hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
f31c461ea88a83b782769751389f56772c713d60
1,457
py
Python
pyof/v0x05/asynchronous/table_status.py
mhaji007/python-openflow
25f032d660e648501d1e732969b6f91357ef5b66
[ "MIT" ]
null
null
null
pyof/v0x05/asynchronous/table_status.py
mhaji007/python-openflow
25f032d660e648501d1e732969b6f91357ef5b66
[ "MIT" ]
null
null
null
pyof/v0x05/asynchronous/table_status.py
mhaji007/python-openflow
25f032d660e648501d1e732969b6f91357ef5b66
[ "MIT" ]
null
null
null
"""Defines an Table Status Message.""" # System imports from enum import IntEnum # Local source tree imports from pyof.foundation.base import GenericMessage, GenericStruct from pyof.foundation.basic_types import BinaryData, FixedTypeList, UBInt16, UBInt8, UBInt32, UBInt64, Pad from pyof.v0x05.common.header import Header, Type from pyof.v0x05.controller2switch.multipart_reply import TableDesc # Third-party imports __all__ = ('TableStatus', 'TableReason') # Enums class TableReason(IntEnum): """What changed about the table.""" #: Vacancy down threshold event OFPTR_VACANCY_DOWN = 3 #: Vacancy up threshold event OFPTR_VACANCY_UP = 4 # Classes class TableStatus(GenericMessage): """OpenFlow TableStatus Message OFPT_TABLE_STATUS. A table config has changed in the datapath """ #: :class:`~pyof.v0x05.common.action.ActionHeader`: OpenFlow Header header = Header(message_type=Type.OFPT_TABLE_STATUS) #: One of OFPTR_.* reason = UBInt8(enum_ref=TableReason) #: Pad to 64 bits pad = Pad(7) #: New table config table = TableDesc() def __init__(self, xid=None, reason=None, table=None): """Create a message with the optional parameters below. Args: xid (int): xid to be used on the message header. elements: List of elements - 0 or more """ super().__init__(xid) self.reason = reason self.table = table
26.490909
105
0.691833
968
0.664379
0
0
0
0
0
0
662
0.454358
f31ce1a1719984d1cf324a95ea4f226d430436e1
361
py
Python
DEQModel/utils/debug.py
JunLi-Galios/deq
80eb6b598357e8e01ad419126465fa3ed53b12c7
[ "MIT" ]
548
2019-09-05T04:25:21.000Z
2022-03-22T01:49:35.000Z
DEQModel/utils/debug.py
JunLi-Galios/deq
80eb6b598357e8e01ad419126465fa3ed53b12c7
[ "MIT" ]
21
2019-10-04T16:36:05.000Z
2022-03-24T02:20:28.000Z
DEQModel/utils/debug.py
JunLi-Galios/deq
80eb6b598357e8e01ad419126465fa3ed53b12c7
[ "MIT" ]
75
2019-09-05T22:40:32.000Z
2022-03-31T09:40:44.000Z
import torch from torch.autograd import Function class Identity(Function): @staticmethod def forward(ctx, x, name): ctx.name = name return x.clone() def backward(ctx, grad): import pydevd pydevd.settrace(suspend=False, trace_only_current_thread=True) grad_temp = grad.clone() return grad_temp, None
24.066667
70
0.65928
310
0.858726
0
0
93
0.257618
0
0
0
0
f31cf93ef20fe7554b80d699b5aa26fadaf86834
13,629
py
Python
feature_track_visualizer/visualizer.py
jfvilaro/rpg_feature_tracking_analysis
4c29a64cc07db44b43c12ff66c71d5c7da062c79
[ "MIT" ]
null
null
null
feature_track_visualizer/visualizer.py
jfvilaro/rpg_feature_tracking_analysis
4c29a64cc07db44b43c12ff66c71d5c7da062c79
[ "MIT" ]
null
null
null
feature_track_visualizer/visualizer.py
jfvilaro/rpg_feature_tracking_analysis
4c29a64cc07db44b43c12ff66c71d5c7da062c79
[ "MIT" ]
null
null
null
from os.path import isfile import os import cv2 from os.path import join import numpy as np import tqdm import random from big_pun.tracker_utils import filter_first_tracks, getTrackData def component(): return random.randint(0, 255) class FeatureTracksVisualizer: def __init__(self, gt_file,track_file, dataset, params): self.params = params self.dataset = dataset self.tracks, self.feature_ids, self.colors, self.colors_id = self.loadFeatureTracks(gt_file,track_file) self.min_time_between_screen_refresh_ms = 5 self.max_time_between_screen_refresh_ms = 100 self.is_paused = False self.is_looped = False self.marker = params["marker"] self.computeMinMaxSpeed() self.updateDisplayRate() self.times = np.linspace(self.min_stamp, self.max_stamp, int(self.params['framerate'] * (self.max_stamp - self.min_stamp))) self.time_index = 0 self.cv2_window_name = 'tracks' cv2.namedWindow(self.cv2_window_name, cv2.WINDOW_NORMAL) def cropGT(self, gt, predictions): gt = {i: g for i,g in gt.items() if i in predictions} predictions = {i: p for i,p in predictions.items() if i in gt} for i, gt_track in gt.items(): prediction_track = predictions[i] t_max = prediction_track[-1,0] gt_track = gt_track[gt_track[:,0]<=t_max] gt[i] = gt_track return gt def discardOnThreshold(self, predictions, gt, thresh): assert set(gt.keys()) == set(predictions.keys()) for i, gt_track in gt.items(): pred_track = predictions[i] x_p_interp = np.interp(gt_track[:,0], pred_track[:,0], pred_track[:,1]) y_p_interp = np.interp(gt_track[:,0], pred_track[:,0], pred_track[:,2]) error = np.sqrt((x_p_interp-gt_track[:,1])**2 + (y_p_interp-gt_track[:,2])**2) idxs = np.where(error > thresh)[0] if len(idxs) == 0: continue t_max = gt_track[idxs[0],0] gt[i] = gt_track[:idxs[0]] predictions[i] = pred_track[pred_track[:,0]<t_max] return predictions, gt def loadFeatureTracks(self, gt_file, track_file, method="estimation", color=[0, 255, 0], gt_color=[255, 0, 255]): tracks = {} colors = {} colors_id = {} color = [r for r in reversed(color)] if self.params['visualisation_mode'] == "estimation": # load track colors["estimation"] = color data = np.genfromtxt(track_file, delimiter=" ") first_len_tracks = len(data) valid_ids, data = filter_first_tracks(data, filter_too_short=True) track_data = {i: data[data[:, 0] == i, 1:] for i in valid_ids} tracks[method] = track_data for i in valid_ids: # Define a different random color for each id. colors_id[i] = [component(), component(), component()] if len(track_data) < first_len_tracks: print("WARNING: This package only supports evaluation of tracks which have been initialized at the same" "time. All tracks except the first have been discarded.") # load gt tracks_csv = join(gt_file) if isfile(tracks_csv): gt = getTrackData(tracks_csv) colors["gt"] = gt_color # if true, crop all tracks from gt to have the same length as the predictions. if self.params["crop_to_predictions"]: gt = self.cropGT(gt, tracks[method]) if self.params["error_threshold"] > 0: tracks[method], gt = self.discardOnThreshold(tracks[method], gt, self.params["error_threshold"]) tracks["gt"] = gt elif self.params['visualisation_mode'] == "gt": # load gt data = np.genfromtxt(gt_file, delimiter=" ") first_len_tracks = len(data) valid_ids, data = filter_first_tracks(data, filter_too_short=True) track_data = {i: data[data[:, 0] == i, 1:] for i in valid_ids} tracks["gt"] = track_data for i in valid_ids: # Define a different random color for each id. colors_id[i] = [component(), component(), component()] if len(track_data) < first_len_tracks: print("WARNING: This package only supports evaluation of tracks which have been initialized at the same" "time. All tracks except the first have been discarded.") colors["gt"] = gt_color elif self.params['visualisation_mode'] == "track": # load track data = np.genfromtxt(track_file, delimiter=" ") first_len_tracks = len(data) valid_ids, data = filter_first_tracks(data, filter_too_short=True) track_data = {i: data[data[:, 0] == i, 1:] for i in valid_ids} tracks["track"] = track_data for i in valid_ids: # Define a different random color for each id. colors_id[i] = [component(), component(), component()] if len(track_data) < first_len_tracks: print("WARNING: This package only supports evaluation of tracks which have been initialized at the same" "time. All tracks except the first have been discarded.") colors["track"] = gt_color feature_ids = {label: list(tracks_dict.keys()) for label, tracks_dict in tracks.items()} max_stamp = -1 min_stamp = 10**1000 for label, tracks_dict in tracks.items(): for i, track in tracks_dict.items(): min_stamp = min([min_stamp, min(track[:,0])]) max_stamp = max([max_stamp, max(track[:,0])]) self.min_stamp = min_stamp self.max_stamp = max_stamp return tracks, feature_ids, colors, colors_id def pause(self): self.is_paused = True def unpause(self): self.is_paused= False def togglePause(self): self.is_paused = not self.is_paused def toggleLoop(self): self.is_looped = not self.is_looped def forward(self, num_timesteps = 1): if self.is_looped: self.time_index = (self.time_index + 1) % len(self.times) else: self.time_index = min(self.time_index + num_timesteps, len(self.times) - 1) def backward(self, num_timesteps = 1): self.time_index = max(self.time_index - num_timesteps, 0) def goToBegin(self): self.time_index = 0 def goToEnd(self): self.time_index = len(self.times) - 1 def increaseTrackHistoryLength(self): self.params['track_history_length'] = self.params['track_history_length'] * 1.25 def decreaseTrackHistoryLength(self): self.params['track_history_length'] = self.params['track_history_length'] / 1.25 def computeMinMaxSpeed(self): self.max_speed = 1000.0 / (self.min_time_between_screen_refresh_ms * self.params['framerate']) self.min_speed = 1000.0 / (self.max_time_between_screen_refresh_ms * self.params['framerate']) def updateDisplayRate(self): self.params['speed'] = np.clip(self.params['speed'], self.min_speed, self.max_speed) self.time_between_screen_refresh_ms = int(1000.0 / (self.params['speed'] * self.params['framerate'])) def writeToVideoFile(self, f): height, width, _ = self.dataset.images[0].shape height, width = int(self.params["scale"]*height), int(self.params["scale"]*width) fourcc = cv2.VideoWriter_fourcc(*'MJPG') self.video_writer = cv2.VideoWriter(f, fourcc, self.params['framerate']*self.params["speed"], (width, height)) for t in tqdm.tqdm(self.times): image_to_display = self.update(t) self.video_writer.write(image_to_display) self.cleanup() def visualizationLoop(self): while True: t = self.times[self.time_index] image_to_display = self.update(t) cv2.imshow(self.cv2_window_name, image_to_display) if not self.is_paused: self.forward(1) c = cv2.waitKey(self.time_between_screen_refresh_ms) key = chr(c & 255) if c == 27: # 'q' or 'Esc': Quit break elif key == 'r': # 'r': Reset self.goToBegin() self.unpause() elif key == 'p' or c == 32: # 'p' or 'Space': Toggle play/pause self.togglePause() elif key == "a": # 'Left arrow': Go backward self.backward(1) self.pause() elif key == "d": # 'Right arrow': Go forward self.forward(1) self.pause() elif key == "s": # 'Down arrow': Go to beginning self.goToBegin() self.pause() elif key == "w": # 'Up arrow': Go to end self.goToEnd() self.pause() elif key == "e": self.increaseTrackHistoryLength() elif key == "q": self.decreaseTrackHistoryLength() elif key == 'l': # 'l': Toggle looping self.toggleLoop() self.cleanup() def cleanup(self): cv2.destroyAllWindows() if hasattr(self, 'video_writer'): self.video_writer.release() def update(self, t, track_history_length = None): if track_history_length == None: track_history_length = self.params['track_history_length'] return self.plotBetween(t - track_history_length, t) def getImageClosestTo(self, t): image_index = np.searchsorted(self.dataset.times, t, side="left") - 1 return self.dataset.images[image_index] def drawMarker(self, img, x, y, color): c = int(3 * self.params["scale"]) t = int(1 * self.params["scale"]) if self.marker == "cross": cv2.line(img, (x-c, y), (x+c, y), color, thickness=t) cv2.line(img, (x, y-c), (x, y+c), color, thickness=t) elif self.marker == "circle": cv2.circle(img, center=(x, y), radius=c, color=color, thickness=t) def drawLegend(self, image, legend, size): s = self.params["scale"] off_x = int(size[1]) t = int(10 * s) n = int(70 *s) for label, color in legend.items(): if self.params['visualisation_mode'] == "gt" or label == "gt": label = "ground truth" if self.params['visualisation_mode'] == "track" or label == "track": label = "track" cv2.putText(image, label, (off_x-n, t), cv2.FONT_HERSHEY_COMPLEX, int(s/4), color) t += int(10 *s) return image def plotBetween(self, t0, t1): image = self.getImageClosestTo(t1).copy() # resize h,w,_ = image.shape s = self.params["scale"] image = cv2.resize(image, dsize=(int(w*s), int(h*s))) image = self.drawLegend(image, self.colors, image.shape[:2]) for label, tracks_dict in self.tracks.items(): for feature_id, track in tracks_dict.items(): t = track[:,0] track_segment = track[(t<=t1) & (t>=t0)] if len(track_segment) > 0: for point in track_segment[:-1]: _, x, y = (s*point).astype(int) #trail_marker = "cross" if label == "gt" else "dot" trail_marker = "dot" if self.params["visualisation_mode"] == "gt" or self.params["visualisation_mode"] == "track": self.drawTrail(image, x, y, self.colors_id[feature_id], marker=trail_marker) else: self.drawTrail(image, x, y, self.colors[label], marker=trail_marker) _, x, y = (s*track_segment[-1]).astype(int) if self.params["visualisation_mode"] == "gt" or self.params["visualisation_mode"] == "track": self.drawMarker(image, x, y, self.colors_id[feature_id]) else: self.drawMarker(image, x, y, self.colors[label]) return image def drawTrail(self, img, x, y, entry, marker="dot"): c = 0*self.params["scale"] if marker=="dot": x_min = int(max([x - c, 0])) x_max = int(min([x + c+self.params["scale"], img.shape[1]])) y_min = int(max([y - c, 0])) y_max = int(min([y + c+self.params["scale"], img.shape[0]])) img[y_min:y_max,x_min:x_max,:] = np.array(entry) elif marker=="cross": c = int(2 * self.params['scale']) t = int(.5 * self.params["scale"]) x_min = max([x - c, 0]) x_max = int(min([x + c+self.params["scale"], img.shape[1]])) y_min = max([y - c, 0]) y_max = int(min([y + c+self.params["scale"], img.shape[0]])) xmi =x-t/2 ymi =y-t/2 xma =x + t / 2 yma =y + t / 2 if x < 0 or x > img.shape[1]-1 or y < 0 or x > img.shape[0]-1: return img[y_min:y_max,xmi:xma, :] = np.array(entry) img[ymi:yma,x_min:x_max, :] = np.array(entry)
37.035326
131
0.556387
13,385
0.982097
0
0
0
0
0
0
1,751
0.128476
f31e643bb5106928ddc94996a97d51a1aa497458
12,163
py
Python
Polygon2-2.0.7/Polygon/IO.py
tangrams/landgrab
217699e4730a1bdb7c9e03bfd9c2c0c31950eb7c
[ "MIT" ]
20
2015-02-26T15:55:42.000Z
2021-07-30T00:19:31.000Z
Polygon2-2.0.7/Polygon/IO.py
tangrams/landgrab
217699e4730a1bdb7c9e03bfd9c2c0c31950eb7c
[ "MIT" ]
1
2018-04-02T12:13:30.000Z
2021-10-04T00:59:38.000Z
Polygon2-2.0.7/Polygon/IO.py
tangrams/landgrab
217699e4730a1bdb7c9e03bfd9c2c0c31950eb7c
[ "MIT" ]
5
2015-03-03T23:31:39.000Z
2018-01-17T03:13:34.000Z
# -*- coding: utf-8 -*- """ This module provides functions for reading and writing Polygons in different formats. The following write-methods will accept different argument types for the output. If ofile is None, the method will create and return a StringIO-object. If ofile is a string, a file with that name will be created. If ofile is a file, it will be used for writing. The following read-methods will accept different argument types for the output. An file or StringIO object will be used directly. If the argument is a string, the function tries to read a file with that name. If it fails, it will evaluate the string directly. """ from cPolygon import Polygon from types import StringTypes try: from cStringIO import StringIO except: from StringIO import StringIO from xml.dom.minidom import parseString, Node from struct import pack, unpack, calcsize try: import reportlab hasPDFExport = True except: hasPDFExport = False try: import Imaging hasPILExport = True except: hasPILExport = False ## some helpers def __flatten(s): for a in s: for b in a: yield b def __couples(s): for i in range(0, len(s), 2): yield s[i], s[i+1] def __unpack(f, b): s = calcsize(f) return unpack(f, b[:s]), b[s:] class __RingBuffer: def __init__(self, seq): self.s = seq self.i = 0 self.l = len(seq) def __call__(self): o = self.s[self.i] self.i += 1 if self.i == self.l: self.i = 0 return o def getWritableObject(ofile): """try to make a writable file-like object from argument""" if ofile is None: return StringIO(), False elif type(ofile) in StringTypes: return open(ofile, 'w'), True elif type(ofile) in (file, StringIO): return ofile, False else: raise Exception("Can't make a writable object from argument!") def getReadableObject(ifile): """try to make a readable file-like object from argument""" if type(ifile) in StringTypes: try: return open(ifile, 'r'), True except: return StringIO(ifile), True elif type(ifile) in (file, StringIO): return ifile, False else: raise Exception("Can't make a readable object from argument!") def decodeBinary(bin): """ Create Polygon from a binary string created with encodeBinary(). If the string is not valid, the whole thing may break! :Arguments: - s: string :Returns: new Polygon """ nC, b = __unpack('!I', bin) p = Polygon() for i in range(nC[0]): x, b = __unpack('!l', b) if x[0] < 0: isHole = 1 s = -2*x[0] else: isHole = 0 s = 2*x[0] flat, b = __unpack('!%dd' % s, b) p.addContour(tuple(__couples(flat)), isHole) return p def encodeBinary(p): """ Encode Polygon p to a binary string. The binary string will be in a standard format with network byte order and should be rather machine independant. There's no redundancy in the string, any damage will make the whole polygon information unusable. :Arguments: - p: Polygon :Returns: string """ l = [pack('!I', len(p))] for i, c in enumerate(p): l.append(pack('!l', len(c)*(1,-1)[p.isHole(i)])) l.append(pack('!%dd' %(2*len(c)), *__flatten(c))) return "".join(l) def writeGnuplot(ofile, polylist): """ Write a list of Polygons to a gnuplot file, which may be plotted using the command ``plot "ofile" with lines`` from gnuplot. :Arguments: - ofile: see above - polylist: sequence of Polygons :Returns: ofile object """ f, cl = getWritableObject(ofile) for p in polylist: for vl in p: for j in vl: f.write('%g %g\n' % tuple(j)) f.write('%g %g\n\n' % tuple(vl[0])) if cl: f.close() return f def writeGnuplotTriangles(ofile, polylist): """ Converts a list of Polygons to triangles and write the tringle data to a gnuplot file, which may be plotted using the command ``plot "ofile" with lines`` from gnuplot. :Arguments: - ofile: see above - polylist: sequence of Polygons :Returns: ofile object """ f, cl = getWritableObject(ofile) for p in polylist: for vl in p.triStrip(): j = 0 for j in range(len(vl)-2): f.write('%g %g \n %g %g \n %g %g \n %g %g\n\n' % tuple(vl[j]+vl[j+1]+vl[j+2]+vl[j])) f.write('\n') if cl: f.close() f.close() def writeSVG(ofile, polylist, width=None, height=None, fill_color=None, fill_opacity=None, stroke_color=None, stroke_width=None): """ Write a SVG representation of the Polygons in polylist, width and/or height will be adapted if not given. fill_color, fill_opacity, stroke_color and stroke_width can be sequences of the corresponding SVG style attributes to use. :Arguments: - ofile: see above - polylist: sequence of Polygons - optional width: float - optional height: height - optional fill_color: sequence of colors (3-tuples of floats: RGB) - optional fill_opacity: sequence of colors - optional stroke_color: sequence of colors - optional stroke_width: sequence of floats :Returns: ofile object """ f, cl = getWritableObject(ofile) pp = [Polygon(p) for p in polylist] # use clones only [p.flop(0.0) for p in pp] # adopt to the SVG coordinate system bbs = [p.boundingBox() for p in pp] bbs2 = zip(*bbs) minx = min(bbs2[0]) maxx = max(bbs2[1]) miny = min(bbs2[2]) maxy = max(bbs2[3]) xdim = maxx-minx ydim = maxy-miny if not (xdim or ydim): raise Error("Polygons have no extent in one direction!") a = ydim / xdim if not width and not height: if a < 1.0: width = 300 else: height = 300 if width and not height: height = width * a if height and not width: width = height / a npoly = len(pp) fill_color = __RingBuffer(fill_color or ((255,0,0), (0,255,0), (0,0,255), (255,255,0))) fill_opacity = __RingBuffer(fill_opacity or (1.0,)) stroke_color = __RingBuffer(stroke_color or ((0,0,0),)) stroke_width = __RingBuffer(stroke_width or (1.0,)) s = ['<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>', '<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">', '<svg xmlns="http://www.w3.org/2000/svg" width="%d" height="%d">' % (width, height)] for i in range(npoly): p = pp[i] bb = bbs[i] p.warpToBox(width*(bb[0]-minx)/xdim, width*(bb[1]-minx)/xdim, height*(bb[2]-miny)/ydim, height*(bb[3]-miny)/ydim) subl = ['<path style="fill:rgb%s;fill-opacity:%s;fill-rule:evenodd;stroke:rgb%s;stroke-width:%s;" d="' % (fill_color(), fill_opacity(), stroke_color(), stroke_width())] for c in p: subl.append('M %g, %g %s z ' % (c[0][0], c[0][1], ' '.join([("L %g, %g" % (a,b)) for a,b in c[1:]]))) subl.append('"/>') s.append(''.join(subl)) s.append('</svg>') f.write('\n'.join(s)) if cl: f.close() return f def writeXML(ofile, polylist, withHeader=False): """ Write a readable representation of the Polygons in polylist to a XML file. A simple header can be added to make the file parsable. :Arguments: - ofile: see above - polylist: sequence of Polygons - optional withHeader: bool :Returns: ofile object """ f, cl = getWritableObject(ofile) if withHeader: f.write('<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>\n') for p in polylist: l = ['<polygon contours="%d" area="%g" xMin="%g" xMax="%g" yMin="%g" yMax="%g">' % ((len(p), p.area())+p.boundingBox())] for i, c in enumerate(p): l.append(' <contour points="%d" isHole="%d" area="%g" xMin="%g" xMax="%g" yMin="%g" yMax="%g">' \ % ((len(c), p.isHole(i), p.area(i))+p.boundingBox(i))) for po in c: l.append(' <p x="%g" y="%g"/>' % po) l.append(' </contour>') l.append('</polygon>\n') f.write('\n'.join(l)) if cl: f.close() return f def readXML(ifile): """ Read a list of Polygons from a XML file which was written with writeXML(). :Arguments: - ofile: see above :Returns: list of Polygon objects """ f, cl = getReadableObject(ifile) d = parseString(f.read()) if cl: f.close() plist = [] for pn in d.getElementsByTagName('polygon'): p = Polygon() plist.append(p) for sn in pn.childNodes: if not sn.nodeType == Node.ELEMENT_NODE: continue assert sn.tagName == 'contour' polist = [] for pon in sn.childNodes: if not pon.nodeType == Node.ELEMENT_NODE: continue polist.append((float(pon.getAttribute('x')), float(pon.getAttribute('y')))) assert int(sn.getAttribute('points')) == len(polist) p.addContour(polist, int(sn.getAttribute('isHole'))) assert int(pn.getAttribute('contours')) == len(p) return plist if hasPDFExport: def writePDF(ofile, polylist, pagesize=None, linewidth=0, fill_color=None): """ *This function is only available if the reportlab package is installed!* Write a the Polygons in polylist to a PDF file. :Arguments: - ofile: see above - polylist: sequence of Polygons - optional pagesize: 2-tuple of floats - optional linewidth: float - optional fill_color: color :Returns: ofile object """ from reportlab.pdfgen import canvas from reportlab.lib.colors import red, green, blue, yellow, black, white if not pagesize: from reportlab.lib.pagesizes import A4 pagesize = A4 can = canvas.Canvas(ofile, pagesize=pagesize) can.setLineWidth(linewidth) pp = [Polygon(p) for p in polylist] # use clones only bbs = [p.boundingBox() for p in pp] bbs2 = zip(*bbs) minx = min(bbs2[0]) maxx = max(bbs2[1]) miny = min(bbs2[2]) maxy = max(bbs2[3]) xdim = maxx-minx ydim = maxy-miny if not (xdim or ydim): raise Error("Polygons have no extent in one direction!") a = ydim / xdim width, height = pagesize if a > (height/width): width = height / a else: height = width * a npoly = len(pp) fill_color = __RingBuffer(fill_color or (red, green, blue, yellow)) for i in range(npoly): p = pp[i] bb = bbs[i] p.warpToBox(width*(bb[0]-minx)/xdim, width*(bb[1]-minx)/xdim, height*(bb[2]-miny)/ydim, height*(bb[3]-miny)/ydim) for poly in pp: solids = [poly[i] for i in range(len(poly)) if poly.isSolid(i)] can.setFillColor(fill_color()) for c in solids: p = can.beginPath() p.moveTo(c[0][0], c[0][1]) for i in range(1, len(c)): p.lineTo(c[i][0], c[i][1]) p.close() can.drawPath(p, stroke=1, fill=1) holes = [poly[i] for i in range(len(poly)) if poly.isHole(i)] can.setFillColor(white) for c in holes: p = can.beginPath() p.moveTo(c[0][0], c[0][1]) for i in range(1, len(c)): p.lineTo(c[i][0], c[i][1]) p.close() can.drawPath(p, stroke=1, fill=1) can.showPage() can.save()
31.840314
128
0.564499
254
0.020883
151
0.012415
0
0
0
0
4,512
0.370961
f3200d5d53315321e6ef6c3cef5d42425590c96b
743
py
Python
strings/reverse_string.py
ahcode0919/python-ds-algorithms
0d617b78c50b6c18da40d9fa101438749bfc82e1
[ "MIT" ]
null
null
null
strings/reverse_string.py
ahcode0919/python-ds-algorithms
0d617b78c50b6c18da40d9fa101438749bfc82e1
[ "MIT" ]
null
null
null
strings/reverse_string.py
ahcode0919/python-ds-algorithms
0d617b78c50b6c18da40d9fa101438749bfc82e1
[ "MIT" ]
3
2020-10-07T20:24:45.000Z
2020-12-16T04:53:19.000Z
from typing import List, Optional def reverse_string(string: str) -> str: return string[::-1] def reverse_string_in_place(string: [str]): index = 0 length = len(string) middle = length / 2 while index < middle: string[index], string[length - 1 - index] = string[length - 1 - index], string[index] index += 1 def reverse_string_with_list_comprehension(string: str) -> str: return ''.join([string[i] for i in range(len(string) - 1, -1, -1)]) def reverse_string_with_loop(string: str) -> str: reversed_str: List[Optional[str]] = [None] * len(string) for index in range(len(string) - 1, -1, -1): reversed_str[len(string) - 1 - index] = string[index] return ''.join(reversed_str)
28.576923
93
0.643338
0
0
0
0
0
0
0
0
4
0.005384
f3212e189d04ba2e4747e03dc77f4721f12f30e5
14,706
py
Python
qnarre/prep/tokens/realm.py
quantapix/qnarre.com
f51d5945c20ef8182c4aa11f1b407d064c190c70
[ "MIT" ]
null
null
null
qnarre/prep/tokens/realm.py
quantapix/qnarre.com
f51d5945c20ef8182c4aa11f1b407d064c190c70
[ "MIT" ]
null
null
null
qnarre/prep/tokens/realm.py
quantapix/qnarre.com
f51d5945c20ef8182c4aa11f1b407d064c190c70
[ "MIT" ]
null
null
null
# Copyright 2022 Quantapix Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import collections import os import unicodedata from ...tokens.utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...tokens.base import BatchEncoding from ...utils import PaddingStrategy VOCAB_FS = {"vocab_file": "vocab.txt"} VOCAB_MAP = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt", "google/realm-cc-news-pretrained-encoder": "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt", "google/realm-cc-news-pretrained-scorer": "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt", "google/realm-cc-news-pretrained-openqa": "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt", "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", } } INPUT_CAPS = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } PRETRAINED_INIT_CONFIGURATION = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } def load_vocab(vocab_file): vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab def whitespace_tokenize(text): text = text.strip() if not text: return [] tokens = text.split() return tokens class Tokenizer(PreTrainedTokenizer): vocab_fs = VOCAB_FS vocab_map = VOCAB_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION input_caps = INPUT_CAPS def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk="[UNK]", sep="[SEP]", pad="[PAD]", cls="[CLS]", msk="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kw, ): super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk=unk, sep=sep, pad=pad, cls=cls, msk=msk, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kw, ) if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained " "model use `tokenizer = RealmTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict( [(ids, tok) for tok, ids in self.vocab.items()] ) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk=self.unk) @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def s_vocab(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def batch_encode_candidates(self, text, **kw): kw["padding"] = PaddingStrategy.MAX_LENGTH batch_text = text batch_text_pair = kw.pop("text_pair", None) return_tensors = kw.pop("return_tensors", None) output_data = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(batch_text): if batch_text_pair is not None: candidate_text_pair = batch_text_pair[idx] else: candidate_text_pair = None encoded_candidates = super().__call__( candidate_text, candidate_text_pair, return_tensors=None, **kw ) encoded_input_ids = encoded_candidates.get("input_ids") encoded_attention_mask = encoded_candidates.get("attention_mask") encoded_token_type_ids = encoded_candidates.get("token_type_ids") if encoded_input_ids is not None: output_data["input_ids"].append(encoded_input_ids) if encoded_attention_mask is not None: output_data["attention_mask"].append(encoded_attention_mask) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(encoded_token_type_ids) output_data = dict((key, item) for key, item in output_data.items() if len(item) != 0) return BatchEncoding(output_data, tensor_type=return_tensors) def build_inputs_with_special_tokens(self, toks_0, toks_1=None): if toks_1 is None: return [self.cls_token_id] + toks_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + toks_0 + sep + toks_1 + sep def get_special_tokens_mask( self, toks_0, toks_1=None, has_specials=False, ): if has_specials: return super().get_special_tokens_mask(toks_0=toks_0, toks_1=toks_1, has_specials=True) if toks_1 is not None: return [1] + ([0] * len(toks_0)) + [1] + ([0] * len(toks_1)) + [1] return [1] + ([0] * len(toks_0)) + [1] def create_token_type_ids_from_sequences(self, toks_0, toks_1=None): sep = [self.sep_token_id] cls = [self.cls_token_id] if toks_1 is None: return len(cls + toks_0 + sep) * [0] return len(cls + toks_0 + sep) * [0] + len(toks_1 + sep) * [1] def save_vocabulary(self, dir, pre=None): index = 0 if os.path.isdir(dir): vocab_file = os.path.join( dir, (pre + "-" if pre else "") + VOCAB_FS["vocab_file"], ) else: vocab_file = (pre + "-" if pre else "") + dir with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) class BasicTokenizer(object): def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents def tokenize(self, text, never_split=None): never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): if never_split is not None and text in never_split: return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer(object): def __init__(self, vocab, unk, max_input_chars_per_word=100): self.vocab = vocab self.unk = unk self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk) else: output_tokens.extend(sub_tokens) return output_tokens
37.707692
141
0.589963
11,313
0.769278
0
0
151
0.010268
0
0
3,155
0.214538
f323bb4c6d1d42af8adea82f66966d109724eba9
29,495
py
Python
api/fileupload.py
subhendu01/Audio-FIle-Server
6c7f9a093e41f0750a0a8c4c1f0e48608215c8a6
[ "MIT" ]
5
2021-05-12T18:18:49.000Z
2022-01-06T12:35:35.000Z
api/fileupload.py
subhendu01/Audio-FIle-Server
6c7f9a093e41f0750a0a8c4c1f0e48608215c8a6
[ "MIT" ]
null
null
null
api/fileupload.py
subhendu01/Audio-FIle-Server
6c7f9a093e41f0750a0a8c4c1f0e48608215c8a6
[ "MIT" ]
null
null
null
import datetime, os, base64 from flask import Flask, jsonify, request, Blueprint from dbstore import dbconf import json from bson import json_util # process kill # lsof -i tcp:3000 file_upload = Blueprint('uploadAPI', __name__) app = Flask(__name__) def song_upload(val): try: # content = request.get_json() curs = dbconf.file_store.find().sort( [("_id", -1)] ).limit(1) if curs.count() > 0: for rec in curs: id_val = rec["audioFileMetadata"]["id"] id = id_val + 1 else: id = 1 audio_file_id = int(val["audio_file_id"]) cursor_file_id = dbconf.file_store.find({'audioFileMetadata.audio_file_id': audio_file_id}) if cursor_file_id.count() == 0: song_name = str(val['song_name']) duration_sec = int(val['duration_sec']) upload_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") if len(song_name) != 0 and len(song_name) <= 100: if duration_sec >= 0: msg = "Successful" response = { "status": 200, "msg": msg, "id": id, "song_name": song_name, "duration_sec": duration_sec, "upload_time": upload_time, "audio_file_id": audio_file_id } else: msg = "Duration should be positive integer number" response = { "status": 400, "msg": msg, "upload_time": upload_time } else: msg = "Song name should be between 0 to 100 characters" response = { "status": 400, "msg": msg, "upload_time": upload_time } else: msg = "Duplicate audio id found." response = { "status": 400, "msg": msg } return response except Exception as e: print(str(e)) response = { "status": 500, "msg": "Something went wrong." } return response def podcast_upload(val): try: curs = dbconf.file_store.find().sort( [("_id", -1)] ).limit(1) if curs.count() > 0: for rec in curs: id_val = rec["audioFileMetadata"]["id"] id = id_val + 1 else: id = 1 audio_file_id = int(val["audio_file_id"]) cursor_file_id = dbconf.file_store.find({'audioFileMetadata.audio_file_id': audio_file_id}) if cursor_file_id.count() == 0: podcast_name = str(val['podcast_name']) duration_sec = int(val['duration_sec']) upload_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") host = str(val['host']) participant = val['participant'] # print(id, podcast_name, duration_sec, upload_time, host, participant) if len(podcast_name) <= 100: if duration_sec >= 0: exceed_leng = [ x for x in participant if len(x) >= 100] if len(participant) <= 10 and len(exceed_leng) == 0: if len(host) <= 100: msg = "sucessful" response = { "status": 200, "msg": msg, "id": id, "podcast_name": podcast_name, "duration_sec": duration_sec, "upload_time": upload_time, "host": host, "participant": participant, "audio_file_id": audio_file_id } else: msg = "Host cannot be larger than 100 characters." response = { "status": 400, "msg": msg, "upload_time": upload_time } else: msg = "Each string cannot be larger than 100 characters, maximum of 10 participants possible" response = { "status": 400, "msg": msg, "upload_time": upload_time } else: msg = "Duration should be positive integer number" response = { "status": 400, "msg": msg, "upload_time": upload_time } else: msg = "Name of the podcast cannot be larger than 100 characters." response = { "status": 400, "msg": msg, "upload_time": upload_time } else: msg = "Duplicate audio id found." response = { "status": 400, "msg": msg } return response except Exception as e: print(str(e)) response = { "status": 500, "msg": "Something went wrong." } return response def audiobook_upload(val): try: # content = request.get_json() curs = dbconf.file_store.find().sort( [("_id", -1)]).limit(1) if curs.count() > 0: for rec in curs: id_val = rec["audioFileMetadata"]["id"] id = id_val + 1 else: id = 1 audio_file_id = int(val["audio_file_id"]) cursor_file_id = dbconf.file_store.find({'audioFileMetadata.audio_file_id': audio_file_id}) if cursor_file_id.count() == 0: audiobook_title = str(val['audiobook_title']) author_title = str(val['author_title']) narrator = str(val['narrator']) duration_sec = int(val['duration_sec']) upload_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") if len(audiobook_title) <= 100 and len(audiobook_title) != 0: if len(author_title) <= 100 and len(author_title) != 0: if len(narrator) <=100 and len(narrator) != 0: if duration_sec >= 0: msg = "sucessful" response = { "status": 200, "msg": msg, "id": id, "audiobook_title": audiobook_title, "author_title": author_title, "narrator": narrator, "duration_sec": duration_sec, "upload_time": upload_time, "audio_file_id": audio_file_id } else: msg = "Duration should be positive integer number" response = { "status": 400, "msg": msg, "upload_time": upload_time } else: msg = "Narrator should be between 0 to 100 characters." response = { "status": 400, "msg": msg, "upload_time": upload_time } else: msg = "Author title should be between 0 to 100 characters." response = { "status": 400, "msg": msg, "upload_time": upload_time } else: msg = "Audiobook should be between 0 to 100 characters." response = { "status": 400, "msg": msg, "upload_time": upload_time } else: msg = "Duplicate audio id found." response = { "status": 400, "msg": msg } return response except Exception as e: print(str(e)) msg = "Something went wrong." response = { "status": 500, "msg": msg } return response @file_upload.route('api/_create', methods= ['POST']) def create(): try: if request.method == "POST": #getting all the parameters content = request.get_json() # print(content) audioFileType = content['audioFileType'] #for song type if audioFileType.lower() == 'song': audioFileMetadata = "song" #calling the song-upload method for song type func_call = song_upload(content['audioFileMetadata']) if func_call["status"] == 200: audioFileMetadata = { "duration_sec": func_call["duration_sec"], "id": func_call["id"], "song_name": func_call['song_name'], "upload_time": func_call['upload_time'], "audio_file_id": func_call['audio_file_id'] } rec = { "audioFileType": audioFileType.lower(), "audioFileMetadata": audioFileMetadata } # insert the data into collection data = json.loads(json_util.dumps(rec)) dbconf.file_store.insert(rec) response = { "status": func_call["status"], "msg": func_call["msg"], "record": data } # print(response) elif func_call["status"] == 400: response = { "status": func_call["status"], "msg": func_call["msg"] } elif func_call["status"] == 500: response = { "status": func_call["status"], "msg": func_call["msg"] } #for podcast type elif audioFileType.lower() == 'podcast': audioFileMetadata = "podcast" func_call = podcast_upload(content['audioFileMetadata']) if func_call["status"] == 200: audioFileMetadata = { "podcast_name": func_call["podcast_name"], "id": func_call["id"], "duration_sec": func_call["duration_sec"], "host": func_call['host'], "upload_time": func_call['upload_time'], "participant": func_call["participant"], "audio_file_id": func_call['audio_file_id'] } rec = { "audioFileType": audioFileType.lower(), "audioFileMetadata": audioFileMetadata } data = json.loads(json_util.dumps(rec)) dbconf.file_store.insert(rec) response = { "status": func_call["status"], "msg": func_call["msg"], "record": data } # print(response) elif func_call["status"] == 400: response = { "status": func_call["status"], "msg": func_call["msg"] } elif func_call["status"] == 500: response = { "status": func_call["status"], "msg": func_call["msg"] } #for audiobook type elif audioFileType.lower() == 'audiobook': audioFileMetadata = "audiobook" func_call = audiobook_upload(content['audioFileMetadata']) if func_call["status"] == 200: audioFileMetadata = { "audiobook_title": func_call["audiobook_title"], "id": func_call["id"], "duration_sec": func_call["duration_sec"], "author_title": func_call['author_title'], "upload_time": func_call['upload_time'], "narrator": func_call["narrator"], "audio_file_id": func_call['audio_file_id'] } rec = { "audioFileType": audioFileType.lower(), "audioFileMetadata": audioFileMetadata } data = json.loads(json_util.dumps(rec)) dbconf.file_store.insert(rec) response = { "status": func_call["status"], "msg": func_call["msg"], "record": data } # print(response) elif func_call["status"] == 400: response = { "status": func_call["status"], "msg": func_call["msg"] } elif func_call["status"] == 500: response = { "status": func_call["status"], "msg": func_call["msg"] } # print(response) else: response = { "status": 400, "msg": "Bad request." } else: response = { "status": 400, "msg": "Bad request." } return jsonify(response) except Exception as e: print(str(e)) response = { "status": 500, "msg": "Something went wrong." } return jsonify(response) @file_upload.route('api/_delete/<string:audioFileType>/<int:audioFileID>', methods= ['DELETE']) def delete_(audioFileType, audioFileID): try: if request.method == "DELETE": cursor = dbconf.file_store.find({"audioFileType": audioFileType.lower(), 'audioFileMetadata.audio_file_id': audioFileID}) if cursor.count() != 0: dbconf.file_store.remove({"audioFileType": audioFileType.lower(), 'audioFileMetadata.audio_file_id': audioFileID}) response = { "status": 200, "msg": "Sucessfull.", "audioFileType": audioFileType, "audioFileID": audioFileID } else: response = { "status": 400, "msg": "audio file ID is not found.", "audioFileType": audioFileType, "audioFileID": audioFileID } else: response = { "status": 400, "msg": "Bad request." } return jsonify(response) except Exception as e: print(str(e)) response = { "status": 500, "msg": "Something went wrong." } return jsonify(response) @file_upload.route('api/_update/<string:audioFileType>/<int:audioFileID>', methods= ['PUT']) def update(audioFileType, audioFileID): try: if request.method == "PUT": content = request.json cursor = dbconf.file_store.find({"audioFileType": audioFileType.lower(), 'audioFileMetadata.audio_file_id': audioFileID}) if cursor.count() != 0: #song type if audioFileType.lower() == 'song': song_name = content["audioFileMetadata"]["song_name"] duration_sec = content["audioFileMetadata"]["duration_sec"] if len(song_name) != 0 and len(song_name) <= 100: if duration_sec >= 0: myquery = {"audioFileType": audioFileType.lower(), 'audioFileMetadata.audio_file_id': audioFileID} newvalues = { "$set": { "audioFileMetadata.duration_sec": duration_sec, "audioFileMetadata.song_name": song_name, "audioFileMetadata.upload_time": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") }} dbconf.file_store.update_one(myquery, newvalues) response = { "status": 200, "msg": "Sucessfull.", "audioFileType": audioFileType, "audioFileID": audioFileID } #for duration else: response = { "status": 400, "msg": "Duration should be positive integer number", "audioFileType": audioFileType, "audioFileID": audioFileID } #for song name else: response = { "status": 400, "msg": "Song name should be between 0 to 100 characters", "audioFileType": audioFileType, "audioFileID": audioFileID } #podcast type elif audioFileType.lower() == 'podcast': podcast_name = content["audioFileMetadata"]["podcast_name"] duration_sec = content["audioFileMetadata"]["duration_sec"] host = content["audioFileMetadata"]["host"] participant = content["audioFileMetadata"]["participant"] if len(podcast_name) != 0 and len(podcast_name) <= 100: if duration_sec >= 0: exceed_leng = [ x for x in participant if len(x) >= 100] if len(participant) <= 10 and len(exceed_leng) == 0: if len(host) != 0 and len(host) <= 100: myquery = {"audioFileType": audioFileType.lower(), 'audioFileMetadata.audio_file_id': audioFileID} newvalues = { "$set": { "audioFileMetadata.podcast_name": podcast_name, "audioFileMetadata.duration_sec": duration_sec, "audioFileMetadata.host": host, "audioFileMetadata.participant": participant, "audioFileMetadata.upload_time": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") }} dbconf.file_store.update_one(myquery, newvalues) response = { "status": 200, "msg": "Sucessfull.", "audioFileType": audioFileType, "audioFileID": audioFileID } #for host else: response = { "status": 400, "msg": "Host should be between 0 to 100 characters", "audioFileType": audioFileType, "audioFileID": audioFileID } #participant else: response = { "status": 400, "msg": "Each string cannot be larger than 100 characters, maximum of 10 participants possible", "audioFileType": audioFileType, "audioFileID": audioFileID } #duration else: response = { "status": 400, "msg": "Duration should be positive integer number", "audioFileType": audioFileType, "audioFileID": audioFileID } #podcast_name else: response = { "status": 400, "msg": "Name of the podcast should be between 0 to 100 characters", "audioFileType": audioFileType, "audioFileID": audioFileID } #audiobook type elif audioFileType.lower() == 'audiobook': audiobook_title = content["audioFileMetadata"]["audiobook_title"] duration_sec = content["audioFileMetadata"]["duration_sec"] author_title = content["audioFileMetadata"]["author_title"] narrator = content["audioFileMetadata"]["narrator"] if len(audiobook_title) != 0 and len(audiobook_title) <= 100: if len(author_title) != 0 and len(author_title) <= 100: if len(narrator) != 0 and len(narrator) <=100: if duration_sec >= 0: myquery = {"audioFileType": audioFileType.lower(), 'audioFileMetadata.audio_file_id': audioFileID} newvalues = { "$set": { "audioFileMetadata.audiobook_title": audiobook_title, "audioFileMetadata.duration_sec": duration_sec, "audioFileMetadata.author_title": author_title, "audioFileMetadata.narrator": narrator, "audioFileMetadata.upload_time": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") }} dbconf.file_store.update_one(myquery, newvalues) response = { "status": 200, "msg": "Sucessfull.", "audioFileType": audioFileType, "audioFileID": audioFileID } else: response = { "status": 400, "msg": "Duration should be positive integer number", "audioFileType": audioFileType, "audioFileID": audioFileID } else: response = { "status": 400, "msg": "Narrator should be between 0 to 100 characters.", "audioFileType": audioFileType, "audioFileID": audioFileID } else: response = { "status": 400, "msg": "Author title should be between 0 to 100 characters.", "audioFileType": audioFileType, "audioFileID": audioFileID } else: response = { "status": 400, "msg": "Audiobook should be between 0 to 100 characters.", "audioFileType": audioFileType, "audioFileID": audioFileID } else: response = { "status": 400, "msg": "audio file ID is not found.", "audioFileType": audioFileType, "audioFileID": audioFileID } else: response = { "status": 400, "msg": "Bad request." } return jsonify(response) except Exception as e: print(str(e)) response = { "status": 500, "msg": "Something went wrong." } return jsonify(response) @file_upload.route("api/_getapi/<audioFileType>", methods=["GET"], defaults={"audioFileID": None}) @file_upload.route('api/_getapi/<string:audioFileType>/<int:audioFileID>', methods= ['GET']) def getapi(audioFileType, audioFileID): try: if request.method == 'GET': if audioFileID is not None: cursor = dbconf.file_store.find({"audioFileType": audioFileType.lower(), 'audioFileMetadata.audio_file_id': audioFileID}) if cursor.count() != 0: for rec in cursor: if rec["audioFileType"] == 'song': audio_file = rec["audioFileMetadata"]["song_name"] if rec["audioFileType"] == 'podcast': audio_file= rec["audioFileMetadata"]["podcast_name"] if rec["audioFileType"] == 'audiobook': audio_file= rec["audioFileMetadata"]["audiobook_title"] response = { "status": 200, "msg": "Sucessfull.", "audioFileType": audioFileType, "audio_file": audio_file } else: response = { "status": 400, "msg": "audio file ID is not found.", "audioFileType": audioFileType, "audioFileID": audioFileID } else: cursor = dbconf.file_store.find({"audioFileType": str(audioFileType.lower())}) if cursor.count() != 0: audio_list = [] for rec in cursor: if rec["audioFileType"] == 'song': audio_list.append(rec["audioFileMetadata"]["song_name"]) if rec["audioFileType"] == 'podcast': audio_list.append(rec["audioFileMetadata"]["podcast_name"]) if rec["audioFileType"] == 'audiobook': audio_list.append(rec["audioFileMetadata"]["audiobook_title"]) response = { "status": 200, "msg": "Sucessfull.", "audioFileType": audioFileType, "audio_list": audio_list } else: response = { "status": 400, "msg": "Audio files not found.", "audioFileType": audioFileType } else: response = { "status": 400, "msg": "Bad request." } return jsonify(response) except Exception as e: print(str(e)) response = { "status": 500, "msg": "Something went wrong." } return jsonify(response)
45.376923
137
0.398644
0
0
0
0
20,390
0.691304
0
0
6,818
0.231158
f324f6cba05e902a8556f523455c852d7fd15d3d
2,542
py
Python
dna/zfec/zfec/cmdline_zunfec.py
bobbae/examples
6c998e2af9a48f7173a0b6b1ff0176df7edceda5
[ "Unlicense" ]
null
null
null
dna/zfec/zfec/cmdline_zunfec.py
bobbae/examples
6c998e2af9a48f7173a0b6b1ff0176df7edceda5
[ "Unlicense" ]
null
null
null
dna/zfec/zfec/cmdline_zunfec.py
bobbae/examples
6c998e2af9a48f7173a0b6b1ff0176df7edceda5
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python # zfec -- a fast C implementation of Reed-Solomon erasure coding with # command-line, C, and Python interfaces from __future__ import print_function import os, sys, argparse from zfec import filefec from zfec import __version__ as libversion __version__ = libversion def main(): if '-V' in sys.argv or '--version' in sys.argv: print("zfec library version: ", libversion) print("zunfec command-line tool version: ", __version__) return 0 parser = argparse.ArgumentParser(description="Decode data from share files.") parser.add_argument('-o', '--outputfile', required=True, help='file to write the resulting data to, or "-" for stdout', type=str, metavar='OUTF') parser.add_argument('sharefiles', nargs='*', help='shares file to read the encoded data from', type=str, metavar='SHAREFILE') parser.add_argument('-v', '--verbose', help='print out messages about progress', action='store_true') parser.add_argument('-f', '--force', help='overwrite any file which already in place of the output file', action='store_true') parser.add_argument('-V', '--version', help='print out version number and exit', action='store_true') args = parser.parse_args() if len(args.sharefiles) < 2: print("At least two sharefiles are required.") return 1 if args.force: outf = open(args.outputfile, 'wb') else: try: flags = os.O_WRONLY|os.O_CREAT|os.O_EXCL | (hasattr(os, 'O_BINARY') and os.O_BINARY) outfd = os.open(args.outputfile, flags) except OSError: print("There is already a file named %r -- aborting. Use --force to overwrite." % (args.outputfile,)) return 2 outf = os.fdopen(outfd, "wb") sharefs = [] # This sort() actually matters for performance (shares with numbers < k # are much faster to use than the others), as well as being important for # reproducibility. args.sharefiles.sort() for fn in args.sharefiles: sharefs.append(open(fn, 'rb')) try: filefec.decode_from_files(outf, sharefs, args.verbose) except filefec.InsufficientShareFilesError as e: print(str(e)) return 3 finally: outf.close() for f in sharefs: f.close() return 0 # zfec -- fast forward error correction library with Python interface # # Copyright (C) 2007 Allmydata, Inc. # Author: Zooko Wilcox-O'Hearn # # This file is part of zfec. # # See README.rst for licensing information.
