hexsha
stringlengths
40
40
size
int64
7
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.77
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
7
1.04M
filtered:remove_function_no_docstring
int64
-102
942k
filtered:remove_class_no_docstring
int64
-354
977k
filtered:remove_delete_markers
int64
0
60.1k
c0b3a1dd34d4af3e41ec71b11a5b0c0289b6b2cb
1,527
py
Python
partname_resolver/components/test_inductor.py
sakoPO/partname-resolver
ad881eb147b005f0e833a1c78fa9fc4b8b7a33bb
[ "BSD-3-Clause" ]
null
null
null
partname_resolver/components/test_inductor.py
sakoPO/partname-resolver
ad881eb147b005f0e833a1c78fa9fc4b8b7a33bb
[ "BSD-3-Clause" ]
null
null
null
partname_resolver/components/test_inductor.py
sakoPO/partname-resolver
ad881eb147b005f0e833a1c78fa9fc4b8b7a33bb
[ "BSD-3-Clause" ]
null
null
null
import unittest from partname_resolver.components.inductor import Inductor from partname_resolver.units.temperature import TemperatureRange
41.27027
78
0.513425
import unittest from partname_resolver.components.inductor import Inductor from partname_resolver.units.temperature import TemperatureRange class InductorTestCase(unittest.TestCase): def test_equality(self): A = Inductor(inductor_type=Inductor.Type.MultilayerInductor, manufacturer="Murata Manufacturing", partnumber="LQG18HNR10J00D", working_temperature_range=TemperatureRange('-55', '125'), series="LQG", inductance='100nH', tolerance=None, q='8', dc_resistance=None, rated_current=None, self_resonant_frequency=None, max_working_voltage=None, case=None, note=None) B = Inductor(inductor_type=Inductor.Type.MultilayerInductor, manufacturer="Murata Manufacturing", partnumber="LQG18HNR10J00D", working_temperature_range=TemperatureRange('-55', '125'), series="LQG", inductance='100nH', tolerance=None, q='8', dc_resistance=None, rated_current=None, self_resonant_frequency=None, max_working_voltage=None, case=None, note=None) self.assertEqual(B, A)
1,316
21
49
05d44356b2346be5b170ee2ffa3cfc38f895d3ff
3,433
py
Python
setup.py
oarepo/cesnet-openid-remote
4ca46fc94801e51267b7676e0c212a024e3af3a1
[ "MIT" ]
null
null
null
setup.py
oarepo/cesnet-openid-remote
4ca46fc94801e51267b7676e0c212a024e3af3a1
[ "MIT" ]
4
2021-02-19T10:53:28.000Z
2021-04-09T17:15:56.000Z
setup.py
oarepo/cesnet-openid-remote
4ca46fc94801e51267b7676e0c212a024e3af3a1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (C) 2021 CESNET. # # CESNET-OpenID-Remote is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see LICENSE file for more # details. """CESNET OIDC Auth backend for OARepo""" import os from setuptools import find_packages, setup readme = open('README.md').read() history = open('CHANGES.rst').read() OAREPO_VERSION = os.environ.get('OAREPO_VERSION', '3.3.0') tests_require = [ 'pydocstyle', 'isort', 'oarepo-communities>=1.1.0', 'invenio-oauthclient==1.4.0' ] extras_require = { 'tests': [ 'oarepo[tests]~={version}'.format(version=OAREPO_VERSION), *tests_require ] } extras_require['all'] = [] for reqs in extras_require.values(): extras_require['all'].extend(reqs) setup_requires = [ ] install_requires = [ 'urnparse>=0.2.0', 'invenio-openid-connect>=2.1.0', ] packages = find_packages(exclude=['examples', 'tests']) # Get the version string. Cannot be done with import! g = {} with open(os.path.join('cesnet_openid_remote', 'version.py'), 'rt') as fp: exec(fp.read(), g) version = g['__version__'] setup( name='cesnet-openid-remote', version=version, description=__doc__, long_description=readme + '\n\n' + history, long_description_content_type='text/markdown', keywords='invenio oarepo oauth openidc auth groups', license='MIT', author='Miroslav Bauer', author_email='bauer@cesnet.cz', url='https://github.com/oarepo/cesnet-openid-remote', packages=packages, zip_safe=False, include_package_data=True, platforms='any', entry_points={ 'flask.commands': [ 'cesnet:group = cesnet_openid_remote.cli:cesnet_group', ], 'invenio_base.apps': [ 'cesnet_openid_remote = cesnet_openid_remote:CESNETOpenIDRemote', ], # TODO: Edit these entry points to fit your needs. # 'invenio_access.actions': [], # 'invenio_admin.actions': [], # 'invenio_assets.bundles': [], 'invenio_base.api_apps': [ 'cesnet_openid_remote = cesnet_openid_remote:CESNETOpenIDRemote', ], # 'invenio_base.api_blueprints': [], # 'invenio_base.blueprints': [], # 'invenio_celery.tasks': [], 'invenio_db.models': [ 'cesnet_openid_remote = cesnet_openid_remote.models', ], 'invenio_db.alembic': [ 'cesnet_openid_remote = cesnet_openid_remote:alembic', ], # 'invenio_pidstore.minters': [], # 'invenio_records.jsonresolver': [], }, extras_require=extras_require, install_requires=install_requires, setup_requires=setup_requires, tests_require=tests_require, classifiers=[ 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Development Status :: 1 - Planning', ], )
29.594828
77
0.630061
# -*- coding: utf-8 -*- # # Copyright (C) 2021 CESNET. # # CESNET-OpenID-Remote is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see LICENSE file for more # details. """CESNET OIDC Auth backend for OARepo""" import os from setuptools import find_packages, setup readme = open('README.md').read() history = open('CHANGES.rst').read() OAREPO_VERSION = os.environ.get('OAREPO_VERSION', '3.3.0') tests_require = [ 'pydocstyle', 'isort', 'oarepo-communities>=1.1.0', 'invenio-oauthclient==1.4.0' ] extras_require = { 'tests': [ 'oarepo[tests]~={version}'.format(version=OAREPO_VERSION), *tests_require ] } extras_require['all'] = [] for reqs in extras_require.values(): extras_require['all'].extend(reqs) setup_requires = [ ] install_requires = [ 'urnparse>=0.2.0', 'invenio-openid-connect>=2.1.0', ] packages = find_packages(exclude=['examples', 'tests']) # Get the version string. Cannot be done with import! g = {} with open(os.path.join('cesnet_openid_remote', 'version.py'), 'rt') as fp: exec(fp.read(), g) version = g['__version__'] setup( name='cesnet-openid-remote', version=version, description=__doc__, long_description=readme + '\n\n' + history, long_description_content_type='text/markdown', keywords='invenio oarepo oauth openidc auth groups', license='MIT', author='Miroslav Bauer', author_email='bauer@cesnet.cz', url='https://github.com/oarepo/cesnet-openid-remote', packages=packages, zip_safe=False, include_package_data=True, platforms='any', entry_points={ 'flask.commands': [ 'cesnet:group = cesnet_openid_remote.cli:cesnet_group', ], 'invenio_base.apps': [ 'cesnet_openid_remote = cesnet_openid_remote:CESNETOpenIDRemote', ], # TODO: Edit these entry points to fit your needs. # 'invenio_access.actions': [], # 'invenio_admin.actions': [], # 'invenio_assets.bundles': [], 'invenio_base.api_apps': [ 'cesnet_openid_remote = cesnet_openid_remote:CESNETOpenIDRemote', ], # 'invenio_base.api_blueprints': [], # 'invenio_base.blueprints': [], # 'invenio_celery.tasks': [], 'invenio_db.models': [ 'cesnet_openid_remote = cesnet_openid_remote.models', ], 'invenio_db.alembic': [ 'cesnet_openid_remote = cesnet_openid_remote:alembic', ], # 'invenio_pidstore.minters': [], # 'invenio_records.jsonresolver': [], }, extras_require=extras_require, install_requires=install_requires, setup_requires=setup_requires, tests_require=tests_require, classifiers=[ 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Development Status :: 1 - Planning', ], )
0
0
0
0098e30c2ef9ea5e88b69f0c7ac211522ab302b6
476
py
Python
src/pos/utils.py
ExplorerFreda/sub2-augmentation
3f43e72a1b4eb5201472938ede8ea0fbe97be7c3
[ "MIT" ]
6
2021-07-14T22:49:32.000Z
2021-08-22T14:32:17.000Z
src/pos/utils.py
ExplorerFreda/sub2-augmentation
3f43e72a1b4eb5201472938ede8ea0fbe97be7c3
[ "MIT" ]
null
null
null
src/pos/utils.py
ExplorerFreda/sub2-augmentation
3f43e72a1b4eb5201472938ede8ea0fbe97be7c3
[ "MIT" ]
1
2021-07-15T03:19:39.000Z
2021-07-15T03:19:39.000Z
high_resource_language_list = [ 'bg', 'cs', 'da', 'de', 'en', 'es', 'eu', 'fa', 'fi', 'fr', 'he', 'hi', 'hr', 'id', 'it', 'nl', 'no', 'pl', 'pt', 'sl', 'sv' ] low_resource_language_list = [ 'el', 'et', 'ga', 'hu', 'ro', 'ta' ] extra_language_list_ud12 = [ 'ar', 'cu', 'fi_ftb', 'got', 'grc', 'grc_proiel', 'la', 'la_itt', 'la_proiel' ] extra_low_resource_language_list_ud26 = [ 'be_hse', 'cop_scriptorium', 'lt_hse', 'mr_ufal', 'ta_ttb', 'te_mtg' ]
31.733333
76
0.539916
high_resource_language_list = [ 'bg', 'cs', 'da', 'de', 'en', 'es', 'eu', 'fa', 'fi', 'fr', 'he', 'hi', 'hr', 'id', 'it', 'nl', 'no', 'pl', 'pt', 'sl', 'sv' ] low_resource_language_list = [ 'el', 'et', 'ga', 'hu', 'ro', 'ta' ] extra_language_list_ud12 = [ 'ar', 'cu', 'fi_ftb', 'got', 'grc', 'grc_proiel', 'la', 'la_itt', 'la_proiel' ] extra_low_resource_language_list_ud26 = [ 'be_hse', 'cop_scriptorium', 'lt_hse', 'mr_ufal', 'ta_ttb', 'te_mtg' ]
0
0
0
6a05f2d56018956a4ac6c006679c41bfd597e952
7,071
py
Python
cirq/ion/ion_device.py
joshp112358/Cirq
c4fac27a9849e589ee05b4f702f2d7c9049aaeea
[ "Apache-2.0" ]
15
2020-06-29T08:33:39.000Z
2022-02-12T00:28:51.000Z
cirq/ion/ion_device.py
joshp112358/Cirq
c4fac27a9849e589ee05b4f702f2d7c9049aaeea
[ "Apache-2.0" ]
4
2020-11-27T09:34:13.000Z
2021-04-30T21:13:41.000Z
cirq/ion/ion_device.py
joshp112358/Cirq
c4fac27a9849e589ee05b4f702f2d7c9049aaeea
[ "Apache-2.0" ]
11
2020-06-29T08:40:24.000Z
2022-02-24T17:39:16.000Z
# Copyright 2018 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import cast, Iterable, Optional, Set, TYPE_CHECKING, FrozenSet from cirq import circuits, value, devices, ops, protocols from cirq.ion import convert_to_ion_gates if TYPE_CHECKING: import cirq @value.value_equality class IonDevice(devices.Device): """A device with qubits placed on a line. Qubits have all-to-all connectivity. """ def __init__(self, measurement_duration: 'cirq.DURATION_LIKE', twoq_gates_duration: 'cirq.DURATION_LIKE', oneq_gates_duration: 'cirq.DURATION_LIKE', qubits: Iterable[devices.LineQubit]) -> None: """Initializes the description of an ion trap device. Args: measurement_duration: The maximum duration of a measurement. twoq_gates_duration: The maximum duration of a two qubit operation. oneq_gates_duration: The maximum duration of a single qubit operation. qubits: Qubits on the device, identified by their x, y location. """ self._measurement_duration = value.Duration(measurement_duration) self._twoq_gates_duration = value.Duration(twoq_gates_duration) self._oneq_gates_duration = value.Duration(oneq_gates_duration) self.qubits = frozenset(qubits) def at(self, position: int) -> Optional[devices.LineQubit]: """Returns the qubit at the given position, if there is one, else None. """ q = devices.LineQubit(position) return q if q in self.qubits else None def neighbors_of(self, qubit: devices.LineQubit): """Returns the qubits that the given qubit can interact with.""" possibles = [ devices.LineQubit(qubit.x + 1), devices.LineQubit(qubit.x - 1), ] return [e for e in possibles if e in self.qubits]
39.949153
80
0.623391
# Copyright 2018 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import cast, Iterable, Optional, Set, TYPE_CHECKING, FrozenSet from cirq import circuits, value, devices, ops, protocols from cirq.ion import convert_to_ion_gates if TYPE_CHECKING: import cirq @value.value_equality class IonDevice(devices.Device): """A device with qubits placed on a line. Qubits have all-to-all connectivity. """ def __init__(self, measurement_duration: 'cirq.DURATION_LIKE', twoq_gates_duration: 'cirq.DURATION_LIKE', oneq_gates_duration: 'cirq.DURATION_LIKE', qubits: Iterable[devices.LineQubit]) -> None: """Initializes the description of an ion trap device. Args: measurement_duration: The maximum duration of a measurement. twoq_gates_duration: The maximum duration of a two qubit operation. oneq_gates_duration: The maximum duration of a single qubit operation. qubits: Qubits on the device, identified by their x, y location. """ self._measurement_duration = value.Duration(measurement_duration) self._twoq_gates_duration = value.Duration(twoq_gates_duration) self._oneq_gates_duration = value.Duration(oneq_gates_duration) self.qubits = frozenset(qubits) def qubit_set(self) -> FrozenSet['cirq.LineQubit']: return self.qubits def decompose_operation(self, operation: ops.Operation) -> ops.OP_TREE: return convert_to_ion_gates.ConvertToIonGates().convert_one(operation) def decompose_circuit(self, circuit: circuits.Circuit) -> circuits.Circuit: return convert_to_ion_gates.ConvertToIonGates().convert_circuit(circuit) def duration_of(self, operation): if isinstance(operation.gate, ops.XXPowGate): return self._twoq_gates_duration if isinstance( operation.gate, (ops.XPowGate, ops.YPowGate, ops.ZPowGate, ops.PhasedXPowGate)): return self._oneq_gates_duration if isinstance(operation.gate, ops.MeasurementGate): return self._measurement_duration raise ValueError('Unsupported gate type: {!r}'.format(operation)) def validate_gate(self, gate: ops.Gate): if not isinstance( gate, (ops.XPowGate, ops.YPowGate, ops.ZPowGate, ops.PhasedXPowGate, ops.XXPowGate, ops.MeasurementGate)): raise ValueError('Unsupported gate type: {!r}'.format(gate)) def validate_operation(self, operation): if not isinstance(operation, ops.GateOperation): raise ValueError('Unsupported operation: {!r}'.format(operation)) self.validate_gate(operation.gate) for q in operation.qubits: if not isinstance(q, devices.LineQubit): raise ValueError('Unsupported qubit type: {!r}'.format(q)) if q not in self.qubits: raise ValueError('Qubit not on device: {!r}'.format(q)) def _check_if_XXPow_operation_interacts_with_any( self, XXPow_op: ops.GateOperation, others: Iterable[ops.GateOperation]) -> bool: return any(self._check_if_XXPow_operation_interacts(XXPow_op, op) for op in others) def _check_if_XXPow_operation_interacts( self, XXPow_op: ops.GateOperation, other_op: ops.GateOperation) -> bool: if isinstance(other_op.gate, (ops.XPowGate, ops.YPowGate, ops.PhasedXPowGate, ops.MeasurementGate, ops.ZPowGate)): return False return any(q == p for q in XXPow_op.qubits for p in other_op.qubits) def validate_circuit(self, circuit: circuits.Circuit): super().validate_circuit(circuit) _verify_unique_measurement_keys(circuit.all_operations()) def can_add_operation_into_moment(self, operation: ops.Operation, moment: ops.Moment) -> bool: if not super().can_add_operation_into_moment(operation, moment): return False if isinstance(operation.gate, ops.XXPowGate): return not self._check_if_XXPow_operation_interacts_with_any( cast(ops.GateOperation, operation), cast(Iterable[ops.GateOperation], moment.operations)) return True def at(self, position: int) -> Optional[devices.LineQubit]: """Returns the qubit at the given position, if there is one, else None. """ q = devices.LineQubit(position) return q if q in self.qubits else None def neighbors_of(self, qubit: devices.LineQubit): """Returns the qubits that the given qubit can interact with.""" possibles = [ devices.LineQubit(qubit.x + 1), devices.LineQubit(qubit.x - 1), ] return [e for e in possibles if e in self.qubits] def __repr__(self): return ('IonDevice(measurement_duration={!r}, ' 'twoq_gates_duration={!r}, ' 'oneq_gates_duration={!r} ' 'qubits={!r})').format(self._measurement_duration, self._twoq_gates_duration, self._oneq_gates_duration, sorted(self.qubits)) def __str__(self): diagram = circuits.TextDiagramDrawer() for q in self.qubits: diagram.write(q.x, 0, str(q)) for q2 in self.neighbors_of(q): diagram.grid_line(q.x, 0, q2.x, 0) return diagram.render( horizontal_spacing=3, vertical_spacing=2, use_unicode_characters=True) def _value_equality_values_(self): return (self._measurement_duration, self._twoq_gates_duration, self._oneq_gates_duration, self.qubits) def _verify_unique_measurement_keys(operations: Iterable[ops.Operation]): seen: Set[str] = set() for op in operations: if isinstance(op.gate, ops.MeasurementGate): meas = op.gate key = protocols.measurement_key(meas) if key in seen: raise ValueError('Measurement key {} repeated'.format(key)) seen.add(key)
4,274
0
374
4ab3bb9ddd1da5119cd9c519636fbb494ba987ad
10,910
py
Python
examples/tts/ljspeech/local/prepare_data.py
wgfi110/athena
e704884ec6a3a947769d892aa267578038e49ecb
[ "Apache-2.0" ]
791
2019-12-22T03:09:04.000Z
2022-03-26T01:57:42.000Z
examples/tts/ljspeech/local/prepare_data.py
wgfi110/athena
e704884ec6a3a947769d892aa267578038e49ecb
[ "Apache-2.0" ]
198
2019-12-22T03:06:27.000Z
2022-03-29T02:57:59.000Z
examples/tts/ljspeech/local/prepare_data.py
wgfi110/athena
e704884ec6a3a947769d892aa267578038e49ecb
[ "Apache-2.0" ]
194
2019-12-24T03:59:29.000Z
2022-03-25T02:44:51.000Z
#coding=utf-8 # Copyright (C) 2020 ATHENA AUTHORS; LanYu; # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ LJspeech dataset This is a public domain speech dataset consisting of 13,100 short audio clips of a single speaker reading passages from 7 non-fiction books. A transcription is provided for each clip. Clips vary in length from 1 to 10 seconds and have a total length of approximately 24 hours. detailed information can be seen on https://keithito.com/LJ-Speech-Dataset """ import os import re import sys import tarfile import inflect import urllib import tempfile import codecs import pandas from absl import logging from sklearn.model_selection import train_test_split from unidecode import unidecode import tensorflow as tf from athena import get_wave_file_length GFILE = tf.compat.v1.gfile URL = "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2" #------------normalize_numbers--------------# _INFLECT = inflect.engine() _COMMA_NUMBER_RE = re.compile(r'([0-9][0-9\,]+[0-9])') _DECIMAL_NUMBER_RE = re.compile(r'([0-9]+\.[0-9]+)') _POUNDS_RE = re.compile(r'£([0-9\,]*[0-9]+)') _DOLLARS_RE = re.compile(r'\$([0-9\.\,]*[0-9]+)') _ORDINAL_RE = re.compile(r'[0-9]+(st|nd|rd|th)') _NUMBER_RE = re.compile(r'[0-9]+') def normalize_numbers(text): """ normalize numbers in text """ text = re.sub(_COMMA_NUMBER_RE, _remove_commas, text) text = re.sub(_POUNDS_RE, r'\1 pounds', text) text = re.sub(_DOLLARS_RE, _expand_dollars, text) text = re.sub(_DECIMAL_NUMBER_RE, _expand_decimal_point, text) text = re.sub(_ORDINAL_RE, _expand_ordinal, text) text = re.sub(_NUMBER_RE, _expand_number, text) return text #---------------clean_text---------------# # Regular expression matching whitespace: _whitespace_re = re.compile(r'\s+') # List of (regular expression, replacement) pairs for abbreviations: _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ ('Mrs', 'Misess'), ('Mr', 'Mister'), ('Dr', 'Doctor'), ('St', 'Saint'), ('Co', 'Company'), ('Jr', 'Junior'), ('Maj', 'Major'), ('Gen', 'General'), ('Drs', 'Doctors'), ('Rev', 'Reverend'), ('Lt', 'Lieutenant'), ('Hon', 'Honorable'), ('Sgt', 'Sergeant'), ('Capt', 'Captain'), ('Esq', 'Esquire'), ('Ltd', 'Limited'), ('Col', 'Colonel'), ('Ft', 'Fort'), ]] def expand_abbreviations(text): """ expand abbreviations in text """ for regex, replacement in _abbreviations: text = re.sub(regex, replacement, text) return text def collapse_whitespace(text): """ collapse whitespace in text """ return re.sub(_whitespace_re, ' ', text) # NOTE (kan-bayashi): Following functions additionally defined, not inclueded in original codes. def remove_unnecessary_symbols(text): """ remove unnecessary symbols in text """ text = re.sub(r'[\(\)\[\]\<\>\"]+', '', text) return text def expand_symbols(text): """ expand symbols in text """ text = re.sub("\;", ",", text) text = re.sub("\:", ",", text) text = re.sub("\-", " ", text) text = re.sub("\&", "and", text) return text def preprocess(text): '''Custom pipeline for English text, including number and abbreviation expansion.''' text = convert_to_ascii(text) text = normalize_numbers(text) text = expand_abbreviations(text) text = expand_symbols(text) text = remove_unnecessary_symbols(text) text = collapse_whitespace(text) return text def download_and_extract(directory, url): """Download and extract the given split of dataset. Args: directory: the directory where to extract the tarball. url: the url to download the data file. """ if not GFILE.Exists(directory): GFILE.MakeDirs(directory) _, tar_filepath = tempfile.mkstemp(suffix=".tar.bz2") try: logging.info("Downloading %s to %s" % (url, tar_filepath)) urllib.request.urlretrieve(url, tar_filepath, _progress) statinfo = os.stat(tar_filepath) logging.info( "Successfully downloaded %s, size(bytes): %d" % (url, statinfo.st_size) ) with tarfile.open(tar_filepath, "r") as tar: tar.extractall(directory) logging.info("Successfully extracted data from LJSpeech-1.1.tar.bz2") finally: GFILE.Remove(tar_filepath) #----------------create total.csv----------------- def convert_audio_and_split_transcript(dataset_dir, total_csv_path): """Convert rar to WAV and split the transcript. Args: dataset_dir : the directory which holds the input dataset. total_csv_path : the resulting output csv file. LJSpeech-1.1 dir Tree structure: LJSpeech-1.1 -metadata.csv -LJ001-0002|in being comparatively modern.|in being comparatively modern. ... -wavs -LJ001-0001.wav -LJ001-0002.wav ... -LJ050-0278 -pcms -audio-LJ001-0001.s16 -audio-LJ001-0002.s16 ... """ logging.info("Processing audio and transcript for {}".format("all_files")) wav_dir = os.path.join(dataset_dir, "LJSpeech-1.1/wavs/") files = [] # ProsodyLabel ---word with codecs.open(os.path.join(dataset_dir, "LJSpeech-1.1/metadata.csv"), "r", encoding="utf-8") as f: for line in f: wav_name = line.split('|')[0] + '.wav' wav_file = os.path.join(wav_dir, wav_name) wav_length = get_wave_file_length(wav_file) #get transcript content = line.split('|')[2] clean_content = preprocess(content.rstrip()) transcript = ' '.join(list(clean_content)) transcript = transcript.replace(' ', ' <space>') transcript = 'sp1 ' + transcript + ' sil' #' sil\n' files.append((os.path.abspath(wav_file), wav_length, transcript)) # Write to txt file which contains three columns: fp = open(total_csv_path, 'w', encoding="utf-8") fp.write("wav_filename"+'\t' "wav_length_ms"+'\t' "transcript"+'\n') for i in range(len(files)): fp.write(str(files[i][0])+'\t') fp.write(str(files[i][1])+'\t') fp.write(str(files[i][2])+'\n') fp.close() logging.info("Successfully generated csv file {}".format(total_csv_path)) def processor(dircetory): """ download and process """ #logging.info("Downloading the dataset may take a long time so you can download it in another way and move it to the dircetory {}".format(dircetory)) LJSpeech = os.path.join(dircetory, "LJSpeech-1.1.tar.bz2") if os.path.exists(LJSpeech): logging.info("{} already exist".format(LJSpeech)) else: download_and_extract(dircetory, URL) # get total_csv logging.info("Processing the LJspeech total.csv in {}".format(dircetory)) total_csv_path = os.path.join(dircetory, "total.csv") convert_audio_and_split_transcript(dircetory, total_csv_path) split_train_dev_test(total_csv_path, dircetory) logging.info("Finished processing LJspeech csv ") if __name__ == "__main__": logging.set_verbosity(logging.INFO) DIR = sys.argv[1] processor(DIR)
35.537459
153
0.628873
#coding=utf-8 # Copyright (C) 2020 ATHENA AUTHORS; LanYu; # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ LJspeech dataset This is a public domain speech dataset consisting of 13,100 short audio clips of a single speaker reading passages from 7 non-fiction books. A transcription is provided for each clip. Clips vary in length from 1 to 10 seconds and have a total length of approximately 24 hours. detailed information can be seen on https://keithito.com/LJ-Speech-Dataset """ import os import re import sys import tarfile import inflect import urllib import tempfile import codecs import pandas from absl import logging from sklearn.model_selection import train_test_split from unidecode import unidecode import tensorflow as tf from athena import get_wave_file_length GFILE = tf.compat.v1.gfile URL = "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2" #------------normalize_numbers--------------# _INFLECT = inflect.engine() _COMMA_NUMBER_RE = re.compile(r'([0-9][0-9\,]+[0-9])') _DECIMAL_NUMBER_RE = re.compile(r'([0-9]+\.[0-9]+)') _POUNDS_RE = re.compile(r'£([0-9\,]*[0-9]+)') _DOLLARS_RE = re.compile(r'\$([0-9\.\,]*[0-9]+)') _ORDINAL_RE = re.compile(r'[0-9]+(st|nd|rd|th)') _NUMBER_RE = re.compile(r'[0-9]+') def _remove_commas(m): return m.group(1).replace(',', '') def _expand_decimal_point(m): return m.group(1).replace('.', ' point ') def _expand_dollars(m): match = m.group(1) parts = match.split('.') if len(parts) > 2: return match + ' dollars' # Unexpected format dollars = int(parts[0]) if parts[0] else 0 cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0 if dollars and cents: dollar_unit = 'dollar' if dollars == 1 else 'dollars' cent_unit = 'cent' if cents == 1 else 'cents' return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit) elif dollars: dollar_unit = 'dollar' if dollars == 1 else 'dollars' return '%s %s' % (dollars, dollar_unit) elif cents: cent_unit = 'cent' if cents == 1 else 'cents' return '%s %s' % (cents, cent_unit) else: return 'zero dollars' def _expand_ordinal(m): return _INFLECT.number_to_words(m.group(0)) def _expand_number(m): num = int(m.group(0)) if num > 1000 and num < 3000: if num == 2000: return 'two thousand' elif num > 2000 and num < 2010: return 'two thousand ' + _INFLECT.number_to_words(num % 100) elif num % 100 == 0: return _INFLECT.number_to_words(num // 100) + ' hundred' else: return _INFLECT.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ') else: return _INFLECT.number_to_words(num, andword='') def normalize_numbers(text): """ normalize numbers in text """ text = re.sub(_COMMA_NUMBER_RE, _remove_commas, text) text = re.sub(_POUNDS_RE, r'\1 pounds', text) text = re.sub(_DOLLARS_RE, _expand_dollars, text) text = re.sub(_DECIMAL_NUMBER_RE, _expand_decimal_point, text) text = re.sub(_ORDINAL_RE, _expand_ordinal, text) text = re.sub(_NUMBER_RE, _expand_number, text) return text #---------------clean_text---------------# # Regular expression matching whitespace: _whitespace_re = re.compile(r'\s+') # List of (regular expression, replacement) pairs for abbreviations: _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ ('Mrs', 'Misess'), ('Mr', 'Mister'), ('Dr', 'Doctor'), ('St', 'Saint'), ('Co', 'Company'), ('Jr', 'Junior'), ('Maj', 'Major'), ('Gen', 'General'), ('Drs', 'Doctors'), ('Rev', 'Reverend'), ('Lt', 'Lieutenant'), ('Hon', 'Honorable'), ('Sgt', 'Sergeant'), ('Capt', 'Captain'), ('Esq', 'Esquire'), ('Ltd', 'Limited'), ('Col', 'Colonel'), ('Ft', 'Fort'), ]] def expand_abbreviations(text): """ expand abbreviations in text """ for regex, replacement in _abbreviations: text = re.sub(regex, replacement, text) return text def collapse_whitespace(text): """ collapse whitespace in text """ return re.sub(_whitespace_re, ' ', text) def convert_to_ascii(text): return unidecode(text) # NOTE (kan-bayashi): Following functions additionally defined, not inclueded in original codes. def remove_unnecessary_symbols(text): """ remove unnecessary symbols in text """ text = re.sub(r'[\(\)\[\]\<\>\"]+', '', text) return text def expand_symbols(text): """ expand symbols in text """ text = re.sub("\;", ",", text) text = re.sub("\:", ",", text) text = re.sub("\-", " ", text) text = re.sub("\&", "and", text) return text def preprocess(text): '''Custom pipeline for English text, including number and abbreviation expansion.''' text = convert_to_ascii(text) text = normalize_numbers(text) text = expand_abbreviations(text) text = expand_symbols(text) text = remove_unnecessary_symbols(text) text = collapse_whitespace(text) return text def download_and_extract(directory, url): """Download and extract the given split of dataset. Args: directory: the directory where to extract the tarball. url: the url to download the data file. """ if not GFILE.Exists(directory): GFILE.MakeDirs(directory) _, tar_filepath = tempfile.mkstemp(suffix=".tar.bz2") try: logging.info("Downloading %s to %s" % (url, tar_filepath)) def _progress(count, block_size, total_size): sys.stdout.write( "\r>> Downloading {} {:.1f}%".format( tar_filepath, 100.0 * count * block_size / total_size ) ) sys.stdout.flush() urllib.request.urlretrieve(url, tar_filepath, _progress) statinfo = os.stat(tar_filepath) logging.info( "Successfully downloaded %s, size(bytes): %d" % (url, statinfo.st_size) ) with tarfile.open(tar_filepath, "r") as tar: tar.extractall(directory) logging.info("Successfully extracted data from LJSpeech-1.1.tar.bz2") finally: GFILE.Remove(tar_filepath) #----------------create total.csv----------------- def convert_audio_and_split_transcript(dataset_dir, total_csv_path): """Convert rar to WAV and split the transcript. Args: dataset_dir : the directory which holds the input dataset. total_csv_path : the resulting output csv file. LJSpeech-1.1 dir Tree structure: LJSpeech-1.1 -metadata.csv -LJ001-0002|in being comparatively modern.|in being comparatively modern. ... -wavs -LJ001-0001.wav -LJ001-0002.wav ... -LJ050-0278 -pcms -audio-LJ001-0001.s16 -audio-LJ001-0002.s16 ... """ logging.info("Processing audio and transcript for {}".format("all_files")) wav_dir = os.path.join(dataset_dir, "LJSpeech-1.1/wavs/") files = [] # ProsodyLabel ---word with codecs.open(os.path.join(dataset_dir, "LJSpeech-1.1/metadata.csv"), "r", encoding="utf-8") as f: for line in f: wav_name = line.split('|')[0] + '.wav' wav_file = os.path.join(wav_dir, wav_name) wav_length = get_wave_file_length(wav_file) #get transcript content = line.split('|')[2] clean_content = preprocess(content.rstrip()) transcript = ' '.join(list(clean_content)) transcript = transcript.replace(' ', ' <space>') transcript = 'sp1 ' + transcript + ' sil' #' sil\n' files.append((os.path.abspath(wav_file), wav_length, transcript)) # Write to txt file which contains three columns: fp = open(total_csv_path, 'w', encoding="utf-8") fp.write("wav_filename"+'\t' "wav_length_ms"+'\t' "transcript"+'\n') for i in range(len(files)): fp.write(str(files[i][0])+'\t') fp.write(str(files[i][1])+'\t') fp.write(str(files[i][2])+'\n') fp.close() logging.info("Successfully generated csv file {}".format(total_csv_path)) def split_train_dev_test(total_csv, output_dir): # get total_csv data = pandas.read_csv(total_csv, encoding='utf-8', sep='\t') x, y = data.iloc[:, :2], data.iloc[:, 2:] # split train/dev/test0 x_train, x_rest, y_train, y_rest = train_test_split(x, y, test_size=0.1, random_state=0) x_test, x_dev, y_test, y_dev = train_test_split(x_rest, y_rest, test_size=0.9, random_state=0) # add ProsodyLabel x_train.insert(2, 'transcript', y_train) x_test.insert(2, 'transcript', y_test) x_dev.insert(2, 'transcript', y_dev) # get csv_path train_csv_path = os.path.join(output_dir, 'train.csv') dev_csv_path = os.path.join(output_dir, 'dev.csv') test_csv_path = os.path.join(output_dir, 'test.csv') # generate csv x_train.to_csv(train_csv_path, index=False, sep="\t") logging.info("Successfully generated csv file {}".format(train_csv_path)) x_dev.to_csv(dev_csv_path, index=False, sep="\t") logging.info("Successfully generated csv file {}".format(dev_csv_path)) x_test.to_csv(test_csv_path, index=False, sep="\t") logging.info("Successfully generated csv file {}".format(test_csv_path)) def processor(dircetory): """ download and process """ #logging.info("Downloading the dataset may take a long time so you can download it in another way and move it to the dircetory {}".format(dircetory)) LJSpeech = os.path.join(dircetory, "LJSpeech-1.1.tar.bz2") if os.path.exists(LJSpeech): logging.info("{} already exist".format(LJSpeech)) else: download_and_extract(dircetory, URL) # get total_csv logging.info("Processing the LJspeech total.csv in {}".format(dircetory)) total_csv_path = os.path.join(dircetory, "total.csv") convert_audio_and_split_transcript(dircetory, total_csv_path) split_train_dev_test(total_csv_path, dircetory) logging.info("Finished processing LJspeech csv ") if __name__ == "__main__": logging.set_verbosity(logging.INFO) DIR = sys.argv[1] processor(DIR)
2,812
0
192
09b04334000e84dd407ae506dce11f9969eacf3d
666
py
Python
yossarian/book_groups/migrations/0003_auto_20151231_1605.py
avinassh/yossarian
b485da0669d87ad29f57ba2a4a446131aaf820a6
[ "MIT" ]
null
null
null
yossarian/book_groups/migrations/0003_auto_20151231_1605.py
avinassh/yossarian
b485da0669d87ad29f57ba2a4a446131aaf820a6
[ "MIT" ]
null
null
null
yossarian/book_groups/migrations/0003_auto_20151231_1605.py
avinassh/yossarian
b485da0669d87ad29f57ba2a4a446131aaf820a6
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2015-12-31 16:05 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion
25.615385
101
0.62012
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2015-12-31 16:05 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('book_groups', '0002_progress'), ] operations = [ migrations.AlterField( model_name='bookgroup', name='book', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='books.Book'), ), migrations.AlterUniqueTogether( name='progress', unique_together=set([('book_group', 'user')]), ), ]
0
457
23
f3f8f0663273ae09a08d463054d3e72903562007
1,347
py
Python
transactions/accounts/migrations/0001_initial.py
akash-dev-github/Transactions
7f1b8897d914a1cf297aeff750c197d21ce98ca8
[ "MIT" ]
null
null
null
transactions/accounts/migrations/0001_initial.py
akash-dev-github/Transactions
7f1b8897d914a1cf297aeff750c197d21ce98ca8
[ "MIT" ]
null
null
null
transactions/accounts/migrations/0001_initial.py
akash-dev-github/Transactions
7f1b8897d914a1cf297aeff750c197d21ce98ca8
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2016-10-09 19:24 from __future__ import unicode_literals import datetime import django.db.models.deletion from django.conf import settings from django.db import migrations, models
35.447368
130
0.614699
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2016-10-09 19:24 from __future__ import unicode_literals import datetime import django.db.models.deletion from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Account', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('is_active', models.BooleanField(default=True)), ('added_dttm', models.DateTimeField(default=datetime.datetime.now, editable=False)), ('last_modified_dttm', models.DateTimeField(default=datetime.datetime.now)), ('balance', models.DecimalField(decimal_places=8, max_digits=32)), ('currency', models.CharField(choices=[('BTC', 'bitcoin'), ('ETH', 'etherium'), ('PHP', 'pesos')], max_length=8)), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, 'db_table': 'account', }, ), ]
0
1,085
23
3d1c5ee77973eec7eef67ddca34a8343a0cf3724
6,691
py
Python
custom_components/edgeos/clients/web_socket.py
kcleong/homeassistant-config
15b7bc75f5d1055d8620ced87eed9d563475296d
[ "MIT" ]
null
null
null
custom_components/edgeos/clients/web_socket.py
kcleong/homeassistant-config
15b7bc75f5d1055d8620ced87eed9d563475296d
[ "MIT" ]
null
null
null
custom_components/edgeos/clients/web_socket.py
kcleong/homeassistant-config
15b7bc75f5d1055d8620ced87eed9d563475296d
[ "MIT" ]
null
null
null
""" This component provides support for Home Automation Manager (HAM). For more details about this component, please refer to the documentation at https://home-assistant.io/components/edgeos/ """ import asyncio import json import logging import re from typing import Optional from urllib.parse import urlparse import aiohttp from homeassistant.helpers.aiohttp_client import async_create_clientsession from ..helpers.const import * from ..models.config_data import ConfigData REQUIREMENTS = ["aiohttp"] _LOGGER = logging.getLogger(__name__)
28.47234
87
0.606337
