimization.py
volpatto/gibbs
776acff6166dd4fd3039d55074542d995ac91754
[ "MIT" ]
28
2019-05-25T14:50:00.000Z
2022-01-18T00:54:22.000Z
gibbs/minimization.py
volpatto/gibbs
776acff6166dd4fd3039d55074542d995ac91754
[ "MIT" ]
10
2019-06-15T06:07:14.000Z
2021-09-01T04:32:50.000Z
gibbs/minimization.py
volpatto/gibbs
776acff6166dd4fd3039d55074542d995ac91754
[ "MIT" ]
5
2019-08-04T05:37:34.000Z
2022-01-18T10:10:40.000Z
import attr import types from typing import Union from enum import Enum import numpy as np from scipy.optimize import differential_evolution import pygmo as pg class OptimizationMethod(Enum): """ Available optimization solvers. """ SCIPY_DE = 1 PYGMO_DE1220 = 2 @attr.s(auto_attribs=True) class ScipyDifferentialEvolutionSettings: """ Optional arguments to pass for SciPy's differential evolution caller. Members ---------------- :ivar str strategy: The differential evolution strategy to use. Should be one of: - 'best1bin' - 'best1exp' - 'rand1exp' - 'randtobest1exp' - 'currenttobest1exp' - 'best2exp' - 'rand2exp' - 'randtobest1bin' - 'currenttobest1bin' - 'best2bin' - 'rand2bin' - 'rand1bin' The default is 'best1bin'. :ivar float recombination: The recombination constant, should be in the range [0, 1]. In the literature this is also known as the crossover probability, being denoted by CR. Increasing this value allows a larger number of mutants to progress into the next generation, but at the risk of population stability. :ivar float mutation: The mutation constant. In the literature this is also known as differential weight, being denoted by F. If specified as a float it should be in the range [0, 2]. :ivar float tol: Relative tolerance for convergence, the solving stops when `np.std(pop) = atol + tol * np.abs(np.mean(population_energies))`, where and `atol` and `tol` are the absolute and relative tolerance respectively. :ivar int|numpy.random.RandomState seed: If `seed` is not specified the `np.RandomState` singleton is used. If `seed` is an int, a new `np.random.RandomState` instance is used, seeded with seed. If `seed` is already a `np.random.RandomState instance`, then that `np.random.RandomState` instance is used. Specify `seed` for repeatable minimizations. :ivar int workers: If `workers` is an int the population is subdivided into `workers` sections and evaluated in parallel (uses `multiprocessing.Pool`). Supply -1 to use all available CPU cores. Alternatively supply a map-like callable, such as `multiprocessing.Pool.map` for evaluating the population in parallel. This evaluation is carried out as `workers(func, iterable)`. :ivar bool disp: Display status messages during optimization iterations. :ivar polish: If True (default), then `scipy.optimize.minimize` with the `L-BFGS-B` method is used to polish the best population member at the end, which can improve the minimization slightly. """ number_of_decision_variables: int strategy: str = 'best1bin' recombination: float = 0.3 mutation: float = 0.6 tol: float = 1e-5 seed: Union[np.random.RandomState, int] = np.random.RandomState() workers: int = 1 disp: bool = False polish: bool = True popsize: int = None population_size_for_each_variable: int = 15 total_population_size_limit: int = 100 def __attrs_post_init__(self): if self.popsize is None: self.popsize = self._estimate_population_size() elif self.popsize <= 0: raise ValueError('Number of individuals must be greater than 0.') if type(self.popsize) != int: raise TypeError('Population size must be an integer number.') if not 0 < self.recombination <= 1: raise ValueError('Recombination must be a value between 0 and 1.') if type(self.mutation) == tuple: mutation_dithering_array = np.array(self.mutation) if len(self.mutation) > 2: raise ValueError('Mutation can be a tuple with two numbers, not more.') if mutation_dithering_array.min() < 0 or mutation_dithering_array.max() > 2: raise ValueError('Mutation must be floats between 0 and 2.') elif mutation_dithering_array.min() == mutation_dithering_array.max(): raise ValueError("Values for mutation dithering can't be equal.") else: if type(self.mutation) != int and type(self.mutation) != float: raise TypeError('When mutation is provided as a single number, it must be a float or an int.') if not 0 < self.mutation < 2: raise ValueError('Mutation must be a number between 0 and 2.') if self.tol < 0: raise ValueError('Tolerance must be a positive float.') def _estimate_population_size(self): population_size = self.population_size_for_each_variable * self.number_of_decision_variables if population_size > self.total_population_size_limit: population_size = self.total_population_size_limit return population_size @attr.s(auto_attribs=True) class PygmoSelfAdaptiveDESettings: # TODO: docs and validations gen: int popsize: int allowed_variants: list = [2, 6, 7] variant_adptv: int = 2 ftol: float = 1e-6 xtol: float = 1e-6 memory: bool = True seed: int = int(np.random.randint(0, 2000)) polish: bool = True polish_method: str = 'tnewton_precond_restart' parallel_execution: bool = False number_of_islands: int = 2 archipelago_gen: int = 50 @attr.s(auto_attribs=True) class PygmoOptimizationProblemWrapper: # TODO: docs and validations objective_function: types.FunctionType bounds: list args: list = [] def fitness(self, x): return [self.objective_function(x, *self.args)] def get_bounds(self): return self._transform_bounds_to_pygmo_standard def gradient(self, x): return pg.estimate_gradient_h(lambda x: self.fitness(x), x) @property def _transform_bounds_to_pygmo_standard(self): bounds_numpy = np.array(self.bounds, dtype=np.float64) lower_bounds = list(bounds_numpy[:, 0]) upper_bounds = list(bounds_numpy[:, 1]) return lower_bounds, upper_bounds @attr.s(auto_attribs=True) class PygmoSolutionWrapperSerial: # TODO: docs and validations solution: pg.core.population @property def fun(self): return self.solution.champion_f @property def x(self): return self.solution.champion_x @attr.s(auto_attribs=True) class PygmoSolutionWrapperParallel: # TODO: docs and validations champion_x: np.ndarray champion_f: Union[float, np.float64, np.ndarray] @property def fun(self): return self.champion_f @property def x(self): return self.champion_x @attr.s(auto_attribs=True) class OptimizationProblem: """ This class stores and solve optimization problems with the available solvers. """ # TODO: docs and validations objective_function: types.FunctionType bounds: list optimization_method: OptimizationMethod solver_args: Union[ScipyDifferentialEvolutionSettings, PygmoSelfAdaptiveDESettings] args: list = [] def __attrs_post_init__(self): if self.optimization_method == OptimizationMethod.SCIPY_DE and self.solver_args is None: self.solver_args = ScipyDifferentialEvolutionSettings(self._number_of_decision_variables) @property def _number_of_decision_variables(self): return len(self.bounds) def solve_minimization(self): if self.optimization_method == OptimizationMethod.SCIPY_DE: result = differential_evolution( self.objective_function, bounds=self.bounds, args=self.args, strategy=self.solver_args.strategy, popsize=self.solver_args.popsize, recombination=self.solver_args.recombination, mutation=self.solver_args.mutation, tol=self.solver_args.tol, disp=self.solver_args.disp, polish=self.solver_args.polish, seed=self.solver_args.seed, workers=self.solver_args.workers ) return result elif self.optimization_method == OptimizationMethod.PYGMO_DE1220: problem_wrapper = PygmoOptimizationProblemWrapper( objective_function=self.objective_function, bounds=self.bounds, args=self.args ) pygmo_algorithm = pg.algorithm( pg.de1220( gen=self.solver_args.gen, allowed_variants=self.solver_args.allowed_variants, variant_adptv=self.solver_args.variant_adptv, ftol=self.solver_args.ftol, xtol=self.solver_args.xtol, memory=self.solver_args.memory, seed=self.solver_args.seed ) ) pygmo_problem = pg.problem(problem_wrapper) if self.solver_args.parallel_execution: solution_wrapper = self._run_pygmo_parallel( pygmo_algorithm, pygmo_problem, number_of_islands=self.solver_args.number_of_islands, archipelago_gen=self.solver_args.archipelago_gen ) else: pygmo_solution = self._run_pygmo_serial(pygmo_algorithm, pygmo_problem) if self.solver_args.polish: pygmo_solution = self._polish_pygmo_population(pygmo_solution) solution_wrapper = PygmoSolutionWrapperSerial(pygmo_solution) return solution_wrapper else: raise NotImplementedError('Unavailable optimization method.') @staticmethod def _select_best_pygmo_archipelago_solution(champions_x, champions_f): best_index = np.argmin(champions_f) return champions_x[best_index], champions_f[best_index] def _run_pygmo_parallel(self, algorithm, problem, number_of_islands=2, archipelago_gen=50): pygmo_archipelago = pg.archipelago( n=number_of_islands, algo=algorithm, prob=problem, pop_size=self.solver_args.popsize, seed=self.solver_args.seed ) pygmo_archipelago.evolve(n=archipelago_gen) pygmo_archipelago.wait() champions_x = pygmo_archipelago.get_champions_x() champions_f = pygmo_archipelago.get_champions_f() champion_x, champion_f = self._select_best_pygmo_archipelago_solution(champions_x, champions_f) return PygmoSolutionWrapperParallel(champion_x=champion_x, champion_f=champion_f) def _run_pygmo_serial(self, algorithm, problem): population = pg.population( prob=problem, size=self.solver_args.popsize, seed=self.solver_args.seed ) solution = algorithm.evolve(population) return solution def _polish_pygmo_population(self, population): pygmo_nlopt_wrapper = pg.nlopt(self.solver_args.polish_method) nlopt_algorithm = pg.algorithm(pygmo_nlopt_wrapper) solution_wrapper = nlopt_algorithm.evolve(population) return solution_wrapper
38.088737
133
0.664606
10,817
0.969265
0
0
10,858
0.972939
0
0
3,109
0.278584
a2f4994690266aa4a640429912d46124db104724
1,461
py
Python
tests/unittests/types/test_array.py
TrigonDev/apgorm
5b593bfb5a200708869e079248c25786608055d6
[ "MIT" ]
8
2022-01-21T23:07:29.000Z
2022-03-26T12:03:57.000Z
tests/unittests/types/test_array.py
TrigonDev/apgorm
5b593bfb5a200708869e079248c25786608055d6
[ "MIT" ]
22
2021-12-23T00:43:41.000Z
2022-03-23T13:17:32.000Z
tests/unittests/types/test_array.py
TrigonDev/apgorm
5b593bfb5a200708869e079248c25786608055d6
[ "MIT" ]
3
2022-01-15T20:58:33.000Z
2022-01-26T21:36:13.000Z
# MIT License # # Copyright (c) 2021 TrigonDev # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import pytest from apgorm.types import Array, Int # for subtypes @pytest.mark.parametrize("subtype", [Int(), Array(Int()), Array(Array(Int()))]) def test_array_init(subtype): a = Array(subtype) assert a.subtype is subtype def test_array_sql(): assert Array(Int())._sql == "INTEGER[]" assert Array(Array(Int()))._sql == "INTEGER[][]"
38.447368
79
0.750171
0
0
0
0
165
0.112936
0
0
1,130
0.773443
a2f56add77b1581d6619a3c899c2460cc7dc3102
137
py
Python
cisco_support/__version__.py
rothdennis/cisco_support
c20b955794400eb565fa5c178749c2ee6ef7dc0f
[ "MIT" ]
4
2021-09-09T07:24:13.000Z
2022-03-04T19:51:01.000Z
cisco_support/__version__.py
rothdennis/cisco_support
c20b955794400eb565fa5c178749c2ee6ef7dc0f
[ "MIT" ]
null
null
null
cisco_support/__version__.py
rothdennis/cisco_support
c20b955794400eb565fa5c178749c2ee6ef7dc0f
[ "MIT" ]
null
null
null
__title__ = 'cisco_support' __description__ = 'Cisco Support APIs' __version__ = '0.1.0' __author__ = 'Dennis Roth' __license__ = 'MIT'
19.571429
38
0.737226
0
0
0
0
0
0
0
0
60
0.437956
a2f8a7986f7bf085148eeaed0a44176810f81182
747
py
Python
code/searchers.py
trunc8/mespp
8348bdd0ba8f584ef7196c0064b8e5bafa38a0fb
[ "MIT" ]
2
2021-07-07T17:01:17.000Z
2022-03-30T05:28:44.000Z
code/searchers.py
trunc8/mespp
8348bdd0ba8f584ef7196c0064b8e5bafa38a0fb
[ "MIT" ]
null
null
null
code/searchers.py
trunc8/mespp
8348bdd0ba8f584ef7196c0064b8e5bafa38a0fb
[ "MIT" ]
1
2021-07-07T17:00:54.000Z
2021-07-07T17:00:54.000Z
#!/usr/bin/env python3 # trunc8 did this import numpy as np class Searchers: def __init__(self, g, N=100, M=2, initial_positions=np.array([90,58]), target_initial_position=45): ''' g: Graph of environment N: Number of vertices M: Number of searchers initial_positions: Starting positions of searchers ''' self.N = N self.M = M self.initial_positions = initial_positions self.positions = self.initial_positions.copy() self.initial_belief = np.zeros(N+1) capture_offset = 1 # For less confusion while indexing vertex = target_initial_position+capture_offset self.initial_belief[vertex] = 1 def updatePositions(self): pass
25.758621
58
0.649264
685
0.917001
0
0
0
0
0
0
221
0.29585
a2fa1506f35030e5726f14dab7372d11ea530f9d
1,015
py
Python
vogue/api/api_v1/api.py
mayabrandi/vogue
463e6417a9168eadb0d11dea2d0f97919494bcd3
[ "MIT" ]
1
2021-12-16T19:29:17.000Z
2021-12-16T19:29:17.000Z
vogue/api/api_v1/api.py
mayabrandi/vogue
463e6417a9168eadb0d11dea2d0f97919494bcd3
[ "MIT" ]
188
2018-10-25T06:13:17.000Z
2022-02-25T19:47:06.000Z
vogue/api/api_v1/api.py
mayabrandi/vogue
463e6417a9168eadb0d11dea2d0f97919494bcd3
[ "MIT" ]
null
null
null
from fastapi import FastAPI from vogue.api.api_v1.endpoints import ( insert_documents, home, common_trends, sequencing, genootype, reagent_labels, prepps, bioinfo_covid, bioinfo_micro, bioinfo_mip, update, ) from vogue.settings import static_files app = FastAPI() app.mount( "/static", static_files, name="static", ) app.include_router(home.router, tags=["home"]) app.include_router(common_trends.router, tags=["common_trends"]) app.include_router(sequencing.router, tags=["sequencing"]) app.include_router(genootype.router, tags=["genotype"]) app.include_router(reagent_labels.router, tags=["index"]) app.include_router(prepps.router, tags=["preps"]) app.include_router(bioinfo_micro.router, tags=["bioinfo_micro"]) app.include_router(bioinfo_covid.router, tags=["bioinfo_covid"]) app.include_router(bioinfo_mip.router, tags=["bioinfo_mip"]) app.include_router(update.router, tags=["update"]) app.include_router(insert_documents.router, tags=["sample"])
27.432432
64
0.747783
0
0
0
0
0
0
0
0
133
0.131034
a2fa916053116744cb58a54f835b741f35144a4f
1,090
py
Python
models/dgcnn.py
veronicatozzo/SimpleView
70dbde727b25db8fdd9dc486ac1f74ff31a89821
[ "BSD-3-Clause" ]
95
2021-06-09T09:44:14.000Z
2022-03-13T12:10:50.000Z
models/dgcnn.py
veronicatozzo/SimpleView
70dbde727b25db8fdd9dc486ac1f74ff31a89821
[ "BSD-3-Clause" ]
7
2021-06-23T04:44:25.000Z
2022-01-14T15:45:27.000Z
models/dgcnn.py
veronicatozzo/SimpleView
70dbde727b25db8fdd9dc486ac1f74ff31a89821
[ "BSD-3-Clause" ]
13
2021-07-01T23:55:15.000Z
2022-01-04T12:29:02.000Z
import torch.nn as nn import torch.nn.functional as F from dgcnn.pytorch.model import DGCNN as DGCNN_original from all_utils import DATASET_NUM_CLASS class DGCNN(nn.Module): def __init__(self, task, dataset): super().__init__() self.task = task self.dataset = dataset if task == "cls": num_classes = DATASET_NUM_CLASS[dataset] # default arguments class Args: def __init__(self): self.k = 20 self.emb_dims = 1024 self.dropout = 0.5 self.leaky_relu = 1 args = Args() self.model = DGCNN_original(args, output_channels=num_classes) else: assert False def forward(self, pc, cls=None): pc = pc.to(next(self.parameters()).device) pc = pc.permute(0, 2, 1).contiguous() if self.task == 'cls': assert cls is None logit = self.model(pc) out = {'logit': logit} else: assert False return out
27.25
74
0.534862
937
0.859633
0
0
0
0
0
0
36
0.033028
a2fcc2dcdf1e51df954863eb81bc306011453b3d
283
py
Python
atcoder/arc/a036.py
tomato-300yen/coding
db6f440a96d8c83f486005c650461a69f27e3926
[ "MIT" ]
null
null
null
atcoder/arc/a036.py
tomato-300yen/coding
db6f440a96d8c83f486005c650461a69f27e3926
[ "MIT" ]
null
null
null
atcoder/arc/a036.py
tomato-300yen/coding
db6f440a96d8c83f486005c650461a69f27e3926
[ "MIT" ]
null
null
null
from collections import deque N, K = map(int, input().split()) T = [int(input()) for _ in range(N)] ans_dq = deque([0, 0, 0]) for i, t in enumerate(T): ans_dq.append(t) ans_dq.popleft() if sum(ans_dq) < K and i > 1: print(i + 1) break else: print(-1)
21.769231
36
0.568905
0
0
0
0
0
0
0
0
0
0
a2fcecf1decf4817a91d5d880a0ea9320b043380
238
py
Python
Python/Curos_Python_curemvid/Exercicios_dos_videos/Ex029.py
Jhonattan-rocha/Meus-primeiros-programas
f5971b66c0afd049b5d0493e8b7a116b391d058e
[ "MIT" ]
null
null
null
Python/Curos_Python_curemvid/Exercicios_dos_videos/Ex029.py
Jhonattan-rocha/Meus-primeiros-programas
f5971b66c0afd049b5d0493e8b7a116b391d058e
[ "MIT" ]
null
null
null
Python/Curos_Python_curemvid/Exercicios_dos_videos/Ex029.py
Jhonattan-rocha/Meus-primeiros-programas
f5971b66c0afd049b5d0493e8b7a116b391d058e
[ "MIT" ]
null
null
null
velocidade = float(input("Digite a sua velocidade em Km/h: ")) if velocidade > 80: amais = velocidade - 80 amais = amais*7 print("Você foi multado, devera pagar uma multa de: R${:.2f}".format(amais)) print("FIM, não se mate")
34
80
0.663866
0
0
0
0
0
0
0
0
110
0.458333
a2fdf1816d77bc5926536585a5ffc8b6a4ac1f23
3,746
py
Python
research/radar-communication/dqn_agent.py
hieunq95/keras-rl
d965ea951220b5ede5ea1e11fab7d7eb45a8c2c5
[ "MIT" ]
null
null
null
research/radar-communication/dqn_agent.py
hieunq95/keras-rl
d965ea951220b5ede5ea1e11fab7d7eb45a8c2c5
[ "MIT" ]
null
null
null
research/radar-communication/dqn_agent.py
hieunq95/keras-rl
d965ea951220b5ede5ea1e11fab7d7eb45a8c2c5
[ "MIT" ]
null
null
null
import numpy as np import gym import argparse from keras.models import Sequential from keras.layers import Dense, Activation, Flatten, Convolution2D from keras.optimizers import Adam from rl.agents.dqn import DQNAgent from rl.policy import LinearAnnealedPolicy, EpsGreedyQPolicy from rl.memory import SequentialMemory from rl.callbacks import FileLogger, ModelIntervalCheckpoint from environment import AV_Environment from config import test_parameters, transition_probability, unexpected_ev_prob, state_space_size, action_space_size from logger import Logger from AV_Processor import AVProcessor TEST_ID = test_parameters['test_id'] NB_STEPS = test_parameters['nb_steps'] EPSILON_LINEAR_STEPS = test_parameters['nb_epsilon_linear'] TARGET_MODEL_UPDATE = test_parameters['target_model_update'] GAMMA = test_parameters['gamma'] # ALPHA = test_parameters['alpha'] ALPHA = 0.001 DOUBLE_DQN = False parser = argparse.ArgumentParser() parser.add_argument('--mode', choices=['train', 'test'], default='train') parser.add_argument('--env-name', type=str, default='AV_Radar-v1') parser.add_argument('--weights', type=str, default=None) args = parser.parse_args() env = AV_Environment() nb_actions = env.action_space.n # policy = LinearAnnealedPolicy(EpsGreedyQPolicy(), attr='eps', value_max=1., value_min=.1, value_test=.05, # nb_steps=EPSILON_LINEAR_STEPS) policy = EpsGreedyQPolicy(eps=.1) processor = AVProcessor(env) memory = SequentialMemory(limit=50000, window_length=1) model = Sequential() model.add(Flatten(input_shape=(1,) + env.observation_space.nvec.shape)) model.add(Dense(32, activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(nb_actions, activation='linear')) print(model.summary()) dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=100, target_model_update=TARGET_MODEL_UPDATE, policy=policy, processor=processor, enable_double_dqn=DOUBLE_DQN, gamma=GAMMA) dqn.compile(Adam(lr=ALPHA), metrics=['mae']) processor.add_agent(dqn) print('********************* Start {}DQN - test-id: {} ***********************'. format('DOUBLE-' if DOUBLE_DQN else '', TEST_ID)) print('************************************************************************** \n ' '**************************** Simulation parameters*********************** \n' '{} \n {} \n {} \n {} \n {} \n'.format(transition_probability, unexpected_ev_prob, state_space_size, action_space_size, test_parameters) + '*************************************************************************** \n') if args.mode == 'train': weights_filename = './logs/dqn_{}_weights_{}.h5f'.format(args.env_name, TEST_ID) checkpoint_weights_filename = './logs/dqn_' + args.env_name + '_weights_{step}.h5f' log_filename = './logs/{}dqn_{}_log_{}.json'.format('d-' if DOUBLE_DQN else '', args.env_name, TEST_ID) callbacks = [ModelIntervalCheckpoint(checkpoint_weights_filename, interval=NB_STEPS/2)] callbacks += [Logger(log_filename, environment=env, interval=100)] dqn.fit(env, nb_steps=NB_STEPS, visualize=False, verbose=2, nb_max_episode_steps=None, callbacks=callbacks) dqn.save_weights(weights_filename, overwrite=True) dqn.test(env, nb_episodes=10, visualize=False) elif args.mode == 'test': weights_filename = './logs/dqn_{}_weights_{}.h5f'.format(args.env_name, TEST_ID) if args.weights: weights_filename = args.weights dqn.load_weights(weights_filename) dqn.test(env, nb_episodes=100, visualize=False) print("****************************************" " End of training {}-th " "****************************************".format(TEST_ID))
45.682927
115
0.67165
0
0
0
0
0
0
0
0
962
0.256807
a2fe2076a061b4411e718858d451c717a3acc756
318
py
Python
Chapter01/displacy-save-as-image-1-4-5.py
indrasmartmob/Mastering-spaCy
756876902eee8437d6d9ddcef2ba7ffabfc970a3
[ "MIT" ]
76
2021-07-07T14:32:42.000Z
2022-03-27T17:15:15.000Z
Chapter01/displacy-save-as-image-1-4-5.py
indrasmartmob/Mastering-spaCy
756876902eee8437d6d9ddcef2ba7ffabfc970a3
[ "MIT" ]
4
2021-08-18T18:08:23.000Z
2022-03-27T03:30:27.000Z
Chapter01/displacy-save-as-image-1-4-5.py
indrasmartmob/Mastering-spaCy
756876902eee8437d6d9ddcef2ba7ffabfc970a3
[ "MIT" ]
38
2021-07-09T22:23:38.000Z
2022-03-12T07:11:37.000Z
#!/usr/bin/env python3 import spacy from spacy import displacy from pathlib import Path nlp = spacy.load("en_core_web_md") doc = nlp("I'm a butterfly.") svg = displacy.render(doc, style="dep", jupyter=False) filename = "butterfly.svg" output_path = Path(filename) output_path.open("w", encoding="utf-8").write(svg)
22.714286
54
0.735849
0
0
0
0
0
0
0
0
86
0.27044
a2fe69feb718bafa1d3ea491a261e3b0356c764f
3,485
py
Python
mask_detector/opencv/camera_ver2.py
osamhack2021/AI_Mask_Detector
1d71980bd7b7168a9d006f03325fb51783c7f877
[ "MIT" ]
null
null
null
mask_detector/opencv/camera_ver2.py
osamhack2021/AI_Mask_Detector
1d71980bd7b7168a9d006f03325fb51783c7f877
[ "MIT" ]
null
null
null
mask_detector/opencv/camera_ver2.py
osamhack2021/AI_Mask_Detector
1d71980bd7b7168a9d006f03325fb51783c7f877
[ "MIT" ]
1
2021-11-21T08:19:54.000Z
2021-11-21T08:19:54.000Z
import cv2 import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import numpy as np model = "./AI_Mask_Detector/res10_300x300_ssd_iter_140000_fp16.caffemodel" config = "./AI_Mask_Detector/deploy.prototxt" # model = './AI_Mask_Detector/opencv_face_detector_uint8.pb' # config = './AI_Mask_Detector/opencv_face_detector.pbtxt' mask_model = tf.keras.models.load_model("./AI_Mask_Detector/model.h5") probability_model = tf.keras.Sequential([mask_model]) width = 64 height = 64 # cap = cv2.VideoCapture(0) cap = cv2.VideoCapture("./AI_Mask_Detector/demoVideo/test2.mp4") if not cap.isOpened(): print("Camera open failed!") exit() net = cv2.dnn.readNet(model, config) if net.empty(): print("Net open failed!") exit() categories = ["mask", "none"] print("len(categories) = ", len(categories)) while True: ret, frame = cap.read() if ret: img = cv2.cvtColor(frame, code=cv2.COLOR_BGR2RGB) blob = cv2.dnn.blobFromImage(img, 1, (300, 300), (104, 177, 123)) net.setInput(blob) detect = net.forward() detect = detect[0, 0, :, :] (h, w) = frame.shape[:2] # print('--------------------------') for i in range(detect.shape[0]): confidence = detect[i, 2] if confidence < 0.4: break x1 = int(detect[i, 3] * w) y1 = int(detect[i, 4] * h) x2 = int(detect[i, 5] * w) y2 = int(detect[i, 6] * h) # cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0)) margin = 0 face = img[y1 - margin : y2 + margin, x1 - margin : x2 + margin] resize = cv2.resize(face, (width, height)) # print(x1, y1, x2, y2, width, height) # cv2.imshow("frame1", resize) # np_image_data = np.asarray(inp) rgb_tensor = tf.convert_to_tensor(resize, dtype=tf.float32) rgb_tensor /= 255.0 rgb_tensor = tf.expand_dims(rgb_tensor, 0) # 예측 predictions = probability_model.predict(rgb_tensor) # print(categories[predictions[i][1]], ' ' , np.argmax(predictions[i])) # lebel = categories[predictions[i]] if predictions[0][0] > predictions[0][1]: # and predictions[0][0] > 0.7: label = "Mask " + str(predictions[0][0]) cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0)) cv2.putText( frame, label, (x1, y1 - 1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1, cv2.LINE_AA, ) if predictions[0][0] < predictions[0][1]: # and predictions[0][1] > 0.7: label = "No Mask " + str(predictions[0][1]) cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255)) cv2.putText( frame, label, (x1, y1 - 1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA, ) # print(predictions[0][0], ' ', predictions[0][1]) cv2.imshow("frame", frame) if cv2.waitKey(30) == 27: break else: print("error") cap.release() cv2.destroyAllWindows()
29.786325
85
0.505595
0
0
0
0
0
0
0
0
839
0.24047
a2ff595beb35cc3bf63e8eee3f852f028caee135
55,499
py
Python
pipelines/head-pose-pipeline/training/models.py
tonouchi510/kfp-project
67b78ae53cc3de594b8254999a4f553a8d5cec27
[ "MIT" ]
null
null
null
pipelines/head-pose-pipeline/training/models.py
tonouchi510/kfp-project
67b78ae53cc3de594b8254999a4f553a8d5cec27
[ "MIT" ]
null
null
null
pipelines/head-pose-pipeline/training/models.py
tonouchi510/kfp-project
67b78ae53cc3de594b8254999a4f553a8d5cec27
[ "MIT" ]
null
null
null
import sys import logging import numpy as np import tensorflow as tf from tensorflow.keras import backend as K from capsulelayers import CapsuleLayer from capsulelayers import MatMulLayer from loupe_keras import NetVLAD sys.setrecursionlimit(2**20) np.random.seed(2**10) # Custom layers # Note - Usage of Lambda layers prevent the convertion # and the optimizations by the underlying math engine (tensorflow in this case) class SSRLayer(tf.keras.layers.Layer): def __init__(self, s1, s2, s3, lambda_d, **kwargs): super(SSRLayer, self).__init__(**kwargs) self.s1 = s1 self.s2 = s2 self.s3 = s3 self.lambda_d = lambda_d self.trainable = False def call(self, inputs): x = inputs a = x[0][:, :, 0] * 0 b = x[0][:, :, 0] * 0 c = x[0][:, :, 0] * 0 s1 = self.s1 s2 = self.s2 s3 = self.s3 lambda_d = self.lambda_d di = s1 // 2 dj = s2 // 2 dk = s3 // 2 V = 99 for i in range(0, s1): a = a + (i - di + x[6]) * x[0][:, :, i] a = a / (s1 * (1 + lambda_d * x[3])) for j in range(0, s2): b = b + (j - dj + x[7]) * x[1][:, :, j] b = b / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) for k in range(0, s3): c = c + (k - dk + x[8]) * x[2][:, :, k] c = c / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) / (s3 * (1 + lambda_d * x[5])) pred = (a + b + c) * V return pred def compute_output_shape(self, input_shape): return (input_shape[0], 3) def get_config(self): config = { "s1": self.s1, "s2": self.s2, "s3": self.s3, "lambda_d": self.lambda_d, } base_config = super(SSRLayer, self).get_config() return dict(list(base_config.items()) + list(config.items())) class FeatSliceLayer(tf.keras.layers.Layer): def __init__(self, start_index, end_index, **kwargs): super(FeatSliceLayer, self).__init__(**kwargs) self.start_index = start_index self.end_index = end_index self.trainable = False def call(self, inputs): return inputs[:, self.start_index:self.end_index] def compute_output_shape(self, input_shape): return (input_shape[0], self.end_index - self.start_index) def get_config(self): config = {"start_index": self.start_index, "end_index": self.end_index} base_config = super(FeatSliceLayer, self).get_config() return dict(list(base_config.items()) + list(config.items())) class MomentsLayer(tf.keras.layers.Layer): def __init__(self, **kwargs): super(MomentsLayer, self).__init__(**kwargs) self.trainable = False def call(self, inputs): _, var = tf.nn.moments(inputs, axes=-1) return var def compute_output_shape(self, input_shape): return (input_shape[0], input_shape[-1]) class MatrixMultiplyLayer(tf.keras.layers.Layer): def __init__(self, **kwargs): super(MatrixMultiplyLayer, self).__init__(**kwargs) self.trainable = False def call(self, inputs): x1, x2 = inputs # TODO: add some asserts on the inputs # it is expected the shape of inputs are # arranged to be able to perform the matrix multiplication return tf.matmul(x1, x2) def compute_output_shape(self, input_shapes): return (input_shapes[0][0], input_shapes[0][1], input_shapes[1][-1]) class MatrixNormLayer(tf.keras.layers.Layer): def __init__(self, tile_count, **kwargs): super(MatrixNormLayer, self).__init__(**kwargs) self.trainable = False self.tile_count = tile_count def call(self, input): sum = K.sum(input, axis=-1, keepdims=True) tiled = K.tile(sum, (1, 1, self.tile_count)) return tiled def compute_output_shape(self, input_shape): return (input_shape[0], input_shape[1], self.tile_count) def get_config(self): config = {"tile_count": self.tile_count} base_config = super(MatrixNormLayer, self).get_config() return dict(list(base_config.items()) + list(config.items())) class PrimCapsLayer(tf.keras.layers.Layer): def __init__(self, **kwargs): super(PrimCapsLayer, self).__init__(**kwargs) self.trainable = False def call(self, inputs): x1, x2, norm = inputs return tf.matmul(x1, x2) / norm def compute_output_shape(self, input_shapes): return input_shapes[-1] class AggregatedFeatureExtractionLayer(tf.keras.layers.Layer): def __init__(self, num_capsule, **kwargs): super(AggregatedFeatureExtractionLayer, self).