hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
e168edf2fd4a9f7e34f7a83253f12b25417c2d21
3,113
py
Python
examples/utils/interaction.py
epuzanov/pivy
2f049c19200ab4a3a1e4740268450496c12359f9
[ "ISC" ]
29
2019-12-28T10:37:16.000Z
2022-02-09T10:48:04.000Z
examples/utils/interaction.py
epuzanov/pivy
2f049c19200ab4a3a1e4740268450496c12359f9
[ "ISC" ]
29
2019-12-26T13:46:11.000Z
2022-03-29T18:14:33.000Z
examples/utils/interaction.py
epuzanov/pivy
2f049c19200ab4a3a1e4740268450496c12359f9
[ "ISC" ]
17
2019-12-29T11:49:32.000Z
2022-02-23T00:28:18.000Z
import sys from PySide2.QtWidgets import QApplication from PySide2.QtGui import QColor from pivy import quarter, coin, graphics, utils class ConnectionMarker(graphics.Marker): def __init__(self, points): super(ConnectionMarker, self).__init__(points, True) class ConnectionPolygon(graphics.Polygon): std_col = "green" def __init__(self, markers): super(ConnectionPolygon, self).__init__( sum([m.points for m in markers], []), True) self.markers = markers for m in self.markers: m.on_drag.append(self.update_polygon) def update_polygon(self): self.points = sum([m.points for m in self.markers], []) @property def drag_objects(self): return self.markers def check_dependency(self): if any([m._delete for m in self.markers]): self.delete() class ConnectionLine(graphics.Line): def __init__(self, markers): super(ConnectionLine, self).__init__( sum([m.points for m in markers], []), True) self.markers = markers for m in self.markers: m.on_drag.append(self.update_line) def update_line(self): self.points = sum([m.points for m in self.markers], []) @property def drag_objects(self): return self.markers def check_dependency(self): if any([m._delete for m in self.markers]): self.delete() def main(): app = QApplication(sys.argv) utils.addMarkerFromSvg("test.svg", "CUSTOM_MARKER", 40) viewer = quarter.QuarterWidget() root = graphics.InteractionSeparator(viewer.sorendermanager) root.pick_radius = 40 m1 = ConnectionMarker([[-1, -1, -1]]) m2 = ConnectionMarker([[-1, 1, -1]]) m3 = ConnectionMarker([[ 1, 1, -1]]) m4 = ConnectionMarker([[ 1, -1, -1]]) m5 = ConnectionMarker([[-1, -1, 1]]) m6 = ConnectionMarker([[-1, 1, 1]]) m7 = ConnectionMarker([[ 1, 1, 1]]) m8 = ConnectionMarker([[ 1, -1, 1]]) points = [m1, m2, m3, m4, m5, m6, m7, m8] l01 = ConnectionLine([m1, m2]) l02 = ConnectionLine([m2, m3]) l03 = ConnectionLine([m3, m4]) l04 = ConnectionLine([m4, m1]) l05 = ConnectionLine([m5, m6]) l06 = ConnectionLine([m6, m7]) l07 = ConnectionLine([m7, m8]) l08 = ConnectionLine([m8, m5]) l09 = ConnectionLine([m1, m5]) l10 = ConnectionLine([m2, m6]) l11 = ConnectionLine([m3, m7]) l12 = ConnectionLine([m4, m8]) lines = [l01, l02, l03, l04, l05, l06, l07, l08, l09, l10, l11, l12] p1 = ConnectionPolygon([m1, m2, m3, m4]) p2 = ConnectionPolygon([m8, m7, m6, m5]) p3 = ConnectionPolygon([m5, m6, m2, m1]) p4 = ConnectionPolygon([m6, m7, m3, m2]) p5 = ConnectionPolygon([m7, m8, m4, m3]) p6 = ConnectionPolygon([m8, m5, m1, m4]) polygons = [p1, p2, p3, p4, p5, p6] root += points + lines + polygons root.register() viewer.setSceneGraph(root) viewer.setBackgroundColor(QColor(255, 255, 255)) viewer.setWindowTitle("minimal") viewer.show() sys.exit(app.exec_()) if __name__ == '__main__': main()
28.824074
72
0.615805
1,277
0.410215
0
0
130
0.04176
0
0
51
0.016383
e169422102864465f508bcbb4404b6271b866de1
4,673
py
Python
utils/data_process.py
cltl/a-proof-zonmw
f6d1a83fc77223bf8b58c9d465aae301269bb679
[ "Apache-2.0" ]
2
2021-02-08T08:24:06.000Z
2021-11-12T10:23:23.000Z
utils/data_process.py
cltl/a-proof-zonmw
f6d1a83fc77223bf8b58c9d465aae301269bb679
[ "Apache-2.0" ]
null
null
null
utils/data_process.py
cltl/a-proof-zonmw
f6d1a83fc77223bf8b58c9d465aae301269bb679
[ "Apache-2.0" ]
2
2021-12-07T22:14:56.000Z
2021-12-14T09:06:16.000Z
""" Functions used in pre-processing of data for the machine learning pipelines. """ import pandas as pd from pandas.api.types import is_scalar from pathlib import Path from sklearn.model_selection import GroupShuffleSplit def concat_annotated(datadir): """ Concatenate all "annotated_df_*_parsed*.pkl" files in `datadir`. The pkl's of the core team should end with "dedup.pkl", i.e. they should be deduplicated by the `parse_annotations.py` script. The ze pkl's need not be deduplicated, as only notes that are not in the annotations of the core team are included. Parameters ---------- datadir: Path path to directory with data Returns ------- DataFrame df of concatenated parsed annotations """ # load core team annotations; pickles are deduplicated during processing annot = pd.concat([pd.read_pickle(fp) for fp in datadir.glob('*_dedup.pkl')], ignore_index=True) # load ze annotations and remove IAA files ze = pd.concat( [pd.read_pickle(fp) for fp in datadir.glob('annotated_df_ze_*.pkl')], ignore_index=True ).query("~NotitieID.isin(@annot.NotitieID)", engine='python') return pd.concat([annot, ze], ignore_index=True) def drop_disregard(df): """ If one token in a note is marked 'disregard', remove the whole note from df. Parameters ---------- df: DataFrame parsed token-level annotations df (created by `parse_annotations.py`) Returns ------- DataFrame df without 'disregard' notes """ df['disregard_note'] = df.groupby('NotitieID').disregard.transform('any') return df.query( "not disregard_note" ).drop(columns=['disregard', 'disregard_note']) def fix_week_14(df): """ For annotations from week 14: - Replace MBW values with `False` - Replace MBW-lvl values with NaN We remove this domain from week 14 since the guidelines for it were changed after this week. Parameters ---------- df: DataFrame parsed token-level annotations df (created by `parse_annotations.py`) Returns ------- DataFrame df without MBW and MBW_lvl labels for week 14 """ df['MBW'] = df.MBW.mask(df.batch == 'week_14', other=False) df['MBW_lvl'] = df.MBW_lvl.mask(df.batch == 'week_14') return df def pad_sen_id(id): """ Add padding zeroes to sen_id. """ note_id, sen_no = id.split('_') return '_'.join([note_id, f"{sen_no:0>4}"]) def anonymize(txt, nlp): """ Replace entities of type PERSON and GPE with 'PERSON', 'GPE'. Return anonymized text and its length. """ doc = nlp(txt) anonym = str(doc) to_repl = {str(ent):ent.label_ for ent in doc.ents if ent.label_ in ['PERSON', 'GPE']} for string, replacement in to_repl.items(): anonym = anonym.replace(string, replacement) return anonym, len(doc) def data_split_groups( df, X_col, y_col, group_col, train_size, ): """ Split data to train / dev / test, while taking into account groups that should stay together. Parameters ---------- df: DataFrame df with the data to split X_col: str name of the column with the data (text) y_col: str name of the column with the gold labels group_col: str name of the column with the groups to take into account when splitting train_size: float proportion of data that should go to the training set Returns ------- train, dev, test: DataFrame's df with train data, df with dev data, df with test data """ # create training set of `train_size` gss = GroupShuffleSplit(n_splits=1, test_size=1-train_size, random_state=19) for train_idx, other_idx in gss.split(df[X_col], df[y_col], groups=df[group_col]): train = df.iloc[train_idx] other = df.iloc[other_idx] # the non-train data is split 50/50 into development and test gss = GroupShuffleSplit(n_splits=1, test_size=0.5, random_state=19) for dev_idx, test_idx in gss.split(other[X_col], other[y_col], groups=other[group_col]): dev = other.iloc[dev_idx] test = other.iloc[test_idx] return train, dev, test def flatten_preds_if_necessary(df): """ Flatten predictions if they are a list in a list. This is necessary because of an issue with the predict.py script prior to the update performed on 15-09-2021. """ cols = [col for col in df.columns if 'pred' in col] for col in cols: test = df[col].iloc[0] if is_scalar(test[0]): continue df[col] = df[col].str[0] return df
29.024845
130
0.650332
0
0
0
0
0
0
0
0
2,731
0.584421
e16c926aa6450fc30f72e50b4463f6a0fcd7d9ad
276
py
Python
venv/Lib/site-packages/numpy/typing/tests/data/fail/lib_utils.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
11
2020-06-28T04:30:26.000Z
2022-03-26T08:40:47.000Z
venv/Lib/site-packages/numpy/typing/tests/data/fail/lib_utils.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
150
2019-09-30T11:22:36.000Z
2021-08-02T06:19:29.000Z
venv/Lib/site-packages/numpy/typing/tests/data/fail/lib_utils.py
ajayiagbebaku/NFL-Model
afcc67a85ca7138c58c3334d45988ada2da158ed
[ "MIT" ]
20
2021-11-07T13:55:56.000Z
2021-12-02T10:54:01.000Z
import numpy as np np.deprecate(1) # E: No overload variant np.deprecate_with_doc(1) # E: incompatible type np.byte_bounds(1) # E: incompatible type np.who(1) # E: incompatible type np.lookfor(None) # E: incompatible type np.safe_eval(None) # E: incompatible type
19.714286
48
0.721014
0
0
0
0
0
0
0
0
134
0.485507
e16db721abb59e634b09680c4bdf3796a1a5328b
6,115
py
Python
VoiceAssistant/Project_Basic_struct/speakListen.py
TheRealMilesLee/Python
d145c848a7ba76e8e523e4fe06e2a0add7e2fae1
[ "MIT" ]
1
2018-12-05T11:04:47.000Z
2018-12-05T11:04:47.000Z
VoiceAssistant/Project_Basic_struct/speakListen.py
MarkHooland/Python
d145c848a7ba76e8e523e4fe06e2a0add7e2fae1
[ "MIT" ]
null
null
null
VoiceAssistant/Project_Basic_struct/speakListen.py
MarkHooland/Python
d145c848a7ba76e8e523e4fe06e2a0add7e2fae1
[ "MIT" ]
null
null
null
import time from colorama import Fore, Back, Style import speech_recognition as sr import os import pyttsx3 import datetime from rich.progress import Progress python = pyttsx3.init("sapi5") # name of the engine is set as Python voices = python.getProperty("voices") #print(voices) python.setProperty("voice", voices[1].id) python.setProperty("rate", 140) def speak(text): """[This function would speak aloud some text provided as parameter] Args: text ([str]): [It is the speech to be spoken] """ python.say(text) python.runAndWait() def greet(g): """Uses the datetime library to generate current time and then greets accordingly. Args: g (str): To decide whether to say hello or good bye """ if g == "start" or g == "s": h = datetime.datetime.now().hour text = '' if h > 12 and h < 17: text = "Hello ! Good Afternoon " elif h < 12 and h > 0: text = "Hello! Good Morning " elif h >= 17 : text = "Hello! Good Evening " text += " I am Python, How may i help you ?" speak(text) elif g == "quit" or g == "end" or g == "over" or g == "e": text = 'Thank you!. Good Bye ! ' speak(text) def hear(): """[It will process the speech of user using Google_Speech_Recognizer(recognize_google)] Returns: [str]: [Speech of user as a string in English(en - IN)] """ r = sr.Recognizer() """Reconizer is a class which has lot of functions related to Speech i/p and o/p. """ r.pause_threshold = 1 # a pause of more than 1 second will stop the microphone temporarily r.energy_threshold = 300 # python by default sets it to 300. It is the minimum input energy to be considered. r.dynamic_energy_threshold = True # pyhton now can dynamically change the threshold energy with sr.Microphone() as source: # read the audio data from the default microphone print(Fore.RED + "\nListening...") #time.sleep(0.5) speech = r.record(source, duration = 9) # option #speech = r.listen(source) # convert speech to text try: #print("Recognizing...") recognizing() speech = r.recognize_google(speech) print(speech + "\n") except Exception as exception: print(exception) return "None" return speech def recognizing(): """Uses the Rich library to print a simulates version of "recognizing" by printing a loading bar. """ with Progress() as pr: rec = pr.add_task("[red]Recognizing...", total = 100) while not pr.finished: pr.update(rec, advance = 1.0) time.sleep(0.01) def long_hear(duration_time = 60): """[It will process the speech of user using Google_Speech_Recognizer(recognize_google)] the difference between the hear() and long_hear() is that - the hear() - records users voice for 9 seconds long_hear() - will record user's voice for the time specified by user. By default, it records for 60 seconds. Returns: [str]: [Speech of user as a string in English(en - IN)] """ r = sr.Recognizer() """Reconizer is a class which has lot of functions related to Speech i/p and o/p. """ r.pause_threshold = 1 # a pause of more than 1 second will stop the microphone temporarily r.energy_threshold = 300 # python by default sets it to 300. It is the minimum input energy to be considered. r.dynamic_energy_threshold = True # pyhton now can dynamically change the threshold energy with sr.Microphone() as source: # read the audio data from the default microphone print(Fore.RED + "\nListening...") #time.sleep(0.5) speech = r.record(source, duration = duration_time) # option #speech = r.listen(source) # convert speech to text try: print(Fore.RED +"Recognizing...") #recognizing() speech = r.recognize_google(speech) #print(speech + "\n") except Exception as exception: print(exception) return "None" return speech def short_hear(duration_time = 5): """[It will process the speech of user using Google_Speech_Recognizer(recognize_google)] the difference between the hear() and long_hear() is that - the hear() - records users voice for 9 seconds long_hear - will record user's voice for the time specified by user. By default, it records for 60 seconds. Returns: [str]: [Speech of user as a string in English(en - IN)] """ r = sr.Recognizer() """Reconizer is a class which has lot of functions related to Speech i/p and o/p. """ r.pause_threshold = 1 # a pause of more than 1 second will stop the microphone temporarily r.energy_threshold = 300 # python by default sets it to 300. It is the minimum input energy to be considered. r.dynamic_energy_threshold = True # pyhton now can dynamically change the threshold energy with sr.Microphone() as source: # read the audio data from the default microphone print(Fore.RED + "\nListening...") #time.sleep(0.5) speech = r.record(source, duration = duration_time) # option #speech = r.listen(source) # convert speech to text try: print(Fore.RED +"Recognizing...") #recognizing() speech = r.recognize_google(speech) #print(speech + "\n") except Exception as exception: print(exception) return "None" return speech if __name__ == '__main__': # print("Enter your name") # name = hear() # speak("Hello " + name) # greet("s") # greet("e") pass #hear() #recognizing()
35.970588
118
0.594113
0
0
0
0
0
0
0
0
3,325
0.543745
e16e5534d48d16f412f05cd80a5b2d4be81a0792
702
py
Python
api/krenak_api/apps/activities/migrations/0008_auto_20210506_2357.py
bacuarabrasil/krenak
ad6a3af5ff162783ec9bd40d07a82f09bf35071b
[ "MIT" ]
null
null
null
api/krenak_api/apps/activities/migrations/0008_auto_20210506_2357.py
bacuarabrasil/krenak
ad6a3af5ff162783ec9bd40d07a82f09bf35071b
[ "MIT" ]
26
2021-03-10T22:07:57.000Z
2021-03-11T12:13:35.000Z
api/krenak_api/apps/activities/migrations/0008_auto_20210506_2357.py
bacuarabrasil/krenak
ad6a3af5ff162783ec9bd40d07a82f09bf35071b
[ "MIT" ]
null
null
null
# Generated by Django 3.1.7 on 2021-05-06 23:57 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('mentorships', '0001_initial'), ('activities', '0007_activity_enrollment'), ] operations = [ migrations.RemoveField( model_name='activity', name='enrollment', ), migrations.AddField( model_name='activity', name='mentorship', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='activities', to='mentorships.mentorship', verbose_name='Mentorship'), ), ]
28.08
175
0.633903
576
0.820513
0
0
0
0
0
0
204
0.290598
e16f4dbb7cb5166fe73ac09acb1a07de0138e0d3
2,330
py
Python
Data_pre/encoding_feature.py
KaifangXu/API
47cb17e35a381e50b25bbda9aa7e5216482af022
[ "MIT" ]
null
null
null
Data_pre/encoding_feature.py
KaifangXu/API
47cb17e35a381e50b25bbda9aa7e5216482af022
[ "MIT" ]
null
null
null
Data_pre/encoding_feature.py
KaifangXu/API
47cb17e35a381e50b25bbda9aa7e5216482af022
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd from scipy import signal,stats from flask import Flask,request,jsonify import json import re import os import data_utils as utils import sklearn.preprocessing as pre configpath=os.path.join(os.path.dirname(__file__),'config.txt') try: config = utils.py_configs(configpath) Signal_SERVER = config["Signal_SERVER"] Signal_PORT = config["Signal_PORT"] except: raise Exception("Configuration error") app = Flask(__name__) @app.route('/Preprocessing/encoding_feature',methods=['POST']) def encoding_feature(): ### 参数以json格式传送 try: file_key=list(request.files.to_dict().keys()) print('k: ',file_key) ## 'file' 是输入的信号数据文件; 'window'表示窗口,一般为`boxcar`, `triang`, `blackman`, `hamming`, `hann`等; 'index'是数据文件中需要进行小波分析的该组数据 keys=['file'] for key in keys: if (key not in file_key): code = 2 output = {"code": code, "KeyError": str(key)} output = json.dumps(output) return output file=request.files.get('file') index=int(request.form['index']) df=pd.read_csv(file) data=df.values cols=df.columns onehot_dict={} for i in range(data.shape[1]): attr_set=set(data[:,i]) temp_dict={} j=0 for attr in attr_set: temp_dict[attr]=j j+=1 onehot_dict[cols[i]]=temp_dict data_to_bi = [] for i in range(data.shape[0]): rows=[] for j in range(data.shape[1]): onehot=onehot_dict[cols[j]][data[i][j]] rows.append(onehot) data_to_bi.append(rows) enc = pre.OneHotEncoder() print(onehot_dict) print(data_to_bi) enc.fit(data_to_bi) a=enc.transform(data_to_bi).toarray() result={'OneHot Result':str(a)} return jsonify(result) except Exception as e: print('Exception: ',e) code = 1 result = {"code":code,"error":re.findall("'([\w\d _]+)'",str(type(e)))[0]} result = jsonify(result) return result if __name__=="__main__": app.run(host=Signal_SERVER, port=int(Signal_PORT))
31.066667
125
0.564807
0
0
0
0
1,834
0.758478
0
0
427
0.176592
e16fa8e2b0d20fbbd86dbb386c3a783cd3b7617b
13,708
py
Python
src/utils.py
mmin0/SigDFP
e2a93faa658741d693b8070bcc7038d2fb7c3e74
[ "MIT" ]
null
null
null
src/utils.py
mmin0/SigDFP
e2a93faa658741d693b8070bcc7038d2fb7c3e74
[ "MIT" ]
null
null
null
src/utils.py
mmin0/SigDFP
e2a93faa658741d693b8070bcc7038d2fb7c3e74
[ "MIT" ]
1
2022-02-28T23:26:23.000Z
2022-02-28T23:26:23.000Z
import torch import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from matplotlib.legend_handler import HandlerTuple from matplotlib.ticker import FormatStrFormatter #from tqdm import tqdm matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 plt.rc('xtick', labelsize=22) # fontsize of the tick labels plt.rc('ytick', labelsize=22) plt.rc('legend', fontsize=25) plt.rc('axes', labelsize=25) plt.rcParams["figure.figsize"] = (7.5, 6) colors = ['lightcoral', 'mediumseagreen', 'darkorange'] def epoch_time(start_time, end_time): elap_time = end_time - start_time elap_min = elap_time//60 elap_sec = elap_time % 60 return elap_min, elap_sec def train(model, dataloader, optimizer, criterion, initial, prev_m, device, depth=4): """ train model for alpha for one loop over dataloader """ epoch_loss = 0 model.train() # set model to train mode i = 0 for batch in dataloader: optimizer.zero_grad() bm, cn = batch X = model(bm.to(device), cn.to(device), prev_m[i*dataloader.batch_size:(i+1)*dataloader.batch_size], initial[i*dataloader.batch_size:(i+1)*dataloader.batch_size].to(device)) strategy = model.strategy loss = criterion(X, prev_m[i*dataloader.batch_size:(i+1)*dataloader.batch_size], strategy) loss.backward(retain_graph=True) optimizer.step() epoch_loss += loss.item() i+=1 return epoch_loss/len(dataloader) def evaluate(model, dataloader, criterion, initial, prev_m, device, depth=4): epoch_loss = 0 #initialize #N = prev_m.size()[0] - 1 #m = torch.zeros(N+1, 1, device=device) #sigs = torch.zeros(signatory.signature_channels(2, depth), device=device) model.eval() # set model to train mode i = 0 for batch in dataloader: bm, cn = batch X = model(bm.to(device), cn.to(device), prev_m[i*dataloader.batch_size:(i+1)*dataloader.batch_size], initial[i*dataloader.batch_size:(i+1)*dataloader.batch_size].to(device)) strategy = model.strategy loss = criterion(X, prev_m[i*dataloader.batch_size:(i+1)*dataloader.batch_size], strategy) epoch_loss += loss.item() i+=1 return epoch_loss/len(dataloader) def train1(model, dataloader, optimizer, criterion, initial, prev_m, device, depth=4): """ train model for alpha for one loop over dataloader """ epoch_loss = 0 model.train() # set model to train mode i = 0 for batch in dataloader: optimizer.zero_grad() bm, cn, typeVec = batch X = model(bm.to(device), cn.to(device), typeVec.to(device), prev_m[i*dataloader.batch_size:(i+1)*dataloader.batch_size], initial[i*dataloader.batch_size:(i+1)*dataloader.batch_size].to(device)) strategy = model.strategy loss = criterion(X, prev_m[i*dataloader.batch_size:(i+1)*dataloader.batch_size], strategy) loss.backward(retain_graph=True) optimizer.step() epoch_loss += loss.item() i+=1 return epoch_loss/len(dataloader) def evaluate1(model, dataloader, criterion, initial, prev_m, device, depth=4): epoch_loss = 0 model.eval() # set model to train mode i = 0 for batch in dataloader: bm, cn, typeVec = batch X = model(bm.to(device), cn.to(device), typeVec.to(device), prev_m[i*dataloader.batch_size:(i+1)*dataloader.batch_size], initial[i*dataloader.batch_size:(i+1)*dataloader.batch_size].to(device)) strategy = model.strategy loss = criterion(X, prev_m[i*dataloader.batch_size:(i+1)*dataloader.batch_size], strategy) epoch_loss += loss.item() i+=1 return epoch_loss/len(dataloader) def train2(model, dataloader, optimizer, criterion, initial, prev_m, prev_c, device, depth=4): """ train model for alpha for one loop over dataloader """ epoch_loss = 0 model.train() # set model to train mode i = 0 for batch in dataloader: optimizer.zero_grad() bm, cn, typeVec = batch X = model(bm.to(device), cn.to(device), typeVec.to(device), prev_m[i*dataloader.batch_size:(i+1)*dataloader.batch_size], prev_c[i*dataloader.batch_size:(i+1)*dataloader.batch_size], initial[i*dataloader.batch_size:(i+1)*dataloader.batch_size].to(device)) strategy = model.strategy loss = criterion(X, prev_m[i*dataloader.batch_size:(i+1)*dataloader.batch_size], strategy, prev_c[i*dataloader.batch_size:(i+1)*dataloader.batch_size]) loss.backward(retain_graph=True) optimizer.step() epoch_loss += loss.item() i+=1 return epoch_loss/len(dataloader) def evaluate2(model, dataloader, criterion, initial, prev_m, prev_c, device, depth=4): epoch_loss = 0 #initialize #N = prev_m.size()[0] - 1 #m = torch.zeros(N+1, 1, device=device) #sigs = torch.zeros(signatory.signature_channels(2, depth), device=device) model.eval() # set model to train mode i = 0 for batch in dataloader: bm, cn, typeVec = batch X = model(bm.to(device), cn.to(device), typeVec.to(device), prev_m[i*dataloader.batch_size:(i+1)*dataloader.batch_size], prev_c[i*dataloader.batch_size:(i+1)*dataloader.batch_size], initial[i*dataloader.batch_size:(i+1)*dataloader.batch_size].to(device)) strategy = model.strategy loss = criterion(X, prev_m[i*dataloader.batch_size:(i+1)*dataloader.batch_size], strategy, prev_c[i*dataloader.batch_size:(i+1)*dataloader.batch_size]) epoch_loss += loss.item() i+=1 return epoch_loss/len(dataloader) def plotErrors(error, target_addr, title, filename): fig = plt.figure() plt.title(title) plt.xlabel("FP rounds") plt.ylabel("Errors") plt.plot(error, color='blue') fig.savefig(target_addr+'/'+filename+'.pdf') def plotUtil(util, ylim, ytrue, target_addr, title, filename, ins_loc=None, ins_ylim=None, cost=False): if cost: n = len(util) fig, ax = plt.subplots(figsize=(7.5, 6)) if title: plt.title(title) if ylim: ax.set_ylim(ylim) ax.set_xlabel(r"FP iterations $n$") ax.set_ylabel("validation cost") l1 = ax.axhline(ytrue, color="indianred", ls="--") l2, = ax.plot(util, color='darkcyan', ls="-") if ins_loc: axins = ax.inset_axes(ins_loc) if ins_ylim: axins.set_ylim(ins_ylim) axins.plot(range(n-50, n), util[-50:], color='darkcyan', ls="-") axins.axhline(ytrue, color="indianred", ls="--") ax.indicate_inset_zoom(axins) ax.legend((l1, l2), ("true cost", "validation cost"), loc="upper center") plt.tight_layout() fig.savefig(target_addr+'/'+filename+'.pdf') else: n = len(util) fig, ax = plt.subplots(figsize=(7.5, 6)) if title: plt.title(title) if ylim: ax.set_ylim(ylim) ax.set_xlabel(r"FP iterations $n$") ax.set_ylabel("validation utility") l1 = ax.axhline(ytrue, color="indianred", ls="--") l2, = ax.plot(util, color='darkcyan', ls="-") if ins_loc: axins = ax.inset_axes(ins_loc) if ins_ylim: axins.set_ylim(ins_ylim) axins.plot(range(n-50, n), util[-50:], color='darkcyan', ls="-") axins.axhline(ytrue, color="indianred", ls="--") ax.indicate_inset_zoom(axins) ax.legend((l1, l2), ("true utility", "validation utility"), loc="upper center") plt.tight_layout() fig.savefig(target_addr+'/'+filename+'.pdf') def plotMeanDiff_bencmarkvspredicted(data, target_addr, title, filename, ylim=None, label1=None, label2=None, ylabel=None, legendloc=None, round_=False): fig = plt.figure() if title: plt.title(title) x, next_m, m = data if ylim: plt.ylim(ylim) c = len(next_m) lines = [] lines_pred = [] for i in range(c): l, = plt.plot(x, next_m[i], color=colors[i]) lines.append(l) for i in range(c): l, = plt.plot(x, m[i], color=colors[i], ls='--', marker='.') lines_pred.append(l) #plt.plot(x, next_m-m, label='diff') plt.xlabel(r"time $t$") if ylabel: plt.ylabel(ylabel) if legendloc: plt.legend([tuple(lines), tuple(lines_pred)], [label1, label2], loc=legendloc, ncol=2, handler_map={tuple: HandlerTuple(ndivide=None)}) else: plt.legend([tuple(lines), tuple(lines_pred)], [label1, label2], loc="upper left", ncol=2, handler_map={tuple: HandlerTuple(ndivide=None)}) if round_: plt.gca().yaxis.set_major_formatter(FormatStrFormatter('%.2f')) plt.tight_layout() fig.savefig(target_addr+'/'+filename+'.pdf') def L2distance(x, y): b, N, _ = x.size() return ((torch.sum(torch.pow(x - y, 2))/N/b)**0.5).item() def plotSDE(benchmark, predicted, target_addr, title, filename, ylim=None, label1=None, label2=None, legendloc=None): """ input: benchmark -- list[paths] predicted -- list[paths] """ fig = plt.figure() if title: plt.title(title) if ylim: plt.ylim(ylim) t = [i/100 for i in range(101)] c = len(benchmark) lines = [] lines_pred = [] for i in range(c): l, = plt.plot(t, benchmark[i], color=colors[i], ls='-') lines.append(l) for i in range(c): l, = plt.plot(t, predicted[i], color=colors[i], ls='--', marker='.') lines_pred.append(l) if legendloc: plt.legend([tuple(lines), tuple(lines_pred)], [label1, label2], loc=legendloc, ncol=2, handler_map={tuple: HandlerTuple(ndivide=None)}) else: plt.legend([tuple(lines), tuple(lines_pred)], [label1, label2], loc="upper left", ncol=2, handler_map={tuple: HandlerTuple(ndivide=None)}) plt.xlabel(r"time $t$") plt.ylabel(r"$X_t$ and $\widehat{X}_t$") plt.tight_layout() fig.savefig(target_addr+'/'+filename+'.pdf') def plotC(benchmark, predicted, target_addr, title, filename, label1=None, label2=None, ylabel=None): """ input: benchmark -- list[paths] predicted -- list[paths] """ t = [i/100 for i in range(100)] fig = plt.figure() if title: plt.title(title) c = len(benchmark) lines = [] lines_pred = [] for i in range(c): l, = plt.plot(t, benchmark[i], color=colors[i], ls='-') lines.append(l) for i in range(c): l, = plt.plot(t, predicted[i], color=colors[i], ls='--', marker='.') lines_pred.append(l) plt.legend([tuple(lines), tuple(lines_pred)], [label1, label2], loc="upper left",ncol=2, handler_map={tuple: HandlerTuple(ndivide=None)}) plt.xlabel(r"time $t$") if ylabel: plt.ylabel(ylabel) plt.tight_layout() fig.savefig(target_addr+'/'+filename+'.pdf') def plotpi(benchmark, predicted, target_addr, title, filename, ylim = None, label1=None, label2=None, ylabel=None, legendloc = None): """ input: benchmark -- list[paths] predicted -- list[paths] """ fig = plt.figure() if title: plt.title(title) if ylim: plt.ylim(ylim) t = [i/100 for i in range(100)] c = len(benchmark) lines = [] lines_pred = [] for i in range(c): l, = plt.plot(t, benchmark[i], color=colors[i], ls='-') lines.append(l) for i in range(c): l, = plt.plot(t, predicted[i], color=colors[i], ls='--', marker='.') lines_pred.append(l) if legendloc: plt.legend([tuple(lines), tuple(lines_pred)], [label1, label2], loc=legendloc, ncol=2, handler_map={tuple: HandlerTuple(ndivide=None)}) else: plt.legend([tuple(lines), tuple(lines_pred)], [label1, label2], loc="upper left", ncol=2, handler_map={tuple: HandlerTuple(ndivide=None)}) plt.xlabel(r"time $t$") if ylabel: plt.ylabel(ylabel) plt.tight_layout() fig.savefig(target_addr+'/'+filename+'.pdf') def plotmC(benchmark, predicted, target_addr, title, filename, label1=None, label2=None, ylabel=None): """ input: benchmark -- list[paths] predicted -- list[paths] """ N = predicted.shape[1] t = [1/N*i for i in range(N)] fig = plt.figure() if title: plt.title(title) c = len(predicted) lines = [] lines_pred = [] l, = plt.plot(t, benchmark, color='darkgrey', ls='-', linewidth=5) lines.append(l) for i in range(c): l, = plt.plot(t, predicted[i], color=colors[i], ls='--', marker='.') lines_pred.append(l) plt.legend([tuple(lines), tuple(lines_pred)], [label1, label2], loc="upper left", ncol=2, handler_map={tuple: HandlerTuple(ndivide=None)}) plt.xlabel(r"time $t$") if ylabel: plt.ylabel(ylabel) plt.tight_layout() fig.savefig(target_addr+'/'+filename+'.pdf')
33.031325
153
0.587978
0
0
0
0
0
0
0
0
1,783
0.13007
e170d7139c31119e1eb476ae084b331e0ed0a722
100
py
Python
lambdata_doinalangille/__init__.py
doinalangille/lambdata_doinalangille
f57e1f9f87615bc9d1d1cfada530a542ea4551a1
[ "MIT" ]
null
null
null
lambdata_doinalangille/__init__.py
doinalangille/lambdata_doinalangille
f57e1f9f87615bc9d1d1cfada530a542ea4551a1
[ "MIT" ]
3
2020-03-24T18:29:36.000Z
2021-02-02T22:42:20.000Z
lambdata_doinalangille/__init__.py
doinalangille/lambdata_doinalangille
f57e1f9f87615bc9d1d1cfada530a542ea4551a1
[ "MIT" ]
1
2020-02-11T23:05:07.000Z
2020-02-11T23:05:07.000Z
""" lambdata - a collection of Data Science helper functions """ import pandas as pd import sklearn
16.666667
56
0.76
0
0
0
0
0
0
0
0
64
0.64
e171d508606a36edd465712b9674cad13c99de99
1,554
py
Python
jsConsole/__init__.py
Animenosekai/jsConsole
e2604988f20a0d0d93578f786ee7beaf72b9afbc
[ "MIT" ]
null
null
null
jsConsole/__init__.py
Animenosekai/jsConsole
e2604988f20a0d0d93578f786ee7beaf72b9afbc
[ "MIT" ]
null
null
null
jsConsole/__init__.py
Animenosekai/jsConsole
e2604988f20a0d0d93578f786ee7beaf72b9afbc
[ "MIT" ]
null
null
null
""" pyJsConsole wrapper. © Anime no Sekai - 2020 """ from .internal.javascript import classes as JSClass console = JSClass._Console() document = JSClass._Document() history = JSClass._History() Math = JSClass._Math() navigator = JSClass._Navigator() screen = JSClass._Screen() window = JSClass._Window() browser = JSClass.BrowserObject ''' import threading from lifeeasy import sleep def reloadElements(): global document global window lastURL = 'data:,' while True: sleep(0.1) try: if JSClass.evaluate('window.location.href') != lastURL: document = JSClass._Document() window = JSClass._Window() lastURL = JSClass.evaluate('window.location.href') except: break thread = threading.Thread(target=reloadElements) thread.daemon = True thread.start() ''' def newDocument(): return JSClass._Document() def newWindow(): return JSClass._Window() def newHistory(): return JSClass._History() def fresh(): return (JSClass._Document(), JSClass._Window(), JSClass._History()) def clearInterval(intervalID): JSClass.clearInterval(intervalID) def clearTimeout(timeoutID): JSClass.clearTimeout(timeoutID) def evaluate(code_to_execute, return_value=False): return JSClass.evaluate(code_to_execute, return_value=return_value) def setInterval(function, milliseconds): return JSClass.setInterval(function, milliseconds) def setTimeout(function, milliseconds): return JSClass.setTimeout(function, milliseconds)
23.19403
71
0.70592
0
0
0
0
0
0
0
0
582
0.374277
e1741137c9f22621cbb2d5cd7d5c872d48ea9402
45,528
py
Python
grr/client/client_actions/file_finder_test.py
panhania/grr
fe16a7311a528e31fe0e315a880e98273b8df960
[ "Apache-2.0" ]
null
null
null
grr/client/client_actions/file_finder_test.py
panhania/grr
fe16a7311a528e31fe0e315a880e98273b8df960
[ "Apache-2.0" ]
null
null
null
grr/client/client_actions/file_finder_test.py
panhania/grr
fe16a7311a528e31fe0e315a880e98273b8df960
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """Tests the client file finder action.""" import collections import glob import hashlib import os import platform import shutil import subprocess import unittest import mock import psutil import unittest from grr.client import comms from grr.client.client_actions import file_finder as client_file_finder from grr.lib import flags from grr.lib import rdfvalue from grr.lib import utils from grr.lib.rdfvalues import client as rdf_client from grr.lib.rdfvalues import crypto as rdf_crypto from grr.lib.rdfvalues import file_finder as rdf_file_finder from grr.lib.rdfvalues import standard as rdf_standard from grr.test_lib import client_test_lib from grr.test_lib import test_lib def MyStat(path): stat_obj = MyStat.old_target(path) if path.endswith("auth.log"): res = list(stat_obj) # Sets atime, ctime, and mtime to some time in 2022. res[-1] = 1672466423 res[-2] = 1672466423 res[-3] = 1672466423 return os.stat_result(res) return stat_obj class FileFinderTest(client_test_lib.EmptyActionTest): def setUp(self): super(FileFinderTest, self).setUp() self.stat_action = rdf_file_finder.FileFinderAction.Stat() def _GetRelativeResults(self, raw_results, base_path=None): base_path = base_path or self.base_path return [ result.stat_entry.pathspec.path[len(base_path) + 1:] for result in raw_results ] def _RunFileFinder(self, paths, action, conditions=None, follow_links=True, **kw): return self.RunAction( client_file_finder.FileFinderOS, arg=rdf_file_finder.FileFinderArgs( paths=paths, action=action, conditions=conditions, process_non_regular_files=True, follow_links=follow_links, **kw)) def testFileFinder(self): paths = [self.base_path + "/*"] results = self._RunFileFinder(paths, self.stat_action) self.assertEqual( self._GetRelativeResults(results), os.listdir(self.base_path)) profiles_path = os.path.join(self.base_path, "profiles/v1.0") paths = [os.path.join(self.base_path, "profiles/v1.0") + "/*"] results = self._RunFileFinder(paths, self.stat_action) self.assertEqual( self._GetRelativeResults(results, base_path=profiles_path), os.listdir(profiles_path)) def testRecursiveGlob(self): paths = [self.base_path + "/**3"] results = self._RunFileFinder(paths, self.stat_action) relative_results = self._GetRelativeResults(results) self.assertIn("a/b", relative_results) self.assertIn("a/b/c", relative_results) self.assertIn("a/b/d", relative_results) self.assertNotIn("a/b/c/helloc.txt", relative_results) self.assertNotIn("a/b/d/hellod.txt", relative_results) paths = [self.base_path + "/**4"] results = self._RunFileFinder(paths, self.stat_action) relative_results = self._GetRelativeResults(results) self.assertIn("a/b", relative_results) self.assertIn("a/b/c", relative_results) self.assertIn("a/b/d", relative_results) self.assertIn("a/b/c/helloc.txt", relative_results) self.assertIn("a/b/d/hellod.txt", relative_results) def testRegexGlob(self): paths = [self.base_path + "/rekall*.gz"] results = self._RunFileFinder(paths, self.stat_action) relative_results = self._GetRelativeResults(results) for glob_result in glob.glob(self.base_path + "/rekall*gz"): self.assertIn(os.path.basename(glob_result), relative_results) def testRecursiveRegexGlob(self): paths = [self.base_path + "/**3/*.gz"] results = self._RunFileFinder(paths, self.stat_action) relative_results = self._GetRelativeResults(results) self.assertIn("profiles/v1.0/nt/index.gz", relative_results) self.assertIn("bigquery/ExportedFile.json.gz", relative_results) for r in relative_results: self.assertEqual(os.path.splitext(r)[1], ".gz") paths = [self.base_path + "/**2/*.gz"] results = self._RunFileFinder(paths, self.stat_action) relative_results = self._GetRelativeResults(results) self.assertNotIn("profiles/v1.0/nt/index.gz", relative_results) self.assertIn("bigquery/ExportedFile.json.gz", relative_results) for r in relative_results: self.assertEqual(os.path.splitext(r)[1], ".gz") def testDoubleRecursionFails(self): paths = [self.base_path + "/**/**/test.exe"] with self.assertRaises(ValueError): self._RunFileFinder(paths, self.stat_action) def testInvalidInput(self): paths = [self.base_path + "/r**z"] with self.assertRaises(ValueError): self._RunFileFinder(paths, self.stat_action) paths = [self.base_path + "/**.exe"] with self.assertRaises(ValueError): self._RunFileFinder(paths, self.stat_action) paths = [self.base_path + "/test**"] with self.assertRaises(ValueError): self._RunFileFinder(paths, self.stat_action) def testGroupings(self): paths = [self.base_path + "/a/b/{c,d}/hello*"] results = self._RunFileFinder(paths, self.stat_action) relative_results = self._GetRelativeResults(results) self.assertIn("a/b/c/helloc.txt", relative_results) self.assertIn("a/b/d/hellod.txt", relative_results) paths = [self.base_path + "/a/b/*/hello{c,d}.txt"] results = self._RunFileFinder(paths, self.stat_action) relative_results = self._GetRelativeResults(results) self.assertIn("a/b/c/helloc.txt", relative_results) self.assertIn("a/b/d/hellod.txt", relative_results) def testFollowLinks(self): try: # This sets up a structure as follows: # tmp_dir/lnk_test/contains_lnk # tmp_dir/lnk_test/contains_lnk/lnk # tmp_dir/lnk_test/lnk_target # tmp_dir/lnk_test/lnk_target/target # lnk is a symbolic link to lnk_target. A recursive find in # contains_lnk will find the target iff follow_links is allowed. test_dir = os.path.join(self.temp_dir, "lnk_test") contains_lnk = os.path.join(test_dir, "contains_lnk") lnk = os.path.join(contains_lnk, "lnk") lnk_target = os.path.join(test_dir, "lnk_target") lnk_target_contents = os.path.join(lnk_target, "target") os.mkdir(test_dir) os.mkdir(contains_lnk) os.mkdir(lnk_target) os.symlink(lnk_target, lnk) with open(lnk_target_contents, "wb") as fd: fd.write("sometext") paths = [contains_lnk + "/**"] results = self._RunFileFinder(paths, self.stat_action) relative_results = self._GetRelativeResults(results, base_path=test_dir) self.assertIn("contains_lnk/lnk", relative_results) self.assertIn("contains_lnk/lnk/target", relative_results) results = self._RunFileFinder(paths, self.stat_action, follow_links=False) relative_results = self._GetRelativeResults(results, base_path=test_dir) self.assertIn("contains_lnk/lnk", relative_results) self.assertNotIn("contains_lnk/lnk/target", relative_results) finally: try: shutil.rmtree(test_dir) except OSError: pass def _PrepareTimestampedFiles(self): searching_path = os.path.join(self.base_path, "searching") test_dir = os.path.join(self.temp_dir, "times_test") os.mkdir(test_dir) for f in ["dpkg.log", "dpkg_false.log", "auth.log"]: src = os.path.join(searching_path, f) dst = os.path.join(test_dir, f) shutil.copy(src, dst) return test_dir def RunAndCheck(self, paths, action=None, conditions=None, expected=None, unexpected=None, base_path=None, **kw): action = action or self.stat_action raw_results = self._RunFileFinder( paths, action, conditions=conditions, **kw) relative_results = self._GetRelativeResults( raw_results, base_path=base_path) for f in unexpected: self.assertNotIn(f, relative_results) for f in expected: self.assertIn(f, relative_results) def testLiteralMatchCondition(self): searching_path = os.path.join(self.base_path, "searching") paths = [searching_path + "/{dpkg.log,dpkg_false.log,auth.log}"] literal = "pam_unix(ssh:session)" clmc = rdf_file_finder.FileFinderContentsLiteralMatchCondition bytes_before = 10 bytes_after = 20 condition = rdf_file_finder.FileFinderCondition( condition_type="CONTENTS_LITERAL_MATCH", contents_literal_match=clmc( literal=literal, bytes_before=bytes_before, bytes_after=bytes_after)) raw_results = self._RunFileFinder( paths, self.stat_action, conditions=[condition]) relative_results = self._GetRelativeResults( raw_results, base_path=searching_path) self.assertEqual(len(relative_results), 1) self.assertIn("auth.log", relative_results) self.assertEqual(len(raw_results[0].matches), 1) buffer_ref = raw_results[0].matches[0] orig_data = open(os.path.join(searching_path, "auth.log")).read() self.assertEqual( len(buffer_ref.data), bytes_before + len(literal) + bytes_after) self.assertEqual( orig_data[buffer_ref.offset:buffer_ref.offset + buffer_ref.length], buffer_ref.data) def testLiteralMatchConditionAllHits(self): searching_path = os.path.join(self.base_path, "searching") paths = [searching_path + "/{dpkg.log,dpkg_false.log,auth.log}"] clmc = rdf_file_finder.FileFinderContentsLiteralMatchCondition bytes_before = 10 bytes_after = 20 literal = "mydomain.com" condition = rdf_file_finder.FileFinderCondition( condition_type="CONTENTS_LITERAL_MATCH", contents_literal_match=clmc( literal=literal, mode="ALL_HITS", bytes_before=bytes_before, bytes_after=bytes_after)) raw_results = self._RunFileFinder( paths, self.stat_action, conditions=[condition]) self.assertEqual(len(raw_results), 1) self.assertEqual(len(raw_results[0].matches), 6) for buffer_ref in raw_results[0].matches: self.assertEqual( buffer_ref.data[bytes_before:bytes_before + len(literal)], literal) def testLiteralMatchConditionLargeFile(self): paths = [os.path.join(self.base_path, "new_places.sqlite")] literal = "RecentlyBookmarked" clmc = rdf_file_finder.FileFinderContentsLiteralMatchCondition bytes_before = 10 bytes_after = 20 condition = rdf_file_finder.FileFinderCondition( condition_type="CONTENTS_LITERAL_MATCH", contents_literal_match=clmc( literal=literal, mode="ALL_HITS", bytes_before=bytes_before, bytes_after=bytes_after)) raw_results = self._RunFileFinder( paths, self.stat_action, conditions=[condition]) self.assertEqual(len(raw_results), 1) self.assertEqual(len(raw_results[0].matches), 1) buffer_ref = raw_results[0].matches[0] with open(paths[0], "rb") as fd: fd.seek(buffer_ref.offset) self.assertEqual(buffer_ref.data, fd.read(buffer_ref.length)) self.assertEqual( buffer_ref.data[bytes_before:bytes_before + len(literal)], literal) def testRegexMatchCondition(self): searching_path = os.path.join(self.base_path, "searching") paths = [searching_path + "/{dpkg.log,dpkg_false.log,auth.log}"] regex = r"pa[nm]_o?unix\(s{2}h" bytes_before = 10 bytes_after = 20 crmc = rdf_file_finder.FileFinderContentsRegexMatchCondition condition = rdf_file_finder.FileFinderCondition( condition_type="CONTENTS_REGEX_MATCH", contents_regex_match=crmc( regex=regex, bytes_before=bytes_before, bytes_after=bytes_after, )) raw_results = self._RunFileFinder( paths, self.stat_action, conditions=[condition]) relative_results = self._GetRelativeResults( raw_results, base_path=searching_path) self.assertEqual(len(relative_results), 1) self.assertIn("auth.log", relative_results) self.assertEqual(len(raw_results[0].matches), 1) buffer_ref = raw_results[0].matches[0] orig_data = open(os.path.join(searching_path, "auth.log")).read() self.assertEqual( orig_data[buffer_ref.offset:buffer_ref.offset + buffer_ref.length], buffer_ref.data) def testRegexMatchConditionAllHits(self): searching_path = os.path.join(self.base_path, "searching") paths = [searching_path + "/{dpkg.log,dpkg_false.log,auth.log}"] bytes_before = 10 bytes_after = 20 crmc = rdf_file_finder.FileFinderContentsRegexMatchCondition regex = r"mydo....\.com" condition = rdf_file_finder.FileFinderCondition( condition_type="CONTENTS_REGEX_MATCH", contents_regex_match=crmc( regex=regex, mode="ALL_HITS", bytes_before=bytes_before, bytes_after=bytes_after, )) raw_results = self._RunFileFinder( paths, self.stat_action, conditions=[condition]) self.assertEqual(len(raw_results), 1) self.assertEqual(len(raw_results[0].matches), 6) for buffer_ref in raw_results[0].matches: needle = "mydomain.com" self.assertEqual(buffer_ref.data[bytes_before:bytes_before + len(needle)], needle) def testHashAction(self): paths = [os.path.join(self.base_path, "hello.exe")] hash_action = rdf_file_finder.FileFinderAction( action_type=rdf_file_finder.FileFinderAction.Action.HASH) results = self._RunFileFinder(paths, hash_action) self.assertEqual(len(results), 1) res = results[0] data = open(paths[0], "rb").read() self.assertEqual(res.hash_entry.num_bytes, len(data)) self.assertEqual(res.hash_entry.md5.HexDigest(), hashlib.md5(data).hexdigest()) self.assertEqual(res.hash_entry.sha1.HexDigest(), hashlib.sha1(data).hexdigest()) self.assertEqual(res.hash_entry.sha256.HexDigest(), hashlib.sha256(data).hexdigest()) hash_action = rdf_file_finder.FileFinderAction( action_type=rdf_file_finder.FileFinderAction.Action.HASH, hash=rdf_file_finder.FileFinderHashActionOptions( max_size=100, oversized_file_policy="SKIP")) results = self._RunFileFinder(paths, hash_action) self.assertEqual(len(results), 1) res = results[0] self.assertFalse(res.HasField("hash")) hash_action = rdf_file_finder.FileFinderAction( action_type=rdf_file_finder.FileFinderAction.Action.HASH, hash=rdf_file_finder.FileFinderHashActionOptions( max_size=100, oversized_file_policy="HASH_TRUNCATED")) results = self._RunFileFinder(paths, hash_action) self.assertEqual(len(results), 1) res = results[0] data = open(paths[0], "rb").read()[:100] self.assertEqual(res.hash_entry.num_bytes, len(data)) self.assertEqual(res.hash_entry.md5.HexDigest(), hashlib.md5(data).hexdigest()) self.assertEqual(res.hash_entry.sha1.HexDigest(), hashlib.sha1(data).hexdigest()) self.assertEqual(res.hash_entry.sha256.HexDigest(), hashlib.sha256(data).hexdigest()) def _RunFileFinderDownloadHello(self, upload, opts=None): action = rdf_file_finder.FileFinderAction.Download() action.download = opts upload.return_value = rdf_client.UploadedFile( bytes_uploaded=42, file_id="foo", hash=rdf_crypto.Hash()) hello_path = os.path.join(self.base_path, "hello.exe") return self._RunFileFinder([hello_path], action) @mock.patch.object(comms.GRRClientWorker, "UploadFile") def testDownloadActionDefault(self, upload): results = self._RunFileFinderDownloadHello(upload) self.assertEquals(len(results), 1) self.assertTrue(upload.called_with(max_bytes=None)) self.assertTrue(results[0].HasField("uploaded_file")) self.assertEquals(results[0].uploaded_file, upload.return_value) @mock.patch.object(comms.GRRClientWorker, "UploadFile") def testDownloadActionSkip(self, upload): opts = rdf_file_finder.FileFinderDownloadActionOptions( max_size=0, oversized_file_policy="SKIP") results = self._RunFileFinderDownloadHello(upload, opts=opts) self.assertEquals(len(results), 1) self.assertFalse(upload.called) self.assertFalse(results[0].HasField("uploaded_file")) @mock.patch.object(comms.GRRClientWorker, "UploadFile") def testDownloadActionTruncate(self, upload): opts = rdf_file_finder.FileFinderDownloadActionOptions( max_size=42, oversized_file_policy="DOWNLOAD_TRUNCATED") results = self._RunFileFinderDownloadHello(upload, opts=opts) self.assertEquals(len(results), 1) self.assertTrue(upload.called_with(max_bytes=42)) self.assertTrue(results[0].HasField("uploaded_file")) self.assertEquals(results[0].uploaded_file, upload.return_value) EXT2_COMPR_FL = 0x00000004 EXT2_IMMUTABLE_FL = 0x00000010 # TODO(hanuszczak): Maybe it would make sense to refactor this to a helper # constructor of the `rdf_file_finder.FileFinderAction`. @staticmethod def _StatAction(**kwargs): action_type = rdf_file_finder.FileFinderAction.Action.STAT opts = rdf_file_finder.FileFinderStatActionOptions(**kwargs) return rdf_file_finder.FileFinderAction(action_type=action_type, stat=opts) @unittest.skipIf(platform.system() != "Linux", "requires Linux") def testStatExtFlags(self): with test_lib.AutoTempFilePath() as temp_filepath: if subprocess.call(["which", "chattr"]) != 0: raise unittest.SkipTest("`chattr` command is not available") if subprocess.call(["chattr", "+c", temp_filepath]) != 0: reason = "extended attributes not supported by filesystem" raise unittest.SkipTest(reason) action = self._StatAction() results = self._RunFileFinder([temp_filepath], action) self.assertEqual(len(results), 1) stat_entry = results[0].stat_entry self.assertTrue(stat_entry.st_flags_linux & self.EXT2_COMPR_FL) self.assertFalse(stat_entry.st_flags_linux & self.EXT2_IMMUTABLE_FL) def testStatExtAttrs(self): with test_lib.AutoTempFilePath() as temp_filepath: self._SetExtAttr(temp_filepath, "user.foo", "bar") self._SetExtAttr(temp_filepath, "user.quux", "norf") action = self._StatAction() results = self._RunFileFinder([temp_filepath], action) self.assertEqual(len(results), 1) ext_attrs = results[0].stat_entry.ext_attrs self.assertEqual(ext_attrs[0].name, "user.foo") self.assertEqual(ext_attrs[0].value, "bar") self.assertEqual(ext_attrs[1].name, "user.quux") self.assertEqual(ext_attrs[1].value, "norf") action = self._StatAction(ext_attrs=False) results = self._RunFileFinder([temp_filepath], action) self.assertEqual(len(results), 1) ext_attrs = results[0].stat_entry.ext_attrs self.assertFalse(ext_attrs) @classmethod def _SetExtAttr(cls, filepath, name, value): if platform.system() == "Linux": cls._SetExtAttrLinux(filepath, name, value) elif platform.system() == "Darwin": cls._SetExtAttrOsx(filepath, name, value) else: raise unittest.SkipTest("unsupported system") @classmethod def _SetExtAttrLinux(cls, filepath, name, value): if subprocess.call(["which", "setfattr"]) != 0: raise unittest.SkipTest("`setfattr` command is not available") if subprocess.call(["setfattr", filepath, "-n", name, "-v", value]) != 0: raise unittest.SkipTest("extended attributes not supported by filesystem") @classmethod def _SetExtAttrOsx(cls, filepath, name, value): if subprocess.call(["xattr", "-w", name, value, filepath]) != 0: raise unittest.SkipTest("extended attributes not supported") def testLinkStat(self): """Tests resolving symlinks when getting stat entries.""" test_dir = os.path.join(self.temp_dir, "lnk_stat_test") lnk = os.path.join(test_dir, "lnk") lnk_target = os.path.join(test_dir, "lnk_target") os.mkdir(test_dir) with open(lnk_target, "wb") as fd: fd.write("sometext") os.symlink(lnk_target, lnk) paths = [lnk] link_size = os.lstat(lnk).st_size target_size = os.stat(lnk).st_size for expected_size, resolve_links in [(link_size, False), (target_size, True)]: stat_action = rdf_file_finder.FileFinderAction.Stat( resolve_links=resolve_links) results = self._RunFileFinder(paths, stat_action) self.assertEqual(len(results), 1) res = results[0] self.assertEqual(res.stat_entry.st_size, expected_size) def testModificationTimeCondition(self): with utils.Stubber(os, "lstat", MyStat): test_dir = self._PrepareTimestampedFiles() # We have one "old" file, auth.log, and two "new" ones, dpkg*. paths = [test_dir + "/{dpkg.log,dpkg_false.log,auth.log}"] change_time = rdfvalue.RDFDatetime.FromHumanReadable("2020-01-01") modification_time_condition = rdf_file_finder.FileFinderCondition( condition_type="MODIFICATION_TIME", modification_time=rdf_file_finder.FileFinderModificationTimeCondition( max_last_modified_time=change_time)) self.RunAndCheck( paths, conditions=[modification_time_condition], expected=["dpkg.log", "dpkg_false.log"], unexpected=["auth.log"], base_path=test_dir) # Now just the file from 2022. modification_time_condition = rdf_file_finder.FileFinderCondition( condition_type="MODIFICATION_TIME", modification_time=rdf_file_finder.FileFinderModificationTimeCondition( min_last_modified_time=change_time)) self.RunAndCheck( paths, conditions=[modification_time_condition], expected=["auth.log"], unexpected=["dpkg.log", "dpkg_false.log"], base_path=test_dir) def testAccessTimeCondition(self): with utils.Stubber(os, "lstat", MyStat): test_dir = self._PrepareTimestampedFiles() paths = [test_dir + "/{dpkg.log,dpkg_false.log,auth.log}"] change_time = rdfvalue.RDFDatetime.FromHumanReadable("2020-01-01") # Check we can get the normal files. access_time_condition = rdf_file_finder.FileFinderCondition( condition_type="ACCESS_TIME", access_time=rdf_file_finder.FileFinderAccessTimeCondition( max_last_access_time=change_time)) self.RunAndCheck( paths, conditions=[access_time_condition], expected=["dpkg.log", "dpkg_false.log"], unexpected=["auth.log"], base_path=test_dir) # Now just the file from 2022. access_time_condition = rdf_file_finder.FileFinderCondition( condition_type="ACCESS_TIME", access_time=rdf_file_finder.FileFinderAccessTimeCondition( min_last_access_time=change_time)) self.RunAndCheck( paths, conditions=[access_time_condition], expected=["auth.log"], unexpected=["dpkg.log", "dpkg_false.log"], base_path=test_dir) def testInodeChangeTimeCondition(self): with utils.Stubber(os, "lstat", MyStat): test_dir = self._PrepareTimestampedFiles() # We have one "old" file, auth.log, and two "new" ones, dpkg*. paths = [test_dir + "/{dpkg.log,dpkg_false.log,auth.log}"] # Check we can get the auth log only (huge ctime). change_time = rdfvalue.RDFDatetime.FromHumanReadable("2020-01-01") ichange_time_condition = rdf_file_finder.FileFinderCondition( condition_type="INODE_CHANGE_TIME", inode_change_time=rdf_file_finder.FileFinderInodeChangeTimeCondition( min_last_inode_change_time=change_time)) self.RunAndCheck( paths, conditions=[ichange_time_condition], expected=["auth.log"], unexpected=["dpkg.log", "dpkg_false.log"], base_path=test_dir) # Now just the others. ichange_time_condition = rdf_file_finder.FileFinderCondition( condition_type="INODE_CHANGE_TIME", inode_change_time=rdf_file_finder.FileFinderInodeChangeTimeCondition( max_last_inode_change_time=change_time)) self.RunAndCheck( paths, conditions=[ichange_time_condition], expected=["dpkg.log", "dpkg_false.log"], unexpected=["auth.log"], base_path=test_dir) def testSizeCondition(self): test_dir = self._PrepareTimestampedFiles() # We have one "old" file, auth.log, and two "new" ones, dpkg*. paths = [test_dir + "/{dpkg.log,dpkg_false.log,auth.log}"] # Auth.log is 770 bytes, the other two ~620 each. size_condition = rdf_file_finder.FileFinderCondition( condition_type="SIZE", size=rdf_file_finder.FileFinderSizeCondition(min_file_size=700)) self.RunAndCheck( paths, conditions=[size_condition], expected=["auth.log"], unexpected=["dpkg.log", "dpkg_false.log"], base_path=test_dir) size_condition = rdf_file_finder.FileFinderCondition( condition_type="SIZE", size=rdf_file_finder.FileFinderSizeCondition(max_file_size=700)) self.RunAndCheck( paths, conditions=[size_condition], expected=["dpkg.log", "dpkg_false.log"], unexpected=["auth.log"], base_path=test_dir) def testXDEV(self): test_dir = os.path.join(self.temp_dir, "xdev_test") local_dev_dir = os.path.join(test_dir, "local_dev") net_dev_dir = os.path.join(test_dir, "net_dev") os.mkdir(test_dir) os.mkdir(local_dev_dir) os.mkdir(net_dev_dir) local_file = os.path.join(local_dev_dir, "local_file") net_file = os.path.join(net_dev_dir, "net_file") with open(local_file, "wb") as fd: fd.write("local_data") with open(net_file, "wb") as fd: fd.write("net_data") all_mountpoints = [local_dev_dir, net_dev_dir, "/some/other/dir"] local_mountpoints = [local_dev_dir] def MyDiskPartitions(all=False): # pylint: disable=redefined-builtin mp = collections.namedtuple("MountPoint", ["mountpoint"]) if all: return [mp(mountpoint=m) for m in all_mountpoints] else: return [mp(mountpoint=m) for m in local_mountpoints] with utils.Stubber(psutil, "disk_partitions", MyDiskPartitions): paths = [test_dir + "/**5"] self.RunAndCheck( paths, expected=[ "local_dev", "local_dev/local_file", "net_dev", "net_dev/net_file" ], unexpected=[], base_path=test_dir, xdev="ALWAYS") self.RunAndCheck( paths, expected=["local_dev", "local_dev/local_file", "net_dev"], unexpected=["net_dev/net_file"], base_path=test_dir, xdev="LOCAL") self.RunAndCheck( paths, expected=["local_dev", "net_dev"], unexpected=["local_dev/local_file", "net_dev/net_file"], base_path=test_dir, xdev="NEVER") class RegexMatcherTest(unittest.TestCase): @staticmethod def _RegexMatcher(string): regex = rdf_standard.RegularExpression(string) return client_file_finder.RegexMatcher(regex) def testMatchLiteral(self): matcher = self._RegexMatcher("foo") span = matcher.Match("foobar", 0) self.assertTrue(span) self.assertEqual(span.begin, 0) self.assertEqual(span.end, 3) span = matcher.Match("foobarfoobar", 2) self.assertTrue(span) self.assertEqual(span.begin, 6) self.assertEqual(span.end, 9) def testNoMatchLiteral(self): matcher = self._RegexMatcher("baz") span = matcher.Match("foobar", 0) self.assertFalse(span) span = matcher.Match("foobazbar", 5) self.assertFalse(span) def testMatchWildcard(self): matcher = self._RegexMatcher("foo.*bar") span = matcher.Match("foobar", 0) self.assertTrue(span) self.assertEqual(span.begin, 0) self.assertEqual(span.end, 6) span = matcher.Match("quuxfoobazbarnorf", 2) self.assertTrue(span) self.assertEqual(span.begin, 4) self.assertEqual(span.end, 13) def testMatchRepeated(self): matcher = self._RegexMatcher("qu+x") span = matcher.Match("quuuux", 0) self.assertTrue(span) self.assertEqual(span.begin, 0) self.assertEqual(span.end, 6) span = matcher.Match("qx", 0) self.assertFalse(span) span = matcher.Match("qvvvvx", 0) self.assertFalse(span) class LiteralMatcherTest(unittest.TestCase): def testMatchLiteral(self): matcher = client_file_finder.LiteralMatcher("bar") span = matcher.Match("foobarbaz", 0) self.assertTrue(span) self.assertEqual(span.begin, 3) self.assertEqual(span.end, 6) span = matcher.Match("barbarbar", 0) self.assertTrue(span) self.assertEqual(span.begin, 0) self.assertEqual(span.end, 3) span = matcher.Match("barbarbar", 4) self.assertTrue(span) self.assertEqual(span.begin, 6) self.assertEqual(span.end, 9) def testNoMatchLiteral(self): matcher = client_file_finder.LiteralMatcher("norf") span = matcher.Match("quux", 0) self.assertFalse(span) span = matcher.Match("norf", 2) self.assertFalse(span) span = matcher.Match("quuxnorf", 5) self.assertFalse(span) class ConditionTestMixin(object): def setUp(self): super(ConditionTestMixin, self).setUp() self.temp_filepath = test_lib.TempFilePath() def tearDown(self): super(ConditionTestMixin, self).tearDown() os.remove(self.temp_filepath) @unittest.skipIf(platform.system() == "Windows", "requires Unix-like system") class MetadataConditionTestMixin(ConditionTestMixin): def Stat(self): return utils.Stat(self.temp_filepath, follow_symlink=False) def Touch(self, mode, date): self.assertIn(mode, ["-m", "-a"]) result = subprocess.call(["touch", mode, "-t", date, self.temp_filepath]) # Sanity check in case something is wrong with the test. self.assertEqual(result, 0) class ModificationTimeConditionTest(MetadataConditionTestMixin, unittest.TestCase): def testDefault(self): params = rdf_file_finder.FileFinderCondition() condition = client_file_finder.ModificationTimeCondition(params) self.Touch("-m", "198309121200") # 1983-09-12 12:00 self.assertTrue(condition.Check(self.Stat())) self.Touch("-m", "201710020815") # 2017-10-02 8:15 self.assertTrue(condition.Check(self.Stat())) def testMinTime(self): time = rdfvalue.RDFDatetime.FromHumanReadable("2017-12-24 19:00:00") params = rdf_file_finder.FileFinderCondition() params.modification_time.min_last_modified_time = time condition = client_file_finder.ModificationTimeCondition(params) self.Touch("-m", "201712240100") # 2017-12-24 1:30 self.assertFalse(condition.Check(self.Stat())) self.Touch("-m", "201806141700") # 2018-06-14 17:00 self.assertTrue(condition.Check(self.Stat())) def testMaxTime(self): time = rdfvalue.RDFDatetime.FromHumanReadable("2125-12-28 18:45") params = rdf_file_finder.FileFinderCondition() params.modification_time.max_last_modified_time = time condition = client_file_finder.ModificationTimeCondition(params) self.Touch("-m", "211811111200") # 2118-11-11 12:00 self.assertTrue(condition.Check(self.Stat())) self.Touch("-m", "222510201500") # 2225-10-20 15:00 self.assertFalse(condition.Check(self.Stat())) class AccessTimeConditionTest(MetadataConditionTestMixin, unittest.TestCase): def testDefault(self): params = rdf_file_finder.FileFinderCondition() condition = client_file_finder.AccessTimeCondition(params) self.Touch("-a", "241007151200") # 2410-07-15 12:00 self.assertTrue(condition.Check(self.Stat())) self.Touch("-a", "201005160745") # 2010-05-16 7:45 self.assertTrue(condition.Check(self.Stat())) def testRange(self): min_time = rdfvalue.RDFDatetime.FromHumanReadable("2156-01-27") max_time = rdfvalue.RDFDatetime.FromHumanReadable("2191-12-05") params = rdf_file_finder.FileFinderCondition() params.access_time.min_last_access_time = min_time params.access_time.max_last_access_time = max_time condition = client_file_finder.AccessTimeCondition(params) self.Touch("-a", "215007280000") # 2150-07-28 0:00 self.assertFalse(condition.Check(self.Stat())) self.Touch("-a", "219101010000") # 2191-01-01 0:00 self.assertTrue(condition.Check(self.Stat())) self.Touch("-a", "221003010000") # 2210-03-01 0:00 self.assertFalse(condition.Check(self.Stat())) class SizeConditionTest(MetadataConditionTestMixin, unittest.TestCase): def testDefault(self): params = rdf_file_finder.FileFinderCondition() condition = client_file_finder.SizeCondition(params) with open(self.temp_filepath, "wb") as fd: fd.write("1234567") self.assertTrue(condition.Check(self.Stat())) with open(self.temp_filepath, "wb") as fd: fd.write("") self.assertTrue(condition.Check(self.Stat())) def testRange(self): params = rdf_file_finder.FileFinderCondition() params.size.min_file_size = 2 params.size.max_file_size = 6 condition = client_file_finder.SizeCondition(params) with open(self.temp_filepath, "wb") as fd: fd.write("1") self.assertFalse(condition.Check(self.Stat())) with open(self.temp_filepath, "wb") as fd: fd.write("12") self.assertTrue(condition.Check(self.Stat())) with open(self.temp_filepath, "wb") as fd: fd.write("1234") self.assertTrue(condition.Check(self.Stat())) with open(self.temp_filepath, "wb") as fd: fd.write("123456") self.assertTrue(condition.Check(self.Stat())) with open(self.temp_filepath, "wb") as fd: fd.write("1234567") self.assertFalse(condition.Check(self.Stat())) class ExtFlagsConditionTest(MetadataConditionTestMixin, unittest.TestCase): # https://github.com/apple/darwin-xnu/blob/master/bsd/sys/stat.h UF_NODUMP = 0x00000001 UF_IMMUTABLE = 0x00000002 UF_HIDDEN = 0x00008000 # https://github.com/torvalds/linux/blob/master/include/uapi/linux/fs.h FS_COMPR_FL = 0x00000004 FS_IMMUTABLE_FL = 0x00000010 FS_NODUMP_FL = 0x00000040 def testDefault(self): params = rdf_file_finder.FileFinderCondition() condition = client_file_finder.ExtFlagsCondition(params) self.assertTrue(condition.Check(self.Stat())) def testNoMatchOsxBitsSet(self): params = rdf_file_finder.FileFinderCondition() params.ext_flags.osx_bits_set = self.UF_IMMUTABLE | self.UF_NODUMP condition = client_file_finder.ExtFlagsCondition(params) self._Chflags(["nodump"]) self.assertFalse(condition.Check(self.Stat())) def testNoMatchOsxBitsUnset(self): params = rdf_file_finder.FileFinderCondition() params.ext_flags.osx_bits_unset = self.UF_NODUMP | self.UF_HIDDEN condition = client_file_finder.ExtFlagsCondition(params) self._Chflags(["hidden"]) self.assertFalse(condition.Check(self.Stat())) def testNoMatchLinuxBitsSet(self): params = rdf_file_finder.FileFinderCondition() params.ext_flags.linux_bits_set = self.FS_IMMUTABLE_FL condition = client_file_finder.ExtFlagsCondition(params) self.assertFalse(condition.Check(self.Stat())) def testNoMatchLinuxBitsUnset(self): params = rdf_file_finder.FileFinderCondition() params.ext_flags.linux_bits_unset = self.FS_COMPR_FL condition = client_file_finder.ExtFlagsCondition(params) self._Chattr(["+c", "+d"]) self.assertFalse(condition.Check(self.Stat())) def testMatchOsxBitsSet(self): params = rdf_file_finder.FileFinderCondition() params.ext_flags.osx_bits_set = self.UF_NODUMP | self.UF_HIDDEN condition = client_file_finder.ExtFlagsCondition(params) self._Chflags(["nodump", "hidden", "uappend"]) try: self.assertTrue(condition.Check(self.Stat())) finally: # Make the test file deletable. self._Chflags(["nouappend"]) def testMatchLinuxBitsSet(self): params = rdf_file_finder.FileFinderCondition() params.ext_flags.linux_bits_set = self.FS_COMPR_FL | self.FS_NODUMP_FL condition = client_file_finder.ExtFlagsCondition(params) self._Chattr(["+c", "+d"]) self.assertTrue(condition.Check(self.Stat())) def testMatchOsxBitsUnset(self): params = rdf_file_finder.FileFinderCondition() params.ext_flags.osx_bits_unset = self.UF_NODUMP | self.UF_IMMUTABLE condition = client_file_finder.ExtFlagsCondition(params) self._Chflags(["hidden", "uappend"]) try: self.assertTrue(condition.Check(self.Stat())) finally: # Make the test file deletable. self._Chflags(["nouappend"]) def testMatchLinuxBitsUnset(self): params = rdf_file_finder.FileFinderCondition() params.ext_flags.linux_bits_unset = self.FS_IMMUTABLE_FL condition = client_file_finder.ExtFlagsCondition(params) self._Chattr(["+c", "+d"]) self.assertTrue(condition.Check(self.Stat())) def testMatchOsxBitsMixed(self): params = rdf_file_finder.FileFinderCondition() params.ext_flags.osx_bits_set = self.UF_NODUMP params.ext_flags.osx_bits_unset = self.UF_HIDDEN params.ext_flags.linux_bits_unset = self.FS_NODUMP_FL condition = client_file_finder.ExtFlagsCondition(params) self._Chflags(["nodump", "uappend"]) try: self.assertTrue(condition.Check(self.Stat())) finally: # Make the test file deletable. self._Chflags(["nouappend"]) def testMatchLinuxBitsMixed(self): params = rdf_file_finder.FileFinderCondition() params.ext_flags.linux_bits_set = self.FS_NODUMP_FL params.ext_flags.linux_bits_unset = self.FS_COMPR_FL params.ext_flags.osx_bits_unset = self.UF_IMMUTABLE condition = client_file_finder.ExtFlagsCondition(params) self._Chattr(["+d"]) self.assertTrue(condition.Check(self.Stat())) def _Chattr(self, args): if platform.system() != "Linux": raise unittest.SkipTest("requires Linux") if subprocess.call(["which", "chattr"]) != 0: raise unittest.SkipTest("the `chattr` command is not available") if subprocess.call(["chattr"] + args + [self.temp_filepath]) != 0: reason = "extended attributes are not supported by filesystem" raise unittest.SkipTest(reason) def _Chflags(self, args): if platform.system() != "Darwin": raise unittest.SkipTest("requires macOS") subprocess.check_call(["chflags", ",".join(args), self.temp_filepath]) # TODO(hanuszczak): Write tests for the metadata change condition. class LiteralMatchConditionTest(ConditionTestMixin, unittest.TestCase): def testNoHits(self): with open(self.temp_filepath, "wb") as fd: fd.write("foo bar quux") params = rdf_file_finder.FileFinderCondition() params.contents_literal_match.literal = "baz" params.contents_literal_match.mode = "ALL_HITS" condition = client_file_finder.LiteralMatchCondition(params) results = list(condition.Search(self.temp_filepath)) self.assertFalse(results) def testSomeHits(self): with open(self.temp_filepath, "wb") as fd: fd.write("foo bar foo") params = rdf_file_finder.FileFinderCondition() params.contents_literal_match.literal = "foo" params.contents_literal_match.mode = "ALL_HITS" condition = client_file_finder.LiteralMatchCondition(params) results = list(condition.Search(self.temp_filepath)) self.assertEqual(len(results), 2) self.assertEqual(results[0].data, "foo") self.assertEqual(results[0].offset, 0) self.assertEqual(results[0].length, 3) self.assertEqual(results[1].data, "foo") self.assertEqual(results[1].offset, 8) self.assertEqual(results[1].length, 3) def testFirstHit(self): with open(self.temp_filepath, "wb") as fd: fd.write("bar foo baz foo") params = rdf_file_finder.FileFinderCondition() params.contents_literal_match.literal = "foo" params.contents_literal_match.mode = "FIRST_HIT" condition = client_file_finder.LiteralMatchCondition(params) results = list(condition.Search(self.temp_filepath)) self.assertEqual(len(results), 1) self.assertEqual(results[0].data, "foo") self.assertEqual(results[0].offset, 4) self.assertEqual(results[0].length, 3) def testContext(self): with open(self.temp_filepath, "wb") as fd: fd.write("foo foo foo") params = rdf_file_finder.FileFinderCondition() params.contents_literal_match.literal = "foo" params.contents_literal_match.mode = "ALL_HITS" params.contents_literal_match.bytes_before = 3 params.contents_literal_match.bytes_after = 2 condition = client_file_finder.LiteralMatchCondition(params) results = list(condition.Search(self.temp_filepath)) self.assertEqual(len(results), 3) self.assertEqual(results[0].data, "foo f") self.assertEqual(results[0].offset, 0) self.assertEqual(results[0].length, 5) self.assertEqual(results[1].data, "oo foo f") self.assertEqual(results[1].offset, 1) self.assertEqual(results[1].length, 8) self.assertEqual(results[2].data, "oo foo") self.assertEqual(results[2].offset, 5) self.assertEqual(results[2].length, 6) def testStartOffset(self): with open(self.temp_filepath, "wb") as fd: fd.write("oooooooo") params = rdf_file_finder.FileFinderCondition() params.contents_literal_match.literal = "ooo" params.contents_literal_match.mode = "ALL_HITS" params.contents_literal_match.start_offset = 2 condition = client_file_finder.LiteralMatchCondition(params) results = list(condition.Search(self.temp_filepath)) self.assertEqual(len(results), 2) self.assertEqual(results[0].data, "ooo") self.assertEqual(results[0].offset, 2) self.assertEqual(results[0].length, 3) self.assertEqual(results[1].data, "ooo") self.assertEqual(results[1].offset, 5) self.assertEqual(results[1].length, 3) class RegexMatchCondition(ConditionTestMixin, unittest.TestCase): def testNoHits(self): with open(self.temp_filepath, "wb") as fd: fd.write("foo bar quux") params = rdf_file_finder.FileFinderCondition() params.contents_regex_match.regex = "\\d+" params.contents_regex_match.mode = "FIRST_HIT" condition = client_file_finder.RegexMatchCondition(params) results = list(condition.Search(self.temp_filepath)) self.assertFalse(results) def testSomeHits(self): with open(self.temp_filepath, "wb") as fd: fd.write("foo 7 bar 49 baz343") params = rdf_file_finder.FileFinderCondition() params.contents_regex_match.regex = "\\d+" params.contents_regex_match.mode = "ALL_HITS" condition = client_file_finder.RegexMatchCondition(params) results = list(condition.Search(self.temp_filepath)) self.assertEqual(len(results), 3) self.assertEqual(results[0].data, "7") self.assertEqual(results[0].offset, 4) self.assertEqual(results[0].length, 1) self.assertEqual(results[1].data, "49") self.assertEqual(results[1].offset, 10) self.assertEqual(results[1].length, 2) self.assertEqual(results[2].data, "343") self.assertEqual(results[2].offset, 16) self.assertEqual(results[2].length, 3) def testFirstHit(self): with open(self.temp_filepath, "wb") as fd: fd.write("4 8 15 16 23 42 foo 108 bar") params = rdf_file_finder.FileFinderCondition() params.contents_regex_match.regex = "[a-z]+" params.contents_regex_match.mode = "FIRST_HIT" condition = client_file_finder.RegexMatchCondition(params) results = list(condition.Search(self.temp_filepath)) self.assertEqual(len(results), 1) self.assertEqual(results[0].data, "foo") self.assertEqual(results[0].offset, 16) self.assertEqual(results[0].length, 3) def testContext(self): with open(self.temp_filepath, "wb") as fd: fd.write("foobarbazbaaarquux") params = rdf_file_finder.FileFinderCondition() params.contents_regex_match.regex = "ba+r" params.contents_regex_match.mode = "ALL_HITS" params.contents_regex_match.bytes_before = 3 params.contents_regex_match.bytes_after = 4 condition = client_file_finder.RegexMatchCondition(params) results = list(condition.Search(self.temp_filepath)) self.assertEqual(len(results), 2) self.assertEqual(results[0].data, "foobarbazb") self.assertEqual(results[0].offset, 0) self.assertEqual(results[0].length, 10) self.assertEqual(results[1].data, "bazbaaarquux") self.assertEqual(results[1].offset, 6) self.assertEqual(results[1].length, 12) def testStartOffset(self): with open(self.temp_filepath, "wb") as fd: fd.write("ooooooo") params = rdf_file_finder.FileFinderCondition() params.contents_regex_match.regex = "o+" params.contents_regex_match.mode = "FIRST_HIT" params.contents_regex_match.start_offset = 3 condition = client_file_finder.RegexMatchCondition(params) results = list(condition.Search(self.temp_filepath)) self.assertEqual(len(results), 1) self.assertEqual(results[0].data, "oooo") self.assertEqual(results[0].offset, 3) self.assertEqual(results[0].length, 4) def main(argv): test_lib.main(argv) if __name__ == "__main__": flags.StartMain(main)