35.305556
149
0.663257
0
0
0
0
0
0
0
0
1,104
0.434304
f327633efe0ce2c9e557f60f7f82ada184c4948d
576
py
Python
bottomline/blweb/migrations/0012_vehicleconfig_color.py
mcm219/BottomLine
db82eef403c79bffa3864c4db6bc336632abaca5
[ "MIT" ]
null
null
null
bottomline/blweb/migrations/0012_vehicleconfig_color.py
mcm219/BottomLine
db82eef403c79bffa3864c4db6bc336632abaca5
[ "MIT" ]
1
2021-06-14T02:20:40.000Z
2021-06-14T02:20:40.000Z
bottomline/blweb/migrations/0012_vehicleconfig_color.py
mcm219/BottomLine
db82eef403c79bffa3864c4db6bc336632abaca5
[ "MIT" ]
null
null
null
# Generated by Django 3.2.2 on 2021-07-10 03:16 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('blweb', '0011_vehiclecolor'), ] operations = [ migrations.AddField( model_name='vehicleconfig', name='color', field=models.ForeignKey(blank=True, default=None, help_text='The chosen color for this config', null=True, on_delete=django.db.models.deletion.CASCADE, related_name='color', to='blweb.vehiclecolor'), ), ]
28.8
211
0.663194
450
0.78125
0
0
0
0
0
0
156
0.270833
b823df535990bd76d900f1381be1d7cc948408cf
11,634
py
Python
src/acs_3dpsf.py
davidharvey1986/rrg
26b4658f14279af21af1a61d57e9936daf315a71
[ "MIT" ]
2
2019-11-18T12:51:09.000Z
2019-12-11T03:13:51.000Z
src/acs_3dpsf.py
davidharvey1986/rrg
26b4658f14279af21af1a61d57e9936daf315a71
[ "MIT" ]
5
2017-06-09T10:06:27.000Z
2019-07-19T11:28:18.000Z
src/acs_3dpsf.py
davidharvey1986/rrg
26b4658f14279af21af1a61d57e9936daf315a71
[ "MIT" ]
2
2017-07-19T15:48:33.000Z
2017-08-09T16:07:20.000Z
import numpy as np from . import acs_map_xy as acs_map def acs_3dpsf_basisfunctions( degree, x, y, focus ): # Generate relevant basis functions n_stars=np.max( np.array([len(x),len(y),len(focus)])) basis_function_order=np.zeros((1,3)) # All zeros for k in range(degree[2]+1): for j in range(degree[1]+1): for i in range(degree[0]+1): if (i+j+k > 0) & ((i+j) <= np.max(degree[0:2])): basis_function_order=np.vstack((basis_function_order, [i,j,k])) n_basis_functions= basis_function_order.shape[0] basis_function_value = np.zeros( (n_basis_functions, n_stars)) for i in range(n_basis_functions): basis_function_value[i,:] = x**basis_function_order[i,0]*\ y**basis_function_order[i,1] * \ focus**basis_function_order[i,2] return basis_function_value # ********************************************************************** # ********************************************************************** # ********************************************************************** def acs_3dpsf_fit( scat, degree=np.array([3,2,2]), mag_cut=np.array([20.5,22]), e_cut=1, size_cut=np.array([-np.inf,3]), verbose=False ): # Fit the PSF from data in a SCAT catalogue # F814 I magnitude catalogue cut degree = np.array(degree) if len(degree) < 3 : print("DEGREE must be 3D") degree[ degree > 0 ] = np.min(degree[ degree > 0 ]) # Find the line dividing CCDs 1 and 2 ccd_boundary = acs_map.acs_map_xy( np.array([0, 4095, 0, 4095]), np.array([2047, 2047, 2048, 2048]), pixel_scale=scat.pixscale) x1=np.mean([ccd_boundary.x[0],ccd_boundary.x[2]]) x2=np.mean([ccd_boundary.x[1],ccd_boundary.x[3]]) y1=np.mean([ccd_boundary.y[0],ccd_boundary.y[2]]) y2=np.mean([ccd_boundary.y[1],ccd_boundary.y[3]]) ccd_boundary_x1=np.mean([ccd_boundary.x[0],ccd_boundary.x[2]]) ccd_boundary_x2=np.mean([ccd_boundary.x[1],ccd_boundary.x[3]]) ccd_boundary_y1=np.mean([ccd_boundary.y[0],ccd_boundary.y[2]]) ccd_boundary_y2=np.mean([ccd_boundary.y[1],ccd_boundary.y[3]]) ccd_boundary_m=(ccd_boundary_y2-ccd_boundary_y1)/(ccd_boundary_x2-ccd_boundary_x1) ccd_boundary_c=ccd_boundary_y1-ccd_boundary_m*ccd_boundary_x1 # Find the centre of each CCD ccd_centre = acs_map.acs_map_xy( np.array([2048,2048]), np.array([3072,1024]), pixel_scale=scat.pixscale) # Select only the well-behaved stars good= np.isfinite(scat.field_focus[0][scat.field_id[0]]) & \ np.isfinite(scat.e1_uncor_unrot[0]) & \ np.isfinite(scat.e2_uncor_unrot[0]) & \ np.isfinite(scat.xx_uncor[0]) & \ np.isfinite(scat.xy_uncor[0]) & \ np.isfinite(scat.yy_uncor[0]) & \ np.isfinite(scat.xxxx_uncor[0]) & \ np.isfinite(scat.xxxy_uncor[0]) & \ np.isfinite(scat.xxyy_uncor[0]) & \ np.isfinite(scat.xyyy_uncor[0]) & \ np.isfinite(scat.yyyy_uncor[0]) n_good = len(np.arange( len( good ))[good]) if verbose: print("Found a total of "+str(len(scat.x[0]))+" real stars, of which "+str(n_good)+" look well-behaved") # Store quantities to be fitted in local variables x=scat.x[0][good] y=scat.y[0][good] focus=scat.field_focus[0][scat.field_id[0]][good] ixx=scat.xx_uncor[0][good] ixy=scat.xy_uncor[0][good] iyy=scat.yy_uncor[0][good] ixxxx=scat.xxxx_uncor[0][good] ixxxy=scat.xxxy_uncor[0][good] ixxyy=scat.xxyy_uncor[0][good] ixyyy=scat.xyyy_uncor[0][good] iyyyy=scat.yyyy_uncor[0][good] e1=scat.e1_uncor_unrot[0][good] e2=scat.e2_uncor_unrot[0][good] # Work on each CCD separately init_coeffs_flag = True for ccd in range(2): # Report which CCD is being considered if ccd +1 == 1: in_ccd = np.arange(len(y))[ y >= ccd_boundary_m*x+ccd_boundary_c] n_in_CCD = len(in_ccd) if ccd + 1 == 2: in_ccd = np.arange(len( y))[ y < ccd_boundary_m*x+ccd_boundary_c] n_in_CCD = len(in_ccd) if n_in_CCD > 0: #Compute matrix necessary for matrix inversion if verbose: print("Fitting moments of "+str(n_in_CCD)+" real stars in CCD#"+str(ccd+1)) basis_function_value=acs_3dpsf_basisfunctions(degree, x[in_ccd]-ccd_centre.x[ccd], y[in_ccd]-ccd_centre.y[ccd], focus[in_ccd]) ls_matrix = np.dot( np.linalg.inv(np.dot(basis_function_value, basis_function_value.T)), basis_function_value) # Create global arrays to contain the answers n_basis_functions=np.shape(np.array(ls_matrix))[0] if init_coeffs_flag: acs_3dpsf_coeffs=basis_coeffs( ccd_centre, ccd_boundary_m, ccd_boundary_c, n_basis_functions, degree ) init_coeffs_flag = False # Fit data to basis functions using least-squares inversion #these are all matrices acs_3dpsf_coeffs.ixx_fit[ccd, :] = np.dot(ls_matrix ,ixx[in_ccd]) acs_3dpsf_coeffs.ixy_fit[ccd, :] = np.dot(ls_matrix , ixy[in_ccd]) acs_3dpsf_coeffs.iyy_fit[ccd, :] = np.dot(ls_matrix , iyy[in_ccd]) acs_3dpsf_coeffs.ixxxx_fit[ccd, :] = np.dot(ls_matrix , ixxxx[in_ccd]) acs_3dpsf_coeffs.ixxxy_fit[ccd, :] = np.dot(ls_matrix , ixxxy[in_ccd]) acs_3dpsf_coeffs.ixxyy_fit[ccd, :] = np.dot(ls_matrix , ixxyy[in_ccd]) acs_3dpsf_coeffs.ixyyy_fit[ccd, :] = np.dot(ls_matrix , ixyyy[in_ccd]) acs_3dpsf_coeffs.iyyyy_fit[ccd, :] = np.dot(ls_matrix , iyyyy[in_ccd]) acs_3dpsf_coeffs.e1_fit[ccd, :] = np.dot(ls_matrix , e1[in_ccd]) acs_3dpsf_coeffs.e2_fit[ccd, :] = np.dot(ls_matrix , e2[in_ccd]) return acs_3dpsf_coeffs # ********************************************************************** # ********************************************************************** # ********************************************************************** def acs_3dpsf_reconstruct( acs_3dpsf_coeffs, x, y, focus, radius=None, verbose=False): # Create arrays to contain the final answer n_galaxies=np.max( np.array([len(x), len(y), len(focus)]) ) if len(focus) == 1: focus_local = np.zeros(len(n_galaxies)) + focus else: focus_local=focus if verbose: print("Found a total of "+str(n_galaxies)+" galaxies") if radius is None: radius=np.zeros(len(n_galaxies))+6 moms=moments( x, y, radius[:n_galaxies], acs_3dpsf_coeffs.degree ) for ccd in range(2): #Report which CCD is being considered if ccd +1 == 1: in_ccd = np.arange(len( y))[ y >= acs_3dpsf_coeffs.ccd_boundary_m*x+acs_3dpsf_coeffs.ccd_boundary_c] n_in_CCD = len(in_ccd) if ccd + 1 == 2: in_ccd = np.arange(len( y))[ y < acs_3dpsf_coeffs.ccd_boundary_m*x+acs_3dpsf_coeffs.ccd_boundary_c] n_in_CCD = len(in_ccd) if n_in_CCD > 0: if verbose: print("Interpolating model PSF moments to the position of "+str(n_in_CCD)+" galaxies in CCD#"+str(ccd+1)) #Fit the PSF basis_function_value=acs_3dpsf_basisfunctions(acs_3dpsf_coeffs.degree[0], \ x[in_ccd]-acs_3dpsf_coeffs.ccd_centre.x[ccd], \ y[in_ccd]-acs_3dpsf_coeffs.ccd_centre.y[ccd], \ focus_local[in_ccd] ) moms.xx[in_ccd] = np.dot(acs_3dpsf_coeffs.ixx_fit[ccd, :], basis_function_value) moms.xy[in_ccd] = np.dot(acs_3dpsf_coeffs.ixy_fit[ccd, :], basis_function_value) moms.yy[in_ccd] = np.dot(acs_3dpsf_coeffs.iyy_fit[ccd, :], basis_function_value) moms.xxxx[in_ccd] = np.dot(acs_3dpsf_coeffs.ixxxx_fit[ccd, :], basis_function_value) moms.xxxy[in_ccd] = np.dot(acs_3dpsf_coeffs.ixxxy_fit[ccd, :], basis_function_value) moms.xxyy[in_ccd] = np.dot(acs_3dpsf_coeffs.ixxyy_fit[ccd, :], basis_function_value) moms.xyyy[in_ccd] = np.dot(acs_3dpsf_coeffs.ixyyy_fit[ccd, :], basis_function_value) moms.yyyy[in_ccd] = np.dot(acs_3dpsf_coeffs.iyyyy_fit[ccd, :], basis_function_value) moms.e1[in_ccd] = np.dot(acs_3dpsf_coeffs.e1_fit[ccd, :], basis_function_value) moms.e2[in_ccd] = np.dot(acs_3dpsf_coeffs.e2_fit[ccd, :], basis_function_value) else: print("No galaxies in CCD#"+str(ccd)) # Work out PSF ellipticities at positions of galaxies properly. Tsk! moms.e1 = (moms.xx-moms.yy)/(moms.xx+moms.yy) moms.e2 = 2*moms.xy/(moms.xx+moms.yy) return moms # ********************************************************************** # ********************************************************************** # ********************************************************************** def acs_3dpsf( x, y, focus, radius, scat, acs_3dpsf_coeffs=None, degree=np.array([3,2,2])): # Fit the PSF if acs_3dpsf_coeffs is None: acs_3dpsf_coeffs=acs_3dpsf_fit(scat, degree=degree) #Reconstruct the PSF acs_moms=acs_3dpsf_reconstruct(acs_3dpsf_coeffs, x, y, focus, radius) return acs_moms class basis_coeffs: def __init__( self, ccd_centre, ccd_boundary_m, \ ccd_boundary_c, n_basis_functions, degree ): self.degree = degree, self.ccd_centre = ccd_centre self.ccd_boundary_m = ccd_boundary_m self.ccd_boundary_c = ccd_boundary_c self.ixx_fit = np.zeros((2,n_basis_functions)) self.ixy_fit = np.zeros((2,n_basis_functions)) self.iyy_fit = np.zeros((2,n_basis_functions)) self.ixxxx_fit = np.zeros((2,n_basis_functions)) self.ixxxy_fit = np.zeros((2,n_basis_functions)) self.ixxyy_fit = np.zeros((2,n_basis_functions)) self.ixyyy_fit = np.zeros((2,n_basis_functions)) self.iyyyy_fit = np.zeros((2,n_basis_functions)) self.e1_fit = np.zeros((2,n_basis_functions)) self.e2_fit = np.zeros((2,n_basis_functions)) class moments( dict ): def __init__(self, x, y, radius, degree ): n_objects = len(x) self.__dict__['x'] = x self.__dict__['y'] = y self.__dict__['e1']=np.zeros(n_objects) self.__dict__['e2']=np.zeros(n_objects) self.__dict__['xx']=np.zeros(n_objects) self.__dict__['xy']=np.zeros(n_objects) self.__dict__['yy']=np.zeros(n_objects) self.__dict__['xxxx']=np.zeros(n_objects) self.__dict__['xxxy']=np.zeros(n_objects) self.__dict__['xxyy']=np.zeros(n_objects) self.__dict__['xyyy']=np.zeros(n_objects) self.__dict__['yyyy']=np.zeros(n_objects) self.__dict__['radius'] = radius self.__dict__['degree'] = degree def keys(self): return list(self.__dict__.keys()) def __getitem__(self, key): return self.__dict__[key]
39.979381
122
0.565068
1,715
0.147413
0
0
0
0
0
0
1,674
0.143889
b824108791760c3044be86fca8557a92a30f2d41
27,400
py
Python
gsf/function_class.py
mtakahiro/gsf
c09c5d32a45b0277c469d2d3cb2f8c11f1fc0278
[ "MIT" ]
9
2019-08-23T19:00:54.000Z
2022-02-23T17:57:41.000Z
gsf/function_class.py
mtakahiro/gsf
c09c5d32a45b0277c469d2d3cb2f8c11f1fc0278
[ "MIT" ]
17
2020-05-22T17:41:15.000Z
2022-03-20T03:32:48.000Z
gsf/function_class.py
mtakahiro/gsf
c09c5d32a45b0277c469d2d3cb2f8c11f1fc0278
[ "MIT" ]
1
2020-02-01T22:55:37.000Z
2020-02-01T22:55:37.000Z
import numpy as np import sys import scipy.interpolate as interpolate import asdf from .function import * from .basic_func import Basic class Func: ''' The list of (possible) `Func` attributes is given below: Attributes ---------- ''' def __init__(self, MB, dust_model=0): ''' Parameters ---------- dust_model : int 0 for Calzetti. ''' self.ID = MB.ID self.ZZ = MB.Zall self.age = MB.age self.AA = MB.nage self.tau0 = MB.tau0 self.MB = MB self.dust_model = dust_model self.DIR_TMP = MB.DIR_TMP if MB.f_dust: self.Temp = MB.Temp try: self.filts = MB.filts self.DIR_FIL = MB.DIR_FILT except: pass # Already Read or not; self.f_af = False self.f_af0 = False def demo(self): ZZ = self.ZZ AA = self.AA return ZZ, AA ############################# # Load template in obs range. ############################# def open_spec_fits(self, fall=0, orig=False): ''' ''' ID0 = self.MB.ID tau0= self.MB.tau0 #[0.01,0.02,0.03] from astropy.io import fits ZZ = self.ZZ AA = self.AA bfnc = self.MB.bfnc #Basic(ZZ) # ASDF; if fall == 0: app = '' hdu0 = self.MB.af['spec'] elif fall == 1: app = 'all_' hdu0 = self.MB.af['spec_full'] DIR_TMP = self.DIR_TMP for pp in range(len(tau0)): for zz in range(len(ZZ)): Z = ZZ[zz] NZ = bfnc.Z2NZ(Z) if zz == 0 and pp == 0: nr = hdu0['colnum'] xx = hdu0['wavelength'] lib = np.zeros((len(nr), 2+len(AA)*len(ZZ)*len(tau0)), dtype='float') lib[:,0] = nr[:] lib[:,1] = xx[:] for aa in range(len(AA)): coln = int(2 + aa) if orig: colname = 'fspec_orig_' + str(zz) + '_' + str(aa) + '_' + str(pp) else: colname = 'fspec_' + str(zz) + '_' + str(aa) + '_' + str(pp) colnall = int(2 + pp*len(ZZ)*len(AA) + zz*len(AA) + aa) # 2 takes account of wavelength and AV columns. lib[:,colnall] = hdu0[colname] return lib def open_spec_dust_fits(self, fall=0): ''' Loads dust template in obs range. ''' ID0 = self.MB.ID tau0= self.MB.tau0 #[0.01,0.02,0.03] from astropy.io import fits ZZ = self.ZZ AA = self.AA bfnc = self.MB.bfnc #Basic(ZZ) self.MB.af = asdf.open(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf') self.MB.af0 = asdf.open(self.DIR_TMP + 'spec_all.asdf') if fall == 0: app = '' hdu0 = self.MB.af['spec_dust'] elif fall == 1: app = 'all_' hdu0 = self.MB.af['spec_dust_full'] DIR_TMP = self.DIR_TMP nr = hdu0['colnum'] xx = hdu0['wavelength'] lib = np.zeros((len(nr), 2+len(self.Temp)), dtype='float') lib[:,0] = nr[:] lib[:,1] = xx[:] for aa in range(len(self.Temp)): coln = int(2 + aa) colname = 'fspec_' + str(aa) colnall = int(2 + aa) # 2 takes account of wavelength and AV columns. lib[:,colnall] = hdu0[colname] if fall==1 and False: import matplotlib.pyplot as plt plt.close() plt.plot(lib[:,1],lib[:,coln],linestyle='-') plt.show() return lib def open_spec_fits_dir(self, nage, nz, kk, Av00, zgal, A00): ''' Load template in obs range. But for weird template. ''' from astropy.io import fits tau0= self.tau0 #[0.01,0.02,0.03] ZZ = self.ZZ AA = self.AA bfnc = self.MB.bfnc #Basic(ZZ) self.MB.af = asdf.open(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf') self.MB.af0 = asdf.open(self.DIR_TMP + 'spec_all.asdf') app = 'all' hdu0 = self.MB.af['spec_full'] DIR_TMP = self.DIR_TMP #'./templates/' pp = 0 zz = nz # Luminosity mshdu = self.MB.af0['ML'] Ls = mshdu['Ls_%d'%nz] xx = hdu0['wavelength'] # at RF; nr = np.arange(0,len(xx),1) #hdu0.data['colnum'] lib = np.zeros((len(nr), 2+1), dtype='float') lib[:,0] = nr[:] lib[:,1] = xx[:] aa = nage coln = int(2 + aa) colname = 'fspec_' + str(zz) + '_' + str(aa) + '_' + str(pp) yy0 = hdu0[colname]/Ls[aa] yy = flamtonu(xx, yy0) lib[:,2] = yy[:] if self.dust_model == 0: # Calzetti yyd, xxd, nrd = dust_calz(xx, yy, Av00, nr) elif self.dust_model == 1: # MW yyd, xxd, nrd = dust_mw(xx, yy, Av00, nr) elif self.dust_model == 2: # LMC yyd, xxd, nrd = dust_gen(xx, yy, Av00, nr, Rv=4.05, gamma=-0.06, Eb=2.8) elif self.dust_model == 3: # SMC yyd, xxd, nrd = dust_gen(xx, yy, Av00, nr, Rv=4.05, gamma=-0.42, Eb=0.0) elif self.dust_model == 4: # Kriek&Conroy with gamma=-0.2 yyd, xxd, nrd = dust_kc(xx, yy, Av00, nr, Rv=4.05, gamma=-0.2) else: print('No entry. Dust model is set to Calzetti') yyd, xxd, nrd = dust_calz(xx, yy, Av00, nr) xxd *= (1.+zgal) nrd_yyd = np.zeros((len(nrd),3), dtype='float') nrd_yyd[:,0] = nrd[:] nrd_yyd[:,1] = yyd[:] nrd_yyd[:,2] = xxd[:] b = nrd_yyd nrd_yyd_sort = b[np.lexsort(([-1,1]*b[:,[1,0]]).T)] yyd_sort = nrd_yyd_sort[:,1] xxd_sort = nrd_yyd_sort[:,2] return A00 * yyd_sort, xxd_sort def get_template(self, lib, Amp=1.0, T=1.0, Av=0.0, Z=0.0, zgal=1.0, f_bb=False): ''' Gets an element template given a set of parameters. Not necessarily the most efficient way, but easy to use. Parameters: ----------- lib : dict library dictionary. Amp : float Amplitude of the target template. Note that each template has Lbol = 1e10Lsun. T : float Age, in Gyr. Av : float Dust attenuation, in mag. Z : float Metallicity, in log(Z/Zsun). zgal : float Redshift. f_bb: bool If calculate bb photometry for the spectrum requested. Returns flux : float array. Flux in Fnu. wavelength : float array. Wave in AA. lcen, lflux : , if f_bb==True. ''' bfnc = self.MB.bfnc DIR_TMP = self.MB.DIR_TMP NZ = bfnc.Z2NZ(Z) pp0 = np.random.uniform(low=0, high=len(self.tau0), size=(1,)) pp = int(pp0[0]) if pp>=len(self.tau0): pp += -1 nmodel = np.argmin(np.abs(T-self.age[:])) if T - self.age[nmodel] != 0: print('T=%.2f is not found in age library. T=%.2f is used.'%(T,self.age[nmodel])) coln= int(2 + pp*len(self.ZZ)*len(self.AA) + NZ*len(self.AA) + nmodel) nr = lib[:, 0] xx = lib[:, 1] # This is OBSERVED wavelength range at z=zgal yy = lib[:, coln] if self.dust_model == 0: yyd, xxd, nrd = dust_calz(xx/(1.+zgal), yy, Av, nr) elif self.dust_model == 1: yyd, xxd, nrd = dust_mw(xx/(1.+zgal), yy, Av, nr) elif self.dust_model == 2: # LMC yyd, xxd, nrd = dust_gen(xx/(1.+zgal), yy, Av, nr, Rv=4.05, gamma=-0.06, Eb=2.8) elif self.dust_model == 3: # SMC yyd, xxd, nrd = dust_gen(xx/(1.+zgal), yy, Av, nr, Rv=4.05, gamma=-0.42, Eb=0.0) elif self.dust_model == 4: # Kriek&Conroy with gamma=-0.2 yyd, xxd, nrd = dust_kc(xx/(1.+zgal), yy, Av, nr, Rv=4.05, gamma=-0.2) else: yyd, xxd, nrd = dust_calz(xx/(1.+zgal), yy, Av, nr) xxd *= (1.+zgal) nrd_yyd = np.zeros((len(nrd),3), dtype='float') nrd_yyd[:,0] = nrd[:] nrd_yyd[:,1] = yyd[:] nrd_yyd[:,2] = xxd[:] b = nrd_yyd nrd_yyd_sort = b[np.lexsort(([-1,1]*b[:,[1,0]]).T)] yyd_sort = nrd_yyd_sort[:,1] xxd_sort = nrd_yyd_sort[:,2] if f_bb: #fil_cen, fil_flux = filconv(self.filts, xxd_sort, Amp * yyd_sort, self.DIR_FIL) fil_cen, fil_flux = filconv_fast(self.MB, xxd_sort, Amp * yyd_sort) return Amp * yyd_sort, xxd_sort, fil_flux, fil_cen else: return Amp * yyd_sort, xxd_sort def tmp03(self, A00, Av00, nmodel, Z, zgal, lib): ''' ''' tau0= self.tau0 #[0.01,0.02,0.03] ZZ = self.ZZ AA = self.AA bfnc = self.MB.bfnc #Basic(ZZ) DIR_TMP = self.MB.DIR_TMP #'./templates/' NZ = bfnc.Z2NZ(Z) pp0 = np.random.uniform(low=0, high=len(tau0), size=(1,)) pp = int(pp0[0]) if pp>=len(tau0): pp += -1 coln= int(2 + pp*len(ZZ)*len(AA) + NZ*len(AA) + nmodel) nr = lib[:,0] xx = lib[:,1] # This is OBSERVED wavelength range at z=zgal yy = lib[:,coln] if self.dust_model == 0: yyd, xxd, nrd = dust_calz(xx/(1.+zgal), yy, Av00, nr) elif self.dust_model == 1: yyd, xxd, nrd = dust_mw(xx/(1.+zgal), yy, Av00, nr) elif self.dust_model == 2: # LMC yyd, xxd, nrd = dust_gen(xx/(1.+zgal), yy, Av00, nr, Rv=4.05, gamma=-0.06, Eb=2.8) elif self.dust_model == 3: # SMC yyd, xxd, nrd = dust_gen(xx/(1.+zgal), yy, Av00, nr, Rv=4.05, gamma=-0.42, Eb=0.0) elif self.dust_model == 4: # Kriek&Conroy with gamma=-0.2 yyd, xxd, nrd = dust_kc(xx/(1.+zgal), yy, Av00, nr, Rv=4.05, gamma=-0.2) else: yyd, xxd, nrd = dust_calz(xx/(1.+zgal), yy, Av00, nr) xxd *= (1.+zgal) nrd_yyd = np.zeros((len(nrd),3), dtype='float') nrd_yyd[:,0] = nrd[:] nrd_yyd[:,1] = yyd[:] nrd_yyd[:,2] = xxd[:] b = nrd_yyd nrd_yyd_sort = b[np.lexsort(([-1,1]*b[:,[1,0]]).T)] yyd_sort = nrd_yyd_sort[:,1] xxd_sort = nrd_yyd_sort[:,2] return A00 * yyd_sort, xxd_sort def tmp04(self, par, f_Alog=True, nprec=1, f_val=False, lib_all=False, f_nrd=False): ''' Makes model template with a given param set. Also dust attenuation. Parameters ---------- nprec : int Precision when redshift is refined. ''' ZZ = self.ZZ AA = self.AA bfnc = self.MB.bfnc Mtot = 0 if f_val: par = par.params if self.MB.fzmc == 1: try: zmc = par['zmc'].value except: zmc = self.MB.zgal else: zmc = self.MB.zgal pp = 0 # AV limit; if par['Av'] < self.MB.Avmin: par['Av'] = self.MB.Avmin if par['Av'] > self.MB.Avmax: par['Av'] = self.MB.Avmax Av00 = par['Av'] for aa in range(len(AA)): if self.MB.ZEVOL==1 or aa == 0: Z = par['Z'+str(aa)] NZ = bfnc.Z2NZ(Z) else: pass # Check limit; if par['A'+str(aa)] < self.MB.Amin: par['A'+str(aa)] = self.MB.Amin if par['A'+str(aa)] > self.MB.Amax: par['A'+str(aa)] = self.MB.Amax # Z limit: if aa == 0 or self.MB.ZEVOL == 1: if par['Z%d'%aa] < self.MB.Zmin: par['Z%d'%aa] = self.MB.Zmin if par['Z%d'%aa] > self.MB.Zmax: par['Z%d'%aa] = self.MB.Zmax # Is A in logspace? if f_Alog: A00 = 10**par['A'+str(aa)] else: A00 = par['A'+str(aa)] coln = int(2 + pp*len(ZZ)*len(AA) + NZ*len(AA) + aa) sedpar = self.MB.af['ML'] # For M/L mslist = sedpar['ML_'+str(NZ)][aa] Mtot += 10**(par['A%d'%aa] + np.log10(mslist)) if lib_all: if aa == 0: nr = self.MB.lib_all[:, 0] xx = self.MB.lib_all[:, 1] # This is OBSERVED wavelength range at z=zgal yy = A00 * self.MB.lib_all[:, coln] else: yy += A00 * self.MB.lib_all[:, coln] else: if aa == 0: nr = self.MB.lib[:, 0] xx = self.MB.lib[:, 1] # This is OBSERVED wavelength range at z=zgal yy = A00 * self.MB.lib[:, coln] else: yy += A00 * self.MB.lib[:, coln] self.MB.logMtmp = np.log10(Mtot) if round(zmc,nprec) != round(self.MB.zgal,nprec): xx_s = xx / (1+self.MB.zgal) * (1+zmc) fint = interpolate.interp1d(xx, yy, kind='nearest', fill_value="extrapolate") yy_s = fint(xx_s) else: xx_s = xx yy_s = yy xx = xx_s yy = yy_s if self.dust_model == 0: yyd, xxd, nrd = dust_calz(xx/(1.+zmc), yy, Av00, nr) elif self.dust_model == 1: yyd, xxd, nrd = dust_mw(xx/(1.+zmc), yy, Av00, nr) elif self.dust_model == 2: # LMC yyd, xxd, nrd = dust_gen(xx/(1.+zmc), yy, Av00, nr, Rv=4.05, gamma=-0.06, Eb=2.8) elif self.dust_model == 3: # SMC yyd, xxd, nrd = dust_gen(xx/(1.+zmc), yy, Av00, nr, Rv=4.05, gamma=-0.42, Eb=0.0) elif self.dust_model == 4: # Kriek&Conroy with gamma=-0.2 yyd, xxd, nrd = dust_kc(xx/(1.+zmc), yy, Av00, nr, Rv=4.05, gamma=-0.2) else: yyd, xxd, nrd = dust_calz(xx/(1.+zmc), yy, Av00, nr) xxd *= (1.+zmc) nrd_yyd = np.zeros((len(nrd),3), dtype='float') nrd_yyd[:,0] = nrd[:] nrd_yyd[:,1] = yyd[:] nrd_yyd[:,2] = xxd[:] nrd_yyd_sort = nrd_yyd[nrd_yyd[:,0].argsort()] if not f_nrd: return nrd_yyd_sort[:,1],nrd_yyd_sort[:,2] else: return nrd_yyd_sort[:,0],nrd_yyd_sort[:,1],nrd_yyd_sort[:,2] def tmp04_dust(self, par, nprec=1): ''' Makes model template with a given param setself. Also dust attenuation. ''' tau0= self.tau0 ZZ = self.ZZ AA = self.AA bfnc = self.MB.bfnc DIR_TMP = self.MB.DIR_TMP try: m_dust = par['MDUST'] t_dust = par['TDUST'] except: # This is exception for initial minimizing; m_dust = -99 t_dust = 0 nr = self.MB.lib_dust[:,0] xx = self.MB.lib_dust[:,1] # This is OBSERVED wavelength range at z=zgal coln= 2+int(t_dust+0.5) yy = 10**m_dust * self.MB.lib_dust[:,coln] if self.MB.fzmc == 1: zmc = par.params['zmc'].value else: zmc = self.MB.zgal # How much does this cost in time? if round(zmc,nprec) != round(self.MB.zgal,nprec): xx_s = xx / (1+self.MB.zgal) * (1+zmc) fint = interpolate.interp1d(xx, yy, kind='nearest', fill_value="extrapolate") yy_s = fint(xx_s) else: xx_s = xx yy_s = yy return yy_s, xx_s class Func_tau: ''' ''' def __init__(self, MB, dust_model=0): ''' Parameters: ----------- dust_model : int 0 for Calzetti. 1 for MW. 4 for Kriek Conroy ''' self.MB = MB self.ID = MB.ID self.ZZ = MB.Zall self.AA = MB.nage self.tau = MB.tau self.dust_model = dust_model self.DIR_TMP = MB.DIR_TMP if MB.f_dust: self.Temp = MB.Temp try: self.filts = MB.filts self.DIR_FIL = MB.DIR_FILT except: pass # Already Read or not; self.f_af = False self.f_af0 = False def demo(self): ZZ = self.ZZ AA = self.AA return ZZ, AA def open_spec_fits(self, fall=0, orig=False): ''' Loads template in obs range. ''' ID0 = self.MB.ID from astropy.io import fits ZZ = self.ZZ AA = self.AA bfnc = self.MB.bfnc # ASDF; if fall == 0: app = '' hdu0 = self.MB.af['spec'] elif fall == 1: app = 'all_' hdu0 = self.MB.af['spec_full'] DIR_TMP = self.DIR_TMP NZ = len(ZZ) NT = self.MB.ntau NA = self.MB.nage for zz,Z in enumerate(ZZ): for tt,TT in enumerate(self.MB.tau): for ss,TA in enumerate(self.MB.ageparam): if zz == 0 and tt == 0 and ss == 0: nr = hdu0['colnum'] xx = hdu0['wavelength'] coln = int(2 + NZ * NT * NA) # + self.MB.ntau * self.MB.nage + NA) lib = np.zeros((len(nr), coln), dtype='float') lib[:,0] = nr[:] lib[:,1] = xx[:] if orig: colname = 'fspec_orig_' + str(zz) + '_' + str(tt) + '_' + str(ss) else: colname = 'fspec_' + str(zz) + '_' + str(tt) + '_' + str(ss) colnall = int(2 + zz * NT * NA + tt * NA + ss) # 2 takes account of wavelength and AV columns. lib[:,colnall] = hdu0[colname] return lib def open_spec_dust_fits(self, fall=0): ''' Load dust template in obs range. ''' ID0 = self.MB.ID tau0= self.MB.tau0 #[0.01,0.02,0.03] from astropy.io import fits ZZ = self.ZZ AA = self.AA bfnc = self.MB.bfnc #Basic(ZZ) self.MB.af = asdf.open(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf') self.MB.af0 = asdf.open(self.DIR_TMP + 'spec_all.asdf') if fall == 0: app = '' hdu0 = self.MB.af['spec_dust'] elif fall == 1: app = 'all_' hdu0 = self.MB.af['spec_dust_full'] DIR_TMP = self.DIR_TMP nr = hdu0['colnum'] xx = hdu0['wavelength'] lib = np.zeros((len(nr), 2+len(self.Temp)), dtype='float') lib[:,0] = nr[:] lib[:,1] = xx[:] for aa in range(len(self.Temp)): coln = int(2 + aa) colname = 'fspec_' + str(aa) colnall = int(2 + aa) # 2 takes account of wavelength and AV columns. lib[:,colnall] = hdu0[colname] if fall==1 and False: import matplotlib.pyplot as plt plt.close() plt.plot(lib[:,1],lib[:,coln],linestyle='-') plt.show() return lib def open_spec_fits_dir(self, nage, nz, kk, Av00, zgal, A00): ''' Loads template in obs range. But for weird template. ''' from astropy.io import fits tau0= self.tau0 #[0.01,0.02,0.03] ZZ = self.ZZ AA = self.AA bfnc = self.MB.bfnc #Basic(ZZ) self.MB.af = asdf.open(self.DIR_TMP + 'spec_all_' + self.ID + '.asdf') self.MB.af0 = asdf.open(self.DIR_TMP + 'spec_all.asdf') app = 'all' hdu0 = self.MB.af['spec_full'] DIR_TMP = self.DIR_TMP #'./templates/' pp = 0 zz = nz # Luminosity mshdu = self.MB.af0['ML'] Ls = mshdu['Ls_%d'%nz] xx = hdu0['wavelength'] # at RF; nr = np.arange(0,len(xx),1) #hdu0.data['colnum'] lib = np.zeros((len(nr), 2+1), dtype='float') lib[:,0] = nr[:] lib[:,1] = xx[:] aa = nage coln = int(2 + aa) colname = 'fspec_' + str(zz) + '_' + str(aa) + '_' + str(pp) yy0 = hdu0[colname]/Ls[aa] yy = flamtonu(xx, yy0) lib[:,2] = yy[:] if self.dust_model == 0: # Calzetti yyd, xxd, nrd = dust_calz(xx, yy, Av00, nr) elif self.dust_model == 1: # MW yyd, xxd, nrd = dust_mw(xx, yy, Av00, nr) elif self.dust_model == 2: # LMC yyd, xxd, nrd = dust_gen(xx, yy, Av00, nr, Rv=4.05, gamma=-0.06, Eb=2.8) elif self.dust_model == 3: # SMC yyd, xxd, nrd = dust_gen(xx, yy, Av00, nr, Rv=4.05, gamma=-0.42, Eb=0.0) elif self.dust_model == 4: # Kriek&Conroy with gamma=-0.2 yyd, xxd, nrd = dust_kc(xx, yy, Av00, nr, Rv=4.05, gamma=-0.2) else: print('No entry. Dust model is set to Calzetti') yyd, xxd, nrd = dust_calz(xx, yy, Av00, nr) xxd *= (1.+zgal) nrd_yyd = np.zeros((len(nrd),3), dtype='float') nrd_yyd[:,0] = nrd[:] nrd_yyd[:,1] = yyd[:] nrd_yyd[:,2] = xxd[:] b = nrd_yyd nrd_yyd_sort = b[np.lexsort(([-1,1]*b[:,[1,0]]).T)] yyd_sort = nrd_yyd_sort[:,1] xxd_sort = nrd_yyd_sort[:,2] return A00 * yyd_sort, xxd_sort def tmp04(self, par, f_Alog=True, nprec=1, f_val=False, check_bound=False, lib_all=False, f_nrd=False): ''' Makes model template with a given param set. Also dust attenuation. Parameters: ----------- nprec : int Precision when redshift is refined. ''' ZZ = self.ZZ AA = self.AA bfnc = self.MB.bfnc Mtot = 0 pp = 0 if f_val: par = par.params if self.MB.fzmc == 1: try: zmc = par['zmc'].value except: zmc = self.MB.zgal else: zmc = self.MB.zgal if check_bound: # AV limit; if par['Av'] < self.MB.Avmin: par['Av'] = self.MB.Avmin if par['Av'] > self.MB.Avmax: par['Av'] = self.MB.Avmax Av00 = par['Av'] for aa in range(self.MB.npeak): if self.MB.ZEVOL==1 or aa == 0: if check_bound: # Z limit: if par['Z%d'%aa] < self.MB.Zmin: par['Z%d'%aa] = self.MB.Zmin if par['Z%d'%aa] > self.MB.Zmax: par['Z%d'%aa] = self.MB.Zmax Z = par['Z%d'%aa] else: pass if check_bound: # A if par['A'+str(aa)] < self.MB.Amin: par['A'+str(aa)] = self.MB.Amin if par['A'+str(aa)] > self.MB.Amax: par['A'+str(aa)] = self.MB.Amax if par['TAU'+str(aa)] < self.MB.taumin: par['TAU'+str(aa)] = self.MB.taumin if par['TAU'+str(aa)] > self.MB.taumax: par['TAU'+str(aa)] = self.MB.taumax if par['AGE'+str(aa)] < self.MB.agemin: par['AGE'+str(aa)] = self.MB.agemin if par['AGE'+str(aa)] > self.MB.agemax: par['AGE'+str(aa)] = self.MB.agemax # Is A in logspace? if f_Alog: A00 = 10**par['A'+str(aa)] else: A00 = par['A'+str(aa)] tau,age = par['TAU%d'%aa],par['AGE%d'%aa] NZ, NT, NA = bfnc.Z2NZ(Z,tau,age) coln = int(2 + NZ*self.MB.ntau*self.MB.nage + NT*self.MB.nage + NA) mslist = self.MB.af['ML']['ML_'+str(NZ)+'_'+str(NT)][NA] Mtot += 10**(par['A%d'%aa] + np.log10(mslist)) if lib_all: if aa == 0: nr = self.MB.lib_all[:, 0] xx = self.MB.lib_all[:, 1] # This is OBSERVED wavelength range at z=zgal yy = A00 * self.MB.lib_all[:, coln] else: yy += A00 * self.MB.lib_all[:, coln] else: if aa == 0: nr = self.MB.lib[:, 0] xx = self.MB.lib[:, 1] # This is OBSERVED wavelength range at z=zgal yy = A00 * self.MB.lib[:, coln] else: yy += A00 * self.MB.lib[:, coln] # Keep logM self.MB.logMtmp = np.log10(Mtot) # Redshift refinement; if round(zmc,nprec) != round(self.MB.zgal,nprec): # Not sure how much this costs in time. xx_s = xx / (1+self.MB.zgal) * (1+zmc) fint = interpolate.interp1d(xx, yy, kind='nearest', fill_value="extrapolate") yy_s = fint(xx_s) else: xx_s = xx yy_s = yy xx = xx_s yy = yy_s if self.dust_model == 0: yyd, xxd, nrd = dust_calz(xx/(1.+zmc), yy, Av00, nr) elif self.dust_model == 1: yyd, xxd, nrd = dust_mw(xx/(1.+zmc), yy, Av00, nr) elif self.dust_model == 2: # LMC yyd, xxd, nrd = dust_gen(xx/(1.+zmc), yy, Av00, nr, Rv=4.05, gamma=-0.06, Eb=2.8) elif self.dust_model == 3: # SMC yyd, xxd, nrd = dust_gen(xx/(1.+zmc), yy, Av00, nr, Rv=4.05, gamma=-0.42, Eb=0.0) elif self.dust_model == 4: # Kriek&Conroy with gamma=-0.2 yyd, xxd, nrd = dust_kc(xx/(1.+zmc), yy, Av00, nr, Rv=4.05, gamma=-0.2) else: yyd, xxd, nrd = dust_calz(xx/(1.+zmc), yy, Av00, nr) xxd *= (1.+zmc) if self.dust_model == 0: if not f_nrd: return yyd,xxd else: return nrd,yyd,xxd else: nrd_yyd = np.zeros((len(nrd),3), dtype='float') nrd_yyd[:,0] = nrd[:] nrd_yyd[:,1] = yyd[:] nrd_yyd[:,2] = xxd[:] nrd_yyd_sort = nrd_yyd[nrd_yyd[:,0].argsort()] if not f_nrd: return nrd_yyd_sort[:,1],nrd_yyd_sort[:,2] else: return nrd_yyd_sort[:,0],nrd_yyd_sort[:,1],nrd_yyd_sort[:,2] def tmp04_dust(self, par, nprec=1): ''' Makes model template with a given param setself. Also dust attenuation. ''' bfnc = self.MB.bfnc #Basic(ZZ) DIR_TMP = self.MB.DIR_TMP #'./templates/' try: m_dust = par['MDUST'] t_dust = par['TDUST'] except: # This is exception for initial minimizing; m_dust = -99 t_dust = 0 nr = self.MB.lib_dust[:,0] xx = self.MB.lib_dust[:,1] # This is OBSERVED wavelength range at z=zgal coln= 2+int(t_dust+0.5) yy = 10**m_dust * self.MB.lib_dust[:,coln] if self.MB.fzmc == 1: zmc = par.params['zmc'].value else: zmc = self.MB.zgal # How much does this cost in time? if round(zmc,nprec) != round(self.MB.zgal,nprec): xx_s = xx / (1+self.MB.zgal) * (1+zmc) fint = interpolate.interp1d(xx, yy, kind='nearest', fill_value="extrapolate") yy_s = fint(xx_s) else: xx_s = xx yy_s = yy return yy_s, xx_s
31.823461
123
0.464964
27,254
0.994672
0
0
0
0
0
0
4,941
0.180328
b825f9f00f6901c5d7cf23cfa47cb3197933eecd
1,855
py
Python
loadbalanceRL/utils/exceptions.py
fqzhou/LoadBalanceControl-RL
689eec3b3b27e121aa45d2793e411f1863f6fc0b
[ "MIT" ]
11
2018-10-29T06:50:43.000Z
2022-03-28T14:26:09.000Z
loadbalanceRL/utils/exceptions.py
fqzhou/LoadBalanceControl-RL
689eec3b3b27e121aa45d2793e411f1863f6fc0b
[ "MIT" ]
1
2022-03-01T13:46:25.000Z
2022-03-01T13:46:25.000Z
loadbalanceRL/utils/exceptions.py
fqzhou/LoadBalanceControl-RL
689eec3b3b27e121aa45d2793e411f1863f6fc0b
[ "MIT" ]
6
2019-02-05T20:01:53.000Z
2020-09-04T12:30:00.000Z
#! /usr/bin/env python3 # -*- coding: utf-8 -*- """ Definition of all Rainman2 exceptions """ __author__ = 'Ari Saha (arisaha@icloud.com), Mingyang Liu(liux3941@umn.edu)' __date__ = 'Wednesday, February 14th 2018, 11:38:08 am' class FileOpenError(IOError): """ Exception raised when a file couldn't be opened. """ pass class AgentNotSupported(Exception): """ Exception raised when agent is not valid for requested algorithm """ pass class AgentMethodNotImplemented(NotImplementedError): """ Exception raised when trying to access a private method of an agent that is not implemented yet. """ pass class AlgorithmNotImplemented(NotImplementedError): """ Exception raised when trying to access algorithm that is not implemented yet. """ pass class AlgorithmMethodNotImplemented(NotImplementedError): """ Exception raised when trying to access a private method of an algorithm that is not implemented yet. """ pass class ClientNotImplemented(NotImplementedError): """ Exception raised when trying to access client that is not implemented yet. """ pass class ClientMethodNotImplemented(NotImplementedError): """ Exception raised when trying to access a private method of a client that is not implemented yet. """ pass class EnvironmentNotImplemented(NotImplementedError): """ Exception raised when trying to access Environment that is not implemented yet. """ pass class EnvironmentMethodNotImplemented(NotImplementedError): """ Exception raised when trying to access a private method of an environment that is not implemented yet. """ pass class ExternalServerError(Exception): """ Exception raised when external server is not accessible """ pass
21.079545
77
0.698652
1,595
0.859838
0
0
0
0
0
0
1,177
0.634501
b826697289acc6bb7f13171d32f3b15f39b8d6bc
411
py
Python
mundo-1/ex-014.py
guilhermesm28/python-curso-em-video
50ab4e76b1903e62d4daa579699c5908329b26c8
[ "MIT" ]
null
null
null
mundo-1/ex-014.py
guilhermesm28/python-curso-em-video
50ab4e76b1903e62d4daa579699c5908329b26c8
[ "MIT" ]
null
null
null
mundo-1/ex-014.py
guilhermesm28/python-curso-em-video
50ab4e76b1903e62d4daa579699c5908329b26c8
[ "MIT" ]
null
null
null
# Escreva um programa que converta uma temperatura digitando em graus Celsius e converta para graus Fahrenheit. print('-' * 100) print('{: ^100}'.format('EXERCÍCIO 014 - CONVERSOR DE TEMPERATURAS')) print('-' * 100) c = float(input('Informe a temperatura em ºC: ')) f = ((9 * c) / 5) + 32 print(f'A temperatura de {c:.2f}ºC corresponde a {f:.2f}ºF.') print('-' * 100) input('Pressione ENTER para sair...')
27.4
111
0.6691
0
0
0
0
0
0
0
0
292
0.703614
b828874e2b78ad751bb04188c59615f7f159fd1a
848
py
Python
access_apps/controllers/main.py
aaltinisik/access-addons
933eef8b7abd5d2ac0b07b270271cb5aed3b23b6
[ "MIT" ]
null
null
null
access_apps/controllers/main.py
aaltinisik/access-addons
933eef8b7abd5d2ac0b07b270271cb5aed3b23b6
[ "MIT" ]
null
null
null
access_apps/controllers/main.py
aaltinisik/access-addons
933eef8b7abd5d2ac0b07b270271cb5aed3b23b6
[ "MIT" ]
1
2021-02-15T03:14:52.000Z
2021-02-15T03:14:52.000Z
from odoo import SUPERUSER_ID, http from odoo.http import request from odoo.addons.web_settings_dashboard.controllers.main import WebSettingsDashboard class WebSettingsDashboardCustom(WebSettingsDashboard): @http.route("/web_settings_dashboard/data", type="json", auth="user") def web_settings_dashboard_data(self, **kw): has_access_to_apps = request.env["res.users"].has_group( "access_apps.group_allow_apps" ) # issue: due to unknown reason has_group is always invoked with superuser as uid param in new API # has_access_to_apps = request.env.user.has_group('access_apps.group_allow_apps') request.env.uid = SUPERUSER_ID res = super(WebSettingsDashboardCustom, self).web_settings_dashboard_data(**kw) res["has_access_to_apps"] = has_access_to_apps return res
44.631579
105
0.740566
693
0.817217
0
0
633
0.746462
0
0
281
0.331368
b829ed55de73d723e9907e52986b8d92ed93231d
686
py
Python
dev/test.py
SmartBadge/SmartBadge
7bddc1ec230bcf5fa6185999b0b0c0e448528629
[ "MIT" ]
null
null
null
dev/test.py
SmartBadge/SmartBadge
7bddc1ec230bcf5fa6185999b0b0c0e448528629
[ "MIT" ]
null
null
null
dev/test.py
SmartBadge/SmartBadge
7bddc1ec230bcf5fa6185999b0b0c0e448528629
[ "MIT" ]
null
null
null
import game as g import time as t def start_game(): r.add_sprite(player1, 0,0) r.add_sprite(player2, 5,0) r.add_sprite(ball, 3,3) r.print() def wait(length_of_time): inital = t.time() x = False while(not(x)): current = t.time() x = (current - inital) > length_of_time def move_ball(): r.move_sprite(1,0) r = g.Game(6,6, debugger = False) player1 = g.Sprite("Player", 1, 2) player2 = g.Sprite("Player", 1, 2) ball = g.Sprite("ball", 1, 1) start_game() wait(4) r.move_sprite(ball,-1,-1) r.move_sprite(player1, 0,-2) r.move_sprite(player1, 0, 3) r.print() while(ball.x < 7): r.move_sprite(ball, 1,1) print("oi") wait(4)
17.589744
47
0.610787
0
0
0
0
0
0
0
0
26
0.037901
b82a954625c33b4891411d888f3fa383b4a7acc9
662
py
Python
itermembers.py
hanshuaigithub/pyrogram_project
539ebbfa00d5381b4495450580f9c77ee8be9d11
[ "MIT" ]
null
null
null
itermembers.py
hanshuaigithub/pyrogram_project
539ebbfa00d5381b4495450580f9c77ee8be9d11
[ "MIT" ]
null
null
null
itermembers.py
hanshuaigithub/pyrogram_project
539ebbfa00d5381b4495450580f9c77ee8be9d11
[ "MIT" ]
null
null
null
from pyrogram import Client import json api_id = 2763716 api_hash = "d4c2d2e53efe8fbb71f0d64deb84b3da" app = Client("+639277144517", api_id, api_hash) target = "cnsex8" # Target channel/supergroup sigui588 cnsex8 with app: members = app.iter_chat_members(target) print(f"Chanel members counts : {len(members)}") members_arr = [] for i in range(0,len(members)): member = members[i] members_arr.append({'id':member.user.id, 'first_name':member.user.first_name}) members_json_str = json.dumps(members_arr) members_open = open('members.json', 'w') members_open.write(members_json_str) members_open.close()
26.48
86
0.706949
0
0
0
0
0
0
0
0
174
0.26284
b82b18f5c487a5e8f40d5acca12f69514df44f14
590
py
Python
FisherExactTest/__version__.py
Ae-Mc/Fisher
166e3ac68e304ed7418393d6a7717dd6f7032c15
[ "MIT" ]
null
null
null
FisherExactTest/__version__.py
Ae-Mc/Fisher
166e3ac68e304ed7418393d6a7717dd6f7032c15
[ "MIT" ]
null
null
null
FisherExactTest/__version__.py
Ae-Mc/Fisher
166e3ac68e304ed7418393d6a7717dd6f7032c15
[ "MIT" ]
null
null
null
__title__ = "FisherExactTest" __version__ = "1.0.1" __author__ = "Ae-Mc" __author_email__ = "ae_mc@mail.ru" __description__ = "Two tailed Fisher's exact test wrote in pure Python" __url__ = "https://github.com/Ae-Mc/Fisher" __classifiers__ = [ "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Topic :: Utilities" ]
34.705882
71
0.661017
0
0
0
0
0
0
0
0
429
0.727119
b82b81bc5dbddba7f6dc9e8f6bf26affa5968f16
875
py
Python
mimosa/pylib/mimosa_reader.py
rafelafrance/traiter_mimosa
7a248b610747d5d0e5ce5473953cbdc90d336aae
[ "MIT" ]
null
null
null
mimosa/pylib/mimosa_reader.py
rafelafrance/traiter_mimosa
7a248b610747d5d0e5ce5473953cbdc90d336aae
[ "MIT" ]
null
null
null
mimosa/pylib/mimosa_reader.py
rafelafrance/traiter_mimosa
7a248b610747d5d0e5ce5473953cbdc90d336aae
[ "MIT" ]
null
null
null
"""Parse PDFs about mimosas.""" from tqdm import tqdm from . import mimosa_pipeline from . import sentence_pipeline from .parsed_data import Datum def read(args): with open(args.in_text) as in_file: lines = in_file.readlines() if args.limit: lines = lines[: args.limit] nlp = mimosa_pipeline.pipeline() sent_nlp = sentence_pipeline.pipeline() data = [] for ln in tqdm(lines): ln = ln.strip() sent_doc = sent_nlp(ln) for sent in sent_doc.sents: doc = nlp(sent.text) traits = [] for ent in doc.ents: trait = ent._.data trait["start"] += sent.start_char trait["end"] += sent.start_char traits.append(trait) data.append(Datum(text=sent.text, traits=traits, reject=doc._.reject)) return data
25
82
0.584
0
0
0
0
0
0
0
0
43
0.049143
b82ba735b06701323afbbc1adb2108b231b98638
1,647
py
Python
CxMetrics/calcMetrics.py
Danielhiversen/pyCustusx
5a7fca51d885ad30f4db46ab725485d86fb2d17a
[ "MIT" ]
null
null
null
CxMetrics/calcMetrics.py
Danielhiversen/pyCustusx
5a7fca51d885ad30f4db46ab725485d86fb2d17a
[ "MIT" ]
null
null
null
CxMetrics/calcMetrics.py
Danielhiversen/pyCustusx
5a7fca51d885ad30f4db46ab725485d86fb2d17a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sat Oct 24 11:39:42 2015 @author: dahoiv """ import numpy as np def loadMetrics(filepath): mr_points=dict() us_points=dict() with open(filepath, 'r') as file : for line in file.readlines(): line = line.translate(None, '"') data= line.split() if not "pointMetric" in data[0]: continue key= data[1][-2:] point = data[6:9] if "_mr_" in data[1] and not "us" in data[2].lower(): mr_points[key]=[float(point[0]),float(point[1]),float(point[2])] if "_us_" in data[1] and "us" in data[2].lower(): us_points[key]=[float(point[0]),float(point[1]),float(point[2])] return (mr_points,us_points) def calcDist(mr_points,us_points): k=0 dist=[] for key in mr_points.keys(): if not key in us_points.keys(): print key, " missing in us" continue diff = np.array(mr_points[key])-np.array(us_points[key]) dist.append((diff[0]**2 +diff[1]**2 +diff[2]**2)**0.5) print key, dist[-1] k=k+1 print "mean; ", np.mean(dist) print "var: ", np.var(dist) if __name__ == '__main__': filePath1="/home/dahoiv/disk/data/brainshift/079_Tumor.cx3/Logs/metrics_a.txt" (mr_points_1,us_points_1)=loadMetrics(filePath1) calcDist(mr_points_1,us_points_1) filePath2="/home/dahoiv/disk/data/brainshift/079_Tumor.cx3/Logs/metrics_b.txt" (mr_points_2,us_points_2)=loadMetrics(filePath2) calcDist(mr_points_2,us_points_2)
32.294118
82
0.571342
0
0
0
0
0
0
0
0
300
0.182149
b82dae5c13359feb72d2a0825f3801687d516058
118
py
Python
twodspec/extern/__init__.py
hypergravity/songcn
e2b071c932720d02e5f085884c83c46baba7802d
[ "MIT" ]
null
null
null
twodspec/extern/__init__.py
hypergravity/songcn
e2b071c932720d02e5f085884c83c46baba7802d
[ "MIT" ]
null
null
null
twodspec/extern/__init__.py
hypergravity/songcn
e2b071c932720d02e5f085884c83c46baba7802d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- __all__ = ['interpolate', 'polynomial', 'SmoothSpline'] from .interpolate import SmoothSpline
29.5
55
0.70339
0
0
0
0
0
0
0
0
62
0.525424
b82f6fabf22a5cbcfa7dd2e7ea076e9e772feb3f
3,286
py
Python
SUAVE/SUAVE-2.5.0/trunk/SUAVE/Methods/Weights/Correlations/Transport/tube.py
Vinicius-Tanigawa/Undergraduate-Research-Project
e92372f07882484b127d7affe305eeec2238b8a9
[ "MIT" ]
null
null
null
SUAVE/SUAVE-2.5.0/trunk/SUAVE/Methods/Weights/Correlations/Transport/tube.py
Vinicius-Tanigawa/Undergraduate-Research-Project
e92372f07882484b127d7affe305eeec2238b8a9
[ "MIT" ]
null
null
null
SUAVE/SUAVE-2.5.0/trunk/SUAVE/Methods/Weights/Correlations/Transport/tube.py
Vinicius-Tanigawa/Undergraduate-Research-Project
e92372f07882484b127d7affe305eeec2238b8a9
[ "MIT" ]
null
null
null
## @ingroup Methods-Weights-Correlations-Tube_Wing # tube.py # # Created: Jan 2014, A. Wendorff # Modified: Feb 2014, A. Wendorff # Feb 2016, E. Botero # ---------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------- from SUAVE.Core import Units # ---------------------------------------------------------------------- # Tube # ---------------------------------------------------------------------- ## @ingroup Methods-Weights-Correlations-Tube_Wing def tube(vehicle, fuse, wt_wing, wt_propulsion): """ Calculate the weight of a fuselage in the state tube and wing configuration Assumptions: fuselage in a standard wing and tube configuration Source: N/A Inputs: fuse.areas.wetted - fuselage wetted area [meters**2] fuse.differential_pressure- Maximum fuselage pressure differential [Pascal] fuse.width - width of the fuselage [meters] fuse.heights.maximum - height of the fuselage [meters] fuse.lengths.total - length of the fuselage [meters] vehicle.envelope.limit_load - limit load factor at zero fuel weight of the aircraft [dimensionless] vehicle.mass_properties.max_zero_fuel - zero fuel weight of the aircraft [kilograms] wt_wing - weight of the wing of the aircraft [kilograms] wt_propulsion - weight of the entire propulsion system of the aircraft [kilograms] vehicle.wings.main_wing.chords.root - wing root chord [meters] Outputs: weight - weight of the fuselage [kilograms] Properties Used: N/A """ # unpack inputs diff_p = fuse.differential_pressure / (Units.force_pound / Units.ft ** 2) # Convert Pascals to lbs/ square ft width = fuse.width / Units.ft # Convert meters to ft height = fuse.heights.maximum / Units.ft # Convert meters to ft # setup length = fuse.lengths.total - vehicle.wings.main_wing.chords.root / 2. length = length / Units.ft # Convert meters to ft weight = (vehicle.mass_properties.max_zero_fuel - wt_wing - wt_propulsion) / Units.lb # Convert kg to lbs area = fuse.areas.wetted / Units.ft ** 2 # Convert square meters to square ft # process # Calculate fuselage indices I_p = 1.5 * 10 ** -3. * diff_p * width I_b = 1.91 * 10 ** -4. * vehicle.envelope.limit_load * weight * length / height ** 2. if I_p > I_b: I_f = I_p else: I_f = (I_p ** 2. + I_b ** 2.) / (2. * I_b) # Calculate weight of wing for traditional aircraft vertical tail without rudder fuselage_weight = ((1.051 + 0.102 * I_f) * area) * Units.lb # Convert from lbs to kg return fuselage_weight
45.013699
123
0.5
0
0
0
0
0
0
0
0
2,411
0.733719
b82ff818b8e67f8cae3f7360326180bd7e14f756
3,837
py
Python
Dependencies/02_macOS/40_gtk+/x64/lib/gobject-introspection/giscanner/annotationmain.py
bognikol/Eleusis
ee518ede31893689eb6d3c5539e0bd757aeb0294
[ "MIT" ]
4
2019-05-31T19:55:23.000Z
2020-10-27T10:00:32.000Z
Dependencies/02_macOS/40_gtk+/x64/lib/gobject-introspection/giscanner/annotationmain.py
bognikol/Eleusis
ee518ede31893689eb6d3c5539e0bd757aeb0294
[ "MIT" ]
null
null
null
Dependencies/02_macOS/40_gtk+/x64/lib/gobject-introspection/giscanner/annotationmain.py
bognikol/Eleusis
ee518ede31893689eb6d3c5539e0bd757aeb0294
[ "MIT" ]
3
2019-04-29T14:09:38.000Z
2020-10-27T10:00:33.000Z
# -*- Mode: Python -*- # GObject-Introspection - a framework for introspecting GObject libraries # Copyright (C) 2010 Johan Dahlin # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA # 02110-1301, USA. # from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import sys import optparse import codecs from contextlib import contextmanager from giscanner import message from giscanner.annotationparser import GtkDocCommentBlockParser, GtkDocCommentBlockWriter from giscanner.scannermain import (get_preprocessor_option_group, create_source_scanner, process_packages) @contextmanager def encode_stdout(encoding): """Force stdout into a specific encoding.""" # Python 2 does not encode stdout writes so wrap it with 'encoding' encoded writer. # Python 3 uses a io.TextIOBase wrapped stdout with the system default encoding. # Re-wrap the underlying buffer with a new writer with the given 'encoding'. # See: https://docs.python.org/3/library/sys.html#sys.stdout old_stdout = sys.stdout if sys.version_info.major < 3: binary_stdout = sys.stdout else: binary_stdout = sys.stdout.buffer sys.stdout = codecs.getwriter(encoding)(binary_stdout) yield sys.stdout = old_stdout def annotation_main(args): parser = optparse.OptionParser('%prog [options] sources') group = optparse.OptionGroup(parser, "Tool modes, one is required") group.add_option("-e", "--extract", action="store_true", dest="extract", help="Extract annotations from the input files") parser.add_option_group(group) group = get_preprocessor_option_group(parser) group.add_option("-L", "--library-path", action="append", dest="library_paths", default=[], help="directories to search for libraries") group.add_option("", "--pkg", action="append", dest="packages", default=[], help="pkg-config packages to get cflags from") parser.add_option_group(group) options, args = parser.parse_args(args) if not options.extract: raise SystemExit("ERROR: Nothing to do") if options.packages: process_packages(options, options.packages) logger = message.MessageLogger.get(namespace=None) ss = create_source_scanner(options, args) if options.extract: parser = GtkDocCommentBlockParser() writer = GtkDocCommentBlockWriter(indent=False) blocks = parser.parse_comment_blocks(ss.get_comments()) with encode_stdout('utf-8'): print('/' + ('*' * 60) + '/') print('/* THIS FILE IS GENERATED DO NOT EDIT */') print('/' + ('*' * 60) + '/') print('') for block in sorted(blocks.values()): print(writer.write(block)) print('') print('') print('/' + ('*' * 60) + '/') print('/* THIS FILE IS GENERATED DO NOT EDIT */') print('/' + ('*' * 60) + '/') return 0
36.542857
89
0.65963
0
0
644
0.167839
660
0.172009
0
0
1,600
0.416992
b830ed284183da0f588ffc8416e532df6cb6e5aa
1,219
py
Python
src/tools/json2db.py
chobocho/ChoboMemo2
d3883e20d7c69c48477d1178120e0e32c062b27f
[ "MIT" ]
null
null
null
src/tools/json2db.py
chobocho/ChoboMemo2
d3883e20d7c69c48477d1178120e0e32c062b27f
[ "MIT" ]
null
null
null
src/tools/json2db.py
chobocho/ChoboMemo2
d3883e20d7c69c48477d1178120e0e32c062b27f
[ "MIT" ]
null
null
null
import os import sys import json from manager import dbmanager def loadJson(filename): print("loadJson: " + filename) memoList = [] try: if os.path.isfile(filename): file = open(filename, 'r', encoding="UTF-8") lines = file.readlines() file.close() idx = 0 for line in lines[1:]: memo = json.loads(line) idx += 1 item = {} item['id'] = memo["id"] item['memo'] = memo["memo"] item['index'] = str(idx) memoList.append(item) print("Success to load " + filename) return memoList except: print("Loading failed:" + filename) return [] def save2DB(data, db_name): db = dbmanager.DBManager(db_name) print(len(data)) # for item in data: # db.insert([item['id'], item['memo']]) # db.printDB() def main(filenames): json_file = filenames[0] db_file = filenames[1] data = loadJson(json_file) save2DB(data, db_file) if __name__ == '__main__': if len(sys.argv) < 3: print("Usage: json2db json_file db_file") else: main(sys.argv[1:])
23
56
0.525021
0
0
0
0
0
0
0
0
203
0.16653
b8317e86fff68e0107933de518fdf61bc7534d00
171
py
Python
Configuration/ProcessModifiers/python/trackingMkFitTobTecStep_cff.py
Purva-Chaudhari/cmssw
32e5cbfe54c4d809d60022586cf200b7c3020bcf
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
Configuration/ProcessModifiers/python/trackingMkFitTobTecStep_cff.py
Purva-Chaudhari/cmssw
32e5cbfe54c4d809d60022586cf200b7c3020bcf
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
Configuration/ProcessModifiers/python/trackingMkFitTobTecStep_cff.py
Purva-Chaudhari/cmssw
32e5cbfe54c4d809d60022586cf200b7c3020bcf
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
import FWCore.ParameterSet.Config as cms # This modifier sets replaces the default pattern recognition with mkFit for tobTecStep trackingMkFitTobTecStep = cms.Modifier()
34.2
87
0.836257
0
0
0
0
0
0
0
0
87
0.508772
b8327398b4c50fa047db432d9765d37a5dd0095d
3,772
py
Python
config/config.py
rossja/Docker-Minecraft-Overviewer
bb2285f5af723a74b1365bbcbe284b9e5ce85245
[ "MIT" ]
12
2019-12-14T13:58:44.000Z
2022-03-12T10:43:43.000Z
config/config.py
rossja/Docker-Minecraft-Overviewer
bb2285f5af723a74b1365bbcbe284b9e5ce85245
[ "MIT" ]
2
2019-02-04T09:46:10.000Z
2019-02-05T10:05:56.000Z
config/config.py
rossja/Docker-Minecraft-Overviewer
bb2285f5af723a74b1365bbcbe284b9e5ce85245
[ "MIT" ]
5
2020-01-29T20:38:35.000Z
2021-12-18T19:56:49.000Z
# My config.py script for overviewer: worlds["pudel"] = "/tmp/server/world/" worlds["pudel_nether"] = "/tmp/server/world_nether/" texturepath = "/tmp/overviewer/client.jar" processes = 2 outputdir = "/tmp/export/" my_cave = [Base(), EdgeLines(), Cave(only_lit=True), DepthTinting()] my_nowater = [Base(), EdgeLines(), NoFluids()] defaultzoom = 5 my_crop = (-1200, -1600, 900, 400) def playerIcons(poi): if poi['id'] == 'Player': poi['icon'] = "https://mc.marc.tv/assets/steve.png" return "Last known location for %s" % poi['EntityId'] def playerSpawns(poi): if poi['id']=='PlayerSpawn': poi['icon'] = "https://mc.marc.tv/assets/bed.png" return "Spawn for %s" % poi['EntityId'] def signFilter(poi): if poi['id'] == 'Sign' or poi['id'] == 'minecraft:sign': poi['icon'] = "https://mc.marc.tv/assets/sign.png" text = "\n".join([poi['Text1'], poi['Text2'], poi['Text3'], poi['Text4']]) if text.__contains__('...'): return text.replace('...', '') def chestFilter(poi): if poi['id'] == 'Chest' or poi['id'] == 'minecraft:chest': return "Chest with %d items" % len(poi['Items']) thingsToMaker = [ dict(name="Players", filterFunction=playerIcons), dict(name="Beds", filterFunction=playerSpawns), dict(name="Signs", filterFunction=signFilter), #dict(name="Chests", filterFunction=chestFilter) ] renders["day_complete_smooth"] = { 'world': 'pudel', 'title': 'Day', 'rendermode': 'smooth_lighting', "dimension": "overworld", 'markers': thingsToMaker } renders["night_complete"] = { 'world': 'pudel', 'title': 'Night', 'rendermode': 'smooth_night', "dimension": "overworld", 'markers': thingsToMaker } renders["cave_complete"] = { 'world': 'pudel', 'title': 'Cave', 'rendermode': my_cave, "dimension": "overworld", 'markers': thingsToMaker } # Railoverlay renders["rails"] = { 'world': 'pudel', 'title': 'Rails', "dimension": "overworld", 'rendermode': [ClearBase(), MineralOverlay(minerals=[ (66, (255,0,0)), (27, (255,0,0)), (28, (255,0,0)) ]), EdgeLines()], "overlay": ["day_complete_smooth","night_complete","cave_complete"] } ''' # Pistons and Observer renders["farms"] = { 'world': 'pudel', 'title': 'Farms', "dimension": "overworld", 'rendermode': [ClearBase(), MineralOverlay(minerals=[ (29, (255,0,0)), (33, (255,0,0)), (34, (255,0,0)), (154, (255,0,0)), (218, (255,0,0)) ]), EdgeLines()], "overlay": ["day_complete_smooth","night_complete","cave_complete"] } ''' ''' renders["nether"] = { "world": "pudel_nether", "title": "Nether", "rendermode": "nether", "dimension": "nether", 'crop': (-200, -200, 200, 200) } ''' # Import the Observers from .observer import MultiplexingObserver, ProgressBarObserver, JSObserver # Construct the ProgressBarObserver pbo = ProgressBarObserver() # Construct a basic JSObserver jsObserver = JSObserver(outputdir, 30) # Set the observer to a MultiplexingObserver observer = MultiplexingObserver(pbo, jsObserver) ''' renders["day_smooth"] = { 'world': 'pudel', 'title': 'Day', 'rendermode': 'smooth_lighting', "dimension": "overworld", 'crop': my_crop, 'markers': thingsToMaker } renders["night_smooth"] = { 'world': 'pudel', 'title': 'Night', 'rendermode': 'smooth_night', "dimension": "overworld", 'crop': my_crop, 'markers': thingsToMaker } renders["cave"] = { 'world': 'pudel', 'title': 'Cave', 'rendermode': my_cave, "dimension": "overworld", 'crop': my_crop, 'markers': thingsToMaker } '''
26.013793
82
0.593054
0
0
0
0
0
0
0
0
2,272
0.602333
b832db34004caeef160a328496546197b3b692d7
1,764
py
Python
SurveyManager/survey/models.py
javiervar/SurveyManager
bbe2ed356654c32586c587f58c609c8ce014e96b
[ "MIT" ]
null
null
null
SurveyManager/survey/models.py
javiervar/SurveyManager
bbe2ed356654c32586c587f58c609c8ce014e96b
[ "MIT" ]
null
null
null
SurveyManager/survey/models.py
javiervar/SurveyManager
bbe2ed356654c32586c587f58c609c8ce014e96b
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. class Encuesta(models.Model): nombre=models.CharField(max_length=150) descripcion=models.TextField() estructura=models.TextField() fecha = models.DateTimeField(auto_now_add=True) def __str__(self): return str(self.nombre) class Pregunta(models.Model): descripcion=models.CharField(max_length=150) encuesta = models.ForeignKey('Encuesta', on_delete=models.CASCADE) tipo=models.IntegerField(null=True) numero=models.IntegerField(default=1) json_id=models.CharField(max_length=50,null=True) def __str__(self): return str(self.descripcion) class Respuesta(models.Model): valor=models.CharField(max_length=150) pregunta = models.ForeignKey('Pregunta', on_delete=models.CASCADE) json_id=models.CharField(max_length=50,null=True) def __str__(self): return str(self.valor) class Carrera(models.Model): nombre=models.CharField(max_length=150) generacion = models.ForeignKey('Generacion', on_delete=models.CASCADE,null=True,blank=True) def __str__(self): return "%s %s" % (self.nombre, self.generacion) class Generacion(models.Model): generacion=models.CharField(max_length=150,null=True,blank=True) def __str__(self): return str(self.generacion) class Alumno(models.Model): email=models.CharField(max_length=100) nombre=models.CharField(max_length=100) apellidos=models.CharField(max_length=100) carrera = models.ForeignKey('Carrera', on_delete=models.CASCADE) def __str__(self): return str(self.nombre) class RespuestaPregunta(models.Model): respuesta = models.ForeignKey('Respuesta', on_delete=models.CASCADE) pregunta = models.ForeignKey('Pregunta', on_delete=models.CASCADE) alumno=models.ForeignKey('Alumno',on_delete=models.CASCADE,blank=True,null=True)
30.413793
92
0.786848
1,692
0.959184
0
0
0
0
0
0
103
0.05839
b8361f78932036e9f23fbe61c22ab2ba8ac449f7
3,150
py
Python
pythainlp/corpus/__init__.py
petetanru/pythainlp
83fa999336ce8c7f7b5431fc2fc41c53c5cb7604
[ "Apache-2.0" ]
1
2018-10-10T19:01:43.000Z
2018-10-10T19:01:43.000Z
pythainlp/corpus/__init__.py
Khawoat6/pythainlp
05979c0ac9a596bb7957fb8a050a32c87ea098e8
[ "Apache-2.0" ]
null
null
null
pythainlp/corpus/__init__.py
Khawoat6/pythainlp
05979c0ac9a596bb7957fb8a050a32c87ea098e8
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import,unicode_literals from pythainlp.tools import get_path_db,get_path_data from tinydb import TinyDB,Query from future.moves.urllib.request import urlopen from tqdm import tqdm import requests import os import math import requests from nltk.corpus import names #__all__ = ["thaipos", "thaiword","alphabet","tone","country","wordnet"] path_db_=get_path_db() def get_file(name): db=TinyDB(path_db_) temp = Query() if len(db.search(temp.name==name))>0: path= get_path_data(db.search(temp.name==name)[0]['file']) db.close() if not os.path.exists(path): download(name) return path def download_(url, dst): """ @param: url to download file @param: dst place to put the file """ file_size = int(urlopen(url).info().get('Content-Length', -1)) if os.path.exists(dst): first_byte = os.path.getsize(dst) else: first_byte = 0 if first_byte >= file_size: return file_size header = {"Range": "bytes=%s-%s" % (first_byte, file_size)} pbar = tqdm( total=file_size, initial=first_byte, unit='B', unit_scale=True, desc=url.split('/')[-1]) req = requests.get(url, headers=header, stream=True) with(open(get_path_data(dst), 'wb')) as f: for chunk in req.iter_content(chunk_size=1024): if chunk: f.write(chunk) pbar.update(1024) pbar.close() #return file_size def download(name,force=False): db=TinyDB(path_db_) temp = Query() data=requests.get("https://raw.githubusercontent.com/PyThaiNLP/pythainlp-corpus/master/db.json") data_json=data.json() if name in list(data_json.keys()): temp_name=data_json[name] print("Download : "+name) if len(db.search(temp.name==name))==0: print(name+" "+temp_name['version']) download_(temp_name['download'],temp_name['file_name']) db.insert({'name': name, 'version': temp_name['version'],'file':temp_name['file_name']}) else: if len(db.search(temp.name==name and temp.version==temp_name['version']))==0: print("have update") print("from "+name+" "+db.search(temp.name==name)[0]['version']+" update to "+name+" "+temp_name['version']) yes_no="y" if force==False: yes_no=str(input("y or n : ")).lower() if "y"==yes_no: download_(temp_name['download'],temp_name['file_name']) db.update({'version':temp_name['version']},temp.name==name) else: print("re-download") print("from "+name+" "+db.search(temp.name==name)[0]['version']+" update to "+name+" "+temp_name['version']) yes_no="y" if force==False: yes_no=str(input("y or n : ")).lower() if "y"==yes_no: download_(temp_name['download'],temp_name['file_name']) db.update({'version':temp_name['version']},temp.name==name) db.close()
40.384615
124
0.586032
0
0
0
0
0
0
0
0
645
0.204762
b83a4b8131231e8ffeccb27881d8404fa73c602e
649
py
Python
dynamic programming/python/leetcode303_Range_Sum_Query_Immutable.py
wenxinjie/leetcode
c459a01040c8fe0783e15a16b8d7cca4baf4612a
[ "Apache-2.0" ]
null
null
null
dynamic programming/python/leetcode303_Range_Sum_Query_Immutable.py
wenxinjie/leetcode
c459a01040c8fe0783e15a16b8d7cca4baf4612a
[ "Apache-2.0" ]
null
null
null
dynamic programming/python/leetcode303_Range_Sum_Query_Immutable.py
wenxinjie/leetcode
c459a01040c8fe0783e15a16b8d7cca4baf4612a
[ "Apache-2.0" ]
null
null
null
# Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive. # Example: # Given nums = [-2, 0, 3, -5, 2, -1] # sumRange(0, 2) -> 1 # sumRange(2, 5) -> -1 # sumRange(0, 5) -> -3 class NumArray: def __init__(self, nums): """ :type nums: List[int] """ self.array = [0] for num in nums: self.array.append(self.array[-1] + num) def sumRange(self, i, j): """ :type i: int :type j: int :rtype: int """ return self.array[j+1] - self.array[i] # Time: O(n) # Space: O(n) # Difficulty: easy
20.935484
103
0.497689
378
0.580645
0
0
0
0
0
0
381
0.585253
b83d0a4d0944019fd7f267fd6043e0bc64496350
8,257
py
Python
py/garage/garage/asyncs/messaging/reqrep.py
clchiou/garage
446ff34f86cdbd114b09b643da44988cf5d027a3
[ "MIT" ]
3
2016-01-04T06:28:52.000Z
2020-09-20T13:18:40.000Z
py/garage/garage/asyncs/messaging/reqrep.py
clchiou/garage
446ff34f86cdbd114b09b643da44988cf5d027a3
[ "MIT" ]
null
null
null
py/garage/garage/asyncs/messaging/reqrep.py
clchiou/garage
446ff34f86cdbd114b09b643da44988cf5d027a3
[ "MIT" ]
null
null
null
