hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
540d12bf750ecb2e910c29f067d4164a9bcaf207
30,598
py
Python
file.py
Tawfiq-MoonHacker/metis_video
8d63ac458b8b6bfa48a1ec5476dc47be1987f42a
[ "Apache-2.0" ]
null
null
null
file.py
Tawfiq-MoonHacker/metis_video
8d63ac458b8b6bfa48a1ec5476dc47be1987f42a
[ "Apache-2.0" ]
null
null
null
file.py
Tawfiq-MoonHacker/metis_video
8d63ac458b8b6bfa48a1ec5476dc47be1987f42a
[ "Apache-2.0" ]
null
null
null
file_forgot_password = ["""<!DOCTYPE html> <html> <head> <title></title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <style type="text/css"> @media screen { @font-face { font-family: 'Lato'; font-style: normal; font-weight: 400; src: local('Lato Regular'), local('Lato-Regular'), url(https://fonts.gstatic.com/s/lato/v11/qIIYRU-oROkIk8vfvxw6QvesZW2xOQ-xsNqO47m55DA.woff) format('woff'); } @font-face { font-family: 'Lato'; font-style: normal; font-weight: 700; src: local('Lato Bold'), local('Lato-Bold'), url(https://fonts.gstatic.com/s/lato/v11/qdgUG4U09HnJwhYI-uK18wLUuEpTyoUstqEm5AMlJo4.woff) format('woff'); } @font-face { font-family: 'Lato'; font-style: italic; font-weight: 400; src: local('Lato Italic'), local('Lato-Italic'), url(https://fonts.gstatic.com/s/lato/v11/RYyZNoeFgb0l7W3Vu1aSWOvvDin1pK8aKteLpeZ5c0A.woff) format('woff'); } @font-face { font-family: 'Lato'; font-style: italic; font-weight: 700; src: local('Lato Bold Italic'), local('Lato-BoldItalic'), url(https://fonts.gstatic.com/s/lato/v11/HkF_qI1x_noxlxhrhMQYELO3LdcAZYWl9Si6vvxL-qU.woff) format('woff'); } } /* CLIENT-SPECIFIC STYLES */ body, table, td, a { -webkit-text-size-adjust: 100%%; -ms-text-size-adjust: 100%%; } table, td { mso-table-lspace: 0pt; mso-table-rspace: 0pt; } img { -ms-interpolation-mode: bicubic; } /* RESET STYLES */ img { border: 0; height: auto; line-height: 100%%; outline: none; text-decoration: none; } table { border-collapse: collapse !important; } body { height: 100%% !important; margin: 0 !important; padding: 0 !important; width: 100%% !important; } /* iOS BLUE LINKS */ a[x-apple-data-detectors] { color: inherit !important; text-decoration: none !important; font-size: inherit !important; font-family: inherit !important; font-weight: inherit !important; line-height: inherit !important; } /* MOBILE STYLES */ @media screen and (max-width:600px) { h1 { font-size: 32px !important; line-height: 32px !important; } } /* ANDROID CENTER FIX */ div[style*="margin: 16px 0;"] { margin: 0 !important; } </style> </head> <body style="background-color: #f4f4f4; margin: 0 !important; padding: 0 !important;"> <!-- HIDDEN PREHEADER TEXT --> <div style="display: none; font-size: 1px; color: #fefefe; line-height: 1px; font-family: 'Lato', Helvetica, Arial, sans-serif; max-height: 0px; max-width: 0px; opacity: 0; overflow: hidden;"> We're thrilled to have you here! Get ready to dive into your new account. </div> <table border="0" cellpadding="0" cellspacing="0" width="100%%"> <!-- LOGO --> <tr> <td bgcolor="#FFA73B" align="center"> <table border="0" cellpadding="0" cellspacing="0" width="100%%" style="max-width: 600px;"> <tr> <td align="center" valign="top" style="padding: 40px 10px 40px 10px;"> </td> </tr> </table> </td> </tr> <tr> <td bgcolor="#FFA73B" align="center" style="padding: 0px 10px 0px 10px;"> <table border="0" cellpadding="0" cellspacing="0" width="100%%" style="max-width: 600px;"> <tr> <td bgcolor="#ffffff" align="center" valign="top" style="padding: 40px 20px 20px 20px; border-radius: 4px 4px 0px 0px; color: #111111; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 48px; font-weight: 400; letter-spacing: 4px; line-height: 48px;"> <h1 style="font-size: 48px; font-weight: 400; margin: 2;">Welcome!</h1> <img src=" https://img.icons8.com/clouds/100/000000/handshake.png" width="125" height="120" style="display: block; border: 0px;" /> </td> </tr> </table> </td> </tr> <tr> <td bgcolor="#f4f4f4" align="center" style="padding: 0px 10px 0px 10px;"> <table border="0" cellpadding="0" cellspacing="0" width="100%%" style="max-width: 600px;"> <tr> <td bgcolor="#ffffff" align="left" style="padding: 20px 30px 40px 30px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <p style="margin: 0;">We're excited to have you get started. First, you need to confirm your account. Just press the button below.</p> </td> </tr> <tr> <td bgcolor="#ffffff" align="left"> <table width="100%%" border="0" cellspacing="0" cellpadding="0"> <tr> <td bgcolor="#ffffff" align="center" style="padding: 20px 30px 60px 30px;"> <table border="0" cellspacing="0" cellpadding="0"> <tr> <td align="center" style="border-radius: 3px;" bgcolor="#FFA73B"><a href="secret_key" target="_blank" style="font-size: 20px; font-family: Helvetica, Arial, sans-serif; color: #ffffff; text-decoration: none; color: #ffffff; text-decoration: none; padding: 15px 25px; border-radius: 2px; border: 1px solid #FFA73B; display: inline-block;">Reset Password</a></td> </tr> </table> </td> </tr> </table> </td> </tr> <!-- COPY --> <tr> <td bgcolor="#ffffff" align="left" style="padding: 0px 30px 0px 30px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <p style="margin: 0;">If that doesn't work, copy and paste the following link in your browser:</p> </td> </tr> <!-- COPY --> <tr> <td bgcolor="#ffffff" align="left" style="padding: 20px 30px 20px 30px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <p style="margin: 0;"><a href="#" target="_blank" style="color: #FFA73B;">""","""</a></p> </td> </tr> <tr> <td bgcolor="#ffffff" align="left" style="padding: 0px 30px 20px 30px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <p style="margin: 0;">If you have any questions, just reply to this email—we're always happy to help out.</p> </td> </tr> <tr> <td bgcolor="#ffffff" align="left" style="padding: 0px 30px 40px 30px; border-radius: 0px 0px 4px 4px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <p style="margin: 0;">Cheers,BBB Team</p> </td> </tr> </table> </td> </tr> <tr> <td bgcolor="#f4f4f4" align="center" style="padding: 30px 10px 0px 10px;"> <table border="0" cellpadding="0" cellspacing="0" width="100%%" style="max-width: 600px;"> <tr> <td bgcolor="#FFECD1" align="center" style="padding: 30px 30px 30px 30px; border-radius: 4px 4px 4px 4px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <h2 style="font-size: 20px; font-weight: 400; color: #111111; margin: 0;">Need more help?</h2> <p style="margin: 0;"><a href="#" target="_blank" style="color: #FFA73B;">We&rsquo;re here to help you out</a></p> </td> </tr> </table> </td> </tr> <tr> <td bgcolor="#f4f4f4" align="center" style="padding: 0px 10px 0px 10px;"> <table border="0" cellpadding="0" cellspacing="0" width="100%%" style="max-width: 600px;"> <tr> <td bgcolor="#f4f4f4" align="left" style="padding: 0px 30px 30px 30px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 14px; font-weight: 400; line-height: 18px;"> <p style="margin: 0;">If these emails get annoying, please feel free to <a href="#" target="_blank" style="color: #111111; font-weight: 700;">unsubscribe</a>.</p> </td> </tr> </table> </td> </tr> </table> </body> </html> """] file_verification_email = ["""<!DOCTYPE html> <html> <head> <title></title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <style type="text/css"> @media screen { @font-face { font-family: 'Lato'; font-style: normal; font-weight: 400; src: local('Lato Regular'), local('Lato-Regular'), url(https://fonts.gstatic.com/s/lato/v11/qIIYRU-oROkIk8vfvxw6QvesZW2xOQ-xsNqO47m55DA.woff) format('woff'); } @font-face { font-family: 'Lato'; font-style: normal; font-weight: 700; src: local('Lato Bold'), local('Lato-Bold'), url(https://fonts.gstatic.com/s/lato/v11/qdgUG4U09HnJwhYI-uK18wLUuEpTyoUstqEm5AMlJo4.woff) format('woff'); } @font-face { font-family: 'Lato'; font-style: italic; font-weight: 400; src: local('Lato Italic'), local('Lato-Italic'), url(https://fonts.gstatic.com/s/lato/v11/RYyZNoeFgb0l7W3Vu1aSWOvvDin1pK8aKteLpeZ5c0A.woff) format('woff'); } @font-face { font-family: 'Lato'; font-style: italic; font-weight: 700; src: local('Lato Bold Italic'), local('Lato-BoldItalic'), url(https://fonts.gstatic.com/s/lato/v11/HkF_qI1x_noxlxhrhMQYELO3LdcAZYWl9Si6vvxL-qU.woff) format('woff'); } } /* CLIENT-SPECIFIC STYLES */ body, table, td, a { -webkit-text-size-adjust: 100%%; -ms-text-size-adjust: 100%%; } table, td { mso-table-lspace: 0pt; mso-table-rspace: 0pt; } img { -ms-interpolation-mode: bicubic; } /* RESET STYLES */ img { border: 0; height: auto; line-height: 100%%; outline: none; text-decoration: none; } table { border-collapse: collapse !important; } body { height: 100%% !important; margin: 0 !important; padding: 0 !important; width: 100%% !important; } /* iOS BLUE LINKS */ a[x-apple-data-detectors] { color: inherit !important; text-decoration: none !important; font-size: inherit !important; font-family: inherit !important; font-weight: inherit !important; line-height: inherit !important; } /* MOBILE STYLES */ @media screen and (max-width:600px) { h1 { font-size: 32px !important; line-height: 32px !important; } } /* ANDROID CENTER FIX */ div[style*="margin: 16px 0;"] { margin: 0 !important; } </style> </head> <body style="background-color: #f4f4f4; margin: 0 !important; padding: 0 !important;"> <!-- HIDDEN PREHEADER TEXT --> <div style="display: none; font-size: 1px; color: #fefefe; line-height: 1px; font-family: 'Lato', Helvetica, Arial, sans-serif; max-height: 0px; max-width: 0px; opacity: 0; overflow: hidden;"> We're thrilled to have you here! Get ready to dive into your new account. </div> <table border="0" cellpadding="0" cellspacing="0" width="100%%"> <!-- LOGO --> <tr> <td bgcolor="#FFA73B" align="center"> <table border="0" cellpadding="0" cellspacing="0" width="100%%" style="max-width: 600px;"> <tr> <td align="center" valign="top" style="padding: 40px 10px 40px 10px;"> </td> </tr> </table> </td> </tr> <tr> <td bgcolor="#FFA73B" align="center" style="padding: 0px 10px 0px 10px;"> <table border="0" cellpadding="0" cellspacing="0" width="100%%" style="max-width: 600px;"> <tr> <td bgcolor="#ffffff" align="center" valign="top" style="padding: 40px 20px 20px 20px; border-radius: 4px 4px 0px 0px; color: #111111; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 48px; font-weight: 400; letter-spacing: 4px; line-height: 48px;"> <h1 style="font-size: 48px; font-weight: 400; margin: 2;">Welcome!</h1> <img src=" https://img.icons8.com/clouds/100/000000/handshake.png" width="125" height="120" style="display: block; border: 0px;" /> </td> </tr> </table> </td> </tr> <tr> <td bgcolor="#f4f4f4" align="center" style="padding: 0px 10px 0px 10px;"> <table border="0" cellpadding="0" cellspacing="0" width="100%%" style="max-width: 600px;"> <tr> <td bgcolor="#ffffff" align="left" style="padding: 20px 30px 40px 30px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <p style="margin: 0;">We're excited to have you get started. First, you need to confirm your account. Just press the button below.</p> </td> </tr> <tr> <td bgcolor="#ffffff" align="left"> <table width="100%%" border="0" cellspacing="0" cellpadding="0"> <tr> <td bgcolor="#ffffff" align="center" style="padding: 20px 30px 60px 30px;"> <table border="0" cellspacing="0" cellpadding="0"> <tr> <td align="center" style="border-radius: 3px;" bgcolor="#FFA73B"><a href="secret_key" target="_blank" style="font-size: 20px; font-family: Helvetica, Arial, sans-serif; color: #ffffff; text-decoration: none; color: #ffffff; text-decoration: none; padding: 15px 25px; border-radius: 2px; border: 1px solid #FFA73B; display: inline-block;">Confirm Email</a></td> </tr> </table> </td> </tr> </table> </td> </tr> <!-- COPY --> <tr> <td bgcolor="#ffffff" align="left" style="padding: 0px 30px 0px 30px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <p style="margin: 0;">If that doesn't work, copy and paste the following link in your browser:</p> </td> </tr> <!-- COPY --> <tr> <td bgcolor="#ffffff" align="left" style="padding: 20px 30px 20px 30px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <p style="margin: 0;"><a href="#" target="_blank" style="color: #FFA73B;">""", """</a></p> </td> </tr> <tr> <td bgcolor="#ffffff" align="left" style="padding: 0px 30px 20px 30px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <p style="margin: 0;">If you have any questions, just reply to this email—we're always happy to help out.</p> </td> </tr> <tr> <td bgcolor="#ffffff" align="left" style="padding: 0px 30px 40px 30px; border-radius: 0px 0px 4px 4px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <p style="margin: 0;">Cheers,BBB Team</p> </td> </tr> </table> </td> </tr> <tr> <td bgcolor="#f4f4f4" align="center" style="padding: 30px 10px 0px 10px;"> <table border="0" cellpadding="0" cellspacing="0" width="100%%" style="max-width: 600px;"> <tr> <td bgcolor="#FFECD1" align="center" style="padding: 30px 30px 30px 30px; border-radius: 4px 4px 4px 4px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <h2 style="font-size: 20px; font-weight: 400; color: #111111; margin: 0;">Need more help?</h2> <p style="margin: 0;"><a href="#" target="_blank" style="color: #FFA73B;">We&rsquo;re here to help you out</a></p> </td> </tr> </table> </td> </tr> <tr> <td bgcolor="#f4f4f4" align="center" style="padding: 0px 10px 0px 10px;"> <table border="0" cellpadding="0" cellspacing="0" width="100%%" style="max-width: 600px;"> <tr> <td bgcolor="#f4f4f4" align="left" style="padding: 0px 30px 30px 30px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 14px; font-weight: 400; line-height: 18px;"> <p style="margin: 0;">If these emails get annoying, please feel free to <a href="#" target="_blank" style="color: #111111; font-weight: 700;">unsubscribe</a>.</p> </td> </tr> </table> </td> </tr> </table> </body> </html> """] file_username = ["""<!DOCTYPE html> <html> <head> <title></title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <style type="text/css"> @media screen { @font-face { font-family: 'Lato'; font-style: normal; font-weight: 400; src: local('Lato Regular'), local('Lato-Regular'), url(https://fonts.gstatic.com/s/lato/v11/qIIYRU-oROkIk8vfvxw6QvesZW2xOQ-xsNqO47m55DA.woff) format('woff'); } @font-face { font-family: 'Lato'; font-style: normal; font-weight: 700; src: local('Lato Bold'), local('Lato-Bold'), url(https://fonts.gstatic.com/s/lato/v11/qdgUG4U09HnJwhYI-uK18wLUuEpTyoUstqEm5AMlJo4.woff) format('woff'); } @font-face { font-family: 'Lato'; font-style: italic; font-weight: 400; src: local('Lato Italic'), local('Lato-Italic'), url(https://fonts.gstatic.com/s/lato/v11/RYyZNoeFgb0l7W3Vu1aSWOvvDin1pK8aKteLpeZ5c0A.woff) format('woff'); } @font-face { font-family: 'Lato'; font-style: italic; font-weight: 700; src: local('Lato Bold Italic'), local('Lato-BoldItalic'), url(https://fonts.gstatic.com/s/lato/v11/HkF_qI1x_noxlxhrhMQYELO3LdcAZYWl9Si6vvxL-qU.woff) format('woff'); } } /* CLIENT-SPECIFIC STYLES */ body, table, td, a { -webkit-text-size-adjust: 100%%; -ms-text-size-adjust: 100%%; } table, td { mso-table-lspace: 0pt; mso-table-rspace: 0pt; } img { -ms-interpolation-mode: bicubic; } /* RESET STYLES */ img { border: 0; height: auto; line-height: 100%%; outline: none; text-decoration: none; } table { border-collapse: collapse !important; } body { height: 100%% !important; margin: 0 !important; padding: 0 !important; width: 100%% !important; } /* iOS BLUE LINKS */ a[x-apple-data-detectors] { color: inherit !important; text-decoration: none !important; font-size: inherit !important; font-family: inherit !important; font-weight: inherit !important; line-height: inherit !important; } /* MOBILE STYLES */ @media screen and (max-width:600px) { h1 { font-size: 32px !important; line-height: 32px !important; } } /* ANDROID CENTER FIX */ div[style*="margin: 16px 0;"] { margin: 0 !important; } </style> </head> <body style="background-color: #f4f4f4; margin: 0 !important; padding: 0 !important;"> <!-- HIDDEN PREHEADER TEXT --> <div style="display: none; font-size: 1px; color: #fefefe; line-height: 1px; font-family: 'Lato', Helvetica, Arial, sans-serif; max-height: 0px; max-width: 0px; opacity: 0; overflow: hidden;"> We're thrilled to have you here! Get ready to dive into your new account. </div> <table border="0" cellpadding="0" cellspacing="0" width="100%%"> <!-- LOGO --> <tr> <td bgcolor="#FFA73B" align="center"> <table border="0" cellpadding="0" cellspacing="0" width="100%%" style="max-width: 600px;"> <tr> <td align="center" valign="top" style="padding: 40px 10px 40px 10px;"> </td> </tr> </table> </td> </tr> <tr> <td bgcolor="#FFA73B" align="center" style="padding: 0px 10px 0px 10px;"> <table border="0" cellpadding="0" cellspacing="0" width="100%%" style="max-width: 600px;"> <tr> <td bgcolor="#ffffff" align="center" valign="top" style="padding: 40px 20px 20px 20px; border-radius: 4px 4px 0px 0px; color: #111111; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 48px; font-weight: 400; letter-spacing: 4px; line-height: 48px;"> <h1 style="font-size: 48px; font-weight: 400; margin: 2;">Welcome!</h1> <img src=" https://img.icons8.com/clouds/100/000000/handshake.png" width="125" height="120" style="display: block; border: 0px;" /> </td> </tr> </table> </td> </tr> <tr> <td bgcolor="#f4f4f4" align="center" style="padding: 0px 10px 0px 10px;"> <table border="0" cellpadding="0" cellspacing="0" width="100%%" style="max-width: 600px;"> <tr> <td bgcolor="#ffffff" align="left" style="padding: 20px 30px 40px 30px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <p style="margin: 0;">We're excited to have you here. here is your username: secret_key</p> </td> </tr> <tr> <td bgcolor="#ffffff" align="left"> <table width="100%%" border="0" cellspacing="0" cellpadding="0"> <tr> <td bgcolor="#ffffff" align="center" style="padding: 20px 30px 60px 30px;"> <table border="0" cellspacing="0" cellpadding="0"> </table> </td> </tr> </table> </td> </tr> <!-- COPY --> <tr> <td bgcolor="#ffffff" align="left" style="padding: 0px 30px 0px 30px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <p style="margin: 0;"></p> </td> </tr> <!-- COPY --> <tr> <td bgcolor="#ffffff" align="left" style="padding: 20px 30px 20px 30px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <p style="margin: 0;"><a href="#" target="_blank" style="color: #FFA73B;">""", """</a></p> </td> </tr> <tr> <td bgcolor="#ffffff" align="left" style="padding: 0px 30px 20px 30px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <p style="margin: 0;">If you have any questions, just reply to this email—we're always happy to help out.</p> </td> </tr> <tr> <td bgcolor="#ffffff" align="left" style="padding: 0px 30px 40px 30px; border-radius: 0px 0px 4px 4px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <p style="margin: 0;">Cheers,BBB Team</p> </td> </tr> </table> </td> </tr> <tr> <td bgcolor="#f4f4f4" align="center" style="padding: 30px 10px 0px 10px;"> <table border="0" cellpadding="0" cellspacing="0" width="100%%" style="max-width: 600px;"> <tr> <td bgcolor="#FFECD1" align="center" style="padding: 30px 30px 30px 30px; border-radius: 4px 4px 4px 4px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 18px; font-weight: 400; line-height: 25px;"> <h2 style="font-size: 20px; font-weight: 400; color: #111111; margin: 0;">Need more help?</h2> <p style="margin: 0;"><a href="#" target="_blank" style="color: #FFA73B;">We&rsquo;re here to help you out</a></p> </td> </tr> </table> </td> </tr> <tr> <td bgcolor="#f4f4f4" align="center" style="padding: 0px 10px 0px 10px;"> <table border="0" cellpadding="0" cellspacing="0" width="100%%" style="max-width: 600px;"> <tr> <td bgcolor="#f4f4f4" align="left" style="padding: 0px 30px 30px 30px; color: #666666; font-family: 'Lato', Helvetica, Arial, sans-serif; font-size: 14px; font-weight: 400; line-height: 18px;"> <p style="margin: 0;">If these emails get annoying, please feel free to <a href="#" target="_blank" style="color: #111111; font-weight: 700;">unsubscribe</a>.</p> </td> </tr> </table> </td> </tr> </table> </body> </html> """] def call(file,link): return file.replace('secret_key',link) def forgot_password1(link): return call(file_forgot_password[0],link) def verification_email(link): return call(file_verification_email[0],link) def return_username(string1): return call(file_username[0],string1)
48.878594
410
0.483365
0
0
0
0
0
0
0
0
30,185
0.986309
540dd2561e2691981ca01c923a08b27ff3e24e2d
2,106
py
Python
builder/schedule.py
MyConbook/datatool
1c12bb5124b48ae827c4832896fd81bf711ad44e
[ "Apache-2.0" ]
null
null
null
builder/schedule.py
MyConbook/datatool
1c12bb5124b48ae827c4832896fd81bf711ad44e
[ "Apache-2.0" ]
null
null
null
builder/schedule.py
MyConbook/datatool
1c12bb5124b48ae827c4832896fd81bf711ad44e
[ "Apache-2.0" ]
null
null
null
import icalendar import urllib2 import hashlib import string import re import datetime from database import Database, TableHandler class Schedule(TableHandler): columns = [("Title", Database.C_TCN), "Description", ("Category", Database.C_TCN), ("Location", Database.C_TCN), ("StartDate", Database.C_D), ("EndDate", Database.C_D)] def __init__(self, options): TableHandler.__init__(self, "schedule", self.columns) self.options = options def download(self): # Download schedule mysock = urllib2.urlopen(self.options.calendar_url); self.file_content = mysock.read(); mysock.close(); def calculate_hash(self, version): # Calculate MD5 sum m = hashlib.md5(); hash_text = re.sub("DTSTAMP:.+\\r\\n", "", self.file_content) m.update(hash_text); md5 = m.hexdigest(); return version.set_calendar_checksum(md5) def parse(self, db, output_json): if not self.file_content: raise ValueError("file_content is empty") self.create_table(db) real_tz = self.options.timezone json_out = [] # Parse calendar cal = icalendar.Calendar.from_ical(self.file_content) for component in cal.walk("VEVENT"): title = component["summary"] try: desc = component["description"] except KeyError: desc = None category = component.decoded("categories", None) loc = component.decoded("location", "(None)") origstart = component["dtstart"].dt startdate = origstart if not isinstance(startdate, datetime.datetime): # Item is all-day continue if not startdate.tzinfo: startdate = real_tz.localize(startdate) startdate = real_tz.normalize(startdate.astimezone(real_tz)).isoformat() if not "dtend" in component: # Item has start time but not end time enddate = origstart else: enddate = component["dtend"].dt if not enddate.tzinfo: enddate = real_tz.localize(enddate) enddate = real_tz.normalize(enddate.astimezone(real_tz)).isoformat() values = [title, desc, category, loc, startdate, enddate] args = self.insert_row(db, values) json_out.append(args) output_json.update({self.table_name: json_out})
30.085714
169
0.7132
1,973
0.936847
0
0
0
0
0
0
305
0.144824
540df69177e6fb46fc901283c03665c416fc9242
24,887
py
Python
src/OFS/CopySupport.py
MatthewWilkes/Zope
740f934fc9409ae0062e8f0cd6dcfd8b2df00376
[ "ZPL-2.1" ]
1
2018-12-07T21:19:58.000Z
2018-12-07T21:19:58.000Z
src/OFS/CopySupport.py
MatthewWilkes/Zope
740f934fc9409ae0062e8f0cd6dcfd8b2df00376
[ "ZPL-2.1" ]
null
null
null
src/OFS/CopySupport.py
MatthewWilkes/Zope
740f934fc9409ae0062e8f0cd6dcfd8b2df00376
[ "ZPL-2.1" ]
null
null
null
############################################################################## # # Copyright (c) 2002 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Copy interface """ from cgi import escape from marshal import dumps from marshal import loads import re import sys import tempfile from urllib import quote from urllib import unquote import warnings from zlib import compress from zlib import decompress import transaction from AccessControl import ClassSecurityInfo from AccessControl import getSecurityManager from AccessControl.class_init import InitializeClass from AccessControl.Permissions import view_management_screens from AccessControl.Permissions import copy_or_move from AccessControl.Permissions import delete_objects from Acquisition import aq_base from Acquisition import aq_inner from Acquisition import aq_parent from App.Dialogs import MessageDialog from App.special_dtml import HTML from App.special_dtml import DTMLFile from ExtensionClass import Base from webdav.Lockable import ResourceLockedError from zExceptions import Unauthorized, BadRequest from ZODB.POSException import ConflictError from zope.interface import implements from zope.event import notify from zope.lifecycleevent import ObjectCopiedEvent from zope.lifecycleevent import ObjectMovedEvent from zope.container.contained import notifyContainerModified from OFS.event import ObjectWillBeMovedEvent from OFS.event import ObjectClonedEvent from OFS.interfaces import ICopyContainer from OFS.interfaces import ICopySource from OFS.Moniker import loadMoniker from OFS.Moniker import Moniker from OFS.subscribers import compatibilityCall class CopyError(Exception): pass copy_re = re.compile('^copy([0-9]*)_of_(.*)') _marker=[] class CopyContainer(Base): """Interface for containerish objects which allow cut/copy/paste""" implements(ICopyContainer) security = ClassSecurityInfo() # The following three methods should be overridden to store sub-objects # as non-attributes. def _setOb(self, id, object): setattr(self, id, object) def _delOb(self, id): delattr(self, id) def _getOb(self, id, default=_marker): if hasattr(aq_base(self), id): return getattr(self, id) if default is _marker: raise AttributeError(id) return default def manage_CopyContainerFirstItem(self, REQUEST): return self._getOb(REQUEST['ids'][0]) def manage_CopyContainerAllItems(self, REQUEST): return [self._getOb(i) for i in REQUEST['ids']] security.declareProtected(delete_objects, 'manage_cutObjects') def manage_cutObjects(self, ids=None, REQUEST=None): """Put a reference to the objects named in ids in the clip board""" if ids is None and REQUEST is not None: return eNoItemsSpecified elif ids is None: raise ValueError('ids must be specified') if type(ids) is type(''): ids=[ids] oblist=[] for id in ids: ob=self._getOb(id) if ob.wl_isLocked(): raise ResourceLockedError('Object "%s" is locked via WebDAV' % ob.getId()) if not ob.cb_isMoveable(): raise CopyError(eNotSupported % escape(id)) m = Moniker(ob) oblist.append(m.dump()) cp=(1, oblist) cp=_cb_encode(cp) if REQUEST is not None: resp=REQUEST['RESPONSE'] resp.setCookie('__cp', cp, path='%s' % cookie_path(REQUEST)) REQUEST['__cp'] = cp return self.manage_main(self, REQUEST) return cp security.declareProtected(view_management_screens, 'manage_copyObjects') def manage_copyObjects(self, ids=None, REQUEST=None, RESPONSE=None): """Put a reference to the objects named in ids in the clip board""" if ids is None and REQUEST is not None: return eNoItemsSpecified elif ids is None: raise ValueError('ids must be specified') if type(ids) is type(''): ids=[ids] oblist=[] for id in ids: ob=self._getOb(id) if not ob.cb_isCopyable(): raise CopyError(eNotSupported % escape(id)) m = Moniker(ob) oblist.append(m.dump()) cp=(0, oblist) cp=_cb_encode(cp) if REQUEST is not None: resp=REQUEST['RESPONSE'] resp.setCookie('__cp', cp, path='%s' % cookie_path(REQUEST)) REQUEST['__cp'] = cp return self.manage_main(self, REQUEST) return cp def _get_id(self, id): # Allow containers to override the generation of # object copy id by attempting to call its _get_id # method, if it exists. match = copy_re.match(id) if match: n = int(match.group(1) or '1') orig_id = match.group(2) else: n = 0 orig_id = id while 1: if self._getOb(id, None) is None: return id id='copy%s_of_%s' % (n and n+1 or '', orig_id) n=n+1 security.declareProtected(view_management_screens, 'manage_pasteObjects') def manage_pasteObjects(self, cb_copy_data=None, REQUEST=None): """Paste previously copied objects into the current object. If calling manage_pasteObjects from python code, pass the result of a previous call to manage_cutObjects or manage_copyObjects as the first argument. Also sends IObjectCopiedEvent and IObjectClonedEvent or IObjectWillBeMovedEvent and IObjectMovedEvent. """ if cb_copy_data is not None: cp = cb_copy_data elif REQUEST is not None and REQUEST.has_key('__cp'): cp = REQUEST['__cp'] else: cp = None if cp is None: raise CopyError(eNoData) try: op, mdatas = _cb_decode(cp) except: raise CopyError(eInvalid) oblist = [] app = self.getPhysicalRoot() for mdata in mdatas: m = loadMoniker(mdata) try: ob = m.bind(app) except ConflictError: raise except: raise CopyError(eNotFound) self._verifyObjectPaste(ob, validate_src=op+1) oblist.append(ob) result = [] if op == 0: # Copy operation for ob in oblist: orig_id = ob.getId() if not ob.cb_isCopyable(): raise CopyError(eNotSupported % escape(orig_id)) try: ob._notifyOfCopyTo(self, op=0) except ConflictError: raise except: raise CopyError(MessageDialog( title="Copy Error", message=sys.exc_info()[1], action='manage_main')) id = self._get_id(orig_id) result.append({'id': orig_id, 'new_id': id}) orig_ob = ob ob = ob._getCopy(self) ob._setId(id) notify(ObjectCopiedEvent(ob, orig_ob)) self._setObject(id, ob) ob = self._getOb(id) ob.wl_clearLocks() ob._postCopy(self, op=0) compatibilityCall('manage_afterClone', ob, ob) notify(ObjectClonedEvent(ob)) if REQUEST is not None: return self.manage_main(self, REQUEST, update_menu=1, cb_dataValid=1) elif op == 1: # Move operation for ob in oblist: orig_id = ob.getId() if not ob.cb_isMoveable(): raise CopyError(eNotSupported % escape(orig_id)) try: ob._notifyOfCopyTo(self, op=1) except ConflictError: raise except: raise CopyError(MessageDialog( title="Move Error", message=sys.exc_info()[1], action='manage_main')) if not sanity_check(self, ob): raise CopyError( "This object cannot be pasted into itself") orig_container = aq_parent(aq_inner(ob)) if aq_base(orig_container) is aq_base(self): id = orig_id else: id = self._get_id(orig_id) result.append({'id': orig_id, 'new_id': id}) notify(ObjectWillBeMovedEvent(ob, orig_container, orig_id, self, id)) # try to make ownership explicit so that it gets carried # along to the new location if needed. ob.manage_changeOwnershipType(explicit=1) try: orig_container._delObject(orig_id, suppress_events=True) except TypeError: orig_container._delObject(orig_id) warnings.warn( "%s._delObject without suppress_events is discouraged." % orig_container.__class__.__name__, DeprecationWarning) ob = aq_base(ob) ob._setId(id) try: self._setObject(id, ob, set_owner=0, suppress_events=True) except TypeError: self._setObject(id, ob, set_owner=0) warnings.warn( "%s._setObject without suppress_events is discouraged." % self.__class__.__name__, DeprecationWarning) ob = self._getOb(id) notify(ObjectMovedEvent(ob, orig_container, orig_id, self, id)) notifyContainerModified(orig_container) if aq_base(orig_container) is not aq_base(self): notifyContainerModified(self) ob._postCopy(self, op=1) # try to make ownership implicit if possible ob.manage_changeOwnershipType(explicit=0) if REQUEST is not None: REQUEST['RESPONSE'].setCookie('__cp', 'deleted', path='%s' % cookie_path(REQUEST), expires='Wed, 31-Dec-97 23:59:59 GMT') REQUEST['__cp'] = None return self.manage_main(self, REQUEST, update_menu=1, cb_dataValid=0) return result security.declareProtected(view_management_screens, 'manage_renameForm') manage_renameForm = DTMLFile('dtml/renameForm', globals()) security.declareProtected(view_management_screens, 'manage_renameObjects') def manage_renameObjects(self, ids=[], new_ids=[], REQUEST=None): """Rename several sub-objects""" if len(ids) != len(new_ids): raise BadRequest('Please rename each listed object.') for i in range(len(ids)): if ids[i] != new_ids[i]: self.manage_renameObject(ids[i], new_ids[i], REQUEST) if REQUEST is not None: return self.manage_main(self, REQUEST, update_menu=1) return None security.declareProtected(view_management_screens, 'manage_renameObject') def manage_renameObject(self, id, new_id, REQUEST=None): """Rename a particular sub-object. """ try: self._checkId(new_id) except: raise CopyError(MessageDialog( title='Invalid Id', message=sys.exc_info()[1], action ='manage_main')) ob = self._getOb(id) if ob.wl_isLocked(): raise ResourceLockedError('Object "%s" is locked via WebDAV' % ob.getId()) if not ob.cb_isMoveable(): raise CopyError(eNotSupported % escape(id)) self._verifyObjectPaste(ob) try: ob._notifyOfCopyTo(self, op=1) except ConflictError: raise except: raise CopyError(MessageDialog( title="Rename Error", message=sys.exc_info()[1], action ='manage_main')) notify(ObjectWillBeMovedEvent(ob, self, id, self, new_id)) try: self._delObject(id, suppress_events=True) except TypeError: self._delObject(id) warnings.warn( "%s._delObject without suppress_events is discouraged." % self.__class__.__name__, DeprecationWarning) ob = aq_base(ob) ob._setId(new_id) # Note - because a rename always keeps the same context, we # can just leave the ownership info unchanged. try: self._setObject(new_id, ob, set_owner=0, suppress_events=True) except TypeError: self._setObject(new_id, ob, set_owner=0) warnings.warn( "%s._setObject without suppress_events is discouraged." % self.__class__.__name__, DeprecationWarning) ob = self._getOb(new_id) notify(ObjectMovedEvent(ob, self, id, self, new_id)) notifyContainerModified(self) ob._postCopy(self, op=1) if REQUEST is not None: return self.manage_main(self, REQUEST, update_menu=1) return None # Why did we give this a manage_ prefix if its really # supposed to be public since it does its own auth ? # # Because it's still a "management" function. security.declarePublic('manage_clone') def manage_clone(self, ob, id, REQUEST=None): """Clone an object, creating a new object with the given id. """ if not ob.cb_isCopyable(): raise CopyError(eNotSupported % escape(ob.getId())) try: self._checkId(id) except: raise CopyError(MessageDialog( title='Invalid Id', message=sys.exc_info()[1], action ='manage_main')) self._verifyObjectPaste(ob) try: ob._notifyOfCopyTo(self, op=0) except ConflictError: raise except: raise CopyError(MessageDialog( title="Clone Error", message=sys.exc_info()[1], action='manage_main')) orig_ob = ob ob = ob._getCopy(self) ob._setId(id) notify(ObjectCopiedEvent(ob, orig_ob)) self._setObject(id, ob) ob = self._getOb(id) ob._postCopy(self, op=0) compatibilityCall('manage_afterClone', ob, ob) notify(ObjectClonedEvent(ob)) return ob def cb_dataValid(self): # Return true if clipboard data seems valid. try: cp=_cb_decode(self.REQUEST['__cp']) except: return 0 return 1 def cb_dataItems(self): # List of objects in the clip board try: cp=_cb_decode(self.REQUEST['__cp']) except: return [] oblist=[] app = self.getPhysicalRoot() for mdata in cp[1]: m = loadMoniker(mdata) oblist.append(m.bind(app)) return oblist validClipData=cb_dataValid def _verifyObjectPaste(self, object, validate_src=1): # Verify whether the current user is allowed to paste the # passed object into self. This is determined by checking # to see if the user could create a new object of the same # meta_type of the object passed in and checking that the # user actually is allowed to access the passed in object # in its existing context. # # Passing a false value for the validate_src argument will skip # checking the passed in object in its existing context. This is # mainly useful for situations where the passed in object has no # existing context, such as checking an object during an import # (the object will not yet have been connected to the acquisition # heirarchy). if not hasattr(object, 'meta_type'): raise CopyError(MessageDialog( title = 'Not Supported', message = ('The object <em>%s</em> does not support this' \ ' operation' % escape(absattr(object.id))), action = 'manage_main')) if not hasattr(self, 'all_meta_types'): raise CopyError(MessageDialog( title = 'Not Supported', message = 'Cannot paste into this object.', action = 'manage_main')) method_name = None mt_permission = None meta_types = absattr(self.all_meta_types) for d in meta_types: if d['name'] == object.meta_type: method_name = d['action'] mt_permission = d.get('permission') break if mt_permission is not None: sm = getSecurityManager() if sm.checkPermission(mt_permission, self): if validate_src: # Ensure the user is allowed to access the object on the # clipboard. try: parent = aq_parent(aq_inner(object)) except: parent = None if not sm.validate(None, parent, None, object): raise Unauthorized(absattr(object.id)) if validate_src == 2: # moving if not sm.checkPermission(delete_objects, parent): raise Unauthorized('Delete not allowed.') else: raise CopyError(MessageDialog( title = 'Insufficient Privileges', message = ('You do not possess the %s permission in the ' 'context of the container into which you are ' 'pasting, thus you are not able to perform ' 'this operation.' % mt_permission), action = 'manage_main')) else: raise CopyError(MessageDialog( title = 'Not Supported', message = ('The object <em>%s</em> does not support this ' 'operation.' % escape(absattr(object.id))), action = 'manage_main')) InitializeClass(CopyContainer) class CopySource(Base): """Interface for objects which allow themselves to be copied.""" implements(ICopySource) # declare a dummy permission for Copy or Move here that we check # in cb_isCopyable. security = ClassSecurityInfo() security.setPermissionDefault(copy_or_move, ('Anonymous', 'Manager')) def _canCopy(self, op=0): """Called to make sure this object is copyable. The op var is 0 for a copy, 1 for a move. """ return 1 def _notifyOfCopyTo(self, container, op=0): """Overide this to be pickly about where you go! If you dont want to go there, raise an exception. The op variable is 0 for a copy, 1 for a move. """ pass def _getCopy(self, container): # Commit a subtransaction to: # 1) Make sure the data about to be exported is current # 2) Ensure self._p_jar and container._p_jar are set even if # either one is a new object transaction.savepoint(optimistic=True) if self._p_jar is None: raise CopyError( 'Object "%s" needs to be in the database to be copied' % `self`) if container._p_jar is None: raise CopyError( 'Container "%s" needs to be in the database' % `container`) # Ask an object for a new copy of itself. f=tempfile.TemporaryFile() self._p_jar.exportFile(self._p_oid,f) f.seek(0) ob=container._p_jar.importFile(f) f.close() return ob def _postCopy(self, container, op=0): # Called after the copy is finished to accomodate special cases. # The op var is 0 for a copy, 1 for a move. pass def _setId(self, id): # Called to set the new id of a copied object. self.id=id def cb_isCopyable(self): # Is object copyable? Returns 0 or 1 if not (hasattr(self, '_canCopy') and self._canCopy(0)): return 0 if not self.cb_userHasCopyOrMovePermission(): return 0 return 1 def cb_isMoveable(self): # Is object moveable? Returns 0 or 1 if not (hasattr(self, '_canCopy') and self._canCopy(1)): return 0 if hasattr(self, '_p_jar') and self._p_jar is None: return 0 try: n=aq_parent(aq_inner(self))._reserved_names except: n=() if absattr(self.id) in n: return 0 if not self.cb_userHasCopyOrMovePermission(): return 0 return 1 def cb_userHasCopyOrMovePermission(self): if getSecurityManager().checkPermission(copy_or_move, self): return 1 InitializeClass(CopySource) def sanity_check(c, ob): # This is called on cut/paste operations to make sure that # an object is not cut and pasted into itself or one of its # subobjects, which is an undefined situation. ob = aq_base(ob) while 1: if aq_base(c) is ob: return 0 inner = aq_inner(c) if aq_parent(inner) is None: return 1 c = aq_parent(inner) def absattr(attr): if callable(attr): return attr() return attr def _cb_encode(d): return quote(compress(dumps(d), 9)) def _cb_decode(s): return loads(decompress(unquote(s))) def cookie_path(request): # Return a "path" value for use in a cookie that refers # to the root of the Zope object space. return request['BASEPATH1'] or "/" fMessageDialog = HTML(""" <HTML> <HEAD> <TITLE>&dtml-title;</TITLE> </HEAD> <BODY BGCOLOR="#FFFFFF"> <FORM ACTION="&dtml-action;" METHOD="GET" <dtml-if target>TARGET="&dtml-target;"</dtml-if>> <TABLE BORDER="0" WIDTH="100%%" CELLPADDING="10"> <TR> <TD VALIGN="TOP"> <BR> <CENTER><B><FONT SIZE="+6" COLOR="#77003B">!</FONT></B></CENTER> </TD> <TD VALIGN="TOP"> <BR><BR> <CENTER> <dtml-var message> </CENTER> </TD> </TR> <TR> <TD VALIGN="TOP"> </TD> <TD VALIGN="TOP"> <CENTER> <INPUT TYPE="SUBMIT" VALUE=" Ok "> </CENTER> </TD> </TR> </TABLE> </FORM> </BODY></HTML>""", target='', action='manage_main', title='Changed') eNoData=MessageDialog( title='No Data', message='No clipboard data found.', action ='manage_main',) eInvalid=MessageDialog( title='Clipboard Error', message='The data in the clipboard could not be read, possibly due ' \ 'to cookie data being truncated by your web browser. Try copying ' \ 'fewer objects.', action ='manage_main',) eNotFound=MessageDialog( title='Item Not Found', message='One or more items referred to in the clipboard data was ' \ 'not found. The item may have been moved or deleted after you ' \ 'copied it.', action ='manage_main',) eNotSupported=fMessageDialog( title='Not Supported', message=( 'The action against the <em>%s</em> object could not be carried ' 'out. ' 'One of the following constraints caused the problem: <br><br>' 'The object does not support this operation.' '<br><br>-- OR --<br><br>' 'The currently logged-in user does not have the <b>Copy or ' 'Move</b> permission respective to the object.' ), action ='manage_main',) eNoItemsSpecified=MessageDialog( title='No items specified', message='You must select one or more items to perform ' \ 'this operation.', action ='manage_main' )
33.952251
79
0.571704
19,747
0.793466
0
0
0
0
0
0
6,983
0.280588
540f2aeaaaa0eee405144a0e73dbe2a9199426b2
1,697
py
Python
Search in a Binary Search Tree.py
frank0215/Leetcode_python
9428ded4f9abd347b12bfef8aa1dd2d177f3afea
[ "MIT" ]
null
null
null
Search in a Binary Search Tree.py
frank0215/Leetcode_python
9428ded4f9abd347b12bfef8aa1dd2d177f3afea
[ "MIT" ]
null
null
null
Search in a Binary Search Tree.py
frank0215/Leetcode_python
9428ded4f9abd347b12bfef8aa1dd2d177f3afea
[ "MIT" ]
null
null
null
class TreeNode: def __init__(self, val, left=None, right=None): self.val = val self.right = right self.left = left class Solution: def searchBST(self, root, val): # if not root: # return None # if root.val == val: # return root # l = self.searchBST(root.left, val) # if l: # return l # r = self.searchBST(root.right, val) # if r: # return r # return None # 二元搜尋 # 尾遞迴 可寫成迴圈 # if not root: # return None # if root.val == val: # return root # if root.val < val: # return self.searchBST(root.right, val) # return self.searchBST(root.left, val) # while True: # if not root: # return None # if root.val == val: # return root # if root.val < val: # root = root.right # else: # root = root.left while root: if root.val == val: return root if root.val < val: root = root.right else: root = root.left return None if __name__ == '__main__': #root = [4,2,7,1,3] # root = TreeNode(4) # root.left = TreeNode(2) # root.left.left = TreeNode(1) # root.right = TreeNode(7) # root.left.right = TreeNode(3) # val = 2 root = TreeNode(4, TreeNode(2, TreeNode(1), TreeNode(3)), TreeNode(7)) val = 2 print(Solution().searchBST(root, val).val) # output [2,1,3]
23.569444
74
0.446081
1,328
0.771644
0
0
0
0
0
0
782
0.454387
541271297050a8dd2d540558c72d94871ade9a15
1,019
py
Python
src/data/process_HJ_data.py
simran-grewal/COVID-19-Data-Analysis
8751aa75c451e956d5b1d1e2d6f2ffbec8dc673a
[ "FTL" ]
null
null
null
src/data/process_HJ_data.py
simran-grewal/COVID-19-Data-Analysis
8751aa75c451e956d5b1d1e2d6f2ffbec8dc673a
[ "FTL" ]
null
null
null
src/data/process_HJ_data.py
simran-grewal/COVID-19-Data-Analysis
8751aa75c451e956d5b1d1e2d6f2ffbec8dc673a
[ "FTL" ]
null
null
null
import subprocess import os import numpy as np import pandas as pd from datetime import datetime def store_relational_JH_data(): pd_raw = pd.read_csv('../data/raw/COVID-19/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv') pd_data_base = pd_raw.rename(columns={'Country/Region': 'country', 'Province/State': 'state'}) pd_data_base['state'] = pd_data_base['state'].fillna('no') pd_data_base.drop(['Lat', 'Long'], axis=1, inplace=True) pd_relational_model = pd_data_base.set_index(['state', 'country']) \ .T.stack(level=[0, 1]) \ .reset_index() \ .rename(columns = {'level_0': 'date', 0: 'confirmed'},) pd_relational_model['date'] = pd_relational_model.date.astype('datetime64[ns]') pd_relational_model.to_csv('../data/processed/Covid_relational_confirmed.csv', sep = ';', index=False) print('Number of rows stored:'+ str(pd_relational_model.shape[0])) if __name__ == '__main__': store_relational_JH_data()
42.458333
134
0.703631
0
0
0
0
0
0
0
0
336
0.329735
5414770e7a98cb88e29d0f46a7ec2949accc8e44
1,023
py
Python
wasm-server.py
erique/pt2-clone
f3376a5a40316f15e82feaa321673a8611c31a53
[ "BSD-3-Clause" ]
null
null
null
wasm-server.py
erique/pt2-clone
f3376a5a40316f15e82feaa321673a8611c31a53
[ "BSD-3-Clause" ]
null
null
null
wasm-server.py
erique/pt2-clone
f3376a5a40316f15e82feaa321673a8611c31a53
[ "BSD-3-Clause" ]
null
null
null
# Python 3 import sys import socketserver from http.server import SimpleHTTPRequestHandler class WasmHandler(SimpleHTTPRequestHandler): def __init__(self, *args, **kwargs): super().__init__(*args, directory="release/emscripten", **kwargs) def do_GET(self): if self.path == '/': self.path = '/pt2-clone.html' return super().do_GET() def end_headers(self): self.send_header("Cross-Origin-Opener-Policy", "same-origin") self.send_header("Cross-Origin-Embedder-Policy", "require-corp") SimpleHTTPRequestHandler.end_headers(self) # Python 3.7.5 adds in the WebAssembly Media Type. If this is an older # version, add in the Media Type. if sys.version_info < (3, 7, 5): WasmHandler.extensions_map['.wasm'] = 'application/wasm' if __name__ == '__main__': PORT = 8080 with socketserver.TCPServer(("", PORT), WasmHandler) as httpd: print("Listening on port {}. Press Ctrl+C to stop.".format(PORT)) httpd.serve_forever()
34.1
73
0.670577
513
0.501466
0
0
0
0
0
0
320
0.312805
5414822b05eb873a76f59d1b99fc4fca71aebfa2
1,850
py
Python
stage.py
boularbahsmail/Asteroids-Game
ef4ae8d2e66ea2875aba83f512610b4da56c9ef1
[ "CNRI-Python" ]
2
2021-03-25T23:02:50.000Z
2021-03-26T10:41:33.000Z
stage.py
boularbahsmail/Asteroids-Game
ef4ae8d2e66ea2875aba83f512610b4da56c9ef1
[ "CNRI-Python" ]
null
null
null
stage.py
boularbahsmail/Asteroids-Game
ef4ae8d2e66ea2875aba83f512610b4da56c9ef1
[ "CNRI-Python" ]
null
null
null
import pygame import sys import os from pygame.locals import * class Stage: # Set up the PyGame surface def __init__(self, caption, dimensions=None): pygame.init() # If no screen size is provided pick the first available mode if dimensions == None: dimensions = pygame.display.list_modes()[0] pygame.display.set_mode(dimensions, FULLSCREEN) pygame.mouse.set_visible(False) # pygame.display.set_mode(dimensions) pygame.display.set_caption(caption) self.screen = pygame.display.get_surface() self.spriteList = [] self.width = dimensions[0] self.height = dimensions[1] self.showBoundingBoxes = False # Add sprite to list then draw it as a easy way to get the bounding rect def addSprite(self, sprite): self.spriteList.append(sprite) sprite.boundingRect = pygame.draw.aalines( self.screen, sprite.color, True, sprite.draw()) def removeSprite(self, sprite): self.spriteList.remove(sprite) def drawSprites(self): for sprite in self.spriteList: sprite.boundingRect = pygame.draw.aalines( self.screen, sprite.color, True, sprite.draw()) if self.showBoundingBoxes == True: pygame.draw.rect(self.screen, (255, 255, 255), sprite.boundingRect, 1) def moveSprites(self): for sprite in self.spriteList: sprite.move() if sprite.position.x < 0: sprite.position.x = self.width if sprite.position.x > self.width: sprite.position.x = 0 if sprite.position.y < 0: sprite.position.y = self.height if sprite.position.y > self.height: sprite.position.y = 0
29.83871
76
0.600541
1,783
0.963784
0
0
0
0
0
0
197
0.106486
5414c4d1cd6ab405e144265b135b1ae64b919a77
2,596
py
Python
web/MicroservicesAsAservice/src/notes/app.py
NoXLaw/RaRCTF2021-Challenges-Public
1a1b094359b88f8ebbc83a6b26d27ffb2602458f
[ "MIT" ]
null
null
null
web/MicroservicesAsAservice/src/notes/app.py
NoXLaw/RaRCTF2021-Challenges-Public
1a1b094359b88f8ebbc83a6b26d27ffb2602458f
[ "MIT" ]
null
null
null
web/MicroservicesAsAservice/src/notes/app.py
NoXLaw/RaRCTF2021-Challenges-Public
1a1b094359b88f8ebbc83a6b26d27ffb2602458f
[ "MIT" ]
null
null
null
from flask import Flask, request, jsonify, render_template_string import redis import requests import re import json import sys app = Flask(__name__) @app.route('/getid/<username>') def getid(username): red = redis.Redis(host="redis_users") return red.get(username).decode() @app.route('/useraction', methods=["POST"]) def useraction(): mode = request.form.get("mode") username = request.form.get("username") if mode == "register": r = requests.get('http://redis_userdata:5000/adduser') port = int(r.text) red = redis.Redis(host="redis_users") red.set(username, port) return "" elif mode == "adddata": red = redis.Redis(host="redis_users") port = red.get(username).decode() requests.post(f"http://redis_userdata:5000/putuser/{port}", json={ request.form.get("key"): request.form.get("value") }) return "" elif mode == "getdata": red = redis.Redis(host="redis_users") port = red.get(username).decode() r = requests.get(f"http://redis_userdata:5000/getuser/{port}") return jsonify(r.json()) elif mode == "bioadd": bio = request.form.get("bio") bio = bio.replace(".", "").replace("_", "").\ replace("{", "").replace("}", "").\ replace("(", "").replace(")", "").\ replace("|", "") bio = re.sub(r'\[\[([^\[\]]+)\]\]', r'{{data["\g<1>"]}}', bio) red = redis.Redis(host="redis_users") port = red.get(username).decode() requests.post(f"http://redis_userdata:5000/bio/{port}", json={ "bio": bio }) return "" elif mode == "bioget": red = redis.Redis(host="redis_users") port = red.get(username).decode() r = requests.get(f"http://redis_userdata:5000/bio/{port}") return r.text elif mode == "keytransfer": red = redis.Redis(host="redis_users") port = red.get(username).decode() red2 = redis.Redis(host="redis_userdata", port=int(port)) red2.migrate(request.form.get("host"), request.form.get("port"), [request.form.get("key")], 0, 1000, copy=True, replace=True) return "" @app.route("/render", methods=["POST"]) def render_bio(): data = request.json.get('data') if data is None: data = {} return render_template_string(request.json.get('bio'), data=data) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)
33.282051
74
0.552003
0
0
0
0
2,371
0.913328
0
0
590
0.227273
54156bd3caed9e41e591c736c817a669d7acd84f
1,195
py
Python
divisiones.py
badgercl/scrappers-congreso-chile
ae2f3f451f6fa90a4964f2c476aecdfc2c5254ee
[ "MIT" ]
null
null
null
divisiones.py
badgercl/scrappers-congreso-chile
ae2f3f451f6fa90a4964f2c476aecdfc2c5254ee
[ "MIT" ]
null
null
null
divisiones.py
badgercl/scrappers-congreso-chile
ae2f3f451f6fa90a4964f2c476aecdfc2c5254ee
[ "MIT" ]
null
null
null
import requests from bs4 import BeautifulSoup import json import pprint url = 'https://www.bcn.cl/siit/divisionelectoral/index.htm' res = requests.get(url) soup = BeautifulSoup(res.text, 'html.parser') rows = soup.find_all('tbody')[1].find_all('tr') region = "" circunscripcion = "" distrito = "" comuna = "" regiones = {} comunas = {} for row in rows: tds = row.find_all('td') if len(tds) == 4: region = tds[0].text.strip() circunscripcion = tds[1].text.split()[0].replace('ª','') distrito = tds[2].text.split()[1] comuna = tds[3].a.text.replace('*', '').strip() regiones[region] = { circunscripcion: { distrito: [comuna] } } elif len(tds) == 2: distrito = tds[0].text.split()[1] comuna = tds[1].a.text.replace('*', '').strip() regiones[region][circunscripcion][distrito] = [comuna] else: comuna = tds[0].a.text.replace('*', '').strip().lower() regiones[region][circunscripcion][distrito].append(comuna) comunas[comuna] = { 'circunscripcion': circunscripcion, 'distrito': distrito, 'region': region } pp = pprint.PrettyPrinter(indent=4) pp.pprint(comunas) with open('output/divisiones.json', 'w') as json_file: json.dump(comunas, json_file)
23.9
60
0.661925
0
0
0
0
0
0
0
0
172
0.143813
5419760ed6778cfb73074dd68ffc3b8c58ad8780
685
py
Python
aws-auth-manager/src/awsauthmanager/app.py
zepplen/aws_tokens
9249ba00ea0b39ac3c523a9ea3ee2485436e84ef
[ "MIT" ]
null
null
null
aws-auth-manager/src/awsauthmanager/app.py
zepplen/aws_tokens
9249ba00ea0b39ac3c523a9ea3ee2485436e84ef
[ "MIT" ]
null
null
null
aws-auth-manager/src/awsauthmanager/app.py
zepplen/aws_tokens
9249ba00ea0b39ac3c523a9ea3ee2485436e84ef
[ "MIT" ]
null
null
null
#################################################### # (C) Mark Trimmer, 2016, All Rights Reserved # # File Name: app.py # # Creation Date: 28-12-2016 # # Created By: Mark Trimmer # # Purpose: # #################################################### from __future__ import print_function from credentialfile import CredentialFile from ststoken import StsToken class App(object): def __init__(self, options): self.options = options self.credential_file = CredentialFile(path=options['credential_file'], profile=options['profile_name']) self.credential_file.back_fill_user_data() self.sts = StsToken(self.credential_file) self.sts.get_auth()
26.346154
111
0.608759
324
0.472993
0
0
0
0
0
0
267
0.389781
5419a767eec4a75f25fccde0e39c22e20a25e3d6
486
py
Python
setup.py
datamachines/classification-banner
53ae7ea1104000e60474955f7603c46024a1d06f
[ "Apache-2.0" ]
null
null
null
setup.py
datamachines/classification-banner
53ae7ea1104000e60474955f7603c46024a1d06f
[ "Apache-2.0" ]
1
2021-06-11T15:30:31.000Z
2021-06-14T12:58:21.000Z
setup.py
datamachines/classification-banner
53ae7ea1104000e60474955f7603c46024a1d06f
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python from setuptools import setup, find_packages setup(name='classification-banner', version='1.0.0', description='Classification banner compatable with GTK3 and X11.', author='Mike May', author_email='mikemay@datamachines.io', url='https://www.github.com/datamachines/classification-banner', packages=find_packages(), scripts=["bin/classification-banner"], data_files=[("classification-banner", ["style.css"])] )
32.4
72
0.687243
0
0
0
0
0
0
0
0
259
0.532922
541ac4d6365b97db764dba02574e6974751b26ba
371
py
Python
synapyse/impl/activation_functions/linear.py
synapyse/synapyse
8c9ff53ede2d83af27ce771ce1b6ea6a32155b02
[ "MIT" ]
4
2015-09-19T11:02:56.000Z
2019-03-27T11:42:12.000Z
synapyse/impl/activation_functions/linear.py
synapyse/synapyse
8c9ff53ede2d83af27ce771ce1b6ea6a32155b02
[ "MIT" ]
null
null
null
synapyse/impl/activation_functions/linear.py
synapyse/synapyse
8c9ff53ede2d83af27ce771ce1b6ea6a32155b02
[ "MIT" ]
1
2019-10-29T16:24:28.000Z
2019-10-29T16:24:28.000Z
from synapyse.base.activation_functions.activation_function import ActivationFunction __author__ = 'Douglas Eric Fonseca Rodrigues' class Linear(ActivationFunction): def calculate_output(self): return self.x def calculate_derivative(self): return 1.0 def clone(self): clone = Linear() clone.x = self.x return clone
23.1875
85
0.698113
236
0.636119
0
0
0
0
0
0
32
0.086253
541acc6e7acab303b472692f00ec1a571d8c6ad5
1,027
py
Python
demo/app/libs/description.py
suenklerhaw/seoeffekt
0a31fdfa1a7246da37e37bf53c03d94c5f13f095
[ "MIT" ]
1
2022-02-15T14:03:10.000Z
2022-02-15T14:03:10.000Z
demo/app/libs/description.py
suenklerhaw/seoeffekt
0a31fdfa1a7246da37e37bf53c03d94c5f13f095
[ "MIT" ]
null
null
null
demo/app/libs/description.py
suenklerhaw/seoeffekt
0a31fdfa1a7246da37e37bf53c03d94c5f13f095
[ "MIT" ]
null
null
null
#check description from bs4 import BeautifulSoup import lxml.html def check_description(tree): description = "" xpath_meta = "//meta[@name='description']/@content" xpath_og_property = "//meta[@property='og:description']/@content" xpath_og_name = "//meta[@name='og:description']/@content" meta_content = str(tree.xpath(xpath_meta)) og_property_content = str(tree.xpath(xpath_og_property)) og_name = str(tree.xpath(xpath_og_name)) if(len(meta_content) > 5 or len(og_property_content) > 5 or len(og_name) > 5): if len(og_name) > 5: description = og_name elif len(og_property_content) > 5: description = og_property_content else: description = meta_content description = description[2:-2] description = description.replace("'", "") description = description.replace('"', "") description = description.replace(':', "") description = description.replace(',', "") return description
32.09375
82
0.641675
0
0
0
0
0
0
0
0
164
0.159688
541b0dd061b1cb2fb2dd1d60f50109368732184b
919
py
Python
backend/projectfiles/GradleProjectFile.py
karllindmark/IsYourProjectUpToDate
ce2df36b8fa39a4732b05dfd75558a914e4e990b
[ "Apache-2.0" ]
null
null
null
backend/projectfiles/GradleProjectFile.py
karllindmark/IsYourProjectUpToDate
ce2df36b8fa39a4732b05dfd75558a914e4e990b
[ "Apache-2.0" ]
null
null
null
backend/projectfiles/GradleProjectFile.py
karllindmark/IsYourProjectUpToDate
ce2df36b8fa39a4732b05dfd75558a914e4e990b
[ "Apache-2.0" ]
null
null
null
import re from backend.projectfiles.GenericProjectFile import GenericProjectFile QUOTE = r'(?:["|\'])' STRING = r'([\w\.\-\+]+)' GAV_REGEXP = QUOTE + '(?:' + ":".join([STRING, STRING, STRING]) + ')' + QUOTE class GradleProjectFile(GenericProjectFile): """ Gradle project file implementation to extract dependencies """ def extract(self): dependencies = [] for line in self.result.iter_lines(): results = re.match('.*' + GAV_REGEXP + '.*', line) if results: group = results.group(1) artifact = results.group(2) version = results.group(3) dependencies.append({'group': group, 'artifact': artifact, 'version': version, 'gav': ":".join([group, artifact, version])}) return dependencies
34.037037
82
0.516866
705
0.767138
0
0
0
0
0
0
148
0.161045
541c51e665974394ae0ab412789deb2f54ac881a
1,879
py
Python
python/rhinoscripts/example_csv_loading.py
tasbolat1/hmv-s16
7863c66ed645b463b72aef98a5c484a18cc9f396
[ "BSD-3-Clause" ]
1
2020-10-10T21:27:30.000Z
2020-10-10T21:27:30.000Z
python/rhinoscripts/example_csv_loading.py
tasbolat1/hmv-s16
7863c66ed645b463b72aef98a5c484a18cc9f396
[ "BSD-3-Clause" ]
null
null
null
python/rhinoscripts/example_csv_loading.py
tasbolat1/hmv-s16
7863c66ed645b463b72aef98a5c484a18cc9f396
[ "BSD-3-Clause" ]
null
null
null
"""Example code for importing a single rigid body trajectory into Rhino from a Optitrack CSV file. Copyright (c) 2016, Garth Zeglin. All rights reserved. Licensed under the terms of the BSD 3-clause license as included in LICENSE. Example code for generating a path of Rhino 'planes' (e.g. coordinate frame) from a trajectory data file. The path is returned as a list of Plane objects. Each plane is created using an origin vector and X and Y basis vectors. The time stamps and Z basis vectors in the trajectory file are ignored. """ # Load the Rhino API. import rhinoscriptsyntax as rs # Make sure that the Python libraries also contained within this course package # are on the load path. This adds the parent folder to the load path, assuming that this # script is still located with the rhinoscripts/ subfolder of the Python library tree. import sys, os sys.path.insert(0, os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) # Load the Optitrack CSV file parser module. import optitrack.csv_reader as csv from optitrack.geometry import * # Find the path to the test data file located alongside the script. filename = os.path.join( os.path.abspath(os.path.dirname(__file__)), "sample_optitrack_take.csv") # Read the file. take = csv.Take().readCSV(filename) # Print out some statistics print "Found rigid bodies:", take.rigid_bodies.keys() # Process the first rigid body into a set of planes. bodies = take.rigid_bodies.values() # for now: xaxis = [1,0,0] yaxis = [0,1,0] if len(bodies) > 0: body = bodies[0] for pos,rot in zip(body.positions, body.rotations): if pos is not None and rot is not None: xaxis, yaxis = quaternion_to_xaxis_yaxis(rot) plane = rs.PlaneFromFrame(pos, xaxis, yaxis) # create a visible plane, assuming units are in meters rs.AddPlaneSurface( plane, 0.1, 0.1 )
36.134615
98
0.734433
0
0
0
0
0
0
0
0
1,132
0.602448
541d99a0b05066f7ae098ca89430a31ca86b09cb
91,180
py
Python
4_Nback/Nback_practice_lastrun.py
Brinks0211/cognitive_paradigms_patients
30e3f8268e5c2b5ebfffcc4ebbcb46d8e60d039e
[ "MIT" ]
2
2020-07-01T12:53:40.000Z
2020-07-01T13:30:23.000Z
4_Nback/Nback_practice_lastrun.py
Brinks0211/cognitive_paradigms_patients
30e3f8268e5c2b5ebfffcc4ebbcb46d8e60d039e
[ "MIT" ]
null
null
null
4_Nback/Nback_practice_lastrun.py
Brinks0211/cognitive_paradigms_patients