__init__(**kwargs) self.trainable = False self.num_capsule = num_capsule def call(self, input): s1_a = 0 s1_b = self.num_capsule // 3 feat_s1_div = input[:, s1_a:s1_b, :] s2_a = self.num_capsule // 3 s2_b = 2 * self.num_capsule // 3 feat_s2_div = input[:, s2_a:s2_b, :] s3_a = 2 * self.num_capsule // 3 s3_b = self.num_capsule feat_s3_div = input[:, s3_a:s3_b, :] return [feat_s1_div, feat_s2_div, feat_s3_div] def compute_output_shape(self, input_shape): last_dim = input_shape[-1] partition = self.num_capsule // 3 return [ (input_shape[0], partition, last_dim), (input_shape[0], partition, last_dim), (input_shape[0], partition, last_dim), ] def get_config(self): config = {"num_capsule": self.num_capsule} base_config = super(AggregatedFeatureExtractionLayer, self).get_config() return dict(list(base_config.items()) + list(config.items())) class BaseFSANet(object): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): self._channel_axis = 3 if K.image_data_format() == "channels_last" else 1 if self._channel_axis == 1: logging.debug("image_dim_ordering = 'th'") self._input_shape = (3, image_size, image_size) else: logging.debug("image_dim_ordering = 'tf'") self._input_shape = (image_size, image_size, 3) self.num_classes = num_classes self.stage_num = stage_num self.lambda_d = lambda_d self.num_capsule = S_set[0] self.dim_capsule = S_set[1] self.routings = S_set[2] self.num_primcaps = S_set[3] self.m_dim = S_set[4] self.F_shape = int(self.num_capsule / 3) * self.dim_capsule self.map_xy_size = int(8 * image_size / 64) self.is_fc_model = False self.is_noS_model = False self.is_varS_model = False def _convBlock(self, x, num_filters, activation, kernel_size=(3, 3)): x = tf.keras.layers.SeparableConv2D(num_filters, kernel_size, padding="same")(x) x = tf.keras.layers.BatchNormalization(axis=-1)(x) x = tf.keras.layers.Activation(activation)(x) return x def ssr_G_model_build(self, img_inputs): # ------------------------------------------------------------------------------------------------------------------------- x = self._convBlock(img_inputs, num_filters=16, activation="relu") x_layer1 = tf.keras.layers.AveragePooling2D((2, 2))(x) x = self._convBlock(x_layer1, num_filters=32, activation="relu") x = self._convBlock(x, num_filters=32, activation="relu") x_layer2 = tf.keras.layers.AveragePooling2D((2, 2))(x) x = self._convBlock(x_layer2, num_filters=64, activation="relu") x = self._convBlock(x, num_filters=64, activation="relu") x_layer3 = tf.keras.layers.AveragePooling2D((2, 2))(x) x = self._convBlock(x_layer3, num_filters=128, activation="relu") x_layer4 = self._convBlock(x, num_filters=128, activation="relu") # ------------------------------------------------------------------------------------------------------------------------- s = self._convBlock(img_inputs, num_filters=16, activation="tanh") s_layer1 = tf.keras.layers.MaxPooling2D((2, 2))(s) s = self._convBlock(s_layer1, num_filters=32, activation="tanh") s = self._convBlock(s, num_filters=32, activation="tanh") s_layer2 = tf.keras.layers.MaxPooling2D((2, 2))(s) s = self._convBlock(s_layer2, num_filters=64, activation="tanh") s = self._convBlock(s, num_filters=64, activation="tanh") s_layer3 = tf.keras.layers.MaxPooling2D((2, 2))(s) s = self._convBlock(s_layer3, num_filters=128, activation="tanh") s_layer4 = self._convBlock(s, num_filters=128, activation="tanh") # ------------------------------------------------------------------------------------------------------------------------- s_layer4 = tf.keras.layers.Conv2D(64, (1, 1), activation="tanh")(s_layer4) x_layer4 = tf.keras.layers.Conv2D(64, (1, 1), activation="relu")(x_layer4) feat_s1_pre = tf.keras.layers.Multiply()([s_layer4, x_layer4]) # ------------------------------------------------------------------------------------------------------------------------- s_layer3 = tf.keras.layers.Conv2D(64, (1, 1), activation="tanh")(s_layer3) x_layer3 = tf.keras.layers.Conv2D(64, (1, 1), activation="relu")(x_layer3) feat_s2_pre = tf.keras.layers.Multiply()([s_layer3, x_layer3]) # ------------------------------------------------------------------------------------------------------------------------- s_layer2 = tf.keras.layers.Conv2D(64, (1, 1), activation="tanh")(s_layer2) x_layer2 = tf.keras.layers.Conv2D(64, (1, 1), activation="relu")(x_layer2) feat_s3_pre = tf.keras.layers.Multiply()([s_layer2, x_layer2]) # ------------------------------------------------------------------------------------------------------------------------- # Spatial Pyramid Pooling # feat_s1_pre = SpatialPyramidPooling([1, 2, 4],'average')(feat_s1_pre) # feat_s2_pre = SpatialPyramidPooling([1, 2, 4],'average')(feat_s2_pre) # feat_s3_pre = SpatialPyramidPooling([1, 2, 4],'average')(feat_s3_pre) # feat_s1_pre = Globaltf.keras.layers.AveragePooling2D()(feat_s1_pre) # feat_s2_pre = Globaltf.keras.layers.AveragePooling2D()(feat_s2_pre) feat_s3_pre = tf.keras.layers.AveragePooling2D((2, 2))( feat_s3_pre ) # make sure (8x8x64) feature maps return tf.keras.models.Model( inputs=img_inputs, outputs=[feat_s1_pre, feat_s2_pre, feat_s3_pre], name="ssr_G_model", ) def ssr_F_model_build(self, feat_dim, name_F): input_s1_pre = tf.keras.layers.Input((feat_dim,)) input_s2_pre = tf.keras.layers.Input((feat_dim,)) input_s3_pre = tf.keras.layers.Input((feat_dim,)) def _process_input(stage_index, stage_num, num_classes, input_s_pre): feat_delta_s = FeatSliceLayer(0, 4)(input_s_pre) delta_s = tf.keras.layers.Dense( num_classes, activation="tanh", name=f"delta_s{stage_index}" )(feat_delta_s) feat_local_s = FeatSliceLayer(4, 8)(input_s_pre) local_s = tf.keras.layers.Dense( units=num_classes, activation="tanh", name=f"local_delta_stage{stage_index}", )(feat_local_s) feat_pred_s = FeatSliceLayer(8, 16)(input_s_pre) feat_pred_s = tf.keras.layers.Dense( stage_num * num_classes, activation="relu" )(feat_pred_s) pred_s = tf.keras.layers.Reshape((num_classes, stage_num))(feat_pred_s) return delta_s, local_s, pred_s delta_s1, local_s1, pred_s1 = _process_input( 1, self.stage_num[0], self.num_classes, input_s1_pre ) delta_s2, local_s2, pred_s2 = _process_input( 2, self.stage_num[1], self.num_classes, input_s2_pre ) delta_s3, local_s3, pred_s3 = _process_input( 3, self.stage_num[2], self.num_classes, input_s3_pre ) return tf.keras.models.Model( inputs=[input_s1_pre, input_s2_pre, input_s3_pre], outputs=[ pred_s1, pred_s2, pred_s3, delta_s1, delta_s2, delta_s3, local_s1, local_s2, local_s3, ], name=name_F, ) def ssr_FC_model_build(self, feat_dim, name_F): input_s1_pre = tf.keras.layers.Input((feat_dim,)) input_s2_pre = tf.keras.layers.Input((feat_dim,)) input_s3_pre = tf.keras.layers.Input((feat_dim,)) def _process_input(stage_index, stage_num, num_classes, input_s_pre): feat_delta_s = tf.keras.layers.Dense(2 * num_classes, activation="tanh")( input_s_pre ) delta_s = tf.keras.layers.Dense( num_classes, activation="tanh", name=f"delta_s{stage_index}" )(feat_delta_s) feat_local_s = tf.keras.layers.Dense(2 * num_classes, activation="tanh")( input_s_pre ) local_s = tf.keras.layers.Dense( units=num_classes, activation="tanh", name=f"local_delta_stage{stage_index}", )(feat_local_s) feat_pred_s = tf.keras.layers.Dense( stage_num * num_classes, activation="relu" )(input_s_pre) pred_s = tf.keras.layers.Reshape((num_classes, stage_num))(feat_pred_s) return delta_s, local_s, pred_s delta_s1, local_s1, pred_s1 = _process_input( 1, self.stage_num[0], self.num_classes, input_s1_pre ) delta_s2, local_s2, pred_s2 = _process_input( 2, self.stage_num[1], self.num_classes, input_s2_pre ) delta_s3, local_s3, pred_s3 = _process_input( 3, self.stage_num[2], self.num_classes, input_s3_pre ) return tf.keras.models.Model( inputs=[input_s1_pre, input_s2_pre, input_s3_pre], outputs=[ pred_s1, pred_s2, pred_s3, delta_s1, delta_s2, delta_s3, local_s1, local_s2, local_s3, ], name=name_F, ) def ssr_feat_S_model_build(self, m_dim): input_preS = tf.keras.layers.Input((self.map_xy_size, self.map_xy_size, 64)) if self.is_varS_model: feat_preS = MomentsLayer()(input_preS) else: feat_preS = tf.keras.layers.Conv2D( 1, (1, 1), padding="same", activation="sigmoid" )(input_preS) feat_preS = tf.keras.layers.Reshape((-1,))(feat_preS) SR_matrix = tf.keras.layers.Dense( m_dim * (self.map_xy_size * self.map_xy_size * 3), activation="sigmoid" )(feat_preS) SR_matrix = tf.keras.layers.Reshape( (m_dim, (self.map_xy_size * self.map_xy_size * 3)) )(SR_matrix) return tf.keras.models.Model( inputs=input_preS, outputs=[SR_matrix, feat_preS], name="feat_S_model" ) def ssr_S_model_build(self, num_primcaps, m_dim): input_s1_preS = tf.keras.layers.Input((self.map_xy_size, self.map_xy_size, 64)) input_s2_preS = tf.keras.layers.Input((self.map_xy_size, self.map_xy_size, 64)) input_s3_preS = tf.keras.layers.Input((self.map_xy_size, self.map_xy_size, 64)) feat_S_model = self.ssr_feat_S_model_build(m_dim) SR_matrix_s1, feat_s1_preS = feat_S_model(input_s1_preS) SR_matrix_s2, feat_s2_preS = feat_S_model(input_s2_preS) SR_matrix_s3, feat_s3_preS = feat_S_model(input_s3_preS) feat_pre_concat = tf.keras.layers.Concatenate()( [feat_s1_preS, feat_s2_preS, feat_s3_preS] ) SL_matrix = tf.keras.layers.Dense( int(num_primcaps / 3) * m_dim, activation="sigmoid" )(feat_pre_concat) SL_matrix = tf.keras.layers.Reshape((int(num_primcaps / 3), m_dim))(SL_matrix) S_matrix_s1 = MatrixMultiplyLayer(name="S_matrix_s1")([SL_matrix, SR_matrix_s1]) S_matrix_s2 = MatrixMultiplyLayer(name="S_matrix_s2")([SL_matrix, SR_matrix_s2]) S_matrix_s3 = MatrixMultiplyLayer(name="S_matrix_s3")([SL_matrix, SR_matrix_s3]) # Very important!!! Without this training won't converge. # norm_S_s1 = Lambda(lambda x: K.tile(K.sum(x,axis=-1,keepdims=True),(1,1,64)))(S_matrix_s1) norm_S_s1 = MatrixNormLayer(tile_count=64)(S_matrix_s1) norm_S_s2 = MatrixNormLayer(tile_count=64)(S_matrix_s2) norm_S_s3 = MatrixNormLayer(tile_count=64)(S_matrix_s3) feat_s1_pre = tf.keras.layers.Reshape( (self.map_xy_size * self.map_xy_size, 64) )(input_s1_preS) feat_s2_pre = tf.keras.layers.Reshape( (self.map_xy_size * self.map_xy_size, 64) )(input_s2_preS) feat_s3_pre = tf.keras.layers.Reshape( (self.map_xy_size * self.map_xy_size, 64) )(input_s3_preS) feat_pre_concat = tf.keras.layers.Concatenate(axis=1)( [feat_s1_pre, feat_s2_pre, feat_s3_pre] ) # Warining: don't use keras's 'K.dot'. It is very weird when high dimension is used. # https://github.com/keras-team/keras/issues/9779 # Make sure 'tf.matmul' is used # primcaps = Lambda(lambda x: tf.matmul(x[0],x[1])/x[2])([S_matrix,feat_pre_concat, norm_S]) primcaps_s1 = PrimCapsLayer()([S_matrix_s1, feat_pre_concat, norm_S_s1]) primcaps_s2 = PrimCapsLayer()([S_matrix_s2, feat_pre_concat, norm_S_s2]) primcaps_s3 = PrimCapsLayer()([S_matrix_s3, feat_pre_concat, norm_S_s3]) primcaps = tf.keras.layers.Concatenate(axis=1)( [primcaps_s1, primcaps_s2, primcaps_s3] ) return tf.keras.models.Model( inputs=[input_s1_preS, input_s2_preS, input_s3_preS], outputs=primcaps, name="ssr_S_model", ) def ssr_noS_model_build(self, **kwargs): input_s1_preS = tf.keras.layers.Input((self.map_xy_size, self.map_xy_size, 64)) input_s2_preS = tf.keras.layers.Input((self.map_xy_size, self.map_xy_size, 64)) input_s3_preS = tf.keras.layers.Input((self.map_xy_size, self.map_xy_size, 64)) primcaps_s1 = tf.keras.layers.Reshape( (self.map_xy_size * self.map_xy_size, 64) )(input_s1_preS) primcaps_s2 = tf.keras.layers.Reshape( (self.map_xy_size * self.map_xy_size, 64) )(input_s2_preS) primcaps_s3 = tf.keras.layers.Reshape( (self.map_xy_size * self.map_xy_size, 64) )(input_s3_preS) primcaps = tf.keras.layers.Concatenate(axis=1)( [primcaps_s1, primcaps_s2, primcaps_s3] ) return tf.keras.models.Model( inputs=[input_s1_preS, input_s2_preS, input_s3_preS], outputs=primcaps, name="ssr_S_model", ) def __call__(self): logging.debug("Creating model...") img_inputs = tf.keras.layers.Input(self._input_shape) # Build various models ssr_G_model = self.ssr_G_model_build(img_inputs) if self.is_noS_model: ssr_S_model = self.ssr_noS_model_build() else: ssr_S_model = self.ssr_S_model_build( num_primcaps=self.num_primcaps, m_dim=self.m_dim ) ssr_aggregation_model = self.ssr_aggregation_model_build( (self.num_primcaps, 64) ) if self.is_fc_model: ssr_F_Cap_model = self.ssr_FC_model_build(self.F_shape, "ssr_F_Cap_model") else: ssr_F_Cap_model = self.ssr_F_model_build(self.F_shape, "ssr_F_Cap_model") # Wire them up ssr_G_list = ssr_G_model(img_inputs) ssr_primcaps = ssr_S_model(ssr_G_list) ssr_Cap_list = ssr_aggregation_model(ssr_primcaps) ssr_F_Cap_list = ssr_F_Cap_model(ssr_Cap_list) pred_pose = SSRLayer( s1=self.stage_num[0], s2=self.stage_num[1], s3=self.stage_num[2], lambda_d=self.lambda_d, name="pred_pose", )(ssr_F_Cap_list) return tf.keras.models.Model(inputs=img_inputs, outputs=pred_pose) # Capsule FSANetworks class BaseCapsuleFSANet(BaseFSANet): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(BaseCapsuleFSANet, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) def ssr_aggregation_model_build(self, shape_primcaps): input_primcaps = tf.keras.layers.Input(shape_primcaps) capsule = CapsuleLayer( self.num_capsule, self.dim_capsule, routings=self.routings, name="caps" )(input_primcaps) feat_s1_div, feat_s2_div, feat_s3_div = AggregatedFeatureExtractionLayer( num_capsule=self.num_capsule )(capsule) feat_s1_div = tf.keras.layers.Reshape((-1,))(feat_s1_div) feat_s2_div = tf.keras.layers.Reshape((-1,))(feat_s2_div) feat_s3_div = tf.keras.layers.Reshape((-1,))(feat_s3_div) return tf.keras.models.Model( inputs=input_primcaps, outputs=[feat_s1_div, feat_s2_div, feat_s3_div], name="ssr_Cap_model", ) class FSA_net_Capsule(BaseCapsuleFSANet): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(FSA_net_Capsule, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) self.is_varS_model = False class FSA_net_Var_Capsule(BaseCapsuleFSANet): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(FSA_net_Var_Capsule, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) self.is_varS_model = True class FSA_net_noS_Capsule(BaseCapsuleFSANet): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(FSA_net_noS_Capsule, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) self.is_noS_model = True class FSA_net_Capsule_FC(FSA_net_Capsule): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(FSA_net_Capsule_FC, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) self.is_fc_model = True class FSA_net_Var_Capsule_FC(FSA_net_Var_Capsule): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(FSA_net_Var_Capsule_FC, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) self.is_fc_model = True class FSA_net_noS_Capsule_FC(FSA_net_noS_Capsule): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(FSA_net_noS_Capsule_FC, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) self.is_fc_model = True # NetVLAD models class BaseNetVLADFSANet(BaseFSANet): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(BaseNetVLADFSANet, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) def ssr_aggregation_model_build(self, shape_primcaps): input_primcaps = tf.keras.layers.Input(shape_primcaps) agg_feat = NetVLAD( feature_size=64, max_samples=self.num_primcaps, cluster_size=self.num_capsule, output_dim=self.num_capsule * self.dim_capsule, )(input_primcaps) agg_feat = tf.keras.layers.Reshape((self.num_capsule, self.dim_capsule))( agg_feat ) feat_s1_div, feat_s2_div, feat_s3_div = AggregatedFeatureExtractionLayer( num_capsule=self.num_capsule )(agg_feat) feat_s1_div = tf.keras.layers.Reshape((-1,))(feat_s1_div) feat_s2_div = tf.keras.layers.Reshape((-1,))(feat_s2_div) feat_s3_div = tf.keras.layers.Reshape((-1,))(feat_s3_div) return tf.keras.models.Model( inputs=input_primcaps, outputs=[feat_s1_div, feat_s2_div, feat_s3_div], name="ssr_Agg_model", ) class FSA_net_NetVLAD(BaseNetVLADFSANet): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(FSA_net_NetVLAD, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) self.is_varS_model = False class FSA_net_Var_NetVLAD(BaseNetVLADFSANet): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(FSA_net_Var_NetVLAD, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) self.is_varS_model = True class FSA_net_noS_NetVLAD(BaseNetVLADFSANet): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(FSA_net_noS_NetVLAD, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) self.is_noS_model = True class FSA_net_NetVLAD_FC(FSA_net_NetVLAD): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(FSA_net_NetVLAD_FC, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) self.is_fc_model = True class FSA_net_Var_NetVLAD_FC(FSA_net_Var_NetVLAD): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(FSA_net_Var_NetVLAD_FC, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) self.is_fc_model = True class FSA_net_noS_NetVLAD_FC(FSA_net_noS_NetVLAD): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(FSA_net_noS_NetVLAD_FC, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) self.is_fc_model = True # // Metric models class BaseMetricFSANet(BaseFSANet): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(BaseMetricFSANet, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) def ssr_aggregation_model_build(self, shape_primcaps): input_primcaps = tf.keras.layers.Input(shape_primcaps) metric_feat = MatMulLayer(16, type=1)(input_primcaps) metric_feat = MatMulLayer(3, type=2)(metric_feat) feat_s1_div, feat_s2_div, feat_s3_div = AggregatedFeatureExtractionLayer( num_capsule=self.num_capsule )(metric_feat) feat_s1_div = tf.keras.layers.Reshape((-1,))(feat_s1_div) feat_s2_div = tf.keras.layers.Reshape((-1,))(feat_s2_div) feat_s3_div = tf.keras.layers.Reshape((-1,))(feat_s3_div) return tf.keras.models.Model( inputs=input_primcaps, outputs=[feat_s1_div, feat_s2_div, feat_s3_div], name="ssr_Metric_model", ) class FSA_net_Metric(BaseMetricFSANet): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(FSA_net_Metric, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) self.is_varS_model = False class FSA_net_Var_Metric(BaseMetricFSANet): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(FSA_net_Var_Metric, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) self.is_varS_model = True class FSA_net_noS_Metric(BaseMetricFSANet): def __init__(self, image_size, num_classes, stage_num, lambda_d, S_set): super(FSA_net_noS_Metric, self).__init__( image_size, num_classes, stage_num, lambda_d, S_set ) self.is_noS_model = True class SSR_net: def __init__(self, image_size, stage_num, lambda_local, lambda_d): self._channel_axis = -1 self._input_shape = (image_size, image_size, 3) self.stage_num = stage_num self.lambda_local = lambda_local self.lambda_d = lambda_d def __call__(self): logging.debug("Creating model...") inputs = tf.keras.layers.Input(shape=self._input_shape) # ------------------------------------------------------------------------------------------------------------------------- x = tf.keras.layers.Conv2D(32, (3, 3))(inputs) x = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(x) x = tf.keras.layers.Activation("relu")(x) x_layer1 = tf.keras.layers.AveragePooling2D(2, 2)(x) x = tf.keras.layers.Conv2D(32, (3, 3))(x_layer1) x = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(x) x = tf.keras.layers.Activation("relu")(x) x_layer2 = tf.keras.layers.AveragePooling2D(2, 2)(x) x = tf.keras.layers.Conv2D(32, (3, 3))(x_layer2) x = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(x) x = tf.keras.layers.Activation("relu")(x) x_layer3 = tf.keras.layers.AveragePooling2D(2, 2)(x) x = tf.keras.layers.Conv2D(32, (3, 3))(x_layer3) x = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(x) x = tf.keras.layers.Activation("relu")(x) # ------------------------------------------------------------------------------------------------------------------------- s = tf.keras.layers.Conv2D(16, (3, 3))(inputs) s = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(s) s = tf.keras.layers.Activation("tanh")(s) s_layer1 = tf.keras.layers.MaxPooling2D(2, 2)(s) s = tf.keras.layers.Conv2D(16, (3, 3))(s_layer1) s = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(s) s = tf.keras.layers.Activation("tanh")(s) s_layer2 = tf.keras.layers.MaxPooling2D(2, 2)(s) s = tf.keras.layers.Conv2D(16, (3, 3))(s_layer2) s = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(s) s = tf.keras.layers.Activation("tanh")(s) s_layer3 = tf.keras.layers.MaxPooling2D(2, 2)(s) s = tf.keras.layers.Conv2D(16, (3, 3))(s_layer3) s = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(s) s = tf.keras.layers.Activation("tanh")(s) # ------------------------------------------------------------------------------------------------------------------------- # Classifier block s_layer4 = tf.keras.layers.Conv2D(10, (1, 1), activation="relu")(s) s_layer4 = tf.keras.layers.Flatten()(s_layer4) s_layer4_mix = tf.keras.layers.Dropout(0.2)(s_layer4) s_layer4_mix = tf.keras.layers.Dense( units=self.stage_num[0], activation="relu" )(s_layer4_mix) x_layer4 = tf.keras.layers.Conv2D(10, (1, 1), activation="relu")(x) x_layer4 = tf.keras.layers.Flatten()(x_layer4) x_layer4_mix = tf.keras.layers.Dropout(0.2)(x_layer4) x_layer4_mix = tf.keras.layers.Dense( units=self.stage_num[0], activation="relu" )(x_layer4_mix) feat_a_s1_pre = tf.keras.layers.Multiply()([s_layer4, x_layer4]) delta_s1 = tf.keras.layers.Dense(1, activation="tanh", name="delta_s1")( feat_a_s1_pre ) feat_a_s1 = tf.keras.layers.Multiply()([s_layer4_mix, x_layer4_mix]) feat_a_s1 = tf.keras.layers.Dense(2 * self.stage_num[0], activation="relu")( feat_a_s1 ) pred_a_s1 = tf.keras.layers.Dense( units=self.stage_num[0], activation="relu", name="pred_age_stage1" )(feat_a_s1) # feat_local_s1 = Lambda(lambda x: x/10)(feat_a_s1) # feat_a_s1_local = Dropout(0.2)(pred_a_s1) local_s1 = tf.keras.layers.Dense( units=self.stage_num[0], activation="tanh", name="local_delta_stage1" )(feat_a_s1) # ------------------------------------------------------------------------------------------------------------------------- s_layer2 = tf.keras.layers.Conv2D(10, (1, 1), activation="relu")(s_layer2) s_layer2 = tf.keras.layers.MaxPooling2D(4, 4)(s_layer2) s_layer2 = tf.keras.layers.Flatten()(s_layer2) s_layer2_mix = tf.keras.layers.Dropout(0.2)(s_layer2) s_layer2_mix = tf.keras.layers.Dense(self.stage_num[1], activation="relu")( s_layer2_mix ) x_layer2 = tf.keras.layers.Conv2D(10, (1, 1), activation="relu")(x_layer2) x_layer2 = tf.keras.layers.AveragePooling2D(4, 4)(x_layer2) x_layer2 = tf.keras.layers.Flatten()(x_layer2) x_layer2_mix = tf.keras.layers.Dropout(0.2)(x_layer2) x_layer2_mix = tf.keras.layers.Dense(self.stage_num[1], activation="relu")( x_layer2_mix ) feat_a_s2_pre = tf.keras.layers.Multiply()([s_layer2, x_layer2]) delta_s2 = tf.keras.layers.Dense(1, activation="tanh", name="delta_s2")( feat_a_s2_pre ) feat_a_s2 = tf.keras.layers.Multiply()([s_layer2_mix, x_layer2_mix]) feat_a_s2 = tf.keras.layers.Dense(2 * self.stage_num[1], activation="relu")( feat_a_s2 ) pred_a_s2 = tf.keras.layers.Dense( units=self.stage_num[1], activation="relu", name="pred_age_stage2" )(feat_a_s2) # feat_local_s2 = Lambda(lambda x: x/10)(feat_a_s2) # feat_a_s2_local = Dropout(0.2)(pred_a_s2) local_s2 = tf.keras.layers.Dense( units=self.stage_num[1], activation="tanh", name="local_delta_stage2" )(feat_a_s2) # ------------------------------------------------------------------------------------------------------------------------- s_layer1 = tf.keras.layers.Conv2D(10, (1, 1), activation="relu")(s_layer1) s_layer1 = tf.keras.layers.MaxPooling2D(8, 8)(s_layer1) s_layer1 = tf.keras.layers.Flatten()(s_layer1) s_layer1_mix = tf.keras.layers.Dropout(0.2)(s_layer1) s_layer1_mix = tf.keras.layers.Dense(self.stage_num[2], activation="relu")( s_layer1_mix ) x_layer1 = tf.keras.layers.Conv2D(10, (1, 1), activation="relu")(x_layer1) x_layer1 = tf.keras.layers.AveragePooling2D(8, 8)(x_layer1) x_layer1 = tf.keras.layers.Flatten()(x_layer1) x_layer1_mix = tf.keras.layers.Dropout(0.2)(x_layer1) x_layer1_mix = tf.keras.layers.Dense(self.stage_num[2], activation="relu")( x_layer1_mix ) feat_a_s3_pre = tf.keras.layers.Multiply()([s_layer1, x_layer1]) delta_s3 = tf.keras.layers.Dense(1, activation="tanh", name="delta_s3")( feat_a_s3_pre ) feat_a_s3 = tf.keras.layers.Multiply()([s_layer1_mix, x_layer1_mix]) feat_a_s3 = tf.keras.layers.Dense(2 * self.stage_num[2], activation="relu")( feat_a_s3 ) pred_a_s3 = tf.keras.layers.Dense( units=self.stage_num[2], activation="relu", name="pred_age_stage3" )(feat_a_s3) # feat_local_s3 = Lambda(lambda x: x/10)(feat_a_s3) # feat_a_s3_local = Dropout(0.2)(pred_a_s3) local_s3 = tf.keras.layers.Dense( units=self.stage_num[2], activation="tanh", name="local_delta_stage3" )(feat_a_s3) # ------------------------------------------------------------------------------------------------------------------------- def merge_age(x, s1, s2, s3, lambda_local, lambda_d): a = x[0][:, 0] * 0 b = x[0][:, 0] * 0 c = x[0][:, 0] * 0 # A = s1 * s2 * s3 V = 101 for i in range(0, s1): a = a + (i + lambda_local * x[6][:, i]) * x[0][:, i] a = K.expand_dims(a, -1) a = a / (s1 * (1 + lambda_d * x[3])) for j in range(0, s2): b = b + (j + lambda_local * x[7][:, j]) * x[1][:, j] b = K.expand_dims(b, -1) b = b / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) for k in range(0, s3): c = c + (k + lambda_local * x[8][:, k]) * x[2][:, k] c = K.expand_dims(c, -1) c = c / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) / (s3 * (1 + lambda_d * x[5])) age = (a + b + c) * V return age pred_a = tf.keras.layers.Lambda( merge_age, arguments={ "s1": self.stage_num[0], "s2": self.stage_num[1], "s3": self.stage_num[2], "lambda_local": self.lambda_local, "lambda_d": self.lambda_d, }, name="pred_a", )( [ pred_a_s1, pred_a_s2, pred_a_s3, delta_s1, delta_s2, delta_s3, local_s1, local_s2, local_s3, ] ) model = tf.keras.models.Model(inputs=inputs, outputs=pred_a) return model class SSR_net_MT: def __init__(self, image_size, num_classes, stage_num, lambda_d): self._channel_axis = -1 self._input_shape = (image_size, image_size, 3) self.num_classes = num_classes self.stage_num = stage_num self.lambda_d = lambda_d def __call__(self): logging.debug("Creating model...") img_inputs = tf.keras.layers.Input(self._input_shape) # ------------------------------------------------------------------------------------------------------------------------- x = tf.keras.layers.SeparableConv2D(16, (3, 3), padding="same")(img_inputs) x = tf.keras.layers.BatchNormalization(axis=-1)(x) x = tf.keras.layers.Activation("relu")(x) x_layer1 = tf.keras.layers.AveragePooling2D((2, 2))(x) x = tf.keras.layers.SeparableConv2D(32, (3, 3), padding="same")(x_layer1) x = tf.keras.layers.BatchNormalization(axis=-1)(x) x = tf.keras.layers.Activation("relu")(x) x = tf.keras.layers.SeparableConv2D(32, (3, 3), padding="same")(x) x = tf.keras.layers.BatchNormalization(axis=-1)(x) x = tf.keras.layers.Activation("relu")(x) x_layer2 = tf.keras.layers.AveragePooling2D((2, 2))(x) x = tf.keras.layers.SeparableConv2D(64, (3, 3), padding="same")(x_layer2) x = tf.keras.layers.BatchNormalization(axis=-1)(x) x = tf.keras.layers.Activation("relu")(x) x = tf.keras.layers.SeparableConv2D(64, (3, 3), padding="same")(x) x = tf.keras.layers.BatchNormalization(axis=-1)(x) x = tf.keras.layers.Activation("relu")(x) x_layer3 = tf.keras.layers.AveragePooling2D((2, 2))(x) x = tf.keras.layers.SeparableConv2D(128, (3, 3), padding="same")(x_layer3) x = tf.keras.layers.BatchNormalization(axis=-1)(x) x = tf.keras.layers.Activation("relu")(x) x = tf.keras.layers.SeparableConv2D(128, (3, 3), padding="same")(x) x = tf.keras.layers.BatchNormalization(axis=-1)(x) x_layer4 = tf.keras.layers.Activation("relu")(x) # ------------------------------------------------------------------------------------------------------------------------- s = tf.keras.layers.SeparableConv2D(16, (3, 3), padding="same")(img_inputs) s = tf.keras.layers.BatchNormalization(axis=-1)(s) s = tf.keras.layers.Activation("tanh")(s) s_layer1 = tf.keras.layers.MaxPooling2D((2, 2))(s) s = tf.keras.layers.SeparableConv2D(32, (3, 3), padding="same")(s_layer1) s = tf.keras.layers.BatchNormalization(axis=-1)(s) s = tf.keras.layers.Activation("tanh")(s) s = tf.keras.layers.SeparableConv2D(32, (3, 3), padding="same")(s) s = tf.keras.layers.BatchNormalization(axis=-1)(s) s = tf.keras.layers.Activation("tanh")(s) s_layer2 = tf.keras.layers.MaxPooling2D((2, 2))(s) s = tf.keras.layers.SeparableConv2D(64, (3, 3), padding="same")(s_layer2) s = tf.keras.layers.BatchNormalization(axis=-1)(s) s = tf.keras.layers.Activation("tanh")(s) s = tf.keras.layers.SeparableConv2D(64, (3, 3), padding="same")(s) s = tf.keras.layers.BatchNormalization(axis=-1)(s) s = tf.keras.layers.Activation("tanh")(s) s_layer3 = tf.keras.layers.MaxPooling2D((2, 2))(s) s = tf.keras.layers.SeparableConv2D(128, (3, 3), padding="same")(s_layer3) s = tf.keras.layers.BatchNormalization(axis=-1)(s) s = tf.keras.layers.Activation("tanh")(s) s = tf.keras.layers.SeparableConv2D(128, (3, 3), padding="same")(s) s = tf.keras.layers.BatchNormalization(axis=-1)(s) s_layer4 = tf.keras.layers.Activation("tanh")(s) # ------------------------------------------------------------------------------------------------------------------------- # Classifier block s_layer4 = tf.keras.layers.Conv2D(64, (1, 1), activation="tanh")(s_layer4) s_layer4 = tf.keras.layers.MaxPooling2D((2, 2))(s_layer4) x_layer4 = tf.keras.layers.Conv2D(64, (1, 1), activation="relu")(x_layer4) x_layer4 = tf.keras.layers.AveragePooling2D((2, 2))(x_layer4) feat_s1_pre = tf.keras.layers.Multiply()([s_layer4, x_layer4]) feat_s1_pre = tf.keras.layers.Flatten()(feat_s1_pre) feat_delta_s1 = tf.keras.layers.Dense(2 * self.num_classes, activation="tanh")( feat_s1_pre ) delta_s1 = tf.keras.layers.Dense( self.num_classes, activation="tanh", name="delta_s1" )(feat_delta_s1) feat_local_s1 = tf.keras.layers.Dense(2 * self.num_classes, activation="tanh")( feat_s1_pre ) local_s1 = tf.keras.layers.Dense( units=self.num_classes, activation="tanh", name="local_delta_stage1" )(feat_local_s1) feat_pred_s1 = tf.keras.layers.Dense( self.stage_num[0] * self.num_classes, activation="relu" )(feat_s1_pre) pred_a_s1 = tf.keras.layers.Reshape((self.num_classes, self.stage_num[0]))( feat_pred_s1 ) # ------------------------------------------------------------------------------------------------------------------------- s_layer3 = tf.keras.layers.Conv2D(64, (1, 1), activation="tanh")(s_layer3) s_layer3 = tf.keras.layers.MaxPooling2D((2, 2))(s_layer3) x_layer3 = tf.keras.layers.Conv2D(64, (1, 1), activation="relu")(x_layer3) x_layer3 = tf.keras.layers.AveragePooling2D((2, 2))(x_layer3) feat_s2_pre = tf.keras.layers.Multiply()([s_layer3, x_layer3]) feat_s2_pre = tf.keras.layers.Flatten()(feat_s2_pre) feat_delta_s2 = tf.keras.layers.Dense(2 * self.num_classes, activation="tanh")( feat_s2_pre ) delta_s2 = tf.keras.layers.Dense( self.num_classes, activation="tanh", name="delta_s2" )(feat_delta_s2) feat_local_s2 = tf.keras.layers.Dense(2 * self.num_classes, activation="tanh")( feat_s2_pre ) local_s2 = tf.keras.layers.Dense( units=self.num_classes, activation="tanh", name="local_delta_stage2" )(feat_local_s2) feat_pred_s2 = tf.keras.layers.Dense( self.stage_num[1] * self.num_classes, activation="relu" )(feat_s2_pre) pred_a_s2 = tf.keras.layers.Reshape((self.num_classes, self.stage_num[1]))( feat_pred_s2 ) # ------------------------------------------------------------------------------------------------------------------------- s_layer2 = tf.keras.layers.Conv2D(64, (1, 1), activation="tanh")(s_layer2) s_layer2 = tf.keras.layers.MaxPooling2D((2, 2))(s_layer2) x_layer2 = tf.keras.layers.Conv2D(64, (1, 1), activation="relu")(x_layer2) x_layer2 = tf.keras.layers.AveragePooling2D((2, 2))(x_layer2) feat_s3_pre = tf.keras.layers.Multiply()([s_layer2, x_layer2]) feat_s3_pre = tf.keras.layers.Flatten()(feat_s3_pre) feat_delta_s3 = tf.keras.layers.Dense(2 * self.num_classes, activation="tanh")( feat_s3_pre ) delta_s3 = tf.keras.layers.Dense( self.num_classes, activation="tanh", name="delta_s3" )(feat_delta_s3) feat_local_s3 = tf.keras.layers.Dense(2 * self.num_classes, activation="tanh")( feat_s3_pre ) local_s3 = tf.keras.layers.Dense( units=self.num_classes, activation="tanh", name="local_delta_stage3" )(feat_local_s3) feat_pred_s3 = tf.keras.layers.Dense( self.stage_num[2] * self.num_classes, activation="relu" )(feat_s3_pre) pred_a_s3 = tf.keras.layers.Reshape((self.num_classes, self.stage_num[2]))( feat_pred_s3 ) # ------------------------------------------------------------------------------------------------------------------------- def SSR_module(x, s1, s2, s3, lambda_d): a = x[0][:, :, 0] * 0 b = x[0][:, :, 0] * 0 c = x[0][:, :, 0] * 0 di = s1 // 2 dj = s2 // 2 dk = s3 // 2 V = 99 # lambda_d = 0.9 for i in range(0, s1): a = a + (i - di + x[6]) * x[0][:, :, i] # a = K.expand_dims(a,-1) a = a / (s1 * (1 + lambda_d * x[3])) for j in range(0, s2): b = b + (j - dj + x[7]) * x[1][:, :, j] # b = K.expand_dims(b,-1) b = b / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) for k in range(0, s3): c = c + (k - dk + x[8]) * x[2][:, :, k] # c = K.expand_dims(c,-1) c = c / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) / (s3 * (1 + lambda_d * x[5])) pred = (a + b + c) * V return pred pred_pose = tf.keras.layers.Lambda( SSR_module, arguments={ "s1": self.stage_num[0], "s2": self.stage_num[1], "s3": self.stage_num[2], "lambda_d": self.lambda_d, }, name="pred_pose", )( [ pred_a_s1, pred_a_s2, pred_a_s3, delta_s1, delta_s2, delta_s3, local_s1, local_s2, local_s3, ] ) model = tf.keras.models.Model(inputs=img_inputs, outputs=pred_pose) return model class SSR_net_ori_MT: def __init__(self, image_size, num_classes, stage_num, lambda_d): self._channel_axis = -1 self._input_shape = (image_size, image_size, 3) self.num_classes = num_classes self.stage_num = stage_num self.lambda_d = lambda_d def __call__(self): logging.debug("Creating model...") img_inputs = tf.keras.layers.Input(self._input_shape) # ------------------------------------------------------------------------------------------------------------------------- x = tf.keras.layers.Conv2D(32, (3, 3), padding="same")(img_inputs) x = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(x) x = tf.keras.layers.Activation("relu")(x) x_layer1 = tf.keras.layers.AveragePooling2D(2, 2)(x) x = tf.keras.layers.Conv2D(32, (3, 3), padding="same")(x_layer1) x = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(x) x = tf.keras.layers.Activation("relu")(x) x_layer2 = tf.keras.layers.AveragePooling2D(2, 2)(x) x = tf.keras.layers.Conv2D(32, (3, 3), padding="same")(x_layer2) x = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(x) x = tf.keras.layers.Activation("relu")(x) x_layer3 = tf.keras.layers.AveragePooling2D(2, 2)(x) x = tf.keras.layers.Conv2D(32, (3, 3), padding="same")(x_layer3) x = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(x) x_layer4 = tf.keras.layers.Activation("relu")(x) # ------------------------------------------------------------------------------------------------------------------------- s = tf.keras.layers.Conv2D(16, (3, 3), padding="same")(img_inputs) s = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(s) s = tf.keras.layers.Activation("tanh")(s) s_layer1 = tf.keras.layers.MaxPooling2D(2, 2)(s) s = tf.keras.layers.Conv2D(16, (3, 3), padding="same")(s_layer1) s = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(s) s = tf.keras.layers.Activation("tanh")(s) s_layer2 = tf.keras.layers.MaxPooling2D(2, 2)(s) s = tf.keras.layers.Conv2D(16, (3, 3), padding="same")(s_layer2) s = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(s) s = tf.keras.layers.Activation("tanh")(s) s_layer3 = tf.keras.layers.MaxPooling2D(2, 2)(s) s = tf.keras.layers.Conv2D(16, (3, 3), padding="same")(s_layer3) s = tf.keras.layers.BatchNormalization(axis=self._channel_axis)(s) s_layer4 = tf.keras.layers.Activation("tanh")(s) # ------------------------------------------------------------------------------------------------------------------------- # Classifier block s_layer4 = tf.keras.layers.Conv2D(64, (1, 1), activation="tanh")(s_layer4) s_layer4 = tf.keras.layers.MaxPooling2D((2, 2))(s_layer4) x_layer4 = tf.keras.layers.Conv2D(64, (1, 1), activation="relu")(x_layer4) x_layer4 = tf.keras.layers.AveragePooling2D((2, 2))(x_layer4) feat_s1_pre = tf.keras.layers.Multiply()([s_layer4, x_layer4]) feat_s1_pre = tf.keras.layers.Flatten()(feat_s1_pre) feat_delta_s1 = tf.keras.layers.Dense(2 * self.num_classes, activation="tanh")( feat_s1_pre ) delta_s1 = tf.keras.layers.Dense( self.num_classes, activation="tanh", name="delta_s1" )(feat_delta_s1) feat_local_s1 = tf.keras.layers.Dense(2 * self.num_classes, activation="tanh")( feat_s1_pre ) local_s1 = tf.keras.layers.Dense( units=self.num_classes, activation="tanh", name="local_delta_stage1" )(feat_local_s1) feat_pred_s1 = tf.keras.layers.Dense( self.stage_num[0] * self.num_classes, activation="relu" )(feat_s1_pre) pred_a_s1 = tf.keras.layers.Reshape((self.num_classes, self.stage_num[0]))( feat_pred_s1 ) # ------------------------------------------------------------------------------------------------------------------------- s_layer3 = tf.keras.layers.Conv2D(64, (1, 1), activation="tanh")(s_layer3) s_layer3 = tf.keras.layers.MaxPooling2D((2, 2))(s_layer3) x_layer3 = tf.keras.layers.Conv2D(64, (1, 1), activation="relu")(x_layer3) x_layer3 = tf.keras.layers.AveragePooling2D((2, 2))(x_layer3) feat_s2_pre = tf.keras.layers.Multiply()([s_layer3, x_layer3]) feat_s2_pre = tf.keras.layers.Flatten()(feat_s2_pre) feat_delta_s2 = tf.keras.layers.Dense(2 * self.num_classes, activation="tanh")( feat_s2_pre ) delta_s2 = tf.keras.layers.Dense( self.num_classes, activation="tanh", name="delta_s2" )(feat_delta_s2) feat_local_s2 = tf.keras.layers.Dense(2 * self.num_classes, activation="tanh")( feat_s2_pre ) local_s2 = tf.keras.layers.Dense( units=self.num_classes, activation="tanh", name="local_delta_stage2" )(feat_local_s2) feat_pred_s2 = tf.keras.layers.Dense( self.stage_num[1] * self.num_classes, activation="relu" )(feat_s2_pre) pred_a_s2 = tf.keras.layers.Reshape((self.num_classes, self.stage_num[1]))( feat_pred_s2 ) # ------------------------------------------------------------------------------------------------------------------------- s_layer2 = tf.keras.layers.Conv2D(64, (1, 1), activation="tanh")(s_layer2) s_layer2 = tf.keras.layers.MaxPooling2D((2, 2))(s_layer2) x_layer2 = tf.keras.layers.Conv2D(64, (1, 1), activation="relu")(x_layer2) x_layer2 = tf.keras.layers.AveragePooling2D((2, 2))(x_layer2) feat_s3_pre = tf.keras.layers.Multiply()([s_layer2, x_layer2]) feat_s3_pre = tf.keras.layers.Flatten()(feat_s3_pre) feat_delta_s3 = tf.keras.layers.Dense(2 * self.num_classes, activation="tanh")( feat_s3_pre ) delta_s3 = tf.keras.layers.Dense( self.num_classes, activation="tanh", name="delta_s3" )(feat_delta_s3) feat_local_s3 = tf.keras.layers.Dense(2 * self.num_classes, activation="tanh")( feat_s3_pre ) local_s3 = tf.keras.layers.Dense( units=self.num_classes, activation="tanh", name="local_delta_stage3" )(feat_local_s3) feat_pred_s3 = tf.keras.layers.Dense( self.stage_num[2] * self.num_classes, activation="relu" )(feat_s3_pre) pred_a_s3 = tf.keras.layers.Reshape((self.num_classes, self.stage_num[2]))( feat_pred_s3 ) # ------------------------------------------------------------------------------------------------------------------------- def SSR_module(x, s1, s2, s3, lambda_d): a = x[0][:, :, 0] * 0 b = x[0][:, :, 0] * 0 c = x[0][:, :, 0] * 0 di = s1 // 2 dj = s2 // 2 dk = s3 // 2 V = 99 # lambda_d = 0.9 for i in range(0, s1): a = a + (i - di + x[6]) * x[0][:, :, i] # a = K.expand_dims(a,-1) a = a / (s1 * (1 + lambda_d * x[3])) for j in range(0, s2): b = b + (j - dj + x[7]) * x[1][:, :, j] # b = K.expand_dims(b,-1) b = b / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) for k in range(0, s3): c = c + (k - dk + x[8]) * x[2][:, :, k] # c = K.expand_dims(c,-1) c = c / (s1 * (1 + lambda_d * x[3])) / (s2 * (1 + lambda_d * x[4])) / (s3 * (1 + lambda_d * x[5])) pred = (a + b + c) * V return pred pred_pose = tf.keras.layers.Lambda( SSR_module, arguments={ "s1": self.stage_num[0], "s2": self.stage_num[1], "s3": self.stage_num[2], "lambda_d": self.lambda_d, }, name="pred_pose", )( [ pred_a_s1, pred_a_s2, pred_a_s3, delta_s1, delta_s2, delta_s3, local_s1, local_s2, local_s3, ] ) model = tf.keras.models.Model(inputs=img_inputs, outputs=pred_pose) return model
40.658608
131
0.568479
54,923
0.989621
0
0
0
0
0
0
6,542
0.117876
0c0064090948d111bf7fd540d7adcc81adb3d655
2,537
py
Python
remijquerytools/__init__.py
kdahlhaus/remi-jquery-tools
3ecc78d6a39edc7a77b89dd8ed08649f759b503a
[ "Apache-2.0" ]
null
null
null
remijquerytools/__init__.py
kdahlhaus/remi-jquery-tools
3ecc78d6a39edc7a77b89dd8ed08649f759b503a
[ "Apache-2.0" ]
null
null
null
remijquerytools/__init__.py
kdahlhaus/remi-jquery-tools
3ecc78d6a39edc7a77b89dd8ed08649f759b503a
[ "Apache-2.0" ]
null
null
null
import remi.gui as gui import os import logging log = logging.getLogger('remi.gui.remijquerytools.overlay') def get_res_path(): """ return addtion to 'res' path for items needed by this lib """ res_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'res') return res_path class Overlay(gui.Widget): @gui.decorate_constructor_parameter_types([dict, ]) def __init__(self, trigger, **kwargs): self.trigger = trigger super(Overlay, self).__init__(**kwargs) def repr(self, client, changed_widgets={}): """ It is used to automatically represent the object to HTML format packs all the attributes, children and so on. Args: client (App): The client instance. changed_widgets (dict): A dictionary containing a collection of tags that have to be updated. The tag that have to be updated is the key, and the value is its textual repr. """ self.attributes['style'] = gui.jsonize(self.style) # ensure overlay class is in the class attibutes once overlay_class="simple_overlay black" class_attribute=self.attributes.get('class','') if not overlay_class in class_attribute: class_attribute += " " + overlay_class self.attributes['class'] = class_attribute attribute_string = ' '.join('%s="%s"' % (k, v) if v is not None else k for k, v in self.attributes.items()) trigger_id = self.trigger.attributes["id"] overlay_id = self.attributes["id"] html = '<div %s>'%(attribute_string) local_changed_widgets = {} innerHTML = '' for k in self._render_children_list: s = self.children[k] if isinstance(s, type('')): innerHTML = innerHTML + s elif isinstance(s, type(u'')): innerHTML = innerHTML + s.encode('utf-8') else: try: innerHTML = innerHTML + s.repr(client, local_changed_widgets) except AttributeError: innerHTML = innerHTML + repr(s) html += innerHTML html += '</div>' html += """ <script> $(document).ready(function(){{ var dt = $('#{trigger_id}').overlay({{target:'#{overlay_id}'}}) }}); </script>""".format(trigger_id=trigger_id, overlay_id=overlay_id) log.debug('overlay html:%s', html) return html
32.948052
109
0.581395
2,234
0.880568
0
0
173
0.068191
0
0
867
0.341742
0c01e08aaee863025867488824fa6692ef88b661
468
py
Python
Python_Advanced_Softuni/Comprehensions_Exericises/venv/number_classification.py
borisboychev/SoftUni
22062312f08e29a1d85377a6d41ef74966d37e99
[ "MIT" ]
1
2020-12-14T23:25:19.000Z
2020-12-14T23:25:19.000Z
Python_Advanced_Softuni/Comprehensions_Exericises/venv/number_classification.py
borisboychev/SoftUni
22062312f08e29a1d85377a6d41ef74966d37e99
[ "MIT" ]
null
null
null
Python_Advanced_Softuni/Comprehensions_Exericises/venv/number_classification.py
borisboychev/SoftUni
22062312f08e29a1d85377a6d41ef74966d37e99
[ "MIT" ]
null
null
null
elements = [int(x) for x in input().split(', ')] even_numbers = [x for x in elements if x % 2 == 0] odd_numbers = [x for x in elements if x % 2 != 0] positive = [x for x in elements if x >= 0] negative = [x for x in elements if x < 0] print(f"Positive: {', '.join(str(x) for x in positive)}") print(f"Negative: {', '.join(str(x) for x in negative)}") print(f"Even: {', '.join(str(x) for x in even_numbers)}") print(f"Odd: {', '.join(str(x) for x in odd_numbers)}")
36
57
0.613248
0
0
0
0
0
0
0
0
202
0.431624
0c02d2fcd975ca2fafbae393016b1ddc2ddcf6b5
2,048
py
Python
src/probnum/type.py
ralfrost/probnum
6b0988009a9dd7ecda87ba28c9d5c0b8019981b6
[ "MIT" ]
null
null
null
src/probnum/type.py
ralfrost/probnum
6b0988009a9dd7ecda87ba28c9d5c0b8019981b6
[ "MIT" ]
2
2020-12-28T19:37:16.000Z
2020-12-28T19:37:31.000Z
src/probnum/type.py
admdev8/probnum
792b6299bac247cf8b1b5056756f0f078855d83a
[ "MIT" ]
null
null
null
import numbers from typing import Iterable, Tuple, Union import numpy as np ######################################################################################## # API Types ######################################################################################## ShapeType = Tuple[int, ...] RandomStateType = Union[np.random.RandomState, np.random.Generator] """Type of a random number generator.""" ######################################################################################## # Argument Types ######################################################################################## IntArgType = Union[int, numbers.Integral, np.integer] FloatArgType = Union[float, numbers.Real, np.floating] ShapeArgType = Union[IntArgType, Iterable[IntArgType]] """Type of a public API argument for supplying a shape. Values of this type should always be converted into :class:`ShapeType` using the function :func:`probnum.utils.as_shape` before further internal processing.""" DTypeArgType = Union[np.dtype, str] """Type of a public API argument for supplying a dtype. Values of this type should always be converted into :class:`np.dtype` using the function :func:`np.dtype` before further internal processing.""" ScalarArgType = Union[int, float, complex, numbers.Number, np.float_] """Type of a public API argument for supplying a scalar value. Values of this type should always be converted into :class:`np.generic` using the function :func:`probnum.utils.as_scalar` before further internal processing.""" ArrayLikeGetitemArgType = Union[ int, slice, np.ndarray, np.newaxis, None, type(Ellipsis), Tuple[Union[int, slice, np.ndarray, np.newaxis, None, type(Ellipsis)], ...], ] RandomStateArgType = Union[None, int, np.random.RandomState, np.random.Generator] """Type of a public API argument for supplying a random number generator. Values of this type should always be converted into :class:`RandomStateType` using the function :func:`probnum.utils.as_random_state` before further internal processing."""
40.156863
88
0.626953
0
0
0
0
0
0
0
0
1,304
0.636719
0c03aa3f4a41bc42ddd522aaf547cfa062e47c23
12,279
py
Python
src/socialprofile/views.py
DLRSP/django-sp
9079358a4fc054f1a5afb056ccfd6a8b8afb36fa
[ "MIT" ]
1
2022-01-11T07:25:17.000Z
2022-01-11T07:25:17.000Z
src/socialprofile/views.py
DLRSP/django-sp
9079358a4fc054f1a5afb056ccfd6a8b8afb36fa
[ "MIT" ]
16
2021-12-20T01:30:34.000Z
2022-03-31T01:38:59.000Z
src/socialprofile/views.py
DLRSP/django-sp
9079358a4fc054f1a5afb056ccfd6a8b8afb36fa
[ "MIT" ]
null
null
null
"""Django Views for the socialprofile module""" import json import logging import sweetify from django.conf import settings from django.contrib import messages from django.contrib.auth import REDIRECT_FIELD_NAME, login from django.contrib.auth import logout as auth_logout from django.contrib.auth.decorators import login_required from django.core.exceptions import PermissionDenied from django.http import Http404, HttpResponse, HttpResponseBadRequest from django.shortcuts import get_object_or_404, redirect from django.urls import reverse_lazy from django.utils.translation import gettext_lazy as _ from django.views.generic import DeleteView, TemplateView, UpdateView from oauth2_provider.contrib.rest_framework import TokenHasReadWriteScope from rest_framework import permissions, viewsets from social_core.backends.oauth import BaseOAuth1, BaseOAuth2 from social_core.backends.utils import load_backends from social_django.utils import psa from .decorators import render_to from .forms import SocialProfileForm from .models import SocialProfile # from .serializers import SocialProfileSerializer, GroupSerializer from .serializers import SocialProfileSerializer LOGGER = logging.getLogger(name="socialprofile.views") DEFAULT_RETURNTO_PATH = getattr(settings, "DEFAULT_RETURNTO_PATH", "/") # ViewSets define the view behavior. class SocialProfileViewSet(viewsets.ModelViewSet): """Serialize SocialProfiles""" permission_classes = [permissions.IsAuthenticated, TokenHasReadWriteScope] queryset = SocialProfile.objects.all() serializer_class = SocialProfileSerializer # class GroupViewSet(viewsets.ModelViewSet): # """Serialize Groups""" # permission_classes = [permissions.IsAuthenticated, TokenHasScope] # required_scopes = ['groups'] # queryset = Group.objects.all() # serializer_class = GroupSerializer def logout(request): """Logs out user""" auth_logout(request) return redirect("sp_select_page") def context(**extra): return dict( { # "plus_id": getattr(settings, "SOCIAL_AUTH_GOOGLE_PLUS_KEY", None), # "plus_scope": " ".join(GooglePlusAuth.DEFAULT_SCOPE), "available_backends": load_backends(settings.AUTHENTICATION_BACKENDS), }, **extra, ) @render_to("socialprofile/sp_account_select.html") def home(request): """Home view, displays login mechanism""" if request.user.is_authenticated: return redirect("done") return context() @login_required @render_to("socialprofile/sp_account_select.html") def done(request): """Login complete view, displays user data""" if request.user.is_authenticated: return context() return redirect("sp_select_page") @psa("social:complete") def ajax_auth(request, backend): if isinstance(request.backend, BaseOAuth1): token = { "oauth_token": request.REQUEST.get("access_token"), "oauth_token_secret": request.REQUEST.get("access_token_secret"), } elif isinstance(request.backend, BaseOAuth2): token = request.REQUEST.get("access_token") else: raise HttpResponseBadRequest(_("Wrong backend type")) user = request.backend.do_auth(token, ajax=True) login(request, user) data = {"id": user.id, "username": user.username} return HttpResponse(json.dumps(data), mimetype="application/json") class SelectAuthView(TemplateView): """ Lets users choose how they want to request access. url: /select """ template_name = "socialprofile/sp_account_select.html" def get_context_data(self, **kwargs): """Ensure that 'next' gets passed along""" LOGGER.debug("socialprofile.views.SelectAuthView.get_context_data") next_url = self.request.GET.get(REDIRECT_FIELD_NAME, DEFAULT_RETURNTO_PATH) context = super().get_context_data(**kwargs) context["next_param"] = REDIRECT_FIELD_NAME context["next_url"] = next_url # context["plus_id"] = getattr(settings, "SOCIAL_AUTH_GOOGLE_PLUS_KEY", None) # context["plus_scope"] = " ".join(GooglePlusAuth.DEFAULT_SCOPE) context["available_backends"] = load_backends(settings.AUTHENTICATION_BACKENDS) return context class SocialProfileWelcome(TemplateView): """ New Profile Page url: /sp/new-profile """ template_name = "socialprofile/sp_new_profile.html" # class SocialProfileView(DetailView): class SocialProfileView(TemplateView): """ Profile View Page url: /sp/view """ model = SocialProfile template_name = "socialprofile/sp_profile_view.html" http_method_names = {"get"} def get_context_data(self, **kwargs): """Load up the default data to show in the display form.""" username = self.kwargs.get("username") if username: try: user = get_object_or_404(SocialProfile, username=username) except Exception as e: try: user = get_object_or_404(SocialProfile, pk=username) except Exception as e: user = get_object_or_404(SocialProfile, pk=self.request.user.pk) elif self.request.user.is_authenticated: user = get_object_or_404(SocialProfile, pk=self.request.user.pk) else: raise Http404 # Case where user gets to this view anonymously for non-existent user if self.request.user != user and user.visible: raise Http404 # Case where user set to be private return { "user": user, "available_backends": load_backends(settings.AUTHENTICATION_BACKENDS), } class SocialProfileViewAll(TemplateView): """ Profile View Page url: /sp/view/all """ template_name = "socialprofile/sp_profile_view_all.html" http_method_names = {"get"} def dispatch(self, request, *args, **kwargs): if not getattr( settings, "SP_VIEW_PUBLIC", ( getattr(settings, "SP_VIEW_PUBLIC_ONLY_ADMIN", False) and request.user.is_superuser ), ): return redirect("sp_profile_view") return super().dispatch(request, *args, **kwargs) def get_context_data(self, **kwargs): """Load up the default data to show in the display form.""" return { "users": SocialProfile.objects.filter(visible=True), } class SocialProfileEditView(UpdateView): """ Profile Editing View url: /sp/edit """ model = SocialProfile template_name = "socialprofile/sp_profile_edit.html" http_method_names = {"get", "post"} def get_context_data(self, **kwargs): """Load up the default data to show in the display form.""" # user_form = UserForm(request.POST, instance=request.user) # username = self.kwargs.get("username") username = self.kwargs.get("pk") if username: try: user = get_object_or_404(SocialProfile, username=username) except Exception as e: try: user = get_object_or_404(SocialProfile, pk=username) except Exception as e: user = self.request.user elif self.request.user.is_authenticated: user = self.request.user else: raise Http404 # Case where user gets to this view anonymously for non-existent user if user != self.request.user: raise PermissionDenied() sp_form = SocialProfileForm(instance=user) return { "user": user, "available_backends": load_backends(settings.AUTHENTICATION_BACKENDS), "sp_form": sp_form, } def post(self, request, *args, **kwargs): # user_form = UserForm(request.POST, instance=request.user) return_to = self.request.POST.get("returnTo", DEFAULT_RETURNTO_PATH) custom_alerts = ( getattr(settings, "SP_ALERT_LIBRARY", "sweetalert") == "sweetalert" ) # username = self.kwargs.get("username") username = self.kwargs.get("pk") if username: try: user = get_object_or_404(SocialProfile, username=username) except Exception as e: try: user = get_object_or_404(SocialProfile, pk=username) except Exception as e: user = self.request.user if user != self.request.user: raise PermissionDenied() sp_form = SocialProfileForm(request.POST, instance=user) sp_form.initial["returnTo"] = return_to if sp_form.is_valid(): try: sp_form.save() if custom_alerts: sweetify.toast( self.request, _("Your profile has been updated."), icon="success", timer=3000, ) else: messages.add_message( self.request, messages.SUCCESS, _("Your profile has been updated."), ) return self.render_to_response( { "success": True, "user": user, "available_backends": load_backends( settings.AUTHENTICATION_BACKENDS ), "sp_form": sp_form, } ) except Exception as e: if custom_alerts: sweetify.toast( self.request, f"{_('ERROR: Your profile has NOT been updated!')} [{e}]", icon="error", timer=3000, ) else: messages.add_message( self.request, messages.INFO, f"{_('ERROR: Your profile has NOT been updated!')} [{e}]", ) return self.render_to_response( { "success": False, "user": user, "available_backends": load_backends( settings.AUTHENTICATION_BACKENDS ), "sp_form": sp_form, } ) else: if custom_alerts: sweetify.toast( self.request, _("Your profile has NOT been updated!"), icon="error", timer=3000, ) # multi = [] # for x, err_msg in enumerate(sp_form.errors): # multi.append({f"err_mess_{x}": dict(title='Error', icon='warning', # text=err_msg, toast=True, timer=3000, timerProgressBar='true')}) # # sweetify.toast( # # self.request, # # err_msg, # # icon="warning", # # timer=3000, # # ) # if multi: # sweetify.multiple(request, *multi[0]) else: messages.add_message( self.request, messages.INFO, _("Your profile has NOT been updated!") ) return self.render_to_response( { "success": False, "user": user, "available_backends": load_backends( settings.AUTHENTICATION_BACKENDS ), "sp_form": sp_form, } ) class DeleteSocialProfileView(DeleteView): """ Account Delete Confirm Modal View url: /delete """ model = SocialProfile success_url = reverse_lazy("sp_logout_page") def get_object(self, queryset=None): """Get the object that we are going to delete""" return self.request.user
33.186486
96
0.582784
9,092
0.740451
0
0
1,093
0.089014
0
0
3,493
0.284469
0c042004c2d10428499c1e729e50d34d388b3eb9
519
py
Python
sources/101_test.py
Painatalman/python101
9727ca03da46f81813fc2d338b8ba22fc0d8b78b
[ "Apache-2.0" ]
null
null
null
sources/101_test.py
Painatalman/python101
9727ca03da46f81813fc2d338b8ba22fc0d8b78b
[ "Apache-2.0" ]
null
null
null
sources/101_test.py
Painatalman/python101
9727ca03da46f81813fc2d338b8ba22fc0d8b78b
[ "Apache-2.0" ]
null
null
null
from fruits import validate_fruit fruits = ["banana", "lemon", "apple", "orange", "batman"] print fruits def list_fruits(fruits, byName=True): if byName: # WARNING: this won't make a copy of the list and return it. It will change the list FOREVER fruits.sort() for index, fruit in enumerate(fruits): if validate_fruit(fruit): print "Fruit nr %d is %s" % (index, fruit) else: print "This %s is no fruit!" % (fruit) list_fruits(fruits) print fruits
22.565217
100
0.628131
0
0
0
0
0
0
0
0
171
0.32948
0c04e662d416158f9b46ddaf7846e7bfe2b9fca2
3,439
py
Python
tests/test_cms_config.py
Aiky30/djangocms-content-expiry
da7d348bcdafbf1a9862e4cc69a8363b3305a31a
[ "BSD-3-Clause" ]
null
null
null
tests/test_cms_config.py
Aiky30/djangocms-content-expiry
da7d348bcdafbf1a9862e4cc69a8363b3305a31a
[ "BSD-3-Clause" ]
4
2021-09-27T10:15:13.000Z
2021-11-23T17:18:04.000Z
tests/test_cms_config.py
Aiky30/djangocms-content-expiry
da7d348bcdafbf1a9862e4cc69a8363b3305a31a
[ "BSD-3-Clause" ]
4
2021-09-06T20:13:45.000Z
2021-10-02T15:00:58.000Z
from unittest.mock import Mock from django.apps import apps from django.contrib import admin from django.test import RequestFactory, TestCase from djangocms_moderation.cms_config import ModerationExtension from djangocms_moderation.models import ModerationRequestTreeNode from djangocms_content_expiry.cms_config import ( ContentExpiryAppConfig, ContentExpiryExtension, ) from djangocms_content_expiry.constants import CONTENT_EXPIRY_EXPIRE_FIELD_LABEL class ModerationConfigDependancyTestCase(TestCase): def test_moderation_config_admin_controls_exist(self): """ Moderation controls are required for the content expiry records to be viewed, ensure that they exist, a failure here means that the implementation in moderation may have been changed """ moderation_extension = ModerationExtension() self.assertTrue(hasattr(moderation_extension, "moderation_request_changelist_actions")) self.assertTrue(hasattr(moderation_extension, "moderation_request_changelist_fields")) self.assertTrue( hasattr(moderation_extension, "handle_moderation_request_changelist_actions") and callable(moderation_extension.handle_moderation_request_changelist_actions) ) self.assertTrue( hasattr(moderation_extension, "handle_moderation_request_changelist_fields") and callable(moderation_extension.handle_moderation_request_changelist_fields) ) def test_moderation_config_admin_controls_are_compiled_by_moderation(self): moderation = apps.get_app_config("djangocms_moderation") content_expiry_actions = ContentExpiryAppConfig.moderation_request_changelist_actions content_expiry_fields = ContentExpiryAppConfig.moderation_request_changelist_fields self.assertListEqual( moderation.cms_extension.moderation_request_changelist_actions, content_expiry_actions, ) self.assertListEqual( moderation.cms_extension.moderation_request_changelist_fields, content_expiry_fields, ) def test_moderation_request_contains_added_admin_fields(self): """ Ensure that the admin field is added as expected """ moderation_admin = admin.site._registry[ModerationRequestTreeNode] request = RequestFactory().get("/") list_display = moderation_admin.get_list_display(request) self.assertIn('get_expiry_date', list_display) self.assertEqual(CONTENT_EXPIRY_EXPIRE_FIELD_LABEL, moderation_admin.get_expiry_date.short_description) class ContentExpiryChangelistQueryFilterSettingTestCase(TestCase): def test_valid_cms_config_parameters(self): def _dummy_fn(site, queryset): return queryset def _another_dummy_fn(site, queryset): return queryset extension = ContentExpiryExtension() app_1_config = Mock( djangocms_content_expiry_changelist_queryset_filters=[_dummy_fn], ) extension.configure_app(app_1_config) app_2_config = Mock( djangocms_content_expiry_changelist_queryset_filters=[_another_dummy_fn], ) extension.configure_app(app_2_config) self.assertTrue(_dummy_fn in extension.expiry_changelist_queryset_filters) self.assertTrue(_another_dummy_fn in extension.expiry_changelist_queryset_filters)
40.458824
111
0.756325
2,969
0.863332
0
0
0
0
0
0
504
0.146554