__all__ = [ 'Terminated', 'Unavailable', 'client', 'server', ] import logging import time import curio import nanomsg as nn from garage import asyncs from garage.assertions import ASSERT from garage.asyncs import futures from garage.asyncs import queues LOG = logging.getLogger(__name__) class Terminated(Exception): """Client agent is terminated.""" class Unavailable(Exception): """Service is unavailable.""" def _transform_error(exc): if isinstance(exc, curio.TaskTimeout): new_exc = Unavailable() new_exc.__cause__ = exc return new_exc elif isinstance(exc, (nn.EBADF, queues.Closed)): new_exc = Terminated() new_exc.__cause__ = exc return new_exc else: return exc async def client(graceful_exit, sockets, request_queue, timeout=None): """Act as client-side in the reqrep protocol. NOTE: Because we want end-to-end functionality (non-raw sockets), a socket can only handle one request at a time; to overcome this, we use a pool of sockets. In additional to handling requests, this waits for the graceful exit event and then clean up itself. When cleaning up, it: * Close socket so that pump_requests will not send any further requests. * Close the queue so that upstream will not enqueue any further requests. The requests still in the queue will be "processed", with their result being set to EBADF, since the socket is closed. This signals and unblocks all blocked upstream tasks. """ for socket in sockets: ASSERT.equal(socket.options.nn_domain, nn.AF_SP) ASSERT.equal(socket.options.nn_protocol, nn.NN_REQ) async def pump_requests(socket): LOG.info('client: start sending requests to: %s', socket) while True: try: request, response_promise = await request_queue.get() except queues.Closed: break if not response_promise.set_running_or_notify_cancel(): LOG.debug('client: drop request: %r', request) continue try: async with curio.timeout_after(timeout): await socket.send(request) with await socket.recv() as message: response = bytes(message.as_memoryview()) except Exception as exc: if response_promise.cancelled(): LOG.exception( 'client: err but request is cancelled: %r', request, ) else: response_promise.set_exception(_transform_error(exc)) else: response_promise.set_result(response) LOG.info('client: stop sending requests to: %s', socket) async with asyncs.TaskStack() as stack: for socket in sockets: await stack.spawn(pump_requests(socket)) stack.sync_callback(request_queue.close) for socket in sockets: stack.sync_callback(socket.close) await stack.spawn(graceful_exit.wait()) await (await stack.wait_any()).join() async def server( graceful_exit, socket, request_queue, timeout=None, error_handler=None): """Act as server-side in the reqrep protocol. NOTE: error_handler is not asynchronous because you should probably send back error messages without being blocked indefinitely. In additional to handling requests, this waits for the graceful exit event and then clean up itself. When cleaning up, it: * Close socket so that the pump_requests will not recv new requests and will exit. * Close the queue so that downstream will not dequeue any request. The requests still in the queue will be dropped (since socket is closed, their response cannot be sent back to the client). """ ASSERT.equal(socket.options.nn_domain, nn.AF_SP_RAW) ASSERT.equal(socket.options.nn_protocol, nn.NN_REP) if error_handler is None: error_handler = lambda *_: None async def pump_requests(handlers): LOG.info('server: start receiving requests from: %s', socket) while True: try: message = await socket.recvmsg() except nn.EBADF: break with message: response_message = nn.Message() # NOTE: It is important to set control header in the # response message from the request so that response can # be correctly routed back to the right sender. response_message.adopt_control(*message.disown_control()) request = bytes(message.as_memoryview()) # Enqueue request here rather than in handle_request so that # pump_requests may apply back pressure to socket. begin_time = time.perf_counter() try: response_future = futures.Future() async with curio.timeout_after(timeout): await request_queue.put(( request, response_future.promise(), )) except Exception as exc: await on_error(exc, request, response_message) continue await handlers.spawn(handle_request( begin_time, request, response_future, response_message, )) LOG.info('server: stop receiving requests from: %s', socket) async def handle_request( begin_time, request, response_future, response_message): if timeout is not None: remaining_time = timeout - (time.perf_counter() - begin_time) if remaining_time <= 0: response_future.cancel() await on_error( Unavailable(), request, response_message, exc_info=False, ) return else: remaining_time = None try: async with curio.timeout_after(remaining_time), response_future: response = await response_future.result() except Exception as exc: await on_error(exc, request, response_message) else: await send_response(request, response, response_message) async def on_error(exc, request, response_message, *, exc_info=True): if isinstance(exc, curio.TaskTimeout): # Timeout is very common is distributed system; whether it # is an error should be decided at application level, and we # will just log a warning here. log = LOG.warning else: log = LOG.error log( 'server: err when processing request: %r', request, exc_info=exc_info, ) error_response = error_handler(request, _transform_error(exc)) if error_response is not None: await send_response(request, error_response, response_message) async def send_response(request, response, response_message): response_message.adopt_message(response, len(response), False) try: await socket.sendmsg(response_message) except nn.EBADF: LOG.debug('server: drop response: %r, %r', request, response) async def join_handlers(handlers): async for handler in handlers: if handler.exception: LOG.error( 'server: err in request handler', exc_info=handler.exception, ) def close_queue(): num_dropped = len(request_queue.close(graceful=False)) if num_dropped: LOG.info('server: drop %d requests', num_dropped) async with asyncs.TaskSet() as handlers, asyncs.TaskStack() as stack: await stack.spawn(join_handlers(handlers)) await stack.spawn(pump_requests(handlers)) stack.sync_callback(close_queue) stack.sync_callback(socket.close) await stack.spawn(graceful_exit.wait()) await (await stack.wait_any()).join()
33.294355
76
0.608696
129
0.015623
0
0
0
0
7,479
0.905777
2,217
0.268499
b83f80c89541762b358261a94161b094315b1f52
1,412
py
Python
fasm_utils/segbits.py
antmicro/quicklogic-fasm-utils
83c867e3269e1186b9bcd71767bb810c82b3905d
[ "Apache-2.0" ]
null
null
null
fasm_utils/segbits.py
antmicro/quicklogic-fasm-utils
83c867e3269e1186b9bcd71767bb810c82b3905d
[ "Apache-2.0" ]
1
2021-06-25T15:38:43.000Z
2021-06-25T15:38:43.000Z
fasm_utils/segbits.py
antmicro/quicklogic-fasm-utils
83c867e3269e1186b9bcd71767bb810c82b3905d
[ "Apache-2.0" ]
1
2020-05-18T12:04:40.000Z
2020-05-18T12:04:40.000Z
from collections import namedtuple Bit = namedtuple('Bit', 'x y isset') def parsebit(val: str): """Parses bit notation for .db files to Bit class. Parameters ---------- val: str A string containing .db bit notation, i.e. "!012_23" => (12, 23, False) Returns ------- Bit: A named tuple Bit with parsed word column, word bit and value """ isset = True # Default is 0. Skip explicit call outs if val[0] == '!': isset = False val = val[1:] # 28_05 => 28, 05 seg_word_column, word_bit_n = val.split('_') return Bit( x=int(seg_word_column), y=int(word_bit_n), isset=isset, ) def read_segbits_line(line: str): '''Parses segbits from line.''' linestrip = line.strip() if linestrip: parts = linestrip.split(' ') assert len(parts) > 1 return parts[0], [parsebit(val) for val in parts[1:]] def read_segbits_file(filepath: str): """Parses bits from the lines of the .db file. Parameters ---------- f: str A path to .db file. Returns ------- dict of str: Bit: Dictionary containing parsed .db file. """ segbits = {} with open(filepath, 'r') as f: for l in f: # CLBLM_L.SLICEL_X1.ALUT.INIT[10] 29_14 name, bits = read_segbits_line(l) segbits[name] = bits return segbits
21.723077
79
0.563739
0
0
0
0
0
0
0
0
643
0.455382
b84015aceb9a117ef3d45102bccf99b010e44535
927
py
Python
docs/_api/_build/delira/logging/visdom_backend.py
gedoensmax/delira
545e2ccbe56ed382d300cf3d00317e9a0e3ab5f6
[ "BSD-2-Clause" ]
1
2019-10-03T21:00:20.000Z
2019-10-03T21:00:20.000Z
docs/_api/_build/delira/logging/visdom_backend.py
gedoensmax/delira
545e2ccbe56ed382d300cf3d00317e9a0e3ab5f6
[ "BSD-2-Clause" ]
null
null
null
docs/_api/_build/delira/logging/visdom_backend.py
gedoensmax/delira
545e2ccbe56ed382d300cf3d00317e9a0e3ab5f6
[ "BSD-2-Clause" ]
null
null
null
import tensorboardX from threading import Event from queue import Queue from delira.logging.writer_backend import WriterLoggingBackend class VisdomBackend(WriterLoggingBackend): """ A Visdom Logging backend """ def __init__(self, writer_kwargs: dict = None, abort_event: Event = None, queue: Queue = None): """ Parameters ---------- writer_kwargs : dict arguments to initialize a writer abort_event : :class:`threading.Event` the abortion event queue : :class:`queue.Queue` the queue holding all logging tasks """ if writer_kwargs is None: writer_kwargs = {} super().__init__( tensorboardX.visdom_writer.VisdomWriter, writer_kwargs, abort_event, queue) @property def name(self): return "VisdomBackend"
23.769231
65
0.593312
788
0.850054
0
0
60
0.064725
0
0
346
0.373247
b842118c3400dc6b3842e04f1499ebec381bda43
7,706
py
Python
node/substitute.py
treverson/coin-buildimage
a868250733f65140a6d11a5fbd3b4a7e1509f8d5
[ "MIT" ]
1
2018-09-28T11:51:06.000Z
2018-09-28T11:51:06.000Z
node/substitute.py
treverson/coin-buildimage
a868250733f65140a6d11a5fbd3b4a7e1509f8d5
[ "MIT" ]
null
null
null
node/substitute.py
treverson/coin-buildimage
a868250733f65140a6d11a5fbd3b4a7e1509f8d5
[ "MIT" ]
null
null
null
#! /usr/bin/env python3.5 # vim:ts=4:sw=4:ai:et:si:sts=4 import argparse import json import re import os import uuid import shutil import sys import requests filterRe = re.compile(r'(?P<block>^%=(?P<mode>.)?\s+(?P<label>.*?)\s+(?P<value>[^\s\n$]+)(?:\s*.*?)?^(?P<section>.*?)^=%.*?$)', re.M | re.S) subItemRe = re.compile(r'@_@') def convertConfig(config): keys = list(config.keys()) regexes = list(map(lambda x: re.compile(r"@%s@" % x, re.I), keys)) values = list(config.values()) subst = zip(keys, regexes, values) subst = {key: {'regex': regex, 'value': value} for (key, regex, value) in subst} return subst def substituteFile(infile, outfile, subst): if infile == "stdin": text = sys.stdin.read() else: with open(infile, "r") as f: text = f.read() print("Subtituting from %s to %s" % (infile, outfile)) for item in subst.values(): regex = item.get('regex', None) repl = item.get('value', None) if regex is None or repl is None: continue text = regex.sub(str(repl), text) blocks = filterRe.findall(text) for (block, mode, label, value, section) in blocks: subvalue = subst.get(label.lower(), {}).get('value', None) print(mode, label, value, subvalue) if mode == '+' or mode == '': if subvalue is not None and str(subvalue) != value: section = "" elif mode == '-': if subvalue is None or str(subvalue) != value: section = "" elif mode == '?': if subvalue is None: section = "" elif mode == '!': if subvalue is not None: section = "" sections = '' if not isinstance(subvalue, list): subvalue = [subvalue] for subval in subvalue: sections += subItemRe.sub(str(subval), section) text = text.replace(block, sections) with open(outfile, "w") as f: f.write(text) def copyfile(coin, infile, outfile=None): if not os.path.exists(infile): return if not outfile: outfile = infile outfile = os.path.join("build", coin, outfile) print("Copying %s to %s" % (infile, outfile)) shutil.copyfile(infile, outfile) parser = argparse.ArgumentParser(description="Substitute in variables") parser.add_argument('--coin', '-c', required=True, help="Which coin") parser.add_argument('--nodaemon', '-D', action="store_false", dest="daemon", help="Don't copy daemon") parser.add_argument('--pool', '-p', action="store_true", help="Grab pool wallet") parser.add_argument('--explorer', '-e', action="store_true", help="Use explorer") args = parser.parse_args() buildDir = os.path.join("build", args.coin) # First read the config file with open("config/%s.json" % args.coin, "r") as f: config = json.load(f) config = {key.lower(): value for (key, value) in config.items()} if args.pool: config["poolnode"] = 1 config.pop("grabwallet", None) if args.explorer: config['useexplorer'] = 1 else: config['useexplorer'] = 0 subst = convertConfig(config) if args.coin == 'coiniumserv' or args.coin == 'yiimp': result = requests.get("http://169.254.169.254/latest/meta-data/local-ipv4") subst.update(convertConfig({"hostip": result.text})) else: # Create a config file outconfig = { "daemon": 1, "dns": 1, "server": 1, "listen": 1, "rpcport": config['rpcport'], "rpcuser": "%srpc" % config['coinname'], } if not args.pool: rpcallowip = "127.0.0.1" rpcpassword = str(uuid.uuid4()) else: rpcallowip = ["127.0.0.1", "172.17.0.*"] rpcpassword = "pool-%s" % args.coin outconfig["rpcallowip"] = rpcallowip outconfig["rpcpassword"] = rpcpassword addnodes = config.get('addnodes', []) if not isinstance(addnodes, list): addnodes = [addnodes] if addnodes: outconfig['addnode'] = addnodes # Add the config setting to the mapping subst.update(convertConfig(outconfig)) conffile = os.path.join(buildDir, "%s.conf" % config['coinname']) with open(conffile, "w") as f: for (key, values) in sorted(outconfig.items()): if not isinstance(values, list): values = [values] for value in values: f.write("%s=%s\n" % (key, value)) # Create the Dockerfile if args.coin == 'coiniumserv': infile = "Dockerfile.coiniumserv.in" elif args.coin == 'yiimp': infile = "Dockerfile.yiimp.in" else: infile = "Dockerfile.in" outfile = os.path.join(buildDir, "Dockerfile") substituteFile(infile, outfile, subst) # Create the node run Dockerfile infile = "Dockerfile.node.in" if args.pool: outfile = os.path.join(buildDir, "Dockerfile.pool") elif args.explorer: outfile = os.path.join(buildDir, "Dockerfile.explorer") else: outfile = os.path.join(buildDir, "Dockerfile.node") substituteFile(infile, outfile, subst) # Create the startup script if args.coin == 'coiniumserv': infile = "startup.sh-coiniumserv.in" elif args.coin == 'yiimp': infile = "startup.sh-yiimp.in" else: infile = "startup.sh.in" if args.pool: suffix = "-pool.sh" else: suffix = "-node.sh" outfile = os.path.join(buildDir, "startup%s" % suffix) substituteFile(infile, outfile, subst) # Create the ports file ports = [] port = config.get('p2pport', None) if port: ports.append(port) port = config.get('explorerport', None) useexplorer = config.get('useexplorer', None) if port and useexplorer: ports.append(port) port = config.get('p2poolport', None) usep2pool = config.get('usep2pool', None) if port and usep2pool: ports.append(port) port = config.get('poolport', None) if port: ports.append(port) if args.pool: port = config.get("rpcport", None) if port: ports.append(port) poolports = config.get('stratumports', None) if poolports: if not isinstance(poolports, list): poolports = [poolports] ports.extend(poolports) ports = list(map(lambda x: "-p %s:%s" % (x, x), ports)) links = config.get('links', None) if links: links = list(map(lambda x: "--link %s" % x, links)) ports.extend(links) ports = " ".join(ports) outfile = os.path.join(buildDir, "ports.txt") with open(outfile, "w") as f: f.write(ports) # Copy over the daemon if args.daemon and args.coin != 'coiniumserv' and args.coin != 'yiimp': infile = os.path.join("..", "build", "artifacts", config["coinname"], "linux", config['daemonname']) copyfile(args.coin, infile, config['daemonname']) if config.get('installexplorer', False): # Create the Explorer settings file infile = "explorer-settings.json.in" outfile = os.path.join(buildDir, "explorer-settings.json") substituteFile(infile, outfile, subst) # Create the Explorer layout template infile = "explorer-layout.jade.in" outfile = os.path.join(buildDir, "explorer-layout.jade") substituteFile(infile, outfile, subst) # Copy over the mongo init script and the crontab for explorer copyfile(args.coin, "explorer.mongo") copyfile(args.coin, "explorer-crontab") ## Copy the nodejs archive copyfile(args.coin, "build/cache/node-v8.7.0-linux-x64.tar.xz", "node-v8.7.0-linux-x64.tar.xz") # Copy the sudoers.d file copyfile(args.coin, "sudoers-coinnode") # Copy the coin-cli script copyfile(args.coin, "coin-cli") if config.get('copyawscreds', False): copyfile(args.coin, os.path.expanduser("~/.aws/credentials"), "aws-credentials")
29.189394
140
0.616922
0
0
0
0
0
0
0
0
2,061
0.267454
b842ca4df0f85a27ac428ca98c508bc0fd8473bb
379
py
Python
pages/page1.py
kalimuthu123/dash-app
90bf4c570abb1770ea0f082989e8f97d62b98346
[ "MIT" ]
null
null
null
pages/page1.py
kalimuthu123/dash-app
90bf4c570abb1770ea0f082989e8f97d62b98346
[ "MIT" ]
null
null
null
pages/page1.py
kalimuthu123/dash-app
90bf4c570abb1770ea0f082989e8f97d62b98346
[ "MIT" ]
null
null
null
import dash_html_components as html from utils import Header def create_layout(app): # Page layouts return html.Div( [ html.Div([Header(app)]), # page 1 # add your UI here, and callbacks go at the bottom of app.py # assets and .js go in assets folder # csv or images go in data folder ], )
25.266667
72
0.564644
0
0
0
0
0
0
0
0
151
0.398417
b8431428845abd267d2447bb2c266f7ad3458a5b
318
py
Python
polrev/offices/admin/office_admin.py
polrev-github/polrev-django
99108ace1a5307b14c3eccb424a9f9616e8c02ae
[ "MIT" ]
1
2021-12-10T05:54:16.000Z
2021-12-10T05:54:16.000Z
polrev/offices/admin/office_admin.py
polrev-github/polrev-django
99108ace1a5307b14c3eccb424a9f9616e8c02ae
[ "MIT" ]
null
null
null
polrev/offices/admin/office_admin.py
polrev-github/polrev-django
99108ace1a5307b14c3eccb424a9f9616e8c02ae
[ "MIT" ]
null
null
null
from django.contrib import admin from offices.models import OfficeType, Office class OfficeTypeAdmin(admin.ModelAdmin): search_fields = ['title'] admin.site.register(OfficeType, OfficeTypeAdmin) ''' class OfficeAdmin(admin.ModelAdmin): search_fields = ['title'] admin.site.register(Office, OfficeAdmin) '''
22.714286
48
0.77044
70
0.220126
0
0
0
0
0
0
123
0.386792
b84346e9d501185aa45dba40c444e9fe20860224
6,511
py
Python
tests/spec/test_schema_parser.py
tclh123/aio-openapi
7c63eb628b7735501508aea6c83e458715fb070b
[ "BSD-3-Clause" ]
19
2019-03-04T22:50:38.000Z
2022-03-02T09:28:17.000Z
tests/spec/test_schema_parser.py
tclh123/aio-openapi
7c63eb628b7735501508aea6c83e458715fb070b
[ "BSD-3-Clause" ]
4
2019-03-04T23:03:08.000Z
2022-01-16T11:32:54.000Z
tests/spec/test_schema_parser.py
tclh123/aio-openapi
7c63eb628b7735501508aea6c83e458715fb070b
[ "BSD-3-Clause" ]
3
2020-05-20T17:43:08.000Z
2021-10-06T10:47:41.000Z
from dataclasses import dataclass, field from datetime import datetime from enum import Enum from typing import Dict, List import pytest from openapi.data.fields import ( as_field, bool_field, data_field, date_time_field, number_field, ) from openapi.exc import InvalidSpecException, InvalidTypeException from openapi.spec import SchemaParser def test_get_schema_ref(): @dataclass class MyClass: str_field: str = data_field(description="String field") parser = SchemaParser() schema_ref = parser.get_schema_info(MyClass) assert schema_ref == {"$ref": "#/components/schemas/MyClass"} assert "MyClass" in parser.schemas_to_parse def test_schema2json(): @dataclass class OtherClass: str_field: str = data_field(description="String field") @dataclass class MyClass: """Test data""" str_field: str = data_field( required=True, format="uuid", description="String field" ) int_field: int = data_field(format="uint64", description="Int field") float_field: float = number_field(description="Float field") boolean_field: bool = bool_field(description="Bool field") map_field: Dict[str, int] = data_field(description="Dict field") free_field: Dict[str, str] = data_field(description="Free field") datetime_field: datetime = date_time_field(description="Datetime field") ref_field: OtherClass = field( metadata={"required": True, "description": "Ref field"}, default=None ) list_ref_field: List[OtherClass] = data_field(description="List field") parser = SchemaParser() schema_json = parser.schema2json(MyClass) expected = { "type": "object", "description": "Test data", "properties": { "str_field": { "type": "string", "format": "uuid", "description": "String field", }, "int_field": { "type": "integer", "format": "uint64", "description": "Int field", }, "float_field": { "type": "number", "format": "float", "description": "Float field", }, "boolean_field": {"type": "boolean", "description": "Bool field"}, "map_field": { "type": "object", "additionalProperties": {"type": "integer", "format": "int32"}, "description": "Dict field", }, "free_field": { "type": "object", "additionalProperties": {"type": "string"}, "description": "Free field", }, "datetime_field": { "type": "string", "format": "date-time", "description": "Datetime field", }, "ref_field": { "$ref": "#/components/schemas/OtherClass", "description": "Ref field", }, "list_ref_field": { "type": "array", "items": {"$ref": "#/components/schemas/OtherClass"}, "description": "List field", }, }, "required": ["str_field", "ref_field"], "additionalProperties": False, } assert schema_json == expected def test_field2json(): parser = SchemaParser([]) str_json = parser.field2json(str) int_json = parser.field2json(int) float_json = parser.field2json(float) bool_json = parser.field2json(bool) datetime_json = parser.field2json(datetime) assert str_json == {"type": "string"} assert int_json == {"type": "integer", "format": "int32"} assert float_json == {"type": "number", "format": "float"} assert bool_json == {"type": "boolean"} assert datetime_json == {"type": "string", "format": "date-time"} def test_field2json_format(): parser = SchemaParser([]) str_json = parser.field2json(as_field(str, format="uuid")) int_json = parser.field2json(as_field(int, format="int64")) assert str_json == {"type": "string", "format": "uuid"} assert int_json == {"type": "integer", "format": "int64"} def test_field2json_invalid_type(): class MyType: pass parser = SchemaParser() with pytest.raises(InvalidTypeException): parser.field2json(MyType) def test_field2json_missing_description(): @dataclass class MyClass: desc_field: str = data_field(description="Valid field") no_desc_field: str = data_field() parser = SchemaParser(validate_docs=True) with pytest.raises(InvalidSpecException): parser.schema2json(MyClass) def test_enum2json(): class MyEnum(Enum): FIELD_1 = 0 FIELD_2 = 1 FIELD_3 = 2 parser = SchemaParser([]) json_type = parser.field2json(MyEnum) assert json_type == {"type": "string", "enum": ["FIELD_1", "FIELD_2", "FIELD_3"]} def test_list2json() -> None: @dataclass class MyClass: list_field: List[str] parser = SchemaParser() info = parser.get_schema_info(MyClass) assert info == {"$ref": "#/components/schemas/MyClass"} assert len(parser.schemas_to_parse) == 1 parsed = parser.parsed_schemas() myclass = parsed["MyClass"] list_json = myclass["properties"]["list_field"] assert list_json["type"] == "array" assert list_json["items"] == {"type": "string"} def test_field2json_again(): @dataclass class MyClass: str_field: str = field( metadata={"format": "uuid", "description": "String field"} ) int_field: int = number_field( min_value=0, max_value=100, description="Int field" ) parser = SchemaParser([]) fields = MyClass.__dataclass_fields__ str_json = parser.field2json(fields["str_field"]) int_json = parser.field2json(fields["int_field"]) assert str_json == { "type": "string", "format": "uuid", "description": "String field", } assert int_json == { "type": "integer", "format": "int32", "minimum": 0, "maximum": 100, "description": "Int field", } def test_non_string_keys(): @dataclass class MyClass: map_field: Dict[int, str] = data_field(description="Map field") parser = SchemaParser() with pytest.raises(InvalidTypeException): parser.schema2json(MyClass)
30.283721
85
0.587775
1,562
0.239902
0
0
1,562
0.239902
0
0
1,605
0.246506
b8437331efb5465038081e91c134bce49f22a468
394
py
Python
models/losses/MSE.py
johnrachwan123/SNIP-it
a578a0693318f261492331298b6602de225fe21f
[ "MIT" ]
null
null
null
models/losses/MSE.py
johnrachwan123/SNIP-it
a578a0693318f261492331298b6602de225fe21f
[ "MIT" ]
null
null
null
models/losses/MSE.py
johnrachwan123/SNIP-it
a578a0693318f261492331298b6602de225fe21f
[ "MIT" ]
1
2021-11-08T16:34:45.000Z
2021-11-08T16:34:45.000Z
import torch from torch import nn from models.GeneralModel import GeneralModel class MSE(GeneralModel): def __init__(self, device, l1_reg=0, lp_reg=0, **kwargs): super(MSE, self).__init__(device, **kwargs) self.loss = nn.MSELoss() def forward(self, output=None, target=None, weight_generator=None, **kwargs): return self.loss.forward(output, target.float())
28.142857
81
0.700508
312
0.791878
0
0
0
0
0
0
0
0
b845201c7741d5e90f7173c09fe9315087e66057
2,046
py
Python
svca_limix/limix/core/covar/test/test_categorical.py
DenisSch/svca
bd029c120ca8310f43311253e4d7ce19bc08350c
[ "Apache-2.0" ]
65
2015-01-20T20:46:26.000Z
2021-06-27T14:40:35.000Z
svca_limix/limix/core/covar/test/test_categorical.py
DenisSch/svca
bd029c120ca8310f43311253e4d7ce19bc08350c
[ "Apache-2.0" ]
29
2015-02-01T22:35:17.000Z
2017-08-07T08:18:23.000Z
svca_limix/limix/core/covar/test/test_categorical.py
DenisSch/svca
bd029c120ca8310f43311253e4d7ce19bc08350c
[ "Apache-2.0" ]
35
2015-02-01T17:26:50.000Z
2019-09-13T07:06:16.000Z
"""LMM testing code""" import unittest import scipy as sp import numpy as np from limix.core.covar import CategoricalCov from limix.utils.check_grad import mcheck_grad class TestCategoricalLowRank(unittest.TestCase): """test class for CategoricalCov cov""" def setUp(self): sp.random.seed(1) self.n = 30 categories = sp.random.choice(['a', 'b', 'c'], self.n) self.rank =2 self.C = CategoricalCov(categories,self.rank) self.name = 'categorical' self.C.setRandomParams() def test_grad(self): def func(x, i): self.C.setParams(x) return self.C.K() def grad(x, i): self.C.setParams(x) return self.C.K_grad_i(i) x0 = self.C.getParams() err = mcheck_grad(func, grad, x0) np.testing.assert_almost_equal(err, 0., decimal = 6) # def test_param_activation(self): # self.assertEqual(len(self.C.getParams()), 8) # self.C.act_X = False # self.assertEqual(len(self.C.getParams()), 0) # # self.C.setParams(np.array([])) # with self.assertRaises(ValueError): # self.C.setParams(np.array([0])) # # with self.assertRaises(ValueError): # self.C.K_grad_i(0) class TestCategoricalFreeForm(unittest.TestCase): """test class for Categorical cov""" def setUp(self): sp.random.seed(1) self.n = 30 categories = sp.random.choice(['a', 'b', 'c'], self.n) self.rank =None self.C = CategoricalCov(categories,self.rank) self.name = 'categorical' self.C.setRandomParams() def test_grad(self): def func(x, i): self.C.setParams(x) return self.C.K() def grad(x, i): self.C.setParams(x) return self.C.K_grad_i(i) x0 = self.C.getParams() err = mcheck_grad(func, grad, x0) np.testing.assert_almost_equal(err, 0., decimal = 6) if __name__ == '__main__': unittest.main()
26.921053
62
0.580645
1,826
0.892473
0
0
0
0
0
0
500
0.244379
b8459a275062134e5f40c7584623582d09c9aa02
4,274
py
Python
code/stephen/005/005.py
Stephen0910/python-practice-for-game-tester
e17b2666d18a51e5bff31ad0355ad4a6775191a4
[ "MIT" ]
29
2019-03-07T03:03:42.000Z
2021-12-25T04:55:58.000Z
code/stephen/005/005.py
Stephen0910/python-practice-for-game-tester
e17b2666d18a51e5bff31ad0355ad4a6775191a4
[ "MIT" ]
null
null
null
code/stephen/005/005.py
Stephen0910/python-practice-for-game-tester
e17b2666d18a51e5bff31ad0355ad4a6775191a4
[ "MIT" ]
19
2019-03-11T02:40:37.000Z
2021-09-24T08:57:04.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/3/13 0013 下午 3:44 # @Author : Stephen # @Site : # @File : 005.py # @Purpose : # @Software : PyCharm # @Copyright: (c) Stephen 2019 # @Licence : <your licence> import os, re, time from pyecharts import Line """ 配置游戏包名和名字 """ package_name = "archery.elite.shooting.free.game.android" # 配置测试包名 game_name = "游戏名字" class Phone(): def __init__(self): self.mem = os.popen("adb shell dumpsys meminfo %s" % package_name) self.cpu = os.popen("adb shell cat /proc/6410/stat") for i in self.mem.readlines(): if "MEMINFO" in i: self.pid_info = i break self.mem.close() try: self.pid = int(self.pid_info.split(" ")[4]) print("pid:", self.pid) except: raise IOError("检查adb连接并启动游戏") f = os.popen("adb shell cat /proc/stat") data = f.readlines() f.close() count = 0 for i in data: if "cpu" in i: count += 1 else: count -= 1 break self.count = count print("进程数:", self.count) def cpu_test(self): """ 测试cpu数据,总体数据根据乘以核 :return: """ def cpu_time(): f = os.popen("adb shell cat /proc/stat") data = f.readlines() f.close() time_list = map(lambda x: int(x), data[0].split(" ")[2:-1]) return sum(time_list) def thread_time(): z = os.popen("adb shell cat /proc/%s/stat" % self.pid) data = z.readlines()[0].split(" ") z.close() processCPUtime = sum(map(lambda x: int(x), [data[13], data[14], data[15], data[16]])) return processCPUtime cpu_time1, thread_time1 = cpu_time(), thread_time() cpu_time2, thread_time2 = cpu_time(), thread_time() cpu_usage = 100 * (thread_time2 - thread_time1) / (cpu_time2 - cpu_time1) print(cpu_usage) return cpu_usage * self.count def total_test(self, test_time, duration): """ 测试pss和cpu :param test_time: 测试时间,单位s :param duration: 测试刷新间隔 :return: 时间list, psstotal数据, cpu数据的list """ i = 0 time_init = int(time.time()) time_end = time_init + test_time current_time = int(time.time()) psslist, time_list, cpu_list = [], [], [] while current_time < time_end: t = os.popen("adb shell dumpsys meminfo %s" % self.pid) content = t.readlines() t.close() for item in content: if "TOTAL" in item: pss_info = item break cpu_info = float("%.2f" % self.cpu_test()) pss = float(re.findall("\d+\d|\d", pss_info)[0]) / 1000 psstotal = float("%.2f" % pss) current_time = int(time.time()) # print ("测试倒计时:%s秒"%(current_time-time_init)) time_test = time.strftime("%H:%M:%S") # time_test = time.strftime("%Y-%m-%d %H:%M:%S") print(time_test, "PssTotal=", psstotal, "CPU=", cpu_info) psslist.append(psstotal) time_list.append(time_test) cpu_list.append(cpu_info) time.sleep(duration) i += 1 maxlist = sorted(psslist, reverse=True) average_pss = sum(psslist) / i print("平均PssTotal", average_pss) print("最高PssTotal", maxlist[0]) print("最低PSSTotal", maxlist[-1]) return [psslist, time_list, cpu_list] def graphic(self, test_time=600, duration=2): """ 作图,调用测试 :param test_time:测试时间,单位s :param duration: 刷新间隔 :return: """ pss_list = self.total_test(test_time=test_time, duration=duration) attr = pss_list[1] v1 = pss_list[0] v2 = pss_list[2] line = Line(game_name) line.add("PSS_total(M)", attr, v1, mark_point=["max"]) line.add("CPU(%)", attr, v2, mark_point=["max"]) line.render() p = Phone() p.graphic(20, 1) # p.cpu_test() # z = os.popen("adb shell cat /proc/15402/stat") # print(z.readlines())
30.312057
97
0.523631
3,918
0.874554
0
0
0
0
0
0
1,353
0.302009
b846bfa9679bd871993a1750e2cf6c621e13bfac
13,470
py
Python
sdk/opendp/smartnoise/synthesizers/pytorch/nn/dpctgan.py
Tecnarca/whitenoise-system
9dfc1425bca77f6e30afe1eea253a6b580bfa847
[ "MIT" ]
1
2021-12-30T15:21:54.000Z
2021-12-30T15:21:54.000Z
sdk/opendp/smartnoise/synthesizers/pytorch/nn/dpctgan.py
Tecnarca/whitenoise-system
9dfc1425bca77f6e30afe1eea253a6b580bfa847
[ "MIT" ]
null
null
null
sdk/opendp/smartnoise/synthesizers/pytorch/nn/dpctgan.py
Tecnarca/whitenoise-system
9dfc1425bca77f6e30afe1eea253a6b580bfa847
[ "MIT" ]
null
null
null
import numpy as np import torch from torch import optim from torch.nn import functional import torch.nn as nn import torch.utils.data from torch.nn import BatchNorm1d, Dropout, LeakyReLU, Linear, Module, ReLU, Sequential,Sigmoid from torch.nn import functional as F from opendp.smartnoise.synthesizers.base import SDGYMBaseSynthesizer import ctgan from ctgan.transformer import DataTransformer from ctgan.conditional import ConditionalGenerator from ctgan.models import Generator from ctgan.sampler import Sampler from ctgan import CTGANSynthesizer import opacus from opacus import autograd_grad_sample from opacus import PrivacyEngine, utils class Discriminator(Module): def calc_gradient_penalty(self, real_data, fake_data, device='cpu', pac=10, lambda_=10): alpha = torch.rand(real_data.size(0) // pac, 1, 1, device=device) alpha = alpha.repeat(1, pac, real_data.size(1)) alpha = alpha.view(-1, real_data.size(1)) interpolates = alpha * real_data + ((1 - alpha) * fake_data) disc_interpolates = self(interpolates) gradients = torch.autograd.grad( outputs=disc_interpolates, inputs=interpolates, grad_outputs=torch.ones(disc_interpolates.size(), device=device), create_graph=True, retain_graph=True, only_inputs=True )[0] gradient_penalty = (( gradients.view(-1, pac * real_data.size(1)).norm(2, dim=1) - 1 ) ** 2).mean() * lambda_ return gradient_penalty def __init__(self, input_dim, dis_dims, loss, pack): super(Discriminator, self).__init__() torch.cuda.manual_seed(0) torch.manual_seed(0) dim = input_dim * pack # print ('now dim is {}'.format(dim)) self.pack = pack self.packdim = dim seq = [] for item in list(dis_dims): seq += [Linear(dim, item), LeakyReLU(0.2), Dropout(0.5)] dim = item seq += [Linear(dim, 1)] if loss == 'cross_entropy': seq += [Sigmoid()] self.seq = Sequential(*seq) def forward(self, input): assert input.size()[0] % self.pack == 0 return self.seq(input.view(-1, self.packdim)) # custom for calcuate grad_sample for multiple loss.backward() def _custom_create_or_extend_grad_sample( param: torch.Tensor, grad_sample: torch.Tensor, batch_dim: int ) -> None: """ Create a 'grad_sample' attribute in the given parameter, or accumulate it if the 'grad_sample' attribute already exists. This custom code will not work when using optimizer.virtual_step() """ #print ("now this happen") if hasattr(param, "grad_sample"): param.grad_sample = param.grad_sample + grad_sample #param.grad_sample = torch.cat((param.grad_sample, grad_sample), batch_dim) else: param.grad_sample = grad_sample class DPCTGAN(CTGANSynthesizer): """Differential Private Conditional Table GAN Synthesizer This code adds Differential Privacy to CTGANSynthesizer from https://github.com/sdv-dev/CTGAN """ def __init__(self, embedding_dim=128, gen_dim=(256, 256), dis_dim=(256, 256), l2scale=1e-6, batch_size=500, epochs=300, pack=1, log_frequency=True, disabled_dp=False, target_delta=None, sigma = 5, max_per_sample_grad_norm=1.0, epsilon = 1, verbose=True, loss = 'cross_entropy'): # CTGAN model specific parameters self.embedding_dim = embedding_dim self.gen_dim = gen_dim self.dis_dim = dis_dim self.l2scale = l2scale self.batch_size = batch_size self.epochs = epochs self.pack=pack self.log_frequency = log_frequency self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # opacus parameters self.sigma = sigma self.disabled_dp = disabled_dp self.target_delta = target_delta self.max_per_sample_grad_norm = max_per_sample_grad_norm self.epsilon = epsilon self.epsilon_list = [] self.alpha_list = [] self.loss_d_list = [] self.loss_g_list = [] self.verbose=verbose self.loss=loss if self.loss != "cross_entropy": # Monkeypatches the _create_or_extend_grad_sample function when calling opacus opacus.supported_layers_grad_samplers._create_or_extend_grad_sample = _custom_create_or_extend_grad_sample def train(self, data, categorical_columns=None, ordinal_columns=None, update_epsilon=None): if update_epsilon: self.epsilon = update_epsilon self.transformer = DataTransformer() self.transformer.fit(data, discrete_columns=categorical_columns) train_data = self.transformer.transform(data) data_sampler = Sampler(train_data, self.transformer.output_info) data_dim = self.transformer.output_dimensions self.cond_generator = ConditionalGenerator(train_data, self.transformer.output_info, self.log_frequency) self.generator = Generator( self.embedding_dim + self.cond_generator.n_opt, self.gen_dim, data_dim).to(self.device) discriminator = Discriminator( data_dim + self.cond_generator.n_opt, self.dis_dim, self.loss, self.pack).to(self.device) optimizerG = optim.Adam( self.generator.parameters(), lr=2e-4, betas=(0.5, 0.9), weight_decay=self.l2scale) optimizerD = optim.Adam(discriminator.parameters(), lr=2e-4, betas=(0.5, 0.9)) privacy_engine = opacus.PrivacyEngine( discriminator, batch_size=self.batch_size, sample_size=train_data.shape[0], alphas=[1 + x / 10.0 for x in range(1, 100)] + list(range(12, 64)), noise_multiplier=self.sigma, max_grad_norm=self.max_per_sample_grad_norm, clip_per_layer=True ) if not self.disabled_dp: privacy_engine.attach(optimizerD) one = torch.tensor(1, dtype=torch.float).to(self.device) mone = one * -1 REAL_LABEL = 1 FAKE_LABEL = 0 criterion = nn.BCELoss() assert self.batch_size % 2 == 0 mean = torch.zeros(self.batch_size, self.embedding_dim, device=self.device) std = mean + 1 steps_per_epoch = len(train_data) // self.batch_size for i in range(self.epochs): for id_ in range(steps_per_epoch): fakez = torch.normal(mean=mean, std=std) condvec = self.cond_generator.sample(self.batch_size) if condvec is None: c1, m1, col, opt = None, None, None, None real = data_sampler.sample(self.batch_size, col, opt) else: c1, m1, col, opt = condvec c1 = torch.from_numpy(c1).to(self.device) m1 = torch.from_numpy(m1).to(self.device) fakez = torch.cat([fakez, c1], dim=1) perm = np.arange(self.batch_size) np.random.shuffle(perm) real = data_sampler.sample(self.batch_size, col[perm], opt[perm]) c2 = c1[perm] fake = self.generator(fakez) fakeact = self._apply_activate(fake) real = torch.from_numpy(real.astype('float32')).to(self.device) if c1 is not None: fake_cat = torch.cat([fakeact, c1], dim=1) real_cat = torch.cat([real, c2], dim=1) else: real_cat = real fake_cat = fake optimizerD.zero_grad() if self.loss == 'cross_entropy': y_fake = discriminator(fake_cat) # print ('y_fake is {}'.format(y_fake)) label_fake = torch.full((int(self.batch_size/self.pack),), FAKE_LABEL, dtype=torch.float, device=self.device) # print ('label_fake is {}'.format(label_fake)) errD_fake = criterion(y_fake, label_fake) errD_fake.backward() optimizerD.step() # train with real label_true = torch.full((int(self.batch_size/self.pack),), REAL_LABEL, dtype=torch.float, device=self.device) y_real = discriminator(real_cat) errD_real = criterion(y_real, label_true) errD_real.backward() optimizerD.step() loss_d = errD_real + errD_fake else: y_fake = discriminator(fake_cat) mean_fake = torch.mean(y_fake) mean_fake.backward(one) y_real = discriminator(real_cat) mean_real = torch.mean(y_real) mean_real.backward(mone) optimizerD.step() loss_d = -(mean_real - mean_fake) max_grad_norm = [] for p in discriminator.parameters(): param_norm = p.grad.data.norm(2).item() max_grad_norm.append(param_norm) #pen = calc_gradient_penalty(discriminator, real_cat, fake_cat, self.device) #pen.backward(retain_graph=True) #loss_d.backward() #optimizerD.step() fakez = torch.normal(mean=mean, std=std) condvec = self.cond_generator.sample(self.batch_size) if condvec is None: c1, m1, col, opt = None, None, None, None else: c1, m1, col, opt = condvec c1 = torch.from_numpy(c1).to(self.device) m1 = torch.from_numpy(m1).to(self.device) fakez = torch.cat([fakez, c1], dim=1) fake = self.generator(fakez) fakeact = self._apply_activate(fake) if c1 is not None: y_fake = discriminator(torch.cat([fakeact, c1], dim=1)) else: y_fake = discriminator(fakeact) #if condvec is None: cross_entropy = 0 #else: # cross_entropy = self._cond_loss(fake, c1, m1) if self.loss=='cross_entropy': label_g = torch.full((int(self.batch_size/self.pack),), REAL_LABEL, dtype=torch.float, device=self.device) #label_g = torch.full(int(self.batch_size/self.pack,),1,device=self.device) loss_g = criterion(y_fake, label_g) loss_g = loss_g + cross_entropy else: loss_g = -torch.mean(y_fake) + cross_entropy optimizerG.zero_grad() loss_g.backward() optimizerG.step() if not self.disabled_dp: #if self.loss == 'cross_entropy': # autograd_grad_sample.clear_backprops(discriminator) #else: for p in discriminator.parameters(): if hasattr(p, "grad_sample"): del p.grad_sample if self.target_delta is None: self.target_delta = 1/train_data.shape[0] epsilon, best_alpha = optimizerD.privacy_engine.get_privacy_spent(self.target_delta) self.epsilon_list.append(epsilon) self.alpha_list.append(best_alpha) #if self.verbose: if not self.disabled_dp: if self.epsilon < epsilon: break self.loss_d_list.append(loss_d) self.loss_g_list.append(loss_g) if self.verbose: print("Epoch %d, Loss G: %.4f, Loss D: %.4f" % (i + 1, loss_g.detach().cpu(), loss_d.detach().cpu()), flush=True) print ('epsilon is {e}, alpha is {a}'.format(e=epsilon, a = best_alpha)) return self.loss_d_list, self.loss_g_list, self.epsilon_list, self.alpha_list def generate(self, n): self.generator.eval() #output_info = self.transformer.output_info steps = n // self.batch_size + 1 data = [] for i in range(steps): mean = torch.zeros(self.batch_size, self.embedding_dim) std = mean + 1 fakez = torch.normal(mean=mean, std=std).to(self.device) condvec = self.cond_generator.sample_zero(self.batch_size) if condvec is None: pass else: c1 = condvec c1 = torch.from_numpy(c1).to(self.device) fakez = torch.cat([fakez, c1], dim=1) fake = self.generator(fakez) fakeact = self._apply_activate(fake) data.append(fakeact.detach().cpu().numpy()) data = np.concatenate(data, axis=0) data = data[:n] return self.transformer.inverse_transform(data, None)
36.307278
129
0.566592
12,153
0.902227
0
0
0
0
0
0
1,459
0.108315
b846da72c1b90ad2cd7931c2938c866fd817d9f6
1,814
py
Python
client/client.py
MasonDiGi/chat_server
2100eb012f8bce359b51e0dc8684a82949ba1c17
[ "MIT" ]
null
null
null
client/client.py
MasonDiGi/chat_server
2100eb012f8bce359b51e0dc8684a82949ba1c17
[ "MIT" ]
null
null
null
client/client.py
MasonDiGi/chat_server
2100eb012f8bce359b51e0dc8684a82949ba1c17
[ "MIT" ]
null
null
null
import socket import threading import time # Create constants HEADER = 64 PORT = 5050 FORMAT = 'utf-8' DC_MSG = "!DISCONNECT" SERVER = "localhost" ADDR = (SERVER, PORT) # Set up client var and connect to the server client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.connect(ADDR) erase = '\x1b[1A\x1b[K' # Handles sending a message to the server def send(sendMsg): # Encode and create header message = sendMsg.encode(FORMAT) msg_len = len(message) send_len = str(msg_len).encode(FORMAT) send_len += b' ' * (HEADER - len(send_len)) client.send(send_len) # Send the actual text client.send(message) # A thread to handle receiving messages broadcast from the server def recvThread(): try: # Wait for a message from the server and then decode and print it, while keeping the prompt on the same line while True: msg_len = client.recv(HEADER).decode(FORMAT) if msg_len: msg_len = int(msg_len) recvMsg = client.recv(msg_len).decode(FORMAT) print(f"\n{erase}{recvMsg}\n[{uname}]: ", end="") except Exception as e: return e # Main thread try: # Send initial message to set up username uname = input("Enter a username: ") send(uname) # Start handling received messages RECVTHREAD = threading.Thread(target=recvThread) RECVTHREAD.start() # Handle the prompt and sending messages while True: msg = input(f"[{uname}]: ") send(msg) print("\x1b[A\x1b[K", end="") if msg == DC_MSG: break # Close everything if ctrl+c is pressed finally: send(DC_MSG) time.sleep(0.5) client.close() print("\ngoodbye") exit()
26.676471
117
0.615215
0
0
0
0
0
0
0
0
651
0.358875
b8481e8c9248a5d340e323d7d3c83d87b3a95b6f
9,183
py
Python
src/cogs/ide/dialogs/edit_view.py
osam7a/Jarvide
9a4424c293ae40b21968b5118f60862860ff5247
[ "MIT" ]
null
null
null
src/cogs/ide/dialogs/edit_view.py
osam7a/Jarvide
9a4424c293ae40b21968b5118f60862860ff5247
[ "MIT" ]
null
null
null
src/cogs/ide/dialogs/edit_view.py
osam7a/Jarvide
9a4424c293ae40b21968b5118f60862860ff5247
[ "MIT" ]
null
null
null
from __future__ import annotations import disnake from disnake.ext import commands from typing import TYPE_CHECKING from src.utils.utils import EmbedFactory, ExitButton, SaveButton, add_lines, get_info if TYPE_CHECKING: from src.utils import File def clear_codeblock(content: str): content.strip("\n") if content.startswith("```"): content = "\n".join(content.splitlines()[1:]) if content.endswith("```"): content = content[:-3] if "`" in content: content.replace("`", "\u200b") return content def update_buttons(cls: EditView): if cls.page == 1: cls.previous_button.disabled = True else: cls.previous_button.disabled = False if cls.page == len(cls.pages) - 2: cls.next_button.disabled = True else: cls.next_button.disabled = False class EditView(disnake.ui.View): async def interaction_check(self, interaction: disnake.MessageInteraction) -> bool: return ( interaction.author == self.ctx.author and interaction.channel == self.ctx.channel ) def __init__( self, ctx, file_: "File", bot_message=None, file_view=None, lines: list[str] = None, ): super().__init__() self.ctx = ctx self.bot = ctx.bot self.file = file_ self.content = file_.content self.bot_message = bot_message self.file_view = file_view self.undo = self.file_view.file.undo self.redo = self.file_view.file.redo self.pages = [lines[x : x + 50] for x in range(0, len(lines), 50)] self.page = 0 self.SUDO = self.ctx.me.guild_permissions.manage_messages self.add_item(ExitButton(ctx, bot_message, row=3)) self.add_item(SaveButton(ctx, bot_message, file_, row=2)) async def edit(self, inter): await inter.response.defer() await self.bot_message.edit( embed=EmbedFactory.code_embed( self.ctx, "".join(add_lines(self.file_view.file.content)), self.file.filename, ), ) @disnake.ui.button(label="Write", style=disnake.ButtonStyle.gray) async def write_button( self, button: disnake.ui.Button, interaction: disnake.MessageInteraction ): ... @disnake.ui.button(label="Replace", style=disnake.ButtonStyle.gray) async def replace_button( self, button: disnake.ui.Button, interaction: disnake.MessageInteraction ): await interaction.response.send_message( "**Format:**\n[line number]\n```py\n<code>\n```**Example:**" "\n12-25\n```py\nfor i in range(10):\n\tprint('foo')\n```" "\n`[Click save to see the result]`", ephemeral=True, ) content: str = ( await self.ctx.bot.wait_for( "message", check=lambda m: m.author == interaction.author and m.channel == interaction.channel, ) ).content if content[0].isdigit(): line_no = content.splitlines()[0] if "-" in line_no: from_, to = ( int(line_no.split("-")[0]) - 1, int(line_no.split("-")[1]) - 1, ) else: from_, to = int(line_no) - 1, int(line_no) - 1 code = clear_codeblock("\n".join(content.splitlines()[1:])) else: from_, to = 0, len(self.file_view.file.content) - 1 code = clear_codeblock(content) self.undo.append(self.content) sliced = self.file_view.file.content.splitlines() del sliced[from_ : to + 1] sliced.insert(from_, code) self.file_view.file.content = "\n".join(sliced) @disnake.ui.button(label="Append", style=disnake.ButtonStyle.gray) async def append_button( self, button: disnake.ui.Button, interaction: disnake.MessageInteraction ): await interaction.response.send_message( "Type something... (This will append your code with a new line) `[Click save to see the result]`", ephemeral=True, ) self.undo.append(self.file_view.file.content) self.file_view.file.content += "\n" + clear_codeblock( ( await self.ctx.bot.wait_for( "message", check=lambda m: m.author == interaction.author and m.channel == interaction.channel, ) ).content ) @disnake.ui.button(label="Rename", style=disnake.ButtonStyle.grey) async def rename_button( self, button: disnake.ui.Button, interaction: disnake.MessageInteraction ): await interaction.response.send_message( "What would you like the filename to be?", ephemeral=True ) filename = await self.bot.wait_for( "message", check=lambda m: self.ctx.author == m.author and m.channel == self.ctx.channel, ) if len(filename.content) > 12: if self.SUDO: await filename.delete() return await interaction.channel.send( "That filename is too long! The maximum limit is 12 character" ) file_ = File(filename=filename, content=self.file.content, bot=self.bot) description = await get_info(file_) self.file = file_ self.extension = file_.filename.split(".")[-1] embed = EmbedFactory.ide_embed(self.ctx, description) await self.bot_message.edit(embed=embed) @disnake.ui.button(label="Prev", style=disnake.ButtonStyle.blurple, row=2) async def previous_button( self, button: disnake.ui.Button, interaction: disnake.MessageInteraction ): await interaction.response.defer() update_buttons(self) self.page -= 1 embed = ( disnake.Embed( description=f"```py\n{''.join(self.pages[self.page])}\n```\nPage: {self.page + 1}/{len(self.pages)}", timestamp=self.ctx.message.created_at, ) .set_author( name=f"{self.ctx.author.name}'s automated paginator for {self.file.filename}", icon_url=self.ctx.author.avatar.url, ) .set_footer(text="The official jarvide text editor and ide") ) await self.bot_message.edit(embed=embed, view=self) @disnake.ui.button(label="Next", style=disnake.ButtonStyle.blurple, row=2) async def next_button( self, button: disnake.ui.Button, interaction: disnake.MessageInteraction ): await interaction.response.defer() update_buttons(self) self.page += 1 embed = ( disnake.Embed( description=f"```py\n{''.join(self.pages[self.page])}\n```\nPage: {self.page + 1}/{len(self.pages)}", timestamp=self.ctx.message.created_at, ) .set_author( name=f"{self.ctx.author.name}'s automated paginator for {self.file.filename}", icon_url=self.ctx.author.avatar.url, ) .set_footer(text="The official jarvide text editor and ide") ) await self.bot_message.edit(embed=embed, view=self) @disnake.ui.button(label="Undo", style=disnake.ButtonStyle.blurple, row=2) async def undo_button( self, button: disnake.ui.Button, interaction: disnake.MessageInteraction ): if not self.undo: return await interaction.response.send_message( "You have made no changes and have nothing to undo!", ephemeral=True ) self.redo.append(self.file_view.file.content) self.file_view.file.content = self.undo.pop(-1) await self.edit(interaction) @disnake.ui.button(label="Redo", style=disnake.ButtonStyle.blurple, row=2) async def redo_button( self, button: disnake.ui.Button, interaction: disnake.MessageInteraction ): if not self.redo: return await interaction.response.send_message( "You have made no changes and have nothing to undo!", ephemeral=True ) self.undo.append(self.file_view.file.content) self.file_view.file.content = self.redo.pop(-1) await self.edit(interaction) @disnake.ui.button(label="Clear", style=disnake.ButtonStyle.danger, row=3) async def clear_button( self, button: disnake.ui.Button, interaction: disnake.MessageInteraction ): self.undo.append(self.file_view.file.content) self.file_view.file.content = "" await self.edit(interaction) @disnake.ui.button(label="Back", style=disnake.ButtonStyle.danger, row=3) async def settings_button( self, button: disnake.ui.Button, interaction: disnake.MessageInteraction ): embed = EmbedFactory.ide_embed(self.ctx, await get_info(self.file)) self.undo = [] self.redo = [] await self.bot_message.edit(embed=embed, view=self.file_view) def setup(bot: commands.Bot): pass
35.871094
117
0.597299
8,302
0.904062
0
0
6,932
0.754873
6,689
0.728411
1,024
0.11151
b8493d2511af44620ab30010ea879f211db8a17b
11,878
py
Python
modules/administrator.py
Gaeta/Delta
c76e149d0c17e025fe2648964e2512440fc0b4c7
[ "MIT" ]
1
2021-07-04T10:34:11.000Z
2021-07-04T10:34:11.000Z
modules/administrator.py
Gaeta/Delta
c76e149d0c17e025fe2648964e2512440fc0b4c7
[ "MIT" ]
null
null
null
modules/administrator.py
Gaeta/Delta
c76e149d0c17e025fe2648964e2512440fc0b4c7
[ "MIT" ]
null
null
null
import discord, sqlite3, asyncio, utils, re from discord.ext import commands from datetime import datetime TIME_REGEX = re.compile("(?:(\d{1,5})\s?(h|hours|hrs|hour|hr|s|seconds|secs|sec|second|m|mins|minutes|minute|min|d|days|day))+?") TIME_DICT = {"h": 3600, "s": 1, "m": 60, "d": 86400} class TimeConverter(commands.Converter): async def convert(self, argument): if argument is None: return 0 args = argument.lower() matches = re.findall(TIME_REGEX, args) time = 0 for v, k in matches: try: for key in ("h", "s", "m", "d"): if k.startswith(key): k = key break time += TIME_DICT[k]*float(v) except KeyError: raise commands.BadArgument("{} is an invalid time-key! h/m/s/d are valid!".format(k)) except ValueError: raise commands.BadArgument("{} is not a number!".format(v)) return time class AdministratorCommands(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command(usage="poll <ping> <question> | <answer 1> | <answer2...>") @utils.guild_only() @utils.is_admin() @commands.bot_has_permissions(manage_roles=True) @commands.cooldown(1, 60, commands.BucketType.guild) async def poll(self, ctx, ping_member, *, args): """Creates a poll with up to 5 answers.""" ping = ping_member.lower() if ping not in ("yes", "no", "true", "false", "y", "n", "t", "f"): return await utils.embed(ctx, discord.Embed(title="Poll Failed", description=f"Sorry, the `ping_member` argument should be \"Yes\" or \"No\". Please use `{self.bot.config.prefix}help poll` for more information."), error=True) if ping in ("yes", "y", "true", "t"): ping = True if ping in ("no", "n", "no", "n"): ping = False ques_ans = args.split(" | ") if len(ques_ans) <= 2: return await utils.embed(ctx, discord.Embed(title="Poll Failed", description=f"Sorry, the `args` argument should be follow this syntax: `question | answer 1 | answer 2...`."), error=True) question = ques_ans[0] answers = ques_ans[1:6] channel_id = self.bot.config.channels.announcements channel = self.bot.get_channel(channel_id) if channel is None: return await utils.embed(ctx, discord.Embed(title="Poll Failed", description=f"Sorry, the `announcements` channel hasn't been configured."), error=True) reactions = [] text = "" i = 1 for answer in answers: react = {1: "1\u20e3", 2: "2\u20e3", 3: "3\u20e3", 4: "4\u20e3", 5: "5\u20e3"}[i] reactions.append(react) text += f"{react} {answers[i-1]}\n\n" i += 1 embed = await utils.embed(ctx, discord.Embed(timestamp=datetime.utcnow(), title="Server Poll", description=f"**{question}**\n\n{text}").set_footer(text=f"Poll by {ctx.author}"), send=False) if ping: ping_role = utils.get_ping_role(ctx) if ping_role != ctx.guild.default_role: if not ping_role.mentionable: edited = False try: await ping_role.edit(mentionable=True) edited = True except discord.Forbidden: return await utils.embed(ctx, discord.Embed(title="Poll Failed", description=f"I do not have permission to **edit** {ping_role.mention}."), error=True) try: message = await channel.send(ping_role.mention, embed=embed) await utils.embed(ctx, discord.Embed(title="Poll Created", description=f"Your poll was successfully posted in {channel.mention}."), error=True) for r in reactions: await message.add_reaction(r) except: if channel.permissions_for(ctx.guild.me).add_reactions is False: issue = f"I do not have permission to **add reactions** in <#{channel.mention}>." if channel.permissions_for(ctx.guild.me).send_messages is False: issue = f"I do not have permission to **send messages** in <#{channel.mention}>." return await utils.embed(ctx, discord.Embed(title="Poll Failed", description=issue), error=True) if edited: await ping_role.edit(mentionable=False) return try: message = await channel.send(content="@everyone" if ping else None, embed=embed) await utils.embed(ctx, discord.Embed(title="Poll Created", description=f"Your poll was successfully posted in {channel.mention}."), error=True) for r in reactions: await message.add_reaction(r) except: if channel.permissions_for(ctx.guild.me).add_reactions is False: issue = f"I do not have permission to **add reactions** in <#{channel.mention}>." if channel.permissions_for(ctx.guild.me).send_messages is False: issue = f"I do not have permission to **send messages** in <#{channel.mention}>." await utils.embed(ctx, discord.Embed(title="Poll Failed", description=issue), error=True) @commands.command(usage="announce <ping> <announcement>") @utils.guild_only() @utils.is_admin() async def announce(self, ctx, ping_member, *, announcement): """Creates an announcement.""" ping = ping_member.lower() if ping not in ("yes", "no", "true", "false", "y", "n", "t", "f"): return await utils.embed(ctx, discord.Embed(title="Announcement Failed", description=f"Sorry, the `ping_member` argument should be \"Yes\" or \"No\". Please use `{self.bot.config.prefix}help announce` for more information."), error=True) if ping in ("yes", "y", "true", "t"): ping = True if ping in ("no", "n", "no", "n"): ping = False channel_id = self.bot.config.channels.announcements channel = self.bot.get_channel(channel_id) if channel is None: return await utils.embed(ctx, discord.Embed(title="Announcement Failed", description=f"Sorry, the `announcements` channel hasn't been configured."), error=True) if ping: ping_role = utils.get_ping_role(ctx) if ping_role != ctx.guild.default_role: if not ping_role.mentionable: edited = False try: await ping_role.edit(mentionable=True) edited = True except discord.Forbidden: return await utils.embed(ctx, discord.Embed(title="Announcement Failed", description=f"I do not have permission to **edit** {ping_role.mention}."), error=True) try: await channel.send(f"{ping_role.mention}\n{announcement}") await utils.embed(ctx, discord.Embed(title="Announcement Sent", description=f"Your announcement was successfully posted in {channel.mention}."), error=True) except: if channel.permissions_for(ctx.guild.me).send_messages is False: issue = f"I do not have permission to **send messages** in <#{channel.mention}>." return await utils.embed(ctx, discord.Embed(title="Announcement Failed", description=issue), error=True) if edited: await ping_role.edit(mentionable=False) return try: await channel.send("@everyone\n" if ping else "" + announcement) await utils.embed(ctx, discord.Embed(title="Announcement Sent", description=f"Your announcement was successfully posted in {channel.mention}."), error=True) except: if channel.permissions_for(ctx.guild.me).send_messages is False: issue = f"I do not have permission to **send messages** in <#{channel.mention}>." await utils.embed(ctx, discord.Embed(title="Poll Failed", description=issue), error=True) @commands.command(aliases=["resetcase"], usage="resetid") @utils.guild_only() @utils.is_admin() async def resetid(self, ctx): """Resets the case ID.""" with sqlite3.connect(self.bot.config.database) as db: db.cursor().execute("UPDATE Settings SET Case_ID='0'") db.cursor().execute("DELETE FROM Cases") db.commit() await utils.embed(ctx, discord.Embed(timestamp=datetime.utcnow(), title="Data Wiped", description="All case data has been successfully cleared.")) @commands.command(aliases=["reloadconfig"], usage="reload") @utils.guild_only() @utils.is_admin() async def reload(self, ctx): """Reloads the config file.""" del self.bot.config self.bot.config = utils.Config() await utils.embed(ctx, discord.Embed(timestamp=datetime.utcnow(), title="Config Reloaded", description="All config data has been successfully reloaded.")) @commands.command(usage="lockdown [time]") @utils.guild_only() @commands.bot_has_permissions(manage_channels=True) @utils.is_admin() async def lockdown(self, ctx, *, time=None): """Locks or unlocks a channel for a specified amount of time.""" member_role = utils.get_member_role(ctx) ows = ctx.channel.overwrites_for(member_role) if ows.read_messages is False: return await utils.embed(ctx, discord.Embed(timestamp=datetime.utcnow(), title="Lockdown Failed", description=f"Sorry, I can only lock channels that can be seen by {member_role.mention if member_role != ctx.guild.default_role else member_role}."), error=True) if ows.send_messages is False: await ctx.channel.set_permissions(member_role, send_messages=None) await ctx.channel.set_permissions(ctx.guild.me, send_messages=None) return await utils.embed(ctx, discord.Embed(timestamp=datetime.utcnow(), title="Lockdown Deactivated", description=f"Lockdown has been lifted by **{ctx.author}**.")) if ows.send_messages in (True, None): seconds = await TimeConverter().convert(time) await ctx.channel.set_permissions(member_role, send_messages=False) await ctx.channel.set_permissions(ctx.guild.me, send_messages=True) if seconds < 1: return await utils.embed(ctx, discord.Embed(timestamp=datetime.utcnow(), title="Lockdown Activated", description=f"Lockdown has been activated by **{ctx.author}**.")) await utils.embed(ctx, discord.Embed(timestamp=datetime.utcnow(), title="Lockdown Activated", description=f"Lockdown has been activated by **{ctx.author}** for {utils.display_time(round(seconds), 4)}.")) await asyncio.sleep(seconds) ows = ctx.channel.overwrites_for(member_role) if ows.send_messages is False: await ctx.channel.set_permissions(member_role, send_messages=None) await ctx.channel.set_permissions(ctx.guild.me, send_messages=None) return await utils.embed(ctx, discord.Embed(timestamp=datetime.utcnow(), title="Lockdown Deactivated", description=f"Lockdown has been lifted.")) def setup(bot): bot.add_cog(AdministratorCommands(bot))
46.217899
272
0.594124
11,509
0.968934
0
0
10,583
0.890975
10,596
0.892069
3,039
0.255851
b84a30c58e64eb7a73321b156d6da42908f33f1f
23,650
py
Python
models/feature_extraction/gcn_resnest.py
hoangtuanvu/rad_chestxray
b29c2bf98ae41d85258b21674e8826847a0cc647
[ "MIT" ]
2
2020-09-07T00:06:41.000Z
2020-09-29T07:08:24.000Z
models/feature_extraction/gcn_resnest.py
hoangtuanvu/rad_chestxray
b29c2bf98ae41d85258b21674e8826847a0cc647
[ "MIT" ]
7
2020-09-25T22:12:53.000Z
2021-08-25T16:06:24.000Z
models/feature_extraction/gcn_resnest.py
hoangtuanvu/rad_chestxray
b29c2bf98ae41d85258b21674e8826847a0cc647
[ "MIT" ]
null
null
null