""" This component provides support for Home Automation Manager (HAM). For more details about this component, please refer to the documentation at https://home-assistant.io/components/edgeos/ """ import asyncio import json import logging import re from typing import Optional from urllib.parse import urlparse import aiohttp from homeassistant.helpers.aiohttp_client import async_create_clientsession from ..helpers.const import * from ..models.config_data import ConfigData REQUIREMENTS = ["aiohttp"] _LOGGER = logging.getLogger(__name__) class EdgeOSWebSocket: def __init__(self, hass, config_manager, topics, edgeos_callback): self._config_manager = config_manager self._last_update = datetime.now() self._edgeos_callback = edgeos_callback self._hass = hass self._session_id = None self._topics = topics self._session = None self._ws = None self._pending_payloads = [] self.shutting_down = False self._is_connected = False @property def config_data(self) -> Optional[ConfigData]: if self._config_manager is not None: return self._config_manager.data return None @property def ws_url(self): url = urlparse(self.config_data.url) ws_url = WEBSOCKET_URL_TEMPLATE.format(url.netloc) return ws_url async def initialize(self, cookies, session_id): _LOGGER.debug("Initializing WS connection") try: self._is_connected = False self.shutting_down = False self._session_id = session_id if self._hass is None: self._session = aiohttp.client.ClientSession(cookies=cookies) else: self._session = async_create_clientsession( hass=self._hass, cookies=cookies ) except Exception as ex: _LOGGER.warning(f"Failed to create session of EdgeOS WS, Error: {str(ex)}") try: async with self._session.ws_connect( self.ws_url, origin=self.config_data.url, ssl=False, autoclose=True, max_msg_size=MAX_MSG_SIZE, timeout=SCAN_INTERVAL_WS_TIMEOUT, ) as ws: self._is_connected = True self._ws = ws await self.listen() except Exception as ex: if self._session is not None and self._session.closed: _LOGGER.info(f"WS Session closed") else: _LOGGER.warning(f"Failed to connect EdgeOS WS, Error: {ex}") self._is_connected = False _LOGGER.info("WS Connection terminated") @property def is_initialized(self): is_initialized = self._session is not None and not self._session.closed return is_initialized @property def last_update(self): result = self._last_update return result def parse_message(self, message): parsed = False try: message = message.replace(NEW_LINE, EMPTY_STRING) message = re.sub(BEGINS_WITH_SIX_DIGITS, EMPTY_STRING, message) if len(self._pending_payloads) > 0: message_previous = "".join(self._pending_payloads) message = f"{message_previous}{message}" if len(message) > 0: payload_json = json.loads(message) self._edgeos_callback(payload_json) parsed = True else: _LOGGER.debug("Parse message skipped (Empty)") except Exception as ex: _LOGGER.debug(f"Parse message failed due to partial payload, Error: {ex}") finally: if parsed or len(self._pending_payloads) > MAX_PENDING_PAYLOADS: self._pending_payloads = [] else: self._pending_payloads.append(message) async def async_send_heartbeat(self): _LOGGER.debug(f"Keep alive message sent") data = self.get_keep_alive_data() if self._is_connected: await self._ws.send_str(data) async def listen(self): _LOGGER.info(f"Starting to listen connected") subscription_data = self.get_subscription_data() await self._ws.send_str(subscription_data) _LOGGER.info("Subscribed to WS payloads") async for msg in self._ws: continue_to_next = self.handle_next_message(msg) if ( not continue_to_next or not self.is_initialized or not self._is_connected ): break _LOGGER.info(f"Stop listening") def handle_next_message(self, msg): _LOGGER.debug(f"Starting to handle next message") result = False if msg.type in ( aiohttp.WSMsgType.CLOSE, aiohttp.WSMsgType.CLOSED, aiohttp.WSMsgType.CLOSING, ): _LOGGER.info("Connection closed (By Message Close)") elif msg.type == aiohttp.WSMsgType.ERROR: _LOGGER.warning(f"Connection error, Description: {self._ws.exception()}") else: if self.config_data.log_incoming_messages: _LOGGER.debug(f"New message received: {str(msg)}") self._last_update = datetime.now() if msg.data == "close": result = False else: self.parse_message(msg.data) result = True return result def disconnect(self): self._is_connected = False async def close(self): _LOGGER.info("Closing connection to WS") self._session_id = None self._is_connected = False if self._ws is not None: await self._ws.close() await asyncio.sleep(DISCONNECT_INTERVAL) self._ws = None @staticmethod def get_keep_alive_data(): content = "{CLIENT_PING}" _LOGGER.debug(f"Keep alive data to be sent: {content}") return content def get_subscription_data(self): topics_to_subscribe = [{WS_TOPIC_NAME: topic} for topic in self._topics] topics_to_unsubscribe = [] data = { WS_TOPIC_SUBSCRIBE: topics_to_subscribe, WS_TOPIC_UNSUBSCRIBE: topics_to_unsubscribe, WS_SESSION_ID: self._session_id, } content = json.dumps(data, separators=(STRING_COMMA, STRING_COLON)) content_length = len(content) data = f"{content_length}\n{content}" _LOGGER.debug(f"Subscription data to be sent: {data}") return data
5,670
452
23
9ca3fcb4f36e750dc158f22eee6d8701f2799cd8
1,918
py
Python
venv/lib/python3.8/site-packages/azureml/_base_sdk_common/workspace/models/linked_service_props.py
amcclead7336/Enterprise_Data_Science_Final
ccdc0aa08d4726bf82d71c11a1cc0c63eb301a28
[ "Unlicense", "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/azureml/_base_sdk_common/workspace/models/linked_service_props.py
amcclead7336/Enterprise_Data_Science_Final
ccdc0aa08d4726bf82d71c11a1cc0c63eb301a28
[ "Unlicense", "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/azureml/_base_sdk_common/workspace/models/linked_service_props.py
amcclead7336/Enterprise_Data_Science_Final
ccdc0aa08d4726bf82d71c11a1cc0c63eb301a28
[ "Unlicense", "MIT" ]
2
2021-05-23T16:46:31.000Z
2021-05-26T23:51:09.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator 2.3.33.0 # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class LinkedServiceProps(Model): """LinkedService specific properties. :param linked_service_resource_id: ResourceId of the link target of the linked service. :type linked_service_resource_id: str :param link_type: Type of the link target. Possible values include: 'Synapse' :type link_type: str or ~_restclient.models.LinkedServiceLinkType :param created_time: The creation time of the linked service. :type created_time: datetime :param modified_time: The last modified time of the linked service. :type modified_time: datetime """ _validation = { 'linked_service_resource_id': {'required': True}, } _attribute_map = { 'linked_service_resource_id': {'key': 'linkedServiceResourceId', 'type': 'str'}, 'link_type': {'key': 'linkType', 'type': 'LinkedServiceLinkType'}, 'created_time': {'key': 'createdTime', 'type': 'iso-8601'}, 'modified_time': {'key': 'modifiedTime', 'type': 'iso-8601'}, }
40.808511
107
0.637643
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator 2.3.33.0 # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class LinkedServiceProps(Model): """LinkedService specific properties. :param linked_service_resource_id: ResourceId of the link target of the linked service. :type linked_service_resource_id: str :param link_type: Type of the link target. Possible values include: 'Synapse' :type link_type: str or ~_restclient.models.LinkedServiceLinkType :param created_time: The creation time of the linked service. :type created_time: datetime :param modified_time: The last modified time of the linked service. :type modified_time: datetime """ _validation = { 'linked_service_resource_id': {'required': True}, } _attribute_map = { 'linked_service_resource_id': {'key': 'linkedServiceResourceId', 'type': 'str'}, 'link_type': {'key': 'linkType', 'type': 'LinkedServiceLinkType'}, 'created_time': {'key': 'createdTime', 'type': 'iso-8601'}, 'modified_time': {'key': 'modifiedTime', 'type': 'iso-8601'}, } def __init__(self, linked_service_resource_id, link_type=None, created_time=None, modified_time=None): super(LinkedServiceProps, self).__init__() self.linked_service_resource_id = linked_service_resource_id self.link_type = link_type self.created_time = created_time self.modified_time = modified_time
325
0
29
626ab922c10d3f79f86d1f22251f5d6b2a46edfe
963
py
Python
notebooks/1.0-vg-runtime-simulation/timing.py
v715/py-U-Rerf
d1821ce95a3ccc3345faa673371f7a8e9a797f72
[ "FTL" ]
2
2018-09-18T00:06:46.000Z
2018-09-18T12:59:38.000Z
notebooks/1.0-vg-runtime-simulation/timing.py
v715/py-U-Rerf
d1821ce95a3ccc3345faa673371f7a8e9a797f72
[ "FTL" ]
17
2018-09-17T23:50:25.000Z
2018-10-12T19:30:21.000Z
notebooks/1.0-vg-runtime-simulation/timing.py
v715/py-U-Rerf
d1821ce95a3ccc3345faa673371f7a8e9a797f72
[ "FTL" ]
null
null
null
#!/usr/bin/env python # graph.py # Created by Vivek Gopalakrishnan on 2018-11-13. # Email: vgopala4@jhu.edu # Copyright (c) 2018. All rights reserved. import timeit from src.features.summary import Stats from src.random.bernoulli import RandomGraph def measure_runtime(n, p, number=5): """ Calculates the runtime for a given graph. Does not time the functions: 'khop_locality', 'scan_statistic' """ # Initialize graph and stats class A = RandomGraph(int(n), p) s = Stats(A) public_method_names = [method for method in dir(s) if callable( getattr(s, method)) if not method.startswith('_')] for method in ['return_stats', 'khop_locality', 'scan_statistic']: public_method_names.remove(method) # Dictionary for holding results results = [n, p] # Runtime for method in public_method_names: results += [timeit.timeit(lambda: getattr(s, method)(), number=number)] return results
26.027027
79
0.686397
#!/usr/bin/env python # graph.py # Created by Vivek Gopalakrishnan on 2018-11-13. # Email: vgopala4@jhu.edu # Copyright (c) 2018. All rights reserved. import timeit from src.features.summary import Stats from src.random.bernoulli import RandomGraph def measure_runtime(n, p, number=5): """ Calculates the runtime for a given graph. Does not time the functions: 'khop_locality', 'scan_statistic' """ # Initialize graph and stats class A = RandomGraph(int(n), p) s = Stats(A) public_method_names = [method for method in dir(s) if callable( getattr(s, method)) if not method.startswith('_')] for method in ['return_stats', 'khop_locality', 'scan_statistic']: public_method_names.remove(method) # Dictionary for holding results results = [n, p] # Runtime for method in public_method_names: results += [timeit.timeit(lambda: getattr(s, method)(), number=number)] return results
0
0
0
8d1f18ed4554971d39a164bbe0c71bd5477eddf5
1,360
py
Python
NodeClassification/ADMM/ADMM/main_admm_auto_tune.py
x-zho14/Unified-LTH-GNN
edbb2f9aaa7cb363424dcfcb2ce198cfb66f3d55
[ "MIT" ]
29
2021-02-17T02:46:54.000Z
2022-03-18T02:09:03.000Z
NodeClassification/ADMM/ADMM/main_admm_auto_tune.py
x-zho14/Unified-LTH-GNN
edbb2f9aaa7cb363424dcfcb2ce198cfb66f3d55
[ "MIT" ]
1
2021-09-03T13:30:50.000Z
2021-09-03T13:30:50.000Z
NodeClassification/ADMM/ADMM/main_admm_auto_tune.py
x-zho14/Unified-LTH-GNN
edbb2f9aaa7cb363424dcfcb2ce198cfb66f3d55
[ "MIT" ]
10
2021-04-01T16:27:03.000Z
2022-03-07T09:20:38.000Z
import os import numpy as np learning_rate = [0.01, 0.001] prune_ratio = 30 ADMM_times = [2,3,4,5,6,7] Total_epochs = [10,30,40,50,60] target_accuracy = 0.76 count = 0 highest_acc = 0 for i in range(len(learning_rate)): for j in range(len(ADMM_times)): for k in range(len(Total_epochs)): lr = learning_rate[i] admm = ADMM_times[j] epoch = Total_epochs[k] #linux #os.system('rm '+"log"+str(count)+".txt") #windows os.system('del '+"log"+str(count)+".txt") os.system("python train-auto-admm-tuneParameter.py" +" --target_acc="+str(target_accuracy) +" --prune_ratio="+str(prune_ratio) +" --count=" + str(count) +" --learning_rate="+str(lr) +" --ADMM="+str(admm) +" --epochs="+str(epoch) +" >>log"+str(count)+".txt") f = open("log" + str(count) + ".txt") for line2 in f: if "Finally Test set results" in line2: res = line2.split() if float(res[7]) > highest_acc: highest_acc = float(res[7]) count+=1 print("highest accuracy only train with pruned adjacency + weights: ", highest_acc)
35.789474
83
0.491912
import os import numpy as np learning_rate = [0.01, 0.001] prune_ratio = 30 ADMM_times = [2,3,4,5,6,7] Total_epochs = [10,30,40,50,60] target_accuracy = 0.76 count = 0 highest_acc = 0 for i in range(len(learning_rate)): for j in range(len(ADMM_times)): for k in range(len(Total_epochs)): lr = learning_rate[i] admm = ADMM_times[j] epoch = Total_epochs[k] #linux #os.system('rm '+"log"+str(count)+".txt") #windows os.system('del '+"log"+str(count)+".txt") os.system("python train-auto-admm-tuneParameter.py" +" --target_acc="+str(target_accuracy) +" --prune_ratio="+str(prune_ratio) +" --count=" + str(count) +" --learning_rate="+str(lr) +" --ADMM="+str(admm) +" --epochs="+str(epoch) +" >>log"+str(count)+".txt") f = open("log" + str(count) + ".txt") for line2 in f: if "Finally Test set results" in line2: res = line2.split() if float(res[7]) > highest_acc: highest_acc = float(res[7]) count+=1 print("highest accuracy only train with pruned adjacency + weights: ", highest_acc)
0
0
0
7dc23fe92ba79adcfc96da36352928d104bdba79
490
py
Python
apps/users/admin.py
Mozilla-GitHub-Standards/93f18f14efcf5fdfc0e04f9bf247f66baf46663f37b1d2087ab8d850abc90803
4e374b4d52dfb9039ebe543e7f27682189022307
[ "BSD-3-Clause" ]
2
2015-04-06T15:20:29.000Z
2016-12-30T12:25:11.000Z
apps/users/admin.py
Mozilla-GitHub-Standards/93f18f14efcf5fdfc0e04f9bf247f66baf46663f37b1d2087ab8d850abc90803
4e374b4d52dfb9039ebe543e7f27682189022307
[ "BSD-3-Clause" ]
2
2019-02-17T17:38:02.000Z
2019-03-28T03:49:16.000Z
apps/users/admin.py
Mozilla-GitHub-Standards/93f18f14efcf5fdfc0e04f9bf247f66baf46663f37b1d2087ab8d850abc90803
4e374b4d52dfb9039ebe543e7f27682189022307
[ "BSD-3-Clause" ]
1
2019-03-28T03:49:18.000Z
2019-03-28T03:49:18.000Z
from django.contrib import admin from tower import ugettext_lazy as _ from users.models import Profile, Link username = lambda u: u.user.username username.short_description = _('Username') admin.site.register(Profile, ProfileAdmin) admin.site.register(Link, LinkAdmin)
21.304348
42
0.734694
from django.contrib import admin from tower import ugettext_lazy as _ from users.models import Profile, Link username = lambda u: u.user.username username.short_description = _('Username') class ProfileAdmin(admin.ModelAdmin): list_display = (username, 'name') search_fields = ('name',) class LinkAdmin(admin.ModelAdmin): list_display = ('name', 'url') search_fields = ('name', 'url') admin.site.register(Profile, ProfileAdmin) admin.site.register(Link, LinkAdmin)
0
168
46
324d309f43981206af584f6bc12c55d7e3d30736
4,574
py
Python
IMU/VTK-6.2.0/Filters/General/Testing/Python/TestMultiBlockStreamer.py
timkrentz/SunTracker
9a189cc38f45e5fbc4e4c700d7295a871d022795
[ "MIT" ]
4
2016-03-30T14:31:52.000Z
2019-02-02T05:01:32.000Z
IMU/VTK-6.2.0/Filters/General/Testing/Python/TestMultiBlockStreamer.py
timkrentz/SunTracker
9a189cc38f45e5fbc4e4c700d7295a871d022795
[ "MIT" ]
null
null
null
IMU/VTK-6.2.0/Filters/General/Testing/Python/TestMultiBlockStreamer.py
timkrentz/SunTracker
9a189cc38f45e5fbc4e4c700d7295a871d022795
[ "MIT" ]
2
2019-08-30T23:36:13.000Z
2019-11-08T16:52:01.000Z
#!/usr/bin/env python import vtk from vtk.test import Testing from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() # we need to use composite data pipeline with multiblock datasets alg = vtk.vtkAlgorithm() pip = vtk.vtkCompositeDataPipeline() alg.SetDefaultExecutivePrototype(pip) #del pip Ren1 = vtk.vtkRenderer() Ren1.SetBackground(0.33, 0.35, 0.43) renWin = vtk.vtkRenderWindow() renWin.AddRenderer(Ren1) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) Plot3D0 = vtk.vtkMultiBlockPLOT3DReader() Plot3D0.SetFileName(VTK_DATA_ROOT + "/Data/combxyz.bin") Plot3D0.SetQFileName(VTK_DATA_ROOT + "/Data/combq.bin") Plot3D0.SetBinaryFile(1) Plot3D0.SetMultiGrid(0) Plot3D0.SetHasByteCount(0) Plot3D0.SetIBlanking(0) Plot3D0.SetTwoDimensionalGeometry(0) Plot3D0.SetForceRead(0) Plot3D0.SetByteOrder(0) Plot3D0.Update() output = Plot3D0.GetOutput().GetBlock(0) Geometry5 = vtk.vtkStructuredGridOutlineFilter() Geometry5.SetInputData(output) Mapper5 = vtk.vtkPolyDataMapper() Mapper5.SetInputConnection(Geometry5.GetOutputPort()) Mapper5.SetImmediateModeRendering(1) Mapper5.UseLookupTableScalarRangeOn() Mapper5.SetScalarVisibility(0) Mapper5.SetScalarModeToDefault() Actor5 = vtk.vtkActor() Actor5.SetMapper(Mapper5) Actor5.GetProperty().SetRepresentationToSurface() Actor5.GetProperty().SetInterpolationToGouraud() Actor5.GetProperty().SetAmbient(0.15) Actor5.GetProperty().SetDiffuse(0.85) Actor5.GetProperty().SetSpecular(0.1) Actor5.GetProperty().SetSpecularPower(100) Actor5.GetProperty().SetSpecularColor(1, 1, 1) Actor5.GetProperty().SetColor(1, 1, 1) Ren1.AddActor(Actor5) ExtractGrid0 = vtk.vtkExtractGrid() ExtractGrid0.SetInputData(output) ExtractGrid0.SetVOI(0, 14, 0, 32, 0, 24) ExtractGrid0.SetSampleRate(1, 1, 1) ExtractGrid0.SetIncludeBoundary(0) ExtractGrid1 = vtk.vtkExtractGrid() ExtractGrid1.SetInputData(output) ExtractGrid1.SetVOI(14, 29, 0, 32, 0, 24) ExtractGrid1.SetSampleRate(1, 1, 1) ExtractGrid1.SetIncludeBoundary(0) ExtractGrid2 = vtk.vtkExtractGrid() ExtractGrid2.SetInputData(output) ExtractGrid2.SetVOI(29, 56, 0, 32, 0, 24) ExtractGrid2.SetSampleRate(1, 1, 1) ExtractGrid2.SetIncludeBoundary(0) LineSourceWidget0 = vtk.vtkLineSource() LineSourceWidget0.SetPoint1(3.05638, -3.00497, 28.2211) LineSourceWidget0.SetPoint2(3.05638, 3.95916, 28.2211) LineSourceWidget0.SetResolution(20) mbds = vtk.vtkMultiBlockDataSet() mbds.SetNumberOfBlocks(3) i = 0 while i < 3: eval("ExtractGrid" + str(i)).Update() exec("sg" + str(i) + " = vtk.vtkStructuredGrid()") eval("sg" + str(i)).ShallowCopy(eval("ExtractGrid" + str(i)).GetOutput()) mbds.SetBlock(i, eval("sg" + str(i))) i += 1 Stream0 = vtk.vtkStreamTracer() Stream0.SetInputData(mbds) Stream0.SetSourceConnection(LineSourceWidget0.GetOutputPort()) Stream0.SetIntegrationStepUnit(2) Stream0.SetMaximumPropagation(20) Stream0.SetInitialIntegrationStep(0.5) Stream0.SetIntegrationDirection(0) Stream0.SetIntegratorType(0) Stream0.SetMaximumNumberOfSteps(2000) Stream0.SetTerminalSpeed(1e-12) #del mbds aa = vtk.vtkAssignAttribute() aa.SetInputConnection(Stream0.GetOutputPort()) aa.Assign("Normals", "NORMALS", "POINT_DATA") Ribbon0 = vtk.vtkRibbonFilter() Ribbon0.SetInputConnection(aa.GetOutputPort()) Ribbon0.SetWidth(0.1) Ribbon0.SetAngle(0) Ribbon0.SetDefaultNormal(0, 0, 1) Ribbon0.SetVaryWidth(0) LookupTable1 = vtk.vtkLookupTable() LookupTable1.SetNumberOfTableValues(256) LookupTable1.SetHueRange(0, 0.66667) LookupTable1.SetSaturationRange(1, 1) LookupTable1.SetValueRange(1, 1) LookupTable1.SetTableRange(0.197813, 0.710419) LookupTable1.SetVectorComponent(0) LookupTable1.Build() Mapper10 = vtk.vtkPolyDataMapper() Mapper10.SetInputConnection(Ribbon0.GetOutputPort()) Mapper10.SetImmediateModeRendering(1) Mapper10.UseLookupTableScalarRangeOn() Mapper10.SetScalarVisibility(1) Mapper10.SetScalarModeToUsePointFieldData() Mapper10.SelectColorArray("Density") Mapper10.SetLookupTable(LookupTable1) Actor10 = vtk.vtkActor() Actor10.SetMapper(Mapper10) Actor10.GetProperty().SetRepresentationToSurface() Actor10.GetProperty().SetInterpolationToGouraud() Actor10.GetProperty().SetAmbient(0.15) Actor10.GetProperty().SetDiffuse(0.85) Actor10.GetProperty().SetSpecular(0) Actor10.GetProperty().SetSpecularPower(1) Actor10.GetProperty().SetSpecularColor(1, 1, 1) Ren1.AddActor(Actor10) iren.Initialize() alg.SetDefaultExecutivePrototype(None) #del alg #iren.Start()
30.291391
78
0.776782
#!/usr/bin/env python import vtk from vtk.test import Testing from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() # we need to use composite data pipeline with multiblock datasets alg = vtk.vtkAlgorithm() pip = vtk.vtkCompositeDataPipeline() alg.SetDefaultExecutivePrototype(pip) #del pip Ren1 = vtk.vtkRenderer() Ren1.SetBackground(0.33, 0.35, 0.43) renWin = vtk.vtkRenderWindow() renWin.AddRenderer(Ren1) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) Plot3D0 = vtk.vtkMultiBlockPLOT3DReader() Plot3D0.SetFileName(VTK_DATA_ROOT + "/Data/combxyz.bin") Plot3D0.SetQFileName(VTK_DATA_ROOT + "/Data/combq.bin") Plot3D0.SetBinaryFile(1) Plot3D0.SetMultiGrid(0) Plot3D0.SetHasByteCount(0) Plot3D0.SetIBlanking(0) Plot3D0.SetTwoDimensionalGeometry(0) Plot3D0.SetForceRead(0) Plot3D0.SetByteOrder(0) Plot3D0.Update() output = Plot3D0.GetOutput().GetBlock(0) Geometry5 = vtk.vtkStructuredGridOutlineFilter() Geometry5.SetInputData(output) Mapper5 = vtk.vtkPolyDataMapper() Mapper5.SetInputConnection(Geometry5.GetOutputPort()) Mapper5.SetImmediateModeRendering(1) Mapper5.UseLookupTableScalarRangeOn() Mapper5.SetScalarVisibility(0) Mapper5.SetScalarModeToDefault() Actor5 = vtk.vtkActor() Actor5.SetMapper(Mapper5) Actor5.GetProperty().SetRepresentationToSurface() Actor5.GetProperty().SetInterpolationToGouraud() Actor5.GetProperty().SetAmbient(0.15) Actor5.GetProperty().SetDiffuse(0.85) Actor5.GetProperty().SetSpecular(0.1) Actor5.GetProperty().SetSpecularPower(100) Actor5.GetProperty().SetSpecularColor(1, 1, 1) Actor5.GetProperty().SetColor(1, 1, 1) Ren1.AddActor(Actor5) ExtractGrid0 = vtk.vtkExtractGrid() ExtractGrid0.SetInputData(output) ExtractGrid0.SetVOI(0, 14, 0, 32, 0, 24) ExtractGrid0.SetSampleRate(1, 1, 1) ExtractGrid0.SetIncludeBoundary(0) ExtractGrid1 = vtk.vtkExtractGrid() ExtractGrid1.SetInputData(output) ExtractGrid1.SetVOI(14, 29, 0, 32, 0, 24) ExtractGrid1.SetSampleRate(1, 1, 1) ExtractGrid1.SetIncludeBoundary(0) ExtractGrid2 = vtk.vtkExtractGrid() ExtractGrid2.SetInputData(output) ExtractGrid2.SetVOI(29, 56, 0, 32, 0, 24) ExtractGrid2.SetSampleRate(1, 1, 1) ExtractGrid2.SetIncludeBoundary(0) LineSourceWidget0 = vtk.vtkLineSource() LineSourceWidget0.SetPoint1(3.05638, -3.00497, 28.2211) LineSourceWidget0.SetPoint2(3.05638, 3.95916, 28.2211) LineSourceWidget0.SetResolution(20) mbds = vtk.vtkMultiBlockDataSet() mbds.SetNumberOfBlocks(3) i = 0 while i < 3: eval("ExtractGrid" + str(i)).Update() exec("sg" + str(i) + " = vtk.vtkStructuredGrid()") eval("sg" + str(i)).ShallowCopy(eval("ExtractGrid" + str(i)).GetOutput()) mbds.SetBlock(i, eval("sg" + str(i))) i += 1 Stream0 = vtk.vtkStreamTracer() Stream0.SetInputData(mbds) Stream0.SetSourceConnection(LineSourceWidget0.GetOutputPort()) Stream0.SetIntegrationStepUnit(2) Stream0.SetMaximumPropagation(20) Stream0.SetInitialIntegrationStep(0.5) Stream0.SetIntegrationDirection(0) Stream0.SetIntegratorType(0) Stream0.SetMaximumNumberOfSteps(2000) Stream0.SetTerminalSpeed(1e-12) #del mbds aa = vtk.vtkAssignAttribute() aa.SetInputConnection(Stream0.GetOutputPort()) aa.Assign("Normals", "NORMALS", "POINT_DATA") Ribbon0 = vtk.vtkRibbonFilter() Ribbon0.SetInputConnection(aa.GetOutputPort()) Ribbon0.SetWidth(0.1) Ribbon0.SetAngle(0) Ribbon0.SetDefaultNormal(0, 0, 1) Ribbon0.SetVaryWidth(0) LookupTable1 = vtk.vtkLookupTable() LookupTable1.SetNumberOfTableValues(256) LookupTable1.SetHueRange(0, 0.66667) LookupTable1.SetSaturationRange(1, 1) LookupTable1.SetValueRange(1, 1) LookupTable1.SetTableRange(0.197813, 0.710419) LookupTable1.SetVectorComponent(0) LookupTable1.Build() Mapper10 = vtk.vtkPolyDataMapper() Mapper10.SetInputConnection(Ribbon0.GetOutputPort()) Mapper10.SetImmediateModeRendering(1) Mapper10.UseLookupTableScalarRangeOn() Mapper10.SetScalarVisibility(1) Mapper10.SetScalarModeToUsePointFieldData() Mapper10.SelectColorArray("Density") Mapper10.SetLookupTable(LookupTable1) Actor10 = vtk.vtkActor() Actor10.SetMapper(Mapper10) Actor10.GetProperty().SetRepresentationToSurface() Actor10.GetProperty().SetInterpolationToGouraud() Actor10.GetProperty().SetAmbient(0.15) Actor10.GetProperty().SetDiffuse(0.85) Actor10.GetProperty().SetSpecular(0) Actor10.GetProperty().SetSpecularPower(1) Actor10.GetProperty().SetSpecularColor(1, 1, 1) Ren1.AddActor(Actor10) iren.Initialize() alg.SetDefaultExecutivePrototype(None) #del alg #iren.Start()
0
0
0
716976b200135720854972a197428b45a78f6344
207
py
Python
pdbuddy/formatters/simple.py
emou/pdbuddy
5708c44803e46d06aca02a0402ebaec0c5ae4634
[ "MIT" ]
null
null
null
pdbuddy/formatters/simple.py
emou/pdbuddy
5708c44803e46d06aca02a0402ebaec0c5ae4634
[ "MIT" ]
null
null
null
pdbuddy/formatters/simple.py
emou/pdbuddy
5708c44803e46d06aca02a0402ebaec0c5ae4634
[ "MIT" ]
null
null
null
from __future__ import absolute_import from pdbuddy.formatters.base import BaseFormatter
20.7
49
0.772947
from __future__ import absolute_import from pdbuddy.formatters.base import BaseFormatter class SimpleFormatter(BaseFormatter): def __call__(self, frame, event, arg): return str(frame.f_code)
50
16
50
26e8cceb26d881c4c50d1907d6a8246ef169ec29
786
py
Python
Search_4_letter-webApp/vsearch4web.py
dlouima/python_project
2f84c5131efccfa04a633a608605b957b20b5f7e
[ "Apache-2.0" ]
null
null
null
Search_4_letter-webApp/vsearch4web.py
dlouima/python_project
2f84c5131efccfa04a633a608605b957b20b5f7e
[ "Apache-2.0" ]
null
null
null
Search_4_letter-webApp/vsearch4web.py
dlouima/python_project
2f84c5131efccfa04a633a608605b957b20b5f7e
[ "Apache-2.0" ]
null
null
null
import vsearch as vsearch from flask import Flask, render_template, request, redirect app= Flask(__name__) # # @app.route('/') # def hello() -> str: # return redirect('/entry') @app.route('/search4', methods=['POST']) @app.route('/') @app.route('/entry') if __name__ == '__main__0': app.run(debug=True)
22.457143
90
0.653944
import vsearch as vsearch from flask import Flask, render_template, request, redirect app= Flask(__name__) # # @app.route('/') # def hello() -> str: # return redirect('/entry') @app.route('/search4', methods=['POST']) def do_search(): phrase = request.form['phrase'] letters= request.form['letters'] title='Here are your results' results= str(vsearch.search4letters(phrase, letters)) return render_template( 'results.html', the_phrase = phrase, the_letters = letters, the_title = title, the_results = results, ) @app.route('/') @app.route('/entry') def entry_page(): return render_template('entry.html', the_title='Welcome to search4letter on the web!') if __name__ == '__main__0': app.run(debug=True)
423
0
44
a0f8dba11d5c9d23036254d6bc2c8e4009334ab5
580
py
Python
src/tree/0669.trim-a-binary-search-tree/trim-a-binary-search-tree.py
lyphui/Just-Code
e0c3c3ecb67cb805080ff686e88522b2bffe7741
[ "MIT" ]
782
2019-11-19T08:20:49.000Z
2022-03-25T06:59:09.000Z
src/0669.trim-a-binary-search-tree/trim-a-binary-search-tree.py
Heitao5200/Just-Code
5bb3ee485a103418e693b7ec8e26dc84f3691c79
[ "MIT" ]
1
2021-03-04T12:21:01.000Z
2021-03-05T01:23:54.000Z
src/0669.trim-a-binary-search-tree/trim-a-binary-search-tree.py
Heitao5200/Just-Code
5bb3ee485a103418e693b7ec8e26dc84f3691c79
[ "MIT" ]
155
2019-11-20T08:20:42.000Z
2022-03-19T07:28:09.000Z
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None
27.619048
66
0.532759
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def trimBST(self, root: TreeNode, L: int, R: int) -> TreeNode: if not root: return None if root.val<L: return self.trimBST(root.right, L,R) if root.val>R: return self.trimBST(root.left, L,R) root.left = self.trimBST(root.left, L,R) root.right = self.trimBST(root.right, L,R) return root
376
-6
49
2d982d9e3ea381e0c12055f558db9cd1ac20e3d2
9,925
py
Python
set_up_grasp_models/check_models/thermodynamics_checks.py
martamatos/set_up_grasp_models
0028f063c41104e3c0404956aa225e76aa6ac983
[ "MIT" ]
null
null
null
set_up_grasp_models/check_models/thermodynamics_checks.py
martamatos/set_up_grasp_models
0028f063c41104e3c0404956aa225e76aa6ac983
[ "MIT" ]
5
2019-05-14T17:05:41.000Z
2019-05-29T13:17:11.000Z
set_up_grasp_models/check_models/thermodynamics_checks.py
martamatos/set_up_grasp_models
0028f063c41104e3c0404956aa225e76aa6ac983
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd def calculate_dG(data_dict: dict, gas_constant: float, temperature: float, rxn_order: list = None) -> tuple: """ Given a dictionary representing a GRASP input file, calculates the minimum and maximum reaction dGs based on the standard dGs in thermoRxns and metabolite concentrations in thermoMets. It also calculates the mass-action ratio and the part of the dG based on the mass-action ratio. Args: data_dict: a dictionary that represents the excel file with the GRASP model. gas_constant: the gas constant to calculate the Gibbs energy. temperature: the temperature to calculate the Gibbs energy. rxn_order: a list with the reactions order (optional). Returns: Mass action ratio dataframe, dG_Q dataframe, Gibbs energies dataframe. """ dG_Q_df = pd.DataFrame() dG_df = pd.DataFrame() ma_df = pd.DataFrame() stoic_df = data_dict['stoic'] mets_conc_df = data_dict['thermoMets'] mets_conc_df['mean (M)'] = (mets_conc_df['min (M)'] + mets_conc_df['max (M)']) / 2. dG_std_df = data_dict['thermoRxns'] dG_std_df['∆Gr_mean'] = (dG_std_df['∆Gr\'_min (kJ/mol)'] + dG_std_df['∆Gr\'_max (kJ/mol)']) / 2. rxn_names = stoic_df.index.values stoic_matrix = stoic_df.values min_met_conc = mets_conc_df['min (M)'].values max_met_conc = mets_conc_df['max (M)'].values dG_list_mean, dG_Q_list_mean, ma_ratio_list_mean = _get_dG_list(rxn_names, stoic_matrix, mets_conc_df['mean (M)'].values, mets_conc_df['mean (M)'].values, dG_std_df['∆Gr_mean'].values, gas_constant, temperature) dG_list_min, dG_Q_list_min, ma_ratio_list_min = _get_dG_list(rxn_names, stoic_matrix, max_met_conc, min_met_conc, dG_std_df['∆Gr\'_min (kJ/mol)'].values, gas_constant, temperature) dG_list_max, dG_Q_list_max, ma_ratio_list_max = _get_dG_list(rxn_names, stoic_matrix, min_met_conc, max_met_conc, dG_std_df['∆Gr\'_max (kJ/mol)'].values, gas_constant, temperature) ma_df['ma_min'] = ma_ratio_list_min ma_df['ma_mean'] = ma_ratio_list_mean ma_df['ma_max'] = ma_ratio_list_max dG_Q_df['∆G_Q_min'] = dG_Q_list_min dG_Q_df['∆G_Q_mean'] = dG_Q_list_mean dG_Q_df['∆G_Q_max'] = dG_Q_list_max dG_df['∆G_min'] = dG_list_min dG_df['∆G_mean'] = dG_list_mean dG_df['∆G_max'] = dG_list_max ma_df.index = rxn_names dG_Q_df.index = rxn_names dG_df.index = rxn_names if rxn_order: ma_df = ma_df.reindex(rxn_order) dG_Q_df = dG_Q_df.reindex(rxn_order) dG_df = dG_df.reindex(rxn_order) return ma_df, dG_Q_df, dG_df def get_robust_fluxes(data_dict: dict, rxn_order: list = None) -> pd.DataFrame: """ Given a dictionary representing a GRASP input file, it calculates the robust fluxes (almost) as in GRASP, unless the system is not fully determined. Args: data_dict: path to the GRASP input file rxn_order: a list with the reactions order (optional) Returns: fluxes_df: dataframe with flux mean and std values """ fluxes_df = pd.DataFrame() stoic_balanced, rxn_list = _get_balanced_s_matrix(data_dict) # n_reactions = len(rxn_order) meas_rates_mean, meas_rates_std = _get_meas_rates(data_dict, rxn_list) v_mean, v_std = _compute_robust_fluxes(stoic_balanced, meas_rates_mean, meas_rates_std, rxn_list) fluxes_df['vref_mean (mmol/L/h)'] = v_mean fluxes_df['vref_std (mmol/L/h)'] = v_std fluxes_df.index = rxn_list if rxn_order: fluxes_df = fluxes_df.reindex(rxn_order) fluxes_df = fluxes_df.reindex(rxn_order) return fluxes_df def check_thermodynamic_feasibility(data_dict: dict) -> tuple: """ Given a dictionary representing a GRASP input file, it checks if the reaction's dG are compatible with the respective fluxes. It works both when all fluxes are specified in measRates and when robust fluxes are calculated for a fully determined system. If the fluxes are not fully specified not the system is fully determined, it doesn't work. Args: data_dict: a dictionary representing a GRASP input file. Returns: Whether or not the model is thermodynamically feasible plus fluxes and Gibbs energies dataframes. """ print('\nChecking if fluxes and Gibbs energies are compatible.\n') flag = False temperature = 298 # in K gas_constant = 8.314 * 10**-3 # in kJ K^-1 mol^-1 stoic_df = data_dict['stoic'] flux_df = data_dict['measRates'] ma_df, dG_Q_df, dG_df = calculate_dG(data_dict, gas_constant, temperature) if len(stoic_df.index) != len(flux_df.index): flux_df = get_robust_fluxes(data_dict) for rxn in flux_df.index: if flux_df.loc[rxn, 'vref_mean (mmol/L/h)'] > 0 and dG_df.loc[rxn, '∆G_min'] > 0: print(f'The flux and ∆G range seem to be incompatible for reaction {rxn}') flag = True if flux_df.loc[rxn, 'vref_mean (mmol/L/h)'] < 0 and dG_df.loc[rxn, '∆G_max'] < 0: print(f'The flux and ∆G range seem to be incompatible for reaction {rxn}') flag = True if flag is False: print('Everything seems to be OK.') return flag, flux_df, dG_df
38.173077
120
0.643829
import numpy as np import pandas as pd def _get_dG_list(rxn_names: list, stoic_matrix: np.ndarray, sub_conc: np.ndarray, prod_conc: np.ndarray, dG_std: np.ndarray, gas_constant: float, temperature: float) -> tuple: dG_list = [] dG_Q_list = [] ma_ratio_list = [] for rxn_i in range(len(rxn_names)): rxn_subs_conc = np.sign(stoic_matrix[rxn_i, :]) * (sub_conc ** np.abs(stoic_matrix[rxn_i, :])) rxn_prods_conc = np.sign(stoic_matrix[rxn_i, :]) * (prod_conc ** np.abs(stoic_matrix[rxn_i, :])) subs_ind = np.where(rxn_subs_conc < 0) subs_conc = rxn_subs_conc[subs_ind] prods_ind = np.where(rxn_prods_conc > 0) prods_conc = rxn_prods_conc[prods_ind] subs_prod = np.abs(np.prod(subs_conc)) prods_prod = np.prod(prods_conc) ma_ratio = prods_prod / subs_prod dG_Q = gas_constant * temperature * np.log(ma_ratio) dG = dG_std[rxn_i] + dG_Q ma_ratio_list.append(ma_ratio) dG_list.append(dG) dG_Q_list.append(dG_Q) return dG_list, dG_Q_list, ma_ratio_list def calculate_dG(data_dict: dict, gas_constant: float, temperature: float, rxn_order: list = None) -> tuple: """ Given a dictionary representing a GRASP input file, calculates the minimum and maximum reaction dGs based on the standard dGs in thermoRxns and metabolite concentrations in thermoMets. It also calculates the mass-action ratio and the part of the dG based on the mass-action ratio. Args: data_dict: a dictionary that represents the excel file with the GRASP model. gas_constant: the gas constant to calculate the Gibbs energy. temperature: the temperature to calculate the Gibbs energy. rxn_order: a list with the reactions order (optional). Returns: Mass action ratio dataframe, dG_Q dataframe, Gibbs energies dataframe. """ dG_Q_df = pd.DataFrame() dG_df = pd.DataFrame() ma_df = pd.DataFrame() stoic_df = data_dict['stoic'] mets_conc_df = data_dict['thermoMets'] mets_conc_df['mean (M)'] = (mets_conc_df['min (M)'] + mets_conc_df['max (M)']) / 2. dG_std_df = data_dict['thermoRxns'] dG_std_df['∆Gr_mean'] = (dG_std_df['∆Gr\'_min (kJ/mol)'] + dG_std_df['∆Gr\'_max (kJ/mol)']) / 2. rxn_names = stoic_df.index.values stoic_matrix = stoic_df.values min_met_conc = mets_conc_df['min (M)'].values max_met_conc = mets_conc_df['max (M)'].values dG_list_mean, dG_Q_list_mean, ma_ratio_list_mean = _get_dG_list(rxn_names, stoic_matrix, mets_conc_df['mean (M)'].values, mets_conc_df['mean (M)'].values, dG_std_df['∆Gr_mean'].values, gas_constant, temperature) dG_list_min, dG_Q_list_min, ma_ratio_list_min = _get_dG_list(rxn_names, stoic_matrix, max_met_conc, min_met_conc, dG_std_df['∆Gr\'_min (kJ/mol)'].values, gas_constant, temperature) dG_list_max, dG_Q_list_max, ma_ratio_list_max = _get_dG_list(rxn_names, stoic_matrix, min_met_conc, max_met_conc, dG_std_df['∆Gr\'_max (kJ/mol)'].values, gas_constant, temperature) ma_df['ma_min'] = ma_ratio_list_min ma_df['ma_mean'] = ma_ratio_list_mean ma_df['ma_max'] = ma_ratio_list_max dG_Q_df['∆G_Q_min'] = dG_Q_list_min dG_Q_df['∆G_Q_mean'] = dG_Q_list_mean dG_Q_df['∆G_Q_max'] = dG_Q_list_max dG_df['∆G_min'] = dG_list_min dG_df['∆G_mean'] = dG_list_mean dG_df['∆G_max'] = dG_list_max ma_df.index = rxn_names dG_Q_df.index = rxn_names dG_df.index = rxn_names if rxn_order: ma_df = ma_df.reindex(rxn_order) dG_Q_df = dG_Q_df.reindex(rxn_order) dG_df = dG_df.reindex(rxn_order) return ma_df, dG_Q_df, dG_df def _compute_robust_fluxes(stoic_matrix: np.ndarray, meas_rates: np.ndarray, meas_rates_std: np.ndarray, rxn_list: list) -> tuple: # Determine measured fluxes and decompose stoichiometric matrix id_meas = np.where(meas_rates != 0) id_unkn = np.where(meas_rates == 0) stoic_meas = stoic_matrix[:, id_meas] stoic_meas = np.array([row[0] for row in stoic_meas]) stoic_unkn = stoic_matrix[:, id_unkn] stoic_unkn = np.array([row[0] for row in stoic_unkn]) # Initialize final fluxes v_mean = np.zeros(np.size(meas_rates)) v_std = np.zeros(np.size(meas_rates)) # Compute estimate Rred Dm = np.diag(meas_rates_std[id_meas] ** 2) Rred = np.subtract(stoic_meas, np.matmul(np.matmul(stoic_unkn, np.linalg.pinv(stoic_unkn)), stoic_meas)) [u, singVals, vh] = np.linalg.svd(Rred) singVals = np.abs(singVals) zero_sing_vals = np.where(singVals > 10 ** -12) # If the system is fully determined, compute as follows if len(zero_sing_vals[0]) == 0: v_mean[id_unkn] = -np.matmul(np.matmul(np.linalg.pinv(stoic_unkn), stoic_meas), meas_rates[id_meas]) if len(np.where(v_mean == 0)[0]) > len(id_meas[0]): zero_flux_rxns = list(set(np.where(v_mean == 0)[0]).difference(set(id_meas[0]))) raise RuntimeError('According to compute robust fluxes, there are reactions with zero flux in the model.\n'+ 'Those reactions should be removed.\n' + f'The reactions are {np.array(rxn_list)[[zero_flux_rxns]]}') v_mean[np.where(v_mean == 0)] = meas_rates[id_meas] v_std[id_unkn] = np.diag(np.matmul( np.matmul(np.matmul(np.matmul(np.linalg.pinv(stoic_unkn), stoic_meas), Dm), np.transpose(stoic_meas)), np.transpose(np.linalg.pinv(stoic_unkn)))) v_std[np.where(v_std == 0)] = np.diag(Dm) else: print('System is not fully determined and the fluxes cannot be determined.') exit() v_std = np.sqrt(v_std) # Compute std return v_mean, v_std def _get_balanced_s_matrix(data_dict: dict) -> tuple: stoic_df = data_dict['stoic'] stoic_matrix = np.transpose(stoic_df.values) rxn_list = stoic_df.index.values mets_df = data_dict['mets'] balanced_mets_ind = np.where(mets_df['balanced?'].values == 1) stoic_balanced = stoic_matrix[balanced_mets_ind, :][0] return stoic_balanced, rxn_list def _get_meas_rates(data_dict: dict, rxn_list: list) -> tuple: meas_rates_df = data_dict['measRates'] meas_rates_ids = meas_rates_df.index.values meas_rates_mean = np.zeros(len(rxn_list)) meas_rates_std = np.zeros(len(rxn_list)) meas_rates = zip(list(np.nonzero(np.in1d(rxn_list, meas_rates_ids))[0]), list(meas_rates_ids)) for meas_rxn_ind, meas_rxn in meas_rates: meas_rates_mean[meas_rxn_ind] = meas_rates_df.loc[meas_rxn, 'vref_mean (mmol/L/h)'] meas_rates_std[meas_rxn_ind] = meas_rates_df.loc[meas_rxn, 'vref_std (mmol/L/h)'] return meas_rates_mean, meas_rates_std def get_robust_fluxes(data_dict: dict, rxn_order: list = None) -> pd.DataFrame: """ Given a dictionary representing a GRASP input file, it calculates the robust fluxes (almost) as in GRASP, unless the system is not fully determined. Args: data_dict: path to the GRASP input file rxn_order: a list with the reactions order (optional) Returns: fluxes_df: dataframe with flux mean and std values """ fluxes_df = pd.DataFrame() stoic_balanced, rxn_list = _get_balanced_s_matrix(data_dict) # n_reactions = len(rxn_order) meas_rates_mean, meas_rates_std = _get_meas_rates(data_dict, rxn_list) v_mean, v_std = _compute_robust_fluxes(stoic_balanced, meas_rates_mean, meas_rates_std, rxn_list) fluxes_df['vref_mean (mmol/L/h)'] = v_mean fluxes_df['vref_std (mmol/L/h)'] = v_std fluxes_df.index = rxn_list if rxn_order: fluxes_df = fluxes_df.reindex(rxn_order) fluxes_df = fluxes_df.reindex(rxn_order) return fluxes_df def check_thermodynamic_feasibility(data_dict: dict) -> tuple: """ Given a dictionary representing a GRASP input file, it checks if the reaction's dG are compatible with the respective fluxes. It works both when all fluxes are specified in measRates and when robust fluxes are calculated for a fully determined system. If the fluxes are not fully specified not the system is fully determined, it doesn't work. Args: data_dict: a dictionary representing a GRASP input file. Returns: Whether or not the model is thermodynamically feasible plus fluxes and Gibbs energies dataframes. """ print('\nChecking if fluxes and Gibbs energies are compatible.\n') flag = False temperature = 298 # in K gas_constant = 8.314 * 10**-3 # in kJ K^-1 mol^-1 stoic_df = data_dict['stoic'] flux_df = data_dict['measRates'] ma_df, dG_Q_df, dG_df = calculate_dG(data_dict, gas_constant, temperature) if len(stoic_df.index) != len(flux_df.index): flux_df = get_robust_fluxes(data_dict) for rxn in flux_df.index: if flux_df.loc[rxn, 'vref_mean (mmol/L/h)'] > 0 and dG_df.loc[rxn, '∆G_min'] > 0: print(f'The flux and ∆G range seem to be incompatible for reaction {rxn}') flag = True if flux_df.loc[rxn, 'vref_mean (mmol/L/h)'] < 0 and dG_df.loc[rxn, '∆G_max'] < 0: print(f'The flux and ∆G range seem to be incompatible for reaction {rxn}') flag = True if flag is False: print('Everything seems to be OK.') return flag, flux_df, dG_df