0c0689f206c41c5e5d28c78e11446ccb008b17b1
4,466
py
Python
tilequeue/format/OSciMap4/StaticVals/__init__.py
ducdk90/tilequeue
c664b5c89a9f0e6743405ab266aa9ca80b57806e
[ "MIT" ]
29
2016-11-03T18:39:21.000Z
2022-02-27T17:42:37.000Z
tilequeue/format/OSciMap4/StaticVals/__init__.py
ducdk90/tilequeue
c664b5c89a9f0e6743405ab266aa9ca80b57806e
[ "MIT" ]
146
2016-07-07T16:41:07.000Z
2021-12-11T00:27:20.000Z
tilequeue/format/OSciMap4/StaticVals/__init__.py
ducdk90/tilequeue
c664b5c89a9f0e6743405ab266aa9ca80b57806e
[ "MIT" ]
28
2016-08-19T16:08:52.000Z
2021-07-26T10:16:29.000Z
vals = { "yes" : 0, "residential" : 1, "service" : 2, "unclassified" : 3, "stream" : 4, "track" : 5, "water" : 6, "footway" : 7, "tertiary" : 8, "private" : 9, "tree" : 10, "path" : 11, "forest" : 12, "secondary" : 13, "house" : 14, "no" : 15, "asphalt" : 16, "wood" : 17, "grass" : 18, "paved" : 19, "primary" : 20, "unpaved" : 21, "bus_stop" : 22, "parking" : 23, "parking_aisle" : 24, "rail" : 25, "driveway" : 26, "8" : 27, "administrative" : 28, "locality" : 29, "turning_circle" : 30, "crossing" : 31, "village" : 32, "fence" : 33, "grade2" : 34, "coastline" : 35, "grade3" : 36, "farmland" : 37, "hamlet" : 38, "hut" : 39, "meadow" : 40, "wetland" : 41, "cycleway" : 42, "river" : 43, "school" : 44, "trunk" : 45, "gravel" : 46, "place_of_worship" : 47, "farm" : 48, "grade1" : 49, "traffic_signals" : 50, "wall" : 51, "garage" : 52, "gate" : 53, "motorway" : 54, "living_street" : 55, "pitch" : 56, "grade4" : 57, "industrial" : 58, "road" : 59, "ground" : 60, "scrub" : 61, "motorway_link" : 62, "steps" : 63, "ditch" : 64, "swimming_pool" : 65, "grade5" : 66, "park" : 67, "apartments" : 68, "restaurant" : 69, "designated" : 70, "bench" : 71, "survey_point" : 72, "pedestrian" : 73, "hedge" : 74, "reservoir" : 75, "riverbank" : 76, "alley" : 77, "farmyard" : 78, "peak" : 79, "level_crossing" : 80, "roof" : 81, "dirt" : 82, "drain" : 83, "garages" : 84, "entrance" : 85, "street_lamp" : 86, "deciduous" : 87, "fuel" : 88, "trunk_link" : 89, "information" : 90, "playground" : 91, "supermarket" : 92, "primary_link" : 93, "concrete" : 94, "mixed" : 95, "permissive" : 96, "orchard" : 97, "grave_yard" : 98, "canal" : 99, "garden" : 100, "spur" : 101, "paving_stones" : 102, "rock" : 103, "bollard" : 104, "convenience" : 105, "cemetery" : 106, "post_box" : 107, "commercial" : 108, "pier" : 109, "bank" : 110, "hotel" : 111, "cliff" : 112, "retail" : 113, "construction" : 114, "-1" : 115, "fast_food" : 116, "coniferous" : 117, "cafe" : 118, "6" : 119, "kindergarten" : 120, "tower" : 121, "hospital" : 122, "yard" : 123, "sand" : 124, "public_building" : 125, "cobblestone" : 126, "destination" : 127, "island" : 128, "abandoned" : 129, "vineyard" : 130, "recycling" : 131, "agricultural" : 132, "isolated_dwelling" : 133, "pharmacy" : 134, "post_office" : 135, "motorway_junction" : 136, "pub" : 137, "allotments" : 138, "dam" : 139, "secondary_link" : 140, "lift_gate" : 141, "siding" : 142, "stop" : 143, "main" : 144, "farm_auxiliary" : 145, "quarry" : 146, "10" : 147, "station" : 148, "platform" : 149, "taxiway" : 150, "limited" : 151, "sports_centre" : 152, "cutline" : 153, "detached" : 154, "storage_tank" : 155, "basin" : 156, "bicycle_parking" : 157, "telephone" : 158, "terrace" : 159, "town" : 160, "suburb" : 161, "bus" : 162, "compacted" : 163, "toilets" : 164, "heath" : 165, "works" : 166, "tram" : 167, "beach" : 168, "culvert" : 169, "fire_station" : 170, "recreation_ground" : 171, "bakery" : 172, "police" : 173, "atm" : 174, "clothes" : 175, "tertiary_link" : 176, "waste_basket" : 177, "attraction" : 178, "viewpoint" : 179, "bicycle" : 180, "church" : 181, "shelter" : 182, "drinking_water" : 183, "marsh" : 184, "picnic_site" : 185, "hairdresser" : 186, "bridleway" : 187, "retaining_wall" : 188, "buffer_stop" : 189, "nature_reserve" : 190, "village_green" : 191, "university" : 192, "1" : 193, "bar" : 194, "townhall" : 195, "mini_roundabout" : 196, "camp_site" : 197, "aerodrome" : 198, "stile" : 199, "9" : 200, "car_repair" : 201, "parking_space" : 202, "library" : 203, "pipeline" : 204, "true" : 205, "cycle_barrier" : 206, "4" : 207, "museum" : 208, "spring" : 209, "hunting_stand" : 210, "disused" : 211, "car" : 212, "tram_stop" : 213, "land" : 214, "fountain" : 215, "hiking" : 216, "manufacture" : 217, "vending_machine" : 218, "kiosk" : 219, "swamp" : 220, "unknown" : 221, "7" : 222, "islet" : 223, "shed" : 224, "switch" : 225, "rapids" : 226, "office" : 227, "bay" : 228, "proposed" : 229, "common" : 230, "weir" : 231, "grassland" : 232, "customers" : 233, "social_facility" : 234, "hangar" : 235, "doctors" : 236, "stadium" : 237, "give_way" : 238, "greenhouse" : 239, "guest_house" : 240, "viaduct" : 241, "doityourself" : 242, "runway" : 243, "bus_station" : 244, "water_tower" : 245, "golf_course" : 246, "conservation" : 247, "block" : 248, "college" : 249, "wastewater_plant" : 250, "subway" : 251, "halt" : 252, "forestry" : 253, "florist" : 254, "butcher" : 255} def getValues(): return vals
17.111111
26
0.59382
0
0
0
0
0
0
0
0
2,481
0.555531
0c084907ab6f7a66d8c89aefdff3de051c8499ac
1,406
py
Python
encryption_client.py
salmanhiro/fernet-rabbitmq
8130514e6d21b7df9c78a28130c603512f500a23
[ "MIT" ]
null
null
null
encryption_client.py
salmanhiro/fernet-rabbitmq
8130514e6d21b7df9c78a28130c603512f500a23
[ "MIT" ]
null
null
null
encryption_client.py
salmanhiro/fernet-rabbitmq
8130514e6d21b7df9c78a28130c603512f500a23
[ "MIT" ]
null
null
null
import pika import uuid import time import json class FernetRpc(object): def __init__(self): self.connection = pika.BlockingConnection( pika.ConnectionParameters(host='localhost')) self.channel = self.connection.channel() result = self.channel.queue_declare(queue='', exclusive=True) self.callback_queue = result.method.queue self.channel.basic_consume( queue=self.callback_queue, on_message_callback=self.on_response, auto_ack=True) def on_response(self, ch, method, props, body): if self.corr_id == props.correlation_id: self.response = body def call(self, n): self.response = None self.corr_id = str(uuid.uuid4()) self.channel.basic_publish( exchange='', routing_key='rpc_queue', properties=pika.BasicProperties( reply_to=self.callback_queue, correlation_id=self.corr_id, ), body=json.dumps(n)) while self.response is None: self.connection.process_data_events() return (self.response) message = {"text":"kulikuli"} fernet_result = FernetRpc() print(" [x] Requesting user") start = time.time() response = fernet_result.call(message) end = time.time() - start print(" [v] Got %r" % response) print(" [.] Time elapsed %r s" %end)
26.528302
69
0.619488
1,109
0.788762
0
0
0
0
0
0
101
0.071835
0c0862941d8ae706603317f21fde751ca0bd01fb
3,225
py
Python
services/cert_server/project/tests/test_cert_server.py
EvaldoNeto/openvpn-http
73d75a990d5d7ed7f89a526c0ce324db42c37f1f
[ "MIT" ]
5
2019-11-19T02:54:05.000Z
2020-03-03T19:48:41.000Z
services/cert_server/project/tests/test_cert_server.py
EvaldoNeto/openvpn-http
73d75a990d5d7ed7f89a526c0ce324db42c37f1f
[ "MIT" ]
23
2019-10-31T12:00:37.000Z
2019-11-22T21:00:28.000Z
services/cert_server/project/tests/test_cert_server.py
EvaldoNeto/openvpn-http
73d75a990d5d7ed7f89a526c0ce324db42c37f1f
[ "MIT" ]
null
null
null
# services/ovpn_server/project/tests/test_ovpn_server.py import os import json import io from flask import current_app from project.tests.base import BaseTestCase class TestOvpnServer(BaseTestCase): def test_certificates(self): with self.client: pki_path = current_app.config['PKI_PATH'] token = current_app.config['SECRET_KEY'] response = self.client.post( '/cert/upload', data={ 'file': (io.BytesIO(b'test'), 'test_cert.req'), 'cert': 'False' }, content_type='multipart/form-data', headers={'Authorization': f'Bearer {token}'} ) data = json.loads(response.data.decode()) self.assertIn('file uploaded', data['message']) self.assertEqual(response.status_code, 200) self.assertTrue(os.path.isfile(f'{pki_path}/reqs/test_cert.req')) os.remove(f'{pki_path}/reqs/test_cert.req') self.assertFalse(os.path.isfile(f'{pki_path}/reqs/test_cert.req')) def test_certificates_invalid_token(self): with self.client: filename = 'test_cert.crt' token = "INVALID_TOKEN" response = self.client.post( '/cert/upload', data={'file': (io.BytesIO(b'test'), filename)}, headers={'Authorization': f'Bearer {token}'} ) data = json.loads(response.data.decode()) self.assertIn(f'Provide a valid auth token', data['message']) self.assertEqual(response.status_code, 401) def test_certificates_no_token(self): with self.client: filename = 'test_cert.crt' response = self.client.post( '/cert/upload', data={'file': (io.BytesIO(b'test'), filename)}, ) data = json.loads(response.data.decode()) self.assertIn(f'Provide a valid auth token', data['message']) self.assertEqual(response.status_code, 403) def test_certificate_no_file(self): """ Tests response when there is no file being sent """ with self.client: token = current_app.config['SECRET_KEY'] response = self.client.post( '/cert/upload', data={}, headers={'Authorization': f'Bearer {token}'} ) data = json.loads(response.data.decode()) self.assertIn('No file', data['message']) self.assertEqual(response.status_code, 400) def test_certificates_invalid_file(self): """ Tests response when an invalid file is sent """ with self.client: token = current_app.config['SECRET_KEY'] response = self.client.post( '/cert/upload', data={'file': (io.BytesIO(str.encode('test')), 'test.txt')}, headers={'Authorization': f'Bearer {token}'} ) data = json.loads(response.data.decode()) self.assertIn('Not a valid file', data['message']) self.assertEqual(response.status_code, 400)
37.068966
78
0.556279
3,056
0.947597
0
0
0
0
0
0
834
0.258605
0c08971682b47651e14df294d06cff25310ada7b
956
py
Python
powerline/lib/watcher/stat.py
MrFishFinger/powerline
361534bafecf836e100eaff257c93eb4805f48db
[ "MIT" ]
11,435
2015-01-01T03:32:34.000Z
2022-03-31T20:39:05.000Z
powerline/lib/watcher/stat.py
ritiek/powerline
82c1373ba0b424c57e8c12cb5f6f1a7ee3829c27
[ "MIT" ]
879
2015-01-02T11:59:30.000Z
2022-03-24T09:52:17.000Z
powerline/lib/watcher/stat.py
ritiek/powerline
82c1373ba0b424c57e8c12cb5f6f1a7ee3829c27
[ "MIT" ]
1,044
2015-01-05T22:37:53.000Z
2022-03-17T19:43:16.000Z
# vim:fileencoding=utf-8:noet from __future__ import (unicode_literals, division, absolute_import, print_function) import os from threading import RLock from powerline.lib.path import realpath class StatFileWatcher(object): def __init__(self): self.watches = {} self.lock = RLock() def watch(self, path): path = realpath(path) with self.lock: self.watches[path] = os.path.getmtime(path) def unwatch(self, path): path = realpath(path) with self.lock: self.watches.pop(path, None) def is_watching(self, path): with self.lock: return realpath(path) in self.watches def __call__(self, path): path = realpath(path) with self.lock: if path not in self.watches: self.watches[path] = os.path.getmtime(path) return True mtime = os.path.getmtime(path) if mtime != self.watches[path]: self.watches[path] = mtime return True return False def close(self): with self.lock: self.watches.clear()
21.244444
84
0.706067
757
0.791841
0
0
0
0
0
0
29
0.030335
0c08a69ecbe4701e579ed0c55e6c61397156d087
2,531
py
Python
refData/mlpy/mlpy-3.5.0/mlpy/bordacount/borda.py
xrick/DTW-Tutorial
bbbce1c2beff91384cdcb7dbf503f93ad2fa285c
[ "MIT" ]
null
null
null
refData/mlpy/mlpy-3.5.0/mlpy/bordacount/borda.py
xrick/DTW-Tutorial
bbbce1c2beff91384cdcb7dbf503f93ad2fa285c
[ "MIT" ]
null
null
null
refData/mlpy/mlpy-3.5.0/mlpy/bordacount/borda.py
xrick/DTW-Tutorial
bbbce1c2beff91384cdcb7dbf503f93ad2fa285c
[ "MIT" ]
null
null
null
## This code is written by Davide Albanese, <albanese@fbk.eu>. ## (C) 2010 mlpy Developers. ## This program is free software: you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation, either version 3 of the License, or ## (at your option) any later version. ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## You should have received a copy of the GNU General Public License ## along with this program. If not, see <http://www.gnu.org/licenses/>. __all__ = ['borda_count'] import numpy as np import sys if sys.version >= '3': from . import cborda else: import cborda def borda_count(x, k=None): """Given N ranked ids lists of length P compute the number of extractions on top-k positions and the mean position for each id. Sort the element ids with decreasing number of extractions, and element ids with equal number of extractions will be sorted with increasing mean positions. :Parameters: x : 2d array_like object integer (N, P) ranked ids lists. For each list ids must be unique in [0, P-1]. k : None or integer compute borda on top-k position (None -> k = P) :Returns: borda : 1d numpy array objects sorted-ids, number of extractions, mean positions Example: >>> import numpy as np >>> import mlpy >>> x = [[2,4,1,3,0], # first ranked list ... [3,4,1,2,0], # second ranked list ... [2,4,3,0,1], # third ranked list ... [0,1,4,2,3]] # fourth ranked list >>> mlpy.borda_count(x=x, k=3) (array([4, 1, 2, 3, 0]), array([4, 3, 2, 2, 1]), array([ 1.25 , 1.66666667, 0. , 1. , 0. ])) * Id 4 is in the first position with 4 extractions and mean position 1.25. * Id 1 is in the first position with 3 extractions and mean position 1.67. * ... """ x_arr = np.asarray(x, dtype=np.int) n, p = x_arr.shape if k == None: k = p if k < 1 or k > p: raise ValueError('k must be in [1, %d]' % p) ext, pos = cborda.core(x_arr, k) invpos = (pos + 1)**(-1) # avoid zero division idx = np.lexsort(keys=(invpos, ext))[::-1] return idx, ext[idx], pos[idx]
32.448718
126
0.614382
0
0
0
0
0
0
0
0
2,036
0.804425
0c08ae96e8b31b452042a012ea2cbfe21f5f54d5
2,641
py
Python
envs/base_mujoco_env.py
zaynahjaved/AWAC
e225eeb8c0cd3498ab55ce15a9de60cb4e957c50
[ "MIT" ]
null
null
null
envs/base_mujoco_env.py
zaynahjaved/AWAC
e225eeb8c0cd3498ab55ce15a9de60cb4e957c50
[ "MIT" ]
null
null
null
envs/base_mujoco_env.py
zaynahjaved/AWAC
e225eeb8c0cd3498ab55ce15a9de60cb4e957c50
[ "MIT" ]
null
null
null
''' All cartgripper env modules built on cartrgipper implementation in https://github.com/SudeepDasari/visual_foresight ''' from abc import ABC from mujoco_py import load_model_from_path, MjSim import numpy as np from base_env import BaseEnv class BaseMujocoEnv(BaseEnv, ABC): def __init__(self, model_path, _hp): super(BaseMujocoEnv, self).__init__() self._frame_height = _hp.viewer_image_height self._frame_width = _hp.viewer_image_width self._reset_sim(model_path) self._base_adim, self._base_sdim = None, None #state/action dimension of Mujoco control self._adim, self._sdim = None, None #state/action dimension presented to agent self.num_objects, self._n_joints = None, None self._goal_obj_pose = None self._goaldistances = [] self._ncam = _hp.ncam if self._ncam == 2: self.cameras = ['maincam', 'leftcam'] elif self._ncam == 1: self.cameras = ['maincam'] else: raise ValueError self._last_obs = None self._hp = _hp def _default_hparams(self): parent_params = super()._default_hparams() parent_params['viewer_image_height'] = 256 parent_params['viewer_image_width'] = 256 parent_params['ncam'] = 1 return parent_params def set_goal_obj_pose(self, pose): self._goal_obj_pose = pose def _reset_sim(self, model_path): """ Creates a MjSim from passed in model_path :param model_path: Absolute path to model file :return: None """ self._model_path = model_path self.sim = MjSim(load_model_from_path(self._model_path)) def reset(self): self._goaldistances = [] def render(self): """ Renders the enviornment. Implements custom rendering support. If mode is: - dual: renders both left and main cameras - left: renders only left camera - main: renders only main (front) camera :param mode: Mode to render with (dual by default) :return: uint8 numpy array with rendering from sim """ images = np.zeros( (self._ncam, self._frame_height, self._frame_width, 3), dtype=np.uint8) for i, cam in enumerate(self.cameras): images[i] = self.sim.render( self._frame_width, self._frame_height, camera_name=cam) return images @property def adim(self): return self._adim @property def sdim(self): return self._sdim @property def ncam(self): return self._ncam
29.344444
96
0.632336
2,395
0.906853
0
0
165
0.062476
0
0
779
0.294964
0c08ff139766a0d536bcc09bc242b07f333b8755
853
py
Python
HackerRank/Two Sum/Two Sum.py
nikku1234/Code-Practise
94eb6680ea36efd10856c377000219285f77e5a4
[ "Apache-2.0" ]
9
2020-07-02T06:06:17.000Z
2022-02-26T11:08:09.000Z
HackerRank/Two Sum/Two Sum.py
nikku1234/Code-Practise
94eb6680ea36efd10856c377000219285f77e5a4
[ "Apache-2.0" ]
1
2021-11-04T17:26:36.000Z
2021-11-04T17:26:36.000Z
HackerRank/Two Sum/Two Sum.py
nikku1234/Code-Practise
94eb6680ea36efd10856c377000219285f77e5a4
[ "Apache-2.0" ]
8
2021-01-31T10:31:12.000Z
2022-03-13T09:15:55.000Z
class Solution: def twoSum(self, nums: List[int], target: int) -> List[int]: """Naive Logic""" ''' for i in range(len(nums)): left = nums[i+1:] for j in range(len(left)): if (nums[i]+left[j]) ==target : return i,j+i+1 ''' '''Better Logic''' ''' k=0 for i in nums: k = k+1 if target-i in nums[k:]: return(k - 1, nums[k:].index(target - i) + k) ''' '''Going for a better logic HashTable''' hash_table={} for i in range(len(nums)): hash_table[nums[i]]=i for i in range(len(nums)): if target-nums[i] in hash_table: if hash_table[target-nums[i]] != i: return [i, hash_table[target-nums[i]] ] return []
32.807692
64
0.444314
853
1
0
0
0
0
0
0
439
0.514654
0c097274adeceb2e1e44250ea00c4016e23c60ed
191
py
Python
Desafios/desafio009.py
LucasHenrique-dev/Exercicios-Python
b1f6ca56ea8e197a89a044245419dc6079bdb9c7
[ "MIT" ]
1
2020-04-09T23:18:03.000Z
2020-04-09T23:18:03.000Z
Desafios/desafio009.py
LucasHenrique-dev/Exercicios-Python
b1f6ca56ea8e197a89a044245419dc6079bdb9c7
[ "MIT" ]
null
null
null
Desafios/desafio009.py
LucasHenrique-dev/Exercicios-Python
b1f6ca56ea8e197a89a044245419dc6079bdb9c7
[ "MIT" ]
null
null
null
n1 = int(input('Digite um número e veja qual a sua tabuada: ')) n = 0 print('{} X {:2} = {:2}'.format(n1, 0, n1*n)) while n < 10: n += 1 print('{} X {:2} = {:2}'.format(n1, n, n1*n))
27.285714
63
0.502618
0
0
0
0
0
0
0
0
83
0.432292
0c09891ffb40760a1dcac5e46984a7d055ce0caf
2,587
py
Python
web/app/djrq/admin/admin.py
bmillham/djrq2
c84283b75a7c15da1902ebfc32b7d75159c09e20
[ "MIT" ]
1
2016-11-23T20:50:00.000Z
2016-11-23T20:50:00.000Z
web/app/djrq/admin/admin.py
bmillham/djrq2
c84283b75a7c15da1902ebfc32b7d75159c09e20
[ "MIT" ]
15
2017-01-15T04:18:40.000Z
2017-02-25T04:13:06.000Z
web/app/djrq/admin/admin.py
bmillham/djrq2
c84283b75a7c15da1902ebfc32b7d75159c09e20
[ "MIT" ]
null
null
null
# encoding: utf-8 from web.ext.acl import when from ..templates.admin.admintemplate import page as _page from ..templates.admin.requests import requeststemplate, requestrow from ..templates.requests import requestrow as rr from ..send_update import send_update import cinje @when(when.matches(True, 'session.authenticated', True), when.never) class Admin: __dispatch__ = 'resource' __resource__ = 'admin' from .suggestions import Suggestions as suggestions from .mistags import Mistags as mistags from .auth import Auth as auth from .logout import Logout as logout from .showinfo import ShowInfo as showinfo from .requestoptions import RequestOptions as requestoptions from .catalogoptions import CatalogOptions as catalogoptions from .uploadfiles import UploadFiles as uploadfiles from .updatedatabase import UpdateDatabase as updatedatabase from .changepw import ChangePassword as changepw from .showhistory import ShowHistory as showhistory from .restoredatabase import RestoreDatabase as restoredatabase, CurrentProgress as currentprogress from .updatehistory import UpdateHistory as updatehistory def __init__(self, context, name, *arg, **args): self._name = name self._ctx = context self.queries = context.queries def get(self, *arg, **args): if len(arg) > 0 and arg[0] != 'requests': return "Page not found: {}".format(arg[0]) if 'view_status' not in args: args['view_status'] = 'New/Pending' if 'change_status' in args: changed_row = self.queries.change_request_status(args['id'], args['status']) try: request_row = cinje.flatten(rr(changed_row)) except: request_row = '' # Row was deleted np_info = self.queries.get_requests_info(status=args['view_status']) send_update(self._ctx.websocket, requestbutton=np_info.request_count, request_row=request_row, new_request_status=args['status'], request_id=args['id']) # Update the request count button send_update(self._ctx.websocket_admin, requestbutton=np_info.request_count) # Update the request count button requestlist = self.queries.get_requests(status=args['view_status']) try: requestinfo = np_info except: requestinfo = self.queries.get_requests_info(status=args['view_status']) return requeststemplate(_page, "Requests", self._ctx, requestlist=requestlist, view_status=args['view_status'], requestinfo=requestinfo)
43.847458
198
0.709702
2,241
0.866254
0
0
2,310
0.892926
0
0
312
0.120603
0c0a4769116e4e6ba1cffb9d2ccffc9442014420
895
py
Python
Middle/Que33.py
HuangZengPei/LeetCode
d2b8a1dfe986d71d02d2568b55bad6e5b1c81492
[ "MIT" ]
2
2019-11-20T14:05:27.000Z
2019-11-20T14:05:28.000Z
Middle/Que33.py
HuangZengPei/LeetCode
d2b8a1dfe986d71d02d2568b55bad6e5b1c81492
[ "MIT" ]
null
null
null
Middle/Que33.py
HuangZengPei/LeetCode
d2b8a1dfe986d71d02d2568b55bad6e5b1c81492
[ "MIT" ]
null
null
null
class Solution(object): def search(self, nums, target): """ :type nums: List[int] :type target: int :rtype: int """ return binarySearch(nums,target,0,len(nums)-1) def binarySearch(nums, target, low, high): if (low > high): return -1 middle = low + (high - low)/2 if nums[middle] == target: return middle if nums[low] <= nums[middle]: if nums[low] < target and target < nums[middle]: # 在左边 return binarySearch(nums,target,low,middle-1) else: return binarySearch(nums,target,middle+1,high) else: if nums[middle] < target and target < nums[high]: return binarySearch(nums,target,middle+1,high) else: return binarySearch(nums,target,low,middle-1)
34.423077
69
0.521788
892
0.990011
0
0
0
0
0
0
102
0.113208
0c0beaeefd6502afde93d7709e2ca76e12632ed9
2,560
py
Python
save.py
regismeyssonnier/NeuralNetwork
c998b9523ed02287e1c811d73b0757270dee773c
[ "MIT" ]
null
null
null
save.py
regismeyssonnier/NeuralNetwork
c998b9523ed02287e1c811d73b0757270dee773c
[ "MIT" ]
null
null
null
save.py
regismeyssonnier/NeuralNetwork
c998b9523ed02287e1c811d73b0757270dee773c
[ "MIT" ]
null
null
null
def write_file(filess, T): f = open(filess, "w") for o in T: f.write("[\n") for l in o: f.write(str(l)+"\n") f.write("]\n") f.close() def save_hidden_weight(nb_hidden, hiddenw): for i in range(nb_hidden): write_file("save/base_nn_hid_" + str(i+1) + "w.nn", hiddenw[i]) def load_hiddenw(filess, hiddenw): f = open(filess, "r") s = f.read().splitlines() h = 0 for o in s: #print(o) if o == "[": h = [] elif o == "]": hiddenw.append(h) else: h.append(float(o)) def load_hidden_weight(hiddenw, nb_hidden): for i in range(nb_hidden): hiddenw.append([]) load_hiddenw("save/base_nn_hid_" + str(i+1) + "w.nn", hiddenw[i]) def load_hidden_weight_v(hiddenw, nb_hidden): for i in range(nb_hidden): hiddenw.append([]) load_hiddenw("valid/NN/base_nn_hid_" + str(i+1) + "w.nn", hiddenw[i]) def display_hidden_weight(hiddenw, nb_hidden): for i in range(nb_hidden): for j in hiddenw[i]: print("------------------------------------") I = 0 for k in j: print(k) I+=1 if I > 3: break def write_fileb(filess, T): f = open(filess, "w") for o in T: f.write(str(o)+"\n") f.close() def save_hidden_bias(nb_hidden, hiddenb): for i in range(nb_hidden): write_fileb("save/base_nn_hid_" + str(i+1) + "b.nn", hiddenb[i]) def load_hiddenb(filess, hiddenb): f = open(filess, "r") s = f.read().splitlines() for o in s: hiddenb.append(float(o)) def load_hidden_bias(hiddenb, nb_hidden): for i in range(nb_hidden): hiddenb.append([]) load_hiddenb("save/base_nn_hid_" + str(i+1) + "b.nn", hiddenb[i]) def load_hidden_bias_v(hiddenb, nb_hidden): for i in range(nb_hidden): hiddenb.append([]) load_hiddenb("valid/NN/base_nn_hid_" + str(i+1) + "b.nn", hiddenb[i]) def display_hidden_bias(hiddenb, nb_hidden): for i in range(nb_hidden): print("------------------------------------") for j in hiddenb[i]: print(j) def save_output_weight(outputw): write_file("save/base_nn_out_w.nn", outputw[0]) def load_output_weight(outputw): outputw.append([]) load_hiddenw("save/base_nn_out_w.nn", outputw[0]) def load_output_weight_v(outputw): outputw.append([]) load_hiddenw("valid/NN/base_nn_out_w.nn", outputw[0]) def save_output_bias(outputb): write_fileb("save/base_nn_out_b.nn", outputb[0]) def load_output_bias(outputb): outputb.append([]) load_hiddenb("save/base_nn_out_b.nn", outputb[0]) def load_output_bias_v(outputb): outputb.append([]) load_hiddenb("valid/NN/base_nn_out_b.nn", outputb[0])
17.902098
71
0.636328
0
0
0
0
0
0
0
0
425
0.166016
0c0c0154d635c140279cd61ef15b6dfc6c89cd23
755
py
Python
test_knot_hasher.py
mmokko/aoc2017
0732ac440775f9e6bd4a8447c665c9b0e6969f74
[ "MIT" ]
null
null
null
test_knot_hasher.py
mmokko/aoc2017
0732ac440775f9e6bd4a8447c665c9b0e6969f74
[ "MIT" ]
null
null
null
test_knot_hasher.py
mmokko/aoc2017
0732ac440775f9e6bd4a8447c665c9b0e6969f74
[ "MIT" ]
null
null
null
from unittest import TestCase from day10 import KnotHasher class TestKnotHasher(TestCase): def test_calc(self): sut = KnotHasher(5, [3, 4, 1, 5]) self.assertEqual(12, sut.calc()) def test_hash1(self): sut = KnotHasher(256, '') self.assertEqual('a2582a3a0e66e6e86e3812dcb672a272', sut.hash()) def test_hash2(self): sut = KnotHasher(256, 'AoC 2017') self.assertEqual('33efeb34ea91902bb2f59c9920caa6cd', sut.hash()) def test_hash3(self): sut = KnotHasher(256, '1,2,3') self.assertEqual('3efbe78a8d82f29979031a4aa0b16a9d', sut.hash()) def test_hash4(self): sut = KnotHasher(256, '1,2,4') self.assertEqual('63960835bcdc130f0b66d7ff4f6a5a8e', sut.hash())
30.2
72
0.658278
693
0.917881
0
0
0
0
0
0
162
0.21457
0c0c55cfe0bc18dae70bf566cb7d439dd048fafe
602
py
Python
udp/src/server.py
matthewchute/net-prot
82d2d92b3c88afb245161780fdd7909d7bf15eb1
[ "MIT" ]
null
null
null
udp/src/server.py
matthewchute/net-prot
82d2d92b3c88afb245161780fdd7909d7bf15eb1
[ "MIT" ]
null
null
null
udp/src/server.py
matthewchute/net-prot
82d2d92b3c88afb245161780fdd7909d7bf15eb1
[ "MIT" ]
null
null
null
import constants, helpers, os temp_msg = None whole_msg = b'' file_path = None helpers.sock.bind(constants.IP_PORT) print "Server Ready" # recieve while temp_msg != constants.EOF: datagram = helpers.sock.recvfrom(constants.BUFFER_SIZE) temp_msg = datagram[0] if file_path is None: print("Receiving " + temp_msg.decode() + "...") file_path = os.path.join(constants.SERVER_FILE_PATH, temp_msg.decode()) else: whole_msg += temp_msg whole_msg = whole_msg.strip(constants.EOF) with open(file_path, 'wb') as sFile: sFile.write(whole_msg) print "Received"
22.296296
79
0.696013
0
0
0
0
0
0
0
0
58
0.096346
0c0dcfc232bbe604e854e762de0825bd246ecc01
3,697
py
Python
sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/models/hostname_configuration.py
tzhanl/azure-sdk-for-python
18cd03f4ab8fd76cc0498f03e80fbc99f217c96e
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/models/hostname_configuration.py
tzhanl/azure-sdk-for-python
18cd03f4ab8fd76cc0498f03e80fbc99f217c96e
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/models/hostname_configuration.py
tzhanl/azure-sdk-for-python
18cd03f4ab8fd76cc0498f03e80fbc99f217c96e
[ "MIT" ]
1
2019-06-17T22:18:23.000Z
2019-06-17T22:18:23.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class HostnameConfiguration(Model): """Custom hostname configuration. All required parameters must be populated in order to send to Azure. :param type: Required. Hostname type. Possible values include: 'Proxy', 'Portal', 'Management', 'Scm', 'DeveloperPortal' :type type: str or ~azure.mgmt.apimanagement.models.HostnameType :param host_name: Required. Hostname to configure on the Api Management service. :type host_name: str :param key_vault_id: Url to the KeyVault Secret containing the Ssl Certificate. If absolute Url containing version is provided, auto-update of ssl certificate will not work. This requires Api Management service to be configured with MSI. The secret should be of type *application/x-pkcs12* :type key_vault_id: str :param encoded_certificate: Base64 Encoded certificate. :type encoded_certificate: str :param certificate_password: Certificate Password. :type certificate_password: str :param default_ssl_binding: Specify true to setup the certificate associated with this Hostname as the Default SSL Certificate. If a client does not send the SNI header, then this will be the certificate that will be challenged. The property is useful if a service has multiple custom hostname enabled and it needs to decide on the default ssl certificate. The setting only applied to Proxy Hostname Type. Default value: False . :type default_ssl_binding: bool :param negotiate_client_certificate: Specify true to always negotiate client certificate on the hostname. Default Value is false. Default value: False . :type negotiate_client_certificate: bool :param certificate: Certificate information. :type certificate: ~azure.mgmt.apimanagement.models.CertificateInformation """ _validation = { 'type': {'required': True}, 'host_name': {'required': True}, } _attribute_map = { 'type': {'key': 'type', 'type': 'str'}, 'host_name': {'key': 'hostName', 'type': 'str'}, 'key_vault_id': {'key': 'keyVaultId', 'type': 'str'}, 'encoded_certificate': {'key': 'encodedCertificate', 'type': 'str'}, 'certificate_password': {'key': 'certificatePassword', 'type': 'str'}, 'default_ssl_binding': {'key': 'defaultSslBinding', 'type': 'bool'}, 'negotiate_client_certificate': {'key': 'negotiateClientCertificate', 'type': 'bool'}, 'certificate': {'key': 'certificate', 'type': 'CertificateInformation'}, } def __init__(self, **kwargs): super(HostnameConfiguration, self).__init__(**kwargs) self.type = kwargs.get('type', None) self.host_name = kwargs.get('host_name', None) self.key_vault_id = kwargs.get('key_vault_id', None) self.encoded_certificate = kwargs.get('encoded_certificate', None) self.certificate_password = kwargs.get('certificate_password', None) self.default_ssl_binding = kwargs.get('default_ssl_binding', False) self.negotiate_client_certificate = kwargs.get('negotiate_client_certificate', False) self.certificate = kwargs.get('certificate', None)