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: Hang Zhang ## Email: zhanghang0704@gmail.com ## Copyright (c) 2020 ## ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ """ResNet variants""" import os import math import torch import numpy as np import torch.nn as nn from torch.nn import Parameter import torch.nn.functional as F from models.attention_map import SEModule, SpatialCGNL, SAModule from models.feature_extraction.splat import SplAtConv2d from models.utils import gen_adj_num, gen_adj from models.common import conv1x1 _url_format = 'https://hangzh.s3.amazonaws.com/encoding/models/{}-{}.pth' _model_sha256 = {name: checksum for checksum, name in [('528c19ca', 'resnest50'), ('22405ba7', 'resnest101'), ('75117900', 'resnest200'), ('0cc87c48', 'resnest269'), ]} def short_hash(name): if name not in _model_sha256: raise ValueError('Pretrained model for {name} is not available.'.format(name=name)) return _model_sha256[name][:8] resnest_model_urls = {name: _url_format.format(name, short_hash(name)) for name in _model_sha256.keys()} __all__ = ['ResNet', 'Bottleneck'] class DropBlock2D(object): def __init__(self, *args, **kwargs): raise NotImplementedError class Bottleneck(nn.Module): """ResNet Bottleneck """ # pylint: disable=unused-argument expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, radix=1, cardinality=1, bottleneck_width=64, avd=False, avd_first=False, dilation=1, is_first=False, rectified_conv=False, rectify_avg=False, norm_layer=None, dropblock_prob=0.0, last_gamma=False, use_se=False): super(Bottleneck, self).__init__() group_width = int(planes * (bottleneck_width / 64.)) * cardinality self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False) self.bn1 = norm_layer(group_width) self.dropblock_prob = dropblock_prob self.radix = radix self.avd = avd and (stride > 1 or is_first) self.avd_first = avd_first if self.avd: self.avd_layer = nn.AvgPool2d(3, stride, padding=1) stride = 1 if dropblock_prob > 0.0: self.dropblock1 = DropBlock2D(dropblock_prob, 3) if radix == 1: self.dropblock2 = DropBlock2D(dropblock_prob, 3) self.dropblock3 = DropBlock2D(dropblock_prob, 3) if radix >= 1: self.conv2 = SplAtConv2d(group_width, group_width, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False, radix=radix, rectify=rectified_conv, rectify_avg=rectify_avg, norm_layer=norm_layer, dropblock_prob=dropblock_prob) elif rectified_conv: from rfconv import RFConv2d self.conv2 = RFConv2d(group_width, group_width, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False, average_mode=rectify_avg) self.bn2 = norm_layer(group_width) else: self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False) self.bn2 = norm_layer(group_width) self.conv3 = nn.Conv2d(group_width, planes * 4, kernel_size=1, bias=False) self.bn3 = norm_layer(planes * 4) if last_gamma: from torch.nn.init import zeros_ zeros_(self.bn3.weight) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.dilation = dilation self.stride = stride self.use_se = use_se if use_se: self.se = SEModule(planes * 4) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) if self.dropblock_prob > 0.0: out = self.dropblock1(out) out = self.relu(out) if self.avd and self.avd_first: out = self.avd_layer(out) out = self.conv2(out) if self.radix == 0: out = self.bn2(out) if self.dropblock_prob > 0.0: out = self.dropblock2(out) out = self.relu(out) if self.avd and not self.avd_first: out = self.avd_layer(out) out = self.conv3(out) out = self.bn3(out) if self.dropblock_prob > 0.0: out = self.dropblock3(out) if self.downsample is not None: residual = self.downsample(x) if self.use_se: out = self.se(out) + residual else: out += residual out = self.relu(out) return out class ResNet(nn.Module): """ResNet Variants Parameters ---------- block : Block Class for the residual block. Options are BasicBlockV1, BottleneckV1. layers : list of int Numbers of layers in each block classes : int, default 1000 Number of classification classes. dilated : bool, default False Applying dilation strategy to pretrained ResNet yielding a stride-8 model, typically used in Semantic Segmentation. norm_layer : object Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`; for Synchronized Cross-GPU BachNormalization). Reference: - He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. - Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." """ # pylint: disable=unused-variable def __init__(self, block, layers, radix=1, groups=1, bottleneck_width=64, num_classes=1000, dilated=False, dilation=1, deep_stem=False, stem_width=64, avg_down=False, rectified_conv=False, rectify_avg=False, avd=False, avd_first=False, final_drop=0.0, dropblock_prob=0, last_gamma=False, use_se=False, in_channels=300, word_file='/workspace/Projects/cxr/models/feature_extraction/diseases_embeddings.npy', # word_file='diseases_embeddings.npy', # word_file='/home/hoangvu/Projects/cxr/models/feature_extraction/diseases_embeddings.npy', extract_fields='0,1,2,3,4,5', agree_rate=0.5, csv_path='', norm_layer=nn.BatchNorm2d): self.cardinality = groups self.bottleneck_width = bottleneck_width # ResNet-D params self.inplanes = stem_width * 2 if deep_stem else 64 self.avg_down = avg_down self.last_gamma = last_gamma # ResNeSt params self.radix = radix self.avd = avd self.avd_first = avd_first self.use_se = use_se super(ResNet, self).__init__() self.rectified_conv = rectified_conv self.rectify_avg = rectify_avg if rectified_conv: from rfconv import RFConv2d conv_layer = RFConv2d else: conv_layer = nn.Conv2d conv_kwargs = {'average_mode': rectify_avg} if rectified_conv else {} if deep_stem: self.conv1 = nn.Sequential( conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False, **conv_kwargs), norm_layer(stem_width), nn.ReLU(inplace=True), conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs), norm_layer(stem_width), nn.ReLU(inplace=True), conv_layer(stem_width, stem_width * 2, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs), ) else: self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3, bias=False, **conv_kwargs) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer, is_first=False) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer) if dilated or dilation == 4: self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2, norm_layer=norm_layer, dropblock_prob=dropblock_prob) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4, norm_layer=norm_layer, dropblock_prob=dropblock_prob) elif dilation == 2: self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilation=1, norm_layer=norm_layer, dropblock_prob=dropblock_prob) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=2, norm_layer=norm_layer, dropblock_prob=dropblock_prob) else: self.layer3 = self._make_layer(block, 256, layers[2], stride=2, norm_layer=norm_layer, dropblock_prob=dropblock_prob) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, norm_layer=norm_layer, dropblock_prob=dropblock_prob) self.global_pool = nn.AdaptiveAvgPool2d((1, 1)) self.drop = nn.Dropout(final_drop) if final_drop > 0.0 else None # self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, norm_layer): m.weight.data.fill_(1) m.bias.data.zero_() num_classes = len(extract_fields.split(',')) _adj = gen_adj_num(labels=extract_fields, agree_rate=agree_rate, csv_path=csv_path) self.adj = Parameter(torch.from_numpy(_adj).float()) if not os.path.exists(word_file): word = np.random.randn(num_classes, 300) print('graph input: random') else: with open(word_file, 'rb') as point: word = np.load(point) print('graph input: loaded from {}'.format(word_file)) self.word = Parameter(torch.from_numpy(word).float()) self.gc0 = GraphConvolution(in_channels, 128, bias=True) self.gc1 = GraphConvolution(128, 256, bias=True) self.gc2 = GraphConvolution(256, 512, bias=True) self.gc3 = GraphConvolution(512, 1024, bias=True) self.gc4 = GraphConvolution(1024, 2048, bias=True) self.gc_relu = nn.LeakyReLU(0.2) self.gc_tanh = nn.Tanh() self.merge_conv0 = nn.Conv2d(num_classes, 128, kernel_size=1, stride=1, bias=False) self.merge_conv1 = nn.Conv2d(num_classes, 256, kernel_size=1, stride=1, bias=False) self.merge_conv2 = nn.Conv2d(num_classes, 512, kernel_size=1, stride=1, bias=False) self.merge_conv3 = nn.Conv2d(num_classes, 1024, kernel_size=1, stride=1, bias=False) self.conv1x1 = conv1x1(in_channels=2048, out_channels=num_classes, bias=True) # self.spatial_attention = SAModule(2048) # self.spatial_attention = SpatialCGNL(2048, 1024) def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=None, dropblock_prob=0.0, is_first=True): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: down_layers = [] if self.avg_down: if dilation == 1: down_layers.append( nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False)) else: down_layers.append(nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False)) down_layers.append(norm_layer(planes * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if dilation == 1 or dilation == 2: layers.append( block(self.inplanes, planes, stride, downsample=downsample, radix=self.radix, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, avd_first=self.avd_first, dilation=1, is_first=is_first, rectified_conv=self.rectified_conv, rectify_avg=self.rectify_avg, norm_layer=norm_layer, dropblock_prob=dropblock_prob, last_gamma=self.last_gamma, use_se=self.use_se)) elif dilation == 4: layers.append( block(self.inplanes, planes, stride, downsample=downsample, radix=self.radix, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, avd_first=self.avd_first, dilation=2, is_first=is_first, rectified_conv=self.rectified_conv, rectify_avg=self.rectify_avg, norm_layer=norm_layer, dropblock_prob=dropblock_prob, last_gamma=self.last_gamma, use_se=self.use_se)) else: raise RuntimeError("=> unknown dilation size: {}".format(dilation)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block(self.inplanes, planes, radix=self.radix, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, avd_first=self.avd_first, dilation=dilation, rectified_conv=self.rectified_conv, rectify_avg=self.rectify_avg, norm_layer=norm_layer, dropblock_prob=dropblock_prob, last_gamma=self.last_gamma, use_se=self.use_se)) return nn.Sequential(*layers) def forward(self, feature): adj = gen_adj(self.adj).detach() word = self.word.detach() feature = self.conv1(feature) feature = self.bn1(feature) feature = self.relu(feature) feature = self.maxpool(feature) x_raw = self.gc0(word, adj) x = self.gc_tanh(x_raw) feature = merge_gcn_residual(feature, x, self.merge_conv0) feature = self.layer1(feature) x = self.gc_relu(x_raw) x_raw = self.gc1(x, adj) x = self.gc_tanh(x_raw) feature = merge_gcn_residual(feature, x, self.merge_conv1) feature = self.layer2(feature) x = self.gc_relu(x_raw) x_raw = self.gc2(x, adj) x = self.gc_tanh(x_raw) feature = merge_gcn_residual(feature, x, self.merge_conv2) feature = self.layer3(feature) x = self.gc_relu(x_raw) x_raw = self.gc3(x, adj) x = self.gc_tanh(x_raw) feature = merge_gcn_residual(feature, x, self.merge_conv3) feature = self.layer4(feature) # feature = self.spatial_attention(feature) feature_raw = self.global_pool(feature) if self.drop is not None: feature_raw = self.drop(feature_raw) feature = feature_raw.view(feature_raw.size(0), -1) x = self.gc_relu(x_raw) x = self.gc4(x, adj) x = self.gc_tanh(x) x = x.transpose(0, 1) x = torch.matmul(feature, x) y = self.conv1x1(feature_raw) y = y.view(y.size(0), -1) x = x + y return x def gcn_resnest200(cfg=None, **kwargs): model = ResNet(Bottleneck, [3, 24, 36, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, use_se=cfg.use_se, extract_fields=cfg.extract_fields, agree_rate=cfg.agree_rate, csv_path=cfg.csv_path, **kwargs) # model = ResNet(Bottleneck, [3, 24, 36, 3], radix=2, groups=1, bottleneck_width=64, # deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, # use_se=False, extract_fields='0,1,2,3,4,5', agree_rate=0.5, # csv_path='D:/Dataset/Vinmec/Noise/train_sss.csv', **kwargs) if cfg.pretrained: model.load_state_dict( torch.hub.load_state_dict_from_url(resnest_model_urls['resnest200'], progress=True), strict=False) return model def gcn_resnest101(cfg=None, **kwargs): model = ResNet(Bottleneck, [3, 4, 23, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, use_se=cfg.use_se, extract_fields=cfg.extract_fields, agree_rate=cfg.agree_rate, csv_path=cfg.csv_path, **kwargs) if cfg.pretrained: model.load_state_dict( torch.hub.load_state_dict_from_url(resnest_model_urls['resnest101'], progress=True), strict=False) return model def gcn_resnest50(cfg=None, **kwargs): model = ResNet(Bottleneck, [3, 4, 6, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=False, use_se=cfg.use_se, extract_fields=cfg.extract_fields, agree_rate=cfg.agree_rate, csv_path=cfg.csv_path, **kwargs) if cfg.pretrained: model.load_state_dict( torch.hub.load_state_dict_from_url(resnest_model_urls['resnest50'], progress=True), strict=False) return model class GraphConvolution(nn.Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, bias=False): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features middle_features = max(32, (in_features + out_features) // 16) self.weight1 = Parameter(torch.Tensor(in_features, middle_features)) self.weight2 = Parameter(torch.Tensor(middle_features, out_features)) if bias: self.bias = Parameter(torch.Tensor(1, out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.weight1.size(1)) self.weight1.data.uniform_(-stdv, stdv) stdv = 1. / math.sqrt(self.weight2.size(1)) self.weight2.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input, adj): support = torch.matmul(input, self.weight1) support = torch.matmul(support, self.weight2) output = torch.matmul(adj, support) if self.bias is not None: output = output + self.bias return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str( self.out_features) + ')' class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout=0, alpha=0.2, concat=True, bias=False): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(2 * out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) if bias: self.bias = Parameter(torch.Tensor(1, out_features)) else: self.register_parameter('bias', None) self.leakyrelu = nn.LeakyReLU(self.alpha) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.W.size(1)) self.W.data.uniform_(-stdv, stdv) stdv = 1. / math.sqrt(self.a.size(1)) self.a.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input, adj): h = torch.mm(input, self.W) N = h.size()[0] a_input = torch.cat([h.repeat(1, N).view(N * N, -1), h.repeat(N, 1)], dim=1).view(N, -1, 2 * self.out_features) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(2)) zero_vec = -9e15 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.bias is not None: h_prime = h_prime + self.bias if self.concat: return F.elu(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str( self.out_features) + ')' def merge_gcn_residual(feature, x, merge_conv): feature_raw = feature feature = feature_raw.transpose(1, 2) feature = feature.transpose(2, 3).contiguous() feature = feature.view(-1, feature.shape[-1]) reshape_x = x.transpose(0, 1) feature = torch.matmul(feature, reshape_x) feature = feature.view(feature_raw.shape[0], feature_raw.shape[2], feature_raw.shape[3], -1) feature = feature.transpose(2, 3) feature = feature.transpose(1, 2) feature = merge_conv(feature) return feature_raw + feature if __name__ == "__main__": import torchsummary x = torch.randn([2, 3, 224, 224]) model = gcn_resnest200(num_classes=6, word_file='diseases_embeddings.npy') logits = model(x) # print(torchsummary.summary(model, input_size=(3, 512, 512), device='cpu')) print(logits) # x = torch.randn([2, 2048, 7, 7]) # word = torch.randn([6, 300]) # adj = torch.randn([6, 6]) # # # gcn = GraphConvolution(in_features=300, out_features=256, bias=True) # gcn = GraphAttentionLayer(in_features=300, out_features=256, bias=True) # output = gcn(word, adj) # print(output) # feature = torch.randn([2, 128, 56, 56]) # x = torch.randn([11, 128]) # merge_conv = nn.Conv2d(11, 128, kernel_size=1, stride=1, bias=False) # # output = merge_gcn_residual(feature, x, merge_conv) # print(output.size())
42.383513
229
0.602199
18,929
0.800381
0
0
0
0
0
0
3,244
0.137167
b84bfe3e24cf3fa88c7b90891f02c84318e2faae
7,473
py
Python
nextai_lib/inference.py
jav0927/nextai
9de0c338a41a3ce0297b95f625290fa814a83344
[ "Apache-2.0" ]
null
null
null
nextai_lib/inference.py
jav0927/nextai
9de0c338a41a3ce0297b95f625290fa814a83344
[ "Apache-2.0" ]
1
2021-09-28T05:33:17.000Z
2021-09-28T05:33:17.000Z
nextai_lib/inference.py
jav0927/nextai
9de0c338a41a3ce0297b95f625290fa814a83344
[ "Apache-2.0" ]
null
null
null
# AUTOGENERATED! DO NOT EDIT! File to edit: 02_inference.ipynb (unless otherwise specified). __all__ = ['device', 'pad_output', 'get_activ_offsets_mns'] # Cell #from fastai.vision.all import * from fastai import * from typing import * from torch import tensor, Tensor import torch import torchvision # Needed to invoke torchvision.ops.mns function # Cell # Automatically sets for GPU or CPU environments device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Cell # Pad tensors so that they have uniform dimentions: (batch size, no of items in a batch, 4) and (batch size, no of items in a batch, 21) def pad_output(l_bb:List, l_scr:List, l_idx:List, no_classes:int): '''Pad tensors so that they have uniform dimentions: (batch size, no of items in a batch, 4) and (batch size, no of items in a batch, 21) Inputs: l_bb - list of tensors containing individual non-uniform sized bounding boxes l_scr - list of tensors containing class index values (i.e. 1 - airplane) l_idx - list of tensors containing class index values (i.e. 1 - airplane) no_classes - Number of classes, Integer Outputs: Uniform-sized tensors: bounding box tensor and score tensor with dims: (batch size, no of items in a batch, 4) and (batch size, no of items in a batch, 21)''' if len([len(img_bb) for img_bb in l_bb]) == 0.: print(F'Image did not pass the scoring threshold') return mx_len = max([len(img_bb) for img_bb in l_bb]) # Calculate maximun lenght of the boxes in the batch l_b, l_c, l_x, l_cat = [], [], [], [] # Create Bounding Box tensors # zeroed tensor accumulators for i, ntr in enumerate(zip(l_bb, l_scr, l_idx)): bbox, cls, idx = ntr[0], ntr[1], ntr[2] # Unpack variables tsr_len = mx_len - bbox.shape[0] # Calculate the number of zero-based rows to add m = nn.ConstantPad2d((0, 0, 0, tsr_len), 0.) # Prepare to pad the box tensor with zero entries l_b.append(m(bbox)) # Add appropriate zero-based box rows and add to list # Create Category tensors cat_base = torch.zeros(mx_len-bbox.shape[0], dtype=torch.int32) img_cat = torch.cat((idx, cat_base), dim=0) l_cat.append(img_cat) # Create Score tensors img_cls = [] # List to construct class vectors for ix in range(idx.shape[0]): # Construct class vectors of dim(no of classes) cls_base = torch.zeros(no_classes).to(device) # Base zero-based class vector cls_base[idx[ix]] = cls[ix] # Add the score in the nth position img_cls.append(cls_base) img_stack = torch.stack(img_cls) # Create single tensor per image img_stack_out = m(img_stack) l_c.append( img_stack_out ) # Add appropriate zero-based class rows and add to list return (TensorBBox(torch.stack(l_b,0)), TensorMultiCategory(torch.stack(l_c,0)), TensorMultiCategory(torch.stack(l_cat,0)) ) # Cell def get_activ_offsets_mns(anchrs:Tensor, activs:Tensor, no_classes:int, threshold:float=0.5): ''' Takes in activations and calculates corresponding anchor box offsets. It then filters the resulting boxes through MNS Inputs: anchrs - Anchors as Tensor activs - Activations as Tensor no_classes - Number of classes (categories) threshold - Coarse filtering. Default = 0.5 Output: one_batch_boxes, one_batch_scores as Tuple''' p_bboxes, p_classes = activs # Read p_bboxes: [32, 189,4] Torch.Tensor and p_classes: [32, 189, 21] Torch.Tensor from self.learn.pred #scores = torch.sigmoid(p_classes) # Calculate the confidence levels, scores, for class predictions [0, 1] scores = torch.softmax(p_classes, -1) # Calculate the confidence levels, scores, for class predictions [0, 1] - Probabilistic offset_boxes = activ_decode(p_bboxes, anchrs) # Return anchors + anchor offsets wiith format (batch, No Items in Batch, 4) # For each item in batch, and for each class in the item, filter the image by passing it through NMS. Keep preds with IOU > thresshold one_batch_boxes = []; one_batch_scores = []; one_batch_cls_pred = [] # Agregators at the bath level for i in range(p_classes.shape[0]): # For each image in batch ... batch_p_boxes = offset_boxes[i] # box preds for the current batch batch_scores = scores[i] # Keep scores for the current batch max_scores, cls_idx = torch.max(batch_scores, 1 ) # Keep batch class indexes bch_th_mask = max_scores > threshold # Threshold mask for batch bch_keep_boxes = batch_p_boxes[bch_th_mask] # " bch_keep_scores = batch_scores[bch_th_mask] # " bch_keep_cls_idx = cls_idx[bch_th_mask] # Agregators per image in a batch img_boxes = [] # Bounding boxes per image img_scores = [] # Scores per image img_cls_pred = [] # Class predictons per image for c in range (1,no_classes): # Loop through each class cls_mask = bch_keep_cls_idx==c # Keep masks for the current class if cls_mask.sum() == 0: continue # Weed out images with no positive class masks cls_boxes = bch_keep_boxes[cls_mask] # Keep boxes per image cls_scores = bch_keep_scores[cls_mask].max(dim=1)[0] # Keep class scores for the current image nms_keep_idx = torchvision.ops.nms(cls_boxes, cls_scores, iou_threshold=0.5) # Filter images by passing them through NMS img_boxes += [*cls_boxes[nms_keep_idx]] # Agregate cls_boxes into tensors for all classes box_stack = torch.stack(img_boxes,0) # Transform individual tensors into a single box tensor img_scores += [*cls_scores[nms_keep_idx]] # Agregate cls_scores into tensors for all classes score_stack = torch.stack(img_scores, 0) # Transform individual tensors into a single score tensor img_cls_pred += [*tensor([c]*len(nms_keep_idx))] cls_pred_stack = torch.stack(img_cls_pred, 0) batch_mask = score_stack > threshold # filter final lists tto be greater than threshold box_stack = box_stack[batch_mask] # " score_stack = score_stack[batch_mask] # " cls_pred_stack = cls_pred_stack[batch_mask] # " if 'box_stack' not in locals(): continue # Failed to find any valid classes one_batch_boxes.append(box_stack) # Agregate bounding boxes for the batch one_batch_scores.append(score_stack) # Agregate scores for the batch one_batch_cls_pred.append(cls_pred_stack) # Pad individual box and score tensors into uniform-sized box and score tensors of shapes: (batch, no 0f items in batch, 4) and (batch, no 0f items in batch, 21) one_batch_boxes, one_batch_scores, one_batch_cats = pad_output(one_batch_boxes, one_batch_scores, one_batch_cls_pred, no_classes) return (one_batch_boxes, one_batch_cats)
59.784
174
0.640707
0
0
0
0
0
0
0
0
3,690
0.493778
b84c1c6e378f4059bee57b13f1d84bcf63b4ae74
2,141
py
Python
code.py
ashweta81/data-wrangling-pandas-code-along-practice
af49250a45c616f46d763990f2321f470d439916
[ "MIT" ]
null
null
null
code.py
ashweta81/data-wrangling-pandas-code-along-practice
af49250a45c616f46d763990f2321f470d439916
[ "MIT" ]
null
null
null
code.py
ashweta81/data-wrangling-pandas-code-along-practice
af49250a45c616f46d763990f2321f470d439916
[ "MIT" ]
null
null
null
# -------------- import pandas as pd import numpy as np # Read the data using pandas module. data=pd.read_csv(path) # Find the list of unique cities where matches were played print("The unique cities where matches were played are ", data.city.unique()) print('*'*80) # Find the columns which contains null values if any ? print("The columns which contain null values are ", data.columns[data.isnull().any()]) print('*'*80) # List down top 5 most played venues print("The top 5 most played venues are", data.venue.value_counts().head(5)) print('*'*80) # Make a runs count frequency table print("The frequency table for runs is", data.runs.value_counts()) print('*'*80) # How many seasons were played and in which year they were played data['year']=data.date.apply(lambda x : x[:4]) seasons=data.year.unique() print('The total seasons and years are', seasons) print('*'*80) # No. of matches played per season ss1=data.groupby(['year'])['match_code'].nunique() print('The total matches played per season are', ss1) print("*"*80) # Total runs across the seasons ss2=data.groupby(['year']).agg({'total':'sum'}) print("Total runs are",ss2) print("*"*80) # Teams who have scored more than 200+ runs. Show the top 10 results w1=data.groupby(['match_code','batting_team']).agg({'total':'sum'}).sort_values(by='total', ascending=False) w1[w1.total>200].reset_index().head(10) print("The top 10 results are",w1[w1.total>200].reset_index().head(10)) print("*"*80) # What are the chances of chasing 200+ target dt1=data.groupby(['match_code','batting_team','inning'])['total'].sum().reset_index() dt1.head() dt1.loc[((dt1.total>200) & (dt1.inning==2)),:].reset_index() data.match_code.unique().shape[0] probability=(dt1.loc[((dt1.total>200) & (dt1.inning==2)),:].shape[0])/(data.match_code.unique().shape[0])*100 print("Chances are", probability) print("*"*80) # Which team has the highest win count in their respective seasons ? dt2=data.groupby(['year','winner'])['match_code'].nunique() dt3=dt2.groupby(level=0,group_keys=False) dt4=dt3.apply(lambda x: x.sort_values(ascending=False).head(1)) print("The team with the highes win count is", dt4)
40.396226
109
0.712751
0
0
0
0
0
0
0
0
1,055
0.49276
b84e3b8a7a2a09cb215aab0d692cf00fa2446655
794
py
Python
Trakttv.bundle/Contents/Libraries/Shared/plugin/scrobbler/handlers/playing.py
disrupted/Trakttv.bundle
24712216c71f3b22fd58cb5dd89dad5bb798ed60
[ "RSA-MD" ]
1,346
2015-01-01T14:52:24.000Z
2022-03-28T12:50:48.000Z
Trakttv.bundle/Contents/Libraries/Shared/plugin/scrobbler/handlers/playing.py
alcroito/Plex-Trakt-Scrobbler
4f83fb0860dcb91f860d7c11bc7df568913c82a6
[ "RSA-MD" ]
474
2015-01-01T10:27:46.000Z
2022-03-21T12:26:16.000Z
Trakttv.bundle/Contents/Libraries/Shared/plugin/scrobbler/handlers/playing.py
alcroito/Plex-Trakt-Scrobbler
4f83fb0860dcb91f860d7c11bc7df568913c82a6
[ "RSA-MD" ]
191
2015-01-02T18:27:22.000Z
2022-03-29T10:49:48.000Z
from plugin.scrobbler.core import SessionEngine, SessionHandler @SessionEngine.register class PlayingHandler(SessionHandler): __event__ = 'playing' __src__ = ['create', 'pause', 'stop', 'start'] __dst__ = ['start', 'stop'] @classmethod def process(cls, session, payload): # Handle media change if cls.has_media_changed(session, payload) and session.state in ['start', 'pause']: yield 'stop', session.payload # Handle current media if cls.has_finished(session, payload): if session.state in ['start', 'pause']: yield 'stop', payload elif session.state in ['create', 'pause', 'stop']: yield 'start', payload elif session.state == 'start': yield None, payload
31.76
91
0.61461
703
0.88539
533
0.671285
727
0.915617
0
0
168
0.211587
b84e7cc9d16e3f0b3e8a9ecacf33341e96af47cb
102
py
Python
Desafio 46.py
MisaelGuilherme/100_Exercicios_Em_Python
8c4cdad7e60201abcdd2c4a5646f52aed4e7041e
[ "MIT" ]
null
null
null
Desafio 46.py
MisaelGuilherme/100_Exercicios_Em_Python
8c4cdad7e60201abcdd2c4a5646f52aed4e7041e
[ "MIT" ]
null
null
null
Desafio 46.py
MisaelGuilherme/100_Exercicios_Em_Python
8c4cdad7e60201abcdd2c4a5646f52aed4e7041e
[ "MIT" ]
null
null
null
print('====== DESAFIO 46 ======') import time for c in range(10,-1,-1): time.sleep(1) print(c)
20.4
33
0.539216
0
0
0
0
0
0
0
0
26
0.254902
b850754dddf9940614a7ecc4de4bab7929800a85
4,329
py
Python
samples/features/sql-big-data-cluster/security/encryption-at-rest-external-key-provider/kms_plugin_app/custom_akv.py
aguzev/sql-server-samples
498c47f2ac8e45d052ed61878a2ce11eb32394bf
[ "MIT" ]
4,474
2019-05-06T23:05:37.000Z
2022-03-31T23:30:31.000Z
samples/features/sql-big-data-cluster/security/encryption-at-rest-external-key-provider/kms_plugin_app/custom_akv.py
aguzev/sql-server-samples
498c47f2ac8e45d052ed61878a2ce11eb32394bf
[ "MIT" ]
256
2019-05-07T07:07:19.000Z
2022-03-29T17:11:41.000Z
samples/features/sql-big-data-cluster/security/encryption-at-rest-external-key-provider/kms_plugin_app/custom_akv.py
aguzev/sql-server-samples
498c47f2ac8e45d052ed61878a2ce11eb32394bf
[ "MIT" ]
5,075
2019-05-07T00:07:21.000Z
2022-03-31T23:31:15.000Z
# Placeholder for adding logic specific to application # and backend key store. # import os import json import sys from azure.identity import DefaultAzureCredential from azure.keyvault.keys import KeyClient from azure.keyvault.keys.crypto import CryptographyClient, EncryptionAlgorithm # Append the current application path to sys path to be able to resolve local modules. # sys.path.append('.') sys.path.append('./model') from constants import ConfigurationConstants, Operations, CryptoConstants import utils from json_objects import EncryptDecryptRequest, JsonWebKeyResponse, EncryptDecryptResponse def decrypt(request, json_key_attributes_dict, pin, version): """ This method will be called by the application entry point for decrypting the payload. request.value has the plaintext payload request.alg contains the padding algorithm for encryption. """ set_env(json_key_attributes_dict, pin) credential = DefaultAzureCredential() key_vault_key = get_akv_key(json_key_attributes_dict, credential) crypto_client = CryptographyClient(key_vault_key, credential=credential) decrypted_payload = crypto_client.decrypt(EncryptionAlgorithm.rsa_oaep, request.value) response = EncryptDecryptResponse(decrypted_payload.plaintext) return response def encrypt(request, json_key_attributes_dict, pin, version): """ This method will be called by the application entry point for encrypting the payload. request.value has the plaintext payload request.alg contains the padding algorithm for encryption. """ set_env(json_key_attributes_dict, pin) credential = DefaultAzureCredential() key_vault_key = get_akv_key(json_key_attributes_dict, credential) crypto_client = CryptographyClient(key_vault_key, credential=credential) encrypted_payload = crypto_client.encrypt(EncryptionAlgorithm.rsa_oaep, request.value) response = EncryptDecryptResponse(encrypted_payload.ciphertext) return response def get_key(json_key_attributes_dict, pin, version): set_env(json_key_attributes_dict, pin) credential = DefaultAzureCredential() key_vault_key = get_akv_key(json_key_attributes_dict, credential) # JsonWebKeyResponse expects integer inputs and converts them to byte array # However AKV SDK already provides byte arrays for Exponent and Modulus. # We will instantiate the object with a dummy value and then overwrite the # exponent and module value. # dummy_val = 1 key_response = JsonWebKeyResponse(1,1) key_response.e = utils.urlsafe_b64encode_as_str(key_vault_key.key.e) key_response.n = utils.urlsafe_b64encode_as_str(key_vault_key.key.n) return key_response def get_akv_key(json_key_attributes_dict, credential): """ Gets the AKV key object. """ if "vault_url" in json_key_attributes_dict: vault_url = json_key_attributes_dict["vault_url"] else: raise KeyError('vault_url was expected in the parameters but not found') if "keyname" in json_key_attributes_dict: key_name = json_key_attributes_dict["keyname"] else: raise KeyError('keyname was expected in the parameters but not found') if "keyversion" in json_key_attributes_dict: key_version = json_key_attributes_dict["keyversion"] else: raise KeyError('keyversion was expected in the parameters but not found') key_client = KeyClient(vault_url=vault_url, credential=credential) key_vault_key = key_client.get_key(key_name, key_version) return key_vault_key def set_env(json_key_attributes_dict, pin): """ Sets the environment variables for the MS identity credential lookup to work. """ if "azure_client_id" in json_key_attributes_dict: key_version = json_key_attributes_dict["azure_client_id"] else: raise KeyError('azure_client_id was expected in the parameters but not found') if "azure_tenant_id" in json_key_attributes_dict: key_version = json_key_attributes_dict["azure_tenant_id"] else: raise KeyError('azure_tenant_id was expected in the parameters but not found') os.environ["AZURE_CLIENT_ID"]=json_key_attributes_dict["azure_client_id"] os.environ["AZURE_TENANT_ID"]=json_key_attributes_dict["azure_tenant_id"] os.environ["AZURE_CLIENT_SECRET"]=pin
40.839623
90
0.769924
0
0
0
0
0
0
0
0
1,498
0.346038
b85115da00994686b76087d8e81c839619f86fa0
338
py
Python
scss/setup.py
Jawbone/pyScss
b1f483c253ec4aaceb3b8d4d630ca5528590e9b8
[ "MIT" ]
null
null
null
scss/setup.py
Jawbone/pyScss
b1f483c253ec4aaceb3b8d4d630ca5528590e9b8
[ "MIT" ]
null
null
null
scss/setup.py
Jawbone/pyScss
b1f483c253ec4aaceb3b8d4d630ca5528590e9b8
[ "MIT" ]
null
null
null
from distutils.core import setup, Extension setup(name='jawbonePyScss', version='1.1.8', description='jawbonePyScss', ext_modules=[ Extension( '_scss', sources=['src/_scss.c', 'src/block_locator.c', 'src/scanner.c'], libraries=['pcre'], optional=True ) ] )
22.533333
76
0.553254
0
0
0
0
0
0
0
0
99
0.292899
b851d6b0de112cf236b222d90e4d36785001355b
18,301
py
Python
spanner_orm/tests/query_test.py
MetaOfX/python-spanner-orm
59063eb6989b845d1658118a7a0282eede19d8bf
[ "Apache-2.0" ]
37
2018-11-01T18:29:03.000Z
2022-03-30T17:24:39.000Z
spanner_orm/tests/query_test.py
MetaOfX/python-spanner-orm
59063eb6989b845d1658118a7a0282eede19d8bf
[ "Apache-2.0" ]
48
2018-11-05T18:51:23.000Z
2021-12-17T20:28:11.000Z
spanner_orm/tests/query_test.py
MetaOfX/python-spanner-orm
59063eb6989b845d1658118a7a0282eede19d8bf
[ "Apache-2.0" ]
19
2019-05-04T06:05:31.000Z
2021-12-17T20:52:53.000Z
# python3 # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import logging import unittest from unittest import mock from absl.testing import parameterized from spanner_orm import condition from spanner_orm import error from spanner_orm import field from spanner_orm import query from spanner_orm.tests import models from google.cloud.spanner_v1.proto import type_pb2 def now(): return datetime.datetime.now(tz=datetime.timezone.utc) class QueryTest(parameterized.TestCase): @mock.patch('spanner_orm.table_apis.sql_query') def test_where(self, sql_query): sql_query.return_value = [] models.UnittestModel.where_equal(int_=3, transaction=True) (_, sql, parameters, types), _ = sql_query.call_args expected_sql = 'SELECT .* FROM table WHERE table.int_ = @int_0' self.assertRegex(sql, expected_sql) self.assertEqual(parameters, {'int_0': 3}) self.assertEqual(types, {'int_0': field.Integer.grpc_type()}) @mock.patch('spanner_orm.table_apis.sql_query') def test_count(self, sql_query): sql_query.return_value = [[0]] column, value = 'int_', 3 models.UnittestModel.count_equal(int_=3, transaction=True) (_, sql, parameters, types), _ = sql_query.call_args column_key = '{}0'.format(column) expected_sql = r'SELECT COUNT\(\*\) FROM table WHERE table.{} = @{}'.format( column, column_key) self.assertRegex(sql, expected_sql) self.assertEqual({column_key: value}, parameters) self.assertEqual(types, {column_key: field.Integer.grpc_type()}) def test_count_allows_force_index(self): force_index = condition.force_index('test_index') count_query = query.CountQuery(models.UnittestModel, [force_index]) sql = count_query.sql() expected_sql = 'SELECT COUNT(*) FROM table@{FORCE_INDEX=test_index}' self.assertEqual(expected_sql, sql) @parameterized.parameters( condition.limit(1), condition.order_by( ('int_', condition.OrderType.DESC))) def test_count_only_allows_where_and_from_segment_conditions(self, condition): with self.assertRaises(error.SpannerError): query.CountQuery(models.UnittestModel, [condition]) def select(self, *conditions): return query.SelectQuery(models.UnittestModel, list(conditions)) def test_query_limit(self): key, value = 'limit0', 2 select_query = self.select(condition.limit(value)) self.assertEndsWith(select_query.sql(), ' LIMIT @{}'.format(key)) self.assertEqual(select_query.parameters(), {key: value}) self.assertEqual(select_query.types(), {key: field.Integer.grpc_type()}) select_query = self.select() self.assertNotRegex(select_query.sql(), 'LIMIT') def test_query_limit_offset(self): limit_key, limit = 'limit0', 2 offset_key, offset = 'offset0', 5 select_query = self.select(condition.limit(limit, offset=offset)) self.assertEndsWith(select_query.sql(), ' LIMIT @{} OFFSET @{}'.format(limit_key, offset_key)) self.assertEqual(select_query.parameters(), { limit_key: limit, offset_key: offset }) self.assertEqual(select_query.types(), { limit_key: field.Integer.grpc_type(), offset_key: field.Integer.grpc_type() }) def test_query_order_by(self): order = ('int_', condition.OrderType.DESC) select_query = self.select(condition.order_by(order)) self.assertEndsWith(select_query.sql(), ' ORDER BY table.int_ DESC') self.assertEmpty(select_query.parameters()) self.assertEmpty(select_query.types()) select_query = self.select() self.assertNotRegex(select_query.sql(), 'ORDER BY') def test_query_order_by_with_object(self): order = (models.UnittestModel.int_, condition.OrderType.DESC) select_query = self.select(condition.order_by(order)) self.assertEndsWith(select_query.sql(), ' ORDER BY table.int_ DESC') self.assertEmpty(select_query.parameters()) self.assertEmpty(select_query.types()) select_query = self.select() self.assertNotRegex(select_query.sql(), 'ORDER BY') @parameterized.parameters(('int_', 5, field.Integer.grpc_type()), ('string', 'foo', field.String.grpc_type()), ('timestamp', now(), field.Timestamp.grpc_type())) def test_query_where_comparison(self, column, value, grpc_type): condition_generators = [ condition.greater_than, condition.not_less_than, condition.less_than, condition.not_greater_than, condition.equal_to, condition.not_equal_to ] for condition_generator in condition_generators: current_condition = condition_generator(column, value) select_query = self.select(current_condition) column_key = '{}0'.format(column) expected_where = ' WHERE table.{} {} @{}'.format( column, current_condition.operator, column_key) self.assertEndsWith(select_query.sql(), expected_where) self.assertEqual(select_query.parameters(), {column_key: value}) self.assertEqual(select_query.types(), {column_key: grpc_type}) @parameterized.parameters( (models.UnittestModel.int_, 5, field.Integer.grpc_type()), (models.UnittestModel.string, 'foo', field.String.grpc_type()), (models.UnittestModel.timestamp, now(), field.Timestamp.grpc_type())) def test_query_where_comparison_with_object(self, column, value, grpc_type): condition_generators = [ condition.greater_than, condition.not_less_than, condition.less_than, condition.not_greater_than, condition.equal_to, condition.not_equal_to ] for condition_generator in condition_generators: current_condition = condition_generator(column, value) select_query = self.select(current_condition) column_key = '{}0'.format(column.name) expected_where = ' WHERE table.{} {} @{}'.format( column.name, current_condition.operator, column_key) self.assertEndsWith(select_query.sql(), expected_where) self.assertEqual(select_query.parameters(), {column_key: value}) self.assertEqual(select_query.types(), {column_key: grpc_type}) @parameterized.parameters( ('int_', [1, 2, 3], field.Integer.grpc_type()), ('int_', (4, 5, 6), field.Integer.grpc_type()), ('string', ['a', 'b', 'c'], field.String.grpc_type()), ('timestamp', [now()], field.Timestamp.grpc_type())) def test_query_where_list_comparison(self, column, values, grpc_type): condition_generators = [condition.in_list, condition.not_in_list] for condition_generator in condition_generators: current_condition = condition_generator(column, values) select_query = self.select(current_condition) column_key = '{}0'.format(column) expected_sql = ' WHERE table.{} {} UNNEST(@{})'.format( column, current_condition.operator, column_key) list_type = type_pb2.Type( code=type_pb2.ARRAY, array_element_type=grpc_type) self.assertEndsWith(select_query.sql(), expected_sql) self.assertEqual(select_query.parameters(), {column_key: values}) self.assertEqual(select_query.types(), {column_key: list_type}) def test_query_combines_properly(self): select_query = self.select( condition.equal_to('int_', 5), condition.not_equal_to('string_array', ['foo', 'bar']), condition.limit(2), condition.order_by(('string', condition.OrderType.DESC))) expected_sql = ('WHERE table.int_ = @int_0 AND table.string_array != ' '@string_array1 ORDER BY table.string DESC LIMIT @limit2') self.assertEndsWith(select_query.sql(), expected_sql) def test_only_one_limit_allowed(self): with self.assertRaises(error.SpannerError): self.select(condition.limit(2), condition.limit(2)) def test_force_index(self): select_query = self.select(condition.force_index('test_index')) expected_sql = 'FROM table@{FORCE_INDEX=test_index}' self.assertEndsWith(select_query.sql(), expected_sql) def test_force_index_with_object(self): select_query = self.select( condition.force_index(models.UnittestModel.test_index)) expected_sql = 'FROM table@{FORCE_INDEX=test_index}' self.assertEndsWith(select_query.sql(), expected_sql) def includes(self, relation, *conditions, foreign_key_relation=False): include_condition = condition.includes(relation, list(conditions), foreign_key_relation) return query.SelectQuery( models.ForeignKeyTestModel if foreign_key_relation else models.RelationshipTestModel, [include_condition], ) @parameterized.parameters((models.RelationshipTestModel.parent, True), (models.ForeignKeyTestModel.foreign_key_1, False)) def test_bad_includes_args(self, relation_key, foreign_key_relation): with self.assertRaisesRegex(ValueError, 'Must pass'): self.includes( relation_key, foreign_key_relation=foreign_key_relation, ) @parameterized.named_parameters( ( 'legacy_relationship', { 'relation': 'parent' }, r'SELECT RelationshipTestModel\S* RelationshipTestModel\S* ' r'ARRAY\(SELECT AS STRUCT SmallTestModel\S* SmallTestModel\S* ' r'SmallTestModel\S* FROM SmallTestModel WHERE SmallTestModel.key = ' r'RelationshipTestModel.parent_key\)', ), ( 'legacy_relationship_with_object_arg', { 'relation': models.RelationshipTestModel.parent }, r'SELECT RelationshipTestModel\S* RelationshipTestModel\S* ' r'ARRAY\(SELECT AS STRUCT SmallTestModel\S* SmallTestModel\S* ' r'SmallTestModel\S* FROM SmallTestModel WHERE SmallTestModel.key = ' r'RelationshipTestModel.parent_key\)', ), ( 'foreign_key_relationship', { 'relation': 'foreign_key_1', 'foreign_key_relation': True }, r'SELECT ForeignKeyTestModel\S* ForeignKeyTestModel\S* ForeignKeyTestModel\S* ForeignKeyTestModel\S* ' r'ARRAY\(SELECT AS STRUCT SmallTestModel\S* SmallTestModel\S* ' r'SmallTestModel\S* FROM SmallTestModel WHERE SmallTestModel.key = ' r'ForeignKeyTestModel.referencing_key_1\)', ), ( 'foreign_key_relationship_with_object_arg', { 'relation': models.ForeignKeyTestModel.foreign_key_1, 'foreign_key_relation': True }, r'SELECT ForeignKeyTestModel\S* ForeignKeyTestModel\S* ForeignKeyTestModel\S* ForeignKeyTestModel\S* ' r'ARRAY\(SELECT AS STRUCT SmallTestModel\S* SmallTestModel\S* ' r'SmallTestModel\S* FROM SmallTestModel WHERE SmallTestModel.key = ' r'ForeignKeyTestModel.referencing_key_1\)', ), ) def test_includes(self, includes_kwargs, expected_sql): select_query = self.includes(**includes_kwargs) # The column order varies between test runs self.assertRegex(select_query.sql(), expected_sql) self.assertEmpty(select_query.parameters()) self.assertEmpty(select_query.types()) @parameterized.parameters(({ 'relation': models.RelationshipTestModel.parent, 'foreign_key_relation': True },), ({ 'relation': models.ForeignKeyTestModel.foreign_key_1, 'foreign_key_relation': False },)) def test_error_mismatched_params(self, includes_kwargs): with self.assertRaisesRegex(ValueError, 'Must pass'): self.includes(**includes_kwargs) def test_includes_subconditions_query(self): select_query = self.includes('parents', condition.equal_to('key', 'value')) expected_sql = ( 'WHERE SmallTestModel.key = RelationshipTestModel.parent_key ' 'AND SmallTestModel.key = @key0') self.assertRegex(select_query.sql(), expected_sql) def includes_result(self, related=1): child = {'parent_key': 'parent_key', 'child_key': 'child'} result = [child[name] for name in models.RelationshipTestModel.columns] parent = {'key': 'key', 'value_1': 'value_1', 'value_2': None} parents = [] for _ in range(related): parents.append([parent[name] for name in models.SmallTestModel.columns]) result.append(parents) return child, parent, [result] def fk_includes_result(self, related=1): child = { 'referencing_key_1': 'parent_key', 'referencing_key_2': 'child', 'referencing_key_3': 'child', 'self_referencing_key': 'child' } result = [child[name] for name in models.ForeignKeyTestModel.columns] parent = {'key': 'key', 'value_1': 'value_1', 'value_2': None} parents = [] for _ in range(related): parents.append([parent[name] for name in models.SmallTestModel.columns]) result.append(parents) return child, parent, [result] @parameterized.named_parameters( ( 'legacy_relationship', { 'relation': 'parent' }, lambda x: x.parent, lambda x: x.includes_result(related=1), ), ( 'foreign_key_relationship', { 'relation': 'foreign_key_1', 'foreign_key_relation': True }, lambda x: x.foreign_key_1, lambda x: x.fk_includes_result(related=1), ), ) def test_includes_single_related_object_result( self, includes_kwargs, referenced_table_fn, includes_result_fn, ): select_query = self.includes(**includes_kwargs) child_values, parent_values, rows = includes_result_fn(self) result = select_query.process_results(rows)[0] self.assertIsInstance( referenced_table_fn(result), models.SmallTestModel, ) for name, value in child_values.items(): self.assertEqual(getattr(result, name), value) for name, value in parent_values.items(): self.assertEqual(getattr(referenced_table_fn(result), name), value) @parameterized.named_parameters( ( 'legacy_relationship', { 'relation': 'parent' }, lambda x: x.parent, lambda x: x.includes_result(related=0), ), ( 'foreign_key_relationship', { 'relation': 'foreign_key_1', 'foreign_key_relation': True }, lambda x: x.foreign_key_1, lambda x: x.fk_includes_result(related=0), ), ) def test_includes_single_no_related_object_result(self, includes_kwargs, referenced_table_fn, includes_result_fn): select_query = self.includes(**includes_kwargs) child_values, _, rows = includes_result_fn(self) result = select_query.process_results(rows)[0] self.assertIsNone(referenced_table_fn(result)) for name, value in child_values.items(): self.assertEqual(getattr(result, name), value) def test_includes_subcondition_result(self): select_query = self.includes('parents', condition.equal_to('key', 'value')) child_values, parent_values, rows = self.includes_result(related=2) result = select_query.process_results(rows)[0] self.assertLen(result.parents, 2) for name, value in child_values.items(): self.assertEqual(getattr(result, name), value) for name, value in parent_values.items(): self.assertEqual(getattr(result.parents[0], name), value) @parameterized.named_parameters( ( 'legacy_relationship', { 'relation': 'parent' }, lambda x: x.includes_result(related=2), ), ( 'foreign_key_relationship', { 'relation': 'foreign_key_1', 'foreign_key_relation': True }, lambda x: x.fk_includes_result(related=2), ), ) def test_includes_error_on_multiple_results_for_single( self, includes_kwargs, includes_result_fn): select_query = self.includes(**includes_kwargs) _, _, rows = includes_result_fn(self) with self.assertRaises(error.SpannerError): _ = select_query.process_results(rows) @parameterized.parameters(True, False) def test_includes_error_on_invalid_relation(self, foreign_key_relation): with self.assertRaises(error.ValidationError): self.includes('bad_relation', foreign_key_relation=foreign_key_relation) @parameterized.parameters( ('bad_column', 0, 'parent', False), ('bad_column', 0, 'foreign_key_1', True), ('child_key', 'good value', 'parent', False), ('child_key', 'good value', 'foreign_key_1', False), ('key', ['bad value'], 'parent', False), ('key', ['bad value'], 'foreign_key_1', False), ) def test_includes_error_on_invalid_subconditions(self, column, value, relation, foreign_key_relation): with self.assertRaises(error.ValidationError): self.includes( relation, condition.equal_to(column, value), foreign_key_relation, ) def test_or(self): condition_1 = condition.equal_to('int_', 1) condition_2 = condition.equal_to('int_', 2) select_query = self.select(condition.or_([condition_1], [condition_2])) expected_sql = '((table.int_ = @int_0) OR (table.int_ = @int_1))' self.assertEndsWith(select_query.sql(), expected_sql) self.assertEqual(select_query.parameters(), {'int_0': 1, 'int_1': 2}) self.assertEqual(select_query.types(), { 'int_0': field.Integer.grpc_type(), 'int_1': field.Integer.grpc_type() }) if __name__ == '__main__': logging.basicConfig() unittest.main()
38.855626
112
0.674335
17,246
0.942353
0
0
11,131
0.608218
0
0
3,741
0.204415
b8521a1784e7669f76ae670720d2483ecddff419
518
py
Python
leetcode/1859_sorting_the_sentence.py
jacquerie/leetcode
a05e6b832eb0e0740aaff7b2eb3109038ad404bf
[ "MIT" ]
3
2018-05-10T09:56:49.000Z
2020-11-07T18:09:42.000Z
leetcode/1859_sorting_the_sentence.py
jacquerie/leetcode
a05e6b832eb0e0740aaff7b2eb3109038ad404bf
[ "MIT" ]
null
null
null
leetcode/1859_sorting_the_sentence.py
jacquerie/leetcode
a05e6b832eb0e0740aaff7b2eb3109038ad404bf
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- class Solution: def sortSentence(self, s: str) -> str: tokens = s.split() result = [None] * len(tokens) for token in tokens: word, index = token[:-1], int(token[-1]) result[index - 1] = word return ' '.join(result) if __name__ == '__main__': solution = Solution() assert 'This is a sentence' == solution.sortSentence('is2 sentence4 This1 a3') assert 'Me Myself and I' == solution.sortSentence('Myself2 Me1 I4 and3')
25.9
82
0.579151
276
0.532819
0
0
0
0
0
0
118
0.227799
b8522b1cda4c464e1d7c573371d89f13b40ae37b
89
py
Python
todoapi/apps.py
Faysa1/Gestion-Tickets-Taches
eeba92df59c3217d15b02a5bb1ed3c6e673537a4
[ "Apache-2.0" ]
51
2018-12-12T20:18:31.000Z
2022-03-11T20:23:35.000Z
todoapi/apps.py
Faysa1/Gestion-Tickets-Taches
eeba92df59c3217d15b02a5bb1ed3c6e673537a4
[ "Apache-2.0" ]
11
2018-12-17T08:48:07.000Z
2022-03-02T02:54:38.000Z
todoapi/apps.py
Faysa1/Gestion-Tickets-Taches
eeba92df59c3217d15b02a5bb1ed3c6e673537a4
[ "Apache-2.0" ]
29
2018-12-12T20:19:00.000Z
2022-01-18T12:33:21.000Z
from django.apps import AppConfig class TodoapiConfig(AppConfig): name = 'todoapi'
14.833333
33
0.752809
52
0.58427
0
0
0
0
0
0
9
0.101124
b85283b049e0e58e8a7c62f87369d905b8440e5f
3,101
py
Python
src/flagon/backends/redis_backend.py
ashcrow/flagon
50e6aa96854468a89399ef08573e4f814a002d26
[ "MIT" ]
18
2015-08-27T03:49:42.000Z
2021-05-12T21:48:17.000Z
src/flagon/backends/redis_backend.py
ashcrow/flagon
50e6aa96854468a89399ef08573e4f814a002d26
[ "MIT" ]
2
2016-07-18T13:48:46.000Z
2017-05-20T15:56:03.000Z
src/flagon/backends/redis_backend.py
ashcrow/flagon
50e6aa96854468a89399ef08573e4f814a002d26
[ "MIT" ]
5
2015-09-20T08:46:01.000Z
2021-06-10T03:41:04.000Z
# The MIT License (MIT) # # Copyright (c) 2014 Steve Milner # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. """ Redis backend. """ import redis from flagon import errors from flagon.backends import Backend class RedisBackend(Backend): def __init__(self, host, port, db): """ Creates an instance of the RedisBackend. :rtype: RedisBackend """ # https://pypi.python.org/pypi/redis/2.10.1 pool = redis.ConnectionPool(host=host, port=port, db=db) self._server = redis.Redis( connection_pool=pool, charset='utf-8', errors='strict', decode_responses=False) def set(self, name, key, value): """ Sets a value for a feature. This is a proposed name only!!! :param name: name of the feature. :rtype: bool """ self._server.hset(name, key, value) def exists(self, name, key): """ Checks if a feature exists. :param name: name of the feature. :rtype: bool """ return self._server.hexists(name, key) def is_active(self, name, key): """ Checks if a feature is on. :param name: name of the feature. :rtype: bool :raises: UnknownFeatureError """ if not self._server.hexists(name, key): raise errors.UnknownFeatureError('Unknown feature: %s' % name) if self._server.hget(name, key) == 'True': return True return False def _turn(self, name, key, value): """ Turns a feature off. :param name: name of the feature. :param value: Value to turn name to. :raises: UnknownFeatureError """ # TODO: Copy paste --- :-( if not self._server.hexists(name, key): raise errors.UnknownFeatureError('Unknown feature: %s %s' % ( name, key)) self._server.hset(name, key, value) turn_on = lambda s, name: s._turn(name, 'active', True) turn_off = lambda s, name: s._turn(name, 'active', False)
32.642105
78
0.639471
1,882
0.606901
0
0
0
0
0
0
1,945
0.627217
b8578eebc5523ec0f810b0739d30b92505082a9a
2,365
py
Python
6. Ordinary Differential Equations/4. a. Higher Order Ordinary Differential Equation using RK4.py
dmNadim/Numerical-Methods
2c74312ea4efddd7db65483fef02fea710963dcf
[ "MIT" ]
null
null
null
6. Ordinary Differential Equations/4. a. Higher Order Ordinary Differential Equation using RK4.py
dmNadim/Numerical-Methods
2c74312ea4efddd7db65483fef02fea710963dcf
[ "MIT" ]
null
null
null
6. Ordinary Differential Equations/4. a. Higher Order Ordinary Differential Equation using RK4.py
dmNadim/Numerical-Methods
2c74312ea4efddd7db65483fef02fea710963dcf
[ "MIT" ]
null
null
null
from math import sin, cos, pi f = lambda x: 9*pi*cos(x) + 7*sin(x) + 4*x - 5*x*cos(x) # Analytical Solution df = lambda x: -9*pi*sin(x) + 7*cos(x) + 4 - 5*(cos(x)-x*sin(x)) dy = lambda x,y,u: u # 1st Derivative, y' = u du = lambda x,y,u: 4*x + 10*sin(x) - y # 2nd Derivative, u' = 4x+10sin(x)-y x = pi # Lower limit, [π xn = 2*pi # Upper limit, 2π] y = 0 # Initial condition, y(π) = 0 u = 2 # Initial condition, u(π) = 2 h = 0.5 # Width of each division, step size # h = 0.1 # Smaller step size gives less error n = int((xn-x)/h) # Number of divisions of the domain print('x \t\ty(RK4) \t\ty\'(RK4) \ty(Exact) \ty\'(Exact)') # Header of Output print('%f \t%f \t%f \t%f \t%f' % (x, y, u, f(x), df(x))) # Initial x and y for i in range(n): L1 = h * du(x,y,u) K1 = h * dy(x,y,u) L2 = h * du(x + h/2, y + K1/2, u + L1/2) K2 = h * dy(x + h/2, y + K1/2, u + L1/2) L3 = h * du(x + h/2, y + K2/2, u + L2/2) K3 = h * dy(x + h/2, y + K2/2, u + L2/2) L4 = h * du(x + h, y + K3, u + L3) K4 = h * dy(x + h, y + K3, u + L3) u += 1/6*(L1 + 2*L2 + 2*L3 + L4) # u(x+h) = u(x) + 1/6(L1+2L2+2L3+L4) y += 1/6*(K1 + 2*K2 + 2*K3 + K4) # y(x+h) = y(x) + 1/6(K1+2K2+2K3+K4) x += h # x for next step, x = x + h print('%f \t%f \t%f \t%f \t%f' % (x, y, u, f(x), df(x))) """ 2nd order ODE y'' = f(x,y,y') should be divided into two first order ODE's y' = u and u' = f(x,y,u) The two equations are solved simultaneously using RK4 L1 = h u'(x,y,u) K1 = h y'(x,y,u) L2 = h u'(x + h/2, y + K1/2, u + L1/2) K2 = h y'(x + h/2, y + K1/2, u + L1/2) L3 = h u'(x + h/2, y + K2/2, u + L2/2) K3 = h y'(x + h/2, y + K2/2, u + L2/2) L4 = h u'(x + h, y + K3, u + L3) K4 = h y'(x + h, y + K3, u + L3) u(x+h) = u(x) + 1/6 (L1 + 2 L2 + 2 L3 + L4) y(x+h) = y(x) + 1/6 (K1 + 2 K2 + 2 K3 + K4) The initial condition is the value of y(x) at initial domain x Find the numerical solution of the following differential equation over the domain [π,2π]: y''+y = 4x+10sin(x), y(π) = 0, y'(π) = 2 y' = u, y(π) = 0 u' = 4x+10sin(x)-y, u(π) = 2 Analytical Solution: y = 9π cos(x) + 7sin(x) + 4x - 5x cos(x) """
36.384615
78
0.4537
0
0
0
0
0
0
0
0
1,384
0.582492
b85874411e43ac8ab8f40e52f253f84cc102e824
1,029
py
Python
scripts/image_navigation.py
habibmuhammadthariq/iq_gnc
06752997c103b48db48efb2814923fdc3a0f74b8
[ "MIT" ]
null
null
null
scripts/image_navigation.py
habibmuhammadthariq/iq_gnc
06752997c103b48db48efb2814923fdc3a0f74b8
[ "MIT" ]
null
null
null
scripts/image_navigation.py
habibmuhammadthariq/iq_gnc
06752997c103b48db48efb2814923fdc3a0f74b8
[ "MIT" ]
null
null
null
#! /usr/bin/env python #ros library #import rospy #import the API #from iq_gnc.py_gnc_functions import * #print the colours #from iq_gnc.PrintColours import * # Importing Point message from package geometry_msgs. #from geometry_msgs.msg import Point #import opencv library import cv2 cap = cv2.VideoCapture(0) while True: _, img = cap.read() hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) #red color low_red = np.array([161, 155, 84]) high_red = np_array([179, 255, 255]) #blue color #low_blue = np.array([94, 80, 2]) #high_blue = np.array([126, 255, 255]) #green color #low_green = np.array([25, 52, 72]) #high_green = np.array([102, 255, 255]) #every color except white #low = np.array([0, 42, 0]) #high = np.array([179, 255, 255]) red_mask = cv2.inRange(hsv, low_red, high_red) red = cv2.bitwise_and(image, image, mask=red_mask) cv2.imshow("Original Image", image) cv2.imshow("Red Filter", red) key = cv2.waitKey(1) if key == 27: break
25.725
54
0.651118
0
0
0
0
0
0
0
0
555
0.539359
b8588a227beffd14bd3ab5788c323affed1dda08
1,083
py
Python
switchmng/wsgi.py
AnsgarKlein/switchmng
d86ae2dc40ef70f43fec8e3adf49ae5fd796a01d
[ "MIT" ]
null
null
null
switchmng/wsgi.py
AnsgarKlein/switchmng
d86ae2dc40ef70f43fec8e3adf49ae5fd796a01d
[ "MIT" ]
null
null
null
switchmng/wsgi.py
AnsgarKlein/switchmng
d86ae2dc40ef70f43fec8e3adf49ae5fd796a01d
[ "MIT" ]
null
null
null
from switchmng import config from switchmng.schema.base import Base from switchmng.database import DatabaseConnection from switchmng.routes import create_app def app(*args, **kwargs): """ Entry point for wsgi server like `gunicorn` serving this application. Parse all command line arguments, initialize application then start this application. """ help_str = 'Possible parameters:\n'\ + ' config=FILE Use FILE for configuration file' # Parse gunicorn parameters, convert them to normal sys.argv style # parameters and pass them to parsing function. params = [] for k in kwargs: if k == 'config': params.append('--config') params.append(kwargs[k]) else: print('Unknown parameter "{}"\n\n{}\n'.format(k, help_str)) return None # Parse given arguments config.parse_arguments(params) # Initialize the database db = DatabaseConnection(config.DB_TYPE, config.DB_PATH, config.DB_VERBOSE, Base) # Return wsgi app return create_app(db)
29.27027
84
0.665743
0
0
0
0
0
0
0
0
486
0.448753
b8591745507d3ac646b22cef27786c56c597a729
1,598
py
Python
records_mover/db/postgres/copy_options/date_output_style.py
ellyteitsworth/records-mover
21cd56efc2d23cfff04ec1fdf582e5229546c418
[ "Apache-2.0" ]
null
null
null
records_mover/db/postgres/copy_options/date_output_style.py
ellyteitsworth/records-mover
21cd56efc2d23cfff04ec1fdf582e5229546c418
[ "Apache-2.0" ]
null
null
null
records_mover/db/postgres/copy_options/date_output_style.py
ellyteitsworth/records-mover
21cd56efc2d23cfff04ec1fdf582e5229546c418
[ "Apache-2.0" ]
null
null
null
from records_mover.utils import quiet_remove from records_mover.records.delimited import cant_handle_hint, ValidatedRecordsHints from typing import Set, Tuple, Optional from .types import DateOrderStyle, DateOutputStyle def determine_date_output_style(unhandled_hints: Set[str], hints: ValidatedRecordsHints, fail_if_cant_handle_hint: bool) -> \ Tuple[DateOutputStyle, Optional[DateOrderStyle]]: # see docs in the types module dateformat = hints.dateformat timeonlyformat = hints.timeonlyformat datetimeformattz = hints.datetimeformattz datetimeformat = hints.datetimeformat date_order_style: Optional[DateOrderStyle] = None if (dateformat == 'YYYY-MM-DD' and timeonlyformat == 'HH24:MI:SS' and datetimeformattz in ['YYYY-MM-DD HH:MI:SSOF', 'YYYY-MM-DD HH24:MI:SSOF'] and datetimeformat == 'YYYY-MM-DD HH24:MI:SS'): date_output_style: DateOutputStyle = 'ISO' # date_order_style doesn't really matter, as ISO is not ambiguous else: # 'SQL', 'Postgres' and 'German' all support only alphabetic # timezone indicators, which aren't yet supported in the # records spec cant_handle_hint(fail_if_cant_handle_hint, 'datetimeformattz', hints) quiet_remove(unhandled_hints, 'dateformat') quiet_remove(unhandled_hints, 'timeonlyformat') quiet_remove(unhandled_hints, 'datetimeformattz') quiet_remove(unhandled_hints, 'datetimeformat') return (date_output_style, date_order_style)
39.95
83
0.70025
0
0
0
0
0
0
0
0
405
0.253442
b8596ffa290b85166791b3474bb6337caf557e75
6,239
py
Python
tacker/tests/unit/vnfm/infra_drivers/openstack/test_vdu.py
takahashi-tsc/tacker
a0ae01a13dcc51bb374060adcbb4fd484ab37156
[ "Apache-2.0" ]
null
null
null
tacker/tests/unit/vnfm/infra_drivers/openstack/test_vdu.py
takahashi-tsc/tacker
a0ae01a13dcc51bb374060adcbb4fd484ab37156
[ "Apache-2.0" ]
null
null
null
tacker/tests/unit/vnfm/infra_drivers/openstack/test_vdu.py
takahashi-tsc/tacker
a0ae01a13dcc51bb374060adcbb4fd484ab37156
[ "Apache-2.0" ]
1
2020-11-16T02:14:35.000Z
2020-11-16T02:14:35.000Z
# Copyright 2018 NTT DATA # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from unittest import mock from tacker import context from tacker.db.common_services import common_services_db_plugin from tacker.objects import heal_vnf_request from tacker.plugins.common import constants from tacker.tests.unit import base from tacker.vnfm.infra_drivers.openstack import vdu vnf_dict = { 'attributes': { 'heat_template': { 'outputs': { 'mgmt_ip-VDU1': { 'value': { 'get_attr': [ 'CP1', 'fixed_ips', 0, 'ip_address'] } } }, 'description': 'Demo example\n', 'parameters': {}, 'resources': { 'VDU1': { 'type': 'OS::Nova::Server', 'properties': { 'user_data_format': 'SOFTWARE_CONFIG', 'availability_zone': 'nova', 'image': 'cirros-0.4.0-x86_64-disk', 'config_drive': False, 'flavor': {'get_resource': 'VDU1_flavor'}, 'networks': [{'port': {'get_resource': 'CP1'}}] } }, 'CP1': { 'type': 'OS::Neutron::Port', 'properties': { 'port_security_enabled': False, 'network': 'net_mgmt' } }, 'VDU1_flavor': { 'type': 'OS::Nova::Flavor', 'properties': {'vcpus': 1, 'disk': 1, 'ram': 512} } } } }, 'status': 'ACTIVE', 'vnfd_id': '576acf48-b9df-491d-a57c-342de660ec78', 'tenant_id': '13d2ca8de70d48b2a2e0dbac2c327c0b', 'vim_id': '3f41faa7-5630-47d2-9d4a-1216953c8887', 'instance_id': 'd1121d3c-368b-4ac2-b39d-835aa3e4ccd8', 'placement_attr': {'vim_name': 'openstack-vim'}, 'id': 'a27fc58e-66ae-4031-bba4-efede318c60b', 'name': 'vnf_create_1' } class FakeHeatClient(mock.Mock): class Stack(mock.Mock): stack_status = 'CREATE_COMPLETE' outputs = [{u'output_value': u'192.168.120.31', u'description': u'management ip address', u'output_key': u'mgmt_ip-vdu1'}] def create(self, *args, **kwargs): return {'stack': {'id': '4a4c2d44-8a52-4895-9a75-9d1c76c3e738'}} def get(self, id): return self.Stack() def update(self, stack_id, **kwargs): return self.Stack() def resource_mark_unhealthy(self, stack_id, resource_name, mark_unhealthy, resource_status_reason): return self.Stack() class TestVDU(base.TestCase): def setUp(self): super(TestVDU, self).setUp() self.context = context.get_admin_context() self._mock_heat_client() mock.patch('tacker.vnfm.vim_client.VimClient.get_vim').start() self.additional_paramas_obj = heal_vnf_request.HealVnfAdditionalParams( parameter='VDU1', cause=["Unable to reach while monitoring resource: 'VDU1'"]) self.heal_request_data_obj = heal_vnf_request.HealVnfRequest( cause='VNF monitoring fails.', stack_id=vnf_dict['instance_id'], additional_params=[self.additional_paramas_obj]) self.heal_vdu = vdu.Vdu(self.context, vnf_dict, self.heal_request_data_obj) mock.patch('tacker.db.common_services.common_services_db_plugin.' 'CommonServicesPluginDb.create_event' ).start() self._cos_db_plugin = \ common_services_db_plugin.CommonServicesPluginDb() self.addCleanup(mock.patch.stopall) def _mock_heat_client(self): self.heat_client = mock.Mock(wraps=FakeHeatClient()) fake_heat_client = mock.Mock() fake_heat_client.return_value = self.heat_client self._mock( 'tacker.vnfm.infra_drivers.openstack.heat_client.HeatClient', fake_heat_client) @mock.patch('tacker.vnfm.vim_client.VimClient.get_vim') def test_heal_vdu(self, mock_get_vim): mock_get_vim.return_value = mock.MagicMock() self.heal_vdu.heal_vdu() self.heat_client.update.assert_called_once_with( stack_id=vnf_dict['instance_id'], existing=True) self._cos_db_plugin.create_event.assert_called_with( self.context, res_id=vnf_dict['id'], res_type=constants.RES_TYPE_VNF, res_state=vnf_dict['status'], evt_type=constants.RES_EVT_HEAL, tstamp=mock.ANY, details=("HealVnfRequest invoked to update the stack '%s'" % vnf_dict['instance_id'])) @mock.patch('tacker.vnfm.vim_client.VimClient.get_vim') def test_resource_mark_unhealthy(self, mock_get_vim): mock_get_vim.return_value = mock.MagicMock() self.heal_vdu._resource_mark_unhealthy() self.heat_client.resource_mark_unhealthy.assert_called_once_with( stack_id=vnf_dict['instance_id'], resource_name=self.additional_paramas_obj.parameter, mark_unhealthy=True, resource_status_reason=self.additional_paramas_obj.cause) self._cos_db_plugin.create_event.assert_called_with( self.context, res_id=vnf_dict['id'], res_type=constants.RES_TYPE_VNF, res_state=vnf_dict['status'], evt_type=constants.RES_EVT_HEAL, tstamp=mock.ANY, details="HealVnfRequest invoked to mark resource 'VDU1' " "to unhealthy.")