35.708235
80
0.698405
44,255
0.972039
0
0
3,754
0.082455
0
0
5,712
0.125461
e174818f6b393a98ed554aec714f2c139a01e0c8
1,624
py
Python
lesson13/sunzhaohui/reboot/deploy/models.py
herrywen-nanj/51reboot
1130c79a360e1b548a6eaad176eb60f8bed22f40
[ "Apache-2.0" ]
null
null
null
lesson13/sunzhaohui/reboot/deploy/models.py
herrywen-nanj/51reboot
1130c79a360e1b548a6eaad176eb60f8bed22f40
[ "Apache-2.0" ]
null
null
null
lesson13/sunzhaohui/reboot/deploy/models.py
herrywen-nanj/51reboot
1130c79a360e1b548a6eaad176eb60f8bed22f40
[ "Apache-2.0" ]
null
null
null
from django.db import models # Create your models here. from django.db import models from users.models import UserProfile class Deploy(models.Model): STATUS = ( (0, '申请'), (1, '审核'), (2, '上线'), (3, '已取消'), (4, '已上线'), (5,'失败') ) name = models.CharField(max_length=40, verbose_name='项目名称') version = models.CharField(max_length=40, verbose_name='上线版本') version_desc = models.CharField(max_length=100, verbose_name='版本描述') applicant = models.ForeignKey(UserProfile, verbose_name='申请人', on_delete=models.CASCADE, related_name="applicant") reviewer = models.ForeignKey(UserProfile, verbose_name='审核人', on_delete=models.CASCADE,blank=True, null=True, related_name="reviewer") handler = models.ForeignKey(UserProfile, verbose_name='最终处理人', blank=True, null=True, on_delete=models.CASCADE, related_name='handler') update_detail = models.TextField(verbose_name='更新详情') status = models.IntegerField(default=0, choices=STATUS, verbose_name='上线状态') apply_time = models.DateTimeField(auto_now_add=True, verbose_name='申请时间') review_time = models.DateTimeField(auto_now=False, verbose_name='审核时间',null=True) deploy_time = models.DateTimeField(auto_now=False, verbose_name='上线时间',null=True) end_time = models.DateTimeField(auto_now=False, verbose_name='结束时间',null=True) build_serial = models.IntegerField(verbose_name='构建序号',default=0,null=True) build_url = models.CharField(max_length=100,verbose_name='构建链接',null=True)
40.6
113
0.67734
1,631
0.925653
0
0
0
0
0
0
303
0.171964
e177afe5c4e52b6ea7d71deed0bddae35b953491
83
py
Python
config.py
zombodotcom/twitchUserData
50c702b832515a946d55c2f5ca79b51436352ef2
[ "MIT", "Unlicense" ]
1
2019-10-22T06:23:56.000Z
2019-10-22T06:23:56.000Z
config.py
zombodotcom/twitchUserData
50c702b832515a946d55c2f5ca79b51436352ef2
[ "MIT", "Unlicense" ]
null
null
null
config.py
zombodotcom/twitchUserData
50c702b832515a946d55c2f5ca79b51436352ef2
[ "MIT", "Unlicense" ]
null
null
null
Client_ID = "<Your Client ID>" Authorization = "Bearer <Insert Bearer token Here>"
41.5
51
0.73494
0
0
0
0
0
0
0
0
53
0.638554
e17842bac608c397e2ccd355daad8b350e2c2102
1,900
py
Python
echo_client.py
gauravssnl/Python3-Network-Programming
32bb5a4872bce60219c6387b6f3c2e7f31b0654a
[ "MIT" ]
4
2017-12-04T15:05:35.000Z
2021-03-24T11:53:39.000Z
echo_client.py
gauravssnl/Python3-Network-Programming
32bb5a4872bce60219c6387b6f3c2e7f31b0654a
[ "MIT" ]
null
null
null
echo_client.py
gauravssnl/Python3-Network-Programming
32bb5a4872bce60219c6387b6f3c2e7f31b0654a
[ "MIT" ]
null
null
null
import socket host = 'localhost' # we need to define encode function for converting string to bytes string # this will be use for sending/receiving data via socket encode = lambda text: text.encode() # we need to define deocde function for converting bytes string to string # this will convert bytes string sent/recieved via socket to string decode = lambda byte_text: byte_text.decode() def echo_client(port, message="Hello"): # create a TCP socket sock = socket.socket() server_address = (host, port) # connect to server print("Connecting to server ") sock.connect(server_address) # send data try: # send message print("Sending data: {}".format(message)) # sendall need bytes string ,so we need to use encode to convert plain # string to bytes string sock.sendall(encode(message)) # Look for response amount_received = 0 amount_expected = len(message) while amount_received < amount_expected: data = sock.recv(16) amount_received += len(data) print("Recieved from server: {}".format(decode(data))) except socket.error as e: print("socket error: {}".format(e)) except Exception as e: print("other exception: {}".format(e)) finally: print("Closing connection to server") sock.close() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='Simple TCP echo client') parser.add_argument("--port", action="store", dest="port", type=int, required=True) parser.add_argument("--message", action="store", dest="message", required=False) get_args = parser.parse_args() port = get_args.port message = get_args.message if message: echo_client(port, message) else: echo_client(port)
31.666667
79
0.644211
0
0
0
0
0
0
0
0
685
0.360526
e179f0630567fb54dca2d83ae47722317d2637db
2,247
py
Python
my_collection/paxos/proposer.py
khanh-nguyen-code/my-collection
31581ef0b1dae67aafb1f4e64b9973a38cc01edf
[ "MIT" ]
null
null
null
my_collection/paxos/proposer.py
khanh-nguyen-code/my-collection
31581ef0b1dae67aafb1f4e64b9973a38cc01edf
[ "MIT" ]
null
null
null
my_collection/paxos/proposer.py
khanh-nguyen-code/my-collection
31581ef0b1dae67aafb1f4e64b9973a38cc01edf
[ "MIT" ]
null
null
null
from typing import Optional from my_collection.paxos.common import NodeId, Router, ProposalId, Value, PrepareRequest, is_majority, PrepareResponse, \ Proposal, ProposeRequest, ProposeResponse, CODE_OK class Proposer: node_id: NodeId acceptor_id_list: list[NodeId] router: Router current_proposal_id: ProposalId # init {0, node_id} def __init__(self, node_id: NodeId, acceptor_id_list: list[NodeId], router: Router): self.node_id = node_id self.acceptor_id_list = acceptor_id_list self.router = router self.current_proposal_id = ProposalId(id=0, node_id=node_id) async def propose_once(self, value: Value) -> Optional[Value]: proposal_id = self.current_proposal_id self.current_proposal_id.id += 1 request = PrepareRequest(proposal_id=proposal_id) response_list: list[PrepareResponse] = [ await self.router(acceptor_id, request, PrepareResponse.parse_obj) for acceptor_id in self.acceptor_id_list ] response_list: list[PrepareResponse] = [ response for response in response_list if response is not None and response.code == CODE_OK ] if not is_majority(len(self.acceptor_id_list), len(response_list)): return None accepted_proposal_list = [ response.proposal for response in response_list if response.proposal is not None ] if len(accepted_proposal_list) > 0: proposal = max(accepted_proposal_list, key=lambda x: x.id) else: proposal = Proposal(id=proposal_id, value=value) request = ProposeRequest(proposal=proposal) response_list: list[ProposeResponse] = [ await self.router(acceptor_id, request, ProposeResponse.parse_obj) for acceptor_id in self.acceptor_id_list ] response_list: list[ProposeResponse] = [ response for response in response_list if response is not None and response.code == CODE_OK ] if not is_majority(len(self.acceptor_id_list), len(response_list)): return None return response_list[0].proposal.value
38.084746
121
0.659546
2,038
0.906987
0
0
0
0
1,618
0.720071
19
0.008456
e17a77153a0967bee562363294a90df123d695b6
6,551
py
Python
.leetcode/749.contain-virus.py
KuiyuanFu/PythonLeetCode
8962df2fa838eb7ae48fa59de272ba55a89756d8
[ "MIT" ]
null
null
null
.leetcode/749.contain-virus.py
KuiyuanFu/PythonLeetCode
8962df2fa838eb7ae48fa59de272ba55a89756d8
[ "MIT" ]
null
null
null
.leetcode/749.contain-virus.py
KuiyuanFu/PythonLeetCode
8962df2fa838eb7ae48fa59de272ba55a89756d8
[ "MIT" ]
null
null
null
# @lc app=leetcode id=749 lang=python3 # # [749] Contain Virus # # https://leetcode.com/problems/contain-virus/description/ # # algorithms # Hard (49.14%) # Likes: 190 # Dislikes: 349 # Total Accepted: 7.5K # Total Submissions: 15.2K # Testcase Example: '[[0,1,0,0,0,0,0,1],[0,1,0,0,0,0,0,1],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,0,0]]' # # A virus is spreading rapidly, and your task is to quarantine the infected # area by installing walls. # # The world is modeled as an m x n binary grid isInfected, where # isInfected[i][j] == 0 represents uninfected cells, and isInfected[i][j] == 1 # represents cells contaminated with the virus. A wall (and only one wall) can # be installed between any two 4-directionally adjacent cells, on the shared # boundary. # # Every night, the virus spreads to all neighboring cells in all four # directions unless blocked by a wall. Resources are limited. Each day, you can # install walls around only one region (i.e., the affected area (continuous # block of infected cells) that threatens the most uninfected cells the # following night). There will never be a tie. # # Return the number of walls used to quarantine all the infected regions. If # the world will become fully infected, return the number of walls used. # # # Example 1: # # # Input: isInfected = # [[0,1,0,0,0,0,0,1],[0,1,0,0,0,0,0,1],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,0,0]] # Output: 10 # Explanation: There are 2 contaminated regions. # On the first day, add 5 walls to quarantine the viral region on the left. The # board after the virus spreads is: # # On the second day, add 5 walls to quarantine the viral region on the right. # The virus is fully contained. # # # # Example 2: # # # Input: isInfected = [[1,1,1],[1,0,1],[1,1,1]] # Output: 4 # Explanation: Even though there is only one cell saved, there are 4 walls # built. # Notice that walls are only built on the shared boundary of two different # cells. # # # Example 3: # # # Input: isInfected = # [[1,1,1,0,0,0,0,0,0],[1,0,1,0,1,1,1,1,1],[1,1,1,0,0,0,0,0,0]] # Output: 13 # Explanation: The region on the left only builds two new walls. # # # # Constraints: # # # m == isInfected.length # n == isInfected[i].length # 1 <= m, n <= 50 # isInfected[i][j] is either 0 or 1. # There is always a contiguous viral region throughout the described process # that will infect strictly more uncontaminated squares in the next round. # # # # @lc tags=hash-table # @lc imports=start from typing_extensions import get_args from imports import * # @lc imports=end # @lc idea=start # # 用墙阻止感染。每次围上传播最多的区块。 # # @lc idea=end # @lc group= # @lc rank= # @lc code=start class Area: def __init__(self, wallCount=0, contaminatedArea=None, uninfectedArea=None) -> None: self.wallCount = wallCount self.contaminatedArea = contaminatedArea if contaminatedArea is not None else [] self.uninfectedArea = uninfectedArea if uninfectedArea is not None else set( ) pass class Solution: def containVirus(self, isInfected: List[List[int]]) -> int: rows, cols = len(isInfected), len(isInfected[0]) dires = [(0, 1), (0, -1), (-1, 0), (1, 0)] def generateAllArea() -> List[Area]: visited = set() areas = [] for i, j in product(range(rows), range(cols)): if (i, j) in visited: continue visited.add((i, j)) state = isInfected[i][j] # new contaminated area if state == 1: wallCount = 0 contaminatedArea = [(i, j)] uninfectedArea = set() idx = 0 while idx < len(contaminatedArea): i, j = contaminatedArea[idx] for oi, oj in dires: ni, nj = i + oi, j + oj if 0 <= ni < rows and 0 <= nj < cols: ns = isInfected[ni][nj] if ns == 0: uninfectedArea.add((ni, nj)) wallCount += 1 if ns == 1 and (ni, nj) not in visited: visited.add((ni, nj)) contaminatedArea.append((ni, nj)) idx += 1 area = Area(wallCount=wallCount, contaminatedArea=contaminatedArea, uninfectedArea=uninfectedArea) areas.append(area) return areas def countWall(): res = 0 areas = generateAllArea() while len(areas) > 0: area = max(areas, key=lambda area: len(area.uninfectedArea)) res += area.wallCount for i, j in area.contaminatedArea: isInfected[i][j] = -1 areas.remove(area) for area in areas: for i, j in area.uninfectedArea: isInfected[i][j] = 1 areas = generateAllArea() return res return countWall() # @lc code=end # @lc main=start if __name__ == '__main__': print('Example 1:') print('Input : ') print( 'isInfected =[[0,1,0,0,0,0,0,1],[0,1,0,0,0,0,0,1],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,0,0]]' ) print('Exception :') print('10') print('Output :') print( str(Solution().containVirus([[0, 1, 0, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0]]))) print() print('Example 2:') print('Input : ') print('isInfected = [[1,1,1],[1,0,1],[1,1,1]]') print('Exception :') print('4') print('Output :') print(str(Solution().containVirus([[1, 1, 1], [1, 0, 1], [1, 1, 1]]))) print() print('Example 3:') print('Input : ') print( 'isInfected =[[1,1,1,0,0,0,0,0,0],[1,0,1,0,1,1,1,1,1],[1,1,1,0,0,0,0,0,0]]' ) print('Exception :') print('13') print('Output :') print( str(Solution().containVirus([[1, 1, 1, 0, 0, 0, 0, 0, 0], [1, 0, 1, 0, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 0, 0, 0]]))) print() pass # @lc main=end
29.376682
96
0.523432
2,657
0.403125
0
0
0
0
0
0
2,925
0.443787
e17b963468c4245e4f159926617ef232d646797a
4,309
py
Python
src/robotcontrol.py
social-robotics-lab/dog_sample
e70706bdbdbb7be222ee71cd9529dc433bf705ce
[ "MIT" ]
null
null
null
src/robotcontrol.py
social-robotics-lab/dog_sample
e70706bdbdbb7be222ee71cd9529dc433bf705ce
[ "MIT" ]
null
null
null
src/robotcontrol.py
social-robotics-lab/dog_sample
e70706bdbdbb7be222ee71cd9529dc433bf705ce
[ "MIT" ]
null
null
null
import json import os.path import socket import subprocess from pydub import AudioSegment from typing import Dict, List class RCClient(object): """ RobotControllerを操作するためのクラス """ def __init__(self, host:str, speech_port=22222, pose_port=22223, read_port=22224): self.host = host self.speech_port = speech_port self.pose_port = pose_port self.read_port = read_port self.home_servomap = dict(HEAD_R=0, HEAD_P=0, HEAD_Y=0, BODY_Y=0, L_SHOU=-90, L_ELBO=0, R_SHOU=90, R_ELBO=0) self.home_ledmap = dict(L_EYE_R=255, L_EYE_G=255, L_EYE_B=255, R_EYE_R=255, R_EYE_G=255, R_EYE_B=255) def say_text(self, text:str, speed=1.0, emotion='normal') -> float: """ 発話させる。 """ output_file = '{}_say.wav'.format(self.host) make_wav(text, speed, emotion, output_file) with open(output_file, 'rb') as f: data = f.read() send(self.host, self.speech_port, data) sound = AudioSegment.from_file(output_file, 'wav') return sound.duration_seconds def play_wav(self, wav_file:str) -> float: """ 音声ファイルを再生する。 """ with open(wav_file, 'rb') as f: data = f.read() send(self.host, self.speech_port, data) sound = AudioSegment.from_file(wav_file, 'wav') return sound.duration_seconds def read_axes(self) -> dict: """ 現在の全関節の角度値を読む。 """ data = recv(self.host, self.read_port) axes = json.loads(data) return axes def play_pose(self, pose:dict) -> float: """ ポーズを実行する。 """ data = json.dumps(pose).encode('utf-8') send(self.host, self.pose_port, data) return pose['Msec'] / 1000.0 def reset_pose(self, speed=1.0): """ ポーズをホームポジションに戻す関数。 """ msec = int(1000 / speed) pose = dict(Msec=msec, ServoMap=self.home_servomap, LedMap=self.home_ledmap) data = json.dumps(pose).encode('utf-8') send(self.host, self.pose_port, data) #--------------------- # Low level functions #--------------------- def recv(ip:str, port:int) -> str: conn = connect(ip, port) size = read_size(conn) data = read_data(conn, size) close(conn) return data.decode('utf-8') def send(ip:str, port:int, data:str): conn = connect(ip, port) size = len(data) conn.send(size.to_bytes(4, byteorder='big')) conn.send(data) close(conn) def connect(ip:str, port:int): conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM) conn.connect((ip, port)) return conn def close(conn:socket): conn.shutdown(1) conn.close() def read_size(conn:socket): b_size = conn.recv(4) return int.from_bytes(b_size, byteorder='big') def read_data(conn:socket, size:int): chunks = [] bytes_recved = 0 while bytes_recved < size: chunk = conn.recv(size - bytes_recved) if chunk == b'': raise RuntimeError("socket connection broken") chunks.append(chunk) bytes_recved += len(chunk) return b''.join(chunks) # Path to which OpenJTalk was installed OPENJTALK_BINPATH = '/usr/bin' OPENJTALK_DICPATH = '/var/lib/mecab/dic/open-jtalk/naist-jdic' OPENJTALK_VOICEPATH = '/usr/share/hts-voice/mei/mei_{emotion}.htsvoice' def make_wav(text, speed=1.0, emotion='normal', output_file='__temp.wav', output_dir=os.getcwd()): """ Function to make a wav file using OpenJTalk. args: speed: The speed of speech. (Default: 1.0) emotion: Voice emotion. You can specify 'normal', 'happy', 'bashful', 'angry', or 'sad'. output_file: The file name made by this function. (Default: '__temp.wav') output_dir: The directory of output_file. (Default: Current directory) """ open_jtalk = [OPENJTALK_BINPATH + '/open_jtalk'] mech = ['-x', OPENJTALK_DICPATH] htsvoice = ['-m', OPENJTALK_VOICEPATH.format(emotion=emotion)] speed = ['-r', str(speed)] outwav = ['-ow', os.path.join(output_dir, output_file)] cmd = open_jtalk + mech + htsvoice + speed + outwav c = subprocess.Popen(cmd,stdin=subprocess.PIPE) c.stdin.write(text.encode('utf-8')) c.stdin.close() c.wait() return os.path.join(output_dir, output_file)
31.683824
116
0.620562
2,103
0.47269
0
0
0
0
0
0
1,109
0.249269
e17ccdc4212c86466c9d7221473dc6138120cb0b
1,375
py
Python
exercises/shortest-path/ShortestPath.py
maxwellmattryan/cs-313e
462a871475ba956e364a0faf98284633462984b8
[ "MIT" ]
1
2020-02-05T23:56:16.000Z
2020-02-05T23:56:16.000Z
exercises/shortest-path/ShortestPath.py
maxwellmattryan/cs-313e
462a871475ba956e364a0faf98284633462984b8
[ "MIT" ]
null
null
null
exercises/shortest-path/ShortestPath.py
maxwellmattryan/cs-313e
462a871475ba956e364a0faf98284633462984b8
[ "MIT" ]
2
2020-03-09T16:26:00.000Z
2021-07-23T03:17:11.000Z
import math class Point (object): # constructor def __init__ (self, x = 0, y = 0): self.x = x self.y = y # get the distance to another Point object def dist (self, other): return math.hypot (self.x - other.x, self.y - other.y) # string representation of a Point def __str__ (self): return '(' + str(self.x) + ', ' + str(self.y) + ')' # test for equality of two Point objects def __eq__ (self, other): tol = 1.0e-16 return ((abs(self.x - other.x) < tol) and (abs(self.y - other.y) < tol)) def getPoints(): myFile = open("points.txt", "r") points = [] for line in myFile: line = line.strip() x = int(line.split("\t")[0]) y = int(line.split("\t")[1]) z = x * y print(z) point = Point(x, y) points.append(point) #print(point) return(points) def getShortestDistance(points): shortestDistance = -1 for i in range(len(points) - 1): for j in range(i + 1, len(points)): if(shortestDistance == -1): shortestDistance = points[i].dist(points[j]) shortestDistance = min(shortestDistance, points[i].dist(points)) print(shortestDistance) return(shortestDistance) def main(): # create an empty list of Point objects points = getPoints() shortestDistance = getShortestDistance(points) main()
25.462963
76
0.589091
518
0.376727
0
0
0
0
0
0
214
0.155636
e17d136893ad674b6eda0ec3efee1f8fda058d2d
341
py
Python
Data Analysis/csv remove other label.py
byew/python-do-differernt-csv
094b154834ee48210c2ee4a6a529d8fe76055fb7
[ "MIT" ]
null
null
null
Data Analysis/csv remove other label.py
byew/python-do-differernt-csv
094b154834ee48210c2ee4a6a529d8fe76055fb7
[ "MIT" ]
null
null
null
Data Analysis/csv remove other label.py
byew/python-do-differernt-csv
094b154834ee48210c2ee4a6a529d8fe76055fb7
[ "MIT" ]
null
null
null
import pandas as pd exa = pd.read_csv('en_dup.csv') exa.loc[exa['label'] =='F', 'label']= 0 exa.loc[exa['label'] =='T', 'label']= 1 exa.loc[exa['label'] =='U', 'label']= 2 #不读取label2, 只读取0,1标签 exa0 = exa.loc[exa["label"] == 0] exa1 = exa.loc[exa["label"] == 1] exa = [exa0, exa1] exa = pd.concat(exa) exa.to_csv('train.csv', index=0)
17.947368
39
0.595308
0
0
0
0
0
0
0
0
126
0.350975
e17d6ab7a795e35c2eccfd187299cdaa6e5f367c
60,009
py
Python
pySPACE/resources/dataset_defs/stream.py
pyspace/pyspace
763e62c0e7fa7cfcb19ccee1a0333c4f7e68ae62
[ "BSD-3-Clause" ]
32
2015-02-20T09:03:09.000Z
2022-02-25T22:32:52.000Z
pySPACE/resources/dataset_defs/stream.py
pyspace/pyspace
763e62c0e7fa7cfcb19ccee1a0333c4f7e68ae62
[ "BSD-3-Clause" ]
5
2015-05-18T15:08:40.000Z
2020-03-05T19:18:01.000Z
pySPACE/resources/dataset_defs/stream.py
pyspace/pyspace
763e62c0e7fa7cfcb19ccee1a0333c4f7e68ae62
[ "BSD-3-Clause" ]
18
2015-09-28T07:16:38.000Z
2021-01-20T13:52:19.000Z
""" Reader objects and main class for continuous data (time series) Depending on the storage format, the fitting reader is loaded and takes care of reading the files. .. todo:: unify with analyzer collection! eeg source and analyzer sink node should work together this connection should be documented when tested """ import os import glob import re import numpy import scipy from scipy.io import loadmat import warnings import csv from pySPACE.missions.support.windower import MarkerWindower import logging from pySPACE.resources.dataset_defs.base import BaseDataset from pySPACE.missions.support.WindowerInterface import AbstractStreamReader class StreamDataset(BaseDataset): """ Wrapper for dealing with stream datasets like raw EEG datasets For loading streaming data you need the :class:`~pySPACE.missions.nodes.source.time_series_source.Stream2TimeSeriesSourceNode` as described in :ref:`tutorial_node_chain_operation`. If ``file_name`` is given in the :ref:`meta data <storage>`, the corresponding file is loaded, otherwise ``storage_format`` is used to search for the needed file. Some formats are already supported, like EEG data in the .eeg/.vhdr/.vmrk format and other streaming data in edf or csv format. It is also possible to load EEGLAB format (.set/.fdt) which itself can import a variety of different EEG formats (http://sccn.ucsd.edu/eeglab/). **csv** Labels can be coded with the help of an extra channel as a column in the csv-file or an extra file. Normally the label is transformed immediately to the label or this is done later on with extra algorithms. The file suffix should be *csv*. Special Parameters in the metadata: :sampling_frequency: Frequency of the input data (corresponds to 1/(number of samples of one second)) (*optional, default: 1*) :marker: Name of the marker channel. If it is not found, no marker is forwarded. (*optional, default: 'marker'*) :marker_file: If the marker is not a column in the data file, an external csv file in the same folder can be specified with one column with the heading named like the *marker* parameter and one column named *time* with increasing numbers, which correspond to the index in the data file. (First sample corresponds index one.) Here, the relative path is needed as for file_name. (*optional, default: None*) **BP_eeg** Here the standard BrainProducts format is expected with the corresponding *.vhdr* and *.vmrk* with the same base name as the *.eeg* file. **set** EEGLABs format with two files (extension .set and .fdt) is expected. **edf** When using the European Data Format there are two different specifications that are supported: Plain EDF (see `EDF Spec <http://www.edfplus.info/specs/edf.html>`_) and EDF+ (see `EDF+ Spec <http://www.edfplus.info/specs/edfplus.html>`_). When using EDF there is no annotation- or marker-channel inside the data- segment. You can process the data originating from a EDF file but be sure, that you don't have any marker-information at hand, to later cut the continuous data into interesting segments. EDF+ extended the original EDF-Format by an annotations-channel (named 'EDF+C') and added a feature to combine non-continuous data segments (named 'EDF+D') in one file. The EDF+C Format is fully supported i.e. the annotations-channel is parsed and is forwarded in combination with the corresponding data so that the data can later be cut into meaningful segments (windowing). Files, which make use of the EDF+D option, can be streamed - BUT: The information about different segments in the file is completely ignored! The file is treated as if it contains EDF+C data. The full support for EDF+D files may be integrated in a future release. In any case, the file suffix should be *edf*. .. warning:: Currently only one streaming dataset can be loaded as testing data. .. todo:: Implement loading of training and testing data. **Parameters** :dataset_md: A dictionary with all the meta data. (*optional, default: None*) :dataset_dir: The (absolute) directory of the dataset. (*obligatory, default: None*) :Author: Johannes Teiwes (johannes.teiwes@dfki.de) :Date: 2010/10/13 :refactored: 2013/06/10 Johannes Teiwes and Mario Michael Krell """ def __init__(self, dataset_md=None, dataset_dir=None, **kwargs): super(StreamDataset, self).__init__(dataset_md=dataset_md) self.dataset_dir = dataset_dir if not self.meta_data.has_key('storage_format'): warnings.warn( str("Storage Format not set for current dataset in %s" % dataset_dir)) if self.meta_data.has_key("file_name"): data_files = [os.path.join(dataset_dir,self.meta_data["file_name"])] if not "storage_format" in self.meta_data: self.meta_data["storage_format"] = \ os.path.splitext(data_files[0])[1].lower() elif self.meta_data.has_key('storage_format'): self.meta_data["storage_format"] = \ self.meta_data['storage_format'].lower() # mapping of storage format to file suffix suffix = self.meta_data['storage_format'] if "eeg" in suffix: suffix = "eeg" # searching files data_files = glob.glob(os.path.join( dataset_dir, str("*.%s" % suffix))) if len(data_files) == 0 and suffix == "eeg": suffix = "dat" data_files = glob.glob(os.path.join( dataset_dir, str("*.%s" % suffix))) if len(data_files) == 0: raise IOError, str("Cannot find any .%s file in %s" % (suffix, dataset_dir)) if len(data_files) != 1: raise IOError, str("Found more than one *.%s file in %s" % (suffix, dataset_dir)) else: # assume .eeg files data_files = glob.glob(dataset_dir + os.sep + "*.eeg") if len(data_files) == 0: data_files = glob.glob(dataset_dir + os.sep + "*.dat") assert len(data_files) == 1, \ "Error locating eeg-data files (.eeg/.dat)" self.data_file = data_files[0] self.reader = None ec_files = glob.glob(dataset_dir + os.sep + "*.elc") assert len(ec_files) <= 1, "More than one electrode position file found!" if len(ec_files)==1: try: ec = {} ec_file = open(ec_files[0], 'r') while (ec_file.readline() != "Positions"): pass for line in ec_file: if line == "Labels": break pair = line.split(":") ec[pair[0]] = \ numpy.array([int(x) for x in pair[1].split(" ")]) nas = ec["NAS"] lpa = ec["LPA"] rpa = ec["RPA"] origin = (rpa + lpa) * 0.5 vx = nas - origin vx = vx / numpy.linalg.norm(vx) vz = numpy.cross(vx, lpa - rpa) vz = vz / numpy.linalg.norm(vz) vy = numpy.cross(vz, vx) vy = vy / numpy.linalg.norm(vy) rotMat = numpy.linalg.inv(numpy.matrix([vx, vy, vz])) transMat = numpy.dot(-rotMat, origin) for k, v in self.ec.iteritems(): ec[k] = numpy.dot(transMat, numpy.dot(v, rotMat)) self.meta_data["electrode_coordinates"] = ec self._log("Loaded dataset specific electrode position file", logging.INFO) except Exception, e: print e #self.meta_data["electrode_coordinates"] = StreamDataset.ec finally: file.close() # Spherical electrode coordinates (x-axis points to the right, # y-axis to the front, z-axis runs through the vertex; 3 params: r (radius) # set to 1 on standard caps, theta (angle between z-axis and line connecting # point and coordinate origin, < 0 in left hemisphere, > 0 in right # hemisphere) and phi (angle between x-axis and projection of the line # connecting the point and coordinate origin on the xy plane, > 0 for front # right and back left quadrants, < 0 for front left and back right)) are # exported from analyzer2 (generic export; saved in header file) and # converted to Cartesian coordinates via # x = r * sin(rad(theta)) * cos(rad(phi)) # y = r * sin(rad(theta)) * sin(rad(phi)) # z = r * cos(rad(theta)) # electrodes FP1/Fp1 and FP2/Fp2 have same coordinates ec = { 'CPP5h': (-0.72326832569043442, -0.50643793379675761, 0.46947156278589086), 'AFF1h': (-0.11672038362490393, 0.83050868362971098, 0.5446390350150272), 'O2': (0.30901699437494745, -0.95105651629515353, 6.123233995736766e-17), 'O1': (-0.30901699437494745, -0.95105651629515353, 6.123233995736766e-17), 'FCC6h': (0.82034360384187455, 0.1743694158206236, 0.5446390350150272), 'TPP8h': (0.86385168719631511, -0.47884080932566353, 0.15643446504023092), 'PPO10h': (0.69411523801289432, -0.69411523801289421, -0.1908089953765448), 'TP7': (-0.95105651629515353, -0.3090169943749474, 6.123233995736766e-17), 'CPz': (2.293803827831453e-17, -0.37460659341591201, 0.92718385456678742), 'CCP4h': (0.54232717509597328, -0.18673822182292288, 0.8191520442889918), 'TP9': (-0.87545213915725872, -0.28445164312142457, -0.3907311284892736), 'TP8': (0.95105651629515353, -0.3090169943749474, 6.123233995736766e-17), 'FCC5h': (-0.82034360384187455, 0.1743694158206236, 0.5446390350150272), 'CPP2h': (0.16769752048474765, -0.54851387399083462, 0.8191520442889918), 'FFC1h': (-0.16769752048474765, 0.54851387399083462, 0.8191520442889918), 'TPP7h': (-0.86385168719631511, -0.47884080932566353, 0.15643446504023092), 'PO10': (0.54105917752298882, -0.7447040698476447, -0.3907311284892736), 'FTT8h': (0.96671406082679645, 0.17045777155400837, 0.19080899537654492), 'Oz': (6.123233995736766e-17, -1.0, 6.123233995736766e-17), 'AFF2h': (0.11672038362490393, 0.83050868362971098, 0.5446390350150272), 'CCP3h': (-0.54232717509597328, -0.18673822182292288, 0.8191520442889918), 'CP1': (-0.35777550984135725, -0.37048738597260156, 0.85716730070211233), 'CP2': (0.35777550984135725, -0.37048738597260156, 0.85716730070211233), 'CP3': (-0.66008387202973706, -0.36589046498407451, 0.6560590289905075), 'CP4': (0.66008387202973706, -0.36589046498407451, 0.6560590289905075), 'CP5': (-0.87157241273869712, -0.33456530317942912, 0.35836794954530016), 'CP6': (0.87157241273869712, -0.33456530317942912, 0.35836794954530016), 'FFT7h': (-0.86385168719631511, 0.47884080932566353, 0.15643446504023092), 'FTT7h': (-0.96671406082679645, 0.17045777155400837, 0.19080899537654492), 'PPO5h': (-0.5455036073850148, -0.7790598895575418, 0.30901699437494745), 'AFp1': (-0.13661609910710645, 0.97207405517694545, 0.19080899537654492), 'AFp2': (0.13661609910710645, 0.97207405517694545, 0.19080899537654492), 'FT10': (0.87545213915725872, 0.28445164312142457, -0.3907311284892736), 'POO9h': (-0.44564941557132876, -0.87463622477252034, -0.1908089953765448), 'POO10h': (0.44564941557132876, -0.87463622477252034, -0.1908089953765448), 'T8': (1.0, -0.0, 6.123233995736766e-17), 'FT7': (-0.95105651629515353, 0.3090169943749474, 6.123233995736766e-17), 'FT9': (-0.87545213915725872, 0.28445164312142457, -0.3907311284892736), 'FT8': (0.95105651629515353, 0.3090169943749474, 6.123233995736766e-17), 'FFC3h': (-0.48133227677866169, 0.53457365038161042, 0.69465837045899737), 'P10': (0.74470406984764481, -0.54105917752298871, -0.3907311284892736), 'AF8': (0.58778525229247325, 0.80901699437494734, 6.123233995736766e-17), 'T7': (-1.0, -0.0, 6.123233995736766e-17), 'AF4': (0.36009496929665602, 0.89126632448749754, 0.27563735581699916), 'AF7': (-0.58778525229247325, 0.80901699437494734, 6.123233995736766e-17), 'AF3': (-0.36009496929665602, 0.89126632448749754, 0.27563735581699916), 'P2': (0.28271918486560565, -0.69975453766943163, 0.6560590289905075), 'P3': (-0.5450074457687164, -0.67302814507021891, 0.50000000000000011), 'CPP4h': (0.48133227677866169, -0.53457365038161042, 0.69465837045899737), 'P1': (-0.28271918486560565, -0.69975453766943163, 0.6560590289905075), 'P6': (0.72547341102583851, -0.63064441484306177, 0.27563735581699916), 'P7': (-0.80901699437494745, -0.58778525229247314, 6.123233995736766e-17), 'P4': (0.5450074457687164, -0.67302814507021891, 0.50000000000000011), 'P5': (-0.72547341102583851, -0.63064441484306177, 0.27563735581699916), 'P8': (0.80901699437494745, -0.58778525229247314, 6.123233995736766e-17), 'P9': (-0.74470406984764481, -0.54105917752298871, -0.3907311284892736), 'PPO2h': (0.11672038362490393, -0.83050868362971098, 0.5446390350150272), 'F10': (0.74470406984764481, 0.54105917752298871, -0.3907311284892736), 'TPP9h': (-0.87463622477252045, -0.4456494155713287, -0.1908089953765448), 'FTT9h': (-0.96954172390250215, 0.1535603233115839, -0.1908089953765448), 'CCP5h': (-0.82034360384187455, -0.1743694158206236, 0.5446390350150272), 'AFF6h': (0.5455036073850148, 0.7790598895575418, 0.30901699437494745), 'FFC2h': (0.16769752048474765, 0.54851387399083462, 0.8191520442889918), 'FCz': (2.293803827831453e-17, 0.37460659341591201, 0.92718385456678742), 'FCC2h': (0.1949050434465294, 0.19490504344652934, 0.96126169593831889), 'CPP1h': (-0.16769752048474765, -0.54851387399083462, 0.8191520442889918), 'FTT10h': (0.96954172390250215, 0.1535603233115839, -0.1908089953765448), 'Fz': (4.3297802811774658e-17, 0.70710678118654746, 0.70710678118654757), 'TTP8h': (0.96671406082679645, -0.17045777155400837, 0.19080899537654492), 'FFT9h': (-0.87463622477252045, 0.4456494155713287, -0.1908089953765448), 'Pz': (4.3297802811774658e-17, -0.70710678118654746, 0.70710678118654757), 'FFC4h': (0.48133227677866169, 0.53457365038161042, 0.69465837045899737), 'C3': (-0.70710678118654746, -0.0, 0.70710678118654757), 'C2': (0.39073112848927372, -0.0, 0.92050485345244037), 'C1': (-0.39073112848927372, -0.0, 0.92050485345244037), 'C6': (0.92718385456678731, -0.0, 0.37460659341591218), 'C5': (-0.92718385456678731, -0.0, 0.37460659341591218), 'C4': (0.70710678118654746, -0.0, 0.70710678118654757), 'TTP7h': (-0.96671406082679645, -0.17045777155400837, 0.19080899537654492), 'FC1': (-0.35777550984135725, 0.37048738597260156, 0.85716730070211233), 'FC2': (0.35777550984135725, 0.37048738597260156, 0.85716730070211233), 'FC3': (-0.66008387202973706, 0.36589046498407451, 0.6560590289905075), 'FC4': (0.66008387202973706, 0.36589046498407451, 0.6560590289905075), 'FC5': (-0.87157241273869712, 0.33456530317942912, 0.35836794954530016), 'FC6': (0.87157241273869712, 0.33456530317942912, 0.35836794954530016), 'FCC1h': (-0.1949050434465294, 0.19490504344652934, 0.96126169593831889), 'CPP6h': (0.72326832569043442, -0.50643793379675761, 0.46947156278589086), 'F1': (-0.28271918486560565, 0.69975453766943163, 0.6560590289905075), 'F2': (0.28271918486560565, 0.69975453766943163, 0.6560590289905075), 'F3': (-0.5450074457687164, 0.67302814507021891, 0.50000000000000011), 'F4': (0.5450074457687164, 0.67302814507021891, 0.50000000000000011), 'F5': (-0.72547341102583851, 0.63064441484306177, 0.27563735581699916), 'F6': (0.72547341102583851, 0.63064441484306177, 0.27563735581699916), 'F7': (-0.80901699437494745, 0.58778525229247314, 6.123233995736766e-17), 'F8': (0.80901699437494745, 0.58778525229247314, 6.123233995736766e-17), 'F9': (-0.74470406984764481, 0.54105917752298871, -0.3907311284892736), 'FFT8h': (0.86385168719631511, 0.47884080932566353, 0.15643446504023092), 'FFT10h': (0.87463622477252045, 0.4456494155713287, -0.1908089953765448), 'Cz': (0.0, 0.0, 1.0), 'FFC5h': (-0.72326832569043442, 0.50643793379675761, 0.46947156278589086), 'FCC4h': (0.54232717509597328, 0.18673822182292288, 0.8191520442889918), 'TP10': (0.87545213915725872, -0.28445164312142457, -0.3907311284892736), 'POz': (5.6364666119006729e-17, -0.92050485345244037, 0.39073112848927372), 'CPP3h': (-0.48133227677866169, -0.53457365038161042, 0.69465837045899737), 'FFC6h': (0.72326832569043442, 0.50643793379675761, 0.46947156278589086), 'PPO1h': (-0.11672038362490393, -0.83050868362971098, 0.5446390350150272), 'Fpz': (6.123233995736766e-17, 1.0, 6.123233995736766e-17), 'POO2': (0.13661609910710645, -0.97207405517694545, 0.19080899537654492), 'POO1': (-0.13661609910710645, -0.97207405517694545, 0.19080899537654492), 'I1': (-0.28651556797120703, -0.88180424668940116, -0.37460659341591207), 'I2': (0.28651556797120703, -0.88180424668940116, -0.37460659341591207), 'PPO9h': (-0.69411523801289432, -0.69411523801289421, -0.1908089953765448), 'FP1': (-0.30901699437494745, 0.95105651629515353, 6.123233995736766e-17), 'OI2h': (0.15356032331158395, -0.96954172390250215, -0.1908089953765448), 'FP2': (0.30901699437494745, 0.95105651629515353, 6.123233995736766e-17), 'CCP6h': (0.82034360384187455, -0.1743694158206236, 0.5446390350150272), 'FCC3h': (-0.54232717509597328, 0.18673822182292288, 0.8191520442889918), 'PO8': (0.58778525229247325, -0.80901699437494734, 6.123233995736766e-17), 'PO9': (-0.54105917752298882, -0.7447040698476447, -0.3907311284892736), 'PO7': (-0.58778525229247325, -0.80901699437494734, 6.123233995736766e-17), 'PO4': (0.36009496929665602, -0.89126632448749754, 0.27563735581699916), 'PO3': (-0.36009496929665602, -0.89126632448749754, 0.27563735581699916), 'Fp1': (-0.30901699437494745, 0.95105651629515353, 6.123233995736766e-17), 'Fp2': (0.30901699437494745, 0.95105651629515353, 6.123233995736766e-17), 'PPO6h': (0.5455036073850148, -0.7790598895575418, 0.30901699437494745), 'CCP2h': (0.1949050434465294, -0.19490504344652934, 0.96126169593831889), 'Iz': (5.6773636985816068e-17, -0.92718385456678742, -0.37460659341591207), 'AFF5h': (-0.5455036073850148, 0.7790598895575418, 0.30901699437494745), 'TPP10h': (0.87463622477252045, -0.4456494155713287, -0.1908089953765448), 'OI1h': (-0.15356032331158395, -0.96954172390250215, -0.1908089953765448), 'CCP1h': (-0.1949050434465294, -0.19490504344652934, 0.96126169593831889) } def store(self, result_dir, s_format="multiplexed"): """ Not yet implemented! """ raise NotImplementedError("Storing of StreamDataset is currently not supported!") @staticmethod def project2d(ec_3d): """ Take a dictionary of 3d Cartesian electrode coordinates and return a dictionary of their 2d projection in Cartesian coordinates. """ keys = [] x = [] y = [] z = [] for k, v in ec_3d.iteritems(): keys.append(k) x.append(v[0]) y.append(v[1]) z.append(v[2]) x = numpy.array(x) y = numpy.array(y) z = numpy.array(z) z = z - numpy.max(z) # get spherical coordinates: normally this can be done via: # phi = deg(atan2(y,x)); if < -90 -> + 180, if > 90 -> - 180 # theta = deg(arccos(z/r)); if x < 0 -> * (-1) hypotxy = numpy.hypot(x, y) r = numpy.hypot(hypotxy, z) phi = numpy.arctan2(z, hypotxy) theta = numpy.arctan2(y, x) phi = numpy.maximum(phi, 0.001) r2 = r / numpy.power(numpy.cos(phi), 0.2) x = r2 * numpy.cos(theta) * 60 y = r2 * numpy.sin(theta) * 60 ec_2d = {} for i in xrange(0, len(keys)): ec_2d[keys[i]] = (x[i], y[i]) return ec_2d def set_window_defs(self, window_definition, nullmarker_stride_ms=1000, no_overlap=False, data_consistency_check=False): """ Takes the window definition dictionary for later reading The parameters are later on mainly forwarded to the :class:`~pySPACE.missions.support.windower.MarkerWindower`. To find more about these parameters, check out its documentation. """ self.window_definition = window_definition self.nullmarker_stride_ms = nullmarker_stride_ms self.no_overlap = no_overlap self.data_consistency_check = data_consistency_check def get_data(self, run_nr, split_nr, train_test): if not (run_nr, split_nr, train_test) == (0, 0, "test"): return self.data[(run_nr, split_nr, train_test)] if self.meta_data.has_key('storage_format'): if "bp_eeg" in self.meta_data['storage_format']: # remove ".eeg" suffix self.reader = EEGReader(self.data_file[:-4], blocksize=100) elif "set" in self.meta_data['storage_format']: self.reader = SETReader(self.data_file[:-4]) elif "edf" in self.meta_data['storage_format']: self.reader = EDFReader(self.data_file) elif "csv" in self.meta_data['storage_format']: sf = self.meta_data.get("sampling_frequency", 1) try: delimiter = self.meta_data["delimiter"] except KeyError: delimiter=None try: mf = os.path.join(self.dataset_dir, self.meta_data["marker_file"]) except KeyError: mf = None if "marker" in self.meta_data: marker = self.meta_data["marker"] else: marker = "marker" self.reader = CsvReader(self.data_file, sampling_frequency=sf, marker=marker, marker_file=mf, delimiter=delimiter) else: self.reader = EEGReader(self.data_file, blocksize=100) # Creates a windower that splits the training data into windows # based in the window definitions provided # and assigns correct labels to these windows self.marker_windower = MarkerWindower( self.reader, self.window_definition, nullmarker_stride_ms=self.nullmarker_stride_ms, no_overlap=self.no_overlap, data_consistency_check=self.data_consistency_check) return self.marker_windower def parse_float(param): """ Work around to catch colon instead of floating point """ try: return float(param) except ValueError, e: warnings.warn("Failed float conversion from csv file.") try: return float(param.replace(".", "").replace(",", ".")) except: warnings.warn("Secondary attempt at conversion also failed. " + "Treating the value as string and return a 0 as " + "placeholder.") return float(0) def get_csv_handler(file_handler): """Helper function to get a DictReader from csv""" try: dialect = csv.Sniffer().sniff(file_handler.read(2048)) file_handler.seek(0) return csv.DictReader(file_handler, dialect=dialect) except csv.Error, e: class excel_space(csv.excel): delimiter = ' ' warnings.warn(str(e)) csv.register_dialect("excel_space", excel_space) file_handler.seek(0) return csv.DictReader(file_handler, dialect=excel_space) class CsvReader(AbstractStreamReader): """ Load time series data from csv file **Parameters** :file_path: Path of the file to be loaded. (*optional, default: 'data.csv'*) :sampling_frequency: Underlying sampling frequency of the data in Hz (*optional, default: 1*) :marker: Name of the marker channel. If it is not found, no marker is forwarded. (*optional, default: 'marker'*) :marker_file: If the marker is not a column in the data file, an external csv file in the same folder can be specified with one column with the heading named like the *marker* parameter and one column named *time* with increasing numbers, which correspond to the index in the data file. (first time point gets zero.) Here the absolute path is needed. (*optional, default: None*) :delimiter: Delimiter used in the csv file. (*optional, default: None*) """ def __init__(self, file_path, sampling_frequency=1, marker="marker", marker_file=None, delimiter=None): try: self.file = open(file_path, "r") except IOError as io: warnings.warn("Failed to open file at [%s]" % file_path) raise io self._dSamplingInterval = sampling_frequency self.marker = marker self._markerids = dict() self._markerNames = dict() self.callbacks = list() self.new_marker_id = 1 self.time_index = 1 try: if not marker_file is None: marker_file = open(marker_file, "r") except IOError: warnings.warn("Failed to open marker file at [%s]. Now ignored." % marker_file) self._markerids["null"] = 0 self._markerNames[0] = "null" if delimiter is None: self.DictReader = get_csv_handler(self.file) else: self.DictReader = csv.DictReader(self.file, delimiter=delimiter) self.first_entry = self.DictReader.next() self._channelNames = self.first_entry.keys() self.MarkerReader = None if not marker_file is None: self.MarkerReader = get_csv_handler(marker_file) if not self.MarkerReader is None: self.update_marker() if self.next_marker[0] == self.time_index: self.first_marker = self.next_marker[1] self.update_marker() else: self.first_marker = "" elif self.marker in self._channelNames: self._channelNames.remove(self.marker) self.first_marker = self.first_entry.pop(self.marker) else: self.first_marker = "" @property def dSamplingInterval(self): """ actually the sampling frequency """ return self._dSamplingInterval @property def stdblocksize(self): """ standard block size (int) """ return 1 @property def markerids(self): """ mapping of markers/events in stream and unique integer (dict) The dict has to contain the mapping 'null' -> 0 to use the nullmarkerstride option in the windower. """ return self._markerids @property def channelNames(self): """ list of channel/sensor names """ return self._channelNames @property def markerNames(self): """ inverse mapping of markerids (dict) """ return self._markerNames def regcallback(self, func): """ register a function as consumer of the stream """ self.callbacks.append(func) def read(self, nblocks=1): """ Read *nblocks* of the stream and pass it to registers functions """ n = 0 while nblocks == -1 or n < nblocks: if not self.first_entry is None: samples, marker = self.first_entry, self.first_marker self.first_entry = None else: try: samples = self.DictReader.next() except IOError: break if not self.MarkerReader is None: if self.next_marker[0] == self.time_index: marker = self.next_marker[1] self.update_marker() else: marker = "" elif self.marker in samples.keys(): marker = samples.pop(self.marker) else: marker = "" # add marker to dict if not marker == "" and not marker in self._markerids: self._markerids[marker] = self.new_marker_id self._markerNames[self.new_marker_id] = marker self.new_marker_id += 1 # convert marker to array markers = numpy.ones(1)*(-1) if not marker == "": markers[0] = self._markerids[marker] # convert samples to array # special handling of marker in channel names # if the marker is in channelNames, if self.marker in self.channelNames: array_samples = numpy.zeros((len(self.channelNames)-1, 1)) else: array_samples = numpy.zeros((len(self.channelNames), 1)) offset = 0 for index, channel in enumerate(self.channelNames): if self.marker == channel: offset -= 1 else: array_samples[index + offset] = parse_float(samples[channel]) n += 1 for c in self.callbacks: c(array_samples, markers) self.time_index += 1 return n def update_marker(self): """Update `next_marker` from `MarkerReader` information""" try: next = self.MarkerReader.next() self.next_marker = (next["time"], next[self.marker]) except IOError: pass class EDFReader(AbstractStreamReader): """ Read EDF-Data On Instantiation it will automatically assign the value for the blocksize coded in the edf-file to its own attribute 'stdblocksize'. The Feature, that different signals can have different sampling rates is eliminated in a way, that every value of a lower sampled signal is repeated so that it fits the highest sampling rate present in the dataset. This is needed to have the same length for every signal in the returned array. """ def __init__(self, abs_edffile_path): """Initializes module and opens specified file.""" try: self.edffile = open(abs_edffile_path, "r") except IOError as io: warnings.warn(str("failed to open file at [%s]" % abs_edffile_path)) raise io # variables to later overwrite # the properties from AbstractStreamReader self.callbacks = list() self._dSamplingInterval = 0 self._stdblocksize = 0 self._markerids = dict() self._channelNames = dict() self._markerNames = dict() # gains, frequency for each channel self.gains = [] self.phy_min = [] self.dig_min = [] self.frequency = [] self.num_channels = 0 self.num_samples = [] self.edf_plus = False self.edf_header_length = 0 self.annotations = None self.num_samples_anno = None self.timepoint = 0.0 self.generate_meta_data() def __str__(self): return ("EDFReader Object (%d@%s)\n" + \ "\tEDF File:\t %s\n" + \ "\tFile Format:\t %s\n" + \ "\tBlocksize:\t %d\n" + \ "\tnChannels:\t %d\n" "\tfrequency:\t %d [Hz] (interval: %d [ns])\n") % ( os.getpid(), os.uname()[1], os.path.realpath(self.edffile.name), "EDF+" if self.edf_plus else "EDF", self.stdblocksize, len(self.channelNames), self.dSamplingInterval, 1000000/self.dSamplingInterval) @property def dSamplingInterval(self): return self._dSamplingInterval @property def stdblocksize(self): return self._stdblocksize @property def markerids(self): return self._markerids @property def channelNames(self): return self._channelNames[:-1] if self.edf_plus else self._channelNames @property def markerNames(self): return self._markerNames def read_edf_header(self): """Read edf-header information""" m = dict() m["version"] = self.edffile.read(8) m["subject_id"] = self.edffile.read(80).strip() m["recording_id"] = self.edffile.read(80).strip() m["start_date"] = self.edffile.read(8) m["start_time"] = self.edffile.read(8) m["num_bytes_header"] = int(self.edffile.read(8).strip()) m["edf_c_d"] = self.edffile.read(44).strip() m["num_data_records"] = self.edffile.read(8) m["single_record_duration"] = float(self.edffile.read(8)) m["num_channels"] = int(self.edffile.read(4)) m["channel_names"] = list() for i in range(m["num_channels"]): m["channel_names"].append(self.edffile.read(16).strip()) m["electrode_type"] = list() for i in range(m["num_channels"]): m["electrode_type"].append(self.edffile.read(80).strip()) m["phy_dims"] = list() for i in range(m["num_channels"]): m["phy_dims"].append(self.edffile.read(8).strip()) m["phy_min"] = list() for i in range(m["num_channels"]): m["phy_min"].append(float(self.edffile.read(8).strip())) m["phy_max"] = list() for i in range(m["num_channels"]): m["phy_max"].append(float(self.edffile.read(8).strip())) m["dig_min"] = list() for i in range(m["num_channels"]): m["dig_min"].append(float(self.edffile.read(8).strip())) m["dig_max"] = list() for i in range(m["num_channels"]): m["dig_max"].append(float(self.edffile.read(8).strip())) m["prefilter"] = list() for i in range(m["num_channels"]): m["prefilter"].append(self.edffile.read(80).strip()) m["single_record_num_samples"] = list() for i in range(m["num_channels"]): m["single_record_num_samples"].append(int(self.edffile.read(8).strip())) m["reserved"] = self.edffile.read(32*m["num_channels"]) # check position in file! assert self.edffile.tell() == m["num_bytes_header"], "EDF Header corrupt!" self.edf_header_length = self.edffile.tell() return m def read_edf_data(self): """read one record inside the data section of the edf-file""" edfsignal = [] edfmarkers = numpy.ones(max(self.num_samples))*(-1) # get markers from self.annotations if self.annotations is not None: current_annotations = numpy.where( numpy.array(self.annotations.keys()) < self.timepoint+self.delta)[0] for c in current_annotations: tmarker = self.annotations.keys()[c]-self.timepoint pmarker = int((tmarker/self.delta)*max(self.num_samples)) edfmarkers[pmarker] = self.markerids[self.annotations[self.annotations.keys()[c]]] self.annotations.pop(self.annotations.keys()[c]) self.timepoint += self.delta # in EDF+ the last channel has the annotations, # otherwise it is treated as regular signal channel if self.edf_plus: for i,n in enumerate(self.num_samples): data = self.edffile.read(n*2) if len(data) != n*2: raise IOError channel = numpy.fromstring(data, dtype=numpy.int16).astype(numpy.float32) signal = (channel - self.dig_min[i]) * self.gains[i] + self.phy_min[i] # simple upsampling for integer factors # TODO: may use scipy.resample .. if signal.shape[0] != max(self.num_samples): factor = max(self.num_samples)/signal.shape[0] assert type(factor) == int, str("Signal cannot be upsampled by non-int factor %f!" % factor) signal = signal.repeat(factor, axis=0) edfsignal.append(signal) else: for i,n in enumerate(self.num_samples): data = self.edffile.read(n*2) if len(data) != n*2: raise IOError channel = numpy.fromstring(data, dtype=numpy.int16).astype(numpy.float32) signal = (channel - self.dig_min[i]) * self.gains[i] + self.phy_min[i] # simple upsampling for integer factors # TODO: may use scipy.resample .. if signal.shape[0] != max(self.num_samples): factor = max(self.num_samples)/signal.shape[0] assert type(factor) == int, str("Signal cannot be upsampled by non-int factor %f!" % factor) signal = signal.repeat(factor, axis=0) edfsignal.append(signal) return edfsignal, edfmarkers def parse_annotations(self): """ Parses times and names of the annotations This is done beforehand - annotations are later added to the streamed data. """ self.edffile.seek(self.edf_header_length, os.SEEK_SET) self.annotations = dict() data_bytes_to_skip = sum(self.num_samples)*2 while True: self.edffile.read(data_bytes_to_skip) anno = self.edffile.read(self.num_samples_anno*2) if len(anno) != self.num_samples_anno*2: break anno = anno.strip() marker = anno.split(chr(20)) if marker[2][1:].startswith(chr(0)): continue base = float(marker[0]) offset = float(marker[2][1:]) name = str(marker[3]) self.annotations[base+offset] = name.strip() def generate_meta_data(self): """ Generate the necessary meta data for the windower """ m = self.read_edf_header() # calculate gain for each channel self.gains = [(px-pn)/(dx-dn) for px,pn,dx,dn in zip(m["phy_max"], m["phy_min"], m["dig_max"], m["dig_min"])] self.dig_min = m["dig_min"] self.phy_min = m["phy_min"] self._channelNames = m["channel_names"] self.num_channels = m["num_channels"] self.num_samples = m["single_record_num_samples"] # separate data from annotation channel if m["edf_c_d"] in ["EDF+D", "EDF+C"]: self.edf_plus = True # the annotation channel is called "EDF Annotations" and is the last channel assert "EDF Annotations" == m["channel_names"][-1], "Cannot determine Annotations Channel!" if m["edf_c_d"] in ["EDF+D"]: warnings.warn(str("The file %s contains non-continuous data-segments.\n" "This feature is not supported and may lead to unwanted results!") % self.edffile.name) self.num_samples_anno = self.num_samples.pop() # ignore sampling rate of the annotations channel else : self.edf_plus = False # calculate sampling interval for each channel self.frequency = [ns/m["single_record_duration"] for ns in self.num_samples] self._dSamplingInterval = max(self.frequency) self._stdblocksize = max(self.num_samples) self.delta = self.stdblocksize / max(self.frequency) # generate all marker names and ids self._markerids['null'] = 0 # in edf+ case we can parse them from annotations if self.edf_plus : self.parse_annotations() for i,(t,name) in enumerate(self.annotations.iteritems()): self._markerids[name] = i+1 else: warnings.warn("no marker channel is set - no markers will be streamed!") for s in range(1,256,1): self._markerids[str('S%3d' % s)] = s for r in range(1,256,1): self._markerids[str('R%3d' % r)] = r+256 # generate reverse mapping for k,v in zip(self._markerids.iterkeys(), self._markerids.itervalues()): self._markerNames[v] = k # reset file position to begin of data section self.edffile.seek(self.edf_header_length, os.SEEK_SET) # Register callback function def regcallback(self, func): self.callbacks.append(func) # Forwards block of data until all data is send def read(self, nblocks=1, verbose=False): """read data and call registered callbacks """ n = 0 while nblocks == -1 or n < nblocks: try: samples, markers = self.read_edf_data() except IOError: break n += 1 for c in self.callbacks: c(samples, markers) return n class SETReader(AbstractStreamReader): """ Load eeglab .set format Read eeglab format when the data has not been segmented yet. It is further assumed that the data is stored binary in another file with extension .fdt. Further possibilities are .dat format or to store everything in the .set file. Both is currently not supported. """ def __init__(self, abs_setfile_path, blocksize=100, verbose=False): self.abs_setfile_path = abs_setfile_path self._stdblocksize = blocksize self.callbacks = list() self._dSamplingInterval = 0 self._markerids = {"null": 0} self._channelNames = dict() self._markerNames = {0: "null"} self.read_set_file() self.fdt_handle = open(self.abs_data_path,'rb') self.latency = 0 self.current_marker_index = 0 @property def dSamplingInterval(self): return self._dSamplingInterval @property def stdblocksize(self): return self._stdblocksize @property def markerids(self): return self._markerids @property def channelNames(self): return self._channelNames @property def markerNames(self): return self._markerNames def read_set_file(self): setdata = loadmat(self.abs_setfile_path + '.set', appendmat=False) # check if stream data ntrials = setdata['EEG']['trials'][0][0][0][0] assert(ntrials == 1), "Data consists of more than one trial. This is not supported!" # check if data is stored in fdt format datafilename = setdata['EEG']['data'][0][0][0] assert(datafilename.split('.')[-1] == 'fdt'), "Data is not in fdt format!" # collect meta information self._dSamplingInterval = setdata['EEG']['srate'][0][0][0][0] self._channelNames = numpy.hstack(setdata['EEG']['chanlocs'][0][0][ \ 'labels'][0]).astype(numpy.str_).tolist() self.nChannels = setdata['EEG']['nbchan'][0][0][0][0] self.marker_data = numpy.hstack(setdata['EEG']['event'][0][0][ \ 'type'][0]).astype(numpy.str_) for marker in numpy.unique(self.marker_data): marker_number = len(self._markerNames) self._markerNames[marker_number] = marker self._markerids[marker] = marker_number self.marker_times = numpy.hstack(setdata['EEG']['event'][0][0][ \ 'latency'][0]).flatten() self.abs_data_path = os.path.join(os.path.dirname(self.abs_setfile_path), datafilename) def regcallback(self, func): self.callbacks.append(func) def read(self, nblocks=1, verbose=False): readblocks = 0 while (readblocks < nblocks or nblocks == -1): ret, samples, markers = self.read_fdt_data() if ret: for f in self.callbacks: f(samples, markers) else: break readblocks += 1 return readblocks def read_fdt_data(self): if self.fdt_handle == None: return False, None, None num_samples = self.nChannels * self._stdblocksize markers = numpy.zeros(self._stdblocksize) markers.fill(-1) ###### READ DATA FROM FILE ###### try: samples = numpy.fromfile(self.fdt_handle, dtype=numpy.float32, count=num_samples) except MemoryError: # assuming, that a MemoryError only occurs when file is finished self.fdt_handle.close() self.fdt_handle = None return False, None, None # True when EOF reached in last or current block if samples.size < num_samples: self.fdt_handle.close() self.fdt_handle = None if samples.size == 0: return False, None, None temp = samples samples = numpy.zeros(num_samples) numpy.put(samples, range(temp.size), temp) # need channel x time matrix samples = samples.reshape((self.stdblocksize, self.nChannels)).T ###### READ MARKERS FROM FILE ###### for l in range(self.current_marker_index,len(self.marker_times)): if self.marker_times[l] > self.latency + self._stdblocksize: self.current_marker_index = l self.latency += self._stdblocksize break else: rel_marker_pos = (self.marker_times[l] - 1) % self._stdblocksize markers[rel_marker_pos] = self._markerids[self.marker_data[l]] return True, samples, markers class EEGReader(AbstractStreamReader): """ Load raw EEG data in the .eeg brain products format This module does the Task of parsing .vhdr, .vmrk end .eeg/.dat files and then hand them over to the corresponding windower which iterates over the aggregated data. """ def __init__(self, abs_eegfile_path, blocksize=100, verbose=False): self.abs_eegfile_path = abs_eegfile_path self._stdblocksize = blocksize self.eeg_handle = None self.mrk_handle = None self.eeg_dtype = numpy.int16 self.callbacks = list() # variable names with capitalization correspond to # structures members defined in RecorderRDA.h self.nChannels, \ self._dSamplingInterval, \ self.resolutions, \ self._channelNames, \ self.channelids, \ self._markerids, \ self._markerNames, \ self.nmarkertypes = self.bp_meta() if verbose: print "channelNames:", self.channelNames, "\n" print "channelids:", self.channelids, "\n" print "markerNames:", self.markerNames, "\n" print "markerids:", self.markerids, "\n" print "resolutions:", self.resolutions, "\n" # open the eeg-file if self.eeg_handle == None: try: self.eeg_handle = open(self.abs_eegfile_path + '.eeg', 'rb') except IOError: try: self.eeg_handle = open(self.abs_eegfile_path + '.dat', 'rb') except IOError: raise IOError, "EEG-file [%s.{dat,eeg}] could not be opened!" % os.path.realpath(self.abs_eegfile_path) self.callbacks = list() self.ndsamples = None # last sample block read self.ndmarkers = None # last marker block read @property def dSamplingInterval(self): return self._dSamplingInterval @property def stdblocksize(self): return self._stdblocksize @property def markerids(self): return self._markerids @property def channelNames(self): return self._channelNames @property def markerNames(self): return self._markerNames # This function gathers meta information from the .vhdr and .vmrk files. # Only the relevant information is then stored in variables, the windower # accesses during the initialisation phase. def bp_meta(self): nChannels = 0 dSamplingInterval = 0 resolutions = list() channelNames = list() channelids = dict() markerids = dict() markerNames = dict() nmarkertypes = 0 prefix = '' # helper function to convert resolutions # 0 = 100 nV, 1 = 500 nV, 2 = 10 {mu}V, 3 = 152.6 {mu}V def res_conv(num, res): # convert num to nV if ord(res[0]) == 194: num = num*1000 if num <= 100: return 0 if num <= 500: return 1 if num <= 10000: return 2 return 3 # Start with vhdr file file_path = self.abs_eegfile_path + '.vhdr' hdr = open(file_path) for line in hdr: if line.startswith(";"): continue # Read the words between brackets like "[Common Infos]" if line.startswith('['): prefix = line.partition("[")[2].partition("]")[0].lower() continue if line.find("=") == -1: continue # Common Infos and Binary Infos if(prefix == 'common infos' or prefix == 'binary infos'): key, value = line.split('=') key = key.lower() value = value.lower() if(key == 'datafile'): pass # something like filename.eeg elif(key == 'markerfile'): mrk_file = value elif(key == 'dataformat'): pass # usually BINARY elif(key == 'dataorientation'): eeg_data_or = value elif(key == 'datatype'): pass # something like TIMEDOMAIN elif(key == 'numberofchannels'): nChannels = int(value) elif(key == 'datapoints'): pass # the number of datapoints in the whole set elif(key == 'samplinginterval'): dSamplingInterval = int(1000000/float(value)) elif(key == 'binaryformat'): if re.match("int_16", value, flags=re.IGNORECASE) == None: self.eeg_dtype = numpy.float32 else: self.eeg_dtype = numpy.int16 elif(key == 'usebigendianorder'): bin_byteorder = value # Channel Infos # ; Each entry: Ch<Channel number>=<Name>,<Reference channel name>, # ; <Resolution in "Unit">,<Unit>, elif(prefix == 'channel infos'): key, value = line.split('=') if re.match("^[a-z]{2}[0-9]{1,3}", key, flags=re.IGNORECASE) == None: continue ch_id = int(re.findall(r'\d+', key)[0]) ch_name = value.split(',')[0] ch_ref = value.split(',')[1] if len(re.findall(r'\d+', value.split(',')[2])) == 0: ch_res_f = 0 else: ch_res_f = float(re.findall(r'\d+', value.split(',')[2])[0]) ch_res_unit = value.split(',')[3] channelNames.append(ch_name) channelids[ch_name] = ch_id resolutions.append(res_conv(ch_res_f, ch_res_unit)) # Everything thats left.. else: #print "parsing finished!" break hdr.close() # Continue with marker file # Priority: # 1: Path from .vhdr # 2: Path constructed from eegfile path prefix = '' markerNames[0] = 'null' try: self.mrk_handle = open(os.path.basename(self.abs_eegfile_path) + mrk_file) except IOError: try: self.mrk_handle = open(self.abs_eegfile_path + '.vmrk') except IOError: raise IOError, str("Could not open [%s.vmrk]!" % os.path.realpath(self.abs_eegfile_path)) # Parse file for line in self.mrk_handle: if line.startswith(";"): continue # Read the words between brackets like "[Common Infos]" if line.startswith('['): prefix = line.partition("[")[2].partition("]")[0].lower() continue if line.find("=") == -1: continue if prefix == "marker infos": mrk_name = line.split(',')[1] if mrk_name != "" and mrk_name not in markerNames.values(): markerNames[len(markerNames)] = mrk_name # rewinds the marker file self.mrk_handle.seek(0, os.SEEK_SET) # helper struct for finding markers self.mrk_info = dict() self.mrk_info['line'] = "" self.mrk_info['position'] = 0 # advance to first marker line while(re.match("^Mk1=", self.mrk_info['line'], re.IGNORECASE) == None): try: self.mrk_info['line'] = self.mrk_handle.next() except StopIteration: self.mrk_handle.close() raise StopIteration, str("Reached EOF while searching for first Marker in [%s]" % os.path.realpath(self.mrk_handle.name)) # TODO: Sort markerNames? def compare (x,y): return cmp(self.int(re.findall(r'\d+', x)[0]), int(re.findall(r'\d+', y)[0])) for key in markerNames: markerids[markerNames[key]] = key markertypes = len(markerids) return nChannels, \ dSamplingInterval, \ resolutions, \ channelNames, \ channelids, \ markerids, \ markerNames, \ markertypes # This function reads the eeg-file and the marker-file for every # block of data which is processed. def bp_read(self, verbose=False): if self.eeg_handle == None: return False, None, None num_samples = self.nChannels*self.stdblocksize markers = numpy.zeros(self.stdblocksize) markers.fill(-1) samples = numpy.zeros(num_samples) ###### READ EEG-DATA FROM FILE ###### try: samples = numpy.fromfile(self.eeg_handle, dtype=self.eeg_dtype, count=num_samples) except MemoryError: # assuming, that a MemoryError only occurs when file is finished self.eeg_handle.close() self.eeg_handle = None return False, None, None # True when EEG-File's EOF reached in last or current block if samples.size < num_samples: self.eeg_handle.close() self.eeg_handle = None if samples.size == 0: return False, None, None temp = samples samples = numpy.zeros(num_samples) numpy.put(samples, range(temp.size), temp) samples = samples.reshape((self.stdblocksize, self.nChannels)) samples = scipy.transpose(samples) ###### READ MARKERS FROM FILE ###### self.mrk_info['position'] += self.stdblocksize mk_posi = 0 mk_desc = "" while True: mk = self.mrk_info['line'].split(',') if len(mk) < 2 or mk[1] == "": try: self.mrk_info['line'] = self.mrk_handle.next() except: self.mrk_handle.close() #self._log("WARNING: EOF[%s]\n" % os.path.realpath(self.mrk_handle.name)) break continue mk_desc = mk[1] mk_posi = int(mk[2]) if mk_posi > self.mrk_info['position']: break # special treatment for 'malformed' markerfiles mk_rel_position = (mk_posi-1) % self.stdblocksize if markers[mk_rel_position] != -1 : # store marker for next point mk[2] = str(mk_posi+1) self.mrk_info['line'] = ",".join(["%s" % (m) for m in mk]) #self._log(str("WARNING: shifted position of marker \"%s\" from %d to %d!\n" % (mk_desc, mk_posi, mk_posi+1))) if mk_rel_position+1 > self.stdblocksize-1: return True, samples, markers else: continue else : markers[mk_rel_position] = self.markerids[mk_desc] self.mrk_info['line'] = "" # try to read next line from markerfile try: self.mrk_info['line'] = self.mrk_handle.next() except: self.mrk_handle.close() break return True, samples, markers # string representation with interesting information def __str__(self): return ("EEGReader Object (%d@%s)\n" + \ "\tEEG File:\t %s\n" + \ "\tMRK File:\t %s\n" + \ "\tFile Format:\t %s\n" + \ "\tBlocksize:\t %d\n" + \ "\tnChannels:\t %d\n") % (os.getpid(), os.uname()[1], os.path.realpath(self.eeg_handle.name), os.path.realpath(self.mrk_handle.name), self.eeg_dtype, self.stdblocksize, self.nChannels) # Register callback function def regcallback(self, func): self.callbacks.append(func) # Reads data from .eeg/.dat file until EOF def read(self, nblocks=1, verbose=False): self.stop = False readblocks = 0 while (readblocks < nblocks or nblocks == -1): ret, self.ndsamples, self.ndmarkers = self.bp_read() if ret: for f in self.callbacks: f(self.ndsamples, self.ndmarkers) else: break readblocks += 1 return readblocks
