hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
058a7c137ede0bf5c3a55a3ce41c3dfb2936df30
2,079
py
Python
src/views/list.py
AllForJan/prizma-backend
fe866e74fa01e900cc7eab624bb5716a4bae056d
[ "MIT" ]
2
2018-04-08T22:18:11.000Z
2018-04-26T08:12:46.000Z
src/views/list.py
AllForJan/prizma-backend
fe866e74fa01e900cc7eab624bb5716a4bae056d
[ "MIT" ]
null
null
null
src/views/list.py
AllForJan/prizma-backend
fe866e74fa01e900cc7eab624bb5716a4bae056d
[ "MIT" ]
2
2018-04-08T22:18:13.000Z
2018-04-08T22:18:18.000Z
from elasticsearch import Elasticsearch from flask import request, jsonify from flask_restful import Resource from db.manager import get_conn import settings conn = get_conn() def append_range_filter(f, key, _from, to): d = {} if _from or to: d['range'] = {} d['range'][key] = {} if _from: d['range'][key]['gte'] = _from if to: d['range'][key]['lte'] = to f.append(d) return f class ListPO(Resource): def get(self): q = request.args.get('q', None) es = Elasticsearch( [settings.ELASTIC_HOST, ], timeout=30, max_retries=10, retry_on_timeout=True, port=settings.ELASTIC_PORT ) if not q: query = {'query': {'match_all': {}}} results = es.search(index='apa', doc_type='po', body=query) rows = [{ 'data': r['_source'], '_id': r['_id'] } for r in results['hits']['hits']] return jsonify(rows) rok_from = request.args.get('rok_from', None) rok_to = request.args.get('rok_to', None) suma_from = request.args.get('suma_from', None) suma_to = request.args.get('suma_to') # append filters f = [] append_range_filter(f, 'rok', rok_from, rok_to) append_range_filter(f, 'suma', suma_from, suma_to) query = { "sort": [ {"suma": {"order": "desc"}} ], "query": { "bool": { "must": [ { "match": { "meno": {"query":q, "operator": "and"} } }, ], # "filter": [] } } } query['query']['bool']['must'].extend(f) results = es.search(index='apa', doc_type='po', body=query) rows = [{ 'data': r['_source'], '_id': r['_id'] } for r in results['hits']['hits']] return rows
25.353659
89
0.457431
1,636
0.786917
0
0
0
0
0
0
328
0.157768
058ba31e5a3c9cecbd73c880b21c4ea42a75e1cf
3,056
py
Python
tests/test_cli.py
SlawekNowy/vpk
3c9e175f48d8d56b5995387bcaa2c16ec62f9688
[ "MIT" ]
116
2015-08-29T23:24:28.000Z
2022-03-04T19:35:52.000Z
tests/test_cli.py
SlawekNowy/vpk
3c9e175f48d8d56b5995387bcaa2c16ec62f9688
[ "MIT" ]
27
2015-07-30T16:44:17.000Z
2021-12-25T19:00:44.000Z
tests/test_cli.py
SlawekNowy/vpk
3c9e175f48d8d56b5995387bcaa2c16ec62f9688
[ "MIT" ]
21
2015-08-03T23:57:25.000Z
2021-12-21T10:29:59.000Z
import sys import unittest from contextlib import contextmanager try: from io import StringIO except ImportError: from StringIO import StringIO from vpk import cli @contextmanager def capture_stdout(): new_out = StringIO() old_out = sys.stdout try: sys.stdout = new_out yield sys.stdout finally: sys.stdout = old_out class testcase_cli(unittest.TestCase): def setUp(self): self.vpk_path = './tests/test_dir.vpk' self.parser = cli.make_argparser() self.vpk_content = ['testfile1.txt', 'testdir/testfile2.txt', 'a/b/c/d/testfile3.bin'] def run_cli_with_args(self, args): args = self.parser.parse_args(args) with capture_stdout() as stdout: cli.run(args) stdout = stdout.getvalue().split() return stdout def test_cli_list(self): stdout = self.run_cli_with_args([self.vpk_path, '--list']) self.assertEqual(len(stdout), len(self.vpk_content)) for expected_content in self.vpk_content: self.assertIn(expected_content, stdout) def test_cli_list_filter_filter(self): # filter on file name stdout = self.run_cli_with_args([self.vpk_path, '--list', '--filter', '*file2*']) self.assertEqual(len(stdout), 1) self.assertIn(self.vpk_content[1], stdout) # filter on dir name stdout = self.run_cli_with_args([self.vpk_path, '--list', '--filter', 'testdir*']) self.assertEqual(len(stdout), 1) self.assertIn(self.vpk_content[1], stdout) # use filter as exclusion stdout = self.run_cli_with_args([self.vpk_path, '--list', '--filter', '*file2*', '-v']) self.assertEqual(len(stdout), 2) self.assertIn(self.vpk_content[0], stdout) self.assertIn(self.vpk_content[2], stdout) def test_cli_list_filter_name(self): # filter on file name stdout = self.run_cli_with_args([self.vpk_path, '--list', '-name', '*file2*']) self.assertEqual(len(stdout), 1) self.assertIn(self.vpk_content[1], stdout) # filter on dir name (should not work) stdout = self.run_cli_with_args([self.vpk_path, '--list', '-name', 'testdir*']) self.assertEqual(len(stdout), 0) # use filter as exclusion stdout = self.run_cli_with_args([self.vpk_path, '--list', '-name', '*file2*', '-v']) self.assertEqual(len(stdout), 2) self.assertIn(self.vpk_content[0], stdout) self.assertIn(self.vpk_content[2], stdout) def test_cli_list_filter_regex(self): stdout = self.run_cli_with_args([self.vpk_path, '--list', '--regex', r'file2\.t[tx]{2}$']) self.assertEqual(len(stdout), 1) self.assertIn(self.vpk_content[1], stdout) # use filter as exclusion stdout = self.run_cli_with_args([self.vpk_path, '--list', '--regex', r'file2\.t[tx]{2}$', '-v']) self.assertEqual(len(stdout), 2) self.assertIn(self.vpk_content[0], stdout) self.assertIn(self.vpk_content[2], stdout)
35.534884
105
0.634162
2,684
0.878272
176
0.057592
192
0.062827
0
0
505
0.165249
058c253ae43e29116887b045dfd233f62ef4ccf0
218
py
Python
cpab/cpaNd/model/__init__.py
freifeld/cpabDiffeo
22df6cdbd7111b9ae3e7f1c0e31ff85e92d281a6
[ "MIT" ]
17
2016-03-16T21:35:36.000Z
2021-11-11T04:16:21.000Z
cpab/cpaNd/model/__init__.py
freifeld/cpabDiffeo
22df6cdbd7111b9ae3e7f1c0e31ff85e92d281a6
[ "MIT" ]
null
null
null
cpab/cpaNd/model/__init__.py
freifeld/cpabDiffeo
22df6cdbd7111b9ae3e7f1c0e31ff85e92d281a6
[ "MIT" ]
4
2016-08-12T23:02:09.000Z
2019-03-14T18:20:36.000Z
from _LogLikelihood import LogLikelihood from _LogPrior import LogPrior #from _ScaleDependentLogLikelihoodGaussian import ScaleDependentLogLikelihoodGaussian from _ScaleDependentLogPrior import ScaleDependentLogPrior
36.333333
85
0.917431
0
0
0
0
0
0
0
0
85
0.389908
058c66b876771cc78eea5a8cc9478dd196dd972b
1,768
py
Python
authentic/authentic.settings.py
GuillaumeGautierLA/publik
5ef6c19e9b91bf066717b4bc9df2540f4c2e1bc2
[ "MIT" ]
null
null
null
authentic/authentic.settings.py
GuillaumeGautierLA/publik
5ef6c19e9b91bf066717b4bc9df2540f4c2e1bc2
[ "MIT" ]
13
2019-12-21T09:48:42.000Z
2020-07-01T19:12:28.000Z
authentic/authentic.settings.py
GuillaumeGautierLA/publik
5ef6c19e9b91bf066717b4bc9df2540f4c2e1bc2
[ "MIT" ]
4
2020-01-06T16:00:00.000Z
2021-01-08T14:46:29.000Z
# To pass env vars to Python scripts run by Publik in services which remove custom env vars: # https://unix.stackexchange.com/questions/44370/how-to-make-unix-service-see-environment-variables # So we hardcode the values in the file below when the container starts import sys sys.path.insert(0, "/home") from pyenv import * # Databases DATABASES['default']['ENGINE'] = 'tenant_schemas.postgresql_backend' DATABASES['default']['NAME'] = DB_AUTHENTIC_NAME DATABASES['default']['USER'] = DB_AUTHENTIC_USER DATABASES['default']['PASSWORD'] = DB_AUTHENTIC_PASS DATABASES['default']['HOST'] = 'db' DATABASES['default']['PORT'] = DB_PORT BROKER_URL = 'amqp://{user}:{password}@rabbitmq:{port}//'.format( user=RABBITMQ_DEFAULT_USER, password=RABBITMQ_DEFAULT_PASS, port=RABBITMQ_PORT, ) # Zone LANGUAGE_CODE = 'fr-fr' TIME_ZONE = 'Europe/Paris' # Email configuration ADMINS = ( (ERROR_MAIL_AUTHOR, ERROR_MAIL_ADDR), ) EMAIL_SUBJECT_PREFIX = '[authentic] ' SERVER_EMAIL = ERROR_MAIL_ADDR DEFAULT_FROM_EMAIL = ERROR_MAIL_ADDR # SMTP configuration EMAIL_HOST = SMTP_HOST EMAIL_HOST_USER = SMTP_USER EMAIL_HOST_PASSWORD = SMTP_PASS EMAIL_PORT = SMTP_PORT # HTTPS Security CSRF_COOKIE_SECURE = True SESSION_COOKIE_SECURE = True # Idp # SAML 2.0 IDP #A2_IDP_SAML2_ENABLE = False # CAS 1.0 / 2.0 IDP #A2_IDP_CAS_ENABLE = False # OpenID 1.0 / 2.0 IDP #A2_IDP_OPENID_ENABLE = False # Authentifications #A2_AUTH_PASSWORD_ENABLE = True #A2_SSLAUTH_ENABLE = False CACHES = { 'default': { 'BACKEND': 'hobo.multitenant.cache.TenantCache', 'REAL_BACKEND': 'django.core.cache.backends.memcached.MemcachedCache', 'LOCATION': '127.0.0.1:11211', } } # Role provisionning via local RabbitMQ HOBO_ROLE_EXPORT = True LOGGING = LOGGING_FROM_PYENV
26.38806
99
0.750566
0
0
0
0
0
0
0
0
963
0.544683
058f090a9e7707433a3105b87e3e591439fed2ac
8,377
py
Python
code/train/train_model.py
96jhwei/Genetic-U-Net
25116f01afcf8ed4386cd0fc258da15e1c982cb5
[ "MIT" ]
14
2021-09-09T11:22:17.000Z
2022-03-14T10:06:36.000Z
code/train/train_model.py
96jhwei/Genetic-U-Net
25116f01afcf8ed4386cd0fc258da15e1c982cb5
[ "MIT" ]
1
2021-11-24T10:30:36.000Z
2021-11-24T10:30:36.000Z
code/train/train_model.py
96jhwei/Genetic-U-Net
25116f01afcf8ed4386cd0fc258da15e1c982cb5
[ "MIT" ]
5
2021-11-02T09:29:49.000Z
2022-03-25T09:44:25.000Z
import numpy from torch.utils.data import DataLoader from tqdm import tqdm from loss.FocalLoss import FocalLossForSigmoid import torch from metrics.calculate_metrics import calculate_metrics import shutil from metrics.average_meter import AverageMeter import torch.multiprocessing from torch.nn.utils.clip_grad import clip_grad_norm_ import os import sys import numpy as np import random from thop import profile from .util.get_optimizer import get_optimizer from dataset.util.get_datasets import get_datasets import multiprocessing as mp sys.path.append('../') def train_one_model(optimizer_name, learning_rate, l2_weight_decay, gen_num, ind_num, model, batch_size, epochs, device, train_set_name, valid_set_name, train_set_root, valid_set_root, exp_name, mode='train'): seed = 12 torch.cuda.empty_cache() torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) random.seed(seed) np.random.seed(seed) torch.backends.cudnn.benchmark = True model.to(device) model.train() loss_func = FocalLossForSigmoid(reduction='mean').to(device) optimizer = get_optimizer(optimizer_name, filter(lambda p: p.requires_grad, model.parameters()), learning_rate, l2_weight_decay) train_set, num_return = get_datasets(train_set_name, train_set_root, True) valid_set, _ = get_datasets(valid_set_name, valid_set_root, False) train_loader = DataLoader(dataset=train_set, batch_size=batch_size, shuffle=True, num_workers=3) valid_loader = DataLoader(dataset=valid_set, batch_size=1, shuffle=False, num_workers=1) best_f1_score = 0 flag = 0 count = 0 valid_epoch = 80 metrics_name = ['flops', 'param', 'accuracy', 'recall', 'specificity', 'precision', 'f1_score', 'auroc', 'iou'] metrics = {} for metric_name in metrics_name: if metric_name == 'flops' or metric_name == 'param': metrics.update({metric_name: 100}) else: metrics.update({metric_name: 0}) try: for i in range(epochs): train_tqdm_batch = tqdm(iterable=train_loader, total=numpy.ceil(len(train_set) / batch_size)) for images, targets in train_tqdm_batch: images, targets = images.to(device), targets.to(device) optimizer.zero_grad() preds = model(images) loss = loss_func(preds, targets) loss.backward() clip_grad_norm_(model.parameters(), 0.1) optimizer.step() train_tqdm_batch.close() print('gens_{} individual_{}_epoch_{} train end'.format(gen_num, ind_num, i)) epoch_acc = AverageMeter() epoch_recall = AverageMeter() epoch_precision = AverageMeter() epoch_specificity = AverageMeter() epoch_f1_score = AverageMeter() epoch_iou = AverageMeter() epoch_auroc = AverageMeter() if (i >= valid_epoch): with torch.no_grad(): model.eval() valid_tqdm_batch = tqdm(iterable=valid_loader, total=numpy.ceil(len(valid_set) / 1)) for images, targets in valid_tqdm_batch: images = images.to(device) targets = targets.to(device) preds = model(images) (acc, recall, specificity, precision, f1_score, iou, auroc) = calculate_metrics(preds=preds, targets=targets, device=device) epoch_acc.update(acc) epoch_recall.update(recall) epoch_precision.update(precision) epoch_specificity.update(specificity) epoch_f1_score.update(f1_score) epoch_iou.update(iou) epoch_auroc.update(auroc) if i == valid_epoch: flops, param = profile(model=model, inputs=(images,), verbose=False) flops = flops / 1e11 param = param / 1e6 print('gens_{} individual_{}_epoch_{} validate end'.format(gen_num, ind_num, i)) print('acc:{} | recall:{} | spe:{} | pre:{} | f1_score:{} | auroc:{}' .format(epoch_acc.val, epoch_recall.val, epoch_specificity.val, epoch_precision.val, epoch_f1_score.val, epoch_auroc.val)) if epoch_f1_score.val > best_f1_score: best_f1_score = epoch_f1_score.val flag = i count = 0 for key in list(metrics): if key == 'flops': metrics[key] = flops elif key == 'param': metrics[key] = param elif key == 'accuracy': metrics[key] = epoch_acc.val elif key == 'recall': metrics[key] = epoch_recall.val elif key == 'specificity': metrics[key] = epoch_specificity.val elif key == 'precision': metrics[key] = epoch_precision.val elif key == 'f1_score': metrics[key] = epoch_f1_score.val elif key == 'auroc': metrics[key] = epoch_auroc.val elif key == 'iou': metrics[key] = epoch_iou.val else: raise NotImplementedError import pandas as pd from os.path import join performance_df = pd.DataFrame( data=[[gen_num, ind_num, epoch_acc.val, epoch_recall.val, epoch_specificity.val, epoch_precision.val, epoch_f1_score.val, epoch_iou.val, epoch_auroc.val]], columns=['epoch', 'individual', 'acc', 'recall', 'specificity', 'precision', 'f1_score', 'iou', 'auroc', ] ) performance_csv_path = join(os.path.abspath('.'), 'exps/{}/csv'.format(exp_name), 'gens_{} individual_{} performance.csv'.format(gen_num, ind_num)) performance_df.to_csv(performance_csv_path) else: if i >= valid_epoch: count += 1 end = None if i > valid_epoch + 15 and best_f1_score < 0.50: end = True if (count >= 70) or end: print('current best epoch_{} best_f1_score:'.format(flag), best_f1_score) print('gens_{} individual_{} train early stop'.format(gen_num, ind_num)) print('=======================================================================') valid_tqdm_batch.close() return metrics, True print('current best epoch_{} best_f1_score:'.format(flag), best_f1_score) valid_tqdm_batch.close() print('current best epoch_{} best_f1_score:'.format(flag), best_f1_score) print('=======================================================================') except RuntimeError as exception: images.detach_() del images del model del targets return metrics, False return metrics, True
45.037634
133
0.493613
0
0
0
0
0
0
0
0
771
0.092038
059016200f557d7398f34c3a96008e7fee9686c3
961
py
Python
dataset/check_for_duplicates.py
mathildor/TF-SegNet
dff209c8174b5e8fa77b4c2644298f6903a09445
[ "MIT" ]
98
2017-11-06T15:55:22.000Z
2022-03-22T11:29:47.000Z
dataset/check_for_duplicates.py
yingz9/TF-SegNet
dff209c8174b5e8fa77b4c2644298f6903a09445
[ "MIT" ]
8
2017-11-15T06:05:41.000Z
2019-06-19T06:53:03.000Z
dataset/check_for_duplicates.py
yingz9/TF-SegNet
dff209c8174b5e8fa77b4c2644298f6903a09445
[ "MIT" ]
34
2017-11-06T03:05:54.000Z
2022-01-25T16:00:09.000Z
import os from PIL import Image import numpy from PIL import ImageChops """ TESTED: No duplicates in: - within validation images first part (stopped because of training - took to much time) """ image_path="../../IR_images/combined_dataset/val_images/images" # image_path="../../IR_images/combined_dataset/val_images/images" images = sorted(os.listdir(image_path)) for image_file_1 in images: for image_file_2 in images: image1 = Image.open(os.path.join(image_path,image_file_1)) image2 = Image.open(os.path.join(image_path,image_file_2)) #pixels = image.load() if ImageChops.difference(image1, image2).getbbox() is None: # if(image1==image2):# and image_file_1 != image_file_2): print("Same image!!!") print(image_file_1) print(image_file_2) # else: # print("not same") # print(image_file_1) # print(image_file_2)
26.694444
95
0.648283
0
0
0
0
0
0
0
0
427
0.444329
059038232d1c85e48c2eed487377d93d1ad944f4
1,983
py
Python
_posts/import.py
suepeng/suepeng.github.io
844e0063e0604a77886aad5eaea588c4df2792a9
[ "MIT" ]
null
null
null
_posts/import.py
suepeng/suepeng.github.io
844e0063e0604a77886aad5eaea588c4df2792a9
[ "MIT" ]
null
null
null
_posts/import.py
suepeng/suepeng.github.io
844e0063e0604a77886aad5eaea588c4df2792a9
[ "MIT" ]
null
null
null
import os, glob from dateutil import parser from bs4 import BeautifulSoup ext = lambda line, cap: line.replace("\s", "").replace(cap, "").strip() def write_post(doc): meta = { 'title' : ext(doc[0], "TITLE:"), 'date' : parser.parse(ext(doc[2], "DATE:")).strftime("%Y-%m-%d"), 'tag' : ext(doc[3], "PRIMARY CATEGORY:"), 'status': ext(doc[4], "STATUS:"), 'imgs' : BeautifulSoup("".join(doc), features="html.parser").find_all('img'), } if not os.path.exists(meta['tag']): os.makedirs(meta['tag']) fname = f"{meta['tag']}/{meta['date']}-{meta['title'].replace('/', ' ')}.md" publish = 'true' if meta['status'] == 'publish' else 'false' feature = meta['imgs'][0].attrs['src'] if len(meta['imgs']) > 0 else None with open(fname, "wt") as f: # write meta f.write("---\n") f.write(f"layout: post\n") f.write(f"title: {meta['title']}\n") f.write(f"date: {meta['date']}\n") f.write(f"tag: {meta['tag']}\n") if feature: f.write(f"feature: \"{feature}\"\n") f.write(f"published: {publish} \n") f.write("---\n") # write boddy body = False for d in doc: if (d[:3] == '---'): continue if ('<!-- more -->' in d): d = d.replace('<!-- more -->', "").strip() if len(d) > 0 and body: f.write(d) body = ('BODY' in d) or body print(f"done {fname}") return True #------------------------------ # Main #------------------------------ if __name__ == "__main__": posts = 0 doc = [] for idx, line in enumerate(open("raw.txt").readlines()): if len(doc) and ('TITLE:' in line): posts += write_post(doc) doc, meta = [], {} doc.append(line) # latest post posts += write_post(doc) print(f"converted {posts} posts with {idx} lines")
31.983871
86
0.474534
0
0
0
0
0
0
0
0
639
0.322239
0594a8c465e7b18e9888443f247ba1cf8ff7c9cf
702
py
Python
layers/reshape.py
WJGiles/Dorknet
1582937e843b1a911334291c25ea415fb56e5ccc
[ "MIT" ]
null
null
null
layers/reshape.py
WJGiles/Dorknet
1582937e843b1a911334291c25ea415fb56e5ccc
[ "MIT" ]
null
null
null
layers/reshape.py
WJGiles/Dorknet
1582937e843b1a911334291c25ea415fb56e5ccc
[ "MIT" ]
1
2020-07-27T17:03:22.000Z
2020-07-27T17:03:22.000Z
import numpy as np from .layer import Layer class ReshapeLayer: def __init__(self, layer_name, input_shape, output_shape): super.__init__(layer_name) self.input_shape = input_shape self.output_shape = output_shape def __repr__(self): s = "ReshapeLayer(input_shape={}, output_shape={})".format(self.input_shape, self.output_shape) return s def forward(self, X, test_mode=False): return X.reshape(self.output_shape) def backward(self, upstream_dx): return upstream_dx.reshape(self.input_shape)
33.428571
85
0.564103
657
0.935897
0
0
0
0
0
0
47
0.066952
059744913f1e643dc9fe5a6332d2aff7847d00ed
3,342
py
Python
Project/checking_test2.py
mihdenis85/psycho_test
51bbe82043427d48e80ff36197815212c5c2a14c
[ "MIT" ]
null
null
null
Project/checking_test2.py
mihdenis85/psycho_test
51bbe82043427d48e80ff36197815212c5c2a14c
[ "MIT" ]
null
null
null
Project/checking_test2.py
mihdenis85/psycho_test
51bbe82043427d48e80ff36197815212c5c2a14c
[ "MIT" ]
null
null
null
def specialization(a, spec, jobs): if a>=0 and a<=2: return(spec + ': интерес к данной профессиональной сфере не выражен') elif a>=3 and a<=6: return(spec + ': профессиональная направленность и интерес выражены в средней степени. ' + 'Возможно вам будут интересны такие профессии будущего, как ' + jobs) elif a>=7 and a<=8: return(spec +': профессиональная направленность выражена довольно ярко и отчетливо. ' + 'Вам будут интересны такие профессии, которые будут актуальны в будущем, как '+ jobs) def check_test2(answers): p=0 chez1=0 t=0 z=0 h=0 n=answers[0] if n==1: p+=1 elif n==2: t+=1 n=answers[1] if n==1: chez1+=1 elif n==2: z+=1 n=answers[2] if n==1: h+=1 elif n==2: p+=1 n=answers[3] if n==1: t+=1 elif n==2: chez1+=1 n=answers[4] if n==1: z+=1 elif n==2: h+=1 n=answers[5] if n==1: p+=1 elif n==2: chez1+=1 n=answers[6] if n==1: h+=1 elif n==2: t+=1 n=answers[7] if n==1: chez1+=1 elif n==2: h+=1 n=answers[8] if n==1: t+=1 elif n==2: z+=1 n=answers[9] if n==1: p+=1 elif n==2: z+=1 n=answers[10] if n==1: p+=1 elif n==2: t+=1 n=answers[11] if n==1: chez1+=1 elif n==2: z+=1 n=answers[12] if n==1: h+=1 elif n==2: p+=1 n=answers[13] if n==1: t+=1 elif n==2: chez1+=1 n=answers[14] if n==1: z+=1 elif n==2: h+=1 n=answers[15] if n==1: p+=1 elif n==2: chez1+=1 n=answers[16] if n==1: h+=1 elif n==2: t+=1 n=answers[17] if n==1: chez1+=1 elif n==2: h+=1 n=answers[18] if n==1: t+=1 elif n==2: z+=1 n=answers[19] if n==1: p+=1 elif n==2: z+=1 pechat1=specialization(p, 'Природа', 'ИТ-генетик, Биофармаколог, Архитектор живых систем, Парковый эколог, ГМО-агроном, Портовый эколог, Сельскохозяйственный эколог, Космобиолог, Урбанист-эколог') pechat2=specialization(t, 'Техника', 'Проектировщик композитных конструкций для транспортных средств, Проектировщик нанотехнологических материалов, Глазир, Архитектор территорий, Конструктор новых металлов') pechat3=specialization(chez1, 'Сфера обслуживания', 'Врач, Генетический консультант, Молекулярный диетолог, Тренер творческих занятий, Личный тьютор по эстетическому развитию, Разработчик персональных пенсионных акладов') pechat4=specialization(z, 'Точные науки и музыка(игра на музыкальных инструментах)', 'Музыкант, Танцор, Переводчик фильмов, Энергоаудитор, Оператор Многофункциональных технических комплексов, Агроном экономист, ') pechat5=specialization(h, 'Творческие профессии', 'Создатель спецэффектов, Видеохудожник, Театральный художник, Аранжировщик, Шоураннер, Балетмейстер, Дирижёр, Живописец, Танцор, Режиссер, Художник-технолог, Science-художник, Видеограф, Специалист по озвучиванию и звуковым спецэффектам в кино, Инфо-стилист, Архитектор виртуальности') return pechat1 + ' ' + pechat2 + ' ' + pechat3 + ' ' + pechat4 + ' ' + pechat5
27.85
339
0.578995
0
0
0
0
0
0
0
0
2,515
0.561008
05975def902880bc29f1fd9e4b623039913f810f
4,003
py
Python
src/upload/upload.py
alliance-genome/agr_ferret
e2ccef16308b1a8a6f1b2a3dde6e29e0530da721
[ "MIT" ]
2
2020-07-22T14:25:00.000Z
2021-09-20T18:29:08.000Z
src/upload/upload.py
alliance-genome/agr_ferret
e2ccef16308b1a8a6f1b2a3dde6e29e0530da721
[ "MIT" ]
6
2019-09-24T14:09:42.000Z
2021-06-07T15:27:55.000Z
src/upload/upload.py
alliance-genome/agr_ferret
e2ccef16308b1a8a6f1b2a3dde6e29e0530da721
[ "MIT" ]
3
2020-12-19T08:57:51.000Z
2020-12-19T08:58:09.000Z
# Functions for use in downloading files. import logging, os, requests, json, hashlib, urllib from requests_toolbelt.utils import dump from retry import retry logger = logging.getLogger(__name__) def create_md5(worker, filename, save_path): # Generate md5 logger.info('{}: Generating md5 hash for {}.'.format(worker, filename)) hash_md5 = hashlib.md5() with open(os.path.join(save_path, filename), 'rb') as f: for chunk in iter(lambda: f.read(4096), b''): hash_md5.update(chunk) logger.info('{}: Finished generating md5 hash: {}'.format(worker, hash_md5.hexdigest())) return hash_md5.hexdigest() def upload_file(worker, filename, save_path, upload_file_prefix, config_info): file_to_upload = {upload_file_prefix: open(os.path.join(save_path, filename), 'rb')} headers = { 'Authorization': 'Bearer {}'.format(config_info.config['API_KEY']) } logger.debug('{}: Attempting upload of data file: {}'.format(worker, os.path.join(save_path, filename))) logger.debug('{}: Attempting upload with header: {}'.format(worker, headers)) logger.info("{}: Uploading data to {}) ...".format(worker, config_info.config['FMS_API_URL']+'/api/data/submit/')) response = requests.post(config_info.config['FMS_API_URL']+'/api/data/submit/', files=file_to_upload, headers=headers) logger.info(response.text) @retry(tries=5, delay=5, logger=logger) def upload_process(worker, filename, save_path, data_type, data_sub_type, config_info): release = config_info.config['ALLIANCE_RELEASE'] upload_file_prefix = '{}_{}_{}'.format(release, data_type, data_sub_type) generated_md5 = create_md5(worker, filename, save_path) # Attempt to grab MD5 for the latest version of the file. logger.debug(config_info.config['FMS_API_URL'] + '/api/datafile/by/{}/{}?latest=true'.format(data_type, data_sub_type)) url_to_check = config_info.config['FMS_API_URL'] + '/api/datafile/by/{}/{}?latest=true'.format(data_type, data_sub_type) chip_response = urllib.request.urlopen(url_to_check) chip_data = data = json.loads(chip_response.read().decode(chip_response.info().get_param('charset') or 'utf-8')) logger.debug('{}: Retrieved API data from chipmunk: {}'.format(worker, chip_data)) # Check for existing MD5 logger.info('{}: Checking for existing MD5 from chipmunk.'.format(worker)) # Logic for uploading new files based on existing and new MD5s. if not chip_data: logger.info('{}: No response received from the FMS. A new file will be uploaded.'.format(worker)) logger.info('{}: File: {}'.format(worker, filename)) upload_file(worker, filename, save_path, upload_file_prefix, config_info) else: existing_md5 = chip_data[0].get('md5Sum') if existing_md5: logger.info('{}: Previous MD5 found: {}'.format(worker, existing_md5)) if existing_md5 == generated_md5: logger.info('{}: Existing MD5 matches the newly generated MD5. The file will not be uploaded.'.format(worker)) logger.info('{}: File: {}'.format(worker, filename)) logger.info('{}: Existing: {} New: {}'.format(worker, existing_md5, generated_md5)) else: logger.info('{}: Existing MD5 does not match the newly generated MD5. A new file will be uploaded.'.format(worker)) logger.info('{}: File: {}'.format(worker, filename)) logger.info('{}: Existing: {} New: {}'.format(worker, existing_md5, generated_md5)) upload_file(worker, filename, save_path, upload_file_prefix, config_info) else: logger.info('{}: Existing MD5 not found. A new file will be uploaded.'.format(worker)) logger.info('{}: File: {}'.format(worker, filename)) logger.info('{}: Existing: {} New: {}'.format(worker, existing_md5, generated_md5)) upload_file(worker, filename, save_path, upload_file_prefix, config_info)
51.320513
131
0.673995
0
0
0
0
2,621
0.654759
0
0
1,186
0.296278
0597da213baf4860aef1103fe9f6eaf312ad6be5
9,246
py
Python
Klipps/convert.py
rafalkaron/KindleClippingsBeautifier
10d79da2a073f8867041a2520d7a234937237243
[ "MIT" ]
1
2020-05-25T11:30:54.000Z
2020-05-25T11:30:54.000Z
Klipps/convert.py
rafalkaron/KindleClippingsBeautifier
10d79da2a073f8867041a2520d7a234937237243
[ "MIT" ]
null
null
null
Klipps/convert.py
rafalkaron/KindleClippingsBeautifier
10d79da2a073f8867041a2520d7a234937237243
[ "MIT" ]
null
null
null
# coding: utf-8 import re import datetime from .feed import read_file __author__ = "Rafał Karoń <rafalkaron@gmail.com>" def clipps_str_to_html_str(clipps_str): """Return a string that contains the converted \"Kindle Clippings.txt file\" to HTML.""" # ADD ELEMENTS (SVG favicon encoded with: https://yoksel.github.io/url-encoder/) pre_elements = r"""<!DOCTYPE html> <html> <head> <title>Kindle Clippings</title> <meta charset="utf-8"> <link href="data:image/svg+xml,%3C%3Fxml version='1.0' encoding='UTF-8' standalone='no'%3F%3E%3C!-- Created with Inkscape (http://www.inkscape.org/) --%3E%3Csvg xmlns:dc='http://purl.org/dc/elements/1.1/' xmlns:cc='http://creativecommons.org/ns%23' xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns%23' xmlns:svg='http://www.w3.org/2000/svg' xmlns='http://www.w3.org/2000/svg' xmlns:sodipodi='http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd' xmlns:inkscape='http://www.inkscape.org/namespaces/inkscape' width='1000' height='1000' viewBox='0 0 264.58335 264.58335' version='1.1' id='svg8' inkscape:version='0.92.4 (5da689c313, 2019-01-14)' sodipodi:docname='klipps3.svg' inkscape:export-filename='C:%5CUsers%5Crafal%5CDesktop%5Cklipps3.png' inkscape:export-xdpi='72.000008' inkscape:export-ydpi='72.000008'%3E%3Ctitle id='title3713'%3EKlipps%3C/title%3E%3Cdefs id='defs2' /%3E%3Csodipodi:namedview id='base' pagecolor='%23515151' bordercolor='%23000000' borderopacity='1' inkscape:pageopacity='0.20784314' inkscape:pageshadow='2' inkscape:zoom='0.25' inkscape:cx='30.072603' inkscape:cy='582.33116' inkscape:document-units='px' inkscape:current-layer='layer1' showgrid='false' inkscape:window-width='1842' inkscape:window-height='1057' inkscape:window-x='70' inkscape:window-y='-8' inkscape:window-maximized='1' units='px' inkscape:showpageshadow='false' showborder='true' inkscape:pagecheckerboard='false' showguides='true' inkscape:guide-bbox='true'%3E%3Csodipodi:guide position='132.29167,132.29167' orientation='0,1' id='guide3724' inkscape:locked='false' inkscape:label='' inkscape:color='rgb(0,0,255)' /%3E%3Csodipodi:guide position='132.29167,132.29167' orientation='1,0' id='guide3726' inkscape:locked='false' inkscape:label='' inkscape:color='rgb(0,0,255)' /%3E%3Csodipodi:guide position='79.375005,79.375005' orientation='-0.70710678,0.70710678' id='guide3748' inkscape:locked='false' inkscape:label='' inkscape:color='rgb(0,0,255)' /%3E%3Csodipodi:guide position='132.29167,132.29167' orientation='0.70710678,0.70710678' id='guide3750' inkscape:locked='false' inkscape:label='' inkscape:color='rgb(0,0,255)' /%3E%3Csodipodi:guide position='26.458327,150.45027' orientation='-0.70710678,0.70710678' id='guide3776' inkscape:locked='false' /%3E%3Csodipodi:guide position='150.45027,26.458323' orientation='-0.70710678,0.70710678' id='guide3778' inkscape:locked='false' /%3E%3Csodipodi:guide position='114.13307,238.12501' orientation='0.70710678,0.70710678' id='guide3780' inkscape:locked='false' inkscape:label='' inkscape:color='rgb(0,0,255)' /%3E%3Csodipodi:guide position='26.458335,150.45028' orientation='0.70710678,0.70710678' id='guide3782' inkscape:locked='false' inkscape:label='' inkscape:color='rgb(0,0,255)' /%3E%3Csodipodi:guide position='150.45028,26.458334' orientation='1,0' id='guide3801' inkscape:locked='false' /%3E%3Csodipodi:guide position='238.12501,114.13307' orientation='0,1' id='guide3803' inkscape:locked='false' /%3E%3Csodipodi:guide position='132.29167,114.13307' orientation='-0.70710678,0.70710678' id='guide3806' inkscape:locked='false' /%3E%3Csodipodi:guide position='26.458336,150.45028' orientation='0,1' id='guide3826' inkscape:locked='false' /%3E%3C/sodipodi:namedview%3E%3Cmetadata id='metadata5'%3E%3Crdf:RDF%3E%3Ccc:Work rdf:about=''%3E%3Cdc:format%3Eimage/svg+xml%3C/dc:format%3E%3Cdc:type rdf:resource='http://purl.org/dc/dcmitype/StillImage' /%3E%3Cdc:title%3EKlipps%3C/dc:title%3E%3Cdc:creator%3E%3Ccc:Agent%3E%3Cdc:title%3ERafał Karoń%3C/dc:title%3E%3C/cc:Agent%3E%3C/dc:creator%3E%3C/cc:Work%3E%3C/rdf:RDF%3E%3C/metadata%3E%3Cg inkscape:groupmode='layer' id='layer3' inkscape:label='Background' /%3E%3Cg inkscape:groupmode='layer' id='layer2' inkscape:label='Filling'%3E%3Ccircle style='fill:%23ffffff;stroke-width:0.22826612' id='path3736-9' cx='132.29167' cy='132.29169' r='114.13306' /%3E%3C/g%3E%3Cg inkscape:label='Icon' inkscape:groupmode='layer' id='layer1' transform='translate(0,-32.416632)'%3E%3Cpath style='fill:%23e63946;stroke-width:1.32083833;fill-opacity:1' d='M 431.36914 100 L 100 431.36914 L 568.63086 900 L 568.63086 568.63086 L 900 568.63086 L 431.36914 100 z ' transform='matrix(0.26458335,0,0,0.26458335,0,32.416632)' id='rect3770' /%3E%3Cpath style='fill:%231d3557;fill-opacity:1;stroke-width:1.32083833' d='M 500 500 L 500 831.36914 L 568.63086 900 L 568.63086 568.63086 L 900 568.63086 L 831.36914 500 L 500 500 z ' transform='matrix(0.26458335,0,0,0.26458335,0,32.416632)' id='rect3770-4' /%3E%3C/g%3E%3C/svg%3E%0A" rel='icon' type='image/svg'/> </head> <body>""" heading = "<h1>Kindle Clippings</h1>\n<h2>" footer = f"<footer>Generated on {datetime.datetime.now().strftime('%B %d, %Y')} at {datetime.datetime.now().strftime('%I:%M %p')} with <a target=\"_blank\" href=\"https://github.com/rafalkaron/Klipps\">Klipps</a></footer>" post_elements = "</body>\n</html>" html_str = "\n".join((pre_elements, heading, clipps_str, footer, post_elements)) # SEARCH AND REPLACE html_str = re.sub(r"\n\n", "\n", html_str) # Removes empty lines html_str = re.sub(r"==========", "<div class=\"entry\">\n<h2>", html_str) # Replaces Kindle entryies markup with the "entry" class and opens headers 2 html_str = re.sub(r"- .* \| ", "###timestamp### ", html_str) # Removes redundant information from timestamps and adds a tag that is used to optimize RE in the next lines for added_on in re.findall(r"^###timestamp### .*", html_str, re.MULTILINE): # Shortens and wraps timestamps || MAKE THIS GENERIC FOR OTHER LANGUAGES added_on_new = re.sub(r"###timestamp###", "", added_on) # Removes the ###timestamp### tag added_on_new = re.sub(r":\d\d$", "", added_on_new, re.MULTILINE) # [Optional] Removes seconds in 24h timestamps added_on_new = re.sub(r":\d\d PM$", " PM", added_on_new, re.MULTILINE) # [Optional] Removes seconds in 12h PM timestamps added_on_new = re.sub(r":\d\d AM$", " AM", added_on_new, re.MULTILINE) # [Optional] Removes seconds in 12h AM timestamps added_on_new = re.sub(r"^ Added on ", "", added_on_new) # [Optional] Removes the "Added on" timestamp text added_on_new = f"<div class=\"timestamp\">{added_on_new}</div>\n<blockquote>" # Wraps timestamps in timestamp divs and opens a blockquote html_str = re.sub(added_on, added_on_new, html_str) html_str = re.sub(r"<div class=\"timestamp\">", "</h2>\n<div class=\"timestamp\">", html_str) # Closes headers 2 before timestamps html_str = re.sub(r"<div class=\"entry\">\n<h2>\n<footer>", "</blockquote>\n</div>\n<footer>", html_str) # Removes redundant entry divs and headers 2 before the footer html_str = re.sub("<div class=\"entry\">\n<h2>", "</blockquote>\n</div>\n<div class=\"entry\">\n<h2>", html_str) # Closes blockquote and entry div before opening anothe entry div html_str = re.sub(r"</h1>\n<h2>", "</h1>\n<div class=\"entry\">\n<h2>", html_str) # Opens the first element div after return html_str def default_style_html_str(html_str): """Return a string that contains the \"Kindle Clippings.txt file\" converted to HTML with a default embedded CSS style.""" html_str = re.sub("<h1>", "<div class=\"frontpage\"><h1>", html_str) html_str = re.sub("</h1>", "</h1>\n<div class=\"generator\"><p>Generated with Klipps</p></div>\n</div>", html_str) html_str = re.sub("/>\n</head>", """/> <style> *{ font-family: Helvetica, Arial, sans-serif; font-size: 100%; margin: 0px; } .frontpage{ background-color: #1D3557; height: 100vh; } h1{ font-size: 10vw; text-align: center; padding-top: 15vh; padding-bottom: 20vh; padding-left: 1vh; padding-right: 1vh; color: #F1FAEE; } .generator{ font-size: 3vw; text-align: center; color: #F1FAEE; } .entry{ padding: 4rem 8vw 4rem 8vw; } .entry:nth-child(odd){ background: #F1FAEE; } .entry:nth-child(even){ background: rgb(228, 235, 226); } h2{ font-size: 2.6rem; color: #1D3557; } .timestamp{ font-size: 1.2rem; font-weight: bold; padding-bottom: 1rem; color: #1D3557; } blockquote{ font-size: 1.5rem; text-align: justify; color: #1D3557; } footer{ font-size: 1.5rem; padding: 2rem 1rem 2rem 1rem; background-color: #1D3557; color: #F1FAEE; text-align: center; } a{ color: #E63946; font-weight: bolder; text-decoration: none; } </style> </head>""", html_str) return html_str def custom_style_html_str(css_filepath, html_str): """Return a string that contains the \"Kindle Clippings.txt file\" converted to HTML with a custom embedded CSS style.""" style = read_file(css_filepath) html_str = re.sub("/>\n</head>", f"/>\n<style>\n{style}\n</style>\n</head>", html_str) return html_str
72.234375
4,532
0.701709
0
0
0
0
0
0
0
0
7,915
0.855676
05983c5f355ffca2350a3a76badc57638f8db8e8
1,308
py
Python
rlpy/Domains/__init__.py
okkhoy/rlpy
af25d2011fff1d61cb7c5cc8992549808f0c6103
[ "BSD-3-Clause" ]
265
2015-01-21T08:11:12.000Z
2021-12-21T08:06:21.000Z
rlpy/Domains/__init__.py
okkhoy/rlpy
af25d2011fff1d61cb7c5cc8992549808f0c6103
[ "BSD-3-Clause" ]
22
2015-03-26T17:41:43.000Z
2019-12-19T08:47:36.000Z
rlpy/Domains/__init__.py
okkhoy/rlpy
af25d2011fff1d61cb7c5cc8992549808f0c6103
[ "BSD-3-Clause" ]
85
2015-02-18T00:25:15.000Z
2021-11-15T11:10:00.000Z
from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import #from Domain import Domain from future import standard_library standard_library.install_aliases() from .HelicopterHover import HelicopterHover, HelicopterHoverExtended from .HIVTreatment import HIVTreatment from .PuddleWorld import PuddleWorld from .GridWorld import GridWorld from .BlocksWorld import BlocksWorld from .MountainCar import MountainCar from .ChainMDP import ChainMDP from .SystemAdministrator import SystemAdministrator from .PST import PST from .Pacman import Pacman from .IntruderMonitoring import IntruderMonitoring from .FiftyChain import FiftyChain from .FlipBoard import FlipBoard from .RCCar import RCCar from .Acrobot import Acrobot, AcrobotLegacy from .Bicycle import BicycleBalancing, BicycleRiding from .Swimmer import Swimmer from .Pinball import Pinball from .FiniteTrackCartPole import (FiniteCartPoleBalance, FiniteCartPoleBalanceOriginal, FiniteCartPoleBalanceModern, FiniteCartPoleSwingUp, FiniteCartPoleSwingUpFriction) from .InfiniteTrackCartPole import InfCartPoleBalance, InfCartPoleSwingUp
40.875
73
0.786697
0
0
0
0
0
0
0
0
26
0.019878
0598570bbddd550266f613922fec2e9624969d88
365
py
Python
mercury_engine_data_structures/adapters/enum_adapter.py
Antidote/mercury-engine-data-structures
d8e8ba1eacaa37f4fc76b78bb208ffc2cde61f64
[ "MIT" ]
2
2021-06-18T16:47:00.000Z
2021-07-06T22:36:32.000Z
mercury_engine_data_structures/adapters/enum_adapter.py
Antidote/mercury-engine-data-structures
d8e8ba1eacaa37f4fc76b78bb208ffc2cde61f64
[ "MIT" ]
1
2021-10-01T20:26:01.000Z
2021-10-01T20:26:01.000Z
mercury_engine_data_structures/adapters/enum_adapter.py
Antidote/mercury-engine-data-structures
d8e8ba1eacaa37f4fc76b78bb208ffc2cde61f64
[ "MIT" ]
5
2021-08-23T17:01:01.000Z
2021-11-20T03:57:14.000Z
from construct import Adapter, Int32ub, Enum class EnumAdapter(Adapter): def __init__(self, enum_class, subcon=Int32ub): super().__init__(Enum(subcon, enum_class)) self._enum_class = enum_class def _decode(self, obj, context, path): return self._enum_class[obj] def _encode(self, obj, context, path): return obj.name
26.071429
51
0.682192
317
0.868493
0
0
0
0
0
0
0
0
05995048419b1dbd1bd29b14c238cf37023f8b47
2,740
py
Python
lib/strider/virt/vagrantbox.py
jcftang/strider
432a68eb1303541b6d955bd6ecf7439d1f9b0d48
[ "Apache-2.0" ]
16
2016-02-10T13:06:50.000Z
2021-02-28T06:21:16.000Z
lib/strider/virt/vagrantbox.py
jcftang/strider
432a68eb1303541b6d955bd6ecf7439d1f9b0d48
[ "Apache-2.0" ]
4
2016-02-20T16:33:40.000Z
2016-05-28T10:46:06.000Z
lib/strider/virt/vagrantbox.py
jcftang/strider
432a68eb1303541b6d955bd6ecf7439d1f9b0d48
[ "Apache-2.0" ]
1
2016-09-01T11:06:56.000Z
2016-09-01T11:06:56.000Z
import vagrant import os from subprocess import CalledProcessError from strider.common.instance_data import InstanceData, SshData import strider.common.logger class Vagrantbox(object): def __init__(self, name=None, ssh=None, basebox=None, bake_name=None, bake_description=None, user_data=None): self.name = name self.bake_name = bake_name self.basebox = basebox self.ssh = ssh self.log = strider.utils.logger.get_logger('Vagrant') if type(self.ssh) != dict: raise Exception("expecting 'ssh' to be a dictionary") self.vagrant_instance = vagrant.Vagrant() def describe(self): details = self._details() if details is None: return InstanceData(present=False) else: if self.ssh['username'] is not None: username = self.ssh['username'] else: username = "vagrant" if self.ssh['private_key_path'] is not None: private_key_path = self.ssh['private_key_path'] else: private_key_path = details['IdentityFile'] port = details['Port'] host = details['HostName'] ssh_data = SshData(keyfile=private_key_path, user=username, host=host, port=port) return InstanceData(present=True, provider_specific=details, ssh=ssh_data) def destroy(self): self.log("destroying instance") try: self.vagrant_instance.destroy() except CalledProcessError: self.log("already destroyed instance") try: os.remove("./Vagrantfile") except OSError: self.log("already removed Vagrantfile") def up(self): self.log("determining if we need to create an instance") try: self.vagrant_instance.init(box_name=self.basebox) except CalledProcessError: self.log("already initialised instance") try: self.log("bring up instance") self.vagrant_instance.up() except CalledProcessError: self.log("already up") def _details(self): try: conf = self.vagrant_instance.conf() return conf except CalledProcessError: self.log("No instance running") return None def bake(self): self.log("baking vagrant box") os.system("vagrant package --output {}.box".format(self.bake_name)) self.up()
31.860465
75
0.550365
2,578
0.940876
0
0
0
0
0
0
414
0.151095
552672dd092eb5fb84094dd67c6ad2cf6eb3df04
4,739
py
Python
python/aces/lutFormats/tests/UnitTestsLutFormats.py
aforsythe/clf
47ba8bee31bd13e4f23632c7b0a38293be31c019
[ "AMPAS" ]
43
2015-07-09T23:13:41.000Z
2022-02-04T15:45:42.000Z
python/aces/lutFormats/tests/UnitTestsLutFormats.py
aforsythe/clf
47ba8bee31bd13e4f23632c7b0a38293be31c019
[ "AMPAS" ]
1
2019-09-18T14:30:39.000Z
2019-09-18T14:30:39.000Z
python/aces/lutFormats/tests/UnitTestsLutFormats.py
aforsythe/clf
47ba8bee31bd13e4f23632c7b0a38293be31c019
[ "AMPAS" ]
9
2015-07-10T15:26:55.000Z
2020-08-20T11:52:47.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ The Academy / ASC Common LUT Format Sample Implementations are provided by the Academy under the following terms and conditions: Copyright © 2015 Academy of Motion Picture Arts and Sciences ("A.M.P.A.S."). Portions contributed by others as indicated. All rights reserved. A worldwide, royalty-free, non-exclusive right to copy, modify, create derivatives, and use, in source and binary forms, is hereby granted, subject to acceptance of this license. Performance of any of the aforementioned acts indicates acceptance to be bound by the following terms and conditions: * Copies of source code, in whole or in part, must retain the above copyright notice, this list of conditions and the Disclaimer of Warranty. * Use in binary form must retain the above copyright notice, this list of conditions and the Disclaimer of Warranty in the documentation and/or other materials provided with the distribution. * Nothing in this license shall be deemed to grant any rights to trademarks, copyrights, patents, trade secrets or any other intellectual property of A.M.P.A.S. or any contributors, except as expressly stated herein. * Neither the name "A.M.P.A.S." nor the name of any other contributors to this software may be used to endorse or promote products derivative of or based on this software without express prior written permission of A.M.P.A.S. or the contributors, as appropriate. This license shall be construed pursuant to the laws of the State of California, and any disputes related thereto shall be subject to the jurisdiction of the courts therein. Disclaimer of Warranty: THIS SOFTWARE IS PROVIDED BY A.M.P.A.S. AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL A.M.P.A.S., OR ANY CONTRIBUTORS OR DISTRIBUTORS, BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, RESITUTIONARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, THE ACADEMY SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER RELATED TO PATENT OR OTHER INTELLECTUAL PROPERTY RIGHTS IN THE ACES CONTAINER REFERENCE IMPLEMENTATION, OR APPLICATIONS THEREOF, HELD BY PARTIES OTHER THAN A.M.P.A.S., WHETHER DISCLOSED OR UNDISCLOSED. """ __author__ = 'Haarm-Pieter Duiker' __copyright__ = 'Copyright (C) 2015 Academy of Motion Picture Arts and Sciences' __maintainer__ = 'Academy of Motion Picture Arts and Sciences' __email__ = 'acessupport@oscars.org' __status__ = 'Production' __major_version__ = '1' __minor_version__ = '0' __change_version__ = '0' __version__ = '.'.join((__major_version__, __minor_version__, __change_version__)) ''' Simple tests of the lutFormats module Should be turned into a proper set of unit tests. ''' import os import sys # Make sure we can import lutFormats sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..')) import lutFormats tmpDir = "/tmp" #aces1OCIOConfirDir = "/work/client/academy/ocio/hpd/OpenColorIO-Configs/aces_1.0.0" aces1OCIOConfirDir = "/path/to/OpenColorIO-Configs/aces_1.0.0" spiPath = "%s/luts/ACEScc_to_linear.spi1d" % aces1OCIOConfirDir cspPath = "%s/baked/maya/sRGB (D60 sim.) for ACEScg Maya.csp" % aces1OCIOConfirDir spipl = lutFormats.Registry.read( spiPath ) csppl = lutFormats.Registry.read( cspPath ) newSpiPath = "%s/ACEScc_to_linear_new.spi1d" % tmpDir lutFormats.Registry.write(spipl, newSpiPath) newSpi3dPath = "%s/srgb_new.spi3d" % tmpDir lutFormats.Registry.write(csppl, newSpi3dPath, lutDataFormat="3D") newCspPath = "%s/srgb_new_3d.csp" % tmpDir lutFormats.Registry.write(csppl, newCspPath, lutDataFormat="3D") newCsp1DPath = "%s/srgb_new_1d.csp" % tmpDir lutFormats.Registry.write(csppl, newCsp1DPath) newCsp1D3DPath = "%s/srgb_new_1d3d.csp" % tmpDir lutFormats.Registry.write(csppl, newCsp1D3DPath, lutDataFormat="1D_3D_1D") newClf1D3DPath = "%s/srgb_new_1d3d.clf" % tmpDir lutFormats.Registry.write(csppl, newClf1D3DPath, lutDataFormat="1D_3D_1D") newCtl1DPath = "%s/srgb_new_1d.ctl" % tmpDir lutFormats.Registry.write(csppl, newCtl1DPath) newCtl1D3DPath = "%s/srgb_new_3d.ctl" % tmpDir lutFormats.Registry.write(csppl, newCtl1D3DPath, lutDataFormat="3D")
40.853448
84
0.779067
0
0
0
0
0
0
0
0
3,502
0.738819
552683d69b93369ce9f2b67f499349c272254782
10,177
py
Python
edexOsgi/com.raytheon.edex.plugin.gfe/utility/common_static/base/gfe/textproducts/templates/product/Hazard_CFW_MultiPil.py
srcarter3/awips2
