hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
f7fe2e12189f5c7bd5c301d8cd6a29b000ff6951
4,352
py
Python
origin_check.py
mikispag/OriginCheck
b3bda26c382cdbfd78bddc11d99d6e8723255599
[ "MIT" ]
1
2020-08-19T06:53:24.000Z
2020-08-19T06:53:24.000Z
origin_check.py
mikispag/OriginCheck
b3bda26c382cdbfd78bddc11d99d6e8723255599
[ "MIT" ]
null
null
null
origin_check.py
mikispag/OriginCheck
b3bda26c382cdbfd78bddc11d99d6e8723255599
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import concurrent.futures import logging import requests from sys import argv, exit from urllib.parse import urlparse logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) HEADERS = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.30 Safari/537.36' } MIN_RESPONSE_LENGTH = 100 NUM_WORKERS = 50 urls = [] if len(argv) < 2: exit("Please specify a URLs file.") with open(argv[1]) as f: urls = [line.rstrip() for line in f] def check(url): # Issue a GET request r = requests.get(url, timeout=5, allow_redirects=False, headers=HEADERS) response_size = len(r.text) if r.status_code != 200 or response_size < MIN_RESPONSE_LENGTH: logging.debug("Ignoring %s: response %d, response size %d.", url, r.status_code, response_size) return None # Issue a second request to check for stability (200 + same response size) r = requests.get(url, timeout=5, allow_redirects=False, headers=HEADERS) if r.status_code != 200 or response_size != len(r.text): logging.debug("URL %s is unstable.", url) return None logging.info("URL %s is stable.", url) # If the URL is stable, try adding a same-origin Origin header parsed_url = urlparse(r.url) origin = parsed_url.scheme + '://' + parsed_url.netloc logging.debug('Sending same-origin Origin %s for %s...', origin, url) result = { 'url': url, 'SAMEORIGIN_OK': False, 'CROSSORIGIN_OK': False, 'SAMEORIGIN_KO_STATUS': False, 'SAMEORIGIN_KO_RESPONSE': False, 'CROSSORIGIN_KO_STATUS': False, 'CROSSORIGIN_KO_RESPONSE': False } r = requests.get(url, timeout=5, allow_redirects=False, headers={**HEADERS, **{'Origin': origin}}) if r.status_code != 200: logging.info( "[SAME ORIGIN] URL %s changed status code to %d.", url, r.status_code) result['SAMEORIGIN_KO_STATUS'] = r.status_code return result if response_size != len(r.text): logging.info( "[SAME ORIGIN] URL %s changed response size to %d.", url, len(r.text)) result['SAMEORIGIN_KO_RESPONSE'] = True return result result['SAMEORIGIN_OK'] = True # If same-origin Origin header is OK, try a cross-origin one. logging.debug('Sending cross-origin Origin for URL %s.', url) r = requests.get(url, timeout=5, allow_redirects=False, headers={ **HEADERS, **{'Origin': 'https://example.org'}}) if r.status_code != 200: logging.info( "[CROSS ORIGIN] URL %s changed status code to %d.", url, r.status_code) result['CROSSORIGIN_KO_STATUS'] = r.status_code return result if response_size != len(r.text): logging.info( "[CROSS ORIGIN] URL %s changed response size to %d.", url, len(r.text)) result['CROSSORIGIN_KO_RESPONSE'] = True return result result['CROSSORIGIN_OK'] = True return result with open('results.csv', 'w') as w: print('url,SAMEORIGIN_OK,CROSSORIGIN_OK,SAMEORIGIN_KO_STATUS,SAMEORIGIN_KO_RESPONSE,CROSSORIGIN_KO_STATUS,CROSSORIGIN_KO_RESPONSE', file=w) with concurrent.futures.ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor: future_to_result = {executor.submit(check, url): url for url in urls} for future in concurrent.futures.as_completed(future_to_result): try: result = future.result() except: continue else: if result: print('{},{},{},{},{},{},{}'.format(result['url'], int(result['SAMEORIGIN_OK']), int(result['CROSSORIGIN_OK']), int(result['SAMEORIGIN_KO_STATUS']), int(result['SAMEORIGIN_KO_RESPONSE']), int(result['CROSSORIGIN_KO_STATUS']), int(result['CROSSORIGIN_KO_RESPONSE']) ), file=w)
39.563636
143
0.584789
0
0
0
0
0
0
0
0
1,361
0.31273
f7ff07662b3e96ced8491b8279428f96107213e1
743
py
Python
orange3/Orange/preprocess/setup.py
rgschmitz1/BioDepot-workflow-builder
f74d904eeaf91ec52ec9b703d9fb38e9064e5a66
[ "MIT" ]
54
2017-01-08T17:21:49.000Z
2021-11-02T08:46:07.000Z
orange3/Orange/preprocess/setup.py
Synthia-3/BioDepot-workflow-builder
4ee93abe2d79465755e82a145af3b6a6e1e79fd4
[ "MIT" ]
22
2017-03-28T06:03:14.000Z
2021-07-28T05:43:55.000Z
orange3/Orange/preprocess/setup.py
Synthia-3/BioDepot-workflow-builder
4ee93abe2d79465755e82a145af3b6a6e1e79fd4
[ "MIT" ]
21
2017-01-26T21:12:09.000Z
2022-01-31T21:34:59.000Z
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD Style. import os import numpy def configuration(parent_package="", top_path=None): from numpy.distutils.misc_util import Configuration libraries = [] if os.name == "posix": libraries.append("m") config = Configuration("preprocess", parent_package, top_path) for source in ("_discretize.c", "_relieff.cpp"): config.add_extension( source.rsplit(".", 1)[0], sources=[source], include_dirs=[numpy.get_include()], libraries=libraries, ) return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration(top_path="").todict())
24.766667
66
0.644684
0
0
0
0
0
0
0
0
147
0.197847
f7ff646590489831f35fa9fe7ca9c0fe9f2f76be
592
py
Python
ProjectEuler_plus/euler_042.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
ProjectEuler_plus/euler_042.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
ProjectEuler_plus/euler_042.py
byung-u/HackerRank
4c02fefff7002b3af774b99ebf8d40f149f9d163
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import sys from math import sqrt # (n * (n + 1)) / 2 -> n ** 2 + n - (2 * x) # Solved with quadratic equation # https://en.wikipedia.org/wiki/Quadratic_equation for _ in range(int(input().strip())): t = int(input().strip()) d = (sqrt(4 * 2 * t + 1) - 1) if d.is_integer(): print(int(d) // 2) else: print(-1) def e42(): for _ in range(int(input().strip())): n = int(input().strip()) root = int(sqrt(2 * n)) if (root * (root + 1)) // 2 == n: print(root) else: print(-1)
21.925926
52
0.489865
0
0
0
0
0
0
0
0
151
0.255068
7900515320c3b3319c03f61841dc3f24a082e7f3
12,476
py
Python
src/lpb.py
RobbinBouwmeester/LIT
0516a69fbf1b8e9976524e0c243f82de041df544
[ "Apache-2.0" ]
null
null
null
src/lpb.py
RobbinBouwmeester/LIT
0516a69fbf1b8e9976524e0c243f82de041df544
[ "Apache-2.0" ]
null
null
null
src/lpb.py
RobbinBouwmeester/LIT
0516a69fbf1b8e9976524e0c243f82de041df544
[ "Apache-2.0" ]
null
null
null
""" Copyright (c) 2017 Robbin Bouwmeester Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" __author__ = "Robbin Bouwmeester" __copyright__ = "Copyright 2017" __credits__ = ["Robbin Bouwmeester"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "Robbin Bouwmeester" __email__ = "Robbin.bouwmeester@ugent.be" __status__ = "nightly funzies" import pandas as pd from itertools import groupby import logging class LipidBLAST_entry(): def __init__(self, name="", ion="", mw=0.0, chem_form="", num_ms2_peaks=0, f_acyl_lengths=[], unsats=[], ms2=[]): self.name = name self.ion = ion self.mw = mw self.chem_form = chem_form self.num_ms2_peaks = num_ms2_peaks self.ms2 = ms2 self.f_acyl_lengths = f_acyl_lengths self.unsats = unsats def __str__(self): ret_string = [] ret_string.append("================") ret_string.append("") ret_string.append("Lipid: %s" % (self.name)) ret_string.append("MW: %s" % (self.mw)) ret_string.append("Formula: %s" % (self.chem_form)) ret_string.append ("") for f in self.ms2: ret_string.append("%s\t%s\t%s" % (f[0],f[1],f[2])) ret_string.append("") ret_string.append("================") return("\n".join(ret_string)) class LipidBLAST(): def __init__(self, f_names=["LipidBlast-pos.msp","LipidBlast-neg.msp"], min_acyl_length=10, exclude_lyso=False, include_ions=["[M-H]-"], #,"[M+]","[M+H]+","[M+NH4]+","[M-H]-","[M-2H](2-)","[M-Ac-H]-","[M+Na2-H]+","[M+]","[M+NH4]+","[M+Na]+","[M-2H](2-)","[M-Ac-H]-" "[M+]","[M+H]+","[M+NH4]+","[M-H]-","[M-2H](2-)","[M-Ac-H]-","[M+Na2-H]+","[M+]","[M+NH4]+","[M+Na]+","[M-2H](2-)","[M-Ac-H]-" include_class=["PE","GPSer","GPCho","PC","GPA","PE","GPIns","GPEtn","GPGro"], #,"SM","TG","CL", #,"SM","TG","CL","GPSer","GPCho","PC","GPA","PE","GPIns","GPEtn","GPGro aggregate_acyls=False, use_simplified_names=True, dalt_diff_lookup_bin=1): self.f_names = f_names self.min_acyl_length = min_acyl_length self.exclude_lyso = exclude_lyso self.include_ions = include_ions self.include_class = include_class self.use_simplified_names = use_simplified_names self.dalt_diff_lookup_bin = dalt_diff_lookup_bin self.aggregate_acyls = aggregate_acyls self.lpb_dict = {} self.ms1_dict = {} self.ms1_dict_lookup = {} self.tot_entr_read = 0 if len(self.f_names) > 0: for f_name in f_names: self.read_lpb(f_name) def __str__(self): ret_string = [] ret_string.append("Filenames: %s" % (self.f_names)) ret_string.append("Min acyl length: %s" % (self.min_acyl_length)) ret_string.append("Exclude lyso: %s" % (self.exclude_lyso)) ret_string.append("Include ions: %s" % (self.include_ions)) ret_string.append("Include lipid classes: %s" % (self.include_class)) ret_string.append("Use simplified names: %s" % (self.use_simplified_names)) ret_string.append("Lookup diff: %s Da" % (self.dalt_diff_lookup_bin)) ret_string.append("Total entries read: %s" % (self.tot_entr_read)) return("\n".join(ret_string)) def read_lpb(self,f_name): def _get_general_info(name): # Currently limited to max 9 unsats unsats = [n[0] for n in name.split(":")[1:]] class_name = name.split("(")[0] if "-" in class_name: name_split = name.split("(") name_split[0] = name.split("(")[0].replace("-","") name = "(".join(name_split) acyl_lengths = name.split(":") acyl_lengths.pop() f_acyl_lengths = [] for acl in acyl_lengths: try: if "/" in acl: f_acyl_lengths.append(acl.split("/")[1].replace("d","").replace("methyl-","")) elif "-" in acl: f_acyl_lengths.append(acl.split("-")[1].replace("d","").replace("methyl-","")) else: f_acyl_lengths.append(acl.split("(")[1].replace("d","").replace("methyl-","")) except: logging.warning("Could not format to get acyl lengths: %s" % (name)) return([0],[0],"") try: f_acyl_lengths = list(map(int,f_acyl_lengths)) unsats = list(map(int,unsats)) except: logging.warning("Could not format to get acyl lengths: %s" % (name)) return([0],[0],"") return(f_acyl_lengths,unsats,class_name) def _simplify_name(class_name,acyls,unsats): simplified_name = "" simplified_name += class_name simplified_name += "(" if not self.aggregate_acyls: for f,u in zip(f_acyl_lengths,unsats): simplified_name += str(f) simplified_name += ":" simplified_name += str(u) simplified_name += "/" simplified_name = simplified_name[:-1] else: simplified_name += str(sum(f_acyl_lengths)) simplified_name += ":" simplified_name += str(sum(unsats)) simplified_name += ")" return(simplified_name) def _get_chem_form(chem_form_native,ion): chem_form_ion = "" for i,c in enumerate(chem_form_native): if i+1 >= len(chem_form_native): if c.isdigit(): chem_form_ion += c else: chem_form_ion += c chem_form_ion += "1" elif c.isdigit(): chem_form_ion += c elif c.isupper() and chem_form_native[i+1].isdigit(): chem_form_ion += c elif c.isupper() and chem_form_native[i+1].isupper(): chem_form_ion += c chem_form_ion += "1" elif chem_form_native[i+1].isdigit(): chem_form_ion += c list_chem= [''.join(g) for _, g in groupby(chem_form_ion, str.isalpha)] chem_form_ion = dict(zip(list_chem[::2],map(int,list_chem[1::2]))) if "+" not in ion: if "[M-H]-" in ion: try: chem_form_ion["H"] -= 1 except KeyError: logging.critical("ERROR: could not subtract atom when getting the ionized form from the molecule") if "[M-2H](2-)" in ion: try: chem_form_ion["H"] -= 2 except KeyError: logging.critical("ERROR: could not subtract atom when getting the ionized form from the molecule") if "[M-Ac-H]-" in ion: try: chem_form_ion["C"] += 2 chem_form_ion["H"] += 3 chem_form_ion["O"] += 2 except KeyError: logging.critical("ERROR: could not subtract atom when getting the ionized form from the molecule") else: if "[M+H]+" in ion: try: chem_form_ion["H"] += 1 except KeyError: logging.critical("ERROR: could not add atom when getting the ionized form from the molecule") if "[M+NH4]+" in ion: try: if chem_form_ion.has_key("N"): chem_form_ion["N"] += 1 else: chem_form_ion["N"] = 1 chem_form_ion["H"] += 4 except KeyError: logging.critical("ERROR: could not add atom when getting the ionized form from the molecule") if "[M+Na]+" in ion: try: if chem_form_ion.has_key("Na"): chem_form_ion["Na"] += 1 else: chem_form_ion["Na"] = 1 except KeyError: logging.critical("ERROR: could not add atom when getting the ionized form from the molecule") if "[M+Na2-H]+" in ion: try: if chem_form_ion.has_key("Na"): chem_form_ion["Na"] += 2 else: chem_form_ion["Na"] = 2 chem_form_ion["H"] -= 1 except KeyError: logging.critical("ERROR: could not add atom when getting the ionized form from the molecule") return("".join([atom+str(num_atom) for atom,num_atom in sorted(chem_form_ion.items())])) with open(f_name) as infile: fragments = [] pre_c_mass = 0.0 name = "" ion = "" for line in infile: line = line.strip() #print(line) if len(line) == 0: f_acyl_lengths,unsats,class_name = _get_general_info(name) f_acyl_lengths_error = [a for a in f_acyl_lengths if a < self.min_acyl_length and a != 0] if (len(class_name) == 0) or \ (ion_type not in self.include_ions) or \ (len([c for c in self.include_class if c in name]) == 0) or \ (self.exclude_lyso and "/0:0" in name) or \ (len(f_acyl_lengths_error) > 0): fragments = [] pre_c_mass = 0.0 name = "" ion_type = "" continue simplified_name = _simplify_name(class_name,f_acyl_lengths,unsats) new_entry = LipidBLAST_entry(name=name, ion=ion_type, mw=pre_c_mass, chem_form=chem_form_ion, num_ms2_peaks=num_peaks, ms2=fragments, f_acyl_lengths=f_acyl_lengths, unsats=unsats) self.lpb_dict["%s|%s" % (simplified_name,ion_type)] = new_entry loc_dict = int(pre_c_mass) - int(pre_c_mass) % self.dalt_diff_lookup_bin if loc_dict in self.ms1_dict_lookup.keys(): self.ms1_dict_lookup[loc_dict]["%s|%s" % (simplified_name,ion_type)] = new_entry else: self.ms1_dict_lookup[loc_dict] = {} self.ms1_dict_lookup[loc_dict]["%s|%s" % (simplified_name,ion_type)] = new_entry self.tot_entr_read += 1 fragments = [] pre_c_mass = 0.0 name = "" ion_type = "" elif ":" in line: if line.startswith("PRECURSORMZ"): pre_c_mass = float(line.split(": ")[1]) if line.startswith("Name: "): name = line.split("; ")[-1] ion_type = line.split("; ")[1] if line.startswith("Comment: "): # Some of the chemical formulas contain a ";" at the end; remove chem_form_native = line.split("; ")[-1].replace(";","") #print(chem_form_native) chem_form_ion = _get_chem_form(chem_form_native,ion_type) if line.startswith("Num Peaks:"): num_peaks = int(line.split(": ")[-1]) else: if line=="\x1a": #EOF continue fragments.append([float(line.split(" ")[0]),float(line.split(" ")[1]),line.split(" ")[2].replace("\"","")]) class PrecursorFilter(): def __init__(self,db,ppm=10): self.db = db self.ppm = ppm def retrieve_entry_pre_c_mass(self,pre_c_mass): mass_error_threshold = (pre_c_mass*self.ppm)/1000000 ret_entries = [] loc_dict = int(pre_c_mass) - int(pre_c_mass) % self.db.dalt_diff_lookup_bin loc_dict_lower = (int(pre_c_mass-mass_error_threshold)) - (int(pre_c_mass-mass_error_threshold)) % self.db.dalt_diff_lookup_bin loc_dict_upper = (int(pre_c_mass+mass_error_threshold)) - (int(pre_c_mass+mass_error_threshold)) % self.db.dalt_diff_lookup_bin # TODO set does not have to be list locs_to_search = list(set([loc_dict,loc_dict_lower,loc_dict_upper])) for loc in locs_to_search: try: for name,entr in self.db.ms1_dict_lookup[loc].items(): mass_error = abs(entr.mw-pre_c_mass) if mass_error < mass_error_threshold: ret_entries.append([name,mass_error,entr]) except KeyError: logging.warning("Could not find an entry in the database for prec mass: %s" % (pre_c_mass)) continue return(ret_entries) if __name__ == "__main__": logging.basicConfig(filename="prec_filter.log", level=logging.DEBUG, filemode="w", format="%(levelname)s:%(created)f:%(asctime)s:%(message)s") logging.info("Reading the LPB database ...") lpb = LipidBLAST() logging.info("Done reading the LPB database ...") logging.info(lpb) step_three_df = pd.read_csv("stepone_new.csv") precf = Precursor_filter(lpb) prec_filt_result = [] for index,row in step_three_df.iterrows(): if (index % 10000==0): logging.info("Analyzing row number and m/z: %s - %s" % (index,row["mz"])) prec_hits = precf.retrieve_entry_pre_c_mass(row["mz"]) for hit in prec_hits: prec_filt_result.append([row["mz"],hit[2].mw,hit[1],hit[0].split("|")[0],hit[2].chem_form,hit[0].split("|")[1]]) prec_filt_result = pd.DataFrame(prec_filt_result) prec_filt_result.columns = ["Input Mass","Matched Mass","Delta","Abbreviation","Formula","Ion"] prec_filt_result.to_excel("batch_results.xlsx",index=False)
36.162319
303
0.655579
10,074
0.80747
0
0
0
0
0
0
3,499
0.280458
79016946767147d0fbaeddece8c5f2511d1e6b1d
178
py
Python
floris/tools/optimization/scipy/__init__.py
eirikur16/flrs
c98604593753def05086b54ce82f5551f01d2529
[ "Apache-2.0" ]
91
2019-06-04T08:56:29.000Z
2022-03-13T17:39:22.000Z
floris/tools/optimization/scipy/__init__.py
eirikur16/flrs
c98604593753def05086b54ce82f5551f01d2529
[ "Apache-2.0" ]
224
2019-04-08T22:03:45.000Z
2022-03-31T17:56:09.000Z
floris/tools/optimization/scipy/__init__.py
eirikur16/flrs
c98604593753def05086b54ce82f5551f01d2529
[ "Apache-2.0" ]
97
2019-04-23T20:48:20.000Z
2022-03-29T08:17:02.000Z
from . import ( yaw, layout, base_COE, optimization, layout_height, power_density, yaw_wind_rose, power_density_1D, yaw_wind_rose_parallel, )
14.833333
27
0.651685
0
0
0
0
0
0
0
0
0
0
790266e9a7bcf554bd70851b9a13216ab9f797e3
11,530
py
Python
src/gdata/spreadsheets/data.py
Cloudlock/gdata-python3
a6481a13590bfa225f91a97b2185cca9aacd1403
[ "Apache-2.0" ]
19
2017-06-09T13:38:03.000Z
2020-12-12T07:45:48.000Z
src/gdata/spreadsheets/data.py
AlexxIT/gdata-python3
5cc5a83a469d87f804d1fda8760ec76bcb6050c9
[ "Apache-1.1" ]
11
2017-07-22T07:09:54.000Z
2020-12-02T15:08:48.000Z
src/gdata/spreadsheets/data.py
AlexxIT/gdata-python3
5cc5a83a469d87f804d1fda8760ec76bcb6050c9
[ "Apache-1.1" ]
25
2017-07-03T11:30:39.000Z
2020-10-01T02:21:13.000Z
#!/usr/bin/env python # # Copyright (C) 2009 Google Inc. # # Licensed under the Apache License 2.0; # This module is used for version 2 of the Google Data APIs. """Provides classes and constants for the XML in the Google Spreadsheets API. Documentation for the raw XML which these classes represent can be found here: http://code.google.com/apis/spreadsheets/docs/3.0/reference.html#Elements """ # __author__ = 'j.s@google.com (Jeff Scudder)' import atom.core import gdata.data GS_TEMPLATE = '{http://schemas.google.com/spreadsheets/2006}%s' GSX_NAMESPACE = 'http://schemas.google.com/spreadsheets/2006/extended' INSERT_MODE = 'insert' OVERWRITE_MODE = 'overwrite' WORKSHEETS_REL = 'http://schemas.google.com/spreadsheets/2006#worksheetsfeed' BATCH_POST_ID_TEMPLATE = ('https://spreadsheets.google.com/feeds/cells' '/%s/%s/private/full') BATCH_ENTRY_ID_TEMPLATE = '%s/R%sC%s' BATCH_EDIT_LINK_TEMPLATE = '%s/batch' class Error(Exception): pass class FieldMissing(Exception): pass class HeaderNotSet(Error): """The desired column header had no value for the row in the list feed.""" class Cell(atom.core.XmlElement): """The gs:cell element. A cell in the worksheet. The <gs:cell> element can appear only as a child of <atom:entry>. """ _qname = GS_TEMPLATE % 'cell' col = 'col' input_value = 'inputValue' numeric_value = 'numericValue' row = 'row' class ColCount(atom.core.XmlElement): """The gs:colCount element. Indicates the number of columns in the worksheet, including columns that contain only empty cells. The <gs:colCount> element can appear as a child of <atom:entry> or <atom:feed> """ _qname = GS_TEMPLATE % 'colCount' class Field(atom.core.XmlElement): """The gs:field element. A field single cell within a record. Contained in an <atom:entry>. """ _qname = GS_TEMPLATE % 'field' index = 'index' name = 'name' class Column(Field): """The gs:column element.""" _qname = GS_TEMPLATE % 'column' class Data(atom.core.XmlElement): """The gs:data element. A data region of a table. Contained in an <atom:entry> element. """ _qname = GS_TEMPLATE % 'data' column = [Column] insertion_mode = 'insertionMode' num_rows = 'numRows' start_row = 'startRow' class Header(atom.core.XmlElement): """The gs:header element. Indicates which row is the header row. Contained in an <atom:entry>. """ _qname = GS_TEMPLATE % 'header' row = 'row' class RowCount(atom.core.XmlElement): """The gs:rowCount element. Indicates the number of total rows in the worksheet, including rows that contain only empty cells. The <gs:rowCount> element can appear as a child of <atom:entry> or <atom:feed>. """ _qname = GS_TEMPLATE % 'rowCount' class Worksheet(atom.core.XmlElement): """The gs:worksheet element. The worksheet where the table lives.Contained in an <atom:entry>. """ _qname = GS_TEMPLATE % 'worksheet' name = 'name' class Spreadsheet(gdata.data.GDEntry): """An Atom entry which represents a Google Spreadsheet.""" def find_worksheets_feed(self): return self.find_url(WORKSHEETS_REL) FindWorksheetsFeed = find_worksheets_feed def get_spreadsheet_key(self): """Extracts the spreadsheet key unique to this spreadsheet.""" return self.get_id().split('/')[-1] GetSpreadsheetKey = get_spreadsheet_key class SpreadsheetsFeed(gdata.data.GDFeed): """An Atom feed listing a user's Google Spreadsheets.""" entry = [Spreadsheet] class WorksheetEntry(gdata.data.GDEntry): """An Atom entry representing a single worksheet in a spreadsheet.""" row_count = RowCount col_count = ColCount def get_worksheet_id(self): """The worksheet ID identifies this worksheet in its spreadsheet.""" return self.get_id().split('/')[-1] GetWorksheetId = get_worksheet_id class WorksheetsFeed(gdata.data.GDFeed): """A feed containing the worksheets in a single spreadsheet.""" entry = [WorksheetEntry] class Table(gdata.data.GDEntry): """An Atom entry that represents a subsection of a worksheet. A table allows you to treat part or all of a worksheet somewhat like a table in a database that is, as a set of structured data items. Tables don't exist until you explicitly create them before you can use a table feed, you have to explicitly define where the table data comes from. """ data = Data header = Header worksheet = Worksheet def get_table_id(self): if self.id.text: return self.id.text.split('/')[-1] return None GetTableId = get_table_id class TablesFeed(gdata.data.GDFeed): """An Atom feed containing the tables defined within a worksheet.""" entry = [Table] class Record(gdata.data.GDEntry): """An Atom entry representing a single record in a table. Note that the order of items in each record is the same as the order of columns in the table definition, which may not match the order of columns in the GUI. """ field = [Field] def value_for_index(self, column_index): for field in self.field: if field.index == column_index: return field.text raise FieldMissing('There is no field for %s' % column_index) ValueForIndex = value_for_index def value_for_name(self, name): for field in self.field: if field.name == name: return field.text raise FieldMissing('There is no field for %s' % name) ValueForName = value_for_name def get_record_id(self): if self.id.text: return self.id.text.split('/')[-1] return None class RecordsFeed(gdata.data.GDFeed): """An Atom feed containing the individuals records in a table.""" entry = [Record] class ListRow(atom.core.XmlElement): """A gsx column value within a row. The local tag in the _qname is blank and must be set to the column name. For example, when adding to a ListEntry, do: col_value = ListRow(text='something') col_value._qname = col_value._qname % 'mycolumnname' """ _qname = '{http://schemas.google.com/spreadsheets/2006/extended}%s' class ListEntry(gdata.data.GDEntry): """An Atom entry representing a worksheet row in the list feed. The values for a particular column can be get and set using x.get_value('columnheader') and x.set_value('columnheader', 'value'). See also the explanation of column names in the ListFeed class. """ def get_value(self, column_name): """Returns the displayed text for the desired column in this row. The formula or input which generated the displayed value is not accessible through the list feed, to see the user's input, use the cells feed. If a column is not present in this spreadsheet, or there is no value for a column in this row, this method will return None. """ values = self.get_elements(column_name, GSX_NAMESPACE) if len(values) == 0: return None return values[0].text def set_value(self, column_name, value): """Changes the value of cell in this row under the desired column name. Warning: if the cell contained a formula, it will be wiped out by setting the value using the list feed since the list feed only works with displayed values. No client side checking is performed on the column_name, you need to ensure that the column_name is the local tag name in the gsx tag for the column. For example, the column_name will not contain special characters, spaces, uppercase letters, etc. """ # Try to find the column in this row to change an existing value. values = self.get_elements(column_name, GSX_NAMESPACE) if len(values) > 0: values[0].text = value else: # There is no value in this row for the desired column, so add a new # gsx:column_name element. new_value = ListRow(text=value) new_value._qname = new_value._qname % (column_name,) self._other_elements.append(new_value) def to_dict(self): """Converts this row to a mapping of column names to their values.""" result = {} values = self.get_elements(namespace=GSX_NAMESPACE) for item in values: result[item._get_tag()] = item.text return result def from_dict(self, values): """Sets values for this row from the dictionary. Old values which are already in the entry will not be removed unless they are overwritten with new values from the dict. """ for column, value in values.items(): self.set_value(column, value) class ListsFeed(gdata.data.GDFeed): """An Atom feed in which each entry represents a row in a worksheet. The first row in the worksheet is used as the column names for the values in each row. If a header cell is empty, then a unique column ID is used for the gsx element name. Spaces in a column name are removed from the name of the corresponding gsx element. Caution: The columnNames are case-insensitive. For example, if you see a <gsx:e-mail> element in a feed, you can't know whether the column heading in the original worksheet was "e-mail" or "E-Mail". Note: If two or more columns have the same name, then subsequent columns of the same name have _n appended to the columnName. For example, if the first column name is "e-mail", followed by columns named "E-Mail" and "E-mail", then the columnNames will be gsx:e-mail, gsx:e-mail_2, and gsx:e-mail_3 respectively. """ entry = [ListEntry] class CellEntry(gdata.data.BatchEntry): """An Atom entry representing a single cell in a worksheet.""" cell = Cell class CellsFeed(gdata.data.BatchFeed): """An Atom feed contains one entry per cell in a worksheet. The cell feed supports batch operations, you can send multiple cell operations in one HTTP request. """ entry = [CellEntry] def add_set_cell(self, row, col, input_value): """Adds a request to change the contents of a cell to this batch request. Args: row: int, The row number for this cell. Numbering starts at 1. col: int, The column number for this cell. Starts at 1. input_value: str, The desired formula/content this cell should contain. """ self.add_update(CellEntry( id=atom.data.Id(text=BATCH_ENTRY_ID_TEMPLATE % ( self.id.text, row, col)), cell=Cell(col=str(col), row=str(row), input_value=input_value))) return self AddSetCell = add_set_cell def build_batch_cells_update(spreadsheet_key, worksheet_id): """Creates an empty cells feed for adding batch cell updates to. Call batch_set_cell on the resulting CellsFeed instance then send the batch request TODO: fill in Args: spreadsheet_key: The ID of the spreadsheet worksheet_id: """ feed_id_text = BATCH_POST_ID_TEMPLATE % (spreadsheet_key, worksheet_id) return CellsFeed( id=atom.data.Id(text=feed_id_text), link=[atom.data.Link( rel='edit', href=BATCH_EDIT_LINK_TEMPLATE % (feed_id_text,))]) BuildBatchCellsUpdate = build_batch_cells_update
31.162162
82
0.674761
9,881
0.856982
0
0
0
0
0
0
6,827
0.592108
79028a174225260b671df8c8ac4560369e16c2c8
710
py
Python
tests/test_issues/test_member_example.py
hsolbrig/pyjsg
5ef46d9af6a94a0cd0e91ebf8b22f61c17e78429
[ "CC0-1.0" ]
3
2017-07-23T11:11:23.000Z
2020-11-30T15:36:51.000Z
tests/test_issues/test_member_example.py
hsolbrig/pyjsg
5ef46d9af6a94a0cd0e91ebf8b22f61c17e78429
[ "CC0-1.0" ]
15
2018-01-05T17:18:34.000Z
2021-12-13T17:40:25.000Z
tests/test_issues/test_member_example.py
hsolbrig/pyjsg
5ef46d9af6a94a0cd0e91ebf8b22f61c17e78429
[ "CC0-1.0" ]
null
null
null
import unittest from pyjsg.validate_json import JSGPython class MemberExampleTestCase(unittest.TestCase): def test1(self): x = JSGPython('''doc { last_name : @string, # exactly one last name of type string first_name : @string+ # array or one or more first names age : @int?, # optional age of type int weight : @number* # array of zero or more weights } ''') rslts = x.conforms(''' { "last_name" : "snooter", "first_name" : ["grunt", "peter"], "weight" : [] }''') self.assertTrue(rslts.success) if __name__ == '__main__': unittest.main()
28.4
77
0.533803
599
0.843662
0
0
0
0
0
0
449
0.632394
7902cca06e3a841cee96255c053ca834cc5022f5
7,223
py
Python
src/pte/filetools/filefinder_abc.py
richardkoehler/pynm-decode
3120a410d79d3fce45d0f59025d68ba2d5e80d9e
[ "MIT" ]
1
2022-01-08T09:33:09.000Z
2022-01-08T09:33:09.000Z
src/pte/filetools/filefinder_abc.py
richardkoehler/pynm-decode
3120a410d79d3fce45d0f59025d68ba2d5e80d9e
[ "MIT" ]
null
null
null
src/pte/filetools/filefinder_abc.py
richardkoehler/pynm-decode
3120a410d79d3fce45d0f59025d68ba2d5e80d9e
[ "MIT" ]
null
null
null
"""Define abstract base classes to construct FileFinder classes.""" import os import shutil from abc import ABC, abstractmethod from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Sequence, Union import mne_bids @dataclass class FileFinder(ABC): """Basic representation of class for finding and filtering files.""" hemispheres: Union[dict, None] = field(default_factory=dict) directory: Union[Path, str] = field(init=False) files: list = field(init=False, default_factory=list) def __str__(self): if not self.files: return "No corresponding files found." headers = ["Index", "Filename"] col_width = max(len(os.path.basename(file)) for file in self.files) format_row = f"{{:>{len(headers[0]) + 2}}}{{:>{col_width + 2}}}" terminal_size = "\u2500" * shutil.get_terminal_size().columns return "\n".join( ( "Corresponding files found:", "".join( f"{{:>{len(header) + 2}}}".format(header) for header in headers ), terminal_size, *( format_row.format(idx, os.path.basename(file)) for idx, file in enumerate(self.files) ), ) ) def __len__(self) -> int: if not self.files: return 0 return len(self.files) @abstractmethod def find_files( self, directory: Union[str, Path], extensions: Optional[Union[Sequence, str]] = None, keywords: Optional[Union[list, str]] = None, hemisphere: Optional[str] = None, stimulation: Optional[str] = None, medication: Optional[str] = None, exclude: Optional[Union[str, list]] = None, verbose: bool = False, ) -> None: """Find files in directory with optional keywords and extensions.""" @abstractmethod def filter_files( self, keywords: Optional[Union[str, list]] = None, hemisphere: Optional[str] = None, stimulation: Optional[str] = None, medication: Optional[str] = None, exclude: Optional[Union[str, list]] = None, verbose: bool = False, ) -> None: """Filter list of filepaths for given parameters.""" @staticmethod def _keyword_search( files: list[str], keywords: Optional[Union[str, list]] ) -> list: if not keywords: return files if not isinstance(keywords, list): keywords = [keywords] filtered_files = [ file for file in files if any(key in file for key in keywords) ] return filtered_files def _find_files( self, directory: Union[Path, str], extensions: Optional[Union[list, str]] = None, ) -> None: """Find files in directory with optional extensions. Args: directory (string) keywords (list): e.g. ["SelfpacedRota", "ButtonPress] (optional) extensions (list): e.g. [".json" or "tsv"] (optional) verbose (bool): verbosity level (optional, default=True) """ files = [] for root, _, fnames in os.walk(directory): fnames = [os.path.join(root, file) for file in fnames] fnames = self._keyword_search(fnames, extensions) if fnames: files.extend(fnames) self.files = files def _filter_files( self, keywords: Optional[Union[str, list[str]]] = None, hemisphere: Optional[str] = None, stimulation: Optional[str] = None, medication: Optional[str] = None, exclude: Optional[Union[str, list[str]]] = None, ) -> None: """Filter filepaths for given parameters.""" filtered_files = self.files if exclude: if not isinstance(exclude, list): exclude = [exclude] filtered_files = [ file for file in filtered_files if not any(item in file for item in exclude) ] if keywords: if not isinstance(keywords, list): keywords = [keywords] filtered_files = self._keyword_search(filtered_files, keywords) if stimulation: if stimulation.lower() in "stimon": stim = "StimOn" elif stimulation.lower() in "stimoff": stim = "StimOff" else: raise ValueError("Keyword for stimulation not valid.") filtered_files = self._keyword_search(filtered_files, [stim]) if medication: if medication.lower() in "medon": med = "MedOn" elif medication.lower() in "medoff": med = "MedOff" else: raise ValueError("Keyword for medication not valid.") filtered_files = self._keyword_search(filtered_files, [med]) if hemisphere: matching_files = [] for file in filtered_files: subject = mne_bids.get_entities_from_fname(file)["subject"] if ( subject not in self.hemispheres or self.hemispheres[subject] is None ): raise HemisphereNotSpecifiedError( subject, self.hemispheres ) hem = self.hemispheres[subject] + "_" if hemisphere.lower() in "ipsilateral" and hem in file: matching_files.append(file) if hemisphere.lower() in "contralateral" and hem not in file: matching_files.append(file) filtered_files = matching_files self.files = filtered_files class DirectoryNotFoundError(Exception): """Exception raised when invalid Reader is passed. Attributes: directory -- input directory which caused the error """ def __init__( self, directory: Union[Path, str], message="Input directory was not found.", ): self.directory = directory self.message = message super().__init__(self.message) def __str__(self): return f"{self.message} Got: {self.directory}." class HemisphereNotSpecifiedError(Exception): """Exception raised when electrode hemisphere is not specified in settings. Attributes: subject -- input subject which caused the error hemisphere -- specified hemispheres message -- explanation of the error """ def __init__( self, subject, hemispheres, message=( "Input ECOG hemisphere is not specified in" " `filefinder_settings.py` for given subject." ), ) -> None: self.subject = subject self.hemispheres = hemispheres self.message = message super().__init__(self.message) def __str__(self): return ( f"{self.message} Unspecified subject: {self.subject}." f" Specified hemispheres: {self.hemispheres}." )
33.439815
79
0.56417
6,946
0.96165
0
0
5,624
0.778624
0
0
1,611
0.223038
790323f724e852cdcf7d4d9d3e4d89703473f768
3,725
py
Python
panel/routes/server.py
emilio2hd/pz-panel
6b53f465b2c041e963e2b75e48b1612549ad6fea
[ "MIT" ]
null
null
null
panel/routes/server.py
emilio2hd/pz-panel
6b53f465b2c041e963e2b75e48b1612549ad6fea
[ "MIT" ]
null
null
null
panel/routes/server.py
emilio2hd/pz-panel
6b53f465b2c041e963e2b75e48b1612549ad6fea
[ "MIT" ]
null
null
null
import glob import time from os import path from flask import Blueprint, jsonify, current_app, request, Response, json from flask_login import login_required from .. import pz_server_state from ..services.power_actions_service import is_valid_power_action, execute_action from ..services.server_options_service import read_config, save_config, prepared_config_to_view, formatted_config_lines from ..services.server_status_service import get_server_status from ..utils.resources_functions import server_resources server_blueprint = Blueprint('server', __name__, url_prefix='/server') @server_blueprint.route('/status') @login_required def status(): rcon_host = current_app.config['RCON_HOST'] rcon_password = current_app.config['RCON_PASSWORD'] server_state, players = get_server_status(rcon_host, rcon_password) return jsonify( server_state=server_state, online_players=players, server_resources=server_resources() ) @server_blueprint.route('/power-actions', methods=['POST']) @login_required def power_actions(): request_data = request.get_json() pz_user_home = current_app.config["PZ_USER_HOME"] power_action = request_data.get("power_action", None) if not is_valid_power_action(power_action): return jsonify(error="Unknown action"), 400 if not execute_action(power_action, pz_user_home): return '', 500 return jsonify(server_state=pz_server_state.state) def get_config(pz_server_config): config = read_config(pz_server_config) return { "WorkshopItems": config["WorkshopItems"], "Mods": config["Mods"] } @server_blueprint.route('/options') @login_required def list_workshop_items(): export_config = get_config(current_app.config['PZ_SERVER_CONFIG']) return jsonify( WorkshopItems=prepared_config_to_view(export_config["WorkshopItems"]), Mods=prepared_config_to_view(export_config["Mods"]) ) @server_blueprint.route('/options/export') @login_required def export_server_config(): export_config = get_config(current_app.config['PZ_SERVER_CONFIG']) return current_app.response_class( formatted_config_lines(export_config), mimetype='text/event-stream', headers={"Content-Disposition": "attachment;filename=server_config.ini"} ) @server_blueprint.route('/options', methods=['POST']) @login_required def save_items(): request_data = request.get_json() config = save_config(current_app.config['PZ_SERVER_CONFIG'], request_data) export_config = { "WorkshopItems": prepared_config_to_view(config["WorkshopItems"]), "Mods": prepared_config_to_view(config["Mods"]) } return jsonify(export_config) @server_blueprint.route('/log') @login_required def listen_log(): def followLog(serverLogsDir): logFilePattern = "*_DebugLog-server.txt" logFiles = glob.glob(path.join(serverLogsDir, logFilePattern)) if not logFiles: yield 'data: {}\n\n'.format( json.dumps({"error": True, "errorMessage": "No log file found"}) ) return logFiles.sort(reverse=True) with open(logFiles[0]) as serverLogFile: try: while True: line = serverLogFile.readline() if not line: continue time.sleep(0.01) yield 'data: {}\n\n'.format( json.dumps({"log": line.strip()}) ) finally: pass serverLogsDir = current_app.config['PZ_SERVER_LOGS_DIR'] return Response(followLog(serverLogsDir), mimetype='text/event-stream')
29.8
119
0.68698
0
0
948
0.254497
2,941
0.78953
0
0
542
0.145503
7903777a50ff41a94bed60837d113e3a3fca6cc0
23,095
py
Python
sub_models.py
tmartin2/EnsembleSplice-Inactive
a161ff007b47ceadd3a21376f2eac2971bb81d90
[ "MIT" ]
null
null
null
sub_models.py
tmartin2/EnsembleSplice-Inactive
a161ff007b47ceadd3a21376f2eac2971bb81d90
[ "MIT" ]
null
null
null
sub_models.py
tmartin2/EnsembleSplice-Inactive
a161ff007b47ceadd3a21376f2eac2971bb81d90
[ "MIT" ]
null
null
null
# ----------------------------------------------------------------------------- # Copyright (c) 2021 Trevor P. Martin. All rights reserved. # Distributed under the MIT License. # ----------------------------------------------------------------------------- from Data import encode_data # from utils import cross_validation from Models import utils from Models import build_models from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.linear_model import Perceptron from sklearn.svm import LinearSVC import matplotlib.pyplot as plt import matplotlib.font_manager as font_manager import numpy as np import pandas as pd import tensorflow as tf import copy class CNN01(tf.keras.Model): @staticmethod def build(rows, columns, channels, classes): model = tf.keras.Sequential() input_shape = (rows, columns, channels) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Conv2D( filters=32, kernel_size=(3,3), activation="relu", padding="same" ) ) model.add(tf.keras.layers.Conv2D( filters=64, kernel_size=(3,3), activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Conv2D( filters=128, kernel_size=(3,3), activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class CNN02(tf.keras.Model): @staticmethod def build(rows, columns, classes): model = tf.keras.Sequential() input_shape = (rows, columns) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Conv1D( filters=32, kernel_size=3, activation="relu", padding="same" ) ) model.add(tf.keras.layers.Conv1D( filters=64, kernel_size=3, activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling1D(pool_size=2)) model.add(tf.keras.layers.Conv1D( filters=128, kernel_size=3, activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling1D(pool_size=2)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class CNN03(tf.keras.Model): @staticmethod def build(rows, columns, classes): model = tf.keras.Sequential() input_shape = (rows, columns) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Conv1D( filters=32, kernel_size=3, activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling1D(pool_size=2)) model.add(tf.keras.layers.Conv1D( filters=64, kernel_size=3, activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling1D(pool_size=2)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class CNN04(tf.keras.Model): @staticmethod def build(rows, columns, classes): model = tf.keras.Sequential() input_shape = (rows, columns) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Conv1D( filters=32, kernel_size=3, activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling1D(pool_size=2)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class CNN05(tf.keras.Model): @staticmethod def build(rows, columns, channels, classes): model = tf.keras.Sequential() input_shape = (rows, columns, channels) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Conv2D( filters=32, kernel_size=(3,3), activation="relu", padding="same" ) ) model.add(tf.keras.layers.Conv2D( filters=64, kernel_size=(3,3), activation="relu", padding="same" ) ) model.add(tf.keras.layers.Conv2D( filters=64, kernel_size=(3,3), activation="relu", padding="same" ) ) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Conv2D( filters=128, kernel_size=(3,3), activation="relu", padding="same" ) ) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class DNN01(tf.keras.Model): @staticmethod def build(rows, columns, units, classes): model = tf.keras.Sequential() input_shape = (rows, columns) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(units=units, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.001))) model.add(tf.keras.layers.Dense(units=units//2, kernel_regularizer=tf.keras.regularizers.l2(0.001))) model.add(tf.keras.layers.Dropout(rate=0.15)) model.add(tf.keras.layers.Dense(units=units//4, kernel_regularizer=tf.keras.regularizers.l2(0.001))) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class DNN02(tf.keras.Model): @staticmethod def build(rows, columns, units, classes): model = tf.keras.Sequential() input_shape = (rows, columns) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(units=units, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.001))) model.add(tf.keras.layers.Dropout(rate=0.50)) model.add(tf.keras.layers.Dense(units=units//2, kernel_regularizer=tf.keras.regularizers.l2(0.001))) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class DNN03(tf.keras.Model): @staticmethod def build(rows, columns, units, classes): model = tf.keras.Sequential() input_shape = (rows, columns) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(units=units*2, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.001))) model.add(tf.keras.layers.Dropout(rate=0.50)) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model class RNN(tf.keras.Model): @staticmethod def build(rows, columns, units, classes): model = tf.keras.Sequential() input_shape = (rows, columns) model.add(tf.keras.layers.InputLayer(input_shape=input_shape)) model.add(tf.keras.layers.LSTM( units=units, activation='tanh', return_sequences=True, ) ) model.add(tf.keras.layers.Dropout(rate=0.20)) model.add(tf.keras.layers.LSTM( units=units//2, activation='tanh', ) ) model.add(tf.keras.layers.Dropout(rate=0.20)) model.add(tf.keras.layers.Dense(64, activation="relu")) model.add(tf.keras.layers.Dense(classes, activation="softmax")) return model def run(datasets, splice_sites, sub_models, save, vis, iter, metrics, summary, config, num_folds, bal, imbal, imbal_t, imbal_f, batch_size, epochs ): """ Parameters ---------- dataset: a string {nn269, ce, hs3d} indicating which dataset to use splice_site_type: a string {acceptor, donor} indicating which splice site to train on model_architecture: a string {cnn, dnn, rnn} indicating which model architecture to use for training save_model: boolean, whether to save the current model bal: boolean, whether to balance the dataset summary: boolean, whether to print out the model architecture summary config: boolean, whether to print out the model's configuration visualize: boolean, whether to save a performance graph of the model metrics: boolean, whether to print out the evaluation metrics for the model num_folds: int (default 10), the number of folds for k-fold cross validation epochs: int (default 15), the number of epochs for the chosen model batch_size: int (default 32), the model batch size model_iter: integer, the iteration of the current model architecture (e.g. if this is the third cnn architecture you are testing, use 3) """ # (acceptor row len, donor row len) by dataset network_rows = { 'acceptor':{ 'nn269':90, 'ce':141, 'hs3d':140, 'hs2':602, 'ce2':602, 'dm':602, 'ar':602, 'or':602, }, 'donor':{ 'nn269':15, 'ce':141, 'hs3d':140, 'hs2':602, 'ce2':602, 'dm':602, 'ar':602, 'or':602, }, } # initialize selected sub models to_run = dict( [ (sub_model,{ 'nn269':'', 'ce':'', 'hs3d':'', 'hs2':'', 'ce2':'', 'dm':'', 'ar':'', 'or':'' }) for sub_model in sub_models ] ) # results dictionary results = copy.deepcopy(to_run) # populate sub models with encoded data for sub_model in sub_models: for dataset in datasets: # encode datasets -> return (acc_x, acc_y, don_x, don_y) to_run[sub_model][dataset] = encode_data.encode(dataset, sub_model, bal) # get a metrics dictionary evals = dict( [ (sub_model, { 'f1':'', 'precision':'', 'sensitivity':'', 'specificity':'', 'recall':'', 'mcc':'', 'err_rate':'' }) for sub_model in sub_models ] ) # accumulate results from running cross validation for sub_model in sub_models: for dataset in datasets: if to_run[sub_model][dataset] == '': pass else: results[sub_model][dataset] = utils.cross_validation( num_folds, sub_model, splice_sites, dataset, to_run[sub_model][dataset],# encoded data for dataset (ds) network_rows, # donor, acceptor rows for ds evals, summary, config, batch_size, epochs, save, ) # if vis: print(results) return results # plot results # loss_acc_sub_models( # results, # datasets, # sub_models, # epochs, # num_folds, # bal # ) # # different by splice site type # if splice_site_type == 'acceptor': # cnn_X_train, cnn_y_train = cnn_acc_x, acc_y # # same name to preserve for loop structure # X_train, y_train = rd_acc_x, acc_y # dataset_row_num = network_rows[dataset][0] # if splice_site_type == 'donor': # cnn_X_train, cnn_y_train = cnn_don_x, don_y # X_train, y_train = rd_don_x, don_y # dataset_row_num = network_rows[dataset][1] # # # # if tune_rnn: # # tune_rnn() # # # perform cross validation # # general # trn_fold_accs, trn_fold_losses = [], [] # val_fold_accs, val_fold_losses = [], [] # # esplice # rnn_va, rnn_vl, cnn_vl, cnn_va, dnn_vl, dnn_va = [],[],[],[],[],[] # rnn_ta, rnn_tl, cnn_tl, cnn_ta, dnn_tl, dnn_ta = [],[],[],[],[],[] # # # this loop inspired by https://www.machinecurve.com/ # #index.php/2020/02/18/how-to-use-k-fold-cross-validation-with-keras/ # k_fold = KFold(n_splits=num_folds, shuffle=False) # fold = 1 # for train, test in k_fold.split(X_train, y_train): # if model_architecture != 'esplice': # X_trn, y_trn = X_train[train], y_train[train] # X_val, y_val = X_train[test], y_train[test] # if model_architecture=='cnn': # history, model = build_cnn( # dataset_row_num, # summary, # X_trn, # y_trn, # batch_size, # epochs, # X_val,#becomes X_val # y_val,#becomes y_val # fold, # num_folds # ) # if model_architecture=='dnn': # history, model = build_dnn( # dataset_row_num, # summary, # X_trn, # y_trn, # batch_size, # epochs, # X_val,#becomes X_val # y_val,#becomes y_val # fold, # num_folds # ) # if model_architecture=='rnn': # history, model = build_rnn( # dataset_row_num, # summary, # X_trn, # y_trn, # batch_size, # epochs, # X_val,#becomes X_val # y_val,#becomes y_val # fold, # num_folds # ) # # model.predict(X_trn) # val_fold_accs.append(history.history['val_accuracy']) # val_fold_losses.append(history.history['val_loss']) # trn_fold_accs.append(history.history['accuracy']) # trn_fold_losses.append(history.history['loss']) # fold += 1 # else: # # set up submodel datasets # cnn_X_trn, cnn_y_trn = cnn_X_train[train], cnn_y_train[train] # cnn_X_val, cnn_y_val = cnn_X_train[test], cnn_y_train[test] # rd_X_trn, rd_y_trn = X_train[train], y_train[train] # rd_X_val, rd_y_val = X_train[test], y_train[test] # # build each submodel # hist01, submodel_01 = build_cnn( # dataset_row_num, # summary, # cnn_X_trn, # cnn_y_trn, # batch_size, # epochs, # cnn_X_val, # cnn_y_val, # fold, # num_folds # ) # hist02, submodel_02 = build_dnn( # dataset_row_num, # summary, # rd_X_trn, # rd_y_trn, # batch_size, # epochs, # rd_X_val, # rd_y_val, # fold, # num_folds # ) # # hist03, submodel_03 = build_rnn( # # dataset_row_num, # # summary, # # rd_X_trn, # # rd_y_trn, # # batch_size, # # epochs, # # rd_X_val, # # rd_y_val, # # fold, # # num_folds # # ) # models = [submodel_01, submodel_02]#, submodel_03] # trn_scores, val_scores = EnsembleSplice.build( # models, # batch_size, # cnn_X_trn, # cnn_y_trn, # cnn_X_val, # cnn_y_val, # rd_X_trn, # rd_y_trn, # rd_X_val, # rd_y_val, # ) # # get final epoch accuracy # trn_fold_accs.append(trn_scores) # val_fold_accs.append(val_scores) # # rnn_va.append(hist03.history['val_accuracy']) # # rnn_vl.append(hist03.history['val_loss']) # # rnn_ta.append(hist03.history['accuracy']) # # rnn_tl.append(hist03.history['loss']) # # cnn_vl.append(hist01.history['val_loss']) # # cnn_va.append(hist01.history['val_accuracy']) # # cnn_tl.append(hist01.history['loss']) # # cnn_ta.append(hist01.history['accuracy']) # # dnn_vl.append(hist02.history['val_loss']) # # dnn_va.append(hist02.history['val_accuracy']) # # dnn_tl.append(hist02.history['loss']) # # dnn_ta.append(hist02.history['accuracy']) # # # rnn_va.append(hist03.history['val_accuracy'][-1]) # # rnn_vl.append(hist03.history['val_loss'][-1]) # # rnn_ta.append(hist03.history['accuracy'][-1]) # # rnn_tl.append(hist03.history['loss'][-1]) # cnn_vl.append(hist01.history['val_loss'][-1]) # cnn_va.append(hist01.history['val_accuracy'][-1]) # cnn_tl.append(hist01.history['loss'][-1]) # cnn_ta.append(hist01.history['accuracy'][-1]) # dnn_vl.append(hist02.history['val_loss'][-1]) # dnn_va.append(hist02.history['val_accuracy'][-1]) # dnn_tl.append(hist02.history['loss'][-1]) # dnn_ta.append(hist02.history['accuracy'][-1]) # # fold += 1 # # # do something with predicted values and real values to get AUC-ROC scores # # sklearn.metrics.roc_auc_score # # also get f-score and other scores here # # maybe connect tune_rnn and build_rnn -> get tuned parameters and plug them # # in automatically to RNN # # if model_architecture != 'esplice': # # val_acc_by_epoch = np.apply_along_axis(lambda row: np.mean(row), 1, np.asarray(val_fold_accs).T) # val_loss_by_epoch = np.apply_along_axis(lambda row: np.mean(row), 1, np.asarray(val_fold_losses).T) # trn_acc_by_epoch = np.apply_along_axis(lambda row: np.mean(row), 1, np.asarray(trn_fold_accs).T) # trn_loss_by_epoch = np.apply_along_axis(lambda row: np.mean(row), 1, np.asarray(trn_fold_losses).T) # # std_val_acc = np.apply_along_axis(lambda row: np.std(row), 1, np.asarray(val_fold_accs).T) # std_val_loss = np.apply_along_axis(lambda row: np.std(row), 1, np.asarray(val_fold_losses).T) # std_trn_acc = np.apply_along_axis(lambda row: np.std(row), 1, np.asarray(trn_fold_accs).T) # std_trn_loss = np.apply_along_axis(lambda row: np.std(row), 1, np.asarray(trn_fold_losses).T) # # values = [ # val_acc_by_epoch, # std_val_acc, # trn_acc_by_epoch, # std_trn_acc, # val_loss_by_epoch, # std_val_loss, # trn_loss_by_epoch, # std_trn_loss # ] # # if model_architecture == 'esplice': # # # make a DICTIONARY AREY # # ES_Val_ACc: (vacc, std_va) # mean_good = lambda seq: np.apply_along_axis(lambda row: np.mean(row), 1, np.asarray(seq).T) # std_good = lambda seq: np.apply_along_axis(lambda row: np.std(row), 1, np.asarray(seq).T) # vacc = val_fold_accs # tacc = trn_fold_accs # # std_va = val_fold_accs # # std_ta = trn_fold_accs # # values = [ # val_fold_accs, # trn_fold_accs, # #rnn_va, # # rnn_vl, # #rnn_ta, # # rnn_tl, # # cnn_vl, # cnn_va, # # cnn_tl, # cnn_ta, # # dnn_vl, # dnn_va, # # dnn_tl, # dnn_ta # ] # # # cnn_mva = mean_good(cnn_va) # # cnn_mvl = mean_good(cnn_vl) # # cnn_mta = mean_good(cnn_ta) # # cnn_mtl = mean_good(cnn_tl) # # cnn_sva = std_good(cnn_va) # # cnn_svl = std_good(cnn_vl) # # cnn_sta = std_good(cnn_ta) # # cnn_stl = std_good(cnn_tl) # # # # dnn_mva = mean_good(dnn_va) # # dnn_mvl = mean_good(dnn_vl) # # dnn_mta = mean_good(dnn_ta) # # dnn_mtl = mean_good(dnn_tl) # # dnn_sva = std_good(dnn_va) # # dnn_svl = std_good(dnn_vl) # # dnn_sta = std_good(dnn_ta) # # dnn_stl = std_good(dnn_tl) # # # # rnn_mva = mean_good(rnn_va) # # rnn_mvl = mean_good(rnn_vl) # # rnn_mta = mean_good(rnn_ta) # # rnn_mtl = mean_good(rnn_tl) # # rnn_sva = std_good(rnn_va) # # rnn_svl = std_good(rnn_vl) # # rnn_sta = std_good(rnn_ta) # # rnn_stl = std_good(rnn_tl) # # # values = [ # # vacc, # # # std_va, # # tacc, # # # std_ta, # # cnn_mva, # # cnn_sva, # # cnn_mvl, # # cnn_svl, # # cnn_mta, # # cnn_sta, # # cnn_mtl, # # cnn_stl, # # dnn_mva, # # dnn_sva, # # dnn_mvl, # # dnn_svl, # # dnn_mta, # # dnn_sta, # # dnn_mtl, # # dnn_stl, # # rnn_mva, # # rnn_sva, # # rnn_mvl, # # rnn_svl, # # rnn_mta, # # rnn_sta, # # rnn_mtl, # # rnn_stl, # # ] # if config: # print(model.get_config()) # if save_model: # name = input('What would you like to name this model?: ') # model.save(f'{name}') # tf.keras.utils.plot_model(model, f'{name}.png', show_shapes=True) # if visualize: # loss_acc_esplice( # values, # model_architecture, # dataset, # splice_site_type, # num_folds, # epochs, # bal, # )
34.781627