42.111579
137
0.580613
58,352
0.972387
0
0
3,077
0.051276
0
0
16,529
0.275442
e17db1fd4e96affffe66942426ac284e73e8b345
10,463
py
Python
tests/base/test_endpoints_authentication.py
rapydo/http-api
ef0a299173195145303069534d45d446ea4da93a
[ "MIT" ]
8
2018-07-04T09:54:46.000Z
2022-03-17T08:21:06.000Z
tests/base/test_endpoints_authentication.py
rapydo/http-api
ef0a299173195145303069534d45d446ea4da93a
[ "MIT" ]
19
2018-04-18T07:24:55.000Z
2022-03-04T01:03:15.000Z
tests/base/test_endpoints_authentication.py
rapydo/http-api
ef0a299173195145303069534d45d446ea4da93a
[ "MIT" ]
7
2018-07-03T12:17:50.000Z
2021-05-05T04:33:32.000Z
from restapi.connectors import Connector from restapi.env import Env from restapi.services.authentication import BaseAuthentication, Role from restapi.tests import API_URI, BaseTests, FlaskClient from restapi.utilities.logs import log class TestApp(BaseTests): def test_no_auth(self, client: FlaskClient) -> None: r = client.get(f"{API_URI}/tests/noauth") assert r.status_code == 200 assert self.get_content(r) == "OK" if Env.get_bool("AUTH_ENABLE"): headers, _ = self.do_login(client, None, None) # Tokens are ignored r = client.get(f"{API_URI}/tests/noauth", headers=headers) assert r.status_code == 200 assert self.get_content(r) == "OK" # Tokens are ignored even if invalid r = client.get( f"{API_URI}/tests/noauth", headers={"Authorization": "Bearer invalid"} ) assert r.status_code == 200 assert self.get_content(r) == "OK" def test_auth(self, client: FlaskClient) -> None: if not Env.get_bool("AUTH_ENABLE"): log.warning("Skipping authentication tests") return r = client.get(f"{API_URI}/tests/authentication") assert r.status_code == 401 r = client.get( f"{API_URI}/tests/authentication", headers={"Authorization": "Bearer invalid"}, ) assert r.status_code == 401 headers, token = self.do_login(client, None, None) r = client.get(f"{API_URI}/tests/authentication", headers=headers) assert r.status_code == 200 content = self.get_content(r) assert isinstance(content, dict) assert len(content) == 1 assert "email" in content assert content["email"] == BaseAuthentication.default_user if not Env.get_bool("ALLOW_ACCESS_TOKEN_PARAMETER"): # access token parameter is not allowed by default r = client.get( f"{API_URI}/tests/authentication", query_string={"access_token": token} ) assert r.status_code == 401 def test_optional_auth(self, client: FlaskClient) -> None: if not Env.get_bool("AUTH_ENABLE"): log.warning("Skipping authentication tests") return # Optional authentication can accept missing tokens r = client.get(f"{API_URI}/tests/optionalauthentication") assert r.status_code == 204 headers, token = self.do_login(client, None, None) # Or valid tokens r = client.get(f"{API_URI}/tests/optionalauthentication", headers=headers) assert r.status_code == 200 content = self.get_content(r) assert isinstance(content, dict) assert len(content) == 1 assert "email" in content assert content["email"] == BaseAuthentication.default_user # But not invalid tokens, i.e. if presented the tokens is always validated r = client.get( f"{API_URI}/tests/authentication", headers={"Authorization": "Bearer invalid"}, ) assert r.status_code == 401 if not Env.get_bool("ALLOW_ACCESS_TOKEN_PARAMETER"): # access token parameter is not allowed by default r = client.get( f"{API_URI}/tests/optionalauthentication", query_string={"access_token": token}, ) # query token is ignored but the endpoint accepts missing tokens assert r.status_code == 204 r = client.get( f"{API_URI}/tests/optionalauthentication", query_string={"access_token": "invalid"}, ) # invalid tokens should be rejected, but query token is ignored assert r.status_code == 204 def test_access_token_parameter(self, client: FlaskClient) -> None: if not Env.get_bool("AUTH_ENABLE"): log.warning("Skipping authentication tests") return r = client.get(f"{API_URI}/tests/queryauthentication") assert r.status_code == 401 r = client.get( f"{API_URI}/tests/queryauthentication", headers={"Authorization": "Bearer invalid"}, ) assert r.status_code == 401 headers, token = self.do_login(client, None, None) r = client.get(f"{API_URI}/tests/queryauthentication", headers=headers) assert r.status_code == 200 content = self.get_content(r) assert isinstance(content, dict) assert len(content) == 1 assert "email" in content assert content["email"] == BaseAuthentication.default_user r = client.get( f"{API_URI}/tests/queryauthentication", query_string={"access_token": token} ) assert r.status_code == 200 content = self.get_content(r) assert isinstance(content, dict) assert len(content) == 1 assert "email" in content assert content["email"] == BaseAuthentication.default_user r = client.get( f"{API_URI}/tests/queryauthentication", query_string={"access_token": "invalid"}, ) assert r.status_code == 401 def test_optional_access_token_parameter(self, client: FlaskClient) -> None: if not Env.get_bool("AUTH_ENABLE"): log.warning("Skipping authentication tests") return # Optional authentication can accept missing tokens r = client.get(f"{API_URI}/tests/optionalqueryauthentication") assert r.status_code == 204 headers, token = self.do_login(client, None, None) # Or valid tokens r = client.get(f"{API_URI}/tests/optionalqueryauthentication", headers=headers) assert r.status_code == 200 content = self.get_content(r) assert isinstance(content, dict) assert len(content) == 1 assert "email" in content assert content["email"] == BaseAuthentication.default_user # But not invalid tokens, i.e. if presented the tokens is always validated r = client.get( f"{API_URI}/tests/optionalqueryauthentication", headers={"Authorization": "Bearer invalid"}, ) assert r.status_code == 401 r = client.get( f"{API_URI}/tests/optionalqueryauthentication", query_string={"access_token": token}, ) assert r.status_code == 200 content = self.get_content(r) assert isinstance(content, dict) assert len(content) == 1 assert "email" in content assert content["email"] == BaseAuthentication.default_user r = client.get( f"{API_URI}/tests/optionalqueryauthentication", query_string={"access_token": "invalid"}, ) # invalid tokens should be rejected, but query token is ignored assert r.status_code == 401 def test_authentication_with_multiple_roles(self, client: FlaskClient) -> None: if not Env.get_bool("AUTH_ENABLE"): log.warning("Skipping authentication tests") return r = client.get(f"{API_URI}/tests/manyrolesauthentication") assert r.status_code == 401 r = client.get(f"{API_URI}/tests/unknownroleauthentication") assert r.status_code == 401 admin_headers, _ = self.do_login(client, None, None) r = client.get( f"{API_URI}/tests/manyrolesauthentication", headers=admin_headers ) assert r.status_code == 200 content = self.get_content(r) assert isinstance(content, dict) assert len(content) == 1 assert "email" in content assert content["email"] == BaseAuthentication.default_user r = client.get( f"{API_URI}/tests/unknownroleauthentication", headers=admin_headers ) assert r.status_code == 401 if Env.get_bool("MAIN_LOGIN_ENABLE"): uuid, data = self.create_user(client, roles=[Role.USER]) user_header, _ = self.do_login( client, data.get("email"), data.get("password") ) r = client.get( f"{API_URI}/tests/manyrolesauthentication", headers=user_header ) assert r.status_code == 200 content = self.get_content(r) assert isinstance(content, dict) assert len(content) == 1 assert "email" in content assert content["email"] == data.get("email") r = client.get( f"{API_URI}/tests/unknownroleauthentication", headers=user_header ) assert r.status_code == 401 self.delete_user(client, uuid) def test_authentication_with_auth_callback(self, client: FlaskClient) -> None: if not Env.get_bool("AUTH_ENABLE"): log.warning("Skipping authentication tests") return auth = Connector.get_authentication_instance() user = auth.get_user(username=BaseAuthentication.default_user) assert user is not None VALID = f"/tests/preloadcallback/{user.uuid}" INVALID = "/tests/preloadcallback/12345678-90ab-cdef-1234-567890abcdef" admin_headers, _ = self.do_login(client, None, None) # Verify both endpoint ... r = client.get( f"{API_URI}{VALID}", query_string={"test": True}, headers=admin_headers ) assert r.status_code == 200 content = self.get_content(r) assert isinstance(content, dict) assert len(content) == 1 assert "email" in content assert content["email"] == user.email r = client.get( f"{API_URI}{INVALID}", query_string={"test": True}, headers=admin_headers ) assert r.status_code == 401 # and get_schema! r = client.get( f"{API_URI}{VALID}", query_string={"get_schema": True}, headers=admin_headers, ) assert r.status_code == 200 content = self.get_content(r) assert isinstance(content, list) assert len(content) == 1 assert content[0]["key"] == "test" assert content[0]["type"] == "boolean" r = client.get( f"{API_URI}{INVALID}", query_string={"get_schema": True}, headers=admin_headers, ) assert r.status_code == 401
35.228956
88
0.60346
10,225
0.977253
0
0
0
0
0
0
2,793
0.266941
e17f627e7014eaf9f501344de8ac94066bc5da4f
70,860
py
Python
katsdpscripts/rts_session.py
ska-sa/katsdpscripts
f9eaa867aad8b94c715f7286953124df00b5781c
[ "BSD-3-Clause" ]
null
null
null
katsdpscripts/rts_session.py
ska-sa/katsdpscripts
f9eaa867aad8b94c715f7286953124df00b5781c
[ "BSD-3-Clause" ]
21
2019-09-16T15:26:53.000Z
2022-01-11T09:14:39.000Z
katsdpscripts/rts_session.py
ska-sa/katsdpscripts
f9eaa867aad8b94c715f7286953124df00b5781c
[ "BSD-3-Clause" ]
1
2019-11-11T11:47:54.000Z
2019-11-11T11:47:54.000Z
############################################################################### # SKA South Africa (http://ska.ac.za/) # # Author: cam@ska.ac.za # # Copyright @ 2013 SKA SA. All rights reserved. # # # # THIS SOFTWARE MAY NOT BE COPIED OR DISTRIBUTED IN ANY FORM WITHOUT THE # # WRITTEN PERMISSION OF SKA SA. # ############################################################################### """CaptureSession encompassing data capturing and standard observations with RTS. This defines the :class:`CaptureSession` class, which encompasses the capturing of data and the performance of standard scans with the RTS system. It also provides a fake :class:`TimeSession` class, which goes through the motions in order to time them, but without performing any real actions. """ import time import logging import sys import os.path import numpy as np import katpoint # This is used to document available spherical projections (and set them in case of TimeSession) from katcorelib.targets import Offset from .array import Array from .katcp_client import KATClient from .defaults import user_logger, activity_logger from katmisc.utils.utils import dynamic_doc # Obtain list of spherical projections and the default projection from antenna proxy projections, default_proj = Offset.PROJECTIONS.keys(), Offset.DEFAULT_PROJECTION # Move default projection to front of list projections.remove(default_proj) projections.insert(0, default_proj) def ant_array(kat, ants, name='ants'): """Create sub-array of antennas from flexible specification. Parameters ---------- kat : :class:`utility.KATCoreConn` object KAT connection object ants : :class:`Array` or :class:`KATClient` object, or list, or string Antennas specified by an Array object containing antenna devices, or a single antenna device or a list of antenna devices, or a string of comma-separated antenna names, or the string 'all' for all antennas controlled via the KAT connection associated with this session Returns ------- array : :class:`Array` object Array object containing selected antenna devices Raises ------ ValueError If antenna with a specified name is not found on KAT connection object """ if isinstance(ants, Array): return ants elif isinstance(ants, KATClient): return Array(name, [ants]) elif isinstance(ants, basestring): if ants.strip() == 'all': return kat.ants else: try: return Array(name, [getattr(kat, ant.strip()) for ant in ants.split(',')]) except AttributeError: raise ValueError("Antenna '%s' not found (i.e. no kat.%s exists)" % (ant, ant)) else: # The default assumes that *ants* is a list of antenna devices return Array(name, ants) def report_compact_traceback(tb): """Produce a compact traceback report.""" print '--------------------------------------------------------' print 'Session interrupted while doing (most recent call last):' print '--------------------------------------------------------' while tb: f = tb.tb_frame print '%s %s(), line %d' % (f.f_code.co_filename, f.f_code.co_name, f.f_lineno) tb = tb.tb_next print '--------------------------------------------------------' class ScriptLogHandler(logging.Handler): """Logging handler that writes logging records to HDF5 file via ingest. Parameters ---------- data : :class:`KATClient` object Data proxy device for the session """ def __init__(self, data): logging.Handler.__init__(self) self.data = data def emit(self, record): """Emit a logging record.""" try: msg = self.format(record) # XXX This probably has to go to cam2spead as a req/sensor combo [YES] # self.data.req.k7w_script_log(msg) except (KeyboardInterrupt, SystemExit): raise except: self.handleError(record) class ObsParams(dict): """Dictionary-ish that writes observation parameters to CAM SPEAD stream. Parameters ---------- data : :class:`KATClient` object Data proxy device for the session product : string Name of data product """ def __init__(self, data, product): dict.__init__(self) self.data = data self.product = product def __setitem__(self, key, value): # XXX Changing data product name -> ID in a hard-coded fashion self.data.req.set_obs_param(self.product, key, repr(value)) dict.__setitem__(self, key, value) class RequestSensorError(Exception): """Critical request failed or critical sensor could not be read.""" pass class CaptureSessionBase(object): def get_ant_names(self): return ','.join(co for co in self.kat.controlled_objects if co in self.kat.katconfig.arrays['ants']) class CaptureSession(CaptureSessionBase): """Context manager that encapsulates a single data capturing session. A data capturing *session* results in a single data file, potentially containing multiple scans and compound scans. An *experiment* may consist of multiple sessions. This object ensures that the capturing process is started and completed cleanly, even if exceptions occur during the session. It also provides canned routines for simple observations such as tracks, single scans and raster scans on a specific source. The initialisation of the session object does basic preparation of the data capturing subsystem (ingest) and logging. It tries to do the minimum to enable data capturing. The experimental setup is usually completed by calling :meth:`standard_setup` on the instantiated session object. The actual data capturing only starts once :meth:`capture_start` is called. Parameters ---------- kat : :class:`utility.KATCoreConn` object KAT connection object associated with this experiment product : string, optional Data product (unchanged by default) dump_rate : float, optional Correlator dump rate, in Hz (will be set by default) kwargs : dict, optional Ignore any other keyword arguments (simplifies passing options as dict) Raises ------ ValueError If data proxy is not connected RequestSensorError If ingest system did not initialise or data product could not be selected """ def __init__(self, kat, product=None, dump_rate=1.0, **kwargs): try: self.kat = kat # Hard-code the RTS data proxy for now data, katsys = kat.data_rts, kat.sys if not data.is_connected(): raise ValueError("Data proxy '%s' is not connected " "(is the KAT system running?)" % (data.name,)) self.data = self.dbe = data # Default settings for session parameters (in case standard_setup is not called) self.ants = None self.experiment_id = 'interactive' self.stow_when_done = False self.nd_params = {'diode': 'default', 'on': 0., 'off': 0., 'period': -1.} self.last_nd_firing = 0. self.output_file = '' self.horizon = 3.0 # Requested dump period, replaced by actual value after capture started self.dump_period = self._requested_dump_period = 1.0 / dump_rate # # XXX last dump timestamp? # self._end_of_previous_session = data.sensor.k7w_last_dump_timestamp.get_value() # XXX Hard-code product name for now self.product = 'c856M32k' if product is None else product data.req.product_configure(self.product, dump_rate, timeout=330) # Enable logging to the new HDF5 file via the usual logger (using same formatting and filtering) self._script_log_handler = ScriptLogHandler(data) if len(user_logger.handlers) > 0: self._script_log_handler.setLevel(user_logger.handlers[0].level) self._script_log_handler.setFormatter(user_logger.handlers[0].formatter) user_logger.addHandler(self._script_log_handler) user_logger.info('==========================') user_logger.info('New data capturing session') user_logger.info('--------------------------') user_logger.info('Data proxy used = %s' % (data.name,)) user_logger.info('Data product = %s' % (self.product,)) # XXX file name? SB ID? Program block ID? -> [file via capture_done] # # Obtain the name of the file currently being written to # reply = data.req.k7w_get_current_file() # outfile = reply[1] if reply.succeeded else '<unknown file>' outfile = '<unknown file>' user_logger.info('Opened output file = %s' % (outfile,)) user_logger.info('') activity_logger.info("----- Script starting %s (%s). Output file %s" % (sys.argv[0], ' '.join(sys.argv[1:]), outfile)) # Log details of the script to the back-end self.obs_params = ObsParams(data, self.product) katsys.req.set_script_param('script-starttime', time.time()) katsys.req.set_script_param('script-endtime', '') katsys.req.set_script_param('script-name', sys.argv[0]) katsys.req.set_script_param('script-arguments', ' '.join(sys.argv[1:])) katsys.req.set_script_param('script-status', 'busy') except Exception, e: msg = 'CaptureSession failed to initialise (%s)' % (e,) user_logger.error(msg) activity_logger.info(msg) if hasattr(self, '_script_log_handler'): user_logger.removeHandler(self._script_log_handler) raise def __enter__(self): """Enter the data capturing session.""" return self def __exit__(self, exc_type, exc_value, traceback): """Exit the data capturing session, closing the data file.""" if exc_value is not None: exc_msg = str(exc_value) msg = "Session interrupted by exception (%s%s)" % \ (exc_value.__class__.__name__, (": '%s'" % (exc_msg,)) if exc_msg else '') if exc_type is KeyboardInterrupt: user_logger.warning(msg) activity_logger.warning(msg) else: user_logger.error(msg, exc_info=True) activity_logger.error(msg, exc_info=True) self.end(interrupted=True) else: self.end(interrupted=False) # Suppress KeyboardInterrupt so as not to scare the lay user, # but allow other exceptions that occurred in the body of with-statement if exc_type is KeyboardInterrupt: report_compact_traceback(traceback) return True else: return False def get_centre_freq(self): """Get RF (sky) frequency associated with middle CBF channel. Returns ------- centre_freq : float Actual centre frequency in MHz (or NaN if something went wrong) """ # XXX Something like this? [YES] # return self.data.sensor.cbf_${product}_centerfrequency.get_value() return 1284.0 def set_centre_freq(self, centre_freq): """Set RF (sky) frequency associated with middle CBF channel. Parameters ---------- centre_freq : float Desired centre frequency in MHz """ # XXX This will be a data product change instead... pass def standard_setup(self, observer, description, experiment_id=None, nd_params=None, stow_when_done=None, horizon=None, **kwargs): """Perform basic experimental setup including antennas, LO and dump rate. This performs the basic high-level setup that most experiments require. It should usually be called as the first step in a new session (unless the experiment has special requirements, such as holography). The user selects a subarray of antennas that will take part in the experiment, identifies him/herself and describes the experiment. Optionally, the user may also set the RF centre frequency, dump rate and noise diode firing strategy, amongst others. All optional settings are left unchanged if unspecified, except for the dump rate, which has to be set (due to the fact that there is currently no way to determine the dump rate...). The antenna specification *ants* do not have a default, which forces the user to specify them explicitly. This is for safety reasons, to remind the user of which antennas will be moved around by the script. The *observer* and *description* similarly have no default, to force the user to document the observation to some extent. Parameters ---------- ants : :class:`Array` or :class:`KATClient` object, or list, or string Antennas that will participate in the capturing session, as an Array object containing antenna devices, or a single antenna device or a list of antenna devices, or a string of comma-separated antenna names, or the string 'all' for all antennas controlled via the KAT connection associated with this session observer : string Name of person doing the observation description : string Short description of the purpose of the capturing session experiment_id : string, optional Experiment ID, a unique string used to link the data files of an experiment together with blog entries, etc. (unchanged by default) nd_params : dict, optional Dictionary containing parameters that control firing of the noise diode during canned commands. These parameters are in the form of keyword-value pairs, and matches the parameters of the :meth:`fire_noise_diode` method. This is unchanged by default (typically disabling automatic firing). stow_when_done : {False, True}, optional If True, stow the antennas when the capture session completes (unchanged by default) horizon : float, optional Elevation limit serving as horizon for session, in degrees kwargs : dict, optional Ignore any other keyword arguments (simplifies passing options as dict) Raises ------ ValueError If antenna with a specified name is not found on KAT connection object RequestSensorError If Data centre frequency could not be set """ # Create references to allow easy copy-and-pasting from this function session, kat, data, katsys = self, self.kat, self.data, self.kat.sys session.ants = ants = ant_array(kat, self.get_ant_names()) ant_names = [ant.name for ant in ants] # Override provided session parameters (or initialize them from existing parameters if not provided) session.experiment_id = experiment_id = session.experiment_id if experiment_id is None else experiment_id session.nd_params = nd_params = session.nd_params if nd_params is None else nd_params session.stow_when_done = stow_when_done = session.stow_when_done if stow_when_done is None else stow_when_done session.horizon = session.horizon if horizon is None else horizon # Prep capturing system data.req.capture_init(self.product) # Setup strategies for the sensors we might be wait()ing on ants.req.sensor_sampling('lock', 'event') ants.req.sensor_sampling('scan.status', 'event') ants.req.sensor_sampling('mode', 'event') # XXX can we still get these sensors somewhere? # data.req.sensor_sampling('k7w.spead_dump_period', 'event') # data.req.sensor_sampling('k7w.last_dump_timestamp', 'event') centre_freq = self.get_centre_freq() # Check this... # # The data proxy needs to know the dump period (in s) as well as the RF centre frequency # # of 400-MHz downconverted band (in Hz), which is used for fringe stopping / delay tracking # data.req.capture_setup(1. / dump_rate, session.get_centre_freq(200.0) * 1e6) user_logger.info('Antennas used = %s' % (' '.join(ant_names),)) user_logger.info('Observer = %s' % (observer,)) user_logger.info("Description ='%s'" % (description,)) user_logger.info('Experiment ID = %s' % (experiment_id,)) user_logger.info('Data product = %s' % (self.product,)) user_logger.info("RF centre frequency = %g MHz, dump rate = %g Hz" % (centre_freq, 1.0 / self.dump_period)) if nd_params['period'] > 0: nd_info = "Will switch '%s' noise diode on for %g s and off for %g s, every %g s if possible" % \ (nd_params['diode'], nd_params['on'], nd_params['off'], nd_params['period']) elif nd_params['period'] == 0: nd_info = "Will switch '%s' noise diode on for %g s and off for %g s at every opportunity" % \ (nd_params['diode'], nd_params['on'], nd_params['off']) else: nd_info = "Noise diode will not fire automatically" user_logger.info(nd_info + " while performing canned commands") # Send script options to SPEAD stream self.obs_params['observer'] = observer self.obs_params['description'] = description self.obs_params['experiment_id'] = experiment_id self.obs_params['nd_params'] = nd_params self.obs_params['stow_when_done'] = stow_when_done self.obs_params['horizon'] = session.horizon self.obs_params['centre_freq'] = centre_freq self.obs_params['product'] = self.product self.obs_params.update(kwargs) # Send script options to CAM system katsys.req.set_script_param('script-ants', ','.join(ant_names)) katsys.req.set_script_param('script-observer', observer) katsys.req.set_script_param('script-description', description) katsys.req.set_script_param('script-experiment-id', experiment_id) katsys.req.set_script_param('script-rf-params', 'Centre freq=%g MHz, Dump rate=%g Hz' % (centre_freq, 1.0 / self.dump_period)) katsys.req.set_script_param('script-nd-params', 'Diode=%s, On=%g s, Off=%g s, Period=%g s' % (nd_params['diode'], nd_params['on'], nd_params['off'], nd_params['period'])) # If the CBF is simulated, it will have position update commands if hasattr(data.req, 'cbf_pointing_az') and hasattr(data.req, 'cbf_pointing_el'): def listener_actual_azim(update_seconds, value_seconds, status, value): #Listener callback now includes status, use it here if status == 'nominal': data.req.cbf_pointing_az(value) def listener_actual_elev(update_seconds, value_seconds, status, value): #Listener callback now includes status, use it here if status == 'nominal': data.req.cbf_pointing_el(value) first_ant = ants[0] # The minimum time between position updates is fraction of dump period to ensure fresh data at every dump update_period_seconds = 0.4 * self.dump_period # Tell the position sensors to report their values periodically at this rate first_ant.sensor.pos_actual_scan_azim.set_strategy('period', str(float(update_period_seconds))) first_ant.sensor.pos_actual_scan_elev.set_strategy('period', str(float(update_period_seconds))) # Tell the Data simulator where the first antenna is so that it can generate target flux at the right time first_ant.sensor.pos_actual_scan_azim.register_listener(listener_actual_azim, update_period_seconds) first_ant.sensor.pos_actual_scan_elev.register_listener(listener_actual_elev, update_period_seconds) user_logger.info("CBF simulator receives position updates from antenna '%s'" % (first_ant.name,)) user_logger.info("--------------------------") def capture_start(self): """Start capturing data to HDF5 file.""" # This starts the data product stream self.data.req.capture_start(self.product) def label(self, label): """Add timestamped label to HDF5 file. The label is typically a single word used to indicate the start of a new compound scan. """ if label: # XXX Changing data product name -> ID in a hard-coded fashion self.data.req.set_obs_label(self.product, label) user_logger.info("New compound scan: '%s'" % (label,)) def on_target(self, target): """Determine whether antennas are tracking a given target. If all connected antennas in the sub-array participating in the session have the given *target* as target and are locked in mode 'POINT', we conclude that the array is on target. Parameters ---------- target : :class:`katpoint.Target` object or string Target to check, as an object or description string Returns ------- on_target : {True, False} True if antennas are tracking the given target """ if self.ants is None: return False # Turn target object into description string (or use string as is) target = getattr(target, 'description', target) for ant in self.ants: # Ignore disconnected antennas or ones with missing sensors if not ant.is_connected() or any([s not in ant.sensor for s in ('target', 'mode', 'lock')]): continue if (ant.sensor.target.get_value() != target) or (ant.sensor.mode.get_value() != 'POINT') or \ (ant.sensor.lock.get_value() != '1'): return False return True def target_visible(self, target, duration=0., timeout=300.): """Check whether target is visible for given duration. This checks whether the *target* is currently above the session horizon and also above the horizon for the next *duration* seconds, taking into account the *timeout* on slewing to the target. If the target is not visible, an appropriate message is logged. The target location is not very accurate, as it does not include refraction, and this is therefore intended as a rough check only. Parameters ---------- target : :class:`katpoint.Target` object or string Target to check, as an object or description string duration : float, optional Duration of observation of target, in seconds timeout : float, optional Timeout involved when antenna cannot reach the target Returns ------- visible : {True, False} True if target is visible from all antennas for entire duration """ if self.ants is None: return False # Convert description string to target object, or keep object as is target = target if isinstance(target, katpoint.Target) else katpoint.Target(target) horizon = katpoint.deg2rad(self.horizon) # Include an average time to slew to the target (worst case about 90 seconds, so half that) now = time.time() + 45. average_el, visible_before, visible_after = [], [], [] # Ignore disconnected antennas or ones with missing sensors ant_descriptions = [ant.sensor.observer.get_value() for ant in self.ants if ant.is_connected() and 'observer' in ant.sensor] # Also ignore antennas with empty or missing observer strings antennas = [katpoint.Antenna(descr) for descr in ant_descriptions if descr] if not antennas: user_logger.warning("No usable antennas found - target '%s' assumed to be down" % (target.name,)) return False for antenna in antennas: az, el = target.azel(now, antenna) average_el.append(katpoint.rad2deg(el)) # If not up yet, see if the target will pop out before the timeout if el < horizon: now += timeout az, el = target.azel(now, antenna) visible_before.append(el >= horizon) # Check what happens at end of observation az, el = target.azel(now + duration, antenna) visible_after.append(el >= horizon) if all(visible_before) and all(visible_after): return True always_invisible = any(~np.array(visible_before) & ~np.array(visible_after)) if always_invisible: user_logger.warning("Target '%s' is never up during requested period (average elevation is %g degrees)" % (target.name, np.mean(average_el))) else: user_logger.warning("Target '%s' will rise or set during requested period" % (target.name,)) return False def fire_noise_diode(self, diode='coupler', on=10.0, off=10.0, period=0.0, align=True, announce=True): """Switch noise diode on and off. This switches the selected noise diode on and off for all the antennas doing the observation. The on and off durations can be specified. Additionally, setting the *period* allows the noise diode to be fired on a semi-regular basis. The diode will only be fired if more than *period* seconds have elapsed since the last firing. If *period* is 0, the diode is fired unconditionally. On the other hand, if *period* is negative it is not fired at all. Parameters ---------- diode : {'coupler', 'pin'} Noise diode source to use (pin diode is situated in feed horn and produces high-level signal, while coupler diode couples into electronics after the feed at a much lower level) on : float, optional Minimum duration for which diode is switched on, in seconds off : float, optional Minimum duration for which diode is switched off, in seconds period : float, optional Minimum time between noise diode firings, in seconds. (The maximum time is determined by the duration of individual slews and scans, which are considered atomic and won't be interrupted.) If 0, fire diode unconditionally. If negative, don't fire diode at all. align : {True, False}, optional True if noise diode transitions should be aligned with correlator dump boundaries, or False if they should happen as soon as possible announce : {True, False}, optional True if start of action should be announced, with details of settings Returns ------- fired : {True, False} True if noise diode fired Notes ----- When the function returns, data will still be recorded to the HDF5 file. The specified *off* duration is therefore a minimum value. Remember to run :meth:`end` to close the file and finally stop the observation (automatically done when this object is used in a with-statement)! """ # XXX This needs a rethink... return False # # if self.ants is None: # raise ValueError('No antennas specified for session - please run session.standard_setup first') # # Create references to allow easy copy-and-pasting from this function # session, kat, ants, data, dump_period = self, self.kat, self.ants, self.data, self.dump_period # # # Wait for the dump period to become known, as it is needed to set a good timeout for the first dump # if dump_period == 0.0: # if not data.wait('k7w_spead_dump_period', lambda sensor: sensor.value > 0, timeout=1.5 * session._requested_dump_period, poll_period=0.2 * session._requested_dump_period): # dump_period = session.dump_period = session._requested_dump_period # user_logger.warning('SPEAD metadata header is overdue at ingest - noise diode will be out of sync') # else: # # Get actual dump period in seconds (as opposed to the requested period) # dump_period = session.dump_period = data.sensor.k7w_spead_dump_period.get_value() # # This can still go wrong if the sensor times out - again fall back to requested period # if dump_period is None: # dump_period = session.dump_period = session._requested_dump_period # user_logger.warning('Could not read actual dump period - noise diode will be out of sync') # # Wait for the first correlator dump to appear, both as a check that capturing works and to align noise diode # last_dump = data.sensor.k7w_last_dump_timestamp.get_value() # if last_dump == session._end_of_previous_session or last_dump is None: # user_logger.info('waiting for correlator dump to arrive') # # Wait for the first correlator dump to appear # if not data.wait('k7w_last_dump_timestamp', lambda sensor: sensor.value > session._end_of_previous_session, # timeout=2.2 * dump_period, poll_period=0.2 * dump_period): # last_dump = time.time() # user_logger.warning('Correlator dump is overdue at k7_capture - noise diode will be out of sync') # else: # last_dump = data.sensor.k7w_last_dump_timestamp.get_value() # if last_dump is None: # last_dump = time.time() # user_logger.warning('Could not read last dump timestamp - noise diode will be out of sync') # else: # user_logger.info('correlator dump arrived') # # # If period is non-negative, quit if it is not yet time to fire the noise diode # if period < 0.0 or (time.time() - session.last_nd_firing) < period: # return False # # if align: # # Round "on" duration up to the nearest integer multiple of dump period # on = np.ceil(float(on) / dump_period) * dump_period # # The last fully complete dump is more than 1 dump period in the past # next_dump = last_dump + 2 * dump_period # # The delay in setting up noise diode firing - next dump should be at least this far in future # lead_time = 0.25 # # Find next suitable dump boundary # now = time.time() # while next_dump < now + lead_time: # next_dump += dump_period # # if announce: # user_logger.info("Firing '%s' noise diode (%g seconds on, %g seconds off)" % (diode, on, off)) # else: # user_logger.info('firing noise diode') # # if align: # # Schedule noise diode switch-on on all antennas at the next suitable dump boundary # ants.req.rfe3_rfe15_noise_source_on(diode, 1, 1000 * next_dump, 0) # # If using Data simulator, fire the simulated noise diode for desired period to toggle power levels in output # if hasattr(data.req, 'data_fire_nd') and dump_period > 0: # time.sleep(max(next_dump - time.time(), 0)) # data.req.data_fire_nd(np.ceil(float(on) / dump_period)) # # Wait until the noise diode is on # time.sleep(max(next_dump + 0.5 * on - time.time(), 0)) # # Schedule noise diode switch-off on all antennas a duration of "on" seconds later # ants.req.rfe3_rfe15_noise_source_on(diode, 0, 1000 * (next_dump + on), 0) # time.sleep(max(next_dump + on + off - time.time(), 0)) # # Mark on -> off transition as last firing # session.last_nd_firing = next_dump + on # else: # # Switch noise diode on on all antennas # ants.req.rfe3_rfe15_noise_source_on(diode, 1, 'now', 0) # # If using Data simulator, fire the simulated noise diode for desired period to toggle power levels in output # if hasattr(data.req, 'data_fire_nd'): # data.req.data_fire_nd(np.ceil(float(on) / dump_period)) # time.sleep(on) # # Mark on -> off transition as last firing # session.last_nd_firing = time.time() # # Switch noise diode off on all antennas # ants.req.rfe3_rfe15_noise_source_on(diode, 0, 'now', 0) # time.sleep(off) # # user_logger.info('noise diode fired') # return True def set_target(self, target): """Set target to use for tracking or scanning. This sets the target on all antennas involved in the session, as well as on the CBF (where it serves as delay-tracking centre). It also moves the test target in the Data simulator to match the requested target (if it is a stationary 'azel' type). Parameters ---------- target : :class:`katpoint.Target` object or string Target as an object or description string """ if self.ants is None: raise ValueError('No antennas specified for session - please run session.standard_setup first') # Create references to allow easy copy-and-pasting from this function ants, data = self.ants, self.data # Convert description string to target object, or keep object as is target = target if isinstance(target, katpoint.Target) else katpoint.Target(target) # Set the antenna target (antennas will already move there if in mode 'POINT') ants.req.target(target) # Provide target to the data proxy, which will use it as delay-tracking center # XXX No fringe stopping support in data_rts yet # data.req.target(target) # If using Data simulator and target is azel type, move test target here (allows changes in correlation power) if hasattr(data.req, 'cbf_test_target') and target.body_type == 'azel': azel = katpoint.rad2deg(np.array(target.azel())) data.req.cbf_test_target(azel[0], azel[1], 100.) def track(self, target, duration=20.0, announce=True): """Track a target. This tracks the specified target with all antennas involved in the session. Parameters ---------- target : :class:`katpoint.Target` object or string Target to track, as an object or description string duration : float, optional Minimum duration of track, in seconds announce : {True, False}, optional True if start of action should be announced, with details of settings Returns ------- success : {True, False} True if track was successfully completed Notes ----- When the function returns, the antennas will still track the target and data will still be recorded to the HDF5 file. The specified *duration* is therefore a minimum value. Remember to run :meth:`end` to close the file and finally stop the observation (automatically done when this object is used in a with-statement)! """ if self.ants is None: raise ValueError('No antennas specified for session - please run session.standard_setup first') # Create references to allow easy copy-and-pasting from this function session, ants = self, self.ants # Convert description string to target object, or keep object as is target = target if isinstance(target, katpoint.Target) else katpoint.Target(target) if announce: user_logger.info("Initiating %g-second track on target '%s'" % (duration, target.name)) if not session.target_visible(target, duration): user_logger.warning("Skipping track, as target '%s' will be below horizon" % (target.name,)) return False session.set_target(target) session.fire_noise_diode(announce=False, **session.nd_params) # Avoid slewing if we are already on target if not session.on_target(target): user_logger.info('slewing to target') # Start moving each antenna to the target ants.req.mode('POINT') # Wait until they are all in position (with 5 minute timeout) ants.wait('lock', True, 300) user_logger.info('target reached') session.fire_noise_diode(announce=False, **session.nd_params) user_logger.info('tracking target') # Do nothing else for the duration of the track time.sleep(duration) user_logger.info('target tracked for %g seconds' % (duration,)) session.fire_noise_diode(announce=False, **session.nd_params) return True @dynamic_doc("', '".join(projections), default_proj) def scan(self, target, duration=30.0, start=(-3.0, 0.0), end=(3.0, 0.0), index=-1, projection=default_proj, announce=True): """Scan across a target. This scans across a target with all antennas involved in the session. The scan starts at an offset of *start* degrees from the target and ends at an offset of *end* degrees. These offsets are calculated in a projected coordinate system (see *Notes* below). The scan lasts for *duration* seconds. Parameters ---------- target : :class:`katpoint.Target` object or string Target to scan across, as an object or description string duration : float, optional Minimum duration of scan across target, in seconds start : sequence of 2 floats, optional Initial scan position as (x, y) offset in degrees (see *Notes* below) end : sequence of 2 floats, optional Final scan position as (x, y) offset in degrees (see *Notes* below) index : integer, optional Scan index, used for display purposes when this is part of a raster projection : {'%s'}, optional Name of projection in which to perform scan relative to target (default = '%s') announce : {True, False}, optional True if start of action should be announced, with details of settings Returns ------- success : {True, False} True if scan was successfully completed Notes ----- Take note that scanning is done in a projection on the celestial sphere, and the scan start and end are in the projected coordinates. The azimuth coordinate of a scan in azimuth will therefore change more than the *start* and *end* parameters suggest, especially at high elevations (unless the 'plate-carree' projection is used). This ensures that the same scan parameters will lead to the same qualitative scan for any position on the celestial sphere. When the function returns, the antennas will still track the end-point of the scan and data will still be recorded to the HDF5 file. The specified *duration* is therefore a minimum value. Remember to run :meth:`end` to close the file and finally stop the observation (automatically done when this object is used in a with-statement)! """ if self.ants is None: raise ValueError('No antennas specified for session - please run session.standard_setup first') # Create references to allow easy copy-and-pasting from this function session, ants = self, self.ants # Convert description string to target object, or keep object as is target = target if isinstance(target, katpoint.Target) else katpoint.Target(target) scan_name = 'scan' if index < 0 else 'scan %d' % (index,) if announce: user_logger.info("Initiating %g-second scan across target '%s'" % (duration, target.name)) if not session.target_visible(target, duration): user_logger.warning("Skipping scan, as target '%s' will be below horizon" % (target.name,)) return False session.set_target(target) session.fire_noise_diode(announce=False, **session.nd_params) user_logger.info('slewing to start of %s' % (scan_name,)) # Move each antenna to the start position of the scan ants.req.scan_asym(start[0], start[1], end[0], end[1], duration, projection) ants.req.mode('POINT') # Wait until they are all in position (with 5 minute timeout) ants.wait('lock', True, 300) user_logger.info('start of %s reached' % (scan_name,)) session.fire_noise_diode(announce=False, **session.nd_params) user_logger.info('performing %s' % (scan_name,)) # Start scanning the antennas ants.req.mode('SCAN') # Wait until they are all finished scanning (with 5 minute timeout) ants.wait('scan_status', 'after', 300) user_logger.info('%s complete' % (scan_name,)) session.fire_noise_diode(announce=False, **session.nd_params) return True @dynamic_doc("', '".join(projections), default_proj) def raster_scan(self, target, num_scans=3, scan_duration=30.0, scan_extent=6.0, scan_spacing=0.5, scan_in_azimuth=True, projection=default_proj, announce=True): """Perform raster scan on target. A *raster scan* is a series of scans across a target performed by all antennas involved in the session, scanning in either azimuth or elevation while the other coordinate is changed in steps for each scan. Each scan is offset by the same amount on both sides of the target along the scanning coordinate (and therefore has the same extent), and the scans are arranged symmetrically around the target in the non-scanning (stepping) direction. If an odd number of scans are done, the middle scan will therefore pass directly over the target. The default is to scan in azimuth and step in elevation, leading to a series of horizontal scans. Each scan is scanned in the opposite direction to the previous scan to save time. Additionally, the first scan always starts at the top left of the target, regardless of scan direction. Parameters ---------- target : :class:`katpoint.Target` object or string Target to scan across, as an object or description string num_scans : integer, optional Number of scans across target (an odd number is better, as this will scan directly over the source during the middle scan) scan_duration : float, optional Minimum duration of each scan across target, in seconds scan_extent : float, optional Extent (angular length) of scan along scanning coordinate, in degrees (see *Notes* below) scan_spacing : float, optional Separation between each consecutive scan along the coordinate that is not scanned but stepped, in degrees scan_in_azimuth : {True, False} True if azimuth changes during scan while elevation remains fixed; False if scanning in elevation and stepping in azimuth instead projection : {'%s'}, optional Name of projection in which to perform scan relative to target (default = '%s') announce : {True, False}, optional True if start of action should be announced, with details of settings Returns ------- success : {True, False} True if raster scan was successfully completed Notes ----- Take note that scanning is done in a projection on the celestial sphere, and the scan extent and spacing apply to the projected coordinates. The azimuth coordinate of a scan in azimuth will therefore change more than the *scan_extent* parameter suggests, especially at high elevations. This ensures that the same scan parameters will lead to the same qualitative scan for any position on the celestial sphere. When the function returns, the antennas will still track the end-point of the last scan and data will still be recorded to the HDF5 file. The specified *scan_duration* is therefore a minimum value. Remember to run :meth:`end` to close the files and finally stop the observation (automatically done when this object is used in a with-statement)! """ if self.ants is None: raise ValueError('No antennas specified for session - please run session.standard_setup first') # Create references to allow easy copy-and-pasting from this function session = self # Convert description string to target object, or keep object as is target = target if isinstance(target, katpoint.Target) else katpoint.Target(target) if announce: user_logger.info("Initiating raster scan (%d %g-second scans extending %g degrees) on target '%s'" % (num_scans, scan_duration, scan_extent, target.name)) # Calculate average time that noise diode is operated per scan, to add to scan duration in check below nd_time = session.nd_params['on'] + session.nd_params['off'] nd_time *= scan_duration / max(session.nd_params['period'], scan_duration) nd_time = nd_time if session.nd_params['period'] >= 0 else 0. # Check whether the target will be visible for entire duration of raster scan if not session.target_visible(target, (scan_duration + nd_time) * num_scans): user_logger.warning("Skipping raster scan, as target '%s' will be below horizon" % (target.name,)) return False # Create start and end positions of each scan, based on scan parameters scan_levels = np.arange(-(num_scans // 2), num_scans // 2 + 1) scanning_coord = (scan_extent / 2.0) * (-1) ** scan_levels stepping_coord = scan_spacing * scan_levels # Flip sign of elevation offsets to ensure that the first scan always starts at the top left of target scan_starts = zip(scanning_coord, -stepping_coord) if scan_in_azimuth else zip(stepping_coord, -scanning_coord) scan_ends = zip(-scanning_coord, -stepping_coord) if scan_in_azimuth else zip(stepping_coord, scanning_coord) # Perform multiple scans across the target for scan_index, (start, end) in enumerate(zip(scan_starts, scan_ends)): session.scan(target, duration=scan_duration, start=start, end=end, index=scan_index, projection=projection, announce=False) return True def end(self, interrupted=False): """End the session, which stops data capturing and closes the data file. This does not affect the antennas, which continue to perform their last action (unless explicitly asked to stow). Parameters ---------- interrupted : {False, True}, optional True if session got interrupted via an exception """ try: # Create references to allow easy copy-and-pasting from this function session, ants, data, katsys = self, self.ants, self.data, self.kat.sys # XXX still relevant? -> via [capture_done] # # Obtain the name of the file currently being written to # reply = data.req.k7w_get_current_file() # outfile = reply[1].replace('writing', 'unaugmented') if reply.succeeded else '<unknown file>' # user_logger.info('Scans complete, data captured to %s' % (outfile,)) # # The final output file name after augmentation # session.output_file = os.path.basename(outfile).replace('.unaugmented', '') # Stop the data flow data.req.capture_stop(self.product) # Stop streaming KATCP sensor updates to the capture thread # data.req.katcp2spead_stop_stream() user_logger.info('Ended data capturing session with experiment ID %s' % (session.experiment_id,)) katsys.req.set_script_param('script-endtime', time.time()) katsys.req.set_script_param('script-status', 'interrupted' if interrupted else 'completed') activity_logger.info('Ended data capturing session (%s) with experiment ID %s' % ('interrupted' if interrupted else 'completed', session.experiment_id,)) if session.stow_when_done and self.ants is not None: user_logger.info('stowing dishes') activity_logger.info('Stowing dishes') ants.req.mode('STOW') user_logger.info('==========================') finally: # Disable logging to HDF5 file user_logger.removeHandler(self._script_log_handler) # Finally close the HDF5 file and prepare for augmentation after all logging and parameter settings are done data.req.capture_done(self.product) activity_logger.info("----- Script ended %s (%s)" % (sys.argv[0], ' '.join(sys.argv[1:]))) class TimeSession(CaptureSessionBase): """Fake CaptureSession object used to estimate the duration of an experiment.""" def __init__(self, kat, product=None, dump_rate=1.0, **kwargs): self.kat = kat self.data = kat.data_rts # Default settings for session parameters (in case standard_setup is not called) self.ants = None self.experiment_id = 'interactive' self.stow_when_done = False self.nd_params = {'diode': 'coupler', 'on': 0., 'off': 0., 'period': -1.} self.last_nd_firing = 0. self.output_file = '' self.dump_period = self._requested_dump_period = 1.0 / dump_rate self.horizon = 3.0 self.start_time = self._end_of_previous_session = time.time() self.time = self.start_time self.projection = ('ARC', 0., 0.) # Actual antenna elevation limit (as opposed to user-requested session horizon) self.el_limit = 2.5 # Usurp time module functions that deal with the passage of real time, and connect them to session time instead self._realtime, self._realsleep = time.time, time.sleep time.time = lambda: self.time def simsleep(seconds): self.time += seconds time.sleep = simsleep self._fake_ants = [] # Modify logging so that only stream handlers are active and timestamps are prepended with a tilde for handler in user_logger.handlers: if isinstance(handler, logging.StreamHandler): form = handler.formatter form.old_datefmt = form.datefmt form.datefmt = 'DRY-RUN: ' + (form.datefmt if form.datefmt else '%Y-%m-%d %H:%M:%S') else: handler.old_level = handler.level handler.setLevel(100) user_logger.info('Estimating duration of experiment starting now (nothing real will happen!)') user_logger.info('==========================') user_logger.info('New data capturing session') user_logger.info('--------------------------') user_logger.info("Data proxy used = %s" % (self.data.name,)) if product is None: user_logger.info('Data product = unknown to simulator') else: user_logger.info('Data product = %s' % (product,)) activity_logger.info("Timing simulation. ----- Script starting %s (%s). Output file None" % (sys.argv[0], ' '.join(sys.argv[1:]))) def __enter__(self): """Start time estimate, overriding the time module.""" return self def __exit__(self, exc_type, exc_value, traceback): """Finish time estimate, restoring the time module.""" self.end() # Do not suppress any exceptions that occurred in the body of with-statement return False def _azel(self, target, timestamp, antenna): """Target (az, el) position in degrees (including offsets in degrees).""" projection_type, x, y = self.projection az, el = target.plane_to_sphere(katpoint.deg2rad(x), katpoint.deg2rad(y), timestamp, antenna, projection_type) return katpoint.rad2deg(az), katpoint.rad2deg(el) def _teleport_to(self, target, mode='POINT'): """Move antennas instantaneously onto target (or nearest point on horizon).""" for m in range(len(self._fake_ants)): antenna = self._fake_ants[m][0] az, el = self._azel(target, self.time, antenna) self._fake_ants[m] = (antenna, mode, az, max(el, self.el_limit)) def _slew_to(self, target, mode='POINT', timeout=300.): """Slew antennas to target (or nearest point on horizon), with timeout.""" slew_times = [] for ant, ant_mode, ant_az, ant_el in self._fake_ants: def estimate_slew(timestamp): """Obtain instantaneous target position and estimate time to slew there.""" # Target position right now az, el = self._azel(target, timestamp, ant) # If target is below horizon, aim at closest point on horizon az_dist, el_dist = np.abs(az - ant_az), np.abs(max(el, self.el_limit) - ant_el) # Ignore azimuth wraps and drive strategies az_dist = az_dist if az_dist < 180. else 360. - az_dist # Assume az speed of 2 deg/s, el speed of 1 deg/s and overhead of 1 second slew_time = max(0.5 * az_dist, 1.0 * el_dist) + 1.0 return az, el, slew_time # Initial estimate of slew time, based on a stationary target az1, el1, slew_time = estimate_slew(self.time) # Crude adjustment for target motion: chase target position for 2 iterations az2, el2, slew_time = estimate_slew(self.time + slew_time) az2, el2, slew_time = estimate_slew(self.time + slew_time) # Ensure slew does not take longer than timeout slew_time = min(slew_time, timeout) # If source is below horizon, handle timeout and potential rise in that interval if el2 < self.el_limit: # Position after timeout az_after_timeout, el_after_timeout = self._azel(target, self.time + timeout, ant) # If source is still down, slew time == timeout, else estimate rise time through linear interpolation slew_time = (self.el_limit - el1) / (el_after_timeout - el1) * timeout \ if el_after_timeout > self.el_limit else timeout az2, el2 = self._azel(target, self.time + slew_time, ant) el2 = max(el2, self.el_limit) slew_times.append(slew_time) # print "%s slewing from (%.1f, %.1f) to (%.1f, %.1f) in %.1f seconds" % \ # (ant.name, ant_az, ant_el, az2, el2, slew_time) # The overall slew time is the max for all antennas - adjust current time to reflect the slew self.time += (np.max(slew_times) if len(slew_times) > 0 else 0.) # Blindly assume all antennas are on target (or on horizon) after this interval self._teleport_to(target, mode) def get_centre_freq(self): """Get RF (sky) frequency associated with middle CBF channel. Returns ------- centre_freq : float Actual centre frequency in MHz """ return 1284.0 def set_centre_freq(self, centre_freq): """Set RF (sky) frequency associated with middle CBF channel. Parameters ---------- centre_freq : float Desired centre frequency in MHz """ pass def standard_setup(self, observer, description, experiment_id=None, centre_freq=None, nd_params=None, stow_when_done=None, horizon=None, no_mask=False, **kwargs): """Perform basic experimental setup including antennas, LO and dump rate.""" self.ants = ant_array(self.kat, self.get_ant_names()) for ant in self.ants: try: self._fake_ants.append((katpoint.Antenna(ant.sensor.observer.get_value()), ant.sensor.mode.get_value(), ant.sensor.pos_actual_scan_azim.get_value(), ant.sensor.pos_actual_scan_elev.get_value())) except AttributeError: pass # Override provided session parameters (or initialize them from existing parameters if not provided) self.experiment_id = experiment_id = self.experiment_id if experiment_id is None else experiment_id self.nd_params = nd_params = self.nd_params if nd_params is None else nd_params self.stow_when_done = stow_when_done = self.stow_when_done if stow_when_done is None else stow_when_done self.horizon = self.horizon if horizon is None else horizon user_logger.info('Antennas used = %s' % (' '.join([ant[0].name for ant in self._fake_ants]),)) user_logger.info('Observer = %s' % (observer,)) user_logger.info("Description ='%s'" % (description,)) user_logger.info('Experiment ID = %s' % (experiment_id,)) # There is no way to find out the centre frequency in this fake session... maybe centre_freq = self.get_centre_freq() if centre_freq is None: user_logger.info('RF centre frequency = unknown to simulator, dump rate = %g Hz' % (1.0 / self.dump_period,)) else: user_logger.info('RF centre frequency = %g MHz, dump rate = %g Hz' % (centre_freq, 1.0 / self.dump_period)) if nd_params['period'] > 0: nd_info = "Will switch '%s' noise diode on for %g s and off for %g s, every %g s if possible" % \ (nd_params['diode'], nd_params['on'], nd_params['off'], nd_params['period']) elif nd_params['period'] == 0: nd_info = "Will switch '%s' noise diode on for %g s and off for %g s at every opportunity" % \ (nd_params['diode'], nd_params['on'], nd_params['off']) else: nd_info = "Noise diode will not fire automatically" user_logger.info(nd_info + " while performing canned commands") user_logger.info('--------------------------') def capture_start(self): """Starting capture has no timing effect.""" pass def label(self, label): """Adding label has no timing effect.""" if label: user_logger.info("New compound scan: '%s'" % (label,)) def on_target(self, target): """Determine whether antennas are tracking a given target.""" if not self._fake_ants: return False for antenna, mode, ant_az, ant_el in self._fake_ants: az, el = self._azel(target, self.time, antenna) # Checking for lock and checking for target identity considered the same thing if (az != ant_az) or (el != ant_el) or (mode != 'POINT'): return False return True def target_visible(self, target, duration=0., timeout=300., operation='scan'): """Check whether target is visible for given duration.""" if not self._fake_ants: return False # Convert description string to target object, or keep object as is target = target if isinstance(target, katpoint.Target) else katpoint.Target(target) horizon = katpoint.deg2rad(self.horizon) # Include an average time to slew to the target (worst case about 90 seconds, so half that) now = self.time + 45. average_el, visible_before, visible_after = [], [], [] for antenna, mode, ant_az, ant_el in self._fake_ants: az, el = target.azel(now, antenna) average_el.append(katpoint.rad2deg(el)) # If not up yet, see if the target will pop out before the timeout if el < horizon: now += timeout az, el = target.azel(now, antenna) visible_before.append(el >= horizon) # Check what happens at end of observation az, el = target.azel(now + duration, antenna) visible_after.append(el >= horizon) if all(visible_before) and all(visible_after): return True always_invisible = any(~np.array(visible_before) & ~np.array(visible_after)) if always_invisible: user_logger.warning("Target '%s' is never up during requested period (average elevation is %g degrees)" % (target.name, np.mean(average_el))) else: user_logger.warning("Target '%s' will rise or set during requested period" % (target.name,)) return False def fire_noise_diode(self, diode='coupler', on=10.0, off=10.0, period=0.0, align=True, announce=True): """Estimate time taken to fire noise diode.""" return False # XXX needs a rethink # if not self._fake_ants: # raise ValueError('No antennas specified for session - please run session.standard_setup first') # if self.dump_period == 0.0: # # Wait for the first correlator dump to appear # user_logger.info('waiting for correlator dump to arrive') # self.dump_period = self._requested_dump_period # time.sleep(self.dump_period) # user_logger.info('correlator dump arrived') # if period < 0.0 or (self.time - self.last_nd_firing) < period: # return False # if announce: # user_logger.info("Firing '%s' noise diode (%g seconds on, %g seconds off)" % (diode, on, off)) # else: # user_logger.info('firing noise diode') # self.time += on # self.last_nd_firing = self.time + 0. # self.time += off # user_logger.info('fired noise diode') # return True def set_target(self, target): """Setting target has no timing effect.""" if not self._fake_ants: raise ValueError('No antennas specified for session - please run session.standard_setup first') def track(self, target, duration=20.0, announce=True): """Estimate time taken to perform track.""" if not self._fake_ants: raise ValueError('No antennas specified for session - please run session.standard_setup first') target = target if isinstance(target, katpoint.Target) else katpoint.Target(target) if announce: user_logger.info("Initiating %g-second track on target '%s'" % (duration, target.name)) if not self.target_visible(target, duration): user_logger.warning("Skipping track, as target '%s' will be below horizon" % (target.name,)) return False self.fire_noise_diode(announce=False, **self.nd_params) if not self.on_target(target): user_logger.info('slewing to target') self._slew_to(target) user_logger.info('target reached') self.fire_noise_diode(announce=False, **self.nd_params) user_logger.info('tracking target') self.time += duration + 1.0 user_logger.info('target tracked for %g seconds' % (duration,)) self.fire_noise_diode(announce=False, **self.nd_params) self._teleport_to(target) return True def scan(self, target, duration=30.0, start=(-3.0, 0.0), end=(3.0, 0.0), index=-1, projection=default_proj, announce=True): """Estimate time taken to perform single linear scan.""" if not self._fake_ants: raise ValueError('No antennas specified for session - please run session.standard_setup first') scan_name = 'scan' if index < 0 else 'scan %d' % (index,) target = target if isinstance(target, katpoint.Target) else katpoint.Target(target) if announce: user_logger.info("Initiating %g-second scan across target '%s'" % (duration, target.name)) if not self.target_visible(target, duration): user_logger.warning("Skipping track, as target '%s' will be below horizon" % (target.name,)) return False self.fire_noise_diode(announce=False, **self.nd_params) projection = Offset.PROJECTIONS[projection] self.projection = (projection, start[0], start[1]) user_logger.info('slewing to start of %s' % (scan_name,)) self._slew_to(target, mode='SCAN') user_logger.info('start of %s reached' % (scan_name,)) self.fire_noise_diode(announce=False, **self.nd_params) # Assume antennas can keep up with target (and doesn't scan too fast either) user_logger.info('performing %s' % (scan_name,)) self.time += duration + 1.0 user_logger.info('%s complete' % (scan_name,)) self.fire_noise_diode(announce=False, **self.nd_params) self.projection = (projection, end[0], end[1]) self._teleport_to(target) return True def raster_scan(self, target, num_scans=3, scan_duration=30.0, scan_extent=6.0, scan_spacing=0.5, scan_in_azimuth=True, projection=default_proj, announce=True): """Estimate time taken to perform raster scan.""" if not self._fake_ants: raise ValueError('No antennas specified for session - please run session.standard_setup first') target = target if isinstance(target, katpoint.Target) else katpoint.Target(target) projection = Offset.PROJECTIONS[projection] if announce: user_logger.info("Initiating raster scan (%d %g-second scans extending %g degrees) on target '%s'" % (num_scans, scan_duration, scan_extent, target.name)) nd_time = self.nd_params['on'] + self.nd_params['off'] nd_time *= scan_duration / max(self.nd_params['period'], scan_duration) nd_time = nd_time if self.nd_params['period'] >= 0 else 0. if not self.target_visible(target, (scan_duration + nd_time) * num_scans): user_logger.warning("Skipping track, as target '%s' will be below horizon" % (target.name,)) return False # Create start and end positions of each scan, based on scan parameters scan_levels = np.arange(-(num_scans // 2), num_scans // 2 + 1) scanning_coord = (scan_extent / 2.0) * (-1) ** scan_levels stepping_coord = scan_spacing * scan_levels # Flip sign of elevation offsets to ensure that the first scan always starts at the top left of target scan_starts = zip(scanning_coord, -stepping_coord) if scan_in_azimuth else zip(stepping_coord, -scanning_coord) scan_ends = zip(-scanning_coord, -stepping_coord) if scan_in_azimuth else zip(stepping_coord, scanning_coord) self.fire_noise_diode(announce=False, **self.nd_params) # Perform multiple scans across the target for scan_index, (start, end) in enumerate(zip(scan_starts, scan_ends)): self.projection = (projection, start[0], start[1]) user_logger.info('slewing to start of scan %d' % (scan_index,)) self._slew_to(target, mode='SCAN') user_logger.info('start of scan %d reached' % (scan_index,)) self.fire_noise_diode(announce=False, **self.nd_params) # Assume antennas can keep up with target (and doesn't scan too fast either) user_logger.info('performing scan %d' % (scan_index,)) self.time += scan_duration + 1.0 user_logger.info('scan %d complete' % (scan_index,)) self.fire_noise_diode(announce=False, **self.nd_params) self.projection = (projection, end[0], end[1]) self._teleport_to(target) return True def end(self): """Stop data capturing to shut down the session and close the data file.""" user_logger.info('Scans complete, no data captured as this is a timing simulation...') user_logger.info('Ended data capturing session with experiment ID %s' % (self.experiment_id,)) activity_logger.info('Timing simulation. Ended data capturing session with experiment ID %s' % (self.experiment_id,)) if self.stow_when_done and self._fake_ants: user_logger.info("Stowing dishes.") activity_logger.info('Timing simulation. Stowing dishes.') self._teleport_to(katpoint.Target("azel, 0.0, 90.0"), mode="STOW") user_logger.info('==========================') duration = self.time - self.start_time # Let KATCoreConn know how long the estimated observation time was. self.kat.set_estimated_duration(duration) if duration <= 100: duration = '%d seconds' % (np.ceil(duration),) elif duration <= 100 * 60: duration = '%d minutes' % (np.ceil(duration / 60.),) else: duration = '%.1f hours' % (duration / 3600.,) msg = "Experiment estimated to last %s until this time" % (duration,) user_logger.info(msg + "\n") activity_logger.info("Timing simulation. %s" % (msg,)) # Restore time module functions time.time, time.sleep = self._realtime, self._realsleep # Restore logging for handler in user_logger.handlers: if isinstance(handler, logging.StreamHandler): handler.formatter.datefmt = handler.formatter.old_datefmt del handler.formatter.old_datefmt else: handler.setLevel(handler.old_level) del handler.old_level activity_logger.info("Timing simulation. ----- Script ended %s (%s). Output file None" % (sys.argv[0], ' '.join(sys.argv[1:])))
50.14862
185
0.62869
67,226
0.948716
0
0
9,948
0.14039
0
0
40,117
0.566145
e17fa16cc2830c70bdb6cc63e17b12437230ec42
499
py
Python
projects/webptspy/apps/account/admin.py
codelieche/testing
1f4a3393f761654d98588c9ba90596a307fa59db
[ "MIT" ]
2
2017-08-10T03:40:22.000Z
2017-08-17T13:20:16.000Z
projects/webptspy/apps/account/admin.py
codelieche/webpts
1f4a3393f761654d98588c9ba90596a307fa59db
[ "MIT" ]
null
null
null
projects/webptspy/apps/account/admin.py
codelieche/webpts
