hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
3d2ce2c966a31e97ee5b7a66b2aeabb6f1778574
35
py
Python
arcpyext/mapping/_cim/__init__.py
PeterReyne/arcpyext
9307115da8f0b6a30e2ca741fb6a7d09e54fd0f3
[ "BSD-3-Clause" ]
11
2015-05-01T04:08:30.000Z
2019-09-21T05:00:58.000Z
arcpyext/mapping/_cim/__init__.py
PeterReyne/arcpyext
9307115da8f0b6a30e2ca741fb6a7d09e54fd0f3
[ "BSD-3-Clause" ]
14
2015-06-23T02:46:44.000Z
2019-10-11T00:46:11.000Z
arcpyext/mapping/_cim/__init__.py
PeterReyne/arcpyext
9307115da8f0b6a30e2ca741fb6a7d09e54fd0f3
[ "BSD-3-Clause" ]
9
2015-02-27T05:25:42.000Z
2020-01-19T05:43:14.000Z
from .pro_project import ProProject
35
35
0.885714
0
0
0
0
0
0
0
0
0
0
3d2d9019566fcc96f253a9e2a983330775a08ac2
3,474
py
Python
o3/operators/filter_logs_to_percentage_operator.py
carlba/o3
999ff1b06ef9c7a5bf220a3e840c4a42dc81956a
[ "Unlicense" ]
null
null
null
o3/operators/filter_logs_to_percentage_operator.py
carlba/o3
999ff1b06ef9c7a5bf220a3e840c4a42dc81956a
[ "Unlicense" ]
1
2019-01-27T11:04:56.000Z
2019-01-27T11:04:56.000Z
o3/operators/filter_logs_to_percentage_operator.py
carlba/o3
999ff1b06ef9c7a5bf220a3e840c4a42dc81956a
[ "Unlicense" ]
null
null
null
# -*- coding: utf-8 -*- """Custom operator for filtering out a percentage of input log files.""" import os import glob from airflow.exceptions import AirflowException, AirflowSkipException from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults from o3.utils import filter_to_percentage class FilterLogsToPercentageOperator(BaseOperator): """Filters input files to a percentage, from src dir glob match to dest dir. :param float percentage: Percentage of input to keep, e.g. `3.0` for 3 %. :param str glob_pattern: Glob pattern, e.g. '*.log'. :param str src_dir: Directory path to find input in. :param str dest_dir: Directory to write filtered output to. :param str src_fs_type: Source file system, only 'local' supported. :param str dest_fs_type: Destination file system, only 'local' supported. :param int max_files: Maximum number of files to filter. :param bool remove_src: Remove input file after filtering. """ ui_color = '#ffefeb' @apply_defaults def __init__(self, percentage: float, glob_pattern: str, src_dir: str, dest_dir: str, src_fs_type: str = 'local', dest_fs_type: str = 'local', max_files: int = None, remove_src: bool = True, *args, **kwargs): super(FilterLogsToPercentageOperator, self).__init__(*args, **kwargs) if 0.0 <= percentage <= 100.0: self.percentage = percentage else: raise AirflowException(f'Out-of-range percentage {percentage!r}.') self.glob_pattern = glob_pattern self.src_dir = src_dir.rstrip('/') self.dest_dir = dest_dir.rstrip('/') if src_fs_type != 'local': raise AirflowException(f'Unsupported src_fs_type {src_fs_type!r}.') else: self.src_fs_type = src_fs_type if dest_fs_type != 'local': raise AirflowException( f'Unsupported dest_fs_type {dest_fs_type!r}.') else: self.dest_fs_type = dest_fs_type self.max_files = max_files self.remove_src = remove_src def execute(self, **_) -> list: src_dir_glob = os.path.join(self.src_dir, self.glob_pattern) dest_paths = [] def _get_dest_path(src: str) -> str: if src.lower().endswith('.bz2') or src.lower().endswith('.gz'): basename = os.path.splitext(os.path.basename(src))[0] else: basename = os.path.basename(src) return os.path.join(self.dest_dir, f'{basename}__' f'{round(self.percentage, 1)}pct_filtered') if self.src_fs_type == 'local' and self.dest_fs_type == 'local': for src_path in glob.glob(src_dir_glob): dest_path = _get_dest_path(src_path) self.log.info(f'Filtering local {src_path} to {dest_path}...') filter_to_percentage(src_path, self.percentage, dest_path) dest_paths.append(dest_path) if self.remove_src: self.log.info(f'Removing {src_path}.') os.remove(src_path) if self.max_files and len(dest_paths) >= self.max_files: break if not dest_paths: self.log.info('No files found, skipping.') raise AirflowSkipException() return dest_paths
39.033708
80
0.61399
3,145
0.905296
0
0
1,119
0.322107
0
0
1,062
0.305699
3d2f723ddb0882b15b4375b0ad2b7ffa05e4cedb
17,541
py
Python
alibExp.py
wicknec/WalArt
b23488b4e421699155976d5e726d1c7a906c3243
[ "MIT" ]
2
2016-02-02T11:33:27.000Z
2020-07-28T13:28:25.000Z
alibExp.py
wicknec/WalArt
b23488b4e421699155976d5e726d1c7a906c3243
[ "MIT" ]
null
null
null
alibExp.py
wicknec/WalArt
b23488b4e421699155976d5e726d1c7a906c3243
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 """ alibExp ======================= Qt4 interface for alib explorer To browse alib in a more user-friendly way than simple text Item.data(1,-1) stores its data, i.e. a str or another alib """ # NOTE: the actual command documentation is collected from docstrings of the # commands and is appended to __doc__ after the class has been defined. """ Revisions ================= 151125 completed reading functionality 151209 wordless gui, remove node 151210 edit text, add icon to tree, btAdd function 151214 added btRoot, explore root 151219 added *GetCurrent*, modified *RemoveDataSync* to suited with alib.Pop 151229 added *GetSelectedText* 160112 change data display to waText.Brief 160113 change non-editing to read only to allow scroll 160309 fixed save failure by explore root after lock. 171204 updated alibExp.GetSelectedText to return the path of selected node fixed bug in reeWidget.ItemToPath 180102 migrate to be compatible with PyQt5 """ try: from PyQt4 import QtCore from PyQt4.QtCore import QTimer from PyQt4.QtGui import QApplication, QWidget except ImportError or ModuleNotFoundError: print('PyQt4 module not found, try using PyQt5') from PyQt5 import QtCore from PyQt5.QtWidgets import QApplication, QWidget from PyQt5.QtCore import QTimer from WalArt.gui.QtGui4or5 import QtGuiFinder QtGui=QtGuiFinder() # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'alibExp.ui' # # Created by: PyQt4 UI code generator 4.11.4 # # WARNING! All changes made in this file will be lost! try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) from WalArt import waFile,waText iconPath=waFile.GetFolderName(waFile.Find('add.png')) class alibTree(QtGui.QTreeWidget): dropped = QtCore.pyqtSignal(list) def __init__(self,parent=None): super(alibTree,self).__init__(parent) self.setAcceptDrops(True) self.data=None self.imgList=QtGui.QIcon(waFile.Join(iconPath,'list.png')) self.imgData=QtGui.QIcon(waFile.Join(iconPath,'data.png')) self.imgBlank=QtGui.QIcon(waFile.Join(iconPath,'blank.png')) def dragEnterEvent(self, event): if event.mimeData().hasUrls: event.accept() else: event.ignore() def dragMoveEvent(self, event): if event.mimeData().hasUrls: event.setDropAction(QtCore.Qt.CopyAction) event.accept() else: event.ignore() def dropEvent(self, event): if event.mimeData().hasUrls: event.setDropAction(QtCore.Qt.CopyAction) event.accept() filePaths = [ str(url.toLocalFile()) for url in event.mimeData().urls() ] self.dropped.emit(filePaths) else: event.ignore() def Load(self,a): '''load the alib into the treeWidget ''' self.clear() self.setHeaderLabels(['Key','Value']) self.data=a for t in a: if isinstance(a[t],alib): ti=QtGui.QTreeWidgetItem([str(t)]) self.addTopLevelItem(ti) self.LoadToNode(ti,a[t]) ti.setIcon(0,self.imgList) ti.setExpanded(True) else: ti=QtGui.QTreeWidgetItem([str(t)]) if a[t]!='': ti.setIcon(0,self.imgData) else: ti.setIcon(0,self.imgBlank) self.addTopLevelItem(ti) ti.setData(1,0,waText.Brief(a[t],20)) ti.setData(1,-1,a[t]) #help(ti) def LoadToNode(self,node,a): '''load the alib to node recursively ''' #print(a) for t in a: if isinstance(a[t],alib): ti=QtGui.QTreeWidgetItem([str(t)]) node.addChild(ti) self.LoadToNode(ti,a[t]) ti.setIcon(0,self.imgList) ti.setExpanded(True) else: ti=QtGui.QTreeWidgetItem([str(t)]) if a[t]!='': ti.setIcon(0,self.imgData) else: ti.setIcon(0,self.imgBlank) i=node.addChild(ti) ti.setData(1,0,waText.Brief(a[t],20)) ti.setData(1,-1,a[t]) def ItemFromPath(self,path): '''Get item from a path string of keys like: a|b|c path can also be a list of strings ''' if isinstance(path,str): path=path.split('|') item=None for i in range(len(self.data.keys())): #print(self.topLevelItem(i).text(0)) if self.topLevelItem(i).text(0)==path[0]: item=self.topLevelItem(i) break if item!=None: k=1 while k<len(path): found=False for i in range(item.childCount()): #print(item.child(i).text(0)) if item.child(i).text(0)==path[k]: item=item.child(i) found=True break if found==False: return None else: k+=1 if k<len(path): return None return item def ItemToPath(self,item): fl=[item.text(0)] p=item.parent() while p!=None: fl.append(p.text(0)) p=p.parent() fl.reverse() return fl def RemoveNodeSync(self,item): '''Remove the node from both the view and the alib ''' p=item.parent() if p==None: self.data.Pop(waText.atoi(item.text(0))) else: p.data(1,-1).Pop(waText.atoi(item.text(0))) self.Load(self.data) from WalArt import alib def New(d): '''Make a new alib explorer in the dialog, and return the object ''' a=alibExp() a.setupUi(d) return a class alibExp(object): def setupUi(self, Dialog): Dialog.setObjectName(_fromUtf8("Form")) Dialog.resize(474, 414) Dialog.setWindowIcon(QtGui.QIcon(waFile.Join(iconPath,'settings.png'))) self.verticalLayout = QtGui.QVBoxLayout(Dialog) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.groupBox = QtGui.QGroupBox(Dialog) self.groupBox.setMinimumSize(QtCore.QSize(0, 60)) self.groupBox.setMaximumSize(QtCore.QSize(16777215, 60)) self.groupBox.setObjectName(_fromUtf8("groupBox")) self.verticalLayout.addWidget(self.groupBox) self.horizontalLayout = QtGui.QHBoxLayout(self.groupBox) self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.btRoot = QtGui.QToolButton(self.groupBox) self.btRoot.setMinimumSize(QtCore.QSize(30, 30)) self.btRoot.setMaximumSize(QtCore.QSize(30, 30)) self.btRoot.setObjectName(_fromUtf8("btRoot")) self.btRoot.setIcon(QtGui.QIcon(waFile.Join(iconPath,'circle.png'))) self.btRoot.setToolTip('Explore the root node') self.horizontalLayout.addWidget(self.btRoot) self.lineEdit = QtGui.QLineEdit(self.groupBox) self.lineEdit.setMinimumSize(QtCore.QSize(0, 30)) self.lineEdit.setMaximumSize(QtCore.QSize(16777215, 30)) self.lineEdit.setObjectName(_fromUtf8("lineEdit")) self.horizontalLayout.addWidget(self.lineEdit) self.btAdd = QtGui.QToolButton(self.groupBox) self.btAdd.setMinimumSize(QtCore.QSize(30, 30)) self.btAdd.setMaximumSize(QtCore.QSize(30, 30)) self.btAdd.setObjectName(_fromUtf8("btAdd")) self.btAdd.setIcon(QtGui.QIcon(waFile.Join(iconPath,'add.png'))) self.btAdd.setToolTip('Add this path to the tree') self.horizontalLayout.addWidget(self.btAdd) self.btMinus = QtGui.QPushButton(self.groupBox) self.btMinus.setMinimumSize(QtCore.QSize(30, 30)) self.btMinus.setMaximumSize(QtCore.QSize(30, 30)) self.btMinus.setObjectName(_fromUtf8("btMinus")) self.btMinus.setIcon(QtGui.QIcon(waFile.Join(iconPath,'minus.png'))) self.btMinus.setToolTip('Delete this node') self.horizontalLayout.addWidget(self.btMinus) import WalArt.gui.buttons self.btLock = WalArt.gui.buttons.btLock(self.groupBox) self.btLock.setMinimumSize(QtCore.QSize(30, 30)) self.btLock.setMaximumSize(QtCore.QSize(30, 30)) self.btLock.setObjectName(_fromUtf8("btLock")) self.btLock.setToolTip('Unlock to start editing node content') self.horizontalLayout.addWidget(self.btLock) self.splitter = QtGui.QSplitter(Dialog) self.splitter.setOrientation(QtCore.Qt.Horizontal) self.splitter.setObjectName(_fromUtf8("splitter")) self.verticalLayout.addWidget(self.splitter) self.treeWidget = alibTree(self.splitter) self.treeWidget.setObjectName(_fromUtf8("treeWidget")) self.treeWidget.headerItem().setText(0, _fromUtf8("1")) self.plainTextEdit = QtGui.QPlainTextEdit(self.splitter) self.plainTextEdit.setObjectName(_fromUtf8("plainTextEdit")) self.messenger = QtGui.QLabel(Dialog) self.messenger.setMinimumSize(QtCore.QSize(0, 30)) self.messenger.setMaximumSize(QtCore.QSize(16777215, 30)) self.messenger.setObjectName(_fromUtf8("messenger")) self.verticalLayout.addWidget(self.messenger) self.retranslateUi(Dialog) #QtCore.QObject.connect(self.treeWidget, QtCore.SIGNAL(_fromUtf8("clicked(QModelIndex)")), # self.itemSelected) self.treeWidget.clicked.connect(self.itemSelected) self.plainTextEdit.setAcceptDrops(True) self.treeWidget.setDragDropMode(QtGui.QAbstractItemView.InternalMove) self.treeWidget.setFrameShadow(QtGui.QFrame.Plain) self.treeWidget.setFrameShape(QtGui.QFrame.Box) #QtCore.QObject.connect(self.btLock, QtCore.SIGNAL(_fromUtf8("clicked()")),self.btLockClicked) self.btLock.clicked.connect(self.btLockClicked) #QtCore.QObject.connect(self.btMinus, QtCore.SIGNAL(_fromUtf8("clicked()")),self.btMinusClicked) self.btMinus.clicked.connect(self.btMinusClicked) #QtCore.QObject.connect(self.btAdd, QtCore.SIGNAL(_fromUtf8("clicked()")),self.btAddClicked) self.btAdd.clicked.connect(self.btAddClicked) #QtCore.QObject.connect(self.btRoot, QtCore.SIGNAL(_fromUtf8("clicked()")),self.btRootClicked) self.btRoot.clicked.connect(self.btRootClicked) self.treeWidget.dropEvent=self.itemDropped QtCore.QMetaObject.connectSlotsByName(Dialog) self.setEditing(False) def Message(self,text): self.messenger.setText(text) def retranslateUi(self, Dialog): Dialog.setWindowTitle(_translate("Dialog", "Dialog", None)) self.groupBox.setTitle(_translate("Dialog", "alibExplorer", None)) self.btAdd.setText(_translate("Dialog", "+", None)) self.btMinus.setText(_translate("Dialog", "", None)) self.btLock.setText(_translate("Dialog", "...", None)) self.messenger.setText(_translate("Dialog", "Messege", None)) def itemSelected(self, index): item=self.treeWidget.itemFromIndex(index) #help(item) #d=item.data(1,0) d=item.data(1,-1) #self.plainTextEdit.setEnabled(not self.btLock.getState()) if isinstance(d,alib): self.plainTextEdit.setPlainText(d.ToString('')) else: self.plainTextEdit.setPlainText(str(d)) self.setEditing(False) fl=[item.text(0)] p=item.parent() while p!=None: fl.append(p.text(0)) p=p.parent() fl.reverse() self.lineEdit.setText('|'.join(fl)) self.Message('') def setEditing(self,b): '''b==True for editing mode, else no editing mode ''' self.plainTextEdit.setReadOnly(not b) self.lineEdit.setReadOnly(b) self.btLock.setState(not b) if b == True: self.Message('Modify value and hit lock to save.') def dragEnterEvent(self,e): e.acceptPropsedAction() def btLockClicked(self): editing=not self.btLock.getState() si=self.treeWidget.selectedItems() if editing==True: if len(si)==0: #self.Message('Begin editing whole alib') self.treeWidget.data.FromString(self.plainTextEdit.toPlainText()) self.treeWidget.Load(self.treeWidget.data) self.Message('Change saved') self.setEditing(not editing) return else: si=si[0] #help(self.plainTextEdit) if str(si.data(1,-1))==self.plainTextEdit.toPlainText(): self.Message('Nothing changed') else: #record data v=alib.Parse(self.plainTextEdit.toPlainText()) k=si.text(0) if si.parent()==None: self.treeWidget.data[k]=v else: si.parent().data(1,-1)[k]=v self.treeWidget.Load(self.treeWidget.data) self.Message('Change saved') self.btRootClicked() else: if len(si)==0: self.Message('Begin editing whole alib') self.setEditing(not editing) def itemDropped(self,event): #print('called') if event.mimeData().hasUrls: event.setDropAction(QtCore.Qt.CopyAction) event.accept() filePaths = [ str(url.toLocalFile()) for url in event.mimeData().urls() ] #print(str(event)) self.messenger.setText(filePaths[0]) self.lineEdit.setText(filePaths[0]) #self.dropped.emit(filePaths) from WalArt import alib self.treeWidget.Load(alib().Load(filePaths[0])) else: event.ignore() def Load(self,a): self.treeWidget.Load(a) self.btRootClicked() def btMinusClicked(self): path=self.lineEdit.text() item=self.treeWidget.ItemFromPath(path) if item==None: self.Message('Warning: the node does not exist') else: self.treeWidget.RemoveNodeSync(item) self.Message('node{%s} deleted'%path) def btAddClicked(self): path=self.lineEdit.text() item=self.treeWidget.ItemFromPath(path) if item==None: self.treeWidget.data.setValue(path,'') self.treeWidget.Load(self.treeWidget.data) self.Message('Node{%s} added'%path) else: try: #insert a number and shift other number forward, #for convenience of auto numbering i=int(item.text(0)) if item.parent()==None: a=self.treeWidget.data else: a=item.parent().data(1,-1) boundary=i while str(boundary) in a: boundary+=1 while boundary!=i: a[str(boundary)]=a[str(boundary-1)] boundary-=1 a[str(i)]='' self.treeWidget.Load(self.treeWidget.data) self.Message('Node{%s} added with shifts'%path) except ValueError: self.Message('Node{%s} already exists, nothing added'%path) def btRootClicked(self): d=self.treeWidget.data si=self.treeWidget.selectedItems() #self.treeWidget.deselectAll() for i in si: i.setSelected(False) #self.plainTextEdit.setEnabled(not self.btLock.getState()) if isinstance(d,alib): self.plainTextEdit.setPlainText(d.ToString('')) else: self.plainTextEdit.setPlainText(str(d)) self.setEditing(False) self.lineEdit.setText('') self.Message('Root node explored') def GetCurrent(self): '''returns the object that is currently exploring it is the data of selected treenode, or the whole alib if nothing is selected ''' si=self.treeWidget.selectedItems() if len(si)>0: return si[0].data(1,-1) else: return self.treeWidget.data def GetSelectedText(self): '''Similar as GetCurrent, but returns the path of selected node''' si=self.treeWidget.selectedItems() if len(si)>0: return '|'.join(self.treeWidget.ItemToPath(si[0])) else: return '' import sys import time if __name__ == '__main__': app = QtGui.QApplication(sys.argv) Form = QtGui.QWidget() ui = alibExp() ui.setupUi(Form) Form.show() sys.exit(app.exec_()) time.sleep(5)
35.580122
104
0.595462
15,048
0.857876
0
0
0
0
0
0
3,466
0.197594
3d2f8979ac8231da6f04ccba44cc761dc5cb64c8
2,445
py
Python
test/test_batch.py
ASemakov/ob-pipelines
ea475cd2c34ae2eccbf59563fe7caea06266c450
[ "Apache-2.0" ]
11
2017-01-22T22:08:45.000Z
2020-03-10T20:17:14.000Z
test/test_batch.py
BeKitzur/ob-pipelines
8ee4ebd5803d72d0babce25b13399c9cdd0f686e
[ "Apache-2.0" ]
null
null
null
test/test_batch.py
BeKitzur/ob-pipelines
8ee4ebd5803d72d0babce25b13399c9cdd0f686e
[ "Apache-2.0" ]
6
2017-01-23T01:24:33.000Z
2018-07-18T13:30:06.000Z
""" Integration test for the Luigi wrapper of AWS Batch Requires: - boto3 package - Amazon AWS credentials discoverable by boto3 (e.g., by using ``aws configure`` from awscli_) - An enabled AWS Batch job queue configured to run on a compute environment. Written and maintained by Jake Feala (@jfeala) for Outlier Bio (@outlierbio) """ import unittest try: from ob_pipelines.batch import BatchTask, BatchJobException, client, _get_job_status except ImportError: raise unittest.SkipTest('boto3 is not installed. BatchTasks require boto3') TEST_JOB_DEF = { 'jobDefinitionName': 'hello-world', 'type': 'container', 'parameters': { 'message': 'hll wrld' }, 'containerProperties': { 'image': 'centos', 'command': ['/bin/echo', 'Ref::message'], 'vcpus': 2, 'memory': 4, } } class BatchTaskNoOutput(BatchTask): def complete(self): if self.batch_job_id: return _get_job_status(self.batch_job_id) == 'SUCCEEDED' return False class BatchTaskOverrideCommand(BatchTaskNoOutput): @property def command(self): return ['/bin/sleep', '10'] class BatchTaskOverrideFailingCommand(BatchTaskNoOutput): @property def command(self): return ['not', 'a', 'command'] class BatchTaskNonzeroExitCommand(BatchTaskNoOutput): @property def command(self): return ['exit', '1'] class TestBatchTask(unittest.TestCase): def setUp(self): # Register the test task definition response = client.register_job_definition(**TEST_JOB_DEF) self.arn = response['jobDefinitionArn'] def test_unregistered_task(self): t = BatchTaskNoOutput(job_def=TEST_JOB_DEF, job_name='test_unregistered') t.run() def test_registered_task(self): t = BatchTaskNoOutput(job_def_arn=self.arn, job_name='test_registered') t.run() def test_override_command(self): t = BatchTaskOverrideCommand(job_def_arn=self.arn, job_name='test_override') t.run() def test_failing_command(self): t = BatchTaskOverrideFailingCommand(job_def_arn=self.arn, job_name='test_failure') with self.assertRaises(BatchJobException): t.run() def test_nonzero_exit(self): t = BatchTaskNonzeroExitCommand(job_def_arn=self.arn, job_name='test_nonzero_exit') with self.assertRaises(BatchJobException): t.run()
25.46875
91
0.67771
1,582
0.647035
0
0
200
0.0818
0
0
743
0.303885
3d30c11f1ede17efd698bce52b1da5e9569d559a
456
py
Python
reinforcement_learning/rl_deepracer_robomaker_coach_gazebo/src/markov/tests/conftest.py
jpmarques19/tensorflwo-test
0ff8b06e0415075c7269820d080284a42595bb2e
[ "Apache-2.0" ]
5
2019-01-19T23:53:35.000Z
2022-01-29T14:04:31.000Z
reinforcement_learning/rl_deepracer_robomaker_coach_gazebo/src/markov/tests/conftest.py
jpmarques19/tensorflwo-test
0ff8b06e0415075c7269820d080284a42595bb2e
[ "Apache-2.0" ]
4
2020-09-26T01:30:01.000Z
2022-02-10T02:20:35.000Z
reinforcement_learning/rl_deepracer_robomaker_coach_gazebo/src/markov/tests/conftest.py
jpmarques19/tensorflwo-test
0ff8b06e0415075c7269820d080284a42595bb2e
[ "Apache-2.0" ]
7
2020-03-04T22:23:51.000Z
2021-07-13T14:05:46.000Z
import pytest from markov.tests import test_constant @pytest.fixture def aws_region(): return test_constant.AWS_REGION @pytest.fixture def model_metadata_s3_key(): return test_constant.MODEL_METADATA_S3_KEY @pytest.fixture def reward_function_s3_source(): return test_constant.REWARD_FUNCTION_S3_SOURCE @pytest.fixture def s3_bucket(): return test_constant.S3_BUCKET @pytest.fixture def s3_prefix(): return test_constant.S3_PREFIX
19.826087
50
0.809211
0
0
0
0
393
0.861842
0
0
0
0
3d319597951dce7996b3f7f4aeae76d89320c801
2,716
py
Python
ROS/my_initials.py
Vishwajeetiitb/Autumn-of-Automation
bd8c78662734f867b6aa6fd9179a12913387a01c
[ "MIT" ]
null
null
null
ROS/my_initials.py
Vishwajeetiitb/Autumn-of-Automation
bd8c78662734f867b6aa6fd9179a12913387a01c
[ "MIT" ]
null
null
null
ROS/my_initials.py
Vishwajeetiitb/Autumn-of-Automation
bd8c78662734f867b6aa6fd9179a12913387a01c
[ "MIT" ]
null
null
null
#!/usr/bin/env python import rospy from geometry_msgs.msg import Twist import math import os from turtlesim.msg import Pose import time os.system("rosrun") def callback(msg): global current_angle current_angle = msg.theta # print(msg) def move(): # Starts a new node rospy.init_node('robot_cleaner', anonymous=True) velocity_publisher = rospy.Publisher('/turtle1/cmd_vel', Twist, queue_size=10) sub = rospy.Subscriber("turtle1/pose",Pose,callback) time.sleep(1) vel_msg = Twist() speed = 2 distance = 4 angle = math.pi/3 angular_ve1 = 1 vel_msg.angular.z = 0 current_distance = 0 t0 = rospy.Time.now().to_sec() # t0 = rospy.Time.now().to_sec() vel_msg.linear.x = 0 vel_msg.angular.z = angular_ve1 while current_angle < angle: velocity_publisher.publish(vel_msg) #Takes actual time to velocity calculus t1=rospy.Time.now().to_sec() print(current_angle) vel_msg.linear.x = 0 vel_msg.angular.z = 0 velocity_publisher.publish(vel_msg) t0 = rospy.Time.now().to_sec() vel_msg.linear.x = speed vel_msg.angular.z =0 while current_distance < distance: velocity_publisher.publish(vel_msg) t1=rospy.Time.now().to_sec() current_distance = speed*(t1-t0) vel_msg.linear.x = 0 vel_msg.angular.z = 0 velocity_publisher.publish(vel_msg) t0 = rospy.Time.now().to_sec() vel_msg.linear.x = -speed vel_msg.angular.z =0 current_distance = 0 while current_distance < distance: velocity_publisher.publish(vel_msg) t1=rospy.Time.now().to_sec() current_distance = speed*(t1-t0) vel_msg.linear.x = 0 vel_msg.angular.z = 0 velocity_publisher.publish(vel_msg) t0 = rospy.Time.now().to_sec() vel_msg.linear.x = 0 vel_msg.angular.z = angular_ve1 while current_angle < 2*angle: velocity_publisher.publish(vel_msg) #Takes actual time to velocity calculus t1=rospy.Time.now().to_sec() print(current_angle) vel_msg.linear.x = 0 vel_msg.angular.z = 0 velocity_publisher.publish(vel_msg) t0 = rospy.Time.now().to_sec() vel_msg.linear.x = speed vel_msg.angular.z =0 current_distance = 0 while current_distance < distance: velocity_publisher.publish(vel_msg) t1=rospy.Time.now().to_sec() current_distance = speed*(t1-t0) vel_msg.linear.x = 0 vel_msg.angular.z = 0 velocity_publisher.publish(vel_msg) if __name__ == '__main__': try: #Testing our function move() except rospy.ROSInterruptException: pass
28
82
0.645066
0
0
0
0
0
0
0
0
248
0.091311
3d321cb4dea8943fb087339fe2547eeaba4b5805
2,144
py
Python
Assignment-04/Question-03/mpi_ping_pong.py
gnu-user/mcsc-6030-assignments
42825cdbc4532d9da6ebdba549b65fb1e36456a0
[ "MIT" ]
null
null
null
Assignment-04/Question-03/mpi_ping_pong.py
gnu-user/mcsc-6030-assignments
42825cdbc4532d9da6ebdba549b65fb1e36456a0
[ "MIT" ]
null
null
null
Assignment-04/Question-03/mpi_ping_pong.py
gnu-user/mcsc-6030-assignments
42825cdbc4532d9da6ebdba549b65fb1e36456a0
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 ############################################################################### # # Assignment 4, Question 3 solution for MPI ping-pong timings to calcualate # alpha and beta, implemented in Python using MPI. # # Copyright (C) 2015, Jonathan Gillett (100437638) # All rights reserved. # ############################################################################### import numpy as np import sys from mpi4py import MPI from time import sleep from random import random # Define process 0 as PING, process 1 as PONG PING = 0 PONG = 1 # Number of trials for getting the average time TRIALS = 100 if __name__ == '__main__': if len(sys.argv) < 2: print "ERROR: You must provide the number of bytes to send!." sys.exit() N = int(sys.argv[1]) # The number of bytes to generate comm = MPI.COMM_WORLD proc_id = comm.Get_rank() n_proc = comm.Get_size() status = MPI.Status() # Error checking only 2 processes can be used if n_proc > 2: if proc_id == PING: print "ERROR: Only two proceses (ping and pong)." MPI.Finalize() sys.exit() if N < 1: if proc_id == PING: print "ERROR: You must specify the data size in bytes." MPI.Finalize() sys.exit() # The data to send back and forth, in bytes A = np.empty(N, dtype=np.int8) comm.Barrier() # Send the data back and forth 100 times to get the average time timings = [] for i in range(0, 100): if proc_id == PING: local_time = -MPI.Wtime() comm.Send(A, PONG, tag=PING) comm.Recv(A, source=MPI.ANY_SOURCE, tag=PONG, status=status) timings.append(local_time + MPI.Wtime()) # Simulate random sleeps to account for different scheduling sleep(random() / 100) else: comm.Recv(A, source=MPI.ANY_SOURCE, tag=PING, status=status) comm.Send(A, PING, tag=PONG) if proc_id == PING: print "N bytes sent: %d, trials: %d, average time: %0.8f seconds" \ % (N, TRIALS, sum(timings) / float(len(timings)) / 2.0)
32
79
0.567631
0
0
0
0
0
0
0
0
933
0.435168
3d33211ca1584c7787f1e93ba17778c1a7d518eb
2,286
py
Python
app/monitoring/logging_config.py
robmarkcole/python-fastapi-aws-lambda-container
56a676f4c0bccce10fd2533daba3ace0201a1bb3
[ "Apache-2.0" ]
15
2020-12-29T23:14:33.000Z
2022-03-24T03:56:34.000Z
app/monitoring/logging_config.py
robmarkcole/python-fastapi-aws-lambda-container
56a676f4c0bccce10fd2533daba3ace0201a1bb3
[ "Apache-2.0" ]
3
2021-09-11T00:41:55.000Z
2022-03-24T05:51:17.000Z
app/monitoring/logging_config.py
robmarkcole/python-fastapi-aws-lambda-container
56a676f4c0bccce10fd2533daba3ace0201a1bb3
[ "Apache-2.0" ]
5
2021-09-10T23:53:41.000Z
2022-03-25T11:31:24.000Z
import os import uuid import logging import json from json import JSONEncoder from pythonjsonlogger import jsonlogger from datetime import datetime from logging.config import dictConfig # Custom JSON encoder which enforce standard ISO 8601 format, UUID format class ModelJsonEncoder(JSONEncoder): def default(self, o): if isinstance(o, UUID): return str(o) if isinstance(o, datetime): return o.isoformat() return json.JSONEncoder.default(self, o) class LogFilter(logging.Filter): def __init__(self, service=None, instance=None): self.service = service self.instance = instance def filter(self, record): record.service = self.service record.instance = self.instance return True class JsonLogFormatter(jsonlogger.JsonFormatter): def add_fields(self, log_record, record, message_dict): super().add_fields(log_record, record, message_dict) # Add timestamp field with default : now if not log_record.get('timestamp'): now = datetime.utcnow().isoformat() log_record['timestamp'] = now # Add level field if log_record.get('level'): log_record['level'] = log_record['level'].upper() else: log_record['level'] = record.levelname # Add type field for internal logs if not log_record.get('type'): log_record['type'] = 'internal' # Configure Logging def configure_logging(level='DEBUG', service=None, instance=None): dictConfig({ 'version': 1, 'formatters': {'default': { '()': JsonLogFormatter, 'format': '%(timestamp)s %(level)s %(service)s %(instance)s %(type)s %(message)s', 'json_encoder': ModelJsonEncoder }}, 'filters': {'default': { '()': LogFilter, 'service': service, 'instance': instance }}, 'handlers': {'default_handler': { 'class': 'logging.StreamHandler', 'stream': 'ext://sys.stdout', 'filters': ['default'], 'formatter': 'default' }}, 'root': { 'level': level, 'handlers': ['default_handler'] } })
30.078947
94
0.587927
1,210
0.529309
0
0
0
0
0
0
591
0.25853
3d332e20398ab4a054c4523a1136617bf5854f9a
1,459
py
Python
FPAIT/lib/logger/utils.py
D-X-Y/MSPLD-2018
71a6a75830ac84c7a861e63367ad3ace991fae77
[ "MIT" ]
63
2018-07-12T10:36:25.000Z
2019-04-26T11:30:09.000Z
FPAIT/lib/logger/utils.py
D-X-Y/MSPLD-2018
71a6a75830ac84c7a861e63367ad3ace991fae77
[ "MIT" ]
null
null
null
FPAIT/lib/logger/utils.py
D-X-Y/MSPLD-2018
71a6a75830ac84c7a861e63367ad3ace991fae77
[ "MIT" ]
8
2018-07-14T02:47:12.000Z
2019-06-03T07:39:13.000Z
import time, sys import numpy as np def time_for_file(): ISOTIMEFORMAT='%d-%h-at-%H-%M-%S' return '{}'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) )) def time_string(): ISOTIMEFORMAT='%Y-%m-%d %X' string = '[{}]'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) )) return string def time_string_short(): ISOTIMEFORMAT='%Y%m%d' string = '{}'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) )) return string def print_log(print_string, log): print("{}".format(print_string)) if log is not None: log.write('{}\n'.format(print_string)) log.flush() def convert_secs2time(epoch_time, return_string=False): need_hour = int(epoch_time / 3600) need_mins = int((epoch_time - 3600*need_hour) / 60) need_secs = int(epoch_time - 3600*need_hour - 60*need_mins) if return_string: return '{:02d}:{:02d}:{:02d}'.format(need_hour, need_mins, need_secs) else: return need_hour, need_mins, need_secs class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __repr__(self): return ('{name}(val={val}, avg={avg}, count={count})'.format(name=self.__class__.__name__, **self.__dict__))
28.057692
112
0.666895
481
0.329678
0
0
0
0
0
0
186
0.127485
3d34dd340fc3d7607de14667552ba62b48a6ce54
1,888
py
Python
hoomd/hpmc/test-py/test_ghost_layer.py
PetersResearchGroup/PCND
584768cc683a6df0152ead69b567d05b781aab2b
[ "BSD-3-Clause" ]
null
null
null
hoomd/hpmc/test-py/test_ghost_layer.py
PetersResearchGroup/PCND
584768cc683a6df0152ead69b567d05b781aab2b
[ "BSD-3-Clause" ]
null
null
null
hoomd/hpmc/test-py/test_ghost_layer.py
PetersResearchGroup/PCND
584768cc683a6df0152ead69b567d05b781aab2b
[ "BSD-3-Clause" ]
null
null
null
from __future__ import print_function from __future__ import division from hoomd import * from hoomd import hpmc import math import unittest context.initialize() class test_ghost_layer(unittest.TestCase): def test_implicit(self): # setup the MC integration system = init.read_snapshot(data.make_snapshot(N=2,box=data.boxdim(Lx=100,Ly=50,Lz=50),particle_types=['A','B'])) mc = hpmc.integrate.convex_polyhedron(seed=123,implicit=True) mc.set_params(d=0,a=0) mc.set_params(nR=0,depletant_type='B') cube_verts=[(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1), (1, -1, -1), (1, -1, 1), (1, 1, -1), (1, 1, 1)] mc.shape_param.set('A', vertices=cube_verts) mc.shape_param.set('B', vertices=cube_verts) system.particles[0].position = (-.2,0,0) system.particles[1].position = (1.2,2,0) # currently we need this to communicate properly run(1) self.assertTrue(mc.count_overlaps()) def test_base(self): # setup the MC integration system = init.read_snapshot(data.make_snapshot(N=2,box=data.boxdim(Lx=100,Ly=50,Lz=50),particle_types=['A'])) mc = hpmc.integrate.convex_polyhedron(seed=123) mc.set_params(d=0,a=0) cube_verts=[(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1), (1, -1, -1), (1, -1, 1), (1, 1, -1), (1, 1, 1)] mc.shape_param.set('A', vertices=cube_verts) self.assertRaises(RuntimeError, mc.shape_param.set, types='B', vertices=cube_verts) #This is an error now system.particles[0].position = (-.2,0,0) system.particles[1].position = (1.2,2,0) # currently we need this to communicate properly run(1) self.assertTrue(mc.count_overlaps()) def tearDown(self): context.initialize(); if __name__ == '__main__': unittest.main(argv = ['test.py', '-v'])
33.714286
121
0.613877
1,650
0.873941
0
0
0
0
0
0
216
0.114407
3d34e6acbf5b6084146e881a817272a730156e45
525
py
Python
performanceplatform/collector/ga/plugins/load_plugin.py
alphagov/performanceplatform-collector
de68ab4aa500c31e436e050fa1268fa928c522a5
[ "MIT" ]
3
2015-05-01T14:57:28.000Z
2016-04-08T12:53:59.000Z
performanceplatform/collector/ga/plugins/load_plugin.py
alphagov/performanceplatform-collector
de68ab4aa500c31e436e050fa1268fa928c522a5
[ "MIT" ]
15
2015-02-11T11:43:02.000Z
2021-03-24T10:54:35.000Z
performanceplatform/collector/ga/plugins/load_plugin.py
alphagov/performanceplatform-collector
de68ab4aa500c31e436e050fa1268fa928c522a5
[ "MIT" ]
7
2015-05-04T16:56:02.000Z
2021-04-10T19:42:35.000Z
""" load_plugin.py -------------- Responsible for taking plugin strings and returning plugin callables. """ # For the linter import __builtin__ import performanceplatform.collector.ga.plugins def load_plugins(plugin_names): return [load_plugin(plugin_name) for plugin_name in plugin_names] def load_plugin(plugin_name): expr = compile(plugin_name, "performanceplatform.collector plugin", "eval") return eval(expr, __builtin__.__dict__, performanceplatform.collector.ga.plugins.__dict__)
21
79
0.744762
0
0
0
0
0
0
0
0
169
0.321905
3d36068bd29dc63f314be2d8a4d427fb6770b25d
26,243
py
Python
src/Python/Visualization/FrogReconstruction.py
ajpmaclean/vtk-examples
1a55fc8c6af67a3c07791807c7d1ec0ab97607a2
[ "Apache-2.0" ]
81
2020-08-10T01:44:30.000Z
2022-03-23T06:46:36.000Z
src/Python/Visualization/FrogReconstruction.py
ajpmaclean/vtk-examples
1a55fc8c6af67a3c07791807c7d1ec0ab97607a2
[ "Apache-2.0" ]
2
2020-09-12T17:33:52.000Z
2021-04-15T17:33:09.000Z
src/Python/Visualization/FrogReconstruction.py
ajpmaclean/vtk-examples
1a55fc8c6af67a3c07791807c7d1ec0ab97607a2
[ "Apache-2.0" ]
27
2020-08-17T07:09:30.000Z
2022-02-15T03:44:58.000Z
#!/usr/bin/env python import collections from pathlib import Path # noinspection PyUnresolvedReferences import vtkmodules.vtkInteractionStyle # noinspection PyUnresolvedReferences import vtkmodules.vtkRenderingOpenGL2 from vtkmodules.vtkCommonColor import vtkNamedColors from vtkmodules.vtkCommonCore import vtkLookupTable from vtkmodules.vtkCommonMath import vtkMatrix4x4 from vtkmodules.vtkCommonTransforms import vtkTransform from vtkmodules.vtkFiltersCore import ( vtkContourFilter, vtkDecimatePro, vtkExecutionTimer, vtkFlyingEdges3D, vtkMarchingCubes, vtkPolyDataNormals, vtkStripper, vtkWindowedSincPolyDataFilter ) from vtkmodules.vtkFiltersGeneral import vtkTransformPolyDataFilter from vtkmodules.vtkIOImage import vtkMetaImageReader from vtkmodules.vtkImagingCore import ( vtkImageShrink3D, vtkImageThreshold ) from vtkmodules.vtkImagingGeneral import vtkImageGaussianSmooth from vtkmodules.vtkImagingMorphological import vtkImageIslandRemoval2D from vtkmodules.vtkInteractionWidgets import vtkOrientationMarkerWidget from vtkmodules.vtkRenderingAnnotation import vtkAxesActor from vtkmodules.vtkRenderingCore import ( vtkActor, vtkPolyDataMapper, vtkRenderWindow, vtkRenderWindowInteractor, vtkRenderer ) def get_program_parameters(argv): import argparse description = 'Display all frog parts and translucent skin.' epilogue = ''' To specify all the tissues at once: blood brain duodenum eye_retna eye_white heart ileum kidney l_intestine liver lung nerve skeleton spleen stomach skin You can leave out brainbin, it is the brain with no gaussian smoothing. Here are the parameters used to get the views in the VTK Textbook: Fig12-9a: blood brain duodenum eye_retna eye_white heart ileum kidney l_intestine liver lung nerve skeleton spleen stomach skin -a Fig12-9b: blood brain duodenum eye_retna eye_white heart ileum kidney l_intestine liver lung nerve skeleton spleen stomach -a Fig12-9c: brain duodenum eye_retna eye_white heart ileum kidney l_intestine liver lung nerve spleen stomach -c Fig12-9c: brain duodenum eye_retna eye_white heart ileum kidney l_intestine liver lung nerve spleen stomach -d ''' parser = argparse.ArgumentParser(description=description, epilog=epilogue, formatter_class=argparse.RawDescriptionHelpFormatter) group = parser.add_mutually_exclusive_group() group.add_argument('-a', action='store_const', dest='view', const='a', help='The view corresponds to Figs 12-9a and 12-9b in the VTK Textbook') group.add_argument('-c', action='store_const', dest='view', const='c', help='The view corresponds to Figs 12-9c in the VTK Textbook') group.add_argument('-d', action='store_const', dest='view', const='d', help='The view corresponds to Figs 12-9d in the VTK Textbook') parser.set_defaults(type=None) parser.add_argument('-m', action='store_false', dest='flying_edges', help='Use flying edges by default, marching cubes if set.') parser.add_argument('-t', action='store_true', dest='decimation', help='Decimate if set.') parser.add_argument('data_folder', help='The path to the files: frog.mhd and frogtissue.mhd.') parser.add_argument('tissues', nargs='+', help='List of one or more tissues.') args = parser.parse_args() return args.data_folder, args.tissues, args.view, args.flying_edges, args.decimation def main(data_folder, tissues, view, flying_edges, decimate): colors = vtkNamedColors() path = Path(data_folder) if path.is_dir(): s = '' frog_fn = path.joinpath('frog').with_suffix('.mhd') if not frog_fn.is_file(): s += 'The file: {:s} does not exist.\n'.format(str(frog_fn)) print(s) frog_tissue_fn = path.joinpath('frogtissue').with_suffix('.mhd') if not frog_tissue_fn.is_file(): s += 'The file: {:s} does not exist.'.format(str(frog_tissue_fn)) if s: print(s) return else: print('Expected a path to frog.mhs and frogtissue.mhd') return # Tissue parameters available_tissues = tissue_parameters() selected_tissues = {key: available_tissues[key] for key in tissues} if not selected_tissues: print('No tissues!') return missing_parameters = False for k, v in selected_tissues.items(): res = check_for_required_parameters(k, v) if res: print(res) missing_parameters = True if missing_parameters: print('Some required parameters are missing!') return # Setup render window, renderer, and interactor. renderer = vtkRenderer() render_window = vtkRenderWindow() render_window.AddRenderer(renderer) render_window_interactor = vtkRenderWindowInteractor() render_window_interactor.SetRenderWindow(render_window) lut = create_frog_lut(colors) # Time some filters ict = collections.defaultdict(dict) for name, tissue in selected_tissues.items(): print('Tissue: {:>9s}, label: {:2d}'.format(name, tissue['TISSUE'])) t, actor = create_frog_actor(frog_fn, frog_tissue_fn, tissue, flying_edges, decimate, lut) ict[name] = t renderer.AddActor(actor) # Initial view (looking down on the dorsal surface). renderer.GetActiveCamera().Roll(-90) renderer.ResetCamera() # Final view if view: if view == 'a': # Figs 12-9a and 12-9b in the VTK Textbook camera = renderer.GetActiveCamera() camera.SetPosition(-850.073854, 834.142692, 266.017598) camera.SetFocalPoint(-72.387897, 109.637349, -306.343185) camera.SetViewUp(0.284585, -0.387303, 0.876931) camera.SetDistance(1207.186939) camera.SetClippingRange(247.737449, 1758.922849) elif view == 'c': # Figs 12-9c in the VTK Textbook camera = renderer.GetActiveCamera() camera.SetPosition(-438.993734, 404.715262, 105.797836) camera.SetFocalPoint(-254.193794, 245.672169, -95.535892) camera.SetViewUp(0.256893, -0.629643, 0.733182) camera.SetDistance(316.197712) camera.SetClippingRange(0.789810, 789.809963) elif view == 'd': # Fig 12-9d in the VTK Textbook camera = renderer.GetActiveCamera() camera.SetPosition(-262.252604, 229.863144, 562.084505) camera.SetFocalPoint(-288.693092, 228.870041, -91.185421) camera.SetViewUp(0.729526, -0.683360, -0.028488) camera.SetDistance(653.805539) camera.SetClippingRange(452.459105, 905.003135) print('Timings:') print('\n'.join(format_timings(ict))) renderer.SetBackground(colors.GetColor3d('LightSteelBlue')) render_window.SetSize(640, 640) render_window.SetWindowName('FrogReconstruction') render_window.Render() axes = vtkAxesActor() widget = vtkOrientationMarkerWidget() rgba = [0.0, 0.0, 0.0, 0.0] colors.GetColor("Carrot", rgba) widget.SetOutlineColor(rgba[0], rgba[1], rgba[2]) widget.SetOrientationMarker(axes) widget.SetInteractor(render_window_interactor) widget.SetViewport(0.0, 0.0, 0.2, 0.2) widget.SetEnabled(1) widget.InteractiveOn() render_window.Render() render_window_interactor.Start() def create_frog_actor(frog_fn, frog_tissue_fn, tissue, flying_edges, decimate, lut): # Get the tissue parameters pixel_size = tissue['PIXEL_SIZE'] columns = tissue['COLUMNS'] rows = tissue['ROWS'] voi = tissue['VOI'] spacing = float(tissue['SPACING']) start_slice = float(tissue['START_SLICE']) data_spacing = [pixel_size, pixel_size, spacing] data_origin = [-(columns / 2.0) * pixel_size, -(rows / 2.0) * pixel_size, start_slice * spacing] # # adjust y bounds for PNM coordinate system # tmp = voi[2] voi[2] = rows - voi[3] - 1 voi[3] = rows - tmp - 1 if tissue['NAME'] == 'skin': fn = frog_fn else: fn = frog_tissue_fn reader = vtkMetaImageReader() reader.SetFileName(str(fn)) reader.SetDataSpacing(data_spacing) reader.SetDataOrigin(data_origin) reader.SetDataExtent(voi) reader.Update() last_connection = reader if not tissue['NAME'] == 'skin': if tissue['ISLAND_REPLACE'] >= 0: island_remover = vtkImageIslandRemoval2D() island_remover.SetAreaThreshold(tissue['ISLAND_AREA']) island_remover.SetIslandValue(tissue['ISLAND_REPLACE']) island_remover.SetReplaceValue(tissue['TISSUE']) island_remover.SetInput(last_connection.GetOutput()) island_remover.Update() last_connection = island_remover select_tissue = vtkImageThreshold() select_tissue.ThresholdBetween(tissue['TISSUE'], tissue['TISSUE']) select_tissue.SetInValue(255) select_tissue.SetOutValue(0) select_tissue.SetInputConnection(last_connection.GetOutputPort()) last_connection = select_tissue shrinker = vtkImageShrink3D() shrinker.SetInputConnection(last_connection.GetOutputPort()) shrinker.SetShrinkFactors(tissue['SAMPLE_RATE']) shrinker.AveragingOn() last_connection = shrinker if not all(v == 0 for v in tissue['GAUSSIAN_STANDARD_DEVIATION']): gaussian = vtkImageGaussianSmooth() gaussian.SetStandardDeviation(*tissue['GAUSSIAN_STANDARD_DEVIATION']) gaussian.SetRadiusFactors(*tissue['GAUSSIAN_RADIUS_FACTORS']) gaussian.SetInputConnection(shrinker.GetOutputPort()) last_connection = gaussian # Time the isocontouring. ict = collections.defaultdict() iso_value = tissue['VALUE'] if flying_edges: iso_surface = vtkFlyingEdges3D() iso_surface.SetInputConnection(last_connection.GetOutputPort()) iso_surface.ComputeScalarsOff() iso_surface.ComputeGradientsOff() iso_surface.ComputeNormalsOff() iso_surface.SetValue(0, iso_value) timer = vtkExecutionTimer() timer.SetFilter(iso_surface) iso_surface.Update() ict['Flying Edges'] = timer.GetElapsedWallClockTime() else: iso_surface = vtkMarchingCubes() iso_surface.SetInputConnection(last_connection.GetOutputPort()) iso_surface.ComputeScalarsOff() iso_surface.ComputeGradientsOff() iso_surface.ComputeNormalsOff() iso_surface.SetValue(0, iso_value) timer = vtkExecutionTimer() timer.SetFilter(iso_surface) iso_surface.Update() ict['Marching Cubes'] = timer.GetElapsedWallClockTime() so = SliceOrder() # transform = so.get(tissue['SLICE_ORDER']) # Match Frog.py transform = so.get('hfap') transform.Scale(1, -1, 1) tf = vtkTransformPolyDataFilter() tf.SetTransform(transform) tf.SetInputConnection(iso_surface.GetOutputPort()) last_connection = tf if decimate: decimator = vtkDecimatePro() decimator.SetInputConnection(last_connection.GetOutputPort()) decimator.SetFeatureAngle(tissue['DECIMATE_ANGLE']) decimator.MaximumIterations = tissue['DECIMATE_ITERATIONS'] decimator.PreserveTopologyOn() decimator.SetErrorIsAbsolute(1) decimator.SetAbsoluteError(tissue['DECIMATE_ERROR']) decimator.SetTargetReduction(tissue['DECIMATE_REDUCTION']) last_connection = decimator smoother = vtkWindowedSincPolyDataFilter() smoother.SetInputConnection(last_connection.GetOutputPort()) smoother.SetNumberOfIterations(tissue['SMOOTH_ITERATIONS']) smoother.BoundarySmoothingOff() smoother.FeatureEdgeSmoothingOff() smoother.SetFeatureAngle(tissue['SMOOTH_ANGLE']) smoother.SetPassBand(tissue['SMOOTH_FACTOR']) smoother.NonManifoldSmoothingOn() smoother.NormalizeCoordinatesOff() smoother.Update() normals = vtkPolyDataNormals() normals.SetInputConnection(smoother.GetOutputPort()) normals.SetFeatureAngle(tissue['FEATURE_ANGLE']) stripper = vtkStripper() stripper.SetInputConnection(normals.GetOutputPort()) mapper = vtkPolyDataMapper() mapper.SetInputConnection(stripper.GetOutputPort()) # Create iso-surface contour = vtkContourFilter() contour.SetInputConnection(reader.GetOutputPort()) contour.SetValue(0, iso_value) actor = vtkActor() actor.SetMapper(mapper) actor.GetProperty().SetOpacity(tissue['OPACITY']) actor.GetProperty().SetDiffuseColor(lut.GetTableValue(tissue['TISSUE'])[:3]) actor.GetProperty().SetSpecular(0.5) actor.GetProperty().SetSpecularPower(10) return ict, actor class SliceOrder: """ These transformations permute image and other geometric data to maintain proper orientation regardless of the acquisition order. After applying these transforms with vtkTransformFilter, a view up of 0,-1,0 will result in the body part facing the viewer. NOTE: some transformations have a -1 scale factor for one of the components. To ensure proper polygon orientation and normal direction, you must apply the vtkPolyDataNormals filter. Naming (the nomenclature is medical): si - superior to inferior (top to bottom) is - inferior to superior (bottom to top) ap - anterior to posterior (front to back) pa - posterior to anterior (back to front) lr - left to right rl - right to left """ def __init__(self): self.si_mat = vtkMatrix4x4() self.si_mat.Zero() self.si_mat.SetElement(0, 0, 1) self.si_mat.SetElement(1, 2, 1) self.si_mat.SetElement(2, 1, -1) self.si_mat.SetElement(3, 3, 1) self.is_mat = vtkMatrix4x4() self.is_mat.Zero() self.is_mat.SetElement(0, 0, 1) self.is_mat.SetElement(1, 2, -1) self.is_mat.SetElement(2, 1, -1) self.is_mat.SetElement(3, 3, 1) self.lr_mat = vtkMatrix4x4() self.lr_mat.Zero() self.lr_mat.SetElement(0, 2, -1) self.lr_mat.SetElement(1, 1, -1) self.lr_mat.SetElement(2, 0, 1) self.lr_mat.SetElement(3, 3, 1) self.rl_mat = vtkMatrix4x4() self.rl_mat.Zero() self.rl_mat.SetElement(0, 2, 1) self.rl_mat.SetElement(1, 1, -1) self.rl_mat.SetElement(2, 0, 1) self.rl_mat.SetElement(3, 3, 1) """ The previous transforms assume radiological views of the slices (viewed from the feet). other modalities such as physical sectioning may view from the head. These transforms modify the original with a 180° rotation about y """ self.hf_mat = vtkMatrix4x4() self.hf_mat.Zero() self.hf_mat.SetElement(0, 0, -1) self.hf_mat.SetElement(1, 1, 1) self.hf_mat.SetElement(2, 2, -1) self.hf_mat.SetElement(3, 3, 1) def s_i(self): t = vtkTransform() t.SetMatrix(self.si_mat) return t def i_s(self): t = vtkTransform() t.SetMatrix(self.is_mat) return t @staticmethod def a_p(): t = vtkTransform() return t.Scale(1, -1, 1) @staticmethod def p_a(): t = vtkTransform() return t.Scale(1, -1, -1) def l_r(self): t = vtkTransform() t.SetMatrix(self.lr_mat) t.Update() return t def r_l(self): t = vtkTransform() t.SetMatrix(self.lr_mat) return t def h_f(self): t = vtkTransform() t.SetMatrix(self.hf_mat) return t def hf_si(self): t = vtkTransform() t.Concatenate(self.hf_mat) t.Concatenate(self.si_mat) return t def hf_is(self): t = vtkTransform() t.Concatenate(self.hf_mat) t.Concatenate(self.is_mat) return t def hf_ap(self): t = vtkTransform() t.Concatenate(self.hf_mat) t.Scale(1, -1, 1) return t def hf_pa(self): t = vtkTransform() t.Concatenate(self.hf_mat) t.Scale(1, -1, -1) return t def hf_lr(self): t = vtkTransform() t.Concatenate(self.hf_mat) t.Concatenate(self.lr_mat) return t def hf_rl(self): t = vtkTransform() t.Concatenate(self.hf_mat) t.Concatenate(self.rl_mat) return t def get(self, order): """ Returns the vtkTransform corresponding to the slice order. :param order: The slice order :return: The vtkTransform to use """ if order == 'si': return self.s_i() elif order == 'is': return self.i_s() elif order == 'ap': return self.a_p() elif order == 'pa': return self.p_a() elif order == 'lr': return self.l_r() elif order == 'rl': return self.r_l() elif order == 'hf': return self.h_f() elif order == 'hfsi': return self.hf_si() elif order == 'hfis': return self.hf_is() elif order == 'hfap': return self.hf_ap() elif order == 'hfpa': return self.hf_pa() elif order == 'hflr': return self.hf_lr() elif order == 'hfrl': return self.hf_rl() else: s = 'No such transform "{:s}" exists.'.format(order) raise Exception(s) def default_parameters(): p = dict() p['NAME'] = '' p['TISSUE'] = '1' p['START_SLICE'] = '0' p['END_SLICE'] = '255' p['STUDY'] = 'frogtissue' p['VALUE'] = 127.5 p['ROWS'] = 470 p['COLUMNS'] = 500 p['HEADER_SIZE'] = 0 p['PIXEL_SIZE'] = 1 p['SPACING'] = 1.5 p['START_SLICE'] = 1 p['END_SLICE'] = 138 p['REDUCTION'] = 1 p['FEATURE_ANGLE'] = 60 p['DECIMATE_ANGLE'] = 60 p['SMOOTH_ANGLE'] = 60 p['SMOOTH_ITERATIONS'] = 10 p['SMOOTH_FACTOR'] = 0.1 p['DECIMATE_ITERATIONS'] = 1 p['DECIMATE_REDUCTION'] = 1 p['DECIMATE_ERROR'] = 0.0002 p['DECIMATE_ERROR_INCREMENT'] = 0.0002 p['ISLAND_AREA'] = 4 p['ISLAND_REPLACE'] = -1 p['GAUSSIAN_STANDARD_DEVIATION'] = [2, 2, 2] p['GAUSSIAN_RADIUS_FACTORS'] = [2, 2, 2] p['VOI'] = [0, p['COLUMNS'] - 1, 0, p['ROWS'] - 1, 0, p['END_SLICE']] p['SAMPLE_RATE'] = [1, 1, 1] p['OPACITY'] = 1.0 return p def blood(): p = frog() p['NAME'] = 'blood' p['TISSUE'] = 1 p['START_SLICE'] = 14 p['END_SLICE'] = 131 p['VALUE'] = 4 p['VOI'] = [33, 406, 62, 425, p['START_SLICE'], p['END_SLICE']] return p def brain(): p = frog() p['NAME'] = 'brain' p['TISSUE'] = 2 p['START_SLICE'] = 1 p['END_SLICE'] = 33 p['VOI'] = [349, 436, 211, 252, p['START_SLICE'], p['END_SLICE']] return p def brainbin(): p = frog() p['NAME'] = 'brainbin' p['TISSUE'] = 2 p['START_SLICE'] = 1 p['END_SLICE'] = 33 p['VOI'] = [349, 436, 211, 252, p['END_SLICE'], p['START_SLICE']] p['GAUSSIAN_STANDARD_DEVIATION'] = [0, 0, 0] p['DECIMATE_ITERATIONS'] = 0 return p def duodenum(): p = frog() p['NAME'] = 'duodenum' p['TISSUE'] = 3 p['START_SLICE'] = 35 p['END_SLICE'] = 105 p['VOI'] = [189, 248, 191, 284, p['START_SLICE'], p['END_SLICE']] return p def eye_retna(): p = frog() p['NAME'] = 'eye_retna' p['TISSUE'] = 4 p['START_SLICE'] = 1 p['END_SLICE'] = 41 p['VOI'] = [342, 438, 180, 285, p['START_SLICE'], p['END_SLICE']] return p def eye_white(): p = frog() p['NAME'] = 'eye_white' p['TISSUE'] = 5 p['START_SLICE'] = 1 p['END_SLICE'] = 37 p['VOI'] = [389, 433, 183, 282, p['START_SLICE'], p['END_SLICE']] return p def frog(): p = default_parameters() p['ROWS'] = 470 p['COLUMNS'] = 500 p['STUDY'] = 'frogtissue' p['SLICE_ORDER'] = 'si' p['PIXEL_SIZE'] = 1 p['SPACING'] = 1.5 p['VALUE'] = 127.5 p['SAMPLE_RATE'] = [1, 1, 1] p['GAUSSIAN_STANDARD_DEVIATION'] = [2, 2, 2] p['DECIMATE_REDUCTION'] = 0.95 p['DECIMATE_ITERATIONS'] = 5 p['DECIMATE_ERROR'] = 0.0002 p['DECIMATE_ERROR_INCREMENT'] = 0.0002 p['SMOOTH_FACTOR'] = 0.1 return p def heart(): p = frog() p['NAME'] = 'heart' p['TISSUE'] = 6 p['START_SLICE'] = 49 p['END_SLICE'] = 93 p['VOI'] = [217, 299, 186, 266, p['START_SLICE'], p['END_SLICE']] return p def ileum(): p = frog() p['NAME'] = 'ileum' p['TISSUE'] = 7 p['START_SLICE'] = 25 p['END_SLICE'] = 93 p['VOI'] = [172, 243, 201, 290, p['START_SLICE'], p['END_SLICE']] return p def kidney(): p = frog() p['NAME'] = 'kidney' p['TISSUE'] = 8 p['START_SLICE'] = 24 p['END_SLICE'] = 78 p['VOI'] = [116, 238, 193, 263, p['START_SLICE'], p['END_SLICE']] return p def l_intestine(): p = frog() p['NAME'] = 'l_intestine' p['TISSUE'] = 9 p['START_SLICE'] = 56 p['END_SLICE'] = 106 p['VOI'] = [115, 224, 209, 284, p['START_SLICE'], p['END_SLICE']] return p def liver(): p = frog() p['NAME'] = 'liver' p['TISSUE'] = 10 p['START_SLICE'] = 25 p['END_SLICE'] = 126 p['VOI'] = [167, 297, 154, 304, p['START_SLICE'], p['END_SLICE']] return p def lung(): p = frog() p['NAME'] = 'lung' p['TISSUE'] = 11 p['START_SLICE'] = 24 p['END_SLICE'] = 59 p['VOI'] = [222, 324, 157, 291, p['START_SLICE'], p['END_SLICE']] return p def nerve(): p = frog() p['NAME'] = 'nerve' p['TISSUE'] = 12 p['START_SLICE'] = 7 p['END_SLICE'] = 113 p['VOI'] = [79, 403, 63, 394, p['START_SLICE'], p['END_SLICE']] return p def skin(): p = default_parameters() p['NAME'] = 'skin' p['TISSUE'] = 0 p['ROWS'] = 470 p['COLUMNS'] = 500 p['STUDY'] = 'frog' p['SLICE_ORDER'] = 'si' p['PIXEL_SIZE'] = 1 p['SPACING'] = 1.5 p['START_SLICE'] = 1 p['END_SLICE'] = 138 p['VOI'] = [0, 499, 0, 469, p['START_SLICE'], p['END_SLICE']] p['VALUE'] = 10.5 p['SAMPLE_RATE'] = [2, 2, 1] p['DECIMATE_REDUCTION'] = 0.95 p['DECIMATE_ITERATIONS'] = 10 p['DECIMATE_ERROR'] = 0.0002 p['DECIMATE_ERROR_INCREMENT'] = 0.0002 p['FEATURE_ANGLE'] = 60 p['OPACITY'] = 0.4 return p def skeleton(): p = frog() p['STUDY'] = 'frogtissue' p['NAME'] = 'skeleton' p['TISSUE'] = 13 p['VALUE'] = 64.5 p['START_SLICE'] = 1 p['END_SLICE'] = 136 p['VOI'] = [23, 479, 8, 469, p['START_SLICE'], p['END_SLICE']] p['GAUSSIAN_STANDARD_DEVIATION'] = [1.5, 1.5, 1] return p def spleen(): p = frog() p['NAME'] = 'spleen' p['TISSUE'] = 14 p['START_SLICE'] = 45 p['END_SLICE'] = 68 p['VOI'] = [166, 219, 195, 231, p['START_SLICE'], p['END_SLICE']] return p def stomach(): p = frog() p['NAME'] = 'stomach' p['TISSUE'] = 15 p['START_SLICE'] = 26 p['END_SLICE'] = 119 p['VOI'] = [143, 365, 158, 297, p['START_SLICE'], p['END_SLICE']] return p def tissue_parameters(): t = dict() t['blood'] = blood() t['brain'] = brain() t['brainbin'] = brainbin() t['duodenum'] = duodenum() t['eye_retna'] = eye_retna() t['eye_white'] = eye_white() t['frog'] = frog() t['heart'] = heart() t['ileum'] = ileum() t['kidney'] = kidney() t['l_intestine'] = l_intestine() t['liver'] = liver() t['lung'] = lung() t['nerve'] = nerve() t['skin'] = skin() t['skeleton'] = skeleton() t['spleen'] = spleen() t['stomach'] = stomach() return t def create_frog_lut(colors): lut = vtkLookupTable() lut.SetNumberOfColors(16) lut.SetTableRange(0, 15) lut.Build() lut.SetTableValue(0, colors.GetColor4d('LimeGreen')) # skin lut.SetTableValue(1, colors.GetColor4d('salmon')) # blood lut.SetTableValue(2, colors.GetColor4d('beige')) # brain lut.SetTableValue(3, colors.GetColor4d('orange')) # duodenum lut.SetTableValue(4, colors.GetColor4d('misty_rose')) # eye_retina lut.SetTableValue(5, colors.GetColor4d('white')) # eye_white lut.SetTableValue(6, colors.GetColor4d('tomato')) # heart lut.SetTableValue(7, colors.GetColor4d('raspberry')) # ileum lut.SetTableValue(8, colors.GetColor4d('banana')) # kidney lut.SetTableValue(9, colors.GetColor4d('peru')) # l_intestine lut.SetTableValue(10, colors.GetColor4d('pink')) # liver lut.SetTableValue(11, colors.GetColor4d('powder_blue')) # lung lut.SetTableValue(12, colors.GetColor4d('carrot')) # nerve lut.SetTableValue(13, colors.GetColor4d('wheat')) # skeleton lut.SetTableValue(14, colors.GetColor4d('violet')) # spleen lut.SetTableValue(15, colors.GetColor4d('plum')) # stomach return lut def check_for_required_parameters(tissue, parameters): required = {'NAME', 'END_SLICE', 'TISSUE', 'STUDY', 'ROWS', 'COLUMNS', 'VALUE', 'SPACING', 'GAUSSIAN_STANDARD_DEVIATION', 'VOI', 'DECIMATE_ITERATIONS'} k = set(parameters.keys()) s = None if len(k) == 0: s = 'Missing parameters for {:11s}: {:s}'.format(tissue, ', '.join(map(str, required))) else: d = required.difference(k) if d: s = 'Missing parameters for {:11s}: {:s}'.format(tissue, ', '.join(map(str, d))) return s def format_timings(ict): res = list() total = 0 sk = sorted(ict.keys()) for k in sk: sigma = 0 res.append('{:11s}'.format(k)) skk = sorted(ict[k].keys()) for kk in skk: sigma += ict[k][kk] res.append('{:11s}{:13s} {:5.2f}s'.format(' ', kk, ict[k][kk])) total += sigma res.append('Subtotal: {:5.2f}s'.format(sigma)) res.append(' Total: {:5.2f}s'.format(total)) return res if __name__ == '__main__': import sys data_folder, tissue, view, flying_edges, decimate = get_program_parameters(sys.argv) main(data_folder, tissue, view, flying_edges, decimate)
31.093602
121
0.622185
4,791
0.182556
0
0
177
0.006744
0
0
6,854
0.261164
3d3611984ad47f38b9bcaf5c70b8693991e55438
3,202
py
Python
mfr/extensions/tabular/libs/stdlib_tools.py
yacchin1205/RDM-modular-file-renderer
5bd18175a681d21e7be7fe0238132335a1cd8ded
[ "Apache-2.0" ]
36
2015-08-31T20:24:22.000Z
2021-12-17T17:02:44.000Z
mfr/extensions/tabular/libs/stdlib_tools.py
yacchin1205/RDM-modular-file-renderer
5bd18175a681d21e7be7fe0238132335a1cd8ded
[ "Apache-2.0" ]
190
2015-01-02T06:22:01.000Z
2022-01-19T11:27:03.000Z
mfr/extensions/tabular/libs/stdlib_tools.py
yacchin1205/RDM-modular-file-renderer
5bd18175a681d21e7be7fe0238132335a1cd8ded
[ "Apache-2.0" ]
47
2015-01-27T15:45:22.000Z
2021-01-27T22:43:03.000Z
import re import csv from mfr.extensions.tabular.exceptions import EmptyTableError, TabularRendererError from mfr.extensions.tabular import utilities def csv_stdlib(fp): """Read and convert a csv file to JSON format using the python standard library :param fp: File pointer object :return: tuple of table headers and data """ data = fp.read(2048) fp.seek(0) try: dialect = csv.Sniffer().sniff(data) except csv.Error: dialect = csv.excel else: _set_dialect_quote_attrs(dialect, data) del data reader = csv.DictReader(fp, dialect=dialect) columns = [] # update the reader field names to avoid duplicate column names when performing row extraction for idx, fieldname in enumerate(reader.fieldnames or []): column_count = sum(1 for column in columns if fieldname == column['name']) if column_count: unique_fieldname = '{}-{}'.format(fieldname, column_count + 1) reader.fieldnames[idx] = unique_fieldname else: unique_fieldname = fieldname columns.append({ 'id': unique_fieldname, 'field': unique_fieldname, 'name': fieldname, 'sortable': True, }) try: rows = [row for row in reader] except csv.Error as e: if any("field larger than field limit" in errorMsg for errorMsg in e.args): raise TabularRendererError( 'This file contains a field too large to render. ' 'Please download and view it locally.', code=400, extension='csv', ) from e else: raise TabularRendererError('csv.Error: {}'.format(e), extension='csv') from e if not columns and not rows: raise EmptyTableError('Table empty or corrupt.', extension='csv') del reader return {'Sheet 1': (columns, rows)} def sav_stdlib(fp): """Read and convert a .sav file to .csv with pspp, then convert that to JSON format using the python standard library :param fp: File pointer object to a .sav file :return: tuple of table headers and data """ csv_file = utilities.sav_to_csv(fp) with open(csv_file.name, 'r') as file: csv_file.close() return csv_stdlib(file) def _set_dialect_quote_attrs(dialect, data): """Set quote-related dialect attributes based on up to 2kb of csv data. The regular expressions search for things that look like the beginning of a list, wrapped in a quotation mark that is not dialect.quotechar, with list items wrapped in dialect.quotechar and seperated by commas. Example matches include: "['1', '2', '3' for quotechar == ' '{"a", "b", "c" for quotechar == " """ if dialect.quotechar == '"': if re.search('\'[[({]".+",', data): dialect.quotechar = "'" if re.search("'''[[({]\".+\",", data): dialect.doublequote = True elif dialect.quotechar == "'": if re.search("\"[[({]'.+',", data): dialect.quotechar = '"' if re.search('"""[[({]\'.+\',', data): dialect.doublequote = True
33.705263
98
0.605559
0
0
0
0
0
0
0
0
1,221
0.381324
3d36845f210b13d26d7504e09092d4846041c87f
4,191
py
Python
code/master_web/app/template_support.py
glenn-edgar/lacima_ranch_cloud
0827bdd497295c931cf1a06e97880009773e77be
[ "MIT" ]
null
null
null
code/master_web/app/template_support.py
glenn-edgar/lacima_ranch_cloud
0827bdd497295c931cf1a06e97880009773e77be
[ "MIT" ]
null
null
null
code/master_web/app/template_support.py
glenn-edgar/lacima_ranch_cloud
0827bdd497295c931cf1a06e97880009773e77be
[ "MIT" ]
null
null
null
# # # This is Support for Drawing Bullet Charts # # # # # # # ''' This is the return json value to the javascript front end { "canvasName":"canvas1","featuredColor":"Green", "featuredMeasure":14.5, "qualScale1":14.5, "qualScale1Color":"Black","titleText":"Step 1" }, { "canvasName":"canvas2","featuredColor":"Blue", "featuredMeasure":14.5, "qualScale1":14.5, "qualScale1Color":"Black","titleText":"Step 2" }, { "canvasName":"canvas3","featuredColor":"Red", "featuredMeasure":14.5, "qualScale1":14.5, "qualScale1Color":"Black","titleText":"Step 3" }, ''' class template_support(): def __init__(self , redis_handle, statistics_module): self.redis_handle = redis_handle self.statistics_module = statistics_module def generate_current_canvas_list( self, schedule_name, *args, **kwargs ): return_value = [] self.schedule_name = schedule_name data = self.statistics_module.schedule_data[ schedule_name ] current_data = self.statistics_module.get_current_data( data["step_number"],schedule_name ) limit_values = self.statistics_module.get_current_limit_values( data["step_number"],schedule_name ) for i in range(0,data["step_number"]): temp = {} temp["canvasName"] = "canvas1" +str(i+1) temp["titleText"] = "Step " +str(i+1) temp["qualScale1Color"] = "Black" temp["featuredColor"] = "Red" temp["qualScale1"] = limit_values[i]['limit_avg'] temp["featuredMeasure"] = current_data[i] temp["limit"] = limit_values[i]['limit_std'] temp["step"] = i return_value.append(temp) return return_value def generate_canvas_list(self, schedule_name, flow_id , *args,**kwargs): return_value = [] self.schedule_name = schedule_name data = self.statistics_module.schedule_data[ schedule_name ] flow_sensors = self.statistics_module.sensor_names flow_sensor_name = flow_sensors[flow_id] conversion_rate = self.statistics_module.conversion_rate[flow_id] flow_data = self.statistics_module.get_average_flow_data( data["step_number"], flow_sensor_name, schedule_name ) limit_values = self.statistics_module.get_flow_limit_values( data["step_number"], flow_sensor_name, schedule_name ) for i in limit_values: try: i['limit_avg'] = float(i['limit_avg'])*conversion_rate i['limit_std'] = float(i['limit_std'])*conversion_rate except: pass corrected_flow = [] for i in flow_data: temp1 = [] for j in i: temp1.append( j *conversion_rate) corrected_flow.append(temp1) for i in range(0,data["step_number"]): temp = {} temp["canvasName"] = "canvas1" +str(i+1) temp["titleText"] = "Step " +str(i+1) temp["qualScale1Color"] = "Black" temp["featuredColor"] = "Red" try: temp["qualScale1"] = limit_values[i]['limit_avg'] except: temp["qualScale1"] = 0 try: temp["featuredMeasure"] = corrected_flow[i] except: temp["featuredMeasure"] = 0 try: temp["limit"] = limit_values[i]['limit_std'] except: temp["limit"] = 0 return_value.append(temp) return return_value
37.756757
124
0.504653
3,394
0.809831
0
0
0
0
0
0
1,226
0.292532
3d372653470996da64ee3dcad6250a21dbd2e6ea
52
py
Python
zucchini/graders/exceptions.py
dbecker1/zucchini
47eb9a40b47bb1b131dcfd0073596ccf8816562c
[ "Apache-2.0" ]
3
2018-03-27T18:09:54.000Z
2021-04-08T03:03:55.000Z
zucchini/graders/exceptions.py
dbecker1/zucchini
47eb9a40b47bb1b131dcfd0073596ccf8816562c
[ "Apache-2.0" ]
337
2017-12-17T13:22:26.000Z
2022-03-28T02:05:09.000Z
zucchini/graders/exceptions.py
dbecker1/zucchini
47eb9a40b47bb1b131dcfd0073596ccf8816562c
[ "Apache-2.0" ]
7
2018-01-10T18:46:26.000Z
2020-10-17T17:47:07.000Z
class InvalidGraderConfigError(Exception): pass
17.333333
42
0.807692
51
0.980769
0
0
0
0
0
0
0
0
3d373999e9b389d4982c3184efb41a30e1a5425d
1,108
py
Python
datapack/data/scripts/custom/8871_gve/__init__.py
DigitalCoin1/L2SPERO
f9ec069804d7bf13f9c4bfb508db2eb6ce37ab94
[ "Unlicense" ]
null
null
null
datapack/data/scripts/custom/8871_gve/__init__.py
DigitalCoin1/L2SPERO
f9ec069804d7bf13f9c4bfb508db2eb6ce37ab94
[ "Unlicense" ]
null
null
null
datapack/data/scripts/custom/8871_gve/__init__.py
DigitalCoin1/L2SPERO
f9ec069804d7bf13f9c4bfb508db2eb6ce37ab94
[ "Unlicense" ]
null
null
null
# Author ProGramMoS, Scoria Dev # Version 0.2b import sys from com.l2jfrozen.gameserver.model.actor.instance import L2PcInstance from com.l2jfrozen.util.database import L2DatabaseFactory from com.l2jfrozen.gameserver.model.quest import State from com.l2jfrozen.gameserver.model.quest import QuestState from com.l2jfrozen.gameserver.model.quest.jython import QuestJython as JQuest qn = "8871_gve" class Quest (JQuest) : def __init__(self,id,name,descr): JQuest.__init__(self,id,name,descr) def onEvent(self,event,st): st.getPlayer().setTarget(st.getPlayer()) if event == "1": #good st.getPlayer.setGood(true) st.setState(COMPLETED) if event == "2": #evil st.getPlayer.setEvil(true) st.setState(COMPLETED) if event == "3": #unfact good st.getPlayer.setGood(false) st.setState(COMPLETED) if event == "4": #unfact evil st.getPlayer.setEvil(false) st.setState(COMPLETED) return QUEST = Quest(8871,qn,"custom") CREATED = State('Start',QUEST) STARTED = State('Started',QUEST) COMPLETED = State('Completed',QUEST) QUEST.setInitialState(CREATED)
25.767442
77
0.731949
531
0.479242
0
0
0
0
0
0
136
0.122744
3d37fed769b12cfb4e9da6c616fc01c8b6b51490
3,740
py
Python
src/hypergol/base_data.py
hypergol/hypergol
0beee71c8f72d517ef376030baff9c840a2f7eeb
[ "MIT" ]
49
2020-07-09T10:22:25.000Z
2022-02-21T16:55:34.000Z
src/hypergol/base_data.py
hypergol/hypergol
0beee71c8f72d517ef376030baff9c840a2f7eeb
[ "MIT" ]
16
2020-08-18T17:06:05.000Z
2022-02-19T16:30:04.000Z
src/hypergol/base_data.py
hypergol/hypergol
0beee71c8f72d517ef376030baff9c840a2f7eeb
[ "MIT" ]
3
2020-07-16T08:42:09.000Z
2021-03-06T15:09:13.000Z
import json import base64 import pickle from hypergol.repr import Repr class NoIdException(Exception): pass class BaseData(Repr): """ Base class for all domain objects. Extends the Repr convenience base class that provides printing facilities. Provides to_data and from_data serialisation interfaces. Provides get_id, get_hash_id interfaces. Provides test capabilities for all of the above so changes to the derived classes can be checked quickly. """ def __eq__(self, other): if not isinstance(self, type(other)): return False try: for k in set(self.__dict__.keys()) | set(self.__dict__.keys()): if not self.__dict__.__eq__(other.__dict__[k]): return False return True except KeyError: return False def get_id(self): """Returns the class's id if exists""" raise NoIdException(f"{self.__class__.__name__} doesn't have an id") def get_hash_id(self): """Returns the class's hash id if exists, defaults to get_id()""" return self.get_id() def to_data(self): """Converts class to a dictionary, usually overridden""" return self.__dict__.copy() @staticmethod def to_string(data): return base64.b64encode(pickle.dumps(data)).decode('utf-8') @staticmethod def from_string(data): return pickle.loads(base64.b64decode(data.encode('utf-8'))) @classmethod def from_data(cls, data): """Creates a class from data, usually overridden Parameters ---------- data : dictionary form of data representing the object Usually the result of a previous to_data() call. """ return cls(**data) def test_get_hash_id(self): """Tests if the derived class correctly returns a tuple for an id""" try: classId = self.get_hash_id() # pylint: disable=assignment-from-no-return except NoIdException: return True if not isinstance(classId, tuple): raise ValueError(f'Return of get_id must be a tuple instead of {type(classId)}') return True def test_to_data(self): """Tests if the output of the derived class's to_data() function can be converted to a string by ``json.dumps()``""" originalData = self.__dict__.copy() data = self.to_data() for k, v in self.__dict__.items(): if v != originalData[k]: raise AssertionError(f'{self.__class__.__name__}.to_data() changes the instance itself: {k}: {v} != {originalData[k]}') try: _ = json.dumps(data) except TypeError as ex: raise TypeError(f'{self.__class__.__name__} JSON serde test failed: {ex}') return True def test_from_data(self): """Tests if a roundtrip of ``self.from_data(self.to_data())`` modifies the class""" selfCopy = self.from_data(self.to_data()) if not isinstance(self, type(selfCopy)): raise AssertionError(f'{self.__class__.__name__}.from_data() does not return the correct type: {self.__class__.__name__} vs {selfCopy.__class__.__name__}, from_data() return value should be "cls(**data)"') for k, v in selfCopy.__dict__.items(): if v != self.__dict__[k]: if str(k) == str(v): raise AssertionError(f'{self.__class__.__name__}.from_data() returns keys as values: {k}: {v} != {self.__dict__[k]}, from_data() return value should be "cls(**data)"') raise AssertionError(f'{self.__class__.__name__}.from_data() does not deserialise: {k}: {v} != {self.__dict__[k]}') return True
37.029703
217
0.625936
3,662
0.979144
0
0
515
0.137701
0
0
1,739
0.464973
3d392bdfd33f424fff8045fe8d11d2926903d55e
829
py
Python
examples/spark-function.py
Hedingber/mlrun
e2269718fcc7caa7e1aa379ac28495830b45f9da
[ "Apache-2.0" ]
1
2021-02-17T08:12:33.000Z
2021-02-17T08:12:33.000Z
examples/spark-function.py
Hedingber/mlrun
e2269718fcc7caa7e1aa379ac28495830b45f9da
[ "Apache-2.0" ]
1
2020-12-31T14:36:29.000Z
2020-12-31T14:36:29.000Z
examples/spark-function.py
Hedingber/mlrun
e2269718fcc7caa7e1aa379ac28495830b45f9da
[ "Apache-2.0" ]
1
2021-08-30T21:43:38.000Z
2021-08-30T21:43:38.000Z
# Pyspark example called by mlrun_spark_k8s.ipynb from pyspark.sql import SparkSession from mlrun import get_or_create_ctx # Acquire MLRun context mlctx = get_or_create_ctx("spark-function") # Get MLRun parameters mlctx.logger.info("!@!@!@!@!@ Getting env variables") READ_OPTIONS = mlctx.get_param("data_sources") QUERY = mlctx.get_param("query") WRITE_OPTIONS = mlctx.get_param("write_options") # Create spark session spark = SparkSession.builder.appName("Spark function").getOrCreate() # Loading data from a JDBC source for data_source in READ_OPTIONS: spark.read.load(**READ_OPTIONS[data_source]).createOrReplaceTempView(data_source) # Transform the data using SQL query spark.sql(QUERY).write.save(**WRITE_OPTIONS) # write the result datadrame to destination mlctx.logger.info("!@!@!@!@!@ Saved") spark.stop()
26.741935
85
0.772014
0
0
0
0
0
0
0
0
348
0.419783
3d39a4a34099b547fd394be7429e0efce238f402
3,654
py
Python
scripts/create_dataset.py
maxrousseau/dl-anesthesia
e5de2ecfc9d9e954f3ee36eedb13332589dfc27e
[ "MIT" ]
null
null
null
scripts/create_dataset.py
maxrousseau/dl-anesthesia
e5de2ecfc9d9e954f3ee36eedb13332589dfc27e
[ "MIT" ]
null
null
null
scripts/create_dataset.py
maxrousseau/dl-anesthesia