48.012987
94
0.678117
3,181
0.860427
0
0
0
0
0
0
2,846
0.769813
0c0decf0160c2c2495315ba2014b0b8cb06458ac
4,717
py
Python
src/interactive_conditional_samples.py
50417/gpt-2
0e0b3c97efb0048abffb2947aaa8573a783706ed
[ "MIT" ]
null
null
null
src/interactive_conditional_samples.py
50417/gpt-2
0e0b3c97efb0048abffb2947aaa8573a783706ed
[ "MIT" ]
null
null
null
src/interactive_conditional_samples.py
50417/gpt-2
0e0b3c97efb0048abffb2947aaa8573a783706ed
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import fire import json import os import numpy as np import tensorflow as tf import model, sample, encoder def interact_model( model_name='117M', seed=None, nsamples=1000, batch_size=1, length=None, temperature=1, top_k=0, top_p=0.0 ): """ Interactively run the model :model_name=117M : String, which model to use :seed=None : Integer seed for random number generators, fix seed to reproduce results :nsamples=1 : Number of samples to return total :batch_size=1 : Number of batches (only affects speed/memory). Must divide nsamples. :length=None : Number of tokens in generated text, if None (default), is determined by model hyperparameters :temperature=1 : Float value controlling randomness in boltzmann distribution. Lower temperature results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive. Higher temperature results in more random completions. :top_k=0 : Integer value controlling diversity. 1 means only 1 word is considered for each step (token), resulting in deterministic completions, while 40 means 40 words are considered at each step. 0 (default) is a special setting meaning no restrictions. 40 generally is a good value. :top_p=0.0 : Float value controlling diversity. Implements nucleus sampling, overriding top_k if set to a value > 0. A good setting is 0.9. """ if batch_size is None: batch_size = 1 assert nsamples % batch_size == 0 enc = encoder.get_encoder(model_name) hparams = model.default_hparams() with open(os.path.join('models', model_name, 'hparams.json')) as f: hparams.override_from_dict(json.load(f)) if length is None: length = hparams.n_ctx // 2 print(length) #elif length > hparams.n_ctx: # raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx) #config = tf.ConfigProto(device_count={'GPU': 0}) config = tf.ConfigProto() with tf.Session(graph=tf.Graph(),config=config) as sess: context = tf.placeholder(tf.int32, [batch_size, None]) np.random.seed(seed) tf.set_random_seed(seed) raw_text = """Model {""" #input("Model prompt >>> ") context_tokens = enc.encode(raw_text) output = sample.sample_sequence( hparams=hparams, length=length, context=context, batch_size=batch_size, temperature=temperature, top_k=top_k, top_p=top_p ) saver = tf.train.Saver() ckpt = tf.train.latest_checkpoint(os.path.join('models', model_name)) saver.restore(sess, ckpt) from datetime import datetime #while True: generated = 0 import time grand_start = time.time() for cnt in range(nsamples // batch_size): start_per_sample = time.time() output_text = raw_text text = raw_text context_tokens = enc.encode(text) #raw_text = input("Model prompt >>> ") # while not raw_text: # print('Prompt should not be empty!') # raw_text = input("Model prompt >>> ") #print(context_tokens) #file_to_save.write(raw_text) #for cnt in range(nsamples // batch_size): while "<|endoftext|>" not in text: out = sess.run(output, feed_dict={context: [context_tokens for _ in range(batch_size)]})[:, len(context_tokens):] for i in range(batch_size): #generated += 1 text = enc.decode(out[i]) if "<|endoftext|>" in text: sep = "<|endoftext|>" rest = text.split(sep, 1)[0] output_text += rest break context_tokens = enc.encode(text) output_text += text print("=" * 40 + " SAMPLE " + str(cnt+12) + " " + "=" * 40) minutes, seconds = divmod(time.time() - start_per_sample, 60) print("Output Done : {:0>2}:{:05.2f}".format(int(minutes),seconds) ) print("=" * 80) with open("Simulink_sample/sample__"+str(cnt+12)+".mdl","w+") as f: f.write(output_text) elapsed_total = time.time()-grand_start hours, rem = divmod(elapsed_total,3600) minutes, seconds = divmod(rem, 60) print("Total time to generate 1000 samples :{:0>2}:{:0>2}:{:05.2f}".format(int(hours),int(minutes),seconds)) if __name__ == '__main__': fire.Fire(interact_model)
38.349593
116
0.606954
0
0
0
0
0
0
0
0
1,928
0.408734
0c0e5be12d46a3b1b4e3d634643649fcf6a3f4da
291
py
Python
todofy/tests/conftest.py
bokiex/eti_todo
1c636d0973c57d4253440b4528185dba0ecb9d05
[ "BSD-3-Clause" ]
1
2019-11-29T09:52:19.000Z
2019-11-29T09:52:19.000Z
todofy/tests/conftest.py
bokiex/eti_todo
1c636d0973c57d4253440b4528185dba0ecb9d05
[ "BSD-3-Clause" ]
28
2019-11-28T20:02:48.000Z
2022-02-10T14:04:45.000Z
todofy/tests/conftest.py
bokiex/eti_todo
1c636d0973c57d4253440b4528185dba0ecb9d05
[ "BSD-3-Clause" ]
null
null
null
import pytest @pytest.fixture(scope='module') def driver(): from selenium import webdriver options = webdriver.ChromeOptions() options.headless = True chrome = webdriver.Chrome(options=options) chrome.set_window_size(1440, 900) yield chrome chrome.close()
16.166667
46
0.704467
0
0
242
0.831615
274
0.941581
0
0
8
0.027491
0c0e6124651142c0387644ad144cc2392388c0c5
33
py
Python
Fase 4 - Temas avanzados/Tema 11 - Modulos/Leccion 01 - Modulos/Saludos/test.py
ruben69695/python-course
a3d3532279510fa0315a7636c373016c7abe4f0a
[ "MIT" ]
1
2019-01-27T20:44:53.000Z
2019-01-27T20:44:53.000Z
Fase 4 - Temas avanzados/Tema 11 - Modulos/Leccion 01 - Modulos/Saludos/test.py
ruben69695/python-course
a3d3532279510fa0315a7636c373016c7abe4f0a
[ "MIT" ]
null
null
null
Fase 4 - Temas avanzados/Tema 11 - Modulos/Leccion 01 - Modulos/Saludos/test.py
ruben69695/python-course
a3d3532279510fa0315a7636c373016c7abe4f0a
[ "MIT" ]
null
null
null
import saludos saludos.saludar()
11
17
0.818182
0
0
0
0
0
0
0
0
0
0
0c0ea1386a3f6993039b27ca1ae2f4e56ebc457c
1,033
py
Python
question_bank/split-array-into-fibonacci-sequence/split-array-into-fibonacci-sequence.py
yatengLG/leetcode-python
5d48aecb578c86d69835368fad3d9cc21961c226
[ "Apache-2.0" ]
9
2020-08-12T10:01:00.000Z
2022-01-05T04:37:48.000Z
question_bank/split-array-into-fibonacci-sequence/split-array-into-fibonacci-sequence.py
yatengLG/leetcode-python
5d48aecb578c86d69835368fad3d9cc21961c226
[ "Apache-2.0" ]
1
2021-02-16T10:19:31.000Z
2021-02-16T10:19:31.000Z
question_bank/split-array-into-fibonacci-sequence/split-array-into-fibonacci-sequence.py
yatengLG/leetcode-python
5d48aecb578c86d69835368fad3d9cc21961c226
[ "Apache-2.0" ]
4
2020-08-12T10:13:31.000Z
2021-11-05T01:26:58.000Z
# -*- coding: utf-8 -*- # @Author : LG """ 执行用时:148 ms, 在所有 Python3 提交中击败了35.57% 的用户 内存消耗:13.7 MB, 在所有 Python3 提交中击败了36.81% 的用户 解题思路: 回溯 具体实现见代码注释 """ class Solution: def splitIntoFibonacci(self, S: str) -> List[int]: def backtrack(S, current): if S == '' and len(current) > 2: # 字符串均处理完,且当前序列长度大于2, 返回最终结果 return True if S == '': # 当字符串处理完时,跳出 return for i in range(1, len(S)+1): # 遍历当前字符串 if (S[0] == '0' and i == 1) or (S[0] != '0'): # 排除以0 开头的非0数, 如 01 02 等 if int(S[:i]) < (2**31-1) and (len(current) < 2 or int(S[:i]) == int(current[-1]) + int(current[-2])): # 数字限制;长度判断,如长度小于2,直接添加,如长度大于2,需判断和 current.append(S[:i]) if backtrack(S[i:], current): return current current.pop() result = backtrack(S, []) if result: return result else: return []
30.382353
159
0.460794
1,039
0.798616
0
0
0
0
0
0
545
0.418909
0c111c07238e7921c9ce9cb0615b8ac96b16babf
2,771
py
Python
convert_bootswatch_vurple.py
douglaskastle/bootswatch
cb8f368c8d3671afddae487736d7cba6509b7f5b
[ "MIT" ]
null
null
null
convert_bootswatch_vurple.py
douglaskastle/bootswatch
cb8f368c8d3671afddae487736d7cba6509b7f5b
[ "MIT" ]
null
null
null
convert_bootswatch_vurple.py
douglaskastle/bootswatch
cb8f368c8d3671afddae487736d7cba6509b7f5b
[ "MIT" ]
null
null
null
import re import os values = { 'uc': 'Vurple', 'lc': 'vurple', 'cl': '#116BB7', } def main(): infile = "yeti/variables.less" f = open(infile, 'r') lines = f.readlines() f.close() outfile = values['lc'] + "/variables.less" f = open(outfile, 'w') for line in lines: line = re.sub('Yeti', values['uc'], line) line = re.sub('yeti', values['lc'], line) line = re.sub('#008cba', values['cl'], line) line = re.sub('headings-font-family: @font-family-base', 'headings-font-family: @font-family-header-sans-serif', line) if re.search("Open Sans", line): line = re.sub('Open Sans', 'Lato', line) line = '@font-family-header-sans-serif: "Orbitron", "Helvetica Neue", Helvetica, Arial, sans-serif;\n' + line f.write(line) f.close() infile = "yeti/bootswatch.less" f = open(infile, 'r') lines = f.readlines() f.close() outfile = values['lc'] + "/bootswatch.less" f = open(outfile, 'w') for line in lines: line = re.sub('Yeti', values['uc'], line) if re.search("Open\+Sans", line): continue if re.search("web-font-path", line): line = '@web-font-path2: "https://fonts.googleapis.com/css?family=Lato:400,700,400italic";\n' + line line = '@web-font-path: "https://fonts.googleapis.com/css?family=Orbitron:300italic,400italic,700italic,400,300,700";\n' + line line = line + '.web-font(@web-font-path2);\n' f.write(line) f.close() infile = "yeti/index.html" f = open(infile, 'r') lines = f.readlines() f.close() outfile = values['lc'] + "/index.html" f = open(outfile, 'w') for line in lines: line = re.sub('Yeti', values['uc'], line) line = re.sub('yeti', values['lc'], line) line = re.sub('UA-[0-9\-]+', '', line) f.write(line) f.close() cmd = "/cygdrive/c/Users/keeshand/AppData/Roaming/npm/grunt swatch:{0}".format(values['lc']) os.system(cmd) cmd = "cp {0}/bootstrap.min.css ../vurple_com/pelican-themes/bootstrap3/static/css/bootstrap.{0}.min.css".format(values['lc']) os.system(cmd) cmd = "cp bower_components/font-awesome/css/*.css ../vurple_com/pelican-themes/bootstrap3/static/css/." os.system(cmd) cmd = "cp bower_components/font-awesome/fonts/* ../vurple_com/pelican-themes/bootstrap3/static/fonts/." os.system(cmd) cmd = "cp bower_components/bootstrap/fonts/* ../vurple_com/pelican-themes/bootstrap3/static/fonts/." os.system(cmd) cmd = "cp bower_components/bootstrap/dist/js/* ../vurple_com/pelican-themes/bootstrap3/static/js/." os.system(cmd) if __name__ == '__main__': main()
35.075949
139
0.587153
0
0
0
0
0
0
0
0
1,298
0.468423
0c117a09b3c94bdc715dd3e404e0bc7ed330ac20
721
py
Python
python/interface_getPixel.py
BulliB/PixelTable
f08ff3a7908857583f3cbc1b689abf2e8739f7d8
[ "BSD-2-Clause" ]
2
2019-10-28T14:33:31.000Z
2019-10-30T10:08:58.000Z
python/interface_getPixel.py
BulliB/PixelTable
f08ff3a7908857583f3cbc1b689abf2e8739f7d8
[ "BSD-2-Clause" ]
33
2019-10-28T14:17:26.000Z
2020-02-22T11:04:02.000Z
python/interface_getPixel.py
BulliB/PixelTable
f08ff3a7908857583f3cbc1b689abf2e8739f7d8
[ "BSD-2-Clause" ]
2
2019-11-08T11:14:33.000Z
2019-11-19T21:22:54.000Z
#!/usr/bin/python3 from validData import * from command import * from readback import * import sys import time # Expected Input # 1: Row -> 0 to 9 # 2: Column -> 0 to 19 if ( isInt(sys.argv[1]) and strLengthIs(sys.argv[1],1) and isInt(sys.argv[2]) and (strLengthIs(sys.argv[2],1) or strLengthIs(sys.argv[2],2)) ): command = ["PixelToWeb"] command.append(sys.argv[1]) command.append(sys.argv[2]) setNewCommand(command) time.sleep(.3) print(readbackGet()) readbackClear() else: f = open("/var/www/pixel/python/.error", "a") f.write(sys.argv[0] + '\n') f.write(sys.argv[1] + '\n') f.write(sys.argv[2] + '\n') f.write(sys.argv[3] + '\n') f.close()
21.848485
89
0.601942
0
0
0
0
0
0
0
0
135
0.18724
0c11d6edd1fa7404e67e7a29c7dcaef50cd598a8
1,834
py
Python
FunTOTP/interface.py
Z33DD/FunTOTP
912c1a4a307af6a495f12a82305ae7dbf49916a2
[ "Unlicense" ]
3
2020-01-19T17:10:37.000Z
2022-02-19T18:39:20.000Z
FunTOTP/interface.py
Z33DD/FunTOTP
912c1a4a307af6a495f12a82305ae7dbf49916a2
[ "Unlicense" ]
null
null
null
FunTOTP/interface.py
Z33DD/FunTOTP
912c1a4a307af6a495f12a82305ae7dbf49916a2
[ "Unlicense" ]
1
2020-01-19T20:25:18.000Z
2020-01-19T20:25:18.000Z
from getpass import getpass from colorama import init, Fore, Back, Style yes = ['Y', 'y', 'YES', 'yes', 'Yes'] class interface(object): """ Terminal CLI """ def log(self, arg, get=False): if not get: print("[*]: {} ".format(arg)) else: return "[*]: {} ".format(arg) def error(self, arg, get=False): """Short summary. Parameters ---------- arg : str String to print get : bool If true, returns a string with the formated string Returns ------- str If get = true, returns a string with the formated string """ if not get: print(Fore.RED + "[ERROR]: {}".format(arg)) print(Style.RESET_ALL) exit(-1) else: return "[ERROR]: {}".format(arg) def warning(self, arg, get=False): if not get: print(Fore.YELLOW + "[!]: {}".format(arg), end='') print(Style.RESET_ALL) else: return "[!]: {}".format(arg) def sure(self): user = input(self.log("Are you sure? (y/N) ", get=True)) if user in yes: return 0 else: exit(0) def newpasswd(self): condition = True while condition is True: user_psswd = getpass("[*]: Password:") user_psswd_repeat = getpass("[*]: Repeat password:") if user_psswd == user_psswd_repeat: condition = False else: self.warning("Passwords don't match! Try again") return user_psswd_repeat def passwd(self): return getpass() def info(self, arg): print(Fore.BLACK + Back.WHITE + "[i]: {}".format(arg) + ' ', end='') print(Style.RESET_ALL)
25.123288
76
0.490185
1,721
0.938386
0
0
0
0
0
0
535
0.291712
0c1456a33812aa7157896227520f3def0676ad91
885
py
Python
envdsys/envcontacts/apps.py
NOAA-PMEL/envDataSystem
4db4a3569d2329658799a3eef06ce36dd5c0597d
[ "Unlicense" ]
1
2021-11-06T19:22:53.000Z
2021-11-06T19:22:53.000Z
envdsys/envcontacts/apps.py
NOAA-PMEL/envDataSystem
4db4a3569d2329658799a3eef06ce36dd5c0597d
[ "Unlicense" ]
25
2019-06-18T20:40:36.000Z
2021-07-23T20:56:48.000Z
envdsys/envcontacts/apps.py
NOAA-PMEL/envDataSystem
4db4a3569d2329658799a3eef06ce36dd5c0597d
[ "Unlicense" ]
null
null
null
from django.apps import AppConfig class EnvcontactsConfig(AppConfig): name = 'envcontacts' # def ready(self) -> None: # from envnet.registry.registry import ServiceRegistry # try: # from setup.ui_server_conf import run_config # host = run_config["HOST"]["name"] # except KeyError: # host = "localhost" # try: # from setup.ui_server_conf import run_config # port = run_config["HOST"]["port"] # except KeyError: # port = "8000" # local = True # config = { # "host": host, # "port": port, # "regkey": None, # "service_list": {"envdsys_contacts": {}}, # } # registration = ServiceRegistry.register(local, config) # print(registration) # return super().ready()
29.5
64
0.523164
849
0.959322
0
0
0
0
0
0
681
0.769492
0c16dc36c44b72bd40c213bf05ac31ec7273fca3
8,053
py
Python
tests/interpreter.py
AndrejHatzi/Haya
31291142decf6a172149516f08a2f2d68115e2dc
[ "MIT" ]
null
null
null
tests/interpreter.py
AndrejHatzi/Haya
31291142decf6a172149516f08a2f2d68115e2dc
[ "MIT" ]
1
2019-02-14T16:47:10.000Z
2019-02-14T16:47:10.000Z
tests/interpreter.py
AndrejHatzi/Haya
31291142decf6a172149516f08a2f2d68115e2dc
[ "MIT" ]
null
null
null
from sly import Lexer from sly import Parser import sys #-------------------------- # While Loop # Del Var # Print stmt # EQEQ, LEQ #-------------------------- #=> This version has parenthesis precedence! class BasicLexer(Lexer): tokens = { NAME, NUMBER, STRING, IF, FOR, PRINT, CREATEFILE, WRITE, EQEQ, TO} ignore = '\t ' ignore_newline = r'\n+' literals = { '=', '+', '-', '/', '*', '(', ')', ',', ';', ':', '.'} # Define tokens IF = r'if' #FUN = r'function' FOR = r'for' TO = r',' PRINT = r'print' CREATEFILE = r'createfile' WRITE = 'write' NAME = r'[a-zA-Z_][a-zA-Z0-9_]*' STRING = r'\".*?\"' EQEQ = r'==' @_(r'\d+') def NUMBER(self, t): t.value = int(t.value) return t @_(r'#.*') def COMMENT(self, t): pass @_(r'\n+') def newline(self,t ): self.lineno = t.value.count('\n') class BasicParser(Parser): debugfile = 'parser.out' tokens = BasicLexer.tokens precedence = ( ('left', '+', '-'), ('left', '*', '/'), ('right', 'UMINUS'), ) def __init__(self): self.env = { } @_('') def statement(self, p): pass #fzr update de syntax @_('NAME "(" ")" ":" statement') def statement(self, p): return ('fun_def', p.NAME, p.statement) @_('FOR "(" var_assign TO expr ")" ":" statement') def statement(self, p): return ('for_loop', ('for_loop_setup', p.var_assign, p.expr), p.statement) @_('IF "(" condition ")" ":" statement') def statement(self, p): return ('if_stmt', p.condition, p.statement) @_('NAME "(" ")"') def statement(self, p): return ('fun_call', p.NAME) @_('var_assign') def statement(self, p): return p.var_assign @_('NAME "=" STRING') def var_assign(self, p): return ('var_assign', p.NAME, p.STRING) @_('NAME "=" statement') def var_assign(self, p): return ('var_assign', p.NAME, p.statement) @_('PRINT "(" statement ")"') def statement(self, p): return ('print_stmt', p.statement) @_('PRINT "(" STRING ")"') def statement(self, p): return ('print_stmt_string' , p.STRING) @_('CREATEFILE "(" STRING ")"') def statement(self, p): return ('createfile_stmt', p.STRING) @_('STRING "." WRITE "(" STRING ")"') def statement(self, p): return ('add_to_file_stmt', p.STRING0 ,p.STRING1) @_('expr') def statement(self, p): return (p.expr) @_('expr "+" expr') def expr(self, p): return ('add', p.expr0, p.expr1) @_('expr "-" expr') def expr(self, p): return ('sub', p.expr0, p.expr1) @_('expr "*" expr') def expr(self, p): return ('mul', p.expr0, p.expr1) @_('expr "/" expr') def expr(self, p): return ('div', p.expr0, p.expr1) @_('expr EQEQ expr') def condition(self, p): return ('condition_eqeq', p.expr0, p.expr1) @_('"-" expr %prec UMINUS') def expr(self, p): return p.expr @_('"(" expr ")"') def expr(self, p): return p.expr @_('NAME') def expr(self, p): return ('var', p.NAME) @_('NUMBER') def expr(self, p): return ('num', p.NUMBER) class BasicExecute: def __init__(self, tree, env): self.env = env result = self.walkTree(tree) #print(env) if result is not None and isinstance(result, int): print(result) if isinstance(result, str) and result[0] == '"': print(result) def walkTree(self, node): if isinstance(node, int): return node if isinstance(node, str): return node if node is None: return None if node[0] == 'program': if node[1] == None: self.walkTree(node[2]) else: self.walkTree(node[1]) self.walkTree(node[2]) if node[0] == 'num': return node[1] if node[0] == 'str': return node[1] if node[0] == 'if_stmt': result = self.walkTree(node[1]) if result: return self.walkTree(node[1][1]) if node[0] == 'fun_def': self.env[node[1]] = node[2] if node[0] == 'fun_call': try: return self.walkTree(self.env[node[1]]) except LookupError: print("Undefined function '%s'" % node[1]) return 0 if node[0] == 'add': return self.walkTree(node[1]) + self.walkTree(node[2]) elif node[0] == 'sub': return self.walkTree(node[1]) - self.walkTree(node[2]) elif node[0] == 'mul': return self.walkTree(node[1]) * self.walkTree(node[2]) elif node[0] == 'div': return self.walkTree(node[1]) / self.walkTree(node[2]) if node[0] == 'condition_eqeq': return self.walkTree(node[1]) == self.walkTree(node[2]) if node[0] == 'var_assign': self.env[node[1]] = self.walkTree(node[2]) return node[1] if node[0] == 'var': try: return self.env[node[1]] except LookupError: print("Undefined variable '"+node[1]+"' found!") return 0 if node[0] == 'for_loop': if node[1][0] == 'for_loop_setup': loop_setup = self.walkTree(node[1]) #searches for the var in the env and gets it's value loop_count = self.env[loop_setup[0]] loop_limit = loop_setup[1] for i in range(loop_count+1, loop_limit+1): res = self.walkTree(node[2]) self.env[loop_setup[0]] = i del self.env[loop_setup[0]] if node[0] == 'for_loop_setup': return (self.walkTree(node[1]), self.walkTree(node[2])) if node[0] == 'print_stmt': res = self.walkTree(node[1]) print(res) if node[0] == 'print_stmt_string': res = self.walkTree(node[1][1:-1]) print(res) if node[0] == 'createfile_stmt': file : str = self.walkTree(node[1][1:-1]) with open(file, 'a') as f: pass #node 1 2 if node[0] == 'write_to_file_stmt': print(node[2]) try: file : str = self.walkTree(node[1][1:-1]) with open(file, 'w') as f: f.write(self.walkTree(node[2][1:-1])) except LookupError: print("file or dir '"+node[1][1:-1]+"' not found!") return 0 if __name__ == '__main__': lexer = BasicLexer() parser = BasicParser() env = {} try: file : str = sys.argv[1] try: with open(file, 'r', encoding="utf-8") as f: line : str for line in f: try: text = line except EOFError: break if text: tree = parser.parse(lexer.tokenize(text)) BasicExecute(tree, env) except: print('the specified file "{}" was not found!'.format(file)) except: while True: try: text = input('haya development edition > ') except EOFError: break if text: tree = parser.parse(lexer.tokenize(text)) BasicExecute(tree, env) #parsetree = parser.parse(lexer.tokenize(text)) #print(parsetree)
27.768966
83
0.46343
6,790
0.843164
0
0
2,244
0.278654
0
0
1,546
0.191978
0c16fa03a21f3d8b261783bab62dd87a48e2c16d
1,012
py
Python
braintree/apple_pay_card.py
futureironman/braintree_python
26bb8a857bc29322a8bca2e8e0fe6d99cfe6a1ac
[ "MIT" ]
182
2015-01-09T05:26:46.000Z
2022-03-16T14:10:06.000Z
braintree/apple_pay_card.py
futureironman/braintree_python
26bb8a857bc29322a8bca2e8e0fe6d99cfe6a1ac
[ "MIT" ]
95
2015-02-24T23:29:56.000Z
2022-03-13T03:27:58.000Z
braintree/apple_pay_card.py
futureironman/braintree_python
26bb8a857bc29322a8bca2e8e0fe6d99cfe6a1ac
[ "MIT" ]
93
2015-02-19T17:59:06.000Z
2022-03-19T17:01:25.000Z
import braintree from braintree.resource import Resource class ApplePayCard(Resource): """ A class representing Braintree Apple Pay card objects. """ class CardType(object): """ Contants representing the type of the credit card. Available types are: * Braintree.ApplePayCard.AmEx * Braintree.ApplePayCard.MasterCard * Braintree.ApplePayCard.Visa """ AmEx = "Apple Pay - American Express" MasterCard = "Apple Pay - MasterCard" Visa = "Apple Pay - Visa" def __init__(self, gateway, attributes): Resource.__init__(self, gateway, attributes) if hasattr(self, 'expired'): self.is_expired = self.expired if "subscriptions" in attributes: self.subscriptions = [braintree.subscription.Subscription(gateway, subscription) for subscription in self.subscriptions] @property def expiration_date(self): return self.expiration_month + "/" + self.expiration_year
30.666667
132
0.662055
952
0.940711
0
0
106
0.104743
0
0
386
0.381423
0c1758002a3f4c2e5686dc0e50493960b4c98bea
4,054
py
Python
src/lda_without_tf_idf_sports.py
mspkvp/MiningOpinionTweets
23f05b4cea22254748675e03a51844da1dff70ac
[ "MIT" ]
1
2016-01-18T14:30:31.000Z
2016-01-18T14:30:31.000Z
src/lda_without_tf_idf_sports.py
mspkvp/MiningOpinionTweets
23f05b4cea22254748675e03a51844da1dff70ac
[ "MIT" ]
null
null
null
src/lda_without_tf_idf_sports.py
mspkvp/MiningOpinionTweets
23f05b4cea22254748675e03a51844da1dff70ac
[ "MIT" ]
null
null
null
from __future__ import print_function from time import time import csv import sys import os from sklearn.feature_extraction.text import CountVectorizer import numpy as np import lda import logging logging.basicConfig(filename='lda_analyser.log', level=logging.DEBUG) entities = ['jose_mourinho', 'cristiano_ronaldo', 'ruben_neves', 'pinto_da_costa', 'jorge_jesus', 'lionel_messi', 'eusebio', 'luisao', 'paulo_bento', 'iker_casillas', 'joao_moutinho', 'jorge_mendes', 'julen_lopetegui', 'rui_vitoria', 'ricardo', 'luis_figo', 'jose_socrates', 'antonio_costa', 'benfica', 'futebol_porto', 'sporting'] if not os.path.exists("results"): os.makedirs("results") for n_topics in [10, 20, 50, 100]: n_features = 10000 n_top_words = int(sys.argv[1]) + 1 corpus = [] topics_write_file = csv.writer(open("results/lda_topics_{}topics_{}words_{}.csv".format(n_topics, n_top_words - 1, "sports"), "wb"), delimiter="\t", quotechar='|', quoting=csv.QUOTE_MINIMAL) write_file = csv.writer(open("results/lda_topics_{}topics_{}words_mapping_{}.csv".format(n_topics, n_top_words - 1, "sports"), "wb"), delimiter="\t", quotechar='|', quoting=csv.QUOTE_MINIMAL) def print_top_words(model, doc_topic, feature_names, n_top_words, dictionary): for i, topic_dist in enumerate(model): topic_words = np.array(feature_names)[np.argsort(topic_dist)][:-n_top_words:-1] #write_file.write('Topic {}: {}\n'.format(i, ' '.join(topic_words))) topic_row = [str(i)] topic_row.extend(topic_words) topics_write_file.writerow(topic_row) for i in range(len(corpus)): document_row = [dictionary[i][0], dictionary[i][1]] document_row.append(doc_topic[i].argmax()) #document_row.append(corpus[i]) write_file.writerow(document_row) entity_day_dict = dict() # read all files and store their contents on a dictionary for i in os.listdir(os.getcwd() + "/filtered_tweets"): for filename in os.listdir(os.getcwd() + "/filtered_tweets" + "/" + i): if(filename.split(".")[0] in entities): entity_day_dict[i+" "+filename] = open(os.getcwd() + "/filtered_tweets" + "/" + i + "/" + filename, 'r').read() entity_day_key_index = dict() i = 0 for key in entity_day_dict: entity_day_key_index[i] = key.split(" ") corpus.append(entity_day_dict[key]) i += 1 # Use tf (raw term count) features for LDA. logging.info("Extracting tf features for LDA...") tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2, max_features=n_features, stop_words='english') t0 = time() tf = tf_vectorizer.fit_transform(corpus) logging.info("done in %0.3fs." % (time() - t0)) logging.info("Fitting LDA models with tf") model = lda.LDA(n_topics=n_topics, n_iter=1500, random_state=1) #LatentDirichletAllocation(n_topics=n_topics, max_iter=5, learning_method='online', #learning_offset=50., random_state=0) t0 = time() model.fit(tf) logging.info("done in %0.3fs." % (time() - t0)) topic_word = model.topic_word_ doc_topic = model.doc_topic_ logging.info("\nTopics in LDA model:") tf_feature_names = tf_vectorizer.get_feature_names() print_top_words(topic_word, doc_topic, tf_feature_names, n_top_words, entity_day_key_index)
37.192661
129
0.561914
0
0
0
0
0
0
0
0
973
0.24001
0c18dab0a973e417315a5c146525d7d91b9da0fe
4,476
py
Python
glab_common/allsummary.py
gentnerlab/glab-common-py
9ff87ac6ca5f07c0d550594da38080bd3ee916db
[ "BSD-3-Clause" ]
3
2016-03-07T19:51:32.000Z
2018-11-08T22:34:14.000Z
glab_common/allsummary.py
gentnerlab/glab-common-py
9ff87ac6ca5f07c0d550594da38080bd3ee916db
[ "BSD-3-Clause" ]
16
2015-02-19T04:32:01.000Z
2018-11-14T20:09:09.000Z
glab_common/allsummary.py
gentnerlab/glab-common-py
9ff87ac6ca5f07c0d550594da38080bd3ee916db
[ "BSD-3-Clause" ]
4
2015-04-01T23:55:25.000Z
2018-02-28T18:23:29.000Z
from __future__ import print_function import re import datetime as dt from behav.loading import load_data_pandas import warnings import subprocess import os import sys process_fname = "/home/bird/opdat/panel_subject_behavior" box_nums = [] bird_nums = [] processes = [] with open(process_fname, "rt") as psb_file: for line in psb_file.readlines(): if line.startswith("#") or not line.strip(): pass # skip comment lines & blank lines else: spl_line = line.split() if spl_line[1] == "1": # box enabled box_nums.append(spl_line[0]) bird_nums.append(int(spl_line[2])) processes.append(spl_line[4]) # rsync magpis hostname = os.uname()[1] if "magpi" in hostname: for box_num in box_nums: box_hostname = box_num rsync_src = "bird@{}:/home/bird/opdat/".format(box_hostname) rsync_dst = "/home/bird/opdat/" print("Rsync src: {}".format(rsync_src), file=sys.stderr) print("Rsync dest: {}".format(rsync_dst), file=sys.stderr) rsync_output = subprocess.run(["rsync", "-avz", "--exclude Generated_Songs/", rsync_src, rsync_dst]) subjects = ["B%d" % (bird_num) for bird_num in bird_nums] data_folder = "/home/bird/opdat" with open("/home/bird/all.summary", "w") as as_file: as_file.write( "this all.summary generated at %s\n" % (dt.datetime.now().strftime("%x %X")) ) as_file.write( "FeedErr(won't come up, won't go down, already up, resp during feed)\n" ) # Now loop through each bird and grab the error info from each summaryDAT file for (box, bird, proc) in zip(box_nums, bird_nums, processes): try: # make sure box is a string box = str(box) if proc in ("shape", "lights", "pylights", "lights.py"): as_file.write("%s\tB%d\t %s\n" % (box, bird, proc)) else: summaryfname = "/home/bird/opdat/B%d/%d.summaryDAT" % (bird, bird) with open(summaryfname, "rt") as sdat: sdata = sdat.read() m = re.search(r"failures today: (\w+)", sdata) hopper_failures = m.group(1) m = re.search(r"down failures today: (\w+)", sdata) godown_failures = m.group(1) m = re.search(r"up failures today: (\w+)", sdata) goup_failures = m.group(1) m = re.search(r"Responses during feed: (\w+)", sdata) resp_feed = m.group(1) subj = "B%d" % (bird) with warnings.catch_warnings(): warnings.simplefilter("ignore") behav_data = load_data_pandas([subj], data_folder) df = behav_data[subj] # df = df[~pd.isnull(data.index)] todays_data = df[ (df.index.date - dt.datetime.today().date()) == dt.timedelta(days=0) ] feeder_ops = sum(todays_data["reward"].values) trials_run = len(todays_data) noRs = sum(todays_data["response"].values == "none") TOs = trials_run - feeder_ops - noRs last_trial_time = todays_data.sort_index().tail().index[-1] if last_trial_time.day != dt.datetime.now().day: datediff = "(not today)" else: minutes_ago = (dt.datetime.now() - last_trial_time).seconds / 60 datediff = "(%d mins ago)" % (minutes_ago) outline = ( "%s\tB%d\t %s \ttrls=%s \tfeeds=%d \tTOs=%d \tnoRs=%d \tFeedErrs=(%s,%s,%s,%s) \tlast @ %s %s\n" % ( box, bird, proc, trials_run, feeder_ops, TOs, noRs, hopper_failures, godown_failures, goup_failures, resp_feed, last_trial_time.strftime("%x %X"), datediff, ) ) as_file.write(outline) except Exception as e: as_file.write( "%s\tB%d\t Error opening SummaryDat or incorrect format\n" % (box, bird) ) print(e)
38.921739
122
0.50849
0
0
0
0
0
0
0
0
974
0.217605
0c194bbda6bf427b571869e7619f91e9298b8f04
2,239
py
Python
api/v1/circuits.py
tahoe/janitor