126
0.525352
7,716
0.334098
0
0
7,421
0.321325
0
0
11,801
0.510976
7903ec9c043049b9e677a2917e22d25071fe1f34
3,227
py
Python
tracportalopt/project/notification.py
isabella232/TracPortalPlugin
985581b16aad360cfc78d6b901c93fb922f7bc30
[ "MIT" ]
2
2015-01-19T05:53:30.000Z
2016-01-08T10:30:02.000Z
tracportalopt/project/notification.py
iij/TracPortalPlugin
985581b16aad360cfc78d6b901c93fb922f7bc30
[ "MIT" ]
1
2022-01-20T12:47:18.000Z
2022-01-20T12:47:18.000Z
tracportalopt/project/notification.py
isabella232/TracPortalPlugin
985581b16aad360cfc78d6b901c93fb922f7bc30
[ "MIT" ]
3
2016-12-08T02:25:36.000Z
2022-01-20T12:10:58.000Z
#! -*- coding: utf-8 -*- # # (C) 2013 Internet Initiative Japan Inc. # All rights reserved. # # Created on 2013/05/15 # @author: yosinobu@iij.ad.jp """Notify project owner with email when the project created successfully.""" from pkg_resources import resource_filename from trac.config import Option, ListOption from trac.core import Component, implements from trac.notification import Notify, NotifyEmail from trac.web.chrome import ITemplateProvider from tracportal.i18n import _ from tracportal.project.api import IProjectCreationInterceptor class ProjectCreationNotificationSystem(Component): implements(ITemplateProvider, IProjectCreationInterceptor) # options from_name = Option('tracportal', 'notify_email_from_name', doc=_('Sender name to use in notification emails.')) from_email = Option('tracportal', 'notify_email_from', doc=_('Sender address to use in notification emails.')) ccrcpts = ListOption('tracportal', 'notify_email_cc', doc=_('Email address(es) to always send notifications to, ' 'addresses can be seen by all recipients (Cc:).')) subject = Option('tracportal', 'notify_email_subject', default=_("Ready to start Trac project!"), doc=_('Subject in notification emails.')) # ITemplateProvider methods def get_templates_dirs(self): return [resource_filename(__name__, 'templates')] def get_htdocs_dirs(self): return [] # IProjectCreationInterceptor methods def pre_process(self, project_info, owner_info): pass def post_process(self, project_info, owner_info, env): if 'email' in owner_info: project_info['url'] = env.abs_href() support = { 'name': self.from_name or self.env.project_name, 'email': self.from_email or self.env.config.get('notification', 'smtp_from'), } notify_email = ProjectCreationNotifyEmail(self.env, (owner_info['email'],), tuple(self.ccrcpts), project_info, owner_info, support) notify_email.notify('') class ProjectCreationNotifyEmail(NotifyEmail): """Notification of a project creation.""" template_name = 'project_creation_notify_email.txt' def __init__(self, env, torcpts, ccrcpts, project_info, owner_info, support): NotifyEmail.__init__(self, env) self.torcpts = torcpts self.ccrcpts = ccrcpts self.project_info = project_info self.owner_info = owner_info self.support = support self.subject = self.subject def get_recipients(self, resid): return (self.torcpts, self.ccrcpts,) def notify(self, resid, subject=None, author=None): if subject: self.subject = subject self.from_name = self.support['name'] self.from_email = self.support['email'] self.replyto_email = self.support['email'] if self.data is None: self.data = {} self.data.update({ 'owner': self.owner_info, 'project': self.project_info, 'support': self.support, }) Notify.notify(self, resid)
37.523256
115
0.654478
2,675
0.828943
0
0
0
0
0
0
866
0.268361
790488091f13f4b2ff427e7b9bda7aa18b0d732c
1,391
py
Python
misc/style/check-include-guard-convention.py
nitinkaveriappa/downward
5c9a1b5111d667bb96f94da61ca2a45b1b70bb83
[ "MIT" ]
4
2019-04-23T10:41:35.000Z
2019-10-27T05:14:42.000Z
misc/style/check-include-guard-convention.py
nitinkaveriappa/downward
5c9a1b5111d667bb96f94da61ca2a45b1b70bb83
[ "MIT" ]
null
null
null
misc/style/check-include-guard-convention.py
nitinkaveriappa/downward
5c9a1b5111d667bb96f94da61ca2a45b1b70bb83
[ "MIT" ]
4
2018-01-16T00:00:22.000Z
2019-11-01T23:35:01.000Z
#! /usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import glob import os.path import sys DIR = os.path.dirname(os.path.abspath(__file__)) REPO = os.path.dirname(os.path.dirname(DIR)) SRC_DIR = os.path.join(REPO, "src") def check_header_files(component): component_dir = os.path.join(SRC_DIR, component) header_files = (glob.glob(os.path.join(component_dir, "*.h")) + glob.glob(os.path.join(component_dir, "*", "*.h"))) assert header_files errors = [] for filename in header_files: assert filename.endswith(".h"), filename rel_filename = os.path.relpath(filename, start=component_dir) guard = rel_filename.replace(".", "_").replace("/", "_").replace("-", "_").upper() expected = "#ifndef " + guard for line in open(filename): line = line.rstrip("\n") if line.startswith("#ifndef"): if line != expected: errors.append('%s uses guard "%s" but should use "%s"' % (filename, line, expected)) break return errors def main(): errors = [] errors.extend(check_header_files("preprocess")) errors.extend(check_header_files("search")) for error in errors: print(error) if errors: sys.exit(1) if __name__ == "__main__": main()
28.979167
90
0.591661
0
0
0
0
0
0
0
0
178
0.127965
7905a7207409a36e542edd41a689eb3240d45b7e
432
py
Python
kyu_7/fun_with_lists_length/length.py
pedrocodacyorg2/codewars
ba3ea81125b6082d867f0ae34c6c9be15e153966
[ "Unlicense" ]
1
2022-02-12T05:56:04.000Z
2022-02-12T05:56:04.000Z
kyu_7/fun_with_lists_length/length.py
pedrocodacyorg2/codewars
ba3ea81125b6082d867f0ae34c6c9be15e153966
[ "Unlicense" ]
182
2020-04-30T00:51:36.000Z
2021-09-07T04:15:05.000Z
kyu_7/fun_with_lists_length/length.py
pedrocodacyorg2/codewars
ba3ea81125b6082d867f0ae34c6c9be15e153966
[ "Unlicense" ]
4
2020-04-29T22:04:20.000Z
2021-07-13T20:04:14.000Z
# Created by Egor Kostan. # GitHub: https://github.com/ikostan # LinkedIn: https://www.linkedin.com/in/egor-kostan/ def length(head) -> int: """ The method length, which accepts a linked list (head), and returns the length of the list. :param head: :return: """ i = 0 if head is None: return 0 while head.next is not None: head = head.next i += 1 return i + 1
18.782609
53
0.581019
0
0
0
0
0
0
0
0
256
0.592593
7907243674e9e866161964f1907b28118b6c5588
7,238
py
Python
test/functional/test_f_xcompat.py
farleyb-amazon/aws-encryption-sdk-python
7950abd73ee333407d2dadd02ef2d57c3df464cf
[ "Apache-2.0" ]
95
2018-08-20T23:10:00.000Z
2022-02-17T02:54:32.000Z
test/functional/test_f_xcompat.py
farleyb-amazon/aws-encryption-sdk-python
7950abd73ee333407d2dadd02ef2d57c3df464cf
[ "Apache-2.0" ]
220
2018-08-01T20:56:29.000Z
2022-03-28T18:12:35.000Z
test/functional/test_f_xcompat.py
farleyb-amazon/aws-encryption-sdk-python
7950abd73ee333407d2dadd02ef2d57c3df464cf
[ "Apache-2.0" ]
63
2018-08-01T19:37:33.000Z
2022-03-20T17:14:15.000Z
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """Functional test suite testing decryption of known good test files encrypted using static RawMasterKeyProvider.""" import base64 import json import logging import os import sys from collections import defaultdict import attr import pytest import six import aws_encryption_sdk from aws_encryption_sdk.exceptions import InvalidKeyIdError from aws_encryption_sdk.identifiers import EncryptionKeyType, WrappingAlgorithm from aws_encryption_sdk.internal.crypto.wrapping_keys import WrappingKey from aws_encryption_sdk.internal.str_ops import to_bytes from aws_encryption_sdk.key_providers.raw import RawMasterKeyProvider pytestmark = [pytest.mark.accept] # Environment-specific test file locator. May not always exist. def _file_root(): return "." try: from .aws_test_file_finder import file_root except ImportError: file_root = _file_root _LOGGER = logging.getLogger() _WRAPPING_ALGORITHM_MAP = { b"AES": { 128: {b"": {b"": WrappingAlgorithm.AES_128_GCM_IV12_TAG16_NO_PADDING}}, 192: {b"": {b"": WrappingAlgorithm.AES_192_GCM_IV12_TAG16_NO_PADDING}}, 256: {b"": {b"": WrappingAlgorithm.AES_256_GCM_IV12_TAG16_NO_PADDING}}, }, b"RSA": defaultdict( lambda: { b"PKCS1": {b"": WrappingAlgorithm.RSA_PKCS1}, b"OAEP-MGF1": { b"SHA-1": WrappingAlgorithm.RSA_OAEP_SHA1_MGF1, b"SHA-256": WrappingAlgorithm.RSA_OAEP_SHA256_MGF1, b"SHA-384": WrappingAlgorithm.RSA_OAEP_SHA384_MGF1, b"SHA-512": WrappingAlgorithm.RSA_OAEP_SHA512_MGF1, }, } ), } _KEY_TYPES_MAP = {b"AES": EncryptionKeyType.SYMMETRIC, b"RSA": EncryptionKeyType.PRIVATE} _STATIC_KEYS = defaultdict(dict) class StaticStoredMasterKeyProvider(RawMasterKeyProvider): """Provides static key""" provider_id = "static-aws-xcompat" def _get_raw_key(self, key_id): """Finds a loaded raw key.""" try: algorithm, key_bits, padding_algorithm, padding_hash = key_id.upper().split(b".", 3) key_bits = int(key_bits) key_type = _KEY_TYPES_MAP[algorithm] wrapping_algorithm = _WRAPPING_ALGORITHM_MAP[algorithm][key_bits][padding_algorithm][padding_hash] static_key = _STATIC_KEYS[algorithm][key_bits] return WrappingKey( wrapping_algorithm=wrapping_algorithm, wrapping_key=static_key, wrapping_key_type=key_type ) except KeyError: _LOGGER.exception("Unknown Key ID: %s", key_id) raise InvalidKeyIdError("Unknown Key ID: {}".format(key_id)) @attr.s class RawKeyDescription(object): """Customer raw key descriptor used by StaticStoredMasterKeyProvider.""" encryption_algorithm = attr.ib(validator=attr.validators.instance_of(six.string_types)) key_bits = attr.ib(validator=attr.validators.instance_of(int)) padding_algorithm = attr.ib(validator=attr.validators.instance_of(six.string_types)) padding_hash = attr.ib(validator=attr.validators.instance_of(six.string_types)) @property def key_id(self): """Build a key ID from instance parameters.""" return ".".join([self.encryption_algorithm, str(self.key_bits), self.padding_algorithm, self.padding_hash]) @attr.s class Scenario(object): """Scenario details.""" plaintext_filename = attr.ib(validator=attr.validators.instance_of(six.string_types)) ciphertext_filename = attr.ib(validator=attr.validators.instance_of(six.string_types)) key_ids = attr.ib(validator=attr.validators.instance_of(list)) def _generate_test_cases(): # noqa=C901 try: root_dir = os.path.abspath(file_root()) except Exception: # pylint: disable=broad-except root_dir = os.getcwd() if not os.path.isdir(root_dir): root_dir = os.getcwd() base_dir = os.path.join(root_dir, "aws_encryption_sdk_resources") ciphertext_manifest_path = os.path.join(base_dir, "manifests", "ciphertext.manifest") if not os.path.isfile(ciphertext_manifest_path): # Make no test cases if the ciphertext file is not found return [] with open(ciphertext_manifest_path, encoding="utf-8") as f: ciphertext_manifest = json.load(f) _test_cases = [] # Collect keys from ciphertext manifest for algorithm, keys in ciphertext_manifest["test_keys"].items(): algorithm = to_bytes(algorithm.upper()) for key_bits, key_desc in keys.items(): key_desc = to_bytes(key_desc) key_bits = int(key_bits) raw_key = to_bytes(key_desc.get("line_separator", "").join(key_desc["key"])) if key_desc["encoding"].lower() in ("raw", "pem"): _STATIC_KEYS[algorithm][key_bits] = raw_key elif key_desc["encoding"].lower() == "base64": _STATIC_KEYS[algorithm][key_bits] = base64.b64decode(raw_key) else: raise Exception("TODO" + "Unknown key encoding") # Collect test cases from ciphertext manifest for test_case in ciphertext_manifest["test_cases"]: key_ids = [] algorithm = aws_encryption_sdk.Algorithm.get_by_id(int(test_case["algorithm"], 16)) for key in test_case["master_keys"]: sys.stderr.write("XC:: " + json.dumps(key) + "\n") if key["provider_id"] == StaticStoredMasterKeyProvider.provider_id: key_ids.append( RawKeyDescription( key["encryption_algorithm"], key.get("key_bits", algorithm.data_key_len * 8), key.get("padding_algorithm", ""), key.get("padding_hash", ""), ).key_id ) if key_ids: _test_cases.append( Scenario( os.path.join(base_dir, test_case["plaintext"]["filename"]), os.path.join(base_dir, test_case["ciphertext"]["filename"]), key_ids, ) ) return _test_cases @pytest.mark.parametrize("scenario", _generate_test_cases()) def test_decrypt_from_file(scenario): """Tests decrypt from known good files.""" with open(scenario.ciphertext_filename, "rb") as infile: ciphertext = infile.read() with open(scenario.plaintext_filename, "rb") as infile: plaintext = infile.read() key_provider = StaticStoredMasterKeyProvider() key_provider.add_master_keys_from_list(scenario.key_ids) decrypted_ciphertext, _header = aws_encryption_sdk.decrypt(source=ciphertext, key_provider=key_provider) assert decrypted_ciphertext == plaintext
39.336957
116
0.678088
1,830
0.252832
0
0
1,567
0.216496
0
0
1,679
0.23197
7907463be0399381dbb251da2399a40b35f47313
986
py
Python
{{cookiecutter.app_name}}/{{cookiecutter.app_name}}/app.py
opatua/cookiecutter-flask-api
67e5a37ee2b8ca32823ac2f8051bab6653b3b44e
[ "MIT" ]
2
2019-04-06T05:08:15.000Z
2019-04-06T19:23:44.000Z
{{cookiecutter.app_name}}/{{cookiecutter.app_name}}/app.py
opatua/cookiecutter-flask-api
67e5a37ee2b8ca32823ac2f8051bab6653b3b44e
[ "MIT" ]
null
null
null
{{cookiecutter.app_name}}/{{cookiecutter.app_name}}/app.py
opatua/cookiecutter-flask-api
67e5a37ee2b8ca32823ac2f8051bab6653b3b44e
[ "MIT" ]
null
null
null
from flask import Flask from flask_restful import Api from flask_cors import CORS from flask_migrate import Migrate, MigrateCommand from flask_script import Manager from {{cookiecutter.app_name}}.config import app_config from {{cookiecutter.app_name}}.models import db, bcrypt from {{cookiecutter.app_name}}.resources import Login, Register from {{cookiecutter.app_name}}.schemas import ma def create_app(env_name): """ Create app """ # app initiliazation app = Flask(__name__) CORS(app) app.config.from_object(app_config[env_name]) # initializing bcrypt and db bcrypt.init_app(app) db.init_app(app) ma.init_app(app) migrate = Migrate(app, db) manager = Manager(app) manager.add_command('db', MigrateCommand) if __name__ == '__main__': manager.run() # Route api = Api(app) # user endpoint api.add_resource(Login, '/auth/login') api.add_resource(Register, '/auth/register') return app
22.930233
63
0.704868
0
0
0
0
0
0
0
0
139
0.140974
79085a6c06f94f9781c1a341cbcc3d429b30a260
17,381
py
Python
docs/examples/Moving_Platform_Simulation.py
Red-Portal/Stone-Soup-1
267621c86161a839da9b144c2745d28d9166d903
[ "MIT" ]
157
2019-04-14T20:43:11.000Z
2022-03-30T08:30:33.000Z
docs/examples/Moving_Platform_Simulation.py
Red-Portal/Stone-Soup-1
267621c86161a839da9b144c2745d28d9166d903
[ "MIT" ]
364
2019-04-18T15:54:49.000Z
2022-03-31T09:50:02.000Z
docs/examples/Moving_Platform_Simulation.py
Red-Portal/Stone-Soup-1
267621c86161a839da9b144c2745d28d9166d903
[ "MIT" ]
86
2019-04-20T02:01:18.000Z
2022-03-28T01:03:11.000Z
#!/usr/bin/env python # coding: utf-8 """ Multi-Sensor Moving Platform Simulation Example =============================================== This example looks at how multiple sensors can be mounted on a single moving platform and exploiting a defined moving platform as a sensor target. """ # %% # Building a Simulated Multi-Sensor Moving Platform # ------------------------------------------------- # The focus of this example is to show how to setup and configure a simulation environment in order to provide a # multi-sensor moving platform, as such the application of a tracker will not be covered in detail. For more information # about trackers and how to configure them review of the tutorials and demonstrations is recommended. # # This example makes use of Stone Soup :class:`~.MovingPlatform`, :class:`~.MultiTransitionMovingPlatform` and # :class:`~.Sensor` objects. # # In order to configure platforms, sensors and the simulation we will need to import some specific Stone Soup objects. # As these have been introduced in previous tutorials they are imported upfront. New functionality within this example # will be imported at the relevant point in order to draw attention to the new features. # Some general imports and set up from datetime import datetime from datetime import timedelta from matplotlib import pyplot as plt import numpy as np # Stone Soup imports: from stonesoup.types.state import State, GaussianState from stonesoup.types.array import StateVector from stonesoup.types.array import CovarianceMatrix from stonesoup.models.transition.linear import ( CombinedLinearGaussianTransitionModel, ConstantVelocity) from stonesoup.predictor.particle import ParticlePredictor from stonesoup.resampler.particle import SystematicResampler from stonesoup.updater.particle import ParticleUpdater from stonesoup.measures import Mahalanobis from stonesoup.hypothesiser.distance import DistanceHypothesiser from stonesoup.dataassociator.neighbour import GNNWith2DAssignment from stonesoup.tracker.simple import SingleTargetTracker # Define the simulation start time start_time = datetime.now() # %% # Create a multi-sensor platform # ------------------------------ # We have previously demonstrated how to create a :class:`~.FixedPlatform` which exploited a # :class:`~.RadarRangeBearingElevation` *Sensor* in order to detect and track targets generated within a # :class:`~.MultiTargetGroundTruthSimulator`. # # In this example we are going to create a moving platform which will be mounted with a pair of sensors and moves within # a 6 dimensional state space according to the following :math:`\mathbf{x}`. # # .. math:: # \mathbf{x} = \begin{bmatrix} # x\\ \dot{x}\\ y\\ \dot{y}\\ z\\ \dot{z} \end{bmatrix} # = \begin{bmatrix} # 0\\ 0\\ 0\\ 50\\ 8000\\ 0 \end{bmatrix} # # The platform will be initiated with a near constant velocity model which has been parameterised to have zero noise. # Therefore the platform location at time :math:`k` is given by :math:`F_{k}x_{k-1}` where :math:`F_{k}` is given by: # # .. math:: # F_{k} = \begin{bmatrix} # 1 & \triangle k & 0 & 0 & 0 & 0\\ # 0 & 1 & 0 & 0 & 0 & 0\\ # 0 & 0 & 1 & \triangle k & 0 & 0\\ # 0 & 0 & 0 & 1 & 0 & 0\\ # 0 & 0 & 0 & 0 & 1 & \triangle k \\ # 0 & 0 & 0 & 0 & 0 & 1\\ # \end{bmatrix} # First import the Moving platform from stonesoup.platform.base import MovingPlatform # Define the initial platform position, in this case the origin initial_loc = StateVector([[0], [0], [0], [50], [8000], [0]]) initial_state = State(initial_loc, start_time) # Define transition model and position for 3D platform transition_model = CombinedLinearGaussianTransitionModel( [ConstantVelocity(0.), ConstantVelocity(0.), ConstantVelocity(0.)]) # create our fixed platform sensor_platform = MovingPlatform(states=initial_state, position_mapping=(0, 2, 4), velocity_mapping=(1, 3, 5), transition_model=transition_model) # %% # With our platform generated we now need to build a set of sensors which will be mounted onto the platform. In this # case we will exploit a :class:`~.RadarElevationBearingRangeRate` and a :class:`~.PassiveElevationBearing` sensor # (e.g. an optical sensor, which has no capability to directly measure range). # # First we will create a radar which is capable of measuring bearing (:math:`\phi`), elevation (:math:`\theta`), range # (:math:`r`) and range-rate (:math:`\dot{r}`) of the target platform. # Import a range rate bearing elevation capable radar from stonesoup.sensor.radar.radar import RadarElevationBearingRangeRate # Create a radar sensor radar_noise_covar = CovarianceMatrix(np.diag( np.array([np.deg2rad(3), # Elevation np.deg2rad(3), # Bearing 100., # Range 25.]))) # Range Rate # radar mountings radar_mounting_offsets = StateVector([10, 0, 0]) # e.g. nose cone radar_rotation_offsets = StateVector([0, 0, 0]) # Mount the radar onto the platform radar = RadarElevationBearingRangeRate(ndim_state=6, position_mapping=(0, 2, 4), velocity_mapping=(1, 3, 5), noise_covar=radar_noise_covar, mounting_offset=radar_mounting_offsets, rotation_offset=radar_rotation_offsets, ) sensor_platform.add_sensor(radar) # %% # Our second sensor is a passive sensor, capable of measuring the bearing (:math:`\phi`) and elevation (:math:`\theta`) # of the target platform. For the purposes of this example we will assume that the passive sensor is an imager. # The imager sensor model is described by the following equations: # # .. math:: # \mathbf{z}_k = h(\mathbf{x}_k, \dot{\mathbf{x}}_k) # # where: # # * :math:`\mathbf{z}_k` is a measurement vector of the form: # # .. math:: # \mathbf{z}_k = \begin{bmatrix} \theta \\ \phi \end{bmatrix} # # * :math:`h` is a non - linear model function of the form: # # .. math:: # h(\mathbf{x}_k,\dot{\mathbf{x}}_k) = \begin{bmatrix} # \arcsin(\mathcal{z} /\sqrt{\mathcal{x} ^ 2 + \mathcal{y} ^ 2 +\mathcal{z} ^ 2}) \\ # \arctan(\mathcal{y},\mathcal{x}) \ \ # \end{bmatrix} + \dot{\mathbf{x}}_k # # * :math:`\mathbf{z}_k` is Gaussian distributed with covariance :math:`R`, i.e.: # # .. math:: # \mathbf{z}_k \sim \mathcal{N}(0, R) # # .. math:: # R = \begin{bmatrix} # \sigma_{\theta}^2 & 0 \\ # 0 & \sigma_{\phi}^2 \\ # \end{bmatrix} # Import a passive sensor capability from stonesoup.sensor.passive import PassiveElevationBearing imager_noise_covar = CovarianceMatrix(np.diag(np.array([np.deg2rad(0.05), # Elevation np.deg2rad(0.05)]))) # Bearing # imager mounting offset imager_mounting_offsets = StateVector([0, 8, -1]) # e.g. wing mounted imaging pod imager_rotation_offsets = StateVector([0, 0, 0]) # Mount the imager onto the platform imager = PassiveElevationBearing(ndim_state=6, mapping=(0, 2, 4), noise_covar=imager_noise_covar, mounting_offset=imager_mounting_offsets, rotation_offset=imager_rotation_offsets, ) sensor_platform.add_sensor(imager) # %% # Notice that we have added sensors to specific locations on the aircraft, defined by the mounting_offset parameter. # The values in this array are defined in the platforms local coordinate frame of reference. So in this case an offset # of :math:`[0, 8, -1]` means the sensor is located 8 meters to the right and 1 meter below the center point of the # platform. # # Now that we have mounted the two sensors we can see that the platform object has both associated with it: sensor_platform.sensors # %% # Create a Target Platform # ------------------------ # There are two ways of generating a target in Stone Soup. Firstly, we can use the inbuilt ground-truth generator # functionality within Stone Soup, which we demonstrated in the previous example, and creates a random target based on # our selected parameters. The second method provides a means to generate a target which will perform specific # behaviours, this is the approach we will take here. # # In order to create a target which moves in pre-defined sequences we exploit the fact that platforms can be used as # sensor targets within a simulation, coupled with the :class:`~.MultiTransitionMovingPlatform` which enables a platform # to be provided with a pre-defined list of transition models and transition times. The platform will continue to loop # over the transition sequence provided until the simulation ends. # # When simulating sensor platforms it is important to note that within the simulation Stone Soup treats all platforms as # potential targets. Therefore if we created multiple sensor platforms they would each *sense* all other platforms # within the simulation (sensor-target geometry dependant). # # For this example we will create an air target which will fly a sequence of straight and level followed by a # coordinated turn in the :math:`x-y` plane. This is configured such that the target will perform each manoeuvre for 8 # seconds, and it will turn through 45 degrees over the course of the turn manoeuvre. # Import a Constant Turn model to enable target to perform basic manoeuvre from stonesoup.models.transition.linear import ConstantTurn straight_level = CombinedLinearGaussianTransitionModel( [ConstantVelocity(0.), ConstantVelocity(0.), ConstantVelocity(0.)]) # Configure the aircraft turn behaviour turn_noise_diff_coeffs = np.array([0., 0.]) turn_rate = np.pi/32 # specified in radians per seconds... turn_model = ConstantTurn(turn_noise_diff_coeffs=turn_noise_diff_coeffs, turn_rate=turn_rate) # Configure turn model to maintain current altitude turning = CombinedLinearGaussianTransitionModel( [turn_model, ConstantVelocity(0.)]) manoeuvre_list = [straight_level, turning] manoeuvre_times = [timedelta(seconds=8), timedelta(seconds=8)] # %% # Now that we have created a list of manoeuvre behaviours and durations we can build our multi-transition moving # platform. Because we intend for this platform to be a target we do not need to attach any sensors to it. # Import a multi-transition moving platform from stonesoup.platform.base import MultiTransitionMovingPlatform initial_target_location = StateVector([[0], [-40], [1800], [0], [8000], [0]]) initial_target_state = State(initial_target_location, start_time) target = MultiTransitionMovingPlatform(transition_models=manoeuvre_list, transition_times=manoeuvre_times, states=initial_target_state, position_mapping=(0, 2, 4), velocity_mapping=(1, 3, 5), sensors=None) # %% # Creating the simulator # ---------------------- # Now that we have build our sensor platform and a target platform we need to wrap them in a simulator. Because we do # not want any additional ground truth objects, which is how most simulators work in Stone Soup, we need to use a # :class:`~.DummyGroundTruthSimulator` which returns a set of empty ground truth paths with timestamps. These are then # feed into a :class:`~.PlatformDetectionSimulator` with the two platforms we have already built. # Import the required simulators from stonesoup.simulator.simple import DummyGroundTruthSimulator from stonesoup.simulator.platform import PlatformDetectionSimulator # %% # We now need to create an array of timestamps which starts at *datetime.now()* and enable the simulator to run for # 25 seconds. times = np.arange(0, 24, 1) # 25 seconds timestamps = [start_time + timedelta(seconds=float(elapsed_time)) for elapsed_time in times] truths = DummyGroundTruthSimulator(times=timestamps) sim = PlatformDetectionSimulator(groundtruth=truths, platforms=[sensor_platform, target]) # %% # Create a Tracker # ------------------------------------ # Now that we have setup our sensor platform, target and simulation we need to create a tracker. For this example we # will use a Particle Filter as this enables us to handle the non-linear nature of the imaging sensor. In this example # we will use an inflated constant noise model to account for target motion uncertainty. # # Note that we don't add a measurement model to the updater, this is because each sensor adds their measurement model to # each detection they generate. The tracker handles this internally by checking for a measurement model with each # detection it receives and applying only the relevant measurement model. target_transition_model = CombinedLinearGaussianTransitionModel( [ConstantVelocity(5), ConstantVelocity(5), ConstantVelocity(1)]) # First add a Particle Predictor predictor = ParticlePredictor(target_transition_model) # Now create a resampler and particle updater resampler = SystematicResampler() updater = ParticleUpdater(measurement_model=None, resampler=resampler) # Create a particle initiator from stonesoup.initiator.simple import GaussianParticleInitiator, SinglePointInitiator single_point_initiator = SinglePointInitiator( GaussianState([[0], [-40], [2000], [0], [8000], [0]], np.diag([10000, 1000, 10000, 1000, 10000, 1000])), None) initiator = GaussianParticleInitiator(number_particles=500, initiator=single_point_initiator) hypothesiser = DistanceHypothesiser(predictor, updater, measure=Mahalanobis(), missed_distance=np.inf) data_associator = GNNWith2DAssignment(hypothesiser) from stonesoup.deleter.time import UpdateTimeStepsDeleter deleter = UpdateTimeStepsDeleter(time_steps_since_update=10) # Create a Kalman single-target tracker tracker = SingleTargetTracker( initiator=initiator, deleter=deleter, detector=sim, data_associator=data_associator, updater=updater ) # %% # The final step is to iterate our tracker over the simulation and plot out the results. Because we have a bearing # only sensor it does not make sense to plot out the detections without animating the resulting plot. This # animation shows the sensor platform (blue) moving towards the true target position (red). The estimated target # position is shown in black, radar detections are shown in yellow while the bearing only imager detections are # coloured green. from matplotlib import animation import matplotlib matplotlib.rcParams['animation.html'] = 'jshtml' from stonesoup.models.measurement.nonlinear import CartesianToElevationBearingRangeRate from stonesoup.functions import sphere2cart fig = plt.figure(figsize=(10, 6)) ax = fig.add_subplot(1, 1, 1) frames = [] for time, ctracks in tracker: artists = [] ax.set_xlabel("$East$") ax.set_ylabel("$North$") ax.set_ylim(0, 2250) ax.set_xlim(-1000, 1000) X = [state.state_vector[0] for state in sensor_platform] Y = [state.state_vector[2] for state in sensor_platform] artists.extend(ax.plot(X, Y, color='b')) for detection in sim.detections: if isinstance(detection.measurement_model, CartesianToElevationBearingRangeRate): x, y = detection.measurement_model.inverse_function(detection)[[0, 2]] color = 'y' else: r = 10000000 # extract the platform rotation offsets _, el_offset, az_offset = sensor_platform.orientation # obtain measurement angles and map to cartesian e, a = detection.state_vector x, y, _ = sphere2cart(r, a + az_offset, e + el_offset) color = 'g' X = [sensor_platform.state_vector[0], x] Y = [sensor_platform.state_vector[2], y] artists.extend(ax.plot(X, Y, color=color)) X = [state.state_vector[0] for state in target] Y = [state.state_vector[2] for state in target] artists.extend(ax.plot(X, Y, color='r')) for track in ctracks: X = [state.state_vector[0] for state in track] Y = [state.state_vector[2] for state in track] artists.extend(ax.plot(X, Y, color='k')) frames.append(artists) animation.ArtistAnimation(fig, frames) # %% # To increase your confidence with simulated platform targets it would be good practice to modify the target to fly # pre-defined shapes, a race track oval for example. You could also experiment with different sensor performance levels # in order to see at what point the tracker is no longer able to generate a reasonable estimate of the target location. # %% # Key points # ---------- # 1. Platforms, static or moving, can be used as targets for sensor platforms. # 2. Simulations can be built with only known platform behaviours when you want to test specific scenarios. # 3. A tracker can be configured to exploit all sensor data created in a simulation.
44.452685
120
0.693976
0
0
0
0
0
0
0
0
9,924
0.570968
79093ae44bacb9494b8349f6098239d9b14a8d37
567
py
Python
Glyph-Builders/lowercase_from_upper.py
m4rc1e/mf-glyphs-scripts
c5ed026e5b72a886f1e574f85659cdcae041e66a
[ "MIT" ]
27
2015-09-01T00:19:34.000Z
2021-12-05T01:59:01.000Z
Glyph-Builders/lowercase_from_upper.py
m4rc1e/mf-glyphs-scripts
c5ed026e5b72a886f1e574f85659cdcae041e66a
[ "MIT" ]
26
2016-01-03T09:31:39.000Z
2018-06-01T18:05:58.000Z
Glyph-Builders/lowercase_from_upper.py
m4rc1e/mf-glyphs-scripts
c5ed026e5b72a886f1e574f85659cdcae041e66a
[ "MIT" ]
7
2016-01-03T07:09:04.000Z
2018-04-06T00:24:14.000Z
#MenuTitle: Generate lowercase from uppercase """ Generate lowercase a-z from uppercase A-Z TODO (M Foley) Generate all lowercase glyphs, not just a-z """ font = Glyphs.font glyphs = list('abcdefghijklmnopqrstuvwxyz') masters = font.masters for glyph_name in glyphs: glyph = GSGlyph(glyph_name) glyph.updateGlyphInfo() font.glyphs.append(glyph) for idx,layer in enumerate(masters): comp_name = glyph_name.upper() component = GSComponent(comp_name, (0,0)) glyph.layers[idx].components.append(component) Glyphs.redraw()
24.652174
58
0.714286
0
0
0
0
0
0
0
0
182
0.320988
7909cb31dce0f5d0d244a16c56e9e7a864d3c124
2,372
py
Python
src/gui/SubVision.py
bochkovoi/AHP
b51dc598f8f7a65a2ade039d887dccfa6d070f1e
[ "MIT" ]
null
null
null
src/gui/SubVision.py
bochkovoi/AHP
b51dc598f8f7a65a2ade039d887dccfa6d070f1e
[ "MIT" ]
null
null
null
src/gui/SubVision.py
bochkovoi/AHP
b51dc598f8f7a65a2ade039d887dccfa6d070f1e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from PyQt5 import QtWidgets, QtGui, QtCore import sys, os.path as op path1 = op.join( op.abspath(op.dirname(__file__)), '..', 'Structure') path2 = op.join( op.abspath(op.dirname(__file__)), '..') sys.path.append(path1) sys.path.append(path2) from Structure import * from VisObject import * class SubVision( QtWidgets.QWidget ): """ Базовый класс-окно для показа подчиненных объектов """ def __init__( self, main_object, is_change=True, parent=None ): super().__init__( parent=parent ) #Устанавливаем главный объект self.__obj = main_object #Устанавливаем параметр возможности изменения элементов (по умолчанию - Да) self.is_change = is_change self.initUI() def initUI( self ): ''' Инициализируем содержимое окна ''' #Добавляем окно данных и устанавливаем в него подчиненные объекты self.sub_objs = QtWidgets.QListWidget( ) for obj in self.__obj.sub_objects: #Делаем ячейку a = QtWidgets.QListWidgetItem() #Устанавливаем в ней подчиненный базовому объект a.sub_obj = obj #Устанавливаем в ней текст-имя объекта подчиненного объекта a.setText( obj.name ) #Добавляем в список self.sub_objs.addItem( a ) #Объявляем форму и добавляем в нее список подчиненных объектов self.form = QtWidgets.QFormLayout() self.form.addRow(self.sub_objs) self.setLayout(self.form) #Соединяем двойной щелчок с методом self.sub_objs.itemDoubleClicked.connect( self.isDoubleClicked ) def isDoubleClicked( self, obj ): #Если окно возможно изменить, вызываем окно изменения, иначе - окно просмотра if self.is_change: sub_window = ChangeVisObject( obj.sub_obj, parent=self ) else: sub_window = SimpleVisObject( obj.sub_obj, parent=self ) sub_window.setWindowTitle( "Редактирование объекта: " + obj.sub_obj.name ) #Делаем это или родительское окно неактивным if self.parent() is None: self.setEnabled( False ) else: self.parent().setEnabled( False ) #Делаем дочернее окно активным и показываем его sub_window.setEnabled( True ) sub_window.show()
38.885246
85
0.643339
2,615
0.884941
0
0
0
0
0
0
1,343
0.454484
790a31602a2e6231958a1ed23fbe61a5ef5fd6fa
23
py
Python
examples/ndfd/ndfd.py
eLBati/pyxb
14737c23a125fd12c954823ad64fc4497816fae3
[ "Apache-2.0" ]
123
2015-01-12T06:43:22.000Z
2022-03-20T18:06:46.000Z
examples/ndfd/ndfd.py
eLBati/pyxb
14737c23a125fd12c954823ad64fc4497816fae3
[ "Apache-2.0" ]
103
2015-01-08T18:35:57.000Z
2022-01-18T01:44:14.000Z
examples/ndfd/ndfd.py
eLBati/pyxb
14737c23a125fd12c954823ad64fc4497816fae3
[ "Apache-2.0" ]
54
2015-02-15T17:12:00.000Z
2022-03-07T23:02:32.000Z
from raw.ndfd import *
11.5
22
0.73913
0
0
0
0
0
0
0
0
0
0
790a4f9b1ca5315576470030e7218150601d0818
56
py
Python
pandoc_mustache/__init__.py
copart/pandoc-mustache
f6ace29cd0c8d6b4d8f182eedcf36ad38a2412fa
[ "CC0-1.0" ]
43
2017-12-27T05:57:00.000Z
2022-03-18T10:07:28.000Z
pandoc_mustache/__init__.py
copart/pandoc-mustache
f6ace29cd0c8d6b4d8f182eedcf36ad38a2412fa
[ "CC0-1.0" ]
10
2018-02-07T11:20:37.000Z
2021-04-22T21:44:19.000Z
pandoc_mustache/__init__.py
copart/pandoc-mustache
f6ace29cd0c8d6b4d8f182eedcf36ad38a2412fa
[ "CC0-1.0" ]
8
2018-11-05T13:10:35.000Z
2021-08-30T18:14:02.000Z
from .version import __version__ import pandoc_mustache
18.666667
32
0.875
0
0
0
0
0
0
0
0
0
0
790a863e1b7c7976c78fdf15265431950cd90024
5,163
py
Python
espnet2/gan_tts/espnet_model.py
actboy/espnet
c0ca15e9da6e89ff6df5fe70ed08654deeca2ac0
[ "Apache-2.0" ]
null
null
null
espnet2/gan_tts/espnet_model.py
actboy/espnet
c0ca15e9da6e89ff6df5fe70ed08654deeca2ac0
[ "Apache-2.0" ]
1
2021-08-11T08:35:36.000Z
2021-08-13T07:12:47.000Z
espnet2/gan_tts/espnet_model.py
shirayu/espnet
66f0f8382b0e1195bed7c280c29711f8436b3db4
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Tomoki Hayashi # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """GAN-based TTS ESPnet model.""" from contextlib import contextmanager from distutils.version import LooseVersion from typing import Any from typing import Dict from typing import Optional import torch from typeguard import check_argument_types from espnet2.gan_tts.abs_gan_tts import AbsGANTTS from espnet2.layers.abs_normalize import AbsNormalize from espnet2.layers.inversible_interface import InversibleInterface from espnet2.train.abs_gan_espnet_model import AbsGANESPnetModel from espnet2.tts.feats_extract.abs_feats_extract import AbsFeatsExtract if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): from torch.cuda.amp import autocast else: # Nothing to do if torch < 1.6.0 @contextmanager def autocast(enabled=True): # NOQA yield class ESPnetGANTTSModel(AbsGANESPnetModel): """GAN-based TTS ESPnet model.""" def __init__( self, feats_extract: Optional[AbsFeatsExtract], normalize: Optional[AbsNormalize and InversibleInterface], tts: AbsGANTTS, ): """Initialize ESPnetGANTTSModel module.""" assert check_argument_types() super().__init__() self.feats_extract = feats_extract self.normalize = normalize self.tts = tts assert hasattr( tts, "generator" ), "generator module must be resistered as tts.generator" assert hasattr( tts, "discriminator" ), "discriminator module must be resistered as tts.discriminator" def forward( self, text: torch.Tensor, text_lengths: torch.Tensor, speech: torch.Tensor, speech_lengths: torch.Tensor, spembs: Optional[torch.Tensor] = None, sids: Optional[torch.Tensor] = None, lids: Optional[torch.Tensor] = None, forward_generator: bool = True, ) -> Dict[str, Any]: """Return generator or discriminator loss with dict format. Args: text (Tensor): Text index tensor (B, T_text). text_lengths (Tensor): Text length tensor (B,). speech (Tensor): Speech waveform tensor (B, T_wav). speech_lengths (Tensor): Speech length tensor (B,). spembs (Optional[Tensor]): Speaker embedding tensor (B, D). sids (Optional[Tensor]): Speaker ID tensor (B, 1). lids (Optional[Tensor]): Language ID tensor (B, 1). forward_generator (bool): Whether to forward generator. Returns: Dict[str, Any]: - loss (Tensor): Loss scalar tensor. - stats (Dict[str, float]): Statistics to be monitored. - weight (Tensor): Weight tensor to summarize losses. - optim_idx (int): Optimizer index (0 for G and 1 for D). """ with autocast(False): # Extract features feats = None if self.feats_extract is not None: feats, feats_lengths = self.feats_extract(speech, speech_lengths) # Normalize if self.normalize is not None: feats, feats_lengths = self.normalize(feats, feats_lengths) # Make batch for tts inputs batch = {} batch.update(text=text, text_lengths=text_lengths) batch.update(forward_generator=forward_generator) # Update kwargs for additional auxiliary inputs if feats is not None: batch.update(feats=feats, feats_lengths=feats_lengths) if self.tts.require_raw_speech: batch.update(speech=speech, speech_lengths=speech_lengths) if spembs is not None: batch.update(spembs=spembs) if sids is not None: batch.update(sids=sids) if lids is not None: batch.update(lids=lids) return self.tts(**batch) def collect_feats( self, text: torch.Tensor, text_lengths: torch.Tensor, speech: torch.Tensor, speech_lengths: torch.Tensor, spembs: Optional[torch.Tensor] = None, sids: Optional[torch.Tensor] = None, lids: Optional[torch.Tensor] = None, ) -> Dict[str, torch.Tensor]: """Calculate features and return them as a dict. Args: text (Tensor): Text index tensor (B, T_text). text_lengths (Tensor): Text length tensor (B,). speech (Tensor): Speech waveform tensor (B, T_wav). speech_lengths (Tensor): Speech length tensor (B, 1). spembs (Optional[Tensor]): Speaker embedding tensor (B, D). sids (Optional[Tensor]): Speaker index tensor (B, 1). lids (Optional[Tensor]): Language ID tensor (B, 1). Returns: Dict[str, Tensor]: Dict of features. """ feats = None if self.feats_extract is not None: feats, feats_lengths = self.feats_extract(speech, speech_lengths) feats_dict = {} if feats is not None: feats_dict.update(feats=feats, feats_lengths=feats_lengths) return feats_dict
35.363014
81
0.627929
4,289
0.830719
49
0.009491
69
0.013364
0
0
1,996
0.386597
790b72b5977bc41bc1fa4f394888d33023e6e512
1,309
py
Python
array/bot/others/P_ex07.py
timkphd/examples
04c162ec890a1c9ba83498b275fbdc81a4704062
[ "Unlicense" ]
5
2020-11-01T00:29:22.000Z
2022-01-24T19:09:47.000Z
array/bot/others/P_ex07.py
timkphd/examples
04c162ec890a1c9ba83498b275fbdc81a4704062
[ "Unlicense" ]
1
2022-02-09T01:59:47.000Z
2022-02-09T01:59:47.000Z
array/bot/others/P_ex07.py
timkphd/examples
04c162ec890a1c9ba83498b275fbdc81a4704062
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python # # This program shows how to use MPI_Alltoall. Each processor # send/rec a different random number to/from other processors. # # numpy is required import numpy from numpy import * # mpi4py module from mpi4py import MPI import sys def myquit(mes): MPI.Finalize() print(mes) sys.exit() # Initialize MPI and print out hello comm=MPI.COMM_WORLD myid=comm.Get_rank() numprocs=comm.Get_size() print("hello from ",myid," of ",numprocs) # We are going to send/recv a single value to/from # each processor. Here we allocate arrays s_vals=zeros(numprocs,"i") r_vals=zeros(numprocs,"i") # Fill the send arrays with random numbers random.seed(myid) for i in range(0, numprocs): s_vals[i]=random.randint(1,10) print("myid=",myid,"s_vals=",s_vals) # Send/recv to/from all comm.Alltoall(s_vals, r_vals) print("myid=",myid,"r_vals=",r_vals) MPI.Finalize() # Note, the sent values and the recv values are # like a transpose of each other # # mpiexec -n 4 ./P_ex07.py | grep s_v | sort # myid= 0 s_vals= [6 1 4 4] # myid= 1 s_vals= [6 9 6 1] # myid= 2 s_vals= [9 9 7 3] # myid= 3 s_vals= [9 4 9 9] # mpiexec -n 4 ./P_ex07.py | grep r_v | sort # myid= 0 r_vals= [6 6 9 9] # myid= 1 r_vals= [1 9 9 4] # myid= 2 r_vals= [4 6 7 9] # myid= 3 r_vals= [4 1 3 9]
20.453125
63
0.675325
0
0
0
0
0
0
0
0
815
0.622613
790c207725e1c54d9a32196cd02ceb7f9a4e7af7
18,376
py
Python
renderer/render_fmo.py
12564985/DeFMO
8ed9c2963678e2c59c7431ec8786302eea841572
[ "MIT" ]
1
2022-03-14T12:46:38.000Z
2022-03-14T12:46:38.000Z
renderer/render_fmo.py
12564985/DeFMO
8ed9c2963678e2c59c7431ec8786302eea841572
[ "MIT" ]
null
null
null
renderer/render_fmo.py
12564985/DeFMO
8ed9c2963678e2c59c7431ec8786302eea841572
[ "MIT" ]
null
null
null
""" render_fmo.py renders obj file to rgb image with fmo model Aviable function: - clear_mash: delete all the mesh in the secene - scene_setting_init: set scene configurations - node_setting_init: set node configurations - render: render rgb image for one obj file and one viewpoint - render_obj: wrapper function for render() render - init_all: a wrapper function, initialize all configurations = set_image_path: reset defualt image output folder author baiyu modified by rozumden """ import sys import os import random import pickle import bpy import glob import numpy as np from mathutils import Vector from mathutils import Euler import cv2 from PIL import Image from skimage.draw import line_aa from scipy import signal from skimage.measure import regionprops # import moviepy.editor as mpy from array2gif import write_gif abs_path = os.path.abspath(__file__) sys.path.append(os.path.dirname(abs_path)) from render_helper import * from settings import * import settings import pdb def renderTraj(pars, H): ## Input: pars is either 2x2 (line) or 2x3 (parabola) if pars.shape[1] == 2: pars = np.concatenate( (pars, np.zeros((2,1))),1) ns = 2 else: ns = 5 ns = np.max([2, ns]) rangeint = np.linspace(0,1,ns) for timeinst in range(rangeint.shape[0]-1): ti0 = rangeint[timeinst] ti1 = rangeint[timeinst+1] start = pars[:,0] + pars[:,1]*ti0 + pars[:,2]*(ti0*ti0) end = pars[:,0] + pars[:,1]*ti1 + pars[:,2]*(ti1*ti1) start = np.round(start).astype(np.int32) end = np.round(end).astype(np.int32) rr, cc, val = line_aa(start[0], start[1], end[0], end[1]) valid = np.logical_and(np.logical_and(rr < H.shape[0], cc < H.shape[1]), np.logical_and(rr > 0, cc > 0)) rr = rr[valid] cc = cc[valid] val = val[valid] if len(H.shape) > 2: H[rr, cc, 0] = 0 H[rr, cc, 1] = 0 H[rr, cc, 2] = val else: H[rr, cc] = val return H def open_log(temp_folder = g_temp): # redirect output to log file logfile = os.path.join(temp_folder,'blender_render.log') try: os.remove(logfile) except OSError: pass open(logfile, 'a').close() old = os.dup(1) sys.stdout.flush() os.close(1) os.open(logfile, os.O_WRONLY) return old def close_log(old): # disable output redirection os.close(1) os.dup(old) os.close(old) def clear_mesh(): """ clear all meshes in the secene """ bpy.ops.object.select_all(action='DESELECT') for obj in bpy.data.objects: if obj.type == 'MESH': obj.select = True bpy.ops.object.delete() for block in bpy.data.meshes: if block.users == 0: bpy.data.meshes.remove(block) for block in bpy.data.materials: if block.users == 0: bpy.data.materials.remove(block) for block in bpy.data.textures: if block.users == 0: bpy.data.textures.remove(block) for block in bpy.data.images: if block.users == 0: bpy.data.images.remove(block) def scene_setting_init(use_gpu): """initialize blender setting configurations """ sce = bpy.context.scene.name bpy.data.scenes[sce].render.engine = g_engine_type bpy.data.scenes[sce].cycles.film_transparent = g_use_film_transparent #output bpy.data.scenes[sce].render.image_settings.color_mode = g_rgb_color_mode bpy.data.scenes[sce].render.image_settings.color_depth = g_rgb_color_depth bpy.data.scenes[sce].render.image_settings.file_format = g_rgb_file_format bpy.data.scenes[sce].render.use_overwrite = g_depth_use_overwrite bpy.data.scenes[sce].render.use_file_extension = g_depth_use_file_extension if g_ambient_light: world = bpy.data.worlds['World'] world.use_nodes = True bg = world.node_tree.nodes['Background'] bg.inputs[0].default_value[:3] = g_bg_color bg.inputs[1].default_value = 1.0 #dimensions bpy.data.scenes[sce].render.resolution_x = g_resolution_x bpy.data.scenes[sce].render.resolution_y = g_resolution_y bpy.data.scenes[sce].render.resolution_percentage = g_resolution_percentage if use_gpu: bpy.data.scenes[sce].render.engine = 'CYCLES' #only cycles engine can use gpu bpy.data.scenes[sce].render.tile_x = g_hilbert_spiral bpy.data.scenes[sce].render.tile_x = g_hilbert_spiral bpy.context.user_preferences.addons['cycles'].preferences.devices[0].use = False bpy.context.user_preferences.addons['cycles'].preferences.devices[1].use = True ndev = len(bpy.context.user_preferences.addons['cycles'].preferences.devices) print('Number of devices {}'.format(ndev)) for ki in range(2,ndev): bpy.context.user_preferences.addons['cycles'].preferences.devices[ki].use = False bpy.context.user_preferences.addons['cycles'].preferences.compute_device_type = 'CUDA' # bpy.types.CyclesRenderSettings.device = 'GPU' bpy.data.scenes[sce].cycles.device = 'GPU' def node_setting_init(): bpy.context.scene.use_nodes = True tree = bpy.context.scene.node_tree links = tree.links for node in tree.nodes: tree.nodes.remove(node) render_layer_node = tree.nodes.new('CompositorNodeRLayers') image_output_node = tree.nodes.new('CompositorNodeOutputFile') image_output_node.base_path = g_syn_rgb_folder links.new(render_layer_node.outputs[0], image_output_node.inputs[0]) # image_output_node = bpy.context.scene.node_tree.nodes[1] image_output_node.base_path = g_temp image_output_node.file_slots[0].path = 'image-######.png' # blender placeholder # def render(obj_path, viewpoint, temp_folder): """render rbg image render a object rgb image by a given camera viewpoint and choose random image as background, only render one image at a time. Args: obj_path: a string variable indicate the obj file path viewpoint: a vp parameter(contains azimuth,elevation,tilt angles and distance) """ vp = viewpoint cam_location = camera_location(vp.azimuth, vp.elevation, vp.distance) cam_rot = camera_rot_XYZEuler(vp.azimuth, vp.elevation, vp.tilt) cam_obj = bpy.data.objects['Camera'] cam_obj.location[0] = cam_location[0] cam_obj.location[1] = cam_location[1] cam_obj.location[2] = cam_location[2] cam_obj.rotation_euler[0] = cam_rot[0] cam_obj.rotation_euler[1] = cam_rot[1] cam_obj.rotation_euler[2] = cam_rot[2] if not os.path.exists(g_syn_rgb_folder): os.mkdir(g_syn_rgb_folder) obj = bpy.data.objects['model_normalized'] ni = g_fmo_steps maxlen = 0.5 maxrot = 1.57/6 tri = 0 # rot_base = np.array([math.pi/2,0,0]) while tri <= g_max_trials: do_repeat = False tri += 1 if not g_apply_texture: for oi in range(len(bpy.data.objects)): if bpy.data.objects[oi].type == 'CAMERA' or bpy.data.objects[oi].type == 'LAMP': continue for tempi in range(len(bpy.data.objects[oi].data.materials)): if bpy.data.objects[oi].data.materials[tempi].alpha != 1.0: return True, True ## transparent object los_start = Vector((random.uniform(-maxlen/10, maxlen/10), random.uniform(-maxlen, maxlen), random.uniform(-maxlen, maxlen))) loc_step = Vector((random.uniform(-maxlen/10, maxlen/10), random.uniform(-maxlen, maxlen), random.uniform(-maxlen, maxlen)))/ni rot_base = np.array((random.uniform(0, 2*math.pi), random.uniform(0, 2*math.pi), random.uniform(0, 2*math.pi))) rot_step = np.array((random.uniform(-maxrot, maxrot), random.uniform(-maxrot, maxrot), random.uniform(-maxrot, maxrot)))/ni old = open_log(temp_folder) for ki in [0, ni-1]+list(range(1,ni-1)): for oi in range(len(bpy.data.objects)): if bpy.data.objects[oi].type == 'CAMERA' or bpy.data.objects[oi].type == 'LAMP': continue bpy.data.objects[oi].location = los_start + loc_step*ki bpy.data.objects[oi].rotation_euler = Euler(rot_base + (rot_step*ki)) bpy.context.scene.frame_set(ki + 1) bpy.ops.render.render(write_still=True) #start rendering if ki == 0 or ki == (ni-1): Mt = cv2.imread(os.path.join(bpy.context.scene.node_tree.nodes[1].base_path,'image-{:06d}.png'.format(ki+1)),cv2.IMREAD_UNCHANGED)[:,:,-1] > 0 is_border = ((Mt[0,:].sum()+Mt[-1,:].sum()+Mt[:,0].sum()+Mt[:,-1].sum()) > 0) or Mt.sum()==0 if is_border: if ki == 0: close_log(old) return False, True ## sample different starting viewpoint else: do_repeat = True ## just sample another motion direction if do_repeat: break close_log(old) if do_repeat == False: break if do_repeat: ## sample different starting viewpoint return False, True return False, False def make_fmo(path, gt_path, video_path): n_im = 5 background_images = os.listdir(g_background_image_path) seq_name = random.choice(background_images) seq_images = glob.glob(os.path.join(g_background_image_path,seq_name,"*.jpg")) if len(seq_images) <= n_im: seq_images = glob.glob(os.path.join(g_background_image_path,seq_name,"*.png")) seq_images.sort() bgri = random.randint(n_im,len(seq_images)-1) bgr_path = seq_images[bgri] B0 = cv2.imread(bgr_path)/255 B = cv2.resize(B0, dsize=(int(g_resolution_x*g_resolution_percentage/100), int(g_resolution_y*g_resolution_percentage/100)), interpolation=cv2.INTER_CUBIC) B[B > 1] = 1 B[B < 0] = 0 FH = np.zeros(B.shape) MH = np.zeros(B.shape[:2]) pars = np.array([[(B.shape[0]-1)/2-1, (B.shape[1]-1)/2-1], [1.0, 1.0]]).T FM = np.zeros(B.shape[:2]+(4,g_fmo_steps,)) centroids = np.zeros((2,g_fmo_steps)) for ki in range(g_fmo_steps): FM[:,:,:,ki] = cv2.imread(os.path.join(gt_path,'image-{:06d}.png'.format(ki+1)),cv2.IMREAD_UNCHANGED)/g_rgb_color_max props = regionprops((FM[:,:,-1,ki]>0).astype(int)) if len(props) != 1: return False centroids[:,ki] = props[0].centroid for ki in range(g_fmo_steps): F = FM[:,:,:-1,ki]*FM[:,:,-1:,ki] M = FM[:,:,-1,ki] if ki < g_fmo_steps-1: pars[:,1] = centroids[:,ki+1] - centroids[:,ki] H = renderTraj(pars, np.zeros(B.shape[:2])) H /= H.sum()*g_fmo_steps for kk in range(3): FH[:,:,kk] += signal.fftconvolve(H, F[:,:,kk], mode='same') MH += signal.fftconvolve(H, M, mode='same') Im = FH + (1 - MH)[:,:,np.newaxis]*B Im[Im > 1] = 1 Im[Im < 0] = 0 if g_skip_low_contrast: Diff = np.sum(np.abs(Im - B),2) meanval = np.mean(Diff[MH > 0.05]) print("Contrast {}".format(meanval)) if meanval < 0.2: return False if g_skip_small: sizeper = np.sum(MH > 0.01)/(MH.shape[0]*MH.shape[1]) print("Size percentage {}".format(sizeper)) if sizeper < 0.05: return False Im = Im[:,:,[2,1,0]] Ims = Image.fromarray((Im * 255).astype(np.uint8)) Ims.save(path) Ball = np.zeros(B.shape+(n_im,)) Ball[:,:,:,0] = B for ki in range(1,n_im): bgrki_path = seq_images[bgri-ki] Ball[:,:,:,ki] = cv2.resize(cv2.imread(bgrki_path)/255, dsize=(int(g_resolution_x*g_resolution_percentage/100), int(g_resolution_y*g_resolution_percentage/100)), interpolation=cv2.INTER_CUBIC) Ball[Ball > 1] = 1 Ball[Ball < 0] = 0 Bmed = np.median(Ball,3) Image.fromarray((B[:,:,[2,1,0]] * 255).astype(np.uint8)).save(os.path.join(gt_path,'bgr.png')) Image.fromarray((Bmed[:,:,[2,1,0]] * 255).astype(np.uint8)).save(os.path.join(gt_path,'bgr_med.png')) # Ims.save(os.path.join(g_temp,"I.png")) # Image.fromarray((FH * 255)[:,:,[2,1,0]].astype(np.uint8)).save(os.path.join(g_temp,"FH.png")) # Image.fromarray((MH * 255).astype(np.uint8)).save(os.path.join(g_temp,"MH.png")) # Image.fromarray((M * 255).astype(np.uint8)).save(os.path.join(g_temp,"M.png")) # Image.fromarray((F * 255)[:,:,[2,1,0]].astype(np.uint8)).save(os.path.join(g_temp,"F.png")) # Image.fromarray((B0 * 255)[:,:,[2,1,0]].astype(np.uint8)).save(os.path.join(g_temp,"B.png")) if False: Fwr = FM[:,:,:-1,:] * FM[:,:,-1:,:] + 1 * (1 - FM[:,:,-1:,:]) Fwr = (Fwr * 255).astype(np.uint8) # Fwr[np.repeat(FM[:,:,-1:,:]==0,3,2)]=255 out = cv2.VideoWriter(video_path,cv2.VideoWriter_fourcc(*"MJPG"), 6, (F.shape[1],F.shape[0]),True) for ki in range(g_fmo_steps): out.write(Fwr[:,:,:,ki]) out.release() return True def render_obj(obj_path, path, objid, obj_name, temp_folder): """ render one obj file by a given viewpoint list a wrapper function for render() Args: obj_path: a string variable indicate the obj file path """ vps_path = random.sample(g_view_point_file, 1)[0] vps = list(load_viewpoint(vps_path)) random.shuffle(vps) save_path = os.path.join(path,"{}_{:04d}.png".format(obj_name,objid)) gt_path = os.path.join(path,"GT","{}_{:04d}".format(obj_name,objid)) video_path = os.path.join(path,"{}_{:04d}.avi".format(obj_name,objid)) if not os.path.exists(gt_path): os.mkdir(gt_path) image_output_node = bpy.context.scene.node_tree.nodes[1] image_output_node.base_path = gt_path for imt in bpy.data.images: bpy.data.images.remove(imt) if g_apply_texture: for oi in range(len(bpy.data.objects)): if bpy.data.objects[oi].type == 'CAMERA' or bpy.data.objects[oi].type == 'LAMP': continue bpy.context.scene.objects.active = bpy.data.objects[oi] # pdb.set_trace() # for m in bpy.data.materials: # bpy.data.materials.remove(m) # bpy.ops.object.material_slot_remove() bpy.ops.object.editmode_toggle() bpy.ops.uv.cube_project() bpy.ops.object.editmode_toggle() texture_images = os.listdir(g_texture_path) texture = random.choice(texture_images) tex_path = os.path.join(g_texture_path,texture) # mat = bpy.data.materials.new(texture) # mat.use_nodes = True # nt = mat.node_tree # nodes = nt.nodes # links = nt.links # # Image Texture # textureNode = nodes.new("ShaderNodeTexImage") # textureNode.image = bpy.data.images.load(tex_path) # links.new(nodes['Diffuse BSDF'].inputs['Color'], textureNode.outputs['Color']) # mat.specular_intensity = 0 # bpy.data.objects[oi].active_material = mat # print(bpy.data.objects[oi].active_material) for mat in bpy.data.materials: nodes = mat.node_tree.nodes links = mat.node_tree.links textureNode = nodes.new("ShaderNodeTexImage") textureNode.image = bpy.data.images.load(tex_path) links.new(nodes['Diffuse BSDF'].inputs['Color'], textureNode.outputs['Color']) # print(bpy.data.objects[oi].active_material) tri = 0 while tri <= g_max_trials: tri += 1 vp = random.sample(vps, 1)[0] sample_different_object, sample_different_vp = render(obj_path, vp, temp_folder) if sample_different_vp: if sample_different_object: print('Transparent object!') return False print('Rendering failed, repeating') continue success = make_fmo(save_path, gt_path, video_path) if success: return True print('Making FMO failed, repeating') return False def init_all(): """init everything we need for rendering an image """ scene_setting_init(g_gpu_render_enable) node_setting_init() cam_obj = bpy.data.objects['Camera'] cam_obj.rotation_mode = g_rotation_mode if g_render_light: bpy.data.objects['Lamp'].data.energy = 50 bpy.ops.object.lamp_add(type='SUN') bpy.data.objects['Sun'].data.energy = 5 ### YOU CAN WRITE YOUR OWN IMPLEMENTATION TO GENERATE DATA init_all() argv = sys.argv argv = argv[argv.index("--") + 1:] start_index = int(argv[0]) step_index = int(argv[1]) print('Start index {}, step index {}'.format(start_index, step_index)) temp_folder = g_syn_rgb_folder+g_render_objs[start_index]+'/' for obj_name in g_render_objs[start_index:(start_index+step_index)]: print("Processing object {}".format(obj_name)) obj_folder = os.path.join(g_syn_rgb_folder, obj_name) if not os.path.exists(obj_folder): os.makedirs(obj_folder) if not os.path.exists(os.path.join(obj_folder,"GT")): os.mkdir(os.path.join(obj_folder,"GT")) num = g_shapenet_categlory_pair[obj_name] search_path = os.path.join(g_shapenet_path, num, '**','*.obj') pathes = glob.glob(search_path, recursive=True) random.shuffle(pathes) objid = 1 tri = 0 while objid <= g_number_per_category: print(" instance {}".format(objid)) clear_mesh() path = random.sample(pathes, 1)[0] old = open_log(temp_folder) bpy.ops.import_scene.obj(filepath=path, axis_forward='-Z', axis_up='Y', filter_glob="*.obj;*.mtl", use_split_groups=False, use_split_objects=True) # bpy.ops.import_scene.obj(filepath=path) close_log(old) #combine_objects() #scale_objects(0.5) result = render_obj(path, obj_folder, objid, obj_name, temp_folder) if result: objid += 1 tri = 0 else: print('Error! Rendering another object from the category!') tri += 1 if tri > g_max_trials: print('No object find in the category!!!!!!!!!') break