4,055
0
92
d194ea8db0f61bff0f8a955602ce8f2eb76abe18
8,432
py
Python
src/synthetic_data.py
tomogwen/fpdcluster
afbb16ce1e0e428304867084fb59d62ae3931b81
[ "MIT" ]
10
2020-06-05T12:46:21.000Z
2021-04-19T10:46:46.000Z
src/synthetic_data.py
tomogwen/fpdcluster
afbb16ce1e0e428304867084fb59d62ae3931b81
[ "MIT" ]
null
null
null
src/synthetic_data.py
tomogwen/fpdcluster
afbb16ce1e0e428304867084fb59d62ae3931b81
[ "MIT" ]
null
null
null
import clustering import numpy as np from sklearn import datasets import matplotlib.pyplot as plt import dionysus as dion import random if __name__ == '__main__': seed = 0 dataset = gen_data2(seed, noise=0.1, n_samples=100) diagrams = compute_diagrams(dataset) diagrams_cluster = clustering.reformat_diagrams(diagrams) r, M = clustering.pd_fuzzy(diagrams_cluster, 3, verbose=True, max_iter=20) print("Membership values") print(r) plot_dataset(dataset) plot_all_diagrams(diagrams) plot_three_clusters(M) # Other synthetic data, not used in the paper # data = gen_data(seed, noise=0.3) # plot_all(data, diagrams) # plot_clusters(M) # plot_everything(dataset, diagrams)
27.736842
115
0.607448
import clustering import numpy as np from sklearn import datasets import matplotlib.pyplot as plt import dionysus as dion import random def plot_all(data, diagrams): fig = plt.figure(figsize=(20, 10)) for i in range(len(data)): num = 241 + i ax = plt.subplot(num) plt.scatter(data[i][:, 0], data[i][:, 1]) ax = plt.subplot(num + 4) plot_diagram(diagrams[i], ax, lims=[0, 1.5, 0, 1.75]) fig.suptitle("Datasets with corresponding persistence diagrams") plt.show() def compute_diagrams(data): diagrams = [] for i in range(len(data)): print("Processing data: " + str(i)) filtration = dion.fill_rips(data[i], 2, 3.0) homology = dion.homology_persistence(filtration) diagram = dion.init_diagrams(homology, filtration) diagrams.append(diagram[1]) print() return diagrams def plot_clusters(M): plt.scatter(M[0].T[0], M[0].T[1], c='r', label='Rings') plt.scatter(M[1].T[0], M[1].T[1], c='b', label='Noise') plt.xlim([0, 1.5]) plt.ylim([0, 1.75]) plt.plot([0.1, 1.2], [0.1, 1.2]) plt.legend() plt.title("Persistence Diagram Cluster Centres") plt.show() def gen_data(seed, noise=0.05, n_samples=100): print("\nGenerating data...\n") np.random.seed(seed) random.seed(seed) data = [] data.append(datasets.make_circles(n_samples=n_samples, factor=0.99, noise=noise, random_state=seed)[0]) data.append(datasets.make_circles(n_samples=n_samples, factor=0.99, noise=noise, random_state=seed + 1)[0]) data.append(np.random.normal(size=(100, 2), scale=0.5)) data.append(0.9 * np.random.normal(size=(100, 2), scale=0.5)) return data def gen_data2(seed, noise, n_samples): dataset = [] np.random.seed(seed) random.seed(seed) # Noise data = np.random.normal(size=(100, 2), scale=0.5) dataset.append(data) data = np.random.normal(size=(100, 2), scale=0.5) data[:, 0] = data[:, 0] * 0.5 dataset.append(data) data = np.random.normal(size=(100, 2), scale=0.5) data[:, 1] = data[:, 1] * 0.7 dataset.append(data) # One Ring (to rule them all) data = datasets.make_circles(n_samples=n_samples, factor=0.99, noise=noise, random_state=seed)[0] dataset.append(data) data = datasets.make_circles(n_samples=n_samples, factor=0.99, noise=noise, random_state=seed+1)[0] data[:, 0] = data[:, 0] * 0.5 dataset.append(data) data = datasets.make_circles(n_samples=n_samples, factor=0.99, noise=noise * 1.5, random_state=seed+2)[0] dataset.append(data) # Two Rings data1 = datasets.make_circles(n_samples=int(0.5*n_samples), factor=0.99, noise=noise, random_state=seed + 3)[0] data1[:, 1] -= 1 data2 = datasets.make_circles(n_samples=int(0.5*n_samples), factor=0.99, noise=noise, random_state=seed + 4)[0] data2[:, 1] += 1 data = np.concatenate((0.5 * data1, 0.5 * data2), axis=0) dataset.append(data) data1 = datasets.make_circles(n_samples=int(0.5*n_samples), factor=0.99, noise=noise, random_state=seed + 5)[0] data1[:, 1] -= 1 data2 = datasets.make_circles(n_samples=int(0.5*n_samples), factor=0.99, noise=noise, random_state=seed + 6)[0] data2[:, 1] += 1 data = np.concatenate((0.5 * data1, 0.5 * data2), axis=0) data = np.rot90(data).T dataset.append(data) data1 = datasets.make_circles(n_samples=int(0.5*n_samples), factor=0.99, noise=noise, random_state=seed+7)[0] data1[:, 1] -= 1 data2 = datasets.make_circles(n_samples=int(0.5*n_samples), factor=0.99, noise=noise*2, random_state=seed+8)[0] data2[:, 1] += 1 data = np.concatenate((0.5*data1, 0.5*data2), axis=0) dataset.append(data) return dataset def plot_dataset(dataset): fig = plt.figure(figsize=(10, 10)) lim = 1.45 for i in range(len(dataset)): num = 331 + i ax = plt.subplot(num) ax.set_xlim([-lim, lim]) ax.set_ylim([-lim, lim]) ax.set_xticks([]) ax.set_yticks([]) plt.scatter(dataset[i][:, 0], dataset[i][:, 1]) plt.show() def plot_everything(dataset, diagrams): fig = plt.figure(figsize=(20, 10)) lim = 1.45 for i in range(3): num = i+1 ax = plt.subplot(3, 6, num) ax.set_xlim([-lim, lim]) ax.set_ylim([-lim, lim]) ax.set_xticks([]) ax.set_yticks([]) plt.scatter(dataset[i][:, 0], dataset[i][:, 1]) ax = plt.subplot(3, 6, num+3) plot_diagram(diagrams[i], ax, lims=[0, 1.5, 0, 1.75]) for i in range(3): num = 7+i ax = plt.subplot(3, 6, num) ax.set_xlim([-lim, lim]) ax.set_ylim([-lim, lim]) ax.set_xticks([]) ax.set_yticks([]) plt.scatter(dataset[i+3][:, 0], dataset[i+6][:, 1]) ax = plt.subplot(3, 6, num+3) plot_diagram(diagrams[i+3], ax, lims=[0, 1.5, 0, 1.75]) for i in range(3): num = 13+i ax = plt.subplot(3, 6, num) ax.set_xlim([-lim, lim]) ax.set_ylim([-lim, lim]) ax.set_xticks([]) ax.set_yticks([]) plt.scatter(dataset[i+6][:, 0], dataset[i+6][:, 1]) ax = plt.subplot(3, 6, num+3) plot_diagram(diagrams[i+6], ax, lims=[0, 1.5, 0, 1.75]) plt.show() def plot_all_diagrams(diagrams): fig = plt.figure(figsize=(10, 10)) for i in range(len(diagrams)): num = 331 + i ax = plt.subplot(num) plot_diagram(diagrams[i], ax, lims=[0, 1.5, 0, 1.75]) # fig.suptitle("Datasets with corresponding persistence diagrams") plt.show() def plot_diagram(dgm, ax, show=False, labels=False, line_style=None, pt_style=None, lims=False): # taken from Dionysus2 package line_kwargs = {} pt_kwargs = {} if pt_style is not None: pt_kwargs.update(pt_style) if line_style is not None: line_kwargs.update(line_style) inf = float('inf') if lims==False: min_birth = min(p.birth for p in dgm if p.birth != inf) max_birth = max(p.birth for p in dgm if p.birth != inf) min_death = min(p.death for p in dgm if p.death != inf) max_death = max(p.death for p in dgm if p.death != inf) else: min_birth = lims[0] max_birth = lims[1] min_death = lims[2] max_death = lims[3] ax.set_aspect('equal', 'datalim') min_diag = min(min_birth, min_death) max_diag = max(max_birth, max_death) ax.scatter([p.birth for p in dgm], [p.death for p in dgm], **pt_kwargs) ax.plot([min_diag, max_diag], [min_diag, max_diag], **line_kwargs) # ax.set_xlabel('birth') # ax.set_ylabel('death') ax.set_xticks([]) ax.set_yticks([]) def plot_three_clusters(M): fig = plt.figure(figsize=(3.33, 10)) lims = [0, 1.5, 0, 1.75] min_birth = lims[0] max_birth = lims[1] min_death = lims[2] max_death = lims[3] # diagram 1 ax = plt.subplot(313) ax.set_aspect('equal', 'datalim') min_diag = min(min_birth, min_death) max_diag = max(max_birth, max_death) ax.scatter(M[0][:, 0], M[0][:, 1]) ax.plot([min_diag, max_diag], [min_diag, max_diag]) ax.set_xticks([]) ax.set_yticks([]) # diagram 2 ax = plt.subplot(311) ax.set_aspect('equal', 'datalim') min_diag = min(min_birth, min_death) max_diag = max(max_birth, max_death) ax.scatter(M[1][:, 0], M[1][:, 1]) ax.plot([min_diag, max_diag], [min_diag, max_diag]) ax.set_xticks([]) ax.set_yticks([]) # diagram 3 ax = plt.subplot(312) ax.set_aspect('equal', 'datalim') min_diag = min(min_birth, min_death) max_diag = max(max_birth, max_death) ax.scatter(M[2][:, 0], M[2][:, 1]) ax.plot([min_diag, max_diag], [min_diag, max_diag]) ax.set_xticks([]) ax.set_yticks([]) plt.show() if __name__ == '__main__': seed = 0 dataset = gen_data2(seed, noise=0.1, n_samples=100) diagrams = compute_diagrams(dataset) diagrams_cluster = clustering.reformat_diagrams(diagrams) r, M = clustering.pd_fuzzy(diagrams_cluster, 3, verbose=True, max_iter=20) print("Membership values") print(r) plot_dataset(dataset) plot_all_diagrams(diagrams) plot_three_clusters(M) # Other synthetic data, not used in the paper # data = gen_data(seed, noise=0.3) # plot_all(data, diagrams) # plot_clusters(M) # plot_everything(dataset, diagrams)
7,457
0
230
2e69f73189a3759642774829299275d95d3f03ef
3,821
py
Python
controllers/pathfinder.py
endymecy/NDIToolbox
f7a0a642b4a778d9d0c131871f4bfb9822ecb3da
[ "BSD-4-Clause" ]
5
2017-02-28T16:16:06.000Z
2020-07-13T06:49:34.000Z
controllers/pathfinder.py
endymecy/NDIToolbox
f7a0a642b4a778d9d0c131871f4bfb9822ecb3da
[ "BSD-4-Clause" ]
1
2018-08-19T19:08:14.000Z
2018-08-19T19:08:14.000Z
controllers/pathfinder.py
endymecy/NDIToolbox
f7a0a642b4a778d9d0c131871f4bfb9822ecb3da
[ "BSD-4-Clause" ]
4
2017-10-25T20:17:15.000Z
2021-07-26T11:39:50.000Z
"""pathfinder.py - specifies paths and common filenames""" __author__ = 'Chris R. Coughlin' from models import config import os.path import sys def normalized(path_fn): """Decorator to normalize (os.path.normcase) paths""" return normalize @normalized def app_path(): """Returns the base application path.""" if hasattr(sys, 'frozen'): # Handles PyInstaller entry_point = sys.executable else: import controllers entry_point = os.path.dirname(controllers.__file__) return os.path.dirname(entry_point) @normalized def user_path(): """Returns the path for storing user data. If not already set, returns user's home directory/nditoolbox and sets the default in the config file.""" _config = config.Configure(config_path()) upath_key = "User Path" if _config.has_app_option(upath_key): return _config.get_app_option(upath_key) else: default_upath = os.path.normcase(os.path.join(os.path.expanduser('~'), 'nditoolbox')) _config.set_app_option({upath_key: default_upath}) return default_upath @normalized def docs_path(): """Returns the path to the HTML documentation.""" return os.path.join(app_path(), 'docs') @normalized def resource_path(): """Returns the path to resources - home folder for icons, bitmaps, etc.""" return os.path.join(app_path(), 'resources') @normalized def icons_path(): """Returns the path to application icons""" return os.path.join(resource_path(), 'icons') @normalized def icon_path(): """Returns the path to the application's default PNG icon""" return os.path.join(icons_path(), 'a7117_64.png') @normalized def winicon_path(): """Returns the path to the application's default .ICO icon""" return os.path.join(icons_path(), 'a7117_64.ico') @normalized def bitmap_path(): """Returns the path to application bitmaps""" return os.path.join(resource_path(), 'bitmaps') @normalized def textfiles_path(): """Returns the path to application textfiles""" return os.path.join(resource_path(), 'textfiles') @normalized def data_path(): """Returns the path to data files""" return os.path.join(user_path(), 'data') @normalized def thumbnails_path(): """Returns the path to data thumbnails""" return os.path.join(user_path(), 'thumbnails') @normalized def plugins_path(): """Returns the path to plugins""" return os.path.join(user_path(), 'plugins') @normalized def config_path(): """Returns the path to the configuration file""" return os.path.expanduser("~/nditoolbox.cfg") @normalized def log_path(): """Returns the path to the log file. If not already set, sets to user's home directory/nditoolbox.log and sets the default in the config file.""" _config = config.Configure(config_path()) logpath_key = "Log File" if _config.has_app_option(logpath_key): return _config.get_app_option(logpath_key) else: default_logpath = os.path.normcase(os.path.join(os.path.expanduser('~'), 'nditoolbox.log')) _config.set_app_option({logpath_key: default_logpath}) return default_logpath @normalized def podmodels_path(): """Returns the path to POD Toolkit models""" return os.path.join(user_path(), "podmodels") @normalized def gates_path(): """Returns the path to ultrasonic gates""" return os.path.join(user_path(), "gates") @normalized def colormaps_path(): """Returns the path to user-defined colormaps""" return os.path.join(user_path(), "colormaps") @normalized def batchoutput_path(): """Returns the path to data files produced with batch processing mode""" return os.path.join(data_path(), "batch_output")
25.993197
99
0.690395
"""pathfinder.py - specifies paths and common filenames""" __author__ = 'Chris R. Coughlin' from models import config import os.path import sys def normalized(path_fn): """Decorator to normalize (os.path.normcase) paths""" def normalize(): return os.path.normcase(path_fn()) return normalize @normalized def app_path(): """Returns the base application path.""" if hasattr(sys, 'frozen'): # Handles PyInstaller entry_point = sys.executable else: import controllers entry_point = os.path.dirname(controllers.__file__) return os.path.dirname(entry_point) @normalized def user_path(): """Returns the path for storing user data. If not already set, returns user's home directory/nditoolbox and sets the default in the config file.""" _config = config.Configure(config_path()) upath_key = "User Path" if _config.has_app_option(upath_key): return _config.get_app_option(upath_key) else: default_upath = os.path.normcase(os.path.join(os.path.expanduser('~'), 'nditoolbox')) _config.set_app_option({upath_key: default_upath}) return default_upath @normalized def docs_path(): """Returns the path to the HTML documentation.""" return os.path.join(app_path(), 'docs') @normalized def resource_path(): """Returns the path to resources - home folder for icons, bitmaps, etc.""" return os.path.join(app_path(), 'resources') @normalized def icons_path(): """Returns the path to application icons""" return os.path.join(resource_path(), 'icons') @normalized def icon_path(): """Returns the path to the application's default PNG icon""" return os.path.join(icons_path(), 'a7117_64.png') @normalized def winicon_path(): """Returns the path to the application's default .ICO icon""" return os.path.join(icons_path(), 'a7117_64.ico') @normalized def bitmap_path(): """Returns the path to application bitmaps""" return os.path.join(resource_path(), 'bitmaps') @normalized def textfiles_path(): """Returns the path to application textfiles""" return os.path.join(resource_path(), 'textfiles') @normalized def data_path(): """Returns the path to data files""" return os.path.join(user_path(), 'data') @normalized def thumbnails_path(): """Returns the path to data thumbnails""" return os.path.join(user_path(), 'thumbnails') @normalized def plugins_path(): """Returns the path to plugins""" return os.path.join(user_path(), 'plugins') @normalized def config_path(): """Returns the path to the configuration file""" return os.path.expanduser("~/nditoolbox.cfg") @normalized def log_path(): """Returns the path to the log file. If not already set, sets to user's home directory/nditoolbox.log and sets the default in the config file.""" _config = config.Configure(config_path()) logpath_key = "Log File" if _config.has_app_option(logpath_key): return _config.get_app_option(logpath_key) else: default_logpath = os.path.normcase(os.path.join(os.path.expanduser('~'), 'nditoolbox.log')) _config.set_app_option({logpath_key: default_logpath}) return default_logpath @normalized def podmodels_path(): """Returns the path to POD Toolkit models""" return os.path.join(user_path(), "podmodels") @normalized def gates_path(): """Returns the path to ultrasonic gates""" return os.path.join(user_path(), "gates") @normalized def colormaps_path(): """Returns the path to user-defined colormaps""" return os.path.join(user_path(), "colormaps") @normalized def batchoutput_path(): """Returns the path to data files produced with batch processing mode""" return os.path.join(data_path(), "batch_output")
38
0
27
1572db60c45a7a3e80068f389efcd4692bc26899
338
py
Python
djapi/api/constants.py
dgouldin/djangocon-eu-2015
890057a3451231f96d15c65011d867dedfd5f9fa
[ "MIT" ]
null
null
null
djapi/api/constants.py
dgouldin/djangocon-eu-2015
890057a3451231f96d15c65011d867dedfd5f9fa
[ "MIT" ]
null
null
null
djapi/api/constants.py
dgouldin/djangocon-eu-2015
890057a3451231f96d15c65011d867dedfd5f9fa
[ "MIT" ]
null
null
null
TRANSACTION_STATUS_PENDING = 'pending' TRANSACTION_STATUS_COMPLETE = 'complete' TRANSACTION_STATUS_REFUNDED = 'refunded' TRANSACTION_STATUSES = ( (TRANSACTION_STATUS_PENDING, TRANSACTION_STATUS_PENDING), (TRANSACTION_STATUS_COMPLETE, TRANSACTION_STATUS_COMPLETE), (TRANSACTION_STATUS_REFUNDED, TRANSACTION_STATUS_REFUNDED), )
37.555556
63
0.837278
TRANSACTION_STATUS_PENDING = 'pending' TRANSACTION_STATUS_COMPLETE = 'complete' TRANSACTION_STATUS_REFUNDED = 'refunded' TRANSACTION_STATUSES = ( (TRANSACTION_STATUS_PENDING, TRANSACTION_STATUS_PENDING), (TRANSACTION_STATUS_COMPLETE, TRANSACTION_STATUS_COMPLETE), (TRANSACTION_STATUS_REFUNDED, TRANSACTION_STATUS_REFUNDED), )
0
0
0
e81e348e3912f9783df345478bd8ba60a40bfcc1
2,040
py
Python
test/test_minmax.py
shoaibmahmod7/Turbomachinery-Rotors-Balancing
8bb4c1ec97c4646bcd69ed3398aafc7f985bc96d
[ "MIT" ]
1
2022-02-03T17:14:16.000Z
2022-02-03T17:14:16.000Z
test/test_minmax.py
shoaibmahmod7/Turbomachinery-Rotors-Balancing
8bb4c1ec97c4646bcd69ed3398aafc7f985bc96d
[ "MIT" ]
null
null
null
test/test_minmax.py
shoaibmahmod7/Turbomachinery-Rotors-Balancing
8bb4c1ec97c4646bcd69ed3398aafc7f985bc96d
[ "MIT" ]
null
null
null
import numpy as np import sys import yaml import pytest import test_tools import hsbalance as hs '''This module is for testing Min_Max model solver''' # Reading the test cases from config.yaml file, to add more tests follow the rules on the file tests, tests_id, timeout = test_tools.get_tests_from_yaml('Min_max') @pytest.mark.parametrize('param, expected', tests, ids=tests_id ) @pytest.mark.timeout(timeout) def test_Min_max(param, expected): ''' Testing instantiate Min_Max model and test it against test cases ''' my_ALPHA = hs.Alpha() A = hs.convert_matrix_to_cart(param[0]['A']) weight_const = param[0]['weight_const'] A0 = [0] # It is acceptable to enter either direct_matrix or A,B,U matrices try: direct_matrix = hs.convert_matrix_to_cart(param[0]['ALPHA']) my_ALPHA.add(direct_matrix=direct_matrix) except KeyError: B = hs.convert_matrix_to_cart(param[0]['B']) U = hs.convert_matrix_to_cart(param[0]['U']) my_ALPHA.add(A=A, B=B, U=U) try: A0 = hs.convert_matrix_to_cart(param[0]['A0']) except KeyError: pass expected_W = hs.convert_matrix_to_cart(expected) my_model = hs.Min_max(A, my_ALPHA, weight_const=weight_const,name='Min_max') # Setting the model almost with no constraints W = my_model.solve() print((expected)) print('Residual Vibration rmse calculated = ', my_model.rmse()) print('Residual Vibration rmse from test_case = ', hs.rmse(hs.residual_vibration(my_ALPHA.value, expected_W, A))) print('expected_residual_vibration', hs.convert_matrix_to_math(my_model.expected_residual_vibration())) print('Correction weights', hs.convert_cart_math(W)) # Constraint Minmax algorithm was slightly inefficient in CVXPY # The rmse was marginally more than the author solution np.testing.assert_allclose(W, expected_W, rtol=0.09) # allowance 9% error
37.090909
118
0.673039
import numpy as np import sys import yaml import pytest import test_tools import hsbalance as hs '''This module is for testing Min_Max model solver''' # Reading the test cases from config.yaml file, to add more tests follow the rules on the file tests, tests_id, timeout = test_tools.get_tests_from_yaml('Min_max') @pytest.mark.parametrize('param, expected', tests, ids=tests_id ) @pytest.mark.timeout(timeout) def test_Min_max(param, expected): ''' Testing instantiate Min_Max model and test it against test cases ''' my_ALPHA = hs.Alpha() A = hs.convert_matrix_to_cart(param[0]['A']) weight_const = param[0]['weight_const'] A0 = [0] # It is acceptable to enter either direct_matrix or A,B,U matrices try: direct_matrix = hs.convert_matrix_to_cart(param[0]['ALPHA']) my_ALPHA.add(direct_matrix=direct_matrix) except KeyError: B = hs.convert_matrix_to_cart(param[0]['B']) U = hs.convert_matrix_to_cart(param[0]['U']) my_ALPHA.add(A=A, B=B, U=U) try: A0 = hs.convert_matrix_to_cart(param[0]['A0']) except KeyError: pass expected_W = hs.convert_matrix_to_cart(expected) my_model = hs.Min_max(A, my_ALPHA, weight_const=weight_const,name='Min_max') # Setting the model almost with no constraints W = my_model.solve() print((expected)) print('Residual Vibration rmse calculated = ', my_model.rmse()) print('Residual Vibration rmse from test_case = ', hs.rmse(hs.residual_vibration(my_ALPHA.value, expected_W, A))) print('expected_residual_vibration', hs.convert_matrix_to_math(my_model.expected_residual_vibration())) print('Correction weights', hs.convert_cart_math(W)) # Constraint Minmax algorithm was slightly inefficient in CVXPY # The rmse was marginally more than the author solution np.testing.assert_allclose(W, expected_W, rtol=0.09) # allowance 9% error
0
0
0
fc71471e251cfc681a314a5d4c50edf2f39c8b52
8,471
py
Python
pymatex/search/IndexSearchVisitor.py
Gawaboumga/PyMatex
3ccc0aa23211a064aa31a9b509b108cd606a4992
[ "MIT" ]
1
2019-03-05T09:45:04.000Z
2019-03-05T09:45:04.000Z
pymatex/search/IndexSearchVisitor.py
Gawaboumga/PyMatex
3ccc0aa23211a064aa31a9b509b108cd606a4992
[ "MIT" ]
null
null
null
pymatex/search/IndexSearchVisitor.py
Gawaboumga/PyMatex
3ccc0aa23211a064aa31a9b509b108cd606a4992
[ "MIT" ]
null
null
null
from pymatex.listener import MatexASTVisitor from pymatex.node import *
35.894068
98
0.67678
from pymatex.listener import MatexASTVisitor from pymatex.node import * class IndexSearchVisitor(MatexASTVisitor.MatexASTVisitor): def __init__(self, data: dict): self.data = data self.results = {} self.seen_constants = {} self.seen_variables = {} self.bound_variables = set() def get_results(self): return self.results def visit_addition(self, addition_node: Addition): depth_lhs = addition_node.lhs.accept(self) depth_rhs = addition_node.rhs.accept(self) node_depth = max(depth_lhs, depth_rhs) + 1 self.search(node_depth, NodeType.ADDITION) return node_depth def visit_constant(self, constant_node: Constant): node_depth = 0 self.search_constant(node_depth, NodeType.CONSTANT, constant_node.value) return node_depth def visit_division(self, division_node: Division): depth_lhs = division_node.lhs.accept(self) depth_rhs = division_node.rhs.accept(self) node_depth = max(depth_lhs, depth_rhs) + 1 self.search(node_depth, NodeType.DIVISION) return node_depth def visit_exponentiation(self, exponentiation_node: Exponentiation): depth_expr = exponentiation_node.lhs.accept(self) depth_exponent = exponentiation_node.rhs.accept(self) node_depth = max(depth_expr, depth_exponent) + 1 self.search(node_depth, NodeType.EXPONENTIATION) return node_depth def visit_fraction(self, fraction_node: Fraction): if fraction_node.variable: fraction_node.variable.accept(self) fraction_node.start_range.accept(self) if fraction_node.end_range: fraction_node.end_range.accept(self) self.add_bound_variable(fraction_node.variable) depth_expression = fraction_node.expression.accept(self) self.remove_bound_variable(fraction_node.variable) node_depth = depth_expression + 1 self.search(node_depth, NodeType.FRACTION) return node_depth def visit_function(self, function_node: Function): first_argument = function_node.argument(0) depth = first_argument.accept(self) for i in range(1, function_node.number_of_arguments()): depth = min(depth, function_node.argument(i).accept(self)) node_depth = depth + 1 self.search(node_depth, NodeType.FUNCTION) return node_depth def visit_indexed_variable(self, indexed_variable_node: IndexedVariable): depth = indexed_variable_node.index.accept(self) node_depth = depth + 1 self.search_variable(node_depth, NodeType.INDEXEDVARIABLE, indexed_variable_node.variable) return node_depth def visit_integral(self, integral_node: Integral): integral_node.variable.accept(self) integral_node.start_range.accept(self) integral_node.end_range.accept(self) self.add_bound_variable(integral_node.variable) depth_expression = integral_node.expression.accept(self) self.remove_bound_variable(integral_node.variable) node_depth = depth_expression + 1 self.search(node_depth, NodeType.SUMMATION) return node_depth def visit_multiplication(self, multiplication_node: Multiplication): depth_lhs = multiplication_node.lhs.accept(self) depth_rhs = multiplication_node.rhs.accept(self) node_depth = max(depth_lhs, depth_rhs) + 1 self.search(node_depth, NodeType.MULTIPLICATION) return node_depth def visit_negate(self, negate_node: Negate): depth = negate_node.node.accept(self) self.search(depth + 1, NodeType.NEGATE) return depth def visit_set(self, set_node: Set): depth_lhs = set_node.lhs.accept(self) depth_rhs = set_node.rhs.accept(self) node_depth = max(depth_lhs, depth_rhs) + 1 self.search(node_depth, NodeType.SET) return node_depth def visit_set_difference(self, set_difference: SetDifference): depth_lhs = set_difference.lhs.accept(self) depth_rhs = set_difference.rhs.accept(self) node_depth = max(depth_lhs, depth_rhs) + 1 self.search(node_depth, NodeType.SET_DIFFERENCE) return node_depth def visit_product(self, product_node: Product): if product_node.variable: product_node.variable.accept(self) product_node.start_range.accept(self) if product_node.end_range: product_node.end_range.accept(self) self.add_bound_variable(product_node.variable) depth_expression = product_node.expression.accept(self) self.remove_bound_variable(product_node.variable) node_depth = depth_expression + 1 self.search(node_depth, NodeType.PRODUCT) return node_depth def visit_subtraction(self, subtraction_node: Subtraction): depth_lhs = subtraction_node.lhs.accept(self) depth_rhs = subtraction_node.rhs.accept(self) node_depth = max(depth_lhs, depth_rhs) + 1 self.search(node_depth, NodeType.SUBTRACTION) return node_depth def visit_summation(self, summation_node: Summation): if summation_node.variable: summation_node.variable.accept(self) summation_node.start_range.accept(self) if summation_node.end_range: summation_node.end_range.accept(self) self.add_bound_variable(summation_node.variable) depth_expression = summation_node.expression.accept(self) self.remove_bound_variable(summation_node.variable) node_depth = depth_expression + 1 self.search(node_depth, NodeType.SUMMATION) return node_depth def visit_variable(self, variable_node: Variable): node_depth = 0 if str(variable_node.variable) in self.bound_variables: self.search_bound_variable(node_depth, NodeType.BOUNDVARIABLE, variable_node.variable) else: self.search_free_variable(node_depth, NodeType.VARIABLE, variable_node.variable) return node_depth def search(self, node_depth: int, node_type: NodeType): nodes = self.data.get(node_depth, None) if nodes is None: return objects = nodes.get(node_type, None) if objects: self.__add(objects, 100) def search_constant(self, node_depth: int, node_type: NodeType, external_data: str): nodes = self.data.get(node_depth, None) if nodes is None: return objects = nodes.get(node_type, None) if objects is None: return associated = objects.get(external_data, None) if associated: self.__add(associated, 100) else: for mathematical_objects in objects.values(): self.__add(mathematical_objects, 70) def search_bound_variable(self, node_depth: int, node_type: NodeType, external_data: str): nodes = self.data.get(node_depth, None) if nodes is None: return objects = nodes.get(node_type, None) if objects is None: return associated = objects.get(external_data, None) if associated: self.__add(associated, 100) for mathematical_objects in objects.values(): self.__add(mathematical_objects, 70) free_variables = nodes.get(node_type, None) if objects is None: return for mathematical_objects in free_variables.values(): self.__add(mathematical_objects, 30) def search_free_variable(self, node_depth: int, node_type: NodeType, external_data: str): nodes = self.data.get(node_depth, None) if nodes is None: return objects = nodes.get(node_type, None) if objects is None: return associated = objects.get(external_data, None) if associated: self.__add(associated, 100) for mathematical_objects in objects.values(): self.__add(mathematical_objects, 70) def __add(self, items, value): for item in items: new_value = self.results.get(item, 0) + value self.results[item] = new_value def add_bound_variable(self, variable: Variable): self.bound_variables.add(str(variable)) def remove_bound_variable(self, variable: Variable): self.bound_variables.remove(str(variable))
7,663
37
698
8c6e39a2577187b6a1f33f6467e3fe9575d74f83
1,157
py
Python
server/DbHourlyTask.py
chuckablack/quokka-prime
6429c09039f37887f4b0d5a196f1df2712136de7
[ "MIT" ]
5
2021-05-29T20:15:16.000Z
2021-11-01T18:35:55.000Z
server/DbHourlyTask.py
chuckablack/quokka-prime
6429c09039f37887f4b0d5a196f1df2712136de7
[ "MIT" ]
null
null
null
server/DbHourlyTask.py
chuckablack/quokka-prime
6429c09039f37887f4b0d5a196f1df2712136de7
[ "MIT" ]
4
2021-05-18T06:50:34.000Z
2021-09-23T10:23:09.000Z
from datetime import datetime, timedelta import time from db_apis import trim_tables, create_summaries
30.447368
74
0.638721
from datetime import datetime, timedelta import time from db_apis import trim_tables, create_summaries class DbHourlyTask: def __init__(self): self.terminate = False self.current_hour = str(datetime.now())[:13] print("---> starting background db hourly task") def set_terminate(self): if not self.terminate: self.terminate = True print("\n\n...gracefully exiting db_hourly_task_thread") def start(self): while True and not self.terminate: this_hour = str(datetime.now())[:13] if this_hour == self.current_hour: time.sleep(15) continue # trim old data from status and diagnostic tables status_expire_after = datetime.now() - timedelta(hours=24) diagnostics_expire_after = datetime.now() - timedelta(hours=2) trim_tables(status_expire_after, diagnostics_expire_after) # create hourly summaries from status tables create_summaries(self.current_hour) self.current_hour = this_hour print("db_hourly_task_thread exit complete")
951
-2
104
ecc51e60591a3f817b2262a421173a5caf35191e
591
py
Python
src/sequence/quick_sort.py
JadielTeofilo/General-Algorithms
dfcf86c6ecd727573079f8971187c47bdb7a37bb
[ "MIT" ]
null
null
null
src/sequence/quick_sort.py
JadielTeofilo/General-Algorithms
dfcf86c6ecd727573079f8971187c47bdb7a37bb
[ "MIT" ]
null
null
null
src/sequence/quick_sort.py
JadielTeofilo/General-Algorithms
dfcf86c6ecd727573079f8971187c47bdb7a37bb
[ "MIT" ]
null
null
null
##################### QuickSort ################### from typing import List def quick_sort(nums: List[int]) -> List[int]: """ Does recursive sorting using quick sort """ if len(nums) < 2: return nums mid: int = (len(nums) - 1)//2 smaller_values: List[int] = [num for i, num in enumerate(nums) if num <= nums[mid] and i != mid] bigger_values: List[int] = [num for num in nums if num > nums[mid]] return quick_sort(smaller_values) + [nums[mid]] + quick_sort(bigger_values)
36.9375
79
0.509306
##################### QuickSort ################### from typing import List def quick_sort(nums: List[int]) -> List[int]: """ Does recursive sorting using quick sort """ if len(nums) < 2: return nums mid: int = (len(nums) - 1)//2 smaller_values: List[int] = [num for i, num in enumerate(nums) if num <= nums[mid] and i != mid] bigger_values: List[int] = [num for num in nums if num > nums[mid]] return quick_sort(smaller_values) + [nums[mid]] + quick_sort(bigger_values)
0
0
0
65f87122c687e34d582f25f7881fa6227314080c
192
py
Python
Lesson 2 - Neural Networks/softmax.py
Yasir323/PyTorch-Course
18fdc866738b4f3dd9022cfe62863697c594b54c
[ "MIT" ]
null
null
null
Lesson 2 - Neural Networks/softmax.py
Yasir323/PyTorch-Course
18fdc866738b4f3dd9022cfe62863697c594b54c
[ "MIT" ]
null
null
null
Lesson 2 - Neural Networks/softmax.py
Yasir323/PyTorch-Course
18fdc866738b4f3dd9022cfe62863697c594b54c
[ "MIT" ]
null
null
null
import numpy as np
21.333333
38
0.604167
import numpy as np def softmax(arr): expL = np.exp(arr) # Broadcasting sumExpL = sum(expL) result = [] for i in expL: result.append(i * 1.0/sumExpL) return result
151
0
23
421dca101f5521f89f68b7427dd0c0fbbe13d896
590
py
Python
tests/test_end_to_end.py
MetroStar/bitnest
a8d9cef5a17a5366e088a774ae951a0f06f97ae7
[ "MIT" ]
4
2021-09-16T21:33:13.000Z
2022-01-18T22:05:57.000Z
tests/test_end_to_end.py
MetroStar/bitnest
a8d9cef5a17a5366e088a774ae951a0f06f97ae7
[ "MIT" ]
1
2021-12-02T03:47:45.000Z
2021-12-02T03:47:45.000Z
tests/test_end_to_end.py
MetroStar/bitnest
a8d9cef5a17a5366e088a774ae951a0f06f97ae7
[ "MIT" ]
null
null
null
import pytest from models.test import StructA from models.simple import MILSTD_1553_Message from models.chapter10 import MILSTD_1553_Data_Packet_Format_1 @pytest.mark.parametrize( "struct", [StructA, MILSTD_1553_Message, MILSTD_1553_Data_Packet_Format_1] )
28.095238
78
0.733898
import pytest from models.test import StructA from models.simple import MILSTD_1553_Message from models.chapter10 import MILSTD_1553_Data_Packet_Format_1 @pytest.mark.parametrize( "struct", [StructA, MILSTD_1553_Message, MILSTD_1553_Data_Packet_Format_1] ) def test_realize_paths(struct): expression = struct.expression() source = ( expression.transform("realize_datatypes") .transform("realize_conditions") .transform("realize_offsets") .transform("parser_datatype") .transform("arithmetic_simplify") .backend("python") )
304
0
22
67c0fe84b4a431512636cf8da382dec2c62878d2
280
py
Python
actions/servers_list.py
nzlosh/stackstorm-powerdns
f554376af25dbdfa6c0df5e376a7a02287cee1cf
[ "Apache-2.0" ]
null
null
null
actions/servers_list.py
nzlosh/stackstorm-powerdns
f554376af25dbdfa6c0df5e376a7a02287cee1cf
[ "Apache-2.0" ]
null
null
null
actions/servers_list.py
nzlosh/stackstorm-powerdns
f554376af25dbdfa6c0df5e376a7a02287cee1cf
[ "Apache-2.0" ]
null
null
null
from lib.base import PowerDNSClientAction class ServerListAction(PowerDNSClientAction): """ List available PowerDNS servers. """
23.333333
53
0.703571
from lib.base import PowerDNSClientAction class ServerListAction(PowerDNSClientAction): """ List available PowerDNS servers. """ def run(self, response_timeout=5): super(ServerList, self).run(response_timeout) return (True, self.servers_list())
110
0
27
6ed442ecc79bec374b4c5e3179ec155f952e0f3e
14,122
py
Python
tests/test_results.py
SuadeLabs/rattr
22b82d31d4cebf0a7107fa1fb496a070b2e1f4ad
[ "MIT" ]
6
2021-11-10T11:13:37.000Z
2022-01-19T16:15:17.000Z
tests/test_results.py
SuadeLabs/ratter
22b82d31d4cebf0a7107fa1fb496a070b2e1f4ad
[ "MIT" ]
13
2021-11-10T11:39:12.000Z
2022-03-01T10:27:49.000Z
tests/test_results.py
SuadeLabs/rattr
22b82d31d4cebf0a7107fa1fb496a070b2e1f4ad
[ "MIT" ]
null
null
null
from unittest import mock from rattr.analyser.context import Call, Func, Import, Name from rattr.analyser.context.symbol import Class from rattr.analyser.results import generate_results_from_ir
29.117526
82
0.361139