38.042683
79
0.599295
3,563
0.571085
0
0
1,532
0.245552
0
0
2,141
0.343164
b85adde254fd21cc8c4987b399dbf5487b008f43
445
py
Python
tests/test_example.py
jlane9/mockerena
a3fd1bd39af6269dc96846967b4bba47759bab41
[ "MIT" ]
1
2019-09-10T05:12:38.000Z
2019-09-10T05:12:38.000Z
tests/test_example.py
jlane9/mockerena
a3fd1bd39af6269dc96846967b4bba47759bab41
[ "MIT" ]
10
2019-09-10T16:14:35.000Z
2019-12-19T17:13:51.000Z
tests/test_example.py
jlane9/mockerena
a3fd1bd39af6269dc96846967b4bba47759bab41
[ "MIT" ]
2
2019-09-10T05:11:58.000Z
2020-04-29T17:59:47.000Z
"""test_example .. codeauthor:: John Lane <john.lane93@gmail.com> """ from flask import url_for from eve import Eve import pytest @pytest.mark.example def test_example(client: Eve): """Example test for reference :param Eve client: Mockerena app instance :raises: AssertionError """ res = client.get(url_for('generate', schema_id='mock_example')) assert res.status_code == 200 assert res.mimetype == 'text/csv'
19.347826
67
0.698876
0
0
0
0
309
0.694382
0
0
217
0.48764
b85d1ecfbfe5440d3438acef2b9c37a3da7e6e97
1,243
py
Python
tests/TestPoissonSpikeGeneration.py
VadimLopatkin/AtlasSnnController
25c87bd7c80cbb5a1163311b2fd87fad5344f978
[ "Apache-2.0" ]
2
2016-05-22T12:30:41.000Z
2016-06-03T06:05:21.000Z
tests/TestPoissonSpikeGeneration.py
VadimLopatkin/AtlasSnnController
25c87bd7c80cbb5a1163311b2fd87fad5344f978
[ "Apache-2.0" ]
null
null
null
tests/TestPoissonSpikeGeneration.py
VadimLopatkin/AtlasSnnController
25c87bd7c80cbb5a1163311b2fd87fad5344f978
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest from brian2 import * class TestPoissonSpikeGeneration(unittest.TestCase): def test_simple_poisson_generator(self): P = PoissonGroup(10, 5*Hz) M = SpikeMonitor(P) run(10*ms) n = M.t # plot(M.t/ms, M.v[0], '-b', lw=2, label='N0: membrane potential') # xlabel('Time (ms)') # ylabel('t') # legend(loc='best') # show() if __name__ == '__main__': unittest.main()
33.594595
74
0.697506
369
0.296862
0
0
0
0
0
0
907
0.729686
b85d56ed4c33e772f43301cfd59b3662ccd3560a
6,100
py
Python
stream.py
Abhishek-Aditya-bs/Streaming-Spark-For-Machine-Learning
76f9c97e66d6171bc83d1183fadc30bd492422a7
[ "MIT" ]
1
2021-12-10T13:14:53.000Z
2021-12-10T13:14:53.000Z
stream.py
iVishalr/SSML-spark-streaming-for-machine-learning
ba95a7d2d6bb15bacfbbf5b3c95317310b36d54f
[ "MIT" ]
null
null
null
stream.py
iVishalr/SSML-spark-streaming-for-machine-learning
ba95a7d2d6bb15bacfbbf5b3c95317310b36d54f
[ "MIT" ]
null
null
null
#! /usr/bin/python3 import time import json import pickle import socket import argparse import numpy as np from tqdm import tqdm parser = argparse.ArgumentParser( description='Streams a file to a Spark Streaming Context') parser.add_argument('--file', '-f', help='File to stream', required=False,type=str, default="cifar") parser.add_argument('--batch-size', '-b', help='Batch size',required=False, type=int, default=100) parser.add_argument('--endless', '-e', help='Enable endless stream',required=False, type=bool, default=False) parser.add_argument('--split','-s', help="training or test split", required=False, type=str, default='train') parser.add_argument('--sleep','-t', help="streaming interval", required=False, type=int, default=3) TCP_IP = "localhost" TCP_PORT = 6100 class Dataset: def __init__(self) -> None: self.data = [] self.labels = [] self.epoch = 0 def data_generator(self,file,batch_size): batch = [] with open(f"cifar/{file}","rb") as batch_file: batch_data = pickle.load(batch_file, encoding='bytes') self.data.append(batch_data[b'data']) self.labels.extend(batch_data[b'labels']) data = np.vstack(self.data) self.data = list(map(np.ndarray.tolist, data)) for ix in range(0,(len(self.data)//batch_size)*batch_size,batch_size): image = self.data[ix:ix+batch_size] label = self.labels[ix:ix+batch_size] batch.append([image,label]) self.data = self.data[ix+batch_size:] self.labels = self.labels[ix+batch_size:] return batch def sendCIFARBatchFileToSpark(self,tcp_connection, input_batch_file): pbar = tqdm(total=int((5e4//batch_size)+1)) if train_test_split=='train' else tqdm(total=int((1e4//batch_size)+1)) data_received = 0 for file in input_batch_file: batches = self.data_generator(file,batch_size) for ix,batch in enumerate(batches): image,labels = batch image = np.array(image) received_shape = image.shape image = list(map(np.ndarray.tolist, image)) feature_size = len(image[0]) payload = dict() for mini_batch_index in range(len(image)): payload[mini_batch_index] = dict() for feature_index in range(feature_size): payload[mini_batch_index][f'feature{feature_index}'] = image[mini_batch_index][feature_index] payload[mini_batch_index]['label'] = labels[mini_batch_index] send_batch = (json.dumps(payload) + '\n').encode() try: tcp_connection.send(send_batch) except BrokenPipeError: print("Either batch size is too big for the dataset or the connection was closed") except Exception as error_message: print(f"Exception thrown but was handled: {error_message}") data_received+=1 pbar.update(1) pbar.set_description(f"epoch: {self.epoch} it: {data_received} | received : {received_shape} images") time.sleep(sleep_time) for batch in [[self.data,self.labels]]: image,labels = batch image = np.array(image) received_shape = image.shape image = list(map(np.ndarray.tolist, image)) feature_size = len(image[0]) payload = dict() for mini_batch_index in range(len(image)): payload[mini_batch_index] = dict() for feature_index in range(feature_size): payload[mini_batch_index][f'feature{feature_index}'] = image[mini_batch_index][feature_index] payload[mini_batch_index]['label'] = labels[mini_batch_index] send_batch = (json.dumps(payload) + '\n').encode() try: tcp_connection.send(send_batch) except BrokenPipeError: print("Either batch size is too big for the dataset or the connection was closed") except Exception as error_message: print(f"Exception thrown but was handled: {error_message}") data_received+=1 pbar.update(1) pbar.set_description(f"epoch: {self.epoch} it: {data_received} | received : {received_shape} images") self.data = [] self.labels = [] time.sleep(sleep_time) pbar.pos=0 self.epoch+=1 def connectTCP(self): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((TCP_IP, TCP_PORT)) s.listen(1) print(f"Waiting for connection on port {TCP_PORT}...") connection, address = s.accept() print(f"Connected to {address}") return connection, address def streamCIFARDataset(self,tcp_connection, dataset_type='cifar'): CIFAR_BATCHES = [ 'data_batch_1', 'data_batch_2', 'data_batch_3', 'data_batch_4', 'data_batch_5', 'test_batch' ] CIFAR_BATCHES = CIFAR_BATCHES[:-1] if train_test_split=='train' else [CIFAR_BATCHES[-1]] self.sendCIFARBatchFileToSpark(tcp_connection,CIFAR_BATCHES) if __name__ == '__main__': args = parser.parse_args() print(args) input_file = args.file batch_size = args.batch_size endless = args.endless sleep_time = args.sleep train_test_split = args.split dataset = Dataset() tcp_connection, _ = dataset.connectTCP() if input_file == "cifar": _function = dataset.streamCIFARDataset if endless: while True: _function(tcp_connection, input_file) else: _function(tcp_connection, input_file) tcp_connection.close()
40.131579
122
0.59623
4,770
0.781967
0
0
0
0
0
0
973
0.159508
b85e1207d6e09dc9d3b5821470f14d0eed8e2190
394
py
Python
subcontent/backup/python3_closure_nonlocal.py
fingerkc/fingerkc.github.io
0bfe5163ea28be3747756c8b6be64ad4f09b2fbf
[ "MIT" ]
2
2019-06-13T07:22:22.000Z
2019-11-23T03:55:21.000Z
subcontent/backup/python3_closure_nonlocal.py
fingerkc/fingerkc.github.io
0bfe5163ea28be3747756c8b6be64ad4f09b2fbf
[ "MIT" ]
1
2019-12-15T04:10:59.000Z
2019-12-15T04:10:59.000Z
subcontent/backup/python3_closure_nonlocal.py
fingerkc/fingerkc.github.io
0bfe5163ea28be3747756c8b6be64ad4f09b2fbf
[ "MIT" ]
1
2019-06-24T08:17:13.000Z
2019-06-24T08:17:13.000Z
#!/usr/bin/python3 ##python3 闭包 与 nonlocal #如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用, #那么内部函数就被认为是闭包(closure) def A_(): var = 0 def clo_B(): var_b = 1 # 闭包的局部变量 var = 100 print(var) # 引用外部的var , 但是不会改变var 的值 return clo_B #clo_B是一个闭包 #nonlocal 关键字 def A_(): var = 0 def clo_B(): nonlocal var # nonlocal关键字 指定var 不是闭包的局部变量 var = var + 1 # 若 不使用nonlocal 关键字 , 则此行代码会出现错误
15.153846
50
0.670051
0
0
0
0
0
0
0
0
445
0.720065
b85e66013be32836e47b0a35176f156e7e93f2e2
352
py
Python
utils/tracker.py
emarche/Fashion-MNIST
f8183e33ab7c3df673a60de3b16f2c4c979b89bb
[ "MIT" ]
null
null
null
utils/tracker.py
emarche/Fashion-MNIST
f8183e33ab7c3df673a60de3b16f2c4c979b89bb
[ "MIT" ]
null
null
null
utils/tracker.py
emarche/Fashion-MNIST
f8183e33ab7c3df673a60de3b16f2c4c979b89bb
[ "MIT" ]
null
null
null
import os import numpy as np class Tracker: def __init__(self, seed, model_name): self.save_tag = model_name + '_seed_' + str(seed) self.model_save = "models/" if not os.path.exists(self.model_save): os.makedirs(self.model_save) def save_model(self, model): model.save(self.model_save + self.save_tag + '.h5')
29.333333
76
0.661932
322
0.914773
0
0
0
0
0
0
22
0.0625
b86107cdd1d04d347d396fb2227d46e8eb33bf64
2,663
py
Python
kittycad/models/cluster.py
KittyCAD/kittycad.py
7f7460d366dbd55fce50e5faa4a032b62e4baae4
[ "MIT" ]
1
2022-02-06T05:07:25.000Z
2022-02-06T05:07:25.000Z
kittycad/models/cluster.py
KittyCAD/kittycad.py
7f7460d366dbd55fce50e5faa4a032b62e4baae4
[ "MIT" ]
7
2022-02-04T11:29:25.000Z
2022-03-07T01:37:26.000Z
kittycad/models/cluster.py
KittyCAD/kittycad.py
7f7460d366dbd55fce50e5faa4a032b62e4baae4
[ "MIT" ]
null
null
null
from typing import Any, Dict, List, Type, TypeVar, Union, cast import attr from ..types import UNSET, Unset T = TypeVar("T", bound="Cluster") @attr.s(auto_attribs=True) class Cluster: """ """ addr: Union[Unset, str] = UNSET auth_timeout: Union[Unset, int] = UNSET cluster_port: Union[Unset, int] = UNSET name: Union[Unset, str] = UNSET tls_timeout: Union[Unset, int] = UNSET urls: Union[Unset, List[str]] = UNSET additional_properties: Dict[str, Any] = attr.ib(init=False, factory=dict) def to_dict(self) -> Dict[str, Any]: addr = self.addr auth_timeout = self.auth_timeout cluster_port = self.cluster_port name = self.name tls_timeout = self.tls_timeout urls: Union[Unset, List[str]] = UNSET if not isinstance(self.urls, Unset): urls = self.urls field_dict: Dict[str, Any] = {} field_dict.update(self.additional_properties) field_dict.update({}) if addr is not UNSET: field_dict['addr'] = addr if auth_timeout is not UNSET: field_dict['auth_timeout'] = auth_timeout if cluster_port is not UNSET: field_dict['cluster_port'] = cluster_port if name is not UNSET: field_dict['name'] = name if tls_timeout is not UNSET: field_dict['tls_timeout'] = tls_timeout if urls is not UNSET: field_dict['urls'] = urls return field_dict @classmethod def from_dict(cls: Type[T], src_dict: Dict[str, Any]) -> T: d = src_dict.copy() addr = d.pop("addr", UNSET) auth_timeout = d.pop("auth_timeout", UNSET) cluster_port = d.pop("cluster_port", UNSET) name = d.pop("name", UNSET) tls_timeout = d.pop("tls_timeout", UNSET) urls = cast(List[str], d.pop("urls", UNSET)) cluster = cls( addr=addr, auth_timeout=auth_timeout, cluster_port=cluster_port, name=name, tls_timeout=tls_timeout, urls=urls, ) cluster.additional_properties = d return cluster @property def additional_keys(self) -> List[str]: return list(self.additional_properties.keys()) def __getitem__(self, key: str) -> Any: return self.additional_properties[key] def __setitem__(self, key: str, value: Any) -> None: self.additional_properties[key] = value def __delitem__(self, key: str) -> None: del self.additional_properties[key] def __contains__(self, key: str) -> bool: return key in self.additional_properties
28.945652
77
0.605332
2,488
0.934285
0
0
2,515
0.944424
0
0
137
0.051446
b8630346a106bda3978051caf8a5f0528b3d18fe
4,287
py
Python
Crypto.py
akshatsri89/Cryptogram
51ea1e658ecf82ea922a967299814e812da73c4e
[ "Apache-2.0" ]
1
2021-08-10T14:09:34.000Z
2021-08-10T14:09:34.000Z
Crypto.py
akshatsri89/Cryptogram
51ea1e658ecf82ea922a967299814e812da73c4e
[ "Apache-2.0" ]
null
null
null
Crypto.py
akshatsri89/Cryptogram
51ea1e658ecf82ea922a967299814e812da73c4e
[ "Apache-2.0" ]
null
null
null
# import tkinter module from tkinter import * # import other necessery modules import random # Vigenère cipher for encryption and decryption import base64 # creating root object root = Tk() # defining size of window root.geometry("1200x4000") # setting up the title of window root.title("Message Encrypter and Decrypter") Tops = Frame(root, width=1600, relief=SUNKEN) Tops.pack(side=TOP) f1 = Frame(root, width=800, relief=SUNKEN) f1.pack(side=LEFT) # ============================================== lblInfo = Label(Tops, font=('helvetica', 40, 'bold', 'underline'), text="SECRET MESSAGING", fg="Black", bd=10, anchor='w') lblInfo.grid(row=0, column=0) # Initializing variables Msg = StringVar() key = StringVar() mode = StringVar() Result = StringVar() # labels for the message lblMsg = Label(f1, font=('arial', 16, 'bold'), text="MESSAGE", bd=16, anchor="w") lblMsg.grid(row=1, column=0) # Entry box for the message txtMsg = Entry(f1, font=('arial', 16, 'bold'), textvariable=Msg, bd=10, insertwidth=4, bg="powder blue", justify='right') txtMsg.grid(row=1, column=1) # labels for the key lblkey = Label(f1, font=('arial', 16, 'bold'), text="KEY (Only Integer)", bd=16, anchor="w") lblkey.grid(row=2, column=0) # Entry box for the key txtkey = Entry(f1, font=('arial', 16, 'bold'), textvariable=key, bd=10, insertwidth=4, bg="powder blue", justify='right') txtkey.grid(row=2, column=1) # labels for the mode lblmode = Label(f1, font=('arial', 16, 'bold'), text="MODE(e for encrypt, d for decrypt)", bd=16, anchor="w") lblmode.grid(row=3, column=0) # Entry box for the mode txtmode = Entry(f1, font=('arial', 16, 'bold'), textvariable=mode, bd=10, insertwidth=4, bg="powder blue", justify='right') txtmode.grid(row=3, column=1) # labels for the result lblResult = Label(f1, font=('arial', 16, 'bold'), text="The Result-", bd=16, anchor="w") lblResult.grid(row=2, column=2) # Entry box for the result txtResult = Entry(f1, font=('arial', 16, 'bold'), textvariable=Result, bd=10, insertwidth=4, bg="powder blue", justify='right') txtResult.grid(row=2, column=3) # Vigenère cipher # Function to encode def encode(key, msg): enc = [] for i in range(len(msg)): key_c = key[i % len(key)] enc_c = chr((ord(msg[i]) + ord(key_c)) % 256) enc.append(enc_c) print("enc:", enc) return base64.urlsafe_b64encode("".join(enc).encode()).decode() # Function to decode def decode(key, enc): dec = [] enc = base64.urlsafe_b64decode(enc).decode() for i in range(len(enc)): key_c = key[i % len(key)] dec_c = chr((256 + ord(enc[i]) - ord(key_c)) % 256) dec.append(dec_c) print("dec:", dec) return "".join(dec) def Results(): # print("Message= ", (Msg.get())) msg = Msg.get() k = key.get() m = mode.get() if (m == 'e'): Result.set(encode(k, msg)) else: Result.set(decode(k, msg)) # exit function def qExit(): root.destroy() # Function to reset the window def Reset(): Msg.set("") key.set("") mode.set("") Result.set("") # Show message button btnTotal = Button(f1, padx=16, pady=8, bd=16, fg="black", font=('arial', 16, 'bold'), width=10, text="Show Message", bg="yellow", command=Results).grid(row=7, column=1) # Reset button btnReset = Button(f1, padx=16, pady=8, bd=16, fg="black", font=('arial', 16, 'bold'), width=10, text="Reset", bg="green", command=Reset).grid(row=7, column=2) # Exit button btnExit = Button(f1, padx=16, pady=8, bd=16, fg="black", font=('arial', 16, 'bold'), width=10, text="Exit", bg="red", command=qExit).grid(row=7, column=3) # keeps window alive root.mainloop()
24.497143
68
0.54397
0
0
0
0
0
0
0
0
1,180
0.275122
b865512ce604a1054ccd890643255a1593208d7a
224
py
Python
bootstrap_rmsf/__init__.py
jeeberhardt/bootstrap_rmsf
1487251ffde91d34b7609aec147c0ff99fc7cded
[ "MIT" ]
1
2021-08-06T02:31:32.000Z
2021-08-06T02:31:32.000Z
bootstrap_rmsf/__init__.py
jeeberhardt/bootstrap_rmsf
1487251ffde91d34b7609aec147c0ff99fc7cded
[ "MIT" ]
null
null
null
bootstrap_rmsf/__init__.py
jeeberhardt/bootstrap_rmsf
1487251ffde91d34b7609aec147c0ff99fc7cded
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Jérôme Eberhardt 2018 # Bootstrap RMSF # Author: Jérôme Eberhardt <qksonoe@gmail.com> # # License: MIT from bootstrap_rmsf import Bootstrap_RMSF from utils import plot_rmsf
18.666667
46
0.736607
0
0
0
0
0
0
0
0
149
0.653509
b8658b22f0fd4c1d9dcc67d9f35f9aa1c9580dfe
1,221
py
Python
fixture/application.py
OSavchik/python_training
8e532c9f0da99e5f342467dd7bcc3a43e667daf6
[ "Apache-2.0" ]
null
null
null
fixture/application.py
OSavchik/python_training
8e532c9f0da99e5f342467dd7bcc3a43e667daf6
[ "Apache-2.0" ]
null
null
null
fixture/application.py
OSavchik/python_training
8e532c9f0da99e5f342467dd7bcc3a43e667daf6
[ "Apache-2.0" ]
null
null
null
from selenium import webdriver from fixture.session import SessionHelper from fixture.group import GroupHelper from fixture.contact import ContactHelper class Application: def __init__(self, browser, base_url): if browser == "firefox": self.wd = webdriver.Firefox() elif browser == "Chrome": self.wd = webdriver.Chrome() elif browser == "ie": self.wd = webdriver.Ie() else: raise ValueError("Unrecoznized browse %s" % browser) self.wd.implicitly_wait(5) self.session = SessionHelper(self) self.group = GroupHelper(self) self.contact = ContactHelper(self) self.base_url = base_url def is_valid(self): try: self.wd.current_url return True except: return False def open_home_page(self): wd = self.wd wd.get(self.base_url) def destroy(self): self.wd.quit() def get_serial_number_element_by_id(self, list_elements, id): i = 0 for index_element in list_elements: if index_element.id == id: break else: i = i + 1 return i
24.918367
65
0.580672
1,062
0.869779
0
0
0
0
0
0
45
0.036855
b868a9af47b1de35f84902480574280915282a7c
7,601
py
Python
data_managers/data_manager_gatk_picard_index_builder/data_manager/data_manager_gatk_picard_index_builder.py
supernord/tools-iuc
9a0c41967765d120a8fc519c0c7f09cbe3a6efbe
[ "MIT" ]
142
2015-03-13T18:08:34.000Z
2022-03-30T23:52:34.000Z
data_managers/data_manager_gatk_picard_index_builder/data_manager/data_manager_gatk_picard_index_builder.py
mtekman/tools-iuc
95f1ae4ed1cdd56114df76d215f9e1ed549aa4c5
[ "MIT" ]
3,402
2015-01-05T18:04:20.000Z
2022-03-30T22:09:36.000Z
data_managers/data_manager_gatk_picard_index_builder/data_manager/data_manager_gatk_picard_index_builder.py
willemdek11/tools-iuc
dc0a0cf275168c2a88ee3dc47652dd7ca1137871
[ "MIT" ]
438
2015-01-07T20:33:59.000Z
2022-03-30T04:39:18.000Z
#!/usr/bin/env python # Dave B. # Uses fasta sorting functions written by Dan Blankenberg. import json import optparse import os import shutil import subprocess import sys import tempfile CHUNK_SIZE = 2**20 DEFAULT_DATA_TABLE_NAME = "fasta_indexes" def get_id_name(params, dbkey, fasta_description=None): # TODO: ensure sequence_id is unique and does not already appear in location file sequence_id = params['param_dict']['sequence_id'] if not sequence_id: sequence_id = dbkey sequence_name = params['param_dict']['sequence_name'] if not sequence_name: sequence_name = fasta_description if not sequence_name: sequence_name = dbkey return sequence_id, sequence_name def build_picard_index(data_manager_dict, fasta_filename, target_directory, dbkey, sequence_id, sequence_name, jar, data_table_name=DEFAULT_DATA_TABLE_NAME): fasta_base_name = os.path.split(fasta_filename)[-1] gatk_sorted_fasta_filename = os.path.join(target_directory, fasta_base_name) shutil.copy(fasta_filename, gatk_sorted_fasta_filename) _sort_fasta_gatk(gatk_sorted_fasta_filename) sam_index_filename = '%s.fai' % gatk_sorted_fasta_filename if not os.path.exists(sam_index_filename): sam_command = ['samtools', 'faidx', gatk_sorted_fasta_filename] _run_command(sam_command, target_directory) args = ['java', '-jar', jar, 'R=%s' % gatk_sorted_fasta_filename, 'O=%s.dict' % sequence_id] _run_command(args, target_directory) data_table_entry = dict(value=sequence_id, dbkey=dbkey, name=sequence_name, path=fasta_base_name) _add_data_table_entry(data_manager_dict, data_table_name, data_table_entry) def _run_command(command, target_directory): tmp_stderr = tempfile.NamedTemporaryFile(prefix="tmp-data-manager-gatk_picard_index_builder-stderr") proc = subprocess.Popen(args=command, shell=False, cwd=target_directory, stderr=tmp_stderr.fileno()) return_code = proc.wait() if return_code: tmp_stderr.flush() tmp_stderr.seek(0) sys.stderr.write("Error building index:\n") while True: chunk = tmp_stderr.read(CHUNK_SIZE) if not chunk: break sys.stderr.write(chunk) sys.exit(return_code) tmp_stderr.close() def _add_data_table_entry(data_manager_dict, data_table_name, data_table_entry): data_manager_dict['data_tables'] = data_manager_dict.get('data_tables', {}) data_manager_dict['data_tables'][data_table_name] = data_manager_dict['data_tables'].get(data_table_name, []) data_manager_dict['data_tables'][data_table_name].append(data_table_entry) return data_manager_dict def _move_and_index_fasta_for_sorting(fasta_filename): unsorted_filename = tempfile.NamedTemporaryFile().name shutil.move(fasta_filename, unsorted_filename) fasta_offsets = {} with open(unsorted_filename) as unsorted_fh: while True: offset = unsorted_fh.tell() line = unsorted_fh.readline() if not line: break if line.startswith(">"): line = line.split(None, 1)[0][1:] fasta_offsets[line] = offset current_order = [x[1] for x in sorted((x[1], x[0]) for x in fasta_offsets.items())] return (unsorted_filename, fasta_offsets, current_order) def _write_sorted_fasta(sorted_names, fasta_offsets, sorted_fasta_filename, unsorted_fasta_filename): with open(unsorted_fasta_filename, 'rb') as unsorted_fh, open(sorted_fasta_filename, 'wb+') as sorted_fh: for name in sorted_names: offset = fasta_offsets[name] unsorted_fh.seek(offset) sorted_fh.write(unsorted_fh.readline()) while True: line = unsorted_fh.readline() if not line or line.startswith(b">"): break sorted_fh.write(line) def _int_to_roman(integer): if not isinstance(integer, int): raise TypeError("expected integer, got %s" % type(integer)) if not 0 < integer < 4000: raise ValueError("Argument must be between 1 and 3999, got %s" % str(integer)) ints = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1) nums = ('M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I') result = "" for i in range(len(ints)): count = int(integer / ints[i]) result += nums[i] * count integer -= ints[i] * count return result def _sort_fasta_gatk(fasta_filename): (unsorted_filename, fasta_offsets, current_order) = _move_and_index_fasta_for_sorting(fasta_filename) sorted_names = list(map(str, range(1, 100))) + list(map(_int_to_roman, range(1, 100))) + ['X', 'Y', 'M'] # detect if we have chrN, or just N has_chr = False for chrom in sorted_names: if "chr%s" % chrom in current_order: has_chr = True break if has_chr: sorted_names = ["chr%s" % x for x in sorted_names] else: sorted_names.insert(0, "MT") sorted_names.extend(["%s_random" % x for x in sorted_names]) existing_sorted_names = [] for name in sorted_names: # Append each chromosome only once. if name in current_order and name not in existing_sorted_names: existing_sorted_names.append(name) for name in current_order: # TODO: confirm that non-canonical names do not need to be sorted specially if name not in existing_sorted_names: existing_sorted_names.append(name) if existing_sorted_names == current_order: shutil.move(unsorted_filename, fasta_filename) else: _write_sorted_fasta(existing_sorted_names, fasta_offsets, fasta_filename, unsorted_filename) def main(): parser = optparse.OptionParser() parser.add_option('-f', '--fasta_filename', dest='fasta_filename', action='store', type="string", default=None, help='fasta_filename') parser.add_option('-d', '--fasta_dbkey', dest='fasta_dbkey', action='store', type="string", default=None, help='fasta_dbkey') parser.add_option('-t', '--fasta_description', dest='fasta_description', action='store', type="string", default=None, help='fasta_description') parser.add_option('-n', '--data_table_name', dest='data_table_name', action='store', type="string", default=None, help='data_table_name') parser.add_option('-j', '--jar', dest='jar', action='store', type="string", default=None, help='GATK .jar file') (options, args) = parser.parse_args() filename = args[0] with open(filename) as fh: params = json.load(fh) target_directory = params['output_data'][0]['extra_files_path'] os.mkdir(target_directory) data_manager_dict = {} if options.fasta_dbkey in [None, '', '?']: raise Exception('"%s" is not a valid dbkey. You must specify a valid dbkey.' % (options.fasta_dbkey)) sequence_id, sequence_name = get_id_name(params, dbkey=options.fasta_dbkey, fasta_description=options.fasta_description) # build the index build_picard_index(data_manager_dict, options.fasta_filename, target_directory, options.fasta_dbkey, sequence_id, sequence_name, options.jar, data_table_name=options.data_table_name or DEFAULT_DATA_TABLE_NAME) # save info to json file with open(filename, 'w') as fh: json.dump(data_manager_dict, fh, sort_keys=True) if __name__ == "__main__": main()
40.865591
157
0.675043
0
0
0
0
0
0
0
0
1,224
0.161031
b86adccb9d42d87933b32bb27aaf25b01696f8a9
818
py
Python
django_for_startups/django_customizations/drf_customizations.py
Alex3917/django_for_startups
9dda54f5777247f7367a963d668f25e797c9adf1
[ "MIT" ]
102
2021-02-28T00:58:36.000Z
2022-03-30T09:29:34.000Z
django_for_startups/django_customizations/drf_customizations.py
Alex3917/django_for_startups
9dda54f5777247f7367a963d668f25e797c9adf1
[ "MIT" ]
1
2021-07-11T18:45:29.000Z
2021-07-11T18:45:29.000Z
django_for_startups/django_customizations/drf_customizations.py
Alex3917/django_for_startups
9dda54f5777247f7367a963d668f25e797c9adf1
[ "MIT" ]
16
2021-06-23T18:34:46.000Z
2022-03-30T09:27:34.000Z
# Standard Library imports # Core Django imports # Third-party imports from rest_framework import permissions from rest_framework.throttling import UserRateThrottle, AnonRateThrottle # App imports class BurstRateThrottle(UserRateThrottle): scope = 'burst' class SustainedRateThrottle(UserRateThrottle): scope = 'sustained' class HighAnonThrottle(AnonRateThrottle): rate = '5000000/day' class AccountCreation(permissions.BasePermission): """ A user should be able to create an account without being authenticated, but only the owner of an account should be able to access that account's data in a GET method. """ def has_permission(self, request, view): if (request.method == "POST") or request.user.is_authenticated: return True return False
24.787879
94
0.734719
606
0.740831
0
0
0
0
0
0
308
0.376528
b86ccfc144647099cbf5ac1e80b91ec536893766
171,517
py
Python
python/mapCells.py
claraya/meTRN
a4e4911b26a295e22d7309d5feda026db3325885
[ "MIT" ]
2
2019-11-18T22:54:13.000Z
2019-11-18T22:55:18.000Z
python/mapCells.py
claraya/meTRN
a4e4911b26a295e22d7309d5feda026db3325885
[ "MIT" ]
null
null
null
python/mapCells.py
claraya/meTRN
a4e4911b26a295e22d7309d5feda026db3325885
[ "MIT" ]
null
null
null
#!/usr/bin/env python # perform cellular-resolution expression analyses! import sys import time import optparse import general import hyper import numpy import math import pickle import pdb import metrn import modencode import itertools import os import re import datetime import calendar #import simplejson as json from scipy.stats.stats import pearsonr from runner import * from scipy import stats from network import Network from network import export print "Command:", " ".join(sys.argv) print "Timestamp:", time.asctime(time.localtime()) """ define functions of internal use """ """ define a function to recover cells in a time range """ def getTargetCells(inobject="", inpath="", mode="collection", timeRange=list()): # grab cells from collection: if mode == "collection": # load collection cells: cells = list() for gene in os.listdir(inpath): cells.extend(open(inpath + gene).read().split("\n")) cells = general.clean(sorted(list(set(cells)))) print "Loading collection cells:", len(cells) # grab cells from time-points: elif mode == "time": # load time-point cells: cells = list() for timePoint in os.listdir(inpath): if int(timePoint) in timeRange: cells += general.clean(open(inpath + timePoint).read().split("\n")) cells = sorted(list(set(cells))) print "Loading time-point/range cells:", len(cells) # return collected cells: return cells """ define a function to construct a cell-parent relationships, and pedigree cell list """ def expressionBuilder(expressionfile, path, cutoff, minimum, metric="fraction.expression"): # build header dict: hd = general.build_header_dict(path + expressionfile) # process input expression data: quantitation_matrix, expression_matrix, tracking_matrix, trackedCells = dict(), dict(), dict(), list() inlines = open(path + expressionfile).readlines() inlines.pop(0) for inline in inlines: initems = inline.strip().split("\t") cell, gene, rawSignal, metricSignal = initems[hd["cell.name"]], initems[hd["gene"]], initems[hd["cell.expression"]], initems[hd[metric]] trackedCells.append(cell) # store expression value if not gene in quantitation_matrix: quantitation_matrix[gene] = dict() quantitation_matrix[gene][cell] = float(metricSignal) # store tracked and expressing cells: if not gene in tracking_matrix: expression_matrix[gene] = list() tracking_matrix[gene] = list() tracking_matrix[gene].append(cell) if float(metricSignal) >= float(cutoff) and float(rawSignal) >= minimum: expression_matrix[gene].append(cell) trackedCells = list(set(trackedCells)) return quantitation_matrix, expression_matrix, tracking_matrix, trackedCells """ define a function to construct a cell-parent relationships, and pedigree cell list """ def relationshipBuilder(pedigreefile, path, trackedCells=list(), lineages="complete", mechanism="simple"): cell_dict, parent_dict = dict(), dict() inlines = open(path + pedigreefile).readlines() header = inlines.pop(0) for inline in inlines: cell, binCell, parent, binParent = inline.strip().split(",")[:4] tissues = inline.strip().split(",")[5] if not parent == "" and not cell == "": if mechanism == "simple" or lineages == "complete" or (lineages == "tracked" and parent in trackedCells and cell in trackedCells): if not parent in parent_dict: parent_dict[parent] = list() parent_dict[parent].append(cell) cell_dict[cell] = parent pedigreeCells = sorted(list(set(cell_dict.keys()).union(set(parent_dict.keys())))) return cell_dict, parent_dict, pedigreeCells """ define a function to generate the underlying tree of a given parent """ def treeBuilder(parent_dict, cell_dict, highlights=list(), nodeColor="#FFFFFF", lineColor="#336699", textColor="#000000", highlightColor="#CC0000"): # set color rules: groups = { "unknown" : textColor, "highlight" : highlightColor } nodeColors = { "unknown" : nodeColor, "highlight" : highlightColor } lineColors = { "unknown" : lineColor, "highlight" : highlightColor } textColors = { "unknown" : textColor, "highlight" : highlightColor } # initialize tree: tree = {} for child in cell_dict: parent = cell_dict[child] # determine whether to pkey, ckey = "unknown", "unknown" if parent in highlights: pkey = "highlight" if child in highlights: ckey = "highlight" # make an instance of a class for the parent if neccesary: if not tree.has_key(parent): tree[parent] = {'name':parent,'group':groups[pkey],'nodeColor':nodeColors[pkey],'lineColor':lineColors[pkey],'textColor':textColors[pkey],'children':[]} # make an instance of a class for the child if neccesary: if not tree.has_key(child): tree[child] = {'name':child,'group':groups[ckey],'nodeColor':nodeColors[ckey],'lineColor':lineColors[ckey],'textColor':textColors[ckey],'children':[]} # and child object to parent if necesary: if not tree[child] in tree[parent]['children']: tree[parent]['children'].append(tree[child]) return tree """ define a function to generate the list of cells that are parents to a given cell """ def ascendantsCollector(cell, parent_dict, cell_dict, ascendants=list(), sort=True): if not cell in ascendants: ascendants.append(cell) if cell in cell_dict: parent = cell_dict[cell] ascendants.append(parent) ascendants = ascendantsCollector(parent, parent_dict, cell_dict, ascendants, sort=sort) if sort: return sorted(list(set(ascendants))) else: return ascendants """ define a function to generate the list of cells that are progeny to a given parent """ def descendantsCollector(parent, parent_dict, cell_dict, descendants=list(), sort=True): if not parent in descendants: descendants.append(parent) if parent in parent_dict: for cell in parent_dict[parent]: descendants.append(cell) descendants = descendantsCollector(cell, parent_dict, cell_dict, descendants, sort=sort) if sort: return sorted(list(set(descendants))) else: return descendants """ define a function to generate the list of cells that are progeny to a given parent (using combinations function) """ def lineageGenerator(parent, parent_dict, cell_dict): descendants = descendantsCollector(parent, parent_dict, cell_dict, descendants=list()) gList = list() for r in range(1, len(descendants)+1): for gCells in itertools.combinations(descendants, r): process = True gCells = list(gCells) for gCell in gCells: if gCell != parent: if not cell_dict[gCell] in gCells: process = False if process: gList.append(",".join(sorted(gCells))) return gList """ define a function to generate the list of cells that are progeny to a given parent (using lineage growth) """ def lineageBuilder(parent, parent_dict, cell_dict, limit="OFF", descendants="ON"): mList = [parent] for mCells in mList: aCells, bCells, xCells, exit = str(mCells), str(mCells), str(mCells), False for mCell in mCells.split(","): if mCell in parent_dict and len(parent_dict[mCell]) == 2: aCell, bCell = parent_dict[mCell] if not aCell in aCells.split(","): aCells = ",".join(sorted(mCells.split(",") + [aCell])) if not bCell in bCells.split(","): bCells = ",".join(sorted(mCells.split(",") + [bCell])) if not aCell in xCells.split(",") and not bCell in xCells.split(","): xCells = ",".join(sorted(mCells.split(",") + [aCell, bCell])) if not aCells in mList: mList.append(aCells) if not bCells in mList: mList.append(bCells) if not xCells in mList: mList.append(xCells) if limit != "OFF" and len(mList) >= limit: if descendants == "ON": aCellx = sorted(list(set(mCells.split(",") + descendantsCollector(aCell, parent_dict, cell_dict, descendants=list())))) bCellx = sorted(list(set(mCells.split(",") + descendantsCollector(bCell, parent_dict, cell_dict, descendants=list())))) xCellx = sorted(list(set(aCellx).union(set(bCellx)))) aCellx = ",".join(aCellx) bCellx = ",".join(bCellx) xCellx = ",".join(xCellx) if not aCellx in mList: mList.append(aCellx) if not bCellx in mList: mList.append(bCellx) if not xCellx in mList: mList.append(xCellx) exit = True if exit: break return sorted(mList) """ define a function to generate lists of related-cells from a given set of of cells """ def lineageCollector(cells, parent_dict, cell_dict, siblings="ON"): collections, parent_tree, cell_tree = list(), dict(), dict() #ascendants = ascendantsCollector(descendant, parent_tree, cell_tree, ascendants=list()) #descendants = descendantsCollector(parent, parent_dict, cell_dict, descendants=list()) print len(cells), cells for cell in sorted(cells): found, relatives = False, [cell] if cell in cell_dict: relatives.append(cell_dict[cell]) if cell in parent_dict: relatives.extend(parent_dict[cell]) if siblings == "ON" and cell in cell_dict: relatives.extend(parent_dict[cell_dict[cell]]) r, relatives = 0, list(set(relatives).intersection(set(cells))) print cell, relatives, "<-- relatives" updated = list() for collection in collections: if set(relatives).intersection(set(collection)): print collection, "<-- collection" collection.extend(relatives) collection = list(set(collection)) print collection, "<-- updated" r += 1 pdb.set_trace() updated.append(collection) if r == 0: updated.append(relatives) collections = updated return collections """ define a function to calculate the number of possible subsets """ def combinationCalculator(n, R): combinations = 0 for r in range(1,R): combinations += math.factorial(n)/(math.factorial(r)*math.factorial(n-r)) return combinations """ define a function to calculate the number of divisions between two cells """ def divisionCalculator(aCell, aParent, parent_dict, cell_dict): divisions = 0 while aCell in cell_dict and aCell != aParent: if cell_dict[aCell] == aParent: divisions += 1 break else: aCell = cell_dict[aCell] divisions += 1 return divisions """ define a function that calculates the lineage distance between two cells """ def lineageDistance(aCell, bCell, parent_dict, cell_dict): aParents = ascendantsCollector(aCell, parent_dict, cell_dict) bParents = ascendantsCollector(bCell, parent_dict, cell_dict) xParents = set(aParents).intersection(set(bParents)) xDistances = dict() #print len(xParents), aCell, bCell, ":", ", ".join(xParents) for xParent in xParents: aDistance = divisionCalculator(aCell, xParent, parent_dict, cell_dict) bDistance = divisionCalculator(bCell, xParent, parent_dict, cell_dict) xDistances[xParent] = aDistance + bDistance xParents = general.valuesort(xDistances) distance, ancestor = xDistances[xParents[0]], xParents[0] return distance, ancestor def main(): parser = optparse.OptionParser() parser.add_option("--path", action="store", type="string", dest="path", help="Path from script to files") parser.add_option("--organism", action = "store", type = "string", dest = "organism", help = "Target organism for operations...", default="OFF") parser.add_option("--mode", action="store", type="string", dest="mode", help="Operation modes: import, map, or other...") parser.add_option("--peaks", action="store", type="string", dest="peaks", help="Peaks set to be used.", default="OFF") parser.add_option("--infile", action="store", type="string", dest="infile", help="Input file for abundance representation") parser.add_option("--nuclear", action = "store", type = "string", dest = "nuclear", help = "Peaks are only nuclear?", default="ON") parser.add_option("--expression", action="store", type="string", dest="expression", help="Input expression file for abundance representation", default="OFF") parser.add_option("--pedigree", action="store", type="string", dest="pedigree", help="Input pedigree file", default="OFF") parser.add_option("--mapping", action="store", type="string", dest="mapping", help="Input mapping file; associates tissue labels to more generic terms!", default="OFF") parser.add_option("--tissues", action="store", type="string", dest="tissues", help="Input tissues file", default="OFF") parser.add_option("--times", action="store", type="string", dest="times", help="Input cell times file", default="OFF") parser.add_option("--name", action="store", type="string", dest="name", help="Output file name", default="") parser.add_option("--nametag", action="store", type="string", dest="nametag", help="Output file name addition tag", default="") parser.add_option("--collection", action="store", type="string", dest="collection", help="Cell collection subset name", default="OFF") parser.add_option("--technique", action = "store", type = "string", dest = "technique", help = "What kind of matrix should I build? binary, fraction, or normal", default="binary") parser.add_option("--neurons", action="store", type="string", dest="neurons", help="Neurons to be used for 'collection' analysis...", default="OFF") parser.add_option("--factors", action="store", type="string", dest="factors", help="Infer factors (OFF) or load from file?", default="OFF") parser.add_option("--measure", action="store", type="string", dest="measure", help="Maximum (cells) or mean", default="avg.expression") parser.add_option("--fraction", action="store", type="float", dest="fraction", help="Fractional expression cutoff", default=0.1) parser.add_option("--minimum", action="store", type="float", dest="minimum", help="Minimum raw expression cutoff", default=2000) parser.add_option("--inherit", action="store", type="string", dest="inherit", help="Signal inheritance policy: 'max' or 'last' of ancestor expression signals...", default="last") parser.add_option("--overlap", action="store", type="float", dest="overlap", help="Cellular overlap cutoff", default=0.75) parser.add_option("--pvalue", action="store", type="float", dest="pvalue", help="Significance cutoff", default=0.01) parser.add_option("--header", action="store", type="string", dest="header", help="Is there a header?", default="OFF") parser.add_option("--format", action="store", type="string", dest="format", help="How should formatting be done?", default="bed") parser.add_option("--reference", action="store", type="string", dest="reference", help="Gene-coordinate reference file", default="in2shape_ce_wormbased_COM_gx.bed") parser.add_option("--up", action = "store", type = "int", dest = "up", help = "Upstream space", default=0) parser.add_option("--dn", action = "store", type = "int", dest = "dn", help = "Downstream space", default=0) parser.add_option("--method", action="store", type="string", dest="method", help="Should descendant cells or descendant lineages be examined?", default="lineages") parser.add_option("--cells", action="store", type="string", dest="cells", help="Reduce lineage cells to tracked cells (tracked) or use complete lineage cells (complete)?", default="tracked") parser.add_option("--lineages", action="store", type="string", dest="lineages", help="Reduce lineage tree to tracked cells (tracked) or use complete lineage tree (complete)?", default="tracked") parser.add_option("--descendants", action="store", type="string", dest="descendants", help="Apply descendants cutoff?", default="OFF") parser.add_option("--ascendants", action="store", type="string", dest="ascendants", help="Apply ascendants cutoff?", default="OFF") parser.add_option("--extend", action="store", type="string", dest="extend", help="Extend to include 0 signal expression values for cells not measured?", default="OFF") parser.add_option("--overwrite", action="store", type="string", dest="overwrite", help="Overwrite outputs?", default="OFF") parser.add_option("--parameters", action="store", type="string", dest="parameters", help="Optional parameters...", default="OFF") parser.add_option("--limit", action="store", type="string", dest="limit", help="Limit on lineage expansion? Numeric integer.", default="OFF") parser.add_option("--query", action="store", type="string", dest="query", help="Query collections of cells whose enrichment will be searched in target cells", default="OFF") parser.add_option("--source", action="store", type="string", dest="source", help="File source for inputs...", default="OFF") parser.add_option("--target", action="store", type="string", dest="target", help="Target collections of cells in which enrichment is searched for", default="OFF") parser.add_option("--domain", action="store", type="string", dest="domain", help="Domain of co-associations for hybrid-type analyses", default="OFF") parser.add_option("--A", action = "store", type = "string", dest = "a", help = "Paths to files of interest", default="OFF") parser.add_option("--B", action = "store", type = "string", dest = "b", help = "Files to be hybridized", default="OFF") parser.add_option("--indexes", action = "store", type = "string", dest = "indexes", help = "Indexes for matrix construction...", default="OFF") parser.add_option("--values", action = "store", type = "string", dest = "values", help = "Values for matrix construction...", default="OFF") parser.add_option("--contexts", action = "store", type = "string", dest = "contexts", help = "What contexts of development should I track?", default="OFF") parser.add_option("--exclude", action="store", type="string", dest="exclude", help="Are there items that should be excluded?", default="") parser.add_option("--start", action = "store", type = "int", dest = "start", help = "Start development time for cell search", default=1) parser.add_option("--stop", action = "store", type = "int", dest = "stop", help = "End development time for cell search", default=250) parser.add_option("--step", action = "store", type = "int", dest = "step", help = "Step size", default=1) parser.add_option("--total", action = "store", type = "int", dest = "total", help = "Total simulations (indexes) for 'master' operations ", default=1000) parser.add_option("--threads", action = "store", type = "int", dest = "threads", help = "Parallel processing threads", default=1) parser.add_option("--chunks", action = "store", type = "int", dest = "chunks", help = "", default=100) parser.add_option("--module", action = "store", type = "string", dest = "module", help = "", default="md1") parser.add_option("--qsub", action = "store", type = "string", dest = "qsub", help = "Qsub configuration header", default="OFF") parser.add_option("--server", action = "store", type = "string", dest = "server", help = "Are we on the server?", default="OFF") parser.add_option("--job", action = "store", type = "string", dest = "job", help = "Job name for cluster", default="OFF") parser.add_option("--copy", action = "store", type = "string", dest = "copy", help = "Copy simulated peaks to analysis folder?", default="OFF") parser.add_option("--tag", action = "store", type = "string", dest = "tag", help = "Add tag to TFBS?", default="") (option, args) = parser.parse_args() # import paths: if option.server == "OFF": path_dict = modencode.configBuild(option.path + "/input/" + "configure_path.txt") elif option.server == "ON": path_dict = modencode.configBuild(option.path + "/input/" + "configure_server.txt") # specify input and output paths: inpath = path_dict["input"] extraspath = path_dict["extras"] pythonpath = path_dict["python"] scriptspath = path_dict["scripts"] downloadpath = path_dict["download"] fastqpath = path_dict["fastq"] bowtiepath = path_dict["bowtie"] bwapath = path_dict["bwa"] macspath = path_dict["macs"] memepath = path_dict["meme"] idrpath = path_dict["idr"] igvpath = path_dict["igv"] testpath = path_dict["test"] processingpath = path_dict["processing"] annotationspath = path_dict["annotations"] peakspath = path_dict["peaks"] gopath = path_dict["go"] hotpath = path_dict["hot"] qsubpath = path_dict["qsub"] coassociationspath = path_dict["coassociations"] bindingpath = path_dict["binding"] neuronspath = path_dict["neurons"] cellspath = path_dict["cells"] # standardize paths for analysis: alignerpath = bwapath indexpath = alignerpath + "index/" alignmentpath = alignerpath + "alignment/" qcfilterpath = alignerpath + "qcfilter/" qcmergepath = alignerpath + "qcmerge/" # import configuration dictionaries: source_dict = modencode.configBuild(inpath + "configure_source.txt") method_dict = modencode.configBuild(inpath + "configure_method.txt") context_dict = modencode.configBuild(inpath + "configure_context.txt") # define organism parameters: if option.organism == "hs" or option.organism == "h.sapiens": organismTag = "hs" #organismIGV = "ce6" elif option.organism == "mm" or option.organism == "m.musculus": organismTag = "mm" #organismIGV = "ce6" elif option.organism == "ce" or option.organism == "c.elegans": organismTag = "ce" #organismIGV = "ce6" elif option.organism == "dm" or option.organism == "d.melanogaster": organismTag = "dm" #organismIGV = "dm5" # specify genome size file: if option.nuclear == "ON": chromosomes = metrn.chromosomes[organismTag]["nuclear"] genome_size_file = option.path + "/input/" + metrn.reference[organismTag]["nuclear_sizes"] genome_size_dict = general.build_config(genome_size_file, mode="single", separator="\t", spaceReplace=True) else: chromosomes = metrn.chromosomes[organismTag]["complete"] genome_size_file = option.path + "/input/" + metrn.reference[organismTag]["complete_sizes"] genome_size_dict = general.build_config(genome_size_file, mode="single", separator="\t", spaceReplace=True) # load gene ID dictionaries: id2name_dict, name2id_dict = modencode.idBuild(inpath + metrn.reference[organismTag]["gene_ids"], "Sequence Name (Gene)", "Gene Public Name", mode="label", header=True, idUpper=True, nameUpper=True) # update peaks path: peakspath = peakspath + option.peaks + "/" # define input/output folders: expressionpath = cellspath + "expression/" correctionpath = cellspath + "correction/" lineagepath = cellspath + "lineage/" bindingpath = cellspath + "peaks/" overlappath = cellspath + "overlap/" cellsetpath = cellspath + "cellset/" genesetpath = cellspath + "geneset/" reportspath = cellspath + "reports/" comparepath = cellspath + "compare/" matrixpath = cellspath + "matrix/" tissuespath = cellspath + "tissues/" distancepath = cellspath + "distance/" hybridpath = cellspath + "hybrid/" dynamicspath = cellspath + "dynamics/" cubismpath = cellspath + "cubism/" timepath = cellspath + "time/" cellnotationspath = cellspath + "annotations/" general.pathGenerator(expressionpath) general.pathGenerator(correctionpath) general.pathGenerator(lineagepath) general.pathGenerator(bindingpath) general.pathGenerator(overlappath) general.pathGenerator(cellsetpath) general.pathGenerator(genesetpath) general.pathGenerator(reportspath) general.pathGenerator(comparepath) general.pathGenerator(matrixpath) general.pathGenerator(tissuespath) general.pathGenerator(distancepath) general.pathGenerator(timepath) general.pathGenerator(hybridpath) general.pathGenerator(dynamicspath) general.pathGenerator(cubismpath) general.pathGenerator(cellnotationspath) # generate expression flag: if option.measure == "max.expression": expression_flag = "maxCel_" elif option.measure == "avg.expression": expression_flag = "avgExp_" # check that the index range is coherent: if option.stop > option.total: print print "Error: Range exceeded! Stop index is larger than total." print return # master mode: if "master" in option.mode: # capture master mode: master, mode = option.mode.split(":") # prepare for qsub: bash_path = str(option.path + "/data/cells/runs/").replace("//","/") bash_base = "_".join([mode, option.peaks, option.name]) + "-M" qsub_base = "_".join([mode, option.peaks, option.name]) general.pathGenerator(bash_path) if option.qsub != "OFF": qsub_header = open(qsubpath + option.qsub).read() qsub = True else: qsub_header = "" qsub = False if option.job == "QSUB": qsub_header = qsub_header.replace("qsubRunner", "qsub-" + qsub_base) elif option.job != "OFF": qsub_header = qsub_header.replace("qsubRunner", "qsub-" + option.job) bash_base = option.job + "-M" # update server path: if option.qsub != "OFF": option.path = serverPath(option.path) # prepare slave modules: m, steps, modules, commands, sequences, chunks, start, complete = 1, 0, list(), list(), list(), option.chunks, option.start, False for index in range(option.start, option.stop+1, option.step): run = "rn" + general.indexTag(index, option.total) steps += 1 # cellular peak generation mode: if mode == "cell.peaks": command = "python <<CODEPATH>>mapCells.py --path <<PATH>> --organism <<ORGANISM>> --mode <<MODE>> --peaks <<PEAKS>> --start <<START>> --stop <<STOP>> --total <<TOTAL>> --expression <<EXPRESSION>> --collection <<COLLECTION>> --times <<TIMES>> --fraction <<FRACTION>> --minimum <<MINIMUM>> --name <<NAME>> --qsub <<QSUB>> --server <<SERVER>> --module <<MODULE>>" command = command.replace("<<CODEPATH>>", option.path + "/python/") command = command.replace("<<PATH>>", option.path) command = command.replace("<<ORGANISM>>", option.organism) command = command.replace("<<MODE>>", mode) command = command.replace("<<PEAKS>>", option.peaks) command = command.replace("<<START>>", str(index)) command = command.replace("<<STOP>>", str(index)) command = command.replace("<<TOTAL>>", str(option.total)) command = command.replace("<<EXPRESSION>>", option.expression) command = command.replace("<<COLLECTION>>", option.collection) command = command.replace("<<TIMES>>", option.times) command = command.replace("<<FRACTION>>", str(option.fraction)) command = command.replace("<<MINIMUM>>", str(option.minimum)) command = command.replace("<<NAME>>", option.name + general.indexTag(index, option.total)) command = command.replace("<<QSUB>>", option.qsub) command = command.replace("<<SERVER>>", option.server) command = command.replace("<<MODULE>>", "md" + str(m)) # cellular peak generation mode: if mode == "cell.annotation": command = "python <<CODEPATH>>mapCells.py --path <<PATH>> --organism <<ORGANISM>> --mode <<MODE>> --peaks <<PEAKS>> --start <<START>> --stop <<STOP>> --total <<TOTAL>> --infile <<INFILE>> --collection <<COLLECTION>> --times <<TIMES>> --name <<NAME>> --qsub <<QSUB>> --server <<SERVER>> --module <<MODULE>>" command = command.replace("<<CODEPATH>>", option.path + "/python/") command = command.replace("<<PATH>>", option.path) command = command.replace("<<ORGANISM>>", option.organism) command = command.replace("<<MODE>>", mode) command = command.replace("<<PEAKS>>", option.peaks) command = command.replace("<<START>>", str(index)) command = command.replace("<<STOP>>", str(index)) command = command.replace("<<TOTAL>>", str(option.total)) command = command.replace("<<INFILE>>", option.infile) command = command.replace("<<COLLECTION>>", option.collection) command = command.replace("<<TIMES>>", option.times) command = command.replace("<<NAME>>", option.name + general.indexTag(index, option.total) + option.nametag) command = command.replace("<<QSUB>>", option.qsub) command = command.replace("<<SERVER>>", option.server) command = command.replace("<<MODULE>>", "md" + str(m)) # cellular overlap mode: if mode == "cell.overlap": command = "python <<CODEPATH>>mapCells.py --path <<PATH>> --organism <<ORGANISM>> --mode <<MODE>> --peaks <<PEAKS>> --start <<START>> --stop <<STOP>> --total <<TOTAL>> --expression <<EXPRESSION>> --collection <<COLLECTION>> --times <<TIMES>> --fraction <<FRACTION>> --minimum <<MINIMUM>> --extend <<EXTEND>> --name <<NAME>> --qsub <<QSUB>> --server <<SERVER>> --module <<MODULE>>" command = command.replace("<<CODEPATH>>", option.path + "/python/") command = command.replace("<<PATH>>", option.path) command = command.replace("<<ORGANISM>>", option.organism) command = command.replace("<<MODE>>", mode) command = command.replace("<<PEAKS>>", option.peaks) command = command.replace("<<START>>", str(index)) command = command.replace("<<STOP>>", str(index)) command = command.replace("<<TOTAL>>", str(option.total)) command = command.replace("<<EXPRESSION>>", option.expression) command = command.replace("<<COLLECTION>>", option.collection + general.indexTag(index, option.total) + option.nametag) command = command.replace("<<TIMES>>", option.times) command = command.replace("<<NAME>>", option.name) command = command.replace("<<FRACTION>>", str(option.fraction)) command = command.replace("<<MINIMUM>>", str(option.minimum)) command = command.replace("<<EXTEND>>", str(option.extend)) command = command.replace("<<QSUB>>", option.qsub) command = command.replace("<<SERVER>>", option.server) command = command.replace("<<MODULE>>", "md" + str(m)) # coassociations hybrid mode: if mode == "cell.hybrid": collection = option.collection + general.indexTag(index, option.total) + option.nametag command = "python <<CODEPATH>>mapCells.py --path <<PATH>> --organism <<ORGANISM>> --mode <<MODE>> --A <<A>> --B <<B>> --indexes <<INDEXES>> --values <<VALUES>> --contexts <<CONTEXTS>>" command = command.replace("<<CODEPATH>>", option.path + "/python/") command = command.replace("<<PATH>>", option.path) command = command.replace("<<ORGANISM>>", option.organism) command = command.replace("<<MODE>>", mode) command = command.replace("<<A>>", option.a) command = command.replace("<<B>>", collection + "/mapcells_" + collection + "_matrix_overlap") command = command.replace("<<INDEXES>>", option.indexes) command = command.replace("<<VALUES>>", option.values) command = command.replace("<<CONTEXTS>>", option.contexts) # is it time to export a chunk? if index-start+option.step == chunks: # update start, modules, commands, and module count (m): start = index + option.step commands.append(command) modules.append(commands) commands = list() complete = True m += 1 # store whether the most recent index/command has been stored: else: complete = False # update if there are additional commands: if not complete: commands.append(command) modules.append(commands) m += 1 # launch commands: print print "Launching comparisons:", len(modules) #for module in modules: # for command in module: # print command runCommands(modules, threads=option.threads, mode="module.run", run_mode="verbose", run_path=bash_path, run_base=bash_base, record=True, qsub_header=qsub_header, qsub=qsub) print "Analyses performed:", len(modules) print # filter cells : elif option.mode == "filter": # load cells to filter: filterCells = open(path_dict[option.source] + option.target).read().strip().split("\n") # generate output file: f_output = open(path_dict[option.source] + option.name, "w") # process input lines: f, k = 0, 0 inlines = open(path_dict[option.source] + option.infile).readlines() for inline in inlines: process = True items = inline.strip().split(",") for item in items: if item in filterCells: process = False f += 1 if process: print >>f_output, inline.strip() k += 1 print print "Input lines:", len(inlines) print "Output lines:", k, "(" + str(f) + " filtered)" print # close output: f_output.close() # simplify cell annotations : elif option.mode == "simply": # generate output file: f_output = open(path_dict[option.source] + option.name, "w") # process input lines: f, k = 0, 0 inlines = open(path_dict[option.source] + option.infile).read().strip().replace("\r","\n").split("\n") for inline in inlines: process = True if "cell_mapping" in option.infile: regExp, original, updated = inline.strip().split(",") if updated == "": annotation = str(original) else: annotation = str(updated) print >>f_output, ",".join([regExp,annotation]) k += 1 print print "Input lines:", len(inlines) print "Output lines:", k, "(" + str(f) + " simplified)" print # close output: f_output.close() # robustness analysis mode: elif option.mode == "robust": import itertools print print "Loading input series data..." signalDict, replicateDict = dict(), dict() inlines = open(extraspath + option.infile).read().replace("\r","\n").split("\n") columnDict = dict() inline, index = inlines.pop(0), 0 for column in inline.strip().split(","): columnDict[column] = index index += 1 for inline in inlines: valueDict, initems = dict(), inline.strip().split(",") if initems != [""]: for column in columnDict: valueDict[column] = initems[columnDict[column]] gene, series, cell, value = valueDict["Gene"], valueDict["Series"], valueDict["Cell"], valueDict["Express"] if not gene in signalDict: signalDict[gene] = dict() if not cell in signalDict[gene]: signalDict[gene][cell] = dict() signalDict[gene][cell][series] = value if not gene in replicateDict: replicateDict[gene] = list() replicateDict[gene].append(series) replicateDict[gene] = sorted(list(set(replicateDict[gene]))) # define output file: f_output = open(expressionpath + "mapcells_" + option.mode + "_" + option.infile.replace(".csv",".txt"), "w") s_output = open(expressionpath + "mapcells_" + option.mode + "_" + option.infile.replace(".csv",".sum"), "w") print >>f_output, "\t".join(["gene","series.count","i","j","cells","pearson.correlation","pearson.pvalue"]) print >>s_output, "\t".join(["series.count", "gene.count"]) print "Scoring replicate correlations .." countDict = dict() for gene in signalDict: if not len(replicateDict[gene]) in countDict: countDict[len(replicateDict[gene])] = list() countDict[len(replicateDict[gene])].append(gene) if len(replicateDict[gene]) > 1: #print gene, len(replicateDict[gene]) for (i, j) in itertools.combinations(replicateDict[gene], 2): iValues, jValues = list(), list() for cell in signalDict[gene]: if i in signalDict[gene][cell] and j in signalDict[gene][cell]: iValues.append(float(signalDict[gene][cell][i])) jValues.append(float(signalDict[gene][cell][j])) correlation, corPvalue = pearsonr(iValues, jValues) output = [gene, len(replicateDict[gene]), i, j, len(iValues), correlation, corPvalue] print >>f_output, "\t".join(map(str, output)) #pdb.set_trace() for count in sorted(countDict.keys()): print >>s_output, "\t".join(map(str, [count, len(countDict[count])])) # close output file: f_output.close() s_output.close() print # fillin mode: elif option.mode == "fillin": print print "Loading annotation information..." annotationDict = general.build2(extraspath + option.infile, id_column="lineage", split=",") print "Checking parental annotation..." missingCells = list() for cell in annotationDict: parent = cell[:len(cell)-1] if not parent in annotationDict: if not parent in missingCells: missingCells.append(parent) print parent, cell print # import mode: elif option.mode == "import": # Cell annotations are cell-type and tissue-type (in the new Murray version): # specificDict: cell > cell-type # generalDict: cell > tissue-type # construct tissue dictionary (if necessary): if option.tissues != "OFF": print print "Loading general and specific tissue information..." specificDict = general.build2(extraspath + option.tissues, i="lineage", x="cell", mode="values", split=",") specificTotal = specificDict.values() generalDict = general.build2(extraspath + option.tissues, i="lineage", x="tissue", mode="values", split=",") generalTotal = generalDict.values() print "Generating tissue classes..." classification = { "rectal" : "excretory", "na" : "other" } classDict, classTotal, classMissing = dict(), list(), 0 for cell in generalDict: generalTissue = generalDict[cell] generalHits, classHits = list(), list() if generalTissue == "g": classTissue = "neuron/glial" generalHits.append(generalTissue) classHits.append(classTissue) else: for classTag in classification: if classTag in generalTissue: classTissue = classification[classTag] generalHits.append(generalTissue) classHits.append(classTissue) generalHits, classHits = list(set(generalHits)), list(set(classHits)) #print generalTissue, ":", ", ".join(classHits) if len(classHits) > 1: classTissue = "mixed" elif len(classHits) == 1: classTissue = classHits[0] elif len(classHits) == 0: classTissue = generalTissue classMissing += 1 classDict[cell] = classTissue classTotal.append(classTissue) classTotal = sorted(list(set(classTotal))) print print "Specific tissue terms:", len(set(specificDict.values())) print "General tissue terms:", len(set(generalDict.values())) generalCounts = dict() for cell in generalDict: generalTissue = generalDict[cell] if not generalTissue in generalCounts: generalCounts[generalTissue] = 0 generalCounts[generalTissue] += 1 generalTissues = general.valuesort(generalCounts) generalTissues.reverse() for generalTissue in generalTissues: print "\t" + generalTissue, ":", generalCounts[generalTissue] print print "Class tissue terms:", len(set(classDict.values())) classCounts = dict() for cell in classDict: classTissue = classDict[cell] if not classTissue in classCounts: classCounts[classTissue] = 0 classCounts[classTissue] += 1 classTissues = general.valuesort(classCounts) classTissues.reverse() for classTissue in classTissues: print "\t" + classTissue, ":", classCounts[classTissue] #pdb.set_trace() # prepare expression matrixes: series2cell_dict, gene2cell_dict, cell2gene_dict, gene2cell_list, allCells = dict(), dict(), dict(), dict(), list() # load expression data per series: print print "Loading cellular-expression data..." inlines = open(extraspath + option.infile).read().replace("\r","\n").split("\n") inheader = inlines.pop(0) for inline in inlines: if not inline == "": series, cell, gene, expression = inline.strip().split(",") gene = gene.upper() if not gene in option.exclude.split(","): if not cell in cell2gene_dict: cell2gene_dict[cell] = dict() if not gene in cell2gene_dict[cell]: cell2gene_dict[cell][gene] = dict() if not gene in gene2cell_dict: gene2cell_dict[gene] = dict() gene2cell_list[gene] = list() if not cell in gene2cell_dict[gene]: gene2cell_dict[gene][cell] = dict() if not series in series2cell_dict: series2cell_dict[series] = dict() gene2cell_dict[gene][cell][series] = float(expression) cell2gene_dict[cell][gene][series] = float(expression) series2cell_dict[series][cell] = float(expression) if not cell in gene2cell_list[gene]: gene2cell_list[gene].append(cell) if not cell in allCells: allCells.append(cell) # store cell-parent relationships: print "Loading cell-parent relationships..." cell_dict, parent_dict, pedigreeCells = relationshipBuilder(pedigreefile=option.pedigree, path=extraspath, mechanism="simple") # construct tissue dictionary (if necessary): if option.tissues != "OFF": print print "Expanding cell tissue information..." matchDict = { "specific":dict(), "general":dict(), "class":dict() } matchExpansion, matchTotal, matchMissing = list(), 0, 0 for cell in pedigreeCells: if cell in generalDict and generalDict[cell] != "na": matchDict["specific"][cell] = specificDict[cell] matchDict["general"][cell] = generalDict[cell] matchDict["class"][cell] = classDict[cell] else: # find most closely-related, annotated cell (and use its associated tissue annotation): distanceDict = dict() queryDict, matchTissues = dict(), list(), ancestorCells, descendantCells, matchCells, queryCells = list(), list(), list(), list() for queryCell in generalDict: relative = False if cell == queryCell[:len(cell)]: descendantCells.append(queryCell) relative = True if queryCell == cell[:len(queryCell)]: ancestorCells.append(queryCell) relative = True if relative: distance = abs(len(cell)-len(queryCell)) if not distance in distanceDict: distanceDict[distance] = list() distanceDict[distance].append(queryCell) # determine which cells to obtain the annotations from: if descendantCells != list(): queryCells = descendantCells else: queryCells = descendantCells + ancestorCells # find and weigh, most-related tissues: specificMatch, generalMatch, classMatch = dict(), dict(), dict() for distance in sorted(distanceDict.keys()): if distance != 0: for distanceCell in distanceDict[distance]: if distanceCell in queryCells: specificTissue = specificDict[distanceCell] generalTissue = generalDict[distanceCell] classTissue = classDict[distanceCell] if not specificTissue in specificMatch: specificMatch[specificTissue] = 0 if not generalTissue in generalMatch: generalMatch[generalTissue] = 0 if not classTissue in classMatch: classMatch[classTissue] = 0 specificMatch[specificTissue] += float(1)/distance generalMatch[generalTissue] += float(1)/distance classMatch[classTissue] += float(1)/distance # Note: This section controls whether tissue annotations are obtained from # all related cells (parents and ancestors) or just subsets of these... """ define a function that returns the highest-likelihood tissue """ def matchFunction(cell, matchDict, queryCells, verbose="OFF"): matchTissues = general.valuesort(matchDict) matchTissues.reverse() printFlag = False if len(matchTissues) > 1 and verbose == "ON": printFlag = True print cell, len(matchTissues), matchTissues, queryCells for matchTissue in matchTissues: print matchTissue, ":", matchDict[matchTissue] # Filter tissues associated with father/daughter cells: if len(matchTissues) > 1: matchTissues = general.clean(matchTissues, "death") if len(matchTissues) > 1: matchTissues = general.clean(matchTissues, "other") # Generate and store specific tissue label for cell: if len(matchTissues) == 0: matchTissue = "other" else: matchTissue = matchTissues[0] if printFlag and verbose == "ON": print ">", matchTissue print # return highest likelihood tissue match and ranked tissues: return matchTissue, matchTissues # assign highest-scoring tissue types: #specificDict[cell], specificTissues = matchFunction(cell, specificMatch, queryCells, verbose="OFF") #generalDict[cell], generalTissues = matchFunction(cell, generalMatch, queryCells, verbose="OFF") #classDict[cell], classTissues = matchFunction(cell, classMatch, queryCells, verbose="OFF") matchDict["specific"][cell], specificMatches = matchFunction(cell, specificMatch, queryCells, verbose="OFF") matchDict["general"][cell], generalMatches = matchFunction(cell, generalMatch, queryCells, verbose="OFF") matchDict["class"][cell], classMatches = matchFunction(cell, classMatch, queryCells, verbose="OFF") # update tissue counts: matchTotal += 1 if matchDict["class"][cell] == "na": matchMissing += 1 # Update/expand cell-tissue dictionary: matchTissue = matchDict["specific"][cell] if not matchTissue in matchExpansion: matchExpansion.append(matchTissue) # record counts for each type of tissue: specificCounts, generalCounts, classCounts = dict(), dict(), dict() for cell in specificDict: specificTissue = specificDict[cell] generalTissue = generalDict[cell] classTissue = classDict[cell] if not specificTissue in specificCounts: specificCounts[specificTissue] = 0 specificCounts[specificTissue] += 1 if not generalTissue in generalCounts: generalCounts[generalTissue] = 0 generalCounts[generalTissue] += 1 if not classTissue in classCounts: classCounts[classTissue] = 0 classCounts[classTissue] += 1 #print #print "Specific tissue terms:", len(set(specificDict.values())) #specificTissues = general.valuesort(specificCounts) #specificTissues.reverse() #for specificTissue in specificTissues: # print "\t" + specificTissue, ":", specificCounts[specificTissue] print print "General tissue terms:", len(set(generalDict.values())) generalTissues = general.valuesort(generalCounts) generalTissues.reverse() for generalTissue in generalTissues: print "\t" + generalTissue, ":", generalCounts[generalTissue] print print "Class tissue terms:", len(set(classDict.values())) classTissues = general.valuesort(classCounts) classTissues.reverse() for classTissue in classTissues: print "\t" + classTissue, ":", classCounts[classTissue] print print "Tissue information expanded by:", len(matchExpansion) print "Tissue information expansion terms:", ", ".join(list(sorted(matchExpansion))) #pdb.set_trace() # calculate unique expression values for each gene/cell combination: print print "Generating per gene/cell expression values..." matrix, expression, expressing = dict(), dict(), dict() for gene in gene2cell_dict: for cell in gene2cell_list[gene]: values, maxSeries, maxValue = list(), "NA", 0 for series in gene2cell_dict[gene][cell]: values.append(gene2cell_dict[gene][cell][series]) if gene2cell_dict[gene][cell][series] >= maxValue: maxSeries, maxValue = series, gene2cell_dict[gene][cell][series] if not gene in matrix: matrix[gene] = dict() expression[gene] = dict() matrix[gene][cell] = [max(values), numpy.mean(values), numpy.median(values), numpy.std(values), len(gene2cell_dict[gene][cell]), ",".join(sorted(gene2cell_dict[gene][cell].keys())), maxSeries] if option.measure == "max.expression": expression[gene][cell] = max(values) elif option.measure == "avg.expression": expression[gene][cell] = numpy.mean(values) # calculate expression peaks... print "Generating per gene/cell expression statistics..." for gene in matrix: # find peak expression: peakCell, peakValue = "", 0 for cell in matrix[gene]: maxValue, meanValue, medianValue, stdValue, seriesCount, seriesIDs, maxSeries = matrix[gene][cell] cellValue = expression[gene][cell] if cellValue > peakValue: peakCell, peakValue = cell, cellValue # calculate fractional expression, cell ranks, and add cells expressing the protein (above cutoff): cellRanks = general.valuesort(expression[gene]) cellRanks.reverse() for cell in matrix[gene]: maxValue, meanValue, medianValue, stdValue, seriesCount, seriesIDs, maxSeries = matrix[gene][cell] cellValue = expression[gene][cell] fracValue = float(cellValue)/peakValue cellRank = cellRanks.index(cell) + 1 if not gene in expressing: expressing[gene] = list() if fracValue >= option.fraction and cellValue >= option.minimum: expressing[gene].append(cell) matrix[gene][cell] = [cellValue, peakValue, fracValue, cellRank, maxValue, meanValue, medianValue, stdValue, seriesCount, seriesIDs, maxSeries] # define the ascendants cutoff: print print "Defining minimum ascendants across experiments..." cutAscendants = 0 for gene in matrix: minAscendants, maxAscendants = 1000, 0 for cell in matrix[gene]: ascendants = ascendantsCollector(cell, parent_dict, cell_dict, ascendants=list()) if len(ascendants) < minAscendants: minAscendants = len(ascendants) minCell = cell if len(ascendants) > maxAscendants: maxAscendants = len(ascendants) maxCell = cell if minAscendants > cutAscendants: cutAscendants = minAscendants # define the set of cells tracked in target experiments: print "Defining cells focused: strict list of cells assayed in target experiments..." focusedCells = list() for gene in option.target.split(","): if focusedCells == list(): focusedCells = gene2cell_list[gene] else: focusedCells = set(focusedCells).intersection(set(gene2cell_list[gene])) # define the set of cells tracked in all experiments: print "Defining cells tracked: strict list of cells assayed in all experiments..." trackedCells = list() for gene in gene2cell_dict: if trackedCells == list(): trackedCells = gene2cell_list[gene] else: trackedCells = set(trackedCells).intersection(set(gene2cell_list[gene])) # define the set of ancestor or tracked cells: print "Defining cells started: parent-inclusive list of cells tracked in all experiments..." startedCells = list() for cell in pedigreeCells: ascendants = ascendantsCollector(cell, parent_dict, cell_dict, ascendants=list()) if cell in trackedCells or len(ascendants) < int(option.ascendants): startedCells.append(cell) #if cell == "ABalaaaal": # print cell, specificDict[cell], generalDict[cell], classDict[cell] # pdb.set_trace() print "Ascendants cutoff:", cutAscendants # define output files: assayedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_assayed" startedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_started" trackedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_tracked" focusedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_focused" summaryfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_summary" tissuesfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_tissues" # define cellular expression header: expressionHeader = ["cell", "cell.name", "gene", "cell.expression", "peak.expression", "fraction.expression", "normal.expression", "rank", "max.expression", "avg.expression", "med.expression", "std.expression", "cells.expressing", "cells.count", "series.count", "time.series", "max.series", "specific.tissue", "general.tissue", "class.tissue", "match.tissue"] reportHeader = ["gene", "cells.expressing", "cells.assayed", "cells.tracked", "cell.expression", "peak.expression", "fraction.expression", "series.count", "time.series", "max.series"] tissueHeader = ["cell", "specific.tissue", "general.tissue", "class.tissue", "match.tissue"] # create output files: a_output = open(assayedfile, "w") s_output = open(startedfile, "w") t_output = open(trackedfile, "w") f_output = open(focusedfile, "w") r_output = open(summaryfile, "w") x_output = open(tissuesfile, "w") print >>a_output, "\t".join(expressionHeader) print >>s_output, "\t".join(expressionHeader) print >>t_output, "\t".join(expressionHeader) print >>f_output, "\t".join(expressionHeader) print >>r_output, "\t".join(reportHeader) print >>x_output, "\t".join(tissueHeader) # generate set-normalization values: maxAssayed, maxStarted, maxTracked, maxFocused = dict(), dict(), dict(), dict() for gene in sorted(matrix.keys()): cellsStarted = startedCells cellsAssayed = matrix[gene].keys() cellsTracked = trackedCells cellsFocused = focusedCells peakAssayed, peakStarted, peakTracked, peakFocused = 0, 0, 0, 0 for cell in sorted(matrix[gene].keys()): cellValue, peakValue, fracValue, cellRank, maxValue, meanValue, medianValue, stdValue, seriesCount, seriesIDs, maxSeries = matrix[gene][cell] if cell in cellsAssayed and cellValue > peakAssayed: peakAssayed = cellValue if cell in cellsStarted and cellValue > peakStarted: peakStarted = cellValue if cell in cellsTracked and cellValue > peakTracked: peakTracked = cellValue if cell in cellsFocused and cellValue > peakFocused: peakFocused = cellValue maxAssayed[gene] = peakAssayed maxStarted[gene] = peakStarted maxTracked[gene] = peakTracked maxFocused[gene] = peakFocused # export expression data: print "Exporting expression data..." for gene in sorted(matrix.keys()): cellsStarted = len(startedCells) cellsAssayed = len(matrix[gene].keys()) cellsTracked = len(trackedCells) cellsFocused = len(focusedCells) cellsExpressingAssayed = len(set(expressing[gene]).intersection(set(matrix[gene].keys()))) cellsExpressingTracked = len(set(expressing[gene]).intersection(set(trackedCells))) cellsExpressingFocused = len(set(expressing[gene]).intersection(set(focusedCells))) cellValues, fracValues = list(), list() for cell in sorted(matrix[gene].keys()): if option.tissues == "OFF" or not cell in specificDict: specificTissue = "*" generalTissue = "*" classTissue = "*" matchTissue = "*" else: specificTissue = specificDict[cell] generalTissue = generalDict[cell] classTissue = classDict[cell] matchTissue = matchDict["class"][cell] cellValue, peakValue, fracValue, cellRank, maxValue, meanValue, medianValue, stdValue, seriesCount, seriesIDs, maxSeries = matrix[gene][cell] print >>a_output, "\t".join(map(str, [cell, cell, gene, cellValue, peakValue, fracValue, float(cellValue)/maxAssayed[gene], cellRank, maxValue, meanValue, medianValue, stdValue, cellsExpressingAssayed, cellsAssayed, seriesCount, seriesIDs, maxSeries, specificTissue, generalTissue, classTissue, matchTissue])) if cell in startedCells: print >>s_output, "\t".join(map(str, [cell, cell, gene, cellValue, peakValue, fracValue, float(cellValue)/maxStarted[gene], cellRank, maxValue, meanValue, medianValue, stdValue, cellsExpressingTracked, cellsStarted, seriesCount, seriesIDs, maxSeries, specificTissue, generalTissue, classTissue, matchTissue])) if cell in trackedCells: print >>t_output, "\t".join(map(str, [cell, cell, gene, cellValue, peakValue, fracValue, float(cellValue)/maxTracked[gene], cellRank, maxValue, meanValue, medianValue, stdValue, cellsExpressingTracked, cellsTracked, seriesCount, seriesIDs, maxSeries, specificTissue, generalTissue, classTissue, matchTissue])) if cell in focusedCells: print >>f_output, "\t".join(map(str, [cell, cell, gene, cellValue, peakValue, fracValue, float(cellValue)/maxFocused[gene], cellRank, maxValue, meanValue, medianValue, stdValue, cellsExpressingFocused, cellsFocused, seriesCount, seriesIDs, maxSeries, specificTissue, generalTissue, classTissue, matchTissue])) if fracValue >= option.fraction and cellValue >= option.minimum: cellValues.append(cellValue) fracValues.append(fracValue) print >>r_output, "\t".join(map(str, [gene, cellsExpressingTracked, cellsAssayed, cellsTracked, numpy.mean(cellValues), peakValue, numpy.mean(fracValues), seriesCount, seriesIDs, maxSeries])) # export tissue annotations: print "Exporting tissue annotation data..." print "Annotated cells:", len(specificDict) for cell in sorted(specificDict.keys()): specificTissue = specificDict[cell] generalTissue = generalDict[cell] classTissue = classDict[cell] if cell in matchDict["class"]: matchTissue = matchDict["class"][cell] else: matchTissue = str(classTissue) print >>x_output, "\t".join([cell, specificTissue, generalTissue, classTissue, matchTissue]) # close output: a_output.close() s_output.close() t_output.close() f_output.close() r_output.close() x_output.close() print print "Focused cells:", len(focusedCells) print "Tracked cells:", len(trackedCells) print "Started cells:", len(startedCells) print # inherit expression mode: elif option.mode == "inherit": # define input files: assayedinput = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_assayed" startedinput = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_started" trackedinput = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_tracked" focusedinput = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_focused" summaryinput = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_summary" tissuesinput = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_tissues" # define output files: assayedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_inassay" startedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_instart" trackedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_intrack" focusedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_infocus" inheritfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_inherit" inleafsfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_inleafs" maximalfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_maximal" mxleafsfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_mxleafs" # define cellular expression header: expressionHeader = ["cell", "cell.name", "gene", "cell.expression", "peak.expression", "fraction.expression", "normal.expression", "rank", "max.expression", "avg.expression", "med.expression", "std.expression", "cells.expressing", "cells.count", "series.count", "time.series", "max.series", "specific.tissue", "general.tissue", "class.tissue", "match.tissue"] reportHeader = ["gene", "cells.expressing", "cells.assayed", "cells.tracked", "cell.expression", "peak.expression", "fraction.expression", "series.count", "time.series", "max.series"] tissueHeader = ["cell", "specific.tissue", "general.tissue", "class.tissue", "match.tissue"] # create output files: a_output = open(assayedfile, "w") s_output = open(startedfile, "w") t_output = open(trackedfile, "w") f_output = open(focusedfile, "w") i_output = open(inheritfile, "w") l_output = open(inleafsfile, "w") m_output = open(maximalfile, "w") p_output = open(mxleafsfile, "w") print >>a_output, "\t".join(expressionHeader + ["inherited"]) print >>s_output, "\t".join(expressionHeader + ["inherited"]) print >>t_output, "\t".join(expressionHeader + ["inherited"]) print >>f_output, "\t".join(expressionHeader + ["inherited"]) print >>i_output, "\t".join(expressionHeader + ["inherited"]) print >>l_output, "\t".join(expressionHeader + ["inherited"]) print >>m_output, "\t".join(expressionHeader + ["inherited"]) print >>p_output, "\t".join(expressionHeader + ["inherited"]) # load terminal leaf cells: print print "Loading terminal cells..." inleafsCells = general.build2(extraspath + option.mapping, i="cell", x="cell.name", mode="values", skip=True) # store cell-parent relationships: print "Loading cell-parent relationships..." cell_dict, parent_dict, pedigreeCells = relationshipBuilder(pedigreefile=option.pedigree, path=extraspath, mechanism="simple") # loading tissue annotation data... print "Loading tissue annotation data..." tissuesAnnotation = general.build2(tissuesinput, id_column="cell", mode="table") # load expression data: print "Loading expression data..." assayedExpression = general.build2(assayedinput, id_complex=["gene","cell"], mode="table", separator=":") assayedMatrix = general.build2(assayedinput, i="gene", j="cell", x="cell.expression", mode="matrix") assayedCells = general.build2(assayedinput, i="cell", x="cell.name", mode="values", skip=True) startedCells = general.build2(startedinput, i="cell", x="cell.name", mode="values", skip=True) trackedCells = general.build2(trackedinput, i="cell", x="cell.name", mode="values", skip=True) focusedCells = general.build2(focusedinput, i="cell", x="cell.name", mode="values", skip=True) # define cellular space: print "Defining inheritance cells..." inheritCells = list() for inleafsCell in inleafsCells: inheritCells += ascendantsCollector(inleafsCell, parent_dict, cell_dict, ascendants=list()) inheritCells = sorted(list(set(inheritCells))) # load header dictionary: hd = general.build_header_dict(assayedinput) header = general.valuesort(hd) # inherit peak expression from ancestors: print "Inheriting expression from ancestors..." inheritExpression, maximalExpression = dict(), dict() for gene in sorted(assayedMatrix.keys()): inheritExpression[gene] = dict() maximalExpression[gene] = dict() for inheritCell in inheritCells: ascendantCells, ascendantExpression = list(), dict() ascendants = ascendantsCollector(inheritCell, parent_dict, cell_dict, ascendants=list(), sort=False) #print inheritCell, ascendants if len(set(ascendants)) != len(ascendants): print "oh, oh: not a set!" pdb.set_trace() for ascendantCell in ascendants + [inheritCell]: if ascendantCell in assayedMatrix[gene]: ascendantExpression[ascendantCell] = float(assayedMatrix[gene][ascendantCell]) ascendantCells.append(ascendantCell) if ascendantExpression != dict(): # get inheritance cells for maximal expression and for last ancestor expression: maximalCells = general.valuesort(ascendantExpression) maximalCells.reverse() maximalCell = maximalCells[0] ascendantCell = ascendantCells[0] # store values for last ancestor expression: inheritExpression[gene][inheritCell] = dict(assayedExpression[gene + ":" + ascendantCell]) inheritExpression[gene][inheritCell]["cell"] = str(inheritCell) inheritExpression[gene][inheritCell]["cell.name"] = str(inheritCell) inheritExpression[gene][inheritCell]["specific.tissue"] = tissuesAnnotation[inheritCell]["specific.tissue"] inheritExpression[gene][inheritCell]["general.tissue"] = tissuesAnnotation[inheritCell]["general.tissue"] inheritExpression[gene][inheritCell]["class.tissue"] = tissuesAnnotation[inheritCell]["class.tissue"] inheritExpression[gene][inheritCell]["match.tissue"] = tissuesAnnotation[inheritCell]["match.tissue"] inheritExpression[gene][inheritCell]["inherited"] = ascendantCell #if inheritCell != inheritExpression[gene][inheritCell]["cell"]: # print cell, inheritExpression[gene][inheritCell]["cell"], 1 # pdb.set_trace() # store values for maximal ancestor expression: maximalExpression[gene][inheritCell] = dict(assayedExpression[gene + ":" + maximalCell]) maximalExpression[gene][inheritCell]["cell"] = str(inheritCell) maximalExpression[gene][inheritCell]["cell.name"] = str(inheritCell) maximalExpression[gene][inheritCell]["specific.tissue"] = tissuesAnnotation[inheritCell]["specific.tissue"] maximalExpression[gene][inheritCell]["general.tissue"] = tissuesAnnotation[inheritCell]["general.tissue"] maximalExpression[gene][inheritCell]["class.tissue"] = tissuesAnnotation[inheritCell]["class.tissue"] maximalExpression[gene][inheritCell]["match.tissue"] = tissuesAnnotation[inheritCell]["match.tissue"] maximalExpression[gene][inheritCell]["inherited"] = ascendantCell # export inherited signals: print "Exporting inherited expression values..." for gene in sorted(inheritExpression): for cell in sorted(inheritExpression[gene].keys()): #if cell != inheritExpression[gene][cell]["cell"]: # print cell, inheritExpression[gene][cell]["cell"], 2 # pdb.set_trace() output = list() for column in header + ["inherited"]: output.append(inheritExpression[gene][cell][column]) if cell in assayedCells: print >>a_output, "\t".join(map(str, output)) if cell in startedCells: print >>s_output, "\t".join(map(str, output)) if cell in trackedCells: print >>t_output, "\t".join(map(str, output)) if cell in focusedCells: print >>f_output, "\t".join(map(str, output)) if cell in inheritCells: print >>i_output, "\t".join(map(str, output)) if cell in inleafsCells: print >>l_output, "\t".join(map(str, output)) #print "\t".join(map(str, output)) #pdb.set_trace() # export inherited signals: print "Exporting maximal expression values..." for gene in sorted(maximalExpression): for cell in sorted(maximalExpression[gene].keys()): output = list() for column in header + ["inherited"]: output.append(maximalExpression[gene][cell][column]) if cell in inheritCells: print >>m_output, "\t".join(map(str, output)) if cell in inleafsCells: print >>p_output, "\t".join(map(str, output)) #print "\t".join(map(str, output)) #pdb.set_trace() print print "Total inherited cells:", len(inheritCells) print "Terminal (leaf) cells:", len(inleafsCells) # close output files: a_output.close() s_output.close() t_output.close() f_output.close() i_output.close() l_output.close() m_output.close() p_output.close() print #k = inheritExpression.keys()[0] #print k #print inheritExpression[k][inleafsCell] #pdb.set_trace() # correct expression mode (detect outliers): elif option.mode == "correct": # load quantile functions from quantile import Quantile # define input files: startedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_started" trackedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_tracked" assayedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_assayed" summaryfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_summary" # load assayed expression data: print print "Loading expression data..." expressionDict = general.build2(assayedfile, i="gene", j="cell", x="cell.expression", mode="matrix") # prepare to sort genes by quantile expression: print "Sorting genes by expression..." medianDict, quantDict = dict(), dict() for gene in expressionDict: values = map(float, expressionDict[gene].values()) medianDict[gene] = numpy.median(values) quantDict[gene] = Quantile(values, 0.99) quantRanks = general.valuesort(quantDict) quantRanks.reverse() # store median rankings: rankDict = dict() medianRanks = general.valuesort(medianDict) medianRanks.reverse() k = 1 for gene in medianRanks: rankDict[gene] = k k += 1 # generate testing path: testingpath = correctionpath + "testing/" general.pathGenerator(testingpath) # Perform Gaussian Mixture Modeling (GMM): print "Performing GMM modeling..." gmmDict = dict() k = 1 for gene in expressionDict: signals = map(int, map(float, expressionDict[gene].values())) signals = [1 if (x == 0) else x for x in signals] testingfile = testingpath + "mapCells-gmm_" + expression_flag + option.name + "_" + "temp" resultsfile = testingpath + "mapCells-gmm_" + expression_flag + option.name + "_" + gene #f_output = open(testingfile, "w") #print >>f_output, "\n".join(["signal"] + map(str, signals)) #f_output.close() #command = " ".join(["Rscript", "~/meTRN/scripts/mapCells-gmm.r", testingfile, resultsfile, option.limit, option.parameters]) #os.system(command) #Rscript ~/meTRN/scripts/mapCells-pilot.r ~/Desktop/data.test ~/Desktop/data.output 1000 if "mapCells-gmm_" + expression_flag + option.name + "_" + gene in os.listdir(testingpath): gmmDict[gene] = open(resultsfile).readlines()[1].strip().split(" ")[2] #os.system("rm -rf " + testingfile) # export expression signals: rankingfile = correctionpath + "mapcells_" + expression_flag + option.name + "_correction_ranking" # rank information file percentfile = correctionpath + "mapcells_" + expression_flag + option.name + "_correction_percent" # gene-cell data, percentile-ranked genes mediansfile = correctionpath + "mapcells_" + expression_flag + option.name + "_correction_medians" # gene-cell data, median-ranked genes # define output headers: correctHeader = "\t".join(["index", "gene", "cell", "signal", "zscore", "nscore", "lscore", "rank", "median", "mean", "stdev", "alpha", "delta", "sigma", "gamma"]) rankingHeader = "\t".join(["gene", "quantile.rank", "median.rank", "median", "mean", "stdev", "alpha", "delta", "sigma", "gamma"]) # gather outputs: print "Generating expression thresholds..." r_output = open(rankingfile, "w") print >>r_output, rankingHeader outputDict = dict() k = 1 for gene in quantRanks: signals = map(float, expressionDict[gene].values()) maximal = max(signals) # calculate expression cutoffs: alpha = float(maximal)/10 delta = float(quantDict[gene])/10 sigma = float(quantDict[gene])/10 # detect GMM expression cutoff: if gene in gmmDict: gamma = int(gmmDict[gene]) else: gamma = int(option.limit) # threshold expression cutoffs: if alpha < int(option.limit): alpha = int(option.limit) if delta < int(option.limit): delta = int(option.limit) if gamma < int(option.limit): gamma = int(option.limit) # calculate general stats: median = numpy.median(signals) mean = numpy.mean(signals) stdev = numpy.std(signals) logMean = numpy.log10(mean) logStDev = numpy.log10(stdev) # store/export data: print >>r_output, "\t".join(map(str, [gene, k, rankDict[gene], median, mean, stdev, alpha, delta, sigma, gamma])) if not gene in outputDict: outputDict[gene] = dict() for cell in sorted(expressionDict[gene].keys()): signal = float(expressionDict[gene][cell]) if signal < 1: signal = 1 zscore = float(signal-mean)/stdev nscore = float(signal)/maximal lscore = float(numpy.log10(signal) - logMean)/logStDev outputDict[gene][cell] = "\t".join(map(str, [k, gene, cell, signal, zscore, nscore, lscore, rankDict[gene], median, mean, stdev, alpha, delta, sigma, gamma])) k += 1 r_output.close() # export expression signals, percentile-ranked genes: print "Exporting percentile-ranked expression signals..." f_output = open(percentfile, "w") print >>f_output, correctHeader for gene in quantRanks: for cell in sorted(outputDict[gene]): print >>f_output, outputDict[gene][cell] f_output.close() # export expression signals, median-ranked genes: print "Exporting median-ranked expression signals..." f_output = open(mediansfile, "w") print >>f_output, correctHeader for gene in medianRanks: for cell in sorted(outputDict[gene]): print >>f_output, outputDict[gene][cell] f_output.close() print # check status mode: elif option.mode == "check.status": # define input files: startedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_started" trackedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_tracked" assayedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_assayed" summaryfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_summary" # scan peak files: print print "Scanning peak files:" hd = general.build_header_dict(summaryfile) k, peaks, peak_files = 0, 0, os.listdir(peakspath) for inline in open(summaryfile).readlines()[1:]: gene, found = inline.strip().split("\t")[hd["gene"]], list() for peak_file in peak_files: dataset = peak_file.split("_peaks.bed")[0].replace("POL2", "AMA-1") if gene + "_" in dataset: found.append(dataset) peaks += general.countLines(peakspath + peak_file, header="OFF") if found != list(): print gene, ":", ", ".join(sorted(found)) k += 1 print print "Found factors:", k print "Peaks called:", peaks print # scan expression files: print print "Scanning expression data:" caught = list() hd = general.build_header_dict(assayedfile) for inline in open(assayedfile).readlines()[1:]: initems = inline.strip().split("\t") gene, timeSeries = initems[hd["gene"]], initems[hd["time.series"]] for timeSerie in timeSeries.split(","): if not gene.lower() in timeSerie: if not gene in caught: print gene, timeSeries caught.append(gene) print print "Mismatched genes:", len(caught) print # lineage distance mode: elif option.mode == "cell.distance": # build cell-expression matrix: print print "Loading cellular expression..." quantitation_matrix, expression_matrix, tracking_matrix, trackedCells = expressionBuilder(expressionfile=option.expression, path=expressionpath, cutoff=0, minimum=0, metric="fraction.expression") # store cell-parent relationships: print "Loading cell-parent relationships..." cell_dict, parent_dict, pedigreeCells = relationshipBuilder(pedigreefile=option.pedigree, path=extraspath, mechanism="simple") print "Pedigree cells:", len(pedigreeCells) print "Tracked cells:", len(trackedCells) print # define output files: signalsmatrixfile = str(option.expression + "_distance_signals") lineagematrixfile = str(option.expression + "_distance_lineage") combinematrixfile = str(option.expression + "_distance_combine") # build cell-cell expression correlation matrix if not signalsmatrixfile in os.listdir(distancepath) or option.overwrite == "ON": print "Calculating expression correlation matrix..." correlation_matrix, index = dict(), 1 f_output = open(distancepath + signalsmatrixfile, "w") print >>f_output, "\t".join(["i", "j", "correlation", "correlation.pvalue", "correlation.adjusted.pvalue"]) for aCell in sorted(trackedCells): print index, aCell for bCell in sorted(trackedCells): aValues, bValues = list(), list() for gene in sorted(quantitation_matrix.keys()): aValues.append(quantitation_matrix[gene][aCell]) bValues.append(quantitation_matrix[gene][bCell]) correlation, corPvalue = pearsonr(aValues, bValues) adjCorPvalue = corPvalue*len(trackedCells)*len(trackedCells) if adjCorPvalue > 1: adjCorPvalue = 1 if not aCell in correlation_matrix: correlation_matrix[aCell] = dict() correlation_matrix[aCell][bCell] = [correlation, corPvalue, adjCorPvalue] print >>f_output, "\t".join(map(str, [aCell, bCell] + correlation_matrix[aCell][bCell])) index += 1 f_output.close() print else: print "Loading expression correlation matrix..." correlation_matrix = general.build2(distancepath + signalsmatrixfile, i="i", j="j", x=["correlation","correlation.pvalue","correlation.adjusted.pvalue"], datatype="float", mode="matrix", header_dict="auto") # build lineage distance matrix: if not lineagematrixfile in os.listdir(distancepath) or option.overwrite == "ON": print "Calculating lineage distance matrix..." lineage_matrix, index = dict(), 1 f_output = open(distancepath + lineagematrixfile, "w") print >>f_output, "\t".join(["i", "j", "distance", "parent"]) for aCell in sorted(trackedCells): print index, aCell for bCell in sorted(trackedCells): distance, ancestor = lineageDistance(aCell, bCell, parent_dict, cell_dict) if not aCell in lineage_matrix: lineage_matrix[aCell] = dict() lineage_matrix[aCell][bCell] = [distance, ancestor] print >>f_output, "\t".join(map(str, [aCell, bCell] + lineage_matrix[aCell][bCell])) index += 1 f_output.close() print else: print "Loading lineage distance matrix..." lineage_matrix = general.build2(distancepath + lineagematrixfile, i="i", j="j", x=["distance","parent"], datatype="list", mode="matrix", header_dict="auto", listtypes=["int", "str"]) #print correlation_matrix["ABal"]["ABal"] #print lineage_matrix["ABal"]["ABal"] #pdb.set_trace() # build expression distance matrix (as a function of fraction expression): print "Generating combined distance matrix (at fraction range):" f_output = open(distancepath + combinematrixfile, "w") print >>f_output, "\t".join(["i", "j", "minimal", "fraction", "distance", "parent", "expression.correlation", "expression.correlation.pvalue", "expression.correlation.adjusted.pvalue", "i.genes", "j.genes", "overlap", "total", "overlap.max", "overlap.sum", "pvalue", "adjusted.pvalue", "flag"]) fraction_matrix, genes = dict(), sorted(tracking_matrix.keys()) for minimal in [1500, 1750, 2000]: for fraction in general.drange(0.10, 0.50, 0.10): print "...", minimal, fraction fraction_matrix[fraction] = dict() # find genes expressed per cell (using fraction cutoff): cellular_matrix = dict() fraction_quantitation_matrix, fraction_expression_matrix, fraction_tracking_matrix, fraction_trackedCells = expressionBuilder(expressionfile=option.expression, path=expressionpath, cutoff=fraction, minimum=minimal, metric="fraction.expression") for gene in fraction_expression_matrix: for cell in fraction_expression_matrix[gene]: if not cell in cellular_matrix: cellular_matrix[cell] = list() cellular_matrix[cell].append(gene) # find multiple hypothesis adjustment factor: adjust = 0 for aCell in sorted(fraction_trackedCells): for bCell in sorted(fraction_trackedCells): if aCell in cellular_matrix and bCell in cellular_matrix: adjust += 1 # find gene expression overlap between cells: overlap_matrix = dict() universe = len(quantitation_matrix.keys()) for aCell in sorted(trackedCells): for bCell in sorted(trackedCells): if aCell in cellular_matrix and bCell in cellular_matrix: aGenes = cellular_matrix[aCell] bGenes = cellular_matrix[bCell] union = set(aGenes).union(set(bGenes)) overlap = set(aGenes).intersection(set(bGenes)) maxOverlap = float(len(overlap))/min(len(aGenes), len(bGenes)) sumOverlap = float(len(overlap))/len(union) # Hypergeometric paramters: m = len(aGenes) # number of white balls in urn n = universe - len(bGenes) # number of black balls in urn N = len(bGenes) # number of balls drawn from urn x = len(overlap) # number of white balls in drawn # If I pull out all balls with elephant tatoos (N), is the draw enriched in white balls?: pvalue = hyper.fishers(x, m+n, m, N, method="right") adjPvalue = hyper.limit(pvalue*adjust) # Store overlap and significance: if not aCell in overlap_matrix: overlap_matrix[aCell] = dict() overlap_matrix[aCell][bCell] = [len(aGenes), len(bGenes), len(overlap), universe, maxOverlap, sumOverlap, pvalue, adjPvalue] # generate combined distance output line: for aCell in sorted(trackedCells): for bCell in sorted(trackedCells): # load lineage distances: distance, ancestor = lineage_matrix[aCell][bCell] # load correlation distances: correlation, corPvalue, adjCorPvalue = correlation_matrix[aCell][bCell] # load expresssion distances: if aCell in cellular_matrix and bCell in cellular_matrix: aGenes, bGenes, overlap, universe, maxOverlap, sumOverlap, pvalue, adjPvalue = overlap_matrix[aCell][bCell] madeFlag = "both.observed" elif aCell in cellular_matrix: aGenes, bGenes, overlap, universe, maxOverlap, sumOverlap, pvalue, adjPvalue = len(cellular_matrix[aCell]), 0, 0, len(trackedCells), 0, 0, 1, 1 madeFlag = "only.observed" elif bCell in cellular_matrix: aGenes, bGenes, overlap, universe, maxOverlap, sumOverlap, pvalue, adjPvalue = 0, len(cellular_matrix[bCell]), 0, len(trackedCells), 0, 0, 1, 1 madeFlag = "only.observed" else: aGenes, bGenes, overlap, universe, maxOverlap, sumOverlap, pvalue, adjPvalue = 0, 0, 0, len(trackedCells), 0, 0, 1, 1 madeFlag = "none.observed" # export data: print >>f_output, "\t".join(map(str, [aCell, bCell, minimal, fraction, distance, ancestor, correlation, corPvalue, adjCorPvalue, aGenes, bGenes, overlap, universe, maxOverlap, sumOverlap, pvalue, adjPvalue, madeFlag])) # close output file: f_output.close() print # cell time mode: elif option.mode == "cell.times": # define input expression files: assayedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_assayed" startedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_started" trackedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_tracked" focusedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_focused" inheritfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_inherit" maximalfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_maximal" # load cell times: print print "Loading cellular times..." time_matrix = dict() inlines = open(extraspath + option.times).readlines() for inline in inlines: cell, start, stop = inline.strip().split(",") for time in range(int(start), int(stop)+1): if not time in time_matrix: time_matrix[time] = list() time_matrix[time].append(cell) # export cell times: populationDict = { "assayed" : assayedfile, "started" : startedfile, "tracked" : trackedfile, "focused" : focusedfile, "inherit" : inheritfile, "maximal" : maximalfile } print "Exporting cells per time point..." for population in populationDict: populationCells = general.build2(populationDict[population], id_column="cell", skip=True, mute=True).keys() for time in sorted(time_matrix.keys()): general.pathGenerator(timepath + population + "/cells/") f_output = open(timepath + population + "/cells/" + str(time), "w") timedCells = sorted(set(time_matrix[time]).intersection(set(populationCells))) if len(timedCells) > 0: print >>f_output, "\n".join(timedCells) f_output.close() # generate reports: print "Generating reports..." for population in populationDict: general.pathGenerator(timepath + population + "/report/") f_output = open(timepath + population + "/report/mapcells_" + population + "_time_report.txt", "w") print >>f_output, "\t".join(["time", "cell.count", "cell.percent", "cell.ids"]) for time in sorted(time_matrix.keys()): general.pathGenerator(timepath + population + "/report/") timedCount = general.countLines(timepath + population + "/cells/" + str(time)) timedPercent = round(100*float(timedCount)/len(time_matrix[time]), 2) timedCells = open(timepath + population + "/cells/" + str(time)).read().split("\n") print >>f_output, "\t".join([str(time), str(timedCount), str(timedPercent), ",".join(timedCells).rstrip(",")]) f_output.close() print # cubism graph mode: elif option.mode == "cell.cubism": # define input expression files: assayedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_assayed" startedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_started" trackedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_tracked" focusedfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_focused" inheritfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_inherit" maximalfile = expressionpath + "mapcells_" + expression_flag + option.name + "_expression_maximal" # define cell populations: populationDict = { "assayed" : assayedfile, "started" : startedfile, "tracked" : trackedfile, "focused" : focusedfile, "inherit" : inheritfile, "maximal" : maximalfile } # parse reports: print print "Exporting per gene, per timepoint expression cells:" for population in populationDict: print "Processing:", population # define output paths: factorpath = cubismpath + population + "/factor/" matrixpath = cubismpath + population + "/matrix/" general.pathGenerator(factorpath) general.pathGenerator(matrixpath) # build cell-expression matrix: quantitation_matrix, expression_matrix, tracking_matrix, trackedCells = expressionBuilder(expressionfile=populationDict[population], path="", cutoff=option.fraction, minimum=option.minimum, metric="fraction.expression") # load timepoint data: timeDict = general.build2(timepath + population + "/report/mapcells_" + population + "_time_report.txt", id_column="time") # load calendar months: monthDict = dict((k,v) for k,v in enumerate(calendar.month_abbr)) # process genes x timepoints: m_output = open(matrixpath + "mapcells_cubism_matrix.txt", "w") print >>m_output, "\t".join(["gene", "time", "cells", "gene.cells", "time.cells"]) for gene in sorted(expression_matrix.keys()): timeStamp = 1001856000000 timeAdded = 100000000 factorLines = list() for time in sorted(map(int, timeDict.keys())): geneCells = expression_matrix[gene] timeCells = timeDict[str(time)]["cell.ids"].split(",") dateCells = len(set(geneCells).intersection(set(timeCells))) date = datetime.datetime.fromtimestamp(timeStamp / 1e3) day, month, year = date.day, date.month, str(date.year)[2:] date = "-".join(map(str, [day, monthDict[month], year])) factorLines.append(",".join(map(str, [date, dateCells, dateCells, dateCells, len(trackedCells)]))) print >>m_output, "\t".join(map(str, [gene, time, dateCells, len(geneCells), len(timeCells)])) timeStamp += timeAdded factorLines.reverse() f_output = open(factorpath + gene + ".csv", "w") print >>f_output, "Date,Open,High,Low,Close,Volume" for factorLine in factorLines: print >>f_output, factorLine.strip() f_output.close() # close output matrix: m_output.close() print # cell annotation mode: elif option.mode == "cell.annotation": # load target cells from time-points: print if option.times != "OFF": # define output file: f_output = open(cellnotationspath + "mapcells_" + option.name + "_" + option.infile, "w") # load time-point cells: cells = getTargetCells(inpath=timepath + option.times + "/cells/", mode="time", timeRange=range(option.start, option.stop + 1, option.step)) # load target cells from collection: elif option.collection != "OFF": # define output file: f_output = open(cellnotationspath + "mapcells_" + option.collection + "_" + option.infile, "w") # load collection cells: cells = getTargetCells(inpath=cellsetpath + option.collection + "/", mode="collection") # export features per cell: print "Exporting features per cell..." k = 0 inlines = open(annotationspath + option.infile).readlines() if option.header == "ON": inlines.pop(0) for cell in cells: for inline in inlines: if option.format == "bed": print >>f_output, cell + ":" + inline.strip() k += 1 f_output.close() print "Features scaled from", len(inlines), "to", k, ": " + str(round(float(k)/len(inlines), 0)) + "x" print # build matrix mode: elif option.mode == "cell.matrix": # update overlappath: matrixpath = matrixpath + option.collection + "/" general.pathGenerator(matrixpath) # define input files: infile = expressionpath + option.expression # define output files: matrixfile = matrixpath + str(option.expression + "_" + option.name + "_matrix") # load header dictionary: hd = general.build_header_dict(infile) # build cellular expression matrix: matrix, cells, genes, tissueDict = dict(), list(), list(), dict() inlines = open(infile).readlines() inlines.pop(0) for inline in inlines: initems = inline.strip().split("\t") cell, gene, cellExpression, fractionExpression, normalExpression, specificTissue, generalTissue, classTissue = initems[hd["cell"]], initems[hd["gene"]], initems[hd["cell.expression"]], initems[hd["fraction.expression"]], initems[hd["normal.expression"]], initems[hd["specific.tissue"]], initems[hd["general.tissue"]], initems[hd["class.tissue"]] # extract expression value (using specified technique): if option.technique == "binary": if float(fractionExpression) >= option.fraction and float(cellExpression) >= option.minimum: value = 1 else: value = 0 elif option.technique == "signal": value = float(cellExpression) elif option.technique == "fraction": value = float(fractionExpression) elif option.technique == "normal": value = float(normalExpression) # store cells, genes, and values: if not cell in cells: cells.append(cell) if not gene in genes: genes.append(gene) if not cell in tissueDict: tissueDict[cell] = [classTissue, generalTissue, specificTissue] if not cell in matrix: matrix[cell] = dict() matrix[cell][gene] = value # export the cellular expression matrix! f_output = open(matrixfile, "w") cells, genes = sorted(cells), sorted(genes) print >>f_output, "\t".join([""] + genes) for cell in cells: values = list() for gene in genes: if gene in matrix[cell]: values.append(matrix[cell][gene]) else: values.append(0) valueCount = len(values) - values.count(0) classTissue, generalTissue, specificTissue = tissueDict[cell] specificTissue = specificTissue.replace(" ", "_") label = ":".join([classTissue, generalTissue, specificTissue, cell]) print >>f_output, "\t".join([label] + map(str, values)) f_output.close() # build in silico binding peaks mode: elif option.mode == "cell.peaks": # define the target contexts: if option.contexts != "OFF": shandle, target_context_dict = metrn.options_dict["contexts.condensed"][option.contexts] target_contexts = list() for target in target_context_dict: target_contexts.append(target_context_dict[target]) target_contexts = sorted(list(set(target_contexts))) # generate output paths: insilicopath = bindingpath + option.name + "/" general.pathGenerator(insilicopath) # load header dictionary: hd = general.build_header_dict(expressionpath + option.expression) # load expression matrix: print print "Loading expression matrix..." matrix = dict() inlines = open(expressionpath + option.expression).readlines() inlines.pop(0) for inline in inlines: initems = inline.strip().split("\t") gene, cell, cellExpression, fractionExpression = initems[hd["gene"]], initems[hd["cell"]], float(initems[hd["cell.expression"]]), float(initems[hd["fraction.expression"]]) if not gene in matrix: matrix[gene] = dict() if fractionExpression >= option.fraction and float(cellExpression) >= option.minimum: matrix[gene][cell] = fractionExpression # load target cells: if option.times != "OFF": # load time-point cells: timedCells = getTargetCells(inpath=timepath + option.times + "/cells/", mode="time", timeRange=range(option.start, option.stop + 1, option.step)) # scan peak files: print print "Generating cell-resolution peaks..." k, peak_files, insilico_files = 0, os.listdir(peakspath), list() for peak_file in peak_files: dataset = peak_file.split("_peaks.bed")[0].replace("POL2", "AMA-1") organism, strain, factor, context, institute, method = metrn.labelComponents(dataset, target="components") if factor in matrix: if option.contexts == "OFF" or context in target_contexts: print "Processing:", dataset insilico_file = peak_file.replace("POL2", "AMA-1") f_output = open(insilicopath + insilico_file, "w") for cell in sorted(matrix[factor].keys()): if option.times == "OFF" or cell in timedCells: for inline in open(peakspath + peak_file).readlines(): print >>f_output, cell + ":" + inline.strip() f_output.close() insilico_files.append(insilico_file) # define output peak files: unsortedfile = bindingpath + "mapcells_silico_" + option.name + "_unsorted.bed" completefile = bindingpath + "mapcells_silico_" + option.name + "_complete.bed" compiledfile = bindingpath + "mapcells_silico_" + option.name + "_compiled.bed" # generate compilation files: if not "mapcells_silico_" + option.peaks + "_complete.bed" in os.listdir(bindingpath) or option.overwrite == "ON": # gather peak files and compiled into a single file: print print "Gathering peaks into single file..." joint = " " + insilicopath command = "cat " + insilicopath + joint.join(insilico_files) + " > " + unsortedfile os.system(command) print "Sorting peaks in single file..." command = "sortBed -i " + unsortedfile + " > " + completefile os.system(command) # merge peaks into single file: print "Collapsing peaks in sorted file..." command = "mergeBed -nms -i " + completefile + " > " + compiledfile os.system(command) # remove unsorted file: command = "rm -rf " + unsortedfile os.system(command) print # gene and cell collection reporting mode (gene expressed per cell): elif option.mode == "reports": taskDict = { "gene" : [cellsetpath, "cells"], "cell" : [genesetpath, "genes"] } print for task in taskDict: inputpath, column = taskDict[task] for collection in os.listdir(inputpath): if collection in option.collection.split(",") or option.collection == "OFF": print "Processing:", task, collection f_output = open(reportspath + "mapcell_report_" + task + "_" + collection, "w") print >>f_output, "\t".join([task, "count", column]) for item in sorted(os.listdir(inputpath + collection)): contents = open(inputpath + collection + "/" + item).read().strip().split("\n") contents = general.clean(contents) print >>f_output, "\t".join(map(str, [item, len(contents), ",".join(sorted(contents))])) f_output.close() print print # cell collection mode (cells expressed per gene): elif option.mode == "cell.collection": # establish descendants cutoff: if option.descendants == "OFF": descendants_cutoff = 1000000 descendants_handle = "XX" else: descendants_cutoff = int(option.descendants) descendants_handle = option.descendants # establish ascendants cutoff: if option.ascendants == "OFF": ascendants_cutoff = 0 ascendants_handle = "XX" else: ascendants_cutoff = int(option.ascendants) ascendants_handle = option.ascendants # establish limit cutoff: if option.limit == "OFF": limit_cutoff = "OFF" limit_handle = "XX" else: limit_cutoff = int(option.limit) limit_handle = option.limit # define output folder: cellsetpath = cellsetpath + option.collection + "/" general.pathGenerator(cellsetpath) # export expressing-cells for each gene: if option.expression != "OFF": # build cell-expression matrix: quantitation_matrix, expression_matrix, tracking_matrix, trackedCells = expressionBuilder(expressionfile=option.expression, path=expressionpath, cutoff=option.fraction, minimum=option.minimum, metric="fraction.expression") # export cells per gene: for gene in sorted(expression_matrix.keys()): f_output = open(cellsetpath + gene, "w") for cell in sorted(expression_matrix[gene]): print >>f_output, cell f_output.close() # export cells for SOM neurons: if option.neurons != "OFF": # update path to neurons: neuronspath = neuronspath + option.peaks + "/" # define input path: sumpath = neuronspath + option.technique + "/results/" + option.neurons + "/summary/" sumfile = "mapneurons_summary.txt" # build header dict: hd = general.build_header_dict(sumpath + sumfile) # build SOM-cell matrix: collection_matrix, trackedCells = dict(), list() inlines = open(sumpath + sumfile).readlines() inlines.pop(0) for inline in inlines: initems = inline.rstrip("\n").split("\t") neuron, cells = initems[hd["neuron"]], initems[hd["class.ids"]] collection_matrix[neuron] = general.clean(cells.split(","), "") trackedCells.extend(cells.split(",")) trackedCells = general.clean(list(set(trackedCells)), "") # export cells per gene: for neuron in sorted(collection_matrix.keys()): f_output = open(cellsetpath + neuron, "w") for cell in sorted(collection_matrix[neuron]): print >>f_output, cell f_output.close() # gene collection mode (gene expressed per cell): elif option.mode == "gene.collection": # establish descendants cutoff: if option.descendants == "OFF": descendants_cutoff = 1000000 descendants_handle = "XX" else: descendants_cutoff = int(option.descendants) descendants_handle = option.descendants # establish ascendants cutoff: if option.ascendants == "OFF": ascendants_cutoff = 0 ascendants_handle = "XX" else: ascendants_cutoff = int(option.ascendants) ascendants_handle = option.ascendants # establish limit cutoff: if option.limit == "OFF": limit_cutoff = "OFF" limit_handle = "XX" else: limit_cutoff = int(option.limit) limit_handle = option.limit # define output folder: genesetpath = genesetpath + option.collection + "/" general.pathGenerator(genesetpath) # export expressing-cells for each gene: if option.expression != "OFF": # build cell-expression matrix: quantitation_matrix, expression_matrix, tracking_matrix, trackedCells = expressionBuilder(expressionfile=option.expression, path=expressionpath, cutoff=option.fraction, minimum=option.minimum, metric="fraction.expression") # gather cells: cells = list() for gene in sorted(quantitation_matrix.keys()): for cell in sorted(quantitation_matrix[gene]): cells.append(cell) cells = sorted(list(set(cells))) # invert matrix: inverted_matrix = dict() for gene in sorted(expression_matrix.keys()): for cell in sorted(expression_matrix[gene]): if not cell in inverted_matrix: inverted_matrix[cell] = list() inverted_matrix[cell].append(gene) # export cells per gene: for cell in cells: f_output = open(genesetpath + cell, "w") if cell in inverted_matrix: for gene in sorted(inverted_matrix[cell]): print >>f_output, gene f_output.close() # cell transfer mode: elif option.mode == "cell.transfer": # define time-range to examine: timeRange=range(option.start, option.stop + 1, option.step) # generate new collections: for timePoint in timeRange: # define output path: outpath = cellsetpath + option.name + general.indexTag(timePoint, option.total) + option.nametag + "/" general.pathGenerator(outpath) # load timePoint cells: timedCells = getTargetCells(inpath=timepath + option.times + "/cells/", mode="time", timeRange=[timePoint]) # parse per gene signatures in collection: for gene in os.listdir(cellsetpath + option.collection): # load expression cells: expressionCells = open(cellsetpath + option.collection + "/" + gene).read().split("\n") # export timed, expressionCells: f_output = open(outpath + gene, "w") print >>f_output, "\n".join(sorted(list(set(timedCells).intersection(set(expressionCells))))) f_output.close() # mapping overlap mode: elif option.mode == "cell.overlap": # update overlappath: overlappath = overlappath + option.collection + "/" general.pathGenerator(overlappath) # build cell-expression matrix: print print "Loading cellular expression..." signal_matrix, expression_matrix, tracking_matrix, trackedCells = expressionBuilder(expressionfile=option.expression, path=expressionpath, cutoff=option.fraction, minimum=option.minimum, metric="cell.expression") fraction_matrix, expression_matrix, tracking_matrix, trackedCells = expressionBuilder(expressionfile=option.expression, path=expressionpath, cutoff=option.fraction, minimum=option.minimum, metric="fraction.expression") normal_matrix, expression_matrix, tracking_matrix, trackedCells = expressionBuilder(expressionfile=option.expression, path=expressionpath, cutoff=option.fraction, minimum=option.minimum, metric="fraction.expression") rank_matrix, expression_matrix, tracking_matrix, trackedCells = expressionBuilder(expressionfile=option.expression, path=expressionpath, cutoff=option.fraction, minimum=option.minimum, metric="rank") # load collection cells: #print "Loading target cells..." targetCells = getTargetCells(inpath=cellsetpath + option.collection + "/", mode="collection") # create output file: o_output = open(overlappath + "mapcells_" + option.collection + "_matrix_overlap", "w") o_header = ["i", "j", "i.cells", "j.cells", "overlap.cells", "total.cells", "overlap.max", "overlap.sum", "overlap.avg", "expression.cor", "fraction.cor", "normal.cor", "rank.cor", "pvalue", "pvalue.adj", "score", "i.only.ids", "j.only.ids", "overlap.ids"] print >>o_output, "\t".join(o_header) # find maximum rank, if necessary: if option.extend == "ON": maxRank = 0 for gene in rank_matrix: for targetCell in rank_matrix[gene]: if int(rank_matrix[gene][targetCell]) > maxRank: maxRank = int(rank_matrix[gene][targetCell]) # load gene-expressing cells data: print print "Build expression matrix per gene..." genes = os.listdir(cellsetpath + option.collection) matrix = dict() for gene in genes: matrix[gene] = dict() matrix[gene]["cells"], matrix[gene]["signals"], matrix[gene]["fractions"], matrix[gene]["normals"], matrix[gene]["ranks"] = list(), list(), list(), list(), list() expressionCells = open(cellsetpath + option.collection + "/" + gene).read().split("\n") for targetCell in targetCells: if targetCell in expressionCells: matrix[gene]["cells"].append(targetCell) if targetCell in signal_matrix[gene]: matrix[gene]["signals"].append(signal_matrix[gene][targetCell]) matrix[gene]["fractions"].append(fraction_matrix[gene][targetCell]) matrix[gene]["normals"].append(normal_matrix[gene][targetCell]) matrix[gene]["ranks"].append(rank_matrix[gene][targetCell]) elif option.extend == "ON": matrix[gene]["signals"].append(0) matrix[gene]["fractions"].append(0) matrix[gene]["normals"].append(0) matrix[gene]["ranks"].append(maxRank) # print a matrix of cell expression overlap between genes: print "Exporting cellular overlap matrix..." adjust = len(matrix)*len(matrix) universe = len(targetCells) for geneX in sorted(matrix.keys()): cellsX = matrix[geneX]["cells"] signalsX, fractionsX, normalsX, ranksX = numpy.array(matrix[geneX]["signals"]), numpy.array(matrix[geneX]["fractions"]), numpy.array(matrix[geneX]["normals"]), numpy.array(matrix[geneX]["ranks"]) for geneY in sorted(matrix.keys()): cellsY = matrix[geneY]["cells"] signalsY, fractionsY, normalsY, ranksY = numpy.array(matrix[geneY]["signals"]), numpy.array(matrix[geneY]["fractions"]), numpy.array(matrix[geneY]["normals"]), numpy.array(matrix[geneY]["ranks"]) signalCor = numpy.corrcoef(signalsX, signalsY)[0][1] fractionCor = numpy.corrcoef(fractionsX, fractionsY)[0][1] normalCor = numpy.corrcoef(normalsX, normalsY)[0][1] rankCor = numpy.corrcoef(ranksX, ranksY)[0][1] cellsXo = sorted(set(cellsX).difference(set(cellsY))) # X-only cells cellsYo = sorted(set(cellsY).difference(set(cellsX))) # Y-only cells cellsO = sorted(set(cellsX).intersection(set(cellsY))) # overlap cellsU = sorted(set(cellsX).union(set(cellsY))) # union cellsT = targetCells # Hypergeometric paramters: m = len(cellsX) # number of white balls in urn n = universe - len(cellsX) # number of black balls in urn N = len(cellsY) # number of balls drawn from urn x = len(cellsO) # number of white balls in drawn # If I pull out all balls with elephant tatoos (N), is the draw enriched in white balls?: pvalue = hyper.fishers(x, m+n, m, N, method="right") adjPvalue = hyper.limit(pvalue*adjust) score = hyper.directional(x, m+n, m, N, adjust=adjust) output = [geneX, geneY] output.append(len(cellsX)) output.append(len(cellsY)) output.append(len(cellsO)) output.append(len(cellsT)) if len(cellsO) > 0: output.append(float(len(cellsO))/min(len(cellsX), len(cellsY))) output.append(float(len(cellsO))/len(cellsU)) output.append(float(len(cellsO))/numpy.mean([len(cellsX), len(cellsY)])) else: output.append(0) output.append(0) output.append(0) output.append(signalCor) output.append(fractionCor) output.append(normalCor) output.append(rankCor) output.append(pvalue) output.append(adjPvalue) output.append(score) output.append(";".join(cellsXo)) output.append(";".join(cellsYo)) output.append(";".join(cellsO)) if len(output) != len(o_header): print len(o_header), len(output) print output print pdb.set_trace() if " " in "\t".join(map(str, output)): print output pdb.set_trace() print >>o_output, "\t".join(map(str, output)) # close output: o_output.close() print # hybrid (datatypes) matrix mode: elif option.mode == "cell.hybrid": # get comparison properties: peaks, domain = option.a.split("/")[:2] collection = option.b.split("/")[0] # load target contexts: codeContexts, targetContexts = metrn.options_dict["contexts.extended"][option.contexts] # make comparison output folders: hybridpath = hybridpath + collection + "/" + peaks + "/" + domain + "/" + codeContexts + "/" general.pathGenerator(hybridpath) # define input files: ainfile = str(coassociationspath + option.a).replace("//","/") binfile = str(cellspath + "overlap/" + option.b).replace("//","/") # load input headers: aheader = general.build_header_dict(ainfile) bheader = general.build_header_dict(binfile) # load co-association results: print print "Loading co-associations..." cobindingFrames = general.build2(ainfile, id_complex=["i", "j"], separator=":") # load cellular expression overlap: print "Loading co-expression..." coexpressionFrames = general.build2(binfile, id_complex=["i", "j"], separator=":") coexpressionMatrix = general.build2(binfile, i="i", j="j", x="overlap.sum", mode="matrix") # characterize input file basenames: abasename = option.a.split("/")[len(option.a.split("/"))-1].replace(".txt","").replace(".bed","") bbasename = option.b.split("/")[len(option.b.split("/"))-1].replace(".txt","").replace(".bed","") # define output file: f_outfile = hybridpath + "mapcells_hybrid_" + collection + "-" + peaks + "-" + domain + "_combined.txt" f_output = open(f_outfile, "w") # generate output header: header = ["i", "j", "label"] acolumns = list() for acolumn in general.valuesort(aheader): if not acolumn in header: acolumns.append(acolumn) bcolumns = list() for bcolumn in general.valuesort(bheader): if not bcolumn in header and not bcolumn in ["i.only.ids", "j.only.ids", "overlap.ids"]: bcolumns.append(bcolumn) print >>f_output, "\t".join(header + acolumns + bcolumns) # filter-match results: print "Merging co-binding and co-expression..." ifactor, jfactor = option.indexes.split(",") icontext, jcontext = option.values.split(",") comparisons = list() for cobindingComparison in sorted(cobindingFrames.keys()): iFactor, jFactor = cobindingFrames[cobindingComparison][ifactor], cobindingFrames[cobindingComparison][jfactor] iContext, jContext = cobindingFrames[cobindingComparison][icontext], cobindingFrames[cobindingComparison][jcontext] if iContext in targetContexts and jContext in targetContexts: if iFactor in coexpressionMatrix and jFactor in coexpressionMatrix: coexpressionComparison = iFactor + ":" + jFactor label = ":".join(sorted([iFactor, jFactor])) if not coexpressionComparison in comparisons: output = [iFactor, jFactor, label] for acolumn in acolumns: output.append(cobindingFrames[cobindingComparison][acolumn]) for bcolumn in bcolumns: output.append(coexpressionFrames[coexpressionComparison][bcolumn]) print >>f_output, "\t".join(map(str, output)) comparisons.append(coexpressionComparison) # NOTE: this filtering for unique comparisons ensures that only one # of the RNA PolII datasets gets used. # close output file: f_output.close() print "Merged comparisons:", len(comparisons) print # dynamics (hybrid) matrix mode: elif option.mode == "cell.dynamics": # are working with hybrid co-binding and co-expression data? if option.peaks != "OFF" and option.domain != "OFF": hybridMode = "ON" else: hybridMode = "OFF" # make comparison output folders: if hybridMode == "ON": dynamicspath = dynamicspath + option.name + "/" + option.peaks + "/" + option.domain + "/" general.pathGenerator(dynamicspath) f_outfile = dynamicspath + "mapcells_hybrid_" + option.name + "-" + option.peaks + "-" + option.domain + "_dynamics.txt" f_output = open(f_outfile, "w") u_outfile = dynamicspath + "mapcells_hybrid_" + option.name + "-" + option.peaks + "-" + option.domain + "_uniqueID.txt" u_output = open(u_outfile, "w") else: dynamicspath = dynamicspath + option.name + "/overlap/" general.pathGenerator(dynamicspath) f_outfile = dynamicspath + "mapcells_direct_" + option.name + "_dynamics.txt" f_output = open(f_outfile, "w") u_outfile = dynamicspath + "mapcells_direct_" + option.name + "_uniqueID.txt" u_output = open(u_outfile, "w") # define output file: k = 0 # load target contexts: codeContexts, targetContexts = metrn.options_dict["contexts.extended"][option.contexts] # load overlap data from collections: print print "Transfer dynamic co-binding and co-expression analysis..." for index in range(option.start, option.stop+1, option.step): collection = option.collection + general.indexTag(index, option.total) + option.nametag labels = list() # process hybrid co-binding and co-expression data: if hybridMode == "ON" and collection in os.listdir(hybridpath): if option.peaks in os.listdir(hybridpath + collection): if option.domain in os.listdir(hybridpath + collection + "/" + option.peaks): infile = hybridpath + collection + "/" + option.peaks + "/" + option.domain + "/" + codeContexts + "/mapcells_hybrid_" + collection + "-" + option.peaks + "-" + option.domain + "_combined.txt" inlines = open(infile).readlines() header = inlines.pop(0) if k == 0: print >>f_output, "timepoint" + "\t" + header.strip() print >>u_output, "timepoint" + "\t" + header.strip() k += 1 for inline in inlines: label = inline.strip().split("\t")[2] print >>f_output, str(index) + "\t" + inline.strip() if not label in labels: print >>u_output, str(index) + "\t" + inline.strip() labels.append(label) # process direct co-expression data: if hybridMode == "OFF" and collection in os.listdir(overlappath): infile = overlappath + collection + "/mapcells_" + collection + "_matrix_overlap" inlines = open(infile).readlines() header = inlines.pop(0) if k == 0: headerItems = header.strip().split("\t")[:15] print >>f_output, "\t".join(["timepoint", "label"] + headerItems) print >>u_output, "\t".join(["timepoint", "label"] + headerItems) k += 1 for inline in inlines: initems = inline.strip().split("\t")[:15] label = ":".join(sorted([initems[0], initems[1]])) print >>f_output, "\t".join([str(index), label] + initems) if not label in labels: print >>u_output, "\t".join([str(index), label] + initems) labels.append(label) f_output.close() u_output.close() print # hypergeometric tissue-testing mode: elif option.mode == "test.tissues": # load tissue annotation matrixes: print print "Loading tissue annotations..." specificTissues = general.build2(expressionpath + option.infile, i="specific.tissue", j="cell", mode="matrix", counter=True) generalTissues = general.build2(expressionpath + option.infile, i="general.tissue", j="cell", mode="matrix", counter=True) classTissues = general.build2(expressionpath + option.infile, i="class.tissue", j="cell", mode="matrix", counter=True) totalCells = general.build2(expressionpath + option.expression, i="cell", x="specific.tissue", mode="values", skip=True) totalCells = sorted(totalCells.keys()) # define a function for testing: def tissueTesting(queryCells, tissueMatrix, totalCells, adjust=1, match=True): if match: queryCells = set(queryCells).intersection(set(totalCells)) tissueOverlap = dict() for tissue in sorted(tissueMatrix.keys()): tissueCells = sorted(tissueMatrix[tissue].keys()) if match: tissueCells = set(tissueCells).intersection(set(totalCells)) overlapCells = set(queryCells).intersection(set(tissueCells)) m = len(queryCells) n = len(totalCells) - len(queryCells) U = len(totalCells) N = len(tissueCells) x = len(overlapCells) unionized = len(set(queryCells).union(set(tissueCells))) maximized = min(len(queryCells), len(tissueCells)) # determine overlap fractions: if maximized > 0: maxOverlap = float(x)/maximized else: maxOverlap = 0 if unionized > 0: sumOverlap = float(x)/unionized else: sumOverlap = 0 # calculate probability mass function (PMF): pvalue = hyper.fishers(x, U, m, N, adjust=1, method="right") adjPvalue = hyper.limit(pvalue*adjust) # calculate enrichment/depletion score: score = hyper.directional(x, U, m, N, adjust=adjust) # store overlap scores: tissueOverlap[tissue] = [len(queryCells), len(tissueCells), len(overlapCells), len(totalCells), maxOverlap, sumOverlap, pvalue, adjPvalue, score] # return overlap scores: return tissueOverlap # load genes: genes = sorted(os.listdir(cellsetpath + option.collection)) # determine Bonferroni correction factors adjustSpecific = len(genes)*len(specificTissues) adjustGeneral = len(genes)*len(generalTissues) adjustClass = len(genes)*len(classTissues) #print adjustSpecific #print adjustGeneral #print adjustClass #pdb.set_trace() # load cellular expression patterns per gene: print "Loading per gene expression matrix..." specificMatrix, generalMatrix, classMatrix = dict(), dict(), dict() for gene in genes: cells = open(cellsetpath + option.collection + "/" + gene).read().split("\n") specificMatrix[gene] = tissueTesting(cells, specificTissues, totalCells, adjust=adjustSpecific) generalMatrix[gene] = tissueTesting(cells, generalTissues, totalCells, adjust=adjustGeneral) classMatrix[gene] = tissueTesting(cells, classTissues, totalCells, adjust=adjustClass) # load cellular expression patterns per gene: print "Exporting overlap scores..." s_output = open(tissuespath + "mapcells_" + option.collection + "_matrix_specific.txt", "w") g_output = open(tissuespath + "mapcells_" + option.collection + "_matrix_general.txt" , "w") c_output = open(tissuespath + "mapcells_" + option.collection + "_matrix_class.txt" , "w") print >>s_output, "\t".join(["gene", "tissue", "gene.cells", "tissue.cells", "overlap.cells", "total.cells", "overlap.max", "overlap.sum", "pvalue", "pvalue.adj", "score"]) print >>g_output, "\t".join(["gene", "tissue", "gene.cells", "tissue.cells", "overlap.cells", "total.cells", "overlap.max", "overlap.sum", "pvalue", "pvalue.adj", "score"]) print >>c_output, "\t".join(["gene", "tissue", "gene.cells", "tissue.cells", "overlap.cells", "total.cells", "overlap.max", "overlap.sum", "pvalue", "pvalue.adj", "score"]) for gene in sorted(specificMatrix.keys()): for tissue in sorted(specificMatrix[gene].keys()): print >>s_output, "\t".join(map(str, [gene, tissue] + specificMatrix[gene][tissue])) for tissue in sorted(generalMatrix[gene].keys()): print >>g_output, "\t".join(map(str, [gene, tissue] + generalMatrix[gene][tissue])) for tissue in sorted(classMatrix[gene].keys()): print >>c_output, "\t".join(map(str, [gene, tissue] + classMatrix[gene][tissue])) # close outputs: s_output.close() g_output.close() c_output.close() print # lineage construction/generation mode: elif option.mode == "build.lineages": import time # establish descendants cutoff: if option.descendants == "OFF": descendants_cutoff = 1000000 descendants_handle = "XX" else: descendants_cutoff = int(option.descendants) descendants_handle = option.descendants # establish ascendants cutoff: if option.ascendants == "OFF": ascendants_cutoff = 0 ascendants_handle = "XX" else: ascendants_cutoff = int(option.ascendants) ascendants_handle = option.ascendants # establish limit cutoff: if option.limit == "OFF": limit_cutoff = "OFF" limit_handle = "XX" else: limit_cutoff = int(option.limit) limit_handle = option.limit # define output paths: logpath = lineagepath + option.name + "/" + option.method + "/lineage." + option.lineages + "/ascendants." + ascendants_handle + "/descendants." + descendants_handle + "/limit." + limit_handle + "/log/" buildpath = lineagepath + option.name + "/" + option.method + "/lineage." + option.lineages + "/ascendants." + ascendants_handle + "/descendants." + descendants_handle + "/limit." + limit_handle + "/build/" general.pathGenerator(logpath) general.pathGenerator(buildpath) # prepare log file: l_output = open(logpath + "mapcells_build_" + option.cells + ".log", "w") # clear output folder contents: command = "rm -rf " + buildpath + "*" os.system(command) # build cell-expression matrix: print print "Loading cellular expression..." print >>l_output, "Loading cellular expression..." quantitation_matrix, expression_matrix, tracking_matrix, trackedCells = expressionBuilder(expressionfile=option.expression, path=expressionpath, cutoff=option.fraction, minimum=option.minimum, metric="fraction.expression") # store cell-parent relationships: print "Loading cell-parent relationships..." print >>l_output, "Loading cell-parent relationships..." cell_dict, parent_dict, pedigreeCells = relationshipBuilder(pedigreefile=option.pedigree, path=extraspath, trackedCells=trackedCells, lineages=option.lineages) print "Pedigree cells:", len(pedigreeCells) print "Tracked cells:", len(trackedCells) print >>l_output, "Pedigree cells:", len(pedigreeCells) print >>l_output, "Tracked cells:", len(trackedCells) # generate lineages for enrichment: print print "Generating lineages..." print >>l_output, "" print >>l_output, "Generating lineages..." i, j, maxDN, minUP = 0, 0, 0, 10000 for parent in pedigreeCells: i += 1 # define descendant cells: descendants = descendantsCollector(parent, parent_dict, cell_dict, descendants=list()) # define ascendants cells: ascendants = ascendantsCollector(parent, parent_dict, cell_dict, ascendants=list()) # calculate combinations possible: combinations = combinationCalculator(len(descendants), len(descendants)) # apply descendants cutoff: if len(descendants) <= descendants_cutoff and len(ascendants) >= ascendants_cutoff: j += 1 print parent, len(ascendants), len(descendants), time.asctime(time.localtime()) print >>l_output, parent, len(ascendants), len(descendants), time.asctime(time.localtime()) # record max and min cutoffs: if len(ascendants) < minUP: minUP = len(ascendants) if len(descendants) > maxDN: maxDN = len(descendants) # define lineage cells: if option.method == "descender": subtrees = [",".join(descendants)] elif option.method == "generator": subtrees = lineageGenerator(parent, parent_dict, cell_dict) elif option.method == "builder": subtrees = lineageBuilder(parent, parent_dict, cell_dict, limit=limit_cutoff) elif option.method == "collector": subtrees = lineageCollector(expression_matrix[gene], parent_dict, cell_dict) print subtrees pdb.set_trace() # not implemented yet # export lineage cells: f_output = open(buildpath + parent, "w") index = 1 for subtree in subtrees: print >>f_output, "\t".join([parent, parent + "." + str(index), subtree]) index += 1 f_output.close() print print "Pedigree nodes lineaged:", i print "Pedigree nodes examined:", j, "(" + str(round(100*float(j)/i, 2)) + "%)" print "Maximum descendants:", maxDN print "Minimum ascendants:", minUP print print >>l_output, "" print >>l_output, "Pedigree nodes lineaged:", i print >>l_output, "Pedigree nodes examined:", j, "(" + str(round(100*float(j)/i, 2)) + "%)" print >>l_output, "Maximum descendants:", maxDN print >>l_output, "Minimum ascendants:", minUP # close output files: l_output.close() #pdb.set_trace() # hypergeometric lineage-testing mode: elif option.mode == "test.lineages": # establish descendants cutoff: if option.descendants == "OFF": descendants_cutoff = 1000000 descendants_handle = "XX" else: descendants_cutoff = int(option.descendants) descendants_handle = option.descendants # establish ascendants cutoff: if option.ascendants == "OFF": ascendants_cutoff = 0 ascendants_handle = "XX" else: ascendants_cutoff = int(option.ascendants) ascendants_handle = option.ascendants # establish limit cutoff: if option.limit == "OFF": limit_cutoff = "OFF" limit_handle = "XX" else: limit_cutoff = int(option.limit) limit_handle = option.limit # define output paths: logpath = lineagepath + option.name + "/" + option.method + "/lineage." + option.lineages + "/ascendants." + ascendants_handle + "/descendants." + descendants_handle + "/limit." + limit_handle + "/log/" buildpath = lineagepath + option.name + "/" + option.method + "/lineage." + option.lineages + "/ascendants." + ascendants_handle + "/descendants." + descendants_handle + "/limit." + limit_handle + "/build/" hyperpath = lineagepath + option.name + "/" + option.method + "/lineage." + option.lineages + "/ascendants." + ascendants_handle + "/descendants." + descendants_handle + "/limit." + limit_handle + "/hyper/" cellsetpath = cellsetpath + option.collection + "/" general.pathGenerator(logpath) general.pathGenerator(buildpath) general.pathGenerator(hyperpath) #general.pathGenerator(cellsetpath) # prepare log file: l_output = open(logpath + "mapcells_hyper_" + option.collection + "_" + option.cells + ".log", "w") # build cell-expression matrix: print print "Loading cellular expression..." print >>l_output, "Loading cellular expression..." quantitation_matrix, expression_matrix, tracking_matrix, trackedCells = expressionBuilder(expressionfile=option.expression, path=expressionpath, cutoff=option.fraction, minimum=option.minimum, metric="fraction.expression") # load cell-parent relationships: print "Loading cell-parent relationships..." print >>l_output, "Loading cell-parent relationships..." cell_dict, parent_dict, pedigreeCells = relationshipBuilder(pedigreefile=option.pedigree, path=extraspath, trackedCells=trackedCells, lineages=option.lineages) print "Pedigree cells:", len(pedigreeCells) print "Tracked cells:", len(trackedCells) print >>l_output, "Pedigree cells:", len(pedigreeCells) print >>l_output, "Tracked cells:", len(trackedCells) # prepare for scanning... i, j, k = 0, 0, 0 nodes = general.clean(os.listdir(buildpath), '.DS_Store') overlap_dict, pvalue_dict, score_dict = dict(), dict(), dict() # prepare output file: f_output = open(hyperpath + "mapcells_hyper_" + option.collection + "_" + option.cells + ".txt", "w") header = ["gene", "node", "lineage", "experiment.cells", "lineage.cells", "overlap.sum", "overlap.max", "overlap.count", "total.count", "lineage.count", "expressed.count", "pvalue", "pvalue.adj", "score", "cells"] print >>f_output, "\t".join(map(str, header)) # load target cells: print print "Loading target cells..." print >>l_output, "" print >>l_output, "Loading target cells..." collection_matrix = dict() for collection in os.listdir(cellsetpath): collectionCells = general.clean(open(cellsetpath + collection).read().split("\n"), "") collection_matrix[collection] = collectionCells #print collection, collectionCells # define multiple-hypothesis correction factor: lineageTotal = 0 for node in nodes: lineageTotal += general.countLines(buildpath + node) adjust = len(collection_matrix)*lineageTotal # check background cell population: if option.cells == "tracked": pedigreeCells = list(trackedCells) # scan cells for enrichment: print "Scanning cells for lineage enrichments..." print >>l_output, "" print >>l_output, "Scanning cells for lineage enrichments..." collectionsEnriched = list() for collection in collection_matrix: collectionCells = collection_matrix[collection] # filter (complete) pedigree cells to reduce to tracked cells? if option.cells == "tracked" and collection in tracking_matrix: completeCells = set(tracking_matrix[collection]).intersection(set(pedigreeCells)) else: completeCells = pedigreeCells # Note: These are cells for which we have expression measurements for gene ('collection')... # Note: It is not necessary to filter expression cells because these are by definition a subset of the tracked cells. # scan lineages for enrichment: nodesEnriched, linesEnriched = list(), list() for node in nodes: # load node-specific lineages: lineageLines = open(buildpath + node).readlines() for lineageLine in lineageLines: lineageNode, lineageName, lineageCells = lineageLine.strip().split("\t") lineageCells = lineageCells.split(",") lineageCount = len(lineageCells) # filter lineage cells to reduce to tracked cells? if option.cells == "tracked" and collection in tracking_matrix: lineageCells = set(tracking_matrix[collection]).intersection(set(lineageCells)) #print collection, node, len(tracking_matrix[collection]), len(lineageCells), ",".join(lineageCells) #pdb.set_trace() # test enrichment in lineage: i += 1 completed = len(completeCells) descended = len(lineageCells) collected = len(collectionCells) overlaped = len(set(collectionCells).intersection(set(lineageCells))) unionized = len(set(collectionCells).union(set(lineageCells))) maximized = min(descended, collected) # determine overlaps: if maximized > 0: maxOverlap = float(overlaped)/maximized else: maxOverlap = 0 if unionized > 0: sumOverlap = float(overlaped)/unionized else: sumOverlap = 0 # check overlap: if maxOverlap >= float(option.overlap): j += 1 # calculate probability mass function (PMF): pvalue = hyper.fishers(overlaped, completed, descended, collected, adjust=1, method="right") adjPvalue = hyper.limit(pvalue*adjust) # calculate enrichment/depletion score: score = hyper.directional(overlaped, completed, descended, collected, adjust=adjust) # should we store this result? if adjPvalue < float(option.pvalue): k += 1 if not collection in overlap_dict: overlap_dict[collection], pvalue_dict[collection], score_dict[collection] = dict(), dict(), dict() overlap_dict[collection][node] = maxOverlap pvalue_dict[collection][node] = adjPvalue score_dict[collection][node] = score output = [collection, node, lineageName, len(collectionCells), lineageCount, sumOverlap, maxOverlap, overlaped, completed, descended, collected, pvalue, adjPvalue, score, ','.join(lineageCells)] print >>f_output, "\t".join(map(str, output)) if not collection in collectionsEnriched: collectionsEnriched.append(collection) if not node in nodesEnriched: nodesEnriched.append(node) linesEnriched.append(lineageName) print collection, i, j, k, len(collectionsEnriched), len(nodesEnriched), len(linesEnriched) print >>l_output, collection, i, j, k, len(collectionsEnriched), len(nodesEnriched), len(linesEnriched) print print "Lineages examined:", i print "Lineages overlapped:", j print "Lineages significant:", k, "(" + str(round(100*float(k)/i, 2)) + "%)" print print >>l_output, "" print >>l_output, "Lineages examined:", i print >>l_output, "Lineages overlapped:", j print >>l_output, "Lineages significant:", k, "(" + str(round(100*float(k)/i, 2)) + "%)" # close output file f_output.close() l_output.close() #pdb.set_trace() # hypergeometric testing between sets of cells mode: elif option.mode == "test.comparison": # define output paths: querypath = cellsetpath + option.query + "/" targetpath = cellsetpath + option.target + "/" hyperpath = comparepath + option.name + "/hyper/" logpath = comparepath + option.name + "/log/" general.pathGenerator(hyperpath) general.pathGenerator(logpath) # prepare log file: l_output = open(logpath + "mapcells_comparison_" + option.name + "_" + option.cells + ".log", "w") # build cell-expression matrix: print print "Loading cellular expression..." print >>l_output, "Loading cellular expression..." quantitation_matrix, expression_matrix, tracking_matrix, trackedCells = expressionBuilder(expressionfile=option.expression, path=expressionpath, cutoff=option.fraction, minimum=option.minimum, metric="fraction.expression") # store cell-parent relationships: print "Loading cell-parent relationships..." print >>l_output, "Loading cell-parent relationships..." cell_dict, parent_dict, pedigreeCells = relationshipBuilder(pedigreefile=option.pedigree, path=extraspath, trackedCells=trackedCells, lineages=option.cells) # Note that here the lineage-filtering uses the indicated cells option! print "Pedigree cells:", len(pedigreeCells) print "Tracked cells:", len(trackedCells) print >>l_output, "Pedigree cells:", len(pedigreeCells) print >>l_output, "Tracked cells:", len(trackedCells) # prepare for scanning... overlap_dict, pvalue_dict = dict(), dict() i, j, k = 0, 0, 0 # prepare output file: f_output = open(hyperpath + "mapcells_test_" + option.name + "_" + option.cells + "_comparison.txt", "w") header = ["query", "target", "lineage", "query.cells", "target.cells", "overlap.sum", "overlap.max", "overlap.count", "total.count", "query.count", "target.count", "pvalue", "pvalue.adj", "score", "cells"] print >>f_output, "\t".join(map(str, header)) # load query cells: print print "Loading query cells..." print >>l_output, "" print >>l_output, "Loading query cells..." query_matrix = dict() for query in os.listdir(querypath): queryCells = general.clean(open(querypath + query).read().split("\n"), "") query_matrix[query] = queryCells #print query, queryCells # load target cells: print print "Loading target cells..." print >>l_output, "" print >>l_output, "Loading target cells..." target_matrix = dict() for target in os.listdir(targetpath): targetCells = general.clean(open(targetpath + target).read().split("\n"), "") target_matrix[target] = targetCells #print target, targetCells # define multiple-hypothesis correction factor: adjust = len(query_matrix)*len(target_matrix) # check background cell population: if option.cells == "tracked": pedigreeCells = list(trackedCells) # scan query cells for enrichment: print "Scanning target cells for query cells enrichment..." print >>l_output, "" print >>l_output, "Scanning target cells for query cells enrichment..." queriesEnriched = list() for query in sorted(query_matrix.keys()): queryCells = list(set(query_matrix[query])) # filter query cells to reduce to tracked cells? if option.cells == "tracked": queryCells = set(queryCells).intersection(set(pedigreeCells)) # scan target cells for enrichment: targetsEnriched, linesEnriched = list(), list() for target in sorted(target_matrix.keys()): targetCells = list(set(target_matrix[target])) # filter target cells to reduce to tracked cells? if option.cells == "tracked": targetCells = set(targetCells).intersection(set(pedigreeCells)) #print query, target, len(queryCells), len(targetCells), ",".join(targetCells) #pdb.set_trace() # test enrichment in lineage: i += 1 completed = len(pedigreeCells) descended = len(targetCells) collected = len(queryCells) overlaped = len(set(queryCells).intersection(set(targetCells))) unionized = len(set(queryCells).union(set(targetCells))) maximized = min(descended, collected) # determine overlaps: if maximized > 0: maxOverlap = float(overlaped)/maximized else: maxOverlap = 0 if unionized > 0: sumOverlap = float(overlaped)/unionized else: sumOverlap = 0 # check overlap: if maxOverlap >= float(option.overlap): j += 1 # calculate probability mass function (PMF): pvalue = hyper.fishers(overlaped, completed, descended, collected, adjust=1, method="right") adjPvalue = hyper.limit(pvalue*adjust) # calculate enrichment/depletion score: score = hyper.directional(overlaped, completed, descended, collected, adjust=adjust) if adjPvalue < float(option.pvalue): k += 1 if not query in overlap_dict: overlap_dict[query], pvalue_dict[query] = dict(), dict() overlap_dict[query][target] = maxOverlap pvalue_dict[query][target] = pvalue output = [query, target, option.target, len(queryCells), len(targetCells), sumOverlap, maxOverlap, overlaped, completed, descended, collected, pvalue, adjPvalue, score, ','.join(targetCells)] print >>f_output, "\t".join(map(str, output)) if not query in queriesEnriched: queriesEnriched.append(query) if not target in targetsEnriched: targetsEnriched.append(target) print query, i, j, k, len(queriesEnriched), len(targetsEnriched), len(linesEnriched) print >>l_output, query, i, j, k, len(queriesEnriched), len(targetsEnriched), len(linesEnriched) print print "Lineages examined:", i print "Lineages overlapped:", j print "Lineages significant:", k, "(" + str(round(100*float(k)/i, 2)) + "%)" print print >>l_output, "" print >>l_output, "Lineages examined:", i print >>l_output, "Lineages overlapped:", j print >>l_output, "Lineages significant:", k, "(" + str(round(100*float(k)/i, 2)) + "%)" # close output file f_output.close() l_output.close() # filter testing results to neurons where the region is contained mode: elif option.mode == "test.regions": # update path to neurons: neuronspath = neuronspath + option.peaks + "/" # define input/output paths: bedpath = neuronspath + option.technique + "/results/" + option.neurons + "/regions/bed/" querypath = cellsetpath + option.query + "/" targetpath = cellsetpath + option.target + "/" hyperpath = comparepath + option.name + "/hyper/" logpath = comparepath + option.name + "/log/" general.pathGenerator(hyperpath) general.pathGenerator(logpath) # load region coordinates per neuron: print print "Loading regions per neuron matrix..." neuron_matrix = dict() for bedfile in general.clean(os.listdir(bedpath), ".DS_Store"): neuron = bedfile.replace(".bed", "") neuron_matrix[neuron] = dict() for bedline in open(bedpath + bedfile).readlines(): chrm, start, stop, region = bedline.strip("\n").split("\t")[:4] neuron_matrix[neuron][region] = [chrm, int(start), int(stop)] # load gene coordinates: print "Loading gene/feature coordinates..." coord_dict = dict() ad = general.build_header_dict(annotationspath + option.reference) inlines = open(annotationspath + option.reference).readlines() inlines.pop(0) for inline in inlines: initems = inline.strip("\n").split("\t") chrm, start, stop, feature, strand, name = initems[ad["chrm"]], initems[ad["start"]], initems[ad["end"]], initems[ad["feature"]], initems[ad["strand"]], initems[ad["name"]] if strand == "+": coord_dict[name] = [chrm, int(start)-option.up, int(start)+option.dn] coord_dict[feature] = [chrm, int(start)-option.up, int(start)+option.dn] elif strand == "-": coord_dict[name] = [chrm, int(stop)-option.dn, int(stop)+option.up] coord_dict[feature] = [chrm, int(stop)-option.dn, int(stop)+option.up] # prepare output file: f_output = open(hyperpath + "mapcells_test_" + option.name + "_" + option.cells + "_regions.txt", "w") # define hypergeometric results file: hyperfile = hyperpath + "mapcells_test_" + option.name + "_" + option.cells + "_comparison.txt" # build header dict: hd = general.build_header_dict(hyperfile) # scan hypergeometric results file for cases of overlap: print "Scanning hypergeometric results..." i, j, k = 0, 0, 0 inlines = open(hyperfile).readlines() print >>f_output, inlines.pop(0).strip("\n") queriesMissed, queriesFound, targetsFound = list(), list(), list() for inline in inlines: initems = inline.strip("\n").split("\t") query, target, pvalue = initems[hd["query"]], initems[hd["target"]], initems[hd["pvalue.adj"]] if query in coord_dict: i += 1 qchrm, qstart, qstop = coord_dict[query] hits = False for region in neuron_matrix[target]: j += 1 rchrm, rstart, rstop = neuron_matrix[target][region] if qchrm == rchrm: if qstart <= rstart and qstop >= rstop: k += 1 hits = True if hits: print >>f_output, inline.strip("\n") queriesFound.append(query) targetsFound.append(target) else: queriesMissed.append(query) queriesMissed = sorted(list(set(queriesMissed))) # close output file f_output.close() queriesFound = sorted(list(set(queriesFound))) targetsFound = sorted(list(set(targetsFound))) #pdb.set_trace() print print "Queries found in neurons:", len(queriesFound) print "Neurons found in queries:", len(targetsFound) print "Searches performed:", i print "Searches performed (x Regions):", j print "Searches with hits (x Regions):", k print "Queries with coordinates and found:", ", ".join(queriesFound) print "Queries missed (no coordinates):", len(queriesMissed) print "\n".join(queriesMissed) print # false discovery rate mode: elif option.mode == "test.fdr": # update path to neurons: neuronspath = neuronspath + option.peaks + "/" # define input/output paths: bedpath = neuronspath + option.technique + "/results/" + option.neurons + "/regions/bed/" querypath = cellsetpath + option.query + "/" targetpath = cellsetpath + option.target + "/" hyperpath = comparepath + option.name + "/hyper/" logpath = comparepath + option.name + "/log/" general.pathGenerator(hyperpath) general.pathGenerator(logpath) # load region coordinates per neuron: print print "Loading regions per neuron matrix..." neuron_matrix = dict() for bedfile in general.clean(os.listdir(bedpath), ".DS_Store"): neuron = bedfile.replace(".bed", "") neuron_matrix[neuron] = dict() for bedline in open(bedpath + bedfile).readlines(): chrm, start, stop, region = bedline.strip("\n").split("\t")[:4] neuron_matrix[neuron][region] = [chrm, int(start), int(stop)] # load gene coordinates: print "Loading gene/feature coordinates..." coord_dict = dict() ad = general.build_header_dict(annotationspath + option.reference) inlines = open(annotationspath + option.reference).readlines() inlines.pop(0) for inline in inlines: initems = inline.strip("\n").split("\t") chrm, start, stop, feature, strand, name = initems[ad["chrm"]], initems[ad["start"]], initems[ad["end"]], initems[ad["feature"]], initems[ad["strand"]], initems[ad["name"]] if strand == "+": coord_dict[name] = [chrm, int(start)-option.up, int(start)+option.dn] coord_dict[feature] = [chrm, int(start)-option.up, int(start)+option.dn] elif strand == "-": coord_dict[name] = [chrm, int(stop)-option.dn, int(stop)+option.up] coord_dict[feature] = [chrm, int(stop)-option.dn, int(stop)+option.up] # prepare output file: f_output = open(hyperpath + "mapcells_test_" + option.name + "_" + option.cells + "_fdr.txt", "w") # define hypergeometric results file: hyperfile = hyperpath + "mapcells_test_" + option.name + "_" + option.cells + "_comparison.txt" # build header dict: hd = general.build_header_dict(hyperfile) # load positive hypergeometric results: print "Loading hypergeometric results (hits)..." inlines = open(hyperfile).readlines() inlines.pop(0) hyper_matrix, hyperTargets = dict(), list() for inline in inlines: initems = inline.strip("\n").split("\t") query, target, pvalue = initems[hd["query"]], initems[hd["target"]], initems[hd["pvalue.adj"]] if not query in hyper_matrix: hyper_matrix[query] = dict() hyper_matrix[query][target] = float(pvalue) if not target in hyperTargets: hyperTargets.append(target) # select the best matching neuron for each query: match_matrix = dict() print "Scanning hypergeometric results per query..." i, j, k = 0, 0, 0 positiveRate, negativeRate, matchTargets = list(), list(), list() for query in hyper_matrix: if query in coord_dict: i += 1 qchrm, qstart, qstop = coord_dict[query] for target in neuron_matrix: j += 1 hits = 0 for region in neuron_matrix[target]: rchrm, rstart, rstop = neuron_matrix[target][region] if qchrm == rchrm: if qstart <= rstart and qstop >= rstop: hits += 1 if hits != 0: if not query in match_matrix: match_matrix[query] = dict() match_matrix[query][target] = float(hits)/len(neuron_matrix[target]) if not target in matchTargets: matchTargets.append(target) #print hyper_matrix.keys() #print match_matrix.keys() #print query #print target #print match_matrix[query][target] #pdb.set_trace() # Test A """ print print "Testing positive and negative hits..." positiveRate, negativeRate, unknownRate = list(), list(), list() for query in match_matrix: hits = general.valuesort(match_matrix[query]) hits.reverse() target = hits[0] if query in hyper_matrix and target in hyper_matrix[query]: positiveRate.append(query + ":" + target) print "+", query, target, match_matrix[query][target] else: print "-", query, target, match_matrix[query][target] negativeRate.append(query + ":" + target) if query in hyper_matrix: unknownRate.append(query + ":" + target) print "True Positive Rate:", len(positiveRate), 100*float(len(positiveRate))/(len(positiveRate)+len(negativeRate)) print "False Positive Rate:", len(negativeRate), 100*float(len(negativeRate))/(len(positiveRate)+len(negativeRate)) print "False Unknown Rate:", len(unknownRate), 100*float(len(unknownRate))/(len(positiveRate)+len(unknownRate)) print """ # Test B """ print print "Testing positive and negative hits..." positiveRate, negativeRate, unknownRate = list(), list(), list() for query in hyper_matrix: hits = 0 for target in general.valuesort(hyper_matrix[query]): if query in match_matrix and target in match_matrix[query]: hits += 1 if hits != 0: positiveRate.append(query + ":" + target) else: negativeRate.append(query + ":" + target) if query in match_matrix: unknownRate.append(query + ":" + target) print "True Positive Rate:", len(positiveRate), 100*float(len(positiveRate))/(len(positiveRate)+len(negativeRate)) print "False Positive Rate:", len(negativeRate), 100*float(len(negativeRate))/(len(positiveRate)+len(negativeRate)) print "False Unknown Rate:", len(unknownRate), 100*float(len(unknownRate))/(len(positiveRate)+len(unknownRate)) print """ # Test C print print "Testing positive and negative hits..." positiveRate, negativeRate, unknownRate = list(), list(), list() for query in match_matrix: hits = 0 for target in general.valuesort(match_matrix[query]): if query in hyper_matrix and target in hyper_matrix[query]: hits += 1 if hits != 0: positiveRate.append(query + ":" + target) else: negativeRate.append(query + ":" + target) if query in hyper_matrix: unknownRate.append(query + ":" + target) print "Genes enriched in SOM neurons:", len(hyper_matrix) print "Genes with promoter in SOM neurons:", len(match_matrix) print "Neurons enriched in gene expression:", len(hyperTargets) print "Neurons with gene promoter matches:", len(matchTargets) print "True Positive Rate:", len(positiveRate), 100*float(len(positiveRate))/(len(positiveRate)+len(negativeRate)) print "False Positive Rate:", len(negativeRate), 100*float(len(negativeRate))/(len(positiveRate)+len(negativeRate)) print "False Unknown Rate (not enriched in any neuron):", len(unknownRate), 100*float(len(unknownRate))/(len(positiveRate)+len(unknownRate)) print # scan each gene for cellular overlap in neurons where the promoter is found: """ print "Scanning positive and negative hits..." i, j, k = 0, 0, 0 positiveRate, negativeRate = list(), list() for query in hyper_matrix: if query in coord_dict: i += 1 qchrm, qstart, qstop = coord_dict[query] for target in neuron_matrix: j += 1 hits = 0 for region in neuron_matrix[target]: rchrm, rstart, rstop = neuron_matrix[target][region] if qchrm == rchrm: if qstart <= rstart and qstop >= rstop: hits += 1 if hits != 0: if target in hyper_matrix[query]: positiveRate.append(query + ":" + target) else: negativeRate.append(query + ":" + target) """ #print >>f_output, inlines.pop(0).strip("\n") # close output file f_output.close() #print #print "Queries found in neurons:", len(queriesFound) #print "Neurons found in queries:", len(targetsFound) #print "Searches performed:", i #print "Searches performed (x Regions):", j #print "Searches with hits (x Regions):", k #print "Queries with coordinates and found:", ", ".join(queriesFound) #print "Queries missed (no coordinates):", len(queriesMissed) #print # annotate tissue composition in neurons: elif option.mode == "test.composition": # update path to neurons: neuronspath = neuronspath + option.peaks + "/" # define input/output paths: bedpath = neuronspath + option.technique + "/results/" + option.neurons + "/regions/bed/" codespath = neuronspath + option.technique + "/results/" + option.neurons + "/codes/" summarypath = neuronspath + option.technique + "/results/" + option.neurons + "/summary/" querypath = cellsetpath + option.query + "/" targetpath = cellsetpath + option.target + "/" compositionpath = comparepath + option.name + "/composition/" hyperpath = comparepath + option.name + "/hyper/" logpath = comparepath + option.name + "/log/" general.pathGenerator(compositionpath) general.pathGenerator(hyperpath) general.pathGenerator(logpath) # load codes: inlines = open(codespath + option.neurons + ".codes").readlines() codes = inlines.pop(0).strip().split("\t") codeDict = dict() for inline in inlines: initems = inline.strip().split("\t") neuron = initems.pop(0) codeDict["neuron" + neuron] = initems # load cellular expression data: print print "Loading cellular annotation..." annotationDict = general.build2(expressionpath + option.expression, id_column="cell", value_columns=["specific.tissue", "general.tissue", "class.tissue", "match.tissue"], skip=True, verbose=False) # load tissue annotation matrixes: print "Loading tissue annotations..." #specificCounts = general.build2(expressionpath + option.infile, i="specific.tissue" , mode="values", skip=True, counter=True) #generalCounts = general.build2(expressionpath + option.infile, i="general.tissue", mode="values", skip=True, counter=True) #classCounts = general.build2(expressionpath + option.infile, i="class.tissue", mode="values", skip=True, counter=True) totalCells = general.build2(expressionpath + option.expression, i="cell", x="specific.tissue", mode="values", skip=True) totalCells = sorted(totalCells.keys()) # gather tissue labels specificTissues, generalTissues, classTissues, matchTissues = list(), list(), list(), list() for cell in annotationDict: if not annotationDict[cell]["specific.tissue"] in specificTissues: specificTissues.append(annotationDict[cell]["specific.tissue"]) if not annotationDict[cell]["general.tissue"] in generalTissues: generalTissues.append(annotationDict[cell]["general.tissue"]) if not annotationDict[cell]["class.tissue"] in classTissues: classTissues.append(annotationDict[cell]["class.tissue"]) if not annotationDict[cell]["match.tissue"] in matchTissues: matchTissues.append(annotationDict[cell]["match.tissue"]) # load cells identified in each neuron: print print "Loading cell identities per neuron..." neuronDict = general.build2(summarypath + "mapneurons_summary.txt", id_column="neuron", value_columns=["class.ids"]) # load cells counted in each neuron: print "Loading cell counts per neuron..." countMatrix, binaryMatrix = dict(), dict() for neuron in os.listdir(bedpath): inlines = open(bedpath + neuron).readlines() neuron = neuron.replace(".bed", "") countMatrix[neuron] = dict() binaryMatrix[neuron] = dict() for inline in inlines: chrm, start, end, feature, score, strand, cell, regions = inline.strip().split("\t") if not cell in countMatrix[neuron]: countMatrix[neuron][cell] = 0 binaryMatrix[neuron][cell] = 1 countMatrix[neuron][cell] += 1 # generate tissue class scores: cellList = list() cellMatrix, specificMatrix, generalMatrix, classMatrix, matchMatrix = dict(), dict(), dict(), dict(), dict() for neuron in neuronDict: if not neuron in cellMatrix: cellMatrix[neuron] = dict() specificMatrix[neuron] = dict() generalMatrix[neuron] = dict() classMatrix[neuron] = dict() matchMatrix[neuron] = dict() for cell in neuronDict[neuron]["class.ids"].split(","): specificTissue, generalTissue, classTissue, matchTissue = annotationDict[cell]["specific.tissue"], annotationDict[cell]["general.tissue"], annotationDict[cell]["class.tissue"], annotationDict[cell]["match.tissue"] if not cell in cellMatrix[neuron]: cellMatrix[neuron][cell] = 0 if not specificTissue in specificMatrix[neuron]: specificMatrix[neuron][specificTissue] = 0 if not generalTissue in generalMatrix[neuron]: generalMatrix[neuron][generalTissue] = 0 if not classTissue in classMatrix[neuron]: classMatrix[neuron][classTissue] = 0 if not matchTissue in matchMatrix[neuron]: matchMatrix[neuron][matchTissue] = 0 cellList.append(cell) cellMatrix[neuron][cell] += binaryMatrix[neuron][cell] specificMatrix[neuron][specificTissue] += binaryMatrix[neuron][cell] generalMatrix[neuron][generalTissue] += binaryMatrix[neuron][cell] classMatrix[neuron][classTissue] += binaryMatrix[neuron][cell] matchMatrix[neuron][matchTissue] += binaryMatrix[neuron][cell] cellList = sorted(list(set(cellList))) # Note: The above dictionaries record how many of the cell (ids) # in a given neuron have correspond to a given tissue. # prepare class tallies for normalization: specificTallies, generalTallies, classTallies, matchTallies = dict(), dict(), dict(), dict() for cell in cellList: if not annotationDict[cell]["specific.tissue"] in specificTallies: specificTallies[annotationDict[cell]["specific.tissue"]] = 0 if not annotationDict[cell]["general.tissue"] in generalTallies: generalTallies[annotationDict[cell]["general.tissue"]] = 0 if not annotationDict[cell]["class.tissue"] in classTallies: classTallies[annotationDict[cell]["class.tissue"]] = 0 if not annotationDict[cell]["match.tissue"] in matchTallies: matchTallies[annotationDict[cell]["match.tissue"]] = 0 specificTallies[annotationDict[cell]["specific.tissue"]] += 1 generalTallies[annotationDict[cell]["general.tissue"]] += 1 classTallies[annotationDict[cell]["class.tissue"]] += 1 matchTallies[annotationDict[cell]["match.tissue"]] += 1 # Note: The above tallies record the number of cells (observed, # in neurons) that correspond to each tissue.*** # prepare output files: f_output = open(compositionpath + "mapcells_composition_codes.txt", "w") c_output = open(compositionpath + "mapcells_composition_cellular.txt", "w") s_output = open(compositionpath + "mapcells_composition_specific.txt", "w") g_output = open(compositionpath + "mapcells_composition_general.txt", "w") l_output = open(compositionpath + "mapcells_composition_class.txt", "w") m_output = open(compositionpath + "mapcells_composition_match.txt", "w") # print out headers: print >>f_output, "\t".join(["neuron", "id", "fraction.ids"]) print >>c_output, "\t".join(["neuron", "id", "id.found", "id.cells", "fraction.ids", "fraction.sum", "fraction.max", "fraction.nrm", "pvalue", "pvalue.adj", "score"]) print >>s_output, "\t".join(["neuron", "id", "id.found", "id.cells", "fraction.ids", "fraction.sum", "fraction.max", "fraction.nrm", "pvalue", "pvalue.adj", "score"]) print >>g_output, "\t".join(["neuron", "id", "id.found", "id.cells", "fraction.ids", "fraction.sum", "fraction.max", "fraction.nrm", "pvalue", "pvalue.adj", "score"]) print >>l_output, "\t".join(["neuron", "id", "id.found", "id.cells", "fraction.ids", "fraction.sum", "fraction.max", "fraction.nrm", "pvalue", "pvalue.adj", "score"]) print >>m_output, "\t".join(["neuron", "id", "id.found", "id.cells", "fraction.ids", "fraction.sum", "fraction.max", "fraction.nrm", "pvalue", "pvalue.adj", "score"]) # Note: We will now output the following information: # id.found : is ID found in neuron? # id.cells : number of cells (diversity) that match ID. # fraction.ids: fraction of ID diversity in neuron. # fraction.sum: fraction of cellular diversity in neuron that matches ID. # fraction.rat: fraction of cellular diversity in neuron that matches ID, normalized by the representation of the ID. # fraction.max: fraction of cellular diversity in neuron as normalized by the ID with the highest cellular diversity in neuron. # fraction.nrm: fraction of cellular diversity in neuron as normalized by the total number of cells with said ID. # determine missed tissues: print specificMissed, generalMissed, classMissed, matchMissed = set(specificTissues).difference(set(specificTallies.keys())), set(generalTissues).difference(set(generalTallies.keys())), set(classTissues).difference(set(classTallies.keys())), set(matchTissues).difference(set(matchTallies.keys())) print "Specific tissues not found:", str(len(specificMissed)) + " (" + str(len(specificTissues)) + ") ; " + ",".join(sorted(specificMissed)) print "General tissues not found:", str(len(generalMissed)) + " (" + str(len(generalTissues)) + ") ; " + ",".join(sorted(generalMissed)) print "Class tissues not found:", str(len(classMissed)) + " (" + str(len(classTissues)) + ") ; " + ",".join(sorted(classMissed)) print "Match tissues not found:", str(len(matchMissed)) + " (" + str(len(matchTissues)) + ") ; " + ",".join(sorted(matchMissed)) print # export the fractions: print "Exporting representation per neuron..." for neuron in sorted(neuronDict.keys()): if neuron in codeDict: # export factor signals: index = 0 for code in codes: print >>f_output, "\t".join(map(str, [neuron, code, codeDict[neuron][index]])) index += 1 # export cell counts: for cell in cellList: adjust = len(neuronDict.keys())*len(cellList) types = len(cellMatrix[neuron].keys()) total = sum(cellMatrix[neuron].values()) maxxx = max(cellMatrix[neuron].values()) if cell in cellMatrix[neuron]: count = float(cellMatrix[neuron][cell]) index = 1 else: count = 0 index = 0 print >>c_output, "\t".join(map(str, [neuron, cell, index, count, float(index)/types, float(count)/total, float(count)/maxxx, 1, 1, 1, 0])) # export specific tissue enrichment: for specificTissue in sorted(specificTallies.keys()): types = len(specificMatrix[neuron].keys()) total = sum(specificMatrix[neuron].values()) maxxx = max(specificMatrix[neuron].values()) tally = specificTallies[specificTissue] if specificTissue in specificMatrix[neuron]: count = float(specificMatrix[neuron][specificTissue]) index = 1 else: count = 0 index = 0 adjust = len(neuronDict.keys())*len(specificTallies.keys()) universe = sum(specificTallies.values()) pvalue = hyper.fishers(count, universe, total, tally, adjust=1, method="right") adjPvalue = hyper.limit(pvalue*adjust) score = hyper.directional(count, universe, total, tally, adjust=adjust) print >>s_output, "\t".join(map(str, [neuron, specificTissue, index, count, float(index)/types, float(count)/total, float(count)/maxxx, float(count)/tally, pvalue, adjPvalue, score])) # export general tissue enrichment: for generalTissue in sorted(generalTallies.keys()): types = len(generalMatrix[neuron].keys()) total = sum(generalMatrix[neuron].values()) maxxx = max(generalMatrix[neuron].values()) tally = generalTallies[generalTissue] if generalTissue in generalMatrix[neuron]: count = float(generalMatrix[neuron][generalTissue]) index = 1 else: count = 0 index = 0 adjust = len(neuronDict.keys())*len(generalTallies.keys()) universe = sum(generalTallies.values()) pvalue = hyper.fishers(count, universe, total, tally, adjust=1, method="right") adjPvalue = hyper.limit(pvalue*adjust) score = hyper.directional(count, universe, total, tally, adjust=adjust) print >>g_output, "\t".join(map(str, [neuron, generalTissue, index, count, float(index)/types, float(count)/total, float(count)/maxxx, float(count)/tally, pvalue, adjPvalue, score])) # export class tissue enrichment: for classTissue in sorted(classTallies.keys()): types = len(classMatrix[neuron].keys()) total = sum(classMatrix[neuron].values()) maxxx = max(classMatrix[neuron].values()) tally = classTallies[classTissue] if classTissue in classMatrix[neuron]: count = float(classMatrix[neuron][classTissue]) index = 1 else: count = 0 index = 0 adjust = len(neuronDict.keys())*len(classTallies.keys()) universe = sum(classTallies.values()) pvalue = hyper.fishers(count, universe, total, tally, adjust=1, method="right") adjPvalue = hyper.limit(pvalue*adjust) score = hyper.directional(count, universe, total, tally, adjust=adjust) print >>l_output, "\t".join(map(str, [neuron, classTissue, index, count, float(index)/types, float(count)/total, float(count)/maxxx, float(count)/tally, pvalue, adjPvalue, score])) # export match tissue enrichment: for matchTissue in sorted(matchTallies.keys()): types = len(matchMatrix[neuron].keys()) total = sum(matchMatrix[neuron].values()) maxxx = max(matchMatrix[neuron].values()) tally = matchTallies[matchTissue] if matchTissue in matchMatrix[neuron]: count = float(matchMatrix[neuron][matchTissue]) index = 1 else: count = 0 index = 0 adjust = len(neuronDict.keys())*len(matchTallies.keys()) universe = sum(matchTallies.values()) pvalue = hyper.fishers(count, universe, total, tally, adjust=1, method="right") adjPvalue = hyper.limit(pvalue*adjust) score = hyper.directional(count, universe, total, tally, adjust=adjust) print >>m_output, "\t".join(map(str, [neuron, matchTissue, index, count, float(index)/types, float(count)/total, float(count)/maxxx, float(count)/tally, pvalue, adjPvalue, score])) # close outputs: f_output.close() c_output.close() s_output.close() g_output.close() l_output.close() m_output.close() print print "Combining cell and factor (mix) information.." # load input factor information: factorDict = general.build2(compositionpath + "mapcells_composition_codes.txt", i="neuron", j="id", x="fraction.ids", mode="matrix") # define input cell/tissue files: infiles = ["mapcells_composition_cellular.txt", "mapcells_composition_specific.txt", "mapcells_composition_general.txt", "mapcells_composition_class.txt", "mapcells_composition_match.txt"] for infile in infiles: print "Processing:", infile # initiate neuron data extraction: f_output = open(compositionpath + infile.replace(".txt", ".mix"), "w") inheader = open(compositionpath + infile).readline().strip().split("\t") inlines = open(compositionpath + infile).readlines() print >>f_output, inlines.pop(0) # append factor information to neuron data: processed = list() for inline in inlines: neuron, label = inline.strip().split("\t")[:2] if not neuron in processed: processed.append(neuron) for factor in factorDict[neuron]: output = list() for column in inheader: if column == "neuron": output.append(neuron) elif column == "id": output.append(factor) elif column in ["pvalue", "pvalue.adj"]: output.append("1") else: output.append(factorDict[neuron][factor]) print >>f_output, "\t".join(output) print >>f_output, inline.strip() # close outputs: f_output.close() print # examine co-association correspondence between genes: elif option.mode == "test.similarity": # update path to neurons: neuronspath = neuronspath + option.peaks + "/" # define input/output paths: bedpath = neuronspath + option.technique + "/results/" + option.neurons + "/regions/bed/" querypath = cellsetpath + option.query + "/" targetpath = cellsetpath + option.target + "/" hyperpath = comparepath + option.name + "/hyper/" logpath = comparepath + option.name + "/log/" general.pathGenerator(hyperpath) general.pathGenerator(logpath) # load query cells: print print "Loading query cells..." query_matrix = dict() for query in os.listdir(querypath): queryCells = general.clean(open(querypath + query).read().split("\n"), "") query_matrix[query] = queryCells #print query, queryCells print "Generating merged region file..." #queryfile = hyperpath + "query.bed" #regionsfile = hyperpath + "regions.bed" #overlapfile = hyperpath + "overlap.bed" joint = " " + bedpath command = "cat " + bedpath + joint.join(os.listdir(bedpath)) + " > " + regionsfile os.system(command) # load gene coordinates: print "Loading gene/feature coordinates..." coord_dict = dict() ad = general.build_header_dict(annotationspath + option.reference) inlines = open(annotationspath + option.reference).readlines() inlines.pop(0) for inline in inlines: initems = inline.strip("\n").split("\t") chrm, start, stop, feature, strand, name = initems[ad["#chrm"]], initems[ad["start"]], initems[ad["end"]], initems[ad["feature"]], initems[ad["strand"]], initems[ad["name"]] if strand == "+": start, end = int(start)-option.up, int(start)+option.dn elif strand == "-": start, end = int(stop)-option.dn, int(stop)+option.up for query in query_matrix: if query == feature or query == name: f_output = open(queryfile, "w") print >>f_output, "\t".join(map(str, [chrm, start, end, feature, 0, strand])) f_output.close() overlaps = list() command = "intersectBed -u -a " + regionsfile + " -b " + queryfile + " > " + overlapfile os.system(command) for inline in open(overlapfile).readlines(): overlaps.append(inline.strip()) print query, len(overlaps) if len(overlaps) > 0: pdb.set_trace() break # tree building mode: elif option.mode == "tree.build": # build cell-expression matrix: print print "Loading cellular expression..." quantitation_matrix, expression_matrix, tracking_matrix, trackedCells = expressionBuilder(expressionfile=option.expression, path=expressionpath, cutoff=option.fraction, minimum=option.minimum, metric="fraction.expression") # store cell-parent relationships: print "Loading cell-parent relationships..." cell_dict, parent_dict, pedigreeCells = relationshipBuilder(pedigreefile=option.pedigree, path=extraspath, mechanism="simple") print "Pedigree cells:", len(pedigreeCells) print "Tracked cells:", len(trackedCells) # trim tree: cell_tree, parent_tree = dict(), dict() for parent in parent_dict: for cell in parent_dict[parent]: ascendants = ascendantsCollector(cell, parent_dict, cell_dict, ascendants=list()) process = False if option.lineages == "complete": process = True elif parent in trackedCells and cell in trackedCells: process = True elif option.ascendants != "OFF" and len(ascendants) < int(option.ascendants): process = True if process: if not parent in parent_tree: parent_tree[parent] = list() parent_tree[parent].append(cell) cell_tree[cell] = parent tree = treeBuilder(parent_tree, cell_tree) #print sorted(tree.keys()) #print tree["P0"] #pdb.set_trace() f_output = open(cellspath + "mapcells_tree_" + option.name + ".json", "w") json.dump(tree["P0"], f_output) f_output.close() # tree coloring mode: elif option.mode == "tree.color": # build cell-expression matrix: print print "Loading cellular expression..." quantitation_matrix, expression_matrix, tracking_matrix, trackedCells = expressionBuilder(expressionfile=option.expression, path=expressionpath, cutoff=option.fraction, minimum=option.minimum, metric="fraction.expression") # store cell-parent relationships: print "Loading cell-parent relationships..." cell_dict, parent_dict, pedigreeCells = relationshipBuilder(pedigreefile=option.pedigree, path=extraspath, mechanism="simple") print "Pedigree cells:", len(pedigreeCells) print "Tracked cells:", len(trackedCells) # trim tree: cell_tree, parent_tree = dict(), dict() for parent in parent_dict: for cell in parent_dict[parent]: ascendants = ascendantsCollector(cell, parent_dict, cell_dict, ascendants=list()) process = False if option.lineages == "complete": process = True elif parent in trackedCells and cell in trackedCells: process = True elif option.ascendants != "OFF" and len(ascendants) < int(option.ascendants): process = True if process: if not parent in parent_tree: parent_tree[parent] = list() parent_tree[parent].append(cell) cell_tree[cell] = parent # build header dict: hd = general.build_header_dict(option.infile) # load input lines: pvalue_matrix, cells_matrix = dict(), dict() inlines = open(option.infile).readlines() inlines.pop(0) for inline in inlines: initems = inline.strip("\n").split("\t") query, target, pvalue, cells = initems[hd["query"]], initems[hd["target"]], initems[hd["pvalue"]], initems[hd["cells"]] if not query in pvalue_matrix: pvalue_matrix[query] = dict() cells_matrix[query] = dict() pvalue_matrix[query][target] = float(pvalue) cells_matrix[query][target] = cells.split(",") # scan inputs, selecting the targets of highest enrichment and generating color tree for each: k = 0 print print "Scanning queries..." for query in cells_matrix: target = general.valuesort(pvalue_matrix[query])[0] cells = cells_matrix[query][target] print query, target, pvalue_matrix[query][target], len(cells) tree = treeBuilder(parent_tree, cell_tree, highlights=cells) #print sorted(tree.keys()) #print tree["P0"] #pdb.set_trace() f_output = open(cellspath + "mapcells_tree_" + option.name + "_" + query + "-" + target + ".json", "w") json.dump(tree["P0"], f_output) f_output.close() k += 1 print print "Queries processed:", k print if __name__ == "__main__": main() print "Completed:", time.asctime(time.localtime()) #python mapCells.py --path ~/meTRN --mode import --infile murray_2012_supplemental_dataset_1_per_gene.txt --name murray # Retired! #python mapCells.py --path ~/meTRN --mode import --infile waterston_avgExpression.csv --name waterston --measure max.expression #python mapCells.py --path ~/meTRN --mode import --infile waterston_avgExpression.csv --name waterston --measure avg.expression #python mapCells.py --path ~/meTRN --mode check.status --peaks optimal_standard_factor_sx_rawraw --name waterston --measure avg.expression #python mapCells.py --path ~/meTRN --mode check.status --peaks optimal_standard_factor_ex_rawraw --name waterston --measure avg.expression #python mapCells.py --path ~/meTRN/ --mode build.lineages --pedigree waterston_cell_pedigree.csv --expression mapcells_avgExp_waterston_expression_tracked --name waterston.tracked --method builder --lineages tracked --descendants OFF --ascendants OFF --limit 10000 #python mapCells.py --path ~/meTRN/ --mode build.lineages --pedigree waterston_cell_pedigree.csv --expression mapcells_avgExp_waterston_expression_tracked --name waterston.tracked --method builder --lineages complete --descendants OFF --ascendants OFF --limit 10000 #python mapCells.py --path ~/meTRN/ --mode test.lineages --pedigree waterston_cell_pedigree.csv --expression mapcells_avgExp_waterston_expression_tracked --name waterston.tracked --method builder --lineages tracked --descendants OFF --ascendants OFF --limit 10000 #python mapCells.py --path ~/meTRN/ --mode test.lineages --pedigree waterston_cell_pedigree.csv --expression mapcells_avgExp_waterston_expression_assayed --name waterston.assayed --method builder --lineages tracked --descendants OFF --ascendants OFF --limit 10000 #python mapCells.py --path ~/meTRN --organism ce --mode robust --infile waterston_avgExpression.csv
42.815027
384
0.692007
0
0
0
0
0
0
0
0
50,185
0.292595
b86edb269cd9e7e592b4cc82203020de3b8e84a3
1,838
py
Python
gravity/bak/gravity3.py
baijianhua/pymath
a96ebbd8c8ac646c436d8bf33cb01764a948255d
[ "MIT" ]
null
null
null
gravity/bak/gravity3.py
baijianhua/pymath
a96ebbd8c8ac646c436d8bf33cb01764a948255d
[ "MIT" ]
null
null
null
gravity/bak/gravity3.py
baijianhua/pymath
a96ebbd8c8ac646c436d8bf33cb01764a948255d
[ "MIT" ]
null
null
null
# https://stackoverflow.com/questions/47295473/how-to-plot-using-matplotlib-python-colahs-deformed-grid """ 这个形状仍然不对。靠近坐标轴的地方变化太大。不管是横轴还是纵轴。应该是以原点为圆心,各个网格均匀分担才对 而不管是否靠近坐标轴 变形的目标,是在某处给定一个球体或者立方体,整个坐标中的网格,靠近这个物体的,受到变形影响,距离越远,影响 越小,直到可以忽略不计 但有个要求是靠近物体的网格,是均匀的受到影响,不能有的多,有的少 或许用极坐标是更好的选择?但是也不行。极坐标如何体现原有的坐标系呢? 极坐标没有平直的地方,到处都不均匀。 """ import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import LineCollection EDGE = 5 STEP = 2 * EDGE + 1 def plot_grid(x, y, ax=None, **kwargs): ax = ax or plt.gca() segs1 = np.stack((x, y), axis=2) segs2 = segs1.transpose(1, 0, 2) ax.add_collection(LineCollection(segs1, **kwargs)) ax.add_collection(LineCollection(segs2, **kwargs)) ax.autoscale() def sig(i): # return 1 return -1 if (i < 0) else 1 def f1(x: np.array, y: np.array): u = [] v = [] for i in range(0, len(x)): ui = [] vi = [] for j in range(0, len(x[i])): # 这样取到的是网格中每个点的坐标,逐行取,从左到右。 xx = x[i][j] yy = y[i][j] print("x=", xx, "y=", yy) expn = - 0.2 * (xx ** 2 + yy ** 2) # 坐标越远离中心,delta越小。当x=+-1或者y=+-1, delta = np.exp(expn) print(expn) uu = xx if xx == 0 else xx + sig(xx) * delta vv = yy if yy == 0 else yy + sig(yy) * delta print("uu=", uu, "vv=", vv) ui.append(uu) vi.append(vv) # vi.append(yy) # ui.append(xx) u.append(ui) v.append(vi) return u, v fig, ax = plt.subplots() ax.set_aspect('equal') grid_x, grid_y = np.meshgrid(np.linspace(-EDGE, EDGE, STEP), np.linspace(-EDGE, EDGE, STEP)) plot_grid(grid_x, grid_y, ax=ax, color="lightgrey") distx, disty = f1(grid_x, grid_y) plot_grid(distx, disty, ax=ax, color="C0") plt.show()
24.506667
103
0.581066
0
0
0
0
0
0
0
0
968
0.414384
b86fc82da8dc94ff37ad24a384c231a1a48f881c
7,780
py
Python
IR_Extraction.py
Kazuhito00/yolo2_onnx
95c5e2063071d610ec8e98963f3639e0b25efb59
[ "MIT" ]
15
2018-07-02T19:11:09.000Z
2022-03-31T07:12:53.000Z
IR_Extraction.py
Kazuhito00/yolo2_onnx
95c5e2063071d610ec8e98963f3639e0b25efb59
[ "MIT" ]
null
null
null
IR_Extraction.py
Kazuhito00/yolo2_onnx
95c5e2063071d610ec8e98963f3639e0b25efb59
[ "MIT" ]
9
2018-05-08T01:58:53.000Z
2022-01-28T06:36:02.000Z
from Onnx import make_dir, OnnxImportExport import subprocess import pickle import os import numpy as np import time def generate_svg(modelName, marked_nodes=[]): """ generate SVG figure from existed ONNX file """ if marked_nodes ==[]: addfilenamestr = "" add_command_str = "" else: addfilenamestr = "_marked" marked_str = '_'.join([str(e) for e in marked_nodes]) add_command_str = " --marked 1 --marked_list {}".format(marked_str) onnxfilepath = "onnx/{}.onnx".format(modelName) dotfilepath = "dot/{}{}.dot".format(modelName,addfilenamestr) svgfilepath = "svg/{}{}.svg".format(modelName,addfilenamestr) # check if onnx file exist if not os.path.isfile(os.getcwd()+"/"+onnxfilepath): print('generate_svg Error! Onnx file not exist!') return else: make_dir("dot") make_dir("svg") subprocess.call("python net_drawer.py --input {} --output {} --embed_docstring {}".format(onnxfilepath,dotfilepath,add_command_str), shell=True) # onnx -> dot subprocess.call("dot -Tsvg {} -o {}".format(dotfilepath,svgfilepath), shell=True)# dot -> svg print('generate_svg ..end') return svgfilepath def get_init_shape_dict(rep): """ Extract Shape of Initial Input Object e.g. if %2[FLOAT, 64x3x3x3] %3[FLOAT, 64] then return {u'2':(64,3,3,3),u'3':(64,)} """ d = {} if hasattr(rep, 'input_dict'): for key in rep.input_dict: tensor = rep.input_dict[key] shape = np.array(tensor.shape, dtype=int) d.update({key:shape}) return d elif hasattr(rep, 'predict_net'): for k in rep.predict_net.tensor_dict.keys(): tensor = rep.predict_net.tensor_dict[k] shape = np.array(tensor.shape.as_list(),dtype=float).astype(int) d.update({k: shape}) return d else: print ("rep Error! check your onnx version, it might not support IR_Extraction operation!") return d def get_output_shape_of_node(node, shape_dict, backend, device = "CPU"):# or "CUDA:0" """ generate output_shape of a NODE """ out_idx = node.output[0] input_list = node.input # e.g. ['1', '2'] inps = [] for inp_idx in input_list: inp_shape = shape_dict[inp_idx] rand_inp = np.random.random(size=inp_shape).astype('float16') inps.append(rand_inp) try: out = backend.run_node(node=node, inputs=inps, device=device) out_shape = out[0].shape except: out_shape = shape_dict[input_list[0]] print("Op: [{}] run_node error! return inp_shape as out_shape".format(node.op_type)) return out_shape, out_idx def get_overall_shape_dict(model, init_shape_dict, backend): """ generate output_shape of a MODEL GRAPH """ shape_dict = init_shape_dict.copy() for i, node in enumerate(model.graph.node): st=time.time() out_shape, out_idx = get_output_shape_of_node(node, shape_dict, backend) shape_dict.update({out_idx:out_shape}) print("out_shape: {} for Obj[{}], node [{}][{}]...{:.2f} sec".format(out_shape, out_idx, i, node.op_type,time.time()-st)) return shape_dict def get_graph_order(model): """ Find Edges (each link) in MODEL GRAPH """ Node2nextEntity = {} Entity2nextNode = {} for Node_idx, node in enumerate(model.graph.node): # node input for Entity_idx in node.input: if not Entity_idx in Entity2nextNode.keys(): Entity2nextNode.update({Entity_idx:Node_idx}) # node output for Entity_idx in node.output: if not Node_idx in Node2nextEntity.keys(): Node2nextEntity.update({Node_idx:Entity_idx}) return Node2nextEntity, Entity2nextNode def get_kernel_shape_dict(model, overall_shape_dict): """ Get Input/Output/Kernel Shape for Conv in MODEL GRAPH """ conv_d = {} for i, node in enumerate(model.graph.node): if node.op_type == 'Conv': for attr in node.attribute: if attr.name == "kernel_shape": kernel_shape = np.array(attr.ints, dtype=int) break inp_idx = node.input[0] out_idx = node.output[0] inp_shape = overall_shape_dict[inp_idx] out_shape = overall_shape_dict[out_idx] conv_d.update({i:(inp_idx, out_idx, inp_shape, out_shape, kernel_shape)}) print("for node [{}][{}]:\ninp_shape: {} from obj[{}], \nout_shape: {} from obj[{}], \nkernel_shape: {} \n" .format(i, node.op_type, inp_shape, inp_idx, out_shape, out_idx, kernel_shape )) return conv_d def calculate_num_param_n_num_flops(conv_d): """ calculate num_param and num_flops from conv_d """ n_param = 0 n_flops = 0 for k in conv_d: #i:(inp_idx, out_idx, inp_shape, out_shape, kernel_shape) inp_shape, out_shape, kernel_shape = conv_d[k][2],conv_d[k][3],conv_d[k][4] h,w,c,n,H,W = kernel_shape[1], kernel_shape[1], inp_shape[1], out_shape[1], out_shape[2], out_shape[3] n_param += n*(h*w*c+1) n_flops += H*W*n*(h*w*c+1) return n_param, n_flops def find_sequencial_nodes(model, Node2nextEntity, Entity2nextNode, search_target=['Conv', 'Add', 'Relu', 'MaxPool'], if_print = False): """ Search Where is Subgroup """ found_nodes = [] for i, node in enumerate(model.graph.node): if if_print: print("\nnode[{}] ...".format(i)) n_idx = i #init is_fit = True for tar in search_target: try: assert model.graph.node[n_idx].op_type == tar #check this node if if_print: print("node[{}] fit op_type [{}]".format(n_idx, tar)) e_idx = Node2nextEntity[n_idx] #find next Entity n_idx = Entity2nextNode[e_idx] #find next Node #if if_print: print(e_idx,n_idx) except: is_fit = False if if_print: print("node[{}] doesn't fit op_type [{}]".format(n_idx, tar)) break if is_fit: if if_print: print("node[{}] ...fit!".format(i)) found_nodes.append(i) else: if if_print: print("node[{}] ...NOT fit!".format(i)) if if_print: print("\nNode{} fit the matching pattern".format(found_nodes)) return found_nodes def get_permutations(a): """ get all permutations of list a """ import itertools p = [] for r in range(len(a)+1): c = list(itertools.combinations(a,r)) for cc in c: p += list(itertools.permutations(cc)) return p def get_list_of_sequencial_nodes(search_head = ['Conv'], followings = ['Add', 'Relu', 'MaxPool']): """ if search_head = ['Conv'] followings = ['Add', 'Relu', 'MaxPool'] return [['Conv'], ['Conv', 'Add'], ['Conv', 'Relu'], ['Conv', 'MaxPool'], ['Conv', 'Add', 'Relu'], ['Conv', 'Relu', 'Add'], ['Conv', 'Add', 'MaxPool'], ['Conv', 'MaxPool', 'Add'], ['Conv', 'Relu', 'MaxPool'], ['Conv', 'MaxPool', 'Relu'], ['Conv', 'Add', 'Relu', 'MaxPool'], ['Conv', 'Add', 'MaxPool', 'Relu'], ['Conv', 'Relu', 'Add', 'MaxPool'], ['Conv', 'Relu', 'MaxPool', 'Add'], ['Conv', 'MaxPool', 'Add', 'Relu'], ['Conv', 'MaxPool', 'Relu', 'Add']] """ search_targets = [ search_head+list(foll) for foll in get_permutations(followings)] return search_targets
35.525114
166
0.579434
0
0
0
0
0
0
0
0
2,350
0.302057
b87022120f02d56a10e8caeb021ec987a4c00e77
9,961
py
Python
app.py
rshane7/Sqlalchemy-Challenge
b0cd11388727e1f43453b0e7b0019e304d45eb39
[ "ADSL" ]
null
null
null
app.py
rshane7/Sqlalchemy-Challenge
b0cd11388727e1f43453b0e7b0019e304d45eb39
[ "ADSL" ]
null
null
null
app.py
rshane7/Sqlalchemy-Challenge
b0cd11388727e1f43453b0e7b0019e304d45eb39
[ "ADSL" ]
null
null
null
# Python script uses flask and SQL alchemy to create API requests for weather data from Hawaii. # Import dependencies. import numpy as np import datetime as dt import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func from flask import Flask, jsonify #---------------------------------------------------------------------------------------------------------------------- # Rubric - API SQLite Connection & Landing Page # The Flask Application does all of the following: # ✓ Correctly generates the engine to the correct sqlite file # ✓ Uses ​automap_base()​ and reflects the database schema # ✓ Correctly saves references to the tables in the sqlite file (measurement and station) # ✓ Correctly creates and binds the session between the python app and database #---------------------------------------------------------------------------------------------------------------------- # Database Setup engine = create_engine("sqlite:///Resources/hawaii.sqlite") # Reflect an existing database into a new model Base = automap_base() # Reflect the tables Base.prepare(engine, reflect=True) # Save references to tables Measurement = Base.classes.measurement Station = Base.classes.station # Create our session (link) from Python to the DB session = Session(engine) # Flask Setup app = Flask(__name__) # Flask Routes @app.route("/") def home(): """List all available api routes.""" return ( f"Available Routes:<br/>" f"/api/v1.0/precipitation<br/>" f"/api/v1.0/stations<br/>" f"/api/v1.0/mostactivetobs<br/>" f"/api/v1.0/start/<start><br/>" f"/api/v1.0/start_date/end_date/<start_date>/<end_date>" ) #---------------------------------------------------------------------------------------------------------------------- # Rubric - API Static Routes # The static routes do all of the following: # Precipitation route # ✓ Returns the jsonified precipitation data for the last year in the database. # ✓ Returns json with the date as the key and the value as the precipitation Stations route. # ✓ Returns jsonified data of all of the stations in the database Tobs route. # ✓ Returns jsonified data for the most active station (USC00519281) for the last year of data. #---------------------------------------------------------------------------------------------------------------------- @app.route("/api/v1.0/precipitation") def precipitation(): """Return JSON where (Key: date / Value: precipitation)""" print("Precipitation API request received.") # Create our session (link) from Python to the DB session = Session(engine) # Query the most recent date in dataset. # Convert to datetime object for calculation below. max_date = session.query(func.max(func.strftime("%Y-%m-%d", Measurement.date))).limit(1).all() max_date = max_date[0][0] max_date = dt.datetime.strptime(max_date, "%Y-%m-%d") # Calculate the date 1 year ago from the last data point in the database year_ago = max_date - dt.timedelta(days=366) # Perform a query to retrieve the last 12 months of precipitation data. precipitations = session.query(func.strftime("%Y-%m-%d", Measurement.date), Measurement.prcp).\ filter(func.strftime("%Y-%m-%d", Measurement.date) >= year_ago).all() # Iterate through precipitations to append all key/values to precipitation dictionary. # Append precipitation dictionary to list, then return jsonify. all_precipitations = [] for date, prcp in precipitations: precipitation_dict = {} precipitation_dict["date"] = date precipitation_dict["prcp"] = prcp all_precipitations.append(precipitation_dict) return jsonify(all_precipitations) @app.route("/api/v1.0/stations") def stations(): """Return JSON API for all stations in dataset.""" print("Stations API request received.") # Create our session (link) from Python to the DB session = Session(engine) # Query all stations in the dataset. stations = session.query(Station.id, Station.station, Station.name, Station.latitude, Station.longitude, Station.elevation).all() # Iterate through stations to append all key/values to station dictionary. # Append station dictionary to list, then return jsonify. all_stations = [] for id, station, name, latitude, longitude, elevation in stations: station_dict = {} station_dict["id"] = id station_dict["station"] = station station_dict["name"] = name station_dict["latitude"] = latitude station_dict["longitude"] = longitude station_dict["elevation"] = elevation all_stations.append(station_dict) return jsonify(all_stations) # most active station last year of data @app.route("/api/v1.0/mostactivetobs") def last_year_tobs_most_active(): print("Most Active Station API request received.") # Create our session (link) from Python to the DB session = Session(engine) # last date in the dataset and year from last date calculations last_date = session.query(Measurement.date,Measurement.prcp).order_by(Measurement.date.desc()).first()[0] last_year = str(dt.datetime.strptime(last_date,"%Y-%m-%d")-dt.timedelta(days=365)) last_year_tobs_most_active = session.query(Measurement.station,Measurement.date,Measurement.tobs).\ filter(Measurement.date >=last_year, Measurement.date <=last_date, Measurement.station == 'USC00519281').\ order_by(Measurement.date).all() # Iterate through temperatures to append all key/values to temperature dictionary. # Append temperature dictionary to list, then return jsonify. all_mostactivetobs = [] for station, date, tobs in last_year_tobs_most_active: last_year_tobs_most_active_dict = {} last_year_tobs_most_active_dict["station"] = station last_year_tobs_most_active_dict["date"] = date last_year_tobs_most_active_dict["tobs"] = tobs all_mostactivetobs.append(last_year_tobs_most_active_dict) return jsonify(all_mostactivetobs) #---------------------------------------------------------------------------------------------------------------------- # Rubric - API Dynamic Route # The dynamic route does all of the following: # Start route # ✓ Route accepts the start date as a parameter from the URL # Start/end route # ✓ Route accepts the start and end dates as parameters from the URL # ✓ Returns the min, max, and average temperatures calculated from the given start date to the given end date ✓ Returns the min, max, and average temperatures calculated from the given start date to the end of the dataset #---------------------------------------------------------------------------------------------------------------------- @app.route("/api/v1.0/start/<start>/") def calc_start_temps(start): """Return a JSON API of the minimum temperature, the average temperature, and the max temperature... for all dates greater than and equal to the start date.""" print("Calculate Start Temps. API request received.") # Create our session (link) from Python to the DB session = Session(engine) # Query will accept start date in the format '%Y-%m-%d' and return the minimum, average, and maximum temperatures # for all dates from that date. start_temps = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date >= start).all() # Iterate through start temps to append all key/values to Start (Date) Calc Temp dictionary. # Append Start (Date) Calc Temp dictionary to list, then return jsonify. all_start_calc_temps = [] for result in start_temps: start_calc_temp_dict = {} start_calc_temp_dict["min_temp."] = result[0] start_calc_temp_dict["avg_temp."] = result[1] start_calc_temp_dict["max_temp."] = result[2] all_start_calc_temps.append(start_calc_temp_dict) return jsonify(all_start_calc_temps) @app.route("/api/v1.0/start_date/end_date/<start_date>/<end_date>") def calc_start_end_temps(start_date, end_date): # Return a JSON API of the minimum temperature, the average temperature, and the max temperature # between the start and end date inclusive. print("Calculate Start/End Temps. API request received.") # Create our session (link) from Python to the DB session = Session(engine) # Query will accept start and end dates in the format '%Y-%m-%d' and return the minimum, average, and # maximum temperatures for all dates in that range. start_end_temps = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date >= start_date).filter(Measurement.date <= end_date).all() # Iterate through start temps to append all key/values to Start (Date) Calc Temp dictionary. # Append Start (Date) Calc Temp dictionary to list, then return jsonify. all_calc_start_end_temps = [] for result in start_end_temps: calc_start_end_temp_dict = {} calc_start_end_temp_dict["min_temp."] = result[0] calc_start_end_temp_dict["avg_temp."] = result[1] calc_start_end_temp_dict["max_temp."] = result[2] all_calc_start_end_temps.append(calc_start_end_temp_dict) return jsonify(all_calc_start_end_temps) if __name__ == '__main__': app.run(debug=True) session.close() #---------------------------------------------------------------------------------------------------------------------- # THE END #----------------------------------------------------------------------------------------------------------------------
45.484018
229
0.635679
0
0
0
0
6,605
0.661227
0
0
5,699
0.570528
b870872caf1a9e4c3f638cbe128e60ddb9f7db8d
5,194
py
Python
optimalTAD/__main__.py
cosmoskaluga/optimalTAD
eae806878df36a96b3ef8c5dc7eb8ecc9fa622b2
[ "MIT" ]
null
null
null
optimalTAD/__main__.py
cosmoskaluga/optimalTAD
eae806878df36a96b3ef8c5dc7eb8ecc9fa622b2
[ "MIT" ]
null
null
null
optimalTAD/__main__.py
cosmoskaluga/optimalTAD
eae806878df36a96b3ef8c5dc7eb8ecc9fa622b2
[ "MIT" ]
null
null
null
import argparse import logging import sys import time import glob import os from . import logger from . import config from . visualization import plot from . optimization import run from . optimization import utils class optimalTAD: def __init__(self): self.log = logger.initialize_logger() self.cfg = config.get_configuration() parser = argparse.ArgumentParser(description = 'optimalTAD: Topologically Associating Domain optimal set prediction', usage = ''' optimalTAD <command> [<args>] The basic optimalTAD commands are: run Run optimization process visualize Visualize results ''') parser.add_argument('command', help='Subcommand to run') args = parser.parse_args([self.cfg.get('basic', 'mode')]) arg = sys.argv[1:2] if arg: if arg[0] in ['run', 'visualize']: args.command = arg[0] if args.command not in ['run', 'visualize']: self.log.info('Unrecognized command!') parser.print_help() sys.exit(1) chippath = self.cfg.get('run','chipseq') self.chippath = glob.glob(os.path.expanduser(chippath)) getattr(self, args.command)() def run(self): start_time = time.time() hicpath = self.cfg.get('run','hic') hicpath = glob.glob(os.path.expanduser(hicpath)) parser = argparse.ArgumentParser(description='Run optimization process') parser.add_argument('--hic', type = str, nargs='+', default = sorted(hicpath), help = 'Path to iteratively corrected Hi-C data') parser.add_argument('--chipseq', type = str, nargs = '+', default = sorted(self.chippath), help = 'Path ChIP-seq data') parser.add_argument('--np', type = int, default = int(self.cfg['run']['np']), help = 'Number of processors') parser.add_argument('--resolution', type = int, default = int(self.cfg['run']['resolution']), help = 'Resolution') parser.add_argument('--stepsize', type = float, default = float(self.cfg['run']['stepsize']), help = 'Step size to increment gamma parameter') parser.add_argument('--gamma_max', type = float, default = float(self.cfg['run']['gamma_max']), help = 'Max gamma parameter') parser.add_argument('--hic_format', type = str, default = self.cfg['run']['hic_format'], help = 'Hi-C matrices input format for armatus') parser.add_argument('--empty_row_imputation', action = 'store_true', help = 'Missing rows (and columns) imputation') parser.add_argument('--truncation', action = 'store_true', help = 'Value truncation of input Hi-C-matrix') parser.add_argument('--log2_hic', action = 'store_true', help = 'log2 transformation of input Hi-C matrix') parser.add_argument('--log2_chip', action = 'store_true', help = 'log2 transformation of input ChIP-Seq track') parser.add_argument('--zscore_chip', action = 'store_true', help = 'Z-score transformation of ChIP-Seq track') parser.set_defaults(empty_row_imputation = eval(self.cfg['run']['empty_row_imputation'])) parser.set_defaults(truncation = eval(self.cfg['run']['truncation'])) parser.set_defaults(log2_hic = eval(self.cfg['run']['log2_hic'])) parser.set_defaults(log2_chip = eval(self.cfg['run']['log2_chip'])) parser.set_defaults(zscore_chip = eval(self.cfg['run']['zscore_chip'])) args = parser.parse_args(sys.argv[2:]) run.main(args, self.cfg, self.log) cpu_time = round(time.time()-start_time, 2) self.log.info('Execution time: {} sec'.format(cpu_time)) def visualize(self): start_time = time.time() chipname = utils.get_chipname(self.chippath, self.cfg['visualization']['samplename']) parser = argparse.ArgumentParser(description='Visualize results') parser.add_argument('--samplename', type = str, default = self.cfg['visualization']['samplename'], help = 'Samplename of Hi-C data') parser.add_argument('--region', type = str, default = self.cfg['visualization']['region'], help = 'Chromosomal coordinates') parser.add_argument('--resolution', type = int, default = int(self.cfg['run']['resolution']), help = 'Resolution') parser.add_argument('--chipseq', type = str, default = chipname, help = 'Path to ChIP-seq data') parser.add_argument('--log2_chip', action = 'store_true', help = 'log2 transformation of an input ChIP-Seq track') parser.add_argument('--zscore_chip', action = 'store_true', help = 'Z-score transformation of an input ChIP-Seq track') parser.add_argument('--rnaseq', type = str, default = str(self.cfg['visualization']['rnaseq']), help = 'RNA-seq data') parser.set_defaults(log2_chip = eval(self.cfg['run']['log2_chip'])) parser.set_defaults(zscore_chip = eval(self.cfg['run']['zscore_chip'])) args = parser.parse_args(sys.argv[2:]) plot.main(args, self.cfg['visualization'], self.log) cpu_time = round(time.time()-start_time, 2) self.log.info('Execution time: {} sec'.format(cpu_time)) if __name__ == '__main__': optimalTAD()
55.849462
167
0.649788
4,926
0.948402
0
0
0
0
0
0
1,716
0.330381
b870e2ce26d78dfa9746e5e88adb9ed1463fb9fc
944
py
Python
communications/migrations/0002_auto_20190902_1759.py
shriekdj/django-social-network
3654051e334996ee1b0b60f83c4f809a162ddf4a
[ "MIT" ]
368
2019-10-10T18:02:09.000Z
2022-03-31T14:31:39.000Z
communications/migrations/0002_auto_20190902_1759.py
shriekdj/django-social-network
3654051e334996ee1b0b60f83c4f809a162ddf4a
[ "MIT" ]
19
2020-05-09T19:10:29.000Z
2022-03-04T18:22:51.000Z
communications/migrations/0002_auto_20190902_1759.py
shriekdj/django-social-network
3654051e334996ee1b0b60f83c4f809a162ddf4a
[ "MIT" ]
140
2019-10-10T18:01:59.000Z
2022-03-14T09:37:39.000Z
# Generated by Django 2.2.4 on 2019-09-02 11:59 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('communications', '0001_initial'), ] operations = [ migrations.AddField( model_name='message', name='author', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, related_name='author_messages', to=settings.AUTH_USER_MODEL), preserve_default=False, ), migrations.AddField( model_name='message', name='friend', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, related_name='friend_messages', to=settings.AUTH_USER_MODEL), preserve_default=False, ), ]
32.551724
153
0.665254
785
0.831568
0
0
0
0
0
0
145
0.153602
b871aaee0feb9ef1cdc6b28c76ed73a977fed9b3
1,126
py
Python
examples/sht2x.py
kungpfui/python-i2cmod
57d9cc8de372aa38526c3503ceec0d8924665c04
[ "MIT" ]
null
null
null
examples/sht2x.py
kungpfui/python-i2cmod
57d9cc8de372aa38526c3503ceec0d8924665c04
[ "MIT" ]
null
null
null
examples/sht2x.py
kungpfui/python-i2cmod
57d9cc8de372aa38526c3503ceec0d8924665c04
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Sensirion SHT2x humidity sensor. Drives SHT20, SHT21 and SHT25 humidity and temperature sensors. Sensirion `SHT2x Datasheets <https://www.sensirion.com/en/environmental-sensors/humidity-sensors/humidity-temperature-sensor-sht2x-digital-i2c-accurate/>` """ from i2cmod import SHT2X def example(): with SHT2X() as sensor: print("Identification: 0x{:016X}".format(sensor.serial_number)) for adc_res, reg_value in ( ('12/14', 0x02), (' 8/10', 0x03), ('10/13', 0x82), ('11/11', 0x83)): sensor.user_register = reg_value print("-" * 79) print("Resolution: {}-bit (rh/T)".format(adc_res)) print("Temperature: {:.2f} °C".format(sensor.centigrade)) print("Temperature: {:.2f} °F".format(sensor.fahrenheit)) print("Relative Humidity: {:.2f} % ".format(sensor.humidity)) print("User Register: 0x{:02X}".format(sensor.user_register)) if __name__ == '__main__': example()
34.121212
154
0.579041
0
0
0
0
0
0
0
0
543
0.481383
b872257816f92142d8b69ab7304685ffe49c0d35
52
py
Python
__init__.py
HarisNaveed17/aws-boxdetector
e71daebbebe9dc847bdad70d2ea2fe859fede587
[ "Apache-2.0" ]
null
null
null
__init__.py
HarisNaveed17/aws-boxdetector
e71daebbebe9dc847bdad70d2ea2fe859fede587
[ "Apache-2.0" ]
null
null
null
__init__.py
HarisNaveed17/aws-boxdetector
e71daebbebe9dc847bdad70d2ea2fe859fede587
[ "Apache-2.0" ]
null
null
null
from pipeline import * box_detection = BoxDetector()
26
29
0.807692
0
0
0
0
0
0
0
0
0
0
b8746c0bb1705159c5c6690183e9699670c24d04
217
bzl
Python
bazel_versions.bzl
pennig/rules_xcodeproj
109ab85a82954ea38f0529eafc291f5ce6f63483
[ "MIT" ]
1
2022-03-31T09:13:24.000Z
2022-03-31T09:13:24.000Z
bazel_versions.bzl
pennig/rules_xcodeproj
109ab85a82954ea38f0529eafc291f5ce6f63483
[ "MIT" ]
null
null
null
bazel_versions.bzl
pennig/rules_xcodeproj
109ab85a82954ea38f0529eafc291f5ce6f63483
[ "MIT" ]
null
null
null
"""Specifies the supported Bazel versions.""" CURRENT_BAZEL_VERSION = "5.0.0" OTHER_BAZEL_VERSIONS = [ "6.0.0-pre.20220223.1", ] SUPPORTED_BAZEL_VERSIONS = [ CURRENT_BAZEL_VERSION, ] + OTHER_BAZEL_VERSIONS
18.083333
45
0.728111
0
0
0
0
0
0
0
0
74
0.341014
b874c67d7c0255eb46088b631d745bcaf2f71c70
1,372
py
Python
Pymug/server/game/parse.py
Aitocir/UnfoldingWorld
70606eec694f006ccd6687912bce7b75d623287e
[ "MIT" ]
2
2019-08-30T08:26:44.000Z
2021-04-09T14:22:09.000Z
Pymug/server/game/parse.py
Aitocir/UnfoldingWorld
70606eec694f006ccd6687912bce7b75d623287e
[ "MIT" ]
null
null
null
Pymug/server/game/parse.py
Aitocir/UnfoldingWorld
70606eec694f006ccd6687912bce7b75d623287e
[ "MIT" ]
null
null
null
def _compile(words): if not len(words): return None, '' num = None if words[0].isdigit(): num = int(words[0]) words = words[1:] return num, ' '.join(words) def _split_out_colons(terms): newterms = [] for term in terms: if ':' in term: subterms = term.split(':') for sub in subterms: newterms.append(sub) newterms.append(':') newterms = newterms[:-1] else: newterms.append(term) return [term for term in newterms if len(term)] # parse user command text def user_command(text): terms = text.strip().split() terms = _split_out_colons(terms) cmd = {} if len(terms) == 0: return cmd cmd['verb'] = terms[0] mode = 'directobject' flags = ['with', 'by', 'from', 'for', 'to', ':'] words = [] for term in terms[1:]: if mode == ':': words.append(term) elif term in flags: num, cmd[mode] = _compile(words) if not len(cmd[mode]): cmd.pop(mode) if num: cmd[mode+'_num'] = num words = [] mode = term else: words.append(term) if len(words): num, cmd[mode] = _compile(words) if num: cmd[mode+'_num'] = num return cmd
26.384615
52
0.487609
0
0
0
0
0
0
0
0
104
0.075802
b876fc588cb708294748bda2b97c2a9bb2b7cc83
539
py
Python
files/OOP/Encapsulation/Encapsulation 3.py
grzegorzpikus/grzegorzpikus.github.io
652233e0b98f48a3396583bab2559f5981bac8ad
[ "CC-BY-3.0" ]
null
null
null
files/OOP/Encapsulation/Encapsulation 3.py
grzegorzpikus/grzegorzpikus.github.io
652233e0b98f48a3396583bab2559f5981bac8ad
[ "CC-BY-3.0" ]
null
null
null
files/OOP/Encapsulation/Encapsulation 3.py
grzegorzpikus/grzegorzpikus.github.io
652233e0b98f48a3396583bab2559f5981bac8ad
[ "CC-BY-3.0" ]
null
null
null
class BankAccount: def __init__(self, checking = None, savings = None): self._checking = checking self._savings = savings def get_checking(self): return self._checking def set_checking(self, new_checking): self._checking = new_checking def get_savings(self): return self._savings def set_savings(self, new_savings): self._savings = new_savings my_account = BankAccount() my_account.set_checking(523.48) print(my_account.get_checking()) my_account.set_savings(386.15) print(my_account.get_savings())
22.458333
54
0.747681
382
0.70872
0
0
0
0
0
0
0
0
b877894244ea866fac268797b7d04d857a48c881
800
py
Python
utils/folder_to_list.py
abhatta1234/face_analysis_pytorch
2abe930c0ca02a1fd819d4710fd9bff392f32f58
[ "MIT" ]
27
2020-05-19T16:51:42.000Z
2022-02-28T05:00:16.000Z
utils/folder_to_list.py
abhatta1234/face_analysis_pytorch
2abe930c0ca02a1fd819d4710fd9bff392f32f58
[ "MIT" ]
3
2020-04-09T04:46:24.000Z
2020-10-21T18:57:05.000Z
utils/folder_to_list.py
abhatta1234/face_analysis_pytorch
2abe930c0ca02a1fd819d4710fd9bff392f32f58
[ "MIT" ]
10
2020-05-11T19:50:30.000Z
2022-03-16T11:49:52.000Z
import argparse from os import listdir, path import numpy as np def convert(main_folder, output): ret = [] for label, class_folder in listdir(main_folder): class_folder_path = path.join(main_folder, class_folder) for img_name in listdir(class_folder_path): image_path = path.join(class_folder, img_name) ret.append([image_path, str(label)]) np.savetxt(output, ret, delimiter=" ", fmt="%s %i") if __name__ == "__main__": parser = argparse.ArgumentParser( description="Folder with classes subfolders to a file to train." ) parser.add_argument("--folder", "-f", help="Folder to convert.") parser.add_argument("--output", "-o", help="Output file.") args = parser.parse_args() convert(args.folder, args.output)
26.666667
72
0.665
0
0
0
0
0
0
0
0
134
0.1675
b8783b5b039e343b576ed8c99dd5d5e0e166571d
509
py
Python
Leetcode/Python Solutions/Strings/ReverseString.py
Mostofa-Najmus-Sakib/Applied-Algorithm
bc656fd655617407856e0ce45b68585fa81c5035
[ "MIT" ]
1
2020-01-06T02:21:56.000Z
2020-01-06T02:21:56.000Z
Leetcode/Python Solutions/Strings/ReverseString.py
Mostofa-Najmus-Sakib/Applied-Algorithm
bc656fd655617407856e0ce45b68585fa81c5035
[ "MIT" ]
null
null
null
Leetcode/Python Solutions/Strings/ReverseString.py
Mostofa-Najmus-Sakib/Applied-Algorithm
bc656fd655617407856e0ce45b68585fa81c5035
[ "MIT" ]
3
2021-02-22T17:41:01.000Z
2022-01-13T05:03:19.000Z
""" LeetCode Problem: 344. Reverse String Link: https://leetcode.com/problems/reverse-string/ Language: Python Written by: Mostofa Adib Shakib Time Complexity: O(n) Space Complexity: O(1) """ class Solution: def reverseString(self, s: List[str]) -> None: """ Do not return anything, modify s in-place instead. """ low = 0 high = len(s) - 1 while low < high: s[low], s[high] = s[high], s[low] low += 1 high -= 1
23.136364
58
0.554028
315
0.618861
0
0
0
0
0
0
266
0.522593
b878732e91bebe5ae9b4cd691ecca80c673cb34c
7,242
py
Python
packages/verify_layer.py
OpenTrustGroup/scripts
31ca2ca5bae055113c6f92a2eb75b0c7528902b3
[ "BSD-3-Clause" ]
null
null
null
packages/verify_layer.py
OpenTrustGroup/scripts
31ca2ca5bae055113c6f92a2eb75b0c7528902b3
[ "BSD-3-Clause" ]
null
null
null
packages/verify_layer.py
OpenTrustGroup/scripts
31ca2ca5bae055113c6f92a2eb75b0c7528902b3
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # Copyright 2018 The Fuchsia Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse from common import FUCHSIA_ROOT, get_package_imports, get_product_imports import json import os import subprocess import sys SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) # Standard names for root packages in a layer. ROOT_CANONICAL_PACKAGES = [ 'buildbot', 'default', 'kitchen_sink', ] REQUIRED_PRODUCTS = [ 'default' ] # Standard names for packages in a layer. CANONICAL_PACKAGES = [ 'all', ] # Directories which do not require aggregation. NO_AGGREGATION_DIRECTORIES = [ 'config', 'disabled', 'products', ] # Non-package files allowed in package directories. NON_PACKAGE_FILES = [ 'README.md', ] def check_json(packages): '''Verifies that all files in the list are JSON files.''' all_json = True for package in packages: with open(package, 'r') as file: try: json.load(file) except ValueError: all_json = False print('Non-JSON file: %s' % package) return all_json def check_schema(packages, validator, schema): '''Verifies that all files adhere to the schema.''' all_valid = True for package in packages: if subprocess.call([validator, schema, package]) != 0: all_valid = False return all_valid def check_deps_exist(dep_map): '''Verifies that all dependencies exist.''' all_exist = True for (package, deps) in dep_map.iteritems(): for dep in deps: if not os.path.isfile(dep): all_exist = False print('Dependency of %s does not exist: %s' % (package, dep)) return all_exist def check_all(directory, dep_map, layer, is_root=True): '''Verifies that directories contain an "all" package and that this packages lists all the files in the directory. ''' for dirpath, dirnames, filenames in os.walk(directory): dirnames = [d for d in dirnames if d not in NO_AGGREGATION_DIRECTORIES] is_clean = True for dir in dirnames: subdir = os.path.join(dirpath, dir) if not check_all(subdir, dep_map, layer, is_root=False): is_clean = False if not is_clean: return False all_package = os.path.join(dirpath, 'all') if not os.path.isfile(all_package): print('Directory does not contain an "all" package: %s' % dirpath) return False known_deps = dep_map[all_package] has_all_files = True def verify(package): if package not in known_deps: print('Missing dependency in %s: %s' % (all_package, package)) return False return True for file in filenames: if is_root and (file in ROOT_CANONICAL_PACKAGES or file == layer): continue if file in CANONICAL_PACKAGES or file in NON_PACKAGE_FILES: continue package = os.path.join(dirpath, file) if not verify(package): has_all_files = False for dir in dirnames: package = os.path.join(dirpath, dir, 'all') if not verify(package): has_all_files = False return has_all_files def check_no_fuchsia_packages_in_all(packages): allowed_keys = {'imports'} all_clear = True for package in [p for p in packages if os.path.basename(p) == 'all']: with open(package, 'r') as file: data = json.load(file) keys = set(data.keys()) if not keys.issubset(allowed_keys): all_clear = False print('"all" should only contain imports: %s' % package) return all_clear def check_root(base, layer): '''Verifies that all canonical packages are present at the root.''' all_there = True for file in ROOT_CANONICAL_PACKAGES + [layer]: if not os.path.isfile(os.path.join(base, file)): all_there = False print('Missing root package: %s' % file) return all_there def check_product_root(base, layer): '''Verified that the default product is present.''' missing = [] for product in REQUIRED_PRODUCTS: path = os.path.join(base, product) if not os.path.isfile(path): missing.append(path) if not missing: return True print('Missing products: %s' % missing) return False def main(): parser = argparse.ArgumentParser( description=('Checks that packages in a given layer are properly ' 'formatted and organized')) layer_group = parser.add_mutually_exclusive_group(required=True) layer_group.add_argument('--layer', help='Name of the layer to analyze', choices=['garnet', 'peridot', 'topaz']) layer_group.add_argument('--vendor-layer', help='Name of the vendor layer to analyze') parser.add_argument('--json-validator', help='Path to the JSON validation tool', required=True) args = parser.parse_args() os.chdir(FUCHSIA_ROOT) if args.layer: layer = args.layer packages_base = os.path.join(layer, 'packages') products_base = os.path.join(layer, 'products') else: layer = args.vendor_layer packages_base = os.path.join('vendor', layer, 'packages') products_base = os.path.join('vendor', layer, 'products') # List all packages files. packages = [] for dirpath, dirnames, filenames in os.walk(packages_base): packages.extend([os.path.join(dirpath, f) for f in filenames if f not in NON_PACKAGE_FILES]) products = [] for dirpath, dirnames, filenames in os.walk(products_base): products.extend([os.path.join(dirpath, f) for f in filenames if f not in NON_PACKAGE_FILES]) if not check_json(packages): return False if not check_json(products): return False schema = os.path.join(SCRIPT_DIR, 'package_schema.json') if not check_schema(packages, args.json_validator, schema): return False schema = os.path.join(SCRIPT_DIR, 'product_schema.json') if not check_schema(products, args.json_validator, schema): return False deps = dict([(p, get_package_imports(p)) for p in packages]) if not check_deps_exist(deps): return False if not check_all(packages_base, deps, layer): return False if not check_no_fuchsia_packages_in_all(packages): return False if not check_root(packages_base, layer): return False deps = dict([(p, get_product_imports(p)) for p in products]) if not check_deps_exist(deps): return False if not check_product_root(products_base, layer): return False return True if __name__ == '__main__': return_code = 0 if not main(): print('Errors!') return_code = 1 sys.exit(return_code)
31.081545
80
0.619994
0
0
0
0
0
0
0
0
1,492
0.20602
b8796958be709a16a0f0fcd864b552aa54f7203a
8,064
py
Python
server/main.py
MrCheka/langidnn
77788ef1b7c03d3de92cb1f28e6eb7f3a20d262a
[ "MIT" ]
null
null
null
server/main.py
MrCheka/langidnn
77788ef1b7c03d3de92cb1f28e6eb7f3a20d262a
[ "MIT" ]
7
2020-07-17T01:22:21.000Z
2022-02-26T10:48:01.000Z
server/main.py
MrCheka/langidnn
77788ef1b7c03d3de92cb1f28e6eb7f3a20d262a
[ "MIT" ]
null
null
null
import tensorflow as tf import argparse import logging from src.helpers.NNHelper import NNHelper from src.controller.Controller import Controller from src.params.Parameters import Parameters def createParser(): parser = argparse.ArgumentParser(prog='langid_server', description='''Это серверная часть идентификатора языка с использованием нейронных сетей''', epilog='(c) Дипломный проект Байко Станислава Леоновича, ИИ-13, БрГТУ', add_help=False) parent_group = parser.add_argument_group(title='Параметры') parent_group.add_argument('--help', '-h', action='help', help='Справка') subparsers = parser.add_subparsers(dest='mode', title='Возможные комманды', description='Команды, которые должны быть в качестве первого параметра %(prog)s.') server_parser = subparsers.add_parser('server', add_help=False, help='Запуск программы в режиме сервера', description='''Запуск в режиме сервера. В этом режиме программа предоставляет API для идентификации языка.''') server_group = server_parser.add_argument_group(title='Параметры') server_group.add_argument('--model', '-m', required=True, help='Модель нейронной сети, используемая для идентификации.', metavar='МОДЕЛЬ') server_group.add_argument('--address', '-a', default='127.0.0.1', help='Адрес для прослушивания. По умолчанию 127.0.0.1 (localhost)', metavar='АДРЕС') server_group.add_argument('--port', '-p', default='8888', help='Порт для прослушивания. По умолчанию 8888.', metavar='ПОРТ') server_group.add_argument('--help', '-h', action='help', help='Справка') train_parser = subparsers.add_parser('train', add_help=False, help='Запуск программы в режиме обучения', description='''Запуск программы в режиме обучения. В этом режиме предоставляются возможности для обучения модели нейронной сети.''') train_group = train_parser.add_argument_group(title='Параметры') train_group.add_argument('--model', '-m', help='Модель нейронной сети для продолжения обучения', metavar='МОДЕЛЬ') train_group.add_argument('--dataset', '-d', help='Название датасета, используемого для обучения', metavar='ДАТАСЕТ') train_group.add_argument('--unicode', '-u', help='Использовать unicode нормализацию', action='store_true', default=False) train_group.add_argument('--size', '-s', help='Размер каждого слоя модели', type=int, default=500) train_group.add_argument('--embedding_size', '-e', help='Размер embedding слоя', type=int, default=200) train_group.add_argument('--layers', '-l', help='Количество слоёв', type=int, default=1) train_group.add_argument('--dropout', help='Вероятность dropout', type=float, default=0.5) train_group.add_argument('--learning_rate', help='Минимальная ошибка на валидационной выборке', type=float, default=0.0001) train_group.add_argument('--max_iters', help='Максимальное количество итераций', type=int) train_group.add_argument('--checkpoint', '-c', help='Количество итераций для сохранения модели', type=int, default=5000) train_group.add_argument('--batch_size', '-b', help='Размер порции данных, подаваемых на нейронную сеть', type=int, default=64) train_group.add_argument('--time_stop', '-t', help='Количество часов на обучение', type=int) train_group.add_argument('--input', '-i', help='Размер входа', type=int, default=200) train_group.add_argument('--cell_type', help='Тип ячеек', choices=['lstm', 'gru'], default='gru') train_group.add_argument('--help', '-h', action='help', help='Справка') test_parser = subparsers.add_parser('test', add_help=False, help='Запуск программы в режиме тестирования', description='''Запуск программы в режиме тестирования В этом режиме предоставляются возможности для тестирования модели нейронной сети.''') test_group = test_parser.add_argument_group(title='Параметры') test_group.add_argument('--model', '-m', required=True, help='Модель нейронной сети для тестирования.', metavar='МОДЕЛЬ') test_group.add_argument('--dataset', '-d', help='Название датасета, используемого для тестирования', metavar='ДАТАСЕТ') test_group.add_argument('--text', '-t', help='Текст для идентификации языка.', metavar='ТЕКСТ') test_group.add_argument('--file', '-f', help='Текстовый файл для идентификации языка.', metavar='ФАЙЛ') test_group.add_argument('--help', '-h', action='help', help='Справка') return parser def run_server(namespace): model = namespace.model address = namespace.address port = namespace.port with tf.Session() as sess: contr = Controller(sess, model) contr.run(address, port) def run_train(namespace): params = Parameters('PARAMS') if namespace.model: model = namespace.model elif namespace.dataset: dataset = namespace.dataset params.add_integer('min_count', 0) params.add_integer('trained_lines', 0) params.add_integer('step', 0) if namespace.unicode: params.add_bool('unicode_normalization', True) if namespace.size: params.add_integer('size', namespace.size) if namespace.embedding_size: params.add_integer('embedding_size', namespace.embedding_size) if namespace.layers: params.add_integer('num_layers', namespace.layers) if namespace.dropout: params.add_float('dropout', namespace.dropout) if namespace.learning_rate: params.add_float('learning_rate', namespace.learning_rate) if namespace.max_iters: params.add_integer('max_iters', namespace.max_iters) if namespace.checkpoint: params.add_integer('steps_per_checkpoint', namespace.checkpoint) if namespace.batch_size: params.add_integer('batch_size', namespace.batch_size) if namespace.time_stop: params.add_string('time_stop', namespace.time_stop) if namespace.input: params.add_integer('max_length', namespace.input) if namespace.cell_type: params.add_string('cell_type', namespace.cell_type) with tf.Session() as sess: helper = NNHelper(sess, model, params) helper.train() def run_test(namespace): if namespace.text: text = namespace.text elif namespace.file: with open(namespace.file, 'r', encoding='utf-8') as f: text = f.read() elif namespace.dataset: dataset = namespace.dataset else: raise Exception('Не указан текст или файл для идентификации') with tf.Session() as sess: helper = NNHelper(sess, namespace.model) if dataset: acc = helper.test(dataset) print('Точность определения - {0}% {1}'.format(100*acc[0]/acc[1], acc)) else: lang, acc = helper.detect_lang(text) print('Результат:\n') print('Язык - {0}'.format(lang)) print('Точность определения - {0}%'.format(acc*100)) if __name__ == '__main__': parser = createParser() namespace = parser.parse_args() if namespace.mode == 'server': run_server(namespace) elif namespace.mode == 'train': run_train(namespace) elif namespace.mode == 'test': run_test(namespace) else: logging.error('Ошибка во время выбора режима работы приложения. Попробуйте ещё раз.')