37f31f5e88516b9fd576eaa49d43bfb762e1d174
[ "Apache-2.0" ]
null
null
null
edexOsgi/com.raytheon.edex.plugin.gfe/utility/common_static/base/gfe/textproducts/templates/product/Hazard_CFW_MultiPil.py
srcarter3/awips2
37f31f5e88516b9fd576eaa49d43bfb762e1d174
[ "Apache-2.0" ]
null
null
null
edexOsgi/com.raytheon.edex.plugin.gfe/utility/common_static/base/gfe/textproducts/templates/product/Hazard_CFW_MultiPil.py
srcarter3/awips2
37f31f5e88516b9fd576eaa49d43bfb762e1d174
[ "Apache-2.0" ]
1
2021-10-30T00:03:05.000Z
2021-10-30T00:03:05.000Z
## # This software was developed and / or modified by Raytheon Company, # pursuant to Contract DG133W-05-CQ-1067 with the US Government. # # U.S. EXPORT CONTROLLED TECHNICAL DATA # This software product contains export-restricted data whose # export/transfer/disclosure is restricted by U.S. law. Dissemination # to non-U.S. persons whether in the United States or abroad requires # an export license or other authorization. # # Contractor Name: Raytheon Company # Contractor Address: 6825 Pine Street, Suite 340 # Mail Stop B8 # Omaha, NE 68106 # 402.291.0100 # # See the AWIPS II Master Rights File ("Master Rights File.pdf") for # further licensing information. ## ## # This is a base file that is not intended to be overridden. ## ######################################################################## # Hazard_CFW.py # # ########################################################################## import GenericHazards import string, time, re, os, types, copy class TextProduct(GenericHazards.TextProduct): Definition = copy.deepcopy(GenericHazards.TextProduct.Definition) Definition['displayName'] = None Definition['displayName'] = "BaselineHazard_CFW_<MultiPil> (Coastal/LakeShore Flooding)" Definition["defaultEditAreas"] = "EditAreas_PublicZones_<site>_<MultiPil>" Definition["mapNameForCombinations"] = "Zones_<site>" # Map background for creating Combinations # Header configuration items Definition["productName"] = "Coastal Hazard Message" # Warning! DO NOT CHANGE. # The productName gets substituted later in the formatter! Definition["fullStationID"] = "<fullStationID>" # full station identifier (4letter) Definition["wmoID"] = "<wmoID>" # WMO ID Definition["pil"] = "<pil>" # product pil #Definition["areaName"] = "Statename" # Name of state, such as "Georgia" Definition["wfoCityState"] = "<wfoCityState>" # Location of WFO - city state Definition["wfoCity"] = "<wfoCity>" # WFO Name as it should appear in a text product Definition["textdbPil"] = "<textdbPil>" # Product ID for storing to AWIPS text database. Definition["awipsWANPil"] = "<awipsWANPil>" # Product ID for transmitting to AWIPS WAN. Definition["outputFile"] = "{prddir}/TEXT/CFW_<MultiPil>.txt" Definition["bulletProd"] = 1 #If 1, the product has a bullet format # OPTIONAL CONFIGURATION ITEMS #Definition["database"] = "Official" # Source database. "Official", "Fcst", or "ISC" #Definition["displayOutputDialog"] = 0 # If 1 will display results when finished Definition["debug"] = 1 #Definition["headlineEditAreaGroup"] = "Zones" # Name of EditAreaGroup for sampling headlines Definition["purgeTime"] = 8 # Maximum hours for expireTime from issueTime Definition["includeCities"] = 0 # Cities included in area header Definition["accurateCities"] = 0 # If 1, cities are based on grids; # otherwise full list is included Definition["cityLocation"] = "CityLocation" # City lat/lon dictionary to use #Definition["cityDescriptor"] = "Including the cities of" Definition["includeZoneNames"] = 1 # Zone names will be included in the area header Definition["lineLength"] = 66 # line length Definition["easPhrase"] = "URGENT - IMMEDIATE BROADCAST REQUESTED" Definition["includeOverviewHeadline"] = 1 #If 1, the overview header is templated Definition["includeOverview"] = 1 #If 1, the overview section is templated #Definition["hazardSamplingThreshold"] = (10, None) #(%cov, #points) ### ### Text to insert below the last $$ of the product (WFO URL) ### use "" if you do not want text to appear ## Definition["urlText"] = "http://www.weather.gov/miami" ### no additional text example Definition["urlText"] = "" ### multiple line example ## Definition["urlText"] = "For more information from NOAA/s National Weather Service visit...\n" + \ ## "http://weather.gov/saltlakecity" ### def __init__(self): GenericHazards.TextProduct.__init__(self) # # These are the products allowed in the Coastal Flood Products # def allowedHazards(self): allActions = ["NEW", "EXA", "EXB", "EXT", "CAN", "CON", "EXP"] return [ ('CF.W', allActions, 'CoastalFlood'), # COASTAL FLOOD WARNING ('CF.Y', allActions, 'CoastalFlood'), # COASTAL FLOOD ADVISORY ('CF.A', allActions, 'CoastalFlood'), # COASTAL FLOOD WATCH ('CF.S', allActions, 'CoastalFloodStatement'), # COASTAL FLOOD STATEMENT ('LS.W', allActions, 'CoastalFlood'), # LAKESHORE FLOOD WARNING ('LS.Y', allActions, 'CoastalFlood'), # LAKESHORE FLOOD ADVISORY ('LS.A', allActions, 'CoastalFlood'), # LAKESHORE FLOOD WATCH ('LS.S', allActions, 'CoastalFloodStatement'), # LAKESHORE FLOOD STATEMENT ('SU.W', allActions, 'HighSurf'), # HIGH SURF WARNING ('SU.Y', allActions, 'HighSurf'), # HIGH SURF ADVISORY ('BH.S', allActions, 'BeachHaz'), # Beach Hazards Statement ('RP.S', allActions, 'RipCurrent'), # HIGH RIP CURRENT RISK ] def _bulletDict(self): return { "CF" : ("Coastal Flooding,Timing,Impacts"), ### coastal flood warning, advisory, watch "LS" : ("Lake Shore Flooding,Timing,Impacts"), ### lake shore flood warning, advisory, watch "BH" : ("Hazards,Timing,Location,Potential Impacts"), ### hazardous beach conditions "SU" : ("Waves and Surf,Timing,Impacts"), ### high surf warning, advisory "RP" : ("Timing,Impacts"), ### high rip current risk } def _bulletOrder(self): return [ "Coastal Flooding", "Lake Shore Flooding", "Waves and Surf", "Hazards", "Timing", "Location", "Potential Impacts", "Impacts", ] # # Overridden to allow for attribution statement # def _makeProduct(self, fcst, segmentAreas, argDict): argDict["language"] = self._language # # This section generates the headline on the segment # # stuff argDict with the segmentAreas for DiscretePhrases argDict['segmentAreas'] = segmentAreas editArea = segmentAreas[0] areaLabel = editArea headlines = self.generateProduct("Hazards", argDict, area = editArea, areaLabel=areaLabel, timeRange = self._timeRange) fcst = fcst + headlines # # This section generates the attribution statements and calls-to-action # hazardsC = argDict['hazards'] listOfHazards = hazardsC.getHazardList(segmentAreas) fcst = fcst + self.hazardBodyText(listOfHazards, argDict) # # If an overview exists for this product, calculate it # self.overviewText(listOfHazards, "CFW") # # Clean up and return # fcst = self.endline(fcst, linelength=self._lineLength, breakStr=[" ", "-", "..."]) return fcst def _postProcessProduct(self, fcst, argDict): # # If an overview exists for this product, insert it # overview = self.finalOverviewText() overviewSearch = re.compile(r'Default overview section', re.DOTALL) fcst = overviewSearch.sub(overview, fcst) urgent = 0 followup = 1 prodNameKey = '' fullKeyList = [] newList = ['NEW', 'EXA', 'EXB'] hazardsC = argDict['hazards'] segmentList = self.organizeHazards(hazardsC.rawAnalyzedTable()) for segmentAreas in segmentList: listOfHazards = hazardsC.getHazardList(segmentAreas) for eachHazard in listOfHazards: if eachHazard['phensig'] not in fullKeyList: fullKeyList.append(eachHazard['phensig']) if eachHazard['phensig'] in ['CF.W', 'CF.A', 'LS.W', 'LS.A']: if eachHazard['act'] in newList: urgent = 1 # remove eas line if not urgent if urgent == 0 and len(self._easPhrase): fcst = fcst.replace(self._easPhrase + '\n', '', 1) # rename the product if necessary based on VTEC codes for each in fullKeyList: if each in ['LS.W', 'LS.A', 'LS.Y', 'LS.S']: productName = "Lakeshore Hazard Message" fcst = fcst.replace(self._productName, productName, 1) break # Added to place line feeds in the CAP tags to keep separate from CTAs fcst = string.replace(fcst, \ r"PRECAUTIONARY/PREPAREDNESS ACTIONS\.\.\.", \ r"\nPRECAUTIONARY/PREPAREDNESS ACTIONS\.\.\.\n") fcst = string.replace(fcst, ".:", ".") fcst = string.replace(fcst, "\n ","\n") fcst = string.replace(fcst, "&&", "\n&&\n") # Prevent empty Call to Action Tags fcst = re.sub(r'\nPRECAUTIONARY/PREPAREDNESS ACTIONS\.\.\.\s*&&\n', \ "", fcst) ### to remove any empty framing code fcst = re.sub("\|\*\s*\*\|", "", fcst) ### indent the bullet text fcst = self._indentBulletText(fcst) # # Clean up multiple line feeds # fixMultiLF = re.compile(r'(\n\n)\n*', re.DOTALL) fcst = fixMultiLF.sub(r'\1', fcst) # # Finish Progress Meter # self.setProgressPercentage(100) self.progressMessage(0, 100, self._displayName + " Complete") ### add the url text from the configuration section fcst = fcst + "\n" + self._urlText return fcst
40.384921
105
0.584455
9,120
0.896138
0
0
0
0
0
0
5,482
0.538666
552924a7e504599cbe9d1cfc08f6a123e6773a8c
880
py
Python
setup.py
hubmapconsortium/python-sdk
17eaec434f1f65190a6e53d0055fe382841222de
[ "MIT" ]
null
null
null
setup.py
hubmapconsortium/python-sdk
17eaec434f1f65190a6e53d0055fe382841222de
[ "MIT" ]
8
2021-11-09T13:35:48.000Z
2022-03-04T15:56:52.000Z
setup.py
hubmapconsortium/python-sdk
17eaec434f1f65190a6e53d0055fe382841222de
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages with open("README.md", "r") as fh: long_description = fh.read() setup( name="hubmap-sdk", version="1.0.1", author="Hubmap", author_email="api-developers@hubmapconsortium.org", description="Python Client Libary to use HuBMAP web services", long_description=long_description, long_description_content_type="text/markdown", packages=['hubmap_sdk'], keywords=[ "HuBMAP Sdk", "python" ], install_requires=[ "certifi==2021.10.8", "chardet==4.0.0", "idna==2.10", "requests==2.25.1", "urllib3==1.26.7" ], include_package_data=True, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent" ], python_requires='>=3.6' )
25.142857
66
0.606818
0
0
0
0
0
0
0
0
377
0.428409
5529bf458e89cd64db669da48d12a440dd5e7310
14,095
py
Python
tests/grammar/test_data_type.py
Daniihh/sqlpyparser
aad1d613c02d4f8fa6b833c060a683cf7e194b1c
[ "MIT" ]
28
2016-02-13T10:20:21.000Z
2022-03-10T02:41:58.000Z
tests/grammar/test_data_type.py
Daniihh/sqlpyparser
aad1d613c02d4f8fa6b833c060a683cf7e194b1c
[ "MIT" ]
22
2016-02-15T15:55:09.000Z
2017-09-12T13:49:17.000Z
tests/grammar/test_data_type.py
Daniihh/sqlpyparser
aad1d613c02d4f8fa6b833c060a683cf7e194b1c
[ "MIT" ]
16
2016-02-15T16:41:23.000Z
2021-05-18T04:51:52.000Z
# -*- encoding:utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals import unittest import pyparsing from mysqlparse.grammar.data_type import data_type_syntax class DataTypeSyntaxTest(unittest.TestCase): def test_bit(self): self.assertEquals(data_type_syntax.parseString("BIT").data_type, 'BIT') self.assertEquals(data_type_syntax.parseString("BIT(8)").data_type, 'BIT') self.assertEquals(data_type_syntax.parseString("BIT(8)").length[0], '8') def test_integers(self): type_list = ['TINYINT', 'SMALLINT', 'MEDIUMINT', 'INT', 'INTEGER', 'BIGINT'] type_plain = "{type_name}".format type_with_length = "{type_name}(8)".format type_with_unsigned = "{type_name}(8) unsigned".format type_with_zerofill = "{type_name}(8) zerofill".format type_with_all_modifiers = "{type_name}(8) UNSIGNED ZEROFILL".format for type_name in type_list: self.assertEquals( data_type_syntax.parseString(type_plain(type_name=type_name)).data_type, type_name, ) self.assertEquals( data_type_syntax.parseString(type_with_length(type_name=type_name)).data_type, type_name, ) self.assertEquals( data_type_syntax.parseString(type_with_length(type_name=type_name)).length[0], '8', ) self.assertFalse( data_type_syntax.parseString(type_with_length(type_name=type_name)).unsigned, ) self.assertFalse( data_type_syntax.parseString(type_with_length(type_name=type_name)).zerofill, ) self.assertEquals( data_type_syntax.parseString(type_with_unsigned(type_name=type_name)).data_type, type_name, ) self.assertEquals( data_type_syntax.parseString(type_with_unsigned(type_name=type_name)).length[0], '8', ) self.assertTrue( data_type_syntax.parseString(type_with_unsigned(type_name=type_name)).unsigned, ) self.assertEquals( data_type_syntax.parseString(type_with_zerofill(type_name=type_name)).data_type, type_name, ) self.assertEquals( data_type_syntax.parseString(type_with_zerofill(type_name=type_name)).length[0], '8', ) self.assertTrue( data_type_syntax.parseString(type_with_zerofill(type_name=type_name)).zerofill, ) self.assertEquals( data_type_syntax.parseString(type_with_all_modifiers(type_name=type_name)).data_type, type_name, ) self.assertEquals( data_type_syntax.parseString(type_with_all_modifiers(type_name=type_name)).length[0], '8', ) self.assertTrue( data_type_syntax.parseString(type_with_all_modifiers(type_name=type_name)).unsigned, ) self.assertTrue( data_type_syntax.parseString(type_with_all_modifiers(type_name=type_name)).zerofill, ) def test_decimals(self): type_list = ['REAL', 'DOUBLE', 'FLOAT', 'DECIMAL', 'NUMERIC'] for type_name in type_list: self.assertEquals( data_type_syntax.parseString("{type_name}".format(type_name=type_name)).data_type, type_name, ) self.assertEquals( data_type_syntax.parseString("{type_name}(10)".format(type_name=type_name)).data_type, type_name, ) self.assertEquals( data_type_syntax.parseString("{type_name}(10)".format(type_name=type_name)).length, '10', ) self.assertEquals( data_type_syntax.parseString("{type_name}(10, 2)".format(type_name=type_name)).decimals, '2', ) self.assertFalse( data_type_syntax.parseString("{type_name}(10, 2)".format(type_name=type_name)).unsigned, ) self.assertFalse( data_type_syntax.parseString("{type_name}(10, 2)".format(type_name=type_name)).zerofill, ) self.assertTrue( data_type_syntax.parseString("{type_name}(10, 2) UNSIGNED".format(type_name=type_name)).unsigned, ) self.assertTrue( data_type_syntax.parseString("{type_name}(10, 2) ZEROFILL".format(type_name=type_name)).zerofill, ) self.assertTrue( data_type_syntax.parseString("{type_name}(10, 2) UNSIGNED ZEROFILL".format(type_name=type_name)).unsigned, ) self.assertTrue( data_type_syntax.parseString("{type_name}(10, 2) UNSIGNED ZEROFILL".format(type_name=type_name)).zerofill, ) def test_datetimes(self): self.assertEquals(data_type_syntax.parseString("DATE").data_type, 'DATE') self.assertEquals(data_type_syntax.parseString("YEAR").data_type, 'YEAR') type_list = ['TIME', 'TIMESTAMP', 'DATETIME'] type_plain = "{type_name}".format type_with_precision = "{type_name}(6)".format for type_name in type_list: self.assertEquals( data_type_syntax.parseString(type_plain(type_name=type_name)).data_type, type_name, ) self.assertEquals( data_type_syntax.parseString(type_with_precision(type_name=type_name)).data_type, type_name, ) self.assertEquals( data_type_syntax.parseString(type_with_precision(type_name=type_name)).precision[0], '6', ) def test_chars(self): self.assertEquals(data_type_syntax.parseString("CHAR").data_type, 'CHAR') self.assertEquals(data_type_syntax.parseString("CHAR(8)").length[0], '8') self.assertEquals(data_type_syntax.parseString("CHAR(8) BINARY").length[0], '8') self.assertEquals(data_type_syntax.parseString("CHAR(8) BINARY").binary, True) self.assertEquals(data_type_syntax.parseString("CHAR(8) CHARACTER SET 'utf8'").character_set, "utf8") self.assertEquals(data_type_syntax.parseString("CHAR(8) COLLATE 'utf8_general'").collation_name, "utf8_general") self.assertEquals( data_type_syntax.parseString( "CHAR(8) BINARY CHARACTER SET 'utf8' COLLATE 'utf8_general'" ).character_set, "utf8" ) self.assertEquals( data_type_syntax.parseString( "CHAR(8) BINARY CHARACTER SET 'utf8' COLLATE 'utf8_general'" ).collation_name, "utf8_general" ) self.assertTrue( data_type_syntax.parseString( "CHAR(8) BINARY CHARACTER SET 'utf8' COLLATE 'utf8_general'" ).binary, ) def test_varchar(self): with self.assertRaises(pyparsing.ParseException): data_type_syntax.parseString("VARCHAR").data_type self.assertEquals(data_type_syntax.parseString("VARCHAR(8)").length[0], '8') self.assertEquals(data_type_syntax.parseString("VARCHAR(8) BINARY").length[0], '8') self.assertEquals(data_type_syntax.parseString("VARCHAR(8) BINARY").binary, True) self.assertEquals(data_type_syntax.parseString("VARCHAR(8) CHARACTER SET 'utf8'").character_set, "utf8") self.assertEquals( data_type_syntax.parseString("VARCHAR(8) COLLATE 'utf8_general'").collation_name, "utf8_general", ) self.assertEquals( data_type_syntax.parseString( "VARCHAR(8) BINARY CHARACTER SET 'utf8' COLLATE 'utf8_general'" ).character_set, "utf8" ) self.assertEquals( data_type_syntax.parseString( "VARCHAR(8) BINARY CHARACTER SET 'utf8' COLLATE 'utf8_general'" ).collation_name, "utf8_general" ) self.assertTrue( data_type_syntax.parseString( "VARCHAR(8) BINARY CHARACTER SET 'utf8' COLLATE 'utf8_general'" ).binary, ) def test_binary(self): self.assertEquals(data_type_syntax.parseString("BINARY").data_type, 'BINARY') self.assertEquals(data_type_syntax.parseString("BINARY(8)").data_type, 'BINARY') self.assertEquals(data_type_syntax.parseString("BINARY(8)").length[0], '8') def test_varbinary(self): with self.assertRaises(pyparsing.ParseException): data_type_syntax.parseString("VARBINARY").data_type self.assertEquals(data_type_syntax.parseString("VARBINARY(8)").length[0], '8') def test_blobs(self): type_list = ['TINYBLOB', 'BLOB', 'MEDIUMBLOB', 'LONGBLOB'] for type_name in type_list: self.assertEquals(data_type_syntax.parseString(type_name).data_type, type_name) def test_texts(self): type_list = ['TINYTEXT', 'TEXT', 'MEDIUMTEXT', 'LONGTEXT'] for type_name in type_list: self.assertEquals(data_type_syntax.parseString(type_name).data_type, type_name) self.assertEquals( data_type_syntax.parseString( "{type_name} BINARY".format(type_name=type_name) ).data_type, type_name, ) self.assertTrue( data_type_syntax.parseString( "{type_name} BINARY".format(type_name=type_name) ).binary, ) self.assertEquals( data_type_syntax.parseString( "{type_name} CHARACTER SET 'utf8'".format(type_name=type_name) ).data_type, type_name, ) self.assertEquals( data_type_syntax.parseString( "{type_name} CHARACTER SET 'utf8'".format(type_name=type_name) ).character_set, 'utf8', ) self.assertEquals( data_type_syntax.parseString( "{type_name} COLLATE 'utf8_general_ci'".format(type_name=type_name) ).data_type, type_name, ) self.assertEquals( data_type_syntax.parseString( "{type_name} COLLATE 'utf8_general_ci'".format(type_name=type_name) ).collation_name, 'utf8_general_ci', ) self.assertFalse( data_type_syntax.parseString( "{type_name} COLLATE 'utf8_general_ci'".format(type_name=type_name) ).binary, ) self.assertEquals( data_type_syntax.parseString( "{type_name} BINARY CHARACTER SET 'utf8' COLLATE 'utf8_general_ci'".format(type_name=type_name) ).data_type, type_name, ) self.assertEquals( data_type_syntax.parseString( "{type_name} BINARY CHARACTER SET 'utf8' COLLATE 'utf8_general_ci'".format(type_name=type_name) ).character_set, 'utf8', ) self.assertEquals( data_type_syntax.parseString( "{type_name} BINARY CHARACTER SET 'utf8' COLLATE 'utf8_general_ci'".format(type_name=type_name) ).collation_name, 'utf8_general_ci', ) self.assertTrue( data_type_syntax.parseString( "{type_name} BINARY CHARACTER SET 'utf8' COLLATE 'utf8_general_ci'".format(type_name=type_name) ).binary, ) def test_enumerables(self): type_list = ['ENUM', 'SET'] for type_name in type_list: self.assertEquals( data_type_syntax.parseString( "{type_name}('option1', 'option2', 'option3')".format(type_name=type_name) ).data_type, type_name, ) self.assertEquals( data_type_syntax.parseString( "{type_name}('option1', 'option2', 'option3')".format(type_name=type_name) ).value_list.asList(), ['option1', 'option2', 'option3'], ) self.assertEquals( data_type_syntax.parseString( "{type_name}('option1', 'option2', 'option3') CHARACTER SET 'utf8'".format(type_name=type_name) ).value_list.asList(), ['option1', 'option2', 'option3'], ) self.assertEquals( data_type_syntax.parseString( "{type_name}('option1', 'option2', 'option3') CHARACTER SET 'utf8'".format(type_name=type_name) ).character_set, 'utf8', ) self.assertEquals( data_type_syntax.parseString( "{type_name}('option1', 'option2', 'option3') CHARACTER SET 'utf8'".format(type_name=type_name) ).value_list.asList(), ['option1', 'option2', 'option3'], ) self.assertEquals( data_type_syntax.parseString( "{type_name}('option1', 'option2', 'option3') CHARACTER SET 'utf8'".format(type_name=type_name) ).character_set, 'utf8', ) self.assertEquals( data_type_syntax.parseString( "{type_name}('option1', 'option2', 'option3') CHARACTER SET 'utf8' COLLATE 'utf8_general_ci'".format( type_name=type_name ) ).collation_name, 'utf8_general_ci', )
40.386819
122
0.57602
13,890
0.985456
0
0
0
0
0
0
2,574
0.182618
5529c5dbc7514236bc8611211cfb848e2618a841
2,615
py
Python
bayarea_urbansim/data_regeneration/export_to_h5.py
ual/DOE-repo-deliverable
4bafdd9a702a9a6466dd32ae62f440644d735d3c
[ "BSD-3-Clause" ]
null
null
null
bayarea_urbansim/data_regeneration/export_to_h5.py
ual/DOE-repo-deliverable
4bafdd9a702a9a6466dd32ae62f440644d735d3c
[ "BSD-3-Clause" ]
null
null
null
bayarea_urbansim/data_regeneration/export_to_h5.py
ual/DOE-repo-deliverable
4bafdd9a702a9a6466dd32ae62f440644d735d3c
[ "BSD-3-Clause" ]
null
null
null
import pandas as pd from spandex import TableLoader import pandas.io.sql as sql loader = TableLoader() def db_to_df(query): """Executes SQL query and returns DataFrame.""" conn = loader.database._connection return sql.read_frame(query, conn) ## Export to HDF5- get path to output file h5_path = loader.get_path('out/regeneration/summaries/bayarea_v3.h5') ## Path to the output file #Buildings buildings = db_to_df('select * from building').set_index('building_id') if 'id' in buildings.columns: del buildings['id'] buildings['building_type_id'] = 0 buildings.building_type_id[buildings.development_type_id == 1] = 1 buildings.building_type_id[buildings.development_type_id == 2] = 3 buildings.building_type_id[buildings.development_type_id == 5] = 12 buildings.building_type_id[buildings.development_type_id == 7] = 10 buildings.building_type_id[buildings.development_type_id == 9] = 5 buildings.building_type_id[buildings.development_type_id == 10] = 4 buildings.building_type_id[buildings.development_type_id == 13] = 8 buildings.building_type_id[buildings.development_type_id == 14] = 7 buildings.building_type_id[buildings.development_type_id == 15] = 9 buildings.building_type_id[buildings.development_type_id == 13] = 8 buildings.building_type_id[buildings.development_type_id == 17] = 6 buildings.building_type_id[buildings.development_type_id == 24] = 16 #Parcels parcels = db_to_df('select * from parcel').set_index('parcel_id') parcels['shape_area'] = parcels.acres * 4046.86 if 'id' in parcels.columns: del parcels['id'] if 'geom' in parcels.columns: del parcels['geom'] if 'centroid' in parcels.columns: del parcels['centroid'] #Jobs jobs = db_to_df('select * from jobs').set_index('job_id') if 'id' in jobs.columns: del jobs['id'] #Households hh = db_to_df('select * from households').set_index('household_id') if 'id' in hh.columns: del hh['id'] hh = hh.rename(columns = {'hinc':'income'}) for col in hh.columns: hh[col] = hh[col].astype('int32') #Zones zones_path = loader.get_path('juris/reg/zones/zones.csv') zones = pd.read_csv(zones_path).set_index('zone_id') #Putting tables in the HDF5 file store = pd.HDFStore(h5_path) store['parcels'] = parcels # http://urbansim.org/Documentation/Parcel/ParcelTable store['buildings'] = buildings # http://urbansim.org/Documentation/Parcel/BuildingsTable store['households'] = hh # http://urbansim.org/Documentation/Parcel/HouseholdsTable store['jobs'] = jobs # http://urbansim.org/Documentation/Parcel/JobsTable store['zones'] = zones # http://urbansim.org/Documentation/Parcel/ZonesTable store.close()
39.029851
97
0.757553
0
0
0
0
0
0
0
0
838
0.320459
552b355ab9a4608d3f4dc4d7df2c3b24e79e210d
7,060
py
Python
minder_utils/visualisation/feature_engineering.py
alexcapstick/minder_utils
3bb9380b7796b5dd5b995ce1839ea6a94321021d
[ "MIT" ]
null
null
null
minder_utils/visualisation/feature_engineering.py
alexcapstick/minder_utils
3bb9380b7796b5dd5b995ce1839ea6a94321021d
[ "MIT" ]
null
null
null
minder_utils/visualisation/feature_engineering.py
alexcapstick/minder_utils
3bb9380b7796b5dd5b995ce1839ea6a94321021d
[ "MIT" ]
1
2022-03-16T11:10:43.000Z
2022-03-16T11:10:43.000Z
import matplotlib.pyplot as plt import matplotlib.dates as mdates import seaborn as sns import pandas as pd from minder_utils.formatting.label import label_by_week, label_dataframe from minder_utils.feature_engineering import Feature_engineer from minder_utils.feature_engineering.calculation import * from minder_utils.util import formatting_plots from minder_utils.formatting import Formatting fe = Feature_engineer(Formatting()) sns.set() att = 'bathroom_night' figure_title = { 'bathroom_night': 'Bathroom activity during the night', 'bathroom_daytime': 'Bathroom activity during the day', } patient_id = '' def process_dataframe(df, week_shift=0): df = df[df.id == patient_id] map_dict = {i: j - week_shift for j, i in enumerate(df.week.sort_values().unique())} df.week = df.week.map(map_dict) return df def visualise_flags(df): for v in [True, False]: data = df[df.valid == v] not_labelled = True for week in data.week.unique(): if v is True: plt.axvline(week, 0, 0.17, color='red', label='UTI' if not_labelled else None) not_labelled = False elif v is False: plt.axvline(week, 0, 0.17, color='blue', label='not UTI' if not_labelled else None) not_labelled = False @formatting_plots(figure_title[att]) def visualise_weekly_data(df): df = process_dataframe(df) sns.violinplot(data=df, x='week', y='value') visualise_flags(df) return df @formatting_plots('P value, ' + figure_title[att]) def visualise_weekly_statistical_analysis(df, results): df = process_dataframe(df, 1) visualise_flags(df) data = results[patient_id] df = {'week': [], 'p_value': []} for idx, sta in enumerate(data): df['week'].append(idx + 1) df['p_value'].append(sta[1]) sns.lineplot(df['week'], df['p_value']) @formatting_plots('Body temperature') def visualise_body_temperature(df): df = process_dataframe(df) visualise_flags(df) sns.lineplot(df.week, df.value) def visualise_data_time_lineplot(time_array, values_array, name, fill_either_side_array=None, fig = None, ax = None): ''' This function accepts a dataframe that has a ```'time'``` column and and a ```'value'``` column. ''' if ax is None: fig, ax = plt.subplots(1,1,figsize = (10,6)) ax.plot(time_array, values_array) if not fill_either_side_array is None: ax.fill_between(time_array, y1=values_array-fill_either_side_array, y2=values_array+fill_either_side_array, alpha = 0.3) return fig, ax def visualise_data_time_heatmap(data_plot, name, fig = None, ax = None): ''' This function accepts a dataframe in which the columns are the days and the rows are the aggregated times of the day. ''' if ax is None: fig, axes = plt.subplots(1,1,figsize = (10,6)) ax = sns.heatmap(data_plot.values, cmap = 'Blues', cbar_kws={'label': name}) ax.invert_yaxis() x_tick_loc = np.arange(0, data_plot.shape[1], 90) ax.set_xticks(x_tick_loc + 0.5) ax.set_xticklabels(data_plot.columns.astype(str)[x_tick_loc].values) y_tick_loc = np.arange(0, data_plot.shape[0], 3) ax.set_yticks(y_tick_loc + 0.5) ax.set_yticklabels([pd.to_datetime(time).strftime("%H:%M") for time in data_plot.index.values[y_tick_loc]], rotation = 0) ax.set_xlabel('Day') ax.set_ylabel('Time of Day') return fig, ax def visualise_activity_daily_data(fe): ''' Arguments --------- - fe: class: The feature engineering class that produces the data. ''' activity_daily = fe.activity_specific_agg(agg='daily', load_smaller_aggs = True) activity_daily = label_dataframe(activity_daily, days_either_side=0) activity_daily=activity_daily.rename(columns = {'valid':'UTI Label'}) activity_daily['Feature'] = activity_daily['location'].map(fe.info) sns.set_theme('talk') fig_list = [] axes_list = [] for feature in activity_daily['location'].unique(): data_plot = activity_daily[activity_daily['location'].isin([feature])] fig, ax = plt.subplots(1,1,figsize = (8,6)) ax = sns.boxplot(data=data_plot, x='value', y = 'Feature', hue='UTI Label', ax=ax, **{'showfliers':False}) ax.set_ylabel(None) ax.set_yticks([]) ax.set_title('{}'.format(fe.info[feature])) ax.set_xlabel('Value') fig_list.append(fig) axes_list.append(ax) return fig_list, axes_list def visualise_activity_weekly_data(fe): ''' Arguments --------- - fe: class: The feature engineering class that produces the data. ''' activity_weekly = fe.activity_specific_agg(agg='weekly', load_smaller_aggs = True) activity_weekly = label_by_week(activity_weekly) activity_weekly=activity_weekly.rename(columns = {'valid':'UTI Label'}) activity_weekly['Feature'] = activity_weekly['location'].map(fe.info) sns.set_theme('talk') fig_list = [] axes_list = [] for feature in activity_weekly['location'].unique(): data_plot = activity_weekly[activity_weekly['location'].isin([feature])] fig, ax = plt.subplots(1,1,figsize = (8,6)) ax = sns.boxplot(data=data_plot, x='value', y = 'Feature', hue='UTI Label', ax=ax, **{'showfliers':False}) ax.set_ylabel(None) ax.set_yticks([]) ax.set_title('{}'.format(fe.info[feature])) ax.set_xlabel('Value') fig_list.append(fig) axes_list.append(ax) return fig_list, axes_list def visualise_activity_evently_data(fe): ''' Arguments --------- - fe: class: The feature engineering class that produces the data. ''' activity_evently = fe.activity_specific_agg(agg='evently', load_smaller_aggs = True) activity_evently = label_dataframe(activity_evently, days_either_side=0) activity_evently=activity_evently.rename(columns = {'valid':'UTI Label'}) activity_evently['Feature'] = activity_evently['location'].map(fe.info) sns.set_theme('talk') fig_list = [] axes_list = [] for feature in activity_evently['location'].unique(): data_plot = activity_evently[activity_evently['location'].isin([feature])] fig, ax = plt.subplots(1,1,figsize = (8,6)) ax = sns.boxplot(data=data_plot, x='value', y = 'Feature', hue='UTI Label', ax=ax, **{'showfliers':False}) ax.set_ylabel(None) ax.set_yticks([]) ax.set_title('{}'.format(fe.info[feature])) ax.set_xlabel('Value') fig_list.append(fig) axes_list.append(ax) return fig_list, axes_list if __name__ == '__main__': results = weekly_compare(getattr(fe, att), kolmogorov_smirnov) df = label_by_week(getattr(fe, att)) visualise_weekly_data(df) visualise_weekly_statistical_analysis(df) visualise_body_temperature(label_by_week(fe.body_temperature))
28.699187
125
0.657507
0
0
0
0
734
0.103966
0
0
1,264
0.179037
552c410668701cd1585658195d593e1b5751e350
442
py
Python
code-everyday-challenge/n159_cyclically_rotate.py
ved93/deliberate-practice-challenges
2fccdbb9d2baaa16f888055c081a8d04804c0045
[ "MIT" ]
null
null
null
code-everyday-challenge/n159_cyclically_rotate.py
ved93/deliberate-practice-challenges
2fccdbb9d2baaa16f888055c081a8d04804c0045
[ "MIT" ]
null
null
null
code-everyday-challenge/n159_cyclically_rotate.py
ved93/deliberate-practice-challenges
2fccdbb9d2baaa16f888055c081a8d04804c0045
[ "MIT" ]
null
null
null
# https://practice.geeksforgeeks.org/problems/cyclically-rotate-an-array-by-one2614/1 # Given an array, rotate the array by one position in clock-wise direction. # Input: # N = 5 # A[] = {1, 2, 3, 4, 5} # Output: # 5 1 2 3 4 def rotate_cycle(a): n = len(a) tmp = a[-1] for i in range(1,n): a[-i] = a[-i-1] a[0] = tmp return a if __name__ == "__main__": a = [1, 2, 3,4,5] print(rotate_cycle(a))
17.68
85
0.567873
0
0
0
0
0
0
0
0
228
0.515837
552d7c8af23d30920337cc95fa4d7065705c0c5f
10,800
py
Python
adamw_optimizer.py
pwldj/Bio_XLNet_CRF
536053e9d74abdb2ee56000a8a779ffc1c0dd0fc
[ "Apache-2.0" ]
null
null
null
adamw_optimizer.py
pwldj/Bio_XLNet_CRF
536053e9d74abdb2ee56000a8a779ffc1c0dd0fc
[ "Apache-2.0" ]
2
2022-03-07T07:27:13.000Z
2022-03-07T07:27:15.000Z
adamw_optimizer.py
pwldj/MTL-BioNER
3fb336f517346daeec6a716fa6a657a421754bdb
[ "Apache-2.0" ]
1
2021-05-05T08:42:53.000Z
2021-05-05T08:42:53.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Adamw for TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.training import optimizer class AdamOptimizer(optimizer.Optimizer): def __init__(self, learning_rate=0.001, weight_decay_rate=0.0, beta1=0.9, beta2=0.999, epsilon=1e-8, exclude_from_weight_decay=None, include_in_weight_decay=None, use_locking=False, name="Adamw"): """ This is a multi Gpu version of adamw. :param learning_rate: :param weight_decay_rate: :param beta1: :param beta2: :param epsilon: :param exclude_from_weight_decay: :param include_in_weight_decay: :param use_locking: :param name: """ super(AdamOptimizer, self).__init__(use_locking, name) self._lr = learning_rate self._beta1 = beta1 self._beta2 = beta2 self._epsilon = epsilon self._weight_decay_rate = weight_decay_rate self._exclude_from_weight_decay = exclude_from_weight_decay self._include_in_weight_decay = include_in_weight_decay # Tensor versions of the constructor arguments, created in _prepare(). self._lr_t = None self._weight_decay_rate_t = None self._beta1_t = None self._beta2_t = None self._epsilon_t = None def _get_beta_accumulators(self): with ops.init_scope(): if context.executing_eagerly(): graph = None else: graph = ops.get_default_graph() return (self._get_non_slot_variable("beta1_power", graph=graph), self._get_non_slot_variable("beta2_power", graph=graph)) def _create_slots(self, var_list): # Create the beta1 and beta2 accumulators on the same device as the first # variable. Sort the var_list to make sure this device is consistent across # workers (these need to go on the same PS, otherwise some updates are # silently ignored). first_var = min(var_list, key=lambda x: x.name) self._create_non_slot_variable( initial_value=self._beta1, name="beta1_power", colocate_with=first_var) self._create_non_slot_variable( initial_value=self._beta2, name="beta2_power", colocate_with=first_var) # Create slots for the first and second moments. for v in var_list: self._zeros_slot(v, "adam_m", self._name) self._zeros_slot(v, "adam_v", self._name) def _prepare(self): lr = self._call_if_callable(self._lr) beta1 = self._call_if_callable(self._beta1) beta2 = self._call_if_callable(self._beta2) weight_decay_rate = self._call_if_callable(self._weight_decay_rate) epsilon = self._call_if_callable(self._epsilon) self._lr_t = ops.convert_to_tensor(lr, name="learning_rate") self._beta1_t = ops.convert_to_tensor(beta1, name="beta1") self._beta2_t = ops.convert_to_tensor(beta2, name="beta2") self._weight_decay_rate_t = ops.convert_to_tensor( weight_decay_rate, name="weight_decay_rate") self._epsilon_t = ops.convert_to_tensor(epsilon, name="epsilon") def _apply_dense(self, grad, var): lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype) beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype) weight_decay_rate = math_ops.cast( self._weight_decay_rate_t, var.dtype.base_dtype) epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype) beta1_power, beta2_power = self._get_beta_accumulators() beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype) beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype) lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power)) m = self.get_slot(var, "adam_m") v = self.get_slot(var, "adam_v") m_t = (tf.multiply(beta1_t, m) + tf.multiply(1.0 - beta1_t, grad)) m_t = m.assign(m_t, use_locking=self._use_locking) v_t = (tf.multiply(beta2_t, v) + tf.multiply(1.0 - beta2_t, tf.square(grad))) v_t = v.assign(v_t, use_locking=self._use_locking) m_t_hat = m_t / (1. - beta1_power) v_t_hat = v_t / (1. - beta2_power) update = m_t_hat / (tf.sqrt(v_t_hat) + epsilon_t) if self._do_use_weight_decay(var.name): update += weight_decay_rate * var var_update = var - lr * update var_update = var.assign(var_update, use_locking=self._use_locking) return tf.group(*[var_update, m_t, v_t]) def _resource_apply_dense(self, grad, var): lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype) beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype) weight_decay_rate = math_ops.cast( self._weight_decay_rate_t, var.dtype.base_dtype) epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype) beta1_power, beta2_power = self._get_beta_accumulators() beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype) beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype) lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power)) m = self.get_slot(var, "adam_m") v = self.get_slot(var, "adam_v") m_t = (tf.multiply(beta1_t, m) + tf.multiply(1.0 - beta1_t, grad)) m_t = m.assign(m_t, use_locking=self._use_locking) v_t = (tf.multiply(beta2_t, v) + tf.multiply(1.0 - beta2_t, tf.square(grad))) v_t = v.assign(v_t, use_locking=self._use_locking) m_t_hat = m_t / (1. - beta1_power) v_t_hat = v_t / (1. - beta2_power) update = m_t_hat / (tf.sqrt(v_t_hat) + epsilon_t) if self._do_use_weight_decay(var.name): update += weight_decay_rate * var var_update = var - lr * update var_update = var.assign(var_update, use_locking=self._use_locking) return tf.group(*[var_update, m_t, v_t]) def _apply_sparse_shared(self, grad, var, indices, scatter_add): beta1_power, beta2_power = self._get_beta_accumulators() beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype) beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype) lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype) beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype) beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype) epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype) lr = (lr_t * math_ops.sqrt(1 - beta2_power) / (1 - beta1_power)) # m_t = beta1 * m + (1 - beta1) * g_t m = self.get_slot(var, "adam_m") m_scaled_g_values = grad * (1 - beta1_t) m_t = state_ops.assign(m, m * beta1_t, use_locking=self._use_locking) with ops.control_dependencies([m_t]): m_t = scatter_add(m, indices, m_scaled_g_values) # v_t = beta2 * v + (1 - beta2) * (g_t * g_t) v = self.get_slot(var, "adam_v") v_scaled_g_values = (grad * grad) * (1 - beta2_t) v_t = state_ops.assign(v, v * beta2_t, use_locking=self._use_locking) with ops.control_dependencies([v_t]): v_t = scatter_add(v, indices, v_scaled_g_values) v_sqrt = math_ops.sqrt(v_t) var_update = state_ops.assign_sub( var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking) return control_flow_ops.group(*[var_update, m_t, v_t]) def _apply_sparse(self, grad, var): return self._apply_sparse_shared( grad.values, var, grad.indices, lambda x, i, v: state_ops.scatter_add( # pylint: disable=g-long-lambda x, i, v, use_locking=self._use_locking)) def _resource_scatter_add(self, x, i, v): with ops.control_dependencies( [resource_variable_ops.resource_scatter_add(x.handle, i, v)]): return x.value() def _resource_apply_sparse(self, grad, var, indices): return self._apply_sparse_shared(grad, var, indices, self._resource_scatter_add) def _finish(self, update_ops, name_scope): # Update the power accumulators. with ops.control_dependencies(update_ops): beta1_power, beta2_power = self._get_beta_accumulators() with ops.colocate_with(beta1_power): update_beta1 = beta1_power.assign( beta1_power * self._beta1_t, use_locking=self._use_locking) update_beta2 = beta2_power.assign( beta2_power * self._beta2_t, use_locking=self._use_locking) return control_flow_ops.group( *update_ops + [update_beta1, update_beta2], name=name_scope) def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if not self._weight_decay_rate: return False # for r in self._include_in_weight_decay: # if re.search(r, param_name) is not None: # return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(r, param_name) is not None: tf.logging.info('Adam WD excludes {}'.format(param_name)) return False return True
44.444444
85
0.64463
9,604
0.889259
0
0
0
0
0
0
1,890
0.175
552db8b8886012305a174d08f78e6a22fd0ea206
38
py
Python
tests/test_e2e.py
sasakalaba/drone-strike
92e1aa9a79347f2fdc336529b584206aa20e72d3
[ "Unlicense" ]
null
null
null
tests/test_e2e.py
sasakalaba/drone-strike
92e1aa9a79347f2fdc336529b584206aa20e72d3
[ "Unlicense" ]
null
null
null
tests/test_e2e.py
sasakalaba/drone-strike
92e1aa9a79347f2fdc336529b584206aa20e72d3
[ "Unlicense" ]
null
null
null
from .base import BaseTestCase pass
7.6
30
0.789474
0
0
0
0
0
0
0
0
0
0
552fdd4ea7856ad8f238ffba4056d7b666e1d19e
1,559
py
Python
backend/breach/helpers/injector.py
Cancelll/rupture
cd87481717b39de2654659b7ff436500e28a0600
[ "MIT" ]
184
2016-03-31T04:19:42.000Z
2021-11-26T21:37:12.000Z
backend/breach/helpers/injector.py
Cancelll/rupture
cd87481717b39de2654659b7ff436500e28a0600
[ "MIT" ]
212
2016-03-31T04:32:06.000Z
2017-02-26T09:34:47.000Z
backend/breach/helpers/injector.py
Cancelll/rupture
cd87481717b39de2654659b7ff436500e28a0600
[ "MIT" ]
38
2016-03-31T09:09:44.000Z
2021-11-26T21:37:13.000Z
from backend.settings import BASE_DIR import os import subprocess import stat rupture_dir = os.path.abspath(os.path.join(BASE_DIR, os.pardir)) client_dir = os.path.join(rupture_dir, 'client') def inject(victim): _create_client(victim) _create_injection(victim) _run_injection(victim) def _create_client(victim): realtimeurl = victim.realtimeurl victimid = victim.id with open(os.devnull, 'w') as FNULL: p = subprocess.Popen( [os.path.join(client_dir, 'build.sh'), str(realtimeurl), str(victimid)], cwd=client_dir, stdout=FNULL, stderr=subprocess.PIPE ) return p.wait() def _create_injection(victim): sourceip = victim.sourceip victimid = victim.id with open(os.path.join(client_dir, 'inject.sh'), 'r') as f: injection = f.read() injection = injection.replace('$1', str(sourceip)) inject_file = os.path.join(client_dir, 'client_{}/inject.sh'.format(victimid)) with open(inject_file, 'w') as f: f.write(injection) clientid_inject = inject_file st = os.stat(clientid_inject) os.chmod(clientid_inject, st.st_mode | stat.S_IEXEC) def _run_injection(victim): victimid = victim.id clientid_dir = os.path.join(client_dir, 'client_{}'.format(victimid)) with open(os.devnull, 'w') as FNULL: subprocess.Popen( os.path.join(clientid_dir, 'inject.sh'), shell=True, cwd=client_dir, stdout=FNULL, stderr=subprocess.PIPE )
25.557377
84
0.645285
0
0
0
0
0
0
0
0
88
0.056446
5530fb74fc5655f0d169fed9774ccb03f4699d79
952
py
Python
wagtail_client/utils.py
girleffect/core-integration-demo
c37a0d5183d16bec6245a41e12dd90691ffa7138
[ "BSD-3-Clause" ]
null
null
null
wagtail_client/utils.py
girleffect/core-integration-demo
c37a0d5183d16bec6245a41e12dd90691ffa7138
[ "BSD-3-Clause" ]
19
2018-02-06T08:56:24.000Z
2018-09-11T08:05:24.000Z
wagtail_client/utils.py
girleffect/core-integration-demo
c37a0d5183d16bec6245a41e12dd90691ffa7138
[ "BSD-3-Clause" ]
2
2018-05-25T09:44:03.000Z
2021-08-18T12:07:47.000Z
from urllib.parse import urlencode from django.conf import settings from django.contrib.sites.shortcuts import get_current_site def provider_logout_url(request): """ This function is used to construct a logout URL that can be used to log the user out of the Identity Provider (Authentication Service). :param request: :return: """ site = get_current_site(request) if not hasattr(site, "oidcsettings"): raise RuntimeError(f"Site {site} has no settings configured.") parameters = { "post_logout_redirect_uri": site.oidcsettings.wagtail_redirect_url } # The OIDC_STORE_ID_TOKEN setting must be set to true if we want to be able to read # it from the session. if "oidc_id_token" in request.session: parameters["id_token_hint"] = request.session["oidc_id_token"] redirect_url = settings.OIDC_OP_LOGOUT_URL + "?" + urlencode(parameters, doseq=True) return redirect_url
34
91
0.722689
0
0
0
0
0
0
0
0
423
0.444328
553261313f73826b4fd76c66eae4be0cde9803af
978
py
Python
connectToProteusFromMongo.py
erentts/Ignite-Greenhouse
328730399328936332b5c6f3f8dcd18bf56369b9
[ "MIT" ]
4
2021-02-22T21:19:28.000Z
2021-05-03T14:19:18.000Z
connectToProteusFromMongo.py
erentts/Ignite-Greenhouse
328730399328936332b5c6f3f8dcd18bf56369b9
[ "MIT" ]
null
null
null
connectToProteusFromMongo.py
erentts/Ignite-Greenhouse
328730399328936332b5c6f3f8dcd18bf56369b9
[ "MIT" ]
null
null
null
import pymongo import dns import serial from pymongo import MongoClient import struct cluster = MongoClient("") serialPort = serial.Serial(port= "COM1", baudrate=9600 ,bytesize =8 , timeout =None, parity='N',stopbits=1) db=cluster["<greenHouse>"] collection = db["greenhouses"] while serialPort.readline(): results = collection.find({"greenHouseName" : "SERA 1" }) for result in results: targetTemperature = abs(int(result.get("targetTemperature"))) # declaring an integer value int_val = targetTemperature # converting to string str_val = str(targetTemperature) # converting string to bytes byte_val = str_val.encode() serialPort.write(byte_val) getterThree = collection.update_one({"greenHouseName" : "SERA 1"},{"$set":{"targetTemperature" : targetTemperature }}) getter = collection.update_one({"greenHouseName" : "SERA 1"},{"$set":{"currentTemperature" : float(serialPort.read() + serialPort.read()) }})
31.548387
145
0.702454
0
0
0
0
0
0
0
0
261
0.266871
55333cbb250a399b054018a193b9449274e24d7c
837
py
Python
website_sale_cache/__manifest__.py
factorlibre/website-addons
9a0c7a238e2b6030d57f7a08d48816b4f2431524
[ "MIT" ]
1
2020-03-01T03:04:21.000Z
2020-03-01T03:04:21.000Z
website_sale_cache/__manifest__.py
factorlibre/website-addons
9a0c7a238e2b6030d57f7a08d48816b4f2431524
[ "MIT" ]
null
null
null
website_sale_cache/__manifest__.py
factorlibre/website-addons
9a0c7a238e2b6030d57f7a08d48816b4f2431524
[ "MIT" ]
3
2019-07-29T20:23:16.000Z