39.181237
200
0.619286
0
0
0
0
0
0
0
0
3,743
0.20369
790ca91d1e267c27a75b0c472c8aadefd871871f
11,385
py
Python
main.py
VV123/NLIDB_gradient
f42a6f383d2d4ac41c354cf55df2a21507577b02
[ "MIT" ]
null
null
null
main.py
VV123/NLIDB_gradient
f42a6f383d2d4ac41c354cf55df2a21507577b02
[ "MIT" ]
1
2021-01-11T03:42:43.000Z
2021-02-19T17:06:59.000Z
main.py
VV123/NLIDB_gradient
f42a6f383d2d4ac41c354cf55df2a21507577b02
[ "MIT" ]
null
null
null
# coding=utf-8 import sys import argparse import os from tensorflow.python.platform import gfile import numpy as np import tensorflow as tf from tensorflow.python.layers.core import Dense from utils.data_manager import load_data, load_data_one from collections import defaultdict from argparse import ArgumentParser from decode_helper import decode_one import sys reload(sys) sys.setdefaultencoding('utf8') os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' from tf_helper import train, evaluate, decode_data, decode_data_recover from model1 import construct_graph def init_args(): arg_parser = argparse.ArgumentParser() arg_parser.add_argument( '--data_path', default=os.path.dirname(os.path.abspath(__file__)) + '/data', type=str, help='Data path.') arg_parser.add_argument( '--load_data', default=False, type=bool, help='Load data.') arg_parser.add_argument( '--data', choices=['wikisql', 'spider', 'overnight', 'overnight_set'], default='wikisql', help='data to train & test') #arg_parser.add_argument('--tran_data', choices=['wikisql', 'spider', 'overnight'], default='overnight', help='data to transfer') arg_parser.add_argument( '--subset', choices=['all'], default='all', help='Subset of data.') arg_parser.add_argument( '--maxlen', default=60, type=int, help='Data record max length.') arg_parser.add_argument( '--annotation_path', default=os.path.dirname(os.path.abspath(__file__)) + '/data/DATA/wiki/', type=str, help='Data annotation path.') arg_parser.add_argument( '--mode', choices=['train', 'infer', 'transfer','txt'], default='infer', help='Run mode') #### Model configuration #### arg_parser.add_argument( '--cell', choices=['gru'], default='gru', help='Type of cell used, currently only standard GRU cell is supported' ) arg_parser.add_argument( '--output_vocab_size', default=20637, #default=20452, type=int, help='Output vocabulary size.') # Embedding sizes arg_parser.add_argument( '--embedding_dim', default=300, type=int, help='Size of word embeddings') #Hidden sizes arg_parser.add_argument( '--dim', default=400, type=int, help='Size of GRU hidden states') arg_parser.add_argument( '--hidden_size', default=256, type=int, help='Size of LSTM hidden states') arg_parser.add_argument( '--no_copy', default=False, action='store_true', help='Do not use copy mechanism') #### Training #### arg_parser.add_argument( '--vocab', type=str, help='Path of the serialized vocabulary') arg_parser.add_argument( '--glove_embed_path', default=None, type=str, help='Path to pretrained Glove mebedding') arg_parser.add_argument( '--batch_size', default=128, type=int, help='Batch size') arg_parser.add_argument( '--in_drop', default=0., type=float, help='In dropout rate') arg_parser.add_argument( '--out_drop', default=0., type=float, help='Out dropout rate') # training details arg_parser.add_argument( '--valid_epoch_interval', default=1, type=int, help='Perform validation every x epoch') arg_parser.add_argument( '--clip_grad', default=5., type=float, help='Clip gradients') arg_parser.add_argument( '--total_epochs', default=40, type=int, help='# of training epoches') arg_parser.add_argument( '--epochs', default=1, type=int, help='Record per x epoches') arg_parser.add_argument( '--lr', default=0.0001, type=float, help='Learning rate') arg_parser.add_argument( '--lr_decay', default=0.5, type=float, help='decay learning rate if the validation performance drops') #### decoding/validation/testing #### arg_parser.add_argument( '--load_model', default=False, type=bool, help='Whether to load model') arg_parser.add_argument( '--beam_width', default=5, type=int, help='Beam size for beam search') arg_parser.add_argument( '--decode_max_time_step', default=100, type=int, help='Maximum number of time steps used ' 'in decoding and sampling') args = arg_parser.parse_args() return args def model(args, train_env, infer_env): tf.reset_default_graph() train_graph = tf.Graph() infer_graph = tf.Graph() with train_graph.as_default(): train_env.x = tf.placeholder( tf.int32, shape=[None, args.maxlen], name='x') train_env.y = tf.placeholder(tf.int32, (None, args.maxlen), name='y') train_env.training = tf.placeholder_with_default( False, (), name='train_mode') train_env.train_op, train_env.loss, train_env.acc, sample_ids, logits = construct_graph( "train", train_env, args) train_env.saver = tf.train.Saver() #[print(n.name) for n in tf.get_default_graph().as_graph_def().node if 'xxxxx' in n.name] with infer_graph.as_default(): infer_env.x = tf.placeholder( tf.int32, shape=[None, args.maxlen], name='x') infer_env.y = tf.placeholder(tf.int32, (None, args.maxlen), name='y') infer_env.training = tf.placeholder_with_default( False, (), name='train_mode') _, infer_env.loss, infer_env.acc, infer_env.pred_ids, _ = construct_graph( "infer", infer_env, args) infer_env.infer_saver = tf.train.Saver() return train_graph, infer_graph def inferrence(args): args.load_model = True class Dummy: pass train_env = Dummy() infer_env = Dummy() _, infer_graph = model(args, train_env, infer_env) args.data = 'wikisql' args.load_data = True X_train, y_train = load_data(maxlen=args.maxlen,load=args.load_data, s='train') X_test, y_test = load_data(maxlen=args.maxlen,load=args.load_data, s='test') X_dev, y_dev = load_data(maxlen=args.maxlen,load=args.load_data, s='dev') #X_train, y_train, X_test, y_test, X_dev, y_dev = load_data(args) model2load = 'model/{}'.format(args.subset) sess = tf.InteractiveSession(graph=infer_graph) infer_env.infer_saver.restore(sess, model2load) print('===========dev set============') decode_data(sess, infer_env, X_dev, y_dev) em = decode_data_recover(sess, infer_env, X_dev, y_dev, 'dev') print('==========test set===========') decode_data(sess, infer_env, X_test, y_test) test_em = decode_data_recover(sess, infer_env, X_test, y_test, 'test') return def infer_one(args): args.load_model = True class Dummy: pass train_env = Dummy() infer_env = Dummy() _, infer_graph = model(args, train_env, infer_env) args.data = 'wikisql' args.load_data = True model2load = 'model/{}'.format(args.subset) sess = tf.InteractiveSession(graph=infer_graph) infer_env.infer_saver.restore(sess, model2load) print('===========decode============') X_one = load_data_one(args.maxlen, 'qs.txt') decode_one(sess, infer_env, X_one) return def train_model(args): class Dummy: pass train_env = Dummy() infer_env = Dummy() train_graph, infer_graph = model(args, train_env, infer_env) args.data = 'wikisql' args.load_data = True args.load_model = False X_train, y_train = load_data(maxlen=args.maxlen,load=args.load_data, s='train') X_test, y_test = load_data(maxlen=args.maxlen,load=args.load_data, s='test') X_dev, y_dev = load_data(maxlen=args.maxlen,load=args.load_data, s='dev') #X_train, y_train, X_test, y_test, X_dev, y_dev = load_data(args) model2load = 'model/{}'.format(args.subset) max_em, global_test_em, best_base = -1, -1, -1 acc = 0 sess1 = tf.InteractiveSession(graph=train_graph) sess1.run(tf.global_variables_initializer()) sess1.run(tf.local_variables_initializer()) sess2 = tf.InteractiveSession(graph=infer_graph) sess2.run(tf.global_variables_initializer()) sess2.run(tf.global_variables_initializer()) for base in range(args.total_epochs / args.epochs): print('\nIteration: %d (%d epochs)' % (base, args.epochs)) model2load = train( sess1, train_env, X_train, y_train, epochs=args.epochs, load=args.load_model, name=args.subset, batch_size=args.batch_size, base=base, model2Bload=model2load) args.load_model = True infer_env.infer_saver.restore(sess2, model2load) print('===========dev set============') dev_em = decode_data(sess2, infer_env, X_dev, y_dev) dev_em = decode_data_recover(sess2, infer_env, X_dev, y_dev, 'dev') print('==========test set===========') test_em = decode_data(sess2, infer_env, X_test, y_test) test_em = decode_data_recover(sess2, infer_env, X_test, y_test, 'test') if dev_em > max_em: max_em = dev_em global_test_em = test_em best_base = base print('\n Saving model for best testing') train_env.saver.save(sess1, 'best_model/{0}-{1}-{2:.2f}'.format(args.subset, base, max_em)) print('Max EM acc: %.4f during %d iteration.' % (max_em, best_base)) print('test EM acc: %.4f ' % global_test_em) return def transfer(args): load_model = args.load_model if args.mode == 'train' else True class Dummy: pass train_env = Dummy() infer_env = Dummy() _, infer_graph = model(args, train_env, infer_env) args.data = 'overnight' args.load_data = True #X_tran, y_tran = load_data(args) X_tran, y_tran = load_data(maxlen=args.maxlen,load=args.load_data, s='overnight') args.data = 'overnight_set' #tran_sets = load_data(args) tran_sets = load_data(maxlen=args.maxlen,load=args.load_data, s='overnight_set') model2load = 'model/{}'.format(args.subset) sess = tf.InteractiveSession(graph=infer_graph) infer_env.infer_saver.restore(sess, model2load) print('========subset transfer set========') subsets = ['basketball', 'calendar', 'housing', 'recipes', 'restaurants'] for subset, (X_tran_subset, y_tran_subset) in zip(subsets, tran_sets): print('---------' + subset + '---------') tran_em = decode_data( sess, infer_env, X_tran_subset, y_tran_subset, filename=str(subset + '.txt')) print('===========transfer set============') tran_em = decode_data(sess, infer_env, X_tran, y_tran) return if __name__ == '__main__': args = init_args() print(args) if args.mode == 'train': print('\nTrain model.') train_model(args) elif args.mode == 'infer': print('\nInference.') inferrence(args) elif args.mode == 'txt': print('\nInference from txt.') infer_one(args) elif args.mode == 'transfer': print('\nTransfer.') transfer(args)
33.683432
133
0.623188
100
0.008783
0
0
0
0
0
0
2,630
0.231006
790e259abafc3b78efd22c4e49725337604761c5
55
py
Python
src/__init__.py
codespacedot/CodeSpaceAPI
22b457088aa592c4fb9111718810075d2643d9ca
[ "Apache-2.0" ]
3
2021-07-05T17:28:14.000Z
2021-12-07T10:08:14.000Z
src/__init__.py
git-vish/CodeSpaceAPI
7ad4327e0eef3019098730358c4a23312bc85615
[ "Apache-2.0" ]
2
2021-07-29T13:55:15.000Z
2021-07-31T16:49:03.000Z
src/__init__.py
git-vish/CodeSpaceAPI
7ad4327e0eef3019098730358c4a23312bc85615
[ "Apache-2.0" ]
3
2021-07-01T16:32:20.000Z
2021-07-05T04:50:30.000Z
"""FastAPI Project for CodeSpace. https://csdot.ml """
13.75
33
0.690909
0
0
0
0
0
0
0
0
54
0.981818
790e708e4fd42df30662fd05e0fd27cb6d2b56ae
1,525
py
Python
gdsfactory/components/cdsem_straight.py
jorgepadilla19/gdsfactory
68e1c18257a75d4418279851baea417c8899a165
[ "MIT" ]
42
2020-05-25T09:33:45.000Z
2022-03-29T03:41:19.000Z
gdsfactory/components/cdsem_straight.py
jorgepadilla19/gdsfactory
68e1c18257a75d4418279851baea417c8899a165
[ "MIT" ]
133
2020-05-28T18:29:04.000Z
2022-03-31T22:21:42.000Z
gdsfactory/components/cdsem_straight.py
jorgepadilla19/gdsfactory
68e1c18257a75d4418279851baea417c8899a165
[ "MIT" ]
17
2020-06-30T07:07:50.000Z
2022-03-17T15:45:27.000Z
"""CD SEM structures.""" from functools import partial from typing import Optional, Tuple from gdsfactory.cell import cell from gdsfactory.component import Component from gdsfactory.components.straight import straight as straight_function from gdsfactory.components.text_rectangular import text_rectangular from gdsfactory.cross_section import strip from gdsfactory.grid import grid from gdsfactory.types import ComponentFactory, CrossSectionFactory text_rectangular_mini = partial(text_rectangular, size=1) LINE_LENGTH = 420.0 @cell def cdsem_straight( widths: Tuple[float, ...] = (0.4, 0.45, 0.5, 0.6, 0.8, 1.0), length: float = LINE_LENGTH, cross_section: CrossSectionFactory = strip, text: Optional[ComponentFactory] = text_rectangular_mini, spacing: float = 3, ) -> Component: """Returns straight waveguide lines width sweep. Args: widths: for the sweep length: for the line cross_section: for the lines text: optional text for labels spacing: edge to edge spacing """ lines = [] for width in widths: cross_section = partial(cross_section, width=width) line = straight_function(length=length, cross_section=cross_section) if text: line = line.copy() t = line << text(str(int(width * 1e3))) t.xmin = line.xmax + 5 t.y = 0 lines.append(line) return grid(lines, spacing=(0, spacing)) if __name__ == "__main__": c = cdsem_straight() c.show()
28.773585
76
0.685902
0
0
0
0
924
0.605902
0
0
274
0.179672
79107ce8bb54a81242a6381a90d895c5d61ecf37
10,057
py
Python
Examples/Tests/particle_fields_diags/analysis_particle_diags_impl.py
hklion/WarpX
3c2d0ee2815ab1df21b9f78d899fe7b1a9651758
[ "BSD-3-Clause-LBNL" ]
null
null
null
Examples/Tests/particle_fields_diags/analysis_particle_diags_impl.py
hklion/WarpX
3c2d0ee2815ab1df21b9f78d899fe7b1a9651758
[ "BSD-3-Clause-LBNL" ]
null
null
null
Examples/Tests/particle_fields_diags/analysis_particle_diags_impl.py
hklion/WarpX
3c2d0ee2815ab1df21b9f78d899fe7b1a9651758
[ "BSD-3-Clause-LBNL" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2019-2022 Luca Fedeli, Yinjian Zhao, Hannah Klion # # This file is part of WarpX. # # License: BSD-3-Clause-LBNL # This script tests the reduced particle diagnostics. # The setup is a uniform plasma with electrons, protons and photons. # Various particle and field quantities are written to file using the reduced diagnostics # and compared with the corresponding quantities computed from the data in the plotfiles. import os import sys import numpy as np import openpmd_api as io from scipy.constants import c from scipy.constants import epsilon_0 as eps0 from scipy.constants import m_e, m_p from scipy.constants import mu_0 as mu0 import yt sys.path.insert(1, '../../../../warpx/Regression/Checksum/') import checksumAPI def do_analysis(single_precision = False): fn = sys.argv[1] ds = yt.load(fn) ad = ds.all_data() ad0 = ds.covering_grid(level=0, left_edge=ds.domain_left_edge, dims=ds.domain_dimensions) opmd = io.Series('diags/openpmd/openpmd_%T.h5', io.Access.read_only) opmd_i = opmd.iterations[200] #-------------------------------------------------------------------------------------------------- # Part 1: get results from plotfiles (label '_yt') #-------------------------------------------------------------------------------------------------- # Quantities computed from plotfiles values_yt = dict() domain_size = ds.domain_right_edge.value - ds.domain_left_edge.value dx = domain_size / ds.domain_dimensions # Electrons x = ad['electrons', 'particle_position_x'].to_ndarray() y = ad['electrons', 'particle_position_y'].to_ndarray() z = ad['electrons', 'particle_position_z'].to_ndarray() uz = ad['electrons', 'particle_momentum_z'].to_ndarray() / m_e / c w = ad['electrons', 'particle_weight'].to_ndarray() filt = uz < 0 x_ind = ((x - ds.domain_left_edge[0].value) / dx[0]).astype(int) y_ind = ((y - ds.domain_left_edge[1].value) / dx[1]).astype(int) z_ind = ((z - ds.domain_left_edge[2].value) / dx[2]).astype(int) zavg = np.zeros(ds.domain_dimensions) uzavg = np.zeros(ds.domain_dimensions) zuzavg = np.zeros(ds.domain_dimensions) wavg = np.zeros(ds.domain_dimensions) uzavg_filt = np.zeros(ds.domain_dimensions) wavg_filt = np.zeros(ds.domain_dimensions) for i_p in range(len(x)): zavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += z[i_p] * w[i_p] uzavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += uz[i_p] * w[i_p] zuzavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += z[i_p] * uz[i_p] * w[i_p] wavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += w[i_p] uzavg_filt[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += uz[i_p] * w[i_p] * filt[i_p] wavg_filt[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += w[i_p] * filt[i_p] wavg_adj = np.where(wavg == 0, 1, wavg) wavg_filt_adj = np.where(wavg_filt == 0, 1, wavg_filt) values_yt['electrons: zavg'] = zavg / wavg_adj values_yt['electrons: uzavg'] = uzavg / wavg_adj values_yt['electrons: zuzavg'] = zuzavg / wavg_adj values_yt['electrons: uzavg_filt'] = uzavg_filt / wavg_filt_adj # protons x = ad['protons', 'particle_position_x'].to_ndarray() y = ad['protons', 'particle_position_y'].to_ndarray() z = ad['protons', 'particle_position_z'].to_ndarray() uz = ad['protons', 'particle_momentum_z'].to_ndarray() / m_p / c w = ad['protons', 'particle_weight'].to_ndarray() filt = uz < 0 x_ind = ((x - ds.domain_left_edge[0].value) / dx[0]).astype(int) y_ind = ((y - ds.domain_left_edge[1].value) / dx[1]).astype(int) z_ind = ((z - ds.domain_left_edge[2].value) / dx[2]).astype(int) zavg = np.zeros(ds.domain_dimensions) uzavg = np.zeros(ds.domain_dimensions) zuzavg = np.zeros(ds.domain_dimensions) wavg = np.zeros(ds.domain_dimensions) uzavg_filt = np.zeros(ds.domain_dimensions) wavg_filt = np.zeros(ds.domain_dimensions) for i_p in range(len(x)): zavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += z[i_p] * w[i_p] uzavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += uz[i_p] * w[i_p] zuzavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += z[i_p] * uz[i_p] * w[i_p] wavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += w[i_p] uzavg_filt[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += uz[i_p] * w[i_p] * filt[i_p] wavg_filt[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += w[i_p] * filt[i_p] wavg_adj = np.where(wavg == 0, 1, wavg) wavg_filt_adj = np.where(wavg_filt == 0, 1, wavg_filt) values_yt['protons: zavg'] = zavg / wavg_adj values_yt['protons: uzavg'] = uzavg / wavg_adj values_yt['protons: zuzavg'] = zuzavg / wavg_adj values_yt['protons: uzavg_filt'] = uzavg_filt / wavg_filt_adj # Photons (momentum in units of m_e c) x = ad['photons', 'particle_position_x'].to_ndarray() y = ad['photons', 'particle_position_y'].to_ndarray() z = ad['photons', 'particle_position_z'].to_ndarray() uz = ad['photons', 'particle_momentum_z'].to_ndarray() / m_e / c w = ad['photons', 'particle_weight'].to_ndarray() filt = uz < 0 x_ind = ((x - ds.domain_left_edge[0].value) / dx[0]).astype(int) y_ind = ((y - ds.domain_left_edge[1].value) / dx[1]).astype(int) z_ind = ((z - ds.domain_left_edge[2].value) / dx[2]).astype(int) zavg = np.zeros(ds.domain_dimensions) uzavg = np.zeros(ds.domain_dimensions) zuzavg = np.zeros(ds.domain_dimensions) wavg = np.zeros(ds.domain_dimensions) uzavg_filt = np.zeros(ds.domain_dimensions) wavg_filt = np.zeros(ds.domain_dimensions) for i_p in range(len(x)): zavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += z[i_p] * w[i_p] uzavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += uz[i_p] * w[i_p] zuzavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += z[i_p] * uz[i_p] * w[i_p] wavg[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += w[i_p] uzavg_filt[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += uz[i_p] * w[i_p] * filt[i_p] wavg_filt[x_ind[i_p],y_ind[i_p],z_ind[i_p]] += w[i_p] * filt[i_p] wavg_adj = np.where(wavg == 0, 1, wavg) wavg_filt_adj = np.where(wavg_filt == 0, 1, wavg_filt) values_yt['photons: zavg'] = zavg / wavg_adj values_yt['photons: uzavg'] = uzavg / wavg_adj values_yt['photons: zuzavg'] = zuzavg / wavg_adj values_yt['photons: uzavg_filt'] = uzavg_filt / wavg_filt_adj values_rd = dict() # Load reduced particle diagnostic data from plotfiles values_rd['electrons: zavg'] = ad0[('boxlib','z_electrons')] values_rd['protons: zavg'] = ad0[('boxlib','z_protons')] values_rd['photons: zavg'] = ad0[('boxlib','z_photons')] values_rd['electrons: uzavg'] = ad0[('boxlib','uz_electrons')] values_rd['protons: uzavg'] = ad0[('boxlib','uz_protons')] values_rd['photons: uzavg'] = ad0[('boxlib','uz_photons')] values_rd['electrons: zuzavg'] = ad0[('boxlib','zuz_electrons')] values_rd['protons: zuzavg'] = ad0[('boxlib','zuz_protons')] values_rd['photons: zuzavg'] = ad0[('boxlib','zuz_photons')] values_rd['electrons: uzavg_filt'] = ad0[('boxlib','uz_filt_electrons')] values_rd['protons: uzavg_filt'] = ad0[('boxlib','uz_filt_protons')] values_rd['photons: uzavg_filt'] = ad0[('boxlib','uz_filt_photons')] values_opmd = dict() # Load reduced particle diagnostic data from OPMD output values_opmd['electrons: zavg'] = opmd_i.meshes['z_electrons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['protons: zavg'] = opmd_i.meshes['z_protons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['photons: zavg'] = opmd_i.meshes['z_photons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['electrons: uzavg'] = opmd_i.meshes['uz_electrons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['protons: uzavg'] = opmd_i.meshes['uz_protons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['photons: uzavg'] = opmd_i.meshes['uz_photons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['electrons: zuzavg'] = opmd_i.meshes['zuz_electrons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['protons: zuzavg'] = opmd_i.meshes['zuz_protons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['photons: zuzavg'] = opmd_i.meshes['zuz_photons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['electrons: uzavg_filt'] = opmd_i.meshes['uz_filt_electrons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['protons: uzavg_filt'] = opmd_i.meshes['uz_filt_protons'][io.Mesh_Record_Component.SCALAR].load_chunk() values_opmd['photons: uzavg_filt'] = opmd_i.meshes['uz_filt_photons'][io.Mesh_Record_Component.SCALAR].load_chunk() opmd.flush() del opmd #-------------------------------------------------------------------------------------------------- # Part 3: compare values from plotfiles and diagnostics and print output #-------------------------------------------------------------------------------------------------- error_plt = dict() error_opmd = dict() tolerance = 5e-3 if single_precision else 1e-12 # if single precision, increase tolerance from default value check_tolerance = 5e-3 if single_precision else 1e-9 for k in values_yt.keys(): # check that the zeros line up, since we'll be ignoring them in the error calculation assert(np.all((values_yt[k] == 0) == (values_rd[k] == 0))) error_plt[k] = np.max(abs(values_yt[k] - values_rd[k])[values_yt[k] != 0] / abs(values_yt[k])[values_yt[k] != 0]) print(k, 'relative error plotfile = ', error_plt[k]) assert(error_plt[k] < tolerance) assert(np.all((values_yt[k] == 0) == (values_opmd[k].T == 0))) error_opmd[k] = np.max(abs(values_yt[k] - values_opmd[k].T)[values_yt[k] != 0] / abs(values_yt[k])[values_yt[k] != 0]) assert(error_opmd[k] < tolerance) print(k, 'relative error openPMD = ', error_opmd[k]) test_name = os.path.split(os.getcwd())[1] checksumAPI.evaluate_checksum(test_name, fn, rtol=check_tolerance)
46.995327
126
0.645521
0
0
0
0
0
0
0
0
2,955
0.293825
7910b1ce3b116e87579add349dab0e8dadaa95e7
1,420
py
Python
predict.py
stonebegin/Promise12-3DUNet
d48d95ae7f2da98d068f84391dc547abd968981d
[ "MIT" ]
2
2020-12-20T12:35:24.000Z
2021-01-04T03:21:37.000Z
predict.py
stonebegin/Promise12-3DUNet
d48d95ae7f2da98d068f84391dc547abd968981d
[ "MIT" ]
1
2020-12-27T05:08:02.000Z
2020-12-27T08:08:50.000Z
predict.py
stonebegin/Promise12-3DUNet
d48d95ae7f2da98d068f84391dc547abd968981d
[ "MIT" ]
null
null
null
import importlib import os from datasets.hdf5 import get_test_loaders from unet3d import utils from unet3d.config import load_config from unet3d.model import get_model logger = utils.get_logger('UNet3DPredictor') def _get_predictor(model, loader, output_file, config): predictor_config = config.get('predictor', {}) class_name = predictor_config.get('name', 'StandardPredictor') m = importlib.import_module('unet3d.predictor') predictor_class = getattr(m, class_name) # model: UNet3D, loader: test_loader, output_file: data.h5, config: config.yaml return predictor_class(model, loader, output_file, config, **predictor_config) def main(): # Load configuration config = load_config() # Create the model model = get_model(config) # Load model state model_path = config['model_path'] logger.info(f'Loading model from {model_path}...') utils.load_checkpoint(model_path, model) logger.info(f"Sending the model to '{config['device']}'") model = model.to(config['device']) logger.info('Loading HDF5 datasets...') test_loader = get_test_loaders(config)['test'] for i, data_pair in enumerate(test_loader): output_file = 'predict_' + str(i) + '.h5' predictor = _get_predictor(model, data_pair, output_file, config) predictor.predict() if __name__ == '__main__': main()
30.869565
84
0.687324
0
0
0
0
0
0
0
0
368
0.259155
7910bb4a1911643dedff502020dff254dc351cc8
9,248
py
Python
gitScrabber/scrabTasks/file/languageDetector.py
Eyenseo/gitScrabber
e3f5ce1a7b034fa3e40a54577268228a3be2b141
[ "MIT" ]
null
null
null
gitScrabber/scrabTasks/file/languageDetector.py
Eyenseo/gitScrabber
e3f5ce1a7b034fa3e40a54577268228a3be2b141
[ "MIT" ]
null
null
null
gitScrabber/scrabTasks/file/languageDetector.py
Eyenseo/gitScrabber
e3f5ce1a7b034fa3e40a54577268228a3be2b141
[ "MIT" ]
null
null
null
""" The MIT License (MIT) Copyright (c) 2017 Andreas Poppele Copyright (c) 2017 Roland Jaeger Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from ..scrabTask import FileTask import os name = "LanguageDetector" version = "1.1.1" class LanguageDetector(FileTask): cpp_extensions = ['.cpp', '.c++', '.cc', '.cxx', '.c', '.h', '.hpp', '.hxx'] c_extensions = ['.c', '.h'] rust_extensions = ['.rs'] ruby_extensions = ['.rb'] java_extensions = ['.java'] go_extensions = ['.go'] php_extensions = ['.php', '.phtml', '.php3', '.php4', '.php5', '.php7', '.phps'] js_extensions = ['.js'] objective_c_extensions = ['.h', '.m', '.mm', '.C'] swift_extensions = ['.swift'] c_sharp_extensions = ['.cs'] python_extensions = ['.py'] """ Tries to detect the programming language of a library based on the file extension Example: LanguageDetector: main_language: C languages: - C - C++ - Python :param task_params: Parameter given explicitly for this task, for all projects, defined in the task.yaml :param global_args: Arguments that will be passed to all tasks. They _might_ contain something that is useful for the task, but the task has to check if it is _there_ as these are user provided. If they are needed to work that check should happen in the argHandler. """ def __init__(self, parameter, global_args): super(LanguageDetector, self).__init__(name, version, parameter, global_args) # dictionary containing the common file extensions # for each of the languages self.__language_extensions = self.__get_language_extensions() self.__report = self.__get_files_per_language() def __get_language_extensions(self): """ :returns: A directory of the considered language extensions """ return { 'C++': self.cpp_extensions, 'C': self.c_extensions, 'Rust': self.rust_extensions, 'Ruby': self.ruby_extensions, 'Java': self.java_extensions, 'Go': self.go_extensions, 'PHP': self.php_extensions, 'JavaScript': self.js_extensions, 'Objective-C': self.objective_c_extensions, 'Swift': self.swift_extensions, 'C#': self.c_sharp_extensions, 'Python': self.python_extensions } def __get_files_per_language(self): """ :returns: A default directory of the considered languages, their extensions and the amount of files that have that extension (default=0) """ return { 'C++': {extension: 0 for extension in self.cpp_extensions}, 'C': {extension: 0 for extension in self.c_extensions}, 'Rust': {extension: 0 for extension in self.rust_extensions}, 'Ruby': {extension: 0 for extension in self.ruby_extensions}, 'Java': {extension: 0 for extension in self.java_extensions}, 'Go': {extension: 0 for extension in self.go_extensions}, 'PHP': {extension: 0 for extension in self.php_extensions}, 'JavaScript': {extension: 0 for extension in self.js_extensions}, 'Objective-C': {extension: 0 for extension in self.objective_c_extensions}, 'Swift': {extension: 0 for extension in self.swift_extensions}, 'C#': {extension: 0 for extension in self.c_sharp_extensions}, 'Python': {extension: 0 for extension in self.python_extensions}, } def __decide_h_extension(self): """ Decides which language 'owns' how many .h files :returns: The report with divided header files """ report = self.__report h_files = report['C']['.h'] if h_files > 0: c_files = (sum(report['C'].values()) - h_files) cpp_files = (sum(report['C++'].values()) - h_files - report['C++']['.c']) oc_files = ( sum(report['Objective-C'].values()) - h_files) lang_fiels = c_files + cpp_files + oc_files # Header only libraries are 'common' in C and C++ # the benefit of doubt goes to C if lang_fiels == 0: report['C']['.h'] = 1 report['C++']['.h'] = 0 report['Objective-C']['.h'] = 0 else: report['C']['.h'] = (h_files * c_files / lang_fiels) report['C++']['.h'] = (h_files * cpp_files / lang_fiels) report['Objective-C']['.h'] = (h_files * oc_files / lang_fiels) return report def __calculate_main_language(self, report): """ Calculates the main language (maximum of files extensions) :param report: The report :returns: The main language. """ max_files = 0 max_lang = None for language in report: lang_fiels = sum(report[language].values()) if max_files < lang_fiels: max_lang = language max_files = lang_fiels return max_lang def __calculate_used_languages(self, report): """ Calculates the used languages by throwing away the extension counts and collapsing them to the language. Only languages that have at least one file extension are kept and will appear in the report :param report: The report :returns: The used languages. """ languages = {} for language in report: total_files = sum(report[language].values()) if total_files > 0: languages[language] = total_files return sorted(languages, key=languages.get, reverse=True) def scrab(self, project, filepath, file): """ Counts the files that have an extension of one of the languages :param project: The project that the scrab task shall analyse :param filepath: The filepath to the file that can be analysed :param file: The file as string that can be analysed :returns: Report that contains the scrabbed information of *this* file - the extensions have either a count of 0 or 1 """ filename, file_extension = os.path.splitext(filepath) for language in self.__language_extensions: if file_extension in self.__language_extensions[language]: self.__report[language][file_extension] += 1 def report(self): """ Decides which headers files are (probable) from which language, calculates the main language and removes redundant / unnecessary detailed information from the report :param report: The complete report this task created :returns: Report that contains all scrabbed information eg.: LanguageDetector: main_language: C languages: - C - C++ - Python """ pre_report = self.__decide_h_extension() main_language = self.__calculate_main_language(pre_report) # write the result to the report report = {} report['main_language'] = main_language report['languages'] = self.__calculate_used_languages(pre_report) return report
35.706564
79
0.561635
8,031
0.868404
0
0
0
0
0
0
4,436
0.479671
7911642cb8be401271e397388edbb0e1b9d4ae27
4,667
py
Python
VAE/full_model/model_training.py
youngmg1995/NES-Music-Maker
aeda10a541cfd439cfa46c45e63411e0d98e41c1
[ "MIT" ]
3
2020-06-26T22:02:35.000Z
2021-11-20T19:24:33.000Z
VAE/full_model/model_training.py
youngmg1995/NES-Music-Maker
aeda10a541cfd439cfa46c45e63411e0d98e41c1
[ "MIT" ]
null
null
null
VAE/full_model/model_training.py
youngmg1995/NES-Music-Maker
aeda10a541cfd439cfa46c45e63411e0d98e41c1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Apr 1 17:14:19 2020 @author: Mitchell model_training.py ~~~~~~~~~~~~~~~~~ This file serves as a script for building and training our VAE model. To do so we used the VAE and DataSequence classes defined in the file `VAE.py`, as well as helper functions from the file `dataset_utils` for loading and parsing our datasets. The user has the the ability to specify several parameters that control the loading of our data, the structure of our model, as well as the traininig plan for our model. After training is complete the script also plots metrics tracked during training and saves the final model. """ # Imports #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ from dataset_utils import load_training, load_validation from VAE import VAE, DataSequence import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import os, time, json ### Load Data #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Parameters for shape of dataset (note these are also used for model def. and # training.) measures = 8 measure_len = 96 # training training_foldername = '../../nesmdb24_seprsco/train/' train_save_filename = 'transformed_dataset.json' dataset , labels2int_map , int2labels_map = \ load_training(training_foldername, train_save_filename, measures = measures, measure_len = measure_len) # validation validation_foldername = '../../nesmdb24_seprsco/valid/' val_save_filename = 'transformed_val_dataset.json' val_dataset = load_validation(validation_foldername,\ labels2int_map, val_save_filename, measures = measures, measure_len = measure_len) ### Build Model #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ### Model Parameters latent_dim = 124 input_dims = [mapping.shape[0]-1 for mapping in int2labels_map] dropout = .1 maxnorm = None vae_b1 , vae_b2 = .02 , .1 # Build Model model = VAE(latent_dim, input_dims, measures, measure_len, dropout, maxnorm, vae_b1 , vae_b2) model.build([tf.TensorShape([None, measures, measure_len, input_dims[i]]) for i in range(4)]) model.summary() ### Train Model #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Training Parameters batch_size = 100 epochs = 10 # Cost Function cost_function = model.vae_loss # Learning_rate schedule lr_0 = .001 decay_rate = .998 lr_decay = lambda t: lr_0 * decay_rate**t lr_schedule = tf.keras.callbacks.LearningRateScheduler(lr_decay) # Optimizer optimizer = tf.keras.optimizers.Adam() # Define callbacks callbacks = [lr_schedule] # Keras Sequences for Datasets (need to use since one-hot datasets too # large for storing in memory) training_seq = DataSequence(dataset, int2labels_map, batch_size) validation_seq = DataSequence(val_dataset, int2labels_map, batch_size) # Compile Model model.compile(optimizer = optimizer, loss = cost_function) # Train model tic = time.perf_counter() history = model.fit_generator(generator = training_seq, epochs = epochs) toc = time.perf_counter() print(f"Trained Model in {(toc - tic)/60:0.1f} minutes") ### Plot Training Metrics #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ training_loss = history.history['loss'] # Total Loss plt.figure(1) plt.plot(training_loss, 'b', label='Training') plt.title('Loss vs Time') plt.xlabel('Training Epoch') plt.ylabel('Avg. Total Loss') plt.legend() plt.show() ### Save Model and History #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Save Model Weights save_model = False if save_model: checkpoint_dir = '.\\training_checkpoints' checkpoint_prefix = os.path.join(checkpoint_dir, "model_ckpt") model.save_weights(checkpoint_prefix) print('Model weights saved to files: '+checkpoint_prefix+'.*') # Save Training History save_history = False if save_history: checkpoint_dir = '.\\training_checkpoints' history_filename = os.path.join(checkpoint_dir, "training_history.json") with open(history_filename, 'w') as f: json.dump({ key:[float(value) for value in history.history[key]] for key in history.history }, f) print('Training history saved to file: '+ history_filename) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #----------------------------------END FILE------------------------------------ #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31.748299
79
0.611099
0
0
0
0
0
0
0
0
2,270
0.486394
7911efa6a596e02ff81a8a1e7aa08e6a17b34751
721
py
Python
tests/validation/test_is_subnational1.py
StuartMacKay/ebird-api
14b5c777548416a58abec05e25cd4b9a8e22f210
[ "MIT" ]
9
2020-05-16T20:26:33.000Z
2021-11-02T06:24:46.000Z
tests/validation/test_is_subnational1.py
StuartMacKay/ebird-api
14b5c777548416a58abec05e25cd4b9a8e22f210
[ "MIT" ]
17
2019-06-22T09:41:22.000Z
2020-09-11T06:25:21.000Z
tests/validation/test_is_subnational1.py
ProjectBabbler/ebird-api
14b5c777548416a58abec05e25cd4b9a8e22f210
[ "MIT" ]
null
null
null
import unittest from ebird.api.validation import is_subnational1 class IsSubnational1Tests(unittest.TestCase): """Tests for the is_subnational1 validation function.""" def test_is_subnational1(self): self.assertTrue(is_subnational1("US-NV")) def test_invalid_code_is_not_subnational1(self): self.assertFalse(is_subnational1("U")) self.assertFalse(is_subnational1("US-")) def test_country_is_not_subnational1(self): self.assertFalse(is_subnational1("US")) def test_subnational2_is_not_subnational1(self): self.assertFalse(is_subnational1("US-NV-VMT")) def test_location_is_not_subnational1(self): self.assertFalse(is_subnational1("L123456"))
30.041667
60
0.744799
652
0.9043
0
0
0
0
0
0
95
0.131761
7912e94c22f794944d84a76c7ea337e0f1d42d27
83
py
Python
maths2.py
tavleensasan/Tav
7d9d041cf0ed13c2fe581dc8e40c93721ae4de73
[ "MIT" ]
null
null
null
maths2.py
tavleensasan/Tav
7d9d041cf0ed13c2fe581dc8e40c93721ae4de73
[ "MIT" ]
null
null
null
maths2.py
tavleensasan/Tav
7d9d041cf0ed13c2fe581dc8e40c93721ae4de73
[ "MIT" ]
null
null
null
def multiple(first,second): return first * second def add(x,y): return x+y
16.6
27
0.662651
0
0
0
0
0
0
0
0
0
0
79135bcae4aa65725d47cfe68fe799e301d340b1
7,172
py
Python
backend/kale/tests/assets/kfp_dsl/simple_data_passing.py
brness/kale
d90310dbebc765c68915df0cf832a7a5d1ec1551
[ "Apache-2.0" ]
502
2019-07-18T16:19:16.000Z
2022-03-30T19:45:31.000Z
backend/kale/tests/assets/kfp_dsl/simple_data_passing.py
brness/kale
d90310dbebc765c68915df0cf832a7a5d1ec1551
[ "Apache-2.0" ]
189
2019-09-22T10:54:02.000Z
2022-03-28T13:46:31.000Z
backend/kale/tests/assets/kfp_dsl/simple_data_passing.py
brness/kale
d90310dbebc765c68915df0cf832a7a5d1ec1551
[ "Apache-2.0" ]
111
2019-09-25T20:28:47.000Z
2022-03-24T01:31:46.000Z
import json import kfp.dsl as _kfp_dsl import kfp.components as _kfp_components from collections import OrderedDict from kubernetes import client as k8s_client def step1(): from kale.common import mlmdutils as _kale_mlmdutils _kale_mlmdutils.init_metadata() from kale.marshal.decorator import marshal as _kale_marshal from kale.common.runutils import link_artifacts as _kale_link_artifacts _kale_pipeline_parameters = {} @_kale_marshal([], ['_b', '_a'], _kale_pipeline_parameters, "/marshal") def step1(): a = 1 b = 2 return a, b step1() _kale_artifacts = {} _kale_link_artifacts(_kale_artifacts) _kale_mlmdutils.call("mark_execution_complete") def step2(): from kale.common import mlmdutils as _kale_mlmdutils _kale_mlmdutils.init_metadata() from kale.common.runutils import ttl as _kale_ttl from kale.marshal.decorator import marshal as _kale_marshal from kale.common.runutils import link_artifacts as _kale_link_artifacts _kale_pipeline_parameters = {} @_kale_ttl(5) @_kale_marshal(['_b', '_a'], ['_c'], _kale_pipeline_parameters, "/marshal") def step2(a, b): c = a + b print(c) return c step2() _kale_artifacts = {} _kale_link_artifacts(_kale_artifacts) _kale_mlmdutils.call("mark_execution_complete") def step3(): from kale.common import mlmdutils as _kale_mlmdutils _kale_mlmdutils.init_metadata() from kale.marshal.decorator import marshal as _kale_marshal from kale.common.runutils import link_artifacts as _kale_link_artifacts _kale_pipeline_parameters = {} @_kale_marshal(['_a', '_c'], [], _kale_pipeline_parameters, "/marshal") def step3(a, c): d = c + a print(d) step3() _kale_artifacts = {} _kale_link_artifacts(_kale_artifacts) _kale_mlmdutils.call("mark_execution_complete") _kale_step1_op = _kfp_components.func_to_container_op(step1) _kale_step2_op = _kfp_components.func_to_container_op(step2) _kale_step3_op = _kfp_components.func_to_container_op(step3) @_kfp_dsl.pipeline( name='test', description='' ) def auto_generated_pipeline(): _kale_pvolumes_dict = OrderedDict() _kale_volume_step_names = [] _kale_volume_name_parameters = [] _kale_marshal_vop = _kfp_dsl.VolumeOp( name="kale-marshal-volume", resource_name="kale-marshal-pvc", modes=['ReadWriteMany'], size="1Gi" ) _kale_volume_step_names.append(_kale_marshal_vop.name) _kale_volume_name_parameters.append( _kale_marshal_vop.outputs["name"].full_name) _kale_pvolumes_dict['/marshal'] = _kale_marshal_vop.volume _kale_volume_step_names.sort() _kale_volume_name_parameters.sort() _kale_step1_task = _kale_step1_op()\ .add_pvolumes(_kale_pvolumes_dict)\ .after() _kale_step_labels = {'common-label': 'true'} for _kale_k, _kale_v in _kale_step_labels.items(): _kale_step1_task.add_pod_label(_kale_k, _kale_v) _kale_step_limits = {'amd/gpu': '1'} for _kale_k, _kale_v in _kale_step_limits.items(): _kale_step1_task.container.add_resource_limit(_kale_k, _kale_v) _kale_step1_task.container.working_dir = "/test" _kale_step1_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) _kale_output_artifacts = {} _kale_step1_task.output_artifact_paths.update(_kale_output_artifacts) _kale_step1_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") _kale_dep_names = (_kale_step1_task.dependent_names + _kale_volume_step_names) _kale_step1_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(_kale_dep_names)) if _kale_volume_name_parameters: _kale_step1_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(_kale_volume_name_parameters)) _kale_step2_task = _kale_step2_op()\ .add_pvolumes(_kale_pvolumes_dict)\ .after(_kale_step1_task) _kale_step_labels = {'common-label': 'true'} for _kale_k, _kale_v in _kale_step_labels.items(): _kale_step2_task.add_pod_label(_kale_k, _kale_v) _kale_step2_task.set_retry_strategy( num_retries=5, retry_policy="Always", backoff_duration="20", backoff_factor=2, backoff_max_duration=None) _kale_step2_task.container.working_dir = "/test" _kale_step2_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) _kale_output_artifacts = {} _kale_step2_task.output_artifact_paths.update(_kale_output_artifacts) _kale_step2_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") _kale_dep_names = (_kale_step2_task.dependent_names + _kale_volume_step_names) _kale_step2_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(_kale_dep_names)) if _kale_volume_name_parameters: _kale_step2_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(_kale_volume_name_parameters)) _kale_step3_task = _kale_step3_op()\ .add_pvolumes(_kale_pvolumes_dict)\ .after(_kale_step2_task, _kale_step1_task) _kale_step_annotations = {'step3-annotation': 'test'} for _kale_k, _kale_v in _kale_step_annotations.items(): _kale_step3_task.add_pod_annotation(_kale_k, _kale_v) _kale_step_labels = {'common-label': 'true'} for _kale_k, _kale_v in _kale_step_labels.items(): _kale_step3_task.add_pod_label(_kale_k, _kale_v) _kale_step3_task.container.working_dir = "/test" _kale_step3_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) _kale_output_artifacts = {} _kale_step3_task.output_artifact_paths.update(_kale_output_artifacts) _kale_step3_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") _kale_dep_names = (_kale_step3_task.dependent_names + _kale_volume_step_names) _kale_step3_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(_kale_dep_names)) if _kale_volume_name_parameters: _kale_step3_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(_kale_volume_name_parameters)) if __name__ == "__main__": pipeline_func = auto_generated_pipeline pipeline_filename = pipeline_func.__name__ + '.pipeline.tar.gz' import kfp.compiler as compiler compiler.Compiler().compile(pipeline_func, pipeline_filename) # Get or create an experiment and submit a pipeline run import kfp client = kfp.Client() experiment = client.create_experiment('test') # Submit a pipeline run from kale.common import kfputils pipeline_id, version_id = kfputils.upload_pipeline( pipeline_filename, "test") run_result = kfputils.run_pipeline( experiment_name=experiment.name, pipeline_id=pipeline_id, version_id=version_id)
34.480769
88
0.725739
0
0
0
0
4,808
0.670385
0
0
847
0.118098
791468fb9834f8a61e661025dfae37ea17e85be7
135
py
Python
note/urls.py
StevenYwch/CloudNote
c36efba53d83a040f4c9cff861d0df28d9db8f1b
[ "MIT" ]
null
null
null
note/urls.py
StevenYwch/CloudNote
c36efba53d83a040f4c9cff861d0df28d9db8f1b
[ "MIT" ]
null
null
null
note/urls.py
StevenYwch/CloudNote
c36efba53d83a040f4c9cff861d0df28d9db8f1b
[ "MIT" ]
null
null
null
from django.urls import path from . import views urlpatterns = [ path('list', views.list_view), path('add', views.add_view), ]
19.285714
34
0.681481
0
0
0
0
0
0
0
0
11
0.081481
791572847749537988baaf3cd53a31420b81f7a2
3,158
py
Python
roombapy/discovery.py
Erelen-Laiquendi/roombapy
104908ec040ebb72e16d3763741565eacc585801
[ "MIT" ]
17
2018-01-27T19:53:06.000Z
2022-03-16T07:29:13.000Z