from unittest import mock from rattr.analyser.context import Call, Func, Import, Name from rattr.analyser.context.symbol import Class from rattr.analyser.results import generate_results_from_ir class TestResults: def test_generate_results_from_ir_no_calls(self): # No calls fn_ir = { "sets": { Name("arg.attr", "arg"), }, "gets": { Name("arg.another_attr", "arg"), }, "dels": set(), "calls": set(), } file_ir = {Func("fn", ["arg"], None, None): fn_ir} expected = { "fn": { "sets": {"arg.attr"}, "gets": {"arg.another_attr"}, "dels": set(), "calls": set(), } } assert generate_results_from_ir(file_ir, dict()) == expected def test_generate_results_from_ir_simple(self): # Calls fn_a = Func("fn_a", ["arg"], None, None) fn_b = Func("fn_b", ["arg_b"], None, None) fn_a_ir = { "sets": { Name("arg.attr", "arg"), }, "gets": { Name("arg.another_attr", "arg"), }, "dels": set(), "calls": { Call("fn_b()", ["arg"], {}, target=fn_b), }, } fn_b_ir = { "sets": { Name("arg_b.set_in_fn_b", "arg_b"), }, "gets": { Name("arg_b.get_in_fn_b", "arg_b"), }, "dels": set(), "calls": set(), } file_ir = { fn_a: fn_a_ir, fn_b: fn_b_ir, } expected = { "fn_a": { "sets": {"arg.attr", "arg.set_in_fn_b"}, "gets": {"arg.another_attr", "arg.get_in_fn_b"}, "dels": set(), "calls": {"fn_b()"}, }, "fn_b": { "sets": {"arg_b.set_in_fn_b"}, "gets": {"arg_b.get_in_fn_b"}, "dels": set(), "calls": set(), }, } assert generate_results_from_ir(file_ir, dict()) == expected def test_generate_results_from_ir_direct_recursion(self): # Direct recursion fn_ir = { "sets": { Name("arg.attr", "arg"), }, "gets": { Name("arg.another_attr", "arg"), }, "dels": set(), "calls": {Call("fn()", ["arg"], {})}, } file_ir = {Func("fn", ["arg"], None, None): fn_ir} expected = { "fn": { "sets": {"arg.attr"}, "gets": {"arg.another_attr"}, "dels": set(), "calls": {"fn()"}, } } assert generate_results_from_ir(file_ir, dict()) == expected def test_generate_results_from_ir_indirect_recursion(self): # Indirect recursion fn_a = Func("fn_a", ["arg_a"], None, None) fn_b = Func("fn_b", ["arg_b"], None, None) fn_a_ir = { "sets": {Name("arg_a.get_from_a", "arg_a")}, "gets": set(), "dels": set(), "calls": {Call("fn_b()", ["arg_a"], {}, target=fn_b)}, } fn_b_ir = { "sets": {Name("arg_b.get_from_b", "arg_b")}, "gets": set(), "dels": set(), "calls": {Call("fn_a()", ["arg_b"], {}, target=fn_a)}, } file_ir = { fn_a: fn_a_ir, fn_b: fn_b_ir, } expected = { "fn_a": { "sets": {"arg_a.get_from_a", "arg_a.get_from_b"}, "gets": set(), "dels": set(), "calls": {"fn_b()"}, }, "fn_b": { "sets": {"arg_b.get_from_a", "arg_b.get_from_b"}, "gets": set(), "dels": set(), "calls": {"fn_a()"}, }, } assert generate_results_from_ir(file_ir, dict()) == expected def test_generate_results_from_ir_child_has_direct_recursion(self): fn_a = Func("fn_a", ["x"], None, None) fn_b = Func("fn_b", ["arg"], None, None) fn_a_ir = { "sets": set(), "gets": {Name("x.attr", "x")}, "dels": set(), "calls": {Call("fn_b()", ["x"], {}, target=fn_b)}, } fn_b_ir = { "sets": set(), "gets": {Name("arg.field", "arg")}, "dels": set(), "calls": {Call("fn_b()", ["arg"], {}, target=fn_b)}, } file_ir = { fn_a: fn_a_ir, fn_b: fn_b_ir, } expected = { "fn_a": { "sets": set(), "gets": {"x.attr", "x.field"}, "dels": set(), "calls": {"fn_b()"}, }, "fn_b": { "sets": set(), "gets": {"arg.field"}, "dels": set(), "calls": {"fn_b()"}, }, } assert generate_results_from_ir(file_ir, dict()) == expected def test_generate_results_from_ir_child_has_indirect_recursion(self): fn_a = Func("fn_a", ["a"], None, None) fn_b = Func("fn_b", ["b"], None, None) fn_c = Func("fn_c", ["c"], None, None) fn_a_ir = { "sets": set(), "gets": {Name("a.in_a", "a")}, "dels": set(), "calls": {Call("fn_b()", ["a"], {}, target=fn_b)}, } fn_b_ir = { "sets": set(), "gets": {Name("b.in_b", "b")}, "dels": set(), "calls": {Call("fn_c()", ["b"], {}, target=fn_c)}, } fn_c_ir = { "sets": set(), "gets": {Name("c.in_c", "c")}, "dels": set(), "calls": {Call("fn_b()", [], {"b": "c"}, target=fn_b)}, } file_ir = { fn_a: fn_a_ir, fn_b: fn_b_ir, fn_c: fn_c_ir, } expected = { "fn_a": { "sets": set(), "gets": {"a.in_a", "a.in_b", "a.in_c"}, "dels": set(), "calls": {"fn_b()"}, }, "fn_b": { "sets": set(), "gets": {"b.in_b", "b.in_c"}, "dels": set(), "calls": {"fn_c()"}, }, "fn_c": { "sets": set(), "gets": {"c.in_b", "c.in_c"}, "dels": set(), "calls": {"fn_b()"}, }, } assert generate_results_from_ir(file_ir, dict()) == expected def test_generate_results_from_ir_repeated_calls(self): # Repeated calls that should be ignored fn_a = Func("fn_a", ["a"], None, None) fn_b = Func("fn_b", ["b"], None, None) fn_a_ir = { "sets": set(), "gets": {Name("a.in_a", "a")}, "dels": set(), "calls": { Call("fn_b()", ["a.attr"], {}, target=fn_b), Call("fn_b()", ["a.attr"], {}, target=fn_b), }, } fn_b_ir = { "sets": set(), "gets": {Name("b.in_b", "b")}, "dels": set(), "calls": set(), } file_ir = { fn_a: fn_a_ir, fn_b: fn_b_ir, } expected = { "fn_a": { "sets": set(), "gets": {"a.in_a", "a.attr.in_b"}, "dels": set(), "calls": {"fn_b()"}, }, "fn_b": { "sets": set(), "gets": {"b.in_b"}, "dels": set(), "calls": set(), }, } assert generate_results_from_ir(file_ir, dict()) == expected # Repeated calls that should not be ignored fn_a = Func("fn_a", ["a"], None, None) fn_b = Func("fn_b", ["b"], None, None) fn_a_ir = { "sets": set(), "gets": {Name("a.in_a", "a")}, "dels": set(), "calls": { Call("fn_b()", ["a.attr_one"], {}, target=fn_b), Call("fn_b()", ["a.attr_two"], {}, target=fn_b), }, } fn_b_ir = { "sets": set(), "gets": {Name("b.in_b", "b")}, "dels": set(), "calls": set(), } file_ir = { fn_a: fn_a_ir, fn_b: fn_b_ir, } expected = { "fn_a": { "sets": set(), "gets": {"a.in_a", "a.attr_one.in_b", "a.attr_two.in_b"}, "dels": set(), "calls": {"fn_b()"}, }, "fn_b": { "sets": set(), "gets": {"b.in_b"}, "dels": set(), "calls": set(), }, } assert generate_results_from_ir(file_ir, dict()) == expected def test_imports_ir(self, file_ir_from_dict): # Simple imports_ir = { "module": file_ir_from_dict( { Func("act", ["arg"], None, None): { "sets": set(), "gets": { Name("arg.attr", "arg"), }, "dels": set(), "calls": set(), } } ) } _i = Import("act", "module.act") _i.module_name = "module" _i.module_spec = mock.Mock() fn = Func("fn", ["ms"], None, None) fn_ir = { "sets": set(), "gets": set(), "dels": set(), "calls": {Call("act()", ["ms"], {}, target=_i)}, } file_ir = { fn: fn_ir, } expected = { "fn": { "sets": set(), "gets": {"ms.attr"}, "dels": set(), "calls": {"act()"}, } } assert generate_results_from_ir(file_ir, imports_ir) == expected # Chained _i_second = Import("second", "chained.second") _i_second.module_name = "chained" _i_second.module_spec = mock.Mock() imports_ir = { "module": file_ir_from_dict( { Func("first", ["arrg"], None, None): { "sets": set(), "gets": set(), "dels": set(), "calls": {Call("second", ["arrg"], {}, target=_i_second)}, } } ), "chained": file_ir_from_dict( { Func("second", ["blarg"], None, None): { "sets": set(), "gets": { Name("blarg._attr", "blarg"), }, "dels": set(), "calls": set(), } } ), } _i_module = Import("first", "module.first") _i_module.module_name = "module" _i_module.module_spec = mock.Mock() fn = Func("fn", ["flarg"], None, None) fn_ir = { "sets": set(), "gets": set(), "dels": set(), "calls": {Call("first()", ["flarg"], {}, target=_i_module)}, } file_ir = { fn: fn_ir, } expected = { "fn": { "sets": set(), "gets": {"flarg._attr"}, "dels": set(), "calls": { "first()", }, } } assert generate_results_from_ir(file_ir, imports_ir) == expected def test_class(self): cls_inst = Class("SomeClass", ["self", "arg"], None, None) cls_inst_ir = { "sets": { Name("self.my_attr", "self"), }, "gets": { Name("arg.attr_in_init", "arg"), }, "dels": set(), "calls": set(), } cls_inst_sm = Func("SomeClass.static", ["flarg"], None, None) cls_inst_sm_ir = { "sets": { Name("flarg.attr_in_static", "flarg"), }, "gets": set(), "dels": set(), "calls": set(), } fn = Func("i_call_them", ["marg"], None, None) fn_ir = { "sets": { Name("instance"), }, "gets": set(), "dels": set(), "calls": { Call("SomeClass()", ["instance", "marg"], {}, target=cls_inst), Call("SomeClass.static()", ["marg"], {}, target=cls_inst_sm), }, } file_ir = { cls_inst: cls_inst_ir, cls_inst_sm: cls_inst_sm_ir, fn: fn_ir, } expected = { "SomeClass": { "sets": {"self.my_attr"}, "gets": {"arg.attr_in_init"}, "dels": set(), "calls": set(), }, "SomeClass.static": { "sets": {"flarg.attr_in_static"}, "gets": set(), "dels": set(), "calls": set(), }, "i_call_them": { "sets": { "instance", "instance.my_attr", "marg.attr_in_static", }, "gets": { "marg.attr_in_init", }, "dels": set(), "calls": { "SomeClass()", "SomeClass.static()", }, }, } assert generate_results_from_ir(file_ir, dict()) == expected
13,664
-3
265
1ee8b3b441e3e386e5383b05e72b69bbd71f1a7d
15,586
py
Python
noname.py
sxnxhxrxkx/nonamechan
4830ee9852b790ae46d66bc1ed356b3f1b0a8404
[ "MIT" ]
1
2018-11-04T14:19:14.000Z
2018-11-04T14:19:14.000Z
noname.py
sxnxhxrxkx/nonamechan
4830ee9852b790ae46d66bc1ed356b3f1b0a8404
[ "MIT" ]
null
null
null
noname.py
sxnxhxrxkx/nonamechan
4830ee9852b790ae46d66bc1ed356b3f1b0a8404
[ "MIT" ]
null
null
null
# Work with Python 3.6 import discord import numpy as np import pandas as pd import random import subprocess import weather as wt from nlu_yahoo import nluservice from MorseCode import morse # from wc import noname_wc #import softalk as sf from calender import getCalender, getCalLink, getCommandList from news import getNews from matchbattle.map import getTargetMap import noname_vocabulary as nnm import traceback from logger import writelog from logger import nonamelog from bs4 import BeautifulSoup import requests import configparser config = configparser.ConfigParser() config.read('noname.ini') TOKEN = config['noname']['TOKEN'] client = discord.Client() @client.event @client.event client.run(TOKEN)
40.801047
171
0.588926
# Work with Python 3.6 import discord import numpy as np import pandas as pd import random import subprocess import weather as wt from nlu_yahoo import nluservice from MorseCode import morse # from wc import noname_wc #import softalk as sf from calender import getCalender, getCalLink, getCommandList from news import getNews from matchbattle.map import getTargetMap import noname_vocabulary as nnm import traceback from logger import writelog from logger import nonamelog from bs4 import BeautifulSoup import requests import configparser config = configparser.ConfigParser() config.read('noname.ini') TOKEN = config['noname']['TOKEN'] client = discord.Client() def getUser(message): usrname = str(message.author) return usrname @client.event async def on_message(message): msg = '' if message.author == client.user: return try: if message.content.__contains__('さしすせそ'): msg = nnm.sasisuseso(msg) nonamelog(getUser(message),'sasisuseso', message.content) await message.channel.send( msg) return if message.content.__contains__('世界一かわいい'): msg = nnm.okoku(msg) nonamelog(getUser(message),'okoku', message.content) await message.channel.send( msg) return if message.content.__contains__('ほめて') or message.content.__contains__('褒めて') : msg += nnm.homete(msg) nonamelog(getUser(message),'homete', message.content) await message.channel.send( msg) return if message.content.__contains__('ばとうして') or message.content.__contains__('罵倒して') or message.content.__contains__('おしっこ') or message.content.__contains__('!ちんちん'): msg += nnm.batou(msg) nonamelog(getUser(message),'batou', message.content) await message.channel.send( msg) return if message.content.__contains__('疲れた') or message.content.__contains__('つかれた'): msg += nnm.tsukareta(msg) nonamelog(getUser(message),'tsukareta', message.content) await message.channel.send( msg) return if message.content.__contains__('許して') or message.content.__contains__('ゆるして') or message.content.__contains__('許されたい'): msg += nnm.yurusite(msg) nonamelog(getUser(message),'yurusite', message.content) await message.channel.send( msg) if message.content.__contains__('頑張った') or message.content.__contains__('がんばった'): msg += nnm.ganbatta(msg) nonamelog(getUser(message),'ganbatta', message.content) await message.channel.send( msg) return if message.content.__contains__('応援'): msg += nnm.ouen(msg) nonamelog(getUser(message),'ouen', message.content) await message.channel.send( msg) return if message.content.__contains__('励まして') or message.content.__contains__('はげまして'): msg += nnm.hagemasu(msg) nonamelog(getUser(message),'hagemasu', message.content) await message.channel.send( msg) return if message.content.__contains__('頑張る') or message.content.__contains__('がんばる') or message.content.__contains__('がんがる') or message.content.__contains__('ガンガル'): msg += nnm.ganbaru(msg) nonamelog(getUser(message),'ganbaru', message.content) await message.channel.send( msg) return if message.content.__contains__('はじめまして'): msg += 'はじめまして! {0.author.mention}'.format(message) + 'さん!' msg += nnm.information(msg) msg += '楽しんでいってくださいね!' nonamelog(getUser(message),'information', message.content) await message.channel.send( msg) return if message.content.__contains__('!help') or message.content.__contains__('!ヘルプ'): msg += nnm.nonamehelp(msg) nonamelog(getUser(message),'nonamehelp', message.content) await message.channel.send( msg) return if message.content.__contains__('hello'): msg += 'Hello {0.author.mention}'.format(message) nonamelog(getUser(message),'hello', message.content) await message.channel.send( msg) return if message.content.__contains__('こんにちわ'): msg += 'こんにちわ! {0.author.mention}'.format(message) + 'さん!' nonamelog(getUser(message),'hello', message.content) await message.channel.send( msg) return if message.content.startswith('おはよ'): msg += nnm.ohayo(msg) nonamelog(getUser(message),'ohayo', message.content) await message.channel.send( msg) return if message.content.__contains__('おやす'): msg += nnm.oyasumi(msg) nonamelog(getUser(message),'oyasumi', message.content) await message.channel.send( msg) return if message.content.__contains__('!ありがと'): msg += nnm.arigato(msg) nonamelog(getUser(message),'arigato', message.content) await message.channel.send( msg) return if message.content.__contains__('おつ') or message.content.__contains__('お疲れ') or message.content.__contains__('!おつ'): msg += nnm.otsu(msg) nonamelog(getUser(message),'otsu', message.content) await message.channel.send( msg) if message.content.__contains__('!ぬるぽ') or message.content.__contains__('ぬるぽ'): msg += nnm.nurupo(msg) nonamelog(getUser(message),'nurupo', message.content) await message.channel.send( msg) if message.content.__contains__('!しりとり'): msg += 'しりとり、ですか?現在、その機能は使われておりません。ピピー!' await message.channel.send( msg) if message.content.__contains__('!占い') or message.content.__contains__('!運勢'): msg = 'じゃじゃーーん!!今日の運勢!ですね!' await message.channel.send( msg) msg, negaposi = nnm.uranai(msg) await message.channel.send( msg) msg = nnm.luckynum(msg, negaposi) await message.channel.send( msg) msg = nnm.luckycolor(msg, negaposi) await message.channel.send( msg) msg = nnm.advice(msg, negaposi) nonamelog(getUser(message),'uranai', message.content) await message.channel.send( msg) if message.content.__contains__('!ニンジャ') or message.content.__contains__('ニンジャ'): msg = nnm.ninja(msg,getUser(message)) nonamelog(getUser(message),'ninja', message.content) await message.channel.send( msg) if message.content.startswith('ふぃんだー') or message.content.startswith('フィンダー'): msg = nnm.finder(msg,getUser(message)) nonamelog(getUser(message),'finder', message.content) await message.channel.send( msg) if message.content.startswith('!dice') or message.content.startswith('!サイコロ') or message.content.startswith('!ダイス'): if message.content.startswith('!dicegame') or message.content.startswith('!サイコロ勝負') or message.content.startswith('!ダイス勝負'): msg = nnm.dicegame(msg, message.content) nonamelog(getUser(message),'dicegame', message.content) else: msg = nnm.somedice(msg, message.content) nonamelog(getUser(message),'somedice', message.content) await message.channel.send( msg) if message.content.startswith('!ちんちろ') or message.content.startswith('!チンチロ'): msg = "ちんちろりんだね!役が出るまで3回サイコロを振るよ!" await message.channel.send( msg) cnt = 1 msg = "1投目を振るよ!" await message.channel.send( msg) msg, score, yaku, result_str, reaction = nnm.tintiro(msg, message.content) await message.channel.send( msg) if yaku == "目なし": msg = "2投目を振るよ!" await message.channel.send( msg) msg, score, yaku, result_str, reaction = nnm.tintiro(msg, message.content) await message.channel.send( msg) cnt += 1 if yaku == "目なし": msg = "これが最後のチャンスだよ!" await message.channel.send( msg) msg, score, yaku, result_str, reaction = nnm.tintiro(msg, message.content) await message.channel.send( msg) cnt += 1 if yaku == "目なし": msg = '最後まで目なし…あまくないね!あなたの負けだよ!' await message.channel.send( msg) elif score >= 1: msg = '役を出すことができて何よりだよ!' await message.channel.send( msg) # msg += 'はじめまして! {0.author.mention}'.format(message) + 'さん!' msg = '結果をまとめるね!' await message.channel.send( msg) # ヘッダ embed = discord.Embed(title="---ちんちろりん結果---", description='プレイヤ:{0.author.mention}'.format(message)) embed.add_field(name="投数", value=str(cnt) + '投') embed.add_field(name="役", value=yaku) embed.add_field(name="スコア", value=str(score)) await message.channel.send(embed=embed) msg = 'また遊んでね!' await message.channel.send( msg) nonamelog(getUser(message),'tintiro', message.content) return if message.content.startswith('!マップ') or message.content.startswith('!map'): msg = "対戦マップを取得するね!" await message.channel.send( msg) map_name, map_path = getTargetMap() await message.channel.send(map_path) # ヘッダ embed = discord.Embed(title=map_name)#, description=map_name) #embed.set_image(url=map_path) # embed.add_field(name="マップ", value=str(map_name)) # embed.add_field(name="役", value=yaku) # embed.add_field(name="スコア", value=str(score)) await message.channel.send(embed=embed) msg = 'さぁ!楽しみだね!' await message.channel.send( msg) nonamelog(getUser(message),'map', message.content) return if message.content.startswith('!天気'): #msg += wt.weather() msg += wt.weather_geo(msg, message.content) nonamelog(getUser(message),'weather', message.content) await message.channel.send( msg) if message.content.startswith('!モールス') or message.content.startswith('!もーるす'): msg += morse(msg, message.content) nonamelog(getUser(message),'morse', message.content) await message.channel.send( msg) if message.content.startswith('!nlu'): msg += nluservice(msg, message.content) nonamelog(getUser(message),'nluservice', message.content) await message.channel.send( msg) if message.content.startswith('!dec2bin'): msg += nnm.dec2bin(msg, message.content) nonamelog(getUser(message),'dec2bin', message.content) await message.channel.send( msg) if message.content.startswith('!dec2hex'): msg += nnm.dec2hex(msg, message.content) nonamelog(getUser(message),'dec2hex', message.content) await message.channel.send( msg) if message.content.startswith('!bin2dec'): msg += nnm.bin2dec(msg, message.content) nonamelog(getUser(message),'bin2dec', message.content) await message.channel.send( msg) if message.content.startswith('!hex2dec'): msg += nnm.hex2dec(msg, message.content) nonamelog(getUser(message),'hex2dec', message.content) await message.channel.send( msg) if message.content.startswith('!半濁音'): msg += nnm.handakuon(msg, message.content) nonamelog(getUser(message),'handakuon', message.content) await message.channel.send( msg) if message.content.startswith('!濁音'): msg += nnm.dakuon(msg, message.content) nonamelog(getUser(message),'dakuon', message.content) await message.channel.send( msg) if message.content.startswith('!リピート'): msg += nnm.repeat(msg, message.content) nonamelog(getUser(message),'repeat', message.content) await message.channel.send( msg) # 幻影戦争イベントカレンダーのリンク取得 if message.content.startswith('!カレンダリンク'): nonamelog(getUser(message),'cal', message.content) msg = "幻影戦争のイベントカレンダーは以下のリンクだよ!" await message.channel.send( msg) msg = getCalLink(msg) await message.channel.send( msg) msg = "編集したい場合はここを見てね。参考になったかな?" await message.channel.send( msg) return # 幻影戦争イベントカレンダーの取得 if message.content.startswith('!カレンダ'): nonamelog(getUser(message),'cal', message.content) msg, df = getCalender( msg, message.content) await message.channel.send( msg) msg = "--------------------------------------" await message.channel.send( msg) for index, row in df.iterrows(): msg = row['start'].strftime('%m/%d %H') + "' - " + row['end'].strftime('%m/%d %H') + "'" + " " + row['category'] + " " + row['event'] await message.channel.send( msg) msg = "--------------------------------------" await message.channel.send( msg) msg = getCommandList(msg) await message.channel.send( msg) return # 幻影戦争お知らせの取得 if message.content.startswith('!お知らせ'): nonamelog(getUser(message),'news', message.content) url_org = "https://players.wotvffbe.com" url = url_org + "/all/" msg = "幻影戦争のお知らせを取得するよ!" await message.channel.send( msg) msg, df = getNews(msg, message.content) await message.channel.send( msg) # ヘッダ embed = discord.Embed(title="FFBE 幻影戦争 お知らせ", description=f"FFBE 幻影戦争 のお知らせのURLは [こちら]({url}) です!") for index, row in df.iterrows(): time = row['time'] content = row['content'] link = row['link'] embed.add_field(name=time, value="[" + content +"](" + link + ")",inline=False) await message.channel.send(embed=embed) return # if message.content.startswith('!wc'): # msg += noname_wc(msg, message.content) # nonamelog(getUser(message),'wc', message.content) # await client.send_file(message.channel, "temp.png", content="スクレイピングしたよ!", filename="send.png") # add ------- if message.content.__contains__('のなめ') or message.content.__contains__('noname'): msg = nnm.noname(msg) nonamelog(getUser(message),'noname', message.content) await message.channel.send( msg) if message.content.startswith('exit'): await client.logout() except: msg += 'エラー。んん、、なんかおかしいかも。。logを出すね。。' nonamelog(getUser(message),'error', message.content) await message.channel.send( msg) msg = traceback.format_exc() await message.channel.send( msg) #sf.talk(msg) @client.event async def on_ready(): print('Logged in as') print(client.user.name) print(client.user.id) print('------') client.run(TOKEN)
16,119
0
67
e033047e653a5d284cd1d9c31bd1fb747d758d2a
5,522
py
Python
tensorflow_federated/python/core/backends/iree/compiler.py
truthiswill/federated
d25eeac036dfc2a485120a195fd904223cfc823a
[ "Apache-2.0" ]
1
2022-02-08T01:11:14.000Z
2022-02-08T01:11:14.000Z
tensorflow_federated/python/core/backends/iree/compiler.py
truthiswill/federated
d25eeac036dfc2a485120a195fd904223cfc823a
[ "Apache-2.0" ]
null
null
null
tensorflow_federated/python/core/backends/iree/compiler.py
truthiswill/federated
d25eeac036dfc2a485120a195fd904223cfc823a
[ "Apache-2.0" ]
null
null
null
# Copyright 2020, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pytype: skip-file # This modules disables the Pytype analyzer, see # https://github.com/tensorflow/federated/blob/main/docs/pytype.md for more # information. """A collection of utilities for compiling TFF code for execution on IREE.""" import tempfile import iree.compiler.tf import tensorflow as tf from tensorflow_federated.proto.v0 import computation_pb2 as pb from tensorflow_federated.python.common_libs import py_typecheck from tensorflow_federated.python.common_libs import serialization_utils from tensorflow_federated.python.core.backends.iree import computation_module from tensorflow_federated.python.core.impl.types import computation_types from tensorflow_federated.python.core.impl.types import type_serialization from tensorflow_federated.python.core.impl.utils import tensorflow_utils def import_tensorflow_computation(comp, name='fn'): """Creates a `computation_module.ComputationModule` from a TF computation. WARNING: This helper function is under construction, and most capabilities are not implemented at this stage: * The parameter and result of `comp` can only be a single tensor. Named tuples, sequences, or functional types are not currently supported. * Only tensorflow code can be imported. TODO(b/153499219): Add support for named tuples, sequences, and functions. Args: comp: An instance of a `pb.Computation` with TensorFlow code to import. name: An optional `str` name of the (single) function in the IREE module. Returns: An instance of `Module` with the imported function present. Raises: TypeError: If arguments are of the wrong types, e.g., in `comp` is not a TensorFlow computation. """ py_typecheck.check_type(comp, pb.Computation) type_spec = type_serialization.deserialize_type(comp.type) if not type_spec.is_function(): type_spec = computation_types.FunctionType(None, type_spec) # TODO(b/153499219): Replace this with a recursive check of the signature # after relaxing the type restrictions and introducing nested structures. py_typecheck.check_type(type_spec.result, computation_types.TensorType) if type_spec.parameter is not None: py_typecheck.check_type(type_spec.parameter, computation_types.TensorType) which_computation = comp.WhichOneof('computation') if which_computation != 'tensorflow': raise TypeError('Expected a TensorFlow computation, found {}.'.format( which_computation)) output_tensor_names = tensorflow_utils.extract_tensor_names_from_binding( comp.tensorflow.result) if type_spec.parameter is not None: input_tensor_names = tensorflow_utils.extract_tensor_names_from_binding( comp.tensorflow.parameter) else: input_tensor_names = [] graph_def = serialization_utils.unpack_graph_def(comp.tensorflow.graph_def) init_op = comp.tensorflow.initialize_op return_elements = input_tensor_names + output_tensor_names if init_op: graph_def = tensorflow_utils.add_control_deps_for_init_op( graph_def, init_op) return_elements.append(init_op) with tf.Graph().as_default() as graph: # TODO(b/153499219): See if we can reintroduce uniquify_shared_names(). # Right now, it causes loader breakage, and unclear if still necessary. import_results = tf.graph_util.import_graph_def( graph_def, input_map={}, return_elements=return_elements, name='') if init_op: initializer = import_results[-1] import_results.pop() else: initializer = None inputs = import_results[0:len(input_tensor_names)] outputs = import_results[len(input_tensor_names):] with graph.as_default(): # TODO(b/153499219): Find a way to reflect the nested parameter and result # structure here after relaxing the restrictions. if inputs: assert len(inputs) < 2 input_dict = { 'parameter': tf.compat.v1.saved_model.utils.build_tensor_info(inputs[0]) } else: input_dict = {} assert len(outputs) == 1 output_dict = { 'result': tf.compat.v1.saved_model.utils.build_tensor_info(outputs[0]) } sig_def = tf.compat.v1.saved_model.signature_def_utils.build_signature_def( inputs=input_dict, outputs=output_dict, method_name=name) with tempfile.TemporaryDirectory() as model_dir: builder = tf.compat.v1.saved_model.Builder(model_dir) with tf.compat.v1.Session(graph=graph) as sess: builder.add_meta_graph_and_variables( sess, ['unused'], signature_def_map={name: sig_def}, legacy_init_op=initializer, strip_default_attrs=True) builder.save() iree_module = iree.compiler.tf.compile_saved_model( model_dir, import_type='SIGNATURE_DEF', import_only=True, saved_model_tags=set(['unused']), exported_names=[name]) return computation_module.ComputationModule(iree_module, name, type_spec)
39.726619
80
0.74828
# Copyright 2020, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pytype: skip-file # This modules disables the Pytype analyzer, see # https://github.com/tensorflow/federated/blob/main/docs/pytype.md for more # information. """A collection of utilities for compiling TFF code for execution on IREE.""" import tempfile import iree.compiler.tf import tensorflow as tf from tensorflow_federated.proto.v0 import computation_pb2 as pb from tensorflow_federated.python.common_libs import py_typecheck from tensorflow_federated.python.common_libs import serialization_utils from tensorflow_federated.python.core.backends.iree import computation_module from tensorflow_federated.python.core.impl.types import computation_types from tensorflow_federated.python.core.impl.types import type_serialization from tensorflow_federated.python.core.impl.utils import tensorflow_utils def import_tensorflow_computation(comp, name='fn'): """Creates a `computation_module.ComputationModule` from a TF computation. WARNING: This helper function is under construction, and most capabilities are not implemented at this stage: * The parameter and result of `comp` can only be a single tensor. Named tuples, sequences, or functional types are not currently supported. * Only tensorflow code can be imported. TODO(b/153499219): Add support for named tuples, sequences, and functions. Args: comp: An instance of a `pb.Computation` with TensorFlow code to import. name: An optional `str` name of the (single) function in the IREE module. Returns: An instance of `Module` with the imported function present. Raises: TypeError: If arguments are of the wrong types, e.g., in `comp` is not a TensorFlow computation. """ py_typecheck.check_type(comp, pb.Computation) type_spec = type_serialization.deserialize_type(comp.type) if not type_spec.is_function(): type_spec = computation_types.FunctionType(None, type_spec) # TODO(b/153499219): Replace this with a recursive check of the signature # after relaxing the type restrictions and introducing nested structures. py_typecheck.check_type(type_spec.result, computation_types.TensorType) if type_spec.parameter is not None: py_typecheck.check_type(type_spec.parameter, computation_types.TensorType) which_computation = comp.WhichOneof('computation') if which_computation != 'tensorflow': raise TypeError('Expected a TensorFlow computation, found {}.'.format( which_computation)) output_tensor_names = tensorflow_utils.extract_tensor_names_from_binding( comp.tensorflow.result) if type_spec.parameter is not None: input_tensor_names = tensorflow_utils.extract_tensor_names_from_binding( comp.tensorflow.parameter) else: input_tensor_names = [] graph_def = serialization_utils.unpack_graph_def(comp.tensorflow.graph_def) init_op = comp.tensorflow.initialize_op return_elements = input_tensor_names + output_tensor_names if init_op: graph_def = tensorflow_utils.add_control_deps_for_init_op( graph_def, init_op) return_elements.append(init_op) with tf.Graph().as_default() as graph: # TODO(b/153499219): See if we can reintroduce uniquify_shared_names(). # Right now, it causes loader breakage, and unclear if still necessary. import_results = tf.graph_util.import_graph_def( graph_def, input_map={}, return_elements=return_elements, name='') if init_op: initializer = import_results[-1] import_results.pop() else: initializer = None inputs = import_results[0:len(input_tensor_names)] outputs = import_results[len(input_tensor_names):] with graph.as_default(): # TODO(b/153499219): Find a way to reflect the nested parameter and result # structure here after relaxing the restrictions. if inputs: assert len(inputs) < 2 input_dict = { 'parameter': tf.compat.v1.saved_model.utils.build_tensor_info(inputs[0]) } else: input_dict = {} assert len(outputs) == 1 output_dict = { 'result': tf.compat.v1.saved_model.utils.build_tensor_info(outputs[0]) } sig_def = tf.compat.v1.saved_model.signature_def_utils.build_signature_def( inputs=input_dict, outputs=output_dict, method_name=name) with tempfile.TemporaryDirectory() as model_dir: builder = tf.compat.v1.saved_model.Builder(model_dir) with tf.compat.v1.Session(graph=graph) as sess: builder.add_meta_graph_and_variables( sess, ['unused'], signature_def_map={name: sig_def}, legacy_init_op=initializer, strip_default_attrs=True) builder.save() iree_module = iree.compiler.tf.compile_saved_model( model_dir, import_type='SIGNATURE_DEF', import_only=True, saved_model_tags=set(['unused']), exported_names=[name]) return computation_module.ComputationModule(iree_module, name, type_spec)
0
0
0
39571e94baa89811230fb0af0126de9bc9159675
911
py
Python
legacy/apps/smokegen_blob.py
tailintalent/PDE-Control
7031909188e7ce217da2b1628236011d1dff161a
[ "MIT" ]
22
2020-04-27T12:48:32.000Z
2022-03-23T10:41:48.000Z
legacy/apps/smokegen_blob.py
tailintalent/PDE-Control
7031909188e7ce217da2b1628236011d1dff161a
[ "MIT" ]
5
2020-12-18T14:19:23.000Z
2022-01-22T18:29:27.000Z
legacy/apps/smokegen_blob.py
tailintalent/PDE-Control
7031909188e7ce217da2b1628236011d1dff161a
[ "MIT" ]
3
2021-05-29T23:30:53.000Z
2022-02-14T06:30:32.000Z
from phi.fluidformat import * # for scene in scenes("~/data/control/squares"): # scene.remove() scenecount = 1000 for scene_index in range(scenecount): scene = new_scene("~/data/control/squares") start_x, start_y, end_x, end_y = np.random.randint(10, 110, 4) print(scene) scenelength = 32 vx = (end_x-start_x) / float(scenelength) vy = (end_y-start_y) / float(scenelength) for frame in range(scenelength+1): time = frame / float(scenelength) array = np.zeros([128, 128, 1], np.float32) x = int(round(start_x * (1-time) + end_x * time)) y = int(round(start_y * (1-time) + end_y * time)) array[y:y+8, x:x+8, :] = 1 velocity_array = np.empty([129, 129, 2], np.float32) velocity_array[...,0] = vx velocity_array[...,1] = vy write_sim_frame(scene.path, [array, velocity_array], ["Density", "Velocity"], frame)
37.958333
92
0.614709
from phi.fluidformat import * # for scene in scenes("~/data/control/squares"): # scene.remove() scenecount = 1000 for scene_index in range(scenecount): scene = new_scene("~/data/control/squares") start_x, start_y, end_x, end_y = np.random.randint(10, 110, 4) print(scene) scenelength = 32 vx = (end_x-start_x) / float(scenelength) vy = (end_y-start_y) / float(scenelength) for frame in range(scenelength+1): time = frame / float(scenelength) array = np.zeros([128, 128, 1], np.float32) x = int(round(start_x * (1-time) + end_x * time)) y = int(round(start_y * (1-time) + end_y * time)) array[y:y+8, x:x+8, :] = 1 velocity_array = np.empty([129, 129, 2], np.float32) velocity_array[...,0] = vx velocity_array[...,1] = vy write_sim_frame(scene.path, [array, velocity_array], ["Density", "Velocity"], frame)
0
0
0
59c7971bdd0fbc42647fd2f3df68d614494ae493
12,561
py
Python
mango/marketmaking/modelstatebuilderfactory.py
bednie/mango-explorer
4575395488e97a1f8cb52cc567e3307f11a28932
[ "MIT" ]
null
null
null
mango/marketmaking/modelstatebuilderfactory.py
bednie/mango-explorer
4575395488e97a1f8cb52cc567e3307f11a28932
[ "MIT" ]
null
null
null
mango/marketmaking/modelstatebuilderfactory.py
bednie/mango-explorer
4575395488e97a1f8cb52cc567e3307f11a28932
[ "MIT" ]
null
null
null
# # ⚠ Warning # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT # LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # [🥭 Mango Markets](https://mango.markets/) support is available at: # [Docs](https://docs.mango.markets/) # [Discord](https://discord.gg/67jySBhxrg) # [Twitter](https://twitter.com/mangomarkets) # [Github](https://github.com/blockworks-foundation) # [Email](mailto:hello@blockworks.foundation) import enum import mango import typing from solana.publickey import PublicKey from ..constants import SYSTEM_PROGRAM_ADDRESS from ..modelstate import ModelState from .modelstatebuilder import ( ModelStateBuilder, WebsocketModelStateBuilder, SerumPollingModelStateBuilder, SpotPollingModelStateBuilder, PerpPollingModelStateBuilder, ) # # 🥭 ModelStateBuilder class # # Base class for building a `ModelState` through polling or websockets. #
33.857143
124
0.670727
# # ⚠ Warning # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT # LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # [🥭 Mango Markets](https://mango.markets/) support is available at: # [Docs](https://docs.mango.markets/) # [Discord](https://discord.gg/67jySBhxrg) # [Twitter](https://twitter.com/mangomarkets) # [Github](https://github.com/blockworks-foundation) # [Email](mailto:hello@blockworks.foundation) import enum import mango import typing from solana.publickey import PublicKey from ..constants import SYSTEM_PROGRAM_ADDRESS from ..modelstate import ModelState from .modelstatebuilder import ( ModelStateBuilder, WebsocketModelStateBuilder, SerumPollingModelStateBuilder, SpotPollingModelStateBuilder, PerpPollingModelStateBuilder, ) class ModelUpdateMode(enum.Enum): # We use strings here so that argparse can work with these as parameters. WEBSOCKET = "WEBSOCKET" POLL = "POLL" def __str__(self) -> str: return self.value def __repr__(self) -> str: return f"{self}" # # 🥭 ModelStateBuilder class # # Base class for building a `ModelState` through polling or websockets. # def model_state_builder_factory( mode: ModelUpdateMode, context: mango.Context, disposer: mango.Disposable, websocket_manager: mango.WebSocketSubscriptionManager, health_check: mango.HealthCheck, wallet: mango.Wallet, group: mango.Group, account: mango.Account, market: mango.LoadedMarket, oracle: mango.Oracle, ) -> ModelStateBuilder: if mode == ModelUpdateMode.WEBSOCKET: return _websocket_model_state_builder_factory( context, disposer, websocket_manager, health_check, wallet, group, account, market, oracle, ) else: return _polling_model_state_builder_factory( context, wallet, group, account, market, oracle ) def _polling_model_state_builder_factory( context: mango.Context, wallet: mango.Wallet, group: mango.Group, account: mango.Account, market: mango.Market, oracle: mango.Oracle, ) -> ModelStateBuilder: if mango.SerumMarket.isa(market): return _polling_serum_model_state_builder_factory( context, wallet, group, account, mango.SerumMarket.ensure(market), oracle ) elif mango.SpotMarket.isa(market): return _polling_spot_model_state_builder_factory( group, account, mango.SpotMarket.ensure(market), oracle ) elif mango.PerpMarket.isa(market): return _polling_perp_model_state_builder_factory( group, account, mango.PerpMarket.ensure(market), oracle ) else: raise Exception( f"Could not determine type of market {market.fully_qualified_symbol}: {market}" ) def _polling_serum_model_state_builder_factory( context: mango.Context, wallet: mango.Wallet, group: mango.Group, account: mango.Account, market: mango.SerumMarket, oracle: mango.Oracle, ) -> ModelStateBuilder: base_account = mango.TokenAccount.fetch_largest_for_owner_and_token( context, wallet.address, market.base ) if base_account is None: raise Exception( f"Could not find token account owned by {wallet.address} for base token {market.base}." ) quote_account = mango.TokenAccount.fetch_largest_for_owner_and_token( context, wallet.address, market.quote ) if quote_account is None: raise Exception( f"Could not find token account owned by {wallet.address} for quote token {market.quote}." ) all_open_orders = mango.OpenOrders.load_for_market_and_owner( context, market.address, wallet.address, context.serum_program_address, market.base, market.quote, ) if len(all_open_orders) == 0: raise Exception( f"Could not find serum openorders account owned by {wallet.address} for market {market.fully_qualified_symbol}." ) return SerumPollingModelStateBuilder( all_open_orders[0].address, market, oracle, group.address, group.cache, account.address, all_open_orders[0].address, base_account, quote_account, ) def _polling_spot_model_state_builder_factory( group: mango.Group, account: mango.Account, market: mango.SpotMarket, oracle: mango.Oracle, ) -> ModelStateBuilder: market_index: int = group.slot_by_spot_market_address(market.address).index open_orders_address: typing.Optional[PublicKey] = account.spot_open_orders_by_index[ market_index ] all_open_orders_addresses: typing.Sequence[PublicKey] = account.spot_open_orders if open_orders_address is None: raise Exception( f"Could not find spot openorders in account {account.address} for market {market.fully_qualified_symbol}." ) return SpotPollingModelStateBuilder( open_orders_address, market, oracle, group.address, group.cache, account.address, open_orders_address, all_open_orders_addresses, ) def _polling_perp_model_state_builder_factory( group: mango.Group, account: mango.Account, market: mango.PerpMarket, oracle: mango.Oracle, ) -> ModelStateBuilder: all_open_orders_addresses: typing.Sequence[PublicKey] = account.spot_open_orders return PerpPollingModelStateBuilder( account.address, market, oracle, group.address, group.cache, all_open_orders_addresses, ) def __load_all_openorders_watchers( context: mango.Context, wallet: mango.Wallet, account: mango.Account, group: mango.Group, websocket_manager: mango.WebSocketSubscriptionManager, health_check: mango.HealthCheck, ) -> typing.Sequence[mango.Watcher[mango.OpenOrders]]: all_open_orders_watchers: typing.List[mango.Watcher[mango.OpenOrders]] = [] for basket_token in account.base_slots: if basket_token.spot_open_orders is not None: spot_market_symbol: str = f"spot:{basket_token.base_instrument.symbol}/{account.shared_quote_token.symbol}" spot_market = mango.SpotMarket.ensure( mango.market(context, spot_market_symbol) ) oo_watcher = mango.build_spot_open_orders_watcher( context, websocket_manager, health_check, wallet, account, group, spot_market, ) all_open_orders_watchers += [oo_watcher] return all_open_orders_watchers def _websocket_model_state_builder_factory( context: mango.Context, disposer: mango.Disposable, websocket_manager: mango.WebSocketSubscriptionManager, health_check: mango.HealthCheck, wallet: mango.Wallet, group: mango.Group, account: mango.Account, market: mango.LoadedMarket, oracle: mango.Oracle, ) -> ModelStateBuilder: group_watcher = mango.build_group_watcher( context, websocket_manager, health_check, group ) cache = mango.Cache.load(context, group.cache) cache_watcher = mango.build_cache_watcher( context, websocket_manager, health_check, cache, group ) account_subscription, latest_account_observer = mango.build_account_watcher( context, websocket_manager, health_check, account, group_watcher, cache_watcher ) initial_price = oracle.fetch_price(context) price_feed = oracle.to_streaming_observable(context) latest_price_observer = mango.LatestItemObserverSubscriber(initial_price) price_disposable = price_feed.subscribe(latest_price_observer) disposer.add_disposable(price_disposable) health_check.add("price_subscription", price_feed) if mango.SerumMarket.isa(market): serum_market = mango.SerumMarket.ensure(market) order_owner: PublicKey = ( serum_market.find_openorders_address_for_owner(context, wallet.address) or SYSTEM_PROGRAM_ADDRESS ) price_watcher: mango.Watcher[mango.Price] = mango.build_price_watcher( context, websocket_manager, health_check, disposer, "market", serum_market ) inventory_watcher: mango.Watcher[ mango.Inventory ] = mango.build_serum_inventory_watcher( context, websocket_manager, health_check, disposer, wallet, serum_market, price_watcher, ) latest_open_orders_observer: mango.Watcher[ mango.PlacedOrdersContainer ] = mango.build_serum_open_orders_watcher( context, websocket_manager, health_check, serum_market, wallet ) latest_orderbook_watcher: mango.Watcher[ mango.OrderBook ] = mango.build_orderbook_watcher( context, websocket_manager, health_check, serum_market ) latest_event_queue_watcher: mango.Watcher[ mango.EventQueue ] = mango.build_serum_event_queue_watcher( context, websocket_manager, health_check, serum_market ) elif mango.SpotMarket.isa(market): spot_market = mango.SpotMarket.ensure(market) market_index: int = group.slot_by_spot_market_address(spot_market.address).index order_owner = ( account.spot_open_orders_by_index[market_index] or SYSTEM_PROGRAM_ADDRESS ) all_open_orders_watchers = __load_all_openorders_watchers( context, wallet, account, group, websocket_manager, health_check ) latest_open_orders_observer = list( [ oo_watcher for oo_watcher in all_open_orders_watchers if ( spot_market.base == spot_market.base and spot_market.quote == spot_market.quote ) ] )[0] inventory_watcher = mango.InventoryAccountWatcher( spot_market, latest_account_observer, group_watcher, all_open_orders_watchers, cache_watcher, ) latest_orderbook_watcher = mango.build_orderbook_watcher( context, websocket_manager, health_check, spot_market ) latest_event_queue_watcher = mango.build_spot_event_queue_watcher( context, websocket_manager, health_check, spot_market ) elif mango.PerpMarket.isa(market): perp_market = mango.PerpMarket.ensure(market) order_owner = account.address all_open_orders_watchers = __load_all_openorders_watchers( context, wallet, account, group, websocket_manager, health_check ) inventory_watcher = mango.InventoryAccountWatcher( perp_market, latest_account_observer, group_watcher, all_open_orders_watchers, cache_watcher, ) latest_open_orders_observer = mango.build_perp_open_orders_watcher( context, websocket_manager, health_check, perp_market, account, group, account_subscription, ) latest_orderbook_watcher = mango.build_orderbook_watcher( context, websocket_manager, health_check, perp_market ) latest_event_queue_watcher = mango.build_perp_event_queue_watcher( context, websocket_manager, health_check, perp_market ) else: raise Exception( f"Could not determine type of market {market.fully_qualified_symbol} - {market}" ) model_state = ModelState( order_owner, market, group_watcher, latest_account_observer, latest_price_observer, latest_open_orders_observer, inventory_watcher, latest_orderbook_watcher, latest_event_queue_watcher, ) return WebsocketModelStateBuilder(model_state)
10,922