2021-01-07T20:51:24.000Z
# Copyright 2017 Artyom Losev # Copyright 2018 Kolushov Alexandr <https://it-projects.info/team/KolushovAlexandr> # License MIT (https://opensource.org/licenses/MIT). { "name": """E-commerce Category Cache""", "summary": """Use this module to greatly accelerate the loading of a page with a large number of product categories""", "category": "Website", "images": ["images/websale_cache.png"], "version": "13.0.1.0.1", "author": "IT-Projects LLC, Artyom Losev", "support": "apps@itpp.dev", "website": "https://www.it-projects.info", "license": "Other OSI approved licence", # MIT "price": 25.00, "currency": "EUR", "depends": ["website_sale", "website", "base_action_rule"], "data": ["views.xml", "data/ir_action_server.xml", "data/base_action_rules.xml"], "installable": False, }
41.85
123
0.658303
0
0
0
0
0
0
0
0
692
0.826762
5537fd0769af5384988d439a528247d706c25d2b
848
py
Python
lumin/utils/mod_ver.py
choisant/lumin
c039136eb096e8f3800f13925f9325b99cf7e76b
[ "Apache-2.0" ]
43
2019-02-11T16:16:42.000Z
2021-12-13T15:35:20.000Z
lumin/utils/mod_ver.py
choisant/lumin
c039136eb096e8f3800f13925f9325b99cf7e76b
[ "Apache-2.0" ]
48
2020-05-21T02:40:50.000Z
2021-08-10T11:07:08.000Z
lumin/utils/mod_ver.py
choisant/lumin
c039136eb096e8f3800f13925f9325b99cf7e76b
[ "Apache-2.0" ]
14
2019-05-02T15:09:41.000Z
2022-01-12T21:13:34.000Z
import pkg_resources __all__ = [] def check_pdpbox(): try: ver = pkg_resources.get_distribution("pdpbox").version assert ver >= '0.2.0+13.g73c6966', f'''You have version {ver} of pdpbox. Use of this function requires pdpbox>=0.2.0+13.g73c6966, which is not currently available from pypi. Please install from source via:\n `git clone https://github.com/SauceCat/PDPbox.git && cd PDPbox && pip install -e .`''' except pkg_resources.DistributionNotFound: print('''Use of this function requires pdpbox>=0.2.0+13.g73c6966, which is not currently available from pypi. Please install from source via:\n `git clone https://github.com/SauceCat/PDPbox.git && cd PDPbox && pip install -e .`''')
56.533333
160
0.602594
0
0
0
0
0
0
0
0
623
0.73467
553885dd25affc404a552785fdb6d4e6392000ff
18,526
py
Python
pysac/mhs_atmosphere/mhs_model/flux_tubes.py
SolarDrew/pysac
9fd86dd03966b7e7f90653a47a2ccca7964c83bc
[ "BSD-2-Clause" ]
null
null
null
pysac/mhs_atmosphere/mhs_model/flux_tubes.py
SolarDrew/pysac
9fd86dd03966b7e7f90653a47a2ccca7964c83bc
[ "BSD-2-Clause" ]
null
null
null
pysac/mhs_atmosphere/mhs_model/flux_tubes.py
SolarDrew/pysac
9fd86dd03966b7e7f90653a47a2ccca7964c83bc
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Thu Dec 11 11:37:39 2014 @author: sm1fg Construct the magnetic network and generate the adjustments to the non-magnetic atmosphere for mhs equilibrium. """ import os import warnings import numpy as np import astropy.units as u from scipy.interpolate import RectBivariateSpline #============================================================================ # locate flux tubes and footpoint strength #============================================================================ def get_flux_tubes( model_pars, coords, option_pars ): """ Obtain an array of x,y coordinates and corresponding vertical component value for the photospheric magnetic field """ if model_pars['nftubes'] == 0: xi, yi, Si = [[0.]]*u.Mm, [[0.]]*u.Mm, [[0.0]]*u.T # x,y,Bz(r=0,z=0) else: xi, yi, Si = ( u.Quantity([ [0.]] * model_pars['nftubes'], unit=u.Mm), u.Quantity([ [0.]] * model_pars['nftubes'], unit=u.Mm), u.Quantity([ [0.1/model_pars['nftubes']]] * model_pars['nftubes'], unit=u.T), ) # parameters for matching Mumford,Fedun,Erdelyi 2014 if option_pars['l_sunspot']: Si = [[0.5]]*u.T # 128.5mT SI units # parameters for matching Mumford,Fedun,Erdelyi 2014 if option_pars['l_mfe']: Si = [[0.1436]]*u.T # 128.5mT SI units elif option_pars['l_drewmod']: Si = [[0.012]] * u.T #Si = [[0.005]] * u.T #Si = [[0.05]] * u.T elif model_pars['model'] == 'drewtube': Si = [[2.7]] * u.kG #Si = [[0.001]] * u.T # parameters for matching Gent,Fedun,Mumford,Erdelyi 2014 elif option_pars['l_single']: Si = [[0.1]]*u.T # 100mT SI units # parameters for matching Gent,Fedun,Erdelyi 2014 flux tube pair elif option_pars['l_tube_pair']: xi, yi, Si = ( u.Quantity([ [ 1.0], [ 1.0], [-0.95], [-1.05] ], unit=u.Mm), u.Quantity([ [ 0.00], [ 0.00], [ .15], [-0.15] ], unit=u.Mm), u.Quantity([ [ 50e-3], [ 50e-3], [ 50e-3], [ 50e-3] ], unit=u.T) )# 50mT SI # parameters for matching Gent,Fedun,Erdelyi 2014 twisted flux tubes elif option_pars['l_multi_twist']: """xi, yi, Si = ( u.Quantity([ [ 0.34], [ 0.07], [ .14], [-0.31] ], unit=u.Mm), u.Quantity([ [ 0.20], [ 0.33], [ 0.04], [-0.34] ], unit=u.Mm), u.Quantity([ [ 50e-3], [ 50e-3], [ 50e-3], [ 50e-3] ], unit=u.T) )# 50mT SI""" xi, yi, Si = (u.Quantity([[0.34], [0.07], [0.14], [-0.31]], unit=u.Mm), u.Quantity([[0.2], [0.33], [0.04], [-0.34]], unit=u.Mm), u.Quantity([[50e-3], [50e-3], [50e-3], [50e-3]], unit=u.T)) elif option_pars['l_multi_netwk']: xi, yi, Si = ( u.Quantity([ [0.]] * model_pars['nftubes'], unit=u.Mm), u.Quantity([ [0.]] * model_pars['nftubes'], unit=u.Mm), u.Quantity([ [0.5/model_pars['nftubes']]] * model_pars['nftubes'], unit=u.T), ) x1 = [-1.75, -0.75, 1.25, 1.00, -0.75] y1 = [-1.00, 0.50, 0.50, -1.50, 1.70] xi[ : 3] += x1[0] * u.Mm xi[3 : 6] += x1[1] * u.Mm xi[6 : 9] += x1[2] * u.Mm xi[9 :12] += x1[3] * u.Mm xi[12:15] += x1[4] * u.Mm yi[ : 3] += y1[0] * u.Mm yi[3 : 6] += y1[1] * u.Mm yi[6 : 9] += y1[2] * u.Mm yi[9 :12] += y1[3] * u.Mm yi[12:15] += y1[4] * u.Mm for xj in xi: xj += np.random.uniform(-0.5,0.5) * u.Mm for xj in yi: xj += np.random.uniform(-0.5,0.5) * u.Mm elif option_pars['l_multi_lanes']: xi, yi, Si = ( u.Quantity([ [0.]] * model_pars['nftubes'], unit=u.Mm), u.Quantity([ [0.]] * model_pars['nftubes'], unit=u.Mm), u.Quantity([ [0.475/model_pars['nftubes']]] * model_pars['nftubes'], unit=u.T), ) x1 = [-2., -1.2, -0.4, 0.4, 1.2, 2.] xi[ : 3] += x1[0] * u.Mm xi[3 : 6] += x1[1] * u.Mm xi[6 : 9] += x1[2] * u.Mm xi[9 :12] += x1[3] * u.Mm xi[12:15] += x1[4] * u.Mm xi[16:18] += x1[5] * u.Mm for xj in xi: xj += np.random.uniform(-0.5,0.5) * u.Mm for xj in yi: xj += np.random.uniform(-0.25,0.25) * u.Mm else: raise ValueError("in get_flux_tubes axial parameters need to be defined") return xi, yi, Si #----------------------------------------------------------------------------- # def get_hmi_flux_tubes( model_pars, option_pars, indx, dataset = 'hmi_m_45s_2014_07_06_00_00_45_tai_magnetogram_fits', sunpydir = os.path.expanduser('~/sunpy/data/'), savedir = os.path.expanduser('~/figs/hmi/'), l_newdata = False ): """ indx is 4 integers: lower and upper indices each of x,y coordinates # dataset of the form 'hmi_m_45s_2014_07_06_00_00_45_tai_magnetogram_fits' # """ from sunpy.net import vso import sunpy.map client = vso.VSOClient() results = client.query(vso.attrs.Time("2014/07/05 23:59:50", "2014/07/05 23:59:55"), vso.attrs.Instrument('HMI'), vso.attrs.Physobs('LOS_magnetic_field')) if l_newdata: if not os.path.exits(sunpydir): raise ValueError("in get_hmi_map set 'sunpy' dir for vso data\n"+ "for large files you may want link to local drive rather than network") client.get(results).wait(progress=True) if not os.path.exits(savedir): os.makedirs(savedir) hmi_map = sunpy.map.Map(sunpydir+dataset) #hmi_map = hmi_map.rotate() #hmi_map.peek() s = hmi_map.data[indx[0]:indx[1],indx[2]:indx[3]] #units of Gauss Bz s *= u.G nx = s.shape[0] ny = s.shape[1] nx2, ny2 = 2*nx, 2*ny # size of interpolant #pixel size in arc seconds dx, dy = hmi_map.scale.items()[0][1],hmi_map.scale.items()[1][1] x, y = np.mgrid[ hmi_map.xrange[0]+indx[0]*dx:hmi_map.xrange[0]+indx[1]*dx:1j*nx2, hmi_map.xrange[0]+indx[2]*dy:hmi_map.xrange[0]+indx[3]*dy:1j*ny2 ] #arrays to interpolate s from/to fx = u.Quantity(np.linspace(x.min().value,x.max().value,nx), unit=x.unit) fy = u.Quantity(np.linspace(y.min().value,y.max().value,ny), unit=y.unit) xnew = u.Quantity(np.linspace(x.min().value,x.max().value,nx2), unit=x.unit) ynew = u.Quantity(np.linspace(y.min().value,y.max().value,ny2), unit=y.unit) f = RectBivariateSpline(fx,fy,s.to(u.T)) #The initial model assumes a relatively small region, so a linear #Cartesian map is applied here. Consideration may be required if larger #regions are of interest, where curvature or orientation near the lim #of the surface is significant. s_int = f(xnew,ynew) #interpolate s and convert units to Tesla s_int /= 4. # rescale s as extra pixels will sum over FWHM x_int = x * 7.25e5 * u.m #convert units to metres y_int = y * 7.25e5 * u.m dx_int = dx * 7.25e5 * u.m dy_int = dy * 7.25e5 * u.m FWHM = 0.5*(dx_SI+dy_SI) smax = max(abs(s.min()),abs(s.max())) # set symmetric plot scale cmin = -smax*1e-4 cmax = smax*1e-4 # # filename = 'hmi_map' # import loop_plots as mhs # mhs.plot_hmi( # s*1e-4,x_SI.min(),x_SI.max(),y_SI.min(),y_SI.max(), # cmin,cmax,filename,savedir,annotate = '(a)' # ) # filename = 'hmi_2x2_map' # mhs.plot_hmi( # s_SI*4,x_SI.min(),x_SI.max(),y_SI.min(),y_SI.max(), # cmin,cmax,filename,savedir,annotate = '(a)' # ) # # return s_SI, x_SI, y_SI, nx2, ny2, dx_SI, dy_SI, cmin, cmax, FWHM #============================================================================ # Magnetic Field Construction (See. Fedun et.al 2011) #============================================================================ def construct_magnetic_field( x, y, z, x0, y0, S, model_pars, option_pars, physical_constants, scales): """ Construct self similar magnetic field configuration Note if model_pars['B_corona'] = 0 then paper3 results otherwise paper 2 """ #Extract commonly used scales: z1 = model_pars['photo_scale'] z2 = model_pars['chrom_scale'] z3 = model_pars['corona_scale'] f0 = model_pars['radial_scale'] mu0 = physical_constants['mu0'] g0 = physical_constants['gravity'] #scale Bf1, Bf2 to sum to 1 Bf1 = model_pars['phratio'] Bf2 = model_pars['chratio'] Bf3 = model_pars['coratio'] Bbz = model_pars['B_corona'] #define exponentials and derivatives, basis functions if option_pars['l_B0_expz']: B1z = Bf1 * np.exp(-z**2/z1**2) B2z = Bf2 * np.exp(-z/z2) B3z = Bf3 * np.exp(-z/z3) B0z = B1z + B2z + B3z B10dz= -2*z*B1z/z1**2 - B2z/z2 - B3z/z3 B20dz= -2* B1z/z1**2 + 4*z**2*B1z/z1**4 + B2z/z2**2 + B3z/z3**2 B30dz= 12*z*B1z/z1**4 - 8*z**3*B1z/z1**6 - B2z/z2**3 - B3z/z3**3 elif option_pars['l_B0_rootz']: B0z = Bf2 * z2**(0.125) / (z + z2)**(0.125) B10dz = -0.125 * B0z / (z + z2) B20dz = 9./64. * B0z / (z + z2)**2 B30dz = -153./512 * B0z / (z + z2)**3 elif option_pars['l_B0_quadz']: B1z = Bf1 * z1**2 / (z**2 + z1**2) B2z = Bf2 * z2 /(z + z2) B3z = Bf3 * np.exp(-z/z3)# B3z = Bf3 * z3 /(z + z3) B0z = B1z + B2z + B3z B10dz=- 2 * z *B1z**2/z1**2 - B2z**2/z2 - B3z/z3 B20dz= 8*z**2*B1z**3/z1**4 - 2* B1z**2/z1**2 +2*B2z**3/z2**2 +2*B3z/z3**2 B30dz=-48*z**3*B1z**4/z1**6 +24*z*B1z**3/z1**4 -6*B2z**4/z2**3 -6*B3z/z3**3 else: raise ValueError("in mhs_model.flux_tubes.construct_magnetic_field \ option_pars all False for axial strength Z dependence") rr= np.sqrt((x-x0)**2 + (y-y0)**2) #self similarity functions fxyz= -0.5*rr**2 * B0z**2 G0 = np.exp(fxyz/f0**2) #Define Field B0z2 = B0z*B0z Bx = -S * (x-x0) * (B10dz * B0z * G0) By = -S * (y-y0) * (B10dz * B0z * G0) Bz = S * B0z2 * G0 + Bbz f02 = f0*f0 G02 = G0*G0 B0z3 = B0z2*B0z # B0z4 = B0z3*B0z B10dz2 = B10dz**2 #Define derivatives of Bx dxBx = - S * (B10dz * B0z * G0) + 2 * S * (x-x0)**2 * B10dz * B0z3 * G0/f02 dyBx = 2 * S * (x-x0) * (y-y0) * B10dz * B0z3 * G0/f02 dzBx = - 2 * S * (x-x0) * (B0z*B20dz + (1. + 2.*fxyz/f02)*B10dz2)*G0 #Define derivatives By dyBy = - S * (B10dz * B0z * G0) \ + 2 * S * (y-y0)**2 * B10dz * B0z3 * G0/f02 dxBy = 2 * S * (x-x0) * (y-y0) * B10dz * B0z3 * G0/f02 dzBy = - 2 * S * (y-y0) * (B0z*B20dz + (1. + 2.*fxyz/f02)*B10dz2)*G0 #Magnetic Pressure and horizontal thermal pressure balance term pbbal= -0.5*Bz**2/mu0 + 0.5/mu0 * S**2 * G02 * ( f02 * B0z * B20dz + 2 * fxyz * B10dz2) + S*Bbz*G0/mu0 * ( f02 * B20dz / B0z + (2 * fxyz - f02) * B10dz2 / B0z2) #density balancing B # import pdb; pdb.set_trace() del rr, x, y, z rho_1 = S**2*G02/(mu0*g0) * ( (0.5*f02 + 2*fxyz) * B10dz*B20dz + 0.5*f02 * B0z*B30dz - 2. * B0z3*B10dz ) + S*Bbz*G0/(mu0*g0) * (f02*B30dz/B0z + (2*f02 - 2*fxyz + 4*fxyz**2/f02) * B10dz2*B10dz/B0z3 + 3 * (2*fxyz - f02) * B20dz*B10dz/B0z2 - 2 * (fxyz/f02 + 1) * B10dz*B0z ) B2x = (Bx * dxBx + By * dyBx + Bz * dzBx)/mu0 B2y = (Bx * dxBy + By * dyBy + Bz * dzBy)/mu0 return pbbal, rho_1, Bx, By, Bz, B2x, B2y #============================================================================ # Magnetic Field Construction (See. Fedun et.al 2011) #============================================================================ def construct_pairwise_field(x, y, z, xi, yi, xj, yj, Si, Sj, model_pars, option_pars, physical_constants, scales ): """ Construct self similar magnetic field configuration """ #Extract commonly used scales: z1 = model_pars['photo_scale'] z2 = model_pars['chrom_scale'] z3 = model_pars['corona_scale'] f0 = model_pars['radial_scale'] mu0 = physical_constants['mu0'] g0 = physical_constants['gravity'] #scale Bf1, Bf2 to sum to 1 Bf1 = model_pars['phratio'] Bf2 = model_pars['chratio'] Bf3 = model_pars['coratio'] Bbz = model_pars['B_corona'] #define exponentials and derivatives, basis functions if option_pars['l_B0_expz']: B1z = Bf1 * np.exp(-z**2/z1**2) B2z = Bf2 * np.exp(-z/z2) B3z = Bf3 * np.exp(-z/z3) B0z = B1z + B2z + B3z B10dz= -2*z*B1z/z1**2 - B2z/z2 - B3z/z3 B20dz= -2* B1z/z1**2 + 4*z**2*B1z/z1**4 + B2z/z2**2 + B3z/z3**2 B30dz= 12*z*B1z/z1**4 - 8*z**3*B1z/z1**6 - B2z/z2**3 - B3z/z3**3 else: #if option_pars['l_BO_quadz']: B1z = Bf1 * z1**2 / (z**2 + z1**2) B2z = Bf2 * z2 /(z + z2) B3z = Bf3 * np.exp(-z/z3) # B3z = Bf3 * z3 /(z + z3) B0z = B1z + B2z + B3z B10dz=- 2 * z *B1z**2/z1**2 - B2z**2/z2 - B3z/z3 B20dz= 8*z**2*B1z**3/z1**4 - 2* B1z**2/z1**2 +2*B2z**3/z2**2 +2*B3z/z3**2 B30dz=-48*z**3*B1z**4/z1**6 +24*z*B1z**3/z1**4 -6*B2z**4/z2**3 -6*B3z/z3**3 B10dz2 = B10dz**2 BB10dz = B10dz*B0z BB10dz2 = BB10dz**2 BB20dz = B20dz*B0z B0z2 = B0z*B0z # B30dz= -B1z/z1**3 - B2z/z2**3 ri= np.sqrt((x-xi)**2 + (y-yi)**2) rj= np.sqrt((x-xj)**2 + (y-yj)**2) ri2 = ri**2 rj2 = rj**2 #self similarity functions fxyzi= -ri2 * B0z2/2. fxyzj= -rj2 * B0z2/2. f02 = f0*f0 G0i = np.exp(fxyzi/f02) G0j = np.exp(fxyzj/f02) G0ij = G0i*G0j #Define Field Bxi = -Si * (x-xi) * (B10dz * B0z * G0i) Byi = -Si * (y-yi) * (B10dz * B0z * G0i) Bzi = Si * B0z**2 * G0i + Bbz Bxj = -Sj * (x-xj) * (B10dz * B0z * G0j) Byj = -Sj * (y-yj) * (B10dz * B0z * G0j) Bzj = Sj * B0z**2 * G0j + Bbz B0z3 = B0z2*B0z B0z4 = B0z3*B0z BdB2 = B10dz2/B0z2 B2dB = B20dz/B0z #Magnetic Pressure and horizontal thermal pressure balance term pbbal= - Bzi*Bzj/mu0 - Si*Sj*G0ij*f02*(B10dz2 + BB20dz)/mu0 \ + Bbz*Si*G0i * ((2*fxyzi - f02) * BdB2 + f02 * B2dB) /mu0 \ + Bbz*Sj*G0j * ((2*fxyzj - f02) * BdB2 + f02 * B2dB) /mu0 #density balancing B rho_1 = \ 2.*Si*Sj*G0ij*BB10dz/(mu0*g0)*( + (fxyzi + fxyzj) * (BdB2 + B2dB) - ((fxyzi + fxyzj)/f02 + 2.) * B0z2 + 0.5*f02 * (3.*B2dB + B30dz/B10dz) +((x-xi)*(x-xj) + (y-yi)*(y-yj)) * (( 1. + (fxyzi + fxyzj)/f02) * B10dz2 + BB20dz - B0z4/f02) ) + Bbz*Si*G0i/(mu0*g0) * (B30dz/B0z*f02 - 2*(fxyzi/f02 + 1) * BB10dz + (4*fxyzi**2/f02 - 2*fxyzi + 2*f02) * B10dz2*B10dz/B0z3 + (6*fxyzi - 3*f02) * B10dz*B20dz/B0z2 ) + Bbz*Sj*G0j/(mu0*g0) * (B30dz/B0z*f02 - 2*(fxyzj/f02 + 1) * BB10dz + (4*fxyzj**2/f02 - 2*fxyzj + 2*f02) * B10dz2*B10dz/B0z3 + (6*fxyzj - 3*f02) * B10dz*B20dz/B0z2 ) Fx = - 2*Si*Sj/mu0 * G0ij*BB10dz2/f02 * ( (x-xi) * fxyzi + (x-xj) * fxyzj ) Fy = - 2*Si*Sj/mu0 * G0ij*BB10dz2/f02 * ( (y-yi) * fxyzi + (y-yj) * fxyzj ) #Define derivatives of Bx dxiBx = - Si * (BB10dz * G0i) \ + 2 * Si * (x-xi)**2 * B10dz * B0z3 * G0i/f02 dyiBx = 2 * Si * (x-xi) * (y-yi) * B10dz * B0z3 * G0i/f02 dziBx = - Si * (x-xi) * (B0z*B20dz + (1. + 2.*fxyzi/f02)*B10dz2)*G0i dxjBx = - Sj * (BB10dz * G0j) \ + 2 * Sj * (x-xj)**2 * B10dz * B0z3 * G0j/f02 dyjBx = 2 * Sj * (x-xj) * (y-yj) * B10dz * B0z3 * G0j/f02 dzjBx = - Sj * (x-xj) * (B0z*B20dz + (1. + 2.*fxyzj/f02)*B10dz2)*G0j #Define derivatives By dxiBy = - Si * (BB10dz * G0i) \ + 2 * Si * (y-yi)**2 * B10dz * B0z3 * G0i/f02 dyiBy = 2 * Si * (x-xi) * (y-yi) * B10dz * B0z3 * G0i/f02 dziBy = - Si * (y-yi) * (B0z*B20dz + (1. + 2.*fxyzi/f02)*B10dz2)*G0i dxjBy = - Sj * (BB10dz * G0j) \ + 2 * Sj * (y-yj)**2 * B10dz * B0z3 * G0j/f02 dyjBy = 2 * Sj * (x-xj) * (y-yj) * B10dz * B0z3 * G0j/f02 dzjBy = - Sj * (y-yj) * (B0z*B20dz + (1. + 2.*fxyzj/f02)*B10dz2)*G0j B2x = (Bxi * dxjBx + Byi * dyjBx + Bzi * dzjBx + Bxj * dxiBx + Byj * dyiBx + Bzj * dziBx)/mu0 B2y = (Bxi * dxjBy + Byi * dyjBy + Bzi * dzjBy + Bxj * dxiBy + Byj * dyiBy + Bzj * dziBy)/mu0 return pbbal, rho_1, Fx, Fy, B2x, B2y
40.986726
83
0.45428
0
0
0
0
0
0
0
0
5,243
0.283008
5539d275ebd36d43b5d44642306d4d9d488a83a3
961
py
Python
s3_file_uploads/serializers.py
dabapps/django-s3-file-uploads
17ed6b4e02bd43bc925af987ff5bf971a82da434
[ "BSD-3-Clause" ]
5
2019-05-27T03:51:30.000Z
2021-03-19T11:24:09.000Z
s3_file_uploads/serializers.py
dabapps/django-s3-file-uploads
17ed6b4e02bd43bc925af987ff5bf971a82da434
[ "BSD-3-Clause" ]
7
2019-12-04T22:38:13.000Z
2021-06-10T17:50:06.000Z
s3_file_uploads/serializers.py
dabapps/django-s3-file-uploads
17ed6b4e02bd43bc925af987ff5bf971a82da434
[ "BSD-3-Clause" ]
null
null
null
from rest_framework import serializers from s3_file_uploads.constants import ACCESS_CONTROL_TYPES, PRIVATE from s3_file_uploads.models import UploadedFile class UploadedFileSerializer(serializers.ModelSerializer): file_name = serializers.CharField(source='file.name', read_only=True) file = serializers.URLField(source='get_download_url', read_only=True) class Meta: model = UploadedFile fields = [ 'id', 'created', 'modified', 'file_key', 'file', 'filename', 'file_name', 'file_path', 'user', ] read_only_fields = [ 'id', 'modfied', 'created', 'file_name', 'file_path', 'file_key' ] class AccessControlListSerializer(serializers.Serializer): acl = serializers.ChoiceField(choices=ACCESS_CONTROL_TYPES, default=PRIVATE)
27.457143
80
0.597294
801
0.833507
0
0
0
0
0
0
160
0.166493
553a35ee3c9965503e444537543d6f056c2747c7
1,873
py
Python
vbts_webadmin/views/subscribers.py
pcarivbts/vbts-webadmin
0616eca6492daa3ebc26b442e8dbebda7ac06d51
[ "BSD-3-Clause" ]
null
null
null
vbts_webadmin/views/subscribers.py
pcarivbts/vbts-webadmin
0616eca6492daa3ebc26b442e8dbebda7ac06d51
[ "BSD-3-Clause" ]
3
2020-06-05T18:34:16.000Z
2021-06-10T20:31:18.000Z
vbts_webadmin/views/subscribers.py
pcarivbts/vbts-webadmin
0616eca6492daa3ebc26b442e8dbebda7ac06d51
[ "BSD-3-Clause" ]
2
2018-07-04T00:54:50.000Z
2022-01-28T16:52:10.000Z
""" Copyright (c) 2015-present, Philippine-California Advanced Research Institutes- The Village Base Station Project (PCARI-VBTS). All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. """ from django.contrib import messages as alerts from django.contrib.auth.decorators import login_required from django.core.paginator import Paginator from django.core.paginator import EmptyPage from django.core.paginator import PageNotAnInteger from django.db.models import Q from django.shortcuts import render from django.utils.translation import ugettext as _ from vbts_subscribers.models import SipBuddies from vbts_webadmin.forms import SearchForm @login_required def subscribers_list(request, template_name='subscribers/list.html'): data = {} if 'search' in request.GET: subscribers = SipBuddies.objects.all() for term in request.GET['search'].split(): subscribers = subscribers.filter(Q(name__icontains=term) | Q(callerid__icontains=term)) data['search'] = True alerts.info(request, _("You've searched for: '%s'") % request.GET['search']) else: subscribers = SipBuddies.objects.all() paginator = Paginator(subscribers, 15) page = request.GET.get('page') is_paginated = False if paginator.num_pages > 1: is_paginated = True try: subscribers = paginator.page(page) except PageNotAnInteger: subscribers = paginator.page(1) except EmptyPage: subscribers = paginator.page(paginator.num_pages) form = SearchForm(form_action='subscribers') data['subscribers'] = subscribers data['is_paginated'] = is_paginated data['form'] = form return render(request, template_name, data)
33.446429
79
0.705286
0
0
0
0
1,134
0.605446
0
0
416
0.222104
553df305accc95bd90095dbb25295bf9604e38ba
268
py
Python
Aula 05/[Exercicio 01] .py
IsaacPSilva/LetsCode
64396ee9fd0ad395598c74c3727a614261e5dd50
[ "MIT" ]
null
null
null
Aula 05/[Exercicio 01] .py
IsaacPSilva/LetsCode
64396ee9fd0ad395598c74c3727a614261e5dd50
[ "MIT" ]
null
null
null
Aula 05/[Exercicio 01] .py
IsaacPSilva/LetsCode
64396ee9fd0ad395598c74c3727a614261e5dd50
[ "MIT" ]
null
null
null
'''1. Faça um programa que pede para o usuário digitar uma palavra e imprima cada letra em uma linha.''' #Informando frase a ser verificada frase = input('Digite uma palavra: ') #Convertendo frase em palavras, e imprimindo depois for letra in frase: print(letra)
29.777778
68
0.75
0
0
0
0
0
0
0
0
213
0.788889
553e5975ce3bca9dd2037d832b61d89b76e372a6
16,307
py
Python
examples/vq_rnn_fruit_joint/vq_fruit_joint.py
kastnerkyle/tfbldr
58ad1437d500924acd15d1c6eec4a864f57e9c7c
[ "BSD-3-Clause" ]
4
2018-05-15T22:35:00.000Z
2019-02-22T01:40:49.000Z
examples/vq_rnn_fruit_joint/vq_fruit_joint.py
kastnerkyle/tfbldr
58ad1437d500924acd15d1c6eec4a864f57e9c7c
[ "BSD-3-Clause" ]
null
null
null
examples/vq_rnn_fruit_joint/vq_fruit_joint.py
kastnerkyle/tfbldr
58ad1437d500924acd15d1c6eec4a864f57e9c7c
[ "BSD-3-Clause" ]
2
2018-06-09T15:08:44.000Z
2018-11-20T10:13:48.000Z
from tfbldr.nodes import Conv2d from tfbldr.nodes import ConvTranspose2d from tfbldr.nodes import VqEmbedding from tfbldr.nodes import BatchNorm2d from tfbldr.nodes import Linear from tfbldr.nodes import ReLU from tfbldr.nodes import Sigmoid from tfbldr.nodes import Tanh from tfbldr.nodes import OneHot from tfbldr.nodes import Softmax from tfbldr.nodes import LSTMCell from tfbldr.nodes import CategoricalCrossEntropyIndexCost from tfbldr.nodes import CategoricalCrossEntropyLinearIndexCost from tfbldr.nodes import BernoulliCrossEntropyCost from tfbldr.datasets import ordered_list_iterator from tfbldr.plot import get_viridis from tfbldr.plot import autoaspect from tfbldr.datasets import fetch_fruitspeech from tfbldr import get_params_dict from tfbldr import run_loop from tfbldr import scan import tensorflow as tf import numpy as np from collections import namedtuple, defaultdict import itertools viridis_cm = get_viridis() import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt fruit = fetch_fruitspeech() minmin = np.inf maxmax = -np.inf for s in fruit["data"]: si = s - s.mean() minmin = min(minmin, si.min()) maxmax = max(maxmax, si.max()) train_data = [] valid_data = [] type_counts = defaultdict(lambda: 0) final_audio = [] for n, s in enumerate(fruit["data"]): type_counts[fruit["target"][n]] += 1 s = s - s.mean() n_s = (s - minmin) / float(maxmax - minmin) n_s = 2 * n_s - 1 #n_s = mu_law_transform(n_s, 256) if type_counts[fruit["target"][n]] == 15: valid_data.append(n_s) else: train_data.append(n_s) def _cuts(list_of_audio, cut, step): # make many overlapping cuts # 8k, this means offset is ~4ms @ step of 32 real_final = [] real_idx = [] for n, s in enumerate(list_of_audio): # cut off the end s = s[:len(s) - len(s) % step] starts = np.arange(0, len(s) - cut + step, step) for st in starts: real_final.append(s[st:st + cut][None, :, None]) real_idx.append(n) return real_final, real_idx cut = 256 step = 1 train_audio, train_audio_idx = _cuts(train_data, cut, step) valid_audio, valid_audio_idx = _cuts(valid_data, cut, step) random_state = np.random.RandomState(1999) l1_dim = (64, 1, 4, [1, 1, 2, 1]) l2_dim = (128, 1, 4, [1, 1, 2, 1]) l3_dim = (256, 1, 4, [1, 1, 2, 1]) l3_dim = (257, 1, 4, [1, 1, 2, 1]) l4_dim = (256, 1, 4, [1, 1, 2, 1]) l5_dim = (257, 1, 1, [1, 1, 1, 1]) embedding_dim = 512 vqvae_batch_size = 50 rnn_batch_size = 50 n_hid = 512 n_clusters = 64 # goes from 256 -> 16 hardcoded_z_len = 16 # reserve 0 for "start code" n_inputs = embedding_dim + 1 switch_step = 10000 both = True # reserve 0 for start code rnn_init = "truncated_normal" forward_init = "truncated_normal" l_dims = [l1_dim, l2_dim, l3_dim, l4_dim, l5_dim] stride_div = np.prod([ld[-1] for ld in l_dims]) ebpad = [0, 0, 4 // 2 - 1, 0] dbpad = [0, 0, 4 // 2 - 1, 0] train_itr_random_state = np.random.RandomState(1122) valid_itr_random_state = np.random.RandomState(12) train_itr = ordered_list_iterator([train_audio], train_audio_idx, vqvae_batch_size, random_state=train_itr_random_state) valid_itr = ordered_list_iterator([valid_audio], valid_audio_idx, vqvae_batch_size, random_state=valid_itr_random_state) """ for i in range(10000): tt = train_itr.next_batch() # tt[0][3][:, :16] == tt[0][2][:, 16:32] """ def create_encoder(inp, bn_flag): l1 = Conv2d([inp], [1], l_dims[0][0], kernel_size=l_dims[0][1:3], name="enc1", strides=l_dims[0][-1], border_mode=ebpad, random_state=random_state) bn_l1 = BatchNorm2d(l1, bn_flag, name="bn_enc1") r_l1 = ReLU(bn_l1) l2 = Conv2d([r_l1], [l_dims[0][0]], l_dims[1][0], kernel_size=l_dims[1][1:3], name="enc2", strides=l_dims[1][-1], border_mode=ebpad, random_state=random_state) bn_l2 = BatchNorm2d(l2, bn_flag, name="bn_enc2") r_l2 = ReLU(bn_l2) l3 = Conv2d([r_l2], [l_dims[1][0]], l_dims[2][0], kernel_size=l_dims[2][1:3], name="enc3", strides=l_dims[2][-1], border_mode=ebpad, random_state=random_state) bn_l3 = BatchNorm2d(l3, bn_flag, name="bn_enc3") r_l3 = ReLU(bn_l3) l4 = Conv2d([r_l3], [l_dims[2][0]], l_dims[3][0], kernel_size=l_dims[3][1:3], name="enc4", strides=l_dims[3][-1], border_mode=ebpad, random_state=random_state) bn_l4 = BatchNorm2d(l4, bn_flag, name="bn_enc4") r_l4 = ReLU(bn_l4) l5 = Conv2d([r_l4], [l_dims[3][0]], l_dims[4][0], kernel_size=l_dims[4][1:3], name="enc5", random_state=random_state) bn_l5 = BatchNorm2d(l5, bn_flag, name="bn_enc5") return bn_l5 def create_decoder(latent, bn_flag): l1 = Conv2d([latent], [l_dims[-1][0]], l_dims[-2][0], kernel_size=l_dims[-1][1:3], name="dec1", random_state=random_state) bn_l1 = BatchNorm2d(l1, bn_flag, name="bn_dec1") r_l1 = ReLU(bn_l1) l2 = ConvTranspose2d([r_l1], [l_dims[-2][0]], l_dims[-3][0], kernel_size=l_dims[-2][1:3], name="dec2", strides=l_dims[-2][-1], border_mode=dbpad, random_state=random_state) bn_l2 = BatchNorm2d(l2, bn_flag, name="bn_dec2") r_l2 = ReLU(bn_l2) l3 = ConvTranspose2d([r_l2], [l_dims[-3][0]], l_dims[-4][0], kernel_size=l_dims[-3][1:3], name="dec3", strides=l_dims[-3][-1], border_mode=dbpad, random_state=random_state) bn_l3 = BatchNorm2d(l3, bn_flag, name="bn_dec3") r_l3 = ReLU(bn_l3) l4 = ConvTranspose2d([r_l3], [l_dims[-4][0]], l_dims[-5][0], kernel_size=l_dims[-4][1:3], name="dec4", strides=l_dims[-4][-1], border_mode=dbpad, random_state=random_state) bn_l4 = BatchNorm2d(l4, bn_flag, name="bn_dec4") r_l4 = ReLU(bn_l4) l5 = ConvTranspose2d([r_l4], [l_dims[-5][0]], 1, kernel_size=l_dims[-5][1:3], name="dec5", strides=l_dims[-5][-1], border_mode=dbpad, random_state=random_state) #s_l5 = Sigmoid(l5) t_l5 = Tanh(l5) return t_l5 def create_vqvae(inp, bn): z_e_x = create_encoder(inp, bn) z_q_x, z_i_x, z_nst_q_x, emb = VqEmbedding(z_e_x, l_dims[-1][0], embedding_dim, random_state=random_state, name="embed") x_tilde = create_decoder(z_q_x, bn) return x_tilde, z_e_x, z_q_x, z_i_x, z_nst_q_x, emb def create_vqrnn(inp_tm1, inp_t, h1_init, c1_init, h1_q_init, c1_q_init): oh_tm1 = OneHot(inp_tm1, n_inputs) p_tm1 = Linear([oh_tm1], [n_inputs], n_hid, random_state=random_state, name="proj", init=forward_init) def step(x_t, h1_tm1, c1_tm1, h1_q_tm1, c1_q_tm1): output, s = LSTMCell([x_t], [n_hid], h1_tm1, c1_tm1, n_hid, random_state=random_state, name="rnn1", init=rnn_init) h1_t = s[0] c1_t = s[1] output, s = LSTMCell([h1_t], [n_hid], h1_q_tm1, c1_q_tm1, n_hid, random_state=random_state, name="rnn1_q", init=rnn_init) h1_cq_t = s[0] c1_q_t = s[1] h1_q_t, h1_i_t, h1_nst_q_t, h1_emb = VqEmbedding(h1_cq_t, n_hid, n_clusters, random_state=random_state, name="h1_vq_emb") # not great h1_i_t = tf.cast(h1_i_t, tf.float32) return output, h1_t, c1_t, h1_q_t, c1_q_t, h1_nst_q_t, h1_cq_t, h1_i_t r = scan(step, [p_tm1], [None, h1_init, c1_init, h1_q_init, c1_q_init, None, None, None]) out = r[0] hiddens = r[1] cells = r[2] q_hiddens = r[3] q_cells = r[4] q_nst_hiddens = r[5] q_nvq_hiddens = r[6] i_hiddens = r[7] pred = Linear([out], [n_hid], n_inputs, random_state=random_state, name="out", init=forward_init) pred_sm = Softmax(pred) return pred_sm, pred, hiddens, cells, q_hiddens, q_cells, q_nst_hiddens, q_nvq_hiddens, i_hiddens, oh_tm1 def create_graph(): graph = tf.Graph() with graph.as_default(): # vqvae part # define all the vqvae inputs and outputs vqvae_inputs = tf.placeholder(tf.float32, shape=[None, train_audio[0].shape[0], train_audio[0].shape[1], train_audio[0].shape[2]]) bn_flag = tf.placeholder_with_default(tf.zeros(shape=[]), shape=[]) x_tilde, z_e_x, z_q_x, z_i_x, z_nst_q_x, z_emb = create_vqvae(vqvae_inputs, bn_flag) #rec_loss = tf.reduce_mean(BernoulliCrossEntropyCost(x_tilde, images)) vqvae_rec_loss = tf.reduce_mean(tf.square(x_tilde - vqvae_inputs)) vqvae_vq_loss = tf.reduce_mean(tf.square(tf.stop_gradient(z_e_x) - z_nst_q_x)) vqvae_commit_loss = tf.reduce_mean(tf.square(z_e_x - tf.stop_gradient(z_nst_q_x))) vqvae_alpha = 1. vqvae_beta = 0.25 vqvae_loss = vqvae_rec_loss + vqvae_alpha * vqvae_vq_loss + vqvae_beta * vqvae_commit_loss vqvae_params = get_params_dict() # get vqvae keys now, dict is *dynamic* and shared vqvae_params_keys = [k for k in vqvae_params.keys()] vqvae_grads = tf.gradients(vqvae_loss, vqvae_params.values()) learning_rate = 0.0002 vqvae_optimizer = tf.train.AdamOptimizer(learning_rate, use_locking=True) assert len(vqvae_grads) == len(vqvae_params) j = [(g, p) for g, p in zip(vqvae_grads, vqvae_params.values())] vqvae_train_step = vqvae_optimizer.apply_gradients(j) # rnn part # ultimately we will use 2 calls to feed_dict to make lookup mappings easier, but could do it like this #rnn_inputs = tf.cast(tf.stop_gradient(tf.transpose(z_i_x, (2, 0, 1))), tf.float32) rnn_inputs = tf.placeholder(tf.float32, shape=[None, rnn_batch_size, 1]) rnn_inputs_tm1 = rnn_inputs[:-1] rnn_inputs_t = rnn_inputs[1:] init_hidden = tf.placeholder(tf.float32, shape=[rnn_batch_size, n_hid]) init_cell = tf.placeholder(tf.float32, shape=[rnn_batch_size, n_hid]) init_q_hidden = tf.placeholder(tf.float32, shape=[rnn_batch_size, n_hid]) init_q_cell = tf.placeholder(tf.float32, shape=[rnn_batch_size, n_hid]) r = create_vqrnn(rnn_inputs_tm1, rnn_inputs_t, init_hidden, init_cell, init_q_hidden, init_q_cell) pred_sm, pred, hiddens, cells, q_hiddens, q_cells, q_nst_hiddens, q_nvq_hiddens, i_hiddens, oh_tm1 = r rnn_rec_loss = tf.reduce_mean(CategoricalCrossEntropyIndexCost(pred_sm, rnn_inputs_t)) #rnn_rec_loss = tf.reduce_mean(CategoricalCrossEntropyLinearIndexCost(pred, rnn_inputs_t)) rnn_alpha = 1. rnn_beta = 0.25 rnn_vq_h_loss = tf.reduce_mean(tf.square(tf.stop_gradient(q_nvq_hiddens) - q_nst_hiddens)) rnn_commit_h_loss = tf.reduce_mean(tf.square(q_nvq_hiddens - tf.stop_gradient(q_nst_hiddens))) rnn_loss = rnn_rec_loss + rnn_alpha * rnn_vq_h_loss + rnn_beta * rnn_commit_h_loss rnn_params = {k:v for k, v in get_params_dict().items() if k not in vqvae_params_keys} rnn_grads = tf.gradients(rnn_loss, rnn_params.values()) learning_rate = 0.0001 rnn_optimizer = tf.train.AdamOptimizer(learning_rate, use_locking=True) assert len(rnn_grads) == len(rnn_params) rnn_grads = [tf.clip_by_value(g, -10., 10.) if g is not None else None for g in rnn_grads] j = [(g, p) for g, p in zip(rnn_grads, rnn_params.values())] rnn_train_step = rnn_optimizer.apply_gradients(j) things_names = ["vqvae_inputs", "bn_flag", "x_tilde", "z_e_x", "z_q_x", "z_i_x", "z_emb", "vqvae_loss", "vqvae_rec_loss", "vqvae_train_step", "rnn_inputs", "rnn_inputs_tm1", "rnn_inputs_t", "init_hidden", "init_cell", "init_q_hidden", "init_q_cell", "hiddens", "cells", "q_hiddens", "q_cells", "q_nvq_hiddens", "i_hiddens", "pred", "pred_sm", "oh_tm1", "rnn_loss", "rnn_rec_loss", "rnn_train_step"] things_tf = [eval(name) for name in things_names] for tn, tt in zip(things_names, things_tf): graph.add_to_collection(tn, tt) train_model = namedtuple('Model', things_names)(*things_tf) return graph, train_model g, vs = create_graph() rnn_train = False step = 0 def loop(sess, itr, extras, stateful_args): x, = itr.next_batch() init_h = np.zeros((rnn_batch_size, n_hid)).astype("float32") init_c = np.zeros((rnn_batch_size, n_hid)).astype("float32") init_q_h = np.zeros((rnn_batch_size, n_hid)).astype("float32") init_q_c = np.zeros((rnn_batch_size, n_hid)).astype("float32") global rnn_train global step if extras["train"]: step += 1 if step > switch_step: rnn_train = True if both or not rnn_train: feed = {vs.vqvae_inputs: x, vs.bn_flag: 0.} outs = [vs.vqvae_rec_loss, vs.vqvae_loss, vs.vqvae_train_step, vs.z_i_x] r = sess.run(outs, feed_dict=feed) vqvae_l = r[0] vqvae_t_l = r[1] vqvae_step = r[2] if rnn_train: feed = {vs.vqvae_inputs: x, vs.bn_flag: 1.} outs = [vs.vqvae_rec_loss, vs.z_i_x] r = sess.run(outs, feed_dict=feed) vqvae_l = r[0] vqvae_t_l = r[1] discrete_z = r[-1] #discrete_z[3][:, 2:-2] == discrete_z[4][:, 1:-3] #discrete_z = discrete_z[:, :, 1:-2] shp = discrete_z.shape # always start with 0 rnn_inputs = np.zeros((shp[2] + 1, shp[0], shp[1])) rnn_inputs[1:] = discrete_z.transpose(2, 0, 1) + 1. if both or rnn_train: feed = {vs.rnn_inputs: rnn_inputs, vs.init_hidden: init_h, vs.init_cell: init_c, vs.init_q_hidden: init_q_h, vs.init_q_cell: init_q_c} outs = [vs.rnn_rec_loss, vs.rnn_loss, vs.rnn_train_step] r = sess.run(outs, feed_dict=feed) rnn_l = r[0] rnn_t_l = r[1] rnn_step = r[2] if not rnn_train: feed = {vs.rnn_inputs: rnn_inputs, vs.init_hidden: init_h, vs.init_cell: init_c, vs.init_q_hidden: init_q_h, vs.init_q_cell: init_q_c} outs = [vs.rnn_rec_loss] r = sess.run(outs, feed_dict=feed) rnn_l = r[0] else: feed = {vs.vqvae_inputs: x, vs.bn_flag: 1.} outs = [vs.vqvae_rec_loss, vs.z_i_x] r = sess.run(outs, feed_dict=feed) vqvae_l = r[0] discrete_z = r[-1] #discrete_z = discrete_z[:, :, 1:-2] shp = discrete_z.shape # always start with 0 rnn_inputs = np.zeros((shp[2] + 1, shp[0], shp[1])) rnn_inputs[1:] = discrete_z.transpose(2, 0, 1) + 1. feed = {vs.rnn_inputs: rnn_inputs, vs.init_hidden: init_h, vs.init_cell: init_c, vs.init_q_hidden: init_q_h, vs.init_q_cell: init_q_c} outs = [vs.rnn_rec_loss] r = sess.run(outs, feed_dict=feed) rnn_l = r[0] return [vqvae_l, rnn_l], None, stateful_args with tf.Session(graph=g) as sess: run_loop(sess, loop, train_itr, loop, valid_itr, n_steps=75000, n_train_steps_per=5000, n_valid_steps_per=500)
38.189696
124
0.592506
0
0
0
0
0
0
0
0
1,584
0.097136
553eb4733f79df133de3656ed4a77eb050d859d2
311
py
Python
scripts/poorscrum/poorscrum_tools.py
r09491/poorscrum
cdbbc0db03fde842f546093f46e70d03a105bbbd
[ "MIT" ]
null
null
null
scripts/poorscrum/poorscrum_tools.py
r09491/poorscrum
cdbbc0db03fde842f546093f46e70d03a105bbbd
[ "MIT" ]
7
2021-03-18T22:37:46.000Z
2022-03-11T23:41:39.000Z
scripts/poorscrum/poorscrum_tools.py
r09491/poorscrum
cdbbc0db03fde842f546093f46e70d03a105bbbd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- def fibonacci(n): if n == 0: return 0 elif n == 1: return 1 else: return fibonacci(n-1) + fibonacci(n-2) def story_points(start): for i in range(10): result = fibonacci(i) if result >= start: break return result
17.277778
46
0.508039
0
0
0
0
0
0
0
0
23
0.073955
554005d26d7a3413df01a385a87bf09337208562
6,162
py
Python
cata/teachers/ensembles/both_rotation_ensemble.py
seblee97/student_teacher_catastrophic
9baaaf2850025ba9cf33d61c42386bc4c3b2dad2
[ "MIT" ]
2
2021-09-13T01:44:09.000Z
2021-12-11T11:56:49.000Z
cata/teachers/ensembles/both_rotation_ensemble.py
seblee97/student_teacher_catastrophic
9baaaf2850025ba9cf33d61c42386bc4c3b2dad2
[ "MIT" ]
8
2020-11-13T18:37:30.000Z
2022-02-15T15:11:51.000Z
cata/teachers/ensembles/both_rotation_ensemble.py
seblee97/student_teacher_catastrophic
9baaaf2850025ba9cf33d61c42386bc4c3b2dad2
[ "MIT" ]
null
null
null
from typing import List from typing import Union import numpy as np import torch from cata.teachers.ensembles import base_teacher_ensemble from cata.utils import custom_functions class BothRotationTeacherEnsemble(base_teacher_ensemble.BaseTeacherEnsemble): """Teacher ensemble (primarily for mean-field limit regime) in which both feature and readout similarities are tuned by rotation. """ def __init__( self, input_dimension: int, hidden_dimensions: List[int], output_dimension: int, bias: bool, loss_type: str, nonlinearities: str, scale_hidden_lr: bool, forward_scaling: float, unit_norm_teacher_head: bool, weight_normalisation: bool, noise_stds: Union[int, float], num_teachers: int, initialisation_std: float, feature_rotation_alpha: float, readout_rotation_alpha: float, ): self._feature_rotation_alpha = feature_rotation_alpha self._readout_rotation_alpha = readout_rotation_alpha super().__init__( input_dimension=input_dimension, hidden_dimensions=hidden_dimensions, output_dimension=output_dimension, bias=bias, loss_type=loss_type, nonlinearities=nonlinearities, scale_hidden_lr=scale_hidden_lr, forward_scaling=forward_scaling, unit_norm_teacher_head=unit_norm_teacher_head, weight_normalisation=weight_normalisation, noise_stds=noise_stds, num_teachers=num_teachers, initialisation_std=initialisation_std, ) def _setup_teachers(self) -> None: """Setup teachers with copies across input to hidden and rotations across hidden to output weights. Raises: AssertionError: If more than 2 teachers are requested. AssertionError: If the network depth is greater than 1, i.e. more than one hidden layer requested. AssertionError: If the hidden dimension is not greater than 1, this is for the notion of rotation to have meaning. """ assert ( self._num_teachers ) == 2, "Both rotation teachers currently implemented for 2 teachers only." assert ( len(self._hidden_dimensions) == 1 ), "Both rotation teachers currently implemented for 1 hidden layer only." assert ( self._hidden_dimensions[0] > 1 ), "Both rotation teachers only valid for hidden dimensions > 1." teachers = [ self._init_teacher( nonlinearity=self._nonlinearities[i], noise_std=self._noise_stds[i] ) for i in range(self._num_teachers) ] with torch.no_grad(): ( teacher_0_feature_weights, teacher_1_feature_weights, ) = self._get_rotated_weights( unrotated_weights=teachers[0].layers[0].weight.data.T, alpha=self._feature_rotation_alpha, normalisation=self._hidden_dimensions[0], ) teachers[0].layers[0].weight.data = teacher_0_feature_weights.T teachers[1].layers[0].weight.data = teacher_1_feature_weights.T # ( # teacher_0_readout_weights, # teacher_1_readout_weights, # ) = self._get_rotated_weights( # unrotated_weights=teachers[0].head.weight.data.T, # alpha=self._readout_rotation_alpha, # normalisation=None, # ) ( teacher_0_readout_weights, teacher_1_readout_weights, ) = self._get_rotated_readout_weights(teachers=teachers) teachers[0].head.weight.data = teacher_0_readout_weights teachers[1].head.weight.data = teacher_1_readout_weights return teachers def _feature_overlap(self, feature_1: torch.Tensor, feature_2: torch.Tensor): alpha_matrix = torch.mm(feature_1, feature_2.T) / self._hidden_dimensions[0] alpha = torch.mean(alpha_matrix.diagonal()) return alpha def _readout_overlap(self, feature_1: torch.Tensor, feature_2: torch.Tensor): alpha = torch.mm(feature_1, feature_2.T) / ( torch.norm(feature_1) * torch.norm(feature_2) ) return alpha def _get_rotated_weights( self, unrotated_weights: torch.Tensor, alpha: float, normalisation: Union[None, int], ): if normalisation is not None: # orthonormalise input to hidden weights of first teacher self_overlap = ( torch.mm(unrotated_weights, unrotated_weights.T) / normalisation ) L = torch.cholesky(self_overlap) orthonormal_weights = torch.mm(torch.inverse(L), unrotated_weights) else: orthonormal_weights = unrotated_weights # construct input to hidden weights of second teacher second_teacher_rotated_weights = alpha * orthonormal_weights + np.sqrt( 1 - alpha ** 2 ) * torch.randn(orthonormal_weights.shape) return orthonormal_weights, second_teacher_rotated_weights def _get_rotated_readout_weights(self, teachers: List): theta = np.arccos(self._readout_rotation_alpha) # keep current norms current_norm = np.mean( [torch.norm(teacher.head.weight) for teacher in teachers] ) rotated_weight_vectors = custom_functions.generate_rotated_vectors( dimension=self._hidden_dimensions[0], theta=theta, normalisation=current_norm, ) teacher_0_rotated_weight_tensor = torch.Tensor( rotated_weight_vectors[0] ).reshape(teachers[0].head.weight.data.shape) teacher_1_rotated_weight_tensor = torch.Tensor( rotated_weight_vectors[1] ).reshape(teachers[1].head.weight.data.shape) return teacher_0_rotated_weight_tensor, teacher_1_rotated_weight_tensor
35.413793
89
0.636806
5,979
0.970302
0
0
0
0
0
0
1,159
0.188088
5542014f27e11156c75907e597b9852418147144
7,176
py
Python
scripts/admin/admin.py
starmarek/organize-me
710e7acd86e887b7e4379fde18e1f375846ea59e
[ "MIT" ]
null
null
null
scripts/admin/admin.py
starmarek/organize-me
710e7acd86e887b7e4379fde18e1f375846ea59e
[ "MIT" ]
null
null
null
scripts/admin/admin.py
starmarek/organize-me
710e7acd86e887b7e4379fde18e1f375846ea59e
[ "MIT" ]
null
null
null
import json import logging import os import shlex import subprocess from pathlib import Path from types import SimpleNamespace import coloredlogs import fire from .adminFiles import ( DockerComposeFile, DotenvFile, GitlabCIFile, JsonFile, PackageJsonFile, Pipfile, RuntimeTxtFile, YarnRCFile, ) log = logging.getLogger("admin") coloredlogs.install(level="DEBUG") yarn_dir = ".yarn/releases/" for file in os.listdir(".yarn/releases"): if os.getenv("CORE_YARN_VER") in file: yarn_executable = file virtualenv_path = subprocess.run(["pipenv", "--venv"], capture_output=True, text=True, check=True).stdout.strip() dotenv_file = DotenvFile(path=".env") compose_file = DockerComposeFile(path="docker-compose.yml") dotenv_template_file = DotenvFile(path=".template.env") gitlab_ci_file = GitlabCIFile(path=".gitlab-ci.yml") yarnrc_file = YarnRCFile(path=".yarnrc.yml") runtime_txt_file = RuntimeTxtFile(path="runtime.txt") pipfile_file = Pipfile(path="Pipfile") package_json_file = PackageJsonFile(path="package.json") verifiable_files = [compose_file, gitlab_ci_file, pipfile_file, runtime_txt_file, package_json_file, yarnrc_file] def _update_virtualenv_vscode_pythonpath(): settings_file = JsonFile(path=".vscode/settings.json") Path(settings_file.path.split("/")[-2]).mkdir(exist_ok=True) if Path(settings_file.path).exists(): settings_file["python.pythonPath"] = f"{virtualenv_path}/bin/python" settings_file.dump() else: settings_file.data = json.loads(json.dumps({"python.pythonPath": f"{virtualenv_path}/bin/python"})) settings_file.dump() log.info(f"Setting vscode pythonpath to '{virtualenv_path}/bin/python'") def _install_pre_commit(): log.info("Installing pre-commit hooks") subprocess.run(shlex.split(f"{virtualenv_path}/bin/pre-commit install"), check=True) log.warning("You need to install shfmt and shellcheck on your computer in order to pre-commit hooks to work.") def _verify_dotenvs(): log.info("Verifying dotenvs compatibility") assert all(val == dotenv_template_file[key] for key, val in dotenv_file.data.items() if key.startswith("CORE")) def _verify_yarn_executable(): log.info("Verifying yarn compatibility") assert any(os.getenv("CORE_YARN_VER") in yarn_executable for yarn_executable in os.listdir(".yarn/releases")) def _verify_versions(): curr = dotenv_file reference = dotenv_template_file try: _verify_dotenvs() reference = dotenv_file curr = SimpleNamespace(name="files in .yarn/releases dir") _verify_yarn_executable() log.info("Verifying compatibility of core versions") for ver_file in verifiable_files: curr = ver_file assert ver_file.verify_core_versions() except AssertionError: log.error( f"There is a mismatch between {curr.name} and {reference.name}! Make sure that you are using admin script to bump versions of packages!" ) raise class CLI: def __init__(self, vscode=False): try: self.running_in_vscode = os.environ["TERM_PROGRAM"] == "vscode" except KeyError: self.running_in_vscode = False if vscode: self.running_in_vscode = True def update_yarn(self, ver): log.info("Upgrading yarn") subprocess.run([yarn_dir + yarn_executable, "set", "version", ver], check=True) dotenv_template_file["CORE_YARN_VER"] = ver dotenv_file["CORE_YARN_VER"] = ver dotenv_file.dump_to_env() package_json_file["engines"]["yarn"] = ver package_json_file.dump() self.containers_ground_up(cache=False) def update_postgres(self, ver): dotenv_template_file["CORE_POSTGRES_VER"] = ver dotenv_file["CORE_POSTGRES_VER"] = ver dotenv_file.dump_to_env() self.containers_ground_up(cache=False) def update_compose(self, ver): ver = str(ver) dotenv_template_file["CORE_COMPOSE_VER"] = ver dotenv_file["CORE_COMPOSE_VER"] = ver dotenv_file.dump_to_env() compose_file["version"] = ver compose_file.dump() self.containers_ground_up(cache=False) def update_python(self, ver): log.info("Reinstalling your pipenv") subprocess.run(["pipenv", "--rm"], check=True) pipfile_file["requires"]["python_version"] = ver pipfile_file.dump() subprocess.run(["pipenv", "update", "--keep-outdated", "--dev"], check=True) dotenv_template_file["CORE_PYTHON_VER"] = ver dotenv_file["CORE_PYTHON_VER"] = ver dotenv_file.dump_to_env() self.containers_ground_up(cache=False) gitlab_ci_file["variables"]["PYTHON_VERSION"] = ver gitlab_ci_file.dump() runtime_txt_file.data = [f"python-{ver}"] runtime_txt_file.dump() if self.running_in_vscode: _update_virtualenv_vscode_pythonpath() def update_node(self, ver): dotenv_template_file["CORE_NODE_VER"] = ver dotenv_file["CORE_NODE_VER"] = ver dotenv_file.dump_to_env() self.containers_ground_up(cache=False) gitlab_ci_file["variables"]["NODE_VERSION"] = ver gitlab_ci_file.dump() package_json_file["engines"]["node"] = ver package_json_file.dump() def containers_build(self, cache=True): log.info(f"Building containers with 'cache={cache}'") subprocess.run(shlex.split(f"docker-compose build --force-rm {'' if cache else '--no-cache'}"), check=True) def containers_logs(self, container_name=""): try: subprocess.run(shlex.split(f"docker-compose logs -f {container_name}")) except KeyboardInterrupt: pass def containers_up(self): log.info("Running containers") subprocess.run(shlex.split("docker-compose up --detach --remove-orphans --force-recreate"), check=True) def containers_ground_up(self, cache=True): self.containers_build(cache=cache) self.containers_up() def init(self): self.containers_ground_up(cache=False) _install_pre_commit() if self.running_in_vscode: _update_virtualenv_vscode_pythonpath() def install_pip(self, package, dev=False): subprocess.run(shlex.split(f"pipenv install {package} {'--dev' if dev else ''}"), check=True) self.containers_ground_up(cache=False) def install_yarn(self, package, dev=False): subprocess.run( shlex.split(f"sudo {yarn_dir + yarn_executable} add {package} {'--dev' if dev else ''}"), check=True ) self.containers_ground_up(cache=False) def remove_pip(self, package): subprocess.run(["pipenv", "uninstall", package], check=True) self.containers_ground_up(cache=False) def remove_yarn(self, package): subprocess.run(["sudo", yarn_dir + yarn_executable, "remove", package], check=True) self.containers_ground_up(cache=False) if __name__ == "__main__": log.info("Starting admin script") _verify_versions() fire.Fire(CLI)