48
131
0.631696
0
0
0
0
0
0
0
0
4,093
0.43207
b879c0d4ddbe81e9894622e0f700feebdf2b2709
1,086
py
Python
Python/Code/Python3-Base/13_Network/Server/SingleProgressServer.py
hiloWang/notes
64a637a86f734e4e80975f4aa93ab47e8d7e8b64
[ "Apache-2.0" ]
2
2020-10-08T13:22:08.000Z
2021-07-28T14:45:41.000Z
Python/Python3-Base/13_Network/Server/SingleProgressServer.py
flyfire/Programming-Notes-Code
4b1bdd74c1ba0c007c504834e4508ec39f01cd94
[ "Apache-2.0" ]
null
null
null
Python/Python3-Base/13_Network/Server/SingleProgressServer.py
flyfire/Programming-Notes-Code
4b1bdd74c1ba0c007c504834e4508ec39f01cd94
[ "Apache-2.0" ]
6
2020-08-20T07:19:17.000Z
2022-03-02T08:16:21.000Z
######################### # 单进程服务器 ######################### """ 同一时刻只能为一个客户进行服务,不能同时为多个客户服务类似于找一个“明星”签字一样,客户需要耐心等待才可以获取到服务 当服务器为一个客户端服务时,而另外的客户端发起了connect,只要服务器listen的队列有空闲的位置,就会为这个新客户端进行连接, 并且客户端可以发送数据,但当服务器为这个新客户端服务时,可能一次性把所有数据接收完毕当receive接收数据时,返回值为空, 即没有返回数据,那么意味着客户端已经调用了close关闭了;因此服务器通过判断receive接收数据是否为空 来判断客户端是否已经下线 """ from socket import * serSocket = socket(AF_INET, SOCK_STREAM) # 重复使用绑定的信息,避免2MSL时套接字等待问题。 serSocket.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) localAddress = ('', 7788) serSocket.bind(localAddress) serSocket.listen(5) while True: print('-----主进程,,等待新客户端的到来------') newSocket, destinationAddress = serSocket.accept() print('-----主进程,,接下来负责数据处理[%s]-----' % str(destinationAddress)) try: while True: receiveData = newSocket.recv(1024) if len(receiveData) > 0: print('receive[%s]:%s' % (str(destinationAddress), receiveData)) else: print('[%s]客户端已经关闭' % str(destinationAddress)) break finally: newSocket.close() # serSocket.close()
24.133333
80
0.64825
0
0
0
0
0
0
0
0
1,024
0.619855
b87a63d631b48c56ae9ad1ccd48c2c053e4047a5
3,098
py
Python
webapp/kortkatalogen/base/models.py
snickaren/CIPAC
58455d59734a571e0134d6368d27ee3e65001c9a
[ "Apache-2.0" ]
null
null
null
webapp/kortkatalogen/base/models.py
snickaren/CIPAC
58455d59734a571e0134d6368d27ee3e65001c9a
[ "Apache-2.0" ]
2
2021-06-01T22:47:10.000Z
2021-06-10T20:52:49.000Z
webapp/kortkatalogen/base/models.py
snickaren/CIPAC
58455d59734a571e0134d6368d27ee3e65001c9a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from django.db import models class BaseCatalog(models.Model): name = models.CharField(max_length=255) description = models.TextField() created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) def __unicode__(self): return u'%s' % self.name class Meta: verbose_name = u"Katalog" verbose_name_plural = u"Kataloger" abstract = True class BaseBox(models.Model): folder_name = models.CharField(max_length=255, unique=True, verbose_name="Katalognamn", help_text="Filkatalog på disk där denna lådas filer ligger") sequence_number = models.IntegerField(db_index=True) label = models.CharField(max_length=255,db_index=True, verbose_name="Etikett") created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) def __unicode__(self): return u'%s %s' % (self.sequence_number, self.label) class Meta: verbose_name = u"Låda" verbose_name_plural = u"Lådor" ordering = ['sequence_number'] abstract = True class BaseCard(models.Model): name = models.CharField(max_length=255, db_index=True, verbose_name="Kortnamn", help_text="Rubriken som visas överst på en kortsida") filename = models.CharField(max_length=255, db_index=True, verbose_name="Filnamn", help_text="Filnamnet för bildfilen") filename_back = models.CharField(max_length=255, db_index=True, verbose_name="Filnamn baksida", help_text="Filnamnet för bildfilen av baksidan") ocr_text = models.TextField(blank=True, help_text="Automatiskt OCR-tolkad text från kortet.") ocr_text_back = models.TextField(blank=True, help_text="Automatiskt OCR-tolkad text från kortets baksida.") letter = models.CharField(max_length=1, null=True, blank=True, db_index=True, verbose_name="Indexbokstav" , help_text="Anges för första kortet för att dela upp katalogen alfabetiskt.") sequence_number = models.IntegerField(db_index=True, verbose_name="Sekvensnummer i låda") catalog_sequence_number = models.IntegerField(null=True, blank=True, verbose_name="Kortnummer", help_text="Globalt katalognummer som anger kortets plats i katalogen. Används även som identifierare.") created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) comment = models.TextField(blank=True, null=True, verbose_name="Intern kommentar", help_text="Visas ej för besökare.") # readonly field to show preview pic in django admin interface def image_tag(self): return u'<img alt="Kort %s" src="/static/alfa/%s" />' % (self.catalog_sequence_number, self.box.folder_name + "/" + self.filename.replace(".jpg", "_view500.jpg")) image_tag.short_description = 'Bild' image_tag.allow_tags = True def __unicode__(self): return u'%s %s' % (self.catalog_sequence_number, self.name) class Meta: verbose_name = u"Kort" verbose_name_plural = u"Kort" ordering = ['catalog_sequence_number'] abstract = True
45.558824
203
0.726598
3,052
0.979147
0
0
0
0
0
0
844
0.270773
b87adad624fdbc747cbd3966ca19edcc62c0db08
2,607
py
Python
script/raw-word-cloud.py
ranyxr/infoVis
307c2ffc4c7d6cf87ed000310a1f2b6233bd7a3b
[ "MIT" ]
2
2020-05-27T11:12:41.000Z
2020-12-17T19:33:41.000Z
script/raw-word-cloud.py
ranyxr/infoVis
307c2ffc4c7d6cf87ed000310a1f2b6233bd7a3b
[ "MIT" ]
null
null
null
script/raw-word-cloud.py
ranyxr/infoVis
307c2ffc4c7d6cf87ed000310a1f2b6233bd7a3b
[ "MIT" ]
3
2020-03-18T19:20:24.000Z
2020-12-17T17:37:24.000Z
import os import nltk import spacy from datetime import datetime from pyspark.sql import SparkSession from pyspark.sql.types import StringType, ArrayType from pyspark.sql.functions import udf, col, explode, collect_list, count from SYS import COL, MODE, DIR, FILE nltk.download('stopwords') os.system("python -m spacy download en_core_web_sm") nlp = spacy.load("en_core_web_sm") def get_token(tweet): doc = nlp(tweet) tokens = [] for t in doc: if len(t) > 2: if t.is_stop is False: if t.pos_ in ["VERB", "NOUN"]: tokens.append(str(t.lemma_)) elif t.pos_ in ["NUM", "SYM", "ADP"]: continue elif t.is_stop: continue else: tokens.append(str(t)) return tokens def process_token(in_df): print("{} [System]: Start processing token!".format(datetime.now())) udf_token = udf(get_token, ArrayType(StringType())) in_df = in_df.withColumn(COL.token, udf_token(col(COL.descri))) in_df = in_df.withColumn(COL.token, explode(col(COL.token))) in_df = in_df.drop(col(COL.descri)) in_df = in_df.groupby(col(COL.year), col(COL.token))\ .agg(collect_list(COL.o_id).alias(COL.o_id), count(COL.token).alias(COL.count)) print("{} [System]: Token processed!".format(datetime.now())) return in_df java8_location = '/Library/Java/JavaVirtualMachines/liberica-jdk-1.8.0_202/Contents/Home' os.environ['JAVA_HOME'] = java8_location spark = SparkSession\ .builder\ .appName("A1")\ .getOrCreate() def get_unprocessed_df(): try: in_df = spark.read.parquet(FILE.cleaned_data2_uri).select(col(COL.o_id), col(COL.descri), col(COL.year)) in_df = in_df.filter(col(COL.descri).isNotNull()).drop_duplicates([COL.o_id, COL.year]) if MODE.limit: in_df = in_df.limit(20) print("{} [System]: Cleaned data read in successfully! {} lines read in!".format(datetime.now(), in_df.count())) return in_df except Exception: print("{} [System]: Cleaned data not exist. Script Exit!".format(datetime.now())) import sys sys.exit(1) if __name__ == '__main__': spark.read.parquet(FILE.word_cloud_data1_uri).groupby(col(COL.token)).count().sort(col(COL.count), ascending=False).show() # df = get_unprocessed_df() # df = process_token(df) # df.write.mode("overwrite").parquet(FILE.word_cloud_data1_uri, compression="gzip") # if MODE.debug: # df = df.filter(col(COL.descri).isNotNull()) # df.show()
33.857143
126
0.638282
0
0
0
0
0
0
0
0
593
0.227465
b87d4232f38a23242d6a6192e497347e1e6d8428
141
py
Python
main/ftpServer.py
McUtty/FlowerPlan
b0998835356e8e10fe53cad447bc559df2ac7175
[ "MIT" ]
null
null
null
main/ftpServer.py
McUtty/FlowerPlan
b0998835356e8e10fe53cad447bc559df2ac7175
[ "MIT" ]
null
null
null
main/ftpServer.py
McUtty/FlowerPlan
b0998835356e8e10fe53cad447bc559df2ac7175
[ "MIT" ]
null
null
null
import uftpd uftpd.stop() # uftpd.start([port = 21][, verbose = 1]) uftpd.restart() # Version abfragen # wenn neuer - Dateien downloaden
12.818182
41
0.687943
0
0
0
0
0
0
0
0
92
0.652482
b87d46b05ec2436786cd95db9a677d1f89cf7d59
10,672
py
Python
Entradas/views.py
ToniIvars/Blog
c2d1674c2c1fdf51749f4b014795b507ed93b45e
[ "MIT" ]
null
null
null
Entradas/views.py
ToniIvars/Blog
c2d1674c2c1fdf51749f4b014795b507ed93b45e
[ "MIT" ]
4
2021-03-30T13:26:38.000Z
2021-06-10T19:20:56.000Z
Entradas/views.py
ToniIvars/Blog
c2d1674c2c1fdf51749f4b014795b507ed93b45e
[ "MIT" ]
null
null
null
from django.shortcuts import render, redirect from django.core.mail import send_mail from django.contrib import messages from django.core.exceptions import ObjectDoesNotExist from django.contrib.auth.models import User from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from random import randint from Entradas.models import entradas_blog, comentarios from Entradas.forms import FormNuevaEntrada, FormContacto, FormEditarEntrada, SignupForm, LoginForm, FormEditarPerfil initial_dict_editar={} initial_dict_crear={} entrada_a_editar=None id_entrada=None username='' # View 'signup' codigo_enviado=False codigo='' email='' password='' def generador_slug(tit): slug=tit.lower().replace(' ','-').replace('á','a').replace('é','e').replace('í','i').replace('ó','o').replace('ú','u') return slug def generar_codigo(): codigo='' for i in range(6): codigo += str(randint(1,9)) return codigo def set_username(request): global username if username=='': username=request.user.username # Create your views here. def error_404(request): return render(request, '404.html') def error_500(request): return render(request, '500.html') # @login_required def inicio(request): set_username(request) articulos=entradas_blog.objects.order_by('-pk')[:4] return render(request, 'inicio.html', {'articulos':articulos}) # @login_required def muestra_entrada(request, slug): set_username(request) mostrar=entradas_blog.objects.get(slug=slug) com=comentarios.objects.filter(entrada=mostrar.titulo) if request.method=='POST': autor=request.POST.get('input-autor') comentario=request.POST.get('input-comentario') nuevo_com=comentarios(entrada=mostrar.titulo, autor=autor, cuerpo=comentario) nuevo_com.save() messages.success(request, 'El comentario ha sido agregado correctamente.') return redirect('entrada', slug) return render(request, 'muestra-entrada.html', {'entrada_a_mostrar':mostrar, 'comentarios':com}) # @login_required def resultados(request): set_username(request) if request.GET['input-ent']: articulos=entradas_blog.objects.filter(titulo__icontains=request.GET['input-ent']).order_by('-pk') if articulos: return render(request, 'buscar-entrada.html', {'entradas':articulos}) else: messages.error(request, 'No se han encontrado entradas.') return redirect('inicio') else: return render(request, 'buscar-entrada.html') @login_required def crear_entrada(request): global initial_dict_crear set_username(request) if request.method=='POST': nueva_entrada=FormNuevaEntrada(request.POST) if nueva_entrada.is_valid(): info_nueva_entrada=nueva_entrada.cleaned_data slug_field=generador_slug(info_nueva_entrada['titulo']) try: obj=entradas_blog.objects.get(slug=slug_field) initial_dict_crear = { 'creador':info_nueva_entrada['creador'], 'cuerpo_texto':info_nueva_entrada['cuerpo_texto'], } messages.error(request, 'El título de la entrada que intentas crear ya existe.') return redirect('crear-entrada') except ObjectDoesNotExist: ent=entradas_blog(creador=info_nueva_entrada['creador'], titulo=info_nueva_entrada['titulo'], cuerpo=info_nueva_entrada['cuerpo_texto'], slug=slug_field) ent.save() initial_dict_crear = {} return redirect('inicio') else: initial_dict_crear={'creador':username} nueva_entrada=FormNuevaEntrada(initial=initial_dict_crear) return render(request, 'crear-entrada.html', {'form':nueva_entrada}) @login_required def editar_entrada(request, entrada): global initial_dict_editar, entrada_a_editar, id_entrada set_username(request) id_entrada = entrada entrada_a_editar=entradas_blog.objects.get(pk=id_entrada) initial_dict_editar = { 'creador':entrada_a_editar.creador, 'titulo':entrada_a_editar.titulo, 'cuerpo_texto':entrada_a_editar.cuerpo, } if request.method=='POST': editar_entrada=FormEditarEntrada(request.POST) if editar_entrada.is_valid(): info_editar_entrada=editar_entrada.cleaned_data slug_field=generador_slug(info_editar_entrada['titulo']) try: obj=entradas_blog.objects.get(slug=slug_field) if info_editar_entrada['titulo'] == initial_dict_editar['titulo']: raise ObjectDoesNotExist else: messages.error(request, 'El título editado pertenece a otra entrada.') return redirect('editar-entrada') except ObjectDoesNotExist: entradas_blog.objects.filter(pk=id_entrada).update(creador=info_editar_entrada['creador'], titulo=info_editar_entrada['titulo'], cuerpo=info_editar_entrada['cuerpo_texto'], slug=slug_field) messages.success(request, 'Entrada actualizada correctamente.') return redirect('perfil', username) else: editar_entrada=FormEditarEntrada(initial=initial_dict_editar) return render(request, 'editar-entrada.html', {'form':editar_entrada}) @login_required def eliminar_entrada(request, entrada): set_username(request) if request.GET.get('input-del'): entradas_blog.objects.filter(pk=entrada).delete() messages.success(request, 'Entrada eliminada correctamente.') return redirect('perfil', username) elif request.GET.get('nothing'): return redirect('perfil', username) return render(request, 'eliminar-entrada.html') def signup(request): global username, codigo_enviado, codigo, email, password if request.method=='POST': registro=SignupForm(request.POST) if registro.is_valid(): info_registro=registro.cleaned_data if ' ' in info_registro['username']: messages.error(request, 'El nombre de usuario no puede contener espacios.') return redirect('registro') else: username=info_registro['username'] password=info_registro['password'] password2=info_registro['password2'] email=info_registro['email'] try: user=User.objects.get_by_natural_key(username) messages.error(request, 'Este usuario ya existe.') return redirect('registro') except ObjectDoesNotExist: if password != password2: messages.error(request, 'Las contraseñas no coinciden.') return redirect('registro') else: user=User.objects.create_user(username, email, password) user.save() login(request, user) messages.success(request, 'El usuario ha sido creado correctamente.') return redirect('inicio') else: registro=SignupForm() return render(request, 'signup.html', {'form':registro}) def login_view(request): global username if request.method=='POST': inicio_sesion=LoginForm(request.POST) if inicio_sesion.is_valid(): info_inicio=inicio_sesion.cleaned_data username=info_inicio['username'] password=info_inicio['password'] user=authenticate(request, username=username, password=password) if user is not None: login(request, user) return redirect('inicio') else: messages.error(request, 'No ha sido posible iniciar sesión.') return redirect('iniciar-sesion') else: inicio_sesion=LoginForm() return render(request, 'login.html', {'form':inicio_sesion}) def logout_view(request): logout(request) return redirect('iniciar-sesion') # @login_required def ver_perfil(request, profile): articulos=entradas_blog.objects.filter(creador=profile).order_by('-pk') return render(request, 'ver-perfil.html', {'nombre_usuario':profile, 'articulos':articulos}) @login_required def perfil(request, profile): # if profile == username: articulos=entradas_blog.objects.filter(creador=profile).order_by('-pk') return render(request, 'perfil.html', {'articulos':articulos}) # else: # messages.error(request, 'El perfil al que intentas acceder no es el tuyo.') # return redirect('inicio') @login_required def editar_perfil(request, profile): set_username(request) if request.method=='POST': edicion=FormEditarPerfil(request.POST) if edicion.is_valid(): info_edicion=edicion.cleaned_data user=User.objects.get_by_natural_key(username) user.username=info_edicion['username'] user.first_name=info_edicion['first_name'] user.last_name=info_edicion['last_name'] user.email=info_edicion['email'] user.save() messages.success(request, 'El perfil ha sido actualizado correctamente.') return redirect('editar-perfil', username) else: obj=User.objects.get_by_natural_key(username) initial_dict_contacto={ 'username':obj.username, 'first_name':obj.first_name, 'last_name':obj.last_name, 'email':obj.email, } edit_perfil=FormEditarPerfil(initial=initial_dict_contacto) return render(request, 'editar-perfil.html', {'form':edit_perfil}) @login_required def actualizar_contra(request, profile): set_username(request) if request.method=='POST': user=User.objects.get_by_natural_key(username) contra=request.POST.get('input-contra') contra2=request.POST.get('input-contra2') if contra == contra2: user.set_password(contra) messages.success(request, 'La contraseña ha sido actualizado correctamente.') return redirect('editar-perfil', username) else: messages.error(request, 'Las contraseñas no coinciden.') return redirect('actualizar-contraseña', username) return render(request, 'actualizar-contraseña.html')
32.048048
205
0.648801
0
0
0
0
5,449
0.509967
0
0
1,964
0.183809
b87f562e23be6f95cf850092c0a407380227775e
975
py
Python
setup.py
remiolsen/anglerfish
5caabebf5864180e5552b3e40de3650fc5fcabd6
[ "MIT" ]
null
null
null
setup.py
remiolsen/anglerfish
5caabebf5864180e5552b3e40de3650fc5fcabd6
[ "MIT" ]
19
2019-10-07T11:14:54.000Z
2022-03-28T12:36:47.000Z
setup.py
remiolsen/anglerfish
5caabebf5864180e5552b3e40de3650fc5fcabd6
[ "MIT" ]
2
2019-05-28T14:15:26.000Z
2022-03-28T09:28:44.000Z
#!/usr/bin/env python from setuptools import setup, find_packages import sys, os setup( name='anglerfish', version='0.4.1', description='Anglerfish, a tool to demultiplex Illumina libraries from ONT data', author='Remi-Andre Olsen', author_email='remi-andre.olsen@scilifelab.se', url='https://github.com/remiolsen/anglerfish', license='MIT', packages = find_packages(), install_requires=[ 'python-levenshtein', 'biopython', 'numpy' ], scripts=['./anglerfish.py'], zip_safe=False, classifiers=[ "Development Status :: 3 - Alpha", "Environment :: Console", "Intended Audience :: Developers", "Intended Audience :: Healthcare Industry", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Operating System :: POSIX :: Linux", "Programming Language :: Python", "Topic :: Scientific/Engineering :: Medical Science Apps." ] )
29.545455
85
0.645128
0
0
0
0
0
0
0
0
596
0.611282
b87f7b6b8b386385428ae91baa19206d67341ede
600
py
Python
files/urls.py
danielchriscarter/part2-django
d4adffa3280431151bb8d1c51f0be2dbffff9dd1
[ "BSD-2-Clause" ]
null
null
null
files/urls.py
danielchriscarter/part2-django
d4adffa3280431151bb8d1c51f0be2dbffff9dd1
[ "BSD-2-Clause" ]
null
null
null
files/urls.py
danielchriscarter/part2-django
d4adffa3280431151bb8d1c51f0be2dbffff9dd1
[ "BSD-2-Clause" ]
null
null
null
from django.urls import path from . import views app_name = 'files' urlpatterns = [ path('', views.index, name='index'), path('file/<int:file_id>/', views.fileview, name='file'), path('file/<int:file_id>/edit', views.fileedit, name='fileedit'), path('dir/<int:dir_id>/', views.dirview, name='directory'), path('newfile/<int:dir_id>/', views.newfile, name='newfile'), path('newdir/<int:dir_id>/', views.newdir, name='newdir'), path('newdir/root/', views.newdir_root, name='newdir_root'), path('search', views.search, name='search'), ]
37.5
73
0.62
0
0
0
0
0
0
0
0
213
0.355
b8823356abe70dc72971de117d1caaf078936601
1,733
py
Python
morpheus/algorithms/kmeans.py
amirsh/MorpheusPy
8eda959e71a3b377c3f6629802bad2bd4f5a5ee6
[ "Apache-2.0" ]
12
2018-10-04T08:27:33.000Z
2022-01-11T15:41:29.000Z
morpheus/algorithms/kmeans.py
amirsh/MorpheusPy
8eda959e71a3b377c3f6629802bad2bd4f5a5ee6
[ "Apache-2.0" ]
3
2020-09-22T16:18:51.000Z
2021-12-28T19:01:00.000Z
morpheus/algorithms/kmeans.py
amirsh/MorpheusPy
8eda959e71a3b377c3f6629802bad2bd4f5a5ee6
[ "Apache-2.0" ]
4
2019-12-13T17:52:19.000Z
2021-12-17T12:43:44.000Z
# Copyright 2018 Side Li and Arun Kumar # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import scipy.sparse as sp from sklearn.base import BaseEstimator, ClusterMixin class NormalizedKMeans(BaseEstimator, ClusterMixin): def __init__(self, iterations=20, center_num=5): self.center_num = center_num self.iterations = iterations def fit(self, X, k_center): self.k_center, self.ya = self.k_means(X, self.iterations, self.center_num, k_center, X.shape[0]) return self def k_means(self, data, iterations, center_num, k_center, rows): all_one = np.matrix([1] * rows).T all_one_k = np.matrix([1] * center_num) all_one_c = np.matrix([1] * k_center.shape[0]).T if sp.issparse(data): t2 = (data.power(2)).sum(axis=1).dot(all_one_k) else: t2 = (np.power(data, 2)).sum(axis=1).reshape((-1, 1)) * all_one_k t22 = data * 2 ya = None for _ in range(iterations): dist = t2 - t22 * k_center + all_one * np.power(k_center, 2).sum(axis=0) ya = (dist == (np.amin(dist) * all_one_k)) k_center = (data.T * ya) / (all_one_c * ya.sum(axis=0)) return k_center, ya
40.302326
104
0.660704
1,051
0.606463
0
0
0
0
0
0
570
0.328909
b8833e3d9f3a2008bcf62eb119ccbf510334b106
796
py
Python
670/main.py
pauvrepetit/leetcode
6ad093cf543addc4dfa52d72a8e3c0d05a23b771
[ "MIT" ]
null
null
null
670/main.py
pauvrepetit/leetcode
6ad093cf543addc4dfa52d72a8e3c0d05a23b771
[ "MIT" ]
null
null
null
670/main.py
pauvrepetit/leetcode
6ad093cf543addc4dfa52d72a8e3c0d05a23b771
[ "MIT" ]
null
null
null
# 670. 最大交换 # # 20200905 # huao class Solution: def maximumSwap(self, num: int) -> int: return int(self.maximumSwapStr(str(num))) def maximumSwapStr(self, num: str) -> str: s = list(num) if len(s) == 1: return num maxNum = '0' maxLoc = 0 for i in range(len(s))[::-1]: c = s[i] if maxNum < c: maxNum = c maxLoc = i if s[0] == maxNum: return maxNum + self.maximumSwapStr(num[1:]) s[maxLoc] = s[0] s[0] = str(maxNum) ss = "" for i in s: ss += i return ss print(Solution().maximumSwap(100)) print(Solution().maximumSwap(2736)) print(Solution().maximumSwap(9973)) print(Solution().maximumSwap(98638))
22.742857
56
0.5
616
0.766169
0
0
0
0
0
0
41
0.050995
b8860c8f4169552c8561caf03f121aafce628fa6
333
py
Python
tests/resources/test_codegen/template.py
come2ry/atcoder-tools
d7ecf5c19427848e6c8f0aaa3c1a8af04c467f1b
[ "MIT" ]
313
2016-12-04T13:25:21.000Z
2022-03-31T09:46:15.000Z
tests/resources/test_codegen/template.py
come2ry/atcoder-tools
d7ecf5c19427848e6c8f0aaa3c1a8af04c467f1b
[ "MIT" ]
232
2016-12-02T22:55:20.000Z
2022-03-27T06:48:02.000Z
tests/resources/test_codegen/template.py
come2ry/atcoder-tools
d7ecf5c19427848e6c8f0aaa3c1a8af04c467f1b
[ "MIT" ]
90
2017-09-23T15:09:48.000Z
2022-03-17T03:13:40.000Z
#!/usr/bin/env python3 import sys def solve(${formal_arguments}): return def main(): def iterate_tokens(): for line in sys.stdin: for word in line.split(): yield word tokens = iterate_tokens() ${input_part} solve(${actual_arguments}) if __name__ == '__main__': main()
16.65
37
0.588589
0
0
117
0.351351
0
0
0
0
32
0.096096
b8862a702744111dde08cc354f165d4d573be5a8
21,501
py
Python
orghtml.py
waynezhang/orgextended
853ae89f937d302c2dd9dad3ae98aa5c2485faaa
[ "MIT" ]
null
null
null
orghtml.py
waynezhang/orgextended
853ae89f937d302c2dd9dad3ae98aa5c2485faaa
[ "MIT" ]
null
null
null
orghtml.py
waynezhang/orgextended
853ae89f937d302c2dd9dad3ae98aa5c2485faaa
[ "MIT" ]
null
null
null
import sublime import sublime_plugin import datetime import re import regex from pathlib import Path import os import fnmatch import OrgExtended.orgparse.node as node from OrgExtended.orgparse.sublimenode import * import OrgExtended.orgutil.util as util import OrgExtended.orgutil.navigation as nav import OrgExtended.orgutil.template as templateEngine import logging import sys import traceback import OrgExtended.orgfolding as folding import OrgExtended.orgdb as db import OrgExtended.asettings as sets import OrgExtended.orgcapture as capture import OrgExtended.orgproperties as props import OrgExtended.orgutil.temp as tf import OrgExtended.pymitter as evt import OrgExtended.orgnotifications as notice import OrgExtended.orgextension as ext import OrgExtended.orgsourceblock as src import OrgExtended.orgexporter as exp import yaml import sys import subprocess import html log = logging.getLogger(__name__) # Global properties I AT LEAST want to support. # Both as a property on the document and in our settings. #+OPTIONS: num:nil toc:nil #+REVEAL_TRANS: None/Fade/Slide/Convex/Concave/Zoom #+REVEAL_THEME: Black/White/League/Sky/Beige/Simple/Serif/Blood/Night/Moon/Solarized #+Title: Title of Your Talk #+Author: Your Name #+Email: Your Email Address or Twitter Handle def GetCollapsibleCodeOld(): return """ var coll = document.getElementsByClassName("collapsible"); var i; for (i = 0; i < coll.length; i++) { coll[i].addEventListener("click", function() { this.classList.toggle("active"); var content = this.nextElementSibling; if (content.style.display === "block") { content.style.display = "none"; } else { content.style.display = "block"; } }); } """ def GetCollapsibleCode(): return """ var coll = document.getElementsByClassName("collapsible"); var i; var accume = 0; for (i = 0; i < coll.length; i++) { coll[i].addEventListener("click", function() { this.classList.toggle("active"); var content = this.nextElementSibling; if (content.style.maxHeight) { content.style.maxHeight = null; } else { content.style.maxHeight = content.scrollHeight + "px"; } accume += content.scrollHeight + 5; while(content.parentNode && (content.parentNode.nodeName == 'DIV' || content.parentNode.nodeName == 'SECTION')) { if(content.parentNode.nodeName == 'DIV') { //alert(content.parentNode.nodeName); content.parentNode.style.maxHeight = (accume + content.parentNode.scrollHeight) + "px"; accume += content.parentNode.scrollHeight; } content = content.parentNode; } }); coll[i].click(); } """ def GetCollapsibleCss(): return """ .node-body { padding: 0 18px; max-height: 0; overflow: hidden; transition: max-height 0.2s ease-out; } .active, .collapsible:hover { background-color: #ccc; } .collapsible:after { content: '\\002b'; font-size: 22px; float: right; margin-right: 20px; } .active:after { content: '\\2212'; font-size: 22px; margin-right: 20px; } """ RE_CAPTION = regex.compile(r"^\s*[#][+]CAPTION[:]\s*(?P<caption>.*)") RE_ATTR = regex.compile(r"^\s*[#][+]ATTR_HTML[:](?P<params>\s+[:](?P<name>[a-zA-Z0-9._-]+)\s+(?P<value>([^:]|((?<! )[:]))+))+$") RE_ATTR_ORG = regex.compile(r"^\s*[#][+]ATTR_ORG[:] ") RE_SCHEDULING_LINE = re.compile(r"^\s*(SCHEDULED|CLOSED|DEADLINE|CLOCK)[:].*") RE_DRAWER_LINE = re.compile(r"^\s*[:].+[:]\s*$") RE_END_DRAWER_LINE = re.compile(r"^\s*[:](END|end)[:]\s*$") RE_LINK = re.compile(r"\[\[(?P<link>[^\]]+)\](\[(?P<desc>[^\]]+)\])?\]") RE_UL = re.compile(r"^(?P<indent>\s*)(-|[+])\s+(?P<data>.+)") RE_STARTQUOTE = re.compile(r"#\+(BEGIN_QUOTE|BEGIN_EXAMPLE|BEGIN_VERSE|BEGIN_CENTER|begin_quote|begin_example|begin_verse|begin_center)") RE_ENDQUOTE = re.compile(r"#\+(END_QUOTE|END_EXAMPLE|END_VERSE|END_CENTER|end_quote|end_example|end_verse|end_center)") RE_STARTNOTE = re.compile(r"#\+(BEGIN_NOTES|begin_notes)") RE_ENDNOTE = re.compile(r"#\+(END_NOTES|end_notes)") RE_FN_MATCH = re.compile(r"\s*[:]([a-zA-Z0-9-_]+)\s+([^: ]+)?\s*") RE_STARTSRC = re.compile(r"^\s*#\+(BEGIN_SRC|begin_src|BEGIN:|begin:)\s+(?P<lang>[a-zA-Z0-9]+)") RE_ENDSRC = re.compile(r"^\s*#\+(END_SRC|end_src|end:|END:)") RE_RESULTS = re.compile(r"^\s*#\+RESULTS.*") RE_TABLE_ROW = re.compile(r"^\s*[|]") RE_TABLE_SEPARATOR = re.compile(r"^\s*[|][-]") RE_CHECKBOX = re.compile(r"^\[ \] ") RE_CHECKED_CHECKBOX = re.compile(r"^\[[xX]\] ") RE_PARTIAL_CHECKBOX = re.compile(r"^\[[-]\] ") RE_EMPTY_LINE = re.compile(r"^\s*$") # <!-- multiple_stores height="50%" width="50%" --> RE_COMMENT_TAG = re.compile(r"^\s*[<][!][-][-]\s+(?P<name>[a-zA-Z0-9_-]+)\s+(?P<props>.*)\s+[-][-][>]") def mapLanguage(lang): if(lang == 'html'): return 'language-html' elif(lang == 'python'): return 'language-python' else: return lang def GetStyleRelatedData(style, extension): inHeader = os.path.join(sublime.packages_path(),"User", "htmlstyles", style + extension) if(os.path.isfile(inHeader)): with open(inHeader) as f: contents = f.read() return contents resourceName = "Packages/OrgExtended/htmlstyles/" + style + extension try: contents = sublime.load_resource(resourceName) return contents except: pass #inHeader = os.path.join(sublime.packages_path(),"OrgExtended", "htmlstyles", style + extension) #if(os.path.isfile(inHeader)): # with open(inHeader) as f: # contents = f.read() # return contents return "" def GetStyleRelatedPropertyData(file, key, setting): val = exp.GetGlobalOption(file, key, setting, "") if("<" in val or "{" in val): return val elif(os.path.isfile(val)): with open(val) as f: contents = f.read() return contents else: return val def GetHighlightJsCss(style): import OrgExtended.orgutil.webpull as wp wp.download_highlightjs() data = os.path.join(sublime.packages_path(),"User", "highlightjs", "styles", style + ".css") if(os.path.isfile(data)): with open(data) as f: contents = f.read() return contents def GetHighlightJs(): import OrgExtended.orgutil.webpull as wp wp.download_highlightjs() data = os.path.join(sublime.packages_path(),"User", "highlightjs", "highlight.pack.js") if(os.path.isfile(data)): with open(data) as f: contents = f.read() return contents def GetHeaderData(style, file): d1 = GetStyleRelatedData(style,"_inheader.html") d2 = GetStyleRelatedPropertyData(file, "HtmlInHeader", "HTML_INHEADER") return d1 + d2 def GetHeadingData(style, file): d1 = GetStyleRelatedData(style,"_heading.html") d2 = GetStyleRelatedPropertyData(file, "HtmlHeading", "HTML_HEADING") return d1 + d2 def GetFootingData(style, file): d1 = GetStyleRelatedData(style,"_footing.html") d2 = GetStyleRelatedPropertyData(file, "HtmlFooting", "HTML_FOOTING") return d1 + d2 def GetStyleData(style, file): d1 = GetStyleRelatedData(style,".css") d2 = GetStyleRelatedPropertyData(file, "HtmlCss", "HTML_CSS") return d1 + d2 class HtmlDoc(exp.OrgExporter): def __init__(self, filename, file,**kwargs): super(HtmlDoc, self).__init__(filename, file, **kwargs) self.fs.write("<!DOCTYPE html>\n") self.fs.write("<!-- exported by orgextended html exporter -->\n") if(self.language): self.fs.write("<html xmlns=\"http://www.w3.org/1999/xhtml\" lang=\"{language}\" xml:lang=\"{language}\">".format(language=self.language)) else: self.fs.write("<html lang=\"en\" class>\n") self.commentName = None self.figureIndex = 1 self.tableIndex = 1 def AddJs(self,link): self.fs.write(" <script type=\"text/javascript\" src=\"" + link + "\"></script>\n") def AddStyle(self,link): self.fs.write(" <link rel=\"stylesheet\" href=\""+link+"\"></link>\n") def AddInlineStyle(self,content): # <style> # BLOCK # </style> self.fs.write(" <style>\n{0}\n </style>\n".format(content)) def InsertJs(self,content): # <style> # BLOCK # </style> self.fs.write(" <script>\n{0}\n </script>\n".format(content)) def StartHead(self): self.fs.write(" <head>\n") def EndHead(self): data = GetHeaderData(self.style, self.file) self.fs.write(data) self.fs.write(" </head>\n") def AddExportMetaCustom(self): if(self.title): self.fs.write("<title>{title}</title>".format(title=self.title)) if(self.author): self.fs.write("<meta name=\"author\" content=\"{author}\" />".format(author=self.author)) def StartDocument(self, file): self.fs.write(" <div class=\"ready\">\n") def EndDocument(self): self.fs.write(" </div>\n") def StartNodes(self): self.fs.write(" <div class=\"orgmode\">\n") def EndNodes(self): self.fs.write(" </div>\n") # Per slide properties #:PROPERTIES: #:css_property: value #:END: def StartNode(self,n): properties = "" for prop in n.properties: properties = "{0} {1}=\"{2}\"".format(properties, prop, n.properties[prop]) self.fs.write(" <section {0}>\n".format(properties)) def StartNodeBody(self, n): level = n.level + 1 self.fs.write(" <div class=\"node-body h{level}\">\n".format(level=level)) def EndNodeBody(self,n): self.fs.write(" </div>\n") def EndNode(self,n): self.fs.write(" </section>\n") def NodeHeading(self,n): heading = html.escape(n.heading) level = n.level + 1 self.fs.write(" <h{level} class=\"collapsible\">{heading}</h{level}>\n".format(level=level,heading=heading)) def ClearAttributes(self): self.attrs = {} self.caption = None def AttributesGather(self, l): if(self.PreScanExportCommentsGather(l)): return True m = RE_CAPTION.match(l) if(not hasattr(self, 'caption')): self.caption = None if(m): self.caption = m.captures('caption')[0] return True m = RE_ATTR.match(l) # We capture #+ATTR_HTML: lines if(m): keys = m.captures('name') vals = m.captures('value') if not hasattr(self,'attrs'): self.attrs = {} for i in range(len(keys)): self.attrs[keys[i]] = vals[i] return True # We skip #+ATTR_ORG: lines m = RE_ATTR_ORG.match(l) if(m): return True return False def EscAndLinks(self, l): line = html.escape(l) m = RE_LINK.search(line) if(m): link = m.group('link').strip() desc = m.group('desc') if(not desc): desc = link else: desc = desc.strip() if(link.endswith(".png") or link.endswith(".jpg") or link.endswith(".jpeg") or link.endswith(".gif")): if(link.startswith("file:")): link = re.sub(r'^file:','',link) extradata = "" if(self.commentName and self.commentName in link): extradata = " " + self.commentData self.commentName = None if(hasattr(self,'attrs')): for key in self.attrs: extradata += " " + str(key) + "=\"" + str(self.attrs[key]) + "\"" preamble = "" postamble = "" if(hasattr(self,'caption') and self.caption): preamble = "<div class=\"figure\"><p>" postamble = "</p><p><span class=\"figure-number\">Figure {index}: </span>{caption}</p></div>".format(index=self.figureIndex,caption=self.caption) self.figureIndex += 1 line = RE_LINK.sub("{preamble}<img src=\"{link}\" alt=\"{desc}\"{extradata}>{postamble}".format(preamble=preamble,link=link,desc=desc,extradata=extradata,postamble=postamble),line) self.ClearAttributes() else: line = RE_LINK.sub("<a href=\"{link}\">{desc}</a>".format(link=link,desc=desc),line) self.ClearAttributes() else: line = exp.RE_BOLD.sub(r"<b>\1</b>",line) line = exp.RE_ITALICS.sub(r"<i>\1</i>",line) line = exp.RE_UNDERLINE.sub(r"<u>\1</u>",line) line = exp.RE_STRIKETHROUGH.sub(r"<strike>\1</strike>",line) line = exp.RE_VERBATIM.sub(r"<pre>\1</pre>",line) line = exp.RE_CODE.sub(r"<code>\1</code>",line) line = RE_STARTQUOTE.sub(r"<blockquote>",line) line = RE_ENDQUOTE.sub(r"</blockquote>",line) line = RE_STARTNOTE.sub(r'<aside class="notes">',line) line = RE_ENDNOTE.sub(r"</aside>",line) line = RE_CHECKBOX.sub(r'<input type="checkbox">',line) line = RE_CHECKED_CHECKBOX.sub(r'<input type="checkbox" checked>',line) if(sets.Get("htmlExportPartialCheckboxChecked",True)): line = RE_PARTIAL_CHECKBOX.sub(r'<input type="checkbox" checked>',line) else: line = RE_PARTIAL_CHECKBOX.sub(r'<input type="checkbox">',line) line = exp.RE_HR.sub(r'<hr>',line) return line def NodeBody(self,slide): inDrawer = False inResults= False inUl = 0 ulIndent = 0 inTable = False haveTableHeader = False inSrc = False skipSrc = False exp = None for l in slide._lines[1:]: if(self.AttributesGather(l)): continue if(inResults): if(l.strip() == ""): inResults = False elif(RE_ENDSRC.search(l) or RE_END_DRAWER_LINE.search(l)): inResults = False continue if(inResults): if(exp == 'code' or exp == 'none'): continue else: line = self.EscAndLinks(l) self.fs.write(" " + line + "\n") continue if(inDrawer): if(RE_END_DRAWER_LINE.search(l)): inDrawer = False continue if(inTable): if(RE_TABLE_ROW.search(l)): if(RE_TABLE_SEPARATOR.search(l)): continue else: tds = l.split('|') if(len(tds) > 3): # An actual table row, build a row self.fs.write(" <tr>\n") for td in tds[1:-1]: if(haveTableHeader): self.fs.write(" <td>{0}</td>\n".format(self.EscAndLinks(td))) else: self.fs.write(" <th>{0}</th>\n".format(self.EscAndLinks(td))) haveTableHeader = True # Fill in the tds self.fs.write(" </tr>\n") continue else: self.fs.write(" </table>\n") inTable = False haveTableHeader = False if(inSrc): if(RE_ENDSRC.search(l)): inSrc = False if(skipSrc): skipSrc = False continue self.fs.write(" </code></pre>\n") continue else: if(not skipSrc): self.fs.write(" " + l + "\n") continue # src block m = RE_STARTSRC.search(l) if(m): inSrc = True language = m.group('lang') paramstr = l[len(m.group(0)):] p = type('', (), {})() src.BuildFullParamList(p,language,paramstr,slide) exp = p.params.Get("exports",None) if(isinstance(exp,list) and len(exp) > 0): exp = exp[0] if(exp == 'results' or exp == 'none'): skipSrc = True continue # Some languages we skip source by default skipLangs = sets.Get("htmlDefaultSkipSrc",[]) if(exp == None and language == skipLangs): skipSrc = True continue #params = {} #for ps in RE_FN_MATCH.finditer(paramstr): # params[ps.group(1)] = ps.group(2) attribs = "" # This is left over from reveal. if(p.params.Get("data-line-numbers",None)): attribs += " data-line-numbers=\"{nums}\"".format(nums=p.params.Get("data-line-numbers","")) self.fs.write(" <pre><code language=\"{lang}\" {attribs}>\n".format(lang=mapLanguage(language),attribs=attribs)) continue # property drawer if(RE_DRAWER_LINE.search(l)): inDrawer = True continue # scheduling if(RE_SCHEDULING_LINE.search(l)): continue if(RE_RESULTS.search(l)): inResults = True continue m = RE_COMMENT_TAG.search(l) if(m): self.commentData = m.group('props') self.commentName = m.group('name') continue m = RE_TABLE_ROW.search(l) if(m): self.fs.write(" <table>\n") if(hasattr(self,'caption') and self.caption): self.fs.write(" <caption class=\"t-above\"><span class=\"table-number\">Table {index}:</span>{caption}</caption>".format(index=self.tableIndex,caption=self.caption)) self.tableIndex += 1 self.ClearAttributes() if(not RE_TABLE_SEPARATOR.search(l)): tds = l.split('|') if(len(tds) > 3): self.fs.write(" <tr>\n") for td in tds[1:-1]: self.fs.write(" <th>{0}</th>".format(self.EscAndLinks(td))) self.fs.write(" </tr>\n") haveTableHeader = True inTable = True continue m = RE_UL.search(l) if(m): thisIndent = len(m.group('indent')) if(not inUl): ulIndent = thisIndent self.fs.write(" <ul>\n") inUl += 1 elif(thisIndent > ulIndent): ulIndent = thisIndent self.fs.write(" <ul>\n") inUl += 1 elif(thisIndent < ulIndent and inUl > 1): inUl -= 1 self.fs.write(" </ul>\n") data = self.EscAndLinks(m.group('data')) self.fs.write(" <li>{content}</li>\n".format(content=data)) continue elif(inUl): while(inUl > 0): inUl -= 1 self.fs.write(" </ul>\n") if(RE_EMPTY_LINE.search(l)): self.fs.write(" <br>\n") # Normal Write line = self.EscAndLinks(l) self.fs.write(" " + line + "\n") if(inUl): inUl -= 1 self.fs.write(" </ul>\n") pass def StartBody(self): self.fs.write(" <body>\n") data = GetHeadingData(self.style, self.file) if(data): self.fs.write(data) def EndBody(self): data = GetFootingData(self.style, self.file) if(data): self.fs.write(data) self.fs.write(" </body>\n") def InsertScripts(self,file): self.InsertJs(GetHighlightJs()) self.fs.write("<script>hljs.initHighlightingOnLoad();</script>\n") self.InsertJs(GetCollapsibleCode()) def Postamble(self): self.fs.write("<div id=\"postamble\" class=\"status\">") if(self.date): self.fs.write("<p class=\"date\">Date: {date}</p>".format(date=self.date)) if(self.author): self.fs.write("<p class=\"author\">Author: {author}</p>".format(author=self.author)) self.fs.write("<p class=\"date\">Created: {date}</p>".format(date=str(datetime.datetime.now()))) self.fs.write("</div>") def FinishDocCustom(self): self.Postamble() self.fs.write("</html>\n") class HtmlExportHelper(exp.OrgExportHelper): def __init__(self,view,index): super(HtmlExportHelper,self).__init__(view,index) def CustomBuildHead(self): highlight = exp.GetGlobalOption(self.file,"HTML_HIGHLIGHT","HtmlHighlight","zenburn").lower() self.doc.AddInlineStyle(GetHighlightJsCss(highlight)) self.doc.AddInlineStyle(GetCollapsibleCss()) self.doc.AddInlineStyle(GetStyleData(self.doc.style, self.file)) # Export the entire file using our internal exporter class OrgExportFileOrgHtmlCommand(sublime_plugin.TextCommand): def OnDoneSourceBlockExecution(self): # Reload if necessary self.file = db.Get().FindInfo(self.view) doc = None self.style = exp.GetGlobalOption(self.file,"HTML_STYLE","HtmlStyle","blocky").lower() log.log(51,"EXPORT STYLE: " + self.style) try: outputFilename = exp.ExportFilename(self.view,".html", self.suffix) doc = HtmlDoc(outputFilename, self.file) doc.style = self.style self.helper = HtmlExportHelper(self.view, self.index) self.helper.Run(outputFilename, doc) finally: evt.EmitIf(self.onDone) def run(self,edit, onDone=None, index=None, suffix=""): self.file = db.Get().FindInfo(self.view) self.onDone = onDone self.suffix = suffix if(index != None): self.index = index else: self.index = None if(None == self.file): log.error("Not an org file? Cannot build reveal document") evt.EmitIf(onDone) return if(sets.Get("htmlExecuteSourceOnExport",True)): self.view.run_command('org_execute_all_source_blocks',{"onDone":evt.Make(self.OnDoneSourceBlockExecution),"amExporting": True}) else: self.OnDoneSourceBlockExecution() def sync_up_on_closed(): notice.Get().BuildToday() class OrgDownloadHighlighJs(sublime_plugin.TextCommand): def run(self,edit): log.info("Trying to download highlightjs") import OrgExtended.orgutil.webpull as wp wp.download_highlightjs() class OrgExportSubtreeAsOrgHtmlCommand(sublime_plugin.TextCommand): def OnDone(self): evt.EmitIf(self.onDone) def run(self,edit,onDone=None): self.onDone = onDone n = db.Get().AtInView(self.view) if(n == None): log.error(" Failed to find node! Subtree cannot be exported!") return index = 0 for i in range(0,len(n.env._nodes)): if(n == n.env._nodes[i]): index = i if(index == 0): log.error(" Failed to find node in file! Something is wrong. Cannot export subtree!") return self.view.run_command('org_export_file_org_html', {"onDone": evt.Make(self.OnDone), "index": index, "suffix":"_subtree"})
33.180556
188
0.612576
14,358
0.667783
0
0
0
0
0
0
6,740
0.313474
b887416d23a942756c48311820dd05ec2e0e80d6
3,519
py
Python
qso_toolbox/LBT_MODS_script.py
jtschindler/qso_toolbox
d9864e0f87e0da3952b75949a7b17ae84ba7b839
[ "MIT" ]
null
null
null
qso_toolbox/LBT_MODS_script.py
jtschindler/qso_toolbox
d9864e0f87e0da3952b75949a7b17ae84ba7b839
[ "MIT" ]
null
null
null
qso_toolbox/LBT_MODS_script.py
jtschindler/qso_toolbox
d9864e0f87e0da3952b75949a7b17ae84ba7b839
[ "MIT" ]
null
null
null
import os import pandas as pd from qso_toolbox import utils as ut from qso_toolbox import catalog_tools as ct targets = pd.read_csv('/Users/schindler/Observations/LBT/MODS/190607-190615/lukas_efficiency_candidates.csv') offsets = pd.read_csv('') # query = 'rMeanPSFMag - rMeanApMag < 0.05 and 10 < zMeanPSFMag < 18' # offsets = ct.get_offset_stars(targets, 'name', 'ps_ra', 'ps_dec', radius=300, # quality_query=query) # # offsets.to_csv('lukas_offsets.csv', index=False) os.system('modsProject -p LBTB PS1-QSO-LBTMODS') os.chdir('./PS1-QSO-LBTMODS') # Create observation and acquisition scripts coord_list = ut.coord_to_hmsdms(targets['ps_ra'], targets['ps_dec']) for idx in targets.index: target_name = targets.loc[idx,'name'] target_mag = targets.loc[idx, 'zmag_AB'] target_priority = targets.loc[idx, 'priority'] # pos_angle = if target_mag <= 20: exp_time = 900 else: exp_time = 1200 make_obs_string = "mkMODSObs -o {} -m red grating -s LS5x60x1.2 -l 1.2 " \ "-rfilter GG495 -e {} -n 1 {}_pr{}".format(target_name, exp_time, target_name, target_priority) print(make_obs_string) os.system(make_obs_string) target_ra_hms = coord_list[idx][0] target_dec_dms = coord_list[idx][1] make_acq_string = "mkMODSAcq -o {} -c '{} {}' -g '{} {}' -p {} -m " \ "longslit -a Red -f z_sdss -s LS5x60x1.2 -l 1.2 {}_pr{}".format(target_name, target_ra_hms, target_dec_dms, target_ra_hms, target_dec_dms, pos_angle, target_name, target_priority) print(make_acq_string) os.system(make_acq_string) # Create the blind offset acquistion scripts for idx in targets.index: target_name = targets.loc[idx,'name'] target_priority = targets.loc[idx, 'priority'] acq_filename = '{}_pr{}.acq'.format(target_name, target_priority) blind_acq_filename = '{}_pr{}_blind.acq'.format(target_name, target_priority) target_offsets = offsets.query('target_name=="{}"'.format(target_name)) if target_offsets.shape[0] > 0 : # Take first offset dra = target_offsets.loc[target_offsets.index[0], 'dra_offset'] ddec = target_offsets.loc[target_offsets.index[0], 'ddec_offset'] file = open('./{}'.format(acq_filename), 'r') file_lines = file.readlines()[:-2] file.close() new_acq_file = open('./{}'.format(blind_acq_filename), 'w') for line in file_lines: new_acq_file.write(line) new_acq_file.write(" PAUSE\n") new_acq_file.write(" syncoffset\n") new_acq_file.write(" PAUSE\n") new_acq_file.write(" OFFSET {} {} rel\n".format(dra, ddec)) new_acq_file.write(" UPDATEPOINTING\n") new_acq_file.write(" SlitGO\n") new_acq_file.write(" PAUSE\n") new_acq_file.write("\n") new_acq_file.write("end\n") new_acq_file.close()
37.43617
109
0.545041
0
0
0
0
0
0
0
0
974
0.276783
b8876be3ac0b9f4743f3b55d348997ace9a6d95d
1,451
py
Python
EASTAR/main/migrations/0008_auto_20191005_0012.py
DightMerc/EASTAR
04a3578932f8b4b842e0898513ef279c2f750f48
[ "Apache-2.0" ]
1
2020-09-21T16:46:19.000Z
2020-09-21T16:46:19.000Z
EASTAR/main/migrations/0008_auto_20191005_0012.py
DightMerc/EASTAR
04a3578932f8b4b842e0898513ef279c2f750f48
[ "Apache-2.0" ]
null
null
null
EASTAR/main/migrations/0008_auto_20191005_0012.py
DightMerc/EASTAR
04a3578932f8b4b842e0898513ef279c2f750f48
[ "Apache-2.0" ]
null
null
null
# Generated by Django 2.2.6 on 2019-10-04 19:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('main', '0007_auto_20191005_0011'), ] operations = [ migrations.AddField( model_name='technologies', name='textAddEN', field=models.TextField(default=None, verbose_name='Дополнительный текст EN'), preserve_default=False, ), migrations.AddField( model_name='technologies', name='textAddRU', field=models.TextField(default=None, verbose_name='Дополнительный текст RU'), preserve_default=False, ), migrations.AddField( model_name='technologies', name='textAddUZ', field=models.TextField(default=None, verbose_name='Дополнительный текст UZ'), preserve_default=False, ), migrations.AlterField( model_name='technologies', name='textEN', field=models.TextField(verbose_name='Описание EN'), ), migrations.AlterField( model_name='technologies', name='textRU', field=models.TextField(verbose_name='Описание RU'), ), migrations.AlterField( model_name='technologies', name='textUZ', field=models.TextField(verbose_name='Описание UZ'), ), ]
30.87234
89
0.583046
1,439
0.939295
0
0
0
0
0
0
414
0.270235
b887c62ca86e34d3408f8bf9208020ecb0064fd5
152
py
Python
archived-stock-trading-bot-v1/utils/alerts.py
Allcallofduty10/stock-trading-bot
54e608b3c0b95b87e7753b065307fc23a045e230
[ "MIT" ]
101
2020-05-20T02:17:45.000Z
2022-03-31T12:22:09.000Z
archived-stock-trading-bot-v1/utils/alerts.py
Allcallofduty10/stock-trading-bot
54e608b3c0b95b87e7753b065307fc23a045e230
[ "MIT" ]
10
2020-09-02T14:55:12.000Z
2022-02-21T08:50:48.000Z
archived-stock-trading-bot-v1/utils/alerts.py
Allcallofduty10/stock-trading-bot
54e608b3c0b95b87e7753b065307fc23a045e230
[ "MIT" ]
33
2021-02-13T15:38:51.000Z
2022-03-21T10:39:15.000Z
import os from sys import platform def say_beep(n: int): for i in range(0, n): if platform == "darwin": os.system("say beep")
16.888889
33
0.578947
0
0
0
0
0
0
0
0
18
0.118421
b88943d6ad79d038afe5d44eee2909d9f74948cd
1,685
py
Python
tests/test_company_apis.py
elaoshi/my_planet_flask_api_backend_with_mongo
7795034a14783a15772fae649c4f2c918b4b36f0
[ "Apache-2.0" ]
null
null
null
tests/test_company_apis.py
elaoshi/my_planet_flask_api_backend_with_mongo
7795034a14783a15772fae649c4f2c918b4b36f0
[ "Apache-2.0" ]
3
2020-04-02T23:48:46.000Z
2021-06-10T22:43:22.000Z
tests/test_company_apis.py
elaoshi/my_planet_flask_api_backend_with_mongo
7795034a14783a15772fae649c4f2c918b4b36f0
[ "Apache-2.0" ]
null
null
null
from starlette.testclient import TestClient import pytest,os # from server.app import app import json import requests from faker import Faker fake = Faker() # The root url of the flask app url = 'http://127.0.0.1:5000/employee' @pytest.mark.skip(reason="long time running") def test_company_api_by_name_not_exists(): for i in range(1,40): fake = Faker() campany_name = fake.name() surl = url+"/company_name/" + campany_name r = requests.get(surl) assert r.status_code == 400 def test_company_api_by_name_lowercase(): campany_name = "ZENTRY" surl = url+"/company_name/" + campany_name r = requests.get(surl) assert r.status_code == 200 assert len(r.json()['data']) > 0 def test_company_api_by_name_normal(): campany_name = "zentry" surl = url+"/company_name/" + campany_name r = requests.get(surl) assert r.status_code == 200 assert len(r.json()['data']) > 0 def test_company_by_id_successful(): campany_id = "18" surl = url+"/company_id/" + campany_id r = requests.get(surl) assert r.status_code == 200 assert len(r.json()['data']) > 0 def test_company_api_by_name_not_exists2(): campany_name = "-1" surl = url+"/company_name/" + campany_name r = requests.get(surl) assert r.status_code == 400 def test_company_by_id_not_exists1(): # for i in range(1,10): fake = Faker() campany_id = "%s"%(fake.random_int(2999,9999)) # campany_id = "18" surl = url+"/company_id/" + campany_id r = requests.get(surl) assert r.status_code == 204 # assert len(r.json()['data']) > 0
23.402778
54
0.636202
0
0
0
0
291
0.1727
0
0
324
0.192285
b889e8215d671ac9152cd6ccc561184f07b5f430
9,491
py
Python
doc2json/grobid2json/grobid/grobid_client.py
josephcc/s2orc-doc2json
8a6a21b7a8a3c6ad11cd42bdd0d46ee32a5a990d
[ "Apache-2.0" ]
null
null
null
doc2json/grobid2json/grobid/grobid_client.py
josephcc/s2orc-doc2json
8a6a21b7a8a3c6ad11cd42bdd0d46ee32a5a990d
[ "Apache-2.0" ]
null
null
null
doc2json/grobid2json/grobid/grobid_client.py
josephcc/s2orc-doc2json
8a6a21b7a8a3c6ad11cd42bdd0d46ee32a5a990d
[ "Apache-2.0" ]
null
null
null
import os import io import json import argparse import time import glob from doc2json.grobid2json.grobid.client import ApiClient import ntpath from typing import List ''' This version uses the standard ProcessPoolExecutor for parallelizing the concurrent calls to the GROBID services. Given the limits of ThreadPoolExecutor (input stored in memory, blocking Executor.map until the whole input is acquired), it works with batches of PDF of a size indicated in the config.json file (default is 1000 entries). We are moving from first batch to the second one only when the first is entirely processed - which means it is slightly sub-optimal, but should scale better. However acquiring a list of million of files in directories would require something scalable too, which is not implemented for the moment. ''' SERVER = 'localhost' if 'GROBID_URL' in os.environ: SERVER = os.environ['GROBID_URL'] DEFAULT_GROBID_CONFIG = { "grobid_server": SERVER, "grobid_port": "8070", "batch_size": 1000, "sleep_time": 5, "generateIDs": False, "consolidate_header": False, "consolidate_citations": False, "include_raw_citations": True, "segment_sentences": True, "include_coordinates": ['s', 'bib', 'biblStruct', 'ref'], "include_raw_affiliations": False, "max_workers": 2, } class GrobidClient(ApiClient): def __init__(self, config=None): self.config = config or DEFAULT_GROBID_CONFIG self.generate_ids = self.config["generateIDs"] self.consolidate_header = self.config["consolidate_header"] self.consolidate_citations = self.config["consolidate_citations"] self.include_raw_citations = self.config["include_raw_citations"] self.include_raw_affiliations = self.config["include_raw_affiliations"] self.include_coordinates = self.config["include_coordinates"] self.segment_sentences = self.config["segment_sentences"] self.max_workers = self.config["max_workers"] self.grobid_server = self.config["grobid_server"] self.grobid_port = self.config["grobid_port"] self.sleep_time = self.config["sleep_time"] def process(self, input: str, output: str, service: str): batch_size_pdf = self.config['batch_size'] pdf_files = [] for pdf_file in glob.glob(input + "/*.pdf"): pdf_files.append(pdf_file) if len(pdf_files) == batch_size_pdf: self.process_batch(pdf_files, output, service) pdf_files = [] # last batch if len(pdf_files) > 0: self.process_batch(pdf_files, output, service) def process_batch(self, pdf_files: List[str], output: str, service: str) -> None: print(len(pdf_files), "PDF files to process") for pdf_file in pdf_files: self.process_pdf(pdf_file, output, service) def process_pdf_stream(self, pdf_file: str, pdf_strm: bytes, output: str, service: str) -> str: # process the stream files = { 'input': ( pdf_file, pdf_strm, 'application/pdf', {'Expires': '0'} ) } the_url = 'http://' + self.grobid_server the_url += ":" + self.grobid_port the_url += "/api/" + service # set the GROBID parameters the_data = {} if self.generate_ids: the_data['generateIDs'] = '1' else: the_data['generateIDs'] = '0' if self.consolidate_header: the_data['consolidateHeader'] = '1' else: the_data['consolidateHeader'] = '0' if self.consolidate_citations: the_data['consolidateCitations'] = '1' else: the_data['consolidateCitations'] = '0' if self.include_raw_affiliations: the_data['includeRawAffiliations'] = '1' else: the_data['includeRawAffiliations'] = '0' if self.include_raw_citations: the_data['includeRawCitations'] = '1' else: the_data['includeRawCitations'] = '0' if self.segment_sentences: the_data['segmentSentences'] = '1' else: the_data['segmentSentences'] = '0' if self.segment_sentences: the_data['segmentSentences'] = '1' else: the_data['segmentSentences'] = '0' if self.include_coordinates: the_data['teiCoordinates'] = self.include_coordinates res, status = self.post( url=the_url, files=files, data=the_data, headers={'Accept': 'text/plain'} ) if status == 503: time.sleep(self.sleep_time) return self.process_pdf_stream(pdf_file, pdf_strm, service) elif status != 200: with open(os.path.join(output, "failed.log"), "a+") as failed: failed.write(pdf_file.strip(".pdf") + "\n") print('Processing failed with error ' + str(status)) return "" else: return res.text def process_pdf(self, pdf_file: str, output: str, service: str) -> None: # check if TEI file is already produced # we use ntpath here to be sure it will work on Windows too pdf_file_name = ntpath.basename(pdf_file) filename = os.path.join(output, os.path.splitext(pdf_file_name)[0] + '.tei.xml') if os.path.isfile(filename): return print(pdf_file) pdf_strm = open(pdf_file, 'rb').read() tei_text = self.process_pdf_stream(pdf_file, pdf_strm, output, service) # writing TEI file if tei_text: with io.open(filename, 'w+', encoding='utf8') as tei_file: tei_file.write(tei_text) def process_citation(self, bib_string: str, log_file: str) -> str: # process citation raw string and return corresponding dict the_data = { 'citations': bib_string, 'consolidateCitations': '0' } the_url = 'http://' + self.grobid_server the_url += ":" + self.grobid_port the_url += "/api/processCitation" for _ in range(5): try: res, status = self.post( url=the_url, data=the_data, headers={'Accept': 'text/plain'} ) if status == 503: time.sleep(self.sleep_time) continue elif status != 200: with open(log_file, "a+") as failed: failed.write("-- BIBSTR --\n") failed.write(bib_string + "\n\n") break else: return res.text except Exception: continue def process_header_names(self, header_string: str, log_file: str) -> str: # process author names from header string the_data = { 'names': header_string } the_url = 'http://' + self.grobid_server the_url += ":" + self.grobid_port the_url += "/api/processHeaderNames" res, status = self.post( url=the_url, data=the_data, headers={'Accept': 'text/plain'} ) if status == 503: time.sleep(self.sleep_time) return self.process_header_names(header_string, log_file) elif status != 200: with open(log_file, "a+") as failed: failed.write("-- AUTHOR --\n") failed.write(header_string + "\n\n") else: return res.text def process_affiliations(self, aff_string: str, log_file: str) -> str: # process affiliation from input string the_data = { 'affiliations': aff_string } the_url = 'http://' + self.grobid_server the_url += ":" + self.grobid_port the_url += "/api/processAffiliations" res, status = self.post( url=the_url, data=the_data, headers={'Accept': 'text/plain'} ) if status == 503: time.sleep(self.sleep_time) return self.process_affiliations(aff_string, log_file) elif status != 200: with open(log_file, "a+") as failed: failed.write("-- AFFILIATION --\n") failed.write(aff_string + "\n\n") else: return res.text if __name__ == "__main__": parser = argparse.ArgumentParser(description="Client for GROBID services") parser.add_argument("service", help="one of [processFulltextDocument, processHeaderDocument, processReferences]") parser.add_argument("--input", default=None, help="path to the directory containing PDF to process") parser.add_argument("--output", default=None, help="path to the directory where to put the results") parser.add_argument("--config", default=None, help="path to the config file, default is ./config.json") args = parser.parse_args() input_path = args.input config = json.load(open(args.config)) if args.config else DEFAULT_GROBID_CONFIG output_path = args.output service = args.service client = GrobidClient(config=config) start_time = time.time() client.process(input_path, output_path, service) runtime = round(time.time() - start_time, 3) print("runtime: %s seconds " % (runtime))
35.02214
117
0.596249
7,207
0.759351
0
0
0
0
0
0
2,587
0.272574