roombapy/discovery.py
Erelen-Laiquendi/roombapy
104908ec040ebb72e16d3763741565eacc585801
[ "MIT" ]
78
2017-09-03T17:37:03.000Z
2022-03-30T10:41:55.000Z
roombapy/discovery.py
bdraco/Roomba980-Python
d25583a7b8cd6e65148caeebc6849e73dff645da
[ "MIT" ]
25
2017-09-03T13:43:21.000Z
2022-03-19T23:41:51.000Z
import json import logging import socket from roombapy.roomba_info import RoombaInfo class RoombaDiscovery: udp_bind_address = "" udp_address = "<broadcast>" udp_port = 5678 roomba_message = "irobotmcs" amount_of_broadcasted_messages = 5 server_socket = None log = None def __init__(self): """Init discovery.""" self.server_socket = _get_socket() self.log = logging.getLogger(__name__) def find(self, ip=None): if ip is not None: return self.get(ip) return self.get_all() def get_all(self): self._start_server() self._broadcast_message(self.amount_of_broadcasted_messages) robots = set() while True: response = self._get_response() if response: robots.add(response) else: break return robots def get(self, ip): self._start_server() self._send_message(ip) return self._get_response(ip) def _get_response(self, ip=None): try: while True: raw_response, addr = self.server_socket.recvfrom(1024) if ip is not None and addr[0] != ip: continue self.log.debug( "Received response: %s, address: %s", raw_response, addr ) data = raw_response.decode() if self._is_from_irobot(data): return _decode_data(data) except socket.timeout: self.log.info("Socket timeout") return None def _is_from_irobot(self, data): if data == self.roomba_message: return False json_response = json.loads(data) if ( "Roomba" in json_response["hostname"] or "iRobot" in json_response["hostname"] ): return True return False def _broadcast_message(self, amount): for i in range(amount): self.server_socket.sendto( self.roomba_message.encode(), (self.udp_address, self.udp_port) ) self.log.debug("Broadcast message sent: " + str(i)) def _send_message(self, udp_address): self.server_socket.sendto( self.roomba_message.encode(), (udp_address, self.udp_port) ) self.log.debug("Message sent") def _start_server(self): self.server_socket.bind((self.udp_bind_address, self.udp_port)) self.log.debug("Socket server started, port %s", self.udp_port) def _decode_data(data): json_response = json.loads(data) return RoombaInfo( hostname=json_response["hostname"], robot_name=json_response["robotname"], ip=json_response["ip"], mac=json_response["mac"], firmware=json_response["sw"], sku=json_response["sku"], capabilities=json_response["cap"], ) def _get_socket(): server_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) server_socket.settimeout(5) return server_socket
28.972477
79
0.594997
2,486
0.787207
0
0
0
0
0
0
251
0.079481
7915bd6303c3c35d054564976537a39f4bb990be
76
py
Python
nonbonded/cli/projects/__init__.py
SimonBoothroyd/nonbonded
3efbb7d943d936b47248975f9ad0d8a006ea8684
[ "MIT" ]
5
2020-05-11T18:25:00.000Z
2022-01-27T10:55:09.000Z
nonbonded/cli/projects/__init__.py
SimonBoothroyd/nonbonded
3efbb7d943d936b47248975f9ad0d8a006ea8684
[ "MIT" ]
88
2020-06-02T14:40:05.000Z
2022-03-02T09:20:39.000Z
nonbonded/cli/projects/__init__.py
SimonBoothroyd/nonbonded
3efbb7d943d936b47248975f9ad0d8a006ea8684
[ "MIT" ]
null
null
null
# from nonbonded.cli.project.project import project # # __all__ = [project]
19
51
0.75
0
0
0
0
0
0
0
0
73
0.960526
791688dbd138ffb5132f957ed4ac7f6e3567bcff
30,666
py
Python
pmaf/biome/essentials/_taxonomy.py
mmtechslv/PhyloMAF
bab43dd4a4d2812951b1fdf4f1abb83edb79ea88
[ "BSD-3-Clause" ]
1
2021-07-02T06:24:17.000Z
2021-07-02T06:24:17.000Z
pmaf/biome/essentials/_taxonomy.py
mmtechslv/PhyloMAF
bab43dd4a4d2812951b1fdf4f1abb83edb79ea88
[ "BSD-3-Clause" ]
1
2021-06-28T12:02:46.000Z
2021-06-28T12:02:46.000Z
pmaf/biome/essentials/_taxonomy.py
mmtechslv/PhyloMAF
bab43dd4a4d2812951b1fdf4f1abb83edb79ea88
[ "BSD-3-Clause" ]
null
null
null
import warnings warnings.simplefilter("ignore", category=FutureWarning) from pmaf.biome.essentials._metakit import EssentialFeatureMetabase from pmaf.biome.essentials._base import EssentialBackboneBase from pmaf.internal._constants import ( AVAIL_TAXONOMY_NOTATIONS, jRegexGG, jRegexQIIME, BIOM_TAXONOMY_NAMES, VALID_RANKS, ) from pmaf.internal._shared import ( generate_lineages_from_taxa, get_rank_upto, indentify_taxon_notation, validate_ranks, extract_valid_ranks, cols2ranks, ) from collections import defaultdict from os import path import pandas as pd import numpy as np import biom from typing import Union, Sequence, Tuple, Any, Optional from pmaf.internal._typing import AnyGenericIdentifier, Mapper class RepTaxonomy(EssentialBackboneBase, EssentialFeatureMetabase): """An `essential` class for handling taxonomy data.""" def __init__( self, taxonomy: Union[pd.DataFrame, pd.Series, str], taxonomy_columns: Union[str, int, Sequence[Union[int, str]]] = None, **kwargs: Any ) -> None: """Constructor for :class:`.RepTaxonomy` Parameters ---------- taxonomy Data containing feature taxonomy taxonomy_columns Column(s) containing taxonomy data kwargs Passed to :func:`~pandas.read_csv` or :mod:`biome` loader. """ tmp_metadata = kwargs.pop("metadata", {}) self.__avail_ranks = [] self.__internal_taxonomy = None if isinstance(taxonomy, pd.DataFrame): if taxonomy.shape[0] > 0: if taxonomy.shape[1] > 1: if validate_ranks(list(taxonomy.columns.values), VALID_RANKS): tmp_taxonomy = taxonomy else: raise ValueError( "Provided `taxonomy` Datafame has invalid ranks." ) else: tmp_taxonomy = taxonomy.iloc[:, 0] else: raise ValueError("Provided `taxonomy` Datafame is invalid.") elif isinstance(taxonomy, pd.Series): if taxonomy.shape[0] > 0: tmp_taxonomy = taxonomy else: raise ValueError("Provided `taxonomy` Series is invalid.") elif isinstance(taxonomy, str): if path.isfile(taxonomy): file_extension = path.splitext(taxonomy)[-1].lower() if file_extension in [".csv", ".tsv"]: if taxonomy_columns is None: tmp_taxonomy = pd.read_csv( taxonomy, sep=kwargs.pop("sep", ","), header=kwargs.pop("header", "infer"), index_col=kwargs.pop("index_col", None), ) else: if isinstance(taxonomy_columns, int): tmp_taxonomy = pd.read_csv( taxonomy, sep=kwargs.pop("sep", ","), header=kwargs.pop("header", "infer"), index_col=kwargs.pop("index_col", None), ).iloc[:, taxonomy_columns] else: tmp_taxonomy = pd.read_csv( taxonomy, sep=kwargs.pop("sep", ","), header=kwargs.pop("header", "infer"), index_col=kwargs.pop("index_col", None), ).loc[:, taxonomy_columns] elif file_extension in [".biom", ".biome"]: tmp_taxonomy, new_metadata = self.__load_biom(taxonomy, **kwargs) tmp_metadata.update({"biom": new_metadata}) else: raise NotImplementedError("File type is not supported.") else: raise FileNotFoundError("Provided `taxonomy` file path is invalid.") else: raise TypeError("Provided `taxonomy` has invalid type.") self.__init_internal_taxonomy(tmp_taxonomy, **kwargs) super().__init__(metadata=tmp_metadata, **kwargs) @classmethod def from_csv( cls, filepath: str, taxonomy_columns: Union[str, int, Sequence[Union[int, str]]] = None, **kwargs: Any ) -> "RepTaxonomy": """Factory method to construct a :class:`.RepTaxonomy` from CSV file. Parameters ---------- filepath Path to .csv File taxonomy_columns Column(s) containing taxonomy data kwargs Passed to the constructor. filepath: Returns ------- Instance of class:`.RepTaxonomy` """ if taxonomy_columns is None: tmp_taxonomy = pd.read_csv(filepath, **kwargs) else: if isinstance(taxonomy_columns, int): tmp_taxonomy = pd.read_csv(filepath, **kwargs).iloc[:, taxonomy_columns] else: tmp_taxonomy = pd.read_csv(filepath, **kwargs).loc[:, taxonomy_columns] tmp_metadata = kwargs.pop("metadata", {}) tmp_metadata.update({"filepath": path.abspath(filepath)}) return cls(taxonomy=tmp_taxonomy, metadata=tmp_metadata, **kwargs) @classmethod def from_biom(cls, filepath: str, **kwargs: Any) -> "RepTaxonomy": """Factory method to construct a :class:`.RepTaxonomy` from :mod:`biom` file. Parameters ---------- filepath :mod:`biom` file path. kwargs Passed to the constructor. Returns ------- Instance of class:`.RepTaxonomy` """ taxonomy_frame, new_metadata = cls.__load_biom(filepath, **kwargs) tmp_metadata = kwargs.pop("metadata", {}) tmp_metadata.update({"biom": new_metadata}) return cls(taxonomy=taxonomy_frame, metadata=tmp_metadata, **kwargs) @classmethod def __load_biom(cls, filepath: str, **kwargs: Any) -> Tuple[pd.DataFrame, dict]: """Actual private method to process :mod:`biom` file. Parameters ---------- filepath :mod:`biom` file path. kwargs Compatibility """ biom_file = biom.load_table(filepath) if biom_file.metadata(axis="observation") is not None: obs_data = biom_file.metadata_to_dataframe("observation") col_names = list(obs_data.columns.values) col_names_low = [col.lower() for col in col_names] avail_col_names = [ colname for tax_name in BIOM_TAXONOMY_NAMES for colname in col_names_low if colname[::-1].find(tax_name[::-1]) < 3 and colname[::-1].find(tax_name[::-1]) > -1 ] metadata_cols = [ col for col in col_names if col.lower() not in avail_col_names ] if len(avail_col_names) == 1: tmp_col_index = col_names_low.index(avail_col_names[0]) taxonomy_frame = obs_data[col_names[tmp_col_index]] else: taxonomy_frame = obs_data tmp_metadata = obs_data.loc[:, metadata_cols].to_dict() return taxonomy_frame, tmp_metadata else: raise ValueError("Biom file does not contain observation metadata.") def _remove_features_by_id( self, ids: AnyGenericIdentifier, **kwargs: Any ) -> Optional[AnyGenericIdentifier]: """Remove features by features ids and ratify action. Parameters ---------- ids Feature identifiers kwargs Compatibility """ tmp_ids = np.asarray(ids, dtype=self.__internal_taxonomy.index.dtype) if len(tmp_ids) > 0: self.__internal_taxonomy.drop(tmp_ids, inplace=True) return self._ratify_action("_remove_features_by_id", ids, **kwargs) def _merge_features_by_map( self, map_dict: Mapper, done: bool = False, **kwargs: Any ) -> Optional[Mapper]: """Merge features and ratify action. Parameters ---------- map_dict Map to use for merging done Whether merging was completed or not. Compatibility. kwargs Compatibility """ if not done: raise NotImplementedError if map_dict: return self._ratify_action( "_merge_features_by_map", map_dict, _annotations=self.__internal_taxonomy.loc[:, "lineage"].to_dict(), **kwargs ) def drop_feature_by_id( self, ids: AnyGenericIdentifier, **kwargs: Any ) -> Optional[AnyGenericIdentifier]: """Remove features by feature `ids`. Parameters ---------- ids Feature identifiers kwargs Compatibility """ target_ids = np.asarray(ids) if self.xrid.isin(target_ids).sum() == len(target_ids): return self._remove_features_by_id(target_ids, **kwargs) else: raise ValueError("Invalid feature ids are provided.") def get_taxonomy_by_id( self, ids: Optional[AnyGenericIdentifier] = None ) -> pd.DataFrame: """Get taxonomy :class:`~pandas.DataFrame` by feature `ids`. Parameters ---------- ids Either feature indices or None for all. Returns ------- class:`pandas.DataFrame` with taxonomy data """ if ids is None: target_ids = self.xrid else: target_ids = np.asarray(ids) if self.xrid.isin(target_ids).sum() <= len(target_ids): return self.__internal_taxonomy.loc[target_ids, self.__avail_ranks] else: raise ValueError("Invalid feature ids are provided.") def get_lineage_by_id( self, ids: Optional[AnyGenericIdentifier] = None, missing_rank: bool = False, desired_ranks: Union[bool, Sequence[str]] = False, drop_ranks: Union[bool, Sequence[str]] = False, **kwargs: Any ) -> pd.Series: """Get taxonomy lineages by feature `ids`. Parameters ---------- ids Either feature indices or None for all. missing_rank If True will generate prefix like `s__` or `d__` desired_ranks List of desired ranks to generate. If False then will generate all main ranks drop_ranks List of ranks to drop from desired ranks. This parameter only useful if `missing_rank` is True kwargs Compatibility. Returns ------- class:`pandas.Series` with consensus lineages and corresponding IDs """ if ids is None: target_ids = self.xrid else: target_ids = np.asarray(ids) tmp_desired_ranks = VALID_RANKS if desired_ranks is False else desired_ranks total_valid_rids = self.xrid.isin(target_ids).sum() if total_valid_rids == len(target_ids): return generate_lineages_from_taxa( self.__internal_taxonomy.loc[target_ids], missing_rank, tmp_desired_ranks, drop_ranks, ) elif total_valid_rids < len(target_ids): return generate_lineages_from_taxa( self.__internal_taxonomy.loc[np.unique(target_ids)], missing_rank, tmp_desired_ranks, drop_ranks, ) else: raise ValueError("Invalid feature ids are provided.") def find_features_by_pattern( self, pattern_str: str, case_sensitive: bool = False, regex: bool = False ) -> np.ndarray: """Searches for features with taxa that matches `pattern_str` Parameters ---------- pattern_str Pattern to search for case_sensitive Case sensitive mode regex Use regular expressions Returns ------- class:`~numpy.ndarray` with indices """ return self.__internal_taxonomy[ self.__internal_taxonomy.loc[:, "lineage"].str.contains( pattern_str, case=case_sensitive, regex=regex ) ].index.values def drop_features_without_taxa( self, **kwargs: Any ) -> Optional[AnyGenericIdentifier]: """Remove features that do not contain taxonomy. Parameters ---------- kwargs Compatibility """ ids_to_drop = self.find_features_without_taxa() return self._remove_features_by_id(ids_to_drop, **kwargs) def drop_features_without_ranks( self, ranks: Sequence[str], any: bool = False, **kwargs: Any ) -> Optional[AnyGenericIdentifier]: # Done """Remove features that do not contain `ranks` Parameters ---------- ranks Ranks to look for any If True removes feature with single occurrence of missing rank. If False all `ranks` must be missing. kwargs Compatibility """ target_ranks = np.asarray(ranks) if self.__internal_taxonomy.columns.isin(target_ranks).sum() == len( target_ranks ): no_rank_mask = self.__internal_taxonomy.loc[:, ranks].isna() no_rank_mask_adjusted = ( no_rank_mask.any(axis=1) if any else no_rank_mask.all(axis=1) ) ids_to_drop = self.__internal_taxonomy.loc[no_rank_mask_adjusted].index return self._remove_features_by_id(ids_to_drop, **kwargs) else: raise ValueError("Invalid ranks are provided.") def merge_duplicated_features(self, **kwargs: Any) -> Optional[Mapper]: """Merge features with duplicated taxonomy. Parameters ---------- kwargs Compatibility """ ret = {} groupby = self.__internal_taxonomy.groupby("lineage") if any([len(group) > 1 for group in groupby.groups.values()]): tmp_feature_lineage = [] tmp_groups = [] group_indices = list(range(len(groupby.groups))) for lineage, feature_ids in groupby.groups.items(): tmp_feature_lineage.append(lineage) tmp_groups.append(list(feature_ids)) self.__init_internal_taxonomy( pd.Series(data=tmp_feature_lineage, index=group_indices) ) ret = dict(zip(group_indices, tmp_groups)) return self._merge_features_by_map(ret, True, **kwargs) def merge_features_by_rank(self, level: str, **kwargs: Any) -> Optional[Mapper]: """Merge features by taxonomic rank/level. Parameters ---------- level Taxonomic rank/level to use for merging. kwargs Compatibility """ ret = {} if not isinstance(level, str): raise TypeError("`rank` must have str type.") if level in self.__avail_ranks: target_ranks = get_rank_upto(self.avail_ranks, level, True) if target_ranks: tmp_lineages = generate_lineages_from_taxa( self.__internal_taxonomy, False, target_ranks, False ) groups = tmp_lineages.groupby(tmp_lineages) if len(groups.groups) > 1: tmp_feature_lineage = [] tmp_groups = [] group_indices = list(range(len(groups.groups))) for lineage, feature_ids in groups.groups.items(): tmp_feature_lineage.append(lineage) tmp_groups.append(list(feature_ids)) self.__init_internal_taxonomy( pd.Series(data=tmp_feature_lineage, index=group_indices) ) ret = dict(zip(group_indices, tmp_groups)) else: raise ValueError("Invalid rank are provided.") return self._merge_features_by_map(ret, True, **kwargs) def find_features_without_taxa(self) -> np.ndarray: """Find features without taxa. Returns ------- class:`~numpy.ndarray` with feature indices. """ return self.__internal_taxonomy.loc[ self.__internal_taxonomy.loc[:, VALID_RANKS].agg( lambda rank: len("".join(map(lambda x: (str(x or "")), rank))), axis=1 ) < 1 ].index.values def get_subset( self, rids: Optional[AnyGenericIdentifier] = None, *args, **kwargs: Any ) -> "RepTaxonomy": """Get subset of the :class:`.RepTaxonomy`. Parameters ---------- rids Feature identifiers. args Compatibility kwargs Compatibility Returns ------- class:`.RepTaxonomy` """ if rids is None: target_rids = self.xrid else: target_rids = np.asarray(rids).astype(self.__internal_taxonomy.index.dtype) if not self.xrid.isin(target_rids).sum() == len(target_rids): raise ValueError("Invalid feature ids are provided.") return type(self)( taxonomy=self.__internal_taxonomy.loc[target_rids, "lineage"], metadata=self.metadata, name=self.name, ) def _export( self, taxlike: str = "lineage", ascending: bool = True, **kwargs: Any ) -> Tuple[pd.Series, dict]: """Creates taxonomy for export. Parameters ---------- taxlike Generate taxonomy in format(currently only `lineage` is supported.) ascending Sorting kwargs Compatibility """ if taxlike == "lineage": return ( self.get_lineage_by_id(**kwargs).sort_values(ascending=ascending), kwargs, ) else: raise NotImplemented def export( self, output_fp: str, *args, _add_ext: bool = False, sep: str = ",", **kwargs: Any ) -> None: """Exports the taxonomy into the specified file. Parameters ---------- output_fp Export filepath args Compatibility _add_ext Add file extension or not. sep Delimiter kwargs Compatibility """ tmp_export, rkwarg = self._export(*args, **kwargs) if _add_ext: tmp_export.to_csv("{}.csv".format(output_fp), sep=sep) else: tmp_export.to_csv(output_fp, sep=sep) def copy(self) -> "RepTaxonomy": """Copy of the instance.""" return type(self)( taxonomy=self.__internal_taxonomy.loc[:, "lineage"], metadata=self.metadata, name=self.name, ) def __fix_taxon_names(self) -> None: """Fix invalid taxon names.""" def taxon_fixer(taxon): if taxon is not None and pd.notna(taxon): tmp_taxon_trimmed = taxon.lower().strip() if len(tmp_taxon_trimmed) > 0: if tmp_taxon_trimmed[0] == "[": tmp_taxon_trimmed = tmp_taxon_trimmed[1:] if tmp_taxon_trimmed[-1] == "]": tmp_taxon_trimmed = tmp_taxon_trimmed[:-1] return tmp_taxon_trimmed.capitalize() else: return None else: return None self.__internal_taxonomy.loc[:, VALID_RANKS] = self.__internal_taxonomy.loc[ :, VALID_RANKS ].applymap(taxon_fixer) def __reconstruct_internal_lineages(self) -> None: """Reconstruct the internal lineages.""" self.__internal_taxonomy.loc[:, "lineage"] = generate_lineages_from_taxa( self.__internal_taxonomy, True, self.__avail_ranks, False ) def __init_internal_taxonomy( self, taxonomy_data: Union[pd.Series, pd.DataFrame], taxonomy_notation: Optional[str] = "greengenes", order_ranks: Optional[Sequence[str]] = None, **kwargs: Any ) -> None: """Main method to initialize taxonomy. Parameters ---------- taxonomy_data Incoming parsed taxonomy data taxonomy_notation Taxonomy lineage notation style. Can be one of :const:`pmaf.internals._constants.AVAIL_TAXONOMY_NOTATIONS` order_ranks List with the target rank order. Default is set to None. The 'silva' notation require `order_ranks`. kwargs Compatibility """ if isinstance(taxonomy_data, pd.Series): new_taxonomy = self.__init_taxonomy_from_lineages( taxonomy_data, taxonomy_notation, order_ranks ) elif isinstance(taxonomy_data, pd.DataFrame): if taxonomy_data.shape[1] == 1: taxonomy_data_series = pd.Series( data=taxonomy_data.iloc[:, 0], index=taxonomy_data.index ) new_taxonomy = self.__init_taxonomy_from_lineages( taxonomy_data_series, taxonomy_notation, order_ranks ) else: new_taxonomy = self.__init_taxonomy_from_frame( taxonomy_data, taxonomy_notation, order_ranks ) else: raise RuntimeError( "`taxonomy_data` must be either pd.Series or pd.Dataframe" ) if new_taxonomy is None: raise ValueError("Provided taxonomy is invalid.") # Assign newly constructed taxonomy to the self.__internal_taxonomy self.__internal_taxonomy = new_taxonomy self.__fix_taxon_names() # Fix incorrect taxa tmp_avail_ranks = [rank for rank in VALID_RANKS if rank in new_taxonomy.columns] self.__avail_ranks = [ rank for rank in tmp_avail_ranks if new_taxonomy.loc[:, rank].notna().any() ] # Reconstruct internal lineages for default greengenes notation self.__reconstruct_internal_lineages() self._init_state = True def __init_taxonomy_from_lineages( self, taxonomy_series: pd.Series, taxonomy_notation: Optional[str], order_ranks: Optional[Sequence[str]], ) -> pd.DataFrame: # Done """Main method that produces taxonomy dataframe from lineages. Parameters ---------- taxonomy_series :class:`pandas.Series` with taxonomy lineages taxonomy_notation Taxonomy lineage notation style. Can be one of :const:`pmaf.internals._constants.AVAIL_TAXONOMY_NOTATIONS` order_ranks List with the target rank order. Default is set to None. The 'silva' notation require `order_ranks`. """ # Check if taxonomy is known and is available for parsing. Otherwise indentify_taxon_notation() will try to identify notation if taxonomy_notation in AVAIL_TAXONOMY_NOTATIONS: notation = taxonomy_notation else: # Get first lineage _sample for notation testing assuming the rest have the the same notations sample_taxon = taxonomy_series.iloc[0] # Identify notation of the lineage string notation = indentify_taxon_notation(sample_taxon) if order_ranks is not None: if all([rank in VALID_RANKS for rank in order_ranks]): target_order_ranks = order_ranks else: raise NotImplementedError else: target_order_ranks = VALID_RANKS if notation == "greengenes": lineages = taxonomy_series.reset_index().values.tolist() ordered_taxa_list = [] ordered_indices_list = [elem[0] for elem in lineages] for lineage in lineages: tmp_lineage = jRegexGG.findall(lineage[1]) tmp_taxa_dict = { elem[0]: elem[1] for elem in tmp_lineage if elem[0] in VALID_RANKS } for rank in VALID_RANKS: if rank not in tmp_taxa_dict.keys(): tmp_taxa_dict.update({rank: None}) tmp_taxa_ordered = [tmp_taxa_dict[rank] for rank in VALID_RANKS] ordered_taxa_list.append([None] + tmp_taxa_ordered) taxonomy = pd.DataFrame( index=ordered_indices_list, data=ordered_taxa_list, columns=["lineage"] + VALID_RANKS, ) return taxonomy elif notation == "qiime": lineages = taxonomy_series.reset_index().values.tolist() tmp_taxa_dict_list = [] tmp_ranks = set() for lineage in lineages: tmp_lineage = jRegexQIIME.findall(lineage[1]) tmp_lineage.sort(key=lambda x: x[0]) tmp_taxa_dict = defaultdict(None) tmp_taxa_dict[None] = lineage[0] for rank, taxon in tmp_lineage: tmp_taxa_dict[rank] = taxon tmp_ranks.add(rank) tmp_taxa_dict_list.append(dict(tmp_taxa_dict)) tmp_taxonomy_df = pd.DataFrame.from_records(tmp_taxa_dict_list) tmp_taxonomy_df.set_index(None, inplace=True) tmp_taxonomy_df = tmp_taxonomy_df.loc[:, sorted(list(tmp_ranks))] tmp_taxonomy_df.columns = [ rank for rank in target_order_ranks[::-1][: len(tmp_ranks)] ][::-1] for rank in VALID_RANKS: if rank not in tmp_taxonomy_df.columns: tmp_taxonomy_df.loc[:, rank] = None return tmp_taxonomy_df elif notation == "silva": lineages = taxonomy_series.reset_index().values.tolist() tmp_taxa_dict_list = [] tmp_ranks = set() for lineage in lineages: tmp_lineage = lineage[1].split(";") tmp_taxa_dict = defaultdict(None) tmp_taxa_dict[None] = lineage[0] for rank_i, taxon in enumerate(tmp_lineage): rank = target_order_ranks[rank_i] tmp_taxa_dict[rank] = taxon tmp_ranks.add(rank) tmp_taxa_dict_list.append(dict(tmp_taxa_dict)) tmp_taxonomy_df = pd.DataFrame.from_records(tmp_taxa_dict_list) tmp_taxonomy_df.set_index(None, inplace=True) tmp_rank_ordered = [ rank for rank in target_order_ranks if rank in VALID_RANKS ] tmp_taxonomy_df = tmp_taxonomy_df.loc[:, tmp_rank_ordered] tmp_taxonomy_df.columns = [ rank for rank in target_order_ranks[::-1][: len(tmp_ranks)] ][::-1] for rank in VALID_RANKS: if rank not in tmp_taxonomy_df.columns: tmp_taxonomy_df.loc[:, rank] = None return tmp_taxonomy_df else: raise NotImplementedError def __init_taxonomy_from_frame( self, taxonomy_dataframe: pd.DataFrame, taxonomy_notation: Optional[str], order_ranks: Optional[Sequence[str]], ) -> pd.DataFrame: # Done # For now only pass to _init_taxonomy_from_series """Main method that produces taxonomy sheet from dataframe. Parameters ---------- taxonomy_dataframe :class:`~pandas.DataFrame` with taxa split by ranks. taxonomy_notation Taxonomy lineage notation style. Can be one of :const:`pmaf.internals._constants.AVAIL_TAXONOMY_NOTATIONS` order_ranks List with the target rank order. Default is set to None. The 'silva' notation require `order_ranks`. Returns ------- :class:`~pandas.DataFrame` """ valid_ranks = extract_valid_ranks(taxonomy_dataframe.columns, VALID_RANKS) if valid_ranks is not None: if len(valid_ranks) > 0: return pd.concat( [ taxonomy_dataframe, pd.DataFrame( data="", index=taxonomy_dataframe.index, columns=[ rank for rank in VALID_RANKS if rank not in valid_ranks ], ), ], axis=1, ) else: taxonomy_series = taxonomy_dataframe.apply( lambda taxa: ";".join(taxa.values.tolist()), axis=1 ) return self.__init_taxonomy_from_lineages( taxonomy_series, taxonomy_notation, order_ranks ) else: valid_ranks = cols2ranks(taxonomy_dataframe.columns) taxonomy_dataframe.columns = valid_ranks taxonomy_series = taxonomy_dataframe.apply( lambda taxa: ";".join([(t if isinstance(t,str) else '') for t in taxa.values]), axis=1 ) return self.__init_taxonomy_from_lineages( taxonomy_series, taxonomy_notation, order_ranks ) @property def avail_ranks(self) -> Sequence[str]: """List of available taxonomic ranks.""" return self.__avail_ranks @property def duplicated(self) -> pd.Index: """List of duplicated feature indices.""" return self.__internal_taxonomy.index[ self.__internal_taxonomy["lineage"].duplicated(keep=False) ] @property def data(self) -> pd.DataFrame: """Actual data representation as pd.DataFrame.""" return self.__internal_taxonomy @property def xrid(self) -> pd.Index: """Feature indices as pd.Index.""" return self.__internal_taxonomy.index
37.081016
133
0.559903
29,908
0.975282
0
0
3,909
0.12747
0
0
8,318
0.271245
7916e1c58cd3262cc6b3f5abd2ae3b7c7603279e
9,607
py
Python
users_django/users/tests/test_views.py
r-o-main/users-exercise
ecd6e33308140f72cb6c446e0e7e93f327b57a97
[ "MIT" ]
null
null
null
users_django/users/tests/test_views.py
r-o-main/users-exercise
ecd6e33308140f72cb6c446e0e7e93f327b57a97
[ "MIT" ]
null
null
null
users_django/users/tests/test_views.py
r-o-main/users-exercise
ecd6e33308140f72cb6c446e0e7e93f327b57a97
[ "MIT" ]
null
null
null
from rest_framework.test import APIRequestFactory from rest_framework import status from django.test import TestCase from django.urls import reverse from ..models import User from ..serializer import UserSerializer from ..views import UserViewSet import ipapi class UsersApiRootTestCase(TestCase): def test_api_root_should_reply_200(self): """ GET /api/v1/ should return an hyperlink to the users view and return a successful status 200 OK. """ request = APIRequestFactory().get("/api/v1/") user_list_view = UserViewSet.as_view({"get": "list"}) response = user_list_view(request) self.assertEqual(status.HTTP_200_OK, response.status_code) class UsersApiTestCase(TestCase): """ Factorize the tests setup to use a pool of existing users. """ def setUp(self): self.factory = APIRequestFactory() self.users = [ User.objects.create( first_name="Riri", last_name="Duck", email="riri.duck@ricardo.ch", password="dummy"), User.objects.create( first_name="Fifi", last_name="Duck", email="fifi.duck@ricardo.ch", password="dummy"), User.objects.create( first_name="Loulou", last_name="Duck", email="loulou.duck@ricardo.ch", password="dummy") ] class GetAllUsersTest(UsersApiTestCase): """ Test GET /api/v1/users """ def test_list_all_users_should_retrieve_all_users_and_reply_200(self): """ GET /api/v1/users should return all the users (or empty if no users found) and return a successful status 200 OK. """ users = User.objects.all().order_by("id") request = self.factory.get(reverse("v1:user-list")) serializer = UserSerializer(users, many=True, context={'request': request}) user_list_view = UserViewSet.as_view({"get": "list"}) response = user_list_view(request) self.assertEqual(len(self.users), len(response.data["results"])) self.assertEqual(serializer.data, response.data["results"]) self.assertEqual(status.HTTP_200_OK, response.status_code) class GetSingleUserTest(UsersApiTestCase): """ Test GET /api/v1/users/:id """ def test_get_user_when_id_valid_should_retrieve_user_and_reply_200(self): riri = User.objects.create( first_name="Riri", last_name="Duck", email="riri.duck@ricardo.ch", password="dummy") user = User.objects.get(pk=riri.pk) request = self.factory.get(reverse("v1:user-detail", kwargs={"pk": riri.pk})) serializer = UserSerializer(user, context={'request': request}) user_detail_view = UserViewSet.as_view({"get": "retrieve"}) response = user_detail_view(request, pk=riri.pk) self.assertEqual(serializer.data, response.data) self.assertEqual(status.HTTP_200_OK, response.status_code) def test_get_user_when_id_invalid_should_reply_404(self): request = self.factory.get(reverse("v1:user-detail", kwargs={"pk": 100})) user_detail_view = UserViewSet.as_view({"get": "retrieve"}) response = user_detail_view(request, pk=100) self.assertEqual(status.HTTP_404_NOT_FOUND, response.status_code) class CreateNewUserTest(UsersApiTestCase): """ Test POST /api/v1/users Override 'REMOTE_ADDR' to set IP address to Switzerland or another country for testing purpose. """ def test_post_user_when_from_Switzerland_and_data_valid_should_create_user_and_reply_201(self): initial_users_count = len(self.users) valid_data = { "first_name": "Casper", "last_name": "Canterville", "email": "c@sper.com", "password": "dummy", } request = self.factory.post( reverse("v1:user-list"), data=valid_data, REMOTE_ADDR='2.16.92.0' ) user_detail_view = UserViewSet.as_view({"post": "create"}) response = user_detail_view(request) self.assertEqual(status.HTTP_201_CREATED, response.status_code) new_users_count = User.objects.count() self.assertEqual(initial_users_count+1, new_users_count) def test_post_user_when_id_invalid_should_not_create_user_and_reply_400(self): initial_users_count = len(self.users) invalid_data = { "first_name": "Casper", "last_name": "Canterville", "email": "", "password": "dummy", } request = self.factory.post( reverse("v1:user-list"), data=invalid_data, REMOTE_ADDR='2.16.92.0' ) user_detail_view = UserViewSet.as_view({"post": "create"}) response = user_detail_view(request) self.assertEqual(status.HTTP_400_BAD_REQUEST, response.status_code) users_count = User.objects.count() self.assertEqual(initial_users_count, users_count) def test_post_user_when_data_valid_but_email_already_used_should_not_create_user_and_reply_400(self): initial_users_count = len(self.users) valid_data_with_used_email = { "first_name": "Casper", "last_name": "Canterville", "email": "riri.duck@ricardo.ch", "password": "dummy", } request = self.factory.post( reverse("v1:user-list"), data=valid_data_with_used_email, REMOTE_ADDR='2.16.92.0' ) user_detail_view = UserViewSet.as_view({"post": "create"}) response = user_detail_view(request) self.assertEqual(status.HTTP_400_BAD_REQUEST, response.status_code) new_users_count = User.objects.count() self.assertEqual(initial_users_count, new_users_count) def test_post_user_when_IP_not_in_Switzerland_should_not_create_user_and_reply_403(self): initial_users_count = len(self.users) valid_data = { "first_name": "Casper", "last_name": "Canterville", "email": "c@sper.com", "password": "dummy", } request = self.factory.post( reverse("v1:user-list"), data=valid_data, REMOTE_ADDR='2.16.8.0' # Spain ) user_detail_view = UserViewSet.as_view({"post": "create"}) response = user_detail_view(request) self.assertEqual(status.HTTP_403_FORBIDDEN, response.status_code) self.assertTrue(len(response.data['detail']) > 0) users_count = User.objects.count() self.assertEqual(initial_users_count, users_count) class UpdateSinglUserTest(UsersApiTestCase): """ Test PUT|PATCH /api/v1/user/:id """ def test_patch_user_when_id_valid_should_patch_user_and_reply_200(self): riri = User.objects.create( first_name="Riri", last_name="Duck", email="riri.duck@ricardo.ch", password="dummy") request = self.factory.patch( reverse("v1:user-detail", kwargs={"pk": riri.pk}), data={"email": "riri@ricardo.ch"} ) user_detail_view = UserViewSet.as_view({"patch": "partial_update"}) response = user_detail_view(request, pk=riri.pk) self.assertEqual(status.HTTP_200_OK, response.status_code) def test_patch_user_when_id_invalid_should_not_patch_user_and_reply_404(self): riri = User.objects.create( first_name="Riri", last_name="Duck", email="riri.duck@ricardo.ch", password="dummy") request = self.factory.patch( reverse("v1:user-detail", kwargs={"pk": 100}), data={"email": "riri@ricardo.ch"} ) user_detail_view = UserViewSet.as_view({"patch": "partial_update"}) response = user_detail_view(request, pk=100) self.assertEqual(status.HTTP_404_NOT_FOUND, response.status_code) def test_put_when_invalid_data_should_not_update_user_and_reply_400(self): riri = User.objects.create( first_name="Riri", last_name="Duck", email="riri.duck@ricardo.ch", password="dummy") invalid_payload = { "first_name": "", "last_name": "Duck", "email": "riri.duck@ricardo.ch" } request = self.factory.put( reverse("v1:user-detail", kwargs={"pk": riri.pk}), data=invalid_payload ) user_detail_view = UserViewSet.as_view({"put": "update"}) response = user_detail_view(request, pk=riri.pk) self.assertEqual(status.HTTP_400_BAD_REQUEST, response.status_code) class DeleteSinglePuppyTest(UsersApiTestCase): """ Test DELETE /api/v1/user/:id """ def test_delete_user_when_id_valid_should_delete_user_and_reply_204(self): initial_users_count = len(self.users) user_to_delete = self.users[0] request = self.factory.delete(reverse("v1:user-detail", kwargs={"pk": user_to_delete.pk})) user_detail_view = UserViewSet.as_view({"delete": "destroy"}) response = user_detail_view(request, pk=user_to_delete.pk) self.assertEqual(status.HTTP_204_NO_CONTENT, response.status_code) new_users_count = User.objects.count() self.assertEqual(initial_users_count-1, new_users_count) def test_delete_user_when_id_invalid_should_reply_404(self): request = self.factory.delete(reverse("v1:user-detail", kwargs={"pk": 100})) user_detail_view = UserViewSet.as_view({"delete": "destroy"}) response = user_detail_view(request, pk=100) self.assertEqual(status.HTTP_404_NOT_FOUND, response.status_code)
39.052846
108
0.65192
9,325
0.970646
0
0
0
0
0
0
1,835
0.191007
79181888e71b95f21231a74673bce1df5f5dad06
1,058
py
Python
jburt/mask.py
jbburt/jburt
7745491214ef2b665ca8d1fc526bc802a36985ff
[ "MIT" ]
null
null
null
jburt/mask.py
jbburt/jburt
7745491214ef2b665ca8d1fc526bc802a36985ff
[ "MIT" ]
null
null
null
jburt/mask.py
jbburt/jburt
7745491214ef2b665ca8d1fc526bc802a36985ff
[ "MIT" ]
null
null
null
from typing import List import numpy as np def mask_nan(arrays: List[np.ndarray]) -> List[np.ndarray]: """ Drop indices from equal-sized arrays if the element at that index is NaN in any of the input arrays. Parameters ---------- arrays : List[np.ndarray] list of ndarrays containing NaNs, to be masked Returns ------- List[np.ndarray] masked arrays (free of NaNs) Notes ----- This function find the indices where one or more elements is NaN in one or more of the input arrays, then drops those indices from all arrays. For example: >> a = np.array([0, 1, np.nan, 3]) >> b = np.array([np.nan, 5, np.nan, 7]) >> c = np.array([8, 9, 10, 11]) >> mask_nan([a, b, c]) [array([ 1., 3.]), array([ 5., 7.]), array([ 9, 11])] """ n = arrays[0].size assert all(a.size == n for a in arrays[1:]) mask = np.array([False] * n) for arr in arrays: mask = np.logical_or(mask, np.isnan(arr)) return [arr[np.where(~mask)[0]] for arr in arrays]
27.128205
79
0.581285
0
0
0
0
0
0
0
0
715
0.675803
7918bd9392635ed706771c33b08bee283e79ec85
838
py
Python
ExpenseTracker/grocery/migrations/0004_auto_20200908_1918.py
lennyAiko/LifeExpenses
ec345228bca00742b0b08cf3fc294dba6574b515
[ "MIT" ]
null
null
null
ExpenseTracker/grocery/migrations/0004_auto_20200908_1918.py
lennyAiko/LifeExpenses
ec345228bca00742b0b08cf3fc294dba6574b515
[ "MIT" ]
null
null
null
ExpenseTracker/grocery/migrations/0004_auto_20200908_1918.py
lennyAiko/LifeExpenses
ec345228bca00742b0b08cf3fc294dba6574b515
[ "MIT" ]
1
2020-09-01T15:38:19.000Z
2020-09-01T15:38:19.000Z
# Generated by Django 3.1.1 on 2020-09-08 18:18 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('grocery', '0003_auto_20200908_1417'), ] operations = [ migrations.AlterField( model_name='item', name='list', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='item', to='grocery.list'), ), migrations.AlterField( model_name='list', name='user', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='list', to=settings.AUTH_USER_MODEL), ), ]
31.037037
142
0.656325
679
0.810263
0
0
0
0
0
0
131
0.156325
7919878f4085d6d12cdcb153170df1fa3bde8e8d
1,035
py
Python
my_hello_world_app/web_api/router.py
gsjay980/data-science-IP
715550d1cbf67e552c0df533619460c0fee15b94
[ "MIT" ]
5
2020-05-26T09:33:54.000Z
2021-07-01T02:42:30.000Z
my_hello_world_app/web_api/router.py
gsjay980/data-science-IP
715550d1cbf67e552c0df533619460c0fee15b94
[ "MIT" ]
3
2019-12-26T17:34:24.000Z
2020-02-04T03:16:23.000Z
my_hello_world_app/web_api/router.py
gsjay980/data-science-IP
715550d1cbf67e552c0df533619460c0fee15b94
[ "MIT" ]
2
2021-12-17T00:46:03.000Z
2022-02-26T11:04:55.000Z
from os import getenv from typing import Optional, Dict from flask import Flask TestConfig = Optional[Dict[str, bool]] def create_app(test_config: TestConfig = None) -> Flask: """ App factory method to initialize the application with given configuration """ app: Flask = Flask(__name__) if test_config is not None: app.config.from_mapping(test_config) @app.route("/") def index() -> str: # pylint: disable=unused-variable return "My Hello World App is working..." @app.route("/version") def version() -> str: # pylint: disable=unused-variable """ DOCKER_IMAGE_TAG is passed in the app from Dockerfile as ARG. It should be setup in docker build task.. It is used in .gitlab-ci.yaml to pass the hash of the latest commit as docker image tag. E.g. docker build --build-arg docker_image_tag="my-version" -t my-image-name:my-version . """ return getenv("DOCKER_IMAGE_TAG") or "DOCKER_IMAGE_TAG haven't been setup" return app
32.34375
97
0.672464
0
0
0
0
629
0.607729
0
0
579
0.55942
791a179ef2265637a66974e7b35a3ad2c3c5a16a
10,666
py
Python
src/pythonModules/fourgp_rv/fourgp_rv/templates_resample.py
dcf21/4most-4gp
0421d76791315aa3ca8ff9e4bd2e37ad36c0141f
[ "MIT" ]
null
null
null
src/pythonModules/fourgp_rv/fourgp_rv/templates_resample.py
dcf21/4most-4gp
0421d76791315aa3ca8ff9e4bd2e37ad36c0141f
[ "MIT" ]
null
null
null
src/pythonModules/fourgp_rv/fourgp_rv/templates_resample.py
dcf21/4most-4gp
0421d76791315aa3ca8ff9e4bd2e37ad36c0141f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Code to take template spectra, used for RV fitting, and pass them through 4FS to resample them to 4MOST's resolution. It then further resamples each arm onto a fixed logarithmic stride. """ import argparse import hashlib import logging import numpy as np import os from os import path as os_path from fourgp_fourfs import FourFS from fourgp_degrade.resample import SpectrumResampler from fourgp_degrade import SpectrumProperties from fourgp_speclib import SpectrumLibrarySqlite def command_line_interface(root_path): """ A simple command-line interface for running a tool to resample a library of template spectra onto fixed logarithmic rasters representing each of the 4MOST arms. We use the python argparse module to build the interface, and return the inputs supplied by the user. :param root_path: The root path of this 4GP installation; the directory where we can find 4FS. :return: An object containing the arguments supplied by the user. """ # Read input parameters parser = argparse.ArgumentParser(description=__doc__.strip()) parser.add_argument('--templates-in', required=False, default='turbospec_rv_templates', dest='templates_in', help="Library of spectra to use as templates for RV code") parser.add_argument('--workspace', dest='workspace', default="", help="Directory where we expect to find spectrum libraries") parser.add_argument('--templates-out', required=False, default="rv_templates_resampled", dest="templates_out", help="Library into which to place resampled templates for RV code") parser.add_argument('--binary-path', required=False, default=root_path, dest="binary_path", help="Specify a directory where 4FS binary package is installed") args = parser.parse_args() # Set up logger logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(levelname)s:%(filename)s:%(message)s', datefmt='%d/%m/%Y %H:%M:%S') logger = logging.getLogger(__name__) logger.info("Resampling template spectra") return args def logarithmic_raster(lambda_min, lambda_max, lambda_step): """ Create a logarithmic raster with a fixed logarithmic stride, based on a starting wavelength, finishing wavelength, and a mean wavelength step. :param lambda_min: Smallest wavelength in raster. :param lambda_max: Largest wavelength in raster. :param lambda_step: The approximate pixel size in the raster. :return: A numpy array containing a wavelength raster with fixed logarithmic stride. """ return np.exp(np.arange( np.log(lambda_min), np.log(lambda_max), np.log(1 + lambda_step / lambda_min) )) def resample_templates(args, logger): """ Resample a spectrum library of templates onto a fixed logarithmic stride, representing each of the 4MOST arms in turn. We use 4FS to down-sample the templates to the resolution of 4MOST observations, and automatically detect the list of arms contained within each 4FS mock observation. We then resample the 4FS output onto a new raster with fixed logarithmic stride. :param args: Object containing arguments supplied by the used, for example the name of the spectrum libraries we use for input and output. The required fields are defined by the user interface above. :param logger: A python logging object. :return: None. """ # Set path to workspace where we expect to find libraries of spectra workspace = args.workspace if args.workspace else os_path.join(args.our_path, "../../../workspace") # Open input template spectra spectra = SpectrumLibrarySqlite.open_and_search( library_spec=args.templates_in, workspace=workspace, extra_constraints={"continuum_normalised": 0} ) templates_library, templates_library_items, templates_spectra_constraints = \ [spectra[i] for i in ("library", "items", "constraints")] # Create new SpectrumLibrary to hold the resampled output templates library_path = os_path.join(workspace, args.templates_out) output_library = SpectrumLibrarySqlite(path=library_path, create=True) # Instantiate 4FS wrapper etc_wrapper = FourFS( path_to_4fs=os_path.join(args.binary_path, "OpSys/ETC"), snr_list=[250.], magnitude=13, snr_per_pixel=True ) for input_spectrum_id in templates_library_items: logger.info("Working on <{}>".format(input_spectrum_id['filename'])) # Open Spectrum data from disk input_spectrum_array = templates_library.open(ids=input_spectrum_id['specId']) # Load template spectrum (flux normalised) template_flux_normalised = input_spectrum_array.extract_item(0) # Look up the unique ID of the star we've just loaded # Newer spectrum libraries have a uid field which is guaranteed unique; for older spectrum libraries use # Starname instead. # Work out which field we're using (uid or Starname) spectrum_matching_field = 'uid' if 'uid' in template_flux_normalised.metadata else 'Starname' # Look up the unique ID of this object object_name = template_flux_normalised.metadata[spectrum_matching_field] # Search for the continuum-normalised version of this same object (which will share the same uid / name) search_criteria = { spectrum_matching_field: object_name, 'continuum_normalised': 1 } continuum_normalised_spectrum_id = templates_library.search(**search_criteria) # Check that continuum-normalised spectrum exists and is unique assert len(continuum_normalised_spectrum_id) == 1, "Could not find continuum-normalised spectrum." # Load the continuum-normalised version template_continuum_normalised_arr = templates_library.open( ids=continuum_normalised_spectrum_id[0]['specId'] ) # Turn the SpectrumArray we got back into a single Spectrum template_continuum_normalised = template_continuum_normalised_arr.extract_item(0) # Now create a mock observation of this template using 4FS logger.info("Passing template through 4FS") mock_observed_template = etc_wrapper.process_spectra( spectra_list=((template_flux_normalised, template_continuum_normalised),) ) # Loop over LRS and HRS for mode in mock_observed_template: # Loop over the spectra we simulated (there was only one!) for index in mock_observed_template[mode]: # Loop over the various SNRs we simulated (there was only one!) for snr in mock_observed_template[mode][index]: # Create a unique ID for this arm's data unique_id = hashlib.md5(os.urandom(32)).hexdigest()[:16] # Import the flux- and continuum-normalised spectra separately, but give them the same ID for spectrum_type in mock_observed_template[mode][index][snr]: # Extract continuum-normalised mock observation logger.info("Resampling {} spectrum".format(mode)) mock_observed = mock_observed_template[mode][index][snr][spectrum_type] # Replace errors which are nans with a large value mock_observed.value_errors[np.isnan(mock_observed.value_errors)] = 1000. # Check for NaN values in spectrum itself if not np.all(np.isfinite(mock_observed.values)): print("Warning: NaN values in template <{}>".format(template_flux_normalised.metadata['Starname'])) mock_observed.value_errors[np.isnan(mock_observed.values)] = 1000. mock_observed.values[np.isnan(mock_observed.values)] = 1. # Resample template onto a logarithmic raster of fixed step resampler = SpectrumResampler(mock_observed) # Construct the raster for each wavelength arm wavelength_arms = SpectrumProperties(mock_observed.wavelengths).wavelength_arms() # Resample 4FS output for each arm onto a fixed logarithmic stride for arm_count, arm in enumerate(wavelength_arms["wavelength_arms"]): arm_raster, mean_pixel_width = arm name = "{}_{}".format(mode, arm_count) arm_info = { "lambda_min": arm_raster[0], "lambda_max": arm_raster[-1], "lambda_step": mean_pixel_width } arm_raster = logarithmic_raster(lambda_min=arm_info['lambda_min'], lambda_max=arm_info['lambda_max'], lambda_step=arm_info['lambda_step'] ) # Resample 4FS output onto a fixed logarithmic step mock_observed_arm = resampler.onto_raster(arm_raster) # Save it into output spectrum library output_library.insert(spectra=mock_observed_arm, filenames=input_spectrum_id['filename'], metadata_list={ "uid": unique_id, "template_id": object_name, "mode": mode, "arm_name": "{}_{}".format(mode,arm_count), "lambda_min": arm_raster[0], "lambda_max": arm_raster[-1], "lambda_step": mean_pixel_width })
45.387234
127
0.603975
0
0
0
0
0
0
0
0
4,394
0.411963
791a74027f2dc3fbe44b27f9c9f0523352b4d029
149
py
Python
datahub/activity_feed/apps.py
Staberinde/data-hub-api
3d0467dbceaf62a47158eea412a3dba827073300
[ "MIT" ]
6
2019-12-02T16:11:24.000Z
2022-03-18T10:02:02.000Z
datahub/activity_feed/apps.py
Staberinde/data-hub-api
3d0467dbceaf62a47158eea412a3dba827073300
[ "MIT" ]
1,696
2019-10-31T14:08:37.000Z
2022-03-29T12:35:57.000Z
datahub/activity_feed/apps.py
Staberinde/data-hub-api
3d0467dbceaf62a47158eea412a3dba827073300
[ "MIT" ]
9
2019-11-22T12:42:03.000Z
2021-09-03T14:25:05.000Z
from django.apps import AppConfig class ActivityFeedConfig(AppConfig): """App config for activity_feed.""" name = 'datahub.activity_feed'
18.625
39
0.738255
112
0.751678
0
0
0
0
0
0
58
0.389262
791aafa638d97478db2d6a462067e347380d5760
117
py
Python
ffmpeg_normalize/__init__.py
kostalski/ffmpeg-normalize
2c73f47ec4369de08c1e2051af490322084fd17b
[ "MIT" ]
3
2019-04-01T11:03:04.000Z
2019-12-31T02:17:15.000Z
ffmpeg_normalize/__init__.py
kostalski/ffmpeg-normalize
2c73f47ec4369de08c1e2051af490322084fd17b
[ "MIT" ]
1
2021-04-15T18:46:45.000Z
2021-04-15T18:46:45.000Z
ffmpeg_normalize/__init__.py
kostalski/ffmpeg-normalize
2c73f47ec4369de08c1e2051af490322084fd17b
[ "MIT" ]
1
2021-09-23T13:43:07.000Z
2021-09-23T13:43:07.000Z
from ._ffmpeg_normalize import FFmpegNormalize from ._media_file import MediaFile from ._version import __version__
23.4
46
0.863248
0
0
0
0
0
0
0
0
0
0
791adee85a8db7759e5f3f2e7403b68b0df27e62
113
py
Python
__init__.py
nuxeo-cps/zope2--PortalTransforms
753f67202b016d0b07edd3bc65fd827cb39e50db
[ "BSD-3-Clause" ]
null
null
null
__init__.py
nuxeo-cps/zope2--PortalTransforms
753f67202b016d0b07edd3bc65fd827cb39e50db
[ "BSD-3-Clause" ]
null
null
null
__init__.py
nuxeo-cps/zope2--PortalTransforms
753f67202b016d0b07edd3bc65fd827cb39e50db
[ "BSD-3-Clause" ]
null
null
null
__revision__ = '$Id$' from utils import HAS_ZOPE if HAS_ZOPE: from Products.PortalTransforms.zope import *
16.142857
48
0.752212
0
0
0
0
0
0
0
0
6
0.053097
791be8749fa60c1fc2eb6569f7089a3ef2f48994
11,259
py
Python
SpoTwillio/lib/python3.6/site-packages/twilio/rest/api/v2010/account/call/feedback.py
Natfan/funlittlethings
80d5378b45b5c0ead725942ee50403bd057514a6
[ "MIT" ]
3
2019-11-12T07:55:51.000Z
2020-04-01T11:19:18.000Z
SpoTwillio/lib/python3.6/site-packages/twilio/rest/api/v2010/account/call/feedback.py
Natfan/funlittlethings
80d5378b45b5c0ead725942ee50403bd057514a6
[ "MIT" ]
7
2020-06-06T01:06:19.000Z
2022-02-10T11:15:14.000Z
SpoTwillio/lib/python3.6/site-packages/twilio/rest/api/v2010/account/call/feedback.py
Natfan/funlittlethings
80d5378b45b5c0ead725942ee50403bd057514a6
[ "MIT" ]
2
2019-10-20T14:54:47.000Z
2020-06-11T07:29:37.000Z