30e3f8268e5c2b5ebfffcc4ebbcb46d8e60d039e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This experiment was created using PsychoPy3 Experiment Builder (v2020.1.3), on 六月 15, 2020, at 09:02 If you publish work using this script the most relevant publication is: Peirce J, Gray JR, Simpson S, MacAskill M, Höchenberger R, Sogo H, Kastman E, Lindeløv JK. (2019) PsychoPy2: Experiments in behavior made easy Behav Res 51: 195. https://doi.org/10.3758/s13428-018-01193-y """ from __future__ import absolute_import, division from psychopy import locale_setup from psychopy import prefs from psychopy import sound, gui, visual, core, data, event, logging, clock from psychopy.constants import (NOT_STARTED, STARTED, PLAYING, PAUSED, STOPPED, FINISHED, PRESSED, RELEASED, FOREVER) import numpy as np # whole numpy lib is available, prepend 'np.' from numpy import (sin, cos, tan, log, log10, pi, average, sqrt, std, deg2rad, rad2deg, linspace, asarray) from numpy.random import random, randint, normal, shuffle import os # handy system and path functions import sys # to get file system encoding from psychopy.hardware import keyboard # Ensure that relative paths start from the same directory as this script _thisDir = os.path.dirname(os.path.abspath(__file__)) os.chdir(_thisDir) # Store info about the experiment session psychopyVersion = '2020.1.3' expName = 'Nback_Practice' # from the Builder filename that created this script expInfo = {'participant': '', '姓名拼音': '', '男1/女2': '', '入院1/出院2': ''} dlg = gui.DlgFromDict(dictionary=expInfo, sortKeys=False, title=expName) if dlg.OK == False: core.quit() # user pressed cancel expInfo['date'] = data.getDateStr() # add a simple timestamp expInfo['expName'] = expName expInfo['psychopyVersion'] = psychopyVersion # Data file name stem = absolute path + name; later add .psyexp, .csv, .log, etc filename = _thisDir + os.sep + u'data/%s_%s_%s' % (expInfo['participant'], expName, expInfo['date']) # An ExperimentHandler isn't essential but helps with data saving thisExp = data.ExperimentHandler(name=expName, version='', extraInfo=expInfo, runtimeInfo=None, originPath='C:\\Users\\zhang\\Desktop\\张以昊\\课题组\\4_Nback\\Nback_practice_lastrun.py', savePickle=True, saveWideText=True, dataFileName=filename) # save a log file for detail verbose info logFile = logging.LogFile(filename+'.log', level=logging.EXP) logging.console.setLevel(logging.WARNING) # this outputs to the screen, not a file endExpNow = False # flag for 'escape' or other condition => quit the exp frameTolerance = 0.001 # how close to onset before 'same' frame # Start Code - component code to be run before the window creation # Setup the Window win = visual.Window( size=[1024, 768], fullscr=False, screen=0, winType='pyglet', allowGUI=True, allowStencil=False, monitor='testMonitor', color=[0,0,0], colorSpace='rgb', blendMode='avg', useFBO=True, units='height') # store frame rate of monitor if we can measure it expInfo['frameRate'] = win.getActualFrameRate() if expInfo['frameRate'] != None: frameDur = 1.0 / round(expInfo['frameRate']) else: frameDur = 1.0 / 60.0 # could not measure, so guess # create a default keyboard (e.g. to check for escape) defaultKeyboard = keyboard.Keyboard() # Initialize components for Routine "introduction1" introduction1Clock = core.Clock() introduction_1 = visual.TextStim(win=win, name='introduction_1', text='欢迎参加测试\n\n本测试分三种类型\n现在是练习部分\n\n(继续,请按空格键)', font='Arial', pos=(0, 0), height=0.05, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); introduction1_2 = keyboard.Keyboard() # Initialize components for Routine "introduction5" introduction5Clock = core.Clock() introduction_5 = visual.TextStim(win=win, name='introduction_5', text='如果准备好了,请开始练习\n\n(继续,请按空格键)', font='Arial', pos=(0, 0), height=0.05, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); key_resp_7 = keyboard.Keyboard() # Initialize components for Routine "tip1" tip1Clock = core.Clock() text_2 = visual.TextStim(win=win, name='text_2', text='现在,练习第一种类型\n\n \n(继续,请按空格键)', font='Arial', pos=(0, 0), height=0.05, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); key_resp_4 = keyboard.Keyboard() # Initialize components for Routine "introduction2" introduction2Clock = core.Clock() introduction2_1 = visual.TextStim(win=win, name='introduction2_1', text='第一种类型\n\n开始时,屏幕中间会出现注视点“+”\n之后会连续出现一系列的数字\n\n在每个数字出现时\n您只需要按下空格键即可\n\n(继续,请按空格键)', font='Arial', pos=(0, 0), height=0.05, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); introduction2_2 = keyboard.Keyboard() # Initialize components for Routine "_0back_pre" _0back_preClock = core.Clock() concentration_pre1 = visual.TextStim(win=win, name='concentration_pre1', text='+', font='Arial', pos=(0, 0), height=0.1, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); # Initialize components for Routine "_0back" _0backClock = core.Clock() back0_1 = visual.TextStim(win=win, name='back0_1', text='default text', font='Arial', pos=(0, 0), height=0.1, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); key_resp0 = keyboard.Keyboard() message0=" " # Initialize components for Routine "feedback_0" feedback_0Clock = core.Clock() text_3 = visual.TextStim(win=win, name='text_3', text='default text', font='Arial', pos=(0, 0), height=0.05, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); # Initialize components for Routine "tip2" tip2Clock = core.Clock() text = visual.TextStim(win=win, name='text', text='现在,练习第二种类型\n\n(继续请按空格键)', font='Arial', pos=(0, 0), height=0.05, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); key_resp_5 = keyboard.Keyboard() # Initialize components for Routine "introduction3" introduction3Clock = core.Clock() introduction3_1 = visual.TextStim(win=win, name='introduction3_1', text='第二种类型\n\n开始时,屏幕中间会出现注视点“+”\n之后会连续出现一系列的数字\n\n从第二个数字出现时\n您需要判断该数字与上一个数字是否一致\n一致,请按左键; 不一致,请按右键\n\n(继续,请按空格键)', font='Arial', pos=(0, 0), height=0.05, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); introduction3_2 = keyboard.Keyboard() # Initialize components for Routine "_1back_pre" _1back_preClock = core.Clock() concentration1_pre = visual.TextStim(win=win, name='concentration1_pre', text='+', font='Arial', pos=(0, 0), height=0.1, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); back1_pre = visual.TextStim(win=win, name='back1_pre', text='2\n(无需作答)', font='Arial', pos=(0, 0), height=0.1, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=-1.0); # Initialize components for Routine "_1back" _1backClock = core.Clock() back1_1 = visual.TextStim(win=win, name='back1_1', text='default text', font='Arial', pos=(0, 0), height=0.1, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); key_resp_2 = keyboard.Keyboard() message1=0 # Initialize components for Routine "feedback_1" feedback_1Clock = core.Clock() feedback1 = visual.TextStim(win=win, name='feedback1', text='default text', font='Arial', pos=(0, 0), height=0.05, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); # Initialize components for Routine "tip3" tip3Clock = core.Clock() tip_3 = visual.TextStim(win=win, name='tip_3', text='现在,练习第三种类型\n\n(继续,请按空格键)', font='Arial', pos=(0, 0), height=0.05, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); key_resp_6 = keyboard.Keyboard() # Initialize components for Routine "introduction4" introduction4Clock = core.Clock() introduction4_1 = visual.TextStim(win=win, name='introduction4_1', text='第三种类型\n\n开始时,屏幕中间会出现注视点“+”\n之后会连续出现一系列的数字\n\n从第三个数字出现时\n您需要判断该数字与倒数二个数字是否一致\n一致,请按左键; 不一致,请按右键\n\n(继续,请按空格键)', font='Arial', pos=(0, 0), height=0.05, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); key_resp = keyboard.Keyboard() # Initialize components for Routine "_2back_pre" _2back_preClock = core.Clock() concentration_pre = visual.TextStim(win=win, name='concentration_pre', text='+', font='Arial', pos=(0, 0), height=0.1, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); text_4 = visual.TextStim(win=win, name='text_4', text='1\n(无需作答)', font='Arial', pos=(0, 0), height=0.1, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=-1.0); text_5 = visual.TextStim(win=win, name='text_5', text='4\n(无需作答)', font='Arial', pos=(0, 0), height=0.1, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=-2.0); # Initialize components for Routine "_2back" _2backClock = core.Clock() back2_1 = visual.TextStim(win=win, name='back2_1', text='default text', font='Arial', pos=(0, 0), height=0.1, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); key_resp_3 = keyboard.Keyboard() message2=" " # Initialize components for Routine "feedback_2" feedback_2Clock = core.Clock() feedback2 = visual.TextStim(win=win, name='feedback2', text='default text', font='Arial', pos=(0, 0), height=0.05, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); # Initialize components for Routine "thanks" thanksClock = core.Clock() text_6 = visual.TextStim(win=win, name='text_6', text='练习结束,请开始正式测试', font='Arial', pos=(0, 0), height=0.05, wrapWidth=None, ori=0, color='white', colorSpace='rgb', opacity=1, languageStyle='LTR', depth=0.0); # Create some handy timers globalClock = core.Clock() # to track the time since experiment started routineTimer = core.CountdownTimer() # to track time remaining of each (non-slip) routine # ------Prepare to start Routine "introduction1"------- continueRoutine = True # update component parameters for each repeat introduction1_2.keys = [] introduction1_2.rt = [] _introduction1_2_allKeys = [] # keep track of which components have finished introduction1Components = [introduction_1, introduction1_2] for thisComponent in introduction1Components: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") introduction1Clock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "introduction1"------- while continueRoutine: # get current time t = introduction1Clock.getTime() tThisFlip = win.getFutureFlipTime(clock=introduction1Clock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *introduction_1* updates if introduction_1.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later introduction_1.frameNStart = frameN # exact frame index introduction_1.tStart = t # local t and not account for scr refresh introduction_1.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(introduction_1, 'tStartRefresh') # time at next scr refresh introduction_1.setAutoDraw(True) # *introduction1_2* updates waitOnFlip = False if introduction1_2.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later introduction1_2.frameNStart = frameN # exact frame index introduction1_2.tStart = t # local t and not account for scr refresh introduction1_2.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(introduction1_2, 'tStartRefresh') # time at next scr refresh introduction1_2.status = STARTED # keyboard checking is just starting waitOnFlip = True win.callOnFlip(introduction1_2.clock.reset) # t=0 on next screen flip win.callOnFlip(introduction1_2.clearEvents, eventType='keyboard') # clear events on next screen flip if introduction1_2.status == STARTED and not waitOnFlip: theseKeys = introduction1_2.getKeys(keyList=['space'], waitRelease=False) _introduction1_2_allKeys.extend(theseKeys) if len(_introduction1_2_allKeys): introduction1_2.keys = _introduction1_2_allKeys[-1].name # just the last key pressed introduction1_2.rt = _introduction1_2_allKeys[-1].rt # a response ends the routine continueRoutine = False # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in introduction1Components: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "introduction1"------- for thisComponent in introduction1Components: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) # the Routine "introduction1" was not non-slip safe, so reset the non-slip timer routineTimer.reset() # ------Prepare to start Routine "introduction5"------- continueRoutine = True # update component parameters for each repeat key_resp_7.keys = [] key_resp_7.rt = [] _key_resp_7_allKeys = [] # keep track of which components have finished introduction5Components = [introduction_5, key_resp_7] for thisComponent in introduction5Components: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") introduction5Clock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "introduction5"------- while continueRoutine: # get current time t = introduction5Clock.getTime() tThisFlip = win.getFutureFlipTime(clock=introduction5Clock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *introduction_5* updates if introduction_5.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later introduction_5.frameNStart = frameN # exact frame index introduction_5.tStart = t # local t and not account for scr refresh introduction_5.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(introduction_5, 'tStartRefresh') # time at next scr refresh introduction_5.setAutoDraw(True) # *key_resp_7* updates waitOnFlip = False if key_resp_7.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later key_resp_7.frameNStart = frameN # exact frame index key_resp_7.tStart = t # local t and not account for scr refresh key_resp_7.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(key_resp_7, 'tStartRefresh') # time at next scr refresh key_resp_7.status = STARTED # keyboard checking is just starting waitOnFlip = True win.callOnFlip(key_resp_7.clock.reset) # t=0 on next screen flip win.callOnFlip(key_resp_7.clearEvents, eventType='keyboard') # clear events on next screen flip if key_resp_7.status == STARTED and not waitOnFlip: theseKeys = key_resp_7.getKeys(keyList=['space'], waitRelease=False) _key_resp_7_allKeys.extend(theseKeys) if len(_key_resp_7_allKeys): key_resp_7.keys = _key_resp_7_allKeys[-1].name # just the last key pressed key_resp_7.rt = _key_resp_7_allKeys[-1].rt # a response ends the routine continueRoutine = False # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in introduction5Components: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "introduction5"------- for thisComponent in introduction5Components: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) thisExp.addData('introduction_5.started', introduction_5.tStartRefresh) thisExp.addData('introduction_5.stopped', introduction_5.tStopRefresh) # the Routine "introduction5" was not non-slip safe, so reset the non-slip timer routineTimer.reset() # ------Prepare to start Routine "tip1"------- continueRoutine = True # update component parameters for each repeat key_resp_4.keys = [] key_resp_4.rt = [] _key_resp_4_allKeys = [] # keep track of which components have finished tip1Components = [text_2, key_resp_4] for thisComponent in tip1Components: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") tip1Clock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "tip1"------- while continueRoutine: # get current time t = tip1Clock.getTime() tThisFlip = win.getFutureFlipTime(clock=tip1Clock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *text_2* updates if text_2.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later text_2.frameNStart = frameN # exact frame index text_2.tStart = t # local t and not account for scr refresh text_2.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(text_2, 'tStartRefresh') # time at next scr refresh text_2.setAutoDraw(True) # *key_resp_4* updates waitOnFlip = False if key_resp_4.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later key_resp_4.frameNStart = frameN # exact frame index key_resp_4.tStart = t # local t and not account for scr refresh key_resp_4.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(key_resp_4, 'tStartRefresh') # time at next scr refresh key_resp_4.status = STARTED # keyboard checking is just starting waitOnFlip = True win.callOnFlip(key_resp_4.clock.reset) # t=0 on next screen flip win.callOnFlip(key_resp_4.clearEvents, eventType='keyboard') # clear events on next screen flip if key_resp_4.status == STARTED and not waitOnFlip: theseKeys = key_resp_4.getKeys(keyList=['space'], waitRelease=False) _key_resp_4_allKeys.extend(theseKeys) if len(_key_resp_4_allKeys): key_resp_4.keys = _key_resp_4_allKeys[-1].name # just the last key pressed key_resp_4.rt = _key_resp_4_allKeys[-1].rt # a response ends the routine continueRoutine = False # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in tip1Components: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "tip1"------- for thisComponent in tip1Components: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) thisExp.addData('text_2.started', text_2.tStartRefresh) thisExp.addData('text_2.stopped', text_2.tStopRefresh) # the Routine "tip1" was not non-slip safe, so reset the non-slip timer routineTimer.reset() # ------Prepare to start Routine "introduction2"------- continueRoutine = True # update component parameters for each repeat introduction2_2.keys = [] introduction2_2.rt = [] _introduction2_2_allKeys = [] # keep track of which components have finished introduction2Components = [introduction2_1, introduction2_2] for thisComponent in introduction2Components: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") introduction2Clock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "introduction2"------- while continueRoutine: # get current time t = introduction2Clock.getTime() tThisFlip = win.getFutureFlipTime(clock=introduction2Clock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *introduction2_1* updates if introduction2_1.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later introduction2_1.frameNStart = frameN # exact frame index introduction2_1.tStart = t # local t and not account for scr refresh introduction2_1.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(introduction2_1, 'tStartRefresh') # time at next scr refresh introduction2_1.setAutoDraw(True) # *introduction2_2* updates waitOnFlip = False if introduction2_2.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later introduction2_2.frameNStart = frameN # exact frame index introduction2_2.tStart = t # local t and not account for scr refresh introduction2_2.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(introduction2_2, 'tStartRefresh') # time at next scr refresh introduction2_2.status = STARTED # keyboard checking is just starting waitOnFlip = True win.callOnFlip(introduction2_2.clock.reset) # t=0 on next screen flip win.callOnFlip(introduction2_2.clearEvents, eventType='keyboard') # clear events on next screen flip if introduction2_2.status == STARTED and not waitOnFlip: theseKeys = introduction2_2.getKeys(keyList=['space'], waitRelease=False) _introduction2_2_allKeys.extend(theseKeys) if len(_introduction2_2_allKeys): introduction2_2.keys = _introduction2_2_allKeys[-1].name # just the last key pressed introduction2_2.rt = _introduction2_2_allKeys[-1].rt # a response ends the routine continueRoutine = False # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in introduction2Components: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "introduction2"------- for thisComponent in introduction2Components: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) # the Routine "introduction2" was not non-slip safe, so reset the non-slip timer routineTimer.reset() # ------Prepare to start Routine "_0back_pre"------- continueRoutine = True routineTimer.add(1.000000) # update component parameters for each repeat # keep track of which components have finished _0back_preComponents = [concentration_pre1] for thisComponent in _0back_preComponents: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") _0back_preClock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "_0back_pre"------- while continueRoutine and routineTimer.getTime() > 0: # get current time t = _0back_preClock.getTime() tThisFlip = win.getFutureFlipTime(clock=_0back_preClock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *concentration_pre1* updates if concentration_pre1.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later concentration_pre1.frameNStart = frameN # exact frame index concentration_pre1.tStart = t # local t and not account for scr refresh concentration_pre1.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(concentration_pre1, 'tStartRefresh') # time at next scr refresh concentration_pre1.setAutoDraw(True) if concentration_pre1.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > concentration_pre1.tStartRefresh + 1.0-frameTolerance: # keep track of stop time/frame for later concentration_pre1.tStop = t # not accounting for scr refresh concentration_pre1.frameNStop = frameN # exact frame index win.timeOnFlip(concentration_pre1, 'tStopRefresh') # time at next scr refresh concentration_pre1.setAutoDraw(False) # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in _0back_preComponents: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "_0back_pre"------- for thisComponent in _0back_preComponents: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) thisExp.addData('concentration_pre1.started', concentration_pre1.tStartRefresh) thisExp.addData('concentration_pre1.stopped', concentration_pre1.tStopRefresh) # set up handler to look after randomisation of conditions etc loop_0back = data.TrialHandler(nReps=2, method='random', extraInfo=expInfo, originPath=-1, trialList=data.importConditions('documents\\document_0back_pre.xlsx'), seed=None, name='loop_0back') thisExp.addLoop(loop_0back) # add the loop to the experiment thisLoop_0back = loop_0back.trialList[0] # so we can initialise stimuli with some values # abbreviate parameter names if possible (e.g. rgb = thisLoop_0back.rgb) if thisLoop_0back != None: for paramName in thisLoop_0back: exec('{} = thisLoop_0back[paramName]'.format(paramName)) for thisLoop_0back in loop_0back: currentLoop = loop_0back # abbreviate parameter names if possible (e.g. rgb = thisLoop_0back.rgb) if thisLoop_0back != None: for paramName in thisLoop_0back: exec('{} = thisLoop_0back[paramName]'.format(paramName)) # ------Prepare to start Routine "_0back"------- continueRoutine = True routineTimer.add(4.000000) # update component parameters for each repeat back0_1.setText(num1) key_resp0.keys = [] key_resp0.rt = [] _key_resp0_allKeys = [] # keep track of which components have finished _0backComponents = [back0_1, key_resp0] for thisComponent in _0backComponents: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") _0backClock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "_0back"------- while continueRoutine and routineTimer.getTime() > 0: # get current time t = _0backClock.getTime() tThisFlip = win.getFutureFlipTime(clock=_0backClock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *back0_1* updates if back0_1.status == NOT_STARTED and tThisFlip >= 1-frameTolerance: # keep track of start time/frame for later back0_1.frameNStart = frameN # exact frame index back0_1.tStart = t # local t and not account for scr refresh back0_1.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(back0_1, 'tStartRefresh') # time at next scr refresh back0_1.setAutoDraw(True) if back0_1.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > back0_1.tStartRefresh + 1.0-frameTolerance: # keep track of stop time/frame for later back0_1.tStop = t # not accounting for scr refresh back0_1.frameNStop = frameN # exact frame index win.timeOnFlip(back0_1, 'tStopRefresh') # time at next scr refresh back0_1.setAutoDraw(False) # *key_resp0* updates waitOnFlip = False if key_resp0.status == NOT_STARTED and tThisFlip >= 1-frameTolerance: # keep track of start time/frame for later key_resp0.frameNStart = frameN # exact frame index key_resp0.tStart = t # local t and not account for scr refresh key_resp0.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(key_resp0, 'tStartRefresh') # time at next scr refresh key_resp0.status = STARTED # keyboard checking is just starting waitOnFlip = True win.callOnFlip(key_resp0.clock.reset) # t=0 on next screen flip win.callOnFlip(key_resp0.clearEvents, eventType='keyboard') # clear events on next screen flip if key_resp0.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > key_resp0.tStartRefresh + 3-frameTolerance: # keep track of stop time/frame for later key_resp0.tStop = t # not accounting for scr refresh key_resp0.frameNStop = frameN # exact frame index win.timeOnFlip(key_resp0, 'tStopRefresh') # time at next scr refresh key_resp0.status = FINISHED if key_resp0.status == STARTED and not waitOnFlip: theseKeys = key_resp0.getKeys(keyList=['space'], waitRelease=False) _key_resp0_allKeys.extend(theseKeys) if len(_key_resp0_allKeys): key_resp0.keys = _key_resp0_allKeys[-1].name # just the last key pressed key_resp0.rt = _key_resp0_allKeys[-1].rt # a response ends the routine continueRoutine = False # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in _0backComponents: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "_0back"------- for thisComponent in _0backComponents: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) loop_0back.addData('back0_1.started', back0_1.tStartRefresh) loop_0back.addData('back0_1.stopped', back0_1.tStopRefresh) # check responses if key_resp0.keys in ['', [], None]: # No response was made key_resp0.keys = None loop_0back.addData('key_resp0.keys',key_resp0.keys) if key_resp0.keys != None: # we had a response loop_0back.addData('key_resp0.rt', key_resp0.rt) loop_0back.addData('key_resp0.started', key_resp0.tStartRefresh) loop_0back.addData('key_resp0.stopped', key_resp0.tStopRefresh) if not key_resp0.keys: message0="请在三秒内按键" # ------Prepare to start Routine "feedback_0"------- continueRoutine = True routineTimer.add(1.000000) # update component parameters for each repeat text_3.setText(message0) # keep track of which components have finished feedback_0Components = [text_3] for thisComponent in feedback_0Components: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") feedback_0Clock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "feedback_0"------- while continueRoutine and routineTimer.getTime() > 0: # get current time t = feedback_0Clock.getTime() tThisFlip = win.getFutureFlipTime(clock=feedback_0Clock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *text_3* updates if text_3.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later text_3.frameNStart = frameN # exact frame index text_3.tStart = t # local t and not account for scr refresh text_3.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(text_3, 'tStartRefresh') # time at next scr refresh text_3.setAutoDraw(True) if text_3.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > text_3.tStartRefresh + 1.0-frameTolerance: # keep track of stop time/frame for later text_3.tStop = t # not accounting for scr refresh text_3.frameNStop = frameN # exact frame index win.timeOnFlip(text_3, 'tStopRefresh') # time at next scr refresh text_3.setAutoDraw(False) # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in feedback_0Components: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "feedback_0"------- for thisComponent in feedback_0Components: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) loop_0back.addData('text_3.started', text_3.tStartRefresh) loop_0back.addData('text_3.stopped', text_3.tStopRefresh) thisExp.nextEntry() # completed 2 repeats of 'loop_0back' # ------Prepare to start Routine "tip2"------- continueRoutine = True # update component parameters for each repeat key_resp_5.keys = [] key_resp_5.rt = [] _key_resp_5_allKeys = [] # keep track of which components have finished tip2Components = [text, key_resp_5] for thisComponent in tip2Components: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") tip2Clock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "tip2"------- while continueRoutine: # get current time t = tip2Clock.getTime() tThisFlip = win.getFutureFlipTime(clock=tip2Clock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *text* updates if text.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later text.frameNStart = frameN # exact frame index text.tStart = t # local t and not account for scr refresh text.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(text, 'tStartRefresh') # time at next scr refresh text.setAutoDraw(True) # *key_resp_5* updates waitOnFlip = False if key_resp_5.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later key_resp_5.frameNStart = frameN # exact frame index key_resp_5.tStart = t # local t and not account for scr refresh key_resp_5.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(key_resp_5, 'tStartRefresh') # time at next scr refresh key_resp_5.status = STARTED # keyboard checking is just starting waitOnFlip = True win.callOnFlip(key_resp_5.clock.reset) # t=0 on next screen flip win.callOnFlip(key_resp_5.clearEvents, eventType='keyboard') # clear events on next screen flip if key_resp_5.status == STARTED and not waitOnFlip: theseKeys = key_resp_5.getKeys(keyList=['space'], waitRelease=False) _key_resp_5_allKeys.extend(theseKeys) if len(_key_resp_5_allKeys): key_resp_5.keys = _key_resp_5_allKeys[-1].name # just the last key pressed key_resp_5.rt = _key_resp_5_allKeys[-1].rt # a response ends the routine continueRoutine = False # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in tip2Components: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "tip2"------- for thisComponent in tip2Components: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) thisExp.addData('text.started', text.tStartRefresh) thisExp.addData('text.stopped', text.tStopRefresh) # the Routine "tip2" was not non-slip safe, so reset the non-slip timer routineTimer.reset() # ------Prepare to start Routine "introduction3"------- continueRoutine = True # update component parameters for each repeat introduction3_2.keys = [] introduction3_2.rt = [] _introduction3_2_allKeys = [] # keep track of which components have finished introduction3Components = [introduction3_1, introduction3_2] for thisComponent in introduction3Components: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") introduction3Clock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "introduction3"------- while continueRoutine: # get current time t = introduction3Clock.getTime() tThisFlip = win.getFutureFlipTime(clock=introduction3Clock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *introduction3_1* updates if introduction3_1.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later introduction3_1.frameNStart = frameN # exact frame index introduction3_1.tStart = t # local t and not account for scr refresh introduction3_1.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(introduction3_1, 'tStartRefresh') # time at next scr refresh introduction3_1.setAutoDraw(True) # *introduction3_2* updates waitOnFlip = False if introduction3_2.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later introduction3_2.frameNStart = frameN # exact frame index introduction3_2.tStart = t # local t and not account for scr refresh introduction3_2.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(introduction3_2, 'tStartRefresh') # time at next scr refresh introduction3_2.status = STARTED # keyboard checking is just starting waitOnFlip = True win.callOnFlip(introduction3_2.clock.reset) # t=0 on next screen flip win.callOnFlip(introduction3_2.clearEvents, eventType='keyboard') # clear events on next screen flip if introduction3_2.status == STARTED and not waitOnFlip: theseKeys = introduction3_2.getKeys(keyList=['space'], waitRelease=False) _introduction3_2_allKeys.extend(theseKeys) if len(_introduction3_2_allKeys): introduction3_2.keys = _introduction3_2_allKeys[-1].name # just the last key pressed introduction3_2.rt = _introduction3_2_allKeys[-1].rt # a response ends the routine continueRoutine = False # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in introduction3Components: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "introduction3"------- for thisComponent in introduction3Components: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) # the Routine "introduction3" was not non-slip safe, so reset the non-slip timer routineTimer.reset() # ------Prepare to start Routine "_1back_pre"------- continueRoutine = True routineTimer.add(2.000000) # update component parameters for each repeat # keep track of which components have finished _1back_preComponents = [concentration1_pre, back1_pre] for thisComponent in _1back_preComponents: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") _1back_preClock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "_1back_pre"------- while continueRoutine and routineTimer.getTime() > 0: # get current time t = _1back_preClock.getTime() tThisFlip = win.getFutureFlipTime(clock=_1back_preClock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *concentration1_pre* updates if concentration1_pre.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later concentration1_pre.frameNStart = frameN # exact frame index concentration1_pre.tStart = t # local t and not account for scr refresh concentration1_pre.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(concentration1_pre, 'tStartRefresh') # time at next scr refresh concentration1_pre.setAutoDraw(True) if concentration1_pre.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > concentration1_pre.tStartRefresh + 1.0-frameTolerance: # keep track of stop time/frame for later concentration1_pre.tStop = t # not accounting for scr refresh concentration1_pre.frameNStop = frameN # exact frame index win.timeOnFlip(concentration1_pre, 'tStopRefresh') # time at next scr refresh concentration1_pre.setAutoDraw(False) # *back1_pre* updates if back1_pre.status == NOT_STARTED and tThisFlip >= 1-frameTolerance: # keep track of start time/frame for later back1_pre.frameNStart = frameN # exact frame index back1_pre.tStart = t # local t and not account for scr refresh back1_pre.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(back1_pre, 'tStartRefresh') # time at next scr refresh back1_pre.setAutoDraw(True) if back1_pre.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > back1_pre.tStartRefresh + 1.0-frameTolerance: # keep track of stop time/frame for later back1_pre.tStop = t # not accounting for scr refresh back1_pre.frameNStop = frameN # exact frame index win.timeOnFlip(back1_pre, 'tStopRefresh') # time at next scr refresh back1_pre.setAutoDraw(False) # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in _1back_preComponents: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "_1back_pre"------- for thisComponent in _1back_preComponents: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) thisExp.addData('concentration1_pre.started', concentration1_pre.tStartRefresh) thisExp.addData('concentration1_pre.stopped', concentration1_pre.tStopRefresh) thisExp.addData('back1_pre.started', back1_pre.tStartRefresh) thisExp.addData('back1_pre.stopped', back1_pre.tStopRefresh) # set up handler to look after randomisation of conditions etc loop_1back = data.TrialHandler(nReps=1, method='sequential', extraInfo=expInfo, originPath=-1, trialList=data.importConditions('documents\\document_1back_pre.xlsx'), seed=None, name='loop_1back') thisExp.addLoop(loop_1back) # add the loop to the experiment thisLoop_1back = loop_1back.trialList[0] # so we can initialise stimuli with some values # abbreviate parameter names if possible (e.g. rgb = thisLoop_1back.rgb) if thisLoop_1back != None: for paramName in thisLoop_1back: exec('{} = thisLoop_1back[paramName]'.format(paramName)) for thisLoop_1back in loop_1back: currentLoop = loop_1back # abbreviate parameter names if possible (e.g. rgb = thisLoop_1back.rgb) if thisLoop_1back != None: for paramName in thisLoop_1back: exec('{} = thisLoop_1back[paramName]'.format(paramName)) # ------Prepare to start Routine "_1back"------- continueRoutine = True routineTimer.add(4.000000) # update component parameters for each repeat back1_1.setText(num2) key_resp_2.keys = [] key_resp_2.rt = [] _key_resp_2_allKeys = [] # keep track of which components have finished _1backComponents = [back1_1, key_resp_2] for thisComponent in _1backComponents: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") _1backClock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "_1back"------- while continueRoutine and routineTimer.getTime() > 0: # get current time t = _1backClock.getTime() tThisFlip = win.getFutureFlipTime(clock=_1backClock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *back1_1* updates if back1_1.status == NOT_STARTED and tThisFlip >= 1-frameTolerance: # keep track of start time/frame for later back1_1.frameNStart = frameN # exact frame index back1_1.tStart = t # local t and not account for scr refresh back1_1.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(back1_1, 'tStartRefresh') # time at next scr refresh back1_1.setAutoDraw(True) if back1_1.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > back1_1.tStartRefresh + 1-frameTolerance: # keep track of stop time/frame for later back1_1.tStop = t # not accounting for scr refresh back1_1.frameNStop = frameN # exact frame index win.timeOnFlip(back1_1, 'tStopRefresh') # time at next scr refresh back1_1.setAutoDraw(False) # *key_resp_2* updates waitOnFlip = False if key_resp_2.status == NOT_STARTED and tThisFlip >= 1-frameTolerance: # keep track of start time/frame for later key_resp_2.frameNStart = frameN # exact frame index key_resp_2.tStart = t # local t and not account for scr refresh key_resp_2.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(key_resp_2, 'tStartRefresh') # time at next scr refresh key_resp_2.status = STARTED # keyboard checking is just starting waitOnFlip = True win.callOnFlip(key_resp_2.clock.reset) # t=0 on next screen flip win.callOnFlip(key_resp_2.clearEvents, eventType='keyboard') # clear events on next screen flip if key_resp_2.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > key_resp_2.tStartRefresh + 3-frameTolerance: # keep track of stop time/frame for later key_resp_2.tStop = t # not accounting for scr refresh key_resp_2.frameNStop = frameN # exact frame index win.timeOnFlip(key_resp_2, 'tStopRefresh') # time at next scr refresh key_resp_2.status = FINISHED if key_resp_2.status == STARTED and not waitOnFlip: theseKeys = key_resp_2.getKeys(keyList=['left', 'right'], waitRelease=False) _key_resp_2_allKeys.extend(theseKeys) if len(_key_resp_2_allKeys): key_resp_2.keys = _key_resp_2_allKeys[-1].name # just the last key pressed key_resp_2.rt = _key_resp_2_allKeys[-1].rt # was this correct? if (key_resp_2.keys == str(num2_corr)) or (key_resp_2.keys == num2_corr): key_resp_2.corr = 1 else: key_resp_2.corr = 0 # a response ends the routine continueRoutine = False # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in _1backComponents: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "_1back"------- for thisComponent in _1backComponents: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) loop_1back.addData('back1_1.started', back1_1.tStartRefresh) loop_1back.addData('back1_1.stopped', back1_1.tStopRefresh) # check responses if key_resp_2.keys in ['', [], None]: # No response was made key_resp_2.keys = None # was no response the correct answer?! if str(num2_corr).lower() == 'none': key_resp_2.corr = 1; # correct non-response else: key_resp_2.corr = 0; # failed to respond (incorrectly) # store data for loop_1back (TrialHandler) loop_1back.addData('key_resp_2.keys',key_resp_2.keys) loop_1back.addData('key_resp_2.corr', key_resp_2.corr) if key_resp_2.keys != None: # we had a response loop_1back.addData('key_resp_2.rt', key_resp_2.rt) loop_1back.addData('key_resp_2.started', key_resp_2.tStartRefresh) loop_1back.addData('key_resp_2.stopped', key_resp_2.tStopRefresh) if not key_resp_2.keys: message1="请在三秒内按键" else: if key_resp_2.corr: message1="回答正确" else: message1="回答错误" # ------Prepare to start Routine "feedback_1"------- continueRoutine = True routineTimer.add(1.000000) # update component parameters for each repeat feedback1.setText(message1) # keep track of which components have finished feedback_1Components = [feedback1] for thisComponent in feedback_1Components: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") feedback_1Clock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "feedback_1"------- while continueRoutine and routineTimer.getTime() > 0: # get current time t = feedback_1Clock.getTime() tThisFlip = win.getFutureFlipTime(clock=feedback_1Clock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *feedback1* updates if feedback1.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later feedback1.frameNStart = frameN # exact frame index feedback1.tStart = t # local t and not account for scr refresh feedback1.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(feedback1, 'tStartRefresh') # time at next scr refresh feedback1.setAutoDraw(True) if feedback1.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > feedback1.tStartRefresh + 1.0-frameTolerance: # keep track of stop time/frame for later feedback1.tStop = t # not accounting for scr refresh feedback1.frameNStop = frameN # exact frame index win.timeOnFlip(feedback1, 'tStopRefresh') # time at next scr refresh feedback1.setAutoDraw(False) # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in feedback_1Components: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "feedback_1"------- for thisComponent in feedback_1Components: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) loop_1back.addData('feedback1.started', feedback1.tStartRefresh) loop_1back.addData('feedback1.stopped', feedback1.tStopRefresh) thisExp.nextEntry() # completed 1 repeats of 'loop_1back' # ------Prepare to start Routine "tip3"------- continueRoutine = True # update component parameters for each repeat key_resp_6.keys = [] key_resp_6.rt = [] _key_resp_6_allKeys = [] # keep track of which components have finished tip3Components = [tip_3, key_resp_6] for thisComponent in tip3Components: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") tip3Clock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "tip3"------- while continueRoutine: # get current time t = tip3Clock.getTime() tThisFlip = win.getFutureFlipTime(clock=tip3Clock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *tip_3* updates if tip_3.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later tip_3.frameNStart = frameN # exact frame index tip_3.tStart = t # local t and not account for scr refresh tip_3.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(tip_3, 'tStartRefresh') # time at next scr refresh tip_3.setAutoDraw(True) # *key_resp_6* updates waitOnFlip = False if key_resp_6.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later key_resp_6.frameNStart = frameN # exact frame index key_resp_6.tStart = t # local t and not account for scr refresh key_resp_6.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(key_resp_6, 'tStartRefresh') # time at next scr refresh key_resp_6.status = STARTED # keyboard checking is just starting waitOnFlip = True win.callOnFlip(key_resp_6.clock.reset) # t=0 on next screen flip win.callOnFlip(key_resp_6.clearEvents, eventType='keyboard') # clear events on next screen flip if key_resp_6.status == STARTED and not waitOnFlip: theseKeys = key_resp_6.getKeys(keyList=['space'], waitRelease=False) _key_resp_6_allKeys.extend(theseKeys) if len(_key_resp_6_allKeys): key_resp_6.keys = _key_resp_6_allKeys[-1].name # just the last key pressed key_resp_6.rt = _key_resp_6_allKeys[-1].rt # a response ends the routine continueRoutine = False # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in tip3Components: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "tip3"------- for thisComponent in tip3Components: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) thisExp.addData('tip_3.started', tip_3.tStartRefresh) thisExp.addData('tip_3.stopped', tip_3.tStopRefresh) # the Routine "tip3" was not non-slip safe, so reset the non-slip timer routineTimer.reset() # ------Prepare to start Routine "introduction4"------- continueRoutine = True # update component parameters for each repeat key_resp.keys = [] key_resp.rt = [] _key_resp_allKeys = [] # keep track of which components have finished introduction4Components = [introduction4_1, key_resp] for thisComponent in introduction4Components: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") introduction4Clock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "introduction4"------- while continueRoutine: # get current time t = introduction4Clock.getTime() tThisFlip = win.getFutureFlipTime(clock=introduction4Clock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *introduction4_1* updates if introduction4_1.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later introduction4_1.frameNStart = frameN # exact frame index introduction4_1.tStart = t # local t and not account for scr refresh introduction4_1.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(introduction4_1, 'tStartRefresh') # time at next scr refresh introduction4_1.setAutoDraw(True) # *key_resp* updates waitOnFlip = False if key_resp.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later key_resp.frameNStart = frameN # exact frame index key_resp.tStart = t # local t and not account for scr refresh key_resp.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(key_resp, 'tStartRefresh') # time at next scr refresh key_resp.status = STARTED # keyboard checking is just starting waitOnFlip = True win.callOnFlip(key_resp.clock.reset) # t=0 on next screen flip win.callOnFlip(key_resp.clearEvents, eventType='keyboard') # clear events on next screen flip if key_resp.status == STARTED and not waitOnFlip: theseKeys = key_resp.getKeys(keyList=['space'], waitRelease=False) _key_resp_allKeys.extend(theseKeys) if len(_key_resp_allKeys): key_resp.keys = _key_resp_allKeys[-1].name # just the last key pressed key_resp.rt = _key_resp_allKeys[-1].rt # a response ends the routine continueRoutine = False # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in introduction4Components: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "introduction4"------- for thisComponent in introduction4Components: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) thisExp.addData('introduction4_1.started', introduction4_1.tStartRefresh) thisExp.addData('introduction4_1.stopped', introduction4_1.tStopRefresh) # the Routine "introduction4" was not non-slip safe, so reset the non-slip timer routineTimer.reset() # ------Prepare to start Routine "_2back_pre"------- continueRoutine = True routineTimer.add(4.000000) # update component parameters for each repeat # keep track of which components have finished _2back_preComponents = [concentration_pre, text_4, text_5] for thisComponent in _2back_preComponents: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") _2back_preClock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "_2back_pre"------- while continueRoutine and routineTimer.getTime() > 0: # get current time t = _2back_preClock.getTime() tThisFlip = win.getFutureFlipTime(clock=_2back_preClock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *concentration_pre* updates if concentration_pre.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later concentration_pre.frameNStart = frameN # exact frame index concentration_pre.tStart = t # local t and not account for scr refresh concentration_pre.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(concentration_pre, 'tStartRefresh') # time at next scr refresh concentration_pre.setAutoDraw(True) if concentration_pre.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > concentration_pre.tStartRefresh + 1.0-frameTolerance: # keep track of stop time/frame for later concentration_pre.tStop = t # not accounting for scr refresh concentration_pre.frameNStop = frameN # exact frame index win.timeOnFlip(concentration_pre, 'tStopRefresh') # time at next scr refresh concentration_pre.setAutoDraw(False) # *text_4* updates if text_4.status == NOT_STARTED and tThisFlip >= 1-frameTolerance: # keep track of start time/frame for later text_4.frameNStart = frameN # exact frame index text_4.tStart = t # local t and not account for scr refresh text_4.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(text_4, 'tStartRefresh') # time at next scr refresh text_4.setAutoDraw(True) if text_4.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > text_4.tStartRefresh + 1.0-frameTolerance: # keep track of stop time/frame for later text_4.tStop = t # not accounting for scr refresh text_4.frameNStop = frameN # exact frame index win.timeOnFlip(text_4, 'tStopRefresh') # time at next scr refresh text_4.setAutoDraw(False) # *text_5* updates if text_5.status == NOT_STARTED and tThisFlip >= 3-frameTolerance: # keep track of start time/frame for later text_5.frameNStart = frameN # exact frame index text_5.tStart = t # local t and not account for scr refresh text_5.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(text_5, 'tStartRefresh') # time at next scr refresh text_5.setAutoDraw(True) if text_5.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > text_5.tStartRefresh + 1.0-frameTolerance: # keep track of stop time/frame for later text_5.tStop = t # not accounting for scr refresh text_5.frameNStop = frameN # exact frame index win.timeOnFlip(text_5, 'tStopRefresh') # time at next scr refresh text_5.setAutoDraw(False) # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in _2back_preComponents: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "_2back_pre"------- for thisComponent in _2back_preComponents: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) thisExp.addData('concentration_pre.started', concentration_pre.tStartRefresh) thisExp.addData('concentration_pre.stopped', concentration_pre.tStopRefresh) thisExp.addData('text_4.started', text_4.tStartRefresh) thisExp.addData('text_4.stopped', text_4.tStopRefresh) thisExp.addData('text_5.started', text_5.tStartRefresh) thisExp.addData('text_5.stopped', text_5.tStopRefresh) # set up handler to look after randomisation of conditions etc loop2back = data.TrialHandler(nReps=1, method='sequential', extraInfo=expInfo, originPath=-1, trialList=data.importConditions('documents\\document_2back_pre.xlsx'), seed=None, name='loop2back') thisExp.addLoop(loop2back) # add the loop to the experiment thisLoop2back = loop2back.trialList[0] # so we can initialise stimuli with some values # abbreviate parameter names if possible (e.g. rgb = thisLoop2back.rgb) if thisLoop2back != None: for paramName in thisLoop2back: exec('{} = thisLoop2back[paramName]'.format(paramName)) for thisLoop2back in loop2back: currentLoop = loop2back # abbreviate parameter names if possible (e.g. rgb = thisLoop2back.rgb) if thisLoop2back != None: for paramName in thisLoop2back: exec('{} = thisLoop2back[paramName]'.format(paramName)) # ------Prepare to start Routine "_2back"------- continueRoutine = True routineTimer.add(4.000000) # update component parameters for each repeat back2_1.setText(num3) key_resp_3.keys = [] key_resp_3.rt = [] _key_resp_3_allKeys = [] # keep track of which components have finished _2backComponents = [back2_1, key_resp_3] for thisComponent in _2backComponents: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") _2backClock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "_2back"------- while continueRoutine and routineTimer.getTime() > 0: # get current time t = _2backClock.getTime() tThisFlip = win.getFutureFlipTime(clock=_2backClock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *back2_1* updates if back2_1.status == NOT_STARTED and tThisFlip >= 1-frameTolerance: # keep track of start time/frame for later back2_1.frameNStart = frameN # exact frame index back2_1.tStart = t # local t and not account for scr refresh back2_1.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(back2_1, 'tStartRefresh') # time at next scr refresh back2_1.setAutoDraw(True) if back2_1.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > back2_1.tStartRefresh + 1.0-frameTolerance: # keep track of stop time/frame for later back2_1.tStop = t # not accounting for scr refresh back2_1.frameNStop = frameN # exact frame index win.timeOnFlip(back2_1, 'tStopRefresh') # time at next scr refresh back2_1.setAutoDraw(False) # *key_resp_3* updates waitOnFlip = False if key_resp_3.status == NOT_STARTED and tThisFlip >= 1-frameTolerance: # keep track of start time/frame for later key_resp_3.frameNStart = frameN # exact frame index key_resp_3.tStart = t # local t and not account for scr refresh key_resp_3.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(key_resp_3, 'tStartRefresh') # time at next scr refresh key_resp_3.status = STARTED # keyboard checking is just starting waitOnFlip = True win.callOnFlip(key_resp_3.clock.reset) # t=0 on next screen flip win.callOnFlip(key_resp_3.clearEvents, eventType='keyboard') # clear events on next screen flip if key_resp_3.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > key_resp_3.tStartRefresh + 3-frameTolerance: # keep track of stop time/frame for later key_resp_3.tStop = t # not accounting for scr refresh key_resp_3.frameNStop = frameN # exact frame index win.timeOnFlip(key_resp_3, 'tStopRefresh') # time at next scr refresh key_resp_3.status = FINISHED if key_resp_3.status == STARTED and not waitOnFlip: theseKeys = key_resp_3.getKeys(keyList=['left', 'right'], waitRelease=False) _key_resp_3_allKeys.extend(theseKeys) if len(_key_resp_3_allKeys): key_resp_3.keys = _key_resp_3_allKeys[-1].name # just the last key pressed key_resp_3.rt = _key_resp_3_allKeys[-1].rt # was this correct? if (key_resp_3.keys == str(num3_corr)) or (key_resp_3.keys == num3_corr): key_resp_3.corr = 1 else: key_resp_3.corr = 0 # a response ends the routine continueRoutine = False # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in _2backComponents: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "_2back"------- for thisComponent in _2backComponents: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) loop2back.addData('back2_1.started', back2_1.tStartRefresh) loop2back.addData('back2_1.stopped', back2_1.tStopRefresh) # check responses if key_resp_3.keys in ['', [], None]: # No response was made key_resp_3.keys = None # was no response the correct answer?! if str(num3_corr).lower() == 'none': key_resp_3.corr = 1; # correct non-response else: key_resp_3.corr = 0; # failed to respond (incorrectly) # store data for loop2back (TrialHandler) loop2back.addData('key_resp_3.keys',key_resp_3.keys) loop2back.addData('key_resp_3.corr', key_resp_3.corr) if key_resp_3.keys != None: # we had a response loop2back.addData('key_resp_3.rt', key_resp_3.rt) loop2back.addData('key_resp_3.started', key_resp_3.tStartRefresh) loop2back.addData('key_resp_3.stopped', key_resp_3.tStopRefresh) if not key_resp_3.keys: message2="请在三秒内按键" else: if key_resp_3.corr: message2="回答正确" else: message2="回答错误" # ------Prepare to start Routine "feedback_2"------- continueRoutine = True routineTimer.add(1.000000) # update component parameters for each repeat feedback2.setText(message2) # keep track of which components have finished feedback_2Components = [feedback2] for thisComponent in feedback_2Components: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") feedback_2Clock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "feedback_2"------- while continueRoutine and routineTimer.getTime() > 0: # get current time t = feedback_2Clock.getTime() tThisFlip = win.getFutureFlipTime(clock=feedback_2Clock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *feedback2* updates if feedback2.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later feedback2.frameNStart = frameN # exact frame index feedback2.tStart = t # local t and not account for scr refresh feedback2.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(feedback2, 'tStartRefresh') # time at next scr refresh feedback2.setAutoDraw(True) if feedback2.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > feedback2.tStartRefresh + 1.0-frameTolerance: # keep track of stop time/frame for later feedback2.tStop = t # not accounting for scr refresh feedback2.frameNStop = frameN # exact frame index win.timeOnFlip(feedback2, 'tStopRefresh') # time at next scr refresh feedback2.setAutoDraw(False) # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in feedback_2Components: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "feedback_2"------- for thisComponent in feedback_2Components: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) loop2back.addData('feedback2.started', feedback2.tStartRefresh) loop2back.addData('feedback2.stopped', feedback2.tStopRefresh) thisExp.nextEntry() # completed 1 repeats of 'loop2back' # ------Prepare to start Routine "thanks"------- continueRoutine = True routineTimer.add(2.000000) # update component parameters for each repeat # keep track of which components have finished thanksComponents = [text_6] for thisComponent in thanksComponents: thisComponent.tStart = None thisComponent.tStop = None thisComponent.tStartRefresh = None thisComponent.tStopRefresh = None if hasattr(thisComponent, 'status'): thisComponent.status = NOT_STARTED # reset timers t = 0 _timeToFirstFrame = win.getFutureFlipTime(clock="now") thanksClock.reset(-_timeToFirstFrame) # t0 is time of first possible flip frameN = -1 # -------Run Routine "thanks"------- while continueRoutine and routineTimer.getTime() > 0: # get current time t = thanksClock.getTime() tThisFlip = win.getFutureFlipTime(clock=thanksClock) tThisFlipGlobal = win.getFutureFlipTime(clock=None) frameN = frameN + 1 # number of completed frames (so 0 is the first frame) # update/draw components on each frame # *text_6* updates if text_6.status == NOT_STARTED and tThisFlip >= 0.0-frameTolerance: # keep track of start time/frame for later text_6.frameNStart = frameN # exact frame index text_6.tStart = t # local t and not account for scr refresh text_6.tStartRefresh = tThisFlipGlobal # on global time win.timeOnFlip(text_6, 'tStartRefresh') # time at next scr refresh text_6.setAutoDraw(True) if text_6.status == STARTED: # is it time to stop? (based on global clock, using actual start) if tThisFlipGlobal > text_6.tStartRefresh + 2-frameTolerance: # keep track of stop time/frame for later text_6.tStop = t # not accounting for scr refresh text_6.frameNStop = frameN # exact frame index win.timeOnFlip(text_6, 'tStopRefresh') # time at next scr refresh text_6.setAutoDraw(False) # check for quit (typically the Esc key) if endExpNow or defaultKeyboard.getKeys(keyList=["escape"]): core.quit() # check if all components have finished if not continueRoutine: # a component has requested a forced-end of Routine break continueRoutine = False # will revert to True if at least one component still running for thisComponent in thanksComponents: if hasattr(thisComponent, "status") and thisComponent.status != FINISHED: continueRoutine = True break # at least one component has not yet finished # refresh the screen if continueRoutine: # don't flip if this routine is over or we'll get a blank screen win.flip() # -------Ending Routine "thanks"------- for thisComponent in thanksComponents: if hasattr(thisComponent, "setAutoDraw"): thisComponent.setAutoDraw(False) thisExp.addData('text_6.started', text_6.tStartRefresh) thisExp.addData('text_6.stopped', text_6.tStopRefresh) # Flip one final time so any remaining win.callOnFlip() # and win.timeOnFlip() tasks get executed before quitting win.flip() # these shouldn't be strictly necessary (should auto-save) thisExp.saveAsWideText(filename+'.csv') thisExp.saveAsPickle(filename) logging.flush() # make sure everything is closed down thisExp.abort() # or data files will save again on exit win.close() core.quit()
45.842132
121
0.66599
0
0
0
0
0
0
0
0
33,398
0.362927
541db46f26a3ec258d9d85654ca98eae0553065a
3,271
py
Python
pysal/contrib/geotable/utils.py
cubensys/pysal
8d50990f6e6603ba79ae1a887a20a1e3a0734e51
[ "MIT", "BSD-3-Clause" ]
null
null
null
pysal/contrib/geotable/utils.py
cubensys/pysal
8d50990f6e6603ba79ae1a887a20a1e3a0734e51
[ "MIT", "BSD-3-Clause" ]
null
null
null
pysal/contrib/geotable/utils.py
cubensys/pysal
8d50990f6e6603ba79ae1a887a20a1e3a0734e51
[ "MIT", "BSD-3-Clause" ]
1
2021-07-19T01:46:17.000Z
2021-07-19T01:46:17.000Z
from ...cg import asShape as pShape from ...common import requires as _requires from warnings import warn @_requires('geopandas') def to_df(df, geom_col='geometry', **kw): """ Convert a Geopandas dataframe into a normal pandas dataframe with a column containing PySAL shapes. Always returns a copy. Arguments --------- df : geopandas.GeoDataFrame a geopandas dataframe (or pandas dataframe) with a column containing geo-interfaced shapes geom_col: str string denoting which column in the df contains the geometry **kw : keyword options options passed directly to pandas.DataFrame(...,**kw) See Also -------- pandas.DataFrame """ import pandas as pd from geopandas import GeoDataFrame, GeoSeries out = df.copy(deep=True) out[geom_col] = out[geom_col].apply(pShape) return pd.DataFrame(out, **kw) @_requires('geopandas') def to_gdf(df, geom_col='geometry', **kw): """ Convert a pandas dataframe with geometry column to a GeoPandas dataframe. Returns a copy always. Arguments --------- df : pandas.DataFrame a pandas dataframe with a column containing geo-interfaced shapes geom_col: str string denoting which column in the df contains the geometry **kw : keyword options options passed directly to geopandas.GeoDataFrame(...,**kw) See Also -------- geopandas.GeoDataFrame """ from geopandas import GeoDataFrame from shapely.geometry import asShape as sShape out = df.copy(deep=True) out[geom_col] = out[geom_col].apply(sShape) out = GeoDataFrame(out, geometry=geom_col, **kw) return out def insert_metadata(df, obj, name=None, inplace=False, overwrite=False): """ Insert an object into a dataframe's metadata with a given key. Arguments ------------ df : pd.DataFrame dataframe to insert into the metadata obj : object object desired to insert into the dataframe name : string key of the object to use. Will be available as an attribute of the dataframe. inplace : bool flag to denote whether to operate on a copy of the dataframe or not. overwrite : bool flag to denote whether to replace existing entry in metadata or not. Returns -------- If inplace, changes dataframe implicitly. Else, returns a new dataframe with added metadata. """ if not inplace: new = df.copy(deep=True) insert_metadata(new, obj, name=name, inplace=True, overwrite=overwrite) return new if name is None: name = type(obj).__name__ if hasattr(df, name): if overwrite: warn('Overwriting attribute {}! This may break the dataframe!'.format(name)) else: raise Exception('Dataframe already has attribute {}. Cowardly refusing ' 'to break dataframe. '.format(name)) df._metadata.append(name) df.__setattr__(name, obj)
33.721649
100
0.602262
0
0
0
0
1,674
0.51177
0
0
2,107
0.644146
541de3fcd94ea7163228d56302142fff219657ee
287
py
Python
torrent/torrent_tracker/whitelist_api/urls.py
projectpai/paipass
8b8e70b6808bf026cf957e240c7eed7bfcf4c55d
[ "MIT" ]
3
2021-04-17T10:20:26.000Z
2022-03-08T07:36:13.000Z
torrent/torrent_tracker/whitelist_api/urls.py
projectpai/paipass
8b8e70b6808bf026cf957e240c7eed7bfcf4c55d
[ "MIT" ]
null
null
null
torrent/torrent_tracker/whitelist_api/urls.py
projectpai/paipass
8b8e70b6808bf026cf957e240c7eed7bfcf4c55d
[ "MIT" ]
null
null
null
from django.urls import path from whitelist_api.views import AddTorrentInfoHash, RemoveTorrentInfoHash app_name = 'whitelist_api' urlpatterns = [ path('add-torrent-info-hash/', AddTorrentInfoHash.as_view()), path('del-torrent-info-hash/', RemoveTorrentInfoHash.as_view()), ]
23.916667
73
0.766551
0
0
0
0
0
0
0
0
63
0.219512
541e93e13927b8ffff8b83f86083ffe9dd7cdee8
1,847
py
Python
vega/core/metrics/pytorch/flops_and_params.py
qixiuai/vega
3e6588ea4aedb03e3594a549a97ffdb86adb88d1
[ "MIT" ]
null
null
null
vega/core/metrics/pytorch/flops_and_params.py
qixiuai/vega
3e6588ea4aedb03e3594a549a97ffdb86adb88d1
[ "MIT" ]
null
null
null
vega/core/metrics/pytorch/flops_and_params.py
qixiuai/vega
3e6588ea4aedb03e3594a549a97ffdb86adb88d1
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """PyTorch model counter of FLOPS and parameters.""" from copy import deepcopy import torch.nn as nn from thop import profile from thop.profile import register_hooks from thop.vision.basic_hooks import count_softmax def add_new_hooks(custom_hooks): """Add new register hooks to custom hooks.""" add_register_hooks = { nn.PReLU: register_hooks[nn.ReLU], nn.ELU: register_hooks[nn.ReLU], nn.Softmax: count_softmax } for k, v in add_register_hooks.items(): if k not in register_hooks and k not in custom_hooks: custom_hooks[k] = v return custom_hooks def calc_model_flops_params(model, input, custom_hooks=None, verbose=False): """Pytorch model flops and parameters calculation. :param model: pytorch model :type model: torch.nn.Module :param input: pytorch input tensor :type input: torch.Tensor :param custom_hooks: hooks defined by outside customer :type custom_hooks: dict or None :param verbose: whether to print op type which not in collection :type verbose: bool, default True :return: flops and params :rtype: float, float """ _model = deepcopy(model) if custom_hooks is None: custom_hooks = {} custom_hooks = add_new_hooks(custom_hooks) inputs = (input, ) flops, params = profile(_model, inputs, custom_hooks, verbose) del _model return flops, params
33.581818
76
0.714131
0
0
0
0
0
0
0
0
974
0.527342
5421063007f16d8c808280360658d8af84912272
524
py
Python
Projects/project04/pop_shrink.py
tonysulfaro/CSE-331
b4f743b1127ebe531ba8417420d043e9c149135a
[ "MIT" ]
2
2019-02-13T17:49:18.000Z
2020-09-30T04:51:53.000Z
Projects/project04/pop_shrink.py
tonysulfaro/CSE-331
b4f743b1127ebe531ba8417420d043e9c149135a
[ "MIT" ]
null
null
null
Projects/project04/pop_shrink.py
tonysulfaro/CSE-331
b4f743b1127ebe531ba8417420d043e9c149135a
[ "MIT" ]
null
null
null
from Stack import Stack def main(): stack = Stack() stack.push(0) stack.push(1) stack.push(2) stack.push(3) assert stack.data == [0, 1, 2, 3] assert stack.capacity == 4 assert stack.size == 4 popped = stack.pop() assert popped == 3 popped = stack.pop() assert popped == 2 print(stack) assert stack.data == [0, 1] assert stack.capacity == 2 assert stack.size == 2 print("Expected:", "['0', '1'] Capacity: 2") print("Output:", str(stack)) main()
17.466667
48
0.564885
0
0
0
0
0
0
0
0
44
0.083969
5421bfc32b86a8ee54dfb925ef8eac6e4d16b3b0
212
py
Python
pycache/__init__.py
HuiiBuh/pycache
300bd51f9e575fd77014d6c86497dd58f313f752
[ "MIT" ]
1
2021-09-04T05:34:26.000Z
2021-09-04T05:34:26.000Z
pycache/__init__.py
HuiiBuh/pycache
300bd51f9e575fd77014d6c86497dd58f313f752
[ "MIT" ]
1
2021-03-14T19:26:01.000Z
2021-03-16T18:46:38.000Z
pycache/__init__.py
HuiiBuh/pycache
300bd51f9e575fd77014d6c86497dd58f313f752
[ "MIT" ]
null
null
null
__version__ = '0.3.2' # noinspection PyUnresolvedReferences from ._cache._cache import cache # noinspection PyUnresolvedReferences from ._scheduler._scheduler import add_schedule, schedule, ScheduleSubscription
30.285714
79
0.84434
0
0
0
0
0
0
0
0
81
0.382075
5423d564159a63ea1cc7a476c45ce6fae5bb3b4a
1,670
py
Python
bender/tests/test_predict_pipeline.py
otovo/bender
b64f0656658287b932ce44d52e6035682652fe33
[ "Apache-2.0" ]
2
2021-12-17T15:45:40.000Z
2021-12-18T14:15:43.000Z
bender/tests/test_predict_pipeline.py
otovo/bender
b64f0656658287b932ce44d52e6035682652fe33
[ "Apache-2.0" ]
2
2022-03-30T14:31:12.000Z
2022-03-31T14:25:25.000Z
bender/tests/test_predict_pipeline.py
otovo/bender
b64f0656658287b932ce44d52e6035682652fe33
[ "Apache-2.0" ]
1
2021-12-19T17:16:38.000Z
2021-12-19T17:16:38.000Z
import numpy as np import pytest from pandas.core.frame import DataFrame from bender.importers import DataImporters from bender.model_loaders import ModelLoaders from bender.model_trainer.decision_tree import DecisionTreeClassifierTrainer from bender.split_strategies import SplitStrategies pytestmark = pytest.mark.asyncio async def test_predict_data() -> None: model, data_set = await ( DataImporters.literal(DataFrame({'x': [0, 1], 'y': [0, 1], 'output': [0, 1]})) # No test set .split(SplitStrategies.ratio(1)) .train(DecisionTreeClassifierTrainer(), input_features=['x', 'y'], target_feature='output') .run() ) test_data = DataFrame({'x': [2, -3, 4], 'y': [2, -3, 4]}) expected = [1, 0, 1] _, _, result = await (ModelLoaders.literal(model).import_data(DataImporters.literal(test_data)).predict().run()) assert np.all(expected == result) """ Supervised Regression Vector[float] -> float .train( RegresionModels.linear(), input_features=["area", "location"], # floats target_feature="price" # float ) """ """ Supervised Classification Vector[float / int / bool / str] -> str / bool / int .train( ClassificationModels.DecisionTree(), input_features=["sepal_length", "sepal_width"], # float / int / bool / str target_feature="class_name" # str / bool / int ) # Should only be avaialbe for clustering / classification problems .predict_probability( labels={ "setosa": "is_setosa_probability", "versicolor": "is_versicolor_probability", } ) """
27.833333
116
0.640719
0
0
0
0
0
0
1,341
0.802994
792
0.474251
5423f2c125c3cb768b4a0cd17051477a73148c1a
16,691
py
Python
gbot/libs/helper.py
dgw/goshu
3cba300d92f9bde58cf7348ddc3183d52b4c4bcf
[ "ISC" ]
5
2015-01-03T00:08:58.000Z
2017-05-05T11:57:03.000Z
gbot/libs/helper.py
dgw/goshu
3cba300d92f9bde58cf7348ddc3183d52b4c4bcf
[ "ISC" ]
3
2016-02-07T07:35:13.000Z
2016-11-26T19:29:02.000Z