e5de2ecfc9d9e954f3ee36eedb13332589dfc27e
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import os, glob import datetime import xmltodict as xd import numpy as np import pandas as pd import h5py import matplotlib import matplotlib.pyplot as plt from sklearn import preprocessing # lets make a little data set for fun... mh_dir = os.path.abspath('./db/mh_data/') mh_cases = glob.glob(os.path.join(mh_dir, '*')) # sample = os.path.abspath('./db/asac_data/case10.xml') >> TODO: we will need # to make modifications for this dataset def xml_parser(xml_path): with open(xml_path) as fd: doc = xd.parse(fd.read()) fd.close() raw_db = doc['anaesthetic']['data']['var'] print("FILE READ") for i in raw_db[3:]: name = i['vaname'] times = str(i['vatimes']).replace('None','000000').split(',') values = str(i['vavalues']).replace('NA','nan').split(',') times = np.asarray(times) values = np.asarray(values).astype('float') var_df = pd.DataFrame(data = {'time' : times, name : values}) if 'full_df' in locals(): full_df = full_df.join(var_df.set_index('time'), on='time') else: full_df = var_df print("XML PARSED") return full_df class Input: # an input struct pass db = [] # list of all input structs def delta_spo2(spo2_arr): # compute the difference between the maximum value max_val = max(spo2_arr) min_val = min(spo2_arr) d = max_val - min_val return d # a sample will be 6 entries (=60 seconds) of every datapoint to determine if # there will be a change in spo2 in the next 60 seconds # spo2, hr, def data_generator(patient_df): # slice the df into array of 6 element dfs interval_df = [] for i in range(patient_df.shape[0]): if (i+1) % 6 == 0: # split every 6 timestamp (60 seconds) a = i - 5 interval_df.append(patient_df[a:i+1]) else: continue # compute spo2 delta for i in range(len(interval_df)): sample = Input() sample.x = np.asarray(interval_df[i].unstack()) # vector of input data from try: sample.d = delta_spo2(interval_df[i+1]['spo2.SpO2']) except: print("end of dataset") break # label if sample.d > 0.011: sample.y = 1 else: sample.y = 0 db.append(sample) return db # parse every xml file and save each to a separate h5 file for future use # spo2.SpO2, co2.et, ecg.hr, nibp.sys, nibp.dia def mk_npy(): for i in mh_cases: print(i) df = xml_parser(i) # for all features simply use df # spo2.SpO2, co2.et, ecg.hr, nibp.sys, nibp.dia df2 = pd.DataFrame(df, columns=['ecg.hr', 'co2.et', 'nibp.sys', 'nibp.dia', 'spo2.SpO2'] ) df2 = df2[np.abs(df2-df2.mean()) <= (3*df2.std())] df2 = df2.dropna() # scale the values between 1-0 the data by patient.... x = df2.values min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(x) df2 = pd.DataFrame(x_scaled, columns=df2.columns) data_generator(df2) X = [] Y = [] for i in db: X.append(i.x) Y.append(i.y) X = np.asarray(X).astype('float') Y = np.asarray(Y).astype('int') print("stable: " + str(np.sum(Y == 0))) print("unstable: " + str(np.sum(Y == 1))) np.save("x3.npy", X) np.save("y3.npy", Y) mk_npy() # boom load it... #X = np.load("x.npy", X) # (3740, 306) #Y = np.load("y.npy", Y) # (3740,)
24.36
84
0.570881
39
0.010673
0
0
0
0
0
0
1,170
0.320197
3d39d78b8b90f5a0e60b1cd9c3435a778082fd09
636
py
Python
ossdbtoolsservice/admin/contracts/__init__.py
DaeunYim/pgtoolsservice
b7e548718d797883027b2caee2d4722810b33c0f
[ "MIT" ]
33
2019-05-27T13:04:35.000Z
2022-03-17T13:33:05.000Z
ossdbtoolsservice/admin/contracts/__init__.py
DaeunYim/pgtoolsservice
b7e548718d797883027b2caee2d4722810b33c0f
[ "MIT" ]
31
2019-06-10T01:55:47.000Z
2022-03-09T07:27:49.000Z
ossdbtoolsservice/admin/contracts/__init__.py
DaeunYim/pgtoolsservice
b7e548718d797883027b2caee2d4722810b33c0f
[ "MIT" ]
25
2019-05-13T18:39:24.000Z
2021-11-16T03:07:33.000Z
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from ossdbtoolsservice.admin.contracts.get_database_info_request import ( DatabaseInfo, GetDatabaseInfoParameters, GetDatabaseInfoResponse, GET_DATABASE_INFO_REQUEST) __all__ = [ 'DatabaseInfo', 'GetDatabaseInfoParameters', 'GetDatabaseInfoResponse', 'GET_DATABASE_INFO_REQUEST' ]
53
103
0.575472
0
0
0
0
0
0
0
0
434
0.68239
3d3a5919d0773f6fa55679eeb76000e332ce88f7
38,534
py
Python
whacc/image_tools.py
hireslab/whacc
e0ccfe4ee784609cacd4cf62a17192687a5dff51
[ "MIT" ]
1
2021-05-27T00:34:46.000Z
2021-05-27T00:34:46.000Z
whacc/image_tools.py
hireslab/whacc
e0ccfe4ee784609cacd4cf62a17192687a5dff51
[ "MIT" ]
null
null
null
whacc/image_tools.py
hireslab/whacc
e0ccfe4ee784609cacd4cf62a17192687a5dff51
[ "MIT" ]
null
null
null
import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import numpy as np import h5py import copy import time import os from whacc import utils def isnotebook(): try: c = str(get_ipython().__class__) shell = get_ipython().__class__.__name__ if 'colab' in c: return True elif shell == 'ZMQInteractiveShell': return True # Jupyter notebook or qtconsole elif shell == 'TerminalInteractiveShell': return False # Terminal running IPython else: return False # Other type (?) except NameError: return False # Probably standard Python interpreter if isnotebook(): from tqdm.notebook import tqdm else: from tqdm import tqdm def stack_imgs_lag(imgs, frames_1=None, buffer=2, shift_to_the_right_by=0): if frames_1 is None: frames_1 = [imgs.shape[0]] array_group = [] for k1, k2 in utils.loop_segments(frames_1): x = (np.random.random(imgs[0].shape) * 255).astype(np.uint8) tile_axes = [1] * len(x.shape) + [buffer] x = np.tile(x[:, :, None], tile_axes) tmp1 = x.copy() for ii, stack_i in enumerate(range(k1, k2)): x = np.concatenate((x, imgs[stack_i][:, :, None]), axis=2) x = np.concatenate((x, tmp1), axis=2) for k3 in range(k2 - k1): array_group.append(x[:, :, k3 + shift_to_the_right_by: k3 + 1 + buffer + shift_to_the_right_by]) return np.asarray(array_group) def get_h5_key_and_concatenate(h5_list, key_name='labels'): """ simply extract and concatenate all of one key "key_name" from many H5 files, I use it to get balance the data touch and not touch frames when training a model with a list of different H5 files Parameters ---------- h5_list : list list of full paths to H5 file(s). key_name : str default 'labels', the key to get the data from the H5 file """ h5_list = utils.make_list(h5_list, suppress_warning=True) for i, k in enumerate(h5_list): with h5py.File(k, 'r') as h: if i == 0: out = np.asarray(h[key_name][:]) else: out = np.concatenate((out, h[key_name][:])) return out def get_h5_key_and_dont_concatenate(h5_list, key_name='labels'): """ simply extract and concatenate all of one key "key_name" from many H5 files, I use it to get balance the data touch and not touch frames when training a model with a list of different H5 files Parameters ---------- h5_list : list list of full paths to H5 file(s). key_name : str default 'labels', the key to get the data from the H5 file """ out = [] for i, k in enumerate(h5_list): with h5py.File(k, 'r') as h: out.append(list(h[key_name][:])) return out def clone_h5_basic_info(H5_list, fold_name=None, file_end='_QUICK_SAVE.h5'): """ copies all the info form H5 into another H5 file NOT INCLUDING the labels or images. so it have all the file info, like names and pole locations and polate match max value stack. anything with 'images' , 'MODEL__' or 'labels' is not copied over to the new file. Parameters ---------- H5_list : list list of H5 files to clone fold_name : str default None, where to place the cloned H5 files. if left blank it will place in the same folder as the original file file_end : str default '_QUICK_SAVE.h5', how to change the name of the H5 file to be cloned to differentiate it from the original Returns ------- all_new_h5s: list list of new H5 full file names """ if fold_name is not None: try: os.mkdir(fold_name) except: pass all_new_h5s = [] for h5 in H5_list: if fold_name is not None: new_fn = fold_name + os.path.sep + os.path.basename(h5)[:-3] + file_end else: # new_fn = os.path.dirname(h5) + os.path.sep + os.path.basename(h5)[:-3] + file_end all_new_h5s.append(new_fn) try: os.remove(new_fn) except: pass with h5py.File(new_fn, 'w') as f1: with h5py.File(h5, 'r') as f2: for i, k in enumerate(f2.keys()): if 'images' != k and 'MODEL__' not in k and 'labels' not in k: f1.create_dataset(k, data=f2[k][:]) f2.close() f1.close() return all_new_h5s def del_h5_with_term(h5_list, str_2_cmp): """ Parameters ---------- h5_list : list list of H5 strings (full path) str_2_cmp : str will delete keys with this in their title ... e.g. '__RETRAIN' """ for k2 in h5_list: with h5py.File(k2, 'a') as h5_source: for k in h5_source.keys(): if str_2_cmp in k: print('del--> ' + k) del h5_source[k] print('_______') def split_h5_loop_segments(h5_to_split_list, split_percentages, temp_base_name, chunk_size=10000, add_numbers_to_name=True, disable_TQDM=False, set_seed=None, color_channel=True): """Randomly splits images from a list of H5 file(s) into len(split_percentages) different H5 files. Parameters ---------- h5_to_split_list : list list of strings with full file names to the H5 file(s) to be split split_percentages : list list of numbers, can be ints [20, 1, 1] and or floats [.8, .2], it simply takes the sum and creates a percentage temp_base_name : str or list full path to new h5 file e.g "'/Users/phil/tempH5_" and the program will add the number and the ".h5" in this case tempH5_0.h5, tempH5_1.h5, tempH5_2.h5 etc. or if it is a list it must be equal in length to 'split_percentages' and each file will be named based on that list chunk_size = int default 10000, max amount of frames to hold in memory at a time before storing in H5 file. Should almost never be an issue but just in case you can set to a lower value if you experience memory issues. add_numbers_to_name = bool default true, just in case you don't want the numbers on the end of your h5 file. Returns Examples -------- from whacc import image_tools, utils h5_to_split_list = "/Users/phil/Downloads/untitled folder 2/AH0000x000000_small_tester.h5" h5_to_split_list = [h5_to_split_list] utils.print_h5_keys(h5_to_split_list[0]) bd = '/Users/phil/Downloads/untitled folder 2/' image_tools.split_h5_loop_segments(h5_to_split_list, [1, 3], [bd+'TRASH', bd+'TRASH2'], chunk_size=10000, add_numbers_to_name=False, disable_TQDM=False, set_seed = None) ------- """ if isinstance(temp_base_name, str): temp_base_name = [temp_base_name] * len(split_percentages) else: assert len(temp_base_name) == len( split_percentages), """if 'temp_base_name' is a list of strings, it must be equal in length to 'split_percentages'""" for i, k in enumerate(temp_base_name): if k[-3:] == '.h5': temp_base_name[i] = temp_base_name[i][:-3] frame_num_array_list = get_h5_key_and_dont_concatenate(h5_to_split_list, 'frame_nums') total_frames = len(get_h5_key_and_concatenate(h5_to_split_list, key_name='labels')) cnt1 = 0 h5_creators = dict() split_percentages = split_percentages / np.sum(split_percentages) # assert(sum(split_percentages)==1) final_names = [] for iii, h5_to_split in enumerate(h5_to_split_list): with h5py.File(h5_to_split, 'r') as h: tmp_frame_list = frame_num_array_list[iii] L = len(tmp_frame_list) if set_seed is not None: np.random.seed(set_seed) mixed_inds = np.random.choice(L, L, replace=False) random_segment_inds = np.split(mixed_inds, np.ceil(L * np.cumsum(split_percentages[:-1])).astype('int')) random_segment_inds = [sorted(tmpk) for tmpk in random_segment_inds] random_frame_inds = [[None]] * len(random_segment_inds) list_of_new_frame_nums = [[None]] * len(random_segment_inds) loop_seg_list = list(utils.loop_segments(tmp_frame_list)) for pi, p in enumerate(random_segment_inds): tmp1 = [] tmp2 = [] for pp in p: x = list(loop_seg_list[pp]) tmp1 += list(range(x[0], x[1])) tmp2.append(tmp_frame_list[pp]) random_frame_inds[pi] = tmp1 list_of_new_frame_nums[pi] = tmp2 for i, k in enumerate(split_percentages): # for each new h5 created if iii == 0: # create the H5 creators if add_numbers_to_name: final_names.append(temp_base_name[i] + '_' + str(i) + '.h5') else: final_names.append(temp_base_name[i] + '.h5') h5_creators[i] = h5_iterative_creator(final_names[-1], overwrite_if_file_exists=True, close_and_open_on_each_iteration=True, color_channel=color_channel) ims = [] labels = [] for ii in tqdm(sorted(random_frame_inds[i]), disable=disable_TQDM, total=total_frames, initial=cnt1): cnt1 += 1 ims.append(h['images'][ii]) labels.append(h['labels'][ii]) if ii > 0 and ii % chunk_size == 0: h5_creators[i].add_to_h5(np.asarray(ims), np.asarray(labels)) ims = [] labels = [] h5_creators[i].add_to_h5(np.asarray(ims), np.asarray(labels)) with h5py.File(h5_creators[i].h5_full_file_name, 'r+') as h2: # wanted to do this to allow NONE as input and still have frame nums, but I need to have an append after creating and its a pain frame_nums = np.asarray(list_of_new_frame_nums[i]) if 'frame_nums' not in h2.keys(): h2.create_dataset('frame_nums', shape=np.shape(frame_nums), maxshape=(None,), chunks=True, data=frame_nums) else: h2['frame_nums'].resize(h2['frame_nums'].shape[0] + frame_nums.shape[0], axis=0) h2['frame_nums'][-frame_nums.shape[0]:] = frame_nums # # add the frame info to each # for i, frame_nums in enumerate(list_of_new_frame_nums): # with h5py.File(h5_creators[i].h5_full_file_name, 'r+') as h: # h.create_dataset('frame_nums', shape=np.shape(frame_nums), data=frame_nums) return final_names def make_sure_frame_nums_exist(h5file): with h5py.File(h5file, 'r+') as h: key_list = list(h.keys()) if 'frame_nums' in key_list: print("""'frame_nums' already in the key list""") return None if 'trial_nums_and_frame_nums' not in key_list: print( """key 'trial_nums_and_frame_nums' must be in the provided h5 this is the only reason program exists""") return None frame_nums = h['trial_nums_and_frame_nums'][1, :] h.create_dataset('frame_nums', shape=np.shape(frame_nums), data=frame_nums) def split_h5(h5_to_split_list, split_percentages, temp_base_name, chunk_size=10000, add_numbers_to_name=True, disable_TQDM=False, skip_if_label_is_neg_1=False, set_seed=None, color_channel=True): """Randomly splits images from a list of H5 file(s) into len(split_percentages) different H5 files. Parameters ---------- h5_to_split_list : list list of strings with full file names to the H5 file(s) to be split split_percentages : list list of numbers, can be ints [20, 1, 1] and or floats [.8, .2], it simply takes the sum and creates a percentage temp_base_name : str or list full path to new h5 file e.g "'/Users/phil/tempH5_" and the program will add the number and the ".h5" in this case tempH5_0.h5, tempH5_1.h5, tempH5_2.h5 etc. or if it is a list it must be equal in length to 'split_percentages' and each file will be named based on that list chunk_size = int default 10000, max amount of frames to hold in memory at a time before storing in H5 file. Should almost never be an issue but just in case you can set to a lower value if you experience memory issues. add_numbers_to_name = bool default true, just in case you don't want the numbers on the end of your h5 file. Returns ------- """ if isinstance(temp_base_name, str): temp_base_name = [temp_base_name] * len(split_percentages) else: assert len(temp_base_name) == len( split_percentages), """if 'temp_base_name' is a list of strings, it must be equal in length to 'split_percentages'""" total_frames = len(get_h5_key_and_concatenate(h5_to_split_list, key_name='labels')) cnt1 = 0 h5_creators = dict() split_percentages = split_percentages / np.sum(split_percentages) # assert(sum(split_percentages)==1) final_names = [] for iii, h5_to_split in enumerate(h5_to_split_list): with h5py.File(h5_to_split, 'r') as h: L = len(h['labels'][:]) if set_seed is not None: np.random.seed(set_seed) mixed_inds = np.random.choice(L, L, replace=False) if skip_if_label_is_neg_1: # remove -1s mixed_inds = mixed_inds[mixed_inds != -1] random_frame_inds = np.split(mixed_inds, np.ceil(L * np.cumsum(split_percentages[:-1])).astype('int')) for i, k in enumerate(split_percentages): if iii == 0: # create the H5 creators if add_numbers_to_name: final_names.append(temp_base_name[i] + '_' + str(i) + '.h5') else: final_names.append(temp_base_name[i] + '.h5') h5_creators[i] = h5_iterative_creator(final_names[-1], overwrite_if_file_exists=True, close_and_open_on_each_iteration=True, color_channel=color_channel) ims = [] labels = [] # print('starting ' + str(iii*i + 1) + ' of ' + str(len(split_percentages)*len(h5_to_split_list))) for ii in tqdm(sorted(random_frame_inds[i]), disable=disable_TQDM, total=total_frames, initial=cnt1): cnt1 += 1 ims.append(h['images'][ii]) labels.append(h['labels'][ii]) if ii > 0 and ii % chunk_size == 0: h5_creators[i].add_to_h5(np.asarray(ims), np.asarray(labels)) ims = [] labels = [] h5_creators[i].add_to_h5(np.asarray(ims), np.asarray(labels)) return final_names class h5_iterative_creator(): """Create an H5 file using a for loop easily. used to create the augmented H5 file for training Attributes: Parameters ---------- h5_new_full_file_name : string full path name to your H5 file to be created overwrite_if_file_exists : bool overwrites the h5 file if it already exists max_img_height : int default 61, only the max size, can be larger in case you are going to have larger images max_img_width : int default 61, only the max size, can be larger in case you are going to have larger images close_and_open_on_each_iteration : bool default True, this prevents the user from forgetting to close H5 which can lead to corruption. Example _______ h5creator = h5_iterative_creator(new_H5_file) h5creator.add_to_h5(img_stack1, labels_stack1) h5creator.add_to_h5(img_stack2, labels_stack2) h5creator.add_to_h5(img_stack3, labels_stack3) """ def __init__(self, h5_new_full_file_name, overwrite_if_file_exists=False, max_img_height=61, max_img_width=61, close_and_open_on_each_iteration=True, color_channel=True, add_to_existing_H5=False): if not close_and_open_on_each_iteration: print('**remember to CLOSE the H5 file when you are done!!!**') if overwrite_if_file_exists and os.path.isfile(h5_new_full_file_name): os.remove(h5_new_full_file_name) self.h5_full_file_name = h5_new_full_file_name if add_to_existing_H5: self.hf_file = h5py.File(h5_new_full_file_name, "r+") else: self.hf_file = h5py.File(h5_new_full_file_name, "w") self.color_channel = color_channel self.max_img_height = max_img_height self.max_img_width = max_img_width self._went_through_create_h5 = False self.close_it = close_and_open_on_each_iteration if self.close_it: self.hf_file.close() def add_to_h5(self, images, labels): """ Parameters ---------- images : numpy tensor chunk of images labels : numpy array array oof labels """ if self.close_it: self.open_or_close_h5('r+') if self._went_through_create_h5: # already initialized with the correct size self._add_next_chunk_to_h5(images, labels) else: self._create_h5(images, labels) if self.close_it: self.open_or_close_h5('close') def _create_h5(self, images, labels): """ Parameters ---------- images : labels : """ # if set_multiplier: self.hf_file.create_dataset("multiplier", [1], h5py.h5t.STD_I32LE, data=images.shape[0]) if self.color_channel: self.hf_file.create_dataset('images', np.shape(images), h5py.h5t.STD_U8BE, maxshape=(None, self.max_img_height, self.max_img_width, 3), chunks=True, data=images) else: self.hf_file.create_dataset('images', np.shape(images), h5py.h5t.STD_U8BE, maxshape=(None, self.max_img_height, self.max_img_width), chunks=True, data=images) self.hf_file.create_dataset('labels', np.shape(labels), h5py.h5t.STD_I32LE, maxshape=(None,), chunks=True, data=labels) self._went_through_create_h5 = True def _add_next_chunk_to_h5(self, images, labels): """ Parameters ---------- images : labels : Returns ------- """ self.hf_file['images'].resize(self.hf_file['images'].shape[0] + images.shape[0], axis=0) self.hf_file['labels'].resize(self.hf_file['labels'].shape[0] + labels.shape[0], axis=0) self.hf_file['images'][-images.shape[0]:] = images self.hf_file['labels'][-labels.shape[0]:] = labels def read_h5(self): """ """ self.open_or_close_h5('r') print('''**remember to CLOSE the H5 file when you are done!!!** with ".close_h5()" method''') def close_h5(self): """ """ self.open_or_close_h5('close') print('H5 file was closed') def open_or_close_h5(self, mode_='r'): """ Parameters ---------- mode_ : str mode can be H5py modes 'r', 'r+' 'w' (w overwrites file!) etc OR 'close' to # ensure it is closed. separate function to prevent a bunch of try statements (Default value = 'r') Returns ------- """ try: self.hf_file.close() finally: if mode_.lower() != 'close': self.hf_file = h5py.File(self.h5_full_file_name, mode_) # def augment_helper(keras_datagen, num_aug_ims, num_reg_ims, in_img, in_label): """ Parameters ---------- keras_datagen : keras_datagen: keras_datagen: keras.preprocessing.image.ImageDataGenerator from keras.preprocessing.image import ImageDataGenerator-- keras_datagen = ImageDataGenerator(...) num_aug_ims : int number of augmented images to generate from single input image num_reg_ims : int number of copies of in_img to produce. will be stacked at the beginning of all_augment variable. Use dot see augmentation when testing and can be useful if splitting into many H5s if you want an original in each. in_img : numpy array numpy array either 3D with color channel for the last dim ot 2D in_label : int the label associate with in_img. simply repeats it creating 'out_labels' the be size of 'all_augment' Returns ------- """ if len(in_img.shape) == 2: # or not np.any(np.asarray(in_img.shape)==3) in_img = np.repeat(in_img[..., np.newaxis], 3, -1) # for 2D arrays without color channels set_zoom = keras_datagen.zoom_range in_img = np.expand_dims(in_img, 0) it = keras_datagen.flow(in_img, batch_size=1) all_augment = np.tile(in_img, [num_reg_ims, 1, 1, 1]) for i in range(num_aug_ims): ## if set_zoom != [0, 0]: # if zoom is being used... # keras 'zoom' is annoying. it zooms x and y differently randomly # in order to get an equal zoom I use the following workaround. z_val = np.random.uniform(low=set_zoom[0], high=set_zoom[1]) keras_datagen.zoom_range = [z_val, z_val] it = keras_datagen.flow(in_img, batch_size=1) batch = it.next() image = batch[0].astype('uint8') all_augment = np.append(all_augment, np.expand_dims(image, 0), 0) out_labels = np.repeat(in_label, sum([num_aug_ims, num_reg_ims])) keras_datagen.zoom_range = set_zoom return all_augment, out_labels def img_unstacker(img_array, num_frames_wide=8, color_channel=True): """unstacks image stack and combines them into one large image for easy display. reads left to right and then top to bottom. Parameters ---------- img_array : numpy array stacked image array num_frames_wide : int width of destacked image. if = 8 with input 20 images it will be 8 wide 3 long and 4 blank images (Default value = 8) Returns ------- """ im_stack = None for i, k in enumerate(img_array): if i % num_frames_wide == 0: if i != 0: # stack it if im_stack is None: im_stack = im_stack_tmp else: im_stack = np.vstack((im_stack, im_stack_tmp)) im_stack_tmp = k # must be at the end else: im_stack_tmp = np.hstack((im_stack_tmp, k)) x = num_frames_wide - len(img_array) % num_frames_wide if x != 0: if x != num_frames_wide: for i in range(x): im_stack_tmp = np.hstack((im_stack_tmp, np.ones_like(k))) if im_stack is None: return im_stack_tmp else: im_stack = np.vstack((im_stack, im_stack_tmp)) return im_stack def original_image(x): """This is used to transform batch generated images [-1 1] to the original image [0,255] for plotting Parameters ---------- x : Returns ------- """ image = tf.cast((x + 1) * 127.5, tf.uint8) return image def predict_multiple_H5_files(H5_file_list, model_2_load, append_model_and_labels_to_name_string=False, batch_size=1000, model_2_load_is_model=False, save_on=False, label_save_name=None, disable_TQDM=False, save_labels_to_this_h5_file_instead=None) -> object: """ Parameters ---------- H5_file_list : list: list list of string(s) of H5 file full paths model_2_load : param append_model_and_labels_to_name_string: if True label_save_name = 'MODEL__' + label_save_name + '__labels', it is a simple way to keep track of labels form many models in a single H5 file. also make sit easier to find : those labels for later processing. : either full path to model folder ending with ".ckpt" OR the loaded model itself. if the later, the user MUST set "model_2_load_is_model" is True and "label_save_name" must be explicitly defined (when using model path we use the model name to name the labels). append_model_and_labels_to_name_string : bool if True label_save_name = 'MODEL__' + label_save_name + '__labels',it is a simple way to keep track of labels form many models in a single H5 file. also make sit easier to find those labels for later processing. (Default value = False) batch_size : int number of images to process per batch, -- slower prediction speeds << ideal predictionsspeed << memory issues and crashes -- 1000 is normally pretty good on Google CoLab (Default value = 1000) model_2_load_is_model : bool lets the program know if you are directly inserting a model (instead of a path to model folder) (Default value = False) save_on : bool saves to H5 file. either the original H5 (image source) or new H5 if a path to "save_labels_to_this_h5_file_instead" is given (Default value = False) label_save_name : string h5 file key used to save the labels to, default is 'MODEL__' + **model_name** + '__labels' disable_TQDM : bool if True, turns off loading progress bar. (Default value = False) save_labels_to_this_h5_file_instead : string full path to H5 file to insert labels into instead of the H5 used as the image source (Default value = None) Returns ------- """ for i, H5_file in enumerate(H5_file_list): # save_what_is_left_of_your_h5_file(H5_file, do_del_and_rename = 1) # only matters if file is corrupt otherwise doesnt touch it gen = ImageBatchGenerator(batch_size, [H5_file]) if model_2_load_is_model: if label_save_name is None and save_on == True: assert 1 == 0, 'label_save_name must be assigned if you are loading a model in directly and saveon == True.' model = model_2_load else: if label_save_name is None: label_save_name = model_2_load.split(os.path.sep)[-1].split('.')[0] label_save_name = 'MODEL__' + label_save_name + '__labels' append_model_and_labels_to_name_string = False # turn off because defaults to this naming scheme if user doesnt put in name model = tf.keras.models.load_model(model_2_load) if append_model_and_labels_to_name_string: label_save_name = 'MODEL__' + label_save_name + '__labels' start = time.time() labels_2_save = np.asarray([]) for k in tqdm(range(gen.__len__()), disable=disable_TQDM): TMP_X, tmp_y = gen.getXandY(k) outY = model.predict(TMP_X) labels_2_save = np.append(labels_2_save, outY) total_seconds = time.time() - start time_per_mil = np.round(1000000 * total_seconds / len(labels_2_save)) print(str(time_per_mil) + ' seconds per 1 million images predicted') if save_on: if save_labels_to_this_h5_file_instead is not None: # add to differnt H5 file H5_file = save_labels_to_this_h5_file_instead # otherwise it will add to the current H5 file # based on the loop through "H5_file_list" above try: hf.close() except: pass with h5py.File(H5_file, 'r+') as hf: try: del hf[label_save_name] time.sleep(10) # give time to process the deleted file... maybe??? hf.create_dataset(label_save_name, data=np.float64(labels_2_save)) except: hf.create_dataset(label_save_name, data=np.float64(labels_2_save)) hf.close() return labels_2_save def get_total_frame_count(h5_file_list): """ Parameters ---------- h5_file_list : Returns ------- """ total_frame_count = [] for H5_file in h5_file_list: H5 = h5py.File(H5_file, 'r') images = H5['images'] total_frame_count.append(images.shape[0]) return total_frame_count def batch_size_file_ind_selector(num_in_each, batch_size): """batch_size_file_ind_selector - needed for ImageBatchGenerator to know which H5 file index to use depending on the iteration number used in __getitem__ in the generator. this all depends on the variable batch size. Example: the output of the following... batch_size_file_ind_selector([4000, 4001, 3999], [2000]) would be [0, 0, 1, 1, 1, 2, 2] which means that there are 2 chunks in the first H5 file, 3 in the second and 2 in the third based on chunk size of 2000 Parameters ---------- num_in_each : param batch_size: batch_size : Returns ------- """ break_into = np.ceil(np.array(num_in_each) / batch_size) extract_inds = np.array([]) for k, elem in enumerate(break_into): tmp1 = np.array(np.ones(np.int(elem)) * k) extract_inds = np.concatenate((extract_inds, tmp1), axis=0) return extract_inds # file_inds_for_H5_extraction is the same as extract_inds output from the above function def reset_to_first_frame_for_each_file_ind(file_inds_for_H5_extraction): """reset_to_first_frame_for_each_file_ind - uses the output of batch_size_file_ind_selector to determine when to reset the index for each individual H5 file. using the above example the out put would be [0, 0, 2, 2, 2, 5, 5], each would be subtracted from the indexing to set the position of the index to 0 for each new H5 file. Parameters ---------- file_inds_for_H5_extraction : Returns ------- """ subtract_for_index = [] for k, elem in enumerate(file_inds_for_H5_extraction): tmp1 = np.diff(file_inds_for_H5_extraction) tmp1 = np.where(tmp1 != 0) tmp1 = np.append(-1, tmp1[0]) + 1 subtract_for_index.append(tmp1[np.int(file_inds_for_H5_extraction[k])]) return subtract_for_index class ImageBatchGenerator(keras.utils.Sequence): """ """ def __init__(self, batch_size, h5_file_list, label_key = 'labels'): h5_file_list = utils.make_list(h5_file_list, suppress_warning=True) num_frames_in_all_H5_files = get_total_frame_count(h5_file_list) file_inds_for_H5_extraction = batch_size_file_ind_selector( num_frames_in_all_H5_files, batch_size) subtract_for_index = reset_to_first_frame_for_each_file_ind( file_inds_for_H5_extraction) # self.to_fit = to_fit #set to True to return XY and False to return X self.label_key = label_key self.batch_size = batch_size self.H5_file_list = h5_file_list self.num_frames_in_all_H5_files = num_frames_in_all_H5_files self.file_inds_for_H5_extraction = file_inds_for_H5_extraction self.subtract_for_index = subtract_for_index self.IMG_SIZE = 96 def __len__(self): return len(self.file_inds_for_H5_extraction) def __getitem__(self, num_2_extract): b = self.batch_size h = self.H5_file_list i = self.file_inds_for_H5_extraction H5_file = h[np.int(i[num_2_extract])] with h5py.File(H5_file, 'r') as H5: # H5 = h5py.File(H5_file, 'r') images = H5['images'] num_2_extract_mod = num_2_extract - self.subtract_for_index[num_2_extract] raw_X = images[b * num_2_extract_mod:b * (num_2_extract_mod + 1)] rgb_tensor = self.image_transform(raw_X) labels_tmp = H5[self.label_key] raw_Y = labels_tmp[b * num_2_extract_mod:b * (num_2_extract_mod + 1)] H5.close() return rgb_tensor, raw_Y # def __getitem__(self, num_2_extract): # b = self.batch_size # h = self.H5_file_list # i = self.file_inds_for_H5_extraction # H5_file = h[np.int(i[num_2_extract])] # H5 = h5py.File(H5_file, 'r') # # list(H5.keys()) # # images = H5['images'] # num_2_extract_mod = num_2_extract - self.subtract_for_index[num_2_extract] # raw_X = images[b * num_2_extract_mod:b * (num_2_extract_mod + 1)] # rgb_tensor = self.image_transform(raw_X) # # # if self.to_fit: # # labels_tmp = H5[self.label_key] # # raw_Y = labels_tmp[b*num_2_extract_mod:b*(num_2_extract_mod+1)] # # return rgb_tensor, raw_Y # # else: # return rgb_tensor def getXandY(self, num_2_extract): """ Parameters ---------- num_2_extract : Returns ------- """ b = self.batch_size h = self.H5_file_list i = self.file_inds_for_H5_extraction H5_file = h[np.int(i[num_2_extract])] H5 = h5py.File(H5_file, 'r') # list(H5.keys()) images = H5['images'] num_2_extract_mod = num_2_extract - self.subtract_for_index[num_2_extract] raw_X = images[b * num_2_extract_mod:b * (num_2_extract_mod + 1)] rgb_tensor = self.image_transform(raw_X) labels_tmp = H5[self.label_key] raw_Y = labels_tmp[b * num_2_extract_mod:b * (num_2_extract_mod + 1)] return rgb_tensor, raw_Y def image_transform(self, raw_X): """input num_of_images x H x W, image input must be grayscale MobileNetV2 requires certain image dimensions We use N x 61 x 61 formated images self.IMG_SIZE is a single number to change the images into, images must be square Parameters ---------- raw_X : Returns ------- """ # rgb_batch = np.repeat(raw_X[..., np.newaxis], 3, -1) # rgb_tensor = tf.cast(rgb_batch, tf.float32) # convert to tf tensor with float32 dtypes # rgb_tensor = (rgb_tensor / 127.5) - 1 # /127.5 = 0:2, -1 = -1:1 requirement for mobilenetV2 # rgb_tensor = tf.image.resize(rgb_tensor, (self.IMG_SIZE, self.IMG_SIZE)) # resizing # self.IMG_SHAPE = (self.IMG_SIZE, self.IMG_SIZE, 3) # return rgb_tensor if len(raw_X.shape) == 4 and raw_X.shape[3] == 3: rgb_batch = copy.deepcopy(raw_X) else: rgb_batch = np.repeat(raw_X[..., np.newaxis], 3, -1) rgb_tensor = tf.cast(rgb_batch, tf.float32) # convert to tf tensor with float32 dtypes rgb_tensor = (rgb_tensor / 127.5) - 1 # /127.5 = 0:2, -1 = -1:1 requirement for mobilenetV2 rgb_tensor = tf.image.resize(rgb_tensor, (self.IMG_SIZE, self.IMG_SIZE)) # resizing self.IMG_SHAPE = (self.IMG_SIZE, self.IMG_SIZE, 3) return rgb_tensor def plot_batch_distribution(self): """ """ # randomly select a batch and generate images and labels batch_num = np.random.choice(np.arange(0, self.__len__())) samp_x, samp_y = self.getXandY(batch_num) # look at the distribution of classes plt.pie([1 - np.mean(samp_y), np.mean(samp_y)], labels=['non-touch frames', 'touch frames'], autopct='%1.1f%%', ) plt.title('class distribution from batch ' + str(batch_num)) plt.show() # generate indices for positive and negative classes images_to_sample = 20 neg_class = [i for i, val in enumerate(samp_y) if val == 0] pos_class = [i for i, val in enumerate(samp_y) if val == 1] neg_index = np.random.choice(neg_class, images_to_sample) pos_index = np.random.choice(pos_class, images_to_sample) # plot sample positive and negative class images plt.figure(figsize=(10, 10)) samp_x = (samp_x + 1) / 2 for i in range(images_to_sample): plt.subplot(5, 10, i + 1) plt.xticks([]) plt.yticks([]) plt.grid(False) _ = plt.imshow(samp_x[neg_index[i]]) plt.xlabel('0') plt.subplot(5, 10, images_to_sample + i + 1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(samp_x[pos_index[i]]) plt.xlabel('1') plt.suptitle('sample images from batch ' + str(batch_num)) plt.show() def image_transform_(IMG_SIZE, raw_X): """ input num_of_images x H x W, image input must be grayscale MobileNetV2 requires certain image dimensions We use N x 61 x 61 formated images self.IMG_SIZE is a single number to change the images into, images must be square Parameters ---------- raw_X : Returns ------- """ if len(raw_X.shape) == 4 and raw_X.shape[3] == 3: rgb_batch = copy.deepcopy(raw_X) else: rgb_batch = np.repeat(raw_X[..., np.newaxis], 3, -1) rgb_tensor = tf.cast(rgb_batch, tf.float32) # convert to tf tensor with float32 dtypes rgb_tensor = (rgb_tensor / 127.5) - 1 # /127.5 = 0:2, -1 = -1:1 requirement for mobilenetV2 rgb_tensor = tf.image.resize(rgb_tensor, (IMG_SIZE, IMG_SIZE)) # resizing IMG_SHAPE = (IMG_SIZE, IMG_SIZE, 3) return rgb_tensor
40.223382
173
0.602896
11,626
0.301708
0
0
0
0
0
0
16,060
0.416775
3d3c48e30dea59b0f2566984a39668435562eafb
10,007
py
Python
tests/texts/declerations.py
Intsights/flake8-intsights
b3785a3be855e05090641696e0648486107dba72
[ "MIT" ]
12
2020-02-18T17:47:57.000Z
2021-07-13T10:23:40.000Z
tests/texts/declerations.py
Intsights/flake8-intsights
b3785a3be855e05090641696e0648486107dba72
[ "MIT" ]
7
2020-02-25T12:14:11.000Z
2020-12-01T08:14:58.000Z
tests/texts/declerations.py
Intsights/flake8-intsights
b3785a3be855e05090641696e0648486107dba72
[ "MIT" ]
1
2020-07-01T15:49:28.000Z
2020-07-01T15:49:28.000Z
declerations_test_text_001 = ''' list1 = [ 1, ] ''' declerations_test_text_002 = ''' list1 = [ 1, 2, ] ''' declerations_test_text_003 = ''' tuple1 = ( 1, ) ''' declerations_test_text_004 = ''' tuple1 = ( 1, 2, ) ''' declerations_test_text_005 = ''' set1 = { 1, } ''' declerations_test_text_006 = ''' set1 = { 1, 2, } ''' declerations_test_text_007 = ''' dict1 = { 'key': 1, } ''' declerations_test_text_008 = ''' dict1 = { 'key1': 1, 'key2': 2, } ''' declerations_test_text_009 = ''' return [ 1, ] ''' declerations_test_text_010 = ''' return [ 1, 2, ] ''' declerations_test_text_011 = ''' return ( 1, ) ''' declerations_test_text_012 = ''' return ( 1, 2, ) ''' declerations_test_text_013 = ''' return { 1, } ''' declerations_test_text_014 = ''' return { 1, 2, } ''' declerations_test_text_015 = ''' return { 'key': 1, } ''' declerations_test_text_016 = ''' return { 'key1': 1, 'key2': 2, } ''' declerations_test_text_017 = ''' yield [ 1, ] ''' declerations_test_text_018 = ''' yield [ 1, 2, ] ''' declerations_test_text_019 = ''' yield ( 1, ) ''' declerations_test_text_020 = ''' yield ( 1, 2, ) ''' declerations_test_text_021 = ''' yield { 1, } ''' declerations_test_text_022 = ''' yield { 1, 2, } ''' declerations_test_text_023 = ''' yield { 'key': 1, } ''' declerations_test_text_024 = ''' yield { 'key1': 1, 'key2': 2, } ''' declerations_test_text_025 = ''' list1 = [ [ 1, ], ] ''' declerations_test_text_026 = ''' list1 = [ [ 1, 2, ], ] ''' declerations_test_text_027 = ''' tuple1 = ( ( 1, ), ) ''' declerations_test_text_028 = ''' tuple1 = ( ( 1, 2, ), ) ''' declerations_test_text_029 = ''' set1 = { { 1, }, } ''' declerations_test_text_030 = ''' set1 = { { 1, 2, }, } ''' declerations_test_text_031 = ''' dict1 = { 'key': { 'key': 1, }, } ''' declerations_test_text_032 = ''' dict1 = { 'key1': { 'key1': 1, 'key2': 2, }, 'key2': { 'key1': 1, 'key2': 2, }, } ''' declerations_test_text_033 = ''' return [ [ 1, ], ] ''' declerations_test_text_034 = ''' return [ [ 1, 2, ], ] ''' declerations_test_text_035 = ''' return ( ( 1, ), ) ''' declerations_test_text_036 = ''' return ( ( 1, 2, ), ) ''' declerations_test_text_037 = ''' return { { 1, }, } ''' declerations_test_text_038 = ''' return { { 1, 2, }, } ''' declerations_test_text_039 = ''' return { 'key': { 'key': 1, }, } ''' declerations_test_text_040 = ''' return { 'key1': { 'key1': 1, 'key2': 2, }, 'key2': { 'key1': 1, 'key2': 2, }, } ''' declerations_test_text_041 = ''' yield [ [ 1, ], ] ''' declerations_test_text_042 = ''' yield [ [ 1, 2, ], ] ''' declerations_test_text_043 = ''' yield ( ( 1, ), ) ''' declerations_test_text_044 = ''' yield ( ( 1, 2, ), ) ''' declerations_test_text_045 = ''' yield { { 1, }, } ''' declerations_test_text_046 = ''' yield { { 1, 2, }, } ''' declerations_test_text_047 = ''' yield { 'key': { 'key': 1, }, } ''' declerations_test_text_048 = ''' yield { 'key1': { 'key1': 1, 'key2': 2, }, 'key2': { 'key1': 1, 'key2': 2, }, } ''' declerations_test_text_049 = ''' list1 = [ [ 2, ], ] ''' declerations_test_text_050 = ''' list_1 = [ [ [ 2, ], ], ] ''' declerations_test_text_051 = ''' list_1 = [ ( 2, ), ] ''' declerations_test_text_052 = ''' list_1 = [ { 'key1': 'value1', }, ] ''' declerations_test_text_053 = ''' list_1 = [ call( param1, ), ] ''' declerations_test_text_054 = ''' entry_1, entry_2 = call() ''' declerations_test_text_055 = ''' ( entry_1, entry_2, ) = call() ''' declerations_test_text_056 = ''' [ 1 for a, b in call() ] ''' declerations_test_text_057 = ''' { 'key': [ 'entry_1', 'entry_2', ] } ''' declerations_test_text_058 = ''' list_1 = [instance.attribute] ''' declerations_test_text_059 = ''' list_1 = [1] ''' declerations_test_text_060 = ''' list_1 = [test] ''' declerations_test_text_061 = ''' dict_1 = {} ''' declerations_test_text_062 = ''' list_1 = [term[1]] ''' declerations_test_text_063 = ''' test = { 'list_of_lists': [ [], ], } ''' declerations_test_text_064 = ''' class ClassName: pass ''' declerations_test_text_065 = ''' class ClassName( Class1, Class2, ): pass ''' declerations_test_text_066 = ''' class ClassName(): pass ''' declerations_test_text_067 = ''' class ClassName(Class1, Class2): pass ''' declerations_test_text_068 = ''' class ClassName( Class1, Class2 ): pass ''' declerations_test_text_069 = ''' def function_name(): pass ''' declerations_test_text_070 = ''' def function_name( ): pass ''' declerations_test_text_071 = ''' def function_name( ): pass ''' declerations_test_text_072 = ''' def function_name( ): pass ''' declerations_test_text_073 = ''' def function_name( arg1, arg2, ): pass ''' declerations_test_text_074 = ''' def function_name( arg1, arg2 ): pass ''' declerations_test_text_075 = ''' def function_name(arg1): pass ''' declerations_test_text_076 = ''' def function_name( arg1, arg2, ): pass ''' declerations_test_text_077 = ''' def function_name( arg1, arg2, ): pass ''' declerations_test_text_078 = ''' def function_name( arg1, **kwargs ): pass ''' declerations_test_text_079 = ''' class Class: def function_name_two( self, arg1, arg2, ): pass ''' declerations_test_text_080 = ''' class Class: @property def function_name_one( self, ): pass ''' declerations_test_text_081 = ''' def function_name( *args, **kwargs ): pass ''' declerations_test_text_082 = ''' class A: def b(): class B: pass ''' declerations_test_text_083 = ''' @decorator( param=1, ) def function_name( param_one, param_two, ): pass ''' declerations_test_text_084 = ''' class ClassA: def function_a(): pass class TestServerHandler( http.server.BaseHTTPRequestHandler, ): pass ''' declerations_test_text_085 = ''' def function( param_a, param_b=[ 'test', ], ): pass ''' declerations_test_text_086 = ''' @decorator class DecoratedClass( ClassBase, ): pass ''' declerations_test_text_087 = ''' class ClassName( object, ): pass ''' declerations_test_text_088 = ''' pixel[x,y] = 10 ''' declerations_test_text_089 = ''' @decorator.one @decorator.two() class DecoratedClass: pass ''' declerations_test_text_090 = ''' @staticmethod def static_method(): pass ''' declerations_test_text_091 = ''' @decorator1 @decorator2 def static_method( param1, param2, ): pass ''' declerations_test_text_092 = ''' @decorator1( param=1, ) def method(): pass ''' declerations_test_text_093 = ''' try: pass except Exception: pass ''' declerations_test_text_094 = ''' try: pass except ( Exception1, Exception2, ): pass ''' declerations_test_text_095 = ''' try: pass except Exception as exception: pass ''' declerations_test_text_096 = ''' try: pass except ( Exception1, Exception2, ) as exception: pass ''' declerations_test_text_097 = ''' try: pass except Exception as e: pass ''' declerations_test_text_098 = ''' try: pass except ( Exception1, Exception2, ) as e: pass ''' declerations_test_text_099 = ''' dict1 = { 'key_one': 1, 'key_two': 2, } ''' declerations_test_text_100 = ''' dict1 = { 'key_one': 1, 'key_two': 2, } ''' declerations_test_text_101 = ''' dict1 = { 'key_one': 1, 'key_two': 2, } ''' declerations_test_text_102 = ''' dict1 = { 'key_one': 1, } ''' declerations_test_text_103 = ''' dict_one = { 'list_comp': [ { 'key_one': 'value', } for i in range(5) ], 'dict_comp': { 'key_one': i for i in range(5) }, 'set_comp': { i for i in range(5) }, 'generator_comp': ( i for i in range(5) ), } ''' declerations_test_text_104 = ''' dict_one = { 'text_key': 'value', f'formatted_text_key': 'value', name_key: 'value', 1: 'value', dictionary['name']: 'value', object.attribute: 'value', } dict_two = { 'key_text_multiline': \'\'\' text \'\'\', 1: 'text', function( param=1, ): 'text', 'text'.format( param=1, ): 'text', 'long_text': ( 'first line' 'second line' ), **other_dict, } ''' declerations_test_text_105 = ''' async def function( param1, ): pass ''' declerations_test_text_106 = ''' def no_args_function(): pass def no_args_function() : pass def no_args_function (): pass def no_args_function( ): pass def no_args_function(): pass def no_args_function() -> None: pass def no_args_function() -> None : pass def no_args_function () -> None: pass def no_args_function( ) -> None: pass def no_args_function() -> None: pass ''' declerations_test_text_107 = ''' class Class: @decorator( param=1, ) async def function(): pass ''' declerations_test_text_108 = ''' list_a = [ \'\'\' multiline string \'\'\', \'\'\' multiline string \'\'\', ] ''' declerations_test_text_109 = ''' list_with_empty_tuple = [ (), ] '''
13.098168
47
0.540122
0
0
0
0
0
0
0
0
6,737
0.673229
3d3d066b8c43e8060d3eeba6ff779ba80c45bf11
1,437
py
Python
data/preprocess_original.py
Nstats/pytorch_senti_analysis_ch
bb01cc508c37638670b26259a6ee35c4e857f2b6
[ "Apache-2.0" ]
1
2019-09-29T02:26:14.000Z
2019-09-29T02:26:14.000Z
data/preprocess_original.py
Nstats/pytorch_senti_analysis_ch
bb01cc508c37638670b26259a6ee35c4e857f2b6
[ "Apache-2.0" ]
1
2021-06-02T00:24:55.000Z
2021-06-02T00:24:55.000Z
data/preprocess_original.py
Nstats/pytorch_senti_analysis_ch
bb01cc508c37638670b26259a6ee35c4e857f2b6
[ "Apache-2.0" ]
null
null
null
import pandas as pd import os import random train_df = pd.read_csv("./data/Train_DataSet.csv") train_label_df = pd.read_csv("./data/Train_DataSet_Label.csv") test_df = pd.read_csv("./data/Test_DataSet.csv") train_df = train_df.merge(train_label_df, on='id', how='left') train_df['label'] = train_df['label'].fillna(-1) train_df = train_df[train_df['label'] != -1] train_df['label'] = train_df['label'].astype(int) test_df['label'] = 0 test_df['content'] = test_df['content'].fillna('无') train_df['content'] = train_df['content'].fillna('无') test_df['title'] = test_df['title'].fillna('无') train_df['title'] = train_df['title'].fillna('无') index = set(range(train_df.shape[0])) K_fold = [] for i in range(5): if i == 4: tmp = index else: tmp = random.sample(index, int(1.0 / 5 * train_df.shape[0])) index = index - set(tmp) print("Number:", len(tmp)) K_fold.append(tmp) for i in range(5): print("Fold", i) if os.path.exists('./data/data_{}'.format(i)): os.system("rm -rf ./data/data_{}".format(i)) os.system("mkdir ./data/data_{}".format(i)) dev_index = list(K_fold[i]) train_index = [] for j in range(5): if j != i: train_index += K_fold[j] train_df.iloc[train_index].to_csv("./data/data_{}/train.csv".format(i)) train_df.iloc[dev_index].to_csv("./data/data_{}/dev.csv".format(i)) test_df.to_csv("./data/data_{}/test.csv".format(i))
33.418605
75
0.636047
0
0
0
0
0
0
0
0
370
0.256055
3d3d56ea2024a56958685b39631e50240545177c
304
py
Python
tools/load_save.py
zs-liu/Pytorch-AS
4e41f96522cce7a35f6625bdbe3863c0b74ee0ca
[ "MIT" ]
null
null
null
tools/load_save.py
zs-liu/Pytorch-AS
4e41f96522cce7a35f6625bdbe3863c0b74ee0ca
[ "MIT" ]
null
null
null
tools/load_save.py
zs-liu/Pytorch-AS
4e41f96522cce7a35f6625bdbe3863c0b74ee0ca
[ "MIT" ]
null
null
null
import torch def save_checkpoint(save_dir, model, optimizer): torch.save({'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict()}, save_dir) return True def load_checkpoint(load_dir): checkpoint = torch.load(load_dir) return checkpoint
23.384615
74
0.713816
0
0
0
0
0
0
0
0
40
0.131579
3d3ee67b67a8537dbe3c66ff4a5cb8e8c72ee707
706
py
Python
support/send_broadcast_message.py
ICT4H/dcs-web
fb0f53fad4401cfac1c1789ff28b9d5bda40c975
[ "Apache-2.0" ]
1
2015-11-02T09:11:12.000Z
2015-11-02T09:11:12.000Z
support/send_broadcast_message.py
ICT4H/dcs-web
fb0f53fad4401cfac1c1789ff28b9d5bda40c975
[ "Apache-2.0" ]
null
null
null
support/send_broadcast_message.py
ICT4H/dcs-web
fb0f53fad4401cfac1c1789ff28b9d5bda40c975
[ "Apache-2.0" ]
null
null
null
from xlrd import open_workbook from scheduler.smsclient import SMSClient filename = "/Users/twer/Downloads/SchoolsSMSGhana.xlsx" workbook = open_workbook(filename) organization_number = "1902" area_code = "233" sheets_ = workbook.sheets()[0] sms_client = SMSClient() print 'Start' for row_num in range(1, sheets_.nrows): row = sheets_.row_values(row_num) _, _, data_sender_phone_number, message = tuple(row) phone_number = area_code + str(int(data_sender_phone_number))[1:] print ("Sending broadcast message to %s from %s.") % (phone_number, organization_number) sms_sent = sms_client.send_sms(organization_number, phone_number, message) print 'Response:', sms_sent print 'End'
32.090909
92
0.756374
0
0
0
0
0
0
0
0
120
0.169972
3d41aeb36fe4c0327c92ba2fb851e5ac557d9a0b
960
py
Python
typhon/oem/error.py
jmollard/typhon
68d5ae999c340b60aa69e095b336d438632ad55c
[ "MIT" ]
null
null
null
typhon/oem/error.py
jmollard/typhon
68d5ae999c340b60aa69e095b336d438632ad55c
[ "MIT" ]
null
null
null
typhon/oem/error.py
jmollard/typhon
68d5ae999c340b60aa69e095b336d438632ad55c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Functions to estimate the different sources of retrieval error. """ from typhon.oem import common __all__ = [ 'smoothing_error', 'retrieval_noise', ] def smoothing_error(x, x_a, A): """Return the smoothing error through the averaging kernel. Parameters: x (ndarray): Atmospherice profile. x_a (ndarray): A priori profile. A (ndarray): Averaging kernel matrix. Returns: ndarray: Smoothing error due to correlation between layers. """ return A @ (x - x_a) def retrieval_noise(K, S_a, S_y, e_y): """Return the retrieval noise. Parameters: K (np.array): Simulated Jacobians. S_a (np.array): A priori error covariance matrix. S_y (np.array): Measurement covariance matrix. e_y (ndarray): Total measurement error. Returns: ndarray: Retrieval noise. """ return common.retrieval_gain_matrix(K, S_a, S_y) @ e_y
23.414634
67
0.644792
0
0
0
0
0
0
0
0
730
0.760417
3d41b25f4537cebd266bfc51daa90f8c3d503433
16,155
py
Python
nicos/core/spm.py
ebadkamil/nicos
0355a970d627aae170c93292f08f95759c97f3b5
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
12
2019-11-06T15:40:36.000Z
2022-01-01T16:23:00.000Z
nicos/core/spm.py
ebadkamil/nicos
0355a970d627aae170c93292f08f95759c97f3b5
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
4
2019-11-08T10:18:16.000Z
2021-01-13T13:07:29.000Z
nicos/core/spm.py
ISISComputingGroup/nicos
94cb4d172815919481f8c6ee686f21ebb76f2068
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
6
2020-01-11T10:52:30.000Z
2022-02-25T12:35:23.000Z
# -*- coding: utf-8 -*- # ***************************************************************************** # NICOS, the Networked Instrument Control System of the MLZ # Copyright (c) 2009-2021 by the NICOS contributors (see AUTHORS) # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Module authors: # Georg Brandl <georg.brandl@frm2.tum.de> # # ***************************************************************************** """ SPM (Simple Parameter Mode) is an alternate command input mode for NICOS where entering Python code is not required. The syntax is very simple and allows no variables, loops or conditionals: a command line consists of a command and optional arguments, separated by spaces. Arguments can be numbers, device names, strings and symbols (words that signify a command option). Strings can be quoted or unquoted as long as they start with a nondigit character. Examples:: read move a1 180 scan sth 10.4 0.4 25 t 2 """ # XXX SPM todos: # * figure out how to convert code examples in docstrings # * add a way to make commands unavailable (e.g. manualscan) import re from itertools import chain, cycle, islice from nicos.core.device import Device from nicos.core.errors import SPMError id_re = re.compile('[a-zA-Z_][a-zA-Z0-9_]*$') string1_re = re.compile(r"'(\\\\|\\'|[^'])*'") string2_re = re.compile(r'"(\\\\|\\"|[^"])*"') spaces_re = re.compile(r'\s+') nospace_re = re.compile(r'[^ \t;]+') def spmsyntax(*arguments, **options): """Decorator to give a function specific SPM syntax advice, for parameter checking and completion. """ def deco(func): func.spmsyntax = arguments, options return func return deco class bare(str): """String that repr()s as itself without quotes.""" def __repr__(self): return str(self) class NoParse(Exception): def __init__(self, expected, token): Exception.__init__(self, expected, token) self.token = token self.expected = expected class Token: desc = 'token' def handle(self, arg, session): raise NoParse('strange token', arg) def complete(self, text, session, argsofar): return [] class String(Token): desc = 'string' def handle(self, arg, session): if string1_re.match(arg) or string2_re.match(arg): return bare(arg) return arg String = String() class Bare(Token): desc = 'value' def handle(self, arg, session): if id_re.match(arg): if arg not in session.namespace: return arg return bare('(' + arg + ')') Bare = Bare() class Num(Token): desc = 'number' def handle(self, arg, session): try: return float(arg) except ValueError: raise NoParse('number', arg) from None Num = Num() class Int(Token): desc = 'integer' def handle(self, arg, session): try: return int(arg) except ValueError: raise NoParse('integer', arg) from None Int = Int() class Oneof(Token): def __init__(self, *choices): self.choices = choices @property def desc(self): return 'one of ' + ', '.join(self.choices) def handle(self, arg, session): if arg.lower() not in self.choices: raise NoParse(self.desc, arg) return arg.lower() def complete(self, text, session, argsofar): return [c for c in self.choices if c.startswith(text)] class Bool(Token): desc = 'boolean' def handle(self, arg, session): if arg.lower() not in ['true', 'false']: raise NoParse('true or false', arg) return bare(arg.capitalize()) def complete(self, text, session, argsofar): return [c for c in ['true', 'false'] if c.startswith(text)] Bool = Bool() class Dev(Token): desc = 'device name' def __init__(self, devtype=Device): self.devtype = devtype def clsrep(self, cls): if isinstance(cls, tuple): return ' or '.join(self.clsrep(c) for c in cls) return cls.__name__ def handle(self, arg, session): if arg not in session.explicit_devices: raise NoParse('device name', arg) if not isinstance(session.devices[arg], self.devtype): raise NoParse('%s device' % self.clsrep(self.devtype), arg) return bare(arg) def complete(self, text, session, argsofar): return [dev for dev in session.explicit_devices if dev.startswith(text) and isinstance(session.devices[dev], self.devtype)] AnyDev = Dev() class DevParam(Token): desc = 'parameter name' def handle(self, arg, session): return arg def complete(self, text, session, argsofar): try: dev = session.getDevice(argsofar[-2]) return [p for p in dev.parameters if p.startswith(text)] except Exception: return [] DevParam = DevParam() class SetupName(Token): desc = 'setup name' def __init__(self, what): self.what = what def handle(self, arg, session): if arg not in session._setup_info: raise NoParse('setup name', arg) return arg def complete(self, text, session, argsofar): all_setups = [name for (name, info) in session._setup_info.items() if info and info['group'] in ('basic', 'optional', 'plugplay', '')] if self.what == 'all': candidates = all_setups elif self.what == 'unloaded': candidates = [setup for setup in all_setups if setup not in session.explicit_setups] elif self.what == 'loaded': candidates = session.explicit_setups return [c for c in candidates if c.startswith(text)] class DeviceName(Token): desc = 'device name' def handle(self, arg, session): if arg not in session.configured_devices: raise NoParse('device name', arg) return arg def complete(self, text, session, argsofar): return [c for c in session.configured_devices if c.startswith(text) and c not in session.devices and not session.configured_devices[c][1].get('lowlevel')] DeviceName = DeviceName() class Multi: def __init__(self, *types): self.types = types class SPMHandler: """The main handler for SPM commands.""" def __init__(self, session): self.session = session def error(self, msg): raise SPMError(msg) def complete(self, command, word): def select(candidates, word): return [c for c in candidates if c.startswith(word)] try: # XXX could complete "?" too if command.startswith(('!', '?')) or command.endswith('?'): return [] if command.startswith(':'): return self.complete(command[1:].strip(), word) commands = self.tokenize(command, partial=True) tokens = commands[-1] # only last command is interesting if not word: tokens.append('') command = tokens[0] if len(tokens) == 1: # complete command return select([n for (n, o) in self.session.namespace.items() if hasattr(o, 'is_usercommand') or isinstance(o, Device)], word) cmdobj = self.session.namespace.get(command) if isinstance(cmdobj, Device): return [] if not hasattr(cmdobj, 'is_usercommand'): return [] return self.complete_command(cmdobj, tokens[1:], word) except Exception as err: self.session.log.debug('error during completion: %s', err) return [] def complete_command(self, command, args, word): syntax = getattr(command, 'spmsyntax', None) if syntax is None: return [] arguments, options = syntax posargs = len(arguments) multargs = 0 if arguments and isinstance(arguments[-1], Multi): multargs = len(arguments[-1].types) posargs -= 1 arguments = chain(arguments[:-1], cycle(arguments[-1].types)) # assume we're completing the last word on the command line if multargs or len(args) <= posargs: # is it a positional argument el = next(islice(arguments, len(args) - 1, len(args))) return el.complete(word, self.session, args) else: # must be an option which = (len(args) - posargs) % 2 if which == 1: # option name return [n for n in options if n.startswith(word)] else: # option value optname = args[-2] if optname in options: return options[optname].complete(word, self.session, args) return [] def handle_script(self, code, fn): lines = [] for lineno, command in enumerate(code.splitlines()): try: lines.append(self.handle_line(command)) except SPMError as err: err.args = ('in %s, line %d: ' % (fn or 'unnamed', lineno + 1) + err.args[0],) raise return '\n'.join(lines) def handle_line(self, command): if command.startswith('#'): # Comments (only in script files) return 'pass' if command.startswith('!'): # Python escape return command[1:].strip() if command.startswith('?') or command.endswith('?'): # Help escape return 'help(%s)' % command.strip('?') if command.startswith(':'): # Simulation escape code = self.handle_line(command[1:]) return 'sim(%r)' % code try: commands = self.tokenize(command) except NoParse as err: return self.error('could not parse starting at %r, expected %s' % (err.token, err.expected)) code = [] for tokens in commands: if not tokens: code.append('pass') continue command = tokens[0] cmdobj = self.session.namespace.get(command) if hasattr(cmdobj, 'is_usercommand'): code.append(self.handle_command(cmdobj, tokens[1:])) elif isinstance(cmdobj, Device): code.append(self.handle_device(cmdobj, tokens[1:])) else: return self.error('no such command or device: %r' % command) return '; '.join(code) def tokenize(self, command, partial=False): rest = command commands = [[]] tokens = commands[0] while rest: if rest.startswith("'"): m = string1_re.match(rest) if not m: if partial: tokens.append(rest) return tokens raise NoParse('single-quoted string', rest) tokens.append(m.group()) rest = rest[m.end():] elif rest.startswith('"'): m = string2_re.match(rest) if not m: if partial: tokens.append(rest) return tokens raise NoParse('double-quoted string', rest) tokens.append(m.group()) rest = rest[m.end():] elif rest.startswith('('): i = 1 while i < len(rest): if rest[i] == ')': break i += 1 else: if partial: tokens.append(rest) return tokens raise NoParse('closing parenthesis', rest) tokens.append(rest[:i + 1]) rest = rest[i + 1:] elif rest.startswith('['): i = 1 while i < len(rest): if rest[i] == ']': break i += 1 else: if partial: tokens.append(rest) return tokens raise NoParse('closing bracket', rest) tokens.append(rest[:i + 1]) rest = rest[i + 1:] elif rest[0].isspace(): m = spaces_re.match(rest) rest = rest[m.end():] elif rest.startswith(';'): # serial command execution commands.append([]) tokens = commands[-1] rest = rest[1:] else: m = nospace_re.match(rest) tokens.append(m.group()) rest = rest[m.end():] return commands def handle_device(self, device, args): if not args: return 'read(%s)' % device elif len(args) == 1: return 'maw(%s, %s)' % (device, args[0]) return self.error('too many arguments for simple device command') def handle_command(self, command, args): syntax = getattr(command, 'spmsyntax', None) if syntax is None: syntax = ((Bare,) * len(args), {}) arguments, options = syntax posargs = len(arguments) multargs = 1 if arguments and isinstance(arguments[-1], Multi): multargs = len(arguments[-1].types) posargs -= 1 arguments = chain(arguments[:-1], cycle(arguments[-1].types)) # first, parse positional arguments (all must be given) cmdargs = [] nargs = 0 for element in arguments: if not args: if nargs < posargs or (nargs - posargs) % multargs != 0: return self.error('premature end of command, expected %s' % element.desc) break try: parg = element.handle(args[0], self.session) except NoParse as err: return self.error('invalid argument at %r, expected %s' % (err.token, err.expected)) cmdargs.append(parg) args = args[1:] nargs += 1 # now come options cmdopts = {} if len(args) % 2: return self.error('too many arguments at %r, expected end of ' 'command' % args[-1]) while args: opt, val = args[:2] args = args[2:] if not id_re.match(opt): return self.error('invalid syntax at %r, expected option name' % opt) if opt in options: try: val = options[opt].handle(val, self.session) except NoParse as err: return self.error('invalid argument at %r, expected %s' % (err.token, err.expected)) else: val = bare(val) cmdopts[opt] = val # now nothing should be left return command.__name__ + '(*%s, **%s)' % (cmdargs, cmdopts)
32.50503
79
0.532281
13,618
0.842959
0
0
80
0.004952
0
0
3,413
0.211266
3d42299242b673c35a88a568c3b956825f9d2deb
514
py
Python
2_Regression/ARX_Regression/empirical_id.py
abe-mart/arduino
1bbd88b6bcc3bb9092c259a071c8f3237c391c6a
[ "Apache-2.0" ]
1
2020-06-23T16:28:34.000Z
2020-06-23T16:28:34.000Z
2_Regression/ARX_Regression/empirical_id.py
abe-mart/arduino
1bbd88b6bcc3bb9092c259a071c8f3237c391c6a
[ "Apache-2.0" ]
null
null
null
2_Regression/ARX_Regression/empirical_id.py
abe-mart/arduino
1bbd88b6bcc3bb9092c259a071c8f3237c391c6a
[ "Apache-2.0" ]
1
2020-07-22T17:43:30.000Z
2020-07-22T17:43:30.000Z
import numpy as np import apm_id as arx ###################################################### # Configuration ###################################################### # number of terms ny = 2 # output coefficients nu = 1 # input coefficients # number of inputs ni = 1 # number of outputs no = 1 # load data and parse into columns data = np.loadtxt('data_step_test.csv',delimiter=',') ###################################################### # generate time-series model arx.apm_id(data,ni,nu,ny)
25.7
55
0.470817
0
0
0
0
0
0
0
0
368
0.715953
3d42e0a9f4a4977092186d96df6c6ef12958272d
75,635
py
Python
setup.py
Alexhuszagh/toolchains
6428c889dd0def79ddf8498f9af7a9d3ddc0423e
[ "Unlicense" ]
22
2021-06-16T08:33:22.000Z
2022-01-31T05:17:54.000Z
setup.py
Alexhuszagh/toolchains
6428c889dd0def79ddf8498f9af7a9d3ddc0423e
[ "Unlicense" ]
1
2022-03-21T16:09:20.000Z
2022-03-21T16:09:20.000Z
setup.py
Alexhuszagh/xcross
6428c889dd0def79ddf8498f9af7a9d3ddc0423e