32.324324
148
0.67879
4,030
0.561594
0
0
0
0
0
0
1,708
0.238016
5542f0b7bef41dfe29c0868984e349d2a0c056ea
300
py
Python
F_Machine_learning/2_Unsupervised-Learning/solutions/ex2_3.py
sylvain2002/CBM101
4d9dc4264ce81cc2af58ceaff96fd0ed7a570af5
[ "MIT" ]
7
2019-07-03T07:41:55.000Z
2022-02-06T20:25:37.000Z
F_Machine_learning/2_Unsupervised-Learning/solutions/ex2_3.py
sylvain2002/CBM101
4d9dc4264ce81cc2af58ceaff96fd0ed7a570af5
[ "MIT" ]
9
2019-03-14T15:15:09.000Z
2019-08-01T14:18:21.000Z
F_Machine_learning/2_Unsupervised-Learning/solutions/ex2_3.py
sylvain2002/CBM101
4d9dc4264ce81cc2af58ceaff96fd0ed7a570af5
[ "MIT" ]
11
2019-03-12T10:43:11.000Z
2021-10-05T12:15:00.000Z
a = 'ARRYR' b = 'ARSYS' levenshtein(a,b) # ANSWER a) # It quantifies the number of single-letter changes to morph one into the other # # ANSWER b) # We could encode the 'price' of changing between particular amino acids # thereby acknowledging that some substitutions are more or less costly/likely
27.272727
79
0.756667
0
0
0
0
0
0
0
0
266
0.886667
5543d0392b1a991c4c0bc9b77494d93272ec2802
743
py
Python
tests/components/pages/ts.py
T4rk1n/dazzler
69c49422dc19c910445ab265b1d3481041de8f43
[ "MIT" ]
15
2019-12-19T11:57:30.000Z
2021-11-15T23:34:41.000Z
tests/components/pages/ts.py
T4rk1n/dazzler
69c49422dc19c910445ab265b1d3481041de8f43
[ "MIT" ]
196
2019-09-21T15:10:14.000Z
2022-03-31T11:07:48.000Z
tests/components/pages/ts.py
T4rk1n/dazzler
69c49422dc19c910445ab265b1d3481041de8f43
[ "MIT" ]
7
2019-10-30T19:38:15.000Z
2021-12-01T04:54:16.000Z
from dazzler.system import Page from dazzler.components import core from tests.components import ts_components as tsc page = Page( __name__, core.Container([ tsc.TypedComponent( 'override', children=core.Container('foobar'), num=2, text='foobar', boo=True, arr=[1, 2, 'mixed'], arr_str=['foo', 'bar'], arr_num=[7, 8, 9], arr_obj_lit=[{'name': 'foo'}], obj={'anything': 'possible'}, enumeration='foo', union=7, style={'border': '1px solid rgb(0,0,255)'}, class_name='other' ), tsc.TypedClassComponent('class based', children='clazz') ]) )
27.518519
64
0.51144
0
0
0
0
0
0
0
0
138
0.185734
55454283c60ef0107317118c446ed4395d8f58a5
4,464
py
Python
src/gistsgetter/app.py
pmfrank/gistsgetter
a19f59604ebf1cb13c641d25c4461b4347bba58a
[ "MIT" ]
null
null
null
src/gistsgetter/app.py
pmfrank/gistsgetter
a19f59604ebf1cb13c641d25c4461b4347bba58a
[ "MIT" ]
null
null
null
src/gistsgetter/app.py
pmfrank/gistsgetter
a19f59604ebf1cb13c641d25c4461b4347bba58a
[ "MIT" ]
null
null
null
""" An application dedicated to creating, editing, and deleting Gists in GitHub """ from __future__ import absolute_import import toga import pyperclip from toga.style import Pack from toga.style.pack import COLUMN, ROW from .common.Search import search from functools import partial class GistsGetter(toga.App): def startup(self): """ Construct and show the Toga application. Usually, you would add your application to a main content box. We then create a main window (with a name matching the app), and show the main window. """ main_box = toga.Box(style=Pack(direction=COLUMN)) top_box = toga.Box(style=Pack(direction=ROW, padding=5, alignment='top')) middle_box = toga.Box(style=Pack(direction=ROW,padding=5, alignment='center', flex=1)) button_box = toga.Box(style=Pack(padding=5, alignment='right')) bottom_box = toga.Box(style=Pack(direction=ROW, padding=(5,5,20,5), alignment='bottom')) # Padding - Top, Right, Botom, Left select_label = toga.Label('Search By', style=Pack(padding=5, alignment='center')) self.select = toga.Selection(items=['UserID','GistID']) self.select_input = toga.TextInput(style=Pack(padding=5, flex=1),placeholder='User or Gist ID') # Line preserved for prostarity will be using helper functions to do search with externale functions # select_button = toga.Button('Search',style=Pack(padding=5),on_press=partial(search,string = 'x')) select_button = toga.Button('Search', style=Pack(padding=5), on_press=self.search_by) self.results = toga.MultilineTextInput(style=Pack(padding=(0,5), flex=1),readonly = True) copy_button = toga.Button('Copy to Clipboard', style=Pack(padding=5),on_press=self.copy_to_clipboard) button_box.add(copy_button) middle_box.add(self.results) middle_box.add(button_box) top_box.add(select_label) top_box.add(self.select) top_box.add(self.select_input) top_box.add(select_button) login_label = toga.Label('Username', style=Pack(padding=5, alignment='left')) self.login_input = toga.TextInput(style=Pack(padding=5,alignment='left',flex=1)) pw_label = toga.Label('Password', style=Pack(padding=5, alignment='right')) self.pw_input = toga.PasswordInput(style=Pack(padding=4,alignment='right',flex=1)) bottom_box.add(login_label) bottom_box.add(self.login_input) bottom_box.add(pw_label) bottom_box.add(self.pw_input) main_box.add(top_box) main_box.add(middle_box) main_box.add(bottom_box) self.main_window = toga.MainWindow(title=self.formal_name, size=(640,480)) self.main_window.content = main_box self.main_window.show() def search_by(self, widget): global results if not self.select_input.value or not self.login_input.value or not self.pw_input: self.results.value = 'All fields required' return if self.select.value == 'UserID': self.results.value = 'Feature not implemented' return else: global gist_id gist_id = self.select_input.value url = self.__get_token('https://api.github.com/gists{/gist_id}','{') results = search(url, self.login_input.value,self.pw_input.value) for filename in results: print(results[filename]) self.results.value = results def copy_to_clipboard(self, widget): global results for filename in results: pyperclip.copy(results[filename]) def __get_token(self, string, delim): tokens = string.split(delim) url = tokens[0] for token in tokens[1:]: token = token[:-1] if '/' in token : token = token[1:] if token in globals(): if '=' in url: url = url + globals()[token] else: url = url + '/' + globals()[token] if ',' in token: token = token[1:] print(token) multitokens = token.split(',') for multitoken in multitokens: if multitoken in globals(): url = url + '&' + multitoken + '=' + globals()[multitoken] return url def main(): return GistsGetter()
38.817391
132
0.622536
4,140
0.927419
0
0
0
0
0
0
827
0.18526
5549b2fc2c6d6a256c772a1fa6b1cb0ba16583fe
7,401
py
Python
src/qcar/src/qcar/q_essential.py
bchampp/scylla
6ec27877cc03c200a874cd0eb25a36c866471250
[ "MIT" ]
null
null
null
src/qcar/src/qcar/q_essential.py
bchampp/scylla
6ec27877cc03c200a874cd0eb25a36c866471250
[ "MIT" ]
null
null
null
src/qcar/src/qcar/q_essential.py
bchampp/scylla
6ec27877cc03c200a874cd0eb25a36c866471250
[ "MIT" ]
null
null
null
from quanser.hardware import HIL, HILError, PWMMode from quanser.multimedia import Video3D, VideoCapture, Video3DStreamType, MediaError, ImageFormat, ImageDataType from quanser.devices import RPLIDAR, RangingMeasurements, RangingMeasurementMode, DeviceError, RangingDistance from .q_misc import Utilities import numpy as np import pygame import time saturate = Utilities.saturate # region: Cameras class Camera3D(): def __init__(self, mode='RGB&DEPTH', frame_width_RGB=1920, frame_height_RGB=1080, frame_rate_RGB=30.0, frame_width_depth=1280, frame_height_depth=720, frame_rate_depth=15.0, device_id='0'): '''This function configures the Intel Realsense RGB and depth cameras for use. Outputs: video3d - video3d object, you must call video3d.start_streaming() before your main loop stream_RGB - stream object to be passed to the read method image_buffer_RGB - buffer array that will be updated by the read method stream_depth - stream object to be passed to the read method image_buffer_depth - buffer array that will be updated by the read method''' self.mode = mode self.stream_index = 0 self.image_buffer_RGB = np.zeros((frame_height_RGB, frame_width_RGB, 3), dtype=np.uint8) self.image_buffer_depth_px = np.zeros((frame_height_depth, frame_width_depth, 1), dtype=np.uint8) self.image_buffer_depth_m = np.zeros((frame_height_depth, frame_width_depth, 1), dtype=np.float32) try: self.video3d = Video3D(device_id) if mode == 'RGB': self.stream_RGB = self.video3d.stream_open(Video3DStreamType.COLOR, self.stream_index, frame_rate_RGB, frame_width_RGB, frame_height_RGB, ImageFormat.ROW_MAJOR_INTERLEAVED_BGR, ImageDataType.UINT8) elif mode == 'DEPTH': self.stream_depth = self.video3d.stream_open(Video3DStreamType.DEPTH, self.stream_index, frame_rate_depth, frame_width_depth, frame_height_depth, ImageFormat.ROW_MAJOR_GREYSCALE, ImageDataType.UINT8) else: self.stream_RGB = self.video3d.stream_open(Video3DStreamType.COLOR, self.stream_index, frame_rate_RGB, frame_width_RGB, frame_height_RGB, ImageFormat.ROW_MAJOR_INTERLEAVED_BGR, ImageDataType.UINT8) self.stream_depth = self.video3d.stream_open(Video3DStreamType.DEPTH, self.stream_index, frame_rate_depth, frame_width_depth, frame_height_depth, ImageFormat.ROW_MAJOR_GREYSCALE, ImageDataType.UINT8) self.video3d.start_streaming() except MediaError as me: print(me.get_error_message()) def terminate(self): '''This function terminates the RGB and depth video and stream objects correctly. Inputs: video3d - video object from the configure method stream_RGB - RGB stream object from the configure method stream_depth - depth stream object from the configure method ''' try: self.video3d.stop_streaming() if self.mode == 'RGB': self.stream_RGB.close() elif self.mode == 'DEPTH': self.stream_depth.close() else: self.stream_RGB.close() self.stream_depth.close() self.video3d.close() except MediaError as me: print(me.get_error_message()) def read_RGB(self): '''This function reads an image from the RGB camera for use. Outputs: timestamp - timestamp corresponding to the frame read ''' timestamp = -1 try: frame = self.stream_RGB.get_frame() while not frame: frame = self.stream_RGB.get_frame() frame.get_data(self.image_buffer_RGB) timestamp = frame.get_timestamp() frame.release() except KeyboardInterrupt: pass except MediaError as me: print(me.get_error_message()) finally: return timestamp def read_depth(self, dataMode='px'): '''This function reads an image from the depth camera for use. dataMode is 'px' for pixels or 'm' for meters. Use corresponding image buffer. Outputs: timestamp - timestamp corresponding to the frame read ''' timestamp = -1 try: frame = self.stream_depth.get_frame() while not frame: frame = self.stream_depth.get_frame() if dataMode == 'px': frame.get_data(self.image_buffer_depth_px) elif dataMode == 'm': frame.get_meters(self.image_buffer_depth_m) timestamp = frame.get_timestamp() frame.release() except KeyboardInterrupt: pass except MediaError as me: print(me.get_error_message()) finally: return timestamp class Camera2D(): def __init__(self, camera_id="0", frame_width=640, frame_height=480, frame_rate=30.0): '''This function configures the 2D camera for use based on the camera_id provided.''' self.url = "video://localhost:"+camera_id self.image_data = np.zeros((frame_height, frame_width, 3), dtype=np.uint8) try: # self.capture = VideoCapture(self.url, frame_rate, frame_width, frame_height, ImageFormat.ROW_MAJOR_INTERLEAVED_BGR, ImageDataType.UINT8, self.image_data, None, 0) self.capture = VideoCapture(self.url, frame_rate, frame_width, frame_height, ImageFormat.ROW_MAJOR_INTERLEAVED_BGR, ImageDataType.UINT8, None, 0) self.capture.start() except MediaError as me: print(me.get_error_message()) def read(self): '''This function reads a frame, updating the corresponding image buffer.''' try: # self.capture.read() self.capture.read(self.image_data) except MediaError as me: print(me.get_error_message()) except KeyboardInterrupt: print('User Interupted') def reset(self): '''This function resets the 2D camera stream by stopping and starting the capture service.''' try: self.capture.stop() self.capture.start() except MediaError as me: print(me.get_error_message()) def terminate(self): '''This function terminates the 2D camera operation.''' try: self.capture.stop() self.capture.close() except MediaError as me: print(me.get_error_message()) # endregion # region: LIDAR class LIDAR(): def __init__(self, num_measurements=720): # self.num_measurements = num_measurements # self.measurements = [RangingMeasurement() for x in range(self.num_measurements)] # self.measurements = RangingMeasurements(num_measurements) self.measurements = RangingMeasurements(num_measurements) self.distances = np.zeros((num_measurements,1), dtype=np.float64) self.angles = np.zeros((num_measurements,1), dtype=np.float64) # self.angles = np.linspace(0, 2*np.pi-(2*np.pi/num_measurements), num_measurements, dtype=np.float64) self.lidar = RPLIDAR() # self.maxDistance = 18.0 try: self.lidar.open("serial-cpu://localhost:2?baud='115200',word='8',parity='none',stop='1',flow='none',dsr='on'", RangingDistance.LONG) except DeviceError as de: if de.error_code == -34: pass else: print(de.get_error_message()) def terminate(self): try: self.lidar.close() except DeviceError as de: if de.error_code == -34: pass else: print(de.get_error_message()) def read(self): try: self.lidar.read(RangingMeasurementMode.NORMAL, 0, 0, self.measurements) self.distances = np.array(self.measurements.distance) # self.distances = np.append( np.flip( self.distances[0:int(self.num_measurements/4)] ) , # np.flip( self.distances[int(self.num_measurements/4):]) ) # self.distances[self.distances > self.maxDistance] = self.maxDistance # self.distances[self.distances > self.maxDistance] = 0 self.angles = np.array(self.measurements.heading) except DeviceError as de: if de.error_code == -34: pass else: print(de.get_error_message()) # endregion
37.190955
211
0.740576
6,952
0.939333
0
0
0
0
0
0
2,384
0.322119
554a7b61e03b3173856a7a579bde9d2c36a7f575
1,689
py
Python
ex071.py
cristianoandrad/ExerciciosPythonCursoEmVideo
362603436b71c8ef8386d7a9ab3c5fed0b8d63f7
[ "MIT" ]
null
null
null
ex071.py
cristianoandrad/ExerciciosPythonCursoEmVideo
362603436b71c8ef8386d7a9ab3c5fed0b8d63f7
[ "MIT" ]
null
null
null
ex071.py
cristianoandrad/ExerciciosPythonCursoEmVideo
362603436b71c8ef8386d7a9ab3c5fed0b8d63f7
[ "MIT" ]
null
null
null
'''Crie um programa que simule o funcionamento de um caixa eletrônico. No início, pergunte ao usuário qual será o valor a ser sacado (número inteiro) e o programa vai informar quantas cédulas de cada valor serão entregues. OBS: considere que o caixa possui cédulas de R$50, R$20, R$10 e R$1.''' '''print('--' * 15) print('{:^30}'.format('Banco CEV')) print('--' * 15) valor = int(input('Qual o valor que você quer sacar R$ ')) c50 = valor % 50 c20 = c50 % 20 c10 = c20 % 10 c1 = c10 % 1 b50 = valor - c50 b20 = valor - b50 - c20 b10 = valor - b50 - b20 - c10 b1 = valor - b50 - b20 - b10 - c1 print(f'Total de {b50/50:.0f} celulas de R$ 50,00') print(f'Total de {b20/20:.0f} celulas de R$ 20,00') print(f'Total de {b10/10:.0f} celulas de R$ 10,00') print(f'Total de {b1/1:.0f} celulas de R$ 1,00') print('--' * 15) print('Volte sempre ao Banco CEV! Tenha um bom dia')''' '''valor = int(input("informe o valor a ser sacado : ")) nota50 = valor // 50 valor %= 50 nota20 = valor // 20 valor %= 20 nota10 = valor // 10 valor %= 10 nota1 = valor // 1 print(f"notas de 50 = {nota50}") print(f"notas de 20 = {nota20}") print(f"notas de 10 = {nota10}") print(f"notas de 1 = {nota1}")''' print('--' * 15) print('{:^30}'.format('Banco CEV')) print('--' * 15) valor = int(input('Qual o valor que você quer sacar R$ ')) total = valor cel = 50 contCel = 0 while True: if total >= cel: total -= cel contCel += 1 else: print(f'O total de {contCel} céluldas de R$ {cel}.') if cel == 50: cel = 20 elif cel == 20: cel = 10 elif cel == 10: cel = 1 contCel = 0 if total == 0: break
27.241935
227
0.587922
0
0
0
0
0
0
0
0
1,297
0.762941
554c5ff1d984eee7cf69842945a06a7b43f122ff
919
py
Python
common.py
hoostus/prime-harvesting
6606b94ea7859fbf217dbea4ace856e3fa4d154e
[ "BlueOak-1.0.0", "Apache-2.0" ]
23
2016-09-07T06:13:37.000Z
2022-02-17T23:49:03.000Z
common.py
hoostus/prime-harvesting
6606b94ea7859fbf217dbea4ace856e3fa4d154e
[ "BlueOak-1.0.0", "Apache-2.0" ]
null
null
null
common.py
hoostus/prime-harvesting
6606b94ea7859fbf217dbea4ace856e3fa4d154e
[ "BlueOak-1.0.0", "Apache-2.0" ]
12
2016-06-30T17:27:39.000Z
2021-12-12T07:54:27.000Z
import itertools import math import simulate import harvesting import plot from decimal import setcontext, ExtendedContext # Don't raise exception when we divide by zero #setcontext(ExtendedContext) #getcontext().prec = 5 def compare_prime_vs_rebalancing(series, years=30, title=''): (r1, r2) = itertools.tee(series) x = simulate.withdrawals(r1, years=years) y = simulate.withdrawals(r2, years=years, harvesting=harvesting.N_60_RebalanceHarvesting) s1 = [n.withdraw_r for n in x] s2 = [n.withdraw_r for n in y] ceiling = max(max(s1), max(s2)) if ceiling < 100000: ceiling = int(math.ceil(ceiling / 10000) * 10000) else: ceiling = int(math.ceil(ceiling / 100000) * 100000) plot.plot_two(s1, s2, s1_title='Prime Harvesting', s2_title='Annual Rebalancing', y_lim=[0,ceiling], x_label='Year of Retirement', title=title)
31.689655
93
0.677911
0
0
0
0
0
0
0
0
156
0.16975
554e5d74e0feb6600546ab4240369b860c3f874d
492
py
Python
g/appengine/py/standard/simple-blog/app/helpers/hasher.py
chhschou/sandpit
d4a6760905b45b90455f10a5b50af3c5f743e445
[ "MIT" ]
null
null
null
g/appengine/py/standard/simple-blog/app/helpers/hasher.py
chhschou/sandpit
d4a6760905b45b90455f10a5b50af3c5f743e445
[ "MIT" ]
null
null
null
g/appengine/py/standard/simple-blog/app/helpers/hasher.py
chhschou/sandpit
d4a6760905b45b90455f10a5b50af3c5f743e445
[ "MIT" ]
null
null
null
import random import string import hashlib def make_salt(): return ''.join(random.choice(string.letters) for x in xrange(5)) # Implement the function valid_pw() that returns True if a user's password # matches its hash. You will need to modify make_pw_hash. def make_pw_hash_with_salt(name, pw, salt): h = hashlib.sha256(name + pw + salt).hexdigest() return '%s|%s' % (h, salt) def make_pw_hash(name, pw): s = make_salt() return make_pw_hash_with_salt(name, pw, s)
23.428571
74
0.707317
0
0
0
0
0
0
0
0
140
0.284553
554ef62e12daf1b4dd0a910c08086098d9a39602
769
py
Python
tests/hdx/scraper/test_utils.py
mcarans/hdx-python-scraper
ce17c672591979d4601bd125a38b86ea81a9f3c4
[ "MIT" ]
null
null
null
tests/hdx/scraper/test_utils.py
mcarans/hdx-python-scraper
ce17c672591979d4601bd125a38b86ea81a9f3c4
[ "MIT" ]
null
null
null
tests/hdx/scraper/test_utils.py
mcarans/hdx-python-scraper
ce17c672591979d4601bd125a38b86ea81a9f3c4
[ "MIT" ]
null
null
null
from datetime import datetime from hdx.data.dataset import Dataset from hdx.scraper.utilities import ( get_isodate_from_dataset_date, string_params_to_dict, ) class TestUtils: def test_string_params_to_dict(self): result = string_params_to_dict("a: 123, b: 345") assert result == {"a": "123", "b": "345"} result = string_params_to_dict("a:123,b:345") assert result == {"a": "123", "b": "345"} def test_get_isodate_from_dataset_date(self, configuration): dataset = Dataset( { "dataset_date": "[2022-01-11T02:24:08.241 TO 2022-01-11T02:24:08.241]" } ) result = get_isodate_from_dataset_date(dataset, datetime.now()) assert result == "2022-01-11"
29.576923
86
0.629389
597
0.776333
0
0
0
0
0
0
141
0.183355
554fb560fa2735d2073c8f53fb708577f43575e0
3,796
py
Python
store/models.py
Dokeey/Buy-Sell
9d70eb8649d79962657cc4be896e437908de537b
[ "MIT" ]
7
2019-03-25T14:43:41.000Z
2021-09-16T01:44:41.000Z
store/models.py
Dokeey/Buy-Sell
9d70eb8649d79962657cc4be896e437908de537b
[ "MIT" ]
80
2019-03-25T09:25:00.000Z
2020-02-09T01:01:09.000Z
store/models.py
Dokeey/Buy-Sell
9d70eb8649d79962657cc4be896e437908de537b
[ "MIT" ]
4
2019-03-25T13:58:07.000Z
2021-11-26T09:12:32.000Z
from random import randrange from django.conf import settings from django.contrib.contenttypes.fields import GenericRelation from django.db import models from hitcount.models import HitCountMixin, HitCount from imagekit.models import ProcessedImageField from pilkit.processors import ResizeToFill from django_cleanup import cleanup from store.fields import DefaultStaticProcessedImageField def get_random(): rand = randrange(1,10) return '/static/profile/{}.png'.format(rand) # @cleanup.ignore class StoreProfile(models.Model, HitCountMixin): user = models.OneToOneField(settings.AUTH_USER_MODEL, verbose_name="유저", on_delete=models.CASCADE) name = models.CharField(max_length=20, verbose_name="가게명", unique=True) photo = DefaultStaticProcessedImageField( verbose_name="가게 사진", null=True, upload_to='profile/storephoto', processors=[ResizeToFill(200, 200)], format='JPEG', options={'quality': 60} ) comment = models.TextField(max_length=200, blank=True, verbose_name="소개", default="반갑습니다.") created_at = models.DateTimeField(verbose_name="생성일", auto_now_add=True) hit_count_generic = GenericRelation(HitCount, object_id_field='object_pk', related_query_name='hit_count_generic_relation') def __str__(self): return self.name class Meta: verbose_name = "가게" verbose_name_plural = "가게" ordering = ['-id'] from django.contrib.auth import get_user_model User = get_user_model() try: user_pk = User.objects.get(username='deleteuser').id except: user_pk = None class QuestionComment(models.Model): store_profile = models.ForeignKey(StoreProfile, verbose_name="가게", on_delete=models.CASCADE) if user_pk: author = models.ForeignKey(settings.AUTH_USER_MODEL, verbose_name="작성자", on_delete=models.SET_DEFAULT, default=user_pk) else: author = models.ForeignKey(settings.AUTH_USER_MODEL, verbose_name="작성자", on_delete=models.CASCADE) comment = models.TextField(verbose_name="문의글", max_length=1000) created_at = models.DateTimeField(verbose_name="작성일", auto_now_add=True) updated_at = models.DateTimeField(verbose_name="최근 업데이트", auto_now=True) parent = models.ForeignKey('self', verbose_name="상위 댓글", null=True, blank=True, related_name='replies', on_delete=models.CASCADE) def __str__(self): return self.author.storeprofile.name class Meta: ordering = ('-created_at',) verbose_name = "가게 문의" verbose_name_plural = "가게 문의" from trade.models import Item class StoreGrade(models.Model): store_profile = models.ForeignKey(StoreProfile, verbose_name="가게", on_delete=models.CASCADE) if user_pk: author = models.ForeignKey(settings.AUTH_USER_MODEL, verbose_name="작성자", on_delete=models.SET_DEFAULT ,default=user_pk) else: author = models.ForeignKey(settings.AUTH_USER_MODEL, verbose_name="작성자", on_delete=models.CASCADE) store_item = models.ForeignKey(Item, verbose_name="구매한 물품", on_delete=models.SET_NULL, null=True) grade_comment = models.TextField(verbose_name="물품평", max_length=250) rating = models.PositiveIntegerField( verbose_name="점수", choices=( (1, '★☆☆☆☆'), (2, '★★☆☆☆'), (3, '★★★☆☆'), (4, '★★★★☆'), (5, '★★★★★') ), default=0, db_index=True ) created_at = models.DateTimeField(verbose_name="작성일", auto_now_add=True) updated_at = models.DateTimeField(verbose_name="최근 업데이트", auto_now=True) def __str__(self): return self.author.storeprofile.name class Meta: ordering = ('-created_at',) verbose_name = "가게 평점" verbose_name_plural = "가게 평점"
36.5
133
0.692308
3,321
0.824888
0
0
0
0
0
0
592
0.147044
554fefef5722dcfd6c785e2d4dadd682981a85f8
1,361
py
Python
auth-api/app.py
dlavery/auth
9f37b4be2eeda2446b7d3abd44c7b45918486e0b
[ "MIT" ]
null
null
null
auth-api/app.py
dlavery/auth
9f37b4be2eeda2446b7d3abd44c7b45918486e0b
[ "MIT" ]
null
null
null
auth-api/app.py
dlavery/auth
9f37b4be2eeda2446b7d3abd44c7b45918486e0b
[ "MIT" ]
null
null
null
import configparser import logging from flask import Flask from flask_pymongo import PyMongo from Crypto.PublicKey import RSA # Value mapping LOG_LEVELS = {'INFO': logging.INFO, 'DEBUG': logging.DEBUG, 'WARN': logging.DEBUG, 'ERROR': logging.ERROR} # Create application app = Flask(__name__) # Read external config config = configparser.ConfigParser() config.read('auth-api.cfg') app.config['MONGO_DBNAME'] = config['DATABASE']['dbName'] app.config['MONGO_URI'] = config['DATABASE']['dbURI'] logfile = config['LOGGING']['logFile'] loglevel = LOG_LEVELS[config['LOGGING']['logLevel']] app.config['SERVER_NAME'] = config['APPLICATION']['serverName'] app.config['DEBUG'] = config['APPLICATION']['debug'] # Set up logging fh = logging.FileHandler(logfile, mode='a', encoding='utf8', delay=False) fmt = logging.Formatter('%(asctime)s %(levelname)s %(filename)s %(lineno)d %(message)s') fh.setFormatter(fmt) app.logger.addHandler(fh) app.logger.setLevel(loglevel) # Set up database mongo = PyMongo(app) # Get crypto pubkeyfile = config['PKI']['pubkeyFile'] authpublickey = RSA.import_key(open(pubkeyfile).read()).exportKey() keyfile = config['PKI']['keyFile'] passphrase = config['PKI']['passPhrase'] authprivatekey = RSA.import_key(open(keyfile).read(), passphrase=passphrase).exportKey() # Get session secret app.secret_key = config['SESSIONS']['secretKey']
32.404762
106
0.740632
0
0
0
0
0
0
0
0
465
0.341661
5555b6c3e07de5a90e04d4e0ebe99f3c40e0594c
1,587
py
Python
experts/siamdw.py
songheony/AAA-journal
4306fac0afe567269b8d2f1cbef2a1c398fdde82
[ "MIT" ]
9
2020-07-07T09:03:07.000Z
2021-04-22T03:38:49.000Z
experts/siamdw.py
songheony/AAA-journal
4306fac0afe567269b8d2f1cbef2a1c398fdde82
[ "MIT" ]
null
null
null
experts/siamdw.py
songheony/AAA-journal
4306fac0afe567269b8d2f1cbef2a1c398fdde82
[ "MIT" ]
1
2021-07-31T19:26:52.000Z
2021-07-31T19:26:52.000Z
import sys import numpy as np import cv2 from easydict import EasyDict as edict from base_tracker import BaseTracker import path_config sys.path.append("external/SiamDW/lib") from tracker.siamrpn import SiamRPN import models.models as models from utils.utils import load_pretrain class SiamDW(BaseTracker): def __init__(self): super().__init__("SiamDW") net_file = path_config.SIAMDW_MODEL info = edict() info.arch = "SiamRPNRes22" info.dataset = "OTB2015" info.epoch_test = False info.cls_type = "thinner" self.tracker = SiamRPN(info) self.net = models.__dict__[info.arch](anchors_nums=5, cls_type=info.cls_type) self.net = load_pretrain(self.net, net_file) self.net.eval() self.net = self.net.cuda() def initialize(self, image_file, box): image = cv2.imread(image_file) if len(image.shape) == 2: image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) center = np.array([box[0] + (box[2] - 1) / 2, box[1] + (box[3] - 1) / 2]) size = np.array([box[2], box[3]]) self.state = self.tracker.init(image, center, size, self.net) def track(self, image_file): image = cv2.imread(image_file) if len(image.shape) == 2: image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) self.state = self.tracker.track(self.state, image) center = self.state["target_pos"] size = self.state["target_sz"] bbox = (center[0] - size[0] / 2, center[1] - size[1] / 2, size[0], size[1]) return bbox
34.5
85
0.628859
1,303
0.821046
0
0
0
0
0
0
84
0.05293
555695e92a72c35957e937841df7b620e7484601
3,346
py
Python
serpent/machine_learning/reinforcement_learning/rainbow_dqn/dqn.py
DylanSpicker/SerpentAI
c48c4b072e0d1084a52eac569ad1c7fa02ac7348
[ "MIT" ]
null
null
null
serpent/machine_learning/reinforcement_learning/rainbow_dqn/dqn.py
DylanSpicker/SerpentAI
c48c4b072e0d1084a52eac569ad1c7fa02ac7348
[ "MIT" ]
null
null
null
serpent/machine_learning/reinforcement_learning/rainbow_dqn/dqn.py
DylanSpicker/SerpentAI
c48c4b072e0d1084a52eac569ad1c7fa02ac7348
[ "MIT" ]
null
null
null
import math import torch class DQN(torch.nn.Module): def __init__(self, action_space, history=4, hidden_size=512, noisy_std=0.1, quantile=True): super().__init__() self.atoms = 200 if quantile else 51 self.action_space = action_space self.quantile = quantile self.conv1 = torch.nn.Conv2d(history, 32, 8, stride=4, padding=1) self.conv2 = torch.nn.Conv2d(32, 64, 4, stride=2) self.conv3 = torch.nn.Conv2d(64, 64, 3) self.fc_h_v = NoisyLinear(5184, hidden_size, std_init=noisy_std) self.fc_h_a = NoisyLinear(5184, hidden_size, std_init=noisy_std) self.fc_z_v = NoisyLinear(hidden_size, self.atoms, std_init=noisy_std) self.fc_z_a = NoisyLinear(hidden_size, action_space * self.atoms, std_init=noisy_std) def forward(self, x): x = torch.nn.functional.relu(self.conv1(x)) x = torch.nn.functional.relu(self.conv2(x)) x = torch.nn.functional.relu(self.conv3(x)) x = x.view(-1, 5184) v = self.fc_z_v(torch.nn.functional.relu(self.fc_h_v(x))) a = self.fc_z_a(torch.nn.functional.relu(self.fc_h_a(x))) v, a = v.view(-1, 1, self.atoms), a.view(-1, self.action_space, self.atoms) q = v + a - a.mean(1, keepdim=True) if not self.quantile: q = torch.nn.functional.softmax(q, dim=2) return q def reset_noise(self): for name, module in self.named_children(): if "fc" in name: module.reset_noise() class NoisyLinear(torch.nn.Module): def __init__(self, in_features, out_features, std_init=0.4): super().__init__() self.in_features = in_features self.out_features = out_features self.std_init = std_init self.weight_mu = torch.nn.Parameter(torch.empty(out_features, in_features)) self.weight_sigma = torch.nn.Parameter(torch.empty(out_features, in_features)) self.register_buffer("weight_epsilon", torch.empty(out_features, in_features)) self.bias_mu = torch.nn.Parameter(torch.empty(out_features)) self.bias_sigma = torch.nn.Parameter(torch.empty(out_features)) self.register_buffer("bias_epsilon", torch.empty(out_features)) self.reset_parameters() self.reset_noise() def reset_parameters(self): mu_range = 1 / math.sqrt(self.in_features) self.weight_mu.data.uniform_(-mu_range, mu_range) self.weight_sigma.data.fill_(self.std_init / math.sqrt(self.in_features)) self.bias_mu.data.uniform_(-mu_range, mu_range) self.bias_sigma.data.fill_(self.std_init / math.sqrt(self.out_features)) def reset_noise(self): epsilon_in = self._scale_noise(self.in_features) epsilon_out = self._scale_noise(self.out_features) self.weight_epsilon.copy_(epsilon_out.ger(epsilon_in)) self.bias_epsilon.copy_(epsilon_out) def forward(self, input): if self.training: return torch.nn.functional.linear(input, self.weight_mu + self.weight_sigma * self.weight_epsilon, self.bias_mu + self.bias_sigma * self.bias_epsilon) else: return torch.nn.functional.linear(input, self.weight_mu, self.bias_mu) def _scale_noise(self, size): x = torch.randn(size) return x.sign().mul_(x.abs().sqrt_())
35.978495
162
0.661686
3,315
0.990735
0
0
0
0
0
0
34
0.010161
55572056018bf803954acf22ae96913928e3246d
1,479
py
Python
src/modules/base/url_helper.py
yakii9/artificial-programmer
a6c1a5a47155ee4d24be729a0fa8c86ca40f85d1
[ "MIT" ]
1
2018-10-21T22:46:27.000Z
2018-10-21T22:46:27.000Z
src/modules/base/url_helper.py
yakii9/artificial-programmer
a6c1a5a47155ee4d24be729a0fa8c86ca40f85d1
[ "MIT" ]
1
2018-10-29T04:34:13.000Z
2018-11-01T14:32:23.000Z
src/modules/base/url_helper.py
yakii9/artificial-programmer
a6c1a5a47155ee4d24be729a0fa8c86ca40f85d1
[ "MIT" ]
1
2018-10-21T22:46:48.000Z
2018-10-21T22:46:48.000Z
import urllib.request from html.parser import HTMLParser from urllib import parse from modules.base.handle_timeout import timeout class ElementsFinder(HTMLParser): def __init__(self, base_url, page_url): super().__init__() self.base_url = base_url self.page_url = page_url self.links = set() # When we call HTMLParser feed() this function is called when it encounters an opening tag <a> def handle_starttag(self, tag, attrs): if tag == 'a': for (attribute, value) in attrs: if attribute == 'href': url = parse.urljoin(self.base_url, value) self.links.add(url) def page_links(self): return self.links def error(self, message): pass class UrlHelper: def __init__(self): pass @staticmethod @timeout(6) def get_html(url): try: with urllib.request.urlopen(url) as response: html = response.read() return html except Exception as e: print(e) def get_domain_name(self, url): try: results = self.get_sub_domain_name(url).split('.') return results[-2] + '.' + results[-1] except: return '' # Get sub domain name (name.example.com) @staticmethod def get_sub_domain_name(url): try: return parse.urlparse(url).netloc except: return ''
25.067797
98
0.577417
1,343
0.908046
0
0
382
0.258283
0
0
153
0.103448
5557b931f8213b68a545c1e272d7bfa56dc0f55f
7,460
py
Python
trainer/trainer.py
iprapas/dl-continuous-deployment
bcee578a8ae3aa74e4ede00d125cb456f6a3010e
[ "MIT" ]
null
null
null
trainer/trainer.py
iprapas/dl-continuous-deployment
bcee578a8ae3aa74e4ede00d125cb456f6a3010e
[ "MIT" ]
null
null
null
trainer/trainer.py
iprapas/dl-continuous-deployment
bcee578a8ae3aa74e4ede00d125cb456f6a3010e
[ "MIT" ]
null
null
null
import numpy as np import torch from torchvision.utils import make_grid from base import BaseTrainer from utils import inf_loop, MetricTracker, confusion_matrix_image import copy import sys import time from model.metric import Accuracy, TopkAccuracy def get_top_k(x, ratio): """it will sample the top 1-ratio of the samples.""" x_data = x.view(-1) x_len = x_data.nelement() top_k = max(1, int(x_len * (1 - ratio))) # get indices and the corresponding values if top_k == 1: _, selected_indices = torch.max(x_data.abs(), dim=0, keepdim=True) else: _, selected_indices = torch.topk( x_data.abs(), top_k, largest=True, sorted=False ) return x_data[selected_indices], selected_indices def get_mask(flatten_arr, indices): mask = torch.zeros_like(flatten_arr) mask[indices] = 1 mask = mask.bool() return mask.float(), (~mask).float() class Trainer(BaseTrainer): """ Trainer class """ def __init__(self, model, criterion, metric_ftns, optimizer, config, data_loader, valid_data_loader=None, lr_scheduler=None, len_epoch=None): super().__init__(model, criterion, metric_ftns, optimizer, config) self.config = config self.data_loader = data_loader if len_epoch is None: # epoch-based training self.len_epoch = len(self.data_loader) else: # iteration-based training self.data_loader = inf_loop(data_loader) self.len_epoch = len_epoch self.valid_data_loader = valid_data_loader self.do_validation = self.valid_data_loader is not None self.lr_scheduler = lr_scheduler self.log_step = int(np.sqrt(data_loader.batch_size)) self.deployed_model = copy.deepcopy(self.model) self.init_model = copy.deepcopy(self.model) self.init_model.eval() self.deployed_model.eval() self.accuracy = Accuracy() self.topkaccuracy = TopkAccuracy() self.train_metrics = MetricTracker('loss', *[m.__name__ for m in self.metric_ftns], writer=self.writer) self.valid_metrics = MetricTracker('loss', *[m.__name__ for m in self.metric_ftns], writer=self.writer) def _train_epoch(self, epoch): """ Training logic for an epoch :param epoch: Integer, current training epoch. :return: A log that contains average loss and metric in this epoch. """ start = time.time() self.model.train() total_batch = 0 self.train_metrics.reset() training_time = 0 for batch_idx, (data, target) in enumerate(self.data_loader): data, target = data.to(self.device), target.to(self.device) batch_start = time.time() self.optimizer.zero_grad() output = self.model(data) loss = self.criterion(output, target) loss.backward() self.optimizer.step() training_time += time.time() - batch_start self.writer.set_step((epoch - 1) * self.len_epoch + batch_idx) self.train_metrics.update('loss', loss.item()) for met in self.metric_ftns: self.train_metrics.update(met.__name__, met(output, target)) total_batch += time.time() - batch_start if batch_idx % self.log_step == 0: self.logger.info('Train Epoch: {} {} Loss: {:.6f} Time per batch (ms) {}'.format( epoch, self._progress(batch_idx), loss.item(), total_batch * 1000 / (batch_idx + 1))) # self.writer.add_image('input', make_grid(data.cpu(), nrow=8, normalize=True)) # self.writer.add_figure('confusion_matrix', confusion_matrix_image(output, target)) # valid_log = self._valid_deployed(batch_idx) # print logged informations to the screen # for key, value in valid_log.items(): # self.logger.info('Valid deployed {:15s}: {}'.format(str(key), value)) if batch_idx == self.len_epoch: break log = self.train_metrics.result() if self.do_validation: val_log = self._valid_epoch(epoch) log.update(**{'val_' + k: v for k, v in val_log.items()}) log['time (sec)'] = time.time() - start log['training_time'] = training_time if self.lr_scheduler is not None: self.lr_scheduler.step() return log def _valid_epoch(self, epoch): """ Validate after training an epoch :param epoch: Integer, current training epoch. :return: A log that contains information about validation """ self.model.eval() self.valid_metrics.reset() avg_loss =0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (data, target) in enumerate(self.valid_data_loader): data, target = data.to(self.device), target.to(self.device) output = self.model(data) loss = self.criterion(output, target) avg_loss += loss.item()/len(self.valid_data_loader) pred = torch.argmax(output, dim=1) correct += torch.sum(pred == target).item() total += len(target) self.writer.set_step(epoch, 'valid') self.writer.add_scalar('loss', avg_loss) self.writer.add_scalar('accuracy', correct/total) # self.writer.add_image('input', make_grid(data.cpu(), nrow=8, normalize=True)) # self.writer.add_figure('confusion_matrix', confusion_matrix_image(output, target)) # add histogram of model parameters to the tensorboard # for name, p in self.model.named_parameters(): # self.writer.add_histogram(name, p, bins='auto') return self.valid_metrics.result() def _valid_deployed(self, batch): """ Validate after training a batch :param epoch: Integer, current training epoch. :return: A log that contains information about validation """ self.deployed_model.eval() self.valid_metrics.reset() with torch.no_grad(): for batch_idx, (data, target) in enumerate(self.valid_data_loader): data, target = data.to(self.device), target.to(self.device) output = self.model(data) loss = self.criterion(output, target) self.writer.set_step((batch - 1) * len(self.valid_data_loader) + batch_idx*len(target), 'valid') self.valid_metrics.update('loss', loss.item()) for met in self.metric_ftns: self.valid_metrics.update(met.__name__, met) # self.writer.add_image('input', make_grid(data.cpu(), nrow=8, normalize=True)) # self.writer.add_figure('confusion_matrix', confusion_matrix_image(output, target)) return self.valid_metrics.result() def _progress(self, batch_idx): base = '[{}/{} ({:.0f}%)]' if hasattr(self.data_loader, 'n_samples'): current = batch_idx * self.data_loader.batch_size total = self.data_loader.n_samples else: current = batch_idx total = self.len_epoch return base.format(current, total, 100.0 * current / total)
38.061224
112
0.604826
6,541
0.87681
0
0
0
0
0
0
1,727
0.231501
555ab459155bc7618fd3e853eed5270201c2705f
341
py
Python
eoa.py
LDNN97/evolutionary-optimization-algorithm
5819ab759ecc1fee94a03e407c97f2ab7bd0f862
[ "MIT" ]
21
2019-03-12T14:48:36.000Z
2022-03-08T12:55:30.000Z
eoa.py
LDNN97/Evolutionary-Optimization-Algorithms
5819ab759ecc1fee94a03e407c97f2ab7bd0f862
[ "MIT" ]
null
null
null
eoa.py
LDNN97/Evolutionary-Optimization-Algorithms
5819ab759ecc1fee94a03e407c97f2ab7bd0f862
[ "MIT" ]
5
2021-02-17T08:33:39.000Z
2022-01-23T11:44:16.000Z
from prob.problems import * from opti.de import DE from opti.cmaes import CMAES from opti.cmaes_origin import CMAESO from opti.cmaes_maes import CMAESM from opti.cmaes_large import CMAESL # beta from opti.cmaes_bipop import CMAESB if __name__ == "__main__": TaskProb = Sphere(50, -50, 50) Task = DE(TaskProb, 1000) Task.run()
21.3125
36
0.747801
0
0
0
0
0
0
0
0
16
0.046921
555da31cec0240cea59e597af6f6196956ec03f6
574
py
Python
tests/test_common.py
shikanon/BaiduMapAPI
36c41bd99e523fa231e7d654f0ba504349b2a7ad
[ "MIT" ]
7
2019-03-07T04:38:44.000Z
2021-04-23T02:43:10.000Z
tests/test_common.py
shikanon/BaiduMapAPI
36c41bd99e523fa231e7d654f0ba504349b2a7ad
[ "MIT" ]
2
2020-03-24T16:47:11.000Z
2020-12-03T08:52:31.000Z
tests/test_common.py
shikanon/BaiduMapAPI
36c41bd99e523fa231e7d654f0ba504349b2a7ad
[ "MIT" ]
1
2019-10-22T07:21:58.000Z
2019-10-22T07:21:58.000Z
from BaiduMapAPI.common import convertCoord, expandUp import pytest def test_convertCoord(): coord = convertCoord("12.32323,56.23422") assert coord == "12.32323,56.23422" coord = convertCoord((12.32323,56.23422)) assert coord == "12.32323,56.23422" def test_expandUp(): test_dict = {"a" : "A", "b":{"bB": [{"Ba": 2}, "Bb", "Bc"], "bc": {"bcd":{"bcd": 4}}}} testValue = expandUp(test_dict, "test") assert testValue == {'test_a': 'A', 'test_b_bB_0_Ba': 2, 'test_b_bB_1': 'Bb', 'test_b_bB_2': 'Bc', 'test_b_bc_bcd_bcd': 4}
41
90
0.606272
0
0
0
0
0
0
0
0
182
0.317073
555e8fe1a5ae17b4fbc51d4ad0090a37d1dc68ba
3,520
py
Python
pycba/utils.py
mayermelhem/pycba
8f6a0da12629bac2ad1c6c8e113357f96931ef17
[ "Apache-2.0" ]
10
2022-02-07T01:16:02.000Z
2022-03-12T07:56:43.000Z
pycba/utils.py
mayermelhem/pycba
8f6a0da12629bac2ad1c6c8e113357f96931ef17
[ "Apache-2.0" ]
5
2022-02-08T07:42:53.000Z
2022-03-31T21:33:42.000Z
pycba/utils.py
mayermelhem/pycba
8f6a0da12629bac2ad1c6c8e113357f96931ef17
[ "Apache-2.0" ]
1
2022-02-12T04:33:38.000Z
2022-02-12T04:33:38.000Z
""" PyCBA - Utility functions for interacting with PyCBA """ import re import numpy as np from typing import Tuple def parse_beam_string( beam_string: str, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """ This function parses a beam descriptor string and returns CBA input vectors. The beam descriptor string uses a specific format: spans lengths in float are separated by single characters describing the terminals of that beam element. The terminal characters are: - P - pinned (effectively the same as roller, but retained for visualisations) - R - roller (can occur at any terminal) - E - encastre (i.e. fully-fixed) - can only occur at beam extremity - F - free (e.g. cantilever end) - can only occur at beam extremity - H - hinge - can only occur internally in the beam Examples of beam strings are: - *P40R20R* - 2-span, 60 m long, with pinned-roller-roller supports - *E20H30R10F* - 3-span, 60 m long, encastre-hinge-roller-free **Complex beam configurations may not be describable using the beam string.** The function returns a tuple containing the necessary beam inputs for :class:`pycba.analysis.BeamAnalysis`: `(L, EI, R, eType)` Parameters ---------- beam_string : The string to be parsed. Raises ------ ValueError When the beam string does not meet basic structural requirements. Returns ------- (L, EI, R, eType) : tuple(np.ndarray, np.ndarray, np.ndarray, np.ndarray) In which: - `L` is a vector of span lengths. - `EI` is A vector of member flexural rigidities (prismatic). - `R` is a vector describing the support conditions at each member end. - `eType` is a vector of the member types. Example ------- This example creates a four-span beam with fixed extreme supports and an internal hinge. :: beam_str = "E30R30H30R30E" (L, EI, R, eType) = cba.parse_beam_string(beam_str) ils = cba.InfluenceLines(L, EI, R, eType) ils.create_ils(step=0.1) ils.plot_il(0.0, "R") """ beam_string = beam_string.lower() terminals = re.findall(r"[efhpr]", beam_string) spans_str = [m.end() for m in re.finditer(r"[efhpr]", beam_string)] if len(terminals) < 2: raise ValueError("At least two terminals must be defined") if terminals[0] == "h" or terminals[-1] == "h": raise ValueError("Cannot have a hinge at an extremity") if len(terminals) > 2: if any(t == "f" or t == "e" for t in terminals[1:-1]): raise ValueError("Do not define internal free or encastre terminals") # Get and check the span lengths L = [ float(beam_string[spans_str[i] : spans_str[i + 1] - 1]) for i in range(len(spans_str) - 1) ] if len(terminals) - 1 != len(L): raise ValueError("Inconsistent terminal count and span count") EI = 30 * 1e10 * np.ones(len(L)) * 1e-6 # kNm2 - arbitrary value R = [] eType = [1 for l in L] for i, t in enumerate(terminals): if t == "p" or t == "r": # pin or roller R.append([-1, 0]) elif t == "e": # encastre R.append([-1, -1]) elif t == "f": # free R.append([0, 0]) elif t == "h": # hinge R.append([0, 0]) eType[i - 1] = 2 R = [elem for sublist in R for elem in sublist] return (L, EI, R, eType)