190
183
5d4633ef46069b638eb4cd14d524fd4a344a3b49
2,753
py
Python
backend/tomato/lib/cmd/bittorrent.py
dswd/ToMaTo
355fd3a8c7f95dc72c62383b3edfa8f6c0396bf4
[ "BSD-4-Clause-UC" ]
2
2016-11-10T06:12:05.000Z
2016-11-10T06:12:10.000Z
hostmanager/tomato/lib/cmd/bittorrent.py
dswd/ToMaTo
355fd3a8c7f95dc72c62383b3edfa8f6c0396bf4
[ "BSD-4-Clause-UC" ]
2
2015-01-19T16:00:24.000Z
2015-01-20T11:33:56.000Z
backend/tomato/lib/cmd/bittorrent.py
dswd/ToMaTo
355fd3a8c7f95dc72c62383b3edfa8f6c0396bf4
[ "BSD-4-Clause-UC" ]
1
2016-11-10T06:12:15.000Z
2016-11-10T06:12:15.000Z
# -*- coding: utf-8 -*- # ToMaTo (Topology management software) # Copyright (C) 2010 Dennis Schwerdel, University of Kaiserslautern # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/> from . import run, spawn, CommandError, process from .. import util from ... import config import os _clientPid = None _clientConfig = {} _trackerPid = None
30.588889
155
0.726843
# -*- coding: utf-8 -*- # ToMaTo (Topology management software) # Copyright (C) 2010 Dennis Schwerdel, University of Kaiserslautern # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/> from . import run, spawn, CommandError, process from .. import util from ... import config import os _clientPid = None _clientConfig = {} _trackerPid = None def startTracker(port, path): global _trackerPid if _trackerPid: return assert os.path.exists(path) usage = run(["bttrack"]) args = ["bttrack", "--port", str(port), "--dfile", os.path.join(path, "tracker.cache"), "--allowed_dir", path] if "--parse_allowed_interval" in usage: #bittorrent args += ["--parse_allowed_interval", "1"] #minutes elif "--parse_dir_interval" in usage: #bittornado args += ["--parse_dir_interval", "60"] #seconds _trackerPid = spawn(args) def stopTracker(): global _trackerPid process.kill(_trackerPid) _trackerPid = None def torrentInfo(torrentData): from BitTorrent.bencode import bdecode info = bdecode(torrentData)["info"] return info def fileSize(torrentData): info = torrentInfo(torrentData) if info.has_key('length'): return info["length"] file_length = 0 for file in info['files']: path = '' for item in file['path']: if (path != ''): path = path + "/" path = path + item file_length += file['length'] return file_length def startClient(path, bwlimit=10000, minport=8010, maxport=8020): global _clientPid, _clientConfig if _clientPid: return assert os.path.exists(path) _clientConfig = {"path": path, "bwlimit": bwlimit} _clientPid = spawn(["btlaunchmany", ".", "--max_upload_rate", str(bwlimit), "--minport", str(minport), "--maxport", str(maxport)], cwd=path, daemon=False) try: process.ionice(_clientPid, process.IoPolicy.Idle) except: pass #no essential command def restartClient(): global _clientPid, _clientConfig if _clientPid: stopClient() startClient(**_clientConfig) def stopClient(): global _clientPid process.kill(_clientPid) _clientPid = None def createTorrent(tracker, dataPath, torrentPath=""): assert os.path.exists(dataPath) return run(["btmakemetafile", tracker, dataPath, "--target", torrentPath])
1,641
0
185
d12742fbf604ea579708c7757f0f38ebaac260d8
667
py
Python
hackathons/migrations/0014_auto_20190703_0453.py
Tookmund/hackerforce
d757910db1631e26e489a10a99fa67cd74292c4e
[ "Apache-2.0" ]
11
2019-11-11T23:27:21.000Z
2021-07-19T16:41:44.000Z
hackathons/migrations/0014_auto_20190703_0453.py
Tookmund/hackerforce
d757910db1631e26e489a10a99fa67cd74292c4e
[ "Apache-2.0" ]
11
2019-12-24T17:10:05.000Z
2021-06-09T18:22:59.000Z
hackathons/migrations/0014_auto_20190703_0453.py
hackumass/hackerforce
dfb6ac1304a7db21853765de9da795e8e9ef20bf
[ "Apache-2.0" ]
7
2019-11-21T03:32:06.000Z
2021-07-18T15:30:29.000Z
# Generated by Django 2.1.9 on 2019-07-03 04:53 from django.db import migrations, models
27.791667
161
0.593703
# Generated by Django 2.1.9 on 2019-07-03 04:53 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('hackathons', '0013_auto_20190702_0649'), ] operations = [ migrations.AddField( model_name='lead', name='times_contacted', field=models.IntegerField(blank=True, default=1), ), migrations.AlterField( model_name='lead', name='status', field=models.CharField(choices=[('contacted', 'Contacted'), ('ghosted', 'Ghosted'), ('responded', 'Responded')], default='contacted', max_length=20), ), ]
0
553
23
ed9008157534fcd41bdd7451e2a5f8dc32ad3e1a
7,450
py
Python
oidv6/samples/run.py
chuangzhu/OIDv6
e46e66770c520c02e268f0b021fa72451c79ad1e
[ "MIT" ]
null
null
null
oidv6/samples/run.py
chuangzhu/OIDv6
e46e66770c520c02e268f0b021fa72451c79ad1e
[ "MIT" ]
null
null
null
oidv6/samples/run.py
chuangzhu/OIDv6
e46e66770c520c02e268f0b021fa72451c79ad1e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Массовая загрузка набора данных Open Images Dataset V6 python oidv6/samples/run.py <command> --classes названия_классов_или_текстовый_файл [--dataset Dataset --type_data train --limit 0 --multi_classes --yes --no_labels --hide_metadata --no_clear_shell] """ # ###################################################################################################################### # Импорт необходимых инструментов # ###################################################################################################################### from datetime import datetime # Работа со временем from types import ModuleType # Проверка объектов на модуль # Персональные import oidv6 # Массовая загрузка набора данных Open Images Dataset V6 from oidv6.OIDv6 import OIDv6 # Массовая загрузка набора данных Open Images Dataset V6 from oidv6.modules.trml.shell import Shell # Работа с Shell # ###################################################################################################################### # Сообщения # ###################################################################################################################### class Messages(OIDv6): """Класс для сообщений""" # ------------------------------------------------------------------------------------------------------------------ # Конструктор # ------------------------------------------------------------------------------------------------------------------ # ###################################################################################################################### # Выполняем только в том случае, если файл запущен сам по себе # ###################################################################################################################### class Run(Messages): """Класс для массовой загрузки набора данных Open Images Dataset V6""" # ------------------------------------------------------------------------------------------------------------------ # Конструктор # ------------------------------------------------------------------------------------------------------------------ # ------------------------------------------------------------------------------------------------------------------ # Внутренние методы # ------------------------------------------------------------------------------------------------------------------ # Построение аргументов командной строки def _build_args(self, conv_to_dict = True): """ Построение аргументов командной строки ([bool]) -> None or dict Аргументы: conv_to_dict - Преобразование списка аргументов командной строки в словарь Возвращает: dict если парсер командной строки окончательный, в обратном случае None """ super().build_args(False) # Выполнение функции из суперкласса # Добавление аргументов в парсер командной строки self._ap.add_argument('command', metavar = '<command> downloader', choices = self.commands, help = self._('Команда загрузки')) self._ap.add_argument('--dataset', required = False, metavar = self._('путь_к_директории'), default = self.dir, help = self._('Корневая директория для сохранения OIDv6, значение по умолчанию:') + ' %(default)s') self._ap.add_argument('--type_data', required = False, choices = list(self.type_data.keys()) + ['all'], default = 'train', metavar = 'train, validation, test ' + self._('или') + ' all', help = self._('Набор данных, значение по умолчанию:') + ' %(default)s') self._ap.add_argument('--classes', required = False, nargs = '+', metavar = self._('название_класса'), help = self._('Последовательность названий классов или текстовый файл')) self._ap.add_argument('--limit', required = False, default = 0, type = int, metavar = self._('целое_число'), help = self._('Лимит загрузки изображений, значение по умолчанию:') + ' %(default)s (' + self._('нет лимита') + ')') self._ap.add_argument('--multi_classes', required = False, action = 'store_true', help = self._('Загрузка классов в одну директорию')) self._ap.add_argument('--yes', required = False, action = 'store_true', help = self._('Автоматическая загрузка служебных файлов')) self._ap.add_argument('--no_labels', required = False, action = 'store_true', help = self._('Не формировать метки')) self._ap.add_argument('--hide_metadata', required = False, action = 'store_true', help = self._('Вывод метаданных')) self._ap.add_argument('--no_clear_shell', required = False, action = 'store_false', help = self._('Не очищать консоль перед выполнением')) # Преобразование списка аргументов командной строки в словарь if conv_to_dict is True: args, _ = self._ap.parse_known_args() return vars(args) # Преобразование списка аргументов командной строки в словарь # ------------------------------------------------------------------------------------------------------------------ # Внешние методы # ------------------------------------------------------------------------------------------------------------------ # Запуск def run(self, metadata = oidv6, out = True): """ Запуск ([module, module, bool, bool]) -> None Аргументы: out - Печатать процесс выполнения """ # Проверка аргументов if type(out) is not bool or not isinstance(metadata, ModuleType): # Вывод сообщения if out is True: print(self._invalid_arguments.format( self.red, datetime.now().strftime(self._format_time), self.end, __class__.__name__ + '.' + self.run.__name__ )) return False self._args = self._build_args() # Построение аргументов командной строки self.clear_shell(self._args['no_clear_shell']) # Очистка консоли перед выполнением # Приветствие Shell.add_line() # Добавление линии во весь экран print(self._oidv6.format(self.bold, self.blue, self.end)) Shell.add_line() # Добавление линии во весь экран # Запуск if self._args['hide_metadata'] is False: print(self._metadata.format( datetime.now().strftime(self._format_time), metadata.__author__, metadata.__email__, metadata.__maintainer__, metadata.__version__ )) Shell.add_line() # Добавление линии во весь экран self.download(self._args, out) if __name__ == "__main__": main()
45.426829
120
0.468725
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Массовая загрузка набора данных Open Images Dataset V6 python oidv6/samples/run.py <command> --classes названия_классов_или_текстовый_файл [--dataset Dataset --type_data train --limit 0 --multi_classes --yes --no_labels --hide_metadata --no_clear_shell] """ # ###################################################################################################################### # Импорт необходимых инструментов # ###################################################################################################################### from datetime import datetime # Работа со временем from types import ModuleType # Проверка объектов на модуль # Персональные import oidv6 # Массовая загрузка набора данных Open Images Dataset V6 from oidv6.OIDv6 import OIDv6 # Массовая загрузка набора данных Open Images Dataset V6 from oidv6.modules.trml.shell import Shell # Работа с Shell # ###################################################################################################################### # Сообщения # ###################################################################################################################### class Messages(OIDv6): """Класс для сообщений""" # ------------------------------------------------------------------------------------------------------------------ # Конструктор # ------------------------------------------------------------------------------------------------------------------ def __init__(self): super().__init__() # Выполнение конструктора из суперкласса self._oidv6 = self._('{}{}OIDv6 - Массовая загрузка набора данных Open Images Dataset V6 ...{}') # ###################################################################################################################### # Выполняем только в том случае, если файл запущен сам по себе # ###################################################################################################################### class Run(Messages): """Класс для массовой загрузки набора данных Open Images Dataset V6""" # ------------------------------------------------------------------------------------------------------------------ # Конструктор # ------------------------------------------------------------------------------------------------------------------ def __init__(self): super().__init__() # Выполнение конструктора из суперкласса # ------------------------------------------------------------------------------------------------------------------ # Внутренние методы # ------------------------------------------------------------------------------------------------------------------ # Построение аргументов командной строки def _build_args(self, conv_to_dict = True): """ Построение аргументов командной строки ([bool]) -> None or dict Аргументы: conv_to_dict - Преобразование списка аргументов командной строки в словарь Возвращает: dict если парсер командной строки окончательный, в обратном случае None """ super().build_args(False) # Выполнение функции из суперкласса # Добавление аргументов в парсер командной строки self._ap.add_argument('command', metavar = '<command> downloader', choices = self.commands, help = self._('Команда загрузки')) self._ap.add_argument('--dataset', required = False, metavar = self._('путь_к_директории'), default = self.dir, help = self._('Корневая директория для сохранения OIDv6, значение по умолчанию:') + ' %(default)s') self._ap.add_argument('--type_data', required = False, choices = list(self.type_data.keys()) + ['all'], default = 'train', metavar = 'train, validation, test ' + self._('или') + ' all', help = self._('Набор данных, значение по умолчанию:') + ' %(default)s') self._ap.add_argument('--classes', required = False, nargs = '+', metavar = self._('название_класса'), help = self._('Последовательность названий классов или текстовый файл')) self._ap.add_argument('--limit', required = False, default = 0, type = int, metavar = self._('целое_число'), help = self._('Лимит загрузки изображений, значение по умолчанию:') + ' %(default)s (' + self._('нет лимита') + ')') self._ap.add_argument('--multi_classes', required = False, action = 'store_true', help = self._('Загрузка классов в одну директорию')) self._ap.add_argument('--yes', required = False, action = 'store_true', help = self._('Автоматическая загрузка служебных файлов')) self._ap.add_argument('--no_labels', required = False, action = 'store_true', help = self._('Не формировать метки')) self._ap.add_argument('--hide_metadata', required = False, action = 'store_true', help = self._('Вывод метаданных')) self._ap.add_argument('--no_clear_shell', required = False, action = 'store_false', help = self._('Не очищать консоль перед выполнением')) # Преобразование списка аргументов командной строки в словарь if conv_to_dict is True: args, _ = self._ap.parse_known_args() return vars(args) # Преобразование списка аргументов командной строки в словарь # ------------------------------------------------------------------------------------------------------------------ # Внешние методы # ------------------------------------------------------------------------------------------------------------------ # Запуск def run(self, metadata = oidv6, out = True): """ Запуск ([module, module, bool, bool]) -> None Аргументы: out - Печатать процесс выполнения """ # Проверка аргументов if type(out) is not bool or not isinstance(metadata, ModuleType): # Вывод сообщения if out is True: print(self._invalid_arguments.format( self.red, datetime.now().strftime(self._format_time), self.end, __class__.__name__ + '.' + self.run.__name__ )) return False self._args = self._build_args() # Построение аргументов командной строки self.clear_shell(self._args['no_clear_shell']) # Очистка консоли перед выполнением # Приветствие Shell.add_line() # Добавление линии во весь экран print(self._oidv6.format(self.bold, self.blue, self.end)) Shell.add_line() # Добавление линии во весь экран # Запуск if self._args['hide_metadata'] is False: print(self._metadata.format( datetime.now().strftime(self._format_time), metadata.__author__, metadata.__email__, metadata.__maintainer__, metadata.__version__ )) Shell.add_line() # Добавление линии во весь экран self.download(self._args, out) def main(): run = Run() run.run() if __name__ == "__main__": main()
359
0
77
fe4004b04e6ea7f0d42e97de6ac9ec98151e1cda
4,585
py
Python
tests/_internal/test_auth_handling.py
unparalleled-js/py42
8c6b054ddd8c2bfea92bf77b0d648af76f1efcf1
[ "MIT" ]
1
2020-08-18T22:00:22.000Z
2020-08-18T22:00:22.000Z
tests/_internal/test_auth_handling.py
unparalleled-js/py42
8c6b054ddd8c2bfea92bf77b0d648af76f1efcf1
[ "MIT" ]
null
null
null
tests/_internal/test_auth_handling.py
unparalleled-js/py42
8c6b054ddd8c2bfea92bf77b0d648af76f1efcf1
[ "MIT" ]
1
2021-05-10T23:33:34.000Z
2021-05-10T23:33:34.000Z
import pytest from requests import Response from py42._internal.auth_handling import AuthHandler from py42._internal.auth_handling import HeaderModifier from py42._internal.auth_handling import TokenProvider ORIGINAL_VALUE = "test-original-value" UPDATED_VALUE = "test-updated-value" CUSTOM_NAME = "Custom-Name" DEFAULT_HEADER = "Authorization" TEST_SECRET = "TEST-SECRET" @pytest.fixture @pytest.fixture
38.208333
116
0.844711
import pytest from requests import Response from py42._internal.auth_handling import AuthHandler from py42._internal.auth_handling import HeaderModifier from py42._internal.auth_handling import TokenProvider ORIGINAL_VALUE = "test-original-value" UPDATED_VALUE = "test-updated-value" CUSTOM_NAME = "Custom-Name" DEFAULT_HEADER = "Authorization" TEST_SECRET = "TEST-SECRET" @pytest.fixture def mock_token_provider(mocker): provider = mocker.MagicMock(spec=TokenProvider) provider.get_secret_value.return_value = TEST_SECRET return provider @pytest.fixture def mock_header_modifier(mocker): return mocker.MagicMock(spec=HeaderModifier) def test_auth_handler_constructs_successfully(): assert AuthHandler(TokenProvider(), HeaderModifier()) def test_auth_handler_renew_authentication_using_cache_calls_get_secret_value_on_token_provider_with_correct_params( mock_token_provider, mock_header_modifier, mock_session ): auth_handler = AuthHandler(mock_token_provider, mock_header_modifier) auth_handler.renew_authentication(mock_session, use_cache=True) mock_token_provider.get_secret_value.assert_called_once_with(force_refresh=False) def test_auth_handler_renew_authentication_no_cache_calls_get_secret_value_on_token_provider_with_correct_params( mock_token_provider, mock_header_modifier, mock_session ): auth_handler = AuthHandler(mock_token_provider, mock_header_modifier) auth_handler.renew_authentication(mock_session) mock_token_provider.get_secret_value.assert_called_once_with(force_refresh=True) def test_auth_handler_renew_authentication_using_cache_calls_modify_session_on_session_modifier_with_correct_params( mock_token_provider, mock_header_modifier, mock_session ): auth_handler = AuthHandler(mock_token_provider, mock_header_modifier) auth_handler.renew_authentication(mock_session, use_cache=True) mock_header_modifier.modify_session.assert_called_once_with( mock_session, TEST_SECRET ) def test_auth_handler_renew_authentication_no_cache_calls_modify_session_on_session_modifier_with_correct_params( mock_token_provider, mock_header_modifier, mock_session ): auth_handler = AuthHandler(mock_token_provider, mock_header_modifier) auth_handler.renew_authentication(mock_session) mock_header_modifier.modify_session.assert_called_once_with( mock_session, TEST_SECRET ) def test_auth_handler_response_indicates_unauthorized_returns_true_for_401(mocker): mock_response = mocker.MagicMock(spec=Response) mock_response.status_code = 401 assert AuthHandler.response_indicates_unauthorized(mock_response) def test_auth_handler_response_indicates_unauthorized_returns_false_for_non_401(mocker): mock_response = mocker.MagicMock(spec=Response) mock_response.status_code = 200 assert not AuthHandler.response_indicates_unauthorized(mock_response) def test_header_modifier_constructs_successfully(): assert HeaderModifier() def test_header_modifier_adds_default_header_by_default(mock_session): header_modifier = HeaderModifier() header_modifier.modify_session(mock_session, ORIGINAL_VALUE) assert DEFAULT_HEADER in mock_session.headers def test_header_modifier_adds_specified_header(mock_session): header_modifier = HeaderModifier(CUSTOM_NAME) header_modifier.modify_session(mock_session, ORIGINAL_VALUE) assert CUSTOM_NAME in mock_session.headers def test_header_modifier_sets_default_header_to_given_value(mock_session): header_modifier = HeaderModifier() header_modifier.modify_session(mock_session, ORIGINAL_VALUE) assert mock_session.headers.get(DEFAULT_HEADER) == ORIGINAL_VALUE def test_header_modifier_sets_specified_header_to_given_value(mock_session): header_modifier = HeaderModifier(CUSTOM_NAME) header_modifier.modify_session(mock_session, ORIGINAL_VALUE) assert mock_session.headers.get(CUSTOM_NAME) == ORIGINAL_VALUE def test_header_modifier_updates_default_header_if_present(mock_session): header_modifier = HeaderModifier() header_modifier.modify_session(mock_session, ORIGINAL_VALUE) header_modifier.modify_session(mock_session, UPDATED_VALUE) assert mock_session.headers.get(DEFAULT_HEADER) == UPDATED_VALUE def test_header_modifier_updates_specified_header_if_present(mock_session): header_modifier = HeaderModifier(CUSTOM_NAME) header_modifier.modify_session(mock_session, ORIGINAL_VALUE) header_modifier.modify_session(mock_session, UPDATED_VALUE) assert mock_session.headers.get(CUSTOM_NAME) == UPDATED_VALUE
3,793
0
366
a879ae95f3a28053a492d4080bbb2ca055bd192d
5,058
py
Python
python/tensor/tensor_new.py
BenOsborn/Cerci
5785ae0c9db8a88a5ac8d91aed29cdf0c0c7854a
[ "Apache-2.0" ]
null
null
null
python/tensor/tensor_new.py
BenOsborn/Cerci
5785ae0c9db8a88a5ac8d91aed29cdf0c0c7854a
[ "Apache-2.0" ]
null
null
null
python/tensor/tensor_new.py
BenOsborn/Cerci
5785ae0c9db8a88a5ac8d91aed29cdf0c0c7854a
[ "Apache-2.0" ]
null
null
null
# There is probably a more efficient way to do this # Now I need to do the actual backwards function
38.318182
124
0.619217
class AddElementwise: @staticmethod def forward(matrix_left, matrix_right, backwards=False): assert(matrix_left.shape == matrix_right.shape) new_tensor = [a+b for a, b in zip(matrix_left.tensor, matrix_right.tensor)] if (not backwards): return Tensor(new_tensor, matrix_left.shape, left=matrix_left, right=matrix_right, track_grad=(matrix_left.track_grad or matrix_right.track_grad), operator=AddElementwise) return Tensor(new_tensor, matrix_left.shape, left=None, right=None, track_grad=False, operator=None) @staticmethod def ddleft(matrix_left, matrix_right): assert(matrix_left.shape == matrix_right.shape) new_tensor = [1 for _ in range(matrix_left.size)] return Tensor(new_tensor, matrix_left.shape, left=None, right=None, track_grad=False, operator=None) @staticmethod def ddright(matrix_left, matrix_right): assert(matrix_left.shape == matrix_right.shape) new_tensor = [1 for _ in range(matrix_left.size)] return Tensor(new_tensor, matrix_left.shape, left=None, right=None, track_grad=False, operator=None) class MultiplyElementwise: @staticmethod def forward(matrix_left, matrix_right, backwards=False): assert(matrix_left.shape == matrix_right.shape) new_tensor = [a*b for a, b in zip(matrix_left.tensor, matrix_right.tensor)] if (not backwards): return Tensor(new_tensor, matrix_left.shape, left=matrix_left, right=matrix_right, track_grad=(matrix_left.track_grad or matrix_right.track_grad), operator=MultiplyElementwise) return Tensor(new_tensor, matrix_left.shape, left=None, right=None, track_grad=False, operator=None) @staticmethod def ddleft(matrix_left, matrix_right): assert(matrix_left.shape == matrix_right.shape) return Tensor(matrix_right.tensor.copy(), matrix_right.shape.copy(), left=None, right=None, track_grad=False, operator=None) @staticmethod def ddright(matrix_left, matrix_right): assert(matrix_left.shape == matrix_right.shape) return Tensor(matrix_left.tensor.copy(), matrix_left.shape.copy(), left=None, right=None, track_grad=False, operator=None) class TensorBase: def __init__(self, tensor, shape): # The left and the right will contain the links to the other nodes in the tree self.dims = len(shape) self.size = len(tensor) check_length = 1 for i in range(self.dims): check_length *= shape[i] assert(check_length == self.size) self.tensor = tensor self.shape = shape def __str__(self): return self.__string() # There is probably a more efficient way to do this def __string(self, index=-1, position=0): if (abs(index) == self.dims): mat = "[ " for i in range(self.shape[0]): mat += f"{self.tensor[position + i]} " mat += "]" return mat mat_final = "[ " product = 1 for i in range(self.dims + index): product *= self.shape[i] for i in range(self.shape[index]): mat_final += f"\n{abs(index) * ' '}{ self.__string(index-1, position+product*i)} " return f"{mat_final}\n{(abs(index) - 1) * ' '}]" if (index != -1) else f"{mat_final}\n]" def __add__(self, other): return AddElementwise.forward(self, other) def __mul__(self, other): return MultiplyElementwise.forward(self, other) class Tensor(TensorBase): def __init__(self, tensor, shape, left=None, right=None, track_grad=False, operator=None): super().__init__(tensor, shape) self.track_grad = track_grad if (track_grad): self.operator = operator self.left = left self.right = right self.grad = Tensor([0 for _ in range(self.size)], self.shape) def zeroGrad(self): if (self.track_grad): self.grad = Tensor([0 for _ in range(self.size)], self.shape) if (self.left != None): self.left.zeroGrad() if (self.right != None): self.right.zeroGrad() # Now I need to do the actual backwards function def backwards(self, factors=None): if (factors == None): factors = Tensor([1 for _ in range(self.size)], self.shape) self.grad = AddElementwise.forward(self.grad, factors, backwards=True) # I cant just use none when I port this to C++ if (self.left != None): self.left.backwards(factors=MultiplyElementwise.forward(factors, self.operator.ddleft(self.left, self.right))) if (self.right != None): self.right.backwards(factors=MultiplyElementwise.forward(factors, self.operator.ddright(self.left, self.right)))
4,366
275
307
467c004ada7353bc4bb87367e3774a1bba52e193
3,027
py
Python
dfu/host/hex2dfu.py
LeHonk/usb-stack
3869706a951eb00bf9ab630f0adb27c5676c3426
[ "MIT" ]
null
null
null
dfu/host/hex2dfu.py
LeHonk/usb-stack
3869706a951eb00bf9ab630f0adb27c5676c3426
[ "MIT" ]
null
null
null
dfu/host/hex2dfu.py
LeHonk/usb-stack
3869706a951eb00bf9ab630f0adb27c5676c3426
[ "MIT" ]
null
null
null
#!/usr/bin/env python2.7 # TODO: Actual values devid = { 'p24fj256gb106': 0xFFFF , 'p18f2550': 0x1234 } targetmem = { 'int_flash': 0 , 'int_eeprom': 1 # , 'ext_flash': 2 # , 'ext_eeprom': 3 } # TODO: Actual values maxmem = { 'p24fj256gb106': {'int_flash':255*1024, 'int_eeprom':2048} , 'p18f2550': {'int_flash':255*1024, 'int_eeprom':2048} } blocksize = { 'p24fj256gb106': {'int_flash':64, 'int_eeprom':16} , 'p18f2550': {'int_flash':32, 'int_eeprom':16} } if __name__ = '__main__': import sys import argparse import os.path from intelhex import IntelHex from cStringIO import StringIO from dfu_suffix import * parser = argparse.ArgumentParser( description='Convert an Intel HEX file into a dfu file suitable for OpenPICUSB bootloader.', epilog='''Default output filename is the input filename with ".dfu" in stead of ".hex".''') action = parser.add_mutually_exclusive_group( required=True ) # parser.add_argument( '-f', '--force', help='Forcefully try to execute given command. May result in unusable files.', action='store_true', default=False ) parser.add_argument( '-p', '--processor', help='Target processor (currently only p18f2550 and p24fj256bg106)', dest='proc', nargs=1, choices=devid, required=True ) parser.add_argument( '-t', '--targetmem', help='Target memory', nargs=1, choices=targetmem, default='int_flash' ) parser.add_argument( '-o', '--output', help='Output file.', type=argparse.FileType('wb'), dest='outfile', nargs=1, metavar='file.dfu' ) parser.add_argument( 'hexfile', help='Firmware file with DFU suffix.', type=argparse.FileType('r'), nargs=1 ) parser.add_argument( 'vid', help='The Vendor ID to use.', action='store', type=int, nargs='?', default=0xFFFF ); parser.add_argument( 'pid', help='The Product ID to use.', action='store', type=int, nargs='?', default=0xFFFF ); parser.add_argument( 'did', help='The Device version to use.', action='store', type=int, nargs='?', default=0xFFFF ); args = parser.parse_args() (rootname, ext) = os.path.splitext( args.hexfile.name ) try: ih = IntelHex.fromfile(hexfile) except FileNotFoundException: print 'File "%(name)s" not found.' % args.hexfile sys.exit(1) hexfile.close(); blob = StringIO() PROC = args.proc[0] TGTMEM = args.targetmem[0] DEVID = devid[PROC] MAXMEM = maxmem[PROC][TGTMEM] BLOCKSIZE = blocksize[PROC][TGTMEM] # Construct bootloader header blob.write( 'HBL\x01' ) # Magic identifier blob.write( struct.pack('>h', DEVID ) # Device ID in big endian 16bits blob.write( struct.pack('>h', tgt_mem[TGTMEM] ) # Target memory for addr in range(0, MAXMEM, BLOCKSIZE): blob.write(struct.pack('>l', addr) ih.tobinfile(blob, start=addr, size=BLOCKSIZE) blob_suffix = Suffix._make( args.did, args.pid, args.vid, 0x0100, 'DFU', 16, 0 ) firmware = append_suffix(blob, user_suffix) if args.outfile is None: args.outfile = open( rootname + '.dfu', 'wb' ) args.outfile.write(firmware) outfile.close()
36.914634
164
0.682524
#!/usr/bin/env python2.7 # TODO: Actual values devid = { 'p24fj256gb106': 0xFFFF , 'p18f2550': 0x1234 } targetmem = { 'int_flash': 0 , 'int_eeprom': 1 # , 'ext_flash': 2 # , 'ext_eeprom': 3 } # TODO: Actual values maxmem = { 'p24fj256gb106': {'int_flash':255*1024, 'int_eeprom':2048} , 'p18f2550': {'int_flash':255*1024, 'int_eeprom':2048} } blocksize = { 'p24fj256gb106': {'int_flash':64, 'int_eeprom':16} , 'p18f2550': {'int_flash':32, 'int_eeprom':16} } if __name__ = '__main__': import sys import argparse import os.path from intelhex import IntelHex from cStringIO import StringIO from dfu_suffix import * parser = argparse.ArgumentParser( description='Convert an Intel HEX file into a dfu file suitable for OpenPICUSB bootloader.', epilog='''Default output filename is the input filename with ".dfu" in stead of ".hex".''') action = parser.add_mutually_exclusive_group( required=True ) # parser.add_argument( '-f', '--force', help='Forcefully try to execute given command. May result in unusable files.', action='store_true', default=False ) parser.add_argument( '-p', '--processor', help='Target processor (currently only p18f2550 and p24fj256bg106)', dest='proc', nargs=1, choices=devid, required=True ) parser.add_argument( '-t', '--targetmem', help='Target memory', nargs=1, choices=targetmem, default='int_flash' ) parser.add_argument( '-o', '--output', help='Output file.', type=argparse.FileType('wb'), dest='outfile', nargs=1, metavar='file.dfu' ) parser.add_argument( 'hexfile', help='Firmware file with DFU suffix.', type=argparse.FileType('r'), nargs=1 ) parser.add_argument( 'vid', help='The Vendor ID to use.', action='store', type=int, nargs='?', default=0xFFFF ); parser.add_argument( 'pid', help='The Product ID to use.', action='store', type=int, nargs='?', default=0xFFFF ); parser.add_argument( 'did', help='The Device version to use.', action='store', type=int, nargs='?', default=0xFFFF ); args = parser.parse_args() (rootname, ext) = os.path.splitext( args.hexfile.name ) try: ih = IntelHex.fromfile(hexfile) except FileNotFoundException: print 'File "%(name)s" not found.' % args.hexfile sys.exit(1) hexfile.close(); blob = StringIO() PROC = args.proc[0] TGTMEM = args.targetmem[0] DEVID = devid[PROC] MAXMEM = maxmem[PROC][TGTMEM] BLOCKSIZE = blocksize[PROC][TGTMEM] # Construct bootloader header blob.write( 'HBL\x01' ) # Magic identifier blob.write( struct.pack('>h', DEVID ) # Device ID in big endian 16bits blob.write( struct.pack('>h', tgt_mem[TGTMEM] ) # Target memory for addr in range(0, MAXMEM, BLOCKSIZE): blob.write(struct.pack('>l', addr) ih.tobinfile(blob, start=addr, size=BLOCKSIZE) blob_suffix = Suffix._make( args.did, args.pid, args.vid, 0x0100, 'DFU', 16, 0 ) firmware = append_suffix(blob, user_suffix) if args.outfile is None: args.outfile = open( rootname + '.dfu', 'wb' ) args.outfile.write(firmware) outfile.close()
0
0
0
43d92d931d95fafab64fab33655d9809b86351cf
2,098
py
Python
plots/midterm/FR_illustration.py
jokteur/ASMA
25ac8a0455c680232d56c18d31de62c3188b7153
[ "MIT" ]
2
2021-11-01T09:13:17.000Z
2022-03-08T14:34:16.000Z
plots/midterm/FR_illustration.py