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python ''' setup ===== This is a relatively complicated setup script, since it does a few things to simplify version control and configuration files. There's a simple script that overrides the `build_py` command to ensure there's proper version control set for the library. There's also a more complex `configure` command that configures all images from template files, and also configures the `cmake` wrapper and the shell version information. ''' # IMPORTS # ------- import ast import enum import glob import itertools import json import re import os import setuptools import shutil import stat import subprocess import sys import textwrap try: from setuptools import setup, Command from setuptools.command.build_py import build_py from setuptools.command.install import install has_setuptools = True except ImportError: from distutils.core import setup, Command from distutils.command.build_py import build_py from distutils.command.install import install has_setuptools = False try: import py2exe except ImportError: if len(sys.argv) >= 2 and sys.argv[1] == 'py2exe': print('Cannot import py2exe', file=sys.stderr) exit(1) # CONFIG # ------ def load_json(path): '''Load JSON files with C++-style comments.''' # Note: we need comments for maintainability, so we # can annotate what works and the rationale, but # we don't want to prevent code from working without # a complex parser, so we do something very simple: # only remove lines starting with '//'. with open(path) as file: lines = file.read().splitlines() lines = [i for i in lines if not i.strip().startswith('//')] return json.loads('\n'.join(lines)) HOME = os.path.dirname(os.path.realpath(__file__)) config = load_json(f'{HOME}/config/config.json') # A lot of logic depends on being on the proper directory: # this allows us to do out-of-source builds. os.chdir(HOME) def get_version(key): '''Get the version data from the JSON config.''' data = config[key]['version'] major = data['major'] minor = data['minor'] patch = data.get('patch', '') release = data.get('release', '') number = data.get('number', '') build = data.get('build', '') return (major, minor, patch, release, number, build) # Read the xcross version information. major, minor, patch, release, number, build = get_version('xcross') version = f'{major}.{minor}' if patch != '0': version = f'{version}.{patch}' release_type = {'alpha': 'a', 'beta': 'b', 'candidate': 'rc', 'post': '.post'} if release and not number: raise ValueError('Must provide a release number with a non-final build.') elif release: version = f'{version}{release_type[release]}{number}' # py2exe version is valid one of the following: # [0-255].[0-255].[0-65535] # [0-255].[0-255].[0-255].[0-255] # Therefore, we can never provide release candidate # values or omit the patch field. py2exe_version = f'{major}.{minor}.{patch}' docker_major, docker_minor, docker_patch, docker_build, *_ = get_version('docker') docker_version = f'{docker_major}.{docker_minor}' if docker_patch != '0': docker_version = f'{docker_version}.{docker_patch}' # Read the dependency version information. # This is the GCC and other utilities version from crosstool-NG. ubuntu_major, ubuntu_minor, *_ = get_version('ubuntu') ubuntu_version = f'{ubuntu_major}.{ubuntu_minor}' emsdk_major, emsdk_minor, emsdk_patch, *_ = get_version('emsdk') emsdk_version = f'{emsdk_major}.{emsdk_minor}.{emsdk_patch}' gcc_major, gcc_minor, gcc_patch, *_ = get_version('gcc') gcc_version = f'{gcc_major}.{gcc_minor}.{gcc_patch}' binutils_major, binutils_minor, *_ = get_version('binutils') binutils_version = f'{binutils_major}.{binutils_minor}' mingw_major, mingw_minor, mingw_patch, *_ = get_version('mingw') mingw_version = f'{mingw_major}.{mingw_minor}.{mingw_patch}' glibc_major, glibc_minor, *_ = get_version('glibc') glibc_version = f'{glibc_major}.{glibc_minor}' musl_major, musl_minor, musl_patch, *_ = get_version('musl') musl_version = f'{musl_major}.{musl_minor}.{musl_patch}' musl_cross_major, musl_cross_minor, musl_cross_patch, *_ = get_version('musl-cross') musl_cross_version = f'{musl_cross_major}.{musl_cross_minor}.{musl_cross_patch}' avr_major, avr_minor, avr_patch, *_ = get_version('avr') avr_version = f'{avr_major}.{avr_minor}.{avr_patch}' uclibc_major, uclibc_minor, uclibc_patch, *_ = get_version('uclibc') uclibc_version = f'{uclibc_major}.{uclibc_minor}.{uclibc_patch}' expat_major, expat_minor, expat_patch, *_ = get_version('expat') expat_version = f'{expat_major}.{expat_minor}.{expat_patch}' isl_major, isl_minor, *_ = get_version('isl') isl_version = f'{isl_major}.{isl_minor}' linux_major, linux_minor, linux_patch, *_ = get_version('linux') linux_version = f'{linux_major}.{linux_minor}.{linux_patch}' linux_headers_major, linux_headers_minor, linux_headers_patch, *_ = get_version('linux-headers') linux_headers_version = f'{linux_headers_major}.{linux_headers_minor}.{linux_headers_patch}' gmp_major, gmp_minor, gmp_patch, *_ = get_version('gmp') gmp_version = f'{gmp_major}.{gmp_minor}.{gmp_patch}' mpc_major, mpc_minor, mpc_patch, *_ = get_version('mpc') mpc_version = f'{mpc_major}.{mpc_minor}.{mpc_patch}' mpfr_major, mpfr_minor, mpfr_patch, *_ = get_version('mpfr') mpfr_version = f'{mpfr_major}.{mpfr_minor}.{mpfr_patch}' buildroot_major, buildroot_minor, buildroot_patch, *_ = get_version('buildroot') buildroot_version = f'{buildroot_major}.{buildroot_minor}.{buildroot_patch}' ct_major, ct_minor, ct_patch, *_ = get_version('crosstool-ng') ct_version = f'{ct_major}.{ct_minor}.{ct_patch}' qemu_major, qemu_minor, qemu_patch, *_ = get_version('qemu') qemu_version = f'{qemu_major}.{qemu_minor}.{qemu_patch}' riscv_toolchain_version = config['riscv-gnu-toolchain']['riscv-version'] riscv_binutils_version = config['riscv-gnu-toolchain']['binutils-version'] riscv_gdb_version = config['riscv-gnu-toolchain']['gdb-version'] riscv_glibc_version = config['riscv-gnu-toolchain']['glibc-version'] riscv_newlib_version = config['riscv-gnu-toolchain']['newlib-version'] # Other config options. bin_directory = f'{config["options"]["sysroot"]}/bin/' # Read the long description. description = 'Zero-setup cross compilation.' with open(f'{HOME}/README.md') as file: long_description = file.read() # COMMANDS # -------- # Literal boolean type for command arguments. bool_type = (type(None), bool, int) def parse_literal(inst, key, default, valid_types=None): '''Parse literal user options.''' value = getattr(inst, key) if value != default: value = ast.literal_eval(value) if valid_types is not None: assert isinstance(value, valid_types) setattr(inst, key, value) def check_call(code): '''Wrap `subprocess.call` to exit on failure.''' if code != 0: sys.exit(code) def has_module(module): '''Check if the given module is installed.''' devnull = subprocess.DEVNULL code = subprocess.call( [sys.executable, '-m', module, '--version'], stdout=devnull, stderr=devnull, ) return code == 0 def semver(): '''Create a list of semantic versions for images.''' versions = [ f'{docker_major}.{docker_minor}', f'{docker_major}.{docker_minor}.{docker_patch}' ] if docker_major != '0': versions.append(docker_major) return versions def image_from_target(target, with_pkg=False): '''Get the full image name from the target.''' username = config['metadata']['username'] repository = config['metadata']['repository'] if with_pkg: repository = f'pkg{repository}' return f'{username}/{repository}:{target}' def sorted_image_targets(): '''Get a sorted list of image targets.''' # Need to write the total image list. os_images = [] metal_images = [] other_images = [] for image in images: if image.os.is_os(): os_images.append(image.target) elif image.os.is_baremetal(): metal_images.append(image.target) else: other_images.append(image.target) os_images.sort() metal_images.sort() other_images.sort() return os_images + metal_images + other_images def subslice_targets(start=None, stop=None): '''Extract a subslice of all targets.''' targets = sorted_image_targets() if start is not None: targets = targets[targets.index(start):] if stop is not None: targets = targets[:targets.index(stop) + 1] return targets def build_image(docker, target, with_pkg=False): '''Call Docker to build a single target.''' image = image_from_target(target, with_pkg) image_dir = 'images' if with_pkg: image_dir = f'pkg{image_dir}' path = f'{HOME}/docker/{image_dir}/Dockerfile.{target}' return subprocess.call([docker, 'build', '-t', image, HOME, '--file', path]) class CleanDistCommand(Command): '''A custom command to clean Python dist artifacts.''' description = 'clean artifacts from previous python builds' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): '''Clean build data.''' shutil.rmtree(f'{HOME}/build', ignore_errors=True) shutil.rmtree(f'{HOME}/dist', ignore_errors=True) shutil.rmtree(f'{HOME}/xcross.egg-info', ignore_errors=True) # Clean py2exe files dlls = glob.glob(f'{HOME}/*.dll') exes = glob.glob(f'{HOME}/*.exe') sos = glob.glob(f'{HOME}/*.so') for file in dlls + exes + sos: os.remove(file) class CleanCommand(Command): '''A custom command to clean any previous builds.''' description = 'clean all previous builds' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): '''Clean build data.''' self.run_command('clean_dist') shutil.rmtree(f'{HOME}/cmake/toolchain', ignore_errors=True) shutil.rmtree(f'{HOME}/docker/images', ignore_errors=True) shutil.rmtree(f'{HOME}/docker/pkgimages', ignore_errors=True) shutil.rmtree(f'{HOME}/musl/config', ignore_errors=True) shutil.rmtree(f'{HOME}/symlink/toolchain', ignore_errors=True) class VersionCommand(Command): '''A custom command to configure the library version.''' description = 'set library version' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def replace(self, string, replacements): '''Replace template variable with value.''' for variable, value in replacements: string = string.replace(f'^{variable}^', value) return string def chmod(self, file): '''Make a file executable.''' flags = stat.S_IXUSR | stat.S_IXGRP | stat.S_IXOTH st = os.stat(file) os.chmod(file, st.st_mode | flags) def write_file(self, path, contents, chmod): '''Check if we need to write a file.''' try: with open(path, 'r') as file: old_contents = file.read() should_update = old_contents != contents except FileNotFoundError: should_update = True if should_update: with open(path, 'w') as file: file.write(contents) if chmod: self.chmod(path) def configure(self, template, outfile, chmod, replacements): '''Configure a template file.''' with open(template, 'r') as file: contents = file.read() contents = self.replace(contents, replacements) self.write_file(outfile, contents, chmod) def run(self): '''Modify the library version.''' version_info = f""" version_info( major='{major}', minor='{minor}', patch='{patch}', release='{release}', number='{number}', build='{build}' )""" xcross = f'{HOME}/xcross/__init__.py' self.configure(f'{xcross}.in', xcross, True, [ ('BIN', f'"{bin_directory}"'), ('REPOSITORY', config['metadata']['repository']), ('USERNAME', config['metadata']['username']), ('VERSION_MAJOR', f"'{major}'"), ('VERSION_MINOR', f"'{minor}'"), ('VERSION_PATCH', f"'{patch}'"), ('VERSION_RELEASE', f"'{release}'"), ('VERSION_NUMBER', f"'{number}'"), ('VERSION_BUILD', f"'{build}'"), ('VERSION_INFO', textwrap.dedent(version_info)[1:]), ('VERSION', f"'{version}'"), ]) class TagCommand(Command): '''Scripts to automatically tag new versions.''' description = 'tag version for release' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): '''Tag version for git release.''' # Get our config. git = shutil.which('git') if not git: raise FileNotFoundError('Unable to find program git.') tag = f'v{version}' # Delete any existing, conflicting tags. devnull = subprocess.DEVNULL env = os.environ.copy() env['GIT_DIR'] = f'{HOME}/.git' code = subprocess.call( ['git', 'rev-parse', tag], stdout=devnull, stderr=devnull, env=env, ) if code == 0: check_call(subprocess.call( ['git', 'tag', '-d', tag], stdout=devnull, stderr=devnull, )) # Tag the release. check_call(subprocess.call( ['git', 'tag', tag], stdout=devnull, stderr=devnull, )) class BuildImageCommand(Command): '''Build a single Docker image.''' description = 'build a single docker image' user_options = [ ('target=', None, 'Target name'), ('with-package-managers=', None, 'Build an image with package managers.'), ] def initialize_options(self): self.target = None self.with_package_managers = None def finalize_options(self): assert self.target is not None parse_literal(self, 'with_package_managers', None, bool_type) def build_image(self, docker): '''Build a Docker image.''' if build_image(docker, self.target, self.with_package_managers) != 0: print(f'Error: failed to build target {self.target}', file=sys.stderr) sys.exit(1) def run(self): '''Build single Docker image.''' docker = shutil.which('docker') if not docker: raise FileNotFoundError('Unable to find command docker.') self.build_image(docker) class BuildImagesCommand(Command): '''Build all Docker images.''' description = 'build all docker images' user_options = [ ('start=', None, 'Start point for images to build.'), ('stop=', None, 'Stop point for images to build.'), ('with-package-managers=', None, 'Build package manager images.'), ] def initialize_options(self): self.start = None self.stop = None self.with_package_managers = None def finalize_options(self): parse_literal(self, 'with_package_managers', None, bool_type) def build_image(self, docker, target, with_package_managers=False): '''Build a Docker image.''' if build_image(docker, target, with_package_managers) != 0: self.failures.append(target) return False return True def tag_image(self, docker, target, tag_name, with_package_managers=False): '''Tag an image.''' image = image_from_target(target, with_package_managers) tag = image_from_target(tag_name, with_package_managers) check_call(subprocess.call([docker, 'tag', image, tag])) def build_versions(self, docker, target, with_pkg=False): '''Build all versions of a given target.''' if not self.build_image(docker, target, with_pkg): return for version in semver(): self.tag_image(docker, target, f'{target}-{version}', with_pkg) if target.endswith('-unknown-linux-gnu'): self.tag_versions(docker, target, target[:-len('-unknown-linux-gnu')], with_pkg) def tag_versions(self, docker, target, tag_name, with_pkg=False): '''Build all versions of a given target.''' self.tag_image(docker, target, tag_name, with_pkg) for version in semver(): self.tag_image(docker, target, f'{tag_name}-{version}', with_pkg) def run(self): '''Build all Docker images.''' docker = shutil.which('docker') if not docker: raise FileNotFoundError('Unable to find command docker.') # Need to build our base vcpkg for package files. if self.with_package_managers: if build_image(docker, 'vcpkg', True) != 0: print('Error: failed to build target vcpkg', file=sys.stderr) sys.exit(1) # Build all our Docker images. self.failures = [] for target in subslice_targets(self.start, self.stop): self.build_versions(docker, target) # Only build if the previous image succeeded, and if # the image with a package manager exists. if self.failures and self.failures[-1] == target: continue elif not self.with_package_managers: continue if os.path.exists(f'{HOME}/docker/pkgimages/Dockerfile.{target}'): self.build_versions(docker, target, with_pkg=True) # Print any failures. if self.failures: print('Error: Failures occurred.', file=sys.stderr) print('-------------------------', file=sys.stderr) for failure in self.failures: print(failure, file=sys.stderr) sys.exit(1) class BuildAllCommand(BuildImagesCommand): '''Build Docker images and the Python library for dist.''' description = 'build all docker images and wheels for release' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): '''Build all images and package for release.''' BuildImagesCommand.run(self) self.run_command('clean_dist') self.run_command('configure') self.run_command('build') self.run_command('sdist') self.run_command('bdist_wheel') class BuildCommand(build_py): '''Override build command to configure builds.''' def run(self): self.run_command('version') build_py.run(self) class InstallCommand(install): '''Override install command to configure builds.''' def run(self): # Note: this should already be run, and this is redundant. # However, if `skip_build` is provided, this needs to be run. self.run_command('version') install.run(self) class PushCommand(Command): '''Push all Docker images to Docker hub.''' description = 'push all docker images to docker hub' user_options = [ ('start=', None, 'Start point for images to push.'), ('stop=', None, 'Stop point for images to push.'), ('with-package-managers=', None, 'Build package manager images.'), ] def initialize_options(self): self.start = None self.stop = None self.with_package_managers = None def finalize_options(self): parse_literal(self, 'with_package_managers', None, bool_type) def push_image(self, docker, target, with_package_managers=False): '''Push an image to Docker Hub.''' image = image_from_target(target, with_package_managers) check_call(subprocess.call([docker, 'push', image])) def push_versions(self, docker, target, with_package_managers=False): '''Push all versions of a given target.''' self.push_image(docker, target, with_package_managers) for version in semver(): self.push_image(docker, f'{target}-{version}', with_package_managers) def push_target(self, docker, target, with_package_managers=False): '''Push all images for a given target.''' self.push_versions(docker, target, with_package_managers) if target.endswith('-unknown-linux-gnu'): base = target[:-len('-unknown-linux-gnu')] self.push_versions(docker, base, with_package_managers) def run(self): '''Push all Docker images to Docker hub.''' docker = shutil.which('docker') if not docker: raise FileNotFoundError('Unable to find command docker.') # Push all our Docker images. for target in subslice_targets(self.start, self.stop): self.push_target(docker, target) if not self.with_package_managers: continue if os.path.exists(f'{HOME}/docker/pkgimages/Dockerfile.{target}'): self.push_target(docker, target, with_package_managers=True) class PublishCommand(Command): '''Publish a Python version.''' description = 'publish python version to PyPi' user_options = [ ('test=', None, 'Upload to the test repository.'), ] def initialize_options(self): self.test = None def finalize_options(self): parse_literal(self, 'test', None, bool_type) def run(self): '''Run the unittest suite.''' if not has_module('twine'): raise FileNotFoundError('Unable to find module twine.') self.run_command('clean_dist') self.run_command('configure') self.run_command('build') self.run_command('sdist') self.run_command('bdist_wheel') files = glob.glob(f'{HOME}/dist/*') command = [sys.executable, '-m', 'twine', 'upload'] if self.test: command += ['--repository', 'testpypi'] command += files check_call(subprocess.call(command)) class TestCommand(Command): '''Run the unittest suite.''' description = 'run unittest suite' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): '''Run the unittest suite.''' if not has_module('tox'): raise FileNotFoundError('Unable to find module tox.') check_call(subprocess.call(['tox', HOME])) class LintCommand(Command): '''Lint python code.''' description = 'lint python code' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): '''Run the unittest suite.''' if not has_module('flake8'): raise FileNotFoundError('Unable to find module flake8.') self.run_command('configure') check_call(subprocess.call(['flake8', HOME])) class TestImagesCommand(Command): '''Run the Docker test suite.''' description = 'run docker test suite' user_options = [ ('start=', None, 'Start point for test suite.'), ('stop=', None, 'Stop point for test suite.'), ('os=', None, 'Do operating system tests tests.'), ('metal=', None, 'Do bare-metal tests.'), ] metal_tests = [ 'arm', 'arm64', 'avr', 'ppc', 'mips', 'mipsel', 'riscv32', 'riscv64', ('i686', 'x86'), ] def initialize_options(self): self.start = None self.stop = None self.os = True self.metal = None def finalize_options(self): parse_literal(self, 'os', None, bool_type) parse_literal(self, 'metal', None, bool_type) def git_clone(self, git, repository): '''Clone a given repository.''' check_call(subprocess.call([git, 'clone', repository, f'{HOME}/buildtests'])) def run_test( self, docker, target, os_type, script=None, cpu=None, **envvars ): '''Run test for a single target.''' # Get our command. if script is None: script = 'image-test' command = f'/test/{script}.sh' if cpu is not None: command = f'export CPU={cpu}; {command}' # Check for additional flags. if self.nostartfiles(target): flags = envvars.get('FLAGS') if flags: flags = f'{flags} -nostartfiles' else: flags = '-nostartfiles' envvars['FLAGS'] = flags # Build and call our docker command. docker_command = [ docker, 'run', '--name', f'xcross-test-{target}', '-v', f'{HOME}/test:/test', '--env', f'IMAGE={target}', '--env', f'TYPE={os_type}', ] for key, value in envvars.items(): docker_command += ['--env', f'{key}={value}'] docker_command.append(image_from_target(target)) docker_command += ['/bin/bash', '-c', command] subprocess.check_call(docker_command) # Clean up our stoppd container. subprocess.check_call([docker, 'rm', f'xcross-test-{target}']) def nostartfiles(self, target): '''Check if an image does not have startfiles.''' # i[3-6]86 does not provide start files, a known bug with newlib. # moxie cannot find `__bss_start__` and `__bss_end__`. # sparc cannot find `__stack`. # there is no crt0 for x86_64 regex = re.compile(r'''^(?: (?:i[3-7]86-unknown-elf)| (?:moxie.*-none-elf)| (?:sparc-unknown-elf)| (?:x86_64-unknown-elf) )$''', re.X) return regex.match(target) def skip(self, target): '''Check if we should skip a given target.''' # Check if we should skip a test. # PPCLE is linked to the proper library, which contains the # proper symbols, but still fails with an error: # undefined reference to `_savegpr_29`. return target == 'ppcle-unknown-elf' def run_wasm(self, docker, **envvars): '''Run a web-assembly target.''' self.run_test( docker, 'wasm', 'script', **envvars, NO_PERIPHERALS='1', TOOLCHAIN1='jsonly', TOOLCHAIN2='wasm', TOOLCHAIN1_FLAGS='-s WASM=0', TOOLCHAIN2_FLAGS='-s WASM=1', ) def run_os(self, docker): '''Run the tests with an operating system.''' # Configure our test runner. has_started = True has_stopped = False if self.start is not None: has_started = False metal_images = sorted([i.target for i in images if i.os.is_baremetal()]) os_images = sorted([i.target for i in images if i.os.is_os()]) # Run OS images. testdir = f'{HOME}/test/buildtests' shutil.copytree(f'{HOME}/test/cpp-helloworld', testdir, dirs_exist_ok=True) try: for target in os_images: if has_started or self.start == target: has_started = True if not self.skip(target): self.run_test(docker, target, 'os') if self.stop == target: has_stopped = True break # Run the special images. if has_started and not has_stopped: self.run_wasm(docker) self.run_wasm(docker, CMAKE_FLAGS='-DJS_ONLY=1') self.run_test(docker, os_images[0], 'os', CMAKE_FLAGS='-GNinja') self.run_wasm(docker, CMAKE_FLAGS='-GNinja') self.run_test(docker, 'ppc-unknown-linux-gnu', 'os', cpu='e500mc', NORUN2='1') self.run_test(docker, 'ppc64-unknown-linux-gnu', 'os', cpu='power9') self.run_test(docker, 'mips-unknown-linux-gnu', 'os', cpu='24Kf') finally: shutil.rmtree(testdir, ignore_errors=True) if has_stopped: return # Run metal images. shutil.copytree(f'{HOME}/test/cpp-atoi', testdir, dirs_exist_ok=True) try: for target in metal_images: if has_started or self.start == target: has_started = True if not self.skip(target): self.run_test(docker, target, 'metal') if self.stop == target: has_stopped = True break finally: shutil.rmtree(testdir, ignore_errors=True) if has_stopped: return def run_metal(self, docker): '''Run the bare-metal tests.''' for arch in self.metal_tests: if isinstance(arch, tuple): image = f'{arch[0]}-unknown-elf' script = f'{arch[1]}-hw' else: image = f'{arch}-unknown-elf', script = f'{arch}-hw' self.run_test(docker, image, 'metal', script=script) def run(self): '''Run the docker test suite.''' # Find our necessary commands. docker = shutil.which('docker') if not docker: raise FileNotFoundError('Unable to find command docker.') if self.os: self.run_os(docker) if self.metal: self.run_metal(docker) class TestAllCommand(TestImagesCommand): '''Run the Python and Docker test suites.''' def run(self): '''Run the docker test suite.''' self.run_command('test') TestImagesCommand.run(self) # IMAGES # ------ # There are two types of images: # 1). Images with an OS layer. # 2). Bare-metal machines. # Bare-metal machines don't use newlibs nanomalloc, so these do not # support system allocators. class OperatingSystem(enum.Enum): '''Enumerations for known operating systems.''' Android = enum.auto() BareMetal = enum.auto() Linux = enum.auto() Emscripten = enum.auto() Windows = enum.auto() Unknown = enum.auto() def is_baremetal(self): return self == OperatingSystem.BareMetal def is_emscripten(self): return self == OperatingSystem.Emscripten def is_os(self): return ( self == OperatingSystem.Android or self == OperatingSystem.Linux or self == OperatingSystem.Windows ) def to_cmake(self): '''Get the identifier for the CMake system name.''' return cmake_string[self] def to_conan(self): '''Get the identifier for the Conan system name.''' return conan_string[self] def to_meson(self): '''Get the identifier for the Meson system name.''' return meson_string[self] def to_triple(self): '''Get the identifier as a triple string.''' return triple_string[self] def to_vcpkg(self): '''Get the identifier for the vcpkg system name.''' return vcpkg_string[self] @staticmethod def from_triple(string): '''Get the operating system from a triple string.''' return triple_os[string] cmake_string = { OperatingSystem.Android: 'Android', OperatingSystem.BareMetal: 'Generic', # This gets ignored anyway. OperatingSystem.Emscripten: 'Emscripten', OperatingSystem.Linux: 'Linux', OperatingSystem.Windows: 'Windows', OperatingSystem.Unknown: 'Generic', } conan_string = { # Conan uses CMake's feature detection for Android, # which is famously broken. We have our custom toolchains # to pass the proper build arguments. Just say Linux, # and run with it. OperatingSystem.Android: 'Linux', OperatingSystem.Linux: 'Linux', OperatingSystem.Windows: 'Windows', } meson_string = { # The default use is just to use 'linux' for Android. OperatingSystem.Android: 'linux', OperatingSystem.BareMetal: 'bare metal', OperatingSystem.Linux: 'linux', OperatingSystem.Windows: 'windows', } triple_string = { OperatingSystem.Android: 'linux', OperatingSystem.BareMetal: None, OperatingSystem.Emscripten: 'emscripten', OperatingSystem.Linux: 'linux', OperatingSystem.Windows: 'w64', } vcpkg_string = { **cmake_string, # Uses MinGW for to differentiate between legacy Windows apps, the # Universal Windows Platform. Since we only support MinGW, use it. OperatingSystem.Windows: 'MinGW', } triple_os = {v: k for k, v in triple_string.items()} oses = { 'linux': OperatingSystem.Linux, 'none': OperatingSystem.BareMetal, } def extract_triple(triple): '''Extract components from the LLVM triple.''' # Due to how we designed this, we can only # 1. Omit the vendor, os and system. # 2. Omit the vendor. # 3. Omit the os. # 4. Have all 4 components. split = triple.split('-') arch = split[0] if len(split) == 1: # ('arch',) vendor = None os = OperatingSystem.BareMetal system = None elif len(split) == 2 and split[1] in oses: # ('arch', 'os') vendor = None os = oses[split[1]] system = None elif len(split) == 3 and split[2] == 'mingw32': # ('arch', 'vendor', 'system') vendor = None os = OperatingSystem.Windows system = split[2] elif len(split) == 3: # ('arch', 'vendor', 'system') vendor = split[1] os = OperatingSystem.BareMetal system = split[2] elif len(split) == 4: # ('arch', 'vendor', 'os', 'system') vendor = split[1] os = OperatingSystem.from_triple(split[2]) system = split[3] else: raise ValueError(f'Invalid LLVM triple, got {triple}') return (arch, vendor, os, system) class Image: ''' Parameters (and defaults) for custom images. * `target` - Image name of the target (resembling an LLVM triple). * `triple` - LLVM triple of the target. (arch, vendor, os, system) ''' def __init__(self, target, triple=None, **kwds): self.target = target self.triple = triple or target self.arch, self.vendor, self.os, self.system = extract_triple(self.triple) for key, value in kwds.items(): setattr(self, key, value) @classmethod def from_dict(cls, data): return cls(**data) @staticmethod def from_json(data): image_type = data.pop('type') return image_types[image_type].from_dict(data) @property def config(self): return getattr(self, '_config', self.target) @config.setter def config(self, value): self._config = value @property def hardcoded_cpulist(self): cpus = getattr(self, 'cpulist', '') if cpus: return f'export HARDCODED="{cpus}"\n' return '' @property def ld_library_path(self): path = getattr(self, 'library_path', '') if path: return f'export LD_LIBRARY_PATH="{path}"\n' return '' @property def ld_preload(self): path = getattr(self, 'preload', '') if path: return f'export LD_PRELOAD="{path}"\n' return '' @property def cc_cpu_list(self): cpulist = getattr(self, 'cc_cpulist', '') if cpulist: return f'export CC_CPU_LIST="{cpulist}"\n' return '' @property def run_cpu_list(self): cpulist = getattr(self, 'run_cpulist', '') if cpulist: return f'export RUN_CPU_LIST="{cpulist}"\n' return '' @property def flags(self): return getattr(self, '_flags', '') @flags.setter def flags(self, value): self._flags = value @property def optional_flags(self): return getattr(self, '_optional_flags', '') @optional_flags.setter def optional_flags(self, value): self._optional_flags = value @property def cflags(self): flags = self.flags if flags: return f'CFLAGS="{flags}" ' return '' @property def optional_cflags(self): flags = self.optional_flags if flags: return f'OPTIONAL_CFLAGS="{flags}" ' return '' @property def os(self): return self._os @os.setter def os(self, value): if isinstance(value, str): value = OperatingSystem.from_triple(value) self._os = value @property def processor(self): return getattr(self, '_processor', self.arch) @processor.setter def processor(self, value): self._processor = value @property def family(self): return getattr(self, '_family', self.processor) @family.setter def family(self, value): self._family = value @property def qemu(self): return getattr(self, '_qemu', False) @qemu.setter def qemu(self, value): self._qemu = value @property def linkage(self): return getattr(self, '_linkage', 'static') @linkage.setter def linkage(self, value): self._linkage = value class AndroidImage(Image): '''Specialized properties for Android images.''' @property def os(self): return OperatingSystem.Android @os.setter def os(self, _): pass @property def abi(self): return getattr(self, '_abi', self.arch) @abi.setter def abi(self, value): self._abi = value @property def prefix(self): return getattr(self, '_prefix', self.arch) @prefix.setter def prefix(self, value): self._prefix = value @property def toolchain(self): return f'{self.arch}-linux-{self.system}' @property def qemu(self): return False class BuildRootImage(Image): '''Specialized properties for buildroot images.''' @property def use_32(self): return getattr(self, '_use_32', False) @use_32.setter def use_32(self, value): self._use_32 = value @property def symlink_sysroot(self): return getattr(self, '_symlink_sysroot', False) @symlink_sysroot.setter def symlink_sysroot(self, value): self._symlink_sysroot = value class CrosstoolImage(Image): '''Specialized properties for crosstool-NG images.''' @property def patches(self): return getattr(self, '_patches', []) @patches.setter def patches(self, value): self._patches = value class DebianImage(Image): '''Specialized properties for Debian images.''' @property def cxx(self): default = f'g++-{{version}}-{self.processor}-{self.os.to_triple()}-{self.system}' return getattr(self, '_cxx', default).format(version=gcc_major) @cxx.setter def cxx(self, value): self._cxx = value @property def libc(self): default = f'libc6-{self.arch}-cross' return getattr(self, '_libc', default) @libc.setter def libc(self, value): self._libc = value @property def prefix(self): return getattr(self, '_prefix', self.processor) @prefix.setter def prefix(self, value): self._prefix = value @property def qemu(self): return True class MuslCrossImage(Image): '''Specialized properties for musl-cross images.''' @property def gcc_config(self): config = getattr(self, '_gcc_config', '') if config: return f'{config} ' return '' @gcc_config.setter def gcc_config(self, value): self._gcc_config = value class RiscvImage(Image): '''Specialized properties for RISC-V images.''' @property def processor(self): return self.target.split('-')[0] @property def bits(self): return int(re.match(r'^riscv(\d+)$', self.processor).group(1)) @property def optional_flags(self): march = f'rv{self.bits}{self.extensions}' flags = f'-march={march} -mabi={self.abi}' if Image.optional_flags.fget(self): flags = f'{self.optional_flags} {flags}' return flags class OtherImage(Image): '''Specialized properties for miscellaneous images.''' @property def dockerfile(self): return getattr(self, '_dockerfile', {}) @dockerfile.setter def dockerfile(self, value): self._dockerfile = value image_types = { 'android': AndroidImage, 'buildroot': BuildRootImage, 'crosstool': CrosstoolImage, 'debian': DebianImage, 'musl-cross': MuslCrossImage, 'riscv': RiscvImage, 'other': OtherImage, } # Get all images. images = [Image.from_json(i) for i in load_json(f'{HOME}/config/images.json')] # Add extensions def add_android_extensions(): '''Add Android extensions (null-op).''' def add_buildroot_extensions(): '''Add buildroot extensions (null-op).''' def add_crosstool_extensions(): '''Add crosstool-NG toolchain extensions (null-op).''' def add_debian_extensions(): '''Add Debian toolchain extensions (null-op).''' def add_musl_cross_extensions(): '''Add musl-cross toolchain extensions (null-op).''' # Add our RISC-V images with extensions. def create_riscv_image(os, bits, arch, abi): '''Create a RISC-V image.''' prefix = f'riscv{bits}-{arch}-{abi}' if os == OperatingSystem.Linux: target = f'{prefix}-multilib-linux-gnu' triple = 'riscv64-unknown-linux-gnu' qemu = True elif os == OperatingSystem.BareMetal: target = f'{prefix}-unknown-elf' triple = 'riscv64-unknown-elf' qemu = False else: raise ValueError(f'Unknown operating system {os.to_triple()}') return RiscvImage.from_dict({ 'target': target, 'triple': triple, 'qemu': qemu, 'extensions': arch, 'abi': abi }) def add_riscv_extensions(): '''Add RISC-V extensions.''' riscv = config['riscv-gnu-toolchain'] bits = riscv['bits'] extensions = riscv['extensions'] for key in extensions: os = OperatingSystem.from_triple(extensions[key]['type']) required_ext = extensions[key]['required'] all_ext = extensions[key]['all'] diff = ''.join([i for i in all_ext if i not in required_ext]) for bits in riscv['bits']: abi = riscv['abi'][bits] for count in range(len(diff) + 1): for combo in itertools.combinations(diff, count): arch = f'{required_ext}{"".join(combo)}' images.append(create_riscv_image(os, bits, arch, abi)) if 'd' in arch: images.append(create_riscv_image(os, bits, arch, f'{abi}d')) def add_extensions(): '''Add extensions for supported operating systems.''' add_android_extensions() add_buildroot_extensions() add_crosstool_extensions() add_debian_extensions() add_musl_cross_extensions() add_riscv_extensions() add_extensions() # Filter images by types. android_images = [i for i in images if isinstance(i, AndroidImage)] buildroot_images = [i for i in images if isinstance(i, BuildRootImage)] crosstool_images = [i for i in images if isinstance(i, CrosstoolImage)] debian_images = [i for i in images if isinstance(i, DebianImage)] musl_cross_images = [i for i in images if isinstance(i, MuslCrossImage)] riscv_images = [i for i in images if isinstance(i, RiscvImage)] other_images = [i for i in images if isinstance(i, OtherImage)] def create_array(values): '''Create a bash array from a list of values.''' start = "(\n \"" joiner = "\"\n \"" end = "\"\n)" return start + joiner.join(values) + end class ConfigureCommand(VersionCommand): '''Modify all configuration files.''' description = 'configure template files' def configure_scripts(self): '''Configure the build scripts.''' android = f'{HOME}/docker/android.sh' bashrc = f'{HOME}/docker/bash.bashrc' buildroot = f'{HOME}/docker/buildroot.sh' buildroot32 = f'{HOME}/docker/buildroot32.sh' cmake = f'{HOME}/docker/cmake.sh' conan = f'{HOME}/docker/conan.sh' entrypoint = f'{HOME}/docker/entrypoint.sh' gcc = f'{HOME}/docker/gcc.sh' gcc_patch = f'{HOME}/docker/gcc-patch.sh' meson = f'{HOME}/docker/meson.sh' musl = f'{HOME}/docker/musl.sh' qemu = f'{HOME}/docker/qemu.sh' qemu_apt = f'{HOME}/docker/qemu-apt.sh' riscv_gcc = f'{HOME}/docker/riscv-gcc.sh' shortcut = f'{HOME}/symlink/shortcut.sh' target_features = f'{HOME}/spec/target_features.py' vcpkg = f'{HOME}/docker/vcpkg.sh' vcpkg_triplet = f'{HOME}/docker/vcpkg-triplet.sh' self.configure(f'{android}.in', android, True, [ ('CLANG_VERSION', config['android']['clang_version']), ('NDK_DIRECTORY', config['android']['ndk_directory']), ('NDK_VERSION', config['android']['ndk_version']), ('PREFIXES', create_array([i.prefix for i in android_images])), ('TOOLCHAINS', create_array([i.toolchain for i in android_images])) ]) self.configure(f'{bashrc}.in', bashrc, False, [ ('BIN', f'"{bin_directory}"'), ]) self.configure(f'{cmake}.in', cmake, True, [ ('UBUNTU_NAME', config['ubuntu']['version']['name']), ]) self.configure(f'{conan}.in', conan, True, [ ('BIN', f'"{bin_directory}"'), ('CONAN', "'/usr/local/bin/conan'"), ('USERNAME', config["options"]["username"]), ]) self.configure(f'{buildroot}.in', buildroot, True, [ ('BUILDROOT_VERSION', buildroot_version), ('JOBS', config["options"]["build_jobs"]), ('USERNAME', config["options"]["username"]), ]) self.configure(f'{buildroot32}.in', buildroot32, True, [ ('BUILDROOT_VERSION', buildroot_version), ('JOBS', config["options"]["build_jobs"]), ('USERNAME', config["options"]["username"]), ]) self.configure(f'{entrypoint}.in', entrypoint, True, [ ('BIN', f'"{bin_directory}"'), ]) self.configure(f'{gcc}.in', gcc, True, [ ('CROSSTOOL_VERSION', f'"{ct_version}"'), ('JOBS', config["options"]["build_jobs"]), ('SLEEP', config["options"]["sleep"]), ('TIMEOUT', config["options"]["timeout"]), ('USERNAME', config["options"]["username"]), ]) self.configure(f'{gcc_patch}.in', gcc_patch, True, [ ('CROSSTOOL_VERSION', f'"{ct_version}"'), ('JOBS', config["options"]["build_jobs"]), ('SLEEP', config["options"]["sleep"]), ('TIMEOUT', config["options"]["timeout"]), ('USERNAME', config["options"]["username"]), ]) self.configure(f'{meson}.in', meson, True, [ ('BIN', f'"{bin_directory}"'), ('MESON', "'/usr/local/bin/meson'"), ]) self.configure(f'{musl}.in', musl, True, [ ('BINUTILS_VERSION', binutils_version), ('BINUTILS_XZ_SHA1', config['binutils']['version']['xz_sha1']), ('GCC_VERSION', gcc_version), ('GCC_XZ_SHA1', config['gcc']['version']['xz_sha1']), ('GMP_VERSION', gmp_version), ('GMP_BZ2_SHA1', config['gmp']['version']['bz2_sha1']), ('ISL_VERSION', isl_version), ('ISL_BZ2_SHA1', config['isl']['version']['bz2_sha1']), ('MPC_VERSION', mpc_version), ('MPC_GZ_SHA1', config['mpc']['version']['gz_sha1']), ('MPFR_VERSION', mpfr_version), ('MPFR_BZ2_SHA1', config['mpfr']['version']['bz2_sha1']), ('LINUX_HEADERS_VERSION', linux_headers_version), ('LINUX_HEADERS_XZ_SHA1', config['linux-headers']['version']['xz_sha1']), ('LINUX_VERSION', linux_version), ('LINUX_XZ_SHA1', config['linux']['version']['xz_sha1']), ('MUSL_CROSS_VERSION', musl_cross_version), ('MUSL_VERSION', musl_version), ('MUSL_GZ_SHA1', config['musl']['version']['gz_sha1']), ('JOBS', config["options"]["build_jobs"]), ('USERNAME', config["options"]["username"]), ]) self.configure(f'{qemu}.in', qemu, True, [ ('JOBS', config["options"]["build_jobs"]), ('QEMU_VERSION', qemu_version), ('SYSROOT', f'"{config["options"]["sysroot"]}"'), ]) self.configure(f'{qemu_apt}.in', qemu_apt, True, [ ('BIN', f'"{bin_directory}"'), ]) self.configure(f'{riscv_gcc}.in', riscv_gcc, True, [ ('BINUTILS_VERSION', riscv_binutils_version), ('GCC_VERSION', gcc_version), ('GDB_VERSION', riscv_gdb_version), ('GLIBC_VERSION', riscv_glibc_version), ('JOBS', config["options"]["build_jobs"]), ('NEWLIB_VERSION', riscv_newlib_version), ('TOOLCHAIN_VERSION', riscv_toolchain_version), ]) self.configure(f'{shortcut}.in', shortcut, True, [ ('BIN', f'"{bin_directory}"'), ]) self.configure(f'{target_features}.in', target_features, True, [ ('BIN', f'"{bin_directory}"'), ]) self.configure(f'{vcpkg}.in', vcpkg, True, [ ('SYSROOT', f'"{config["options"]["sysroot"]}"'), ]) self.configure(f'{vcpkg_triplet}.in', vcpkg_triplet, True, [ ('BIN', f'"{bin_directory}"'), ('SYSROOT', f'"{config["options"]["sysroot"]}"'), ]) def configure_ctng_config(self): '''Configure the scripts for crosstool-NG.''' patch = f'{HOME}/ct-ng/patch.sh' replacements = [] # Patch the GCC version. old_gcc_major = '8' old_gcc_version = '8.3.0' replacements.append(('GCC_V_OLD', f'CT_GCC_V_{old_gcc_major}=y')) ct_gcc = [f'CT_GCC_V_{gcc_major}=y'] for gcc_v in reversed(range(int(old_gcc_major), int(gcc_major))): ct_gcc.append(f'# CT_GCC_V_{gcc_v} is not set') replacements.append(('GCC_V_NEW', '\\n'.join(ct_gcc))) replacements.append(('GCC_OLD', old_gcc_version)) replacements.append(('GCC_NEW', gcc_version)) # Patch the MinGW version. old_mingw_major = '6' old_mingw_version = '6.0.0' replacements.append(('MINGW_V_OLD', f'CT_MINGW_V_{old_mingw_major}=y')) ct_mingw = [f'CT_MINGW_V_{mingw_major}=y'] for mingw_v in reversed(range(int(old_mingw_major), int(mingw_major))): ct_mingw.append(f'# CT_MINGW_V_{mingw_v} is not set') replacements.append(('MINGW_V_NEW', '\\n'.join(ct_mingw))) replacements.append(('MINGW_OLD', old_mingw_version)) replacements.append(('MINGW_NEW', mingw_version)) # Configure the glibc version. old_glibc_major = '2' old_glibc_minor = '29' old_glibc_version = '2.29' replacements.append(('GLIBC_V_OLD', f'CT_GLIBC_V_{old_glibc_major}_{old_glibc_minor}=y')) ct_glibc = [f'CT_GLIBC_V_{glibc_major}_{glibc_minor}=y'] if old_glibc_major == glibc_major: for glibc_v in reversed(range(int(old_glibc_minor), int(glibc_minor))): ct_glibc.append(f'# CT_GLIBC_V_{glibc_major}_{glibc_v} is not set') else: ct_glibc.append(f'# CT_GLIBC_V_{old_glibc_major}_{old_glibc_minor} is not set') for glibc_v in reversed(range(int(old_glibc_major) + 1, int(glibc_major))): ct_glibc.append(f'# CT_GLIBC_V_{glibc_major}_0 is not set') replacements.append(('GLIBC_V_NEW', '\\n'.join(ct_glibc))) replacements.append(('GLIBC_OLD', old_glibc_version)) replacements.append(('GLIBC_NEW', glibc_version)) # Configure the musl version. old_musl_major = '1' old_musl_minor = '1' old_musl_patch = '21' old_musl_version = '1.1.21' replacements.append(( 'MUSL_V_OLD', f'CT_MUSL_V_{old_musl_major}_{old_musl_minor}_{old_musl_patch}=y' )) ct_musl = [ f'CT_MUSL_V_{musl_major}_{musl_minor}_{musl_patch}=y', f'# CT_MUSL_V_{old_musl_major}_{old_musl_minor}_{old_musl_patch} is not set' ] replacements.append(('MUSL_V_NEW', '\\n'.join(ct_musl))) replacements.append(('MUSL_OLD', old_musl_version)) replacements.append(('MUSL_NEW', musl_version)) # Configure the expat version. old_expat_major = '2' old_expat_minor = '2' old_expat_version = '2.2.6' replacements.append(('EXPAT_V_OLD', f'CT_EXPAT_V_{old_expat_major}_{old_expat_minor}=y')) ct_expat = [ f'CT_EXPAT_V_{expat_major}_{expat_minor}=y', f'# CT_EXPAT_V_{old_expat_major}_{old_expat_minor} is not set' ] replacements.append(('EXPAT_V_NEW', '\\n'.join(ct_expat))) replacements.append(('EXPAT_OLD', old_expat_version)) replacements.append(('EXPAT_NEW', expat_version)) self.configure(f'{patch}.in', patch, True, replacements) def configure_musl_config(self): '''Configure the MUSL libc config files.''' template = f'{HOME}/musl/config.mak.in' for image in musl_cross_images: outfile = f'{HOME}/musl/config/{image.target}.mak' self.configure(template, outfile, False, [ ('BINUTILS_VERSION', binutils_version), ('GCC_CONFIG', image.gcc_config), ('GCC_VERSION', gcc_version), ('GMP_VERSION', gmp_version), ('ISL_VERSION', isl_version), ('LINUX_HEADERS_VERSION', linux_headers_version), ('LINUX_VERSION', linux_version), ('MPC_VERSION', mpc_version), ('MPFR_VERSION', mpfr_version), ('MUSL_VERSION', musl_version), ('TARGET', image.config), ('USERNAME', config['options']['username']), ]) def configure_dockerfile( self, image, template=None, replacements=None, base='ubuntu', spec='spec', symlink='symlink', toolchain='toolchain', wrapper='wrapper', linker='', cc='', cxx='', ): '''Configure a Dockerfile from template.''' # These files are read in the order they're likely to change, # as well as compile-time. # Any template files may have long compilations, and will # change rarely. Qemu is an apt package, and unlikely to change. # Symlinks, toolchains, and entrypoints change often, but are # cheap and easy to fix. contents = [] # Mandatory Docker templates, the base image. # These will **never** change, with open(f'{HOME}/docker/Dockerfile.{base}.in', 'r') as file: contents.append(file.read()) with open(f'{HOME}/docker/Dockerfile.adduser.in', 'r') as file: contents.append(file.read()) with open(f'{HOME}/docker/Dockerfile.build-essential.in', 'r') as file: contents.append(file.read()) with open(f'{HOME}/docker/Dockerfile.directory.in', 'r') as file: contents.append(file.read()) # Optional docker templates, in order of compiler time. # These will change, but it's important later templates # build faster than earlier templates. If done incorrectly, # a full rebuild can take well over a week. if template is not None: with open(template, 'r') as file: contents.append(file.read()) if image.qemu: with open(f'{HOME}/docker/Dockerfile.qemu.in', 'r') as file: contents.append(file.read()) if wrapper is not None: with open(f'{HOME}/docker/Dockerfile.{wrapper}.in', 'r') as file: contents.append(file.read()) if symlink is not None: with open(f'{HOME}/docker/Dockerfile.{symlink}.in', 'r') as file: contents.append(file.read()) if spec is not None: with open(f'{HOME}/docker/Dockerfile.{spec}.in', 'r') as file: contents.append(file.read()) if toolchain is not None: with open(f'{HOME}/docker/Dockerfile.{toolchain}.in', 'r') as file: contents.append(file.read()) # Add the mandatory entrypoint. with open(f'{HOME}/docker/Dockerfile.entrypoint.in', 'r') as file: contents.append(file.read()) # Add image labels and metadata. with open(f'{HOME}/docker/Dockerfile.metadata.in', 'r') as file: contents.append(file.read()) contents = '\n'.join(contents) # Add to the replacements all the shared values. if replacements is None: replacements = [] replacements = replacements + [ ('AUTHORS', config['metadata']['authors']), ('EMSDK_VERSION', emsdk_version), ('BIN', f'"{bin_directory}"'), ('CC', f'"{cc}"'), ('CXX', f'"{cxx}"'), ('ENTRYPOINT', f'"{bin_directory}/entrypoint.sh"'), ('FLAGS', f'"{image.flags}"'), ('LINKER', f'"{linker}"'), ('MAINTAINER', config['metadata']['maintainer']), ('OPTIONAL_FLAGS', f'"{image.optional_flags}"'), ('OS', image.os.to_triple() or 'unknown'), ('TARGET', image.target), ('UBUNTU_VERSION', ubuntu_version), ('URL', config['metadata']['url']), ('USERNAME', config['options']['username']), ('VCS_URL', config['metadata']['vcs-url']), ] # Replace the contents and write the output to file. outfile = f'{HOME}/docker/images/Dockerfile.{image.target}' contents = self.replace(contents, replacements) self.write_file(outfile, contents, False) def configure_vcpkg_dockerfile(self, base='ubuntu'): '''Configure only the vcpkg Dockefile.''' # This is a base image shared by multiple builds. contents = [] with open(f'{HOME}/docker/Dockerfile.{base}.in', 'r') as file: contents.append(file.read()) with open(f'{HOME}/docker/Dockerfile.vcpkg.in', 'r') as file: contents.append(file.read()) contents = '\n'.join(contents) # Replace the contents and write the output to file. replacements = [ ('UBUNTU_VERSION', ubuntu_version), ] outfile = f'{HOME}/docker/pkgimages/Dockerfile.vcpkg' contents = self.replace(contents, replacements) self.write_file(outfile, contents, False) def configure_package_dockerfile( self, image, compiler=None, compiler_version=None, conan_system=None, meson_system=None, vcpkg_system=None, ): '''Configure a Dockerfile with package managers enabled.''' if compiler is None: compiler = 'gcc' if compiler_version is None: compiler_version = gcc_major if conan_system is None: conan_system = image.os.to_conan() if meson_system is None: meson_system = image.os.to_meson() if vcpkg_system is None: vcpkg_system = image.os.to_vcpkg() template = f'{HOME}/docker/Dockerfile.package.in' outfile = f'{HOME}/docker/pkgimages/Dockerfile.{image.target}' self.configure(template, outfile, False, [ ('COMPILER', compiler), ('COMPILER_VERSION', f'"{compiler_version}"'), ('CONAN_SYSTEM', conan_system), ('CPU_FAMILY', image.family), ('IMAGE_USER', config['options']['username']), ('LINKAGE', image.linkage), ('MESON_SYSTEM', meson_system), ('PROCESSOR', image.processor), ('REPOSITORY', config['metadata']['repository']), ('SYSROOT', f'"{config["options"]["sysroot"]}"'), ('TARGET', image.target), ('TRIPLE', image.triple), ('USERNAME', config['metadata']['username']), ('VCPKG_SYSTEM', vcpkg_system), ]) def configure_cmake(self, image, template, replacements): '''Configure a CMake template.''' replacements = replacements + [ ('PROCESSOR', image.processor), ('OS', image.os.to_cmake()), ('USERNAME', config["options"]["username"]), ] contents = [] with open(template, 'r') as file: contents.append(file.read()) with open(f'{HOME}/cmake/toolchain-include.cmake.in', 'r') as file: contents.append(file.read()) contents = '\n'.join(contents) # Replace the contents and write the output to file. cmake = f'{HOME}/cmake/toolchain/{image.target}.cmake' contents = self.replace(contents, replacements) self.write_file(cmake, contents, False) def configure_symlinks(self, image, template, replacements): '''Configure a symlink template.''' replacements = replacements + [ ('CC_CPU_LIST', image.cc_cpu_list), ('FLAGS', image.cflags), ('HARDCODED', image.hardcoded_cpulist), ('LD_LIBRARY_PATH', image.ld_library_path), ('LD_PRELOAD', image.ld_preload), ('OPTIONAL_FLAGS', image.optional_cflags), ('RUN_CPU_LIST', image.run_cpu_list), ('TRIPLE', image.triple), ('USERNAME', config["options"]["username"]), ] symlink = f'{HOME}/symlink/toolchain/{image.target}.sh' self.configure(template, symlink, True, replacements) def configure_android(self, image): '''Configure an Android-SDK image.''' # Configure the dockerfile. template = f'{HOME}/docker/Dockerfile.android.in' self.configure_dockerfile(image, template, [ ('ARCH', image.arch), ('TOOLCHAIN', image.toolchain), ]) # Configure the CMake toolchain. cmake_template = f'{HOME}/cmake/android.cmake.in' self.configure_cmake(image, cmake_template, [ ('ABI', image.abi), ('NDK_DIRECTORY', config['android']['ndk_directory']), ('SDK_VERSION', config['android']['sdk_version']), ]) # Configure the symlinks. symlink_template = f'{HOME}/symlink/android.sh.in' self.configure_symlinks(image, symlink_template, [ ('NDK_DIRECTORY', config['android']['ndk_directory']), ('PREFIX', f'{image.prefix}-linux-{image.system}'), ('SDK_VERSION', config['android']['sdk_version']), ('TOOLCHAIN', image.toolchain), ]) # Build derived images with package managers enabled. # Only want the major version, Conan fails othewise. compiler_version = config['android']['clang_version'] major_version = re.match(r'^(\d+).*$', compiler_version).group(1) self.configure_package_dockerfile(image, 'clang', major_version) def configure_buildroot(self, image): '''Configure a buildroot image.''' # Get the proper dependent parameters for our image. if image.symlink_sysroot: cmake_template = f'{HOME}/cmake/buildroot-qemu.cmake.in' symlink_template = f'{HOME}/symlink/buildroot-qemu-sysroot.sh.in' elif image.qemu: cmake_template = f'{HOME}/cmake/buildroot-qemu.cmake.in' symlink_template = f'{HOME}/symlink/buildroot-qemu.sh.in' else: cmake_template = f'{HOME}/cmake/buildroot.cmake.in' symlink_template = f'{HOME}/symlink/buildroot.sh.in' if image.use_32: template = f'{HOME}/docker/Dockerfile.buildroot32.in' else: template = f'{HOME}/docker/Dockerfile.buildroot.in' self.configure_dockerfile(image, template, [ ('ARCH', image.processor), ('CONFIG', image.config), ]) # Configure the CMake toolchain. self.configure_cmake(image, cmake_template, [ ('TRIPLE', image.config), ]) # Configure the symlinks. self.configure_symlinks(image, symlink_template, [ ('ARCH', image.processor), ('TRIPLE', image.triple), ]) # Build derived images with package managers enabled. if image.os == OperatingSystem.Linux or image.os == OperatingSystem.Windows: self.configure_package_dockerfile(image) def configure_crosstool(self, image): '''Configure a crosstool-NG image.''' # Configure the dockerfile. if image.patches: template = f'{HOME}/docker/Dockerfile.crosstool-patch.in' files = [] for patch in image.patches: files += glob.glob(f'diff/{patch}.*') patches = [f'COPY ["{i}", "/src/diff/"]' for i in files] patches = '\n'.join(patches) else: template = f'{HOME}/docker/Dockerfile.crosstool.in' patches = '' self.configure_dockerfile(image, template, [ ('ARCH', image.processor), ('CONFIG', image.config), ('PATCH', patches), ]) # Get the proper dependent parameters for our image. if image.os == OperatingSystem.BareMetal: cmake_template = f'{HOME}/cmake/crosstool-elf.cmake.in' symlink_template = f'{HOME}/symlink/crosstool.sh.in' elif image.qemu: cmake_template = f'{HOME}/cmake/crosstool-os-qemu.cmake.in' symlink_template = f'{HOME}/symlink/crosstool-qemu.sh.in' else: cmake_template = f'{HOME}/cmake/crosstool-os.cmake.in' symlink_template = f'{HOME}/symlink/crosstool.sh.in' # Configure the CMake toolchain. self.configure_cmake(image, cmake_template, [ ('TRIPLE', image.triple), ]) # Configure the symlinks. self.configure_symlinks(image, symlink_template, [ ('ARCH', image.processor), ('TRIPLE', image.triple), ]) # Build derived images with package managers enabled. if image.os == OperatingSystem.Linux or image.os == OperatingSystem.Windows: self.configure_package_dockerfile(image) def configure_debian(self, image): '''Configure a debian-based docker file.''' # Configure the dockerfile. template = f'{HOME}/docker/Dockerfile.debian.in' self.configure_dockerfile(image, template, [ ('ARCH', image.processor), ('G++', image.cxx), ('LIBC', image.libc), ]) # Get the proper dependent parameters for our image. if image.os != OperatingSystem.Linux: raise NotImplementedError if image.target == 'x86_64-unknown-linux-gnu': cmake_template = f'{HOME}/cmake/native.cmake.in' symlink_template = f'{HOME}/symlink/native.sh.in' else: cmake_template = f'{HOME}/cmake/debian.cmake.in' symlink_template = f'{HOME}/symlink/debian.sh.in' # Configure the CMake toolchain. self.configure_cmake(image, cmake_template, []) # Configure the symlinks. self.configure_symlinks(image, symlink_template, [ ('GCC_MAJOR', gcc_major), ('PREFIX', image.prefix), ('PROCESSOR', image.processor), ('OS', image.os.to_triple()), ('SYSTEM', image.system), ]) # Build derived images with package managers enabled. self.configure_package_dockerfile(image) def configure_musl(self, image): '''Configure a musl-cross-based image.''' # Get the proper dependent parameters for our image. if image.qemu: cmake_template = f'{HOME}/cmake/musl-qemu.cmake.in' symlink_template = f'{HOME}/symlink/musl-qemu.sh.in' else: cmake_template = f'{HOME}/cmake/musl.cmake.in' symlink_template = f'{HOME}/symlink/musl.sh.in' # Configure the dockerfile. template = f'{HOME}/docker/Dockerfile.musl.in' self.configure_dockerfile(image, template, [ ('ARCH', image.processor), ('TRIPLE', image.config), ]) # Configure the CMake toolchain. self.configure_cmake(image, cmake_template, [ ('TRIPLE', image.config), ]) # Configure the symlinks. self.configure_symlinks(image, symlink_template, [ ('ARCH', image.processor), ('TRIPLE', image.config), ]) # Build derived images with package managers enabled. self.configure_package_dockerfile(image) def configure_riscv(self, image): '''Configure a RISC-V-based image.''' # Get the proper dependent parameters for our image. if image.os == OperatingSystem.Linux: cmake_template = f'{HOME}/cmake/riscv-linux.cmake.in' elif image.os == OperatingSystem.BareMetal: cmake_template = f'{HOME}/cmake/riscv-elf.cmake.in' else: raise NotImplementedError if image.qemu: symlink_template = f'{HOME}/symlink/riscv-qemu.sh.in' else: symlink_template = f'{HOME}/symlink/riscv.sh.in' # Configure the dockerfile. template = f'{HOME}/docker/Dockerfile.riscv.in' self.configure_dockerfile(image, template, [ ('ARCH', image.processor), ('TRIPLE', image.triple), ]) # Configure the CMake toolchain. self.configure_cmake(image, cmake_template, []) # Configure the symlinks. self.configure_symlinks(image, symlink_template, [ ('ARCH', image.processor), ('TRIPLE', image.triple), ]) # Build derived images with package managers enabled. if image.os == OperatingSystem.Linux: self.configure_package_dockerfile(image) def configure_other(self, image): '''Configure a miscellaneous image.''' # Configure the dockerfile. template = f'{HOME}/docker/Dockerfile.{image.target}.in' if not os.path.exists(template): template = None self.configure_dockerfile(image, template, [ ('ARCH', image.target), ('BINDIR', bin_directory), ], **image.dockerfile) # Configure the CMake toolchain. cmake_template = f'{HOME}/cmake/{image.target}.cmake.in' self.configure_cmake(image, cmake_template, []) # Configure the symlinks. symlink_template = f'{HOME}/symlink/{image.target}.sh.in' self.configure_symlinks(image, symlink_template, []) # Build derived images with package managers enabled. if hasattr(image, 'package_dockerfile'): self.configure_package_dockerfile(image, **image.package_dockerfile) def run(self): '''Modify configuration files.''' VersionCommand.run(self) # Make the required subdirectories. os.makedirs(f'{HOME}/cmake/toolchain', exist_ok=True) os.makedirs(f'{HOME}/docker/images', exist_ok=True) os.makedirs(f'{HOME}/docker/pkgimages', exist_ok=True) os.makedirs(f'{HOME}/musl/config', exist_ok=True) os.makedirs(f'{HOME}/symlink/toolchain', exist_ok=True) # Configure base version info. cmake = f'{HOME}/cmake/cmake' emmake = f'{HOME}/symlink/emmake' make = f'{HOME}/symlink/make.in' self.configure(f'{cmake}.in', cmake, True, [ ('CMAKE', "'/usr/bin/cmake'"), ('WRAPPER', ''), ('SYSROOT', f'"{config["options"]["sysroot"]}"'), ]) self.configure(make, emmake, True, [ ('MAKE', "'/usr/bin/make'"), ('WRAPPER', 'emmake '), ]) # Configure our build scripts, and other configurations. self.configure_scripts() self.configure_ctng_config() self.configure_musl_config() # Configure images. self.configure_vcpkg_dockerfile() for image in android_images: self.configure_android(image) for image in buildroot_images: self.configure_buildroot(image) for image in crosstool_images: self.configure_crosstool(image) for image in debian_images: self.configure_debian(image) for image in musl_cross_images: self.configure_musl(image) for image in riscv_images: self.configure_riscv(image) for image in other_images: self.configure_other(image) script = f'{HOME}/bin/xcross' if len(sys.argv) >= 2 and sys.argv[1] == 'py2exe': params = { 'console': [{ 'script': f'{HOME}/xcross/__main__.py', 'dest_base': 'xcross', 'description': description, 'comments': long_description, 'product_name': 'xcross', }], 'options': { 'py2exe': { 'bundle_files': 1, 'compressed': 1, 'optimize': 2, 'dist_dir': f'{HOME}', 'dll_excludes': [], } }, 'zipfile': None } elif has_setuptools: params = { 'entry_points': { 'console_scripts': ['xcross = xcross:main'] } } else: params = { 'scripts': [f'{HOME}/bin/xcross'] } setuptools.setup( name="xcross", author="Alex Huszagh", author_email="ahuszagh@gmail.com", version=version, packages=['xcross'], **params, description=description, long_description=long_description, long_description_content_type='text/markdown', python_requires='>3.6.0', license='Unlicense', keywords='compilers cross-compilation embedded', url='https://github.com/Alexhuszagh/xcross', classifiers=[ 'Development Status :: 4 - Beta', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'License :: OSI Approved :: The Unlicense (Unlicense)', 'Topic :: Software Development :: Compilers', 'Topic :: Software Development :: Embedded Systems', ], cmdclass={ 'build_all': BuildAllCommand, 'build_image': BuildImageCommand, 'build_images': BuildImagesCommand, 'build_py': BuildCommand, 'clean': CleanCommand, 'clean_dist': CleanDistCommand, 'configure': ConfigureCommand, 'install': InstallCommand, 'lint': LintCommand, 'publish': PublishCommand, 'push': PushCommand, 'tag': TagCommand, 'test_images': TestImagesCommand, 'test': TestCommand, 'test_all': TestAllCommand, 'version': VersionCommand, }, )
33.96273
97
0.598202
58,096
0.76811
0
0
5,340
0.070602
0
0
26,063
0.344589
3d4379916a421e4f16400672da640d246b4981ac
27,082
py
Python
src/sgfsdriver/plugins/ftp/ftp_client.py
syndicate-storage/syndicate-fs-driver-plugins
8e455d6bb4838c2313bb6cd72ed5fa6bbbc871d2
[ "Apache-2.0" ]
null
null
null
src/sgfsdriver/plugins/ftp/ftp_client.py
syndicate-storage/syndicate-fs-driver-plugins
8e455d6bb4838c2313bb6cd72ed5fa6bbbc871d2
[ "Apache-2.0" ]
3
2016-11-18T21:31:00.000Z
2017-08-16T15:35:52.000Z
src/sgfsdriver/plugins/ftp/ftp_client.py
syndicate-storage/syndicate-fs-driver-plugins
8e455d6bb4838c2313bb6cd72ed5fa6bbbc871d2
[ "Apache-2.0" ]
2
2016-03-31T18:55:58.000Z
2017-08-02T19:57:12.000Z
#!/usr/bin/env python """ Copyright 2016 The Trustees of University of Arizona Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import traceback import os import logging import time import ftplib import threading from datetime import datetime from expiringdict import ExpiringDict from io import BytesIO logger = logging.getLogger('ftp_client') logger.setLevel(logging.DEBUG) # create file handler which logs even debug messages fh = logging.FileHandler('ftp_client.log') fh.setLevel(logging.DEBUG) # create formatter and add it to the handlers formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) # add the handlers to the logger logger.addHandler(fh) METADATA_CACHE_SIZE = 10000 METADATA_CACHE_TTL = 60 * 60 # 1 hour FTP_TIMEOUT = 5 * 60 # 5 min FTP_OPERATION_TIMEOUT = 30 # 30 sec BYTES_MAX_SKIP = 1024 * 1024 * 2 # 2MB CONNECTIONS_MAX_NUM = 5 """ Interface class to FTP """ class MLSD_NOT_SUPPORTED(Exception): pass class ftp_status(object): def __init__(self, directory=False, symlink=False, path=None, name=None, size=0, create_time=0, modify_time=0): self.directory = directory self.symlink = symlink self.path = path self.name = name self.size = size self.create_time = create_time self.modify_time = modify_time def __eq__(self, other): return self.__dict__ == other.__dict__ def __repr__(self): rep_d = "F" if self.directory: rep_d = "D" rep_s = "-" if self.symlink: rep_s = "S" return "<ftp_status %s%s %s %d>" % \ (rep_d, rep_s, self.name, self.size) class downloader_connection(object): def __init__(self, path, connection, offset=0, last_comm=0): self.path = path self.offset = offset self.connection = connection self.last_comm = last_comm self._lock = threading.RLock() def __repr__(self): return "<downloader_connection path(%s) off(%d) last_comm(%s)>" % \ (self.path, self.offset, self.last_comm) def lock(self): self._lock.acquire() def unlock(self): self._lock.release() class ftp_session(object): def __init__(self, host, port=21, user="anonymous", password="anonymous@email.com"): self.host = host self.port = port self.user = user self.password = password self.session = None self.last_comm = None self.connections = {} self._lock = threading.RLock() def connect(self): logger.info("connect session") self.lock() try: ftp_session = ftplib.FTP() ftp_session.connect(self.host, self.port, FTP_OPERATION_TIMEOUT) ftp_session.login(self.user, self.password) self.session = ftp_session logger.info("new ftp session to %s:%d - %d" % (self.host, self.port, id(self.session))) self.last_comm = datetime.now() finally: self.unlock() def close(self): logger.info("close session") self.lock() for connection in self.connections.values(): logger.info("_close_connection : %s" % connection.path) connection.lock() try: conn = connection.connection conn.close() self.session.voidresp() except ftplib.error_temp: # abortion of transfer causes this type of error pass except EOFError: pass del self.connections[connection.path] connection.unlock() try: logger.info("close ftp session to %s:%d - %d" % (self.host, self.port, id(self.session))) self.session.close() finally: self.session = None self.last_comm = None self.unlock() def reconnect(self): logger.info("reconnect session") self.lock() self.close() self.connect() self.unlock() def reconnect_if_needed(self): expired = True reconnected = False if self.last_comm: delta = datetime.now() - self.last_comm if delta.total_seconds() < FTP_TIMEOUT: expired = False if expired: # perform a short command then reconnect at fail logger.info("reconnect_if_needed: expired - check live") self.lock() try: self.pwd() reconnected = False except: self.reconnect() reconnected = True finally: self.unlock() else: reconnected = False return reconnected def retrlines(self, op, callback): logger.info("retrlines") self.lock() try: self.session.retrlines(op, callback) self.last_comm = datetime.now() finally: self.unlock() def pwd(self): logger.info("pwd") self.lock() try: self.session.pwd() self.last_comm = datetime.now() finally: self.unlock() def cwd(self, path): logger.info("cwd - %s" % path) self.lock() try: self.session.cwd(path) self.last_comm = datetime.now() finally: self.unlock() def mkd(self, path): logger.info("mkd - %s" % path) self.lock() try: self.session.mkd(path) self.last_comm = datetime.now() finally: self.unlock() def storbinary(self, op, path, buf, rest): logger.info("storbinary - %s" % path) self.lock() try: self.session.storbinary("%s %s" % (op, path), buf, rest=rest) self.last_comm = datetime.now() finally: self.unlock() def delete(self, path): logger.info("delete - %s" % path) self.lock() try: self.session.delete(path) self.last_comm = datetime.now() finally: self.unlock() def rename(self, path1, path2): logger.info("rename - %s => %s" % (path1, path2)) self.lock() try: self.session.rename(path1, path2) self.last_comm = datetime.now() finally: self.unlock() def __repr__(self): return "<ftp_session host(%s) port(%d)>" % \ (self.host, self.port) def lock(self): self._lock.acquire() def unlock(self): self._lock.release() def _new_connection(self, path, offset=0): logger.info("_new_connection : %s, off(%d)" % (path, offset)) self.lock() try: self.session.voidcmd("TYPE I") conn = self.session.transfercmd("RETR %s" % path, offset) connection = downloader_connection(path, conn, offset, datetime.now()) self.connections[path] = connection self.last_comm = datetime.now() finally: self.unlock() return connection def _close_connection(self, connection): path = connection.path logger.info("_close_connection : %s" % path) self.lock() connection.lock() try: conn = connection.connection conn.close() self.session.voidresp() except ftplib.error_temp: # abortion of transfer causes this type of error pass del self.connections[path] connection.unlock() self.unlock() def _get_connection(self, path, offset): connection = None logger.info("_get_connection : %s, off(%d)" % (path, offset)) self.lock() if path in self.connections: connection = self.connections[path] if connection: reusable = False connection.lock() coffset = connection.offset if coffset <= offset and coffset + BYTES_MAX_SKIP >= offset: reusable = True time_delta = datetime.now() - connection.last_comm if time_delta.total_seconds() < FTP_TIMEOUT: reusable = True connection.unlock() if not reusable: self._close_connection(connection) connection = None if len(self.connections) >= CONNECTIONS_MAX_NUM: # remove oldest oldest = None for live_connection in self.connections.values(): if not oldest: oldest = live_connection else: if oldest.last_comm > live_connection.last_comm: oldest = live_connection if oldest: self._close_connection(oldest) if connection: connection.lock() # may need to move offset skip_bytes = offset - connection.offset total_read = 0 EOF = False while total_read < skip_bytes: data = connection.connection.recv(skip_bytes - total_read) if data: data_len = len(data) total_read += data_len connection.offset += data_len else: #EOF EOF = True break if total_read > 0: connection.last_comm = datetime.now() #connection.unlock() else: connection = self._new_connection(path, offset) connection.lock() self.unlock() return connection def read_data(self, path, offset, size): logger.info("read_data : %s, off(%d), size(%d)" % (path, offset, size)) #connection is locked self.lock() connection = self._get_connection(path, offset) buf = BytesIO() total_read = 0 EOF = False if connection.offset != offset: connection.unlock() self._close_connection(connection) connection = self._new_connection(path, offset) connection.lock() #raise Exception("Connection does not have right offset %d - %d" % (connection.offset, offset)) while total_read < size: data = connection.connection.recv(size - total_read) if data: buf.write(data) data_len = len(data) total_read += data_len connection.offset += data_len else: #EOF EOF = True break if total_read > 0: connection.last_comm = datetime.now() connection.unlock() if EOF: self._close_connection(connection) self.unlock() return buf.getvalue() class prefetch_task(threading.Thread): def __init__(self, group=None, target=None, name=None, args=(), kwargs=None, verbose=None): threading.Thread.__init__(self, group=group, target=target, name=name, verbose=verbose) self.args = args self.kwargs = kwargs self.host = kwargs["host"] self.port = int(kwargs["port"]) self.path = kwargs["path"] self.offset = kwargs["offset"] self.size = kwargs["size"] self.ftp_client = kwargs["ftp_client"] self.complete = False self.data = None def run(self): logger.info("prefetch_task : %s:%d - %s, off(%d), size(%d)" % (self.host, self.port, self.path, self.offset, self.size)) session = self.ftp_client.get_download_session() session.lock() buf = None try: session.reconnect_if_needed() buf = session.read_data(self.path, self.offset, self.size) logger.info("prefetch_task: read done") except Exception, e: logger.error("prefetch_task: " + traceback.format_exc()) finally: session.unlock() self.data = buf self.complete = True class ftp_client(object): def __init__(self, host=None, port=21, user='anonymous', password='anonymous@email.com'): self.host = host if port > 0: self.port = int(port) else: self.port = 21 if user: self.user = user else: self.user = "anonymous" if password: self.password = password else: self.password = "anonymous@email.com" self.session = ftp_session(self.host, self.port, self.user, self.password) self.download_session = ftp_session(self.host, self.port, self.user, self.password) self.mlsd_supported = True self.prefetch_thread = None # init cache self.meta_cache = ExpiringDict( max_len=METADATA_CACHE_SIZE, max_age_seconds=METADATA_CACHE_TTL ) def connect(self): logger.info("connect: connecting to FTP server (%s)" % self.host) self.session.connect() self.download_session.connect() def close(self): try: logger.info("close: closing a connectinn to FTP server (%s)" % self.host) self.session.close() self.download_session.close() except: pass def reconnect(self): self.close() self.connect() def __enter__(self): self.connect() return self def __exit__(self, exc_type, exc_value, traceback): self.close() def get_download_session(self): return self.download_session def _parse_MLSD(self, parent, line): # modify=20170623195719;perm=adfr;size=454060;type=file;unique=13U670966;UNIX.group=570;UNIX.mode=0444;UNIX.owner=14; gbrel.txt fields = line.split(";") stat_dict = {} for field in fields: if "=" in field: # key-value field fv = field.strip() fv_idx = fv.index("=") key = fv[:fv_idx].lower() value = fv[fv_idx+1:] else: key = "name" value = field.strip() stat_dict[key] = value full_path = parent.rstrip("/") + "/" + stat_dict["name"] directory = False symlink = False if "type" in stat_dict: t = stat_dict["type"] if t in ["cdir", "pdir"]: return None if t == "dir": directory = True elif t == "OS.unix=symlink": symlink = True elif t.startswith("OS.unix=slink:"): symlink = True if t not in ["dir", "file", "OS.unix=symlink"]: raise IOError("Unknown type : %s" % t) size = 0 if "size" in stat_dict: size = long(stat_dict["size"]) modify_time = None if "modify" in stat_dict: modify_time_obj = datetime.strptime(stat_dict["modify"], "%Y%m%d%H%M%S") modify_time = time.mktime(modify_time_obj.timetuple()) create_time = None if "create" in stat_dict: create_time_obj = datetime.strptime(stat_dict["create"], "%Y%m%d%H%M%S") create_time = time.mktime(create_time_obj.timetuple()) if "name" in stat_dict: return ftp_status( directory=directory, symlink=symlink, path=full_path, name=stat_dict["name"], size=size, create_time=create_time, modify_time=modify_time ) else: return None def _parse_LIST(self, parent, line): # drwxr-xr-x 8 20002 2006 4096 Dec 08 2015 NANOGrav_9y fields = line.split() stat_dict = {} stat_dict["perm"] = fields[0] stat_dict["owner"] = fields[2] stat_dict["group"] = fields[3] stat_dict["size"] = fields[4] stat_dict["month"] = fields[5] stat_dict["day"] = fields[6] stat_dict["d3"] = fields[7] stat_dict["name"] = fields[8] full_path = parent.rstrip("/") + "/" + stat_dict["name"] directory = False symlink = False if stat_dict["perm"].startswith("d"): directory = True elif stat_dict["perm"].startswith("-"): directory = False elif stat_dict["perm"].startswith("l"): directory = True symlink = True else: raise IOError("Unknown type : %s" % stat_dict["perm"]) size = 0 if "size" in stat_dict: size = long(stat_dict["size"]) now = datetime.now() year = now.year hour = 0 minute = 0 if stat_dict["d3"].isdigit(): year = int(stat_dict["d3"]) else: hm = stat_dict["d3"].split(":") hour = int(hm[0]) minute = int(hm[1]) d = "%d %s %s %d %d" % ( year, stat_dict["month"], stat_dict["day"], hour, minute ) modify_time = None if "modify" in stat_dict: modify_time_obj = datetime.strptime(d, "%Y %b %d %H %M") modify_time = time.mktime(modify_time_obj.timetuple()) create_time = None if "create" in stat_dict: create_time_obj = datetime.strptime(d, "%Y %b %d %H %M") create_time = time.mktime(create_time_obj.timetuple()) if "name" in stat_dict: return ftp_status( directory=directory, symlink=symlink, path=full_path, name=stat_dict["name"], size=size, create_time=create_time, modify_time=modify_time ) else: return None def _list_dir_and_stat_MLSD(self, path): logger.info("_list_dir_and_stat_MLSD: retrlines with MLSD - %s" % path) stats = [] try: entries = [] try: self.session.retrlines("MLSD", entries.append) except ftplib.error_perm, e: msg = str(e) if "500" in msg or "unknown command" in msg.lower(): raise MLSD_NOT_SUPPORTED("MLSD is not supported") for ent in entries: st = self._parse_MLSD(path, ent) if st: stats.append(st) except ftplib.error_perm: logger.error("_list_dir_and_stat_MLSD: " + traceback.format_exc()) return stats def _list_dir_and_stat_LIST(self, path): logger.info("_list_dir_and_stat_LIST: retrlines with LIST - %s" % path) stats = [] try: entries = [] self.session.retrlines("LIST", entries.append) for ent in entries: st = self._parse_LIST(path, ent) if st: stats.append(st) except ftplib.error_perm: logger.error("_list_dir_and_stat_LIST: " + traceback.format_exc()) return stats def _ensureDirEntryStatLoaded(self, path): # reuse cache if path in self.meta_cache: return self.meta_cache[path] logger.info("_ensureDirEntryStatLoaded: loading - %s" % path) self.session.lock() self.session.reconnect_if_needed() self.session.cwd(path) stats = [] if self.mlsd_supported: try: stats = self._list_dir_and_stat_MLSD(path) except MLSD_NOT_SUPPORTED: self.mlsd_supported = False stats = self._list_dir_and_stat_LIST(path) else: stats = self._list_dir_and_stat_LIST(path) self.session.unlock() self.meta_cache[path] = stats return stats def _invoke_prefetch(self, path, offset, size): logger.info("_invoke_prefetch : %s, off(%d), size(%d)" % (path, offset, size)) self.prefetch_thread = prefetch_task(name="prefetch_task_thread", kwargs={'host':self.session.host, 'port':self.session.port, 'path':path, 'offset':offset, 'size':size, 'ftp_client':self}) self.prefetch_thread.start() def _get_prefetch_data(self, path, offset, size): logger.info("_get_prefetch_data : %s, off(%d), size(%d)" % (path, offset, size)) invoke_new_thread = False if self.prefetch_thread: if not self.prefetch_thread.complete: self.prefetch_thread.join() if self.prefetch_thread.path != path or self.prefetch_thread.offset != offset or self.prefetch_thread.size != size: invoke_new_thread = True else: invoke_new_thread = True if invoke_new_thread: self._invoke_prefetch(path, offset, size) self.prefetch_thread.join() data = self.prefetch_thread.data self.prefetch_thread = None return data """ Returns ftp_status """ def stat(self, path): logger.info("stat: %s" % path) try: # try bulk loading of stats parent = os.path.dirname(path) stats = self._ensureDirEntryStatLoaded(parent) if stats: for sb in stats: if sb.path == path: return sb return None except Exception: # fall if cannot access the parent dir return None """ Returns directory entries in string """ def list_dir(self, path): logger.info("list_dir: %s" % path) stats = self._ensureDirEntryStatLoaded(path) entries = [] if stats: for sb in stats: entries.append(sb.name) return entries def is_dir(self, path): sb = self.stat(path) if sb: return sb.directory return False def make_dirs(self, path): logger.info("make_dirs: %s" % path) if not self.exists(path): self.session.lock() # make parent dir first self.reconnect_if_needed() self.make_dirs(os.path.dirname(path)) self.session.mkd(path) self.session.unlock() # invalidate stat cache self.clear_stat_cache(os.path.dirname(path)) def exists(self, path): logger.info("exists: %s" % path) try: sb = self.stat(path) if sb: return True return False except Exception: return False def clear_stat_cache(self, path=None): logger.info("clear_stat_cache: %s" % path) if(path): if path in self.meta_cache: # directory del self.meta_cache[path] else: # file parent = os.path.dirname(path) if parent in self.meta_cache: del self.meta_cache[parent] else: self.meta_cache.clear() def read(self, path, offset, size): logger.info("read : %s, off(%d), size(%d)" % (path, offset, size)) buf = None try: sb = self.stat(path) if offset >= sb.size: # EOF buf = BytesIO() return buf.getvalue() time1 = datetime.now() buf = self._get_prefetch_data(path, offset, size) #buf = self.session.read_data(path, offset, size) read_len = len(buf) if read_len + offset < sb.size: self._invoke_prefetch(path, offset + read_len, size) time2 = datetime.now() delta = time2 - time1 logger.info("read: took - %s" % delta) logger.info("read: read done") except Exception, e: logger.error("read: " + traceback.format_exc()) raise e return buf def write(self, path, offset, buf): logger.info("write : %s, off(%d), size(%d)" % (path, offset, len(buf))) try: logger.info("write: writing buffer %d" % len(buf)) bio = BytesIO() bio.write(buf) bio.seek(0) self.session.lock() self.session.reconnect_if_needed() self.session.storbinary("STOR", path, bio, offset) self.session.unlock() logger.info("write: writing done") except Exception, e: logger.error("write: " + traceback.format_exc()) raise e # invalidate stat cache self.clear_stat_cache(path) def truncate(self, path, size): logger.info("truncate : %s" % path) raise IOError("truncate is not supported") def unlink(self, path): logger.info("unlink : %s" % path) try: logger.info("unlink: deleting a file - %s" % path) self.session.lock() self.session.reconnect_if_needed() self.session.delete(path) self.session.unlock() logger.info("unlink: deleting done") except Exception, e: logger.error("unlink: " + traceback.format_exc()) raise e # invalidate stat cache self.clear_stat_cache(path) def rename(self, path1, path2): logger.info("rename : %s -> %s" % (path1, path2)) try: logger.info("rename: renaming a file - %s to %s" % (path1, path2)) self.session.lock() self.session.reconnect_if_needed() self.session.rename(path1, path2) self.session.unlock() logger.info("rename: renaming done") except Exception, e: logger.error("rename: " + traceback.format_exc()) raise e # invalidate stat cache self.clear_stat_cache(path1) self.clear_stat_cache(path2)