gbot/libs/helper.py
dgw/goshu
3cba300d92f9bde58cf7348ddc3183d52b4c4bcf
[ "ISC" ]
1
2020-11-12T09:09:06.000Z
2020-11-12T09:09:06.000Z
#!/usr/bin/env python3 # Goshu IRC Bot # written by Daniel Oaks <daniel@danieloaks.net> # licensed under the ISC license """extends several builtin functions and provides helper functions The default Python library is extensive and well-stocked. There are some times however, you wish a small task was taken care of for you. This module if chock full of little extensions and helper functions I've needed while writing Goshu. Small, interesting, self-contained functions that can probably be reused elsewhere. """ import collections.abc import datetime import imp import json import os import re import string import sys import urllib.parse from girc.formatting import escape from http_status import Status from pyquery import PyQuery as pq import importlib import requests import xml.sax.saxutils as saxutils import yaml valid_filename_chars = string.ascii_letters + string.digits + '#._- ' def true_or_false(in_str): """Returns True/False if string represents it, else None.""" in_str = in_str.lower() if in_str.startswith(('true', 'y', '1', 'on')): return True elif in_str.startswith(('false', 'n', '0', 'off')): return False else: return None def split_num(line, chars=' ', maxsplits=1, empty=''): """/lazy/ wrapper, to stop us having to bounds-check when splitting. Arguments: line -- line to split chars -- character(s) to split line on maxsplits -- how many split items are returned empty -- character to put in place of nothing Returns: line.split(chars, items); return value is padded until `maxsplits + 1` number of values are present""" line = line.split(chars, maxsplits) while len(line) <= maxsplits: line.append(empty) return line def is_ok(func, prompt, blank='', clearline=False): """Prompt the user for yes/no and returns True/False Arguments: prompt -- Prompt for the user blank -- If True, a blank response will return True, ditto for False, the default '' will not accept blank responses and ask until the user gives an appropriate response Returns: True if user accepts, False if user does not""" while True: ok = func(prompt).lower().strip() if len(ok) > 0: if ok[0] == 'y' or ok[0] == 't' or ok[0] == '1': # yes, true, 1 return True elif ok[0] == 'n' or ok[0] == 'f' or ok[0] == '0': # no, false, 0 return False else: if blank is True: return True elif blank is False: return False def bytes_to_str(bytes, base=2, precision=0): """Convert number of bytes to a human-readable format Arguments: bytes -- number of bytes base -- base 2 'regular' multiplexer, or base 10 'storage' multiplexer precision -- number of decimal places to output Returns: Human-readable string such as '1.32M' """ if base == 2: multiplexer = 1024 elif base == 10: multiplexer = 1000 else: return None # raise error precision_string = '%.' + str(precision) + 'f' mebi_convert = True if bytes >= (multiplexer ** 4): terabytes = float(bytes / (multiplexer ** 4)) output = (precision_string % terabytes) + 'T' elif bytes >= (multiplexer ** 3): gigabytes = float(bytes / (multiplexer ** 3)) output = (precision_string % gigabytes) + 'G' elif bytes >= (multiplexer ** 2): megabytes = float(bytes / (multiplexer ** 2)) output = (precision_string % megabytes) + 'M' elif bytes >= (multiplexer ** 1): kilobytes = float(bytes / (multiplexer ** 1)) output = (precision_string % kilobytes) + 'K' else: output = (precision_string % float(bytes)) + 'B' mebi_convert = False # mebibytes and gibibytes all those weird HDD manufacturer terms if base == 10 and mebi_convert: num, base = output[:-1], output[-1] output = num + base.lower() + 'B' return output def time_metric(secs=60, mins=0): """Returns user-readable string representing given number of seconds.""" if mins: secs += (mins * 60) time = '' for metric_secs, metric_char in [[7 * 24 * 60 * 60, 'w'], [24 * 60 * 60, 'd'], [60 * 60, 'h'], [60, 'm']]: if secs > metric_secs: time += '{}{}'.format(int(secs / metric_secs), metric_char) secs -= int(secs / metric_secs) * metric_secs if secs > 0: time += '{}s'.format(secs) return time def metric(num, metric_list=[[10 ** 9, 'B'], [10 ** 6, 'M'], [10 ** 3, 'k']], additive=False): """Returns user-readable string representing given value. Arguments: num is the base value we're converting. metric_list is the list of data we're working off. additive is whether we add the various values together, or separate them. Return: a string such as 345K or 23w6d2h53s""" output = '' for metric_count, metric_char in metric_list: if num > metric_count: if additive: format_str = '{}{}' else: format_str = '{:.1f}{}' num = (num / metric_count) if not additive: num = float(num) output += format_str.format(num, metric_char) if not additive: break # just in case no output if output == '': output = str(num) return output def get_url(url, **kwargs): """Gets a url, handles all the icky requests stuff.""" try: if 'timeout' not in kwargs: kwargs['timeout'] = 20 r = requests.get(url, **kwargs) r.status = Status(r.status_code) if not r.ok: return 'HTTP Error - {code} {name} - {description}'.format(**{ 'code': r.status.code, 'name': r.status.name, 'description': r.status.description }) except requests.exceptions.Timeout: return 'Connection timed out' except requests.exceptions.RequestException as x: return '{}'.format(x.__class__.__name__) return r def format_extract(format_json, input_element, format=None, debug=False, fail='Failure'): if not format: if 'format' in format_json: format = format_json['format'] else: return 'No format for format_extract()' if 'debug' in format_json: debug = format_json['debug'] # format-specific settings if format == 'json': input_element = json.loads(input_element) retrieve = json_return elif format == 'xml': # ignore xml namespaces input_element = input_element.replace(' xmlns:', ' xmlnamespace:') input_element = input_element.replace(' xmlns=', ' xmlnamespace=') retrieve = xml_return # format extraction - format kwargs format_dict = {} if 'response_dict' in format_json: for name in format_json['response_dict']: try: if isinstance(format_json['response_dict'][name], collections.abc.Callable): try: format_dict[name] = format_json['response_dict'][name](format_json, input_element) except BaseException as x: if debug: return 'Unknown failure: {}'.format(x) else: return 'Code error' else: format_dict[name] = retrieve(input_element, format_json['response_dict'][name]) if format_dict[name] is None: return fail except KeyError: if debug: return 'Fail on {}'.format(name) else: return fail except IndexError: if debug: return 'Fail on {}'.format(name) else: return fail try: return format_json['response'].format(**format_dict) except KeyError: if debug: return 'Fail on format() key' else: return fail except IndexError: if debug: return 'Fail on format() index' else: return fail def xml_return(input_xml, selector): pq_xml = pq(input_xml) if selector[0] == 'text': return selector[1] elif selector[0] == 'text.escape': return escape(selector[1]) elif selector[0] == 'jquery': return pq_xml(selector[1]).text() elif selector[0] == 'jquery.attr': return pq_xml(selector[1]).attr(selector[2]) def json_return(input_json, selector): if selector[0] == 'text': return selector[1] elif selector[0] == 'text.escape': return escape(selector[1]) elif selector[0] == 'json.lower': if len(selector) > 2: default = selector[2] else: default = "" return str(json_element(input_json, selector[1], default=default)).lower() elif selector[0] == 'json.quote_plus': if len(selector) > 2: default = selector[2] else: default = "" return urllib.parse.quote_plus(str(json_element(input_json, selector[1], default=default))) elif selector[0] == 'json.num.metric': if len(selector) > 2: default = selector[2] else: default = 0 return metric(int(json_element(input_json, selector[1], default=default))) elif selector[0] == 'json.datetime.fromtimestamp': if len(selector) > 2: default = selector[2] else: default = 0 ts = json_element(input_json, selector[1], default=default) return datetime.datetime.fromtimestamp(ts).strftime(selector[2]) elif selector[0] == 'json.dict.returntrue': keys = [] json_dict = json_element(input_json, selector[1]) for key in json_dict: if json_dict[key]: keys.append(key) return selector[2].join(keys) # before general json else: if len(selector) > 2: default = selector[2] else: default = None return escape(str(json_element(input_json, selector[1], default=default))) def json_element(input_dict, query, default=None): """Runs through a data structure and returns the selected element.""" for element in query: is_list_index = isinstance(element, int) and isinstance(input_dict, (list, tuple)) if is_list_index or element in input_dict: input_dict = input_dict[element] else: return default return input_dict def filename_escape(unsafe, replace_char='_', valid_chars=valid_filename_chars): """Escapes a string to provide a safe local filename Arguments: unsafe -- Unsafe string to escape replace_char -- Character to replace unsafe characters with valid_chars -- Valid filename characters Returns: Safe local filename string """ if not unsafe: return '' safe = '' for character in unsafe: if character in valid_chars: safe += character else: safe += replace_char return safe _unescape_map = { '&#39;': "'", '&#039;': "'", '&quot;': "'", } def html_unescape(input): """Turns any html-escaped characters back to their normal equivalents.""" output = saxutils.unescape(input) for char in _unescape_map.keys(): output = output.replace(char, _unescape_map[char]) return output def utf8_bom(input): """Strips BOM from a utf8 string, because open() leaves it in for some reason.""" output = input.replace('\ufeff', '') return output class JsonHandler: def __init__(self, base, folder, attr=None, callback_name=None, ext=None, yaml=False): if ext: self.pattern = [x.format(ext) for x in ['*.{}.yaml', '*.{}.json', '*_{}.py']] else: self.pattern = ['*.yaml', '*.json', '*.py'] self.base = base self.attr = attr self.folder = folder self.ext = ext self.callback_name = callback_name self.yaml = yaml self.reload() def spread_new_json(self, new_json): if self.attr: setattr(self.base, self.attr, new_json) if self.callback_name: getattr(self.base, self.callback_name, None)(new_json) def reload(self): new_json = {} if not os.path.exists(self.folder): self.spread_new_json(new_json) return # loading folders_to_scan = [self.folder] # loading list of folders that contain modules for f in os.listdir(self.folder): if f == 'disabled': continue full_name = os.path.join(self.folder, f) if os.path.isdir(full_name): folders_to_scan.append(full_name) # loading actual modules for folder in folders_to_scan: for f in os.listdir(folder): full_name = os.path.join(folder, f) if os.path.isfile(full_name): (extname, ext) = os.path.splitext(full_name) if ext.lower() not in ['.json', '.yaml']: continue # check for loader-specific extension if self.ext: name, ext = os.path.splitext(extname) pyfile = '{}_{}'.format('.'.join(name.split(os.sep)), self.ext) # not really our module if ext != os.extsep + self.ext: continue else: name, ext = extname, '' pyfile = '.'.join(name[2:].split(os.sep)) # NOTE: this is static, and that is bad pyfile = pyfile.lstrip('..modules.') # py file if self.yaml: try: module = importlib.import_module(pyfile) imp.reload(module) # so reloading works # we should capture this and output errors to stderr except: pass # yaml / json with open(full_name, encoding='utf-8') as js_f: if self.yaml: try: info = yaml.load(js_f.read(), Loader=yaml.FullLoader) # we should capture this and output errors to stderr except Exception as ex: print('failed to load YAML file', full_name, ':', ex) continue else: info = json.loads(js_f.read()) # set module name and info if 'name' not in info: new_name = name.split('/')[-1].split('\\')[-1] info['name'] = [new_name] new_json[info['name'][0]] = info # set info on base object and / or call callback self.spread_new_json(new_json) # timedelta functions _td_str_map = [ ('d', 'days'), ('h', 'hours'), ('m', 'minutes'), ('s', 'seconds'), ] _str_td = r'' for istr, td in _td_str_map: _str_td += r'\s*(?:(?P<' + td + r'>[0-9]+)\s*' + istr + r')?' _TD_STR_REGEX = re.compile(_str_td) def timedelta_to_string(delta): """Converts a timedelta dict to a string.""" td_string = '' for istr, td in _td_str_map: if td in delta: td_string += str(delta[td]) td_string += istr return td_string def string_to_timedelta(td_string): """Converts a string to a timedelta dict.""" match = _TD_STR_REGEX.match(td_string) delta = {} for istr, td in _td_str_map: if match.group(td): if '.' in match.group(td): val = float(match.group(td)) else: val = int(match.group(td)) delta[td] = val return delta # path def add_path(path): if path not in sys.path: sys.path.insert(0, path)
30.795203
94
0.549038
3,564
0.213528
0
0
0
0
0
0
4,286
0.256785
542466b53c52821ceb40707c73e0ab32ca5a0262
8,707
py
Python
ptf/lib/runner.py
opennetworkinglab/tassen
6e42ba79f83caa1bd6ecb40fd9bd1e9f8768ec09
[ "Apache-2.0" ]
4
2020-07-08T22:04:35.000Z
2020-07-14T15:09:37.000Z
ptf/lib/runner.py
opennetworkinglab/tassen
6e42ba79f83caa1bd6ecb40fd9bd1e9f8768ec09
[ "Apache-2.0" ]
1
2020-07-07T08:12:40.000Z
2020-07-07T08:12:41.000Z
ptf/lib/runner.py
opennetworkinglab/tassen
6e42ba79f83caa1bd6ecb40fd9bd1e9f8768ec09
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python2 # Copyright 2013-present Barefoot Networks, Inc. # SPDX-FileCopyrightText: 2018-present Open Networking Foundation # # SPDX-License-Identifier: Apache-2.0 import Queue import argparse import json import logging import os import re import subprocess import sys import threading import time from collections import OrderedDict import google.protobuf.text_format import grpc from p4.v1 import p4runtime_pb2, p4runtime_pb2_grpc PTF_ROOT = os.path.dirname(os.path.realpath(__file__)) logging.basicConfig(level=logging.INFO) logger = logging.getLogger("PTF runner") def error(msg, *args, **kwargs): logger.error(msg, *args, **kwargs) def warn(msg, *args, **kwargs): logger.warn(msg, *args, **kwargs) def info(msg, *args, **kwargs): logger.info(msg, *args, **kwargs) def debug(msg, *args, **kwargs): logger.debug(msg, *args, **kwargs) def check_ifaces(ifaces): """ Checks that required interfaces exist. """ ifconfig_out = subprocess.check_output(['ifconfig']) iface_list = re.findall(r'^([a-zA-Z0-9]+)', ifconfig_out, re.S | re.M) present_ifaces = set(iface_list) ifaces = set(ifaces) return ifaces <= present_ifaces def build_bmv2_config(bmv2_json_path): """ Builds the device config for BMv2 """ with open(bmv2_json_path) as f: return f.read() def update_config(p4info_path, bmv2_json_path, grpc_addr, device_id): """ Performs a SetForwardingPipelineConfig on the device """ channel = grpc.insecure_channel(grpc_addr) stub = p4runtime_pb2_grpc.P4RuntimeStub(channel) debug("Sending P4 config") # Send master arbitration via stream channel # This should go in library, to be re-used also by base_test.py. stream_out_q = Queue.Queue() stream_in_q = Queue.Queue() def stream_req_iterator(): while True: p = stream_out_q.get() if p is None: break yield p def stream_recv(stream): for p in stream: stream_in_q.put(p) def get_stream_packet(type_, timeout=1): start = time.time() try: while True: remaining = timeout - (time.time() - start) if remaining < 0: break msg = stream_in_q.get(timeout=remaining) if not msg.HasField(type_): continue return msg except: # timeout expired pass return None stream = stub.StreamChannel(stream_req_iterator()) stream_recv_thread = threading.Thread(target=stream_recv, args=(stream,)) stream_recv_thread.start() req = p4runtime_pb2.StreamMessageRequest() arbitration = req.arbitration arbitration.device_id = device_id election_id = arbitration.election_id election_id.high = 0 election_id.low = 1 stream_out_q.put(req) rep = get_stream_packet("arbitration", timeout=5) if rep is None: error("Failed to establish handshake") return False try: # Set pipeline config. request = p4runtime_pb2.SetForwardingPipelineConfigRequest() request.device_id = device_id election_id = request.election_id election_id.high = 0 election_id.low = 1 config = request.config with open(p4info_path, 'r') as p4info_f: config.p4info.ParseFromString(p4info_f.read()) config.p4_device_config = build_bmv2_config(bmv2_json_path) request.action = p4runtime_pb2.SetForwardingPipelineConfigRequest.VERIFY_AND_COMMIT try: stub.SetForwardingPipelineConfig(request) except Exception as e: error("Error during SetForwardingPipelineConfig") error(str(e)) return False return True finally: stream_out_q.put(None) stream_recv_thread.join() def run_test(p4info_path, grpc_addr, device_id, cpu_port, ptfdir, port_map_path, extra_args=()): """ Runs PTF tests included in provided directory. Device must be running and configfured with appropriate P4 program. """ # TODO: check schema? # "ptf_port" is ignored for now, we assume that ports are provided by # increasing values of ptf_port, in the range [0, NUM_IFACES[. port_map = OrderedDict() with open(port_map_path, 'r') as port_map_f: port_list = json.load(port_map_f) for entry in port_list: p4_port = entry["p4_port"] iface_name = entry["iface_name"] port_map[p4_port] = iface_name if not check_ifaces(port_map.values()): error("Some interfaces are missing") return False ifaces = [] # FIXME # find base_test.py pypath = os.path.dirname(os.path.abspath(__file__)) if 'PYTHONPATH' in os.environ: os.environ['PYTHONPATH'] += ":" + pypath else: os.environ['PYTHONPATH'] = pypath for iface_idx, iface_name in port_map.items(): ifaces.extend(['-i', '{}@{}'.format(iface_idx, iface_name)]) cmd = ['ptf'] cmd.extend(['--test-dir', ptfdir]) cmd.extend(ifaces) test_params = 'p4info=\'{}\''.format(p4info_path) test_params += ';grpcaddr=\'{}\''.format(grpc_addr) test_params += ';device_id=\'{}\''.format(device_id) test_params += ';cpu_port=\'{}\''.format(cpu_port) cmd.append('--test-params={}'.format(test_params)) cmd.extend(extra_args) debug("Executing PTF command: {}".format(' '.join(cmd))) try: # we want the ptf output to be sent to stdout p = subprocess.Popen(cmd) p.wait() except: error("Error when running PTF tests") return False return p.returncode == 0 def check_ptf(): try: with open(os.devnull, 'w') as devnull: subprocess.check_call(['ptf', '--version'], stdout=devnull, stderr=devnull) return True except subprocess.CalledProcessError: return True except OSError: # PTF not found return False # noinspection PyTypeChecker def main(): parser = argparse.ArgumentParser( description="Compile the provided P4 program and run PTF tests on it") parser.add_argument('--p4info', help='Location of p4info proto in binary format', type=str, action="store", required=True) parser.add_argument('--bmv2-json', help='Location BMv2 JSON output from p4c (if target is bmv2)', type=str, action="store", required=False) parser.add_argument('--grpc-addr', help='Address to use to connect to P4 Runtime server', type=str, default='localhost:50051') parser.add_argument('--device-id', help='Device id for device under test', type=int, default=1) parser.add_argument('--cpu-port', help='CPU port ID of device under test', type=int, required=True) parser.add_argument('--ptf-dir', help='Directory containing PTF tests', type=str, required=True) parser.add_argument('--port-map', help='Path to JSON port mapping', type=str, required=True) args, unknown_args = parser.parse_known_args() if not check_ptf(): error("Cannot find PTF executable") sys.exit(1) if not os.path.exists(args.p4info): error("P4Info file {} not found".format(args.p4info)) sys.exit(1) if not os.path.exists(args.bmv2_json): error("BMv2 json file {} not found".format(args.bmv2_json)) sys.exit(1) if not os.path.exists(args.port_map): print "Port map path '{}' does not exist".format(args.port_map) sys.exit(1) try: success = update_config(p4info_path=args.p4info, bmv2_json_path=args.bmv2_json, grpc_addr=args.grpc_addr, device_id=args.device_id) if not success: sys.exit(2) success = run_test(p4info_path=args.p4info, device_id=args.device_id, grpc_addr=args.grpc_addr, cpu_port=args.cpu_port, ptfdir=args.ptf_dir, port_map_path=args.port_map, extra_args=unknown_args) if not success: sys.exit(3) except Exception: raise if __name__ == '__main__': main()
31.547101
91
0.605949
0
0
2,560
0.294016
0
0
0
0
1,899
0.2181
5427881b2cdb695dc79fdf0dbaacbc4dd2f6b718
178
py
Python
rsebs/__init__.py
gabrielperezs/recycling-snapshots
b0707e883bb6037505af815877e4ef8ce544e35e
[ "Apache-2.0" ]
1
2017-05-23T05:58:47.000Z
2017-05-23T05:58:47.000Z
rsebs/__init__.py
gabrielperezs/recycling-snapshots
b0707e883bb6037505af815877e4ef8ce544e35e
[ "Apache-2.0" ]
null
null
null
rsebs/__init__.py
gabrielperezs/recycling-snapshots
b0707e883bb6037505af815877e4ef8ce544e35e
[ "Apache-2.0" ]
null
null
null
from .snapshots import set_client from .snapshots import get_snapshots from .snapshots import tag_snapshot from .snapshots import set_drymode from .snapshots import unset_drymode
35.6
36
0.865169
0
0
0
0
0
0
0
0
0
0
54286060601c97e4e84de6381203dae2af8365e8
1,184
py
Python
predict_form.py
HuginnM/UsedCarsUA
aa871c1bc6cdc1a84810db265c732b04cb4935f0
[ "Apache-2.0" ]
null
null
null
predict_form.py
HuginnM/UsedCarsUA
aa871c1bc6cdc1a84810db265c732b04cb4935f0
[ "Apache-2.0" ]
null
null
null
predict_form.py
HuginnM/UsedCarsUA
aa871c1bc6cdc1a84810db265c732b04cb4935f0
[ "Apache-2.0" ]
null
null
null
from flask_wtf import FlaskForm from wtforms import SubmitField, SelectField, IntegerField, FloatField, StringField from wtforms.validators import DataRequired import pandas as pd uniq_vals = pd.read_csv("data/unique_cat_vals.csv", index_col=0) class InputData(FlaskForm): car = SelectField(label="Car", choices=uniq_vals.car.dropna().sort_values(), validators=[DataRequired()]) model = SelectField("Model", choices=uniq_vals.model.dropna().sort_values(), validators=[DataRequired()]) body = SelectField(label="Body", choices=uniq_vals.body.dropna().sort_values(), validators=[DataRequired()]) drive = SelectField("Drive", choices=uniq_vals.drive.dropna().sort_values(), validators=[DataRequired()]) engType = SelectField("Engine type: ", choices=uniq_vals.engType.dropna().sort_values(), validators=[DataRequired()]) engV = FloatField("Engine Volume", validators=[DataRequired()]) year = IntegerField("Year", validators=[DataRequired()]) mileage = IntegerField(label="Mileage", validators=[DataRequired()]) registration = SelectField(label="Registration", choices=uniq_vals.registration.dropna()) submit = SubmitField("Predict the price")
56.380952
121
0.754223
935
0.789696
0
0
0
0
0
0
129
0.108953
5429177713786c59d64d5d6d11764c591147502b
2,764
py
Python
color.py
laplacetw/color-codes-bot
e7afb5b09e7c4a5dde6608917781cc6a0ea05287
[ "MIT" ]
1
2020-10-21T01:26:09.000Z
2020-10-21T01:26:09.000Z
color.py
laplacetw/color-codes-bot
e7afb5b09e7c4a5dde6608917781cc6a0ea05287
[ "MIT" ]
null
null
null
color.py
laplacetw/color-codes-bot
e7afb5b09e7c4a5dde6608917781cc6a0ea05287
[ "MIT" ]
null
null
null
#!usr/bin/env python3 color_chart = { '1C1':[13.24, 88.89, 228.98, 0.], '1N1':[14.2, 95.37, 233.82, 0.], '1N2':[12.95, 91.79, 219.5, 0.], '1W1':[14.67, 103.64, 229.41, 0.], '1W2':[14.69, 106.34, 227.28, 0.], '2C0':[15.73, 134.68, 222.32, 0.], '2C1':[14.57, 125.89, 220.69, 0.], '2C3':[13.7, 103.72, 199.46, 0.], '2N1':[15., 104.25, 225.8, 0.], '2W0':[15., 110.11, 224.22, 0.], '2W1':[14.42, 125.06, 224.55, 0.], '2W2':[17.13, 141.58, 209.99, 0.], '3C1':[15.7, 118.18, 212.01, 0.], '3C2':[15.7, 118.18, 212.01, 0.], '3N1':[16.1, 150.1, 189.09, 0.], '3N2':[15.18, 140.68, 202.63, 0.], '3W1':[15.66, 129.81, 209.44, 0.], '3W2':[17.05, 161.56, 184.85, 0.], '4C3':[14.23, 148.1, 198.74, 0.], '4N1':[15.92, 159.35, 190.71, 0.], '4N2':[17.29, 166.95, 195.76, 0.], '4W1':[14.67, 143.61, 208.85, 0.], '4W2':[17.76, 162.02, 189.44, 0.], '5C1':[13.09, 179.49, 160.58, 0.], '5N1':[15.43, 187.36, 180.34, 0.], '5N2':[16.66, 207.88, 147.84, 0.], '5W1':[15.66, 163.85, 182.07, 0.], '5W2':[14.95, 160.63, 189.17, 0.], '6C2':[12.85, 179.52, 131.66, 0.], '6N1':[14.94, 185.61, 162.16, 0.], '6N2':[15.7, 183.46, 138.37, 0.], '6W1':[14.76, 166.57, 166.78, 0.], '6W2':[13.79, 176.99, 142.22, 0.], '7C1':[12.2, 191.5, 121.34, 0.], '7N1':[12.7, 162.67, 109.41, 0.], '7W1':[13.25, 165.64, 126.03, 0.], '8N1':[12.5, 191.83, 95.43, 0.], 'CR1':[14.09, 173.14, 163.66, 0.]} color_chart_new = { '1C1':[14.63, 79.35, 239.58, 0.], '1N1':[16.89, 77.75, 243.46, 0.], '1N2':[13.27, 104.13, 231.18, 0.], '1W1':[17.78, 104.99, 236.54, 0.], '1W2':[16., 117.24, 234.86, 0.], '2C0':[17.16, 80.90, 240.48, 0.], '2C1':[14., 116.60, 237.21, 0.], '2C3':[13.36, 94.80, 231.17, 0.], '2N1':[16., 115.65, 238.19, 0.], '2W0':[15.79, 108.95, 237.93, 0.], '2W1':[15.01, 120.45, 240.01, 0.], '2W2':[17.97, 125.56, 243.83, 0.], '3C1':[10.99, 115.63, 226.18, 0.], '3C2':[10.84, 117.73, 219.17, 0.], '3N1':[11.9, 126.73, 228.04, 0.], '3N2':[11.43, 126.97, 224.13, 0.], '3W1':[13.14, 148.12, 229.10, 0.], '3W2':[14.01, 133.06, 234.48, 0.], '4C3':[11.68, 150.85, 219.34, 0.], '4N1':[12., 151.75, 190.41, 0.], '4N2':[12.24, 138.18, 206.75, 0.], '4W1':[12., 151.31, 224.04, 0.], '4W2':[12., 165.62, 201.74, 0.], '5C1':[10.4, 184.48, 176.72, 0.], '5N1':[11.68, 188.46, 210.23, 0.], '5N2':[10.98, 183.80, 195.04, 0.], '5W1':[12.73, 185.75, 221.30, 0.], '5W2':[10.83, 162.54, 211.10, 0.], '6C2':[9.29, 217.70, 111.99, 0.], '6N1':[11.24, 180.30, 156.76, 0.], '6N2':[11., 173.55, 145.55, 0.], '6W1':[11.09, 188.43, 171.41, 0.], '6W2':[11., 182.77, 151.02, 0.], '7C1':[8.07, 199.37, 115.59, 0.], '7N1':[9.93, 187.51, 122.57, 0.], '7W1':[9.86, 192.48, 135.62, 0.], '8N1':[8.64, 181.83, 109.53, 0.]}
86.375
109
0.48589
0
0
0
0
0
0
0
0
396
0.143271
5429df166b3efe8e9b12e537d9c5a2b68d7af8f7
235
py
Python
leetCode/algorithms/easy/occurrences_after_bigram.py
ferhatelmas/algo
a7149c7a605708bc01a5cd30bf5455644cefd04d
[ "WTFPL" ]
25
2015-01-21T16:39:18.000Z
2021-05-24T07:01:24.000Z
leetCode/algorithms/easy/occurrences_after_bigram.py
gauravsingh58/algo
397859a53429e7a585e5f6964ad24146c6261326
[ "WTFPL" ]
2
2020-09-30T19:39:36.000Z
2020-10-01T17:15:16.000Z
leetCode/algorithms/easy/occurrences_after_bigram.py
ferhatelmas/algo
a7149c7a605708bc01a5cd30bf5455644cefd04d
[ "WTFPL" ]
15
2015-01-21T16:39:27.000Z
2020-10-01T17:00:22.000Z
from typing import List class Solution: def findOcurrences(self, text: str, first: str, second: str) -> List[str]: ls = text.split() return [c for a, b, c in zip(ls, ls[1:], ls[2:]) if a == first and b == second]
29.375
87
0.595745
208
0.885106
0
0
0
0
0
0
0
0
542a62b48d45febc53b82e238fe6ed286841ea91
454
py
Python
src/pyuwds3/utils/egocentric_spatial_relations.py
LAAS-HRI/uwds3
42390f62ed5701a32710341b01faa10efc448078
[ "MIT" ]
2
2020-08-19T06:15:14.000Z
2021-05-23T09:55:18.000Z
src/pyuwds3/utils/egocentric_spatial_relations.py
LAAS-HRI/uwds3
42390f62ed5701a32710341b01faa10efc448078
[ "MIT" ]
5
2021-01-06T09:00:35.000Z
2021-01-20T13:22:19.000Z
src/pyuwds3/utils/egocentric_spatial_relations.py
LAAS-HRI/uwds3
42390f62ed5701a32710341b01faa10efc448078
[ "MIT" ]
2
2020-11-18T17:34:43.000Z
2021-05-23T16:14:17.000Z
import math from scipy.spatial.distance import euclidean from ..types.bbox import BoundingBox def is_left_of(bb1, bb2): _, _, bb1_max, _, _ = bb1 bb2_min, _, _, _, _ = bb2 return bb1_max < bb2_min def is_right_of(bb1, bb2): bb1_min, _, _, _, _ = bb1 _, _, bb2_max, _, _ = bb2 return bb1_min > bb2_max def is_behind(bb1, bb2): _, _, _, _, bb1_depth = bb1 _, _, _, _, bb2_depth = bb2 return bb1_depth > bb2_depth
19.73913
44
0.634361
0
0
0
0
0
0
0
0
0
0
542b4553e4da40bd25e9c35ead38f8985d1d5c31
2,883
py
Python
machine_replacement_action_probs.py
dsbrown1331/broil
3c06e15c560db3242c0e331a2b16cc578a843606
[ "MIT" ]
1
2021-03-29T09:53:53.000Z
2021-03-29T09:53:53.000Z
machine_replacement_action_probs.py
dsbrown1331/broil
3c06e15c560db3242c0e331a2b16cc578a843606
[ "MIT" ]
1
2020-11-22T15:05:48.000Z
2020-11-25T00:10:17.000Z
machine_replacement_action_probs.py
dsbrown1331/broil
3c06e15c560db3242c0e331a2b16cc578a843606
[ "MIT" ]
null
null
null
import bayesian_irl import mdp_worlds import utils import mdp import numpy as np import scipy import random import generate_efficient_frontier from machine_replacement import generate_posterior_samples if __name__=="__main__": seed = 1234 np.random.seed(seed) scipy.random.seed(seed) random.seed(seed) num_states = 4 num_samples = 2000 gamma = 0.95 alpha = 0.99 posterior = generate_posterior_samples(num_samples) r_sa = np.mean(posterior, axis=1) init_distribution = np.ones(num_states)/num_states #uniform distribution mdp_env = mdp.MachineReplacementMDP(num_states, r_sa, gamma, init_distribution) print("mean MDP reward", r_sa) u_sa = mdp.solve_mdp_lp(mdp_env, debug=True) print("mean policy from posterior") utils.print_stochastic_policy_action_probs(u_sa, mdp_env) print("MAP/Mean policy from posterior") utils.print_policy_from_occupancies(u_sa, mdp_env) print("rewards") print(mdp_env.r_sa) print("expected value = ", np.dot(u_sa, r_sa)) stoch_pi = utils.get_optimal_policy_from_usa(u_sa, mdp_env) print("expected return", mdp.get_policy_expected_return(stoch_pi, mdp_env)) print("values", mdp.get_state_values(u_sa, mdp_env)) print('q-values', mdp.get_q_values(u_sa, mdp_env)) #run CVaR optimization, just the robust version u_expert = np.zeros(mdp_env.num_actions * mdp_env.num_states) posterior_probs = np.ones(num_samples) / num_samples #uniform dist since samples from MCMC #generate efficient frontier lambda_range = [0.0, 0.3, 0.75, 0.95, 1.0] import matplotlib.pyplot as plt from matplotlib.pyplot import cm bar_width = 0.15 opacity = 0.9 color=iter(cm.rainbow(np.linspace(0,1,6))) cnt = 0 index = np.arange(num_states) for i,lamda in enumerate(lambda_range): print("lambda = ", lamda) cvar_opt_usa, cvar, exp_ret = mdp.solve_max_cvar_policy(mdp_env, u_expert, posterior, posterior_probs, alpha, False, lamda) print('action probs') utils.print_stochastic_policy_action_probs(cvar_opt_usa, mdp_env) stoch_pi = utils.get_optimal_policy_from_usa(cvar_opt_usa, mdp_env) print(stoch_pi[:,1]) c = next(color) plt.figure(1) label = r"$\lambda={}$".format(lamda) rects1 = plt.bar(index + cnt * bar_width,stoch_pi[:,0], bar_width, alpha=opacity, label=label, color=c) cnt += 1 plt.figure(1) plt.axis([-1,5,0, 1]) plt.yticks(fontsize=18) plt.xticks(index + 2*bar_width, ('1', '2', '3', '4'), fontsize=18) plt.legend(loc='best', fontsize=16) plt.xlabel('State',fontsize=20) plt.ylabel('Pr(Do Nothing $\mid$ State)',fontsize=20) plt.tight_layout() plt.savefig("./figs/machine_replacement/action_probs_machine_replacement.png") plt.show()
27.990291
131
0.687825
0
0
0
0
0
0
0
0
442
0.153313
542b464eeb35182c67fc88683f7b87c523d2bec7
5,982
py
Python
sequential/seq_smnist/train_args_seq_smnist.py
mariacer/cl_in_rnns
333b8e03391600a8e3df7d684a3f171b135d273a
[ "Apache-2.0" ]
26
2020-06-17T08:44:15.000Z
2022-03-20T04:21:13.000Z
sequential/seq_smnist/train_args_seq_smnist.py
mariacer/cl_in_rnns
333b8e03391600a8e3df7d684a3f171b135d273a
[ "Apache-2.0" ]
null
null
null
sequential/seq_smnist/train_args_seq_smnist.py
mariacer/cl_in_rnns
333b8e03391600a8e3df7d684a3f171b135d273a
[ "Apache-2.0" ]
4
2020-10-26T02:19:38.000Z
2021-12-26T02:26:05.000Z
#!/usr/bin/env python3 # Copyright 2019 Benjamin Ehret, Maria Cervera # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @title :sequential/smnist/train_args_seq_smnist.py # @author :be # @contact :behret@ethz.ch # @created :24/03/2020 # @version :1.0 # @python_version :3.6.8 """ Command-line arguments and default values for the sequential SMNIST task are handled here. """ import argparse import warnings import utils.cli_args as cli import sequential.train_args_sequential as seq def parse_cmd_arguments(default=False, argv=None): """Parse command-line arguments. Args: default (optional): If True, command-line arguments will be ignored and only the default values will be parsed. argv (optional): If provided, it will be treated as a list of command- line argument that is passed to the parser in place of sys.argv. Returns: The Namespace object containing argument names and values. """ description = 'Continual learning on sequential SMNIST task.' parser = argparse.ArgumentParser(description=description) cli.cl_args(parser, show_beta=True, dbeta=0.005, show_from_scratch=True, show_multi_head=True, show_split_head_cl3=False, show_cl_scenario=False, show_num_tasks=True, dnum_tasks=45) cli.train_args(parser, show_lr=True, show_epochs=False, dbatch_size=64, dn_iter=5000, dlr=1e-3, show_clip_grad_value=False, show_clip_grad_norm=True, show_momentum=False, show_adam_beta1=True) seq.rnn_args(parser, drnn_arch='256', dnet_act='tanh') cli.hypernet_args(parser, dhyper_chunks=-1, dhnet_arch='50,50', dtemb_size=32, demb_size=32, dhnet_act='relu') # Args of new hnets. nhnet_args = cli.hnet_args(parser, allowed_nets=['hmlp', 'chunked_hmlp', 'structured_hmlp', 'hdeconv', 'chunked_hdeconv'], dhmlp_arch='50,50', show_cond_emb_size=True, dcond_emb_size=32, dchmlp_chunk_size=1000, dchunk_emb_size=32, show_use_cond_chunk_embs=True, dhdeconv_shape='512,512,3', prefix='nh_', pf_name='new edition of a hyper-', show_net_act=True, dnet_act='relu', show_no_bias=True, show_dropout_rate=True, ddropout_rate=-1, show_specnorm=True, show_batchnorm=False, show_no_batchnorm=False) seq.new_hnet_args(nhnet_args) cli.init_args(parser, custom_option=False, show_normal_init=False, show_hyper_fan_init=True) cli.eval_args(parser, dval_iter=250, show_val_set_size=True, dval_set_size=1000) magroup = cli.miscellaneous_args(parser, big_data=False, synthetic_data=True, show_plots=True, no_cuda=True, show_publication_style=False) seq.ewc_args(parser, dewc_lambda=5000., dn_fisher=-1, dtbptt_fisher=-1, dts_weighting_fisher='last') seq.si_args(parser, dsi_lambda=1.) seq.context_mod_args(parser, dsparsification_reg_type='l1', dsparsification_reg_strength=1., dcontext_mod_init='constant') seq.miscellaneous_args(magroup, dmask_fraction=0.8, dclassification=True, dts_weighting='last', show_use_ce_loss=False, show_early_stopping_thld=True) # Replay arguments. rep_args = seq.replay_args(parser) cli.generator_args(rep_args, dlatent_dim=100) cli.main_net_args(parser, allowed_nets=['simple_rnn'], dsrnn_rec_layers='256', dsrnn_pre_fc_layers='', dsrnn_post_fc_layers='', show_net_act=True, dnet_act='tanh', show_no_bias=True, show_dropout_rate=False, show_specnorm=False, show_batchnorm=False, prefix='dec_', pf_name='replay decoder') seq_args(parser) args = None if argv is not None: if default: warnings.warn('Provided "argv" will be ignored since "default" ' + 'option was turned on.') args = argv if default: args = [] config = parser.parse_args(args=args) ### Check argument values! cli.check_invalid_argument_usage(config) seq.check_invalid_args_sequential(config) if config.train_from_scratch: # FIXME We could get rid of this warning by properly checkpointing and # loading all networks. warnings.warn('When training from scratch, only during accuracies ' + 'make sense. All other outputs should be ignored!') return config def seq_args(parser): """This is a helper function of function :func:`parse_cmd_arguments` to add specific arguments to the argument group related to seq smnist task. Arguments specified in this function: - `ssmnist_seq_len` Args: parser: Object of class :class:`argparse.ArgumentParser`. """ heading = 'SSMNIST options' sgroup = parser.add_argument_group(heading) sgroup.add_argument('--ssmnist_seq_len', type=int, default=2, help='The number of digits used in a sequence. ' + 'Default: %(default)s.') sgroup.add_argument('--ssmnist_two_classes', action='store_true', help='If used, every task will have only 2 classes. ' + 'Instead of classifying every possible sequence ' + 'individually, sequences are randomly grouped ' + 'into 2 classes.') if __name__=='__main__': pass
41.541667
80
0.674858
0
0
0
0
0
0
0
0
2,522
0.421598
542b4d4125780654fe2bbd178dc02f72ba260ddd
2,490
py
Python
examples/compare.py
guo-yong-zhi/wordcloud2
43d34766323e8eec45d46eeaa98537849f48cd37
[ "MIT" ]
null
null
null
examples/compare.py
guo-yong-zhi/wordcloud2
43d34766323e8eec45d46eeaa98537849f48cd37
[ "MIT" ]
null
null
null
examples/compare.py
guo-yong-zhi/wordcloud2
43d34766323e8eec45d46eeaa98537849f48cd37
[ "MIT" ]
null
null
null
from wordcloud2 import wordcloud as W import os from PIL import Image stwords = {"us", "will"} print("==Obama's==") cs = W.randomscheme() #:Set1_8 as_ = W.randomangles() #(0,90,45,-45) dens = 0.5 #not too high wca = W.wordcloud( W.processtext(open(W.pkgdir(W.WordCloud)+"/res/Barack Obama's First Inaugural Address.txt").read(), stopwords=set(W.stopwords_en).union(stwords)), colors = cs, angles = as_, density = dens) wca.generate() #md# ### Then generate the wordcloud on the right print("==Trump's==") wcb = W.wordcloud( W.processtext(open(W.pkgdir(W.WordCloud)+"/res/Donald Trump's Inaugural Address.txt").read(), stopwords=set(W.stopwords_en).union(stwords)), mask = wca.getsvgmask(), colors = cs, angles = as_, density = dens, run = W.identity, #turn off the useless initimage! and placement! in advance ) #md# Follow these steps to generate a wordcloud: initimage! -> placement! -> generate! samewords = list(set(wca.getwords()).intersection(wcb.getwords())) print(len(samewords), "same words") for w in samewords: wcb.setcolors(w, wca.getcolors(w)) wcb.setangles(w, wca.getangles(w)) wcb.initimages() wcb.setstate(":placement!") print("=ignore defferent words=") with wcb.keep(samewords) as wcb: assert set(wcb.getwords()) == set(samewords) centers = wca.getpositions(samewords, type=W.Ju.getcenter) wcb.setpositions(samewords, centers, type=W.Ju.setcenter_b) #manually initialize the position, wcb.setstate(":placement!") #and set the state flag wcb.generate(1000, patient=-1, retry=1) #patient=-1 means no teleport; retry=1 means no rescale print("=pin same words=") with wcb.pin(samewords): wcb.placement() wcb.generate(1000, retry=1) #allow teleport but don‘t allow rescale if wcb.getstate() != ":generate!": print("=overall tuning=") wcb.generate(1000, patient=-1, retry=2) #allow rescale but don‘t allow teleport ma = wca.paint() mb = wcb.paint() sp = ma.width//20 cmp = Image.new('RGBA', (ma.width*2+sp, ma.height)) cmp.paste(ma, (0, 0, ma.width, ma.height)) cmp.paste(mb, (ma.width+sp, 0, ma.width*2+sp, ma.height)) os.makedirs('address_compare', exist_ok=True) print("results are saved in address_compare") cmp.save("address_compare/compare.png") gif = W.GIF("address_compare") wca.record("Obama", gif) wcb.record("Trump", gif) W.gif_generate(gif, framerate=1) #md# ![](address_compare/compare.png) #md# ![](address_compare/result.gif)
35.571429
104
0.685542
0
0
0
0
0
0
0
0
866
0.347233
542b9661a1d12114a162b51bacab5cac808471e8
3,520
py
Python
modules/insight/nbCurvesLevelSet.py
chrisidefix/devide
99bfe156e710fa47ba7ae88b0ce1eef592a3a439
[ "BSD-3-Clause" ]
25
2015-08-24T16:05:14.000Z
2020-12-09T20:07:14.000Z
modules/insight/nbCurvesLevelSet.py
chrisidefix/devide
99bfe156e710fa47ba7ae88b0ce1eef592a3a439
[ "BSD-3-Clause" ]
1
2016-02-16T21:18:10.000Z
2016-02-16T21:18:10.000Z
modules/insight/nbCurvesLevelSet.py
chrisidefix/devide
99bfe156e710fa47ba7ae88b0ce1eef592a3a439
[ "BSD-3-Clause" ]
5
2016-02-16T20:05:37.000Z
2020-01-31T11:27:39.000Z
# Copyright (c) Charl P. Botha, TU Delft # All rights reserved. # See COPYRIGHT for details. import itk import module_kits.itk_kit as itk_kit from module_base import ModuleBase from module_mixins import ScriptedConfigModuleMixin class nbCurvesLevelSet(ScriptedConfigModuleMixin, ModuleBase): def __init__(self, module_manager): ModuleBase.__init__(self, module_manager) # setup defaults self._config.propagationScaling = 1.0 self._config.advectionScaling = 1.0 self._config.curvatureScaling = 1.0 self._config.numberOfIterations = 500 configList = [ ('Propagation scaling:', 'propagationScaling', 'base:float', 'text', 'Weight factor for the propagation term'), ('Advection scaling:', 'advectionScaling', 'base:float', 'text', 'Weight factor for the advection term'), ('Curvature scaling:', 'curvatureScaling', 'base:float', 'text', 'Weight factor for the curvature term'), ('Number of iterations:', 'numberOfIterations', 'base:int', 'text', 'Number of iterations that the algorithm should be run for')] ScriptedConfigModuleMixin.__init__( self, configList, {'Module (self)' : self}) # create all pipeline thingies self._createITKPipeline() self.sync_module_logic_with_config() def close(self): self._destroyITKPipeline() ScriptedConfigModuleMixin.close(self) ModuleBase.close(self) def execute_module(self): self.get_output(0).Update() def get_input_descriptions(self): return ('Feature image (ITK)', 'Initial level set (ITK)' ) def set_input(self, idx, inputStream): if idx == 0: self._nbcLS.SetFeatureImage(inputStream) else: self._nbcLS.SetInput(inputStream) def get_output_descriptions(self): return ('Image Data (ITK)',) def get_output(self, idx): return self._nbcLS.GetOutput() def config_to_logic(self): self._nbcLS.SetPropagationScaling( self._config.propagationScaling) self._nbcLS.SetAdvectionScaling( self._config.advectionScaling) self._nbcLS.SetCurvatureScaling( self._config.curvatureScaling) def logic_to_config(self): self._config.propagationScaling = self._nbcLS.\ GetPropagationScaling() self._config.advectionScaling = self._nbcLS.GetAdvectionScaling() self._config.curvatureScaling = self._nbcLS.GetCurvatureScaling() # -------------------------------------------------------------------- # END OF API CALLS # -------------------------------------------------------------------- def _createITKPipeline(self): # input: smoothing.SetInput() # output: thresholder.GetOutput() if3 = itk.Image[itk.F, 3] self._nbcLS = itk.NarrowBandCurvesLevelSetImageFilter[if3,if3].New() #self._nbcLS.SetMaximumRMSError( 0.1 ); self._nbcLS.SetNumberOfIterations( 500 ); itk_kit.utils.setupITKObjectProgress( self, self._nbcLS, 'NarrowBandCurvesLevelSetImageFilter', 'Evolving level set') def _destroyITKPipeline(self): """Delete all bindings to components of the ITK pipeline. """ del self._nbcLS
32
76
0.600284
3,279
0.931534
0
0
0
0
0
0
1,006
0.285795
58087fdf8d89ae3ca538e157ca99613c2f7a205f
2,835
py
Python
setup.py
ThomasChiroux/ejabberd_external_auth_jwt
fce68cca70ca578b3c1c002a4dea2aa65e3150c1
[ "MIT" ]
null
null
null
setup.py
ThomasChiroux/ejabberd_external_auth_jwt
fce68cca70ca578b3c1c002a4dea2aa65e3150c1
[ "MIT" ]
null
null
null
setup.py
ThomasChiroux/ejabberd_external_auth_jwt
fce68cca70ca578b3c1c002a4dea2aa65e3150c1
[ "MIT" ]
null
null
null
# # Copyright 2018-2019 Happineo # """setuptools installer for zamita.""" import os import uuid from setuptools import find_packages from setuptools import setup from setuptools.command.build_py import build_py # local imports from build_scripts.version import VersionInfo HERE = os.path.abspath(os.path.dirname(__file__)) README = open(os.path.join(HERE, "README.md"), encoding="UTF-8").read() NEWS = open(os.path.join(HERE, "NEWS.md"), encoding="UTF-8").read() PROJECT_NAME = "ejabberd_external_auth_jwt" VERSION = None try: VERSION = VersionInfo().version except Exception: pass if VERSION is None or not VERSION: try: VERSION_FILE = open(f"{PROJECT_NAME}/RELEASE-VERSION", "r") try: VERSION = VERSION_FILE.readlines()[0] VERSION = VERSION.strip() except Exception: VERSION = "0.0.0" finally: VERSION_FILE.close() except IOError: VERSION = "0.0.0" class CustomBuild(build_py): """custom build class.""" def run(self): """Add target and write the release-VERSION file.""" # honor the --dry-run flag if not self.dry_run: target_dirs = [] target_dirs.append(os.path.join(self.build_lib, PROJECT_NAME)) target_dirs.append(PROJECT_NAME) # mkpath is a distutils helper to create directories for _dir in target_dirs: self.mkpath(_dir) try: for _dir in target_dirs: fobj = open(os.path.join(_dir, "RELEASE-VERSION"), "w") fobj.write(VERSION) fobj.close() except Exception: pass super().run() with open("requirements.txt") as f: requirements = f.read().splitlines() if requirements[0].startswith("-i"): requirements = requirements[1:] setup( name=PROJECT_NAME, version=VERSION, description="ejabberd_external_auth_jwt", long_description=README + "\n\n" + NEWS, cmdclass={"build_py": CustomBuild}, classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Operating System :: Linux", ], keywords="", author="Thomas Chiroux", author_email="", url="https://www.github.com/ThomasChiroux/ejabberd_external_auth_jwt", license="LICENSE.txt", packages=find_packages(exclude=["ez_setup"]), package_data={"": ["*.rst", "*.md", "*.yaml", "*.cfg"]}, include_package_data=True, zip_safe=False, test_suite="pytest", tests_require=[], install_requires=requirements, entry_points={ "console_scripts": [ "ejabberd_external_auth_jwt=ejabberd_external_auth_jwt.main:main_sync" ] }, )
27.794118
82
0.618342
770
0.271605
0
0
0
0
0
0
808
0.285009
5808c926d701d604229b7c9061a8576e5eb62676
4,724
py
Python
Analysis/Feb2021/common_plotting.py
TimChild/dat_analysis
2902e5cb2f2823a1c7a26faf6b3b6dfeb7633c73
[ "MIT" ]
2
2021-03-07T03:17:13.000Z
2021-03-07T03:17:16.000Z
Analysis/Feb2021/common_plotting.py
TimChild/dat_analysis
2902e5cb2f2823a1c7a26faf6b3b6dfeb7633c73
[ "MIT" ]
1
2021-03-09T00:00:52.000Z
2021-03-09T00:00:52.000Z
Analysis/Feb2021/common_plotting.py
TimChild/dat_analysis
2902e5cb2f2823a1c7a26faf6b3b6dfeb7633c73
[ "MIT" ]
null
null
null
""" Sep 21 -- A few of the plots used in analysis, very far from a complete list, and probably most are too specific to be useful again. Moved useful functions from here. """ from __future__ import annotations from typing import List, Callable, Optional, Union, TYPE_CHECKING import numpy as np from dat_analysis.analysis_tools.entropy import dat_integrated_sub_lin from dat_analysis.plotting.plotly.hover_info import HoverInfo if TYPE_CHECKING: pass def common_dat_hover_infos(datnum=True, heater_bias=False, fit_entropy_name: Optional[str] = None, fit_entropy=False, int_info_name: Optional[str] = None, output_name: Optional[str] = None, integrated_entropy=False, sub_lin: bool = False, sub_lin_width: Optional[Union[float, Callable]] = None, int_info=False, amplitude=False, theta=False, gamma=False, ) -> List[HoverInfo]: """ Returns a list of HoverInfos for the specified parameters. To do more complex things, append specific HoverInfos before/after this. Examples: hover_infos = common_dat_hover_infos(datnum=True, amplitude=True, theta=True) hover_group = HoverInfoGroup(hover_infos) Args: datnum (): heater_bias (): fit_entropy_name (): Name of saved fit_entropy if wanting fit_entropy fit_entropy (): int_info_name (): Name of int_info if wanting int_info or integrated_entropy output_name (): Name of SE output to integrate (defaults to int_info_name) integrated_entropy (): sub_lin (): Whether to subtract linear term from integrated_info first sub_lin_width (): Width of transition to avoid in determining linear terms int_info (): amp/dT/sf from int_info Returns: List[HoverInfo]: """ hover_infos = [] if datnum: hover_infos.append(HoverInfo(name='Dat', func=lambda dat: dat.datnum, precision='.d', units='')) if heater_bias: hover_infos.append(HoverInfo(name='Bias', func=lambda dat: dat.AWG.max(0) / 10, precision='.1f', units='nA')) if fit_entropy: hover_infos.append(HoverInfo(name='Fit Entropy', func=lambda dat: dat.Entropy.get_fit(name=fit_entropy_name, check_exists=True).best_values.dS, precision='.2f', units='kB'), ) if integrated_entropy: if output_name is None: output_name = int_info_name if sub_lin: if sub_lin_width is None: raise ValueError(f'Must specify sub_lin_width if subtrating linear term from integrated entropy') elif not isinstance(sub_lin_width, Callable): sub_lin_width = lambda _: sub_lin_width # make a value into a function so so that can assume function data = lambda dat: dat_integrated_sub_lin(dat, signal_width=sub_lin_width(dat), int_info_name=int_info_name, output_name=output_name) hover_infos.append(HoverInfo(name='Sub lin width', func=sub_lin_width, precision='.1f', units='mV')) else: data = lambda dat: dat.Entropy.get_integrated_entropy( name=int_info_name, data=dat.SquareEntropy.get_Outputs( name=output_name).average_entropy_signal) hover_infos.append(HoverInfo(name='Integrated Entropy', func=lambda dat: np.nanmean(data(dat)[-10:]), precision='.2f', units='kB')) if int_info: info = lambda dat: dat.Entropy.get_integration_info(name=int_info_name) hover_infos.append(HoverInfo(name='SF amp', func=lambda dat: info(dat).amp, precision='.3f', units='nA')) hover_infos.append(HoverInfo(name='SF dT', func=lambda dat: info(dat).dT, precision='.3f', units='mV')) hover_infos.append(HoverInfo(name='SF', func=lambda dat: info(dat).sf, precision='.3f', units='')) return hover_infos
44.990476
120
0.556308
0
0
0
0
0
0
0
0
1,362
0.288315
580a05b1f8e364040a8ccda54856a6eead097400
9,980
py
Python
Code/sphero_learn.py
rvarga601/IER
1cf05e641dea2fb3b4ad5329e3e556713cc199fe
[ "MIT" ]
null
null
null
Code/sphero_learn.py
rvarga601/IER
1cf05e641dea2fb3b4ad5329e3e556713cc199fe
[ "MIT" ]
null
null
null
Code/sphero_learn.py
rvarga601/IER
1cf05e641dea2fb3b4ad5329e3e556713cc199fe
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon May 10 23:54:16 2021 @author: rolandvarga """ import gym import numpy as np import matplotlib.pyplot as plt import time from scipy.signal import savgol_filter import pickle #%matplotlib qt #%matplotlib inline # Set to 1 to repeat SARSA learning (With Intel Core i7-8750H it takes # around 70 minutes), 0 for loading previous result REPEAT_LEARNING = 0 # Parameter to set which tests to do DO_TEST1 = 1 # Simulate the system once and plot the trajectory DO_TEST2 = 0 # Simulate the system 1000 times and plot success-rate # Set to 1 to plot a projection of the state-value function V PLOT_STATEVALUE = 1 #%% Load previous result if REPEAT_LEARNING == 0: filename='train_6x6x20x60000.pickle' with open(filename, 'rb') as f: cell_nums, dhat, durations, Q, reward_set, rhat, start_time, end_time, states_high, max_steps = pickle.load(f) #%% SARSA learning env = gym.make('SphericalRobot-v0') #Function to choose the next action def choose_action(state, eps): action=0 if np.random.uniform(0, 1) < eps: # Select a random action action = env.action_space.sample() else: # Choose greedy action action = np.array(np.unravel_index(np.argmax(Q[state], axis=None), Q[state].shape)) # action = np.argmax(Q[state]) return action #Convert continuous state-space to discrete def discretize_state(observation_c, low, high, cell_nums): # Initialize the discretized observation observation_d = [] # Loop through and discretize all 3 states for state,low_val,high_val,c_num in zip(observation_c,low,high,cell_nums): # Define intervals for the possible values bins = np.linspace(low_val,high_val,c_num+1,endpoint=True) # Discretize with NumPy function state_d = np.digitize(state, bins, right=True) # Check if the discrete values are valid assert state_d > 0 and state_d <= c_num observation_d.append(state_d-1) # -1 to have values start at 0 return observation_d if REPEAT_LEARNING == 1: # Learning parameters epsilon = 0.3 # For start total_episodes = 100 max_steps = 300 alpha = 0.1 gamma = 0.99 # The discretization of the states states_high = np.array([6,6,2*np.pi/env.c]) # Set boundaries for the values cell_nums = np.array([6,6,20]) # Set the number of discrete cells #Initializing the Q-matrix Q = np.ones(np.append(cell_nums,[3,3])) #Function to update the Q-value def update(state, state2, reward, action, action2): predict = Q[state][action] target = reward + gamma * Q[state2][action2] Q[state][action] = Q[state][action] + alpha * (target - predict) #Initializing the reward # reward=0 reward_set = [] durations = [] start_time = time.time() # Starting the SARSA learning for episode in range(total_episodes): t = 0 cumm_reward = 0 state1 = env.reset() state1_d = discretize_state(state1, -states_high, states_high, cell_nums) action1 = choose_action(tuple(state1_d), epsilon) states = [state1] while t < max_steps: # Visualizing the training, TODO # env.render() # Getting the next state state2, reward, done, info = env.step(action1) # Note: The 3rd state is the difference between the wheel angles state1_d = discretize_state(np.array([state1[0],state1[1], state1[2]-state1[3]]), -states_high, states_high, cell_nums) state2_d = discretize_state(np.array([state2[0],state2[1], state2[2]-state2[3]]), -states_high, states_high, cell_nums) # Choosing the next action action2 = choose_action(tuple(state2_d), epsilon) # Updating the Q-value update(tuple(state1_d), tuple(state2_d), reward, tuple(action1), tuple(action2)) # Update variables for next iteration state1 = state2 action1 = action2 # Save state to be able to plot trajectories states.append(state2) #Updating the respective vaLues t += 1 cumm_reward += reward #If at the end of learning process if done: break reward_set.append(cumm_reward) durations.append(t) # plt.figure(0) # x = np.array(states)[:,0] # y = np.array(states)[:,1] # plt.scatter(x, y) # plt.xlim(-5, 5) # plt.ylim(-5, 5) # plt.show() # Print time it took to run the learning end_time = time.time() print("--- %s seconds ---" % (end_time - start_time)) # Plot the filtered rewards during the learning plt.figure(1) #plt.plot(reward_set) rhat = savgol_filter(reward_set, 501, 3) # window size 501, polynomial order 3 plt.plot(rhat) #plt.ylim(-500, 500) plt.xlabel(r"Episode [-]") plt.ylabel(r"Reward [-]") plt.legend() plt.savefig('reward_learning.eps', format='eps', bbox_inches='tight') plt.show() # Plot the filtered episode lengths during the learning plt.figure(2) #plt.plot(durations) dhat = savgol_filter(durations, 51, 3) # window size 51, polynomial order 3 plt.plot(dhat) plt.show() #%% Test 1: Generate one trajectory if DO_TEST1 == 1: t = 0 cumm_reward = 0 state1 = env.reset() state1_d = discretize_state(state1, -states_high, states_high, cell_nums) action1 = choose_action(tuple(state1_d), 0.0) states = [state1] actions = [action1] while t < max_steps: #Visualizing the training # env.render() #Getting the next state state2, reward, done, info = env.step(action1) state1_d = discretize_state(np.array([state1[0],state1[1], state1[2]-state1[3]]), -states_high, states_high, cell_nums) state2_d = discretize_state(np.array([state2[0],state2[1], state2[2]-state2[3]]), -states_high, states_high, cell_nums) #Choosing the next action action2 = choose_action(tuple(state2_d), 0.0) #Learning the Q-value #update(tuple(state1_d), tuple(state2_d), reward, tuple(action1), tuple(action2)) state1 = state2 action1 = action2 states.append(state2) actions.append(action2) #Updating the respective vaLues t += 1 cumm_reward += reward #If at the end of learning process if done: break print(reward) # Plot trajectory on 2D plot plt.figure(3) x = np.array(states)[:,0] y = np.array(states)[:,1] plt.scatter(x, y) plt.xlim(-5, 5) plt.ylim(-5, 5) plt.xticks(np.arange(-5, 6, 1)) plt.yticks(np.arange(-5, 6, 1)) plt.gca().set_aspect('equal', adjustable='box') plt.xlabel(r"$x_1$ [m]") plt.ylabel(r"$x_2$ [m]") plt.legend() plt.savefig('trajectory.eps', format='eps', bbox_inches='tight') plt.show() # Plot position states separately plt.figure(4) plt.plot(x, label="x1") plt.plot(y, label="x2") plt.xlabel(r"Time step [-]") plt.ylabel(r"Coordinate [m]") plt.legend() plt.savefig('trajectory_plot.eps', format='eps', bbox_inches='tight') plt.show() #%% Test 2: Successful-unsuccessful tries if DO_TEST2 == 1: cumm_rewards = [] for k in range(1000): t = 0 cumm_reward = 0 state1 = env.reset() state1_d = discretize_state(state1, -states_high, states_high, cell_nums) action1 = choose_action(tuple(state1_d), 0.0) while t < max_steps: #Visualizing the training # env.render() #Getting the next state state2, reward, done, info = env.step(action1) state1_d = discretize_state(np.array([state1[0],state1[1], state1[2]-state1[3]]), -states_high, states_high, cell_nums) state2_d = discretize_state(np.array([state2[0],state2[1], state2[2]-state2[3]]), -states_high, states_high, cell_nums) #Choosing the next action action2 = choose_action(tuple(state2_d), 0.0) #Learning the Q-value #update(tuple(state1_d), tuple(state2_d), reward, tuple(action1), tuple(action2)) state1 = state2 action1 = action2 #states.append(state2) #actions.append(action2) #Updating the respective vaLues t += 1 cumm_reward += reward #If at the end of learning process if done: break cumm_rewards.append(cumm_reward) print("Average reward out of 1000 try: " + str(np.average(np.array(cumm_rewards)))) plt.figure(5) plt.hist(cumm_rewards,np.array([-1000,0,1000])) plt.show() #%% Additional plot: State-value function if PLOT_STATEVALUE == 1: V = np.zeros([cell_nums[0],cell_nums[1]]) for k in range(V.shape[0]): for l in range(V.shape[1]): V[k,l]=np.amax(Q[k,l,:]) plt.figure(6) plt.imshow(V, cmap='coolwarm', interpolation='nearest') plt.colorbar() plt.savefig('state_value.eps', format='eps', bbox_inches='tight') plt.show()
30.993789
118
0.577154
0
0
0
0
0
0
0
0
2,966
0.297194
580b61225012c491f65cb5e42655216093dbdb35
8,952
py
Python
HW7/kernel_eigenface.py
joycenerd/Machine_Learning_2021
ecb634a9f2f1112a393a9707ce69c3bc751c4542
[ "MIT" ]
1
2021-11-18T09:22:21.000Z
2021-11-18T09:22:21.000Z
HW7/kernel_eigenface.py
joycenerd/Machine_Learning_2021
ecb634a9f2f1112a393a9707ce69c3bc751c4542
[ "MIT" ]
null
null
null
HW7/kernel_eigenface.py
joycenerd/Machine_Learning_2021
ecb634a9f2f1112a393a9707ce69c3bc751c4542
[ "MIT" ]
null
null
null
from scipy.spatial.distance import cdist from numpy.linalg import eig, norm, pinv import matplotlib.pyplot as plt from PIL import Image import numpy as np import argparse import ntpath import glob import os parser = argparse.ArgumentParser() parser.add_argument("--option", type=str, default="PCA", help="Choose which task to do: [PCA, LDA]") parser.add_argument("--img-size", type=int, default=50, help="image resize shape") parser.add_argument("--kernel-type", type=str, default="linear", help="kernel type for PCA/LDA: [linear, polynomial, rbf]") parser.add_argument("--gamma", type=float, default=1, help="gamma value for polynomial or rbf kernel") parser.add_argument("--coeff", type=int, default=2, help="coeff value for polynomial kernel") parser.add_argument("--degree", type=int, default=20, help="degree value for polynomial kernel") args = parser.parse_args() DATA_PATH = "./Yale_Face_Database/" SAVE_PATH = "./results/" def read_data(data_path): img_size = args.img_size data = [] filepath = [] label = [] for file in glob.glob(data_path+"*"): # file path (135,) filepath.append(file) # data (135,10000) image = Image.open(file) image = image.resize((img_size, img_size), Image.ANTIALIAS) image = np.array(image) data.append(image.ravel()) # label (135,) _, tail = ntpath.split(file) label.append(int(tail[7:9])) return np.array(data), filepath, np.array(label) def get_eig(data, method, kernel_type="none"): # get eigenvalue and eigenvector by np.linalg.eig() eigval, eigvec = eig(data) # sort by decreasing order of eigenvalues idx = eigval.argsort()[::-1] eigval = eigval[idx] eigvec = eigvec[:, idx] return eigval, eigvec def get_kernel(X): kernel_type = args.kernel_type gamma = args.gamma coeff = args.coeff degree = args.degree if kernel_type == "linear": kernel = X@X.T elif kernel_type == "polynomial": kernel = np.power(gamma*(X@X.T)+coeff, degree) elif kernel_type == "rbf": kernel = np.exp(-gamma*cdist(X, X, metric="sqeuclidean")) return kernel def pca(x, kernel_type=None, kernel=None): if kernel_type == None: x_bar = np.mean(x, axis=0) cov = (x-x_bar)@(x-x_bar).T eigval, eigvec = get_eig(cov, "pca") # project data eigvec = (x-x_bar).T@eigvec else: x_bar = 0 # cetralize the kernel n = kernel.shape[0] one = np.ones((n, n), dtype=float) one *= 1.0/n kernel = kernel - one @ kernel - kernel @ one + one @ kernel @ one eigval, eigvec = get_eig(kernel, "pca", kernel_type) for i in range(eigvec.shape[1]): eigvec[:, i] *= 1/norm(eigvec[:, i], 1) # get the top 25 eigenvectors W = eigvec[:, :25].real return x_bar, W def draw_eigenface(W, name): img_size = args.img_size # save eigenface in 5x5 grid for i in range(5): for j in range(5): idx = i * 5 + j plt.subplot(5, 5, idx + 1) plt.imshow(W[:, idx].reshape((img_size, img_size)), cmap='gray') plt.axis('off') plt.savefig(SAVE_PATH+name+".jpg") def lda(X, label, kernel_type="none", dims=25): (n, d) = X.shape label = np.asarray(label) c = np.unique(label) mu = np.mean(X, axis=0) S_w = np.zeros((d, d), dtype=np.float64) S_b = np.zeros((d, d), dtype=np.float64) # Sw=(xi-mj)*(xi-mj)^T # Sb=nj*(mj-m)*(mj-m)^T for i in c: X_i = X[np.where(label == i)[0], :] mu_i = np.mean(X_i, axis=0) S_w += (X_i - mu_i).T @ (X_i - mu_i) S_b += X_i.shape[0] * ((mu_i - mu).T @ (mu_i - mu)) # get eigenvalues and eigenvectors S = pinv(S_w) @ S_b eigen_val, eigen_vec = get_eig(S, "lda", kernel_type) for i in range(eigen_vec.shape[1]): eigen_vec[:, i] = eigen_vec[:, i] / norm(eigen_vec[:, i]) W = eigen_vec[:, :25].real return W def reconstruct(data, W, method, m=None): img_size = args.img_size if method == "pca": reconstruction = (data-m)@W@W.T+m elif method == "lda": reconstruction = data@W@W.T idx = 1 for i in range(2): for j in range(5): plt.subplot(2, 5, idx) plt.imshow(reconstruction[idx-1, :].reshape( (img_size, img_size)), cmap='gray') plt.axis('off') idx += 1 plt.savefig(SAVE_PATH+method+"_reconstruction"+".jpg") def face_recognition(train_data, train_label, test_data, test_label): num_of_train = train_label.shape[0] num_of_test = test_label.shape[0] dist_mat = np.zeros((num_of_test, num_of_train), dtype=float) # calculate distance for i in range(num_of_test): dist = np.zeros(num_of_train, dtype=float) for j in range(num_of_train): dist[j] = np.sum((test_data[i, :]-train_data[j, :])**2) dist = np.argsort(dist) dist_mat[i, :] = label[dist] # KNN K = [1, 3, 5, 7, 9, 11] best_acc = 0.0 for k in K: correct = 0.0 for i in range(num_of_test): dist = dist_mat[i, :] dist = dist[:k] val, cnt = np.unique(dist, return_counts=True) most_cnt = np.argmax(cnt) pred = val[most_cnt] if pred == test_label[i]: correct += 1 acc = correct/num_of_test print(f"Face recognition accuracy when K={k}: {acc:.4}") if acc > best_acc: best_acc = acc best_K = k print(f"Best K: {best_K}\tBest accuracy: {best_acc:.4}") def project(train_data, test_data, W, m=0): # data dimensionality reductionn option = args.option if option == "PCA": train_proj = (train_data-m)@W test_proj = (test_data-m)@W elif option == "LDA": train_proj = train_data@W test_proj = test_data@W return train_proj, test_proj if __name__ == "__main__": option = args.option kernel_type = args.kernel_type # read training and testing data train_data, train_filepath, train_label = read_data(DATA_PATH+"Training/") test_data, test_filepath, test_label = read_data(DATA_PATH+"Testing/") data = np.vstack((train_data, test_data)) # (165,10000) filepath = np.hstack((train_filepath, test_filepath)) # (165,) label = np.hstack((train_label, test_label)) # (165,) num_of_data = label.shape[0] print(f"Num of data: {num_of_data}") if option == "PCA": rand_idx = np.random.randint(num_of_data, size=10) samples = data[rand_idx, :] # (10,10000) x_bar, W = pca(data) draw_eigenface(W, "eigenface") print("eigenface completed...") reconstruct(samples, W, "pca", x_bar) print("reconstruction completed...") train_proj, test_proj = project(train_data, test_data, W, x_bar) face_recognition(train_proj, train_label, test_proj, test_label) print("pca face recognition completed...\n") # python kernel_eigenface.py --option PCA --kernel-type polynomial --gamma 5 --coeff 1 --degree 2 # python kernel_eigenface.py --option PCA --kernel-type rbf --gamma 1e-7 kernel = get_kernel(data) _, W = pca(data, kernel_type, kernel) train_kernel = kernel[:train_label.shape[0], :] test_kernel = kernel[train_label.shape[0]:, :] train_proj, test_proj = project(train_kernel, test_kernel, W) face_recognition(train_proj, train_label, test_proj, test_label) print( f"kernel pca with {kernel_type} kernel face recognition completed...") if option == "LDA": rand_idx = np.random.randint(num_of_data, size=10) samples = data[rand_idx, :] # (10,10000) W = lda(data, label) draw_eigenface(W, "fisherface") print("fisherface completed...") reconstruct(samples, W, "lda") print("reconstruction completed...") train_proj, test_proj = project(train_data, test_data, W) face_recognition(train_proj, train_label, test_proj, test_label) print("lda face recognition completed...\n") # python kernel_eigenface.py --option LDA --kernel-type polynomial --gamma 1 --coeff 2 --degree 20 # python kernel_eigenface.py --option PCA --kernel-type rbf --gamma 1e-4 kernel = get_kernel(data.T) W = lda(kernel, kernel_type) train_kernel = kernel[:train_label.shape[0], :] test_kernel = kernel[train_label.shape[0]:, :] train_proj, test_proj = project(train_kernel, test_kernel, W) face_recognition(train_proj, train_label, test_proj, test_label) print( f"kernel lda with {kernel_type} kernel face recognition completed...")