b6ce73bddc13c70079bdc7ba4c7a9b3ee0cad0bd
[ "Apache-2.0" ]
52
2019-08-14T10:48:26.000Z
2022-03-30T18:09:08.000Z
api/v1/circuits.py
tahoe/janitor
b6ce73bddc13c70079bdc7ba4c7a9b3ee0cad0bd
[ "Apache-2.0" ]
18
2019-08-20T04:13:37.000Z
2022-01-31T12:40:12.000Z
api/v1/circuits.py
tahoe/janitor
b6ce73bddc13c70079bdc7ba4c7a9b3ee0cad0bd
[ "Apache-2.0" ]
12
2019-08-14T10:49:11.000Z
2020-09-02T18:56:34.000Z
from app.models import Circuit, CircuitSchema, Provider from flask import make_response, jsonify from app import db def read_all(): """ This function responds to a request for /circuits with the complete lists of circuits :return: sorted list of circuits """ circuits = Circuit.query.all() schema = CircuitSchema(many=True) return schema.dump(circuits).data def read_one(circuit_id): circuit = Circuit.query.filter(Circuit.id == circuit_id).one_or_none() if not circuit: text = f'circuit not found for id {circuit_id}' return make_response(jsonify(error=404, message=text), 404) schema = CircuitSchema() data = schema.dump(circuit).data return data def create(circuit): """ creates a circuit! checks to see if the provider_cid is unique and that the provider exists. :return: circuit """ provider_cid = circuit.get('provider_cid') provider_id = circuit.get('provider_id') circuit_exists = Circuit.query.filter( Circuit.provider_cid == provider_cid ).one_or_none() provider_exists = Provider.query.filter(Provider.id == provider_id).one_or_none() if circuit_exists: text = f'Circuit {provider_cid} already exists' return make_response(jsonify(error=409, message=text), 409) if not provider_exists: text = f'Provider {provider_id} does not exist.' 'Unable to create circuit' return make_response(jsonify(error=403, message=text), 403) schema = CircuitSchema() new_circuit = schema.load(circuit, session=db.session).data db.session.add(new_circuit) db.session.commit() data = schema.dump(new_circuit).data return data, 201 def update(circuit_id, circuit): """ updates a circuit! :return: circuit """ c = Circuit.query.filter_by(id=circuit_id).one_or_none() if not c: text = f'Can not update a circuit that does not exist!' return make_response(jsonify(error=409, message=text), 404) schema = CircuitSchema() update = schema.load(circuit, session=db.session).data db.session.merge(update) db.session.commit() data = schema.dump(c).data return data, 201
26.341176
85
0.676195
0
0
0
0
0
0
0
0
575
0.256811
0c1a66a69d47f4abcbb592a1b69142a384d2f89b
2,311
py
Python
youtube_related/client.py
kijk2869/youtube-related
daabefc60277653098e1d8e266258b71567796d8
[ "MIT" ]
7
2020-07-13T00:15:37.000Z
2021-12-06T14:35:14.000Z
youtube_related/client.py
kijk2869/youtube-related
daabefc60277653098e1d8e266258b71567796d8
[ "MIT" ]
11
2020-07-17T16:11:16.000Z
2022-03-01T23:02:54.000Z
youtube_related/client.py
kijk2869/youtube-related
daabefc60277653098e1d8e266258b71567796d8
[ "MIT" ]
3
2020-11-04T11:44:50.000Z
2022-01-11T04:21:01.000Z
import asyncio import json import re from collections import deque from typing import Deque, Dict, List, Match, Pattern import aiohttp from .error import RateLimited headers: dict = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0) like Gecko" } DATA_JSON: Pattern = re.compile( r'(?:window\["ytInitialData"\]|ytInitialData)\W?=\W?({.*?});' ) def fetch(vURL: str, local_addr: str = None) -> List[Dict]: return asyncio.run(async_fetch(vURL, local_addr)) async def async_fetch(vURL: str, local_addr: str = None) -> List[Dict]: connector: aiohttp.TCPConnector = ( aiohttp.TCPConnector(local_addr=(local_addr, 0)) if local_addr else None ) async with aiohttp.ClientSession(connector=connector, headers=headers) as session: async with session.get(vURL) as response: if response.status == 429: raise RateLimited RAW: str = await response.text() Search: Match = DATA_JSON.search(RAW) if not Search: raise ValueError("Could not extract ytInitialData.") Data: Dict = json.loads(Search.group(1)) Overlay: Dict = Data["playerOverlays"]["playerOverlayRenderer"] watchNextEndScreenRenderer: Dict = Overlay["endScreen"][ "watchNextEndScreenRenderer" ] Result: list = [ { "id": Item["videoId"], "title": Item["title"]["simpleText"], "duration": Item["lengthInSeconds"] if "lengthInSeconds" in Item else None, } for Item in [ result["endScreenVideoRenderer"] for result in watchNextEndScreenRenderer["results"] if "endScreenVideoRenderer" in result ] ] return Result class preventDuplication: def __init__(self): self._LastRelated: Deque = deque(maxlen=10) def get(self, vURL: str, local_addr: str = None) -> Dict: return asyncio.run(self.async_get(vURL, local_addr)) async def async_get(self, vURL: str, local_addr: str = None) -> Dict: Data: List[Dict] = await async_fetch(vURL, local_addr) for Item in Data: if not Item["id"] in self._LastRelated: self._LastRelated.append(Item["id"]) return Item self._LastRelated.clear() return Data[0]
29.253165
89
0.63479
581
0.251406
0
0
0
0
1,577
0.682389
404
0.174816
0c1b29cfd60d9ee7d4e6451a8264af9459d2ddcb
2,522
py
Python
app/request/migrations/0001_initial.py
contestcrew/2019SeoulContest-Backend
2e99cc6ec6a712911da3b79412ae84a9d35453e1
[ "MIT" ]
null
null
null
app/request/migrations/0001_initial.py
contestcrew/2019SeoulContest-Backend
2e99cc6ec6a712911da3b79412ae84a9d35453e1
[ "MIT" ]
32
2019-08-30T13:09:28.000Z
2021-06-10T19:07:56.000Z
app/request/migrations/0001_initial.py
contestcrew/2019SeoulContest-Backend
2e99cc6ec6a712911da3b79412ae84a9d35453e1
[ "MIT" ]
3
2019-09-19T10:12:50.000Z
2019-09-30T15:59:13.000Z
# Generated by Django 2.2.5 on 2019-09-24 09:11 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30, verbose_name='이름')), ('score', models.PositiveIntegerField(default=0, verbose_name='점수')), ('image', models.ImageField(blank=True, null=True, upload_to='category')), ], ), migrations.CreateModel( name='Request', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100, verbose_name='제목')), ('content', models.TextField(verbose_name='내용')), ('status', models.CharField(blank=True, choices=[('start', '도움요청중'), ('progress', '진행중'), ('complete', '완료')], default='start', max_length=20, verbose_name='상태')), ('score', models.PositiveIntegerField(default=0, verbose_name='점수')), ('main_address', models.CharField(blank=True, max_length=30, null=True, verbose_name='메인 주소')), ('detail_address', models.CharField(blank=True, max_length=50, null=True, verbose_name='상세 주소')), ('latitude', models.FloatField(blank=True, null=True, verbose_name='위도')), ('longitude', models.FloatField(blank=True, null=True, verbose_name='경도')), ('occurred_at', models.DateField(blank=True, null=True, verbose_name='발생 시각')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='업로드 시각')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='수정 시각')), ], ), migrations.CreateModel( name='RequestImage', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.ImageField(upload_to='request/%Y/%m/%d', verbose_name='이미지')), ('request', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='images', to='request.Request', verbose_name='의뢰')), ], ), ]
50.44
179
0.596352
2,500
0.952018
0
0
0
0
0
0
543
0.206778
0c1bfa28ddb2f6e0a2bc571eb9a019b7ef92cb0d
690
py
Python
field/FieldFactory.py
goph-R/NodeEditor
5cc4749785bbd348f3db01b27c1533b4caadb920
[ "Apache-2.0" ]
null
null
null
field/FieldFactory.py
goph-R/NodeEditor
5cc4749785bbd348f3db01b27c1533b4caadb920
[ "Apache-2.0" ]
null
null
null
field/FieldFactory.py
goph-R/NodeEditor
5cc4749785bbd348f3db01b27c1533b4caadb920
[ "Apache-2.0" ]
null
null
null
from PySide2.QtGui import QVector3D, QColor from field.ColorField import ColorField from field.FloatField import FloatField from field.StringField import StringField from field.Vector3Field import Vector3Field class FieldFactory(object): def create(self, property): result = None type = property.type() if type == str: result = StringField(property) elif type == float: result = FloatField(property) elif type == QVector3D: result = Vector3Field(property) elif type == QColor: result = ColorField(property) result.init() return result
23
44
0.618841
465
0.673913
0
0
0
0
0
0
0
0
0c1cee1a04ba87b43d0454e7e5294887e53530fd
1,348
py
Python
scrapy/utils/engine.py
sulochanaviji/scrapy
6071c82e7ac80136e844b56a09d5d31aa8f41296
[ "BSD-3-Clause" ]
8
2021-02-01T07:55:19.000Z
2021-03-22T18:17:47.000Z
scrapy/utils/engine.py
sulochanaviji/scrapy
6071c82e7ac80136e844b56a09d5d31aa8f41296
[ "BSD-3-Clause" ]
30
2021-02-17T14:17:57.000Z
2021-03-03T16:57:16.000Z
scrapy/utils/engine.py
sulochanaviji/scrapy
6071c82e7ac80136e844b56a09d5d31aa8f41296
[ "BSD-3-Clause" ]
3
2021-08-21T04:09:17.000Z
2021-08-25T01:00:41.000Z
"""Some debugging functions for working with the Scrapy engine""" # used in global tests code from time import time # noqa: F401 def get_engine_status(engine): """Return a report of the current engine status""" tests = [ "time()-engine.start_time", "engine.has_capacity()", "len(engine.downloader.active)", "engine.scraper.is_idle()", "engine.spider.name", "engine.spider_is_idle(engine.spider)", "engine.slot.closing", "len(engine.slot.inprogress)", "len(engine.slot.scheduler.dqs or [])", "len(engine.slot.scheduler.mqs)", "len(engine.scraper.slot.queue)", "len(engine.scraper.slot.active)", "engine.scraper.slot.active_size", "engine.scraper.slot.itemproc_size", "engine.scraper.slot.needs_backout()", ] checks = [] for test in tests: try: checks += [(test, eval(test))] except Exception as e: checks += [(test, f"{type(e).__name__} (exception)")] return checks def format_engine_status(engine=None): checks = get_engine_status(engine) s = "Execution engine status\n\n" for test, result in checks: s += f"{test:<47} : {result}\n" s += "\n" return s def print_engine_status(engine): print(format_engine_status(engine))
27.510204
65
0.609792
0
0
0
0
0
0
0
0
700
0.519288
0c1da110a449d15b92ca6653ffd9fc76029d3fee
2,588
py
Python
share/pegasus/init/population/scripts/full_res_pop_raster.py
hariharan-devarajan/pegasus
d0641541f2eccc69dd6cc5a09b0b51303686d3ac
[ "Apache-2.0" ]
null
null
null
share/pegasus/init/population/scripts/full_res_pop_raster.py
hariharan-devarajan/pegasus
d0641541f2eccc69dd6cc5a09b0b51303686d3ac
[ "Apache-2.0" ]
null
null
null
share/pegasus/init/population/scripts/full_res_pop_raster.py
hariharan-devarajan/pegasus
d0641541f2eccc69dd6cc5a09b0b51303686d3ac
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 from typing import Dict import optparse import numpy as np import rasterio from rasterio import features def main(county_pop_file, spatial_dist_file, fname_out, no_data_val=-9999): ''' county_pop_file: County level population estimates spatial_dist_file: Spatial projection of population distribution ''' # ------------------------------------- # Open and read raster file with county # level population estimates # ------------------------------------- with rasterio.open(county_pop_file) as rastf: county_pop = rastf.read() nodatacp = rastf.nodata # -------------------------------------------------------------- # Open and read raster file with spatial population distribution # -------------------------------------------------------------- with rasterio.open(spatial_dist_file) as rastf: pop_dist = rastf.read() nodatasp = rastf.nodata prf = rastf.profile county_pop = np.squeeze(county_pop) pop_dist = np.squeeze(pop_dist) pop_est = np.ones(pop_dist.shape)*no_data_val ind1 = np.where(county_pop.flatten() != nodatacp)[0] ind2 = np.where(pop_dist.flatten() != nodatasp)[0] ind = np.intersect1d(ind1, ind2) ind2d = np.unravel_index(ind, pop_dist.shape) pop_est[ind2d] = county_pop[ind2d] * pop_dist[ind2d] pop_est[ind2d] = np.round(pop_est[ind2d]) # Update raster meta-data prf.update(nodata=no_data_val) # Write out spatially distributed population estimate to raster with open(fname_out, "wb") as fout: with rasterio.open(fout.name, 'w', **prf) as out_raster: out_raster.write(pop_est.astype(rasterio.float32), 1) argparser = optparse.OptionParser() argparser.add_option('--population-file', action='store', dest='pop_file', help='County level population estimates') argparser.add_option('--dist-file', action='store', dest='dist_file', help='Spatial projection of population distribution') argparser.add_option('--out-file', action='store', dest='out_file', help='Filename of the output') (options, args) = argparser.parse_args() if not options.pop_file: print('Please specify a population file with --population-file') sys.exit(1) if not options.dist_file: print('Please specify a distribution file with --dist-file') sys.exit(1) if not options.out_file: print('Please specify the name of the output with --out-file') sys.exit(1) main(options.pop_file, options.dist_file, options.out_file)
33.179487
75
0.63524
0
0
0
0
0
0
0
0
952
0.367852
0c1e7c3ccf6eceb66230761a4bde8362593a8064
9,557
py
Python
TestCase/pr_test_case.py
openeuler-mirror/ci-bot
c50056ff73670bc0382e72cf8c653c01e1aed5e1
[ "MulanPSL-1.0" ]
1
2020-01-12T07:35:34.000Z
2020-01-12T07:35:34.000Z
TestCase/pr_test_case.py
openeuler-mirror/ci-bot
c50056ff73670bc0382e72cf8c653c01e1aed5e1
[ "MulanPSL-1.0" ]
null
null
null
TestCase/pr_test_case.py
openeuler-mirror/ci-bot
c50056ff73670bc0382e72cf8c653c01e1aed5e1
[ "MulanPSL-1.0" ]
2
2020-03-04T02:09:14.000Z
2020-03-07T03:00:40.000Z
import os import requests import subprocess import time import yaml class PullRequestOperation(object): def __init__(self, owner, repo, local_owner): """initialize owner, repo and access_token""" self.owner = owner self.repo = repo self.local_owner = local_owner self.access_token = os.getenv('ACCESS_TOKEN', '') def git_clone(self): """git clone code""" subprocess.call("[ -d {} ]; if [ $? -eq 0 ]; then echo 'destination repo exists, pass...'; else git clone https://gitee.com/{}/{}.git; fi".format(self.repo, self.local_owner, self.repo), shell=True) def change_file(self): """change file: Test whether test.txt exists.Remove test.txt if it exists, or touch test.txt""" subprocess.call( "cd {}/; [ -f test.txt ]; if [ $? -eq 0 ]; then rm test.txt; echo 'remove test.txt'; else touch test.txt; echo 'touch test.txt'; fi".format(self.repo), shell=True) def write_2_file(self): """write some info to the test file""" subprocess.call( 'cd {}/; echo "hello" > test.txt; git add .; git commit -m "change test.txt"; git push'.format(self.repo), shell=True) def git_push(self): """push code""" subprocess.call("cd {}/; git add . ; git commit -m 'test'; git push".format(self.repo), shell=True) def pull_request(self): """create a pull request""" head = '{}:master'.format(self.local_owner) data = { 'access_token': self.access_token, 'title': 'test', 'head': head, 'base': 'master' } url = 'https://gitee.com/api/v5/repos/{}/{}/pulls'.format(self.owner, self.repo) r = requests.post(url, data) if r.status_code == 201: number = r.json()['number'] return number if r.status_code == 400: number = r.json()['message'].split('!')[1].split(' ')[0] return number def comment(self, number, body): """comment under the pull request""" data = { 'access_token': self.access_token, 'body': body } url = 'https://gitee.com/api/v5/repos/{}/{}/pulls/{}/comments'.format(self.owner, self.repo, number) print('comment body: {}'.format(body)) requests.post(url, data) def comment_by_others(self, number, body): """comment under the pull request""" data = { 'access_token': os.getenv('ACCESS_TOKEN_TWO', ''), 'body': body } url = 'https://gitee.com/api/v5/repos/{}/{}/pulls/{}/comments'.format(self.owner, self.repo, number) print('comment body: {}'.format(body)) requests.post(url, data) def get_all_comments(self, number): """get all comments under the pull request""" params = 'access_token={}'.format(self.access_token) url = 'https://gitee.com/api/v5/repos/{}/{}/pulls/{}/comments?per_page=100'.format(self.owner, self.repo, number) r = requests.get(url, params) comments = [] if r.status_code == 404: return r.json()['message'] if r.status_code == 200: if len(r.json()) > 0: for comment in r.json(): comments.append(comment['body']) return comments else: return comments def get_all_labels(self, number): """get all labels belong to the pull request""" params = 'access_token={}'.format(self.access_token) url = 'https://gitee.com/api/v5/repos/{}/{}/pulls/{}/labels'.format(self.owner, self.repo, number) r = requests.get(url, params) labels = [] if r.status_code == 200: if len(r.json()) > 0: for i in r.json(): labels.append(i['name']) return labels else: return labels def add_labels_2_pr(self, number, data): """add labels to a pull request""" params = {'access_token': self.access_token} data = data url = 'https://gitee.com/api/v5/repos/{}/{}/pulls/{}/labels'.format(self.owner, self.repo, number) requests.post(url, data=data, params=params) def get_pr_status(self, number): """query the status of the pull request to see whether it was merged""" params = {'access_token': self.access_token} url = 'https://gitee.com/api/v5/repos/{}/{}/pulls/{}/merge'.format(self.owner, self.repo, number) r = requests.get(url, params) return r.status_code if __name__ == '__main__': with open('config.yaml', 'r') as f: info = yaml.load(f.read())['test case'] owner = info[0]['owner'] repo = info[1]['repo'] local_owner = info[2]['local_owner'] pr = PullRequestOperation(owner, repo, local_owner) print('Prepare:') print('step 1/4: git clone') pr.git_clone() print('\nstep 2/4: change file') pr.change_file() print('\nstep 3/4: git push') pr.git_push() print('\nstep 4/4: pull request') number = pr.pull_request() print('the number of the pull request: {}'.format(number)) time.sleep(10) print('\n\nTest:') print('test case 1: without comments by contributor') comments = pr.get_all_comments(number) labels = pr.get_all_labels(number) print('labels: {}'.format(labels)) errors = 0 if len(comments) == 0: print('no "Welcome to ci-bot Community."') print('no "Thanks for your pull request."') else: if 'Welcome to ci-bot Community.' not in comments[0]: print('no "Welcome to ci-bot Community."') errors += 1 if 'Thanks for your pull request.' not in comments[-1]: print('no "Thanks for your pull request."') errors += 1 if len(labels) == 0: print('no label "ci-bot-cla/yes" or "ci-bot-cla/no"') errors += 1 elif len(labels) > 0: if 'ci-bot-cla/yes' not in labels: print('no label "ci-bot-cla/yes"') errors += 1 if 'ci-bot-cla/no' not in labels: print('no label "ci-bot-cla/no"') errors += 1 if errors == 0: print('test case 1 succeeded') else: print('test case 1 failed') print('\ntest case 2: /lgtm') pr.comment(number, '/lgtm') time.sleep(10) labels = pr.get_all_labels(number) print('labels: {}'.format(labels)) comments = pr.get_all_comments(number) if 'can not be added in your self-own pull request' in comments[-1]: print('test case 2 succeeded') else: print('test case 2 failed') print(comments[-1]) print('\ntest case 3: comment /lgtm by others') pr.comment_by_others(number, '/lgtm') time.sleep(10) labels = pr.get_all_labels(number) print('labels: {}'.format(labels)) comments = pr.get_all_comments(number) if 'Thanks for your review' in comments[-1]: print('test case 3 succeeded') else: print('test case 3 failed') print(comments[-1]) print('\ntest case 4: comment /approve by others') pr.comment_by_others(number, '/approve') time.sleep(10) labels = pr.get_all_labels(number) print('labels: {}'.format(labels)) comments = pr.get_all_comments(number) if 'has no permission to add' in comments[-1]: print('test case 4 succeeded') else: print('test case 4 failed') print(comments[-1]) print('\ntest case 5: /approve') pr.comment(number, '/approve') time.sleep(10) labels = pr.get_all_labels(number) print('labels: {}'.format(labels)) comments = pr.get_all_comments(number) if '***approved*** is added in this pull request by' in comments[-1]: print('test case 5 succeeded') else: print('test case 5 failed') print(comments[-1]) print('\ntest case 6: tag stat/need-squash') labels_before_commit = pr.get_all_labels(number) print('labels_before_commit: {}'.format(labels_before_commit)) pr.write_2_file() time.sleep(10) lables_after_commit = pr.get_all_labels(number) print('lables_after_commit: {}'.format(lables_after_commit)) if 'lgtm' not in labels and 'stat/need-squash' in lables_after_commit: print('test case 6 succeeded') else: print('test case 6 failed') print('\ntest case 7: add labels') pr.add_labels_2_pr(number, '["lgtm"]') time.sleep(10) labels = pr.get_all_labels(number) print('labels: {}'.format(labels)) if "lgtm" in labels: print('test case 7 succeeded') else: print('test case 7 failed') print('\ntest case 8: check-pr') pr.comment(number, '/check-pr') time.sleep(10) code = pr.get_pr_status(number) if code == 200: print('test case 8 succeeded') else: print('failed code: {}'.format(code)) print('test case 8 failed')
38.381526
206
0.548917
4,636
0.485089
0
0
0
0
0
0
3,092
0.323532
0c1eb2fd9329de0c031fe686c52f4c0e67ec1227
1,103
py
Python
tempest/api/hybrid_cloud/compute/flavors/test_flavors_operations.py
Hybrid-Cloud/hybrid-tempest
319e90c6fa6e46925b495c93cd5258f088a30ec0
[ "Apache-2.0" ]
null
null
null
tempest/api/hybrid_cloud/compute/flavors/test_flavors_operations.py
Hybrid-Cloud/hybrid-tempest
319e90c6fa6e46925b495c93cd5258f088a30ec0
[ "Apache-2.0" ]
null
null
null
tempest/api/hybrid_cloud/compute/flavors/test_flavors_operations.py
Hybrid-Cloud/hybrid-tempest
319e90c6fa6e46925b495c93cd5258f088a30ec0
[ "Apache-2.0" ]
null
null
null
import testtools from oslo_log import log from tempest.api.compute import base import tempest.api.compute.flavors.test_flavors as FlavorsV2Test import tempest.api.compute.flavors.test_flavors_negative as FlavorsListWithDetailsNegativeTest import tempest.api.compute.flavors.test_flavors_negative as FlavorDetailsNegativeTest from tempest.common.utils import data_utils from tempest.lib import exceptions as lib_exc from tempest.lib import decorators from tempest import test from tempest import config CONF = config.CONF LOG = log.getLogger(__name__) class HybridFlavorsV2TestJSON(FlavorsV2Test.FlavorsV2TestJSON): """Test flavors""" @testtools.skip("testscenarios are not active.") @test.SimpleNegativeAutoTest class HybridFlavorsListWithDetailsNegativeTestJSON(FlavorsListWithDetailsNegativeTest.FlavorsListWithDetailsNegativeTestJSON): """Test FlavorsListWithDetails""" @testtools.skip("testscenarios are not active.") @test.SimpleNegativeAutoTest class HybridFlavorDetailsNegativeTestJSON(FlavorDetailsNegativeTest.FlavorDetailsNegativeTestJSON): """Test FlavorsListWithDetails"""
36.766667
126
0.853128
387
0.350861
0
0
457
0.414325
0
0
146
0.132366
0c1f09091be19e77ace869bcb2f31a8df0eb57b2
8,910
py
Python
dycall/exports.py
demberto/DyCall
b234e7ba535eae71234723bb3d645eb986f96a30
[ "MIT" ]
null
null
null
dycall/exports.py
demberto/DyCall
b234e7ba535eae71234723bb3d645eb986f96a30
[ "MIT" ]
null
null
null
dycall/exports.py
demberto/DyCall
b234e7ba535eae71234723bb3d645eb986f96a30
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """ dycall.exports ~~~~~~~~~~~~~~ Contains `ExportsFrame` and `ExportsTreeView`. """ from __future__ import annotations import logging import pathlib from typing import TYPE_CHECKING import ttkbootstrap as tk from ttkbootstrap import ttk from ttkbootstrap.dialogs import Messagebox from ttkbootstrap.localization import MessageCatalog as MsgCat from ttkbootstrap.tableview import Tableview from dycall._widgets import _TrLabelFrame from dycall.types import Export, PEExport from dycall.util import StaticThemedTooltip, get_img log = logging.getLogger(__name__) class ExportsFrame(_TrLabelFrame): """Contains **Exports** combobox and a button for `ExportsTreeView`. Use command line argument `--exp` to select an export from the library on launch. Combobox validates export name. TODO: Combobox works like google search (auto-suggest, recents etc.) """ def __init__( self, root: tk.Window, selected_export: tk.StringVar, sort_order: tk.StringVar, output: tk.StringVar, status: tk.StringVar, is_loaded: tk.BooleanVar, is_native: tk.BooleanVar, is_reinitialised: tk.BooleanVar, lib_path: tk.StringVar, exports: list[Export], ): log.debug("Initalising") super().__init__(text="Exports") self.__root = root self.__selected_export = selected_export self.__sort_order = sort_order self.__output = output self.__status = status self.__is_loaded = is_loaded self.__is_native = is_native self.__is_reinitialised = is_reinitialised self.__lib_path = lib_path self.__exports = exports self.__export_names: list[str] = [] self.cb = ttk.Combobox( self, state="disabled", textvariable=selected_export, validate="focusout", validatecommand=(self.register(self.cb_validate), "%P"), ) # ! self.cb.bind("<Return>", lambda *_: self.cb_validate) # Doesn't work self.cb.bind("<<ComboboxSelected>>", self.cb_selected) self.__list_png = get_img("list.png") self.lb = ttk.Label(self, image=self.__list_png) self.lb.bind( "<Enter>", lambda *_: StaticThemedTooltip(self.lb, "List of exports") ) self.lb.bind( "<ButtonRelease-1>", lambda *_: status.set("Load a library first!") ) self.lb.pack(padx=(0, 5), pady=5, side="right") self.cb.pack(fill="x", padx=5, pady=5) self.bind_all("<<PopulateExports>>", lambda *_: self.set_cb_values()) self.bind_all( "<<ToggleExportsFrame>>", lambda event: self.set_state(event.state == 1) ) self.bind_all("<<SortExports>>", lambda *_: self.sort()) log.debug("Initialised") def cb_selected(self, *_): """Callback to handle clicks on **Exports** combobox. Resets **Output** and activates/deactivates `FunctionFrame`. """ log.debug("%s selected", self.__selected_export.get()) self.__output.set("") if self.__is_native.get(): self.__root.event_generate("<<ToggleFunctionFrame>>", state=1) else: self.__root.event_generate("<<ToggleFunctionFrame>>", state=0) def cb_validate(self, *_) -> bool: """Callback to handle keyboard events on **Exports** combobox. Activates `FunctionFrame` when the text in the combobox is a valid export name. Deactivates it otherwise. """ log.debug("Validating Exports combobox") try: # Don't validate if combobox dropdown arrow was pressed self.cb.state()[1] == "pressed" except IndexError: exp = self.cb.get() if exp: if exp in self.__export_names: self.cb_selected() return True self.__root.event_generate("<<ToggleFunctionFrame>>", state=1) return False return True def set_state(self, activate: bool = True): """Activates/deactivates **Exports** combobox. Args: activate (bool, optional): Activated when True, deactivated when False. Defaults to True. """ log.debug("Called with activate=%s", activate) state = "normal" if activate else "disabled" self.cb.configure(state=state) def set_cb_values(self): """Demangles and sets the export names to the **Exports** combobox.""" exports = self.__exports if not self.__is_reinitialised.get() or self.__is_loaded.get(): num_exports = len(exports) log.info("Found %d exports", num_exports) self.__status.set(f"{num_exports} exports found") failed = [] for exp in exports: if isinstance(exp, PEExport): if hasattr(exp, "exc"): failed.append(exp.name) if failed: Messagebox.show_warning( f"These export names couldn't be demangled: {failed}", "Demangle Errors", parent=self.__root, ) self.__export_names = names = list(e.demangled_name for e in exports) self.set_state() self.cb.configure(values=names) selected_export = self.__selected_export.get() if selected_export: if selected_export not in names: err = "%s not found in export names" log.error(err, selected_export) Messagebox.show_error( err % selected_export, "Export not found", parent=self.__root ) self.cb.set("") else: # Activate function frame when export name is passed from command line self.cb_selected() self.lb.configure(cursor="hand2") self.lb.bind( "<ButtonRelease-1>", lambda *_: ExportsTreeView( self.__exports, pathlib.Path(self.__lib_path.get()).name ), add=False, ) def sort(self, *_): """Sorts the list of export names and repopulates the combobox.""" if self.__is_loaded.get(): sorter = self.__sort_order.get() log.debug("Sorting w.r.t. %s", sorter) names = self.__export_names if sorter == "Name (ascending)": names.sort() elif sorter == "Name (descending)": names.sort(reverse=True) self.cb.configure(values=names) self.__status.set("Sort order changed") class ExportsTreeView(tk.Toplevel): """Displays detailed information about all the exports of a library. Following information is displayed: - Address - Name - Demangled name (whenever available) - Ordinal (Windows only) """ def __init__(self, exports: list[Export], lib_name: str): log.debug("Initialising") super().__init__( title=f"{MsgCat.translate('Exports')} - {lib_name}", size=(400, 500) ) self.__old_height = 0 self.withdraw() coldata = [ "Address", "Name", {"text": "Demangled", "stretch": True}, ] is_pe = isinstance(exports[0], PEExport) if is_pe: coldata.insert(0, "Ordinal") self.__tv = tv = Tableview( self, searchable=True, autofit=True, coldata=coldata, paginated=True, pagesize=25, ) tv.pack(fill="both", expand=True) for e in exports: values = [e.address, e.name, e.demangled_name] # type: ignore if is_pe: if TYPE_CHECKING: assert isinstance(e, PEExport) # nosec values.insert(0, e.ordinal) tv.insert_row(values=values) tv.load_table_data() self.bind( "<F11>", lambda *_: self.attributes( "-fullscreen", not self.attributes("-fullscreen") ), ) self.bind("<Configure>", self.resize) self.deiconify() self.focus_set() log.debug("Initialised") def resize(self, event: tk.tk.Event): """Change the treeview's `pagesize` whenever this window is resized. I came up with this because there is no way to show a vertical scrollbar in/for the treeview. """ new_height = event.height if event.widget.widgetName == "toplevel" and new_height != self.__old_height: # ! This is an expensive call, avoid it whenever possible self.__tv.pagesize = int(new_height) / 20 self.__old_height = new_height
34.534884
86
0.579237
8,313
0.932997
0
0
0
0
0
0
2,580
0.289562
0c1fb0aec727010060874060c9a7121a40357346
1,899
py
Python
src/homologs/filter_by_occupancy.py
jlanga/smsk_selection
08070c6d4a6fbd9320265e1e698c95ba80f81123
[ "MIT" ]
4
2021-07-18T05:20:20.000Z
2022-01-03T10:22:33.000Z
src/homologs/filter_by_occupancy.py
jlanga/smsk_selection
08070c6d4a6fbd9320265e1e698c95ba80f81123
[ "MIT" ]
1
2017-08-21T07:26:13.000Z