30.259218
196
0.535633
25,595
0.945093
0
0
0
0
0
0
3,960
0.146223
3d440ce993f7a5cda0551a5a0f0c5294985fb68c
2,338
py
Python
py/ops/ops/mob/keys.py
clchiou/garage
446ff34f86cdbd114b09b643da44988cf5d027a3
[ "MIT" ]
3
2016-01-04T06:28:52.000Z
2020-09-20T13:18:40.000Z
py/ops/ops/mob/keys.py
clchiou/garage
446ff34f86cdbd114b09b643da44988cf5d027a3
[ "MIT" ]
null
null
null
py/ops/ops/mob/keys.py
clchiou/garage
446ff34f86cdbd114b09b643da44988cf5d027a3
[ "MIT" ]
null
null
null
__all__ = [ 'keys', ] from pathlib import Path import logging from garage import apps from garage import scripts LOG = logging.getLogger(__name__) HOST_KEYS = [ ('dsa', 1024), ('ecdsa', 521), ('ed25519', None), ('rsa', 4096), ] # ECDSA requires less bits than RSA at same level of strength and # thus seems to be the best choice USER_KEY_ALGORITHM = 'ecdsa' USER_KEY_SIZE = 521 def ssh_host_key_filename(algorithm): return 'ssh_host_%s_key' % algorithm def ssh_user_key_filename(algorithm): return 'id_' + algorithm @apps.with_prog('gen-host-key') @apps.with_help('generate host keys') @apps.with_argument('output_dir', type=Path, help='set output directory') def generate_host_key(args): """Generate SSH host keys with ssh-keygen.""" key_paths = [ args.output_dir / ssh_host_key_filename(algorithm) for algorithm, _ in HOST_KEYS ] okay = True for key_path in key_paths: if key_path.exists(): LOG.error('attempt to overwrite %s', key_path) okay = False if not okay: return 1 scripts.mkdir(args.output_dir) for (algorithm, key_size), key_path in zip(HOST_KEYS, key_paths): cmd = [ 'ssh-keygen', '-t', algorithm, '-N', '', # No password '-C', 'root@localhost', '-f', key_path, ] if key_size: cmd.extend(['-b', key_size]) scripts.execute(cmd) return 0 @apps.with_prog('gen-user-key') @apps.with_help('generate user key pair') @apps.with_argument('output_dir', type=Path, help='set output directory') def generate_user_key(args): """Generate SSH key pair with ssh-keygen.""" key_path = args.output_dir / ssh_user_key_filename(USER_KEY_ALGORITHM) if key_path.exists(): LOG.error('attempt to overwrite %s', key_path) return 1 scripts.mkdir(args.output_dir) scripts.execute([ 'ssh-keygen', '-t', USER_KEY_ALGORITHM, '-b', USER_KEY_SIZE, '-C', 'plumber@localhost', '-f', key_path, ]) return 0 @apps.with_help('manage security keys') @apps.with_apps( 'operation', 'operation on keys', generate_host_key, generate_user_key, ) def keys(args): """Manage security keys.""" return args.operation(args)
23.38
74
0.630881
0
0
0
0
1,773
0.75834
0
0
628
0.268606
3d4433d949aa6f4076c88076dfa660972581d142
28,882
py
Python
reconcile/test/test_saasherder.py
bhushanthakur93/qontract-reconcile
fd8eea9f92d353224113955d08e3592864e37df8
[ "Apache-2.0" ]
null
null
null
reconcile/test/test_saasherder.py
bhushanthakur93/qontract-reconcile
fd8eea9f92d353224113955d08e3592864e37df8
[ "Apache-2.0" ]
null
null
null
reconcile/test/test_saasherder.py
bhushanthakur93/qontract-reconcile
fd8eea9f92d353224113955d08e3592864e37df8
[ "Apache-2.0" ]
null
null
null
from typing import Any from unittest import TestCase from unittest.mock import patch, MagicMock import yaml from github import GithubException from reconcile.utils.openshift_resource import ResourceInventory from reconcile.utils.saasherder import SaasHerder from reconcile.utils.jjb_client import JJB from reconcile.utils.saasherder import TARGET_CONFIG_HASH from .fixtures import Fixtures class MockJJB: def __init__(self, data): self.jobs = data def get_all_jobs(self, job_types): return self.jobs @staticmethod def get_repo_url(job): return JJB.get_repo_url(job) @staticmethod def get_ref(job): return JJB.get_ref(job) class TestSaasFileValid(TestCase): def setUp(self): self.saas_files = [ { "path": "path1", "name": "a1", "managedResourceTypes": [], "resourceTemplates": [ { "name": "rt", "url": "url", "targets": [ { "namespace": { "name": "ns", "environment": {"name": "env1", "parameters": "{}"}, "cluster": {"name": "cluster"}, }, "ref": "main", "upstream": {"instance": {"name": "ci"}, "name": "job"}, "parameters": {}, }, { "namespace": { "name": "ns", "environment": {"name": "env2", "parameters": "{}"}, "cluster": {"name": "cluster"}, }, "ref": "master", "upstream": {"instance": {"name": "ci"}, "name": "job"}, "parameters": {}, }, ], } ], "roles": [{"users": [{"org_username": "myname"}]}], } ] jjb_mock_data = { "ci": [ { "name": "job", "properties": [{"github": {"url": "url"}}], "scm": [{"git": {"branches": ["main"]}}], }, { "name": "job", "properties": [{"github": {"url": "url"}}], "scm": [{"git": {"branches": ["master"]}}], }, ] } self.jjb = MockJJB(jjb_mock_data) def test_check_saas_file_env_combo_unique(self): saasherder = SaasHerder( self.saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, validate=True, ) self.assertTrue(saasherder.valid) def test_check_saas_file_env_combo_not_unique(self): self.saas_files[0][ "name" ] = "long-name-which-is-too-long-to-produce-unique-combo" saasherder = SaasHerder( self.saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, validate=True, ) self.assertFalse(saasherder.valid) def test_check_saas_file_upstream_not_used_with_commit_sha(self): saasherder = SaasHerder( self.saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, validate=True, ) self.assertTrue(saasherder.valid) def test_check_saas_file_upstream_used_with_commit_sha(self): self.saas_files[0]["resourceTemplates"][0]["targets"][0][ "ref" ] = "2637b6c41bda7731b1bcaaf18b4a50d7c5e63e30" saasherder = SaasHerder( self.saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, validate=True, ) self.assertFalse(saasherder.valid) def test_validate_image_tag_not_equals_ref_valid(self): self.saas_files[0]["resourceTemplates"][0]["targets"][0][ "parameters" ] = '{"IMAGE_TAG": "2637b6c"}' saasherder = SaasHerder( self.saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, validate=True, ) self.assertTrue(saasherder.valid) def test_validate_image_tag_not_equals_ref_invalid(self): self.saas_files[0]["resourceTemplates"][0]["targets"][0][ "ref" ] = "2637b6c41bda7731b1bcaaf18b4a50d7c5e63e30" self.saas_files[0]["resourceTemplates"][0]["targets"][0][ "parameters" ] = '{"IMAGE_TAG": "2637b6c"}' saasherder = SaasHerder( self.saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, validate=True, ) self.assertFalse(saasherder.valid) def test_validate_upstream_jobs_valid(self): saasherder = SaasHerder( self.saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, validate=True, ) saasherder.validate_upstream_jobs(self.jjb) self.assertTrue(saasherder.valid) def test_validate_upstream_jobs_invalid(self): saasherder = SaasHerder( self.saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, validate=True, ) jjb = MockJJB({"ci": []}) saasherder.validate_upstream_jobs(jjb) self.assertFalse(saasherder.valid) def test_check_saas_file_promotion_same_source(self): rts = [ { "name": "rt_publisher", "url": "repo_publisher", "targets": [ { "namespace": { "name": "ns", "environment": {"name": "env1"}, "cluster": {"name": "cluster"}, }, "parameters": {}, "ref": "0000000000000", "promotion": { "publish": ["channel-1"], }, } ], }, { "name": "rt_subscriber", "url": "this-repo-will-not-match-the-publisher", "targets": [ { "namespace": { "name": "ns2", "environment": {"name": "env1"}, "cluster": {"name": "cluster"}, }, "parameters": {}, "ref": "0000000000000", "promotion": { "auto": "true", "subscribe": ["channel-1"], }, } ], }, ] self.saas_files[0]["resourceTemplates"] = rts saasherder = SaasHerder( self.saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, validate=True, ) self.assertFalse(saasherder.valid) class TestGetMovingCommitsDiffSaasFile(TestCase): def setUp(self): self.saas_files = [ { "path": "path1", "name": "a1", "managedResourceTypes": [], "resourceTemplates": [ { "name": "rt", "url": "http://github.com/user/repo", "targets": [ { "namespace": { "name": "ns", "environment": {"name": "env1"}, "cluster": {"name": "cluster1"}, }, "parameters": {}, "ref": "main", }, { "namespace": { "name": "ns", "environment": {"name": "env2"}, "cluster": {"name": "cluster2"}, }, "parameters": {}, "ref": "secondary", }, ], } ], "roles": [{"users": [{"org_username": "myname"}]}], } ] self.initiate_gh_patcher = patch.object( SaasHerder, "_initiate_github", autospec=True ) self.get_pipelines_provider_patcher = patch.object( SaasHerder, "_get_pipelines_provider" ) self.get_commit_sha_patcher = patch.object( SaasHerder, "_get_commit_sha", autospec=True ) self.initiate_gh = self.initiate_gh_patcher.start() self.get_pipelines_provider = self.get_pipelines_provider_patcher.start() self.get_commit_sha = self.get_commit_sha_patcher.start() self.maxDiff = None def tearDown(self): for p in ( self.initiate_gh_patcher, self.get_pipelines_provider_patcher, self.get_commit_sha_patcher, ): p.stop() def test_get_moving_commits_diff_saas_file_all_fine(self): saasherder = SaasHerder( self.saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, validate=False, ) saasherder.state = MagicMock() saasherder.state.get.return_value = "asha" self.get_commit_sha.side_effect = ("abcd4242", "4242efg") self.get_pipelines_provider.return_value = "apipelineprovider" expected = [ { "saas_file_name": self.saas_files[0]["name"], "env_name": "env1", "timeout": None, "ref": "main", "commit_sha": "abcd4242", "cluster_name": "cluster1", "pipelines_provider": "apipelineprovider", "namespace_name": "ns", "rt_name": "rt", }, { "saas_file_name": self.saas_files[0]["name"], "env_name": "env2", "timeout": None, "ref": "secondary", "commit_sha": "4242efg", "cluster_name": "cluster2", "pipelines_provider": "apipelineprovider", "namespace_name": "ns", "rt_name": "rt", }, ] self.assertEqual( saasherder.get_moving_commits_diff_saas_file(self.saas_files[0], True), expected, ) def test_get_moving_commits_diff_saas_file_bad_sha1(self): saasherder = SaasHerder( self.saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, validate=False, ) saasherder.state = MagicMock() saasherder.state.get.return_value = "asha" self.get_pipelines_provider.return_value = "apipelineprovider" self.get_commit_sha.side_effect = GithubException( 401, "somedata", {"aheader": "avalue"} ) # At least we don't crash! self.assertEqual( saasherder.get_moving_commits_diff_saas_file(self.saas_files[0], True), [] ) class TestPopulateDesiredState(TestCase): def setUp(self): saas_files = [] self.fxts = Fixtures("saasherder_populate_desired") for file in [self.fxts.get("saas_remote_openshift_template.yaml")]: saas_files.append(yaml.safe_load(file)) self.assertEqual(1, len(saas_files)) self.saasherder = SaasHerder( saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={"hashLength": 7}, ) # Mock GitHub interactions. self.initiate_gh_patcher = patch.object( SaasHerder, "_initiate_github", autospec=True, return_value=None, ) self.get_file_contents_patcher = patch.object( SaasHerder, "_get_file_contents", wraps=self.fake_get_file_contents, ) self.initiate_gh_patcher.start() self.get_file_contents_patcher.start() # Mock image checking. self.get_check_images_patcher = patch.object( SaasHerder, "_check_images", autospec=True, return_value=None, ) self.get_check_images_patcher.start() def fake_get_file_contents(self, options): self.assertEqual("https://github.com/rhobs/configuration", options["url"]) content = self.fxts.get(options["ref"] + (options["path"].replace("/", "_"))) return yaml.safe_load(content), "yolo", options["ref"] def tearDown(self): for p in ( self.initiate_gh_patcher, self.get_file_contents_patcher, self.get_check_images_patcher, ): p.stop() def test_populate_desired_state_saas_file_delete(self): spec = {"delete": True} desired_state = self.saasherder.populate_desired_state_saas_file(spec, None) self.assertIsNone(desired_state) def test_populate_desired_state_cases(self): ri = ResourceInventory() for resource_type in ( "Deployment", "Service", "ConfigMap", ): ri.initialize_resource_type("stage-1", "yolo-stage", resource_type) ri.initialize_resource_type("prod-1", "yolo", resource_type) self.saasherder.populate_desired_state(ri) cnt = 0 for (cluster, namespace, resource_type, data) in ri: for _, d_item in data["desired"].items(): expected = yaml.safe_load( self.fxts.get( f"expected_{cluster}_{namespace}_{resource_type}.json", ) ) self.assertEqual(expected, d_item.body) cnt += 1 self.assertEqual(5, cnt, "expected 5 resources, found less") class TestCollectRepoUrls(TestCase): def test_collect_repo_urls(self): repo_url = "git-repo" saas_files = [ { "path": "path1", "name": "name1", "managedResourceTypes": [], "resourceTemplates": [{"name": "name", "url": repo_url, "targets": []}], } ] saasherder = SaasHerder( saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, ) self.assertEqual({repo_url}, saasherder.repo_urls) class TestGetSaasFileAttribute(TestCase): def test_attribute_none(self): saas_files = [ { "path": "path1", "name": "name1", "managedResourceTypes": [], "resourceTemplates": [], } ] saasherder = SaasHerder( saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, ) att = saasherder._get_saas_file_feature_enabled("no_such_attribute") self.assertEqual(att, None) def test_attribute_not_none(self): saas_files = [ { "path": "path1", "name": "name1", "managedResourceTypes": [], "resourceTemplates": [], "attrib": True, } ] saasherder = SaasHerder( saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, ) att = saasherder._get_saas_file_feature_enabled("attrib") self.assertEqual(att, True) def test_attribute_none_with_default(self): saas_files = [ { "path": "path1", "name": "name1", "managedResourceTypes": [], "resourceTemplates": [], } ] saasherder = SaasHerder( saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, ) att = saasherder._get_saas_file_feature_enabled("no_such_att", default=True) self.assertEqual(att, True) def test_attribute_not_none_with_default(self): saas_files = [ { "path": "path1", "name": "name1", "managedResourceTypes": [], "resourceTemplates": [], "attrib": True, } ] saasherder = SaasHerder( saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, ) att = saasherder._get_saas_file_feature_enabled("attrib", default=False) self.assertEqual(att, True) def test_attribute_multiple_saas_files_return_false(self): saas_files = [ { "path": "path1", "name": "name1", "managedResourceTypes": [], "resourceTemplates": [], "attrib": True, }, { "path": "path2", "name": "name2", "managedResourceTypes": [], "resourceTemplates": [], }, ] saasherder = SaasHerder( saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, ) self.assertFalse(saasherder._get_saas_file_feature_enabled("attrib")) def test_attribute_multiple_saas_files_with_default_return_false(self): saas_files = [ { "path": "path1", "name": "name1", "managedResourceTypes": [], "resourceTemplates": [], "attrib": True, }, { "path": "path2", "name": "name2", "managedResourceTypes": [], "resourceTemplates": [], "attrib": True, }, ] saasherder = SaasHerder( saas_files, thread_pool_size=1, gitlab=None, integration="", integration_version="", settings={}, ) att = saasherder._get_saas_file_feature_enabled("attrib", default=True) self.assertFalse(att) class TestConfigHashPromotionsValidation(TestCase): """TestCase to test SaasHerder promotions validation. SaasHerder is initialized with ResourceInventory population. Like is done in openshift-saas-deploy""" cluster: str namespace: str fxt: Any template: Any @classmethod def setUpClass(cls): cls.fxt = Fixtures("saasherder") cls.cluster = "test-cluster" cls.template = cls.fxt.get_anymarkup("template_1.yml") def setUp(self) -> None: self.all_saas_files = [self.fxt.get_anymarkup("saas.gql.yml")] self.state_patcher = patch("reconcile.utils.saasherder.State", autospec=True) self.state_mock = self.state_patcher.start().return_value self.ig_patcher = patch.object(SaasHerder, "_initiate_github", autospec=True) self.ig_patcher.start() self.image_auth_patcher = patch.object(SaasHerder, "_initiate_image_auth") self.image_auth_patcher.start() self.gfc_patcher = patch.object(SaasHerder, "_get_file_contents", autospec=True) gfc_mock = self.gfc_patcher.start() self.saas_file = self.fxt.get_anymarkup("saas.gql.yml") # ApiVersion is set in the saas gql query method in queries module self.saas_file["apiVersion"] = "v2" gfc_mock.return_value = (self.template, "url", "ahash") self.deploy_current_state_fxt = self.fxt.get_anymarkup("saas_deploy.state.json") self.post_deploy_current_state_fxt = self.fxt.get_anymarkup( "saas_post_deploy.state.json" ) self.saasherder = SaasHerder( [self.saas_file], thread_pool_size=1, gitlab=None, integration="", integration_version="", accounts={"name": "test-account"}, # Initiates State in SaasHerder settings={"hashLength": 24}, ) # IMPORTANT: Populating desired state modify self.saas_files within # saasherder object. self.ri = ResourceInventory() for ns in ["test-ns-publisher", "test-ns-subscriber"]: for kind in ["Service", "Deployment"]: self.ri.initialize_resource_type(self.cluster, ns, kind) self.saasherder.populate_desired_state(self.ri) if self.ri.has_error_registered(): raise Exception("Errors registered in Resourceinventory") def tearDown(self): self.state_patcher.stop() self.ig_patcher.stop() self.gfc_patcher.stop() def test_config_hash_is_filled(self): """Ensures the get_config_diff_saas_file fills the promotion data on the publisher target. This data is used in publish_promotions method to add the hash to subscribed targets. IMPORTANT: This is not the promotion_data within promotion. This fields are set by _process_template method in saasherder """ job_spec = self.saasherder.get_configs_diff_saas_file(self.saas_file)[0] promotion = job_spec["target_config"]["promotion"] self.assertIsNotNone(promotion[TARGET_CONFIG_HASH]) def test_promotion_state_config_hash_match_validates(self): """A promotion is valid if the parent target config_hash set in the state is equal to the one set in the subscriber target promotion data. This is the happy path. """ publisher_state = { "success": True, "saas_file": self.saas_file["name"], TARGET_CONFIG_HASH: "ed2af38cf21f268c", } self.state_mock.get.return_value = publisher_state result = self.saasherder.validate_promotions() self.assertTrue(result) def test_promotion_state_config_hash_not_match_no_validates(self): """Promotion is not valid if the parent target config hash set in the state does not match with the one set in the subsriber target promotion_data. This could happen if the parent target has run again with the same ref before before the subscriber target promotion MR is merged. """ publisher_state = { "success": True, "saas_file": self.saas_file["name"], TARGET_CONFIG_HASH: "will_not_match", } self.state_mock.get.return_value = publisher_state result = self.saasherder.validate_promotions() self.assertFalse(result) def test_promotion_without_state_config_hash_validates(self): """Existent states won't have promotion data. If there is an ongoing promotion, this ensures it will happen. """ publisher_state = { "success": True, } self.state_mock.get.return_value = publisher_state result = self.saasherder.validate_promotions() self.assertTrue(result) def test_promotion_without_promotion_data_validates(self): """A manual promotion might be required, subsribed targets without promotion_data should validate if the parent target job has succed with the same ref. """ publisher_state = { "success": True, "saas_file": self.saas_file["name"], TARGET_CONFIG_HASH: "whatever", } # Remove promotion_data on the promoted target self.saasherder.promotions[1]["promotion_data"] = None self.state_mock.get.return_value = publisher_state result = self.saasherder.validate_promotions() self.assertTrue(result) class TestConfigHashTrigger(TestCase): """TestCase to test Openshift SAAS deploy configs trigger. SaasHerder is initialized WITHOUT ResourceInventory population. Like is done in the config changes trigger""" cluster: str namespace: str fxt: Any template: Any @classmethod def setUpClass(cls): cls.fxt = Fixtures("saasherder") cls.cluster = "test-cluster" def setUp(self) -> None: self.all_saas_files = [self.fxt.get_anymarkup("saas.gql.yml")] self.state_patcher = patch("reconcile.utils.saasherder.State", autospec=True) self.state_mock = self.state_patcher.start().return_value self.saas_file = self.fxt.get_anymarkup("saas.gql.yml") # ApiVersion is set in the saas gql query method in queries module self.saas_file["apiVersion"] = "v2" self.deploy_current_state_fxt = self.fxt.get_anymarkup("saas_deploy.state.json") self.post_deploy_current_state_fxt = self.fxt.get_anymarkup( "saas_post_deploy.state.json" ) self.state_mock.get.side_effect = [ self.deploy_current_state_fxt, self.post_deploy_current_state_fxt, ] self.saasherder = SaasHerder( [self.saas_file], thread_pool_size=1, gitlab=None, integration="", integration_version="", accounts={"name": "test-account"}, # Initiates State in SaasHerder settings={"hashLength": 24}, ) def tearDown(self): self.state_patcher.stop() def test_same_configs_do_not_trigger(self): """Ensures that if the same config is found, no job is triggered current Config is fetched from the state """ job_specs = self.saasherder.get_configs_diff_saas_file(self.saas_file) self.assertListEqual(job_specs, []) def test_config_hash_change_do_trigger(self): """Ensures a new job is triggered if the parent config hash changes""" configs = self.saasherder.get_saas_targets_config(self.saas_file) desired_tc = list(configs.values())[1] desired_promo_data = desired_tc["promotion"]["promotion_data"] desired_promo_data[0]["data"][0][TARGET_CONFIG_HASH] = "Changed" job_specs = self.saasherder.get_configs_diff_saas_file(self.saas_file) self.assertEqual(len(job_specs), 1) def test_non_existent_config_triggers(self): self.state_mock.get.side_effect = [self.deploy_current_state_fxt, None] job_specs = self.saasherder.get_configs_diff_saas_file(self.saas_file) self.assertEqual(len(job_specs), 1) class TestRemoveNoneAttributes(TestCase): def testSimpleDict(self): input = {"a": 1, "b": {}, "d": None, "e": {"aa": "aa", "bb": None}} expected = {"a": 1, "b": {}, "e": {"aa": "aa"}} res = SaasHerder.remove_none_values(input) self.assertEqual(res, expected) def testNoneValue(self): input = None expected = {} res = SaasHerder.remove_none_values(input) self.assertEqual(res, expected)
33.544715
88
0.522263
28,462
0.985458
0
0
437
0.015131
0
0
6,322
0.218891
3d452a7b2a000511d4c3041100856759bae15e44
8,235
py
Python
configs/example/garnet_synth_traffic.py
georgia-tech-synergy-lab/gem5_astra
41695878a2b60c5a28fa104465558cd1acb8a695
[ "BSD-3-Clause" ]
5
2020-11-15T12:27:28.000Z
2021-09-20T03:50:54.000Z
configs/example/garnet_synth_traffic.py
georgia-tech-synergy-lab/gem5_astra
41695878a2b60c5a28fa104465558cd1acb8a695
[ "BSD-3-Clause" ]
null
null
null
configs/example/garnet_synth_traffic.py
georgia-tech-synergy-lab/gem5_astra
41695878a2b60c5a28fa104465558cd1acb8a695
[ "BSD-3-Clause" ]
2
2020-10-27T01:15:41.000Z
2020-11-16T02:30:32.000Z
# Copyright (c) 2016 Georgia Institute of Technology # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Author: Tushar Krishna from __future__ import print_function import m5 from m5.objects import * from m5.defines import buildEnv from m5.util import addToPath import os, optparse, sys addToPath('../') from common import Options from ruby import Ruby def parse_network_input_options(options,var, val): if var=="num-npus:": options.num_cpus = int(val) options.num_dirs = int(val) print("num cpus is: "+str(val)) elif var=="num-packages:": options.num_packages = int(val) elif var=="package-rows:": options.package_rows= int(val) elif var=="topology:": options.topology= str(val) elif var=="links-per-tile:": options.links_per_tile=int(val) elif var=="local-rings:": options.local_rings=int(val) elif var=="vertical-rings:": options.vertical_rings=int(val) elif var=="horizontal-rings:": options.horizontal_rings=int(val) if var=="flit-width:": options.ni_flit_size = int(val) options.flit_width = int(val) elif var=="local-packet-size:": options.local_packet_size=int(val) elif var=="package-packet-size:": options.package_packet_size=int(val) elif var=="tile-link-width:": options.tile_link_width=int(val) elif var=="package-link-width:": options.package_link_width=int(val) elif var=="vcs-per-vnet:": options.vcs_per_vnet = int(val) elif var=="routing-algorithm:": options.routing_algorithm=str(val) elif var=="router-latency:": options.router_latency=int(val) elif var=="local-link-latency:": options.local_link_latency=int(val) elif var=="package-link-latency:": options.package_link_latency=int(val) elif var=="buffers-per-vc:": options.buffers_per_ctrl_vc = int(val) options.buffers_per_data_vc = int(val) elif var=="local-link-efficiency:": options.local_link_efficiency = float(val) elif var=="package-link-efficiency:": options.package_link_efficiency = float(val) # Get paths we might need. It's expected this file is in m5/configs/example. config_path = os.path.dirname(os.path.abspath(__file__)) config_root = os.path.dirname(config_path) m5_root = os.path.dirname(config_root) parser = optparse.OptionParser() Options.addNoISAOptions(parser) parser.add_option("--synthetic", type="choice", default="uniform_random", choices=['uniform_random', 'tornado', 'bit_complement', \ 'bit_reverse', 'bit_rotation', 'neighbor', \ 'shuffle', 'transpose','training']) parser.add_option("-i", "--injectionrate", type="float", default=0.1, metavar="I", help="Injection rate in packets per cycle per node. \ Takes decimal value between 0 to 1 (eg. 0.225). \ Number of digits after 0 depends upon --precision.") parser.add_option("--precision", type="int", default=3, help="Number of digits of precision after decimal point\ for injection rate") parser.add_option("--sim-cycles", type="int", default=1000, help="Number of simulation cycles") parser.add_option("--num-packets-max", type="int", default=-1, help="Stop injecting after --num-packets-max.\ Set to -1 to disable.") parser.add_option("--single-sender-id", type="int", default=-1, help="Only inject from this sender.\ Set to -1 to disable.") parser.add_option("--single-dest-id", type="int", default=-1, help="Only send to this destination.\ Set to -1 to disable.") parser.add_option("--inj-vnet", type="int", default=-1, help="Only inject in this vnet (0, 1 or 2).\ 0 and 1 are 1-flit, 2 is 5-flit.\ Set to -1 to inject randomly in all vnets.") # # Add the ruby specific and protocol specific options # Ruby.define_options(parser) execfile(os.path.join(config_root, "common", "Options.py")) (options, args) = parser.parse_args() if args: print("Error: script doesn't take any positional arguments") sys.exit(1) if options.inj_vnet > 2: print("Error: Injection vnet %d should be 0 (1-flit), 1 (1-flit) " "or 2 (5-flit) or -1 (random)" % (options.inj_vnet)) sys.exit(1) try: netInput = open("network_inputs/"+options.net+".txt", "r") print("Success in opening net file!") index=0 inps=["",""] with netInput as f: for line in f: for word in line.split(): inps[index%2]=word index+=1 if index%2==0: parse_network_input_options(options,inps[0],inps[1]) except IOError: print("Could not open net file!") cpus = [ GarnetSyntheticTraffic( num_packets_max=options.num_packets_max, single_sender=options.single_sender_id, single_dest=options.single_dest_id, sim_cycles=options.sim_cycles, traffic_type=options.synthetic, inj_rate=options.injectionrate, inj_vnet=options.inj_vnet, precision=options.precision, burst_length=options.local_burst_length, burst_interval=options.burst_interval, num_packages=options.num_packages, num_dest=options.num_dirs) \ for i in xrange(options.num_cpus) ] # create the desired simulated system system = System(cpu = cpus, mem_ranges = [AddrRange(options.mem_size)]) # Create a top-level voltage domain and clock domain system.voltage_domain = VoltageDomain(voltage = options.sys_voltage) system.clk_domain = SrcClockDomain(clock = options.sys_clock, voltage_domain = system.voltage_domain) Ruby.create_system(options, False, system) # Create a seperate clock domain for Ruby system.ruby.clk_domain = SrcClockDomain(clock = options.ruby_clock, voltage_domain = system.voltage_domain) i = 0 for ruby_port in system.ruby._cpu_ports: # # Tie the cpu test ports to the ruby cpu port # cpus[i].test = ruby_port.slave i += 1 # ----------------------- # run simulation # ----------------------- root = Root(full_system = False, system = system) root.system.mem_mode = 'timing' # Not much point in this being higher than the L1 latency m5.ticks.setGlobalFrequency('1ns') # instantiate configuration m5.instantiate() # simulate until program terminates exit_event = m5.simulate(options.abs_max_tick) print('Exiting @ tick', m5.curTick(), 'because', exit_event.getCause())
37.262443
79
0.664602
0
0
0
0
0
0
0
0
3,748
0.455131
3d45fc30ab899b62ab8e13a78f05b881621256c2
9,329
py
Python
tests/unit/service/test_messaging.py
davetobin/ignition
eb183dca3fb2041d3f6249467a3265e7eb1d8905
[ "Apache-2.0" ]
1
2019-09-02T15:23:08.000Z
2019-09-02T15:23:08.000Z
tests/unit/service/test_messaging.py
davetobin/ignition
eb183dca3fb2041d3f6249467a3265e7eb1d8905
[ "Apache-2.0" ]
62
2019-09-16T14:51:32.000Z
2020-07-08T13:28:50.000Z
tests/unit/service/test_messaging.py
accanto-systems/ignition
87087b81dfa7f8f69525f4dd9c74db715e336eca
[ "Apache-2.0" ]
4
2021-08-17T14:38:54.000Z
2022-02-09T14:33:57.000Z
import unittest import time import copy from unittest.mock import patch, MagicMock, call from ignition.service.messaging import PostalService, KafkaDeliveryService, KafkaInboxService, Envelope, Message, MessagingProperties from kafka import KafkaProducer class TestPostalService(unittest.TestCase): def setUp(self): self.mock_delivery_service = MagicMock() def test_init_without_delivery_service_throws_error(self): with self.assertRaises(ValueError) as context: PostalService() self.assertEqual(str(context.exception), 'delivery_service argument not provided') def test_post_sends_envelope_to_delivery_service(self): postal_service = PostalService(delivery_service=self.mock_delivery_service) test_envelope = Envelope('test', Message('test message')) postal_service.post(test_envelope) self.mock_delivery_service.deliver.assert_called_once_with(test_envelope) def test_post_throws_error_when_envelope_is_none(self): postal_service = PostalService(delivery_service=self.mock_delivery_service) with self.assertRaises(ValueError) as context: postal_service.post(None) self.assertEqual(str(context.exception), 'An envelope must be passed to post a message') class TestKafkaDeliveryService(unittest.TestCase): def setUp(self): self.messaging_properties = MessagingProperties() self.messaging_properties.connection_address='test:9092' self.messaging_properties.config={'api_version_auto_timeout_ms': 5000} def test_init_without_messaging_config_throws_error(self): with self.assertRaises(ValueError) as context: KafkaDeliveryService() self.assertEqual(str(context.exception), 'messaging_properties argument not provided') def test_init_without_bootstrap_servers_throws_error(self): messaging_properties = MessagingProperties() messaging_properties.connection_address=None with self.assertRaises(ValueError) as context: KafkaDeliveryService(messaging_properties=messaging_properties) self.assertEqual(str(context.exception), 'connection_address not set on messaging_properties') @patch('ignition.service.messaging.KafkaProducer') def test_deliver(self, mock_kafka_producer_init): # need to set this explicitly because we've patched KafkaProducer mock_kafka_producer_init.DEFAULT_CONFIG = KafkaProducer.DEFAULT_CONFIG delivery_service = KafkaDeliveryService(messaging_properties=self.messaging_properties) test_envelope = Envelope('test_topic', Message('test message')) delivery_service.deliver(test_envelope) mock_kafka_producer_init.assert_called_once_with(bootstrap_servers='test:9092', api_version_auto_timeout_ms=5000, client_id='ignition') self.assertEqual(delivery_service.producer, mock_kafka_producer_init.return_value) mock_kafka_producer = mock_kafka_producer_init.return_value mock_kafka_producer.send.assert_called_once_with('test_topic', b'test message') @patch('ignition.service.messaging.KafkaProducer') def test_deliver_throws_error_when_envelope_is_none(self, mock_kafka_producer_init): delivery_service = KafkaDeliveryService(messaging_properties=self.messaging_properties) with self.assertRaises(ValueError) as context: delivery_service.deliver(None) self.assertEqual(str(context.exception), 'An envelope must be passed to deliver a message') class TestKafkaInboxService(unittest.TestCase): def setUp(self): self.messaging_properties = MessagingProperties() self.messaging_properties.connection_address='test:9092' self.messaging_properties.config={'api_version_auto_timeout_ms':5000} def test_init_without_messaging_config_throws_error(self): with self.assertRaises(ValueError) as context: KafkaInboxService() self.assertEqual(str(context.exception), 'messaging_properties argument not provided') def test_init_without_bootstrap_servers_throws_error(self): messaging_properties = MessagingProperties() messaging_properties.connection_address=None with self.assertRaises(ValueError) as context: KafkaInboxService(messaging_properties=messaging_properties) self.assertEqual(str(context.exception), 'connection_address not set on messaging_properties') @patch('ignition.service.messaging.KafkaInboxThread') def test_watch_inbox_starts_thread(self, mock_kafka_inbox_thread_init): inbox_service = KafkaInboxService(messaging_properties=self.messaging_properties) mock_read_inbox_func = MagicMock() inbox_service.watch_inbox('test_group', 'test_topic', mock_read_inbox_func) mock_kafka_inbox_thread_init.assert_called_once_with('test:9092', 'test_group', 'test_topic', mock_read_inbox_func, inbox_service._KafkaInboxService__thread_exit_func, self.messaging_properties.config) mock_kafka_inbox_thread_init.return_value.start.assert_called_once() @patch('ignition.service.messaging.KafkaConsumer') def test_watch_inbox_thread_inits_consumer(self, mock_kafka_consumer_init): inbox_service = KafkaInboxService(messaging_properties=self.messaging_properties) mock_read_inbox_func = MagicMock() inbox_service.watch_inbox('test_group', 'test_topic', mock_read_inbox_func) mock_kafka_consumer_init.assert_called_once_with('test_topic', bootstrap_servers='test:9092', group_id='test_group', enable_auto_commit=False) @patch('ignition.service.messaging.KafkaConsumer') def test_watch_inbox_thread_inits_consumer(self, mock_kafka_consumer_init): mock_kafka_consumer = mock_kafka_consumer_init.return_value mock_record_1 = MagicMock() mock_record_2 = MagicMock() infinite_iter_stop = False infinite_iter_has_stopped = False ready_for_second_message = False second_message_sent = False def build_iter(): def iter(): yield mock_record_1 while not infinite_iter_stop: if ready_for_second_message: yield mock_record_2 break while not infinite_iter_stop: time.sleep(0.001) infinite_iter_has_stopped = True return iter mock_kafka_consumer.__iter__.side_effect = build_iter() inbox_service = KafkaInboxService(messaging_properties=self.messaging_properties) mock_read_inbox_func = MagicMock() inbox_service.watch_inbox('test_group', 'test_topic', mock_read_inbox_func) time.sleep(0.01) try: self.assertEqual(len(inbox_service.active_threads), 1) expected_config = copy.copy(self.messaging_properties.config) expected_config = { 'bootstrap_servers': 'test:9092', 'group_id': 'test_group', 'enable_auto_commit': False, 'client_id': 'ignition' } mock_kafka_consumer_init.assert_called_once_with('test_topic', **expected_config) mock_kafka_consumer.__iter__.assert_called_once() mock_record_1.value.decode.assert_called_once_with('utf-8') mock_record_2.value.decode.assert_not_called() mock_read_inbox_func.assert_called_once_with(mock_record_1.value.decode.return_value) mock_kafka_consumer.commit.assert_called_once() ready_for_second_message = True time.sleep(1) mock_record_2.value.decode.assert_called_once_with('utf-8') mock_read_inbox_func.assert_called_with(mock_record_2.value.decode.return_value) mock_kafka_consumer.commit.assert_has_calls([call(), call()]) finally: infinite_iter_stop = True time.sleep(1) mock_kafka_consumer.close.assert_called_once() self.assertEqual(len(inbox_service.active_threads), 0) @patch('ignition.service.messaging._thread') @patch('ignition.service.messaging.KafkaConsumer') def test_watch_inbox_thread_calls_exit_func_on_error(self, mock_kafka_consumer_init, mock_thread): mock_kafka_consumer = mock_kafka_consumer_init.return_value mock_record_1 = MagicMock() infinite_iter_stop = False ready_for_message = True def build_iter(): def iter(): while not infinite_iter_stop: if ready_for_message: yield mock_record_1 break return iter mock_kafka_consumer.__iter__.side_effect = build_iter() inbox_service = KafkaInboxService(test_mode=True, messaging_properties=self.messaging_properties) mock_read_inbox_func = MagicMock() mock_read_inbox_func.side_effect = ValueError('Test error') self.assertFalse(inbox_service.exited) inbox_service.watch_inbox('test_group', 'test_topic', mock_read_inbox_func) ready_for_message = True time.sleep(0.03) ## Indicates the exit func on inbox_service was called when in "test_mode" self.assertTrue(inbox_service.exited) mock_kafka_consumer.commit.assert_not_called()
51.541436
209
0.731054
9,066
0.971808
3,574
0.383106
6,161
0.660414
0
0
1,228
0.131633
3d470989d588fa1b7b09836531c89bcfed89beee
1,011
py
Python
app/core/management/commands/wait_for_db.py
denis240997/recipe-app-api
c03c079b8df9d2b527c6d32a7c213be2b1478c6b
[ "MIT" ]
null
null
null
app/core/management/commands/wait_for_db.py
denis240997/recipe-app-api
c03c079b8df9d2b527c6d32a7c213be2b1478c6b
[ "MIT" ]
null
null
null
app/core/management/commands/wait_for_db.py
denis240997/recipe-app-api
c03c079b8df9d2b527c6d32a7c213be2b1478c6b
[ "MIT" ]
null
null
null
import time from django.db import connections from django.db.utils import OperationalError from django.core.management.base import BaseCommand # This is bullshit! Problem was not solved! # The first connection is successful, but after that postgres closes the connection and # reconnects. At the moment, this script has already worked, so the application container crashes. class Command(BaseCommand): '''Django command to pause execution until database is avaliable''' def handle(self, *args, **options): self.stdout.write('Waiting for database...') db_connection = None while not db_connection: try: time.sleep(2) # ha-ha, yes! it's just a delay for the database to start up db_connection = connections['default'] except OperationalError: self.stdout.write('Database unavailable, waiting 1 second...') time.sleep(1) self.stdout.write(self.style.SUCCESS('Database is up!'))
38.884615
98
0.680514
633
0.626113
0
0
0
0
0
0
449
0.444115
3d4788f3f357f54449458d8a9feead4ef160065f
835
py
Python
clusters/actions.py
bhaugen/localecon
ee3134f701e6a786767cf7eeb165ee03f077e9da
[ "MIT" ]
10
2015-02-14T14:22:31.000Z
2022-02-22T17:40:34.000Z
clusters/actions.py
bhaugen/localecon
ee3134f701e6a786767cf7eeb165ee03f077e9da
[ "MIT" ]
3
2017-02-01T16:44:04.000Z
2018-04-02T13:48:03.000Z
clusters/actions.py
bhaugen/localecon
ee3134f701e6a786767cf7eeb165ee03f077e9da
[ "MIT" ]
null
null
null
import csv from django.core.exceptions import PermissionDenied from django.http import HttpResponse def export_as_csv(modeladmin, request, queryset): """ Generic csv export admin action. """ if not request.user.is_staff: raise PermissionDenied opts = modeladmin.model._meta response = HttpResponse(mimetype='text/csv') response['Content-Disposition'] = 'attachment; filename=%s.csv' % unicode(opts).replace('.', '_') writer = csv.writer(response) field_names = [field.name for field in opts.fields] # Write a first row with header information writer.writerow(field_names) # Write data rows for obj in queryset: writer.writerow([getattr(obj, field) for field in field_names]) return response export_as_csv.short_description = "Export selected objects as csv file"
37.954545
101
0.720958
0
0
0
0
0
0
0
0
211
0.252695
3d479358107ba6396633f05381cdd46111709044
37,605
py
Python
rbac/common/protobuf/task_transaction_pb2.py
knagware9/sawtooth-next-directory
be80852e08d2b27e105d964c727509f2a974002d
[ "Apache-2.0" ]
1
2019-04-14T20:16:59.000Z
2019-04-14T20:16:59.000Z
rbac/common/protobuf/task_transaction_pb2.py
crazyrex/sawtooth-next-directory
210b581c8c92c307fab2f6d2b9a55526b56b790a
[ "Apache-2.0" ]
null
null
null
rbac/common/protobuf/task_transaction_pb2.py
crazyrex/sawtooth-next-directory
210b581c8c92c307fab2f6d2b9a55526b56b790a
[ "Apache-2.0" ]
1
2018-12-07T10:55:08.000Z
2018-12-07T10:55:08.000Z
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: task_transaction.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='task_transaction.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n\x16task_transaction.proto\"n\n\x13ProposeAddTaskOwner\x12\x13\n\x0bproposal_id\x18\x01 \x01(\t\x12\x0f\n\x07task_id\x18\x02 \x01(\t\x12\x0f\n\x07user_id\x18\x03 \x01(\t\x12\x0e\n\x06reason\x18\x04 \x01(\t\x12\x10\n\x08metadata\x18\x05 \x01(\t\"q\n\x16ProposeRemoveTaskOwner\x12\x13\n\x0bproposal_id\x18\x01 \x01(\t\x12\x0f\n\x07task_id\x18\x02 \x01(\t\x12\x0f\n\x07user_id\x18\x03 \x01(\t\x12\x0e\n\x06reason\x18\x04 \x01(\t\x12\x10\n\x08metadata\x18\x05 \x01(\t\"n\n\x13ProposeAddTaskAdmin\x12\x13\n\x0bproposal_id\x18\x01 \x01(\t\x12\x0f\n\x07task_id\x18\x02 \x01(\t\x12\x0f\n\x07user_id\x18\x03 \x01(\t\x12\x0e\n\x06reason\x18\x04 \x01(\t\x12\x10\n\x08metadata\x18\x05 \x01(\t\"q\n\x16ProposeRemoveTaskAdmin\x12\x13\n\x0bproposal_id\x18\x01 \x01(\t\x12\x0f\n\x07task_id\x18\x02 \x01(\t\x12\x0f\n\x07user_id\x18\x03 \x01(\t\x12\x0e\n\x06reason\x18\x04 \x01(\t\x12\x10\n\x08metadata\x18\x05 \x01(\t\"\\\n\x13\x43onfirmAddTaskOwner\x12\x13\n\x0bproposal_id\x18\x01 \x01(\t\x12\x0f\n\x07task_id\x18\x02 \x01(\t\x12\x0f\n\x07user_id\x18\x03 \x01(\t\x12\x0e\n\x06reason\x18\x04 \x01(\t\"_\n\x16\x43onfirmRemoveTaskOwner\x12\x13\n\x0bproposal_id\x18\x01 \x01(\t\x12\x0f\n\x07task_id\x18\x02 \x01(\t\x12\x0f\n\x07user_id\x18\x03 \x01(\t\x12\x0e\n\x06reason\x18\x04 \x01(\t\"\\\n\x13\x43onfirmAddTaskAdmin\x12\x13\n\x0bproposal_id\x18\x01 \x01(\t\x12\x0f\n\x07task_id\x18\x02 \x01(\t\x12\x0f\n\x07user_id\x18\x03 \x01(\t\x12\x0e\n\x06reason\x18\x04 \x01(\t\"_\n\x16\x43onfirmRemoveTaskAdmin\x12\x13\n\x0bproposal_id\x18\x01 \x01(\t\x12\x0f\n\x07task_id\x18\x02 \x01(\t\x12\x0f\n\x07user_id\x18\x03 \x01(\t\x12\x0e\n\x06reason\x18\x04 \x01(\t\"[\n\x12RejectAddTaskOwner\x12\x13\n\x0bproposal_id\x18\x01 \x01(\t\x12\x0f\n\x07task_id\x18\x02 \x01(\t\x12\x0f\n\x07user_id\x18\x03 \x01(\t\x12\x0e\n\x06reason\x18\x04 \x01(\t\"^\n\x15RejectRemoveTaskOwner\x12\x13\n\x0bproposal_id\x18\x01 \x01(\t\x12\x0f\n\x07task_id\x18\x02 \x01(\t\x12\x0f\n\x07user_id\x18\x03 \x01(\t\x12\x0e\n\x06reason\x18\x04 \x01(\t\"[\n\x12RejectAddTaskAdmin\x12\x13\n\x0bproposal_id\x18\x01 \x01(\t\x12\x0f\n\x07task_id\x18\x02 \x01(\t\x12\x0f\n\x07user_id\x18\x03 \x01(\t\x12\x0e\n\x06reason\x18\x04 \x01(\t\"^\n\x15RejectRemoveTaskAdmin\x12\x13\n\x0bproposal_id\x18\x01 \x01(\t\x12\x0f\n\x07task_id\x18\x02 \x01(\t\x12\x0f\n\x07user_id\x18\x03 \x01(\t\x12\x0e\n\x06reason\x18\x04 \x01(\t\"]\n\nCreateTask\x12\x0f\n\x07task_id\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x0e\n\x06\x61\x64mins\x18\x03 \x03(\t\x12\x0e\n\x06owners\x18\x04 \x03(\t\x12\x10\n\x08metadata\x18\x05 \x01(\t\"b\n\nUpdateTask\x12\x0f\n\x07task_id\x18\x01 \x01(\t\x12\x10\n\x08new_name\x18\x02 \x01(\t\x12\x1b\n\x13old_metadata_sha512\x18\x03 \x01(\t\x12\x14\n\x0cnew_metadata\x18\x04 \x01(\tb\x06proto3') ) _PROPOSEADDTASKOWNER = _descriptor.Descriptor( name='ProposeAddTaskOwner', full_name='ProposeAddTaskOwner', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='proposal_id', full_name='ProposeAddTaskOwner.proposal_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='task_id', full_name='ProposeAddTaskOwner.task_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='user_id', full_name='ProposeAddTaskOwner.user_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reason', full_name='ProposeAddTaskOwner.reason', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='metadata', full_name='ProposeAddTaskOwner.metadata', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=26, serialized_end=136, ) _PROPOSEREMOVETASKOWNER = _descriptor.Descriptor( name='ProposeRemoveTaskOwner', full_name='ProposeRemoveTaskOwner', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='proposal_id', full_name='ProposeRemoveTaskOwner.proposal_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='task_id', full_name='ProposeRemoveTaskOwner.task_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='user_id', full_name='ProposeRemoveTaskOwner.user_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reason', full_name='ProposeRemoveTaskOwner.reason', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='metadata', full_name='ProposeRemoveTaskOwner.metadata', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=138, serialized_end=251, ) _PROPOSEADDTASKADMIN = _descriptor.Descriptor( name='ProposeAddTaskAdmin', full_name='ProposeAddTaskAdmin', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='proposal_id', full_name='ProposeAddTaskAdmin.proposal_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='task_id', full_name='ProposeAddTaskAdmin.task_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='user_id', full_name='ProposeAddTaskAdmin.user_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reason', full_name='ProposeAddTaskAdmin.reason', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='metadata', full_name='ProposeAddTaskAdmin.metadata', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=253, serialized_end=363, ) _PROPOSEREMOVETASKADMIN = _descriptor.Descriptor( name='ProposeRemoveTaskAdmin', full_name='ProposeRemoveTaskAdmin', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='proposal_id', full_name='ProposeRemoveTaskAdmin.proposal_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='task_id', full_name='ProposeRemoveTaskAdmin.task_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='user_id', full_name='ProposeRemoveTaskAdmin.user_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reason', full_name='ProposeRemoveTaskAdmin.reason', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='metadata', full_name='ProposeRemoveTaskAdmin.metadata', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=365, serialized_end=478, ) _CONFIRMADDTASKOWNER = _descriptor.Descriptor( name='ConfirmAddTaskOwner', full_name='ConfirmAddTaskOwner', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='proposal_id', full_name='ConfirmAddTaskOwner.proposal_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='task_id', full_name='ConfirmAddTaskOwner.task_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='user_id', full_name='ConfirmAddTaskOwner.user_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reason', full_name='ConfirmAddTaskOwner.reason', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=480, serialized_end=572, ) _CONFIRMREMOVETASKOWNER = _descriptor.Descriptor( name='ConfirmRemoveTaskOwner', full_name='ConfirmRemoveTaskOwner', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='proposal_id', full_name='ConfirmRemoveTaskOwner.proposal_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='task_id', full_name='ConfirmRemoveTaskOwner.task_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='user_id', full_name='ConfirmRemoveTaskOwner.user_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reason', full_name='ConfirmRemoveTaskOwner.reason', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=574, serialized_end=669, ) _CONFIRMADDTASKADMIN = _descriptor.Descriptor( name='ConfirmAddTaskAdmin', full_name='ConfirmAddTaskAdmin', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='proposal_id', full_name='ConfirmAddTaskAdmin.proposal_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='task_id', full_name='ConfirmAddTaskAdmin.task_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='user_id', full_name='ConfirmAddTaskAdmin.user_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reason', full_name='ConfirmAddTaskAdmin.reason', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=671, serialized_end=763, ) _CONFIRMREMOVETASKADMIN = _descriptor.Descriptor( name='ConfirmRemoveTaskAdmin', full_name='ConfirmRemoveTaskAdmin', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='proposal_id', full_name='ConfirmRemoveTaskAdmin.proposal_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='task_id', full_name='ConfirmRemoveTaskAdmin.task_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='user_id', full_name='ConfirmRemoveTaskAdmin.user_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reason', full_name='ConfirmRemoveTaskAdmin.reason', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=765, serialized_end=860, ) _REJECTADDTASKOWNER = _descriptor.Descriptor( name='RejectAddTaskOwner', full_name='RejectAddTaskOwner', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='proposal_id', full_name='RejectAddTaskOwner.proposal_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='task_id', full_name='RejectAddTaskOwner.task_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='user_id', full_name='RejectAddTaskOwner.user_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reason', full_name='RejectAddTaskOwner.reason', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=862, serialized_end=953, ) _REJECTREMOVETASKOWNER = _descriptor.Descriptor( name='RejectRemoveTaskOwner', full_name='RejectRemoveTaskOwner', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='proposal_id', full_name='RejectRemoveTaskOwner.proposal_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='task_id', full_name='RejectRemoveTaskOwner.task_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='user_id', full_name='RejectRemoveTaskOwner.user_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reason', full_name='RejectRemoveTaskOwner.reason', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=955, serialized_end=1049, ) _REJECTADDTASKADMIN = _descriptor.Descriptor( name='RejectAddTaskAdmin', full_name='RejectAddTaskAdmin', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='proposal_id', full_name='RejectAddTaskAdmin.proposal_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='task_id', full_name='RejectAddTaskAdmin.task_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='user_id', full_name='RejectAddTaskAdmin.user_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reason', full_name='RejectAddTaskAdmin.reason', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1051, serialized_end=1142, ) _REJECTREMOVETASKADMIN = _descriptor.Descriptor( name='RejectRemoveTaskAdmin', full_name='RejectRemoveTaskAdmin', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='proposal_id', full_name='RejectRemoveTaskAdmin.proposal_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='task_id', full_name='RejectRemoveTaskAdmin.task_id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='user_id', full_name='RejectRemoveTaskAdmin.user_id', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reason', full_name='RejectRemoveTaskAdmin.reason', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1144, serialized_end=1238, ) _CREATETASK = _descriptor.Descriptor( name='CreateTask', full_name='CreateTask', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='task_id', full_name='CreateTask.task_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='CreateTask.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='admins', full_name='CreateTask.admins', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='owners', full_name='CreateTask.owners', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='metadata', full_name='CreateTask.metadata', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1240, serialized_end=1333, ) _UPDATETASK = _descriptor.Descriptor( name='UpdateTask', full_name='UpdateTask', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='task_id', full_name='UpdateTask.task_id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='new_name', full_name='UpdateTask.new_name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='old_metadata_sha512', full_name='UpdateTask.old_metadata_sha512', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='new_metadata', full_name='UpdateTask.new_metadata', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1335, serialized_end=1433, ) DESCRIPTOR.message_types_by_name['ProposeAddTaskOwner'] = _PROPOSEADDTASKOWNER DESCRIPTOR.message_types_by_name['ProposeRemoveTaskOwner'] = _PROPOSEREMOVETASKOWNER DESCRIPTOR.message_types_by_name['ProposeAddTaskAdmin'] = _PROPOSEADDTASKADMIN DESCRIPTOR.message_types_by_name['ProposeRemoveTaskAdmin'] = _PROPOSEREMOVETASKADMIN DESCRIPTOR.message_types_by_name['ConfirmAddTaskOwner'] = _CONFIRMADDTASKOWNER DESCRIPTOR.message_types_by_name['ConfirmRemoveTaskOwner'] = _CONFIRMREMOVETASKOWNER DESCRIPTOR.message_types_by_name['ConfirmAddTaskAdmin'] = _CONFIRMADDTASKADMIN DESCRIPTOR.message_types_by_name['ConfirmRemoveTaskAdmin'] = _CONFIRMREMOVETASKADMIN DESCRIPTOR.message_types_by_name['RejectAddTaskOwner'] = _REJECTADDTASKOWNER DESCRIPTOR.message_types_by_name['RejectRemoveTaskOwner'] = _REJECTREMOVETASKOWNER DESCRIPTOR.message_types_by_name['RejectAddTaskAdmin'] = _REJECTADDTASKADMIN DESCRIPTOR.message_types_by_name['RejectRemoveTaskAdmin'] = _REJECTREMOVETASKADMIN DESCRIPTOR.message_types_by_name['CreateTask'] = _CREATETASK DESCRIPTOR.message_types_by_name['UpdateTask'] = _UPDATETASK _sym_db.RegisterFileDescriptor(DESCRIPTOR) ProposeAddTaskOwner = _reflection.GeneratedProtocolMessageType('ProposeAddTaskOwner', (_message.Message,), dict( DESCRIPTOR = _PROPOSEADDTASKOWNER, __module__ = 'task_transaction_pb2' # @@protoc_insertion_point(class_scope:ProposeAddTaskOwner) )) _sym_db.RegisterMessage(ProposeAddTaskOwner) ProposeRemoveTaskOwner = _reflection.GeneratedProtocolMessageType('ProposeRemoveTaskOwner', (_message.Message,), dict( DESCRIPTOR = _PROPOSEREMOVETASKOWNER, __module__ = 'task_transaction_pb2' # @@protoc_insertion_point(class_scope:ProposeRemoveTaskOwner) )) _sym_db.RegisterMessage(ProposeRemoveTaskOwner) ProposeAddTaskAdmin = _reflection.GeneratedProtocolMessageType('ProposeAddTaskAdmin', (_message.Message,), dict( DESCRIPTOR = _PROPOSEADDTASKADMIN, __module__ = 'task_transaction_pb2' # @@protoc_insertion_point(class_scope:ProposeAddTaskAdmin) )) _sym_db.RegisterMessage(ProposeAddTaskAdmin) ProposeRemoveTaskAdmin = _reflection.GeneratedProtocolMessageType('ProposeRemoveTaskAdmin', (_message.Message,), dict( DESCRIPTOR = _PROPOSEREMOVETASKADMIN, __module__ = 'task_transaction_pb2' # @@protoc_insertion_point(class_scope:ProposeRemoveTaskAdmin) )) _sym_db.RegisterMessage(ProposeRemoveTaskAdmin) ConfirmAddTaskOwner = _reflection.GeneratedProtocolMessageType('ConfirmAddTaskOwner', (_message.Message,), dict( DESCRIPTOR = _CONFIRMADDTASKOWNER, __module__ = 'task_transaction_pb2' # @@protoc_insertion_point(class_scope:ConfirmAddTaskOwner) )) _sym_db.RegisterMessage(ConfirmAddTaskOwner) ConfirmRemoveTaskOwner = _reflection.GeneratedProtocolMessageType('ConfirmRemoveTaskOwner', (_message.Message,), dict( DESCRIPTOR = _CONFIRMREMOVETASKOWNER, __module__ = 'task_transaction_pb2' # @@protoc_insertion_point(class_scope:ConfirmRemoveTaskOwner) )) _sym_db.RegisterMessage(ConfirmRemoveTaskOwner) ConfirmAddTaskAdmin = _reflection.GeneratedProtocolMessageType('ConfirmAddTaskAdmin', (_message.Message,), dict( DESCRIPTOR = _CONFIRMADDTASKADMIN, __module__ = 'task_transaction_pb2' # @@protoc_insertion_point(class_scope:ConfirmAddTaskAdmin) )) _sym_db.RegisterMessage(ConfirmAddTaskAdmin) ConfirmRemoveTaskAdmin = _reflection.GeneratedProtocolMessageType('ConfirmRemoveTaskAdmin', (_message.Message,), dict( DESCRIPTOR = _CONFIRMREMOVETASKADMIN, __module__ = 'task_transaction_pb2' # @@protoc_insertion_point(class_scope:ConfirmRemoveTaskAdmin) )) _sym_db.RegisterMessage(ConfirmRemoveTaskAdmin) RejectAddTaskOwner = _reflection.GeneratedProtocolMessageType('RejectAddTaskOwner', (_message.Message,), dict( DESCRIPTOR = _REJECTADDTASKOWNER, __module__ = 'task_transaction_pb2' # @@protoc_insertion_point(class_scope:RejectAddTaskOwner) )) _sym_db.RegisterMessage(RejectAddTaskOwner) RejectRemoveTaskOwner = _reflection.GeneratedProtocolMessageType('RejectRemoveTaskOwner', (_message.Message,), dict( DESCRIPTOR = _REJECTREMOVETASKOWNER, __module__ = 'task_transaction_pb2' # @@protoc_insertion_point(class_scope:RejectRemoveTaskOwner) )) _sym_db.RegisterMessage(RejectRemoveTaskOwner) RejectAddTaskAdmin = _reflection.GeneratedProtocolMessageType('RejectAddTaskAdmin', (_message.Message,), dict( DESCRIPTOR = _REJECTADDTASKADMIN, __module__ = 'task_transaction_pb2' # @@protoc_insertion_point(class_scope:RejectAddTaskAdmin) )) _sym_db.RegisterMessage(RejectAddTaskAdmin) RejectRemoveTaskAdmin = _reflection.GeneratedProtocolMessageType('RejectRemoveTaskAdmin', (_message.Message,), dict( DESCRIPTOR = _REJECTREMOVETASKADMIN, __module__ = 'task_transaction_pb2' # @@protoc_insertion_point(class_scope:RejectRemoveTaskAdmin) )) _sym_db.RegisterMessage(RejectRemoveTaskAdmin) CreateTask = _reflection.GeneratedProtocolMessageType('CreateTask', (_message.Message,), dict( DESCRIPTOR = _CREATETASK, __module__ = 'task_transaction_pb2' # @@protoc_insertion_point(class_scope:CreateTask) )) _sym_db.RegisterMessage(CreateTask) UpdateTask = _reflection.GeneratedProtocolMessageType('UpdateTask', (_message.Message,), dict( DESCRIPTOR = _UPDATETASK, __module__ = 'task_transaction_pb2' # @@protoc_insertion_point(class_scope:UpdateTask) )) _sym_db.RegisterMessage(UpdateTask) # @@protoc_insertion_point(module_scope)
41.506623
2,776
0.737216
0
0
0
0
0
0
0
0
8,303
0.220795
3d487f498a05799cec579339e7396f36837a8077
14,560
py
Python
courses/machine_learning/asl/open_project/ASL_youtube8m_models/video_using_datasets/trainer/model.py
Glairly/introduction_to_tensorflow
aa0a44d9c428a6eb86d1f79d73f54c0861b6358d
[ "Apache-2.0" ]
2
2022-01-06T11:52:57.000Z
2022-01-09T01:53:56.000Z
courses/machine_learning/asl/open_project/ASL_youtube8m_models/video_using_datasets/trainer/model.py
Glairly/introduction_to_tensorflow
aa0a44d9c428a6eb86d1f79d73f54c0861b6358d
[ "Apache-2.0" ]
null
null
null
courses/machine_learning/asl/open_project/ASL_youtube8m_models/video_using_datasets/trainer/model.py
Glairly/introduction_to_tensorflow
aa0a44d9c428a6eb86d1f79d73f54c0861b6358d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Import libraries and modules import tensorflow as tf # Set logging verbosity to INFO for richer output tf.logging.set_verbosity(tf.logging.INFO) # The number of video classes NUM_CLASSES = 4716 # Create an input function to read our training and validation data # Then provide the results to the Estimator API def read_dataset_video(file_pattern, mode, batch_size): def _input_fn(): print("\nread_dataset_video: _input_fn: file_pattern = {}".format(file_pattern)) print("read_dataset_video: _input_fn: mode = {}".format(mode)) print("read_dataset_video: _input_fn: batch_size = {}".format(batch_size)) # This function will decode frame examples from the frame level TF Records def decode_example(serialized_examples): # Create feature map feature_map = { 'video_id': tf.FixedLenFeature(shape = [], dtype = tf.string), 'labels': tf.VarLenFeature(dtype = tf.int64), 'mean_rgb': tf.FixedLenFeature(shape = [1024], dtype = tf.float32), 'mean_audio': tf.FixedLenFeature(shape = [128], dtype = tf.float32) } # Parse TF Records into our features features = tf.parse_single_example(serialized = serialized_examples, features = feature_map) print("\nread_dataset_video: _input_fn: decode_example: features = {}".format(features)) # shape = video_id = (), mean_rgb = (1024,), mean_audio = (128,), labels = SparseTensor object # Extract and format labels sparse_labels = features.pop("labels") # SparseTensor object print("read_dataset_video: _input_fn: decode_example: sparse_labels = {}\n".format(sparse_labels)) labels = tf.cast(x = tf.sparse_to_dense(sparse_indices = sparse_labels.values, output_shape = (NUM_CLASSES,), sparse_values = 1, validate_indices = False), dtype = tf.float32) print("read_dataset_video: _input_fn: decode_example: labels = {}\n".format(labels)) # shape = (NUM_CLASSES,) return features, labels # Create list of files from file pattern file_list = tf.gfile.Glob(filename = file_pattern) #print("read_dataset_video: _input_fn: file_list = {}".format(file_list)) # Create dataset from file list dataset = tf.data.TFRecordDataset(filenames = file_list) print("read_dataset_video: _input_fn: dataset.TFRecordDataset = {}".format(dataset)) # Decode TF Record dataset examples dataset = dataset.map(map_func = lambda x: decode_example(serialized_examples = x)) print("read_dataset_video: _input_fn: dataset.map = {}".format(dataset)) # Determine amount of times to repeat file and if we should shuffle based on if we are training or evaluating if mode == tf.estimator.ModeKeys.TRAIN: num_epochs = None # read files forever # Shuffle the dataset within a buffer dataset = dataset.shuffle(buffer_size = batch_size * 10, seed = None) print("read_dataset_video: _input_fn: dataset.shuffle = {}".format(dataset)) else: num_epochs = 1 # read files only once # Repeat files num_epoch times dataset = dataset.repeat(count = num_epochs) print("read_dataset_video: _input_fn: dataset.repeat = {}".format(dataset)) # Group the data into batches dataset = dataset.batch(batch_size = batch_size) print("read_dataset_video: _input_fn: dataset.batch = {}".format(dataset)) # Create a iterator and then pull the next batch of features and labels from the example queue batch_features, batch_labels = dataset.make_one_shot_iterator().get_next() print("read_dataset_video: _input_fn: batch_features = {}".format(batch_features)) print("read_dataset_video: _input_fn: batch_labels = {}\n".format(batch_labels)) return batch_features, batch_labels return _input_fn # Create our model function to be used in our custom estimator def video_level_model(features, labels, mode, params): print("\nvideo_level_model: features = {}".format(features)) print("video_level_model: labels = {}".format(labels)) print("video_level_model: mode = {}".format(mode)) # 0. Configure network # Get dynamic batch size current_batch_size = tf.shape(features['mean_rgb'])[0] print("video_level_model: current_batch_size = {}".format(current_batch_size)) # Stack all of the features into a 3-D tensor combined_features = tf.concat(values = [features['mean_rgb'], features['mean_audio']], axis = 1) # shape = (current_batch_size, 1024 + 128) print("video_level_model: combined_features = {}".format(combined_features)) # 1. Create the DNN structure now # Create the input layer to our frame DNN network = combined_features # shape = (current_batch_size, 1024 + 128) print("video_level_model: network = combined_features = {}".format(network)) # Add hidden layers with the given number of units/neurons per layer for units in params['hidden_units']: network = tf.layers.dense(inputs = network, units = units, activation = tf.nn.relu) # shape = (current_batch_size, units) print("video_level_model: network = {}, units = {}".format(network, units)) # Connect the final hidden layer to a dense layer with no activation to get the logits logits = tf.layers.dense(inputs = network, units = NUM_CLASSES, activation = None) # shape = (current_batch_size, NUM_CLASSES) print("video_level_model: logits = {}".format(logits)) # Select the top k logits in descending order top_k_logits = tf.nn.top_k(input = logits, k = params['top_k'], sorted = True) # shape = (current_batch_size, top_k) print("video_level_model: top_k_logits = {}".format(top_k_logits)) # Since this is a multi-class, multi-label problem we will apply a sigmoid, not a softmax, to each logit to get its own probability probabilities = tf.sigmoid(logits) # shape = (current_batch_size, NUM_CLASSES) print("video_level_model: probabilities = {}".format(probabilities)) # Select the top k probabilities in descending order top_k_probabilities = tf.sigmoid(top_k_logits.values) # shape = (current_batch_size, top_k) print("video_level_model: top_k_probabilities = {}".format(top_k_probabilities)) # Select the top k classes in descending order of likelihood top_k_classes = top_k_logits.indices # shape = (current_batch_size, top_k) print("video_level_model: top_k_classes = {}".format(top_k_classes)) # The 0/1 predictions based on a threshold, in this case the threshold is if the probability it greater than random chance predictions = tf.where( condition = probabilities > 1.0 / NUM_CLASSES, # shape = (current_batch_size, NUM_CLASSES) x = tf.ones_like(tensor = probabilities), y = tf.zeros_like(tensor = probabilities)) print("video_level_model: predictions = {}".format(predictions)) top_k_predictions = tf.where( condition = top_k_probabilities > 1.0 / NUM_CLASSES, # shape = (current_batch_size, top_k) x = tf.ones_like(tensor = top_k_probabilities), y = tf.zeros_like(tensor = top_k_probabilities)) print("video_level_model: top_k_predictions = {}\n".format(top_k_predictions)) # 2. Loss function, training/eval ops if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL: # Since this is a multi-class, multi-label problem, we will use sigmoid activation and cross entropy loss loss = tf.losses.sigmoid_cross_entropy(multi_class_labels = labels, logits = logits) train_op = tf.contrib.layers.optimize_loss( loss = loss, global_step = tf.train.get_global_step(), learning_rate = 0.01, optimizer = "Adam") eval_metric_ops = { "accuracy": tf.metrics.mean_per_class_accuracy(labels = labels, predictions = predictions, num_classes = NUM_CLASSES) } else: loss = None train_op = None eval_metric_ops = None # 3. Create predictions predictions_dict = {"logits": top_k_logits.values, "probabilities": top_k_probabilities, "predictions": top_k_predictions, "classes": top_k_classes} # 4. Create export outputs export_outputs = {"predict_export_outputs": tf.estimator.export.PredictOutput(outputs = predictions_dict)} # 5. Return EstimatorSpec return tf.estimator.EstimatorSpec( mode = mode, predictions = predictions_dict, loss = loss, train_op = train_op, eval_metric_ops = eval_metric_ops, export_outputs = export_outputs) # Create our serving input function to accept the data at serving and send it in the right format to our custom estimator def serving_input_fn(): # This function fixes the shape and type of our input strings def fix_shape_and_type_for_serving(placeholder): # String split each string in the batch and output the values from the resulting SparseTensors split_string = tf.map_fn( fn = lambda x: tf.string_split(source = [placeholder[x]], delimiter=',').values, elems = tf.range(start = 0, limit = tf.shape(input = placeholder)[0]), dtype = tf.string) # shape = (batch_size, input_sequence_length) print("serving_input_fn: fix_shape_and_type_for_serving: split_string = {}".format(split_string)) # Convert each string in the split tensor to float feature_tensor = tf.string_to_number(string_tensor = split_string, out_type = tf.float32) # shape = (batch_size, input_sequence_length) print("serving_input_fn: fix_shape_and_type_for_serving: feature_tensor = {}".format(feature_tensor)) return feature_tensor # This function fixes dynamic shape ambiguity of last dimension so that we will be able to use it in our DNN (since tf.layers.dense require the last dimension to be known) def get_shape_and_set_modified_shape_2D(tensor, additional_dimension_sizes): # Get static shape for tensor and convert it to list shape = tensor.get_shape().as_list() # Set outer shape to additional_dimension_sizes[0] since we know that this is the correct size shape[1] = additional_dimension_sizes[0] # Set the shape of tensor to our modified shape tensor.set_shape(shape = shape) # shape = (batch_size, additional_dimension_sizes[0]) print("serving_input_fn: get_shape_and_set_modified_shape_2D: tensor = {}, additional_dimension_sizes = {}".format(tensor, additional_dimension_sizes)) return tensor # Create placeholders to accept the data sent to the model at serving time feature_placeholders = { # all features come in as a batch of strings, shape = (batch_size,), this was so because of passing the arrays to online ml-engine prediction 'video_id': tf.placeholder(dtype = tf.string, shape = [None]), 'mean_rgb': tf.placeholder(dtype = tf.string, shape = [None]), 'mean_audio': tf.placeholder(dtype = tf.string, shape = [None]) } print("\nserving_input_fn: feature_placeholders = {}".format(feature_placeholders)) # Create feature tensors features = { "video_id": feature_placeholders["video_id"], "mean_rgb": fix_shape_and_type_for_serving(placeholder = feature_placeholders["mean_rgb"]), "mean_audio": fix_shape_and_type_for_serving(placeholder = feature_placeholders["mean_audio"]) } print("serving_input_fn: features = {}".format(features)) # Fix dynamic shape ambiguity of feature tensors for our DNN features["mean_rgb"] = get_shape_and_set_modified_shape_2D(tensor = features["mean_rgb"], additional_dimension_sizes = [1024]) features["mean_audio"] = get_shape_and_set_modified_shape_2D(tensor = features["mean_audio"], additional_dimension_sizes = [128]) print("serving_input_fn: features = {}\n".format(features)) return tf.estimator.export.ServingInputReceiver(features = features, receiver_tensors = feature_placeholders) # Create custom estimator's train and evaluate function def train_and_evaluate(args): # Create custom estimator's train and evaluate function estimator = tf.estimator.Estimator( model_fn = video_level_model, model_dir = args['output_dir'], params = {'hidden_units': args['hidden_units'], 'top_k': args['top_k']}) # Create train spec to read in our training data train_spec = tf.estimator.TrainSpec( input_fn = read_dataset_video( file_pattern = args['train_file_pattern'], mode = tf.estimator.ModeKeys.TRAIN, batch_size = args['batch_size']), max_steps = args['train_steps']) # Create exporter to save out the complete model to disk exporter = tf.estimator.LatestExporter(name = 'exporter', serving_input_receiver_fn = serving_input_fn) # Create eval spec to read in our validation data and export our model eval_spec = tf.estimator.EvalSpec( input_fn = read_dataset_video( file_pattern = args['eval_file_pattern'], mode = tf.estimator.ModeKeys.EVAL, batch_size = args['batch_size']), steps = None, exporters = exporter, start_delay_secs = args['start_delay_secs'], throttle_secs = args['throttle_secs']) # Create train and evaluate loop to train and evaluate our estimator tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