31.632509
106
0.601095
0
0
0
0
0
0
0
0
1,791
0.200067
580c8290606fc382a91ddcb30034d1076a50dc58
18,427
py
Python
duqo/optimization/predict.py
canbooo/pyRDO
f7143438aa30cc79587c9f35fc9ff6aa262fc4d3
[ "BSD-3-Clause" ]
11
2021-08-17T05:55:01.000Z
2022-02-03T13:16:42.000Z
duqo/optimization/predict.py
canbooo/pyRDO
f7143438aa30cc79587c9f35fc9ff6aa262fc4d3
[ "BSD-3-Clause" ]
null
null
null
duqo/optimization/predict.py
canbooo/pyRDO
f7143438aa30cc79587c9f35fc9ff6aa262fc4d3
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri Aug 9 15:33:47 2019 @author: Bogoclu """ import typing import multiprocessing as mp import warnings import numpy as np from scipy import stats from .space import FullSpace from duqo.proba import DS, MC, SUSE, ISPUD, FORM from duqo.doe.lhs import make_doe def _check_obj_wgt(obj_weights, num_obj): """ Check obj_wgt argument passed to CondMom """ if obj_weights is None: return None try: _ = obj_weights[0] except (TypeError, IndexError): obj_weights = np.ones(num_obj) * obj_weights if len(obj_weights) != num_obj: msg = f"Mismatch between the number of entries ({len(obj_weights)} in " msg += f"obj_wgt and the number of stochastic objectives ({num_obj})." raise ValueError(msg) return np.array(obj_weights).ravel() def _check_std_inds(use_std, num_obj): """ Check use_std argument passed to CondMom and convert it to a slice definition """ if isinstance(use_std, bool): inds = [use_std] * num_obj if len(inds) != num_obj: msg = "Mismatch between the number of entries in " msg += "use_std and the number of stochastic objectives." raise ValueError(msg) return np.array(use_std, dtype=bool) def _find_integrator_cls(integrator): """ Find the Integrator class as defined by the string integrator """ integrator = integrator.upper() if integrator == "DS": IntCls = DS elif integrator == "MC": IntCls = MC elif integrator == "ISPUD": IntCls = ISPUD elif integrator == "FORM": IntCls = FORM elif integrator == "SUSE": IntCls = SUSE else: msg = f"Requested integrator {integrator} is not found." raise ValueError(msg) return IntCls def _make_chain(methods: list): """Makes the chain given a list of method names""" try: first = methods[0] except TypeError: raise TypeError(f"methods must be a list of strings or classes, not {type(methods)}") try: _ = first.upper() except AttributeError: return methods return [_find_integrator_cls(name.upper()) for name in methods] def _n_para_chk(num_parallel: int = None): """ Check the num_parallel argument as passed to CondProb """ n_procs = max(1, mp.cpu_count()) # could cpu_count ever be < 1? if num_parallel is None or num_parallel > n_procs: print(f"Number of parallel processes was set to {n_procs}") return n_procs return num_parallel def _default_init(targ_prob: float, acc_max: float, num_inp: int, num_para: int): """Decide the default integrator chain methods and arguments depending on the problem Parameters ---------- targ_prob : float target failure probability acc_max : float target tolerance for the estimation num_inp : int number of stochastic inputs of the constraints num_para : int number of parallel processes to use Returns ------- integrators : list Integrator classes, that are to be initiated int_args : dict Keyword arguments to pass to integrators """ if targ_prob * acc_max >= 1e-5: if targ_prob * acc_max >= 1e-4: integrators = ["MC"] else: integrators = ["SUSE", "MC"] int_args = {"num_starts": 1, "batch_size": 1e5} elif num_inp < 15: integrators = ["SUSE", "DS"] int_args = {"num_starts": 1} else: integrators = ["SUSE"] int_args = {"num_starts": num_para} print("Using", integrators, "as default chain.") return integrators, int_args def _is_worker(workers, name): """ check if name is in workers list of classes""" for worker in workers: wname = read_integrator_name(worker) if name.upper() in wname.upper(): return True return False def read_integrator_name(worker): """ read the name of the integrator instance worker """ name = str(worker).split(".")[-1] return "".join([c for c in name if c.isalnum()]) class CondMom: """Class to estimate conditional means full_space : FullSpace instance The definition of the optimization and stochastic spaces base_doe : int or np.ndarray set if a new doe should be calculated or the same one should be transformed during the optimization. if array, it should have zero mean and unit variance but the original marginal distributions and correlation. it should have same number of columns as stochastic variables used in the objective. If integer, a base_doe with that number of samples will be created doe_size : int The size of the doe to use. If base_doe is a numpy array, this has no effect and doesn't have to be passed. obj_wgt : float or iterable of floats: If not None, these weights will be used for combining the estimated mean and the variance/std. dev. If iterable, it must be the same length as the number of stochastic input variables as used for the objective function. If None, the variances are returned separetly use_std : bool or iterable of bools Flag to use standard deviation (True) or the variance for the estimation. If iterable, it must be the same length as the number of stochastic input variables as used for the objective function. """ def __init__(self, full_space: FullSpace, base_doe: typing.Union[bool, np.ndarray] = True, doe_size: int = 100, obj_wgt: typing.Optional[typing.Union[float, list, np.ndarray]] = None, use_std: typing.Union[bool, list] = False): self.full_space = full_space num_obj = len(self.full_space.obj_inds["sto"]) self._use_std = _check_std_inds(use_std, num_obj) self._obj_wgt = _check_obj_wgt(obj_wgt, num_obj) self._doe_size = None self._base_doe = None self.doe_size = doe_size self.base_doe = base_doe @property def base_doe(self): """Base doe to use for the moment estimation Don't set this to an array with truncnorm and lognormal distributions in the MultiVariate if you don't know exactly what you are doing. """ return self._base_doe @base_doe.setter def base_doe(self, new_doe): """Base doe to use for the moment estimation Don't set this to an array with truncnorm and lognormal distributions in the MultiVariate if you don't know exactly what you are doing. """ # Sanity checks for base_doe. Using parameters with multiple valid types # may be an antipattern but it makes configuration easier from # the user point of view. Tolerate this for a better user experience. if isinstance(new_doe, np.ndarray): if self._is_valid_base(new_doe): # raises errors self._base_doe = new_doe.copy() # Make our copy. return try: make_base_doe = bool(new_doe) except ValueError: return if make_base_doe: # Prepare doe with zero mean and unit variance doe = self.full_space.inp_space.sto_obj_base_doe(self.doe_size) self._base_doe = doe return # if not bool(new_doe); remake new doe so set base_doe to None self._base_doe = None return def _is_valid_base(self, new_doe): # Assume numpy array n_sto_obj_inps = len(self.full_space.inp_space.inds["sto_obj"]) if new_doe.shape[1] != n_sto_obj_inps: msg = "base_doe must be one of None, bool or a 2d array " msg += f"with shape (num_samples, num_stochastic_objective_variables={n_sto_obj_inps})." raise TypeError(msg) if max(abs(new_doe.mean(0).max()), abs(1 - new_doe.std(0).max())) > 0.5: msg = "base_doe must have zero mean and unit variance." raise ValueError(msg) return True @property def doe_size(self): """Size of the base doe to use for the moment estimation""" return self._doe_size @doe_size.setter def doe_size(self, new_size): """Size of the base doe to use for the moment estimation""" self._doe_size = new_size if self.base_doe is not None: self.base_doe = new_size @property def obj_wgt(self): """Weights for the linear combination of cond. moments""" return self._obj_wgt @obj_wgt.setter def obj_wgt(self, new_obj_wgt): """Weights for the linear combination of cond. moments""" n_obj = len(self.full_space.obj_inds["sto"]) self._obj_wgt = _check_obj_wgt(new_obj_wgt, n_obj) @property def use_std(self): """Indexes to use std. dev. instead of variance""" return self._use_std @use_std.setter def use_std(self, new_std): """Indexes to use std. dev. instead of variance""" n_obj = len(self.full_space.obj_inds["sto"]) self._use_std = _check_std_inds(new_std, n_obj) def gen_doe(self, x_opt): """Get DoE for the Moment estimation for x_opt""" if x_opt.ndim == 1: x_opt = x_opt.reshape((1, -1)) if self.base_doe is None: return self.full_space.inp_space.sto_obj_doe(x_opt, self._doe_size) mean, std = self.full_space.inp_space.opt_moms(x_opt) names = self.full_space.inp_space.mulvar.names names = [names[i] for i in self.full_space.inp_space.mv_inds("sto_obj")] # Translating is not sufficient for lognormal and truncated normal inds = [i for i, x in enumerate(names) if "log" in x or "trunc" in x] if not inds: return self.base_doe * std + mean # Handle Lognormal binds = np.ones(self.base_doe.shape[1], dtype=bool) binds[inds] = False base_doe = self.base_doe.copy() base_doe[:, binds] = base_doe[:, binds] * std[binds] + mean[binds] mean = mean[inds] std = std[inds] cur_mv = self.full_space.inp_space.opt_mulvar(x_opt, domain="sto_obj") for ind in inds: base_doe[:, ind] = cur_mv.dists[ind].marg.ppf(base_doe[:, ind]) return base_doe def est_mom(self, x_opt): """ Estimate conditional moments for a single optimization point x_opt Conditional moments are E[Y | x_opt] and Var[Y | x_opt] Parameters ---------- x_opt : numpy.ndarray the coordinates of the optimization variables to compute the moments Returns ------- mus : numpy.ndarray Estimated means, or if obj_wgt was not None, the combined mu + obj_wgt * sigma sigmas : numpy.ndarray Estimated variances or std. dev. depending on the settings. only returned if obj_wgt is None. """ if x_opt.ndim == 1: x_opt = x_opt.reshape((1, -1)) doe = self.gen_doe(x_opt) res = self.full_space.sto_obj(doe, x_opt) mus = np.mean(res, axis=0) sigmas = np.zeros(mus.shape) std_inds = self.use_std sigmas[std_inds] = np.std(res[:, std_inds], axis=0, ddof=1) var_inds = np.logical_not(std_inds) sigmas[var_inds] = np.var(res[:, var_inds], axis=0, ddof=1) if self.obj_wgt is None: return mus, sigmas return mus + self.obj_wgt * sigmas class CondProba: """A chain of integtrators for the calculation of the probability This starts with a fast integrator to get an initial guess. If the guess is too far away from target_pf, this stops further calculations and returns the failure probability. Used for accelerating the optimization process. Chains with a single element are also possible. Parameters ---------- num_inputs : int Number of stochastic inputs used for the constraints target_fail_prob : float Target failure probability. If unsure, just set it sufficiently low i.e. >=1e-6. Note that Numerical unstabilities start at 1e-9 due to scipy stats returning nans and infs num_parallel : int Number of parallel computations, if the used integrator supports it. If passed, the entry in call_args will override this. methods : None or list of str Names of the methods to use for the estimation. If None, a default chain will be selected depending the problem definition, which is recommended for new users. Currently the following names are supported: MC - Crude Monte Carlo DS - Directional simulation FORM - First order reliability method ISPUD - Importance sampling using design point (MPP) call_args : None or list keyword argument dict to pass to the integrator calc_prob_fail as call arguments. Any argument in this will override the initialization arguments with the same name i.e. target_fp and num_parallel target_tol : float Target tolerance for the failure probability. Also used for stopping the chain, if the computed failure probability is either smaller than target_fp * target_tol or larger than target_fp / target_tol. """ def __init__(self, target_fail_prob: float, num_inputs: int, num_parallel: int = 4, methods: typing.Optional[typing.Union[str, list]] = None, call_args: typing.Optional[dict] = None, target_tol: float = 0.01): self.n_inp = num_inputs num_para = _n_para_chk(num_parallel) cargs = {"num_parallel": num_para, "multi_region": True} if methods is None: methods, cargs = _default_init(target_fail_prob, target_tol, num_inputs, num_para) if call_args is None: self.call_args = {**cargs} else: self.call_args = {**cargs, **call_args} self._tar_fp = target_fail_prob self._tar_tol = target_tol self.workers = _make_chain(methods) self._prob_tol() if "doe" in self.call_args.keys(): doe = self.call_args["doe"] if doe.shape[1] != self.n_inp: msg = f"Shape mismatch between the number of inputs ({self.n_inp}) " msg += f"and the DoE {doe.shape[1]}" raise ValueError() mu_max = np.max(np.mean(doe, axis=0)) sig_max = np.max(np.std(doe, axis=0)) if abs(mu_max) > 1e-10 or abs(sig_max - 1) > 1e-10: msg = "Zero mean and unit variance is required for doe " msg += "in call_args, found mean == {mu_max} and " msg += "sigma == {sig_max} columns" raise ValueError(msg) elif _is_worker(self.workers, "ISPUD"): margs = [stats.norm() for k in range(self.n_inp)] self.call_args["doe"] = make_doe(100, margs, num_tries=1000) self.call_args["post_proc"] = False self.call_args["num_parallel"] = num_para @property def target_fail_prob(self): """target failure probability""" return self._tar_fp @target_fail_prob.setter def target_fail_prob(self, new_fp): """target failure probability""" if new_fp <= 0 or new_fp > 0.9: msg = "Target failure probability should lie in the interval (0,0.9]" raise ValueError(msg) self._tar_fp = new_fp self._prob_tol() @property def target_tol(self): """Target accuracy for failure probability estimation""" return self._tar_tol @target_tol.setter def target_tol(self, new_tol): """Target accuracy for failure probability estimation""" if new_tol <= 0 or new_tol > 0.9: msg = "Target probability accuracy should lie in the interval (0,0.9]" raise ValueError(msg) self._tar_tol = new_tol self._prob_tol() def _prob_tol(self): prob_tol = self._tar_fp * self._tar_tol if _is_worker(self.workers, "MC") and prob_tol < 1e-6: msg = "Crude Monte Carlo can be very inefficient for " msg += "such low probabilities of failure." warnings.warn(msg) self.call_args["prob_tol"] = prob_tol def calc_fail_prob(self, input_mv, constraints, const_args, verbose: int = 0): """ Calculate failure probability using the worker chain Parameters ---------- input_mv : MultiVar instance Definition of the multivariate input constraints : list constraint functions to initialize the integrator const_args : None or list arguments to pass to the constraints Returns: -------- pof : float probability of failure feasible : bool pof <= target_pf """ if not self.workers: raise ValueError("No estimators defined") for worker in self.workers: estimator = worker(input_mv, constraints, const_args) try: pof = estimator.calc_fail_prob(**self.call_args)[0] except ValueError: if worker == self.workers[-1]: print("Fatal error while calculating probability of failure with", worker) print(input_mv) print("Setting it to 100%.") pof = 1. continue if verbose > 1: name = read_integrator_name(worker) print(f"{name} estimated the failure probability as {pof:.2e}.") if pof > self._tar_fp: prob_ratio = self._tar_fp / pof else: prob_ratio = pof / self._tar_fp if prob_ratio <= self._tar_tol: break if verbose > 0: try: name = read_integrator_name(worker) print(f"{name} estimated the failure probability as {pof:.2e}.") except NameError: pass return pof, pof <= self._tar_fp
35.920078
115
0.61475
14,279
0.774896
0
0
3,354
0.182016
0
0
8,433
0.457644
580d37ef443f31d16e61142142999c038e7fd18f
5,352
py
Python
mymodule/twitter_json_parsing.py
sobkovych/TwitterFriendsMap
7fb1a844264334fba443feba3830cca2c86b55c9
[ "MIT" ]
null
null
null
mymodule/twitter_json_parsing.py
sobkovych/TwitterFriendsMap
7fb1a844264334fba443feba3830cca2c86b55c9
[ "MIT" ]
null
null
null
mymodule/twitter_json_parsing.py
sobkovych/TwitterFriendsMap
7fb1a844264334fba443feba3830cca2c86b55c9
[ "MIT" ]
1
2020-02-26T09:20:17.000Z
2020-02-26T09:20:17.000Z
"""Parse json files.""" import json import re def search_for_key(final_key: str, tree: dict, space: list = []): """Search all data for a key. :param final_key: the key :param tree: the data :param space: found values :return: all found values """ if isinstance(tree, dict) and final_key in tree.keys(): space.append(tree[final_key]) tree.pop(final_key) if isinstance(tree, dict): for key in tree: search_for_key(final_key, tree[key]) elif isinstance(tree, list): for item in tree: search_for_key(final_key, item) else: return None return space def check_response(prompt: str, to_return: bool = False, field: (tuple, None) = ({"yes", "y", "true", "t", "1"}, {"no", "n", "false", "f", "0"}), expression: str = None, max_len: int = None, min_len: int = None) -> (bool, str): """Check responce by params. :param prompt: input message :param to_return: whether to return responce :param field: values to avoid/look for :param expression: regular expr check :param max_len: max len check :param min_len: min len check :return: bool or value """ if field: affirm = field[0] if field[0] else None negat = field[1] if field[1] else None else: affirm = negat = None while True: resp = input(prompt).lower() ret_value = resp if to_return else True if affirm and resp in affirm: return ret_value if negat and resp in negat: return False if expression: print(re.compile(expression)) if expression and re.fullmatch(expression, resp): return ret_value if min_len and len(resp) >= min_len: return ret_value if max_len and len(resp) <= max_len: return ret_value else: print("The response is incorrect, try again!") def get_step_by_step(obj): """Parse obj step by step. :param obj: list, dict or other :return: found value or None """ space = [(obj, "JSON")] unsure = check_response("Ask to come back at every step?\n") while True: if isinstance(obj, dict): print("This obj is a dict. These are the available keys:") fill_len = len(max(obj.keys(), key=len)) + 10 for i, key in enumerate(obj): if i % 2 == 0: row = "{}.){}".format(i+1, key) row = row.ljust(fill_len, " ") else: row = "{}.){}\n".format(i+1, key) print(row, end='') key = check_response("\nChose your key by name: ", True, field=(obj, None)) obj = obj[key] elif isinstance(obj, list): print("This obj is a list.") last_key = len(obj)-1 key = check_response( "Choose an index from 0 to {}: ".format(last_key), to_return=True, field=({str(i) for i in range(last_key+1)}, None) ) obj = obj[int(key)] else: print("Your final obj is: {}.".format(obj)) if check_response("Return: {} (y/n)?\n".format(obj)): return obj elif check_response("Come back to any step?\n"): for i, step in enumerate(space): print("Step {}: {}".format(i+1, step[1])) l_space = len(space) step = check_response("Which step to come back to " "within range " "[1, {}]?\n".format(l_space), to_return=True, field=( {str(i+1) for i in range(l_space)}, None )) step = int(step) obj = space[step-1][0] del space[step:] continue else: print("Returning None...") return None space.append((obj, key)) if unsure: while (len(space) > 1 and check_response("Come back to previous step(y/n)?\n")): space.pop() obj = space[-1][0] print("Now at step {}: {}".format(len(space), space[-1][1])) def main(get: str, store: str = None, mode: str = "step"): """Find the leaf(user input) in the tree(method - user input). (from 'kved.json' file) :param store: where to store the result tree. """ with open(get, encoding="utf-8") as f: tree = json.load(f) if check_response("Analyse step by step(y/n)?\n"): print(get_step_by_step(tree)) if check_response("Search for key(y/n)?\n"): user_key = input("Enter your key: ") print(search_for_key(user_key, tree=tree)) if store: with open(store, mode="w+", encoding="utf-8") as outfile: json.dump(tree, outfile, indent=4, ensure_ascii=False) if __name__ == "__main__": main("form.json")
32.047904
77
0.496076
0
0
0
0
0
0
0
0
1,340
0.250374
580d445ca9f82fbb66ddc5c165290139ca728a53
2,795
py
Python
meet/migrations/0001_initial.py
bjones-tech/speedy-meety
a7d557788a544b69fd6ad454d921d9cf02cfa636
[ "MIT" ]
null
null
null
meet/migrations/0001_initial.py
bjones-tech/speedy-meety
a7d557788a544b69fd6ad454d921d9cf02cfa636
[ "MIT" ]
null
null
null
meet/migrations/0001_initial.py
bjones-tech/speedy-meety
a7d557788a544b69fd6ad454d921d9cf02cfa636
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9.2 on 2016-03-17 02:58 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import meet.models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Caller', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default='none', max_length=200)), ('session_id', models.CharField(default='none', max_length=200)), ], ), migrations.CreateModel( name='Meeting', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('room_name', models.CharField(default='none', max_length=200)), ('room_id', models.CharField(default='none', max_length=200)), ('voice_id', models.CharField(default=meet.models.get_voice_id, max_length=200)), ('voice_used', models.BooleanField(default=False)), ('state', models.IntegerField(choices=[(0, 'Staged'), (1, 'In Progress'), (2, 'Completed')], default=0)), ('length', models.IntegerField(default=0)), ('topic_time_limit', models.IntegerField(default=0)), ('queue_next_topic', models.BooleanField(default=False)), ('complete_id', models.CharField(default='none', max_length=200)), ], ), migrations.CreateModel( name='Topic', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(default='none', max_length=200)), ('message_id', models.CharField(default='none', max_length=200)), ('time_left', models.IntegerField(default=0)), ('recording', models.BooleanField(default=False)), ('transcription', models.TextField(blank=True, null=True)), ('meeting', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='meet.Meeting')), ], ), migrations.AddField( model_name='meeting', name='current_topic', field=models.OneToOneField(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='meet.Topic'), ), migrations.AddField( model_name='caller', name='meeting', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='meet.Meeting'), ), ]
43.671875
131
0.586047
2,586
0.925224
0
0
0
0
0
0
464
0.166011
580de9ae168cc442b87908dac6e8235e1d9361f3
284
py
Python
setup.py
jrspruitt/pyfa_gpio
d0f189724b34a2a888dd01b33d237b79ace5becf
[ "MIT" ]
null
null
null
setup.py
jrspruitt/pyfa_gpio
d0f189724b34a2a888dd01b33d237b79ace5becf
[ "MIT" ]
null
null
null
setup.py
jrspruitt/pyfa_gpio
d0f189724b34a2a888dd01b33d237b79ace5becf
[ "MIT" ]
null
null
null
#!/usr/bin/env python from setuptools import setup,find_packages version = '0.1' setup( name='pyfa_gpio', version=version, description='', author='Jason Pruitt', url='https://github.com/jrspruitt/pyfa_gpio', license='MIT', packages = find_packages(), )
17.75
49
0.661972
0
0
0
0
0
0
0
0
98
0.34507
580ec4cbc90960d845dfc3bbcd5951593510c1c2
4,093
py
Python
dps/env/basic/path_discovery.py
alcinos/dps
5467db1216e9f9089376d2c71f524ced2382e4f6
[ "Apache-2.0" ]
null
null
null
dps/env/basic/path_discovery.py
alcinos/dps
5467db1216e9f9089376d2c71f524ced2382e4f6
[ "Apache-2.0" ]
null
null
null
dps/env/basic/path_discovery.py
alcinos/dps
5467db1216e9f9089376d2c71f524ced2382e4f6
[ "Apache-2.0" ]
null
null
null
import tensorflow as tf import numpy as np from dps.register import RegisterBank from dps.env import TensorFlowEnv from dps.utils import Param, Config def build_env(): return PathDiscovery() config = Config( build_env=build_env, curriculum=[ dict(shape=(2, 2), threshold=6), dict(shape=(3, 3), threshold=4), dict(shape=(4, 4), threshold=2) ], env_name='path_discovery', shape=(3, 3), T=10, stopping_criteria="reward_per_ep,max", ) class PathDiscovery(TensorFlowEnv): """ The top-left cell stored an integers which says which of the other 3 corners is the rewarding corner. Agents use the "look" to see which integer is present at the current cell. """ T = Param() shape = Param() n_val = Param() require_discovery = Param(True) def __init__(self, **kwargs): self.action_names = '^ > v < look'.split() self.action_shape = (len(self.action_names),) self.rb = RegisterBank('PathDiscoveryRB', 'x y vision action', 'discovered', [0.0, 0.0, -1.0, 0.0, 0.0], 'x y') self.val_input = self._make_input(self.n_val) self.test_input = self._make_input(self.n_val) super(PathDiscovery, self).__init__() def _make_input(self, batch_size): start_x = np.random.randint(self.shape[0], size=(batch_size, 1)) start_y = np.random.randint(self.shape[1], size=(batch_size, 1)) grid = np.random.randint(3, size=(batch_size, np.product(self.shape))) return np.concatenate([start_x, start_y, grid], axis=1).astype('f') def _build_placeholders(self): self.input = tf.placeholder(tf.float32, (None, 2+np.product(self.shape))) def _make_feed_dict(self, n_rollouts, T, mode): if mode == 'train': inp = self._make_input(n_rollouts) elif mode == 'val': inp = self.val_input elif mode == 'test': inp = self.test_input else: raise Exception("Unknown mode: {}.".format(mode)) if n_rollouts is not None: inp = inp[:n_rollouts, :] return {self.input: inp} def build_init(self, r): return self.rb.wrap(x=self.input[:, 0:1], y=self.input[:, 1:2], vision=r[:, 2:3], action=r[:, 3:4], discovered=r[:, 4:5]) def build_step(self, t, r, actions): x, y, vision, action, discovered = self.rb.as_tuple(r) up, right, down, left, look = tf.split(actions, 5, axis=1) new_y = (1 - down - up) * y + down * (y+1) + up * (y-1) new_x = (1 - right - left) * x + right * (x+1) + left * (x-1) new_y = tf.clip_by_value(new_y, 0.0, self.shape[0]-1) new_x = tf.clip_by_value(new_x, 0.0, self.shape[1]-1) idx = tf.cast(y * self.shape[1] + x, tf.int32) new_vision = tf.reduce_sum( tf.one_hot(tf.reshape(idx, (-1,)), np.product(self.shape)) * self.input[:, 2:], axis=1, keepdims=True) vision = (1 - look) * vision + look * new_vision action = tf.cast(tf.reshape(tf.argmax(actions, axis=1), (-1, 1)), tf.float32) top_left = tf.cast(tf.equal(idx, 0), tf.float32) discovered = discovered + look * top_left discovered = tf.minimum(discovered, 1.0) new_registers = self.rb.wrap(x=new_x, y=new_y, vision=vision, action=action, discovered=discovered) top_right = tf.cast(tf.equal(idx, self.shape[1]-1), tf.float32) bottom_left = tf.cast(tf.equal(idx, (self.shape[0]-1) * self.shape[1]), tf.float32) bottom_right = tf.cast(tf.equal(idx, self.shape[0] * self.shape[1] - 1), tf.float32) reward = ( top_right * tf.cast(tf.equal(self.input[:, 2:3], 0), tf.float32) + bottom_left * tf.cast(tf.equal(self.input[:, 2:3], 1), tf.float32) + bottom_right * tf.cast(tf.equal(self.input[:, 2:3], 2), tf.float32) ) if self.require_discovery: reward = reward * discovered return tf.fill((tf.shape(r)[0], 1), 0.0), reward, new_registers
36.221239
109
0.590765
3,598
0.879062
0
0
0
0
0
0
339
0.082824
5810e3bb40adfc4d345436082de3af836eeff704
14,812
py
Python
utils/github/query.py
malkfilipp/ClickHouse
79a206b092cd465731020f331bc41f6951dbe751
[ "Apache-2.0" ]
1
2019-09-16T11:07:32.000Z
2019-09-16T11:07:32.000Z
utils/github/query.py
malkfilipp/ClickHouse
79a206b092cd465731020f331bc41f6951dbe751
[ "Apache-2.0" ]
null
null
null
utils/github/query.py
malkfilipp/ClickHouse
79a206b092cd465731020f331bc41f6951dbe751
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import requests class Query: '''Implements queries to the Github API using GraphQL ''' def __init__(self, token, max_page_size=100, min_page_size=5): self._token = token self._max_page_size = max_page_size self._min_page_size = min_page_size self.api_costs = {} _MEMBERS = ''' organization(login: "{organization}") {{ team(slug: "{team}") {{ members(first: {max_page_size} {next}) {{ pageInfo {{ hasNextPage endCursor }} nodes {{ login }} }} }} }} ''' def get_members(self, organization, team): '''Get all team members for organization Returns: logins: a list of members' logins ''' logins = [] not_end = True query = Query._MEMBERS.format(organization=organization, team=team, max_page_size=self._max_page_size, next='') while not_end: result = self._run(query)['organization']['team'] if result is None: break result = result['members'] not_end = result['pageInfo']['hasNextPage'] query = Query._MEMBERS.format(organization=organization, team=team, max_page_size=self._max_page_size, next=f'after: "{result["pageInfo"]["endCursor"]}"') logins += [node['login'] for node in result['nodes']] return logins _LABELS = ''' repository(owner: "yandex" name: "ClickHouse") {{ pullRequest(number: {number}) {{ labels(first: {max_page_size} {next}) {{ pageInfo {{ hasNextPage endCursor }} nodes {{ name color }} }} }} }} ''' def get_labels(self, pull_request): '''Fetchs all labels for given pull-request Args: pull_request: JSON object returned by `get_pull_requests()` Returns: labels: a list of JSON nodes with the name and color fields ''' labels = [label for label in pull_request['labels']['nodes']] not_end = pull_request['labels']['pageInfo']['hasNextPage'] query = Query._LABELS.format(number = pull_request['number'], max_page_size = self._max_page_size, next=f'after: "{pull_request["labels"]["pageInfo"]["endCursor"]}"') while not_end: result = self._run(query)['repository']['pullRequest']['labels'] not_end = result['pageInfo']['hasNextPage'] query = Query._LABELS.format(number=pull_request['number'], max_page_size=self._max_page_size, next=f'after: "{result["pageInfo"]["endCursor"]}"') labels += [label for label in result['nodes']] return labels _TIMELINE = ''' repository(owner: "yandex" name: "ClickHouse") {{ pullRequest(number: {number}) {{ timeline(first: {max_page_size} {next}) {{ pageInfo {{ hasNextPage endCursor }} nodes {{ ... on CrossReferencedEvent {{ isCrossRepository source {{ ... on PullRequest {{ number baseRefName merged labels(first: {max_page_size}) {{ pageInfo {{ hasNextPage endCursor }} nodes {{ name color }} }} }} }} target {{ ... on PullRequest {{ number }} }} }} }} }} }} }} ''' def get_timeline(self, pull_request): '''Fetchs all cross-reference events from pull-request's timeline Args: pull_request: JSON object returned by `get_pull_requests()` Returns: events: a list of JSON nodes for CrossReferenceEvent ''' events = [event for event in pull_request['timeline']['nodes'] if event and event['source']] not_end = pull_request['timeline']['pageInfo']['hasNextPage'] query = Query._TIMELINE.format(number = pull_request['number'], max_page_size = self._max_page_size, next=f'after: "{pull_request["timeline"]["pageInfo"]["endCursor"]}"') while not_end: result = self._run(query)['repository']['pullRequest']['timeline'] not_end = result['pageInfo']['hasNextPage'] query = Query._TIMELINE.format(number=pull_request['number'], max_page_size=self._max_page_size, next=f'after: "{result["pageInfo"]["endCursor"]}"') events += [event for event in result['nodes'] if event and event['source']] return events _PULL_REQUESTS = ''' repository(owner: "yandex" name: "ClickHouse") {{ defaultBranchRef {{ name target {{ ... on Commit {{ history(first: {max_page_size} {next}) {{ pageInfo {{ hasNextPage endCursor }} nodes {{ oid associatedPullRequests(first: {min_page_size}) {{ totalCount nodes {{ ... on PullRequest {{ number author {{ login }} mergedBy {{ login }} url baseRefName baseRepository {{ nameWithOwner }} mergeCommit {{ oid }} labels(first: {min_page_size}) {{ pageInfo {{ hasNextPage endCursor }} nodes {{ name color }} }} timeline(first: {min_page_size}) {{ pageInfo {{ hasNextPage endCursor }} nodes {{ ... on CrossReferencedEvent {{ isCrossRepository source {{ ... on PullRequest {{ number baseRefName merged labels(first: 0) {{ nodes {{ name }} }} }} }} target {{ ... on PullRequest {{ number }} }} }} }} }} }} }} }} }} }} }} }} }} }} ''' def get_pull_requests(self, before_commit, login): '''Get all merged pull-requests from the HEAD of default branch to the last commit (excluding) Args: before_commit (string-convertable): commit sha of the last commit (excluding) login (string): filter pull-requests by user login Returns: pull_requests: a list of JSON nodes with pull-requests' details ''' pull_requests = [] not_end = True query = Query._PULL_REQUESTS.format(max_page_size=self._max_page_size, min_page_size=self._min_page_size, next='') while not_end: result = self._run(query)['repository']['defaultBranchRef'] default_branch_name = result['name'] result = result['target']['history'] not_end = result['pageInfo']['hasNextPage'] query = Query._PULL_REQUESTS.format(max_page_size=self._max_page_size, min_page_size=self._min_page_size, next=f'after: "{result["pageInfo"]["endCursor"]}"') for commit in result['nodes']: if str(commit['oid']) == str(before_commit): not_end = False break # TODO: fetch all pull-requests that were merged in a single commit. assert commit['associatedPullRequests']['totalCount'] <= self._min_page_size, \ f'there are {commit["associatedPullRequests"]["totalCount"]} pull-requests merged in commit {commit["oid"]}' for pull_request in commit['associatedPullRequests']['nodes']: if(pull_request['baseRepository']['nameWithOwner'] == 'yandex/ClickHouse' and pull_request['baseRefName'] == default_branch_name and pull_request['mergeCommit']['oid'] == commit['oid'] and (not login or pull_request['author']['login'] == login)): pull_requests.append(pull_request) return pull_requests _DEFAULT = ''' repository(owner: "yandex", name: "ClickHouse") { defaultBranchRef { name } } ''' def get_default_branch(self): '''Get short name of the default branch Returns: name (string): branch name ''' return self._run(Query._DEFAULT)['repository']['defaultBranchRef']['name'] def _run(self, query): from requests.adapters import HTTPAdapter from urllib3.util.retry import Retry def requests_retry_session( retries=3, backoff_factor=0.3, status_forcelist=(500, 502, 504), session=None, ): session = session or requests.Session() retry = Retry( total=retries, read=retries, connect=retries, backoff_factor=backoff_factor, status_forcelist=status_forcelist, ) adapter = HTTPAdapter(max_retries=retry) session.mount('http://', adapter) session.mount('https://', adapter) return session headers = {'Authorization': f'bearer {self._token}'} query = f''' {{ {query} rateLimit {{ cost remaining }} }} ''' request = requests_retry_session().post('https://api.github.com/graphql', json={'query': query}, headers=headers) if request.status_code == 200: result = request.json() if 'errors' in result: raise Exception(f'Errors occured: {result["errors"]}') import inspect caller = inspect.getouterframes(inspect.currentframe(), 2)[1][3] if caller not in self.api_costs.keys(): self.api_costs[caller] = 0 self.api_costs[caller] += result['data']['rateLimit']['cost'] return result['data'] else: import json raise Exception(f'Query failed with code {request.status_code}:\n{json.dumps(request.json(), indent=4)}')
41.96034
128
0.369498
14,768
0.997029
0
0
0
0
0
0
9,426
0.636376
5811d6d7e749badbaa3acffda48486b057d48a0e
4,404
py
Python
mortgage/mortgage.py
roelbertens/mortgages
b5fe415024933c772e6c7c57f041bf065ac86176
[ "MIT" ]
1
2019-08-19T07:09:58.000Z
2019-08-19T07:09:58.000Z
mortgage/mortgage.py
roelbertens/mortgages
b5fe415024933c772e6c7c57f041bf065ac86176
[ "MIT" ]
null
null
null
mortgage/mortgage.py
roelbertens/mortgages
b5fe415024933c772e6c7c57f041bf065ac86176
[ "MIT" ]
null
null
null
from typing import List import matplotlib.pyplot as plt class Mortgage: """ A mortgage overview of the total burden (incl. interest) and the monthly fees per fixed period """ def __init__(self, mortgage_amount, burden, periods, monthly_fees, name): self.mortgage_amount = int(mortgage_amount) self.burden = int(burden) self.periods = periods.copy() self.monthly_fees = [int(fee) for fee in monthly_fees] self.name = name def __add__(self, other): if not other: return self mortgage_amount = self.mortgage_amount + other.mortgage_amount burden = self.burden + other.burden periods, monthly_fees = _align_mortgages(periods_a=self.periods, periods_b=other.periods, fees_a=self.monthly_fees, fees_b=other.monthly_fees) name = self.name if other.name != self.name: name += ' & ' + other.name return Mortgage(mortgage_amount=mortgage_amount, burden=burden, periods=periods, monthly_fees=monthly_fees, name=name) def __radd__(self, other): return self + other def __repr__(self): text = (f'{self.name}: {format(self.mortgage_amount, ",d")} euro\n' f'Total burden: {format(self.burden, ",d")} euro\n' 'Monthly fees:\n') for period, fee in zip(self.periods, self.monthly_fees): text += f'- {period} months: {fee} euro\'s\n' return text def plot(self, axes=None) -> plt.axes: if axes is None: fig, axes = plt.subplots(2, 1, figsize=(5, 8)) nr_periods = len(self.periods) axes[0].bar(x=range(nr_periods), height=self.monthly_fees, tick_label=self.periods, color='darkblue') axes[0].set_xlabel('Period (months)') axes[0].set_ylabel('Monthly fee\n', color='darkblue') axes[0].set_title(f'Subsequent monthly fees\nover the specified periods\n\n{self}\n') axes[1].bar(x=[0, 1], height=[self.mortgage_amount, self.burden], color='purple') axes[1].set_ylabel('\nAmount (euro)', color='purple') axes[1].set_xlabel('') axes[1].set_xticks([0, 1]) axes[1].set_xticklabels([f'Mortgage\n{format(self.mortgage_amount, ",d")}', f'Total burden\n{format(self.burden, ",d")}']) plt.tight_layout() return axes def compare(self, others: list) -> plt.axes: mortgages = [self] + others nr_mortgages = len(mortgages) fig, axes = plt.subplots(2, nr_mortgages, figsize=(nr_mortgages * 3, 8), sharey='row') for col_axes, mortgage in zip(axes.T, mortgages): mortgage.plot(axes=col_axes) plt.tight_layout() return axes def _align_mortgages(periods_a: List[int], periods_b: List[int], fees_a: List[int], fees_b: List[int]) -> (List[int], List[int]): """ Align periods and fees of two mortgages and compute the exact fee for each period. :param periods_a: periods for Mortgage a :param periods_b: periods for Mortgage b :param fees_a: monthly fees for Mortgage a :param fees_b: monthly fees for Mortgage b :return: tuple of aligned periods and fees for the combined Mortgages a and b """ periods_a, periods_b, fees_a, fees_b = \ periods_a.copy(), periods_b.copy(), fees_a.copy(), fees_b.copy() if not periods_a: if not periods_b: return [], [] else: return periods_b, fees_b elif not periods_b: return periods_a, fees_a if periods_b[0] < periods_a[0]: periods_a, periods_b = periods_b, periods_a fees_a, fees_b = fees_b, fees_a first_period_fee = ([periods_a[0]], [fees_a[0] + fees_b[0]]) if periods_a[0] == periods_b[0]: recursive_result = _align_mortgages(periods_a[1:], periods_b[1:], fees_a[1:], fees_b[1:]) else: periods_b[0] -= periods_a[0] recursive_result = _align_mortgages(periods_a[1:], periods_b, fees_a[1:], fees_b) return tuple(a + b for a, b in zip(first_period_fee, recursive_result))
38.631579
98
0.584923
2,937
0.666894
0
0
0
0
0
0
891
0.202316
58127a028ca7d4bb09bc84dec02f9d31b1e190c3
32,827
py
Python
training/wml_train.py
corvy/MAX-Object-Detector
2a21183e6bb9d0c35bac297ee3cf1fc67f4c048f
[ "Apache-2.0" ]
1
2019-10-25T11:36:46.000Z
2019-10-25T11:36:46.000Z
training/wml_train.py
karankrish/MAX-Image-Segmenter
2d5d080f4a3d7db1aa4cf320ab35b3e157a6f485
[ "Apache-2.0" ]
1
2019-07-08T17:58:45.000Z
2019-09-05T18:07:45.000Z
training/wml_train.py
karankrish/MAX-Image-Segmenter
2d5d080f4a3d7db1aa4cf320ab35b3e157a6f485
[ "Apache-2.0" ]
1
2019-10-30T20:42:46.000Z
2019-10-30T20:42:46.000Z
#!/usr/bin/env python # # Copyright 2018-2019 IBM Corp. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import glob import os import re import shutil import sys import tarfile import time from enum import Enum from zipfile import ZipFile from utils.debug import debug from utils.os_util import copy_dir from utils.config import YAMLReader, ConfigParseError, ConfigurationError from utils.wml import WMLWrapper, WMLWrapperError from utils.cos import COSWrapper, COSWrapperError, BucketNotFoundError class ExitCode(Enum): """ Defines the exit codes for this utility """ SUCCESS = 0 INCORRECT_INVOCATION = 1 ENV_ERROR = 2 CONFIGURATION_ERROR = 3 PRE_PROCESSING_FAILED = 4 TRAINING_FAILED = 5 DOWNLOAD_FAILED = 6 EXTRACTION_FAILED = 7 COPY_FAILED = 8 TRAINING_LOG_NAME = 'training-log.txt' # fixed; do not change TRAINING_OUTPUT_ARCHIVE_NAME = 'model_training_output.tar.gz' # do not change def print_banner(message): print('# --------------------------------------------------------') print('# {}'.format(message)) print('# --------------------------------------------------------') # -------------------------------------------------------- # Process command line parameters # -------------------------------------------------------- def process_cmd_parameters(): """ Process command line parameters. This function terminates the application if an invocation error was detected. :returns: dict, containing two properties: 'config_file' and 'command' :rtype: dict """ def display_usage(): print('--------------------------------------------------------' '--------------------------------------------') print('Train a MAX model using Watson Machine Learning. ') print('\nUsage: {} <training_config_file> <command> \n' .format(sys.argv[0])) print('Valid commands:') print(' clean ' 'removes local model training artifacts') print(' prepare ' 'generates model training artifacts but skips model training') print(' train ' 'generates model training artifacts and trains the model') print(' package ' 'generates model training artifacts, trains the model, and ' 'performs post processing') print(' package <training_id> ' 'monitors the training status and performs post processing') print('--------------------------------------------------------' '--------------------------------------------') if len(sys.argv) <= 1: # no arguments were provided; display usage information display_usage() sys.exit(ExitCode.SUCCESS.value) if os.path.isfile(sys.argv[1]) is False: print('Invocation error. "{}" is not a file.'.format(sys.argv[1])) display_usage() sys.exit(ExitCode.INCORRECT_INVOCATION.value) if len(sys.argv) < 3: print('Invocation error. You must specify a command.') display_usage() sys.exit(ExitCode.INCORRECT_INVOCATION.value) cmd_parameters = { 'config_file': sys.argv[1], 'command': sys.argv[2].strip().lower(), 'training_id': None } if cmd_parameters['command'] not in ['clean', 'prepare', 'train', 'package']: print('Invocation error. "{}" is not a valid command.' .format(sys.argv[2])) display_usage() sys.exit(ExitCode.INCORRECT_INVOCATION.value) if cmd_parameters['command'] == 'package': # package accepts as optional parameter an existing training id if len(sys.argv) == 4: cmd_parameters['training_id'] = sys.argv[3] return cmd_parameters cmd_parameters = process_cmd_parameters() # -------------------------------------------------------- # Verify that the required environment variables are set # -------------------------------------------------------- def verify_env_settings(): print_banner('Checking environment variables ...') var_missing = False # WML environment variables for var_name in ['ML_ENV', 'ML_APIKEY', 'ML_INSTANCE']: if os.environ.get(var_name) is None: print(' Error. Environment variable {} is not defined.' .format(var_name)) var_missing = True # Cloud Object Storage environment variables for var_name in ['AWS_ACCESS_KEY_ID', 'AWS_SECRET_ACCESS_KEY']: if os.environ.get(var_name) is None: print(' Error. Environment variable {} is not defined.' .format(var_name)) var_missing = True if var_missing: sys.exit(ExitCode.ENV_ERROR.value) verify_env_settings() # -------------------------------------------------------- # Process configuration file # -------------------------------------------------------- print_banner('Validating configuration file "{}" ...' .format(cmd_parameters['config_file'])) config = None try: r = YAMLReader(cmd_parameters['config_file']) config = r.read() except ConfigurationError as ce: for missing_setting in ce.get_missing_settings(): print('Error. Configuration file "{}" does not' ' define setting "{}".' .format(cmd_parameters['config_file'], missing_setting.get('yaml_path'))) sys.exit(ExitCode.CONFIGURATION_ERROR.value) except ConfigParseError as cpe: print('Error. Configuration file "{}" is invalid: {}' .format(cmd_parameters['config_file'], str(cpe))) sys.exit(ExitCode.CONFIGURATION_ERROR.value) except FileNotFoundError: print('Error. Configuration file "{}" was not found.' .format(cmd_parameters['config_file'])) sys.exit(ExitCode.INVOCATION_ERROR.value) debug('Using the following configuration settings: ', config) cw = None # COS wrapper handle w = None # WML wrapper handle training_guid = cmd_parameters.get('training_id', None) if cmd_parameters['command'] == 'package' and training_guid is not None: # monitor status of an existing training run; skip preparation steps try: # instantiate Cloud Object Storage wrapper cw = COSWrapper(os.environ['AWS_ACCESS_KEY_ID'], os.environ['AWS_SECRET_ACCESS_KEY']) except COSWrapperError as cwe: print('Error. Cloud Object Storage preparation failed: {}'.format(cwe)) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) print_banner('Verifying that "{}" is a valid training id ...' .format(training_guid)) try: # instantiate Watson Machine Learning wrapper w = WMLWrapper(os.environ['ML_ENV'], os.environ['ML_APIKEY'], os.environ['ML_INSTANCE']) # verify that the provided training id is valid if not w.is_known_training_id(training_guid): print('Error. "{}" is an unknown training id.' .format(training_guid)) sys.exit(ExitCode.INCORRECT_INVOCATION.value) except WMLWrapperError as wmle: print(wmle) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) except Exception as ex: print(' Exception type: {}'.format(type(ex))) print(' Exception: {}'.format(ex)) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) else: # -------------------------------------------------------- # Remove existing model training artifacts # -------------------------------------------------------- print_banner('Removing temporary work files ...') for file in [config['model_code_archive']]: if os.path.isfile(file): os.remove(file) # terminate if the "clean" command was specified # when the utility was invoked if cmd_parameters['command'] == 'clean': print('Skipping model training.') sys.exit(ExitCode.SUCCESS.value) # -------------------------------------------------------- # Verify the Cloud Object Storage configuration: # - the results bucket must exist # -------------------------------------------------------- print_banner('Verifying Cloud Object Storage setup ...') try: # instantiate the Cloud Object Storage wrapper cw = COSWrapper(os.environ['AWS_ACCESS_KEY_ID'], os.environ['AWS_SECRET_ACCESS_KEY']) print(' Verifying that training results bucket "{}" exists. ' ' It will be created if necessary ...' .format(config['results_bucket'])) # make sure the training results bucket exists; # it can be empty, but doesn't have to be cw.create_bucket(config['results_bucket'], exist_ok=True) print(' Verifying that training data bucket "{}" exists. ' ' It will be created if necessary ...' .format(config['training_bucket'])) # make sure the training data bucket exists; cw.create_bucket(config['training_bucket'], exist_ok=True) # if there are any initial_model artifacts in ther training bucket # remove them im_object_list = cw.get_object_list(config['training_bucket'], key_name_prefix='initial_model') if len(im_object_list) > 0: print(' Removing model artifacts from training bucket "{}" ... ' .format(config['training_bucket'])) cw.delete_objects(config['training_bucket'], im_object_list) # is there training data in the bucket? no_training_data = cw.is_bucket_empty(config['training_bucket']) if config.get('local_data_dir') and \ os.path.isdir(config['local_data_dir']): config['local_data_dir'] = \ os.path.abspath(config['local_data_dir']) # add initial_model artifacts to bucket if config.get('local_data_dir') and \ os.path.isdir(config['local_data_dir']): initial_model_path = os.path.join(config['local_data_dir'], 'initial_model') print(' Looking for model artifacts in "{}" ... ' .format(initial_model_path)) for file in glob.iglob(initial_model_path + '/**/*', recursive=True): if os.path.isfile(file): print(' Uploading model artifact "{}" to ' 'training data bucket "{}" ...' .format(file[len(initial_model_path):].lstrip('/'), config['training_bucket'])) cw.upload_file(file, config['training_bucket'], 'initial_model', file[len(initial_model_path):] .lstrip('/')) print(' Looking for training data in bucket "{}" ... ' .format(config['training_bucket'])) # if there's no training data in the training data bucket # upload whatever is found locally if no_training_data: print(' No training data was found.') if config.get('local_data_dir', None) is None: # error. there is no local training data either; # abort processing print('Error. No local training data was found. ' 'Please check your configuration settings.') sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) # verify that local_data_dir is a directory if not os.path.isdir(config['local_data_dir']): print('Error. "{}" is not a directory or cannot be accessed.' .format(config['local_data_dir'])) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) # upload training data from the local data directory print(' Looking for training data in "{}" ... ' .format(config['local_data_dir'])) file_count = 0 ignore_list = [] ignore_list.append(os.path.join(config['local_data_dir'], 'README.md')) for file in glob.iglob(config['local_data_dir'] + '/**/*', recursive=True): if file in ignore_list or file.startswith(initial_model_path): continue if os.path.isfile(file): print(' Uploading "{}" to training data bucket "{}" ...' .format(file[len(config['local_data_dir']):] .lstrip('/'), config['training_bucket'])) cw.upload_file(file, config['training_bucket'], config.get('training_data_key_prefix'), file[len(config['local_data_dir']):] .lstrip('/')) file_count += 1 if file_count == 0: print('Error. No local training data was found in "{}".' .format(config['local_data_dir'])) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) else: print('Uploaded {} data files to training data bucket "{}".' .format(file_count, config['training_bucket'])) else: print(' Found data in training data bucket "{}". Skipping upload.' .format(config['training_bucket'])) except ValueError as ve: print('Error. {}'.format(ve)) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) except BucketNotFoundError as bnfe: print('Error. {}'.format(bnfe)) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) except FileNotFoundError as fnfe: print('Error. {}'.format(fnfe)) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) except COSWrapperError as cwe: print('Error. Cloud Object Storage preparation failed: {}'.format(cwe)) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) # -------------------------------------------------------- # Create model building ZIP # -------------------------------------------------------- print_banner('Locating model building files ...') # # 1. Assure that the model building directory # config['model_building_code_dir'] exists # 2. If there are no files in config['model_building_code_dir']: # - determine whether model-building code is stored in a COS bucket # - download model-building code to config['model_building_code_dir'] # 3. ZIP files in config['model_building_code_dir'] try: # task 1: make sure the specified model building code directory exists os.makedirs(config['model_building_code_dir'], exist_ok=True) except Exception as ex: debug(' Exception type: {}'.format(type(ex))) print('Error. Model building code preparation failed: {}'.format(ex)) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) if len(os.listdir(config['model_building_code_dir'])) == 0: # Task 2: try to download model building code from Cloud Object Storage # bucket # print('No model building code was found in "{}".' .format(config['model_building_code_dir'])) try: if config.get('model_bucket') is None or \ cw.is_bucket_empty(config['model_bucket'], config.get('model_key_prefix')): print('Error. Model building code preparation failed: ' 'No source code was found locally in "{}" or ' ' in Cloud Object Storage.' .format(config['model_building_code_dir'])) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) print('Found model building code in bucket "{}".' .format(config['model_bucket'])) for object_key in cw.get_object_list(config['model_bucket'], config.get( 'model_key_prefix')): cw.download_file(config['model_bucket'], object_key, config['model_building_code_dir']) except BucketNotFoundError as bnfe: print('Error. {}'.format(bnfe)) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) except COSWrapperError as cwe: print('Error. {}'.format(cwe)) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) except Exception as ex: debug(' Exception type: {}'.format(type(ex))) print('Error. {}'.format(ex)) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) print_banner('Packaging model building files in "{}" ...' .format(config['model_building_code_dir'])) try: shutil.make_archive(re.sub('.zip$', '', config['model_code_archive']), 'zip', config['model_building_code_dir']) except Exception as ex: print('Error. Packaging failed: {}'.format(str(ex))) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) if os.path.isfile(config['model_code_archive']): # display archive content print('Model building package "{}" contains the following entries:' .format(config['model_code_archive'])) with ZipFile(config['model_code_archive'], 'r') as archive: for entry in sorted(archive.namelist()): print(' {}'.format(entry)) # check archive size; WML limits size to 4MB archive_size = os.path.getsize(config['model_code_archive']) archive_size_limit = 1024 * 1024 * 4 if archive_size > archive_size_limit: print('Error. Your model building code archive "{}" is too large ' '({:.2f} MB). WLM rejects archives larger than {} MB. ' 'Please remove unnecessary files from the "{}" directory ' 'and try again.' .format(config['model_code_archive'], archive_size / (1024 * 1024), archive_size_limit / (1024 * 1024), config['model_building_code_dir'])) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) # Status: # - The model training job can now be started. if cmd_parameters['command'] == 'prepare': print('Skipping model training and post processing steps.') sys.exit(ExitCode.SUCCESS.value) # --------------------------------------------------------- # Start model training # -------------------------------------------------------- print_banner('Starting model training ...') try: # instantiate the WML client w = WMLWrapper(os.environ['ML_ENV'], os.environ['ML_APIKEY'], os.environ['ML_INSTANCE']) except WMLWrapperError as wmle: print(wmle) sys.exit(ExitCode.PRE_PROCESSING_FAILED.value) # define training metadata model_definition_metadata = { w.get_client().repository.DefinitionMetaNames.NAME: config['training_run_name'], w.get_client().repository.DefinitionMetaNames.DESCRIPTION: config['training_run_description'], w.get_client().repository.DefinitionMetaNames.AUTHOR_NAME: config['author_name'], w.get_client().repository.DefinitionMetaNames.FRAMEWORK_NAME: config['framework_name'], w.get_client().repository.DefinitionMetaNames.FRAMEWORK_VERSION: config['framework_version'], w.get_client().repository.DefinitionMetaNames.RUNTIME_NAME: config['runtime_name'], w.get_client().repository.DefinitionMetaNames.RUNTIME_VERSION: config['runtime_version'], w.get_client().repository.DefinitionMetaNames.EXECUTION_COMMAND: config['training_run_execution_command'] } training_configuration_metadata = { w.get_client().training.ConfigurationMetaNames.NAME: config['training_run_name'], w.get_client().training.ConfigurationMetaNames.AUTHOR_NAME: config['author_name'], w.get_client().training.ConfigurationMetaNames.DESCRIPTION: config['training_run_description'], w.get_client().training.ConfigurationMetaNames.COMPUTE_CONFIGURATION: {'name': config['training_run_compute_configuration_name']}, w.get_client().training.ConfigurationMetaNames .TRAINING_DATA_REFERENCE: { 'connection': { 'endpoint_url': config['cos_endpoint_url'], 'access_key_id': os.environ['AWS_ACCESS_KEY_ID'], 'secret_access_key': os.environ['AWS_SECRET_ACCESS_KEY'] }, 'source': { 'bucket': config['training_bucket'], }, 'type': 's3' }, w.get_client().training.ConfigurationMetaNames .TRAINING_RESULTS_REFERENCE: { 'connection': { 'endpoint_url': config['cos_endpoint_url'], 'access_key_id': os.environ['AWS_ACCESS_KEY_ID'], 'secret_access_key': os.environ['AWS_SECRET_ACCESS_KEY'] }, 'target': { 'bucket': config['results_bucket'], }, 'type': 's3' } } print('Training configuration summary:') print(' Training run name : {}'.format(config['training_run_name'])) print(' Training data bucket : {}'.format(config['training_bucket'])) print(' Results bucket : {}'.format(config['results_bucket'])) print(' Model-building archive: {}'.format(config['model_code_archive'])) try: training_guid = w.start_training(config['model_code_archive'], model_definition_metadata, training_configuration_metadata) except Exception as ex: print('Error. Model training could not be started: {}'.format(ex)) sys.exit(ExitCode.TRAINING_FAILED.value) print('Model training was started. Training id: {}'.format(training_guid)) # -------------------------------------------------------- # Monitor the training run until it completes # successfully or throws an error # -------------------------------------------------------- # print('Checking model training status every {} seconds.' ' Press Ctrl+C once to stop monitoring or ' ' press Ctrl+C twice to cancel training.' .format(config['training_progress_monitoring_interval'])) print('Status - (p)ending (r)unning (e)rror (c)ompleted or canceled:') try: training_in_progress = True while training_in_progress: try: # poll training status; ignore server errors (e.g. caused # by temporary issues not specific to our training run) status = w.get_training_status(training_guid, ignore_server_error=True) if status: training_status = status.get('state') or '?' else: # unknown status; continue and leave it up to the user # to terminate monitoring training_status = '?' # display training status indicator # [p]ending # [r]unning # [c]ompleted # [e]rror # [?] print(training_status[0:1], end='', flush=True) if training_status == 'completed': # training completed successfully print('\nTraining completed.') training_in_progress = False elif training_status == 'error': print('\nTraining failed.') # training ended with error training_in_progress = False elif training_status == 'canceled': print('\nTraining canceled.') # training ended with error training_in_progress = False else: time.sleep( int(config['training_progress_monitoring_interval'])) except KeyboardInterrupt: print('\nTraining monitoring was stopped.') try: input('Press Ctrl+C again to cancel model training or ' 'any other key to continue training.') print('To resume monitoring, run "python {} {} {} {}"' .format(sys.argv[0], sys.argv[1], 'package', training_guid)) sys.exit(ExitCode.SUCCESS.value) except KeyboardInterrupt: try: w.cancel_training(training_guid) print('\nModel training was canceled.') except Exception as ex: print('Model training could not be canceled: {}' .format(ex)) debug(' Exception type: {}'.format(type(ex))) debug(' Exception: {}'.format(ex)) sys.exit(ExitCode.TRAINING_FAILED.value) except Exception as ex: print('Error. Model training monitoring failed with an exception: {}' .format(ex)) debug(' Exception type: {}'.format(type(ex))) debug(' Exception: {}'.format(ex)) sys.exit(ExitCode.TRAINING_FAILED.value) # Status: # - The model training job completed. # - The training log file TRAINING_LOG_NAME can now be downloaded from COS. results_references = None try: # -------------------------------------------------------- # Identify where the training artifacts are stored on COS # { # 'bucket': 'ademoout3', # 'model_location': 'training-BA8P0BgZg' # } # Re-try to fetch information multiple times in case the WML service # encounters a temporary issue max_tries = 5 ise = True for count in range(max_tries): results_references = \ w.get_training_results_references(training_guid, ignore_server_error=ise) if results_references: # got a response; move on break if count + 1 == max_tries: # last attempt; if it fails stop trying ise = False time.sleep(3) # -------------------------------------------------------- # Download the training log file from the results # bucket on COS to config['local_download_directory'] # -------------------------------------------------------- print_banner('Downloading training log file "{}" ...' .format(TRAINING_LOG_NAME)) training_log = cw.download_file(results_references['bucket'], TRAINING_LOG_NAME, config['local_download_directory'], results_references['model_location']) if training_status in ['error', 'canceled']: # Training ended with an error or was canceled. # Notify the user where the training log file was stored and exit. print('The training log file "{}" was saved in "{}".' .format(TRAINING_LOG_NAME, config['local_download_directory'])) sys.exit(ExitCode.TRAINING_FAILED.value) except Exception as ex: print('Error. Download of training log file "{}" failed: {}' .format(TRAINING_LOG_NAME, ex)) sys.exit(ExitCode.DOWNLOAD_FAILED.value) # terminate if the "train" command was specified # when the utility was invoked if cmd_parameters['command'] == 'train': print('Skipping post-processing steps.') sys.exit(ExitCode.SUCCESS.value) # - If training completed successfully, the trained model archive # TRAINING_OUTPUT_ARCHIVE_NAME can now be downloaded from COS. try: # -------------------------------------------------------- # Download the trained model archive from the results # bucket on COS to LOCAL_DOWNLOAD_DIRECTORY # -------------------------------------------------------- print_banner('Downloading trained model archive "{}" ...' .format(TRAINING_OUTPUT_ARCHIVE_NAME)) training_output = cw.download_file(results_references['bucket'], TRAINING_OUTPUT_ARCHIVE_NAME, config['local_download_directory'], results_references['model_location']) except Exception as ex: print('Error. Trained model archive "{}" could not be ' 'downloaded from Cloud Object Storage bucket "{}": {}' .format(TRAINING_OUTPUT_ARCHIVE_NAME, results_references['bucket'], ex)) sys.exit(ExitCode.DOWNLOAD_FAILED.value) # Status: # - The trained model archive and training log file were # downloaded to the directory identified by # config['local_download_directory']. # -------------------------------------------------------- # Extract the downloaded model archive # -------------------------------------------------------- archive = os.path.join(config['local_download_directory'], TRAINING_OUTPUT_ARCHIVE_NAME) print_banner('Extracting trained model artifacts from "{}" ...' .format(archive)) extraction_ok = False try: if tarfile.is_tarfile(archive): tf = tarfile.open(archive, mode='r:gz') for file in tf.getnames(): print(file) tf.extractall(config['local_download_directory']) print('Trained model artifacts are located in the "{}" directory.' .format(config['local_download_directory'])) extraction_ok = True else: print('Error. The downloaded file "{}" is not a valid tar file.' .format(archive)) except FileNotFoundError: print('Error. "{}" was not found.'.format(archive)) except tarfile.TarError as te: print(te) if extraction_ok is False: sys.exit(ExitCode.EXTRACTION_FAILED.value) # Status: # - The trained model archive was downloaded to LOCAL_DOWNLOAD_DIRECTORY. # The directory structure inshould look as follows: # /trained_model/<framework-name-1>/<format>/<file-1> # /trained_model/<framework-name-1>/<format>/<file-2> # /trained_model/<framework-name-1>/<format-2>/<subdirectory>/<file-3> # /trained_model/<framework-name-2>/<file-4> # ------------------------------------------------------------------- # Copy the appropriate framework and format specific artifacts # to the final destination, where the Docker build will pick them up # ------------------------------------------------------------------- trained_model_path = config['trained_model_path'] trained_assets_dir = os.path.join(config['local_download_directory'], trained_model_path) print_banner('Copying trained model artifacts from "{}" to "{}" ...' .format(trained_assets_dir, config['docker_model_asset_directory'])) try: copy_dir(trained_assets_dir, config['docker_model_asset_directory']) except Exception as ex: print('Error. Trained model files could not be copied: {}'.format(str(ex))) sys.exit(ExitCode.COPY_FAILED.value) # Status: # - The trained model artifacts were copied to the Docker image's asset # directory, where the model-serving microservice will load them from. print('Done') sys.exit(ExitCode.SUCCESS.value)
41.03375
79
0.559113
296
0.009017
0
0
0
0
0
0
14,373
0.437841
58146fc12bca47d19303bba6584622a1dcef7fcd
57
py
Python
tests/unit/sim_client/__init__.py
rkm/bluebird
2325ebb151724d4444c092c095a040d7365dda79
[ "MIT" ]
8
2019-01-29T15:19:39.000Z
2020-07-16T03:55:36.000Z
tests/unit/sim_client/__init__.py
rkm/bluebird
2325ebb151724d4444c092c095a040d7365dda79
[ "MIT" ]
46
2019-02-08T14:23:11.000Z
2021-04-06T13:45:10.000Z
tests/unit/sim_client/__init__.py
rkm/bluebird
2325ebb151724d4444c092c095a040d7365dda79
[ "MIT" ]
3
2019-05-06T14:18:07.000Z
2021-06-17T10:39:59.000Z
""" Module contains tests for the sim_client package """
14.25
48
0.736842
0
0
0
0
0
0
0
0
56
0.982456
581495876b03363b5fef74a09d461c434b90c0d7
8,344
py
Python
glog.py
leoll2/python-glog
c809d16352bf061d0ee38e590c6f28d553d740e7
[ "BSD-2-Clause" ]
null
null
null
glog.py
leoll2/python-glog
c809d16352bf061d0ee38e590c6f28d553d740e7
[ "BSD-2-Clause" ]
null
null
null
glog.py
leoll2/python-glog
c809d16352bf061d0ee38e590c6f28d553d740e7
[ "BSD-2-Clause" ]
null
null
null
"""A simple Google-style logging wrapper.""" import logging import time import traceback import os import sys import gflags as flags FLAGS = flags.FLAGS def format_message(record): try: record_message = "%s" % (record.msg % record.args) except TypeError: record_message = record.msg return record_message class GlogFormatter(logging.Formatter): LEVEL_MAP = { logging.FATAL: "F", # FATAL is alias of CRITICAL logging.ERROR: "E", logging.WARN: "W", logging.INFO: "I", logging.DEBUG: "D", } def __init__(self): logging.Formatter.__init__(self) def format(self, record): try: level = GlogFormatter.LEVEL_MAP[record.levelno] except KeyError: level = "?" date = time.localtime(record.created) date_usec = (record.created - int(record.created)) * 1e6 record_message = "%c%02d%02d %02d:%02d:%02d.%06d %s %s:%d] %s" % ( level, date.tm_mon, date.tm_mday, date.tm_hour, date.tm_min, date.tm_sec, date_usec, record.process if record.process is not None else "?????", record.filename, record.lineno, format_message(record), ) record.getMessage = lambda: record_message return logging.Formatter.format(self, record) class Logger(object): def __init__(self, name, filename=None): self.logger = logging.getLogger(name) init(self.logger, filename) self.debug = self.logger.debug self.info = self.logger.info self.warning = self.logger.warning self.warn = self.logger.warning self.error = self.logger.error self.exception = self.logger.exception self.fatal = self.logger.fatal self.log = self.logger.log def setLevel(self, newlevel): setLevel(newlevel, self.logger) debug = logging.debug info = logging.info warning = logging.warning warn = logging.warning error = logging.error exception = logging.exception fatal = logging.fatal log = logging.log DEBUG = logging.DEBUG INFO = logging.INFO WARNING = logging.WARNING WARN = logging.WARN ERROR = logging.ERROR FATAL = logging.FATAL _level_names = { DEBUG: "DEBUG", INFO: "INFO", WARN: "WARN", ERROR: "ERROR", FATAL: "FATAL", } _level_letters = [name[0] for name in _level_names.values()] GLOG_PREFIX_REGEX = ( ( r""" (?x) ^ (?P<severity>[%s]) (?P<month>\d\d)(?P<day>\d\d)\s (?P<hour>\d\d):(?P<minute>\d\d):(?P<second>\d\d) \.(?P<microsecond>\d{6})\s+ (?P<process_id>-?\d+)\s (?P<filename>[a-zA-Z<_][\w._<>-]+):(?P<line>\d+) \]\s """ ) % "".join(_level_letters) ) """Regex you can use to parse glog line prefixes.""" global_logger = logging.getLogger() stdout_handler = logging.StreamHandler(sys.stdout) stderr_handler = logging.StreamHandler(sys.stderr) file_handlers = dict() def setLevel(newlevel, logger=global_logger): logger.setLevel(newlevel) logger.debug("Log level set to %s", newlevel) def init(logger=None, filename=None): if logger is None: logger = global_logger logger.propagate = False if filename is None: handler = stderr_handler elif filename == "stderr": handler = stderr_handler elif filename == "stdout": handler = stdout_handler elif filename in file_handlers: handler = file_handlers[filename] else: handler = logging.FileHandler(filename) file_handlers[filename] = handler handler.setFormatter(GlogFormatter()) logger.addHandler(handler) class CaptureWarningsFlag(flags.BooleanFlag): def __init__(self): flags.BooleanFlag.__init__( self, "glog_capture_warnings", True, "Redirect warnings to log.warn messages", ) def Parse(self, arg): flags.BooleanFlag.Parse(self, arg) logging.captureWarnings(self.value) flags.DEFINE_flag(CaptureWarningsFlag()) class VerbosityParser(flags.ArgumentParser): """Sneakily use gflags parsing to get a simple callback.""" def Parse(self, arg): try: intarg = int(arg) # Look up the name for this level (DEBUG, INFO, etc) if it exists try: level = logging._levelNames.get(intarg, intarg) except AttributeError: # This was renamed somewhere b/w 2.7 and 3.4 level = logging._levelToName.get(intarg, intarg) except ValueError: level = arg setLevel(level) return level flags.DEFINE( parser=VerbosityParser(), serializer=flags.ArgumentSerializer(), name="verbosity", default=logging.INFO, help="Logging verbosity", ) init(global_logger) # Define functions emulating C++ glog check-macros # https://htmlpreview.github.io/?https://github.com/google/glog/master/doc/glog.html#check def format_stacktrace(stack): """Print a stack trace that is easier to read. * Reduce paths to basename component * Truncates the part of the stack after the check failure """ lines = [] for _, f in enumerate(stack): fname = os.path.basename(f[0]) line = "\t%s:%d\t%s" % (fname + "::" + f[2], f[1], f[3]) lines.append(line) return lines class FailedCheckException(AssertionError): """Exception with message indicating check-failure location and values.""" def check_failed(message): stack = traceback.extract_stack() stack = stack[0:-2] stacktrace_lines = format_stacktrace(stack) filename, line_num, _, _ = stack[-1] try: raise FailedCheckException(message) except FailedCheckException: log_record = global_logger.makeRecord( "CRITICAL", 50, filename, line_num, message, None, None ) stderr_handler.handle(log_record) log_record = global_logger.makeRecord( "DEBUG", 10, filename, line_num, "Check failed here:", None, None ) stderr_handler.handle(log_record) for line in stacktrace_lines: log_record = global_logger.makeRecord( "DEBUG", 10, filename, line_num, line, None, None ) stderr_handler.handle(log_record) raise return def check(condition, message=None): """Raise exception with message if condition is False.""" if not condition: if message is None: message = "Check failed." check_failed(message) def check_eq(obj1, obj2, message=None): """Raise exception with message if obj1 != obj2.""" if obj1 != obj2: if message is None: message = "Check failed: %s != %s" % (str(obj1), str(obj2)) check_failed(message) def check_ne(obj1, obj2, message=None): """Raise exception with message if obj1 == obj2.""" if obj1 == obj2: if message is None: message = "Check failed: %s == %s" % (str(obj1), str(obj2)) check_failed(message) def check_le(obj1, obj2, message=None): """Raise exception with message if not (obj1 <= obj2).""" if obj1 > obj2: if message is None: message = "Check failed: %s > %s" % (str(obj1), str(obj2)) check_failed(message) def check_ge(obj1, obj2, message=None): """Raise exception with message unless (obj1 >= obj2).""" if obj1 < obj2: if message is None: message = "Check failed: %s < %s" % (str(obj1), str(obj2)) check_failed(message) def check_lt(obj1, obj2, message=None): """Raise exception with message unless (obj1 < obj2).""" if obj1 >= obj2: if message is None: message = "Check failed: %s >= %s" % (str(obj1), str(obj2)) check_failed(message) def check_gt(obj1, obj2, message=None): """Raise exception with message unless (obj1 > obj2).""" if obj1 <= obj2: if message is None: message = "Check failed: %s <= %s" % (str(obj1), str(obj2)) check_failed(message) def check_notnone(obj, message=None): """Raise exception with message if obj is None.""" if obj is None: if message is None: message = "Check failed: Object is None." check_failed(message)
27.447368
90
0.615532
2,683
0.321548
0
0
0
0
0
0
1,843
0.220877
581495ab37cf4df801b88c86040220d6464bbc32
4,141
py
Python
ref_rna.py
entn-at/warp-rna
f6bf19634564068f23f9906373754e04f9b653a3
[ "MIT" ]
39
2019-08-11T09:06:55.000Z
2022-03-30T03:24:34.000Z
ref_rna.py
entn-at/warp-rna
f6bf19634564068f23f9906373754e04f9b653a3
[ "MIT" ]
null
null
null
ref_rna.py
entn-at/warp-rna
f6bf19634564068f23f9906373754e04f9b653a3
[ "MIT" ]
6
2019-12-11T03:02:48.000Z
2021-11-29T09:01:51.000Z
""" Python reference implementation of the Recurrent Neural Aligner. Author: Ivan Sorokin Based on the papers: - "Recurrent Neural Aligner: An Encoder-Decoder Neural Network Model for Sequence to Sequence Mapping" Hasim Sak, et al., 2017 - "Extending Recurrent Neural Aligner for Streaming End-to-End Speech Recognition in Mandarin" Linhao Dong, et al., 2018 """ import numpy as np NEG_INF = -float("inf") def logsumexp(*args): """ Stable log sum exp. """ if all(a == NEG_INF for a in args): return NEG_INF a_max = max(args) lsp = np.log(sum(np.exp(a - a_max) for a in args)) return a_max + lsp def log_softmax(acts, axis): """ Log softmax over the last axis of the 3D array. """ acts = acts - np.max(acts, axis=axis, keepdims=True) probs = np.sum(np.exp(acts), axis=axis, keepdims=True) log_probs = acts - np.log(probs) return log_probs def forward_pass(log_probs, labels, blank): T, U, _ = log_probs.shape S = T-U+2 alphas = np.zeros((S, U)) for u in range(1, U): alphas[0, u] = alphas[0, u-1] + log_probs[u-1, u-1, labels[u-1]] for t in range(1, S): alphas[t, 0] = alphas[t-1, 0] + log_probs[t-1, 0, blank] for t in range(1, S): for u in range(1, U): skip = alphas[t-1, u] + log_probs[t+u-1, u, blank] emit = alphas[t, u-1] + log_probs[t+u-1, u-1, labels[u-1]] alphas[t, u] = logsumexp(emit, skip) return alphas, alphas[S-1, U-1] def backward_pass(log_probs, labels, blank): T, U, _ = log_probs.shape S = T-U+2 S1 = S-1 U1 = U-1 betas = np.zeros((S, U)) for i in range(1, U): u = U1-i betas[S1, u] = betas[S1, u+1] + log_probs[T-i, u, labels[u]] for i in range(1, S): t = S1-i betas[t, U1] = betas[t+1, U1] + log_probs[T-i, U1, blank] for i in range(1, S): t = S1-i for j in range(1, U): u = U1-j skip = betas[t+1, u] + log_probs[T-i-j, u, blank] emit = betas[t, u+1] + log_probs[T-i-j, u, labels[u]] betas[t, u] = logsumexp(emit, skip) return betas, betas[0, 0] def analytical_gradient(log_probs, alphas, betas, labels, blank): T, U, _ = log_probs.shape S = T-U+2 log_like = betas[0, 0] grads = np.full(log_probs.shape, NEG_INF) for t in range(S-1): for u in range(U): grads[t+u, u, blank] = alphas[t, u] + betas[t+1, u] + log_probs[t+u, u, blank] - log_like for t in range(S): for u, l in enumerate(labels): grads[t+u, u, l] = alphas[t, u] + betas[t, u+1] + log_probs[t+u, u, l] - log_like return -np.exp(grads) def numerical_gradient(log_probs, labels, neg_loglike, blank): epsilon = 1e-5 T, U, V = log_probs.shape grads = np.zeros_like(log_probs) for t in range(T): for u in range(U): for v in range(V): log_probs[t, u, v] += epsilon alphas, ll_forward = forward_pass(log_probs, labels, blank) grads[t, u, v] = (-ll_forward - neg_loglike) / epsilon log_probs[t, u, v] -= epsilon return grads def test(): np.random.seed(0) blank = 0 vocab_size = 4 input_len = 5 output_len = 3 inputs = np.random.rand(input_len, output_len + 1, vocab_size) labels = np.random.randint(1, vocab_size, output_len) log_probs = log_softmax(inputs, axis=2) alphas, ll_forward = forward_pass(log_probs, labels, blank) betas, ll_backward = backward_pass(log_probs, labels, blank) assert np.allclose(ll_forward, ll_backward, atol=1e-12, rtol=1e-12), \ "Log-likelihood from forward and backward pass mismatch." neg_loglike = -ll_forward analytical_grads = analytical_gradient(log_probs, alphas, betas, labels, blank) numerical_grads = numerical_gradient(log_probs, labels, neg_loglike, blank) assert np.allclose(analytical_grads, numerical_grads, atol=1e-6, rtol=1e-6), \ "Analytical and numerical computation of gradient mismatch." if __name__ == "__main__": test()
26.544872
103
0.59744
0
0
0
0
0
0
0
0
606
0.146341
581517f5427032699dff194265e55b485b52ab39
2,994
py
Python
tests/coretests.py
thomasms/coiny
1f51eac2542e46b03abd9f66fd3b58fbd80cb177
[ "MIT" ]
null
null
null
tests/coretests.py
thomasms/coiny
1f51eac2542e46b03abd9f66fd3b58fbd80cb177
[ "MIT" ]
null
null
null
tests/coretests.py
thomasms/coiny
1f51eac2542e46b03abd9f66fd3b58fbd80cb177
[ "MIT" ]
null
null
null
import unittest from typing import Any from coiny.core import CoinPrice, CoinyQueue, CoinySession, price_now_url, price_task from coiny.utils import NullCoinPrice class HasJson: def __init__(self, data) -> None: self.data = data async def __aenter__(self): return self async def __aexit__(self, *args, **kwargs): pass async def json(self): return self.data class PriceTaskTests(unittest.IsolatedAsyncioTestCase): async def test_price_task_empty_queue(self): queue = CoinyQueue() session = CoinySession() result = await price_task(queue, session) self.assertEqual(NullCoinPrice, result) async def test_price_task_queue(self): class NoGetSession(CoinySession): """HACK: Not a good idea to inherit from CoinySession""" def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.mock_url = "" def get( self, url: str, *, allow_redirects: bool = True, **kwargs: Any ) -> HasJson: self.mock_url = f"called:{url}" return HasJson({"mycoin": {"XYZ": 3.4}}) queue = CoinyQueue() await queue.put(("mycoin", "XYZ", "https://myurl")) async with NoGetSession() as session: result = await price_task(queue, session) expected = CoinPrice(fiat="XYZ", coin="mycoin", rate=3.4) self.assertEqual(expected, result) self.assertEqual("called:https://myurl", session.mock_url) async def test_price_task_mock_eth(self): mock_url = "https://run.mocky.io/v3/09750cfe-39a5-4d31-9651-2292765a8fe3" # returns -> {"ethereum": {"eur": 3295.23}} queue = CoinyQueue() await queue.put(("ethereum", "eur", mock_url)) async with CoinySession() as session: result = await price_task(queue, session) expected = CoinPrice(fiat="eur", coin="ethereum", rate=3295.23) self.assertEqual(expected, result) async def test_price_task_mock_eth_invalid(self): mock_url = "https://run.mocky.io/v3/09750cfe-39a5-4d31-9651-2292765a8fe3" queue = CoinyQueue() await queue.put(("bitcoin", "gbp", mock_url)) async with CoinySession() as session: result = await price_task(queue, session) self.assertEqual(NullCoinPrice, result) async def test_price_task_real_eth(self): queue = CoinyQueue() await queue.put(("ethereum", "eur", price_now_url("ethereum", "eur"))) async with CoinySession() as session: result = await price_task(queue, session) # no way to test the live price of course half_expected = CoinPrice(fiat="eur", coin="ethereum", rate=0.0) self.assertEqual(half_expected.fiat, result.fiat) self.assertEqual(half_expected.coin, result.coin) __all__ = ["PriceTaskTests"]
34.022727
85
0.62024
2,793
0.932866
0
0
0
0
2,614
0.873079
462
0.154309
5816e949ba4a9d3600362e45768d66548fbd4d4b
969
py
Python
legacy/dx/simulator/simulator_diagnoser/test/graph/traversal/forward_test.py
GaloisInc/adapt
2ccff778d3e77505899266572f8f7caacb5b630f
[ "BSD-3-Clause" ]
2
2020-04-09T13:04:25.000Z
2021-09-24T14:17:26.000Z
legacy/dx/simulator/simulator_diagnoser/test/graph/traversal/forward_test.py
GaloisInc/adapt
2ccff778d3e77505899266572f8f7caacb5b630f
[ "BSD-3-Clause" ]
null
null
null
legacy/dx/simulator/simulator_diagnoser/test/graph/traversal/forward_test.py
GaloisInc/adapt
2ccff778d3e77505899266572f8f7caacb5b630f
[ "BSD-3-Clause" ]
3
2019-09-20T20:49:54.000Z
2021-09-02T17:33:47.000Z
import unittest from simulator_diagnoser.graph import InmemoryGraph from simulator_diagnoser.graph.traversal import ForwardAnalysis class ForwardAnalysisTest(unittest.TestCase): def setUp(self): # Graph = # 9 # / | \ # 6 7 8 # \ / \ / # 4 5 # / \ / \ # 1 2 3 self.g1 = InmemoryGraph() edges = [(1, 4), (2, 4), (2, 5), (3, 5), (4, 6), (4, 7), (5, 7), (5, 8), (6, 9), (7, 9), (8, 9)] for edge in edges: self.g1.add_edge(*edge) def test_none(self): fa = ForwardAnalysis(None) for x in fa: fail() def test_graph(self): fa = ForwardAnalysis(self.g1) for i, (node, parents) in enumerate(fa, start=1): self.assertEqual(i, node) self.assertEqual(parents, self.g1.get_node_parents(i)[0]) if __name__ == '__main__': unittest.main()
24.846154
69
0.49742
786
0.811146
0
0
0
0
0
0
87
0.089783
581774fbaaecfebcc97c105cd9ba5717bc57c3de
5,396
py
Python
SONOS/sonos-fadein-alarm.py
tksunw/IoT
2148c49e9a90822400f195be7b1de3f8e8b8ba2a
[ "MIT" ]
1
2018-01-30T23:30:27.000Z
2018-01-30T23:30:27.000Z
SONOS/sonos-fadein-alarm.py
tksunw/IoT
2148c49e9a90822400f195be7b1de3f8e8b8ba2a
[ "MIT" ]
1
2018-02-14T19:58:56.000Z
2018-02-14T19:58:56.000Z
SONOS/sonos-fadein-alarm.py
tksunw/IoT
2148c49e9a90822400f195be7b1de3f8e8b8ba2a
[ "MIT" ]
2
2018-02-13T18:52:09.000Z
2021-09-29T14:27:49.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- ''' sonos-fadein-alarm.py - a gentle alarm using Sonos Favorites. This module allows a user to choose a SONOS favorite channel to play for a gentle alarm. Select the maximum desired volume, the number of minutes over which to ramp volume from 0 to the chosen maxium, and choose a favorite to use (by title), and the script will do the rest. 2017-01-21 my new alarm clock. 2017-09-15 added ability to group a second speaker to the main speaker also aded the ability to specify 'all' to group all available speakers to the main speaker. ''' import argparse import datetime import time import os.path import soco # Set some default values. These are mine. The channel is listed # by name, and comes from the Sonos players 'favorites'. Volume # on the player(s) specified will ramp up from 0 to MAXVOL over # the number of minutes specified. For me, I like a 30 minute # ramp from 0 to 12. So the volume will increase by 1 every 2.5 # minutes. # Set _WEEKEND days to skip certain days of the week, if you want # to skip your days off work. _SPEAKER = 'master bedroom' _CHANNEL = 'Everybody Talks Radio' _MINUTES = 30 _MAXVOL = 12 _WEEKEND = ('Saturday', 'Sunday') def get_sonos_favorites(from_speaker): ''' get_sonos_favorites: gets the saved "favorites" from a Sonos speaker. Args: from_speaker (soco.core.Soco object): the speaker to pull favorites from. Returns: favs (list): a list of Sonos Favorites (title, meta, uri) ''' favs = from_speaker.get_sonos_favorites()['favorites'] return favs def main(): ''' main function: Args: None Returns: None Process command line arguments, and turn a Sonos speaker into an alarm clock, with the flexibility to ramp the volume slowly over a defined time period, to a "max vol" limit. ''' parser = argparse.ArgumentParser(description='Sonos/Favorites ramping alarm.') parser.add_argument('-S', '--speaker', type=str, help='The Sonos speaker to use for the alarm', default=_SPEAKER) parser.add_argument('-s', '--slave', type=str, help='The Sonos speaker(s) to join to a group for the alarm. Use the word "all" to join all available players.') parser.add_argument('-c', '--channel', type=str, help='The Sonos Favorite Channel to use for the alarm', default=_CHANNEL) parser.add_argument('-m', '--minutes', type=int, help='The number of minutes the alarm will ramp up over', default=_MINUTES) parser.add_argument('-v', '--volume', type=int, help='Set the maximum volume for the alarm', default=_MAXVOL) parser.add_argument('-p', '--pause', help='Pause a speaker that is playing.', action='store_true') parser.epilog = "The channel you select must be a Sonos Favorite. Because\n" parser.epilog += "I'm lazy and didn't feel like figuring out SoCo to get\n" parser.epilog += "it working directly with Pandora, which SoCo doesn't seem\n" parser.epilog += "to work with yet." args = parser.parse_args() speakers = soco.discover() player = [x for x in speakers if x.player_name.lower() == args.speaker.lower()][0] if args.slave: if args.slave.lower() == 'all': [x.join(player) for x in speakers if x.player_name.lower() != player.player_name.lower()] else: slave = [x for x in speakers if x.player_name.lower() == args.slave.lower()][0] slave.join(player) if args.pause: ''' this will stop the indicated sonos speaker. even if the alarm is still running. ''' player.stop() else: favorites = get_sonos_favorites(player) for favorite in favorites: if args.channel.lower() in favorite['title'].lower(): my_choice = favorite break print "Playing {} on {}".format(my_choice['title'], player.player_name) player.play_uri(uri=my_choice['uri'], meta=my_choice['meta'], start=True) if args.minutes == 0: player.volume = args.volume else: player.volume = 0 seconds = args.minutes * 60 ramp_interval = seconds / args.volume for _ in xrange(args.volume): player.volume += 1 time.sleep(ramp_interval) if __name__ == "__main__": today = datetime.datetime.today().strftime('%A') date = datetime.datetime.today().strftime('%Y-%m-%d') holidays = set(line.strip() for line in open('holidays.txt')) if today in _WEEKEND: print today, 'is a scheduled weekend day. Not running.' elif date in holidays: print date, 'is a scheduled holiday. Not running.' elif os.path.isfile('/tmp/holiday'): ''' /tmp/holiday allows us to mark when we don't want the alarm to run tomorrow. Especially when we're using cron. Just touch the file. ''' print "Today is marked as a holiday via /tmp/holiday, not running the alarm" else: main() else: print "This file is not intended to be included by other scripts."