34.174757
86
0.605682
0
0
0
0
0
0
0
0
2,326
0.660795
555f6946d9a27cac92dae44e27d4220ecfaf6269
10,363
py
Python
models/dcase2020_fuss_baseline/evaluate_lib.py
marciopuga/sound-separation
0b23ae22123b041b9538295f32a92151cb77bff9
[ "Apache-2.0" ]
412
2020-03-03T05:55:53.000Z
2022-03-29T20:49:11.000Z
models/dcase2020_fuss_baseline/evaluate_lib.py
marciopuga/sound-separation
0b23ae22123b041b9538295f32a92151cb77bff9
[ "Apache-2.0" ]
12
2020-04-09T17:47:01.000Z
2022-03-22T06:07:04.000Z
models/dcase2020_fuss_baseline/evaluate_lib.py
marciopuga/sound-separation
0b23ae22123b041b9538295f32a92151cb77bff9
[ "Apache-2.0" ]
89
2020-03-06T08:26:44.000Z
2022-03-31T11:36:23.000Z
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluate separated audio from a DCASE 2020 task 4 separation model.""" import os import numpy as np import pandas as pd import tensorflow.compat.v1 as tf import inference from train import data_io from train import metrics from train import permutation_invariant def _weights_for_nonzero_refs(source_waveforms): """Return shape (source,) weights for signals that are nonzero.""" source_norms = tf.sqrt(tf.reduce_mean(tf.square(source_waveforms), axis=-1)) return tf.greater(source_norms, 1e-8) def _weights_for_active_seps(power_sources, power_separated): """Return (source,) weights for active separated signals.""" min_power = tf.reduce_min(power_sources, axis=-1, keepdims=True) return tf.greater(power_separated, 0.01 * min_power) def compute_metrics(source_waveforms, separated_waveforms, mixture_waveform): """Permutation-invariant SI-SNR, powers, and under/equal/over-separation.""" # Align separated sources to reference sources. perm_inv_loss = permutation_invariant.wrap( lambda tar, est: -metrics.signal_to_noise_ratio_gain_invariant(est, tar)) _, separated_waveforms = perm_inv_loss(source_waveforms[tf.newaxis], separated_waveforms[tf.newaxis]) separated_waveforms = separated_waveforms[0] # Remove batch axis. # Compute separated and source powers. power_separated = tf.reduce_mean(separated_waveforms ** 2, axis=-1) power_sources = tf.reduce_mean(source_waveforms ** 2, axis=-1) # Compute weights for active (separated, source) pairs where source is nonzero # and separated power is above threshold of quietest source power - 20 dB. weights_active_refs = _weights_for_nonzero_refs(source_waveforms) weights_active_seps = _weights_for_active_seps( tf.boolean_mask(power_sources, weights_active_refs), power_separated) weights_active_pairs = tf.logical_and(weights_active_refs, weights_active_seps) # Compute SI-SNR. sisnr_separated = metrics.signal_to_noise_ratio_gain_invariant( separated_waveforms, source_waveforms) num_active_refs = tf.reduce_sum(tf.cast(weights_active_refs, tf.int32)) num_active_seps = tf.reduce_sum(tf.cast(weights_active_seps, tf.int32)) num_active_pairs = tf.reduce_sum(tf.cast(weights_active_pairs, tf.int32)) sisnr_mixture = metrics.signal_to_noise_ratio_gain_invariant( tf.tile(mixture_waveform[tf.newaxis], (source_waveforms.shape[0], 1)), source_waveforms) # Compute under/equal/over separation. under_separation = tf.cast(tf.less(num_active_seps, num_active_refs), tf.float32) equal_separation = tf.cast(tf.equal(num_active_seps, num_active_refs), tf.float32) over_separation = tf.cast(tf.greater(num_active_seps, num_active_refs), tf.float32) return {'sisnr_separated': sisnr_separated, 'sisnr_mixture': sisnr_mixture, 'sisnr_improvement': sisnr_separated - sisnr_mixture, 'power_separated': power_separated, 'power_sources': power_sources, 'under_separation': under_separation, 'equal_separation': equal_separation, 'over_separation': over_separation, 'weights_active_refs': weights_active_refs, 'weights_active_seps': weights_active_seps, 'weights_active_pairs': weights_active_pairs, 'num_active_refs': num_active_refs, 'num_active_seps': num_active_seps, 'num_active_pairs': num_active_pairs} def _report_score_stats(metric_per_source_count, label='', counts=None): """Report mean and std dev for specified counts.""" values_all = [] if counts is None: counts = metric_per_source_count.keys() for count in counts: values = metric_per_source_count[count] values_all.extend(list(values)) return '%s for count(s) %s = %.1f +/- %.1f dB' % ( label, counts, np.mean(values_all), np.std(values_all)) def evaluate(checkpoint_path, metagraph_path, data_list_path, output_path): """Evaluate a model on FUSS data.""" model = inference.SeparationModel(checkpoint_path, metagraph_path) file_list = data_io.read_lines_from_file(data_list_path, skip_fields=1) with model.graph.as_default(): dataset = data_io.wavs_to_dataset(file_list, batch_size=1, num_samples=160000, repeat=False) # Strip batch and mic dimensions. dataset['receiver_audio'] = dataset['receiver_audio'][0, 0] dataset['source_images'] = dataset['source_images'][0, :, 0] # Separate with a trained model. i = 1 max_count = 4 dict_per_source_count = lambda: {c: [] for c in range(1, max_count + 1)} sisnr_per_source_count = dict_per_source_count() sisnri_per_source_count = dict_per_source_count() under_seps = [] equal_seps = [] over_seps = [] df = None while True: try: waveforms = model.sess.run(dataset) except tf.errors.OutOfRangeError: break separated_waveforms = model.separate(waveforms['receiver_audio']) source_waveforms = waveforms['source_images'] if np.allclose(source_waveforms, 0): print('WARNING: all-zeros source_waveforms tensor encountered.' 'Skiping this example...') continue metrics_dict = compute_metrics(source_waveforms, separated_waveforms, waveforms['receiver_audio']) metrics_dict = {k: v.numpy() for k, v in metrics_dict.items()} sisnr_sep = metrics_dict['sisnr_separated'] sisnr_mix = metrics_dict['sisnr_mixture'] sisnr_imp = metrics_dict['sisnr_improvement'] weights_active_pairs = metrics_dict['weights_active_pairs'] # Create and initialize the dataframe if it doesn't exist. if df is None: # Need to create the dataframe. columns = [] for metric_name, metric_value in metrics_dict.items(): if metric_value.shape: # Per-source metric. for i_src in range(1, max_count + 1): columns.append(metric_name + '_source%d' % i_src) else: # Scalar metric. columns.append(metric_name) columns.sort() df = pd.DataFrame(columns=columns) if output_path.endswith('.csv'): csv_path = output_path else: csv_path = os.path.join(output_path, 'scores.csv') # Update dataframe with new metrics. row_dict = {} for metric_name, metric_value in metrics_dict.items(): if metric_value.shape: # Per-source metric. for i_src in range(1, max_count + 1): row_dict[metric_name + '_source%d' % i_src] = metric_value[i_src - 1] else: # Scalar metric. row_dict[metric_name] = metric_value new_row = pd.Series(row_dict) df = df.append(new_row, ignore_index=True) # Store metrics per source count and report results so far. under_seps.append(metrics_dict['under_separation']) equal_seps.append(metrics_dict['equal_separation']) over_seps.append(metrics_dict['over_separation']) sisnr_per_source_count[metrics_dict['num_active_refs']].extend( sisnr_sep[weights_active_pairs].tolist()) sisnri_per_source_count[metrics_dict['num_active_refs']].extend( sisnr_imp[weights_active_pairs].tolist()) print('Example %d: SI-SNR sep = %.1f dB, SI-SNR mix = %.1f dB, ' 'SI-SNR imp = %.1f dB, ref count = %d, sep count = %d' % ( i, np.mean(sisnr_sep), np.mean(sisnr_mix), np.mean(sisnr_sep - sisnr_mix), metrics_dict['num_active_refs'], metrics_dict['num_active_seps'])) if not i % 20: # Report mean statistics and save csv every so often. lines = [ 'Metrics after %d examples:' % i, _report_score_stats(sisnr_per_source_count, 'SI-SNR', counts=[1]), _report_score_stats(sisnri_per_source_count, 'SI-SNRi', counts=[2]), _report_score_stats(sisnri_per_source_count, 'SI-SNRi', counts=[3]), _report_score_stats(sisnri_per_source_count, 'SI-SNRi', counts=[4]), _report_score_stats(sisnri_per_source_count, 'SI-SNRi', counts=[2, 3, 4]), 'Under separation: %.2f' % np.mean(under_seps), 'Equal separation: %.2f' % np.mean(equal_seps), 'Over separation: %.2f' % np.mean(over_seps), ] print('') for line in lines: print(line) with open(csv_path.replace('.csv', '_summary.txt'), 'w+') as f: f.writelines([line + '\n' for line in lines]) print('\nWriting csv to %s.\n' % csv_path) df.to_csv(csv_path) i += 1 # Report final mean statistics. lines = [ 'Final statistics:', _report_score_stats(sisnr_per_source_count, 'SI-SNR', counts=[1]), _report_score_stats(sisnri_per_source_count, 'SI-SNRi', counts=[2]), _report_score_stats(sisnri_per_source_count, 'SI-SNRi', counts=[3]), _report_score_stats(sisnri_per_source_count, 'SI-SNRi', counts=[4]), _report_score_stats(sisnri_per_source_count, 'SI-SNRi', counts=[2, 3, 4]), 'Under separation: %.2f' % np.mean(under_seps), 'Equal separation: %.2f' % np.mean(equal_seps), 'Over separation: %.2f' % np.mean(over_seps), ] print('') for line in lines: print(line) with open(csv_path.replace('.csv', '_summary.txt'), 'w+') as f: f.writelines([line + '\n' for line in lines]) # Write final csv. print('\nWriting csv to %s.' % csv_path) df.to_csv(csv_path)
41.618474
80
0.666795
0
0
0
0
0
0
0
0
2,872
0.27714
5560d79a769a8dcd00036d30ac155bdbbb8657ae
422
py
Python
homeassistant/components/system_bridge/const.py
basicpail/core
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
[ "Apache-2.0" ]
11
2018-02-16T15:35:47.000Z
2020-01-14T15:20:00.000Z
homeassistant/components/system_bridge/const.py
basicpail/core
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
[ "Apache-2.0" ]
87
2020-07-06T22:22:54.000Z
2022-03-31T06:01:46.000Z
homeassistant/components/system_bridge/const.py
Vaarlion/core
f3de8b9f28de01abf72c0f5bb0b457eb1841f201
[ "Apache-2.0" ]
11
2020-12-16T13:48:14.000Z
2022-02-01T00:28:05.000Z
"""Constants for the System Bridge integration.""" import asyncio from aiohttp.client_exceptions import ( ClientConnectionError, ClientConnectorError, ClientResponseError, ) from systembridge.exceptions import BridgeException DOMAIN = "system_bridge" BRIDGE_CONNECTION_ERRORS = ( asyncio.TimeoutError, BridgeException, ClientConnectionError, ClientConnectorError, ClientResponseError, )
21.1
51
0.779621
0
0
0
0
0
0
0
0
65
0.154028
55652d01d18ec68adf27b069baae8bf7ed3db2f4
1,705
py
Python
python/domain/compliance/model/measure.py
ICTU/document-as-code
e65fddb94513e7c2f54f248b4ce69e9e10ce42f5
[ "Apache-2.0" ]
2
2021-01-09T17:00:51.000Z
2021-02-19T09:35:26.000Z
python/domain/compliance/model/measure.py
ICTU/document-as-code
e65fddb94513e7c2f54f248b4ce69e9e10ce42f5
[ "Apache-2.0" ]
null
null
null
python/domain/compliance/model/measure.py
ICTU/document-as-code
e65fddb94513e7c2f54f248b4ce69e9e10ce42f5
[ "Apache-2.0" ]
1
2020-02-24T15:50:05.000Z
2020-02-24T15:50:05.000Z
""" BIO measure - defines and describes a measure for BIO compliance """ from domain.base import Base class Measure(Base): """ Measures that help to in BIO compliance. """ _explain = None _not_applicable = None def __init__(self, identifier, description, identifiers, url=None, done=False): super().__init__(identifier) self.description = description self.identifiers = identifiers self.url = url self.done = done def set_explain(self): self.register_explain(self) return self def set_not_applicable(self): self.register_not_applicable(self) return self # --- @classmethod def all_applicable_to_fragment(cls, fragment_identifier): return [ bir_measure for bir_measure in cls.all for identifier in bir_measure.identifiers if fragment_identifier.startswith(identifier) ] # --- class property explain (rw) --- @classmethod def register_explain(cls, explain): if not isinstance(explain, cls): raise TypeError(f"explain should be {cls.__name__}, not {explain.__class__.__name__}") cls._explain = explain @classmethod def explain(cls): return cls._explain # --- class property not_applicable (rw) --- @classmethod def register_not_applicable(cls, not_applicable): if not isinstance(not_applicable, cls): raise TypeError(f"not_applicable should be {cls.__name__}, not {not_applicable.__class__.__name__}") cls._not_applicable = not_applicable @classmethod def not_applicable(cls): return cls._not_applicable
26.640625
112
0.652199
1,596
0.93607
0
0
909
0.533138
0
0
362
0.212317
556657f3480d4123e6f0535b01c6ed2f5345122d
615
py
Python
week_06/readibility.py
fentybit/cs50
a6089e8ba47d0a8990cac3e0b5b28c5f2ba9f9c3
[ "CNRI-Python" ]
null
null
null
week_06/readibility.py
fentybit/cs50
a6089e8ba47d0a8990cac3e0b5b28c5f2ba9f9c3
[ "CNRI-Python" ]
null
null
null
week_06/readibility.py
fentybit/cs50
a6089e8ba47d0a8990cac3e0b5b28c5f2ba9f9c3
[ "CNRI-Python" ]
null
null
null
from cs50 import get_string text = get_string("Text: ") text_length = len(text) letters = 0 sentences = 0 words = 1 for i in range(text_length): if text[i].isalpha(): letters += 1 for i in range(text_length): if ord(text[i]) == 46 or ord(text[i]) == 33 or ord(text[i]) == 63: sentences += 1 for i in range(text_length): if ord(text[i]) == 32: words += 1 L = 100 * (letters / words) S = 100 * (sentences / words) grade = round(0.0588 * L - 0.296 * S - 15.8) if 16 <= grade: print("Grade 16+") elif grade < 1: print("Before Grade 1") else: print(f"Grade {grade}")
20.5
70
0.588618
0
0
0
0
0
0
0
0
51
0.082927
5567063c93ec8ddf93486996ed882ce5ca8b8b9d
206
py
Python
fauxblog/admin.py
nickobrad/faux
cecb03e97a176149606dc88373d1844fc1f6b23c
[ "MIT" ]
null
null
null
fauxblog/admin.py
nickobrad/faux
cecb03e97a176149606dc88373d1844fc1f6b23c
[ "MIT" ]
null
null
null
fauxblog/admin.py
nickobrad/faux
cecb03e97a176149606dc88373d1844fc1f6b23c
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Category, ImagePost, Location # Register your models here. admin.site.register(ImagePost) admin.site.register(Category) admin.site.register(Location)
20.6
49
0.81068
0
0
0
0
0
0
0
0
28
0.135922
556731a35682ef9f34de75b049e18d73969d3bfa
1,574
py
Python
lib/Vector.py
aldahick/dotter.py
c3e783801f36403476087b5638a93e5fd5959bbe
[ "MIT" ]
null
null
null
lib/Vector.py
aldahick/dotter.py
c3e783801f36403476087b5638a93e5fd5959bbe
[ "MIT" ]
null
null
null
lib/Vector.py
aldahick/dotter.py
c3e783801f36403476087b5638a93e5fd5959bbe
[ "MIT" ]
null
null
null
import math from random import randint # pylint: disable=I0011,invalid-name class Vector(object): def __init__(self, x, y=None): self.x = x if y is None: self.y = x else: self.y = y def get_distance(self, other): distance = self.get_distance_components(other) return math.sqrt(pow(distance.x, 2) + pow(distance.y, 2)) def get_distance_components(self, other): return Vector(abs(self.x - other.x), abs(self.y - other.y)) def add(self, other): return self._calc(other, lambda a, b: a + b) def sub(self, other): return self._calc(other, lambda a, b: a - b) def mul(self, other): return self._calc(other, lambda a, b: a * b) def div(self, other): return self._calc(other, lambda a, b: a / b) def _calc(self, other, func): if isinstance(other, Vector): return Vector(func(self.x, other.x), func(self.y, other.y)) else: return Vector(func(self.x, other), func(self.y, other)) def __str__(self): return "({}, {})".format(self.x, self.y) def slow(self, diff): self.x = Vector._slow(diff, self.x) self.y = Vector._slow(diff, self.y) @staticmethod def _slow(diff, num): if num == 0: return 0 if num > 0: return num - diff else: return num + diff @staticmethod def rand(min_v, max_v): x = randint(min_v.x, max_v.x) y = randint(min_v.y, max_v.y) return Vector(x, y)
26.677966
71
0.559085
1,496
0.950445
0
0
320
0.203304
0
0
46
0.029225
55686a8be609e908e7580542f40aa36255c8c155
12,532
py
Python
functions.py
flyingmat/pyfactorizer
6e607408bc21d04b09ecabfc6a579ad4058965f5
[ "MIT" ]
null
null
null
functions.py
flyingmat/pyfactorizer
6e607408bc21d04b09ecabfc6a579ad4058965f5
[ "MIT" ]
null
null
null
functions.py
flyingmat/pyfactorizer
6e607408bc21d04b09ecabfc6a579ad4058965f5
[ "MIT" ]
null
null
null
from math import floor remove_spaces = lambda inlst: [i for i in inlst if i != ' '] def sf2i(inp): if float(inp).is_integer(): return str(int(inp)) else: return str(inp) def fix_signs(inlst): i = 0 while i < len(inlst): if inlst[i] in '+-': # first sign is detected sign = -1 if inlst[i] == '-' else 1 # sign variable assigned while i+1 < len(inlst) and inlst[i+1] in '+-': # while more signs are present if inlst[i+1] == '-': # invert the sign if a minus is detected sign *= -1 del inlst[i+1] # delete each excessive sign inlst[i] = '-' if sign == -1 else '+' # change the only sign left's value accordingly i += 1 # keep checking for other signs return inlst def fix_dict(indict): if type(indict) == dict: return frozenset(indict.items()) else: return indict def get_coefficient(inlst, i): coeff = '' k = i - 1 while k >= 0 and inlst[k] in '1234567890.': # keep going backwards to get the full coefficient coeff = inlst[k] + coeff k -= 1 coeff = '1' if not coeff else coeff # if no coefficient is specified, 1 is assigned if k >= 0 and inlst[k] == '-': # check for a minus sign coeff = '-' + coeff k = 0 if k < 0 else k # value correction for convert() coeff = float(coeff) return (coeff, k) def get_exponent(inlst, i): exp = '' if i+1 < len(inlst) and inlst[i+1] == '^': k = i + 2 while k < len(inlst) and inlst[k] in '1234567890': # keep going forward to get the full exponent exp += inlst[k] k += 1 else: k = i + 1 # value correction for convert() exp = 1 if not exp else exp # if no exponent is specified, 1 is assigned exp = int(exp) # exponents are assumed to be positive integers return (exp, k) def convert(inlst): exps = {} i = 0 while i < len(inlst): if inlst[i] == 'x': # if an x-term is detected (coeff, x_start) = get_coefficient(inlst, i) # get its coefficient (exp, x_end) = get_exponent(inlst, i) # get its exponent if exp not in exps: exps[exp] = coeff else: exps[exp] += coeff del inlst[x_start:x_end] i = x_start i += 1 return exps def solve_x0_terms(inlst): out = 0 current_term = '' while inlst: item = inlst.pop(0) if item in '#+-': out += float(current_term) if current_term else 0 current_term = '-' if item == '-' else '' elif item in '1234567890.': current_term += item out += float(current_term) if current_term else 0 return out def divide_func(exps, div): # uses polynomial long division newexps = {} for current_exp in range(max(exps)-max(div), -1, -1): if max(exps) - max(div) != current_exp: # bugfix: FOR Loop coud be changed to something more efficient (needs testing with high exponents) continue newexps[current_exp] = exps[max(exps)] / div[max(div)] for exp, coeff in div.items(): m_coeff = exp + current_exp if m_coeff not in exps: exps[m_coeff] = 0 exps[m_coeff] -= (newexps[current_exp] * coeff) if exps[m_coeff] == 0: del exps[m_coeff] # deletion required because of max() in the main loop that could return a coeff with value 0 if 0 not in newexps: newexps[0] = 0 return newexps if not exps or not exps[0] else {} # if there is a reminder, return an empty dict; could be changed to return reminder def n_factors(n): if type(n) == float and not n.is_integer(): raise StopIteration else: n = int(n) yield (n, 1) if n % 2 == 0: for i in range(floor(abs(n/2)), 0, -1): if n % i == 0: yield (i, int(n/i)) else: tn = floor(abs(n/2)) for i in range( (tn - 1 if tn % 2 == 0 else tn), 0, -2 ): if n % i == 0: yield (i, int(n/i)) def x2terms(exps): a = exps[2] if 2 in exps else 0 b = exps[1] if 1 in exps else 0 c = exps[0] if 0 in exps else 0 return a,b,c def delta_calc(a,b,c): return b**2 - 4*a*c def pow_diff(poly): out = () if max(poly) % 2 == 0: root_exp = (1.0 / 2) else: root_exp = (1.0 / max(poly)) root1 = (abs(poly[max(poly)]) ** root_exp) * (-1 if poly[max(poly)] < 0 else 1) root2 = (abs(poly[0]) ** root_exp) * (-1 if poly[0] < 0 else 1) if root1.is_integer() and root2.is_integer(): root1, root2 = int(root1), int(root2) if max(poly) % 2 == 0: if poly[0]*poly[max(poly)] < 0: xm, x0 = root1, root2 out = (( { int(max(poly)/2):xm, 0:x0 }, 1 ), ( { int(max(poly)/2):(xm if xm > 0 else -xm), 0:(x0 if xm < 0 else -x0) }, 1 )) else: out = [( { 1:root1, 0:root2}, 1 )] return out def binomial_mult_3(poly, expsort): out = () for x0t1, x0t2 in n_factors(poly[0]): for xmt1, xmt2 in n_factors(poly[expsort[0]]): if (xmt1*x0t2)+(xmt2*x0t1) == poly[expsort[1]]: p_div1 = { expsort[1]:xmt1, 0:x0t1 } p_div2 = { expsort[1]:xmt2, 0:x0t2 } out = (( p_div1, 1 ), ( p_div2, 1 )) return out def binomial_pow3(poly, expsort): out = () if expsort[0] % 3 == 0: root1 = (abs(poly[expsort[0]]) ** (1.0/3)) * (-1 if poly[expsort[0]] < 0 else 1) root2 = (abs(poly[0]) ** (1.0/3)) * (-1 if poly[0] < 0 else 1) if root1.is_integer() and root2.is_integer(): if poly[expsort[1]] == 3*(root1**2)*root2 and poly[expsort[2]] == 3*(root2**2)*root1: out = [({ expsort[2]:root1, 0:root2 }, 3)] return out def binomial_mult_4(poly, expsort): out = () if poly[expsort[0]] / poly[expsort[2]] == poly[expsort[1]] / poly[expsort[3]]: cfs = [poly[e] for e in expsort] for (n3, _) in n_factors( max(abs(cfs[0]), abs(cfs[1])) - min(abs(cfs[0]), abs(cfs[1])) ): if 0 == cfs[0] % n3 == cfs[1] % n3: n1 = int(cfs[0]/n3) n2 = int(cfs[1]/n3) if cfs[3] % n2 == 0: n4 = int(cfs[3]/n2) out = [({ min(expsort[1],expsort[2]):n1, 0:n2 }, 1), ({ max(expsort[1],expsort[2]):n3, 0:n4 }, 1)] break return out def bf_int_coordinates(exps): out_cord = set() for i in range(2,101): k = 1/i if check_fact(exps,k): yield k if check_fact(exps,-k): yield -k for i in range(1,1001): if check_fact(exps,i): yield i if check_fact(exps,-i): yield -i def check_fact(exps,fact): out = 0 for exp in exps: out += exps[exp] * (fact**exp) return round(out,15) == 0 def factorize(poly_stack, func): poly = poly_stack.pop() tmexp = max(poly) div_polys = [] common_factor = 1 checknegative = set([c < 0 for c in poly.values()]) # factorizing checks for (i, _) in n_factors(min([abs(v) for v in poly.values() if v != 0])): # if common factor in poly, divide e.g. 2x^2+4 -> 2(x^2+2) checkmult = set() # check performed on every iteration because of coeffs changing with division for coeff in poly.values(): checkmult.add(coeff % i) if len(checkmult) == 1 and 0 in checkmult: common_factor = i if checknegative != set([True]) else -i break if common_factor != 1: div_polys = [ ({ 0:common_factor }, 1) ] elif len(poly) > 2 and tmexp and poly[0] == 0: # x^5 + x^3 -> x^3(x^2 + 1) div_polys = [ ({ 1:1, 0:0 }, min([e if e > 0 else tmexp for e in poly])) ] elif len(poly) == 2 and max(poly) > 1 and poly[0]: # x^2 - 1 -> (x + 1)(x - 1), x^3 - 1, x^3 + 1, etc. div_polys = pow_diff(poly) elif len(poly) == 3 and poly[0]: # x^2 + 2x + 1 -> (x + 1)^2, 3x^2 + 7x + 2 -> (3x + 1)(x + 2), etc. max exp can be > 2 expsort = sorted(poly)[::-1] if expsort[0] % 2 == 0 and expsort[0]-expsort[1] == expsort[1]-expsort[2]: div_polys = binomial_mult_3(poly, expsort) elif len(poly) == 4 and poly[0]: expsort = sorted(poly)[::-1] if expsort[0]-expsort[1] == expsort[1]-expsort[2] == expsort[2]-expsort[3]: div_polys = binomial_pow3(poly, expsort) if not div_polys: # 6x^6 + 4x^4 + 15x^2 + 10 would trigger the first check but not the second when using ELIF (one doesn't exlude the other) if expsort[0]-expsort[2] == expsort[1]-expsort[3]: div_polys = binomial_mult_4(poly,expsort) if not div_polys and tmexp > 2: # bruteforce div_count = tmexp for xv in bf_int_coordinates(poly): div_polys.append(({ 1:1, 0:-xv }, 1)) div_count -= 1 if div_count == 0: break for p, e in div_polys: for div_i in range(e): poly = divide_func(poly, p) if (max(p) > 2) or (max(p) == 2 and p[0] and delta_calc(*x2terms(p)) >= 0): poly_stack.append(p) else: func.add(p, 1) if div_polys and ((max(poly) > 2) or (max(poly) == 2 and poly[0] and delta_calc(*x2terms(poly)) >= 0)): poly_stack.append(poly) else: if len(poly) == 2 and not poly[0]: # fix for ax^2 -> x^2 divided by a -> poly = {2:1,0:0}:1, should be {1:1,0:0}:2 func.add({ 1:1, 0:0 }, max(poly)) else: func.add(poly, 1) if poly_stack: factorize(poly_stack, func) def polyformat(polys, x0t): out = ['',''] brackets = False if len(polys) > 1 or x0t != 1: brackets = True out[0] += sf2i(x0t) if x0t not in (1,-1) or len(polys) == 0 else '-' if x0t == -1 else '' for poly, exp in polys.items(): poly = dict(poly) if len(poly) == 2 and not poly[0]: out[1] = 'x' if exp > 1: out[1] += '^' + str(exp) else: current_poly = '' if exp > 1: brackets = True expsort = sorted(poly)[::-1] for e in expsort: current_poly += '- ' if poly[e] < 0 else '+ ' if poly[e] > 0 else '' if e != 0: current_poly += sf2i(abs(poly[e])) if poly[e] not in (1,-1) else '' current_poly += 'x' current_poly += '^' + sf2i(e) + ' ' if e != 1 else ' ' else: current_poly += sf2i(abs(poly[e])) if poly[e] else '' if current_poly[0] == '+': current_poly = current_poly[2:] elif current_poly[0] == '-' and brackets: current_poly = '-' + current_poly[2:] current_poly = '(' + current_poly + ')' if brackets else current_poly current_poly += '^' + sf2i(exp) if exp != 1 else '' out.append(current_poly) return ''.join(out) class Function(): def __init__(self, data): self.data = {} self.x0t = 1 if type(data) == dict: self.exps = data else: self.eqt = remove_spaces(data) self.eqt = fix_signs(self.eqt) self.exps = convert(self.eqt) # self.eqt is referenced and edited directly by convert() if 0 not in self.exps: # 0 may already be in exps because of x^0 terms self.exps[0] = 0 self.exps[0] += solve_x0_terms(self.eqt) # x-terms have already been removed from self.eqt self.out = "" def __repr__(self): return repr(self.data) def add(self, indict, exp): if len(dict(indict)) == 1: self.x0t *= ((dict(indict))[0] ** exp) # number-only terms (x^0) are managed separately else: self.indict = fix_dict(indict) if self.indict in self.data: self.data[self.indict] += exp else: self.data[self.indict] = exp def factorize(self): if set(self.exps.values()) != set([0]): factorize([self.exps], self) #print(self.data) return polyformat(self.data, self.x0t) else: return '0'
39.040498
151
0.514682
1,265
0.100942
770
0.061443
0
0
0
0
1,829
0.145946
556a5954e27e88a1963c24a16323e7c269ae5148
2,556
py
Python
pystratis/api/balances/tests/test_balances.py
madrazzl3/pystratis
8b78552e753ae1d12f2afb39e9a322a270fbb7b3
[ "MIT" ]
null
null
null
pystratis/api/balances/tests/test_balances.py
madrazzl3/pystratis
8b78552e753ae1d12f2afb39e9a322a270fbb7b3
[ "MIT" ]
null
null
null
pystratis/api/balances/tests/test_balances.py
madrazzl3/pystratis
8b78552e753ae1d12f2afb39e9a322a270fbb7b3
[ "MIT" ]
null
null
null
import pytest from pytest_mock import MockerFixture from pystratis.api.balances import Balances from pystratis.core.types import Address from pystratis.core.networks import CirrusMain def test_all_strax_endpoints_implemented(strax_swagger_json): paths = [key.lower() for key in strax_swagger_json['paths']] for endpoint in paths: if Balances.route + '/' in endpoint: assert endpoint in Balances.endpoints def test_all_cirrus_endpoints_implemented(cirrus_swagger_json): paths = [key.lower() for key in cirrus_swagger_json['paths']] for endpoint in paths: if Balances.route + '/' in endpoint: assert endpoint in Balances.endpoints def test_all_interfluxstrax_endpoints_implemented(interfluxstrax_swagger_json): paths = [key.lower() for key in interfluxstrax_swagger_json['paths']] for endpoint in paths: if Balances.route + '/' in endpoint: assert endpoint in Balances.endpoints def test_all_interfluxcirrus_endpoints_implemented(interfluxcirrus_swagger_json): paths = [key.lower() for key in interfluxcirrus_swagger_json['paths']] for endpoint in paths: if Balances.route + '/' in endpoint: assert endpoint in Balances.endpoints @pytest.mark.parametrize('network', [CirrusMain()], ids=['CirrusMain']) def test_overamountatheight(mocker: MockerFixture, network, overamountatheightresponse): data = overamountatheightresponse(network) mocker.patch.object(Balances, 'get', return_value=data) balances = Balances(network=network, baseuri=mocker.MagicMock(), session=mocker.MagicMock()) response = balances.over_amount_at_height(block_height=10, amount=10) assert len(response) == len(data) for i in range(len(response)): assert isinstance(response[i], Address) assert response[i] == data[i] # noinspection PyUnresolvedReferences balances.get.assert_called_once() @pytest.mark.parametrize('network', [CirrusMain()], ids=['CirrusMain']) def test_overamountatheight_none(mocker: MockerFixture, network): data = [] mocker.patch.object(Balances, 'get', return_value=data) balances = Balances(network=network, baseuri=mocker.MagicMock(), session=mocker.MagicMock()) response = balances.over_amount_at_height(block_height=10, amount=10) assert len(response) == len(data) for i in range(len(response)): assert isinstance(response[i], Address) assert response[i] == data[i] # noinspection PyUnresolvedReferences balances.get.assert_called_once()
38.727273
96
0.736307
0
0
0
0
1,302
0.50939
0
0
166
0.064945
556d8216ffbaa6f7a0d0816c6b1ba9baa984c1a1
381
py
Python
Problems/14.py
Maurya232Abhishek/Python-repository-for-basics
3dcec5c529a0847df07c9dcc1424675754ce6376
[ "MIT" ]
2
2021-07-14T11:01:58.000Z
2021-07-14T11:02:01.000Z
Problems/14.py
Maurya232Abhishek/Python-repository-for-basics
3dcec5c529a0847df07c9dcc1424675754ce6376
[ "MIT" ]
null
null
null
Problems/14.py
Maurya232Abhishek/Python-repository-for-basics
3dcec5c529a0847df07c9dcc1424675754ce6376
[ "MIT" ]
null
null
null
def isPerCube(n): x = n**(1/3) x= x+0.5 x = int(x) if x**3==n: return True return False """ x = 2 while True: y = n / (x * x) if (x == y): print(x) if x == int(x): return True else: return False x = (y + x + x) / 3 print(x)""" print(isPerCube())
19.05
28
0.351706
0
0
0
0
0
0
0
0
245
0.643045
556e3ec9c1d73a0070074ad45f8de00d47c96b09
179
py
Python
year1/python/week2/q9_squareroots.py
OthmanEmpire/university
3405e1463e82ca2e6f7deef05c3b1ba0ab9c1278
[ "MIT" ]
1
2016-05-21T17:23:50.000Z
2016-05-21T17:23:50.000Z
year1/python/week2/q9_squareroots.py
OthmanEmpire/university_code
3405e1463e82ca2e6f7deef05c3b1ba0ab9c1278
[ "MIT" ]
null
null
null
year1/python/week2/q9_squareroots.py
OthmanEmpire/university_code
3405e1463e82ca2e6f7deef05c3b1ba0ab9c1278
[ "MIT" ]
null
null
null
## This program prints out the first 10 square roots that are even ## for x in range(1,10): y = (2*x)**2 # If n^2 is even hence n must be even as well print(y)
29.833333
72
0.603352
0
0
0
0
0
0
0
0
114
0.636872
556f083296f917021fc8c5ac171cde72ce1bed3a
1,690
py
Python
backend/health/health_check.py
threefoldtech/zeroCI
851def4cbaebba681641ecb24c731de56277d6ed
[ "Apache-2.0" ]
null
null
null
backend/health/health_check.py
threefoldtech/zeroCI
851def4cbaebba681641ecb24c731de56277d6ed
[ "Apache-2.0" ]
52
2019-11-14T09:39:04.000Z
2021-03-16T10:15:55.000Z
backend/health/health_check.py
AhmedHanafy725/0-CI
ce73044eea2c15bcbb161a1d6f23e75e4f8d53a0
[ "Apache-2.0" ]
1
2019-10-30T09:51:25.000Z
2019-10-30T09:51:25.000Z
import sys sys.path.append("/sandbox/code/github/threefoldtech/zeroCI/backend") from redis import Redis from health_recover import Recover from utils.utils import Utils recover = Recover() class Health(Utils): def get_process_pid(self, name): cmd = f"ps -aux | grep -v grep | grep '{name}' | awk '{{print $2}}'" response = self.execute_cmd(cmd=cmd, timeout=5) pids = response.stdout.split() return pids def test_zeroci_server(self): """Check zeroci server is still running """ pid = self.get_process_pid("python3 zeroci") if not pid: recover.zeroci() def test_redis(self): """Check redis is still running. """ pid = self.get_process_pid("redis") if not pid: recover.redis() try: r = Redis() r.set("test_redis", "test") r.get("test_redis") r.delete("test_redis") except: recover.redis() def test_workers(self): """Check rq workers are up. """ pids = self.get_process_pid("python3 worker") workers = len(pids) if workers < 5: for i in range(1, 6): pid = self.get_process_pid(f"python3 worker{i}") if not pid: recover.worker(i) def test_schedule(self): """Check rq schedule is up. """ pid = self.get_process_pid("rqscheduler") if not pid: recover.scheduler() if __name__ == "__main__": health = Health() health.test_zeroci_server() health.test_redis() health.test_workers() health.test_schedule()
25.606061
76
0.562722
1,334
0.789349
0
0
0
0
0
0
410
0.242604
5570f5a350941f5510b456b02cd8353c974ae345
13,284
py
Python
vesper/command/recording_importer.py
RichardLitt/Vesper
5360844f42a06942e7684121c650b08cf8616285
[ "MIT" ]
null
null
null
vesper/command/recording_importer.py
RichardLitt/Vesper
5360844f42a06942e7684121c650b08cf8616285
[ "MIT" ]
null
null
null
vesper/command/recording_importer.py
RichardLitt/Vesper
5360844f42a06942e7684121c650b08cf8616285
[ "MIT" ]
null
null
null
"""Module containing class `RecordingImporter`.""" from pathlib import Path import itertools import logging import os from django.db import transaction from vesper.command.command import CommandExecutionError from vesper.django.app.models import ( DeviceConnection, Job, Recording, RecordingChannel, RecordingFile) from vesper.singletons import recording_manager import vesper.command.command_utils as command_utils import vesper.command.recording_utils as recording_utils import vesper.util.audio_file_utils as audio_file_utils import vesper.util.signal_utils as signal_utils import vesper.util.time_utils as time_utils class RecordingImporter: """ Importer for recordings already stored in files on the Vesper server. The recordings to be imported are specified in the `paths` argument as server-side directory and file paths. Files from directories can be imported either recursively or non-recursively according to the `recursive` argument. The import does not copy or move recordings: it stores the existing paths of their files for future reference. The importer obtains recording metadata for imported files with the aid of a recording file parser extension, specified by the `recording_file_parser` argument. """ extension_name = 'Recording Importer' def __init__(self, args): self.paths = command_utils.get_required_arg('paths', args) self.recursive = command_utils.get_optional_arg( 'recursive', args, True) spec = command_utils.get_optional_arg('recording_file_parser', args) self.file_parser = recording_utils.create_recording_file_parser(spec) def execute(self, job_info): self._job = Job.objects.get(id=job_info.job_id) self._logger = logging.getLogger() try: recordings = self._get_recordings() new_recordings, old_recordings = \ self._partition_recordings(recordings) self._log_header(new_recordings, old_recordings) with transaction.atomic(): self._import_recordings(new_recordings) except Exception as e: self._logger.error(( 'Recording import failed with an exception.\n' 'The exception message was:\n' ' {}\n' 'The archive was not modified.\n' 'See below for exception traceback.').format(str(e))) raise else: self._log_imports(new_recordings) return True def _get_recordings(self): files = list(itertools.chain.from_iterable( self._get_path_recording_files(path) for path in self.paths)) return recording_utils.group_recording_files(files) def _get_path_recording_files(self, path): if os.path.isdir(path): return self._get_dir_recording_files(path) else: file = self._get_recording_file(path) return [] if file is None else [file] def _get_dir_recording_files(self, path): files = [] for (dir_path, dir_names, file_names) in os.walk(path): for file_name in file_names: file_path = os.path.join(dir_path, file_name) file = self._get_recording_file(Path(file_path)) if file is not None: files.append(file) if not self.recursive: # Stop `os.walk` from descending into subdirectories. del dir_names[:] return files def _get_recording_file(self, file_path): if not audio_file_utils.is_wave_file_path(file_path): return None else: rel_path, abs_path = self._get_recording_file_paths(file_path) file = self._parse_recording_file(abs_path) file.path = rel_path _set_recording_file_channel_info(file) return file def _get_recording_file_paths(self, file_path): if file_path.is_absolute(): if not file_path.exists(): raise CommandExecutionError( 'Purported recording file "{}" does not exist.') rel_path = self._get_relative_path(file_path) return rel_path, file_path else: # path is relative abs_path = self._get_absolute_path(file_path) return file_path, abs_path def _get_relative_path(self, file_path): manager = recording_manager.instance try: _, rel_path = manager.get_relative_recording_file_path(file_path) except ValueError: self._handle_bad_recording_file_path( file_path, 'is not in', manager) return rel_path def _handle_bad_recording_file_path(self, file_path, condition, manager): dir_paths = manager.recording_dir_paths if len(dir_paths) == 1: s = 'the recording directory "{}"'.format(dir_paths[0]) else: path_list = str(list(dir_paths)) s = 'any of the recording directories {}'.format(path_list) raise CommandExecutionError( 'Recording file "{}" {} {}.'.format(file_path, condition, s)) def _get_absolute_path(self, file_path): manager = recording_manager.instance try: return manager.get_absolute_recording_file_path(file_path) except ValueError: self._handle_bad_recording_file_path( file_path, 'could not be found in', manager) def _parse_recording_file(self, file_path): try: file = self.file_parser.parse_file(str(file_path)) except ValueError as e: raise CommandExecutionError( 'Error parsing recording file "{}": {}'.format( file_path, str(e))) if file.recorder is None: file.recorder = _get_recorder(file) return file def _partition_recordings(self, recordings): new_recordings = [] old_recordings = [] for r in recordings: if self._recording_exists(r): old_recordings.append(r) else: new_recordings.append(r) return (new_recordings, old_recordings) def _recording_exists(self, recording): try: Recording.objects.get( station=recording.station, recorder=recording.recorder, start_time=recording.start_time) except Recording.DoesNotExist: return False else: return True def _log_header(self, new_recordings, old_recordings): log = self._logger.info new_count = len(new_recordings) old_count = len(old_recordings) if new_count == 0 and old_count == 0: log('Found no recordings at the specified paths.') else: new_text = self._get_num_recordings_text(new_count, 'new') old_text = self._get_num_recordings_text(old_count, 'old') log('Found {} and {} at the specified paths.'.format( new_text, old_text)) if len(new_recordings) == 0: log('No recordings will be imported.') else: log('The new recordings will be imported.') def _get_num_recordings_text(self, count, description): suffix = '' if count == 1 else 's' return '{} {} recording{}'.format(count, description, suffix) def _import_recordings(self, recordings): for r in recordings: end_time = signal_utils.get_end_time( r.start_time, r.length, r.sample_rate) creation_time = time_utils.get_utc_now() recording = Recording( station=r.station, recorder=r.recorder, num_channels=r.num_channels, length=r.length, sample_rate=r.sample_rate, start_time=r.start_time, end_time=end_time, creation_time=creation_time, creating_job=self._job) recording.save() r.model = recording for channel_num in range(r.num_channels): recorder_channel_num = r.recorder_channel_nums[channel_num] mic_output = r.mic_outputs[channel_num] channel = RecordingChannel( recording=recording, channel_num=channel_num, recorder_channel_num=recorder_channel_num, mic_output=mic_output) channel.save() start_index = 0 for file_num, f in enumerate(r.files): # We store all paths in the archive database as POSIX # paths, even on Windows, for portability, since Python's # `pathlib` module recognizes the slash as a path separator # on all platforms, but not the backslash. path = f.path.as_posix() file = RecordingFile( recording=recording, file_num=file_num, start_index=start_index, length=f.length, path=path) file.save() start_index += f.length def _log_imports(self, recordings): for r in recordings: log = self._logger.info log('Imported recording {} with files:'.format(str(r.model))) for f in r.files: log(' {}'.format(f.path.as_posix())) def _get_recorder(file): end_time = signal_utils.get_end_time( file.start_time, file.length, file.sample_rate) station_recorders = file.station.get_station_devices( 'Audio Recorder', file.start_time, end_time) if len(station_recorders) == 0: raise CommandExecutionError( 'Could not find recorder for recording file "{}".'.format( file.path)) elif len(station_recorders) > 1: raise CommandExecutionError( 'Found more than one possible recorder for file "{}".'.format( file.path)) else: return station_recorders[0].device def _set_recording_file_channel_info(file): mic_outputs = _get_recorder_mic_outputs(file.recorder, file.start_time) if file.recorder_channel_nums is None: # file name did not indicate recorder channel numbers if len(mic_outputs) != file.num_channels: # number of connected mic outputs does not match number # of file channels raise CommandExecutionError(( 'Could not infer recorder channel numbers for ' 'recording file "{}".').format(file.path)) else: # number of connected mic outputs matches number of file # channels # We assume that recorder inputs map to file channel numbers # in increasing order. file.recorder_channel_nums = tuple(sorted(mic_outputs.keys())) file.mic_outputs = tuple( _get_mic_output(mic_outputs, i, file.path) for i in file.recorder_channel_nums) def _get_recorder_mic_outputs(recorder, time): """ Gets a mapping from recorder input channel numbers to connected microphone outputs for the specified recorder and time. """ connections = DeviceConnection.objects.filter( input__device=recorder, output__device__model__type='Microphone', start_time__lte=time, end_time__gt=time) # print('recording_importer.get_recorder_mic_outputs', connections.query) return dict((c.input.channel_num, c.output) for c in connections) def _get_mic_output(mic_outputs, channel_num, file_path): try: return mic_outputs[channel_num] except KeyError: raise CommandExecutionError(( 'Could not find microphone output connected to recorder input ' '{} for recording file "{}".').format(channel_num, file_path))
32.479218
77
0.564664
10,033
0.755269
0
0
0
0
0
0
2,400
0.180668
557658851f4a3ae8f5f44ddef879cff02f03ad5f
1,096
py
Python
l10n_ar_ux/models/res_company.py
odoo-mastercore/odoo-argentina
58cdfe8610bae42f69ddb9d652a28eb3245f6a04
[ "MIT" ]
1
2021-01-25T15:57:58.000Z
2021-01-25T15:57:58.000Z
l10n_ar_ux/models/res_company.py
odoo-mastercore/odoo-argentina
58cdfe8610bae42f69ddb9d652a28eb3245f6a04
[ "MIT" ]
null
null
null
l10n_ar_ux/models/res_company.py
odoo-mastercore/odoo-argentina
58cdfe8610bae42f69ddb9d652a28eb3245f6a04
[ "MIT" ]
2
2020-10-17T16:36:02.000Z
2021-01-24T10:20:05.000Z
############################################################################## # For copyright and license notices, see __manifest__.py file in module root # directory ############################################################################## from odoo import fields, models class ResCompany(models.Model): _inherit = "res.company" gross_income_jurisdiction_ids = fields.Many2many( related='partner_id.gross_income_jurisdiction_ids', readonly=False, ) # TODO this field could be defined directly on l10n_ar_account_withholding arba_cit = fields.Char( 'CIT ARBA', help='Clave de Identificación Tributaria de ARBA', ) # la fecha de comienzo de actividades puede ser por cada punto de #venta distinta, lo convertimos a related del partner l10n_ar_afip_start_date = fields.Date( related='partner_id.start_date', string='Activities Start', readonly=False) l10n_ar_report_signature = fields.Image('Firma', copy=False, attachment=True) l10n_ar_report_signed_by = fields.Text('Aclaracion', copy=False)
39.142857
81
0.620438
815
0.742935
0
0
0
0
0
0
606
0.552416
5576c4dbc04cfe8f5be4007143719bb7a25f5574
2,033
py
Python
Quotebot/utils.py
musawakiliML/Whatsapp-Bots
29fe6c645010ddedac1424b22c842b3e61511644
[ "MIT" ]
null
null
null
Quotebot/utils.py
musawakiliML/Whatsapp-Bots
29fe6c645010ddedac1424b22c842b3e61511644
[ "MIT" ]
null
null
null
Quotebot/utils.py
musawakiliML/Whatsapp-Bots
29fe6c645010ddedac1424b22c842b3e61511644
[ "MIT" ]
null
null
null
import requests def random_quote(type=''): '''A function to get random quotes''' if type == "today": response_quote = requests.get("https://zenquotes.io/api/today/ff5e73b15a05ca51951b758bd7943ce803d71772") if response_quote.status_code == 200: quote_data = response_quote.json() quote = quote_data[0]['q'] quote_author = quote_data[0]['a'] quote_message = f"'{quote_author.title()}' Said:{quote}" return quote_message else: return f"Invalid Request {response_quote.status_code}" elif type == "quote": response_quote = requests.get("https://zenquotes.io/api/random/ff5e73b15a05ca51951b758bd7943ce803d71772") if response_quote.status_code == 200: quote_data = response_quote.json() quote = quote_data[0]['q'] quote_author = quote_data[0]['a'] quote_message = f"'{quote_author.title()}' Said:{quote}" return quote_message else: return f"Invalid Request {response_quote.status_code}" else: return f"Invalid Request!" def jokes(): '''This function gets a joke''' response_joke = requests.get("https://some-random-api.ml/joke") if response_joke.status_code == 200: joke = response_joke.json() return joke['joke'] else: return f"Invalid Request {response_joke.status_code}" def cat_dog(input_message): if "cat" in input_message and "gif" in input_message: response_gif = requests.get("https://cataas.com/cat") cat_gif = response_gif.url return cat_gif elif "cat" in input_message: response_cat = requests.get("https://cataas.com/cat/cute") cat = response_cat.url return cat elif "dog" in input_message: response_dog = requests.get("https://dog.ceo/api/breeds/image/random") dog_data = response_dog.json()['message'] return dog_data else: return "Invalid Request!"