54.943396
196
0.682212
0
0
0
0
0
0
0
0
6,742
0.463049
3d48f55b2e9c4409d2a293fd05fd3f37f16ba6df
22,394
py
Python
allennlp/tests/semparse/worlds/wikitables_world_test.py
kyleclo/allennlp
0205c26f3db7ef44d7ee70fa9ebdf5a7f6b43baf
[ "Apache-2.0" ]
24
2019-09-16T00:10:54.000Z
2021-09-08T19:31:51.000Z
allennlp/tests/semparse/worlds/wikitables_world_test.py
TalSchuster/allennlp-MultiLang
dbb28b939652491d2f633326edccca2cd0e528c8
[ "Apache-2.0" ]
2
2019-01-12T00:19:06.000Z
2019-02-27T05:29:31.000Z
allennlp/tests/semparse/worlds/wikitables_world_test.py
TalSchuster/allennlp-MultiLang
dbb28b939652491d2f633326edccca2cd0e528c8
[ "Apache-2.0" ]
10
2019-12-06T11:32:37.000Z
2022-01-06T15:39:09.000Z
# pylint: disable=no-self-use,invalid-name from typing import List import pytest from allennlp.common.testing import AllenNlpTestCase from allennlp.data.tokenizers import Token from allennlp.semparse import ParsingError from allennlp.semparse.contexts import TableQuestionKnowledgeGraph from allennlp.semparse.worlds import WikiTablesWorld from allennlp.semparse.type_declarations import wikitables_lambda_dcs as types def check_productions_match(actual_rules: List[str], expected_right_sides: List[str]): actual_right_sides = [rule.split(' -> ')[1] for rule in actual_rules] assert set(actual_right_sides) == set(expected_right_sides) class TestWikiTablesWorld(AllenNlpTestCase): def setUp(self): super().setUp() question_tokens = [Token(x) for x in ['what', 'was', 'the', 'last', 'year', '2000', '?']] self.table_file = self.FIXTURES_ROOT / 'data' / 'wikitables' / 'sample_table.tsv' self.table_kg = TableQuestionKnowledgeGraph.read_from_file(self.table_file, question_tokens) self.world = WikiTablesWorld(self.table_kg) def test_get_valid_actions_returns_correct_set(self): # This test is long, but worth it. These are all of the valid actions in the grammar, and # we want to be sure they are what we expect. # This test checks that our valid actions for each type match PNP's, except for the # terminal productions for type 'p'. valid_actions = self.world.get_valid_actions() assert set(valid_actions.keys()) == { '<#1,#1>', '<#1,<#1,#1>>', '<#1,n>', '<<#1,#2>,<#2,#1>>', '<c,d>', '<c,n>', '<c,p>', '<c,r>', '<d,c>', '<d,d>', '<d,n>', '<d,r>', '<n,<n,<#1,<<#2,#1>,#1>>>>', '<n,<n,<n,d>>>', '<n,<n,n>>', '<n,c>', '<n,d>', '<n,n>', '<n,p>', '<n,r>', '<nd,nd>', '<p,c>', '<p,n>', '<r,c>', '<r,d>', '<r,n>', '<r,p>', '<r,r>', '@start@', 'c', 'd', 'n', 'p', 'r', } check_productions_match(valid_actions['<#1,#1>'], ['!=']) check_productions_match(valid_actions['<#1,<#1,#1>>'], ['and', 'or']) check_productions_match(valid_actions['<#1,n>'], ['count']) check_productions_match(valid_actions['<<#1,#2>,<#2,#1>>'], ['reverse']) check_productions_match(valid_actions['<c,d>'], ["['lambda x', d]", '[<<#1,#2>,<#2,#1>>, <d,c>]']) check_productions_match(valid_actions['<c,n>'], ["['lambda x', n]", '[<<#1,#2>,<#2,#1>>, <n,c>]']) check_productions_match(valid_actions['<c,p>'], ['[<<#1,#2>,<#2,#1>>, <p,c>]']) # Most of these are instance-specific production rules. These are the columns in the # table. Remember that SEMPRE did things backwards: fb:row.row.division takes a cell ID # and returns the row that has that cell in its row.division column. This is why we have # to reverse all of these functions to go from a row to the cell in a particular column. check_productions_match(valid_actions['<c,r>'], ['fb:row.row.null', # This one is global, representing an empty set. 'fb:row.row.year', 'fb:row.row.league', 'fb:row.row.avg_attendance', 'fb:row.row.division', 'fb:row.row.regular_season', 'fb:row.row.playoffs', 'fb:row.row.open_cup']) # These might look backwards, but that's because SEMPRE chose to make them backwards. # fb:a.b is a function that takes b and returns a. So fb:cell.cell.date takes cell.date # and returns cell and fb:row.row.index takes row.index and returns row. check_productions_match(valid_actions['<d,c>'], ['fb:cell.cell.date', '[<<#1,#2>,<#2,#1>>, <c,d>]']) check_productions_match(valid_actions['<d,d>'], ["['lambda x', d]", '[<<#1,#2>,<#2,#1>>, <d,d>]']) check_productions_match(valid_actions['<d,n>'], ["['lambda x', n]", '[<<#1,#2>,<#2,#1>>, <n,d>]']) check_productions_match(valid_actions['<d,r>'], ['[<<#1,#2>,<#2,#1>>, <r,d>]']) check_productions_match(valid_actions['<n,<n,<#1,<<#2,#1>,#1>>>>'], ['argmax', 'argmin']) # "date" is a function that takes three numbers: (date 2018 01 06). check_productions_match(valid_actions['<n,<n,<n,d>>>'], ['date']) check_productions_match(valid_actions['<n,<n,n>>'], ['-']) check_productions_match(valid_actions['<n,c>'], ['fb:cell.cell.num2', 'fb:cell.cell.number', '[<<#1,#2>,<#2,#1>>, <c,n>]']) check_productions_match(valid_actions['<n,d>'], ["['lambda x', d]", '[<<#1,#2>,<#2,#1>>, <d,n>]']) check_productions_match(valid_actions['<n,n>'], ['avg', 'sum', 'number', "['lambda x', n]", '[<<#1,#2>,<#2,#1>>, <n,n>]']) check_productions_match(valid_actions['<n,p>'], ['[<<#1,#2>,<#2,#1>>, <p,n>]']) check_productions_match(valid_actions['<n,r>'], ['fb:row.row.index', '[<<#1,#2>,<#2,#1>>, <r,n>]']) check_productions_match(valid_actions['<nd,nd>'], ['<', '<=', '>', '>=', 'min', 'max']) # PART_TYPE rules. A cell part is for when a cell has text that can be split into multiple # parts. check_productions_match(valid_actions['<p,c>'], ['fb:cell.cell.part']) check_productions_match(valid_actions['<p,n>'], ["['lambda x', n]"]) check_productions_match(valid_actions['<r,c>'], ['[<<#1,#2>,<#2,#1>>, <c,r>]']) check_productions_match(valid_actions['<r,d>'], ["['lambda x', d]"]) check_productions_match(valid_actions['<r,n>'], ["['lambda x', n]", '[<<#1,#2>,<#2,#1>>, <n,r>]']) check_productions_match(valid_actions['<r,p>'], ["['lambda x', p]", '[<<#1,#2>,<#2,#1>>, <p,r>]']) check_productions_match(valid_actions['<r,r>'], ['fb:row.row.next', 'fb:type.object.type', '[<<#1,#2>,<#2,#1>>, <r,r>]']) check_productions_match(valid_actions['@start@'], ['d', 'c', 'p', 'r', 'n']) check_productions_match(valid_actions['c'], ['[<#1,#1>, c]', '[<#1,<#1,#1>>, c, c]', '[<n,<n,<#1,<<#2,#1>,#1>>>>, n, n, c, <n,c>]', '[<n,<n,<#1,<<#2,#1>,#1>>>>, n, n, c, <d,c>]', '[<d,c>, d]', '[<n,c>, n]', '[<p,c>, p]', '[<r,c>, r]', 'fb:cell.null', 'fb:cell.2', 'fb:cell.2001', 'fb:cell.2005', 'fb:cell.4th_round', 'fb:cell.4th_western', 'fb:cell.5th', 'fb:cell.6_028', 'fb:cell.7_169', 'fb:cell.did_not_qualify', 'fb:cell.quarterfinals', 'fb:cell.usl_a_league', 'fb:cell.usl_first_division']) check_productions_match(valid_actions['d'], ['[<n,<n,<n,d>>>, n, n, n]', '[<#1,#1>, d]', '[<#1,<#1,#1>>, d, d]', '[<n,<n,<#1,<<#2,#1>,#1>>>>, n, n, d, <d,d>]', '[<n,<n,<#1,<<#2,#1>,#1>>>>, n, n, d, <n,d>]', '[<c,d>, c]', '[<nd,nd>, d]']) check_productions_match(valid_actions['n'], ['-1', '0', '1', '2000', '[<#1,#1>, n]', '[<#1,<#1,#1>>, n, n]', '[<#1,n>, c]', '[<#1,n>, d]', '[<#1,n>, n]', '[<#1,n>, p]', '[<#1,n>, r]', '[<c,n>, c]', '[<n,<n,<#1,<<#2,#1>,#1>>>>, n, n, n, <d,n>]', '[<n,<n,<#1,<<#2,#1>,#1>>>>, n, n, n, <n,n>]', '[<n,<n,n>>, n, n]', '[<n,n>, n]', '[<nd,nd>, n]', '[<r,n>, r]']) check_productions_match(valid_actions['p'], ['[<n,<n,<#1,<<#2,#1>,#1>>>>, n, n, p, <n,p>]', '[<#1,#1>, p]', '[<c,p>, c]', '[<#1,<#1,#1>>, p, p]', 'fb:part.4th', 'fb:part.5th', 'fb:part.western']) check_productions_match(valid_actions['r'], ['fb:type.row', '[<#1,#1>, r]', '[<#1,<#1,#1>>, r, r]', '[<n,<n,<#1,<<#2,#1>,#1>>>>, n, n, r, <d,r>]', '[<n,<n,<#1,<<#2,#1>,#1>>>>, n, n, r, <n,r>]', '[<n,r>, n]', '[<c,r>, c]', '[<r,r>, r]']) def test_world_processes_sempre_forms_correctly(self): sempre_form = "((reverse fb:row.row.year) (fb:row.row.league fb:cell.usl_a_league))" expression = self.world.parse_logical_form(sempre_form) # We add columns to the name mapping in sorted order, so "league" and "year" end up as C2 # and C6. f = types.name_mapper.get_alias assert str(expression) == f"{f('reverse')}(C6,C2(cell:usl_a_league))" def test_world_parses_logical_forms_with_dates(self): sempre_form = "((reverse fb:row.row.league) (fb:row.row.year (fb:cell.cell.date (date 2000 -1 -1))))" expression = self.world.parse_logical_form(sempre_form) f = types.name_mapper.get_alias assert str(expression) == \ f"{f('reverse')}(C2,C6({f('fb:cell.cell.date')}({f('date')}(num:2000,num:~1,num:~1))))" def test_world_parses_logical_forms_with_decimals(self): question_tokens = [Token(x) for x in ['0.2']] table_kg = TableQuestionKnowledgeGraph.read_from_file( self.FIXTURES_ROOT / "data" / "wikitables" / "sample_table.tsv", question_tokens) world = WikiTablesWorld(table_kg) sempre_form = "(fb:cell.cell.number (number 0.200))" expression = world.parse_logical_form(sempre_form) f = types.name_mapper.get_alias assert str(expression) == f"{f('fb:cell.cell.number')}({f('number')}(num:0_200))" def test_get_action_sequence_removes_currying_for_all_wikitables_functions(self): # minus logical_form = "(- (number 0) (number 1))" parsed_logical_form = self.world.parse_logical_form(logical_form) action_sequence = self.world.get_action_sequence(parsed_logical_form) assert 'n -> [<n,<n,n>>, n, n]' in action_sequence # date logical_form = "(count (fb:cell.cell.date (date 2000 -1 -1)))" parsed_logical_form = self.world.parse_logical_form(logical_form) action_sequence = self.world.get_action_sequence(parsed_logical_form) assert 'd -> [<n,<n,<n,d>>>, n, n, n]' in action_sequence # argmax logical_form = ("(argmax (number 1) (number 1) (fb:row.row.division fb:cell.2) " "(reverse (lambda x ((reverse fb:row.row.index) (var x)))))") parsed_logical_form = self.world.parse_logical_form(logical_form) action_sequence = self.world.get_action_sequence(parsed_logical_form) assert 'r -> [<n,<n,<#1,<<#2,#1>,#1>>>>, n, n, r, <n,r>]' in action_sequence # and logical_form = "(and (number 1) (number 1))" parsed_logical_form = self.world.parse_logical_form(logical_form) action_sequence = self.world.get_action_sequence(parsed_logical_form) assert 'n -> [<#1,<#1,#1>>, n, n]' in action_sequence def test_parsing_logical_forms_fails_with_unmapped_names(self): with pytest.raises(ParsingError): _ = self.world.parse_logical_form("(number 20)") def test_world_has_only_basic_numbers(self): valid_actions = self.world.get_valid_actions() assert 'n -> -1' in valid_actions['n'] assert 'n -> 0' in valid_actions['n'] assert 'n -> 1' in valid_actions['n'] assert 'n -> 17' not in valid_actions['n'] assert 'n -> 231' not in valid_actions['n'] assert 'n -> 2007' not in valid_actions['n'] assert 'n -> 2107' not in valid_actions['n'] assert 'n -> 1800' not in valid_actions['n'] def test_world_adds_numbers_from_question(self): question_tokens = [Token(x) for x in ['what', '2007', '2,107', '0.2', '1800s', '1950s', '?']] table_kg = TableQuestionKnowledgeGraph.read_from_file( self.FIXTURES_ROOT / "data" / "wikitables" / "sample_table.tsv", question_tokens) world = WikiTablesWorld(table_kg) valid_actions = world.get_valid_actions() assert 'n -> 2007' in valid_actions['n'] assert 'n -> 2107' in valid_actions['n'] # It appears that sempre normalizes floating point numbers. assert 'n -> 0.200' in valid_actions['n'] # We want to add the end-points to things like "1800s": 1800 and 1900. assert 'n -> 1800' in valid_actions['n'] assert 'n -> 1900' in valid_actions['n'] assert 'n -> 1950' in valid_actions['n'] assert 'n -> 1960' in valid_actions['n'] def test_world_returns_correct_actions_with_reverse(self): sempre_form = "((reverse fb:row.row.year) (fb:row.row.league fb:cell.usl_a_league))" expression = self.world.parse_logical_form(sempre_form) actions = self.world.get_action_sequence(expression) target_action_sequence = ['@start@ -> c', 'c -> [<r,c>, r]', '<r,c> -> [<<#1,#2>,<#2,#1>>, <c,r>]', '<<#1,#2>,<#2,#1>> -> reverse', '<c,r> -> fb:row.row.year', 'r -> [<c,r>, c]', '<c,r> -> fb:row.row.league', 'c -> fb:cell.usl_a_league'] assert actions == target_action_sequence def test_world_returns_correct_actions_with_two_reverses(self): sempre_form = ("(max ((reverse fb:cell.cell.date) ((reverse fb:row.row.year) " "(fb:row.row.league fb:cell.usl_a_league))))") expression = self.world.parse_logical_form(sempre_form) actions = self.world.get_action_sequence(expression) target_action_sequence = ['@start@ -> d', 'd -> [<nd,nd>, d]', '<nd,nd> -> max', 'd -> [<c,d>, c]', '<c,d> -> [<<#1,#2>,<#2,#1>>, <d,c>]', '<<#1,#2>,<#2,#1>> -> reverse', '<d,c> -> fb:cell.cell.date', 'c -> [<r,c>, r]', '<r,c> -> [<<#1,#2>,<#2,#1>>, <c,r>]', '<<#1,#2>,<#2,#1>> -> reverse', '<c,r> -> fb:row.row.year', 'r -> [<c,r>, c]', '<c,r> -> fb:row.row.league', 'c -> fb:cell.usl_a_league'] assert actions == target_action_sequence def test_world_returns_correct_actions_with_lambda_with_var(self): sempre_form = ("((reverse fb:cell.cell.date) ((reverse fb:row.row.year) (argmax (number 1) " "(number 1) (fb:row.row.league fb:cell.usl_a_league) (reverse (lambda x " "((reverse fb:row.row.index) (var x)))))))") expression = self.world.parse_logical_form(sempre_form, remove_var_function=False) actions_with_var = self.world.get_action_sequence(expression) assert '<#1,#1> -> var' in actions_with_var assert 'r -> x' in actions_with_var def test_world_returns_correct_actions_with_lambda_without_var(self): sempre_form = ("((reverse fb:cell.cell.date) ((reverse fb:row.row.year) (argmax (number 1) " "(number 1) (fb:row.row.league fb:cell.usl_a_league) (reverse (lambda x " "((reverse fb:row.row.index) (var x)))))))") expression = self.world.parse_logical_form(sempre_form) actions_without_var = self.world.get_action_sequence(expression) assert '<#1,#1> -> var' not in actions_without_var assert 'r -> x' in actions_without_var @pytest.mark.skip(reason="fibonacci recursion currently going on here") def test_with_deeply_nested_logical_form(self): question_tokens = [Token(x) for x in ['what', 'was', 'the', 'district', '?']] table_filename = self.FIXTURES_ROOT / 'data' / 'wikitables' / 'table' / '109.tsv' table_kg = TableQuestionKnowledgeGraph.read_from_file(table_filename, question_tokens) world = WikiTablesWorld(table_kg) logical_form = ("(count ((reverse fb:cell.cell.number) (or (or (or (or (or (or (or (or " "(or (or (or (or (or (or (or (or (or (or (or (or (or fb:cell.virginia_1 " "fb:cell.virginia_10) fb:cell.virginia_11) fb:cell.virginia_12) " "fb:cell.virginia_13) fb:cell.virginia_14) fb:cell.virginia_15) " "fb:cell.virginia_16) fb:cell.virginia_17) fb:cell.virginia_18) " "fb:cell.virginia_19) fb:cell.virginia_2) fb:cell.virginia_20) " "fb:cell.virginia_21) fb:cell.virginia_22) fb:cell.virginia_3) " "fb:cell.virginia_4) fb:cell.virginia_5) fb:cell.virginia_6) " "fb:cell.virginia_7) fb:cell.virginia_8) fb:cell.virginia_9)))") print("Parsing...") world.parse_logical_form(logical_form) def _get_world_with_question_tokens(self, tokens: List[Token]) -> WikiTablesWorld: table_kg = TableQuestionKnowledgeGraph.read_from_file(self.table_file, tokens) world = WikiTablesWorld(table_kg) return world def test_get_agenda(self): tokens = [Token(x) for x in ['what', 'was', 'the', 'last', 'year', '2000', '?']] world = self._get_world_with_question_tokens(tokens) assert set(world.get_agenda()) == {'n -> 2000', '<c,r> -> fb:row.row.year', '<n,<n,<#1,<<#2,#1>,#1>>>> -> argmax'} tokens = [Token(x) for x in ['what', 'was', 'the', 'difference', 'in', 'attendance', 'between', 'years', '2001', 'and', '2005', '?']] world = self._get_world_with_question_tokens(tokens) # The agenda contains cells here instead of numbers because 2001 and 2005 actually link to # entities in the table whereas 2000 (in the previous case) does not. assert set(world.get_agenda()) == {'c -> fb:cell.2001', 'c -> fb:cell.2005', '<c,r> -> fb:row.row.year', '<n,<n,n>> -> -'} tokens = [Token(x) for x in ['what', 'was', 'the', 'total', 'avg.', 'attendance', 'in', 'years', '2001', 'and', '2005', '?']] world = self._get_world_with_question_tokens(tokens) # The agenda contains cells here instead of numbers because 2001 and 2005 actually link to # entities in the table whereas 2000 (in the previous case) does not. assert set(world.get_agenda()) == {'c -> fb:cell.2001', 'c -> fb:cell.2005', '<c,r> -> fb:row.row.year', '<c,r> -> fb:row.row.avg_attendance', '<n,n> -> sum'} tokens = [Token(x) for x in ['when', 'was', 'the', 'least', 'avg.', 'attendance', '?']] world = self._get_world_with_question_tokens(tokens) assert set(world.get_agenda()) == {'<c,r> -> fb:row.row.avg_attendance', '<n,<n,<#1,<<#2,#1>,#1>>>> -> argmin' } tokens = [Token(x) for x in ['what', 'is', 'the', 'least', 'avg.', 'attendance', '?']] world = self._get_world_with_question_tokens(tokens) assert set(world.get_agenda()) == {'<c,r> -> fb:row.row.avg_attendance', '<nd,nd> -> min' }
51.958237
111
0.466732
21,743
0.97093
0
0
1,330
0.059391
0
0
8,117
0.362463
3d4903f05506c73039c6cca6466ba4b87575d105
395
py
Python
FishCDailyQuestion/ex001-010/Python3_008/008_05.py
YorkFish/git_study
6e023244daaa22e12b24e632e76a13e5066f2947
[ "MIT" ]
null
null
null
FishCDailyQuestion/ex001-010/Python3_008/008_05.py
YorkFish/git_study
6e023244daaa22e12b24e632e76a13e5066f2947
[ "MIT" ]
null
null
null
FishCDailyQuestion/ex001-010/Python3_008/008_05.py
YorkFish/git_study
6e023244daaa22e12b24e632e76a13e5066f2947
[ "MIT" ]
null
null
null
#!/usr/bin/evn python3 # coding:utf-8 from math import sqrt def is_prime_num(num): for i in range(2, int(sqrt(num))+1): if num % i == 0: return False # 非素数,返回 False return True # 是素数,返回 True count = 0 for i in range(100, 201): if is_prime_num(i): print(i, end=' ') count += 1 print("\n\nThere are {} prime numbers in total.".format(count))
20.789474
63
0.582278
0
0
0
0
0
0
0
0
132
0.315036
3d490f3f5ae32168776078a1279b5239c7a6960d
4,324
py
Python
models/015_bolasso.py
cmougan/Novartis2021
72a6f088929a5a4546760f4a453ec4a77faf5856
[ "MIT" ]
null
null
null
models/015_bolasso.py
cmougan/Novartis2021
72a6f088929a5a4546760f4a453ec4a77faf5856
[ "MIT" ]
null
null
null
models/015_bolasso.py
cmougan/Novartis2021
72a6f088929a5a4546760f4a453ec4a77faf5856
[ "MIT" ]
null
null
null
# %% Imports from numpy.lib import select import pandas as pd import sys import numpy as np import random from functools import partial from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sktools import IsEmptyExtractor from lightgbm import LGBMRegressor from category_encoders import TargetEncoder from sklearn.linear_model import QuantileRegressor from sklego.preprocessing import ColumnSelector from sklearn.preprocessing import StandardScaler from memo import memlist, memfile, grid, time_taken, Runner sys.path.append("../") from metrics.metric_participants import (ComputeMetrics, print_metrics) from eda.checker import check_train_test random.seed(0) sales_train = pd.read_csv("../data/data_raw/sales_train.csv") df_full = pd.read_csv("../data/split.csv") df_region = pd.read_csv("../data/data_raw/regions.csv") regions_hcps = pd.read_csv("../data/data_raw/regions_hcps.csv") activity_features = pd.read_csv("../data/features/activity_features.csv") brands_3_12 = pd.read_csv("../data/features/brand_3_12_market_features_lagged.csv") rte_basic = pd.read_csv("../data/features/rte_features_v2.csv").drop( columns=["sales", "validation"] ) market_size = pd.read_csv("../data/market_size.csv") # For reproducibility random.seed(0) VAL_SIZE = 38 SUBMISSION_NAME = "linear_model_simple" # %% Training weights market_size = ( market_size .assign(weight=lambda x: 1 / x['sales']) ) # %% Add region data df_feats = df_full.merge(df_region, on="region", how="left") df_feats = pd.merge(left=df_feats, right=regions_hcps, how="left", on="region") df_feats = df_feats.merge( activity_features, on=["month", "region", "brand"], how="left" ) df_feats = df_feats.merge(rte_basic, on=["month", "region", "brand"], how="left") df_feats = df_feats.merge(brands_3_12, on=["month", "region"], how="left") df_feats["whichBrand"] = np.where(df_feats.brand == "brand_1", 1, 0) df_feats['month_brand'] = df_feats.month + '_' + df_feats.brand # drop sum variables cols_to_drop = ["region", "sales", "validation"] # %% Split train val test X_train = df_feats.query("validation == 0").drop(columns=cols_to_drop) y_train = df_feats.query("validation == 0").sales X_val = df_feats.query("validation == 1").drop(columns=cols_to_drop) y_val = df_feats.query("validation == 1").sales X_test = df_feats.query("validation.isnull()", engine="python").drop( columns=cols_to_drop ) y_test = df_feats.query("validation.isnull()", engine="python").sales check_train_test(X_train, X_val) check_train_test(X_train, X_test, threshold=0.3) check_train_test(X_val, X_test) # %% for quantile in [0.5, 0.1, 0.9]: selected = {} for iter in range(100): print("Quantile: ", quantile, "iter: ", iter) df_train = df_feats.query("validation == 0") sample = df_train.sample(replace=True, frac=1) X_train = sample.drop(columns=cols_to_drop) y_train = sample.sales models = {} pipes = {} train_preds = {} val_preds = {} models[quantile] = QuantileRegressor( quantile=quantile, alpha=0.05, solver="highs-ds" ) pipes[quantile] = Pipeline( [ ("te", TargetEncoder(cols=["month_brand", "month", "brand"])), ("imputer", SimpleImputer(strategy="median")), ("scale", StandardScaler()), ("lgb", models[quantile]) ] ) # Fit cv model pipes[quantile].fit(X_train, y_train) train_preds[quantile] = pipes[quantile].predict(X_train) coefs = models[quantile].coef_ cols_pipe = pipes[quantile][:1].fit_transform(X_train.head(), y_train.head()).columns coefs_dict = dict(zip(cols_pipe, coefs)) selected_features = list({k: v for k, v in coefs_dict.items() if v != 0}.keys()) selected[iter] = selected_features all_selected = {} for k, v in selected.items(): for feature in v: all_selected[feature] = all_selected.get(feature, 0) + 1 all_selected_df = pd.DataFrame(all_selected.items(), columns=["feature", "count"]).sort_values("count", ascending=False) all_selected_df.to_csv(f"../data/features/bolasso_features_0{int(quantile * 10)}.csv", index=False)
32.268657
124
0.679695
0
0
0
0
0
0
0
0
953
0.220398
3d49492a4f368cab1e5d3dbd044945f99690e2f6
40,274
py
Python
docx.py
highcat/python-docx
05627c6330970f91771174c9e5d849ce28703b3e
[ "MIT" ]
null
null
null
docx.py
highcat/python-docx
05627c6330970f91771174c9e5d849ce28703b3e
[ "MIT" ]
null
null
null
docx.py
highcat/python-docx
05627c6330970f91771174c9e5d849ce28703b3e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Open and modify Microsoft Word 2007 docx files (called 'OpenXML' and 'Office OpenXML' by Microsoft) Part of Python's docx module - http://github.com/mikemaccana/python-docx See LICENSE for licensing information. ''' from copy import deepcopy import logging from lxml import etree try: from PIL import Image except ImportError: import Image import zipfile import shutil import distutils.dir_util import re import time import os from os.path import join log = logging.getLogger(__name__) # Record template directory's location which is just 'template' for a docx # developer or 'site-packages/docx-template' if you have installed docx TEMPLATE_DIR = join(os.path.dirname(__file__), 'docx-template') # installed if not os.path.isdir(TEMPLATE_DIR): TEMPLATE_DIR = join(os.path.dirname(__file__), 'template') # dev _DOCX_DIR_NAME = 'docx-template' # All Word prefixes / namespace matches used in document.xml & core.xml. # LXML doesn't actually use prefixes (just the real namespace) , but these # make it easier to copy Word output more easily. nsprefixes = { # Text Content 'mv':'urn:schemas-microsoft-com:mac:vml', 'mo':'http://schemas.microsoft.com/office/mac/office/2008/main', 've':'http://schemas.openxmlformats.org/markup-compatibility/2006', 'o':'urn:schemas-microsoft-com:office:office', 'r':'http://schemas.openxmlformats.org/officeDocument/2006/relationships', 'm':'http://schemas.openxmlformats.org/officeDocument/2006/math', 'v':'urn:schemas-microsoft-com:vml', 'w':'http://schemas.openxmlformats.org/wordprocessingml/2006/main', 'w10':'urn:schemas-microsoft-com:office:word', 'wne':'http://schemas.microsoft.com/office/word/2006/wordml', # Drawing 'wp':'http://schemas.openxmlformats.org/drawingml/2006/wordprocessingDrawing', 'a':'http://schemas.openxmlformats.org/drawingml/2006/main', 'pic':'http://schemas.openxmlformats.org/drawingml/2006/picture', # Properties (core and extended) 'cp':"http://schemas.openxmlformats.org/package/2006/metadata/core-properties", 'dc':"http://purl.org/dc/elements/1.1/", 'dcterms':"http://purl.org/dc/terms/", 'dcmitype':"http://purl.org/dc/dcmitype/", 'xsi':"http://www.w3.org/2001/XMLSchema-instance", 'ep':'http://schemas.openxmlformats.org/officeDocument/2006/extended-properties', # Content Types (we're just making up our own namespaces here to save time) 'ct':'http://schemas.openxmlformats.org/package/2006/content-types', # Package Relationships (we're just making up our own namespaces here to save time) 'pr':'http://schemas.openxmlformats.org/package/2006/relationships' } def opendocx(file): '''Open a docx file, return a document XML tree''' mydoc = zipfile.ZipFile(file) xmlcontent = mydoc.read('word/document.xml') document = etree.fromstring(xmlcontent) return document def newdocument(): document = makeelement('document') document.append(makeelement('body')) return document def makeelement(tagname,tagtext=None,nsprefix='w',attributes=None,attrnsprefix=None): '''Create an element & return it''' # Deal with list of nsprefix by making namespacemap namespacemap = None if isinstance(nsprefix, list): namespacemap = {} for prefix in nsprefix: namespacemap[prefix] = nsprefixes[prefix] nsprefix = nsprefix[0] # FIXME: rest of code below expects a single prefix if nsprefix: namespace = '{'+nsprefixes[nsprefix]+'}' else: # For when namespace = None namespace = '' newelement = etree.Element(namespace+tagname, nsmap=namespacemap) # Add attributes with namespaces if attributes: # If they haven't bothered setting attribute namespace, use an empty string # (equivalent of no namespace) if not attrnsprefix: # Quick hack: it seems every element that has a 'w' nsprefix for its tag uses the same prefix for it's attributes if nsprefix == 'w': attributenamespace = namespace else: attributenamespace = '' else: attributenamespace = '{'+nsprefixes[attrnsprefix]+'}' for tagattribute in attributes: newelement.set(attributenamespace+tagattribute, attributes[tagattribute]) if tagtext: newelement.text = tagtext return newelement def pagebreak(type='page', orient='portrait'): '''Insert a break, default 'page'. See http://openxmldeveloper.org/forums/thread/4075.aspx Return our page break element.''' # Need to enumerate different types of page breaks. validtypes = ['page', 'section'] if type not in validtypes: raise ValueError('Page break style "%s" not implemented. Valid styles: %s.' % (type, validtypes)) pagebreak = makeelement('p') if type == 'page': run = makeelement('r') br = makeelement('br',attributes={'type':type}) run.append(br) pagebreak.append(run) elif type == 'section': pPr = makeelement('pPr') sectPr = makeelement('sectPr') if orient == 'portrait': pgSz = makeelement('pgSz',attributes={'w':'12240','h':'15840'}) elif orient == 'landscape': pgSz = makeelement('pgSz',attributes={'h':'12240','w':'15840', 'orient':'landscape'}) sectPr.append(pgSz) pPr.append(sectPr) pagebreak.append(pPr) return pagebreak def paragraph(paratext, style='BodyText', breakbefore=False, jc='left'): '''Make a new paragraph element, containing a run, and some text. Return the paragraph element. @param string jc: Paragraph alignment, possible values: left, center, right, both (justified), ... see http://www.schemacentral.com/sc/ooxml/t-w_ST_Jc.html for a full list If paratext is a list, spawn multiple run/text elements. Support text styles (paratext must then be a list of lists in the form <text> / <style>. Style is a string containing a combination of 'bui' chars example paratext = [ ('some bold text', 'b'), ('some normal text', ''), ('some italic underlined text', 'iu'), ] ''' # Make our elements paragraph = makeelement('p') if isinstance(paratext, list): text = [] for pt in paratext: if isinstance(pt, (list,tuple)): text.append([makeelement('t',tagtext=pt[0]), pt[1]]) else: text.append([makeelement('t',tagtext=pt), '']) else: text = [[makeelement('t',tagtext=paratext),''],] pPr = makeelement('pPr') pStyle = makeelement('pStyle',attributes={'val':style}) pJc = makeelement('jc',attributes={'val':jc}) pPr.append(pStyle) pPr.append(pJc) # Add the text the run, and the run to the paragraph paragraph.append(pPr) for t in text: run = makeelement('r') rPr = makeelement('rPr') if isinstance(t[1], list): for prop in t[1]: # custom properties rPr.append(prop) else: # Apply styles if t[1].find('b') > -1: b = makeelement('b') rPr.append(b) if t[1].find('u') > -1: u = makeelement('u',attributes={'val':'single'}) rPr.append(u) if t[1].find('i') > -1: i = makeelement('i') rPr.append(i) run.append(rPr) # Insert lastRenderedPageBreak for assistive technologies like # document narrators to know when a page break occurred. if breakbefore: lastRenderedPageBreak = makeelement('lastRenderedPageBreak') run.append(lastRenderedPageBreak) run.append(t[0]) paragraph.append(run) # Return the combined paragraph return paragraph def contenttypes(): # FIXME - doesn't quite work...read from string as temp hack... #types = makeelement('Types',nsprefix='ct') types = etree.fromstring('''<Types xmlns="http://schemas.openxmlformats.org/package/2006/content-types"></Types>''') parts = { '/word/theme/theme1.xml':'application/vnd.openxmlformats-officedocument.theme+xml', '/word/fontTable.xml':'application/vnd.openxmlformats-officedocument.wordprocessingml.fontTable+xml', '/docProps/core.xml':'application/vnd.openxmlformats-package.core-properties+xml', '/docProps/app.xml':'application/vnd.openxmlformats-officedocument.extended-properties+xml', '/word/document.xml':'application/vnd.openxmlformats-officedocument.wordprocessingml.document.main+xml', '/word/settings.xml':'application/vnd.openxmlformats-officedocument.wordprocessingml.settings+xml', '/word/numbering.xml':'application/vnd.openxmlformats-officedocument.wordprocessingml.numbering+xml', '/word/styles.xml':'application/vnd.openxmlformats-officedocument.wordprocessingml.styles+xml', '/word/webSettings.xml':'application/vnd.openxmlformats-officedocument.wordprocessingml.webSettings+xml' } for part in parts: types.append(makeelement('Override',nsprefix=None,attributes={'PartName':part,'ContentType':parts[part]})) # Add support for filetypes filetypes = {'rels':'application/vnd.openxmlformats-package.relationships+xml','xml':'application/xml','jpeg':'image/jpeg','gif':'image/gif','png':'image/png'} for extension in filetypes: types.append(makeelement('Default',nsprefix=None,attributes={'Extension':extension,'ContentType':filetypes[extension]})) return types def heading(headingtext,headinglevel,lang='en'): '''Make a new heading, return the heading element''' lmap = { 'en': 'Heading', 'it': 'Titolo', } # Make our elements paragraph = makeelement('p') pr = makeelement('pPr') pStyle = makeelement('pStyle',attributes={'val':lmap[lang]+str(headinglevel)}) run = makeelement('r') text = makeelement('t',tagtext=headingtext) # Add the text the run, and the run to the paragraph pr.append(pStyle) run.append(text) paragraph.append(pr) paragraph.append(run) # Return the combined paragraph return paragraph def table(contents, heading=True, colw=None, cwunit='dxa', tblw=0, twunit='auto', borders={}, celstyle=None, rowstyle=None, table_props=None): '''Get a list of lists, return a table @param list contents: A list of lists describing contents Every item in the list can be a string or a valid XML element itself. It can also be a list. In that case all the listed elements will be merged into the cell. @param bool heading: Tells whether first line should be threated as heading or not @param list colw: A list of interger. The list must have same element count of content lines. Specify column Widths in wunitS @param string cwunit: Unit user for column width: 'pct': fifties of a percent 'dxa': twenties of a point 'nil': no width 'auto': automagically determined @param int tblw: Table width @param int twunit: Unit used for table width. Same as cwunit @param dict borders: Dictionary defining table border. Supported keys are: 'top', 'left', 'bottom', 'right', 'insideH', 'insideV', 'all' When specified, the 'all' key has precedence over others. Each key must define a dict of border attributes: color: The color of the border, in hex or 'auto' space: The space, measured in points sz: The size of the border, in eights of a point val: The style of the border, see http://www.schemacentral.com/sc/ooxml/t-w_ST_Border.htm @param list celstyle: Specify the style for each colum, list of dicts. supported keys: 'align': specify the alignment, see paragraph documentation, @return lxml.etree: Generated XML etree element ''' table = makeelement('tbl') columns = len(contents[0]) # Table properties tableprops = makeelement('tblPr') tablestyle = makeelement('tblStyle',attributes={'val':''}) tableprops.append(tablestyle) if not table_props: table_props = {} for k, attr in table_props.items(): if isinstance(attr, etree._Element): tableprops.append(attr) else: prop = makeelement(k, attributes=attr) tableprops.append(prop) tablewidth = makeelement('tblW',attributes={'w':str(tblw),'type':str(twunit)}) tableprops.append(tablewidth) if len(borders.keys()): tableborders = makeelement('tblBorders') for b in ['top', 'left', 'bottom', 'right', 'insideH', 'insideV']: if b in borders.keys() or 'all' in borders.keys(): k = 'all' if 'all' in borders.keys() else b attrs = {} for a in borders[k].keys(): attrs[a] = str(borders[k][a]) borderelem = makeelement(b,attributes=attrs) tableborders.append(borderelem) tableprops.append(tableborders) tablelook = makeelement('tblLook',attributes={'val':'0400'}) tableprops.append(tablelook) table.append(tableprops) # Table Grid tablegrid = makeelement('tblGrid') for i in range(columns): tablegrid.append(makeelement('gridCol',attributes={'w':str(colw[i]) if colw else '2390'})) table.append(tablegrid) # Heading Row row = makeelement('tr') rowprops = makeelement('trPr') cnfStyle = makeelement('cnfStyle',attributes={'val':'000000100000'}) rowprops.append(cnfStyle) row.append(rowprops) if heading: i = 0 for heading in contents[0]: cell = makeelement('tc') # Cell properties cellprops = makeelement('tcPr') if colw: wattr = {'w':str(colw[i]),'type':cwunit} else: wattr = {'w':'0','type':'auto'} cellwidth = makeelement('tcW',attributes=wattr) cellstyle = makeelement('shd',attributes={'val':'clear','color':'auto','fill':'FFFFFF','themeFill':'text2','themeFillTint':'99'}) cellprops.append(cellwidth) cellprops.append(cellstyle) cell.append(cellprops) # Paragraph (Content) if not isinstance(heading, (list, tuple)): heading = [heading,] for h in heading: if isinstance(h, etree._Element): cell.append(h) else: cell.append(paragraph(h,jc='center')) row.append(cell) i += 1 table.append(row) # Contents Rows for contentrow in contents[1 if heading else 0:]: row = makeelement('tr') if rowstyle: rowprops = makeelement('trPr') if 'height' in rowstyle: rowHeight = makeelement('trHeight', attributes={'val': str(rowstyle['height']), 'hRule': 'exact'}) rowprops.append(rowHeight) row.append(rowprops) i = 0 for content_cell in contentrow: cell = makeelement('tc') # Properties cellprops = makeelement('tcPr') if colw: wattr = {'w':str(colw[i]),'type':cwunit} else: wattr = {'w':'0','type':'auto'} cellwidth = makeelement('tcW', attributes=wattr) cellprops.append(cellwidth) align = 'left' cell_spec_style = {} if celstyle: cell_spec_style = deepcopy(celstyle[i]) if isinstance(content_cell, dict): cell_spec_style.update(content_cell['style']) content_cell = content_cell['content'] # spec. align property SPEC_PROPS = ['align',] if 'align' in cell_spec_style: align = celstyle[i]['align'] # any property for cell, by OOXML specification for cs, attrs in cell_spec_style.items(): if cs in SPEC_PROPS: continue cell_prop = makeelement(cs, attributes=attrs) cellprops.append(cell_prop) cell.append(cellprops) # Paragraph (Content) if not isinstance(content_cell, (list, tuple)): content_cell = [content_cell,] for c in content_cell: # cell.append(cellprops) if isinstance(c, etree._Element): cell.append(c) else: cell.append(paragraph(c, jc=align)) row.append(cell) i += 1 table.append(row) return table def picture(relationshiplist, picname, picdescription, pixelwidth=None, pixelheight=None, nochangeaspect=True, nochangearrowheads=True, temp_dir=None): '''Take a relationshiplist, picture file name, and return a paragraph containing the image and an updated relationshiplist''' # http://openxmldeveloper.org/articles/462.aspx # Create an image. Size may be specified, otherwise it will based on the # pixel size of image. Return a paragraph containing the picture''' # Copy the file into the media dir assert temp_dir media_dir = join(temp_dir, _DOCX_DIR_NAME, 'word', 'media') if not os.path.isdir(media_dir): os.makedirs(media_dir) shutil.copyfile(picname, join(media_dir,picname)) # Check if the user has specified a size if not pixelwidth or not pixelheight: # If not, get info from the picture itself pixelwidth,pixelheight = Image.open(picname).size[0:2] # OpenXML measures on-screen objects in English Metric Units # 1cm = 36000 EMUs emuperpixel = 12667 width = str(pixelwidth * emuperpixel) height = str(pixelheight * emuperpixel) # Set relationship ID to the first available picid = '2' picrelid = 'rId'+str(len(relationshiplist)+1) relationshiplist.append([ 'http://schemas.openxmlformats.org/officeDocument/2006/relationships/image', 'media/'+picname]) # There are 3 main elements inside a picture # 1. The Blipfill - specifies how the image fills the picture area (stretch, tile, etc.) blipfill = makeelement('blipFill',nsprefix='pic') blipfill.append(makeelement('blip',nsprefix='a',attrnsprefix='r',attributes={'embed':picrelid})) stretch = makeelement('stretch',nsprefix='a') stretch.append(makeelement('fillRect',nsprefix='a')) blipfill.append(makeelement('srcRect',nsprefix='a')) blipfill.append(stretch) # 2. The non visual picture properties nvpicpr = makeelement('nvPicPr',nsprefix='pic') cnvpr = makeelement('cNvPr',nsprefix='pic', attributes={'id':'0','name':'Picture 1','descr':picname}) nvpicpr.append(cnvpr) cnvpicpr = makeelement('cNvPicPr',nsprefix='pic') cnvpicpr.append(makeelement('picLocks', nsprefix='a', attributes={'noChangeAspect':str(int(nochangeaspect)), 'noChangeArrowheads':str(int(nochangearrowheads))})) nvpicpr.append(cnvpicpr) # 3. The Shape properties sppr = makeelement('spPr',nsprefix='pic',attributes={'bwMode':'auto'}) xfrm = makeelement('xfrm',nsprefix='a') xfrm.append(makeelement('off',nsprefix='a',attributes={'x':'0','y':'0'})) xfrm.append(makeelement('ext',nsprefix='a',attributes={'cx':width,'cy':height})) prstgeom = makeelement('prstGeom',nsprefix='a',attributes={'prst':'rect'}) prstgeom.append(makeelement('avLst',nsprefix='a')) sppr.append(xfrm) sppr.append(prstgeom) # Add our 3 parts to the picture element pic = makeelement('pic',nsprefix='pic') pic.append(nvpicpr) pic.append(blipfill) pic.append(sppr) # Now make the supporting elements # The following sequence is just: make element, then add its children graphicdata = makeelement('graphicData',nsprefix='a', attributes={'uri':'http://schemas.openxmlformats.org/drawingml/2006/picture'}) graphicdata.append(pic) graphic = makeelement('graphic',nsprefix='a') graphic.append(graphicdata) framelocks = makeelement('graphicFrameLocks',nsprefix='a',attributes={'noChangeAspect':'1'}) framepr = makeelement('cNvGraphicFramePr',nsprefix='wp') framepr.append(framelocks) docpr = makeelement('docPr',nsprefix='wp', attributes={'id':picid,'name':'Picture 1','descr':picdescription}) effectextent = makeelement('effectExtent',nsprefix='wp', attributes={'l':'25400','t':'0','r':'0','b':'0'}) extent = makeelement('extent',nsprefix='wp',attributes={'cx':width,'cy':height}) inline = makeelement('inline', attributes={'distT':"0",'distB':"0",'distL':"0",'distR':"0"},nsprefix='wp') inline.append(extent) inline.append(effectextent) inline.append(docpr) inline.append(framepr) inline.append(graphic) drawing = makeelement('drawing') drawing.append(inline) run = makeelement('r') run.append(drawing) paragraph = makeelement('p') paragraph.append(run) return relationshiplist,paragraph def search(document,search): '''Search a document for a regex, return success / fail result''' result = False searchre = re.compile(search) for element in document.iter(): if element.tag == '{%s}t' % nsprefixes['w']: # t (text) elements if element.text: if searchre.search(element.text): result = True return result def replace(document,search,replace): '''Replace all occurences of string with a different string, return updated document''' newdocument = document searchre = re.compile(search) for element in newdocument.iter(): if element.tag == '{%s}t' % nsprefixes['w']: # t (text) elements if element.text: if searchre.search(element.text): element.text = re.sub(search,replace,element.text) return newdocument def clean(document): """ Perform misc cleaning operations on documents. Returns cleaned document. """ newdocument = document # Clean empty text and r tags for t in ('t', 'r'): rmlist = [] for element in newdocument.iter(): if element.tag == '{%s}%s' % (nsprefixes['w'], t): if not element.text and not len(element): rmlist.append(element) for element in rmlist: element.getparent().remove(element) return newdocument def findTypeParent(element, tag): """ Finds fist parent of element of the given type @param object element: etree element @param string the tag parent to search for @return object element: the found parent or None when not found """ p = element while True: p = p.getparent() if p.tag == tag: return p # Not found return None def AdvSearch(document, search, bs=3): '''Return set of all regex matches This is an advanced version of python-docx.search() that takes into account blocks of <bs> elements at a time. What it does: It searches the entire document body for text blocks. Since the text to search could be spawned across multiple text blocks, we need to adopt some sort of algorithm to handle this situation. The smaller matching group of blocks (up to bs) is then adopted. If the matching group has more than one block, blocks other than first are cleared and all the replacement text is put on first block. Examples: original text blocks : [ 'Hel', 'lo,', ' world!' ] search : 'Hello,' output blocks : [ 'Hello,' ] original text blocks : [ 'Hel', 'lo', ' __', 'name', '__!' ] search : '(__[a-z]+__)' output blocks : [ '__name__' ] @param instance document: The original document @param str search: The text to search for (regexp) append, or a list of etree elements @param int bs: See above @return set All occurences of search string ''' # Compile the search regexp searchre = re.compile(search) matches = [] # Will match against searchels. Searchels is a list that contains last # n text elements found in the document. 1 < n < bs searchels = [] for element in document.iter(): if element.tag == '{%s}t' % nsprefixes['w']: # t (text) elements if element.text: # Add this element to searchels searchels.append(element) if len(searchels) > bs: # Is searchels is too long, remove first elements searchels.pop(0) # Search all combinations, of searchels, starting from # smaller up to bigger ones # l = search lenght # s = search start # e = element IDs to merge found = False for l in range(1,len(searchels)+1): if found: break for s in range(len(searchels)): if found: break if s+l <= len(searchels): e = range(s,s+l) txtsearch = '' for k in e: txtsearch += searchels[k].text # Searcs for the text in the whole txtsearch match = searchre.search(txtsearch) if match: matches.append(match.group()) found = True return set(matches) def advReplace(document,search,replace,bs=3): '''Replace all occurences of string with a different string, return updated document This is a modified version of python-docx.replace() that takes into account blocks of <bs> elements at a time. The replace element can also be a string or an xml etree element. What it does: It searches the entire document body for text blocks. Then scan thos text blocks for replace. Since the text to search could be spawned across multiple text blocks, we need to adopt some sort of algorithm to handle this situation. The smaller matching group of blocks (up to bs) is then adopted. If the matching group has more than one block, blocks other than first are cleared and all the replacement text is put on first block. Examples: original text blocks : [ 'Hel', 'lo,', ' world!' ] search / replace: 'Hello,' / 'Hi!' output blocks : [ 'Hi!', '', ' world!' ] original text blocks : [ 'Hel', 'lo,', ' world!' ] search / replace: 'Hello, world' / 'Hi!' output blocks : [ 'Hi!!', '', '' ] original text blocks : [ 'Hel', 'lo,', ' world!' ] search / replace: 'Hel' / 'Hal' output blocks : [ 'Hal', 'lo,', ' world!' ] @param instance document: The original document @param str search: The text to search for (regexp) @param mixed replace: The replacement text or lxml.etree element to append, or a list of etree elements @param int bs: See above @return instance The document with replacement applied ''' # Enables debug output DEBUG = False newdocument = document # Compile the search regexp searchre = re.compile(search) # Will match against searchels. Searchels is a list that contains last # n text elements found in the document. 1 < n < bs searchels = [] for element in newdocument.iter(): if element.tag == '{%s}t' % nsprefixes['w']: # t (text) elements if element.text: # Add this element to searchels searchels.append(element) if len(searchels) > bs: # Is searchels is too long, remove first elements searchels.pop(0) # Search all combinations, of searchels, starting from # smaller up to bigger ones # l = search lenght # s = search start # e = element IDs to merge found = False for l in range(1,len(searchels)+1): if found: break #print "slen:", l for s in range(len(searchels)): if found: break if s+l <= len(searchels): e = range(s,s+l) #print "elems:", e txtsearch = '' for k in e: txtsearch += searchels[k].text # Searcs for the text in the whole txtsearch match = searchre.search(txtsearch) if match: found = True # I've found something :) if DEBUG: log.debug("Found element!") log.debug("Search regexp: %s", searchre.pattern) log.debug("Requested replacement: %s", replace) log.debug("Matched text: %s", txtsearch) log.debug( "Matched text (splitted): %s", map(lambda i:i.text,searchels)) log.debug("Matched at position: %s", match.start()) log.debug( "matched in elements: %s", e) if isinstance(replace, etree._Element): log.debug("Will replace with XML CODE") elif isinstance(replace (list, tuple)): log.debug("Will replace with LIST OF ELEMENTS") else: log.debug("Will replace with:", re.sub(search,replace,txtsearch)) curlen = 0 replaced = False for i in e: curlen += len(searchels[i].text) if curlen > match.start() and not replaced: # The match occurred in THIS element. Puth in the # whole replaced text if isinstance(replace, etree._Element): # Convert to a list and process it later replace = [ replace, ] if isinstance(replace, (list,tuple)): # I'm replacing with a list of etree elements # clear the text in the tag and append the element after the # parent paragraph # (because t elements cannot have childs) p = findTypeParent(searchels[i], '{%s}p' % nsprefixes['w']) searchels[i].text = re.sub(search,'',txtsearch) insindex = p.getparent().index(p) + 1 for r in replace: p.getparent().insert(insindex, r) insindex += 1 else: # Replacing with pure text searchels[i].text = re.sub(search,replace,txtsearch) replaced = True log.debug("Replacing in element #: %s", i) else: # Clears the other text elements searchels[i].text = '' return newdocument def getdocumenttext(document): '''Return the raw text of a document, as a list of paragraphs.''' paratextlist=[] # Compile a list of all paragraph (p) elements paralist = [] for element in document.iter(): # Find p (paragraph) elements if element.tag == '{'+nsprefixes['w']+'}p': paralist.append(element) # Since a single sentence might be spread over multiple text elements, iterate through each # paragraph, appending all text (t) children to that paragraphs text. for para in paralist: paratext=u'' # Loop through each paragraph for element in para.iter(): # Find t (text) elements if element.tag == '{'+nsprefixes['w']+'}t': if element.text: paratext = paratext+element.text elif element.tag == '{'+nsprefixes['w']+'}tab': paratext = paratext + '\t' # Add our completed paragraph text to the list of paragraph text if not len(paratext) == 0: paratextlist.append(paratext) return paratextlist def coreproperties(title,subject,creator,keywords,lastmodifiedby=None): '''Create core properties (common document properties referred to in the 'Dublin Core' specification). See appproperties() for other stuff.''' coreprops = makeelement('coreProperties',nsprefix='cp') coreprops.append(makeelement('title',tagtext=title,nsprefix='dc')) coreprops.append(makeelement('subject',tagtext=subject,nsprefix='dc')) coreprops.append(makeelement('creator',tagtext=creator,nsprefix='dc')) coreprops.append(makeelement('keywords',tagtext=','.join(keywords),nsprefix='cp')) if not lastmodifiedby: lastmodifiedby = creator coreprops.append(makeelement('lastModifiedBy',tagtext=lastmodifiedby,nsprefix='cp')) coreprops.append(makeelement('revision',tagtext='1',nsprefix='cp')) coreprops.append(makeelement('category',tagtext='Examples',nsprefix='cp')) coreprops.append(makeelement('description',tagtext='Examples',nsprefix='dc')) currenttime = time.strftime('%Y-%m-%dT%H:%M:%SZ') # Document creation and modify times # Prob here: we have an attribute who name uses one namespace, and that # attribute's value uses another namespace. # We're creating the lement from a string as a workaround... for doctime in ['created','modified']: coreprops.append(etree.fromstring('''<dcterms:'''+doctime+''' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:dcterms="http://purl.org/dc/terms/" xsi:type="dcterms:W3CDTF">'''+currenttime+'''</dcterms:'''+doctime+'''>''')) pass return coreprops def appproperties(): '''Create app-specific properties. See docproperties() for more common document properties.''' appprops = makeelement('Properties',nsprefix='ep') appprops = etree.fromstring( b'''<?xml version="1.0" encoding="UTF-8" standalone="yes"?> <Properties xmlns="http://schemas.openxmlformats.org/officeDocument/2006/extended-properties" xmlns:vt="http://schemas.openxmlformats.org/officeDocument/2006/docPropsVTypes"></Properties>''') props = { 'Template':'Normal.dotm', 'TotalTime':'6', 'Pages':'1', 'Words':'83', 'Characters':'475', 'Application':'Microsoft Word 12.0.0', 'DocSecurity':'0', 'Lines':'12', 'Paragraphs':'8', 'ScaleCrop':'false', 'LinksUpToDate':'false', 'CharactersWithSpaces':'583', 'SharedDoc':'false', 'HyperlinksChanged':'false', 'AppVersion':'12.0000', } for prop in props: appprops.append(makeelement(prop,tagtext=props[prop],nsprefix=None)) return appprops def websettings(): '''Generate websettings''' web = makeelement('webSettings') web.append(makeelement('allowPNG')) web.append(makeelement('doNotSaveAsSingleFile')) return web def relationshiplist(): relationshiplist = [ ['http://schemas.openxmlformats.org/officeDocument/2006/relationships/numbering','numbering.xml'], ['http://schemas.openxmlformats.org/officeDocument/2006/relationships/styles','styles.xml'], ['http://schemas.openxmlformats.org/officeDocument/2006/relationships/settings','settings.xml'], ['http://schemas.openxmlformats.org/officeDocument/2006/relationships/webSettings','webSettings.xml'], ['http://schemas.openxmlformats.org/officeDocument/2006/relationships/fontTable','fontTable.xml'], ['http://schemas.openxmlformats.org/officeDocument/2006/relationships/theme','theme/theme1.xml'], ] return relationshiplist def wordrelationships(relationshiplist): '''Generate a Word relationships file''' # Default list of relationships # FIXME: using string hack instead of making element #relationships = makeelement('Relationships',nsprefix='pr') relationships = etree.fromstring( '''<Relationships xmlns="http://schemas.openxmlformats.org/package/2006/relationships"> </Relationships>''' ) count = 0 for relationship in relationshiplist: # Relationship IDs (rId) start at 1. relationships.append(makeelement('Relationship',attributes={'Id':'rId'+str(count+1), 'Type':relationship[0],'Target':relationship[1]},nsprefix=None)) count += 1 return relationships def savedocx(document, coreprops, appprops, contenttypes, websettings, wordrelationships, output, temp_dir=None): '''Save a modified document''' assert temp_dir assert os.path.isdir(temp_dir) docx_dir = join(temp_dir, _DOCX_DIR_NAME) # Copy whole template to temporary directory distutils.dir_util.copy_tree(TEMPLATE_DIR, docx_dir) # directory can already exist docxfile = zipfile.ZipFile(output,mode='w',compression=zipfile.ZIP_DEFLATED) # Move to the template data path prev_dir = os.path.abspath('.') # save previous working dir os.chdir(docx_dir) # Serialize our trees into out zip file treesandfiles = {document:'word/document.xml', coreprops:'docProps/core.xml', appprops:'docProps/app.xml', contenttypes:'[Content_Types].xml', websettings:'word/webSettings.xml', wordrelationships:'word/_rels/document.xml.rels'} for tree in treesandfiles: log.info('Saving: '+treesandfiles[tree] ) treestring = etree.tostring(tree, pretty_print=True) docxfile.writestr(treesandfiles[tree],treestring) # Add & compress support files files_to_ignore = ['.DS_Store'] # nuisance from some os's for dirpath,dirnames,filenames in os.walk('.'): for filename in filenames: if filename in files_to_ignore: continue templatefile = join(dirpath, filename) archivename = templatefile[2:] log.info('Saving: %s', archivename) docxfile.write(templatefile, archivename) log.info('Saved new file to: %r', output) docxfile.close() os.chdir(prev_dir) # restore previous working dir return
43.305376
242
0.590133
0
0
0
0
0
0
0
0
18,062
0.448478
3d49f7eaf598f54df886dcfb77904d84e8c9f173
108
py
Python
nylas/util/__init__.py
nylas/nylas-production-python
a0979cd104a43f80750b2361aa580516b8dbfcfc
[ "Apache-2.0", "MIT" ]
19
2015-11-20T12:38:34.000Z
2022-01-13T15:40:25.000Z
nylas/api/__init__.py
nylas/nylas-production-python
a0979cd104a43f80750b2361aa580516b8dbfcfc
[ "Apache-2.0", "MIT" ]
null
null
null
nylas/api/__init__.py
nylas/nylas-production-python
a0979cd104a43f80750b2361aa580516b8dbfcfc
[ "Apache-2.0", "MIT" ]
10
2016-03-12T00:38:54.000Z
2018-12-13T05:58:13.000Z
from pkgutil import extend_path # Allow out-of-tree submodules. __path__ = extend_path(__path__, __name__)
21.6
42
0.805556
0
0
0
0
0
0
0
0
31
0.287037
3d4abb2320ad6d11a7ab8694b9e07545a91044dd
885
py
Python
project/migrations/0002_auto_20180801_1907.py
mcdale/django-material
3bd5725cc4a4b6f2fb1439333e9033d0cd2b6a9c
[ "MIT" ]
null
null
null
project/migrations/0002_auto_20180801_1907.py
mcdale/django-material
3bd5725cc4a4b6f2fb1439333e9033d0cd2b6a9c
[ "MIT" ]
2
2020-07-21T12:52:29.000Z
2021-06-17T20:23:36.000Z
project/migrations/0002_auto_20180801_1907.py
mcdale/django-material
3bd5725cc4a4b6f2fb1439333e9033d0cd2b6a9c
[ "MIT" ]
null
null
null
# Generated by Django 2.0.8 on 2018-08-01 19:07 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('project', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='knowledgearea', options={'verbose_name': 'Knowledge Area', 'verbose_name_plural': 'Knowledge Areas'}, ), migrations.AddField( model_name='knowledgeareaindexpage', name='knowledge_area', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='project.KnowledgeArea'), ), migrations.AddField( model_name='knowledgeareapage', name='abstract', field=models.TextField(blank=True, help_text='Text to describe the article'), ), ]
30.517241
121
0.628249
759
0.857627
0
0
0
0
0
0
275
0.310734
3d4dc9ef0428e142bdd3d4e674dd5dce9410a4ab
8,925
py
Python
src/core/src/tortuga/objects/softwareProfile.py
sutasu/tortuga
48d7cde4fa652346600b217043b4a734fa2ba455
[ "Apache-2.0" ]
33
2018-03-02T17:07:39.000Z
2021-05-21T18:02:51.000Z
src/core/src/tortuga/objects/softwareProfile.py
sutasu/tortuga
48d7cde4fa652346600b217043b4a734fa2ba455
[ "Apache-2.0" ]
201
2018-03-05T14:28:24.000Z
2020-11-23T19:58:27.000Z
src/core/src/tortuga/objects/softwareProfile.py
sutasu/tortuga
48d7cde4fa652346600b217043b4a734fa2ba455
[ "Apache-2.0" ]
23
2018-03-02T17:21:59.000Z
2020-11-18T14:52:38.000Z
# Copyright 2008-2018 Univa Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=no-member from functools import cmp_to_key from typing import Dict, Iterable, Optional import tortuga.objects.admin import tortuga.objects.component import tortuga.objects.hardwareProfile import tortuga.objects.kitSource import tortuga.objects.nic import tortuga.objects.node import tortuga.objects.osInfo import tortuga.objects.partition from tortuga.objects.tortugaObject import TortugaObject, TortugaObjectList from tortuga.utility.helper import str2bool from .validators import RegexValidator class SoftwareProfile(TortugaObject): \ # pylint: disable=too-many-public-methods ROOT_TAG = 'softwareprofile' validators = { 'name': RegexValidator(pattern='[a-zA-Z0-9-_]+') } def __init__(self, name=None): TortugaObject.__init__( self, { 'name': name, 'admins': TortugaObjectList(), 'partitions': TortugaObjectList(), 'components': TortugaObjectList(), 'nodes': TortugaObjectList(), 'kitsources': TortugaObjectList(), }, ['name', 'id'], SoftwareProfile.ROOT_TAG) def __repr__(self): return self.getName() def setId(self, id_): """ Set software profile id.""" self['id'] = id_ def getId(self): """ Return software profile id. """ return self.get('id') def setName(self, name): """ Set software profile name.""" self['name'] = name def getName(self): """ Return software profile name. """ return self.get('name') def setDescription(self, description): """ Set description.""" self['description'] = description def getDescription(self): """ Return description. """ return self.get('description') def setKernel(self, kernel): """ Set kernel.""" self['kernel'] = kernel def getKernel(self): """ Return kernel. """ return self.get('kernel') def setKernelParams(self, kernelParams): """ Set kernel params.""" self['kernelParams'] = kernelParams def getKernelParams(self): """ Return kernel params. """ return self.get('kernelParams') def setInitrd(self, initrd): """ Set initrd.""" self['initrd'] = initrd def getInitrd(self): """ Return initird. """ return self.get('initrd') def setOsId(self, osId): """ Set OS id.""" self['osId'] = osId def getOsId(self): """ Return OS id. """ return self.get('osId') def setType(self, type_): """ Set type.""" self['type'] = type_ def getType(self): """ Return type. """ return self.get('type') def setMinNodes(self, val): self['minNodes'] = val def getMinNodes(self): return self.get('minNodes') def setMaxNodes(self, value): self['maxNodes'] = value def getMaxNodes(self): return self.get('maxNodes') def setLockedState(self, val): self['lockedState'] = val def getLockedState(self): return self.get('lockedState') def setOsInfo(self, osInfo): """ Set OS info. """ self['os'] = osInfo def getOsInfo(self): """ Get OS info. """ return self.get('os') def setComponents(self, comp): """ Set components. """ self['components'] = comp def getComponents(self): """ Get Components """ return self.get('components') def setAdmins(self, admins): """ set Admins """ self['admins'] = admins def getAdmins(self): """ Get Admins """ return self.get('admins') def setPartitions(self, val): self['partitions'] = val def getPartitions(self): """ We want to always return the partitions sorted by device and partition number """ partitions = self.get('partitions') if partitions: partitions.sort(key=cmp_to_key(_partition_compare)) return partitions def setNodes(self, val): self['nodes'] = val def getNodes(self): return self.get('nodes') def setUsableHardwareProfiles(self, val): self['hardwareprofiles'] = val def getUsableHardwareProfiles(self): return self.get('hardwareprofiles') def getKitSources(self): return self.get('kitsources') def setKitSources(self, kitsources): self['kitsources'] = kitsources def getTags(self) -> Dict[str, str]: """ Gets all the tags for this software profile. :return Dict[str, str]: the tags """ return self.get('tags') def setTags(self, tags: Dict[str, str]): """ Sets the tags for this hardware profile. :param Dict[str, str] tags: the tags to set for this hardware profile """ self['tags'] = tags def getMetadata(self): return self.get('metadata') def setMetadata(self, value): self['metadata'] = value def getDataRoot(self): return self.get('dataRoot') def setDataRoot(self, value): self['dataRoot'] = value def getDataRsync(self): return self.get('dataRsync') def setDataRsync(self, value): self['dataRsync'] = value @staticmethod def getKeys(): return [ 'id', 'name', 'osId', 'description', 'kernel', 'initrd', 'kernelParams', 'type', 'minNodes', 'maxNodes', 'lockedState', 'isIdle', 'metadata', 'tags', 'dataRoot', 'dataRsync', ] @classmethod def getFromDict(cls, _dict, ignore: Optional[Iterable[str]] = None): """ Get software profile from _dict. """ softwareProfile = super(SoftwareProfile, cls).getFromDict(_dict) softwareProfile.setAdmins( tortuga.objects.admin.Admin.getListFromDict(_dict)) softwareProfile.setComponents( tortuga.objects.component.Component.getListFromDict(_dict)) softwareProfile.setNodes( tortuga.objects.node.Node.getListFromDict(_dict)) osDict = _dict.get(tortuga.objects.osInfo.OsInfo.ROOT_TAG) if osDict: softwareProfile.setOsInfo( tortuga.objects.osInfo.OsInfo.getFromDict(osDict)) softwareProfile.setPartitions( tortuga.objects.partition.Partition.getListFromDict(_dict)) softwareProfile.\ setUsableHardwareProfiles( tortuga.objects.hardwareProfile.HardwareProfile. getListFromDict(_dict)) # kitsources softwareProfile.setKitSources( tortuga.objects.kitSource.KitSource.getListFromDict(_dict)) return softwareProfile @classmethod def getFromDbDict(cls, _dict, ignore: Optional[Iterable[str]] = None): softwareProfile = super(SoftwareProfile, cls).getFromDict( _dict, ignore=ignore) softwareProfile.setAdmins( tortuga.objects.admin.Admin.getListFromDbDict(_dict)) softwareProfile.setComponents( tortuga.objects.component.Component.getListFromDbDict(_dict)) if not ignore or 'nodes' not in ignore: softwareProfile.setNodes( tortuga.objects.node.Node.getListFromDbDict(_dict)) osDict = _dict.get(tortuga.objects.osInfo.OsInfo.ROOT_TAG) if osDict: softwareProfile.setOsInfo( tortuga.objects.osInfo.OsInfo.getFromDbDict( osDict.__dict__)) softwareProfile.setPartitions( tortuga.objects.partition.Partition.getListFromDbDict(_dict)) softwareProfile.setUsableHardwareProfiles( tortuga.objects.hardwareProfile.HardwareProfile. getListFromDbDict(_dict)) tags = {tag.name: tag.value for tag in _dict.get('tags', [])} softwareProfile.setTags(tags) return softwareProfile def _partition_compare(x, y): deviceDiff = x.getDeviceTuple()[0] - y.getDeviceTuple()[0] if deviceDiff == 0: deviceDiff = x.getDeviceTuple()[1] - y.getDeviceTuple()[1] return deviceDiff
27.631579
77
0.607731
7,608
0.852437
0
0
2,773
0.3107
0
0
2,239
0.250868
3d4e4b8f64fdbc0b44c87b38d3ece2354dc7dd2f
579
py
Python
src/utils/workspace.py
sidcmsft/ResponsibleAI
a8c691574690a8316e054c21ec9e6d0e0ca4e494
[ "MIT" ]
2
2020-09-03T16:13:56.000Z
2021-02-18T15:58:41.000Z
src/utils/workspace.py
sidcmsft/ResponsibleAI
a8c691574690a8316e054c21ec9e6d0e0ca4e494
[ "MIT" ]
null
null
null
src/utils/workspace.py
sidcmsft/ResponsibleAI
a8c691574690a8316e054c21ec9e6d0e0ca4e494
[ "MIT" ]
4
2020-09-03T16:14:19.000Z
2021-05-05T05:59:59.000Z
import sys from azureml.core import Workspace from azureml.core.authentication import ServicePrincipalAuthentication def get_workspace( workspace_name: str, resource_group: str, subscription_id: str): try: aml_workspace = Workspace.get( name=workspace_name, subscription_id=subscription_id, resource_group=resource_group) return aml_workspace except Exception as caught_exception: print("Error while retrieving Workspace...") print(str(caught_exception)) sys.exit(1)
26.318182
70
0.680484
0
0
0
0
0
0
0
0
37
0.063903
3d4f711206b2fd9dbd8a3177d589e3c33373c8b1
822
py
Python
tools/test_tmp.py
Z-XQ/mmdetection
9f3756889969c0c21e6d84e0d993f302e7f07460
[ "Apache-2.0" ]
null
null
null
tools/test_tmp.py
Z-XQ/mmdetection
9f3756889969c0c21e6d84e0d993f302e7f07460
[ "Apache-2.0" ]
null
null
null
tools/test_tmp.py
Z-XQ/mmdetection
9f3756889969c0c21e6d84e0d993f302e7f07460
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # @Time : 2020/9/28 下午9:49 # @Author : zxq # @File : test_tmp.py # @Software: PyCharm import mmcv import torch from mmdet.datasets import build_dataset from mmdet.models import build_detector from mmdet.apis import train_detector, inference_detector, show_result_pyplot from tools.train_tmp import CustomerTrain customer_train = CustomerTrain() cfg = customer_train.cfg # Build dataset datasets = [build_dataset(cfg.data.train)] # Build the detector model = build_detector( cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg) # Add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES img = mmcv.imread('../data/kitti_tiny/training/image_2/000068.jpeg') model.cfg = cfg result = inference_detector(model, img) show_result_pyplot(model, img, result)
27.4
77
0.770073
0
0
0
0
0
0
0
0
248
0.300242
3d4fb10a65167e4ffb44c4897ed5483e2f0d23c0
2,439
py
Python
users/models.py
Mansi3546/CareerCradle
e040e763b1058aef937deb9eac4e1f9b2421ae25
[ "MIT" ]
null
null
null
users/models.py
Mansi3546/CareerCradle
e040e763b1058aef937deb9eac4e1f9b2421ae25
[ "MIT" ]
1
2021-04-14T12:24:41.000Z
2021-04-18T07:33:11.000Z
users/models.py
Mansi3546/CareerCradle
e040e763b1058aef937deb9eac4e1f9b2421ae25
[ "MIT" ]
3
2021-04-06T13:54:44.000Z
2021-05-03T17:28:59.000Z
from django.contrib.auth.models import AbstractBaseUser, BaseUserManager, PermissionsMixin from django.db import models from django.utils import timezone from django.db.models import BooleanField class UserManager(BaseUserManager): def _create_user(self, email, password, usertype, is_staff, is_superuser, **extra_fields): if not email: raise ValueError('Users must have an email address') now = timezone.now() email = self.normalize_email(email) user = self.model( email=email, usertype=usertype, is_staff=is_staff, is_active=True, is_superuser=is_superuser, last_login=now, date_joined=now, **extra_fields ) user.set_password(password) user.save(using=self._db) return user def create_candidate(self, email, password, **extra_fields): return self._create_user(email, password, 1, False, False, **extra_fields) def create_recruiter(self, email, password, **extra_fields): return self._create_user(email, password, 0, False, False, **extra_fields) def create_staff(self, email, password, **extra_fields): return self._create_user(email, password, None, True, False, **extra_fields) def create_superuser(self, email, password, **extra_fields): user=self._create_user(email, password, None, True, True, **extra_fields) user.save(using=self._db) return user class User(AbstractBaseUser, PermissionsMixin): ''' Usertype can have 3 values: Candidate - 1 Recruiter - 0 Staff - None ''' USERTYPES = [ (1, 'Candidates'), (0, 'Recruiters'), (None, 'Staff'), ] email = models.EmailField(max_length=254, unique=True) name = models.CharField(max_length=254, null=True, blank=True) usertype = models.PositiveSmallIntegerField(choices=USERTYPES, null=True) is_staff = models.BooleanField(default=False) is_superuser = models.BooleanField(default=False) is_active = models.BooleanField(default=True) last_login = models.DateTimeField(null=True, blank=True) date_joined = models.DateTimeField(auto_now_add=True) USERNAME_FIELD = 'email' EMAIL_FIELD = 'email' REQUIRED_FIELDS = [] objects = UserManager() def get_absolute_url(self): return "/users/%i/" % (self.pk)
33.410959
94
0.660107
2,235
0.916359
0
0
0
0
0
0
199
0.081591
3d4fe154eecbbf658beca88c248a4a382f051e30
2,656
py
Python
scripts/dump_ubd.py
sbreuers/BiternionNets-ROS
954d6a2fbd97a01231f3411b366f3a3cccae5cf9
[ "MIT" ]
1
2018-08-29T07:11:22.000Z
2018-08-29T07:11:22.000Z
scripts/dump_ubd.py
sbreuers/BiternionNets-ROS
954d6a2fbd97a01231f3411b366f3a3cccae5cf9
[ "MIT" ]
null
null
null
scripts/dump_ubd.py
sbreuers/BiternionNets-ROS
954d6a2fbd97a01231f3411b366f3a3cccae5cf9
[ "MIT" ]
1
2018-10-20T12:09:58.000Z
2018-10-20T12:09:58.000Z
#!/usr/bin/env python # encoding: utf-8 from os.path import abspath, expanduser, join as pjoin import os from sys import stderr import cv2 import rospy from cv_bridge import CvBridge import message_filters from sensor_msgs.msg import Image as ROSImage # Distinguish between STRANDS and SPENCER. try: from rwth_perception_people_msgs.msg import UpperBodyDetector except ImportError: from upper_body_detector.msg import UpperBodyDetector def cutout(img, detrect, hfact=3): x, y, w, h = detrect # Need to be careful for negative indices in conjunction with # numpy's (and thus OpenCV's) wrap-around. y2, x2 = y+hfact*h, x+w y1, x1 = max(y, 0), max(x, 0) return img[y1:y2, x1:x2] class Dumper(object): def __init__(self): rospy.loginfo("Initializing UBD dumper") self.counter = 0 self.dirname = abspath(expanduser(rospy.get_param("~dir", "."))) self.full = rospy.get_param("~fullbody", "False") in ("True", "true", "yes", "1", 1, True) self.hfact = 3 if self.full else 1 rospy.loginfo("Dumping {} into {}".format("full-bodies" if self.full else "upper-bodies", self.dirname)) # Create target directory, or warn if non-empty. try: if len(os.listdir(self.dirname)) > 0: rospy.logwarn("CAREFUL, files may be overwritten since directory is not empty: {}".format(self.dirname)) except OSError: os.makedirs(self.dirname) subs = [ message_filters.Subscriber(rospy.get_param("~ubd", "/upper_body_detector/detections"), UpperBodyDetector), message_filters.Subscriber(rospy.get_param("~rgb", "/head_xtion/rgb/image_rect_color"), ROSImage), message_filters.Subscriber(rospy.get_param("~d", "/head_xtion/depth/image_rect_meters"), ROSImage), ] ts = message_filters.ApproximateTimeSynchronizer(subs, queue_size=50, slop=0.1) ts.registerCallback(self.cb) def cb(self, ubd, rgb, d): b = CvBridge() rgb = b.imgmsg_to_cv2(rgb)[:,:,::-1] # Need to do BGR-RGB conversion manually. d = b.imgmsg_to_cv2(d) for i, detrect in enumerate(zip(ubd.pos_x, ubd.pos_y, ubd.width, ubd.height)): cv2.imwrite(pjoin(self.dirname, "{:06d}.png".format(self.counter)), cutout(rgb, detrect, self.hfact)) det_d = cutout(d, detrect, self.hfact) stderr.write("\r{}".format(self.counter)) ; stderr.flush() self.counter += 1 if __name__ == "__main__": rospy.init_node("dump_ubd") d = Dumper() rospy.spin() rospy.loginfo("Dumped a total of {} UBDs.".format(d.counter))
34.947368
120
0.651355
1,778
0.669428
0
0
0
0
0
0
645
0.242846
3d5041bc56fbfaccca116aec98a24987eddba5f7
2,046
py
Python
site_scons/site_tools/findPkgPath.py
fermi-lat/SConsFiles
54124ec1031142b4fee76b12fdcfe839845e9fda
[ "BSD-3-Clause" ]
null
null
null
site_scons/site_tools/findPkgPath.py
fermi-lat/SConsFiles