38.542857
137
0.623981
0
0
0
0
0
0
0
0
2,861
0.530208
58183b1abecb86537c0a52b35966e7d8ef3e9a5f
5,775
py
Python
Agent5_a_0_5_knots_512_d_0_02/step_node_Agent6_rewards.py
schigeru/Bachelorarbeit_Code
261b2552221f768e7022abc60a4e5a7d2fedbbae
[ "MIT" ]
null
null
null
Agent5_a_0_5_knots_512_d_0_02/step_node_Agent6_rewards.py
schigeru/Bachelorarbeit_Code
261b2552221f768e7022abc60a4e5a7d2fedbbae
[ "MIT" ]
null
null
null
Agent5_a_0_5_knots_512_d_0_02/step_node_Agent6_rewards.py
schigeru/Bachelorarbeit_Code
261b2552221f768e7022abc60a4e5a7d2fedbbae
[ "MIT" ]
null
null
null
#!/usr/bin/env python import math import os import numpy as np import time import sys import copy import rospy import moveit_msgs.msg import geometry_msgs.msg import random import csv from sensor_msgs.msg import JointState from gazebo_msgs.msg import LinkStates from gazebo_msgs.msg import LinkState from std_msgs.msg import Float64 from std_msgs.msg import String from sensor_msgs.msg import Joy import moveit_commander from panda_rl.srv import StepAction, StepActionResponse group_name = "panda_arm_hand" move_group = moveit_commander.MoveGroupCommander(group_name) quat_goal = np.array([1, 0, 0.0075, 0]) def vector2points(v, u): v = np.array(v) u = np.array(u) vector = u - v vector = np.round(vector, 5) return vector def get_hand_position(): msg = rospy.wait_for_message('/gazebo/link_states', LinkStates) hand_positionx = (msg.pose[9].position.x + msg.pose[10].position.x) / 2 hand_positiony = (msg.pose[9].position.y + msg.pose[10].position.y) / 2 hand_positionz = (msg.pose[9].position.z + msg.pose[10].position.z) / 2 hand_position = [hand_positionx, hand_positiony, hand_positionz] hand_position = np.round(hand_position, 5) return hand_position def get_hand_orientation(): msg = rospy.wait_for_message('/gazebo/link_states', LinkStates) hand_orientation_x = (msg.pose[9].orientation.x + msg.pose[10].orientation.x) / 2 hand_orientation_y = (msg.pose[9].orientation.y + msg.pose[10].orientation.y) / 2 hand_orientation_z = (msg.pose[9].orientation.z + msg.pose[10].orientation.z) / 2 hand_orientation_w = (msg.pose[9].orientation.w + msg.pose[10].orientation.w) / 2 hand_orientation = [hand_orientation_x, hand_orientation_y, hand_orientation_z, hand_orientation_w] hand_orientation = np.round(hand_orientation, 5) return hand_orientation def goal_distance(x, y): x = np.array(x) y = np.array(y) distance = np.linalg.norm(x-y) distance = np.round(distance, 5) return distance def take_action(msg): done = False goal = msg.goal joint_state = move_group.get_current_joint_values() joint_state[0] = joint_state[0] + (msg.action[0] / 20) joint_state[1] = joint_state[1] + (msg.action[1] / 20) joint_state[2] = joint_state[2] + (msg.action[2] / 20) joint_state[3] = joint_state[3] + (msg.action[3] / 20) joint_state[4] = joint_state[4] + (msg.action[4] / 20) joint_state[5] = joint_state[5] + (msg.action[5] / 20) joint_state[7] = 0.04 joint_state[8] = 0.04 if joint_state[0] < joint1_threshold_min or joint_state[0] > joint1_threshold_max \ or joint_state[1] < joint2_threshold_min or joint_state[1] > joint2_threshold_max \ or joint_state[2] < joint3_threshold_min or joint_state[2] > joint3_threshold_max \ or joint_state[3] < joint4_threshold_min or joint_state[3] > joint4_threshold_max \ or joint_state[4] < joint5_threshold_min or joint_state[4] > joint5_threshold_max \ or joint_state[5] < joint6_threshold_min or joint_state[5] > joint6_threshold_max: hand_position = get_hand_position() vector = vector2points(hand_position, goal) obs = joint_state[0:7] obs = np.round(obs, 5) obs = np.append(obs, vector) done = True reward = -50 return StepActionResponse(obs=obs, reward=reward, done=done) else: move_group.go(joint_state, wait=True) move_group.stop() joint_state = move_group.get_current_joint_values() obs = joint_state[0:7] obs = np.round(obs, 5) hand_position = get_hand_position() quat = get_hand_orientation() quat_reward = np.linalg.norm(quat_goal - quat) d = goal_distance(hand_position, goal) vector = vector2points(hand_position, goal) z = hand_position[2] - goal[2] obs = np.append(obs, vector) if d < 0.02 and z > 0: reward = 0 print("Action: ", msg.action) print("Handpos: ", hand_position) print("Goal: ", goal) print("Observation ", obs) print("reward target reached: ", reward) done = True group_name_gripper = "hand" move_group_gripper = moveit_commander.MoveGroupCommander(group_name_gripper) joint_values = move_group_gripper.get_current_joint_values() joint_values[0] = 0.02 joint_values[1] = 0.02 move_group_gripper.go(joint_values, wait=True) move_group_gripper.stop() return StepActionResponse(obs=obs, reward=reward, done=done) elif d > 0.08 and z < 0.05 or z < 0: #Fördert Anfahren von oben durch Bestrafung wenn EE weit weg ist, aber bereits auf ähnlicher Höhe zum Ziel reward = 5 * (-d - quat_reward) return StepActionResponse(obs=obs, reward=reward, done=done) else: reward = (-d - quat_reward) #print("Action: ", msg.action) print("Handpos: ", hand_position) print("Goal: ", goal) #print("Observation ", obs) print("reward: ", reward) print("Distance", d) return StepActionResponse(obs=obs, reward=reward, done=done) joint1_threshold_min = -2.8973 joint2_threshold_min = -1.7628 joint3_threshold_min = -2.8973 joint4_threshold_min = -3.0718 joint5_threshold_min = -2.8973 joint6_threshold_min = -0.0175 joint1_threshold_max = 2.8973 joint2_threshold_max = 1.7628 joint3_threshold_max = 2.8973 joint4_threshold_max = -0.0698 joint5_threshold_max = 2.8973 joint6_threshold_max = 3.7525 rospy.init_node('step_service', anonymous=False) print("step_nodeaktiv") s = rospy.Service('step_env', StepAction, take_action) rospy.spin()
35.429448
151
0.675152
0
0
0
0
0
0
0
0
398
0.068882
5818909f1789bffb946f4dcc647ac54b08e00f22
10,043
py
Python
pwnlib/elf/corefile.py
jdsecurity/binjitsu
999ad632004bfc3e623eead20eb11de98fc1f4dd
[ "MIT" ]
5
2018-05-15T13:00:56.000Z
2020-02-09T14:29:00.000Z
pwnlib/elf/corefile.py
FDlucifer/binjitsu
999ad632004bfc3e623eead20eb11de98fc1f4dd
[ "MIT" ]
null
null
null
pwnlib/elf/corefile.py
FDlucifer/binjitsu
999ad632004bfc3e623eead20eb11de98fc1f4dd
[ "MIT" ]
6
2017-09-07T02:31:11.000Z
2021-07-05T16:59:18.000Z
import collections import ctypes import elftools from elftools.common.utils import roundup, struct_parse from elftools.common.py3compat import bytes2str from elftools.construct import CString from ..context import context from ..log import getLogger from .datatypes import * from .elf import ELF from ..tubes.tube import tube log = getLogger(__name__) types = { 'i386': elf_prstatus_i386, 'amd64': elf_prstatus_amd64, } # Slightly modified copy of the pyelftools version of the same function, # until they fix this issue: # https://github.com/eliben/pyelftools/issues/93 def iter_notes(self): """ Iterates the list of notes in the segment. """ offset = self['p_offset'] end = self['p_offset'] + self['p_filesz'] while offset < end: note = struct_parse( self._elfstructs.Elf_Nhdr, self.stream, stream_pos=offset) note['n_offset'] = offset offset += self._elfstructs.Elf_Nhdr.sizeof() self.stream.seek(offset) # n_namesz is 4-byte aligned. disk_namesz = roundup(note['n_namesz'], 2) note['n_name'] = bytes2str( CString('').parse(self.stream.read(disk_namesz))) offset += disk_namesz desc_data = bytes2str(self.stream.read(note['n_descsz'])) note['n_desc'] = desc_data offset += roundup(note['n_descsz'], 2) note['n_size'] = offset - note['n_offset'] yield note class Mapping(object): def __init__(self, name, start, stop, flags): self.name=name self.start=start self.stop=stop self.size=stop-start self.flags=flags @property def permstr(self): flags = self.flags return ''.join(['r' if flags & 4 else '-', 'w' if flags & 2 else '-', 'x' if flags & 1 else '-', 'p']) def __str__(self): return '%x-%x %s %x %s' % (self.start,self.stop,self.permstr,self.size,self.name) def __repr__(self): return '%s(%r, %#x, %#x, %#x, %#x)' % (self.__class__.__name__, self.name, self.start, self.stop, self.size, self.flags) def __int__(self): return self.start class Core(ELF): """Core(*a, **kw) -> Core Enhances the inforation available about a corefile (which is an extension of the ELF format) by permitting extraction of information about the mapped data segments, and register state. Registers can be accessed directly, e.g. via ``core_obj.eax``. Mappings can be iterated in order via ``core_obj.mappings``. """ def __init__(self, *a, **kw): self.prstatus = None self.files = {} self.mappings = [] self.stack = None self.env = {} try: super(Core, self).__init__(*a, **kw) except IOError: log.warning("No corefile. Have you set /proc/sys/kernel/core_pattern?") raise self.load_addr = 0 self._address = 0 if not self.elftype == 'CORE': log.error("%s is not a valid corefile" % e.file.name) if not self.arch in ('i386','amd64'): log.error("%s does not use a supported corefile architecture" % e.file.name) prstatus_type = types[self.arch] with log.waitfor("Parsing corefile...") as w: self._load_mappings() for segment in self.segments: if not isinstance(segment, elftools.elf.segments.NoteSegment): continue for note in iter_notes(segment): # Try to find NT_PRSTATUS. Note that pyelftools currently # mis-identifies the enum name as 'NT_GNU_ABI_TAG'. if note.n_descsz == ctypes.sizeof(prstatus_type) and \ note.n_type == 'NT_GNU_ABI_TAG': self.NT_PRSTATUS = note self.prstatus = prstatus_type.from_buffer_copy(note.n_desc) # Try to find the list of mapped files if note.n_type == constants.NT_FILE: with context.local(bytes=self.bytes): self._parse_nt_file(note) # Try to find the auxiliary vector, which will tell us # where the top of the stack is. if note.n_type == constants.NT_AUXV: with context.local(bytes=self.bytes): self._parse_auxv(note) if self.stack and self.mappings: for mapping in self.mappings: if mapping.stop == self.stack: mapping.name = '[stack]' self.stack = mapping with context.local(bytes=self.bytes, log_level='error'): try: self._parse_stack() except ValueError: # If there are no environment variables, we die by running # off the end of the stack. pass def _parse_nt_file(self, note): t = tube() t.unrecv(note.n_desc) count = t.unpack() page_size = t.unpack() starts = [] addresses = {} for i in range(count): start = t.unpack() end = t.unpack() ofs = t.unpack() starts.append(start) for i in range(count): filename = t.recvuntil('\x00', drop=True) start = starts[i] for mapping in self.mappings: if mapping.start == start: mapping.name = filename self.mappings = sorted(self.mappings, key=lambda m: m.start) def _load_mappings(self): for s in self.segments: if s.header.p_type != 'PT_LOAD': continue mapping = Mapping(None, s.header.p_vaddr, s.header.p_vaddr + s.header.p_memsz, s.header.p_flags) self.mappings.append(mapping) def _parse_auxv(self, note): t = tube() t.unrecv(note.n_desc) for i in range(0, note.n_descsz, context.bytes * 2): key = t.unpack() value = t.unpack() # The AT_EXECFN entry is a pointer to the executable's filename # at the very top of the stack, followed by a word's with of # NULL bytes. For example, on a 64-bit system... # # 0x7fffffffefe8 53 3d 31 34 33 00 2f 62 69 6e 2f 62 61 73 68 00 |S=14|3./b|in/b|ash.| # 0x7fffffffeff8 00 00 00 00 00 00 00 00 |....|....| | | if key == constants.AT_EXECFN: self.at_execfn = value value = value & ~0xfff value += 0x1000 self.stack = value def _parse_stack(self): # AT_EXECFN is the start of the filename, e.g. '/bin/sh' # Immediately preceding is a NULL-terminated environment variable string. # We want to find the beginning of it address = self.at_execfn-1 # Sanity check! try: assert self.u8(address) == 0 except AssertionError: # Something weird is happening. Just don't touch it. return except ValueError: # If the stack is not actually present in the coredump, we can't # read from the stack. This will fail as: # ValueError: 'seek out of range' return # Find the next NULL, which is 1 byte past the environment variable. while self.u8(address-1) != 0: address -= 1 # We've found the beginning of the last environment variable. # We should be able to search up the stack for the envp[] array to # find a pointer to this address, followed by a NULL. last_env_addr = address address &= ~(context.bytes-1) while self.unpack(address) != last_env_addr: address -= context.bytes assert self.unpack(address+context.bytes) == 0 # We've successfully located the end of the envp[] array. # It comes immediately after the argv[] array, which itself # is NULL-terminated. end_of_envp = address+context.bytes while self.unpack(address - context.bytes) != 0: address -= context.bytes start_of_envp = address # Now we can fill in the environment easier. for env in range(start_of_envp, end_of_envp, context.bytes): envaddr = self.unpack(env) value = self.string(envaddr) name, value = value.split('=', 1) self.env[name] = envaddr + len(name) + 1 @property def maps(self): """A printable string which is similar to /proc/xx/maps.""" return '\n'.join(map(str, self.mappings)) def getenv(self, name): """getenv(name) -> int Read an environment variable off the stack, and return its address. Arguments: name(str): Name of the environment variable to read. Returns: The address of the environment variable. """ if name not in self.env: log.error("Environment variable %r not set" % name) return self.string(self.env[name]).split('=',1)[-1] def __getattr__(self, attribute): if self.prstatus: if hasattr(self.prstatus, attribute): return getattr(self.prstatus, attribute) if hasattr(self.prstatus.pr_reg, attribute): return getattr(self.prstatus.pr_reg, attribute) return super(Core, self).__getattribute__(attribute)
34.631034
103
0.54416
8,594
0.85572
860
0.085632
389
0.038733
0
0
2,851
0.283879
5819716bac9c4b729336569c993ab6648380ee01
2,875
py
Python
kNN.py
skywind3000/ml
d3ac3d6070b66d84e25537915ee634723ddb8c51
[ "MIT" ]
9
2019-03-25T02:14:23.000Z
2020-05-19T20:46:10.000Z
kNN.py
skywind3000/ml
d3ac3d6070b66d84e25537915ee634723ddb8c51
[ "MIT" ]
null
null
null
kNN.py
skywind3000/ml
d3ac3d6070b66d84e25537915ee634723ddb8c51
[ "MIT" ]
2
2020-07-06T04:44:02.000Z
2022-02-17T01:27:55.000Z
from __future__ import print_function import numpy as np import operator import os import sys if sys.version_info[0] >= 3: xrange = range def createDataSet(): group = np.array([[1.0,1.1], [1.0,1.0], [0,0], [0,0.1]]) labels = ['A', 'A', 'B', 'B'] return group, labels # kNN classifier def classify0(inX, dataSet, labels, k): # calculate distance dataSetSize = dataSet.shape[0] diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet sqDiffMat = diffMat ** 2 sqDistances = sqDiffMat.sum(axis = 1) distances = sqDistances ** 0.5 sortedDistIndicies = distances.argsort() classCount = {} # calculate minimal distance for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True) return sortedClassCount[0][0] # load image def img2vector(filename): returnVect = np.zeros((1, 1024)) fp = open(filename) for i in xrange(32): lineStr = fp.readline() for j in xrange(32): returnVect[0, 32 * i + j] = int(lineStr[j]) return returnVect # hand writing classifier def handwritingClassTest(): hwLabels = [] trainingFileList = os.listdir('data/digits/trainingDigits') m = len(trainingFileList) trainingMat = np.zeros((m, 1024)) for i in range(m): fileNameStr = trainingFileList[i] fileStr = fileNameStr.split('.')[0] classNumStr = int(fileStr.split('_')[0]) hwLabels.append(classNumStr) trainingMat[i,:] = img2vector('data/digits/trainingDigits/%s' % fileNameStr) testFileList = os.listdir('data/digits/testDigits') errorCount = 0.0 mTest = len(testFileList) for i in range(mTest): fileNameStr = testFileList[i] fileStr = fileNameStr.split('.')[0] classNumStr = int(fileStr.split('_')[0]) vectorUnderTest = img2vector('data/digits/testDigits/%s' % fileNameStr) classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3) print("the classifier came back with: %d, the real answer is %d\n"%( classifierResult, classNumStr)) if classifierResult != classNumStr: errorCount += 1.0 print('the total number of error is: %d' % errorCount) print('the total error rate is: %f'%(errorCount / float(mTest))) return 0 # testing case if __name__ == '__main__': def test1(): group, labels = createDataSet() print(classify0([0,0], group, labels, 3)) return 0 def test2(): testVector = img2vector('data/digits/testDigits/0_13.txt') print(testVector[0,0:31]) def test3(): handwritingClassTest() test3()
33.823529
85
0.619478
0
0
0
0
0
0
0
0
421
0.146435
5819a9286725e2bb1d31cefd9b8edf4e2e05b208
642
py
Python
simfin/revenue/personal_taxes.py
CREEi-models/simfin
a7c632ac8bc8f795cd46028c1a49e65a1c1b44eb
[ "MIT" ]
1
2021-06-11T15:16:13.000Z
2021-06-11T15:16:13.000Z
simfin/revenue/personal_taxes.py
CREEi-models/simfin
a7c632ac8bc8f795cd46028c1a49e65a1c1b44eb
[ "MIT" ]
1
2021-06-07T14:39:27.000Z
2021-06-07T14:39:27.000Z
simfin/revenue/personal_taxes.py
CREEi-models/simfin
a7c632ac8bc8f795cd46028c1a49e65a1c1b44eb
[ "MIT" ]
1
2021-03-17T03:52:21.000Z
2021-03-17T03:52:21.000Z
from simfin.tools import account class personal_taxes(account): ''' Classe permettant d'intégrer l'impôt des particuliers. ''' def set_align(self,pop,eco): earnings = pop.multiply(eco['emp']*eco['earn_c']+eco['taxinc'],fill_value=0.0) value = earnings.multiply(eco['personal_taxes'],fill_value=0.0).sum() self.align = self.value/value return def grow(self,macro,pop,eco,others): earnings = pop.multiply(eco['emp']*eco['earn_c']+eco['taxinc'],fill_value=0.0) self.value = (earnings.multiply(eco['personal_taxes'],fill_value=0.0).sum())*self.align return pass
33.789474
95
0.65109
609
0.945652
0
0
0
0
0
0
146
0.226708
5819cc4c01f213155dbdad2c086e2c95b1ccd432
16,094
py
Python
pandaserver/brokerage/PandaSiteIDs.py
rybkine/panda-server
30fdeaa658a38fe2049849446c300c1e1f5b5231
[ "Apache-2.0" ]
1
2019-08-30T13:47:51.000Z
2019-08-30T13:47:51.000Z
pandaserver/brokerage/PandaSiteIDs.py
mkycanopus/panda-server
0f7c36800c033fada8bbde53dceaab98770b6df2
[ "Apache-2.0" ]
null
null
null
pandaserver/brokerage/PandaSiteIDs.py
mkycanopus/panda-server
0f7c36800c033fada8bbde53dceaab98770b6df2
[ "Apache-2.0" ]
null
null
null
# !!!!!!! This file is OBSOLETE. Its content has been absorbed into pilotController.py in the autopilot repository. # !!!!!!! Questions to Torre Wenaus. PandaSiteIDs = { 'AGLT2' : {'nickname':'AGLT2-condor','status':'OK'}, 'ALBERTA-LCG2' : {'nickname':'ALBERTA-LCG2-lcgce01-atlas-lcgpbs','status':'OK'}, 'ANALY_AGLT2' : {'nickname':'ANALY_AGLT2-condor','status':'OK'}, 'ANALY_ALBERTA' : {'nickname':'ALBERTA-LCG2-lcgce01-atlas-lcgpbs','status':'OK'}, 'ANALY_BEIJING' : {'nickname':'BEIJING-LCG2-lcg002-atlas-lcgpbs','status':'OK'}, 'ANALY_BNL' : {'nickname':'BNL_ATLAS_1-condor','status':'OK'}, 'ANALY_BNL_ATLAS_1' : {'nickname':'BNL_ATLAS_1-condor','status':'OK'}, 'ANALY_BNL_ATLAS_2' : {'nickname':'BNL_ATLAS_2-condor','status':'OK'}, #'ANALY_BNL_LOCAL' : {'nickname':'BNL_ATLAS_1-condor','status':'OK'}, 'ANALY_BNL_test' : {'nickname':'BNL_ATLAS_1-condor','status':'OK'}, 'ANALY_BNL_test2' : {'nickname':'ANALY_BNL_ATLAS_1-condor','status':'OK'}, 'ANALY_BNL_test3' : {'nickname':'BNL_ATLAS_1-condor','status':'OK'}, 'ANALY_BRUNEL' : {'nickname':'UKI-LT2-Brunel-dgc-grid-44-atlas-lcgpbs','status':'notOK'}, 'ANALY_CERN' : {'nickname':'CERN-PROD-ce123-grid_atlas-lcglsf','status':'notOK'}, 'ANALY_CNAF' : {'nickname':'INFN-CNAF-gridit-ce-001-lcg-lcgpbs','status':'notOK'}, 'ANALY_CPPM' : {'nickname':'IN2P3-CPPM-marce01-atlas-pbs','status':'OK'}, 'ANALY_FZK' : {'nickname':'FZK-LCG2-ce-5-fzk-atlasXS-pbspro','status':'OK'}, 'ANALY_GLASGOW' : {'nickname':'UKI-SCOTGRID-GLASGOW-svr021-q3d-lcgpbs','status':'OK'}, 'ANALY_GLOW-ATLAS' : {'nickname':'GLOW-ATLAS-condor','status':'OK'}, 'ANALY_GRIF-IRFU' : {'nickname':'GRIF-IRFU-node07-atlas-lcgpbs','status':'OK'}, 'ANALY_GRIF-LAL' : {'nickname':'GRIF-LAL-grid10-atlasana-pbs','status':'notOK'}, 'ANALY_GRIF-LPNHE' : {'nickname':'GRIF-LPNHE-lpnce-atlas-pbs','status':'notOK'}, 'ANALY_HU_ATLAS_Tier2' : {'nickname':'ANALY_HU_ATLAS_Tier2-lsf','status':'OK'}, 'ANALY_LANCS' : {'nickname':'UKI-NORTHGRID-LANCS-HEP-fal-pygrid-18-atlas-lcgpbs','status':'notOK'}, 'ANALY_LAPP' : {'nickname':'IN2P3-LAPP-lapp-ce01-atlas-pbs','status':'notOK'}, 'ANALY_LIV' : {'nickname':'UKI-NORTHGRID-LIV-HEP-hepgrid2-atlas-lcgpbs','status':'notOK'}, 'ANALY_LONG_BNL' : {'nickname':'BNL_ATLAS_1-condor','status':'OK'}, 'ANALY_LONG_BNL_ATLAS' : {'nickname':'BNL_ATLAS_2-condor','status':'OK'}, 'ANALY_LONG_BNL_LOCAL' : {'nickname':'BNL_ATLAS_1-condor','status':'OK'}, 'ANALY_LONG_LYON' : {'nickname':'IN2P3-CC-T2-cclcgceli05-long-bqs','status':'OK'}, 'ANALY_LPC' : {'nickname':'IN2P3-LPC-clrlcgce03-atlas-lcgpbs','status':'notOK'}, 'ANALY_LPSC' : {'nickname':'IN2P3-LPSC-lpsc-ce-atlas-pbs','status':'OK'}, 'ANALY_LYON' : {'nickname':'IN2P3-CC-T2-cclcgceli05-medium-bqs','status':'OK'}, 'ANALY_MANC' : {'nickname':'UKI-NORTHGRID-MAN-HEP-ce01-atlas-lcgpbs','status':'OK'}, 'ANALY_MCGILL' : {'nickname':'MCGILL-LCG2-atlas-ce-atlas-lcgpbs','status':'OK'}, 'ANALY_MWT2' : {'nickname':'ANALY_MWT2-condor','status':'notOK'}, 'ANALY_MWT2_SHORT' : {'nickname':'ANALY_MWT2_SHORT-pbs','status':'notOK'}, 'ANALY_NET2' : {'nickname':'ANALY_NET2-pbs','status':'OK'}, 'ANALY_OU_OCHEP_SWT2' : {'nickname':'ANALY_OU_OCHEP_SWT2-condor','status':'notOK'}, 'ANALY_PIC' : {'nickname':'pic-ce07-gshort-lcgpbs','status':'OK'}, 'ANALY_RAL' : {'nickname':'RAL-LCG2-lcgce01-atlasL-lcgpbs','status':'OK'}, 'ANALY_ROMANIA02' : {'nickname':'RO-02-NIPNE-tbat01-atlas-lcgpbs','status':'notOK'}, 'ANALY_ROMANIA07' : {'nickname':'RO-07-NIPNE-tbit01-atlas-lcgpbs','status':'notOK'}, 'ANALY_SARA' : {'nickname':'SARA-MATRIX-mu6-short-pbs','status':'notOK'}, 'ANALY_SFU' : {'nickname':'SFU-LCG2-snowpatch-hep-atlas-lcgpbs','status':'notOK'}, 'ANALY_SHEF' : {'nickname':'UKI-NORTHGRID-SHEF-HEP-lcgce0-atlas-lcgpbs','status':'OK'}, 'ANALY_SLAC' : {'nickname':'ANALY_SLAC-lsf','status':'OK'}, 'ANALY_SWT2_CPB' : {'nickname':'ANALY_SWT2_CPB-pbs','status':'OK'}, 'ANALY_TAIWAN' : {'nickname':'Taiwan-LCG2-w-ce01-atlas-lcgpbs','status':'OK'}, 'ANALY_TEST' : {'nickname':'ANALY_TEST','status':'OK'}, 'ANALY_TORONTO' : {'nickname':'TORONTO-LCG2-bigmac-lcg-ce2-atlas-pbs','status':'OK'}, 'ANALY_TOKYO' : {'nickname':'TOKYO-LCG2-lcg-ce01-atlas-lcgpbs','status':'OK'}, 'ANALY_TRIUMF' : {'nickname':'TRIUMF-LCG2-ce1-atlas-lcgpbs','status':'OK'}, 'ANALY_UBC' : {'nickname':'UBC-pbs','status':'OK'}, 'ANALY_UIUC-HEP' : {'nickname':'ANALY_UIUC-HEP-condor','status':'OK'}, 'ANALY_UTA' : {'nickname':'UTA-DPCC-pbs','status':'OK'}, 'ANALY_UTA-DPCC' : {'nickname':'UTA-DPCC-test-pbs','status':'notOK'}, 'ANALY_VICTORIA' : {'nickname':'VICTORIA-LCG2-lcg-ce-general-lcgpbs','status':'OK'}, 'AUVERGRID' : {'nickname':'AUVERGRID-iut15auvergridce01-atlas-lcgpbs','status':'notOK'}, 'ASGC' : {'nickname':'Taiwan-LCG2-w-ce01-atlas-lcgpbs','status':'OK'}, 'ASGC_REPRO' : {'nickname':'ASGC_REPRO','status':'notOK'}, 'Australia-ATLAS' : {'nickname':'Australia-ATLAS-agh2-atlas-lcgpbs','status':'OK'}, 'BARNETT_TEST' : {'nickname':'BARNETT_TEST','status':'notOK'}, 'BEIJING' : {'nickname':'BEIJING-LCG2-lcg002-atlas-lcgpbs','status':'OK'}, 'BNLPROD' : {'nickname':'BNL_ATLAS_1-condor','status':'notOK'}, 'BNL_ATLAS_1' : {'nickname':'BNL_ATLAS_1-condor','status':'OK'}, 'BNL_ATLAS_2' : {'nickname':'BNL_ATLAS_2-condor','status':'OK'}, 'BNL_ATLAS_DDM' : {'nickname':'BNL_DDM-condor','status':'notOK'}, 'BNL_ATLAS_test' : {'nickname':'BNL_ATLAS_2-condor','status':'notOK'}, 'BU_ATLAS_Tier2' : {'nickname':'BU_ATLAS_Tier2-pbs','status':'OK'}, 'BU_ATLAS_Tier2o' : {'nickname':'BU_ATLAS_Tier2o-pbs','status':'OK'}, 'BU_ATLAS_test' : {'nickname':'BU_ATLAS_Tier2-pbs','status':'NOTOK'}, 'HU_ATLAS_Tier2' : {'nickname':'HU_ATLAS_Tier2-lsf','status':'OK'}, 'CERN-BUILDS' : {'nickname':'CERN-BUILDS','status':'notOK'}, 'CERN-RELEASE' : {'nickname':'CERN-RELEASE','status':'notOK'}, 'CERN-UNVALID' : {'nickname':'CERN-UNVALID','status':'notOK'}, 'CGG' : {'nickname':'CGG-LCG2-ce1-atlas-lcgpbs','status':'notOK'}, 'CHARMM' : {'nickname':'CHARMM','status':'notOK'}, 'CNR-ILC-PISA' : {'nickname':'CNR-ILC-PISA-gridce-atlas-lcgpbs','status':'notOK'}, 'CPPM' : {'nickname':'IN2P3-CPPM-marce01-atlas-pbs','status':'OK'}, 'CSCS-LCG2' : {'nickname':'CSCS-LCG2-ce01-egee48h-lcgpbs','status':'OK'}, 'csTCDie' : {'nickname':'csTCDie-gridgate-himem-pbs','status':'OK'}, 'CYF' : {'nickname':'CYFRONET-LCG2-ce-atlas-pbs','status':'OK'}, 'DESY-HH' : {'nickname':'DESY-HH-grid-ce3-default-lcgpbs','status':'OK'}, 'DESY-ZN' : {'nickname':'DESY-ZN-lcg-ce0-atlas-lcgpbs','status':'OK'}, 'EFDA-JET' : {'nickname':'EFDA-JET-grid002-atlas-lcgpbs','status':'notok'}, 'FZK-LCG2' : {'nickname':'FZK-LCG2-ce-1-fzk-atlasXL-pbspro','status':'OK'}, 'FZK_REPRO' : {'nickname':'FZK_REPRO','status':'notOK'}, 'FZU' : {'nickname':'praguelcg2-golias25-lcgatlas-lcgpbs','status':'OK'}, 'GLOW' : {'nickname':'GLOW-CMS-cmsgrid02-atlas-condor','status':'notOK'}, 'GLOW-ATLAS' : {'nickname':'GLOW-ATLAS-condor','status':'OK'}, 'GoeGrid' : {'nickname':'GoeGrid-ce-goegrid-atlas-lcgpbs','status':'OK'}, 'GRIF-IRFU' : {'nickname':'GRIF-IRFU-node07-atlas-lcgpbs','status':'OK'}, 'GRIF-LAL' : {'nickname':'GRIF-LAL-grid10-atlas-pbs','status':'OK'}, 'GRIF-LPNHE' : {'nickname':'GRIF-LPNHE-lpnce-atlas-pbs','status':'OK'}, 'HEPHY-UIBK' : {'nickname':'HEPHY-UIBK-hepx4-atlas-lcgpbs','status':'OK'}, 'IFAE' : {'nickname':'ifae-ifaece01-ifae-lcgpbs','status':'OK'}, 'IFIC' : {'nickname':'IFIC-LCG2-ce01-atlas-pbs','status':'OK'}, 'IHEP' : {'nickname':'BEIJING-LCG2-lcg002-atlas-lcgpbs','status':'OK'}, 'ITEP' : {'nickname':'ITEP-ceglite-atlas-lcgpbs','status':'OK'}, 'IN2P3-LPSC' : {'nickname':'IN2P3-LPSC-lpsc-ce-atlas-pbs','status':'OK'}, 'JINR-LCG2' : {'nickname':'JINR-LCG2-lcgce01-atlas-lcgpbs', 'status':'OK'}, 'LAPP' : {'nickname':'IN2P3-LAPP-lapp-ce01-atlas-pbs','status':'OK'}, 'LIP-COIMBRA' : {'nickname':'LIP-Coimbra-grid006-atlas-lcgpbs','status':'OK'}, 'LIP-LISBON' : {'nickname':'LIP-Lisbon-ce02-atlasgrid-lcgsge','status':'OK'}, 'LLR' : {'nickname':'GRIF-LLR-polgrid1-atlas-pbs','status':'notOK'}, 'LPC' : {'nickname':'IN2P3-LPC-clrlcgce03-atlas-lcgpbs','status':'OK'}, 'LRZ' : {'nickname':'LRZ-LMU-lcg-lrz-ce-atlas-sge','status':'OK'}, 'LYON' : {'nickname':'IN2P3-CC-cclcgceli02-long-bqs','status':'OK'}, 'LYON_REPRO' : {'nickname':'LYON_REPRO','status':'notOK'}, 'Lyon-T2' : {'nickname':'IN2P3-CC-T2-cclcgceli05-long-bqs','status':'OK'}, 'LTU_CCT' : {'nickname':'LTU_CCT-pbs','status':'OK'}, 'MANC' : {'nickname':'UKI-NORTHGRID-MAN-HEP-ce02-atlas-lcgpbs','status':'OK'}, 'MCGILL-LCG2' : {'nickname':'MCGILL-LCG2-atlas-ce-atlas-pbs','status':'OK'}, 'MONTREAL' : {'nickname':'Umontreal-LCG2-lcg-ce-atlas-lcgpbs','status':'notOK'}, 'MPP' : {'nickname':'MPPMU-grid-ce-long-sge','status':'OK'}, 'MWT2_IU' : {'nickname':'MWT2_IU-pbs','status':'OK'}, 'MWT2_UC' : {'nickname':'MWT2_UC-pbs','status':'OK'}, 'NDGF' : {'nickname':'NDGF-condor','status':'OK'}, 'NIKHEF-ELPROD' : {'nickname':'NIKHEF-ELPROD-gazon-atlas-pbs','status':'OK'}, 'NIKHEF_REPRO' : {'nickname':'NIKHEF_REPRO','status':'notOK'}, 'OUHEP_ITB' : {'nickname':'OUHEP_ITB-condor','status':'notOK'}, 'OU_PAUL_TEST' : {'nickname':'OU_OCHEP_SWT2-condor','status':'notOK'}, 'OU_OCHEP_SWT2' : {'nickname':'OU_OCHEP_SWT2-condor','status':'OK'}, 'OU_OSCER_ATLAS' : {'nickname':'OU_OSCER_ATLAS-lsf','status':'OK'}, 'OU_OSCER_ATLASdeb' : {'nickname':'OU_OSCER_ATLASdeb-lsf','status':'notOK'}, 'PSNC' : {'nickname':'PSNC-ce-atlas-pbs','status':'OK'}, 'PIC' : {'nickname':'pic-ce05-glong-lcgpbs','status':'OK'}, 'PIC_REPRO' : {'nickname':'PIC_REPRO','status':'notOK'}, 'prague_cesnet_lcg2' : {'nickname':'prague_cesnet_lcg2-skurut17-egee_atlas-lcgpbs','status':'notOK'}, 'RAL' : {'nickname':'RAL-LCG2-lcgce02-grid1000M-lcgpbs','status':'OK'}, 'RAL_REPRO' : {'nickname':'RAL_REPRO','status':'notOK'}, 'ru-Moscow-SINP-LCG2' : {'nickname':'ru-Moscow-SINP-LCG2-lcg02-atlas-lcgpbs','status':'OK'}, 'ru-PNPI' : {'nickname':'ru-PNPI-cluster-atlas-pbs','status':'OK'}, 'RDIGTEST' : {'nickname':'RDIGTEST','status':'notOK'}, 'ROMANIA02' : {'nickname':'RO-02-NIPNE-tbat01-atlas-lcgpbs','status':'OK'}, 'ROMANIA07' : {'nickname':'RO-07-NIPNE-tbit01-atlas-lcgpbs','status':'OK'}, 'RRC-KI' : {'nickname':'RRC-KI-gate-atlas-lcgpbs','status':'OK'}, 'RU-Protvino-IHEP' : {'nickname':'RU-Protvino-IHEP-ce0003-atlas-lcgpbs','status':'OK'}, 'SARA_REPRO' : {'nickname':'SARA_REPRO','status':'notOK'}, 'SFU-LCG2' : {'nickname':'SFU-LCG2-snowpatch-atlas-lcgpbs','status':'OK'}, 'SLACXRD' : {'nickname':'SLACXRD-lsf','status':'OK'}, 'SLAC_PAUL_TEST' : {'nickname':'SLACXRD-lsf','status':'notOK'}, 'SNS-PISA' : {'nickname':'SNS-PISA-gridce-atlas-lcgpbs','status':'notOK'}, 'SPACI-CS-IA64' : {'nickname':'SPACI-CS-IA64-square-atlas-lsf','status':'notOK'}, 'SWT2_CPB' : {'nickname':'SWT2_CPB-pbs','status':'OK'}, 'Taiwan-IPAS-LCG2' : {'nickname':'Taiwan-IPAS-LCG2-atlasce-atlas-lcgcondor','status':'notOK'}, 'TEST1' : {'nickname':'TEST1','status':'notOK'}, 'TEST2' : {'nickname':'TEST2','status':'notOK'}, 'TEST3' : {'nickname':'TEST3','status':'notOK'}, 'TEST4' : {'nickname':'TEST4','status':'notOK'}, 'TESTCHARMM' : {'nickname':'TESTCHARMM','status':'notOK'}, 'TESTGLIDE' : {'nickname':'TESTGLIDE','status':'notOK'}, 'TOKYO' : {'nickname':'TOKYO-LCG2-lcg-ce01-atlas-lcgpbs','status':'OK'}, 'TORONTO-LCG2' : {'nickname':'TORONTO-LCG2-bigmac-lcg-ce2-atlas-pbs','status':'OK'}, 'TPATHENA' : {'nickname':'TPATHENA','status':'notOK'}, 'TPPROD' : {'nickname':'TPPROD','status':'notOK'}, 'TRIUMF' : {'nickname':'TRIUMF-LCG2-ce1-atlas-lcgpbs','status':'OK'}, 'TRIUMF_DDM' : {'nickname':'TRIUMF_DDM','status':'notOK'}, 'TRIUMF_REPRO' : {'nickname':'TRIUMF_REPRO','status':'notOK'}, 'TW-FTT' : {'nickname':'TW-FTT-f-ce01-atlas-lcgpbs','status':'OK'}, 'TWTEST' : {'nickname':'TWTEST','status':'notOK'}, 'TestPilot' : {'nickname':'TestPilot','status':'notOK'}, 'UAM-LCG2' : {'nickname':'UAM-LCG2-grid003-atlas-lcgpbs','status':'OK'}, 'UBC' : {'nickname':'UBC-pbs','status':'OK'}, 'UBC_PAUL_TEST' : {'nickname':'UBC-pbs','status':'notOK'}, 'UIUC-HEP' : {'nickname':'UIUC-HEP-condor','status':'OK'}, 'UCITB_EDGE7' : {'nickname':'UCITB_EDGE7-pbs','status':'OK'}, 'UC_ATLAS_MWT2' : {'nickname':'UC_ATLAS_MWT2-condor','status':'OK'}, 'UC_ATLAS_test' : {'nickname':'UC_ATLAS_MWT2-condor','status':'OK'}, 'UC_Teraport' : {'nickname':'UC_Teraport-pbs','status':'notOK'}, 'UMESHTEST' : {'nickname':'UMESHTEST','status':'notOK'}, 'UNI-FREIBURG' : {'nickname':'UNI-FREIBURG-ce-atlas-pbs','status':'OK'}, 'UTA-DPCC' : {'nickname':'UTA-DPCC-pbs','status':'OK'}, 'UTA-DPCC-test' : {'nickname':'UTA-DPCC-test-pbs','status':'OK'}, 'UTA_PAUL_TEST' : {'nickname':'UTA-SWT2-pbs','status':'notOK'}, 'UTA_SWT2' : {'nickname':'UTA-SWT2-pbs','status':'OK'}, 'UTD-HEP' : {'nickname':'UTD-HEP-pbs','status':'OK'}, 'VICTORIA-LCG2' : {'nickname':'VICTORIA-LCG2-lcg-ce-general-lcgpbs','status':'OK'}, 'Wuppertal' : {'nickname':'wuppertalprod-grid-ce-dg_long-lcgpbs','status':'OK'}, } # cloud-MoverID mapping PandaMoverIDs = { 'US' : 'BNL_ATLAS_DDM', 'CA' : 'TRIUMF_DDM', 'FR' : 'TRIUMF_DDM', 'IT' : 'TRIUMF_DDM', 'NL' : 'TRIUMF_DDM', 'DE' : 'TRIUMF_DDM', 'TW' : 'TRIUMF_DDM', 'UK' : 'TRIUMF_DDM', 'ES' : 'TRIUMF_DDM', }
80.874372
115
0.541258
0
0
0
0
0
0
0
0
11,140
0.692183
581c0ca0e2bb4ab7335e22da97be7ac35a4e0e71
513
py
Python
tools/scenario-player/scenario_player/exceptions.py
karlb/raiden
61ade0559add1a97588ae6bdedd5e0b99ed41de3
[ "MIT" ]
8
2019-06-12T14:50:06.000Z
2022-02-15T16:20:07.000Z
tools/scenario-player/scenario_player/exceptions.py
karlb/raiden
61ade0559add1a97588ae6bdedd5e0b99ed41de3
[ "MIT" ]
141
2019-06-18T13:04:08.000Z
2021-11-23T22:00:32.000Z
tools/scenario-player/scenario_player/exceptions.py
karlb/raiden
61ade0559add1a97588ae6bdedd5e0b99ed41de3
[ "MIT" ]
17
2019-05-21T18:09:05.000Z
2020-10-29T13:01:01.000Z
class ScenarioError(Exception): pass class ScenarioTxError(ScenarioError): pass class TokenRegistrationError(ScenarioTxError): pass class ChannelError(ScenarioError): pass class TransferFailed(ScenarioError): pass class NodesUnreachableError(ScenarioError): pass class RESTAPIError(ScenarioError): pass class RESTAPIStatusMismatchError(ScenarioError): pass class UnknownTaskTypeError(ScenarioError): pass class ScenarioAssertionError(ScenarioError): pass
13.153846
48
0.769981
485
0.945419
0
0
0
0
0
0
0
0
581d47d6e3101d07297475a1a84d27b2898647b8
1,002
py
Python
explain.py
jcsalterego/gh-contest
033f87c5338e3066ee4c80df2ee8e1ae4d6f1c7b
[ "BSD-3-Clause" ]
1
2015-11-05T02:50:57.000Z
2015-11-05T02:50:57.000Z
explain.py
jcsalterego/gh-contest
033f87c5338e3066ee4c80df2ee8e1ae4d6f1c7b
[ "BSD-3-Clause" ]
null
null
null
explain.py
jcsalterego/gh-contest
033f87c5338e3066ee4c80df2ee8e1ae4d6f1c7b
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python from pprint import pprint from matchmaker.database import * import sys def main(argv): if len(argv) == 1: return line = argv[1] if line[0] in '+-': line = line[1:] user, repos = line.split(":") user = int(user) repos = [int(r) for r in repos.split(",")] print("Loading database...") db = Database("data") print("original watchlist") watching = sorted(db.u_watching[user]) for r in watching: print "%6d" % r, if r in db.r_info: print("%18s - %20s - %10s" % tuple([x[:20] for x in db.r_info[r]])) else: print("") print("") print("new additions") watching = sorted(repos) for r in watching: print "%6d" % r, if r in db.r_info: print("%18s - %20s - %10s" % tuple([x[:20] for x in db.r_info[r]])) else: print("") if __name__ == '__main__': sys.exit(main(sys.argv))
22.266667
58
0.505988
0
0
0
0
0
0
0
0
159
0.158683
581e242497be1d7d21237861371ea688ae66e1e5
3,862
py
Python
qiskit/pulse/commands/command.py
EnriqueL8/qiskit-terra
08b801f1f8598c4e44680b4a75c232ed92db0262
[ "Apache-2.0" ]
2
2019-06-28T19:58:42.000Z
2019-07-26T05:04:02.000Z
qiskit/pulse/commands/command.py
EnriqueL8/qiskit-terra
08b801f1f8598c4e44680b4a75c232ed92db0262
[ "Apache-2.0" ]
3
2018-11-13T17:33:37.000Z
2018-12-03T09:35:00.000Z
qiskit/pulse/commands/command.py
EnriqueL8/qiskit-terra
08b801f1f8598c4e44680b4a75c232ed92db0262
[ "Apache-2.0" ]
2
2017-12-03T15:48:14.000Z
2018-03-11T13:08:03.000Z
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Base command. """ import re from abc import ABCMeta, abstractmethod from typing import List, Optional, Union import numpy as np from qiskit.pulse.exceptions import PulseError from qiskit.pulse.channels import Channel class MetaCount(ABCMeta): """Meta class to count class instances.""" def __new__(mcs, name, bases, namespace, **_): new_cls = super(MetaCount, mcs).__new__(mcs, name, bases, namespace) new_cls.instances_counter = 0 return new_cls class Command(metaclass=MetaCount): """Abstract command class.""" # Counter for the number of instances in this class prefix = 'c' @abstractmethod def __init__(self, duration: Union[int, np.integer] = None): """Create a new command. Args: duration: Duration of this command. Raises: PulseError: when duration is not number of points """ if isinstance(duration, (int, np.integer)): self._duration = int(duration) else: raise PulseError('Pulse duration should be integer.') self._name = Command.create_name() @classmethod def create_name(cls, name: str = None) -> str: """Autogenerate names for pulse commands.""" if name is None: try: name = '%s%i' % (cls.prefix, cls.instances_counter) # pylint: disable=E1101 except TypeError: raise PulseError("prefix and counter must be non-None when name is None.") else: try: name = str(name) except Exception: raise PulseError("The pulse command name should be castable to a string " "(or None for autogenerate a name).") name_format = re.compile('[a-zA-Z][a-zA-Z0-9_]*') if name_format.match(name) is None: raise PulseError("%s is an invalid OpenPulse command name." % name) cls.instances_counter += 1 # pylint: disable=E1101 return name @property def duration(self) -> int: """Duration of this command.""" return self._duration @property def name(self) -> str: """Name of this command.""" return self._name @abstractmethod def to_instruction(self, command, *channels: List[Channel], name: Optional[str] = None): """Create an instruction from command. Returns: Instruction """ pass def __call__(self, *args, **kwargs): """Creates an Instruction obtained from call to `to_instruction` wrapped in a Schedule.""" return self.to_instruction(*args, **kwargs) def __eq__(self, other: 'Command'): """Two Commands are the same if they are of the same type and have the same duration and name. Args: other: other Command Returns: bool: are self and other equal """ return (type(self) is type(other)) and (self.duration == other.duration) def __hash__(self): return hash((type(self), self.duration, self.name)) def __repr__(self): return '%s(duration=%d, name="%s")' % (self.__class__.__name__, self.duration, self.name)
31.398374
98
0.599689
3,124
0.808907
0
0
1,841
0.476696
0
0
1,662
0.430347
581f418d3f23d0acfebe881f3102cd64dfbdffef
6,654
py
Python
data_loader/data_loaders.py
brendanwallison/birds
b70c01b8c953dfa172c65a51f7bdf100e47853d3
[ "MIT" ]
null
null
null
data_loader/data_loaders.py
brendanwallison/birds
b70c01b8c953dfa172c65a51f7bdf100e47853d3
[ "MIT" ]
null
null
null
data_loader/data_loaders.py
brendanwallison/birds
b70c01b8c953dfa172c65a51f7bdf100e47853d3
[ "MIT" ]
null
null
null
from torchvision import datasets, transforms from torchvision.transforms import functional as TF from base import BaseDataLoader from six.moves import urllib from parse_config import ConfigParser # downloads import requests import json from collections import Counter import os import errno import csv import numpy as np import pandas as pd import splitfolders import pathlib import torchaudio import torch # Note: horizontal dimension = 2 * time_window * sample_rate // n_fft + 1 # vertical crop = n_fft // 2 + 1 class SpectrogramLoader(BaseDataLoader): def __init__(self, dataset=None, batch_size=128, shuffle=False, validation_split=0.0, weighted_sample = False, num_workers=1, data_dir="data/processed", training=True): self.dataset = dataset self.data_dir = data_dir if dataset is not None: self.vertical_crop = dataset.vertical_crop self.horizontal_crop = dataset.horizontal_crop if dataset.mode == 'xeno': # Stack of numpy melspecs -> one torch melspec #self.horizontal_crop=dataset.horizontal_crop - 1 trsfm = transforms.Compose([ RandomImage(dataset.split_files, self.horizontal_crop), #Superimpose(self.dataset, dataset.split_files, self.horizontal_crop), NormalizeLabels(), ThreeChannel(), NumpyStackToTensors() #transforms.RandomCrop(size = (self.vertical_crop, self.horizontal_crop), pad_if_needed=True, padding_mode = 'constant') ]) else: trsfm = transforms.Compose([ # RandomImage(), ThreeChannel(), AxisOrderChange(), NumpyStackToTensors(), Crop() #transforms.ToTensor(), #transforms.RandomCrop(size = (self.vertical_crop, self.horizontal_crop), pad_if_needed=True, padding_mode = 'constant') ]) dataset.set_transform(trsfm) else: self.vertical_crop = 128 self.horizontal_crop = 281 dataset = datasets.DatasetFolder(root = self.data_dir, loader = self.default_loader, transform = trsfm, extensions=('.pickle')) super().__init__(self.dataset, batch_size, shuffle, validation_split, weighted_sample, num_workers) # assumes we have used torch.save() or another pickle saver # on tensor-based spectrogram def default_loader(self, path): mel_specgram = torch.load(path) return mel_specgram.numpy() class AddChannel(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, t): sample = t[0] label = t[1] new_sample = sample[:, :, None] return (new_sample, label) class RandomImage(object): # Pick a random image from a stack def __init__(self, split_files, horizontal_crop = None): self.split_files = split_files self.horizontal_crop = horizontal_crop def __call__(self, t): sample = t[0] label = t[1] if self.split_files: choices = range(sample.shape[0]) choice = np.random.choice(choices) new_sample = sample[choice] else: low = 0 high = sample.shape[-1] - self.horizontal_crop - 1 while high < 0: sample = np.hstack((sample, sample)) high = sample.shape[-1] - self.horizontal_crop - 1 offset = int(np.random.uniform(low=low, high=high, size = 1)) new_sample = sample[..., offset: offset+self.horizontal_crop] return (new_sample, label) class ThreeChannel(object): # Converts a stack of images to color def __call__(self, t): sample = t[0] label = t[1] sample = np.stack([sample, sample, sample]) return (sample, label) class NumpyStackToTensors(object): def __call__(self, t): sample = t[0] label = t[1] sample = [transforms.ToTensor()(sample[i]) for i in range(sample.shape[0])] sample = torch.stack(sample) return (torch.squeeze(sample), label) class AxisOrderChange(object): # Torch tensor transform expects: # HxWxC, from 0 to 255 # Returns CxHxW def __call__(self, t): sample = t[0] label = t[1] sample = np.moveaxis(sample, 0, -1) return (sample, label) class Crop(object): def __call__(self, t): sample = t[0] label = t[1] return (TF.crop(sample, top = 0, left = 0, height = 128, width = 201), label) # Assumes one image file class Superimpose(object): def __init__(self, dataset, split_files, horizontal_crop = None): self.dataset = dataset self.split_files = split_files self.horizontal_crop = horizontal_crop def __call__(self, t): sample = t[0] label = t[1] mix_idx = np.random.choice(len(self.dataset)) mixer, mix_label = self.dataset.__getitem__(mix_idx, no_transform = True) mixer, mix_label = RandomImage(self.split_files, self.horizontal_crop)((sample, mix_label)) w = self.weight() sample = sample + mixer*w label = label + mix_label*w return (sample, label) def weight(self): w = np.random.beta(1, 3) return w # Assumes one image file class NormalizeLabels(object): def __call__(self, t): sample = t[0] label = t[1] sum_of_rows = torch.sum(label) normalized_labels = label / sum_of_rows return (sample, normalized_labels) class MnistDataLoader(BaseDataLoader): """ MNIST data loading demo using BaseDataLoader """ #def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, num_workers=1, training=True): def __init__(self, data_dir, batch_size, shuffle=True, validation_split=0.0, weighted_sample = False, num_workers=1, training=True): trsfm = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # headers required for valid request to cloudflare-protected dataset opener = urllib.request.build_opener() opener.addheaders = [('User-agent', 'Mozilla/5.0')] urllib.request.install_opener(opener) self.data_dir = data_dir self.dataset = datasets.MNIST(self.data_dir, train=training, download=True, transform=trsfm) super().__init__(self.dataset, batch_size, shuffle, validation_split, num_workers)
37.382022
172
0.622483
6,048
0.908927
0
0
0
0
0
0
1,173
0.176285
5820628189dcbe4c683064fd6478349ee7f02524
5,855
py
Python
stockscanner/model/portfolio/portfolio.py
adityazagade/StockScanner
4aecf886a8858757e4720b68d0af5ed94f4d371a
[ "Apache-2.0" ]
null
null
null
stockscanner/model/portfolio/portfolio.py
adityazagade/StockScanner
4aecf886a8858757e4720b68d0af5ed94f4d371a
[ "Apache-2.0" ]
null
null
null
stockscanner/model/portfolio/portfolio.py
adityazagade/StockScanner
4aecf886a8858757e4720b68d0af5ed94f4d371a
[ "Apache-2.0" ]
null
null
null
from datetime import date from typing import List from stockscanner.model.asset.asset_type import AssetType from stockscanner.model.exceptions.exceptions import AssetNotFoundException from stockscanner.model.asset.asset import Asset from stockscanner.model.asset.cash import Cash from stockscanner.model.asset.debt import Debt from stockscanner.model.asset.equity import Equity from stockscanner.model.strategies.strategy import Strategy class Portfolio: def __init__(self, name) -> None: self.name = name self.description = "" self.__assets: List[Asset] = list() self.__change_logs = list() self.__strategy = None def get_change_logs(self): return self.__change_logs def add_asset(self, a: Asset): self.__assets.append(a) def set_description(self, description): self.description = description def get_returns(self): pass def get_xirr(self): pass def total_invested(self): total_invested = 0 for a in self.__assets: total_invested += a.get_invested_amount() return total_invested def apply_strategy(self, s: Strategy): self.__strategy = s def rebalance_by_weights(self, **kwargs): curr_date: date = kwargs.get("curr_date") curr_eq_weight = self.get_asset_weight(AssetType.EQUITY, curr_date) curr_debt_weight = self.get_asset_weight(AssetType.DEBT, curr_date) curr_gold_weight = self.get_asset_weight(AssetType.GOLD, curr_date) curr_cash_weight = self.get_asset_weight(AssetType.CASH, curr_date) val_as_of_today = self.get_value_as_of_date(curr_date) # change in weight amount = (kwargs.get("eq_weight", 0) - curr_eq_weight) * val_as_of_today if amount > 0: self.get_asset(AssetType.EQUITY).add_by_amount(abs(amount), curr_date) elif amount < 0: self.get_asset(AssetType.EQUITY).reduce_by_amount(abs(amount), curr_date) amount = (kwargs.get("debt_weight", 0) - curr_debt_weight) * val_as_of_today if amount > 0: self.get_asset(AssetType.DEBT).add_by_amount(abs(amount), curr_date) elif amount < 0: self.get_asset(AssetType.DEBT).reduce_by_amount(abs(amount), curr_date) amount = (kwargs.get("gold_weight", 0) - curr_gold_weight) * val_as_of_today if amount > 0: self.get_asset(AssetType.GOLD).add_by_amount(abs(amount), curr_date) elif amount < 0: self.get_asset(AssetType.GOLD).reduce_by_amount(abs(amount), curr_date) amount = (kwargs.get("cash_weight", 0) - curr_cash_weight) * val_as_of_today if amount > 0: self.get_asset(AssetType.CASH).add_by_amount(abs(amount), curr_date) elif amount < 0: self.get_asset(AssetType.CASH).reduce_by_amount(abs(amount), curr_date) message = f"Total Invested: ${self.total_invested()}, " \ f"Current Value: ${self.get_value_as_of_date(curr_date)} \r\n " \ f"eq: {self.get_asset_weight(AssetType.EQUITY, curr_date)} " \ f"debt: {self.get_asset_weight(AssetType.DEBT, curr_date)} " \ f"gold: {self.get_asset_weight(AssetType.GOLD, curr_date)} " \ f"cash: {self.get_asset_weight(AssetType.CASH, curr_date)}" self.add_rebalance_logs(f"Portfolio rebalanced on {curr_date} \n + ${message}") def get_asset_weight(self, asset: AssetType, curr_date=None): for a in self.__assets: if a.type == asset: if curr_date: return a.get_value_as_of_date(curr_date) / self.get_value_as_of_date(curr_date) else: return a.get_current_value() / self.get_current_value() return 0 def get_current_value(self): sum = 0 for a in self.__assets: sum += a.get_current_value() return sum def add_rebalance_logs(self, message): self.__change_logs.append(message) def get_value_as_of_date(self, d: date): val = 0 for a in self.__assets: val += a.get_value_as_of_date(d) return val def get_asset(self, asset_type: AssetType): for a in self.__assets: if a.type == asset_type: return a raise AssetNotFoundException() def __str__(self) -> str: current_details = f"Total Invested: ${self.total_invested()}, Current Value: ${self.get_current_value()}" change_logs = '\r\n'.join(map(str, self.get_change_logs())) trade_book = '\r\n'.join(map(str, self.get_trade_book())) return f"{current_details} \r\n + {change_logs} \r\n {trade_book}" def get_trade_book(self) -> list: return self.get_asset(AssetType.EQUITY).get_trade_book() def get_strategy(self) -> Strategy: return self.__strategy def add_stock(self, **kwargs): try: eq = self.get_asset(AssetType.EQUITY) except AssetNotFoundException: eq = Equity() self.__assets.append(eq) eq.add(**kwargs) def add_debt(self, **kwargs): try: dt = self.get_asset(AssetType.DEBT) except AssetNotFoundException: dt = Debt() self.__assets.append(dt) dt.add(**kwargs) def add_cash(self, cash_value): if cash_value <= 0: return try: cash_asset = self.get_asset(AssetType.CASH) cash_asset.add_by_amount(cash_value) except AssetNotFoundException: cash_asset = Cash(cash_value) self.__assets.append(cash_asset) def add_equities_by_amount(self, amount: int, d: date): eq = self.get_asset(AssetType.EQUITY) eq.add_by_amount(amount=amount, d=d)
37.056962
113
0.640649
5,413
0.924509
0
0
0
0
0
0
640
0.109308
5820f326461279dab8c970a64d716534511d2f87
2,478
py
Python
python/zdl/error_logger/error_logger/url_rules/report.py
wjiec/packages
4ccaf8f717265a1f8a9af533f9a998b935efb32a
[ "MIT" ]
null
null
null
python/zdl/error_logger/error_logger/url_rules/report.py
wjiec/packages
4ccaf8f717265a1f8a9af533f9a998b935efb32a
[ "MIT" ]
1
2016-09-15T07:06:15.000Z
2016-09-15T07:06:15.000Z
python/zdl/error_logger/error_logger/url_rules/report.py
wjiec/packages
4ccaf8f717265a1f8a9af533f9a998b935efb32a
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # Copyright (C) 2017 import json import time from error_logger.url_rules import _base_url_rule # from error_logger.net import sms_notification, email_notification from error_logger.utils import generic class Report(_base_url_rule.BaseUrlRule): __url__ = '/report' __methods__ = ['POST'] def __init__(self, config, *args, **kwargs): super(Report, self).__init__(config) def callback(self): adapter = self.get_adapter() source = self.get_url_parameter('source') # type: str json_data = self.get_body_dict() # type: dict for error in json_data.get('errors', []): _level = int(error.pop('level')) _time = int(error.pop('time', self.get_current_timestamp())) _module = generic.to_string(error.pop('module')) _type = generic.to_string(error.pop('type')) _msg = error.pop('msg') _other_data = json.dumps(error) _ip = generic.to_string(self.get_remote_ip()) # TODO. modify this self._notification(source, _level) if not _level or not _time or not _module or not _type or not _msg: return self.jsonify(1, 'report data format invalid, ' 'may be loss some fields') source.replace('\'', '\'\'') sql = 'INSERT INTO "{source}"'.format(source=source) with adapter.cursor() as cursor: sql = cursor.mogrify( ''' INSERT INTO "{source}" ("level", "time", "module", "type", "msg", "ip", "other_data") VALUES (%s, %s, %s, %s, %s, %s, %s) '''.format(source=source), (_level, time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(_time)), _module, _type, _msg, _ip, _other_data ) ) try: adapter.execute(sql) except Exception as e: print e return self.jsonify(2, 'insert error data error occurs, may be' ' error data invalid or server error') else: return self.jsonify(0, 'success') def _notification(self, source, error_level): pass
36.441176
84
0.506053
2,249
0.907587
0
0
0
0
0
0
642
0.25908
58230301eafe03e15cb587a17b91ac8b8de815f2
246
py
Python
cli/commands/update.py
gamesbrainiac/cli
bba7285607a8644911f720d1ceb1404ab502bf00
[ "Apache-2.0" ]
null
null
null
cli/commands/update.py
gamesbrainiac/cli
bba7285607a8644911f720d1ceb1404ab502bf00
[ "Apache-2.0" ]
null
null
null
cli/commands/update.py
gamesbrainiac/cli
bba7285607a8644911f720d1ceb1404ab502bf00
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import click from .. import cli @cli.cli.command(hidden=True) def update(): """ Look for new version updates to CLI """ # TODO create update command click.echo('Sorry, command not programmed yet.')