31.765625
113
0.624693
0
0
0
0
0
0
0
0
662
0.325627
557a41cb5f2fe81007b03e1796d482334c493ead
3,401
py
Python
src/day16.py
dcbriccetti/advent-of-code-2021-python
65958fb256234cf882714d3c3306cdbf60bcc0ae
[ "Unlicense" ]
4
2021-12-10T22:47:56.000Z
2021-12-26T21:35:58.000Z
src/day16.py
dcbriccetti/advent-of-code-2021-python
65958fb256234cf882714d3c3306cdbf60bcc0ae
[ "Unlicense" ]
null
null
null
src/day16.py
dcbriccetti/advent-of-code-2021-python
65958fb256234cf882714d3c3306cdbf60bcc0ae
[ "Unlicense" ]
null
null
null
from math import prod from pathlib import Path class BitStream: 'Deliver integers from a stream of bits created from a hexadecimal string' bit_str: str pos: int def __init__(self, hex_nibbles_str: str) -> None: def binary_nibble_str(hex_nibble_str: str) -> str: 'Convert, for example, `e` ➜ `1110`, or `0` ➜ `0000`' nibble = int(hex_nibble_str, 16) bits_str = bin(nibble)[2:] # Removes the 0b at the left padding_needed = 4 - len(bits_str) return '0' * padding_needed + bits_str self.bit_str = ''.join(binary_nibble_str(hex_nibble_str) for hex_nibble_str in hex_nibbles_str) self.pos = 0 def next_int(self, num_bits: int) -> int: 'Get the next `num_bits` bits and return them parsed as a binary number' return int(self._next_str(num_bits), 2) def _next_str(self, num_bits) -> str: 'Return the next `num_bits` bits as a string' bits_str = self.bit_str[:num_bits] self.bit_str = self.bit_str[num_bits:] self.pos += num_bits return bits_str class Decoder: 'Decode the BITS packet and its nested contained packets' bits: BitStream versions_sum: int operators = [ sum, prod, min, max, None, lambda vals: int(vals[0] > vals[1]), lambda vals: int(vals[0] < vals[1]), lambda vals: int(vals[0] == vals[1]), ] def __init__(self, packet_hex): self.bits = BitStream(packet_hex) print(f'Decoder started for {len(self.bits.bit_str)} bits {packet_hex} {self.bits.bit_str}') self.versions_sum = 0 def parse(self, level=0) -> int: def parse_literal() -> int: value = 0 more: bool = True while more: more = bool(next_int(1)) nibble: int = next_int(4) value = (value << 4) + nibble # Slide over and drop in new bits print(f'{value=}') return value def parse_operator(type: int) -> int: def parse_subpackets_by_length(packets_length) -> list[int]: values: list[int] = [] print(f'{packets_length=}') stop_pos = self.bits.pos + packets_length while self.bits.pos < stop_pos: values.append(self.parse(level + 1)) return values def parse_subpackets_by_count(packet_count) -> list[int]: print(f'{packet_count=}') return [self.parse(level + 1) for _ in range(packet_count)] subpacket_parsers = [parse_subpackets_by_length, parse_subpackets_by_count] length_type_id = next_int(1) length_or_count = next_int(15 if length_type_id == 0 else 11) values = subpacket_parsers[length_type_id](length_or_count) return Decoder.operators[type](values) next_int = self.bits.next_int indent = ' ' * level ver = next_int(3) self.versions_sum += ver type = next_int(3) print(indent + f'{ver=}, {type=}, ', end='') return parse_literal() if type == 4 else parse_operator(type) if __name__ == '__main__': decoder = Decoder(Path('../data/16.txt').read_text().strip()) print(f'Result: {decoder.parse()}, versions sum: {decoder.versions_sum}')
36.180851
100
0.586004
3,182
0.934508
0
0
0
0
0
0
623
0.182966
557ac6c635a14924685b462c2a901a11408e15a1
6,328
py
Python
Santander-spyder.py
Herikc2/Santander-Customer-Satisfaction
c868538ab06c252b2f9e51bac384b0f6e48efd70
[ "MIT" ]
null
null
null
Santander-spyder.py
Herikc2/Santander-Customer-Satisfaction
c868538ab06c252b2f9e51bac384b0f6e48efd70
[ "MIT" ]
null
null
null
Santander-spyder.py
Herikc2/Santander-Customer-Satisfaction
c868538ab06c252b2f9e51bac384b0f6e48efd70
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Mar 3 17:13:15 2021 Database: https://www.kaggle.com/c/santander-customer-satisfaction @author: Herikc Brecher """ # Import from libraries from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split from xgboost import XGBClassifier import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report import seaborn as sns import pickle import warnings warnings.filterwarnings("ignore") # Loading the training dataset in CSV format training_file = 'data/train.csv' test_file = 'data/test.csv' data_training = pd.read_csv(training_file) test_data = pd.read_csv (test_file) print(data_training.shape) print(test_data.shape) # Viewing the first 20 lines data_training.head (20) # Data type of each attribute data_training.dtypes # Statistical Summary data_training.describe() # Distribution of classes data_training.groupby("TARGET").size() # Dividing by class data_class_0 = data_training[data_training['TARGET'] == 0] data_class_1 = data_training[data_training['TARGET'] == 1] counter_class_0 = data_class_0.shape[0] contador_classe_1 = data_class_1.shape[0] data_class_0_sample = data_class_0.sample(counter_class_0) training_data = pd.concat([data_class_0_sample, data_class_1], axis = 0) # Pearson correlation data_training.corr(method = 'pearson') # Finding the correlation between the target variable and the predictor variables corr = training_data[training_data.columns [1:]].corr()['TARGET'][:].abs() minimal_correlation = 0.02 corr2 = corr[corr > minimal_correlation] corr2.shape corr2 corr_keys = corr2.index.tolist() data_filter = data_training[corr_keys] data_filter.head(20) data_filter.dtypes # Filtering only the columns that have a correlation above the minimum variable array_treino = data_training[corr_keys].values # Separating the array into input and output components for training data X = array_treino[:, 0:array_treino.shape[1] - 1] Y = array_treino[:, array_treino.shape[1] - 1] # Creating the training and test dataset test_size = 0.30 X_training, X_testing, Y_training, Y_testing = train_test_split(X, Y, test_size = test_size) # Generating normalized data scaler = Normalizer (). fit (X_training) normalizedX_treino = scaler.transform(X_training) scaler = Normalizer().fit(X_testing) normalizedX_teste = scaler.transform(X_testing) Y_training = Y_training.astype('int') Y_testing = Y_testing.astype('int') ''' Execution of a series of classification algorithms is based on those that have the best result. For this test, the training base is used without any treatment or data selection. ''' # Setting the number of folds for cross validation num_folds = 10 # Preparing the list of models models = [] models.append(('LR', LogisticRegression())) models.append(('LDA', LinearDiscriminantAnalysis())) models.append(('NB', GaussianNB())) models.append(('KNN', KNeighborsClassifier())) models.append(('CART', DecisionTreeClassifier())) models.append(('SVM', SVC())) results = [] names = [] for name, model in models: kfold = KFold (n_splits = num_folds) cv_results = cross_val_score (model, X_training, Y_training, cv = kfold, scoring = 'accuracy') results.append (cv_results) names.append (name) msg = "% s:% f (% f)"% (name, cv_results.mean (), cv_results.std ()) print (msg) # Boxplot to compare the algorithms fig = plt.figure () fig.suptitle ('Comparison of Classification Algorithms') ax = fig.add_subplot (111) plt.boxplot (results) ax.set_xticklabels (names) plt.show () # Function to evaluate the performance of the model and save it in a pickle format for future reuse. def model_report(model_name): # Print result print("Accuracy:% .3f"% score) # Making predictions and building the Confusion Matrix predictions = result.predict(X_testing) matrix = confusion_matrix(Y_testing, predictions) print(matrix) report = classification_report(Y_testing, predictions) print(report) # The precision matrix is ​​created to visualize the number of correct cases labels = ['SATISFIED', 'UNSATISFIED'] cm = confusion_matrix(Y_testing, predictions) cm = pd.DataFrame(cm, index = ['0', '1'], columns = ['0', '1']) plt.figure(figsize = (10.10)) sns.heatmap(cm, cmap = "Blues", linecolor = 'black', linewidth = 1, annot = True, fmt = '', xticklabels = labels, yticklabels = labels) # Saving the model file = 'models/final_classifier_model' + model_name + '.sav' pickle.dump (model, open(file, 'wb')) print("Saved Model!") # Linear Regression model = LogisticRegression() result = model.fit(normalizedX_treino, Y_testing) score = result.score(normalizedX_treino, Y_testing) model_report("LR") # Linear Discriminant Analysis model = LinearDiscriminantAnalysis() result = model.fit(X_training, Y_testing) score = result.score(X_training, Y_testing) model_report("LDA") # KNN model = KNeighborsClassifier() result = model.fit(normalizedX_treino, Y_testing) score = result.score(normalizedX_treino, Y_testing) model_report("KNN") # CART model = DecisionTreeClassifier() result = model.fit(X_training, Y_testing) score = result.score(X_training, Y_testing) model_report("CART") # XGBOOST model = XGBClassifier() result = model.fit(X_training, Y_testing) score = result.score(X_training, Y_testing) model_report("XGBOOST") # Loading the model file = 'models model_classifier_final_XGBOOST.sav' model_classifier = pickle.load(open(file, 'rb')) model_prod = model_classifier.score(X_testing, Y_testing) print("Uploaded Model") # Print Result print("Accuracy:% .3f"% (model_prod.mean () * 100))
30.423077
140
0.733881
0
0
0
0
0
0
0
0
1,798
0.283955
557b0f82fa2e590f23c344cfc48bb3aef2ee423d
4,502
py
Python
Memorization Tool/task/tool.py
soukalli/jetbrain-accademy
fc486d439b4b54a58956e1186eb69c56b85f85f1
[ "MIT" ]
null
null
null
Memorization Tool/task/tool.py
soukalli/jetbrain-accademy
fc486d439b4b54a58956e1186eb69c56b85f85f1
[ "MIT" ]
null
null
null
Memorization Tool/task/tool.py
soukalli/jetbrain-accademy
fc486d439b4b54a58956e1186eb69c56b85f85f1
[ "MIT" ]
null
null
null
# write your code here from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, String, Integer from sqlalchemy.orm import sessionmaker engine = create_engine('sqlite:///flashcard.db?check_same_thread=False') Base = declarative_base() Session = sessionmaker(bind=engine) session = Session() successor = {'A': 'B', 'B': 'C'} class FlashCard(Base): __tablename__ = 'flashcard' id = Column(Integer, primary_key=True) question = Column(String(255)) answer = Column(String(255)) box = Column(String(1)) Base.metadata.create_all(engine) def print_main_menu(): print("1. Add flashcards") print("2. Practice flashcards") print("3. Exit") def process_menu_1(): sub_menu_choice = "" while sub_menu_choice != "2": print("1. Add a new flashcard") print("2. Exit") sub_menu_choice = input() if sub_menu_choice == "1": print("Question:") question = input() while question.strip() == "": print("Question:") question = input() print("Answer:") answer = input() while answer.strip() == "": print("Answer:") answer = input() card = FlashCard(question=question, answer=answer, box='A') session.add(card) session.commit() elif sub_menu_choice != "2": print("{0} is not an option".format(sub_menu_choice)) def update_card_status(flashcard, is_success): if not is_success: flashcard.box = 'A' else: if flashcard.box == 'C': session.delete(flashcard) else: flashcard.box = successor.get(flashcard.box) session.commit() def process_confirmation_flashcard(flashcard): print("Answer: {}".format(flashcard.answer)) def process_answer_flashcard(flashcard): print('press "y" if your answer is correct:') print('press "n" if your answer is wrong:') choice = "" while choice != "y" and choice != "n": choice = input() if choice == "y" or choice == "n": update_card_status(flashcard, choice == "y") break else: print("{0} is not an option".format(choice)) def process_update_flashcard(flashcard): print('press "d" to delete the flashcard:') print('press "e" to edit the flashcard:') choice = "" while choice != "d" and choice != "e": choice = input() if choice == "e": print("current question: {0}".format(flashcard.question)) question = input("please write a new question:\n") flashcard.question = question print("current answer: {0}".format(flashcard.answer)) answer = input("please write a new answer:\n") flashcard.answer = answer global session session.commit() break elif choice == "d": session.delete(flashcard) break else: print("{0} is not an option".format(choice)) def process_flashcard(flashcard): print("Question: {}".format(flashcard.question)) print('press "y" to see the answer:') print('press "n" to skip:') print('press "u" to update:') sub_menu_choice = "" while sub_menu_choice != "n": sub_menu_choice = input() if sub_menu_choice == "y": process_confirmation_flashcard(flashcard) process_answer_flashcard(flashcard) break elif sub_menu_choice == "n": process_answer_flashcard(flashcard) break elif sub_menu_choice == "u": process_update_flashcard(flashcard) break elif sub_menu_choice != "n": print("{0} is not an option".format(sub_menu_choice)) def process_menu_2(): flashcards = session.query(FlashCard).all() if len(flashcards) == 0: print('There is no flashcard to practice!') else: for flashcard in flashcards: process_flashcard(flashcard) def process_main_menu(choice): if choice == "1": process_menu_1() elif choice == "2": process_menu_2() elif choice != "3": print("{} is not an option".format(choice)) def main_loop(): choice = "" while choice != "3": print_main_menu() choice = input() process_main_menu(choice) print("Bye!") main_loop()
28.675159
72
0.589294
194
0.043092
0
0
0
0
0
0
803
0.178365
557b20fb22a3ac884a03a5ffa7db1db58d06ea7c
9,862
py
Python
src/compass/utils/geo_metadata.py
vbrancat/COMPASS
285412ac2fc474e789e255dae16eba4485017c07
[ "Apache-2.0" ]
11
2021-11-24T07:24:11.000Z
2022-03-23T16:40:13.000Z
src/compass/utils/geo_metadata.py
vbrancat/COMPASS
285412ac2fc474e789e255dae16eba4485017c07
[ "Apache-2.0" ]
6
2021-12-15T16:45:58.000Z
2022-03-24T23:36:16.000Z
src/compass/utils/geo_metadata.py
LiangJYu/COMPASS
459f5d6cf05c2b7c9013f0d862bfef22af280fa6
[ "Apache-2.0" ]
4
2021-12-07T19:45:26.000Z
2022-02-28T23:05:37.000Z
from dataclasses import dataclass from datetime import datetime import json from types import SimpleNamespace import isce3 from isce3.core import LUT2d, Poly1d, Orbit from isce3.product import GeoGridParameters import numpy as np from ruamel.yaml import YAML from shapely.geometry import Point, Polygon from compass.utils.geo_runconfig import GeoRunConfig from compass.utils.raster_polygon import get_boundary_polygon from compass.utils.wrap_namespace import wrap_namespace, unwrap_to_dict def _poly1d_from_dict(poly1d_dict) -> Poly1d: return Poly1d(poly1d_dict['coeffs'], poly1d_dict['mean'], poly1d_dict['std']) def _lut2d_from_dict(lut2d_dict) -> LUT2d: lut2d_shape = (lut2d_dict['length'], lut2d_dict['width']) lut2d_data = np.array(lut2d_dict['data']).reshape(lut2d_shape) return LUT2d(lut2d_dict['x_start'], lut2d_dict['y_start'], lut2d_dict['x_spacing'], lut2d_dict['y_spacing'], lut2d_data) def _orbit_from_dict(orbit_dict) -> Orbit: ref_epoch = isce3.core.DateTime(orbit_dict['ref_epoch']) # build state vector dt = float(orbit_dict['time']['spacing']) t0 = ref_epoch + isce3.core.TimeDelta(float(orbit_dict['time']['first'])) n_pts = int(orbit_dict['time']['size']) orbit_sv = [[]] * n_pts for i in range(n_pts): t = t0 + isce3.core.TimeDelta(i * dt) pos = [float(orbit_dict[f'position_{xyz}'][i]) for xyz in 'xyz'] vel = [float(orbit_dict[f'velocity_{xyz}'][i]) for xyz in 'xyz'] orbit_sv[i] = isce3.core.StateVector(t, pos, vel) return Orbit(orbit_sv, ref_epoch) @dataclass(frozen=True) class GeoCslcMetadata(): # subset of burst class attributes sensing_start: datetime sensing_stop: datetime radar_center_frequency: float wavelength: float azimuth_steer_rate: float azimuth_time_interval: float slant_range_time: float starting_range: float range_sampling_rate: float range_pixel_spacing: float azimuth_fm_rate: Poly1d doppler: Poly1d range_bandwidth: float polarization: str # {VV, VH, HH, HV} burst_id: str # t{track_number}_iw{1,2,3}_b{burst_index} platform_id: str # S1{A,B} center: Point # {center lon, center lat} in degrees border: Polygon # list of lon, lat coordinate tuples (in degrees) representing burst border orbit: isce3.core.Orbit orbit_direction: str # VRT params tiff_path: str # path to measurement tiff in SAFE/zip i_burst: int # window parameters range_window_type: str range_window_coefficient: float runconfig: SimpleNamespace geogrid: GeoGridParameters nodata: str input_data_ipf_version: str isce3_version: str @classmethod def from_georunconfig(cls, cfg: GeoRunConfig): '''Create GeoBurstMetadata class from GeoRunConfig object Parameter: --------- cfg : GeoRunConfig GeoRunConfig containing geocoded burst metadata ''' burst = cfg.bursts[0] burst_id = burst.burst_id geogrid = cfg.geogrids[burst_id] # get boundary from geocoded raster burst_id = burst.burst_id date_str = burst.sensing_start.strftime("%Y%m%d") pol = burst.polarization geo_raster_path = f'{cfg.output_dir}/{burst_id}_{date_str}_{pol}.slc' geo_boundary = get_boundary_polygon(geo_raster_path, np.nan) center = geo_boundary.centroid # place holders nodata_val = '?' ipf_ver = '?' isce3_ver = '?' return cls(burst.sensing_start, burst.sensing_stop, burst.radar_center_frequency, burst.wavelength, burst.azimuth_steer_rate, burst.azimuth_time_interval, burst.slant_range_time, burst.starting_range, burst.range_sampling_rate, burst.range_pixel_spacing, burst.azimuth_fm_rate, burst.doppler.poly1d, burst.range_bandwidth, burst.polarization, burst_id, burst.platform_id, center, geo_boundary, burst.orbit, burst.orbit_direction, burst.tiff_path, burst.i_burst, burst.range_window_type, burst.range_window_coefficient, cfg.groups, geogrid, nodata_val, ipf_ver, isce3_ver) @classmethod def from_file(cls, file_path: str, fmt: str): '''Create GeoBurstMetadata class from json file Parameter: --------- file_path: str File containing geocoded burst metadata ''' if fmt == 'yaml': yaml = YAML(typ='safe') load = yaml.load elif fmt == 'json': load = json.load else: raise ValueError(f'{fmt} unsupported. Only "json" or "yaml" supported') with open(file_path, 'r') as fid: meta_dict = load(fid) datetime_fmt = "%Y-%m-%d %H:%M:%S.%f" sensing_start = datetime.strptime(meta_dict['sensing_start'], datetime_fmt) sensing_stop = datetime.strptime(meta_dict['sensing_stop'], datetime_fmt) azimuth_fm_rate = _poly1d_from_dict(meta_dict['azimuth_fm_rate']) dopp_poly1d = _poly1d_from_dict(meta_dict['doppler']) orbit = _orbit_from_dict(meta_dict['orbit']) # init geo_runconfig cfg = wrap_namespace(meta_dict['runconfig']) # init geogrid grid_dict = meta_dict['geogrid'] geogrid = GeoGridParameters(grid_dict['start_x'], grid_dict['start_y'], grid_dict['spacing_x'], grid_dict['spacing_y'], grid_dict['length'], grid_dict['width'], grid_dict['epsg']) # get boundary from geocoded raster product_path = cfg.product_path_group.product_path date_str = sensing_start.strftime("%Y%m%d") burst_id = meta_dict['burst_id'] pol = meta_dict['polarization'] output_dir = f'{product_path}/{burst_id}/{date_str}' file_stem = f'geo_{burst_id}_{pol}' geo_raster_path = f'{output_dir}/{file_stem}' geo_boundary = get_boundary_polygon(geo_raster_path, np.nan) center = geo_boundary.centroid return cls(sensing_start, sensing_stop, meta_dict['radar_center_frequency'], meta_dict['wavelength'], meta_dict['azimuth_steer_rate'], meta_dict['azimuth_time_interval'], meta_dict['slant_range_time'], meta_dict['starting_range'], meta_dict['range_sampling_rate'], meta_dict['range_pixel_spacing'], azimuth_fm_rate, dopp_poly1d, meta_dict['range_bandwidth'], pol, meta_dict['burst_id'], meta_dict['platform_id'], center, geo_boundary, orbit, meta_dict['orbit_direction'], meta_dict['tiff_path'], meta_dict['i_burst'], meta_dict['range_window_type'], meta_dict['range_window_coefficient'], cfg, geogrid, meta_dict['nodata'], meta_dict['input_data_ipf_version'], meta_dict['isce3_version']) def as_dict(self): ''' Convert self to dict for write to YAML/JSON ''' self_as_dict = {} for key, val in self.__dict__.items(): if key in ['border', 'center', 'sensing_start', 'sensing_stop']: val = str(val) elif isinstance(val, np.float64): val = float(val) elif key in ['azimuth_fm_rate', 'doppler']: temp = {} temp['order'] = val.order temp['mean'] = val.mean temp['std'] = val.std temp['coeffs'] = val.coeffs val = temp elif key == 'orbit': temp = {} temp['ref_epoch'] = str(val.reference_epoch) temp['time'] = {} temp['time']['first'] = val.time.first temp['time']['spacing'] = val.time.spacing temp['time']['last'] = val.time.last temp['time']['size'] = val.time.size temp['position_x'] = val.position[:,0].tolist() temp['position_y'] = val.position[:,1].tolist() temp['position_z'] = val.position[:,2].tolist() temp['velocity_x'] = val.velocity[:,0].tolist() temp['velocity_y'] = val.velocity[:,1].tolist() temp['velocity_z'] = val.velocity[:,2].tolist() val = temp elif key == 'runconfig': val = unwrap_to_dict(val) elif key == 'geogrid': temp = {} temp['start_x'] = val.start_x temp['start_y'] = val.start_y temp['spacing_x'] = val.spacing_x temp['spacing_y'] = val.spacing_y temp['length'] = val.length temp['width'] = val.width temp['epsg'] = val.epsg val = temp self_as_dict[key] = val return self_as_dict def to_file(self, dst, fmt:str): '''Write self to file Parameter: --------- dst: file pointer File object to write metadata to fmt: ['yaml', 'json'] Format of output ''' self_as_dict = self.as_dict() if fmt == 'yaml': yaml = YAML(typ='safe') yaml.dump(self_as_dict, dst) elif fmt == 'json': json.dump(self_as_dict, dst, indent=4) else: raise ValueError(f'{fmt} unsupported. Only "json" or "yaml" supported')
37.930769
95
0.58548
8,219
0.833401
0
0
8,243
0.835835
0
0
2,373
0.240621
557c04366bccd072c61ed9301e5aeee3a5f38113
142
py
Python
app.py
WIZ7ZY/flask-app
b59b0b84543c4f0faf40c57b4753a3c324edc2d8
[ "MIT" ]
null
null
null
app.py
WIZ7ZY/flask-app
b59b0b84543c4f0faf40c57b4753a3c324edc2d8
[ "MIT" ]
null
null
null
app.py
WIZ7ZY/flask-app
b59b0b84543c4f0faf40c57b4753a3c324edc2d8
[ "MIT" ]
null
null
null
from web import create_app import ntplib if __name__ == '__main__': app = create_app(debug=False) app.run(host='0.0.0.0', port=5000)
20.285714
38
0.690141
0
0
0
0
0
0
0
0
19
0.133803
557fbf2a8059c9beebbcd0bd1552ded759c8e7f0
2,227
py
Python
tests/test_db.py
andreasgrv/methinks
5c65fdb84e35b8082ee35963431a352e06f4af44
[ "BSD-3-Clause" ]
null
null
null
tests/test_db.py
andreasgrv/methinks
5c65fdb84e35b8082ee35963431a352e06f4af44
[ "BSD-3-Clause" ]
null
null
null
tests/test_db.py
andreasgrv/methinks
5c65fdb84e35b8082ee35963431a352e06f4af44
[ "BSD-3-Clause" ]
null
null
null
import datetime from methinks.db import Entry import pytest from server.app import create_app from server.app import db as _db from sqlalchemy import event from sqlalchemy.orm import sessionmaker @pytest.fixture(scope="session") def app(request): """ Returns session-wide application. """ return create_app() @pytest.fixture(scope="session") def db(app, request): """ Returns session-wide initialised database. """ with app.app_context(): _db.drop_all() _db.create_all() @pytest.fixture(scope="function", autouse=True) def session(app, db, request): """ Returns function-scoped session. """ with app.app_context(): conn = _db.engine.connect() txn = conn.begin() options = dict(bind=conn, binds={}) sess = _db.create_scoped_session(options=options) # establish a SAVEPOINT just before beginning the test # (http://docs.sqlalchemy.org/en/latest/orm/session_transaction.html#using-savepoint) sess.begin_nested() @event.listens_for(sess(), 'after_transaction_end') def restart_savepoint(sess2, trans): # Detecting whether this is indeed the nested transaction of the test if trans.nested and not trans._parent.nested: # The test should have normally called session.commit(), # but to be safe we explicitly expire the session sess2.expire_all() sess.begin_nested() _db.session = sess yield sess # Cleanup sess.remove() # This instruction rollsback any commit that were executed in the tests. txn.rollback() conn.close() def test_insert(session): e = Entry(text='My example', date=datetime.date.today()) session.add(e) session.commit() def test_delete(session): e = Entry(text='My example', date=datetime.date.today()) session.add(e) session.commit() session.delete(e) session.commit() def test_find_by_hash(session): e = Entry(text='My example', date=datetime.date.today()) session.add(e) session.commit() first = Entry.query.filter(Entry.hexid == e.hash).first() assert first == e
26.831325
93
0.64661
0
0
1,133
0.508756
1,502
0.67445
0
0
637
0.286035
55813ead580a9fd9024544a5265e546eab6feb28
3,339
py
Python
mysite/mysite/settings.py
prnake/search_engine_demo
57122052f63bbd054e0ca84d3c6832e6ecb00ec8
[ "MIT" ]
3
2020-08-08T04:44:29.000Z
2020-09-10T07:38:11.000Z
mysite/mysite/settings.py
prnake/search_engine_demo
57122052f63bbd054e0ca84d3c6832e6ecb00ec8
[ "MIT" ]
null
null
null
mysite/mysite/settings.py
prnake/search_engine_demo
57122052f63bbd054e0ca84d3c6832e6ecb00ec8
[ "MIT" ]
null
null
null
import os import environ env = environ.Env( # set casting, default value DEBUG=(bool, False) ) # reading .env file environ.Env.read_env() # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # False if not in os.environ DEBUG = env('DEBUG') # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env('SECRET_KEY') ADMIN_EMAIL = str(env('ADMIN_EMAIL')).split(' ') ALLOWED_HOSTS = ['*'] SESSION_COOKIE_SECURE = True SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTOCOL', 'https') # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', "search.apps.SearchConfig", "scrapy.apps.ScrapyConfig", 'captcha', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.media', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'zh-hans' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = False CSRF_COOKIE_SECURE = False SESSION_COOKIE_SECURE = False MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' # Captcha CAPTCHA_IMAGE_SIZE = (80, 28) CAPTCHA_TIMEOUT = 1
24.91791
91
0.692123
0
0
0
0
0
0
0
0
2,133
0.638814
5581ae54a36323a4a46f3383645e34f4c26755e1
2,891
py
Python
bin/simple_log_server.py
kr0nt4b/ctrl_my_home
fd86b479d78f94aaa5d6cc92f0f49399aaef0733
[ "Apache-2.0" ]
null
null
null
bin/simple_log_server.py
kr0nt4b/ctrl_my_home
fd86b479d78f94aaa5d6cc92f0f49399aaef0733
[ "Apache-2.0" ]
null
null
null
bin/simple_log_server.py
kr0nt4b/ctrl_my_home
fd86b479d78f94aaa5d6cc92f0f49399aaef0733
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python2 """ Simple socket server using threads """ import socket import sys from thread import * import os import logging HOST = '' # Symbolic name meaning all available interfaces PORT = 9998 # Arbitrary non-privileged port LOG_FORMAT = '%(asctime)-15s %(message)s' SMART_LOG = '/var/log/smart/smarthome.log' def init_logging(): smart_log_path = os.path.dirname(SMART_LOG) if not os.path.exists(os.path.dirname(smart_log_path)): os.mkdir(smart_log_path) logging.basicConfig(filename=SMART_LOG, level=logging.DEBUG, format=LOG_FORMAT) return logging.getLogger('log_server') class LogServer: def __init__(self): self.logger = init_logging() self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.logger.info('Socket created') # Bind socket to local host and port try: self.sock.bind((HOST, PORT)) except socket.error as msg: self.logger.info('Bind failed. Error Code : ' + str(msg[0]) + ' Message ' + msg[1]) sys.exit() self.logger.info('Socket bind complete') # Start listening on socket self.sock.listen(10) self.logger.info('Socket now listening') # Function for handling connections. This will be used to create threads def client_thread(self, connection): # Sending message to connected client connection.send('Welcome to the logserver') # send only takes string # infinite loop so that function do not terminate and thread do not end. while True: # Receiving from client data = connection.recv(1024) reply = 'OK\n' if not data: break tokens = data.split(' ') if len(tokens) > 1: level = data.split(' ')[1] if level == 'DEBUG:': self.logger.debug(data) if level == 'INFO:': self.logger.info(data) if level == 'ERROR:': self.logger.error(data) else: self.logger.info(data) connection.sendall(reply) # came out of loop connection.close() def start(self): # now keep talking with the client while True: # wait to accept a connection - blocking call conn, addr = self.sock.accept() self.logger.info('Connected with ' + addr[0] + ':' + str(addr[1])) # start new thread takes 1st argument as a function name to be run, second # is the tuple of arguments to the function. start_new_thread(self.client_thread, (conn,)) self.sock.close() if __name__ == "__main__": log_server = LogServer() try: log_server.start() except KeyboardInterrupt as e: print(e.message)
28.91
95
0.590107
2,113
0.730889
0
0
0
0
0
0
911
0.315116
5581eb881f3ca5ddfe7fd5be0a7447ea5b604281
1,348
py
Python
utils/calc_drh.py
leogoesger/func-flow
c81f73998df9b02c04c19a6beae463121d5a8898
[ "MIT" ]
11
2018-04-14T00:34:34.000Z
2021-05-04T17:23:50.000Z
utils/calc_drh.py
Yesicaleon/func-flow
c81f73998df9b02c04c19a6beae463121d5a8898
[ "MIT" ]
15
2019-04-02T03:35:22.000Z
2022-02-12T13:17:11.000Z
utils/calc_drh.py
Yesicaleon/func-flow
c81f73998df9b02c04c19a6beae463121d5a8898
[ "MIT" ]
9
2018-12-01T19:46:11.000Z
2022-03-31T17:18:15.000Z
import numpy as np from utils.helpers import * percentiles = [10, 25, 50, 75, 90] percentile_keys = ["ten", "twenty_five", "fifty", "seventy_five", "ninty"] def calc_drh(flow_matrix): """Dimensionless Hydrograph Plotter""" average_annual_flow = calculate_average_each_column(flow_matrix) number_of_rows = len(flow_matrix) number_of_columns = len(flow_matrix[0, :]) normalized_matrix = np.zeros((number_of_rows, number_of_columns)) """Initiating the DRH object with desired keys""" drh = {} for index, percentile in enumerate(percentiles): drh[percentile_keys[index]] = [] drh["min"] = [] drh["max"] = [] for row_index, _ in enumerate(flow_matrix[:, 0]): for column_index, _ in enumerate(flow_matrix[row_index, :]): normalized_matrix[row_index, column_index] = flow_matrix[row_index, column_index]/average_annual_flow[column_index] for index, percentile in enumerate(percentiles): drh[percentile_keys[index]].append(round(np.nanpercentile( normalized_matrix[row_index, :], percentile), 2)) drh["min"].append(round(np.nanmin(normalized_matrix[row_index, :]), 2)) drh["max"].append(round(np.nanmax(normalized_matrix[row_index, :]), 2)) return drh
39.647059
116
0.647626
0
0
0
0
0
0
0
0
153
0.113501
55837f3526a4635ce717d7aeac4df126359ab0fc
78
py
Python
{{cookiecutter.repo_name}}/{{cookiecutter.repo_name}}/nn.py
SauravMaheshkar/cookiecutter-kaggle-cv-starter
fb7b8b84daa039034d53398f64e5adfaeead6445
[ "MIT" ]
null
null
null
{{cookiecutter.repo_name}}/{{cookiecutter.repo_name}}/nn.py
SauravMaheshkar/cookiecutter-kaggle-cv-starter
fb7b8b84daa039034d53398f64e5adfaeead6445
[ "MIT" ]
null
null
null
{{cookiecutter.repo_name}}/{{cookiecutter.repo_name}}/nn.py
SauravMaheshkar/cookiecutter-kaggle-cv-starter
fb7b8b84daa039034d53398f64e5adfaeead6445
[ "MIT" ]
null
null
null
import torch.nn as nn __all__ = ["Model"] class Model(nn.Module): pass
9.75
23
0.653846
32
0.410256
0
0
0
0
0
0
7
0.089744
5583a4b67ff425c68e23ee2615524b5aa7a257d1
591
py
Python
meiduo1/apps/meiduo_admin/views/user_group.py
woobrain/nginx-uwsgi-web
5b3ca1fba8205c2c0a2b91d951f812f1c30e12ae
[ "MIT" ]
null
null
null
meiduo1/apps/meiduo_admin/views/user_group.py
woobrain/nginx-uwsgi-web
5b3ca1fba8205c2c0a2b91d951f812f1c30e12ae
[ "MIT" ]
2
2021-05-28T19:45:17.000Z
2021-11-02T15:49:34.000Z
meiduo1/apps/meiduo_admin/views/user_group.py
woobrain/nginx-uwsgi-web
5b3ca1fba8205c2c0a2b91d951f812f1c30e12ae
[ "MIT" ]
null
null
null
from django.contrib.auth.models import Group, Permission from rest_framework.response import Response from rest_framework.viewsets import ModelViewSet from .statistical import UserPagination from apps.meiduo_admin.serializer.user_group import UserGroupSerializer, GroupPerSerializer class UserGroupView(ModelViewSet): serializer_class = UserGroupSerializer queryset = Group.objects.all() pagination_class = UserPagination def simple(self,request): data = Permission.objects.all() ser = GroupPerSerializer(data,many=True) return Response(ser.data)
32.833333
91
0.788494
306
0.517766
0
0
0
0
0
0
0
0
558514d3c5a79e30120fc03aa990f786ff898ee6
355
py
Python
server/soman/announcements/urls.py
bilgorajskim/soman
0d65d632c39a72f51b43fae71f4b00efc7b286c1
[ "MIT" ]
null
null
null
server/soman/announcements/urls.py
bilgorajskim/soman
0d65d632c39a72f51b43fae71f4b00efc7b286c1
[ "MIT" ]
null
null
null
server/soman/announcements/urls.py
bilgorajskim/soman
0d65d632c39a72f51b43fae71f4b00efc7b286c1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from django.conf.urls import url, include from rest_framework import routers, serializers, viewsets from . import views router = routers.DefaultRouter() router.register(r'announcements', views.AnnouncementViewSet) urlpatterns = [ url(r'^api/', include(router.urls)) ]
27.307692
60
0.769014
0
0
0
0
0
0
0
0
47
0.132394
55860760bf8930847b1a7c03d8b03442f460fce6
414
py
Python
backend/app/db/__init__.py
MaxKochanov/stock-news
42776196604e91cd673c94c9f7dea71343791bd1
[ "MIT" ]
null
null
null
backend/app/db/__init__.py
MaxKochanov/stock-news
42776196604e91cd673c94c9f7dea71343791bd1
[ "MIT" ]
null
null
null
backend/app/db/__init__.py
MaxKochanov/stock-news
42776196604e91cd673c94c9f7dea71343791bd1
[ "MIT" ]
null
null
null
from app.db.wrappers import ClickHouse DBS = {} async def init_databases(config): """ Usage example DBS["clickhouse"] = await ClickHouse.init_async(config["clickhouse"]) DBS["mysql"] = await MySQL.init_async(config["mysql"]) """ pass async def shutdown_databases(): """ await ClickHouse.close_async(DBS["clickhouse"]) await MySQL.close_async(DBS["mysql"]) """ pass
19.714286
73
0.654589
0
0
0
0
0
0
359
0.86715
267
0.644928
5588a3d3733f037d283e357aa48613bd11e602e8
1,108
py
Python
ravendb/tests/jvm_migrated_tests/client/executor/test_request_executor.py
ravendb/RavenDB-Python-Client
6286b459b501e755fe8e8591a48acf8616605ccd
[ "MIT" ]
8
2016-10-08T17:45:44.000Z
2018-05-29T12:16:43.000Z
ravendb/tests/jvm_migrated_tests/client/executor/test_request_executor.py
ravendb/RavenDB-Python-Client
6286b459b501e755fe8e8591a48acf8616605ccd
[ "MIT" ]
5
2017-02-12T15:50:53.000Z
2017-09-18T12:25:01.000Z
ravendb/tests/jvm_migrated_tests/client/executor/test_request_executor.py
ravendb/RavenDB-Python-Client
6286b459b501e755fe8e8591a48acf8616605ccd
[ "MIT" ]
8
2016-07-03T07:59:12.000Z
2017-09-18T11:22:23.000Z
from ravendb.documents.conventions.document_conventions import DocumentConventions from ravendb.exceptions.exceptions import DatabaseDoesNotExistException from ravendb.http.request_executor import RequestExecutor from ravendb.http.server_node import ServerNode from ravendb.http.topology import UpdateTopologyParameters from ravendb.tests.test_base import TestBase class TestRequestExecutor(TestBase): def setUp(self): super(TestRequestExecutor, self).setUp() def test_throws_when_updating_topology_of_not_existing_db(self): conventions = DocumentConventions() with RequestExecutor.create( self.store.urls, "no_such_db", conventions, None, None, self.store.thread_pool_executor ) as executor: server_node = ServerNode(self.store.urls[0], "no_such") update_topology_parameters = UpdateTopologyParameters(server_node) update_topology_parameters.timeout_in_ms = 5000 with self.assertRaises(DatabaseDoesNotExistException): executor.update_topology_async(update_topology_parameters).result()
44.32
99
0.773466
740
0.66787
0
0
0
0
0
0
21
0.018953
558930319f7b3b786028343bb2be22080c9650c4
14,091
py
Python
src/icaltool/icaltool.py
randomchars42/icaltool
acf482f08bb4eb7bc000c0b2591c6d76ec8fcaac
[ "Unlicense" ]
null
null
null
src/icaltool/icaltool.py
randomchars42/icaltool
acf482f08bb4eb7bc000c0b2591c6d76ec8fcaac
[ "Unlicense" ]
null
null
null
src/icaltool/icaltool.py
randomchars42/icaltool
acf482f08bb4eb7bc000c0b2591c6d76ec8fcaac
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python3 import csv import logging import logging.config import re import argparse import json import sys from .log import log from . import datatypes logger = logging.getLogger(__name__) default_column_mapping = { 'DTSTART': 0, 'DTEND': 1, 'DTSTAMP': 2, 'UID': 3, 'CREATED': 4, 'DESCRIPTION': 5, 'LAST-MODIFIED': 6, 'LOCATION': 7, 'SEQUENCE': 8, 'SUMMARY': 9, 'CATEGORIES': 10, 'CLASS': 11, 'ATTACH': 12, 'TRANSP': 13, 'RRULE': 14, 'EXDATE': 15, 'STATUS': 16 } custom_column_names = { 'DTSTART': 'DTSTART', 'DTEND': 'DTEND', 'DTSTAMP': 'DTSTAMP', 'UID': 'UID', 'CREATED': 'CREATED', 'DESCRIPTION': 'DESCRIPTION', 'LAST-MODIFIED': 'LAST-MODIFIED', 'LOCATION': 'LOCATION', 'SEQUENCE': 'SEQUENCE', 'SUMMARY': 'SUMMARY', 'CATEGORIES': 'CATEGORIES', 'CLASS': 'CLASS', 'ATTACH': 'ATTACH', 'TRANSP': 'TRANSP', 'RRULE': 'RRULE', 'EXDATE': 'EXDATE', 'STATUS': 'STATUS' } standard_components = [ 'VCALENDAR', 'STANDARD', 'DAYLIGHT', 'VEVENT', 'VTODO', 'VJOURNAL', 'VALARM', 'VFREEBUSY' ] class ICalTool: """ Tool for handling calendar data (ical) as defined in: RFC 2445 (https://datatracker.ietf.org/doc/html/rfc2445) """ def __init__(self): self._reset() def _reset(self): self.vcalendar = None def setup(self, options): # currently only understands # { # "COMPONENTNAME": { # "defined_properties": { # "PROPERTY": [(-1|0|1), "NAMEOFCLASS"], # } # }, # ... # } for key, value in options.items(): if key in standard_components: class_object = getattr(datatypes, key) try: for prop, values in value['defined_properties'].items(): if not len(values) == 2: logger.warning('illegal value for property {} in ' + 'defined_properties'.format(prop)) continue #setattr(class_object.defined_properties, prop, values) class_object.defined_properties[prop] = values except KeyError: logger.warning('did not unterstand option "{}"'.format( key)) def load(self, file_name, component='VEVENT', has_header=True, custom_column_names=custom_column_names, column_mapping=default_column_mapping, delimiter=',', quotechar='"'): if file_name[-3:] == 'csv': self.csv_load(file_name, component, has_header, custom_column_names, column_mapping, delimiter, quotechar) elif file_name[-3:] == 'ics': self.ical_load(file_name) else: logger.error('invalid file given ("{}")'.format(file_name)) sys.exit() def csv_load(self, file_name, component='VEVENT', has_header=True, custom_column_names=custom_column_names, column_mapping=default_column_mapping, delimiter=',', quotechar='"'): with open(file_name, 'r', newline='', encoding='utf-8-sig') as \ file_handle: logger.info('opening {}'.format(file_name)) data = csv.reader( file_handle, delimiter=delimiter, quotechar=quotechar) if has_header: header = next(data) column_mapping = self._csv_get_column_mapping( default_column_mapping, has_header, header, custom_column_names) self.vcalendar = datatypes.VCALENDAR() self.vcalendar.csv_parse(component, data, column_mapping) logger.info('loaded {}'.format(file_name)) def _csv_get_column_mapping(self, default_column_mapping, has_header, header, custom_column_names): if not has_header: # no headers to parse # so use default column mapping return default_column_mapping # get headers from file column_mapping = {} i = 0 for column in header: column_mapping[column] = i i = i + 1 if len(custom_column_names) == 0: return parsed_columns # the user provided costum columns names in a dictionary new_mapping = {} for column_name in column_mapping.keys(): # so go through every available column try: # 1. the parsed column name exists in the user # provided dictionary new_mapping[custom_column_names[column_name]] = \ column_mapping[column_name] except KeyError: # 2. the name cannot be translated so copy it new_mapping[column_name] = \ column_mapping[column_name] return new_mapping def ical_load(self, file_name): with open(file_name, 'r', newline='', encoding='utf-8-sig') as \ file_handle: logger.info('opening {}'.format(file_name)) raw = file_handle.readlines() lines = [] vcalendar = False # clean up for line in raw: # remove the trailing "\n" line = line.rstrip("\r\n") # do not use empty lines if not line == '': if not vcalendar and line == 'BEGIN:VCALENDAR': vcalendar = True logger.debug('recording new VCALENDAR') elif vcalendar: if line == 'END:VCALENDAR': vcalendar = False logger.debug('finished recording VCALENDAR') # unfold lines (folded lines begin with a single whitespace # or tab) elif line[0] == ' ' or line[0] == "\t": # append to previous line lines[len(lines) - 1] += line[1:] else: lines.append(line) self.vcalendar = datatypes.VCALENDAR() self.vcalendar.ical_parse(lines) logger.info('loaded {}'.format(file_name)) def write(self, file_name, component): if file_name[-3:] == 'csv': self.csv_write(file_name, component) elif file_name[-3:] == 'ics': self.ical_write(file_name) else: logger.error('invalid file given ("{}")'.format(file_name)) sys.exit() def csv_write(self, file_name, component='VEVENT'): lines = [] # can only write components of one type with open(file_name, 'w') as file_handle: logger.info('writing to {}'.format(file_name)) # get a list of known properties to use as column names class_object = getattr(datatypes, component) properties = [] for prop, attributes in class_object.defined_properties.items(): if attributes[0] == 2: continue else: properties.append(prop) # build header lines.append('"' + '","'.join(properties) + '"') # fill with data lines.extend(self.vcalendar.csv_write(component)) file_handle.write("\r\n".join(lines)) logger.info('finished writing to {}'.format(file_name)) def ical_write(self, file_name): with open(file_name, 'w') as file_handle: logger.info('writing to {}'.format(file_name)) lines = self.vcalendar.ical_write() for line in lines: text = '' while True: text += line[:74] + "\r\n" line = ' ' + line[74:] if line == ' ': break file_handle.write(text) logger.info('finished writing to {}'.format(file_name)) def filter(self, rules): if self.vcalendar is None: logger.warning('cannot apply rules before calendar data has been '+ 'loaded') return # example component rule: # - keep only events: # COMPONENT:+VEVENT # - filter out all events: # COMPONENT:-VEVENT # - filter out all events and alarms # COMPONENT:-VEVENT,VALARM # example property rules: # - filter out all components with a start date between 2015 and 2017: # DTSTART:-2015to2017 # - keep only components with a start date between 2015-10 and 2017-11: # DTSTART:+2015-10to2017-11 # - ... attended by john.doe@mail.domain: # DTSTART:+2015-10to2017-11;ATTENDEE:+john.doe@mail.domain # - ... but not by jane.doe@mail.domain: # ...;ATTENDEE:+john.doe@mail.domain|-jane.doe@mail.domain raw_rules = rules.split(';') parsed_rules = {} for raw_rule in raw_rules: try: name, rule = raw_rule.split(':') except ValueError: # no ':' logger.warning('malformed rule {}'.format(raw_rule)) continue logger.info('found rule for {}: "{}"'.format(name, rule)) parsed_rules[name] = rule.split('|') try: component_rule = parsed_rules['COMPONENT'][0] logger.debug('found component rule: "{}"'.format(component_rule)) # sanity check if not re.match('[+-]{1}[A-Z,]+', component_rule): logger.error('component filter cannot have inclusion and ' + 'exclusion criteria, "{}" given'.format(component_rule)) return components_keep = component_rule[0] == '+' components = component_rule[1:].split(',') del parsed_rules['COMPONENT'] except KeyError: # no component rule # create an empty list of components to remove components = [] components_keep = False self.vcalendar.filter(components, components_keep, parsed_rules) # taken from : # https://stackoverflow.com/questions/9027028/argparse-argument-order class CustomAction(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): if not 'ordered_args' in namespace: setattr(namespace, 'ordered_args', []) previous = namespace.ordered_args previous.append((self.dest, values)) setattr(namespace, 'ordered_args', previous) def main(): # parse arguments parser = argparse.ArgumentParser( description='Tool to work with calendar data. It can read .ics ' + '(preferred) and .csv files. You can filter the compontents ' + '(events, todos, alarms, journals, freebusy-indicators) by their ' + 'type or the value of their properties, e.g. start date ' + '(DTSTART) or organiser (ORGANIZER). The result can be written ' + 'back to a file, again either .ics (preferred) or .csv.', epilog='') parser.add_argument( 'file', help='the file to load, either .csv or .ics (preferred)', type=str) parser.add_argument( '-o', '--output', help='the file to write to, either .csv or .ics (preferred)', type=str, action=CustomAction) parser.add_argument( '-f', '--filter', help='rules to filter which component types (events, todos, alarms, ' + 'journals, freebusy-indicators) to keep / sort out', type=str, action=CustomAction) parser.add_argument( '-s', '--setup', help='json-string containing options, e.g. ' + '{"VEVENT": {"defined_properties": ' + '{"ATTENDEE": [-1, "Property"]}}} ' + 'to ignore the ATTENDEE property when parsing', type=str) parser.add_argument( '-c', '--component', help='component type stored in the .csv-file (one of: events ' + '[VEVENT], todos [VTODO], alarms [VALARM], journals [VJOURNAL], ' + 'freebusy-indicators [VFREEBUSY]); if no component is specified ' + 'events [VEVENT] are assumed to be the input / desired output', type=str, default='VEVENT') parser.add_argument( '-v', '--verbosity', action='count', help='increase verbosity', default=0) args = parser.parse_args() # setup logging logging_config = log.config if args.verbosity >= 3: logging_config['handlers']['console']['level'] = 'DEBUG' elif args.verbosity == 2: logging_config['handlers']['console']['level'] = 'INFO' elif args.verbosity == 1: logging_config['handlers']['console']['level'] = 'WARNING' else: logging_config['handlers']['console']['level'] = 'ERROR' logging.config.dictConfig(logging_config) # setup ICalTool tool = ICalTool() if not args.setup is None: tool.setup(json.loads(args.setup)) # load file tool.load(args.file, component=args.component) # do whatever if not 'ordered_args' in args: logger.error('nothing to do with the loaded data - exiting') return # process actions in order of flags for arg, value in args.ordered_args: if arg == 'output': if value == args.file: logger.error('please don\'t attempt to overwrite your input ' + 'file - while it is technically possible it seems unwise ' + "\n cancelling") continue tool.write(value, component=args.component) elif arg == 'filter': tool.filter(value) if __name__ == '__main__': main()