2018-11-08T13:59:48.000Z
src/homologs/filter_by_occupancy.py
jlanga/smsk_orthofinder
08070c6d4a6fbd9320265e1e698c95ba80f81123
[ "MIT" ]
2
2021-07-18T05:20:26.000Z
2022-03-31T18:23:31.000Z
#!/usr/bin/env python """ Filter a fasta alignment according to its occupancy: filter_by_occupancy.py fasta_raw.fa fasta_trimmed.fa 0.5 """ import os import sys from helpers import fasta_to_dict def filter_by_occupancy(filename_in, filename_out, min_occupancy=0.5): """ Filter an alignment in fasta format according to the occupancy of the columns. Store the results in fasta format. """ fasta_raw = fasta_to_dict(filename_in) n_sequences = len(fasta_raw.keys()) alignment_length = len(fasta_raw[tuple(fasta_raw.keys())[0]]) columns = tuple( "".join(fasta_raw[seqname][column_index] for seqname in fasta_raw.keys()) for column_index in range(alignment_length) ) columns_to_keep = [] for column_number, column in enumerate(columns): n_gaps = column.count("-") if 1 - float(n_gaps) / float(n_sequences) >= min_occupancy: columns_to_keep.append(column_number) fasta_trimmed = {} for seqname, sequence in fasta_raw.items(): fasta_trimmed[seqname] = "".join( fasta_raw[seqname][column_to_keep] for column_to_keep in columns_to_keep ) if not os.path.exists(os.path.dirname(filename_out)): os.makedirs(os.path.dirname(filename_out)) with open(filename_out, "w") as f_out: for seqname, sequence in fasta_trimmed.items(): f_out.write( ">{seqname}\n{sequence}\n".format(seqname=seqname, sequence=sequence) ) if __name__ == "__main__": if len(sys.argv) != 4: sys.stderr.write( "ERROR: incorrect number of arguments.\n" "python filter_by_occupancy.py fastain fastaout min_occupancy\n" ) sys.exit(1) FASTA_IN = sys.argv[1] FASTA_OUT = sys.argv[2] MIN_OCCUPANCY = float(sys.argv[3]) filter_by_occupancy(FASTA_IN, FASTA_OUT, MIN_OCCUPANCY)
28.772727
85
0.664034
0
0
0
0
0
0
0
0
424
0.223275
0c20b529cd83a9fd598afa8e482ff4d521f8b78a
954
py
Python
setup.py
eppeters/xontrib-dotenv
f866f557592d822d1ecb2b607c63c4cdecb580e4
[ "BSD-2-Clause" ]
null
null
null
setup.py
eppeters/xontrib-dotenv
f866f557592d822d1ecb2b607c63c4cdecb580e4
[ "BSD-2-Clause" ]
null
null
null
setup.py
eppeters/xontrib-dotenv
f866f557592d822d1ecb2b607c63c4cdecb580e4
[ "BSD-2-Clause" ]
1
2020-03-16T00:39:57.000Z
2020-03-16T00:39:57.000Z
#!/usr/bin/env python """ xontrib-dotenv ----- Automatically reads .env file from current working directory or parentdirectories and push variables to environment. """ from setuptools import setup setup( name='xontrib-dotenv', version='0.1', description='Reads .env files into environment', long_description=__doc__, license='BSD', url='https://github.com/urbaniak/xontrib-dotenv', author='Krzysztof Urbaniak', packages=['xontrib'], package_dir={'xontrib': 'xontrib'}, package_data={'xontrib': ['*.xsh']}, zip_safe=True, include_package_data=False, platforms='any', install_requires=[ 'xonsh>=0.4.6', ], classifiers=[ 'Environment :: Console', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: System :: Shells', 'Topic :: System :: System Shells', ] )
25.105263
60
0.631027
0
0
0
0
0
0
0
0
546
0.572327
0c20b7c255ec391f7dad36b9c36ded1071de5e8b
222
py
Python
tests/sample_app/urls.py
dreipol/meta-tagger
c1a2f1f8b0c051018a5bb75d4e579d27bd2c27b2
[ "BSD-3-Clause" ]
3
2016-05-30T07:48:54.000Z
2017-02-08T21:16:03.000Z
tests/sample_app/urls.py
dreipol/meta-tagger
c1a2f1f8b0c051018a5bb75d4e579d27bd2c27b2
[ "BSD-3-Clause" ]
null
null
null
tests/sample_app/urls.py
dreipol/meta-tagger
c1a2f1f8b0c051018a5bb75d4e579d27bd2c27b2
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from django.conf.urls import url from tests.sample_app.views import NewsArticleDetailView urlpatterns = [ url(r'^(?P<pk>\d+)/$', NewsArticleDetailView.as_view(), name='news-article-detail'), ]
27.75
88
0.702703
0
0
0
0
0
0
0
0
61
0.274775
0c2115fcd6d26f9ce3cdf5ced126fdd61f06356a
105
py
Python
RCNN/config_RCNN.py
andrew-miao/ECE657A_Project-text-classification
5ad77ea6d6c685eecfe3dc189d9ea41f5b3ac1d1
[ "MIT" ]
4
2020-08-11T18:31:55.000Z
2020-08-25T15:30:53.000Z
RCNN/config_RCNN.py
andrew-miao/ECE657A_Project-text-classification
5ad77ea6d6c685eecfe3dc189d9ea41f5b3ac1d1
[ "MIT" ]
null
null
null
RCNN/config_RCNN.py
andrew-miao/ECE657A_Project-text-classification
5ad77ea6d6c685eecfe3dc189d9ea41f5b3ac1d1
[ "MIT" ]
null
null
null
class Config(object): embedding_size = 300 n_layers = 1 hidden_size = 128 drop_prob = 0.2
21
24
0.647619
105
1
0
0
0
0
0
0
0
0
0c23261891d98100b6ddda0879a36f77857b6f48
624
py
Python
utils/bbox_utils/center_to_corner.py
Jaskaran197/Red-blood-cell-detection-SSD
a33b330ad17454a7425aa7f57818c0a41b4e0ff9
[ "MIT" ]
null
null
null
utils/bbox_utils/center_to_corner.py
Jaskaran197/Red-blood-cell-detection-SSD
a33b330ad17454a7425aa7f57818c0a41b4e0ff9
[ "MIT" ]
null
null
null
utils/bbox_utils/center_to_corner.py
Jaskaran197/Red-blood-cell-detection-SSD
a33b330ad17454a7425aa7f57818c0a41b4e0ff9
[ "MIT" ]
null
null
null
import numpy as np def center_to_corner(boxes): """ Convert bounding boxes from center format (cx, cy, width, height) to corner format (xmin, ymin, xmax, ymax) Args: - boxes: numpy array of tensor containing all the boxes to be converted Returns: - A numpy array or tensor of converted boxes """ temp = boxes.copy() temp[..., 0] = boxes[..., 0] - (boxes[..., 2] / 2) # xmin temp[..., 1] = boxes[..., 1] - (boxes[..., 3] / 2) # ymin temp[..., 2] = boxes[..., 0] + (boxes[..., 2] / 2) # xmax temp[..., 3] = boxes[..., 1] + (boxes[..., 3] / 2) # ymax return temp
32.842105
115
0.535256
0
0
0
0
0
0
0
0
301
0.482372
0c24e2918c9577a7b38b38b7b54cfb7d7c91ca26
337
py
Python
pytest/np.py
i0Ek3/disintegration
b59307f8166b93d76fab35af180a5cf3ffa51b09
[ "MIT" ]
null
null
null
pytest/np.py
i0Ek3/disintegration
b59307f8166b93d76fab35af180a5cf3ffa51b09
[ "MIT" ]
null
null
null
pytest/np.py
i0Ek3/disintegration
b59307f8166b93d76fab35af180a5cf3ffa51b09
[ "MIT" ]
null
null
null
import numpy as np list = [np.linspace([1,2,3], 3),\ np.array([1,2,3]),\ np.arange(3),\ np.arange(8).reshape(2,4),\ np.zeros((2,3)),\ np.zeros((2,3)).T,\ np.ones((3,1)),\ np.eye(3),\ np.full((3,3), 1),\ np.random.rand(3),\ np.random.rand(3,3),\ np.random.uniform(5,15,3),\ np.random.randn(3),\ np.random.normal(3, 2.5, 3)] print(list)
17.736842
33
0.590504
0
0
0
0
0
0
0
0
0
0
0c25a90b221d6137090c0e77b536a592e4921a3d
337
py
Python
api/data_explorer/models/__init__.py
karamalhotra/data-explorer
317f4d7330887969ab6bfe2ca23ec24163472c55
[ "BSD-3-Clause" ]
null
null
null
api/data_explorer/models/__init__.py
karamalhotra/data-explorer
317f4d7330887969ab6bfe2ca23ec24163472c55
[ "BSD-3-Clause" ]
null
null
null
api/data_explorer/models/__init__.py
karamalhotra/data-explorer
317f4d7330887969ab6bfe2ca23ec24163472c55
[ "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # flake8: noqa from __future__ import absolute_import # import models into model package from data_explorer.models.dataset_response import DatasetResponse from data_explorer.models.facet import Facet from data_explorer.models.facet_value import FacetValue from data_explorer.models.facets_response import FacetsResponse
33.7
65
0.860534
0
0
0
0
0
0
0
0
63
0.186944
0c2791187a63a4bcc6905cd731c3e9fbdcde2c2b
2,288
py
Python
seabird/cli.py
nicholas512/seabird
23073b2b9a550b86ec155cbe43be9b50e50b8310
[ "BSD-3-Clause" ]
38
2015-04-15T08:57:44.000Z
2022-03-13T02:51:53.000Z
seabird/cli.py
nicholas512/seabird
23073b2b9a550b86ec155cbe43be9b50e50b8310
[ "BSD-3-Clause" ]
54
2015-01-28T03:53:43.000Z
2021-12-11T07:37:24.000Z
seabird/cli.py
nicholas512/seabird
23073b2b9a550b86ec155cbe43be9b50e50b8310
[ "BSD-3-Clause" ]
22
2015-09-22T12:24:22.000Z
2022-01-31T22:27:16.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Command line utilities for package Seabird """ import click from seabird.exceptions import CNVError from .cnv import fCNV from .netcdf import cnv2nc @click.group() def cli(): """ Utilities for seabird files """ pass @cli.command(name='cnvdump') @click.argument('inputfilename', type=click.Path(exists=True)) def dump(inputfilename): """Dump the .cnv content as text Doesn't matter the version of the .cnv, this command will show it's content in a unified pattern, as an ASCII text. Consider the idea of a descriptor file with default values. """ try: data = fCNV(inputfilename) except CNVError as e: print("\033[91m%s\033[0m" % e.msg) return except: raise print("file: %s" % inputfilename) print("Global attributes") for a in sorted(data.attrs.keys()): print("\t\033[93m%s\033[0m: %s" % (a, data.attrs[a])) print("\nVariabes") for k in data.keys(): print("\033[91m%s\033[0m" % k) for a in data[k].attrs.keys(): print("\t\033[93m%s\033[0m: %s" % (a, data[k].attrs[a])) @cli.command(name='cnv2nc') @click.option('--outputfilename', default=None, help='The output netCDF filename.') @click.argument('inputfilename', type=click.Path(exists=True)) def nc(inputfilename, outputfilename): """ Export a CNV file as a netCDF """ if outputfilename is None: outputfilename = inputfilename.replace('.cnv','.nc') click.echo('Saving on %s' % outputfilename) data = fCNV(inputfilename) cnv2nc(data, outputfilename) @cli.command(name='ctdqc') @click.option('--outputfilename', default=None, help='The output netCDF filename.') @click.option('--config', default=None, help='The output netCDF filename.') @click.argument('inputfilename', type=click.Path(exists=True)) def qc(inputfilename, outputfilename, config): """ """ from cotede.qc import ProfileQC, combined_flag if outputfilename is None: outputfilename = inputfilename.replace('.cnv', '.nc') click.echo('Saving on %s' % outputfilename) data = fCNV(inputfilename) profile = ProfileQC(data, cfg=config, verbose=False) print(profile.flags)
28.962025
68
0.645979
0
0
0
0
2,077
0.90778
0
0
807
0.35271
0c2931d41844c5cadfbc0f4d8cd12cf1c0991cb4
1,752
py
Python
main.py
Mitch-the-Fridge/pi
70ab24dab9b06722084e93f783dc541747d46720
[ "MIT" ]
null
null
null
main.py
Mitch-the-Fridge/pi
70ab24dab9b06722084e93f783dc541747d46720
[ "MIT" ]
null
null
null
main.py
Mitch-the-Fridge/pi
70ab24dab9b06722084e93f783dc541747d46720
[ "MIT" ]
1
2020-05-31T17:13:42.000Z
2020-05-31T17:13:42.000Z
#!/usr/bin/env python3 #import face_recognition import cv2 import numpy as np from datetime import datetime, timedelta from buffer import Buffer from collections import deque import os from copy import copy import archive WEIGHT_EPS = 5 TIMEOUT = 5 # in seconds def poll_weight(): return 500 # with an fps we then have a "before" duration of 15 seconds video_buffer = Buffer(300) building = False clip = None previous_weight = poll_weight() last_weight_event = None cap = cv2.VideoCapture(0) while True: archive.try_upload_buffer() # if enough_diff is true we will actually start the recording weight = poll_weight() weight_diff = weight - previous_weight enough_diff = abs(weight_diff) >= WEIGHT_EPS ret, frame = cap.read() rgb_frame = cv2.resize(frame, (0, 0), fx=.5, fy=.5)[:, :, ::-1] #face_locations = face_recognition.face_locations(rgb_frame) print( len(video_buffer.q), len(clip) if clip is not None else 0, building, #face_locations ) point = { 'time': datetime.now(), #'face_locations': face_locations, 'frame': frame, 'current_weight': weight, } if building: clip.append(point) else: video_buffer.add(point) if not building and enough_diff: building = True clip = copy(video_buffer.q) video_buffer.clear() elif building and datetime.now() >= last_weight_event + timedelta(seconds=TIMEOUT): frames = list(clip) clip = None building = False print("creating clip of len", len(frames)) print(archive.create_from_clip(frames)) previous_weight = weight if enough_diff: last_weight_event = datetime.now()
23.36
87
0.660388
0
0
0
0
0
0
0
0
339
0.193493
0c2a0afb31018189385f06e7bd9d48b8c0f6df9c
2,895
py
Python
OpenPNM/Network/models/pore_topology.py
Eng-RSMY/OpenPNM
a0a057d0f6346c515792459b1da97f05bab383c1
[ "MIT" ]
1
2021-03-30T21:38:26.000Z
2021-03-30T21:38:26.000Z
OpenPNM/Network/models/pore_topology.py
Eng-RSMY/OpenPNM
a0a057d0f6346c515792459b1da97f05bab383c1
[ "MIT" ]
null
null
null
OpenPNM/Network/models/pore_topology.py
Eng-RSMY/OpenPNM
a0a057d0f6346c515792459b1da97f05bab383c1
[ "MIT" ]
null
null
null
r""" =============================================================================== pore_topology -- functions for monitoring and adjusting topology =============================================================================== """ import scipy as _sp def get_subscripts(network, shape, **kwargs): r""" Return the 3D subscripts (i,j,k) into the cubic network Parameters ---------- shape : list The (i,j,k) shape of the network in number of pores in each direction """ if network.num_pores('internal') != _sp.prod(shape): print('Supplied shape does not match Network size, cannot proceed') else: template = _sp.atleast_3d(_sp.empty(shape)) a = _sp.indices(_sp.shape(template)) i = a[0].flatten() j = a[1].flatten() k = a[2].flatten() ind = _sp.vstack((i, j, k)).T vals = _sp.ones((network.Np, 3))*_sp.nan vals[network.pores('internal')] = ind return vals def adjust_spacing(network, new_spacing, **kwargs): r""" Adjust the the pore-to-pore lattice spacing on a cubic network Parameters ---------- new_spacing : float The new lattice spacing to apply Notes ----- At present this method only applies a uniform spacing in all directions. This is a limiation of OpenPNM Cubic Networks in general, and not of the method. """ coords = network['pore.coords'] try: spacing = network._spacing coords = coords/spacing*new_spacing network._spacing = new_spacing except: pass return coords def reduce_coordination(network, z, mode='random', **kwargs): r""" Reduce the coordination number to the specified z value Parameters ---------- z : int The coordination number or number of throats connected a pore mode : string, optional Controls the logic used to trim connections. Options are: - 'random': (default) Throats will be randomly removed to achieve a coordination of z - 'max': All pores will be adjusted to have a maximum coordination of z (not implemented yet) Returns ------- A label array indicating which throats should be trimmed to achieve desired coordination. Notes ----- Pores with only 1 throat will be ignored in all calculations since these are generally boundary pores. """ T_trim = ~network['throat.all'] T_nums = network.num_neighbors(network.pores()) # Find protected throats T_keep = network.find_neighbor_throats(pores=(T_nums == 1)) if mode == 'random': z_ave = _sp.average(T_nums[T_nums > 1]) f_trim = (z_ave - z)/z_ave T_trim = _sp.rand(network.Nt) < f_trim T_trim = T_trim*(~network.tomask(throats=T_keep)) if mode == 'max': pass return T_trim
29.242424
79
0.587219
0
0
0
0
0
0
0
0
1,716
0.592746
0c2a4b436c5eaf17c454eecf85f7cdb41e8c152f
9,559
py
Python
contrib/workflow/SpiffWorkflow/src/SpiffWorkflow/Tasks/Join.py
gonicus/clacks
da579f0acc4e48cf2e9451417ac6792282cf7ab6
[ "ZPL-2.1" ]
2
2015-01-26T07:15:19.000Z
2015-11-09T13:42:11.000Z
contrib/workflow/SpiffWorkflow/src/SpiffWorkflow/Tasks/Join.py
gonicus/clacks
da579f0acc4e48cf2e9451417ac6792282cf7ab6
[ "ZPL-2.1" ]
null
null
null
contrib/workflow/SpiffWorkflow/src/SpiffWorkflow/Tasks/Join.py
gonicus/clacks
da579f0acc4e48cf2e9451417ac6792282cf7ab6
[ "ZPL-2.1" ]
null
null
null
# Copyright (C) 2007 Samuel Abels # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA from SpiffWorkflow.Task import Task from SpiffWorkflow.Exception import WorkflowException from SpiffWorkflow.Operators import valueof from TaskSpec import TaskSpec class Join(TaskSpec): """ A task for synchronizing branches that were previously split using a conditional task, such as MultiChoice. It has two or more incoming branches and one or more outputs. """ def __init__(self, parent, name, split_task = None, **kwargs): """ Constructor. @type parent: Workflow @param parent: A reference to the parent (usually a workflow). @type name: string @param name: A name for the task. @type split_task: TaskSpec @param split_task: The task that was previously used to split the branch. @type kwargs: dict @param kwargs: The following options are supported: - threshold: Specifies how many incoming branches need to complete before the task triggers. When the limit is reached, the task fires but still expects all other branches to complete. You may also pass an attribute, in which case the value is determined at runtime. - cancel: When True, any remaining incoming branches are cancelled as soon as the discriminator is activated. The default is False. """ TaskSpec.__init__(self, parent, name, **kwargs) self.split_task = split_task self.threshold = kwargs.get('threshold', None) self.cancel_remaining = kwargs.get('cancel', False) def _branch_is_complete(self, my_task): # Determine whether that branch is now completed by checking whether # it has any waiting items other than myself in it. skip = None for task in Task.Iterator(my_task, my_task.NOT_FINISHED_MASK): # If the current task is a child of myself, ignore it. if skip is not None and task._is_descendant_of(skip): continue if task.spec == self: skip = task continue return False return True def _branch_may_merge_at(self, task): for child in task: # Ignore tasks that were created by a trigger. if child._has_state(Task.TRIGGERED): continue # Merge found. if child.spec == self: return True # If the task is predicted with less outputs than he has # children, that means the prediction may be incomplete (for # example, because a prediction is not yet possible at this time). if not child._is_definite() \ and len(child.spec.outputs) > len(child.children): return True return False def _fire(self, my_task, waiting_tasks): """ Fire, and cancel remaining tasks, if so requested. """ # If this is a cancelling join, cancel all incoming branches, # except for the one that just completed. if self.cancel_remaining: for task in waiting_tasks: task.cancel() def _try_fire_unstructured(self, my_task, force = False): # If the threshold was already reached, there is nothing else to do. if my_task._has_state(Task.COMPLETED): return False if my_task._has_state(Task.READY): return True # The default threshold is the number of inputs. threshold = valueof(my_task, self.threshold) if threshold is None: threshold = len(self.inputs) # Look at the tree to find all places where this task is used. tasks = [] for input in self.inputs: for task in my_task.job.task_tree: if task.thread_id != my_task.thread_id: continue if task.spec != input: continue tasks.append(task) # Look up which tasks have already completed. waiting_tasks = [] completed = 0 for task in tasks: if task.parent is None or task._has_state(Task.COMPLETED): completed += 1 else: waiting_tasks.append(task) # If the threshold was reached, get ready to fire. if force or completed >= threshold: self._fire(my_task, waiting_tasks) return True # We do NOT set the task state to COMPLETED, because in # case all other incoming tasks get cancelled (or never reach # the Join for other reasons, such as reaching a stub branch), we # we need to revisit it. return False def _try_fire_structured(self, my_task, force = False): # If the threshold was already reached, there is nothing else to do. if my_task._has_state(Task.READY): return True if my_task._has_state(Task.COMPLETED): return False # Retrieve a list of all activated tasks from the associated # task that did the conditional parallel split. split_task = my_task._find_ancestor_from_name(self.split_task) if split_task is None: msg = 'Join with %s, which was not reached' % self.split_task raise WorkflowException(self, msg) tasks = split_task.spec._get_activated_tasks(split_task, my_task) # The default threshold is the number of branches that were started. threshold = valueof(my_task, self.threshold) if threshold is None: threshold = len(tasks) # Look up which tasks have already completed. waiting_tasks = [] completed = 0 for task in tasks: # Refresh path prediction. task.spec._predict(task) if not self._branch_may_merge_at(task): completed += 1 elif self._branch_is_complete(task): completed += 1 else: waiting_tasks.append(task) # If the threshold was reached, get ready to fire. if force or completed >= threshold: self._fire(my_task, waiting_tasks) return True # We do NOT set the task state to COMPLETED, because in # case all other incoming tasks get cancelled (or never reach # the Join for other reasons, such as reaching a stub branch), we # need to revisit it. return False def try_fire(self, my_task, force = False): if self.split_task is None: return self._try_fire_unstructured(my_task, force) return self._try_fire_structured(my_task, force) def _do_join(self, my_task): if self.split_task: split_task = my_task.job.get_task_from_name(self.split_task) split_task = my_task._find_ancestor(split_task) else: split_task = my_task.job.task_tree # Find the inbound node that was completed last. last_changed = None thread_tasks = [] for task in split_task._find_any(self): if task.thread_id != my_task.thread_id: continue if self.split_task and task._is_descendant_of(my_task): continue changed = task.parent.last_state_change if last_changed is None \ or changed > last_changed.parent.last_state_change: last_changed = task thread_tasks.append(task) # Mark all nodes in this thread that reference this task as # completed, except for the first one, which should be READY. for task in thread_tasks: if task == last_changed: self.signal_emit('entered', my_task.job, my_task) task._ready() else: task.state = Task.COMPLETED task._drop_children() return False def _on_trigger(self, my_task): """ May be called to fire the Join before the incoming branches are completed. """ for task in my_task.job.task_tree._find_any(self): if task.thread_id != my_task.thread_id: continue return self._do_join(task) def _update_state_hook(self, my_task): if not self.try_fire(my_task): my_task.state = Task.WAITING return False return self._do_join(my_task) def _on_complete_hook(self, my_task): """ Runs the task. Should not be called directly. Returns True if completed, False otherwise. """ return TaskSpec._on_complete_hook(self, my_task)
37.93254
80
0.61293
8,607
0.900408
0
0
0
0
0
0
4,012
0.419709
0c2c64f073f540439acf039ecdc1016885d5eb85
5,763
py
Python
covsirphy/visualization/bar_plot.py
ardhanii/covid19-sir
87881963c49a2fc5b6235c8b21269d216acaa941
[ "Apache-2.0" ]
97
2020-05-15T15:20:15.000Z
2022-03-18T02:55:54.000Z
covsirphy/visualization/bar_plot.py
ardhanii/covid19-sir
87881963c49a2fc5b6235c8b21269d216acaa941
[ "Apache-2.0" ]
970
2020-06-01T13:48:34.000Z
2022-03-29T08:20:49.000Z
covsirphy/visualization/bar_plot.py
ardhani31/Covid19-SIRV-v3
59d95156b375c41259c46ce4e656b86903f92ec2
[ "Apache-2.0" ]
36
2020-05-15T15:36:43.000Z
2022-02-25T17:59:08.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from matplotlib import pyplot as plt from matplotlib.ticker import ScalarFormatter import pandas as pd from covsirphy.util.argument import find_args from covsirphy.visualization.vbase import VisualizeBase class BarPlot(VisualizeBase): """ Create a bar plot. Args: filename (str or None): filename to save the figure or None (display) bbox_inches (str): bounding box in inches when creating the figure kwargs: the other arguments of matplotlib.pyplot.savefig() """ def __init__(self, filename=None, bbox_inches="tight", **kwargs): self._filename = filename self._savefig_dict = {"bbox_inches": bbox_inches, **kwargs} # Properties self._title = "" self._variables = [] self._ax = None def __enter__(self): return super().__enter__() def __exit__(self, *exc_info): return super().__exit__(*exc_info) def plot(self, data, vertical=True, colormap=None, color_dict=None, **kwargs): """ Create bar plot. Args: data (pandas.DataFrame or pandas.Series): data to show Index labels of the bars Columns variables to show vartical (bool): whether vertical bar plot (True) or horizontal bar plot (False) colormap (str, matplotlib colormap object or None): colormap, please refer to https://matplotlib.org/examples/color/colormaps_reference.html color_dict (dict[str, str] or None): dictionary of column names (keys) and colors (values) kwargs: keyword arguments of pandas.DataFrame.plot() """ if isinstance(data, pd.Series): data = pd.DataFrame(data) self._ensure_dataframe(data, name="data") self._variables = data.columns.tolist() # Color color_args = self._plot_colors(data.columns, colormap=colormap, color_dict=color_dict) # Set plotting method_dict = {True: data.plot.bar, False: data.plot.barh} try: self._ax = method_dict[vertical](**color_args, **kwargs) except ValueError as e: raise ValueError(e.args[0]) from None # No rotation of xticks self._ax.tick_params(axis="x", rotation=0) def x_axis(self, xlabel=None): """ Set x axis. Args: xlabel (str or None): x-label """ # Label self._ax.set_xlabel(xlabel) def y_axis(self, ylabel="Cases", y_logscale=False, ylim=(0, None), math_scale=True, y_integer=False): """ Set x axis. Args: ylabel (str or None): y-label y_logscale (bool): whether use log-scale in y-axis or not ylim (tuple(int or float, int or float)): limit of y dimain math_scale (bool): whether use LaTEX or not in y-label y_integer (bool): whether force to show the values as integer or not Note: If None is included in ylim, the values will be automatically determined by Matplotlib """ # Label self._ax.set_ylabel(ylabel) # Math scale if math_scale: self._ax.yaxis.set_major_formatter(ScalarFormatter(useMathText=True)) self._ax.ticklabel_format(style="sci", axis="y", scilimits=(0, 0)) # Interger scale if y_integer: fmt = ScalarFormatter(useOffset=False) fmt.set_scientific(False) self._ax.yaxis.set_major_formatter(fmt) # Log scale if y_logscale: self._ax.set_yscale("log") ylim = (None, None) if ylim[0] == 0 else ylim # limit self._ax.set_ylim(*ylim) def line(self, v=None, h=None, color="black", linestyle=":"): """ Show vertical/horizontal lines. Args: v (list[int/float] or None): list of x values of vertical lines or None h (list[int/float] or None): list of y values of horizontal lines or None color (str): color of the line linestyle (str): linestyle """ if h is not None: self._ax.axhline(y=h, color=color, linestyle=linestyle) if v is not None: v = v if isinstance(v, list) else [v] for value in v: self._ax.axvline(x=value, color=color, linestyle=linestyle) def bar_plot(df, title=None, filename=None, show_legend=True, **kwargs): """ Wrapper function: show chronological change of the data. Args: data (pandas.DataFrame or pandas.Series): data to show Index Date (pandas.Timestamp) Columns variables to show title (str): title of the figure filename (str or None): filename to save the figure or None (display) show_legend (bool): whether show legend or not kwargs: keyword arguments of the following classes and methods. - covsirphy.BarPlot() and its methods, - matplotlib.pyplot.savefig(), matplotlib.pyplot.legend(), - pandas.DataFrame.plot() """ with BarPlot(filename=filename, **find_args(plt.savefig, **kwargs)) as bp: bp.title = title bp.plot(data=df, **find_args([BarPlot.plot, pd.DataFrame.plot], **kwargs)) # Axis bp.x_axis(**find_args([BarPlot.x_axis], **kwargs)) bp.y_axis(**find_args([BarPlot.y_axis], **kwargs)) # Vertical/horizontal lines bp.line(**find_args([BarPlot.line], **kwargs)) # Legend if show_legend: bp.legend(**find_args([BarPlot.legend, plt.legend], **kwargs)) else: bp.legend_hide()
36.942308
152
0.599167
4,194
0.727746
0
0
0
0
0
0
2,760
0.478917
0c2c8fc01f580afd1e737eea2d3f4a891285699e
3,342
py
Python
03-process-unsplash-dataset.py
l294265421/natural-language-image-search
71621f2208f345b922ed0f82d406526cef456d48
[ "MIT" ]
null
null
null
03-process-unsplash-dataset.py
l294265421/natural-language-image-search
71621f2208f345b922ed0f82d406526cef456d48
[ "MIT" ]
null
null
null
03-process-unsplash-dataset.py
l294265421/natural-language-image-search
71621f2208f345b922ed0f82d406526cef456d48
[ "MIT" ]
null
null
null
import os import math from pathlib import Path import clip import torch from PIL import Image import numpy as np import pandas as pd from common import common_path # Set the path to the photos # dataset_version = "lite" # Use "lite" or "full" # photos_path = Path("unsplash-dataset") / dataset_version / "photos" photos_path = os.path.join(common_path.project_dir, 'unsplash-dataset/lite/photos') # List all JPGs in the folder photos_files = list(Path(photos_path).glob("*.jpg")) # Print some statistics print(f"Photos found: {len(photos_files)}") # Load the open CLIP model device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) # Function that computes the feature vectors for a batch of images def compute_clip_features(photos_batch): # Load all the photos from the files photos = [Image.open(photo_file) for photo_file in photos_batch] # Preprocess all photos photos_preprocessed = torch.stack([preprocess(photo) for photo in photos]).to(device) with torch.no_grad(): # Encode the photos batch to compute the feature vectors and normalize them photos_features = model.encode_image(photos_preprocessed) photos_features /= photos_features.norm(dim=-1, keepdim=True) # Transfer the feature vectors back to the CPU and convert to numpy return photos_features.cpu().numpy() # Define the batch size so that it fits on your GPU. You can also do the processing on the CPU, but it will be slower. batch_size = 16 # Path where the feature vectors will be stored features_path = os.path.join(common_path.project_dir, 'unsplash-dataset/lite/features') # Compute how many batches are needed batches = math.ceil(len(photos_files) / batch_size) # Process each batch for i in range(batches): print(f"Processing batch {i + 1}/{batches}") batch_ids_path = os.path.join(features_path, f"{i:010d}.csv") batch_features_path = os.path.join(features_path, f"{i:010d}.npy") # Only do the processing if the batch wasn't processed yet if not os.path.exists(batch_features_path): try: # Select the photos for the current batch batch_files = photos_files[i * batch_size: (i + 1) * batch_size] # Compute the features and save to a numpy file batch_features = compute_clip_features(batch_files) np.save(batch_features_path, batch_features) # Save the photo IDs to a CSV file photo_ids = [photo_file.name.split(".")[0] for photo_file in batch_files] photo_ids_data = pd.DataFrame(photo_ids, columns=['photo_id']) photo_ids_data.to_csv(batch_ids_path, index=False) except: # Catch problems with the processing to make the process more robust print(f'Problem with batch {i}') # Load all numpy files features_list = [np.load(features_file) for features_file in sorted(Path(features_path).glob("*.npy"))] # Concatenate the features and store in a merged file features = np.concatenate(features_list) np.save(os.path.join(features_path, "features.npy"), features) # Load all the photo IDs photo_ids = pd.concat([pd.read_csv(ids_file) for ids_file in sorted(Path(features_path).glob("*.csv"))]) photo_ids.to_csv(os.path.join(features_path, "photo_ids.csv"), index=False)