54124ec1031142b4fee76b12fdcfe839845e9fda
[ "BSD-3-Clause" ]
null
null
null
site_scons/site_tools/findPkgPath.py
fermi-lat/SConsFiles
54124ec1031142b4fee76b12fdcfe839845e9fda
[ "BSD-3-Clause" ]
null
null
null
import os,platform,os.path # Usual case: find where package is; add to env include path # If 'subdir' argument, instead set construction env variable # to point to it def generate(env, **kw): pkgName = kw.get('package', '') if pkgName == '': print 'findPkgPath called with no arg' return None path = None subDir = kw.get('subDir', '') usualCase = (subDir == '') # paths all start with .\ so strip it off #if forStatic.first == True: # print 'findPkgPath called with argument ', pkgName ## First look in env['packageNameList']. If we *have* supersede, ## this is the supersede list. Otherwise it's the base list for p in env['packageNameList']: bname = os.path.basename(str(p[2:])) if pkgName == bname: if env.GetOption('supersede') == '.': path = '#' + str(p[2:]) else: path = os.path.join(str(env['absSuperPath']), pkgName) if pkgName + '-' == bname[:len(bname)+1]: if env.GetOption('supersede') == '.': path = '#' + str(p[2:]) else: path = os.path.join(str(env['absSuperPath']), str(p[2:])) # If not found up to this point, we must be in case # -have supersede dir # -package we have been called for is not in supersede area if path == None and env.GetOption('supersede') != '.': # look in base for p in env['basePackageNameList']: bname = os.path.basename(str(p[2:])) ##if pkgName == bname: path = '#' + str(p[2:]) if pkgName == bname: path = os.path.join(env['absBasePath'], str(p[2:])) if pkgName + '-' == bname[:len(bname)+1]: path = os.path.join(env['absBasePath'], str(p[2:])) if path != None: if usualCase: env.AppendUnique(CPPPATH = [path]) else: conVarName = pkgName + '_' + subDir env[conVarName] = os.path.join(path, subDir) def exists(env): return 1
40.117647
75
0.544966
0
0
0
0
0
0
0
0
796
0.389052
3d506074ec9756c4fb5eb16d2309de5778a6c989
1,380
py
Python
examples/model_zoo/test_binaries.py
Embracing/unrealcv
19305da8554c3a0e683a5e27a1e487cc2cf42776
[ "MIT" ]
1,617
2016-09-10T04:41:33.000Z
2022-03-31T20:03:28.000Z
examples/model_zoo/test_binaries.py
Embracing/unrealcv
19305da8554c3a0e683a5e27a1e487cc2cf42776
[ "MIT" ]
199
2016-09-13T09:40:59.000Z
2022-03-16T02:37:23.000Z
examples/model_zoo/test_binaries.py
Embracing/unrealcv
19305da8554c3a0e683a5e27a1e487cc2cf42776
[ "MIT" ]
431
2016-09-10T03:20:35.000Z
2022-03-19T13:44:21.000Z
import subprocess, os win_binary_path = 'UE4Binaries/{project_name}/WindowsNoEditor/{project_name}.exe' linux_binary_path = './UE4Binaries/{project_name}/LinuxNoEditor/{project_name}/Binaries/Linux/{project_name}' mac_binary_path = './UE4Binaries/{project_name}/MacNoEditor/{project_name}.app' project_names = [ 'RealisticRendering', 'ArchinteriorsVol2Scene1', 'ArchinteriorsVol2Scene2', 'ArchinteriorsVol2Scene3', 'UrbanCity', 'Matinee', 'PhotorealisticCharacter' ] binaries = [] binaries += [linux_binary_path.format(project_name = v) for v in project_names] binaries += [win_binary_path.format(project_name = v) for v in project_names] binaries += [mac_binary_path.format(project_name = v) for v in project_names] if __name__ == '__main__': if not os.path.isdir('output'): os.mkdir('output') for binary_path in binaries: project_name = os.path.basename(binary_path).split('.')[0] output_folder = os.path.join('output', project_name) if not os.path.isfile(binary_path) and not os.path.isdir(binary_path): print('Can not find binary "%s", skip' % binary_path) continue print('Testing %s ..., output will be saved to "%s"' % (binary_path, output_folder)) subprocess.call([ 'python', 'examples/commands_demo.py', binary_path, '--output', output_folder ])
41.818182
109
0.698551
0
0
0
0
0
0
0
0
513
0.371739
3d50aca1b7a9e65ec91502519f8c8985d2d96649
4,629
py
Python
pyslam/feature_tracker_configs.py
velvetThunder25/Feature-based-Monocular-Visual-Odometry
e6b108e8ce71ec0ec535932e2fc1023fc6fcaf92
[ "MIT" ]
7
2022-01-12T22:46:06.000Z
2022-03-16T13:57:52.000Z
pyslam/feature_tracker_configs.py
velvetThunder25/Feature-based-Monocular-Visual-Odometry
e6b108e8ce71ec0ec535932e2fc1023fc6fcaf92
[ "MIT" ]
null
null
null
pyslam/feature_tracker_configs.py
velvetThunder25/Feature-based-Monocular-Visual-Odometry
e6b108e8ce71ec0ec535932e2fc1023fc6fcaf92
[ "MIT" ]
1
2022-01-12T22:52:29.000Z
2022-01-12T22:52:29.000Z
""" * This file is part of PYSLAM * * Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com> * * PYSLAM is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * PYSLAM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with PYSLAM. If not, see <http://www.gnu.org/licenses/>. """ from feature_tracker import feature_tracker_factory, FeatureTrackerTypes from feature_manager import feature_manager_factory from feature_types import FeatureDetectorTypes, FeatureDescriptorTypes, FeatureInfo from feature_matcher import feature_matcher_factory, FeatureMatcherTypes from parameters import Parameters # some default parameters kNumFeatures=Parameters.kNumFeatures kRatioTest=Parameters.kFeatureMatchRatioTest kTrackerType = FeatureTrackerTypes.DES_BF # default descriptor-based, brute force matching with knn #kTrackerType = FeatureTrackerTypes.DES_FLANN # default descriptor-based, FLANN-based matching """ A collection of ready-to-used feature tracker configurations """ class FeatureTrackerConfigs(object): # Test/Template configuration: you can use this to quickly test # - your custom parameters and # - favourite descriptor and detector (check the file feature_types.py) TEST = dict(num_features=kNumFeatures, num_levels = 8, # N.B: some detectors/descriptors do not allow to set num_levels or they set it on their own scale_factor = 1.2, # N.B: some detectors/descriptors do not allow to set scale_factor or they set it on their own detector_type = FeatureDetectorTypes.ORB2, descriptor_type = FeatureDescriptorTypes.ORB2, match_ratio_test = kRatioTest, tracker_type = kTrackerType) ###################################################### #################### TEST CONFIG COMBINATION ######### ###################################################### # Format: T[XX]_[YY]_[ZZ]; # XX is test ID number # YY is detector name # ZZ is descriptor name # there are 42 combinations + some deep learning test_configs = { 'T1_SIFT':dict(num_features=kNumFeatures, detector_type = FeatureDetectorTypes.SIFT, descriptor_type = FeatureDescriptorTypes.SIFT, match_ratio_test = kRatioTest, tracker_type = kTrackerType), # done 'T2_SURF':dict(num_features=kNumFeatures, num_levels = 8, detector_type = FeatureDetectorTypes.SURF, descriptor_type = FeatureDescriptorTypes.SURF, match_ratio_test = kRatioTest, tracker_type = kTrackerType), # done 'T3_BRISK':dict(num_features=kNumFeatures, num_levels = 4, scale_factor = 1.2, detector_type = FeatureDetectorTypes.BRISK, descriptor_type = FeatureDescriptorTypes.BRISK, match_ratio_test = kRatioTest, tracker_type = kTrackerType), # done 'T4_FAST':dict(num_features=kNumFeatures, num_levels = 8, scale_factor = 1.2, detector_type = FeatureDetectorTypes.FAST, descriptor_type = FeatureDescriptorTypes.NONE, tracker_type = FeatureTrackerTypes.LK), # done 'T5_ORB':dict(num_features=kNumFeatures, num_levels = 8, scale_factor = 1.2, detector_type = FeatureDetectorTypes.ORB, descriptor_type = FeatureDescriptorTypes.ORB, match_ratio_test = kRatioTest, tracker_type = kTrackerType), }
44.509615
159
0.579175
3,163
0.683301
0
0
0
0
0
0
1,705
0.36833
3d524c3bd35810437426c4644ee0f769511b58ea
152
py
Python
bindings/python/examples/05b_get_output.py
GoldenPedro/iota.rs
71464f96b8e29d9fbed34a6ff77e757a112fedd4
[ "Apache-2.0" ]
256
2017-06-27T02:37:21.000Z
2022-03-28T07:51:48.000Z
bindings/python/examples/05b_get_output.py
GoldenPedro/iota.rs
71464f96b8e29d9fbed34a6ff77e757a112fedd4
[ "Apache-2.0" ]
379
2017-06-25T05:49:14.000Z
2022-03-29T18:57:11.000Z
bindings/python/examples/05b_get_output.py
GoldenPedro/iota.rs
71464f96b8e29d9fbed34a6ff77e757a112fedd4
[ "Apache-2.0" ]
113
2017-06-25T14:07:05.000Z
2022-03-30T09:10:12.000Z
import iota_client client = iota_client.Client() print( client.get_output("a22cba0667c922cbb1f8bdcaf970b2a881ccd6e88e2fcce50374de2aac7c37720000") )
25.333333
93
0.848684
0
0
0
0
0
0
0
0
70
0.460526
3d5394f2af4816cbcec8e499c06b15d66ed6fb8e
920
py
Python
simple_ml/__init__.py
Yangruipis/simple_ml
09657f6b017b973a5201aa611774d6ac8f0fc0a2
[ "MIT" ]
25
2018-04-17T04:38:51.000Z
2021-10-09T04:07:53.000Z
simple_ml/__init__.py
Yangruipis/simple_ml
09657f6b017b973a5201aa611774d6ac8f0fc0a2
[ "MIT" ]
null
null
null
simple_ml/__init__.py
Yangruipis/simple_ml
09657f6b017b973a5201aa611774d6ac8f0fc0a2
[ "MIT" ]
5
2018-04-17T05:27:00.000Z
2020-12-01T02:55:15.000Z
# -*- coding:utf-8 -*- """ ================================== Simple Machine Learning 一个简单的机器学习算法实现 ================================== """ from simple_ml.bayes import * from simple_ml.classify_data import * from simple_ml.auto import * from simple_ml.classify_data import * from simple_ml.ensemble import * from simple_ml.evaluation import * from simple_ml.feature_select import * from simple_ml.knn import * from simple_ml.logistic import * from simple_ml.neural_network import * from simple_ml.pca import * from simple_ml.regression import * from simple_ml.support_vector import * # from simple_ml.svm import * from simple_ml.tree import * __all__ = [ 'bayes', 'auto', 'classify_data', 'cluster', 'data_handle', 'ensemble', 'evaluation', 'feature_select', 'knn', 'svm', 'logistic', 'neural_network', 'pca', 'regression', 'support_vector', 'tree', ]
20
38
0.644565
0
0
0
0
0
0
0
0
358
0.378436
3d53c39285c2bdec8b3434c91e5427cdb7617eb5
5,470
py
Python
Modelos/Game.py
joaofanti/TrabRedesIIFinal
3cae5db7ef88e20d9426043e926260ccedc79d10
[ "MIT" ]
1
2017-07-05T01:24:20.000Z
2017-07-05T01:24:20.000Z
Modelos/Game.py
joaofanti/TrabRedesIIFinal
3cae5db7ef88e20d9426043e926260ccedc79d10
[ "MIT" ]
null
null
null
Modelos/Game.py
joaofanti/TrabRedesIIFinal
3cae5db7ef88e20d9426043e926260ccedc79d10
[ "MIT" ]
null
null
null
import sys sys.path.insert(0, "Modelos/Mapa") from Map import * from Item import Item """ Define a classe que manipula a logica do jogo. """ class Game: """ Define um jogador do jogo. """ class Player: """ Cria uma nova instancia de jogador """ def __init__(self, name, addr, map): self.Name = name self.Addr = addr #IP self.Room = 1 # Jogador sempre inicia na sala 1 self.Inventario = [] self.Inventario.append(Item("Mapa", map)) """ Cria uma nova instancia de jogo. """ def __init__(self, map): self.Map = map self.Players = [] """ Cria um novo jogador. Retorna falso se jogador ja existe. Retorna verdadeiro se jogador foi criado. """ def CriaJogador(self, playerId, addr): if (self.getPlayer(playerId) != None): return "FAIL" self.Players.append(self.Player(playerId, addr, self.Map.showMap())) return "OK" """ Examina a sala em que o jogador se encontra. """ def Examina(self, playerId): player = self.getPlayer(playerId) if(player == None): return "Player nao encontrado" room = self.Map.getRoom(player.Room) return room.ToString() """ Move o jogador para outra sala. """ def Move(self, playerId, direction): player = self.getPlayer(playerId) if(player == None): return "Player nao encontrado" room = self.Map.getRoom(player.Room) roomInDirection = room.GetRoomInDirection(direction) if (roomInDirection != None): if (room.CanMoveTo(direction)): player.Room = roomInDirection for item in player.Inventario: if item.Name == "Mapa": item.Description = self.Map.showMap(roomInDirection) return "O jogador se moveu para a sala " + str(roomInDirection) + "." else: return "A porta esta fechada." else: return "Nao ha sala nesta direcao." def Inventario(self, playerId): player = self.getPlayer(playerId) if(player == None): return "Player nao encontrado" result = "" ln = len(player.Inventario) for i in range(0, ln): result += player.Inventario[i].Name if (i + 1 != ln): result += " ; " return result def UsaItem(self, playerId, itemName, target = None): player = self.getPlayer(playerId) abriuPorta = False if(player == None): return "Player nao encontrado" salaAtual = self.Map.getRoom(player.Room) for item in player.Inventario: if item.Name == itemName: if "Nota" in str(item.Name): return item.Description elif item.Name == "Mapa": return item.Description elif item.Name == "ObjetoFinal": if salaAtual.ID == 1: return "Fim" else: return "Voce precisa estar na sala inicial para utilizar este objeto" elif ("Chave" in str(item.Name)): if target == None: return "Escolha uma porta para abrir" else: for x in range(0, len(salaAtual.Doors)): if str(x) == target: abriuPorta = True self.Map.getRoom(player.Room).Doors[x].OpenDoor() if(abriuPorta == True): return "Porta "+target+" foi aberta" else: return "Nao foi possivel abrir a porta "+target return "Portas da sala "+str(salaAtual.ID)+" foram abertas" else: return "Item nao existente no inventario" """ Jogador pega um objeto que esta na sala atual """ def Pegar(self, playerId, objeto): player = self.getPlayer(playerId) if(player == None): return "Player nao encontrado" salaAtual = self.Map.getRoom(player.Room) if(salaAtual == None): return "Sala nao encontrada" objetoAdicionado = False lenObjetos = len(salaAtual.Objects) for x in range(0, lenObjetos): objetoEncontrado = salaAtual.Objects[x] if(str(objeto) == str(objetoEncontrado.Name)): objetoAdicionado = True del salaAtual.Objects[x] player.Inventario.append(Item(objetoEncontrado.Name, objetoEncontrado.Description)) break if(objetoAdicionado == True): return "Objeto " + objeto + " adicionado ao inventario" else: return "Objeto " + objeto + " nao foi encontrado nesta sala" """ Larga objeto do inventario na sala atual """ def Largar(self, playerId, objeto): player = self.getPlayer(playerId) if(player == None): return "Player nao encontrado" salaAtual = self.Map.getRoom(player.Room) objetoDeletado = False for x in range(0, len(player.Inventario)): itemPlayer = player.Inventario[x] if(itemPlayer.Name == str(objeto)): objetoDeletado = True del player.Inventario[x] salaAtual.Objects.append(Item(itemPlayer.Name, itemPlayer.Description)) if(objetoDeletado == True): return "Objeto " + objeto + " adicionado a sala" else: return "Objeto " + objeto + " nao foi encontrado no inventario" """ Envia um texto para um jogador especifico """ def Cochichar(self, playerSource, text, playerTarget): player = self.getPlayer(playerSource) for x in range(0, len(self.Players)): if(self.Players[x].Name == str(playerTarget)): return (self.Players[x].Addr, text) """ Retorna os players presente na sala passada por parametro """ def getPlayersInRoom(self, room): sala = self.Map.getRoom(room) if(sala == None): return "Sala nao encontrada" playersNaSala = [] for x in range(0, len(self.Players)): if(self.Players[x].Room == room): playersNaSala.append(self.Players[x].Addr) return playersNaSala """ Busca o jogador na lista de jogadores conectados ao jogo. """ def getPlayer(self, playerName): for player in self.Players: if player.Name == playerName: return player return None
28.051282
101
0.67404
5,325
0.973492
0
0
0
0
0
0
1,430
0.261426
3d550a112ff51ab3601284d3bb247c868ab1d733
2,062
py
Python
test/sample_data/get_observation_histogram_week.py
eduramirezh/pyinaturalist
e5da7ced7fae31f27310868bdb2d349bdff8e0d4
[ "MIT" ]
47
2019-07-23T08:18:02.000Z
2022-03-17T16:32:17.000Z
test/sample_data/get_observation_histogram_week.py
eduramirezh/pyinaturalist
e5da7ced7fae31f27310868bdb2d349bdff8e0d4
[ "MIT" ]
219
2019-08-22T14:45:20.000Z
2022-03-30T02:39:35.000Z
test/sample_data/get_observation_histogram_week.py
eduramirezh/pyinaturalist
e5da7ced7fae31f27310868bdb2d349bdff8e0d4
[ "MIT" ]
9
2020-02-28T04:29:13.000Z
2022-02-23T03:02:32.000Z
from datetime import datetime { datetime(2019, 12, 30, 0, 0): 35, datetime(2020, 1, 6, 0, 0): 27, datetime(2020, 1, 13, 0, 0): 39, datetime(2020, 1, 20, 0, 0): 120, datetime(2020, 1, 27, 0, 0): 73, datetime(2020, 2, 3, 0, 0): 48, datetime(2020, 2, 10, 0, 0): 35, datetime(2020, 2, 17, 0, 0): 89, datetime(2020, 2, 24, 0, 0): 81, datetime(2020, 3, 2, 0, 0): 116, datetime(2020, 3, 9, 0, 0): 90, datetime(2020, 3, 16, 0, 0): 195, datetime(2020, 3, 23, 0, 0): 406, datetime(2020, 3, 30, 0, 0): 642, datetime(2020, 4, 6, 0, 0): 652, datetime(2020, 4, 13, 0, 0): 684, datetime(2020, 4, 20, 0, 0): 1393, datetime(2020, 4, 27, 0, 0): 1755, datetime(2020, 5, 4, 0, 0): 1251, datetime(2020, 5, 11, 0, 0): 1566, datetime(2020, 5, 18, 0, 0): 1986, datetime(2020, 5, 25, 0, 0): 2141, datetime(2020, 6, 1, 0, 0): 1581, datetime(2020, 6, 8, 0, 0): 1640, datetime(2020, 6, 15, 0, 0): 1406, datetime(2020, 6, 22, 0, 0): 1902, datetime(2020, 6, 29, 0, 0): 2078, datetime(2020, 7, 6, 0, 0): 1821, datetime(2020, 7, 13, 0, 0): 1854, datetime(2020, 7, 20, 0, 0): 2308, datetime(2020, 7, 27, 0, 0): 2637, datetime(2020, 8, 3, 0, 0): 2275, datetime(2020, 8, 10, 0, 0): 1717, datetime(2020, 8, 17, 0, 0): 1474, datetime(2020, 8, 24, 0, 0): 2234, datetime(2020, 8, 31, 0, 0): 2275, datetime(2020, 9, 7, 0, 0): 2180, datetime(2020, 9, 14, 0, 0): 1824, datetime(2020, 9, 21, 0, 0): 1609, datetime(2020, 9, 28, 0, 0): 1714, datetime(2020, 10, 5, 0, 0): 2849, datetime(2020, 10, 12, 0, 0): 1425, datetime(2020, 10, 19, 0, 0): 569, datetime(2020, 10, 26, 0, 0): 210, datetime(2020, 11, 2, 0, 0): 331, datetime(2020, 11, 9, 0, 0): 229, datetime(2020, 11, 16, 0, 0): 162, datetime(2020, 11, 23, 0, 0): 164, datetime(2020, 11, 30, 0, 0): 102, datetime(2020, 12, 7, 0, 0): 75, datetime(2020, 12, 14, 0, 0): 55, datetime(2020, 12, 21, 0, 0): 150, datetime(2020, 12, 28, 0, 0): 11, }
35.551724
39
0.532978
0
0
0
0
0
0
0
0
0
0
3d553fd4a5642d493db1017f36467ff8b535228c
65
py
Python
wave_1d_fwi_tf/__init__.py
ar4/wave_1d_fwi_tf
0a543149dc3bd5ca6ec0e5bfe34add4796e0b879
[ "MIT" ]
2
2017-08-07T13:35:50.000Z
2019-02-28T08:26:49.000Z
wave_1d_fwi_tf/__init__.py
ar4/wave_1d_fwi_tf
0a543149dc3bd5ca6ec0e5bfe34add4796e0b879
[ "MIT" ]
null
null
null
wave_1d_fwi_tf/__init__.py
ar4/wave_1d_fwi_tf
0a543149dc3bd5ca6ec0e5bfe34add4796e0b879
[ "MIT" ]
5
2018-06-26T20:43:44.000Z
2021-12-11T20:00:03.000Z
"""1D FWI implemented using TensorFlow """ __version__ = '0.0.1'
16.25
38
0.692308
0
0
0
0
0
0
0
0
49
0.753846
3d555476cff1bc071aa2e2a1ea0c596baf77825f
1,586
py
Python
scripts/space_heating_demand/ecofys_space_heating_demand.py
quintel/etmoses
e1e682d0ef68928e5a015c44d916ec151917b1ff
[ "MIT" ]
16
2015-09-22T11:33:52.000Z
2019-09-09T13:37:14.000Z
scripts/space_heating_demand/ecofys_space_heating_demand.py
quintel/etmoses
e1e682d0ef68928e5a015c44d916ec151917b1ff
[ "MIT" ]
1,445
2015-05-20T22:42:50.000Z
2022-02-26T19:16:02.000Z
scripts/space_heating_demand/ecofys_space_heating_demand.py
quintel/etloader
e1e682d0ef68928e5a015c44d916ec151917b1ff
[ "MIT" ]
3
2015-11-03T10:41:26.000Z
2017-02-11T07:39:52.000Z
import numpy as np from numpy import genfromtxt import matplotlib.pyplot as plt import os time_steps = 8760 file_name = "../input_data/Ecofys_ECN_heating_profiles.csv" data = zip(*genfromtxt(file_name, delimiter=',')) names = ["tussenwoning_laag", "tussenwoning_midden", "tussenwoning_hoog", "hoekwoning_laag", "hoekwoning_midden", "hoekwoning_hoog", "twee_onder_een_kapwoning_laag", "twee_onder_een_kapwoning_midden", "twee_onder_een_kapwoning_hoog", "appartement_laag", "appartement_midden", "appartement_hoog", "vrijstaande_woning_laag", "vrijstaande_woning_midden", "vrijstaande_woning_hoog"] profiles = [] totals = [] counter = 0 for profile in data: if len(profile) == time_steps: profiles.append(profile) totals.append(np.sum(profile)) print "Writing: ", names[counter]+".csv" out_file = open("../output_data/"+names[counter]+".csv","w") for item in profile: for i in range(4): out_file.write(str(item) + "\n") out_file.close() else: print "Error! profile #"+str(counter)+" has "+ str(len(profile)) + " lines" counter += 1 print totals plt.close() plt.figure(figsize=(19, 7)) mini = 0 maxi = 24 * 7 for name,profile in zip(names,profiles): #if "appartement" in name: #plt.plot(profile[mini:maxi]/np.sum(profile),linewidth=1.0, label=name) plt.plot(profile[mini:maxi],linewidth=1.0, label=name) plt.xlabel('time (hours)') plt.ylabel('kW') plt.legend() plt.show()
26.433333
109
0.645019
0
0
0
0
0
0
0
0
587
0.370113
3d55a052fc466e9d762d5638ce7970aab1dc7f8b
1,362
py
Python
parsers/lyrics_az.py
taynaron/lyrics2mp3
339f4dfd94c88896278a7be4143ea586ada8194f
[ "MIT" ]
null
null
null
parsers/lyrics_az.py
taynaron/lyrics2mp3
339f4dfd94c88896278a7be4143ea586ada8194f
[ "MIT" ]
null
null
null
parsers/lyrics_az.py
taynaron/lyrics2mp3
339f4dfd94c88896278a7be4143ea586ada8194f
[ "MIT" ]
null
null
null
from .lyrics import Lyrics class LyricsAZ(Lyrics): def __init__(self, **kwargs): super().__init__("azlyrics", **kwargs) def parse_single_song(self, href): soup = self.parse_html(href) parsed_lyrics = ( soup.find("div", class_="col-xs-12 col-lg-8 text-center") .contents[16] .get_text() ) return parsed_lyrics def parse(self, soup, title, artist=None): found_td = soup.find("td", class_="text-left") self.validate_lyrics_found(found_td, title) try: found_artist = found_td.find_all("b")[1].text.lower() found_title = found_td.find("b").text.lower() except IndexError as e: if self.verbose > 1: print("HTML format for site has changed: ", e) return None if artist: self.validate_artist(artist, found_artist) self.validate_title(title, found_title) href = found_td.find("a")["href"] parsed_lyrics = self.validate_parse_song(href, title) return parsed_lyrics def request(self, title, artist=None): search_url = "http://search.azlyrics.com/search.php?q=" artist_q = f"{artist} " if artist else "" url = f"{search_url}{artist_q}{title}" return super().request(url, title, artist=artist)
31.674419
69
0.592511
1,332
0.977974
0
0
0
0
0
0
201
0.147577
3d56210042ea856581699506b54c8a673f17ffaa
1,414
py
Python
senorge/listfiles.py
kojitominaga/scratch
5eaf4de30c89ff1e855a6be493105d1201f07f74
[ "FSFAP" ]
null
null
null
senorge/listfiles.py
kojitominaga/scratch
5eaf4de30c89ff1e855a6be493105d1201f07f74
[ "FSFAP" ]
null
null
null
senorge/listfiles.py
kojitominaga/scratch
5eaf4de30c89ff1e855a6be493105d1201f07f74
[ "FSFAP" ]
null
null
null
import os d = '/Volumes/Seagate Expansion Drive/SeNorge' vars = ['bn', 'eva', 'frd', 'gwt', 'is', 'os', 'q', 'rr', 'sd', 'smd', 'swe', 'tm'] # Massebalanse isbre (mm/døgn) gwb_bn_2014_06_15.asc # Fordampning (mm/døgn) gwb_eva_2014_06_15.asc # Frostdyp (mm/døgn) gwb_frd_2014_06_15.asc # Grunnvannsmagasin (mm) gwb_gwt_2014_06_15.asc # Infiltrasjon i rotsonen (mm/døgn) gwb_is_2014_06_15.asc # Perkolasjon fra rotsonen til grunnvansonen (mm/døgn) gwb_os_2014_06_15.asc # Avrenning (mm/døgn) gwb_q_2014_06_15.asc # Nedbør (mm/døgn) gwb_rr_2014_06_15.asc # Snødyp (mm) gwb_sd_2014_06_15.asc # Markvannsunderskudd (mm) gwb_smd_2014_06_15.asc # Snøens vannekvivalent (mm) gwb_swe_2014_06_15.asc # Temperatur (°C) gwb_tm_2014_06_15.asc counts = {} for year in range(1957, 2015): fns = os.listdir(os.path.join(d, 'gwb_ascii_%s' % year)) counts[year] = [len([f for f in fns if v in f]) for v in vars] out = ' '.join(['year'] + vars) out += '\n' out += '\n'.join([' '.join(map(str, [e] + counts[e])) for e in counts.keys()]) out += '\n' counts2 = {} for year in range(1957, 2015): fns = os.listdir(os.path.join(d, 'gwb_ascii_%s' % year)) counts2[year] = [len([f for f in fns if v in f and '.gz' in f]) for v in vars] out2 = ' '.join(['year'] + vars) out2 += '\n' out2 += '\n'.join([' '.join(map(str, [e] + counts2[e])) for e in counts2.keys()]) out2 += '\n'
33.666667
81
0.642857
0
0
0
0
0
0
0
0
767
0.538246
3d56d13a865c0fd22d417834c65ef6529f433ba4
104
py
Python
Python/jump-to-python/Exponential.py
leeheefull/blog-source
5f8370de5b0f62801fffc9e5f0f0bcb98dc2e6d1
[ "MIT" ]
null
null
null
Python/jump-to-python/Exponential.py
leeheefull/blog-source
5f8370de5b0f62801fffc9e5f0f0bcb98dc2e6d1
[ "MIT" ]
null
null
null
Python/jump-to-python/Exponential.py
leeheefull/blog-source
5f8370de5b0f62801fffc9e5f0f0bcb98dc2e6d1
[ "MIT" ]
null
null
null
# 지수부 표현 a = 1e9 print(a) # 1000000000.0 a = 7.525e2 print(a) # 752.5 a = 3954e-3 print(a) # 3.954
10.4
24
0.576923
0
0
0
0
0
0
0
0
46
0.403509
3d56d5d2a7208245fa6af52b9cc12f9423e31653
11,289
py
Python
src/lib_yolo_detect.py
felixchenfy/ros_yolo_as_template_matching
0d5c0a52ba5540d2a644e0b426f9041a2a5e7858
[ "MIT" ]
29
2019-12-02T01:54:18.000Z
2022-02-15T09:23:27.000Z
src/lib_yolo_detect.py
felixchenfy/ros_yolo_as_template_matching
0d5c0a52ba5540d2a644e0b426f9041a2a5e7858
[ "MIT" ]
8
2019-12-24T13:13:44.000Z
2022-02-10T00:16:31.000Z
src/lib_yolo_detect.py
felixchenfy/ros_yolo_as_template_matching
0d5c0a52ba5540d2a644e0b426f9041a2a5e7858
[ "MIT" ]
5
2020-01-31T00:31:37.000Z
2022-03-28T06:14:09.000Z
# -*- coding: future_fstrings -*- from __future__ import division if 1: # Set path import sys, os ROOT = os.path.dirname(os.path.abspath(__file__))+"/../" # root of the project sys.path.append(ROOT) import sys from src.PyTorch_YOLOv3.models import Darknet from src.PyTorch_YOLOv3.utils.utils import non_max_suppression, load_classes from src.PyTorch_YOLOv3.utils.datasets import ImgfolderDataset from utils.lib_yolo_datasets import ImgfolderDataset, UsbcamDataset, VideofileDataset from utils.lib_yolo_plot import Yolo_Detection_Plotter_CV2 import utils.lib_common_funcs as cf from config.config import read_all_args import os import sys import time import datetime import argparse import cv2 import numpy as np from PIL import Image import torch from torch.utils.data import DataLoader from torchvision import datasets from torch.autograd import Variable import torchvision.transforms as transforms import torch.nn.functional as F import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.ticker import NullLocator def tensor_images_to_list_numpy_images(tensor_imgs): ''' Arguments: tensor_imgs {tensor, BxCxHxW} Return: list_of_imgs {list of numpy images} ''' imgs = tensor_imgs.permute(0, 2, 3, 1).data.numpy() # convert to: RGB, float, (20, H, W, 3) list_of_imgs = [img for img in imgs] # convert to: list of numpy images return list_of_imgs def rescale_boxes(boxes, current_dim, original_shape): ''' Rescales bounding boxes to the original shape This is copied from src/PyTorch_YOLOv3/utils/utils.py ''' orig_h, orig_w = original_shape # The amount of padding that was added pad_x = max(orig_h - orig_w, 0) * (current_dim / max(original_shape)) pad_y = max(orig_w - orig_h, 0) * (current_dim / max(original_shape)) # Image height and width after padding is removed unpad_h = current_dim - pad_y unpad_w = current_dim - pad_x # Rescale bounding boxes to dimension of original image boxes[:, 0] = ((boxes[:, 0] - pad_x // 2) / unpad_w) * orig_w boxes[:, 1] = ((boxes[:, 1] - pad_y // 2) / unpad_h) * orig_h boxes[:, 2] = ((boxes[:, 2] - pad_x // 2) / unpad_w) * orig_w boxes[:, 3] = ((boxes[:, 3] - pad_y // 2) / unpad_h) * orig_h return boxes def resize(image, size): ''' Resize image to `size` ''' image = F.interpolate(image.unsqueeze(0), size=size, mode="nearest").squeeze(0) return image def pad_to_square(img, pad_value): c, h, w = img.shape dim_diff = np.abs(h - w) # (upper / left) padding and (lower / right) padding pad1, pad2 = dim_diff // 2, dim_diff - dim_diff // 2 # Determine padding pad = (0, 0, pad1, pad2) if h <= w else (pad1, pad2, 0, 0) # Add padding img = F.pad(img, pad, "constant", value=pad_value) return img, pad def rgbimg_to_yoloimg(img, img_size): ''' Input: img: 3xHxW, tensor, rgb img_size: int Output: (let Z = img_size) img: 3xZxZ, tensor, rgb ''' # img = np.moveaxis(img, -1, 0) # no need for this. torchvision.transforms does this for us. # img = transforms.ToTensor()(img) # numpy, HxWx3 --> tensor, 3xHxW # img = img[np.newaxis, ...] # no need for this. DataLoader itself will add the additional channel. # Pad to square resolution img, _ = pad_to_square(img, 0) # 3 x H(W) x H(W) # Resize img = resize(img, img_size) # 3 x img_size x img_size return img def rgbimgs_to_yoloimgs(imgs, img_size): ''' Input: imgs: Batch x (3xHxW), tensor, rgb, uint8 img_size: int Output: (let Z = img_size) yoloimgs: Batch x (3xZxZ), tensor, rgb, float ''' imgs = imgs.type(torch.float32) imgs = imgs.permute(0, 3, 1, 2) # [B, W, H, 3] --> [B, 3, W, H] imgs /= 255.0 yoloimgs = [rgbimg_to_yoloimg(img, img_size) for img in imgs] yoloimgs = torch.stack((yoloimgs)) return yoloimgs # ------------------ Main functions used for inference ------------------ def detetions_to_labels_and_pos(self, detections, classes): ''' Input: detections: the output of "detect_targets()" ''' labels_and_pos = [] for x1, y1, x2, y2, conf, cls_conf, cls_idx in detections: label = classes[int(cls_idx)] pos = (int((x1+x2)/2), int((y1+y2)/2)) labels_and_pos.append((label, pos)) return labels_and_pos def create_model(weights_path, f_yolo_config, img_size): # Set up model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = Darknet(f_yolo_config, img_size=img_size).to(device) # Load darknet weights if weights_path.endswith(".weights"): model.load_darknet_weights(weights_path) else: # Load checkpoint weights model.load_state_dict(torch.load(weights_path)) model.eval() # Set in evaluation mode return model def set_dataloader(src_data_type, image_data_path, img_size, batch_size, n_cpu): print(f"Load data from: {src_data_type}; Data path: {image_data_path}") if src_data_type == "folder": dataloader = DataLoader( ImgfolderDataset(image_data_path, img_size=img_size), batch_size=batch_size, shuffle=False, num_workers=n_cpu, ) elif src_data_type == "video": dataloader = DataLoader( VideofileDataset(image_data_path, img_size=img_size), batch_size=batch_size, shuffle=False, ) elif src_data_type == "webcam": dataloader = DataLoader( UsbcamDataset(max_framerate=10, img_size=img_size), batch_size=batch_size, shuffle=False, ) else: raise ValueError("Wrong data source for yolo") return dataloader Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor def detect_targets(args_inference, model, rgb_imgs, # Batch x (3xHxW), tensor, rgb, uint8 is_one_obj_per_class=False, # single instance for each class ): ''' Output: detections: [bbox, conf, cls_conf, cls_idx] where: bbox = [x1, y1, x2, y2] is represented in the original image coordinate ''' # -- Convert images to required type Z = args_inference.img_size yolo_imgs = rgbimgs_to_yoloimgs(rgb_imgs, Z) # [B, 3, W, H] --> [B, 3, Z, Z], uint8 --> float imgs_on_gpu = Variable(yolo_imgs.type(Tensor)) # Get detections with torch.no_grad(): imgs_detections = model(imgs_on_gpu) N_elements = 7 # format of imgs_detections[jth_img]: x1, y1, x2, y2, conf, cls_conf, cls_idx idx_conf = 5 imgs_detections = non_max_suppression(imgs_detections, args_inference.conf_thres, args_inference.nms_thres) # convert to numpy array imgs_detections = [d.numpy() if d is not None else None for d in imgs_detections] # Sort detections based on confidence; # Convert box to the current image coordinate; # Convert detections to 2d list for jth_img in range(len(imgs_detections)): if imgs_detections[jth_img] is None: # no detected object imgs_detections[jth_img] = [] continue # sort detections = sorted(imgs_detections[jth_img], key=lambda x: x[idx_conf]) detections = np.array(detections) # change bbox pos to yoloimg detections = rescale_boxes(detections, args_inference.img_size, rgb_imgs[jth_img].shape[:2]) # save result imgs_detections[jth_img] = detections.tolist() # Remove duplicated objects in the single-instance mode if is_one_obj_per_class: for jth_img, jth_detections in enumerate(imgs_detections): if not imgs_detections[jth_img]: continue detected_objects = set() jth_unique_detections = [] for kth_object in jth_detections: x1, y1, x2, y2, conf, cls_conf, cls_idx = kth_object if cls_idx not in detected_objects: # Add object if not detected before detected_objects.add(cls_idx) jth_unique_detections.append(kth_object) imgs_detections[jth_img] = jth_unique_detections return imgs_detections class ObjDetector(object): ''' Yolo detector for single image ''' def __init__(self, config_path, weights_path): args = read_all_args(config_path) args_inference = cf.dict2class(args.yolo_inference) self.model = create_model(weights_path, args.f_yolo_config, args_inference.img_size) self.classes = load_classes(args.f_yolo_classes) # Extracts class labels from file self.plotter = Yolo_Detection_Plotter_CV2(classes=self.classes, if_show=False) self.args, self.args_inference = args, args_inference def detect_cv2_img(self, cv2_img, is_one_obj_per_class=False): ''' Argument: cv2_img {a clor image read from cv2.imread} Return: detections {2d list}: Each element is a 1D list indicating the detected object [[x1, y1, x2, y2, conf, cls_conf, cls_idx], [...], ...], where (x1, yi) represents in the original image coordinate ''' # Change format to the required one: bgr to rgb, numpy to tensor, unsqueeze 0 imgs = self._cv2_to_torch_img(cv2_img) # Detect imgs_detections = detect_targets( self.args_inference, self.model, imgs, is_one_obj_per_class) # Return detections = imgs_detections[0] # there is only 1 image here return detections def detect_cv2_imgs(self, cv2_imgs, is_one_obj_per_class=False): imgs = self._cv2_to_torch_imgs(cv2_imgs) imgs_detections = detect_targets( self.args_inference, self.model, imgs, is_one_obj_per_class) return imgs_detections def detect_torch_imgs(self, torch_imgs, is_one_obj_per_class=False): return detect_targets( self.args_inference, self.model, torch_imgs, is_one_obj_per_class) def draw_bboxes(self, img, detections): ''' Arguments: detections {Nx7 arrays}: Info of each obj: Bbox(4), conf, cls_conf, cls_idx. This can be {2d list} or {np.ndarray} or {torch.Tensor} ''' img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_disp = self.plotter.plot(img, detections, if_print=False) return img_disp def _cv2_to_torch_img(self, img): # Output: [1, W, H, 3], tensor, rgb ''' Change image format to what the detector requires. ''' img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) imgs = torch.from_numpy(img).unsqueeze(0) return imgs def _cv2_to_torch_imgs(self, imgs): # Output: [B, W, H, 3], tensor, rgb for i in range(len(imgs)): imgs[i] = cv2.cvtColor(imgs[i], cv2.COLOR_BGR2RGB) torch_imgs = torch.from_numpy(np.array(imgs)) return torch_imgs
36.182692
111
0.639738
2,827
0.250421
0
0
0
0
0
0
3,369
0.298432
3d582b494cb98544a7b8b83f15184b7f8c7c6d2b
43
py
Python
python/parse_ddl/tests/ddl_examples/test_vs.py
jared-ong/data-projects
21ceccacb8e408ca45fe95c1c4d311f48e8f7708
[ "MIT" ]
null
null
null
python/parse_ddl/tests/ddl_examples/test_vs.py
jared-ong/data-projects
21ceccacb8e408ca45fe95c1c4d311f48e8f7708
[ "MIT" ]
null
null
null
python/parse_ddl/tests/ddl_examples/test_vs.py
jared-ong/data-projects
21ceccacb8e408ca45fe95c1c4d311f48e8f7708
[ "MIT" ]
null
null
null
import json import re print("Hello world")
10.75
20
0.767442
0
0
0
0
0
0
0
0
13
0.302326
3d58e1aeb6209bbf0ac5b1e7058c942f20cd4768
733
py
Python
tests/test_missing_variable.py
specfault/GreenerPython
976260c3e78969cfd3e1e40639325f104325c703
[ "MIT" ]
null
null
null
tests/test_missing_variable.py
specfault/GreenerPython
976260c3e78969cfd3e1e40639325f104325c703
[ "MIT" ]
null
null
null
tests/test_missing_variable.py
specfault/GreenerPython
976260c3e78969cfd3e1e40639325f104325c703
[ "MIT" ]
null
null
null
from tests.framework import AbstractFilePair from tests.framework import in_test_function from tests.framework import standard_test_spec from tests.framework import SavingFixesSUT from tests.framework import fixing_test variable_names = ('x', 'y') def missing_variable_in_source(variable_name): test_code = in_test_function('bla = blubb.' + variable_name) return AbstractFilePair('blubb', test=test_code) @fixing_test class TestSavingFixesMissingVariables(SavingFixesSUT): tests = [ standard_test_spec( # add several variables to SUT """ bla = blubb.x bla = blubb.y bla = blubb.z""") ] + [missing_variable_in_source(name) for name in variable_names]
29.32
73
0.718963
300
0.409277
0
0
313
0.427012
0
0
141
0.19236
3d59c021cf7fb75f7a11d364d01cd243b711a413
3,186
py
Python
aiida/storage/psql_dos/migrations/versions/django_0040_data_migration_legacy_process_attributes.py
mkrack/aiida-core
bab1ad6cfc8e4ff041bce268f9270c613663cb35
[ "MIT", "BSD-3-Clause" ]
153
2016-12-23T20:59:03.000Z
2019-07-02T06:47:52.000Z
aiida/storage/psql_dos/migrations/versions/django_0040_data_migration_legacy_process_attributes.py
mkrack/aiida-core
bab1ad6cfc8e4ff041bce268f9270c613663cb35
[ "MIT", "BSD-3-Clause" ]
2,466
2016-12-24T01:03:52.000Z
2019-07-04T13:41:08.000Z
aiida/storage/psql_dos/migrations/versions/django_0040_data_migration_legacy_process_attributes.py
mkrack/aiida-core
bab1ad6cfc8e4ff041bce268f9270c613663cb35
[ "MIT", "BSD-3-Clause" ]
88
2016-12-23T16:28:00.000Z
2019-07-01T15:55:20.000Z
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### # pylint: disable=invalid-name,no-member """Migrate some legacy process attributes. Attribute keys that are renamed: * `_sealed` -> `sealed` Attribute keys that are removed entirely: * `_finished` * `_failed` * `_aborted` * `_do_abort` Finally, after these first migrations, any remaining process nodes that still do not have a sealed attribute and have it set to `True`. Excluding the nodes that have a `process_state` attribute of one of the active states `created`, running` or `waiting`, because those are actual valid active processes that are not yet sealed. This is identical to migration e734dd5e50d7 Revision ID: django_0040 Revises: django_0039 """ from alembic import op import sqlalchemy as sa revision = 'django_0040' down_revision = 'django_0039' branch_labels = None depends_on = None def upgrade(): """Migrations for the upgrade.""" conn = op.get_bind() statement = sa.text( """ UPDATE db_dbnode SET attributes = jsonb_set(attributes, '{"sealed"}', attributes->'_sealed') WHERE attributes ? '_sealed' AND node_type LIKE 'process.%'; -- Copy `_sealed` -> `sealed` UPDATE db_dbnode SET attributes = attributes - '_sealed' WHERE attributes ? '_sealed' AND node_type LIKE 'process.%'; -- Delete `_sealed` UPDATE db_dbnode SET attributes = attributes - '_finished' WHERE attributes ? '_finished' AND node_type LIKE 'process.%'; -- Delete `_finished` UPDATE db_dbnode SET attributes = attributes - '_failed' WHERE attributes ? '_failed' AND node_type LIKE 'process.%'; -- Delete `_failed` UPDATE db_dbnode SET attributes = attributes - '_aborted' WHERE attributes ? '_aborted' AND node_type LIKE 'process.%'; -- Delete `_aborted` UPDATE db_dbnode SET attributes = attributes - '_do_abort' WHERE attributes ? '_do_abort' AND node_type LIKE 'process.%'; -- Delete `_do_abort` UPDATE db_dbnode SET attributes = jsonb_set(attributes, '{"sealed"}', to_jsonb(True)) WHERE node_type LIKE 'process.%' AND NOT (attributes ? 'sealed') AND attributes->>'process_state' NOT IN ('created', 'running', 'waiting'); -- Set `sealed=True` for process nodes that do not yet have a `sealed` attribute AND are not in an active state """ ) conn.execute(statement) def downgrade(): """Migrations for the downgrade.""" raise NotImplementedError('Downgrade of django_0040.')
35.797753
119
0.607031
0
0
0
0
0
0
0
0
2,887
0.906152
3d5a102883a7bb1dd52786e30fc8cbb5261af1f1
1,108
py
Python
hdvw/ops/matrix.py
shaoshitong/hdvw
fbb39da9ad8a765f74225eec7e9614978c740dde
[ "Apache-2.0" ]
2
2022-03-26T09:08:43.000Z
2022-03-26T09:09:27.000Z
hdvw/ops/matrix.py
shaoshitong/hdvw
fbb39da9ad8a765f74225eec7e9614978c740dde
[ "Apache-2.0" ]
null
null
null
hdvw/ops/matrix.py
shaoshitong/hdvw
fbb39da9ad8a765f74225eec7e9614978c740dde
[ "Apache-2.0" ]
null
null
null
from sklearn.metrics import confusion_matrix import torch import seaborn as sns import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from tensorflow.keras.utils import to_categorical def confusion_matrix_pyplot(y_true,y_pred,num_classes,name=""): if isinstance(y_true,torch.Tensor): y_true=y_true.clone().detach().cpu().numpy() if isinstance(y_pred,torch.Tensor): y_pred=y_pred.clone().detach().cpu().numpy() if y_true.shape[-1]==num_classes: y_true=np.argmax(y_true,1) if y_pred.shape[-1]==num_classes: y_pred=np.argmax(y_pred,1) array=confusion_matrix(y_true,y_pred) sns.set(font_scale=2.0) df=pd.DataFrame(array,index=range(num_classes),columns=range(num_classes)) fig=plt.figure(figsize=(10,10)) ax=fig.add_subplot(111) ax=sns.heatmap(df,square=True,annot=True,ax=ax,cmap="YlGnBu") plt.title("---") fig=ax.get_figure() if name!="": fig.savefig(name) else: fig.savefig("test.png")
38.206897
81
0.652527
0
0
0
0
0
0
0
0
27
0.024368
3d5a3b5d8a7ee8e5a8d60b3408e8aa8d46c512c1
346
py
Python
{{cookiecutter.app_name}}/search_indexes.py
rickydunlop/cookiecutter-django-app-template-drf-haystack
8ea9034c371950628b3d312639964753899c8c5d
[ "MIT" ]
null
null
null
{{cookiecutter.app_name}}/search_indexes.py
rickydunlop/cookiecutter-django-app-template-drf-haystack
8ea9034c371950628b3d312639964753899c8c5d
[ "MIT" ]
null
null
null
{{cookiecutter.app_name}}/search_indexes.py
rickydunlop/cookiecutter-django-app-template-drf-haystack
8ea9034c371950628b3d312639964753899c8c5d
[ "MIT" ]
null
null
null
from haystack import indexes from .models import {{ cookiecutter.model_name }} class {{ cookiecutter.model_name }}Index(indexes.SearchIndex, indexes.Indexable): text = indexes.CharField(document=True, use_template=True) name = indexes.CharField(model_attr='name') def get_model(self): return {{ cookiecutter.model_name }}
28.833333
81
0.736994
0
0
0
0
0
0
0
0
6
0.017341
3d5db5e05861ba4f7444a52667354a11e6f370f2
6,018
py
Python
utility_functions.py
andrewli2403/California-Basketball-Data-Processor
19582bef72d6a4f4281ddb61eceb4bee033b5ceb
[ "MIT" ]
null
null
null
utility_functions.py
andrewli2403/California-Basketball-Data-Processor
19582bef72d6a4f4281ddb61eceb4bee033b5ceb
[ "MIT" ]
null
null
null
utility_functions.py
andrewli2403/California-Basketball-Data-Processor
19582bef72d6a4f4281ddb61eceb4bee033b5ceb
[ "MIT" ]
null
null
null
import requests from bs4 import BeautifulSoup as bs import re import pandas as pd #collect & process data based on GAME ID def processor(game_id): url = "https://www.espn.com/mens-college-basketball/matchup?gameId=" + str(game_id) r = requests.get(url) webpage = bs(r.content, features="html.parser") #create dictionary for CAL & opponent with respective scores team_name = [name.string for name in webpage.find_all("td", attrs={"class", "team-name"})] score = [float(final_score.string) for final_score in webpage.find_all("td", attrs={"class", "final-score"})] team_score = dict(zip(team_name, score)) #determine opponent for team in team_name: if team != "CAL": opponent = team #locate table for main data regarding game table = webpage.select("table.mod-data")[0] #create column_names and locate the rows of the table column_names = (list(team_score.keys())) #columns = table.find_all("td", string=re.compile("[A-Za-z%]+")) #column_names = [c.get_text().strip() for c in columns] table_rows = table.find("tbody").find_all("tr") #accumulate all the table_rows into one list row_names, l = [], [] for tr in table_rows: td = tr.find_all("td") #row: [STAT_NAME, NUM1, NUM2] row = [tr.get_text().strip() for tr in td] #.append([NUM1, NUM2]) l.append(row[1:]) #.append([STAT_NAME]) row_names.append(row[0]) #create data table with column_names and rows within table.mod-data df = pd.DataFrame(l, columns=column_names) #searches a string with - and seperates elements from either side into a list def try_convert(val): hyphen_index = val.index("-") return [val[:hyphen_index], val[hyphen_index + 1:]] #append new rows for FGA, FGM, 3PTA, 3PTM, FTA, FTM for later calculations in MAKES-ATTEMPT format for index in df.index: if re.search("-", df.loc[index, "CAL"]) and re.search("-", df.loc[index, opponent]): #multiple assignment with try_convert to extract attempts and makes makes_cal, att_cal = try_convert(df.loc[index, "CAL"])[0], try_convert(df.loc[index, "CAL"])[1] makes_opp, att_opp = try_convert(df.loc[index, opponent])[0], try_convert(df.loc[index, opponent])[1] #assigns current row with makes df.loc[index, "CAL"], df.loc[index, opponent] = makes_cal, makes_opp #append new row with attempts, increasing index to reorder later df2 = pd.DataFrame({'CAL': att_cal, opponent: att_opp}, index=[index + .1]) df = df.append(df2, ignore_index = False) #reorder rows with increasing index df = df.sort_index().reset_index(drop=True) #adds FGA, FGM, 3PTA, 3PTM, FTA, FTM row names row = [] def add_makes_att(lst, new_lst): for stat in lst: if re.search("FG|3PT|FT", stat): new_lst.append(stat + "M") new_lst.append(stat +"A") else: new_lst.append(stat) return new_lst row_names = add_makes_att(row_names, row) #set row indexes as STAT_NAME within row df.index = row_names #turns all stats into float, tranpose matrix df["CAL"] = pd.to_numeric(df["CAL"], downcast="float") df[opponent] = pd.to_numeric(df[opponent], downcast="float") df = df.T #calculates +/- def net(cal, opp): if cal - opp > 0: return "+" + str(cal - opp) elif opp - cal > 0: return "-" + str(opp - cal) else: return 0 #create a list respresenting calculations for the game poss = df.loc['CAL', 'FGA']-df.loc['CAL', 'Offensive Rebounds']+df.loc['CAL', 'Total Turnovers']+.475*df.loc['CAL', 'FTA'] calc = [opponent, poss, team_score[opponent]/poss, (df.loc[opponent, 'FGM']+.5*df.loc[opponent, '3PTM'])*100/df.loc[opponent, 'FGA'], df.loc['CAL', 'Defensive Rebounds']*100/(df.loc['CAL', 'Defensive Rebounds']+df.loc[opponent, 'Offensive Rebounds']), df.loc[opponent, 'Total Turnovers']*100/poss, df.loc[opponent, 'Field Goal %'], df.loc[opponent, 'Three Point %'],(df.loc[opponent, 'FTA']*100/df.loc[opponent, 'FGA'], df.loc[opponent, 'FTM']*100/df.loc[opponent, 'FTA']), team_score['CAL']/poss, (df.loc['CAL', 'FGM']+.5*df.loc['CAL', '3PTM'])*100/df.loc['CAL', 'FGA'], df.loc['CAL', 'Offensive Rebounds']*100/(df.loc[opponent, 'Defensive Rebounds']+df.loc['CAL', 'Offensive Rebounds']), df.loc['CAL', 'Total Turnovers']*100/poss, df.loc['CAL', 'Field Goal %'], df.loc['CAL', 'Three Point %'],(df.loc['CAL', 'FTA']*100/df.loc['CAL', 'FGA'], df.loc['CAL', 'FTM']*100/df.loc['CAL', 'FTA']), net(df.loc['CAL', 'Offensive Rebounds']+df.loc["CAL", 'Defensive Rebounds'], df.loc[opponent, 'Offensive Rebounds']+df.loc[opponent, 'Defensive Rebounds']), net(df.loc['CAL', '3PTM'], df.loc[opponent, '3PTM'])] return calc #find date of game def get_date(game_id): url = "https://www.espn.com/mens-college-basketball/game/_/gameId/" + str(game_id) r = requests.get(url) webpage = bs(r.content, features="html.parser") date = re.findall('(?:January|February|March|April|May|June|July|August|September|October|November|December)\s[1-9][1-9]?,\s[0-9]{4}', webpage.find("title").get_text())[0] return date #rounds data based on stat parameters def clean(series): if series.name == "Game" or series.name == "Reb +/-" or series.name == "3pt +/-": return series elif series.name == "OER" or series.name == "DER": return series.astype('float64').round(2) elif series.name == "Def FT RATE, %" or series.name == "Off FT Rate, %": #encounters tuple data structure of two valued stat return series.apply(lambda stats: tuple(map(round, stats))) else: return series.astype('int32') #converts datetime object into MM/DD/YYYY format def date_convert(datetime_obj): return f"{datetime_obj.month}/{datetime_obj.day}/{datetime_obj.year}"
47.015625
1,105
0.633599
0
0
0
0
0
0
0
0
2,353
0.390994
3d5eb8fb4fedfe6ddb55250652317a407099a204
3,787
py
Python
site_crawler/cleaner/cleaner.py
kwoshvick/NSE-Financial-News-Crawler-and-Predictor
8acee7c660c5487d18321dc7a169eba3043ef2b8
[ "MIT" ]
11
2018-04-24T12:05:45.000Z
2021-07-12T05:30:41.000Z
site_crawler/cleaner/cleaner.py
kwoshvick/NSE-Financial-News-Crawler-and-Predictor
8acee7c660c5487d18321dc7a169eba3043ef2b8
[ "MIT" ]
null
null
null
site_crawler/cleaner/cleaner.py
kwoshvick/NSE-Financial-News-Crawler-and-Predictor
8acee7c660c5487d18321dc7a169eba3043ef2b8
[ "MIT" ]
5
2019-08-09T04:43:23.000Z
2021-08-28T18:05:56.000Z
import csv import re import string import html class Cleaner: def __init__(self): self.remove_punctuations = str.maketrans('', '', string.punctuation) def read_csv(self,csv_name): cleaned_text = [] with open('../data/twitter_data/raw_data/'+csv_name+'.csv', newline='', encoding='utf-8') as csvfile: reader = csv.DictReader(csvfile) for row in reader: text = row['text'] clean_text = self.clean_tweets(text) cleaned_text.append(clean_text) self.save_cleaned_csv('cleaned_'+csv_name,cleaned_text) def clean_tweets(self,tweet): # harmonize the cases lower_case_text = tweet.lower() # remove urls removed_url = re.sub(r'http\S+', '', lower_case_text) # remove hashtags removed_hash_tag = re.sub(r'#\w*', '', removed_url) # hastag # remove usernames from tweets removed_username = re.sub(r'@\w*\s?','',removed_hash_tag) # removed retweets removed_retweet = removed_username.replace("rt", "", True) # remove to retweet # removing punctuations removed_punctuation = removed_retweet.translate(self.remove_punctuations) # remove spaces remove_g_t = removed_punctuation.replace("&gt", "", True) remove_a_m_p = remove_g_t.replace("&amp", "", True) final_text = remove_a_m_p return final_text def pre_cleaning(self,text): html_escaped = html.unescape(text) final_text = html_escaped.replace(';','') return final_text def pre_labeling(self,text): lower_case_text = text.lower() removed_url = re.sub(r'http\S+', '', lower_case_text) return removed_url def save_cleaned_csv(self,name,tweets_list): with open('../data/twitter_data/cleaned_data/' + name + '.csv', 'w') as f: writer = csv.writer(f) writer.writerow(["text"]) for tweet in tweets_list: writer.writerow([tweet,]) pass def save_pre_labled_csv(self,csv_name): cleaned_text = [] with open('../data/twitter_data/raw_data/' + csv_name + '.csv', newline='', encoding='utf-8') as csvfile: reader = csv.DictReader(csvfile) for row in reader: text = row['text'] clean_text = self.pre_labeling(text) cleaned_text.append(clean_text) self.save_pre_labeled_csv('unlabeled_' + csv_name, cleaned_text) def save_pre_labeled_csv(self,name,tweets_list): with open('../data/twitter_data/pre_labeled/' + name + '.csv', 'w') as f: writer = csv.writer(f) writer.writerow(["text","label"]) for tweet in tweets_list: writer.writerow([tweet,]) pass if __name__ == "__main__": c = Cleaner() tweets_csvs = [ 'Business_KE', 'MadeItInAfrica', 'IFCAfrica', 'africareview', 'AfDB_Group', '_AfricanUnion', 'Taifa_Leo', 'BD_Africa', 'RadioCitizenFM', 'citizentvkenya', 'KTNKenya', 'K24Tv', 'StandardKenya', 'TheStarKenya', 'radiomaisha', 'KBCChannel1', 'CapitalFMKenya', 'African_Markets', 'Africafinancial', 'InvestInAfrica', 'AfricanInvestor', 'forbesafrica', 'cnbcafrica', 'BBCAfrica', 'CNNAfrica', 'allafrica', 'ReutersAfrica', 'VenturesAfrica', 'BBGAfrica', 'GhettoRadio895', 'kenyanwalstreet', 'SokoAnalyst', 'NSEKenya', 'wazua' ] for tweets_csv in tweets_csvs: c.save_pre_labled_csv(tweets_csv)
29.818898
113
0.578558
2,784
0.735147
0
0
0
0
0
0
939
0.247954
3d5f940e0e5788ca23c26f2a301fe14e51745333
1,161
py
Python
003.branch/if.py
cjp1016/python-samples
ca5a7284cf4cb9fe42fa1487d4944815a00487ec
[ "Apache-2.0" ]
null
null
null
003.branch/if.py
cjp1016/python-samples
ca5a7284cf4cb9fe42fa1487d4944815a00487ec
[ "Apache-2.0" ]
null
null
null
003.branch/if.py
cjp1016/python-samples
ca5a7284cf4cb9fe42fa1487d4944815a00487ec
[ "Apache-2.0" ]
null
null
null
""" 用户身份验证 Version: 0.1 Author: cjp """ username = input('请输入用户名: ') password = input('请输入口令: ') # 用户名是admin且密码是123456则身份验证成功否则身份验证失败 if username == 'admin' and password == '123456': print('身份验证成功!') else: print('身份验证失败!') """ Python中没有用花括号来构造代码块而是使用了缩进的方式来设置代码的层次结构, 如果if条件成立的情况下需要执行多条语句,只要保持多条语句具有相同的缩进就可以了, 换句话说连续的代码如果又保持了相同的缩进那么它们属于同一个代码块,相当于是一个执行的整体。 """ # 当然如果要构造出更多的分支,可以使用if…elif…else…结构,例如下面的分段函数求值。 """ 分段函数求值 3x - 5 (x > 1) f(x) = x + 2 (-1 <= x <= 1) 5x + 3 (x < -1) Version: 0.1 Author: cjp """ x = float(input('x = ')) if x > 1: y = 3 * x - 5 elif x >= -1: y = x + 2 else: y = 5 * x + 3 print('f(%.2f) = %.2f' % (x, y)) """ 同理elif和else中也可以再构造新的分支,我们称之为嵌套的分支结构 """ """ 分段函数求值 3x - 5 (x > 1) f(x) = x + 2 (-1 <= x <= 1) 5x + 3 (x < -1) Version: 0.1 Author: cjp """ x = float(input('x = ')) if x > 1: y = 3 * x - 5 else: if x >= -1: y = x+2 else: y = 5 * x + 3 print('f(%.2f) = %.2f' % (x, y)) """ 大家可以自己感受一下这两种写法到底是哪一种更好。 在之前我们提到的Python之禅中有这么一句话“Flat is better than nested.”, 之所以提倡代码“扁平化”是因为嵌套结构的嵌套层次多了之后会严重的影响代码的可读性 ,所以能使用扁平化的结构时就不要使用嵌套。 """
15.077922
53
0.564169
0
0
0
0
0
0
0
0
1,489
0.800107
3d602a949005e0184acfd82e6822740a19d36fb9
7,210
bzl
Python
bazel/antlr4_cc.bzl
kyle-winkelman/fhir
01038aa235189fd043fd2981ebf40f4dc1e826e0
[ "Apache-2.0" ]
null
null
null
bazel/antlr4_cc.bzl
kyle-winkelman/fhir
01038aa235189fd043fd2981ebf40f4dc1e826e0
[ "Apache-2.0" ]
2
2020-07-24T14:20:45.000Z
2020-07-24T19:43:52.000Z
bazel/antlr4_cc.bzl
kyle-winkelman/fhir
01038aa235189fd043fd2981ebf40f4dc1e826e0
[ "Apache-2.0" ]
1
2020-07-10T15:03:45.000Z
2020-07-10T15:03:45.000Z
"""Build rules to create C++ code from an Antlr4 grammar.""" def antlr4_cc_lexer(name, src, namespaces = None, imports = None, deps = None, lib_import = None): """Generates the C++ source corresponding to an antlr4 lexer definition. Args: name: The name of the package to use for the cc_library. src: The antlr4 g4 file containing the lexer rules. namespaces: The namespace used by the generated files. Uses an array to support nested namespaces. Defaults to [name]. imports: A list of antlr4 source imports to use when building the lexer. deps: Dependencies for the generated code. lib_import: Optional target for importing grammar and token files. """ namespaces = namespaces or [name] imports = imports or [] deps = deps or [] if not src.endswith(".g4"): fail("Grammar must end with .g4", "src") if (any([not imp.endswith(".g4") for imp in imports])): fail("Imported files must be Antlr4 grammar ending with .g4", "imports") file_prefix = src[:-3] base_file_prefix = _strip_end(file_prefix, "Lexer") out_files = [ "%sLexer.h" % base_file_prefix, "%sLexer.cpp" % base_file_prefix, ] native.java_binary( name = "antlr_tool", jvm_flags = ["-Xmx256m"], main_class = "org.antlr.v4.Tool", runtime_deps = ["@maven//:org_antlr_antlr4_4_7_1"], ) command = ";\n".join([ # Use the first namespace, we'll add the others afterwards. _make_tool_invocation_command(namespaces[0], lib_import), _make_namespace_adjustment_command(namespaces, out_files), ]) native.genrule( name = name + "_source", srcs = [src] + imports, outs = out_files, cmd = command, heuristic_label_expansion = 0, tools = ["antlr_tool"], ) native.cc_library( name = name, srcs = [f for f in out_files if f.endswith(".cpp")], hdrs = [f for f in out_files if f.endswith(".h")], deps = ["@antlr_cc_runtime//:antlr4_runtime"] + deps, copts = [ "-fexceptions", ], features = ["-use_header_modules"], # Incompatible with -fexceptions. ) def antlr4_cc_parser( name, src, namespaces = None, token_vocab = None, imports = None, listener = True, visitor = False, deps = None, lib_import = None): """Generates the C++ source corresponding to an antlr4 parser definition. Args: name: The name of the package to use for the cc_library. src: The antlr4 g4 file containing the parser rules. namespaces: The namespace used by the generated files. Uses an array to support nested namespaces. Defaults to [name]. token_vocab: The antlr g4 file containing the lexer tokens. imports: A list of antlr4 source imports to use when building the parser. listener: Whether or not to include listener generated files. visitor: Whether or not to include visitor generated files. deps: Dependencies for the generated code. lib_import: Optional target for importing grammar and token files. """ suffixes = () if listener: suffixes += ( "%sBaseListener.cpp", "%sListener.cpp", "%sBaseListener.h", "%sListener.h", ) if visitor: suffixes += ( "%sBaseVisitor.cpp", "%sVisitor.cpp", "%sBaseVisitor.h", "%sVisitor.h", ) namespaces = namespaces or [name] imports = imports or [] deps = deps or [] if not src.endswith(".g4"): fail("Grammar must end with .g4", "src") if token_vocab != None and not token_vocab.endswith(".g4"): fail("Token Vocabulary must end with .g4", "token_vocab") if (any([not imp.endswith(".g4") for imp in imports])): fail("Imported files must be Antlr4 grammar ending with .g4", "imports") file_prefix = src[:-3] base_file_prefix = _strip_end(file_prefix, "Parser") out_files = [ "%sParser.h" % base_file_prefix, "%sParser.cpp" % base_file_prefix, ] + _make_outs(file_prefix, suffixes) if token_vocab: imports.append(token_vocab) command = ";\n".join([ # Use the first namespace, we'll add the others afterwardsm thi . _make_tool_invocation_command(namespaces[0], lib_import, listener, visitor), _make_namespace_adjustment_command(namespaces, out_files), ]) native.genrule( name = name + "_source", srcs = [src] + imports, outs = out_files, cmd = command, heuristic_label_expansion = 0, tools = [ ":antlr_tool", ], ) native.cc_library( name = name, srcs = [f for f in out_files if f.endswith(".cpp")], hdrs = [f for f in out_files if f.endswith(".h")], deps = ["@antlr_cc_runtime//:antlr4_runtime"] + deps, copts = [ "-fexceptions", # FIXME: antlr generates broken C++ code that attempts to construct # a std::string from nullptr. It's not clear whether the relevant # constructs are reachable. "-Wno-nonnull", ], features = ["-use_header_modules"], # Incompatible with -fexceptions. ) def _make_outs(file_prefix, suffixes): return [file_suffix % file_prefix for file_suffix in suffixes] def _strip_end(text, suffix): if not text.endswith(suffix): return text return text[:len(text) - len(suffix)] def _to_c_macro_name(filename): # Convert the filenames to a format suitable for C preprocessor definitions. char_list = [filename[i].upper() for i in range(len(filename))] return "ANTLR4_GEN_" + "".join( [a if (("A" <= a) and (a <= "Z")) else "_" for a in char_list], ) def _make_tool_invocation_command(package, lib_import, listener = False, visitor = False): return "$(location :antlr_tool) " + \ "$(SRCS)" + \ (" -visitor" if visitor else " -no-visitor") + \ (" -listener" if listener else " -no-listener") + \ (" -lib $$(dirname $(location " + lib_import + "))" if lib_import else "") + \ " -Dlanguage=Cpp" + \ " -package " + package + \ " -o $(@D)" + \ " -Xexact-output-dir" def _make_namespace_adjustment_command(namespaces, out_files): if len(namespaces) == 1: return "true" commands = [] extra_header_namespaces = "\\\n".join(["namespace %s {" % namespace for namespace in namespaces[1:]]) for filepath in out_files: if filepath.endswith(".h"): commands.append("sed -i '/namespace %s {/ a%s' $(@D)/%s" % (namespaces[0], extra_header_namespaces, filepath)) for namespace in namespaces[1:]: commands.append("sed -i '/} \/\/ namespace %s/i} \/\/ namespace %s' $(@D)/%s" % (namespaces[0], namespace, filepath)) else: commands.append("sed -i 's/using namespace %s;/using namespace %s;/' $(@D)/%s" % (namespaces[0], "::".join(namespaces), filepath)) return ";\n".join(commands)
38.55615
142
0.600971
0
0
0
0
0
0
0
0
2,960
0.410541
3d62c9779cfa7f3da2b542252bdcb812a8982541
234
py
Python
src/scenic/simulators/gta/map.py
cahartsell/Scenic
2e7979011aef426108687947668d9ba6f5439136
[ "BSD-3-Clause" ]
141
2019-03-07T07:17:19.000Z
2022-03-19T16:15:48.000Z
src/scenic/simulators/gta/map.py
cahartsell/Scenic
2e7979011aef426108687947668d9ba6f5439136
[ "BSD-3-Clause" ]
27
2019-06-18T23:04:29.000Z
2022-03-31T13:42:05.000Z
src/scenic/simulators/gta/map.py
cahartsell/Scenic
2e7979011aef426108687947668d9ba6f5439136
[ "BSD-3-Clause" ]
59
2019-04-08T15:20:15.000Z
2022-03-29T07:23:26.000Z
# stub to allow changing the map without having to alter gta_model.sc import os mapPath = 'map.npz' def setLocalMap(module, relpath): global mapPath base = os.path.dirname(module) mapPath = os.path.join(base, relpath)
19.5
69
0.717949
0
0
0
0
0
0
0
0
78
0.333333
e9e2bdbc8442df5b9a587f4296d83d87e0d66ce8
6,982
py
Python
bot/messages.py
pyaf/tpobot
d96a3650de46f6d43ab346d61b922b170cd5fdb2
[ "MIT" ]
4
2017-07-19T19:18:15.000Z
2017-11-24T16:15:51.000Z
bot/messages.py
rishabhiitbhu/tpobot
d96a3650de46f6d43ab346d61b922b170cd5fdb2
[ "MIT" ]
5
2020-02-11T23:53:50.000Z
2021-12-13T19:45:22.000Z
bot/messages.py
pyaf/tpobot
d96a3650de46f6d43ab346d61b922b170cd5fdb2
[ "MIT" ]
1
2017-08-27T20:40:50.000Z
2017-08-27T20:40:50.000Z
# -*- coding: utf-8 -*- message_dict = { 'welcome': "Hi! TPO Baba is here to give you updates about TPO portal, set willingness reminders, ppt "\ "reminders, exam date reminders and lot more...:D \n\n"\ "To personalise your experience, I gotta register you. It's simple two step process.\n", 'greetings': "Hello pal :)", 'haalchaal': "hamaar to mauj ahaai guru 🙏, tohaar batawa kaa haal chaal bate?"\ " ;P", 'no_idea': "Oops, didn't get you, Baba is a simple AI bot not Jarvis, don't be so cryptic. 😅\n"\ "Baba has gotta master, Baba will learn this soon. B) \n\n"\ "Ask for help to know what options you have.", 'user_invalid': "You account is Invalid.\n"\ "Contact https://m.me/rishabh.ags/ for help", 'get_email': "Baba needs to know your official IIT email id, drop it as a text message.", 'email_set': "Baba has set your email to {0}", 'not_iit_email': "Oops!, seems like you didn't enter your official email id\n"\ "As I am running on a heroku server, which costs 7$ pm. Don't misuse this. "\ "I cannot afford offering services to others,.\nIf you ain't student of IIT (BHU), please"\ " don't register ,.. Bhawnao ko samjho yaaar 😅", 'get_course': "Baba needs to know your course, select your course among btech, idd or imd, "\ "then drop a text message.", 'course_set': "Baba has set your course to {0}", 'reg_error': "Oops!, you got me wrong, retry entering it correctly..\n\n"\ "And you gotta register first, we'll chat afterwards. :)\n"\ "if you're facing issues contact https://m.me/rishabh.ags", 'email_already_set': "Pal, you already got your email set to {0}", 'invalid_email': "Baba wants a valid email id.\nRetry please.", 'course_already_set': "Pal, you already got your email set to {0}", 'reg_success': "And congratulations! 🎉 you have successfully registered!, your email id "\ "will be verified soon. :) \n\nIf found misleading or wrong, I'll find you and I'll "\ "deregister you ;P \n\n"\ "Ask for features to know what I've got for you in my Jhola B) \n\n"\ "Ask for help to know what options you have. :)", 'features': "Baba is a messenger bot created by a high functioning sociopathic nerd of IIT (BHU) :D\n"\ "\nI have got a simple AI brain powered by Wit and has not been trained too much, "\ "so please don't use too off the track keywords 😅 \n\n", 'features1': "What I currently do:\n"\ "1. Text you whenever a new company opens for your course and department, "\ "you'll get all details of such companies.\n"\ "2. Text you whenever companies your course and department get any changes in their "\ "parameters like willingness deadlines, exam dates, ppt dates, etc.. \n\n", 'features2':"What I plan to do pretty soon:\n"\ "1. Remind you about deadlines of willingness application, ppt dates "\ "and exam dates etc.. B) \n" \ "2. Give replies to your queries about companies...\n\n"\ "P.S. To know why that nerd made me? you are free to ask me :P\n"\ "Ask for help to know what options you have.", 'help': "Baba has got you some help:\n\n"\ "1. You can ask me to unsubscribe/deactivate you from receiving updates .\n"\ "2. You can ask me subscribe/activate your account. from receiving updates.\n", 'deactivate': "Alright pal, It's been a good chat with you, deactivating your account.\n"\ "You can ask me to reactivate it if necessary.", 'activate': "Welcome back!, your account is reactivated", 'wit_error': "Ohho, I'm sick, my brain is not working, Please call my master! 😰 \n"\ "https:/m.me/rishabhags/", 'new_company': "Hola!\nNew Company Open for you! 🎉🎊🎁\n\n"\ "Company Name: {company_name}\n"\ "Open for: {course}\n"\ "Departments: {department}\n"\ "BTech CTC: {btech_ctc}\n"\ "IDD/IMD CTC: {idd_imd_ctc}\n"\ "X cutoff: {x}\n"\ "XII cutoff: {xii}\n"\ "CGPA cutoff: {cgpa}\n"\ "Status: {status}\n\n"\ "Will keep you updated with this company :D.\n"\ "Cya :)", 'updated_company': "Baba has updates to deliver!\n\n"\ "{0} got updated on the portal\n\n"\ "Updated fields are: \n\n"\ "{1}\n"\ "{2}"\ "\n\nThis is it for now.\nCya :)", #{1} will store update message 'abuse': "You are so abusive, next time, I'll deactivate your account 😡😠😡", 'lol': "Lol, I was kidding,,. 😜😝😂", 'master': "My master made me because TPO developers ko to `सीनेमा` ne barbaad karke rakkha hai.. "\ "and he knows very well, that jab tak iss des me `सीनेमा` hai, tab tak log * "\ "bante rahege ;P \n\n"\ "P.S. This was a joke, it has nothing to do with anything, we respect TPO portal "\ "developers they have made a great portal. \n"\ "Ask for me for help, if you wanna know what you have got to do.", 'idd_imd_4th_year': "Ops!, you are from 4rth year IDD/IMD, I don't wanna disturb you with updates. \n"\ "I'll have to set your account Invalid.\n\n"\ "For further queries contact https://m.me/rishabh.ags/" } field_msg_dict = { 'company_profile': 'Company Profile', 'x': 'X', 'xii': 'XII', 'cgpa': 'CGPA', 'course': 'Course', 'purpose': 'Purpose', 'department': 'Department', 'a_backlog': 'Active backlogs allowed', 't_backlog': 'Total backlogs allowed', 'ppt_date': 'PPT date', 'exam_date': 'Exam date', 'status': 'Status', 'branch_issue_dead': 'Branch issue deadline', 'willingness_dead': 'Willingness deadline', 'btech_ctc': 'B.Tech CTC', 'idd_imd_ctc':'IDD/IMD CTC', # 'jd': 'JD', } # "TPO developers ko to `सीनेमा` ne barbaad karke rakkha hai.. ;P\n" # "So, hum denge aapko sare updates, about new companies listed in the portal,willingness opening "\ # "and closing reminders ppt reminders, exam date reminders aur bhi bahot kuchh..\n"\ # 'invalid_course': "Baba wants valid course name (btech or idd or imd).\n retry please.", # "Active backlogs allowed: {8}\n"\ # "Total backlogs allowed: {9}\n"\
48.151724
112
0.560011
0
0
0
0
0
0
0
0
5,366
0.759734
e9e2e74f010f4bd4956a3cbde97bcbf8f121ba63
5,208
py
Python
geomstats/geometry/matrices.py
PabloJ-1/geomstats
b53f62b745b21972b80bd7222df9af2549b66d64
[ "MIT" ]
null
null
null
geomstats/geometry/matrices.py
PabloJ-1/geomstats
b53f62b745b21972b80bd7222df9af2549b66d64
[ "MIT" ]
null
null
null
geomstats/geometry/matrices.py
PabloJ-1/geomstats
b53f62b745b21972b80bd7222df9af2549b66d64
[ "MIT" ]
null
null
null
"""Module exposing the `Matrices` and `MatricesMetric` class.""" from functools import reduce import geomstats.backend as gs from geomstats.geometry.euclidean import Euclidean from geomstats.geometry.riemannian_metric import RiemannianMetric TOLERANCE = 1e-5 class Matrices(Euclidean): """Class for the space of matrices (m, n).""" def __init__(self, m, n): assert isinstance(m, int) and isinstance(n, int) and m > 0 and n > 0 super(Matrices, self).__init__(dimension=m * n) self.m = m self.n = n self.default_point_type = 'matrix' self.metric = MatricesMetric(m, n) def belongs(self, point): """Check if point belongs to the Matrix space.""" point = gs.to_ndarray(point, to_ndim=3) _, mat_dim_1, mat_dim_2 = point.shape return mat_dim_1 == self.m & mat_dim_2 == self.n @staticmethod def equal(mat_a, mat_b, atol=TOLERANCE): """ Test if matrices a and b are close. Parameters ---------- mat_a : array-like, shape=[n_samples, dim1, dim2] mat_b : array-like, shape=[n_samples, dim2, dim3] Returns ------- eq : array-like boolean, shape=[n_samples] """ is_vectorized = \ (gs.ndim(gs.array(mat_a)) == 3) or (gs.ndim(gs.array(mat_b)) == 3) axes = (1, 2) if is_vectorized else (0, 1) return gs.all(gs.isclose(mat_a, mat_b, atol=atol), axes) @staticmethod def mul(*args): """ Return the product of matrices a1, ..., an. Parameters ---------- a1 : array-like, shape=[n_samples, dim_1, dim_2] a2 : array-like, shape=[n_samples, dim_2, dim_3] ... an : array-like, shape=[n_samples, dim_n-1, dim_n] Returns ------- mul : array-like, shape=[n_samples, dim_1, dim_n] """ return reduce(gs.matmul, args) @classmethod def bracket(cls, mat_a, mat_b): """ Return the commutator of a and b, i.e. `[a, b] = ab - ba`. Parameters ---------- mat_a : array-like, shape=[n_samples, dim, dim] mat_b : array-like, shape=[n_samples, dim, dim] Returns ------- mat_c : array-like, shape=[n_samples, dim, dim] """ return cls.mul(mat_a, mat_b) - cls.mul(mat_b, mat_a) @staticmethod def transpose(mat): """Return the transpose of matrices. Parameters ---------- mat : array-like, shape=[n_samples, dim, dim] Returns ------- transpose : array-like, shape=[n_samples, dim, dim] """ is_vectorized = (gs.ndim(gs.array(mat)) == 3) axes = (0, 2, 1) if is_vectorized else (1, 0) return gs.transpose(mat, axes) @classmethod def is_symmetric(cls, mat, atol=TOLERANCE): """ Check if a matrix is symmetric. Parameters ---------- mat : array-like, shape=[n_samples, n, n] atol : float, absolute tolerance. defaults to TOLERANCE Returns ------- is_sym : array-like boolean, shape=[n_samples] """ return cls.equal(mat, cls.transpose(mat), atol) @classmethod def make_symmetric(cls, mat): """ Make a matrix symmetric, by averaging with its transpose. Parameters ---------- mat : array-like, shape=[n_samples, n, n] Returns ------- sym : array-like, shape=[n_samples, n, n] """ return 1 / 2 * (mat + cls.transpose(mat)) def random_uniform(self, n_samples=1): """Generate n samples from a uniform distribution.""" point = gs.random.rand(n_samples, self.m, self.n) return point @classmethod def congruent(cls, mat_1, mat_2): """Compute the congruent action of mat_2 on mat_1. This is :math: `mat_2 mat_1 mat_2^T`. Parameters ---------- mat_1 : array-like, shape=[n_samples, n, n] mat_2 : array-like, shape=[n_samples, n, n] Returns ------- cong : array-like, shape=[n_samples, n, n] """ return cls.mul(mat_2, mat_1, cls.transpose(mat_2)) class MatricesMetric(RiemannianMetric): """Euclidean metric on matrices given by Frobenius inner product.""" def __init__(self, m, n): dimension = m * n super(MatricesMetric, self).__init__( dimension=dimension, signature=(dimension, 0, 0)) def inner_product(self, tangent_vec_a, tangent_vec_b, base_point=None): """Compute Frobenius inner product of two tan vecs at `base_point`.""" tangent_vec_a = gs.to_ndarray(tangent_vec_a, to_ndim=3) n_tangent_vecs_a, _, _ = tangent_vec_a.shape tangent_vec_b = gs.to_ndarray(tangent_vec_b, to_ndim=3) n_tangent_vecs_b, _, _ = tangent_vec_b.shape assert n_tangent_vecs_a == n_tangent_vecs_b inner_prod = gs.einsum("nij,nij->n", tangent_vec_a, tangent_vec_b) inner_prod = gs.to_ndarray(inner_prod, to_ndim=1) inner_prod = gs.to_ndarray(inner_prod, to_ndim=2, axis=1) return inner_prod
29.590909
78
0.576421
4,939
0.948349
0
0
3,149
0.604647
0
0
2,490
0.478111
e9e2f70538bbc55ae42d19558eee76ef0345309a
2,338
py
Python
gamutrf/mqtt_reporter.py
cglewis/gamutRF
d95b36f5893f165ff02701636c82662727d6e275
[ "Apache-2.0" ]
null
null
null
gamutrf/mqtt_reporter.py
cglewis/gamutRF
d95b36f5893f165ff02701636c82662727d6e275
[ "Apache-2.0" ]
null
null
null
gamutrf/mqtt_reporter.py
cglewis/gamutRF
d95b36f5893f165ff02701636c82662727d6e275
[ "Apache-2.0" ]
null
null
null