16.4
52
0.630081
0
0
0
0
185
0.752033
0
0
138
0.560976
5823914afc52a344ae37dba70fad832cd069531a
2,397
py
Python
test/test_sl/test_model/test_data.py
jlaumonier/mlsurvey
373598d067c7f0930ba13fe8da9756ce26eecbaf
[ "MIT" ]
null
null
null
test/test_sl/test_model/test_data.py
jlaumonier/mlsurvey
373598d067c7f0930ba13fe8da9756ce26eecbaf
[ "MIT" ]
null
null
null
test/test_sl/test_model/test_data.py
jlaumonier/mlsurvey
373598d067c7f0930ba13fe8da9756ce26eecbaf
[ "MIT" ]
null
null
null
import unittest import numpy as np import pandas as pd import mlsurvey as mls class TestData(unittest.TestCase): def test_to_dict_dict_should_be_set(self): """ :test : mlsurvey.model.Data.to_dict() :condition : x,y, y_pred data are filled. :main_result : the dictionary generated is the same as expected """ x = np.array([[1, 2, 3], [4, 5, 6]]) y = np.array([0, 1]) y_pred = np.array([1, 0]) data_array = np.concatenate((x, np.array([y]).T, np.array([y_pred]).T), axis=1) df = pd.DataFrame(data=data_array) data = mls.sl.models.DataPandas(df, df_contains='xyypred') expected = {'df_contains': 'xyypred', 'y_col_name': 'target', 'y_pred_col_name': 'target_pred'} result = data.to_dict() self.assertDictEqual(expected, result) def test_from_dict_df_empty(self): """ :test : mlsurvey.model.DataPandas.from_dict() :condition : the input dict is set and an empty dataframe is given. :main_result : a ModelError occurs """ df = pd.DataFrame(data=np.array([])) d = None input_dict = {'df_contains': 'xyypred', 'y_col_name': 'target', 'y_pred_col_name': 'target_pred'} try: d = mls.sl.models.DataPandas.from_dict(input_dict, df) self.assertTrue(False) except mls.exceptions.ModelError: self.assertIsNone(d) self.assertTrue(True) def test_from_dict_dict_empty(self): """ :test : mlsurvey.model.Data.from_dict() :condition : the input dict does not contains all keys and an full dataframe is given :main_result : a ModelError occurs """ x = np.array([[1, 2], [3, 4]]) y = np.array([0, 1]) y_pred = np.array([1, 0]) data_array = np.concatenate((x, np.array([y]).T, np.array([y_pred]).T), axis=1) df = pd.DataFrame(data=data_array) data = None input_dict = {'df_contains': 'xyypred', 'y_pred_col_name': 'target_pred'} try: data = mls.sl.models.DataPandas.from_dict(input_dict, df) self.assertTrue(False) except mls.exceptions.ModelError: self.assertIsNone(data) self.assertTrue(True)
35.776119
93
0.570296
2,314
0.965373
0
0
0
0
0
0
776
0.323738
582469a40acf21b2f0921b0060688c700c098a03
1,126
py
Python
baidu_verify_response.py
CodingDogzxg/Verifycode_ocr
6f1bdac2137993695cb4591afd1b47931680b204
[ "MIT" ]
null
null
null
baidu_verify_response.py
CodingDogzxg/Verifycode_ocr
6f1bdac2137993695cb4591afd1b47931680b204
[ "MIT" ]
null
null
null
baidu_verify_response.py
CodingDogzxg/Verifycode_ocr
6f1bdac2137993695cb4591afd1b47931680b204
[ "MIT" ]
null
null
null
# encoding:utf-8 import requests import base64 import time ''' 通用文字识别 ''' request_url = "https://aip.baidubce.com/rest/2.0/ocr/v1/general_basic" access_token = '' # 百度AI的token access 详情请去看文档 request_url = request_url + "?access_token=" + access_token headers = {'content-type': 'application/x-www-form-urlencoded'} for file_index in range(10000): file_name = 'vcode_imgs/' + str(file_index) + '.png' f_obj = open(file_name, 'rb') img = base64.b64encode(f_obj.read()) f_obj.close() params = {"image": img} response = requests.post(request_url, data=params, headers=headers) if response: answer = response.content.decode().split(",")[-1].split("\"")[-2].replace(' ', '').lower() if len(answer) < 5: with open('baidu_ocr_verify_response.json', 'a') as f: f.write('{}:{}\n'.format(str(file_index) + '.png', answer)) else: with open('baidu_ocr_verify_response.json', 'a') as f: f.write('{}:{}\n'.format(str(file_index) + '.png', '识别失败')) print('对文件{}.png的识别失败 请手动核对'.format(file_index)) time.sleep(0.2)
35.1875
98
0.619005
0
0
0
0
0
0
0
0
416
0.348993
5824ba4bea2f64074dbcd56d9e462c95a3407e0f
11,478
py
Python
nets/efficientdet_training.py
BikesSaver/efficientdet-pytorch
c1e02484733cf2080ecb2ee57c184038a77a09e8
[ "MIT" ]
1
2020-09-17T00:51:38.000Z
2020-09-17T00:51:38.000Z
nets/efficientdet_training.py
BikesSaver/efficientdet-pytorch
c1e02484733cf2080ecb2ee57c184038a77a09e8
[ "MIT" ]
null
null
null
nets/efficientdet_training.py
BikesSaver/efficientdet-pytorch
c1e02484733cf2080ecb2ee57c184038a77a09e8
[ "MIT" ]
null
null
null
from random import shuffle import numpy as np import torch import torch.nn as nn import math import torch.nn.functional as F import cv2 from matplotlib.colors import rgb_to_hsv, hsv_to_rgb from PIL import Image from .RepulsionLoss.my_repulsion_loss import repulsion def preprocess_input(image): image /= 255 mean=(0.406, 0.456, 0.485) std=(0.225, 0.224, 0.229) image -= mean image /= std return image def calc_iou(a, b): area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1]) iw = torch.min(torch.unsqueeze(a[:, 3], dim=1), b[:, 2]) - torch.max(torch.unsqueeze(a[:, 1], 1), b[:, 0]) ih = torch.min(torch.unsqueeze(a[:, 2], dim=1), b[:, 3]) - torch.max(torch.unsqueeze(a[:, 0], 1), b[:, 1]) iw = torch.clamp(iw, min=0) ih = torch.clamp(ih, min=0) ua = torch.unsqueeze((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), dim=1) + area - iw * ih ua = torch.clamp(ua, min=1e-8) intersection = iw * ih IoU = intersection / ua return IoU def get_target(anchor, bbox_annotation, classification, cuda): IoU = calc_iou(anchor[:, :], bbox_annotation[:, :4]) IoU_max, IoU_argmax = torch.max(IoU, dim=1) # compute the loss for classification targets = torch.ones_like(classification) * -1 if cuda: targets = targets.cuda() targets[torch.lt(IoU_max, 0.4), :] = 0 positive_indices = torch.ge(IoU_max, 0.5) num_positive_anchors = positive_indices.sum() assigned_annotations = bbox_annotation[IoU_argmax, :] targets[positive_indices, :] = 0 targets[positive_indices, assigned_annotations[positive_indices, 4].long()] = 1 return targets, num_positive_anchors, positive_indices, assigned_annotations def encode_bbox(assigned_annotations, positive_indices, anchor_widths, anchor_heights, anchor_ctr_x, anchor_ctr_y): assigned_annotations = assigned_annotations[positive_indices, :] anchor_widths_pi = anchor_widths[positive_indices] anchor_heights_pi = anchor_heights[positive_indices] anchor_ctr_x_pi = anchor_ctr_x[positive_indices] anchor_ctr_y_pi = anchor_ctr_y[positive_indices] gt_widths = assigned_annotations[:, 2] - assigned_annotations[:, 0] gt_heights = assigned_annotations[:, 3] - assigned_annotations[:, 1] gt_ctr_x = assigned_annotations[:, 0] + 0.5 * gt_widths gt_ctr_y = assigned_annotations[:, 1] + 0.5 * gt_heights # efficientdet style gt_widths = torch.clamp(gt_widths, min=1) gt_heights = torch.clamp(gt_heights, min=1) targets_dx = (gt_ctr_x - anchor_ctr_x_pi) / anchor_widths_pi targets_dy = (gt_ctr_y - anchor_ctr_y_pi) / anchor_heights_pi targets_dw = torch.log(gt_widths / anchor_widths_pi) targets_dh = torch.log(gt_heights / anchor_heights_pi) targets = torch.stack((targets_dy, targets_dx, targets_dh, targets_dw)) targets = targets.t() return targets class FocalLoss(nn.Module): def __init__(self): super(FocalLoss, self).__init__() def forward(self, classifications, regressions, anchors, annotations, alpha=0.25, gamma=2.0, cuda=True): # 设置 dtype = regressions.dtype batch_size = classifications.shape[0] classification_losses = [] regression_losses = [] repulsion_losses = [] # 获得先验框,将先验框转换成中心宽高的形势 anchor = anchors[0, :, :].to(dtype) # 转换成中心,宽高的形式 anchor_widths = anchor[:, 3] - anchor[:, 1] anchor_heights = anchor[:, 2] - anchor[:, 0] anchor_ctr_x = anchor[:, 1] + 0.5 * anchor_widths anchor_ctr_y = anchor[:, 0] + 0.5 * anchor_heights rep_target = [] rep_regres = [] for j in range(batch_size): # 取出真实框 bbox_annotation = annotations[j] # 获得每张图片的分类结果和回归预测结果 classification = classifications[j, :, :] regression = regressions[j, :, :] # 平滑标签 classification = torch.clamp(classification, 1e-4, 1.0 - 1e-4) if len(bbox_annotation) == 0: alpha_factor = torch.ones_like(classification) * alpha if cuda: alpha_factor = alpha_factor.cuda() alpha_factor = 1. - alpha_factor focal_weight = classification focal_weight = alpha_factor * torch.pow(focal_weight, gamma) bce = -(torch.log(1.0 - classification)) cls_loss = focal_weight * bce if cuda: regression_losses.append(torch.tensor(0).to(dtype).cuda()) repulsion_losses.append(torch.tensor(0).to(dtype).cuda()) else: regression_losses.append(torch.tensor(0).to(dtype)) repulsion_losses.append(torch.tensor(0).to(dtype)) classification_losses.append(cls_loss.sum()) continue # 获得目标预测结果 targets, num_positive_anchors, positive_indices, assigned_annotations = get_target(anchor, bbox_annotation, classification, cuda) rep_target.append(bbox_annotation[:, 0:4]) rep_regres.append(anchor[positive_indices,:]) alpha_factor = torch.ones_like(targets) * alpha if cuda: alpha_factor = alpha_factor.cuda() alpha_factor = torch.where(torch.eq(targets, 1.), alpha_factor, 1. - alpha_factor) focal_weight = torch.where(torch.eq(targets, 1.), 1. - classification, classification) focal_weight = alpha_factor * torch.pow(focal_weight, gamma) bce = -(targets * torch.log(classification) + (1.0 - targets) * torch.log(1.0 - classification)) cls_loss = focal_weight * bce zeros = torch.zeros_like(cls_loss) if cuda: zeros = zeros.cuda() cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, zeros) classification_losses.append(cls_loss.sum() / torch.clamp(num_positive_anchors.to(dtype), min=1.0)) # cross_entropy ?? # smoooth_l1 & repulsion_loss if positive_indices.sum() > 0: targets = encode_bbox(assigned_annotations, positive_indices, anchor_widths, anchor_heights, anchor_ctr_x, anchor_ctr_y) # print("Targets:", targets)n * 4 regression_diff = torch.abs(targets - regression[positive_indices, :]) # -? # smoooth_l1 L1delta = 1.0 #0.5 regression_loss = torch.where( torch.le(regression_diff, L1delta), 0.5 * torch.pow(regression_diff, 2), L1delta * regression_diff - 0.5 * L1delta ** 2 ) regression_losses.append(regression_loss.sum()) else: if cuda: regression_losses.append(torch.tensor(0).to(dtype).cuda()) repulsion_losses.append(torch.tensor(0).to(dtype).cuda()) else: regression_losses.append(torch.tensor(0).to(dtype)) repulsion_losses.append(torch.tensor(0).to(dtype)) c_loss = torch.stack(classification_losses).mean() r_loss = torch.stack(regression_losses).mean() # Repulsion # rep_target = torch.tensor(rep_target, dtype=torch.float16) # rep_regres = torch.tensor(rep_regres, dtype=torch.float16) loss_RepGT = repulsion(rep_target, rep_regres) # anchor repu_loss = loss_RepGT.mean() # nan problem loss = c_loss + r_loss #+ repu_loss return loss, c_loss, r_loss, repu_loss def rand(a=0, b=1): return np.random.rand()*(b-a) + a class Generator(object): def __init__(self,batch_size, train_lines, image_size, ): self.batch_size = batch_size self.train_lines = train_lines self.train_batches = len(train_lines) self.image_size = image_size def get_random_data(self, annotation_line, input_shape, jitter=.3, hue=.1, sat=1.5, val=1.5): '''r实时数据增强的随机预处理''' line = annotation_line.split() image = Image.open(line[0]) iw, ih = image.size h, w = input_shape box = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]]) # resize image new_ar = w/h * rand(1-jitter,1+jitter)/rand(1-jitter,1+jitter) scale = rand(.25, 2) if new_ar < 1: nh = int(scale*h) nw = int(nh*new_ar) else: nw = int(scale*w) nh = int(nw/new_ar) image = image.resize((nw,nh), Image.BICUBIC) # place image dx = int(rand(0, w-nw)) dy = int(rand(0, h-nh)) new_image = Image.new('RGB', (w,h), (128,128,128)) new_image.paste(image, (dx, dy)) image = new_image # flip image or not flip = rand()<.5 if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT) # distort image hue = rand(-hue, hue) sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat) val = rand(1, val) if rand()<.5 else 1/rand(1, val) x = cv2.cvtColor(np.array(image,np.float32)/255, cv2.COLOR_RGB2HSV) x[..., 0] += hue*360 x[..., 0][x[..., 0]>1] -= 1 x[..., 0][x[..., 0]<0] += 1 x[..., 1] *= sat x[..., 2] *= val x[x[:,:, 0]>360, 0] = 360 x[:, :, 1:][x[:, :, 1:]>1] = 1 x[x<0] = 0 image_data = cv2.cvtColor(x, cv2.COLOR_HSV2RGB)*255 # correct boxes box_data = np.zeros((len(box),5)) if len(box)>0: np.random.shuffle(box) box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy if flip: box[:, [0,2]] = w - box[:, [2,0]] box[:, 0:2][box[:, 0:2]<0] = 0 box[:, 2][box[:, 2]>w] = w box[:, 3][box[:, 3]>h] = h box_w = box[:, 2] - box[:, 0] box_h = box[:, 3] - box[:, 1] box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid box box_data = np.zeros((len(box),5)) box_data[:len(box)] = box if len(box) == 0: return image_data, [] if (box_data[:,:4]>0).any(): return image_data, box_data else: return image_data, [] def generate(self): while True: shuffle(self.train_lines) lines = self.train_lines inputs = [] targets = [] n = len(lines) for i in range(len(lines)): img,y = self.get_random_data(lines[i], self.image_size[0:2]) i = (i+1) % n if len(y)!=0: boxes = np.array(y[:,:4],dtype=np.float32) y = np.concatenate([boxes,y[:,-1:]],axis=-1) img = np.array(img,dtype = np.float32) y = np.array(y,dtype = np.float32) inputs.append(np.transpose(preprocess_input(img),(2,0,1))) targets.append(y) if len(targets) == self.batch_size: tmp_inp = np.array(inputs) tmp_targets = np.array(targets) inputs = [] targets = [] yield tmp_inp, tmp_targets
37.756579
141
0.560202
8,712
0.748454
1,010
0.08677
0
0
0
0
690
0.059278
58252e686b16a8b93824251a6782b7d24afd2761
267
py
Python
project/wsgi.py
devluci/django-rest-base-boilerplate
0cf512e00aca66ebf9908351527d701cd421ccd4
[ "MIT" ]
null
null
null
project/wsgi.py
devluci/django-rest-base-boilerplate
0cf512e00aca66ebf9908351527d701cd421ccd4
[ "MIT" ]
null
null
null
project/wsgi.py
devluci/django-rest-base-boilerplate
0cf512e00aca66ebf9908351527d701cd421ccd4
[ "MIT" ]
null
null
null
import os from django.core.wsgi import get_wsgi_application from rest_base.utils import dotenv os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'project.settings') dotenv.load(os.path.join(os.path.dirname(__file__), '../.env')) application = get_wsgi_application()
26.7
67
0.797753
0
0
0
0
0
0
0
0
51
0.191011
5825efbd85281c5ef1426be58d4c0871b10dcdf9
3,445
py
Python
tests/test_coco_dataset.py
petersiemen/CVND---Image-Captioning-Project
53d15c5f2b9d5e04b007f4f8b1e4f9dd17425c06
[ "MIT" ]
null
null
null
tests/test_coco_dataset.py
petersiemen/CVND---Image-Captioning-Project
53d15c5f2b9d5e04b007f4f8b1e4f9dd17425c06
[ "MIT" ]
null
null
null
tests/test_coco_dataset.py
petersiemen/CVND---Image-Captioning-Project
53d15c5f2b9d5e04b007f4f8b1e4f9dd17425c06
[ "MIT" ]
null
null
null
from .context import CoCoDataset import os from torchvision import transforms import torch.utils.data as data from src.data_loader import get_loader from context import COCO_SMALL from context import clean_sentence def test_coco_dataset(): transform_train = transforms.Compose([ transforms.Resize(256), # smaller edge of image resized to 256 transforms.RandomCrop(224), # get 224x224 crop from random location transforms.RandomHorizontalFlip(), # horizontally flip image with probability=0.5 transforms.ToTensor(), # convert the PIL Image to a tensor transforms.Normalize((0.485, 0.456, 0.406), # normalize image for pre-trained model (0.229, 0.224, 0.225))]) mode = "train" batch_size = 3 vocab_threshold = 5 vocab_file = '../vocab.pkl' start_word = "<start>" end_word = "<end>" unk_word = "<unk>" vocab_from_file = False cocoapi_loc = COCO_SMALL img_folder = os.path.join(cocoapi_loc, 'cocoapi/images/val2014/') annotations_file = os.path.join(cocoapi_loc, 'cocoapi/annotations/captions_val2014.json') dataset = CoCoDataset(transform=transform_train, mode=mode, batch_size=batch_size, vocab_threshold=vocab_threshold, vocab_file=vocab_file, start_word=start_word, end_word=end_word, unk_word=unk_word, annotations_file=annotations_file, vocab_from_file=vocab_from_file, img_folder=img_folder) # data loader for COCO dataset. data_loader = data.DataLoader(dataset=dataset, num_workers=4 ) images, captions = next(iter(data_loader)) print(images.shape) print(captions.shape) def test_data_loader(): # Define a transform to pre-process the training images. transform_train = transforms.Compose([ transforms.Resize(256), # smaller edge of image resized to 256 transforms.RandomCrop(224), # get 224x224 crop from random location transforms.RandomHorizontalFlip(), # horizontally flip image with probability=0.5 transforms.ToTensor(), # convert the PIL Image to a tensor transforms.Normalize((0.485, 0.456, 0.406), # normalize image for pre-trained model (0.229, 0.224, 0.225))]) vocab_threshold = 5 # Specify the batch size. batch_size = 10 # Obtain the data loader. data_loader = get_loader(transform=transform_train, mode='train', batch_size=batch_size, vocab_threshold=vocab_threshold, vocab_from_file=False, cocoapi_loc=COCO_SMALL # uncomment for running on local ) print('Total number of tokens in vocabulary:', len(data_loader.dataset.vocab)) images, captions = next(iter(data_loader)) print('images.shape:', images.shape) print('captions.shape:', captions.shape) print(captions) print(data_loader.dataset.vocab.idx2word) for caption in captions: sentence = clean_sentence(caption, data_loader) print(caption) print(sentence)
39.147727
93
0.608128
0
0
0
0
0
0
0
0
753
0.218578
5828ffc478a57b5d3a54d1d5409d86dcb72100d1
5,019
py
Python
test/retro-fuse-test.py
jaylogue/retro-fuse
b300865c1aa4c38930adea66de364f182c73b3b5
[ "Apache-2.0" ]
28
2021-02-23T06:00:16.000Z
2022-02-28T13:38:48.000Z
test/retro-fuse-test.py
jaylogue/retro-fuse
b300865c1aa4c38930adea66de364f182c73b3b5
[ "Apache-2.0" ]
3
2021-09-22T12:37:59.000Z
2022-02-01T00:33:25.000Z
test/retro-fuse-test.py
jaylogue/retro-fuse
b300865c1aa4c38930adea66de364f182c73b3b5
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # # Copyright 2021 Jay Logue # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # @file A test driver for testing retro-fuse filesystem handlers. # import os import sys import unittest import argparse scriptName = os.path.basename(__file__) scriptDirName = os.path.dirname(os.path.abspath(os.path.realpath(__file__))) class TestResult(unittest.TestResult): def __init__(self, stream, descriptions, verbosity): super(TestResult, self).__init__(stream, descriptions, verbosity) self.stream = stream def getDescription(self, test): return test.shortDescription() def startTest(self, test): super(TestResult, self).startTest(test) self.stream.write(self.getDescription(test)) self.stream.write(" ... ") self.stream.flush() def addSuccess(self, test): super(TestResult, self).addSuccess(test) self.stream.writeln("PASS") def addError(self, test, err): super(TestResult, self).addError(test, err) self.stream.writeln("ERROR") def addFailure(self, test, err): super(TestResult, self).addFailure(test, err) self.stream.writeln("FAIL") def addSkip(self, test, reason): super(TestResult, self).addSkip(test, reason) self.stream.writeln("skipped {0!r}".format(reason)) def addExpectedFailure(self, test, err): super(TestResult, self).addExpectedFailure(test, err) self.stream.writeln("expected failure") def addUnexpectedSuccess(self, test): super(TestResult, self).addUnexpectedSuccess(test) self.stream.writeln("unexpected success") def printErrors(self): self.stream.writeln() self.printErrorList('ERROR', self.errors) self.printErrorList('FAIL', self.failures) def printErrorList(self, flavour, errors): for test, err in errors: self.stream.writeln("%s: %s" % (flavour, self.getDescription(test))) self.stream.writeln("%s" % err) # Parse command line arguments argParser = argparse.ArgumentParser() argParser.add_argument('-s', '--simh', dest='simhCmd', default='pdp11', help='Path to pdp11 simh executable') argParser.add_argument('-v', '--verbose', dest='verbosity', action='store_const', const=2, default=1, help='Verbose output') argParser.add_argument('-q', '--quiet', dest='verbosity', action='store_const', const=0, help='Quiet output') argParser.add_argument('-f', '--failfast', dest='failfast', action='store_true', default=False, help='Stop on first test failure') argParser.add_argument('-k', '--keep', dest='keepFS', action='store_true', default=False, help='Retain the test filesystem on exit') argParser.add_argument('-i', '--fs-image', dest='fsImage', help='Use specified file/device as backing store for test filesystem (implies -k)') argParser.add_argument('fsHandler', help='Filesystem handler executable to be tested') testOpts = argParser.parse_args() if testOpts.fsImage is not None: testOpts.keepFS = True # Verify access to filesystem handler executable if not os.access(testOpts.fsHandler, os.F_OK): print(f'{scriptName}: File not found: {testOpts.fsHandler}', file=sys.stderr) sys.exit(1) if not os.access(testOpts.fsHandler, os.X_OK): print(f'{scriptName}: Unable to execute filesystem handler: {testOpts.fsHandler}', file=sys.stderr) sys.exit(1) # Load the appropriate test cases fsHandlerBaseName = os.path.basename(testOpts.fsHandler) if fsHandlerBaseName == 'bsd29fs': import BSD29Tests testSuite = unittest.TestLoader().loadTestsFromModule(BSD29Tests) elif fsHandlerBaseName == 'v7fs': import V7Tests testSuite = unittest.TestLoader().loadTestsFromModule(V7Tests) elif fsHandlerBaseName == 'v6fs': import V6Tests testSuite = unittest.TestLoader().loadTestsFromModule(V6Tests) else: print(f'{scriptName}: Unknown filesystem handler: {testOpts.fsHandler}', file=sys.stderr) print('Expected a file named v6fs, v7fs or bsd29fs', file=sys.stderr) sys.exit(1) # Run the tests if testOpts.verbosity > 0: resultStream = sys.stderr else: resultStream = open(os.devnull, 'a') testRunner = unittest.TextTestRunner(stream=resultStream, resultclass=TestResult, verbosity=testOpts.verbosity, failfast=testOpts.failfast) result = testRunner.run(testSuite) sys.exit(0 if result.wasSuccessful() else 1)
38.312977
139
0.695557
1,667
0.332138
0
0
0
0
0
0
1,606
0.319984
582a2d15de4e22e6a4241b45670672383e57c857
387
py
Python
docker/app.py
dramasamy/kubernetes_training
a5f48d540b7b6e9a79b5ab60f62a13a792f1b0e5
[ "Apache-2.0" ]
1
2022-03-22T22:31:32.000Z
2022-03-22T22:31:32.000Z
docker/app.py
dramasamy/training
af7b9352b56c10aaa957062f24f1302a7a4c5797
[ "Apache-2.0" ]
null
null
null
docker/app.py
dramasamy/training
af7b9352b56c10aaa957062f24f1302a7a4c5797
[ "Apache-2.0" ]
null
null
null
#! /bin/python from flask import Flask app = Flask(__name__) @app.route('/') def hello(): return "Hello World! - v1" @app.route('/<name>') def hello_name(name): return "Hello {}! - v1".format(name) @app.route('/audio') def audio(): return "Audio - v1" @app.route('/video') def video(): return "Video - v1" if __name__ == '__main__': app.run(host='0.0.0.0')
13.821429
40
0.596899
0
0
0
0
257
0.664083
0
0
120
0.310078
582b2e616da4b6c095b0fcc22d4f757b4b8fddc7
4,374
py
Python
creme/cluster/k_means.py
tweakyllama/creme
6bb8e34789947a943e7e6a8a1af1341e4c1de144
[ "BSD-3-Clause" ]
null
null
null
creme/cluster/k_means.py
tweakyllama/creme
6bb8e34789947a943e7e6a8a1af1341e4c1de144
[ "BSD-3-Clause" ]
null
null
null
creme/cluster/k_means.py
tweakyllama/creme
6bb8e34789947a943e7e6a8a1af1341e4c1de144
[ "BSD-3-Clause" ]
2
2021-06-20T09:29:38.000Z
2021-06-23T07:47:21.000Z
import collections import numpy as np from sklearn import utils from .. import base __all__ = ['KMeans'] def euclidean_distance(a, b): return sum((a.get(k, 0) - b.get(k, 0)) ** 2 for k in set([*a.keys(), *b.keys()])) class KMeans(base.Clusterer): """Incremental k-means. The most common way to implement batch k-means is to use Lloyd's algorithm, which consists in assigning all the data points to a set of cluster centers and then moving the centers accordingly. This requires multiple passes over the data and thus isn't applicable in a streaming setting. In this implementation we start by finding the cluster that is closest to the current observation. We then move the cluster's central position towards the new observation. The ``halflife`` parameter determines by how much to move the cluster toward the new observation. You will get better results if you scale your data appropriately. Parameters: n_clusters (int): Maximum number of clusters to assign. halflife (float): Amount by which to move the cluster centers, a reasonable value if between 0 and 1. mu (float): Mean of the normal distribution used to instantiate cluster positions. sigma (float): Standard deviation of the normal distribution used to instantiate cluster positions. distance (callable): Metric used to compute distances between an observation and a cluster. random_state (int, RandomState instance or None, default=None): If int, ``random_state`` is the seed used by the random number generator; if ``RandomState`` instance, ``random_state`` is the random number generator; if ``None``, the random number generator is the ``RandomState`` instance used by ``np.random``. Attributes: centers (dict): Central positions of each cluster. Example: In the following example the cluster assignments are exactly the same as when using ``sklearn``'s batch implementation. However changing the ``halflife`` parameter will produce different outputs. :: >>> from creme import cluster >>> from creme import compat >>> import numpy as np >>> X = np.array([[1, 2], [1, 4], [1, 0], ... [4, 2], [4, 4], [4, 0]]) >>> k_means = cluster.KMeans(n_clusters=2, halflife=0.4, sigma=3, random_state=42) >>> k_means = compat.SKLClustererWrapper(k_means) >>> k_means = k_means.fit(X) >>> k_means.predict(X) array([0, 0, 0, 1, 1, 1], dtype=int32) >>> k_means.predict([[0, 0], [4, 4]]) array([0, 1], dtype=int32) References: 1. `Sequential k-Means Clustering <http://www.cs.princeton.edu/courses/archive/fall08/cos436/Duda/C/sk_means.htm>`_ """ def __init__(self, n_clusters, halflife=0.5, mu=0, sigma=1, distance=euclidean_distance, random_state=None): self.n_clusters = n_clusters self.halflife = halflife self.mu = mu self.sigma = sigma self.distance = distance self.random_state = utils.check_random_state(random_state) self.centers = { i: collections.defaultdict(self.random_normal) for i in range(n_clusters) } def random_normal(self): """Returns a random value sampled from a normal distribution.""" return self.random_state.normal(self.mu, self.sigma) @property def cluster_centers_(self): """Returns the cluster centers in the same format as scikit-learn.""" return np.array([ list(coords.values()) for coords in self.centers.values() ]) def fit_predict_one(self, x, y=None): """Equivalent to ``k_means.fit_one(x).predict_one(x)``, but faster.""" # Find the cluster with the closest center closest = self.predict_one(x) # Move the cluster's center for i, xi in x.items(): self.centers[closest][i] += self.halflife * (xi - self.centers[closest][i]) return closest def fit_one(self, x, y=None): self.fit_predict_one(x) return self def predict_one(self, x): return min(self.centers, key=lambda c: self.distance(x, self.centers[c]))
37.384615
123
0.633973
4,144
0.947417
0
0
238
0.054412
0
0
2,907
0.664609
582ee3ae3eed760c8ee30d3cb820c5796139122b
42,165
py
Python
fasttrips/TAZ.py
pedrocamargo/fast-trips
a2549936b2707b00d6c21b4e6ae4be8fefd0aa46
[ "Apache-2.0" ]
3
2017-11-03T00:18:23.000Z
2020-11-30T18:54:46.000Z
fasttrips/TAZ.py
pedrocamargo/fast-trips
a2549936b2707b00d6c21b4e6ae4be8fefd0aa46
[ "Apache-2.0" ]
null
null
null
fasttrips/TAZ.py
pedrocamargo/fast-trips
a2549936b2707b00d6c21b4e6ae4be8fefd0aa46
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function from __future__ import division from builtins import str from builtins import object __copyright__ = "Copyright 2015 Contributing Entities" __license__ = """ Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime import os import numpy as np import pandas as pd from .Error import NetworkInputError from .Logger import FastTripsLogger from .Route import Route from .Stop import Stop from .Transfer import Transfer class TAZ(object): """ TAZ class. One instance represents all of the Transportation Analysis Zones as well as their access links and egress links. .. todo:: This is really about the access and egress links; perhaps it should be renamed? Stores access link information in :py:attr:`TAZ.walk_access`, and :py:attr:`TAZ.drive_access`, both instances of :py:class:`pandas.DataFrame`. """ #: File with fasttrips walk access information. #: See `walk_access specification <https://github.com/osplanning-data-standards/GTFS-PLUS/blob/master/files/walk_access_ft.md>`_. INPUT_WALK_ACCESS_FILE = "walk_access_ft.txt" #: Walk access links column name: TAZ Identifier. String. WALK_ACCESS_COLUMN_TAZ = 'taz' #: Walk access links column name: Stop Identifier. String. WALK_ACCESS_COLUMN_STOP = 'stop_id' #: Walk access links column name: Direction (access or egress) WALK_ACCESS_COLUMN_DIRECTION = "direction" #: Walk access links column name: Walk Distance WALK_ACCESS_COLUMN_DIST = 'dist' #: fasttrips Walk access links column name: Elevation Gain, feet gained along link. WALK_ACCESS_COLUMN_ELEVATION_GAIN = 'elevation_gain' #: fasttrips Walk access links column name: Population Density, people per square mile. Float. WALK_ACCESS_COLUMN_POPULATION_DENSITY = 'population_density' #: fasttrips Walk access links column name: Employment Density, employees per square mile. Float. WALK_ACCESS_COLUMN_EMPLOYMENT_DENSITY = 'employment_density' #: fasttrips Walk access links column name: Retail Density, employees per square mile. Float. # WALK_ACCESS_COLUMN_RETAIL_DENSITY = 'retail_density' #: fasttrips Walk access links column name: Employment Density, employees per square mile. Float. WALK_ACCESS_COLUMN_EMPLOYMENT_DENSITY = 'employment_density' #: fasttrips Walk access links column name: Auto Capacity, vehicles per hour per mile. Float. WALK_ACCESS_COLUMN_AUTO_CAPACITY = 'auto_capacity' #: fasttrips Walk access links column name: Indirectness, ratio of Manhattan distance to crow-fly distance. Float. WALK_ACCESS_COLUMN_INDIRECTNESS = 'indirectness' # ========== Added by fasttrips ======================================================= #: Walk access links column name: TAZ Numerical Identifier. Int. WALK_ACCESS_COLUMN_TAZ_NUM = 'taz_num' #: Walk access links column name: Stop Numerical Identifier. Int. WALK_ACCESS_COLUMN_STOP_NUM = 'stop_id_num' #: Walk access links column name: Link walk time. This is a TimeDelta WALK_ACCESS_COLUMN_TIME = 'time' #: Walk access links column name: Link walk time in minutes. This is float. WALK_ACCESS_COLUMN_TIME_MIN = 'time_min' #: Walk acess cost column name: Link generic cost for accessing stop from TAZ. Float. WALK_ACCESS_COLUMN_ACC_COST = 'access_cost' #: Walk acess cost column name: Link generic cost for egressing to TAZ from stop. Float. WALK_ACCESS_COLUMN_EGR_COST = 'egress_cost' #: Walk access links column name: Supply mode. String. WALK_ACCESS_COLUMN_SUPPLY_MODE = 'supply_mode' #: Walk access links column name: Supply mode number. Int. WALK_ACCESS_COLUMN_SUPPLY_MODE_NUM = 'supply_mode_num' #: File with fasttrips drive access information. #: See `drive_access specification <https://github.com/osplanning-data-standards/GTFS-PLUS/blob/master/files/drive_access_ft.md>`_. INPUT_DRIVE_ACCESS_FILE = "drive_access_ft.txt" #: Drive access links column name: TAZ Identifier. String. DRIVE_ACCESS_COLUMN_TAZ = WALK_ACCESS_COLUMN_TAZ #: Drive access links column name: Stop Identifier. String. DRIVE_ACCESS_COLUMN_LOT_ID = 'lot_id' #: Drive access links column name: Direction ('access' or 'egress') DRIVE_ACCESS_COLUMN_DIRECTION = 'direction' #: Drive access links column name: Drive distance DRIVE_ACCESS_COLUMN_DISTANCE = 'dist' #: Drive access links column name: Drive cost in cents (integer) DRIVE_ACCESS_COLUMN_COST = 'cost' #: Drive access links column name: Driving time in minutes between TAZ and lot (TimeDelta) DRIVE_ACCESS_COLUMN_TRAVEL_TIME = 'travel_time' #: Drive access links column name: Start time (e.g. time period these attributes apply), minutes after midnight DRIVE_ACCESS_COLUMN_START_TIME_MIN = 'start_time_min' #: Drive access links column name: Start time (e.g. time period these attributes apply). A DateTime instance DRIVE_ACCESS_COLUMN_START_TIME = 'start_time' #: Drive access links column name: End time (e.g. time period these attributes apply), minutes after midnight DRIVE_ACCESS_COLUMN_END_TIME_MIN = 'end_time_min' #: Drive access links column name: End time (e.g. time period these attributes apply). A DateTime instance DRIVE_ACCESS_COLUMN_END_TIME = 'end_time' #: fasttrips Drive access links column name: Elevation Gain, feet gained along link. DRIVE_ACCESS_COLUMN_ELEVATION_GAIN = 'elevation_gain' #: fasttrips Drive access links column name: Population Density, people per square mile. Float. DRIVE_ACCESS_COLUMN_POPULATION_DENSITY = 'population_density' #: fasttrips Drive access links column name: Retail Density, employees per square mile. Float. DRIVE_ACCESS_COLUMN_RETAIL_DENSITY = 'retail_density' #: fasttrips Drive access links column name: Auto Capacity, vehicles per hour per mile. Float. DRIVE_ACCESS_COLUMN_AUTO_CAPACITY = 'auto_capacity' #: fasttrips Drive access links column name: Indirectness, ratio of Manhattan distance to crow-fly distance. Float. DRIVE_ACCESS_COLUMN_INDIRECTNESS = 'indirectness' # ========== Added by fasttrips ======================================================= #: fasttrips These are the original attributes but renamed to be clear they are the drive component (as opposed to the walk) DRIVE_ACCESS_COLUMN_DRIVE_DISTANCE = 'drive_dist' DRIVE_ACCESS_COLUMN_DRIVE_TRAVEL_TIME = 'drive_travel_time' #: Drive access links column name: Driving time in minutes between TAZ and lot (float) DRIVE_ACCESS_COLUMN_DRIVE_TRAVEL_TIME_MIN = 'drive_time_min' #: fasttrips Drive access links column name: TAZ Numerical Identifier. Int. DRIVE_ACCESS_COLUMN_TAZ_NUM = WALK_ACCESS_COLUMN_TAZ_NUM #: fasttrips Drive access links column name: Stop Numerical Identifier. Int. DRIVE_ACCESS_COLUMN_STOP = WALK_ACCESS_COLUMN_STOP #: fasttrips Drive access links column name: Stop Numerical Identifier. Int. DRIVE_ACCESS_COLUMN_STOP_NUM = WALK_ACCESS_COLUMN_STOP_NUM #: fasttrips Drive access links column name: Walk distance from lot to transit. Miles. Float. DRIVE_ACCESS_COLUMN_WALK_DISTANCE = 'walk_dist' #: fasttrips Drive access links column name: Walk time from lot to transit. TimeDelta. DRIVE_ACCESS_COLUMN_WALK_TIME = 'walk_time' #: fasttrips Drive access links column name: Walk time from lot to transit. Int. DRIVE_ACCESS_COLUMN_WALK_TIME_MIN = 'walk_time_min' #: fasttrips Drive access links column name: Supply mode. String. DRIVE_ACCESS_COLUMN_SUPPLY_MODE = WALK_ACCESS_COLUMN_SUPPLY_MODE #: Drive access links column name: Supply mode number. Int. DRIVE_ACCESS_COLUMN_SUPPLY_MODE_NUM = WALK_ACCESS_COLUMN_SUPPLY_MODE_NUM #: File with fasttrips drive access points information. #: See `Drive access points specification <https://github.com/osplanning-data-standards/GTFS-PLUS/blob/master/files/drive_access_points_ft.md>`_. INPUT_DAP_FILE = 'drive_access_points_ft.txt' #: fasttrips DAP column name: Lot ID. String. DAP_COLUMN_LOT_ID = DRIVE_ACCESS_COLUMN_LOT_ID #: fasttrips DAP column name: Lot Latitude (WGS 84) DAP_COLUMN_LOT_LATITUDE = 'lot_lat' #: fasttrips DAP column name: Lot Longitude (WGS 84) DAP_COLUMN_LOT_LONGITUDE = 'lot_lon' #: fasttrips DAP column name: Name of the Lot. String. DAP_COLUMN_NAME = 'name' #: fasttrips DAP column name: Drop-Off. Boolean. DAP_COLUMN_DROP_OFF = 'drop_off' #: fasttrips DAP column name: Capacity (number of parking spaces) DAP_COLUMN_CAPACITY = 'capacity' #: fasttrips DAP column name: Hourly Cost in cents. Integer. DAP_COLUMN_HOURLY_COST = 'hourly_cost' #: fasttrips DAP column name: Maximum Daily Cost in cents. Integer. DAP_COLUMN_MAXIMUM_COST = 'max_cost' #: fasttrips DAP column name: Type DAP_COLUMN_TYPE = 'type' #: mode column MODE_COLUMN_MODE = 'mode' #: mode number MODE_COLUMN_MODE_NUM = 'mode_num' #: access and egress modes. First is default. ACCESS_EGRESS_MODES = ["walk", "bike_own", "bike_share", "PNR", "KNR"] #: Access mode: Walk MODE_ACCESS_WALK = 101 #: Access mode: Bike (own) MODE_ACCESS_BIKE_OWN = 102 #: Access mode: Bike (share) MODE_ACCESS_BIKE_SHARE = 103 #: Access mode: Drive to PNR MODE_ACCESS_PNR = 104 #: Access mode: Drive to KNR MODE_ACCESS_KNR = 105 #: Egress mode: Walk MODE_EGRESS_WALK = 201 #: Egress mode: Bike (own) MODE_EGRESS_BIKE_OWN = 202 #: Egress mode: Bike (share) MODE_EGRESS_BIKE_SHARE = 203 #: Egress mode: Drive to PNR MODE_EGRESS_PNR = 204 #: Egress mode: Drive to KNR MODE_EGRESS_KNR = 205 #: Access mode number list, in order of ACCESS_EGRESS_MODES ACCESS_MODE_NUMS = [MODE_ACCESS_WALK, MODE_ACCESS_BIKE_OWN, MODE_ACCESS_BIKE_SHARE, MODE_ACCESS_PNR, MODE_ACCESS_KNR] #: Egress mode number list, in order of ACCESS_EGRESS_MODES EGRESS_MODE_NUMS = [MODE_EGRESS_WALK, MODE_EGRESS_BIKE_OWN, MODE_EGRESS_BIKE_SHARE, MODE_EGRESS_PNR, MODE_EGRESS_KNR] #: Walk mode number list WALK_MODE_NUMS = [MODE_ACCESS_WALK, MODE_EGRESS_WALK] #: Bike mode number list BIKE_MODE_NUMS = [MODE_ACCESS_BIKE_OWN, MODE_ACCESS_BIKE_SHARE, MODE_EGRESS_BIKE_OWN, MODE_EGRESS_BIKE_SHARE] #: Drive mode number list DRIVE_MODE_NUMS = [MODE_ACCESS_PNR, MODE_ACCESS_KNR, MODE_EGRESS_PNR, MODE_EGRESS_KNR] #: File with access/egress links for C++ extension #: It's easier to pass it via a file rather than through the #: initialize_fasttrips_extension() because of the strings involved, I think. OUTPUT_ACCESS_EGRESS_FILE = "ft_intermediate_access_egress.txt" def __init__(self, output_dir, gtfs, today, stops, transfers, routes): """ Constructor. Reads the TAZ data from the input files in *input_archive*. """ from .Assignment import Assignment self.access_modes_df = pd.DataFrame(data={TAZ.MODE_COLUMN_MODE: TAZ.ACCESS_EGRESS_MODES, TAZ.MODE_COLUMN_MODE_NUM: TAZ.ACCESS_MODE_NUMS}) self.access_modes_df[TAZ.MODE_COLUMN_MODE] = self.access_modes_df[TAZ.MODE_COLUMN_MODE] \ .apply(lambda x: '%s_%s' % (x, Route.MODE_TYPE_ACCESS)) self.egress_modes_df = pd.DataFrame(data={TAZ.MODE_COLUMN_MODE: TAZ.ACCESS_EGRESS_MODES, TAZ.MODE_COLUMN_MODE_NUM: TAZ.EGRESS_MODE_NUMS}) self.egress_modes_df[TAZ.MODE_COLUMN_MODE] = self.egress_modes_df[TAZ.MODE_COLUMN_MODE] \ .apply(lambda x: '%s_%s' % (x, Route.MODE_TYPE_EGRESS)) routes.add_access_egress_modes(self.access_modes_df, self.egress_modes_df) #: Walk access links table. Make sure TAZ ID and stop ID are read as strings. self.walk_access_df = gtfs.get(TAZ.INPUT_WALK_ACCESS_FILE) # verify required columns are present walk_access_cols = list(self.walk_access_df.columns.values) assert (TAZ.WALK_ACCESS_COLUMN_TAZ in walk_access_cols) assert (TAZ.WALK_ACCESS_COLUMN_STOP in walk_access_cols) assert (TAZ.WALK_ACCESS_COLUMN_DIRECTION in walk_access_cols) assert (TAZ.WALK_ACCESS_COLUMN_DIST in walk_access_cols) # printing this before setting index FastTripsLogger.debug("=========== WALK ACCESS ===========\n" + str(self.walk_access_df.head())) FastTripsLogger.debug("As read\n" + str(self.walk_access_df.dtypes)) # Verify direction is valid invalid_direction = self.walk_access_df.loc[ self.walk_access_df[TAZ.WALK_ACCESS_COLUMN_DIRECTION].isin(["access", "egress"]) == False] if len(invalid_direction) > 0: error_msg = "Invalid direction in walk access links: \n%s" % str(invalid_direction) FastTripsLogger.fatal(error_msg) raise NetworkInputError(TAZ.INPUT_WALK_ACCESS_FILE, error_msg) # TODO: remove? Or put walk speed some place? self.walk_access_df[TAZ.WALK_ACCESS_COLUMN_TIME_MIN] = self.walk_access_df[ TAZ.WALK_ACCESS_COLUMN_DIST] * 60.0 / 2.7; # convert time column from float to timedelta self.walk_access_df[TAZ.WALK_ACCESS_COLUMN_TIME] = \ self.walk_access_df[TAZ.WALK_ACCESS_COLUMN_TIME_MIN].map(lambda x: datetime.timedelta(minutes=x)) # make sure WALK_ACCESS_COLUMN_TAZ/WALK_ACCESS_COLUMN_DIST is unique walk_access_dupes = self.walk_access_df.duplicated(subset=[TAZ.WALK_ACCESS_COLUMN_TAZ, TAZ.WALK_ACCESS_COLUMN_STOP, TAZ.WALK_ACCESS_COLUMN_DIRECTION], keep=False) if walk_access_dupes.sum() > 0: self.walk_access_df["duplicates"] = walk_access_dupes error_msg = "Duplicate taz/stop pairs in walk access links: \n%s" % str( self.walk_access_df.loc[self.walk_access_df["duplicates"]]) FastTripsLogger.fatal(error_msg) raise NetworkInputError(TAZ.INPUT_WALK_ACCESS_FILE, error_msg) FastTripsLogger.debug("Final\n" + str(self.walk_access_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s" % (len(self.walk_access_df), "walk access", TAZ.INPUT_WALK_ACCESS_FILE)) self.dap_df = gtfs.get(TAZ.INPUT_DAP_FILE) if not self.dap_df.empty: # verify required columns are present dap_cols = list(self.dap_df.columns.values) assert (TAZ.DAP_COLUMN_LOT_ID in dap_cols) assert (TAZ.DAP_COLUMN_LOT_LATITUDE in dap_cols) assert (TAZ.DAP_COLUMN_LOT_LONGITUDE in dap_cols) # default capacity = 0 if TAZ.DAP_COLUMN_CAPACITY not in dap_cols: self.dap_df[TAZ.DAP_COLUMN_CAPACITY] = 0 # default drop-off = True if TAZ.DAP_COLUMN_DROP_OFF not in dap_cols: self.dap_df[TAZ.DAP_COLUMN_DROP_OFF] = True else: self.dap_df = pd.DataFrame() FastTripsLogger.debug("=========== DAPS ===========\n" + str(self.dap_df.head())) FastTripsLogger.debug("\n" + str(self.dap_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s" % (len(self.dap_df), "DAPs", TAZ.INPUT_DAP_FILE)) #: Drive access links table. Make sure TAZ ID and lot ID are read as strings. self.drive_access_df = gtfs.get(TAZ.INPUT_DRIVE_ACCESS_FILE) if not self.drive_access_df.empty: # verify required columns are present drive_access_cols = list(self.drive_access_df.columns.values) assert (TAZ.DRIVE_ACCESS_COLUMN_TAZ in drive_access_cols) assert (TAZ.DRIVE_ACCESS_COLUMN_LOT_ID in drive_access_cols) assert (TAZ.DRIVE_ACCESS_COLUMN_DIRECTION in drive_access_cols) assert (TAZ.DRIVE_ACCESS_COLUMN_DISTANCE in drive_access_cols) assert (TAZ.DRIVE_ACCESS_COLUMN_COST in drive_access_cols) assert (TAZ.DRIVE_ACCESS_COLUMN_TRAVEL_TIME in drive_access_cols) assert (TAZ.DRIVE_ACCESS_COLUMN_START_TIME in drive_access_cols) assert (TAZ.DRIVE_ACCESS_COLUMN_END_TIME in drive_access_cols) # printing this before setting index FastTripsLogger.debug("=========== DRIVE ACCESS ===========\n" + str(self.drive_access_df.head())) FastTripsLogger.debug("As read\n" + str(self.drive_access_df.dtypes)) # Rename dist to drive_dist # the distance and times here are for DRIVING self.drive_access_df.rename( columns={TAZ.DRIVE_ACCESS_COLUMN_DISTANCE: TAZ.DRIVE_ACCESS_COLUMN_DRIVE_DISTANCE, TAZ.DRIVE_ACCESS_COLUMN_TRAVEL_TIME: TAZ.DRIVE_ACCESS_COLUMN_DRIVE_TRAVEL_TIME}, inplace=True) self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_DRIVE_TRAVEL_TIME_MIN] = \ self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_DRIVE_TRAVEL_TIME] # if there are any that go past midnight, duplicate sim_day_end = Assignment.NETWORK_BUILD_DATE_START_TIME + datetime.timedelta(days=1) dupes = self.drive_access_df.loc[self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_END_TIME] > sim_day_end, :].copy() if len(dupes) > 0: # e.g. 18:00 - 27:00 # dupe: 00:00 - 3:00 dupes.loc[dupes[ TAZ.DRIVE_ACCESS_COLUMN_END_TIME] > sim_day_end, TAZ.DRIVE_ACCESS_COLUMN_START_TIME] = Assignment.NETWORK_BUILD_DATE_START_TIME dupes.loc[dupes[TAZ.DRIVE_ACCESS_COLUMN_END_TIME] > sim_day_end, TAZ.DRIVE_ACCESS_COLUMN_END_TIME] = \ dupes[TAZ.DRIVE_ACCESS_COLUMN_END_TIME] - datetime.timedelta(days=1) # orig: 18:00 - 24:00 self.drive_access_df.loc[self.drive_access_df[ TAZ.DRIVE_ACCESS_COLUMN_END_TIME] > sim_day_end, TAZ.DRIVE_ACCESS_COLUMN_END_TIME] = sim_day_end FastTripsLogger.debug( "Added %d morning hour drive access links. Head:\n%s" % (len(dupes), dupes.head().to_string())) # combine self.drive_access_df = self.drive_access_df.append(dupes) # drive access period start/end time: float version self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_START_TIME_MIN] = \ (self.drive_access_df[ TAZ.DRIVE_ACCESS_COLUMN_START_TIME] - Assignment.NETWORK_BUILD_DATE_START_TIME) / np.timedelta64(1, 'm') self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_END_TIME_MIN] = \ (self.drive_access_df[ TAZ.DRIVE_ACCESS_COLUMN_END_TIME] - Assignment.NETWORK_BUILD_DATE_START_TIME) / np.timedelta64(1, 'm') # convert time column from number to timedelta self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_DRIVE_TRAVEL_TIME] = \ self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_DRIVE_TRAVEL_TIME_MIN].map( lambda x: datetime.timedelta(minutes=float(x))) # need PNRs and KNRs - get them from the dap knr_dap_df = self.dap_df.loc[self.dap_df[TAZ.DAP_COLUMN_DROP_OFF] == True].copy() pnr_dap_df = self.dap_df.loc[self.dap_df[TAZ.DAP_COLUMN_CAPACITY] > 0].copy() knr_dap_df['dap_type'] = 'KNR' pnr_dap_df['dap_type'] = 'PNR' self.drive_access_df = pd.merge(left=self.drive_access_df, right=pd.concat([knr_dap_df, pnr_dap_df], axis=0), on=TAZ.DRIVE_ACCESS_COLUMN_LOT_ID, how='left') # look for required column being null lots_not_found = self.drive_access_df.loc[pd.isnull(self.drive_access_df[TAZ.DAP_COLUMN_LOT_LATITUDE])] if len(lots_not_found) > 0: error_msg = "Found %d drive access links in %s with lots not specified in %s" % \ (len(lots_not_found), TAZ.INPUT_DRIVE_ACCESS_FILE, TAZ.INPUT_DAP_FILE) FastTripsLogger.fatal(error_msg) FastTripsLogger.fatal("\nFirst five drive access links with lots not found:\n%s" % \ str(lots_not_found.head().to_string())) raise NetworkInputError(TAZ.INPUT_DAP_FILE, error_msg) self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_SUPPLY_MODE] = \ self.drive_access_df['dap_type'] + '_' + \ self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_DIRECTION] # done with this self.drive_access_df.drop(['dap_type'], axis=1, inplace=True) # We're going to join this with stops to get drive-to-stop drive_access = self.drive_access_df.loc[self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_DIRECTION] == 'access'] drive_egress = self.drive_access_df.loc[self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_DIRECTION] == 'egress'] # join with transfers to go from taz -> lot -> stop drive_access = pd.merge(left=drive_access, right=transfers.transfers_df, left_on=TAZ.DRIVE_ACCESS_COLUMN_LOT_ID, right_on=Transfer.TRANSFERS_COLUMN_FROM_STOP, how='left') drive_access[TAZ.DRIVE_ACCESS_COLUMN_STOP] = drive_access[Transfer.TRANSFERS_COLUMN_TO_STOP] # join with transfers to go from stop -> lot -> taz drive_egress = pd.merge(left=drive_egress, right=transfers.transfers_df, left_on=TAZ.DRIVE_ACCESS_COLUMN_LOT_ID, right_on=Transfer.TRANSFERS_COLUMN_TO_STOP, how='left') drive_egress[TAZ.DRIVE_ACCESS_COLUMN_STOP] = drive_egress[Transfer.TRANSFERS_COLUMN_FROM_STOP] self.drive_access_df = pd.concat([drive_access, drive_egress], axis=0) # drop redundant columns # TODO: assuming min_transfer_type and transfer_type from GTFS aren't relevant here, since # the time and dist are what matter. # Assuming schedule_precedence doesn't make sense in the drive access/egress context self.drive_access_df.drop([Transfer.TRANSFERS_COLUMN_FROM_STOP, Transfer.TRANSFERS_COLUMN_TO_STOP, Transfer.TRANSFERS_COLUMN_TRANSFER_TYPE, Transfer.TRANSFERS_COLUMN_MIN_TRANSFER_TIME, Transfer.TRANSFERS_COLUMN_SCHEDULE_PRECEDENCE, Transfer.TRANSFERS_COLUMN_PENALTY], axis=1, inplace=True) # not relevant for drive access if Transfer.TRANSFERS_COLUMN_FROM_ROUTE in list(self.drive_access_df.columns.values): self.drive_access_df.drop([Transfer.TRANSFERS_COLUMN_FROM_ROUTE], axis=1, inplace=True) if Transfer.TRANSFERS_COLUMN_TO_ROUTE in list(self.drive_access_df.columns.values): self.drive_access_df.drop([Transfer.TRANSFERS_COLUMN_TO_ROUTE], axis=1, inplace=True) if Transfer.TRANSFERS_COLUMN_MIN_TRANSFER_TIME_MIN in list(self.drive_access_df.columns.values): self.drive_access_df.drop([Transfer.TRANSFERS_COLUMN_MIN_TRANSFER_TIME_MIN], axis=1, inplace=True) # some may have no lot to stop connections -- check for null stop ids null_stop_ids = self.drive_access_df.loc[pd.isnull(self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_STOP])] if len(null_stop_ids) > 0: FastTripsLogger.warn("Dropping %d drive links that don't connect to stops:\n%s" % ( len(null_stop_ids), str(null_stop_ids))) # drop them self.drive_access_df = self.drive_access_df.loc[ pd.notnull(self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_STOP])] # rename walk attributes to be clear self.drive_access_df.rename( columns={ Transfer.TRANSFERS_COLUMN_DISTANCE: TAZ.DRIVE_ACCESS_COLUMN_WALK_DISTANCE, Transfer.TRANSFERS_COLUMN_TIME: TAZ.DRIVE_ACCESS_COLUMN_WALK_TIME, Transfer.TRANSFERS_COLUMN_TIME_MIN: TAZ.DRIVE_ACCESS_COLUMN_WALK_TIME_MIN}, inplace=True) # add generic distance and time self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_DISTANCE] = self.drive_access_df[ TAZ.DRIVE_ACCESS_COLUMN_WALK_DISTANCE] + \ self.drive_access_df[ TAZ.DRIVE_ACCESS_COLUMN_DRIVE_DISTANCE] self.drive_access_df["time_min"] = self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_WALK_TIME_MIN] + \ self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_DRIVE_TRAVEL_TIME_MIN] FastTripsLogger.debug("Final (%d) types:\n%s\nhead:\n%s" % ( len(self.drive_access_df), str(self.drive_access_df.dtypes), str(self.drive_access_df.head()))) FastTripsLogger.info("Read %7d %15s from %25s" % (len(self.drive_access_df), "drive access", TAZ.INPUT_DRIVE_ACCESS_FILE)) self.has_drive_access = True else: self.has_drive_access = False self.drive_access_df = pd.DataFrame(columns=[TAZ.DRIVE_ACCESS_COLUMN_TAZ, TAZ.DRIVE_ACCESS_COLUMN_LOT_ID]) FastTripsLogger.debug("=========== NO DRIVE ACCESS ===========\n") # add DAPs IDs and TAZ IDs to stop ID list stops.add_daps_tazs_to_stops(self.drive_access_df[[TAZ.DRIVE_ACCESS_COLUMN_LOT_ID]], TAZ.DRIVE_ACCESS_COLUMN_LOT_ID, pd.concat([self.walk_access_df[[TAZ.WALK_ACCESS_COLUMN_TAZ]], self.drive_access_df[[TAZ.DRIVE_ACCESS_COLUMN_TAZ]]], axis=0), TAZ.WALK_ACCESS_COLUMN_TAZ) # transfers can add stop numeric IDs now that DAPs are available transfers.add_numeric_stop_id(stops) # Add numeric stop ID to walk access links self.walk_access_df = stops.add_numeric_stop_id(self.walk_access_df, id_colname=TAZ.WALK_ACCESS_COLUMN_STOP, numeric_newcolname=TAZ.WALK_ACCESS_COLUMN_STOP_NUM, warn=True, warn_msg="Numeric stop id not found for walk access links") # Add TAZ stop ID to walk and drive access links self.walk_access_df = stops.add_numeric_stop_id(self.walk_access_df, id_colname=TAZ.WALK_ACCESS_COLUMN_TAZ, numeric_newcolname=TAZ.WALK_ACCESS_COLUMN_TAZ_NUM) # These have direction now. Set supply mode string self.walk_access_df[TAZ.WALK_ACCESS_COLUMN_SUPPLY_MODE] = "walk_" + self.walk_access_df[ TAZ.WALK_ACCESS_COLUMN_DIRECTION] self.walk_access_df = routes.add_numeric_mode_id(self.walk_access_df, id_colname=TAZ.WALK_ACCESS_COLUMN_SUPPLY_MODE, numeric_newcolname=TAZ.WALK_ACCESS_COLUMN_SUPPLY_MODE_NUM) if self.has_drive_access: print(self.drive_access_df.loc[self.drive_access_df[TAZ.DRIVE_ACCESS_COLUMN_STOP] == "9065"]) self.drive_access_df = stops.add_numeric_stop_id(self.drive_access_df, id_colname=TAZ.DRIVE_ACCESS_COLUMN_STOP, numeric_newcolname=TAZ.DRIVE_ACCESS_COLUMN_STOP_NUM, warn=True, warn_msg="Drive access stops missing ids") self.drive_access_df = stops.add_numeric_stop_id(self.drive_access_df, id_colname=TAZ.DRIVE_ACCESS_COLUMN_TAZ, numeric_newcolname=TAZ.DRIVE_ACCESS_COLUMN_TAZ_NUM) self.drive_access_df = routes.add_numeric_mode_id(self.drive_access_df, id_colname=TAZ.DRIVE_ACCESS_COLUMN_SUPPLY_MODE, numeric_newcolname=TAZ.DRIVE_ACCESS_COLUMN_SUPPLY_MODE_NUM) # warn on stops that have no walk access self.warn_on_stops_without_walk_access(stops) # write this to communicate to extension self.write_access_egress_for_extension(output_dir) def add_distance(self, links_df, dist_col): """ Sets distance column value for access and egress links. .. todo:: This neglects the start_time/end_time issue. Don't use without fixing. """ ############## walk ############## walk_dists = self.walk_access_df[[TAZ.WALK_ACCESS_COLUMN_TAZ_NUM, TAZ.WALK_ACCESS_COLUMN_STOP_NUM, TAZ.WALK_ACCESS_COLUMN_SUPPLY_MODE_NUM, TAZ.WALK_ACCESS_COLUMN_DIST]].copy() walk_dists.rename(columns={TAZ.WALK_ACCESS_COLUMN_DIST: "walk_dist"}, inplace=True) # walk access links_df = pd.merge(left=links_df, left_on=["A_id_num", "B_id_num", "mode_num"], right=walk_dists, right_on=[TAZ.WALK_ACCESS_COLUMN_TAZ_NUM, TAZ.WALK_ACCESS_COLUMN_STOP_NUM, TAZ.WALK_ACCESS_COLUMN_SUPPLY_MODE_NUM], how="left") links_df.loc[pd.notnull(links_df["walk_dist"]), dist_col] = links_df["walk_dist"] links_df.drop([TAZ.WALK_ACCESS_COLUMN_TAZ_NUM, TAZ.WALK_ACCESS_COLUMN_STOP_NUM, TAZ.WALK_ACCESS_COLUMN_SUPPLY_MODE_NUM, "walk_dist"], axis=1, inplace=True) # walk egress links_df = pd.merge(left=links_df, left_on=["A_id_num", "B_id_num", "mode_num"], right=walk_dists, right_on=[TAZ.WALK_ACCESS_COLUMN_STOP_NUM, TAZ.WALK_ACCESS_COLUMN_TAZ_NUM, TAZ.WALK_ACCESS_COLUMN_SUPPLY_MODE_NUM], how="left") links_df.loc[pd.notnull(links_df["walk_dist"]), dist_col] = links_df["walk_dist"] links_df.drop([TAZ.WALK_ACCESS_COLUMN_TAZ_NUM, TAZ.WALK_ACCESS_COLUMN_STOP_NUM, TAZ.WALK_ACCESS_COLUMN_SUPPLY_MODE_NUM, "walk_dist"], axis=1, inplace=True) ############## drive ############## FastTripsLogger.debug("drive_access_df=\n%s" % self.drive_access_df.head()) if len(self.drive_access_df) > 0: drive_dists = self.drive_access_df[[TAZ.DRIVE_ACCESS_COLUMN_TAZ_NUM, TAZ.DRIVE_ACCESS_COLUMN_STOP_NUM, TAZ.DRIVE_ACCESS_COLUMN_SUPPLY_MODE_NUM, TAZ.DRIVE_ACCESS_COLUMN_DRIVE_DISTANCE, TAZ.DRIVE_ACCESS_COLUMN_WALK_DISTANCE, TAZ.DRIVE_ACCESS_COLUMN_START_TIME, TAZ.DRIVE_ACCESS_COLUMN_END_TIME]].copy() drive_dists["drive_total_dist"] = drive_dists[TAZ.DRIVE_ACCESS_COLUMN_DRIVE_DISTANCE] + drive_dists[ TAZ.DRIVE_ACCESS_COLUMN_WALK_DISTANCE] drive_dists.drop([TAZ.DRIVE_ACCESS_COLUMN_DRIVE_DISTANCE, TAZ.DRIVE_ACCESS_COLUMN_WALK_DISTANCE], axis=1, inplace=True) # drive access links_df = pd.merge(left=links_df, left_on=["A_id_num", "B_id_num", "mode_num"], right=drive_dists, right_on=[TAZ.DRIVE_ACCESS_COLUMN_TAZ_NUM, TAZ.DRIVE_ACCESS_COLUMN_STOP_NUM, TAZ.DRIVE_ACCESS_COLUMN_SUPPLY_MODE_NUM], how="left") # TODO: drop those with drive access links covering different times links_df.loc[pd.notnull(links_df["drive_total_dist"]), dist_col] = links_df["drive_total_dist"] links_df.drop([TAZ.DRIVE_ACCESS_COLUMN_TAZ_NUM, TAZ.DRIVE_ACCESS_COLUMN_STOP_NUM, TAZ.DRIVE_ACCESS_COLUMN_SUPPLY_MODE_NUM, "drive_total_dist"], axis=1, inplace=True) # drive egress links_df = pd.merge(left=links_df, left_on=["A_id_num", "B_id_num", "mode_num"], right=drive_dists, right_on=[TAZ.DRIVE_ACCESS_COLUMN_STOP_NUM, TAZ.DRIVE_ACCESS_COLUMN_TAZ_NUM, TAZ.DRIVE_ACCESS_COLUMN_SUPPLY_MODE_NUM], how="left") links_df.loc[pd.notnull(links_df["drive_total_dist"]), dist_col] = links_df["drive_total_dist"] links_df.drop([TAZ.DRIVE_ACCESS_COLUMN_TAZ_NUM, TAZ.DRIVE_ACCESS_COLUMN_STOP_NUM, TAZ.DRIVE_ACCESS_COLUMN_SUPPLY_MODE_NUM, "drive_total_dist"], axis=1, inplace=True) FastTripsLogger.debug("links_df=\n%s" % links_df.head(30).to_string()) return links_df def warn_on_stops_without_walk_access(self, stops): """ Do any stops lack *any* walk access? """ # FastTripsLogger.debug("warn_on_stops_without_walk_access: \n%s", stops.stops_df.head() ) # FastTripsLogger.debug("warn_on_stops_without_walk_access: \n%s", self.walk_access_df.head() ) # join stops to walk access no_access_stops = pd.merge(left=stops.stops_df[[Stop.STOPS_COLUMN_STOP_ID]], right=self.walk_access_df[[TAZ.WALK_ACCESS_COLUMN_STOP, TAZ.WALK_ACCESS_COLUMN_TAZ]], how="left") no_access_stops = no_access_stops.loc[pd.isnull(no_access_stops[TAZ.WALK_ACCESS_COLUMN_TAZ])] if len(no_access_stops) > 0: FastTripsLogger.warn("The following %d stop ids have no walk access: \n%s" % ( len(no_access_stops), no_access_stops.to_string())) def write_access_egress_for_extension(self, output_dir): """ Write the access and egress links to a single output file for the C++ extension to read. It's in this form because I'm not sure how to pass the strings to C++ in Assignment.initialize_fasttrips_extension so I know that's inconsistent, but it's a time sink to investigate, so I'll leave this for now .. todo:: clean this up? Rename intermediate files (they're not really output) """ # ========== Walk access/egres ================================================= # print "walk_access columns" # for col in list(self.walk_access_df.columns): print " %s" % col # start with all walk columns self.walk_df = self.walk_access_df.copy() # drop the redundant columns drop_fields = [TAZ.WALK_ACCESS_COLUMN_TAZ, # use numerical version TAZ.WALK_ACCESS_COLUMN_STOP, # use numerical version TAZ.WALK_ACCESS_COLUMN_DIRECTION, # it's in the supply mode num TAZ.WALK_ACCESS_COLUMN_SUPPLY_MODE, # use numerical version TAZ.WALK_ACCESS_COLUMN_TIME, # use numerical version ] # we can only drop fields that are in the dataframe walk_fields = list(self.walk_df.columns.values) valid_drop_fields = [] for field in drop_fields: if field in walk_fields: valid_drop_fields.append(field) self.walk_df.drop(valid_drop_fields, axis=1, inplace=True) # make walk access valid all times -- need this for consistency self.walk_df[TAZ.DRIVE_ACCESS_COLUMN_START_TIME_MIN] = 0.0 self.walk_df[TAZ.DRIVE_ACCESS_COLUMN_END_TIME_MIN] = 60.0 * 24.0 # the index is TAZ num, supply mode num, and stop num self.walk_df.set_index([TAZ.WALK_ACCESS_COLUMN_TAZ_NUM, TAZ.WALK_ACCESS_COLUMN_SUPPLY_MODE_NUM, TAZ.WALK_ACCESS_COLUMN_STOP_NUM, TAZ.DRIVE_ACCESS_COLUMN_START_TIME_MIN, TAZ.DRIVE_ACCESS_COLUMN_END_TIME_MIN], inplace=True) # ========== Drive access/egres ================================================= self.drive_df = self.drive_access_df.copy() # print "drive_access columns" # for col in list(self.drive_access_df.columns): print " %s" % col # TEMP drive_fields = list(self.drive_df.columns.values) # drop some of the attributes drop_fields = [TAZ.DRIVE_ACCESS_COLUMN_TAZ, # use numerical version TAZ.DRIVE_ACCESS_COLUMN_STOP, # use numerical version TAZ.DRIVE_ACCESS_COLUMN_SUPPLY_MODE, # use numerical version TAZ.DRIVE_ACCESS_COLUMN_DRIVE_TRAVEL_TIME, # use numerical version TAZ.DRIVE_ACCESS_COLUMN_START_TIME, # use numerical version TAZ.DRIVE_ACCESS_COLUMN_END_TIME, # use numerical version TAZ.DRIVE_ACCESS_COLUMN_WALK_TIME, # use numerical version TAZ.DRIVE_ACCESS_COLUMN_DIRECTION, # redundant with supply mode TAZ.DAP_COLUMN_DROP_OFF, # redundant with supply mode TAZ.DAP_COLUMN_LOT_LATITUDE, # probably not useful TAZ.DAP_COLUMN_LOT_LONGITUDE, # probably not useful TAZ.DRIVE_ACCESS_COLUMN_LOT_ID, # probably not useful ] valid_drop_fields = [] for field in drop_fields: if field in drive_fields: valid_drop_fields.append(field) self.drive_df.drop(valid_drop_fields, axis=1, inplace=True) # the index is TAZ num, supply mode num, and stop num if len(self.drive_df) > 0: self.drive_df.set_index([TAZ.DRIVE_ACCESS_COLUMN_TAZ_NUM, TAZ.DRIVE_ACCESS_COLUMN_SUPPLY_MODE_NUM, TAZ.DRIVE_ACCESS_COLUMN_STOP_NUM, TAZ.DRIVE_ACCESS_COLUMN_START_TIME_MIN, TAZ.DRIVE_ACCESS_COLUMN_END_TIME_MIN], inplace=True) # stack() this will make it so beyond taz num, supply mode num, and stop num # the remaining columns collapse to variable name, variable value # put walk and drive together access_df = pd.concat([self.walk_df.stack(), self.drive_df.stack()], axis=0).to_frame() else: access_df = self.walk_df.stack().to_frame() access_df.reset_index(inplace=True) # rename from these default column names access_df.rename(columns={"level_3": "attr_name", 0: "attr_value"}, inplace=True) # make attr_value a float instead of an object access_df["attr_value"] = access_df["attr_value"].astype(float) FastTripsLogger.debug("\n" + str(access_df.head())) FastTripsLogger.debug("\n" + str(access_df.tail())) # Check for null stop ids null_stop_ids = access_df.loc[pd.isnull(access_df["stop_id_num"])] if len(null_stop_ids) > 0: FastTripsLogger.warn("write_access_egress_for_extension null_stop_ids:\n%s" % str(null_stop_ids)) # for now, drop rows with null stop id nums access_df = access_df.loc[pd.notnull(access_df["stop_id_num"])] access_df["stop_id_num"] = access_df["stop_id_num"].astype(int) access_df.to_csv(os.path.join(output_dir, TAZ.OUTPUT_ACCESS_EGRESS_FILE), sep=" ", index=False) FastTripsLogger.debug("Wrote %s" % os.path.join(output_dir, TAZ.OUTPUT_ACCESS_EGRESS_FILE))
57.681259
157
0.628958
41,181
0.976663
0
0
0
0
0
0
13,236
0.31391
58309191f39ca5397068401c1360251a2a11c48a
2,686
py
Python
tests/test_stardist2D.py
ianbgroves/stardist
6524c27d01c625dabfd75b1443dd46ccb1cb3dcd
[ "BSD-3-Clause" ]
1
2021-02-05T11:59:39.000Z
2021-02-05T11:59:39.000Z
tests/test_stardist2D.py
ianbgroves/stardist
6524c27d01c625dabfd75b1443dd46ccb1cb3dcd
[ "BSD-3-Clause" ]
1
2020-06-17T09:06:29.000Z
2020-06-17T09:06:29.000Z
tests/test_stardist2D.py
ianbgroves/stardist
6524c27d01c625dabfd75b1443dd46ccb1cb3dcd
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from stardist import star_dist, relabel_image_stardist import pytest from utils import random_image, real_image2d, check_similar, circle_image @pytest.mark.parametrize('img', (real_image2d()[1], random_image((128, 123)))) @pytest.mark.parametrize('n_rays', (4, 16, 32)) def test_types(img, n_rays): mode = "cpp" gt = star_dist(img, n_rays=n_rays, mode=mode) for dtype in (np.int8, np.int16, np.int32, np.uint8, np.uint16, np.uint32): x = star_dist(img.astype(dtype), n_rays=n_rays, mode=mode) print("test_stardist2D (mode {mode}) for shape {img.shape} and type {dtype}".format( mode=mode, img=img, dtype=dtype)) check_similar(gt, x) @pytest.mark.gpu @pytest.mark.parametrize('img', (real_image2d()[1], random_image((128, 123)))) @pytest.mark.parametrize('n_rays', (4, 16, 32)) def test_types_gpu(img, n_rays): mode = "opencl" gt = star_dist(img, n_rays=n_rays, mode=mode) for dtype in (np.int8, np.int16, np.int32, np.uint8, np.uint16, np.uint32): x = star_dist(img.astype(dtype), n_rays=n_rays, mode=mode) print("test_stardist2D with mode {mode} for shape {img.shape} and type {dtype}".format( mode=mode, img=img, dtype=dtype)) check_similar(gt, x) @pytest.mark.gpu @pytest.mark.parametrize('img', (real_image2d()[1], random_image((128, 123)))) @pytest.mark.parametrize('n_rays', (4, 16, 32)) def test_cpu_gpu(img, n_rays): s_cpp = star_dist(img, n_rays=n_rays, mode="cpp") s_ocl = star_dist(img, n_rays=n_rays, mode="opencl") check_similar(s_cpp, s_ocl) @pytest.mark.parametrize('n_rays', (32,64)) @pytest.mark.parametrize('eps', ((1,1),(.4,1.3))) def test_relabel_consistency(n_rays, eps, plot = False): """ test whether an already star-convex label image gets perfectly relabeld""" # img = random_image((128, 123)) lbl1 = circle_image(shape=(32,32), radius=8, eps = eps) lbl1 = relabel_image_stardist(lbl1, n_rays) lbl2 = relabel_image_stardist(lbl1, n_rays) rel_error = 1-np.count_nonzero(np.bitwise_and(lbl1>0, lbl2>0))/np.count_nonzero(lbl1>0) print(rel_error) assert rel_error<1e-1 if plot: import matplotlib.pyplot as plt plt.figure(num=1, figsize=(8,4)) plt.subplot(1,3,1);plt.imshow(lbl1);plt.title("GT") plt.subplot(1,3,2);plt.imshow(lbl2);plt.title("Reco") plt.subplot(1,3,3);plt.imshow(1*(lbl1>0)+2*(lbl2>0));plt.title("Overlay") plt.tight_layout() plt.show() return lbl1, lbl2 if __name__ == '__main__': lbl1, lbl2 = test_relabel_consistency(32,eps = (.7,1), plot = True)
36.794521
95
0.655249
0
0
0
0
2,403
0.894639
0
0
360
0.134028
583228f93313973cc02c96e9d032138aeb10b053
26,395
py
Python
all_call/infer_new.py
jbudis/dante
90177c33825d5f9ce3fba5463092fbcf20b72fe2
[ "Apache-2.0" ]
4
2018-09-28T14:50:47.000Z
2021-08-09T12:46:12.000Z
all_call/infer_new.py
jbudis/dante
90177c33825d5f9ce3fba5463092fbcf20b72fe2
[ "Apache-2.0" ]
6
2019-01-02T13:08:31.000Z
2021-03-25T21:45:40.000Z
all_call/infer_new.py
jbudis/dante
90177c33825d5f9ce3fba5463092fbcf20b72fe2
[ "Apache-2.0" ]
1
2017-12-12T10:38:26.000Z
2017-12-12T10:38:26.000Z