jokteur/ASMA
25ac8a0455c680232d56c18d31de62c3188b7153
[ "MIT" ]
null
null
null
plots/midterm/FR_illustration.py
jokteur/ASMA
25ac8a0455c680232d56c18d31de62c3188b7153
[ "MIT" ]
null
null
null
import time import copy import os import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib import gridspec from matplotlib.animation import FuncAnimation import matplotlib.animation as animation import flowrect from flowrect.simulations.util import calculate_age, calculate_mt, eta_SRM from flowrect.simulations import particle_population, flow_rectification, quasi_renewal # Plot saving parameters save = False save_path = "" save_name = "m_t2.pdf" # Simulation parameters Lambda = np.array([33.0, 8.0]) Gamma = np.array([-8, 1.0]) N = 10 dt = 1e-4 np.random.seed(123) ts, M, spikes, A, X = particle_population( 0.18, dt, Gamma, Lambda, 0, 3, 0, 2, c=10, Gamma_ext=True, N=N ) mask = spikes.T == 1 ticks = ts[spikes.T[0] == 1] ticks_text = [r"$t^{(1)}$", r"$t^{(2)}$"] fig = plt.figure(figsize=(6, 4)) gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1]) # Calculate m_t spike_mask = spikes.T[0] == 1 m_t = np.zeros(len(ts)) for s in range(1, len(ts)): if spike_mask[s]: m_t[s] = M[s, 0, 1] else: m_t[s] = m_t[s - 1] # Leaky memory plot ax1 = plt.subplot(gs[0]) ax1.set_yticks([]) ax1.plot(ts, M[:, 0, 1], "-k", linewidth=0.9, label=r"$M$") ax1.plot(ts, m_t, "-r", linewidth=0.9, label=r"$m_t$") ax1.set_ylim(0, 2) ax1.legend() text = ( r"$m_t(t^{(2)}) = m_t(t^{(1)})" "\cdot e^{-\lambda (t^{(2)} - t^{(1)})} + \Gamma$" "\n" r" $= m_t(t^{(1)}) \cdot e^{-\lambda a} + \Gamma $" ) ax1.annotate( text, color="grey", xy=(0.11, 1.08), xycoords="data", xytext=(0.2, 0.9), textcoords="axes fraction", arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=-0.3"), horizontalalignment="left", verticalalignment="top", ) # Spike plot ax2 = plt.subplot(gs[1], sharex=ax1) ax2.eventplot( ts[mask[0]], lineoffsets=0.5, colors="black", linewidths=0.5, ) ax2.set_xticks(ticks) ax2.set_xticklabels(ticks_text) ax2.set_yticks([]) ax2.set_ylabel("Spikes") ax2.set_ylim(0, 1) if save: fig.savefig(os.path.join(save_path, save_name), transparent=True) plt.show()
22.804348
87
0.64204
import time import copy import os import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib import gridspec from matplotlib.animation import FuncAnimation import matplotlib.animation as animation import flowrect from flowrect.simulations.util import calculate_age, calculate_mt, eta_SRM from flowrect.simulations import particle_population, flow_rectification, quasi_renewal # Plot saving parameters save = False save_path = "" save_name = "m_t2.pdf" # Simulation parameters Lambda = np.array([33.0, 8.0]) Gamma = np.array([-8, 1.0]) N = 10 dt = 1e-4 np.random.seed(123) ts, M, spikes, A, X = particle_population( 0.18, dt, Gamma, Lambda, 0, 3, 0, 2, c=10, Gamma_ext=True, N=N ) mask = spikes.T == 1 ticks = ts[spikes.T[0] == 1] ticks_text = [r"$t^{(1)}$", r"$t^{(2)}$"] fig = plt.figure(figsize=(6, 4)) gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1]) # Calculate m_t spike_mask = spikes.T[0] == 1 m_t = np.zeros(len(ts)) for s in range(1, len(ts)): if spike_mask[s]: m_t[s] = M[s, 0, 1] else: m_t[s] = m_t[s - 1] # Leaky memory plot ax1 = plt.subplot(gs[0]) ax1.set_yticks([]) ax1.plot(ts, M[:, 0, 1], "-k", linewidth=0.9, label=r"$M$") ax1.plot(ts, m_t, "-r", linewidth=0.9, label=r"$m_t$") ax1.set_ylim(0, 2) ax1.legend() text = ( r"$m_t(t^{(2)}) = m_t(t^{(1)})" "\cdot e^{-\lambda (t^{(2)} - t^{(1)})} + \Gamma$" "\n" r" $= m_t(t^{(1)}) \cdot e^{-\lambda a} + \Gamma $" ) ax1.annotate( text, color="grey", xy=(0.11, 1.08), xycoords="data", xytext=(0.2, 0.9), textcoords="axes fraction", arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=-0.3"), horizontalalignment="left", verticalalignment="top", ) # Spike plot ax2 = plt.subplot(gs[1], sharex=ax1) ax2.eventplot( ts[mask[0]], lineoffsets=0.5, colors="black", linewidths=0.5, ) ax2.set_xticks(ticks) ax2.set_xticklabels(ticks_text) ax2.set_yticks([]) ax2.set_ylabel("Spikes") ax2.set_ylim(0, 1) if save: fig.savefig(os.path.join(save_path, save_name), transparent=True) plt.show()
0
0
0
29d451b8dd8c0ba5e18591eb336cbb335fe1a3fb
3,311
py
Python
tk_recoder/tab_text_converter.py
anton-pribora/py-recoder
ee3cd3a6dc9ff78081ed963a16d765d0a004f4d6
[ "MIT" ]
null
null
null
tk_recoder/tab_text_converter.py
anton-pribora/py-recoder
ee3cd3a6dc9ff78081ed963a16d765d0a004f4d6
[ "MIT" ]
null
null
null
tk_recoder/tab_text_converter.py
anton-pribora/py-recoder
ee3cd3a6dc9ff78081ed963a16d765d0a004f4d6
[ "MIT" ]
null
null
null
import tkinter as tk from tkinter import ttk import tkinter.scrolledtext as st from tkinter import filedialog from functools import partial """ Вкладка "перекодировать текст" """ def init_frame(self, frame: tk.Frame): """ Инициализация вкладки "Перекодировать текст" :param tk_recoder.gui.Gui self: Основное окно программы :param frame: Контейнер вкладки :return: None """ buttons = tk.Frame(frame) buttons.pack(fill='x', padx=10, pady=(10, 0)) buttons.columnconfigure(5, weight=1) texts = tk.Frame(frame) texts.pack(fill='both', expand=1, pady=(10, 0), padx=10) self.tc_text_from = st.ScrolledText(texts, width=30, height=3) self.tc_text_from.pack(side='left', expand=1, fill='both', padx=(0, 2)) self.tc_text_from.insert(tk.INSERT, "Привет мир!") self.tc_text_to = st.ScrolledText(texts, width=30, height=3) self.tc_text_to.pack(side='right', expand=1, fill='both', padx=(2, 0)) ttk.Label(buttons, text='Исходная').grid(column=0, row=0) choices = self.recoder.text_encodings self.tc_enc_from = tk.StringVar(self) self.tc_enc_from.set(choices[0]) ttk.OptionMenu(buttons, self.tc_enc_from, self.tc_enc_from.get(), *choices).grid(column=1, row=0, padx=(10, 20)) ttk.Label(buttons, text='Конечная').grid(column=2, row=0) self.tc_enc_to = tk.StringVar(self) self.tc_enc_to.set(choices[0]) ttk.OptionMenu(buttons, self.tc_enc_to, self.tc_enc_to.get(), *choices).grid(column=3, row=0, padx=(10, 20)) enc_button = ttk.Button(buttons, text='Перекодировать', padding=(10, 3, 10, 3), command=convert) enc_button.grid(column=4, row=0) bt = tk.Menubutton(buttons, text='Сохранить как...', relief='raised', compound='right', padx=10) popup = tk.Menu(bt, tearoff=0) bt.configure(menu=popup) for enc in self.recoder.file_encodings: popup.add_command(label=enc, command=partial(save_as, enc)) frame.columnconfigure(5, weight=1) bt.grid(column=5, row=0, padx=10, sticky=tk.E)
38.952941
116
0.598309
import tkinter as tk from tkinter import ttk import tkinter.scrolledtext as st from tkinter import filedialog from functools import partial """ Вкладка "перекодировать текст" """ def init_frame(self, frame: tk.Frame): """ Инициализация вкладки "Перекодировать текст" :param tk_recoder.gui.Gui self: Основное окно программы :param frame: Контейнер вкладки :return: None """ buttons = tk.Frame(frame) buttons.pack(fill='x', padx=10, pady=(10, 0)) buttons.columnconfigure(5, weight=1) texts = tk.Frame(frame) texts.pack(fill='both', expand=1, pady=(10, 0), padx=10) self.tc_text_from = st.ScrolledText(texts, width=30, height=3) self.tc_text_from.pack(side='left', expand=1, fill='both', padx=(0, 2)) self.tc_text_from.insert(tk.INSERT, "Привет мир!") self.tc_text_to = st.ScrolledText(texts, width=30, height=3) self.tc_text_to.pack(side='right', expand=1, fill='both', padx=(2, 0)) ttk.Label(buttons, text='Исходная').grid(column=0, row=0) choices = self.recoder.text_encodings self.tc_enc_from = tk.StringVar(self) self.tc_enc_from.set(choices[0]) ttk.OptionMenu(buttons, self.tc_enc_from, self.tc_enc_from.get(), *choices).grid(column=1, row=0, padx=(10, 20)) ttk.Label(buttons, text='Конечная').grid(column=2, row=0) self.tc_enc_to = tk.StringVar(self) self.tc_enc_to.set(choices[0]) ttk.OptionMenu(buttons, self.tc_enc_to, self.tc_enc_to.get(), *choices).grid(column=3, row=0, padx=(10, 20)) def convert(): self.tc_text_to.replace(1.0, tk.END, self.recoder.convert_text(self.tc_enc_from.get(), self.tc_enc_to.get(), self.tc_text_from.get(1.0, tk.END))) self.update_status( 'Текст перекодирован из {enc_from} в {enc_to}'.format(enc_from=self.tc_enc_from.get(), enc_to=self.tc_enc_to.get())) enc_button = ttk.Button(buttons, text='Перекодировать', padding=(10, 3, 10, 3), command=convert) enc_button.grid(column=4, row=0) bt = tk.Menubutton(buttons, text='Сохранить как...', relief='raised', compound='right', padx=10) popup = tk.Menu(bt, tearoff=0) bt.configure(menu=popup) def save_as(encoding): try: file = filedialog.asksaveasfilename() if file: if encoding == self.recoder.utf8_bom_encoding: file_encoding = 'utf-8-sig' else: file_encoding = encoding with open(file, 'w', encoding=file_encoding, errors='replace') as fp: fp.write(self.tc_text_to.get(1.0, tk.END)) self.update_status('Данные в кодировке {enc} сохранены в файл {file}'.format(enc=encoding, file=file)) except Exception as err: self.update_status('Ошибка: {err}'.format(err=str(err))) for enc in self.recoder.file_encodings: popup.add_command(label=enc, command=partial(save_as, enc)) frame.columnconfigure(5, weight=1) bt.grid(column=5, row=0, padx=10, sticky=tk.E)
1,297
0
54
e35513963af5102e6dfdfe622a13488cd9004a55
595
py
Python
biggee.py
simretmengesha/PublicNLPA
eb62b32a3eb3f7db6fc03579c36f252b72266b65
[ "MIT" ]
null
null
null
biggee.py
simretmengesha/PublicNLPA
eb62b32a3eb3f7db6fc03579c36f252b72266b65
[ "MIT" ]
null
null
null
biggee.py
simretmengesha/PublicNLPA
eb62b32a3eb3f7db6fc03579c36f252b72266b65
[ "MIT" ]
null
null
null
# Bigram formation # using list comprehension + enumerate() + split() # initializing list test_list = ['በሙቀት ጀምሮ በቅዝቃዜ መጨረስ የዚህ ዓለም መገለጫ ሆኗል እልልታ በኡኡታ፣ ሠርግ በግልግል፣ ማሬ የሚለው ቃል እሬቴ በሚልይለወጣል', 'ጨርሰው የማይሰሩ አሳሳቢ አይደሉም፣ አይሠሩምና። ብልሽት ያለባቸው ማሞቂያዎች ግን ሰውዬው ሲሞክራቸው ይሠራሉ '] # printing the original list print ("The original list is : " + str(test_list)) # using list comprehension + enumerate() + split() # for Bigram formation res = [(x, i.split()[j + 1]) for i in test_list for j, x in enumerate(i.split()) if j < len(i.split()) - 1] # printing result print ("The formed bigrams are : " + str(res))
33.055556
171
0.692437
# Bigram formation # using list comprehension + enumerate() + split() # initializing list test_list = ['በሙቀት ጀምሮ በቅዝቃዜ መጨረስ የዚህ ዓለም መገለጫ ሆኗል እልልታ በኡኡታ፣ ሠርግ በግልግል፣ ማሬ የሚለው ቃል እሬቴ በሚልይለወጣል', 'ጨርሰው የማይሰሩ አሳሳቢ አይደሉም፣ አይሠሩምና። ብልሽት ያለባቸው ማሞቂያዎች ግን ሰውዬው ሲሞክራቸው ይሠራሉ '] # printing the original list print ("The original list is : " + str(test_list)) # using list comprehension + enumerate() + split() # for Bigram formation res = [(x, i.split()[j + 1]) for i in test_list for j, x in enumerate(i.split()) if j < len(i.split()) - 1] # printing result print ("The formed bigrams are : " + str(res))
0
0
0
be1ca7378afd4819c2e9608b28938a17a267e2d1
2,342
py
Python
chia/consensus/coinbase.py
Hydrangea-Network/hydrangea-blockchain
d15662329958dbdaa9cbd99733ba729f0e74ce54
[ "Apache-2.0" ]
1
2022-03-15T06:41:49.000Z
2022-03-15T06:41:49.000Z
chia/consensus/coinbase.py
Hydrangea-Network/hydrangea-blockchain
d15662329958dbdaa9cbd99733ba729f0e74ce54
[ "Apache-2.0" ]
null
null
null
chia/consensus/coinbase.py
Hydrangea-Network/hydrangea-blockchain
d15662329958dbdaa9cbd99733ba729f0e74ce54
[ "Apache-2.0" ]
null
null
null
from blspy import G1Element from chia.types.blockchain_format.coin import Coin from chia.types.blockchain_format.sized_bytes import bytes32 from chia.util.ints import uint32, uint64 from chia.wallet.puzzles.p2_delegated_puzzle_or_hidden_puzzle import puzzle_for_pk
45.038462
114
0.799744
from blspy import G1Element from chia.types.blockchain_format.coin import Coin from chia.types.blockchain_format.sized_bytes import bytes32 from chia.util.ints import uint32, uint64 from chia.wallet.puzzles.p2_delegated_puzzle_or_hidden_puzzle import puzzle_for_pk def create_puzzlehash_for_pk(pub_key: G1Element) -> bytes32: return puzzle_for_pk(pub_key).get_tree_hash() def pool_parent_id(block_height: uint32, genesis_challenge: bytes32) -> bytes32: return bytes32(genesis_challenge[:16] + block_height.to_bytes(16, "big")) def community_parent_id(block_height: uint32, genesis_challenge: bytes32) -> bytes32: return bytes32(genesis_challenge[:16] + block_height.to_bytes(16, "big")) def staking_parent_id(block_height: uint32, genesis_challenge: bytes32) -> bytes32: return bytes32(genesis_challenge[:16] + block_height.to_bytes(16, "big")) def farmer_parent_id(block_height: uint32, genesis_challenge: bytes32) -> bytes32: return bytes32(genesis_challenge[16:] + block_height.to_bytes(16, "big")) def timelord_parent_id(block_height: uint32, genesis_challenge: bytes32) -> bytes32: return bytes32(genesis_challenge[:16] + block_height.to_bytes(16, "big")) def create_pool_coin(block_height: uint32, puzzle_hash: bytes32, reward: uint64, genesis_challenge: bytes32): parent_id = pool_parent_id(block_height, genesis_challenge) return Coin(parent_id, puzzle_hash, reward) def create_community_coin(block_height: uint32, puzzle_hash: bytes32, reward: uint64, genesis_challenge: bytes32): parent_id = community_parent_id(block_height, genesis_challenge) return Coin(parent_id, puzzle_hash, reward) def create_staking_coin(block_height: uint32, puzzle_hash: bytes32, reward: uint64, genesis_challenge: bytes32): parent_id = staking_parent_id(block_height, genesis_challenge) return Coin(parent_id, puzzle_hash, reward) def create_farmer_coin(block_height: uint32, puzzle_hash: bytes32, reward: uint64, genesis_challenge: bytes32): parent_id = farmer_parent_id(block_height, genesis_challenge) return Coin(parent_id, puzzle_hash, reward) def create_timelord_coin(block_height: uint32, puzzle_hash: bytes32, reward: uint64, genesis_challenge: bytes32): parent_id = timelord_parent_id(block_height, genesis_challenge) return Coin(parent_id, puzzle_hash, reward)
1,816
0
253
7190d4a76e2659164c8852533d26134a504bdea3
1,524
py
Python
apps/dcl/mdl/m_mdl.py
yt7589/cvep
1f77169bdbb614ea32a30d98eba87b028b19890b
[ "Apache-2.0" ]
null
null
null
apps/dcl/mdl/m_mdl.py
yt7589/cvep
1f77169bdbb614ea32a30d98eba87b028b19890b
[ "Apache-2.0" ]
null
null
null
apps/dcl/mdl/m_mdl.py
yt7589/cvep
1f77169bdbb614ea32a30d98eba87b028b19890b
[ "Apache-2.0" ]
1
2020-09-24T04:28:20.000Z
2020-09-24T04:28:20.000Z
# # from os import stat import pymongo from apps.wxs.model.m_mongodb import MMongoDb
33.130435
83
0.599738
# # from os import stat import pymongo from apps.wxs.model.m_mongodb import MMongoDb class MMdl(object): def __init__(self): self.name = 'apps.wxs.model.MModel' @staticmethod def is_model_exists(model_name): query_cond = {'model_name': model_name} fields = {'model_id': 1, 'model_name': 1, 'model_num': 1} if MMongoDb.db['t_model'].find_one(query_cond, fields) is None: return False else: return True @staticmethod def insert(model_vo): ''' 向t_model表中添加记录,model_vo中包括: model_id, model_name, model_code, brand_id, brand_code, model_num=1 ''' return MMongoDb.db['t_model'].insert_one(model_vo) @staticmethod def get_model_by_name(model_name): query_cond = {'model_name': model_name} fields = {'model_id': 1, 'model_name': 1, 'model_code': 1, 'model_num': 1} return MMongoDb.db['t_model'].find_one(query_cond, fields) @staticmethod def get_model_vo_by_id(model_id): query_cond = {'model_id': model_id} fields = {'model_name': 1, 'model_code': 1, 'source_type': 1} return MMongoDb.db['t_model'].find_one(query_cond, fields) @staticmethod def get_wxs_bms(): query_cond = {'source_type': 1} fields = {'model_code':1, 'model_name': 1} return MMongoDb.convert_recs(MMongoDb.db['t_model']\ .find(query_cond, fields))
919
515
24
04031ae8151added17a1d39405820110dd82354f
661
py
Python
dags/book_data.py
blue-yonder/airflow-plugin-demo
c7044f97532c2f2a3d674762498cb6e58c3e1a1c
[ "CC0-1.0" ]
55
2016-07-23T21:09:43.000Z
2021-05-26T23:48:55.000Z
dags/book_data.py
blue-yonder/airflow-plugin-demo
c7044f97532c2f2a3d674762498cb6e58c3e1a1c
[ "CC0-1.0" ]
null
null
null
dags/book_data.py
blue-yonder/airflow-plugin-demo
c7044f97532c2f2a3d674762498cb6e58c3e1a1c
[ "CC0-1.0" ]
21
2016-10-24T17:15:32.000Z
2021-07-02T10:38:25.000Z
""" Workflow definition to book data """ from __future__ import division, absolute_import, print_function from datetime import datetime, timedelta from airflow import DAG from airflow.operators import ( BookData ) dag_id = "book_data" schedule_interval = None default_args = { 'owner': 'europython', 'depends_on_past': False, 'email': ['airflow@europython'], 'email_on_failure': False, 'email_on_retry': False, 'retries': 0, 'retry_delay': timedelta(seconds=30) } dag = DAG( dag_id, start_date=datetime(2016, 12, 7), schedule_interval=schedule_interval, default_args=default_args) book = BookData(dag=dag)
19.441176
64
0.709531
""" Workflow definition to book data """ from __future__ import division, absolute_import, print_function from datetime import datetime, timedelta from airflow import DAG from airflow.operators import ( BookData ) dag_id = "book_data" schedule_interval = None default_args = { 'owner': 'europython', 'depends_on_past': False, 'email': ['airflow@europython'], 'email_on_failure': False, 'email_on_retry': False, 'retries': 0, 'retry_delay': timedelta(seconds=30) } dag = DAG( dag_id, start_date=datetime(2016, 12, 7), schedule_interval=schedule_interval, default_args=default_args) book = BookData(dag=dag)
0
0
0
8e453bcd4f0e7baa3c63a6cdd373f14f6c2a93bc
1,103
py
Python
alex/components/tts/test_voicerss.py
oplatek/alex
73af644ec35c8a1cd0c37cd478c2afc1db717e0b
[ "Apache-2.0" ]
184
2015-02-11T04:14:41.000Z
2022-03-24T21:43:58.000Z
alex/components/tts/test_voicerss.py
oplatek/alex
73af644ec35c8a1cd0c37cd478c2afc1db717e0b
[ "Apache-2.0" ]
69
2015-01-11T04:57:22.000Z
2019-04-24T10:25:56.000Z
alex/components/tts/test_voicerss.py
oplatek/alex
73af644ec35c8a1cd0c37cd478c2afc1db717e0b
[ "Apache-2.0" ]
61
2015-03-04T10:52:13.000Z
2022-03-04T12:14:06.000Z
from unittest import TestCase from alex.components.tts.voicerss import VoiceRssTTS import alex.utils.audio as audio import wave from alex.utils.config import as_project_path __author__ = 'm2rtin'
30.638889
91
0.56029
from unittest import TestCase from alex.components.tts.voicerss import VoiceRssTTS import alex.utils.audio as audio import wave from alex.utils.config import as_project_path __author__ = 'm2rtin' class TestVoiceRssTTS(TestCase): def test_synthesise_en(self): text = 'Hello, this is alex, the call is recorded, how may I help You?' cfg = { 'Audio': { 'sample_rate': 16000, }, 'TTS': { 'type': 'VoiceRss', 'VoiceRss': { 'language': 'en-us', 'preprocessing': as_project_path("resources/tts/prep_voicerss_en.cfg"), 'tempo': 1.0, 'api_key': 'ea29b823c83a426bbfe99f4cbce109f6' } } } wav_path = '/tmp/voice_rss_tts.wav' tts = VoiceRssTTS(cfg) wav = tts.synthesize(text) audio.save_wav(cfg, wav_path, wav) file = wave.open(wav_path) wav_length = float(file.getnframes()) / file.getframerate() self.assertEquals(5.292, wav_length)
845
11
49
1639b5d6c5f1c18d8197d2c4d3ba9d689afeb72f
2,096
py
Python
tests/test_cpu_ins_txa.py
hspaans/6502-emulator
02b802c43caf8a04833dd1f3d48077f9e2175e7e
[ "MIT" ]
null
null
null
tests/test_cpu_ins_txa.py
hspaans/6502-emulator
02b802c43caf8a04833dd1f3d48077f9e2175e7e
[ "MIT" ]
null
null
null
tests/test_cpu_ins_txa.py
hspaans/6502-emulator
02b802c43caf8a04833dd1f3d48077f9e2175e7e
[ "MIT" ]
null
null
null
""" TXA - Transfer Register X to Accumulator. A = X Copies the current contents of the X register into the accumulator and sets the zero and negative flags as appropriate. Processor Status after use: +------+-------------------+--------------------------+ | Flag | Description | State | +======+===================+==========================+ | C | Carry Flag | Not affected | +------+-------------------+--------------------------+ | Z | Zero Flag | Set is A = 0 | +------+-------------------+--------------------------+ | I | Interrupt Disable | Not affected | +------+-------------------+--------------------------+ | D | Decimal Mode Flag | Not affected | +------+-------------------+--------------------------+ | B | Break Command | Not affected | +------+-------------------+--------------------------+ | V | Overflow Flag | Not affected | +------+-------------------+--------------------------+ | N | Negative Flag | Set if bit 7 of A is set | +------+-------------------+--------------------------+ +-----------------+--------+-------+--------+ | Addressing Mode | Opcode | Bytes | Cycles | +=================+========+=======+========+ | Implied | 0x8A | 1 | 2 | +-----------------+--------+-------+--------+ See also: TAX """ import pytest import m6502 @pytest.mark.parametrize( "value, flag_n, flag_z", [ (0x0F, False, False), (0x00, False, True), (0xF0, True, False), ]) def test_cpu_ins_txa_imm(value: int, flag_n: bool, flag_z: bool) -> None: """ Transfer Accumulator, Implied. return: None """ memory = m6502.Memory() cpu = m6502.Processor(memory) cpu.reset() cpu.reg_a = 0x00 cpu.reg_x = value memory[0xFCE2] = 0x8A cpu.execute(2) assert ( cpu.program_counter, cpu.stack_pointer, cpu.cycles, cpu.flag_n, cpu.flag_z, cpu.reg_a, ) == (0xFCE3, 0x01FD, 2, flag_n, flag_z, value)
30.823529
75
0.380725
""" TXA - Transfer Register X to Accumulator. A = X Copies the current contents of the X register into the accumulator and sets the zero and negative flags as appropriate. Processor Status after use: +------+-------------------+--------------------------+ | Flag | Description | State | +======+===================+==========================+ | C | Carry Flag | Not affected | +------+-------------------+--------------------------+ | Z | Zero Flag | Set is A = 0 | +------+-------------------+--------------------------+ | I | Interrupt Disable | Not affected | +------+-------------------+--------------------------+ | D | Decimal Mode Flag | Not affected | +------+-------------------+--------------------------+ | B | Break Command | Not affected | +------+-------------------+--------------------------+ | V | Overflow Flag | Not affected | +------+-------------------+--------------------------+ | N | Negative Flag | Set if bit 7 of A is set | +------+-------------------+--------------------------+ +-----------------+--------+-------+--------+ | Addressing Mode | Opcode | Bytes | Cycles | +=================+========+=======+========+ | Implied | 0x8A | 1 | 2 | +-----------------+--------+-------+--------+ See also: TAX """ import pytest import m6502 @pytest.mark.parametrize( "value, flag_n, flag_z", [ (0x0F, False, False), (0x00, False, True), (0xF0, True, False), ]) def test_cpu_ins_txa_imm(value: int, flag_n: bool, flag_z: bool) -> None: """ Transfer Accumulator, Implied. return: None """ memory = m6502.Memory() cpu = m6502.Processor(memory) cpu.reset() cpu.reg_a = 0x00 cpu.reg_x = value memory[0xFCE2] = 0x8A cpu.execute(2) assert ( cpu.program_counter, cpu.stack_pointer, cpu.cycles, cpu.flag_n, cpu.flag_z, cpu.reg_a, ) == (0xFCE3, 0x01FD, 2, flag_n, flag_z, value)
0
0
0
68da65c7b02b2e46698372cf6c71f0e9a96ad209
392
py
Python
HSCTF/crypto/Randomization 1/solve.py
deut-erium/WriteUps
36b4193f5fab9f95527a48626ecba631d5a03796
[ "MIT" ]
11
2020-06-06T05:28:27.000Z
2022-01-09T00:42:49.000Z
2020/HSCTF/crypto/Randomization 1/solve.py
CSEA-IITB/WriteUps
46e7f36b0c4ef182cbaf375fd10fda954b6667a0
[ "MIT" ]
1
2020-09-06T18:19:55.000Z
2020-09-06T18:19:55.000Z
HSCTF/crypto/Randomization 1/solve.py
deut-erium/WriteUps
36b4193f5fab9f95527a48626ecba631d5a03796
[ "MIT" ]
6
2020-06-06T05:36:43.000Z
2021-08-11T10:17:18.000Z
import pwn HOST, PORT = "crypto.hsctf.com", 6001 rem = pwn.remote(HOST, PORT) rem.recvline() data = rem.recvline() initial = data.decode().strip().split(':')[-1] print(initial) initial = int(initial) for i in range(10): rem.sendline(str(nextval(initial)).encode()) print(rem.recvline().decode()) initial = nextval(initial)
19.6
48
0.668367
import pwn HOST, PORT = "crypto.hsctf.com", 6001 rem = pwn.remote(HOST, PORT) rem.recvline() data = rem.recvline() def nextval(num): return (num*0x25 + 0x41)&0xff initial = data.decode().strip().split(':')[-1] print(initial) initial = int(initial) for i in range(10): rem.sendline(str(nextval(initial)).encode()) print(rem.recvline().decode()) initial = nextval(initial)
30
0
23
f43edadce6082236a716b23df8d2ddde42461d1b
4,086
py
Python
camply/utils/yaml_utils.py
juftin/camply
d365ed10a62248edc428a68a8ee96743c4b8fa98
[ "MIT" ]
123
2021-05-19T04:56:47.000Z
2022-03-23T19:04:45.000Z
camply/utils/yaml_utils.py
juftin/camply
d365ed10a62248edc428a68a8ee96743c4b8fa98
[ "MIT" ]
11
2021-05-25T20:22:14.000Z
2022-03-05T16:31:32.000Z
camply/utils/yaml_utils.py
juftin/camply
62d1a4423710a5e0f0366b5e9204b3639b358070
[ "MIT" ]
21
2021-05-24T05:53:24.000Z
2022-03-31T02:03:41.000Z
#!/usr/bin/env python3 # Author:: Justin Flannery (mailto:juftin@juftin.com) """ YAML Utilities for Camply """ from datetime import datetime import logging import os from pathlib import Path from re import compile from typing import Dict, Tuple from yaml import load, SafeLoader from camply.config import SearchConfig from camply.containers import SearchWindow logger = logging.getLogger(__name__) def read_yml(path: str = None): """ Load a yaml configuration file_path (path) or data object (data) and resolve any environment variables. The environment variables must be in this format to be parsed: ${VAR_NAME}. Parameters ---------- path: str File Path of YAML Object to Read Examples ---------- database: host: ${HOST} port: ${PORT} ${KEY}: ${VALUE} app: log_path: "/var/${LOG_PATH}" something_else: "${AWESOME_ENV_VAR}/var/${A_SECOND_AWESOME_VAR}" """ path = os.path.abspath(path) pattern = compile(r".*?\${(\w+)}.*?") safe_loader = SafeLoader safe_loader.add_implicit_resolver(tag=None, regexp=pattern, first=None) def env_var_constructor(safe_loader: object, node: object): """ Extracts the environment variable from the node's value :param yaml.Loader safe_loader: the yaml loader :param node: the current node in the yaml :return: the parsed string that contains the value of the environment variable """ value = safe_loader.construct_scalar(node=node) match = pattern.findall(string=value) if match: full_value = value for item in match: full_value = full_value.replace( "${{{key}}}".format(key=item), os.getenv(key=item, default=item)) return full_value return value safe_loader.add_constructor(tag=None, constructor=env_var_constructor) with open(path) as conf_data: return load(stream=conf_data, Loader=safe_loader) def yaml_file_to_arguments(file_path: str) -> Tuple[str, Dict[str, object], Dict[str, object]]: """ Convert YAML File into A Dictionary to be used as **kwargs Parameters ---------- file_path: str File Path to YAML Returns ------- provider, provider_kwargs, search_kwargs: Tuple[str, Dict[str, object], Dict[str, object]] Tuple containing provider string, provider **kwargs, and search **kwargs """ yaml_search = read_yml(path=file_path) logger.info(f"YML File Parsed: {Path(file_path).name}") provider = yaml_search.get("provider", "RecreationDotGov") start_date = datetime.strptime(str(yaml_search["start_date"]), "%Y-%m-%d") end_date = datetime.strptime(str(yaml_search["end_date"]), "%Y-%m-%d") nights = int(yaml_search.get("nights", 1)) recreation_area = yaml_search.get("recreation_area", None) campgrounds = yaml_search.get("campgrounds", None) weekends_only = yaml_search.get("weekends", False) continuous = yaml_search.get("continuous", True) polling_interval = yaml_search.get("polling_interval", SearchConfig.RECOMMENDED_POLLING_INTERVAL) notify_first_try = yaml_search.get("notify_first_try", False) notification_provider = yaml_search.get("notifications", "silent") search_forever = yaml_search.get("search_forever", False) search_window = SearchWindow(start_date=start_date, end_date=end_date) provider_kwargs = dict(search_window=search_window, recreation_area=recreation_area, campgrounds=campgrounds, weekends_only=weekends_only, nights=nights) search_kwargs = dict( log=True, verbose=True, continuous=continuous, polling_interval=polling_interval, notify_first_try=notify_first_try, notification_provider=notification_provider, search_forever=search_forever) return provider, provider_kwargs, search_kwargs
34.627119
95
0.659325
#!/usr/bin/env python3 # Author:: Justin Flannery (mailto:juftin@juftin.com) """ YAML Utilities for Camply """ from datetime import datetime import logging import os from pathlib import Path from re import compile from typing import Dict, Tuple from yaml import load, SafeLoader from camply.config import SearchConfig from camply.containers import SearchWindow logger = logging.getLogger(__name__) def read_yml(path: str = None): """ Load a yaml configuration file_path (path) or data object (data) and resolve any environment variables. The environment variables must be in this format to be parsed: ${VAR_NAME}. Parameters ---------- path: str File Path of YAML Object to Read Examples ---------- database: host: ${HOST} port: ${PORT} ${KEY}: ${VALUE} app: log_path: "/var/${LOG_PATH}" something_else: "${AWESOME_ENV_VAR}/var/${A_SECOND_AWESOME_VAR}" """ path = os.path.abspath(path) pattern = compile(r".*?\${(\w+)}.*?") safe_loader = SafeLoader safe_loader.add_implicit_resolver(tag=None, regexp=pattern, first=None) def env_var_constructor(safe_loader: object, node: object): """ Extracts the environment variable from the node's value :param yaml.Loader safe_loader: the yaml loader :param node: the current node in the yaml :return: the parsed string that contains the value of the environment variable """ value = safe_loader.construct_scalar(node=node) match = pattern.findall(string=value) if match: full_value = value for item in match: full_value = full_value.replace( "${{{key}}}".format(key=item), os.getenv(key=item, default=item)) return full_value return value safe_loader.add_constructor(tag=None, constructor=env_var_constructor) with open(path) as conf_data: return load(stream=conf_data, Loader=safe_loader) def yaml_file_to_arguments(file_path: str) -> Tuple[str, Dict[str, object], Dict[str, object]]: """ Convert YAML File into A Dictionary to be used as **kwargs Parameters ---------- file_path: str File Path to YAML Returns ------- provider, provider_kwargs, search_kwargs: Tuple[str, Dict[str, object], Dict[str, object]] Tuple containing provider string, provider **kwargs, and search **kwargs """ yaml_search = read_yml(path=file_path) logger.info(f"YML File Parsed: {Path(file_path).name}") provider = yaml_search.get("provider", "RecreationDotGov") start_date = datetime.strptime(str(yaml_search["start_date"]), "%Y-%m-%d") end_date = datetime.strptime(str(yaml_search["end_date"]), "%Y-%m-%d") nights = int(yaml_search.get("nights", 1)) recreation_area = yaml_search.get("recreation_area", None) campgrounds = yaml_search.get("campgrounds", None) weekends_only = yaml_search.get("weekends", False) continuous = yaml_search.get("continuous", True) polling_interval = yaml_search.get("polling_interval", SearchConfig.RECOMMENDED_POLLING_INTERVAL) notify_first_try = yaml_search.get("notify_first_try", False) notification_provider = yaml_search.get("notifications", "silent") search_forever = yaml_search.get("search_forever", False) search_window = SearchWindow(start_date=start_date, end_date=end_date) provider_kwargs = dict(search_window=search_window, recreation_area=recreation_area, campgrounds=campgrounds, weekends_only=weekends_only, nights=nights) search_kwargs = dict( log=True, verbose=True, continuous=continuous, polling_interval=polling_interval, notify_first_try=notify_first_try, notification_provider=notification_provider, search_forever=search_forever) return provider, provider_kwargs, search_kwargs
0
0
0
b31ed0506aad94a74db97c7798537089fe97130a
9,136
py
Python
TD/src/plots_nips2016.py
lucasgit/rl
1c4bbfad0b11c040ece2b9a384f3781de2c729ca
[ "MIT" ]
1
2022-01-21T13:52:50.000Z
2022-01-21T13:52:50.000Z
TD/src/plots_nips2016.py
lucaslehnert/pgq
1c4bbfad0b11c040ece2b9a384f3781de2c729ca
[ "MIT" ]
null
null
null
TD/src/plots_nips2016.py
lucaslehnert/pgq
1c4bbfad0b11c040ece2b9a384f3781de2c729ca
[ "MIT" ]
null
null
null
''' Created on May 23, 2016 @author: Lucas Lehnert (lucas.lehnert@mail.mcgill.ca) Script to generate all plots from the NIPS 2016 paper. ''' import matplotlib matplotlib.use( 'agg' ) matplotlib.rcParams['text.usetex'] = True matplotlib.rcParams['text.latex.preamble'] = [r'\usepackage{amsmath}'] import matplotlib.pyplot as plt import numpy as np import glob import os from util.numpy_json import loadJSONResults experimentDir = '../data/' plotDir = '../plot/' if not os.path.exists( plotDir ): os.makedirs( plotDir ) if __name__ == '__main__': main()
38.225941
118
0.611208
''' Created on May 23, 2016 @author: Lucas Lehnert (lucas.lehnert@mail.mcgill.ca) Script to generate all plots from the NIPS 2016 paper. ''' import matplotlib matplotlib.use( 'agg' ) matplotlib.rcParams['text.usetex'] = True matplotlib.rcParams['text.latex.preamble'] = [r'\usepackage{amsmath}'] import matplotlib.pyplot as plt import numpy as np import glob import os from util.numpy_json import loadJSONResults experimentDir = '../data/' plotDir = '../plot/' if not os.path.exists( plotDir ): os.makedirs( plotDir ) def loadResults( globPath ): dataFiles = glob.glob( globPath ) res = map( lambda df : loadJSONResults( df ), dataFiles ) return res def episodeMSPBE( resultDict ): episodeLengthMat = resultDict['results']['mspbe'] episodeLengthMean = np.mean( episodeLengthMat, axis=0 ) episodeLengthStd = np.std( episodeLengthMat, axis=0 ) return episodeLengthMean, episodeLengthStd def episodeQnorm( resultDict ): episodeLengthMat = resultDict['results']['qnorm'] episodeLengthMean = np.mean( episodeLengthMat, axis=0 ) episodeLengthStd = np.std( episodeLengthMat, axis=0 ) return episodeLengthMean, episodeLengthStd def episodeLength( resultDict ): episodeLengthMat = resultDict['results']['episodeLength'] episodeLengthMean = np.mean( episodeLengthMat, axis=0 ) episodeLengthStd = np.std( episodeLengthMat, axis=0 ) return episodeLengthMean, episodeLengthStd def concatenateExperiments( experimentList ): exp = {} exp['configuration'] = experimentList[0]['configuration'] exp['experiment'] = experimentList[0]['experiment'] exp['results'] = {} exp['results']['episodeLength'] = np.array( map( lambda e: e['results']['episodeLength'][0], experimentList ) ) exp['results']['successfulRepeats'] = np.sum( map( lambda e: e['results']['successfulRepeats'], experimentList ) ) exp['results']['thetaNorm'] = np.array( map( lambda e: e['results']['thetaNorm'][0], experimentList ) ) return exp def makeBairdPolts(): global experimentDir, plotDir resQ = loadResults( experimentDir + 'baird/baird-sweeps-Q.json' )[0][0] resGQ = loadResults( experimentDir + 'baird/baird-sweeps-GQ.json' )[0][0] resPGQ = loadResults( experimentDir + 'baird/baird-sweeps-PGQ.json' )[0][0] plt.figure( figsize=( 4, 2.8 ) ) stdInterval = 50 resQ['results']['mspbe'] = map( lambda r : r[:200], resQ['results']['mspbeDiv'] ) m, v = episodeMSPBE( resQ ) plt.plot( range( len( m ) ), m, 'k', label='Q', linewidth=2 ) plt.errorbar( range( len( m ) )[stdInterval::stdInterval], m[stdInterval::stdInterval], \ yerr=v[stdInterval::stdInterval], ecolor='k', fmt=None, linewidth=1.5 ) m, v = episodeMSPBE( resGQ ) plt.plot( range( len( m ) ), m, 'g', label='GQ', linewidth=2 ) plt.errorbar( range( len( m ) )[stdInterval::stdInterval], m[stdInterval::stdInterval], \ yerr=v[stdInterval::stdInterval], ecolor='g', fmt=None, linewidth=1.5 ) m, v = episodeMSPBE( resPGQ ) plt.plot( range( len( m ) ), m, 'b', label='PGQ', linewidth=2 ) plt.errorbar( range( len( m ) )[stdInterval::stdInterval], m[stdInterval::stdInterval], \ yerr=v[stdInterval::stdInterval], ecolor='b', fmt=None, linewidth=1.5 ) plt.legend() plt.ylim( [0, 3000] ) plt.ylabel( 'MSPBE' ) plt.xlabel( 'Update' ) plt.gcf().tight_layout() # plt.show() plt.savefig( plotDir + '/bd_all_sweep_mspbe.pdf' ) plt.figure( figsize=( 4, 2.8 ) ) stdInterval = 50 resQ['results']['qnorm'] = map( lambda r : r[:200], resQ['results']['qnormDiv'] ) m, v = episodeQnorm( resQ ) plt.plot( range( len( m ) ), m, 'k', label='Q', linewidth=2 ) plt.errorbar( range( len( m ) )[stdInterval::stdInterval], m[stdInterval::stdInterval], \ yerr=v[stdInterval::stdInterval], ecolor='k', fmt=None, linewidth=1.5 ) m, v = episodeQnorm( resGQ ) plt.plot( range( len( m ) ), m, 'g', label='GQ', linewidth=2 ) plt.errorbar( range( len( m ) )[stdInterval::stdInterval], m[stdInterval::stdInterval], \ yerr=v[stdInterval::stdInterval], ecolor='g', fmt=None, linewidth=1.5 ) m, v = episodeQnorm( resPGQ ) plt.plot( range( len( m ) ), m, 'b', label='PGQ', linewidth=2 ) plt.errorbar( range( len( m ) )[stdInterval::stdInterval], m[stdInterval::stdInterval], \ yerr=v[stdInterval::stdInterval], ecolor='b', fmt=None, linewidth=1.5 ) plt.legend() plt.ylim( [0, 30] ) plt.ylabel( '$|| \pmb{Q} ||_\infty$' ) plt.xlabel( 'Update' ) plt.gcf().tight_layout() # plt.show() plt.savefig( plotDir + '/bd_all_sweep_qnorm.pdf' ) def makeMountainCarPlots(): global experimentDir, plotDir res = loadResults( experimentDir + 'mountaincar/mc_all_[0-9][0-9][0-9][0-9].json' ) plt.figure( figsize=( 5, 3.4 ) ) resQ = filter( lambda r : r['configuration']['agent'] == 'Q', res )[0] resGQ = filter( lambda r : r['configuration']['agent'] == 'GQ', res )[0] resPGQ = filter( lambda r : r['configuration']['agent'] == 'PGQ', res )[0] m, v = episodeLength( resQ ) plt.plot( range( len( m ) ), m, 'k', label='Q' ) plt.errorbar( range( len( m ) )[5::5], m[5::5], yerr=v[5::5], ecolor='k', fmt=None ) m, v = episodeLength( resGQ ) plt.plot( range( len( m ) ), m, 'g', label='GQ' ) plt.errorbar( range( len( m ) )[5::5], m[5::5], yerr=v[5::5], ecolor='g', fmt=None ) m, v = episodeLength( resPGQ ) plt.plot( range( len( m ) ), m, 'b', label='PGQ' ) plt.errorbar( range( len( m ) )[5::5], m[5::5], yerr=v[5::5], ecolor='b', fmt=None, capthick=1.5 ) plt.legend() plt.ylim( [0, 10500] ) plt.ylabel( 'Episode Length' ) plt.xlabel( 'Episode' ) plt.gcf().tight_layout() # plt.show() plt.savefig( plotDir + '/mc_all_episode_length.pdf' ) plt.figure( figsize=( 5, 3.4 ) ) resGQ = filter( lambda r : r['configuration']['agent'] == 'GQ', res )[0] resPGQ = filter( lambda r : r['configuration']['agent'] == 'PGQ', res )[0] m, v = episodeLength( resGQ ) plt.plot( range( len( m ) ), m, 'g', label='GQ' ) plt.errorbar( range( len( m ) )[5::5], m[5::5], yerr=v[5::5], ecolor='g', fmt=None ) m, v = episodeLength( resPGQ ) plt.plot( range( len( m ) ), m, 'b', label='PGQ' ) plt.errorbar( range( len( m ) )[5::5], m[5::5], yerr=v[5::5], ecolor='b', fmt=None, capthick=1.5 ) plt.legend() plt.ylim( [0, 10500] ) plt.ylabel( 'Episode Length' ) plt.xlabel( 'Episode' ) # plt.show() plt.gcf().tight_layout() # plt.show() plt.savefig( plotDir + '/mc_GQ_PGQ_episode_length.pdf' ) def makeAcrobotPlots(): global experimentDir, plotDir res = loadResults( experimentDir + 'acrobot/ac_all_1000_[0-9][0-9][0-9][0-9].json' ) resQ = concatenateExperiments( filter( lambda e: e['configuration']['agent'] == 'Q', res ) ) resGQ = concatenateExperiments( filter( lambda e: e['configuration']['agent'] == 'GQ', res ) ) resPGQ = concatenateExperiments( filter( lambda e: e['configuration']['agent'] == 'PGQ', res ) ) plt.figure( figsize=( 5, 3.4 ) ) stdInt = 100 m, v = episodeLength( resQ ) plt.plot( range( len( m ) ), m, 'k', label='Q', alpha=0.4 ) plt.errorbar( range( len( m ) )[stdInt::stdInt], m[stdInt::stdInt], yerr=v[stdInt::stdInt], ecolor='k', fmt=None, capthick=2.5 ) m, v = episodeLength( resGQ ) plt.plot( range( len( m ) ), m, 'g', label='GQ', alpha=0.6 ) plt.errorbar( range( len( m ) )[stdInt::stdInt], m[stdInt::stdInt], yerr=v[stdInt::stdInt], ecolor='g', fmt=None, capthick=2.5 ) m, v = episodeLength( resPGQ ) plt.plot( range( len( m ) ), m, 'b', label='PGQ', alpha=0.6 ) plt.errorbar( range( len( m ) )[stdInt::stdInt], m[stdInt::stdInt], yerr=v[stdInt::stdInt], ecolor='b', fmt=None, capthick=2.5 ) plt.legend( ncol=3 ) plt.ylim( [0, 1800] ) # plt.gca().set_yscale('log') plt.ylabel( 'Episode Length' ) plt.xlabel( 'Episode' ) plt.gcf().tight_layout() plt.show() plt.savefig( plotDir + '/ac_all_1000_episode_length.pdf' ) plt.figure( figsize=( 5, 3.4 ) ) stdInt = 100 m, v = episodeLength( resGQ ) plt.plot( range( len( m ) ), m, 'g', label='GQ', alpha=0.6 ) plt.errorbar( range( len( m ) )[stdInt::stdInt], m[stdInt::stdInt], yerr=v[stdInt::stdInt], ecolor='g', fmt=None, capthick=2.5 ) m, v = episodeLength( resPGQ ) plt.plot( range( len( m ) ), m, 'b', label='PGQ', alpha=0.6 ) plt.errorbar( range( len( m ) )[stdInt::stdInt], m[stdInt::stdInt], yerr=v[stdInt::stdInt], ecolor='b', fmt=None, capthick=2.5 ) plt.legend( ncol=3 ) plt.ylim( [0, 1800] ) # plt.gca().set_yscale('log') plt.ylabel( 'Episode Length' ) plt.xlabel( 'Episode' ) plt.gcf().tight_layout() # plt.show() plt.savefig( plotDir + '/ac_GQ_PGQ_1000_episode_length.pdf' ) def main(): makeBairdPolts() makeMountainCarPlots() makeAcrobotPlots() return if __name__ == '__main__': main()