1f4a3393f761654d98588c9ba90596a307fa59db
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- from django.contrib import admin from .models import UserProfile # Register your models here. class UserProfileModelAdmin(admin.ModelAdmin): """ 用户管理Model """ list_display = ('id', 'username', 'nike_name', 'mobile', 'email', 'is_active') list_filter = ('is_active',) list_display_links = ('id', 'username') search_fields = ('username', 'email', 'mobile', 'nike_name') admin.site.register(UserProfile, UserProfileModelAdmin)
26.263158
64
0.653307
329
0.648915
0
0
0
0
0
0
195
0.384615
e18273cb48126cd36d2e98bfcd448716a51f67d4
396
py
Python
axicli.py
notpeter/AxiDraw_API
d9c35eb93fd85f96cf197908415822af9a725b41
[ "MIT" ]
null
null
null
axicli.py
notpeter/AxiDraw_API
d9c35eb93fd85f96cf197908415822af9a725b41
[ "MIT" ]
3
2021-01-17T04:31:57.000Z
2021-01-17T04:36:41.000Z
axicli.py
notpeter/AxiDraw_API
d9c35eb93fd85f96cf197908415822af9a725b41
[ "MIT" ]
null
null
null
''' axicli.py - Command line interface (CLI) for AxiDraw. For quick help: python axicli.py --help Full user guide: https://axidraw.com/doc/cli_api/ This script is a stand-alone version of AxiDraw Control, accepting various options and providing a facility for setting default values. ''' from axicli.axidraw_cli import axidraw_CLI if __name__ == '__main__': axidraw_CLI()
19.8
68
0.729798
0
0
0
0
0
0
0
0
315
0.795455
e183076e1912547a48c02bb69c7456b82ec312ba
852
py
Python
qualification_round_2017/C.py
asukakenji/codejam2018
a519f522337d7faf3d07a84f6e24f0161f95c880
[ "MIT" ]
null
null
null
qualification_round_2017/C.py
asukakenji/codejam2018
a519f522337d7faf3d07a84f6e24f0161f95c880
[ "MIT" ]
null
null
null
qualification_round_2017/C.py
asukakenji/codejam2018
a519f522337d7faf3d07a84f6e24f0161f95c880
[ "MIT" ]
null
null
null
# code jam: Qualification Round 2017: Problem C. Bathroom Stalls def read_int(): return int(raw_input()) def read_int_n(): return map(int, raw_input().split()) def get_y_z(n, k): if k == 1: if n & 1 == 0: # Even Number return n >> 1, (n >> 1) - 1 else: # Odd Number return n >> 1, n >> 1 else: if n & 1 == 0: # Even Number if k & 1 == 0: # Even Number return get_y_z(n >> 1, k >> 1) else: # Odd Number return get_y_z((n >> 1) - 1, k >> 1) else: # Odd Number return get_y_z(n >> 1, k >> 1) T = read_int() x = 1 while x <= T: N, K = read_int_n() y, z = get_y_z(N, K) print 'Case #{}: {} {}'.format(x, y, z) x += 1
23.027027
64
0.419014
0
0
0
0
0
0
0
0
156
0.183099
e1842583bfd3115c7825344cdde05a9fbfaf3644
1,143
py
Python
tests/integration/modules/test_vmc_vm_stats.py
kdsalvy/salt-ext-modules-vmware-1
9fdc941692e4c526f575f33b2ce23c1470582934
[ "Apache-2.0" ]
10
2021-11-02T20:24:44.000Z
2022-03-11T05:54:27.000Z
tests/integration/modules/test_vmc_vm_stats.py
waynew/salt-ext-modules-vmware
9f693382772061676c846c850df6ff508b7f3a91
[ "Apache-2.0" ]
83
2021-10-01T15:13:02.000Z
2022-03-31T16:22:40.000Z
tests/integration/modules/test_vmc_vm_stats.py
waynew/salt-ext-modules-vmware
9f693382772061676c846c850df6ff508b7f3a91
[ "Apache-2.0" ]
15
2021-09-30T23:17:27.000Z
2022-03-23T06:54:22.000Z
""" Integration Tests for vmc_vm_stats execution module """ import pytest @pytest.fixture def vm_id(salt_call_cli, vmc_vcenter_connect): ret = salt_call_cli.run("vmc_sddc.get_vms", **vmc_vcenter_connect) vm_obj = ret.json[0] return vm_obj["vm"] def test_get_cpu_stats_for_vm_smoke_test(salt_call_cli, vmc_vcenter_connect, vm_id): ret = salt_call_cli.run( "vmc_vm_stats.get", vm_id=vm_id, stats_type="cpu", **vmc_vcenter_connect ) assert ret is not None assert "error" not in ret.json def test_get_memory_stats_for_vm_smoke_test(salt_call_cli, vmc_vcenter_connect, vm_id): ret = salt_call_cli.run( "vmc_vm_stats.get", vm_id=vm_id, stats_type="memory", **vmc_vcenter_connect ) assert ret is not None assert "error" not in ret.json def test_get_memory_stats_when_vm_does_not_exist(salt_call_cli, vmc_vcenter_connect): ret = salt_call_cli.run( "vmc_vm_stats.get", vm_id="vm-abc", stats_type="memory", **vmc_vcenter_connect ) assert ret is not None result = ret.json assert "error" in result assert result["error"]["error_type"] == "NOT_FOUND"
30.078947
87
0.724409
0
0
0
0
182
0.15923
0
0
219
0.191601
e18531179510c781afbb8fd1aa7db0ab08f90a40
2,134
py
Python
uncompy3/decomp_dec.py
Alpha-Demon404/RE-14
b5b46a9f0eee218f2a642b615c77135c33c6f4ad
[ "MIT" ]
39
2020-02-26T09:44:36.000Z
2022-03-23T00:18:25.000Z
uncompy3/decomp_dec.py
B4BY-DG/reverse-enginnering
b5b46a9f0eee218f2a642b615c77135c33c6f4ad
[ "MIT" ]
15
2020-05-14T10:07:26.000Z
2022-01-06T02:55:32.000Z
uncompy3/decomp_dec.py
B4BY-DG/reverse-enginnering
b5b46a9f0eee218f2a642b615c77135c33c6f4ad
[ "MIT" ]
41
2020-03-16T22:36:38.000Z
2022-03-17T14:47:19.000Z
# MENTOL # At:Sun Nov 24 15:04:31 2019 if len(bytecode) == 0: print('\x1b[1;93mbyte code kosong\nharap masukkan bytecodenya\x1b[0m') exit() import marshal, sys, os, random, string, time try: from uncompyle6.main import decompile except: os.system('pip install uncompyle6') from uncompyle6.main import decompile def echo(text): w = 'mhkbucp' for z in w: text = text.replace('+%s' % z, '\x1b[%d;1m' % (91 + w.index(z))) text += '\x1b[0m' text = text.replace('+0', '\x1b[0m') print(text) def run(text): try: w = 'mhkbucp' for z in w: text = text.replace('+%s' % z, '\x1b[%d;1m' % (91 + w.index(z))) text += '\x1b[0m' text = text.replace('+0', '\x1b[0m') for i in text + '\n': sys.stdout.write(i) sys.stdout.flush() time.sleep(0.01) except (KeyboardInterrupt, EOFError): exit('') n = ''.join((random.choice(string.ascii_lowercase) for _ in range(4))) fl = n + '-dec.py' logo = '\n+m 888 +h,8,"88b,\n+m e88 888 ,e e, e88\'888 e88 88e 888 888 8e +p888 88e Y8b Y888P +h " ,88P\'\n+md888 888 d88 88b d888 \'8 d888 888b 888 888 88b +p888 888b Y8b Y8P +h C8K\n+mY888 888 888 , Y888 , Y888 888P 888 888 888 +p888 888P Y8b Y +h e `88b,\n+m "88 888 "YeeP" "88,e8\' "88 88" 888 888 888 +p888 88" 888 +h"8",88P\'\n +p888 888\n +p888 888+p\n\t\t+ccoded by: +pZhu Bai Lee AKA AnonyMass\n\t\t+cteam : +pBlack Coder Crush' def decom(): try: os.system('clear') echo(logo) x = decompile(3.7, marshal.loads(bytecode), open(fl, 'w')) run('\t\t\t+hdecompile sukses :)+p') run('\t\t\t+hfile disimpan: +p' + fl) exit() except Exception as e: try: os.system('clear') echo(logo) echo('+mdecompile gagal+p') exit() finally: e = None del e decom()
32.830769
643
0.49672
0
0
0
0
0
0
0
0
971
0.455014
e189d16da8174a3b154f79a433e1c07828f194cc
650
py
Python
tests/unit/proxy/roundtrip/test_janus_graph_proxy.py
joshthoward/amundsenmetadatalibrary
87e2b44f0e44ca643f087bff6bd6b39d4ae9e9ad
[ "Apache-2.0" ]
3
2021-02-09T13:52:03.000Z
2022-02-26T02:36:02.000Z
tests/unit/proxy/roundtrip/test_janus_graph_proxy.py
joshthoward/amundsenmetadatalibrary
87e2b44f0e44ca643f087bff6bd6b39d4ae9e9ad
[ "Apache-2.0" ]
1
2021-02-08T23:21:04.000Z
2021-02-08T23:21:04.000Z
tests/unit/proxy/roundtrip/test_janus_graph_proxy.py
joshthoward/amundsenmetadatalibrary
87e2b44f0e44ca643f087bff6bd6b39d4ae9e9ad
[ "Apache-2.0" ]
2
2021-02-23T18:23:35.000Z
2022-03-18T15:12:25.000Z
# Copyright Contributors to the Amundsen project. # SPDX-License-Identifier: Apache-2.0 from typing import Any, Mapping import unittest from .abstract_gremlin_proxy_tests import abstract_gremlin_proxy_test_class from .roundtrip_janusgraph_proxy import RoundtripJanusGraphProxy class JanusGraphGremlinProxyTest( abstract_gremlin_proxy_test_class(), unittest.TestCase): # type: ignore def _create_gremlin_proxy(self, config: Mapping[str, Any]) -> RoundtripJanusGraphProxy: # Don't use PROXY_HOST, PROXY_PORT, PROXY_PASSWORD. They might not be JanusGraph return RoundtripJanusGraphProxy(host=config['JANUS_GRAPH_URL'])
40.625
91
0.803077
368
0.566154
0
0
0
0
0
0
198
0.304615
e18aabf2262561727c96e58389bdf2da5dd573c7
3,829
py
Python
scripts/performance/config.py
atsgen/tf-test
2748fcd81491450c75dadc71849d2a1c11061029
[ "Apache-2.0" ]
5
2020-09-29T00:36:57.000Z
2022-02-16T06:51:32.000Z
scripts/performance/config.py
atsgen/tf-test
2748fcd81491450c75dadc71849d2a1c11061029
[ "Apache-2.0" ]
27
2019-11-02T02:18:34.000Z
2022-02-24T18:49:08.000Z
scripts/performance/config.py
atsgen/tf-test
2748fcd81491450c75dadc71849d2a1c11061029
[ "Apache-2.0" ]
20
2019-11-28T16:02:25.000Z
2022-01-06T05:56:58.000Z
from builtins import str from builtins import range from builtins import object import os import fixtures import testtools from vn_test import VNFixture from vm_test import VMFixture from common.connections import ContrailConnections from policy_test import PolicyFixture from policy.config import AttachPolicyFixture from time import sleep from tcutils.commands import ssh, execute_cmd, execute_cmd_out class ConfigPerformance(object): def config_vm(self, vn_fix, vm_name, node_name=None, image_name='ubuntu-netperf', flavor='contrail_flavor_large'): vm_fixture = self.useFixture(VMFixture( project_name=self.inputs.project_name, connections=self.connections, vn_obj=vn_fix.obj, vm_name=vm_name, node_name=node_name, image_name=image_name, flavor=flavor)) return vm_fixture def set_cpu_performance(self, hosts): sessions = {} cmd = 'for f in /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor ; do echo performance > $f; cat $f; done' for i in range(0, 2): session = ssh(hosts[i]['host_ip'], hosts[i]['username'], hosts[i]['password']) execute_cmd(session, cmd, self.logger) return def start_tcp_dump(self, vm_fixture): sessions =[] vm_name = vm_fixture.vm_name host = self.inputs.host_data[vm_fixture.vm_node_ip] inspect_h = self.agent_inspect[vm_fixture.vm_node_ip] tapintf = inspect_h.get_vna_tap_interface_by_ip(vm_fixture.vm_ip)[0]['name'] pcap = '/tmp/%s.pcap' % tapintf cmd = "sudo tcpdump -ni %s udp -w %s" % (tapintf, pcap) session = ssh(host['host_ip'], host['username'], host['password']) self.logger.info("Staring tcpdump to capture the packets.") execute_cmd(session, cmd, self.logger) sessions.extend((session, pcap)) return sessions def stop_tcp_dump(self, sessions): self.logger.info("Waiting for the tcpdump write to complete.") sleep(30) cmd = 'sudo kill $(pidof tcpdump)' execute_cmd(sessions[0], cmd, self.logger) execute_cmd(sessions[0], 'sync', self.logger) cmd = 'sudo tcpdump -r %s | wc -l' % sessions[1] out, err = execute_cmd_out(sessions[0], cmd, self.logger) count = int(out.strip('\n')) #cmd = 'rm -f %s' % sessions[1] #execute_cmd(sessions[0], cmd, self.logger) return count def changeEncap_setting(self, encap1='MPLSoUDP', encap2='MPLSoGRE', encap3='VXLAN'): self.logger.info('Deleting any Encap before continuing') out=self.connections.delete_vrouter_encap() if ( out!='No config id found'): self.addCleanup(self.connections.set_vrouter_config_encap,out[0],out[1],out[2]) self.logger.info('Setting new Encap before continuing') config_id=self.connections.set_vrouter_config_encap(encap1, encap2, encap3) self.logger.info('Created.UUID is %s'%(config_id)) self.addCleanup(self.connections.delete_vrouter_encap) encap_list_to_be_configured = [str(encap1),str(encap2),str(encap3)] encap_list_configured=self.connections.read_vrouter_config_encap() if encap_list_to_be_configured != encap_list_configured: self.logger.error( "Configured Encap Priority order is NOT matching with expected order. Configured: %s,\ Expected: %s" %(encap_list_configured, encap_list_to_be_configured)) assert False else: self.logger.info( "Configured Encap Priority order is matching with expected order. Configured: %s,\ Expected: %s" %(encap_list_configured,encap_list_to_be_configured)) return
47.271605
121
0.659441
3,422
0.893706
0
0
0
0
0
0
917
0.239488
e18bc1c9af4bc77f3e745030b60675eb8770630a
4,048
py
Python
deepspeech_pytorch/testing.py
Chudbrochil/deepspeech.pytorch-2.1
d5d01e33ef383edb79c6a5b1584c134587108deb
[ "MIT" ]
13
2022-01-25T01:26:56.000Z
2022-03-18T00:46:38.000Z
deepspeech_pytorch/testing.py
Chudbrochil/deepspeech.pytorch-2.1
d5d01e33ef383edb79c6a5b1584c134587108deb
[ "MIT" ]
null
null
null
deepspeech_pytorch/testing.py
Chudbrochil/deepspeech.pytorch-2.1
d5d01e33ef383edb79c6a5b1584c134587108deb
[ "MIT" ]
1
2021-03-03T06:14:21.000Z
2021-03-03T06:14:21.000Z
import hydra import torch from tqdm import tqdm from deepspeech_pytorch.configs.inference_config import EvalConfig from deepspeech_pytorch.decoder import GreedyDecoder from deepspeech_pytorch.loader.data_loader import SpectrogramDataset, AudioDataLoader from deepspeech_pytorch.utils import load_model, load_decoder @torch.no_grad() def evaluate(cfg: EvalConfig): device = torch.device("cuda" if cfg.model.cuda else "cpu") model = load_model(device=device, model_path=cfg.model.model_path, use_half=cfg.model.use_half) decoder = load_decoder(labels=model.labels, cfg=cfg.lm) target_decoder = GreedyDecoder(model.labels, blank_index=model.labels.index('_')) test_dataset = SpectrogramDataset(audio_conf=model.audio_conf, manifest_filepath=hydra.utils.to_absolute_path(cfg.test_manifest), labels=model.labels, normalize=True) test_loader = AudioDataLoader(test_dataset, batch_size=cfg.batch_size, num_workers=cfg.num_workers) wer, cer, output_data = run_evaluation(test_loader=test_loader, device=device, model=model, decoder=decoder, target_decoder=target_decoder, save_output=cfg.save_output, verbose=cfg.verbose, use_half=cfg.model.use_half) print('Test Summary \t' 'Average WER {wer:.3f}\t' 'Average CER {cer:.3f}\t'.format(wer=wer, cer=cer)) if cfg.save_output: torch.save(output_data, hydra.utils.to_absolute_path(cfg.save_output)) @torch.no_grad() def run_evaluation(test_loader, device, model, decoder, target_decoder, save_output=None, verbose=False, use_half=False): model.eval() total_cer, total_wer, num_tokens, num_chars = 0, 0, 0, 0 output_data = [] for i, (data) in tqdm(enumerate(test_loader), total=len(test_loader)): inputs, targets, input_percentages, target_sizes = data input_sizes = input_percentages.mul_(int(inputs.size(3))).int() inputs = inputs.to(device) if use_half: inputs = inputs.half() # unflatten targets split_targets = [] offset = 0 for size in target_sizes: split_targets.append(targets[offset:offset + size]) offset += size out, output_sizes = model(inputs, input_sizes) decoded_output, _ = decoder.decode(out, output_sizes) target_strings = target_decoder.convert_to_strings(split_targets) if save_output is not None: # add output to data array, and continue output_data.append((out.cpu(), output_sizes, target_strings)) for x in range(len(target_strings)): transcript, reference = decoded_output[x][0], target_strings[x][0] wer_inst = decoder.wer(transcript, reference) cer_inst = decoder.cer(transcript, reference) total_wer += wer_inst total_cer += cer_inst num_tokens += len(reference.split()) num_chars += len(reference.replace(' ', '')) if verbose: print("Ref:", reference.lower()) print("Hyp:", transcript.lower()) print("WER:", float(wer_inst) / len(reference.split()), "CER:", float(cer_inst) / len(reference.replace(' ', '')), "\n") wer = float(total_wer) / num_tokens cer = float(total_cer) / num_chars return wer * 100, cer * 100, output_data
42.610526
104
0.561759
0
0
0
0
3,725
0.920208
0
0
178
0.043972
e18d4a143a071cc6ef045ea47a03a5bc0de604f9
483
py
Python
api/aps3/tasklist/tasklist/main.py
Gustavobb/megadados
6a653314e0c93c866ec86be2119d64bf297d2f5a
[ "MIT" ]
null
null
null
api/aps3/tasklist/tasklist/main.py
Gustavobb/megadados
6a653314e0c93c866ec86be2119d64bf297d2f5a
[ "MIT" ]
null
null
null
api/aps3/tasklist/tasklist/main.py
Gustavobb/megadados
6a653314e0c93c866ec86be2119d64bf297d2f5a
[ "MIT" ]
null
null
null
# pylint: disable=missing-module-docstring from fastapi import FastAPI from .routers import task, user tags_metadata = [ { 'name': 'task', 'description': 'Operations related to tasks.', }, ] app = FastAPI( title='Task list', description='Task-list project for the **Megadados** course', openapi_tags=tags_metadata, ) app.include_router(task.router, prefix='/task', tags=['task']) app.include_router(user.router, prefix='/user', tags=['user'])
23
65
0.672878
0
0
0
0
0
0
0
0
182
0.376812
e18d760e51cdf1f8ab9695881861681dcd4595c4
214
py
Python
silver_bullet/contain_value.py
Hojung-Jeong/Silver-Bullet-Encryption-Tool
5ea29b3cd78cf7488e0cbdcf4ea60d7c9151c2a7
[ "Apache-2.0" ]
null
null
null
silver_bullet/contain_value.py
Hojung-Jeong/Silver-Bullet-Encryption-Tool
5ea29b3cd78cf7488e0cbdcf4ea60d7c9151c2a7
[ "Apache-2.0" ]
null
null
null
silver_bullet/contain_value.py
Hojung-Jeong/Silver-Bullet-Encryption-Tool
5ea29b3cd78cf7488e0cbdcf4ea60d7c9151c2a7
[ "Apache-2.0" ]
null
null
null
''' >List of functions 1. contain(value,limit) - contains a value between 0 to limit ''' def contain(value,limit): if value<0: return value+limit elif value>=limit: return value-limit else: return value
16.461538
62
0.705607
0
0
0
0
0
0
0
0
89
0.415888
e18de74748857a558fcaeea0ccf6405de06e2047
6,388
py
Python
code/train.py
TONGJINGLV/dagan
4b6701f0a31026d9a45ab988a645f0a2249cc45c
[ "MIT" ]
null
null
null
code/train.py
TONGJINGLV/dagan
4b6701f0a31026d9a45ab988a645f0a2249cc45c
[ "MIT" ]
null
null
null
code/train.py
TONGJINGLV/dagan
4b6701f0a31026d9a45ab988a645f0a2249cc45c
[ "MIT" ]
null
null
null
from data import NumericalField, CategoricalField, Iterator from data import Dataset from synthesizer import MaskGenerator_MLP, ObservedGenerator_MLP, Discriminator, Handler, ObservedGenerator_LSTM from random import choice import multiprocessing import pandas as pd import numpy as np import torch import argparse import json import os parameters_space = { "batch_size":[64, 128, 256], "z_dim":[100, 200, 300], "gen_num_layers":[1,2,3], "gen_hidden_dim":[100, 200, 300, 400], "gen_feature_dim":[100, 200, 300, 400, 500], "gen_lstm_dim":[100,200,300,400,500], "dis_hidden_dim":[100, 200, 300], "dis_num_layers":[1,2,3], "lr":[0.0001,0.0002,0.0005], "cp":[0.01], "dis_train_num" :[1, 2, 5] } def parameter_search(gen_model): param = {} param["batch_size"] = choice(parameters_space["batch_size"]) param["z_dim"] = choice(parameters_space["z_dim"]) param["mask_gen_hidden_dims"] = [] gen_num_layers = choice(parameters_space["gen_num_layers"]) for l in range(gen_num_layers): dim = choice(parameters_space["gen_hidden_dim"]) if l > 0 and param["mask_gen_hidden_dims"][l-1] > dim: dim = param["mask_gen_hidden_dims"][l-1] param["mask_gen_hidden_dims"].append(dim) if gen_model == "MLP": param["obs_gen_hidden_dims"] = [] gen_num_layers = choice(parameters_space["gen_num_layers"]) for l in range(gen_num_layers): dim = choice(parameters_space["gen_hidden_dim"]) if l > 0 and param["obs_gen_hidden_dims"][l-1] > dim: dim = param["obs_gen_hidden_dims"][l-1] param["obs_gen_hidden_dims"].append(dim) elif gen_model == "LSTM": param["obs_gen_feature_dim"] = choice(parameters_space["gen_feature_dim"]) param["obs_gen_lstm_dim"] = choice(parameters_space["gen_lstm_dim"]) param["obs_dis_hidden_dims"] = [] dis_num_layers = choice(parameters_space["dis_num_layers"]) for l in range(dis_num_layers): dim = choice(parameters_space["dis_hidden_dim"]) if l > 0 and param["obs_dis_hidden_dims"][l-1] < dim: dim = param["obs_dis_hidden_dims"][l-1] param["obs_dis_hidden_dims"].append(dim) param["mask_dis_hidden_dims"] = [] dis_num_layers = choice(parameters_space["dis_num_layers"]) for l in range(dis_num_layers): dim = choice(parameters_space["dis_hidden_dim"]) if l > 0 and param["mask_dis_hidden_dims"][l-1] < dim: dim = param["mask_dis_hidden_dims"][l-1] param["mask_dis_hidden_dims"].append(dim) param["lr"] = choice(parameters_space["lr"]) param["cp"] = choice(parameters_space["cp"]) param["dis_train_num"] = choice(parameters_space["dis_train_num"]) return param def thread_run(path, search, config, source_dst, target_dst, GPU): if config["rand_search"] == "yes": param = parameter_search(gen_model=config["gen_model"]) else: param = config["param"] with open(path+"exp_params.json", "a") as f: json.dump(param, f) f.write("\n") source_it = Iterator(dataset=source_dst, batch_size=param["batch_size"], shuffle=False, labels=config["labels"], mask=config["source_mask"]) target_it = Iterator(dataset=target_dst, batch_size=param["batch_size"], shuffle=False, labels=config["labels"], mask=config["target_mask"]) x_dim = source_it.data.shape[1] col_ind = source_dst.col_ind col_dim = source_dst.col_dim col_type = source_dst.col_type mask_dim = target_it.masks.shape[1] if config["Gm"] == "yes": mask_gen = MaskGenerator_MLP(param["z_dim"], x_dim, param["mask_gen_hidden_dims"], mask_dim) mask_dis = Discriminator(mask_dim, param["mask_dis_hidden_dims"], c_dim=x_dim, condition=True) else: mask_gen = None mask_dis = None if config["Gx"] == "yes": if config["gen_model"] == "LSTM": obs_gen = ObservedGenerator_LSTM(param["z_dim"], param["obs_gen_feature_dim"], param["obs_gen_lstm_dim"], col_dim, col_type, col_ind, x_dim, mask_dim) elif config["gen_model"] == "MLP": obs_gen = ObservedGenerator_MLP(param["z_dim"], param["obs_gen_hidden_dims"], x_dim, mask_dim, col_type, col_ind) else: obs_gen = None obs_dis = Discriminator(x_dim, param["obs_dis_hidden_dims"]) print(mask_gen) print(mask_dis) print(obs_gen) print(obs_dis) handler = Handler(source_it, target_it, source_dst, path) if mask_gen is None and obs_gen is None: handler.translate(mask_gen, obs_gen, param["z_dim"], path+"translate_{}".format(search), GPU=True, repeat=1) else: mask_gen, obs_gen, mask_dis, obs_dis = handler.train(mask_gen, obs_gen, mask_dis, obs_dis, param, config, search, GPU=GPU) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('configs', help='a json config file') parser.add_argument('gpu', default=0) args = parser.parse_args() gpu = int(args.gpu) if gpu >= 0: GPU = True os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu) else: GPU = False with open(args.configs) as f: configs = json.load(f) try: os.mkdir("expdir") except: pass for config in configs: path = "expdir/"+config["name"]+"/" try: os.mkdir("expdir/"+config["name"]) except: pass source = pd.read_csv(config["source"]) target = pd.read_csv(config["target"]) fields = [] col_type = [] if "label" in config.keys(): cond = config["label"] for i, col in enumerate(list(source)): if "label" in config.keys() and col in cond: fields.append((col, CategoricalField("one-hot", noise=0))) col_type.append("condition") elif i in config["normalize_cols"]: fields.append((col,NumericalField("normalize"))) col_type.append("normalize") elif i in config["gmm_cols"]: fields.append((col, NumericalField("gmm", n=5))) col_type.append("gmm") elif i in config["one-hot_cols"]: fields.append((col, CategoricalField("one-hot", noise=0))) col_type.append("one-hot") elif i in config["ordinal_cols"]: fields.append((col, CategoricalField("dict"))) col_type.append("ordinal") source_dst, target_dst = Dataset.split( fields = fields, path = ".", col_type = col_type, train = config["source"], validation = config["target"], format = "csv", ) source_dst.learn_convert() target_dst.learn_convert() print("source row : {}".format(len(source_dst))) print("target row: {}".format(len(target_dst))) n_search = config["n_search"] jobs = [multiprocessing.Process(target=thread_run, args=(path, search, config, source_dst, target_dst, GPU)) for search in range(n_search)] for j in jobs: j.start() for j in jobs: j.join()
32.426396
153
0.706951
0
0
0
0
0
0
0
0
1,468
0.229806
e18f60246990c305ae61d8fc90992d5ea5e04b27
4,054
py
Python
front-end/testsuite-python-lib/Python-3.1/Lib/test/test_pep277.py
MalloyPower/parsing-python
b2bca5eed07ea2af7a2001cd4f63becdfb0570be
[ "MIT" ]
1
2020-11-26T18:53:46.000Z
2020-11-26T18:53:46.000Z
front-end/testsuite-python-lib/Python-3.1/Lib/test/test_pep277.py
MalloyPower/parsing-python
b2bca5eed07ea2af7a2001cd4f63becdfb0570be
[ "MIT" ]
null
null
null
front-end/testsuite-python-lib/Python-3.1/Lib/test/test_pep277.py
MalloyPower/parsing-python
b2bca5eed07ea2af7a2001cd4f63becdfb0570be
[ "MIT" ]
1
2019-04-11T11:27:01.000Z
2019-04-11T11:27:01.000Z
# Test the Unicode versions of normal file functions # open, os.open, os.stat. os.listdir, os.rename, os.remove, os.mkdir, os.chdir, os.rmdir import sys, os, unittest from test import support if not os.path.supports_unicode_filenames: raise unittest.SkipTest("test works only on NT+") filenames = [ 'abc', 'ascii', 'Gr\xfc\xdf-Gott', '\u0393\u03b5\u03b9\u03ac-\u03c3\u03b1\u03c2', '\u0417\u0434\u0440\u0430\u0432\u0441\u0442\u0432\u0443\u0439\u0442\u0435', '\u306b\u307d\u3093', '\u05d4\u05e9\u05e7\u05e6\u05e5\u05e1', '\u66e8\u66e9\u66eb', '\u66e8\u05e9\u3093\u0434\u0393\xdf', ] # Destroy directory dirname and all files under it, to one level. def deltree(dirname): # Don't hide legitimate errors: if one of these suckers exists, it's # an error if we can't remove it. if os.path.exists(dirname): # must pass unicode to os.listdir() so we get back unicode results. for fname in os.listdir(str(dirname)): os.unlink(os.path.join(dirname, fname)) os.rmdir(dirname) class UnicodeFileTests(unittest.TestCase): files = [os.path.join(support.TESTFN, f) for f in filenames] def setUp(self): try: os.mkdir(support.TESTFN) except OSError: pass for name in self.files: f = open(name, 'wb') f.write((name+'\n').encode("utf-8")) f.close() os.stat(name) def tearDown(self): deltree(support.TESTFN) def _apply_failure(self, fn, filename, expected_exception, check_fn_in_exception = True): try: fn(filename) raise support.TestFailed("Expected to fail calling '%s(%r)'" % (fn.__name__, filename)) except expected_exception as details: if check_fn_in_exception and details.filename != filename: raise support.TestFailed("Function '%s(%r) failed with " "bad filename in the exception: %r" % (fn.__name__, filename, details.filename)) def test_failures(self): # Pass non-existing Unicode filenames all over the place. for name in self.files: name = "not_" + name self._apply_failure(open, name, IOError) self._apply_failure(os.stat, name, OSError) self._apply_failure(os.chdir, name, OSError) self._apply_failure(os.rmdir, name, OSError) self._apply_failure(os.remove, name, OSError) # listdir may append a wildcard to the filename, so dont check self._apply_failure(os.listdir, name, OSError, False) def test_open(self): for name in self.files: f = open(name, 'wb') f.write((name+'\n').encode("utf-8")) f.close() os.stat(name) def test_listdir(self): f1 = os.listdir(support.TESTFN) f2 = os.listdir(str(support.TESTFN.encode("utf-8"), sys.getfilesystemencoding())) sf2 = set("\\".join((str(support.TESTFN), f)) for f in f2) self.failUnlessEqual(len(f1), len(self.files)) self.failUnlessEqual(sf2, set(self.files)) def test_rename(self): for name in self.files: os.rename(name,"tmp") os.rename("tmp",name) def test_directory(self): dirname = os.path.join(support.TESTFN,'Gr\xfc\xdf-\u66e8\u66e9\u66eb') filename = '\xdf-\u66e8\u66e9\u66eb' oldwd = os.getcwd() os.mkdir(dirname) os.chdir(dirname) f = open(filename, 'wb') f.write((filename + '\n').encode("utf-8")) f.close() os.access(filename,os.R_OK) os.remove(filename) os.chdir(oldwd) os.rmdir(dirname) def test_main(): try: support.run_unittest(UnicodeFileTests) finally: deltree(support.TESTFN) if __name__ == "__main__": test_main()
35.252174
88
0.583128
2,829
0.697829
0
0
0
0
0
0
1,018
0.25111
e18feeef1d44b1fb5822da8d7afcebfd40c0bfe3
1,336
py
Python
test/unit/test_utils.py
managedbyq/q-dbt
01f1918fe5cbf3036b7197b8e3211960403718f3
[ "Apache-2.0" ]
1
2018-06-20T17:51:20.000Z
2018-06-20T17:51:20.000Z
test/unit/test_utils.py
managedbyq/q-dbt
01f1918fe5cbf3036b7197b8e3211960403718f3
[ "Apache-2.0" ]
null
null
null
test/unit/test_utils.py
managedbyq/q-dbt
01f1918fe5cbf3036b7197b8e3211960403718f3
[ "Apache-2.0" ]
1
2018-10-18T18:45:38.000Z
2018-10-18T18:45:38.000Z
import unittest import dbt.utils class TestDeepMerge(unittest.TestCase): def test__simple_cases(self): cases = [ {'args': [{}, {'a': 1}], 'expected': {'a': 1}, 'description': 'one key into empty'}, {'args': [{}, {'b': 1}, {'a': 1}], 'expected': {'a': 1, 'b': 1}, 'description': 'three merges'}, ] for case in cases: actual = dbt.utils.deep_merge(*case['args']) self.assertEquals( case['expected'], actual, 'failed on {} (actual {}, expected {})'.format( case['description'], actual, case['expected'])) class TestMerge(unittest.TestCase): def test__simple_cases(self): cases = [ {'args': [{}, {'a': 1}], 'expected': {'a': 1}, 'description': 'one key into empty'}, {'args': [{}, {'b': 1}, {'a': 1}], 'expected': {'a': 1, 'b': 1}, 'description': 'three merges'}, ] for case in cases: actual = dbt.utils.deep_merge(*case['args']) self.assertEquals( case['expected'], actual, 'failed on {} (actual {}, expected {})'.format( case['description'], actual, case['expected']))
30.363636
67
0.450599
1,296
0.97006
0
0
0
0
0
0
376
0.281437
e191203fe2262ef390df012127682a8cc60f4320
1,006
py
Python
results.py
ejnnr/steerable_pdo_experiments
17902e56641cefe305b935c8733b45aa066bf068
[ "BSD-3-Clause" ]
null
null
null
results.py
ejnnr/steerable_pdo_experiments
17902e56641cefe305b935c8733b45aa066bf068
[ "BSD-3-Clause" ]
null
null
null
results.py
ejnnr/steerable_pdo_experiments
17902e56641cefe305b935c8733b45aa066bf068
[ "BSD-3-Clause" ]
null
null
null
import argparse from pathlib import Path import numpy as np import yaml # this script takes in a folder path and then recursively collects all # results.yaml files in that directory. It averages them and prints # summary statistics parser = argparse.ArgumentParser(description="Analyze the results") parser.add_argument("path", type=str, help="path to the folder containing the results") args = parser.parse_args() results = [] keys = set() for path in Path(args.path).rglob("results.yaml"): with open(path, "r") as file: results.append(yaml.safe_load(file)) keys = keys.union(results[-1].keys()) print(f"Found {len(results)} files with {len(keys)} different metrics\n") output = {} for key in keys: vals = [result[key] for result in results if key in result] n = len(vals) mean = float(np.mean(vals)) std = float(np.std(vals)) output[key] = { "N runs": n, "mean": round(mean, 3), "std": round(std, 3) } print(yaml.dump(output))
25.794872
87
0.672962
0
0
0
0
0
0
0
0
329
0.327038
e19165bb436973e6fab40bd344665853870c9891
4,541
py
Python
Pgnet.py
rs-lsl/Pgnet
b31de7c93619a40bfb194bda0ad2889e732c1db6
[ "MIT" ]
2
2021-12-27T06:27:56.000Z
2022-03-12T05:19:59.000Z
Pgnet.py
rs-lsl/Pgnet
b31de7c93619a40bfb194bda0ad2889e732c1db6
[ "MIT" ]
null
null
null
Pgnet.py
rs-lsl/Pgnet
b31de7c93619a40bfb194bda0ad2889e732c1db6
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ @author: lsl E-mail: cug_lsl@cug.edu.cn """ import sys import argparse sys.path.append("/home/aistudio/code") import torch import torch.nn as nn import torch.optim as optim import torch.utils.data as data import time from Pgnet_structure import Pg_net from Pgnet_dataset import Mydata from loss_function import SAMLoss device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # hyper parameters test_batch_size = 1 parser = argparse.ArgumentParser(description='Paddle Pgnet') # model parser.add_argument('--model', type=str, default='Pgnet') # dataset parser.add_argument('--dataset', type=str, default='WV2') # train parser.add_argument('--in_nc', type=int, default=126, help='number of input image channels') parser.add_argument('--endmember', type=int, default=20, help='number of endmember') parser.add_argument('--batch_size', type=int, default=15, help='training batch size') parser.add_argument('--num_epochs', type=int, default=500, help='number of training epochs') parser.add_argument('--lr', type=float, default=2e-3, help='learning rate') parser.add_argument('--resume', type=str, default='', help='path to model checkpoint') parser.add_argument('--start_epoch', type=int, default=1, help='restart epoch number for training') parser.add_argument('--momentum', type=float, default=0.05, help='momentum') parser.add_argument('--step', type=int, default=100, help='Sets the learning rate to the initial LR decayed by momentum every n epochs, Default: n=100') # test parser.add_argument('--test', type=bool, default=False, help='test') parser.add_argument('--load_para', type=bool, default=False, help='if load model parameters') parser.add_argument('--test_batch_size', type=int, default=1, help='testing batch size') opt = parser.parse_args() print(opt) def Pgnet(train_hs_image, train_hrpan_image, train_label, test_hs_image, test_hrpan_image, test_label, ratio=16): opt.in_nc = train_hs_image.shape[1] print(train_hs_image.shape) print(test_hs_image.shape) # define data and model dataset0 = Mydata(train_hs_image, train_hrpan_image, train_label) train_loader = data.DataLoader(dataset0, num_workers=0, batch_size=opt.batch_size, shuffle=True, drop_last=True) dataset1 = Mydata(test_hs_image, test_hrpan_image, test_label) test_loader = data.DataLoader(dataset1, num_workers=0, batch_size=opt.test_batch_size, shuffle=False, drop_last=False) model = Pg_net(band=opt.in_nc, endmember_num=opt.endmember, ratio=ratio).to(device) print("Total number of paramerters in networks is {} ".format(sum(x.numel() for x in model.parameters()))) L2_loss = nn.MSELoss() samloss = SAMLoss() optimizer = optim.Adam(lr=opt.lr, params=model.parameters()) scheduler = optim.lr_scheduler.StepLR(optimizer, opt.step, gamma=opt.momentum) for epoch in range(opt.num_epochs): time0 = time.time() loss_total = 0.0 model.train() for i, (images_hs, images_pan, labels) in enumerate(train_loader): images_hs = images_hs.to(device, dtype=torch.float32) images_pan = images_pan.to(device, dtype=torch.float32) labels = labels.to(device, dtype=torch.float32) optimizer.zero_grad() result = model(images_hs, images_pan) loss_l2 = L2_loss(result, labels) loss_sam = samloss(result, labels) loss = loss_l2 + 0.01*loss_sam loss.backward() optimizer.step() loss_total += loss.item() if ((epoch+1) % 10) == 0: print('epoch %d of %d, using time: %.2f , loss of train: %.4f' % (epoch + 1, opt.num_epochs, time.time() - time0, loss_total)) scheduler.step() # torch.save(model.state_dict(), 'model.pth') # testing model if opt.load_para: model.load_state_dict(torch.load("model.pth")) model.eval() image_all = [] with torch.no_grad(): for (images_hs, images_pan, _) in test_loader: images_hs = images_hs.to(device, dtype=torch.float32) images_pan = images_pan.to(device, dtype=torch.float32) outputs_temp = model(images_hs, images_pan) image_all.append(outputs_temp) a = torch.cat(image_all, 0) return a
36.620968
120
0.657564
0
0
0
0
0
0
0
0
885
0.194891
e1927fcb892725b69d50542f139eaa6330088fdc
14,716
py
Python
tracing/plugins/ath10k_pktlog.py
lumag/qca-swiss-army-knife
5ede3cc07e9a52f115101c28f833242b772eeaab
[ "ISC" ]
47
2016-05-20T02:33:26.000Z
2022-03-02T01:48:57.000Z
tracing/plugins/ath10k_pktlog.py
lumag/qca-swiss-army-knife
5ede3cc07e9a52f115101c28f833242b772eeaab
[ "ISC" ]
7
2020-04-09T13:40:56.000Z
2022-01-24T19:18:50.000Z
tracing/plugins/ath10k_pktlog.py
lumag/qca-swiss-army-knife
5ede3cc07e9a52f115101c28f833242b772eeaab
[ "ISC" ]
41
2016-04-19T06:31:14.000Z
2022-03-30T06:25:09.000Z
# # Copyright (c) 2014-2017 Qualcomm Atheros, Inc. # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # # trace-cmd pktlog plugin for ath10k, QCA Linux wireless driver # # TODO: # # o create class for struct ieee80211_hdr each packet headers with # pack() and unpack() methods import struct import binascii DEBUG = 1 CUR_PKTLOG_VER = 10010 PKTLOG_MAGIC_NUM = 7735225 IEEE80211_FCTL_TODS = 0x0100 IEEE80211_FCTL_FROMDS = 0x0200 TARGET_NUM_MSDU_DESC = (1024 + 400) MAX_PKT_INFO_MSDU_ID = 192 MAX_10_4_PKT_INFO_MSDU_ID = 1 PKTLOG_MAX_TXCTL_WORDS = 57 # must match with enum ath10k_hw_rev from ath10k and existing values # should not change ATH10K_PKTLOG_HW_QCA988X = 0 ATH10K_PKTLOG_HW_QCA6174 = 1 ATH10K_PKTLOG_HW_QCA99X0 = 2 ATH10K_PKTLOG_HW_QCA9888 = 3 ATH10K_PKTLOG_HW_QCA9984 = 4 ATH10K_PKTLOG_HW_QCA9377 = 5 ATH10K_PKTLOG_HW_QCA40XX = 6 ATH10K_PKTLOG_HW_QCA9887 = 7 ATH10K_PKTLOG_TYPE_TX_CTRL = 1 ATH10K_PKTLOG_TYPE_TX_STAT = 2 ATH10K_PKTLOG_TYPE_TX_MSDU_ID = 3 ATH10K_PKTLOG_TYPE_TX_FRM_HDR = 4 ATH10K_PKTLOG_TYPE_RX_STAT = 5 ATH10K_PKTLOG_TYPE_RC_FIND = 6 ATH10K_PKTLOG_TYPE_RC_UPDATE = 7 ATH10K_PKTLOG_TYPE_TX_VIRT_ADDR = 8 ATH10K_PKTLOG_TYPE_DBG_PRINT = 9 ATH10K_PKTLOG_FLG_TYPE_LOCAL_S = 0 ATH10K_PKTLOG_FLG_TYPE_REMOTE_S = 1 ATH10K_PKTLOG_FLG_TYPE_CLONE_S = 2 ATH10K_PKTLOG_FLG_TYPE_UNKNOWN_S = 3 # sizeof(ath10k_pktlog_txctl) = 12 + 4 * 57 ATH10K_PKTLOG_TXCTL_LEN = 240 ATH10K_PKTLOG_MAX_TXCTL_WORDS = 57 # sizeof(ath10k_pktlog_10_4_txctl)2 = 16 + 4 * 153 ATH10K_PKTLOG_10_4_TXCTL_LEN = 624 ATH10K_PKTLOG_10_4_MAX_TXCTL_WORDS = 153 msdu_len_tbl = {} output_file = None frm_hdr = None def dbg(msg): if DEBUG == 0: return print msg def hexdump(buf, prefix=None): s = binascii.b2a_hex(buf) s_len = len(s) result = "" if prefix is None: prefix = "" for i in range(s_len / 2): if i % 16 == 0: result = result + ("%s%04x: " % (prefix, i)) result = result + (s[2 * i] + s[2 * i + 1] + " ") if (i + 1) % 16 == 0: result = result + "\n" # FIXME: if len(s) % 16 == 0 there's an extra \n in the end return result # struct ath10k_pktlog_hdr { # unsigned short flags; # unsigned short missed_cnt; # unsigned short log_type; # unsigned short size; # unsigned int timestamp; # unsigned char payload[0]; # } __attribute__((__packed__)); class Ath10kPktlogHdr: # 2 + 2 + 2 + 2 + 4 = 12 hdr_len = 12 struct_fmt = '<HHHHI' def unpack(self, buf, offset=0): (self.flags, self.missed_cnt, self.log_type, self.size, self.timestamp) = struct.unpack_from(self.struct_fmt, buf, 0) payload_len = len(buf) - self.hdr_len if payload_len < self.size: raise Exception('Payload length invalid: %d != %d' % (payload_len, self.size)) self.payload = buf[self.hdr_len:] # excludes payload, you have to write that separately! def pack(self): return struct.pack(self.struct_fmt, self.flags, self.missed_cnt, self.log_type, self.size, self.timestamp) def __str__(self): return 'flags %04x miss %d log_type %d size %d timestamp %d\n' % \ (self.flags, self.missed_cnt, self.log_type, self.size, self.timestamp) def __init__(self): self.flags = 0 self.missed_cnt = 0 self.log_type = 0 self.size = 0 self.timestamp = 0 self.payload = [] # struct ath10k_pktlog_10_4_hdr { # unsigned short flags; # unsigned short missed_cnt; # unsigned short log_type; # unsigned short size; # unsigned int timestamp; # unsigned int type_specific_data; # unsigned char payload[0]; # } __attribute__((__packed__)); class Ath10kPktlog_10_4_Hdr: # 2 + 2 + 2 + 2 + 4 + 4 = 16 hdr_len = 16 struct_fmt = '<HHHHII' def unpack(self, buf, offset=0): (self.flags, self.missed_cnt, self.log_type, self.size, self.timestamp, self.type_specific_data) = struct.unpack_from(self.struct_fmt, buf, 0) payload_len = len(buf) - self.hdr_len if payload_len != self.size: raise Exception('Payload length invalid: %d != %d' % (payload_len, self.size)) self.payload = buf[self.hdr_len:] # excludes payload, you have to write that separately! def pack(self): return struct.pack(self.struct_fmt, self.flags, self.missed_cnt, self.log_type, self.size, self.timestamp, self.type_specific_data) def __str__(self): return 'flags %04x miss %d log_type %d size %d timestamp %d type_specific_data %d\n' % \ (self.flags, self.missed_cnt, self.log_type, self.size, self.timestamp, self.type_specific_data) def __init__(self): self.flags = 0 self.missed_cnt = 0 self.log_type = 0 self.size = 0 self.timestamp = 0 self.type_specific_data = 0 self.payload = [] def output_open(): global output_file # apparently no way to close the file as the python plugin doesn't # have unregister() callback output_file = open('pktlog.dat', 'wb') buf = struct.pack('II', PKTLOG_MAGIC_NUM, CUR_PKTLOG_VER) output_write(buf) def output_write(buf): global output_file output_file.write(buf) def pktlog_tx_frm_hdr(frame): global frm_hdr try: # struct ieee80211_hdr (frame_control, duration_id, addr1a, addr1b, addr1c, addr2a, addr2b, addr2c, addr3a, addr3b, addr3c, seq_ctrl) = struct.unpack_from('<HHI2BI2BI2BH', frame, 0) except struct.error as e: dbg('failed to parse struct ieee80211_hdr: %s' % (e)) return if frame_control & IEEE80211_FCTL_TODS: bssid_tail = (addr1b << 8) | addr1c sa_tail = (addr2b << 8) | addr2c da_tail = (addr3b << 8) | addr3c elif frame_control & IEEE80211_FCTL_FROMDS: bssid_tail = (addr2b << 8) | addr2c sa_tail = (addr3b << 8) | addr3c da_tail = (addr1b << 8) | addr1c else: bssid_tail = (addr3b << 8) | addr3c sa_tail = (addr2b << 8) | addr2c da_tail = (addr1b << 8) | addr1c resvd = 0 frm_hdr = struct.pack('HHHHHH', frame_control, seq_ctrl, bssid_tail, sa_tail, da_tail, resvd) dbg('frm_hdr %d B' % len(frm_hdr)) def pktlog_tx_ctrl(buf, hw_type): global frm_hdr if hw_type == ATH10K_PKTLOG_HW_QCA988X: hdr = Ath10kPktlogHdr() hdr.unpack(buf) hdr.size = ATH10K_PKTLOG_TXCTL_LEN num_txctls = ATH10K_PKTLOG_MAX_TXCTL_WORDS elif hw_type in [ATH10K_PKTLOG_HW_QCA99X0, ATH10K_PKTLOG_HW_QCA40XX, ATH10K_PKTLOG_HW_QCA9888, ATH10K_PKTLOG_HW_QCA9984]: hdr = Ath10kPktlog_10_4_Hdr() hdr.unpack(buf) hdr.size = ATH10K_PKTLOG_10_4_TXCTL_LEN num_txctls = ATH10K_PKTLOG_10_4_MAX_TXCTL_WORDS output_write(hdr.pack()) # write struct ath10k_pktlog_frame if frm_hdr: output_write(frm_hdr) else: tmp = struct.pack('HHHHHH', 0, 0, 0, 0, 0, 0) output_write(tmp) txdesc_ctl = hdr.payload[0:] for i in range(num_txctls): if len(txdesc_ctl) >= 4: txctl, = struct.unpack_from('<I', txdesc_ctl) txdesc_ctl = txdesc_ctl[4:] else: txctl = 0 output_write(struct.pack('I', txctl)) def pktlog_tx_msdu_id(buf, hw_type): global msdu_len_tbl if hw_type == ATH10K_PKTLOG_HW_QCA988X: hdr = Ath10kPktlogHdr() hdr.unpack(buf) hdr.size = 4 + (192 / 8) + 2 * 192 # write struct ath10k_pktlog_hdr output_write(hdr.pack()) # parse struct msdu_id_info # hdr (12) + num_msdu (4) + bound_bmap (24) = 40 msdu_info = hdr.payload[0:28] id = hdr.payload[28:] num_msdu, = struct.unpack_from('I', msdu_info) output_write(msdu_info) max_pkt_info_msdu_id = MAX_PKT_INFO_MSDU_ID elif hw_type in [ATH10K_PKTLOG_HW_QCA99X0, ATH10K_PKTLOG_HW_QCA40XX, ATH10K_PKTLOG_HW_QCA9888, ATH10K_PKTLOG_HW_QCA9984]: hdr = Ath10kPktlog_10_4_Hdr() hdr.unpack(buf) # write struct ath10k_pktlog_10_4_hdr output_write(hdr.pack()) # parse struct msdu_id_info # hdr (16) + num_msdu (4) + bound_bmap (1) = 21 msdu_info = hdr.payload[0:5] id = hdr.payload[5:] num_msdu, = struct.unpack_from('I', msdu_info) output_write(msdu_info) max_pkt_info_msdu_id = MAX_10_4_PKT_INFO_MSDU_ID for i in range(max_pkt_info_msdu_id): if num_msdu > 0: num_msdu = num_msdu - 1 msdu_id, = struct.unpack_from('<H', id) id = id[2:] if msdu_id not in msdu_len_tbl: dbg('msdu_id %d not found from msdu_len_tbl' % (msdu_id)) msdu_len = 0 else: msdu_len = msdu_len_tbl[msdu_id] else: msdu_len = 0 output_write(struct.pack('H', msdu_len)) def ath10k_htt_pktlog_handler(pevent, trace_seq, event): hw_type = int(event.get('hw_type', ATH10K_PKTLOG_HW_QCA988X)) buf = event['pktlog'].data offset = 0 if hw_type == ATH10K_PKTLOG_HW_QCA988X: hdr = Ath10kPktlogHdr() elif hw_type in [ATH10K_PKTLOG_HW_QCA99X0, ATH10K_PKTLOG_HW_QCA40XX, ATH10K_PKTLOG_HW_QCA9888, ATH10K_PKTLOG_HW_QCA9984]: hdr = Ath10kPktlog_10_4_Hdr() hdr.unpack(buf, offset) offset = offset + hdr.hdr_len trace_seq.puts('%s\n' % (hdr)) if hdr.log_type == ATH10K_PKTLOG_TYPE_TX_FRM_HDR: pktlog_tx_frm_hdr(buf[hdr.hdr_len:]) elif hdr.log_type == ATH10K_PKTLOG_TYPE_TX_CTRL: pktlog_tx_ctrl(buf, hw_type) elif hdr.log_type == ATH10K_PKTLOG_TYPE_TX_MSDU_ID: pktlog_tx_msdu_id(buf, hw_type) elif hdr.log_type == ATH10K_PKTLOG_TYPE_TX_STAT or \ hdr.log_type == ATH10K_PKTLOG_TYPE_RX_STAT or \ hdr.log_type == ATH10K_PKTLOG_TYPE_RC_FIND or \ hdr.log_type == ATH10K_PKTLOG_TYPE_RC_UPDATE: output_write(buf[0: offset + hdr.size]) else: pass def ath10k_htt_rx_desc_handler(pevent, trace_seq, event): hw_type = int(event.get('hw_type', ATH10K_PKTLOG_HW_QCA988X)) rxdesc = event['rxdesc'].data trace_seq.puts('len %d\n' % (len(rxdesc))) if hw_type == ATH10K_PKTLOG_HW_QCA988X: hdr = Ath10kPktlogHdr() hdr.flags = (1 << ATH10K_PKTLOG_FLG_TYPE_REMOTE_S) hdr.missed_cnt = 0 hdr.log_type = ATH10K_PKTLOG_TYPE_RX_STAT # rx_desc size for QCA988x chipsets is 248 hdr.size = 248 output_write(hdr.pack()) output_write(rxdesc[0: 32]) output_write(rxdesc[36: 56]) output_write(rxdesc[76: 208]) output_write(rxdesc[228:]) elif hw_type in [ATH10K_PKTLOG_HW_QCA99X0, ATH10K_PKTLOG_HW_QCA40XX]: hdr = Ath10kPktlog_10_4_Hdr() hdr.flags = (1 << ATH10K_PKTLOG_FLG_TYPE_REMOTE_S) hdr.missed_cnt = 0 hdr.log_type = ATH10K_PKTLOG_TYPE_RX_STAT hdr.type_specific_data = 0 hdr.size = len(rxdesc) output_write(hdr.pack()) output_write(rxdesc) elif hw_type in [ATH10K_PKTLOG_HW_QCA9888, ATH10K_PKTLOG_HW_QCA9984]: hdr = Ath10kPktlog_10_4_Hdr() hdr.flags = (1 << ATH10K_PKTLOG_FLG_TYPE_REMOTE_S) hdr.missed_cnt = 0 hdr.log_type = ATH10K_PKTLOG_TYPE_RX_STAT hdr.type_specific_data = 0 # rx_desc size for QCA9984 and QCA9889 chipsets is 296 hdr.size = 296 output_write(hdr.pack()) output_write(rxdesc[0: 4]) output_write(rxdesc[4: 8]) output_write(rxdesc[12: 24]) output_write(rxdesc[24: 40]) output_write(rxdesc[44: 84]) output_write(rxdesc[100: 104]) output_write(rxdesc[104: 144]) output_write(rxdesc[144: 256]) output_write(rxdesc[292:]) def ath10k_htt_tx_handler(pevent, trace_seq, event): global msdu_len_tbl msdu_id = long(event['msdu_id']) msdu_len = long(event['msdu_len']) trace_seq.puts('msdu_id %d msdu_len %d\n' % (msdu_id, msdu_len)) if msdu_id > TARGET_NUM_MSDU_DESC: dbg('Invalid msdu_id in tx: %d' % (msdu_id)) return msdu_len_tbl[msdu_id] = msdu_len def ath10k_txrx_tx_unref_handler(pevent, trace_seq, event): global msdu_len_tbl msdu_id = long(event['msdu_id']) trace_seq.puts('msdu_id %d\n' % (msdu_id)) if msdu_id > TARGET_NUM_MSDU_DESC: dbg('Invalid msdu_id from unref: %d' % (msdu_id)) return msdu_len_tbl[msdu_id] = 0 def ath10k_tx_hdr_handler(pevent, trace_seq, event): buf = event['data'].data pktlog_tx_frm_hdr(buf[0:]) def register(pevent): output_open() pevent.register_event_handler("ath10k", "ath10k_htt_pktlog", lambda *args: ath10k_htt_pktlog_handler(pevent, *args)) pevent.register_event_handler("ath10k", "ath10k_htt_rx_desc", lambda *args: ath10k_htt_rx_desc_handler(pevent, *args)) pevent.register_event_handler("ath10k", "ath10k_htt_tx", lambda *args: ath10k_htt_tx_handler(pevent, *args)) pevent.register_event_handler("ath10k", "ath10k_txrx_tx_unref", lambda *args: ath10k_txrx_tx_unref_handler(pevent, *args)) pevent.register_event_handler("ath10k", "ath10k_tx_hdr", lambda *args: ath10k_tx_hdr_handler(pevent, *args))
31.177966
106
0.632509
2,603
0.176882
0
0
0
0
0
0
2,983
0.202705
e1936080a3e49021025bc658618c985bef1143b7
731
py
Python
tgtypes/models/venue.py
autogram/tgtypes
90f8d0d35d3c372767508e56c20777635e128e38
[ "MIT" ]
null
null
null
tgtypes/models/venue.py
autogram/tgtypes
90f8d0d35d3c372767508e56c20777635e128e38
[ "MIT" ]
null
null
null
tgtypes/models/venue.py
autogram/tgtypes
90f8d0d35d3c372767508e56c20777635e128e38
[ "MIT" ]
null
null
null
from __future__ import annotations from typing import TYPE_CHECKING, Optional from ._base import TelegramObject if TYPE_CHECKING: # pragma: no cover from .location import Location class Venue(TelegramObject): """ This object represents a venue. Source: https://core.telegram.org/bots/api#venue """ location: Location """Venue location""" title: str """Name of the venue""" address: str """Address of the venue""" foursquare_id: Optional[str] = None """Foursquare identifier of the venue""" foursquare_type: Optional[str] = None """Foursquare type of the venue. (For example, 'arts_entertainment/default', 'arts_entertainment/aquarium' or 'food/icecream'.)"""
25.206897
80
0.689466
540
0.738714
0
0
0
0
0
0
362
0.495212
e19376010ad54eee24bb9ce56fbcb72f63a795cb
2,457
py
Python
nsa.py
hypervis0r/nsaproductgenerator
e384717e0eb2746bd58d041963b49e4772192f0a
[ "MIT" ]
null
null
null
nsa.py
hypervis0r/nsaproductgenerator
e384717e0eb2746bd58d041963b49e4772192f0a
[ "MIT" ]
null
null
null
nsa.py
hypervis0r/nsaproductgenerator
e384717e0eb2746bd58d041963b49e4772192f0a
[ "MIT" ]
1
2022-02-25T13:06:14.000Z
2022-02-25T13:06:14.000Z
import random import argparse # TODO: Parse word lists from files words = { "codenames_adjective": [ "quantum", "loud", "red", "blue", "green", "yellow", "irate", "angry", "peeved", "happy", "slimy", "sleepy", "junior", "slicker", "united", "somber", "bizarre", "odd", "weird", "wrong", "latent", "chilly", "strange", "loud", "silent", "hopping", "orange", "violet", "violent", "desolate", "lone", "cold", "solemn", "raging", "intelligent", "american", ], "codenames_noun": [ "matrix", "wolf", "solace", "whisper", "felony", "moon", "sucker", "penguin", "waffle", "maestro", "night", "trinity", "deity", "monkey", "ark", "squirrel", "iron", "bounce", "farm", "chef", "trough", "net", "trawl", "glee", "water", "spork", "plow", "feed", "souffle", "route", "bagel", "montana", "analyst", "auto", "watch", "photo", "yard", "source", "monkey", "seagull", "toll", "spawn", "gopher", "chipmunk", "set", "calendar", "artist", "chaser", "scan", "tote", "beam", "entourage", "genesis", "walk", "spatula", "rage", "fire", "master" ], "codenames_suffix": [ " {}000", "-II", " {}.0", " rev{}", "-HX", " v{}", ] } def parse_args(): parser = argparse.ArgumentParser(description='Generate NSA TAO project names') parser.add_argument("-n", "--num", required=False, type=int, default=1, help="Number of project names to generate") return parser.parse_args() def pick_random(arr): return arr[random.randrange(len(arr))] def generate_tao_name(): name = "" name += pick_random(words["codenames_adjective"]).upper() name += pick_random(words["codenames_noun"]).upper() # Hacky way to do 1/5 if (random.randrange(5) == 4): suffix = pick_random(words["codenames_suffix"]) suffix = suffix.format(random.randrange(1, 9)) name += suffix return name def main(args): for _ in range(args.num): print("%s" % generate_tao_name()) if __name__ == "__main__": main(parse_args())
16.944828
119
0.483923
0
0
0
0
0
0
0
0
1,011
0.411477
e195525885c756f6c1eaa22f28ac15deda8bb369
2,886
py
Python
bob/blitz/extension.py
bioidiap/bob.blitz
348d7cf3866b549cac576efc3c6f3df24245d9fd
[ "BSD-3-Clause" ]
null
null
null
bob/blitz/extension.py
bioidiap/bob.blitz
348d7cf3866b549cac576efc3c6f3df24245d9fd
[ "BSD-3-Clause" ]
6
2015-01-01T09:15:28.000Z
2016-10-20T08:09:26.000Z
bob/blitz/extension.py
bioidiap/bob.blitz
348d7cf3866b549cac576efc3c6f3df24245d9fd
[ "BSD-3-Clause" ]
3
2015-08-05T12:16:45.000Z
2018-02-01T19:55:40.000Z
#!/usr/bin/env python # vim: set fileencoding=utf-8 : # Andre Anjos <andre.anjos@idiap.ch> # Mon 18 Nov 21:38:19 2013 """Extension building for using this package """ import numpy from pkg_resources import resource_filename from bob.extension import Extension as BobExtension # forward the build_ext command from bob.extension from bob.extension import build_ext, Library as BobLibrary from distutils.version import LooseVersion class Extension(BobExtension): """Extension building with pkg-config packages and blitz.array. See the documentation for :py:class:`distutils.extension.Extension` for more details on input parameters. """ def __init__(self, *args, **kwargs): """Initialize the extension with parameters. This extension adds ``blitz>=0.10`` as a requirement for extensions derived from this class. See the help for :py:class:`bob.extension.Extension` for more details on options. """ require = ['blitz>=0.10', 'boost'] kwargs.setdefault('packages', []).extend(require) self_include_dir = resource_filename(__name__, 'include') kwargs.setdefault('system_include_dirs', []).append(numpy.get_include()) kwargs.setdefault('include_dirs', []).append(self_include_dir) macros = [ ("PY_ARRAY_UNIQUE_SYMBOL", "BOB_NUMPY_C_API"), ("NO_IMPORT_ARRAY", "1"), ] if LooseVersion(numpy.__version__) >= LooseVersion('1.7'): macros.append(("NPY_NO_DEPRECATED_API", "NPY_1_7_API_VERSION")) kwargs.setdefault('define_macros', []).extend(macros) # Run the constructor for the base class BobExtension.__init__(self, *args, **kwargs) class Library (BobLibrary): """Pure C++ library building with blitz array. See the documentation for :py:class:`bob.extension.Extension` for more details on input parameters. """ def __init__(self, *args, **kwargs): """Initialize the library with parameters. This library adds ``blitz>=0.10`` as a requirement for library derived from this class. See the help for :py:class:`bob.extension.Library` for more details on options. """ require = ['blitz>=0.10', 'boost'] kwargs.setdefault('packages', []).extend(require) self_include_dir = resource_filename(__name__, 'include') kwargs.setdefault('system_include_dirs', []).append(numpy.get_include()) kwargs.setdefault('include_dirs', []).append(self_include_dir) # TODO: are these macros required for pure C++ builds? macros = [ ("PY_ARRAY_UNIQUE_SYMBOL", "BOB_NUMPY_C_API"), ("NO_IMPORT_ARRAY", "1"), ] if LooseVersion(numpy.__version__) >= LooseVersion('1.7'): macros.append(("NPY_NO_DEPRECATED_API", "NPY_1_7_API_VERSION")) kwargs.setdefault('define_macros', []).extend(macros) # Run the constructor for the base class BobLibrary.__init__(self, *args, **kwargs)
31.032258
79
0.698545
2,450
0.848926
0
0
0
0
0
0
1,562
0.541234
e195971c01d6f8dcda846bd7ff1f32bb1f7099e8
4,248
py
Python
src/RosGazeboLibrary/Gazebo.py
hielsnoppe/robotframework-rosgazebolibrary
a91d48413d4af95856964644b149898b538c6724
[ "Apache-2.0" ]
null
null
null
src/RosGazeboLibrary/Gazebo.py
hielsnoppe/robotframework-rosgazebolibrary
a91d48413d4af95856964644b149898b538c6724
[ "Apache-2.0" ]
null
null
null
src/RosGazeboLibrary/Gazebo.py
hielsnoppe/robotframework-rosgazebolibrary
a91d48413d4af95856964644b149898b538c6724
[ "Apache-2.0" ]
null
null
null
from robot.api.deco import keyword from robot.libraries.BuiltIn import BuiltIn class Gazebo(object): """Robot Framework test library for the Gazebo simulator See also http://gazebosim.org/tutorials/?tut=ros_comm == Table of contents == %TOC% """ ROBOT_LIBRARY_SCOPE = 'SUITE' def __init__(self): self.ros_lib = BuiltIn().get_library_instance('RosGazeboLibrary.ROS') # Create and destroy models in simulation # http://gazebosim.org/tutorials/?tut=ros_comm#Services:Createanddestroymodelsinsimulation @keyword def spawn_urdf_model(self, urdf_path: str, position: tuple, model_name: str): ''' TODO: Refactor to use service call ''' return self.ros_lib.rosrun('gazebo_ros', 'spawn_model', *[ '-file', urdf_path, '-urdf', '-model', model_name, '-x', position[0], '-y', position[1], '-z', position[2], ]) @keyword def spawn_sdf_model(self, sdf_path: str, position: tuple, model_name: str): ''' TODO: Refactor to use service call ''' return self.ros_lib.rosrun('gazebo_ros', 'spawn_model', *[ '-file', sdf_path, '-sdf', '-model', model_name, '-x', position[0], '-y', position[1], '-z', position[2], ]) @keyword def delete_model(self, model_name: str): ''' Delete a model from simulation http://gazebosim.org/tutorials/?tut=ros_comm#DeleteModel ''' return self.ros_lib.rosservice_call( 'gazebo/delete_model', 'gazebo_msgs/DeleteModel', { 'model_name': model_name } ) # State and property setters # http://gazebosim.org/tutorials/?tut=ros_comm#Services:Stateandpropertysetters ''' TODO def set_link_properties(self, ...): def set_physics_properties(self, ...): def set_model_state(self, ...): def set_model_configuration(self, ...): def set_joint_properties(self, ...): def set_link_state(self, ...): ''' # State and property getters # http://gazebosim.org/tutorials/?tut=ros_comm#Services:Stateandpropertygetters @keyword def get_model_properties(self, model_name: str): return self.ros_lib.rosservice_call( 'gazebo/get_model_properties', 'gazebo_msgs/GetModelProperties', { 'model_name': model_name } ) @keyword def get_model_state(self, model_name: str): return self.ros_lib.rosservice_call( 'gazebo/get_model_state', 'gazebo_msgs/GetModelState', { 'model_name': model_name } ) ''' TODO def get_world_properties(self, ...): def get_joint_properties(self, ...): def get_link_properties(self, ...): def get_link_state(self, ...): def get_physics_properties(self, ...): def link_states(self, ...): # investigate def model_states(self, ...): # investigate ''' # Force control # http://gazebosim.org/tutorials/?tut=ros_comm#Services:Forcecontrol ''' TODO /gazebo/apply_body_wrench /gazebo/apply_joint_effort /gazebo/clear_body_wrenches /gazebo/clear_joint_forces ''' # Simulation control # http://gazebosim.org/tutorials/?tut=ros_comm#Services:Simulationcontrol @keyword def reset_simulation(self): return self.ros_lib.rosservice_call('/gazebo/reset_simulation') @keyword def reset_world(self): return self.ros_lib.rosservice_call('/gazebo/reset_world') @keyword def pause_physics(self): return self.ros_lib.rosservice_call('/gazebo/pause_physics') @keyword def unpause_physics(self): return self.ros_lib.rosservice_call('/gazebo/unpause_physics') # Undocumented services # Found via `rosservice list` ''' /gazebo/delete_light /gazebo/get_light_properties /gazebo/get_loggers /gazebo/set_light_properties /gazebo/set_logger_level /gazebo/set_parameters /gazebo_gui/get_loggers /gazebo_gui/set_logger_level ''' # Convenience keywords @keyword def launch_empty_world(self): return self.ros_lib.roslaunch('gazebo_ros', 'empty_world.launch')
29.296552
94
0.638889
4,168
0.981168
0
0
2,139
0.503531
0
0
2,368
0.557439
e1960d36e95888a08f212b033eea9c1cb048cffe
1,143
py
Python
tests/unit/test_hass.py
boonhapus/hautomate
f111a8ad86d5f07183903ec99c1981569e0ee046
[ "MIT" ]
null
null
null
tests/unit/test_hass.py
boonhapus/hautomate
f111a8ad86d5f07183903ec99c1981569e0ee046
[ "MIT" ]
null
null
null
tests/unit/test_hass.py
boonhapus/hautomate
f111a8ad86d5f07183903ec99c1981569e0ee046
[ "MIT" ]
null
null
null
from ward import test, each, raises from homeassistant.core import HomeAssistant from hautomate.settings import HautoConfig from hautomate import Hautomate import pydantic from tests.fixtures import cfg_data_hauto @test('HomeAssistantConfig validates for {feed}', tags=['unit']) async def _( cfg_data=cfg_data_hauto, feed=each('custom_component', 'custom_component', 'websocket'), hass_cls=each(HomeAssistant, None, None) ): if hass_cls is not None: hass = hass_cls() else: hass = None # overwrite any existing api configs data = cfg_data.copy() data['api_configs'] = { 'homeassistant': { 'feed': feed, 'hass_interface': hass, 'host': 'http://hautomate.boonhap.us', 'port': 8823, 'access_token': 'damn, granted!' } } if feed == 'custom_component' and hass is None: with raises(pydantic.ValidationError): cfg = HautoConfig(**data) else: cfg = HautoConfig(**data) hauto = Hautomate(cfg) assert hauto.is_running is True assert hauto.is_ready is False
26.581395
67
0.632546
0
0
0
0
924
0.808399
859
0.751531
270
0.23622
e19634e1c0e6ad67f639ff7b727b4525f8c022d4
1,186
py
Python
test/arguments/with_range_check_code/python/Bit4RangeCheckTest.py
dkBrazz/zserio
29dd8145b7d851fac682d3afe991185ea2eac318
[ "BSD-3-Clause" ]
86
2018-09-06T09:30:53.000Z
2022-03-27T01:12:36.000Z
test/arguments/with_range_check_code/python/Bit4RangeCheckTest.py
dkBrazz/zserio
29dd8145b7d851fac682d3afe991185ea2eac318
[ "BSD-3-Clause" ]
362
2018-09-04T20:21:24.000Z
2022-03-30T15:14:38.000Z
test/arguments/with_range_check_code/python/Bit4RangeCheckTest.py
dkBrazz/zserio
29dd8145b7d851fac682d3afe991185ea2eac318
[ "BSD-3-Clause" ]
20
2018-09-10T15:59:02.000Z
2021-12-01T15:38:22.000Z
import unittest import zserio from testutils import getZserioApi class Bit4RangeCheckTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.api = getZserioApi(__file__, "with_range_check_code.zs", extraArgs=["-withRangeCheckCode"]).bit4_range_check def testBit4LowerBound(self): self._checkBit4Value(BIT4_LOWER_BOUND) def testBit4UpperBound(self): self._checkBit4Value(BIT4_UPPER_BOUND) def testBit4BelowLowerBound(self): with self.assertRaises(zserio.PythonRuntimeException): self._checkBit4Value(BIT4_LOWER_BOUND - 1) def testBit4AboveUpperBound(self): with self.assertRaises(zserio.PythonRuntimeException): self._checkBit4Value(BIT4_UPPER_BOUND + 1) def _checkBit4Value(self, value): bit4RangeCheckCompound = self.api.Bit4RangeCheckCompound(value_=value) bitBuffer = zserio.serialize(bit4RangeCheckCompound) readBit4RangeCheckCompound = zserio.deserialize(self.api.Bit4RangeCheckCompound, bitBuffer) self.assertEqual(bit4RangeCheckCompound, readBit4RangeCheckCompound) BIT4_LOWER_BOUND = 0 BIT4_UPPER_BOUND = 15
34.882353
99
0.73946
1,074
0.905565
0
0
189
0.159359
0
0
47
0.039629
e196eb274e00b4e5d8027a1161feb36eab5a1ff6
1,931
py
Python
src/MainAPP/migrations/0030_auto_20181211_1246.py
mizamae/HomeAutomation
8c462ee4c31c1fea6792cb19af66a4d2cf7bb2ca
[ "MIT" ]
null
null
null
src/MainAPP/migrations/0030_auto_20181211_1246.py
mizamae/HomeAutomation
8c462ee4c31c1fea6792cb19af66a4d2cf7bb2ca
[ "MIT" ]
9
2017-11-21T15:45:18.000Z
2022-02-11T03:37:54.000Z
src/MainAPP/migrations/0030_auto_20181211_1246.py
mizamae/HomeAutomation
8c462ee4c31c1fea6792cb19af66a4d2cf7bb2ca
[ "MIT" ]
1
2020-07-22T02:24:17.000Z
2020-07-22T02:24:17.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2018-12-11 11:46 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('MainAPP', '0029_auto_20181211_1237'), ] operations = [ migrations.AlterField( model_name='sitesettings', name='ESIOS_TOKEN', field=models.CharField(blank=True, default='', help_text='The token assigned by the ESIOS service. You should ask for yours to: Consultas Sios <consultasios@ree.es>', max_length=50, verbose_name='Token for the ESIOS page'), ), migrations.AlterField( model_name='sitesettings', name='IBERDROLA_PASSW', field=models.CharField(blank=True, default='', help_text='Password registered on the Iberdrola Distribucion webpage', max_length=50, verbose_name='Iberdrola password'), ), migrations.AlterField( model_name='sitesettings', name='IBERDROLA_USER', field=models.CharField(blank=True, default='', help_text='Username registered into the Iberdrola Distribucion webpage', max_length=50, verbose_name='Iberdrola username'), ), migrations.AlterField( model_name='sitesettings', name='OWM_TOKEN', field=models.CharField(blank=True, default='', help_text='The token assigned by the OpenWeatherMap service. You should ask yours following https://openweathermap.org/appid', max_length=50, verbose_name='Token for the openweathermap page'), ), migrations.AlterField( model_name='sitesettings', name='TELEGRAM_TOKEN', field=models.CharField(blank=True, default='', help_text='The token assigned by the BothFather', max_length=50, verbose_name='Token for the telegram bot'), ), ]
47.097561
252
0.651476
1,765
0.914034
0
0
0
0
0
0
770
0.398757
e1970edc7bf4ebc76f1931f011d41021ea8563bf
18,954
py
Python
qdms/PulsedProgramming.py
3it-nano/QDMS
9ec2d4e198c00f394d8882517c4b3b336c7fe8c2
[ "MIT" ]
1
2021-11-21T15:18:27.000Z
2021-11-21T15:18:27.000Z
qdms/PulsedProgramming.py
3it-nano/QDMS
9ec2d4e198c00f394d8882517c4b3b336c7fe8c2
[ "MIT" ]
null
null
null
qdms/PulsedProgramming.py
3it-nano/QDMS
9ec2d4e198c00f394d8882517c4b3b336c7fe8c2
[ "MIT" ]
null
null
null