33.630072
83
0.544461
9,545
0.677383
0
0
0
0
0
0
4,596
0.326166
55895bd32cc5eee1e655399e93c373ec1fa66d6b
1,462
py
Python
install_R_packages.py
mohaEs/PyVisualField
64c7303c77500c923300536dd717f2e6c0262323
[ "MIT" ]
null
null
null
install_R_packages.py
mohaEs/PyVisualField
64c7303c77500c923300536dd717f2e6c0262323
[ "MIT" ]
null
null
null
install_R_packages.py
mohaEs/PyVisualField
64c7303c77500c923300536dd717f2e6c0262323
[ "MIT" ]
1
2022-01-04T19:33:06.000Z
2022-01-04T19:33:06.000Z
# -*- coding: utf-8 -*- """ Created on Mon Oct 11 18:00:28 2021 @author: Mohammad Eslami """ try: import rpy2 print('===> rpy2 version: ', rpy2.__version__) from rpy2.robjects.packages import importr # import rpy2's package module import rpy2.robjects.packages as rpackages # R vector of strings from rpy2.robjects.vectors import StrVector except: print('===> Something is wrong: rpy2 is not available!') # import R's "base" package lib_base = importr('base') # import R's "utils" package lib_utils = importr('utils') # select a mirror for R packages lib_utils.chooseCRANmirror(ind=1) # select the first mirror in the list # R package names packnames = ('visualFields', 'vfprogression') # Selectively install what needs to be install. names_to_install = [x for x in packnames if not rpackages.isinstalled(x)] if len(names_to_install) > 0: lib_utils.install_packages(StrVector(names_to_install)) try: lib_vf = importr('visualFields') print('===> visualFields R package is installed/loaded successfully!') lib_vfprogression = importr('vfprogression') print('===> vfprogression R package is installed/loaded successfully!') except: print('===> Something is wrong: R packages are not available!') # try: # import PyVisualFields # print('===> PyVisualFields package loaded successfully!') # except: # print('===> Something is wrong: PyVisualFields is not available!')
27.584906
75
0.699042
0
0
0
0
0
0
0
0
832
0.569083
5589cd912e691b17322bc09642b9a8ec0453acc9
8,949
py
Python
usaspending_api/financial_activities/migrations/0005_auto_20161004_1547.py
toolness/usaspending-api
ed9a396e20a52749f01f43494763903cc371f9c2
[ "CC0-1.0" ]
1
2021-06-17T05:09:00.000Z
2021-06-17T05:09:00.000Z
usaspending_api/financial_activities/migrations/0005_auto_20161004_1547.py
toolness/usaspending-api
ed9a396e20a52749f01f43494763903cc371f9c2
[ "CC0-1.0" ]
null
null
null
usaspending_api/financial_activities/migrations/0005_auto_20161004_1547.py
toolness/usaspending-api
ed9a396e20a52749f01f43494763903cc371f9c2
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2016-10-04 19:47 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('financial_activities', '0004_merge_20160928_1603'), ] operations = [ migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='by_direct_reimbursable_fun', new_name='by_direct_reimbursable_funding_source', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='deobligations_recov_by_pro_cpe', new_name='deobligations_recoveries_refund_pri_program_object_class_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='drv_obli_inc_by_prog_obj_class', new_name='drv_obligations_incurred_by_program_object_class', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='drv_obligations_undel_ord_unp', new_name='drv_obligations_undelivered_orders_unpaid', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='gross_outlay_amount_by_pro_cpe', new_name='gross_outlay_amount_by_program_object_class_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='gross_outlay_amount_by_pro_fyb', new_name='gross_outlay_amount_by_program_object_class_fyb', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='gross_outlays_delivered_or_cpe', new_name='gross_outlays_delivered_orders_paid_total_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='gross_outlays_delivered_or_fyb', new_name='gross_outlays_delivered_orders_paid_total_fyb', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='gross_outlays_undelivered_cpe', new_name='gross_outlays_undelivered_orders_prepaid_total_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='gross_outlays_undelivered_fyb', new_name='gross_outlays_undelivered_orders_prepaid_total_fyb', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='obligations_delivered_orde_cpe', new_name='obligations_delivered_orders_unpaid_total_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='obligations_delivered_orde_fyb', new_name='obligations_delivered_orders_unpaid_total_fyb', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='obligations_incurred_by_pr_cpe', new_name='obligations_incurred_by_program_object_class_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='obligations_undelivered_or_cpe', new_name='obligations_undelivered_orders_unpaid_total_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='obligations_undelivered_or_fyb', new_name='obligations_undelivered_orders_unpaid_total_fyb', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl480100_undelivered_or_cpe', new_name='ussgl480100_undelivered_orders_obligations_unpaid_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl480100_undelivered_or_fyb', new_name='ussgl480100_undelivered_orders_obligations_unpaid_fyb', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl480200_undelivered_or_cpe', new_name='ussgl480200_undelivered_orders_oblig_prepaid_advanced_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl480200_undelivered_or_fyb', new_name='ussgl480200_undelivered_orders_oblig_prepaid_advanced_fyb', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl483100_undelivered_or_cpe', new_name='ussgl483100_undelivered_orders_oblig_transferred_unpaid_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl483200_undelivered_or_cpe', new_name='ussgl483200_undeliv_orders_oblig_transferred_prepaid_adv_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl487100_downward_adjus_cpe', new_name='ussgl487100_down_adj_pri_unpaid_undel_orders_oblig_recov_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl487200_downward_adjus_cpe', new_name='ussgl487200_down_adj_pri_ppaid_undel_orders_oblig_refund_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl488100_upward_adjustm_cpe', new_name='ussgl488100_upward_adjust_pri_undeliv_order_oblig_unpaid_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl488200_upward_adjustm_cpe', new_name='ussgl488200_up_adjust_pri_undeliv_order_oblig_ppaid_adv_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl490100_delivered_orde_cpe', new_name='ussgl490100_delivered_orders_obligations_unpaid_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl490100_delivered_orde_fyb', new_name='ussgl490100_delivered_orders_obligations_unpaid_fyb', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl490200_delivered_orde_cpe', new_name='ussgl490200_delivered_orders_obligations_paid_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl490800_authority_outl_cpe', new_name='ussgl490800_authority_outlayed_not_yet_disbursed_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl490800_authority_outl_fyb', new_name='ussgl490800_authority_outlayed_not_yet_disbursed_fyb', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl493100_delivered_orde_cpe', new_name='ussgl493100_delivered_orders_oblig_transferred_unpaid_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl497100_downward_adjus_cpe', new_name='ussgl497100_down_adj_pri_unpaid_deliv_orders_oblig_recov_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl497200_downward_adjus_cpe', new_name='ussgl497200_down_adj_pri_paid_deliv_orders_oblig_refund_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl498100_upward_adjustm_cpe', new_name='ussgl498100_upward_adjust_pri_deliv_orders_oblig_unpaid_cpe', ), migrations.RenameField( model_name='financialaccountsbyprogramactivityobjectclass', old_name='ussgl498200_upward_adjustm_cpe', new_name='ussgl498200_upward_adjust_pri_deliv_orders_oblig_paid_cpe', ), ]
46.853403
84
0.703766
8,799
0.983238
0
0
0
0
0
0
4,774
0.533467
558acc49675640913785e7f0a2b6dca8cde8835f
2,654
py
Python
tests/unit/utils/test_io_utils.py
briannemsick/barrage
f86bd0723abc0ab94b0b8f2ca3ffa5e3b7541455
[ "MIT" ]
16
2019-06-21T22:45:59.000Z
2020-08-20T22:26:22.000Z
tests/unit/utils/test_io_utils.py
briannemsick/barrage
f86bd0723abc0ab94b0b8f2ca3ffa5e3b7541455
[ "MIT" ]
15
2019-06-21T23:09:59.000Z
2020-05-07T03:02:33.000Z
tests/unit/utils/test_io_utils.py
briannemsick/barrage
f86bd0723abc0ab94b0b8f2ca3ffa5e3b7541455
[ "MIT" ]
6
2019-06-22T15:27:39.000Z
2020-07-06T02:18:55.000Z
import json import os import pickle import numpy as np import pandas as pd import pytest from barrage.utils import io_utils @pytest.fixture() def sample_dict(): return {"unit": "test"} def test_save_json(artifact_path, sample_dict): filename = "unit_test.json" io_utils.save_json(sample_dict, filename, artifact_path) assert os.path.isfile(os.path.join(artifact_path, filename)) with open(os.path.join(artifact_path, filename), "r") as fn: obj = json.load(fn) assert obj == sample_dict def test_save_json_default(artifact_path): filename = "unit_test.json" sample_dict = {"unit": np.float32(6.0), "test": np.array([1, 2])} io_utils.save_json(sample_dict, filename, artifact_path) assert os.path.isfile(os.path.join(artifact_path, filename)) with open(os.path.join(artifact_path, filename), "r") as fn: obj = json.load(fn) assert obj == {"unit": 6.0, "test": [1, 2]} def test_load_json(artifact_path, sample_dict): filename = "unit_test.json" with open(os.path.join(artifact_path, filename), "w") as fn: json.dump(sample_dict, fn) assert os.path.isfile(os.path.join(artifact_path, filename)) obj = io_utils.load_json(filename, artifact_path) assert obj == sample_dict def test_save_pickle(artifact_path, sample_dict): filename = "unit_test.pkl" io_utils.save_pickle(sample_dict, filename, artifact_path) assert os.path.isfile(os.path.join(artifact_path, filename)) with open(os.path.join(artifact_path, filename), "rb") as fn: obj = pickle.load(fn) assert obj == sample_dict def test_load_pickle(artifact_path, sample_dict): filename = "unit_test.pkl" with open(os.path.join(artifact_path, filename), "wb") as fn: pickle.dump(sample_dict, fn) assert os.path.isfile(os.path.join(artifact_path, filename)) obj = io_utils.load_pickle(filename, artifact_path) assert obj == sample_dict def test_load_data(artifact_path, sample_dict): expected = pd.DataFrame([sample_dict]) expected.to_json(os.path.join(artifact_path, "unit_test.json")) result = io_utils.load_data("unit_test.json", artifact_path) assert result.equals(expected) expected.to_csv(os.path.join(artifact_path, "unit_test.csv"), index=False) result = io_utils.load_data("unit_test.csv", artifact_path) assert result.equals(expected) with pytest.raises(FileNotFoundError): io_utils.load_data("test_unit.42", artifact_path) expected.to_json(os.path.join(artifact_path, "unit_test.foo")) with pytest.raises(ValueError): io_utils.load_data("unit_test.foo", artifact_path)
31.223529
78
0.715901
0
0
0
0
64
0.024115
0
0
237
0.089299
558cbd4a7ce3e41aaed8e2b86ecb2cf3f058fd07
20,998
py
Python
script.py
kenneth2001/Virus
e7d0b650d9d7a4eaab9bd87b3695b791e1f105b1
[ "MIT" ]
null
null
null
script.py
kenneth2001/Virus
e7d0b650d9d7a4eaab9bd87b3695b791e1f105b1
[ "MIT" ]
null
null
null
script.py
kenneth2001/Virus
e7d0b650d9d7a4eaab9bd87b3695b791e1f105b1
[ "MIT" ]
null
null
null
import asyncio import requests from bs4 import BeautifulSoup from datetime import date, datetime import discord import numpy as np from urllib.error import HTTPError import yt_dlp as youtube_dl from discord.ext import commands import os from pytz import timezone from yt_dlp.utils import DownloadError, ExtractorError from util.log import pretty_output, pretty_print from util.preprocessing import load_config, load_gif, load_user import secrets try: print('LOADING config.txt') TOKEN, TIMEZONE, MODE = load_config('config/config.txt') print('LOADED config.txt\n') except: print('ERROR LOADING config.txt\n') tz = timezone(TIMEZONE) token = TOKEN #os.environ['token'] # 0: local, 1: repl.it # For setting up bot on replit.com if MODE == 1: from util.keep_alive import keep_alive os.environ['MPLCONFIGDIR'] = '/tmp/' #"/home/runner/Virus-demo/tmp" import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt elif MODE == 0: import matplotlib.pyplot as plt import sympy else: print('UNDEFINED MODE') exit() try: print('LOADING gif.json') gif = load_gif('config/gif.json') print('LOADED gif.json\n') except: print('ERROR LOADING gif.json\n') try: print('LOADING user.json') user = load_user('config/user.json') print('LOADED user.json\n') except: print('ERROR LOADING user.json\n') ytdl_format_options = { 'format': 'bestaudio/best', 'noplaylist': True, 'nocheckcertificate': True, 'ignoreerrors': False, 'logtostderr': False, 'quiet': True, 'no_warnings': True, 'default_search': 'auto', 'source_address': '0.0.0.0' } ffmpeg_options = { 'options': '-vn', "before_options": "-reconnect 1 -reconnect_streamed 1 -reconnect_delay_max 5" } # channel_var stores all variable for differnet channels # key: serverid # value: 1. activated[bool] - indicate whether the music playing function is activated # 2. bully[dict] - list of user being bullied # 3. ctx[object] # 4. log[list] - log of user entering / leaving voice channels # 5. playing[bool] - indicate whether the bot is playing music # 6. queue[list] - list of music to be played channel_var = {} # return gif link def send_gif(msg): if msg in gif.keys(): return gif[msg] # Wong Tai Sin Fortune Sticks (黃大仙求籤) def get_stick(tag): num = np.random.randint(1, 101) URL = f'https://andy.hk/divine/wongtaisin/{num}' page = requests.get(URL) soup = BeautifulSoup(page.content, "html.parser") result = soup.find(id='content') job_elements = result.find("div", class_="inner-padding col-md-5 col-md-offset-7") stick_no = job_elements.find('h2', class_='id-color text-center').text stick_author = job_elements.find_all('h4', class_='text-center')[0].text stick_content = job_elements.find_all('h4', class_='text-center')[1].text stick_explain = job_elements.text.split('仙機:')[1].split('解說及記載:')[0] stick_story = job_elements.text.split('仙機:')[1].split('解說及記載:')[1].split('■')[0] text = tag + '求得' + stick_no + '\n' + stick_author + '\n\n籤文:\n' + stick_content + '\n\n仙機:' + stick_explain + '\n解說及記載' + stick_story return text client = commands.Bot(command_prefix='#', help_command=None) @client.event async def on_connect(): print("Bot activated successfully") async def initialize(server_id: int, ctx: object=None): """Initializing channel_var Args: server_id (int) ctx (object, optional): Defaults to None. """ global channel_var info = channel_var.get(server_id, -1) if info != -1: if channel_var[server_id]['ctx'] == None and ctx != None: channel_var[server_id]['ctx'] = ctx return else: channel_var[server_id] = {'ctx':ctx, 'queue':[], 'activated':False, 'playing':True, 'log':[], 'bully':{}} @client.event async def on_voice_state_update(member, before, after): server_id = member.guild.id await initialize(server_id) global channel_var if before.channel is None and after.channel is not None: channel_var[server_id]['log'].append([datetime.now(tz).strftime('%Y-%m-%d %H:%M:%S'), '*' + str(member) + '* Entered `' + str(after.channel) + '`']) if before.channel is not None and after.channel is None: channel_var[server_id]['log'].append([datetime.now(tz).strftime('%Y-%m-%d %H:%M:%S'), '*' + str(member) + '* Leaved `' + str(before.channel) + '`']) if before.channel is not None and after.channel is not None: channel_var[server_id]['log'].append([datetime.now(tz).strftime('%Y-%m-%d %H:%M:%S'), '*' + str(member) + '* Leaved `' + str(before.channel)+ '`, Joined `' + str(after.channel) + '`']) @client.command(name='log') async def log(ctx): await initialize(ctx.guild.id, ctx) global channel_var if len(channel_var[ctx.guild.id]['log']) == 0: return embed = discord.Embed(color = discord.Colour.red()) embed.set_author(name='Log (Recent 20 records)') for field in channel_var[ctx.guild.id]['log'][-20:]: embed.add_field(name=field[0], value=field[1], inline=False) await ctx.send(embed=embed) async def play_music(ctx): while not client.is_closed(): global channel_var if not len(channel_var[ctx.guild.id]['queue']) == 0 and ctx is not None: server = ctx.message.guild voice_channel = server.voice_client if (voice_channel and voice_channel.is_connected() and not voice_channel.is_playing() and channel_var[ctx.guild.id]['playing']) == True: server = ctx.message.guild voice_channel = server.voice_client try: link = channel_var[ctx.guild.id]['queue'][0][1] title = channel_var[ctx.guild.id]['queue'][0][2] player = discord.FFmpegPCMAudio(link, **ffmpeg_options) voice_channel.play(player) await ctx.send(f'**Now playing:** {title}') except DownloadError: await ctx.send(f'**Download error:** {title}') del(channel_var[ctx.guild.id]['queue'][0]) await asyncio.sleep(1) @client.command(name='play') async def play(ctx, *url): url = ' '.join(url) await initialize(ctx.guild.id, ctx) global channel_var def music(link): with youtube_dl.YoutubeDL(ytdl_format_options) as ydl: info = ydl.extract_info(link, download=False) # Handle if the url is a playlist if 'entries' in info: info = info['entries'][0] LINK = info['webpage_url'] URL = info['url'] TITLE = info['title'] return LINK, URL, TITLE if not ctx.message.author.voice: # handle if message author is not inside any voice channel await ctx.send("**You are not connected to a voice channel**") return elif ctx.message.guild.voice_client: # if bot is inside any voice channel if ctx.message.guild.voice_client.channel != ctx.message.author.voice.channel: # if bot is not inside the author's channel channel = ctx.message.author.voice.channel user = await ctx.guild.fetch_member(client.user.id) ctx.voice_client.pause() await user.move_to(channel) ctx.voice_client.resume() else: # if bot is not inside any voice channel channel = ctx.message.author.voice.channel await channel.connect() # connect to message author's channel server = ctx.message.guild voice_channel = server.voice_client if url is None or url == '': if len(channel_var[ctx.guild.id]['queue']) == 0: return else: try: link, player_link, title = music(url) channel_var[ctx.guild.id]['queue'].append([link, player_link, title]) except ExtractorError: await ctx.send('**Error:** ' + url) except HTTPError: await ctx.send('**Error:** ' + url) except DownloadError: await ctx.send('**Error:** ' + url) # activate music playing function if channel_var[ctx.guild.id]['activated'] == False: channel_var[ctx.guild.id]['activated'] = True await play_music(ctx) @client.command(name='debug') async def debug(ctx): def check(m): return m.author == ctx.message.author func_token = secrets.token_hex(10) print("Token:", func_token) await ctx.send('**Please type in the token displayed in console**') msg = await client.wait_for("message", check=check) if msg.content == func_token: pretty_print(channel_var) pretty_output(channel_var, filename='tmp.json') await ctx.send(file=discord.File('tmp.json')) else: await ctx.send("**Only admin can use this command**") @client.command(name='queue') async def queue_(ctx): await initialize(ctx.guild.id, ctx) global channel_var if len(channel_var[ctx.guild.id]['queue']) == 0: await ctx.send('**Queue is empty!**') else: async with ctx.typing(): await ctx.send('\n'.join([f'{idx}. {item[2]}\n{item[0]}' for idx, item in enumerate(channel_var[ctx.guild.id]['queue'], start=1)])) @client.command(name='stop') async def stop(ctx): voice_client = ctx.message.guild.voice_client await voice_client.disconnect() @client.command(name='gpa') async def gpa(ctx): x = round(np.random.uniform(3,4) - np.random.normal(0, 1), 2) text = 4.0 if x > 4 else x if text >= 3.8: text = "Predicted GPA: " + str(text) elif text >= 3.0: text = "Predicted GPA: " + str(text) elif text >= 2.5: text = "Predicted GPA: " + str(text) else: text = "Predicted GPA: " + str(text) tag = "<@" + str(ctx.message.author.id) + ">" await ctx.message.channel.send(str(text)+tag) @client.command(name='pause') async def pause(ctx): await initialize(ctx.guild.id, ctx) global channel_var channel_var[ctx.guild.id]['playing'] = False if ctx.voice_client is not None: ctx.voice_client.pause() await ctx.send('**Paused**') @client.command(name='resume') async def resume(ctx): await initialize(ctx.guild.id, ctx) global channel_var channel_var[ctx.guild.id]['playing'] = True if ctx.voice_client is not None: ctx.voice_client.resume() await ctx.send('**Resumed**') @client.command(name='skip') async def skip(ctx): await initialize(ctx.guild.id, ctx) global channel_var if ctx.voice_client is not None: ctx.voice_client.stop() await ctx.send('**Skipped**') @client.listen() async def on_message(message): author = message.author author_id = str(message.author.id) tag = "<@" + str(message.author.id) + ">" msg = message.content.lower() if author == client.user: return #print('Debugging:', author, msg) today = date.today() if user.get(author_id, -1) != -1: if user[author_id]['date'] != today: user[author_id]['date'] = today await message.channel.send(user[author_id]['text'] + tag) if message.content.startswith('#hello'): await message.channel.send("Hello World!") gif = send_gif(msg) if gif is not None: await message.channel.send(gif) @client.command(name='help') async def help(ctx): embed = discord.Embed(title="Virus", url="https://github.com/kenneth2001/virus", description="Discord Bot developed by YeeKiiiiii 2021", color=discord.Colour.blue()) embed.set_author(name="Virus", url="https://github.com/kenneth2001/virus", icon_url="https://user-images.githubusercontent.com/24566737/132656284-f0ff6571-631c-4cef-bed7-f575233cbf5f.png") embed.add_field(name=':musical_note: __Music__', value="""1. `#play [url]` Play music, tested platform: Youtube, Soundcloud 2. `#pause` Pause music 3. `#resume` Resume music 4. `#skip` Play next song 5. `#queue` Display the queue 6. `#stop` Kick the bot from voice channel""", inline=False) embed.add_field(name=':pencil2: __Graph (Developing)__', value="""1. `#plot` Create simple scatter/line plot""", inline=False) embed.add_field(name=':black_joker: __Kidding__', value="""1. `#joke [userid] [times] [duration]` Move a specified user into random voice channels randomly and repeatly 2. `#leavemealone` Stop yourself from being bullied 3. `#save [userid]` Recuse your friend from cyber-bullying""", inline=False) embed.add_field(name=':man_office_worker: __Other__', value="""1. `#stick` Fortune sticks from Wong Tai Sin 2. `#gpa` Get prediction of your GPA (Maximum: 4.0) 3. `#help` Display a list of all commands aviliable 4. `#credit` Display information of the bot developer 5. `#hello` Return 'hello world' 6. `#ping` Return latency 7. `#log` Display the previous 20 in/out user 8. `#clear` Delete previous 30 messages sent by this bot / started with '#' 9. `#debug` Check parameters (for debugging)""", inline=False) embed.add_field(name=':new: __New Features (Experimental)__', value="""1. `#when` Return the start time of the bot 2. `#dm [userid] [message]` Send message to any user privately""" ) embed.add_field(name=':frame_with_picture: __GIF__', value="Automatically return GIF if the message matches the following keywords\n`" + '` `'.join(gif.keys()) +'`', inline=False) embed.set_footer(text="Last updated on 25 December 2021") await ctx.send(embed=embed) @client.command(name='ping') async def ping(ctx): await ctx.send(f'In {round(client.latency * 1000)}ms') @client.command(name='stick') async def stick(ctx): tag = "<@" + str(ctx.message.author.id) + ">" text = get_stick(tag) await ctx.send(text) @client.command(name='credit') async def credit(ctx): await ctx.send('Created By kenneth\nLast Update On 18/9/2021\nhttps://github.com/kenneth2001') @client.command(name='clear') async def clear(ctx): def is_bot(m): try: return m.author == client.user or m.content[0] == '#' except: return False deleted = await ctx.message.channel.purge(limit=30, check=is_bot) await ctx.send('Deleted {} message(s)'.format(len(deleted)), delete_after=10) @client.command(name='joke') async def joke(ctx, userid=None, n=10, sleep_time=0.5): await initialize(ctx.guild.id, ctx) global channel_var try: userid = int(userid) user = await ctx.guild.fetch_member(userid) info = channel_var[ctx.guild.id]['bully'].get(userid, -1) if info == -1: channel_var[ctx.guild.id]['bully'][userid] = True channel_var[ctx.guild.id]['bully'][userid] = True tag1 = "<@" + str(ctx.message.author.id) + ">" tag2 = "<@" + str(userid) + ">" await ctx.send(tag1 + " is pranking " + tag2) await ctx.send('To stop, type #leavemealone') except: tag = "<@" + str(ctx.message.author.id) + ">" await ctx.send('Please provide a valid user id!' + tag) return while(n > 0): if channel_var[ctx.guild.id]['bully'][userid] == False: return try: if user.voice is not None: await user.move_to(np.random.choice(ctx.guild.voice_channels)) n -= 1 except: pass await asyncio.sleep(sleep_time) def generate_question(): question = "" for i in range(6): question += str(np.random.randint(1, 21)) question += np.random.choice(['*', '+', '-']) question += str(np.random.randint(1, 21)) return question @client.command(name='leavemealone') async def leavemealone(ctx): await initialize(ctx.guild.id, ctx) global channel_var info = channel_var[ctx.guild.id]['bully'].get(ctx.message.author.id, -1) if info == -1: channel_var[ctx.guild.id]['bully'][ctx.message.author.id] = True def check(m): return m.author == ctx.message.author question = generate_question() await ctx.send('Question: `'+question+'`\nType your answer:') answer = int(sympy.sympify(question)) print('Answer:', answer) msg = await client.wait_for("message", check=check) tag = "<@" + str(ctx.message.author.id) + ">" if int(msg.content) == answer: channel_var[ctx.guild.id]['bully'][ctx.message.author.id] = False await ctx.send("Good Job" + tag) else: await ctx.send("on9" + tag) @client.command(name='save') async def save(ctx, id=None): if id is None: await ctx.send("You must specify an id") return await initialize(ctx.guild.id, ctx) global channel_var userid = int(id) def check(m): return m.author == ctx.message.author if channel_var[ctx.guild.id]['bully'].get(userid, -1) == -1: await ctx.send("This user is not under bully list") elif channel_var[ctx.guild.id]['bully'][userid] == False: await ctx.send("This user is not being bullied") else: question = generate_question() await ctx.send('Question: `'+question+'`\nType your answer:') if MODE == 0: answer = int(sympy.sympify(question)) elif MODE == 1: answer = int(eval(question)) print('Answer:', answer) msg = await client.wait_for("message", check=check) tag = "<@" + str(ctx.message.author.id) + ">" if int(msg.content) == answer: channel_var[ctx.guild.id]['bully'][userid] = False await ctx.send("Good Job" + tag) else: await ctx.send("Be careful" + tag) # experimental @client.command(name='plot') async def plot(ctx): def check(m): return m.author == ctx.message.author await ctx.send("1. Please Enter The Type of The Plot") await ctx.send("a: scatter plot, b: line plot") msg = await client.wait_for("message", check=check) graph_type = msg.content await ctx.send("2. Please enter the x-coordinate for all points (seperated by comma)") msg = await client.wait_for("message", check=check) x = [int(i) for i in msg.content.split(',')] await ctx.send("3. Please enter the y-coordinate for all points (seperated by comma)") msg = await client.wait_for("message", check=check) y = [int(i) for i in msg.content.split(',')] await ctx.send("4. Please enter the title of the plot") msg = await client.wait_for("message", check=check) title = msg.content await ctx.send("5. Please enter the name of x-axis") msg = await client.wait_for("message", check=check) x_name = msg.content await ctx.send("6. Please enter the name of y-axis") msg = await client.wait_for("message", check=check) y_name = msg.content plt.plot(x, y, linestyle="-" if graph_type == 'b' else 'none', marker='.') plt.title(title) plt.xlabel(x_name) plt.ylabel(y_name) plt.savefig('plot.png') await ctx.send(file=discord.File('plot.png')) os.remove('plot.png') plt.clf() # experimental @client.command(name='when') async def when(ctx): await ctx.send(start_time.strftime("**Bot started from %Y-%m-%d %I-%M %p**")) # experimental @client.command(name='dm') async def dm(ctx, userid, *message): try: userid = int(userid) user = await client.fetch_user(userid) await user.send(' '.join(message)) await ctx.send("**Message sent successfully**") except: await ctx.send("**Message is not sent**") if MODE == 1: keep_alive() # For setting up bot on replit.com start_time = datetime.now(tz) client.run(token)
37.563506
194
0.595247
0
0
0
0
15,558
0.738396
16,501
0.783151
6,691
0.317561
558d879413f6f88e3c45e2ca06534a675e1043f9
480
py
Python
solutions/1281-subtract-the-product-and-sum-of-digits-of-an-integer.py
lk-hang/leetcode
4c8735463bdcb9f48666e03a39eb03ee9f625cec
[ "MIT" ]
null
null
null
solutions/1281-subtract-the-product-and-sum-of-digits-of-an-integer.py
lk-hang/leetcode
4c8735463bdcb9f48666e03a39eb03ee9f625cec
[ "MIT" ]
null
null
null
solutions/1281-subtract-the-product-and-sum-of-digits-of-an-integer.py
lk-hang/leetcode
4c8735463bdcb9f48666e03a39eb03ee9f625cec
[ "MIT" ]
null
null
null
""" Given an integer number n, return the difference between the product of its digits and the sum of its digits. """ class Solution: def subtractProductAndSum(self, n: int) -> int: if n < 10: return 0 running_prod = 1 running_sum = 0 while n > 0: rest = n % 10 running_prod *= rest running_sum += rest n = n // 10 return running_prod - running_sum
25.263158
109
0.522917
352
0.733333
0
0
0
0
0
0
117
0.24375
558e58ba058923b58851710da67bc2d4ad87a57f
1,031
py
Python
VideoIndexerDemo/VideoIndexer/application.py
microsoft/ai4accessibility
4c13d006f285e31f01d1bc71a55c20e9234713a5
[ "MIT" ]
2
2021-07-11T06:03:43.000Z
2021-10-09T23:37:21.000Z
VideoIndexerDemo/VideoIndexer/application.py
microsoft/ai4accessibility
4c13d006f285e31f01d1bc71a55c20e9234713a5
[ "MIT" ]
6
2021-09-08T03:07:13.000Z
2022-03-12T00:57:07.000Z
VideoIndexerDemo/VideoIndexer/application.py
microsoft/ai4accessibility
4c13d006f285e31f01d1bc71a55c20e9234713a5
[ "MIT" ]
3
2021-02-14T18:51:31.000Z
2021-02-14T18:51:41.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from dotenv import load_dotenv load_dotenv() import os import json import requests from concurrent.futures import ThreadPoolExecutor from flask import Flask, flash, request, redirect, url_for, session from video_captioning.main import upload_video, video_callback, train_custom_speech executor = ThreadPoolExecutor(max_workers=20) app = Flask("layout_detection") @app.route('/api/v1/vc', methods=['POST']) def vc_upload(): params = request.get_json() return_data = upload_video(params) return json.dumps(return_data) @app.route('/api/v1/customspeech', methods=['POST']) def customspeech_train(): params = request.get_json() return_data = train_custom_speech(params) return json.dumps(return_data) @app.route('/api/v1/vc/callback', methods=['POST']) def vc_callback(): params = request.get_json() return video_callback(request.args.get('id')) if __name__ == "__main__": app.run(port=5000, debug=True, host='0.0.0.0')
29.457143
83
0.747818
0
0
0
0
508
0.492726
0
0
185
0.179437
559154d893c3d43225a58bc587edd3aa01dea828
5,154
py
Python
code/tests/unit/api/test_enrich.py
CiscoSecurity/tr-05-serverless-cybercrime-tracker
28fcfaa220025c9e8523633a4a9a04f319656756
[ "MIT" ]
3
2020-04-28T08:53:14.000Z
2020-12-17T14:25:32.000Z
code/tests/unit/api/test_enrich.py
CiscoSecurity/tr-05-serverless-cybercrime-tracker
28fcfaa220025c9e8523633a4a9a04f319656756
[ "MIT" ]
2
2020-03-06T15:00:22.000Z
2020-06-26T11:21:52.000Z
code/tests/unit/api/test_enrich.py
CiscoSecurity/tr-05-serverless-cybercrime-tracker
28fcfaa220025c9e8523633a4a9a04f319656756
[ "MIT" ]
null
null
null
from http import HTTPStatus from requests.exceptions import SSLError from pytest import fixture from unittest import mock from tests.unit.mock_for_tests import ( CYBERCRIME_RESPONSE_MOCK, EXPECTED_DELIBERATE_RESPONSE, EXPECTED_OBSERVE_RESPONSE, EXPECTED_RESPONSE_500_ERROR, EXPECTED_RESPONSE_404_ERROR, CYBERCRIME_ERROR_RESPONSE_MOCK, EXPECTED_RESPONSE_SSL_ERROR ) def routes(): yield '/deliberate/observables' yield '/observe/observables' @fixture(scope='module', params=routes(), ids=lambda route: f'POST {route}') def route(request): return request.param @fixture(scope='function') def cybercrime_api_request(): with mock.patch('requests.get') as mock_request: yield mock_request def cybercrime_api_response(*, ok, payload=None, status_error=None): mock_response = mock.MagicMock() mock_response.ok = ok if ok and not payload: payload = CYBERCRIME_RESPONSE_MOCK else: mock_response.status_code = status_error mock_response.json = lambda: payload return mock_response @fixture(scope='module') def invalid_json(): return [{'type': 'unknown', 'value': ''}] def test_enrich_call_with_invalid_json_failure(route, client, invalid_json): response = client.post(route, json=invalid_json) assert response.status_code == HTTPStatus.OK @fixture(scope='module') def valid_json(): return [{'type': 'ip', 'value': '104.24.123.62'}] @fixture(scope='module') def valid_json_multiple(): return [ {'type': 'ip', 'value': '104.24.123.62'}, {'type': 'ip', 'value': '0.0.0.0'}, ] def test_enrich_call_success(route, client, valid_json, cybercrime_api_request): cybercrime_api_request.return_value = cybercrime_api_response(ok=True) response = client.post(route, json=valid_json) assert response.status_code == HTTPStatus.OK data = response.get_json() if route == '/observe/observables': verdicts = data['data']['verdicts'] assert verdicts['docs'][0].pop('valid_time') judgements = data['data']['judgements'] assert judgements['docs'][0].pop('id') assert judgements['docs'][0].pop('valid_time') assert data == EXPECTED_OBSERVE_RESPONSE if route == '/deliberate/observables': verdicts = data['data']['verdicts'] assert verdicts['docs'][0].pop('valid_time') assert data == EXPECTED_DELIBERATE_RESPONSE def test_enrich_error_with_data(route, client, valid_json_multiple, cybercrime_api_request): cybercrime_api_request.side_effect = ( cybercrime_api_response(ok=True), cybercrime_api_response( ok=False, payload=CYBERCRIME_ERROR_RESPONSE_MOCK, status_error=HTTPStatus.INTERNAL_SERVER_ERROR) ) response = client.post(route, json=valid_json_multiple) assert response.status_code == HTTPStatus.OK data = response.get_json() if route == '/observe/observables': verdicts = data['data']['verdicts'] assert verdicts['docs'][0].pop('valid_time') judgements = data['data']['judgements'] assert judgements['docs'][0].pop('id') assert judgements['docs'][0].pop('valid_time') expected_response = {} expected_response.update(EXPECTED_OBSERVE_RESPONSE) expected_response.update(EXPECTED_RESPONSE_500_ERROR) assert data == expected_response if route == '/deliberate/observables': verdicts = data['data']['verdicts'] assert verdicts['docs'][0].pop('valid_time') expected_response = {} expected_response.update(EXPECTED_DELIBERATE_RESPONSE) expected_response.update(EXPECTED_RESPONSE_500_ERROR) assert data == expected_response def test_enrich_call_404(route, client, valid_json, cybercrime_api_request): cybercrime_api_request.return_value = cybercrime_api_response( ok=False, payload=CYBERCRIME_ERROR_RESPONSE_MOCK, status_error=HTTPStatus.NOT_FOUND ) response = client.post(route, json=valid_json) assert response.status_code == HTTPStatus.OK assert response.get_json() == EXPECTED_RESPONSE_404_ERROR def test_enrich_call_500(route, client, valid_json, cybercrime_api_request): cybercrime_api_request.return_value = cybercrime_api_response( ok=False, payload=CYBERCRIME_ERROR_RESPONSE_MOCK, status_error=HTTPStatus.INTERNAL_SERVER_ERROR ) response = client.post(route, json=valid_json) assert response.status_code == HTTPStatus.OK assert response.get_json() == EXPECTED_RESPONSE_500_ERROR def test_enrich_call_with_ssl_error(route, client, valid_json, cybercrime_api_request): mock_exc = mock.MagicMock() mock_exc.reason.args.__getitem__().verify_message \ = 'self signed certificate' cybercrime_api_request.side_effect = SSLError(mock_exc) response = client.post(route, json=valid_json) assert response.status_code == HTTPStatus.OK assert response.get_json() == EXPECTED_RESPONSE_SSL_ERROR