import math import functools from scipy.stats import binom import numpy as np import itertools import sys import matplotlib.pyplot as plt import matplotlib.patheffects as PathEffects from copy import copy def combine_distribs(deletes, inserts): """ Combine insert and delete models/distributions :param deletes: ndarray - delete distribution :param inserts: ndarray - insert distribution :return: ndarray - combined array of the same length """ # how much to fill? to_fill = sum(deletes == 0.0) + 1 while to_fill < len(inserts) and inserts[to_fill] > 0.0001: to_fill += 1 # create the end array len_del = len(deletes) end_distr = np.zeros_like(deletes, dtype=float) # fill it! for i, a in enumerate(inserts[:to_fill]): # print i,a,(deletes*a)[:len_del-i] end_distr[i:] += (deletes * a)[:len_del - i] # print("end_distr", end_distr[:3], deletes[:3], inserts[:3]) return end_distr def const_rate(n, p1=0.0, p2=1.0, p3=1.0): """ Constant rate function. :param n: int - allele number (unused) :param p1: float - constant parameter :param p2: float - linear parameter (unused) :param p3: float - additional parameter (unused) :return: float - p1 """ return p1 def linear_rate(n, p1=0.0, p2=1.0, p3=1.0): """ Linear rate function. :param n: int - allele number :param p1: float - constant parameter :param p2: float - linear parameter :param p3: float - additional parameter (unused) :return: float - p1 + p2 * n """ return p1 + p2 * n def n2_rate(n, p1=0.0, p2=1.0, p3=1.0): """ Quadratic rate function. :param n: int - allele number :param p1: float - constant parameter :param p2: float - linear parameter :param p3: float - quadratic parameter :return: float - p1 + p2 * n + p3 * n * n """ return p1 + p2 * n + p3 * n * n def exp_rate(n, p1=0.0, p2=1.0, p3=1.0): """ Exponential rate function. :param n: int - allele number :param p1: float - constant parameter :param p2: float - linear parameter :param p3: float - exponential parameter :return: float - p1 + p2 * e^(p3 * n) """ return p1 + p2 * math.exp(p3 * n) def clip(value, minimal, maximal): """ Clips value to range <minimal, maximal> :param value: ? - value :param minimal: ? - minimal value :param maximal: ? - maximal value :return: ? - clipped value """ return min(max(minimal, value), maximal) def model_full(rng, model_params, n, rate_func=linear_rate): """ Create binomial model for both deletes and inserts of STRs :param rng: int - max_range of distribution :param model_params: 4-tuple - parameters for inserts and deletes :param n: int - target allele number :param rate_func: function - rate function for deletes :return: ndarray - combined distribution """ p1, p2, p3, q = model_params deletes = binom.pmf(np.arange(rng), n, clip(1 - rate_func(n, p1, p2, p3), 0.0, 1.0)) inserts = binom.pmf(np.arange(rng), n, q) return combine_distribs(deletes, inserts) def model_template(rng, model_params, rate_func=linear_rate): """ Partial function for model creation. :param rng: int - max_range of distribution :param model_params: 4-tuple - parameters for inserts and deletes :param rate_func: function - rate function for deletes :return: partial function with only 1 parameter - n - target allele number """ return functools.partial(model_full, rng, model_params, rate_func=rate_func) class Inference: """ Class for inference of alleles. """ MIN_REPETITIONS = 1 # default parameters for inference DEFAULT_MODEL_PARAMS = (-0.0107736, 0.00244419, 0.0, 0.00440608) DEFAULT_FIT_FUNCTION = "linear" def __init__(self, read_distribution, params_file, str_rep=3, minl_primer1=5, minl_primer2=5, minl_str=5, p_bckg_closed=None, p_bckg_open=None, p_expanded=None): """ Initialization of the Inference class + setup of all models and their probabilities. :param read_distribution: ndarray(int) - read distribution :param params_file: str - filename of parameters :param str_rep: int - length of the STR :param minl_primer1: int - minimal length of the left primer :param minl_primer2: int - minimal length of the right primer :param minl_str: int - minimal length of the STR :param p_bckg_closed: float - probability of the background model for closed observation :param p_bckg_open: float - probability of the background model for open observation :param p_expanded: float - probability of the expanded model (if None it is equal to other models) """ # assign variables self.str_rep = str_rep self.minl_primer1 = minl_primer1 self.minl_primer2 = minl_primer2 self.minl_str = minl_str self.read_distribution = read_distribution self.sum_reads_log = np.log(np.sum(read_distribution)) self.sum_reads = np.sum(read_distribution) self.params_file = params_file self.p_expanded = p_expanded self.p_bckg_closed = p_bckg_closed self.p_bckg_open = p_bckg_open def construct_models(self, min_rep, max_rep, e_model): """ Construct all models needed for current inference. :param min_rep: int - minimal allele to model :param max_rep: int - maximal allele to model :param e_model: int - model for expanded alleles :return: None """ # extract params model_params, rate_func_str = self.read_params(self.params_file) str_to_func = {"linear": linear_rate, "const": const_rate, "exponential": exp_rate, "square": n2_rate} rate_func = const_rate if rate_func_str in str_to_func.keys(): rate_func = str_to_func[rate_func_str] # save min_rep and max_rep self.min_rep = min_rep self.max_rep = max_rep # non-inclusive self.max_with_e = e_model + 1 # non-inclusive # get models mt = model_template(self.max_with_e, model_params, rate_func) self.background_model = np.concatenate([np.zeros(self.min_rep, dtype=float), np.ones(self.max_with_e - self.min_rep, dtype=float) / float(self.max_with_e - self.min_rep)]) self.expanded_model = mt(self.max_with_e - 1) self.allele_models = {i: mt(i) for i in range(min_rep, max_rep)} self.models = {'E': self.expanded_model, 'B': self.background_model} self.models.update(self.allele_models) # get model likelihoods open_to_closed = 10.0 l_others = 1.0 l_bckg_open = 0.01 l_exp = 1.01 l_bckg_model_open = 1.0 if self.p_expanded is None: self.p_expanded = l_exp if self.p_bckg_open is None and self.p_bckg_closed is None: self.p_bckg_open = l_bckg_open self.p_bckg_closed = self.p_bckg_open / open_to_closed if self.p_bckg_closed is None: self.p_bckg_closed = self.p_bckg_open / open_to_closed if self.p_bckg_open is None: self.p_bckg_open = self.p_bckg_closed * open_to_closed self.model_probabilities = {'E': self.p_expanded, 'B': l_bckg_model_open} self.model_probabilities.update({i: l_others for i in self.allele_models.keys()}) def read_params(self, params_file): """ Reads all parameters written with write_params(print_all=True) :param params_file: str - filename to read parameters from, if None, load default params :return: 4-tuple, 2-tuple, function - parameters for model, read count drop, and error function for model distributions """ if params_file is None: return self.DEFAULT_MODEL_PARAMS, self.DEFAULT_FIT_FUNCTION # read 2nd and last line of the file with open(params_file) as f: lines = f.readlines() fit_function = lines[1].strip().split()[1] split = list(map(float, lines[-1].strip().split())) if len(split) < 4: print("ERROR: parameters were not read successfully, using defaults!", file=sys.stderr) return self.DEFAULT_MODEL_PARAMS, self.DEFAULT_FIT_FUNCTION # extract parameters from last line of file model_params = tuple(split[0:4]) return model_params, fit_function def likelihood_rl(self, rl): """ Likelihood of a read with this length. :param rl: int - read length :return: float - likelihood of a read this long """ # print('rl', self.read_distribution[rl] / float(self.sum_reads)) return self.read_distribution[rl] / float(self.sum_reads) @staticmethod def likelihood_model(model, g): """ Likelihood of a generated allele al from a model of :param model: ndarray - model that we evaluate :param g: int - observed read count :return: float - likelihood of a read coming from this model """ return model[g] def likelihood_intersection(self, model_i, model_j, g): return min(model_i[g], model_j[g]) def likelihood_coverage(self, true_length, rl, closed=True): """ Likelihood of generating a read with this length and this allele. :param true_length: int - true number of repetitions of an STR :param rl: int - read length :param closed: bool - if the read is closed - i.e. both primers are there :return: float - likelihood of a read being generated with this attributes """ whole_inside_str = max(0, true_length * self.str_rep + self.minl_primer1 + self.minl_primer2 - rl + 1) # closed_overlapping = max(0, rl - self.minl_primer1 - self.minl_primer2 - true_length * self.str_rep + 1) open_overlapping = max(0, rl + true_length * self.str_rep - 2 * self.minl_str + 1) assert open_overlapping > whole_inside_str, '%d open %d whole inside %d %d %d' % (open_overlapping, whole_inside_str, true_length, rl, self.minl_str) return 1.0 / float(open_overlapping - whole_inside_str) def likelihood_read_allele(self, model, observed, rl, closed=True): """ Likelihood of generation of read with observed allele count and rl. :param model: ndarray - model for the allele :param observed: int - observed allele count :param rl: int - read length :param closed: bool - if the read is closed - i.e. both primers are there :return: """ if closed: return self.likelihood_rl(rl) * self.likelihood_model(model, observed) * self.likelihood_coverage(observed, rl, True) else: number_of_options = 0 partial_likelihood = 0 for true_length in itertools.chain(range(observed, self.max_rep), [self.max_with_e - 1]): partial_likelihood += self.likelihood_model(model, true_length) * self.likelihood_coverage(true_length, rl, False) number_of_options += 1 return self.likelihood_rl(rl) * partial_likelihood / float(number_of_options) def likelihood_read_intersection(self, model_i, model_j, observed, rl, closed=True): """ Likelihood of generation of read with observed allele count and rl. :param model: ndarray - model for the allele :param observed: int - observed allele count :param rl: int - read length :param closed: bool - if the read is closed - i.e. both primers are there :return: """ if closed: return self.likelihood_rl(rl) * self.likelihood_intersection(model_i, model_j, observed) * self.likelihood_coverage(observed, rl, True) else: number_of_options = 0 partial_likelihood = 0 for true_length in itertools.chain(range(observed, self.max_rep), [self.max_with_e - 1]): partial_likelihood += self.likelihood_intersection(model_i, model_j, true_length) * self.likelihood_coverage(true_length, rl, False) number_of_options += 1 return self.likelihood_rl(rl) * partial_likelihood / float(number_of_options) def likelihood_read(self, observed, rl, model_index1, model_index2, closed=True): """ Compute likelihood of generation of a read from either of those models. :param observed: int - observed allele count :param rl: int - read length :param model_index1: char/int - model index for left allele :param model_index2: char/int - model index for right allele :param closed: bool - if the read is closed - i.e. both primers are therse :return: float - likelihood of this read generation """ # print('testing', model_index1, model_index2) model_i = self.models[model_index1] model_j = self.models[model_index2] model_prob_i = self.model_probabilities[model_index1] model_prob_j = self.model_probabilities[model_index2] # TODO: tuto podla mna nemoze byt len tak +, chyba tam korelacia modelov, ale v ramci zjednodusenia asi ok allele1_likelihood = model_prob_i * self.likelihood_read_allele(model_i, observed, rl, closed) allele2_likelihood = model_prob_j * self.likelihood_read_allele(model_j, observed, rl, closed) p_bckg = self.p_bckg_closed if closed else self.p_bckg_open bckgrnd_likelihood = p_bckg * self.likelihood_read_allele(self.models['B'], observed, rl, closed) # alleles_intersection = min(model_prob_j, model_prob_i) * self.likelihood_read_intersection(model_i, model_j, observed, rl, closed) # if alleles_intersection > 0.0: # print('%g %g %g %s %s %d' % (alleles_intersection, allele2_likelihood, allele1_likelihood, str(model_index1), str(model_index2), observed)) assert not np.isnan(allele2_likelihood) assert not np.isnan(allele1_likelihood) assert not np.isnan(bckgrnd_likelihood) # assert alleles_intersection <= max(allele1_likelihood, allele2_likelihood), '%g %g %g %s %s %d' % ( # alleles_intersection, allele2_likelihood, allele1_likelihood, str(model_index1), str(model_index2), observed) # print('read_%s' % (str(closed)), observed, 'all1_lh', allele1_likelihood, 'all2_lh', allele2_likelihood) return allele1_likelihood + allele2_likelihood + bckgrnd_likelihood # - alleles_intersection def infer(self, annotations, filt_annotations, index_rep, verbose=True): """ Does all of the inference, computes for which 2 combination of alleles are these annotations and parameters the best. argmax_{G1, G2} P(G1, G2 | AL, COV, RL) ~ P(AL, COV, RL | G1, G2) * P(G1, G2) = prod_{read_i} P(al_i, cov_i, rl_i | G1, G2) * P(G1, G2) =independent G1 G2= = prod_{read_i} P(al_i, cov_i, rl_i | G1) * P(al_i, cov_i, rl_i | G2) * P(G1) * P(G2) {here G1, G2 is from possible alleles, background, and expanded, priors are from params} P(al_i, cov_i, rl_i | G1) - 2 options: 1. closed evidence (al_i = X), we know X; 2. open evidence (al_i >= X), cl_i == True if i is closed 1.: P(al_i, cov_i, rl_i, cl_i | G1) = P(rl_i is from read distribution) * p(allele is al_i | G1) * P(read generated closed evidence | rl_i, al_i) 2.: P(rl_i is from r.distr.) * P(allele is >= al_i | G1) * P(read generated open evidence | rl_i, al_i) :param annotations: iterator(reads) - closed reads (both primers set) :param filt_annotations: iterator(reads) - open reads (only one primer set) :param index_rep: int - index of a repetition :param verbose: bool - print more stuff? :return: dict(tuple(int, int):float) - directory of model indices to their likelihood """ # generate closed observed and read_length arrays observed_annots = list(map(lambda x: x.module_repetitions[index_rep], annotations)) rl_annots = list(map(lambda x: len(x.read.sequence), annotations)) closed_annots = np.ones_like(observed_annots, dtype=bool) # generate open observed and read_length arrays observed_fa = list(map(lambda x: x.module_repetitions[index_rep], filt_annotations)) rl_fa = list(map(lambda x: len(x.read.sequence), filt_annotations)) closed_fa = np.zeros_like(observed_fa, dtype=bool) # join them and keep the information if they are open or closed observed_arr = np.concatenate([observed_annots, observed_fa]).astype(int) rl_arr = np.concatenate([rl_annots, rl_fa]).astype(int) closed_arr = np.concatenate([closed_annots, closed_fa]).astype(bool) # generate the boundaries: overhead = 3 if len(observed_annots) == 0: max_rep = max(observed_fa) + overhead # non-inclusive min_rep = max(self.MIN_REPETITIONS, max(observed_fa) - overhead) # inclusive else: max_rep = max(observed_annots) + overhead + 1 # non-inclusive min_rep = max(self.MIN_REPETITIONS, min(observed_annots) - overhead) # inclusive # expanded allele e_allele = max_rep if len(observed_fa) > 0: e_allele = max(max_rep, max(observed_fa) + 1) # generate all the models self.construct_models(min_rep, max_rep, e_allele) tested_models = [] for model_index1 in range(min_rep, max_rep): for model_index2 in range(model_index1, max_rep): tested_models.append((model_index1, model_index2)) tested_models.append((model_index1, 'E')) # tested_models.append(('B', model_index1)) tested_models.append(('B', 'B')) tested_models.append(('E', 'E')) # go through every model and evaluate: evaluated_models = {} for m1, m2 in tested_models: evaluated_models[(m1, m2)] = 0 if verbose: print('model', m1, m2) # go through every reads for obs, rl, closed in zip(observed_arr, rl_arr, closed_arr): lh = self.likelihood_read(obs, rl, m1, m2, closed=closed) # TODO weighted sum according to the closeness/openness of reads? evaluated_models[(m1, m2)] += np.log(lh) if verbose: print('model', m1, m2, 'log-likelihood', evaluated_models[(m1, m2)]) return evaluated_models def print_pcolor(self, lh_dict, display_file, name, lognorm=True): """ Get maximum likelihood option and alternatively print it to image file. :param lh_dict: dict(tuple(int, int):float) - directory of model indices to their likelihood :param display_file: str - filename for pcolor image output :param name: str - name to use in title :param lognorm: bool - use loglog scale in displaying likelihood array :return: tuple(int, int) - option with highest likelihood """ # convert to a numpy array: lh_array = np.zeros((self.max_rep, self.max_rep + 1)) for (k1, k2), v in lh_dict.items(): if k1 == 'B': k1 = 0 if k2 == 'B': k2 = 0 if k1 == 'E': k1 = 0 if k2 == 'E': k2 = self.max_rep lh_array[k1, k2] = v # print(lh_dict, lh_array) # get minimal and maximal likelihood ind_good = (lh_array < 0.0) & (lh_array > -1e10) & (lh_array != np.nan) if len(lh_array[ind_good]) == 0: return lh_array, (0, 0) lh_array[~ind_good] = np.NINF z_min, z_max = min(lh_array[ind_good]), max(lh_array[ind_good]) max_str = len(lh_array) # generate image file if specified: if display_file is not None: plt.figure() if lognorm: lh_view = -np.log(-lh_array) z_min = -np.log(-z_min) z_max = -np.log(-z_max) else: lh_view = lh_array # background: bg_size = max(2, (len(lh_view) - self.min_rep) // 6) if len(lh_view) - self.min_rep <= 6: bg_size = 1 lh_view[-bg_size:, self.min_rep:self.min_rep + bg_size] = lh_view[0, 0] # expanded lh_view[-bg_size:, self.min_rep + bg_size:self.min_rep + 2 * bg_size] = lh_view[0, self.max_rep] # plotting plt.title("%s likelihood of each option for %s" % ("Loglog" if lognorm else "Log", name)) plt.xlabel('2nd allele') plt.ylabel('1st allele') start_ticks = 5 step_ticks = 5 plt.xticks(np.concatenate([np.array(range(start_ticks - self.min_rep, max_str - self.min_rep, step_ticks)), [max_str - self.min_rep]]) + 0.5, list(range(start_ticks, max_str, step_ticks)) + ['E(>%d)' % (self.max_with_e - 2)]) plt.yticks(np.array(range(start_ticks - self.min_rep, max_str - self.min_rep, step_ticks)) + 0.5, range(start_ticks, max_str, step_ticks)) palette = copy(plt.cm.jet) palette.set_under('gray', 1.0) plt.pcolor(lh_view[self.min_rep:, self.min_rep:], cmap=palette, vmin=z_min, vmax=z_max) plt.colorbar() # draw dividing line: plt.plot([max_str - self.min_rep, max_str - self.min_rep], [0, max_str - self.min_rep], 'k', linewidth=3) # background: plt.text(float(bg_size) / 2.0, max_str - self.min_rep - float(bg_size) / 2.0, 'BG', size=20, horizontalalignment='center', verticalalignment='center', path_effects=[PathEffects.withStroke(linewidth=2.5, foreground="w")]) # expanded plt.text(bg_size + float(bg_size) / 2.0, max_str - self.min_rep - float(bg_size) / 2.0, 'Exp', size=20, horizontalalignment='center', verticalalignment='center', path_effects=[PathEffects.withStroke(linewidth=2.5, foreground="w")]) # save plt.savefig(display_file + '.pdf') plt.savefig(display_file + '.png') plt.close() # output best option best = sorted(np.unravel_index(np.argmax(lh_array), lh_array.shape)) # and convert it to symbols if best[0] == 0 and best[1] == 0: best_sym = ('B', 'B') else: best_sym = list(map(lambda x: 'E' if x == self.max_rep or x == 0 else x, best)) return lh_array, best, best_sym def get_confidence(self, lh_array, predicted): """ Get confidence of a prediction. :param lh_array: 2D-ndarray - log likelihoods of the prediction :param predicted: tuple(int, int) - predicted alleles :return: tuple(float, float, float) - prediction confidence of all, first, and second allele(s) """ # get confidence lh_corr_array = lh_array - np.max(lh_array) lh_sum = np.sum(np.exp(lh_corr_array)) confidence = np.exp(lh_corr_array[predicted[0], predicted[1]]) / lh_sum confidence1 = np.sum(np.exp(lh_corr_array[predicted[0], :])) / lh_sum confidence2 = np.sum(np.exp(lh_corr_array[:, predicted[1]])) / lh_sum confidence_back = np.exp(lh_corr_array[0, 0]) / lh_sum confidence_back_all = np.sum(np.exp(lh_corr_array[0, :])) / lh_sum confidence_exp = np.exp(lh_corr_array[0, self.max_rep]) / lh_sum confidence_exp_all = np.sum(np.exp(lh_corr_array[:, self.max_rep])) / lh_sum return confidence, confidence1, confidence2, confidence_back, confidence_back_all, confidence_exp, confidence_exp_all @staticmethod def write_output(file_desc, predicted, conf, name): """ Write result of one prediction. :param file_desc: file descriptor - where to write to :param predicted: tuple(int/char, int/char) - predicted alleles :param conf: tuple(float, float, float) - confidence of prediction (whole, 1st allele, 2nd allele) :param name: str/int - name/number of the sample :return: None """ def write_output_fd(f, predicted, conf, name): print("Predicted alleles for %s: (confidence = %5.1f%%)" % (str(name), conf[0] * 100.0), file=f) print("\t%3s (confidence = %5.1f%%)" % (str(predicted[0]), conf[1] * 100.0), file=f) print("\t%3s (confidence = %5.1f%%)" % (str(predicted[1]), conf[2] * 100.0), file=f) print("B B %7.3f%%" % (conf[3] * 100.0), file=f) print("all B %7.3f%%" % (conf[4] * 100.0), file=f) print("B E %7.3f%%" % (conf[5] * 100.0), file=f) print("all E %7.3f%%" % (conf[6] * 100.0), file=f) if type(file_desc) is str: with open(file_desc, 'w') as f: write_output_fd(f, predicted, conf, name) else: write_output_fd(file_desc, predicted, conf, name) def all_call(self, annotations, filt_annotations, index_rep, file_pcolor, file_output, name): """ Run All_call - inference of likelihoods, printing of pcolor and writing output. :param annotations: list(Annotation) - good (blue) annotations :param filt_annotations: list(Annotation) - (grey) annotations with one primer :param index_rep: int - index of a repetition :param file_pcolor: str - file prefix for a pcolor image :param file_output: str - file for all_call output :param name: str - name of the sample :return: None """ # if we do not have any good annotations, then quit if len(annotations) == 0 and len(filt_annotations) == 0: # write output # self.write_output(file_output, ('B', 'B'), (0.0, 0.0, 0.0), name) return None # infer likelihoods lh_dict = self.infer(annotations, filt_annotations, index_rep, verbose=False) # print pcolor image lh_array, predicted, predicted_sym = self.print_pcolor(lh_dict, file_pcolor, name) # get confidence of our prediction conf = self.get_confidence(lh_array, predicted) # write output self.write_output(file_output, predicted_sym, conf, name)
44.21273
183
0.633567
22,778
0.862966
0
0
1,607
0.060883
0
0
11,052
0.418716
583374a576c3edb6be71e460848c9177cb1eee6a
18,398
py
Python
createbag.py
axfelix/moveit
a0d4207fdd90af8f05a5c55b4b247757cd6d7bb2
[ "Unlicense" ]
null
null
null
createbag.py
axfelix/moveit
a0d4207fdd90af8f05a5c55b4b247757cd6d7bb2
[ "Unlicense" ]
null
null
null
createbag.py
axfelix/moveit
a0d4207fdd90af8f05a5c55b4b247757cd6d7bb2
[ "Unlicense" ]
null
null
null
""" GUI tool to create a Bag from a filesystem folder. """ import sys import os import shutil import bagit import platform import random import string import re from time import strftime import subprocess from paramiko import SSHClient from paramiko import AutoAddPolicy from paramiko import AuthenticationException from scp import SCPClient from distutils.dir_util import copy_tree import zipfile import hashlib import tempfile from zipfile import ZipFile import platform pyversion = platform.python_version_tuple()[0] if pyversion == "2": from urllib import urlencode import urllib2 else: from urllib.parse import urlencode import urllib.request as urllib2 # These are toggled at build time. TODO: switch to argument parser. # toggle this if depositing to an Active Directory server internalDepositor = 0 # toggle this if depositing to SFU Library radar = 0 # toggle this if bypassing the Bagit step nobag = 0 # toggle this if bypassing the transfer and only creating a Bag on desktop ziponly = 1 bagit_checksum_algorithms = ['md5'] confirmation_message_win = "The transfer package will be created and placed on your\n desktop after this; large packages may take a moment.\n\nAre all the transfer details correct?\n\n" #confirmation_message_mac = "The transfer package will be created and placed on your desktop after this; large packages may take a moment.\n\nAre all the transfer details correct?\n\n" confirmation_message_mac = "The transfer package will be created and placed on your desktop after this; large packages may take a moment.\n\n" session_message = "Session Number" session_message_final_win = "The transfer package will be created and placed on your\n desktop after this; large packages may take a moment.\n\nSession Number" session_message_final_mac = "The transfer package will be created and placed on your desktop after this; large packages may take a moment.\n\nSession Number" transfer_message = "Transfer Number" if internalDepositor == 0: username_message = "Username" password_message = "Password" else: username_message = "SFU Computing ID" password_message = "SFU Computing password" close_session_message = "Is this the final session for this transfer?\nThe transfer will begin in the background after this \nand let you know when it is complete." close_session_osx_title = "Is this the final session for this transfer?" close_session_osx_informative = "The transfer will begin in the background and let you know when it is complete." if radar == 0: sfu_success_message = "Files have been successfuly transferred to SFU Archives. \nAn archivist will be in contact with you if further attention is needed." bag_success_message = "Files have been successfully packaged and placed in a new folder on your desktop for transfer." else: sfu_success_message = "Files have been successfuly transferred to SFU Library. \nA librarian will be in contact with you if further attention is needed." password_message = "Please input your SFU Computing password. \nTransfer will commence after clicking OK and you will be notified when it is complete." sfu_failure_message = "Transfer did not complete successfully. \nPlease contact moveit@sfu.ca for help." if platform.system() != 'Darwin' and platform.system() != 'Windows': # The Linux/Gtk config has been removed for now from gi.repository import Gtk elif platform.system() == 'Windows': from PyQt4 import QtGui, QtCore elif platform.system() == 'Darwin': # Sets up Cocoadialog for error message popup on OSX. CD_PATH = os.path.join("~/.createbag/", "CocoaDialog.app/Contents/MacOS/CocoaDialog") def cocoaPopup(boxtype, title, texttype, message, button, buttontext): template = CD_PATH + " %s --title '%s' '%s' '%s' '%s' '%s'" cocoa_process = subprocess.Popen(template % (boxtype, title, texttype, message, button, buttontext), shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=False) cocoa_output = cocoa_process.communicate() cocoa_result = cocoa_output[0].splitlines() return cocoa_result def cocoaError(): if __name__ == "__main__": popup = cocoaPopup("msgbox", "Error", "--text", "Sorry, you can't create a bag here -- you may want to change the config file so that bags are always created in a different output directory, rather than in situ.", "--button1", "OK") if popup == "1": sys.exit() def cocoaSuccess(bag_dir): if __name__ == "__main__": popup = cocoaPopup("msgbox", "Success!", "--text", "Bag created at %s" % bag_dir, "--button1", "OK") def cocoaTransferSuccess(success_type): if __name__ == "__main__": popup = cocoaPopup("msgbox", "SFU MoveIt", "--informative-text", success_type, "--button1", "OK") def cocoaTransferError(failure_message=sfu_failure_message): if __name__ == "__main__": popup = cocoaPopup("msgbox", "SFU MoveIt", "--informative-text", failure_message, "--button1", "OK") if popup == "1": sys.exit() def cocoaSessionNo(): if __name__ == "__main__": popup = cocoaPopup("standard-inputbox", "Session Number", "--informative-text", session_message, "", "") if popup[0] == "2": sys.exit() return popup[1] def cocoaTransferNo(): if __name__ == "__main__": popup = cocoaPopup("standard-inputbox", "Transfer Number", "--informative-text", transfer_message, "", "") if popup[0] == "2": sys.exit() return popup[1] def cocoaUsername(): if __name__ == "__main__": popup = cocoaPopup("standard-inputbox", "Username", "--informative-text", username_message, "", "") if popup[0] == "2": sys.exit() return popup[1] def cocoaPassword(): if __name__ == "__main__": popup = cocoaPopup("secure-standard-inputbox", "Password", "--informative-text", password_message, "", "") if popup[0] == "2": sys.exit() return popup[1] # Dummied temporarily because of issues w/ CocoaDialog under High Sierra def cocoaConfirmation(confirmation_mac): if __name__ == "__main__": #popup = cocoaPopup("yesno-msgbox", "SFU MoveIt", "--text", "Confirm Transfer", "--informative-text", confirmation_mac) #if popup[0] == "3" or popup[0] == "2": # sys.exit() popup = cocoaPopup("msgbox", "SFU MoveIt", "--informative-text", confirmation_mac, "--button1", "OK") if popup == "1": sys.exit() return def cocoaCloseSession(): if __name__ == "__main__": popup = cocoaPopup("yesno-msgbox", "SFU MoveIt", "--text", close_session_osx_title, "--informative-text", close_session_osx_informative) if popup[0] == "3": sys.exit() # "no" will equal 2 rather than 0 in cocoa, but "yes" still = 1 return popup[0] def make_bag(chosen_folder): if nobag == 0: bag_dir_parent = tempfile.mkdtemp() if os.path.isdir(bag_dir_parent): shutil.rmtree(bag_dir_parent) bag_dir = os.path.join(bag_dir_parent, 'bag') os.makedirs(bag_dir) copy_tree(chosen_folder, bag_dir) # Create the Bag. try: bag = bagit.make_bag(bag_dir, None, 1, bagit_checksum_algorithms) except (bagit.BagError, Exception) as e: if platform.system() == 'Darwin': cocoaError() elif platform.system() == 'Windows': QtChooserWindow.qt_error(ex) return return bag_dir_parent else: return chosen_folder def transfer_manifest(bag_dir, sessionno, transferno, archivesUsername, checksum, metafilename, filelist): current_time = strftime("%Y-%m-%d %H:%M:%S") transfer_metadata = "Transfer Number: " + transferno + "-" + sessionno + "\nUser: " + archivesUsername + "\nChecksum: " + checksum + "\nTime Received: " + current_time + "\n" + filelist with open(metafilename, 'w') as transfer_metafile: transfer_metafile.write(transfer_metadata) def generate_password(): length = 13 chars = string.ascii_letters + string.digits + '!@#$%^&*()' random.seed = (os.urandom(1024)) passwordString = ''.join(random.choice(chars) for i in range(length)) return passwordString def generate_file_md5(zipname, blocksize=2**20): m = hashlib.md5() with open(zipname, "rb") as f: while True: buf = f.read(blocksize) if not buf: break m.update(buf) return m.hexdigest() def check_zip_and_send(bag_dir_parent, sessionno, transferno, archivesUsername, archivesPassword, close_session, parent_path): if nobag == 0: bag_dir = os.path.join(str(bag_dir_parent), 'bag') numbered_bag_dir = os.path.join(str(bag_dir_parent), (transferno + "-" + sessionno)) metafilename = numbered_bag_dir + "-meta.txt" zipname = shutil.make_archive(numbered_bag_dir, 'zip', bag_dir) checksum = generate_file_md5(zipname) with open(os.path.join(bag_dir, 'manifest-md5.txt'), 'r') as manifestmd5: bagit_manifest_txt = manifestmd5.read() filelist = re.sub("\r?\n\S*?\s+data", ("\n" + parent_path), bagit_manifest_txt) filelist = filelist.split(' ', 1)[1] passwordString = generate_password() # Passwording uploaded files is disabled for now. #with ZipFile(zipname, 'a') as transferZip: # transferZip.setpassword(passwordString) shutil.rmtree(bag_dir) # check transfer number blacklist and post back if OK get_req = urllib2.Request("http://arbutus.archives.sfu.ca:8008/blacklist") try: get_response = urllib2.urlopen(get_req, timeout = 2) blacklist = get_response.read() blacklist_entries = blacklist.split() if transferno in blacklist_entries: if platform.system() == 'Darwin': cocoaTransferError() elif platform.system() == 'Windows': QtChooserWindow.qt_transfer_failure(ex) return except: pass values = {'transfer' : transferno, 'session' : sessionno, 'username' : archivesUsername, 'checksum' : checksum} postdata = urlencode(values) post_req = urllib2.Request("http://arbutus.archives.sfu.ca:8008/blacklist", postdata) else: filelist = "" transfer_manifest(bag_dir, sessionno, transferno, archivesUsername, checksum, metafilename, filelist) if ziponly == 1: desktopPath = os.path.expanduser("~/Desktop/") outputPath = desktopPath + os.path.splitext(os.path.basename(zipname))[0] os.mkdir(outputPath) shutil.move(zipname, (outputPath + "/" + os.path.basename(zipname))) shutil.move(metafilename, (outputPath + "/" + os.path.basename(metafilename))) return "bagged" try: ssh = SSHClient() ssh.set_missing_host_key_policy(AutoAddPolicy()) if internalDepositor == 0: ssh.connect("142.58.136.69", username=archivesUsername, password=archivesPassword, look_for_keys=False) scp = SCPClient(ssh.get_transport()) remote_path = '~/deposit_here/' + transferno + "-" + sessionno scp.put(bag_dir_parent, remote_path, recursive=True) if close_session == 1: try: urllib2.urlopen(post_req, timeout = 2) except: pass elif radar == 1: ssh.connect("researchdata.sfu.ca", username=archivesUsername, password=archivesPassword, look_for_keys=False) scp = SCPClient(ssh.get_transport()) remote_zip_path = '~/.pydiodata/' + os.path.basename(os.path.normpath(bag_dir)) try: scp.put(os.path.normpath(bag_dir), remote_zip_path, recursive=True) except: ssh.exec_command('mkdir .pydiodata') scp.put(os.path.normpath(bag_dir), remote_zip_path, recursive=True) else: ssh.connect("pine.archives.sfu.ca", username=archivesUsername, password=archivesPassword, look_for_keys=False) scp = SCPClient(ssh.get_transport()) remote_path = '~/' + transferno + "-" + sessionno scp.put(bag_dir_parent, remote_path, recursive=True) if close_session == 1: try: urllib2.urlopen(post_req, timeout = 2) except: pass except AuthenticationException: failure_message = "Transfer did not complete successfully. \nUsername or password incorrect." if platform.system() == 'Darwin': cocoaTransferError(failure_message) elif platform.system() == 'Windows': QtChooserWindow.qt_transfer_failure(ex, failure_message) return except: if platform.system() == 'Darwin': cocoaTransferError() elif platform.system() == 'Windows': QtChooserWindow.qt_transfer_failure(ex) return if nobag == 0: os.remove(zipname) os.remove(metafilename) return remote_path # Windows/Qt-specific code (can also work on Linux but Gtk is nicer) if platform.system() == 'Windows': class QtChooserWindow(QtGui.QDialog): def __init__(self, parent=None): super(QtChooserWindow, self).__init__(parent) if parent is None: self.initUI() def initUI(self): choose_folder_button = QtGui.QPushButton("Choose a folder to transfer", self) choose_folder_button.clicked.connect(self.showDialog) choose_folder_button.resize(choose_folder_button.sizeHint()) choose_folder_button.move(20, 30) quit_button = QtGui.QPushButton("Quit", self) quit_button.clicked.connect(QtCore.QCoreApplication.instance().quit) quit_button.resize(quit_button.sizeHint()) quit_button.move(250, 30) self.resize(345, 80) self.center() self.setWindowTitle('SFU MoveIt') self.show() def center(self): qr = self.frameGeometry() cp = QtGui.QDesktopWidget().availableGeometry().center() qr.moveCenter(cp) self.move(qr.topLeft()) def showDialog(self): fname = QtGui.QFileDialog.getExistingDirectory(self, 'SFU MoveIt - Choose a folder to transfer', '/home') parent_path = os.path.basename(os.path.normpath(str(fname))) bag_dir = make_bag(str(fname)) if (bag_dir): archivesUsername = self.qt_username(bag_dir) if archivesUsername == "": sys.exit() if ziponly == 0: archivesPassword = self.qt_password(bag_dir) else: archivesPassword = "" if radar == 0: transferno = self.qt_transfer(bag_dir) if transferno == "": sys.exit() sessionno = self.qt_session(bag_dir) if sessionno == "": sys.exit() confirmation = self.qt_review(bag_dir, archivesUsername, sessionno, transferno) if ziponly == 0: close_session = self.qt_close_session() else: close_session = 0 else: sessionno = 0 transferno = 0 close_session = 0 payload = check_zip_and_send(bag_dir, str(sessionno), str(transferno), str(archivesUsername), str(archivesPassword), close_session, parent_path) if (payload): if payload == "bagged": self.qt_transfer_success(bag_success_message) else: self.qt_transfer_success(sfu_success_message) def qt_username(self, bag_dir): archivesUsername, ok = QtGui.QInputDialog.getText(self, "Username", username_message) return archivesUsername def qt_password(self, bag_dir): archivesPassword, ok = QtGui.QInputDialog.getText(self, "Password", password_message, 2) return archivesPassword def qt_session(self, bag_dir): sessionno, ok = QtGui.QInputDialog.getText(self, "Session Number", session_message) return sessionno def qt_transfer(self, bag_dir): transferno, ok = QtGui.QInputDialog.getText(self, "Transfer Number", transfer_message) return transferno def qt_review(self, bag_dir, archivesUsername, transferno, sessionno): confirmation_string = confirmation_message_win + "\nUsername: " + archivesUsername + "\nTransfer: " + transferno + "-" + sessionno review_window = QtGui.QMessageBox.question(self, 'SFU MoveIt', confirmation_string, QtGui.QMessageBox.Yes | QtGui.QMessageBox.No, QtGui.QMessageBox.No) if review_window == QtGui.QMessageBox.Yes: return else: sys.exit() def qt_close_session(self): close_session_window = QtGui.QMessageBox.question(self, 'SFU MoveIt', close_session_message, QtGui.QMessageBox.Yes | QtGui.QMessageBox.No, QtGui.QMessageBox.No) if close_session_window == QtGui.QMessageBox.Yes: close_session = 1 else: close_session = 0 return close_session def qt_transfer_success(self, success_type): confirmation_window = QtChooserWindow(self) confirmation_string = success_type confirmation_message = QtGui.QLabel(confirmation_string, confirmation_window) confirmation_message.move(20, 30) confirmation_window.resize(500, 80) confirmation_window.center() confirmation_window.setWindowTitle('Success') confirmation_window.show() def qt_transfer_failure(self, failure_message=sfu_failure_message): confirmation_window = QtChooserWindow(self) confirmation_string = failure_message confirmation_message = QtGui.QLabel(confirmation_string, confirmation_window) confirmation_message.move(20, 30) confirmation_window.resize(500, 80) confirmation_window.center() confirmation_window.setWindowTitle('Error') confirmation_window.show() def qt_confirmation(self, bag_dir): confirmation_window = QtChooserWindow(self) confirmation_string = "The Bag for folder " + bag_dir + " has been created." confirmation_message = QtGui.QLabel(confirmation_string, confirmation_window) confirmation_message.move(20, 30) confirmation_window.resize(500, 80) confirmation_window.center() confirmation_window.setWindowTitle('Bag created') confirmation_window.show() def qt_error(self): error_window = QtChooserWindow(self) error_message = QtGui.QLabel("Something went wrong! Please open an issue report at http://github.com/axfelix/moveit/issues", error_window) error_message.move(20, 30) error_window.resize(360, 80) error_window.center() error_window.setWindowTitle('Sorry') error_window.show() app = QtGui.QApplication(sys.argv) ex = QtChooserWindow() sys.exit(app.exec_()) # OSX-specific code. elif platform.system() == 'Darwin': # add progress bar code eventually # Python 3 needs .decode() because Cocoa returns bytestrings archivesUsername = cocoaUsername().decode() if ziponly == 0: archivesPassword = cocoaPassword().decode() else: archivesPassword = "" transferno = cocoaTransferNo().decode() sessionno = cocoaSessionNo().decode() confirmation_mac = confirmation_message_mac + "\nUsername: " + archivesUsername + "\nTransfer: " + transferno + "-" + sessionno confirmation = cocoaConfirmation(confirmation_mac) bag_dir = make_bag(sys.argv[1]) parent_path = os.path.basename(os.path.normpath(sys.argv[1])) if ziponly == 0: close_session = cocoaCloseSession() else: close_session = 0 script_output = check_zip_and_send(bag_dir, sessionno, transferno, archivesUsername, archivesPassword, close_session, parent_path) if script_output == "bagged": cocoaTransferSuccess(bag_success_message) else: cocoaTransferSuccess(sfu_success_message)
35.655039
236
0.72709
5,085
0.276389
0
0
0
0
0
0
4,813
0.261605
583491d9c92a8b53e562e95c5e8cebcf67dc3f00
10,937
py
Python
code/python-neo/neo/core/basesignal.py
qniksefat/macaque_brain_causality_test
24cd5caee3ae79066ca37844cab931d04dcad977
[ "CC-BY-4.0", "BSD-3-Clause" ]
null
null
null
code/python-neo/neo/core/basesignal.py
qniksefat/macaque_brain_causality_test
24cd5caee3ae79066ca37844cab931d04dcad977
[ "CC-BY-4.0", "BSD-3-Clause" ]
null
null
null
code/python-neo/neo/core/basesignal.py
qniksefat/macaque_brain_causality_test
24cd5caee3ae79066ca37844cab931d04dcad977
[ "CC-BY-4.0", "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- ''' This module implements :class:`BaseSignal`, an array of signals. This is a parent class from which all signal objects inherit: :class:`AnalogSignal` and :class:`IrregularlySampledSignal` :class:`BaseSignal` inherits from :class:`quantities.Quantity`, which inherits from :class:`numpy.array`. Inheritance from :class:`numpy.array` is explained here: http://docs.scipy.org/doc/numpy/user/basics.subclassing.html In brief: * Constructor :meth:`__new__` for :class:`BaseSignal` doesn't exist. Only child objects :class:`AnalogSignal` and :class:`IrregularlySampledSignal` can be created. ''' # needed for Python 3 compatibility from __future__ import absolute_import, division, print_function import copy import logging import numpy as np import quantities as pq from neo.core.baseneo import BaseNeo, MergeError, merge_annotations from neo.core.dataobject import DataObject, ArrayDict from neo.core.channelindex import ChannelIndex logger = logging.getLogger("Neo") class BaseSignal(DataObject): ''' This is the base class from which all signal objects inherit: :class:`AnalogSignal` and :class:`IrregularlySampledSignal`. This class contains all common methods of both child classes. It uses the following child class attributes: :_necessary_attrs: a list of the attributes that the class must have. :_recommended_attrs: a list of the attributes that the class may optionally have. ''' def _array_finalize_spec(self, obj): ''' Called by :meth:`__array_finalize__`, used to customize behaviour of sub-classes. ''' return obj def __array_finalize__(self, obj): ''' This is called every time a new signal is created. It is the appropriate place to set default values for attributes for a signal constructed by slicing or viewing. User-specified values are only relevant for construction from constructor, and these are set in __new__ in the child object. Then they are just copied over here. Default values for the specific attributes for subclasses (:class:`AnalogSignal` and :class:`IrregularlySampledSignal`) are set in :meth:`_array_finalize_spec` ''' super(BaseSignal, self).__array_finalize__(obj) self._array_finalize_spec(obj) # The additional arguments self.annotations = getattr(obj, 'annotations', {}) # Add empty array annotations, because they cannot always be copied, # but do not overwrite existing ones from slicing etc. # This ensures the attribute exists if not hasattr(self, 'array_annotations'): self.array_annotations = ArrayDict(self._get_arr_ann_length()) # Globally recommended attributes self.name = getattr(obj, 'name', None) self.file_origin = getattr(obj, 'file_origin', None) self.description = getattr(obj, 'description', None) # Parent objects self.segment = getattr(obj, 'segment', None) self.channel_index = getattr(obj, 'channel_index', None) @classmethod def _rescale(self, signal, units=None): ''' Check that units are present, and rescale the signal if necessary. This is called whenever a new signal is created from the constructor. See :meth:`__new__' in :class:`AnalogSignal` and :class:`IrregularlySampledSignal` ''' if units is None: if not hasattr(signal, "units"): raise ValueError("Units must be specified") elif isinstance(signal, pq.Quantity): # This test always returns True, i.e. rescaling is always executed if one of the units # is a pq.CompoundUnit. This is fine because rescaling is correct anyway. if pq.quantity.validate_dimensionality(units) != signal.dimensionality: signal = signal.rescale(units) return signal def rescale(self, units): obj = super(BaseSignal, self).rescale(units) obj.channel_index = self.channel_index return obj def __getslice__(self, i, j): ''' Get a slice from :attr:`i` to :attr:`j`.attr[0] Doesn't get called in Python 3, :meth:`__getitem__` is called instead ''' return self.__getitem__(slice(i, j)) def __ne__(self, other): ''' Non-equality test (!=) ''' return not self.__eq__(other) def _apply_operator(self, other, op, *args): ''' Handle copying metadata to the new signal after a mathematical operation. ''' self._check_consistency(other) f = getattr(super(BaseSignal, self), op) new_signal = f(other, *args) new_signal._copy_data_complement(self) # _copy_data_complement can't always copy array annotations, # so this needs to be done locally new_signal.array_annotations = copy.deepcopy(self.array_annotations) return new_signal def _get_required_attributes(self, signal, units): ''' Return a list of the required attributes for a signal as a dictionary ''' required_attributes = {} for attr in self._necessary_attrs: if 'signal' == attr[0]: required_attributes[str(attr[0])] = signal else: required_attributes[str(attr[0])] = getattr(self, attr[0], None) required_attributes['units'] = units return required_attributes def duplicate_with_new_data(self, signal, units=None): ''' Create a new signal with the same metadata but different data. Required attributes of the signal are used. Note: Array annotations can not be copied here because length of data can change ''' if units is None: units = self.units # else: # units = pq.quantity.validate_dimensionality(units) # signal is the new signal required_attributes = self._get_required_attributes(signal, units) new = self.__class__(**required_attributes) new._copy_data_complement(self) new.annotations.update(self.annotations) # Note: Array annotations are not copied here, because it is not ensured # that the same number of signals is used and they would possibly make no sense # when combined with another signal return new def _copy_data_complement(self, other): ''' Copy the metadata from another signal. Required and recommended attributes of the signal are used. Note: Array annotations can not be copied here because length of data can change ''' all_attr = {self._recommended_attrs, self._necessary_attrs} for sub_at in all_attr: for attr in sub_at: if attr[0] != 'signal': setattr(self, attr[0], getattr(other, attr[0], None)) setattr(self, 'annotations', getattr(other, 'annotations', None)) # Note: Array annotations cannot be copied because length of data can be changed # here # which would cause inconsistencies def __rsub__(self, other, *args): ''' Backwards subtraction (other-self) ''' return self.__mul__(-1, *args) + other def __add__(self, other, *args): ''' Addition (+) ''' return self._apply_operator(other, "__add__", *args) def __sub__(self, other, *args): ''' Subtraction (-) ''' return self._apply_operator(other, "__sub__", *args) def __mul__(self, other, *args): ''' Multiplication (*) ''' return self._apply_operator(other, "__mul__", *args) def __truediv__(self, other, *args): ''' Float division (/) ''' return self._apply_operator(other, "__truediv__", *args) def __div__(self, other, *args): ''' Integer division (//) ''' return self._apply_operator(other, "__div__", *args) __radd__ = __add__ __rmul__ = __sub__ def merge(self, other): ''' Merge another signal into this one. The signal objects are concatenated horizontally (column-wise, :func:`np.hstack`). If the attributes of the two signal are not compatible, an Exception is raised. Required attributes of the signal are used. ''' for attr in self._necessary_attrs: if 'signal' != attr[0]: if getattr(self, attr[0], None) != getattr(other, attr[0], None): raise MergeError("Cannot merge these two signals as the %s differ." % attr[0]) if self.segment != other.segment: raise MergeError( "Cannot merge these two signals as they belong to different segments.") if hasattr(self, "lazy_shape"): if hasattr(other, "lazy_shape"): if self.lazy_shape[0] != other.lazy_shape[0]: raise MergeError("Cannot merge signals of different length.") merged_lazy_shape = (self.lazy_shape[0], self.lazy_shape[1] + other.lazy_shape[1]) else: raise MergeError("Cannot merge a lazy object with a real object.") if other.units != self.units: other = other.rescale(self.units) stack = np.hstack(map(np.array, (self, other))) kwargs = {} for name in ("name", "description", "file_origin"): attr_self = getattr(self, name) attr_other = getattr(other, name) if attr_self == attr_other: kwargs[name] = attr_self else: kwargs[name] = "merge(%s, %s)" % (attr_self, attr_other) merged_annotations = merge_annotations(self.annotations, other.annotations) kwargs.update(merged_annotations) kwargs['array_annotations'] = self._merge_array_annotations(other) signal = self.__class__(stack, units=self.units, dtype=self.dtype, copy=False, t_start=self.t_start, sampling_rate=self.sampling_rate, **kwargs) signal.segment = self.segment if hasattr(self, "lazy_shape"): signal.lazy_shape = merged_lazy_shape # merge channel_index (move to ChannelIndex.merge()?) if self.channel_index and other.channel_index: signal.channel_index = ChannelIndex(index=np.arange(signal.shape[1]), channel_ids=np.hstack( [self.channel_index.channel_ids, other.channel_index.channel_ids]), channel_names=np.hstack( [self.channel_index.channel_names, other.channel_index.channel_names])) else: signal.channel_index = ChannelIndex(index=np.arange(signal.shape[1])) return signal
37.713793
98
0.633172
9,932
0.90811
0
0
847
0.077444
0
0
4,932
0.450946
5835a4f4779f435b367bd40c05663242713c67ad
3,038
py
Python
Morocco model/scripts/cropland_processing.py
KTH-dESA/FAO
74459217a9e8ad8107b1d3a96fd52eebd93daebd
[ "MIT" ]
3
2020-09-17T11:12:52.000Z
2021-03-31T09:24:02.000Z
Morocco model/scripts/cropland_processing.py
KTH-dESA/FAO
74459217a9e8ad8107b1d3a96fd52eebd93daebd
[ "MIT" ]
101
2019-10-02T10:16:28.000Z
2021-06-05T06:42:55.000Z
Morocco model/scripts/cropland_processing.py
KTH-dESA/FAO
74459217a9e8ad8107b1d3a96fd52eebd93daebd
[ "MIT" ]
2
2020-02-23T13:28:00.000Z
2021-03-31T10:02:46.000Z
import sys sys.path.append("..") #this is to add the avobe folder to the package directory import geopandas as gpd import pandas as pd import numpy as np import os from nexustool.gis_tools import download_data, create_time_data, get_area_share, get_zonal_stats from nexustool.weap_tools import reproject_raster, sample_raster ## Downloading solar irradiation and water table depth data url = 'https://biogeo.ucdavis.edu/data/worldclim/v2.1/base/wc2.1_30s_srad.zip' file_path = os.path.join('data', 'gis', 'srad', 'wc2.1_30s_srad.zip') download_data(url, file_path) url = 'https://souss-massa-dev.s3.us-east-2.amazonaws.com/post_build/Africa_model_wtd_v2.nc' file_path = os.path.join('data', 'gis', 'wtd', 'Africa_model_wtd_v2.nc') download_data(url, file_path) ## Reading the input data demand_path = str(snakemake.input.demand_points) cropland_path = str(snakemake.input.cropland) crop_df = pd.read_csv(cropland_path, encoding='utf-8') geometry = crop_df['WKT'].map(shapely.wkt.loads) cropland = gpd.GeoDataFrame(crop_df.drop(columns=['WKT']), crs="EPSG:26192", geometry=geometry) provinces = gpd.read_file(os.path.join('data', 'gis', 'admin', 'provinces.gpkg'), encoding='utf-8') output_file = str(snakemake.output) output_folder = output_file.split(os.path.basename(output_file))[0] ## Convert coordenate reference system (crs) MerchidSudMoroc = 26192 for gdf in [provinces, provinces]: gdf.to_crs(epsg=MerchidSudMoroc, inplace=True) cropland = cropland.loc[cropland.area_m2>=100] #choose ## Solar irradiation zonal statistics Loops through the 12 months of the year and gets the mean solar irradiation of each month within each cropland polygon cropland.to_crs(epsg=4326, inplace=True) for month in range(1, 13): cropland = get_zonal_stats(cropland, os.path.join('data', 'gis', 'srad', f'wc2.1_30s_srad_{str(month).zfill(2)}.tif'), ['mean'], all_touched=True).rename(columns={'mean': f'srad{month}'}) ## Water table depth zonal statistics cropland.crs = 4326 cropland = get_zonal_stats(cropland, os.path.join('data', 'gis', 'wtd', 'Africa_model_wtd_v2.nc'), ['mean'], all_touched=True).rename(columns={'mean': 'wtd'}) cropland.crs = 4326 cropland.to_crs(epsg=MerchidSudMoroc, inplace=True) ## Creating time series data df_cropland = create_time_data(cropland, 2019, 2050) ## Calculating the area share of each croplan area within each province cropland.loc[cropland['province']=='Inezgane-Aït Melloul', 'province'] = 'Taroudannt' #Including Inezgane-Aït Melloul irrigated area into results from Taroudant due to lack of data for the former cropland['area_share'] = get_area_share(cropland, 'province', 'area_m2') df_cropland = pd.merge(df_cropland, cropland[['Demand point', 'area_share']], on='Demand point') os.makedirs(output_folder, exist_ok = True) df_cropland.to_csv(output_file, index=False)
40.506667
195
0.711982
0
0
0
0
0
0
0
0
1,053
0.346382
58394701554d3a507c68ce7bd347905779a7cb27
891
py
Python
dl_data_validation_toolset/framework/report_gen/group.py
kwierman/dl_data_validation_toolset
fb0486abd000ba28c6474f8979762c92fb4ee038
[ "MIT" ]
1
2017-08-24T00:46:47.000Z
2017-08-24T00:46:47.000Z
dl_data_validation_toolset/framework/report_gen/group.py
kwierman/dl_data_validation_toolset
fb0486abd000ba28c6474f8979762c92fb4ee038
[ "MIT" ]
177
2017-04-10T23:03:27.000Z
2022-03-28T22:07:54.000Z
dl_data_validation_toolset/framework/report_gen/group.py
HEP-DL/dl_data_validation_toolset
fb0486abd000ba28c6474f8979762c92fb4ee038
[ "MIT" ]
null
null
null
from .file import FileGenerator from ..report.group import GroupReport import logging import asyncio import os class GroupGenerator(object): logger = logging.getLogger("ddvt.rep_gen.grp") def __init__(self, group): self.meta = group async def generate(self, parent): self.logger.info("Generating Group Report: {}".format(self.meta.group)) self.temp_dir = os.path.join(parent.temp_dir, self.meta.group) if not os.path.exists(self.temp_dir): os.mkdir(self.temp_dir) file_gens = [FileGenerator(i) for i in self.meta.full_filenames] await asyncio.gather(*[i.generate(self) for i in file_gens]) msg = "Finished with subtasks for group {}".format(self.meta.group) self.logger.info(msg) self.report = GroupReport(self.meta.group, self.temp_dir) self.report.file_reports = [i.report for i in file_gens] self.report.render(self.temp_dir)
31.821429
75
0.725028
777
0.872054
0
0
0
0
643
0.721661
84
0.094276
583a1302a3f7562a97c1476d70bc500c24d60c4f
174
py
Python
glanceclient/common/exceptions.py
citrix-openstack-build/python-glanceclient
32d9c42816b608220ae5692e573142dab6534604
[ "Apache-2.0" ]
1
2019-09-11T11:56:19.000Z
2019-09-11T11:56:19.000Z
tools/dockerize/webportal/usr/lib/python2.7/site-packages/glanceclient/common/exceptions.py
foruy/openflow-multiopenstack
74140b041ac25ed83898ff3998e8dcbed35572bb
[ "Apache-2.0" ]
null
null
null
tools/dockerize/webportal/usr/lib/python2.7/site-packages/glanceclient/common/exceptions.py
foruy/openflow-multiopenstack
74140b041ac25ed83898ff3998e8dcbed35572bb
[ "Apache-2.0" ]
null
null
null
# This is here for compatability purposes. Once all known OpenStack clients # are updated to use glanceclient.exc, this file should be removed from glanceclient.exc import *
43.5
75
0.804598
0
0
0
0
0
0
0
0
141
0.810345
583a2eef001a72cf9b9737ee6ef5ed10dc5f494d
1,458
py
Python
api/scpca_portal/views/filter_options.py
AlexsLemonade/scpca-portal
d60d6db5abe892ed58764128269df936778c6fd7
[ "BSD-3-Clause" ]
null
null
null
api/scpca_portal/views/filter_options.py
AlexsLemonade/scpca-portal
d60d6db5abe892ed58764128269df936778c6fd7
[ "BSD-3-Clause" ]
85
2021-07-27T14:33:55.000Z
2022-03-28T20:18:41.000Z
api/scpca_portal/views/filter_options.py
AlexsLemonade/scpca-portal
d60d6db5abe892ed58764128269df936778c6fd7
[ "BSD-3-Clause" ]
null
null
null
from django.http import JsonResponse from rest_framework import status, viewsets from scpca_portal.models import Project class FilterOptionsViewSet(viewsets.ViewSet): def list(self, request): dicts = ( Project.objects.order_by() .values("diagnoses", "seq_units", "technologies", "modalities") .distinct() ) diagnoses_options = set() seq_units_options = set() technologies_options = set() modalities = set() for value_set in dicts: if value_set["diagnoses"]: for value in value_set["diagnoses"].split(", "): diagnoses_options.add(value) if value_set["seq_units"]: for value in value_set["seq_units"].split(", "): seq_units_options.add(value) if value_set["technologies"]: for value in value_set["technologies"].split(", "): technologies_options.add(value) if value_set["modalities"]: for value in value_set["modalities"].split(", "): modalities.add(value) response_dict = { "diagnoses": list(diagnoses_options), "seq_units": list(seq_units_options), "technologies": list(technologies_options), "modalities": list(modalities), } return JsonResponse(response_dict, status=status.HTTP_200_OK)
33.136364
75
0.577503
1,333
0.914266
0
0
0
0
0
0
208
0.142661
583a4439342b3be3a1f5a61fbbd79630bf4f80cd
409
py
Python
cords/selectionstrategies/SL/__init__.py
krishnatejakk/AUTOMATA
fd0cf58058e39660f88d9d6b4101e30a497f6ce2
[ "MIT" ]
null
null
null
cords/selectionstrategies/SL/__init__.py
krishnatejakk/AUTOMATA
fd0cf58058e39660f88d9d6b4101e30a497f6ce2
[ "MIT" ]
null
null
null
cords/selectionstrategies/SL/__init__.py
krishnatejakk/AUTOMATA
fd0cf58058e39660f88d9d6b4101e30a497f6ce2
[ "MIT" ]
1
2022-03-16T05:55:12.000Z
2022-03-16T05:55:12.000Z
from .craigstrategy import CRAIGStrategy from .dataselectionstrategy import DataSelectionStrategy from .glisterstrategy import GLISTERStrategy from .randomstrategy import RandomStrategy from .submodularselectionstrategy import SubmodularSelectionStrategy from .gradmatchstrategy import GradMatchStrategy from .fixedweightstrategy import FixedWeightStrategy from .adapweightsstrategy import AdapWeightsStrategy
51.125
68
0.904645
0
0
0
0
0
0
0
0
0
0
583a53eef1dad89d42938f5028c87aba4efb30bb
10,917
py
Python
pycost/rocch.py
tfawcett/pycost
69f96866295dba937a23f36c8f24f2f6acdaccbd
[ "BSD-3-Clause" ]
1
2019-10-05T10:37:47.000Z
2019-10-05T10:37:47.000Z
pycost/rocch.py
tfawcett/pycost
69f96866295dba937a23f36c8f24f2f6acdaccbd
[ "BSD-3-Clause" ]
null
null
null
pycost/rocch.py
tfawcett/pycost
69f96866295dba937a23f36c8f24f2f6acdaccbd
[ "BSD-3-Clause" ]
1
2020-06-12T17:13:14.000Z
2020-06-12T17:13:14.000Z
""" Metrics to calculate and manipulate the ROC Convex Hull on a classification task given scores. """ # Author: Tom Fawcett <tom.fawcett@gmail.com> from collections import namedtuple from math import sqrt from typing import List, Dict, Tuple, Union # DESCRIPTION: # # This program computes the convex hull of a set of ROC points # (technically, the upper left triangular convex hull, bounded # by (0,0) and (1,1)). The ROC Convex Hull is used to find dominant # (and locally best) classifiers in ROC space. For more information # on the ROC convex hull and its uses, see the references below. # # FP and TP are the False Positive (X axis) and True Positive (Y axis) # values for the point. # # # REFERENCES: # # The first paper below is probably best for an introduction and # general discussion of the ROC Convex Hull and its uses. # # 1) Provost, F. and Fawcett, T. "Analysis and visualization of # classifier performance: Comparison under imprecise class and cost # distributions". In Proceedings of the Third International # Conference on Knowledge Discovery and Data Mining (KDD-97), # pp.43-48. AAAI Press. # # 2) Provost, F. and Fawcett, T. "Robust Classification Systems for # Imprecise Environments". # # 3) Provost, F., Fawcett, T., and Kohavi, R. "The Case # Against Accuracy Estimation for Comparing Induction Algorithms". # Available from: # # # BUG REPORTS / SUGGESTIONS / QUESTIONS: Tom Fawcett <tom.fawcett@gmail.com> # # """ Typical use is something like this: rocch = ROCCH(keep_intermediate=False) for clf in classifiers: y_scores = clf.decision_function(y_test) rocch.fit(clfname, roc_curve(y_scores, y_true)) ... plt.plot(rocch.hull()) rocch.describe() """ Point = namedtuple( "Point", ["x", "y", "clfname"] ) Point.__new__.__defaults__ = ("",) # make clfname optional INFINITY: float = float( "inf" ) class ROCCH( object ): """ROC Convex Hull. Some other stuff. """ _hull: List[Point] def __init__(self, keep_intermediate=False): """Initialize the object.""" self.keep_intermediate = keep_intermediate self.classifiers: Dict[str, List[Tuple]] = { } self._hull = [Point( 0, 0, "AllNeg" ), Point( 1, 1, "AllPos" )] def fit(self, clfname: str, points): """Fit (add) a classifier's ROC points to the ROCCH. :param clfname: A classifier name or identifier. This is only used to record the identity of the classifier producing the points. It can be anything, such as a (classifier, threshold) pair. TODO: Let clfname be a string or a list; add some way to incorporate info per point so we can associate each point with a parameter. :param points: A sequence of ROC points, contained in a list or array. Each point should be an (FP, TP) pair. TODO: Make this more general. :return: None """ points_instances = [Point( x, y, clfname ) for (x, y) in points] points_instances.extend( self._hull ) points_instances.sort( key=lambda pt: pt.x ) hull = [] # TODO: Make this more efficient by simply using pointers rather than append-pop. while points_instances: hull.append( points_instances.pop( 0 ) ) # Now test the top three on new_hull test_top = True while len( hull ) >= 3 and test_top: turn_dir = turn( *hull[-3:] ) if turn_dir > 0: # CCW turn, this introduced a concavity. hull.pop( -2 ) elif turn_dir == 0: # Co-linear, should we keep it? if not self.keep_intermediate: # No, treat it as if it's under the hull hull.pop( -2 ) else: # Treat this as convex test_top = False else: # CW turn, this is convex test_top = False self._hull = hull def _check_hull(self) -> None: """Check a list of hull points for convexity. This is a simple utility function for testing. Throws an AssertionError if a hull segment is concave or if the terminal AllNeg and AllPos are not present. Colinear segments (turn==0) will be considered violations unless keep_intermediate is on. """ hull = self._hull assert len( hull ) >= 2, "Hull is damaged" assert hull[0].clfname == "AllNeg", "First hull point is not AllNeg" assert hull[-1].clfname == "AllPos", "Last hull point is not AllPos" for hull_idx in range( len( hull ) - 2 ): segment = hull[hull_idx: hull_idx + 3] turn_val = turn( *segment ) assert turn_val <= 0, f"Concavity in hull: {segment}" if not self.keep_intermediate: assert turn_val < 0, "Intermediate (colinear) point in hull" @property def hull(self) -> List[Tuple]: """ Return a list of points constituting the convex hull of classifiers in ROC space. Returns a list of tuples (FP, TP, CLF) where each (FP,TP) is a point in ROC space and CLF is the classifier producing that performance point. """ # Defined just in case postprocessing needs to be done. return self._hull def dominant_classifiers(self) -> List[Tuple]: """ Return a list describing the hull in terms of the dominant classifiers. Start at point (1,1) and work counter-clockwise down the hull to (0,0). Iso-performance line slope starts at 0.0 and works up to infinity. :return: A list consisting of (prob_min, prob_max, point) where :rtype: List[Tuple] """ slope = 0.0 last_point = None last_slope = None segment_right_boundary: Union[Point,None] = None dominant_list: List[Tuple] = [] # TODO: Check for hull uninitialized. point: Point for point in self._hull: if last_point is not None: slope: float = calculate_slope( point, last_point ) else: segment_right_boundary = point if last_slope is not None: if self.keep_intermediate or last_slope != slope: dominant_list.append( (last_slope, slope, segment_right_boundary) ) last_slope = slope segment_right_boundary = point else: # last_slope is undefined last_slope = slope last_point = point if last_slope != INFINITY: slope = INFINITY # Output final point dominant_list.append( (last_slope, slope, segment_right_boundary) ) return dominant_list def best_classifiers_for_conditions(self, class_ratio=1.0, cost_ratio=1.0): """ Given a set of operating conditions (class and cost ratios), return best classifiers. Given a class ratio (P/N) and a cost ratio (cost(FP),cost(FN)), return a set of classifiers that will perform optimally for those conditions. The class ratio is the fraction of positives per negative. The cost ratio is the cost of a False Positive divided by the cost of a False Negative. The return value will be a list of either one or two classifiers. If the conditions identify a single best classifier, the result will be simply: [ (clf, 1.0) ] indicating that clf should be chosen. If the conditions are between the performance of two classifiers, the result will be: [ (clf1, p1), (clf2, p2) ] indicating that clf1's decisions should be sampled at a rate of p1 and clf2's at a rate of p2, with p1 and p2 summing to 1. :param class_ratio, float: The ratio of positives to negatives: P/N :param cost_ratio, float: The ratio of the cost of a False Positive error to a False Negative Error: cost(FP)/cost(FN) :return: :rtype: """ assert 0 < class_ratio < 1.0, "Class ratio must be between 0 and 1" assert 0 < cost_ratio < 1.0, "Cost ratio must be between 0 and 1" def calculate_slope(pt1, pt2: Point): """ Return the slope from pt1 to pt2, or inf if slope is infinite :param pt1: :type pt1: Point :param pt2: :type pt2: Point :return: :rtype: float """ dx = pt2.x - pt1.x dy = pt2.y - pt1.y if dx == 0: return INFINITY else: return dy / dx def _check_hull(hull): """Check a list of hull points for convexity. This is a simple utility function for testing. Throws an AssertionError if a hull segment is concave. Colinear segments (turn==0) are not considered violations. :param hull: A list of Point instances describing an ROC convex hull. :return: None """ for hull_idx in range( len( hull ) - 2 ): segment = hull[hull_idx: hull_idx + 3] assert turn( *segment ) <= 0, f"Concavity in hull: {segment}" def ROC_order(pt1, pt2: Point) -> bool: """Predicate for determining ROC_order for sorting. Either pt1's x is ahead of pt2's x, or the x's are equal and pt1's y is ahead of pt2's y. """ return (pt1.x < pt2.x) or (pt1.x == pt2.x and pt1.y < pt2.y) def compute_theta(p1, p2: Point) -> float: """Compute theta, an ordering function on a point pair. Theta has the same properties as the angle between the horizontal axis and the line segment between the points, but is much faster to compute than arctangent. Range is 0 to 360. Defined on P.353 of _Algorithms in C_. """ dx = p2.x - p1.x ax = abs( dx ) dy = p2.y - p1.y ay = abs( dy ) if dx == 0 and dy == 0: t = 0 else: t = dy / (ax + ay) # Adjust for quadrants two through four if dx < 0: t = 2 - t elif dy < 0: t = 4 + t return t * 90.0 def euclidean(p1, p2: Point) -> float: """Compute Euclidean distance. """ return sqrt( (p1.x - p2.x)**2 + (p1.y - p2.y)**2 ) def turn(a, b, c: Point) -> float: """Determine the turn direction going from a to b to c. Going from a->b->c, is the turn clockwise, counterclockwise, or straight. positive => CCW negative => CW zero => colinear See: https://algs4.cs.princeton.edu/91primitives/ >>> a = Point(1,1) >>> b = Point(2,2) >>> turn(a, b, Point(3,2)) -1 >>> turn(a, b, Point(2,3)) 1 >>> turn(a, b, Point(3,3)) 0 >>> turn(a, b, Point(1.5, 1.5)) == 0 True >>> turn(a, b, Point(1.5,1.7)) > 0 True :param Point a: :param Point b: :param Point c: :rtype: float """ return (b.x - a.x) * (c.y - a.y) - (c.x - a.x) * (b.y - a.y) if __name__ == "__main__": import doctest doctest.testmod() # End of rocch.py
33.798762
100
0.612989
6,358
0.582394
0
0
406
0.03719
0
0
6,839
0.626454
583a8bbe4d63a96ce53555ed1fbf8f8d31b49bdb
846
py
Python
all_raspi_code_backup/DriveTesting.py
lord-pradhan/SnowBot
82a0b3439dc203bf27725e293d6e56bcad720c09
[ "MIT" ]
2
2020-05-31T07:37:59.000Z
2021-03-24T13:43:39.000Z
all_raspi_code_backup/DriveTesting.py
lord-pradhan/SnowBot
82a0b3439dc203bf27725e293d6e56bcad720c09
[ "MIT" ]
null
null
null
all_raspi_code_backup/DriveTesting.py
lord-pradhan/SnowBot
82a0b3439dc203bf27725e293d6e56bcad720c09
[ "MIT" ]
1
2019-12-13T19:21:12.000Z
2019-12-13T19:21:12.000Z
""" Program: DriveTesting.py Revised On: 12/01/2019 """ ### Library Imports from DriveArduino import DriveArduino import numpy as np from time import sleep from sys import exit from signal import signal, SIGINT ### ### CTRL + C Signal Handler & Resource Cleanup def signal_handler(sig, frame): """Handler for CTRL + C clean exit.""" print('Quitting program.') cleanup() def cleanup(): """Resource cleanup.""" drive.close() print('Resource cleanup completed.') exit(0) signal(SIGINT, signal_handler) ### ### Arduino Configuration addr = 0x08 drive = DriveArduino(addr) ### ### Main Program print('Press CTRL + C to exit.') while True: setpoints = np.array([25, 25, -25, -25]) drive.set_rpm(setpoints) sleep(1) drive.update() print(drive.rpm) print(drive.pwm) print() ###
16.92
46
0.652482
0
0
0
0
0
0
0
0
312
0.368794
583ba4ab4b346b94532e02cbbc5e159874800f72
363
py
Python
src/sentry/utils/strings.py
rogerhu/sentry
ee2b190e92003abe0f538b2df5b686e425df1200
[ "BSD-3-Clause" ]
1
2015-12-13T18:27:54.000Z
2015-12-13T18:27:54.000Z
src/sentry/utils/strings.py
simmetria/sentry
9731f26adb44847d1c883cca108afc0755cf21cc
[ "BSD-3-Clause" ]
null
null
null
src/sentry/utils/strings.py
simmetria/sentry