import numpy as np import math import time class PulsedProgramming: """ This class contains all the parameters for the Pulsed programming on a memristor model. After initializing the parameters values, start the simulation with self.simulate() Parameters ---------- max_voltage : float The max voltage (V) of a pulse. If 0, no limit is apply. pulse_algorithm : string The pulse algorithm use. Those are the available choices (Sources in the methods). Default is 'fabien'. 'fabien' : Use fabien_convergence() 'log' : Use a log_convergence() tolerance : float The tolerance_value input is an int that represent the absolute tolerance (Ohm) from the res_states the pulsed programming will find. Smaller is more precise, but too small can never converge. is_relative_tolerance : bool If true, the tolerance_value would be in percentage instead of (Ohm). ex: 10 : if true, 10% : if false, 10 Ohm variability_write : iterable[float] A gaussian distribution with (mu=0, sigma=variance_write) index_variability : int Index of the current variability. If over 1000, reset to 0. variance_write : float Variance of the gaussian distribution on the memristor write. See variability. graph_resistance : List[Union[float, int]] Contains all resistance of the simulation. It's used in the creation of plots. graph_voltages : List[Union[float, int]] Contains all voltages of the simulation. It's used in the creation of plots. number_of_reading : int The number of correct value read before passing to the next state. max_pulse : int The max number of pulses. """ def __init__(self, memristor_simulation, pulse_algorithm='fabien', max_voltage=0, tolerance=0, is_relative_tolerance=False, variance_write=0, number_of_reading=1, max_pulse=20000, verbose=False, plot_memristor=0): self.memristor_simulation = memristor_simulation self.pulse_algorithm = pulse_algorithm self.tolerance = tolerance self.max_voltage = max_voltage self.is_relative_tolerance = is_relative_tolerance self.variance_write = variance_write self.number_of_reading = number_of_reading self.max_pulse = max_pulse self.verbose = verbose self.voltage_output = {} self.plot_memristor = plot_memristor self.index_variability = 0 self.variability_write = np.random.normal(0, variance_write, 1000) self.graph_resistance = [] self.graph_voltages = [] def print(self): print(self.pulse_algorithm) print(self.tolerance) print(self.max_voltage) print(self.voltage_output) print(self.is_relative_tolerance) print(self.variance_write) print(self.number_of_reading) print(self.max_pulse) print(self.verbose) print(np.array(self.graph_resistance)) print(np.array(self.graph_voltages)) def write_resistance(self, memristor, voltage, t_pulse): """ This function change the resistance of the memristor by applying a voltage fo t_pulse. Parameters ---------- memristor : Memristor The memristor wrote. voltage : float The voltage (V) applied. t_pulse : float The time of the writing pulse. (s) Returns ---------- """ t = int(t_pulse / memristor.time_series_resolution) signal = [voltage] * t memristor.simulate(signal) self.index_variability = self.index_variability + 1 if self.index_variability < len(self.variability_write) - 1 else 0 memristor.g = 1 / (1 / memristor.g + (1 / memristor.g) * self.variability_write[self.index_variability]) def find_number_iteration(self): """ This function find the number of iteration needed to create the resistance list depending on the distribution type Returns ---------- number_iteration : int number of iteration """ number_iteration = 1 if self.distribution_type == 'full_spread': number_iteration = self.circuit.number_of_memristor return number_iteration def simulate(self, voltages_target, precision=None): """ This function will set the memristors to the resistance wanted in each voltages_target package. Parameters ---------- voltages_target : dict dict with keys as voltage and package as list of resistance precision : list [[macro_tune, is_relative_variability], [fine_tune, is_relative_variability]] for the balance() method. """ if self.pulse_algorithm != 'fabien' and self.pulse_algorithm != 'log': raise(Exception(f'Pulse algorithm not supported: {self.pulse_algorithm}')) # voltages_target_list = list(voltages_target.keys()) # resolution = voltages_target_list[1] - voltages_target_list[0] index = 1 conf_done = 0 start_time = time.time() diff_voltage = {} for v in list(voltages_target.keys()): if index == 1: start_time_ = time.time() self.simulate_list_memristor(voltages_target[v], precision) self.voltage_output[self.memristor_simulation.circuit.current_v_out()] = [i.read() for i in self.memristor_simulation.circuit.list_memristor] diff_voltage[abs(v - self.memristor_simulation.circuit.current_v_out())] = [round(1 / np.sum([1/res for res in voltages_target[v]]), 4), round(1 / self.memristor_simulation.circuit.current_conductance(), 4)] if index == 50 and self.verbose: conf_done += index print(f'Conf done: {conf_done}\tTook: {round(time.time() - start_time_, 2)} s\tTime left: {round((time.time() - start_time_) * (len(voltages_target.keys()) - conf_done) / 50, 2)} s') index = 0 index += 1 if self.verbose: print(f'Total time: {time.time() - start_time}') print() for key in diff_voltage.keys(): print(f'{round(key*1000, 4)} mV\t{diff_voltage.get(key)[0]}\t{diff_voltage.get(key)[1]} (Ohm)') print(f'Mean diff: {np.mean(list(diff_voltage.keys()))}') print(f'Min diff: {np.min(list(diff_voltage.keys()))}\tMax diff: {np.max(list(diff_voltage.keys()))}') return self.voltage_output def simulate_list_memristor(self, list_resistance, precision): """ This function will set the memristors to the resistance wanted list_resistance. Parameters ---------- list_resistance : list list of the wanted resistance for the memristor. precision : list [[macro_tune, is_relative_variability], [fine_tune, is_relative_variability]] for the balance() method. """ for i in range(self.memristor_simulation.circuit.number_of_memristor): plot = True if i == self.plot_memristor else False if self.pulse_algorithm == 'fabien': self.fabien_convergence(self.memristor_simulation.circuit.list_memristor[i], list_resistance[i], plot=plot) elif self.pulse_algorithm == 'log': self.log_convergence(self.memristor_simulation.circuit.list_memristor[i], list_resistance[i], plot=plot) self.balance(list_resistance, precision) def balance(self, list_resistance, precision): """ This function will set the memristors to the resistance wanted list_resistance. Parameters ---------- list_resistance : list list of the wanted resistance for the memristor. precision : list [[macro_tune, is_relative_variability], [fine_tune, is_relative_variability]] for the balance() method. If 0, won't do it. """ final_g = np.sum([1 / i for i in list_resistance]) delta_g = final_g - self.memristor_simulation.circuit.current_conductance() for i in range(self.memristor_simulation.circuit.number_of_memristor): plot = True if -(i+1) == self.plot_memristor else False final_res = 1 / (self.memristor_simulation.circuit.list_memristor[-(i+1)].g + delta_g) if self.memristor_simulation.circuit.memristor_model.r_on <= final_res <= self.memristor_simulation.circuit.memristor_model.r_off: p_tolerance, p_relative = self.tolerance, self.is_relative_tolerance # print(f'{final_res}\t{1 / self.memristor_simulation.circuit.list_memristor[-(i+1)].g}\t{final_g - self.memristor_simulation.circuit.current_conductance()}') if precision[0][0] != 0 or precision is not None: self.tolerance, self.is_relative_tolerance = precision[0][0], precision[0][1] self.fabien_convergence(self.memristor_simulation.circuit.list_memristor[-(i+1)], final_res, plot) # print(f'{final_res}\t{1 / self.memristor_simulation.circuit.list_memristor[-(i+1)].g}\t{final_g - self.memristor_simulation.circuit.current_conductance()}') if precision[1][0] != 0 or precision is not None: self.tolerance, self.is_relative_tolerance = precision[1][0], precision[1][1] self.small_convergence(self.memristor_simulation.circuit.list_memristor[-(i+1)], final_res, plot) # print(f'{final_res}\t{1 / self.memristor_simulation.circuit.list_memristor[-(i+1)].g}\t{final_g - self.memristor_simulation.circuit.current_conductance()}') self.tolerance, self.is_relative_tolerance = p_tolerance, p_relative break def small_convergence(self, memristor, target_res, plot=False): """ This function run the pulsed programming with a variable voltage to set the target_res for the memristor with a really small increment. Parameters ---------- memristor : Memristor The memristor object target_res : float The target resistance """ step = 0.001 positive_voltage = voltage_set = 0.1 negative_voltage = voltage_reset = -0.1 if self.is_relative_tolerance: res_max = target_res + self.tolerance * target_res / 100 res_min = target_res - self.tolerance * target_res / 100 else: res_max = target_res + self.tolerance res_min = target_res - self.tolerance start_len_res = len(self.graph_resistance) start_len_v = len(self.graph_voltages) counter = 0 action = 'read' flag_finish = False counter_read = 0 while not flag_finish: current_res = memristor.read() if res_min <= current_res <= res_max: counter_read += 1 if plot: action = 'read' self.graph_voltages.append([0.2, counter + start_len_v, action]) elif current_res < res_min: if self.max_voltage != 0: negative_voltage = -self.max_voltage if negative_voltage <= -self.max_voltage else negative_voltage self.write_resistance(memristor, negative_voltage, 200e-9) if plot: action = 'reset' self.graph_voltages.append([negative_voltage, counter + start_len_v, action]) negative_voltage -= step positive_voltage = voltage_set elif current_res > res_max: if self.max_voltage != 0: positive_voltage = self.max_voltage if positive_voltage >= self.max_voltage else positive_voltage self.write_resistance(memristor, positive_voltage, 200e-9) if plot: action = 'set' self.graph_voltages.append([positive_voltage, counter + start_len_v, action]) positive_voltage += step negative_voltage = voltage_reset if counter_read == self.number_of_reading: flag_finish = not flag_finish if counter >= self.max_pulse: flag_finish = not flag_finish print(f'Got max pulse {self.max_pulse}') if plot: self.graph_resistance.append([current_res, counter + start_len_res, action, flag_finish]) counter += 1 def log_convergence(self, memristor, target_res, plot=False): """ This function run the pulsed programming with a variable voltage to set the target_res for the memristor. From : https://arxiv.org/abs/2103.09931 Parameters ---------- memristor : Memristor The memristor object target_res : float The target resistance """ positive_voltage = voltage_set = 0.5 negative_voltage = voltage_reset = -0.5 # additional parameters min_shift = 0.005 max_shift = 0.2 a = 0.1 if self.is_relative_tolerance: res_max = target_res + self.tolerance * target_res / 100 res_min = target_res - self.tolerance * target_res / 100 else: res_max = target_res + self.tolerance res_min = target_res - self.tolerance start_len_res = len(self.graph_resistance) start_len_v = len(self.graph_voltages) counter = 0 action = 'read' flag_finish = False counter_read = 0 r_shift = 1 current_res = memristor.read() while not flag_finish: if res_min < current_res < res_max: counter_read += 1 if plot: action = 'read' self.graph_voltages.append([0.2, counter + start_len_v, action]) elif current_res > res_max: if r_shift < min_shift * (memristor.r_off - memristor.r_on): positive_voltage += a * np.log10(abs(target_res - current_res) / r_shift) elif r_shift > max_shift * (memristor.r_off - memristor.r_on): positive_voltage = voltage_set if self.max_voltage != 0: positive_voltage = self.max_voltage if positive_voltage >= self.max_voltage else positive_voltage self.write_resistance(memristor, positive_voltage, 200e-9) if plot: action = 'set' self.graph_voltages.append([positive_voltage, counter + start_len_v, action]) elif current_res < res_min: if r_shift < min_shift * (memristor.r_off - memristor.r_on): negative_voltage -= a * np.log10(abs((target_res - current_res) / r_shift)) elif r_shift > max_shift * (memristor.r_off - memristor.r_on): negative_voltage = voltage_reset if self.max_voltage != 0: negative_voltage = -self.max_voltage if negative_voltage <= -self.max_voltage else negative_voltage self.write_resistance(memristor, negative_voltage, 200e-9) if plot: action = 'reset' self.graph_voltages.append([negative_voltage, counter + start_len_v, action]) if counter_read == self.number_of_reading: flag_finish = not flag_finish if counter >= self.max_pulse: flag_finish = not flag_finish print('Got max pulse') if plot: self.graph_resistance.append([current_res, counter + start_len_res, action, flag_finish]) counter += 1 previous_res = current_res current_res = memristor.read() r_shift = abs(current_res - previous_res) if abs(current_res - previous_res) != 0 else 1 def fabien_convergence(self, memristor, target_res, plot=False): """ This function run the pulsed programming with a variable voltage to set the target_res for the memristor. From : https://iopscience.iop.org/article/10.1088/0957-4484/23/7/075201 Parameters ---------- memristor : Memristor The memristor object target_res : float The target resistance """ step = 0.005 positive_voltage = voltage_set = 0.5 negative_voltage = voltage_reset = -0.5 if self.is_relative_tolerance: res_max = target_res + self.tolerance * target_res / 100 res_min = target_res - self.tolerance * target_res / 100 else: res_max = target_res + self.tolerance res_min = target_res - self.tolerance start_len_res = len(self.graph_resistance) start_len_v = len(self.graph_voltages) counter = 0 action = 'read' flag_finish = False counter_read = 0 while not flag_finish: current_res = memristor.read() if res_min <= current_res <= res_max: counter_read += 1 if plot: action = 'read' self.graph_voltages.append([0.2, counter + start_len_v, action]) elif current_res < res_min: if self.max_voltage != 0: negative_voltage = -self.max_voltage if negative_voltage <= -self.max_voltage else negative_voltage self.write_resistance(memristor, negative_voltage, 200e-9) if plot: action = 'reset' self.graph_voltages.append([negative_voltage, counter + start_len_v, action]) negative_voltage -= step positive_voltage = voltage_set elif current_res > res_max: if self.max_voltage != 0: positive_voltage = self.max_voltage if positive_voltage >= self.max_voltage else positive_voltage self.write_resistance(memristor, positive_voltage, 200e-9) if plot: action = 'set' self.graph_voltages.append([positive_voltage, counter + start_len_v, action]) positive_voltage += step negative_voltage = voltage_reset if counter_read == self.number_of_reading: flag_finish = not flag_finish if counter >= self.max_pulse: flag_finish = not flag_finish print('Got max pulse') if plot: self.graph_resistance.append([current_res, counter + start_len_res, action, flag_finish]) # print(f'{self.graph_resistance[-1]}\t{self.graph_voltages[-1]}') counter += 1
43.672811
219
0.614013
18,908
0.997573
0
0
0
0
0
0
5,883
0.310383
e197f5d2fbd28b451da6017706229aff6b5fef77
462
py
Python
tests/test_push.py
associatedpress/datakit-dworld
21ccd0e468c7064d62022a2f136c0f8f47bbabb9
[ "ISC" ]
2
2019-09-07T02:03:46.000Z
2021-03-06T14:43:01.000Z
tests/test_push.py
associatedpress/datakit-dworld
21ccd0e468c7064d62022a2f136c0f8f47bbabb9
[ "ISC" ]
5
2019-09-06T22:24:26.000Z
2021-04-27T21:42:18.000Z
tests/test_push.py
associatedpress/datakit-dworld
21ccd0e468c7064d62022a2f136c0f8f47bbabb9
[ "ISC" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # from unittest import mock # from datakit_dworld.push import Push def test_push(capsys): """Sample pytest test function with a built-in pytest fixture as an argument. """ # cmd = Greeting(None, None, cmd_name='dworld push') # parsed_args = mock.Mock() # parsed_args.greeting = 'Hello world!' # cmd.run(parsed_args) # out, err = capsys.readouterr() # assert 'Hello world!' in out
25.666667
81
0.655844
0
0
0
0
0
0
0
0
396
0.857143
e19851b68758ad2c430ee4ac03534a5235c71909
1,742
py
Python
cool_filter.py
Andrea055/Imager
8463fb18253a97f0c93b11f36104881b7e003f41
[ "MIT" ]
7
2019-03-31T00:02:42.000Z
2022-01-30T00:30:46.000Z
cool_filter.py
Andrea055/Imager
8463fb18253a97f0c93b11f36104881b7e003f41
[ "MIT" ]
21
2018-11-29T14:35:08.000Z
2019-01-11T08:00:26.000Z
cool_filter.py
Andrea055/Imager
8463fb18253a97f0c93b11f36104881b7e003f41
[ "MIT" ]
17
2018-11-27T01:15:29.000Z
2019-12-29T19:41:30.000Z
import cv2 import numpy as np from scipy.interpolate import UnivariateSpline class Cool(object): """cool_filter --- This class will apply cool filter to an image by giving a sky blue effect to the input image. """ def __init__(self): # create look-up tables for increasing and decreasing red and blue resp. self.increaseChannel = self.LUT_8UC1([0, 64, 128, 192, 256], [0, 70, 140, 210, 256]) self.decreaseChannel = self.LUT_8UC1([0, 64, 128, 192, 256], [0, 30, 80, 120, 192]) def resize(self,image,window_height = 500): aspect_ratio = float(image.shape[1])/float(image.shape[0]) window_width = window_height/aspect_ratio image = cv2.resize(image, (int(window_height),int(window_width))) return image def render(self, img_rgb): img_rgb = cv2.imread(img_rgb) img_rgb = self.resize(img_rgb, 500) #cv2.imshow("Original", img_rgb) r,g,b = cv2.split(img_rgb) r = cv2.LUT(r, self.increaseChannel).astype(np.uint8) b = cv2.LUT(b, self.decreaseChannel).astype(np.uint8) img_rgb = cv2.merge((r,g,b)) # saturation decreased h,s,v = cv2.split(cv2.cvtColor(img_rgb, cv2.COLOR_RGB2HSV)) s = cv2.LUT(s, self.decreaseChannel).astype(np.uint8) return cv2.cvtColor(cv2.merge((h,s,v)), cv2.COLOR_HSV2RGB) def LUT_8UC1(self, x, y): #Create look-up table using scipy spline interpolation function spl = UnivariateSpline(x, y) return spl(range(256)) def start(self, img_path): tmp_canvas = Cool() #make a temporary object file_name = img_path #File_name will come here res = tmp_canvas.render(file_name) cv2.imwrite("Cool_version.jpg", res) cv2.imshow("Cool version", res) cv2.waitKey(0) cv2.destroyAllWindows() print("Image saved as 'Cool_version.jpg'")
32.259259
74
0.703215
1,663
0.95465
0
0
0
0
0
0
427
0.245121
e198e752d01863b4604a77f7225e25fec572d794
623
py
Python
src/evaluators/sample_evaluators/swd_sample_evaluator.py
gmum/cwae-pytorch
7fb31a5d12a0a637be7dde76f0e11e80ec4a345d
[ "MIT" ]
4
2020-08-20T20:51:24.000Z
2022-01-26T23:56:35.000Z
src/evaluators/sample_evaluators/swd_sample_evaluator.py
gmum/cwae-pytorch
7fb31a5d12a0a637be7dde76f0e11e80ec4a345d
[ "MIT" ]
null
null
null
src/evaluators/sample_evaluators/swd_sample_evaluator.py
gmum/cwae-pytorch
7fb31a5d12a0a637be7dde76f0e11e80ec4a345d
[ "MIT" ]
1
2021-12-24T14:13:40.000Z
2021-12-24T14:13:40.000Z
import torch from metrics.swd import sliced_wasserstein_distance from evaluators.sample_evaluators.base_sample_evaluator import BaseSampleEvaluator from noise_creator import NoiseCreator class SWDSampleEvaluator(BaseSampleEvaluator): def __init__(self, noise_creator: NoiseCreator): self.__noise_creator = noise_creator def evaluate(self, sample: torch.Tensor) -> torch.Tensor: comparision_sample = self.__noise_creator.create(sample.size(0)).type_as(sample) swd_penalty_value = sliced_wasserstein_distance(sample, comparision_sample, 50) return swd_penalty_value
38.9375
89
0.781701
426
0.683788
0
0
0
0
0
0
0
0
e199a6e60b58553046744ab0013002524ed3e824
473
py
Python
topic-db/topicdb/core/models/language.py
anthcp-infocom/Contextualise
0136660fcb965fd70fb4c7a33de7973a69ee9fec
[ "MIT" ]
184
2019-01-10T03:50:50.000Z
2022-03-31T19:45:16.000Z
topic-db/topicdb/core/models/language.py
anthcp-infocom/Contextualise
0136660fcb965fd70fb4c7a33de7973a69ee9fec
[ "MIT" ]
11
2019-04-07T07:39:11.000Z
2022-02-17T13:29:32.000Z
topic-db/topicdb/core/models/language.py
anthcp-infocom/Contextualise
0136660fcb965fd70fb4c7a33de7973a69ee9fec
[ "MIT" ]
9
2019-10-26T02:43:59.000Z
2021-11-03T00:49:10.000Z
""" Language enumeration. Part of the StoryTechnologies project. June 12, 2016 Brett Alistair Kromkamp (brett.kromkamp@gmail.com) """ from enum import Enum class Language(Enum): # https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes # https://en.wikipedia.org/wiki/ISO_639-2 ENG = 1 # English SPA = 2 # Spanish DEU = 3 # German ITA = 4 # Italian FRA = 5 # French NLD = 6 # Dutch def __str__(self): return self.name
18.92
60
0.64482
312
0.659619
0
0
0
0
0
0
280
0.591966
e199bdb1802d5fdf8365414f161e96d1a070a7b9
899
py
Python
utils/migrations/0002_alter_electricitybilling_unit_price_and_more.py
shumwe/rental-house-management-system
f97f22afa8bc2740ed08baa387c74b93e02fac0c
[ "MIT" ]
1
2022-03-16T13:29:30.000Z
2022-03-16T13:29:30.000Z
utils/migrations/0002_alter_electricitybilling_unit_price_and_more.py
shumwe/rental-house-management-system
f97f22afa8bc2740ed08baa387c74b93e02fac0c
[ "MIT" ]
null
null
null
utils/migrations/0002_alter_electricitybilling_unit_price_and_more.py
shumwe/rental-house-management-system
f97f22afa8bc2740ed08baa387c74b93e02fac0c
[ "MIT" ]
null
null
null
# Generated by Django 4.0.3 on 2022-04-02 17:24 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('utils', '0001_initial'), ] operations = [ migrations.AlterField( model_name='electricitybilling', name='unit_price', field=models.DecimalField(decimal_places=2, default=24.18, max_digits=9), ), migrations.AlterField( model_name='mpesaonline', name='update_status', field=models.CharField(choices=[('recieved', 'Recieved'), ('updated', 'Updated')], default='recieved', max_length=10), ), migrations.AlterField( model_name='waterbilling', name='unit_price', field=models.DecimalField(decimal_places=2, default=53.0, max_digits=9, verbose_name='Unit Price (KES)'), ), ]
31
130
0.604004
806
0.896552
0
0
0
0
0
0
220
0.244716
e19e2e064598322d4426a31b5e25a817d667c8db
13,017
py
Python
lemur/roles/views.py
pandragoq/lemur
4f289c790b6638be49dc6614045bcad01bebf7ba
[ "Apache-2.0" ]
null
null
null
lemur/roles/views.py
pandragoq/lemur
4f289c790b6638be49dc6614045bcad01bebf7ba
[ "Apache-2.0" ]
null
null
null
lemur/roles/views.py
pandragoq/lemur
4f289c790b6638be49dc6614045bcad01bebf7ba
[ "Apache-2.0" ]
null
null
null
""" .. module: lemur.roles.views :platform: Unix :copyright: (c) 2015 by Netflix Inc., see AUTHORS for more :license: Apache, see LICENSE for more details. .. moduleauthor:: Kevin Glisson <kglisson@netflix.com> """ from flask import Blueprint from flask import make_response, jsonify, abort, g from flask.ext.restful import reqparse, fields, Api from lemur.roles import service from lemur.auth.service import AuthenticatedResource from lemur.auth.permissions import ViewRoleCredentialsPermission, admin_permission from lemur.common.utils import marshal_items, paginated_parser mod = Blueprint('roles', __name__) api = Api(mod) FIELDS = { 'name': fields.String, 'description': fields.String, 'id': fields.Integer, } class RolesList(AuthenticatedResource): """ Defines the 'roles' endpoint """ def __init__(self): self.reqparse = reqparse.RequestParser() super(RolesList, self).__init__() @marshal_items(FIELDS) def get(self): """ .. http:get:: /roles The current role list **Example request**: .. sourcecode:: http GET /roles HTTP/1.1 Host: example.com Accept: application/json, text/javascript **Example response**: .. sourcecode:: http HTTP/1.1 200 OK Vary: Accept Content-Type: text/javascript { "items": [ { "id": 1, "name": "role1", "description": "this is role1" }, { "id": 2, "name": "role2", "description": "this is role2" } ] "total": 2 } :query sortBy: field to sort on :query sortDir: acs or desc :query page: int. default is 1 :query filter: key value pair. format is k=v; :query limit: limit number. default is 10 :reqheader Authorization: OAuth token to authenticate :statuscode 200: no error :statuscode 403: unauthenticated """ parser = paginated_parser.copy() parser.add_argument('owner', type=str, location='args') parser.add_argument('id', type=str, location='args') args = parser.parse_args() return service.render(args) @admin_permission.require(http_exception=403) @marshal_items(FIELDS) def post(self): """ .. http:post:: /roles Creates a new role **Example request**: .. sourcecode:: http POST /roles HTTP/1.1 Host: example.com Accept: application/json, text/javascript { "name": "role3", "description": "this is role3", "username": null, "password": null, "users": [] } **Example response**: .. sourcecode:: http HTTP/1.1 200 OK Vary: Accept Content-Type: text/javascript { "id": 3, "description": "this is role3", "name": "role3" } :arg name: name for new role :arg description: description for new role :arg password: password for new role :arg username: username for new role :arg users: list, of users to associate with role :reqheader Authorization: OAuth token to authenticate :statuscode 200: no error :statuscode 403: unauthenticated """ self.reqparse.add_argument('name', type=str, location='json', required=True) self.reqparse.add_argument('description', type=str, location='json') self.reqparse.add_argument('username', type=str, location='json') self.reqparse.add_argument('password', type=str, location='json') self.reqparse.add_argument('users', type=list, location='json') args = self.reqparse.parse_args() return service.create(args['name'], args.get('password'), args.get('description'), args.get('username'), args.get('users')) class RoleViewCredentials(AuthenticatedResource): def __init__(self): super(RoleViewCredentials, self).__init__() def get(self, role_id): """ .. http:get:: /roles/1/credentials View a roles credentials **Example request**: .. sourcecode:: http GET /users/1 HTTP/1.1 Host: example.com Accept: application/json, text/javascript **Example response**: .. sourcecode:: http HTTP/1.1 200 OK Vary: Accept Content-Type: text/javascript { "username: "ausername", "password": "apassword" } :reqheader Authorization: OAuth token to authenticate :statuscode 200: no error :statuscode 403: unauthenticated """ permission = ViewRoleCredentialsPermission(role_id) if permission.can(): role = service.get(role_id) response = make_response(jsonify(username=role.username, password=role.password), 200) response.headers['cache-control'] = 'private, max-age=0, no-cache, no-store' response.headers['pragma'] = 'no-cache' return response abort(403) class Roles(AuthenticatedResource): def __init__(self): self.reqparse = reqparse.RequestParser() super(Roles, self).__init__() @marshal_items(FIELDS) def get(self, role_id): """ .. http:get:: /roles/1 Get a particular role **Example request**: .. sourcecode:: http GET /roles/1 HTTP/1.1 Host: example.com Accept: application/json, text/javascript **Example response**: .. sourcecode:: http HTTP/1.1 200 OK Vary: Accept Content-Type: text/javascript { "id": 1, "name": "role1", "description": "this is role1" } :reqheader Authorization: OAuth token to authenticate :statuscode 200: no error :statuscode 403: unauthenticated """ # we want to make sure that we cannot view roles that we are not members of if not g.current_user.is_admin: user_role_ids = set([r.id for r in g.current_user.roles]) if role_id not in user_role_ids: return dict(message="You are not allowed to view a role which you are not a member of"), 400 return service.get(role_id) @marshal_items(FIELDS) def put(self, role_id): """ .. http:put:: /roles/1 Update a role **Example request**: .. sourcecode:: http PUT /roles/1 HTTP/1.1 Host: example.com Accept: application/json, text/javascript { "name": "role1", "description": "This is a new description" } **Example response**: .. sourcecode:: http HTTP/1.1 200 OK Vary: Accept Content-Type: text/javascript { "id": 1, "name": "role1", "description": "this is a new description" } :reqheader Authorization: OAuth token to authenticate :statuscode 200: no error :statuscode 403: unauthenticated """ permission = ViewRoleCredentialsPermission(role_id) if permission.can(): self.reqparse.add_argument('name', type=str, location='json', required=True) self.reqparse.add_argument('description', type=str, location='json') self.reqparse.add_argument('users', type=list, location='json') args = self.reqparse.parse_args() return service.update(role_id, args['name'], args.get('description'), args.get('users')) abort(403) @admin_permission.require(http_exception=403) def delete(self, role_id): """ .. http:delete:: /roles/1 Delete a role **Example request**: .. sourcecode:: http DELETE /roles/1 HTTP/1.1 Host: example.com Accept: application/json, text/javascript **Example response**: .. sourcecode:: http HTTP/1.1 200 OK Vary: Accept Content-Type: text/javascript { "message": "ok" } :reqheader Authorization: OAuth token to authenticate :statuscode 200: no error :statuscode 403: unauthenticated """ service.delete(role_id) return {'message': 'ok'} class UserRolesList(AuthenticatedResource): """ Defines the 'roles' endpoint """ def __init__(self): self.reqparse = reqparse.RequestParser() super(UserRolesList, self).__init__() @marshal_items(FIELDS) def get(self, user_id): """ .. http:get:: /users/1/roles List of roles for a given user **Example request**: .. sourcecode:: http GET /users/1/roles HTTP/1.1 Host: example.com Accept: application/json, text/javascript **Example response**: .. sourcecode:: http HTTP/1.1 200 OK Vary: Accept Content-Type: text/javascript { "items": [ { "id": 1, "name": "role1", "description": "this is role1" }, { "id": 2, "name": "role2", "description": "this is role2" } ] "total": 2 } :query sortBy: field to sort on :query sortDir: acs or desc :query page: int. default is 1 :query filter: key value pair. format is k=v; :query limit: limit number. default is 10 :reqheader Authorization: OAuth token to authenticate :statuscode 200: no error """ parser = paginated_parser.copy() args = parser.parse_args() args['user_id'] = user_id return service.render(args) class AuthorityRolesList(AuthenticatedResource): """ Defines the 'roles' endpoint """ def __init__(self): self.reqparse = reqparse.RequestParser() super(AuthorityRolesList, self).__init__() @marshal_items(FIELDS) def get(self, authority_id): """ .. http:get:: /authorities/1/roles List of roles for a given authority **Example request**: .. sourcecode:: http GET /authorities/1/roles HTTP/1.1 Host: example.com Accept: application/json, text/javascript **Example response**: .. sourcecode:: http HTTP/1.1 200 OK Vary: Accept Content-Type: text/javascript { "items": [ { "id": 1, "name": "role1", "description": "this is role1" }, { "id": 2, "name": "role2", "description": "this is role2" } ] "total": 2 } :query sortBy: field to sort on :query sortDir: acs or desc :query page: int. default is 1 :query filter: key value pair. format is k=v; :query limit: limit number. default is 10 :reqheader Authorization: OAuth token to authenticate :statuscode 200: no error """ parser = paginated_parser.copy() args = parser.parse_args() args['authority_id'] = authority_id return service.render(args) api.add_resource(RolesList, '/roles', endpoint='roles') api.add_resource(Roles, '/roles/<int:role_id>', endpoint='role') api.add_resource(RoleViewCredentials, '/roles/<int:role_id>/credentials', endpoint='roleCredentials`') api.add_resource(AuthorityRolesList, '/authorities/<int:authority_id>/roles', endpoint='authorityRoles') api.add_resource(UserRolesList, '/users/<int:user_id>/roles', endpoint='userRoles')
29.186099
112
0.520089
11,841
0.909657
0
0
9,744
0.74856
0
0
8,928
0.685872
e19e4bc332d90affe3ea70c17d43f480bce982e0
16,454
py
Python
backend/core/workspaces/dataView.py
makakken/roseguarden
9a867f3d5e979b990bf474dcba81e5e9d0814c6a
[ "MIT" ]
null
null
null
backend/core/workspaces/dataView.py
makakken/roseguarden
9a867f3d5e979b990bf474dcba81e5e9d0814c6a
[ "MIT" ]
50
2021-03-28T03:06:19.000Z
2021-10-18T12:36:16.000Z
backend/core/workspaces/dataView.py
makakken/roseguarden
9a867f3d5e979b990bf474dcba81e5e9d0814c6a
[ "MIT" ]
1
2021-07-30T07:12:46.000Z
2021-07-30T07:12:46.000Z
""" The roseguarden project Copyright (C) 2018-2020 Marcus Drobisch, This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ __authors__ = ["Marcus Drobisch"] __contact__ = "roseguarden@fabba.space" __credits__ = [] __license__ = "GPLv3" import copy from core.common.objDict import ObjDict class DataView(object): """Build up data-views """ disable = False requireLogin = True requirePermission = None # a permission is required in the meaning of one of the following def __init__(self, name=None, uri=None): self.description = 'UNKNOWN' if name is None: self.name = type(self).__name__ else: self.name = name if uri is None: self.uri = self.name else: self.uri = uri self.requireLogin = True self.properties = [] self.metadata = [] self.dataAction = {} self.dataUpdateHandler = {} self.dataUpdates = [] self.dataSyncs = [] self.entrykey = None self.entrytype = None self.entryPropList = {} self.metaDataList = {} def createMeta(self): return ObjDict(self.metaDataList.copy()) def addMailMeta(self, name, label="", group=None, description=""): meta = {'name': name, 'label': label, 'type': 'email'} self.metaDataList[name] = None self.metadata.append(meta) def addStringMeta(self, name, label="", group=None, description=""): meta = {'name': name, 'label': label, 'type': 'string'} self.metaDataList[name] = None self.metadata.append(meta) def addIntegerMeta(self, name, label="", group=None, description=""): meta = {'name': name, 'label': label, 'type': 'integer'} self.metaDataList[name] = None self.metadata.append(meta) def addDoubleMeta(self, name, label="", group=None, description=""): meta = {'name': name, 'label': label, 'type': 'double'} self.metaDataList[name] = None self.metadata.append(meta) def addBooleanMeta(self, name, label="", group=None, description=""): meta = {'name': name, 'label': label, 'type': 'boolean'} self.metaDataList[name] = None self.metadata.append(meta) def addTimeMeta(self, name, label="", group=None, description=""): meta = {'name': name, 'label': label, 'type': 'time'} self.metaDataList[name] = None self.metadata.append(meta) def addDateMeta(self, name, label="", group=None, description=""): meta = {'name': name, 'label': label, 'type': 'date'} self.metaDataList[name] = None self.metadata.append(meta) def addDatetimeMeta(self, name, label="", group=None, description=""): meta = {'name': name, 'label': label, 'type': 'datetime'} self.metaDataList[name] = None self.metadata.append(meta) def createEntry(self): return ObjDict(self.entryPropList.copy()) def getProperties(self): properties = [] for p in self.properties: pn = copy.copy(p) if pn['type'] == 'multiselect' or pn['type'] == 'select': try: if callable(p['selection']): pn['selection'] = p['selection']() else: pn['selection'] = p['selection'] except Exception as e: raise e properties.append(pn) return properties def addMailProperty(self, name, label="", group=None, updateHandler=None, isKey=False, readOnly=True, description=""): prop = {'name': name, 'label': label, 'type': 'email'} if isKey is True: prop['isKey'] = True if self.entrykey is not None: raise KeyError("DataView '{}' already have a key ({}) and cant be overridden with {}".format( self.name, self.entrykey, name)) self.entrykey = name prop['readOnly'] = readOnly prop['group'] = group prop['description'] = description self.dataUpdateHandler[str(name)] = updateHandler self.properties.append(prop) self.entryPropList[name] = None def addStringProperty(self, name, label="", group=None, updateHandler=None, isKey=False, readOnly=True, description="", hide=False): prop = {'name': name, 'label': label, 'type': 'string'} if isKey is True: prop['isKey'] = True if self.entrykey is not None: raise KeyError("DataView '{}' already have a key ({}) and cant be overridden with {}".format( self.name, self.entrykey, name)) self.entrykey = name prop['readOnly'] = readOnly prop['group'] = group prop['hide'] = hide prop['description'] = description self.dataUpdateHandler[str(name)] = updateHandler self.properties.append(prop) self.entryPropList[name] = None def addDoubleProperty(self, name, label="", group=None, updateHandler=None, isKey=False, readOnly=True, description=""): prop = {'name': name, 'label': label, 'type': 'double'} if isKey is True: prop['isKey'] = True if self.entrykey is not None: raise KeyError("DataView '{}' already have a key ({}) and cant be overridden with {}".format( self.name, self.entrykey, name)) self.entrykey = name prop['readOnly'] = readOnly prop['group'] = group prop['description'] = description self.dataUpdateHandler[str(name)] = updateHandler self.properties.append(prop) self.entryPropList[name] = None def addIntegerProperty(self, name, label="", group=None, updateHandler=None, isKey=False, readOnly=True, description="", hide=False): prop = {'name': name, 'label': label, 'type': 'integer'} if isKey is True: prop['isKey'] = True if self.entrykey is not None: raise KeyError("DataView '{}' already have a key ({}) and cant be overridden with {}".format( self.name, self.entrykey, name)) self.entrykey = name prop['hide'] = hide prop['readOnly'] = readOnly prop['group'] = group prop['description'] = description self.dataUpdateHandler[str(name)] = updateHandler self.properties.append(prop) self.entryPropList[name] = None def addDatetimeProperty(self, name, label="", group=None, updateHandler=None, isKey=False, readOnly=True, description=""): prop = {'name': name, 'label': label, 'type': 'datetime'} if isKey is True: prop['isKey'] = True if self.entrykey is not None: raise KeyError("DataView '{}' already have a key ({}) and cant be overridden with {}".format( self.name, self.entrykey, name)) self.entrykey = name prop['readOnly'] = readOnly prop['group'] = group prop['description'] = description self.dataUpdateHandler[str(name)] = updateHandler self.properties.append(prop) self.entryPropList[name] = None def addTimeProperty(self, name, label="", group=None, updateHandler=None, isKey=False, readOnly=True, description=""): prop = {'name': name, 'label': label, 'type': 'time'} if isKey is True: prop['isKey'] = True if self.entrykey is not None: raise KeyError("DataView '{}' already have a key ({}) and cant be overridden with {}".format( self.name, self.entrykey, name)) self.entrykey = name prop['readOnly'] = readOnly prop['group'] = group prop['description'] = description self.dataUpdateHandler[str(name)] = updateHandler self.properties.append(prop) self.entryPropList[name] = None def addDateProperty(self, name, label="", group=None, updateHandler=None, isKey=False, readOnly=True, description=""): prop = {'name': name, 'label': label, 'type': 'date'} if isKey is True: prop['isKey'] = True if self.entrykey is not None: raise KeyError("DataView '{}' already have a key ({}) and cant be overridden with {}".format( self.name, self.entrykey, name)) self.entrykey = name prop['readOnly'] = readOnly prop['group'] = group prop['description'] = description self.dataUpdateHandler[str(name)] = updateHandler self.properties.append(prop) self.entryPropList[name] = None def addBooleanProperty(self, name, label="", group=None, updateHandler=None, isKey=False, readOnly=True, description="", hide=False): prop = {'name': name, 'label': label, 'type': 'boolean'} if isKey is True: prop['isKey'] = True if self.entrykey is not None: raise KeyError("DataView '{}' already have a key ({}) and cant be overridden with {}".format( self.name, self.entrykey, name)) self.entrykey = name prop['readOnly'] = readOnly prop['group'] = group prop['hide'] = hide prop['description'] = description self.dataUpdateHandler[str(name)] = updateHandler self.properties.append(prop) self.entryPropList[name] = None def addSelectProperty(self, name, selectables, label="", group=None, updateHandler=None, isKey=False, readOnly=True, description=""): prop = {'name': name, 'label': label, 'type': 'select'} if isKey is True: prop['isKey'] = True if self.entrykey is not None: raise KeyError("DataView '{}' already have a key ({}) and cant be overridden with {}".format( self.name, self.entrykey, name)) self.entrykey = name prop['readOnly'] = readOnly prop['selection'] = selectables prop['group'] = group prop['description'] = description self.dataUpdateHandler[str(name)] = updateHandler self.properties.append(prop) self.entryPropList[name] = None def addMultiSelectProperty(self, name, selectables, label="", group=None, updateHandler=None, isKey=False, readOnly=True, description=""): prop = {'name': name, 'label': label, 'type': 'multiselect'} if isKey is True: prop['isKey'] = True if self.entrykey is not None: raise KeyError("DataView '{}' already have a key ({}) and cant be overridden with {}".format( self.name, self.entrykey, name)) self.entrykey = name prop['readOnly'] = readOnly prop['selection'] = selectables prop['group'] = group prop['description'] = description self.dataUpdateHandler[str(name)] = updateHandler self.properties.append(prop) self.entryPropList[name] = None def addActionProperty(self, name, label, action, icon, actionHandler=None, isKey=False, readOnly=True, color='red', description=""): prop = {'name': name, 'label': label, 'type': 'action'} prop['isKey'] = False prop['icon'] = icon prop['color'] = color prop['action'] = action prop['description'] = description self.dataAction[str(action)] = actionHandler self.properties.append(prop) self.entryPropList[name] = None def addRemoveEntryOption(self, name, label): prop = {'name': name, 'label': label, 'type': 'remove'} prop['isKey'] = False prop['icon'] = 'delete' self.properties.append(prop) def emitUpdate(self, key, property, value): self.dataUpdates.append({'key': key, 'property': property, 'value': value, 'view': self.uri}) def emitSyncUpdate(self, key, view=None, workspace=None): if view is None: view = self.uri self.dataSyncs.append({'type': 'update', 'key': key, 'view': view, 'workspace': workspace}) def emitSyncRemove(self, key, view=None, workspace=None): if view is None: view = self.uri self.dataSyncs.append({'type': 'remove', 'key': key, 'view': view, 'workspace': workspace}) def emitSyncCreate(self, key, view=None, workspace=None): if view is None: view = self.name self.dataSyncs.append({'type': 'create', 'key': key, 'view': view, 'workspace': workspace}) # Handler for getting the freshly build view def getViewHandler(self, user, workspace, query=None): raise NotImplementedError # Handler for getting the views meta-data def getViewMetaHandler(self, user, workspace): return {} # Handler for a request to create a new view entry def createViewEntryHandler(self, user, workspace): raise NotImplementedError # Handler for a request to remove a view entry def removeViewEntryHandler(self, user, workspace, key): raise NotImplementedError # Handler for a request to update a single view entry def updateViewEntryHandler(self, user, workspace, key, entry): raise NotImplementedError # Handler for view actions def executeViewActionHandler(self, user, workspace, action): try: return self.dataAction[action.viewAction](user, workspace, action, action.entry[self.entrykey]) except Exception: return self.dataAction[action.viewAction](user, workspace, action.entry[self.entrykey]) def defineProperties(self): pass def defineMetadata(self): pass
38.533958
109
0.521454
15,599
0.948037
0
0
0
0
0
0
3,115
0.189316
e19eb98e8bf34e916a97b5b0db5e158713913cb4
3,892
py
Python
demo/video_gpuaccel_demo.py
chenxinfeng4/mmdetection
a99a1aaa5e4a7614f2f89f2350e1b917b2a8ca7e
[ "Apache-2.0" ]
1
2021-12-10T15:08:22.000Z
2021-12-10T15:08:22.000Z
demo/video_gpuaccel_demo.py
q3394101/mmdetection
ca11860f4f3c3ca2ce8340e2686eeaec05b29111
[ "Apache-2.0" ]
null
null
null
demo/video_gpuaccel_demo.py
q3394101/mmdetection
ca11860f4f3c3ca2ce8340e2686eeaec05b29111
[ "Apache-2.0" ]
null
null
null
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv import numpy as np import torch from torchvision.transforms import functional as F from mmdet.apis import init_detector from mmdet.datasets.pipelines import Compose try: import ffmpegcv except ImportError: raise ImportError( 'Please install ffmpegcv with:\n\n pip install ffmpegcv') def parse_args(): parser = argparse.ArgumentParser( description='MMDetection video demo with GPU acceleration') parser.add_argument('video', help='Video file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument('--out', type=str, help='Output video file') parser.add_argument('--show', action='store_true', help='Show video') parser.add_argument( '--nvdecode', action='store_true', help='Use NVIDIA decoder') parser.add_argument( '--wait-time', type=float, default=1, help='The interval of show (s), 0 is block') args = parser.parse_args() return args def prefetch_img_metas(cfg, ori_wh): w, h = ori_wh cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' test_pipeline = Compose(cfg.data.test.pipeline) data = {'img': np.zeros((h, w, 3), dtype=np.uint8)} data = test_pipeline(data) img_metas = data['img_metas'][0].data return img_metas def process_img(frame_resize, img_metas, device): assert frame_resize.shape == img_metas['pad_shape'] frame_cuda = torch.from_numpy(frame_resize).to(device).float() frame_cuda = frame_cuda.permute(2, 0, 1) # HWC to CHW mean = torch.from_numpy(img_metas['img_norm_cfg']['mean']).to(device) std = torch.from_numpy(img_metas['img_norm_cfg']['std']).to(device) frame_cuda = F.normalize(frame_cuda, mean=mean, std=std, inplace=True) frame_cuda = frame_cuda[None, :, :, :] # NCHW data = {'img': [frame_cuda], 'img_metas': [[img_metas]]} return data def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save/show the ' 'video) with the argument "--out" or "--show"') model = init_detector(args.config, args.checkpoint, device=args.device) if args.nvdecode: VideoCapture = ffmpegcv.VideoCaptureNV else: VideoCapture = ffmpegcv.VideoCapture video_origin = VideoCapture(args.video) img_metas = prefetch_img_metas(model.cfg, (video_origin.width, video_origin.height)) resize_wh = img_metas['pad_shape'][1::-1] video_resize = VideoCapture( args.video, resize=resize_wh, resize_keepratio=True, resize_keepratioalign='topleft', pix_fmt='rgb24') video_writer = None if args.out: video_writer = ffmpegcv.VideoWriter(args.out, fps=video_origin.fps) with torch.no_grad(): for frame_resize, frame_origin in zip( mmcv.track_iter_progress(video_resize), video_origin): data = process_img(frame_resize, img_metas, args.device) result = model(return_loss=False, rescale=True, **data)[0] frame_mask = model.show_result( frame_origin, result, score_thr=args.score_thr) if args.show: cv2.namedWindow('video', 0) mmcv.imshow(frame_mask, 'video', args.wait_time) if args.out: video_writer.write(frame_mask) if video_writer: video_writer.release() video_origin.release() video_resize.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
34.140351
77
0.659044
0
0
0
0
0
0
0
0
727
0.186793
e1a102da5af50dd136ac3eab04d096bc659e8951
1,234
py
Python
scripts/benchmark_1_rdomset.py
bluegenes/spacegraphcats
35f8057068e4fe79ab83ac4efe91d1b0f389e1ea
[ "BSD-3-Clause" ]
null
null
null
scripts/benchmark_1_rdomset.py
bluegenes/spacegraphcats
35f8057068e4fe79ab83ac4efe91d1b0f389e1ea
[ "BSD-3-Clause" ]
null
null
null
scripts/benchmark_1_rdomset.py
bluegenes/spacegraphcats
35f8057068e4fe79ab83ac4efe91d1b0f389e1ea
[ "BSD-3-Clause" ]
null
null
null
#! /usr/bin/env python """ Benchmark the rdomset (catlas level 1) algorithm, without I/O considerations. """ import sys, os # add spacegraphcats package to import path: sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..')) import spacegraphcats from spacegraphcats.catlas import catlas import argparse import sys import time def main(): parser = argparse.ArgumentParser() parser.add_argument("project", help="Project directory", type=str) parser.add_argument("radius", help="Catlas radius", type=int) parser.add_argument("-o", "--output", type=str) args = parser.parse_args() proj = catlas.Project(args.project, args.radius, False) # load the graph proj.load_furthest_checkpoint() nodes_in_layer_0 = len(proj.graph) # build the first layer only, for rdomset benchmarking. start = time.time() catlas.CAtlas.build(proj, benchmark_only=True) end = time.time() outfp = sys.stdout if args.output: outfp = open(args.output, 'at') print("{},{},{:.1f},{},rdomset".format(nodes_in_layer_0, args.radius, end - start, args.project), file=outfp) if __name__ == '__main__': sys.exit(main())
28.697674
77
0.658833
0
0
0
0
0
0
0
0
330
0.267423
e1a1374935fa7cc8ec68a7212a8ba5b8c016fac8
2,107
py
Python
pyob/mixins/pyob_set_label.py
khunspoonzi/pyob
b1b134b708585add15d04fa75001f3364f31dd74
[ "MIT" ]
null
null
null
pyob/mixins/pyob_set_label.py
khunspoonzi/pyob
b1b134b708585add15d04fa75001f3364f31dd74
[ "MIT" ]
null
null
null
pyob/mixins/pyob_set_label.py
khunspoonzi/pyob
b1b134b708585add15d04fa75001f3364f31dd74
[ "MIT" ]
null
null
null
# ┌───────────────────────────────────────────────────────────────────────────────────── # │ PYOB SET LABEL MIXIN # └───────────────────────────────────────────────────────────────────────────────────── class PyObSetLabelMixin: """A mixin class for PyOb set label methods""" # ┌───────────────────────────────────────────────────────────────────────────────── # │ LABEL SINGULAR # └───────────────────────────────────────────────────────────────────────────────── @property def label_singular(self): """Returns a singular label for the PyOb set""" # Determine if PyOb set is mixed is_mixed = self.count() > 1 and self._PyObClass is None # Get PyOb label ob_label = "Mixed" if is_mixed else self.ob_label_singular # Return singular label return self.__class__.__name__.replace("Ob", ob_label + " ") # ┌───────────────────────────────────────────────────────────────────────────────── # │ LABEL PLURAL # └───────────────────────────────────────────────────────────────────────────────── @property def label_plural(self): """Returns a plural label for the PyOb set""" # Return plural label return self.label_singular + "s" # ┌───────────────────────────────────────────────────────────────────────────────── # │ OB LABEL SINGULAR # └───────────────────────────────────────────────────────────────────────────────── @property def ob_label_singular(self): """Returns a singular label based on related PyOb if any""" # Return singular label return (self._PyObClass and self._PyObClass.label_singular) or "Ob" # ┌───────────────────────────────────────────────────────────────────────────────── # │ OB LABEL PLURAL # └───────────────────────────────────────────────────────────────────────────────── @property def ob_label_plural(self): """Returns a plural label based on related object if any""" # Return plural label return (self._PyObClass and self._PyObClass.label_plural) or "Obs"
36.327586
88
0.366398
3,221
0.853697
0
0
992
0.262921
0
0
3,030
0.803074
e1a2f60719c963dbaf1979085fd5c1225ad3b6d9
1,547
py
Python
proto/twowfuck.py
hanss314/twowfuck
43d4f7b8c9f6b1e547f57d0c56b1db2972393c1e
[ "Unlicense" ]
null
null
null
proto/twowfuck.py
hanss314/twowfuck
43d4f7b8c9f6b1e547f57d0c56b1db2972393c1e
[ "Unlicense" ]
null
null
null
proto/twowfuck.py
hanss314/twowfuck
43d4f7b8c9f6b1e547f57d0c56b1db2972393c1e
[ "Unlicense" ]
null
null
null
import time from hashlib import sha1 class InfArray(): def __init__(self): self.left = [0]*16 self.right = [0]*16 def getarr(self, ind): arr = self.right if ind < 0: arr, ind = self.left, -ind-1 if ind >= len(arr): arr.extend([0]* (key - len(arr) + 10)) return arr, ind def __getitem__(self, key): arr, key = self.getarr(key) return arr[key] def __setitem__(self, key, item): arr, key = self.getarr(key) arr[key] = item def __str__(self): return ' '.join(map(str, reversed(self.left))) + ' ' + ' '.join(map(str, self.right)) def interpreter(prog: str, inp: str): arr = InfArray() mptr = 0 pptr = 0 iptr = 0 start = time.time() while pptr < len(prog) and time.time() - start <= 10*60: c = ord(prog[pptr]) % 6 if c == 0: mptr -= 1 elif c == 1: mptr += 1 elif c == 2: arr[mptr] += 1 elif c == 3: arr[mptr] -= 1 elif c == 4: arr[mptr] = ord(inp[iptr]) iptr = (iptr + 1) % len(inp) elif arr[mptr] == 0: pptr = pptr + 2 else: if len(prog) - pptr <= 2: unhashed = prog[pptr+1:] else: unhashed = prog[pptr+1:pptr+3] pptr = int(sha1(unhashed.encode('utf8')).hexdigest(), 16) % len(prog) - 1 pptr = pptr + 1 return pptr < len(prog), str(arr) def test_all(progs, inp): for prog in progs: nohalt, tape = interpreter(prog, inp) printf('f {nohalt} {prog} {tape}')
28.127273
93
0.513251
599
0.387201
0
0
0
0
0
0
41
0.026503
e1a32855943669310a5b6aeb210eb2e39273f98a
5,915
py
Python
simba/process_data_log.py
justinshenk/simba
a58ccd0ceeda201c1452d186033ce6b25fbab564
[ "MIT" ]
1
2021-12-15T07:30:33.000Z
2021-12-15T07:30:33.000Z
simba/process_data_log.py
justinshenk/simba
a58ccd0ceeda201c1452d186033ce6b25fbab564
[ "MIT" ]
null
null
null
simba/process_data_log.py
justinshenk/simba
a58ccd0ceeda201c1452d186033ce6b25fbab564
[ "MIT" ]
1
2021-11-14T09:15:30.000Z
2021-11-14T09:15:30.000Z
import pandas as pd import os from configparser import ConfigParser, NoSectionError, NoOptionError from datetime import datetime import numpy as np import glob from simba.rw_dfs import * def analyze_process_data_log(configini,chosenlist): dateTime = datetime.now().strftime('%Y%m%d%H%M%S') config = ConfigParser() configFile = str(configini) config.read(configFile) projectPath = config.get('General settings', 'project_path') csv_dir_in = os.path.join(projectPath, 'csv', 'machine_results') no_targets = config.getint('SML settings', 'No_targets') filesFound, target_names = [], [] try: wfileType = config.get('General settings', 'workflow_file_type') except NoOptionError: wfileType = 'csv' vidinfDf = pd.read_csv(os.path.join(projectPath, 'logs', 'video_info.csv')) loop, videoCounter = 0, 0 filesFound = glob.glob(csv_dir_in + '/*.' + wfileType) ########### GET TARGET COLUMN NAMES ########### for ff in range(no_targets): currentModelNames = 'target_name_' + str(ff+1) currentModelNames = config.get('SML settings', currentModelNames) target_names.append(currentModelNames) print('Analyzing ' + str(len(target_names)) + ' classifier result(s) in ' + str(len(filesFound)) + ' video file(s).') ########### logfile path ########### log_fn = 'sklearn_' + str(dateTime) + '.csv' log_fn = os.path.join(projectPath, 'logs', log_fn) headers = ['Video'] headers_to_insert = [' # bout events', ' total events duration (s)', ' mean bout duration (s)', ' median bout duration (s)', ' first occurance (s)', ' mean interval (s)', ' median interval (s)'] for headerVar in headers_to_insert: for target in target_names: currHead = str(target) + headerVar headers.extend([currHead]) log_df = pd.DataFrame(columns=headers) for currentFile in filesFound: videoCounter += 1 currVidName = os.path.basename(currentFile).replace('.' + wfileType, '') fps = vidinfDf.loc[vidinfDf['Video'] == currVidName] try: fps = int(fps['fps']) except TypeError: print('Error: make sure all the videos that are going to be analyzed are represented in the project_folder/logs/video_info.csv file') print('Analyzing video ' + str(videoCounter) + '/' + str(len(filesFound)) + '...') dataDf = read_df(currentFile, wfileType) boutsList, nameList, startTimeList, endTimeList = [], [], [], [] for currTarget in target_names: groupDf = pd.DataFrame() v = (dataDf[currTarget] != dataDf[currTarget].shift()).cumsum() u = dataDf.groupby(v)[currTarget].agg(['all', 'count']) m = u['all'] & u['count'].ge(1) groupDf['groups'] = dataDf.groupby(v).apply(lambda x: (x.index[0], x.index[-1]))[m] for indexes, rows in groupDf.iterrows(): currBout = list(rows['groups']) boutTime = ((currBout[-1] - currBout[0]) + 1) / fps startTime = (currBout[0] + 1) / fps endTime = (currBout[1]) / fps endTimeList.append(endTime) startTimeList.append(startTime) boutsList.append(boutTime) nameList.append(currTarget) boutsDf = pd.DataFrame(list(zip(nameList, startTimeList, endTimeList, boutsList)), columns=['Event', 'Start Time', 'End Time', 'Duration']) boutsDf['Shifted start'] = boutsDf['Start Time'].shift(-1) boutsDf['Interval duration'] = boutsDf['Shifted start'] - boutsDf['End Time'] firstOccurList, eventNOsList, TotEventDurList, MeanEventDurList, MedianEventDurList, TotEventDurList, meanIntervalList, medianIntervalList = [], [], [], [], [], [], [], [] for targets in target_names: currDf = boutsDf.loc[boutsDf['Event'] == targets] try: firstOccurList.append(round(currDf['Start Time'].min(), 3)) except IndexError: firstOccurList.append(0) eventNOsList.append(len(currDf)) TotEventDurList.append(round(currDf['Duration'].sum(), 3)) try: if len(currDf) > 1: intervalDf = currDf[:-1].copy() meanIntervalList.append(round(intervalDf['Interval duration'].mean(), 3)) medianIntervalList.append(round(intervalDf['Interval duration'].median(), 3)) else: meanIntervalList.append(0) medianIntervalList.append(0) except ZeroDivisionError: meanIntervalList.append(0) medianIntervalList.append(0) try: MeanEventDurList.append(round(currDf["Duration"].mean(), 3)) MedianEventDurList.append(round(currDf['Duration'].median(), 3)) except ZeroDivisionError: MeanEventDurList.append(0) MedianEventDurList.append(0) currentVidList = [currVidName] + eventNOsList + TotEventDurList + MeanEventDurList + MedianEventDurList + firstOccurList + meanIntervalList + medianIntervalList log_df.loc[loop] = currentVidList loop += 1 print('File # processed for machine predictions: ' + str(loop) + '/' + str(len(filesFound))) log_df.fillna(0, inplace=True) log_df.replace(0, np.NaN) # drop columns not chosen for target in target_names: for col2drop in chosenlist: currCol = target + ' ' + col2drop print(currCol) log_df = log_df.drop(currCol, 1) print(log_df.columns) log_df.to_csv(log_fn, index=False) print('All files processed for machine predictions: data file saved @' + str(log_fn))
49.291667
200
0.598478
0
0
0
0
0
0
0
0
1,068
0.180558
e1a33e79602cf7d5b3c579918699d4ae4a866f09
3,812
py
Python
SphinxReportPlugins/MatplotlibPlugin/__init__.py
Tim-HU/sphinx-report
3a0dc225e594c4b2083dff7a93b6d77054256416
[ "BSD-2-Clause" ]
1
2020-04-10T12:48:40.000Z
2020-04-10T12:48:40.000Z
SphinxReportPlugins/MatplotlibPlugin/__init__.py
Tim-HU/sphinx-report
3a0dc225e594c4b2083dff7a93b6d77054256416
[ "BSD-2-Clause" ]
null
null
null
SphinxReportPlugins/MatplotlibPlugin/__init__.py
Tim-HU/sphinx-report
3a0dc225e594c4b2083dff7a93b6d77054256416
[ "BSD-2-Clause" ]
null
null
null
import os import re import warnings import matplotlib import matplotlib.pyplot as plt import matplotlib.image as image from matplotlib import _pylab_helpers from matplotlib.cbook import exception_to_str import seaborn from SphinxReport.Component import * from SphinxReport import Config, Utils class MatplotlibPlugin(Component): capabilities = ['collect'] def __init__(self, *args, **kwargs): Component.__init__(self,*args,**kwargs) plt.close('all') # matplotlib.rcdefaults() # set a figure size that doesn't overflow typical browser windows matplotlib.rcParams['figure.figsize'] = (5.5, 4.5) def collect( self, blocks, template_name, outdir, rstdir, builddir, srcdir, content, display_options, tracker_id, links = {} ): '''collect one or more matplotlib figures and 1. save as png, hires-png and pdf 2. save thumbnail 3. insert rendering code at placeholders in output returns a map of place holder to placeholder text. ''' fig_managers = _pylab_helpers.Gcf.get_all_fig_managers() map_figure2text = {} # determine the image formats to create default_format, additional_formats = Utils.getImageFormats( display_options ) all_formats = [default_format,] + additional_formats # create all the images for figman in fig_managers: # create all images figid = figman.num outname = "%s_%02d" % (template_name, figid) for id, format, dpi in all_formats: outpath = os.path.join(outdir, '%s.%s' % (outname, format)) try: figman.canvas.figure.savefig( outpath, dpi=dpi ) except: s = Utils.collectExceptionAsString("Exception running plot %s" % outpath) warnings.warn(s) return [] # if format=='png': # thumbdir = os.path.join(outdir, 'thumbnails') # try: # os.makedirs(thumbdir) # except OSError: # pass # thumbfile = str('%s.png' % os.path.join(thumbdir, outname) ) # captionfile = str('%s.txt' % os.path.join(thumbdir, outname) ) # if not os.path.exists(thumbfile): # # thumbnail only available in matplotlib >= 0.98.4 # try: # figthumb = image.thumbnail(str(outpath), str(thumbfile), scale=0.3) # except AttributeError: # pass # outfile = open(captionfile,"w") # outfile.write( "\n".join( content ) + "\n" ) # outfile.close() # create the text element rst_output = Utils.buildRstWithImage( outname, outdir, rstdir, builddir, srcdir, additional_formats, tracker_id, links, display_options, default_format) map_figure2text[ "#$mpl %i$#" % figid] = rst_output return map_figure2text
35.626168
97
0.471144
3,513
0.921563
0
0
0
0
0
0
1,167
0.306139
e1a3af379a95b5a4e4e2ab062711e4da48ff07ad
4,358
py
Python
nips2018/utils/plotting.py
kovacspe/Sinz2018_NIPS
c0aad625e516bed57f3ee52b39195c8817527d66
[ "MIT" ]
5
2018-10-30T05:39:11.000Z
2021-03-20T12:00:25.000Z
nips2018/utils/plotting.py
kovacspe/Sinz2018_NIPS
c0aad625e516bed57f3ee52b39195c8817527d66
[ "MIT" ]
null
null
null
nips2018/utils/plotting.py
kovacspe/Sinz2018_NIPS
c0aad625e516bed57f3ee52b39195c8817527d66
[ "MIT" ]
5
2019-03-08T13:48:39.000Z
2020-10-04T13:27:56.000Z
import cv2 import imageio import numpy as np import matplotlib.pyplot as plt from itertools import product, zip_longest import seaborn as sns def grouper(n, iterable, fillvalue=None): args = [iter(iterable)] * n return zip_longest(fillvalue=fillvalue, *args) def rename(rel, prefix='new_', exclude=[]): attrs = list(rel.heading.attributes.keys()) original = [x for x in attrs if x not in exclude] keys = [k for k in exclude if k in attrs] name_map = {prefix+x: x for x in original} return rel.proj(*keys, **name_map) def plot_images(df, prefixes, names=None, brain_area='V1', n_rows=15, order_by='pearson', panels=('normed_rf', 'normed_mei'), panel_names=('RF', 'MEI'), cmaps=('coolwarm', 'gray'), y_infos=('{prefix}test_corr', 'pearson'), save_path=None): if names is None: names = prefixes f = (df['brain_area'] == brain_area) area_data = df[f] area_data = area_data.sort_values(order_by, ascending=False) n_rows = min(n_rows, len(area_data)) n_panels = len(panels) cols = len(prefixes) * n_panels; with sns.axes_style('white'): fig, axs = plt.subplots(n_rows, cols, figsize=(4 * cols, round(2 * n_cells))) st = fig.suptitle('MEIs on Shuffled {} dataset: {}'.format(brain_area, ', '.join(names))) [ax.set_xticks([]) for ax in axs.ravel()] [ax.set_yticks([]) for ax in axs.ravel()] for ax_row, (_, data_row), row_index in zip(axs, area_data.iterrows(), count()): for ax_group, prefix, name in zip(grouper(n_panels, ax_row), prefixes, names): for ax, panel, panel_name, y_info, cm in zip(ax_group, panels, panel_names, y_infos, cmaps): if row_index == 0: ax.set_title('{}: {}'.format(panel_name, name)) ax.imshow(data_row[prefix + panel].squeeze(), cmap=cm) if y_info is not None: ax.set_ylabel('{:0.2f}%'.format(data_row[y_info.format(prefix=prefix)] * 100)) fig.tight_layout() # shift subplots down: st.set_y(0.98) st.set_fontsize(20) fig.subplots_adjust(top=0.95) if path is not None: fig.savefig(save_path) def gen_gif(images, output_path, duration=5, scale=1, adj_single=False): h, w = images[0].shape imgsize = (w * scale, h * scale) images = np.stack([cv2.resize(img, imgsize) for img in images]) axis = (1, 2) if adj_single else None images = images - images.min(axis=axis, keepdims=True) images = images / images.max(axis=axis, keepdims=True) * 255 images = images.astype('uint8') single_duration = duration / len(images) if not output_path.endswith('.gif'): output_path += '.gif' imageio.mimsave(output_path, images, duration=single_duration) def rescale_images(images, low=0, high=1, together=True): axis = None if together else (1, 2) images = images - images.min(axis=axis, keepdims=True) images = images / images.max(axis=axis, keepdims=True) * (high - low) + low return images def scale_imagesize(images, scale=(2, 2)): h, w = images[0].shape imgsize = (w * scale[1], h * scale[0]) return np.stack([cv2.resize(img, imgsize) for img in images]) def tile_images(images, rows, cols, vpad=0, hpad=0, normalize=False, base=0): n_images = len(images) assert rows * cols >= n_images h, w = images[0].shape total_image = np.zeros((h + (h + vpad) * (rows - 1), w + (w + hpad) * (cols - 1))) + base loc = product(range(rows), range(cols)) for img, (i, j) in zip(images, loc): if normalize: img = rescale_images(img) voffset, hoffset = (h + vpad) * i, (w + hpad) * j total_image[voffset:voffset + h, hoffset:hoffset + w] = img return total_image def repeat_frame(images, frame_pos=0, rep=4): parts = [] if frame_pos < 0: frame_pos = len(images) + frame_pos if frame_pos > 0: parts.append(images[:frame_pos]) parts.append(np.tile(images[frame_pos], (rep, 1, 1))) if frame_pos < len(images) - 1: parts.append(images[frame_pos+1:]) return np.concatenate(parts) def add_text(image, text, pos, fontsize=1, color=(0, 0, 0)): image = image.copy() font = cv2.FONT_HERSHEY_PLAIN cv2.putText(image, text, pos, font, fontsize, color, 1, cv2.LINE_8) return image
36.932203
106
0.630564
0
0
0
0
0
0
0
0
210
0.048187
e1a3e676ffda7283905e72fd2a219c469d9b17cf
2,115
py
Python
src/tests/samples.py
BeholdersEye/PyBitmessage
362a975fbf1ec831d3107c7442527225bc140162
[ "MIT", "BSD-2-Clause-FreeBSD" ]
5
2018-03-24T17:33:03.000Z
2019-07-01T07:16:19.000Z
src/tests/samples.py
BeholdersEye/PyBitmessage
362a975fbf1ec831d3107c7442527225bc140162
[ "MIT", "BSD-2-Clause-FreeBSD" ]
15
2018-03-19T00:04:57.000Z
2021-12-10T17:21:54.000Z
src/tests/samples.py
BeholdersEye/PyBitmessage
362a975fbf1ec831d3107c7442527225bc140162
[ "MIT", "BSD-2-Clause-FreeBSD" ]
5
2019-05-15T08:42:57.000Z
2019-09-17T12:21:37.000Z
"""Various sample data""" from binascii import unhexlify magic = 0xE9BEB4D9 # These keys are from addresses test script sample_pubsigningkey = unhexlify( '044a367f049ec16cb6b6118eb734a9962d10b8db59c890cd08f210c43ff08bdf09d' '16f502ca26cd0713f38988a1237f1fc8fa07b15653c996dc4013af6d15505ce') sample_pubencryptionkey = unhexlify( '044597d59177fc1d89555d38915f581b5ff2286b39d022ca0283d2bdd5c36be5d3c' 'e7b9b97792327851a562752e4b79475d1f51f5a71352482b241227f45ed36a9') sample_privsigningkey = \ b'93d0b61371a54b53df143b954035d612f8efa8a3ed1cf842c2186bfd8f876665' sample_privencryptionkey = \ b'4b0b73a54e19b059dc274ab69df095fe699f43b17397bca26fdf40f4d7400a3a' sample_ripe = b'003cd097eb7f35c87b5dc8b4538c22cb55312a9f' # stream: 1, version: 2 sample_address = 'BM-onkVu1KKL2UaUss5Upg9vXmqd3esTmV79' sample_factor = 66858749573256452658262553961707680376751171096153613379801854825275240965733 # G * sample_factor sample_point = ( 33567437183004486938355437500683826356288335339807546987348409590129959362313, 94730058721143827257669456336351159718085716196507891067256111928318063085006 ) sample_seed = 'TIGER, tiger, burning bright. In the forests of the night' # Deterministic addresses with stream 1 and versions 3, 4 sample_deterministic_ripe = b'00cfb69416ae76f68a81c459de4e13460c7d17eb' sample_deterministic_addr3 = 'BM-2DBPTgeSawWYZceFD69AbDT5q4iUWtj1ZN' sample_deterministic_addr4 = 'BM-2cWzSnwjJ7yRP3nLEWUV5LisTZyREWSzUK' sample_daddr3_512 = 18875720106589866286514488037355423395410802084648916523381 sample_daddr4_512 = 25152821841976547050350277460563089811513157529113201589004 sample_statusbar_msg = "new status bar message" sample_inbox_msg_ids = ['27e644765a3e4b2e973ee7ccf958ea20', '51fc5531-3989-4d69-bbb5-68d64b756f5b', '2c975c515f8b414db5eea60ba57ba455', 'bc1f2d8a-681c-4cc0-9a12-6067c7e1ac24'] # second address in sample_test_subscription_address is for the announcement broadcast sample_test_subscription_address = ['BM-2cWQLCBGorT9pUGkYSuGGVr9LzE4mRnQaq', 'BM-GtovgYdgs7qXPkoYaRgrLFuFKz1SFpsw'] sample_subscription_name = 'test sub'
47
115
0.858629
0
0
0
0
0
0
0
0
1,170
0.553191
e1a48794127b8e659f4702ccf90e46361a4d8c86
9,123
py
Python
court_scraper/platforms/wicourts/pages/search.py
mscarey/court-scraper
0e13976d901352a09cfd7e48450bbe427494f48e
[ "0BSD" ]
1
2021-08-20T08:24:55.000Z
2021-08-20T08:24:55.000Z
court_scraper/platforms/wicourts/pages/search.py
palewire/court-scraper
da4b614fb16806d8b5117373d273f802ca93a8cb
[ "0BSD" ]
null
null
null
court_scraper/platforms/wicourts/pages/search.py
palewire/court-scraper
da4b614fb16806d8b5117373d273f802ca93a8cb
[ "0BSD" ]
null
null
null
from urllib.parse import parse_qs from anticaptchaofficial.hcaptchaproxyless import hCaptchaProxyless from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from court_scraper.base.selenium_helpers import SeleniumHelpers from court_scraper.utils import dates_for_range from .search_results import SearchResultsPage from ..search_api import SearchApi class SearchLocators: LAST_NAME = (By.NAME, 'lastName') FIRST_NAME = (By.NAME, 'firstName') MIDDLE_NAME = (By.NAME, 'middleName') BIRTH_DATE = (By.NAME, 'dateOfBirth') BUSINESS_NAME = (By.NAME, 'businessName') COUNTY = (By.XPATH, '//*[@id="react-select-2--value"]/div[2]/input') COUNTY_DROPDOWN_ARROW = (By.CSS_SELECTOR, '.Select-arrow-zone') CASE_NUMBER = (By.NAME, 'caseNo') CASE_NUMBER_RANGE_YEAR = (By.XPATH, '//*[@id="react-select-3--value"]/div[2]/input') CASE_NUMBER_RANGE_TYPE = (By.XPATH, '//*[@id="react-select-4--value"]/div[2]/input') CASE_NUMBER_RANGE_BEGIN = (By.NAME, 'caseNoRange.start') CASE_NUMBER_RANGE_END = (By.NAME, 'caseNoRange.end') CASE_RESULTS_TABLE = (By.CSS_SELECTOR, 'table#caseSearchResults') DATE_CASE_TYPE = (By.XPATH, '//*[@id="react-select-5--value"]/div[2]/input') DATE_CASE_STATUS = (By.XPATH, '//*[@id="react-select-6--value"]/div[2]/input') FILING_DATE_RANGE_BEGIN = (By.NAME, 'filingDate.start') FILING_DATE_RANGE_END = (By.NAME, 'filingDate.end') DISPOSITION_DATE_RANGE_BEGIN = (By.NAME, 'dispositionDate.start') DISPOSITION_DATE_RANGE_END = (By.NAME, 'dispositionDate.end') STATE_BAR_ID = (By.NAME, 'attyNo') CITATION_NUMBER = (By.NAME, 'citnNo') DA_CASE_NUMBER = (By.NAME, 'daCaseNo') ISSUING_AGENCY = (By.XPATH, '//*[@id="react-select-8--value"]/div[2]/input') OFFENSE_DATE_BEGIN = (By.NAME, 'offenseDate.start') OFFENSE_DATE_END = (By.NAME, 'offenseDate.end') SEARCH_BUTTON = (By.NAME, 'search') RESET_BUTTON = (By.XPATH, '//*[@id="home-container"]/main/div/form/div[11]/div/button[2]') class SearchPage(SeleniumHelpers): locators = SearchLocators def __init__(self, driver, captcha_api_key=None): self.url = "https://wcca.wicourts.gov/advanced.html" self.captcha_api_key = captcha_api_key self.driver = driver def search_by_case_number(self, county, case_numbers=[]): payload = [] search_api = SearchApi(county) for idx, case_num in enumerate(case_numbers): self.go_to() # advanced search page self._execute_case_search(county, case_num) # Solve and apply the captcha on the first search. # (using it on subsequent case detail API calls causes errors) kwargs = { 'cookies': self.cookies_as_dict(), } if idx == 0: kwargs['captcha_solution'] = self.solve_captcha() case_info = search_api.case_details(case_num, **kwargs) payload.append(case_info) return payload def search_by_date(self, county, start_date, end_date, case_types=[]): date_format = "%m-%d-%Y" dates = dates_for_range(start_date, end_date, output_format=date_format) payload = [] for idx, day in enumerate(dates): self.go_to() # advanced search page self._execute_date_search(county, day, day, case_types) if not self.search_has_results(self.driver.current_url): continue # Solve the captcha on the first search, # save the solution for re-use, and apply the solution # on the first case of the first day's search results # (using it on subsequent case detail API calls causes errors) result_kwargs = { 'use_captcha_solution': False } if idx == 0: captcha_solution = self.solve_captcha() result_kwargs['use_captcha_solution'] = True # Searches that yield a single result redirect automatically # to case detail page rather than search results listing page. # For these cases, immediately execute the case detail query if 'caseDetail' in self.driver.current_url: case_info = self._get_case_details( county, self.driver.current_url, captcha_solution, result_kwargs['use_captcha_solution'] ) results = [case_info] else: results_page = SearchResultsPage(self.driver, county, self.captcha_api_key, captcha_solution) results = results_page.results.get(**result_kwargs) # TODO: if results_page.results_found(): # results_page.display_max_results() payload.extend(results) return payload def _get_case_details(self, county, url, captcha_solution, use_captcha_solution): # caseNo=2021SC000082&countyNo=2 query_str = url.split('?')[-1] param_strs = query_str.split('&') params = {} for param_pair in param_strs: key, val = param_pair.split('=') params[key] = val case_num = params['caseNo'] search_api = SearchApi(county) kwargs = { 'cookies': self.cookies_as_dict(), 'county_num': int(params['countyNo']) } if use_captcha_solution: kwargs['captcha_solution'] = captcha_solution return search_api.case_details(case_num, **kwargs) def _execute_case_search(self, county, case_number): self.wait_until_visible(self.locators.COUNTY) clean_county = self._county_titlecase(county) self.fill_form_field(self.locators.COUNTY, clean_county) self.fill_form_field(self.locators.CASE_NUMBER, case_number) self.click(self.locators.SEARCH_BUTTON) def _execute_date_search(self, county, start_date, end_date, case_types=[]): # Wait until the county dropdown-menu arrow is clickable before filling the form field, # in order to avoid overwriting of the field value by the "Statewide" option default county_label_obj = self.driver.find_element_by_xpath("//label[contains(text(), 'County')]") self.wait_until_clickable(self.locators.COUNTY_DROPDOWN_ARROW, driver=county_label_obj) clean_county = self._county_titlecase(county) self.fill_form_field(self.locators.COUNTY, clean_county) self.fill_form_field(self.locators.FILING_DATE_RANGE_BEGIN, start_date) self.fill_form_field(self.locators.FILING_DATE_RANGE_END, end_date) if case_types: self._select_case_types(case_types) self.click(self.locators.SEARCH_BUTTON) def _county_titlecase(self, county): return county.replace('_', ' ').title() def _select_case_types(self, case_types): # TODO: Refactor to use locators for case_type in case_types: # Locate the case type menu by name case_type_label_obj = self.driver.find_element_by_xpath("//label[contains(text(), 'Case types')]") # Expand the Case types menu select_arrow = case_type_label_obj.find_element_by_css_selector('.Select-arrow-zone') select_arrow.click() # Find and click the selection menu option for the case type option_divs = ( case_type_label_obj .find_element_by_css_selector('.Select-menu') .find_elements_by_tag_name('div') ) option = [opt for opt in option_divs if opt.text.endswith(f'({case_type})')][0] option.click() def solve_captcha(self): # Solve the captcha iframe = None for frame in self.driver.find_elements_by_tag_name('iframe'): if 'challenge' in frame.get_attribute('src'): iframe = frame break iframe_url = iframe.get_attribute('src') query_str = iframe_url.split('#')[-1] site_key = parse_qs(query_str)['sitekey'][0] solver = hCaptchaProxyless() solver.set_verbose(1) solver.set_key(self.captcha_api_key) solver.set_website_url(self.driver.current_url) solver.set_website_key(site_key) g_response = solver.solve_and_return_solution() return g_response def search_has_results(self, current_url): WebDriverWait(self.driver, 10).until( EC.url_changes(current_url) ) # Return True if it's a single-result redirect to case detail page if 'caseDetail' in self.driver.current_url: return True WebDriverWait(self.driver, 10).until( EC.visibility_of_element_located( self.locators.CASE_RESULTS_TABLE ) ) if 'No records found' in self.driver.page_source: return False else: # Otherwise, assume there are results return True
45.38806
110
0.645183
8,655
0.948701
0
0
0
0
0
0
2,180
0.238956
e1a571d93e123889de55adde281c383678e87c9f
392
py
Python
bitmovin_api_sdk/encoding/encodings/muxings/mp3/__init__.py
jaythecaesarean/bitmovin-api-sdk-python
48166511fcb9082041c552ace55a9b66cc59b794
[ "MIT" ]
11
2019-07-03T10:41:16.000Z
2022-02-25T21:48:06.000Z
bitmovin_api_sdk/encoding/encodings/muxings/mp3/__init__.py