36.326087
118
0.718731
0
0
0
0
0
0
0
0
1,335
0.399461
0c2caff0890d29c7f470b93cedd466717f34705f
4,612
py
Python
treadmill_pipeline/treadmill.py
ttngu207/project-treadmill
55b5241b1c0b2634da8c153bf9aaeb511f28b07f
[ "MIT" ]
null
null
null
treadmill_pipeline/treadmill.py
ttngu207/project-treadmill
55b5241b1c0b2634da8c153bf9aaeb511f28b07f
[ "MIT" ]
null
null
null
treadmill_pipeline/treadmill.py
ttngu207/project-treadmill
55b5241b1c0b2634da8c153bf9aaeb511f28b07f
[ "MIT" ]
4
2020-03-05T15:44:36.000Z
2020-03-18T15:18:11.000Z
import numpy as np import datajoint as dj from treadmill_pipeline import project_database_prefix from ephys.utilities import ingestion, time_sync from ephys import get_schema_name schema = dj.schema(project_database_prefix + 'treadmill_pipeline') reference = dj.create_virtual_module('reference', get_schema_name('reference')) acquisition = dj.create_virtual_module('acquisition', get_schema_name('acquisition')) behavior = dj.create_virtual_module('behavior', get_schema_name('behavior')) @schema class TreadmillTracking(dj.Imported): definition = """ # session-level tracking data from the treadmill_pipeline(s) employed in the experiment -> acquisition.Session treadmill_tracking_time: datetime # start time of this treadmill_pipeline speed recording --- treadmill_tracking_name: varchar(40) # user-assign name of this treadmill_pipeline tracking (e.g. 27032019laserSess1) treadmill_timestamps: blob@ephys_store # (s) timestamps of the treadmill_pipeline speed samples """ class TreadmillSync(dj.Part): definition = """ -> master --- sync_master_clock: varchar(128) # name of the sync-master track_sync_data=null: blob@ephys_store # sync data (binary) track_time_zero=null: float # (s) the first time point of this tracking track_sync_timestamps=null: blob@ephys_store # (s) timestamps of sync data in tracking clock track_sync_master_timestamps=null: blob@ephys_store # (s) timestamps of sync data in master clock """ class Speed(dj.Part): definition = """ -> master treadmill_name: varchar(32) --- treadmill_speed: blob@ephys_store # (s) treadmill_pipeline speed at each timestamp """ key_source = acquisition.Session & acquisition.Recording # wait for recording to be ingested first before tracking def make(self, key): input_dir = ingestion.find_input_directory(key) if not input_dir: print(f'{input_dir} not found in this machine, skipping...') return rec_type, recordings = ingestion.get_recordings(input_dir) if rec_type in ('neuropixels', 'neurologger'): # if 'neuropixels' recording, check for OptiTrack's `motive` or `.csv` opti_list = ingestion.get_optitrack(input_dir) if not opti_list: raise FileNotFoundError('No OptiTrack "matmot.mtv" or ".csv" found') for opti in opti_list: if 'Format Version' not in opti.meta: raise NotImplementedError('Treadmill data ingest from type other than "optitrack.csv" not implemented') secondary_data = opti.secondary_data if 'Treadmill' not in secondary_data: raise KeyError('No "Treadmill" found in the secondary data of optitrack.csv') treadmill_key = dict(key, treadmill_tracking_time=opti.recording_time) self.insert1(dict(treadmill_key, treadmill_tracking_name=opti.tracking_name, # name of the session folder treadmill_timestamps=secondary_data['t'])) if hasattr(opti, 'sync_data'): self.TreadmillSync.insert1(dict(treadmill_key, sync_master_clock=opti.sync_data['master_name'], track_time_zero=secondary_data['t'][0], track_sync_timestamps=opti.sync_data['slave'], track_sync_master_timestamps=opti.sync_data['master'])) else: # data presynced with tracking-recording pair, # still need for a linear shift from session start to the recording this tracking is synced to self.TrackingSync.insert1(time_sync.create_tracking_sync_data( treadmill_key, np.array([secondary_data['t'][0], secondary_data['t'][-1]]))) self.Speed.insert1([dict(treadmill_key, treadmill_name=k, treadmill_speed=v['speed']) for k, v in secondary_data['Treadmill'].items()]) print(f'Insert {len(opti_list)} treadmill_pipeline tracking(s): {input_dir.stem}') else: raise NotImplementedError(f'Treadmill Tracking ingestion for recording type {rec_type} not implemented')
50.681319
130
0.624892
4,107
0.890503
0
0
4,115
0.892238
0
0
2,099
0.455117
0c3043c88aed8f6a40aafefe3d1e9548537a28e3
1,324
py
Python
management/api/v1/serializers.py
bwksoftware/cypetulip
4ea5c56d2d48a311220e144d094280a275109316
[ "MIT" ]
3
2019-08-03T12:00:22.000Z
2020-02-02T08:37:09.000Z
management/api/v1/serializers.py
basetwode/cypetulip
d6be294a288706c5661afb433215fe6c3ffea92b
[ "MIT" ]
47
2019-08-03T16:17:41.000Z
2022-03-11T23:15:48.000Z
management/api/v1/serializers.py
basetwode/cypetulip
d6be294a288706c5661afb433215fe6c3ffea92b
[ "MIT" ]
null
null
null
from rest_framework import serializers from management.models.main import MailSetting, LdapSetting, ShopSetting, LegalSetting, Header, CacheSetting, Footer class MailSettingSerializer(serializers.ModelSerializer): id = serializers.ReadOnlyField() class Meta: model = MailSetting fields = '__all__' class LdapSettingSerializer(serializers.ModelSerializer): id = serializers.ReadOnlyField() class Meta: model = LdapSetting fields = '__all__' class ShopSettingSerializer(serializers.ModelSerializer): id = serializers.ReadOnlyField() class Meta: model = ShopSetting fields = '__all__' class LegalSettingSerializer(serializers.ModelSerializer): id = serializers.ReadOnlyField() class Meta: model = LegalSetting fields = '__all__' class HeaderSerializer(serializers.ModelSerializer): id = serializers.ReadOnlyField() class Meta: model = Header fields = '__all__' class FooterSerializer(serializers.ModelSerializer): id = serializers.ReadOnlyField() class Meta: model = Footer fields = '__all__' class CacheSettingSerializer(serializers.ModelSerializer): id = serializers.ReadOnlyField() class Meta: model = CacheSetting fields = '__all__'
22.066667
116
0.702417
1,146
0.865559
0
0
0
0
0
0
63
0.047583
0c309ee4537295e1c6db342512009ad9c9a55328
9,854
py
Python
tests/test_optimal.py
craffer/fantasy-coty
08903cb138fa1c2d160b90fc028c8ec55901040b
[ "MIT" ]
null
null
null
tests/test_optimal.py
craffer/fantasy-coty
08903cb138fa1c2d160b90fc028c8ec55901040b
[ "MIT" ]
2
2019-12-21T18:48:40.000Z
2019-12-22T20:19:20.000Z
tests/test_optimal.py
craffer/fantasy-coty
08903cb138fa1c2d160b90fc028c8ec55901040b
[ "MIT" ]
null
null
null
"""Unit test optimal lineup functions.""" import unittest import copy import ff_espn_api # pylint: disable=import-error from collections import defaultdict from fantasy_coty.main import add_to_optimal class TestAddToOptimal(unittest.TestCase): """Test add_to_optimal() function.""" def setUp(self): """Set up settings and optimal objects for each function.""" self.settings = defaultdict(int) self.settings["QB"] = 1 self.settings["RB"] = 2 self.settings["WR"] = 2 self.settings["TE"] = 1 self.settings["RB/WR/TE"] = 1 self.settings["D/ST"] = 1 self.settings["K"] = 1 self.optimal = defaultdict(list) self.flex = "RB/WR/TE" # all of this is garbage in order to create a default BoxPlayer that we can modify data = {} data["proTeamId"] = 1 data["player"] = {} data["player"]["proTeamId"] = 1 data["player"]["stats"] = [] pro_schedule = {} pos_rankings = {} week = 0 self.default_players = {} self.default_players["QB"] = ff_espn_api.BoxPlayer(data, pro_schedule, pos_rankings, week) self.default_players["QB"].eligibleSlots = ["QB", "OP", "BE", "IR"] self.default_players["QB"].position = "QB" self.default_players["RB"] = ff_espn_api.BoxPlayer(data, pro_schedule, pos_rankings, week) self.default_players["RB"].eligibleSlots = [ "RB", "RB/WR", "RB/WR/TE", "OP", "BE", "IR", ] self.default_players["RB"].position = "RB" self.default_players["WR"] = ff_espn_api.BoxPlayer(data, pro_schedule, pos_rankings, week) self.default_players["WR"].eligibleSlots = [ "RB/WR", "WR", "WR/TE", "RB/WR/TE", "OP", "BE", "IR", ] self.default_players["WR"].position = "WR" self.default_players["TE"] = ff_espn_api.BoxPlayer(data, pro_schedule, pos_rankings, week) self.default_players["TE"].eligibleSlots = [ "WR/TE", "TE", "RB/WR/TE", "OP", "BE", "IR", ] self.default_players["TE"].position = "TE" self.default_players["D/ST"] = ff_espn_api.BoxPlayer(data, pro_schedule, pos_rankings, week) self.default_players["D/ST"].eligibleSlots = ["D/ST", "BE", "IR"] self.default_players["D/ST"].position = "D/ST" self.default_players["K"] = ff_espn_api.BoxPlayer(data, pro_schedule, pos_rankings, week) self.default_players["K"].eligibleSlots = ["K", "BE", "IR"] self.default_players["K"].position = "K" def test_basic_functionality(self): """Test basic functionality of add_to_optimal().""" # test basic replacement functionality qb1 = copy.deepcopy(self.default_players["QB"]) qb1.points = 10 self.optimal = add_to_optimal(self.optimal, self.settings, qb1) self.assertEqual(self.optimal["QB"][0].points, 10) self.assertEqual(len(self.optimal["QB"]), self.settings["QB"]) qb2 = copy.deepcopy(self.default_players["QB"]) qb2.points = 8 self.optimal = add_to_optimal(self.optimal, self.settings, qb2) self.assertEqual(self.optimal["QB"][0].points, 10) self.assertEqual(len(self.optimal["QB"]), self.settings["QB"]) qb3 = copy.deepcopy(self.default_players["QB"]) qb3.points = 12 self.optimal = add_to_optimal(self.optimal, self.settings, qb3) self.assertEqual(self.optimal["QB"][0].points, 12) self.assertEqual(len(self.optimal["QB"]), self.settings["QB"]) def test_flex_replacement(self): """Test functionality involving of add_to_optimal() involving FLEX.""" rb1 = copy.deepcopy(self.default_players["RB"]) rb1.points = 20 self.optimal = add_to_optimal(self.optimal, self.settings, rb1) self.assertEqual(self.optimal["RB"][0].points, rb1.points) self.assertLess(len(self.optimal["RB"]), self.settings["RB"]) rb2 = copy.deepcopy(self.default_players["RB"]) rb2.points = 12 self.optimal = add_to_optimal(self.optimal, self.settings, rb2) self.assertIn(rb1.points, [x.points for x in self.optimal["RB"]]) self.assertIn(rb2.points, [x.points for x in self.optimal["RB"]]) self.assertEqual(len(self.optimal["RB"]), self.settings["RB"]) # test adding to FLEX when less than the other 2 RBs rb3 = copy.deepcopy(self.default_players["RB"]) rb3.points = 8 self.optimal = add_to_optimal(self.optimal, self.settings, rb3) self.assertIn(rb1.points, [x.points for x in self.optimal["RB"]]) self.assertIn(rb2.points, [x.points for x in self.optimal["RB"]]) self.assertEqual(len(self.optimal["RB"]), self.settings["RB"]) self.assertIn(rb3.points, [x.points for x in self.optimal[self.flex]]) self.assertEqual(len(self.optimal[self.flex]), self.settings[self.flex]) # test bumping one RB from RB2 to FLEX rb4 = copy.deepcopy(self.default_players["RB"]) rb4.points = 16 self.optimal = add_to_optimal(self.optimal, self.settings, rb4) self.assertIn(rb1.points, [x.points for x in self.optimal["RB"]]) self.assertIn(rb4.points, [x.points for x in self.optimal["RB"]]) self.assertEqual(len(self.optimal["RB"]), self.settings["RB"]) self.assertIn(rb2.points, [x.points for x in self.optimal[self.flex]]) self.assertEqual(len(self.optimal[self.flex]), self.settings[self.flex]) # test putting something straight away in flex rb5 = copy.deepcopy(self.default_players["RB"]) rb5.points = 14 self.optimal = add_to_optimal(self.optimal, self.settings, rb5) self.assertIn(rb1.points, [x.points for x in self.optimal["RB"]]) self.assertIn(rb4.points, [x.points for x in self.optimal["RB"]]) self.assertEqual(len(self.optimal["RB"]), self.settings["RB"]) self.assertIn(rb5.points, [x.points for x in self.optimal[self.flex]]) self.assertEqual(len(self.optimal[self.flex]), self.settings[self.flex]) # test putting in low WRs with flex spot full wr1 = copy.deepcopy(self.default_players["WR"]) wr1.points = 5 self.optimal = add_to_optimal(self.optimal, self.settings, wr1) self.assertIn(wr1.points, [x.points for x in self.optimal["WR"]]) self.assertLess(len(self.optimal["WR"]), self.settings["WR"]) wr2 = copy.deepcopy(self.default_players["WR"]) wr2.points = 7 self.optimal = add_to_optimal(self.optimal, self.settings, wr2) self.assertIn(wr1.points, [x.points for x in self.optimal["WR"]]) self.assertIn(wr2.points, [x.points for x in self.optimal["WR"]]) self.assertEqual(len(self.optimal["WR"]), self.settings["WR"]) # test putting in a very high WR, shouldn't bump anything to FLEX wr3 = copy.deepcopy(self.default_players["WR"]) wr3.points = 30 self.optimal = add_to_optimal(self.optimal, self.settings, wr3) self.assertIn(wr3.points, [x.points for x in self.optimal["WR"]]) self.assertIn(wr2.points, [x.points for x in self.optimal["WR"]]) self.assertEqual(len(self.optimal["WR"]), self.settings["WR"]) self.assertIn(rb5.points, [x.points for x in self.optimal[self.flex]]) self.assertEqual(len(self.optimal[self.flex]), self.settings[self.flex]) # two more receivers, the second one should bump something to FLEX wr4 = copy.deepcopy(self.default_players["WR"]) wr4.points = 28 self.optimal = add_to_optimal(self.optimal, self.settings, wr4) self.assertIn(wr3.points, [x.points for x in self.optimal["WR"]]) self.assertIn(wr4.points, [x.points for x in self.optimal["WR"]]) self.assertEqual(len(self.optimal["WR"]), self.settings["WR"]) self.assertIn(rb5.points, [x.points for x in self.optimal[self.flex]]) self.assertEqual(len(self.optimal[self.flex]), self.settings[self.flex]) # this should bump WR4 to FLEX wr5 = copy.deepcopy(self.default_players["WR"]) wr5.points = 29 self.optimal = add_to_optimal(self.optimal, self.settings, wr5) self.assertIn(wr3.points, [x.points for x in self.optimal["WR"]]) self.assertIn(wr5.points, [x.points for x in self.optimal["WR"]]) self.assertEqual(len(self.optimal["WR"]), self.settings["WR"]) self.assertIn(wr4.points, [x.points for x in self.optimal[self.flex]]) self.assertEqual(len(self.optimal[self.flex]), self.settings[self.flex]) # finally, this should go directly in FLEX wr6 = copy.deepcopy(self.default_players["WR"]) wr6.points = 28.5 self.optimal = add_to_optimal(self.optimal, self.settings, wr6) self.assertIn(wr3.points, [x.points for x in self.optimal["WR"]]) self.assertIn(wr5.points, [x.points for x in self.optimal["WR"]]) self.assertEqual(len(self.optimal["WR"]), self.settings["WR"]) self.assertIn(wr6.points, [x.points for x in self.optimal[self.flex]]) self.assertEqual(len(self.optimal[self.flex]), self.settings[self.flex]) def test_negative_player(self): """Make sure negative-scoring players aren't optimal, no matter what.""" d1 = copy.deepcopy(self.default_players["D/ST"]) d1.points = -0.1 self.optimal = add_to_optimal(self.optimal, self.settings, d1) self.assertNotIn(d1.points, [x.points for x in self.optimal["D/ST"]]) self.assertLess(len(self.optimal["D/ST"]), self.settings["D/ST"]) if __name__ == "__main__": unittest.main()
46.046729
100
0.623909
9,600
0.974224
0
0
0
0
0
0
1,504
0.152628
0c31fa4744359e49cd3c719e5fe2aae79bc7f68a
5,391
py
Python
spark/explorer.py
Elavarasan17/Stack-Overflow-Data-Dump-Analysis
3742a1eef17b211ddcda4bd5f41d8a8c42ec228f
[ "zlib-acknowledgement", "RSA-MD" ]
null
null
null
spark/explorer.py
Elavarasan17/Stack-Overflow-Data-Dump-Analysis
3742a1eef17b211ddcda4bd5f41d8a8c42ec228f
[ "zlib-acknowledgement", "RSA-MD" ]
null
null
null
spark/explorer.py
Elavarasan17/Stack-Overflow-Data-Dump-Analysis
3742a1eef17b211ddcda4bd5f41d8a8c42ec228f
[ "zlib-acknowledgement", "RSA-MD" ]
null
null
null
from pyspark import SparkConf, SparkContext from pyspark.sql import SparkSession, functions, types from pyspark.sql.functions import date_format from pyspark.sql.functions import year, month, dayofmonth import sys import json import argparse assert sys.version_info >= (3, 5) # make sure we have Python 3.5+ # add more functions as necessary def main(posts_inputs, users_inputs,temp_bucket_input,dataset_input): # main logic starts here #Hariish - Users and Tags users = spark.read.parquet(users_inputs) posts = spark.read.parquet(posts_inputs) #User and posts join posts = posts.withColumn("creation_year",year(posts['creation_date'])) res = users.join(posts,(posts['owner_user_id'] == users['id'])).select(users.display_name,users.id,posts.post_id,posts.creation_year,users.location,posts.owner_user_id,posts.post_type_id,posts.accepted_answer_id,posts.tags) #Active users over years: res1 = res.groupBy(res['id'],res['display_name'],res['creation_year']).agg(functions.count(res['post_id']).alias('post_count')).orderBy('post_count') res2 = res1.groupBy(res1['id'],res['display_name']).pivot('creation_year').sum('post_count') res3 = res2.na.fill(value=0) res4 = res3.withColumn("overall_posts",res3['2015']+res3['2016']+res3['2017']+res3['2018']+res3['2019']+res3['2020']+res3['2021']) active_users = res4.orderBy(res4['overall_posts'].desc()).select('id','display_name','2015','2016','2017','2018','2019','2020','2021','overall_posts') act_id = active_users.limit(10).select('id','display_name') active_users = active_users.withColumnRenamed('2015','y_2015').withColumnRenamed('2016','y_2016').withColumnRenamed('2017','y_2017').withColumnRenamed('2018','y_2018').withColumnRenamed('2019','y_2019').withColumnRenamed('2020','y_2020').withColumnRenamed('2021','y_2021') active_users = active_users.limit(10) a1 = active_users.selectExpr("display_name", "stack(8, 'y_2015', y_2015, 'y_2016', y_2016, 'y_2017', y_2017,'y_2018',y_2018,'y_2019',y_2019,'y_2020',y_2020,'y_2021',y_2021 ,'overall_posts',overall_posts) as (creation_year, values)").where("values is not null") a1 = a1.select('creation_year','display_name','values') act_user = a1.groupBy(a1['creation_year']).pivot('display_name').sum('values') act_user = act_user.withColumnRenamed('Gordon Linoff',"Gordon_Linoff").withColumnRenamed('Nina Scholz','Nina_Scholz').withColumnRenamed('Ronak Shah','Ronak_Shah').withColumnRenamed('T.J. Crowder','TJ_Crowder').withColumnRenamed('Tim Biegeleisen','Tim_Biegeleisen').withColumnRenamed('Wiktor Stribiżew','Wiktor_Stribiżew') #act_user.show() #Famous Tags over the year p1 = posts.withColumn("new",functions.arrays_zip("tags")).withColumn("new", functions.explode("new")).select('post_id',functions.col("new.tags").alias("tags"),'creation_year') p2 = p1.groupBy(p1['tags'],p1['creation_year']).agg(functions.count(p1['tags']).alias('tag_count')) p3 = p2.groupBy(p2['tags']).pivot('creation_year').sum('tag_count') p3 = p3.na.fill(value=0) p4 = p3.withColumn("overall_tag_usage",p3['2015']+p3['2016']+p3['2017']+p3['2018']+p3['2019']+p3['2020']+p3['2021']) tag_trends = p4.orderBy(p4['overall_tag_usage'].desc()).select('tags','2015','2016','2017','2018','2019','2020','2021','overall_tag_usage') tag_trends = tag_trends.withColumnRenamed('2015','y_2015').withColumnRenamed('2016','y_2016').withColumnRenamed('2017','y_2017').withColumnRenamed('2018','y_2018').withColumnRenamed('2019','y_2019').withColumnRenamed('2020','y_2020').withColumnRenamed('2021','y_2021') tag_trends = tag_trends.limit(10) t1 = tag_trends.selectExpr("tags", "stack(8, 'y_2015', y_2015, 'y_2016', y_2016, 'y_2017', y_2017,'y_2018',y_2018,'y_2019',y_2019,'y_2020',y_2020,'y_2021',y_2021 ,'overall_tag_usage',overall_tag_usage) as (creation_year, values)").where("values is not null") t1 = t1.select('creation_year','tags','values') tag_view = t1.groupBy(t1['creation_year']).pivot('tags').sum('values') #tag_view.show() #writing: act_user.write.mode('overwrite').format('bigquery').option("temporaryGcsBucket",temp_bucket_input).option('table',dataset_input+".active_users").save() tag_view.write.mode('overwrite').format('bigquery').option("temporaryGcsBucket",temp_bucket_input).option('table',dataset_input+".tag_trends").save() act_id.write.mode('overwrite').format('bigquery').option("temporaryGcsBucket",temp_bucket_input).option('table',dataset_input+".top10_user_details").save() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-posts_src", action="store", dest="posts_src", type=str) parser.add_argument("-users_src", action="store", dest="users_src", type=str) parser.add_argument("-tempbucket_src", action="store", dest="tempbucket_src", type=str) parser.add_argument("-dataset_src", action="store", dest="dataset_src", type=str) args = parser.parse_args() posts_inputs = args.posts_src users_inputs = args.users_src temp_bucket_input = args.tempbucket_src dataset_input = args.dataset_src spark = SparkSession.builder.appName('Explorer DF').getOrCreate() assert spark.version >= '3.0' # make sure we have Spark 3.0+ spark.sparkContext.setLogLevel('WARN') main(posts_inputs, users_inputs,temp_bucket_input,dataset_input)
70.012987
325
0.725654
0
0
0
0
0
0
0
0
2,165
0.401446
0c32795d8af79fcf1c3d723adbd4971a62b457ad
2,177
py
Python
self_supervised/loss.py
ravidziv/self-supervised-learning
f02c1639ce3c2119afa522e400d793e741fb68a0
[ "MIT" ]
null
null
null
self_supervised/loss.py
ravidziv/self-supervised-learning
f02c1639ce3c2119afa522e400d793e741fb68a0
[ "MIT" ]
null
null
null
self_supervised/loss.py
ravidziv/self-supervised-learning
f02c1639ce3c2119afa522e400d793e741fb68a0
[ "MIT" ]
null
null
null
"""Contrastive loss functions.""" from functools import partial import tensorflow as tf LARGE_NUM = 1e9 def cont_loss2(temperature: float): func = partial(add_contrastive_loss, temperature=temperature) func.__name__ = 'cont_loss2' return func def add_supervised_loss(labels: tf.Tensor, logits: tf.Tensor): """Compute mean supervised loss over local batch.""" losses = tf.keras.losses.CategoricalCrossentropy( from_logits=True, reduction=tf.keras.losses.Reduction.NONE)(labels, logits) return tf.reduce_mean(losses) def add_contrastive_loss(hidden: tf.Tensor, hidden_norm: bool = True, temperature: float = 1.0): """Compute loss for model. Args: hidden: hidden vector (`Tensor`) of shape (bsz, dim). hidden_norm: whether or not to use normalization on the hidden vector. temperature: a `floating` number for temperature scaling. Returns: A loss scalar. The logits for contrastive prediction task. The labels for contrastive prediction task. """ if hidden_norm: hidden = tf.math.l2_normalize(hidden, -1) hidden1, hidden2 = tf.split(hidden, 2, 0) batch_size = tf.shape(hidden1)[0] hidden1_large = hidden1 hidden2_large = hidden2 labels = tf.one_hot(tf.range(batch_size), batch_size * 2) masks = tf.one_hot(tf.range(batch_size), batch_size) logits_aa = tf.matmul(hidden1, hidden1_large, transpose_b=True) / temperature logits_aa = logits_aa - masks * LARGE_NUM logits_bb = tf.matmul(hidden2, hidden2_large, transpose_b=True) / temperature logits_bb = logits_bb - masks * LARGE_NUM logits_ab = tf.matmul(hidden1, hidden2_large, transpose_b=True) / temperature logits_ba = tf.matmul(hidden2, hidden1_large, transpose_b=True) / temperature loss_a = tf.nn.softmax_cross_entropy_with_logits( labels, tf.concat([logits_ab, logits_aa], 1)) loss_b = tf.nn.softmax_cross_entropy_with_logits( labels, tf.concat([logits_ba, logits_bb], 1)) loss = tf.reduce_mean(loss_a + loss_b) return loss, logits_ab, labels
36.283333
81
0.683969
0
0
0
0
0
0
0
0
478
0.219568
0c336dedc298c3448acb41a9e995e66ab5dfe2bf
3,391
py
Python
suzieq/engines/pandas/tables.py
zxiiro/suzieq
eca92820201c05bc80081599f69e41cd6b991107
[ "Apache-2.0" ]
null
null
null
suzieq/engines/pandas/tables.py
zxiiro/suzieq
eca92820201c05bc80081599f69e41cd6b991107
[ "Apache-2.0" ]
null
null
null
suzieq/engines/pandas/tables.py
zxiiro/suzieq
eca92820201c05bc80081599f69e41cd6b991107
[ "Apache-2.0" ]
null
null
null
import pandas as pd from suzieq.engines.pandas.engineobj import SqPandasEngine from suzieq.sqobjects import get_sqobject class TableObj(SqPandasEngine): @staticmethod def table_name(): return 'tables' def get(self, **kwargs): """Show the known tables for which we have information""" table_list = self._dbeng.get_tables() df = pd.DataFrame() columns = kwargs.pop('columns', ['default']) unknown_tables = [] tables = [] for table in table_list: table_obj = get_sqobject(table) if not table_obj: # This is a table without an sqobject backing store # this happens either because we haven't yet implemented the # table functions or because this table is collapsed into a # single table as in the case of ospf unknown_tables.append(table) table_inst = get_sqobject('tables')(context=self.ctxt) table_inst._table = table else: table_inst = table_obj(context=self.ctxt) info = {'table': table} info.update(table_inst.get_table_info( table, columns=['namespace', 'hostname', 'timestamp'], **kwargs)) tables.append(info) df = pd.DataFrame.from_dict(tables) if df.empty: return df df = df.sort_values(by=['table']).reset_index(drop=True) cols = df.columns total = pd.DataFrame([['TOTAL', df['firstTime'].min(), df['latestTime'].max(), df['intervals'].max(), df['allRows'].sum(), df['namespaces'].max(), df['deviceCnt'].max()]], columns=cols) df = df.append(total, ignore_index=True).dropna() return df def summarize(self, **kwargs): df = self.get(**kwargs) if df.empty or ('error' in df.columns): return df df = df.set_index(['table']) sdf = pd.DataFrame({ 'serviceCnt': [df.index.nunique()-1], 'namespaceCnt': [df.at['TOTAL', 'namespaces']], 'deviceCnt': [df.at['device', 'deviceCnt']], 'earliestTimestamp': [df.firstTime.min()], 'lastTimestamp': [df.latestTime.max()], 'firstTime99': [df.firstTime.quantile(0.99)], 'latestTime99': [df.latestTime.quantile(0.99)], }) return sdf.T.rename(columns={0: 'summary'}) def top(self, **kwargs): "Tables implementation of top has to eliminate the TOTAL row" what = kwargs.pop("what", None) reverse = kwargs.pop("reverse", False) sqTopCount = kwargs.pop("count", 5) if not what: return pd.DataFrame() df = self.get(addnl_fields=self.iobj._addnl_fields, **kwargs) if df.empty or ('error' in df.columns): return df if reverse: return df.query('table != "TOTAL"') \ .nsmallest(sqTopCount, columns=what, keep="all") \ .head(sqTopCount) else: return df.query('table != "TOTAL"') \ .nlargest(sqTopCount, columns=what, keep="all") \ .head(sqTopCount)
34.252525
76
0.529932
3,266
0.963138
0
0
59
0.017399
0
0
712
0.209968
0c34007b8ed98fbad90350a4894f2960e309e1be
3,306
py
Python
connect_box/data.py
jtru/python-connect-box
2d26923e966fbb319760da82e3e71103018ded0b
[ "MIT" ]
null
null
null
connect_box/data.py
jtru/python-connect-box
2d26923e966fbb319760da82e3e71103018ded0b
[ "MIT" ]
null
null
null
connect_box/data.py
jtru/python-connect-box
2d26923e966fbb319760da82e3e71103018ded0b
[ "MIT" ]
null
null
null
"""Handle Data attributes.""" from datetime import datetime from ipaddress import IPv4Address, IPv6Address, ip_address as convert_ip from typing import Iterable, Union import attr @attr.s class Device: """A single device.""" mac: str = attr.ib() hostname: str = attr.ib(cmp=False) ip: Union[IPv4Address, IPv6Address] = attr.ib(cmp=False, converter=convert_ip) interface: str = attr.ib() speed: int = attr.ib() interface_id: int = attr.ib() method: int = attr.ib() lease_time: str = attr.ib( converter=lambda lease_time: datetime.strptime(lease_time, "00:%H:%M:%S") ) @attr.s class DownstreamChannel: """A locked downstream channel.""" frequency: int = attr.ib() powerLevel: int = attr.ib() modulation: str = attr.ib() id: str = attr.ib() snr: float = attr.ib() preRs: int = attr.ib() postRs: int = attr.ib() qamLocked: bool = attr.ib() fecLocked: bool = attr.ib() mpegLocked: bool = attr.ib() @attr.s class UpstreamChannel: """A locked upstream channel.""" frequency: int = attr.ib() powerLevel: int = attr.ib() symbolRate: str = attr.ib() id: str = attr.ib() modulation: str = attr.ib() type: str = attr.ib() t1Timeouts: int = attr.ib() t2Timeouts: int = attr.ib() t3Timeouts: int = attr.ib() t4Timeouts: int = attr.ib() channelType: str = attr.ib() messageType: int = attr.ib() @attr.s class Ipv6FilterInstance: """An IPv6 filter rule instance.""" idd: int = attr.ib() srcAddr: Union[IPv4Address, IPv6Address] = attr.ib(converter=convert_ip) srcAddr: str = attr.ib() srcPrefix: int = attr.ib() dstAddr: str = attr.ib() dstAddr: Union[IPv4Address, IPv6Address] = attr.ib(converter=convert_ip) dstPrefix: int = attr.ib() srcPortStart: int = attr.ib() srcPortEnd: int = attr.ib() dstPortStart: int = attr.ib() dstPortEnd: int = attr.ib() protocol: int = attr.ib() allow: int = attr.ib() enabled: int = attr.ib() @attr.s class FiltersTimeMode: """Filters time setting.""" TMode: int = attr.ib() XmlGeneralTime: str = attr.ib() XmlDailyTime: str = attr.ib() @attr.s class FilterStatesList: """A sequence of filter state instances.""" entries: Iterable = attr.ib() @attr.s class FilterState: """A filter state instance.""" idd: int = attr.ib() enabled: int = attr.ib() @attr.s class CmStatus: provisioningStatus: str = attr.ib() cmComment: str = attr.ib() cmDocsisMode: str = attr.ib() cmNetworkAccess: str = attr.ib() firmwareFilename: str = attr.ib() # number of IP addresses to assign via DHCP numberOfCpes: int = attr.ib() # ??? dMaxCpes: int = attr.ib() bpiEnable: int = attr.ib() @attr.s class ServiceFlow: id: int = attr.ib() pMaxTrafficRate: int = attr.ib() pMaxTrafficBurst: int = attr.ib() pMinReservedRate: int = attr.ib() pMaxConcatBurst: int = attr.ib() # 2 seems to be Best Effort pSchedulingType: int = attr.ib() @attr.s class Temperature: # temperatures in degrees Celsius tunerTemperature: float = attr.ib() temperature: float = attr.ib() # several other stats remain untapped here: # wan_ipv4_addr # wan_ipv6_addr, wan_ipv6_addr_entry
24.857143
82
0.635209
3,019
0.913188
0
0
3,099
0.937387
0
0
467
0.141258