# coding=utf-8 """ This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from twilio.base import deserialize from twilio.base import values from twilio.base.instance_context import InstanceContext from twilio.base.instance_resource import InstanceResource from twilio.base.list_resource import ListResource from twilio.base.page import Page class FeedbackList(ListResource): def __init__(self, version, account_sid, call_sid): """ Initialize the FeedbackList :param Version version: Version that contains the resource :param account_sid: The account_sid :param call_sid: A 34 character string that uniquely identifies this resource. :returns: twilio.rest.api.v2010.account.call.feedback.FeedbackList :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackList """ super(FeedbackList, self).__init__(version) # Path Solution self._solution = { 'account_sid': account_sid, 'call_sid': call_sid, } def get(self): """ Constructs a FeedbackContext :returns: twilio.rest.api.v2010.account.call.feedback.FeedbackContext :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackContext """ return FeedbackContext( self._version, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], ) def __call__(self): """ Constructs a FeedbackContext :returns: twilio.rest.api.v2010.account.call.feedback.FeedbackContext :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackContext """ return FeedbackContext( self._version, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Api.V2010.FeedbackList>' class FeedbackPage(Page): def __init__(self, version, response, solution): """ Initialize the FeedbackPage :param Version version: Version that contains the resource :param Response response: Response from the API :param account_sid: The account_sid :param call_sid: A 34 character string that uniquely identifies this resource. :returns: twilio.rest.api.v2010.account.call.feedback.FeedbackPage :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackPage """ super(FeedbackPage, self).__init__(version, response) # Path Solution self._solution = solution def get_instance(self, payload): """ Build an instance of FeedbackInstance :param dict payload: Payload response from the API :returns: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ return FeedbackInstance( self._version, payload, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ return '<Twilio.Api.V2010.FeedbackPage>' class FeedbackContext(InstanceContext): def __init__(self, version, account_sid, call_sid): """ Initialize the FeedbackContext :param Version version: Version that contains the resource :param account_sid: The account_sid :param call_sid: The call sid that uniquely identifies the call :returns: twilio.rest.api.v2010.account.call.feedback.FeedbackContext :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackContext """ super(FeedbackContext, self).__init__(version) # Path Solution self._solution = { 'account_sid': account_sid, 'call_sid': call_sid, } self._uri = '/Accounts/{account_sid}/Calls/{call_sid}/Feedback.json'.format(**self._solution) def create(self, quality_score, issue=values.unset): """ Create a new FeedbackInstance :param unicode quality_score: The quality_score :param FeedbackInstance.Issues issue: The issue :returns: Newly created FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ data = values.of({ 'QualityScore': quality_score, 'Issue': issue, }) payload = self._version.create( 'POST', self._uri, data=data, ) return FeedbackInstance( self._version, payload, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], ) def fetch(self): """ Fetch a FeedbackInstance :returns: Fetched FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ params = values.of({}) payload = self._version.fetch( 'GET', self._uri, params=params, ) return FeedbackInstance( self._version, payload, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], ) def update(self, quality_score, issue=values.unset): """ Update the FeedbackInstance :param unicode quality_score: An integer from 1 to 5 :param FeedbackInstance.Issues issue: Issues experienced during the call :returns: Updated FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ data = values.of({ 'QualityScore': quality_score, 'Issue': issue, }) payload = self._version.update( 'POST', self._uri, data=data, ) return FeedbackInstance( self._version, payload, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Api.V2010.FeedbackContext {}>'.format(context) class FeedbackInstance(InstanceResource): class Issues(object): AUDIO_LATENCY = "audio-latency" DIGITS_NOT_CAPTURED = "digits-not-captured" DROPPED_CALL = "dropped-call" IMPERFECT_AUDIO = "imperfect-audio" INCORRECT_CALLER_ID = "incorrect-caller-id" ONE_WAY_AUDIO = "one-way-audio" POST_DIAL_DELAY = "post-dial-delay" UNSOLICITED_CALL = "unsolicited-call" def __init__(self, version, payload, account_sid, call_sid): """ Initialize the FeedbackInstance :returns: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ super(FeedbackInstance, self).__init__(version) # Marshaled Properties self._properties = { 'account_sid': payload['account_sid'], 'date_created': deserialize.rfc2822_datetime(payload['date_created']), 'date_updated': deserialize.rfc2822_datetime(payload['date_updated']), 'issues': payload['issues'], 'quality_score': deserialize.integer(payload['quality_score']), 'sid': payload['sid'], } # Context self._context = None self._solution = { 'account_sid': account_sid, 'call_sid': call_sid, } @property def _proxy(self): """ Generate an instance context for the instance, the context is capable of performing various actions. All instance actions are proxied to the context :returns: FeedbackContext for this FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackContext """ if self._context is None: self._context = FeedbackContext( self._version, account_sid=self._solution['account_sid'], call_sid=self._solution['call_sid'], ) return self._context @property def account_sid(self): """ :returns: The account_sid :rtype: unicode """ return self._properties['account_sid'] @property def date_created(self): """ :returns: The date_created :rtype: datetime """ return self._properties['date_created'] @property def date_updated(self): """ :returns: The date_updated :rtype: datetime """ return self._properties['date_updated'] @property def issues(self): """ :returns: The issues :rtype: FeedbackInstance.Issues """ return self._properties['issues'] @property def quality_score(self): """ :returns: 1 to 5 quality score :rtype: unicode """ return self._properties['quality_score'] @property def sid(self): """ :returns: The sid :rtype: unicode """ return self._properties['sid'] def create(self, quality_score, issue=values.unset): """ Create a new FeedbackInstance :param unicode quality_score: The quality_score :param FeedbackInstance.Issues issue: The issue :returns: Newly created FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ return self._proxy.create( quality_score, issue=issue, ) def fetch(self): """ Fetch a FeedbackInstance :returns: Fetched FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ return self._proxy.fetch() def update(self, quality_score, issue=values.unset): """ Update the FeedbackInstance :param unicode quality_score: An integer from 1 to 5 :param FeedbackInstance.Issues issue: Issues experienced during the call :returns: Updated FeedbackInstance :rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackInstance """ return self._proxy.update( quality_score, issue=issue, ) def __repr__(self): """ Provide a friendly representation :returns: Machine friendly representation :rtype: str """ context = ' '.join('{}={}'.format(k, v) for k, v in self._solution.items()) return '<Twilio.Api.V2010.FeedbackInstance {}>'.format(context)
29.551181
101
0.606981
10,859
0.964473
0
0
1,607
0.14273
0
0
6,033
0.535838
791c899515ab5ee22d19f49f98ec0553bac2d037
144
py
Python
app/donut.py
zaphodef/stockpile
f682c0d16a07ab281363c8031c611305934da46c
[ "Apache-2.0" ]
null
null
null
app/donut.py
zaphodef/stockpile
f682c0d16a07ab281363c8031c611305934da46c
[ "Apache-2.0" ]
null
null
null
app/donut.py
zaphodef/stockpile
f682c0d16a07ab281363c8031c611305934da46c
[ "Apache-2.0" ]
null
null
null
async def donut_handler(args): print('This is where we would configure things to properly handle a .donut file request.') return '', ''
36
94
0.708333
0
0
0
0
0
0
143
0.993056
87
0.604167
791fc2d140f54e02c2b4d1000be7565797957857
136
py
Python
gtf2bed/__init__.py
jvfe/gtf2bed
7ac21759498ca9495030982d2a11c2a63149a75c
[ "BSD-3-Clause" ]
1
2021-04-22T09:27:35.000Z
2021-04-22T09:27:35.000Z
gtf2bed/__init__.py
jvfe/gtf2bed
7ac21759498ca9495030982d2a11c2a63149a75c
[ "BSD-3-Clause" ]
null
null
null
gtf2bed/__init__.py
jvfe/gtf2bed
7ac21759498ca9495030982d2a11c2a63149a75c
[ "BSD-3-Clause" ]
null
null
null
"""Top-level package for gtf2bed.""" __author__ = """João Vitor F. Cavalcante""" __email__ = "jvfecav@gmail.com" __version__ = "0.1.0"
22.666667
43
0.683824
0
0
0
0
0
0
0
0
93
0.678832
79206dc12be47bbbc702eacb1b5f27bdf824bf1f
2,993
py
Python
fastapi_cloudauth/firebase.py
jleclanche/fastapi-cloudauth
9c098f91f46d9d927e1f10b82b80340951d0b1f2
[ "MIT" ]
null
null
null
fastapi_cloudauth/firebase.py
jleclanche/fastapi-cloudauth
9c098f91f46d9d927e1f10b82b80340951d0b1f2
[ "MIT" ]
null
null
null
fastapi_cloudauth/firebase.py
jleclanche/fastapi-cloudauth
9c098f91f46d9d927e1f10b82b80340951d0b1f2
[ "MIT" ]
null
null
null
from calendar import timegm from datetime import datetime from typing import Any, Dict from fastapi import HTTPException from pydantic import BaseModel, Field from starlette import status from .base import UserInfoAuth from .messages import NOT_VERIFIED from .verification import JWKS, ExtraVerifier class FirebaseClaims(BaseModel): user_id: str = Field(alias="user_id") email: str = Field(None, alias="email") class FirebaseCurrentUser(UserInfoAuth): """ Verify ID token and get user info of Firebase """ user_info = FirebaseClaims firebase_keys_url = "https://www.googleapis.com/robot/v1/metadata/x509/securetoken@system.gserviceaccount.com" def __init__(self, project_id: str, *args: Any, **kwargs: Any): self._key_refresh_locked = False jwks = JWKS.firebase(self.firebase_keys_url) super().__init__( jwks, *args, user_info=self.user_info, audience=project_id, issuer=f"https://securetoken.google.com/{project_id}", extra=FirebaseExtraVerifier(project_id=project_id), **kwargs, ) async def refresh_keys(self) -> None: if not self._key_refresh_locked: # Ensure only one key refresh can happen at once. # This prevents a dogpile of requests the second the keys expire # from causing a bunch of refreshes (each one is an http request). self._key_refresh_locked = True # Re-query the keys from firebase. # NOTE: The expires comes from an http header which is supposed to # be set to a time long before the keys are no longer in use. # This allows gradual roll-out of the keys and should prevent any # request from failing. # The only scenario which will result in failing requests is if # there are zero requests for the entire duration of the roll-out # (observed to be around 1 week), followed by a burst of multiple # requests at once. jwks = JWKS.firebase(self.firebase_keys_url) # Reset the keys and the expiry date. self._verifier._jwks_to_key = jwks.keys self._keys_expire = jwks.expires # Remove the lock. self._key_refresh_locked = False class FirebaseExtraVerifier(ExtraVerifier): def __init__(self, project_id: str): self._pjt_id = project_id def __call__(self, claims: Dict[str, str], auto_error: bool = True) -> bool: # auth_time must be past time if claims.get("auth_time"): auth_time = int(claims["auth_time"]) now = timegm(datetime.utcnow().utctimetuple()) if now < auth_time: if auto_error: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail=NOT_VERIFIED ) return False return True
36.060241
114
0.636151
2,682
0.896091
0
0
0
0
1,201
0.40127
959
0.320414
79222572360ae305c1ba2a36f8edf19a01cdcedf
2,410
py
Python
tests/instrumentation/sqlite_tests.py
dsanders11/opbeat_python
4bdfe494ed4dba12550dff86366b4402613bce92
[ "BSD-3-Clause" ]
99
2015-02-27T02:21:41.000Z
2021-02-09T15:13:25.000Z
tests/instrumentation/sqlite_tests.py
dsanders11/opbeat_python
4bdfe494ed4dba12550dff86366b4402613bce92
[ "BSD-3-Clause" ]
114
2015-01-16T15:06:49.000Z
2018-04-13T20:29:18.000Z
tests/instrumentation/sqlite_tests.py
dsanders11/opbeat_python
4bdfe494ed4dba12550dff86366b4402613bce92
[ "BSD-3-Clause" ]
51
2015-01-07T12:13:56.000Z
2019-05-06T14:16:35.000Z
import sqlite3 import mock import opbeat.instrumentation.control from tests.helpers import get_tempstoreclient from tests.utils.compat import TestCase class InstrumentSQLiteTest(TestCase): def setUp(self): self.client = get_tempstoreclient() opbeat.instrumentation.control.instrument() @mock.patch("opbeat.traces.RequestsStore.should_collect") def test_connect(self, should_collect): should_collect.return_value = False self.client.begin_transaction("transaction.test") conn = sqlite3.connect(":memory:") cursor = conn.cursor() cursor.execute("""CREATE TABLE testdb (id integer, username text)""") cursor.execute("""INSERT INTO testdb VALUES (1, "Ron")""") cursor.execute("""DROP TABLE testdb""") self.client.end_transaction("MyView") transactions, traces = self.client.instrumentation_store.get_all() expected_signatures = ['transaction', 'sqlite3.connect :memory:', 'CREATE TABLE', 'INSERT INTO testdb', 'DROP TABLE'] self.assertEqual(set([t['signature'] for t in traces]), set(expected_signatures)) # Reorder according to the kinds list so we can just test them sig_dict = dict([(t['signature'], t) for t in traces]) traces = [sig_dict[k] for k in expected_signatures] self.assertEqual(traces[0]['signature'], 'transaction') self.assertEqual(traces[0]['kind'], 'transaction') self.assertEqual(traces[0]['transaction'], 'MyView') self.assertEqual(traces[1]['signature'], 'sqlite3.connect :memory:') self.assertEqual(traces[1]['kind'], 'db.sqlite.connect') self.assertEqual(traces[1]['transaction'], 'MyView') self.assertEqual(traces[2]['signature'], 'CREATE TABLE') self.assertEqual(traces[2]['kind'], 'db.sqlite.sql') self.assertEqual(traces[2]['transaction'], 'MyView') self.assertEqual(traces[3]['signature'], 'INSERT INTO testdb') self.assertEqual(traces[3]['kind'], 'db.sqlite.sql') self.assertEqual(traces[3]['transaction'], 'MyView') self.assertEqual(traces[4]['signature'], 'DROP TABLE') self.assertEqual(traces[4]['kind'], 'db.sqlite.sql') self.assertEqual(traces[4]['transaction'], 'MyView') self.assertEqual(len(traces), 5)
38.253968
77
0.641494
2,254
0.93527
0
0
2,094
0.86888
0
0
719
0.29834
7922c3c12c906f5e3ff236bb30e73bcdb61a9ea9
477
py
Python
setup.py
samytessier/group_9_mlops
774f69354aeb5a9ddb59eb2cf5f8460832ab21b2
[ "MIT" ]
1
2022-01-20T02:18:16.000Z
2022-01-20T02:18:16.000Z
setup.py
samytessier/group_9_mlops
774f69354aeb5a9ddb59eb2cf5f8460832ab21b2
[ "MIT" ]
1
2022-01-08T17:18:04.000Z
2022-01-08T17:18:04.000Z
setup.py
samytessier/group_9_mlops
774f69354aeb5a9ddb59eb2cf5f8460832ab21b2
[ "MIT" ]
null
null
null
from setuptools import find_packages, setup setup( name='src', packages=find_packages(), version='0.1.0', description='This MLOps project aims to use the Transformers framework from Hugging Face in order to tweak a pre-trained NLP model to accurately gauge the sentiment of an Amazon review (being able to guess the whether the rating of a product is positive or negative given only the text in a review).', author='group9 DTU MLops', license='MIT', )
43.363636
305
0.742138
0
0
0
0
0
0
0
0
323
0.677149
7923b39638368ab2ae741c772b643949cd865155
423
py
Python
gaphor/RAAML/stpa/connectors.py
Texopolis/gaphor
3b190620075fd413258af1e7a007b4b2167a7564
[ "Apache-2.0" ]
867
2018-01-09T00:19:09.000Z
2022-03-31T02:49:23.000Z
gaphor/RAAML/stpa/connectors.py
burakozturk16/gaphor
86267a5200ac4439626d35d306dbb376c3800107
[ "Apache-2.0" ]
790
2018-01-13T23:47:07.000Z
2022-03-31T16:04:27.000Z
gaphor/RAAML/stpa/connectors.py
burakozturk16/gaphor
86267a5200ac4439626d35d306dbb376c3800107
[ "Apache-2.0" ]
117
2018-01-09T02:24:49.000Z
2022-03-23T08:07:42.000Z
from gaphor.diagram.connectors import Connector from gaphor.diagram.presentation import Classified from gaphor.RAAML.raaml import RelevantTo from gaphor.RAAML.stpa import RelevantToItem from gaphor.SysML.requirements.connectors import DirectedRelationshipPropertyPathConnect @Connector.register(Classified, RelevantToItem) class RelevantToConnect(DirectedRelationshipPropertyPathConnect): relation_type = RelevantTo
35.25
88
0.87234
97
0.229314
0
0
145
0.34279
0
0
0
0
7923c47de0831caf8141bfde82615c01392124f5
1,197
py
Python
voltagemetricspublisher/services/extractionService.py
SumudithaR/svc.voltage-metrics-publisher
4e0418c855920d3e984acf097681e2fc8c8ec081
[ "Apache-2.0" ]
null
null
null
voltagemetricspublisher/services/extractionService.py
SumudithaR/svc.voltage-metrics-publisher
4e0418c855920d3e984acf097681e2fc8c8ec081
[ "Apache-2.0" ]
null
null
null
voltagemetricspublisher/services/extractionService.py
SumudithaR/svc.voltage-metrics-publisher
4e0418c855920d3e984acf097681e2fc8c8ec081
[ "Apache-2.0" ]
null
null
null
from time import sleep from gpiozero import MCP3008 # Installed in GAM 13/09/2019. import time import gpiozero from ..models.rawMetricDto import RawMetricDto class ExtractionService(): def __init__(self): self.vref = 3.3 def getGpioValues(self): print("Getting GPIO Values.") adc0 = MCP3008(channel=0) adc1 = MCP3008(channel=1) adc2 = MCP3008(channel=2) adc3 = MCP3008(channel=3) adc4 = MCP3008(channel=4) adc5 = MCP3008(channel=5) adc6 = MCP3008(channel=6) adc7 = MCP3008(channel=7) model = RawMetricDto() model.voltage0 = self.vref*4.57*adc0.value # Battery-Main model.voltage1 = self.vref*4.57*adc1.value # Bus model.voltage2 = self.vref*4.57*adc2.value # Router model.voltage3 = self.vref*4.57*adc3.value # Battery-Emg.Lamps model.voltage4 = self.vref*adc4.value # XX3 model.voltage5 = self.vref*adc5.value # XX4 model.voltage6 = self.vref*adc6.value # WTL model.voltage7 = self.vref*adc7.value # WLL model.deviceTime = time.asctime(time.localtime(time.time())) return model
32.351351
71
0.622389
1,037
0.866332
0
0
0
0
0
0
118
0.09858
792592d09cfb1da8cbdd06e8e2cb4970a31ce4e6
553
py
Python
data_browser/migrations/0002_auto_20200331_1842.py
me2d09/django-data-browser
1108f714229aab8c30a27d93f264f2f26b8b0aee
[ "BSD-3-Clause" ]
null
null
null
data_browser/migrations/0002_auto_20200331_1842.py
me2d09/django-data-browser
1108f714229aab8c30a27d93f264f2f26b8b0aee
[ "BSD-3-Clause" ]
null
null
null
data_browser/migrations/0002_auto_20200331_1842.py
me2d09/django-data-browser
1108f714229aab8c30a27d93f264f2f26b8b0aee
[ "BSD-3-Clause" ]
null
null
null
# Generated by Django 2.0.13 on 2020-03-31 17:42 from django.db import migrations, models import data_browser.models class Migration(migrations.Migration): dependencies = [ ("data_browser", "0001_initial"), ] operations = [ migrations.AlterField( model_name="view", name="id", field=models.CharField( default=data_browser.models.get_id, max_length=12, primary_key=True, serialize=False, ), ), ]
21.269231
51
0.549729
431
0.779385
0
0
0
0
0
0
86
0.155515
7926794343cfee2a3a93c437f389f8d256dd16f9
320
py
Python
Community/get_audit_info/__init__.py
spenney-bc/gateway-workflows
0311a9224b2d53c01689eb6a9a0a593177abed63
[ "Apache-2.0" ]
43
2017-12-04T17:38:24.000Z
2021-12-29T09:17:17.000Z
Community/get_audit_info/__init__.py
spenney-bc/gateway-workflows
0311a9224b2d53c01689eb6a9a0a593177abed63
[ "Apache-2.0" ]
49
2017-12-07T21:02:29.000Z
2022-02-04T22:27:16.000Z
Community/get_audit_info/__init__.py
spenney-bc/gateway-workflows
0311a9224b2d53c01689eb6a9a0a593177abed63
[ "Apache-2.0" ]
82
2017-12-04T17:56:00.000Z
2021-12-29T09:17:21.000Z
# Copyright 2020 BlueCat Networks. All rights reserved. # -*- coding: utf-8 -*- type = 'ui' sub_pages = [ { 'name' : 'get_audit_info_page', 'title' : u'Get Audit Info', 'endpoint' : 'get_audit_info/get_audit_info_endpoint', 'description' : u'get_audit_info' }, ]
24.615385
65
0.56875
0
0
0
0
0
0
0
0
213
0.665625
79273775aa326888e7143a25472099fb24c7a2cc
548
py
Python
ALDS/ALDS1_10_A.py
yu8ikmnbgt6y/MyAOJ
474b21a2a0c25e1c1f3d6d66d2a2ea52aecaa39b
[ "Unlicense" ]
1
2020-01-08T16:33:46.000Z
2020-01-08T16:33:46.000Z
ALDS/ALDS1_10_A.py
yu8ikmnbgt6y/MyAOJ
474b21a2a0c25e1c1f3d6d66d2a2ea52aecaa39b
[ "Unlicense" ]
null
null
null
ALDS/ALDS1_10_A.py
yu8ikmnbgt6y/MyAOJ
474b21a2a0c25e1c1f3d6d66d2a2ea52aecaa39b
[ "Unlicense" ]
null
null
null
import sys import io input_txt = """ 44 """ sys.stdin = io.StringIO(input_txt) tmp = input() # copy the below part and paste to the submission form. # ---------function------------ def fibonacci(n): if n <= 1: return 1 fib_array = [1] * 45 for i in range(2, n+1): fib_array[i] = fib_array[i-1] + fib_array[i-2] return fib_array[n] def main(): n = int(input()) fib = fibonacci(n) print(fib) return main() # ----------------------------- sys.stdin = sys.__stdin__
17.125
56
0.509124
0
0
0
0
0
0
0
0
132
0.240876
7927bbe2f2d0526128722c38428b7bbf96221e46
2,389
py
Python
armada/tests/unit/utils/test_lint.py
One-Fine-Day/armada
9cd71c8b55173a9c9c45bfb939d19277fabd902d
[ "Apache-2.0" ]
null
null
null
armada/tests/unit/utils/test_lint.py
One-Fine-Day/armada
9cd71c8b55173a9c9c45bfb939d19277fabd902d
[ "Apache-2.0" ]
null
null
null
armada/tests/unit/utils/test_lint.py
One-Fine-Day/armada
9cd71c8b55173a9c9c45bfb939d19277fabd902d
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 The Armada Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import yaml from armada.utils import lint class LintTestCase(unittest.TestCase): def test_lint_armada_yaml_pass(self): config = yaml.load(""" armada: release_prefix: armada-test charts: - chart_group: - chart: name: chart release_name: chart namespace: chart """) resp = lint.valid_manifest(config) self.assertTrue(resp) def test_lint_armada_keyword_removed(self): config = yaml.load(""" armasda: release_prefix: armada-test charts: - chart_group: - chart: name: chart release_name: chart namespace: chart """) with self.assertRaises(Exception): lint.valid_manifest(config) def test_lint_prefix_keyword_removed(self): config = yaml.load(""" armada: release: armada-test charts: - chart_group: - chart: name: chart release_name: chart namespace: chart """) with self.assertRaises(Exception): lint.valid_manifest(config) def test_lint_armada_removed(self): config = yaml.load(""" sarmada: release_prefix: armada-test charts: - chart_group: - chart: name: chart release_name: chart namespace: chart """) with self.assertRaises(Exception): lint.valid_manifest(config)
29.8625
74
0.541231
1,744
0.730013
0
0
0
0
0
0
1,653
0.691921
7927d5d5ec363318061f6e9faac288240c333204
7,149
py
Python
mliv/dgps.py
microsoft/AdversarialGMM
7a5cd51353c8a81e16c01220b71f77e4e1102add
[ "MIT" ]
23
2020-12-01T22:55:40.000Z
2022-01-26T04:11:14.000Z
mliv/dgps.py
microsoft/AdversarialGMM
7a5cd51353c8a81e16c01220b71f77e4e1102add
[ "MIT" ]
null
null
null
mliv/dgps.py
microsoft/AdversarialGMM
7a5cd51353c8a81e16c01220b71f77e4e1102add
[ "MIT" ]
10
2020-12-05T17:12:49.000Z
2022-01-10T23:42:37.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import numpy as np # continuously differentiable fn_dict_cdiff = {'2dpoly': 1, 'sigmoid': 2, 'sin': 3, 'frequent_sin': 4, '3dpoly': 7, 'linear': 8} # continuous but not differentiable fn_dict_cont = {'abs': 0, 'abs_sqrt': 5, 'rand_pw': 9, 'abspos': 10, 'sqrpos': 11, 'pwlinear': 15} # discontinuous fn_dict_disc = {'step': 6, 'band': 12, 'invband': 13, 'steplinear': 14} # monotone fn_dict_monotone = {'sigmoid': 2, 'step': 6, 'linear': 8, 'abspos': 10, 'sqrpos': 11, 'pwlinear': 15} # convex fn_dict_convex = {'abs': 0, '2dpoly': 1, 'linear': 8, 'abspos': 10, 'sqrpos': 11} # all functions fn_dict = {'abs': 0, '2dpoly': 1, 'sigmoid': 2, 'sin': 3, 'frequent_sin': 4, 'abs_sqrt': 5, 'step': 6, '3dpoly': 7, 'linear': 8, 'rand_pw': 9, 'abspos': 10, 'sqrpos': 11, 'band': 12, 'invband': 13, 'steplinear': 14, 'pwlinear': 15} def generate_random_pw_linear(lb=-2, ub=2, n_pieces=5): splits = np.random.choice(np.arange(lb, ub, 0.1), n_pieces - 1, replace=False) splits.sort() slopes = np.random.uniform(-4, 4, size=n_pieces) start = [] start.append(np.random.uniform(-1, 1)) for t in range(n_pieces - 1): start.append(start[t] + slopes[t] * (splits[t] - (lb if t == 0 else splits[t - 1]))) return lambda x: [start[ind] + slopes[ind] * (x - (lb if ind == 0 else splits[ind - 1])) for ind in [np.searchsorted(splits, x)]][0] def get_tau_fn(func): def first(x): return x[:, [0]] if len(x.shape) == 2 else x # func describes the relation between response and treatment if func == fn_dict['abs']: def tau_fn(x): return np.abs(first(x)) elif func == fn_dict['2dpoly']: def tau_fn(x): return -1.5 * first(x) + .9 * (first(x)**2) elif func == fn_dict['sigmoid']: def tau_fn(x): return 2 / (1 + np.exp(-2 * first(x))) elif func == fn_dict['sin']: def tau_fn(x): return np.sin(first(x)) elif func == fn_dict['frequent_sin']: def tau_fn(x): return np.sin(3 * first(x)) elif func == fn_dict['abs_sqrt']: def tau_fn(x): return np.sqrt(np.abs(first(x))) elif func == fn_dict['step']: def tau_fn(x): return 1. * (first(x) < 0) + 2.5 * (first(x) >= 0) elif func == fn_dict['3dpoly']: def tau_fn(x): return -1.5 * first(x) + .9 * \ (first(x)**2) + first(x)**3 elif func == fn_dict['linear']: def tau_fn(x): return first(x) elif func == fn_dict['rand_pw']: pw_linear = generate_random_pw_linear() def tau_fn(x): return np.array([pw_linear(x_i) for x_i in first(x).flatten()]).reshape(-1, 1) elif func == fn_dict['abspos']: def tau_fn(x): return np.abs(first(x)) * (first(x) >= 0) elif func == fn_dict['sqrpos']: def tau_fn(x): return (first(x)**2) * (first(x) >= 0) elif func == fn_dict['band']: def tau_fn(x): return 1.0 * (first(x) >= -.75) * (first(x) <= .75) elif func == fn_dict['invband']: def tau_fn(x): return 1. - 1. * (first(x) >= -.75) * (first(x) <= .75) elif func == fn_dict['steplinear']: def tau_fn(x): return 2. * (first(x) >= 0) - first(x) elif func == fn_dict['pwlinear']: def tau_fn(x): q = first(x) return (q + 1) * (q <= -1) + (q - 1) * (q >= 1) else: raise NotImplementedError() return tau_fn def standardize(z, p, y, fn): ym = y.mean() ystd = y.std() y = (y - ym) / ystd def newfn(x): return (fn(x) - ym) / ystd return z, p, y, newfn def get_data(n_samples, n_instruments, iv_strength, tau_fn, dgp_num): # Construct dataset # z:- instruments (features included here, can be high-dimensional) # p :- treatments (features included here as well, can be high-dimensional) # y :- response (is a scalar always) confounder = np.random.normal(0, 1, size=(n_samples, 1)) z = np.random.normal(0, 1, size=(n_samples, n_instruments)) fn = tau_fn if dgp_num == 1: # DGP 1 in the paper p = 2 * z[:, [0]] * (z[:, [0]] > 0) * iv_strength \ + 2 * z[:, [1]] * (z[:, [1]] < 0) * iv_strength \ + 2 * confounder * (1 - iv_strength) + \ np.random.normal(0, .1, size=(n_samples, 1)) y = fn(p) + 2 * confounder + \ np.random.normal(0, .1, size=(n_samples, 1)) elif dgp_num == 2: # DGP 2 in the paper p = 2 * z[:, [0]] * iv_strength \ + 2 * confounder * (1 - iv_strength) + \ np.random.normal(0, .1, size=(n_samples, 1)) y = fn(p) + 2 * confounder + \ np.random.normal(0, .1, size=(n_samples, 1)) elif dgp_num == 3: # DeepIV's DGP - has feature variables as well # z is 3-dimensional: composed of (1) 1D z, (2) t - time unif~(0,10), and (3) s - customer type {1,...,7} # y is related to p and z in a complex non-linear, non separable manner # p is related to z again in a non-separable manner, rho is endogeneity parameter rho = 0.8 psd = 3.7 pmu = 17.779 ysd = 158. ymu = -292.1 z_1 = np.random.normal(0, 1, size=(n_samples, 1)) v = np.random.normal(0, 1, size=(n_samples, 1)) t = np.random.uniform(0, 10, size=(n_samples, 1)) s = np.random.randint(1, 8, size=(n_samples, 1)) e = rho * v + \ np.random.normal(0, np.sqrt(1 - rho**2), size=(n_samples, 1)) def psi(t): return 2 * (np.power(t - 5, 4) / 600 + np.exp(-4 * np.power(t - 5, 2)) + t / 10 - 2) p = 25 + (z_1 + 3) * psi(t) + v p = (p - pmu) / psd g = (10 + p) * s * psi(t) - 2 * p + e y = (g - ymu) / ysd z = np.hstack((z_1, s, t)) p = np.hstack((p, s, t)) def fn(p): return ((10 + p[:, 0]) * p[:, 1] * psi(p[:, 2]) - 2 * p[:, 0] - ymu) / ysd elif dgp_num == 4: # Many weak Instruments DGP - n_instruments can be very large z = np.random.normal(0.5, 1, size=(n_samples, n_instruments)) p = np.amin(z, axis=1).reshape(-1, 1) * iv_strength + confounder * \ (1 - iv_strength) + np.random.normal(0, 0.1, size=(n_samples, 1)) y = fn(p) + 2 * confounder + \ np.random.normal(0, 0.1, size=(n_samples, 1)) else: # Here we have equal number of treatments and instruments and each # instrument affects a separate treatment. Only the first treatment # matters for the outcome. z = np.random.normal(0, 2, size=(n_samples, n_instruments)) U = np.random.normal(0, 2, size=(n_samples, 1)) delta = np.random.normal(0, .1, size=(n_samples, 1)) zeta = np.random.normal(0, .1, size=(n_samples, 1)) p = iv_strength * z + (1 - iv_strength) * U + delta y = fn(p) + U + zeta return standardize(z, p, y, fn)
40.619318
136
0.527207
0
0
0
0
0
0
0
0
1,494
0.20898
7928e18542e9bd6bf82dff12dad8c28ca120e4fe
16,097
py
Python
tests/test_definitions/test_expectations_cfe.py
OmriBromberg/great_expectations
60eb81ebfb08fef5d37d55c316dc962928beb165
[ "Apache-2.0" ]
1
2021-11-09T05:07:43.000Z
2021-11-09T05:07:43.000Z
tests/test_definitions/test_expectations_cfe.py
OmriBromberg/great_expectations
60eb81ebfb08fef5d37d55c316dc962928beb165
[ "Apache-2.0" ]
1
2021-12-07T13:06:29.000Z
2021-12-07T13:06:29.000Z
tests/test_definitions/test_expectations_cfe.py
OmriBromberg/great_expectations
60eb81ebfb08fef5d37d55c316dc962928beb165
[ "Apache-2.0" ]
null
null
null
import glob import json import os import random import string import pandas as pd import pytest from great_expectations.execution_engine.pandas_batch_data import PandasBatchData from great_expectations.execution_engine.sparkdf_batch_data import SparkDFBatchData from great_expectations.execution_engine.sqlalchemy_batch_data import ( SqlAlchemyBatchData, ) from great_expectations.self_check.util import ( BigQueryDialect, candidate_test_is_on_temporary_notimplemented_list_cfe, evaluate_json_test_cfe, get_test_validator_with_data, mssqlDialect, mysqlDialect, postgresqlDialect, sqliteDialect, ) from tests.conftest import build_test_backends_list_cfe from tests.test_definitions.test_expectations import tmp_dir def pytest_generate_tests(metafunc): # Load all the JSON files in the directory dir_path = os.path.dirname(os.path.realpath(__file__)) expectation_dirs = [ dir_ for dir_ in os.listdir(dir_path) if os.path.isdir(os.path.join(dir_path, dir_)) ] parametrized_tests = [] ids = [] backends = build_test_backends_list_cfe(metafunc) for expectation_category in expectation_dirs: test_configuration_files = glob.glob( dir_path + "/" + expectation_category + "/*.json" ) for c in backends: for filename in test_configuration_files: file = open(filename) test_configuration = json.load(file) for d in test_configuration["datasets"]: datasets = [] if candidate_test_is_on_temporary_notimplemented_list_cfe( c, test_configuration["expectation_type"] ): skip_expectation = True schemas = validator_with_data = None else: skip_expectation = False if isinstance(d["data"], list): sqlite_db_path = os.path.abspath( os.path.join( tmp_dir, "sqlite_db" + "".join( [ random.choice( string.ascii_letters + string.digits ) for _ in range(8) ] ) + ".db", ) ) for dataset in d["data"]: datasets.append( get_test_validator_with_data( c, dataset["data"], dataset.get("schemas"), table_name=dataset.get("dataset_name"), sqlite_db_path=sqlite_db_path, ) ) validator_with_data = datasets[0] else: schemas = d["schemas"] if "schemas" in d else None validator_with_data = get_test_validator_with_data( c, d["data"], schemas=schemas ) for test in d["tests"]: generate_test = True skip_test = False if "only_for" in test: # if we're not on the "only_for" list, then never even generate the test generate_test = False if not isinstance(test["only_for"], list): raise ValueError("Invalid test specification.") if validator_with_data and isinstance( validator_with_data.execution_engine.active_batch_data, SqlAlchemyBatchData, ): # Call out supported dialects if "sqlalchemy" in test["only_for"]: generate_test = True elif ( "sqlite" in test["only_for"] and sqliteDialect is not None and isinstance( validator_with_data.execution_engine.active_batch_data.sql_engine_dialect, sqliteDialect, ) ): generate_test = True elif ( "postgresql" in test["only_for"] and postgresqlDialect is not None and isinstance( validator_with_data.execution_engine.active_batch_data.sql_engine_dialect, postgresqlDialect, ) ): generate_test = True elif ( "mysql" in test["only_for"] and mysqlDialect is not None and isinstance( validator_with_data.execution_engine.active_batch_data.sql_engine_dialect, mysqlDialect, ) ): generate_test = True elif ( "mssql" in test["only_for"] and mssqlDialect is not None and isinstance( validator_with_data.execution_engine.active_batch_data.sql_engine_dialect, mssqlDialect, ) ): generate_test = True elif ( "bigquery" in test["only_for"] and BigQueryDialect is not None and hasattr( validator_with_data.execution_engine.active_batch_data.sql_engine_dialect, "name", ) and validator_with_data.execution_engine.active_batch_data.sql_engine_dialect.name == "bigquery" ): generate_test = True elif validator_with_data and isinstance( validator_with_data.execution_engine.active_batch_data, PandasBatchData, ): if "pandas" in test["only_for"]: generate_test = True if ( "pandas_022" in test["only_for"] or "pandas_023" in test["only_for"] ) and int(pd.__version__.split(".")[1]) in [22, 23]: generate_test = True if ("pandas>=24" in test["only_for"]) and int( pd.__version__.split(".")[1] ) > 24: generate_test = True elif validator_with_data and isinstance( validator_with_data.execution_engine.active_batch_data, SparkDFBatchData, ): if "spark" in test["only_for"]: generate_test = True if not generate_test: continue if "suppress_test_for" in test and ( ( "sqlalchemy" in test["suppress_test_for"] and validator_with_data and isinstance( validator_with_data.execution_engine.active_batch_data, SqlAlchemyBatchData, ) ) or ( "sqlite" in test["suppress_test_for"] and sqliteDialect is not None and validator_with_data and isinstance( validator_with_data.execution_engine.active_batch_data, SqlAlchemyBatchData, ) and isinstance( validator_with_data.execution_engine.active_batch_data.sql_engine_dialect, sqliteDialect, ) ) or ( "postgresql" in test["suppress_test_for"] and postgresqlDialect is not None and validator_with_data and isinstance( validator_with_data.execution_engine.active_batch_data, SqlAlchemyBatchData, ) and isinstance( validator_with_data.execution_engine.active_batch_data.sql_engine_dialect, postgresqlDialect, ) ) or ( "mysql" in test["suppress_test_for"] and mysqlDialect is not None and validator_with_data and isinstance( validator_with_data.execution_engine.active_batch_data, SqlAlchemyBatchData, ) and isinstance( validator_with_data.execution_engine.active_batch_data.sql_engine_dialect, mysqlDialect, ) ) or ( "mssql" in test["suppress_test_for"] and mssqlDialect is not None and validator_with_data and isinstance( validator_with_data.execution_engine.active_batch_data, SqlAlchemyBatchData, ) and isinstance( validator_with_data.execution_engine.active_batch_data.sql_engine_dialect, mssqlDialect, ) ) or ( "bigquery" in test["suppress_test_for"] and BigQueryDialect is not None and validator_with_data and isinstance( validator_with_data.execution_engine.active_batch_data, SqlAlchemyBatchData, ) and hasattr( validator_with_data.execution_engine.active_batch_data.sql_engine_dialect, "name", ) and validator_with_data.execution_engine.active_batch_data.sql_engine_dialect.name == "bigquery" ) or ( "pandas" in test["suppress_test_for"] and validator_with_data and isinstance( validator_with_data.execution_engine.active_batch_data, PandasBatchData, ) ) or ( "spark" in test["suppress_test_for"] and validator_with_data and isinstance( validator_with_data.execution_engine.active_batch_data, SparkDFBatchData, ) ) ): skip_test = True # Known condition: SqlAlchemy does not support allow_cross_type_comparisons if ( "allow_cross_type_comparisons" in test["in"] and validator_with_data and isinstance( validator_with_data.execution_engine.active_batch_data, SqlAlchemyBatchData, ) ): skip_test = True parametrized_tests.append( { "expectation_type": test_configuration[ "expectation_type" ], "validator_with_data": validator_with_data, "test": test, "skip": skip_expectation or skip_test, } ) ids.append( c + "/" + expectation_category + "/" + test_configuration["expectation_type"] + ":" + test["title"] ) metafunc.parametrize("test_case", parametrized_tests, ids=ids) @pytest.mark.order(index=0) def test_case_runner_cfe(test_case): if test_case["skip"]: pytest.skip() # Note: this should never be done in practice, but we are wiping expectations to reuse batches during testing. # test_case["batch"]._initialize_expectations() if "parse_strings_as_datetimes" in test_case["test"]["in"]: with pytest.deprecated_call(): evaluate_json_test_cfe( validator=test_case["validator_with_data"], expectation_type=test_case["expectation_type"], test=test_case["test"], ) else: evaluate_json_test_cfe( validator=test_case["validator_with_data"], expectation_type=test_case["expectation_type"], test=test_case["test"], )
48.927052
118
0.391067
0
0
0
0
801
0.049761
0
0
1,333
0.08281
792b96690a5711f347a2fe1364e3eef792d1ebea
1,393
py
Python
corehq/apps/commtrack/resources/v0_1.py
johan--/commcare-hq
86ee99c54f55ee94e4c8f2f6f30fc44e10e69ebd
[ "BSD-3-Clause" ]
null
null
null
corehq/apps/commtrack/resources/v0_1.py
johan--/commcare-hq
86ee99c54f55ee94e4c8f2f6f30fc44e10e69ebd
[ "BSD-3-Clause" ]
1
2022-03-12T01:03:25.000Z
2022-03-12T01:03:25.000Z
corehq/apps/commtrack/resources/v0_1.py
johan--/commcare-hq
86ee99c54f55ee94e4c8f2f6f30fc44e10e69ebd
[ "BSD-3-Clause" ]
null
null
null
from tastypie import fields from corehq.apps.api.resources.v0_1 import CustomResourceMeta, DomainAdminAuthentication from corehq.apps.products.models import Product from corehq.apps.api.util import get_object_or_not_exist from corehq.apps.api.resources import HqBaseResource """ Implementation of the CommCare Supply APIs. For more information see: https://confluence.dimagi.com/display/lmis/API """ class ProductResource(HqBaseResource): type = "product" id = fields.CharField(attribute='_id', readonly=True, unique=True) code = fields.CharField(attribute='code', readonly=True, unique=True) name = fields.CharField(attribute='name', readonly=True) unit = fields.CharField(attribute='unit', readonly=True, null=True) description = fields.CharField(attribute='description', readonly=True, null=True) category = fields.CharField(attribute='category', readonly=True, null=True) last_modified = fields.DateTimeField(attribute='last_modified', readonly=True, null=True) # TODO: # price? def obj_get(self, request, **kwargs): return get_object_or_not_exist(Product, kwargs['pk'], kwargs['domain']) def obj_get_list(self, request, **kwargs): return Product.by_domain(kwargs['domain']) class Meta(CustomResourceMeta): authentication = DomainAdminAuthentication() resource_name = 'product' limit = 0
36.657895
93
0.740847
987
0.708543
0
0
0
0
0
0
239
0.171572
792bbfea31e2c47d9dc8a86be0bf40d5cfa67a78
7,381
py
Python
spectrl/util/io.py
luigiberducci/dirl
5f7997aea20dfb7347ebdee66de9bea4e6cd3c62
[ "MIT" ]
null
null
null
spectrl/util/io.py
luigiberducci/dirl
5f7997aea20dfb7347ebdee66de9bea4e6cd3c62
[ "MIT" ]
null
null
null
spectrl/util/io.py
luigiberducci/dirl
5f7997aea20dfb7347ebdee66de9bea4e6cd3c62
[ "MIT" ]
null
null
null
import argparse import os import pathlib import cv2 import pickle import numpy as np from matplotlib import pyplot as plt from PIL import Image from numpy import genfromtxt def parse_command_line_options(print_options=False): parser = argparse.ArgumentParser() parser.add_argument("-n", type=int, default=-1) parser.add_argument("-d", type=pathlib.Path) parser.add_argument("-s", type=int, choices=[0], default=0) parser.add_argument("-e", type=int, default=0) parser.add_argument("-a", type=str, default="ars") parser.add_argument("-i", type=int, default=100) parser.add_argument("-g", action="store_true") parser.add_argument("-r", action="store_true") args = parser.parse_args() flags = { "itno": args.n, "folder": str(args.d), "spec_num": args.s, "env_num": args.e, "alg": args.a, "num_iter": args.i, "gpu_flag": args.g, "render": args.r } if print_options: print('**** Command Line Options ****') for key in flags: print('{}: {}'.format(key, flags[key])) return flags def open_log_file(itno, folder): ''' Open a log file to periodically flush data. Parameters: itno: int folder: str ''' fname = _get_prefix(folder) + 'log' + _get_suffix(itno) + '.txt' open(fname, 'w').close() file = open(fname, 'a') return file def save_object(name, object, itno, folder): ''' Save any pickle-able object. Parameters: name: str object: Object itno: int folder: str ''' file = open(_get_prefix(folder) + name + _get_suffix(itno) + '.pkl', 'wb') pickle.dump(object, file) file.close() def load_object(name, itno, folder): ''' Load pickled object. Parameters: name: str itno: int folder: str ''' file = open(_get_prefix(folder) + name + _get_suffix(itno) + '.pkl', 'rb') object = pickle.load(file) file.close() return object def save_log_info(log_info, itno, folder): np.save(_get_prefix(folder) + 'log' + _get_suffix(itno) + '.npy', log_info) def load_log_info(itno, folder, csv=False): if csv: return genfromtxt(_get_prefix(folder) + 'log' + _get_suffix(itno) + '.csv', delimiter=',') else: return np.load(_get_prefix(folder) + 'log' + _get_suffix(itno) + '.npy') def log_to_file(file, iter, num_transitions, reward, prob, additional_data={}): ''' Log data to file. Parameters: file: file_handle iter: int num_transitions: int (number of simulation steps in each iter) reward: float prob: float (satisfaction probability) additional_data: dict ''' file.write('**** Iteration Number {} ****\n'.format(iter)) file.write('Environment Steps Taken: {}\n'.format(num_transitions)) file.write('Reward: {}\n'.format(reward)) file.write('Satisfaction Probability: {}\n'.format(prob)) for key in additional_data: file.write('{}: {}\n'.format(key, additional_data[key])) file.write('\n') file.flush() def get_image_dir(itno, folder): image_dir = '{}img{}'.format(_get_prefix(folder), _get_suffix(itno)) if os.path.exists(image_dir) is False: os.mkdir(image_dir) return image_dir def generate_video(env, policy, itno, folder, max_step=10000): image_dir = get_image_dir(itno, folder) done = False state = env.reset() step = 0 while not done: img_arr = env.render(mode='rgb_array') img = Image.fromarray(img_arr) img.save(image_dir + '/' + str(step) + '.png') action = policy.get_action(state) state, _, done, _ = env.step(action) step += 1 if step > max_step: done = True video_name = image_dir + '/' + 'video.avi' images_temp = [img for img in os.listdir(image_dir)] images = [] for i in range(len(images_temp)): for j in images_temp: directory = str(i) + '.png' if directory == j: images.append(j) frame = cv2.imread(os.path.join(image_dir, images_temp[0])) height, width, _ = frame.shape video = cv2.VideoWriter( video_name, cv2.VideoWriter_fourcc(*'XVID'), 20, (width, height)) for image in images: video.write(cv2.imread(os.path.join(image_dir, image))) cv2.destroyAllWindows() video.release() def plot_for_threshold(itno, folders, xs, threshold, color): ys = [] for folder in folders: val = 0 count = 0 for j in range(itno): data = load_log_info(j, folder) for pos in range(len(data)): if data[pos][-1] >= threshold: val += data[pos][0] count += 1 break ys.append(val / count) plt.subplots_adjust(bottom=0.145, left=0.13) plt.rcParams.update({'font.size': 18}) plt.plot(xs, ys, '-ok', label='z = {}'.format(threshold), color=color) def plot_error_bar(x, data, color, label, points=False): ''' Plot the error bar from the data. Parameters: samples_per_iter: int (number of sample rollouts per iteration of the algorithm) data: (3+)-tuple of np.array (curve, lower error bar, upper error bar, ...) color: color of the plot label: string ''' plt.subplots_adjust(bottom=0.126) plt.rcParams.update({'font.size': 18}) if points: plt.errorbar(x, data[0], data[0] - data[1], fmt='--o', color=color, label=label) else: plt.plot(x, data[0], color=color, label=label) plt.fill_between(x, data[1], data[2], color=color, alpha=0.15) def extract_plot_data(folder, column_num, low, up, csv=False): ''' Load and parse log_info to generate error bars Parameters: folder: string (name of folder) column_num: int (column number in log.npy to use) l: int (lower limit on run number) u: int (upper limit on run number) Returns: 4-tuple of numpy arrays (curve, lower error bar, upper error bar, max_over_runs) ''' log_infos = [] min_length = 1000000 for itno in range(low, up): log_info = np.transpose(load_log_info( itno, folder, csv=csv))[column_num] log_info = np.append([0], log_info) min_length = min(min_length, len(log_info)) log_infos.append(log_info) log_infos = [log_info[:min_length] for log_info in log_infos] data = np.array(log_infos) curve = np.mean(data, axis=0) std = np.std(data, axis=0) max_curve = np.amax(data, axis=0) return curve, (curve - std), (curve + std), max_curve # save and render current plot def save_plot(folder, name, show=True, scientific=True): plt.rcParams.update({'font.size': 14}) plt.legend() ax = plt.gca() ax.xaxis.major.formatter._useMathText = True if scientific: plt.ticklabel_format(style='sci', axis='x', scilimits=(0, 0)) plt.savefig(_get_prefix(folder) + name + '.pdf', format='pdf') if show: plt.show() # get prefix for file name def _get_prefix(folder): if folder == '': return '' else: return folder + '/' # get suffix from itno def _get_suffix(itno): if itno < 0: return '' else: return str(itno)
28.608527
98
0.605067
0
0
0
0
0
0
0
0
1,863
0.252405
792c98d61321846aacf5f5f89a160ce13339bfd4
940
py
Python
pyqt_sql_demo/syntax_highlighter/sql.py
nshiell/pyqt-sql-demo
9e64ba069de744f69c2ecc2eeddac5b0b9f0968a
[ "Unlicense" ]
18
2018-05-14T16:27:24.000Z
2022-02-24T06:47:45.000Z
pyqt_sql_demo/syntax_highlighter/sql.py
nshiell/pyqt-sql-demo
9e64ba069de744f69c2ecc2eeddac5b0b9f0968a
[ "Unlicense" ]
2
2020-09-11T07:56:05.000Z
2021-03-05T14:50:36.000Z
pyqt_sql_demo/syntax_highlighter/sql.py
nshiell/pyqt-sql-demo
9e64ba069de744f69c2ecc2eeddac5b0b9f0968a
[ "Unlicense" ]
9
2019-01-16T16:03:51.000Z
2021-03-14T01:01:55.000Z
from pygments import highlight as _highlight from pygments.lexers import SqlLexer from pygments.formatters import HtmlFormatter def style(): style = HtmlFormatter().get_style_defs() return style def highlight(text): # Generated HTML contains unnecessary newline at the end # before </pre> closing tag. # We need to remove that newline because it's screwing up # QTextEdit formatting and is being displayed # as a non-editable whitespace. highlighted_text = _highlight(text, SqlLexer(), HtmlFormatter()).strip() # Split generated HTML by last newline in it # argument 1 indicates that we only want to split the string # by one specified delimiter from the right. parts = highlighted_text.rsplit("\n", 1) # Glue back 2 split parts to get the HTML without last # unnecessary newline highlighted_text_no_last_newline = "".join(parts) return highlighted_text_no_last_newline
33.571429
76
0.738298
0
0
0
0
0
0
0
0
446
0.474468
792d78778cc9f57f44aeb718a24a94af2accc6bf
4,337
py
Python
raytracing.py
avigael/raytracing-example
e1e9448fdf371c401e9ada642fd0ca8ed2702609
[ "MIT" ]
null
null
null
raytracing.py
avigael/raytracing-example
e1e9448fdf371c401e9ada642fd0ca8ed2702609
[ "MIT" ]
null
null
null
raytracing.py
avigael/raytracing-example
e1e9448fdf371c401e9ada642fd0ca8ed2702609
[ "MIT" ]
null
null
null
'''2D Raytracing Example using Pygame''' import sys from math import pi, cos, sin import pygame # Constants SIZE = (600, 600) BORDERS = [[0, 0, SIZE[0], 0], [0, 0, 0, SIZE[1]], [0, SIZE[1], SIZE[0], SIZE[1]], [SIZE[0], 0, SIZE[0], SIZE[1]]] WHITE = (255, 255, 255) BLACK = (0, 0, 0) GREEN = (0, 255, 0) class Ray: '''create rays and see their intersections''' def __init__(self, x_1, y_1, x_2, y_2): self.x_1 = x_1 self.y_1 = y_1 self.x_2 = x_2 self.y_2 = y_2 def cast(self): '''see https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection''' # Checks Window Borders for border in BORDERS: x_3 = border[0] y_3 = border[1] x_4 = border[2] y_4 = border[3] P = (self.x_1 - self.x_2) * (y_3 - y_4) - \ (self.y_1 - self.y_2) * (x_3 - x_4) if P != 0: t = ((self.x_1 - x_3) * (y_3 - y_4) - (self.y_1 - y_3) * (x_3 - x_4))/P u = -((self.x_1 - self.x_2) * (self.y_1 - y_3) - (self.y_1 - self.y_2) * (self.x_1 - x_3))/P if 0 <= t and u >= 0 and u <= 1: point = ((self.x_2 - self.x_1) * t + self.x_1, (y_4 - y_3) * u + y_3) break # Checks Barriers for barrier in Barrier.collection: x_3 = barrier[0] y_3 = barrier[1] x_4 = barrier[2] y_4 = barrier[3] P = (self.x_1 - self.x_2) * (y_3 - y_4) - \ (self.y_1 - self.y_2) * (x_3 - x_4) if P != 0: t = ((self.x_1 - x_3) * (y_3 - y_4) - (self.y_1 - y_3) * (x_3 - x_4))/P u = -((self.x_1 - self.x_2) * (self.y_1 - y_3) - (self.y_1 - self.y_2) * (self.x_1 - x_3))/P if 0 <= t and u >= 0 and u <= 1: npoint = ((self.x_2 - self.x_1) * t + self.x_1, (y_4 - y_3) * u + y_3) if abs(npoint[0] - self.x_1) < abs(point[0] - self.x_1): point = npoint # Draws Ray pygame.draw.aaline(screen, GREEN, (self.x_1, self.y_1), point) class Radar: '''creates rays around a point''' def __init__(self, x, y, N): self.rays = [] # N represents number of Rays for i in range(0, N): # Formula to create rays around a point ray = Ray(x, y, x + cos(i/N * 2 * pi), y + sin(i/N * 2 * pi)) self.rays.append(ray) def radiate(self): '''emits rays''' for ray in self.rays: ray.cast() class Barrier: '''create barriers for rays to intersect with''' collection = [] def __init__(self, x_1, y_1, x_2, y_2): Barrier.collection.append([x_1, y_1, x_2, y_2]) def draw_barrier(): '''draws Barriers''' for barrier in Barrier.collection: p_1 = (barrier[0], barrier[1]) p_2 = (barrier[2], barrier[3]) pygame.draw.aaline(screen, BLACK, p_1, p_2) def create_map(): '''initializes custom map''' width = SIZE[0] height = SIZE[1] Barrier(width/6, height, width/6, height/2) Barrier(width/3, height, width/3, height/1.5) Barrier(width/2, height/2, width/6, height/2) Barrier(width/2, height/1.5, width/3, height/1.5) Barrier(width/1.5, height/1.5, width/1.5, height/2) Barrier(width/1.2, height/2, width/1.5, height/2) Barrier(width/1.2, height/2, width/1.2, height/1.5) Barrier(width/1.5, height/1.5, width/1.2, height/1.5) Barrier(width/3, height/6, width/3, height/3) Barrier(width/3, height/6, width/2, height/3) Barrier(width/2, height/6, width/2, height/3) Barrier(width/2, height/6, width/1.5, height/3) Barrier(width/1.5, height/6, width/1.5, height/3) # Initialize Screen pygame.init() pygame.display.set_caption("Raytracing Example") screen = pygame.display.set_mode(SIZE) create_map() # Game Loop while True: for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() pygame.display.flip() mouse = pygame.mouse.get_pos() radar = Radar(mouse[0], mouse[1], 25) screen.fill(WHITE) draw_barrier() radar.radiate()
32.125926
78
0.512797
2,596
0.59857
0
0
0
0
0
0
480
0.110676
792f039bf3dcdae9faa7ebde493ddb3c49ba4954
3,041
py
Python
preprocessed_data/UCM/Code/global_histogram_stretching.py
SaiKrishna1207/Underwater-Image-Segmentation
78def27e577b10e6722c02807bdcfeb7ba53d760
[ "MIT" ]
null
null
null
preprocessed_data/UCM/Code/global_histogram_stretching.py
SaiKrishna1207/Underwater-Image-Segmentation
78def27e577b10e6722c02807bdcfeb7ba53d760
[ "MIT" ]
null
null
null
preprocessed_data/UCM/Code/global_histogram_stretching.py
SaiKrishna1207/Underwater-Image-Segmentation
78def27e577b10e6722c02807bdcfeb7ba53d760
[ "MIT" ]
null
null
null
import numpy as np def histogram_r(r_array,height, width): length = height * width R_rray = [] for i in range(height): for j in range(width): R_rray.append(r_array[i][j]) R_rray.sort() I_min = int(R_rray[int(length / 500)]) I_max = int(R_rray[-int(length / 500)]) array_Global_histogram_stretching = np.zeros((height, width)) for i in range(0, height): for j in range(0, width): if r_array[i][j] < I_min: # p_out = r_array[i][j] array_Global_histogram_stretching[i][j] = I_min elif (r_array[i][j] > I_max): p_out = r_array[i][j] array_Global_histogram_stretching[i][j] = 255 else: p_out = int((r_array[i][j] - I_min) * ((255 - I_min) / (I_max - I_min)))+ I_min array_Global_histogram_stretching[i][j] = p_out return (array_Global_histogram_stretching) def histogram_g(r_array,height, width): length = height * width R_rray = [] for i in range(height): for j in range(width): R_rray.append(r_array[i][j]) R_rray.sort() I_min = int(R_rray[int(length / 500)]) I_max = int(R_rray[-int(length / 500)]) array_Global_histogram_stretching = np.zeros((height, width)) for i in range(0, height): for j in range(0, width): if r_array[i][j] < I_min: p_out = r_array[i][j] array_Global_histogram_stretching[i][j] = 0 elif (r_array[i][j] > I_max): p_out = r_array[i][j] array_Global_histogram_stretching[i][j] = 255 else: p_out = int((r_array[i][j] - I_min) * ((255) / (I_max - I_min)) ) array_Global_histogram_stretching[i][j] = p_out return (array_Global_histogram_stretching) def histogram_b(r_array,height, width): length = height * width R_rray = [] for i in range(height): for j in range(width): R_rray.append(r_array[i][j]) R_rray.sort() I_min = int(R_rray[int(length / 500)]) I_max = int(R_rray[-int(length / 500)]) array_Global_histogram_stretching = np.zeros((height, width)) for i in range(0, height): for j in range(0, width): if r_array[i][j] < I_min: # p_out = r_array[i][j] array_Global_histogram_stretching[i][j] = 0 elif (r_array[i][j] > I_max): # p_out = r_array[i][j] array_Global_histogram_stretching[i][j] = I_max else: p_out = int((r_array[i][j] - I_min) * ((I_max) / (I_max - I_min))) array_Global_histogram_stretching[i][j] = p_out return (array_Global_histogram_stretching) def stretching(img): height = len(img) width = len(img[0]) img[:, :, 2] = histogram_r(img[:, :, 2], height, width) img[:, :, 1] = histogram_g(img[:, :, 1], height, width) img[:, :, 0] = histogram_b(img[:, :, 0], height, width) return img
37.54321
95
0.560671
0
0
0
0
0
0
0
0
69
0.02269
792f0b4ef299a46239013a5b5a1e30079b053c00
1,854
py
Python
python/test/experimental/test_tb_graph_writer.py
daniel-falk/nnabla
3fe132ea52dc10521cc029a5d6ba8f565cf65ccf
[ "Apache-2.0" ]
2,792
2017-06-26T13:05:44.000Z
2022-03-28T07:55:26.000Z
python/test/experimental/test_tb_graph_writer.py
daniel-falk/nnabla
3fe132ea52dc10521cc029a5d6ba8f565cf65ccf
[ "Apache-2.0" ]
138
2017-06-27T07:04:44.000Z
2022-02-28T01:37:15.000Z
python/test/experimental/test_tb_graph_writer.py
daniel-falk/nnabla
3fe132ea52dc10521cc029a5d6ba8f565cf65ccf
[ "Apache-2.0" ]
380
2017-06-26T13:23:52.000Z
2022-03-25T16:51:30.000Z