jaythecaesarean/bitmovin-api-sdk-python
48166511fcb9082041c552ace55a9b66cc59b794
[ "MIT" ]
8
2019-11-23T00:01:25.000Z
2021-04-29T12:30:31.000Z
bitmovin_api_sdk/encoding/encodings/muxings/mp3/__init__.py
jaythecaesarean/bitmovin-api-sdk-python
48166511fcb9082041c552ace55a9b66cc59b794
[ "MIT" ]
13
2020-01-02T14:58:18.000Z
2022-03-26T12:10:30.000Z
from bitmovin_api_sdk.encoding.encodings.muxings.mp3.mp3_api import Mp3Api from bitmovin_api_sdk.encoding.encodings.muxings.mp3.customdata.customdata_api import CustomdataApi from bitmovin_api_sdk.encoding.encodings.muxings.mp3.information.information_api import InformationApi from bitmovin_api_sdk.encoding.encodings.muxings.mp3.mp3_muxing_list_query_params import Mp3MuxingListQueryParams
78.4
113
0.903061
0
0
0
0
0
0
0
0
0
0
e1a57aedd9dcfceea7d88aacf27bf3e654f2a6f2
6,107
py
Python
platform/bl_interface.py
sumasree98/2022-ectf-insecure-example
ed0a1e3618bca226b0cacd0157ff32a7f4fec2d9
[ "Apache-2.0" ]
null
null
null
platform/bl_interface.py
sumasree98/2022-ectf-insecure-example
ed0a1e3618bca226b0cacd0157ff32a7f4fec2d9
[ "Apache-2.0" ]
null
null
null
platform/bl_interface.py
sumasree98/2022-ectf-insecure-example
ed0a1e3618bca226b0cacd0157ff32a7f4fec2d9
[ "Apache-2.0" ]
1
2022-01-28T02:30:35.000Z
2022-01-28T02:30:35.000Z
# 2022 eCTF # Bootloader Interface Emulator # Ben Janis # # (c) 2022 The MITRE Corporation # # This source file is part of an example system for MITRE's 2022 Embedded System # CTF (eCTF). This code is being provided only for educational purposes for the # 2022 MITRE eCTF competition, and may not meet MITRE standards for quality. # Use this code at your own risk! # # DO NOT CHANGE THIS FILE import argparse import os import logging import socket import select from pathlib import Path from typing import List, Optional, TypeVar Message = TypeVar("Message") LOG_FORMAT = "%(asctime)s:%(name)-s%(levelname)-8s %(message)s" class Sock: def __init__( self, sock_path: str, q_len=1, log_level=logging.INFO, mode: int = None, network=False, ): self.sock_path = sock_path self.network = network self.buf = b"" # set up socket if self.network: self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.sock.bind(("0.0.0.0", int(sock_path))) else: # Make sure the socket does not already exist try: os.unlink(sock_path) except OSError: if os.path.exists(sock_path): raise self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) self.sock.bind(sock_path) self.sock.listen(q_len) self.csock = None # change permissions if necessary if mode and not self.network: os.chmod(sock_path, mode) # set up logger fhandler = logging.FileHandler("bl_interface.log") fhandler.setLevel(log_level) fhandler.setFormatter(logging.Formatter(LOG_FORMAT)) shandler = logging.StreamHandler() shandler.setLevel(log_level) shandler.setFormatter(logging.Formatter(LOG_FORMAT)) self.logger = logging.getLogger(f"{sock_path}_log") self.logger.addHandler(fhandler) self.logger.addHandler(shandler) self.logger.setLevel(log_level) @staticmethod def sock_ready(sock: socket.SocketType) -> bool: ready, _, _ = select.select([sock], [], [], 0) return bool(ready) def active(self) -> bool: # try to accept new client if not self.csock: if self.sock_ready(self.sock): self.logger.info(f"Connection opened on {self.sock_path}") self.csock, _ = self.sock.accept() return bool(self.csock) def deserialize(self) -> bytes: buf = self.buf self.buf = b"" return buf def read_msg(self) -> Optional[Message]: if not self.active(): return None try: if self.sock_ready(self.csock): data = self.csock.recv(4096) # connection closed if not data: self.close() return None self.buf += data return self.deserialize() except (ConnectionResetError, BrokenPipeError): # cleanly handle forced closed connection self.close() return None def read_all_msgs(self) -> List[Message]: msgs = [] msg = self.read_msg() while msg: msgs.append(msg) msg = self.read_msg() return msgs @staticmethod def serialize(msg: bytes) -> bytes: return msg def send_msg(self, msg: Message) -> bool: if not self.active(): return False try: self.csock.sendall(self.serialize(msg)) return True except (ConnectionResetError, BrokenPipeError): # cleanly handle forced closed connection self.close() return False def close(self): self.logger.warning(f"Conection closed on {self.sock_path}") self.csock = None self.buf = b"" def poll_data_socks(device_sock: Sock, host_sock: Sock): if device_sock.active(): msg = device_sock.read_msg() # send message to host if host_sock.active(): if msg is not None: host_sock.send_msg(msg) if host_sock.active(): msg = host_sock.read_msg() # send message to device if device_sock.active(): if msg is not None: device_sock.send_msg(msg) def poll_restart_socks(device_sock: Sock, host_sock: Sock): # First check that device opened a restart port if device_sock.active(): # Send host restart commands to device if host_sock.active(): msg = host_sock.read_msg() if msg is not None: device_sock.send_msg(msg) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--data-bl-sock", type=Path, required=True, help="Path to device-side data socket (will be created)", ) parser.add_argument( "--data-host-sock", type=int, required=True, help="Port for host-side data socket (must be available)", ) parser.add_argument( "--restart-bl-sock", type=Path, required=True, help="Path to device-side data socket (will be created)", ) parser.add_argument( "--restart-host-sock", type=Path, required=True, help="Path to device-side data socket (will be created)", ) return parser.parse_args() def main(): args = parse_args() # open all sockets data_bl = Sock(str(args.data_bl_sock), mode=0o777) data_host = Sock(str(args.data_host_sock), mode=0o777, network=True) restart_bl = Sock(str(args.restart_bl_sock), mode=0o777) restart_host = Sock(str(args.restart_host_sock), mode=0o777) # poll sockets forever while True: poll_data_socks(data_bl, data_host) poll_restart_socks(restart_bl, restart_host) if __name__ == "__main__": main()
27.885845
80
0.595055
3,423
0.560504
0
0
220
0.036024
0
0
1,268
0.207631
e1a5eed695e57412a97412dd5eb33192adae977e
968
py
Python
Excel_python_demo.py
SJG88/excel_vba_python
ba7413be23796c67f921fe5428cd52592fdb54a9
[ "MIT" ]
null
null
null
Excel_python_demo.py
SJG88/excel_vba_python
ba7413be23796c67f921fe5428cd52592fdb54a9
[ "MIT" ]
null
null
null
Excel_python_demo.py
SJG88/excel_vba_python
ba7413be23796c67f921fe5428cd52592fdb54a9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ This is a script to demo how to open up a macro enabled excel file, write a pandas dataframe to it and save it as a new file name. Created on Mon Mar 1 17:47:41 2021 @author: Shane Gore """ import os import xlwings as xw import pandas as pd os.chdir(r"C:\Users\Shane Gore\Desktop\Roisin") wb = xw.Book("CAO_template.xlsm") worksheet = wb.sheets['EPOS_Closing_Stock_Detailed'] 'Create dataframe' cars = {'Brand': ['Honda Civic','Toyota Corolla','Ford Focus','Audi A4'], 'Price': [22000,25000,27000,35000] } cars_df = pd.DataFrame(cars, columns = ['Brand', 'Price']) 'Write a dataframe to excel' worksheet.range('A1').value = cars_df 'Create a datafame from and excel sheet' excel_df = worksheet.range('A1').options(pd.DataFrame, expand='table').value 'Save the excel as a new workbook' newfilename = ('Test4.xlsm') wb.save(newfilename) 'close the workbook' wb.close()
23.047619
99
0.669421
0
0
0
0
0
0
0
0
557
0.575413
e1a7e0683b31fbc7612eb7456c53935a17b8dbcf
31,709
py
Python
code/Elipsoide_Clark_FAT.py
birocoles/paper-magnetic-elipsoid
81d9b2e39cbb942f619f590ad389eb30d58b46d4
[ "BSD-3-Clause" ]
1
2017-02-26T15:19:25.000Z
2017-02-26T15:19:25.000Z
code/Elipsoide_Clark_FAT.py
birocoles/paper-magnetic-elipsoid
81d9b2e39cbb942f619f590ad389eb30d58b46d4
[ "BSD-3-Clause" ]
null
null
null
code/Elipsoide_Clark_FAT.py
birocoles/paper-magnetic-elipsoid
81d9b2e39cbb942f619f590ad389eb30d58b46d4
[ "BSD-3-Clause" ]
null
null
null
from __future__ import division import numpy as np from scipy import linalg from matplotlib import pyplot as plt from fatiando.gravmag import sphere from fatiando import mesher, gridder, utils from fatiando.vis import mpl import scipy.special import scipy.interpolate class GeometricElement(object): """ Base class for all geometric elements. """ def __init__(self, props): self.props = {} if props is not None: for p in props: self.props[p] = props[p] def addprop(self, prop, value): """ Add a physical property to this geometric element. If it already has the property, the given value will overwrite the existing one. Parameters: * prop : str Name of the physical property. * value : float The value of this physical property. """ self.props[prop] = value class Ellipsoid (GeometricElement): ''' ''' def __init__(self, xc, yc, zc, a, b, c, alfa, delta, gamma, props): GeometricElement.__init__(self, props) self.xc = float(xc) self.yc = float(yc) self.zc = float(zc) self.a = float(a) self.b = float(b) self.c = float(c) self.alfa = float(alfa) self.delta = float(delta) self.gamma = float(gamma) self.center = np.array([xc, yc, zc]) self.l1 = l1_v (alfa, delta) self.l2 = l2_v (alfa, delta, gamma) self.l3 = l3_v (alfa, delta, gamma) self.m1 = m1_v (alfa, delta) self.m2 = m2_v (alfa, delta, gamma) self.m3 = m3_v (alfa, delta, gamma) self.n1 = n1_v (delta) self.n2 = n2_v (delta, gamma) self.n3 = n3_v (delta, gamma) self.ln = ln_v (props['remanence'][2], props['remanence'][1]) self.mn = mn_v (props['remanence'][2], props['remanence'][1]) self.nn = nn_v (props['remanence'][1]) self.mcon = np.array([[self.l1, self.m1, self.n1],[self.l2, self.m2, self.n2],[self.l3, self.m3, self.n3]]) self.mconT = (self.mcon).T self.k_dec = np.array([[props['k1'][2]],[props['k2'][2]],[props['k3'][2]]]) self.k_int = np.array([[props['k1'][0]],[props['k2'][0]],[props['k3'][0]]]) self.k_inc = np.array([[props['k1'][1]],[props['k2'][1]],[props['k3'][1]]]) if props['k1'][0] == props['k2'][0] and props['k1'][0] == props['k3'][0]: self.km = k_matrix2 (self.k_int,self.l1,self.l2,self.l3,self.m1,self.m2,self.m3,self.n1,self.n2,self.n3) else: self.Lr = Lr_v (self.k_dec, self.k_inc) self.Mr = Mr_v (self.k_dec, self.k_inc) self.Nr = Nr_v (self.k_inc) self.km = k_matrix (self.k_int,self.Lr,self.Mr,self.Nr,self.l1,self.l2,self.l3,self.m1,self.m2,self.m3,self.n1,self.n2,self.n3) #self.Ft = F_e (inten,lt,mt,nt,l1,l2,l3,m1,m2,m3,n1,n2,n3) #self.JN = JN_e (ellipsoids.props['remanence'][0],ln,mn,nn,l1,l2,l3,m1,m2,m3,n1,n2,n3) #self.N1,self.N2,self.N3 = N_desmag (ellipsoids.a,ellipsoids.b,ellipsoids.c,F2,E2) #self.JR = JR_e (km,JN,Ft) #self.JRD = JRD_e (km,N1,N2,N3,JR) #self.JRD_carte = mconT.dot(JRD) #self.JRD_ang = utils.vec2ang(JRD_carte) def __str__(self): """Return a string representation of the ellipsoids.""" names = [('xc', self.xc), ('yc', self.yc), ('zc', self.zc), ('a', self.a), ('b', self.b), ('c', self.c), ('alfa', self.alfa),('delta', self.delta),('gamma', self.gamma)] names.extend((p, self.props[p]) for p in sorted(self.props)) return ' | '.join('%s:%g' % (n, v) for n, v in names) def elipsoide (xp,yp,zp,inten,inc,dec,ellipsoids): ''' Calcula as tres componentes do campo magnetico de um elipsoide. a: escalar - semi eixo maior b: escalar - semi eixo intermediario c: escalar - semi eixo menor h: escalar - profundidade alfa: escalar - azimute do elipsoide em relacao ao "a" delta: escalar - inclinacao do elipsoide em relacao ao "a" gamma: escalar - angulo entre o semi eixo "b" e a projecao do centro do elipsoide no plano xy xp: matriz - malha do eixo x yp: matriz - malha do eixo y zp: matriz - malha do eixo z xc: escalar - posicao x do centro do elipsoide yc: escalar - posicao y do centro do elipsoide J: vetor - magnetizacao do corpo ''' # Calculo de parametros de direcao #l1 = l1_v (ellipsoids.alfa, ellipsoids.delta) #l2 = l2_v (ellipsoids.alfa, ellipsoids.delta, ellipsoids.gamma) #l3 = l3_v (ellipsoids.alfa, ellipsoids.delta, ellipsoids.gamma) #m1 = m1_v (ellipsoids.alfa, ellipsoids.delta) #m2 = m2_v (ellipsoids.alfa, ellipsoids.delta, ellipsoids.gamma) #m3 = m3_v (ellipsoids.alfa, ellipsoids.delta, ellipsoids.gamma) #n1 = n1_v (ellipsoids.delta) #n2 = n2_v (ellipsoids.delta, ellipsoids.gamma) #n3 = n3_v (ellipsoids.delta, ellipsoids.gamma) #ln = ln_v (ellipsoids.props['remanence'][2], ellipsoids.props['remanence'][1]) #mn = mn_v (ellipsoids.props['remanence'][2], ellipsoids.props['remanence'][1]) #nn = nn_v (ellipsoids.props['remanence'][1]) #mcon = np.array([[l1, m1, n1],[l2, m2, n2],[l3, m3, n3]]) #mconT = mcon.T #print mconT lt = ln_v (dec, inc) mt = mn_v (dec, inc) nt = nn_v (inc) #print l1,m1,n1 #print l2,m2,n2 #print l3,m3,n3 # Coordenadas Cartesianas elipsoide x1 = x1_e (xp,yp,zp,ellipsoids.xc,ellipsoids.yc,ellipsoids.zc,ellipsoids.l1,ellipsoids.m1,ellipsoids.n1) x2 = x2_e (xp,yp,zp,ellipsoids.xc,ellipsoids.yc,ellipsoids.zc,ellipsoids.l2,ellipsoids.m2,ellipsoids.n2) x3 = x3_e (xp,yp,zp,ellipsoids.xc,ellipsoids.yc,ellipsoids.zc,ellipsoids.l3,ellipsoids.m3,ellipsoids.n3) # Calculos auxiliares p0 = p0_e (ellipsoids.a,ellipsoids.b,ellipsoids.c,x1,x2,x3) p1 = p1_e (ellipsoids.a,ellipsoids.b,ellipsoids.c,x1,x2,x3) p2 = p2_e (ellipsoids.a,ellipsoids.b,ellipsoids.c,x1,x2,x3) p = p_e (p1,p2) q = q_e (p0,p1,p2) teta = teta_e (p,q) # Raizes da equacao cubica lamb = lamb_e (p,teta,p2) # Calculo de parametros para as integrais F,E,F2,E2,k,teta_linha = parametros_integrais(ellipsoids.a,ellipsoids.b,ellipsoids.c,lamb) # Magnetizacoes nas coordenadas do elipsoide #k_dec = np.array([[ellipsoids.props['k1'][2]],[ellipsoids.props['k2'][2]],[ellipsoids.props['k3'][2]]]) #k_int = np.array([[ellipsoids.props['k1'][0]],[ellipsoids.props['k2'][0]],[ellipsoids.props['k3'][0]]]) #k_inc = np.array([[ellipsoids.props['k1'][1]],[ellipsoids.props['k2'][1]],[ellipsoids.props['k3'][1]]]) #if ellipsoids.props['k1'][0] == ellipsoids.props['k2'][0] and ellipsoids.props['k1'][0] == ellipsoids.props['k3'][0]: # km = k_matrix2 (k_int,l1,l2,l3,m1,m2,m3,n1,n2,n3) #else: # Lr = Lr_v (k_dec, k_inc) # Mr = Mr_v (k_dec, k_inc) # Nr = Nr_v (k_inc) # km = k_matrix (k_int,Lr,Mr,Nr,l1,l2,l3,m1,m2,m3,n1,n2,n3) Ft = F_e (inten,lt,mt,nt,ellipsoids.l1,ellipsoids.l2,ellipsoids.l3,ellipsoids.m1,ellipsoids.m2,ellipsoids.m3,ellipsoids.n1,ellipsoids.n2,ellipsoids.n3) JN = JN_e (ellipsoids.props['remanence'][0],ellipsoids.ln,ellipsoids.mn,ellipsoids.nn,ellipsoids.l1,ellipsoids.l2,ellipsoids.l3,ellipsoids.m1,ellipsoids.m2,ellipsoids.m3,ellipsoids.n1,ellipsoids.n2,ellipsoids.n3) N1,N2,N3 = N_desmag (ellipsoids.a,ellipsoids.b,ellipsoids.c,F2,E2) JR = JR_e (ellipsoids.km,JN,Ft) JRD = JRD_e (ellipsoids.km,N1,N2,N3,JR) JRD_carte = (ellipsoids.mconT).dot(JRD) JRD_ang = utils.vec2ang(JRD_carte) #print Ft #print JN #print JRD #print N1,N2,N3 #print JRD_ang # Derivadas de lambda em relacao as posicoes dlambx1 = dlambx1_e (ellipsoids.a,ellipsoids.b,ellipsoids.c,x1,x2,x3,lamb) dlambx2 = dlambx2_e (ellipsoids.a,ellipsoids.b,ellipsoids.c,x1,x2,x3,lamb) dlambx3 = dlambx3_e (ellipsoids.a,ellipsoids.b,ellipsoids.c,x1,x2,x3,lamb) # Calculo das integrais A, B, C = integrais_elipticas(ellipsoids.a,ellipsoids.b,ellipsoids.c,k,teta_linha,F,E) # Geometria para o calculo de B (eixo do elipsoide) cte = cte_m (ellipsoids.a,ellipsoids.b,ellipsoids.c,lamb) V1, V2, V3 = v_e (ellipsoids.a,ellipsoids.b,ellipsoids.c,x1,x2,x3,lamb) # Calculo matriz geometria para B1 m11 = (cte*dlambx1*V1) - A m12 = cte*dlambx1*V2 m13 = cte*dlambx1*V3 # Calculo matriz geometria para B2 m21 = cte*dlambx2*V1 m22 = (cte*dlambx2*V2) - B m23 = cte*dlambx2*V3 # Calculo matriz geometria para B3 m31 = cte*dlambx3*V1 m32 = cte*dlambx3*V2 m33 = (cte*dlambx3*V3) - C # Problema Direto (Calcular o campo externo nas coordenadas do elipsoide) B1 = B1_e (m11,m12,m13,JRD,ellipsoids.a,ellipsoids.b,ellipsoids.c) B2 = B2_e (m21,m22,m23,JRD,ellipsoids.a,ellipsoids.b,ellipsoids.c) B3 = B3_e (m31,m32,m33,JRD,ellipsoids.a,ellipsoids.b,ellipsoids.c) #constante = constante_nova (a,b,c,lamb,JRD,x1,x2,x3) #B1 = B1_novo (constante,dlambx1,a,b,c,JRD,A) #B2 = B2_novo (constante,dlambx2,a,b,c,JRD,B) #B3 = B3_novo (constante,dlambx3,a,b,c,JRD,C) # Problema Direto (Calcular o campo externo nas coordenadas geograficas) Bx = Bx_c (B1,B2,B3,ellipsoids.l1,ellipsoids.l2,ellipsoids.l3) By = By_c (B1,B2,B3,ellipsoids.m1,ellipsoids.m2,ellipsoids.m3) Bz = Bz_c (B1,B2,B3,ellipsoids.n1,ellipsoids.n2,ellipsoids.n3) return Bx,By,Bz,JRD_ang # Problema Direto (Calcular o campo externo e anomalia nas coordenadas geograficas no SI) def bx_c(xp,yp,zp,inten,inc,dec,ellipsoids): if xp.shape != yp.shape != zp.shape: raise ValueError("Input arrays xp, yp, and zp must have same shape!") size = len(xp) res = np.zeros(size, dtype=np.float) ctemag = 1 for i in range(len(ellipsoids)): bx,by,bz,jrd_ang = elipsoide (xp,yp,zp,inten,inc,dec,ellipsoids[i]) res += bx res = res*ctemag return res def by_c(xp,yp,zp,inten,inc,dec,ellipsoids): if xp.shape != yp.shape != zp.shape: raise ValueError("Input arrays xp, yp, and zp must have same shape!") size = len(xp) res = np.zeros(size, dtype=np.float) ctemag = 1 for i in range(len(ellipsoids)): bx,by,bz,jrd_ang = elipsoide (xp,yp,zp,inten,inc,dec,ellipsoids[i]) res += by res = res*ctemag return res def bz_c(xp,yp,zp,inten,inc,dec,ellipsoids): if xp.shape != yp.shape != zp.shape: raise ValueError("Input arrays xp, yp, and zp must have same shape!") size = len(xp) res = np.zeros(size, dtype=np.float) ctemag = 1 for i in range(len(ellipsoids)): bx,by,bz,jrd_ang = elipsoide (xp,yp,zp,inten,inc,dec,ellipsoids[i]) res += bz res = res*ctemag return res def tf_c(xp,yp,zp,inten,inc,dec,ellipsoids): if xp.shape != yp.shape != zp.shape: raise ValueError("Input arrays xp, yp, and zp must have same shape!") size = len(xp) res = np.zeros(size, dtype=np.float) ctemag = 1 for i in range(len(ellipsoids)): bx,by,bz,jrd_ang = elipsoide (xp,yp,zp,inten,inc,dec,ellipsoids[i]) tf = bx*np.cos(inc)*np.cos(dec) + by*np.cos(inc)*np.sin(dec) + bz*np.sin(inc) res += tf res = res*ctemag return res,jrd_ang def l1_v (alfa, delta): ''' Orientacao do elipsoide com respeito ao eixo x. input: alfa - Azimute com relacao ao eixo-maior. (0<=alfa<=360) delta - Inclinacao com relacao ao eixo-maior. (0<=delta<=90) output: Direcao em radianos. ''' l1 = (-np.cos(alfa)*np.cos(delta)) return l1 def l2_v (alfa, delta, gamma): ''' Orientacao do elipsoide com respeito ao eixo y. input: alfa - Azimute com relacao ao eixo-maior. (0<=alfa<=360) delta - Inclinacao com relacao ao eixo-maior. (0<=delta<=90) gamma - Angulo entre o eixo-maior e a projecao vertical do centro do elipsoide com o plano. (-90<=gamma<=90) output: Direcao em radianos. ''' l2 = (np.cos(alfa)*np.cos(gamma)*np.sin(delta)+np.sin(alfa)*np.sin(gamma)) return l2 def l3_v (alfa, delta, gamma): ''' Orientacao do elipsoide com respeito ao eixo z. input: alfa - Azimute com relacao ao eixo-maior. (0<=alfa<=360) delta - Inclinacao com relacao ao eixo-maior. (0<=delta<=90) gamma - Angulo entre o eixo-maior e a projecao vertical do centro do elipsoide com o plano. (-90<=gamma<=90) output: Direcao em radianos. ''' l3 = (np.sin(alfa)*np.cos(gamma)-np.cos(alfa)*np.sin(gamma)*np.sin(delta)) return l3 def m1_v (alfa, delta): ''' Orientacao do elipsoide com respeito ao eixo x. input: alfa - Azimute com relacao ao eixo-maior. (0<=alfa<=360) delta - Inclinacao com relacao ao eixo-maior. (0<=delta<=90) output: Direcao em radianos. ''' m1 = (-np.sin(alfa)*np.cos(delta)) return m1 def m2_v (alfa, delta, gamma): ''' Orientacao do elipsoide com respeito ao eixo y. input: alfa - Azimute com relacao ao eixo-maior. (0<=alfa<=360) delta - Inclinacao com relacao ao eixo-maior. (0<=delta<=90) gamma - Angulo entre o eixo-maior e a projecao vertical do centro do elipsoide com o plano. (-90<=gamma<=90) output: Direcao em radianos. ''' m2 = (np.sin(alfa)*np.cos(gamma)*np.sin(delta)-np.cos(alfa)*np.sin(gamma)) return m2 def m3_v (alfa, delta, gamma): ''' Orientacao do elipsoide com respeito ao eixo z. input: alfa - Azimute com relacao ao eixo-maior. (0<=alfa<=360) delta - Inclinacao com relacao ao eixo-maior. (0<=delta<=90) gamma - Angulo entre o eixo-maior e a projecao vertical do centro do elipsoide com o plano. (-90<=gamma<=90) output: Direcao em radianos. ''' m3 = (-np.cos(alfa)*np.cos(gamma)-np.sin(alfa)*np.sin(gamma)*np.sin(delta)) return m3 def n1_v (delta): ''' Orientacao do elipsoide com respeito ao eixo x. input: delta - Inclinacao com relacao ao eixo-maior. (0<=delta<=90) output: Direcao em radianos. ''' n1 = (-np.sin(delta)) return n1 def n2_v (delta, gamma): ''' Orientacao do elipsoide com respeito ao eixo y. input: delta - Inclinacao com relacao ao eixo-maior. (0<=delta<=90) gamma - Angulo entre o eixo-maior e a projecao vertical do centro do elipsoide com o plano. (-90<=gamma<=90) output: Direcao em radianos. ''' n2 = (-np.cos(gamma)*np.cos(delta)) return n2 def n3_v (delta, gamma): ''' Orientacao do elipsoide com respeito ao eixo z. input: delta - Inclinacao com relacao ao eixo-maior. (0<=delta<=90) gamma - Angulo entre o eixo-maior e a projecao vertical do centro do elipsoide com o plano. (-90<=gamma<=90) output: Direcao em radianos. ''' n3 = (np.sin(gamma)*np.cos(delta)) return n3 def ln_v (declinacao, inclinacao): ''' Orientacao do elipsoide com respeito ao eixo x. input: alfa - Azimute com relacao ao eixo-maior. (0<=alfa<=360) delta - Inclinacao com relacao ao eixo-maior. (0<=delta<=90) output: Direcao em radianos. ''' ln = (np.cos(declinacao)*np.cos(inclinacao)) return ln def mn_v (declinacao, inclinacao): ''' Orientacao do elipsoide com respeito ao eixo x. input: alfa - Azimute com relacao ao eixo-maior. (0<=alfa<=360) delta - Inclinacao com relacao ao eixo-maior. (0<=delta<=90) output: Direcao em radianos. ''' mn = (np.sin(declinacao)*np.cos(inclinacao)) return mn def nn_v (inclinacao): ''' Orientacao do elipsoide com respeito ao eixo x. input: alfa - Azimute com relacao ao eixo-maior. (0<=alfa<=360) delta - Inclinacao com relacao ao eixo-maior. (0<=delta<=90) output: Direcao em radianos. ''' nn = np.sin(inclinacao) return nn def Lr_v (k_dec, k_inc): ''' Cossenos diretores dos eixos dos vetores de susceptibilidade magnetica. input: k_dec - declinacoes dos vetores de susceptibilidade. k_inc - inclinacoes dos vetores de susceptibilidade. ''' Lr = np.zeros(3) for i in range (3): Lr[i] = np.cos(k_dec[i])*np.cos(k_inc[i]) return Lr def Mr_v (k_dec, k_inc): ''' Cossenos diretores dos eixos dos vetores de susceptibilidade magnetica. input: k_dec - declinacoes dos vetores de susceptibilidade. k_inc - inclinacoes dos vetores de susceptibilidade. ''' Mr = np.zeros(3) for i in range (3): Mr[i] = np.sin(k_dec[i])*np.cos(k_inc[i]) return Mr def Nr_v (k_inc): ''' Cossenos diretores dos eixos dos vetores de susceptibilidade magnetica. input: k_inc - inclinacoes dos vetores de susceptibilidade. ''' Nr = np.zeros(3) for i in range (3): Nr[i] = np.sin(k_inc[i]) return Nr def F_e (intensidadeT,lt,mt,nt,l1,l2,l3,m1,m2,m3,n1,n2,n3): ''' Transformacao do vetor campo magnetico da Terra para as coordenadas nos eixos do elipsoide. ''' Ft = intensidadeT*np.ravel(np.array([[(lt*l1+mt*m1+nt*n1)], [(lt*l2+mt*m2+nt*n2)], [(lt*l3+mt*m3+nt*n3)]])) return Ft def JN_e (intensidade,ln,mn,nn,l1,l2,l3,m1,m2,m3,n1,n2,n3): ''' transformacao do Vetor de magnetizacao remanente para as coordenadas nos eixos do elipsoide. ''' JN = intensidade*np.ravel(np.array([[(ln*l1+mn*m1+nn*n1)], [(ln*l2+mn*m2+nn*n2)], [(ln*l3+mn*m3+nn*n3)]])) return JN def N_desmag (a,b,c,F2,E2): ''' Fator de desmagnetizacao ao longo do eixo de revolucao (N1) e em relacao ao plano equatorial (N2). ''' N1 = ((4.*np.pi*a*b*c)/((a**2-b**2)*(a**2-c**2)**0.5)) * (F2-E2) N2 = (((4.*np.pi*a*b*c)*(a**2-c**2)**0.5)/((a**2-b**2)*(b**2-c**2))) * (E2 - ((b**2-c**2)/(a**2-c**2)) * F2 - ((c*(a**2-b**2))/(a*b*(a**2-c**2)**0.5))) N3 = ((4.*np.pi*a*b*c)/((b**2-c**2)*(a**2-c**2)**0.5)) * (((b*(a**2-c**2)**0.5)/(a*c)) - E2) return N1, N2, N3 def k_matrix (k_int,Lr,Mr,Nr,l1,l2,l3,m1,m2,m3,n1,n2,n3): ''' Matriz de tensores de susceptibilidade. ''' l = np.array([[l1],[l2],[l3]]) m = np.array([[m1],[m2],[m3]]) n = np.array([[n1],[n2],[n3]]) k = np.zeros([3,3]) for i in range (3): for j in range (3): for r in range (3): k[i,j] = k[i,j] + (k_int[r]*(Lr[r]*l[i] + Mr[r]*m[i] + Nr[r]*n[i])*(Lr[r]*l[j] + Mr[r]*m[j] + Nr[r]*n[j])) return k def k_matrix2 (k_int,l1,l2,l3,m1,m2,m3,n1,n2,n3): ''' Matriz de tensores de susceptibilidade. ''' l = np.array([[l1],[l2],[l3]]) m = np.array([[m1],[m2],[m3]]) n = np.array([[n1],[n2],[n3]]) k = np.zeros([3,3]) for i in range (3): for j in range (3): for r in range (3): k[i,j] = k[i,j] + (k_int[r]*(l[r]*l[i] + m[r]*m[i] + n[r]*n[i])*(l[r]*l[j] + m[r]*m[j] + n[r]*n[j])) return k def JR_e (km,JN,Ft): ''' Vetor de magnetizacao resultante sem correcao da desmagnetizacao. ''' JR = km.dot(Ft) + JN return JR def JRD_e (km,N1,N2,N3,JR): ''' Vetor de magnetizacao resultante com a correcao da desmagnetizacao. ''' I = np.identity(3) kn0 = km[:,0]*N1 kn1 = km[:,1]*N2 kn2 = km[:,2]*N3 kn = (np.vstack((kn0,kn1,kn2))).T A = I + kn JRD = (linalg.inv(A)).dot(JR) return JRD def x1_e (xp,yp,zp,xc,yc,h,l1,m1,n1): ''' Calculo da coordenada x no elipsoide input: xp,yp - Matriz: Coordenadas geograficas (malha). h - Profundidade do elipsoide. l1,m1,n1 - Orientacao do elipsoide (eixo x) output: x1 - Coordenada x do elipsoide. ''' x1 = (xp-xc)*l1+(yp-yc)*m1+(-zp-h)*n1 return x1 def x2_e (xp,yp,zp,xc,yc,h,l2,m2,n2): ''' Calculo da coordenada y no elipsoide input: xp,yp - Matriz: Coordenadas geograficas (malha). h - Profundidade do elipsoide. l2,m2,n2 - Orientacao do elipsoide (eixo y). output: x2 - Coordenada y do elipsoide. ''' x2 = (xp-xc)*l2+(yp-yc)*m2+(-zp-h)*n2 return x2 def x3_e (xp,yp,zp,xc,yc,h,l3,m3,n3): ''' Calculo da coordenada z no elipsoide input: xp,yp - Matriz: Coordenadas geograficas (malha). h - Profundidade do elipsoide. l3,m3,n3 - Orientacao do elipsoide (eixo z). output: x3 - Coordenada z do elipsoide. ''' x3 = (xp-xc)*l3+(yp-yc)*m3+(-zp-h)*n3 return x3 def p0_e (a,b,c,x1,x2,x3): ''' Constante da equacao cubica: s^3 + p2*s^2 + p0 = 0 input: a,b,c - Eixos do elipsoide. x1,x2,x3 - Eixo de coordenadas do elipsoide. output: p0 - Constante ''' p0 = (a*b*c)**2-(b*c*x1)**2-(c*a*x2)**2-(a*b*x3)**2 return p0 def p1_e (a,b,c,x1,x2,x3): ''' Constante da equacao cubica: s^3 + p2*s^2 + p0 = 0 input: a,b,c - Eixos do elipsoide. x1,x2,x3 - Eixo de coordenadas do elipsoide. output: p0 - Constante ''' p1 = (a*b)**2+(b*c)**2+(c*a)**2-(b**2+c**2)*x1**2-(c**2+a**2)*x2**2-(a**2+b**2)*x3**2 return p1 def p2_e (a,b,c,x1,x2,x3): ''' Constante da equacao cubica: s^3 + p2*s^2 + p0 = 0 input: a,b,c - Eixos do elipsoide. x1,x2,x3 - Eixo de coordenadas do elipsoide. output: p0 - Constante ''' p2 = a**2+b**2+c**2-x1**2-x2**2-x3**2 return p2 def p_e (p1,p2): ''' Constante input: p1,p2 - constantes da equacao cubica output: p - Constante. ''' p = p1-(p2**2)/3. return p def q_e (p0,p1,p2): ''' Constante input: p0,p1,p2 - constantes da equacao cubica output: q - Constante. ''' q = p0-((p1*p2)/3.)+2*(p2/3.)**3 return q def teta_e (p,q): ''' Constante angular (radianos) input: p - constante da equacao cubica q - constante output: teta - Constante. ''' teta = np.arccos(-q/(2*np.sqrt((-p/3.)**3))) #teta = np.arccos((-q/2.)*np.sqrt((-p/3.)**3)) return teta def lamb_e (p,teta,p2): ''' Maior raiz real da equacao cubica: s^3 + p2*s^2 + p0 = 0 input: p,p2 - constantes da equacao cubica teta - constante angular (radianos) output: lamb - Maior raiz real. ''' lamb = 2.*((-p/3.)**0.5)*np.cos(teta/3.)-(p2/3.) #lamb = 2*((-p/3.)*np.cos(teta/3.)-(p2/3.))**0.5 #lamb = 2*((-p/3.)*np.cos(teta/3.))**0.5 - (p2/3.) return lamb def mi_e (p,teta,p2): ''' Raiz intermediaria real da equacao cubica: s^3 + p2*s^2 + p0 = 0 input: p,p2 - constantes da equacao cubica teta - constante angular (radianos) output: mi - Raiz intermediaria real. ''' mi = -2.*((-p/3.)**0.5)*np.cos(teta/3.+np.pi/3.)-(p2/3.) return mi def ni_e (p,teta,p2): ''' Menor raiz real da equacao cubica: s^3 + p2*s^2 + p0 = 0 input: p,p2 - constantes da equacao cubica teta - constante angular (radianos) output: ni - Menor raiz real. ''' ni = -2.*np.sqrt(-p/3.)*np.cos(teta/3. - np.pi/3.)-(p2/3.) return ni def dlambx1_e (a,b,c,x1,x2,x3,lamb): ''' Derivada de lamb em relacao ao eixo x1 do elipsoide. input: a,b,c, - semi-eixos do elipsoide. x1,x2,x3 - Eixo de coordenadas do elipsoide. lamb - Maior raiz real da equacao cubica. output: dlambx1 - escalar ''' dlambx1 = (2*x1/(a**2+lamb))/((x1/(a**2+lamb))**2+(x2/(b**2+lamb))**2+((x3/(c**2+lamb))**2)) return dlambx1 def dlambx2_e (a,b,c,x1,x2,x3,lamb): ''' Derivada de lamb em relacao ao eixo x2 do elipsoide. input: a,b,c, - semi-eixos do elipsoide. x1,x2,x3 - Eixo de coordenadas do elipsoide. lamb - Maior raiz real da equacao cubica. output: dlambx2 - escalar ''' dlambx2 = (2*x2/(b**2+lamb))/((x1/(a**2+lamb))**2+(x2/(b**2+lamb))**2+((x3/(c**2+lamb))**2)) return dlambx2 def dlambx3_e (a,b,c,x1,x2,x3,lamb): ''' Derivada de lamb em relacao ao eixo x3 do elipsoide. input: a,b,c, - semi-eixos do elipsoide. x1,x2,x3 - Eixo de coordenadas do elipsoide. lamb - Maior raiz real da equacao cubica. output: dlambx3 - escalar ''' dlambx3 = (2*x3/(c**2+lamb))/((x1/(a**2+lamb))**2+(x2/(b**2+lamb))**2+((x3/(c**2+lamb))**2)) return dlambx3 def cte_m (a,b,c,lamb): ''' Fator geometrico do campo magnetico (fi) com relacao aos eixos do elipsoide input: a,b,c - semi-eixos do elipsoide lamb - Maior raiz real da equacao cubica. output: cte - constante escalar. ''' cte = 1/np.sqrt((a**2+lamb)*(b**2+lamb)*(c**2+lamb)) return cte def v_e (a,b,c,x1,x2,x3,lamb): ''' Constante do campo magnetico (fi) com relacao aos eixos do elipsoide input: a,b,c - semi-eixos do elipsoide x1,x2,x3 - Eixo de coordenadas do elipsoide. lamb - Maior raiz real da equacao cubica. output: v - matriz ''' V1 = x1/(a**2+lamb) V2 = x2/(b**2+lamb) V3 = x3/(c**2+lamb) return V1, V2, V3 def B1_e (m11,m12,m13,J,a,b,c): ''' Calculo do campo magnetico (Bi) com relacao aos eixos do elipsoide input: a,b,c - semi-eixos do elipsoide x1,x2,x3 - Eixo de coordenadas do elipsoide. dlambx1 - matriz: derivada de lambda em relacao ao eixo x1. cte - matriz v - matriz A - matriz: integrais do potencial J - vetor: magnetizacao output: B1 - matriz ''' B1 = 2*np.pi*a*b*c*(m11*J[0]+m12*J[1]+m13*J[2]) return B1 def B2_e (m21,m22,m23,J,a,b,c): ''' Calculo do campo magnetico (Bi) com relacao aos eixos do elipsoide input: a,b,c - semi-eixos do elipsoide x1,x2,x3 - Eixo de coordenadas do elipsoide. dlambx2 - matriz: derivada de lambda em relacao ao eixo x2. cte - matriz v - matriz B - matriz: integrais do potencial J - vetor: magnetizacao output: B2 - matriz ''' B2 = 2*np.pi*a*b*c*(m21*J[0]+m22*J[1]+m23*J[2]) return B2 def B3_e (m31,m32,m33,J,a,b,c): ''' Calculo do campo magnetico (Bi) com relacao aos eixos do elipsoide input: a,b,c - semi-eixos do elipsoide x1,x2,x3 - Eixo de coordenadas do elipsoide. dlambx3 - matriz: derivada de lambda em relacao ao eixo x3. cte - matriz v - matriz C - matriz: integrais do potencial J - vetor: magnetizacao output: B3 - matriz ''' B3 = 2*np.pi*a*b*c*(m31*J[0]+m32*J[1]+m33*J[2]) return B3 def Bx_c (B1,B2,B3,l1,l2,l3): ''' Calculo do campo magnetico (Bi) com relacao aos eixos geograficos input: B1,B2,B3 - vetores l1,l2,l3 - escalares. output: Bx - matriz ''' Bx = B1*l1+B2*l2+B3*l3 return Bx def By_c (B1,B2,B3,m1,m2,m3): ''' Calculo do campo magnetico (Bi) com relacao aos eixos geograficos input: B1,B2,B3 - vetores m1,m2,m3 - escalares. output: By - matriz ''' By = B1*m1+B2*m2+B3*m3 return By def Bz_c (B1,B2,B3,n1,n2,n3): ''' Calculo do campo magnetico (Bi) com relacao aos eixos geograficos input: B1,B2,B3 - vetores n1,n2,n3 - escalares. output: Bz - matriz ''' Bz = B1*n1+B2*n2+B3*n3 return Bz def Alambda_simp_ext3(a,b,c,lamb): ''' Integral do potencial utilizando o metodo de simpson. input: a,b,c - semi-eixos do elipsoide lamb - output: A - matriz ''' A = [] umax = 1000000.0 N = 300000 aux1 = 3./8. aux2 = 7./6. aux3 = 23./24. for l in np.ravel(lamb): h = (umax - l)/(N-1) u = np.linspace(l, umax, N) R = np.sqrt((a**2 + u) + (b**2 + u) + (c**2 + u)) f = 1./((a**2 + u)*R) aij = h*(aux1*f[0] + aux2*f[1] + aux3*f[2] + np.sum(f[3:N-3]) + aux3*f[-3] + aux2*f[-2] + aux1*f[-1]) A.append(aij) A = np.array(A).reshape((lamb.shape[0], lamb.shape[1])) return A def Blambda_simp_ext3(a,b,c,lamb): ''' Integral do potencial utilizando o metodo de simpson. input: a,b,c - semi-eixos do elipsoide lamb - output: B - matriz ''' B = [] umax = 1000000.0 N = 300000 aux1 = 3./8. aux2 = 7./6. aux3 = 23./24. for l in np.ravel(lamb): h = (umax - l)/(N-1) u = np.linspace(l, umax, N) R = np.sqrt((a**2 + u) + (b**2 + u) + (c**2 + u)) f = 1./((b**2 + u)*R) bij = h*(aux1*f[0] + aux2*f[1] + aux3*f[2] + np.sum(f[3:N-3]) + aux3*f[-3] + aux2*f[-2] + aux1*f[-1]) B.append(bij) B = np.array(B).reshape((lamb.shape[0], lamb.shape[1])) return B def Clambda_simp_ext3(a,b,c,lamb): ''' Integral do potencial utilizando o metodo de simpson. input: a,b,c - semi-eixos do elipsoide lamb - output: A - constante escalar ''' C = [] umax = 1000000.0 N = 300000 aux1 = 3./8. aux2 = 7./6. aux3 = 23./24. for l in np.ravel(lamb): h = (umax - l)/(N-1) u = np.linspace(l, umax, N) R = np.sqrt((a**2 + u) + (b**2 + u) + (c**2 + u)) f = 1./((c**2 + u)*R) cij = h*(aux1*f[0] + aux2*f[1] + aux3*f[2] + np.sum(f[3:N-3]) + aux3*f[-3] + aux2*f[-2] + aux1*f[-1]) C.append(cij) C = np.array(C).reshape((lamb.shape[0], lamb.shape[1])) return C def Dlambda_simp_ext3(a, b, c, lamb): ''' Integral do potencial utilizando o metodo de simpson. input: a,b,c - semi-eixos do elipsoide lamb - output: D - constante escalar ''' D = [] umax = 1000000.0 N = 300000 aux1 = 3./8. aux2 = 7./6. aux3 = 23./24. for l in np.ravel(lamb): h = (umax - l)/(N-1) u = np.linspace(l, umax, N) R = np.sqrt((a**2 + u) + (b**2 + u) + (c**2 + u)) f = 1./R dij = h*(aux1*f[0] + aux2*f[1] + aux3*f[2] + np.sum(f[3:N-3]) + aux3*f[-3] + aux2*f[-2] + aux1*f[-1]) D.append(dij) D = np.array(D).reshape((lamb.shape[0], lamb.shape[1])) return D def parametros_integrais(a,b,c,lamb): ''' a: escalar - semi eixo maior b: escalar - semi eixo intermediario c: escalar - semi eixo menor lamb - Maior raiz real da equacao cubica. ''' k = np.zeros_like(lamb) k1 = ((a**2-b**2)/(a**2-c**2))**0.5 k.fill(k1) k2 = ((a**2-b**2)/(a**2-c**2))**0.5 teta_linha = np.arcsin(((a**2-c**2)/(a**2+lamb))**0.5) teta_linha2 = np.arccos(c/a) F = scipy.special.ellipkinc(teta_linha, k) E = scipy.special.ellipeinc(teta_linha, k) F2 = scipy.special.ellipkinc(teta_linha2, k2) E2 = scipy.special.ellipeinc(teta_linha2, k2) return F,E,F2,E2,k,teta_linha def integrais_elipticas(a,b,c,k,teta_linha,F,E): ''' a: escalar - semi eixo maior b: escalar - semi eixo intermediario c: escalar - semi eixo menor k: matriz - parametro de geometria teta_linha: matriz - parametro de geometria F: matriz - integrais normais elipticas de primeiro tipo E: matriz - integrais normais elipticas de segundo tipo ''' A2 = (2/((a**2-b**2)*(a**2-c**2)**0.5))*(F-E) B2 = ((2*(a**2-c**2)**0.5)/((a**2-b**2)*(b**2-c**2)))*(E-((b**2-c**2)/(a**2-c**2))*F-((k**2*np.sin(teta_linha)*np.cos(teta_linha))/(1-k**2*np.sin(teta_linha)*np.sin(teta_linha))**0.5)) C2 = (2/((b**2-c**2)*(a**2-c**2)**0.5))*(((np.sin(teta_linha)*((1-k**2*np.sin(teta_linha)*np.sin(teta_linha))**0.5))/np.cos(teta_linha))-E) return A2,B2,C2
30.372605
216
0.583431
3,454
0.108928
0
0
0
0
0
0
15,257
0.481157
e1a8d307cf28e74c7cd2efb91e428fd65a4beecc
852
py
Python
app.py
aserhatdemir/digitalocean
4ae2bfc2831b4fae15d9076b3b228c9a4bda44e7
[ "MIT" ]
null
null
null
app.py
aserhatdemir/digitalocean
4ae2bfc2831b4fae15d9076b3b228c9a4bda44e7
[ "MIT" ]
null
null
null
app.py
aserhatdemir/digitalocean
4ae2bfc2831b4fae15d9076b3b228c9a4bda44e7
[ "MIT" ]
null
null
null
from do import DigitalOcean import argparse import json def do_play(token): do = DigitalOcean(token) # ---- # for i in range(3): # do.create_droplet(f'node-{i}', 'fra1', 'do-python') # do.wait_droplet_creation_process('do-python') # ---- # do.destroy_droplets('do-python') # ---- drops = do.manager.get_all_droplets(tag_name='do-python') for drop in drops: print(drop.status) keys = do.manager.get_all_sshkeys() for key in keys: print(key.public_key) def parse_input(file): with open(file, 'r') as f: config = json.load(f) print(config["instances"]) print(config["setup"]) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-token') args = parser.parse_args() # parse_input(args.file) do_play(args.token)
23.027027
61
0.627934
0
0
0
0
0
0
0
0
250
0.293427
e1a8f6b9d508e5ab80894a039b117dd4b1afc6ed
343
py
Python
convert_twitter_data.py
charlieyou/data-science-final-project
7968261c3e44fe3544360a08fea271b611d105c1
[ "Apache-2.0" ]
null
null
null
convert_twitter_data.py
charlieyou/data-science-final-project
7968261c3e44fe3544360a08fea271b611d105c1
[ "Apache-2.0" ]
null
null
null
convert_twitter_data.py
charlieyou/data-science-final-project
7968261c3e44fe3544360a08fea271b611d105c1
[ "Apache-2.0" ]
null
null
null
import cPickle as pickle import pandas as pd if __name__ == '__main__': fnames = set(['clinton_tweets.json', 'trump_tweets.json']) for fname in fnames: df = pd.read_json('data/' + fname) df = df.transpose() df = df['text'] pickle.dump([(i, v) for i, v in zip(df.index, df.values)], open(fname, 'wb'))
28.583333
85
0.597668
0
0
0
0
0
0
0
0
67
0.195335
e1aafb58eef941757b45eb7221687eebd5c2e5ea
799
py
Python
app.py
mwinel/python-cicd-assignement
c4c08772094f983f8105090f0d91dfef5be042aa
[ "MIT" ]
null
null
null
app.py
mwinel/python-cicd-assignement
c4c08772094f983f8105090f0d91dfef5be042aa
[ "MIT" ]
null
null
null
app.py
mwinel/python-cicd-assignement
c4c08772094f983f8105090f0d91dfef5be042aa
[ "MIT" ]
null
null
null
import os import logging from flask import Flask app = Flask(__name__) @app.route('/status') def health_check(): app.logger.info('Status request successfull') app.logger.debug('DEBUG message') return 'OK - healthy' @app.route('/metrics') def metrics(): app.logger.info('Metrics request successfull') app.logger.debug('DEBUG message') return 'OK - metrics' @app.route('/') def hello_world(): target = os.environ.get('TARGET', 'World') app.logger.info('Main request successfull') app.logger.debug('DEBUG message') return 'Hello {}!\n'.format(target) if __name__ == "__main__": ## stream logs to a file logging.basicConfig(filename='app.log', level=logging.DEBUG) app.run(debug=True, host='0.0.0.0', port=int(os.environ.get('PORT', 8080)))
22.828571
79
0.673342
0
0
0
0
517
0.647059
0
0
264
0.330413
e1ad6793329afb999758e7af4b085f4de8b95b33
93
py
Python
Configuration/StandardSequences/python/L1Reco_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
Configuration/StandardSequences/python/L1Reco_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
Configuration/StandardSequences/python/L1Reco_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
import FWCore.ParameterSet.Config as cms from L1Trigger.Configuration.L1TReco_cff import *
18.6
49
0.83871
0
0
0
0
0
0
0
0
0
0
e1af67620fb53577d386b7ebbfdc3bab9dc25e7c
2,347
py
Python
pysrc/common/dataset_mod.py
Hibiki1020/classification_attitude_estimator
7f7435c2ed5b5b5c8d0219df2da0426b108ff3aa
[ "MIT" ]
null
null
null
pysrc/common/dataset_mod.py
Hibiki1020/classification_attitude_estimator
7f7435c2ed5b5b5c8d0219df2da0426b108ff3aa
[ "MIT" ]
null
null
null
pysrc/common/dataset_mod.py
Hibiki1020/classification_attitude_estimator
7f7435c2ed5b5b5c8d0219df2da0426b108ff3aa
[ "MIT" ]
null
null
null
import torch.utils.data as data from PIL import Image import numpy as np import math import csv class ClassOriginaldataset(data.Dataset): def __init__(self, data_list, transform, phase, index_dict_path, dim_fc_out): self.data_list = data_list self.transform = transform self.phase = phase self.index_dict_path = index_dict_path self.dim_fc_out = dim_fc_out self.index_dict = [] with open(index_dict_path) as f: reader = csv.reader(f) for row in reader: self.index_dict.append(row) def search_index(self, number): index = int(1000000000) for row in self.index_dict: if float(number) == float(row[0]): index = int(row[1]) break return index def float_to_array(self, num_float): num_deg = float((num_float/3.141592)*180.0) num_upper = 0.0 num_lower = 0.0 tmp_deg = float(int(num_deg)) if tmp_deg < num_deg: # 0 < num_deg num_lower = tmp_deg num_upper = num_lower + 1.0 elif num_deg < tmp_deg: # tmp_deg < 0 num_lower = tmp_deg - 1.0 num_upper = tmp_deg dist_low = math.fabs(num_deg - num_lower) dist_high = math.fabs(num_deg - num_upper) lower_ind = int(self.search_index(num_lower)) upper_ind = int(self.search_index(num_upper)) array = np.zeros(self.dim_fc_out) array[lower_ind] = dist_high array[upper_ind] = dist_low return array def __len__(self): return len(self.data_list) def __getitem__(self, index): img_path = self.data_list[index][0] roll_str = self.data_list[index][4] pitch_str = self.data_list[index][5] roll_float = float(roll_str) pitch_float = float(pitch_str) roll_list = self.float_to_array(roll_float) pitch_list = self.float_to_array(pitch_float) img_pil = Image.open(img_path) img_pil = img_pil.convert("RGB") roll_numpy = np.array(roll_list) pitch_numpy = np.array(pitch_list) img_trans, roll_trans, pitch_trans = self.transform(img_pil, roll_numpy, pitch_numpy, phase=self.phase) return img_trans, roll_trans, pitch_trans
28.621951
111
0.611845
2,248
0.957818
0
0
0
0
0
0
31
0.013208
e1b1063d345266bc6d42ef8301d5659cc8f0a43d
1,846
py
Python
scripts/darias_energy_control/moveit_traj_baseline/repulsive_potential_field.py
hjw-1014/Multi-Objective-Reactive-Motion-Planning-in-Mobile-Manipulators
9a8801e9c663174b753c4852b2313c5a3f302434
[ "MIT" ]
null
null
null
scripts/darias_energy_control/moveit_traj_baseline/repulsive_potential_field.py
hjw-1014/Multi-Objective-Reactive-Motion-Planning-in-Mobile-Manipulators
9a8801e9c663174b753c4852b2313c5a3f302434
[ "MIT" ]
null
null
null
scripts/darias_energy_control/moveit_traj_baseline/repulsive_potential_field.py
hjw-1014/Multi-Objective-Reactive-Motion-Planning-in-Mobile-Manipulators
9a8801e9c663174b753c4852b2313c5a3f302434
[ "MIT" ]
null
null
null
import numpy as np import torch import matplotlib.pyplot as plt from icecream import ic def visualize_vector_field(policy, device, min_max = [[-1,-1],[1,1]], fig_number=1): min_x = min_max[0][0] max_x = min_max[1][0] min_y = min_max[0][1] max_y = min_max[1][1] n_sample = 100 x = np.linspace(min_x, max_x, n_sample) y = np.linspace(min_y, max_y, n_sample) xy = np.meshgrid(x, y) h = np.concatenate(xy[0]) v = np.concatenate(xy[1]) hv = torch.Tensor(np.stack([h, v]).T).float() if device is not None: hv = hv.to(device) vel = policy(hv) #vel = to_numpy(vel) vel = np.nan_to_num(vel) vel_x = np.reshape(vel[:, 0], (n_sample, n_sample)) vel_y = np.reshape(vel[:, 1], (n_sample, n_sample)) speed = np.sqrt(vel_x ** 2 + vel_y ** 2) speed = speed/np.max(speed) plt.streamplot(xy[0], xy[1], vel_x, vel_y, color=speed) w = 5 Y, X = np.mgrid[-w:w:5j, -w:w:5j] ic(Y) ic(X) import numpy as np import matplotlib.pyplot as plt # # Creating dataset # x = np.arange(0, 10) # y = np.arange(0, 10) # # # Creating grids # X, Y = np.meshgrid(x, y) # # ic(X) # # ic(Y) # # # x-component to the right # u = np.ones((15, 10)) # # # y-component zero # v = -np.ones((10, 10)) # # fig = plt.figure(figsize=(12, 7)) # # # Plotting stream plot # plt.streamplot(X, Y, u, v, density=0.5) # # # show plot # # plt.show() import numpy as np import matplotlib.pyplot as plt # Creating data set w = 3 Y, X = np.mgrid[-w:w:100j, -w:w:100j] U1 = -1 - X ** 2 + Y ic(type(U1)) ic(np.shape(U1)) V1 = 1 + X - Y ** 2 ic(np.shape(V1)) U2 = -1.1 - X ** 2 + Y ic(np.shape(U1)) V2 = 2.1 + X - Y ** 2 # speed = np.sqrt(U ** 2 + V ** 2) # Creating plot fig = plt.figure(figsize=(12, 7)) plt.streamplot(X, Y, U1, V1, density=1) plt.streamplot(X, Y, U2, V2, density=0.8) # show plot plt.show()
20.977273
84
0.594258
0
0
0
0
0
0
0
0
453
0.245395
e1b18b46651e9f66ff6958a9025b0bc1b9f9aca5
3,793
py
Python
capa/features/extractors/ida/extractor.py
pombredanne/capa
b41d23930189c269608d4b705533fa45cf3c064c
[ "Apache-2.0" ]
null
null
null
capa/features/extractors/ida/extractor.py
pombredanne/capa
b41d23930189c269608d4b705533fa45cf3c064c
[ "Apache-2.0" ]
null
null
null
capa/features/extractors/ida/extractor.py
pombredanne/capa
b41d23930189c269608d4b705533fa45cf3c064c
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2020 FireEye, Inc. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: [package root]/LICENSE.txt # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and limitations under the License. import idaapi import capa.ida.helpers import capa.features.extractors.elf import capa.features.extractors.ida.file import capa.features.extractors.ida.insn import capa.features.extractors.ida.global_ import capa.features.extractors.ida.function import capa.features.extractors.ida.basicblock from capa.features.extractors.base_extractor import FeatureExtractor class FunctionHandle: """this acts like an idaapi.func_t but with __int__()""" def __init__(self, inner): self._inner = inner def __int__(self): return self.start_ea def __getattr__(self, name): return getattr(self._inner, name) class BasicBlockHandle: """this acts like an idaapi.BasicBlock but with __int__()""" def __init__(self, inner): self._inner = inner def __int__(self): return self.start_ea def __getattr__(self, name): return getattr(self._inner, name) class InstructionHandle: """this acts like an idaapi.insn_t but with __int__()""" def __init__(self, inner): self._inner = inner def __int__(self): return self.ea def __getattr__(self, name): return getattr(self._inner, name) class IdaFeatureExtractor(FeatureExtractor): def __init__(self): super(IdaFeatureExtractor, self).__init__() self.global_features = [] self.global_features.extend(capa.features.extractors.ida.global_.extract_os()) self.global_features.extend(capa.features.extractors.ida.global_.extract_arch()) def get_base_address(self): return idaapi.get_imagebase() def extract_global_features(self): yield from self.global_features def extract_file_features(self): yield from capa.features.extractors.ida.file.extract_features() def get_functions(self): import capa.features.extractors.ida.helpers as ida_helpers # data structure shared across functions yielded here. # useful for caching analysis relevant across a single workspace. ctx = {} # ignore library functions and thunk functions as identified by IDA for f in ida_helpers.get_functions(skip_thunks=True, skip_libs=True): setattr(f, "ctx", ctx) yield FunctionHandle(f) @staticmethod def get_function(ea): f = idaapi.get_func(ea) setattr(f, "ctx", {}) return FunctionHandle(f) def extract_function_features(self, f): yield from capa.features.extractors.ida.function.extract_features(f) def get_basic_blocks(self, f): import capa.features.extractors.ida.helpers as ida_helpers for bb in ida_helpers.get_function_blocks(f): yield BasicBlockHandle(bb) def extract_basic_block_features(self, f, bb): yield from capa.features.extractors.ida.basicblock.extract_features(f, bb) def get_instructions(self, f, bb): import capa.features.extractors.ida.helpers as ida_helpers for insn in ida_helpers.get_instructions_in_range(bb.start_ea, bb.end_ea): yield InstructionHandle(insn) def extract_insn_features(self, f, bb, insn): yield from capa.features.extractors.ida.insn.extract_features(f, bb, insn)
33.566372
111
0.714474
2,846
0.75033
1,441
0.37991
134
0.035328
0
0
934
0.246243
e1b1b1bf75362e9f77713c3b8bcaddbf1477de81
55
py
Python
Tests/playground.py
mbtaPredict/Main
e1c3320ff08b61355ac96f51be9e20c57372f13b
[ "MIT" ]
null
null
null
Tests/playground.py
mbtaPredict/Main
e1c3320ff08b61355ac96f51be9e20c57372f13b
[ "MIT" ]
null
null
null
Tests/playground.py
mbtaPredict/Main
e1c3320ff08b61355ac96f51be9e20c57372f13b
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt plt.plot() plt.show()
11
31
0.745455
0
0
0
0
0
0
0
0
0
0
e1b370db317e8d54c9c290cf01cbebc1cac20378
1,373
py
Python
flex/extensions/jsondata.py
AWehrhahn/flex-format
7fcc985559cd90e54d3ebde7946455aedc7293d7
[ "MIT" ]
null
null
null
flex/extensions/jsondata.py
AWehrhahn/flex-format
7fcc985559cd90e54d3ebde7946455aedc7293d7
[ "MIT" ]
null
null
null
flex/extensions/jsondata.py
AWehrhahn/flex-format
7fcc985559cd90e54d3ebde7946455aedc7293d7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import annotations from tarfile import TarInfo from typing import BinaryIO, Tuple from ..base import FlexExtension class JsonDataExtension(FlexExtension): """An extension to store simple json data""" def __init__(self, header=None, data=None, cls=None): super().__init__(header=header, cls=cls) self.data = data def _prepare(self, name: str) -> tuple[tuple[TarInfo, BinaryIO]]: cls = self.__class__ header_fname = f"{name}/header.json" data_fname = f"{name}/data.json" header_info, header_bio = cls._prepare_json(header_fname, self.header) data_info, data_bio = cls._prepare_json(data_fname, self.data) return [(header_info, header_bio), (data_info, data_bio)] @classmethod def _parse(cls, header: dict, members: dict) -> JsonDataExtension: bio = members["data.json"] data = cls._parse_json(bio) ext = cls(header=header, data=data) return ext def to_dict(self) -> dict: """Convert this extension to a dict""" obj = {"header": self.header, "data": self.data} return obj @classmethod def from_dict(cls, header: dict, data: dict) -> JsonDataExtension: """Load this extension from a dict""" arr = data["data"] obj = cls(header, arr) return obj
31.930233
78
0.640932
1,213
0.883467
0
0
423
0.308084
0
0
213
0.155135
e1b37b3b7be2be9f06bdec60a631822373a8b7f7
185
py
Python
awards/forms.py
danalvin/Django-IP3
6df0adaddf998fd4195b23ee97f81938e741215a
[ "MIT" ]
null
null
null
awards/forms.py
danalvin/Django-IP3
6df0adaddf998fd4195b23ee97f81938e741215a
[ "MIT" ]
4
2020-06-05T19:20:59.000Z
2021-09-08T00:32:49.000Z
awards/forms.py
danalvin/Django-IP3
6df0adaddf998fd4195b23ee97f81938e741215a
[ "MIT" ]
null
null
null
from django import forms from .models import Project class ProjectForm(forms.ModelForm): class Meta: model = Project exclude = ['profile', 'posted_time', 'user']
18.5
52
0.67027
128
0.691892
0
0
0
0
0
0
28
0.151351
e1b43999f4dbbac898da1e996502f381b7896fa5
72,341
py
Python
src/tale/syntax/grammar/TaleParser.py
tale-lang/tale
1779f94aa13545e58a1d5a8819b85ad02ada4144
[ "MIT" ]
17
2020-02-11T10:38:19.000Z
2020-09-22T16:36:25.000Z
src/tale/syntax/grammar/TaleParser.py
tale-lang/tale
1779f94aa13545e58a1d5a8819b85ad02ada4144
[ "MIT" ]
18
2020-02-14T20:36:25.000Z
2020-05-26T21:52:46.000Z
src/tale/syntax/grammar/TaleParser.py
tale-lang/tale
1779f94aa13545e58a1d5a8819b85ad02ada4144
[ "MIT" ]
1
2020-02-16T12:04:07.000Z
2020-02-16T12:04:07.000Z
# Generated from tale/syntax/grammar/Tale.g4 by ANTLR 4.8 # encoding: utf-8 from antlr4 import * from io import StringIO import sys if sys.version_info[1] > 5: from typing import TextIO else: from typing.io import TextIO def serializedATN(): with StringIO() as buf: buf.write("\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\3\20") buf.write("\u00f1\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7\t\7") buf.write("\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t\f\4\r\t\r\4\16") buf.write("\t\16\4\17\t\17\4\20\t\20\4\21\t\21\4\22\t\22\4\23\t\23") buf.write("\4\24\t\24\4\25\t\25\4\26\t\26\4\27\t\27\4\30\t\30\4\31") buf.write("\t\31\4\32\t\32\4\33\t\33\4\34\t\34\4\35\t\35\4\36\t\36") buf.write("\4\37\t\37\4 \t \4!\t!\3\2\3\2\7\2E\n\2\f\2\16\2H\13\2") buf.write("\3\2\3\2\3\3\3\3\5\3N\n\3\3\4\3\4\3\4\3\4\3\5\3\5\3\5") buf.write("\3\5\3\5\5\5Y\n\5\3\6\3\6\3\6\3\7\3\7\3\7\3\b\3\b\3\b") buf.write("\3\b\3\t\5\tf\n\t\3\t\3\t\3\t\6\tk\n\t\r\t\16\tl\3\n\3") buf.write("\n\3\13\3\13\5\13s\n\13\3\f\3\f\3\f\6\fx\n\f\r\f\16\f") buf.write("y\3\r\3\r\5\r~\n\r\3\16\3\16\3\16\3\16\5\16\u0084\n\16") buf.write("\3\16\3\16\3\17\3\17\5\17\u008a\n\17\3\20\3\20\3\21\3") buf.write("\21\3\22\3\22\5\22\u0092\n\22\3\23\3\23\3\24\3\24\3\24") buf.write("\6\24\u0099\n\24\r\24\16\24\u009a\3\24\3\24\3\25\3\25") buf.write("\3\25\3\25\3\25\5\25\u00a4\n\25\3\26\3\26\3\26\3\26\3") buf.write("\26\3\26\7\26\u00ac\n\26\f\26\16\26\u00af\13\26\3\27\3") buf.write("\27\3\27\3\27\3\27\3\27\3\27\5\27\u00b8\n\27\3\30\3\30") buf.write("\3\30\3\30\3\30\3\30\3\30\3\30\7\30\u00c2\n\30\f\30\16") buf.write("\30\u00c5\13\30\3\31\3\31\5\31\u00c9\n\31\3\32\5\32\u00cc") buf.write("\n\32\3\32\3\32\3\32\3\32\6\32\u00d2\n\32\r\32\16\32\u00d3") buf.write("\3\33\3\33\3\33\5\33\u00d9\n\33\3\34\3\34\3\35\3\35\3") buf.write("\35\7\35\u00e0\n\35\f\35\16\35\u00e3\13\35\3\36\3\36\5") buf.write("\36\u00e7\n\36\3\37\3\37\5\37\u00eb\n\37\3 \3 \3!\3!\3") buf.write("!\3\u00e1\4*.\"\2\4\6\b\n\f\16\20\22\24\26\30\32\34\36") buf.write(" \"$&(*,.\60\62\64\668:<>@\2\2\2\u00f0\2F\3\2\2\2\4M\3") buf.write("\2\2\2\6O\3\2\2\2\bX\3\2\2\2\nZ\3\2\2\2\f]\3\2\2\2\16") buf.write("`\3\2\2\2\20e\3\2\2\2\22n\3\2\2\2\24r\3\2\2\2\26t\3\2") buf.write("\2\2\30}\3\2\2\2\32\177\3\2\2\2\34\u0089\3\2\2\2\36\u008b") buf.write("\3\2\2\2 \u008d\3\2\2\2\"\u0091\3\2\2\2$\u0093\3\2\2\2") buf.write("&\u0095\3\2\2\2(\u00a3\3\2\2\2*\u00a5\3\2\2\2,\u00b7\3") buf.write("\2\2\2.\u00b9\3\2\2\2\60\u00c8\3\2\2\2\62\u00cb\3\2\2") buf.write("\2\64\u00d8\3\2\2\2\66\u00da\3\2\2\28\u00dc\3\2\2\2:\u00e6") buf.write("\3\2\2\2<\u00ea\3\2\2\2>\u00ec\3\2\2\2@\u00ee\3\2\2\2") buf.write("BE\7\r\2\2CE\5\4\3\2DB\3\2\2\2DC\3\2\2\2EH\3\2\2\2FD\3") buf.write("\2\2\2FG\3\2\2\2GI\3\2\2\2HF\3\2\2\2IJ\7\2\2\3J\3\3\2") buf.write("\2\2KN\5\6\4\2LN\5(\25\2MK\3\2\2\2ML\3\2\2\2N\5\3\2\2") buf.write("\2OP\5\b\5\2PQ\7\3\2\2QR\5\"\22\2R\7\3\2\2\2SY\5\n\6\2") buf.write("TY\5\f\7\2UY\5\16\b\2VY\5\20\t\2WY\5\22\n\2XS\3\2\2\2") buf.write("XT\3\2\2\2XU\3\2\2\2XV\3\2\2\2XW\3\2\2\2Y\t\3\2\2\2Z[") buf.write("\5\24\13\2[\\\7\b\2\2\\\13\3\2\2\2]^\7\n\2\2^_\5\30\r") buf.write("\2_\r\3\2\2\2`a\5\24\13\2ab\7\n\2\2bc\5\24\13\2c\17\3") buf.write("\2\2\2df\5\24\13\2ed\3\2\2\2ef\3\2\2\2fj\3\2\2\2gh\7\b") buf.write("\2\2hi\7\4\2\2ik\5\24\13\2jg\3\2\2\2kl\3\2\2\2lj\3\2\2") buf.write("\2lm\3\2\2\2m\21\3\2\2\2no\7\b\2\2o\23\3\2\2\2ps\5\30") buf.write("\r\2qs\5\26\f\2rp\3\2\2\2rq\3\2\2\2s\25\3\2\2\2tw\5\30") buf.write("\r\2uv\7\5\2\2vx\5\30\r\2wu\3\2\2\2xy\3\2\2\2yw\3\2\2") buf.write("\2yz\3\2\2\2z\27\3\2\2\2{~\5\32\16\2|~\5\34\17\2}{\3\2") buf.write("\2\2}|\3\2\2\2~\31\3\2\2\2\177\u0080\7\6\2\2\u0080\u0083") buf.write("\5\36\20\2\u0081\u0082\7\4\2\2\u0082\u0084\5 \21\2\u0083") buf.write("\u0081\3\2\2\2\u0083\u0084\3\2\2\2\u0084\u0085\3\2\2\2") buf.write("\u0085\u0086\7\7\2\2\u0086\33\3\2\2\2\u0087\u008a\7\b") buf.write("\2\2\u0088\u008a\5<\37\2\u0089\u0087\3\2\2\2\u0089\u0088") buf.write("\3\2\2\2\u008a\35\3\2\2\2\u008b\u008c\7\b\2\2\u008c\37") buf.write("\3\2\2\2\u008d\u008e\7\b\2\2\u008e!\3\2\2\2\u008f\u0092") buf.write("\5$\23\2\u0090\u0092\5&\24\2\u0091\u008f\3\2\2\2\u0091") buf.write("\u0090\3\2\2\2\u0092#\3\2\2\2\u0093\u0094\5(\25\2\u0094") buf.write("%\3\2\2\2\u0095\u0098\7\17\2\2\u0096\u0099\7\r\2\2\u0097") buf.write("\u0099\5\4\3\2\u0098\u0096\3\2\2\2\u0098\u0097\3\2\2\2") buf.write("\u0099\u009a\3\2\2\2\u009a\u0098\3\2\2\2\u009a\u009b\3") buf.write("\2\2\2\u009b\u009c\3\2\2\2\u009c\u009d\7\20\2\2\u009d") buf.write("\'\3\2\2\2\u009e\u00a4\5*\26\2\u009f\u00a4\5,\27\2\u00a0") buf.write("\u00a4\5.\30\2\u00a1\u00a4\5\62\32\2\u00a2\u00a4\58\35") buf.write("\2\u00a3\u009e\3\2\2\2\u00a3\u009f\3\2\2\2\u00a3\u00a0") buf.write("\3\2\2\2\u00a3\u00a1\3\2\2\2\u00a3\u00a2\3\2\2\2\u00a4") buf.write(")\3\2\2\2\u00a5\u00a6\b\26\1\2\u00a6\u00a7\58\35\2\u00a7") buf.write("\u00a8\7\b\2\2\u00a8\u00ad\3\2\2\2\u00a9\u00aa\f\4\2\2") buf.write("\u00aa\u00ac\7\b\2\2\u00ab\u00a9\3\2\2\2\u00ac\u00af\3") buf.write("\2\2\2\u00ad\u00ab\3\2\2\2\u00ad\u00ae\3\2\2\2\u00ae+") buf.write("\3\2\2\2\u00af\u00ad\3\2\2\2\u00b0\u00b1\7\n\2\2\u00b1") buf.write("\u00b8\5:\36\2\u00b2\u00b3\7\n\2\2\u00b3\u00b4\7\6\2\2") buf.write("\u00b4\u00b5\5(\25\2\u00b5\u00b6\7\7\2\2\u00b6\u00b8\3") buf.write("\2\2\2\u00b7\u00b0\3\2\2\2\u00b7\u00b2\3\2\2\2\u00b8-") buf.write("\3\2\2\2\u00b9\u00ba\b\30\1\2\u00ba\u00bb\5\60\31\2\u00bb") buf.write("\u00bc\7\n\2\2\u00bc\u00bd\5\60\31\2\u00bd\u00c3\3\2\2") buf.write("\2\u00be\u00bf\f\4\2\2\u00bf\u00c0\7\n\2\2\u00c0\u00c2") buf.write("\5\60\31\2\u00c1\u00be\3\2\2\2\u00c2\u00c5\3\2\2\2\u00c3") buf.write("\u00c1\3\2\2\2\u00c3\u00c4\3\2\2\2\u00c4/\3\2\2\2\u00c5") buf.write("\u00c3\3\2\2\2\u00c6\u00c9\5*\26\2\u00c7\u00c9\58\35\2") buf.write("\u00c8\u00c6\3\2\2\2\u00c8\u00c7\3\2\2\2\u00c9\61\3\2") buf.write("\2\2\u00ca\u00cc\5\64\33\2\u00cb\u00ca\3\2\2\2\u00cb\u00cc") buf.write("\3\2\2\2\u00cc\u00d1\3\2\2\2\u00cd\u00ce\5\66\34\2\u00ce") buf.write("\u00cf\7\4\2\2\u00cf\u00d0\5\64\33\2\u00d0\u00d2\3\2\2") buf.write("\2\u00d1\u00cd\3\2\2\2\u00d2\u00d3\3\2\2\2\u00d3\u00d1") buf.write("\3\2\2\2\u00d3\u00d4\3\2\2\2\u00d4\63\3\2\2\2\u00d5\u00d9") buf.write("\5*\26\2\u00d6\u00d9\5.\30\2\u00d7\u00d9\58\35\2\u00d8") buf.write("\u00d5\3\2\2\2\u00d8\u00d6\3\2\2\2\u00d8\u00d7\3\2\2\2") buf.write("\u00d9\65\3\2\2\2\u00da\u00db\7\b\2\2\u00db\67\3\2\2\2") buf.write("\u00dc\u00e1\5:\36\2\u00dd\u00de\7\5\2\2\u00de\u00e0\5") buf.write(":\36\2\u00df\u00dd\3\2\2\2\u00e0\u00e3\3\2\2\2\u00e1\u00e2") buf.write("\3\2\2\2\u00e1\u00df\3\2\2\2\u00e29\3\2\2\2\u00e3\u00e1") buf.write("\3\2\2\2\u00e4\u00e7\7\b\2\2\u00e5\u00e7\5<\37\2\u00e6") buf.write("\u00e4\3\2\2\2\u00e6\u00e5\3\2\2\2\u00e7;\3\2\2\2\u00e8") buf.write("\u00eb\5> \2\u00e9\u00eb\5@!\2\u00ea\u00e8\3\2\2\2\u00ea") buf.write("\u00e9\3\2\2\2\u00eb=\3\2\2\2\u00ec\u00ed\7\t\2\2\u00ed") buf.write("?\3\2\2\2\u00ee\u00ef\7\13\2\2\u00efA\3\2\2\2\33DFMXe") buf.write("lry}\u0083\u0089\u0091\u0098\u009a\u00a3\u00ad\u00b7\u00c3") buf.write("\u00c8\u00cb\u00d3\u00d8\u00e1\u00e6\u00ea") return buf.getvalue() class TaleParser ( Parser ): grammarFileName = "Tale.g4" atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] sharedContextCache = PredictionContextCache() literalNames = [ "<INVALID>", "'='", "':'", "','", "'('", "')'" ] symbolicNames = [ "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>", "IDENTIFIER", "NUMBER", "OPERATOR", "STRING", "WS", "NEWLINE", "SKIP_", "INDENT", "DEDENT" ] RULE_program = 0 RULE_statement = 1 RULE_assignment = 2 RULE_form = 3 RULE_unaryForm = 4 RULE_prefixOperatorForm = 5 RULE_binaryForm = 6 RULE_keywordForm = 7 RULE_primitiveForm = 8 RULE_parameter = 9 RULE_tupleParameter = 10 RULE_singleParameter = 11 RULE_simpleParameter = 12 RULE_patternMatchingParameter = 13 RULE_parameterName = 14 RULE_parameterType = 15 RULE_assignmentBody = 16 RULE_simpleAssignmentBody = 17 RULE_compoundAssignmentBody = 18 RULE_expression = 19 RULE_unary = 20 RULE_prefixOperator = 21 RULE_binary = 22 RULE_binaryOperand = 23 RULE_keyword = 24 RULE_keywordArgument = 25 RULE_keywordName = 26 RULE_primitive = 27 RULE_primitiveItem = 28 RULE_literal = 29 RULE_intLiteral = 30 RULE_stringLiteral = 31 ruleNames = [ "program", "statement", "assignment", "form", "unaryForm", "prefixOperatorForm", "binaryForm", "keywordForm", "primitiveForm", "parameter", "tupleParameter", "singleParameter", "simpleParameter", "patternMatchingParameter", "parameterName", "parameterType", "assignmentBody", "simpleAssignmentBody", "compoundAssignmentBody", "expression", "unary", "prefixOperator", "binary", "binaryOperand", "keyword", "keywordArgument", "keywordName", "primitive", "primitiveItem", "literal", "intLiteral", "stringLiteral" ] EOF = Token.EOF T__0=1 T__1=2 T__2=3 T__3=4 T__4=5 IDENTIFIER=6 NUMBER=7 OPERATOR=8 STRING=9 WS=10 NEWLINE=11 SKIP_=12 INDENT=13 DEDENT=14 def __init__(self, input:TokenStream, output:TextIO = sys.stdout): super().