8,361
0
206
7685a9c20c104421e0db1cc9e039a8d431b744a3
852
py
Python
project/Support/Code/actions/_accounts/account_group/edit/basic.py
fael07/Blog-Django-with-CBV
269747b2e663a34b99acae6368db49c6ad37c2b8
[ "MIT" ]
null
null
null
project/Support/Code/actions/_accounts/account_group/edit/basic.py
fael07/Blog-Django-with-CBV
269747b2e663a34b99acae6368db49c6ad37c2b8
[ "MIT" ]
null
null
null
project/Support/Code/actions/_accounts/account_group/edit/basic.py
fael07/Blog-Django-with-CBV
269747b2e663a34b99acae6368db49c6ad37c2b8
[ "MIT" ]
null
null
null
from Support.Code.actions.Support.utils.functions_dict import get_name from django.utils.text import slugify
38.727273
97
0.681925
from Support.Code.actions.Support.utils.functions_dict import get_name from django.utils.text import slugify def save_user_basic_and_update_user_save(request): user = request.user name: str = request.POST.get('name') new_file = request.FILES.get('photo') if new_file: user.photo = new_file user.name = get_name(name) new_slug = slugify(name) if request.session['user_save']['data']['author']: new_slug = f'{new_slug}-{user.id}' user.slug = new_slug user.save() request.session['user_save']['data']['name'] = get_name(name) request.session['user_save']['data']['slug'] = new_slug request.session['user_save']['data']['photo_url'] = user.photo.url request.session.save() user.my_static_pages = {**user.my_static_pages, 'data': request.session['user_save']['data']} user.save()
720
0
23
434db8b2f563775855ef95e274774e84780d15b1
5,444
py
Python
tests/aggregate/elements.py
nadirhamid/protean
d31bc634e05c9221e82136bf18c2ceaa0982c1c8
[ "BSD-3-Clause" ]
null
null
null
tests/aggregate/elements.py
nadirhamid/protean
d31bc634e05c9221e82136bf18c2ceaa0982c1c8
[ "BSD-3-Clause" ]
null
null
null
tests/aggregate/elements.py
nadirhamid/protean
d31bc634e05c9221e82136bf18c2ceaa0982c1c8
[ "BSD-3-Clause" ]
null
null
null
# Standard Library Imports from datetime import datetime from typing import List # Protean from protean.core.aggregate import BaseAggregate from protean.core.entity import BaseEntity from protean.core.field.association import HasMany, HasOne, Reference from protean.core.field.basic import Auto, DateTime, Integer, String, Text from protean.core.repository import BaseRepository # Aggregates to test Identity # Aggregates to test Subclassing # Aggregates to test Abstraction # START # # Aggregates to test Abstraction # END # # Aggregates to test Meta Info overriding # START # # Aggregates to test Meta Info overriding # END # # Aggregates to test associations # START # # Aggregates to test associations # END #
25.203704
88
0.722998
# Standard Library Imports from datetime import datetime from typing import List # Protean from protean.core.aggregate import BaseAggregate from protean.core.entity import BaseEntity from protean.core.field.association import HasMany, HasOne, Reference from protean.core.field.basic import Auto, DateTime, Integer, String, Text from protean.core.repository import BaseRepository class Role(BaseAggregate): name = String(max_length=15, required=True) created_on = DateTime(default=datetime.today()) class Person(BaseAggregate): first_name = String(max_length=50, required=True) last_name = String(max_length=50, required=True) age = Integer(default=21) class PersonRepository(BaseRepository): def find_adults(self, age: int = 21) -> List[Person]: pass # FIXME Implement filter method # Aggregates to test Identity class PersonAutoSSN(BaseAggregate): ssn = Auto(identifier=True) name = String(max_length=25) class PersonExplicitID(BaseAggregate): ssn = String(max_length=36, identifier=True) name = String(max_length=25) # Aggregates to test Subclassing class SubclassRole(Role): pass # Aggregates to test Abstraction # START # class AbstractRole(BaseAggregate): foo = String(max_length=25) class Meta: abstract = True class ConcreteRole(AbstractRole): bar = String(max_length=25) class FurtherAbstractRole(ConcreteRole): foobar = String(max_length=25) class Meta: abstract = True # Aggregates to test Abstraction # END # # Aggregates to test Meta Info overriding # START # class DbRole(BaseAggregate): bar = String(max_length=25) class Meta: schema_name = "foosball" class SqlRole(Role): class Meta: schema_name = "roles" class DifferentDbRole(Role): class Meta: provider = "non-default" class SqlDifferentDbRole(Role): class Meta: provider = "non-default-sql" class OrderedRole(BaseAggregate): bar = String(max_length=25) class Meta: order_by = "bar" class OrderedRoleSubclass(Role): bar = String(max_length=25) class Meta: order_by = "bar" # Aggregates to test Meta Info overriding # END # # Aggregates to test associations # START # class Post(BaseAggregate): content = Text(required=True) comments = HasMany("tests.aggregate.elements.Comment") author = Reference("tests.aggregate.elements.Author") class PostVia(BaseAggregate): content = Text(required=True) comments = HasMany("tests.aggregate.elements.CommentVia", via="posting_id") author = Reference("tests.aggregate.elements.Author") class PostViaWithReference(BaseAggregate): content = Text(required=True) comments = HasMany( "tests.aggregate.elements.CommentViaWithReference", via="posting_id" ) author = Reference("tests.aggregate.elements.Author") class Comment(BaseEntity): content = Text() added_on = DateTime() post = Reference("tests.aggregate.elements.Post") class Meta: aggregate_cls = Post class CommentVia(BaseEntity): content = Text() added_on = DateTime() posting_id = String() class Meta: aggregate_cls = PostVia class CommentViaWithReference(BaseEntity): content = Text() added_on = DateTime() posting = Reference("tests.aggregate.elements.PostVia") class Meta: aggregate_cls = PostViaWithReference class Account(BaseAggregate): email = String(required=True, max_length=255, unique=True, identifier=True) password = String(required=True, max_length=255) username = String(max_length=255, unique=True) author = HasOne("tests.aggregate.elements.Author") class Author(BaseEntity): first_name = String(required=True, max_length=25) last_name = String(max_length=25) posts = HasMany("tests.aggregate.elements.Post") account = Reference("tests.aggregate.elements.Account") class Meta: aggregate_cls = Account class AccountWithId(BaseAggregate): email = String(required=True, max_length=255, unique=True) password = String(required=True, max_length=255) username = String(max_length=255, unique=True) author = HasOne("tests.aggregate.elements.Author") class AccountVia(BaseAggregate): email = String(required=True, max_length=255, unique=True, identifier=True) password = String(required=True, max_length=255) username = String(max_length=255, unique=True) profile = HasOne("tests.aggregate.elements.ProfileVia", via="account_email") class AccountViaWithReference(BaseAggregate): email = String(required=True, max_length=255, unique=True, identifier=True) password = String(required=True, max_length=255) username = String(max_length=255, unique=True) profile = HasOne("tests.aggregate.elements.ProfileViaWithReference", via="ac_email") class Profile(BaseAggregate): about_me = Text() account = Reference("tests.aggregate.elements.Account", via="username") class ProfileWithAccountId(BaseAggregate): about_me = Text() account = Reference("tests.aggregate.elements.AccountWithId") class ProfileVia(BaseAggregate): profile_id = String(identifier=True) about_me = Text() account_email = String(max_length=255) class ProfileViaWithReference(BaseAggregate): about_me = Text() ac = Reference("tests.aggregate.elements.AccountViaWithReference") # Aggregates to test associations # END #
78
3,899
711
852e2170c0125511f1261888c3694601b5d7bab3
10,455
py
Python
bert_senteval.py
heartcored98/Trasnformer_Anatomy
2100f690947abe513d9e5fef9df0dd9e44e17a43
[ "MIT" ]
16
2020-07-05T20:50:23.000Z
2021-04-26T20:13:27.000Z
bert_senteval.py
heartcored98/Trasnformer_Anatomy
2100f690947abe513d9e5fef9df0dd9e44e17a43
[ "MIT" ]
null
null
null
bert_senteval.py
heartcored98/Trasnformer_Anatomy
2100f690947abe513d9e5fef9df0dd9e44e17a43
[ "MIT" ]
3
2020-11-02T14:32:07.000Z
2021-12-15T13:20:15.000Z
#!/usr/bin/env python # coding: utf-8 # In[ ]: #%load_ext autoreload #%autoreload 2 # In[ ]: import sys import torch import numpy as np import time import hashlib from os import listdir from os.path import isfile, join import pickle import argparse import json from tqdm import tqdm from copy import deepcopy import os from pytorch_pretrained_bert import BertTokenizer, BertModel PATH_SENTEVAL = './SentEval' PATH_TO_DATA = './SentEval/data/' PATH_TO_CACHE = './cache/' sys.path.insert(0, PATH_SENTEVAL) import senteval seed = 123 np.random.seed(seed) torch.manual_seed(seed) # In[ ]: def convert_sentences_to_features(sentences, seq_length, tokenizer): """Convert sentence into Tensor""" num_sent = len(sentences) input_type_ids = np.zeros((num_sent, seq_length), dtype=np.int32) input_ids = np.zeros((num_sent, seq_length), dtype=np.int32) input_mask = np.zeros((num_sent, seq_length), dtype=np.int32) for idx, sent in enumerate(sentences): tokens = tokenizer.tokenize(sent) tokens = tokens[0:min((seq_length - 2), len(tokens))] # truncate tokens longer than seq_length tokens.insert(0, "[CLS]") tokens.append("[SEP]") input_ids[idx,:len(tokens)] = np.array(tokenizer.convert_tokens_to_ids(tokens), dtype=np.int32) input_mask[idx,:len(tokens)] = np.ones(len(tokens), dtype=np.int32) assert len(input_ids[idx]) == seq_length assert len(input_mask[idx]) == seq_length assert len(input_type_ids[idx]) == seq_length return input_ids, input_type_ids, input_mask # In[ ]: # In[ ]: # In[ ]: # In[ ]: tasks = ['Length', 'WordContent', 'Depth', 'TopConstituents', 'BigramShift', 'Tense', 'SubjNumber', 'ObjNumber', 'OddManOut', 'CoordinationInversion'] seed = 123 np.random.seed(seed) torch.manual_seed(seed) parser = argparse.ArgumentParser(description='Evaluate BERT') parser.add_argument("--device", type=list, default=[1,2]) parser.add_argument("--batch_size", type=int, default=500) parser.add_argument("--nhid", type=int, default=0) parser.add_argument("--kfold", type=int, default=5) parser.add_argument("--usepytorch", type=bool, default=True) parser.add_argument("--data_path", type=str, default='./SentEval/data/') parser.add_argument("--cache_path", type=str, default='./cache/') parser.add_argument("--result_path", type=str, default='./results/') parser.add_argument("--optim", type=str, default='rmsprop') parser.add_argument("--cbatch_size", type=int, default=512) parser.add_argument("--tenacity", type=int, default=3) parser.add_argument("--epoch_size", type=int, default=2) parser.add_argument("--model_name", type=str, default='bert-base-uncased') parser.add_argument("--task", type=int, default=0) parser.add_argument("--layer", type=int, default=[0, 11]) parser.add_argument("--head", type=int, default=[-1, 11]) parser.add_argument("--head_size", type=int, default=64) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in args.device) list_layer = range(args.layer[0], args.layer[1]+1) if len(args.layer) > 1 else [args.layer[0]] list_head = range(args.head[0], args.head[1]+1) if len(args.head) > 1 else [args.head[0]] num_exp = len(list(list_layer)) * len(list(list_head)) print("======= Benchmark Configuration ======") print("Device: ", args.device) print("model name: ", args.model_name) print("Task: ", tasks[args.task]) print("range layer: ", list_layer) print("range head: ", list_head) print("Total Exps: ", num_exp) print("======================================") cnt = 0 target_task = tasks[args.task] with tqdm(total=num_exp, file=sys.stdout) as pbar: for layer in list_layer: for head in list_head: args.layer = layer args.head = head print() experiment(args, target_task) pbar.set_description('processed: %d' % (1 + cnt)) pbar.update(1) cnt += 1 # In[ ]:
33.402556
190
0.616069
#!/usr/bin/env python # coding: utf-8 # In[ ]: #%load_ext autoreload #%autoreload 2 # In[ ]: import sys import torch import numpy as np import time import hashlib from os import listdir from os.path import isfile, join import pickle import argparse import json from tqdm import tqdm from copy import deepcopy import os from pytorch_pretrained_bert import BertTokenizer, BertModel PATH_SENTEVAL = './SentEval' PATH_TO_DATA = './SentEval/data/' PATH_TO_CACHE = './cache/' sys.path.insert(0, PATH_SENTEVAL) import senteval seed = 123 np.random.seed(seed) torch.manual_seed(seed) # In[ ]: def convert_sentences_to_features(sentences, seq_length, tokenizer): """Convert sentence into Tensor""" num_sent = len(sentences) input_type_ids = np.zeros((num_sent, seq_length), dtype=np.int32) input_ids = np.zeros((num_sent, seq_length), dtype=np.int32) input_mask = np.zeros((num_sent, seq_length), dtype=np.int32) for idx, sent in enumerate(sentences): tokens = tokenizer.tokenize(sent) tokens = tokens[0:min((seq_length - 2), len(tokens))] # truncate tokens longer than seq_length tokens.insert(0, "[CLS]") tokens.append("[SEP]") input_ids[idx,:len(tokens)] = np.array(tokenizer.convert_tokens_to_ids(tokens), dtype=np.int32) input_mask[idx,:len(tokens)] = np.ones(len(tokens), dtype=np.int32) assert len(input_ids[idx]) == seq_length assert len(input_mask[idx]) == seq_length assert len(input_type_ids[idx]) == seq_length return input_ids, input_type_ids, input_mask # In[ ]: def save_exp_result(exp_result): exp_key = '{}_{}'.format(exp_result['layer'], exp_result['head']) print(exp_key) result_name = "{}_{}.json".format(exp_result['model_name'], exp_result['task']) result_dir = exp_result['result_path'] onlyfiles = [f for f in listdir(result_dir) if isfile(join(result_dir, f))] if result_name in onlyfiles: with open(join(result_dir, result_name), 'r') as f: results = json.load(f) with open(join(result_dir, result_name), 'w') as f: results[exp_key] = exp_result json.dump(results, f) print("Append exp result at {} with key {}".format(result_name, exp_key)) else: results = {} with open(join(result_dir, result_name), 'w') as f: results[exp_key] = exp_result json.dump(results, f) print("Create new exp result at {} with key {}".format(result_name, exp_key)) # In[ ]: def efficient_batcher(batch): max_capacity = 3000 seq_length = max([len(tokens) for tokens in batch]) batch_size = len(batch) mini_batch = max_capacity // seq_length + 1 return mini_batch def prepare(params, samples): cache_name = "{}_{}.pickle".format(params.model_name, params.current_task) cache_dir = params.cache_path onlyfiles = [f for f in listdir(cache_dir) if isfile(join(cache_dir, f))] # ====== Look Up existing cache ====== # if cache_name in onlyfiles: print("cache found {}".format(cache_name)) with open(join(cache_dir, cache_name), 'rb') as f: params['cache'] = pickle.load(f) params['cache_flag'] = True else: print("cache not found. Construct BERT model") params['cache'] = {} params['cache_flag'] = False # ====== Construct Model ====== # model = BertModel.from_pretrained(args.model_name) model = torch.nn.DataParallel(model) tokenizer = BertTokenizer.from_pretrained(args.model_name, do_lower_case=True) params['model'] = model params_senteval['tokenizer'] = tokenizer # ====== Initializ Counter ====== # params['count'] = 0 def batcher(params, batch): ts = time.time() if params.cache_flag: output = [] sentences = [' '.join(s) for s in batch] for i, sent in enumerate(sentences): hask_key = hashlib.sha256(sent.encode()).hexdigest() output.append(params.cache[hask_key]) output = np.array(output) else: mini_batch_size = efficient_batcher(batch) idx = 0 list_output = [] while idx < len(batch): mini_batch = batch[idx:min(idx+mini_batch_size, len(batch))] # ====== Token Preparation ====== # params.model.eval() seq_length = max([len(tokens) for tokens in mini_batch]) sentences = [' '.join(s) for s in mini_batch] # ====== Convert to Tensor ====== # input_ids, input_type_ids, input_mask = convert_sentences_to_features(sentences, seq_length, params.tokenizer) input_ids = torch.Tensor(input_ids).long().cuda() input_type_ids = torch.Tensor(input_type_ids).long().cuda() input_mask = torch.Tensor(input_mask).long().cuda() # ====== Encode Tokens ====== # encoded_layers, _ = model(input_ids, input_type_ids, input_mask) torch.cuda.synchronize() output = np.array([layer[:, 0, :].detach().cpu().numpy() for layer in encoded_layers]) output = np.swapaxes(output, 0, 1) list_output.append(output) idx += mini_batch_size # ====== Construct Cache ====== # temp_cache = {} for i, sent in enumerate(sentences): hask_key = hashlib.sha256(sent.encode()).hexdigest() temp_cache[hask_key] = output[i] params.cache.update(temp_cache) output = np.concatenate(list_output, 0) te = time.time() params.count += len(batch) # ====== Extract Target Embedding (layer, head) ====== # if params.head == -1: embedding = output[:, params.layer, :] else: embedding = output[:, params.layer, params.head*params.head_size:(params.head+1)*params.head_size] if params.count % 20000 == 0: print('{:6}'.format(params.count), 'encoded result', output.shape, 'return result', embedding.shape, 'took', '{:2.3f}'.format(te-ts), 'process', '{:4.1f}'.format(len(batch)/(te-ts))) return embedding # In[ ]: def experiment(args, task): ts = time.time() # ====== SentEval Engine Setting ====== # params_senteval = {'task_path': args.data_path, 'usepytorch': args.usepytorch, 'seed': seed, 'batch_size': args.batch_size, 'nhid': args.nhid, 'kfold': args.kfold} params_senteval['classifier'] = {'nhid': args.nhid, 'optim': args.optim, 'batch_size': args.cbatch_size, 'tenacity': args.tenacity, 'epoch_size': args.epoch_size} # ====== Experiment Setting ====== # params_senteval['model_name'] = args.model_name params_senteval['cache_path'] = args.cache_path params_senteval['result_path'] = args.result_path params_senteval['layer'] = args.layer params_senteval['head'] = args.head params_senteval['head_size'] = args.head_size # ====== Conduct Experiment ====== # se = senteval.engine.SE(params_senteval, batcher, prepare) result = se.eval([task]) # ====== Logging Experiment Result ====== # exp_result = vars(deepcopy(args)) exp_result['task'] = task exp_result['devacc'] = result[task]['devacc'] exp_result['acc'] = result[task]['acc'] save_exp_result(exp_result) # ====== Save Cache ====== # if not se.params.cache_flag: cache_name = "{}_{}.pickle".format(se.params.model_name, se.params.current_task) cache_dir = se.params.cache_path with open(join(cache_dir, cache_name), 'wb') as f: pickle.dump(se.params.cache, f, pickle.HIGHEST_PROTOCOL) print("Saved cache {}".format(cache_name)) # ====== Reporting ====== # te = time.time() print("result: {}, took: {:3.1f} sec".format(result, te-ts)) # In[ ]: tasks = ['Length', 'WordContent', 'Depth', 'TopConstituents', 'BigramShift', 'Tense', 'SubjNumber', 'ObjNumber', 'OddManOut', 'CoordinationInversion'] seed = 123 np.random.seed(seed) torch.manual_seed(seed) parser = argparse.ArgumentParser(description='Evaluate BERT') parser.add_argument("--device", type=list, default=[1,2]) parser.add_argument("--batch_size", type=int, default=500) parser.add_argument("--nhid", type=int, default=0) parser.add_argument("--kfold", type=int, default=5) parser.add_argument("--usepytorch", type=bool, default=True) parser.add_argument("--data_path", type=str, default='./SentEval/data/') parser.add_argument("--cache_path", type=str, default='./cache/') parser.add_argument("--result_path", type=str, default='./results/') parser.add_argument("--optim", type=str, default='rmsprop') parser.add_argument("--cbatch_size", type=int, default=512) parser.add_argument("--tenacity", type=int, default=3) parser.add_argument("--epoch_size", type=int, default=2) parser.add_argument("--model_name", type=str, default='bert-base-uncased') parser.add_argument("--task", type=int, default=0) parser.add_argument("--layer", type=int, default=[0, 11]) parser.add_argument("--head", type=int, default=[-1, 11]) parser.add_argument("--head_size", type=int, default=64) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in args.device) list_layer = range(args.layer[0], args.layer[1]+1) if len(args.layer) > 1 else [args.layer[0]] list_head = range(args.head[0], args.head[1]+1) if len(args.head) > 1 else [args.head[0]] num_exp = len(list(list_layer)) * len(list(list_head)) print("======= Benchmark Configuration ======") print("Device: ", args.device) print("model name: ", args.model_name) print("Task: ", tasks[args.task]) print("range layer: ", list_layer) print("range head: ", list_head) print("Total Exps: ", num_exp) print("======================================") cnt = 0 target_task = tasks[args.task] with tqdm(total=num_exp, file=sys.stdout) as pbar: for layer in list_layer: for head in list_head: args.layer = layer args.head = head print() experiment(args, target_task) pbar.set_description('processed: %d' % (1 + cnt)) pbar.update(1) cnt += 1 # In[ ]:
6,340
0
115
0668d699300db3de6998a525c2564293163ee37d
2,963
py
Python
sensors_test.py
kipkemoimayor/Traffic_control_system
840c01b8c031d613524b87b91c8d938a33348b3c
[ "MIT" ]
2
2019-06-15T09:58:08.000Z
2020-08-24T09:51:37.000Z
sensors_test.py
kipkemoimayor/Traffic_control_system
840c01b8c031d613524b87b91c8d938a33348b3c
[ "MIT" ]
null
null
null
sensors_test.py
kipkemoimayor/Traffic_control_system
840c01b8c031d613524b87b91c8d938a33348b3c
[ "MIT" ]
2
2019-06-26T07:30:05.000Z
2020-08-24T09:51:42.000Z
import RPi.GPIO as GPIO import time dis=0 while True: # Setup triggers and Echos of all sensors GPIO.setmode(GPIO.BOARD) TRIG=11 ECHO=13 GPIO.setup(TRIG,GPIO.OUT) GPIO.setup(3,GPIO.OUT) GPIO.setup(ECHO,GPIO.IN) GPIO.setup(5,GPIO.IN) GPIO.setup(35,GPIO.OUT) GPIO.setup(31,GPIO.OUT) GPIO.setup(33,GPIO.IN) GPIO.setup(29,GPIO.IN) GPIO.setup(38,GPIO.OUT) GPIO.setup(19,GPIO.OUT) GPIO.setup(23,GPIO.IN) GPIO.setup(21,GPIO.IN) station1() a=station1() print(str(a)+'Station 1 OK') station2() b=station2() print(str(b)+'Station 2 OK') station4() d=station4() print(str(d)+'Station 4 OK') station3() c=station3() print(str(c)+'Station 3 OK') station6() f=station6() print(str(f)+'Station 6 OK') station5() e=station5() print(str(e)+'Station 5 OK')
20.576389
45
0.552143
import RPi.GPIO as GPIO import time dis=0 while True: # Setup triggers and Echos of all sensors GPIO.setmode(GPIO.BOARD) TRIG=11 ECHO=13 GPIO.setup(TRIG,GPIO.OUT) GPIO.setup(3,GPIO.OUT) GPIO.setup(ECHO,GPIO.IN) GPIO.setup(5,GPIO.IN) GPIO.setup(35,GPIO.OUT) GPIO.setup(31,GPIO.OUT) GPIO.setup(33,GPIO.IN) GPIO.setup(29,GPIO.IN) GPIO.setup(38,GPIO.OUT) GPIO.setup(19,GPIO.OUT) GPIO.setup(23,GPIO.IN) GPIO.setup(21,GPIO.IN) def station1(): GPIO.output(TRIG,True) time.sleep(1) GPIO.output(TRIG,False) while GPIO.input(ECHO)==False: start=time.time() while GPIO.input(ECHO)==True: end=time.time() sig_time=end-start distance=sig_time/0.000058 dis=round(distance,0) return dis station1() a=station1() print(str(a)+'Station 1 OK') def station2(): GPIO.output(38,True) time.sleep(1) GPIO.output(38,False) while GPIO.input(23)==False: start=time.time() while GPIO.input(23)==True: end=time.time() sig_time=end-start distance=sig_time/0.000058 dis=round(distance,0) return dis station2() b=station2() print(str(b)+'Station 2 OK') def station4(): GPIO.output(3,True) time.sleep(1) GPIO.output(3,False) while GPIO.input(5)==0: start=time.time() while GPIO.input(5)==1: end=time.time() sig_time=end-start distance=sig_time/0.000058 dis=round(distance,0) return dis station4() d=station4() print(str(d)+'Station 4 OK') def station3(): GPIO.output(31,True) time.sleep(1) GPIO.output(31,False) while GPIO.input(29)==False: start=time.time() while GPIO.input(29)==True: end=time.time() sig_time=end-start distance=sig_time/0.000058 dis=round(distance,0) return dis station3() c=station3() print(str(c)+'Station 3 OK') def station6(): GPIO.output(35,True) time.sleep(1) GPIO.output(35,False) while GPIO.input(33)==False: start=time.time() while GPIO.input(33)==True: end=time.time() sig_time=end-start distance=sig_time/0.000058 dis=round(distance,0) return dis station6() f=station6() print(str(f)+'Station 6 OK') def station5(): GPIO.output(19,True) time.sleep(1) GPIO.output(19,False) while GPIO.input(21)==False: start=time.time() while GPIO.input(21)==True: end=time.time() sig_time=end-start distance=sig_time/0.000058 dis=round(distance,0) return dis station5() e=station5() print(str(e)+'Station 5 OK')
1,922
0
162
d7a3717a0624d7d45c29409cb86a2357bad037fd
2,829
py
Python
xbrlparser.py
emhlaos/bmv-scrapper
70df08cddae4c2b3e472c3c22e639fca07a14c86
[ "MIT" ]
4
2018-03-01T03:22:45.000Z
2021-09-25T02:44:51.000Z
xbrlparser.py
emhlaos/bmv-scrapper
70df08cddae4c2b3e472c3c22e639fca07a14c86
[ "MIT" ]
null
null
null
xbrlparser.py
emhlaos/bmv-scrapper
70df08cddae4c2b3e472c3c22e639fca07a14c86
[ "MIT" ]
3
2020-04-22T15:10:29.000Z
2021-06-23T03:45:08.000Z
""" Copyright C.C.: Emiliano Hernandez Laos https://github.com/emhlaos/ 28/02/2018 """ from urllib.request import urlopen import os from io import BytesIO from zipfile import ZipFile #LOAD FUNCTION: currentdirectory = os.getcwd() xbrldirectory = currentdirectory+"/xbrl" if not os.path.exists(xbrldirectory): os.makedirs(xbrldirectory) db = open(currentdirectory+"/babycaw.txt","r").read() matrix = {} rows = db.split("\n") matrix["R.TIME"] = {} n = 0 for t in rows[0].split(",")[1:]: matrix["R.TIME"][n] = t n=n+1 print(rows[1]," $$ ",rows[1].split(",")) for row in rows[1:]: columns = row.split(",") ticker = columns[0] matrix[ticker]={} n=0 for cell in columns[1:]: matrix[ticker][n] = cell n=n+1 #DOWNLOAD INFO: revenue_matrix = matrix allread = [] stocks = list(matrix.keys())[1:] n=len(list(matrix["R.TIME"].keys())) print(n,"\n",stocks) for stock in stocks: allread.append(stock) for m in range(n): print("Reading about "+stock) if ".zip" in matrix[stock][m]: with urlopen(matrix[stock][m]) as pzip: with ZipFile(BytesIO(pzip.read())) as zp: for file in zp.namelist(): print(file) print("Dowloading: "+ stock + "_" + matrix["R.TIME"][m] + ".json") try: pjson = open(xbrldirectory+"/" + stock + "_" + matrix["R.TIME"][m] + ".json", "wb") pjson.write(zp.read(file)) pjson.close() except Exception as args: print(args,"you got {}%".format(len(allread)/n)) teencow = open(currentdirectory+"/teencaw.txt", "w") for riadboe in allread: teencow.write(riadboe,"\n") allread=[] elif ".json" in matrix[stock][m]: jsonurl = matrix[stock][m] jsonresp = urlopen(jsonurl) with urlopen(matrix[stock][m]) as pjson: try: print("Downloading",stock + "_" + matrix["R.TIME"][m] + ".json") tempjson = open(xbrldirectory+"/" + stock + "_" + matrix["R.TIME"][m] + ".json", "wb") tempjson.write(pjson.read()) tempjson.close() except Exception as args: print(args, "you got {}%".format(len(allread) / n),"ending at a json file JSUUN") teencow = open(currentdirectory+"/teencaw.txt", "w") for riadboe in allread: teencow.write(riadboe, "\n") allread = []
36.74026
112
0.487098
""" Copyright C.C.: Emiliano Hernandez Laos https://github.com/emhlaos/ 28/02/2018 """ from urllib.request import urlopen import os from io import BytesIO from zipfile import ZipFile #LOAD FUNCTION: currentdirectory = os.getcwd() xbrldirectory = currentdirectory+"/xbrl" if not os.path.exists(xbrldirectory): os.makedirs(xbrldirectory) db = open(currentdirectory+"/babycaw.txt","r").read() matrix = {} rows = db.split("\n") matrix["R.TIME"] = {} n = 0 for t in rows[0].split(",")[1:]: matrix["R.TIME"][n] = t n=n+1 print(rows[1]," $$ ",rows[1].split(",")) for row in rows[1:]: columns = row.split(",") ticker = columns[0] matrix[ticker]={} n=0 for cell in columns[1:]: matrix[ticker][n] = cell n=n+1 #DOWNLOAD INFO: revenue_matrix = matrix allread = [] stocks = list(matrix.keys())[1:] n=len(list(matrix["R.TIME"].keys())) print(n,"\n",stocks) for stock in stocks: allread.append(stock) for m in range(n): print("Reading about "+stock) if ".zip" in matrix[stock][m]: with urlopen(matrix[stock][m]) as pzip: with ZipFile(BytesIO(pzip.read())) as zp: for file in zp.namelist(): print(file) print("Dowloading: "+ stock + "_" + matrix["R.TIME"][m] + ".json") try: pjson = open(xbrldirectory+"/" + stock + "_" + matrix["R.TIME"][m] + ".json", "wb") pjson.write(zp.read(file)) pjson.close() except Exception as args: print(args,"you got {}%".format(len(allread)/n)) teencow = open(currentdirectory+"/teencaw.txt", "w") for riadboe in allread: teencow.write(riadboe,"\n") allread=[] elif ".json" in matrix[stock][m]: jsonurl = matrix[stock][m] jsonresp = urlopen(jsonurl) with urlopen(matrix[stock][m]) as pjson: try: print("Downloading",stock + "_" + matrix["R.TIME"][m] + ".json") tempjson = open(xbrldirectory+"/" + stock + "_" + matrix["R.TIME"][m] + ".json", "wb") tempjson.write(pjson.read()) tempjson.close() except Exception as args: print(args, "you got {}%".format(len(allread) / n),"ending at a json file JSUUN") teencow = open(currentdirectory+"/teencaw.txt", "w") for riadboe in allread: teencow.write(riadboe, "\n") allread = []
0
0
0
b56ad7a7bc1fe9805d9331eef23690d49bce762e
2,351
py
Python
hpedockerplugin/cmd/cmd_createshare.py
renovate-bot/python-hpedockerplugin
b7fa6b3193fa6dd42574585b4c621ff6a16babc9
[ "Apache-2.0" ]
49
2016-06-14T22:25:40.000Z
2021-04-05T05:00:59.000Z
hpedockerplugin/cmd/cmd_createshare.py
imran-ansari/python-hpedockerplugin
e2726f48ac793dc894100e3772c40ce89bfe9bb8
[ "Apache-2.0" ]
550
2016-07-25T12:01:12.000Z
2021-11-15T17:52:40.000Z
hpedockerplugin/cmd/cmd_createshare.py
imran-ansari/python-hpedockerplugin
e2726f48ac793dc894100e3772c40ce89bfe9bb8
[ "Apache-2.0" ]
96
2016-06-01T22:07:03.000Z
2021-06-22T09:05:05.000Z
import six from oslo_log import log as logging from hpedockerplugin.cmd import cmd from hpedockerplugin import exception LOG = logging.getLogger(__name__)
40.534483
78
0.633348
import six from oslo_log import log as logging from hpedockerplugin.cmd import cmd from hpedockerplugin import exception LOG = logging.getLogger(__name__) class CreateShareCmd(cmd.Cmd): def __init__(self, file_mgr, share_args): self._file_mgr = file_mgr self._etcd = file_mgr.get_etcd() self._fp_etcd = file_mgr.get_file_etcd() self._mediator = file_mgr.get_mediator() self._config = file_mgr.get_config() self._backend = file_mgr.get_backend() self._share_args = share_args self._status = 'CREATING' self._share_created_at_backend = False self._share_created_in_etcd = False def unexecute(self): share_name = self._share_args['name'] LOG.info("cmd::unexecute: Removing share entry from ETCD: %s" % share_name) # Leaving the share entry in ETCD intact so that user can inspect # the share and look for the reason of failure. Moreover, Docker # daemon has the entry for this share as we returned success on the # main thread. So it would be better that the user removes this failed # share explicitly so that Docker daemon also updates its database if self._share_created_at_backend: LOG.info("CreateShareCmd:Undo Deleting share from backend: %s" % share_name) self._mediator.delete_share(self._share_args['id']) LOG.info("CreateShareCmd:Undo Deleting fstore from backend: %s" % share_name) self._mediator.delete_file_store(self._share_args['fpg'], share_name) def execute(self): share_name = self._share_args['name'] try: LOG.info("Creating share %s on the backend" % share_name) share_id = self._mediator.create_share(self._share_args) self._share_created_at_backend = True self._share_args['id'] = share_id self._etcd.save_share(self._share_args) self._share_created_in_etcd = True except Exception as ex: msg = "Share creation failed [share_name: %s, error: %s" %\ (share_name, six.text_type(ex)) LOG.error(msg) self.unexecute() raise exception.ShareCreationFailed(msg)
2,080
9
103
fd444aca0dbc53e3b47c5e154be553cc2f88d847
156
py
Python
tests/asp/cautious/sum.example11.cautious.asp.test.py
bernardocuteri/wasp
05c8f961776dbdbf7afbf905ee00fc262eba51ad
[ "Apache-2.0" ]
19
2015-12-03T08:53:45.000Z
2022-03-31T02:09:43.000Z
tests/asp/cautious/sum.example11.cautious.asp.test.py
bernardocuteri/wasp
05c8f961776dbdbf7afbf905ee00fc262eba51ad
[ "Apache-2.0" ]
80
2017-11-25T07:57:32.000Z
2018-06-10T19:03:30.000Z
tests/asp/cautious/sum.example11.cautious.asp.test.py
bernardocuteri/wasp
05c8f961776dbdbf7afbf905ee00fc262eba51ad
[ "Apache-2.0" ]
6
2015-01-15T07:51:48.000Z
2020-06-18T14:47:48.000Z
input = """ 1 2 3 2 3 4 5 1 3 3 2 2 4 5 1 4 3 2 2 3 5 1 5 0 0 5 6 4 3 0 2 3 4 2 2 2 1 1 1 1 6 0 4 c 3 b 2 a 0 B+ 0 B- 1 0 1 """ output = """ INCOHERENT """
6.782609
21
0.487179
input = """ 1 2 3 2 3 4 5 1 3 3 2 2 4 5 1 4 3 2 2 3 5 1 5 0 0 5 6 4 3 0 2 3 4 2 2 2 1 1 1 1 6 0 4 c 3 b 2 a 0 B+ 0 B- 1 0 1 """ output = """ INCOHERENT """
0
0
0
a7a70d0fc999c0ac172fafb16600e4829015a6d0
1,660
py
Python
code4step2/register_images.py
yukeyi/MCDS-Capstone
f7ce48fc5d3f5f96c1f29556585ed2338683c7d2
[ "MIT" ]
null
null
null
code4step2/register_images.py
yukeyi/MCDS-Capstone
f7ce48fc5d3f5f96c1f29556585ed2338683c7d2
[ "MIT" ]
null
null
null
code4step2/register_images.py
yukeyi/MCDS-Capstone
f7ce48fc5d3f5f96c1f29556585ed2338683c7d2
[ "MIT" ]
null
null
null
import os import shutil import pickle as pkl import numpy as np import SimpleITK as sitk from data_registration import RegHearts LOAD_DIR = '/pylon5/ac5616p/Data/HeartSegmentationProject/CAP_challenge/CAP_challenge_training_set/test2/brain/total/' ''' Generator function to get one pair of fixed and moving image at a time (fixed, moving) are viewed as without order. (a, b) is the same as (b, a), so (b, a) won't be registered ''' ''' Register two images and ''' if __name__ == '__main__': main()
31.923077
118
0.655422
import os import shutil import pickle as pkl import numpy as np import SimpleITK as sitk from data_registration import RegHearts LOAD_DIR = '/pylon5/ac5616p/Data/HeartSegmentationProject/CAP_challenge/CAP_challenge_training_set/test2/brain/total/' ''' Generator function to get one pair of fixed and moving image at a time (fixed, moving) are viewed as without order. (a, b) is the same as (b, a), so (b, a) won't be registered ''' def get_pair(): patient_folders = os.listdir(LOAD_DIR) for i in range(len(patient_folders)): for j in range(i+1, len(patient_folders)): fixed = patient_folders[i] moving = patient_folders[j] yield fixed, moving ''' Register two images and ''' def main(): error = [] for fixed_patient, moving_patient in get_pair(): reg = RegHearts(LOAD_DIR+fixed_patient+'/SA', LOAD_DIR+moving_patient+'/SA') reg.gen_param_map() try: reg.register_imgs() except: error += [fixed_patient + ',' + moving_patient] # make a new directory for storing transform parameter files wrt each moving patient try: os.mkdir(LOAD_DIR+fixed_patient+'/'+moving_patient) except OSError: pass my_map = reg.elastixImageFilter.GetTransformParameterMap() f = open(os.path.join(LOAD_DIR+fixed_patient, moving_patient, 'transform_map.pkl'), 'wb') pkl.dump(my_map, f, 2) # this saves a python object to a pickle file with open('pairs_not_registered.csv', 'w') as f: for item in error: f.write("%s\n" % item) if __name__ == '__main__': main()
1,109
0
44
d2dda46de2a802ec9a1d557c8bb1545bff13d2d7
4,235
py
Python
octoprint_LCD1602/__init__.py
Marien1993/LCD-octoprint
eae8fd9b2ab5a5799b25b6f0684b081c77cc0aad