import gpsd import json import logging import socket import httpx import paho.mqtt.client as mqtt class MQTTReporter: def __init__(self, name, mqtt_server=None, gps_server=None, compass=False): self.name = name self.mqtt_server = mqtt_server self.compass = compass self.gps_server = gps_server self.mqttc = None self.bearing = 'no bearing' def connect(self): logging.info(f'connecting to {self.mqtt_server}') self.mqttc = mqtt.Client() self.mqttc.connect(self.mqtt_server) self.mqttc.loop_start() if self.gps_server: gpsd.connect(host=self.gps_server, port=2947) def get_bearing(self): try: self.bearing = str(float(httpx.get(f'http://{self.gps_server}:8000/v1/').text)) except Exception as err: logging.error('could not update bearing: %s', err) def add_gps(self, publish_args): if not self.gps_server: return publish_args publish_args.update({ 'position': [0, 0], 'altitude': None, 'gps_time': None, 'map_url': None, 'bearing': self.bearing, 'gps': 'no fix'}) try: if self.compass: self.get_bearing() packet = gpsd.get_current() publish_args.update({ 'position': packet.position(), 'altitude': packet.altitude(), 'gps_time': packet.get_time().timestamp(), 'map_url': packet.map_url(), 'bearing': self.bearing, 'gps': 'fix'}) except (gpsd.NoFixError, AttributeError) as err: logging.error('could not update with GPS: %s', err) return publish_args def publish(self, publish_path, publish_args): if not self.mqtt_server: return try: if self.mqttc is None: self.connect() publish_args = self.add_gps(publish_args) publish_args['name'] = self.name self.mqttc.publish(publish_path, json.dumps(publish_args)) except (socket.gaierror, ConnectionRefusedError, mqtt.WebsocketConnectionError, ValueError) as err: logging.error(f'failed to publish to MQTT {self.mqtt_server}: {err}')
33.4
107
0.579983
2,236
0.956373
0
0
0
0
0
0
323
0.138152
e9e522181523a4e229d498e313189c98d24c3d87
7,377
py
Python
2onnx.py
Yifanfanfanfan/flops-counter.pytorch
5e7670106511f42f258083a01318b386605b61e7
[ "MIT" ]
null
null
null
2onnx.py
Yifanfanfanfan/flops-counter.pytorch
5e7670106511f42f258083a01318b386605b61e7
[ "MIT" ]
null
null
null
2onnx.py
Yifanfanfanfan/flops-counter.pytorch
5e7670106511f42f258083a01318b386605b61e7
[ "MIT" ]
null
null
null
import os, sys, time, shutil, argparse from functools import partial import pickle sys.path.append('../') import torch import torch.nn as nn from torch.autograd import Variable from torchvision import datasets, transforms #import torchvision.models as models import torch.optim as optim import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim as optim import torch.multiprocessing as mp from collections import OrderedDict import torch.utils.data import torch.utils.data.distributed import torch.onnx as torch_onnx import onnx import numpy as np import matplotlib.pyplot as plt from skimage.color import lab2rgb from skimage import io # import prune_util # from prune_util import GradualWarmupScheduler # from prune_util import CrossEntropyLossMaybeSmooth # from prune_util import mixup_data, mixup_criterion # from utils import save_checkpoint, AverageMeter, visualize_image, GrayscaleImageFolder # from model import ColorNet #from wdsr_b import * #from args import * import captioning.utils.opts as opts import captioning.models as models import captioning.utils.misc as utils import onnxruntime def main(): use_gpu = torch.cuda.is_available() # Create model # models.resnet18(num_classes=365) # model = ColorNet() #args = get_args() #model = MODEL(args) # state_dict = torch.load("./checkpoint/checkpoint6/model_epoch133_step1.pth") # new_state_dict = OrderedDict() # for k, v in state_dict.items(): # k = k.replace('module.', '') # new_state_dict[k] = v # model = torch.nn.DataParallel(model) # model.load_state_dict(new_state_dict) parser = argparse.ArgumentParser() # Input paths parser.add_argument('--model', type=str, default='', help='path to model to evaluate') parser.add_argument('--cnn_model', type=str, default='resnet101', help='resnet101, resnet152') parser.add_argument('--infos_path', type=str, default='', help='path to infos to evaluate') parser.add_argument('--only_lang_eval', type=int, default=0, help='lang eval on saved results') parser.add_argument('--force', type=int, default=0, help='force to evaluate no matter if there are results available') opts.add_eval_options(parser) opts.add_diversity_opts(parser) opt = parser.parse_args() opt.caption_model = 'newfc' opt.infos_path = '/home/zzgyf/github_yifan/ImageCaptioning.pytorch/models/infos_fc_nsc-best.pkl' with open(opt.infos_path, 'rb') as f: infos = utils.pickle_load(f) replace = ['input_fc_dir', 'input_att_dir', 'input_box_dir', 'input_label_h5', 'input_json', 'batch_size', 'id'] ignore = ['start_from'] for k in vars(infos['opt']).keys(): if k in replace: setattr(opt, k, getattr(opt, k) or getattr(infos['opt'], k, '')) elif k not in ignore: if not k in vars(opt): vars(opt).update({k: vars(infos['opt'])[k]}) # copy over options from model vocab = infos['vocab'] # ix -> word mapping opt.vocab = vocab model = models.setup(opt) checkpoint = torch.load("/home/zzgyf/github_yifan/ImageCaptioning.pytorch/models/model-best.pth") model.load_state_dict(checkpoint) # print(model) #input_shape = (1, 256, 256) cocotest_bu_fc_size = (10, 2048) cocotest_bu_att_size = (10, 0, 0) labels_size = (10, 5, 18) masks_size = (10, 5, 18) model_onnx_path = "./image_captioning.onnx" model.train(False) # Export the model to an ONNX file # dummy_input = Variable(torch.randn(1, *input_shape)) # dummy_input = Variable(torch.randn(10, 2048), torch.randn(10, 0, 0), torch.randint(5200, (10, 5, 18)), torch.randint(1, (10, 5, 18))) dummy_cocotest_bu_fc = Variable(torch.randn(10, 2048)) dummy_cocotest_bu_att = Variable(torch.randn(10, 0, 0)) dummy_labels = Variable(torch.randint(5200, (10, 5, 18))) dummy_masks = Variable(torch.randint(1, (10, 5, 18))) #output = torch_onnx.export(model, dummy_input, model_onnx_path, verbose=False) output = torch_onnx.export(model, (dummy_cocotest_bu_fc, dummy_cocotest_bu_att, dummy_labels, dummy_masks), model_onnx_path, verbose=False) print("Export of torch_model.onnx complete!") def check(): parser = argparse.ArgumentParser() # Input paths parser.add_argument('--model', type=str, default='', help='path to model to evaluate') parser.add_argument('--cnn_model', type=str, default='resnet101', help='resnet101, resnet152') parser.add_argument('--infos_path', type=str, default='', help='path to infos to evaluate') parser.add_argument('--only_lang_eval', type=int, default=0, help='lang eval on saved results') parser.add_argument('--force', type=int, default=0, help='force to evaluate no matter if there are results available') opts.add_eval_options(parser) opts.add_diversity_opts(parser) opt = parser.parse_args() opt.caption_model = 'newfc' opt.infos_path = '/home/zzgyf/github_yifan/ImageCaptioning.pytorch/models/infos_fc_nsc-best.pkl' with open(opt.infos_path, 'rb') as f: infos = utils.pickle_load(f) replace = ['input_fc_dir', 'input_att_dir', 'input_box_dir', 'input_label_h5', 'input_json', 'batch_size', 'id'] ignore = ['start_from'] for k in vars(infos['opt']).keys(): if k in replace: setattr(opt, k, getattr(opt, k) or getattr(infos['opt'], k, '')) elif k not in ignore: if not k in vars(opt): vars(opt).update({k: vars(infos['opt'])[k]}) # copy over options from model vocab = infos['vocab'] # ix -> word mapping opt.vocab = vocab model = models.setup(opt) checkpoint = torch.load("/home/zzgyf/github_yifan/ImageCaptioning.pytorch/models/model-best.pth") model.load_state_dict(checkpoint) # torch.nn.utils.remove_weight_norm(model.head[0]) # for i in range(2): # for j in [0,2,3]: # torch.nn.utils.remove_weight_norm(model.body[i].body[j]) # torch.nn.utils.remove_weight_norm(model.tail[0]) # torch.nn.utils.remove_weight_norm(model.skip[0]) model.eval() ort_session = onnxruntime.InferenceSession("image_captioning.onnx") dummy_cocotest_bu_fc = Variable(torch.randn(10, 2048)) dummy_cocotest_bu_att = Variable(torch.randn(10, 0, 0)) dummy_labels = Variable(torch.randint(5200, (10, 5, 18))) dummy_masks = Variable(torch.randint(1, (10, 5, 18))) x = (dummy_cocotest_bu_fc, dummy_cocotest_bu_att, dummy_labels, dummy_masks) #x = torch.randn(1, 3, 392, 392, requires_grad=False) #torch_out = model(x) # # Load the ONNX model # model = onnx.load("wdsr_b.onnx") # # Check that the IR is well formed # onnx.checker.check_model(model) # # Print a human readable representation of the graph # onnx.helper.printable_graph(model.graph) # compute ONNX Runtime output prediction ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)} ort_outs = ort_session.run(None, ort_inputs) # compare ONNX Runtime and PyTorch results np.testing.assert_allclose(to_numpy(torch_out), ort_outs[0], rtol=1e-03, atol=1e-05) if __name__ == '__main__': main() check()
38.222798
143
0.682256
0
0
0
0
0
0
0
0
3,015
0.408703
e9e8878237d9fdf426e86b2606cac1e238054e1a
8,888
py
Python
arapheno/phenotypedb/migrations/0001_initial.py
svengato/AraPheno
d6918e2e69c497b7096d9291d904c69310e84d06
[ "MIT" ]
5
2018-03-24T08:54:50.000Z
2021-01-19T03:19:42.000Z
arapheno/phenotypedb/migrations/0001_initial.py
svengato/AraPheno
d6918e2e69c497b7096d9291d904c69310e84d06
[ "MIT" ]
38
2016-08-14T12:09:15.000Z
2020-10-30T06:02:24.000Z
arapheno/phenotypedb/migrations/0001_initial.py
svengato/AraPheno
d6918e2e69c497b7096d9291d904c69310e84d06
[ "MIT" ]
8
2016-08-15T06:07:32.000Z
2020-11-06T06:43:56.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-06-27 14:12 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Accession', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, db_index=True, max_length=255, null=True)), ('country', models.CharField(blank=True, max_length=255, null=True)), ('sitename', models.TextField(blank=True, null=True)), ('collector', models.TextField(blank=True, null=True)), ('collection_date', models.DateTimeField(blank=True, null=True)), ('longitude', models.FloatField(blank=True, db_index=True, null=True)), ('latitude', models.FloatField(blank=True, db_index=True, null=True)), ('cs_number', models.CharField(blank=True, max_length=255, null=True)), ], ), migrations.CreateModel( name='Author', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('firstname', models.CharField(blank=True, max_length=100, null=True)), ('lastname', models.CharField(blank=True, db_index=True, max_length=200, null=True)), ], ), migrations.CreateModel( name='ObservationUnit', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('accession', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='phenotypedb.Accession')), ], ), migrations.CreateModel( name='OntologySource', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('acronym', models.CharField(max_length=50)), ('name', models.CharField(max_length=255)), ('url', models.URLField()), ], ), migrations.CreateModel( name='OntologyTerm', fields=[ ('id', models.CharField(max_length=50, primary_key=True, serialize=False)), ('name', models.CharField(max_length=255)), ('definition', models.TextField(blank=True, null=True)), ('comment', models.TextField(blank=True, null=True)), ('source', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='phenotypedb.OntologySource')), ], ), migrations.CreateModel( name='Phenotype', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('doi', models.CharField(blank=True, db_index=True, max_length=255, null=True)), ('name', models.CharField(db_index=True, max_length=255)), ('scoring', models.TextField(blank=True, null=True)), ('source', models.TextField(blank=True, null=True)), ('type', models.CharField(blank=True, max_length=255, null=True)), ('growth_conditions', models.TextField(blank=True, null=True)), ('shapiro_test_statistic', models.FloatField(blank=True, null=True)), ('shapiro_p_value', models.FloatField(blank=True, null=True)), ('number_replicates', models.IntegerField(default=0)), ('integration_date', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='PhenotypeMetaDynamic', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('phenotype_meta_field', models.CharField(db_index=True, max_length=255)), ('phenotype_meta_value', models.TextField()), ('phenotype_public', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='phenotypedb.Phenotype')), ], ), migrations.CreateModel( name='PhenotypeValue', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('value', models.FloatField()), ('obs_unit', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='phenotypedb.ObservationUnit')), ('phenotype', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='phenotypedb.Phenotype')), ], ), migrations.CreateModel( name='Publication', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('author_order', models.TextField()), ('publication_tag', models.CharField(max_length=255)), ('pub_year', models.IntegerField(blank=True, null=True)), ('title', models.CharField(db_index=True, max_length=255)), ('journal', models.CharField(max_length=255)), ('volume', models.CharField(blank=True, max_length=255, null=True)), ('pages', models.CharField(blank=True, max_length=255, null=True)), ('doi', models.CharField(blank=True, db_index=True, max_length=255, null=True)), ('pubmed_id', models.CharField(blank=True, db_index=True, max_length=255, null=True)), ('authors', models.ManyToManyField(to='phenotypedb.Author')), ], ), migrations.CreateModel( name='Species', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ncbi_id', models.IntegerField(blank=True, null=True)), ('genus', models.CharField(max_length=255)), ('species', models.CharField(max_length=255)), ('description', models.TextField(blank=True, null=True)), ], ), migrations.CreateModel( name='Study', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('description', models.TextField(blank=True, null=True)), ('publications', models.ManyToManyField(blank=True, to='phenotypedb.Publication')), ('species', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='phenotypedb.Species')), ], ), migrations.AddField( model_name='phenotype', name='dynamic_metainformations', field=models.ManyToManyField(to='phenotypedb.PhenotypeMetaDynamic'), ), migrations.AddField( model_name='phenotype', name='eo_term', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='eo_term', to='phenotypedb.OntologyTerm'), ), migrations.AddField( model_name='phenotype', name='species', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='phenotypedb.Species'), ), migrations.AddField( model_name='phenotype', name='study', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='phenotypedb.Study'), ), migrations.AddField( model_name='phenotype', name='to_term', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='to_term', to='phenotypedb.OntologyTerm'), ), migrations.AddField( model_name='phenotype', name='uo_term', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='uo_term', to='phenotypedb.OntologyTerm'), ), migrations.AddField( model_name='observationunit', name='study', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='phenotypedb.Study'), ), migrations.AddField( model_name='accession', name='species', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='phenotypedb.Species'), ), ]
50.5
159
0.588884
8,698
0.978623
0
0
0
0
0
0
1,458
0.164041
e9e93ad17a56b7c2432a305bc659635d4fd17d0c
1,870
py
Python
prior_library_release.py
DReichLab/adna-workflow
07c6da8e64234decb7373fe7109e09395a45cb58
[ "BSD-3-Clause" ]
9
2019-05-28T11:16:14.000Z
2022-02-24T01:22:47.000Z
prior_library_release.py
DReichLab/adna-workflow
07c6da8e64234decb7373fe7109e09395a45cb58
[ "BSD-3-Clause" ]
3
2020-01-09T20:12:02.000Z
2020-11-17T14:50:28.000Z
prior_library_release.py
DReichLab/adna-workflow
07c6da8e64234decb7373fe7109e09395a45cb58
[ "BSD-3-Clause" ]
1
2019-08-04T12:46:01.000Z
2019-08-04T12:46:01.000Z
from release_libraries import LibraryParameters from bam_finder import getBamPath, library_default_dir, MT_default_dir, ShopVersion import argparse import re from has_read_groups import read_group_checks if __name__ == "__main__": parser = argparse.ArgumentParser(description="Augment the bam list for a release with a prior existing version of the library") parser.add_argument("bam_list", help="Each line contains the parameters to build a library bam for release. This includes the library ID, the individual ID, experiment, read group description (sequencing run name with experiment type and udg treatment), experiment, and (bam, sequencing run date) pairs ") args = parser.parse_args() with open(args.bam_list) as f: library_parameters = [LibraryParameters(line) for line in f] for x in library_parameters: experiment = x.experiment if '1240k' in experiment: experiment = '1240k' search_directory = MT_default_dir if x.reference == 'rsrs' else library_default_dir existingBAM = getBamPath(x.library_id, experiment=experiment, reference=x.reference, version_policy='latest', shop_parent_directory=search_directory) bam = str(existingBAM) #print(bam) if len(bam) > 0: try: # this will match a new pipeline bam match = re.search('v([0-9]+).bam', bam) new_version = int(match.group(1)) + 1 has_read_groups, has_real_library_name, date_string = read_group_checks(bam) except: # if the existing version is Shop's new_version = 1 shop = ShopVersion(bam) date_string = shop.date_string #print('{}\t{}\t{:d}'.format(x.library_id, bam, new_version)) x.version = new_version x.bam_filenames.append(str(existingBAM)) x.bam_date_strings.append(date_string) # the bam date string is used for generating read groups, which the existing bam does not need #print('{}\t{}'.format(x.library_id, bam)) print(x)
49.210526
306
0.758289
0
0
0
0
0
0
0
0
690
0.368984
e9e95132c690c91397faab36e332edee82e1ac48
3,818
py
Python
scratch/msf/fast_sample_data.py
sasgc6/pysmurf
a370b515ab717c982781223da147bea3c8fb3a9c
[ "BSD-3-Clause-LBNL" ]
3
2019-10-17T02:37:59.000Z
2022-03-09T16:42:34.000Z
scratch/msf/fast_sample_data.py
sasgc6/pysmurf
a370b515ab717c982781223da147bea3c8fb3a9c
[ "BSD-3-Clause-LBNL" ]
446
2019-04-10T04:46:20.000Z
2022-03-15T20:27:57.000Z
scratch/msf/fast_sample_data.py
sasgc6/pysmurf
a370b515ab717c982781223da147bea3c8fb3a9c
[ "BSD-3-Clause-LBNL" ]
13
2019-02-05T18:02:05.000Z
2021-03-02T18:41:49.000Z
import numpy as np import matplotlib.pyplot as plt import scipy.signal as signal plt.ion() bands = [2,3] single_channel_readout = 2 nsamp = 2**25 new_chans = False def etaPhaseModDegree(etaPhase): return (etaPhase+180)%360-180 #For resonator I/Q high sampled data use eta_mag + eta_phase found in eta scans for Q and +/- 90 deg for I, for off resonance data to look at HEMT, etc set eta_mag = 1 and eta_phase = 0 & 90 or the eta_phase from the closest resonator for "Q" and that +/- 90 for "I" #In single_channel_readout mode 2 you take data at 2.4MHz and don't need to worry about decimation & filter_alpha, for single_channel_reaout = 1 600 kHz data you do, see confluence page https://confluence.slac.stanford.edu/display/SMuRF/SMuRF+firmware#SMuRFfirmware-Datamodes if new_chans == True: chans = {} freqs = {} sbs = {} eta_mags_scaled = {} eta_phases = {} for band in bands: chans[band] = S.which_on(band) freqs[band] = [] sbs[band] = [] eta_mags_scaled[band] = [] eta_phases[band] = [] for chan in chans[band]: freqs[band].append(S.channel_to_freq(band,chan)) sbs[band].append(S.freq_to_subband(band,S.channel_to_freq(band,chan))[0]) eta_mags_scaled[band].append(S.get_eta_mag_scaled_channel(band,chan)) eta_phases[band].append(S.get_eta_phase_degree_channel(band,chan)) S.channel_off(band,chan) freqs[band] = np.asarray(freqs[band]) sbs[band] = np.asarray(sbs[band]) eta_mags_scaled[band] = np.asarray(eta_mags_scaled[band]) eta_phases[band] = np.asarray(eta_phases[band]) for band in bands: for i,chan in enumerate(chans[band]): plt.figure() S.set_fixed_tone(freqs[band][i],12) S.set_feedback_enable(band,0) #S.run_serial_gradient_descent(band) #S.run_serial_eta_scan(band) S.flux_ramp_off() #qEtaPhaseDegree = eta_phases[band][i] qEtaPhaseDegree = 0 #EtaMag = eta_mags_scaled[band][i] EtaMag = 1 channel = S.which_on(band)[0] S.set_eta_mag_scaled_channel(band,channel,EtaMag) alpha = 1.0 for IorQ in ['Q0','Q+','I+','I-']: if IorQ is 'Q0': S.set_eta_phase_degree_channel(band,channel,qEtaPhaseDegree) if IorQ is 'Q+': S.set_eta_phase_degree_channel(band,channel,etaPhaseModDegree(qEtaPhaseDegree+180)) if IorQ is 'I+': S.set_eta_phase_degree_channel(band,channel,etaPhaseModDegree(qEtaPhaseDegree+90)) if IorQ is 'I-': S.set_eta_phase_degree_channel(band,channel,etaPhaseModDegree(qEtaPhaseDegree-90)) ctime1=int(S.get_timestamp()) filename='%d.dat'%ctime1 # take ~56 sec of data (18750 Hz)^-1 * (2^20) ~ 55.9sec. Have to set kludge_sec=60. f, df, sync = S.take_debug_data(band, channel=channel, IQstream=False, single_channel_readout=single_channel_readout, nsamp=nsamp,filename=str(ctime1)); f,Pxx = signal.welch(df,nperseg = 2**16,fs=2.4e6) Pxx = np.sqrt(Pxx) plt.loglog(f,Pxx,alpha=alpha,label = IorQ+': '+str(ctime1)) alpha = alpha*0.8 #dfs.append(df) #data=fmt.format([str(ctime1),'%0.6f'%(S.channel_to_freq(band,channel)),filename,IorQ]) #of.write(data) #of.flush() plt.xlabel('Frequency [Hz]',fontsize = 16) plt.ylabel('I/Q Noise',fontsize = 16) plt.title('Resonator at '+str(np.round(freqs[band][i],1))+ 'MHz') plt.legend() plt.show() plt.savefig(S.plot_dir+'/'+str(ctime1)+'_band_'+str(band)+'_chan_'+str(chan)+'.png') plt.close() S.channel_off(band,channel) S.flux_ramp_on()
41.956044
275
0.628078
0
0
0
0
0
0
0
0
1,005
0.263227
e9e9975a7e35ce3210ca6631964e51dc707d8e9b
2,667
py
Python
kwiklib/utils/settings.py
fiath/test
b50898dafa90e93da48f573e0b3feb1bb6acd8de
[ "MIT", "BSD-3-Clause" ]
7
2015-01-20T13:55:51.000Z
2018-02-06T09:31:21.000Z
kwiklib/utils/settings.py
fiath/test
b50898dafa90e93da48f573e0b3feb1bb6acd8de
[ "MIT", "BSD-3-Clause" ]
6
2015-01-08T18:13:53.000Z
2016-06-22T09:53:53.000Z
kwiklib/utils/settings.py
fiath/test
b50898dafa90e93da48f573e0b3feb1bb6acd8de
[ "MIT", "BSD-3-Clause" ]
8
2015-01-22T22:57:19.000Z
2020-03-19T11:43:56.000Z
"""Internal persistent settings store with cPickle.""" # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- import cPickle import os from kwiklib.utils.globalpaths import ensure_folder_exists # ----------------------------------------------------------------------------- # Utility functions # ----------------------------------------------------------------------------- def load(filepath): """Load the settings from the file, and creates it if it does not exist.""" if not os.path.exists(filepath): save(filepath) with open(filepath, 'rb') as f: settings = cPickle.load(f) return settings def save(filepath, settings={}): """Save the settings in the file.""" with open(filepath, 'wb') as f: cPickle.dump(settings, f) return settings # ----------------------------------------------------------------------------- # Settings # ----------------------------------------------------------------------------- class Settings(object): """Manage internal settings. They are stored in a binary file in the user home folder. Settings are only loaded once from disk as soon as an user preference field is explicitely requested. """ def __init__(self, appname=None, folder=None, filepath=None, autosave=True): """The settings file is not loaded here, but only once when a field is first accessed.""" self.appname = appname self.folder = folder self.filepath = filepath self.settings = {} self.settings = None self.autosave = autosave # I/O methods # ----------- def _load_once(self): """Load or create the settings file, unless it has already been loaded.""" if self.settings is None: # Create the folder if it does not exist. ensure_folder_exists(self.folder) # Load or create the settings file. self.settings = load(self.filepath) def save(self): save(self.filepath, self.settings) # Getter and setter methods # ------------------------- def set(self, key, value): self._load_once() self.settings[key] = value if self.autosave: self.save() def get(self, key, default=None): self._load_once() return self.settings.get(key, default) def __setitem__(self, key, value): self.set(key, value) def __getitem__(self, key): return self.get(key)
31.011628
79
0.490064
1,563
0.586052
0
0
0
0
0
0
1,243
0.466067
e9e9ed2bd4fb85cec280f41104f00f0f5fe284be
24,098
py
Python
cpu.py
philippechataignon/applepy
1b9d1709a4490f49fa06739bb44c0602bb07b730
[ "MIT" ]
null
null
null
cpu.py
philippechataignon/applepy
1b9d1709a4490f49fa06739bb44c0602bb07b730
[ "MIT" ]
null
null
null
cpu.py
philippechataignon/applepy
1b9d1709a4490f49fa06739bb44c0602bb07b730
[ "MIT" ]
null
null
null
import sys import pygame from utils import signed class CPU: STACK_PAGE = 0x100 RESET_VECTOR = 0xFFFC def __init__(self, options, memory): self.options = options self.memory = memory self.accumulator = 0x00 self.x_index = 0x00 self.y_index = 0x00 self.carry_flag = 0 self.zero_flag = 0 self.interrupt_disable_flag = 0 self.decimal_mode_flag = 0 self.break_flag = 1 self.overflow_flag = 0 self.sign_flag = 0 self.stack_pointer = 0xFF self.cycles = 0 self.setup_ops() self.reset() def setup_ops(self): self.ops = [None] * 0x100 self.ops[0x00] = lambda: self.BRK() self.ops[0x01] = lambda: self.ORA(self.indirect_x_mode()) self.ops[0x05] = lambda: self.ORA(self.zero_page_mode()) self.ops[0x06] = lambda: self.ASL(self.zero_page_mode()) self.ops[0x08] = lambda: self.PHP() self.ops[0x09] = lambda: self.ORA(self.immediate_mode()) self.ops[0x0A] = lambda: self.ASL() self.ops[0x0D] = lambda: self.ORA(self.absolute_mode()) self.ops[0x0E] = lambda: self.ASL(self.absolute_mode()) self.ops[0x10] = lambda: self.BPL(self.relative_mode()) self.ops[0x11] = lambda: self.ORA(self.indirect_y_mode()) self.ops[0x15] = lambda: self.ORA(self.zero_page_x_mode()) self.ops[0x16] = lambda: self.ASL(self.zero_page_x_mode()) self.ops[0x18] = lambda: self.CLC() self.ops[0x19] = lambda: self.ORA(self.absolute_y_mode()) self.ops[0x1D] = lambda: self.ORA(self.absolute_x_mode()) self.ops[0x1E] = lambda: self.ASL(self.absolute_x_mode(rmw=True)) self.ops[0x20] = lambda: self.JSR(self.absolute_mode()) self.ops[0x21] = lambda: self.AND(self.indirect_x_mode()) self.ops[0x24] = lambda: self.BIT(self.zero_page_mode()) self.ops[0x25] = lambda: self.AND(self.zero_page_mode()) self.ops[0x26] = lambda: self.ROL(self.zero_page_mode()) self.ops[0x28] = lambda: self.PLP() self.ops[0x29] = lambda: self.AND(self.immediate_mode()) self.ops[0x2A] = lambda: self.ROL() self.ops[0x2C] = lambda: self.BIT(self.absolute_mode()) self.ops[0x2D] = lambda: self.AND(self.absolute_mode()) self.ops[0x2E] = lambda: self.ROL(self.absolute_mode()) self.ops[0x30] = lambda: self.BMI(self.relative_mode()) self.ops[0x31] = lambda: self.AND(self.indirect_y_mode()) self.ops[0x35] = lambda: self.AND(self.zero_page_x_mode()) self.ops[0x36] = lambda: self.ROL(self.zero_page_x_mode()) self.ops[0x38] = lambda: self.SEC() self.ops[0x39] = lambda: self.AND(self.absolute_y_mode()) self.ops[0x3D] = lambda: self.AND(self.absolute_x_mode()) self.ops[0x3E] = lambda: self.ROL(self.absolute_x_mode(rmw=True)) self.ops[0x40] = lambda: self.RTI() self.ops[0x41] = lambda: self.EOR(self.indirect_x_mode()) self.ops[0x45] = lambda: self.EOR(self.zero_page_mode()) self.ops[0x46] = lambda: self.LSR(self.zero_page_mode()) self.ops[0x48] = lambda: self.PHA() self.ops[0x49] = lambda: self.EOR(self.immediate_mode()) self.ops[0x4A] = lambda: self.LSR() self.ops[0x4C] = lambda: self.JMP(self.absolute_mode()) self.ops[0x4D] = lambda: self.EOR(self.absolute_mode()) self.ops[0x4E] = lambda: self.LSR(self.absolute_mode()) self.ops[0x50] = lambda: self.BVC(self.relative_mode()) self.ops[0x51] = lambda: self.EOR(self.indirect_y_mode()) self.ops[0x55] = lambda: self.EOR(self.zero_page_x_mode()) self.ops[0x56] = lambda: self.LSR(self.zero_page_x_mode()) self.ops[0x58] = lambda: self.CLI() self.ops[0x59] = lambda: self.EOR(self.absolute_y_mode()) self.ops[0x5D] = lambda: self.EOR(self.absolute_x_mode()) self.ops[0x5E] = lambda: self.LSR(self.absolute_x_mode(rmw=True)) self.ops[0x60] = lambda: self.RTS() self.ops[0x61] = lambda: self.ADC(self.indirect_x_mode()) self.ops[0x65] = lambda: self.ADC(self.zero_page_mode()) self.ops[0x66] = lambda: self.ROR(self.zero_page_mode()) self.ops[0x68] = lambda: self.PLA() self.ops[0x69] = lambda: self.ADC(self.immediate_mode()) self.ops[0x6A] = lambda: self.ROR() self.ops[0x6C] = lambda: self.JMP(self.indirect_mode()) self.ops[0x6D] = lambda: self.ADC(self.absolute_mode()) self.ops[0x6E] = lambda: self.ROR(self.absolute_mode()) self.ops[0x70] = lambda: self.BVS(self.relative_mode()) self.ops[0x71] = lambda: self.ADC(self.indirect_y_mode()) self.ops[0x75] = lambda: self.ADC(self.zero_page_x_mode()) self.ops[0x76] = lambda: self.ROR(self.zero_page_x_mode()) self.ops[0x78] = lambda: self.SEI() self.ops[0x79] = lambda: self.ADC(self.absolute_y_mode()) self.ops[0x7D] = lambda: self.ADC(self.absolute_x_mode()) self.ops[0x7E] = lambda: self.ROR(self.absolute_x_mode(rmw=True)) self.ops[0x81] = lambda: self.STA(self.indirect_x_mode()) self.ops[0x84] = lambda: self.STY(self.zero_page_mode()) self.ops[0x85] = lambda: self.STA(self.zero_page_mode()) self.ops[0x86] = lambda: self.STX(self.zero_page_mode()) self.ops[0x88] = lambda: self.DEY() self.ops[0x8A] = lambda: self.TXA() self.ops[0x8C] = lambda: self.STY(self.absolute_mode()) self.ops[0x8D] = lambda: self.STA(self.absolute_mode()) self.ops[0x8E] = lambda: self.STX(self.absolute_mode()) self.ops[0x90] = lambda: self.BCC(self.relative_mode()) self.ops[0x91] = lambda: self.STA(self.indirect_y_mode(rmw=True)) self.ops[0x94] = lambda: self.STY(self.zero_page_x_mode()) self.ops[0x95] = lambda: self.STA(self.zero_page_x_mode()) self.ops[0x96] = lambda: self.STX(self.zero_page_y_mode()) self.ops[0x98] = lambda: self.TYA() self.ops[0x99] = lambda: self.STA(self.absolute_y_mode(rmw=True)) self.ops[0x9A] = lambda: self.TXS() self.ops[0x9D] = lambda: self.STA(self.absolute_x_mode(rmw=True)) self.ops[0xA0] = lambda: self.LDY(self.immediate_mode()) self.ops[0xA1] = lambda: self.LDA(self.indirect_x_mode()) self.ops[0xA2] = lambda: self.LDX(self.immediate_mode()) self.ops[0xA4] = lambda: self.LDY(self.zero_page_mode()) self.ops[0xA5] = lambda: self.LDA(self.zero_page_mode()) self.ops[0xA6] = lambda: self.LDX(self.zero_page_mode()) self.ops[0xA8] = lambda: self.TAY() self.ops[0xA9] = lambda: self.LDA(self.immediate_mode()) self.ops[0xAA] = lambda: self.TAX() self.ops[0xAC] = lambda: self.LDY(self.absolute_mode()) self.ops[0xAD] = lambda: self.LDA(self.absolute_mode()) self.ops[0xAE] = lambda: self.LDX(self.absolute_mode()) self.ops[0xB0] = lambda: self.BCS(self.relative_mode()) self.ops[0xB1] = lambda: self.LDA(self.indirect_y_mode()) self.ops[0xB4] = lambda: self.LDY(self.zero_page_x_mode()) self.ops[0xB5] = lambda: self.LDA(self.zero_page_x_mode()) self.ops[0xB6] = lambda: self.LDX(self.zero_page_y_mode()) self.ops[0xB8] = lambda: self.CLV() self.ops[0xB9] = lambda: self.LDA(self.absolute_y_mode()) self.ops[0xBA] = lambda: self.TSX() self.ops[0xBC] = lambda: self.LDY(self.absolute_x_mode()) self.ops[0xBD] = lambda: self.LDA(self.absolute_x_mode()) self.ops[0xBE] = lambda: self.LDX(self.absolute_y_mode()) self.ops[0xC0] = lambda: self.CPY(self.immediate_mode()) self.ops[0xC1] = lambda: self.CMP(self.indirect_x_mode()) self.ops[0xC4] = lambda: self.CPY(self.zero_page_mode()) self.ops[0xC5] = lambda: self.CMP(self.zero_page_mode()) self.ops[0xC6] = lambda: self.DEC(self.zero_page_mode()) self.ops[0xC8] = lambda: self.INY() self.ops[0xC9] = lambda: self.CMP(self.immediate_mode()) self.ops[0xCA] = lambda: self.DEX() self.ops[0xCC] = lambda: self.CPY(self.absolute_mode()) self.ops[0xCD] = lambda: self.CMP(self.absolute_mode()) self.ops[0xCE] = lambda: self.DEC(self.absolute_mode()) self.ops[0xD0] = lambda: self.BNE(self.relative_mode()) self.ops[0xD1] = lambda: self.CMP(self.indirect_y_mode()) self.ops[0xD5] = lambda: self.CMP(self.zero_page_x_mode()) self.ops[0xD6] = lambda: self.DEC(self.zero_page_x_mode()) self.ops[0xD8] = lambda: self.CLD() self.ops[0xD9] = lambda: self.CMP(self.absolute_y_mode()) self.ops[0xDD] = lambda: self.CMP(self.absolute_x_mode()) self.ops[0xDE] = lambda: self.DEC(self.absolute_x_mode(rmw=True)) self.ops[0xE0] = lambda: self.CPX(self.immediate_mode()) self.ops[0xE1] = lambda: self.SBC(self.indirect_x_mode()) self.ops[0xE4] = lambda: self.CPX(self.zero_page_mode()) self.ops[0xE5] = lambda: self.SBC(self.zero_page_mode()) self.ops[0xE6] = lambda: self.INC(self.zero_page_mode()) self.ops[0xE8] = lambda: self.INX() self.ops[0xE9] = lambda: self.SBC(self.immediate_mode()) self.ops[0xEA] = lambda: self.NOP() self.ops[0xEC] = lambda: self.CPX(self.absolute_mode()) self.ops[0xED] = lambda: self.SBC(self.absolute_mode()) self.ops[0xEE] = lambda: self.INC(self.absolute_mode()) self.ops[0xF0] = lambda: self.BEQ(self.relative_mode()) self.ops[0xF1] = lambda: self.SBC(self.indirect_y_mode()) self.ops[0xF5] = lambda: self.SBC(self.zero_page_x_mode()) self.ops[0xF6] = lambda: self.INC(self.zero_page_x_mode()) self.ops[0xF8] = lambda: self.SED() self.ops[0xF9] = lambda: self.SBC(self.absolute_y_mode()) self.ops[0xFD] = lambda: self.SBC(self.absolute_x_mode()) self.ops[0xFE] = lambda: self.INC(self.absolute_x_mode(rmw=True)) def reset(self): self.program_counter = self.read_word(self.RESET_VECTOR) def run(self): update_cycle = 0 quit = False while not quit: pc = self.program_counter if self.options.log: if not ((0xfb78 <= pc < 0xfb97) or (0xfca8 <= pc < 0xfcb4) or (0xFD1B <= pc < 0xFD2F)): print(f"PC={hex(self.program_counter)} A={hex(self.accumulator)} \ X={hex(self.x_index)} Y={hex(self.y_index)} P={hex(self.stack_pointer)} S={hex(self.status_as_byte())} ", file=self.memory.logfile ) self.cycles += 2 # all instructions take this as a minimum op = self.read_pc_byte() func = self.ops[op] if func is None: print("UNKNOWN OP",hex(self.program_counter - 1), hex(op), file=sys.stderr) self.BRK() else: func() for event in pygame.event.get(): if event.type == pygame.QUIT: quit = True if event.type == pygame.KEYDOWN: key = ord(event.unicode) if event.unicode else 0 if event.key == pygame.K_LEFT: key = 0x08 if event.key == pygame.K_RIGHT: key = 0x15 if key: if key == 0x7F: key = 0x08 self.memory.softswitches.kbd = 0x80 + key update_cycle += 1 if update_cycle >= 1024: self.memory.display.flash() pygame.display.flip() update_cycle = 0 #### def get_pc(self, inc=1): pc = self.program_counter self.program_counter += inc return pc def read_byte(self, address): return self.memory.read_byte(self.cycles, address) def read_word(self, address): return self.memory.read_word(self.cycles, address) def read_word_bug(self, address): return self.memory.read_word_bug(self.cycles, address) def read_pc_byte(self): return self.read_byte(self.get_pc()) def read_pc_word(self): return self.read_word(self.get_pc(2)) #### def status_from_byte(self, status): self.carry_flag = [0, 1][0 != status & 1] self.zero_flag = [0, 1][0 != status & 2] self.interrupt_disable_flag = [0, 1][0 != status & 4] self.decimal_mode_flag = [0, 1][0 != status & 8] self.break_flag = [0, 1][0 != status & 16] self.overflow_flag = [0, 1][0 != status & 64] self.sign_flag = [0, 1][0 != status & 128] def status_as_byte(self): return self.carry_flag | self.zero_flag << 1 | self.interrupt_disable_flag << 2 | self.decimal_mode_flag << 3 | self.break_flag << 4 | 1 << 5 | self.overflow_flag << 6 | self.sign_flag << 7 #### def push_byte(self, byte): self.memory.write_byte(self.STACK_PAGE + self.stack_pointer, byte) self.stack_pointer = (self.stack_pointer - 1) % 0x100 def pull_byte(self): self.stack_pointer = (self.stack_pointer + 1) % 0x100 return self.read_byte(self.STACK_PAGE + self.stack_pointer) def push_word(self, word): hi, lo = divmod(word, 0x100) self.push_byte(hi) self.push_byte(lo) def pull_word(self): s = self.STACK_PAGE + self.stack_pointer + 1 self.stack_pointer += 2 return self.read_word(s) #### def immediate_mode(self): return self.get_pc() def absolute_mode(self): self.cycles += 2 return self.read_pc_word() def absolute_x_mode(self, rmw=False): if rmw: self.cycles += 1 return self.absolute_mode() + self.x_index def absolute_y_mode(self, rmw=False): if rmw: self.cycles += 1 return self.absolute_mode() + self.y_index def zero_page_mode(self): self.cycles += 1 return self.read_pc_byte() def zero_page_x_mode(self): self.cycles += 1 return (self.zero_page_mode() + self.x_index) % 0x100 def zero_page_y_mode(self): self.cycles += 1 return (self.zero_page_mode() + self.y_index) % 0x100 def indirect_mode(self): self.cycles += 2 return self.read_word_bug(self.absolute_mode()) def indirect_x_mode(self): self.cycles += 4 return self.read_word_bug((self.read_pc_byte() + self.x_index) % 0x100) def indirect_y_mode(self, rmw=False): if rmw: self.cycles += 4 else: self.cycles += 3 return self.read_word_bug(self.read_pc_byte()) + self.y_index def relative_mode(self): pc = self.get_pc() return pc + 1 + signed(self.read_byte(pc)) #### def update_nz(self, value): value = value % 0x100 self.zero_flag = [0, 1][(value == 0)] self.sign_flag = [0, 1][((value & 0x80) != 0)] return value def update_nzc(self, value): self.carry_flag = [0, 1][(value > 0xFF)] return self.update_nz(value) #### # LOAD / STORE def LDA(self, operand_address): self.accumulator = self.update_nz(self.read_byte(operand_address)) def LDX(self, operand_address): self.x_index = self.update_nz(self.read_byte(operand_address)) def LDY(self, operand_address): self.y_index = self.update_nz(self.read_byte(operand_address)) def STA(self, operand_address): self.memory.write_byte(operand_address, self.accumulator) def STX(self, operand_address): self.memory.write_byte(operand_address, self.x_index) def STY(self, operand_address): self.memory.write_byte(operand_address, self.y_index) # TRANSFER def TAX(self): self.x_index = self.update_nz(self.accumulator) def TXA(self): self.accumulator = self.update_nz(self.x_index) def TAY(self): self.y_index = self.update_nz(self.accumulator) def TYA(self): self.accumulator = self.update_nz(self.y_index) def TSX(self): self.x_index = self.update_nz(self.stack_pointer) def TXS(self): self.stack_pointer = self.x_index # SHIFTS / ROTATES def ASL(self, operand_address=None): if operand_address is None: self.accumulator = self.update_nzc(self.accumulator << 1) else: self.cycles += 2 self.memory.write_byte(operand_address, self.update_nzc(self.read_byte(operand_address) << 1)) def ROL(self, operand_address=None): if operand_address is None: a = self.accumulator << 1 if self.carry_flag: a = a | 0x01 self.accumulator = self.update_nzc(a) else: self.cycles += 2 m = self.read_byte(operand_address) << 1 if self.carry_flag: m = m | 0x01 self.memory.write_byte(operand_address, self.update_nzc(m)) def ROR(self, operand_address=None): if operand_address is None: if self.carry_flag: self.accumulator = self.accumulator | 0x100 self.carry_flag = self.accumulator % 2 self.accumulator = self.update_nz(self.accumulator >> 1) else: self.cycles += 2 m = self.read_byte(operand_address) if self.carry_flag: m = m | 0x100 self.carry_flag = m % 2 self.memory.write_byte(operand_address, self.update_nz(m >> 1)) def LSR(self, operand_address=None): if operand_address is None: self.carry_flag = self.accumulator % 2 self.accumulator = self.update_nz(self.accumulator >> 1) else: self.cycles += 2 self.carry_flag = self.read_byte(operand_address) % 2 self.memory.write_byte(operand_address, self.update_nz(self.read_byte(operand_address) >> 1)) # JUMPS / RETURNS def JMP(self, operand_address): self.cycles -= 1 self.program_counter = operand_address def JSR(self, operand_address): self.cycles += 2 self.push_word(self.program_counter - 1) self.program_counter = operand_address def RTS(self): self.cycles += 4 self.program_counter = self.pull_word() + 1 # BRANCHES def BCC(self, operand_address): if not self.carry_flag: self.cycles += 1 self.program_counter = operand_address def BCS(self, operand_address): if self.carry_flag: self.cycles += 1 self.program_counter = operand_address def BEQ(self, operand_address): if self.zero_flag: self.cycles += 1 self.program_counter = operand_address def BNE(self, operand_address): if not self.zero_flag: self.cycles += 1 self.program_counter = operand_address def BMI(self, operand_address): if self.sign_flag: self.cycles += 1 self.program_counter = operand_address def BPL(self, operand_address): if not self.sign_flag: self.cycles += 1 self.program_counter = operand_address def BVC(self, operand_address): if not self.overflow_flag: self.cycles += 1 self.program_counter = operand_address def BVS(self, operand_address): if self.overflow_flag: self.cycles += 1 self.program_counter = operand_address # SET / CLEAR FLAGS def CLC(self): self.carry_flag = 0 def CLD(self): self.decimal_mode_flag = 0 def CLI(self): self.interrupt_disable_flag = 0 def CLV(self): self.overflow_flag = 0 def SEC(self): self.carry_flag = 1 def SED(self): self.decimal_mode_flag = 1 def SEI(self): self.interrupt_disable_flag = 1 # INCREMENT / DECREMENT def DEC(self, operand_address): self.cycles += 2 self.memory.write_byte(operand_address, self.update_nz(self.read_byte(operand_address) - 1)) def DEX(self): self.x_index = self.update_nz(self.x_index - 1) def DEY(self): self.y_index = self.update_nz(self.y_index - 1) def INC(self, operand_address): self.cycles += 2 self.memory.write_byte(operand_address, self.update_nz(self.read_byte(operand_address) + 1)) def INX(self): self.x_index = self.update_nz(self.x_index + 1) def INY(self): self.y_index = self.update_nz(self.y_index + 1) # PUSH / PULL def PHA(self): self.cycles += 1 self.push_byte(self.accumulator) def PHP(self): self.cycles += 1 self.push_byte(self.status_as_byte()) def PLA(self): self.cycles += 2 self.accumulator = self.update_nz(self.pull_byte()) def PLP(self): self.cycles += 2 self.status_from_byte(self.pull_byte()) # LOGIC def AND(self, operand_address): self.accumulator = self.update_nz(self.accumulator & self.read_byte(operand_address)) def ORA(self, operand_address): self.accumulator = self.update_nz(self.accumulator | self.read_byte(operand_address)) def EOR(self, operand_address): self.accumulator = self.update_nz(self.accumulator ^ self.read_byte(operand_address)) # ARITHMETIC def ADC(self, operand_address): # @@@ doesn't handle BCD yet assert not self.decimal_mode_flag a2 = self.accumulator a1 = signed(a2) m2 = self.read_byte(operand_address) m1 = signed(m2) # twos complement addition result1 = a1 + m1 + self.carry_flag # unsigned addition result2 = a2 + m2 + self.carry_flag self.accumulator = self.update_nzc(result2) # perhaps this could be calculated from result2 but result1 is more intuitive self.overflow_flag = [0, 1][(result1 > 127) | (result1 < -128)] def SBC(self, operand_address): # @@@ doesn't handle BCD yet assert not self.decimal_mode_flag a2 = self.accumulator a1 = signed(a2) m2 = self.read_byte(operand_address) m1 = signed(m2) # twos complement subtraction result1 = a1 - m1 - [1, 0][self.carry_flag] # unsigned subtraction result2 = a2 - m2 - [1, 0][self.carry_flag] self.accumulator = self.update_nz(result2) self.carry_flag = [0, 1][(result2 >= 0)] # perhaps this could be calculated from result2 but result1 is more intuitive self.overflow_flag = [0, 1][(result1 > 127) | (result1 < -128)] # BIT def BIT(self, operand_address): value = self.read_byte(operand_address) self.sign_flag = ((value >> 7) % 2) # bit 7 self.overflow_flag = ((value >> 6) % 2) # bit 6 self.zero_flag = [0, 1][((self.accumulator & value) == 0)] # COMPARISON def CMP(self, operand_address): result = self.accumulator - self.read_byte(operand_address) self.carry_flag = [0, 1][(result >= 0)] self.update_nz(result) def CPX(self, operand_address): result = self.x_index - self.read_byte(operand_address) self.carry_flag = [0, 1][(result >= 0)] self.update_nz(result) def CPY(self, operand_address): result = self.y_index - self.read_byte(operand_address) self.carry_flag = [0, 1][(result >= 0)] self.update_nz(result) # SYSTEM def NOP(self): pass def BRK(self): self.cycles += 5 self.break_flag = 1 self.push_word(self.program_counter + 1) self.push_byte(self.status_as_byte()) self.program_counter = self.read_word(0xFFFE) def RTI(self): self.cycles += 4 self.status_from_byte(self.pull_byte()) self.program_counter = self.pull_word() # @@@ IRQ # @@@ NMI
36.960123
197
0.606523
24,046
0.997842
0
0
0
0
0
0
776
0.032202
e9ead4efec2b488b003bd50670c0f814058b8f19
29
py
Python
router/tasks/__init__.py
smallwat3r/shopify-webhook-processor
4f16017cb9695ca00eb6d95e4381a8442b3dc0e3
[ "MIT" ]
1
2021-08-30T14:01:03.000Z
2021-08-30T14:01:03.000Z
router/tasks/__init__.py
smallwat3r/shopify-webhook-processor
4f16017cb9695ca00eb6d95e4381a8442b3dc0e3
[ "MIT" ]
null
null
null
router/tasks/__init__.py
smallwat3r/shopify-webhook-processor
4f16017cb9695ca00eb6d95e4381a8442b3dc0e3
[ "MIT" ]
2
2021-08-30T14:01:04.000Z
2021-09-07T01:07:41.000Z
from .tasks import Processor
14.5
28
0.827586
0
0
0
0
0
0
0
0
0
0
e9ebfd8edc0153bf61129fe91fefdc9f0a9e4300
1,392
py
Python
dogs/dogs.py
RafaelBadaro-zz/dogtour-backend
30a83eac46dddaf29c3c643e2dc4dd71948484f0
[ "Unlicense" ]
null
null
null
dogs/dogs.py
RafaelBadaro-zz/dogtour-backend
30a83eac46dddaf29c3c643e2dc4dd71948484f0
[ "Unlicense" ]
2
2019-11-10T18:08:39.000Z
2020-07-11T21:22:42.000Z
dogs/dogs.py
RafaelBadaro-zz/dogtour-backend
30a83eac46dddaf29c3c643e2dc4dd71948484f0
[ "Unlicense" ]
1
2022-02-12T12:14:40.000Z
2022-02-12T12:14:40.000Z
import uuid from nameko.rpc import RpcProxy, rpc from nameko_redis import Redis class DogsService: name = "dogs" users_rpc = RpcProxy('users') redis = Redis('development') @rpc def get(self, dog_id): dog = self.redis.hgetall(dog_id) return dog @rpc def create(self, dog_data): key = 'dog:' + dog_data['name'] dog_id = uuid.uuid4().hex dog = { key: dog_id } user_email = self.redis.get(dog_data['user_id']) self.redis.hmset(user_email, dog) self.redis.hmset(dog_id, { "name": dog_data['name'], "sex": dog_data['sex'], "size": dog_data['size'], "temper": dog_data['temper'] }) response = { "dog_id": dog_id, "name": dog_data['name'], "status": 200 } return response @rpc def get_user_dogs(self, user_id): response = { "dogs": {}, "status": 200 } user = self.users_rpc.get(user_id) dogs = {} keys = user.keys() for key in keys: if key.startswith('dog:'): dogs[user[key]] = self.get(user[key]) if dogs: response['dogs'] = dogs response['status'] = 200 return response
19.068493
56
0.481322
1,306
0.938218
0
0
1,179
0.846983
0
0
159
0.114224
e9ec78a38e45c3ed801db04c7a18df698501ab39
1,531
py
Python
examples/demo_OT_2D_samples.py
agramfort/POT
8dbfd3edae649f5f3e87be4a3ce446c59729b2f7
[ "MIT" ]
null
null
null
examples/demo_OT_2D_samples.py
agramfort/POT
8dbfd3edae649f5f3e87be4a3ce446c59729b2f7
[ "MIT" ]
null
null
null
examples/demo_OT_2D_samples.py
agramfort/POT
8dbfd3edae649f5f3e87be4a3ce446c59729b2f7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Demo for 2D Optimal transport between empirical distributions @author: rflamary """ import numpy as np import matplotlib.pylab as pl import ot #%% parameters and data generation n=20 # nb samples mu_s=np.array([0,0]) cov_s=np.array([[1,0],[0,1]]) mu_t=np.array([4,4]) cov_t=np.array([[1,-.8],[-.8,1]]) xs=ot.datasets.get_2D_samples_gauss(n,mu_s,cov_s) xt=ot.datasets.get_2D_samples_gauss(n,mu_t,cov_t) a,b = ot.unif(n),ot.unif(n) # uniform distribution on samples # loss matrix M=ot.dist(xs,xt) M/=M.max() #%% plot samples pl.figure(1) pl.plot(xs[:,0],xs[:,1],'+b',label='Source samples') pl.plot(xt[:,0],xt[:,1],'xr',label='Target samples') pl.legend(loc=0) pl.title('Source and traget distributions') pl.figure(2) pl.imshow(M,interpolation='nearest') pl.title('Cost matrix M') #%% EMD G0=ot.emd(a,b,M) pl.figure(3) pl.imshow(G0,interpolation='nearest') pl.title('OT matrix G0') pl.figure(4) ot.plot.plot2D_samples_mat(xs,xt,G0,c=[.5,.5,1]) pl.plot(xs[:,0],xs[:,1],'+b',label='Source samples') pl.plot(xt[:,0],xt[:,1],'xr',label='Target samples') pl.legend(loc=0) pl.title('OT matrix with samples') #%% sinkhorn # reg term lambd=5e-3 Gs=ot.sinkhorn(a,b,M,lambd) pl.figure(5) pl.imshow(Gs,interpolation='nearest') pl.title('OT matrix sinkhorn') pl.figure(6) ot.plot.plot2D_samples_mat(xs,xt,Gs,color=[.5,.5,1]) pl.plot(xs[:,0],xs[:,1],'+b',label='Source samples') pl.plot(xt[:,0],xt[:,1],'xr',label='Target samples') pl.legend(loc=0) pl.title('OT matrix Sinkhorn with samples')
19.379747
61
0.677335
0
0
0
0
0
0
0
0
534
0.348792
e9ed96eda4a6de7f5ebf0c1ccffa4e86b1a28787
7,594
py
Python
src/morphometrics/utils/surface_utils.py
kevinyamauchi/morphometrics
f48cb4fa8c06b726f0b699940c32ac8df466f71c
[ "BSD-3-Clause" ]
5
2022-03-17T18:14:18.000Z
2022-03-23T00:48:17.000Z
src/morphometrics/utils/surface_utils.py
kevinyamauchi/morphometrics
f48cb4fa8c06b726f0b699940c32ac8df466f71c
[ "BSD-3-Clause" ]
11
2022-01-27T14:10:43.000Z
2022-03-20T18:22:30.000Z
src/morphometrics/utils/surface_utils.py
kevinyamauchi/morphometrics
f48cb4fa8c06b726f0b699940c32ac8df466f71c
[ "BSD-3-Clause" ]
1
2022-03-17T18:17:21.000Z
2022-03-17T18:17:21.000Z
from typing import List, Tuple import numpy as np import pymeshfix import trimesh.voxel.creation from skimage.measure import marching_cubes from trimesh import Trimesh from trimesh.smoothing import filter_taubin from ..types import BinaryImage, LabelImage def _round_to_pitch(coordinate: np.ndarray, pitch: float) -> np.ndarray: """Round a point to the nearest point on a grid that starts at the origin with a specified pitch. Parameters ---------- coordinate : np.ndarray The coordinate to round pitch : float The pitch of the grid. Assumed to the be same in all directions. Returns ------- rounded_point : np.ndarray The point after rounding to the nearest grid point. """ return pitch * np.round(coordinate / pitch, decimals=0) def repair_mesh(mesh: Trimesh) -> Trimesh: """Repair a mesh using pymeshfix. Parameters ---------- mesh : Trimesh The mesh to be repaired """ vertices = np.asarray(mesh.vertices) faces = np.asarray(mesh.faces) vertices_clean, faces_clean = pymeshfix.clean_from_arrays(vertices, faces) # create the mesh object repaired_mesh = Trimesh(vertices=vertices_clean, faces=faces_clean) assert repaired_mesh.is_watertight, "Mesh was unable to be repaired" return repaired_mesh def binary_mask_to_surface( object_mask: BinaryImage, n_mesh_smoothing_interations: int = 50 ) -> Trimesh: """Convert surface of a 3D binary mask (segmented object) into a watertight mesh. Parameters ---------- object_mask : BinaryMask A 3D binary image corresponding to the object you want to mesh. n_mesh_smoothing_interations : int The number of interations of smooting to perform. Smoothing is done by the trimesh taubin filter: https://trimsh.org/trimesh.smoothing.html#trimesh.smoothing.filter_taubin Default value is 50. Returns ------- mesh : trimesh.Trimesh The resulting mesh as a trimesh.Trimesh object. https://trimsh.org/trimesh.base.html#github-com-mikedh-trimesh """ vertices, faces, _, _ = marching_cubes(object_mask, 0) vertices_clean, faces_clean = pymeshfix.clean_from_arrays(vertices, faces) # create the mesh object mesh = Trimesh(vertices=vertices_clean, faces=faces_clean) # optionally clean up the mesh if n_mesh_smoothing_interations > 0: filter_taubin(mesh, iterations=n_mesh_smoothing_interations) return mesh def voxelize_closed_surface( mesh: Trimesh, pitch: float, repair_mesh: bool = True ) -> Tuple[BinaryImage, np.ndarray]: """Voxelize a closed surface mesh. Parameters ---------- mesh : Trimesh The surface to voxelize pitch : float The voxel width in mesh units. Voxels have the same width in each dimension (i.e., are cubes). repair_mesh : bool Flag to attept to repair the mesh if set to True. Default value is True. Returns ------- image : BinaryImage The binary mask created from the image_origin : np.ndarray The upper left hand corner of the voxelized image in mesh units (i.e., minimun of the axis aligned bounding box) """ bounding_box = mesh.bounds centroid = np.mean(bounding_box, axis=0) # convert the centroid to the nearest integer multiple of the pitch rounded_centroid = _round_to_pitch(coordinate=centroid, pitch=pitch) # find the minimum cube half-width that encompases the full mesh cube_half_width = np.max(bounding_box - rounded_centroid) # get the number of voxels for the cube half-width n_voxels_cube_half_width = int(np.ceil(cube_half_width / pitch)) # pad with one voxel on each side to make sure the full mesh is in range n_voxels_cube_half_width += 1 # get the upper left hand (i.e., minimum) corner of the voxelized image in mesh coordinates image_origin = rounded_centroid - (n_voxels_cube_half_width * pitch) # if and (not mesh.is_watertight): # mesh = repair_mesh(mesh) voxel_grid = trimesh.voxel.creation.local_voxelize( mesh=mesh, point=rounded_centroid, pitch=pitch, radius=n_voxels_cube_half_width, fill=True, ) return voxel_grid.matrix.astype(bool), image_origin def closed_surfaces_to_label_image( meshes: List[Trimesh], pitch: float, crop_around_mesh: bool = False, repair_mesh: bool = False, ) -> Tuple[LabelImage, np.ndarray]: """Create a label image from a set of meshes with closed surfaces. Notes: - meshes must be water tight for accurate voxelization. - Labels are assigned in the order the meshes appear in the list. - all meshes must be in the same coordinate system and scale. Parameters ---------- meshes : List[Trimesh] The meshes to convert to a label image. pitch : float The width of a voxel in mesh units. Voxels are assumed to be cubes. crop_around_mesh : bool When set to True, the image is cropped around the axis aligned bounding box of the set of meshes with a one voxel pad in each direction. The default value is False repair_mesh : bool When set to True, will attempt to repair meshes with PyMeshFix. Default value is False. Returns ------- label_image : LabelImage The label image generated from the meshes. image_origin : np.ndarray The coordinate of the upper left hand corner (i.e., minimum) of the label_image in mesh coordinates. """ # get the bounding box around the meshes bounding_boxes = [mesh.bounds for mesh in meshes] # get the bounding box around all of them all_corners = np.concatenate(bounding_boxes, axis=0) min_corner = np.min(all_corners, axis=0) max_corner = np.max(all_corners, axis=0) # round the corners to the nearest voxel (in mesh coordinates) min_corner_rounded = _round_to_pitch(coordinate=min_corner, pitch=pitch) max_corner_rounded = _round_to_pitch(coordinate=max_corner, pitch=pitch) # pad the bounding box to make sure everything is accounted for min_corner_rounded -= pitch max_corner_rounded += pitch if crop_around_mesh is True: image_origin = min_corner_rounded else: image_origin = np.array([0, 0, 0]) # determine the size of the image in pixels image_shape_mesh_units = max_corner_rounded - image_origin image_shape_voxels = np.round(image_shape_mesh_units / pitch, decimals=0).astype( int ) # create the blank label image label_image = np.zeros(image_shape_voxels, dtype=np.uint16) for i, mesh in enumerate(meshes): voxelized, origin = voxelize_closed_surface( mesh, pitch=pitch, repair_mesh=repair_mesh ) # get the coordinates of the voxels inside of the mesh filled_voxel_coordinates = np.argwhere(voxelized) # get the offset between the label image indices and the voxelized mesh indices mesh_offset = np.round((origin - image_origin) / pitch, decimals=0) # offset the voxel coordinates filled_voxel_indices = np.round( filled_voxel_coordinates + mesh_offset, decimals=0 ).astype(int) # set the label value label_value = i + 1 label_image[ filled_voxel_indices[:, 0], filled_voxel_indices[:, 1], filled_voxel_indices[:, 2], ] = label_value return label_image, image_origin
32.314894
95
0.684093
0
0
0
0
0
0
0
0
3,881
0.511061
e9eda2a3fc73ffe30b97e1cd86e60cd02bdf72a7
1,402
py
Python
bigflow_python/python/bigflow/pipeline/test/testdata/columns/columns/column_sum.py
advancedxy/bigflow_python
8a244b483404fde7afc42eee98bc964da8ae03e2
[ "Apache-2.0" ]
1,236
2017-11-14T11:10:10.000Z
2022-03-08T11:54:41.000Z
bigflow_python/python/bigflow/pipeline/test/testdata/columns/columns/column_sum.py
advancedxy/bigflow_python
8a244b483404fde7afc42eee98bc964da8ae03e2
[ "Apache-2.0" ]
38
2017-11-14T16:29:12.000Z
2020-01-23T08:32:04.000Z
bigflow_python/python/bigflow/pipeline/test/testdata/columns/columns/column_sum.py
advancedxy/bigflow_python
8a244b483404fde7afc42eee98bc964da8ae03e2
[ "Apache-2.0" ]
184
2017-11-27T07:23:36.000Z
2022-03-14T02:54:16.000Z
#!/usr/bin/env python # encoding: utf-8 ######################################################################## # # Copyright (c) 2016 Baidu, Inc. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ######################################################################## from bigflow import transforms def column_sum(pcollection, columns): """ 对输入的PCollection,求所有元素按指定列相加的结果 Args: pcollection (PCollection): 输入PCollection columns(list):要计算的列 Returns: PObject: 聚合结果 >>> import columns >>> _p = _pipeline.parallelize([(1, 1, 1), (1, 2, 2), (1, 3, 1)]) >>> columns.column_sum(_p, [0, 1]).get() [3, 6] """ cols = columns def _get_columns(record): return [record[column] for column in cols] return pcollection.map(_get_columns) \ .reduce(lambda x, y: [a + b for a, b in zip(x, y)])
28.04
74
0.597004
0
0
0
0
0
0
0
0
1,146
0.782787
e9ee58711825a498c9db3c3f37e476c5e56bb0a6
282
py
Python
auction/models/bidbasket.py
littlepea/django-auction
fe0219faabe17efbeca1be51869d750e82299941
[ "MIT" ]
10
2015-01-13T02:51:35.000Z
2021-01-25T21:02:29.000Z
auction/models/bidbasket.py
JohnRomanski/django-auction
bc6982c8f34a9a6914badb203424eca7f3219685
[ "MIT" ]
2
2016-08-05T09:24:30.000Z
2020-06-28T06:00:11.000Z
auction/models/bidbasket.py
JohnRomanski/django-auction
bc6982c8f34a9a6914badb203424eca7f3219685
[ "MIT" ]
22
2015-03-12T10:41:52.000Z
2021-11-23T14:33:09.000Z
import importlib from django.conf import settings from auction.utils.loader import load_class AUCTION_BIDBASKET_MODEL = getattr(settings, 'AUCTION_BIDBASKET_MODEL', 'auction.models.defaults.BidBasket') BidBasket = load_class(AUCTION_BIDBASKET_MODEL, 'AUCTION_BIDBASKET_MODEL')
35.25
74
0.840426
0
0
0
0
0
0
0
0
85
0.301418
e9eed597103f69eb9973238f713e70a5ed271b2e
551
py
Python
stixpy/timeseries/tests/test_quicklook.py
nicHoch/stixpy
cdb86094995590da36f3ae5e01f4ca4b9aac819c
[ "BSD-3-Clause" ]
4
2021-07-06T14:42:09.000Z
2022-02-24T10:19:18.000Z
stixpy/timeseries/tests/test_quicklook.py
nicHoch/stixpy
cdb86094995590da36f3ae5e01f4ca4b9aac819c
[ "BSD-3-Clause" ]
30
2020-10-02T20:24:28.000Z
2022-03-31T18:29:07.000Z
stixpy/timeseries/tests/test_quicklook.py
nicHoch/stixpy
cdb86094995590da36f3ae5e01f4ca4b9aac819c
[ "BSD-3-Clause" ]
8
2021-04-16T11:00:13.000Z
2022-03-31T10:09:29.000Z
from pathlib import Path import pytest from sunpy.timeseries import TimeSeries from stixpy.data import test from stixpy.timeseries.quicklook import * def test_ql_lightcurve(): ql_lc = TimeSeries(test.STIX_QL_LIGHTCURVE_TIMESERIES) assert isinstance(ql_lc, QLLightCurve) def test_qlbackground(): ql_lc = TimeSeries(test.STIX_QL_BACKGROUND_TIMESERIES) assert isinstance(ql_lc, QLBackground) def test_qlvariance(): ql_lc = TimeSeries(test.STIX_QL_VARIANCE_TIMESERIES) ql_lc.peek() assert isinstance(ql_lc, QLVariance)
22.958333
58
0.787659
0
0
0
0
0
0
0
0
0
0
e9f001a0eb4f10eb622617d07d8ad3650ace4a3c
2,284
py
Python
roberta_ses/datasets/sst_dataset.py
sythello/Roberta_SES
289d575b9330cb6ae61190846448bd5368d73453
[ "Apache-2.0" ]
null
null
null
roberta_ses/datasets/sst_dataset.py
sythello/Roberta_SES
289d575b9330cb6ae61190846448bd5368d73453
[ "Apache-2.0" ]
null
null
null
roberta_ses/datasets/sst_dataset.py
sythello/Roberta_SES
289d575b9330cb6ae61190846448bd5368d73453
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @file : sst_dataset.py @author: zijun @contact : zijun_sun@shannonai.com @date : 2020/11/17 11:45 @version: 1.0 @desc : sst5 and imdb task use the same dataset """ import os from functools import partial import torch from transformers import RobertaTokenizer from torch.utils.data import Dataset, DataLoader from roberta_ses.datasets.collate_functions import collate_to_max_length class SSTDataset(Dataset): def __init__(self, directory, prefix, bert_path, max_length: int = 512): super().__init__() self.max_length = max_length with open(os.path.join(directory, prefix + '.txt'), 'r', encoding='utf8') as f: lines = f.readlines() self.lines = lines self.tokenizer = RobertaTokenizer.from_pretrained(bert_path) def __len__(self): return len(self.lines) def __getitem__(self, idx): line = self.lines[idx] label, sentence = line.split('\t', 1) # delete . sentence = sentence.strip() if sentence.endswith("."): sentence = sentence[:-1] input_ids = self.tokenizer.encode(sentence, add_special_tokens=False) if len(input_ids) > self.max_length - 2: input_ids = input_ids[:self.max_length - 2] # convert list to tensor length = torch.LongTensor([len(input_ids) + 2]) input_ids = torch.LongTensor([0] + input_ids + [2]) label = torch.LongTensor([int(label)]) return input_ids, label, length def unit_test(): root_path = "/data/nfsdata2/sunzijun/sstc/imdb_data" bert_path = "/data/nfsdata2/sunzijun/loop/roberta-base" prefix = "train" dataset = SSTDataset(directory=root_path, prefix=prefix, bert_path=bert_path) dataloader = DataLoader( dataset=dataset, batch_size=10, num_workers=0, shuffle=False, collate_fn=partial(collate_to_max_length, fill_values=[1, 0, 0]) ) for input_ids, label, length, start_index, end_index, span_mask in dataloader: print(input_ids.shape) print(start_index.shape) print(end_index.shape) print(span_mask.shape) print(label.view(-1).shape) print() if __name__ == '__main__': unit_test()
30.453333
87
0.651926
1,097
0.480298
0
0
0
0
0
0
370
0.161996
e9f017283f2c9870d465de8537e58d7f7588313c
8,068
py
Python
tests/gem5/configs/boot_kvm_fork_run.py
darchr/gem5
0feb0a34db519523a8595f6d1543f7412259ba17
[ "BSD-3-Clause" ]
19
2018-07-20T15:08:50.000Z
2022-03-26T16:15:59.000Z
tests/gem5/configs/boot_kvm_fork_run.py
darchr/gem5
0feb0a34db519523a8595f6d1543f7412259ba17
[ "BSD-3-Clause" ]
148
2018-07-20T00:58:36.000Z
2021-11-16T01:52:33.000Z
tests/gem5/configs/boot_kvm_fork_run.py
darchr/gem5
0feb0a34db519523a8595f6d1543f7412259ba17
[ "BSD-3-Clause" ]
10
2019-01-10T03:01:30.000Z
2022-01-21T18:36:18.000Z
# Copyright (c) 2021 The University of Texas at Austin # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Author: Austin Harris # """ This script tests forking gem5 with the KVM cores and switching cores in the child process. First, the test boots linux with KVM and tests fast-forwarding with instruction exit events. Then the test forks the simulation, waits for the child to simulate until completion, and then simulates to completion in the parent process. """ import argparse import os import sys from textwrap import dedent import m5 from m5.objects import Root from gem5.components.boards.x86_board import X86Board from gem5.coherence_protocol import CoherenceProtocol from gem5.isas import ISA from gem5.components.memory.single_channel import SingleChannelDDR3_1600 from gem5.components.processors.cpu_types import CPUTypes from gem5.components.processors.simple_switchable_processor import ( SimpleSwitchableProcessor, ) from gem5.resources.resource import Resource from gem5.runtime import ( get_runtime_coherence_protocol, get_runtime_isa ) from gem5.utils.requires import requires parser = argparse.ArgumentParser( description="A script to test forking gem5 and switching cpus." ) parser.add_argument( "-m", "--mem-system", type=str, choices=("classic", "mi_example", "mesi_two_level"), required=True, help="The memory system.", ) parser.add_argument( "-n", "--num-cpus", type=int, choices=(1, 2, 4, 8), default=4, help="The number of CPUs.", ) parser.add_argument( "-c", "--cpu", type=str, choices=("kvm", "atomic", "timing", "o3"), required=True, help="The CPU type.", ) parser.add_argument( "-r", "--resource-directory", type=str, required=False, help="The directory in which resources will be downloaded or exist.", ) parser.add_argument( "-o", "--override-download", action="store_true", help="Override a local resource if the hashes do not match.", ) parser.add_argument( "-k", "--kernel-args", type=str, default="init=/root/gem5_init.sh", help="Additional kernel boot arguments.", ) parser.add_argument( "-f", "--num-forks", type=int, default=4, help="The number of times to fork gem5.", ) args = parser.parse_args() coherence_protocol_required = None if args.mem_system == "mi_example": coherence_protocol_required = CoherenceProtocol.MI_EXAMPLE elif args.mem_system == "mesi_two_level": coherence_protocol_required = CoherenceProtocol.MESI_TWO_LEVEL requires( isa_required=ISA.X86, coherence_protocol_required=coherence_protocol_required, kvm_required=(args.cpu == "kvm"), ) cache_hierarchy = None if args.mem_system == "mi_example": from gem5.components.cachehierarchies.ruby.\ mi_example_cache_hierarchy import ( MIExampleCacheHierarchy, ) cache_hierarchy = MIExampleCacheHierarchy(size="32kB", assoc=8) elif args.mem_system == "mesi_two_level": from gem5.components.cachehierarchies.ruby.\ mesi_two_level_cache_hierarchy import ( MESITwoLevelCacheHierarchy, ) cache_hierarchy = MESITwoLevelCacheHierarchy( l1d_size="16kB", l1d_assoc=8, l1i_size="16kB", l1i_assoc=8, l2_size="256kB", l2_assoc=16, num_l2_banks=1, ) elif args.mem_system == "classic": from gem5.components.cachehierarchies.classic.\ private_l1_cache_hierarchy import ( PrivateL1CacheHierarchy, ) cache_hierarchy = PrivateL1CacheHierarchy(l1d_size="16kB", l1i_size="16kB") else: raise NotImplementedError( "Memory system '{}' is not supported in the boot tests.".format( args.mem_system ) ) assert cache_hierarchy != None # Setup the system memory. memory = SingleChannelDDR3_1600(size="3GB") # Setup a Processor. cpu_type = None if args.cpu == "kvm": cpu_type = CPUTypes.KVM elif args.cpu == "atomic": cpu_type = CPUTypes.ATOMIC elif args.cpu == "timing": cpu_type = CPUTypes.TIMING elif args.cpu == "o3": cpu_type = CPUTypes.O3 else: raise NotImplementedError( "CPU type '{}' is not supported in the boot tests.".format(args.cpu) ) assert cpu_type != None processor = SimpleSwitchableProcessor( starting_core_type=CPUTypes.KVM, switch_core_type=cpu_type, num_cores=args.num_cpus, ) # Setup the motherboard. motherboard = X86Board( clk_freq="3GHz", processor=processor, memory=memory, cache_hierarchy=cache_hierarchy, exit_on_work_items=True, ) motherboard.connect_things() # Set the Full System workload. motherboard.set_workload( kernel=Resource( "x86-linux-kernel-5.4.49", override=args.override_download, resource_directory=args.resource_directory, ), disk_image=Resource( "x86-ubuntu-img", override=args.override_download, resource_directory=args.resource_directory, ), command=dedent( """ m5 exit # signal end of boot m5 exit # exit in children and parent """ ), kernel_args=[args.kernel_args] ) # Begin running of the simulation. This will exit once the Linux system boot # is complete. print("Running with ISA: " + get_runtime_isa().name) print("Running with protocol: " + get_runtime_coherence_protocol().name) print() root = Root(full_system=True, system=motherboard) # TODO: This of annoying. Is there a way to fix this to happen # automatically when running KVM? root.sim_quantum = int(1e9) # Disable the gdb ports. Required for forking. m5.disableAllListeners() m5.instantiate() # Simulate the inital boot with the starting KVM cpu exit_event = m5.simulate() print("Boot finished", exit_event.getCause()) print("Starting fork and switch processors test") pids = [] for i in range(args.num_forks): pid = m5.fork("%(parent)s/" + str(m5.curTick())) if pid == 0: # in child print(f"Switching processors in child {i}.") processor.switch() exit_event = m5.simulate() if exit_event.getCause() != "m5_exit instruction encountered": raise Exception(f"Expected m5 exit, got {exit_event.getCause()}") print("Child finished, exiting: ", exit_event.getCause()) sys.exit(0) else: pids.append(pid) print("Waiting for children...") for pid in pids: print (os.waitpid(pid, 0)) print("Children finished! Running to completion in parent.") exit_event = m5.simulate() if exit_event.getCause() != "m5_exit instruction encountered": raise Exception(f"Expected m5 exit, got {exit_event.getCause()}")
29.661765
79
0.716534
0
0
0
0
0
0
0
0
3,601
0.446331
e9f050b89ff8d6e83255108084e3c376a0039fc7
1,203
py
Python
rioxarray/write.py
kadyb/raster-benchmark
78733ff75181713071cc0694e187a2ac83f76752
[ "MIT" ]
11
2021-04-15T09:51:48.000Z
2022-02-08T13:01:28.000Z
rioxarray/write.py
kadyb/raster-benchmark
78733ff75181713071cc0694e187a2ac83f76752
[ "MIT" ]
11
2021-02-16T12:43:07.000Z
2021-12-14T19:57:10.000Z
rioxarray/write.py
kadyb/raster-benchmark
78733ff75181713071cc0694e187a2ac83f76752
[ "MIT" ]
2
2021-07-22T14:01:46.000Z
2021-07-25T05:24:51.000Z
# -*- coding: utf-8 -*- import os import timeit import xarray import rioxarray import pandas as pd wd = os.getcwd() catalog = os.path.join('data', 'LC08_L1TP_190024_20200418_20200822_02_T1') rasters = os.listdir(catalog) rasters = [r for r in rasters if r.endswith(('.TIF'))] rasters = [os.path.join(wd, catalog, r) for r in rasters] ### raster stack band_names = ["B1", "B10", "B11", "B2", "B3", "B4", "B5", "B6", "B7", "B9"] ras = [] for i, path in enumerate(rasters): ras.append(rioxarray.open_rasterio(path, masked = True).squeeze()) ras = xarray.concat(ras, "band") ras.coords["band"] = band_names t_list = [None] * 10 stack_file = 'stack.TIF' for i in range(10): tic = timeit.default_timer() ras.rio.to_raster(stack_file, dtype = "uint16", compress = "LZW") toc = timeit.default_timer() t_list[i] = round(toc - tic, 2) os.remove(stack_file) df = {'task': ['write'] * 10, 'package': ['rioxarray'] * 10, 'time': t_list} df = pd.DataFrame.from_dict(df) if not os.path.isdir('results'): os.mkdir('results') savepath = os.path.join('results', 'write-rioxarray.csv') df.to_csv(savepath, index = False, decimal = ',', sep = ';')
27.340909
77
0.633416
0
0
0
0
0
0
0
0
266
0.221114
e9f15a2385f1ea0dee9385406e24c070bd322820
14,534
py
Python
manifold/manifold.py
timotheosh/Manifest
d3917cb386aa351335c38f08e4c7d36136d8863f
[ "MIT" ]
2
2021-08-13T12:38:24.000Z
2021-08-21T19:36:42.000Z
manifold/manifold.py
timotheosh/Manifold
d3917cb386aa351335c38f08e4c7d36136d8863f
[ "MIT" ]
null
null
null
manifold/manifold.py
timotheosh/Manifold
d3917cb386aa351335c38f08e4c7d36136d8863f
[ "MIT" ]
null
null
null