__init__(input, output) self.checkVersion("4.8") self._interp = ParserATNSimulator(self, self.atn, self.decisionsToDFA, self.sharedContextCache) self._predicates = None class ProgramContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def EOF(self): return self.getToken(TaleParser.EOF, 0) def NEWLINE(self, i:int=None): if i is None: return self.getTokens(TaleParser.NEWLINE) else: return self.getToken(TaleParser.NEWLINE, i) def statement(self, i:int=None): if i is None: return self.getTypedRuleContexts(TaleParser.StatementContext) else: return self.getTypedRuleContext(TaleParser.StatementContext,i) def getRuleIndex(self): return TaleParser.RULE_program def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterProgram" ): listener.enterProgram(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitProgram" ): listener.exitProgram(self) def program(self): localctx = TaleParser.ProgramContext(self, self._ctx, self.state) self.enterRule(localctx, 0, self.RULE_program) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 68 self._errHandler.sync(self) _la = self._input.LA(1) while (((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << TaleParser.T__3) | (1 << TaleParser.IDENTIFIER) | (1 << TaleParser.NUMBER) | (1 << TaleParser.OPERATOR) | (1 << TaleParser.STRING) | (1 << TaleParser.NEWLINE))) != 0): self.state = 66 self._errHandler.sync(self) token = self._input.LA(1) if token in [TaleParser.NEWLINE]: self.state = 64 self.match(TaleParser.NEWLINE) pass elif token in [TaleParser.T__3, TaleParser.IDENTIFIER, TaleParser.NUMBER, TaleParser.OPERATOR, TaleParser.STRING]: self.state = 65 self.statement() pass else: raise NoViableAltException(self) self.state = 70 self._errHandler.sync(self) _la = self._input.LA(1) self.state = 71 self.match(TaleParser.EOF) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class StatementContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def assignment(self): return self.getTypedRuleContext(TaleParser.AssignmentContext,0) def expression(self): return self.getTypedRuleContext(TaleParser.ExpressionContext,0) def getRuleIndex(self): return TaleParser.RULE_statement def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterStatement" ): listener.enterStatement(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitStatement" ): listener.exitStatement(self) def statement(self): localctx = TaleParser.StatementContext(self, self._ctx, self.state) self.enterRule(localctx, 2, self.RULE_statement) try: self.state = 75 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,2,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 73 self.assignment() pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 74 self.expression() pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class AssignmentContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def form(self): return self.getTypedRuleContext(TaleParser.FormContext,0) def assignmentBody(self): return self.getTypedRuleContext(TaleParser.AssignmentBodyContext,0) def getRuleIndex(self): return TaleParser.RULE_assignment def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterAssignment" ): listener.enterAssignment(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitAssignment" ): listener.exitAssignment(self) def assignment(self): localctx = TaleParser.AssignmentContext(self, self._ctx, self.state) self.enterRule(localctx, 4, self.RULE_assignment) try: self.enterOuterAlt(localctx, 1) self.state = 77 self.form() self.state = 78 self.match(TaleParser.T__0) self.state = 79 self.assignmentBody() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class FormContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def unaryForm(self): return self.getTypedRuleContext(TaleParser.UnaryFormContext,0) def prefixOperatorForm(self): return self.getTypedRuleContext(TaleParser.PrefixOperatorFormContext,0) def binaryForm(self): return self.getTypedRuleContext(TaleParser.BinaryFormContext,0) def keywordForm(self): return self.getTypedRuleContext(TaleParser.KeywordFormContext,0) def primitiveForm(self): return self.getTypedRuleContext(TaleParser.PrimitiveFormContext,0) def getRuleIndex(self): return TaleParser.RULE_form def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterForm" ): listener.enterForm(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitForm" ): listener.exitForm(self) def form(self): localctx = TaleParser.FormContext(self, self._ctx, self.state) self.enterRule(localctx, 6, self.RULE_form) try: self.state = 86 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,3,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 81 self.unaryForm() pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 82 self.prefixOperatorForm() pass elif la_ == 3: self.enterOuterAlt(localctx, 3) self.state = 83 self.binaryForm() pass elif la_ == 4: self.enterOuterAlt(localctx, 4) self.state = 84 self.keywordForm() pass elif la_ == 5: self.enterOuterAlt(localctx, 5) self.state = 85 self.primitiveForm() pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class UnaryFormContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def parameter(self): return self.getTypedRuleContext(TaleParser.ParameterContext,0) def IDENTIFIER(self): return self.getToken(TaleParser.IDENTIFIER, 0) def getRuleIndex(self): return TaleParser.RULE_unaryForm def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterUnaryForm" ): listener.enterUnaryForm(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitUnaryForm" ): listener.exitUnaryForm(self) def unaryForm(self): localctx = TaleParser.UnaryFormContext(self, self._ctx, self.state) self.enterRule(localctx, 8, self.RULE_unaryForm) try: self.enterOuterAlt(localctx, 1) self.state = 88 self.parameter() self.state = 89 self.match(TaleParser.IDENTIFIER) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class PrefixOperatorFormContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def OPERATOR(self): return self.getToken(TaleParser.OPERATOR, 0) def singleParameter(self): return self.getTypedRuleContext(TaleParser.SingleParameterContext,0) def getRuleIndex(self): return TaleParser.RULE_prefixOperatorForm def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterPrefixOperatorForm" ): listener.enterPrefixOperatorForm(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitPrefixOperatorForm" ): listener.exitPrefixOperatorForm(self) def prefixOperatorForm(self): localctx = TaleParser.PrefixOperatorFormContext(self, self._ctx, self.state) self.enterRule(localctx, 10, self.RULE_prefixOperatorForm) try: self.enterOuterAlt(localctx, 1) self.state = 91 self.match(TaleParser.OPERATOR) self.state = 92 self.singleParameter() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class BinaryFormContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def parameter(self, i:int=None): if i is None: return self.getTypedRuleContexts(TaleParser.ParameterContext) else: return self.getTypedRuleContext(TaleParser.ParameterContext,i) def OPERATOR(self): return self.getToken(TaleParser.OPERATOR, 0) def getRuleIndex(self): return TaleParser.RULE_binaryForm def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterBinaryForm" ): listener.enterBinaryForm(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitBinaryForm" ): listener.exitBinaryForm(self) def binaryForm(self): localctx = TaleParser.BinaryFormContext(self, self._ctx, self.state) self.enterRule(localctx, 12, self.RULE_binaryForm) try: self.enterOuterAlt(localctx, 1) self.state = 94 self.parameter() self.state = 95 self.match(TaleParser.OPERATOR) self.state = 96 self.parameter() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class KeywordFormContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def parameter(self, i:int=None): if i is None: return self.getTypedRuleContexts(TaleParser.ParameterContext) else: return self.getTypedRuleContext(TaleParser.ParameterContext,i) def IDENTIFIER(self, i:int=None): if i is None: return self.getTokens(TaleParser.IDENTIFIER) else: return self.getToken(TaleParser.IDENTIFIER, i) def getRuleIndex(self): return TaleParser.RULE_keywordForm def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterKeywordForm" ): listener.enterKeywordForm(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitKeywordForm" ): listener.exitKeywordForm(self) def keywordForm(self): localctx = TaleParser.KeywordFormContext(self, self._ctx, self.state) self.enterRule(localctx, 14, self.RULE_keywordForm) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 99 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,4,self._ctx) if la_ == 1: self.state = 98 self.parameter() self.state = 104 self._errHandler.sync(self) _la = self._input.LA(1) while True: self.state = 101 self.match(TaleParser.IDENTIFIER) self.state = 102 self.match(TaleParser.T__1) self.state = 103 self.parameter() self.state = 106 self._errHandler.sync(self) _la = self._input.LA(1) if not (_la==TaleParser.IDENTIFIER): break except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class PrimitiveFormContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def IDENTIFIER(self): return self.getToken(TaleParser.IDENTIFIER, 0) def getRuleIndex(self): return TaleParser.RULE_primitiveForm def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterPrimitiveForm" ): listener.enterPrimitiveForm(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitPrimitiveForm" ): listener.exitPrimitiveForm(self) def primitiveForm(self): localctx = TaleParser.PrimitiveFormContext(self, self._ctx, self.state) self.enterRule(localctx, 16, self.RULE_primitiveForm) try: self.enterOuterAlt(localctx, 1) self.state = 108 self.match(TaleParser.IDENTIFIER) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class ParameterContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def singleParameter(self): return self.getTypedRuleContext(TaleParser.SingleParameterContext,0) def tupleParameter(self): return self.getTypedRuleContext(TaleParser.TupleParameterContext,0) def getRuleIndex(self): return TaleParser.RULE_parameter def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterParameter" ): listener.enterParameter(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitParameter" ): listener.exitParameter(self) def parameter(self): localctx = TaleParser.ParameterContext(self, self._ctx, self.state) self.enterRule(localctx, 18, self.RULE_parameter) try: self.state = 112 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,6,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 110 self.singleParameter() pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 111 self.tupleParameter() pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class TupleParameterContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def singleParameter(self, i:int=None): if i is None: return self.getTypedRuleContexts(TaleParser.SingleParameterContext) else: return self.getTypedRuleContext(TaleParser.SingleParameterContext,i) def getRuleIndex(self): return TaleParser.RULE_tupleParameter def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterTupleParameter" ): listener.enterTupleParameter(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitTupleParameter" ): listener.exitTupleParameter(self) def tupleParameter(self): localctx = TaleParser.TupleParameterContext(self, self._ctx, self.state) self.enterRule(localctx, 20, self.RULE_tupleParameter) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 114 self.singleParameter() self.state = 117 self._errHandler.sync(self) _la = self._input.LA(1) while True: self.state = 115 self.match(TaleParser.T__2) self.state = 116 self.singleParameter() self.state = 119 self._errHandler.sync(self) _la = self._input.LA(1) if not (_la==TaleParser.T__2): break except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class SingleParameterContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def simpleParameter(self): return self.getTypedRuleContext(TaleParser.SimpleParameterContext,0) def patternMatchingParameter(self): return self.getTypedRuleContext(TaleParser.PatternMatchingParameterContext,0) def getRuleIndex(self): return TaleParser.RULE_singleParameter def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterSingleParameter" ): listener.enterSingleParameter(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitSingleParameter" ): listener.exitSingleParameter(self) def singleParameter(self): localctx = TaleParser.SingleParameterContext(self, self._ctx, self.state) self.enterRule(localctx, 22, self.RULE_singleParameter) try: self.state = 123 self._errHandler.sync(self) token = self._input.LA(1) if token in [TaleParser.T__3]: self.enterOuterAlt(localctx, 1) self.state = 121 self.simpleParameter() pass elif token in [TaleParser.IDENTIFIER, TaleParser.NUMBER, TaleParser.STRING]: self.enterOuterAlt(localctx, 2) self.state = 122 self.patternMatchingParameter() pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class SimpleParameterContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def parameterName(self): return self.getTypedRuleContext(TaleParser.ParameterNameContext,0) def parameterType(self): return self.getTypedRuleContext(TaleParser.ParameterTypeContext,0) def getRuleIndex(self): return TaleParser.RULE_simpleParameter def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterSimpleParameter" ): listener.enterSimpleParameter(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitSimpleParameter" ): listener.exitSimpleParameter(self) def simpleParameter(self): localctx = TaleParser.SimpleParameterContext(self, self._ctx, self.state) self.enterRule(localctx, 24, self.RULE_simpleParameter) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 125 self.match(TaleParser.T__3) self.state = 126 self.parameterName() self.state = 129 self._errHandler.sync(self) _la = self._input.LA(1) if _la==TaleParser.T__1: self.state = 127 self.match(TaleParser.T__1) self.state = 128 self.parameterType() self.state = 131 self.match(TaleParser.T__4) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class PatternMatchingParameterContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def IDENTIFIER(self): return self.getToken(TaleParser.IDENTIFIER, 0) def literal(self): return self.getTypedRuleContext(TaleParser.LiteralContext,0) def getRuleIndex(self): return TaleParser.RULE_patternMatchingParameter def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterPatternMatchingParameter" ): listener.enterPatternMatchingParameter(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitPatternMatchingParameter" ): listener.exitPatternMatchingParameter(self) def patternMatchingParameter(self): localctx = TaleParser.PatternMatchingParameterContext(self, self._ctx, self.state) self.enterRule(localctx, 26, self.RULE_patternMatchingParameter) try: self.state = 135 self._errHandler.sync(self) token = self._input.LA(1) if token in [TaleParser.IDENTIFIER]: self.enterOuterAlt(localctx, 1) self.state = 133 self.match(TaleParser.IDENTIFIER) pass elif token in [TaleParser.NUMBER, TaleParser.STRING]: self.enterOuterAlt(localctx, 2) self.state = 134 self.literal() pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class ParameterNameContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def IDENTIFIER(self): return self.getToken(TaleParser.IDENTIFIER, 0) def getRuleIndex(self): return TaleParser.RULE_parameterName def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterParameterName" ): listener.enterParameterName(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitParameterName" ): listener.exitParameterName(self) def parameterName(self): localctx = TaleParser.ParameterNameContext(self, self._ctx, self.state) self.enterRule(localctx, 28, self.RULE_parameterName) try: self.enterOuterAlt(localctx, 1) self.state = 137 self.match(TaleParser.IDENTIFIER) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class ParameterTypeContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def IDENTIFIER(self): return self.getToken(TaleParser.IDENTIFIER, 0) def getRuleIndex(self): return TaleParser.RULE_parameterType def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterParameterType" ): listener.enterParameterType(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitParameterType" ): listener.exitParameterType(self) def parameterType(self): localctx = TaleParser.ParameterTypeContext(self, self._ctx, self.state) self.enterRule(localctx, 30, self.RULE_parameterType) try: self.enterOuterAlt(localctx, 1) self.state = 139 self.match(TaleParser.IDENTIFIER) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class AssignmentBodyContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def simpleAssignmentBody(self): return self.getTypedRuleContext(TaleParser.SimpleAssignmentBodyContext,0) def compoundAssignmentBody(self): return self.getTypedRuleContext(TaleParser.CompoundAssignmentBodyContext,0) def getRuleIndex(self): return TaleParser.RULE_assignmentBody def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterAssignmentBody" ): listener.enterAssignmentBody(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitAssignmentBody" ): listener.exitAssignmentBody(self) def assignmentBody(self): localctx = TaleParser.AssignmentBodyContext(self, self._ctx, self.state) self.enterRule(localctx, 32, self.RULE_assignmentBody) try: self.state = 143 self._errHandler.sync(self) token = self._input.LA(1) if token in [TaleParser.IDENTIFIER, TaleParser.NUMBER, TaleParser.OPERATOR, TaleParser.STRING]: self.enterOuterAlt(localctx, 1) self.state = 141 self.simpleAssignmentBody() pass elif token in [TaleParser.INDENT]: self.enterOuterAlt(localctx, 2) self.state = 142 self.compoundAssignmentBody() pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class SimpleAssignmentBodyContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def expression(self): return self.getTypedRuleContext(TaleParser.ExpressionContext,0) def getRuleIndex(self): return TaleParser.RULE_simpleAssignmentBody def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterSimpleAssignmentBody" ): listener.enterSimpleAssignmentBody(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitSimpleAssignmentBody" ): listener.exitSimpleAssignmentBody(self) def simpleAssignmentBody(self): localctx = TaleParser.SimpleAssignmentBodyContext(self, self._ctx, self.state) self.enterRule(localctx, 34, self.RULE_simpleAssignmentBody) try: self.enterOuterAlt(localctx, 1) self.state = 145 self.expression() except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class CompoundAssignmentBodyContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def INDENT(self): return self.getToken(TaleParser.INDENT, 0) def DEDENT(self): return self.getToken(TaleParser.DEDENT, 0) def NEWLINE(self, i:int=None): if i is None: return self.getTokens(TaleParser.NEWLINE) else: return self.getToken(TaleParser.NEWLINE, i) def statement(self, i:int=None): if i is None: return self.getTypedRuleContexts(TaleParser.StatementContext) else: return self.getTypedRuleContext(TaleParser.StatementContext,i) def getRuleIndex(self): return TaleParser.RULE_compoundAssignmentBody def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterCompoundAssignmentBody" ): listener.enterCompoundAssignmentBody(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitCompoundAssignmentBody" ): listener.exitCompoundAssignmentBody(self) def compoundAssignmentBody(self): localctx = TaleParser.CompoundAssignmentBodyContext(self, self._ctx, self.state) self.enterRule(localctx, 36, self.RULE_compoundAssignmentBody) self._la = 0 # Token type try: self.enterOuterAlt(localctx, 1) self.state = 147 self.match(TaleParser.INDENT) self.state = 150 self._errHandler.sync(self) _la = self._input.LA(1) while True: self.state = 150 self._errHandler.sync(self) token = self._input.LA(1) if token in [TaleParser.NEWLINE]: self.state = 148 self.match(TaleParser.NEWLINE) pass elif token in [TaleParser.T__3, TaleParser.IDENTIFIER, TaleParser.NUMBER, TaleParser.OPERATOR, TaleParser.STRING]: self.state = 149 self.statement() pass else: raise NoViableAltException(self) self.state = 152 self._errHandler.sync(self) _la = self._input.LA(1) if not ((((_la) & ~0x3f) == 0 and ((1 << _la) & ((1 << TaleParser.T__3) | (1 << TaleParser.IDENTIFIER) | (1 << TaleParser.NUMBER) | (1 << TaleParser.OPERATOR) | (1 << TaleParser.STRING) | (1 << TaleParser.NEWLINE))) != 0)): break self.state = 154 self.match(TaleParser.DEDENT) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class ExpressionContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def unary(self): return self.getTypedRuleContext(TaleParser.UnaryContext,0) def prefixOperator(self): return self.getTypedRuleContext(TaleParser.PrefixOperatorContext,0) def binary(self): return self.getTypedRuleContext(TaleParser.BinaryContext,0) def keyword(self): return self.getTypedRuleContext(TaleParser.KeywordContext,0) def primitive(self): return self.getTypedRuleContext(TaleParser.PrimitiveContext,0) def getRuleIndex(self): return TaleParser.RULE_expression def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterExpression" ): listener.enterExpression(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitExpression" ): listener.exitExpression(self) def expression(self): localctx = TaleParser.ExpressionContext(self, self._ctx, self.state) self.enterRule(localctx, 38, self.RULE_expression) try: self.state = 161 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,14,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 156 self.unary(0) pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 157 self.prefixOperator() pass elif la_ == 3: self.enterOuterAlt(localctx, 3) self.state = 158 self.binary(0) pass elif la_ == 4: self.enterOuterAlt(localctx, 4) self.state = 159 self.keyword() pass elif la_ == 5: self.enterOuterAlt(localctx, 5) self.state = 160 self.primitive() pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class UnaryContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def primitive(self): return self.getTypedRuleContext(TaleParser.PrimitiveContext,0) def IDENTIFIER(self): return self.getToken(TaleParser.IDENTIFIER, 0) def unary(self): return self.getTypedRuleContext(TaleParser.UnaryContext,0) def getRuleIndex(self): return TaleParser.RULE_unary def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterUnary" ): listener.enterUnary(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitUnary" ): listener.exitUnary(self) def unary(self, _p:int=0): _parentctx = self._ctx _parentState = self.state localctx = TaleParser.UnaryContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 40 self.enterRecursionRule(localctx, 40, self.RULE_unary, _p) try: self.enterOuterAlt(localctx, 1) self.state = 164 self.primitive() self.state = 165 self.match(TaleParser.IDENTIFIER) self._ctx.stop = self._input.LT(-1) self.state = 171 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,15,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx localctx = TaleParser.UnaryContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_unary) self.state = 167 if not self.precpred(self._ctx, 2): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, "self.precpred(self._ctx, 2)") self.state = 168 self.match(TaleParser.IDENTIFIER) self.state = 173 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,15,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx class PrefixOperatorContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def OPERATOR(self): return self.getToken(TaleParser.OPERATOR, 0) def primitiveItem(self): return self.getTypedRuleContext(TaleParser.PrimitiveItemContext,0) def expression(self): return self.getTypedRuleContext(TaleParser.ExpressionContext,0) def getRuleIndex(self): return TaleParser.RULE_prefixOperator def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterPrefixOperator" ): listener.enterPrefixOperator(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitPrefixOperator" ): listener.exitPrefixOperator(self) def prefixOperator(self): localctx = TaleParser.PrefixOperatorContext(self, self._ctx, self.state) self.enterRule(localctx, 42, self.RULE_prefixOperator) try: self.state = 181 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,16,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 174 self.match(TaleParser.OPERATOR) self.state = 175 self.primitiveItem() pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 176 self.match(TaleParser.OPERATOR) self.state = 177 self.match(TaleParser.T__3) self.state = 178 self.expression() self.state = 179 self.match(TaleParser.T__4) pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class BinaryContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def binaryOperand(self, i:int=None): if i is None: return self.getTypedRuleContexts(TaleParser.BinaryOperandContext) else: return self.getTypedRuleContext(TaleParser.BinaryOperandContext,i) def OPERATOR(self): return self.getToken(TaleParser.OPERATOR, 0) def binary(self): return self.getTypedRuleContext(TaleParser.BinaryContext,0) def getRuleIndex(self): return TaleParser.RULE_binary def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterBinary" ): listener.enterBinary(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitBinary" ): listener.exitBinary(self) def binary(self, _p:int=0): _parentctx = self._ctx _parentState = self.state localctx = TaleParser.BinaryContext(self, self._ctx, _parentState) _prevctx = localctx _startState = 44 self.enterRecursionRule(localctx, 44, self.RULE_binary, _p) try: self.enterOuterAlt(localctx, 1) self.state = 184 self.binaryOperand() self.state = 185 self.match(TaleParser.OPERATOR) self.state = 186 self.binaryOperand() self._ctx.stop = self._input.LT(-1) self.state = 193 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,17,self._ctx) while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1: if self._parseListeners is not None: self.triggerExitRuleEvent() _prevctx = localctx localctx = TaleParser.BinaryContext(self, _parentctx, _parentState) self.pushNewRecursionContext(localctx, _startState, self.RULE_binary) self.state = 188 if not self.precpred(self._ctx, 2): from antlr4.error.Errors import FailedPredicateException raise FailedPredicateException(self, "self.precpred(self._ctx, 2)") self.state = 189 self.match(TaleParser.OPERATOR) self.state = 190 self.binaryOperand() self.state = 195 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,17,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.unrollRecursionContexts(_parentctx) return localctx class BinaryOperandContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def unary(self): return self.getTypedRuleContext(TaleParser.UnaryContext,0) def primitive(self): return self.getTypedRuleContext(TaleParser.PrimitiveContext,0) def getRuleIndex(self): return TaleParser.RULE_binaryOperand def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterBinaryOperand" ): listener.enterBinaryOperand(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitBinaryOperand" ): listener.exitBinaryOperand(self) def binaryOperand(self): localctx = TaleParser.BinaryOperandContext(self, self._ctx, self.state) self.enterRule(localctx, 46, self.RULE_binaryOperand) try: self.state = 198 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,18,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 196 self.unary(0) pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 197 self.primitive() pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class KeywordContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def keywordArgument(self, i:int=None): if i is None: return self.getTypedRuleContexts(TaleParser.KeywordArgumentContext) else: return self.getTypedRuleContext(TaleParser.KeywordArgumentContext,i) def keywordName(self, i:int=None): if i is None: return self.getTypedRuleContexts(TaleParser.KeywordNameContext) else: return self.getTypedRuleContext(TaleParser.KeywordNameContext,i) def getRuleIndex(self): return TaleParser.RULE_keyword def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterKeyword" ): listener.enterKeyword(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitKeyword" ): listener.exitKeyword(self) def keyword(self): localctx = TaleParser.KeywordContext(self, self._ctx, self.state) self.enterRule(localctx, 48, self.RULE_keyword) try: self.enterOuterAlt(localctx, 1) self.state = 201 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,19,self._ctx) if la_ == 1: self.state = 200 self.keywordArgument() self.state = 207 self._errHandler.sync(self) _alt = 1 while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt == 1: self.state = 203 self.keywordName() self.state = 204 self.match(TaleParser.T__1) self.state = 205 self.keywordArgument() else: raise NoViableAltException(self) self.state = 209 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,20,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class KeywordArgumentContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def unary(self): return self.getTypedRuleContext(TaleParser.UnaryContext,0) def binary(self): return self.getTypedRuleContext(TaleParser.BinaryContext,0) def primitive(self): return self.getTypedRuleContext(TaleParser.PrimitiveContext,0) def getRuleIndex(self): return TaleParser.RULE_keywordArgument def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterKeywordArgument" ): listener.enterKeywordArgument(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitKeywordArgument" ): listener.exitKeywordArgument(self) def keywordArgument(self): localctx = TaleParser.KeywordArgumentContext(self, self._ctx, self.state) self.enterRule(localctx, 50, self.RULE_keywordArgument) try: self.state = 214 self._errHandler.sync(self) la_ = self._interp.adaptivePredict(self._input,21,self._ctx) if la_ == 1: self.enterOuterAlt(localctx, 1) self.state = 211 self.unary(0) pass elif la_ == 2: self.enterOuterAlt(localctx, 2) self.state = 212 self.binary(0) pass elif la_ == 3: self.enterOuterAlt(localctx, 3) self.state = 213 self.primitive() pass except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class KeywordNameContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def IDENTIFIER(self): return self.getToken(TaleParser.IDENTIFIER, 0) def getRuleIndex(self): return TaleParser.RULE_keywordName def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterKeywordName" ): listener.enterKeywordName(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitKeywordName" ): listener.exitKeywordName(self) def keywordName(self): localctx = TaleParser.KeywordNameContext(self, self._ctx, self.state) self.enterRule(localctx, 52, self.RULE_keywordName) try: self.enterOuterAlt(localctx, 1) self.state = 216 self.match(TaleParser.IDENTIFIER) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class PrimitiveContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def primitiveItem(self, i:int=None): if i is None: return self.getTypedRuleContexts(TaleParser.PrimitiveItemContext) else: return self.getTypedRuleContext(TaleParser.PrimitiveItemContext,i) def getRuleIndex(self): return TaleParser.RULE_primitive def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterPrimitive" ): listener.enterPrimitive(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitPrimitive" ): listener.exitPrimitive(self) def primitive(self): localctx = TaleParser.PrimitiveContext(self, self._ctx, self.state) self.enterRule(localctx, 54, self.RULE_primitive) try: self.enterOuterAlt(localctx, 1) self.state = 218 self.primitiveItem() self.state = 223 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,22,self._ctx) while _alt!=1 and _alt!=ATN.INVALID_ALT_NUMBER: if _alt==1+1: self.state = 219 self.match(TaleParser.T__2) self.state = 220 self.primitiveItem() self.state = 225 self._errHandler.sync(self) _alt = self._interp.adaptivePredict(self._input,22,self._ctx) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class PrimitiveItemContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def IDENTIFIER(self): return self.getToken(TaleParser.IDENTIFIER, 0) def literal(self): return self.getTypedRuleContext(TaleParser.LiteralContext,0) def getRuleIndex(self): return TaleParser.RULE_primitiveItem def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterPrimitiveItem" ): listener.enterPrimitiveItem(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitPrimitiveItem" ): listener.exitPrimitiveItem(self) def primitiveItem(self): localctx = TaleParser.PrimitiveItemContext(self, self._ctx, self.state) self.enterRule(localctx, 56, self.RULE_primitiveItem) try: self.state = 228 self._errHandler.sync(self) token = self._input.LA(1) if token in [TaleParser.IDENTIFIER]: self.enterOuterAlt(localctx, 1) self.state = 226 self.match(TaleParser.IDENTIFIER) pass elif token in [TaleParser.NUMBER, TaleParser.STRING]: self.enterOuterAlt(localctx, 2) self.state = 227 self.literal() pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class LiteralContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def intLiteral(self): return self.getTypedRuleContext(TaleParser.IntLiteralContext,0) def stringLiteral(self): return self.getTypedRuleContext(TaleParser.StringLiteralContext,0) def getRuleIndex(self): return TaleParser.RULE_literal def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterLiteral" ): listener.enterLiteral(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitLiteral" ): listener.exitLiteral(self) def literal(self): localctx = TaleParser.LiteralContext(self, self._ctx, self.state) self.enterRule(localctx, 58, self.RULE_literal) try: self.state = 232 self._errHandler.sync(self) token = self._input.LA(1) if token in [TaleParser.NUMBER]: self.enterOuterAlt(localctx, 1) self.state = 230 self.intLiteral() pass elif token in [TaleParser.STRING]: self.enterOuterAlt(localctx, 2) self.state = 231 self.stringLiteral() pass else: raise NoViableAltException(self) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class IntLiteralContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def NUMBER(self): return self.getToken(TaleParser.NUMBER, 0) def getRuleIndex(self): return TaleParser.RULE_intLiteral def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterIntLiteral" ): listener.enterIntLiteral(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitIntLiteral" ): listener.exitIntLiteral(self) def intLiteral(self): localctx = TaleParser.IntLiteralContext(self, self._ctx, self.state) self.enterRule(localctx, 60, self.RULE_intLiteral) try: self.enterOuterAlt(localctx, 1) self.state = 234 self.match(TaleParser.NUMBER) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx class StringLiteralContext(ParserRuleContext): def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1): super().__init__(parent, invokingState) self.parser = parser def STRING(self): return self.getToken(TaleParser.STRING, 0) def getRuleIndex(self): return TaleParser.RULE_stringLiteral def enterRule(self, listener:ParseTreeListener): if hasattr( listener, "enterStringLiteral" ): listener.enterStringLiteral(self) def exitRule(self, listener:ParseTreeListener): if hasattr( listener, "exitStringLiteral" ): listener.exitStringLiteral(self) def stringLiteral(self): localctx = TaleParser.StringLiteralContext(self, self._ctx, self.state) self.enterRule(localctx, 62, self.RULE_stringLiteral) try: self.enterOuterAlt(localctx, 1) self.state = 236 self.match(TaleParser.STRING) except RecognitionException as re: localctx.exception = re self._errHandler.reportError(self, re) self._errHandler.recover(self, re) finally: self.exitRule() return localctx def sempred(self, localctx:RuleContext, ruleIndex:int, predIndex:int): if self._predicates == None: self._predicates = dict() self._predicates[20] = self.unary_sempred self._predicates[22] = self.binary_sempred pred = self._predicates.get(ruleIndex, None) if pred is None: raise Exception("No predicate with index:" + str(ruleIndex)) else: return pred(localctx, predIndex) def unary_sempred(self, localctx:UnaryContext, predIndex:int): if predIndex == 0: return self.precpred(self._ctx, 2) def binary_sempred(self, localctx:BinaryContext, predIndex:int): if predIndex == 1: return self.precpred(self._ctx, 2)
34.317362
239
0.590868
64,548
0.892274
0
0
0
0
0
0
7,549
0.104353
e1b490b033e953f1585ccd81fdcb489a598e5706
353
py
Python
004.py
gabrieleliasdev/python-cev
45390963b5112a982e673f6a6866da422bf9ae6d
[ "MIT" ]
null
null
null
004.py
gabrieleliasdev/python-cev
45390963b5112a982e673f6a6866da422bf9ae6d
[ "MIT" ]
null
null
null
004.py
gabrieleliasdev/python-cev
45390963b5112a982e673f6a6866da422bf9ae6d
[ "MIT" ]
null
null
null
print('Olá, Mundo!') print(7+4) print('7'+'4') print('Olá', 5) # Toda variável é um objeto # Um objeto é mais do que uma variável nome = 'Gabriel' idade = 30 peso = 79 print(nome,idade,peso) nome = input('>>> Nome ') idade = input('>>> Idade ') peso = input('>>> Peso ') print(nome,idade,peso) print(f'Nome:{nome} ,Idade:{idade} ,Peso:{peso}')
14.12
49
0.620397
0
0
0
0
0
0
0
0
180
0.501393
e1b5d39efe358fd9f5a0abeb927321f0eef6f285
680
py
Python
examples/create_mac_table_entry.py
open-switch/opx-docs
f448f3f3dc0de38822bbf16c1e173eb108925a40
[ "CC-BY-4.0" ]
122
2017-02-10T01:47:04.000Z
2022-03-23T20:11:11.000Z
examples/create_mac_table_entry.py
open-switch/opx-docs
f448f3f3dc0de38822bbf16c1e173eb108925a40
[ "CC-BY-4.0" ]
37
2017-03-01T07:07:22.000Z
2021-11-11T16:47:42.000Z
examples/create_mac_table_entry.py
open-switch/opx-docs
f448f3f3dc0de38822bbf16c1e173eb108925a40
[ "CC-BY-4.0" ]
39
2017-01-18T16:22:58.000Z
2020-11-18T13:23:43.000Z
#Python code block to configure MAC address table entry import cps_utils #Register the attribute type cps_utils.add_attr_type('base-mac/table/mac-address', 'mac') #Define the MAC address, interface index and VLAN attributes d = {'mac-address': '00:0a:0b:cc:0d:0e', 'ifindex': 18, 'vlan': '100'} #Create a CPS object obj = cps_utils.CPSObject('base-mac/table', data=d) #Associate the operation to the CPS object tr_obj = ('create', obj.get()) #Create a transaction object transaction = cps_utils.CPSTransaction([tr_obj]) #Check for failure ret = transaction.commit() if not ret: raise RuntimeError('Error creating MAC Table Entry') print 'Successfully created'
27.2
70
0.738235
0
0
0
0
0
0
0
0
422
0.620588
e1b62639aea1ec0a6c6d66e1d90f5f610c374034
4,397
py
Python
win/GUI/Configuration.py
WeAreAVP/mdqc
3130a713c70017bc54d8e5da6bb5766ba9d97423
[ "Apache-2.0" ]
8
2019-01-18T08:58:02.000Z
2021-05-20T16:51:14.000Z
osx/GUI/Configuration.py
WeAreAVP/mdqc
3130a713c70017bc54d8e5da6bb5766ba9d97423
[ "Apache-2.0" ]
7
2016-02-25T21:50:03.000Z
2017-12-13T14:27:29.000Z
osx/GUI/Configuration.py
WeAreAVP/mdqc
3130a713c70017bc54d8e5da6bb5766ba9d97423
[ "Apache-2.0" ]
2
2020-02-13T16:00:07.000Z
2020-08-12T16:31:49.000Z
# -*- coding: UTF-8 -*- ''' Created on May 14, 2014 @author: Furqan Wasi <furqan@avpreserve.com> ''' import os, datetime, sys, platform, base64 class Configuration(object): def __init__(self): # Constructor if os.name == 'posix': self.OsType = 'linux' elif os.name == 'nt': self.OsType = 'Windows' elif os.name == 'os2': self.OsType = 'check' self.application_name = 'Metadata Quality Control' self.application_version = '0.4' self.user_home_path = os.path.expanduser('~') if self.OsType == 'Windows': self.base_path = str(os.getcwd())+str(os.sep) self.assets_path = r''+(os.path.join(self.base_path, 'assets'+str(os.sep))) try: self.avpreserve_img = os.path.join(sys._MEIPASS, 'assets' + (str(os.sep)) +'avpreserve.png') except: pass else: self.base_path = str(os.getcwd())+str(os.sep) self.assets_path = r''+(os.path.join(self.base_path, 'assets'+str(os.sep))) self.avpreserve_img = r''+(os.path.join(self.assets_path) + 'avpreserve.png') self.logo_sign_small = 'logo_sign_small.png' def getImagesPath(self):return str(self.assets_path) def getAvpreserve_img(self):return self.avpreserve_img def getBasePath(self):return str(self.base_path) def getApplicationVersion(self):return str(self.application_version) def getConfig_file_path(self): return self.config_file_path def EncodeInfo(self, string_to_be_encoded): string_to_be_encoded = str(string_to_be_encoded).strip() return base64.b16encode(base64.b16encode(string_to_be_encoded)) def getLogoSignSmall(self): if self.getOsType() == 'Windows': try: return os.path.join(sys._MEIPASS, 'assets' + (str(os.sep)) + str(self.logo_sign_small)) except: pass else: os.path.join(self.assets_path) return os.path.join(self.assets_path, str(self.logo_sign_small)) def getOsType(self):return str(self.OsType) def getApplicationName(self): return str(self.application_name) def getUserHomePath(self): return str(os.path.expanduser('~')) def getDebugFilePath(self):return str(self.log_file_path) def getWindowsInformation(self): """ Gets Detail information of Windows @return: tuple Windows Information """ WindowsInformation = {} try: major, minor, build, platformType, servicePack = sys.getwindowsversion() WindowsInformation['major'] = major WindowsInformation['minor'] = minor WindowsInformation['build'] = build WindowsInformation['platformType'] = platformType WindowsInformation['servicePack'] = servicePack windowDetailedName = platform.platform() WindowsInformation['platform'] = windowDetailedName windowDetailedName = str(windowDetailedName).split('-') if windowDetailedName[0] is not None and (str(windowDetailedName[0]) == 'Windows' or str(windowDetailedName[0]) == 'windows'): WindowsInformation['isWindows'] =True else: WindowsInformation['isWindows'] =False if windowDetailedName[1] is not None and (str(windowDetailedName[1]) != ''): WindowsInformation['WindowsType'] =str(windowDetailedName[1]) else: WindowsInformation['WindowsType'] =None WindowsInformation['ProcessorInfo'] = platform.processor() try: os.environ["PROGRAMFILES(X86)"] bits = 64 except: bits = 32 pass WindowsInformation['bitType'] = "Win{0}".format(bits) except: pass return WindowsInformation def CleanStringForBreaks(self,StringToBeCleaned): """ @param StringToBeCleaned: @return: """ CleanString = StringToBeCleaned.strip() try: CleanString = CleanString.replace('\r\n', '') CleanString = CleanString.replace('\n', '') CleanString = CleanString.replace('\r', '') except: pass return CleanString
31.407143
139
0.596771
4,249
0.966341
0
0
0
0
0
0
669
0.152149
e1b62abc8e468748316b85f828dfc8de03775be8
17,306
py
Python
MainController.py
samuelvp360/Microbiological-Assay-Calculator
36317e266bf499f24f7e7d3f59328864a8723aa4
[ "FSFAP" ]
null
null
null
MainController.py
samuelvp360/Microbiological-Assay-Calculator
36317e266bf499f24f7e7d3f59328864a8723aa4
[ "FSFAP" ]
null
null
null
MainController.py
samuelvp360/Microbiological-Assay-Calculator
36317e266bf499f24f7e7d3f59328864a8723aa4
[ "FSFAP" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys import os from pathlib import Path from datetime import datetime from PyQt5 import QtCore as qtc from PyQt5 import QtWidgets as qtw from PyQt5 import uic import numpy as np from Models import AssaysModel, SamplesModel from DB.AssaysDB import MyZODB import matplotlib from matplotlib import pyplot as plt from matplotlib.figure import Figure from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg, NavigationToolbar2QT as NavigationToolbar from WellProcessor import WellProcessor from Assay import Assay matplotlib.use('Qt5Agg') p = Path(__file__) print(p) isLink = os.path.islink(p) if isLink: theLink = os.readlink(p) path = Path(theLink).resolve().parent path = f'{path}/' print('linked') else: path = '' print('unlinked') class PlotCanvas(FigureCanvasQTAgg): """ docstring """ def __init__(self, parent=None): self.fig = Figure( figsize=(12, 8), dpi=100, facecolor='#2d2a2e', tight_layout=True ) self.ax = self.fig.add_subplot(111) super().__init__(self.fig) class MainWindow(qtw.QMainWindow): def __init__(self, path): super().__init__() self.path = path uic.loadUi(f'{path}Views/uiMainWindow.ui', self) self.database = MyZODB(path) self.canvas = PlotCanvas(self) self.toolbar = NavigationToolbar(self.canvas, self) self.uiToolbarLayout.addWidget(self.toolbar) self.uiPlotLayout.addWidget(self.canvas) self.assaysList = self.LoadAssays() self.assaysToRemove = [] self.model = AssaysModel(self.assaysList) self.uiAssaysTableView.setModel(self.model) self.uiAssaysTableView.resizeColumnsToContents() self.uiAssaysTableView.resizeRowsToContents() self.selectedAssay = None self.selectedSamples = None # ---------------- SIGNALS --------------- self.uiCommitButton.clicked.connect(self.StoreChanges) self.uiAddAssayButton.clicked.connect(self.AddAssay) self.uiDelAssayButton.clicked.connect(self.RemoveAssay) self.uiAddSampleButton.clicked.connect(self.AddSample) self.uiDelSampleButton.clicked.connect(self.RemoveSample) self.uiDiscardButton.clicked.connect(self.DiscardChanges) self.uiPlotButton.clicked.connect(lambda: self.Plot(ext=True)) self.uiAssaysTableView.selectionModel().selectionChanged.connect(self.SetSelectedAssay) self.uiSamplesTableView.doubleClicked.connect(self.TriggerWell) def Plot(self, ext=False): if ext: fig, ax = plt.subplots() self.canvas.ax.clear() assay = self.assaysList[self.selectedAssay] samples = [assay.samples[i] for i in self.selectedSamples] n = len(samples) x = np.arange(len(assay.conc)) limit = 0.4 width = 2 * limit / n if n == 1: factor = np.zeros(1) else: factor = np.linspace(-limit + width / 2, limit - width / 2, n) for i, sample in enumerate(samples): mean = sample['Inhibition'].loc['Mean', ::-1] std = sample['Inhibition'].loc['Std', ::-1] if ext: ax.bar( x + factor[i], mean, width, label=sample['Name'], yerr=std, capsize=15 / n, edgecolor='black' ) ax.axhline( 100, color='black', linestyle='--', linewidth=0.8 ) self.canvas.ax.bar( x + factor[i], mean, width, label=sample['Name'], yerr=std, capsize=15 / n, edgecolor='black' ) self.canvas.ax.axhline( 100, color='black', linestyle='--', linewidth=0.8 ) self.canvas.ax.set_title(assay.name, color='#ae81ff') self.canvas.ax.set_xlabel(u'Concentration (\u00B5g/mL)', color='#f92672') self.canvas.ax.set_ylabel('%Inhibition', color='#f92672') self.canvas.ax.set_xticks(x) self.canvas.ax.set_xticklabels(assay.conc[::-1]) self.canvas.ax.tick_params(axis='x', colors='#66d9ef') self.canvas.ax.tick_params(axis='y', colors='#66d9ef') self.canvas.ax.legend() self.canvas.draw() if ext: ax.set_title(assay.name, color='#ae81ff') ax.set_xlabel(u'Concentrations (\u00B5g/mL)', color='#f92672') ax.set_ylabel('%Inhibition', color='#f92672') ax.set_xticks(x) ax.set_xticklabels(assay.conc) ax.tick_params(axis='x', colors='#66d9ef') ax.tick_params(axis='y', colors='#66d9ef') ax.legend() fig.tight_layout() plt.show() def LoadAssays(self): DB = self.database.FetchDB() if not len(DB): return [] else: assayNames = DB.keys() return [DB.get(i) for i in assayNames] def SetSelectedAssay(self): indexes = self.uiAssaysTableView.selectedIndexes() if indexes: self.selectedAssay = indexes[0].row() assay = self.assaysList[self.selectedAssay] self.samplesModel = SamplesModel(assay.samples, assay.conc) self.uiSamplesTableView.setModel(self.samplesModel) self.uiSamplesTableView.resizeColumnsToContents() self.samplesModel.layoutChanged.emit() self.uiSamplesTableView.selectionModel().selectionChanged.connect(self.SetSelectedSamples) else: self.selectedAssay = None def SetSelectedSamples(self): indexes = self.uiSamplesTableView.selectedIndexes() if indexes: self.selectedSamples = tuple(set([i.row() for i in indexes])) if self.selectedAssay is not None: self.Plot() else: qtw.QMessageBox.warning( self, 'Not Assay Selected!', 'Please select the corresponding assay before showing the plot' ) else: self.selectedSamples = None def SetConcentrations(self): value, ok = qtw.QInputDialog.getText( self, 'Concentrations', 'Please enter the highest concentration' ) if ok: try: # el número 6 se puede cambiar según sea el número de # diluciones seriadas conc = [str(float(value.replace(',', '.')) / 2 ** i) for i in range(6)] return conc except ValueError: qtw.QMessageBox.warning( self, 'Not a valid number!', 'You have not enter a valid number, please try again' ) return False def AddAssay(self): items = ('MIC', 'MTT') typeOfAssay, ok = qtw.QInputDialog.getItem( self, 'Type of Assay', 'Choose the type of assay to add', items, 0, False ) name = self.SetAssayName() conc = self.SetConcentrations() while not conc: conc = self.SetConcentrations() date = datetime.now() assay = Assay(typeOfAssay, name, conc, date) self.assaysList.append(assay) self.model.layoutChanged.emit() self.uiAssaysTableView.resizeColumnsToContents() self.uiAssaysTableView.resizeRowsToContents() def AddSample(self): items = ['1', '2', '3', '4'] if self.selectedAssay is not None: numOfSamples, ok1 = qtw.QInputDialog.getItem( self, 'Number of Samples', 'Choose the number of samples per plate', items, 0, False ) if int(numOfSamples) == 3: del items[3] elif int(numOfSamples) == 4: del items[2:] replicas, ok2 = qtw.QInputDialog.getItem( self, 'Number of Samples', 'Choose the number of replicas', items, 0, False ) if ok1 and ok2: self.wellProcessor = WellProcessor( self.path, self.assaysList[self.selectedAssay].name, self.assaysList[self.selectedAssay].conc, int(numOfSamples), int(replicas) ) self.wellProcessor.submitted.connect(self.SampleProcessor) self.wellProcessor.show() else: return False else: qtw.QMessageBox.warning( self, 'No Assay Selection', 'You have not selected an assay, please choose one assay before adding a sample' ) def RemoveAssay(self): if self.selectedAssay is not None: self.assaysToRemove.append(self.assaysList[self.selectedAssay].name) if self.assaysList[self.selectedAssay].stored: self.database.RemoveAssay(self.assaysList[self.selectedAssay].name) del self.assaysList[self.selectedAssay] self.selectedAssay = self.selectedAssay - 1 if self.selectedAssay - 1 >= 0 else 0 if len(self.assaysList) > 0: index = self.uiAssaysTableView.model().index(self.selectedAssay, 0, qtc.QModelIndex()) self.uiAssaysTableView.setCurrentIndex(index) self.uiAssaysTableView.selectionModel().selectionChanged.connect(self.SetSelectedAssay) self.model.layoutChanged.emit() def RemoveSample(self): if self.selectedAssay is not None and self.selectedSamples is not None: self.assaysList[self.selectedAssay].RemoveSample(self.selectedSamples) self.model.layoutChanged.emit() assay = self.assaysList[self.selectedAssay] self.samplesModel = SamplesModel(assay.samples, assay.conc) self.uiSamplesTableView.setModel(self.samplesModel) self.selectedSamples = [self.selectedSamples[0] - 1 if self.selectedSamples[0] - 1 >= 0 else 0] if len(self.assaysList[self.selectedAssay].samples) > 0: index = self.uiSamplesTableView.model().index(self.selectedSamples[0], 0, qtc.QModelIndex()) self.uiSamplesTableView.setCurrentIndex(index) self.uiSamplesTableView.selectionModel().selectionChanged.connect(self.SetSelectedSamples) self.samplesModel.layoutChanged.emit() @qtc.pyqtSlot(list, list, list, object, object) def SampleProcessor(self, samples, sampleNames, samplesPositions, TF, T0): assay = self.assaysList[self.selectedAssay] for index, name in enumerate(sampleNames): exist = [True if s['Name'] == name else False for s in assay.samples] if True in exist: reply = qtw.QMessageBox.question( self, 'Existing Sample', f'The sample {name} already exists in {assay.name}. Do you want to overwrite it?', qtw.QMessageBox.Yes | qtw.QMessageBox.No, qtw.QMessageBox.No ) if reply == qtw.QMessageBox.Yes: for idx, value in enumerate(exist): if value: del assay.samples[idx] assay.StoreSample(samples[index], index, sampleNames, samplesPositions, TF, T0) elif reply == qtw.QMessageBox.No: continue else: assay.StoreSample(samples[index], index, sampleNames, samplesPositions, TF, T0) self.samplesModel = SamplesModel(assay.samples, assay.conc) self.uiSamplesTableView.setModel(self.samplesModel) self.uiSamplesTableView.selectionModel().selectionChanged.connect(self.SetSelectedSamples) self.samplesModel.layoutChanged.emit() self.uiSamplesTableView.resizeColumnsToContents() def SetAssayName(self): text, ok = qtw.QInputDialog.getText( self, 'Assay Name', 'Please enter the name of the assay' ) if ok: return text def TriggerWell(self): if self.selectedAssay is not None and self.selectedSamples is not None: assay = self.assaysList[self.selectedAssay] sample = assay.samples[self.selectedSamples[0]] self.wellProcessor = WellProcessor( self.path, assay.name, assay.conc, len(sample['Name of samples']), sample['TF'].shape[0], sample['T0'], sample['TF'], sample['Name of samples'], sample['Positions'] ) self.wellProcessor.submitted.connect(self.SampleProcessor) self.wellProcessor.show() def TrackChanges(self): assaysToStore = [index for index, assay in enumerate(self.assaysList) if not assay.stored] assaysToUpdate = [index for index, assay in enumerate(self.assaysList) if assay._p_changed] assaysToRemove = self.assaysToRemove return assaysToStore, assaysToUpdate, assaysToRemove def StoreChanges(self): assaysToStore, assaysToUpdate, assaysToRemove = self.TrackChanges() toStore = len(assaysToStore) toUpdate = len(assaysToUpdate) toRemove = len(assaysToRemove) message = qtw.QMessageBox() message.setWindowTitle('Changes to save') message.setStandardButtons(qtw.QMessageBox.Ok | qtw.QMessageBox.Cancel) text = [] if toStore > 0: text1 = ['\nTo Store: ' + self.assaysList[i].name for i in assaysToStore] text.extend(text1) if toUpdate > 0: text2 = ['\nTo Update: ' + self.assaysList[i].name for i in assaysToUpdate] text.extend(text2) if toRemove > 0: text3 = ['\nTo Remove: ' + name for name in assaysToRemove] text.extend(text3) if toStore + toUpdate + toRemove > 0: message.setText( 'The following assays will be stored, removed or updated:{}'.format(''.join(text)) ) returnValue = message.exec() if returnValue == qtw.QMessageBox.Ok: for index in assaysToStore: self.database.StoreAssay(self.assaysList[index]) if len(assaysToStore) == 0 and len(assaysToUpdate) > 0: self.database.Commit() if len(assaysToStore) == 0 and len(assaysToRemove) > 0: self.database.Commit() else: self.database.Abort() else: message2 = qtw.QMessageBox() message2.setText('There are no changes to be saved') message2.exec() def DiscardChanges(self): self.database.Abort() self.assaysList = self.LoadAssays() self.model = AssaysModel(self.assaysList) self.uiAssaysTableView.setModel(self.model) self.uiAssaysTableView.resizeColumnsToContents() self.uiAssaysTableView.resizeRowsToContents() if len(self.assaysList) > 0: index = self.uiAssaysTableView.model().index(self.selectedAssay, 0, qtc.QModelIndex()) self.uiAssaysTableView.setCurrentIndex(index) self.uiAssaysTableView.selectionModel().selectionChanged.connect(self.SetSelectedAssay) self.model.layoutChanged.emit() if len(self.assaysList[self.selectedAssay].samples) > 0: index = self.uiSamplesTableView.model().index(self.selectedSamples[0], 0, qtc.QModelIndex()) self.uiSamplesTableView.setCurrentIndex(index) assay = self.assaysList[self.selectedAssay] self.samplesModel = SamplesModel(assay.samples, assay.conc) self.uiSamplesTableView.setModel(self.samplesModel) self.uiSamplesTableView.selectionModel().selectionChanged.connect(self.SetSelectedSamples) self.samplesModel.layoutChanged.emit() self.uiSamplesTableView.resizeColumnsToContents() def closeEvent(self, event): try: assaysToStore, assaysToUpdate, assaysToRemove = self.TrackChanges() toStore = len(assaysToStore) toUpdate = len(assaysToUpdate) toRemove = len(assaysToRemove) if toStore + toUpdate + toRemove > 0: reply = qtw.QMessageBox.question( self, 'Window Close', 'Some changes have not been stored yet, do you want to save them', qtw.QMessageBox.Yes | qtw.QMessageBox.No | qtw.QMessageBox.Cancel, qtw.QMessageBox.No ) if reply == qtw.QMessageBox.Yes: self.StoreChanges() self.database.Close() event.accept() elif reply == qtw.QMessageBox.No: self.database.Abort() self.database.Close() event.accept() else: event.ignore() else: self.database.Close() event.accept() except AttributeError: self.database.Close() event.accept() if __name__ == '__main__': app = qtw.QApplication(sys.argv) window = MainWindow(path) window.show() sys.exit(app.exec_())
42.836634
108
0.596729
16,343
0.944191
0
0
1,473
0.0851
0
0
1,490
0.086082
e1b6ebd37b97bc9b109f511037c684ea5fa2de9b
225
py
Python
events/defaults.py
bozbalci/cython-experiments
a675571e09297e3cda9154e8b611562bb8b14f7e
[ "Unlicense" ]
1
2018-06-23T17:52:20.000Z
2018-06-23T17:52:20.000Z
events/defaults.py
bozbalci/cython-experiments
a675571e09297e3cda9154e8b611562bb8b14f7e
[ "Unlicense" ]
null
null
null
events/defaults.py
bozbalci/cython-experiments
a675571e09297e3cda9154e8b611562bb8b14f7e
[ "Unlicense" ]
null
null
null
# defaults.py: contains the built-in variables, events and methods # used for scripting the C program import event events = {} _event_names = ["on_start", "on_exit"] for evt in _event_names: events[evt] = event.Event()
22.5
66
0.724444
0
0
0
0
0
0
0
0
119
0.528889
e1b7011c0667fc12e337dc4c85e26236aa831c39
15,526
py
Python
src/parse_text.py
rflieshman/BOLSTM
be7551957001a9bdaab6051145f96ad9d7415209
[ "Apache-2.0" ]
13
2019-04-11T02:20:49.000Z
2021-03-26T11:00:10.000Z
src/parse_text.py
rflieshman/BOLSTM
be7551957001a9bdaab6051145f96ad9d7415209
[ "Apache-2.0" ]
5
2018-12-05T14:38:40.000Z
2021-12-13T19:46:53.000Z
src/parse_text.py
lasigeBioTM/BOLSTM
c33a8b2a7722acb5e3ff55c3735591aea4f76f49
[ "Apache-2.0" ]
2
2019-10-13T13:47:19.000Z
2021-01-16T10:43:33.000Z
from itertools import combinations import numpy as np import spacy import sys from spacy.tokenizer import Tokenizer import re from subprocess import PIPE, Popen import os import logging import networkx as nx import en_core_web_sm import string from neg_gv import neg_gv_list SSTDIR = "sst-light-0.4/" TEMP_DIR = "temp/" def prevent_sentence_segmentation(doc): for token in doc: # This will entirely disable spaCy's sentence detection token.is_sent_start = False return doc nlp = en_core_web_sm.load(disable=["ner"]) nlp.add_pipe(prevent_sentence_segmentation, name="prevent-sbd", before="parser") # https://stackoverflow.com/a/41817795/3605086 def get_network_graph_spacy(document): """ Convert the dependencies of the spacy document object to a networkX graph :param document: spacy parsed document object :return: networkX graph object and nodes list """ edges = [] nodes = [] # ensure that every token is connected # edges.append(("ROOT", '{0}-{1}'.format(list(document)[0].lower_, list(document)[0].i))) for s in document.sents: edges.append(("ROOT", "{0}-{1}".format(s.root.lower_, s.root.i))) for token in document: nodes.append("{0}-{1}".format(token.lower_, token.i)) # edges.append(("ROOT", '{0}-{1}'.format(token.lower_, token.i))) # print('{0}-{1}'.format(token.lower_, token.i)) # FYI https://spacy.io/docs/api/token for child in token.children: # print("----", '{0}-{1}'.format(child.lower_, child.i)) edges.append( ( "{0}-{1}".format(token.lower_, token.i), "{0}-{1}".format(child.lower_, child.i), ) ) return nx.Graph(edges), nodes def get_head_tokens(entities, sentence): """ :param entities: dictionary mapping entity IDs to (offset, text) :param sentence: sentence parsed by spacy :return: dictionary mapping head tokens word-idx to entity IDs """ sentence_head_tokens = {} for eid in entities: offset = (entities[eid][0][0], entities[eid][0][-1]) # starts = {tok.i: tok.idx for tok in doc} # entity_tokens = sentence.char_span(offset[0], offset[1]) entity_tokens = [ (t, i) for i, t in enumerate(sentence.token) if t.beginChar == offset[0] ] # if not entity_tokens: # try to include the next char # entity_tokens = sentence.char_span(offset[0], offset[1] + 1) # entity_tokens = [t for t in sentence.token if t.beginChar == offset[0]] if not entity_tokens: logging.warning( ( "no tokens found:", entities[eid], sentence.text, "|".join( [ "{}({}-{})".format(t.word, t.beginChar, t.endChar) for t in sentence.token ] ), ) ) # sys.exit() else: head_token = "{0}-{1}".format( entity_tokens[0][0].word.lower(), entity_tokens[0][1] ) if head_token in sentence_head_tokens: logging.warning( ( "head token conflict:", sentence_head_tokens[head_token], entities[eid], ) ) sentence_head_tokens[head_token] = eid return sentence_head_tokens def get_head_tokens_spacy(entities, sentence, positive_entities): """ :param entities: dictionary mapping entity IDs to (offset, text) :param sentence: sentence parsed by spacy :return: dictionary mapping head tokens word-idx to entity IDs """ sentence_head_tokens = {} pos_gv = set() neg_gv = set() for eid in entities: offset = (entities[eid][0][0], entities[eid][0][-1]) # starts = {tok.i: tok.idx for tok in doc} entity_tokens = sentence.char_span(offset[0], offset[1]) # if not entity_tokens: # try to include the next char # entity_tokens = sentence.char_span(offset[0], offset[1] + 1) i = 1 while not entity_tokens and i + offset[1] < len(sentence.text) + 1: entity_tokens = sentence.char_span(offset[0], offset[1] + i) i += 1 i = 0 while not entity_tokens and offset[0] - i > 0: entity_tokens = sentence.char_span(offset[0] - i, offset[1]) i += 1 if not entity_tokens: logging.warning( ( "no tokens found:", entities[eid], sentence.text, "|".join([t.text for t in sentence]), ) ) else: head_token = "{0}-{1}".format( entity_tokens.root.lower_, entity_tokens.root.i ) if eid in positive_entities: pos_gv.add(entity_tokens.root.head.lower_) else: neg_gv.add(entity_tokens.root.head.lower_) if head_token in sentence_head_tokens: logging.warning( ( "head token conflict:", sentence_head_tokens[head_token], entities[eid], ) ) sentence_head_tokens[head_token] = eid return sentence_head_tokens, pos_gv, neg_gv def run_sst(token_seq): chunk_size = 500 wordnet_tags = {} sent_ids = list(token_seq.keys()) chunks = [sent_ids[i : i + chunk_size] for i in range(0, len(sent_ids), chunk_size)] for i, chunk in enumerate(chunks): sentence_file = open("{}/sentences_{}.txt".format(TEMP_DIR, i), "w") for sent in chunk: sentence_file.write("{}\t{}\t.\n".format(sent, "\t".join(token_seq[sent]))) sentence_file.close() sst_args = [ "sst", "bitag", "{}/MODELS/WSJPOSc_base_20".format(SSTDIR), "{}/DATA/WSJPOSc.TAGSET".format(SSTDIR), "{}/MODELS/SEM07_base_12".format(SSTDIR), "{}/DATA/WNSS_07.TAGSET".format(SSTDIR), "{}/sentences_{}.txt".format(TEMP_DIR, i), "0", "0", ] p = Popen(sst_args, stdout=PIPE) p.communicate() with open("{}/sentences_{}.txt.tags".format(TEMP_DIR, i)) as f: output = f.read() sstoutput = parse_sst_results(output) wordnet_tags.update(sstoutput) return wordnet_tags def parse_sst_results(results): sentences = {} lines = results.strip().split("\n") for l in lines: values = l.split("\t") wntags = [x.split(" ")[-1].split("-")[-1] for x in values[1:]] sentences[values[0]] = wntags return sentences def parse_sentence_spacy(sentence_text, sentence_entities): # use spacy to parse a sentence for e in sentence_entities: idx = sentence_entities[e][0] sentence_text = ( sentence_text[: idx[0]] + sentence_text[idx[0] : idx[1]].replace(" ", "_") + sentence_text[idx[1] :] ) # clean text to make tokenization easier sentence_text = sentence_text.replace(";", ",") sentence_text = sentence_text.replace("*", " ") sentence_text = sentence_text.replace(":", ",") sentence_text = sentence_text.replace(" - ", " ; ") parsed = nlp(sentence_text) return parsed def process_sentence_spacy( sentence, sentence_entities, sentence_pairs, positive_entities, wordnet_tags=None, mask_entities=True, min_sdp_len=0, max_sdp_len=15, ): """ Process sentence to obtain labels, instances and classes for a ML classifier :param sentence: sentence processed by spacy :param sentence_entities: dictionary mapping entity ID to ((e_start, e_end), text, paths_to_root) :param sentence_pairs: dictionary mapping pairs of known entities in this sentence to pair types :return: labels of each pair (according to sentence_entities, word vectors and classes (pair types according to sentence_pairs) """ left_word_vectors = [] right_word_vectors = [] left_wordnets = [] right_wordnets = [] classes = [] labels = [] graph, nodes_list = get_network_graph_spacy(sentence) sentence_head_tokens, pos_gv, neg_gv = get_head_tokens_spacy( sentence_entities, sentence, positive_entities ) # print(neg_gv - pos_gv) entity_offsets = [sentence_entities[x][0][0] for x in sentence_entities] # print(sentence_head_tokens) for (e1, e2) in combinations(sentence_head_tokens, 2): # print() # print(sentence_head_tokens[e1], e1, sentence_head_tokens[e2], e2) # reorder according to entity ID if int(sentence_head_tokens[e1].split("e")[-1]) > int( sentence_head_tokens[e2].split("e")[-1] ): e1, e2 = e2, e1 e1_text = sentence_entities[sentence_head_tokens[e1]] e2_text = sentence_entities[sentence_head_tokens[e2]] if e1_text[1].lower() == e2_text[1].lower(): # logging.debug("skipped same text: {} {}".format(e1_text, e2_text)) continue middle_text = sentence.text[e1_text[0][-1] : e2_text[0][0]] # if middle_text.strip() == "or" or middle_text.strip() == "and": # logging.debug("skipped entity list: {} {} {}".format(e1_text, middle_text, e2_text)) # continue if middle_text.strip() in string.punctuation: # logging.debug("skipped punctuation: {} {} {}".format(e1_text, middle_text, e2_text)) continue # if len(middle_text) < 3: # logging.debug("skipped entity list: {} {} {}".format(e1_text, middle_text, e2_text)) # continue head_token1_idx = int(e1.split("-")[-1]) head_token2_idx = int(e2.split("-")[-1]) try: sdp = nx.shortest_path(graph, source=e1, target=e2) if len(sdp) < min_sdp_len or len(sdp) > max_sdp_len: # logging.debug("skipped short sdp: {} {} {}".format(e1_text, str(sdp), e2_text)) continue neg = False is_neg_gv = False for i, element in enumerate(sdp): token_idx = int(element.split("-")[-1]) # get the index of the token token_text = element.split("-")[0] if (i == 1 or i == len(sdp) - 2) and token_text in neg_gv_list: logging.info("skipped gv {} {}:".format(token_text, str(sdp))) # is_neg_gv = True sdp_token = sentence[token_idx] # get the token obj # if any(c.dep_ == 'neg' for c in sdp_token.children): # neg = True if neg or is_neg_gv: continue # if len(sdp) < 3: # len=2, just entities # sdp = [sdp[0]] + nodes_list[head_token1_idx-2:head_token1_idx] # sdp += nodes_list[head_token2_idx+1:head_token2_idx+3] + [sdp[-1]] # print(e1_text[1:], e2_text[1:], sdp) # if len(sdp) == 2: # add context words vector = [] wordnet_vector = [] negations = 0 head_token_position = None for i, element in enumerate(sdp): if element != "ROOT": token_idx = int( element.split("-")[-1] ) # get the index of the token sdp_token = sentence[token_idx] # get the token obj # if any(c.dep_ == 'neg' for c in sdp_token.children): # token is negated! # vector.append("not") # negations += 1 # logging.info("negated!: {}<->{} {}: {}".format(e1_text, e2_text, sdp_token.text, sentence.text)) if mask_entities and sdp_token.idx in entity_offsets: vector.append("drug") else: vector.append(sdp_token.text) if wordnet_tags: wordnet_vector.append(wordnet_tags[token_idx]) # print(element, sdp_token.text, head_token, sdp) head_token = "{}-{}".format( sdp_token.head.lower_, sdp_token.head.i ) # get the key of head token # head token must not have its head in the path, otherwise that would be the head token # in some cases the token is its own head if head_token not in sdp or head_token == element: # print("found head token of:", e1_text, e2_text, sdp_token.text, sdp) head_token_position = i + negations # vector.append(parsed[token_idx].text) # print(vector) if head_token_position is None: print("head token not found:", e1_text, e2_text, sdp) sys.exit() else: left_vector = vector[: head_token_position + 1] right_vector = vector[head_token_position:] left_wordnet = wordnet_vector[: head_token_position + 1] right_wordnet = wordnet_vector[head_token_position:] # word_vectors.append(vector) left_word_vectors.append(left_vector) right_word_vectors.append(right_vector) left_wordnets.append(left_wordnet) right_wordnets.append(right_wordnet) # if (sentence_head_tokens[e1], sentence_head_tokens[e2]) in sentence_pairs: # print(sdp, e1, e2, sentence_text) # print(e1_text, e2_text, sdp, sentence_text) # instances.append(sdp) except nx.exception.NetworkXNoPath: # pass logging.warning("no path:", e1_text, e2_text, graph.nodes()) left_word_vectors.append([]) right_word_vectors.append([]) left_wordnets.append([]) right_wordnets.append([]) # print("no path:", e1_text, e2_text, sentence_text, parsed.print_tree(light=True)) # sys.exit() except nx.NodeNotFound: logging.warning( ( "node not found:", e1_text, e2_text, e1, e2, list(sentence), graph.nodes(), ) ) left_word_vectors.append([]) right_word_vectors.append([]) left_wordnets.append([]) right_wordnets.append([]) labels.append((sentence_head_tokens[e1], sentence_head_tokens[e2])) # print(sentence_head_tokens[e1], sentence_head_tokens[e2]) if (sentence_head_tokens[e1], sentence_head_tokens[e2]) in sentence_pairs: classes.append( sentence_pairs[(sentence_head_tokens[e1], sentence_head_tokens[e2])] ) else: classes.append(0) return ( labels, (left_word_vectors, right_word_vectors), (left_wordnets, right_wordnets), classes, pos_gv, neg_gv, )
37.502415
119
0.550818
0
0
0
0
0
0
0
0
4,642
0.298982
e1b73e252109287a68039d70bc02eba7d5e821da
1,049
py
Python
metadata-ingestion/examples/library/dataset_set_tag.py
cuong-pham/datahub
cb4eb001758f55622add0f4dc3650cf483609cba
[ "Apache-2.0" ]
1,603
2016-03-03T17:21:03.000Z
2020-01-22T22:12:02.000Z
metadata-ingestion/examples/library/dataset_set_tag.py
cuong-pham/datahub
cb4eb001758f55622add0f4dc3650cf483609cba
[ "Apache-2.0" ]
1,157
2016-03-03T19:29:22.000Z
2020-01-20T14:41:59.000Z
metadata-ingestion/examples/library/dataset_set_tag.py
cuong-pham/datahub
cb4eb001758f55622add0f4dc3650cf483609cba
[ "Apache-2.0" ]
570
2016-03-03T17:21:05.000Z
2020-01-21T06:54:10.000Z
# Imports for urn construction utility methods import logging from datahub.emitter.mce_builder import make_dataset_urn, make_tag_urn from datahub.emitter.mcp import MetadataChangeProposalWrapper from datahub.emitter.rest_emitter import DatahubRestEmitter # Imports for metadata model classes from datahub.metadata.schema_classes import ( ChangeTypeClass, GlobalTagsClass, TagAssociationClass, ) log = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) dataset_urn = make_dataset_urn(platform="hive", name="realestate_db.sales", env="PROD") tag_urn = make_tag_urn("purchase") event: MetadataChangeProposalWrapper = MetadataChangeProposalWrapper( entityType="dataset", changeType=ChangeTypeClass.UPSERT, entityUrn=dataset_urn, aspectName="globalTags", aspect=GlobalTagsClass(tags=[TagAssociationClass(tag=tag_urn)]), ) # Create rest emitter rest_emitter = DatahubRestEmitter(gms_server="http://localhost:8080") rest_emitter.emit(event) log.info(f"Set tags to {tag_urn} for dataset {dataset_urn}")
32.78125
87
0.804576
0
0
0
0
0
0
0
0
240
0.228789
e1b7f693b03922194b579f49635c8089ae32b745
517
py
Python
examples/Old Format/matrix_latex.py
waldyrious/galgebra
b5eb070340434d030dd737a5656fbf709538b0b1
[ "BSD-3-Clause" ]
151
2018-09-18T12:30:14.000Z
2022-03-16T08:02:48.000Z
examples/Old Format/matrix_latex.py
abrombo/galgebra
5ae058c9ba2c17b1baf46c58f77124e82eaf428a
[ "BSD-3-Clause" ]
454
2018-09-19T01:42:30.000Z
2022-01-18T14:02:00.000Z
examples/Old Format/matrix_latex.py
abrombo/galgebra
5ae058c9ba2c17b1baf46c58f77124e82eaf428a
[ "BSD-3-Clause" ]
30
2019-02-22T08:25:50.000Z
2022-01-15T05:20:22.000Z
from __future__ import print_function from sympy import symbols, Matrix from galgebra.printer import xpdf, Format def main(): Format() a = Matrix ( 2, 2, ( 1, 2, 3, 4 ) ) b = Matrix ( 2, 1, ( 5, 6 ) ) c = a * b print(a,b,'=',c) x, y = symbols ( 'x, y' ) d = Matrix ( 1, 2, ( x ** 3, y ** 3 )) e = Matrix ( 2, 2, ( x ** 2, 2 * x * y, 2 * x * y, y ** 2 ) ) f = d * e print('%',d,e,'=',f) # xpdf() xpdf(pdfprog=None) return if __name__ == "__main__": main()
19.884615
65
0.475822
0
0
0
0
0
0
0
0
33
0.06383
e1b88db11881c00abc4ca3f31868a0861378a947
780
py
Python
hopsapp/__init__.py
mrahman013/Hope4Hops-web-applcation
d5bde1463c6fbc1ea5424cb656504119393c6ce2
[ "MIT" ]
null
null
null
hopsapp/__init__.py
mrahman013/Hope4Hops-web-applcation
d5bde1463c6fbc1ea5424cb656504119393c6ce2
[ "MIT" ]
null
null
null
hopsapp/__init__.py
mrahman013/Hope4Hops-web-applcation
d5bde1463c6fbc1ea5424cb656504119393c6ce2
[ "MIT" ]
null
null
null
"""Implements a basic flask app that provides hashes of text.""" from flask import Flask from flask_sqlalchemy import SQLAlchemy import flask_login #pylint: disable=invalid-name app = Flask(__name__) app.config['DEBUG'] = True app.config['SQLALCHEMY_DATABASE_URI'] = 'postgres://yjjuylsytqewni:d0d63322c6abd33e2dadeafd7ef2501f73af54cf2d39596e464ea2c18b0234a3@ec2-23-23-78-213.compute-1.amazonaws.com:5432/d3gdnt7fkmonn1' #pylint: disable=line-too-long app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True app.secret_key = 'HGTYNVK123LOL908973' db = SQLAlchemy(app) login_manager = flask_login.LoginManager() login_manager.init_app(app) # This import need to be here that's why disabling pylint #pylint: disable=wrong-import-position import hopsapp.models import hopsapp.routes
35.454545
224
0.815385
0
0
0
0
0
0
0
0
456
0.584615
e1b8fdfc631946eef5fedb38c2e25e5e6c2e1add
800
py
Python
npytoImage.py
x35yao/camera
0ee77f5de72d785ba68bef44a557470ec425d702
[ "MIT" ]
null
null
null
npytoImage.py
x35yao/camera
0ee77f5de72d785ba68bef44a557470ec425d702
[ "MIT" ]
null
null
null
npytoImage.py
x35yao/camera
0ee77f5de72d785ba68bef44a557470ec425d702
[ "MIT" ]
null
null
null
import numpy as np; import cv2; n = 428671 img_RS_color = np.load('/home/p4bhattachan/gripper/3DCameraServer/testImages/npyFiles/{}_RS_color.npy'.format(n)) cv2.imshow('RS Color Image {}'.format(n), img_RS_color) # # # img_RS_depth = np.load('/home/p4bhattachan/gripper/3DCameraServer/testImages/npyFiles/{}_RS_depth.npy'.format(n)) # # cv2.imshow('RS Depth Image {}'.format(n), img_RS_depth) # # img_ZED_color = np.load('/home/p4bhattachan/gripper/3DCameraServer/testImages/npyFiles/{}_ZED_color.npy'.format(n)) # cv2.imshow('ZED Color Image {}'.format(n), img_ZED_color) # # # img_ZED_depth = np.load('/home/p4bhattachan/gripper/3DCameraServer/testImages/npyFiles/{}_ZED_depth.npy'.format(n)) # # cv2.imshow('ZED Depth Image {}'.format(n), img_ZED_depth) cv2.waitKey(0) cv2.destroyAllWindows()
38.095238
119
0.7475
0
0
0
0
0
0
0
0
633
0.79125
e1b94f246fa698d25573d863b176f320113a2877
11,217
py
Python
magenta/music/sequences_lib.py
jellysquider/magenta
0fc8188870f5d1c988b76dae434b21e58362516c
[ "Apache-2.0" ]
null
null
null
magenta/music/sequences_lib.py
jellysquider/magenta
0fc8188870f5d1c988b76dae434b21e58362516c
[ "Apache-2.0" ]
null
null
null
magenta/music/sequences_lib.py
jellysquider/magenta
0fc8188870f5d1c988b76dae434b21e58362516c