# Copyright 2021 Sony Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import numpy as np import nnabla as nn import nnabla.functions as F import nnabla.parametric_functions as PF def test_show_graph(): try: from nnabla.experimental.tb_graph_writer import TBGraphWriter except: pytest.skip( 'Skip because tensorboardX and tensorflow is not installed.') nn.clear_parameters() x = nn.Variable((2, 3, 4, 4)) with nn.parameter_scope('c1'): h = PF.convolution(x, 8, (3, 3), pad=(1, 1)) h = F.relu(PF.batch_normalization(h)) with nn.parameter_scope('f1'): y = PF.affine(h, 10) with TBGraphWriter(log_dir='log_out') as tb: tb.from_variable(y, output_name="y") def test_show_curve(): try: from nnabla.experimental.tb_graph_writer import TBGraphWriter except: pytest.skip( 'Skip because tensorboardX and tensorflow is not installed.') with TBGraphWriter(log_dir='log_out') as tb: values = [] for i in range(360): s = np.sin(i / 180.0 * np.pi) tb.add_scalar("show_curve/sin", s, i) values.append(s) nd_values = np.array(values) for i in range(10): tb.add_histogram("histogram", nd_values, i) nd_values += 0.05
30.9
74
0.662891
0
0
0
0
0
0
0
0
744
0.401294
792f6c2ed852cae02d142182deaf73d1e0349382
1,328
py
Python
pokeman/coatings/resolver_attribute_methods/selective_consumer.py
wmarcuse/pokeman
5d654c227c456a065b2fea6a0d5827bff424c703
[ "BSD-3-Clause" ]
null
null
null
pokeman/coatings/resolver_attribute_methods/selective_consumer.py
wmarcuse/pokeman
5d654c227c456a065b2fea6a0d5827bff424c703
[ "BSD-3-Clause" ]
null
null
null
pokeman/coatings/resolver_attribute_methods/selective_consumer.py
wmarcuse/pokeman
5d654c227c456a065b2fea6a0d5827bff424c703
[ "BSD-3-Clause" ]
null
null
null
import json import logging LOGGER = logging.getLogger(__name__) def start(self): self.start_consuming() def on_message(self, channel, method, properties, body): """ Invoked by pika when a message is delivered from the AMQP broker. The channel is passed for convenience. The basic_deliver object that is passed in carries the exchange, routing key, delivery tag and a redelivered flag for the message. The properties passed in is an instance of BasicProperties with the message properties and the body is the message that was sent. :param channel: The channel object. :type channel: pika.channel.Channel :param method: basic_deliver method. :type method: pika.Spec.Basic.Deliver :param properties: The properties. :type properties: pika.Spec.BasicProperties :param body: The message body. :type body: bytes """ try: print('message received') print(properties.correlation_id) if properties.correlation_id == self.correlation_id_reference: print("SUCCEEDEEDRT") self.callback_method(json.loads(body), properties) self.acknowledge_message(method.delivery_tag) self.channel.stop_consuming() except Exception: LOGGER.exception("Synchronous callback method exception:")
31.619048
73
0.707831
0
0
0
0
0
0
0
0
784
0.590361
79346eb30e63c170afbf3ea69f6c87de3e761345
4,100
py
Python
mc-core/mc/data_gen/gnb_status_indication_pb2.py
copslock/o-ran_ric-app_mc
243f8671c28596b1dc70dd295029d6151c9dd778
[ "Apache-2.0", "CC-BY-4.0" ]
null
null
null
mc-core/mc/data_gen/gnb_status_indication_pb2.py
copslock/o-ran_ric-app_mc
243f8671c28596b1dc70dd295029d6151c9dd778
[ "Apache-2.0", "CC-BY-4.0" ]
null
null
null
mc-core/mc/data_gen/gnb_status_indication_pb2.py
copslock/o-ran_ric-app_mc
243f8671c28596b1dc70dd295029d6151c9dd778
[ "Apache-2.0", "CC-BY-4.0" ]
1
2021-07-07T06:43:16.000Z
2021-07-07T06:43:16.000Z
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: gnb_status_indication.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() import x2ap_common_types_pb2 as x2ap__common__types__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='gnb_status_indication.proto', package='streaming_protobufs', syntax='proto3', serialized_options=_b('Z1gerrit.o-ran-sc.org/r/ric-plt/streaming-protobufs'), serialized_pb=_b('\n\x1bgnb_status_indication.proto\x12\x13streaming_protobufs\x1a\x17x2ap_common_types.proto\"W\n\x13GNBStatusIndication\x12@\n\x0bprotocolIEs\x18\x01 \x01(\x0b\x32+.streaming_protobufs.GNBStatusIndicationIEs\"h\n\x16GNBStatusIndicationIEs\x12N\n\x19id_GNBOverloadInformation\x18\x01 \x01(\x0b\x32+.streaming_protobufs.GNBOverloadInformationB3Z1gerrit.o-ran-sc.org/r/ric-plt/streaming-protobufsb\x06proto3') , dependencies=[x2ap__common__types__pb2.DESCRIPTOR,]) _GNBSTATUSINDICATION = _descriptor.Descriptor( name='GNBStatusIndication', full_name='streaming_protobufs.GNBStatusIndication', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='protocolIEs', full_name='streaming_protobufs.GNBStatusIndication.protocolIEs', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=77, serialized_end=164, ) _GNBSTATUSINDICATIONIES = _descriptor.Descriptor( name='GNBStatusIndicationIEs', full_name='streaming_protobufs.GNBStatusIndicationIEs', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id_GNBOverloadInformation', full_name='streaming_protobufs.GNBStatusIndicationIEs.id_GNBOverloadInformation', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=166, serialized_end=270, ) _GNBSTATUSINDICATION.fields_by_name['protocolIEs'].message_type = _GNBSTATUSINDICATIONIES _GNBSTATUSINDICATIONIES.fields_by_name['id_GNBOverloadInformation'].message_type = x2ap__common__types__pb2._GNBOVERLOADINFORMATION DESCRIPTOR.message_types_by_name['GNBStatusIndication'] = _GNBSTATUSINDICATION DESCRIPTOR.message_types_by_name['GNBStatusIndicationIEs'] = _GNBSTATUSINDICATIONIES _sym_db.RegisterFileDescriptor(DESCRIPTOR) GNBStatusIndication = _reflection.GeneratedProtocolMessageType('GNBStatusIndication', (_message.Message,), { 'DESCRIPTOR' : _GNBSTATUSINDICATION, '__module__' : 'gnb_status_indication_pb2' # @@protoc_insertion_point(class_scope:streaming_protobufs.GNBStatusIndication) }) _sym_db.RegisterMessage(GNBStatusIndication) GNBStatusIndicationIEs = _reflection.GeneratedProtocolMessageType('GNBStatusIndicationIEs', (_message.Message,), { 'DESCRIPTOR' : _GNBSTATUSINDICATIONIES, '__module__' : 'gnb_status_indication_pb2' # @@protoc_insertion_point(class_scope:streaming_protobufs.GNBStatusIndicationIEs) }) _sym_db.RegisterMessage(GNBStatusIndicationIEs) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
35.652174
426
0.79439
0
0
0
0
0
0
0
0
1,420
0.346341
7934eac98ca8ffa62c49d783f06b030e9d1fdffb
902
py
Python
test_tflite_model.py
jh88/fbnet
5bd12ab8c7f6befc61efd8619d71e710db794c2b
[ "MIT" ]
6
2020-01-16T14:38:10.000Z
2021-01-24T15:49:11.000Z
test_tflite_model.py
jh88/fbnet
5bd12ab8c7f6befc61efd8619d71e710db794c2b
[ "MIT" ]
null
null
null
test_tflite_model.py
jh88/fbnet
5bd12ab8c7f6befc61efd8619d71e710db794c2b
[ "MIT" ]
null
null
null
import numpy as np import tensorflow as tf from time import perf_counter as timer def main(): x = np.load('data/cifar_test_x.npy') y = np.load('data/cifar_test_y.npy').flatten() interpreter = tf.lite.Interpreter(model_path='data/fbnet.tflite') interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() pred = [] t0 = timer() for i in range(len(x)): interpreter.set_tensor(input_details[0]['index'], x[i:i+1]) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) pred.append(output_data.argmax()) t = timer() - t0 print('total time: {:.2f}s, average: {:.2f}ms'.format(t, t * 1000 / len(x))) print('accuracy: {}/{}'.format(sum(y == pred), len(x))) return output_data if __name__ == '__main__': main()
25.771429
80
0.649667
0
0
0
0
0
0
0
0
146
0.161863
7935bc304873f87a9dd8551b03972144b4f09bb2
582
py
Python
src/pymor/vectorarrays/constructions.py
JuliaBru/pymor
46343b527267213f4279ea36f208b542ab291c4e
[ "Unlicense" ]
null
null
null
src/pymor/vectorarrays/constructions.py
JuliaBru/pymor
46343b527267213f4279ea36f208b542ab291c4e
[ "Unlicense" ]
null
null
null
src/pymor/vectorarrays/constructions.py
JuliaBru/pymor
46343b527267213f4279ea36f208b542ab291c4e
[ "Unlicense" ]
null
null
null
# This file is part of the pyMOR project (http://www.pymor.org). # Copyright 2013-2016 pyMOR developers and contributors. All rights reserved. # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) def cat_arrays(vector_arrays): """Return a new |VectorArray| which a concatenation of the arrays in `vector_arrays`.""" vector_arrays = list(vector_arrays) total_length = sum(map(len, vector_arrays)) cated_arrays = vector_arrays[0].empty(reserve=total_length) for a in vector_arrays: cated_arrays.append(a) return cated_arrays
41.571429
92
0.74055
0
0
0
0
0
0
0
0
306
0.525773
7935f670a579e41f9498d1b3fe1e3afe2409108d
407
py
Python
swampytodo/urls.py
mrbaboon/swampytodo
096c39a57db0d8640e03262550dd1ed07191ecde
[ "MIT" ]
null
null
null
swampytodo/urls.py
mrbaboon/swampytodo
096c39a57db0d8640e03262550dd1ed07191ecde
[ "MIT" ]
2
2015-04-23T00:21:01.000Z
2015-04-23T00:29:23.000Z
swampytodo/urls.py
mrbaboon/swampytodo
096c39a57db0d8640e03262550dd1ed07191ecde
[ "MIT" ]
null
null
null
from django.conf.urls import patterns, include, url from django.contrib import admin urlpatterns = patterns('', # Examples: # url(r'^$', 'swampytodo.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^monitor', 'monitor.views.monitor_view', name='monitor'), url(r'^todo', include('todo.urls', namespace='todo')), url(r'^admin/', include(admin.site.urls)), )
29.071429
67
0.643735
0
0
0
0
0
0
0
0
186
0.457002
79371535785d9b4c1a14c7350dbe3a0fef48e07d
3,669
py
Python
src/pymor/playground/progressbar.py
JuliaBru/pymor
46343b527267213f4279ea36f208b542ab291c4e
[ "Unlicense" ]
null
null
null
src/pymor/playground/progressbar.py
JuliaBru/pymor
46343b527267213f4279ea36f208b542ab291c4e
[ "Unlicense" ]
null
null
null
src/pymor/playground/progressbar.py
JuliaBru/pymor
46343b527267213f4279ea36f208b542ab291c4e
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python # This file is part of the pyMOR project (http://www.pymor.org). # Copyright 2013-2016 pyMOR developers and contributors. All rights reserved. # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) import sys ############################################################ # # A progress bar that actually shows progress! # # Source: # http://code.activestate.com/recipes/168639-progress-bar-class/ # ############################################################ class ProgressBar: """ Creates a text-based progress bar. Call the object with the `print` command to see the progress bar, which looks something like this:: [=======> 22% ] You may specify the progress bar's width, min and max values on init. """ def __init__(self, minValue=0, maxValue=100, totalWidth=79): self.progBar = "[]" # This holds the progress bar string self.min = minValue self.max = maxValue self.width = totalWidth self.amount = minValue # When amount == max, we are 100% done self.update_amount(self.amount) # Build progress bar string def update_amount(self, newAmount=0): """ Update the progress bar with the new amount (with min and max values set at initialization; if it is over or under, it takes the min or max value as a default. """ if newAmount < self.min: newAmount = self.min if newAmount > self.max: newAmount = self.max self.amount = newAmount # Figure out the new percent done, round to an integer diffFromMin = float(self.amount - self.min) percentDone = (diffFromMin / float(self.max - self.min)) * 100.0 percentDone = int(round(percentDone)) # Figure out how many hash bars the percentage should be allFull = self.width - 2 numHashes = (percentDone / 100.0) * allFull numHashes = int(round(numHashes)) # Build a progress bar with an arrow of equal signs; special cases for # empty and full if numHashes == 0: self.progBar = "[>%s]" % (' ' * (allFull - 1)) elif numHashes == allFull: self.progBar = "[%s]" % ('=' * allFull) else: self.progBar = "[%s>%s]" % ('=' * (numHashes - 1), ' ' * (allFull - numHashes)) # figure out where to put the percentage, roughly centered percentPlace = (len(self.progBar) / 2) - len(str(percentDone)) percentString = str(percentDone) + "%" # slice the percentage into the bar self.progBar = ''.join([self.progBar[0:percentPlace], percentString, self.progBar[percentPlace + len(percentString):] ]) def __str__(self): return str(self.progBar) def __call__(self, value): """ Increases the amount by value, and writes to stdout. Prints a carriage return first, so it will overwrite the current line in stdout.""" if self.amount < self.max: print('\r', end=' ') self.update_amount(self.amount + value) sys.stdout.write(str(self)) sys.stdout.write(self.amount < self.max and "\r" or "\n") sys.stdout.flush() def setMaximum(self, value): self.max = value def maximum(self): return self.max if __name__ == '__main__': from time import sleep p = ProgressBar() for i in range(0, 201): p(1) if i == 90: p.max = 200 sleep(0.02)
35.970588
80
0.562006
2,978
0.811665
0
0
0
0
0
0
1,576
0.429545
79372371d63d8554463e6ea69f517b712b741c97
8,184
py
Python
toontown/minigame/TwoDBattleMgr.py
SuperM0use24/TT-CL-Edition
fdad8394f0656ae122b687d603f72afafd220c65
[ "MIT" ]
1
2021-02-13T22:40:50.000Z
2021-02-13T22:40:50.000Z
toontown/minigame/TwoDBattleMgr.py
SuperM0use24/TT-CL-Edition
fdad8394f0656ae122b687d603f72afafd220c65
[ "MIT" ]
1
2018-07-28T20:07:04.000Z
2018-07-30T18:28:34.000Z
toontown/minigame/TwoDBattleMgr.py
SuperM0use24/TT-CL-Edition
fdad8394f0656ae122b687d603f72afafd220c65
[ "MIT" ]
3
2021-06-03T05:36:36.000Z
2021-06-22T15:07:31.000Z
from panda3d.core import * from direct.showbase.DirectObject import DirectObject from toontown.toonbase.ToonBaseGlobal import * from direct.directnotify import DirectNotifyGlobal from direct.interval.IntervalGlobal import * from toontown.battle.BattleProps import * from toontown.battle import MovieUtil import math class TwoDBattleMgr(DirectObject): notify = DirectNotifyGlobal.directNotify.newCategory('TwoDBattleMgr') def __init__(self, game, toon): self.game = game self.toon = toon self.waterBulletIval = None self.shootTrack = None self.showCollSpheres = False self.WATER_SPRAY_COLOR = Point4(1, 1, 1, 1) self.WATER_BULLET_SCALE = 0.2 self.SHOOT_DISTANCE = 10 self.WATER_BULLET_START_POINT = Point3(0, 1, 3) self.WATER_BULLET_END_POINT = Point3(0, self.WATER_BULLET_START_POINT.getY() + self.SHOOT_DISTANCE, self.WATER_BULLET_START_POINT.getZ()) self.WATER_BULLET_HIDE_POINT = Point3(0, 0, 1.5) self.sprayProp = self.game.assetMgr.sprayProp.copyTo(self.game.assetMgr.world) self.setupPistol() if self.toon == base.localAvatar: self.createShootCollision() return def destroy(self): if self.toon == base.localAvatar: if self.waterBulletIval: self.waterBulletIval.finish() del self.waterBulletIval self.waterBulletIval = None self.ignore('enter' + self.collSphereName) base.localAvatar.controlManager.currentControls.cTrav.removeCollider(self.waterBullet) self.waterBullet.removeNode() del self.waterBullet self.hand_jointpath0.removeNode() MovieUtil.removeProp(self.pistol) if self.shootTrack != None: self.shootTrack.finish() self.shootTrack = None self.game = None self.toon = None return def start(self): pass def stop(self): pass def setupPistol(self): self.pistol = globalPropPool.getProp('water-gun') hands = self.toon.getRightHands() self.hand_jointpath0 = hands[0].attachNewNode('handJoint0-path') pistolPos = Point3(0.28, 0.1, 0.08) pistolHpr = VBase3(85.6, -4.44, 94.43) MovieUtil.showProp(self.pistol, self.hand_jointpath0, pistolPos, pistolHpr) def shoot(self): if not self.shootTrack: self.shootTrack = Parallel(self.getToonShootTrack(), self.getSprayTrack()) if self.toon == base.localAvatar: self.shootTrack.append(Func(self.game.assetMgr.playWatergunSound)) self.shootTrack.append(self.getWaterBulletIval()) self.shootTrack.start() return elif self.shootTrack.isStopped(): self.shootTrack = Parallel(self.getToonShootTrack(), self.getSprayTrack()) if self.toon == base.localAvatar: self.shootTrack.append(Func(self.game.assetMgr.playWatergunSound)) self.shootTrack.append(self.getWaterBulletIval()) self.shootTrack.start() def createShootCollision(self): self.notify.debug('entering createShootCollision') collSphere = CollisionSphere(0, 0, 0, 1) collSphere.setTangible(0) self.collSphereName = self.game.uniqueName('waterBullet') collNode = CollisionNode(self.collSphereName) collNode.setFromCollideMask(ToontownGlobals.WallBitmask) collNode.addSolid(collSphere) self.waterBullet = base.localAvatar.attachNewNode(collNode) self.waterBullet.setPos(self.WATER_BULLET_HIDE_POINT) self.waterBullet.setScale(self.WATER_BULLET_SCALE) self.waterBullet.hide() if self.showCollSpheres: self.waterBullet.show() bulletEvent = CollisionHandlerEvent() bulletEvent.addInPattern('enter%fn') bulletEvent.addOutPattern('exit%fn') cTrav = base.localAvatar.controlManager.currentControls.cTrav cTrav.addCollider(self.waterBullet, bulletEvent) self.accept('enter' + self.collSphereName, self.handleBulletCollision) self.waterBulletIval = Sequence(Wait(0.15)) self.waterBulletIval.append(LerpPosInterval(self.waterBullet, 0.25, pos=Point3(self.WATER_BULLET_END_POINT), startPos=Point3(self.WATER_BULLET_START_POINT), name='waterBulletMoveFront')) self.waterBulletIval.append(Func(self.waterBullet.setPos, self.WATER_BULLET_HIDE_POINT)) def getToonShootTrack(self): def returnToLastAnim(toon): if hasattr(toon, 'playingAnim') and toon.playingAnim: toon.loop(toon.playingAnim) else: toon.loop('neutral') torso = self.toon.getPart('torso', '1000') toonTrack = Sequence(ActorInterval(self.toon, 'water-gun', startFrame=48, endFrame=58, partName='torso'), ActorInterval(self.toon, 'water-gun', startFrame=107, endFrame=126, playRate=2, partName='torso'), Func(returnToLastAnim, self.toon)) return toonTrack def calcSprayStartPos(self): if self.toon: self.toon.update(0) joint = self.pistol.find('**/joint_nozzle') p = joint.getPos(render) self.origin = p def calcSprayEndPos(self): if self.toon: xDirection = -math.sin(self.toon.getH()) else: xDirection = -math.sin(-90) endPos = Point3(self.origin.getX() + self.SHOOT_DISTANCE * xDirection, self.origin.getY(), self.origin.getZ()) self.target = endPos def getSprayTrack(self): dSprayScale = 0.15 dSprayHold = 0.035 color = self.WATER_SPRAY_COLOR parent = render horizScale = 1.0 vertScale = 1.0 def showSpray(sprayScale, sprayRot, sprayProp, parent): sprayRot.reparentTo(parent) sprayRot.clearMat() sprayScale.reparentTo(sprayRot) sprayScale.clearMat() sprayProp.reparentTo(sprayScale) sprayProp.clearMat() sprayRot.setPos(self.origin) sprayRot.lookAt(Point3(self.target)) def calcTargetScale(horizScale = horizScale, vertScale = vertScale): distance = Vec3(self.target - self.origin).length() yScale = distance / MovieUtil.SPRAY_LEN targetScale = Point3(yScale * horizScale, yScale, yScale * vertScale) return targetScale def prepareToShrinkSpray(spray, sprayProp): sprayProp.setPos(Point3(0.0, -MovieUtil.SPRAY_LEN, 0.0)) spray.setPos(self.target) def hideSpray(spray, sprayScale, sprayRot, sprayProp, propPool): sprayProp.detachNode() sprayRot.removeNode() sprayScale.removeNode() sprayProp = self.sprayProp sprayScale = hidden.attachNewNode('spray-parent') sprayRot = hidden.attachNewNode('spray-rotate') spray = sprayRot spray.setColor(color) if color[3] < 1.0: spray.setTransparency(1) track = Sequence(Wait(0.1), Func(self.calcSprayStartPos), Func(self.calcSprayEndPos), Func(showSpray, sprayScale, sprayRot, sprayProp, parent), LerpScaleInterval(sprayScale, dSprayScale, calcTargetScale, startScale=MovieUtil.PNT3_NEARZERO), Wait(dSprayHold), Func(prepareToShrinkSpray, spray, sprayProp), LerpScaleInterval(sprayScale, dSprayScale, MovieUtil.PNT3_NEARZERO), Func(hideSpray, spray, sprayScale, sprayRot, sprayProp, globalPropPool)) return track def handleBulletCollision(self, cevent): if cevent.getIntoNodePath().getName()[:5] == 'Enemy': sectionIndex = int(cevent.getIntoNodePath().getName()[6:8]) enemyIndex = int(cevent.getIntoNodePath().getName()[9:11]) messenger.send('enemyShot', [sectionIndex, enemyIndex]) def clearWaterBulletIval(self): if self.waterBulletIval: self.waterBulletIval.finish() del self.waterBulletIval self.waterBulletIval = None return def getWaterBulletIval(self): if not self.waterBulletIval.isPlaying(): return self.waterBulletIval
43.301587
454
0.660191
7,866
0.961144
0
0
0
0
0
0
276
0.033724
7937d7c40eebe24b6b2fbdc5b2fcb247cedd3bed
1,211
py
Python
lesson-12/ex1.py
alirsamar/intro-ml
36450b26b7ea09472ccdd2a0abce51b6c3889a20
[ "MIT" ]
null
null
null
lesson-12/ex1.py
alirsamar/intro-ml
36450b26b7ea09472ccdd2a0abce51b6c3889a20
[ "MIT" ]
null
null
null
lesson-12/ex1.py
alirsamar/intro-ml
36450b26b7ea09472ccdd2a0abce51b6c3889a20
[ "MIT" ]
null
null
null
# Explained Variance of Each PC #### Boilerplate ################################################################# print __doc__ from time import time import logging import pylab as pl import numpy as np from sklearn.cross_validation import train_test_split from sklearn.datasets import fetch_lfw_people from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.decomposition import RandomizedPCA from sklearn.svm import SVC logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) n_samples, h, w = lfw_people.images.shape np.random.seed(42) X = lfw_people.data n_features = X.shape[1] y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) n_components = 150 t0 = time() pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train) #### Exercise code ############################################################# print "Variance ratio:" print pca.explained_variance_ratio_
26.911111
90
0.720066
0
0
0
0
0
0
0
0
235
0.194055
793b2e2631986fe445d59015d41bd730fa29fbfa
352
py
Python
qt/__init__.py
popupcad/popupcad
d3da448260cd5cb9e05417b0a723d7f73ae4e06e
[ "MIT" ]
19
2015-08-01T22:13:39.000Z
2020-03-07T03:55:46.000Z
qt/__init__.py
CadQuery/popupcad
b0c7b406d4b288c7cb375340323bba0252aedbfb
[ "MIT" ]
106
2015-07-23T19:58:01.000Z
2019-05-14T03:46:08.000Z
qt/__init__.py
CadQuery/popupcad
b0c7b406d4b288c7cb375340323bba0252aedbfb
[ "MIT" ]
9
2015-10-04T23:38:41.000Z
2020-07-16T03:50:34.000Z
# -*- coding: utf-8 -*- """ Written by Daniel M. Aukes and CONTRIBUTORS Email: danaukes<at>asu.edu. Please see LICENSE for full license. """ import sys argv = [item.lower() for item in sys.argv] if 'qt4' in argv: loaded = 'PyQt4' elif 'qt5' in argv: loaded = 'PyQt5' elif 'pyside' in argv: loaded = 'PySide' else: loaded = 'PyQt5'
16
43
0.636364
0
0
0
0
0
0
0
0
186
0.528409
793db8fe0005397f1d556c93efea7bcd3624a441
3,941
py
Python
fast_carpenter/__main__.py
lgray/fast-carpenter
c33b83d16031e5ac4b857ac1a644433b6132bb05
[ "Apache-2.0" ]
null
null
null
fast_carpenter/__main__.py
lgray/fast-carpenter
c33b83d16031e5ac4b857ac1a644433b6132bb05
[ "Apache-2.0" ]
null
null
null
fast_carpenter/__main__.py
lgray/fast-carpenter
c33b83d16031e5ac4b857ac1a644433b6132bb05
[ "Apache-2.0" ]
null
null
null
""" Chop up those trees into nice little tables and dataframes """ from __future__ import print_function import sys from .help import help_stages import fast_flow.v1 as fast_flow import fast_curator import logging import atuproot.atuproot_main as atup from .event_builder import EventBuilder from atsge.build_parallel import build_parallel from .utils import mkdir_p from .version import __version__ atup.EventBuilder = EventBuilder atup.build_parallel = build_parallel logging.getLogger(__name__).setLevel(logging.INFO) class DummyCollector(): def collect(self, *args, **kwargs): pass def create_parser(): from argparse import ArgumentParser, Action class StagesHelp(Action): def __call__(self, parser, namespace, values, option_string=None): full_output = option_string == "--help-stages-full" help_stages(values, full_output=full_output) sys.exit(0) parser = ArgumentParser(description=__doc__) parser.add_argument("dataset_cfg", type=str, help="Dataset config to run over") parser.add_argument("sequence_cfg", type=str, help="Config for how to process events") parser.add_argument("--outdir", default="output", type=str, help="Where to save the results") parser.add_argument("--mode", default="multiprocessing", type=str, help="Which mode to run in (multiprocessing, htcondor, sge)") parser.add_argument("--ncores", default=1, type=int, help="Number of cores to run on") parser.add_argument("--nblocks-per-dataset", default=-1, type=int, help="Number of blocks per dataset") parser.add_argument("--nblocks-per-sample", default=-1, type=int, help="Number of blocks per sample") parser.add_argument("--blocksize", default=1000000, type=int, help="Number of events per block") parser.add_argument("--quiet", default=False, action='store_true', help="Keep progress report quiet") parser.add_argument("--profile", default=False, action='store_true', help="Profile the code") parser.add_argument("--help-stages", nargs="?", default=None, action=StagesHelp, metavar="stage-name-regex", help="Print help specific to the available stages") parser.add_argument("--help-stages-full", action=StagesHelp, metavar="stage", help="Print the full help specific to the available stages") parser.add_argument("-v", "--version", action="version", version='%(prog)s ' + __version__) return parser def main(args=None): args = create_parser().parse_args(args) if args.ncores < 1: args.ncores = 1 sequence = fast_flow.read_sequence_yaml(args.sequence_cfg, output_dir=args.outdir, backend="fast_carpenter") datasets = fast_curator.read.from_yaml(args.dataset_cfg) mkdir_p(args.outdir) _, ret_val = run_carpenter(sequence, datasets, args) print(ret_val) return 0 def run_carpenter(sequence, datasets, args): process = atup.AtUproot(args.outdir, quiet=args.quiet, parallel_mode=args.mode, process=args.ncores, max_blocks_per_dataset=args.nblocks_per_dataset, max_blocks_per_process=args.nblocks_per_sample, nevents_per_block=args.blocksize, profile=args.profile, profile_out_path="profile.txt", ) sequence = [(s, s.collector() if hasattr(s, "collector") else DummyCollector()) for s in sequence] ret_val = process.run(datasets, sequence) return sequence, ret_val if __name__ == "__main__": main()
39.019802
112
0.632073
321
0.081451
0
0
0
0
0
0
819
0.207815
793dc7d4ffbc96247a33db7d9520735900231242
1,283
py
Python
pictures/tests.py
FredAtei/Photo-app
5f9e72948af6a27b1c6c438fa22652c06fc4f6d4
[ "MIT" ]
null
null
null
pictures/tests.py
FredAtei/Photo-app
5f9e72948af6a27b1c6c438fa22652c06fc4f6d4
[ "MIT" ]
null
null
null
pictures/tests.py
FredAtei/Photo-app
5f9e72948af6a27b1c6c438fa22652c06fc4f6d4
[ "MIT" ]
null
null
null
from django.test import TestCase from .models import Image,Location,Category # Create your tests here. class CategoryTestClass(TestCase): def setUp(self): self.travel = Category(name='travel') def test_instance(self): self.assertTrue(isinstance(self.travel,Category)) def test_save_method(self): self.travel.save_category() categories = Category.objects.all() self.assertTrue(len(categories)>0) class LocationTestClass(TestCase): def setUp(self): self.Paris = Location(name='Paris') def test_instance(self): self.assertTrue(isinstance(self.Paris,Location)) def test_save_method(self): self.Paris.save_location() locations = Location.objects.all() self.assertTrue(len(locations)>0) class ImageTestClass(TestCase): def setUp(self): self.new_image=Image(image_name='Eot',image_description='Great things',image_category=self.travel,image_location=self.locations) self.new_image.save_image() def tearDown(self): Category.objects.all().delete() Location.objects.all().delete() Image.objects.all().delete() def test_get_images(self): all_images = Image.get_images() self.assertTrue(len(all_images)>0)
31.292683
136
0.683554
1,168
0.910366
0
0
0
0
0
0
59
0.045986
793dd777651fda3f7f0226048a22a03099d8826c
2,110
py
Python
{{ cookiecutter.project_name|replace(' ', '_')|replace('-', '_')|lower }}/project/apps/users/views.py
digitalashes/django2.0-template
4387c25fb94cbff4f201b279f2eefcb174658eff
[ "Apache-2.0" ]
1
2018-03-13T21:16:49.000Z
2018-03-13T21:16:49.000Z
{{ cookiecutter.project_name|replace(' ', '_')|replace('-', '_')|lower }}/project/apps/users/views.py
digitalashes/django2.0-template
4387c25fb94cbff4f201b279f2eefcb174658eff
[ "Apache-2.0" ]
null
null
null
{{ cookiecutter.project_name|replace(' ', '_')|replace('-', '_')|lower }}/project/apps/users/views.py
digitalashes/django2.0-template
4387c25fb94cbff4f201b279f2eefcb174658eff
[ "Apache-2.0" ]
null
null
null
{%- if cookiecutter.use_allauth == "y" and cookiecutter.use_rest == "y" %} from django.contrib.auth import logout as auth_logout from django.core.exceptions import ObjectDoesNotExist from django.utils.translation import ugettext_lazy as _ from rest_auth.app_settings import create_token from rest_auth.registration.views import RegisterView as RegisterViewBase from rest_auth.views import PasswordChangeView as BasePasswordChangeView from rest_framework import status from rest_framework.permissions import AllowAny, IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from users.jwt import jwt_response_payload_handler class RegisterApiView(RegisterViewBase): """ Generic user registration. """ http_method_names = ('post', 'head', 'options') permission_classes = (AllowAny,) def get_response_data(self, user): token = create_token(user) data = jwt_response_payload_handler(token, user) return data class LogoutApiView(APIView): """ Calls Django logout method and delete the Token object assigned to the current User object. Accepts/Returns nothing. """ http_method_names = ('post', 'head', 'options') permission_classes = (AllowAny,) def post(self, request): return self.logout(request) def logout(self, request): try: request.user.auth_token.delete() except (AttributeError, ObjectDoesNotExist): pass auth_logout(request) return Response({'detail': _('Successfully logged out.')}, status=status.HTTP_200_OK) class PasswordChangeApiView(BasePasswordChangeView): """ Calls Django Auth SetPasswordForm save method. Accepts the following POST parameters: old_password, new_password1, new_password2 Returns the success/fail message. """ http_method_names = ('post', 'head', 'options') permission_classes = (IsAuthenticated,) registration = RegisterApiView.as_view() logout = LogoutApiView.as_view() password_change = PasswordChangeApiView.as_view() {%- endif %}
27.763158
93
0.734597
1,289
0.6109
0
0
0
0
0
0
476
0.225592
793e098cac69c0e739d368a1fa2b5c6d69bbe98f
4,519
py
Python
pyperform/tools.py
timgates42/pyperform
97d87e8b9ddb35bd8f2a6782965fd7735ab0349f
[ "MIT" ]
250
2015-01-03T10:15:26.000Z
2022-03-31T19:43:37.000Z
pyperform/tools.py
timgates42/pyperform
97d87e8b9ddb35bd8f2a6782965fd7735ab0349f
[ "MIT" ]
4
2015-01-23T00:19:45.000Z
2015-10-29T17:17:46.000Z
pyperform/tools.py
timgates42/pyperform
97d87e8b9ddb35bd8f2a6782965fd7735ab0349f
[ "MIT" ]
14
2015-01-17T16:23:04.000Z
2021-07-15T10:59:53.000Z
__author__ = 'calvin' import re import sys from math import log10 if sys.version[0] == '3': pass else: range = xrange classdef_regex = re.compile(r"\S*def .*#!|class .*#!") tagged_line_regex = re.compile(r".*#!") def convert_time_units(t): """ Convert time in seconds into reasonable time units. """ if t == 0: return '0 s' order = log10(t) if -9 < order < -6: time_units = 'ns' factor = 1000000000 elif -6 <= order < -3: time_units = 'us' factor = 1000000 elif -3 <= order < -1: time_units = 'ms' factor = 1000. elif -1 <= order: time_units = 's' factor = 1 return "{:.3f} {}".format(factor * t, time_units) def globalize_indentation(src): """ Strip the indentation level so the code runs in the global scope. """ lines = src.splitlines() indent = len(lines[0]) - len(lines[0].strip(' ')) func_src = '' for ii, l in enumerate(src.splitlines()): line = l[indent:] func_src += line + '\n' return func_src def remove_decorators(src): """ Remove decorators from the source code """ src = src.strip() src_lines = src.splitlines() multi_line = False n_deleted = 0 for n in range(len(src_lines)): line = src_lines[n - n_deleted].strip() if (line.startswith('@') and 'Benchmark' in line) or multi_line: del src_lines[n - n_deleted] n_deleted += 1 if line.endswith(')'): multi_line = False else: multi_line = True setup_src = '\n'.join(src_lines) return setup_src def get_tagged_imports(fp): imports = [] inside_def = False def_lines = [] def_indent = 0 with open(fp, 'r') as f: lastLine = f.readline() for line in f: tagged_class_or_def = re.findall(classdef_regex, lastLine) tagged_line = re.findall(tagged_line_regex, lastLine) # Find the indentation level of the function/class definition and capture all source code lines # until we get a line that is the same indentation level (end of function/class definition). if tagged_class_or_def or inside_def: if tagged_class_or_def and def_lines: imports.append(''.join(def_lines)) def_lines = [] inside_def = False if inside_def: # For lines within the definition indent = len(lastLine) - len(lastLine.lstrip(' ')) if indent == def_indent and lastLine != '\n': imports.append(''.join(def_lines)) def_lines = [] inside_def = False def_indent = 0 if tagged_line: imports.append(lastLine) else: if lastLine != '\n': def_lines.append(lastLine) else: # For the definition line inside_def = True def_indent = len(lastLine) - len(lastLine.lstrip(' ')) def_lines.append(lastLine) elif tagged_line: imports.append(lastLine) lastLine = line # Examine the last line tagged_line = re.findall(tagged_line_regex, lastLine) if inside_def: def_lines.append(line) imports.append(''.join(def_lines)) elif tagged_line: imports.append(line) src = '\n'.join(imports) + '\n' return src def generate_call_statement(func, is_class_method, *args, **kwargs): # Create the call statement if is_class_method: stmt = 'instance.' + func.__name__ + '(' else: stmt = func.__name__ + '(' for arg in args: stmt += arg.__repr__() + ', ' for kw, val in kwargs.items(): stmt += '{0}={1}, '.format(kw, val.__repr__()) stmt = stmt.strip(', ') stmt += ')' return stmt def walk_tree(start, attr): """ Recursively walk through a tree relationship. This iterates a tree in a top-down approach, fully reaching the end of a lineage before moving onto the next sibling of that generation. """ path = [start] for child in path: yield child idx = path.index(child) for grandchild in reversed(getattr(child, attr)): path.insert(idx + 1, grandchild)
30.741497
107
0.548351
0
0
431
0.095375
0
0
0
0
849
0.187873
793e3ac3dcb05f0d0810a86209b05739d4ea782a
7,522
py
Python
dictify.py
Dharma-Sagar/dictify
c76713feaf45670b245ed7e7feb894c12dffb9cd
[ "Apache-2.0" ]
null
null
null
dictify.py
Dharma-Sagar/dictify
c76713feaf45670b245ed7e7feb894c12dffb9cd
[ "Apache-2.0" ]
null
null
null
dictify.py
Dharma-Sagar/dictify
c76713feaf45670b245ed7e7feb894c12dffb9cd
[ "Apache-2.0" ]
null
null
null
from collections import defaultdict from pathlib import Path import re import yaml import json from botok import Text import pyewts conv = pyewts.pyewts() def dictify_text(string, is_split=False, selection_yaml='data/dictionaries/dict_cats.yaml', expandable=True, mode='en_bo'): """ takes segmented text and finds entries from dictionaries :param expandable: will segment definitions into senses if True, not if False :param selection_yaml: add None or "" to prevent selection :param string: segmented text to be processed :return: list of tuples containing the word and a dict containing the definitions(selected or not) and an url """ words = [] if is_split: for w in string: if w: words.append((w, {})) else: string = string.replace('\n', ' ') for w in string.split(' '): if w: words.append((w, {})) dicts = load_dicts() for num, word in enumerate(words): lemma = word[0].rstrip('་') defs = dicts[lemma] # filter if selection_yaml: defs = select_defs(defs, yaml_path=selection_yaml, mode=mode) # split in senses if expandable: if defs and 'en' in defs: entry_en = defs['en'][1] defs['en'][1] = split_in_senses(entry_en, lang='en') if defs and 'bo' in defs: entry_bo = defs['bo'][1] defs['bo'][1] = split_in_senses(entry_bo, lang='bo') words[num][1]['defs'] = defs # url url = gen_link(lemma) words[num][1]['url'] = url return words def load_dicts(): dicts = defaultdict(dict) dict_path = Path(__file__).parent / 'data/dictionaries/converted' dict_other = Path(__file__).parent / 'data/dictionaries/other' dict_files = sorted(list(dict_path.glob('*.txt')) + list(dict_other.glob('*.txt'))) for f in dict_files: name = f.stem if name.startswith('monlam'): name = name[:-2] # remove file number suffix "_1", "_2" and "_3" lines = f.read_text().split('\n') for line in lines: if '|' not in line: continue lemma, entry = line.split('|') dicts[lemma][name] = f'{dicts[lemma][name]} {entry}' if name in dicts[lemma] else entry return dicts def split_in_senses(entry, lang): header_size = 10 # syllables tsikchen_dagsar = r' ([༡༢༣༤༥༦༧༨༩༠]+\.)' tsikchen_dagsar_start = r'(?: |^)([༡༢༣༤༥༦༧༨༩༠]+\.)' tsikchen = r' ([༡༢༣༤༥༦༧༨༩༠]+༽) ' tsikchen_start = r'(?: |^)([༡༢༣༤༥༦༧༨༩༠]+༽) ' monlam = r' ((?:[^་]+་[^་]+ )?[0-9]+\.) ' ry_start = r'^([0-9]+\)) ' # line must start with this pattern ry = r'(?: |^)([0-9]+\)) ' senses = [] if lang == 'bo': if re.findall(monlam, entry): parts = [e for e in re.split(monlam, entry) if e] try: parts = [f'{parts[n]} {parts[n + 1]}' for n in range(0, len(parts), 2)] except IndexError as e: print(entry[:100]) raise SyntaxError(e) for p in parts: t = Text(p).tokenize_chunks_plaintext.split(' ') if len(t) > header_size: header, body = ''.join(t[:header_size]).replace('_', ' '), ''.join(t[header_size:]).replace('_', ' ') senses.append((header, body)) else: senses.append(p) elif re.findall(tsikchen_dagsar, entry): parts = [e for e in re.split(tsikchen_dagsar_start, entry) if e] if not re.findall(r'^[༡༢༣༤༥༦༧༨༩༠]', parts[0]): parts = [f'{parts[0]} {parts[1]}'] + parts[2:] try: parts = [f'{parts[n]}{parts[n + 1]}' for n in range(0, len(parts), 2)] except IndexError as e: print(entry[:100]) raise SyntaxError(e) for p in parts: t = Text(p).tokenize_chunks_plaintext.split(' ') if len(t) > header_size: header, body = ''.join(t[:header_size]).replace('_', ' '), ''.join(t[header_size:]).replace('_', ' ') senses.append((header, body)) else: senses.append(p) elif re.findall(tsikchen, entry): parts = [e for e in re.split(tsikchen_start, entry) if e] if parts[0].startswith('༼'): parts = [f'{parts[0]} {parts[1]}'] + parts[2:] try: parts = [f'{parts[n]} {parts[n + 1]}' for n in range(0, len(parts), 2)] except IndexError as e: print(entry[:100]) raise SyntaxError(e) for p in parts: t = Text(p).tokenize_chunks_plaintext.split(' ') if len(t) > header_size: header, body = ''.join(t[:header_size]).replace('_', ' '), ''.join(t[header_size:]).replace('_', ' ') senses.append((header, body)) else: senses.append(p) else: return entry elif lang == 'en' and re.findall(ry_start, entry): parts = [e for e in re.split(ry, entry) if e] parts = [f'{parts[n]} {parts[n+1]}' for n in range(0, len(parts), 2)] for p in parts: t = p.split(' ') size = header_size - 4 if header_size - 4 > 0 else 0 if len(t) > size: header, body = ' '.join(t[:size]).replace('_', ' '), ' '.join(t[size:]).replace('_', ' ') senses.append((header, body)) else: senses.append(p) else: return entry return senses def select_defs(defs, yaml_path, mode): cats = yaml.safe_load(Path(yaml_path).read_text()) english, tibetan = cats['english']['dictionary'], cats['tibetan']['dictionary'] selected = {} # selecting the first English definition from the list in dict_cats.yaml if 'en' in mode: for full, name in english: if full in defs: selected['en'] = (name, defs[full]) break # selecting the first Tibetan definition from the list in dict_cats.yaml if 'bo' in mode: for full, name in tibetan: if full in defs: selected['bo'] = (name, defs[full]) break # format selected if 'en' in selected and 'bo' in selected: return {'en': [selected['en'][0], selected['en'][1]], 'bo': [selected['bo'][0], selected['bo'][1]]} elif 'en' in selected: return {'en': [selected['en'][0], selected['en'][1]]} elif 'bo' in selected: return {'bo': [selected['bo'][0], selected['bo'][1]]} else: return None def gen_link(word): link_pattern = 'https://dictionary.christian-steinert.de/#%7B%22activeTerm%22%3A%22{word}%22%2C%22' \ 'lang%22%3A%22tib%22%2C%22inputLang%22%3A%22tib%22%2C%22currentListTerm%22%3A%22{word}%22%2C%22' \ 'forceLeftSideVisible%22%3Atrue%2C%22offset%22%3A0%7D' wylie = conv.toWylie(word).replace(' ', '%20') return link_pattern.format(word=wylie) if __name__ == '__main__': for f in Path('input').glob('*.txt'): dump = f.read_text(encoding='utf-8') out = dictify_text(dump, expandable=True) out_f = Path('output') / f.name out_f.write_text(json.dumps(out, ensure_ascii=False, indent=4)) __all__ = [dictify_text]
37.237624
123
0.534964
0
0
0
0
0
0
0
0
1,822
0.238607
f700e260a7d6b3f4dc9cdfd4df281f246d308a20
2,504
py
Python
tests/test_validators.py
fakeezz/edipy
00c125621201e7290add135240c131c22feb3a72
[ "MIT" ]
1
2018-05-15T18:27:31.000Z
2018-05-15T18:27:31.000Z
tests/test_validators.py
fakeezz/edipy
00c125621201e7290add135240c131c22feb3a72
[ "MIT" ]
null
null
null
tests/test_validators.py
fakeezz/edipy
00c125621201e7290add135240c131c22feb3a72
[ "MIT" ]
2
2020-12-25T16:37:56.000Z
2021-06-22T13:13:18.000Z
# coding: utf-8 import pytest from edipy import fields, validators, exceptions @pytest.mark.parametrize('fixed_type, data', [ (fields.Integer(1, validators=[validators.Range(1, 5)]), '1'), (fields.Integer(1, validators=[validators.MaxValue(3)]), '2'), (fields.Integer(1, validators=[validators.MinValue(1)]), '5'), (fields.String(5, validators=[validators.Regex(r"[0-9]+")]), '12345'), (fields.String(12, validators=[validators.Email()]), 'abc@mail.com'), ]) def test_using_validators(fixed_type, data): try: fixed_type.encode(data) except exceptions.ValidationError: pytest.fail(u"ValidationError should not be thrown") @pytest.mark.parametrize('fixed_type, data', [ (fields.Integer(1, validators=[validators.Range(1, 5)]), '0'), (fields.Integer(1, validators=[validators.Range(1, 5)]), '6'), ]) def test_validate_range(fixed_type, data): with pytest.raises(exceptions.ValidationError): fixed_type.encode(data) @pytest.mark.parametrize('fixed_type, data', [ (fields.Integer(1, validators=[validators.MaxValue(1)]), '2'), (fields.Integer(1, validators=[validators.MaxValue(5)]), '6'), ]) def test_validate_max_value(fixed_type, data): with pytest.raises(exceptions.ValidationError): fixed_type.encode(data) @pytest.mark.parametrize('fixed_type, data', [ (fields.Integer(1, validators=[validators.MinValue(1)]), '0'), (fields.Integer(1, validators=[validators.MinValue(5)]), '4'), ]) def test_validate_min_value(fixed_type, data): with pytest.raises(exceptions.ValidationError): fixed_type.encode(data) @pytest.mark.parametrize('fixed_type, data', [ (fields.String(5, validators=[validators.Regex(r"[0-9]+")]), 'a123f'), (fields.String(5, validators=[validators.Regex(r"\d")]), 'abcde'), (fields.String(5, validators=[validators.Regex(r"[A-Z]{6}")]), 'ABCDE'), ]) def test_validate_regex(fixed_type, data): with pytest.raises(exceptions.ValidationError): fixed_type.encode(data) def test_throws_exception_when_regex_is_invalid(): with pytest.raises(ValueError): field = fields.String(5, validators=[validators.Regex(")")]) @pytest.mark.parametrize('fixed_type, data', [ (fields.String(11, validators=[validators.Email()]), 'edimail.com'), (fields.String(11, validators=[validators.Email()]), 'edi@mailcom'), ]) def test_validate_email(fixed_type, data): with pytest.raises(exceptions.ValidationError): fixed_type.encode(data)
33.837838
76
0.69369
0
0
0
0
2,244
0.896166
0
0
294
0.117412
f7013f89ddf7249cb8c21753c974a4e817c0eaa2
45,183
py
Python
archetypal/schedule.py
brunomarct/archetypal
ce8daf4e18ef3ec92967e5d6837b392199caf83b
[ "MIT" ]
null
null
null
archetypal/schedule.py
brunomarct/archetypal
ce8daf4e18ef3ec92967e5d6837b392199caf83b
[ "MIT" ]
null
null
null
archetypal/schedule.py
brunomarct/archetypal
ce8daf4e18ef3ec92967e5d6837b392199caf83b
[ "MIT" ]
null
null
null
################################################################################ # Module: schedule.py # Description: Functions for handling conversion of EnergyPlus schedule objects # License: MIT, see full license in LICENSE.txt # Web: https://github.com/samuelduchesne/archetypal ################################################################################ import functools import io import logging as lg from datetime import datetime, timedelta import archetypal import numpy as np import pandas as pd from archetypal import log class Schedule(object): """An object designed to handle any EnergyPlys schedule object""" def __init__(self, sch_name, idf=None, start_day_of_the_week=0, strict=False, base_year=2018, schType=None, **kwargs): """ Args: idf (IDF): IDF object sch_name (str): The schedule name in the idf file start_day_of_the_week (int): 0-based day of week (Monday=0) strict (bool): if True, schedules that have the Field-Sets such as Holidays and CustomDay will raise an error if they are absent from the IDF file. If False, any missing qualifiers will be ignored. base_year (int): The base year of the schedule. Defaults to 2018 since the first day of that year is a Monday. """ super(Schedule, self).