29.451429
76
0.695188
0
0
191
0.037059
607
0.117773
0
0
579
0.11234
55915bb2fe7f5c79e7cd44acfd89dd079dc66443
2,658
py
Python
Python/Euler 01 - 10.py
jiegillet/project-euler
3b530e11af00e9d9eccb7aa41ed8018ee6d7b472
[ "MIT" ]
null
null
null
Python/Euler 01 - 10.py
jiegillet/project-euler
3b530e11af00e9d9eccb7aa41ed8018ee6d7b472
[ "MIT" ]
null
null
null
Python/Euler 01 - 10.py
jiegillet/project-euler
3b530e11af00e9d9eccb7aa41ed8018ee6d7b472
[ "MIT" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 """ untitled.py Created by Jérémie on 2013-10-26. Copyright (c) 2013 __MyCompanyName__. All rights reserved. """ """ # Problem 1 lim=1000 s=0 for i in range(lim): if i%3==0 or i%5==0: s+=i print s print sum([x for x in range(1000) if x % 3== 0 or x % 5== 0]) """ """ # Problem 2 lim=4000000 f1,f2,s=1,1,0 while f2<lim: f1,f2=f2,f1+f2 if f2%2==0: s+=f2 print s """ """" # Problem 3 num=600851475143 while num>1: div=2 while num%div!=0 and div!=num: div+=1 num/=div print div """ """ # Problem 4 max=0 for i in range(999,99,-1): for j in range(999,i-99,-1): if str(i*j)==str(i*j)[::-1] and i>max: max=i*j print max """ """ # Problem 5 print 2**4*3**2*5*7*11*13*17*19 """ """ # Problem 6 print sum(range(1,101))**2- sum([e**2 for e in range(1,101)]) """ """ # Problem 7 primes=[2,3] n=3 # while len(primes)<10001: # n+=2 # if not 0 in [n%p for p in primes]: # primes.append(n) # print primes[-1] # 45 seconds while len(primes)<100001: n+=2 p=True for p in primes: if p*p>n: break if n%p==0: p=False; break if p: primes.append(n) print primes[-1] # .3 seconds for 10001 # 6 second for 100001 """ """ # Problem 8 num=str(7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450) print max( int(num[i])*int(num[i+1])*int(num[i+2])*int(num[i+3])*int(num[i+4]) for i in range(len(num)-4)) """ """ # Problem 9 sol=0 for i in range(1000,2,-1): for j in range(i-1,2,-1): if i**2==j**2+(1000-i-j)**2: sol=i*j*(1000-i-j) break if sol>0: break print sol """ #Problem 10 primes=[2,3] n=3 while primes[-1]<2E6: n+=2 p=True for p in primes: if p*p>n: break if n%p==0: p=False; break if p: primes.append(n) print sum(primes)-primes[-1]
25.557692
1,009
0.748683
0
0
0
0
0
0
0
0
2,470
0.928571
5593fe3d21ad82b5382d08854df0a8f99eec0ed9
1,900
py
Python
src/ensae_teaching_cs/tests/american_cities.py
Jerome-maker/ensae_teaching_cs
43ea044361ee60c00c85aea354a7b25c21c0fd07
[ "MIT" ]
73
2015-05-12T13:12:11.000Z
2021-12-21T11:44:29.000Z
src/ensae_teaching_cs/tests/american_cities.py
Jerome-maker/ensae_teaching_cs
43ea044361ee60c00c85aea354a7b25c21c0fd07
[ "MIT" ]
90
2015-06-23T11:11:35.000Z
2021-03-31T22:09:15.000Z
src/ensae_teaching_cs/tests/american_cities.py
Jerome-maker/ensae_teaching_cs
43ea044361ee60c00c85aea354a7b25c21c0fd07
[ "MIT" ]
65
2015-01-13T08:23:55.000Z
2022-02-11T22:42:07.000Z
""" @file @brief Function to test others functionalities """ import os import pandas from pyquickhelper.loghelper import fLOG from ..faq.faq_matplotlib import graph_cities from ..special import tsp_kruskal_algorithm, distance_haversine def american_cities(df_or_filename, nb_cities=-1, img=None, fLOG=fLOG): """ Computes the :epkg:`TSP` for american cities. @param df_or_filename dataframe @param nb_cities number of cities to keep @param img image to produce @param fLOG logging function @return dataframe (results) """ def haversine(p1, p2): return distance_haversine(p1[0], p1[1], p2[0], p2[1]) if isinstance(df_or_filename, str): df = pandas.read_csv(df_or_filename) else: df = df_or_filename df["Longitude"] = -df["Longitude"] df = df[df.Latitude < 52] df = df[df.Longitude > -130].copy() fLOG(df.columns) df = df.dropna() if nb_cities > 0: df = df[:nb_cities].copy() fLOG(df.shape) points = [(row[1], row[2], row[3]) for row in df.itertuples(index=False)] fLOG("number of cities:", len(points)) trip = tsp_kruskal_algorithm( points, distance=haversine, fLOG=fLOG, max_iter=10) # trip dftrip = pandas.DataFrame( trip, columns=["Latitude", "Longitude", "City"]) # graph for i in range(0, dftrip.shape[0]): if i % 10 != 0: dftrip.loc[i, "City"] = "" if img is not None: import matplotlib.pyplot as plt fig, ax = graph_cities(dftrip, markersize=3, linked=True, fLOG=fLOG, fontcolor="red", fontsize='16', loop=True, figsize=(32, 32)) assert ax is not None fig.savefig(img) assert os.path.exists(img) plt.close('all') fLOG("end") return dftrip
29.6875
91
0.596316
0
0
0
0
0
0
0
0
479
0.252105
55948a0d8acfcbe1f96f58b36c1bb83505bd04f6
175
py
Python
first_task.py
yashika0607/Task1_python
4a867227f48f0c8ed9ad418fb412550eef3a7571
[ "Apache-2.0" ]
null
null
null
first_task.py
yashika0607/Task1_python
4a867227f48f0c8ed9ad418fb412550eef3a7571
[ "Apache-2.0" ]
null
null
null
first_task.py
yashika0607/Task1_python
4a867227f48f0c8ed9ad418fb412550eef3a7571
[ "Apache-2.0" ]
null
null
null
#task 1 r=float(input("Enter the radius of the circle?\n")) pi=3.143 area=pi*r*r print("Area of the circle is ",area) #task 2 x=input("Enter the file name\n") print(x+".py")
17.5
51
0.674286
0
0
0
0
0
0
0
0
101
0.577143
5594b24c92581e7c3ba26f490dea8b770f2cf8fd
2,049
py
Python
tools/ntp_spoofer.py
dschoonwinkel/pypacker
58c833f40207db746b0b2995ca3835a533e0258e
[ "BSD-3-Clause" ]
null
null
null
tools/ntp_spoofer.py
dschoonwinkel/pypacker
58c833f40207db746b0b2995ca3835a533e0258e
[ "BSD-3-Clause" ]
null
null
null
tools/ntp_spoofer.py
dschoonwinkel/pypacker
58c833f40207db746b0b2995ca3835a533e0258e
[ "BSD-3-Clause" ]
null
null
null
"""Simple NTP spoofing tool.""" from pypacker.layer12.ethernet import Ethernet from pypacker.layer3 import ip from pypacker.layer4.udp import UDP from pypacker.layer567 import ntp from pypacker import psocket # interface to listen on IFACE = "wlan0" # source address which commits a NTP request and we send a wrong answer IP_SRC = "192.168.178.27" # # normal NTP request # """ psock_req = psocket.SocketHndl(iface_name=IFACE, mode=psocket.SocketHndl.MODE_LAYER_3) ntp_req = ip.IP(src_s=IP_SRC, dst_s="188.138.9.208", p=ip.IP_PROTO_UDP) +\ UDP(sport=1234, dport=123) +\ ntp.NTP(li=ntp.NO_WARNING, v=3, mode=ntp.CLIENT) print("sending NTP request and waiting for answer..") answer = psock_req.sr(ntp_req)[0][ntp.NTP] """ # print("answer is: %s" % answer) #unpack_I = struct.Struct(">I").unpack # print("seconds since 1.1.1900: %d" % unpack_I(answer.transmit_time[0:4])[0]) # psock_req.close() # # spoof NTP response # print("waiting for NTP request") psock = psocket.SocketHndl(iface_name=IFACE, timeout=600) filter = lambda p: p[ntp.NTP] is not None and p[ip.IP].src_s == IP_SRC answer = psock.recvp(filter_match_recv=filter)[0] answer_ntp = answer[ntp.NTP] print("got NTP packet: %s" % answer_ntp) ntp_answer_send = Ethernet(dst=answer[Ethernet].src, src=answer[Ethernet].dst) +\ ip.IP(src=answer[ip.IP].dst, dst_s=IP_SRC, p=ip.IP_PROTO_UDP) +\ UDP(sport=answer[UDP].dport, dport=answer[UDP].sport) +\ ntp.NTP(li=ntp.NO_WARNING, v=3, mode=ntp.SERVER, stratum=2, interval=4, update_time=answer_ntp.transmit_time, originate_time=answer_ntp.transmit_time, receive_time=b"\x00" * 4 + answer_ntp.transmit_time[4:], transmit_time=b"\x00" * 4 + answer_ntp.transmit_time[4:]) # alternative packet creation """ ntp_answer_send = answer.create_reverse() layer_ntp = ntp_answer_send[ntp.NTP] layer_ntp.mode = ntp.SERVER layer_ntp.originate_time = answer_ntp.transmit_time layer_ntp.receive_time = layer_ntp.transmit_time = b"\x00"*4 + answer_ntp.transmit_time[4:] """ psock.send(ntp_answer_send.bin()) psock.close()
32.52381
91
0.736945
0
0
0
0
0
0
0
0
1,061
0.517814
5594c3feafec578628223eff5ebd91b66138d3a5
7,524
py
Python
motsfinder/exprs/test_basics.py
daniel-dpk/distorted-motsfinder-public
8c2eec174c755c55b26b568243e58c2956a35257
[ "MIT" ]
4
2019-08-26T09:50:26.000Z
2022-03-02T16:11:17.000Z
motsfinder/exprs/test_basics.py
daniel-dpk/distorted-motsfinder-public
8c2eec174c755c55b26b568243e58c2956a35257
[ "MIT" ]
5
2021-03-31T19:55:34.000Z
2021-04-01T08:29:53.000Z
motsfinder/exprs/test_basics.py
daniel-dpk/distorted-motsfinder-public
8c2eec174c755c55b26b568243e58c2956a35257
[ "MIT" ]
1
2019-09-18T14:15:33.000Z
2019-09-18T14:15:33.000Z
#!/usr/bin/env python3 from __future__ import print_function from builtins import range, map import unittest import sys import pickle import numpy as np from mpmath import mp from testutils import DpkTestCase from .numexpr import NumericExpression from .numexpr import isclose from .basics import OffsetExpression, DivisionExpression, SimpleSinExpression from .basics import SimpleCoshExpression class _TestExpr1(NumericExpression): def __init__(self, a=1, **kw): super(_TestExpr1, self).__init__(**kw) self.a = a def _expr_str(self): return "a x**2, where a=%r" % self.a def _evaluator(self, use_mp): a = self.a return (lambda x: a*x**2, lambda x: 2*a*x, lambda x: 2*a, self.zero) class _TestExpr2(NumericExpression): def __init__(self, expr, a=1): super(_TestExpr2, self).__init__(x=expr) self.a = a def _expr_str(self): return "a/x, where a=%r, x=%s" % (self.a, self.x.str()) def _evaluator(self, use_mp): a = self.a x = self.x.evaluator(use_mp) def f(t): return a/x(t) def df(t): return -x.diff(t)*a/x(t)**2 def ddf(t): xt = x(t) dxt = x.diff(t, 1) ddxt = x.diff(t, 2) return a*(-ddxt/xt**2 + 2*dxt**2/xt**3) return (f, df, ddf) class _TestExpr3(NumericExpression): def __init__(self, expr1, expr2, a=1, b=1): super(_TestExpr3, self).__init__(x1=expr1, x2=expr2) self.a = a self.b = b def _expr_str(self): return ("a x1 + b x2, where a=%r, b=%r, x1=%s, x2=%s" % (self.a, self.b, self.x1.str(), self.x2.str())) def _evaluator(self, use_mp): a, b = self.a, self.b x1, x2 = self.x1.evaluator(use_mp), self.x2.evaluator(use_mp) return (lambda t: a*x1(t) + b*x2(t), lambda t: a*x1.diff(t) + b*x2.diff(t)) class _TestExprDomain(NumericExpression): def __init__(self, domain): super(_TestExprDomain, self).__init__(domain=domain) self.__domain = domain def get_domain(self): return self.__domain def _expr_str(self): return "id" def _evaluator(self, use_mp): return (lambda x: x, lambda x: 1, self.zero) class TestIsclose(DpkTestCase): def test_float(self): self.assertTrue(isclose(1e7+1, 1e7+1, rel_tol=0, abs_tol=0)) self.assertTrue(isclose(1e7+1, 1e7, rel_tol=1e-6)) self.assertFalse(isclose(1e7+1, 1e7, rel_tol=1e-8)) self.assertTrue(isclose(1e7+1, 1e7, rel_tol=0, abs_tol=2.0)) self.assertFalse(isclose(1e7+1, 1e7, rel_tol=0, abs_tol=0.5)) def test_mpmath(self): with mp.workdps(30): a = mp.mpf('1e7') + mp.mpf('1e-20') b = mp.mpf('1e7') self.assertTrue(isclose(a, a, rel_tol=0, abs_tol=0, use_mp=True)) self.assertFalse(isclose(a, b, use_mp=True)) with mp.workdps(26): self.assertTrue(isclose(a, b, use_mp=True)) self.assertTrue(isclose(a, b, rel_tol=1e-26, abs_tol=0, use_mp=True)) self.assertFalse(isclose(a, b, rel_tol=1e-28, abs_tol=0, use_mp=True)) self.assertTrue(isclose(a, b, rel_tol=0, abs_tol=1e-19, use_mp=True)) self.assertFalse(isclose(a, b, rel_tol=0, abs_tol=1e-21, use_mp=True)) class TestNumexpr(DpkTestCase): def test_expressions(self): expr = _TestExpr2(_TestExpr1()) self.assertEqual(repr(expr), "<_TestExpr2(a/x, where a=1, x=(a x**2, where a=1))>") self.assertEqual(expr.a, 1) expr.a = 5 self.assertEqual(expr.a, 5) def test_name(self): expr = _TestExpr1() self.assertEqual(expr.name, "_TestExpr1") expr.name = "foo" self.assertEqual(expr.name, "foo") def test_pickle(self): a = 1.5 expr = _TestExpr2(_TestExpr1(-1), a=a) expr.name = "foo" s = pickle.dumps(expr) expr = pickle.loads(s) self.assertIs(type(expr), _TestExpr2) self.assertEqual(expr.a, 1.5) self.assertIs(type(expr.x), _TestExpr1) self.assertEqual(expr.x.a, -1) self.assertEqual(expr.name, "foo") def test_pickle_domain(self): expr = _TestExpr1(domain=(0, 1)) s = pickle.dumps(expr) expr = pickle.loads(s) self.assertEqual(expr.domain, (0, 1)) expr = _TestExpr1(domain=(0, mp.pi)) s = pickle.dumps(expr) expr = pickle.loads(s) self.assertEqual(expr.domain, (0, mp.pi)) def test_evaluators(self): a = 1.5 expr = _TestExpr2(_TestExpr1(), a=a) f = expr.evaluator() for t in np.linspace(0.1, 2, 4): self.assertAlmostEqual(f(t), a/t**2) for t in np.linspace(0.1, 2, 4): self.assertAlmostEqual(f.diff(t), -2*a/t**3) for t in np.linspace(0.1, 2, 4): self.assertAlmostEqual(f.diff(t, 2), 6*a/t**4) with self.assertRaises(NotImplementedError): f.diff(0, 3) def test_string_clashing(self): expr1 = _TestExpr1(a=1) expr2 = _TestExpr2(2, a=3) comp1 = _TestExpr3(expr1, expr2) expr2 = _TestExpr2(2, a=1) expr1 = _TestExpr1(a=3) comp2 = _TestExpr3(expr1, expr2) e1 = comp1.evaluator() e2 = comp2.evaluator() # The expressions are different: self.assertNotEqual(e1(.5), e2(.5)) # Their string are different too: self.assertNotEqual(repr(comp1), repr(comp2)) def test_domain(self): expr = _TestExprDomain([-1, 1]) e = expr.evaluator() self.assertTrue(hasattr(e, 'domain')) self.assertFalse(hasattr(e, 'domainX')) self.assertEqual(e.domain[0], -1) self.assertEqual(e.domain[1], 1) expr = _TestExprDomain(([-1, 1], [0, 10])) e = expr.evaluator() self.assertTrue(hasattr(e, 'domain')) self.assertEqual(e.domainX[0], -1) self.assertEqual(e.domainX[1], 1) self.assertEqual(e.domainY[0], 0) self.assertEqual(e.domainY[1], 10) f = e.function() self.assertTrue(hasattr(f, 'domain')) self.assertTrue(hasattr(f, 'domainX')) self.assertTrue(hasattr(f, 'domainY')) self.assertFalse(hasattr(f, 'domainZ')) class TestOffsetExpression(DpkTestCase): def test_offset(self): expr = OffsetExpression(_TestExpr1(), 1.0) e = expr.evaluator() self.assertAlmostEqual(e(0), 1.0) self.assertAlmostEqual(e(1), 2.0) self.assertAlmostEqual(e(2), 5.0) self.assertAlmostEqual(e.diff(0), 0.0) self.assertAlmostEqual(e.diff(1), 2.0) self.assertAlmostEqual(e.diff(2), 4.0) self.assertAlmostEqual(e.diff(1, 2), 2.0) class TestDivisionExpression(DpkTestCase): def test_division(self): expr = DivisionExpression( SimpleSinExpression(), OffsetExpression(SimpleCoshExpression(), 2), ) with mp.workdps(30): f = expr.evaluator(use_mp=True) space = mp.linspace(0, mp.pi, 10) for n in range(1, 5): self.assertListAlmostEqual( [f.diff(x, n) for x in space], [mp.diff(f, x, n) for x in space], delta=1e-28, ) def run_tests(): suite = unittest.TestLoader().loadTestsFromModule(sys.modules[__name__]) return len(unittest.TextTestRunner(verbosity=2).run(suite).failures) if __name__ == '__main__': unittest.main()
34.356164
91
0.591042
6,885
0.915072
0
0
0
0
0
0
351
0.046651
559516145d3a91e65f7eba170cf38f3e8329840b
468
py
Python
python/Data Structures and Algorithms in Python Book/oop/fibonacciprogression.py
gauravssnl/Data-Structures-and-Algorithms
1c335c72ce514d4f95090241bbd6edf01a1141a8
[ "MIT" ]
7
2020-05-10T09:57:23.000Z
2021-03-27T11:55:07.000Z
python/Data Structures and Algorithms in Python Book/oop/fibonacciprogression.py
gauravssnl/Data-Structures-and-Algorithms
1c335c72ce514d4f95090241bbd6edf01a1141a8
[ "MIT" ]
null
null
null
python/Data Structures and Algorithms in Python Book/oop/fibonacciprogression.py
gauravssnl/Data-Structures-and-Algorithms
1c335c72ce514d4f95090241bbd6edf01a1141a8
[ "MIT" ]
3
2021-03-27T03:42:57.000Z
2021-08-09T12:03:41.000Z
from progression import Progression class FibonacciProgression(Progression): def __init__(self, first=0, second=1): super().__init__(start=first) self._previous = second - first def _advance(self): self._previous, self._current = self._current, self._previous + self._current if __name__ == "__main__": fibonacci_progresssion = FibonacciProgression(first= 1, second= 2) fibonacci_progresssion.print_progression(20)
29.25
85
0.713675
281
0.600427
0
0
0
0
0
0
10
0.021368
55966e42aa982766be05f8a6dbd86f8df5f992eb
18,587
py
Python
openamundsen/modules/snow/multilayermodel.py
openamundsen/openamundsen
2ac09eb34b0c72c84c421a0dac08d114a05b7b1c
[ "MIT" ]
3
2021-05-28T06:46:36.000Z
2021-06-14T13:39:25.000Z
openamundsen/modules/snow/multilayermodel.py
openamundsen/openamundsen
2ac09eb34b0c72c84c421a0dac08d114a05b7b1c
[ "MIT" ]
22
2021-04-28T12:31:58.000Z
2022-03-09T18:29:12.000Z
openamundsen/modules/snow/multilayermodel.py
openamundsen/openamundsen
2ac09eb34b0c72c84c421a0dac08d114a05b7b1c
[ "MIT" ]
1
2021-06-01T12:48:54.000Z
2021-06-01T12:48:54.000Z
import numpy as np from numba import njit, prange from openamundsen import constants, constants as c, heatconduction from openamundsen.snowmodel import SnowModel from . import snow class MultilayerSnowModel(SnowModel): def __init__(self, model): self.model = model s = model.state.snow num_snow_layers = len(model.config.snow.min_thickness) s.add_variable('num_layers', '1', 'Number of snow layers', dtype=int, retain=True) s.add_variable('thickness', 'm', 'Snow thickness', dim3=num_snow_layers, retain=True) s.add_variable('density', 'kg m-3', 'Snow density', 'snow_density', dim3=num_snow_layers) s.add_variable('ice_content', 'kg m-2', 'Ice content of snow', dim3=num_snow_layers, retain=True) s.add_variable('liquid_water_content', 'kg m-2', 'Liquid water content of snow', 'liquid_water_content_of_snow_layer', dim3=num_snow_layers, retain=True) s.add_variable('temp', 'K', 'Snow temperature', dim3=num_snow_layers, retain=True) s.add_variable('therm_cond', 'W m-1 K-1', 'Thermal conductivity of snow', dim3=num_snow_layers, retain=True) s.add_variable('heat_cap', 'J K-1 m-2', 'Areal heat capacity of snow', dim3=num_snow_layers) def initialize(self): roi = self.model.grid.roi s = self.model.state.snow s.swe[roi] = 0 s.depth[roi] = 0 s.area_fraction[roi] = 0 s.num_layers[roi] = 0 s.sublimation[roi] = 0 s.therm_cond[:, roi] = self.model.config.snow.thermal_conductivity s.thickness[:, roi] = 0 s.ice_content[:, roi] = 0 s.liquid_water_content[:, roi] = 0 s.temp[:, roi] = constants.T0 def albedo_aging(self): snow.albedo(self.model) def compaction(self): snow.compaction(self.model) def accumulation(self): model = self.model s = model.state pos = s.meteo.snowfall > 0 self.add_snow( pos, s.meteo.snowfall[pos], density=snow.fresh_snow_density(s.meteo.wet_bulb_temp[pos]), ) def heat_conduction(self): model = self.model s = model.state _heat_conduction( model.grid.roi_idxs, s.snow.num_layers, s.snow.thickness, s.soil.thickness, model.timestep, s.snow.temp, s.snow.therm_cond, s.soil.therm_cond, s.surface.heat_flux, s.snow.heat_cap, ) def melt(self): model = self.model s = model.state _melt( model.grid.roi_idxs, model.timestep, s.snow.num_layers, s.snow.melt, s.snow.thickness, s.snow.temp, s.snow.ice_content, s.snow.liquid_water_content, s.snow.heat_cap, ) def sublimation(self): model = self.model s = model.state # First resublimation frost = -np.minimum(s.snow.sublimation, 0) pos = frost > 0 self.add_snow( pos, frost[pos], density=snow.fresh_snow_density(s.meteo.wet_bulb_temp[pos]), ) # Then sublimation _sublimation( model.grid.roi_idxs, model.timestep, s.snow.num_layers, s.snow.ice_content, s.snow.thickness, s.snow.sublimation, ) def runoff(self): model = self.model s = model.state _runoff( model.grid.roi_idxs, snow.max_liquid_water_content(model), s.meteo.rainfall, s.snow.num_layers, s.snow.thickness, s.snow.temp, s.snow.ice_content, s.snow.liquid_water_content, s.snow.runoff, s.snow.heat_cap, ) def update_layers(self): model = self.model s = model.state _update_layers( model.grid.roi_idxs, s.snow.num_layers, np.array(model.config.snow.min_thickness), s.snow.thickness, s.snow.ice_content, s.snow.liquid_water_content, s.snow.heat_cap, s.snow.temp, s.snow.density, s.snow.depth, ) s.snow.albedo[s.snow.num_layers == 0] = np.nan def update_properties(self): snow.snow_properties(self.model) def add_snow( self, pos, ice_content, liquid_water_content=0, density=None, albedo=None, ): """ Add snow to the top of the snowpack. """ model = self.model s = model.state ice_content = np.nan_to_num(ice_content, nan=0., copy=True) pos_init = (s.snow.num_layers[pos] == 0) & (ice_content > 0) pos_init_global = model.global_mask(pos_init, pos) # If albedo is None, set it to the maximum albedo for currently snow-free pixels and keep # the current albedo for the other pixels if albedo is None: albedo = s.snow.albedo[pos] albedo[pos_init] = model.config.snow.albedo.max s.snow.albedo[pos] = albedo # Initialize first snow layer where necessary s.snow.num_layers[pos_init_global] = 1 s.snow.temp[0, pos_init_global] = np.minimum(s.meteo.temp[pos_init_global], constants.T0) # Add snow to first layer s.snow.ice_content[0, pos] += ice_content s.snow.liquid_water_content[0, pos] += liquid_water_content s.snow.thickness[0, pos] += ice_content / density @njit(cache=True, parallel=True) def _melt( roi_idxs, timestep, num_layers, melt, thickness, temp, ice_content, liquid_water_content, heat_cap, ): """ Calculate snowmelt following [1]. Parameters ---------- roi_idxs : ndarray(int, ndim=2) (N, 2)-array specifying the (row, col) indices within the data arrays that should be considered. timestep : float Model timestep (s). num_layers : ndarray(float, ndim=2) Number of snow layers. melt : ndarray(float, ndim=2) Snowmelt (kg m-2). thickness : ndarray(float, ndim=3) Snow thickness (m). temp : ndarray(float, ndim=3) Snow temperature (K). ice_content : ndarray(float, ndim=3) Ice content of snow (kg m-2). liquid_water_content : ndarray(float, ndim=3) Liquid water content of snow (kg m-2). heat_cap : ndarray(float, ndim=3) Areal heat capacity of snow (J K-1 m-2). References ---------- .. [1] Essery, R. (2015). A factorial snowpack model (FSM 1.0). Geoscientific Model Development, 8(12), 3867–3876. https://doi.org/10.5194/gmd-8-3867-2015 """ num_pixels = len(roi_idxs) for idx_num in prange(num_pixels): i, j = roi_idxs[idx_num] ice_content_change = melt[i, j] for k in range(num_layers[i, j]): cold_content = heat_cap[k, i, j] * (c.T0 - temp[k, i, j]) if cold_content < 0: ice_content_change -= cold_content / c.LATENT_HEAT_OF_FUSION temp[k, i, j] = c.T0 if ice_content_change > 0: if ice_content_change > ice_content[k, i, j]: # layer melts completely ice_content_change -= ice_content[k, i, j] thickness[k, i, j] = 0. liquid_water_content[k, i, j] += ice_content[k, i, j] ice_content[k, i, j] = 0. else: # layer melts partially thickness[k, i, j] *= (1 - ice_content_change / ice_content[k, i, j]) ice_content[k, i, j] -= ice_content_change liquid_water_content[k, i, j] += ice_content_change ice_content_change = 0. @njit(cache=True, parallel=True) def _sublimation( roi_idxs, timestep, num_layers, ice_content, thickness, sublimation, ): """ Calculate snow sublimation following [1]. Parameters ---------- roi_idxs : ndarray(int, ndim=2) (N, 2)-array specifying the (row, col) indices within the data arrays that should be considered. timestep : float Model timestep (s). num_layers : ndarray(float, ndim=2) Number of snow layers. ice_content : ndarray(float, ndim=3) Ice content of snow (kg m-2). thickness : ndarray(float, ndim=3) Snow thickness (m). sublimation : ndarray(float, ndim=2) Snow sublimation (kg m-2). References ---------- .. [1] Essery, R. (2015). A factorial snowpack model (FSM 1.0). Geoscientific Model Development, 8(12), 3867–3876. https://doi.org/10.5194/gmd-8-3867-2015 """ num_pixels = len(roi_idxs) for idx_num in prange(num_pixels): i, j = roi_idxs[idx_num] ice_content_change = max(sublimation[i, j], 0.) if ice_content_change > 0: for k in range(num_layers[i, j]): if ice_content_change > ice_content[k, i, j]: # complete sublimation of layer ice_content_change -= ice_content[k, i, j] thickness[k, i, j] = 0. ice_content[k, i, j] = 0. else: # partial sublimation thickness[k, i, j] *= (1 - ice_content_change / ice_content[k, i, j]) ice_content[k, i, j] -= ice_content_change ice_content_change = 0. @njit(cache=True, parallel=True) def _runoff( roi_idxs, max_liquid_water_content, rainfall, num_layers, thickness, temp, ice_content, liquid_water_content, runoff, heat_cap, ): """ Calculate snowmelt runoff following [1]. Parameters ---------- roi_idxs : ndarray(int, ndim=2) (N, 2)-array specifying the (row, col) indices within the data arrays that should be considered. max_liquid_water_content : ndarray(float, ndim=3) Maximum liquid water content (kg m-2). rainfall : ndarray(float, ndim=2) Rainfall amount (kg m-2). num_layers : ndarray(float, ndim=2) Number of snow layers. thickness : ndarray(float, ndim=3) Snow thickness (m). temp : ndarray(float, ndim=3) Snow temperature (K). ice_content : ndarray(float, ndim=3) Ice content of snow (kg m-2). liquid_water_content : ndarray(float, ndim=3) Liquid water content of snow (kg m-2). runoff : ndarray(float, ndim=2) Snow runoff (kg m-2). heat_cap : ndarray(float, ndim=3) Areal heat capacity of snow (J K-1 m-2). References ---------- .. [1] Essery, R. (2015). A factorial snowpack model (FSM 1.0). Geoscientific Model Development, 8(12), 3867–3876. https://doi.org/10.5194/gmd-8-3867-2015 """ num_pixels = len(roi_idxs) for idx_num in prange(num_pixels): i, j = roi_idxs[idx_num] runoff[i, j] = rainfall[i, j] if np.isnan(runoff[i, j]): runoff[i, j] = 0. for k in range(num_layers[i, j]): liquid_water_content[k, i, j] += runoff[i, j] if liquid_water_content[k, i, j] > max_liquid_water_content[k, i, j]: runoff[i, j] = liquid_water_content[k, i, j] - max_liquid_water_content[k, i, j] liquid_water_content[k, i, j] = max_liquid_water_content[k, i, j] else: runoff[i, j] = 0. # Refreeze liquid water cold_content = heat_cap[k, i, j] * (c.T0 - temp[k, i, j]) if cold_content > 0: ice_content_change = min( liquid_water_content[k, i, j], cold_content / c.LATENT_HEAT_OF_FUSION, ) liquid_water_content[k, i, j] -= ice_content_change ice_content[k, i, j] += ice_content_change temp[k, i, j] += c.LATENT_HEAT_OF_FUSION * ice_content_change / heat_cap[k, i, j] @njit(parallel=True, cache=True) def _heat_conduction( roi_idxs, num_layers, snow_thickness, soil_thickness, timestep, temp, therm_cond_snow, therm_cond_soil, heat_flux, heat_cap, ): """ Update snow layer temperatures. Parameters ---------- roi_idxs : ndarray(int, ndim=2) (N, 2)-array specifying the (row, col) indices within the data arrays that should be considered. num_layers : ndarray(float, ndim=2) Number of snow layers. snow_thickness : ndarray(float, ndim=3) Snow thickness (m). soil_thickness : ndarray(float, ndim=3) Soil thickness (m). timestep : float Model timestep (s). temp : ndarray(float, ndim=3) Snow temperature (K). therm_cond_snow : ndarray(float, ndim=3) Snow thermal conductivity (W m-1 K-1). therm_cond_soil : ndarray(float, ndim=3) Soil thermal conductivity (W m-1 K-1). heat_flux : ndarray(float, ndim=2) Surface heat flux (W m-2). heat_cap : ndarray(float, ndim=3) Areal heat capacity of snow (J K-1 m-2). References ---------- .. [1] Essery, R. (2015). A factorial snowpack model (FSM 1.0). Geoscientific Model Development, 8(12), 3867–3876. https://doi.org/10.5194/gmd-8-3867-2015 """ num_pixels = len(roi_idxs) for idx_num in prange(num_pixels): i, j = roi_idxs[idx_num] ns = num_layers[i, j] if ns > 0: temp[:ns, i, j] += heatconduction.temp_change( snow_thickness[:ns, i, j], timestep, temp[:ns, i, j], therm_cond_snow[:ns, i, j], temp[-1, i, j], soil_thickness[0, i, j], therm_cond_soil[0, i, j], heat_flux[i, j], heat_cap[:ns, i, j], ) @njit(cache=True, parallel=True) def _update_layers( roi_idxs, num_layers, min_thickness, thickness, ice_content, liquid_water_content, heat_cap, temp, density, depth, ): """ Update snow layers. Parameters ---------- roi_idxs : ndarray(int, ndim=2) (N, 2)-array specifying the (row, col) indices within the data arrays that should be considered. num_layers : ndarray(float, ndim=2) Number of snow layers. min_thickness : ndarray(float, ndim=1) Minimum snow layer thicknesses (m). thickness : ndarray(float, ndim=3) Snow thickness (m). ice_content : ndarray(float, ndim=3) Ice content of snow (kg m-2). liquid_water_content : ndarray(float, ndim=3) Liquid water content of snow (kg m-2). heat_cap : ndarray(float, ndim=3) Areal heat capacity of snow (J K-1 m-2). temp : ndarray(float, ndim=3) Snow temperature (K). density : ndarray(float, ndim=3) Snow density (kg m-3). depth : ndarray(float, ndim=2) Snow depth (m). References ---------- .. [1] Essery, R. (2015). A factorial snowpack model (FSM 1.0). Geoscientific Model Development, 8(12), 3867–3876. https://doi.org/10.5194/gmd-8-3867-2015 """ max_num_layers = len(min_thickness) num_layers_prev = num_layers.copy() thickness_prev = thickness.copy() ice_content_prev = ice_content.copy() liquid_water_content_prev = liquid_water_content.copy() energy_prev = heat_cap * (temp - c.T0) # energy content (J m-2) num_pixels = len(roi_idxs) for idx_num in prange(num_pixels): i, j = roi_idxs[idx_num] num_layers[i, j] = 0 thickness[:, i, j] = 0. ice_content[:, i, j] = 0. liquid_water_content[:, i, j] = 0. temp[:, i, j] = c.T0 density[:, i, j] = np.nan internal_energy = np.zeros(max_num_layers) if depth[i, j] > 0: new_thickness = depth[i, j] # Update thicknesses and number of layers for k in range(max_num_layers): thickness[k, i, j] = min_thickness[k] new_thickness -= min_thickness[k] if new_thickness <= min_thickness[k] or k == max_num_layers - 1: thickness[k, i, j] += new_thickness break # Set thin snow layers to 0 to avoid numerical artifacts # TODO should this be done at some other location? for k in range(max_num_layers): if thickness[k, i, j] < 1e-6: thickness[k, i, j] = 0. ns = (thickness[:, i, j] > 0).sum() # new number of layers new_thickness = thickness[0, i, j] k_new = 0 # TODO optimize this loop for k_old in range(num_layers_prev[i, j]): while True: # TODO replace with normal loop weight = min(new_thickness / thickness_prev[k_old, i, j], 1.) ice_content[k_new, i, j] += weight * ice_content_prev[k_old, i, j] liquid_water_content[k_new, i, j] += weight * liquid_water_content_prev[k_old, i, j] internal_energy[k_new] += weight * energy_prev[k_old, i, j] if weight == 1.: new_thickness -= thickness_prev[k_old, i, j] break thickness_prev[k_old, i, j] *= 1 - weight ice_content_prev[k_old, i, j] *= 1 - weight liquid_water_content_prev[k_old, i, j] *= 1 - weight energy_prev[k_old, i, j] *= 1 - weight k_new += 1 if k_new >= ns: break if weight < 1: new_thickness = thickness[k_new, i, j] num_layers[i, j] = ns # Update areal heat capacity and snow temperature heat_cap[:ns, i, j] = ( # TODO use snow_heat_capacity() for this ice_content[:ns, i, j] * c.SPEC_HEAT_CAP_ICE + liquid_water_content[:ns, i, j] * c.SPEC_HEAT_CAP_WATER ) temp[:ns, i, j] = c.T0 + internal_energy[:ns] / heat_cap[:ns, i, j] # Update density density[:ns, i, j] = ( (liquid_water_content[:ns, i, j] + ice_content[:ns, i, j]) / thickness[:ns, i, j] )
30.470492
161
0.559907
5,494
0.295424
0
0
12,904
0.693875
0
0
6,343
0.341077
5596e16fb509c3accc1b616f5872b39869a62e82
2,746
py
Python
scripts/custom_task_manager.py
operaun/dotfiles
6e91206427199a9f6a9ac7397a886ac2f26eade0
[ "MIT" ]
1
2016-10-06T12:31:04.000Z
2016-10-06T12:31:04.000Z
scripts/custom_task_manager.py
operaun/dotfiles
6e91206427199a9f6a9ac7397a886ac2f26eade0
[ "MIT" ]
null
null
null
scripts/custom_task_manager.py
operaun/dotfiles
6e91206427199a9f6a9ac7397a886ac2f26eade0
[ "MIT" ]
null
null
null
# scripts/custom_task_manager.py import os import subprocess from abc import ABCMeta, abstractmethod from pretty_printer import * class CustomTaskManager(object): def __init__(self): self.tasks = list() def printMessages(self): for task in self.tasks: task.printHelpMessage() def doWorks(self): for task in self.tasks: task.doWork() def addTask(self, task): self.tasks.append(task) class CustomTask(object): __metaclass__ = ABCMeta @classmethod def printHelpMessage(self): raise NotImplementedError @classmethod def doWork(self): raise NotImplementedError class ZshTask(CustomTask): def __readStringFromCmd(self, cmd): ret_string = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True).stdout.readline() if len(ret_string) == 0: return False return ret_string def printHelpMessage(self): printBlue("\t Default Zsh: change $SHELL config") def doWork(self): zsh_file_path = self.__readStringFromCmd("which zsh") if (zsh_file_path == False): printHeader("Can not find zsh installation") printHeader("Your new default shell path($SHELL): %s" % zsh_file_path) os.system("chsh -s %s" % zsh_file_path) class VimUpdateTask(CustomTask): def printHelpMessage(self): printBlue("\t Vim 8: upgrade vim version") def doWork(self): os.system("add-apt-repository ppa:pi-rho/dev") os.system("apt update") os.system("apt install vim") class VimColorTask(CustomTask): def printHelpMessage(self): printBlue("\t Jellybeans color: color for VIM") def doWork(self): os.system("mkdir -p ~/.vim/colors") os.system("cp ./custom_files/jellybeans.vim ~/.vim/colors/") class VimVundleTask(CustomTask): def printHelpMessage(self): printBlue("\t Vundle: plugin framework for VIM") def doWork(self): os.system("mkdir -p ~/.vim/bundle") os.system("git clone https://github.com/VundleVim/Vundle.vim.git ~/.vim/bundle/Vundle.vim") os.system("vim +PluginInstall +qall") class GitConfigTask(CustomTask): def printHelpMessage(self): printBlue("\t Git: setting personal configuration for Git") def doWork(self): os.system('git config --global user.name "Jongmin Won"') os.system('git config --global user.email "operaun@gmail.com"') os.system('git config --global merge.tool vimdiff') os.system('git config --global core.editor vim') os.system('git config --global core.autocrlf false') os.system('git config --global core.filemode false') os.system('git config --global color.ui true')
31.204545
99
0.659505
2,600
0.946832
0
0
130
0.047342
0
0
875
0.318645
5598265430fb84db260c24576996f2ee0f789ef1
27
py
Python
exercises/acronym/acronym.py
RJTK/python
f9678d629735f75354bbd543eb7f10220a498dae
[ "MIT" ]
1
2021-05-15T19:59:04.000Z
2021-05-15T19:59:04.000Z
exercises/acronym/acronym.py
RJTK/python
f9678d629735f75354bbd543eb7f10220a498dae
[ "MIT" ]
null
null
null
exercises/acronym/acronym.py
RJTK/python
f9678d629735f75354bbd543eb7f10220a498dae
[ "MIT" ]
2
2018-03-03T08:32:12.000Z
2019-08-22T11:55:53.000Z
def abbreviate(): pass
9
17
0.62963
0
0
0
0
0
0
0
0
0
0
5598bbdfc235215336c94064608a0db8ff763655
3,961
py
Python
bpmn/urls.py
VSSantana/SFDjango-BPMN
e5a3fb8da9282fd88f72a85a4b34d89d38391e36
[ "MIT" ]
1
2021-09-21T00:02:10.000Z
2021-09-21T00:02:10.000Z
bpmn/urls.py
VSSantana/SFDjango-BPMN
e5a3fb8da9282fd88f72a85a4b34d89d38391e36
[ "MIT" ]
5
2021-09-22T13:54:06.000Z
2021-09-22T14:05:56.000Z
bpmn/urls.py
marcelobbfonseca/SFDjango-BPMN
50565763414f52d9e84004494cf550c6fe2358fa
[ "MIT" ]
1
2021-09-18T01:22:25.000Z
2021-09-18T01:22:25.000Z
from django.urls import path from django.contrib.auth.views import LoginView from .views.activity_view import * from .views.activity_type_view import * from .views.event_view import * from .views.flow_view import * from .views.lane_view import * from .views.pool_view import * from .views.process_type_view import * from .views.process_view import * from .views.sequence_view import * urlpatterns = [ path('', LoginView.as_view(template_name='accounts/login.html'), name="login"), path('activity_type_list/', ActivityTypeView.as_view(), name='activity_type_list'), path('activity_type_create_form/', ActivityTypeCreate.as_view(), name='activity_type_create_form'), path('activity_type_update_form/<int:pk>', ActivityTypeUpdate.as_view(), name='activity_type_update_form'), path('activity_type_delete_confirmation/<int:pk>', ActivityTypeDelete.as_view(), name='activity_type_delete_confirmation'), path('process_type_list/', ProcessTypeView.as_view(), name='process_type_list'), path('process_type_create_form/', ProcessTypeCreate.as_view(), name='process_type_create_form'), path('process_type_update_form/<int:pk>', ProcessTypeUpdate.as_view(), name='process_type_update_form'), path('process_type_delete_confirmation/<int:pk>', ProcessTypeDelete.as_view(), name='process_type_delete_confirmation'), path('pool_list/', PoolView.as_view(), name='pool_list'), path('pool_create_form/', PoolCreate.as_view(), name='pool_create_form'), path('pool_update_form/<int:pk>', PoolUpdate.as_view(), name='pool_update_form'), path('pool_delete_confirmation/<int:pk>', PoolDelete.as_view(), name='pool_delete_confirmation'), path('lane_list/', LaneView.as_view(), name='lane_list'), path('lane_create_form/', LaneCreate.as_view(), name='lane_create_form'), path('lane_update_form/<int:pk>', LaneUpdate.as_view(), name='lane_update_form'), path('lane_delete_confirmation/<int:pk>', LaneDelete.as_view(), name='lane_delete_confirmation'), path('event_list/', EventView.as_view(), name='event_list'), path('event_create_form/', EventCreate.as_view(), name='event_create_form'), path('event_update_form/<int:pk>', EventUpdate.as_view(), name='event_update_form'), path('event_delete_confirmation/<int:pk>', EventDelete.as_view(), name='event_delete_confirmation'), path('activity_list/', ActivityView.as_view(), name='activity_list'), path('activity_create_form/', ActivityCreate.as_view(), name='activity_create_form'), path('activity_update_form/<int:pk>', ActivityUpdate.as_view(), name='activity_update_form'), path('activity_delete_confirmation/<int:pk>', ActivityDelete.as_view(), name='activity_delete_confirmation'), path('sequence_list/', SequenceView.as_view(), name='sequence_list'), path('sequence_create_form/', SequenceCreate.as_view(), name='sequence_create_form'), path('sequence_update_form/<int:pk>', SequenceUpdate.as_view(), name='sequence_update_form'), path('sequence_delete_confirmation/<int:pk>', SequenceDelete.as_view(), name='sequence_delete_confirmation'), path('flow_list/', FlowView.as_view(), name='flow_list'), path('flow_create_form/', FlowCreate.as_view(), name='flow_create_form'), path('flow_update_form/<int:pk>', FlowUpdate.as_view(), name='flow_update_form'), path('flow_delete_confirmation/<int:pk>', FlowDelete.as_view(), name='flow_delete_confirmation'), path('process_list/', ProcessView.as_view(), name='process_list'), path('process_create_form/', ProcessCreate.as_view(), name='process_create_form'), path('process_update_form/<int:pk>', ProcessUpdate.as_view(), name='process_update_form'), path('process_delete_confirmation/<int:pk>', ProcessDelete.as_view(), name='process_delete_confirmation'), path('process-modeling/', ProcessModelingView.as_view(), name="process_modeling"), path('ontology-suggestion', OntologySuggestionView.as_view(), name="ontology_suggestion") ]
73.351852
127
0.757637
0
0
0
0
0
0
0
0
1,835
0.463267
5598fc6baf6adbca126912ba31690ef9d92c7c11
2,106
py
Python
utils/boilerplate/test_gorilla.py
cfginn/sap-simulation-package
73314e5380cec5c61a9fe5ff5fbafa25b9e2beac
[ "MIT" ]
null
null
null
utils/boilerplate/test_gorilla.py
cfginn/sap-simulation-package
73314e5380cec5c61a9fe5ff5fbafa25b9e2beac
[ "MIT" ]
null
null
null
utils/boilerplate/test_gorilla.py
cfginn/sap-simulation-package
73314e5380cec5c61a9fe5ff5fbafa25b9e2beac
[ "MIT" ]
null
null
null
import unittest from pysapets.gorilla import Gorilla from pysapets.animal import Animal import pysapets.constants as constants from unittest.mock import patch from io import StringIO from copy import deepcopy class GorillaTest(unittest.TestCase): def setUp(self): self.gorilla = Gorilla() self.friends = [self.gorilla, Animal(2, 2), Animal(2, 2), Animal(2, 2), Animal(2, 2)] # test that get_type returns the correct type def test_get_type(self): self.assertEqual(self.gorilla.get_type(), constants.GORILLA) # test that gorilla starts with base health of 6 def test_get_health(self): self.assertEqual(self.gorilla.get_health(), 6) # test that gorilla starts with base attack of 6 def test_get_attack(self): self.assertEqual(self.gorilla.get_attack(), 6) # test that initializing gorilla with additional health increases health def test_init_add_health(self): newGorilla = Gorilla(addHealth = 3) self.assertEqual(newGorilla.get_health(), 6 + 3) # test that initializing an gorilla with additional attack increases attack def test_init_add_attack(self): newGorilla = Gorilla(addAttack = 3) self.assertEqual(newGorilla.get_attack(), 6 + 3) # test that initializing gorilla with additional health and attack increases health and attack def test_init_add_health_attack(self): newGorilla = Gorilla(addHealth = 3, addAttack = 3) self.assertEqual(newGorilla.get_health(), 6 + 3) self.assertEqual(newGorilla.get_attack(), 6 + 3) # test that gorilla ability has correct trigger def test_get_ability_trigger(self): self.assertEqual(self.gorilla.get_ability_trigger(), constants.HURT) # test that gorilla ability has correct triggeredBy def test_get_ability_triggeredBy(self): self.assertEqual(self.gorilla.get_ability_triggeredBy(), constants.SELF) # TODO add relevant tests for gorilla ability def test_run_ability(self): pass def test_run_ability_level_1(self): pass def test_run_ability_level_2(self): pass def test_run_ability_level_3(self): pass
31.432836
96
0.74359
1,878
0.891738
0
0
0
0
0
0
526
0.249763