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines sequence of notes objects for creating datasets.""" import collections import copy # internal imports from magenta.music import constants from magenta.protobuf import music_pb2 # Set the quantization cutoff. # Note events before this cutoff are rounded down to nearest step. Notes # above this cutoff are rounded up to nearest step. The cutoff is given as a # fraction of a step. # For example, with quantize_cutoff = 0.75 using 0-based indexing, # if .75 < event <= 1.75, it will be quantized to step 1. # If 1.75 < event <= 2.75 it will be quantized to step 2. # A number close to 1.0 gives less wiggle room for notes that start early, # and they will be snapped to the previous step. QUANTIZE_CUTOFF = 0.5 # Shortcut to chord symbol text annotation type. CHORD_SYMBOL = music_pb2.NoteSequence.TextAnnotation.CHORD_SYMBOL class BadTimeSignatureException(Exception): pass class MultipleTimeSignatureException(Exception): pass class MultipleTempoException(Exception): pass class NegativeTimeException(Exception): pass def extract_subsequence(sequence, start_time, end_time): """Extracts a subsequence from a NoteSequence. Notes starting before `start_time` are not included. Notes ending after `end_time` are truncated. Args: sequence: The NoteSequence to extract a subsequence from. start_time: The float time in seconds to start the subsequence. end_time: The float time in seconds to end the subsequence. Returns: A new NoteSequence that is a subsequence of `sequence` in the specified time range. """ subsequence = music_pb2.NoteSequence() subsequence.CopyFrom(sequence) del subsequence.notes[:] for note in sequence.notes: if note.start_time < start_time or note.start_time >= end_time: continue new_note = subsequence.notes.add() new_note.CopyFrom(note) new_note.end_time = min(note.end_time, end_time) subsequence.total_time = min(sequence.total_time, end_time) return subsequence def is_power_of_2(x): return x and not x & (x - 1) class QuantizedSequence(object): """Holds notes and chords which have been quantized to time steps. Notes contain a pitch, velocity, start time, and end time. Notes are stored in tracks (which can be different instruments or the same instrument). There is also a time signature and key signature. Notes stored in this object are not guaranteed to be sorted by time. Attributes: tracks: A dictionary mapping track number to list of Note tuples. Track number is taken from the instrument number of each NoteSequence note. chords: A list of ChordSymbol tuples. qpm: Quarters per minute. This is needed to recover tempo if converting back to MIDI. time_signature: This determines the length of a bar of music. This is just needed to compute the number of quantization steps per bar, though it can also communicate more high level aspects of the music (see https://en.wikipedia.org/wiki/Time_signature). steps_per_quarter: How many quantization steps per quarter note of music. total_steps: The total number of steps in the quantized sequence. """ # Disabling pylint since it is recognizing these as attributes instead of # classes. # pylint: disable=invalid-name Note = collections.namedtuple( 'Note', ['pitch', 'velocity', 'start', 'end', 'instrument', 'program', 'is_drum']) TimeSignature = collections.namedtuple('TimeSignature', ['numerator', 'denominator']) ChordSymbol = collections.namedtuple('ChordSymbol', ['step', 'figure']) # pylint: enable=invalid-name def __init__(self): self._reset() def _reset(self): self.tracks = {} self.chords = [] self.qpm = 120.0 self.time_signature = QuantizedSequence.TimeSignature(numerator=4, denominator=4) self.steps_per_quarter = 4 self.total_steps = 0 def steps_per_bar(self): """Calculates steps per bar. Returns: Steps per bar as a floating point number. """ quarters_per_beat = 4.0 / self.time_signature.denominator quarters_per_bar = (quarters_per_beat * self.time_signature.numerator) steps_per_bar_float = (self.steps_per_quarter * quarters_per_bar) return steps_per_bar_float def from_note_sequence(self, note_sequence, steps_per_quarter): """Populate self with a music_pb2.NoteSequence proto. Notes and time signature are saved to self with notes' start and end times quantized. If there is no time signature 4/4 is assumed. If there is more than one time signature an exception is raised. The quarter notes per minute stored in `note_sequence` is used to normalize tempo. Regardless of how fast or slow quarter notes are played, a note that is played for 1 quarter note will last `steps_per_quarter` time steps in the quantized result. A note's start and end time are snapped to a nearby quantized step. See the comments above `QUANTIZE_CUTOFF` for details. Args: note_sequence: A music_pb2.NoteSequence protocol buffer. steps_per_quarter: Each quarter note of music will be divided into this many quantized time steps. Raises: MultipleTimeSignatureException: If there is a change in time signature in `note_sequence`. MultipleTempoException: If there is a change in tempo in `note_sequence`. BadTimeSignatureException: If the time signature found in `note_sequence` has a denominator which is not a power of 2. NegativeTimeException: If a note or chord occurs at a negative time. """ self._reset() self.steps_per_quarter = steps_per_quarter if note_sequence.time_signatures: time_signatures = sorted(note_sequence.time_signatures, key=lambda ts: ts.time) # There is an implicit 4/4 time signature at 0 time. So if the first time # signature is something other than 4/4 and it's at a time other than 0, # that's an implicit time signature change. if time_signatures[0].time != 0 and not ( time_signatures[0].numerator == 4 and time_signatures[0].denominator == 4): raise MultipleTimeSignatureException( 'NoteSequence has an implicit change from initial 4/4 time ' 'signature.') self.time_signature = QuantizedSequence.TimeSignature( time_signatures[0].numerator, time_signatures[0].denominator) for time_signature in time_signatures[1:]: if (time_signature.numerator != self.time_signature.numerator or time_signature.denominator != self.time_signature.denominator): raise MultipleTimeSignatureException( 'NoteSequence has at least one time signature change.') if not is_power_of_2(self.time_signature.denominator): raise BadTimeSignatureException( 'Denominator is not a power of 2. Time signature: %d/%d' % (self.time_signature.numerator, self.time_signature.denominator)) if note_sequence.tempos: tempos = sorted(note_sequence.tempos, key=lambda t: t.time) # There is an implicit 120.0 qpm tempo at 0 time. So if the first tempo is # something other that 120.0 and it's at a time other than 0, that's an # implicit tempo change. if tempos[0].time != 0 and tempos[0].qpm != 120.0: raise MultipleTempoException( 'NoteSequence has an implicit tempo change from initial 120.0 qpm') self.qpm = tempos[0].qpm for tempo in tempos[1:]: if tempo.qpm != self.qpm: raise MultipleTempoException( 'NoteSequence has at least one tempo change.') else: self.qpm = constants.DEFAULT_QUARTERS_PER_MINUTE # Compute quantization steps per second. steps_per_second = steps_per_quarter * self.qpm / 60.0 quantize = lambda x: int(x + (1 - QUANTIZE_CUTOFF)) self.total_steps = quantize(note_sequence.total_time * steps_per_second) for note in note_sequence.notes: # Quantize the start and end times of the note. start_step = quantize(note.start_time * steps_per_second) end_step = quantize(note.end_time * steps_per_second) if end_step == start_step: end_step += 1 # Do not allow notes to start or end in negative time. if start_step < 0 or end_step < 0: raise NegativeTimeException( 'Got negative note time: start_step = %s, end_step = %s' % (start_step, end_step)) # Extend quantized sequence if necessary. if end_step > self.total_steps: self.total_steps = end_step if note.instrument not in self.tracks: self.tracks[note.instrument] = [] self.tracks[note.instrument].append( QuantizedSequence.Note(pitch=note.pitch, velocity=note.velocity, start=start_step, end=end_step, instrument=note.instrument, program=note.program, is_drum=note.is_drum)) # Also add chord symbol annotations to the quantized sequence. for annotation in note_sequence.text_annotations: if annotation.annotation_type == CHORD_SYMBOL: # Quantize the chord time, disallowing negative time. step = quantize(annotation.time * steps_per_second) if step < 0: raise NegativeTimeException( 'Got negative chord time: step = %s' % step) self.chords.append( QuantizedSequence.ChordSymbol(step=step, figure=annotation.text)) def __eq__(self, other): if not isinstance(other, QuantizedSequence): return False for track in self.tracks: if (track not in other.tracks or set(self.tracks[track]) != set(other.tracks[track])): return False return ( self.qpm == other.qpm and self.time_signature == other.time_signature and self.steps_per_quarter == other.steps_per_quarter and self.total_steps == other.total_steps and set(self.chords) == set(other.chords)) def __deepcopy__(self, unused_memo=None): new_copy = type(self)() new_copy.tracks = copy.deepcopy(self.tracks) new_copy.chords = copy.deepcopy(self.chords) new_copy.qpm = self.qpm new_copy.time_signature = self.time_signature new_copy.steps_per_quarter = self.steps_per_quarter new_copy.total_steps = self.total_steps return new_copy
38.67931
80
0.692788
8,771
0.781938
0
0
0
0
0
0
5,436
0.484622
e1ba5c72da56a9dbf7ee8bd79a41429f11457824
8,404
py
Python
tests/index_jsonurl_test.py
Stidsty/dismantle
26fb8fe7ba97349a67498715bb47a19329b1a4c7
[ "Apache-2.0" ]
null
null
null
tests/index_jsonurl_test.py
Stidsty/dismantle
26fb8fe7ba97349a67498715bb47a19329b1a4c7
[ "Apache-2.0" ]
null
null
null
tests/index_jsonurl_test.py
Stidsty/dismantle
26fb8fe7ba97349a67498715bb47a19329b1a4c7
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Gary Stidston-Broadbent # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= from hashlib import md5 from json import JSONDecodeError from shutil import copy2 import pytest from pytest_httpserver import HTTPServer from pytest_httpserver.httpserver import HandlerType from requests import ConnectionError from dismantle.index import IndexHandler, JsonUrlIndexHandler def test_invalid_server(httpserver: HTTPServer, tmpdir): with pytest.raises(ConnectionError): JsonUrlIndexHandler('http://invalid.server/notfound.json', tmpdir) httpserver.check_assertions() def test_notfound(httpserver: HTTPServer, tmpdir): httpserver.no_handler_status_code = 404 params = {"uri": "/invalid.json", 'handler_type': HandlerType.ONESHOT} httpserver.expect_request(**params).respond_with_data("") with pytest.raises(FileNotFoundError): JsonUrlIndexHandler(httpserver.url_for('notfound.json'), tmpdir) def test_blank(httpserver: HTTPServer, tmpdir): params = {"uri": "/blank.json", 'handler_type': HandlerType.ONESHOT} httpserver.expect_request(**params).respond_with_data("") with pytest.raises(JSONDecodeError): JsonUrlIndexHandler(httpserver.url_for('blank.json'), tmpdir) httpserver.check_assertions() def test_empty(httpserver: HTTPServer, datadir): with open(datadir.join('index_empty.json')) as json_file: data = json_file.read() params = {"uri": "/empty.json", 'handler_type': HandlerType.ONESHOT} httpserver.expect_request(**params).respond_with_data(data) index = JsonUrlIndexHandler(httpserver.url_for('empty.json'), datadir) httpserver.check_assertions() assert len(index) == 0 def test_broken(httpserver: HTTPServer, datadir): with open(datadir.join('index_broken.json')) as json_file: data = json_file.read() params = {"uri": "/broken.json", 'handler_type': HandlerType.ONESHOT} httpserver.expect_request(**params).respond_with_data(data) with pytest.raises(JSONDecodeError): JsonUrlIndexHandler(httpserver.url_for('broken.json'), datadir) httpserver.check_assertions() def test_populated(httpserver: HTTPServer, datadir): with open(datadir.join('index_populated.json')) as json_file: data = json_file.read() params = {"uri": "/populated.json", 'handler_type': HandlerType.ONESHOT} httpserver.expect_request(**params).respond_with_data(data) index = JsonUrlIndexHandler(httpserver.url_for('populated.json'), datadir) assert isinstance(index, IndexHandler) is True httpserver.check_assertions() def test_latest(httpserver: HTTPServer, datadir): copy2(datadir.join('index_populated.json'), datadir.join('index.json')) file_digest = md5() # noqa: S303 with open(datadir.join('index_populated.json'), "rb") as cached_index: for block in iter(lambda: cached_index.read(65536), b""): file_digest.update(block) digest = file_digest.hexdigest() headers = {"If-None-Match": digest} params = { "uri": "/latest.json", "headers": headers, 'handler_type': HandlerType.ONESHOT } httpserver.expect_request(**params).respond_with_data("", status=304) index = JsonUrlIndexHandler(httpserver.url_for('latest.json'), datadir) assert isinstance(index, IndexHandler) is True assert index._updated is False def test_current(httpserver: HTTPServer, datadir): copy2(datadir.join('index_populated.json'), datadir.join('index.json')) file_digest = md5() # noqa: S303 with open(datadir.join('index_populated.json'), "rb") as cached_index: for block in iter(lambda: cached_index.read(65536), b""): file_digest.update(block) digest = file_digest.hexdigest() headers = {"If-None-Match": digest} params = { "uri": "/current.json", "headers": headers, 'handler_type': HandlerType.PERMANENT } httpserver.expect_request(**params).respond_with_data("", status=304) index = JsonUrlIndexHandler(httpserver.url_for('current.json'), datadir) assert isinstance(index, IndexHandler) is True assert index.outdated is False def test_outdated(httpserver: HTTPServer, datadir): copy2(datadir.join('index_empty.json'), datadir.join('index.json')) file_digest = md5() # noqa: S303 with open(datadir.join('index_empty.json'), "rb") as cached_index: for block in iter(lambda: cached_index.read(65536), b""): file_digest.update(block) digest = file_digest.hexdigest() headers = {"If-None-Match": digest} params = { "uri": "/outdated.json", "headers": headers, "method": "GET", 'handler_type': HandlerType.ONESHOT } httpserver.expect_request(**params).respond_with_data("", status=304) index = JsonUrlIndexHandler(httpserver.url_for('outdated.json'), datadir) assert isinstance(index, IndexHandler) is True assert index._updated is False params['method'] = 'HEAD' with open(datadir.join('index_populated.json')) as json_file: data = json_file.read() httpserver.expect_request(**params).respond_with_data(data, status=200) assert index.outdated is True def test_create(httpserver: HTTPServer, datadir): with open(datadir.join('index_populated.json')) as json_file: data = json_file.read() httpserver.expect_request( "/create.json" ).respond_with_data(data, status=200) index = JsonUrlIndexHandler(httpserver.url_for('create.json'), datadir) assert isinstance(index, IndexHandler) is True assert index._updated is True def test_update(httpserver: HTTPServer, datadir): with open(datadir.join('index_populated.json')) as json_file: data = json_file.read() httpserver.expect_request( "/update.json" ).respond_with_data(data, status=200) index = JsonUrlIndexHandler(httpserver.url_for('update.json'), datadir) assert isinstance(index, IndexHandler) is True assert index._updated is True def test_populated_index_length(httpserver: HTTPServer, datadir): with open(datadir.join('index_populated.json')) as json_file: data = json_file.read() httpserver.expect_request("/populated.json").respond_with_data(data) index = JsonUrlIndexHandler(httpserver.url_for('populated.json'), datadir) httpserver.check_assertions() assert len(index) == 6 assert len(index.find('@scope-one/package-one')) == 1 assert len(index.find('package-one')) == 3 assert len(index.find('package-two')) == 2 assert len(index.find('package-three')) == 1 assert len(index.find('@scope-one')) == 3 assert len(index.find('@scope-two')) == 2 assert len(index.find('@scope-three')) == 1 def test_populated_pkg_exists(httpserver: HTTPServer, datadir): with open(datadir.join('index_populated.json')) as json_file: data = json_file.read() params = {"uri": "/exists.json", 'handler_type': HandlerType.ONESHOT} httpserver.expect_request(**params).respond_with_data(data) index = JsonUrlIndexHandler(httpserver.url_for('exists.json'), datadir) httpserver.check_assertions() package = index["@scope-one/package-one"] assert package["name"] == "@scope-one/package-one" assert package["version"] == "0.1.0" assert package["path"] == "@scope-one/package-one" def test_populated_pkg_nonexistant(httpserver: HTTPServer, datadir): with open(datadir.join('index_populated.json')) as json_file: data = json_file.read() params = {"uri": "/nonexist.json", 'handler_type': HandlerType.ONESHOT} httpserver.expect_request(**params).respond_with_data(data) index = JsonUrlIndexHandler(httpserver.url_for('nonexist.json'), datadir) with pytest.raises(KeyError): index["@scope-four/package-one"] httpserver.check_assertions()
42.02
79
0.707996
0
0
0
0
0
0
0
0
1,997
0.237625
e1ba723285119341020fa35acb08aec8be4bb131
200
py
Python
src/resdk/__init__.py
AGregorc/resolwe-bio-py
62304e5d4c54c917575421701c6977dc63fc3a8f
[ "Apache-2.0" ]
4
2016-09-28T16:00:05.000Z
2018-08-16T16:14:10.000Z
src/resdk/__init__.py
AGregorc/resolwe-bio-py
62304e5d4c54c917575421701c6977dc63fc3a8f
[ "Apache-2.0" ]
229
2016-03-28T19:41:00.000Z
2022-03-16T15:02:15.000Z
src/resdk/__init__.py
AGregorc/resolwe-bio-py
62304e5d4c54c917575421701c6977dc63fc3a8f
[ "Apache-2.0" ]
18
2016-03-10T16:11:57.000Z
2021-06-01T10:01:49.000Z
"""Resolwe SDK for Python.""" from .collection_tables import CollectionTables # noqa from .resdk_logger import log_to_stdout, start_logging # noqa from .resolwe import Resolwe, ResolweQuery # noqa
40
62
0.79
0
0
0
0
0
0
0
0
47
0.235
e1bade04e7403e544b5faa2f08e7005733a09b95
4,842
py
Python
helper/validation_scripts/launch-lm-profile.py
NanoMembers/DeepFlow
0235fe460d15a95f90202a1fdb3d3405d774511a
[ "Apache-2.0" ]
3
2020-10-29T19:00:29.000Z
2020-12-21T12:24:28.000Z
helper/validation_scripts/launch-lm-profile.py
NanoMembers/DeepFlow
0235fe460d15a95f90202a1fdb3d3405d774511a
[ "Apache-2.0" ]
null
null
null
helper/validation_scripts/launch-lm-profile.py
NanoMembers/DeepFlow
0235fe460d15a95f90202a1fdb3d3405d774511a
[ "Apache-2.0" ]
null
null
null
#!/tools/python/python3.8.3/bin/python import os import shutil import subprocess import numpy as np batch_list=[i*1024 for i in range(2,7)] seq_list=[10] hidden_list=[i*1024 for i in range(2,7)] vocab_list=[2048] #[int(i) for i in (2**np.linspace(10,13,20)//2*2)] layer_list=[1] bpe_list=[10] epoch_list=[3] def run_command(cmd, var, result): try: output = subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True).decode("utf-8") output = output.strip().replace(',','') result[var] = float(output) if output != "" else output except: print("command for {} did not work".format(var)) output_dir="/mnt/home/newsha/baidu/developement/MechaFlow/validation/benchmarks/rnnlm/profile_gemm" result_file="{}/result.csv".format(output_dir) if os.path.exists(output_dir): shutil.rmtree(output_dir, ignore_errors=True) os.makedirs(output_dir) print("Created {}".format(output_dir)) with open(result_file, "w") as f: f.write("Batch Seq Hidden Vocab Layers Epoch BPE core_util dram_util l2_util dram_read dram_write l2_access fp16_inst fma_inst\n\n") print("Batch Seq Hidden Vocab Layers Epoch BPE core_util dram_util l2_util dram_read dram_write l2_access fp16_inst fma_inst\n\n") for b in batch_list: for s in seq_list: for d in hidden_list: for v in vocab_list: for l in layer_list: for bpe in bpe_list: for e in epoch_list: bpe = min(bpe, 25000//b) fname = "B{}-S{}-D{}-V{}-L{}-E{}-P{}".format(b,s,d,v,l,e,bpe) output_file = "{}/{}.out".format(output_dir, fname) command1="/tools/cuda/cuda-11.0.1/bin/ncu --metrics \"regex:.*\" -k volta_fp16_s884gemm_fp16_... -s 0 -c 1 '/tools/venvs/tensorflow/tensorflow-2.2.0/bin/python' lm-fp16.py -m train -train data/test-index.txt -test data/test-index.txt -valid data/test-index.txt -b{} -s{} -d{} -v{} -l{} -p{} -e{} > {} 2>&1".format(b, s, d, v, l, bpe, e, output_file) #command1 = "/tools/cuda/cuda-11.0.1/bin/nsys profile -t cuda,osrt,cudnn,cublas,nvtx,mpi -o profile/{} --stats=true -f true python lm-fp16.py -b{} -s{} -d{} -v{} -l{} -p{} -e{} -m train -train data/test-index.txt -test data/test-index.txt -valid data/test-index.txt > {} 2>&1".format(fname, b, s, d, v, l, bpe, e, output_file) command2 = "cat {} | grep \"sm__pipe_tensor_op_hmma_cycles_active.avg.pct_of_peak_sustained_active\"| awk {{'print $3'}}".format(output_file) #unit command3 = "cat {} | grep \"dram__throughput.avg.pct_of_peak_sustained_active\"| awk {{'print $3'}}".format(output_file) #unit command4 = "cat {} | grep lts__t_sectors.avg.pct_of_peak_sustained_active | awk {{'print $3'}}".format(output_file) #unit command5 = "cat {} | grep dram_read_bytes | grep sum | head -n 1 | awk {{'print $3'}}".format(output_file) #unit command6 = "cat {} | grep dram_write_bytes | grep sum | head -n 1 | awk {{'print $3'}}".format(output_file) #unit command7 = "cat {} | grep lts__t_bytes.sum | head -n 1 | awk {{'print $3'}}".format(output_file) #unit command8 = "cat {} | grep sm__sass_thread_inst_executed_op_fp16_pred_on.sum | head -n 1 | awk {{'print $3'}}".format(output_file) #unit command9 = "cat {} | grep sm__sass_thread_inst_executed_ops_fadd_fmul_ffma_pred_on.sum | head -n 1 | awk {{'print $3'}}".format(output_file) #unit result = {'ncu':-1, 'core_util':-1, 'dram_util':-1, 'l2_util':-1, 'dram_read':-1, 'dram_write':-1, 'l2_access':-1, 'fp16_inst':-1, 'fma_inst':-1} run_command(command1, 'ncu', result) run_command(command2, 'core_util', result) run_command(command3, 'dram_util', result) run_command(command4, 'l2_util', result) run_command(command5, 'dram_read', result) run_command(command6, 'dram_write', result) run_command(command7, 'l2_access', result) run_command(command8, 'fp16_inst', result) run_command(command9, 'fma_inst', result) with open(result_file, "a+") as f: f.write("{0:d} {1:d} {2:d} {3:d} {4:d} {5:d} {6:d} {7:.2f} {8:.2f} {9:.2f} {10:,} {11:,} {12:,} {13:,} {14:,}\n".format(b, s, d, v, l, e, bpe, result['core_util'], result['dram_util'], result['l2_util'], result['dram_read'], result['dram_write'], result['l2_access'], int(result['fp16_inst']), int(result['fma_inst']))) print("{0:d} {1:d} {2:d} {3:d} {4:d} {5:d} {6:d} {7:.2f} {8:.2f} {9:.2f} {10:,} {11:,} {12:,} {13:,} {14:,}\n".format(b, s, d, v, l, e, bpe, result['core_util'], result['dram_util'], result['l2_util'], result['dram_read'], result['dram_write'], result['l2_access'], int(result['fp16_inst']), int(result['fma_inst'])))
63.710526
363
0.621437
0
0
0
0
0
0
0
0
2,470
0.51012
e1bb9b6b3739ef931135cf1fd4f2fa3e0d1cab30
8,171
py
Python
src/planet_box_extractor/extractor.py
V-AI-S/planet-box-extractor
5404bc97e7a2e1f6d90c7503d9106973038e4387
[ "MIT" ]
6
2021-05-31T14:51:55.000Z
2022-01-27T14:44:04.000Z
src/planet_box_extractor/extractor.py
V-AI-S/planet-box-extractor
5404bc97e7a2e1f6d90c7503d9106973038e4387
[ "MIT" ]
null
null
null
src/planet_box_extractor/extractor.py
V-AI-S/planet-box-extractor
5404bc97e7a2e1f6d90c7503d9106973038e4387
[ "MIT" ]
null
null
null
from .geo_utils import boundingBox import time import PIL.Image import urllib.request import mercantile import numpy as np class PlanetBoxExtractor: """ Extract bounding boxes from satellite images using Planet Tiles API @radius: distance from the center of the image to the edge in kilometers @zoom: level of zoom in the Mercantiles @map_id: url-id of the basemap from the Planet Tiles API, can be found in the Planet Explorer @api_key: Planet Tiles API Key base_url: placeholder url of using the Planet Tiles API, containing the API_KEY IMGSIZE: the size of the images from the Planet Tiles API (256 default) locations: clockwise order of the tiles Usage: extractor = PlanetBoxExtractor(radius, zoom, map_id, API_KEY) image = extractor.Process(latitude, longitude) """ def __init__(self, radius, zoom, map_id, api_key): self.radius = radius self.zoom = zoom self.base_url = 'https://tiles.planet.com/basemaps/v1/planet-tiles/' + map_id + '/gmap/{}/{}/{}.png?api_key=' + api_key self.IMGSIZE = 256 self.locations = ['upleft', 'upright', 'downleft', 'downright'] def Download(self, latitude, longitude): """ Method to retrieve Mercartor tiles corresponding to the bounding box around longitude and latitude with radius self.radius Returns a list of 4 items, either the image of a tile or an empty object (None) Parameters ---------- latitude: latitude coordinate of the center of the desired bounding box in degrees longitude: longitude coordinate of the center of the desired bounding box in degrees Returns ------- images: list of PNG images corresponding to the Mercartor tiles """ minLat, minLon, maxLat, maxLon = boundingBox(latitude, longitude, self.radius) tiles = [ mercantile.tile(minLon, maxLat, self.zoom), # upleft mercantile.tile(maxLon, maxLat, self.zoom), # upright mercantile.tile(minLon, minLat, self.zoom), # downleft mercantile.tile(maxLon, minLat, self.zoom), # downright ] urls = [] images = [] for i, location in enumerate(self.locations): tile = tiles[i] url = self.base_url.format(tile.z, tile.x, tile.y) if url in urls: images.append(None) else: urls.append(urls.append(url)) images.append(PIL.Image.open(urllib.request.urlopen(url))) time.sleep(0.2) return images def Stitch(self, images): """ Method to place Mercartor tile images in correct order Parameters ---------- images: list of images of tiles and empty objects (None) for empty tiles Returns ------- img: stitched image with size (self.IMGSIZE * n) x (self.IMGSIZE * m) with n the number of tile rows and m the number of tile columns """ total = [(img is not None) for i, img in enumerate(images)] if sum(total) == 1: padx, pady = 0, 0 img = np.zeros((self.IMGSIZE, self.IMGSIZE, 3), 'uint8') elif sum(total) == 2: if sum(total[:2]) % 2 == 0: # up/down padx, pady = 0, self.IMGSIZE img = np.zeros((self.IMGSIZE, self.IMGSIZE * 2, 3), 'uint8') else: # left/right padx, pady = self.IMGSIZE, 0 img = np.zeros((self.IMGSIZE * 2, self.IMGSIZE, 3), 'uint8') elif sum(total) == 4: padx, pady = self.IMGSIZE, self.IMGSIZE img = np.zeros((self.IMGSIZE * 2, self.IMGSIZE * 2, 3), 'uint8') # for location, image in zip(self.locations, images): if image is None: continue if location == 'upleft': img[:self.IMGSIZE, :self.IMGSIZE] = np.array(image)[:,:,:3] elif location == 'upright': img[:self.IMGSIZE, self.IMGSIZE:] = np.array(image)[:,:,:3] elif location == 'downright': img[self.IMGSIZE:, self.IMGSIZE:] = np.array(image)[:,:,:3] elif location == 'downleft': img[self.IMGSIZE:, :self.IMGSIZE] = np.array(image)[:,:,:3] return img def coord2pixel(self, lon, lat, box): """ Method to convert longitude and latitude to their corresponding pixel location given the bounding box of the Mercartor containing the coordinates Parameters ---------- lon: longitude in degrees lat: latitude in degrees box: bounding box of the Mercartor tile containing the coordinates returned from mercantile.bounds() Returns ------- tuple of 2 pixel locations corresponding to the given longitude and latitude """ return int((lon - box.west)/(box.east - box.west)*self.IMGSIZE), int((lat - box.north)/(box.south - box.north)*self.IMGSIZE) def Bounds(self, latitude, longitude): """ Method to calculate the pixel locations of the bounding box with a radius of self.radius given the center longitude and latitude coordinates Parameters ---------- latitude: latitude coordinate of the center of the bounding box in degrees longitude: longitude coordinate of the center of the bounding box in degrees Returns ------- minY: starting pixel location of the bounding box on the Y-axis maxY: ending pixel location of the bounding box on the Y-axis minX: starting pixel location of the bounding box on the X-axis maxX: ending pixel location of the bounding box on the X-axis """ minLat, minLon, maxLat, maxLon = boundingBox(latitude, longitude, self.radius) minX, minY = self.coord2pixel(minLon, maxLat, mercantile.bounds(mercantile.tile(longitude, latitude, self.zoom))) maxX, maxY = self.coord2pixel(maxLon, minLat, mercantile.bounds(mercantile.tile(longitude, latitude, self.zoom))) if minY < 0: minY += self.IMGSIZE maxY += self.IMGSIZE if minX < 0: minX += self.IMGSIZE maxX += self.IMGSIZE return minY, maxY, minX, maxX def Crop(self, image, minY, maxY, minX, maxX): """ Method to perform the cropping of the stitched image to return the bounding box region Parameters ---------- image: stitched image of the Mercartor tiles minY: starting pixel location of the bounding box on the Y-axis maxY: ending pixel location of the bounding box on the Y-axis minX: starting pixel location of the bounding box on the X-axis maxX: ending pixel location of the bounding box on the X-axis Returns ------- partial image corresponding to the bounding box region """ return image[minY:maxY, minX:maxX] def Process(self, latitude, longitude): """ Method that combines the main steps of the API to extract a bounding box image given a latitude and longitude Parameters ---------- latitude: latitude coordinate of the center of the bounding box in degrees longitude: latitude coordinate of the center of the bounding box in degrees Returns ------- image: partial image corresponding to the bounding box region """ images = self.Download(latitude, longitude) stitched_image = self.Stitch(images) minY, maxY, minX, maxX = self.Bounds(latitude, longitude) image = self.Crop(stitched_image, minY, maxY, minX, maxX) return image if __name__ == '__main__': latitude, longitude = 5, 20 zoom = 15 radius = 0.2 API_KEY = '' map_id = '' extractor = PlanetBoxExtractor(radius, zoom, map_id, API_KEY) image = extractor.Process(latitude, longitude)
41.060302
153
0.598947
7,789
0.953249
0
0
0
0
0
0
4,176
0.511076
e1bbdc48371fed473f16ae3afb93373be31ead4e
21,365
py
Python
Kai/python/modules/mctruth.py
NJManganelli/FourTopNAOD
9743d5b49bdbad27a74abb7b2d5b7295f678a0e3
[ "Apache-2.0" ]
1
2022-01-17T17:29:38.000Z
2022-01-17T17:29:38.000Z
Kai/python/modules/mctruth.py
NJManganelli/FourTopNAOD
9743d5b49bdbad27a74abb7b2d5b7295f678a0e3
[ "Apache-2.0" ]
null
null
null
Kai/python/modules/mctruth.py
NJManganelli/FourTopNAOD
9743d5b49bdbad27a74abb7b2d5b7295f678a0e3
[ "Apache-2.0" ]
1
2021-12-15T10:56:50.000Z
2021-12-15T10:56:50.000Z
from __future__ import (division, print_function) import os import ROOT #import numpy as np #import itertools #from collections import OrderedDict ROOT.PyConfig.IgnoreCommandLineOptions = True from PhysicsTools.NanoAODTools.postprocessing.framework.datamodel import Collection, Object from PhysicsTools.NanoAODTools.postprocessing.framework.eventloop import Module from PhysicsTools.NanoAODTools.postprocessing.tools import * #deltaR, deltaPhi, etc. _rootLeafType2rootBranchType = { 'UChar_t':'b', 'Char_t':'B', 'UInt_t':'i', 'Int_t':'I', 'Float_t':'F', 'Double_t':'D', 'ULong64_t':'l', 'Long64_t':'L', 'Bool_t':'O' } class MCTruth(Module): def __init__(self, verbose=False, makeHistos=False): self.writeHistFile=True self.MADEHistos=False #load the criteria for brevity #self.CFG = selectionConfig #choose whether we want verbose output or to produce cut histograms self._verbose = verbose self.makeHistos = makeHistos #event counters self.counter = 0 self.maxEventsToProcess = -1 # #Muon CFG loading from config file # self.cfg_mMaxEta = self.CFG["Muon"]["Common"]["Eta"] #Max Eta acceptance # self.cfg_mSelPt = self.CFG["Muon"]["Select"]["Pt"] #min Pt for selection # self.cfg_mSelRelIso = self.CFG["Muon"]["Select"]["RelIso"] #Relative Isolation # self.cfg_mSelId = self.CFG["Muon"]["Select"]["IdLevel"] # #All muons in NanoAOD are loose Muons or better, so loose-only are just those failing the "mediumId" # #Jet CFG loading from config file # self.cfg_jMaxEta = self.CFG["Jet"]["Common"]["Eta"] #Max Eta acceptance # self.cfg_jId = self.CFG["Jet"]["Common"]["JetId"] # self.cfg_jNSelPt = self.CFG["Jet"]["NonBJet"]["Pt"] #Non-B Jet minimum Pt # self.cfg_jBSelPt = self.CFG["Jet"]["BJet"]["Pt"] #B Jet minimum Pt # self.cfg_jBAlgo = self.CFG["Jet"]["Algo"] #bTagging Algorithm # self.cfg_jBWP = self.CFG["Jet"]["WP"] #working point, like "Medium" or "Tight" # self.cfg_jBThresh = self.CFG["Jet"][self.cfg_jBAlgo][self.cfg_jBWP] # self.cfg_jClnTyp = self.CFG["Jet"]["CleanType"] # self.cfg_jMaxdR = self.CFG["Jet"]["MaxDeltaR"] # #Event CFG loading from config file # self.cfg_lowMRes_cent = self.CFG["Event"]["LowMassReson"]["Center"] #Low mass resonance veto center # self.cfg_lowMRes_hwidth = self.CFG["Event"]["LowMassReson"]["HalfWidth"] #low mass resonance veto half-width # self.cfg_ZMRes_cent = self.CFG["Event"]["ZMassReson"]["Center"] #Z mass resonance veto center # self.cfg_ZMRes_hwidth = self.CFG["Event"]["ZMassReson"]["HalfWidth"] #Z mass resonance veto half-width # self.cfg_HTMin = self.CFG["Event"]["HTMin"] #Minimum HT # self.cfg_nBJetMin = self.CFG["Event"]["nBJetMin"] #Minimum bTagged jets # self.cfg_nTotJetMin = self.CFG["Event"]["nTotJetMin"] #Minimum total jets # self.cfg_minMET = self.CFG["MET"]["MinMET"] #Minimum MET def beginJob(self,histFile=None,histDirName=None): print("histfile=" + str(histFile) + " directoryname=" + str(histDirName)) if histFile != None and histDirName != None: #self.writeHistFile=True prevdir = ROOT.gDirectory self.histFile = histFile self.histFile.cd() self.dir = self.histFile.mkdir( histDirName ) prevdir.cd() self.objs = [] if self.makeHistos: # self.h_jSel_map = ROOT.TH2F('h_jSel_map', ';Jet Eta;Jet Phi', 40, -2.5, 2.5, 20, -3.14, 3.14) # self.addObject(self.h_jSel_map) self.MADEHistos=True def endJob(self): if hasattr(self, 'objs') and self.objs != None: prevdir = ROOT.gDirectory self.dir.cd() for obj in self.objs: obj.Write() prevdir.cd() if hasattr(self, 'histFile') and self.histFile != None : self.histFile.Close() def beginFile(self, inputFile, outputFile, inputTree, wrappedOutputTree): # _brlist = inputTree.GetListOfBranches() # branches = [_brlist.At(i) for i in xrange(_brlist.GetEntries())] # placeholder = [] # for elem in self.input: # placeholder.append([]) # self.brlist_sep = dict(zip(self.input.keys(), placeholder)) # for key in self.input.keys(): # self.brlist_sep[key] = self.filterBranchNames(branches,self.input[key]) self.out = wrappedOutputTree # self.out.branch("Electron_PES", "O", lenVar="nElectron", title="Boolean for electrons passing the event selection criteria") # self.out.branch("Muon_PES", "O", lenVar="nMuon", title="Boolean for muons passing the event selection criteria") # self.out.branch("Jet_PES", "O", lenVar="nJet", title="Boolean for jets passing the event selection criteria") # self.out.branch("Jet_Tagged", "O", lenVar="nJet", title="Boolean for jets passing the B-tagging and corresponding Pt requirements") # self.out.branch("Jet_Untagged", "O", lenVar="nJet", title="Boolean for jets passing the non-B-tagged and corresponding Pt criteria") #Define the EventVar_ subvariables' type (Double, Int, Bool...) # self.varDict = OrderedDict([("H", "D"), # ("H2M", "D"), # ("HT", "D"), # ("HT2M", "D"), # ("HTH", "D"), # ("HTRat", "D"), # ("nBTagJet", "I"), # ("nTotJet", "I"), # ("Trig_MuMu", "O"), # ("Trig_ElMu", "O"), # ("Trig_ElEl", "O"), # ("Trig_Mu", "O"), # ]) #Define the EventVar_ subvariables' titles # self.titleDict = OrderedDict([("H", "Sum of selected jet's 3-momentum P (magnitude)"), # ("H2M", "Sum of slected jet 3-momentum (magnitude) except the 2 highest-pt B-tagged jets"), # ("HT", "Sum of selected jet transverse momentum"), # ("HT2M", "Sum of slected jet transverse momentum except the 2 highest-Pt B-tagged jets"), # ("HTH", "Ratio of HT to H in the event"), # ("HTRat", "Ratio of the sum of 2 highest selected jet Pts to HT"), # ("nBTagJet", "Number of post-selection and cross-cleaned b-tagged jets"), # ("nTotJet", "Number of total post-selection and cross-cleaned jets"), # ("Trig_MuMu", "Event passed one of the dimuon HLT triggers"), # ("Trig_ElMu", "Event passed one of the electron-muon HLT triggers"), # ("Trig_ElEl", "Event passed one of the dielectron HLT triggers"), # ("Trig_Mu", "Event passed one of the solo-muon HLT triggers"), # ]) # for name, valType in self.varDict.items(): # self.out.branch("EventVar_%s"%(name), valType, title=self.titleDict[name]) #Use method from CollectionMerger.py def filterBranchNames(self,branches,collection): out = [] for br in branches: name = br.GetName() if not name.startswith(collection+'_'): continue out.append(name.replace(collection+'_','')) self.branchType[collection][out[-1]] = br.FindLeaf(br.GetName()).GetTypeName() #Need to fix this type part for multi collections... return out def analyze(self, event): #called by the eventloop per-event """process event, return True (go to next module) or False (fail, go to next event)""" #Increment counter and skip events past the maxEventsToProcess, if larger than -1 self.counter +=1 # if -1 < self.maxEventsToProcess < self.counter: # return False if 5 < self.counter: return False # if (self.counter % 5000) == 0: # print("Processed {0:2d} Events".format(self.counter)) ############################################### ### Collections and Objects and isData check### ############################################### #Check whether this file is Data from Runs or Monte Carlo simulations self.isData = True if hasattr(event, "nGenPart") or hasattr(event, "nGenJet") or hasattr(event, "nGenJetAK8"): self.isData = False if self.isData: print("WARNING: Attempt to run MCTruth Module on Data (Detected)!") return False PV = Object(event, "PV") otherPV = Collection(event, "OtherPV") SV = Collection(event, "SV") electrons = Collection(event, "Electron") muons = Collection(event, "Muon") jets = Collection(event, "Jet") fatjets = Collection(event, "FatJet") #Correct capitalization? subjets = Collection(event, "SubJet") #met = Object(event, "MET") met = Object(event, "METFixEE2017") #FIXME: Placeholder until passed in via configuration? HLT = Object(event, "HLT") Filters = Object(event, "Flag") #For Data use only gens = Collection(event, "GenPart") genjets = Collection(event, "GenJet") genfatjets = Collection(event, "GenJetAK8") gensubjets = Collection(event, "SubGenJetAK8") genmet = Object(event, "GenMET") generator = Object(event, "Generator") btagweight = Object(event, "btagWeight") #contains .CSVV2 and .DeepCSVB float weights #genweight = #lhe = Object(event, "FIXME") #weights = FIXME #PSWeights = FIXME ################################## ### Print info for exploration ### ################################## print("\n\n\nRun: " + str(event.run) + " Lumi: " + str(event.luminosityBlock) + " Event: " + str(event.event)) print("\n==========Generator==========") print("{0:>10s} {1:>5s} {2:>5s} {3:>10s} {4:>10s} {5:>7s} {6:>7s} {7:>10s} {8:>10s}" .format("Bin Var", "ID 1", "ID 2", "Q2 Scale", "gen wght", "x1 mom.", "x2 mom.", "x*pdf 1", "x*pdf 2")) print("{0:>10f} {1:>5d} {2:>5d} {3:>10.4f} {4:>10.4f} {5:>7.3f} {6:>7.3f} {7:>10.4f} {8:>10.4f}" .format(generator.binvar, generator.id1, generator.id2, generator.scalePDF, generator.weight, generator.x1, generator.x2, generator.xpdf1, generator.xpdf2)) print("\n==========btag Weight==========") print("CSVv2: " + str(btagweight.CSVV2) + " DeepCSV: " + str(btagweight.DeepCSVB)) print("\n\n==========Here be thy jets==========") print("=====Selected Jets=====\n{0:>5s} {1:>10s} {2:>10s} {3:>10s} {4:>10s} {5:10s} {6:>10s}" .format("IdX", "pt", "eta", "phi","DeepFlavB", "genJetIdx", "jID")) for nj, jet in enumerate(jets): if not jet.PES: continue print("{0:>5d} {1:>10.4f} {2:>10.4f} {3:>10.4f} {4:>10.4f} {5:>10d} {6:>10d}".format(nj, jet.pt, jet.eta, jet.phi, jet.btagDeepFlavB, jet.genJetIdx, jet.jetId)) print("=====Unselected Jets=====\n{0:>5s} {1:>10s} {2:>10s} {3:>10s} {4:>10s} {5:10s} {6:>10s}" .format("IdX", "pt", "eta", "phi","DeepFlavB", "genJetIdx", "jID")) for nj, jet in enumerate(jets): if jet.PES: continue print("{0:>5d} {1:>10.4f} {2:>10.4f} {3:>10.4f} {4:>10.4f} {5:>10d} {6:>10d}".format(nj, jet.pt, jet.eta, jet.phi, jet.btagDeepFlavB, jet.genJetIdx, jet.jetId)) print("=====Gen Jets=====\n{0:>5s} {1:>10s} {2:>10s} {3:>10s} {4:>10s} {5:10s}" .format("IdX", "pt", "eta", "phi","Had Flav", "Part Flav")) for ngj, genjet in enumerate(genjets): print("{0:>5d} {1:>10.4f} {2:>10.4f} {3:>10.4f} {4:>10d} {5:>10d}".format(ngj, genjet.pt, genjet.eta, genjet.phi, genjet.hadronFlavour, genjet.partonFlavour)) print("\n\n==========Here be thy fatjets==========") print("=====Fatjets=====\n{0:>5s} {1:>10s} {2:>10s} {3:>10s} {4:>5s} {5:10s}" .format("IdX", "pt", "eta", "phi","jID", "TvsQCD")) for nfj, jet in enumerate(fatjets): print("{0:>5d} {1:>10.4f} {2:>10.4f} {3:>10.4f} {4:>5d} {5:>10.4f}".format(nfj, jet.pt, jet.eta, jet.phi, jet.jetId, jet.deepTag_TvsQCD)) print("=====Gen Fatjets=====\n{0:>5s} {1:>10s} {2:>10s} {3:>10s} {4:>10s} {5:10s}" .format("IdX", "pt", "eta", "phi","Had Flav", "Part Flav")) for ngfj, genjet in enumerate(genfatjets): print("{0:>5d} {1:>10.4f} {2:>10.4f} {3:>10.4f} {4:>10d} {5:>10d}".format(ngfj, genjet.pt, genjet.eta, genjet.phi, genjet.hadronFlavour, genjet.partonFlavour)) print("\n\n==========Here be thy GenParts==========") print("=====Gen Fatjets=====\n{0:>5s} {1:>10s} {2:>10s} {3:>10s} {4:>10s} {5:10s} {6:>10s} {7:>10s}" .format("IdX", "pt", "eta", "phi","Moth ID", "PDG ID", "Status", "Stat. Flgs")) for np, gen in enumerate(gens): print("{0:>5d} {1:>10.4f} {2:>10.4f} {3:>10.4f} {4:>10d} {5:>10d} {6:>10d} {7:>10d}".format(np, gen.pt, gen.eta, gen.phi, gen.genIdxMother, gen.pdgId, gen.status, gen.statusFlags)) ################################################ ### Initialize Branch Variables to be Filled ### ################################################ #Arrays # electrons_PES = [] # muons_PES = [] # jets_PES = [] # jets_Tagged = [] # jets_Untagged = [] # for i in xrange(len(electrons)): # electrons_PES.append(False) # for j in xrange(len(muons)): # muons_PES.append(False) # for k in xrange(len(jets)): # jets_PES.append(False) # jets_Tagged.append(False) # jets_Untagged.append(False) #genTop_VARS ######################### ### Prepare Variables ### ######################### ############# ### MUONS ### ############# # for jInd, jet in enumerate(jets): # #Skip any jets that are below the threshold chosen (pass Loose: +1, pass Tight: +2 , pass TightLepVeto: +4 # #In 2017 data, pass Loose is always a fail (doesn't exist), so pass Tight and not TLV = 2, pass both = 6 # if jet.jetId < self.cfg_jId: # continue # #Eta acceptance # if abs(jet.eta) > self.cfg_jMaxEta: # continue # #Walk through lepton-jet cleaning methods, starting with most accurate and cheapest: PartonMatching # if self.cfg_jClnTyp == "PartonMatching": # if jInd in crosslinkJetIdx: # continue # #Next check if DeltaR was requested instead. More computation required in NanoAOD format, less accurate # elif self.cfg_jClnTyp == "DeltaR": # #raise NotImplementedError("In eventselector class, in jet loop, selected cleaning type of DeltaR matching has not been implemented") # failCleaning = False # #DeltaR against muons # for mIdx in mIndex: # if deltaR(muons[mIdx], jet) < self.cfg_jMaxdR: # failCleaning = True # #DeltaR against electrons # for eIdx in eIndex: # if deltaR(electrons[eIdx], jet) < self.cfg_jMaxdR: # failCleaning = True # #Check if jet survived cleaning or now # if failCleaning: # continue # #And protect against invalid lepton-jet cleaning methods, or add in alternative ones here # else: # raise RuntimeError("The requested Lepton-Jet cross-cleaning algorithm [{0:s}] is not available." # "Please use \"PartonMatching\" or \"DeltaR\"".format(self.cfg_jClnTyp)) # #https://twiki.cern.ch/twiki/bin/viewauth/CMS/BtagRecommendation94X # ##if jet.ChosenBTag > ChosenBtagWorkingPoint's Threshold and jet.pt > BTaggedJet's minimum cut # if getattr(jet, self.cfg_jBAlgo) > self.cfg_jBThresh and jet.pt > self.cfg_jBSelPt: # #Flip PassEventSelection and (B)Tagged bits # jets_PES[jInd] = True # jets_Tagged[jInd] = True # nBJets += 1 # #Add to HTRat_Numerator if counter is less than 2 (i.e., one of the two highest Pt jets to pass event selection) # if HTRat_Counter < 2: # HTRat_Numerator += jet.pt # HTRat_Counter += 1 # #Fill jet histos (Ideally replaced with hsnap() in the future) # if self.MADEHistos: self.h_jBSel_map.Fill(jet.eta, jet.phi) # if self.MADEHistos: self.h_jBSel_pt.Fill(jet.pt) # #Add jet index to list for collection filling # jBIndex.append(jInd) # #Add momentum to HT, H variables here # HT += jet.pt # H += (jet.p4()).P() # #Improper calculation below, fix later # if nBJets > 2: # #Add momentum to HT2M, H2M variables here # #FIXME: If tagging selection changes from medium, this will be incorrect! (by definition) # HT2M += jet.pt # H2M += (jet.p4()).P() # elif jet.pt > self.cfg_jNSelPt: # #Flip PassEventSelection and Untagged bits # jets_PES[jInd] = True # jets_Untagged[jInd] = True # #Add to HTRat_Numerator if counter is less than 2, relying on cascading through b-tagging/non-b-tagging selection # if HTRat_Counter < 2: # HTRat_Numerator += jet.pt # HTRat_Counter += 1 # #Increment jet counter # nOthJets +=1 # #Fill jet histos (Ideally replaced with hsnap() in the future) # #FIXME: This isn't the distribution for the jets post event selection! # if self.MADEHistos: self.h_jSel_map.Fill(jet.eta, jet.phi) # if self.MADEHistos: self.h_jSel_pt.Fill(jet.pt) # #Add jet index to list for collection filling # jNBIndex.append(jInd) # #Add momentum to event variables, no restrictions since these are all untagged jets # HT += jet.pt # H += (jet.p4()).P() # HT2M += jet.pt # H2M += (jet.p4()).P() # #Cut events that don't have minimum number of b-tagged jets # if nBJets < self.cfg_nBJetMin: # if self.MADEHistos: self.h_cutHisto.Fill(6.5) # return False # #Cut events that don't have minimum number of selected, cross-cleaned jets # if nBJets + nOthJets < self.cfg_nTotJetMin: # if self.MADEHistos: self.h_cutHisto.Fill(7.5) # return False # #Cut events that don't have minimum value of HT # if HT < self.cfg_HTMin: # if self.MADEHistos: self.h_cutHisto.Fill(8.5) # if self.cutOnHT: return False # #Calculate HTRat and HTH, since more than 4 jets in the events reaching this point # HTH = HT/H # #HTRat = Pt of two highest pt jets / HT # HTRat = HTRat_Numerator / HT ############################################# ### Write out slimmed selection variables ### ############################################# #Make dictionary that makes this more automated, as in the branch creation # self.out.fillBranch("Electron_PES", electrons_PES) # self.out.fillBranch("Muon_PES", muons_PES) # self.out.fillBranch("Jet_PES", jets_PES) # self.out.fillBranch("Jet_Tagged", jets_Tagged) # self.out.fillBranch("Jet_Untagged", jets_Untagged) # self.out.fillBranch("EventVar_H", H) # self.out.fillBranch("EventVar_H2M", H2M) # self.out.fillBranch("EventVar_HT", HT) # self.out.fillBranch("EventVar_HT2M", HT2M) # self.out.fillBranch("EventVar_HTH", HTH) # self.out.fillBranch("EventVar_HTRat", HTRat) # self.out.fillBranch("EventVar_nBTagJet", nBJets) # self.out.fillBranch("EventVar_nTotJet", (nOthJets + nBJets)) # self.out.fillBranch("EventVar_Trig_MuMu", passMuMu) # self.out.fillBranch("EventVar_Trig_ElMu", passElMu) # self.out.fillBranch("EventVar_Trig_ElEl", passElEl) # self.out.fillBranch("EventVar_Trig_Mu", passMu) return True
54.088608
192
0.539246
20,743
0.970887
0
0
0
0
0
0
14,430
0.675404
e1bced98ae2a678cded5046d18c92e44944d6925
1,214
py
Python
skimpy/utils/namespace.py
AQ18/skimpy
435fc50244f2ca815bbb39d525a82a4692f5c0ac
[ "Apache-2.0" ]
13
2020-11-05T10:59:13.000Z
2022-03-21T01:38:31.000Z
skimpy/utils/namespace.py
AQ18/skimpy
435fc50244f2ca815bbb39d525a82a4692f5c0ac
[ "Apache-2.0" ]
4
2022-01-27T10:23:40.000Z
2022-03-10T18:16:06.000Z
skimpy/utils/namespace.py
AQ18/skimpy
435fc50244f2ca815bbb39d525a82a4692f5c0ac
[ "Apache-2.0" ]
6
2020-08-04T17:01:33.000Z
2022-03-21T01:38:32.000Z
# -*- coding: utf-8 -*- """ .. module:: pytfa :platform: Unix, Windows :synopsis: Simple Kinetic Models in Python .. moduleauthor:: SKiMPy team [---------] Copyright 2017 Laboratory of Computational Systems Biotechnology (LCSB), Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """ Simulation types """ QSSA = 'qssa' TQSSA = 'tqssa' MCA = 'mca' ODE = 'ode' ELEMENTARY = 'elementary' """ Jacobian Types""" NUMERICAL = 'numerical' SYMBOLIC = 'symbolic' """ MCA Types """ NET = 'net' SPLIT = 'split' """ Item types """ PARAMETER = 'parameter' VARIABLE = 'variable' """ Units """ KCAL = 'kcal' KJ = 'kJ' JOULE = 'JOULE' """ OTHER """ WATER_FORMULA = 'H2O'
21.298246
72
0.702636
0
0
0
0
0
0
0
0
1,041
0.857496
e1bdf0a5854ba7b15ac7f77144b26d66246bcec0
517
py
Python
app/urlshortener.py
felixbade/minimal-url-shortener
4f2b4e318fff4eab2b37f863230198a5116e7a7e
[ "MIT" ]
null
null
null
app/urlshortener.py
felixbade/minimal-url-shortener
4f2b4e318fff4eab2b37f863230198a5116e7a7e
[ "MIT" ]
null
null
null
app/urlshortener.py
felixbade/minimal-url-shortener
4f2b4e318fff4eab2b37f863230198a5116e7a7e
[ "MIT" ]
null
null
null
class URLShortener: def __init__(self): self.id_counter = 0 self.links = {} def getURL(self, short_id): return self.links.get(short_id) def shorten(self, url): short_id = self.getNextId() self.links.update({short_id: url}) return short_id def getNextId(self): self.id_counter += 1 # Id got from a URL is type str anyway so it is easiest to just use # type str everywhere after this point. return str(self.id_counter)
25.85
75
0.611219
516
0.998066
0
0
0
0
0
0
106
0.205029
e1be426bfe54febaaf2747236ba29b8bea95325e
2,897
py
Python
designate/storage/impl_sqlalchemy/migrate_repo/versions/051_scoped_tsig.py
cneill/designate-testing
7bf320062d85a12bff2aee8d26c133941a289fc4
[ "Apache-2.0" ]
null
null
null
designate/storage/impl_sqlalchemy/migrate_repo/versions/051_scoped_tsig.py
cneill/designate-testing
7bf320062d85a12bff2aee8d26c133941a289fc4
[ "Apache-2.0" ]
null
null
null
designate/storage/impl_sqlalchemy/migrate_repo/versions/051_scoped_tsig.py
cneill/designate-testing
7bf320062d85a12bff2aee8d26c133941a289fc4
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 Hewlett-Packard Development Company, L.P. # # Author: Kiall Mac Innes <kiall@hp.com> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from sqlalchemy import Enum from sqlalchemy.schema import Table, MetaData, Column from migrate.changeset.constraint import UniqueConstraint from designate.sqlalchemy.types import UUID meta = MetaData() # Get the default pool_id from the config file default_pool_id = cfg.CONF['service:central'].default_pool_id.replace('-', '') TSIG_SCOPES = ['POOL', 'ZONE'] def upgrade(migrate_engine): meta.bind = migrate_engine # Load the TSIG Keys tables tsigkeys_table = Table('tsigkeys', meta, autoload=True) scopes = Enum(name='tsig_scopes', metadata=meta, *TSIG_SCOPES) scopes.create() # Create the scope and resource columns scope_col = Column('scope', scopes, nullable=False, server_default='POOL') scope_col.create(tsigkeys_table) # Start with nullable=True and populate_default=True, then convert # to nullable=False once all rows have been populted with a resource_id resource_id_col = Column('resource_id', UUID, default=default_pool_id, nullable=True) resource_id_col.create(tsigkeys_table, populate_default=True) # Now that we've populated the default pool id in existing rows, MySQL # will let us convert this over to nullable=False tsigkeys_table.c.resource_id.alter(nullable=False) dialect = migrate_engine.url.get_dialect().name if dialect.startswith('sqlite'): # Add missing unique index constraint = UniqueConstraint('name', name='unique_tsigkey_name', table=tsigkeys_table) constraint.create() def downgrade(migrate_engine): meta.bind = migrate_engine # Load the TSIG Keys tables tsigkeys_table = Table('tsigkeys', meta, autoload=True) scopes = Enum(name='tsig_scopes', metadata=meta, *TSIG_SCOPES) # Create the scope and resource columns tsigkeys_table.c.scope.drop() tsigkeys_table.c.resource_id.drop() scopes.drop() dialect = migrate_engine.url.get_dialect().name if dialect.startswith('sqlite'): # Add missing unique index constraint = UniqueConstraint('name', name='unique_tsigkey_name', table=tsigkeys_table) constraint.create()
36.2125
78
0.713497
0
0
0
0
0
0
0
0
1,296
0.447359
e1bf68076ea2cc2d9234c0759575b80d167f8b2e
680
py
Python
geomat/stein/migrations/0060_remove_mineraltype_mohs_scale.py
mimischi/django-geomat
8c5bc4c9ba9759b58b52ddf339ccaec40ec5f6ea
[ "BSD-3-Clause" ]
3
2017-01-13T15:53:39.000Z
2017-05-05T11:57:55.000Z
geomat/stein/migrations/0060_remove_mineraltype_mohs_scale.py
mimischi/django-geomat
8c5bc4c9ba9759b58b52ddf339ccaec40ec5f6ea
[ "BSD-3-Clause" ]
233
2016-11-05T15:19:48.000Z
2021-09-07T23:33:47.000Z
geomat/stein/migrations/0060_remove_mineraltype_mohs_scale.py
GeoMatDigital/django-geomat
8c5bc4c9ba9759b58b52ddf339ccaec40ec5f6ea
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 2.0.2 on 2018-05-04 07:33 from django.db import migrations from django.db import models class Migration(migrations.Migration): dependencies = [ ('stein', '0059_mineraltype_new_mohs_scale'), ] operations = [ migrations.AlterField( model_name='mineraltype', name='mohs_scale', field=models.CharField(max_length=20, verbose_name="mohs scale", default="") ), migrations.RemoveField( model_name='mineraltype', name='mohs_scale', ), migrations.RenameField(model_name="mineraltype", old_name="new_mohs_scale", new_name="mohs_scale") ]
26.153846
106
0.632353
566
0.832353
0
0
0
0
0
0
192
0.282353
e1c057aa5119875fed8dba5a07e37ff673709a2b
14,420
py
Python
bamboo/core/calculator.py
pld/bamboo
a0fc77aebd6ff6b1087ba46896b0ce705fbb25a3
[ "BSD-3-Clause" ]
27
2015-01-14T15:57:54.000Z
2020-12-27T19:34:41.000Z
bamboo/core/calculator.py
biswapanda/bamboo
72fc260822a27ce52cbe65de178f8fa1b60311f3
[ "BSD-3-Clause" ]
2
2015-08-06T15:23:28.000Z
2016-01-28T00:05:25.000Z
bamboo/core/calculator.py
biswapanda/bamboo
72fc260822a27ce52cbe65de178f8fa1b60311f3
[ "BSD-3-Clause" ]
10
2015-08-07T01:50:39.000Z
2019-05-15T21:41:18.000Z
from collections import defaultdict from celery.task import task from pandas import concat, DataFrame from bamboo.core.aggregator import Aggregator from bamboo.core.frame import add_parent_column, join_dataset from bamboo.core.parser import Parser from bamboo.lib.datetools import recognize_dates from bamboo.lib.jsontools import df_to_jsondict from bamboo.lib.mongo import MONGO_ID from bamboo.lib.parsing import parse_columns from bamboo.lib.query_args import QueryArgs from bamboo.lib.utils import combine_dicts, flatten, to_list def calculate_columns(dataset, calculations): """Calculate and store new columns for `calculations`. The new columns are join t othe Calculation dframe and replace the dataset's observations. .. note:: This can result in race-conditions when: - deleting ``controllers.Datasets.DELETE`` - updating ``controllers.Datasets.POST([dataset_id])`` Therefore, perform these actions asychronously. :param dataset: The dataset to calculate for. :param calculations: A list of calculations. """ new_cols = None for c in calculations: if c.aggregation: aggregator = __create_aggregator( dataset, c.formula, c.name, c.groups_as_list) aggregator.save(dataset) else: columns = parse_columns(dataset, c.formula, c.name) if new_cols is None: new_cols = DataFrame(columns[0]) else: new_cols = new_cols.join(columns[0]) if new_cols is not None: dataset.update_observations(new_cols) # propagate calculation to any merged child datasets [__propagate_column(x, dataset) for x in dataset.merged_datasets] @task(default_retry_delay=5, ignore_result=True) def calculate_updates(dataset, new_data, new_dframe_raw=None, parent_dataset_id=None, update_id=None): """Update dataset with `new_data`. This can result in race-conditions when: - deleting ``controllers.Datasets.DELETE`` - updating ``controllers.Datasets.POST([dataset_id])`` Therefore, perform these actions asychronously. :param new_data: Data to update this dataset with. :param new_dframe_raw: DataFrame to update this dataset with. :param parent_dataset_id: If passed add ID as parent ID to column, default is None. """ if not __update_is_valid(dataset, new_dframe_raw): dataset.remove_pending_update(update_id) return __ensure_ready(dataset, update_id) if new_dframe_raw is None: new_dframe_raw = dframe_from_update(dataset, new_data) new_dframe = recognize_dates(new_dframe_raw, dataset.schema) new_dframe = __add_calculations(dataset, new_dframe) # set parent id if provided if parent_dataset_id: new_dframe = add_parent_column(new_dframe, parent_dataset_id) dataset.append_observations(new_dframe) dataset.clear_summary_stats() propagate(dataset, new_dframe=new_dframe, update={'add': new_dframe_raw}) dataset.update_complete(update_id) def dframe_from_update(dataset, new_data): """Make a DataFrame for the `new_data`. :param new_data: Data to add to dframe. :type new_data: List. """ filtered_data = [] columns = dataset.columns labels_to_slugs = dataset.schema.labels_to_slugs num_columns = len(columns) num_rows = dataset.num_rows dframe_empty = not num_columns if dframe_empty: columns = dataset.schema.keys() for row in new_data: filtered_row = dict() for col, val in row.iteritems(): # special case for reserved keys (e.g. _id) if col == MONGO_ID: if (not num_columns or col in columns) and\ col not in filtered_row.keys(): filtered_row[col] = val else: # if col is a label take slug, if it's a slug take col slug = labels_to_slugs.get( col, col if col in labels_to_slugs.values() else None) # if slug is valid or there is an empty dframe if (slug or col in labels_to_slugs.keys()) and ( dframe_empty or slug in columns): filtered_row[slug] = dataset.schema.convert_type( slug, val) filtered_data.append(filtered_row) index = range(num_rows, num_rows + len(filtered_data)) new_dframe = DataFrame(filtered_data, index=index) return new_dframe @task(default_retry_delay=5, ignore_result=True) def propagate(dataset, new_dframe=None, update=None): """Propagate changes in a modified dataset.""" __update_aggregate_datasets(dataset, new_dframe, update=update) if update: __update_merged_datasets(dataset, update) __update_joined_datasets(dataset, update) def __add_calculations(dataset, new_dframe): labels_to_slugs = dataset.schema.labels_to_slugs for calculation in dataset.calculations(include_aggs=False): function = Parser.parse_function(calculation.formula) new_column = new_dframe.apply(function, axis=1, args=(dataset, )) potential_name = calculation.name if potential_name not in dataset.dframe().columns: if potential_name in labels_to_slugs: new_column.name = labels_to_slugs[potential_name] else: new_column.name = potential_name new_dframe = new_dframe.join(new_column) return new_dframe def __calculation_data(dataset): """Create a list of aggregate calculation information. Builds a list of calculation information from the current datasets aggregated datasets and aggregate calculations. """ calcs_to_data = defaultdict(list) calculations = dataset.calculations(only_aggs=True) names_to_formulas = {c.name: c.formula for c in calculations} names = set(names_to_formulas.keys()) for group, dataset in dataset.aggregated_datasets: labels_to_slugs = dataset.schema.labels_to_slugs calculations_for_dataset = list(set( labels_to_slugs.keys()).intersection(names)) for calc in calculations_for_dataset: calcs_to_data[calc].append(( names_to_formulas[calc], labels_to_slugs[calc], group, dataset)) return flatten(calcs_to_data.values()) def __update_is_valid(dataset, new_dframe): """Check if the update is valid. Check whether this is a right-hand side of any joins and deny the update if the update would produce an invalid join as a result. :param dataset: The dataset to check if update valid for. :param new_dframe: The update dframe to check. :returns: True is the update is valid, False otherwise. """ select = {on: 1 for on in dataset.on_columns_for_rhs_of_joins if on in new_dframe.columns and on in dataset.columns} dframe = dataset.dframe(query_args=QueryArgs(select=select)) for on in select.keys(): merged_join_column = concat([new_dframe[on], dframe[on]]) if len(merged_join_column) != merged_join_column.nunique(): return False return True def __create_aggregator(dataset, formula, name, groups, dframe=None): # TODO this should work with index eventually columns = parse_columns(dataset, formula, name, dframe, no_index=True) dependent_columns = Parser.dependent_columns(formula, dataset) aggregation = Parser.parse_aggregation(formula) # get dframe with only the necessary columns select = combine_dicts({group: 1 for group in groups}, {col: 1 for col in dependent_columns}) # ensure at least one column (MONGO_ID) for the count aggregation query_args = QueryArgs(select=select or {MONGO_ID: 1}) dframe = dataset.dframe(query_args=query_args, keep_mongo_keys=not select) return Aggregator(dframe, groups, aggregation, name, columns) def __ensure_ready(dataset, update_id): # dataset must not be pending if not dataset.is_ready or ( update_id and dataset.has_pending_updates(update_id)): dataset.reload() raise calculate_updates.retry() def __find_merge_offset(dataset, merged_dataset): offset = 0 for parent_id in merged_dataset.parent_ids: if dataset.dataset_id == parent_id: break offset += dataset.find_one(parent_id).num_rows return offset def __propagate_column(dataset, parent_dataset): """Propagate columns in `parent_dataset` to `dataset`. When a new calculation is added to a dataset this will propagate the new column to all child (merged) datasets. :param dataset: THe child dataet. :param parent_dataset: The dataset to propagate. """ # delete the rows in this dataset from the parent dataset.remove_parent_observations(parent_dataset.dataset_id) # get this dataset without the out-of-date parent rows dframe = dataset.dframe(keep_parent_ids=True) # create new dframe from the upated parent and add parent id parent_dframe = add_parent_column(parent_dataset.dframe(), parent_dataset.dataset_id) # merge this new dframe with the existing dframe updated_dframe = concat([dframe, parent_dframe]) # save new dframe (updates schema) dataset.replace_observations(updated_dframe) dataset.clear_summary_stats() # recur into merged dataset [__propagate_column(x, dataset) for x in dataset.merged_datasets] def __remapped_data(dataset_id, mapping, slugified_data): column_map = mapping.get(dataset_id) if mapping else None if column_map: slugified_data = [{column_map.get(k, k): v for k, v in row.items()} for row in slugified_data] return slugified_data def __slugify_data(new_data, labels_to_slugs): slugified_data = [] new_data = to_list(new_data) for row in new_data: for key, value in row.iteritems(): if labels_to_slugs.get(key) and key != MONGO_ID: del row[key] row[labels_to_slugs[key]] = value slugified_data.append(row) return slugified_data def __update_aggregate_datasets(dataset, new_dframe, update=None): calcs_to_data = __calculation_data(dataset) for formula, slug, groups, a_dataset in calcs_to_data: __update_aggregate_dataset(dataset, formula, new_dframe, slug, groups, a_dataset, update is None) def __update_aggregate_dataset(dataset, formula, new_dframe, name, groups, a_dataset, reducible): """Update the aggregated dataset built for `dataset` with `calculation`. Proceed with the following steps: - delete the rows in this dataset from the parent - recalculate aggregated dataframe from aggregation - update aggregated dataset with new dataframe and add parent id - recur on all merged datasets descending from the aggregated dataset :param formula: The formula to execute. :param new_dframe: The DataFrame to aggregate on. :param name: The name of the aggregation. :param groups: A column or columns to group on. :type group: String, list of strings, or None. :param a_dataset: The DataSet to store the aggregation in. """ # parse aggregation and build column arguments aggregator = __create_aggregator( dataset, formula, name, groups, dframe=new_dframe) new_agg_dframe = aggregator.update(dataset, a_dataset, formula, reducible) # jsondict from new dframe new_data = df_to_jsondict(new_agg_dframe) for merged_dataset in a_dataset.merged_datasets: # remove rows in child from this merged dataset merged_dataset.remove_parent_observations(a_dataset.dataset_id) # calculate updates for the child calculate_updates(merged_dataset, new_data, parent_dataset_id=a_dataset.dataset_id) def __update_joined_datasets(dataset, update): """Update any joined datasets.""" if 'add' in update: new_dframe = update['add'] for direction, other_dataset, on, j_dataset in dataset.joined_datasets: if 'add' in update: if direction == 'left': # only proceed if on in new dframe if on in new_dframe.columns: left_dframe = other_dataset.dframe(padded=True) # only proceed if new on value is in on column in lhs if len(set(new_dframe[on]).intersection( set(left_dframe[on]))): merged_dframe = join_dataset(left_dframe, dataset, on) j_dataset.replace_observations(merged_dframe) # TODO is it OK not to propagate the join here? else: # if on in new data join with existing data if on in new_dframe: new_dframe = join_dataset(new_dframe, other_dataset, on) calculate_updates(j_dataset, df_to_jsondict(new_dframe), parent_dataset_id=dataset.dataset_id) elif 'delete' in update: j_dataset.delete_observation(update['delete']) elif 'edit' in update: j_dataset.update_observation(*update['edit']) def __update_merged_datasets(dataset, update): if 'add' in update: data = df_to_jsondict(update['add']) # store slugs as labels for child datasets data = __slugify_data(data, dataset.schema.labels_to_slugs) # update the merged datasets with new_dframe for mapping, merged_dataset in dataset.merged_datasets_with_map: if 'add' in update: mapped_data = __remapped_data(dataset.dataset_id, mapping, data) calculate_updates(merged_dataset, mapped_data, parent_dataset_id=dataset.dataset_id) elif 'delete' in update: offset = __find_merge_offset(dataset, merged_dataset) merged_dataset.delete_observation(update['delete'] + offset) elif 'edit' in update: offset = __find_merge_offset(dataset, merged_dataset) index, data = update['edit'] merged_dataset.update_observation(index + offset, data)
35.343137
78
0.676283
0
0
0
0
1,686
0.116921
0
0
3,879
0.269001
e1c0ee31e7c392fd9a301672456d03f86541b8f3
265
py
Python
modules/python3/tests/unittests/scripts/glm.py
ImagiaViz/inviwo
a00bb6b0551bc1cf26dc0366c827c1a557a9603d
[ "BSD-2-Clause" ]
349
2015-01-30T09:21:52.000Z
2022-03-25T03:10:02.000Z
modules/python3/tests/unittests/scripts/glm.py
ImagiaViz/inviwo
a00bb6b0551bc1cf26dc0366c827c1a557a9603d
[ "BSD-2-Clause" ]
641
2015-09-23T08:54:06.000Z
2022-03-23T09:50:55.000Z
modules/python3/tests/unittests/scripts/glm.py
ImagiaViz/inviwo
a00bb6b0551bc1cf26dc0366c827c1a557a9603d
[ "BSD-2-Clause" ]
124
2015-02-27T23:45:02.000Z
2022-02-21T09:37:14.000Z
import inviwopy from inviwopy.glm import * v1 = vec3(1,2,3) v2 = size2_t(4,5) m1 = mat4(1) m2 = mat3(0,1,0,-1,0,0,0,0,2) v3 = m2 * v1 v4 = vec4(1,2,3,4) w = v4.w a = v4.a q = v4.q z = v4.z b = v4.b p = v4.p y = v4.y g = v4.g t = v4.t x = v4.x r = v4.r s = v4.s
10.6
29
0.532075
0
0
0
0
0
0
0
0
0
0
e1c1c2a4c0c8d49965261747c7efaf839f60298c
7,538
py
Python
djangoexample/thumbs/views.py
arneb/sorethumb
5b224fbf30eaeb83640510d11a0dea40592e76ad
[ "BSD-3-Clause" ]
null
null
null
djangoexample/thumbs/views.py
arneb/sorethumb
5b224fbf30eaeb83640510d11a0dea40592e76ad
[ "BSD-3-Clause" ]
null
null
null
djangoexample/thumbs/views.py
arneb/sorethumb
5b224fbf30eaeb83640510d11a0dea40592e76ad
[ "BSD-3-Clause" ]
null
null
null
from django.http import HttpResponse from django.shortcuts import render_to_response from django.template import RequestContext from django.conf import settings from models import ThumbTest from sorethumb.filters.defaultfilters import * from sorethumb.filters.drawfilters import * from sorethumb.djangothumbnail import DjangoThumbnail class SmallThumb(DjangoThumbnail): filters = [ThumbnailFilter(120, 100)] class Square(DjangoThumbnail): filters = [ThumbnailFilter(100, 100), SquareFilter(),] class RoundedCorners5(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), RoundedCornerFilter(5)] class RoundedCorners10(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), RoundedCornerFilter(10)] class RoundedCorners20(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), RoundedCornerFilter(20)] class RoundedCornersEdged(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), RoundedCornerFilter(10, border='#000')] class RoundedCornersBackground(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), RoundedCornerFilter(10, border='#333'), ResizeCanvasFilter(130, 110, '#fff'), OpaqueFilter('#fff'),] class RoundedCornersBackgroundGradient(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), RoundedCornerFilter(10, border='#000'), ResizeCanvasFilter(130, 110, '#e2e2ff', background_opacity=0), VerticalGradientFilter('#fff', '#88e'),] class MaskThumb(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), ResizeCanvasFilter(120, 100, '#000', background_opacity=0), MaskFilter(settings.MEDIA_ROOT+'/alpha.png')] class GrayThumb(DjangoThumbnail): filters = [ThumbnailFilter(120, 100), GrayscaleFilter()] class FadedThumb(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), OpacityFilter(.5)] class OverlayThumb(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), OverlayFilter(settings.MEDIA_ROOT+'/user.png')] thumb_examples = [ { 'thumb':'small_thumb', 'title':'Basic thumbnail', 'description':"""Here we have a basic thumbnail that uses PIL's thumbnail operation to reduce an image to fit in a defined dimensions.""", 'code' : '''class SmallThumb(DjangoThumbnail): filters = [ThumbnailFilter(120, 100)]''' }, { 'thumb':'square', 'title':'Square', 'description':'As above, but cropped to be square. Since uploaded images can be any old size, they can tend to look ragged when presented in rows. Square thumbs look better in rows, at the expense of a little cropping', 'code':"""class Square(DjangoThumbnail): filters = [ThumbnailFilter(100, 100), SquareFilter()] """ }, { 'thumb':'rounded_corners5', 'title':'5 pixels rounded corner', 'description':"""Rounded corners without CSS3, on a transparent background. What is it with designers and rounded corners anyway?""", 'code':"""class RoundedCorners5(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), RoundedCornerFilter(5)] """, }, { 'thumb':'rounded_corners10', 'title':'10 pixels rounded corner', 'description':'As above, but 10 pixels.', }, { 'thumb':'rounded_corners20', 'title':'20 pixels rounded corner', 'description':'Even more rounded corners', }, { 'thumb':'rounded_corners_edged', 'title':'Rounded corners with a border', 'description':'The rounded corner filter also supports a coloured border', 'code':"""class RoundedCornersEdged(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), RoundedCornerFilter(10, border='#333')]""", }, { 'thumb':'rounded_corners_background', 'title':"Rounded corners on an opaque background", 'description':"Rounded corners on an opaque backround for browsers with poor support for per-pixel transparency &mdash; IE6 I'm looking at you!", 'code':"""class RoundedCornersBackground(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), RoundedCornerFilter(10, border='#333'), ResizeCanvasFilter(130, 110, '#fff'), OpaqueFilter('#fff')] """ }, { 'thumb':'rounded_corners_background_gradient', 'title':"Rounded corners on a gadient", 'description':"As above, but on a gradient background. The vertical gradient filter replaces transparent areas with a smooth gradient between two colours.", 'code':"""class RoundedCornersBackgroundGradient(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), RoundedCornerFilter(10, border='#000'), ResizeCanvasFilter(130, 110, '#e2e2ff', background_opacity=0), VerticalGradientFilter('#fff', '#88e')] """ }, {'thumb':'mask_thumb', 'title':'Masked thumbnail', 'description': 'This thumbnail uses MaskFilter which replaces the alpha channel with another image, to create some interesting effects.', 'code':"""class MaskThumb(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), ResizeCanvasFilter(120, 100, '#000', background_opacity=0), MaskFilter(settings.MEDIA_ROOT+'/alpha.png')] """ }, { 'thumb':'gray_thumb', 'title':'Grayscale', 'description':'A grayscale thumb, could be used as a hover state.', 'code':"""class GrayThumb(DjangoThumbnail): filters = [ThumbnailFilter(120, 100), GrayscaleFilter()]""" }, { 'thumb':'faded_thumb', 'title':'50% opacity', 'description':'The OpacityFilter sets the opacity of the thumbnail.', 'code':"""class FadedThumb(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), OpacityFilter(.5)] """ }, { 'thumb':'overlay_thumb', 'title':'Thumbnail with overlay', 'description':"""A thumbnail with an overlayed transparent png. Could be used to indicate online status.""", 'code' : '''class OverlayThumb(DjangoThumbnail): format = 'png' filters = [ThumbnailFilter(120, 100), OverlayFilter(settings.MEDIA_ROOT+'/user.png')]''' }, ] def examples(request): context = {'examples':thumb_examples} if request.method == 'POST': thumb = ThumbTest(image_file=request.FILES.get('file')) thumb.save() try: dbobject = ThumbTest.objects.all().order_by('-pk')[0] except IndexError: dbobject = None context['dbobject'] = dbobject return render_to_response('thumbs.html', context, RequestContext(request))
31.805907
223
0.602282
2,052
0.272221
0
0
0
0
0
0
3,995
0.529981
e1c3efdf6d1bcb608ddb86a4384fd1aed1e4458f
117
py
Python
hello_world.py
michaeljamieson/Python01
96777e5252aaf58e5b424dd5b39186b395d9d859
[ "Apache-2.0" ]
null
null
null
hello_world.py
michaeljamieson/Python01
96777e5252aaf58e5b424dd5b39186b395d9d859
[ "Apache-2.0" ]
null
null
null
hello_world.py
michaeljamieson/Python01
96777e5252aaf58e5b424dd5b39186b395d9d859
[ "Apache-2.0" ]
null
null
null
print ('hello world') print ('hey i did something') print ('what happens if i do a ;'); print ('apparently nothing')
23.4
35
0.683761
0
0
0
0
0
0
0
0
80
0.683761