__init__(**kwargs) self.strict = strict self.idf = idf self.schName = sch_name self.startDayOfTheWeek = self.get_sdow(start_day_of_the_week) self.year = base_year self.startDate = self.start_date() self.count = 0 self.startHOY = 1 self.endHOY = 24 self.unit = "unknown" self.index_ = None self.values = None self.schType = schType _type = kwargs.get('Type', None) if _type is None: self.schTypeLimitsName = self.get_schedule_type_limits_name( sch_type=self.schType) else: self.schTypeLimitsName = _type @classmethod def constant_schedule(cls, hourly_value=1, Name='AlwaysOn', **kwargs): idftxt = "VERSION, 8.9;" # Not an emplty string. has just the # version number # we can make a file handle of a string fhandle = io.StringIO(idftxt) # initialize the IDF object with the file handle idf_scratch = archetypal.IDF(fhandle) idf_scratch.add_object(ep_object='Schedule:Constant'.upper(), **dict(Name=Name, Schedule_Type_Limits_Name='', Hourly_Value=hourly_value), save=False) sched = Schedule(sch_name=Name, idf=idf_scratch, **kwargs) return sched @property def all_values(self): """returns the values array""" if self.values is None: self.values = self.get_schedule_values(sch_name=self.schName, sch_type=self.schType) return self.values else: return self.values @property def max(self): return max(self.all_values) @property def min(self): return min(self.all_values) @property def mean(self): return np.mean(self.all_values) @property def series(self): """Returns the schedule values as a pd.Series object with a DateTimeIndex""" index = pd.date_range(start=self.startDate, periods=len( self.all_values), freq='1H') return pd.Series(self.all_values, index=index) def get_schedule_type_limits_name(self, sch_name=None, sch_type=None): """Return the Schedule Type Limits name associated to a schedule name""" if sch_name is None: sch_name = self.schName if sch_type is None: schedule_values = self.idf.get_schedule_data_by_name(sch_name, sch_type=sch_type) try: schedule_limit_name = schedule_values.Schedule_Type_Limits_Name except: return 'unknown' else: return schedule_limit_name def get_schedule_type_limits_data(self, sch_name=None): """Returns Schedule Type Limits data from schedule name""" if sch_name is None: sch_name = self.schName schedule_values = self.idf.get_schedule_data_by_name(sch_name) try: schedule_limit_name = schedule_values.Schedule_Type_Limits_Name except: # this schedule is probably a 'Schedule:Week:Daily' which does # not have a Schedule_Type_Limits_Name field return '', '', '', '' else: lower_limit, upper_limit, numeric_type, unit_type = \ self.idf.get_schedule_type_limits_data_by_name( schedule_limit_name) self.unit = unit_type if self.unit == "unknown": self.unit = numeric_type return lower_limit, upper_limit, numeric_type, unit_type def get_schedule_type(self, sch_name=None): """Return the schedule type""" if sch_name is None: sch_name = self.schName schedule_values = self.idf.get_schedule_data_by_name(sch_name) sch_type = schedule_values.fieldvalues[0] return sch_type def start_date(self): """The start date of the schedule. Satisfies `startDayOfTheWeek`""" import calendar c = calendar.Calendar(firstweekday=self.startDayOfTheWeek) start_date = c.monthdatescalendar(self.year, 1)[0][0] return datetime(start_date.year, start_date.month, start_date.day) def plot(self, slice=None, **kwargs): hourlyvalues = self.all_values index = pd.date_range(self.startDate, periods=len( hourlyvalues), freq='1H') series = pd.Series(hourlyvalues, index=index, dtype=float) if slice is None: slice = pd.IndexSlice[:] elif len(slice) > 1: slice = pd.IndexSlice[slice[0]:slice[1]] ax = series.loc[slice].plot(**kwargs, label=self.schName) return ax def get_interval_day_ep_schedule_values(self, sch_name=None): """'Schedule:Day:Interval""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('Schedule:Day:Interval'.upper(), sch_name) lower_limit, upper_limit, numeric_type, unit_type = \ self.get_schedule_type_limits_data(sch_name) number_of_day_sch = int((len(values.fieldvalues) - 3) / 2) hourly_values = np.arange(24) start_hour = 0 for i in range(number_of_day_sch): value = float(values['Value_Until_Time_{}'.format(i + 1)]) until_time = [int(s.strip()) for s in values['Time_{}'.format(i + 1)].split(":") if s.strip().isdigit()] end_hour = int(until_time[0] + until_time[1] / 60) for hour in range(start_hour, end_hour): hourly_values[hour] = value start_hour = end_hour if numeric_type.strip().lower() == "discrete": hourly_values = hourly_values.astype(int) return hourly_values def get_hourly_day_ep_schedule_values(self, sch_name=None): """'Schedule:Day:Hourly'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('Schedule:Day:Hourly'.upper(), sch_name) fieldvalues_ = np.array(values.fieldvalues[3:]) return fieldvalues_ def get_compact_weekly_ep_schedule_values(self, sch_name=None, start_date=None, index=None): """'schedule:week:compact'""" if start_date is None: start_date = self.startDate if index is None: idx = pd.date_range(start=start_date, periods=168, freq='1H') slicer_ = pd.Series([False] * (len(idx)), index=idx) else: slicer_ = pd.Series([False] * (len(index)), index=index) if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:week:compact'.upper(), sch_name) weekly_schedules = pd.Series([0] * len(slicer_), index=slicer_.index) # update last day of schedule if self.count == 0: self.schType = values.key self.endHOY = 168 num_of_daily_schedules = int(len(values.fieldvalues[2:]) / 2) for i in range(num_of_daily_schedules): day_type = values['DayType_List_{}'.format(i + 1)].lower() how = self.field_set(day_type, slicer_) if not weekly_schedules.loc[how].empty: # Loop through days and replace with day:schedule values days = [] for name, day in weekly_schedules.loc[how].groupby(pd.Grouper( freq='D')): if not day.empty: ref = values.get_referenced_object( "ScheduleDay_Name_{}".format(i + 1)) day.loc[:] = self.get_schedule_values( sch_name=ref.Name, sch_type=ref.key) days.append(day) new = pd.concat(days) slicer_.update( pd.Series([True] * len(new.index), index=new.index)) slicer_ = slicer_.apply(lambda x: x == True) weekly_schedules.update(new) else: return weekly_schedules.values return weekly_schedules.values def get_daily_weekly_ep_schedule_values(self, sch_name=None): """'schedule:week:daily'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:week:daily'.upper(), sch_name) # 7 list for 7 days of the week hourly_values = [] for day in ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']: ref = values.get_referenced_object( '{}_ScheduleDay_Name'.format(day)) h = self.get_schedule_values(sch_name=ref.Name, sch_type=ref.key) hourly_values.append(h) hourly_values = np.array(hourly_values) # shift days earlier by self.startDayOfTheWeek hourly_values = np.roll(hourly_values, -self.startDayOfTheWeek, axis=0) return hourly_values.ravel() def get_list_day_ep_schedule_values(self, sch_name=None): """'schedule:day:list'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:day:list'.upper(), sch_name) lower_limit, upper_limit, numeric_type, unit_type = \ self.get_schedule_type_limits_data(sch_name) import pandas as pd freq = int(values['Minutes_per_Item']) # Frequency of the values num_values = values.fieldvalues[5:] # List of values method = values['Interpolate_to_Timestep'] # How to resample # fill a list of available values and pad with zeros (this is safer # but should not occur) all_values = np.arange(int(24 * 60 / freq)) for i in all_values: try: all_values[i] = num_values[i] except: all_values[i] = 0 # create a fake index to help us with the resampling index = pd.date_range(start=self.startDate, periods=(24 * 60) / freq, freq='{}T'.format(freq)) series = pd.Series(all_values, index=index) # resample series to hourly values and apply resampler function series = series.resample('1H').apply(_how(method)) return series.values def get_constant_ep_schedule_values(self, sch_name=None): """'schedule:constant'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:constant'.upper(), sch_name) lower_limit, upper_limit, numeric_type, unit_type = \ self.get_schedule_type_limits_data(sch_name) hourly_values = np.arange(8760) value = float(values['Hourly_Value']) for hour in hourly_values: hourly_values[hour] = value if numeric_type.strip().lower() == 'discrete': hourly_values = hourly_values.astype(int) return hourly_values def get_file_ep_schedule_values(self, sch_name=None): """'schedule:file'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:file'.upper(), sch_name) lower_limit, upper_limit, numeric_type, unit_type = \ self.get_schedule_type_limits_data(sch_name) filename = values['File_Name'] column = values['Column_Number'] rows = values['Rows_to_Skip_at_Top'] hours = values['Number_of_Hours_of_Data'] sep = values['Column_Separator'] interp = values['Interpolate_to_Timestep'] import pandas as pd import os idfdir = os.path.dirname(self.idf.idfname) file = os.path.join(idfdir, filename) delimeter = _separator(sep) skip_rows = int(rows) - 1 # We want to keep the column col = [int(column) - 1] # zero-based values = pd.read_csv(file, delimiter=delimeter, skiprows=skip_rows, usecols=col) return values.iloc[:, 0].values def get_compact_ep_schedule_values(self, sch_name=None): """'schedule:compact'""" if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:compact'.upper(), sch_name) lower_limit, upper_limit, numeric_type, unit_type = \ self.get_schedule_type_limits_data(sch_name) field_sets = ['through', 'for', 'interpolate', 'until', 'value'] fields = values.fieldvalues[3:] index = pd.date_range(start=self.startDate, periods=8760, freq='H') zeros = np.zeros(len(index)) slicer_ = pd.Series([False] * len(index), index=index) series = pd.Series(zeros, index=index) from_day = self.startDate ep_from_day = datetime(self.year, 1, 1) from_time = '00:00' how_interpolate = None for field in fields: if any([spe in field.lower() for spe in field_sets]): f_set, hour, minute, value = self.field_interpreter(field) if f_set.lower() == 'through': # main condition. All sub-conditions must obey a # `Through` condition # First, initialize the slice (all False for now) through_conditions = self.invalidate_condition(series) # reset from_time from_time = '00:00' # Prepare ep_to_day variable ep_to_day = self.date_field_interpretation(value) + \ timedelta(days=1) # Calculate Timedelta in days days = (ep_to_day - ep_from_day).days # Add timedelta to start_date to_day = from_day + timedelta(days=days) + timedelta( hours=-1) # slice the conditions with the range and apply True through_conditions.loc[from_day:to_day] = True from_day = to_day + timedelta(hours=1) ep_from_day = ep_to_day elif f_set.lower() == 'for': # slice specific days # reset from_time from_time = '00:00' for_condition = self.invalidate_condition(series) values = value.split() if len(values) > 1: # if multiple `For`. eg.: For: Weekends Holidays, # Combine both conditions for value in values: if value.lower() == 'allotherdays': # Apply condition to slice how = self.field_set(value, slicer_) # Reset though condition through_conditions = how for_condition = how else: how = self.field_set(value, slicer_) for_condition.loc[how] = True elif value.lower() == 'allotherdays': # Apply condition to slice how = self.field_set(value, slicer_) # Reset though condition through_conditions = how for_condition = how else: # Apply condition to slice how = self.field_set(value) for_condition.loc[how] = True # Combine the for_condition with all_conditions all_conditions = through_conditions & for_condition # update in memory slice # self.sliced_day_.loc[all_conditions] = True elif 'interpolate' in f_set.lower(): # we need to upsample to series to 8760 * 60 values new_idx = pd.date_range(start=self.startDate, periods=525600, closed='left', freq='T') series = series.resample('T').pad() series = series.reindex(new_idx) series.fillna(method='pad', inplace=True) through_conditions = through_conditions.resample('T').pad() through_conditions = through_conditions.reindex(new_idx) through_conditions.fillna(method='pad', inplace=True) for_condition = for_condition.resample('T').pad() for_condition = for_condition.reindex(new_idx) for_condition.fillna(method='pad', inplace=True) how_interpolate = value.lower() elif f_set.lower() == 'until': until_condition = self.invalidate_condition(series) if series.index.freq.name == 'T': # until_time = str(int(hour) - 1) + ':' + minute until_time = timedelta(hours=int(hour), minutes=int(minute)) - timedelta( minutes=1) else: until_time = str(int(hour) - 1) + ':' + minute until_condition.loc[until_condition.between_time(from_time, str( until_time)).index] = True all_conditions = for_condition & through_conditions & \ until_condition from_time = str(int(hour)) + ':' + minute elif f_set.lower() == 'value': # If the therm `Value: ` field is used, we will catch it # here. # update in memory slice slicer_.loc[all_conditions] = True series[all_conditions] = value else: # Do something here before looping to the next Field pass else: # If the term `Value: ` is not used; the variable is simply # passed in the Field value = float(field) series[all_conditions] = value # update in memory slice slicer_.loc[all_conditions] = True if how_interpolate: return series.resample('H').mean().values else: return series.values def field_interpreter(self, field): """dealing with a Field-Set (Through, For, Interpolate, # Until, Value) and return the parsed string""" if 'through' in field.lower(): # deal with through if ':' in field.lower(): # parse colon f_set, statement = field.split(':') hour = None minute = None value = statement.strip() else: msg = 'The schedule "{sch}" contains a Field ' \ 'that is not understood: "{field}"'.format( sch=self.schName, field=field) raise NotImplementedError(msg) elif 'for' in field.lower(): if ':' in field.lower(): # parse colon f_set, statement = field.split(':') value = statement.strip() hour = None minute = None else: # parse without a colon msg = 'The schedule "{sch}" contains a Field ' \ 'that is not understood: "{field}"'.format( sch=self.schName, field=field) raise NotImplementedError(msg) elif 'interpolate' in field.lower(): msg = 'The schedule "{sch}" contains sub-hourly values (' \ 'Field-Set="{field}"). The average over the hour is ' \ 'taken'.format(sch=self.schName, field=field) log(msg, lg.WARNING) f_set, value = field.split(':') hour = None minute = None elif 'until' in field.lower(): if ':' in field.lower(): # parse colon try: f_set, hour, minute = field.split(':') hour = hour.strip() # remove trailing spaces minute = minute.strip() # remove trailing spaces value = None except: f_set = 'until' hour, minute = field.split(':') hour = hour[-2:].strip() minute = minute.strip() value = None else: msg = 'The schedule "{sch}" contains a Field ' \ 'that is not understood: "{field}"'.format( sch=self.schName, field=field) raise NotImplementedError(msg) elif 'value' in field.lower(): if ':' in field.lower(): # parse colon f_set, statement = field.split(':') value = statement.strip() hour = None minute = None else: msg = 'The schedule "{sch}" contains a Field ' \ 'that is not understood: "{field}"'.format( sch=self.schName, field=field) raise NotImplementedError(msg) else: # deal with the data value f_set = field hour = None minute = None value = field[len(field) + 1:].strip() return f_set, hour, minute, value @staticmethod def invalidate_condition(series): index = series.index periods = len(series) return pd.Series([False] * periods, index=index) def get_yearly_ep_schedule_values(self, sch_name=None): """'schedule:year'""" # first week start_date = self.startDate idx = pd.date_range(start=start_date, periods=8760, freq='1H') hourly_values = pd.Series([0] * 8760, index=idx) # update last day of schedule self.endHOY = 8760 if sch_name is None: sch_name = self.schName values = self.idf.getobject('schedule:year'.upper(), sch_name) # generate weekly schedules num_of_weekly_schedules = int(len(values.fieldvalues[3:]) / 5) for i in range(num_of_weekly_schedules): ref = values.get_referenced_object( 'ScheduleWeek_Name_{}'.format(i + 1)) start_month = values['Start_Month_{}'.format(i + 1)] end_month = values['End_Month_{}'.format(i + 1)] start_day = values['Start_Day_{}'.format(i + 1)] end_day = values['End_Day_{}'.format(i + 1)] start = datetime.strptime( '{}/{}/{}'.format(self.year, start_month, start_day), '%Y/%m/%d') end = datetime.strptime( '{}/{}/{}'.format(self.year, end_month, end_day), '%Y/%m/%d') days = (end - start).days + 1 end_date = start_date + timedelta(days=days) + timedelta(hours=23) how = pd.IndexSlice[start_date:end_date] weeks = [] for name, week in hourly_values.loc[how].groupby( pd.Grouper(freq='168H')): if not week.empty: try: week.loc[:] = self.get_schedule_values( sch_name=ref.Name, start_date=week.index[0], index=week.index, sch_type=ref.key) except ValueError: week.loc[:] = self.get_schedule_values( ref.Name, week.index[0])[0:len(week)] finally: weeks.append(week) new = pd.concat(weeks) hourly_values.update(new) start_date += timedelta(days=days) return hourly_values.values def get_schedule_values(self, sch_name=None, start_date=None, index=None, sch_type=None): """Main function that returns the schedule values Args: sch_type: index: start_date: """ if sch_name is None: sch_name = self.schName if sch_type is None: schedule_values = self.idf.get_schedule_data_by_name(sch_name) self.schType = schedule_values.key.upper() sch_type = self.schType if self.count == 0: # This is the first time, get the schedule type and the type limits. self.schTypeLimitsName = self.get_schedule_type_limits_name() self.count += 1 if sch_type.upper() == "schedule:year".upper(): hourly_values = self.get_yearly_ep_schedule_values( sch_name) elif sch_type.upper() == "schedule:day:interval".upper(): hourly_values = self.get_interval_day_ep_schedule_values( sch_name) elif sch_type.upper() == "schedule:day:hourly".upper(): hourly_values = self.get_hourly_day_ep_schedule_values( sch_name) elif sch_type.upper() == "schedule:day:list".upper(): hourly_values = self.get_list_day_ep_schedule_values( sch_name) elif sch_type.upper() == "schedule:week:compact".upper(): hourly_values = self.get_compact_weekly_ep_schedule_values( sch_name, start_date, index) elif sch_type.upper() == "schedule:week:daily".upper(): hourly_values = self.get_daily_weekly_ep_schedule_values( sch_name) elif sch_type.upper() == "schedule:constant".upper(): hourly_values = self.get_constant_ep_schedule_values( sch_name) elif sch_type.upper() == "schedule:compact".upper(): hourly_values = self.get_compact_ep_schedule_values( sch_name) elif sch_type.upper() == "schedule:file".upper(): hourly_values = self.get_file_ep_schedule_values( sch_name) else: log('Archetypal does not support "{}" currently'.format( self.schType), lg.WARNING) hourly_values = [] return hourly_values def is_schedule(self, sch_name): """Returns True if idfobject is one of 'schedule_types'""" if sch_name.upper() in self.idf.schedules_dict: return True else: return False def to_year_week_day(self): """convert a Schedule Class to the 'Schedule:Year', 'Schedule:Week:Daily' and 'Schedule:Day:Hourly' representation Returns: 'Schedule:Year', list of ['Schedule:Week:Daily'], list of ['Schedule:Day:Hourly'] """ full_year = np.array(self.all_values) # array of shape (8760,) values = full_year.reshape(-1, 24) # shape (365, 24) # create unique days unique_days, nds = np.unique(values, axis=0, return_inverse=True) ep_days = [] dict_day = {} count_day = 0 for unique_day in unique_days: name = 'd_' + self.schName + '_' + '%03d' % count_day name, count_day = archetypal.check_unique_name('d', count_day, name, archetypal.settings.unique_schedules, suffix=True) dict_day[name] = unique_day archetypal.settings.unique_schedules.append(name) # Create idf_objects for schedule:day:hourly ep_day = self.idf.add_object( ep_object='Schedule:Day:Hourly'.upper(), save=False, **dict(Name=name, Schedule_Type_Limits_Name=self.schType, **{'Hour_{}'.format(i + 1): unique_day[i] for i in range(24)}) ) ep_days.append(ep_day) # create unique weeks from unique days unique_weeks, nwsi, nws, count = np.unique( full_year[:364 * 24, ...].reshape(-1, 168), return_index=True, axis=0, return_inverse=True, return_counts=True) # Appending unique weeks in dictionary with name and values of weeks as # keys # {'name_week': {'dayName':[]}} dict_week = {} count_week = 0 for unique_week in unique_weeks: week_id = 'w_' + self.schName + '_' + '%03d' % count_week week_id, count_week = archetypal.check_unique_name('w', count_week, week_id, archetypal.settings.unique_schedules, suffix=True) archetypal.settings.unique_schedules.append(week_id) dict_week[week_id] = {} for i in list(range(0, 7)): day_of_week = unique_week[..., i * 24:(i + 1) * 24] for key in dict_day: if (day_of_week == dict_day[key]).all(): dict_week[week_id]['day_{}'.format(i)] = key # Create idf_objects for schedule:week:daily list_day_of_week = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'] ordered_day_n = np.array([6, 0, 1, 2, 3, 4, 5]) ordered_day_n = np.roll(ordered_day_n, self.startDayOfTheWeek) ep_weeks = [] for week_id in dict_week: ep_week = self.idf.add_object( ep_object='Schedule:Week:Daily'.upper(), save=False, **dict(Name=week_id, **{'{}_ScheduleDay_Name'.format( weekday): dict_week[week_id][ 'day_{}'.format(i)] for i, weekday in zip(ordered_day_n, list_day_of_week) }, Holiday_ScheduleDay_Name= dict_week[week_id]['day_6'], SummerDesignDay_ScheduleDay_Name= dict_week[week_id]['day_1'], WinterDesignDay_ScheduleDay_Name= dict_week[week_id]['day_1'], CustomDay1_ScheduleDay_Name= dict_week[week_id]['day_2'], CustomDay2_ScheduleDay_Name= dict_week[week_id]['day_5']) ) ep_weeks.append(ep_week) import itertools blocks = {} from_date = datetime(self.year, 1, 1) bincount = [sum(1 for _ in group) for key, group in itertools.groupby(nws + 1) if key] week_order = {i: v for i, v in enumerate(np.array( [key for key, group in itertools.groupby(nws + 1) if key]) - 1)} for i, (week_n, count) in enumerate( zip(week_order, bincount)): week_id = list(dict_week)[week_order[i]] to_date = from_date + timedelta(days=int(count * 7), hours=-1) blocks[i] = {} blocks[i]['week_id'] = week_id blocks[i]['from_day'] = from_date.day blocks[i]['end_day'] = to_date.day blocks[i]['from_month'] = from_date.month blocks[i]['end_month'] = to_date.month from_date = to_date + timedelta(hours=1) # If this is the last block, force end of year if i == len(bincount) - 1: blocks[i]['end_day'] = 31 blocks[i]['end_month'] = 12 new_dict = dict(Name=self.schName + '_', Schedule_Type_Limits_Name=self.schTypeLimitsName) for i in blocks: new_dict.update({"ScheduleWeek_Name_{}".format(i + 1): blocks[i]['week_id'], "Start_Month_{}".format(i + 1): blocks[i]['from_month'], "Start_Day_{}".format(i + 1): blocks[i]['from_day'], "End_Month_{}".format(i + 1): blocks[i]['end_month'], "End_Day_{}".format(i + 1): blocks[i]['end_day']}) ep_year = self.idf.add_object(ep_object='Schedule:Year'.upper(), save=False, **new_dict) return ep_year, ep_weeks, ep_days def date_field_interpretation(self, field): """Date Field Interpretation Args: field (str): The EnergyPlus Field Contents Returns: (datetime): The datetime object Info: See EnergyPlus documentation for more details: 1.6.8.1.2 Field: Start Date (Table 1.4: Date Field Interpretation) """ # < number > Weekday in Month formats = ['%m/%d', '%d %B', '%B %d', '%d %b', '%b %d'] date = None for format_str in formats: # Tru to parse using each defined formats try: date = datetime.strptime(field, format_str) except: pass else: date = datetime(self.year, date.month, date.day) if date is None: # if the defined formats did not work, try the fancy parse try: date = self.parse_fancy_string(field) except: msg = "the schedule '{sch}' contains a " \ "Field that is not understood: '{field}'".format( sch=self.schName, field=field) raise ValueError(msg) else: return date else: return date def parse_fancy_string(self, field): """Will try to parse cases such as `3rd Monday in February` or `Last Weekday In Month` Args: field (str): The EnergyPlus Field Contents Returns: (datetime): The datetime object """ import re # split the string at the term ' in ' time, month = field.lower().split(' in ') month = datetime.strptime(month, '%B').month # split the first part into nth and dayofweek nth, dayofweek = time.split(' ') if 'last' in nth: nth = -1 # Use the last one else: nth = re.findall(r'\d+', nth) # use the nth one nth = int(nth[0]) - 1 # python is zero-based weekday = {'monday': 0, 'tuesday': 1, 'wednesday': 2, 'thursday': 3, 'friday': 4, 'saturday': 5, 'sunday': 6} # parse the dayofweek eg. monday dayofweek = weekday.get(dayofweek, 6) # create list of possible days using Calendar import calendar c = calendar.Calendar(firstweekday=self.startDayOfTheWeek) monthcal = c.monthdatescalendar(self.year, month) # iterate though the month and get the nth weekday date = [day for week in monthcal for day in week if \ day.weekday() == dayofweek and \ day.month == month][nth] return datetime(date.year, date.month, date.day) def field_set(self, field, slicer_=None): """helper function to return the proper slicer depending on the field_set value. Available values are: Weekdays, Weekends, Holidays, Alldays, SummerDesignDay, WinterDesignDay, Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, CustomDay1, CustomDay2, AllOtherDays Args: field (str): The EnergyPlus field set value. slicer_ (pd.Series): The persistent slicer for this schedule Returns: (indexer-like): Returns the appropriate indexer for the series. """ if field.lower() == 'weekdays': # return only days of weeks return lambda x: x.index.dayofweek < 5 elif field.lower() == 'weekends': # return only weekends return lambda x: x.index.dayofweek >= 5 elif field.lower() == 'alldays': log('For schedule "{}", the field-set "AllDays" may be overridden ' 'by the "AllOtherDays" field-set'.format( self.schName), lg.WARNING) # return all days := equivalenet to .loc[:] return pd.IndexSlice[:] elif field.lower() == 'allotherdays': # return unused days (including special days). Uses the global # variable `slicer_` import operator if slicer_ is not None: return _conjunction(*[self.special_day(field, slicer_), ~slicer_], logical=operator.or_) else: raise NotImplementedError elif field.lower() == 'sunday': # return only sundays return lambda x: x.index.dayofweek == 6 elif field.lower() == 'monday': # return only mondays return lambda x: x.index.dayofweek == 0 elif field.lower() == 'tuesday': # return only Tuesdays return lambda x: x.index.dayofweek == 1 elif field.lower() == 'wednesday': # return only Wednesdays return lambda x: x.index.dayofweek == 2 elif field.lower() == 'thursday': # return only Thursdays return lambda x: x.index.dayofweek == 3 elif field.lower() == 'friday': # return only Fridays return lambda x: x.index.dayofweek == 4 elif field.lower() == 'saturday': # return only Saturdays return lambda x: x.index.dayofweek == 5 elif field.lower() == 'summerdesignday': # return design_day(self, field) return None elif field.lower() == 'winterdesignday': # return design_day(self, field) return None elif field.lower() == 'holiday' or field.lower() == 'holidays': field = 'holiday' return self.special_day(field, slicer_) elif not self.strict: # If not strict, ignore missing field-sets such as CustomDay1 return pd.IndexSlice[:] else: raise NotImplementedError( 'Archetypal does not yet support The ' 'Field_set "{}"'.format(field)) def __len__(self): """returns the length of all values of the schedule""" return len(self.all_values) def __eq__(self, other): """Overrides the default implementation""" if isinstance(other, Schedule): return self.all_values == other.all_values else: raise NotImplementedError def __ne__(self, other): return ~(self.__eq__(other)) def __add__(self, other): if isinstance(other, Schedule): return self.all_values + other.all_values elif isinstance(other, list): return self.all_values + other else: raise NotImplementedError def __sub__(self, other): if isinstance(other, Schedule): return self.all_values - other.all_values elif isinstance(other, list): return self.all_values - other else: raise NotImplementedError def __mul__(self, other): if isinstance(other, Schedule): return self.all_values * other.all_values elif isinstance(other, list): return self.all_values * other else: raise NotImplementedError def get_sdow(self, start_day_of_week): """Returns the start day of the week""" if start_day_of_week is None: return self.idf.day_of_week_for_start_day else: return start_day_of_week def special_day(self, field, slicer_): """try to get the RunPeriodControl:SpecialDays for the corresponding Day Type""" sp_slicer_ = slicer_.copy() sp_slicer_.loc[:] = False special_day_types = ['holiday', 'customday1', 'customday2'] dds = self.idf.idfobjects['RunPeriodControl:SpecialDays'.upper()] dd = [dd for dd in dds if dd.Special_Day_Type.lower() == field or dd.Special_Day_Type.lower() in special_day_types] if len(dd) > 0: slice = [] for dd in dd: # can have more than one special day types data = dd.Start_Date ep_start_date = self.date_field_interpretation(data) ep_orig = datetime(self.year, 1, 1) days_to_speciald = (ep_start_date - ep_orig).days duration = int(dd.Duration) from_date = self.startDate + timedelta(days=days_to_speciald) to_date = from_date + timedelta(days=duration) + timedelta( hours=-1) sp_slicer_.loc[from_date:to_date] = True return sp_slicer_ elif not self.strict: return sp_slicer_ else: msg = 'Could not find a "SizingPeriod:DesignDay" object ' \ 'needed for schedule "{}" with Day Type "{}"'.format( self.schName, field.capitalize() ) raise ValueError(msg) def design_day(schedule, field): # try to get the SizingPeriod:DesignDay for the corresponding Day Type dds = schedule.idf.idfobjects['SizingPeriod:DesignDay'.upper()] dd = [dd for dd in dds if dd.Day_Type.lower() == field] if len(dd) > 0: # should have found only one design day matching the Day Type data = [dd[0].Month, dd[0].Day_of_Month] date = '/'.join([str(item).zfill(2) for item in data]) date = schedule.date_field_interpretation(date) return lambda x: x.index == date else: msg = 'Could not find a "SizingPeriod:DesignDay" object ' \ 'needed for schedule "{}" with Day Type "{}"'.format( schedule.schName, field.capitalize() ) raise ValueError(msg) def _conjunction(*conditions, logical=np.logical_and): """Applies a logical function on n conditions""" return functools.reduce(logical, conditions) def _separator(sep): """helper function to return the correct delimiter""" if sep == 'Comma': return ',' elif sep == 'Tab': return '\t' elif sep == 'Fixed': return None elif sep == 'Semicolon': return ';' else: return ',' def _how(how): """Helper function to return the correct resampler""" if how.lower() == 'average': return 'mean' elif how.lower() == 'linear': return 'interpolate' elif how.lower() == 'no': return 'max' else: return 'max'
39.808811
100
0.535799
43,146
0.954917
0
0
1,737
0.038444
0
0
9,992
0.221145
f7024605869dd7788905637cfccaa41707efb6c3
256
py
Python
data/scripts/reverse.py
levindu/OpenCC
345ea91303e5b3d9332dc51ea73370dac83e4c6b
[ "Apache-2.0" ]
43
2018-09-17T00:45:35.000Z
2021-11-14T23:56:45.000Z
data/scripts/reverse.py
levindu/OpenCC
345ea91303e5b3d9332dc51ea73370dac83e4c6b
[ "Apache-2.0" ]
7
2019-11-26T10:48:14.000Z
2021-06-13T04:49:58.000Z
data/scripts/reverse.py
levindu/OpenCC
345ea91303e5b3d9332dc51ea73370dac83e4c6b
[ "Apache-2.0" ]
6
2018-09-17T02:09:59.000Z
2020-08-15T13:57:44.000Z
#!/usr/bin/env python #coding: utf-8 import sys from common import reverse_items if len(sys.argv) != 3: print("Reverse key and value of all pairs") print(("Usage: ", sys.argv[0], "[input] [output]")) exit(1) reverse_items(sys.argv[1], sys.argv[2])
21.333333
53
0.671875
0
0
0
0
0
0
0
0
98
0.382813
f703531b591af3d5317bed220eaa477c0403e4d5
2,576
py
Python
stock_predictions/web/template.py
abakhru/stock_prediction
bfb4483ac888bc67e2a8928fdf037d23acbf48f9
[ "MIT" ]
1
2020-07-14T09:05:56.000Z
2020-07-14T09:05:56.000Z
stock_predictions/web/template.py
abakhru/stock_prediction
bfb4483ac888bc67e2a8928fdf037d23acbf48f9
[ "MIT" ]
null
null
null
stock_predictions/web/template.py
abakhru/stock_prediction
bfb4483ac888bc67e2a8928fdf037d23acbf48f9
[ "MIT" ]
null
null
null
template = """<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>Title of the document</title> <script type="text/javascript" src="https://s3.tradingview.com/tv.js"></script> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/milligram/1.3.0/milligram.min.css"> <style> .tradingview-widget-container {{ position: sticky; top: 20px; }} .stocks-view {{ display: flex; flex-wrap: nowrap; }} .stocks-listing {{ width: 780px; flex-wrap: nowrap; padding: 20px; }} .stocks-graph {{ flex-wrap: nowrap; padding: 20px; }} th.sticky-header {{ position: sticky; top: 0; z-index: 10; background-color: white; }} .positive-movement {{ color: green; font-weight: bold; }} .negative-movement {{ color: red; font-weight: bold; }} .blue-category {{ background-color: lightsteelblue; }} </style> </head> <body> {} <div class="stocks-view"> <div class="stocks-listing"> <table> <thead> <tr> <th class="sticky-header">Symbol</th> <th class="sticky-header">April 1 2019</th> <th class="sticky-header">Dec 2 2019</th> <th class="sticky-header">Today</th> <th class="sticky-header">Movement since April 1 2019</th> <th class="sticky-header">Movement since Dec 2 2019</th> <th class="sticky-header">Bankruptcy probability</th> </tr> </thead> <tbody> {} </tbody> </table> </div> <div class="stocks-graph" <!-- TradingView Widget BEGIN --> <div class="tradingview-widget-container"> <div id="tradingview_63a66"></div> <div class="tradingview-widget-copyright"><a href="https://www.tradingview.com/symbols/AAPL/" rel="noopener" target="_blank"><span class="blue-text">AAPL Chart</span></a> by TradingView</div> </div> <!-- TradingView Widget END --> </div> </div> <script type="text/javascript"> function renderChart(symbol) {{ new TradingView.widget( {{ "width": 750, "height": 500, "symbol": symbol, "interval": "180", "timezone": "Etc/UTC", "theme": "light", "style": "1", "locale": "en", "toolbar_bg": "#f1f3f6", "enable_publishing": false, "allow_symbol_change": true, "container_id": "tradingview_63a66" }} ); }} document.addEventListener('DOMContentLoaded', function(){{ renderChart('BA'); }}, false); </script> </body> </html>"""
24.533333
195
0.572593
0
0
0
0
0
0
0
0
2,564
0.995342
f704431757b191fd6a6405e1724d23679ca1b2f0
1,173
py
Python
script/app/agg.py
Intelligent-Systems-Lab/ISL-BCFL
42ceb86708a76e28b31c22b33c15ee9a6a745ec7
[ "Apache-2.0" ]
null
null
null
script/app/agg.py
Intelligent-Systems-Lab/ISL-BCFL
42ceb86708a76e28b31c22b33c15ee9a6a745ec7
[ "Apache-2.0" ]
null
null
null
script/app/agg.py
Intelligent-Systems-Lab/ISL-BCFL
42ceb86708a76e28b31c22b33c15ee9a6a745ec7
[ "Apache-2.0" ]
null
null
null
import os # import torch import argparse import base64 import sys import io import torch import torch.nn as nn from torchvision import transforms from torch.utils.data import DataLoader from torch.utils.data.sampler import SubsetRandomSampler def fullmodel2base64(model): buffer = io.BytesIO() torch.save(model, buffer) bg = buffer.getvalue() return base64.b64encode(bg).decode() def base642fullmodel(modbase64): inputrpc = bytes(modbase64.encode()) inputrpc_ = base64.b64decode(inputrpc) loadmodel = torch.load(io.BytesIO(inputrpc_)) return loadmodel model_list = [] f = open(sys.argv[1], "r") models = f.read().split(",") f.close() print(models) for m in models: model_list.append(base642fullmodel(m)) new_model_state = model_list[0].state_dict() #sum the weight of the model for m in model_list[1:]: state_m = m.state_dict() for key in state_m: new_model_state[key] += state_m[key] #average the model weight for key in new_model_state: new_model_state[key] /= len(model_list) new_model = model_list[0] new_model.load_state_dict(new_model_state) output = fullmodel2base64(new_model) print(output)
19.55
56
0.734868
0
0
0
0
0
0
0
0
73
0.062234
f70474925eb078c598d03d4255e4e76e7b6c9361
420
py
Python
examples/function_examples/bpod_info.py
ckarageorgkaneen/pybpod-api
ebccef800ae1abf3b6a643ff33166fab2096c780
[ "MIT" ]
1
2021-01-18T08:18:22.000Z
2021-01-18T08:18:22.000Z
examples/function_examples/bpod_info.py
ckarageorgkaneen/pybpod-api
ebccef800ae1abf3b6a643ff33166fab2096c780
[ "MIT" ]
1
2020-09-18T20:46:11.000Z
2020-12-29T14:55:20.000Z
examples/function_examples/bpod_info.py
ckarageorgkaneen/pybpod-api
ebccef800ae1abf3b6a643ff33166fab2096c780
[ "MIT" ]
3
2020-09-12T15:32:11.000Z
2022-03-11T23:08:03.000Z
# !/usr/bin/python3 # -*- coding: utf-8 -*- """ Get hardware info from Bpod """ from pybpodapi.protocol import Bpod from confapp import conf my_bpod = Bpod() my_bpod.close() print("Target Bpod firmware version: ", conf.TARGET_BPOD_FIRMWARE_VERSION) print("Firmware version (read from device): ", my_bpod.hardware.firmware_version) print("Machine type version (read from device): ", my_bpod.hardware.machine_type)
21
81
0.742857
0
0
0
0
0
0
0
0
192
0.457143
f704c0f9b4488488f3aae9f679bb84275d8e52d4
11,405
py
Python
src/core/src/core_logic/PackageFilter.py
Azure/LinuxPatchExtension
6af622afb4298805bdf47328d6bc66a785f7166b
[ "Apache-2.0" ]
4
2020-06-01T14:36:30.000Z
2021-08-24T16:55:50.000Z
src/core/src/core_logic/PackageFilter.py
Azure/LinuxPatchExtension
6af622afb4298805bdf47328d6bc66a785f7166b
[ "Apache-2.0" ]
34
2020-09-11T17:20:42.000Z
2022-03-28T14:08:44.000Z
src/core/src/core_logic/PackageFilter.py
Azure/LinuxPatchExtension
6af622afb4298805bdf47328d6bc66a785f7166b
[ "Apache-2.0" ]
1
2020-12-28T10:13:20.000Z
2020-12-28T10:13:20.000Z
# Copyright 2020 Microsoft Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Requires Python 2.7+ """Package Filter""" from core.src.bootstrap.Constants import Constants import fnmatch class PackageFilter(object): """implements the Package filtering logic""" def __init__(self, execution_config, composite_logger): self.execution_config = execution_config self.composite_logger = composite_logger # Exclusions - note: version based exclusion is not supported self.global_excluded_packages = self.sanitize_str_to_list(self.execution_config.global_exclusion_list) self.installation_excluded_package_masks = self.execution_config.excluded_package_name_mask_list self.installation_excluded_packages, self.installation_excluded_package_versions = self.get_packages_and_versions_from_masks(self.installation_excluded_package_masks) # Inclusions - note: version based inclusion is optionally supported self.installation_included_package_masks = self.execution_config.included_package_name_mask_list self.installation_included_packages, self.installation_included_package_versions = self.get_packages_and_versions_from_masks(self.installation_included_package_masks) self.installation_included_classifications = [] if self.execution_config.included_classifications_list is None else self.execution_config.included_classifications_list # Neutralize global excluded packages, if customer explicitly includes the package packages_to_clear_from_global = [] for package in self.global_excluded_packages: if self.check_for_explicit_inclusion(package): self.composite_logger.log_debug('Removing package from global exclusion list: ' + package) packages_to_clear_from_global.append(package) self.global_excluded_packages = [x for x in self.global_excluded_packages if x not in packages_to_clear_from_global] # Logging self.composite_logger.log("\nAzure globally-excluded packages: " + str(self.global_excluded_packages)) self.composite_logger.log("Included package classifications: " + ', '.join(self.installation_included_classifications)) self.composite_logger.log("Included packages: " + str(self.installation_included_package_masks)) self.composite_logger.log("Excluded packages: " + str(self.installation_excluded_packages)) if '=' in str(self.installation_excluded_package_masks): self.composite_logger.log_error("\n /!\\ Package exclusions do not support version matching in the filter today. " "Due to this, more packages than expected may be excluded from this update deployment.") # region Inclusion / exclusion presence checks def is_exclusion_list_present(self): """Return true if either Global or patch installation specific exclusion list present""" return bool(self.global_excluded_packages) or bool(self.installation_excluded_packages) def is_inclusion_list_present(self): """Return true if patch installation Inclusion is present""" return bool(self.installation_included_packages) # endregion # region Package exclusion checks def check_for_exclusion(self, one_or_more_packages): """Return true if package need to be excluded""" return self.check_for_match(one_or_more_packages, self.installation_excluded_packages) or \ self.check_for_match(one_or_more_packages, self.global_excluded_packages) # endregion # region Package inclusion checks def check_for_inclusion(self, package, package_version=Constants.DEFAULT_UNSPECIFIED_VALUE): """Return true if package should be included (either because no inclusion list is specified, or because of explicit match)""" return not self.is_inclusion_list_present() or self.check_for_explicit_inclusion(package, package_version) def check_for_explicit_inclusion(self, package, package_version=Constants.DEFAULT_UNSPECIFIED_VALUE): """Return true if package should be included due to an explicit match to the inclusion list """ return self.check_for_match(package, self.installation_included_packages, package_version, self.installation_included_package_versions) # endregion # region Inclusion / exclusion common match checker def check_for_match(self, one_or_more_packages, matching_list, linked_package_versions=Constants.DEFAULT_UNSPECIFIED_VALUE, version_matching_list=Constants.DEFAULT_UNSPECIFIED_VALUE): # type: (str, object, str, object) -> bool # type hinting to remove a warning """Return true if package(s) (with, optionally, linked version(s)) matches the filter list""" if matching_list: if type(one_or_more_packages) is str: return self.single_package_check_for_match(one_or_more_packages, matching_list, linked_package_versions, version_matching_list) else: for index, each_package in enumerate(one_or_more_packages): if type(linked_package_versions) is str: if self.single_package_check_for_match(each_package, matching_list, linked_package_versions, version_matching_list): return True else: if self.single_package_check_for_match(each_package, matching_list, linked_package_versions[index], version_matching_list): return True return False def single_package_check_for_match(self, package, matching_list, package_version, version_matching_list): """Returns true if a single package (optionally, version) matches the filter list""" for index, matching_package in enumerate(matching_list): if fnmatch.fnmatch(package, matching_package) or fnmatch.fnmatch(self.get_product_name_without_arch(package), matching_package): self.composite_logger.log_debug(' - [Package] {0} matches expression {1}'.format(package, matching_package)) if package_version == Constants.DEFAULT_UNSPECIFIED_VALUE or not version_matching_list or version_matching_list[index] == Constants.DEFAULT_UNSPECIFIED_VALUE: self.composite_logger.log_debug(' - [Version] Check skipped as not specified.') return True elif len(version_matching_list) > index and fnmatch.fnmatch(package_version, version_matching_list[index]): self.composite_logger.log_debug(' - [Version] {0} matches expression {1}'.format(package, version_matching_list[index])) return True elif len(version_matching_list) <= index: # This should never happen - something has gone horribly wrong self.composite_logger.log_error(' - [Version] Index error - ({0} of {1})'.format(index + 1, len(version_matching_list))) else: self.composite_logger.log_debug(' - Package {0} (version={1}) was found, but it did not match filter specified for version ({2})'.format(package, package_version, version_matching_list[index])) return False @staticmethod def get_product_name_without_arch(package_name): """Splits out product name without architecture - if this is changed, review YumPackageManager""" architectures = ['.x86_64', '.noarch', '.i686'] for arch in architectures: if package_name.endswith(arch): return package_name.replace(arch, '') return package_name # endregion # region Get included / excluded package masks def get_packages_and_versions_from_masks(self, package_masks): """Return package names and versions""" packages = [] package_versions = [] if package_masks is not None: for index, package_mask in enumerate(package_masks): package_mask_split = str(package_mask).split('=') if len(package_mask_split) == 1: # no version specified packages.append(package_mask_split[0].strip()) package_versions.append(Constants.DEFAULT_UNSPECIFIED_VALUE) elif len(package_mask_split) == 2: # version also specified packages.append(package_mask_split[0].strip()) package_versions.append(package_mask_split[1].strip()) else: # invalid format self.composite_logger.log_warning("Invalid package format: " + str(package_mask) + " [Ignored]") return packages, package_versions @staticmethod def sanitize_str_to_list(string_input): """Strips excess white-space and converts a comma-separated string to a list""" return [] if (string_input is None) else string_input.strip().split(",") # endregion # region Get installation classifications from execution configuration def is_msft_critsec_classification_only(self): return ('Critical' in self.installation_included_classifications or 'Security' in self.installation_included_classifications) and 'Other' not in self.installation_included_classifications def is_msft_other_classification_only(self): return 'Other' in self.installation_included_classifications and not ('Critical' in self.installation_included_classifications or 'Security' in self.installation_included_classifications) def is_msft_all_classification_included(self): """Returns true if all classifications were individually selected *OR* (nothing was selected AND no inclusion list is present) -- business logic""" all_classifications = [key for key in Constants.PackageClassification.__dict__.keys() if not key.startswith('__')] all_classifications_explicitly_selected = bool(len(self.installation_included_classifications) == (len(all_classifications) - 1)) no_classifications_selected = bool(len(self.installation_included_classifications) == 0) only_unclassified_selected = bool('Unclassified' in self.installation_included_classifications and len(self.installation_included_classifications) == 1) return all_classifications_explicitly_selected or ((no_classifications_selected or only_unclassified_selected) and not self.is_inclusion_list_present()) def is_invalid_classification_combination(self): return ('Other' in self.installation_included_classifications and 'Critical' in self.installation_included_classifications and 'Security' not in self.installation_included_classifications) or \ ('Other' in self.installation_included_classifications and 'Security' in self.installation_included_classifications and 'Critical' not in self.installation_included_classifications) # endregion
65.924855
216
0.728979
10,703
0.938448
0
0
615
0.053924
0
0
3,198
0.280403
f70920a45d8b352e57cdd5c4ba4ed7a956b3f421
4,150
py
Python
pyesgf/util.py
ggarcias/esgf-pyclient-cmip6
9e7975d2e676ed2c4001edb4e25c9c20cc16b7af
[ "BSD-3-Clause" ]
17
2016-09-07T02:55:30.000Z
2022-03-10T15:34:53.000Z
pyesgf/util.py
ggarcias/esgf-pyclient-cmip6
9e7975d2e676ed2c4001edb4e25c9c20cc16b7af
[ "BSD-3-Clause" ]
61
2015-05-27T08:10:46.000Z
2022-03-17T12:36:45.000Z
pyesgf/util.py
ggarcias/esgf-pyclient-cmip6
9e7975d2e676ed2c4001edb4e25c9c20cc16b7af
[ "BSD-3-Clause" ]
22
2015-10-27T11:21:05.000Z
2022-01-12T08:26:16.000Z
""" Utility functions using the pyesgf package. """ import sys from urllib.parse import quote_plus def ats_url(base_url): """ Return the URL for the ESGF SAML AttributeService """ # Strip '/' from url as necessary base_url = base_url.rstrip('/') return '/'.join([base_url, 'esgf-idp/saml/soap/secure/attributeService.htm']) def get_manifest(drs_id, version, connection): """ Retrieve the filenames, sizes and checksums of a dataset. This function will raise ValueError if more than one dataset is found matching the given drs_id and version on a search without replicas. The connection should be either distrib=True or be connected to a suitable ESGF search interface. :param drs_id: a string containing the DRS identifier without version :param version: The version as a string or int """ if isinstance(version, int): version = str(version) context = connection.new_context(drs_id=drs_id, version=version) results = context.search() if len(results) > 1: raise ValueError("Search for dataset %s.v%s returns multiple hits" % (drs_id, version)) file_context = results[0].file_context() manifest = {} for file in file_context.search(): manifest[file.filename] = { 'checksum_type': file.checksum_type, 'checksum': file.checksum, 'size': file.size, } return manifest def urlencode(query): """ Encode a sequence of two-element tuples or dictionary into a URL query string. This version is adapted from the standard library to understand operators in the pyesgf.search.constraints module. If the query arg is a sequence of two-element tuples, the order of the parameters in the output will match the order of parameters in the input. """ if hasattr(query, "items"): # mapping objects query = list(query.items()) else: # it's a bother at times that strings and string-like objects are # sequences... try: # non-sequence items should not work with len() # non-empty strings will fail this if len(query) and not isinstance(query[0], tuple): raise TypeError # zero-length sequences of all types will get here and succeed, # but that's a minor nit - since the original implementation # allowed empty dicts that type of behavior probably should be # preserved for consistency except TypeError: ty, va, tb = sys.exc_info() raise TypeError("not a valid non-string sequence " "or mapping object", tb) def append(k, v, tag, lst): from .search.consts import OPERATOR_NEQ if tag == OPERATOR_NEQ: lst.append('%s!=%s' % (k, v)) elif tag is None: lst.append('%s=%s' % (k, v)) else: raise ValueError('Unknown operator tag %s' % tag) def strip_tag(v): if isinstance(v, tuple): tag, v = v else: tag = None return tag, v lst = [] for k, v in query: tag, v = strip_tag(v) k = quote_plus(str(k)) if isinstance(v, str): if hasattr(v, 'encode'): # is there a reasonable way to convert to ASCII? # encode generates a string, but "replace" or "ignore" # lose information and "strict" can raise UnicodeError v = quote_plus(v.encode("ASCII", "replace")) else: v = quote_plus(v) append(k, v, tag, lst) else: try: # is this a sufficient test for sequence-ness? len(v) except TypeError: # not a sequence v = quote_plus(str(v)) append(k, v, tag, lst) else: # loop over the sequence for elt in v: append(k, quote_plus(str(elt)), tag, lst) return '&'.join(lst)
30.291971
78
0.576867
0
0
0
0
0
0
0
0
1,875
0.451807
f709b6ad81d25a0c074deaa1308cf04158654f02
1,373
py
Python
tests/book/ch05/classify_name.py
TITC/pyhanlp
ad062f358805da5bf97f78d9f37f441c06ae4d19
[ "Apache-2.0" ]
null
null
null
tests/book/ch05/classify_name.py
TITC/pyhanlp
ad062f358805da5bf97f78d9f37f441c06ae4d19
[ "Apache-2.0" ]
null
null
null
tests/book/ch05/classify_name.py
TITC/pyhanlp
ad062f358805da5bf97f78d9f37f441c06ae4d19
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- # Author:hankcs # Date: 2018-06-21 19:46 # 《自然语言处理入门》5.3 基于感知机的人名性别分类 # 配套书籍:http://nlp.hankcs.com/book.php # 讨论答疑:https://bbs.hankcs.com/ import sys,os# environment, adjust the priority sys.path.insert(0,os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))) from pyhanlp import * from tests.test_utility import ensure_data PerceptronNameGenderClassifier = JClass('com.hankcs.hanlp.model.perceptron.PerceptronNameGenderClassifier') cnname = ensure_data('cnname', 'http://file.hankcs.com/corpus/cnname.zip') TRAINING_SET = os.path.join(cnname, 'train.csv') TESTING_SET = os.path.join(cnname, 'test.csv') MODEL = cnname + ".bin" def run_classifier(averaged_perceptron): print('=====%s=====' % ('平均感知机算法' if averaged_perceptron else '朴素感知机算法')) classifier = PerceptronNameGenderClassifier() print('训练集准确率:', classifier.train(TRAINING_SET, 10, averaged_perceptron)) model = classifier.getModel() print('特征数量:', len(model.parameter)) # model.save(MODEL, model.featureMap.entrySet(), 0, True) # classifier = PerceptronNameGenderClassifier(MODEL) for name in "赵建军", "沈雁冰", "陆雪琪", "李冰冰": print('%s=%s' % (name, classifier.predict(name))) print('测试集准确率:', classifier.evaluate(TESTING_SET)) if __name__ == '__main__': run_classifier(False) run_classifier(True)
38.138889
112
0.718864
0
0
0
0
0
0
0
0
692
0.452583
f70b82a64651b669501101e2383b4a201ac4b9ba
5,305
py
Python
tests/test_content_download.py
easydo-cn/edo_client
775f185c54f2eeda6a7dd6482de8228ca9ad89b0
[ "Apache-2.0" ]
null
null
null
tests/test_content_download.py
easydo-cn/edo_client
775f185c54f2eeda6a7dd6482de8228ca9ad89b0
[ "Apache-2.0" ]
null
null
null
tests/test_content_download.py
easydo-cn/edo_client
775f185c54f2eeda6a7dd6482de8228ca9ad89b0
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 import io import os import shutil import tempfile import unittest from edo_client import WoClient class ContentApi_DownloadTestCase(unittest.TestCase): ''' - Basically this is to ensure all the facilities related to HTTP range headers are working properly; ''' @classmethod def setUpClass(cls): cls.file_size = 10 * (2 ** 20) cls.download_url = 'http://192.168.1.115/docker/unittest/10mb.test' cls.api_url = 'https://httpbin.org/redirect-to?url={}'.format( cls.download_url ) cls.empty_file_url = 'http://192.168.1.115/docker/unittest/empty_file.bin' # We're just testing some basic util functions, # and don't want a real WoClient instance cls.client = WoClient( cls.api_url + '#', '', '', '', '', account='', instance='' ) cls.tmpdir = tempfile.mkdtemp() @classmethod def tearDownClass(cls): shutil.rmtree(cls.tmpdir) def test_01_get_download_url(self): self.assertEqual( self.client.content.get_download_url(uid=''), self.download_url, 'Should be able to extract direct download URL from 302 redirect' ) def test_11_download_to_stream_all(self): '''测试:下载完整文件到流''' stream = io.BytesIO() self.client.content.download_to_stream( stream, url=self.download_url ) self.assertEqual( self.file_size, stream.tell(), 'Cursor should be at the end of stream after download' ) stream.seek(0, os.SEEK_SET) self.assertEqual( self.file_size, len(stream.read()), 'File length should be 10240 bytes' ) def test_12_download_stream_first_byte(self): '''测试:下载第一个字节到流''' stream = io.BytesIO() self.client.content.download_to_stream( stream, url=self.download_url, start=0, end=0, ) self.assertEqual(1, stream.tell(), 'Download first byte of file') def test_13_download_stream_head_part(self): '''测试:从头下载一部分到流''' stream = io.BytesIO() self.client.content.download_to_stream( stream, url=self.download_url, start=0, end=(5 * (2 ** 20) - 1), ) self.assertEqual(5 * (2 ** 20), stream.tell()) def test_14_download_stream_tail_part(self): '''测试:从中间开始,下载文件后半部分到流''' stream = io.BytesIO() self.client.content.download_to_stream( stream, url=self.download_url, start=(5 * (2 ** 20)), end=None, ) self.assertEqual(5 * (2 ** 20), stream.tell()) def test_15_download_partial(self): '''测试:从中间开始,下载一部分到流''' stream = io.BytesIO() start, end = 1234, 54321 self.client.content.download_to_stream( stream, url=self.download_url, start=start, end=end, ) self.assertEqual(stream.tell(), end - start + 1) def test_21_get_data_full_size(self): '''测试:完整读取文件内容''' self.assertEqual( self.file_size, len(self.client.content.get_data(url=self.download_url)), '.get_data shoule be able to download the whole file by default', ) def test_22_get_data_first_byte(self): '''测试:读取文件第一个字节''' self.assertEqual( 1, len(self.client.content.get_data(url=self.download_url, size=1)), '.get_data should be able to download the 1st byte of given file', ) def test_23_get_data_head_part(self): '''测试:从头读取文件的一部分内容''' size = 5432 self.assertEqual( size, len(self.client.content.get_data(url=self.download_url, size=size)), # noqa E501 '.get_data should download the first {} bytes'.format(size), ) def test_24_get_data_tail_part(self): '''测试:从中间开始,读取文件后半部分内容''' start = 12345 size = self.file_size - start self.assertEqual( size, len(self.client.content.get_data( url=self.download_url, offset=start, size=size )), '.get_data shoule download last {} bytes'.format(size), ) def test_25_get_data_partial(self): '''测试:从中间开始,读取文件一部分的内容''' start = 23451 size = self.file_size - start self.assertEqual( size, len(self.client.content.get_data( url=self.download_url, offset=start, size=size, )), '.get_data should download {} bytes starting from offset {}'.format(size, start), # noqa E501 ) def test_31_download_to_file(self): '''测试:完整下载文件到本地''' fd, fpath = tempfile.mkstemp(dir=self.tmpdir) os.close(fd) self.client.content.download_to_file(destination=fpath, url=self.download_url) self.assertEqual(self.file_size, os.stat(fpath).st_size) def test_41_download_empty_file(self): '''测试:下载空文件到本地''' fd, fpath = tempfile.mkstemp(dir=self.tmpdir) os.close(fd) self.client.content.download_to_file(destination=fpath, url=self.empty_file_url) self.assertEqual(0, os.stat(fpath).st_size)
32.746914
106
0.590575
5,525
0.979089
0
0
701
0.124225
0
0
1,443
0.255715
f70e1eec634ed0c89cd786687c6b726187e816d5
11,426
py
Python
src/train.py
Gordonbuck/ml-oov-we
ce28cd8b556a16125ba36cd41781a3e60bb26422
[ "MIT" ]
null
null
null
src/train.py
Gordonbuck/ml-oov-we
ce28cd8b556a16125ba36cd41781a3e60bb26422
[ "MIT" ]
null
null
null
src/train.py
Gordonbuck/ml-oov-we
ce28cd8b556a16125ba36cd41781a3e60bb26422
[ "MIT" ]
null
null
null