9731f26adb44847d1c883cca108afc0755cf21cc
[ "BSD-3-Clause" ]
null
null
null
def truncatechars(value, arg): """ Truncates a string after a certain number of chars. Argument: Number of chars to truncate after. """ try: length = int(arg) except ValueError: # Invalid literal for int(). return value # Fail silently. if len(value) > length: return value[:length] + '...' return value
25.928571
55
0.606061
0
0
0
0
0
0
0
0
166
0.4573
583d59db015ae71e12d80d6cb5e3e2aba7e8e79c
817
py
Python
setup.py
Ozencb/cli-pto
445e5133340adb25dcf5d14c4203643b7a8741c2
[ "MIT" ]
6
2020-04-30T18:32:38.000Z
2020-07-28T15:37:04.000Z
setup.py
Ozencb/cli-pto
445e5133340adb25dcf5d14c4203643b7a8741c2
[ "MIT" ]
1
2020-04-30T18:34:08.000Z
2020-05-01T10:16:49.000Z
setup.py
Ozencb/cli-pto
445e5133340adb25dcf5d14c4203643b7a8741c2
[ "MIT" ]
null
null
null
import os import re from setuptools import find_packages, setup def get_version(package): path = os.path.join(os.path.dirname(__file__), package, "__init__.py") with open(path, "rb") as f: init_py = f.read().decode("utf-8") return re.search("__version__ = ['\"]([^'\"]+)['\"]", init_py).group(1) setup( name='cli-pto', author='Özenç Bilgili', description='A CLI text editor with encryption.', version=get_version('cli_pto'), url='https://github.com/ozencb/cli-pto', packages=find_packages(), install_requires=['prompt-toolkit', 'Pygments', 'pycryptodome'], entry_points={'console_scripts': 'cli-pto = cli_pto.clipto:main'}, license=open('LICENSE').read(), keywords=['text', 'editor', 'encryption', 'encrypted', 'password', 'manager'] )
31.423077
85
0.641371
0
0
0
0
0
0
0
0
318
0.388278
583f4f6dd761e12a8aa4ad8d387f0bdd2b82f1de
9,545
py
Python
users/models.py
scoremaza/church_alive_backend
2ee7260aea51ec39972588dc4a346aa152356aa3
[ "MIT" ]
null
null
null
users/models.py
scoremaza/church_alive_backend
2ee7260aea51ec39972588dc4a346aa152356aa3
[ "MIT" ]
null
null
null
users/models.py
scoremaza/church_alive_backend
2ee7260aea51ec39972588dc4a346aa152356aa3
[ "MIT" ]
null
null
null
import os import uuid from django.db import models from django.contrib.auth.models import User from django.db.models.base import Model from django.db.models.enums import Choices, ChoicesMeta from django.db.models.fields.related import ForeignKey from django.utils.deconstruct import deconstructible @deconstructible class GenerateProfileImagePath(object): ''' This will allow naming convention for the files and up loaded as images in profiles. Image will have this assigned to its upload_to property ''' def __init__(self) -> None: pass def __call__(self, instance, filename): ext = filename.split('.')[-1] path = f'media/accounts/{instance.user.id}/images' name = f'profile_image.ext' return os.path.join(path, name) user_profile_image_path = GenerateProfileImagePath() class PositionType(models.Model): ''' Model definition for PositionType Here the user is assign a position within the organization allowing access and assignment capabilities enabling allocation throughout the system. ''' position_id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) position = models.CharField(max_length=150) sort_order = models.IntegerField(default=-1) timestamp = models.DateTimeField(auto_now_add=True) class Meta: """Meta definition for VisibilityLevel.""" verbose_name = "Position" verbose_name_plural = "Positions" def __str__(self): """Unicode representation of VisibilityLevel.""" return f'{self.position}' def get_absolute_url(self): """Return absolute url for VisibilityLevel.""" pass class Profile (models.Model): ''' Model definition for Profile Here the user will create its existence in the appplication with features to set privacy and adding friends will be controlled by this profile. Using User from the internal structure of Django as the manager to keep things together. ''' profile_id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) user = models.OneToOneField(User, on_delete=models.CASCADE) image = models.FileField(upload_to=user_profile_image_path, blank=True, null=True) profile_name = models.CharField(max_length=200, null=True) date_of_birth = models.DateField(null=True) create_date = models.DateTimeField(auto_now_add=True) last_update = models.DateTimeField(auto_now=True) position_type = models.ForeignKey(PositionType, on_delete=models.CASCADE) timestamp = models.DateTimeField(auto_now_add=True) class Meta: """Meta definition for VisibilityLevel.""" verbose_name = "Profile" verbose_name_plural = "Profiles" def __str__(self): """Unicode representation of VisibilityLevel.""" return f'{self.user.username}\'s Profile' def get_absolute_url(self): """Return absolute url for VisibilityLevel.""" pass class VisibilityLevel(models.Model): """ Model definition for VisibilityLevel. Here the user will give wether a friend could have the capabilities to view or send information. """ visibility_level_id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) name = models.CharField(max_length=150) class Meta: """Meta definition for VisibilityLevel.""" verbose_name = 'VisibilityLevel' verbose_name_plural = 'VisibilityLevels' def __str__(self): """Unicode representation of VisibilityLevel.""" return self.name def get_absolute_url(self): """Return absolute url for VisibilityLevel.""" pass class PrivacyFlagType(models.Model): ''' Model definition for PrivacyFlagType. Here we have the values of information such as questions asked to the user and the user answers will be stored in PrivacyFlag ''' privacy_flag_type_id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) field_name = models.CharField(max_length=150,blank=True, null=True) timestamp = models.DateTimeField(auto_now_add=True) sort_order = models.IntegerField(default=-1) class Meta: """Meta definition for VisibilityLevel.""" verbose_name = "PrivacyFlagType" verbose_name_plural = "PrivacyFlagTypes" def __str__(self): """Unicode representation of VisibilityLevel.""" return self.field_name def get_absolute_url(self): """Return absolute url for VisibilityLevel.""" pass class PrivacyFlag(models.Model): ''' Model definition for PrivacyFlag Here we will allocate the values and controling what could be seen and by whom. ''' privacy_flag_id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) profile = models.ForeignKey(Profile, on_delete=models.CASCADE) privacyflagtype = models.ForeignKey(PrivacyFlagType, on_delete=models.CASCADE) visibility_level = models.ForeignKey(VisibilityLevel, on_delete=models.CASCADE) timestamp = models.DateTimeField(auto_now_add=True) class Meta: """Meta definition for VisibilityLevel.""" verbose_name = "PrivacyFlag" verbose_name_plural = "PrivacyFlags" def __str__(self): """Unicode representation of VisibilityLevel.""" return f'{self.profile.user.username} has {self.privacyflagtype.field_name} privacy' def get_absolute_url(self): """Return absolute url for VisibilityLevel.""" pass class ProfileAttributeType(models.Model): ''' Model definition for ProfileAttributeType Here we have the type of values enter by the user ''' profile_attribute_type_id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) attribute_type = models.CharField(max_length=500) sort_order = models.IntegerField(default=-1) privacy_flag_type = models.ForeignKey(PrivacyFlagType, on_delete=models.CASCADE) class Meta: """Meta definition for VisibilityLevel.""" verbose_name = "ProfileAttributeType" verbose_name_plural = "ProfileAttributeTypes" def __str__(self): """Unicode representation of VisibilityLevel.""" return f'{self.profile.user.username} has {self.privacyflagtype.field_name} privacy' def get_absolute_url(self): """Return absolute url for VisibilityLevel.""" pass class ProfileAttribute(models.Model): ''' Model definition for ProfileAttribute. Here we have the values themselves given by the user ''' profile_attribute_id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) profile = models.ForeignKey(Profile, on_delete=models.CASCADE) profile_attribute_type = models.ForeignKey(ProfileAttributeType, on_delete=models.CASCADE) response = models.CharField(max_length=250) createDate = models.DateField(auto_now_add=True) timestamp = models.DateTimeField(auto_now_add=True) class Meta: """Meta definition for VisibilityLevel.""" verbose_name = "ProfileAttribute" verbose_name_plural = "ProfileAttributes" def __str__(self): """Unicode representation of VisibilityLevel.""" return f'{self.profile.user.username} response {self.response}' def get_absolute_url(self): """Return absolute url for VisibilityLevel.""" pass class AlertType(models.Model): ''' Model definition for AlertType. Here we have the user with the capability to have alerts from different news form their friends ''' alert_type_id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) name = models.CharField(max_length=150) class Meta: """Meta definition for VisibilityLevel.""" verbose_name = "AlertType" verbose_name_plural = "AlertTypes" def __str__(self): """Unicode representation of VisibilityLevel.""" return f'{self.name}' def get_absolute_url(self): """Return absolute url for VisibilityLevel.""" pass class Alert(models.Model): ''' Model definition for Alert. Here we have the whole set completion for the Alerts. Allow the system to use the functionality of hidding and allowing users to manage the completion of there news feed, with notifications. ''' alert_id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) user = models.ForeignKey(User, on_delete=models.CASCADE) create_date = models.DateTimeField(auto_now_add=True) timestamp = models.DateTimeField(auto_now_add=True) alert_type = models.ForeignKey(AlertType, on_delete=models.CASCADE) is_hidden = models.BooleanField(default=False) message = models.TextField() class Meta: """Meta definition for VisibilityLevel.""" verbose_name = "Alert" verbose_name_plural = "Alerts" def __str__(self): """Unicode representation of VisibilityLevel.""" return f'{self.alert_type.name} has this {self.message}' def get_absolute_url(self): """Return absolute url for VisibilityLevel.""" pass
32.355932
103
0.683394
9,095
0.952855
0
0
502
0.052593
0
0
3,676
0.385123
5840120e03a13bb96c98c4c82966a3349be1a938
1,012
py
Python
format_errors.py
drupchen/correct-ewts
0a23db216b2fb78a8c73476ca55cebf23a7d2706
[ "Apache-2.0" ]
null
null
null
format_errors.py
drupchen/correct-ewts
0a23db216b2fb78a8c73476ca55cebf23a7d2706
[ "Apache-2.0" ]
null
null
null
format_errors.py
drupchen/correct-ewts
0a23db216b2fb78a8c73476ca55cebf23a7d2706
[ "Apache-2.0" ]
null
null
null
import re from collections import defaultdict with open('input/errors-ewts.csv') as f: raw = f.read() #raw = raw.replace('`not expected', '` not expected') lines = raw.split('\n') data = [] for line in lines: columns = re.split(r'(?:^"|","|",,"|"$)', line) msgs = [a for a in columns[3].split(',') if a != ''] entry = [columns[1], columns[2], msgs] data.append(entry) error_types = [] by_error_type = defaultdict(list) for entry in data: msgs = entry[2] for msg in msgs: msg = msg.replace('line 1: ', '') error_pattern = re.sub(r'`[^`]*`', r'`X`', msg) error_types.append(error_pattern) by_error_type[error_pattern].append(entry) error_types = sorted(list(set(error_types))) for type, entries in by_error_type.items(): print('{} occurences:\t\t{}'.format(len(entries), type)) etc_count = 0 for line in lines: if 'character `.`.' in line: etc_count += 1 print('number of lines with misplaced dots:', etc_count) print('ok')
27.351351
60
0.614625
0
0
0
0
0
0
0
0
214
0.211462
5840ef989a734ba50cfa0c0f408fab21378c995e
344
py
Python
exercise-django/user/views.py
theseana/goodfellas
9ad9d9759d193cd64ec71876b1dab155bb9ba2c7
[ "MIT" ]
null
null
null
exercise-django/user/views.py
theseana/goodfellas
9ad9d9759d193cd64ec71876b1dab155bb9ba2c7
[ "MIT" ]
null
null
null
exercise-django/user/views.py
theseana/goodfellas
9ad9d9759d193cd64ec71876b1dab155bb9ba2c7
[ "MIT" ]
null
null
null
from django.shortcuts import render # Create your views here. from user.forms import UserForm def register(request): form = UserForm() if request.method == 'POST': form = UserForm(request.POST) if form.is_valid(): form.save() return render(request, 'user/registeration/register.html', {'form': form})
24.571429
78
0.659884
0
0
0
0
0
0
0
0
71
0.206395
5841ecc637b36ee324105b2737f2b6315d8d0459
3,609
py
Python
shark/example/env/catch_ball_env.py
7starsea/shark
5030f576da6f5998728d80170480e68a3debfe79
[ "MIT" ]
null
null
null
shark/example/env/catch_ball_env.py
7starsea/shark
5030f576da6f5998728d80170480e68a3debfe79
[ "MIT" ]
null
null
null
shark/example/env/catch_ball_env.py
7starsea/shark
5030f576da6f5998728d80170480e68a3debfe79
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import numpy as np import PIL import torch import torchvision.transforms as TF from types import SimpleNamespace from gym import spaces, Env from .SharkExampleEnv import CatchBallSimulate # internal_screen_h, internal_screen_w = 80, 140 class CatchBallEnvBase(Env): metadata = {'render.modes': ['human']} def __init__(self, screen=(80, 120), num_balls=10, action_penalty=.02, waiting=0, is_continuous=False): self.game = CatchBallSimulate(screen, ball=(6, 6), ball_speed=(5, 2), bar=(5, 15), action_penalty=action_penalty, waiting=waiting, is_continuous=is_continuous) self.num_balls = num_balls self.index = 0 self.screen = np.zeros(self.game.screen_size + (3,), dtype=np.uint8) h, w = screen self.observation_space = spaces.Space(shape=(h, w, 1), dtype=np.uint8) if is_continuous: low, high = self.game.action_range self.action_space = spaces.Box(low=low, high=high, shape=(1,)) else: self.action_space = spaces.Discrete(n=3) self.spec = SimpleNamespace(id='CatchBall_%d' % num_balls) self.ax = None self.fig = None def set_action_range(self, low, high): assert self.game.is_continuous and "Only continuous action supports set_action_range." self.game.action_range = low, high self.action_space = spaces.Box(low=low, high=high, shape=(1,)) def seed(self, seed): self.game.seed(seed) def close(self): self.ax.clear() def render(self, mode='human'): import matplotlib.pyplot as plt if not self.ax: self.fig = plt.figure(1, figsize=(8, 10)) self.ax = plt.subplot(111) self.ax.clear() self.screen.fill(0) self.game.get_display(self.screen) self.ax.imshow(self.screen) plt.pause(0.02) def reset(self): self.game.reset() self.index = 0 state = np.zeros_like(self.screen) self.game.get_display(state) return state def step(self, action): # # in discrete-setting, action should be 0, 1, 2 is_game_over, reward = self.game.step(int(action)) if is_game_over: if self.num_balls > 0: self.index += 1 is_game_over = self.index >= self.num_balls else: is_game_over = reward < .5 self.game.reset_ball() next_state = np.zeros_like(self.screen) self.game.get_display(next_state) return next_state, reward, is_game_over, {} class CatchBallEnv(CatchBallEnvBase): def __init__(self, *args, **kwargs): super(CatchBallEnv, self).__init__(*args, **kwargs) self.kwargs = dict(dtype=torch.float32) h, w, _ = self.observation_space.shape h, w = int(h / 2), int(w / 2) self.observation_space = spaces.Space(shape=(1, h, w), dtype=np.float32) self.composer = TF.Compose([TF.Grayscale(), TF.Resize((h, w)), TF.ToTensor()]) def _preprocess(self, image): x = PIL.Image.fromarray(image) image = self.composer(x) image = image.to(**self.kwargs) return image def step(self, action): if isinstance(action, np.ndarray): action = int(action.reshape(-1)[0]) state, r, done, info = super().step(action) return self._preprocess(state), r, done, info def reset(self): state = super().reset() return self._preprocess(state)
31.112069
107
0.600443
3,339
0.925187
0
0
0
0
0
0
213
0.059019
5842b3ae714ec5029aefbd5f4f522395e8920892
4,652
py
Python
examples/launch_tor_with_simplehttpd.py
kneufeld/txtorcon
fbe2fc70cae00aa6228a2920ef048b282872dbab
[ "MIT" ]
null
null
null
examples/launch_tor_with_simplehttpd.py
kneufeld/txtorcon
fbe2fc70cae00aa6228a2920ef048b282872dbab
[ "MIT" ]
null
null
null
examples/launch_tor_with_simplehttpd.py
kneufeld/txtorcon
fbe2fc70cae00aa6228a2920ef048b282872dbab
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- '''Create a new tor node and add a simple http server to it, serving a given directory over http. The server is single-threaded and very limited. There are two arguments that can be passed via the commandline: -p\tThe internet-facing port the hidden service should listen on -d\tThe directory to serve via http Example: ./launch_tor_with_simplehttpd.py -p 8080 -d /opt/files/ ''' import SimpleHTTPServer import SocketServer import functools import getopt import os import sys import tempfile import thread from twisted.internet import reactor import txtorcon def print_help(): print __doc__ def print_tor_updates(prog, tag, summary): # Prints some status messages while booting tor print 'Tor booting [%d%%]: %s' % (prog, summary) def start_httpd(httpd): # Create a new thread to serve requests print 'Starting httpd...' return thread.start_new_thread(httpd.serve_forever, ()) def stop_httpd(httpd): # Kill the httpd print 'Stopping httpd...' httpd.shutdown() def setup_complete(config, port, proto): # Callback from twisted when tor has booted. # We create a reference to this function via functools.partial that # provides us with a reference to 'config' and 'port', twisted then adds # the 'proto' argument print '\nTor is now running. The hidden service is available at' print '\n\thttp://%s:%i\n' % (config.HiddenServices[0].hostname, port) # This is probably more secure than any other httpd... print '### DO NOT RELY ON THIS SERVER TO TRANSFER FILES IN A SECURE WAY ###' def setup_failed(arg): # Callback from twisted if tor could not boot. Nothing to see here, move # along. print 'Failed to launch tor', arg reactor.stop() def main(): # Parse the commandline-options try: opts, args = getopt.getopt(sys.argv[1:], 'hd:p:') except getopt.GetoptError as excp: print str(excp) print_help() return 1 serve_directory = '.' # The default directory to serve files from hs_public_port = 8011 # The default port the hidden service is available on web_port = 4711 # The real server's local port web_host = '127.0.0.1' # The real server is bound to localhost for o, a in opts: if o == '-d': serve_directory = a elif o == '-p': hs_public_port = int(a) elif o == '-h': print_help() return else: print 'Unknown option "%s"' % (o, ) return 1 # Sanitize path and set working directory there (for SimpleHTTPServer) serve_directory = os.path.abspath(serve_directory) if not os.path.exists(serve_directory): print 'Path "%s" does not exists, can\'t serve from there...' % \ (serve_directory, ) return 1 os.chdir(serve_directory) # Create a new SimpleHTTPServer and serve it from another thread. # We create a callback to Twisted to shut it down when we exit. print 'Serving "%s" on %s:%i' % (serve_directory, web_host, web_port) httpd = SocketServer.TCPServer((web_host, web_port), SimpleHTTPServer.SimpleHTTPRequestHandler) start_httpd(httpd) reactor.addSystemEventTrigger('before', 'shutdown', stop_httpd, httpd=httpd) # Create a directory to hold our hidden service. Twisted will unlink it # when we exit. hs_temp = tempfile.mkdtemp(prefix='torhiddenservice') reactor.addSystemEventTrigger('before', 'shutdown', functools.partial(txtorcon.util.delete_file_or_tree, hs_temp)) # Add the hidden service to a blank configuration config = txtorcon.TorConfig() config.SOCKSPort = 0 config.ORPort = 9089 config.HiddenServices = [txtorcon.HiddenService(config, hs_temp, ['%i %s:%i' % (hs_public_port, web_host, web_port)])] config.save() # Now launch tor # Notice that we use a partial function as a callback so we have a # reference to the config object when tor is fully running. tordeferred = txtorcon.launch_tor(config, reactor, progress_updates=print_tor_updates) tordeferred.addCallback(functools.partial(setup_complete, config, hs_public_port)) tordeferred.addErrback(setup_failed) reactor.run() if __name__ == '__main__': sys.exit(main())
33.710145
96
0.635211
0
0
0
0
0
0
0
0
1,986
0.426913
5842cd8ea1a4359a03a5653c005a52f4e2eeeb68
5,123
py
Python
homeroom/wsgi.py
openshift-labs/workshop-homeroom
a0f0c144eef679e35a93201d11973329be9924fb
[ "Apache-2.0" ]
14
2019-09-28T20:42:29.000Z
2021-11-23T13:12:42.000Z
homeroom/wsgi.py
openshift-homeroom/workshop-homeroom
a0f0c144eef679e35a93201d11973329be9924fb
[ "Apache-2.0" ]
1
2019-10-15T02:55:57.000Z
2019-10-15T02:55:57.000Z
homeroom/wsgi.py
openshift-homeroom/workshop-homeroom
a0f0c144eef679e35a93201d11973329be9924fb
[ "Apache-2.0" ]
3
2020-02-11T16:55:59.000Z
2021-08-13T13:16:27.000Z
import os import json import threading import time import yaml from flask import Flask from flask import render_template from kubernetes.client.rest import ApiException from kubernetes.client.configuration import Configuration from kubernetes.config.incluster_config import load_incluster_config from kubernetes.client.api_client import ApiClient from openshift.dynamic import DynamicClient from openshift.dynamic.exceptions import ResourceNotFoundError # Work out namespace operating in. service_account_path = '/var/run/secrets/kubernetes.io/serviceaccount' with open(os.path.join(service_account_path, 'namespace')) as fp: namespace = fp.read().strip() # Setup REST API client access. load_incluster_config() import urllib3 urllib3.disable_warnings() instance = Configuration() instance.verify_ssl = False Configuration.set_default(instance) api_client = DynamicClient(ApiClient()) try: route_resource = api_client.resources.get( api_version='route.openshift.io/v1', kind='Route') except ResourceNotFoundError: route_resource = None ingress_resource = api_client.resources.get( api_version='extensions/v1beta1', kind='Ingress') # Setup loading or workshops or live monitor. workshops = [] application_name = os.environ.get('APPLICATION_NAME', 'homeroom') def filter_out_hidden(workshops): for workshop in workshops: if workshop.get('visibility', 'visible') != 'hidden': yield workshop def monitor_workshops(): global workshops while True: active_workshops = [] if route_resource is not None: try: routes = route_resource.get(namespace=namespace) for route in routes.items: annotations = route.metadata.annotations if annotations: if annotations.get('homeroom/group') == application_name: name = route.metadata.name title = annotations.get('homeroom/title') or name description = annotations.get('homeroom/description') or '' scheme = 'http' if route.tls and route.tls.termination: scheme = 'https' url = '%s://%s' % (scheme, route.spec.host) active_workshops.append(dict(title=title, description=description, url=url)) except ApiException as e: print('ERROR: Error looking up routes. %s' % e) except Exception as e: print('ERROR: Error looking up routes. %s' % e) try: ingresses = ingress_resource.get(namespace=namespace) for ingress in ingresses.items: annotations = route.metadata.annotations if annotations: if annotations.get('homeroom/group') == application_name: name = ingress.metadata.name title = annotations.get('homeroom/title') or name description = annotations.get('homeroom/description') or '' scheme = 'http' if ingress.tls: scheme = 'https' url = '%s://%s' % (scheme, ingress.spec.rules[0].host) active_workshops.append(dict(title=title, description=description, url=url)) except ApiException as e: print('ERROR: Error looking up ingress. %s' % e) except Exception as e: print('ERROR: Error looking up ingress. %s' % e) if workshops != active_workshops: workshops[:] = active_workshops print('WORKSHOPS', workshops) time.sleep(15) if os.path.exists('/opt/app-root/configs/workshops.yaml'): with open('/opt/app-root/configs/workshops.yaml') as fp: content = fp.read() if content: workshops = list(filter_out_hidden(yaml.safe_load(content))) if os.path.exists('/opt/app-root/configs/workshops.json'): with open('/opt/app-root/configs/workshops.json') as fp: content = fp.read() workshops = list(filter_out_hidden(json.loads(content))) if not workshops: monitor_thread = threading.Thread(target=monitor_workshops) monitor_thread.daemon = True monitor_thread.start() # Setup the Flask application. app = Flask(__name__) banner_images = { 'homeroom': 'homeroom-logo.png', 'openshift': 'openshift-logo.svg', 'dedicated': 'openshift-dedicated-logo.svg', 'okd': 'okd-logo.svg', } @app.route('/') def index(): title = os.environ.get('HOMEROOM_TITLE', 'Workshops') branding = os.environ.get('HOMEROOM_BRANDING', 'openshift') banner_image = banner_images.get(branding, banner_images['openshift']) visible_workshops = list(filter_out_hidden(workshops)) return render_template('workshops.html', title=title, banner_image=banner_image, workshops=visible_workshops)
31.819876
87
0.622877
0
0
153
0.029865
412
0.080422
0
0
986
0.192465
584381c8993e76aeeaae4fc35eb8cf9d4869915b
3,417
py
Python
rever/__init__.py
limecrayon/rever
0446ad9707fb1e81b3101625959fd16bdaac1853
[ "MIT" ]
2
2018-02-16T08:31:48.000Z
2018-11-19T02:31:07.000Z
rever/__init__.py
limecrayon/rever
0446ad9707fb1e81b3101625959fd16bdaac1853
[ "MIT" ]
null
null
null
rever/__init__.py
limecrayon/rever
0446ad9707fb1e81b3101625959fd16bdaac1853
[ "MIT" ]
null
null
null
import functools import time __all__ = ('ReachedMaxRetries', 'rever') class ReachedMaxRetries(Exception): def __init__(self, func): Exception.__init__(self, "Function {} raised exception due to max number of retries performed".format(func)) self.func = func def rever(**rever_kwargs): """ rever_kwargs default values defined: If backoff is True, then times and pause will not be initialized, but they will be calculated. backoff: True total_pause: 30 steps: 10 exception: BaseException raises: True prior: None If backoff is False, then total_pause and steps will be initialized, but do not get used. backoff: False times: 1 pause: 0 exception: BaseException raises: True prior: None """ backoff = True total_pause = 1 steps = 10 times = 1 pause = 0 exception = BaseException raises = True prior = None if "backoff" not in rever_kwargs: rever_kwargs["backoff"] = backoff if "total_pause" not in rever_kwargs: rever_kwargs["total_pause"] = total_pause if "steps" not in rever_kwargs: rever_kwargs["steps"] = steps if "times" not in rever_kwargs: if not rever_kwargs["backoff"]: rever_kwargs["times"] = times if "pause" not in rever_kwargs: if not rever_kwargs["backoff"]: rever_kwargs["pause"] = pause if "exception" not in rever_kwargs: rever_kwargs["exception"] = exception if "raises" not in rever_kwargs: rever_kwargs["raises"] = raises if "prior" not in rever_kwargs: rever_kwargs["prior"] = prior initialized_kwargs = {key: rever_kwargs[key] for key in rever_kwargs} def rever_decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): nonlocal rever_kwargs try: if args or kwargs: r = func(*args, **kwargs) rever_kwargs = {key: initialized_kwargs[key] for key in initialized_kwargs} return r else: r = func() rever_kwargs = {key: initialized_kwargs[key] for key in initialized_kwargs} return r except rever_kwargs["exception"]: if rever_kwargs["backoff"]: rever_kwargs["pause"] = \ .5 * (rever_kwargs["total_pause"] / 2 ** (rever_kwargs["steps"])) if rever_kwargs["steps"] >= 0: time.sleep(rever_kwargs["pause"]) rever_kwargs["steps"] -= 1 if rever_kwargs["prior"]: rever_kwargs["prior"]() return wrapper(*args, **kwargs) else: if rever_kwargs["times"] > 0: time.sleep(rever_kwargs["pause"]) rever_kwargs["times"] -= 1 if rever_kwargs["prior"]: rever_kwargs["prior"]() return wrapper(*args, **kwargs) if rever_kwargs["raises"] and (rever_kwargs["steps"] < 0 or rever_kwargs["times"] <= 0): raise ReachedMaxRetries(func) else: return None return wrapper return rever_decorator
30.238938
116
0.550776
207
0.060579
0
0
1,595
0.466784
0
0
859
0.25139
5844f2ad1f289327e37c42bac510107e36f8f9d5
25,811
py
Python
gui(12102018).py
hanhydro/T2H
f4922ce721eb450c7d91370f180e6c860e9ec6be
[ "MIT" ]
null
null
null
gui(12102018).py
hanhydro/T2H
f4922ce721eb450c7d91370f180e6c860e9ec6be
[ "MIT" ]
null
null
null
gui(12102018).py
hanhydro/T2H
f4922ce721eb450c7d91370f180e6c860e9ec6be
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'gui.ui' # # Created by: PyQt5 UI code generator 5.6 # # WARNING! All changes made in this file will be lost! import os from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import (QApplication, QDialog, QProgressBar, QPushButton, QMessageBox) import matplotlib.pyplot as plt from matplotlib import style import T2H, PLOT import flopy from matplotlib.backends.qt_compat import QtCore, QtWidgets, is_pyqt5 if is_pyqt5(): from matplotlib.backends.backend_qt5agg import ( FigureCanvas, NavigationToolbar2QT as NavigationToolbar) else: from matplotlib.backends.backend_qt4agg import ( FigureCanvas, NavigationToolbar2QT as NavigationToolbar) from matplotlib.figure import Figure #%% class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("T2H Graphical User Interface") MainWindow.resize(1280, 800) self.centralWidget = QtWidgets.QWidget(MainWindow) self.centralWidget.setObjectName("centralWidget") #%% QFrames self.frame_1 = QtWidgets.QFrame(self.centralWidget) self.frame_1.setGeometry(QtCore.QRect(810, 70, 461, 201)) self.frame_1.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_1.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_1.setObjectName("frame_2") self.frame_2 = QtWidgets.QFrame(self.centralWidget) self.frame_2.setGeometry(QtCore.QRect(810, 280, 461, 101)) self.frame_2.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_2.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_2.setObjectName("frame_2") self.frame_3 = QtWidgets.QFrame(self.centralWidget) self.frame_3.setGeometry(QtCore.QRect(810, 390, 461, 31)) self.frame_3.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame_3.setFrameShadow(QtWidgets.QFrame.Raised) self.frame_3.setObjectName("frame_3") #%% QLabels self.sedK = QtWidgets.QLabel(self.frame_2) self.sedK.setGeometry(QtCore.QRect(30, 10, 141, 16)) self.sedK.setObjectName("sedK") self.aqK = QtWidgets.QLabel(self.frame_2) self.aqK.setGeometry(QtCore.QRect(30, 40, 141, 16)) self.aqK.setObjectName("aqK") self.faultK = QtWidgets.QLabel(self.frame_2) self.faultK.setGeometry(QtCore.QRect(30, 70, 141, 16)) self.faultK.setObjectName("faultK") self.sedKN = QtWidgets.QLabel(self.centralWidget) self.sedKN.setGeometry(QtCore.QRect(910, 500, 141, 16)) self.sedKN.setObjectName("sedKN") self.sedKNlabel = QtWidgets.QLabel(self.centralWidget) self.sedKNlabel.setGeometry(QtCore.QRect(1100, 500, 61, 16)) self.sedKNlabel.setObjectName("sedKNlabel") self.aquiferKNlabel = QtWidgets.QLabel(self.centralWidget) self.aquiferKNlabel.setGeometry(QtCore.QRect(1100, 520, 61, 16)) self.aquiferKNlabel.setObjectName("aquiferKNlabel") self.aqKN = QtWidgets.QLabel(self.centralWidget) self.aqKN.setGeometry(QtCore.QRect(910, 520, 81, 16)) self.aqKN.setObjectName("aqKN") self.faultKN = QtWidgets.QLabel(self.centralWidget) self.faultKN.setGeometry(QtCore.QRect(910, 540, 81, 16)) self.faultKN.setObjectName("faultKN") self.faultKNlabel = QtWidgets.QLabel(self.centralWidget) self.faultKNlabel.setGeometry(QtCore.QRect(1100, 540, 61, 16)) self.faultKNlabel.setObjectName("faultKNlabel") self.label_21 = QtWidgets.QLabel(self.frame_3) self.label_21.setGeometry(QtCore.QRect(10, 7, 141, 16)) self.label_21.setObjectName("label_21") self.visoptionsLabel = QtWidgets.QLabel(self.centralWidget) self.visoptionsLabel.setGeometry(QtCore.QRect(20, 540, 141, 16)) self.visoptionsLabel.setObjectName("visoptionsLabel") self.fileLabel = QtWidgets.QLabel(self.centralWidget) self.fileLabel.setGeometry(QtCore.QRect(810, 4, 60, 16)) self.fileLabel.setObjectName("fileLabel") self.fileLabel_path = QtWidgets.QLabel(self.centralWidget) self.fileLabel_path.setGeometry(QtCore.QRect(880, 4, 320, 16)) self.fileLabel_path.setObjectName("fileLabel_path") self.label = QtWidgets.QLabel(self.centralWidget) self.label.setGeometry(QtCore.QRect(814, 51, 241, 16)) self.label.setObjectName("label") self.nz = QtWidgets.QLabel(self.centralWidget) self.nz.setGeometry(QtCore.QRect(840, 104, 141, 16)) self.nz.setObjectName("nz") self.targetperiod = QtWidgets.QLabel(self.centralWidget) self.targetperiod.setGeometry(QtCore.QRect(840, 80, 151, 16)) self.targetperiod.setObjectName("targetperiod") self.nzfixed = QtWidgets.QLabel(self.centralWidget) self.nzfixed.setGeometry(QtCore.QRect(840, 128, 141, 16)) self.nzfixed.setObjectName("nzfixed") self.constrecharge = QtWidgets.QLabel(self.centralWidget) self.constrecharge.setGeometry(QtCore.QRect(840, 176, 151, 16)) self.constrecharge.setObjectName("constrecharge") # self.hiniratio = QtWidgets.QLabel(self.centralWidget) self.hiniratio.setGeometry(QtCore.QRect(840, 242, 151, 16)) self.hiniratio.setObjectName("hiniratio") self.datvar = QtWidgets.QLabel(self.centralWidget) self.datvar.setGeometry(QtCore.QRect(840, 152, 161, 16)) self.datvar.setObjectName("datvar") # Recharge input self.constrecharge_2 = QtWidgets.QLabel(self.centralWidget) self.constrecharge_2.setGeometry(QtCore.QRect(840, 200, 151, 16)) self.constrecharge_2.setObjectName("constrecharge_2") # Image pane self.image = QtWidgets.QLabel(self.centralWidget) self.image.setGeometry(QtCore.QRect(10, 10, 780, 520)) self.image.setObjectName("image") self.pixmap = QtGui.QPixmap("logo.png") self.image.setPixmap(self.pixmap) #%% QLineEdits self.sedKlineEdit = QtWidgets.QLineEdit(self.frame_2) self.sedKlineEdit.setGeometry(QtCore.QRect(260, 10, 113, 21)) self.sedKlineEdit.setObjectName("sedKlineEdit") self.sedKlineEdit.setText("547.5") # self.aqKlineEdit = QtWidgets.QLineEdit(self.frame_2) self.aqKlineEdit.setGeometry(QtCore.QRect(260, 40, 113, 21)) self.aqKlineEdit.setObjectName("aqKlineEdit") self.aqKlineEdit.setText("36.5") # self.faultKlineEdit = QtWidgets.QLineEdit(self.frame_2) self.faultKlineEdit.setGeometry(QtCore.QRect(260, 70, 113, 21)) self.faultKlineEdit.setObjectName("faultKlineEdit") self.faultKlineEdit.setText("0.0365") # self.nzfline = QtWidgets.QLineEdit(self.centralWidget) self.nzfline.setGeometry(QtCore.QRect(1070, 128, 113, 21)) self.nzfline.setObjectName("nzfline") self.nzfline.setText("10") # self.nzline = QtWidgets.QLineEdit(self.centralWidget) self.nzline.setGeometry(QtCore.QRect(1070, 104, 113, 21)) self.nzline.setObjectName("nzline") self.nzline.setText("40") # self.datline = QtWidgets.QLineEdit(self.centralWidget) self.datline.setGeometry(QtCore.QRect(1070, 152, 113, 21)) self.datline.setObjectName("datline") self.datline.setText("-10000") # self.hiniratioLineEdit = QtWidgets.QLineEdit(self.centralWidget) self.hiniratioLineEdit.setGeometry(QtCore.QRect(1070, 242, 113, 21)) self.hiniratioLineEdit.setObjectName("hiniratioLineEdit") self.hiniratioLineEdit.setText("0.9") # self.datvarline = QtWidgets.QLineEdit(self.centralWidget) self.datvarline.setGeometry(QtCore.QRect(1070, 176, 113, 21)) self.datvarline.setObjectName("datvarline") self.datvarline.setText("-3000") self.rchline = QtWidgets.QLineEdit(self.centralWidget) self.rchline.setGeometry(QtCore.QRect(1070, 200, 113, 21)) self.rchline.setObjectName("rchline") self.rchline.setText("0.05") # Ma input lineedit self.maline = QtWidgets.QLineEdit(self.centralWidget) self.maline.setGeometry(QtCore.QRect(1070, 80, 113, 21)) self.maline.setObjectName("maline") self.maline.setText("12.5") #%% QPushButtons self.load = QtWidgets.QPushButton(self.centralWidget) self.load.setGeometry(QtCore.QRect(1100, -1, 71, 32)) self.load.setObjectName("loadButton") self.load.clicked.connect(self.fileloader) self.load1 = QtWidgets.QPushButton(self.centralWidget) self.load1.setGeometry(QtCore.QRect(1170, -1, 101, 32)) self.load1.setObjectName("loadButton1") self.load1.clicked.connect(self.fileloader) self.applyButton = QtWidgets.QPushButton(self.frame_1) self.applyButton.setGeometry(QtCore.QRect(380, 60, 81, 81)) self.applyButton.setObjectName("applyButton") self.applyButton.clicked.connect(self.applyclicked) self.fileDialog_3 = QtWidgets.QPushButton(self.frame_2) self.fileDialog_3.setGeometry(QtCore.QRect(380, 20, 81, 71)) self.fileDialog_3.setObjectName("fileDialog_3") self.fileDialog_3.clicked.connect(self.applyCalClicked) # Model run button self.ModelRunButton = QtWidgets.QPushButton(self.centralWidget) self.ModelRunButton.setGeometry(QtCore.QRect(640, 620, 113, 32)) self.ModelRunButton.setObjectName("ModelRunButton") self.ModelRunButton.clicked.connect(self.run) self.QuitButton = QtWidgets.QPushButton(self.centralWidget) self.QuitButton.setGeometry(QtCore.QRect(760, 620, 113, 32)) self.QuitButton.setObjectName("QuitButton") self.QuitButton.clicked.connect(QCoreApplication.instance().quit) self.VtkOutputButton = QtWidgets.QPushButton(self.centralWidget) self.VtkOutputButton.setGeometry(QtCore.QRect(880, 620, 113, 32)) self.VtkOutputButton.setObjectName("VtkOutputButton") # self.VtkOutputButton.clicked.connect(self.vtk) self.PlotButton = QtWidgets.QPushButton(self.centralWidget) self.PlotButton.setGeometry(QtCore.QRect(460, 560, 113, 32)) self.PlotButton.setObjectName("PlotButton") self.PlotButton.clicked.connect(self.plot) #%% QGraphicsViews self.figure = plt.figure(figsize=(12,12)) self.canvas = FigureCanvas(self.figure) #%% QComboBoxes # File combo box self.fileBox = QtWidgets.QComboBox(self.centralWidget) self.fileBox.setGeometry(QtCore.QRect(808, 25, 461, 26)) self.fileBox.setObjectName("fileBox") # Solver selection combo box self.solverBox = QtWidgets.QComboBox(self.frame_3) self.solverBox.setGeometry(QtCore.QRect(63, 2, 281, 26)) self.solverBox.setObjectName("solverBox") self.solverBox.addItem("xMD") self.solverBox.addItem("GMRES") # self.visComboBox = QtWidgets.QComboBox(self.centralWidget) self.visComboBox.setGeometry(QtCore.QRect(10, 560, 441, 26)) self.visComboBox.setObjectName("visComboBox") self.visComboBox.addItem("Cross Section") self.visComboBox.addItem("Fault Plane") self.visComboBox.addItem("Vertical Flow Barriers (VFB)") self.visComboBox.addItem("Horizontal Flow Barriers (HFB)") #%% QCheckBoxes # self.elevdependentChecker = QtWidgets.QCheckBox(self.centralWidget) self.elevdependentChecker.setGeometry(QtCore.QRect(860, 220, 231, 20)) self.elevdependentChecker.setObjectName("elevdependentChecker") #%% QProgressBars self.progress = QProgressBar(self.centralWidget) self.progress.setGeometry(10, 620, 600, 25) self.progress.setMaximum(100) #%% Mainwindows MainWindow.setCentralWidget(self.centralWidget) self.menuBar = QtWidgets.QMenuBar(MainWindow) self.menuBar.setGeometry(QtCore.QRect(0, 0, 1024, 22)) self.menuBar.setObjectName("menuBar") self.menuT2H_Main = QtWidgets.QMenu(self.menuBar) self.menuT2H_Main.setObjectName("menuT2H_Main") self.menuT2H_Checker = QtWidgets.QMenu(self.menuBar) self.menuT2H_Checker.setObjectName("menuT2H_Checker") self.menuT2H_Plot = QtWidgets.QMenu(self.menuBar) self.menuT2H_Plot.setObjectName("menuT2H_Plot") MainWindow.setMenuBar(self.menuBar) self.mainToolBar = QtWidgets.QToolBar(MainWindow) self.mainToolBar.setObjectName("mainToolBar") MainWindow.addToolBar(QtCore.Qt.TopToolBarArea, self.mainToolBar) self.statusBar = QtWidgets.QStatusBar(MainWindow) self.statusBar.setObjectName("statusBar") MainWindow.setStatusBar(self.statusBar) self.menuBar.addAction(self.menuT2H_Main.menuAction()) self.menuBar.addAction(self.menuT2H_Checker.menuAction()) self.menuBar.addAction(self.menuT2H_Plot.menuAction()) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) #%% Functions def applyclicked(self): self.Ma = float(self.maline.text()) self.Ma = format(self.Ma, '.1f') self.nz = int(self.nzline.text()) self.nz_fixed = int(self.nzfline.text()) self.dx = 1000 self.dy = 1000 self.inz = self.nz - self.nz_fixed self.dat = int(self.datline.text()) self.dat_var = int(self.datvarline.text()) self.idat = self.dat - self.dat_var self.rech = float(self.rchline.text()) self.perm_sed = float(self.sedKlineEdit.text()) self.hratio = float(self.hiniratioLineEdit.text()) self.Kconst = float(self.aqKlineEdit.text()) self.hydchr = self.Kconst/1000 self.target_row = 101 self.iskip = 4 self.ivtk = 1 self.h_tol = 1e-4 self.fileLabel_path.setText("/tisc_output/topo_" + self.Ma +"0Ma.txt") self.ans = QMessageBox.question(self.centralWidget, "Confirmation",\ "Are these correct?\n" + "Period: " + self.Ma\ + "Ma\n" + "Nz: " + str(self.nz) +"\n" + "Datum: "\ + str(self.dat) + " m\n", QMessageBox.Yes, QMessageBox.No) if self.ans == QMessageBox.Yes: self.rchline.setEnabled(False) self.maline.setEnabled(False) self.nzline.setEnabled(False) self.nzfline.setEnabled(False) self.datline.setEnabled(False) self.datvarline.setEnabled(False) self.hiniratioLineEdit.setEnabled(False) QMessageBox.about(self.centralWidget, "Confirmed", "Properties confirmed") else: QMessageBox.about(self.centralWidget, "Check values", "Check values again!") def applyCalClicked(self): self.perm_sed = self.sedKlineEdit.text() self.Kconst = self.aqKlineEdit.text() self.hydchr = self.faultKlineEdit.text() self.sedKNlabel.setText(str(float(self.perm_sed)/float(self.rchline.text()))) self.aquiferKNlabel.setText(str(float(self.Kconst)/float(self.rchline.text()))) self.faultKNlabel.setText(str(float(self.hydchr)/float(self.rchline.text()))) self.ans = QMessageBox.question(self.centralWidget, "Confirmation",\ "Are these correct?\n" + "Period: " + self.Ma\ + "Ma\n" + "Nz: " + str(self.nz) +"\n" + "Datum: "\ + str(self.dat) + " m\n", QMessageBox.Yes, QMessageBox.No) if self.ans == QMessageBox.Yes: self.sedKlineEdit.setEnabled(False) self.aqKlineEdit.setEnabled(False) self.faultKlineEdit.setEnabled(False) QMessageBox.about(self.centralWidget, "Confirmed", "Properties confirmed") else: QMessageBox.about(self.centralWidget, "Check values", "Check values again!") #%% def run(self): self.Ma = float(self.maline.text()) self.Ma = format(self.Ma, '.1f') self.nz = int(self.nzline.text()) self.nz_fixed = int(self.nzfline.text()) self.dx = 1000 self.dy = 1000 self.inz = self.nz - self.nz_fixed self.dat = int(self.datline.text()) self.dat_var = int(self.datvarline.text()) self.idat = self.dat - self.dat_var self.rech = float(self.rchline.text()) self.perm_sed = float(self.sedKlineEdit.text()) self.hratio = float(self.hiniratioLineEdit.text()) self.Kconst = float(self.aqKlineEdit.text()) self.hydchr = self.Kconst/1000 self.target_row = 101 self.iskip = 4 self.ivtk = 1 self.h_tol = 1e-4 self.model = T2H.main(self.Ma, self.nz, self.nz_fixed, self.inz, self.dx,\ self.dy, self.dat, self.dat_var, self.idat\ , self.rech, self.perm_sed, self.target_row,\ self.Kconst, self.hratio, self.hydchr,\ self.iskip, self.ivtk, self.h_tol) self.mf = self.model.mf self.mf.dis.check() self.mf.write_input() self.mf.run_model() return self.mf def plot(self): try: self.mf except AttributeError: QMessageBox.about(self.centralWidget, "Warning", "Please run a model first") else: self.vcb = self.visComboBox.itemData print(self.vcb) if self.vcb == "Cross Section": figheadxsect, axheadxsect = plt.subplots(figsize=(40,5)) self.mfxsect = PLOT.fmfxsect(self.mf, self.model.mfdis, self.target_row, axheadxsect).mfxsect self.a = PLOT.head(self.mf, self.model.fdirmodel).a self.headc = PLOT.headc(self.mfxsect, self.a) self.headcontour = self.headc.headcontour self.gdplot = self.mfxsect.plot_grid(color='r', linewidths=0.2) self.BCplot = self.mfxsect.plot_ibound(self.model.ibound, color_noflow = 'black',\ color_ch = 'blue', head = self.a) self.canvas.draw() print("plot") def fileloader(self): self.path = os.getcwd() + "/tisc_output/" self.l = os.listdir(self.path) self.bdtopo = [0]*len(self.l) self.topo = [0]*len(self.l) self.fault = [0]*len(self.l) self.sedthick = [0]*len(self.l) for file in range(len(self.l)): if self.l[file].startswith("bdtopo"): if os.stat(self.path+self.l[file]).st_size > 5: # greater than 5 bytes self.bdtopo[file] = float(self.l[file][7:]\ .split("Ma.txt")[0]) elif self.l[file].startswith("topo"): if os.stat(self.path+self.l[file]).st_size > 5: # greater than 5 bytes self.topo[file] = float(self.l[file][5:]\ .split("Ma.txt")[0]) elif self.l[file].startswith("fault"): if os.stat(self.path+self.l[file]).st_size > 5: # greater than 5 bytes self.fault[file] = float(self.l[file][6:]\ .split("Ma.txt")[0]) elif self.l[file].startswith("sedthick"): if os.stat(self.path+self.l[file]).st_size > 5: # greater than 5 bytes self.sedthick[file] = float(self.l[file][9:]\ .split("Ma.txt")[0]) self.a = list(filter((0).__ne__, self.topo)) self.a.sort() self.b = list(filter((0).__ne__, self.bdtopo)) self.b.sort() self.c = list(filter((0).__ne__, self.fault)) self.c.sort() self.d = list(filter((0).__ne__, self.sedthick)) self.d.sort() self.df = [] for nfile in range(len(self.a)): if self.b.count(self.a[nfile]) == 1: if self.c.count(self.a[nfile]) == 1: if self.d.count(self.a[nfile]) == 1: data = [self.a[nfile], "y", "y", "y", "y"] self.df.append(data) elif self.d.count(self.a[nfile]) == 0: data = [self.a[nfile], "y", "y", "y", "n"] self.df.append(data) elif self.c.count(self.a[nfile]) == 0: if self.d.count(self.a[nfile]) == 1: data = [self.a[nfile], "y", "y", "n", "y"] self.df.append(data) elif self.d.count(self.a[nfile]) == 0: data = [self.a[nfile], "y", "y", "n", "n"] self.df.append(data) elif self.b.count(self.a[nfile]) == 0: if self.c.count(self.a[nfile]) == 1: if self.d.count(self.a[nfile]) == 1: data = [self.a[nfile], "y", "n", "y", "y"] self.df.append(data) elif self.d.count(self.a[nfile]) == 0: data = [self.a[nfile], "y", "n", "y", "n"] self.df.append(data) elif self.c.count(self.a[nfile]) == 0: if self.d.count(self.a[nfile]) == 1: data = [self.a[nfile], "y", "n", "n", "y"] self.df.append(data) elif self.d.count(self.a[nfile]) == 0: data = [self.a[nfile], "y", "n", "n", "n"] self.df.append(data) for age in range(len(self.a)): if self.df[age][2] == "y" and self.df[age][3] == "y" and self.df[age][4] == "y": self.fileBox.addItem("Snapshot:" + str(self.df[age][0]) + "Ma | Faults | Sediments") elif self.df[age][2] == "y" and self.df[age][3] == "y" and self.df[age][4] == "n": self.fileBox.addItem("Snapshot:" + str(self.df[age][0]) + "Ma | Faults | No Sediments") elif self.df[age][2] == "y" and self.df[age][3] == "n" and self.df[age][4] == "y": self.fileBox.addItem("Snapshot:" + str(self.df[age][0]) + "Ma | No Faults | Sediments") elif self.df[age][2] == "y" and self.df[age][3] == "n" and self.df[age][4] == "n": self.fileBox.addItem("Snapshot:" + str(self.df[age][0]) + "Ma | No Faults | No Sediments") #%% def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "T2H Graphical User Interface")) self.applyButton.setText(_translate("MainWindow", "Apply")) self.sedK.setText(_translate("MainWindow", "Sediment K (m/yr)")) self.aqK.setText(_translate("MainWindow", "Aquifer K (m/yr)")) self.faultK.setText(_translate("MainWindow", "Fault zone K (m/yr)")) self.fileDialog_3.setText(_translate("MainWindow", "Apply")) self.sedKN.setText(_translate("MainWindow", "Sediment K / N:")) self.sedKNlabel.setText(_translate("MainWindow", "N/A")) self.aquiferKNlabel.setText(_translate("MainWindow", "N/A")) self.aqKN.setText(_translate("MainWindow", "Aquifer K / N:")) self.faultKN.setText(_translate("MainWindow", "Fault K / N:")) self.faultKNlabel.setText(_translate("MainWindow", "N/A")) self.label_21.setText(_translate("MainWindow", "Solver")) self.ModelRunButton.setText(_translate("MainWindow", "Execute")) self.load.setText(_translate("MainWindow", "Load")) self.load1.setText(_translate("MainWindow", "Set selected")) self.QuitButton.setText(_translate("MainWindow", "Abort")) self.VtkOutputButton.setText(_translate("MainWindow", "VTK output")) self.PlotButton.setText(_translate("MainWindow", "Plot")) self.visoptionsLabel.setText(_translate("MainWindow", "Visualization options")) self.fileLabel.setText(_translate("MainWindow", "File: ")) self.fileLabel_path.setText(_translate("MainWindow", "path")) self.label.setText(_translate("MainWindow", "*dx = dy = 1,000 m fixed in this version")) self.nz.setText(_translate("MainWindow", "Number of layers (nz)")) self.targetperiod.setText(_translate("MainWindow", "Target period (Ma)")) self.nzfixed.setText(_translate("MainWindow", "Fixed layers (nz_fixed)")) self.constrecharge.setText(_translate("MainWindow", "Datum of variable dz (m)")) self.hiniratio.setText(_translate("MainWindow", "Initial head ratio to topo.")) self.elevdependentChecker.setText(_translate("MainWindow", "Elevation-dependent recharge")) self.datvar.setText(_translate("MainWindow", "Model datum (m)")) self.constrecharge_2.setText(_translate("MainWindow", "Const. Recharge (m/yr)")) self.menuT2H_Main.setTitle(_translate("MainWindow", "T2H Main")) self.menuT2H_Checker.setTitle(_translate("MainWindow", "T2H Checker")) self.menuT2H_Plot.setTitle(_translate("MainWindow", "T2H Plot")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
47.975836
109
0.618728
24,704
0.957111
0
0
0
0
0
0
3,175
0.12301
584603df6f6456851f5001f52a65f8c0ba217511
226
py
Python
py/loadpage.py
katiehuang1221/onl_ds5_project_2
dc9243d6bdc0c1952a761b2ed3e91a8548202b42
[ "MIT" ]
null
null
null
py/loadpage.py
katiehuang1221/onl_ds5_project_2
dc9243d6bdc0c1952a761b2ed3e91a8548202b42
[ "MIT" ]
1
2021-01-20T02:34:07.000Z
2021-01-20T02:34:07.000Z
py/loadpage.py
katiehuang1221/onl_ds5_project_2
dc9243d6bdc0c1952a761b2ed3e91a8548202b42
[ "MIT" ]
null
null
null
from bs4 import BeautifulSoup import requests from IPython.core.display import display, HTML def get_soup(url): response = requests.get(url) page = response.text soup = BeautifulSoup(page, "lxml") return soup
22.6
46
0.734513
0
0
0
0
0
0
0
0
6
0.026549
58483a9eb35db037bda84433b79608b84ed9f2c4
1,912
py
Python
hard-gists/5409581/snippet.py
jjhenkel/dockerizeme
eaa4fe5366f6b9adf74399eab01c712cacaeb279
[ "Apache-2.0" ]
21
2019-07-08T08:26:45.000Z
2022-01-24T23:53:25.000Z
hard-gists/5409581/snippet.py
jjhenkel/dockerizeme
eaa4fe5366f6b9adf74399eab01c712cacaeb279
[ "Apache-2.0" ]
5
2019-06-15T14:47:47.000Z
2022-02-26T05:02:56.000Z
hard-gists/5409581/snippet.py
jjhenkel/dockerizeme
eaa4fe5366f6b9adf74399eab01c712cacaeb279
[ "Apache-2.0" ]
17
2019-05-16T03:50:34.000Z
2021-01-14T14:35:12.000Z
''' rename_selected_relation_box.py Written by Alex Forsythe (awforsythe.com) When executed, attempts to locate any selected box within any relation constraint in the scene. If a selected relation box is found, prompts the user to enter a new name for that box. Allows relation boxes to be given more descriptive names. I'd recommend binding this script to a keyboard shortcut (see MotionBuilder/bin/config/Scripts/ActionScript.txt) for quick access. ''' from pyfbsdk import * def get_first(f, xs): ''' Returns the first x in xs for which f returns True, or else None. ''' for x in xs: if f(x): return x return None def get_selected_relation_box(): ''' Returns a relation constraint box which has been selected by the user, or None if no relation boxes are selected. ''' for relation in [c for c in FBSystem().Scene.Constraints if c.Is(FBConstraintRelation_TypeInfo())]: box = get_first(lambda box: box.Selected, relation.Boxes) if box: return box return None def get_new_box_name(box): ''' Prompts the user to enter a new name for the given box. Returns the new name if the user confirms the rename operation, or None if the user cancels. ''' button, string = FBMessageBoxGetUserValue( 'Rename Box?', 'Current name: %s' % box.Name, box.Name, FBPopupInputType.kFBPopupString, 'Rename', 'Cancel') return string if button == 1 else None def rename_selected_relation_box(): ''' Prompts the user to enter a new name for a selected relation constraint box. If no boxes are selected, has no effect. ''' box = get_selected_relation_box() if box: name = get_new_box_name(box) if name: box.Name = name if __name__ in ('__main__', '__builtin__'): rename_selected_relation_box()
30.83871
103
0.670502
0
0
0
0
0
0
0
0
1,048
0.548117
584861b23601a5bd9f5d5e6bce09eb691a44f1c2
4,010
py
Python
osu_scene_switcher.py
FunOrange/osu-scene-switcher
471fc654fe4a222abaf4fbcf062e8302dd52bb18
[ "MIT" ]
4
2021-05-22T20:56:36.000Z
2022-03-02T00:19:45.000Z
osu_scene_switcher.py
FunOrange/obs-osu-noise-suppression-switcher
471fc654fe4a222abaf4fbcf062e8302dd52bb18
[ "MIT" ]
null
null
null
osu_scene_switcher.py
FunOrange/obs-osu-noise-suppression-switcher
471fc654fe4a222abaf4fbcf062e8302dd52bb18
[ "MIT" ]
1
2021-01-29T18:28:04.000Z
2021-01-29T18:28:04.000Z
import os import time import obspython as obs initial_load = False status_file = '' idle_scene = '' playing_scene = '' def undb(db): return pow(10, db/20) def script_description(): return 'Automatically switch scenes upon entering osu! gameplay.\n\n' \ 'See github page for setup instructions.\n\n' \ 'Stream Companion must be open to take effect.' def script_properties(): props = obs.obs_properties_create() obs.obs_properties_add_text(props, 'status_file', 'osu! status file location', obs.OBS_TEXT_DEFAULT) obs.obs_properties_add_text(props, 'playing_scene', 'Scene to switch to when entering gameplay', obs.OBS_TEXT_DEFAULT) obs.obs_properties_add_text(props, 'idle_scene', 'Scene to switch to when exiting gameplay', obs.OBS_TEXT_DEFAULT) return props def script_load(settings): global status_file global idle_scene global playing_scene status_file = obs.obs_data_get_string(settings, 'status_file') idle_scene = obs.obs_data_get_string(settings, 'idle_scene') playing_scene = obs.obs_data_get_string(settings, 'playing_scene') # Delay check valid source until OBS is fully loaded obs.script_log(obs.LOG_INFO, 'Starting in 10 seconds...') obs.timer_add(validate_and_start, 10000) """ Checks if status file exists and both scenes exist, then starts the main script timer """ def validate_and_start(): global initial_load global idle_scene global playing_scene initial_load = True obs.timer_remove(validate_and_start) obs.timer_remove(check_status_and_toggle) # check if file exists if not os.path.isfile(status_file): raise FileNotFoundError(f"Could not find file '{status_file}'") obs.script_log(obs.LOG_INFO, f'{status_file} found!') # check if gameplay enter scene exists src = obs.obs_get_source_by_name(playing_scene) if src is None or obs.obs_source_get_type(src) != obs.OBS_SOURCE_TYPE_SCENE: obs.obs_source_release(src) raise FileNotFoundError(f" Could not find scene '{playing_scene}'") obs.obs_source_release(src) obs.script_log(obs.LOG_INFO, f"Scene '{playing_scene}' found!") # check if gameplay exit scene exists src = obs.obs_get_source_by_name(idle_scene) if src is None or obs.obs_source_get_type(src) != obs.OBS_SOURCE_TYPE_SCENE: obs.obs_source_release(src) raise FileNotFoundError(f" Could not find scene '{idle_scene}'") obs.obs_source_release(src) obs.script_log(obs.LOG_INFO, f"Scene '{idle_scene}' found!") obs.script_log(obs.LOG_INFO, 'Script is now active.') obs.timer_add(check_status_and_toggle, 500) def script_update(settings): global status_file global idle_scene global playing_scene global initial_load if not initial_load: return status_file = obs.obs_data_get_string(settings, 'status_file') idle_scene = obs.obs_data_get_string(settings, 'idle_scene') playing_scene = obs.obs_data_get_string(settings, 'playing_scene') validate_and_start() """ Checks the osu! status file for 'Playing', then toggles Noise Suppression accordingly """ previous_status = '' def check_status_and_toggle(): global status_file global idle_scene global playing_scene global previous_status # read status file contents if not os.path.isfile(status_file): obs.timer_remove(check_status_and_toggle) raise FileNotFoundError("Could not find file '{status_file}'") with open(status_file, 'r') as f: status = f.readlines() if status == []: return status = status[0].strip() if status == previous_status: # status has not changed return # Switch scene according to game status if status == 'Playing': src = obs.obs_get_source_by_name(playing_scene) else: src = obs.obs_get_source_by_name(idle_scene) obs.obs_frontend_set_current_scene(src) obs.obs_source_release(src) previous_status = status
33.416667
122
0.721696
0
0
0
0
0
0
0
0
1,123
0.28005
5849254d7b154fa7533602568ea01800f7eb9d68
3,386
py
Python
donkey_gym/envs/donkey_env.py
mint26/donkey_gym
4d0302da5818d56f92247b9dbf389994961f487e
[ "MIT" ]
5
2018-11-01T18:48:03.000Z
2021-03-11T14:36:22.000Z
donkey_gym/envs/donkey_env.py
mint26/donkey_gym
4d0302da5818d56f92247b9dbf389994961f487e
[ "MIT" ]
null
null
null
donkey_gym/envs/donkey_env.py
mint26/donkey_gym
4d0302da5818d56f92247b9dbf389994961f487e
[ "MIT" ]
7
2018-10-13T19:48:14.000Z
2021-10-31T15:10:52.000Z
''' file: donkey_env.py author: Tawn Kramer date: 2018-08-31 ''' import os from threading import Thread import numpy as np import gym from gym import error, spaces, utils from gym.utils import seeding from donkey_gym.envs.donkey_sim import DonkeyUnitySimContoller from donkey_gym.envs.donkey_proc import DonkeyUnityProcess class DonkeyEnv(gym.Env): """ OpenAI Gym Environment for Donkey """ metadata = { "render.modes": ["human", "rgb_array"], } ACTION = ["steer", "throttle"] def __init__(self, level, time_step=0.05, frame_skip=2): print("starting DonkeyGym env") # start Unity simulation subprocess self.proc = DonkeyUnityProcess() try: exe_path = os.environ['DONKEY_SIM_PATH'] except: print("Missing DONKEY_SIM_PATH environment var. Using defaults") #you must start the executable on your own exe_path = "self_start" try: port = int(os.environ['DONKEY_SIM_PORT']) except: print("Missing DONKEY_SIM_PORT environment var. Using defaults") port = 9090 try: headless = os.environ['DONKEY_SIM_HEADLESS']=='1' except: print("Missing DONKEY_SIM_HEADLESS environment var. Using defaults") headless = False self.proc.start(exe_path, headless=headless, port=port) # start simulation com self.viewer = DonkeyUnitySimContoller(level=level, time_step=time_step, port=port) # steering # TODO(r7vme): Add throttle self.action_space = spaces.Box(low=np.array([-1.0]), high=np.array([1.0])) # camera sensor data self.observation_space = spaces.Box(0, 255, self.viewer.get_sensor_size(), dtype=np.uint8) # simulation related variables. self.seed() # Frame Skipping self.frame_skip = frame_skip # wait until loaded self.viewer.wait_until_loaded() def close(self): self.proc.quit() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): for i in range(self.frame_skip): self.viewer.take_action(action) observation, reward, done, info = self.viewer.observe() return observation, reward, done, info def reset(self): self.viewer.reset() observation, reward, done, info = self.viewer.observe() return observation def render(self, mode="human", close=False): if close: self.viewer.quit() return self.viewer.render(mode) def is_game_over(self): return self.viewer.is_game_over() ## ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ## class GeneratedRoadsEnv(DonkeyEnv): def __init__(self): super(GeneratedRoadsEnv, self).__init__(level=0) class WarehouseEnv(DonkeyEnv): def __init__(self): super(WarehouseEnv, self).__init__(level=1) class AvcSparkfunEnv(DonkeyEnv): def __init__(self): super(AvcSparkfunEnv, self).__init__(level=2) class GeneratedTrackEnv(DonkeyEnv): def __init__(self): super(GeneratedTrackEnv, self).__init__(level=3)
27.528455
99
0.60189
2,975
0.878618
0
0
0
0
0
0
723
0.213526
5849a619f304aa85187564eba6cb5913a8f7354f
2,403
py
Python
tests/unit/backend/corpora/common/entities/datasets/test_revision.py
chanzuckerberg/dcp-prototype
24d2323ba5ae1482395da35ea11c42708e3a52ce
[ "MIT" ]
2
2020-02-07T18:12:12.000Z
2020-02-11T14:59:03.000Z
tests/unit/backend/corpora/common/entities/datasets/test_revision.py
HumanCellAtlas/dcp-prototype
44ca66a266004124f39d7d3e3dd75e9076012ff0
[ "MIT" ]
173
2020-01-29T17:48:02.000Z
2020-03-20T02:52:58.000Z
tests/unit/backend/corpora/common/entities/datasets/test_revision.py
HumanCellAtlas/dcp-prototype
44ca66a266004124f39d7d3e3dd75e9076012ff0
[ "MIT" ]
1
2020-03-20T17:06:54.000Z
2020-03-20T17:06:54.000Z
from tests.unit.backend.corpora.common.entities.datasets import TestDataset class TestDatasetRevision(TestDataset): def test__create_dataset_revision(self): dataset = self.generate_dataset_with_s3_resources(self.session, published=True) rev_dataset = dataset.create_revision("test_collection_id_revision").to_dict() dataset = dataset.to_dict() with self.subTest("artifacts are correctly created and point to correct s3 uri"): rev_artifacts = rev_dataset.pop("artifacts") original_artifacts = dataset.pop("artifacts") for i in range(0, len(rev_artifacts)): for key in rev_artifacts[i].keys(): self.compare_original_and_revision( original_artifacts[i], rev_artifacts[i], key, ("dataset_id", "id") ) with self.subTest("deployment is correctly created and points to correct s3 uri "): rev_deployment = rev_dataset.pop("explorer_url") original_deployment = dataset.pop("explorer_url") self.assertIsNotNone(original_deployment) self.assertEqual(rev_deployment, f"http://bogus.url/d/{rev_dataset['id']}.cxg/") with self.subTest("Test processing status copied over"): rev_processing_status = rev_dataset.pop("processing_status") original_processing_status = dataset.pop("processing_status") for key in rev_processing_status.keys(): self.compare_original_and_revision( original_processing_status, rev_processing_status, key, ("dataset_id", "id") ) with self.subTest("revision points at a different collection"): revision_collection = rev_dataset.pop("collection") dataset_1_collection = dataset.pop("collection") self.assertNotEqual(revision_collection, dataset_1_collection) with self.subTest("metadata of revised matches original"): for key in rev_dataset.keys(): self.compare_original_and_revision(dataset, rev_dataset, key, ("original_id", "id", "collection_id")) def compare_original_and_revision(self, original, revision, key, unique_fields): if key in unique_fields: self.assertNotEqual(original[key], revision[key]) else: self.assertEqual(original[key], revision[key])
52.23913
117
0.665418
2,324
0.967124
0
0
0
0
0
0
492
0.204744
584a11d14b64edf45f4d6711e52adb48c3e934c3
3,966
py
Python
main.py
parzibyte/login-flask
165e10980f6a34c7587a53578ed361506eb37475
[ "MIT" ]
2
2021-09-21T16:37:41.000Z
2021-12-09T17:38:18.000Z
main.py
parzibyte/login-flask
165e10980f6a34c7587a53578ed361506eb37475
[ "MIT" ]
null
null
null
main.py
parzibyte/login-flask
165e10980f6a34c7587a53578ed361506eb37475
[ "MIT" ]
1
2021-08-16T01:36:58.000Z
2021-08-16T01:36:58.000Z
""" ____ _____ _ _ _ | _ \ | __ \ (_) | | | | |_) |_ _ | |__) |_ _ _ __ _____| |__ _ _| |_ ___ | _ <| | | | | ___/ _` | '__|_ / | '_ \| | | | __/ _ \ | |_) | |_| | | | | (_| | | / /| | |_) | |_| | || __/ |____/ \__, | |_| \__,_|_| /___|_|_.__/ \__, |\__\___| __/ | __/ | |___/ |___/ ____________________________________ / Si necesitas ayuda, contáctame en \ \ https://parzibyte.me / ------------------------------------ \ ^__^ \ (oo)\_______ (__)\ )\/\ ||----w | || || Creado por Parzibyte (https://parzibyte.me). ------------------------------------------------------------------------------------------------ | IMPORTANTE | Si vas a borrar este encabezado, considera: Seguirme: https://parzibyte.me/blog/sigueme/ Y compartir mi blog con tus amigos También tengo canal de YouTube: https://www.youtube.com/channel/UCroP4BTWjfM0CkGB6AFUoBg?sub_confirmation=1 Twitter: https://twitter.com/parzibyte Facebook: https://facebook.com/parzibyte.fanpage Instagram: https://instagram.com/parzibyte Hacer una donación vía PayPal: https://paypal.me/LuisCabreraBenito ------------------------------------------------------------------------------------------------ """ from flask import Flask, render_template, request, redirect, session, flash app = Flask(__name__) """ Clave secreta. Esta debe ser aleatoria, puedes generarla tú. Primero instala Python y agrega python a la PATH: https://parzibyte.me/blog/2019/10/08/instalar-python-pip-64-bits-windows/ Luego abre una terminal y ejecuta: python Entrarás a la CLI de Python, ahí ejecuta: import os; print(os.urandom(16)); Eso te dará algo como: b'\x11\xad\xec\t\x99\x8f\xfa\x86\xe8A\xd9\x1a\xf6\x12Z\xf4' Simplemente remplaza la clave que se ve a continuación con los bytes aleatorios que generaste """ app.secret_key = b'\xaa\xe4V}y~\x84G\xb5\x95\xa0\xe0\x96\xca\xa7\xe7' """ Definición de rutas """ # Protegida. Solo pueden entrar los que han iniciado sesión @app.route("/escritorio") def escritorio(): return render_template("escritorio.html") # Formulario para iniciar sesión @app.route("/login") def login(): return render_template("login.html") # Manejar login @app.route("/hacer_login", methods=["POST"]) def hacer_login(): correo = request.form["correo"] palabra_secreta = request.form["palabra_secreta"] # Aquí comparamos. Lo hago así de fácil por simplicidad # En la vida real debería ser con una base de datos y una contraseña hasheada if correo == "parzibyte@gmail.com" and palabra_secreta == "123": # Si coincide, iniciamos sesión y además redireccionamos session["usuario"] = correo # Aquí puedes colocar más datos. Por ejemplo # session["nivel"] = "administrador" return redirect("/escritorio") else: # Si NO coincide, lo regresamos flash("Correo o contraseña incorrectos") return redirect("/login") # Cerrar sesión @app.route("/logout") def logout(): session.pop("usuario", None) return redirect("/login") # Un "middleware" que se ejecuta antes de responder a cualquier ruta. Aquí verificamos si el usuario ha iniciado sesión @app.before_request def antes_de_cada_peticion(): ruta = request.path # Si no ha iniciado sesión y no quiere ir a algo relacionado al login, lo redireccionamos al login if not 'usuario' in session and ruta != "/login" and ruta != "/hacer_login" and ruta != "/logout" and not ruta.startswith("/static"): flash("Inicia sesión para continuar") return redirect("/login") # Si ya ha iniciado, no hacemos nada, es decir lo dejamos pasar # Iniciar el servidor if __name__ == "__main__": app.run(host='0.0.0.0', port=8000, debug=True)
36.054545
137
0.594049
0
0
0
0
1,470
0.368144
0
0
3,086
0.772852
584b5746e6a8959beb85942376ecc9e56d8276af
707
py
Python
events/kawacon2016/migrations/0003_auto_20160127_1924.py
jlaunonen/turska
fc6ec4e0ae50a823e931152ce8835098b96f5966
[ "CC-BY-3.0" ]
null
null
null
events/kawacon2016/migrations/0003_auto_20160127_1924.py
jlaunonen/turska
fc6ec4e0ae50a823e931152ce8835098b96f5966
[ "CC-BY-3.0" ]
null
null
null
events/kawacon2016/migrations/0003_auto_20160127_1924.py
jlaunonen/turska
fc6ec4e0ae50a823e931152ce8835098b96f5966
[ "CC-BY-3.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2016-01-27 17:24 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('kawacon2016', '0002_auto_20160127_1922'), ] operations = [ migrations.AlterField( model_name='signupextra', name='needs_lodging', field=models.ManyToManyField(blank=True, help_text='V\xe4nk\xe4rin\xe4 saat tarvittaessa maksuttoman majoituksen lattiamajoituksessa. Merkitse t\xe4h\xe4n, min\xe4 \xf6in\xe4 tarvitset lattiamajoitusta.', to='kawacon2016.Night', verbose_name='Majoitustarve lattiamajoituksessa'), ), ]
33.666667
291
0.700141
550
0.777935
0
0
0
0
0
0
342
0.483734