# encoding: utf-8 '''manifold An SMF service manifest creation tool. ''' __author__ = 'Chris Miles' __copyright__ = '(c) Chris Miles 2008. All rights reserved.' __license__ = 'GPL http://www.gnu.org/licenses/gpl.txt' __id__ = '$Id: manifold.py 7 2009-03-24 09:10:48Z miles.chris $' __url__ = '$URL: https://manifold.googlecode.com/svn/trunk/manifold/manifold.py $' # ---- Imports ---- # - Python Modules - import logging import os import optparse import sys # - Genshi Modules - from genshi.template import MarkupTemplate # - Project Modules - from .release import version # ---- Genshi Templates ---- MANIFEST_TEMPLATE = """<?xml version="1.0"?> <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <!-- Created by Manifold --> <service_bundle type='manifest' name='${service_name}' xmlns:py='http://genshi.edgewall.org/'> <service name='${service_category}/${service_name}' type='service' version='${service_version}'> <create_default_instance py:if="not multi_instance" enabled='${instance_enabled}' /> <single_instance py:if="not multi_instance" /> <dependency py:if="depends_on_network" name='network' grouping='require_all' restart_on='error' type='service'> <service_fmri value='svc:/milestone/network:default'/> </dependency> <dependency py:if="depends_on_filesystem" name='filesystem' grouping='require_all' restart_on='error' type='service'> <service_fmri value='svc:/system/filesystem/local'/> </dependency> <instance py:if="multi_instance" name='${instance_name}' enabled='${instance_enabled}'> <!--! This part used for a multi instance service. --> <method_context> <method_credential py:if="method_credential_user and method_credential_group" user='${method_credential_user}' group='${method_credential_group}' /> </method_context> <exec_method type='method' name='start' exec='${exec_method_start}' timeout_seconds='60' /> <exec_method type='method' name='stop' exec='${exec_method_stop}' timeout_seconds='60' /> <property_group name='startd' type='framework'> <propval py:if="startd_model=='wait'" name='duration' type='astring' value='child' /> <propval py:if="startd_model=='transient'" name='duration' type='astring' value='transient' /> <propval py:if="startd_model=='contract'" name='duration' type='astring' value='contract' /> <propval name='ignore_error' type='astring' value='core,signal' /> </property_group> <property_group name='application' type='application'> <propval py:if="config_file" name='config_file' type='astring' value='${config_file}' /> </property_group> </instance> <a_single_instance py:if="not multi_instance" py:strip="True"> <!--! This part used for a single instance only service. --> <method_context> <method_credential py:if="method_credential_user and method_credential_group" user='${method_credential_user}' group='${method_credential_group}' /> </method_context> <exec_method type='method' name='start' exec='${exec_method_start}' timeout_seconds='60' /> <exec_method type='method' name='stop' exec='${exec_method_stop}' timeout_seconds='60' /> <property_group name='startd' type='framework'> <propval py:if="startd_model=='wait'" name='duration' type='astring' value='child' /> <propval py:if="startd_model=='transient'" name='duration' type='astring' value='transient' /> <propval py:if="startd_model=='contract'" name='duration' type='astring' value='contract' /> <propval name='ignore_error' type='astring' value='core,signal' /> </property_group> <property_group name='application' type='application'> <propval py:if="config_file" name='config_file' type='astring' value='${config_file}' /> </property_group> </a_single_instance> <stability value='Evolving' /> <template> <common_name> <loctext xml:lang='C'> ${common_name} </loctext> </common_name> </template> </service> </service_bundle> """ # ---- Classes ---- class CONFIG_BASE(object): def __init__(self, name, require_value=False, default=None, description=None, example=None, accepted_values=None): self.name = name self.require_value = require_value self.default = default self.description = description self.example = example self.accepted_values = accepted_values def prompt(self): raise NotImplemented() def ask(self, config): raise NotImplemented() class CONFIG_STR(CONFIG_BASE): def prompt(self): if self.description: s = self.description else: s = "Enter value for %s" %self.name if self.example: s += " (example: %s)" %self.example if self.default: s += " [%s] "% self.default else: s += " [] " return s def ask(self, config): r = None while r is None or (self.require_value and not r): r = input(self.prompt()).strip() if not r and self.default is not None: r = self.default elif self.accepted_values and r not in self.accepted_values: print("Sorry, you must enter one of: " + ', '.join(['"%s"'%s for s in self.accepted_values])) r = None if not r: r = None return r class CONFIG_BOOL(CONFIG_BASE): def prompt(self): if self.description: s = self.description else: s = "%s" %self.name s += " (yes/no)" if self.default is not None: if self.default: default = "yes" else: default = "no" s += " [%s]"% default s += " ? " return s def ask(self, config): answers = dict( yes = True, ye = True, y = True, no = False, n = False ) r = None while not r in list(answers.keys()) and r != '': r = input(self.prompt()).strip().lower() if r: r = answers[r] elif self.default is not None: r = self.default if r: r = 'true' else: r = 'false' return r class CONFIG_IF(CONFIG_BASE): def __init__(self, *args, **kwargs): self.questions = kwargs.get('questions', []) del kwargs['questions'] super(CONFIG_IF, self).__init__(*args, **kwargs) def prompt(self): if self.description: s = self.description else: s = "%s" %self.name s += " (yes/no)" if self.default is not None: if self.default: default = "yes" else: default = "no" s += " [%s]"% default s += " ? " return s def ask(self, config): answers = dict( yes = True, ye = True, y = True, no = False, n = False ) r = None while not r in list(answers.keys()) and r != '': r = input(self.prompt()).strip().lower() if r: r = answers[r] elif self.default is not None: r = self.default if r: # if answer to this question is "yes" then ask user extra questions config.update(ask_user(self.questions)) return r # ---- Functions ---- def ask_user(service_questions): response = {} for q in service_questions: print() response[q.name] = q.ask(response) return response def generate_service_config(): service_questions = [ CONFIG_STR( 'service_category', require_value=True, default='site', description='The service category', example="'site' or '/application/database'" ), CONFIG_STR( 'service_name', require_value=True, description="""The name of the service, which follows the service category """, example="'myapp'" ), CONFIG_STR( 'service_version', require_value=True, description="The version of the service manifest", default='1', example="'1'" ), CONFIG_STR( 'common_name', require_value=False, description="""The human readable name of the service """, example="'My service.'" ), CONFIG_IF( 'multi_instance', description="Can this service run multiple instances", default=False, questions=[ CONFIG_STR('instance_name', require_value=True, default='default', example="default") ] ), CONFIG_STR( 'config_file', require_value=False, description="""Full path to a config file; leave blank if no config file required""", example="'/etc/myservice.conf'" ), CONFIG_STR( 'exec_method_start', require_value=True, description="""The full command to start the service; may contain '%{config_file}' to substitute the configuration file """, example="'/usr/bin/myservice %{config_file}'" ), CONFIG_STR( 'exec_method_stop', require_value=True, default = ':kill', description="""The full command to stop the service; may specify ':kill' to let SMF kill the service processes automatically """, example="""'/usr/bin/myservice_ctl stop' or ':kill' to let SMF kill the service processes automatically""" ), CONFIG_STR( 'startd_model', require_value=True, default = 'wait', description="""Choose a process management model: 'wait' : long-running process that runs in the foreground (default) 'contract' : long-running process that daemonizes or forks itself (i.e. start command returns immediately) 'transient' : short-lived process, performs an action and ends quickly """, # example="", accepted_values = ('wait', 'contract', 'transient'), ), CONFIG_BOOL( 'depends_on_network', description="Does this service depend on the network being ready", default=True ), CONFIG_BOOL( 'depends_on_filesystem', description="Does this service depend on the local filesystems being ready", default=True ), CONFIG_BOOL( 'instance_enabled', default=False, description="Should the service be enabled by default" ), CONFIG_STR( 'method_credential_user', require_value=False, description="""The user to change to when executing the start/stop/refresh methods""", example="'webservd'" ), CONFIG_STR( 'method_credential_group', require_value=False, description="""The group to change to when executing the start/stop/refresh methods""", example="'webservd'" ), ] service_config = ask_user(service_questions) logging.debug(service_config) return service_config def create_manifest(outfp, service_config): tmpl = MarkupTemplate(MANIFEST_TEMPLATE) xml = tmpl.generate(**service_config).render('xml', strip_whitespace=False) outfp.write(xml) def main(argv=None): if argv is None: argv = sys.argv # define usage and version messages usageMsg = "usage: %s [options] output.xml" % sys.argv[0] versionMsg = """%s %s""" % (os.path.basename(argv[0]), version) description = """Create an SMF service manifest file. The resulting XML file can be validated and imported into SMF using the 'svccfg' command. For example, "svccfg validate myservice.xml", "svccfg -v import myservice.xml". """ # get a parser object and define our options parser = optparse.OptionParser(usage=usageMsg, version=versionMsg, description=description) # Switches parser.add_option('-v', '--verbose', dest='verbose', action='store_true', default=False, help="verbose output") parser.add_option('-d', '--debug', dest='debug', action='store_true', default=False, help="debugging output (very verbose)") # Parse options & arguments (options, args) = parser.parse_args() if len(args) < 1: parser.error("Output file must be specified.") if len(args) > 1: parser.error("Only one output file can be specified.") if options.verbose: loglevel = logging.INFO elif options.debug: loglevel = logging.DEBUG else: loglevel = logging.WARNING logging.basicConfig( level=loglevel, # format='%(asctime)s %(levelname)s %(message)s', format='%(message)s', ) output_filename = args[0] output = open(output_filename, 'w') service_config = generate_service_config() create_manifest(output, service_config) output.close() print("\nManifest written to %s" %output_filename) print('You can validate the XML file with "svccfg validate %s"' %output_filename) print('And create the SMF service with "svccfg import %s"' %output_filename) return 0 if __name__ == "__main__": sys.exit(main())
30.923404
164
0.555938
3,478
0.239301
0
0
0
0
0
0
7,461
0.513348
e9f182577a3561deeedd13bd4f63beb75d349a4d
7,183
py
Python
lemon_boy.py
hug58/Lemon-Boy-platformer
5ec5dd8974088fce5084e6249d13e7bb47621669
[ "MIT" ]
4
2019-03-12T09:02:17.000Z
2019-05-06T20:31:18.000Z
lemon_boy.py
hug58/Lemon-Boy-platformer
5ec5dd8974088fce5084e6249d13e7bb47621669
[ "MIT" ]
null
null
null
lemon_boy.py
hug58/Lemon-Boy-platformer
5ec5dd8974088fce5084e6249d13e7bb47621669
[ "MIT" ]
2
2019-03-11T06:51:06.000Z
2020-09-01T16:17:06.000Z
from script import * from script.menu import Menu from script import image,sound,resolve_route from script.player import Player from script.enemy import Apple from script.elementos import Trap,Door,Trampoline,Key,Lemon from script.camera import Camera from script.tilemap import TileMap pg.display.init() pg.joystick.init() pg.font.init() WIDTH = 620 HEIGHT = 480 WHITE2 = (252,252,238) LEMON = (249,215,0) GREEN = (140,196,51) SCREEN = pg.display.set_mode((WIDTH,HEIGHT)) pg.display.set_caption("Project Hugo") pg.display.set_icon(pg.image.load(resolve_route("lemon.ico") )) class Plataform(pg.sprite.Sprite): def __init__(self,x,y,w,h): pg.sprite.Sprite.__init__(self) self.rect = pg.Rect((x,y),(w,h)) self.rect.x = x self.rect.y = y self.vlx = 0 class Spikes(pg.sprite.Sprite): def __init__(self,x,y,w,h,game): pg.sprite.Sprite.__init__(self) self.rect = pg.Rect((x,y),(w,h)) self.rect.x = x self.rect.y = y self.game = game def update(self): if self.rect.colliderect(self.game.player.rect): self.game.player.dead = True for enemy in self.game.enemies: if self.rect.colliderect(enemy.rect): enemy.kill() class Game: def __init__(self,maps): self.maps = maps self.sound = sound self.map_cont = 0 self.map = TileMap(self.maps[self.map_cont]) self.Mapimage = self.map.make_map() self.Maprect = self.Mapimage.get_rect() self.surface_size = (WIDTH,HEIGHT) self.camera = Camera(self.map.width,self.map.height,self.surface_size) self.changes_maps = False #Es más rápido crear otra Surface que dibujarlo directamente en la pantalla def load(self): self.effect = pg.sprite.Group() self.arrow = pg.sprite.Group() self.plataform = pg.sprite.Group() self.plataform_m = pg.sprite.Group() self.enemies = pg.sprite.Group() self.objs = pg.sprite.Group() self.spike = pg.sprite.Group() self.trap = pg.sprite.Group() self.fire_cannon = pg.sprite.Group() for sprite in self.map.tmxdata.objectgroups: for tile_object in sprite: if tile_object.name == "Player": self.player = Player(tile_object.x, tile_object.y,self) for tile_object in self.map.tmxdata.objects: if tile_object.name == "plataform": self.plataform.add( Plataform(tile_object.x, tile_object.y, tile_object.width, tile_object.height) ) elif tile_object.name == "Door": self.objs.add( Door(tile_object.x, tile_object.y, self,"YELLOW")) elif tile_object.name == "Apple": self.enemies.add( Apple(tile_object .x,tile_object.y, self,tile_object.type)) elif tile_object.name == "Key": self.objs.add( Key(tile_object.x, tile_object.y, self)) elif tile_object.name == "Lemon": self.objs.add( Lemon(tile_object.x, tile_object.y, self)) elif tile_object.name == "Spike_trap": self.trap.add( Trap(tile_object.x, tile_object.y, self,tile_object.type)) elif tile_object.name == "plataform_m": self.plataform_m.add( plataform_m( tile_object.x, tile_object.y, tile_object.type)) elif tile_object.name == "Spike": self.spike.add( Spikes(tile_object.x, tile_object.y, tile_object.width, tile_object.height, self)) elif tile_object.name == "Fire_cannon": self.fire_cannon.add( Fire_Cannon( tile_object.x, tile_object.y, self, tile_object.type)) elif tile_object.name == "jump": self.objs.add( Trampoline( tile_object.x, tile_object.y, self)) def update(self): self.camera.update(self.player) self.spike.update() self.trap.update() self.fire_cannon.update() self.arrow.update() self.enemies.update() self.plataform_m.update() self.effect.update() for objs in self.objs: objs.update() try: if objs.next == True: if self.map_cont < len(self.maps) -1: self.map_cont +=1 else: self.map_cont = 0 self.map = TileMap(self.maps[self.map_cont]) self.Mapimage = self.map.make_map() self.Maprect = self.Mapimage.get_rect() self.camera = Camera(self.map.width,self.map.height) self.load() except Exception as e: pass if self.changes_maps == True: self.map = TileMap(self.maps[self.map_cont]) self.Mapimage = self.map.make_map() self.Maprect = self.Mapimage.get_rect() self.camera = Camera(self.map.width,self.map.height,self.surface_size) self.load() self.changes_maps = False self.player.update() def draw(self): for arrow in self.arrow: SCREEN.blit(arrow.image,self.camera.apply(arrow)) SCREEN.blit(self.Mapimage,self.camera.apply_rect(self.Maprect)) for plataform_m in self.plataform_m: SCREEN.blit(plataform_m.image,self.camera.apply(plataform_m)) for cannon in self.fire_cannon: for fireball in cannon.fireball: SCREEN.blit(fireball.image,self.camera.apply(fireball)) for enemies in self.enemies: SCREEN.blit(enemies.image,self.camera.apply(enemies)) for objs in self.objs: SCREEN.blit(objs.image,self.camera.apply(objs)) SCREEN.blit(self.player.image,self.camera.apply(self.player)) for trap in self.trap: SCREEN.blit(trap.image,self.camera.apply(trap)) for effect in self.effect: SCREEN.blit(effect.image,self.camera.apply(effect)) def main(): exit = False clock = pg.time.Clock() maps= ["map/map1.tmx", "map/map2.tmx", "map/map3.tmx", "map/map4.tmx", "map/map5.tmx", "map/map6.tmx", "map/map7.tmx"] menu = Menu(maps) game = Game(menu.maps) game.load() #Creando un objeto joystick e iniciando joystick = pg.joystick.Joystick(0) if pg.joystick.get_count() > 0 else None joystick.init() if joystick != None else None background = pg.Surface((WIDTH,HEIGHT)).convert() background.blit(pg.transform.scale(image["background"],(WIDTH,HEIGHT)),(0,0)) draw_background = lambda background: SCREEN.blit(background,(0,0)) while exit != True and menu.exit_game != True: clock.tick(60) for event in pg.event.get(): if event.type == pg.QUIT: exit = True if event.type == pg.KEYDOWN: if event.key == pg.K_x: if game.player.cont_jump > 0: game.player.diffx = 0 game.sound["jump"].stop() game.sound["jump"].play() game.player.vly = -8 game.player.cont_jump -=1 game.player.direcciony = -1 if event.key == pg.K_RETURN: menu.exit = False if event.type == pg.KEYUP: if event.key == pg.K_RIGHT or event.key == pg.K_LEFT: game.player.stop = True if event.key == pg.K_c: if game.player.cont_shot >= 13: game.player.shot() game.player.cont_shot = 0 else: game.player.cont_shot = 0 if menu.changes_maps == True: game.map_cont = menu.position game.changes_maps = True menu.changes_maps = False if menu.exit != True: menu.update(SCREEN) draw_background(background) #Cerrar el videojuego completamente sin pasar por dibujar el nivel actual(lvl1 por defecto) if menu.exit_game != True: game.draw() game.update() pg.display.flip() if __name__ == "__main__": main()
24.599315
93
0.667688
4,797
0.667641
0
0
0
0
0
0
467
0.064997
e9f1fbbda761ade5d0893da97c048863bb481369
4,915
py
Python
pliers/utils/base.py
jsmentch/pliers
ef13552793ab5789065249a89230baced407c472
[ "BSD-3-Clause" ]
null
null
null
pliers/utils/base.py
jsmentch/pliers
ef13552793ab5789065249a89230baced407c472
[ "BSD-3-Clause" ]
null
null
null
pliers/utils/base.py
jsmentch/pliers
ef13552793ab5789065249a89230baced407c472
[ "BSD-3-Clause" ]
null
null
null
''' Miscellaneous internal utilities. ''' import collections import os from abc import ABCMeta, abstractmethod, abstractproperty from types import GeneratorType from itertools import islice from tqdm import tqdm import pandas as pd from pliers import config from pliers.support.exceptions import MissingDependencyError def listify(obj): ''' Wraps all non-list or tuple objects in a list; provides a simple way to accept flexible arguments. ''' return obj if isinstance(obj, (list, tuple, type(None))) else [obj] def flatten(l): ''' Flatten an iterable. ''' for el in l: if isinstance(el, collections.Iterable) and not isinstance(el, str): yield from flatten(el) else: yield el def flatten_dict(d, parent_key='', sep='_'): ''' Flattens a multi-level dictionary into a single level by concatenating nested keys with the char provided in the sep argument. Solution from https://stackoverflow.com/questions/6027558/flatten-nested-python-dictionaries-compressing-keys''' items = [] for k, v in d.items(): new_key = parent_key + sep + k if parent_key else k if isinstance(v, collections.MutableMapping): items.extend(flatten_dict(v, new_key, sep=sep).items()) else: items.append((new_key, v)) return dict(items) def batch_iterable(l, n): ''' Chunks iterable into n sized batches Solution from: http://stackoverflow.com/questions/1915170/split-a-generator-iterable-every-n-items-in-python-splitevery''' i = iter(l) piece = list(islice(i, n)) while piece: yield piece piece = list(islice(i, n)) def set_iterable_type(obj): ''' Returns either a generator or a list depending on config-level settings. Should be used to wrap almost every internal iterable return. Also inspects elements recursively in the case of list returns, to ensure that there are no nested generators. ''' if not isiterable(obj): return obj if config.get_option('use_generators'): return obj if isgenerator(obj) else (i for i in obj) else: return [set_iterable_type(i) for i in obj] class classproperty: ''' Implements a @classproperty decorator analogous to @classmethod. Solution from: http://stackoverflow.com/questions/128573/using-property-on-classmethodss ''' def __init__(self, fget): self.fget = fget def __get__(self, owner_self, owner_cls): return self.fget(owner_cls) def isiterable(obj): ''' Returns True if the object is one of allowable iterable types. ''' return isinstance(obj, (list, tuple, pd.Series, GeneratorType, tqdm)) def isgenerator(obj): ''' Returns True if object is a generator, or a generator wrapped by a tqdm object. ''' return isinstance(obj, GeneratorType) or (hasattr(obj, 'iterable') and isinstance(getattr(obj, 'iterable'), GeneratorType)) def progress_bar_wrapper(iterable, **kwargs): ''' Wrapper that applies tqdm progress bar conditional on config settings. ''' return tqdm(iterable, **kwargs) if (config.get_option('progress_bar') and not isinstance(iterable, tqdm)) else iterable module_names = {} Dependency = collections.namedtuple('Dependency', 'package value') def attempt_to_import(dependency, name=None, fromlist=None): if name is None: name = dependency try: mod = __import__(dependency, fromlist=fromlist) except ImportError: mod = None module_names[name] = Dependency(dependency, mod) return mod def verify_dependencies(dependencies): missing = [] for dep in listify(dependencies): if module_names[dep].value is None: missing.append(module_names[dep].package) if missing: raise MissingDependencyError(missing) class EnvironmentKeyMixin: @classproperty def _env_keys(cls): pass @classproperty def env_keys(cls): return listify(cls._env_keys) @classproperty def available(cls): return all([k in os.environ for k in cls.env_keys]) class APIDependent(EnvironmentKeyMixin, metaclass=ABCMeta): _rate_limit = 0 def __init__(self, rate_limit=None, **kwargs): self.transformed_stim_count = 0 self.validated_keys = set() self.rate_limit = rate_limit if rate_limit else self._rate_limit self._last_request_time = 0 super().__init__(**kwargs) @abstractproperty def api_keys(self): pass def validate_keys(self): if all(k in self.validated_keys for k in self.api_keys): return True else: valid = self.check_valid_keys() if valid: for k in self.api_keys: self.validated_keys.add(k) return valid @abstractmethod def check_valid_keys(self): pass
29.431138
126
0.673042
1,389
0.282604
528
0.107426
338
0.068769
0
0
1,358
0.276297
e9f2022d8957402e8b079abe1da08f467caf510b
2,431
py
Python
lmnet/lmnet/datasets/cifar100_distribute.py
toohsk/blueoil
596922caa939db9c5ecbac3286fbf6f703865ee6
[ "Apache-2.0" ]
null
null
null
lmnet/lmnet/datasets/cifar100_distribute.py
toohsk/blueoil
596922caa939db9c5ecbac3286fbf6f703865ee6
[ "Apache-2.0" ]
1
2018-11-21T07:06:17.000Z
2018-11-21T07:06:17.000Z
lmnet/lmnet/datasets/cifar100_distribute.py
toohsk/blueoil
596922caa939db9c5ecbac3286fbf6f703865ee6
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2018 The Blueoil Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import functools import numpy as np from lmnet.datasets.cifar100 import Cifar100 from lmnet.datasets.base import DistributionInterface from lmnet.utils.random import shuffle class Cifar100Distribution(Cifar100, DistributionInterface): def __init__( self, subset="train", batch_size=100, *args, **kwargs ): super().__init__( subset=subset, batch_size=batch_size, *args, **kwargs, ) self._init_images_and_labels() @functools.lru_cache(maxsize=None) def _images_and_labels(self): if self.subset == "train": files = ["train"] else: files = ["test"] data = [self._load_data(filename) for filename in files] images = [images for images, labels in data] images = np.concatenate(images, axis=0) labels = [labels for images, labels in data] labels = np.concatenate(labels, axis=0) return images, labels def update_dataset(self, indices): """Update own dataset by indices.""" # Re Initialize dataset self._init_images_and_labels() # Update dataset by given indices self.images = self.images[indices, :] self.labels = self.labels[indices] self.current_element_index = 0 def get_shuffle_index(self): """Return list of shuffled index.""" images, _ = self._images_and_labels() random_indices = shuffle(range(len(images)), seed=self.seed) print("Shuffle {} train dataset with random state {}.".format(self.__class__.__name__, self.seed)) self.seed += 1 return random_indices
31.571429
106
0.626903
1,543
0.634718
0
0
478
0.196627
0
0
897
0.368984
e9f22bb1ea67ab94d6fe17f1e1dc1a68f58ceef8
3,149
py
Python
gridengine/functional.py
MiqG/gridengine
457c34b16f2c43b9be985cd822f30305d68afd91
[ "BSD-3-Clause" ]
20
2015-01-31T16:52:15.000Z
2019-03-22T20:09:50.000Z
gridengine/functional.py
MiqG/gridengine
457c34b16f2c43b9be985cd822f30305d68afd91
[ "BSD-3-Clause" ]
1
2021-11-27T16:33:59.000Z
2021-11-27T16:33:59.000Z
gridengine/functional.py
MiqG/gridengine
457c34b16f2c43b9be985cd822f30305d68afd91
[ "BSD-3-Clause" ]
7
2015-10-27T16:49:52.000Z
2021-09-22T10:16:25.000Z
import inspect import functools from gridengine import job, dispatch, schedulers # ---------------------------------------------------------------------------- # Partial # ---------------------------------------------------------------------------- def isexception(x): """Test whether the value is an Exception instance""" return isinstance(x, Exception) def isnumeric(x): """Test whether the value can be represented as a number""" try: float(x) return True except: return False def partial(f, *args, **kwargs): """Return a callable partially closed over the input function and arguments partial is functionally equivalent to functools.partial, however it also applies a variant of functools.update_wrapper, with: __doc__ = f.__doc__ __module__ = f.__module__ __name__ = f.__name__ + string_representation_of_closed_arguments This is useful for running functions with different parameter sets, whilst being able to identify the variants by name """ def name(var): try: return var.__name__ except AttributeError: return str(var)[0:5] if isnumeric(var) else var.__class__.__name__ g = functools.partial(f, *args, **kwargs) g.__doc__ = f.__doc__ g.__module__ = f.__module__ g.__name__ = '_'.join([f.__name__] + [name(arg) for arg in list(args)+list(kwargs.values())]) return g # ---------------------------------------------------------------------------- # Map # ---------------------------------------------------------------------------- def map(f, args, scheduler=schedulers.best_available, reraise=True): """Perform a functional-style map operation Apply a function f to each argument in the iterable args. This is equivalent to y = [f(x) for x in args] or y = map(f, args) except that each argument in the iterable is assigned to a separate Job and scheduled to run via the scheduler. The default scheduler is a schedulers.ProcessScheduler instance. To run map on a grid engine, simply pass a schedulers.GridEngineScheduler instance. Args: f (func): A picklable function args (iterable): An iterable (list) of arguments to f Keyword Args: scheduler: A schedulers.Scheduler instance or class. By default, the system tries to return the best_available() scheduler. Use this if you want to set a scheduler specifically. reraise (bool): Reraise exceptions that occur in any of the jobs. Set this to False if you want to salvage any good results. Returns: List of return values equivalent to the builtin map function Raises: Any exception that would occur when applying [f(x) for x in args] """ # setup the dispatcher dispatcher = dispatch.JobDispatcher(scheduler) # allocate the jobs jobs = [job.Job(target=f, args=(arg,)) for arg in args] # run the jobs (guaranteed to return in the same order) dispatcher.dispatch(jobs) results = dispatcher.join() # check for exceptions if reraise: for exception in filter(isexception, results): # an error occurred during execution of one of the jobs, reraise it raise exception return results
32.463918
97
0.64719
0
0
0
0
0
0
0
0
2,155
0.684344
e9f24ec99f076ba98908603ffa1d50f5644d6aa7
31,441
py
Python
Bio/Prosite/__init__.py
nuin/biopython
045d57b08799ef52c64bd4fa807629b8a7e9715a
[ "PostgreSQL" ]
2
2016-05-09T04:20:06.000Z
2017-03-07T10:25:53.000Z
Bio/Prosite/__init__.py
nuin/biopython
045d57b08799ef52c64bd4fa807629b8a7e9715a
[ "PostgreSQL" ]
null
null
null
Bio/Prosite/__init__.py
nuin/biopython
045d57b08799ef52c64bd4fa807629b8a7e9715a
[ "PostgreSQL" ]
1
2019-08-19T22:05:14.000Z
2019-08-19T22:05:14.000Z
# Copyright 1999 by Jeffrey Chang. All rights reserved. # Copyright 2000 by Jeffrey Chang. All rights reserved. # Revisions Copyright 2007 by Peter Cock. All rights reserved. # This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """ This module provides code to work with the prosite dat file from Prosite. http://www.expasy.ch/prosite/ Tested with: Release 15.0, July 1998 Release 16.0, July 1999 Release 17.0, Dec 2001 Release 19.0, Mar 2006 Functions: parse Iterates over entries in a Prosite file. scan_sequence_expasy Scan a sequence for occurrences of Prosite patterns. index_file Index a Prosite file for a Dictionary. _extract_record Extract Prosite data from a web page. _extract_pattern_hits Extract Prosite patterns from a web page. Classes: Record Holds Prosite data. PatternHit Holds data from a hit against a Prosite pattern. Dictionary Accesses a Prosite file using a dictionary interface. RecordParser Parses a Prosite record into a Record object. Iterator Iterates over entries in a Prosite file; DEPRECATED. _Scanner Scans Prosite-formatted data. _RecordConsumer Consumes Prosite data to a Record object. """ from types import * import re import sgmllib from Bio import File from Bio import Index from Bio.ParserSupport import * # There is probably a cleaner way to write the read/parse functions # if we don't use the "parser = RecordParser(); parser.parse(handle)" # approach. Leaving that for the next revision of Bio.Prosite. def parse(handle): import cStringIO parser = RecordParser() text = "" for line in handle: text += line if line[:2]=='//': handle = cStringIO.StringIO(text) record = parser.parse(handle) text = "" if not record: # Then this was the copyright notice continue yield record def read(handle): parser = RecordParser() try: record = parser.parse(handle) except ValueError, error: if error.message=="There doesn't appear to be a record": raise ValueError("No Prosite record found") else: raise error # We should have reached the end of the record by now remainder = handle.read() if remainder: raise ValueError("More than one Prosite record found") return record class Record: """Holds information from a Prosite record. Members: name ID of the record. e.g. ADH_ZINC type Type of entry. e.g. PATTERN, MATRIX, or RULE accession e.g. PS00387 created Date the entry was created. (MMM-YYYY) data_update Date the 'primary' data was last updated. info_update Date data other than 'primary' data was last updated. pdoc ID of the PROSITE DOCumentation. description Free-format description. pattern The PROSITE pattern. See docs. matrix List of strings that describes a matrix entry. rules List of rule definitions (from RU lines). (strings) prorules List of prorules (from PR lines). (strings) NUMERICAL RESULTS nr_sp_release SwissProt release. nr_sp_seqs Number of seqs in that release of Swiss-Prot. (int) nr_total Number of hits in Swiss-Prot. tuple of (hits, seqs) nr_positive True positives. tuple of (hits, seqs) nr_unknown Could be positives. tuple of (hits, seqs) nr_false_pos False positives. tuple of (hits, seqs) nr_false_neg False negatives. (int) nr_partial False negatives, because they are fragments. (int) COMMENTS cc_taxo_range Taxonomic range. See docs for format cc_max_repeat Maximum number of repetitions in a protein cc_site Interesting site. list of tuples (pattern pos, desc.) cc_skip_flag Can this entry be ignored? cc_matrix_type cc_scaling_db cc_author cc_ft_key cc_ft_desc cc_version version number (introduced in release 19.0) DATA BANK REFERENCES - The following are all lists of tuples (swiss-prot accession, swiss-prot name) dr_positive dr_false_neg dr_false_pos dr_potential Potential hits, but fingerprint region not yet available. dr_unknown Could possibly belong pdb_structs List of PDB entries. """ def __init__(self): self.name = '' self.type = '' self.accession = '' self.created = '' self.data_update = '' self.info_update = '' self.pdoc = '' self.description = '' self.pattern = '' self.matrix = [] self.rules = [] self.prorules = [] self.postprocessing = [] self.nr_sp_release = '' self.nr_sp_seqs = '' self.nr_total = (None, None) self.nr_positive = (None, None) self.nr_unknown = (None, None) self.nr_false_pos = (None, None) self.nr_false_neg = None self.nr_partial = None self.cc_taxo_range = '' self.cc_max_repeat = '' self.cc_site = [] self.cc_skip_flag = '' self.dr_positive = [] self.dr_false_neg = [] self.dr_false_pos = [] self.dr_potential = [] self.dr_unknown = [] self.pdb_structs = [] class PatternHit: """Holds information from a hit against a Prosite pattern. Members: name ID of the record. e.g. ADH_ZINC accession e.g. PS00387 pdoc ID of the PROSITE DOCumentation. description Free-format description. matches List of tuples (start, end, sequence) where start and end are indexes of the match, and sequence is the sequence matched. """ def __init__(self): self.name = None self.accession = None self.pdoc = None self.description = None self.matches = [] def __str__(self): lines = [] lines.append("%s %s %s" % (self.accession, self.pdoc, self.name)) lines.append(self.description) lines.append('') if len(self.matches) > 1: lines.append("Number of matches: %s" % len(self.matches)) for i in range(len(self.matches)): start, end, seq = self.matches[i] range_str = "%d-%d" % (start, end) if len(self.matches) > 1: lines.append("%7d %10s %s" % (i+1, range_str, seq)) else: lines.append("%7s %10s %s" % (' ', range_str, seq)) return "\n".join(lines) class Iterator: """Returns one record at a time from a Prosite file. Methods: next Return the next record from the stream, or None. """ def __init__(self, handle, parser=None): """__init__(self, handle, parser=None) Create a new iterator. handle is a file-like object. parser is an optional Parser object to change the results into another form. If set to None, then the raw contents of the file will be returned. """ import warnings warnings.warn("Bio.Prosite.Iterator is deprecated; we recommend using the function Bio.Prosite.parse instead. Please contact the Biopython developers at biopython-dev@biopython.org you cannot use Bio.Prosite.parse instead of Bio.Prosite.Iterator.", DeprecationWarning) if type(handle) is not FileType and type(handle) is not InstanceType: raise ValueError("I expected a file handle or file-like object") self._uhandle = File.UndoHandle(handle) self._parser = parser def next(self): """next(self) -> object Return the next Prosite record from the file. If no more records, return None. """ # Skip the copyright info, if it's the first record. line = self._uhandle.peekline() if line[:2] == 'CC': while 1: line = self._uhandle.readline() if not line: break if line[:2] == '//': break if line[:2] != 'CC': raise ValueError("Oops, where's the copyright?") lines = [] while 1: line = self._uhandle.readline() if not line: break lines.append(line) if line[:2] == '//': break if not lines: return None data = "".join(lines) if self._parser is not None: return self._parser.parse(File.StringHandle(data)) return data def __iter__(self): return iter(self.next, None) class Dictionary: """Accesses a Prosite file using a dictionary interface. """ __filename_key = '__filename' def __init__(self, indexname, parser=None): """__init__(self, indexname, parser=None) Open a Prosite Dictionary. indexname is the name of the index for the dictionary. The index should have been created using the index_file function. parser is an optional Parser object to change the results into another form. If set to None, then the raw contents of the file will be returned. """ self._index = Index.Index(indexname) self._handle = open(self._index[Dictionary.__filename_key]) self._parser = parser def __len__(self): return len(self._index) def __getitem__(self, key): start, len = self._index[key] self._handle.seek(start) data = self._handle.read(len) if self._parser is not None: return self._parser.parse(File.StringHandle(data)) return data def __getattr__(self, name): return getattr(self._index, name) class ExPASyDictionary: """Access PROSITE at ExPASy using a read-only dictionary interface. """ def __init__(self, delay=5.0, parser=None): """__init__(self, delay=5.0, parser=None) Create a new Dictionary to access PROSITE. parser is an optional parser (e.g. Prosite.RecordParser) object to change the results into another form. If set to None, then the raw contents of the file will be returned. delay is the number of seconds to wait between each query. """ import warnings from Bio.WWW import RequestLimiter warnings.warn("Bio.Prosite.ExPASyDictionary is deprecated. Please use the function Bio.ExPASy.get_prosite_raw instead.", DeprecationWarning) self.parser = parser self.limiter = RequestLimiter(delay) def __len__(self): raise NotImplementedError("Prosite contains lots of entries") def clear(self): raise NotImplementedError("This is a read-only dictionary") def __setitem__(self, key, item): raise NotImplementedError("This is a read-only dictionary") def update(self): raise NotImplementedError("This is a read-only dictionary") def copy(self): raise NotImplementedError("You don't need to do this...") def keys(self): raise NotImplementedError("You don't really want to do this...") def items(self): raise NotImplementedError("You don't really want to do this...") def values(self): raise NotImplementedError("You don't really want to do this...") def has_key(self, id): """has_key(self, id) -> bool""" try: self[id] except KeyError: return 0 return 1 def get(self, id, failobj=None): try: return self[id] except KeyError: return failobj def __getitem__(self, id): """__getitem__(self, id) -> object Return a Prosite entry. id is either the id or accession for the entry. Raises a KeyError if there's an error. """ from Bio import ExPASy # First, check to see if enough time has passed since my # last query. self.limiter.wait() try: handle = ExPASy.get_prosite_entry(id) except IOError: raise KeyError(id) try: handle = File.StringHandle(_extract_record(handle)) except ValueError: raise KeyError(id) if self.parser is not None: return self.parser.parse(handle) return handle.read() class RecordParser(AbstractParser): """Parses Prosite data into a Record object. """ def __init__(self): self._scanner = _Scanner() self._consumer = _RecordConsumer() def parse(self, handle): self._scanner.feed(handle, self._consumer) return self._consumer.data class _Scanner: """Scans Prosite-formatted data. Tested with: Release 15.0, July 1998 """ def feed(self, handle, consumer): """feed(self, handle, consumer) Feed in Prosite data for scanning. handle is a file-like object that contains prosite data. consumer is a Consumer object that will receive events as the report is scanned. """ if isinstance(handle, File.UndoHandle): uhandle = handle else: uhandle = File.UndoHandle(handle) consumer.finished = False while not consumer.finished: line = uhandle.peekline() if not line: break elif is_blank_line(line): # Skip blank lines between records uhandle.readline() continue elif line[:2] == 'ID': self._scan_record(uhandle, consumer) elif line[:2] == 'CC': self._scan_copyrights(uhandle, consumer) else: raise ValueError("There doesn't appear to be a record") def _scan_copyrights(self, uhandle, consumer): consumer.start_copyrights() self._scan_line('CC', uhandle, consumer.copyright, any_number=1) self._scan_terminator(uhandle, consumer) consumer.end_copyrights() def _scan_record(self, uhandle, consumer): consumer.start_record() for fn in self._scan_fns: fn(self, uhandle, consumer) # In Release 15.0, C_TYPE_LECTIN_1 has the DO line before # the 3D lines, instead of the other way around. # Thus, I'll give the 3D lines another chance after the DO lines # are finished. if fn is self._scan_do.im_func: self._scan_3d(uhandle, consumer) consumer.end_record() def _scan_line(self, line_type, uhandle, event_fn, exactly_one=None, one_or_more=None, any_number=None, up_to_one=None): # Callers must set exactly one of exactly_one, one_or_more, or # any_number to a true value. I do not explicitly check to # make sure this function is called correctly. # This does not guarantee any parameter safety, but I # like the readability. The other strategy I tried was have # parameters min_lines, max_lines. if exactly_one or one_or_more: read_and_call(uhandle, event_fn, start=line_type) if one_or_more or any_number: while 1: if not attempt_read_and_call(uhandle, event_fn, start=line_type): break if up_to_one: attempt_read_and_call(uhandle, event_fn, start=line_type) def _scan_id(self, uhandle, consumer): self._scan_line('ID', uhandle, consumer.identification, exactly_one=1) def _scan_ac(self, uhandle, consumer): self._scan_line('AC', uhandle, consumer.accession, exactly_one=1) def _scan_dt(self, uhandle, consumer): self._scan_line('DT', uhandle, consumer.date, exactly_one=1) def _scan_de(self, uhandle, consumer): self._scan_line('DE', uhandle, consumer.description, exactly_one=1) def _scan_pa(self, uhandle, consumer): self._scan_line('PA', uhandle, consumer.pattern, any_number=1) def _scan_ma(self, uhandle, consumer): self._scan_line('MA', uhandle, consumer.matrix, any_number=1) ## # ZN2_CY6_FUNGAL_2, DNAJ_2 in Release 15 ## # contain a CC line buried within an 'MA' line. Need to check ## # for that. ## while 1: ## if not attempt_read_and_call(uhandle, consumer.matrix, start='MA'): ## line1 = uhandle.readline() ## line2 = uhandle.readline() ## uhandle.saveline(line2) ## uhandle.saveline(line1) ## if line1[:2] == 'CC' and line2[:2] == 'MA': ## read_and_call(uhandle, consumer.comment, start='CC') ## else: ## break def _scan_pp(self, uhandle, consumer): #New PP line, PostProcessing, just after the MA line self._scan_line('PP', uhandle, consumer.postprocessing, any_number=1) def _scan_ru(self, uhandle, consumer): self._scan_line('RU', uhandle, consumer.rule, any_number=1) def _scan_nr(self, uhandle, consumer): self._scan_line('NR', uhandle, consumer.numerical_results, any_number=1) def _scan_cc(self, uhandle, consumer): self._scan_line('CC', uhandle, consumer.comment, any_number=1) def _scan_dr(self, uhandle, consumer): self._scan_line('DR', uhandle, consumer.database_reference, any_number=1) def _scan_3d(self, uhandle, consumer): self._scan_line('3D', uhandle, consumer.pdb_reference, any_number=1) def _scan_pr(self, uhandle, consumer): #New PR line, ProRule, between 3D and DO lines self._scan_line('PR', uhandle, consumer.prorule, any_number=1) def _scan_do(self, uhandle, consumer): self._scan_line('DO', uhandle, consumer.documentation, exactly_one=1) def _scan_terminator(self, uhandle, consumer): self._scan_line('//', uhandle, consumer.terminator, exactly_one=1) #This is a list of scan functions in the order expected in the file file. #The function definitions define how many times each line type is exected #(or if optional): _scan_fns = [ _scan_id, _scan_ac, _scan_dt, _scan_de, _scan_pa, _scan_ma, _scan_pp, _scan_ru, _scan_nr, _scan_cc, # This is a really dirty hack, and should be fixed properly at # some point. ZN2_CY6_FUNGAL_2, DNAJ_2 in Rel 15 and PS50309 # in Rel 17 have lines out of order. Thus, I have to rescan # these, which decreases performance. _scan_ma, _scan_nr, _scan_cc, _scan_dr, _scan_3d, _scan_pr, _scan_do, _scan_terminator ] class _RecordConsumer(AbstractConsumer): """Consumer that converts a Prosite record to a Record object. Members: data Record with Prosite data. """ def __init__(self): self.data = None def start_record(self): self.data = Record() def end_record(self): self._clean_record(self.data) def identification(self, line): cols = line.split() if len(cols) != 3: raise ValueError("I don't understand identification line\n%s" \ % line) self.data.name = self._chomp(cols[1]) # don't want ';' self.data.type = self._chomp(cols[2]) # don't want '.' def accession(self, line): cols = line.split() if len(cols) != 2: raise ValueError("I don't understand accession line\n%s" % line) self.data.accession = self._chomp(cols[1]) def date(self, line): uprline = line.upper() cols = uprline.split() # Release 15.0 contains both 'INFO UPDATE' and 'INF UPDATE' if cols[2] != '(CREATED);' or \ cols[4] != '(DATA' or cols[5] != 'UPDATE);' or \ cols[7][:4] != '(INF' or cols[8] != 'UPDATE).': raise ValueError("I don't understand date line\n%s" % line) self.data.created = cols[1] self.data.data_update = cols[3] self.data.info_update = cols[6] def description(self, line): self.data.description = self._clean(line) def pattern(self, line): self.data.pattern = self.data.pattern + self._clean(line) def matrix(self, line): self.data.matrix.append(self._clean(line)) def postprocessing(self, line): postprocessing = self._clean(line).split(";") self.data.postprocessing.extend(postprocessing) def rule(self, line): self.data.rules.append(self._clean(line)) def numerical_results(self, line): cols = self._clean(line).split(";") for col in cols: if not col: continue qual, data = [word.lstrip() for word in col.split("=")] if qual == '/RELEASE': release, seqs = data.split(",") self.data.nr_sp_release = release self.data.nr_sp_seqs = int(seqs) elif qual == '/FALSE_NEG': self.data.nr_false_neg = int(data) elif qual == '/PARTIAL': self.data.nr_partial = int(data) elif qual in ['/TOTAL', '/POSITIVE', '/UNKNOWN', '/FALSE_POS']: m = re.match(r'(\d+)\((\d+)\)', data) if not m: raise Exception("Broken data %s in comment line\n%s" \ % (repr(data), line)) hits = tuple(map(int, m.groups())) if(qual == "/TOTAL"): self.data.nr_total = hits elif(qual == "/POSITIVE"): self.data.nr_positive = hits elif(qual == "/UNKNOWN"): self.data.nr_unknown = hits elif(qual == "/FALSE_POS"): self.data.nr_false_pos = hits else: raise ValueError("Unknown qual %s in comment line\n%s" \ % (repr(qual), line)) def comment(self, line): #Expect CC lines like this: #CC /TAXO-RANGE=??EPV; /MAX-REPEAT=2; #Can (normally) split on ";" and then on "=" cols = self._clean(line).split(";") for col in cols: if not col or col[:17] == 'Automatic scaling': # DNAJ_2 in Release 15 has a non-standard comment line: # CC Automatic scaling using reversed database # Throw it away. (Should I keep it?) continue if col.count("=") == 0 : #Missing qualifier! Can we recover gracefully? #For example, from Bug 2403, in PS50293 have: #CC /AUTHOR=K_Hofmann; N_Hulo continue qual, data = [word.lstrip() for word in col.split("=")] if qual == '/TAXO-RANGE': self.data.cc_taxo_range = data elif qual == '/MAX-REPEAT': self.data.cc_max_repeat = data elif qual == '/SITE': pos, desc = data.split(",") self.data.cc_site.append((int(pos), desc)) elif qual == '/SKIP-FLAG': self.data.cc_skip_flag = data elif qual == '/MATRIX_TYPE': self.data.cc_matrix_type = data elif qual == '/SCALING_DB': self.data.cc_scaling_db = data elif qual == '/AUTHOR': self.data.cc_author = data elif qual == '/FT_KEY': self.data.cc_ft_key = data elif qual == '/FT_DESC': self.data.cc_ft_desc = data elif qual == '/VERSION': self.data.cc_version = data else: raise ValueError("Unknown qual %s in comment line\n%s" \ % (repr(qual), line)) def database_reference(self, line): refs = self._clean(line).split(";") for ref in refs: if not ref: continue acc, name, type = [word.strip() for word in ref.split(",")] if type == 'T': self.data.dr_positive.append((acc, name)) elif type == 'F': self.data.dr_false_pos.append((acc, name)) elif type == 'N': self.data.dr_false_neg.append((acc, name)) elif type == 'P': self.data.dr_potential.append((acc, name)) elif type == '?': self.data.dr_unknown.append((acc, name)) else: raise ValueError("I don't understand type flag %s" % type) def pdb_reference(self, line): cols = line.split() for id in cols[1:]: # get all but the '3D' col self.data.pdb_structs.append(self._chomp(id)) def prorule(self, line): #Assume that each PR line can contain multiple ";" separated rules rules = self._clean(line).split(";") self.data.prorules.extend(rules) def documentation(self, line): self.data.pdoc = self._chomp(self._clean(line)) def terminator(self, line): self.finished = True def _chomp(self, word, to_chomp='.,;'): # Remove the punctuation at the end of a word. if word[-1] in to_chomp: return word[:-1] return word def _clean(self, line, rstrip=1): # Clean up a line. if rstrip: return line[5:].rstrip() return line[5:] def scan_sequence_expasy(seq=None, id=None, exclude_frequent=None): """scan_sequence_expasy(seq=None, id=None, exclude_frequent=None) -> list of PatternHit's Search a sequence for occurrences of Prosite patterns. You can specify either a sequence in seq or a SwissProt/trEMBL ID or accession in id. Only one of those should be given. If exclude_frequent is true, then the patterns with the high probability of occurring will be excluded. """ from Bio import ExPASy if (seq and id) or not (seq or id): raise ValueError("Please specify either a sequence or an id") handle = ExPASy.scanprosite1(seq, id, exclude_frequent) return _extract_pattern_hits(handle) def _extract_pattern_hits(handle): """_extract_pattern_hits(handle) -> list of PatternHit's Extract hits from a web page. Raises a ValueError if there was an error in the query. """ class parser(sgmllib.SGMLParser): def __init__(self): sgmllib.SGMLParser.__init__(self) self.hits = [] self.broken_message = 'Some error occurred' self._in_pre = 0 self._current_hit = None self._last_found = None # Save state of parsing def handle_data(self, data): if data.find('try again') >= 0: self.broken_message = data return elif data == 'illegal': self.broken_message = 'Sequence contains illegal characters' return if not self._in_pre: return elif not data.strip(): return if self._last_found is None and data[:4] == 'PDOC': self._current_hit.pdoc = data self._last_found = 'pdoc' elif self._last_found == 'pdoc': if data[:2] != 'PS': raise ValueError("Expected accession but got:\n%s" % data) self._current_hit.accession = data self._last_found = 'accession' elif self._last_found == 'accession': self._current_hit.name = data self._last_found = 'name' elif self._last_found == 'name': self._current_hit.description = data self._last_found = 'description' elif self._last_found == 'description': m = re.findall(r'(\d+)-(\d+) (\w+)', data) for start, end, seq in m: self._current_hit.matches.append( (int(start), int(end), seq)) def do_hr(self, attrs): # <HR> inside a <PRE> section means a new hit. if self._in_pre: self._current_hit = PatternHit() self.hits.append(self._current_hit) self._last_found = None def start_pre(self, attrs): self._in_pre = 1 self.broken_message = None # Probably not broken def end_pre(self): self._in_pre = 0 p = parser() p.feed(handle.read()) if p.broken_message: raise ValueError(p.broken_message) return p.hits def index_file(filename, indexname, rec2key=None): """index_file(filename, indexname, rec2key=None) Index a Prosite file. filename is the name of the file. indexname is the name of the dictionary. rec2key is an optional callback that takes a Record and generates a unique key (e.g. the accession number) for the record. If not specified, the id name will be used. """ import os if not os.path.exists(filename): raise ValueError("%s does not exist" % filename) index = Index.Index(indexname, truncate=1) index[Dictionary._Dictionary__filename_key] = filename handle = open(filename) records = parse(handle) end = 0L for record in records: start = end end = long(handle.tell()) length = end - start if rec2key is not None: key = rec2key(record) else: key = record.name if not key: raise KeyError("empty key was produced") elif key in index: raise KeyError("duplicate key %s found" % key) index[key] = start, length # This function can be deprecated once Bio.Prosite.ExPASyDictionary # is removed. def _extract_record(handle): """_extract_record(handle) -> str Extract PROSITE data from a web page. Raises a ValueError if no data was found in the web page. """ # All the data appears between tags: # <pre width = 80>ID NIR_SIR; PATTERN. # </PRE> class parser(sgmllib.SGMLParser): def __init__(self): sgmllib.SGMLParser.__init__(self) self._in_pre = 0 self.data = [] def handle_data(self, data): if self._in_pre: self.data.append(data) def do_br(self, attrs): if self._in_pre: self.data.append('\n') def start_pre(self, attrs): self._in_pre = 1 def end_pre(self): self._in_pre = 0 p = parser() p.feed(handle.read()) if not p.data: raise ValueError("No data found in web page.") return "".join(p.data)
35.326966
256
0.580675
26,177
0.832575
377
0.011991
0
0
0
0
11,972
0.380777
e9f29e0f95ccd2b1945aff6967594472289887d8
21,120
py
Python
build/lib/mrgaze/pupilometry.py
jmtyszka/mrgaze
29217eab9ea431686fd200f08bddd6615c45d0d3
[ "MIT" ]
18
2016-01-22T02:47:45.000Z
2021-09-23T18:37:51.000Z
build/lib/mrgaze/pupilometry.py
jmtyszka/mrgaze
29217eab9ea431686fd200f08bddd6615c45d0d3
[ "MIT" ]
7
2015-05-26T21:33:16.000Z
2020-05-26T11:47:54.000Z
build/lib/mrgaze/pupilometry.py
jmtyszka/mrgaze
29217eab9ea431686fd200f08bddd6615c45d0d3
[ "MIT" ]
7
2016-02-06T00:17:52.000Z
2021-02-22T03:51:55.000Z
#!/usr/bin/env python # # Video pupilometry functions # - takes calibration and gaze video filenames as input # - controls calibration and gaze estimation workflow # # USAGE : mrgaze.py <Calibration Video> <Gaze Video> # # AUTHOR : Mike Tyszka # PLACE : Caltech # DATES : 2014-05-07 JMT From scratch # 2016-02-22 JMT Update print for python3. Remove unused vars, imports # # This file is part of mrgaze. # # mrgaze is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # mrgaze is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with mrgaze. If not, see <http://www.gnu.org/licenses/>. # # Copyright 2014 California Institute of Technology. import os import time import getpass import cv2 from mrgaze import media, utils, config, calibrate, report, engine def LivePupilometry(data_dir, live_eyetracking=False): """ Perform pupil boundary ellipse fitting on camera feed Arguments ---- data_dir : string Root data directory path. cfg : Analysis configuration parameters Returns ---- pupils : boolean Completion status (True = successful) """ # If user did not provide a root data directory, we use HOME/mrgaze if data_dir == '': data_dir = os.path.join(os.getenv("HOME"), 'mrgaze') # Full video file paths hostname = os.uname()[1] username = getpass.getuser() ss_dir = os.path.join(data_dir, "%s_%s_%s" % (hostname, username, int(time.time()))) else: ss_dir = data_dir # Load Configuration cfg = config.LoadConfig(data_dir) cfg_ts = time.time() # Output flags verbose = cfg.getboolean('OUTPUT', 'verbose') overwrite = cfg.getboolean('OUTPUT', 'overwrite') # Video information # vin_ext = cfg.get('VIDEO', 'inputextension') vout_ext = cfg.get('VIDEO' ,'outputextension') # vin_fps = cfg.getfloat('VIDEO', 'inputfps') # Flag for freeze frame freeze_frame = False vid_dir = os.path.join(ss_dir, 'videos') res_dir = os.path.join(ss_dir, 'results') vout_path = os.path.join(vid_dir, 'gaze' + vout_ext) cal_vout_path = os.path.join(vid_dir, 'cal' + vout_ext) # if we do live eye-tracking, we read in what would be the output of the live eye-tracking if not live_eyetracking: vin_path = vout_path cal_vin_path = cal_vout_path else: vin_path = 0 # Raw and filtered pupilometry CSV file paths cal_pupils_csv = os.path.join(res_dir, 'cal_pupils.csv') pupils_csv = os.path.join(res_dir, 'gaze_pupils.csv') # Check that output directory exists if not os.path.isdir(res_dir): os.makedirs(res_dir) print('* %s does not exist - creating' % res_dir) if not os.path.isdir(vid_dir): os.makedirs(vid_dir) print('* %s does not exist - creating' % vid_dir) # Set up the LBP cascade classifier LBP_path = os.path.join(utils._package_root(), 'Cascade/cascade.xml') print(' Loading LBP cascade') cascade = cv2.CascadeClassifier(LBP_path) if cascade.empty(): print('* LBP cascade is empty - mrgaze installation problem') return False # Check for output CSV existance and overwrite flag if os.path.isfile(pupils_csv): print('+ Pupilometry output already exists - checking overwrite flag') if overwrite: print('+ Overwrite allowed - continuing') else: print('+ Overwrite forbidden - skipping pupilometry') return True # # Camera Input # print(' Opening camera stream') try: if not live_eyetracking: vin_stream = cv2.VideoCapture(vin_path) cal_vin_stream = cv2.VideoCapture(cal_vin_path) else: vin_stream = cv2.VideoCapture(vin_path) cal_vin_stream = vin_stream except: print('* Problem opening input video stream - skipping pupilometry') return False while not vin_stream.isOpened(): print("Waiting for Camera.") key = utils._waitKey(500) if key == 'ESC': print("User Abort.") break if not vin_stream.isOpened(): print('* Video input stream not opened - skipping pupilometry') return False if not cal_vin_stream.isOpened(): print('* Calibration video input stream not opened - skipping pupilometry') return False # Video FPS from metadata # TODO: may not work with Quicktime videos # fps = vin_stream.get(cv2.cv.CV_CAP_PROP_FPS) # fps = cfg.getfloat('CAMERA', 'fps') # Desired time between frames in milliseconds # time_bw_frames = 1000.0 / fps vin_stream.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 320) vin_stream.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 240) vin_stream.set(cv2.cv.CV_CAP_PROP_FPS, 30) # Total number of frames in video file # nf = vin_stream.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT) # print(' Video has %d frames at %0.3f fps' % (nf, vin_fps)) # Read first preprocessed video frame from stream keep_going, frame_orig = media.LoadVideoFrame(vin_stream, cfg) if keep_going: frame, art_power = media.Preproc(frame_orig, cfg) else: art_power = 0.0 # Get size of preprocessed frame for output video setup nx, ny = frame.shape[1], frame.shape[0] # By default we start in non-calibration mode # switch between gaze/cal modes by pressing key "c" do_cal = False while keep_going: if do_cal == False: # # Output video # if live_eyetracking: print(' Opening output video stream') # Output video codec (MP4V - poor quality compression) # TODO : Find a better multiplatform codec fourcc = cv2.cv.CV_FOURCC('m','p','4','v') try: vout_stream = cv2.VideoWriter(vout_path, fourcc, 30, (nx, ny), True) except: print('* Problem creating output video stream - skipping pupilometry') return False if not vout_stream.isOpened(): print('* Output video not opened - skipping pupilometry') return False # Open pupilometry CSV file to write try: pupils_stream = open(pupils_csv, 'w') except: print('* Problem opening pupilometry CSV file - skipping pupilometry') return False # # Main Video Frame Loop # # Print verbose column headers if verbose: print('') print(' %10s %10s %10s %10s %10s' % ( 'Time (s)', 'Area', 'Blink', 'Artifact', 'FPS')) # Init frame counter fc = 0 # Init processing timer t0 = time.time() t = t0 while keep_going: # check whether config file has been updated, reload of that is the case if fc % 30 == 0: cfg_mtime = os.path.getmtime(os.path.join(data_dir, 'mrgaze.cfg')) if cfg_mtime > cfg_ts: print("Updating Configuration") cfg = config.LoadConfig(data_dir) cfg_ts = time.time() # Current video time in seconds t = time.time() # ------------------------------------- # Pass this frame to pupilometry engine # ------------------------------------- # b4_engine = time.time() pupil_ellipse, roi_rect, blink, glint, frame_rgb = engine.PupilometryEngine(frame, cascade, cfg) # print "Enging took %s ms" % (time.time() - b4_engine) # Derive pupilometry parameters px, py, area = engine.PupilometryPars(pupil_ellipse, glint, cfg) # Write data line to pupilometry CSV file pupils_stream.write( '%0.4f,%0.3f,%0.3f,%0.3f,%d,%0.3f,\n' % (t, area, px, py, blink, art_power) ) if live_eyetracking: # Write output video frame vout_stream.write(frame_orig) # Read next frame, unless we want to figure out the correct settings for this frame if not freeze_frame: keep_going, frame_orig = media.LoadVideoFrame(vin_stream, cfg) if keep_going: frame, art_power = media.Preproc(frame_orig, cfg) else: art_power = 0.0 # Increment frame counter fc = fc + 1 # Report processing FPS if verbose: if fc % 100 == 0: pfps = fc / (time.time() - t0) print(' %10.1f %10.1f %10d %10.3f %10.1f' % ( t, area, blink, art_power, pfps)) t0 = time.time() fc = 0 # wait whether user pressed esc to exit the experiment key = utils._waitKey(1) if key == 'ESC': # Clean up if live_eyetracking: vout_stream.release() pupils_stream.close() keep_going = False elif key == 'c': # Clean up if live_eyetracking: vout_stream.release() pupils_stream.close() do_cal = True print("Starting calibration.") break elif key == 'f': freeze_frame = not freeze_frame else: # do calibration # # Output video # if live_eyetracking: print(' Opening output video stream') # Output video codec (MP4V - poor quality compression) # TODO : Find a better multiplatform codec fourcc = cv2.cv.CV_FOURCC('m','p','4','v') try: cal_vout_stream = cv2.VideoWriter(cal_vout_path, fourcc, 30, (nx, ny), True) except: print('* Problem creating output video stream - skipping pupilometry') return False if not cal_vout_stream.isOpened(): print('* Output video not opened - skipping pupilometry') return False # Open pupilometry CSV file to write try: cal_pupils_stream = open(cal_pupils_csv, 'w') except: print('* Problem opening pupilometry CSV file - skipping pupilometry') return False # # Main Video Frame Loop # # Print verbose column headers if verbose: print('') print(' %10s %10s %10s %10s %10s' % ( 'Time (s)', 'Area', 'Blink', 'Artifact', 'FPS')) # Init frame counter fc = 0 # Init processing timer t0 = time.time() t = t0 while keep_going: # check whether config file has been updated, reload of that is the case if fc % 30 == 0: cfg_mtime = os.path.getmtime(os.path.join(data_dir, 'mrgaze.cfg')) if cfg_mtime > cfg_ts: print("Updating Configuration") cfg = config.LoadConfig(data_dir) cfg_ts = time.time() # Current video time in seconds t = time.time() # ------------------------------------- # Pass this frame to pupilometry engine # ------------------------------------- # b4_engine = time.time() pupil_ellipse, roi_rect, blink, glint, frame_rgb = engine.PupilometryEngine(frame, cascade, cfg) # print "Engine took %s ms" % (time.time() - b4_engine) # Derive pupilometry parameters px, py, area = engine.PupilometryPars(pupil_ellipse, glint, cfg) # Write data line to pupilometry CSV file cal_pupils_stream.write( '%0.4f,%0.3f,%0.3f,%0.3f,%d,%0.3f,\n' % (t, area, px, py, blink, art_power) ) # Write output video frame if live_eyetracking: cal_vout_stream.write(frame_orig) # Read next frame (if available) # if verbose: # b4_frame = time.time() keep_going, frame_orig = media.LoadVideoFrame(vin_stream, cfg) if keep_going: frame, art_power = media.Preproc(frame_orig, cfg) else: art_power = 0.0 #if verbose: # print "Time to load frame: %s" % (time.time() - b4_frame) # Increment frame counter fc = fc + 1 # Report processing FPS if verbose: if fc % 100 == 0: pfps = fc / (time.time() - t0) print(' %10.1f %10.1f %10d %10.3f %10.1f' % ( t, area, blink, art_power, pfps)) t0 = time.time() fc = 0 # wait whether user pressed esc to exit the experiment key = utils._waitKey(1) if key == 'ESC': keep_going = False # Clean up if live_eyetracking: cal_vout_stream.release() cal_pupils_stream.close() elif key == 'v' or not keep_going: do_cal = False print("Stopping calibration.") # Clean up if live_eyetracking: cal_vout_stream.release() cal_pupils_stream.close() break print(' Create calibration model') C, central_fix = calibrate.AutoCalibrate(res_dir, cfg) if not C.any(): print('* Empty calibration matrix detected - skipping') try: print(' Calibrate pupilometry') calibrate.ApplyCalibration(ss_dir, C, central_fix, cfg) except UnboundLocalError: print(' No calibration data found') cv2.destroyAllWindows() vin_stream.release() print('') print(' Generate Report') print(' ---------------') report.WriteReport(ss_dir, cfg) # Return pupilometry timeseries return t, px, py, area, blink, art_power def VideoPupilometry(data_dir, subj_sess, v_stub, cfg): """ Perform pupil boundary ellipse fitting on entire video Arguments ---- data_dir : string Root data directory path. subj_sess : string Subject/Session name used for subdirectory within data_dir v_stub : string Video filename stub, eg 'cal' or 'gaze' cfg : Analysis configuration parameters Returns ---- pupils : boolean Completion status (True = successful) """ # Output flags verbose = cfg.getboolean('OUTPUT', 'verbose') overwrite = cfg.getboolean('OUTPUT','overwrite') # Video information vin_ext = cfg.get('VIDEO', 'inputextension') vout_ext = cfg.get('VIDEO' ,'outputextension') vin_fps = cfg.getfloat('VIDEO', 'inputfps') # Full video file paths ss_dir = os.path.join(data_dir, subj_sess) vid_dir = os.path.join(ss_dir, 'videos') res_dir = os.path.join(ss_dir, 'results') vin_path = os.path.join(vid_dir, v_stub + vin_ext) vout_path = os.path.join(res_dir, v_stub + '_pupils' + vout_ext) # Raw and filtered pupilometry CSV file paths pupils_csv = os.path.join(res_dir, v_stub + '_pupils.csv') # Check that input video file exists if not os.path.isfile(vin_path): print('* %s does not exist - returning' % vin_path) return False # Set up the LBP cascade classifier LBP_path = os.path.join(utils._package_root(), 'Cascade/cascade.xml') print(' Loading LBP cascade') cascade = cv2.CascadeClassifier(LBP_path) if cascade.empty(): print('* LBP cascade is empty - mrgaze installation problem') return False # Check for output CSV existance and overwrite flag if os.path.isfile(pupils_csv): print('+ Pupilometry output already exists - checking overwrite flag') if overwrite: print('+ Overwrite allowed - continuing') else: print('+ Overwrite forbidden - skipping pupilometry') return True # # Input video # print(' Opening input video stream') try: vin_stream = cv2.VideoCapture(vin_path) except: print('* Problem opening input video stream - skipping pupilometry') return False if not vin_stream.isOpened(): print('* Video input stream not opened - skipping pupilometry') return False # Video FPS from metadata # TODO: may not work with Quicktime videos # fps = vin_stream.get(cv2.cv.CV_CAP_PROP_FPS) # Total number of frames in video file nf = vin_stream.get(cv2.CAP_PROP_FRAME_COUNT) print(' Video has %d frames at %0.3f fps' % (nf, vin_fps)) # Read first preprocessed video frame from stream keep_going, frame_orig = media.LoadVideoFrame(vin_stream, cfg) if keep_going: frame, art_power = media.Preproc(frame_orig, cfg) else: art_power = 0.0 # Get size of preprocessed frame for output video setup nx, ny = frame.shape[1], frame.shape[0] # # Output video # print(' Opening output video stream') # Output video codec (MP4V - poor quality compression) fourcc = cv2.VideoWriter_fourcc('m','p','4','v') try: vout_stream = cv2.VideoWriter(vout_path, fourcc, 30, (nx, ny), True) except: print('* Problem creating output video stream - skipping pupilometry') return False if not vout_stream.isOpened(): print('* Output video not opened - skipping pupilometry') return False # Open pupilometry CSV file to write try: pupils_stream = open(pupils_csv, 'w') except: print('* Problem opening pupilometry CSV file - skipping pupilometry') return False # # Main Video Frame Loop # # Print verbose column headers if verbose: print('') print(' %10s %10s %10s %10s %10s %10s' % ( 'Time (s)', '% Done', 'Area', 'Blink', 'Artifact', 'FPS')) # Init frame counter fc = 0 # Init processing timer t0 = time.time() while keep_going: # Current video time in seconds t = fc / vin_fps # ------------------------------------- # Pass this frame to pupilometry engine # ------------------------------------- pupil_ellipse, roi_rect, blink, glint, frame_rgb = engine.PupilometryEngine(frame, cascade, cfg) # Derive pupilometry parameters px, py, area = engine.PupilometryPars(pupil_ellipse, glint, cfg) # Write data line to pupilometry CSV file pupils_stream.write( '%0.3f,%0.3f,%0.3f,%0.3f,%d,%0.3f,\n' % (t, area, px, py, blink, art_power) ) # Write output video frame vout_stream.write(frame_rgb) # Read next frame (if available) keep_going, frame_orig = media.LoadVideoFrame(vin_stream, cfg) if keep_going: frame, art_power = media.Preproc(frame_orig, cfg) else: art_power = 0.0 # Increment frame counter fc = fc + 1 # Report processing FPS if verbose: if fc % 100 == 0: perc_done = fc / float(nf) * 100.0 pfps = fc / (time.time() - t0) print(' %10.1f %10.1f %10.1f %10d %10.3f %10.1f' % ( t, perc_done, area, blink, art_power, pfps)) # Clean up cv2.destroyAllWindows() vin_stream.release() vout_stream.release() pupils_stream.close() # Return pupilometry timeseries return t, px, py, area, blink, art_power
33.051643
112
0.550284
0
0
0
0
0
0
0
0
8,518
0.403314
e9f462dbb1b4b480ae079d20eb179ca06f53f704
1,927
py
Python
aws_glue/combine_csv_files/combine_csv_files.py
veben/aws_python_snippets
39fa3cda8290fb097a5b9e8168829b62ab1af41e
[ "MIT" ]
1
2020-09-08T09:22:25.000Z
2020-09-08T09:22:25.000Z
aws_glue/combine_csv_files/combine_csv_files.py
veben/aws_python_snippets
39fa3cda8290fb097a5b9e8168829b62ab1af41e
[ "MIT" ]
null
null
null
aws_glue/combine_csv_files/combine_csv_files.py
veben/aws_python_snippets
39fa3cda8290fb097a5b9e8168829b62ab1af41e
[ "MIT" ]
1
2020-09-08T09:26:58.000Z
2020-09-08T09:26:58.000Z
from lib_combination.aws_client.aws_client import get_session_for_profile, run_job, get_job, create_job from lib_combination.aws_client.aws_client import upload_file_to_s3_bucket from lib_combination.conf_utils.conf_utils import get_job_name, get_profile_name, get_bucket_name, get_database_name from lib_combination.file_utils.file_utils import get_local_script_folder_path def main(): profile_name = get_profile_name() aws_session = get_session_for_profile(profile_name) job_name = get_job_name() bucket_name = get_bucket_name() base_name = get_database_name() script_name = 'pokemon-v1-v2-combination.py' local_script_sub_path = get_local_script_folder_path() + '/' + script_name remote_script_sub_path = 'combination/scripts' + '/' + script_name remote_script_location = "s3://" + bucket_name + "/" + remote_script_sub_path remote_result_file_full_path = "s3://" + bucket_name + "/combination/csv_file_result_job" remote_tmp_files_path = "s3://" + bucket_name + "/combination/tmp" glue_client = aws_session.client('glue') upload_file_to_s3_bucket(aws_session, local_script_sub_path, bucket_name, remote_script_sub_path) job: dict try: job = get_job(glue_client, job_name) except glue_client.exceptions.EntityNotFoundException: job = create_job(glue_client, job_name, remote_script_location, remote_result_file_full_path, base_name, remote_tmp_files_path) print(f"Create job <{job_name}>") if job['ResponseMetadata']['HTTPStatusCode'] == 200: print(f"Run job <{job_name}>" f"with <{profile_name}> profile...") run_job(glue_client, job_name, remote_result_file_full_path, base_name) else: print(f"Error to define <{job_name}> job") if __name__ == "__main__": main()
41.891304
116
0.70576
0
0
0
0
0
0
0
0
302
0.15672
e9f4dc1139fdd0b79eb9f6a5670984a538e5b297
1,062
py
Python
p850h/rectangle_area.py
l33tdaima/l33tdaima
0a7a9573dc6b79e22dcb54357493ebaaf5e0aa90
[ "MIT" ]
1
2020-02-20T12:04:46.000Z
2020-02-20T12:04:46.000Z
p850h/rectangle_area.py
l33tdaima/l33tdaima
0a7a9573dc6b79e22dcb54357493ebaaf5e0aa90
[ "MIT" ]
null
null
null
p850h/rectangle_area.py
l33tdaima/l33tdaima
0a7a9573dc6b79e22dcb54357493ebaaf5e0aa90
[ "MIT" ]
null
null
null
from typing import List class Solution: def rectangleArea(self, rectangles: List[List[int]]) -> int: xs = sorted(set([x for x1, y1, x2, y2 in rectangles for x in [x1, x2]])) x_i = {v: i for i, v in enumerate(xs)} count = [0] * len(x_i) L = [] for x1, y1, x2, y2 in rectangles: L.append([y1, x1, x2, 1]) L.append([y2, x1, x2, -1]) L.sort() cur_y = cur_x_sum = area = 0 for y, x1, x2, sig in L: area += (y - cur_y) * cur_x_sum cur_y = y for i in range(x_i[x1], x_i[x2]): count[i] += sig cur_x_sum = sum(x2 - x1 if c else 0 for x1, x2, c in zip(xs, xs[1:], count)) return area % (10 ** 9 + 7) # TESTS for rectangles, expected in [ ([[0, 0, 2, 2], [1, 0, 2, 3], [1, 0, 3, 1]], 6), ([[0, 0, 1000000000, 1000000000]], 49), ]: sol = Solution() actual = sol.rectangleArea(rectangles) print("Total area covered by rectangles", rectangles, "->", actual) assert actual == expected
32.181818
88
0.508475
729
0.686441
0
0
0
0
0
0
45
0.042373