import higher from leap import Leap import numpy as np import os import torch import torch.nn as nn import gc def train(model, source_corpus, char2idx, args, device): model = model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr_init) lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=args.lr_decay, patience=args.patience, threshold=args.threshold) best_valid_cosine = 1 for epoch in np.arange(args.n_epochs): valid_cosine = [] valid_ce = [] model.train() for batch in np.arange(args.n_batch): train_contexts, train_targets, train_vocabs, train_inds = source_corpus.get_batch(args.batch_size, args.n_shot, char2idx, device, fixed=args.fixed_shot, return_inds=True) optimizer.zero_grad() if args.lang_model: pred_emb, pred_ind = model.forward(train_contexts, train_vocabs, lang_model=args.lang_model) loss = nn.functional.cross_entropy(pred_ind, train_inds) loss += -nn.functional.cosine_similarity(pred_emb, train_targets).mean() else: pred_emb = model.forward(train_contexts, train_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, train_targets).mean() loss.backward() optimizer.step() model.eval() with torch.no_grad(): for batch in np.arange(args.n_batch): valid_contexts, valid_targets, valid_vocabs, valid_inds = source_corpus.get_batch(args.batch_size, args.n_shot, char2idx, device, use_valid=True, fixed=args.fixed_shot, return_inds=True) if args.lang_model: pred_emb, pred_ind = model.forward(valid_contexts, valid_vocabs, lang_model=args.lang_model) loss = nn.functional.cross_entropy(pred_ind, valid_inds).mean() valid_ce += [loss.cpu().numpy()] else: pred_emb = model.forward(valid_contexts, valid_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, valid_targets).mean() valid_cosine += [loss.cpu().numpy()] avg_valid = np.average(valid_cosine) lr_scheduler.step(avg_valid) if args.lang_model: avg_ce = np.average(valid_ce) print(f"Average cosine loss: {avg_valid}; Average cross entropy loss: {avg_ce}") else: print(f"Average cosine loss: {avg_valid}") if avg_valid < best_valid_cosine: best_valid_cosine = avg_valid torch.save(model.state_dict(), os.path.join(args.save_dir, 'model.pt')) if optimizer.param_groups[0]['lr'] < args.lr_early_stop: print('LR early stop') break def maml_adapt(model, source_corpus, target_corpus, char2idx, args, device, lang_model_n_words=0): model = model.to(device) meta_optimizer = torch.optim.Adam(model.parameters(), lr=args.maml_meta_lr_init) lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(meta_optimizer, factor=args.lr_decay, patience=args.patience, threshold=args.threshold) best_score = 3 for meta_epoch in np.arange(args.n_meta_epochs): gc.collect() source_valid_cosine = [] target_valid_cosine = [] model.train() with torch.backends.cudnn.flags(benchmark=True): for meta_batch in np.arange(args.n_meta_batch): inner_optimizer = torch.optim.Adam(model.parameters(), lr=args.maml_inner_lr_init) meta_optimizer.zero_grad() with higher.innerloop_ctx(model, inner_optimizer, copy_initial_weights=False) as (fmodel, diffopt): for inner_batch in np.arange(args.n_inner_batch): source_train_contexts, source_train_targets, source_train_vocabs = source_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, fixed=args.fixed_shot) pred_emb = fmodel.forward(source_train_contexts, source_train_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, source_train_targets).mean() diffopt.step(loss) target_train_contexts, target_train_targets, target_train_vocabs = target_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, fixed=args.fixed_shot, repeat_ctxs=args.meta_repeat_ctxs) pred_emb = fmodel.forward(target_train_contexts, target_train_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, target_train_targets).mean() loss.backward() meta_optimizer.step() model.eval() with torch.no_grad(): for batch in np.arange(args.n_batch): source_valid_contexts, source_valid_targets, source_valid_vocabs = source_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, use_valid=True, fixed=args.fixed_shot) pred_emb = model.forward(source_valid_contexts, source_valid_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, source_valid_targets).mean() source_valid_cosine += [loss.cpu().numpy()] target_valid_contexts, target_valid_targets, target_valid_vocabs = target_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, use_valid=True, fixed=args.fixed_shot, repeat_ctxs=args.meta_repeat_ctxs) pred_emb = model.forward(target_valid_contexts, target_valid_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, target_valid_targets).mean() target_valid_cosine += [loss.cpu().numpy()] avg_source_valid, avg_target_valid = np.average(source_valid_cosine), np.average(target_valid_cosine) score = avg_target_valid lr_scheduler.step(score) print(f"Average source cosine loss: {avg_source_valid}; Average target cosine loss: {avg_target_valid}") if score < best_score: best_score = score torch.save(model.state_dict(), os.path.join(args.save_dir, 'maml_model.pt')) if meta_optimizer.param_groups[0]['lr'] < args.maml_lr_early_stop: print('LR early stop') break def leap_adapt(model, source_corpus, target_corpus, char2idx, args, device, lang_model_n_words=0): model = model.to(device) leap = Leap(model) meta_optimizer = torch.optim.Adam(leap.parameters(), lr=args.leap_meta_lr_init) lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(meta_optimizer, factor=args.lr_decay, patience=args.patience, threshold=args.threshold) best_score = 3 for meta_epoch in np.arange(args.n_meta_epochs): source_valid_cosine = [] target_valid_cosine = [] model.train() for meta_batch in np.arange(args.n_meta_batch): meta_optimizer.zero_grad() leap.init_task() leap.to(model) inner_optimizer = torch.optim.Adam(model.parameters(), lr=args.leap_inner_lr_init) for inner_batch in np.arange(args.n_task_steps): inner_optimizer.zero_grad() source_train_contexts, source_train_targets, source_train_vocabs = source_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, fixed=args.fixed_shot) pred_emb = model.forward(source_train_contexts, source_train_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, source_train_targets).mean() loss.backward() leap.update(loss, model) inner_optimizer.step() leap.init_task() leap.to(model) inner_optimizer = torch.optim.Adam(model.parameters(), lr=args.leap_inner_lr_init) for inner_batch in np.arange(args.n_task_steps): inner_optimizer.zero_grad() target_train_contexts, target_train_targets, target_train_vocabs = target_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, fixed=args.fixed_shot, repeat_ctxs=args.meta_repeat_ctxs) pred_emb = model.forward(target_train_contexts, target_train_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, target_train_targets).mean() loss.backward() leap.update(loss, model) inner_optimizer.step() leap.normalize() meta_optimizer.step() leap.to(model) model.eval() with torch.no_grad(): for batch in np.arange(args.n_batch): source_valid_contexts, source_valid_targets, source_valid_vocabs = source_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, use_valid=True, fixed=args.fixed_shot) pred_emb = model.forward(source_valid_contexts, source_valid_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, source_valid_targets).mean() source_valid_cosine += [loss.cpu().numpy()] target_valid_contexts, target_valid_targets, target_valid_vocabs = target_corpus.get_batch( args.meta_batch_size, args.n_shot, char2idx, device, use_valid=True, fixed=args.fixed_shot, repeat_ctxs=args.meta_repeat_ctxs) pred_emb = model.forward(target_valid_contexts, target_valid_vocabs) loss = -nn.functional.cosine_similarity(pred_emb, target_valid_targets).mean() target_valid_cosine += [loss.cpu().numpy()] avg_source_valid, avg_target_valid = np.average(source_valid_cosine), np.average(target_valid_cosine) score = avg_target_valid lr_scheduler.step(score) print(f"Average source cosine loss: {avg_source_valid}; Average target cosine loss: {avg_target_valid}") if score < best_score: best_score = score torch.save(model.state_dict(), os.path.join(args.save_dir, 'leap_model.pt')) if meta_optimizer.param_groups[0]['lr'] < args.leap_lr_early_stop: print('LR early stop') break
52.412844
120
0.591896
0
0
0
0
0
0
0
0
399
0.03492
f70e20602d9329f0b785241b32a1ae744bf6d702
119
py
Python
number reverser.py
Jayapraveen34/crazy-lover
be5bd897c40c31b3e5e6eafe3b6436cb3d888efe
[ "BSD-2-Clause" ]
null
null
null
number reverser.py
Jayapraveen34/crazy-lover
be5bd897c40c31b3e5e6eafe3b6436cb3d888efe
[ "BSD-2-Clause" ]
null
null
null
number reverser.py
Jayapraveen34/crazy-lover
be5bd897c40c31b3e5e6eafe3b6436cb3d888efe
[ "BSD-2-Clause" ]
null
null
null
a = str(input('Enter the number you want to reverse:')) b = (a[::-1]) c = int(b) print('the reversed number is',c)
23.8
56
0.605042
0
0
0
0
0
0
0
0
63
0.529412
f70ec64b9e31daafd1fb2f1ca0a900fb5ba86171
3,473
py
Python
pyexcel_xls/xlsw.py
pyexcel/pyexcel-xls
995cfd273d5360947a528ff3a1ed3f9e52a429ad
[ "BSD-3-Clause" ]
40
2016-05-18T20:09:39.000Z
2022-02-09T06:39:41.000Z
pyexcel_xls/xlsw.py
wenxuefeng3930/pyexcel-xls
995cfd273d5360947a528ff3a1ed3f9e52a429ad
[ "BSD-3-Clause" ]
46
2016-02-01T22:12:31.000Z
2021-10-07T18:57:05.000Z
pyexcel_xls/xlsw.py
wenxuefeng3930/pyexcel-xls
995cfd273d5360947a528ff3a1ed3f9e52a429ad
[ "BSD-3-Clause" ]
24
2016-01-29T12:26:27.000Z
2021-10-31T15:37:15.000Z
""" pyexcel_xlsw ~~~~~~~~~~~~~~~~~~~ The lower level xls file format handler using xlwt :copyright: (c) 2016-2021 by Onni Software Ltd :license: New BSD License """ import datetime import xlrd from xlwt import XFStyle, Workbook from pyexcel_io import constants from pyexcel_io.plugin_api import IWriter, ISheetWriter DEFAULT_DATE_FORMAT = "DD/MM/YY" DEFAULT_TIME_FORMAT = "HH:MM:SS" DEFAULT_LONGTIME_FORMAT = "[HH]:MM:SS" DEFAULT_DATETIME_FORMAT = "%s %s" % (DEFAULT_DATE_FORMAT, DEFAULT_TIME_FORMAT) EMPTY_SHEET_NOT_ALLOWED = "xlwt does not support a book without any sheets" class XLSheetWriter(ISheetWriter): """ xls sheet writer """ def __init__(self, xls_book, xls_sheet, sheet_name): if sheet_name is None: sheet_name = constants.DEFAULT_SHEET_NAME self._xls_book = xls_book self._xls_sheet = xls_sheet self._xls_sheet = self._xls_book.add_sheet(sheet_name) self.current_row = 0 def write_row(self, array): """ write a row into the file """ for i, value in enumerate(array): style = None tmp_array = [] if isinstance(value, datetime.datetime): tmp_array = [ value.year, value.month, value.day, value.hour, value.minute, value.second, ] value = xlrd.xldate.xldate_from_datetime_tuple(tmp_array, 0) style = XFStyle() style.num_format_str = DEFAULT_DATETIME_FORMAT elif isinstance(value, datetime.timedelta): value = value.days + value.seconds / 86_400 style = XFStyle() style.num_format_str = DEFAULT_LONGTIME_FORMAT elif isinstance(value, datetime.date): tmp_array = [value.year, value.month, value.day] value = xlrd.xldate.xldate_from_date_tuple(tmp_array, 0) style = XFStyle() style.num_format_str = DEFAULT_DATE_FORMAT elif isinstance(value, datetime.time): tmp_array = [value.hour, value.minute, value.second] value = xlrd.xldate.xldate_from_time_tuple(tmp_array) style = XFStyle() style.num_format_str = DEFAULT_TIME_FORMAT if style: self._xls_sheet.write(self.current_row, i, value, style) else: self._xls_sheet.write(self.current_row, i, value) self.current_row += 1 def close(self): pass class XLSWriter(IWriter): """ xls writer """ def __init__( self, file_alike_object, _, # file_type not used encoding="ascii", style_compression=2, **keywords, ): self.file_alike_object = file_alike_object self.work_book = Workbook( style_compression=style_compression, encoding=encoding ) def create_sheet(self, name): return XLSheetWriter(self.work_book, None, name) def write(self, incoming_dict): if incoming_dict: IWriter.write(self, incoming_dict) else: raise NotImplementedError(EMPTY_SHEET_NOT_ALLOWED) def close(self): """ This call actually save the file """ self.work_book.save(self.file_alike_object)
31.008929
78
0.589692
2,866
0.825223
0
0
0
0
0
0
464
0.133602
f70ef0f412e5276c5b8da11a1ad63834bedea5f9
593
py
Python
venv/lib/python3.6/site-packages/gensim/__init__.py
bopopescu/wired_cli
844b5c2bf32c95ad2974663f0501a85ff6134bd4
[ "MIT" ]
2
2021-06-09T20:55:17.000Z
2021-11-03T03:07:37.000Z
venv/lib/python3.6/site-packages/gensim/__init__.py
bopopescu/wired_cli
844b5c2bf32c95ad2974663f0501a85ff6134bd4
[ "MIT" ]
4
2020-07-26T02:10:42.000Z
2021-03-31T18:48:58.000Z
venv/lib/python3.6/site-packages/gensim/__init__.py
bopopescu/wired_cli
844b5c2bf32c95ad2974663f0501a85ff6134bd4
[ "MIT" ]
1
2020-07-25T23:57:23.000Z
2020-07-25T23:57:23.000Z
"""This package contains interfaces and functionality to compute pair-wise document similarities within a corpus of documents. """ from gensim import parsing, corpora, matutils, interfaces, models, similarities, summarization, utils # noqa:F401 import logging __version__ = '3.5.0' class NullHandler(logging.Handler): """For python versions <= 2.6; same as `logging.NullHandler` in 2.7.""" def emit(self, record): pass logger = logging.getLogger('gensim') if len(logger.handlers) == 0: # To ensure reload() doesn't add another one logger.addHandler(NullHandler())
28.238095
114
0.726813
153
0.25801
0
0
0
0
0
0
271
0.456998
f70efa147c6f9c7ee90e557fe0740d068a1ce522
213
py
Python
tests/test_ai.py
divanorama/katrain
dc22aa88526fb6446f908259f06020d649a2d0a9
[ "MIT" ]
null
null
null
tests/test_ai.py
divanorama/katrain
dc22aa88526fb6446f908259f06020d649a2d0a9
[ "MIT" ]
null
null
null
tests/test_ai.py
divanorama/katrain
dc22aa88526fb6446f908259f06020d649a2d0a9
[ "MIT" ]
null
null
null
import pytest from katrain.core.constants import AI_STRATEGIES_RECOMMENDED_ORDER, AI_STRATEGIES class TestAI: def test_order(self): assert set(AI_STRATEGIES_RECOMMENDED_ORDER) == set(AI_STRATEGIES)
23.666667
81
0.798122
113
0.530516
0
0
0
0
0
0
0
0
f70fbb21c94acb9d07d8e2e1ca75454e92d0eaf5
28,076
py
Python
game_client.py
wenlianglaw/Tetris-in-Python
d4f0a22c4827e7eeb44c55def3f024e0c6932ebe
[ "MIT" ]
1
2021-06-25T20:43:19.000Z
2021-06-25T20:43:19.000Z
game_client.py
wenlianglaw/Tetris-in-Python
d4f0a22c4827e7eeb44c55def3f024e0c6932ebe
[ "MIT" ]
null
null
null
game_client.py
wenlianglaw/Tetris-in-Python
d4f0a22c4827e7eeb44c55def3f024e0c6932ebe
[ "MIT" ]
null
null
null
# This file defines the back end of the Tetris game # # GameState is the base class of GameClient. # # GameClient.Run() will start two threads: # - _ProcessActions: Process the action list every x seconds # - _AutoDrop: Auto drops the current piece. # # GameClient: # - current piece # - held piece # - piece list # - color_map: game board # - InputActions(...): Inputs a list of actions. # - ProcessActions(...): Lets the game client process a list of actions # directly # - ProcessAction(...): Lets the game client process one actions directly # - PutPiece(...): Puts the current piece if the position is valid. # - GetState(...): Gets game state, useful to AI # - CheckValidity(...): Checks if a move is valid # - SpawnPiece(...): Sets the current piece. # - Restart(...): Restarts the game. # - Rotate(...): Alternatively, callers can directly call Rotate to rotate # current_piece # - Move(...): Alternatively, callers can directly call Move to move the # current_piece # import copy import queue import threading import time from threading import Lock from typing import Tuple, List import numpy as np import actions import shape # Some global settings DEFAULT_LENGTH = 20 DEFAULT_WIDTH = 10 MAP_PADDING_SIZE = 4 # When there are less than threshold pieces, spawn a new bag. REFILL_THRESHOLD = 5 # Disable the auto drop in next few seconds MAXIMUM_LOCK_TIME = 4 INCREMENTAL_LOCK_TIME = 1 # Scores SINGLE = 5 DOUBLE = 10 TSS = 20 TRIPLE = 40 QUAD = 50 TSD = 60 TST = 80 PC = 120 # ATTACKS ATTACK_DOUBLE = 1 ATTACK_TSS = 2 ATTACK_TRIPLE = 2 ATTACK_QUAD = 4 ATTACK_TSD = 4 ATTACK_TST = 6 ATTACK_PC = 10 class InternalError(Exception): """Any internal errors.""" class GameState: def __init__(self): self.height = 0 self.width = 0 self.color_map = np.array([]) self.current_piece = None self.held_piece = None self.score = 0 self.piece_list = [] self.is_gameover = False self.can_swap = True self.accumulated_lines_eliminated = 0 self.piece_dropped = 0 self.blevel_increase = False self.level = 0 self.line_sent = 0 self.line_received = 0 def __deepcopy__(self, memodict=None): if memodict is None: memodict = dict() another = copy.copy(self) another.color_map = self.color_map.copy() if self.current_piece is not None: another.current_piece = self.current_piece.copy() if self.held_piece is not None: another.held_piece = self.held_piece.copy() another.piece_list = copy.deepcopy(self.piece_list.copy()) return another def copy(self): return self.__deepcopy__() def __str__(self): ret = "" ret += f"""height: {self.height} width: {self.width} color_map: {self.color_map} current_piece: {self.current_piece} held_piece: {self.held_piece} score: {self.score} piece_list: {self.piece_list} is_gameover: {self.is_gameover} can_swap: {self.can_swap} piece_dropped: {self.piece_dropped} level: {self.level} """ class GameClient(GameState): def __init__(self, height: int = DEFAULT_LENGTH, width: int = DEFAULT_WIDTH, map_height_padding=MAP_PADDING_SIZE, map_side_padding=MAP_PADDING_SIZE): super().__init__() self.height = height self.width = width self.map_height_padding = map_height_padding self.map_side_padding = map_side_padding self.dtype = np.uint8 self.dtype_length = 8 if self.width + 2 * map_side_padding > 8: self.dtype = np.uint16 self.dtype_length = 16 if self.width + 2 * map_side_padding > 16: self.dtype = np.uint32 self.dtype_length = 32 if self.width + 2 * map_side_padding > 32: self.dtype = np.uint64 self.dtype_length = 64 if self.width + 2 * map_side_padding > 64: self.dtype = np.uint128 self.dtype_length = 128 if self.width + 2 * map_side_padding > 128: raise InternalError( "width too long to support bit map. Consider chaning it to a smaller value.") # Lock time settings # When the lock is enabled, count the lock time. # When the accumulated lock time is greater than the current maximum lock time, # force to perform the auto drop. Otherwise autodop is disabled for this turn. # When current locktime is reached but an refresh lock time request is genertaed. # increase the current maximum lock time by incremental lock time. self.maximum_lock_time = MAXIMUM_LOCK_TIME self.current_maximum_lock_time = 0 self.incremental_lock_time = INCREMENTAL_LOCK_TIME self.accumulate_lock_time = 0 # Only when move or rotate at bottom locks the auto drop self._enable_lock_time = False # Color map marks the color for each cell. self.color_map = np.array([[]], dtype=self.dtype) # Bit map for a better performance in some calculation. self.bit_map = np.array([], dtype=self.dtype) # Lock for current_piece self.mutex_current_piece = Lock() self.last_put_piece = None # List of actions to process self.action_list = queue.Queue() self._init_spawn_interval = 500 # 500 ms at level 0 self._current_spawn_interval = 500 # actions.Action self.last_action = None self.disable_autodrop = False self.line_tobesent = 0 # Used when calculate the auto drop interval decrease based on current level. # Generated from the sigmoid function # x = np.linspace(0, 40, 40) # interval_decrease = 110 / (1 + np.exp(0.16 * x)) # interval_decrease = np.cumsum(interval_decrease) # print(repr(np.cumsum(interval_decrease))) self.interval_decrease = np.array( [55., 100.49727968, 150.55179446, 190.28030383, 230.85041422, 260.47244367, 290.38990828, 320.86947489, 345.19115272, 350.63934095, 380.49515164, 400.03022699, 410.5020957, 420.15098155, 430.19789113, 440.8437644, 450.26946046, 455.63636342, 461.08741849, 465.74844074, 469.72957119, 473.12678557, 476.02338748, 478.4914391, 480.59310001, 482.38185737, 483.90364044, 485.19781892, 486.29808909, 487.23325451, 488.02790975, 488.70303602, 489.27651798, 489.76359062, 490.17722443, 490.52845671, 490.82667585, 491.07986489, 491.2948099, 491.47727802]) self._RefillPieces() self._TakePieceFromList() self.accumulated_lines_eliminated = 0 # When soft-dropping, temporarily disable auto-drop self.soft_drop = False self.piece_dropped = 0 # Must be put after the initializations above self._InitMap() def _InitMap(self): side_padding = (1 << self.map_side_padding) - 1 init_row = (side_padding << (self.map_side_padding + self.width)) | side_padding bottom_padding = (1 << (self.width + 2 * self.map_side_padding)) - 1 self.bit_map = np.concatenate(( np.array((self.map_height_padding + self.height) * [init_row], dtype=self.dtype), np.array(self.map_height_padding * [bottom_padding], dtype=self.dtype)), dtype=self.dtype) self.color_map = np.array([[0 for i in range(self.width)] for x in range(self.height + self.map_height_padding)], dtype=self.dtype) def Restart(self): self._InitMap() self.piece_list = [] self.held_piece = None self.current_piece = None # Lock of the game state self.mutex_current_piece = Lock() self.is_gameover = False self.last_put_piece = None # List of actions to process self.action_list = queue.Queue() self._init_spawn_interval = 500.0 self._current_spawn_interval = 500.0 # actions.Action self.last_action = [] self.can_swap = True self.score = 0 self.accumulate_lock_time = 0 self.accumulated_lines_eliminated = 0 self.soft_drop = False self.piece_dropped = 0 self.line_sent = 0 self.line_received = 0 self.line_tobesent = 0 self._enable_lock_time = False self._RefillPieces() self._TakePieceFromList() def Run(self): auto_drop_th = threading.Thread(target=self.AutoDrop, name="auto_drop", daemon=True) process_input_th = threading.Thread(target=self._ProcessActionsThread, daemon=True) if not self.disable_autodrop: auto_drop_th.start() process_input_th.start() if not self.disable_autodrop: auto_drop_th.join() process_input_th.join() print("game ends") def GetState(self) -> GameState: """Gets game state. Returns the objects ref instead of copy For better performance. """ return copy.deepcopy(super()) def GetCell(self, i: int, j: int) -> int: """Gets cell at [i,j]. Notes: This function doesn't check the index out of boundary error. """ return self.color_map[i, j] def GetMap(self): """Gets whole color_map.""" return self.color_map def GetMapArea(self, corner: Tuple[int, int], size: Tuple[int, int]) -> np.array: """Gets an area of :param top_left: :param bottom_right: :return: The area of the color_map. """ size = (np.min([size[0], self.color_map.shape[0] - corner[0]]), np.min([size[1], self.color_map.shape[1] - corner[1]])) return self.color_map[corner[0]: corner[0] + size[0], corner[1]: corner[1] + size[1]] def SetMap(self, pos: Tuple[int, int], v: int, map: np.array = None): """Sets the cell at [i,j] to value v.""" (i, j) = pos bit_map = self.bit_map.copy() if map is None or map is self.color_map: map = self.color_map bit_map = self.bit_map map[i, j] = v # Set a bit to value: Clear to bit to 0 and then set to value bit_v = 0 if v == 0 else 1 bit_j_pos = self.width + self.map_side_padding - 1 - j bit_map[i] = (bit_map[i] & ~(1 << bit_j_pos)) | (bit_v << bit_j_pos) def SetWholeMap(self, map: np.array): if map.shape != self.color_map.shape: raise InternalError( f"Map shape {map.shape}" f" must match the color_map shape: {self.color_map.shape}") self.color_map = map # Convert the map to Bollean map bit_color_map = map != 0 # Revert the order and padding, then call the packbits(..., order="little") fn bit_color_map = bit_color_map[:, ::-1] bit_color_map = np.pad( bit_color_map, ((0, 0), (self.map_side_padding, self.map_side_padding)), "constant", constant_values=(1,)) padding0_len = self.dtype_length - bit_color_map.shape[1] bit_color_map = np.pad(bit_color_map, ((0, 0), (0, padding0_len)), "constant", constant_values=(0,)) int_color_map = np.packbits(bit_color_map, bitorder="little").view(self.dtype) self.bit_map[0:self.map_height_padding + self.height] = int_color_map print(int_color_map) print(self.bit_map) def copy(self): another = copy.copy(self) another.last_action = copy.copy(self.last_action) if self.last_put_piece is not None: another.last_put_piece = self.last_put_piece.copy() another.color_map = np.copy(self.color_map) another.bit_map = np.copy(self.bit_map) another.action_list = copy.copy(self.action_list) another.piece_list = self.piece_list.copy() another.current_piece = self.current_piece.copy() if self.held_piece is None: another.held_piece = None else: another.held_piece = self.held_piece.copy() return another def AutoDrop(self): while True: if self.soft_drop: # If it is soft dropping, we don't perform auto drop. self.soft_drop = False else: if self.CheckValidity(self.current_piece, offset=(1, 0)): self.Move(actions.Action(down=True, source_user_or_ai=False)) else: if (not self._enable_lock_time or self.accumulate_lock_time >= self.current_maximum_lock_time): self.PutPiece() else: self.accumulate_lock_time += self._current_spawn_interval / 1000 time.sleep(self._current_spawn_interval / 1000) def InputActions(self, acts: List[actions.Action]): if self.is_gameover: return if len(acts) > 30: print("len:", len(acts)) acts = acts[-30:] for act in acts: if self.action_list.qsize() > 50: break self.action_list.put(act) def ProcessActions(self, actions: List[actions.Action], post_processing=True): for a in actions: self.ProcessAction(a, post_processing=post_processing) def ProcessAction(self, action: actions.Action, post_processing=True): if self.is_gameover: return # print(f"Processed action: {action.direction}, {action.rotation}, {action.swap}") # self.test += 1 # print(self.test) if action.swap: self.Swap() self.Rotate(action.rotation) self.Move(action, post_processing=post_processing) def _ProcessActionsThread(self): while True: while not self.action_list.empty(): act = self.action_list.get() self.ProcessAction(act) self.action_list.task_done() time.sleep(0.001) def SetLevel(self, level: int = 0): """Let the front end set!""" self.level = level i = min(len(self.interval_decrease), self.level) self._current_spawn_interval = max( 10, self._init_spawn_interval - self.interval_decrease[i]) def IncreaseLevel(self, inc: int = 1): """Let the front end decide!""" self.level += inc self.SetLevel(self.level) def Move(self, action: actions.Action, post_processing=True) -> bool: """Moves the current piece. :param direction: Direction to move :param post_processing: if True, put the piece to color_map and apply line eliminate. Otherwise just update the current_piece's states. :return True if moved; False otherwise """ if (action.direction == actions.NONE and not action.down): return False moved = False if action.down: try: self.mutex_current_piece.acquire() if self.CheckValidity(self.current_piece, (1, 0)): self.current_piece.x += 1 moved = True self.soft_drop = True finally: self.mutex_current_piece.release() if action.direction == actions.LEFT: try: self.mutex_current_piece.acquire() if self.CheckValidity(self.current_piece, (0, -1)): self.current_piece.y += -1 moved = True finally: self.mutex_current_piece.release() if action.direction == actions.RIGHT: try: self.mutex_current_piece.acquire() if self.CheckValidity(self.current_piece, (0, 1)): self.current_piece.y += 1 moved = True finally: self.mutex_current_piece.release() if action.direction == actions.HARD_DROP or action.direction == actions.SOFT_DROP: try: self.mutex_current_piece.acquire() while self.CheckValidity(self.current_piece, (1, 0)): self.current_piece.x += 1 moved = True finally: self.mutex_current_piece.release() if post_processing and action.direction == actions.HARD_DROP: self.PutPiece() if moved: self.last_action = action at_bottom = not self.CheckValidity(self.current_piece, (1, 0)) if (at_bottom and action.direction != actions.HARD_DROP and action.source_user): self._RefreshLockTime() return moved def _RefreshLockTime(self): self._enable_lock_time = True if self.accumulate_lock_time >= self.current_maximum_lock_time: self.current_maximum_lock_time = min( self.current_maximum_lock_time + self.incremental_lock_time, self.maximum_lock_time) def _ResetLockTime(self): self._enable_lock_time = False self.accumulate_lock_time = 0 self.current_maximum_lock_time = 0 def Swap(self): """Swaps the held piece and the current if its swappable""" if not self.can_swap: return try: self.mutex_current_piece.acquire() t = self.held_piece self.held_piece = self.current_piece self.current_piece = t if not self.current_piece: self._TakePieceFromList() self.current_piece.Init() self.held_piece.Init() self.can_swap = False finally: self.mutex_current_piece.release() def CheckGameOver(self): self.is_gameover = np.any( self.GetMapArea((0, 0), (self.map_height_padding, self.width)) != 0) return self.is_gameover def _AnalyzeElimination(self, n_eliminate: int) -> int: ret = 0 is_last_put_t = isinstance(self.last_put_piece, shape.T) if n_eliminate == 1: if (is_last_put_t and self.last_action and self.last_action.rotation != 0): print("TSS") ret += TSS self.line_tobesent += ATTACK_TSS else: ret += SINGLE if n_eliminate == 2: # TSD if (is_last_put_t and self.last_action and self.last_action.rotation != 0): print("TSD") ret += TSD self.line_tobesent += ATTACK_TSD # Normal Double else: ret += DOUBLE self.line_tobesent += ATTACK_DOUBLE if n_eliminate == 3: # TST if (is_last_put_t and self.last_action and self.last_action.rotation != 0): print("TST") ret += TST self.line_tobesent += ATTACK_TST else: ret += TRIPLE self.line_tobesent += ATTACK_TRIPLE if n_eliminate == 4: ret += QUAD self.line_tobesent += ATTACK_QUAD # Checks for PC if np.all(self.color_map == 0): print("PC") ret += PC self.line_tobesent += ATTACK_PC return ret * (self.level + 3) def _LineClear(self): elimated_lines = [] elimated_cnt = 0 # Checks the 4 lines... This is not adapt to shape with higher than 4 lines # but that's not a part of this game. I don't have plan to support custom # shapes. for row in range(4): if not (self.last_put_piece.x + row >= 0 and self.last_put_piece.x + row < self.height + self.map_height_padding): continue if np.all(self.color_map[self.last_put_piece.x + row, :] != 0): elimated_lines.append(row + self.last_put_piece.x) elimated_cnt += 1 self.color_map = np.vstack((np.zeros((elimated_cnt, self.width), dtype=self.dtype), np.delete(self.color_map, elimated_lines, axis=0))) # Updates the bit_map side_padding = (1 << self.map_side_padding) - 1 init_row = (side_padding << (self.map_side_padding + self.width)) | side_padding self.bit_map = np.concatenate((elimated_cnt * [init_row], np.delete(self.bit_map, elimated_lines))).astype(self.dtype) self.accumulated_lines_eliminated += elimated_cnt self.score += self._AnalyzeElimination(n_eliminate=elimated_cnt) def _SendAttack(self): """Send attack to target.""" # This feature has not been implemented yet. self.line_sent += self.line_tobesent self.line_tobesent = 0 def PutPiece(self, piece: shape.Shape = None): """ Puts a piece to color_map if it is a valid placement then execute the post processing. :param piece: The piece to put, if None, put the self.current_piece :param color_map: The color_map where the piece puts, if None, self.color_map will be used. :returns: True if the piece has been put. False otherwise. """ if self._PrePutPiece(piece): self._PostPutPiece(piece) return True else: return False def _PrePutPiece(self, piece: shape.Shape = None, map: np.array = None): """ Puts a piece to color_map if it is a valid placement. Post put processing such as self._LineClear will not be executed :param piece: The piece to put, if None, put the self.current_piece :param map: The color_map where the piece puts, if None, self.color_map will be used. :returns: True if the piece has been put. False otherwise. """ try: if not piece: self.mutex_current_piece.acquire() piece = self.current_piece if map is None: map = self.color_map if not self.CheckValidity(piece): return False for (i, j) in piece.GetShape(): self.SetMap((piece.x + i, piece.y + j), piece.id, map) return True finally: if self.mutex_current_piece.locked(): self.mutex_current_piece.release() def _PostPutPiece(self, piece: shape.Shape = None): if piece is not None: self.last_put_piece = piece else: self.last_put_piece = self.current_piece # LineClear should be called prior to SendAttack self._LineClear() if piece is None: self._TakePieceFromList() self.CheckGameOver() self._ResetLockTime() self._SendAttack() self.can_swap = True self.piece_dropped += 1 def TextDraw(self): preview_map = self.color_map.copy() self._PrePutPiece(self.current_piece, preview_map) for i in preview_map: print(i) print() def SpawnPiece(self, piece: shape.Shape = None) -> bool: if not piece: self._TakePieceFromList() else: self.current_piece = piece.copy() return self.CheckValidity(self.current_piece) def _FindFittedPiece(self, piece: shape.Shape = None, num_90rotations: int = 0): """Finds a location that fits this piece with n 90rotations. Ref: https://tetris.fandom.com/wiki/SRS :param piece: The piece to be put in the color_map. If none, it will be set to the current_piece :param num_90rotations: How many 90 rotations :return: piece - shape.Shape: the piece with rotations that fits the color_map. """ if not piece: piece = self.current_piece def _IsJLSTZ(piece: shape.Shape): jlstz = [shape.J, shape.L, shape.S, shape.T, shape.Z] for s in jlstz: if isinstance(piece, s): return True return False # The 180 rotation wall kick table is copied from # https://tetris.fandom.com/wiki/SRS#180.C2.B0_rotation # which is origined from # https://github.com/JoshuaWebb/nullpomino/blob/master/src/mu/nu/nullpo/game/subsystem/wallkick/StandardWallkick.java offset_map_jlstz = [ # state 0 ([(0, 0), (0, -1), (-1, -1), (2, 0), (2, -1)], # 0>>1 # 0>>2, 180 rotation # [(0,0), (1, 0), (2, 0), (1, 1), (2, 1), (-1, 0), (-2, 0), (-1, 1), (-2, 1), (0, -1), (3, 0), (-3, 0)], [(0, 0)], [(0, 0), (0, 1), (-1, 1), (2, 0), (2, 1)]), # 0>>3 # state 1 ([(0, 0), (0, 1), (1, 1), (-2, 0), (-2, 1)], # 1>>2 # l>>3, 180 rotation # [(0,0), (0, 1), (0, 2), (-1, 1), (-1, 2), (0, -1), (0, -2), (-1, -1), (-1, -2), (1, 0), (0, 3), (0, -3)], [(0, 0)], [(0, 0), (0, 1), (1, 1), (-2, 0), (-2, 1)]), # 1>>0 # state 2 ([(0, 0), (0, 1), (-1, 1), (2, 0), (2, 1)], # 2>>3 # [(0,0), (-1, 0), (-2, 0), (-1, -1), (-2, -1), (1, 0), (2, 0), (1, -1), (2, -1), (0, 1), (-3, 0), (3, 0)], # 2>>0, [(0, 0)], [(0, 0), (0, -1), (-1, -1), (2, 0), (2, -1)]), # 2>>1 # state 3 ([(0, 0), (0, -1), (1, -1), (2, 0), (-2, -1)], # 3>>0 # 3>>1, 180 rotation # [(0,0), (0, 1), (0, 2), (1, 1), (1, 2), (0, -1), (0, -2), (1, -1), (1, -2), (-1, 0), (0, 3), (0, -3)], [(0, 0)], [(0, 0), (0, -1), (1, -1), (2, 0), (-2, -1)]), # 3>>2 ] offset_map_i = [ # state 0 [[(0, 0), (0, -2), (0, 1), (1, -2), (-2, 1), ], # 0>>1 # [(0,0), (-1, 0), (-2, 0), (1, 0), (2, 0), (0, 1)], # 0>>2, 180 rotation [(0, 0)], [(0, 0), (0, -1), (0, 2), (-2, -1), (1, 2)]], # 0>>3 # state 1 [[(0, 0), (0, -1), (0, 2), (-2, -1), (1, 2)], # 1>>2 # [(0,0), (0, 1), (0, 2), (0, -1), (0, -2), (-1, 0)], # 1>>3, 180 rotation, [(0, 0)], [(0, 0), (0, 2), (0, -1), (-1, 2), (2, -1)]], # 1>>0 # state 2 [[(0, 0), (0, 2), (0, -1), (-1, 2), (2, -1)], # 2>>3 # [(0, 0), (1, 0), (2, 0), (-1, 0), (-2, 0), (0, -1)], # 2>>0, 180 rotation [(0, 0)], [(0, 0), (0, 1), (0, -2), (2, 1), (-1, -2)]], # 2>>1 # state 3 [[(0, 0), (0, 1), (0, -2), (2, 1), (-1, -2)], # 3>>0 # [(0, 0), (0, 1), (0, 2), (0, -1), (0, -2), (1, 0)], # 3>>1, 180 rotation [(0, 0)], [(0, 0), (0, -2), (0, 1), (1, -2), (2, 1)]], # 3>>2 ] state = piece.state num_90rotations %= 4 offset_piece = piece.copy() ori_x = offset_piece.x ori_y = offset_piece.y for _ in range(num_90rotations): offset_piece.Rotate90() if num_90rotations == 0: if self.CheckValidity(offset_piece): return offset_piece num_90rotations -= 1 if _IsJLSTZ(piece): for (offset_x, offset_y) in offset_map_jlstz[state][num_90rotations]: offset_piece.x = ori_x + offset_x offset_piece.y = ori_y + offset_y if (offset_piece.y >= self.width or offset_piece.x >= self.height + self.map_height_padding): continue if self.CheckValidity(offset_piece): return offset_piece else: for (offset_x, offset_y) in offset_map_i[state][num_90rotations]: offset_piece.x = ori_x + offset_x offset_piece.y = ori_y + offset_y if (offset_piece.y >= self.width or offset_piece.x >= self.height + self.map_height_padding): continue if self.CheckValidity(offset_piece): return offset_piece return None def Rotate(self, n: int) -> bool: """Rotates the current piece. :param n: rotations, in range [0,4) :return: True if the current piece can be rotated. False otherwise. """ n %= 4 if n == 0: return False fitted_piece = self._FindFittedPiece(num_90rotations=n) if fitted_piece: self.current_piece = fitted_piece self.last_action = actions.Action(dir=0, rotation=n) if not self.CheckValidity(self.current_piece, (1, 0)): self._RefreshLockTime() return fitted_piece is not None def CheckValidity(self, piece: shape.Shape, offset: Tuple[int, int] = (0, 0)): """Checks if the piece with offset can be put in the color_map :param piece: The piece to be put. :param offset: The inital offset to the piece :return: True if the current state can fit into the color_map. False otherwise. """ (ox, oy, os) = (piece.x, piece.y, piece.state) piece.x += offset[0] piece.y += offset[1] a = self.bit_map[piece.x: piece.x + 4] b = self.width - piece.y c = piece.GetBitMap().astype(self.dtype) d = c << b e = a & d check_rst = e == 0 (piece.x, piece.y, piece.state) = (ox, oy, os) return np.all(check_rst) def _GetNextBag(self): start_y = int((self.width - 3) / 2) assert start_y >= 0 bag = [shape.I(start_y=start_y), shape.J(start_y=start_y), shape.L(start_y=start_y), shape.O(start_y=start_y), shape.S(start_y=start_y), shape.T(start_y=start_y), shape.Z(start_y=start_y)] np.random.shuffle(bag) return bag def _RefillPieces(self): """ When there are less than REFILL_THRESHOLD pieces in the list, refill it with a new bag. """ if len(self.piece_list) <= REFILL_THRESHOLD: self.piece_list.extend(self._GetNextBag()) def _TakePieceFromList(self): self._RefillPieces() self.current_piece = self.piece_list[0].copy() self.piece_list = self.piece_list[1:] def CreateGameFromState(state: GameState) -> GameClient: game = GameClient(height=state.height, width=state.width) game.color_map = np.copy(state.color_map) game.current_piece = state.current_piece.copy() if state.held_piece is not None: game.held_piece = state.held_piece.copy() else: game.held_piece = None game.score = state.score game.piece_list = state.piece_list.copy() game.can_swap = state.can_swap game.is_gameover = state.is_gameover game.accumulated_lines_eliminated = state.accumulated_lines_eliminated game.piece_dropped = state.piece_dropped game.line_sent = state.line_sent game.line_received = state.line_received return game
32.799065
123
0.63036
25,737
0.91669
0
0
0
0
0
0
6,960
0.247899
f711bbbc339573d1744df69fd2b79a94a7b3f1b9
2,615
py
Python
gateway/builders/authorization_builder.py
TarlanPayments/gw-python-client
a0dd5292c877ab06bf549693a1bfc9fb06ef9d19
[ "MIT" ]
null
null
null
gateway/builders/authorization_builder.py
TarlanPayments/gw-python-client
a0dd5292c877ab06bf549693a1bfc9fb06ef9d19
[ "MIT" ]
null
null
null
gateway/builders/authorization_builder.py
TarlanPayments/gw-python-client
a0dd5292c877ab06bf549693a1bfc9fb06ef9d19
[ "MIT" ]
null
null
null
# The MIT License # # Copyright (c) 2017 Tarlan Payments. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. class AuthorizationBuilder(object): def __init__(self, __client_auth_data_set, __client_mandatory_fields): from gateway.data_sets.request_parameters import ( RequestParameters, RequestParametersTypes ) self.__data_sets = RequestParameters self.__data_types = RequestParametersTypes self.__auth_mandatory_fields = __client_mandatory_fields self.__auth_data_set = __client_auth_data_set def add_account_guid(self, guid=None): """ Tarlan Payments Merchant Account GUID. Args: guid (str): Tarlan Payments Merchant Account GUID. """ self.__auth_mandatory_fields[self.__data_sets.AUTH_DATA_ACCOUNT_GUID] = self.__data_types.AUTH_DATA_ACCOUNT_GUID self.__auth_data_set[self.__data_sets.AUTH_DATA_ACCOUNT_GUID] = guid def add_secret_key(self, value=None): """ Tarlan Payments Merchant Password Args: value (str): Tarlan Payments Merchant Password """ self.__auth_mandatory_fields[self.__data_sets.AUTH_DATA_SECRET_KEY] = self.__data_types.AUTH_DATA_SECRET_KEY self.__auth_data_set[self.__data_sets.AUTH_DATA_SECRET_KEY] = value def add_session_id(self, id_value=None): """ Tarlan Payments Gateway Session ID Args: id_value (str): Tarlan Payments Gateway Session ID """ self.__auth_data_set[self.__data_sets.AUTH_DATA_SECRET_KEY] = id_value
41.507937
120
0.728489
1,497
0.572467
0
0
0
0
0
0
1,501
0.573996
f712616c7f9dabddbf70b11e2c6cc653c11f9e33
1,931
py
Python
cas9/score.py
cangtu/cot
2ecbe83fe7bb3538f80692fc4412830f6c976558
[ "MIT" ]
1
2018-07-11T06:12:51.000Z
2018-07-11T06:12:51.000Z
cas9/score.py
cangtu/cot
2ecbe83fe7bb3538f80692fc4412830f6c976558
[ "MIT" ]
null
null
null
cas9/score.py
cangtu/cot
2ecbe83fe7bb3538f80692fc4412830f6c976558
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright @ 0x6c78. # # 16-10-20 下午1:27 0x6c78@gmail.com # # Distributed under terms of the MIT License from operator import mul from itertools import combinations class Score(object): def __init__(self): """ 张峰实验室通过实验获得的每个位置错配的特异性,具体参考网页: http://crispr.mit.edu/about """ self.m = (0, 0, 0.014, 0, 0, 0.395, 0.317, 0, 0.389, 0.079, 0.445, 0.508, 0.613, 0.851, 0.732, 0.828, 0.615, 0.804, 0.685, 0.583) def _t1(self, locs): """ :param locs: 失配的位置 :return: 公式第一部分的值 """ return reduce(mul, [1-self.m[loc] for loc in locs]) @staticmethod def _t2(locs): """ :param locs: 失配的位置, 由于没有失配就没有mean pairwise distance,故locs的length至少为1 :return: 公式第二部分的值 """ if len(locs) == 1: return 1.000 else: locs = sorted(locs) length = len(locs) mpd = (locs[-1] - locs[0]) / (length - 1) # mean pairwise distance return 1 / (((19 - mpd) / 19) * 4 + 1) @staticmethod def _t3(m): """ :param m: 失配碱基的个数 :return: 公式第三部分的值 """ return 1 / (m ** 2) def get(self, locs): if len(locs) == 0: return 100.000 elif len(locs) == 1: return round(100 * self._t1(locs), 3) else: return round(100 * self._t1(locs) * self._t2(locs) * self._t3(len(locs)), 3) @classmethod def to_dict(cls): """ 将所有可能的错配结果对应的得分先计算好,放到一个字典里 加速得分的计算 :return: 一个字典,字典的键是错配的位置由下划线分割的字符串,值是得分 """ mm2score = {} pos_list = range(20) score = cls() for mm_cnt in xrange(5): for mm_pos_list in combinations(pos_list, mm_cnt): mm2score['_'.join(str(_) for _ in mm_pos_list)] = score.get(mm_pos_list) return mm2score
26.094595
88
0.518384
2,034
0.910882
0
0
1,208
0.540976
0
0
912
0.408419
f71362b0a4e90908b800515208bd4b73487ecd9e
1,823
py
Python
RiotGames/API/Match.py
Timohiho/RiotGames
f75256cca1b5c224393dca99296a6163b70b335f
[ "MIT" ]
2
2021-05-05T12:33:51.000Z
2021-12-15T13:08:44.000Z
RiotGames/API/Match.py
Timohiho/RiotGames
f75256cca1b5c224393dca99296a6163b70b335f
[ "MIT" ]
null
null
null
RiotGames/API/Match.py
Timohiho/RiotGames
f75256cca1b5c224393dca99296a6163b70b335f
[ "MIT" ]
null
null
null
# Copyright (c) 2021. # The copyright lies with Timo Hirsch-Hoffmann, the further use is only permitted with reference to source import urllib.request from RiotGames.API.RiotApi import RiotApi class Match(RiotApi): __timeline_by_match_id_url: str = "https://{}.api.riotgames.com/lol/match/v4/timelines/by-match/{}?api_key={}" def __init__(self, apikey: str): """ :param apikey: """ super().__init__(apikey) self.__super = super() def by_id(self, match_id: int, region: str): """ Special Function still in development https://developer.riotgames.com/apis#match-v4/GET_getMatchlist TODO :param match_id: :param region: :return: """ pass def matchlist_by_account_id(self, account_id: str, begin_time: int = None, end_time: int = None, begin_index: int = None, end_index: int = None, champions: list = None, queue: list = None, season: list = None): """ Special Function still in development https://developer.riotgames.com/apis#match-v4/GET_getMatchlist TODO format url :param account_id: encrypted account id :param begin_time: :param end_time: :param begin_index: :param end_index: :param champions: :param queue: :param season: :return: """ pass def timeline_by_match_id(self, match_id: int, region: str) -> dict: """ :param match_id: :param region: :return: """ return eval(bytes( urllib.request.urlopen( self.__timeline_by_match_id_url.format(region, match_id, super()._get_key())).read()).decode())
28.936508
114
0.580362
1,622
0.889742
0
0
0
0
0
0
949
0.52057
f714e5ccca4b369e0fbd09fb0a4e6218788b9ed7
3,513
py
Python
google_or_tools/coloring_ip_sat.py
tias/hakank
87b7f180c9393afce440864eb9e5fb119bdec1a4
[ "MIT" ]
279
2015-01-10T09:55:35.000Z
2022-03-28T02:34:03.000Z
google_or_tools/coloring_ip_sat.py
tias/hakank
87b7f180c9393afce440864eb9e5fb119bdec1a4
[ "MIT" ]
10
2017-10-05T15:48:50.000Z
2021-09-20T12:06:52.000Z
google_or_tools/coloring_ip_sat.py
tias/hakank
87b7f180c9393afce440864eb9e5fb119bdec1a4
[ "MIT" ]
83
2015-01-20T03:44:00.000Z
2022-03-13T23:53:06.000Z
# Copyright 2021 Hakan Kjellerstrand hakank@gmail.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Simple coloring problem (MIP approach) in OR-tools CP-SAT Solver. Inspired by the GLPK:s model color.mod ''' COLOR, Graph Coloring Problem Written in GNU MathProg by Andrew Makhorin <mao@mai2.rcnet.ru> Given an undirected loopless graph G = (V, E), where V is a set of nodes, E <= V x V is a set of arcs, the Graph Coloring Problem is to find a mapping (coloring) F: V -> C, where C = {1, 2, ... } is a set of colors whose cardinality is as small as possible, such that F(i) != F(j) for every arc (i,j) in E, that is adjacent nodes must be assigned different colors. ''' This is a port of my old OR-tools CP solver coloring_ip.py This model was created by Hakan Kjellerstrand (hakank@gmail.com) Also see my other OR-tols models: http://www.hakank.org/or_tools/ """ from __future__ import print_function from ortools.sat.python import cp_model as cp import math, sys # from cp_sat_utils import * def main(): model = cp.CpModel() # max number of colors # [we know that 4 suffices for normal maps] nc = 5 # number of nodes n = 11 # set of nodes V = list(range(n)) num_edges = 20 # # Neighbours # # This data correspond to the instance myciel3.col from: # http://mat.gsia.cmu.edu/COLOR/instances.html # # Note: 1-based (adjusted below) E = [[1, 2], [1, 4], [1, 7], [1, 9], [2, 3], [2, 6], [2, 8], [3, 5], [3, 7], [3, 10], [4, 5], [4, 6], [4, 10], [5, 8], [5, 9], [6, 11], [7, 11], [8, 11], [9, 11], [10, 11]] # # declare variables # # x[i,c] = 1 means that node i is assigned color c x = {} for v in V: for j in range(nc): x[v, j] = model.NewIntVar(0, 1, 'v[%i,%i]' % (v, j)) # u[c] = 1 means that color c is used, i.e. assigned to some node u = [model.NewIntVar(0, 1, 'u[%i]' % i) for i in range(nc)] # number of colors used, to minimize num_colors = model.NewIntVar(0,nc, "num_colors") model.Add(num_colors == sum(u)) # # constraints # # each node must be assigned exactly one color for i in V: model.Add(sum([x[i, c] for c in range(nc)]) == 1) # adjacent nodes cannot be assigned the same color # (and adjust to 0-based) for i in range(num_edges): for c in range(nc): model.Add(x[E[i][0] - 1, c] + x[E[i][1] - 1, c] <= u[c]) # objective model.Minimize(num_colors) # # solution # solver = cp.CpSolver() status = solver.Solve(model) if status == cp.OPTIMAL: print() print('number of colors:', solver.Value(num_colors)) print('colors used:', [solver.Value(u[i]) for i in range(nc)]) print() for v in V: print('v%i' % v, ' color ', end=' ') for c in range(nc): if solver.Value(x[v, c]) == 1: print(c) print() print('NumConflicts:', solver.NumConflicts()) print('NumBranches:', solver.NumBranches()) print('WallTime:', solver.WallTime()) if __name__ == '__main__': main()
27.232558
78
0.63507
0
0
0
0
0
0
0
0
2,124
0.604611
f715d5acbe3a069259390dee428b7666dca26c08
9,706
py
Python
src/intermediate_representation/sem_utils.py
ckosten/ValueNet4SPARQL
de320a2f0e1a4c5a6c0e5cc79057dda9901046e8
[ "Apache-2.0" ]
null
null
null
src/intermediate_representation/sem_utils.py
ckosten/ValueNet4SPARQL
de320a2f0e1a4c5a6c0e5cc79057dda9901046e8
[ "Apache-2.0" ]
null
null
null
src/intermediate_representation/sem_utils.py
ckosten/ValueNet4SPARQL
de320a2f0e1a4c5a6c0e5cc79057dda9901046e8
[ "Apache-2.0" ]
1
2021-09-23T13:02:45.000Z
2021-09-23T13:02:45.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # -*- coding: utf-8 -*- """ # @Time : 2019/5/27 # @Author : Jiaqi&Zecheng # @File : sem_utils.py # @Software: PyCharm """ import os import json import re as regex import spacy from nltk.stem import WordNetLemmatizer wordnet_lemmatizer = WordNetLemmatizer() nlp = spacy.load('en_core_web_sm', disable=['parser', 'ner']) def partial_match(query, table_name): query = [token.lemma_ for token in nlp(query)] table_name = [nlp(token)[0].lemma_ for token in table_name] if query in table_name: return True return False def is_partial_match(query, table_names): query = nlp(query)[0].lemma_ table_names = [[token.lemma_ for token in nlp(names)] for names in table_names] same_count = 0 result = None for names in table_names: if query in names: same_count += 1 result = names return result if same_count == 1 else False def multi_option(question, q_ind, names, N): for i in range(q_ind + 1, q_ind + N + 1): if i < len(question): re = is_partial_match(question[i][0], names) if re is not False: return re return False def multi_equal(question, q_ind, names, N): for i in range(q_ind + 1, q_ind + N + 1): if i < len(question): if question[i] == names: return i return False def random_choice(question_arg, question_arg_type, names, ground_col_labels, q_ind, N, origin_name): # first try if there are other table for t_ind, t_val in enumerate(question_arg_type): if t_val == ['table']: return names[origin_name.index(question_arg[t_ind])] for i in range(q_ind + 1, q_ind + N + 1): if i < len(question_arg): if len(ground_col_labels) == 0: for n in names: if partial_match(question_arg[i][0], n) is True: return n else: for n_id, n in enumerate(names): if n_id in ground_col_labels and partial_match(question_arg[i][0], n) is True: return n if len(ground_col_labels) > 0: return names[ground_col_labels[0]] else: return names[0] def alter_column0(datas): """ Attach column * table :return: model_result_replace """ zero_count = 0 count = 0 result = [] for d in datas: if 'C(0)' in d['model_result']: pattern = regex.compile('C\(.*?\) T\(.*?\)') result_pattern = list(set(pattern.findall(d['model_result']))) ground_col_labels = [] for pa in result_pattern: pa = pa.split(' ') if pa[0] != 'C(0)': index = int(pa[1][2:-1]) ground_col_labels.append(index) ground_col_labels = list(set(ground_col_labels)) question_arg_type = d['question_arg_type'] question_arg = d['question_arg'] table_names = [[token.lemma_ for token in nlp(names)] for names in d['table_names']] origin_table_names = [[wordnet_lemmatizer.lemmatize(x.lower()) for x in names.split(' ')] for names in d['table_names']] count += 1 easy_flag = False for q_ind, q in enumerate(d['question_arg']): q_str = " ".join(" ".join(x) for x in d['question_arg']) if 'how many' in q_str or 'number of' in q_str or 'count of' in q_str: easy_flag = True if easy_flag: # check for the last one is a table word for q_ind, q in enumerate(d['question_arg']): if (q_ind > 0 and q == ['many'] and d['question_arg'][q_ind - 1] == ['how']) or ( q_ind > 0 and q == ['of'] and d['question_arg'][q_ind - 1] == ['number']) or ( q_ind > 0 and q == ['of'] and d['question_arg'][q_ind - 1] == ['count']): re = multi_equal(question_arg_type, q_ind, ['table'], 2) if re is not False: # This step work for the number of [table] example table_result = table_names[origin_table_names.index(question_arg[re])] result.append((d['query'], d['question'], table_result, d)) break else: re = multi_option(question_arg, q_ind, d['table_names'], 2) if re is not False: table_result = re result.append((d['query'], d['question'], table_result, d)) pass else: re = multi_equal(question_arg_type, q_ind, ['table'], len(question_arg_type)) if re is not False: # This step work for the number of [table] example table_result = table_names[origin_table_names.index(question_arg[re])] result.append((d['query'], d['question'], table_result, d)) break pass table_result = random_choice(question_arg=question_arg, question_arg_type=question_arg_type, names=table_names, ground_col_labels=ground_col_labels, q_ind=q_ind, N=2, origin_name=origin_table_names) result.append((d['query'], d['question'], table_result, d)) zero_count += 1 break else: M_OP = False for q_ind, q in enumerate(d['question_arg']): if M_OP is False and q in [['than'], ['least'], ['most'], ['msot'], ['fewest']] or \ question_arg_type[q_ind] == ['M_OP']: M_OP = True re = multi_equal(question_arg_type, q_ind, ['table'], 3) if re is not False: # This step work for the number of [table] example table_result = table_names[origin_table_names.index(question_arg[re])] result.append((d['query'], d['question'], table_result, d)) break else: re = multi_option(question_arg, q_ind, d['table_names'], 3) if re is not False: table_result = re # print(table_result) result.append((d['query'], d['question'], table_result, d)) pass else: # zero_count += 1 re = multi_equal(question_arg_type, q_ind, ['table'], len(question_arg_type)) if re is not False: # This step work for the number of [table] example table_result = table_names[origin_table_names.index(question_arg[re])] result.append((d['query'], d['question'], table_result, d)) break table_result = random_choice(question_arg=question_arg, question_arg_type=question_arg_type, names=table_names, ground_col_labels=ground_col_labels, q_ind=q_ind, N=2, origin_name=origin_table_names) result.append((d['query'], d['question'], table_result, d)) pass if M_OP is False: table_result = random_choice(question_arg=question_arg, question_arg_type=question_arg_type, names=table_names, ground_col_labels=ground_col_labels, q_ind=q_ind, N=2, origin_name=origin_table_names) result.append((d['query'], d['question'], table_result, d)) for re in result: table_names = [[token.lemma_ for token in nlp(names)] for names in re[3]['table_names']] origin_table_names = [[x for x in names.split(' ')] for names in re[3]['table_names']] if re[2] in table_names: re[3]['rule_count'] = table_names.index(re[2]) else: re[3]['rule_count'] = origin_table_names.index(re[2]) for data in datas: if 'rule_count' in data: str_replace = 'C(0) T(' + str(data['rule_count']) + ')' replace_result = regex.sub('C\(0\) T\(.\)', str_replace, data['model_result']) data['model_result_replace'] = replace_result else: data['model_result_replace'] = data['model_result']
46.888889
117
0.474861
0
0
0
0
0
0
0
0
1,390
0.14321