[ "MIT" ]
null
null
null
octoprint_LCD1602/__init__.py
Marien1993/LCD-octoprint
eae8fd9b2ab5a5799b25b6f0684b081c77cc0aad
[ "MIT" ]
null
null
null
octoprint_LCD1602/__init__.py
Marien1993/LCD-octoprint
eae8fd9b2ab5a5799b25b6f0684b081c77cc0aad
[ "MIT" ]
null
null
null
# coding=utf-8 """ LCD1602 Plugin for Octoprint """ from __future__ import absolute_import from octoprint.printer.estimation import PrintTimeEstimator import octoprint.plugin import octoprint.events from RPLCD.i2c import CharLCD import time import datetime import os import sys from fake_rpi import printf import fake_rpi __plugin_name__ = "LCD1602 I2c display"
27.147436
120
0.651948
# coding=utf-8 """ LCD1602 Plugin for Octoprint """ from __future__ import absolute_import from octoprint.printer.estimation import PrintTimeEstimator import octoprint.plugin import octoprint.events from RPLCD.i2c import CharLCD import time import datetime import os import sys from fake_rpi import printf import fake_rpi class LCD1602Plugin(octoprint.plugin.StartupPlugin, octoprint.plugin.EventHandlerPlugin, octoprint.plugin.ProgressPlugin): def __init__(self): if (os.getenv('LCD1602_DOCKER')): print('We are running in test environnement, no i2c device attached.') try: print('Loading fake_rpi instead of smbus2') sys.modules['smbus2'] = fake_rpi.smbus self.mylcd = fake_rpi.smbus.SMBus(1) except: print('Cannot load fake_rpi !') else: self.mylcd = CharLCD(i2c_expander='PCF8574', address=0x27, cols=16, rows=4, backlight_enabled=True, charmap='A00') # create block for progress bar self.block = bytearray(b'\xFF\xFF\xFF\xFF\xFF\xFF\xFF') self.block.append(255) self.mylcd.create_char(1,self.block) # init vars self.start_date = 0 # create block for progress bar #self.mylcd.create_char(1,self.block) def JobIsDone(self,lcd): # create final anim self.birdy = [ '^_-'] for pos in range(0,13): lcd.cursor_pos = (1,pos) lcd.write_string(self.birdy[pos]) time.sleep(0.5) lcd.clear() lcd.write_string('Printer is gereed') def on_after_startup(self): mylcd = self.mylcd self._logger.info("plugin initialized !") def on_print_progress(self,storage,path,progress): mylcd = self.mylcd percent = int(progress/6.25)+1 completed = '\x01'*percent mylcd.clear() mylcd.write_string('Completed: '+str(progress)+'%') mylcd.cursor_pos = (1,0) mylcd.write_string(completed) if progress==1 : self.start_date=time.time() if progress>10 and progress<100: now=time.time() elapsed=now-self.start_date average=elapsed/(progress-1) remaining=int((100-progress)*average) remaining=str(datetime.timedelta(seconds=remaining)) mylcd.cursor_pos = (1,3) mylcd.write_string(remaining) if progress==100 : self.JobIsDone(mylcd) def on_event(self,event,payload): mylcd = self.mylcd if event in "Connected": mylcd.clear() mylcd.write_string('Verbonden met:') mylcd.cursor_pos = (1,0) mylcd.write_string(payload["port"]) if event in "Shutdown": mylcd.clear() mylcd.write_string('Tot snel!') time.sleep(1) mylcd._set_backlight_enabled(False) mylcd.close() if event in "PrinterStateChanged": if payload["state_string"] in "Offline": mylcd.clear() mylcd.write_string('Octoprint is niet verbonden') time.sleep(2) mylcd.clear() mylcd.write_string('saving a polar bear, eco mode ON') time.sleep(5) mylcd._set_backlight_enabled(False) if payload["state_string"] in "Operational": mylcd._set_backlight_enabled(True) mylcd.clear() mylcd.write_string('Printer is bezig') if payload["state_string"] in "Cancelling": mylcd.clear() mylcd.write_string('Printeropdracht is afgebroken') time.sleep(0.2) if payload["state_string"] in "PrintCancelled": mylcd.clear() time.sleep(0.5) mylcd.write_string(' Print opdracht is beeindicht ' ) time.sleep(2) if payload["state_string"] in "Paused": mylcd.clear() time.sleep(0.5) mylcd.write_string('Printer is gepauzeert') if payload["state_string"] in "Resuming": mylcd.clear() mylcd.write_string('Printer gaat verder met printopdracht') time.sleep(0.2) __plugin_name__ = "LCD1602 I2c display" def __plugin_load__(): global __plugin_implementation__ __plugin_implementation__ = LCD1602Plugin() global __plugin_hooks__ __plugin_hooks__ = { "octoprint.plugin.softwareupdate.check_config": __plugin_implementation__.get_update_information }
3,542
141
179
f282ae2d0aacafe56cfc3e396879274fc628595a
4,876
py
Python
assignment2/PythonApplication1.py
JungChaeMoon/room_escape
1417caf6b9cc6228b2f1faf533d73c986cc04704
[ "MIT" ]
null
null
null
assignment2/PythonApplication1.py
JungChaeMoon/room_escape
1417caf6b9cc6228b2f1faf533d73c986cc04704
[ "MIT" ]
null
null
null
assignment2/PythonApplication1.py
JungChaeMoon/room_escape
1417caf6b9cc6228b2f1faf533d73c986cc04704
[ "MIT" ]
null
null
null
from bangtal import * import random import copy import time setGameOption(GameOption.INVENTORY_BUTTON, False) setGameOption(GameOption.MESSAGE_BOX_BUTTON, False) main_scene = Scene("퍼즐게임", "images/backgroud.PNG") scene1 = Scene("Loopy 퍼즐", "images/backgroud.PNG") scene2 = Scene("Lion 퍼즐", "images/backgroud.PNG") help_message = showMessage("퍼즐 맞출 이미지를 클릭해주세요!!") images = ( Object('images/loopy.jpg'), Object('images/lion.jpg'), Object('images/exit_button.png'), Object('images/score.jpg'), Object('images/another.jpg') ) loopy_image = images[0] loopy_image.locate(main_scene, 150, 50) loopy_image.setScale(1.64) loopy_image.show() lion_image = images[1] lion_image.locate(main_scene, 650, 50) lion_image.setScale(0.7) lion_image.show() exit_button = images[2] exit_button.locate(main_scene, 1150, 650) exit_button.setScale(0.1) exit_button.show() blank = 8 game_board = [] init_board = [] start = 0 max_time = 987654321 loopy_max_score = 0 lion_max_score = 0 delta = [-1, 1, -3, 3] Object.onMouseActionDefault = onMouseAction_piece
14.426036
209
0.561116
from bangtal import * import random import copy import time setGameOption(GameOption.INVENTORY_BUTTON, False) setGameOption(GameOption.MESSAGE_BOX_BUTTON, False) main_scene = Scene("퍼즐게임", "images/backgroud.PNG") scene1 = Scene("Loopy 퍼즐", "images/backgroud.PNG") scene2 = Scene("Lion 퍼즐", "images/backgroud.PNG") help_message = showMessage("퍼즐 맞출 이미지를 클릭해주세요!!") images = ( Object('images/loopy.jpg'), Object('images/lion.jpg'), Object('images/exit_button.png'), Object('images/score.jpg'), Object('images/another.jpg') ) loopy_image = images[0] loopy_image.locate(main_scene, 150, 50) loopy_image.setScale(1.64) loopy_image.show() lion_image = images[1] lion_image.locate(main_scene, 650, 50) lion_image.setScale(0.7) lion_image.show() exit_button = images[2] exit_button.locate(main_scene, 1150, 650) exit_button.setScale(0.1) exit_button.show() blank = 8 game_board = [] init_board = [] start = 0 max_time = 987654321 loopy_max_score = 0 lion_max_score = 0 def hide_image(): loopy_image.hide() lion_image.hide() exit_button.hide() def exit_on_mouse_action(x, y, action): exit(0) def loopy_on_mouse_action(x, y, action): global game_board, init_board, start, images start = 0 start = time.time() hide_image() game_board = [] init_board = [] for index in range(100): piece = Object("images/loopy_" + str(index + 1) + ".jpg" ) piece.locate(scene1, 300 + 150 * (index % 3), 460 - 150 * (index // 3)) piece.setScale(0.61) piece.show() game_board.append(piece) init_board.append(piece) game_board[blank].hide() for _ in range(3): random_move(scene1) # timer.onTimeout = onTimeout # timer.start() startGame(scene1) def lion_on_mouse_action(x, y, action): hide_image() global game_board, init_board, start start = 0 start = time.time() game_board = [] init_board = [] for index in range(100): piece = Object("images/lion_" + str(index + 1) + ".jpg" ) piece.locate(scene2, 300 + 150 * (index % 3), 460 - 150 * (index // 3)) piece.setScale(0.7) piece.show() game_board.append(piece) init_board.append(piece) game_board[blank].hide() for _ in range(3): random_move(scene2) startGame(scene2) def find_index(object): global game_board for index in range(9): if game_board[index] == object: return index def movable(index): global blank if index < 0: return False if index > 8: return False if index % 3 > 0 and index - 1 == blank: return True if index % 3 < 2 and index + 1 == blank: return True if index > 2 and index - 3 == blank: return True if index < 6 and index + 3 == blank: return True return False delta = [-1, 1, -3, 3] def random_move(obj): global blank, delta while True: index = blank + delta[random.randrange(4)] if movable(index): break move(obj, index) def move(obj, index): global blank, game_board game_board[index].locate(obj, 300 + 150 * (blank % 3), 460 - 150 * (blank // 3)) game_board[blank].locate(obj, 300 + 150 * (index % 3), 460 - 150 * (index // 3)) game_board[index], game_board[blank] = game_board[blank], game_board[index] blank = index def completed(): for index in range(9): if game_board[index] != init_board[index]: return False return True def onMouseAction_piece(object, x, y, action): global blank, start, max_time sc = None index = find_index(object) if 'loopy' in object._file: sc = scene1 else: sc = scene2 if movable(index): move(sc, index) if completed(): score = time.time() - start if max_time > score: max_time = score showMessage('The shortest time has been renewed. max score: {:2}, time: {:2} Completed!!!'.format(time.strftime('%H:%M:%S', time.gmtime(score)), time.strftime('%H:%M:%S', time.gmtime(score)))) else: showMessage('Shortest time failed to break. max score: {:2}, time{:2} Completed!!!'.format(time.strftime('%H:%M:%S', time.gmtime(max_time)), time.strftime('%H:%M:%S', time.gmtime(score)))) Object.onMouseActionDefault = onMouseAction_piece
3,310
0
250
40b5fd4c0ce2924a38851bdad6bd0745fb2bd736
349
py
Python
akeydo/plugins/__init__.py
dangle/vfio-kvm
13ed6f6b2ebbc2e23afe267866e321a2fd51a337
[ "MIT" ]
30
2021-01-15T18:22:26.000Z
2021-06-02T14:10:40.000Z
akeydo/plugins/__init__.py
dangle/vfio-kvm
13ed6f6b2ebbc2e23afe267866e321a2fd51a337
[ "MIT" ]
11
2021-01-23T05:37:06.000Z
2021-04-21T21:50:37.000Z
akeydo/plugins/__init__.py
dangle/vfio-kvm
13ed6f6b2ebbc2e23afe267866e321a2fd51a337
[ "MIT" ]
null
null
null
import sys if sys.version_info < (3, 10): from importlib_metadata import entry_points else: from importlib.metadata import entry_points from . import ( cpu, devices, gpu, memory, ) __all__ = ( "cpu", "devices", "gpu", "installed_plugins", "memory", ) installed_plugins = entry_points(group=__name__)
13.96
48
0.647564
import sys if sys.version_info < (3, 10): from importlib_metadata import entry_points else: from importlib.metadata import entry_points from . import ( cpu, devices, gpu, memory, ) __all__ = ( "cpu", "devices", "gpu", "installed_plugins", "memory", ) installed_plugins = entry_points(group=__name__)
0
0
0
5d36cde055910519c7a52a7522ef39460d4a9945
3,888
py
Python
pltools/train/module.py
PhoenixDL/PytorchLightningTools
86185062d4792e6d5eae002a5594bb7b900106a1
[ "MIT" ]
3
2020-05-18T06:34:52.000Z
2020-07-17T07:11:57.000Z
pltools/train/module.py
PhoenixDL/PytorchLightningTools
86185062d4792e6d5eae002a5594bb7b900106a1
[ "MIT" ]
6
2021-06-25T18:21:06.000Z
2021-06-25T18:21:32.000Z
pltools/train/module.py
PhoenixDL/PytorchLightningTools
86185062d4792e6d5eae002a5594bb7b900106a1
[ "MIT" ]
1
2020-05-18T06:34:56.000Z
2020-05-18T06:34:56.000Z
from __future__ import annotations import typing import torch from torch.utils.data import DataLoader import pytorch_lightning as pl from pltools.config import Config transform_type = typing.Iterable[typing.Callable]
31.354839
72
0.590021
from __future__ import annotations import typing import torch from torch.utils.data import DataLoader import pytorch_lightning as pl from pltools.config import Config transform_type = typing.Iterable[typing.Callable] class Module(pl.LightningModule): def __init__(self, hparams: Config, model: torch.nn.Module, train_data: DataLoader = None, val_data: DataLoader = None, test_data: DataLoader = None, **kwargs): super().__init__(**kwargs) self.hparams = hparams self.model = model self.train_data = train_data self.val_data = val_data self.test_data = test_data self._initial_optimizers = None self._initial_forward = None def forward(self, data: torch.Tensor, *args, **kwargs): return self.model(data, *args, **kwargs) @pl.data_loader def train_dataloader(self) -> DataLoader: if self.train_data is None: return super().train_dataloader() return self.train_data @pl.data_loader def val_dataloader(self) -> DataLoader: if self.val_data is None: return super().val_dataloader() return self.val_data @pl.data_loader def test_dataloader(self) -> DataLoader: if self.test_data is None: return super().test_dataloader() return self.test_data @property def val_data(self): return self._get_internal_dataloader("val") @val_data.setter def val_data(self, loader): self._set_internal_dataloader("val", loader) @property def test_data(self): return self._get_internal_dataloader("test") @test_data.setter def test_data(self, loader): self._set_internal_dataloader("test", loader) def _get_internal_dataloader(self, name): return getattr(self, f'_{name}_loader') def _set_internal_dataloader(self, name, loader): setattr(self, f'_{name}_loader', loader) if (loader is not None and hasattr(self, f'_lazy_{name}_dataloader')): delattr(self, f'_lazy_{name}_dataloader') def enable_tta(self, trafos: transform_type = (), inverse_trafos: transform_type = None, tta_reduce: typing.Callable = None, ) -> None: self._initial_forward = self.forward self.forward = tta_wrapper(self.forward, trafos=trafos, inverse_trafos=inverse_trafos, tta_reduce=tta_reduce, ) def disable_tta(self) -> bool: if self._initial_forward is not None: self.forward = self._initial_forward self._initial_forward = None return True else: return False def tta_wrapper(func: typing.Callable, trafos: typing.Iterable[typing.Callable] = (), inverse_trafos: typing.Iterable[typing.Callable] = None, tta_reduce: typing.Callable = None, ) -> typing.Callable: _trafo = (None, *trafos) _inverse_trafos = (None, *inverse_trafos) def tta_forward(data: torch.Tensor, *args, **kwargs) -> typing.Any: tta_preds = [] for idx, t in enumerate(_trafo): tta_data = t(data) if t is not None else data tta_pred = func(tta_data, *args, **kwargs) if (_inverse_trafos is not None and _inverse_trafos[idx] is not None): tta_pred = _inverse_trafos[idx](tta_pred) tta_preds.append(tta_pred) if tta_reduce is not None: tta_preds = tta_reduce(tta_preds) return tta_preds return tta_forward
3,126
493
46
5be2c7014a6a8285c9a8486e36cad38accdcfdce
959
py
Python
postprocessors.py
ahmetb/simplegauges
c5a1e809f4534f72c436141f3c506b252ebb6b40
[ "Apache-2.0" ]
2
2015-02-14T22:26:36.000Z
2015-06-22T12:01:16.000Z
postprocessors.py
ahmetalpbalkan/simplegauges
c5a1e809f4534f72c436141f3c506b252ebb6b40
[ "Apache-2.0" ]
null
null
null
postprocessors.py
ahmetalpbalkan/simplegauges
c5a1e809f4534f72c436141f3c506b252ebb6b40
[ "Apache-2.0" ]
1
2019-04-15T13:45:11.000Z
2019-04-15T13:45:11.000Z
# coding: utf-8 from datetime import timedelta from helpers import make_record def day_fill(data, fill_value=None): """Given a data set with missing day values sorted by day, adds records with value of `fill_value` """ return generic_day_fill(1, data, fill_value) def week_fill(data, fill_value=None): """Given a sorted data set with missing week keys, adds records with value of `fill_value` """ return generic_day_fill(7, data, fill_value)
28.205882
75
0.630865
# coding: utf-8 from datetime import timedelta from helpers import make_record def day_fill(data, fill_value=None): """Given a data set with missing day values sorted by day, adds records with value of `fill_value` """ return generic_day_fill(1, data, fill_value) def week_fill(data, fill_value=None): """Given a sorted data set with missing week keys, adds records with value of `fill_value` """ return generic_day_fill(7, data, fill_value) def generic_day_fill(day_interval, data, fill_value=None): new_data = list() prev = None for dt in data: if prev: diff = (dt['key'] - prev['key']).days / day_interval if diff > 1: for i in range(1, diff): new_date = prev['key'] + timedelta(days=i*day_interval) new_data.append(make_record(new_date, fill_value)) new_data.append(dt) prev = dt return new_data
456
0
23
ac8a99e9b1eb5584ca24c2aca70dd9be5d5154e8
2,373
py
Python
Examples/AppKit/FieldGraph/CGraphModel.py
Khan/pyobjc-framework-Cocoa
f8b015ea2a72d8d78be6084fb12925c4785b8f1f
[ "MIT" ]
132
2015-01-01T10:02:42.000Z
2022-03-09T12:51:01.000Z
mac/pyobjc-framework-Cocoa/Examples/AppKit/FieldGraph/CGraphModel.py
mba811/music-player
7998986b34cfda2244ef622adefb839331b81a81
[ "BSD-2-Clause" ]
6
2015-01-06T08:23:19.000Z
2019-03-14T12:22:06.000Z
mac/pyobjc-framework-Cocoa/Examples/AppKit/FieldGraph/CGraphModel.py
mba811/music-player
7998986b34cfda2244ef622adefb839331b81a81
[ "BSD-2-Clause" ]
27
2015-02-23T11:51:43.000Z
2022-03-07T02:34:18.000Z
from Foundation import NSObject from objc import * from AppKit import NSBezierPath from fieldMath import * #____________________________________________________________
28.939024
122
0.572693
from Foundation import NSObject from objc import * from AppKit import NSBezierPath from fieldMath import * #____________________________________________________________ class CGraphModel(NSObject): def init(self): self.field = [1.0, 1.12, 0.567] self.phase = [degToRad(0), degToRad(152.6), degToRad(312.9-360)] self.RMSGain = 0 self.spacing = degToRad(90) return self def getGraph(self): path = NSBezierPath.bezierPath() maxMag = 0 mag = self.fieldValue(0) maxMag = max(maxMag, mag) path.moveToPoint_(polarToRect((mag, 0))) for deg in range(1, 359, 1): r = (deg/180.0)*pi mag = self.fieldValue(r) maxMag = max(maxMag, mag) path.lineToPoint_(polarToRect((mag, r))) path.closePath() return path, maxMag; def fieldGain(self): gain = 0 Et = self.field[0] + self.field[1] + self.field[2] if Et: # Don't want to divide by zero in the pathological case spacing = [0, self.spacing, 2*self.spacing] # This could easily be optimized--but this is just anexample :-) for i in range(3): for j in range(3): gain += self.field[i]*self.field[j] * cos(self.phase[j]-self.phase[i]) * bessel(spacing[j]-spacing[i]) gain = sqrt(gain) / Et self.RMSGain = gain return gain def fieldValue(self, a): # The intermedate values are used to more closely match standard field equations nomenclature E0 = self.field[0] E1 = self.field[1] E2 = self.field[2] B0 = self.phase[0] B1 = self.phase[1] + self.spacing * cos(a) B2 = self.phase[2] + 2 * self.spacing * cos(a) phix = sin(B0) * E0 + sin(B1) * E1 + sin(B2) * E2 phiy = cos(B0) * E0 + cos(B1) * E1 + cos(B2) * E2 mag = hypot(phix, phiy) return mag def setField(self, tower, field): self.field[tower] = field def getField(self, tower): return self.field[tower] def setPhase(self, tower, phase): self.phase[tower] = phase def getPhase(self, tower): return self.phase[tower] def setSpacing(self, spacing): self.spacing = spacing def getSpacing(self): return self.spacing
1,902
7
292
e8a306946d3872aaea3b9a534d70503e4797fe01
1,549
py
Python
opticspy/ray_tracing/tests/test1_spotdiagram.py
benJephunneh/opticspy
a0b841f60f7c053b05444c0e8886cd4a99c4d082
[ "MIT" ]
null
null
null
opticspy/ray_tracing/tests/test1_spotdiagram.py
benJephunneh/opticspy
a0b841f60f7c053b05444c0e8886cd4a99c4d082
[ "MIT" ]
null
null
null
opticspy/ray_tracing/tests/test1_spotdiagram.py
benJephunneh/opticspy
a0b841f60f7c053b05444c0e8886cd4a99c4d082
[ "MIT" ]
null
null
null
from __future__ import division as division import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import field import traceray import surface import cal_tools # test ray.py and traceray.py # define rays l1 = np.linspace(-5,5,10) Pos1 = [] for i in l1: for j in l1: if i**2+j**2<25: Pos1.append([i,j,0]) KLM = [] for i in Pos1: KLM.append([0,0,1]) # define surface surface1 = surface.Surface(number=1,radius = 10000000, thickness = 10, index = 1,STO=0) #object surface2 = surface.Surface(number=2,radius = 20, thickness = 40, index = 2,STO=0) #surface i surface3 = surface.Surface(number=3,radius = 10000000, thickness = 0, index = 1,STO=0) #image raylist1 = [] raylist2 = [] for pos,klm in zip(Pos1,KLM): ray1 = field.Field(Pos = pos, KLM = klm) raylist1.append(ray1) Pos_new_list,KLM_new_list = traceray.trace(raylist1,surface1,surface2) x = [] y = [] z = [] for i in Pos_new_list: x.append(i[0]) y.append(i[1]) z.append(i[2]) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(x, z, y) ax.set_xlim3d(-6, 6) ax.set_ylim3d(-6, 6) ax.set_zlim3d(-6, 6) plt.show() for pos,klm in zip(Pos_new_list,KLM_new_list): ray2 = field.Field(Pos = pos, KLM = klm) raylist2.append(ray2) Pos_new_list1,KLM_new_list1 = traceray.trace(raylist2, surface2, surface3) x2 = [] y2 = [] z2 = [] for i in Pos_new_list1: x2.append(i[0]) y2.append(i[1]) z2.append(i[2]) fig = plt.figure() plt.plot(x2,y2,'b*') plt.show() rms = cal_tools.rms(Pos_new_list1) print rms
19.123457
95
0.684312
from __future__ import division as division import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import field import traceray import surface import cal_tools # test ray.py and traceray.py # define rays l1 = np.linspace(-5,5,10) Pos1 = [] for i in l1: for j in l1: if i**2+j**2<25: Pos1.append([i,j,0]) KLM = [] for i in Pos1: KLM.append([0,0,1]) # define surface surface1 = surface.Surface(number=1,radius = 10000000, thickness = 10, index = 1,STO=0) #object surface2 = surface.Surface(number=2,radius = 20, thickness = 40, index = 2,STO=0) #surface i surface3 = surface.Surface(number=3,radius = 10000000, thickness = 0, index = 1,STO=0) #image raylist1 = [] raylist2 = [] for pos,klm in zip(Pos1,KLM): ray1 = field.Field(Pos = pos, KLM = klm) raylist1.append(ray1) Pos_new_list,KLM_new_list = traceray.trace(raylist1,surface1,surface2) x = [] y = [] z = [] for i in Pos_new_list: x.append(i[0]) y.append(i[1]) z.append(i[2]) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(x, z, y) ax.set_xlim3d(-6, 6) ax.set_ylim3d(-6, 6) ax.set_zlim3d(-6, 6) plt.show() for pos,klm in zip(Pos_new_list,KLM_new_list): ray2 = field.Field(Pos = pos, KLM = klm) raylist2.append(ray2) Pos_new_list1,KLM_new_list1 = traceray.trace(raylist2, surface2, surface3) x2 = [] y2 = [] z2 = [] for i in Pos_new_list1: x2.append(i[0]) y2.append(i[1]) z2.append(i[2]) fig = plt.figure() plt.plot(x2,y2,'b*') plt.show() rms = cal_tools.rms(Pos_new_list1) print rms
0
0
0
0584d6f43da520c5c77daa1e83965714f77af218
2,050
py
Python
core/test/mime/test_mime_codec_register.py
bogonets/answer
57f892a9841980bcbc35fa1e27521b34cd94bc25
[ "MIT" ]
3
2021-06-20T02:24:10.000Z
2022-01-26T23:55:33.000Z
core/test/mime/test_mime_codec_register.py
bogonets/answer
57f892a9841980bcbc35fa1e27521b34cd94bc25
[ "MIT" ]
null
null
null
core/test/mime/test_mime_codec_register.py
bogonets/answer
57f892a9841980bcbc35fa1e27521b34cd94bc25
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from unittest import TestCase, main from recc.mime.mime_codec_register import get_global_mime_register if __name__ == "__main__": main()
36.607143
71
0.692683
# -*- coding: utf-8 -*- from unittest import TestCase, main from recc.mime.mime_codec_register import get_global_mime_register class _ComplexObject: def __init__(self): self.test_data1 = "text" self.test_data2 = 100 self.test_data3 = 3.14 class MimeCodecRegisterTestCase(TestCase): def test_binary(self): test_data = {"aa": 11, "bb": 22.5, "cc": [1, 2, 3]} codec = get_global_mime_register() encoded_data = codec.encode_binary(test_data) self.assertIsInstance(encoded_data, bytes) decoded_data = codec.decode_binary(encoded_data) self.assertIsInstance(decoded_data, dict) self.assertEqual(decoded_data, test_data) def test_binary_complex(self): test_data = _ComplexObject() codec = get_global_mime_register() encoded_data = codec.encode_binary(test_data) self.assertIsInstance(encoded_data, bytes) decoded_data = codec.decode_binary(encoded_data) self.assertIsInstance(decoded_data, _ComplexObject) self.assertEqual(decoded_data.test_data1, test_data.test_data1) self.assertEqual(decoded_data.test_data2, test_data.test_data2) self.assertEqual(decoded_data.test_data3, test_data.test_data3) def test_json(self): test_data = {"aa": 11, "bb": 22.5, "cc": [1, 2, 3]} codec = get_global_mime_register() encoded_data = codec.encode_json(test_data) self.assertIsInstance(encoded_data, bytes) decoded_data = codec.decode_json(encoded_data) self.assertIsInstance(decoded_data, dict) self.assertEqual(decoded_data, test_data) def test_text(self): test_data = "Hello, World!" codec = get_global_mime_register() encoded_data = codec.encode_text(test_data) self.assertIsInstance(encoded_data, bytes) decoded_data = codec.decode_text(encoded_data) self.assertIsInstance(decoded_data, str) self.assertEqual(decoded_data, test_data) if __name__ == "__main__": main()
1,680
21
179
59330cfcf5414e3f86a1a7f10c339aa1302b5819
4,186
py
Python
concise_fanyi.py
Yo-gurts/dict
86e662ba9b7599473332c61de05635e8dce24f83
[ "MIT" ]
null
null
null
concise_fanyi.py
Yo-gurts/dict
86e662ba9b7599473332c61de05635e8dce24f83
[ "MIT" ]
null
null
null
concise_fanyi.py
Yo-gurts/dict
86e662ba9b7599473332c61de05635e8dce24f83
[ "MIT" ]
null
null
null
#!/usr/bin/env python3.7 import sys import json import signal import urllib.request as urllib import threading import pyperclip import time if __name__ == '__main__': exitflag = False try: signal.signal(signal.SIGINT, quit) signal.signal(signal.SIGTERM, quit) thread1 = Clipboard() thread2 = Outinput() thread1.setDaemon(True) thread1.start() thread2.setDaemon(True) thread2.start() thread1.join() thread2.join() print("bye!!") except: print()
29.272727
115
0.4742
#!/usr/bin/env python3.7 import sys import json import signal import urllib.request as urllib import threading import pyperclip import time class Dict: key = '716426270' keyFrom = 'wufeifei' api = 'http://fanyi.youdao.com/openapi.do?keyfrom=wufeifei&key=716426270&type=data&doctype=json&version=1.1&q=' content = None def __init__(self, argv): try: self.api = self.api + urllib.quote(argv) self.translate() except: print("Input invalid!!") def translate(self): content = urllib.urlopen(self.api).read() self.content = json.loads(content) self.parse() def parse(self): code = self.content['errorCode'] if code == 0: # Success try: u = self.content['basic']['us-phonetic'] # English e = self.content['basic']['uk-phonetic'] except KeyError: try: c = self.content['basic']['phonetic'] # Chinese except KeyError: c = 'None' u = 'None' e = 'None' try: explains = self.content['basic']['explains'] except KeyError: explains = 'None' print('\033[1;31m################################### \033[0m') # flag #print('\033[1;31m# \033[0m', self.content['query'], self.content['translation'][0], end="") print('\033[1;31m# \033[0m', self.content['query'], self.content['translation'][0]) if u != 'None': print('(U:', u, 'E:', e, ')') elif c != 'None': print('(Pinyin:', c, ')') else: print() if explains != 'None': for i in range(0, len(explains)): print('\033[1;31m# \033[0m', explains[i]) else: print('\033[1;31m# \033[0m Explains None') print('\033[1;31m################################### \033[0m') # Phrase # for i in range(0, len(self.content['web'])): # print self.content['web'][i]['key'], ':' # for j in range(0, len(self.content['web'][i]['value'])): # print self.content['web'][i]['value'][j] elif code == 20: # Text to long print('WORD TO LONG') elif code == 30: # Trans error print('TRANSLATE ERROR') elif code == 40: # Don't support this language print('CAN\'T SUPPORT THIS LANGUAGE') elif code == 50: # Key failed print('KEY FAILED') elif code == 60: # Don't have this word print('DO\'T HAVE THIS WORD') class Clipboard (threading.Thread): def __init__(self): threading.Thread.__init__(self) self.raw = "Welcome!!" def run(self): global exitflag while not exitflag: time.sleep(0.5) new_raw = pyperclip.paste() if new_raw != self.raw: self.raw = new_raw words = self.raw.split(",") print() for word in words: Dict(word) # 这里为什么不显示诶???? print(">>>", end="", flush=True) class Outinput (threading.Thread): def __init__(self): threading.Thread.__init__(self) def run(self): global exitflag while not exitflag: raw = input(">>>") words = raw.split(",") if words == ['exit']: exitflag = True else: for word in words: Dict(word) def quit(): print("bye!!") sys.exit() if __name__ == '__main__': exitflag = False try: signal.signal(signal.SIGINT, quit) signal.signal(signal.SIGTERM, quit) thread1 = Clipboard() thread2 = Outinput() thread1.setDaemon(True) thread1.start() thread2.setDaemon(True) thread2.start() thread1.join() thread2.join() print("bye!!") except: print()
3,147
280
198
ce0cef8e0251b3e6085357fac68c61249be16c60
2,512
py
Python
wikipedia_fetch.py
nik7273/computational-medical-knowledge
03357fc63382bed49509d7860f87a3d010f03018
[ "Apache-2.0" ]
null
null
null
wikipedia_fetch.py
nik7273/computational-medical-knowledge
03357fc63382bed49509d7860f87a3d010f03018
[ "Apache-2.0" ]
null
null
null
wikipedia_fetch.py
nik7273/computational-medical-knowledge
03357fc63382bed49509d7860f87a3d010f03018
[ "Apache-2.0" ]
1
2019-09-17T18:38:44.000Z
2019-09-17T18:38:44.000Z
# -*- coding: utf-8 -*- #Search Wikipedia for Heart Attack import wikipedia, codecs, itertools, os, time from pprint import pprint relevant_categories = {'medical','emergencies','disease'} conditions = ["heart attack","palpitations"] #Search all related pages? make_filename = lambda aStr: aStr.replace(' ','_') for condition in conditions: findRelevantArticles(condition,data_path=os.path.join('./data/wikipedia',make_filename(condition)))
55.822222
143
0.615844
# -*- coding: utf-8 -*- #Search Wikipedia for Heart Attack import wikipedia, codecs, itertools, os, time from pprint import pprint relevant_categories = {'medical','emergencies','disease'} def findRelevantArticles(term,data_path='.'): articleList = [] articles = wikipedia.search(term) #Setting suggestion = False (default value); No clear use for it now for article in articles: try: article = wikipedia.page(article) category_keywords = set(list(itertools.chain.from_iterable([category.lower().split() for category in article.categories]))) if len(category_keywords & relevant_categories) > 0: articlefilename = "content_"+str(article.title.lower())+".txt" if os.path.isfile(articlefilename): articlefilename = "content_"+ str(article.title.lower())+'%s.txt' % str(term+time.strftime("%Y%m%d-%H%M%S")) with codecs.open(os.path.join(data_path,articlefilename),'wb', 'utf-8') as outfile: content = wikipedia.page(article).content print>>outfile,content articleList.append(str(article.title)) except wikipedia.exceptions.PageError as e: pass except wikipedia.exceptions.DisambiguationError as e: for article in e.options: try: article = wikipedia.page(article) category_keywords = set(list(itertools.chain.from_iterable([category.lower().split() for category in article.categories]))) if len(category_keywords & relevant_categories) > 0: articlefilename = "content_"+str(article.title.lower())+".txt" if os.path.isfile(articlefilename): articlefilename = "content_"+ str(article.title.lower())+'%s.txt' % str(term+time.strftime("%Y%m%d-%H%M%S")) with codecs.open(os.path.join(data_path,articlefilename),'wb','utf-8') as outfile: print>>outfile,article.content articleList.append(str(article.title)) except wikipedia.exceptions.DisambiguationError as f: pass conditions = ["heart attack","palpitations"] #Search all related pages? make_filename = lambda aStr: aStr.replace(' ','_') for condition in conditions: findRelevantArticles(condition,data_path=os.path.join('./data/wikipedia',make_filename(condition)))
2,033
0
23
dd59d853dc65578a9c1c4b63d4f2b0e492d54f61
14,741
py
Python
accounts/views.py
witty-technologies-empowerment/codeupblood
a0aa1725e5776d80e083b6d4e9e67476bb97e983
[ "MIT" ]
null
null
null
accounts/views.py
witty-technologies-empowerment/codeupblood
a0aa1725e5776d80e083b6d4e9e67476bb97e983
[ "MIT" ]
null
null
null
accounts/views.py
witty-technologies-empowerment/codeupblood
a0aa1725e5776d80e083b6d4e9e67476bb97e983
[ "MIT" ]
1
2022-01-19T11:09:13.000Z
2022-01-19T11:09:13.000Z
from django.shortcuts import render from django.contrib.auth.models import User from django.contrib.auth import authenticate, login, logout from django.http import HttpResponseRedirect from django.urls import reverse from django.contrib.auth.decorators import login_required from datetime import datetime, timedelta from django.conf import settings from django.core.mail import EmailMultiAlternatives from django.template import Context from django.template.loader import render_to_string import random import string import requests import json from donor.models import DonorDetail as DD, NewDonor as ND from recipient.models import RecipientDetail as RD from .models import AccountPath as AP # Create your views here. @login_required(login_url='/accounts') #================= FUCTIONS =================#
35.86618
114
0.521606
from django.shortcuts import render from django.contrib.auth.models import User from django.contrib.auth import authenticate, login, logout from django.http import HttpResponseRedirect from django.urls import reverse from django.contrib.auth.decorators import login_required from datetime import datetime, timedelta from django.conf import settings from django.core.mail import EmailMultiAlternatives from django.template import Context from django.template.loader import render_to_string import random import string import requests import json from donor.models import DonorDetail as DD, NewDonor as ND from recipient.models import RecipientDetail as RD from .models import AccountPath as AP # Create your views here. def AccountHome(request): user_login = request.user if request.user.is_authenticated: check_path = AP.objects.filter(username=user_login) for x in check_path: path = x.path if path == 'admin': pass elif path == 'donor': return HttpResponseRedirect(reverse('donor:home')) else: # return HttpResponseRedirect(reverse('reci:home')) pass else: if request.method == 'POST': path = request.POST.get('path') if path == 'donor': return HttpResponseRedirect(reverse('donor:home')) else: # return HttpResponseRedirect(reverse('reci:home')) pass return render(request, 'accounts/home.html',) def donor_login(request, Nuser=None): user_login = request.user if request.user.is_authenticated: check_path = AP.objects.filter(username=user_login) for x in check_path: path = x.path if path == 'admin': pass elif path == 'donor': return HttpResponseRedirect(reverse('donor:home')) else: # return HttpResponseRedirect(reverse('reci:home')) pass else: next_url = None next_ = False display = False error = '' if 'next' in str(request): next_url = request.GET.get('next') next_ = True if request.method == 'POST': # user_name = request.POST.get('emailID') email = request.POST.get('username') email = str(email).strip().lower() pass_word = request.POST.get('password') password = str(pass_word).strip().lower() if '@' in email: get_email = User.objects.filter(email=email) if get_email.exists(): for x in get_email: username = x.username else: error = 'Invalid Login email' display = True context = { 'error':error, 'display':display, } return render(request, 'accounts/donor_login.html', context) else: get_username = User.objects.filter(username=email) if get_username.exists(): username = email else: error = 'Invalid Login User' display = True context = { 'error':error, 'display':display, } return render(request, 'accounts/donor_login.html', context) get_active = User.objects.filter(username=username.lower(), is_active=True) if get_active.exists(): user = authenticate(username=username.lower(), password=password) else: get_user = User.objects.filter(username=username.lower()) if get_user.exists(): error = 'Invalid Login Details' display = True context = { 'error':error, 'display':display, } return render(request, 'accounts/donor_login.html', context) else: error = 'Account Deactivated' display = True xdisplay = True context = { 'error':error, 'display':display, 'xdisplay':xdisplay, } return render(request, 'accounts/donor_login.html', context) if user: if user.is_active: login(request, user) # data = RA() # data.user = username # data.activity_type = 'login' # now = datetime.now() # date = now.strftime('%Y-%m-%dT%TZ') # data.time = date # data.status = 'You logged in near ' + location # data.save() # send_sms.send(sender=None, smstype='login-'+str(location), user = request.user) if 'admin' in username: url = str('/_') return HttpResponseRedirect(url) else: if next_: if('signout' not in next_url): return HttpResponseRedirect(next_url) else: return HttpResponseRedirect(reverse('donor:home')) else: return HttpResponseRedirect(reverse('donor:home')) else: error = 'Invalid Login' display = True context = { 'error':error, 'display':display, } return render(request, 'accounts/donor_login.html', context) else: error = 'Invalid Login' display = True context = { 'error':error, 'display':display, } return render(request, 'accounts/donor_login.html', context) else: if Nuser != None: context = { 'Nuser':Nuser, 'error':error, 'display':display, } else: context = { 'error':error, 'display':display, } return render(request, 'accounts/donor_login.html', context) return render(request, 'accounts/donor_login.html') def donor_reg(request): xcheck = False user_login = request.user full_name = '' username = '' email = '' user_id = ran_gen(6,'ABCDEFGHIJKLMPQRSTUVWXYZ123456789') while xcheck: check_id = AP.objects.filter(username=user_id) if check_id.exists(): user_id = ran_gen(6,'ABCDEFGHIJKLMPQRSTUVWXYZ123456789') xcheck = False else: xcheck = True display = False xList = [] if request.user.is_authenticated: check_path = AP.objects.filter(username=user_login) for x in check_path: path = x.path if path == 'admin': pass elif path == 'donor': return HttpResponseRedirect(reverse('donor:home')) else: # return HttpResponseRedirect(reverse('reci:home')) pass else: if request.method == 'POST': f_name = request.POST.get('name') full_name = f_name.lower().lstrip().rstrip() user_name = request.POST.get('username') username = user_name.lower().lstrip().rstrip() # gen_der = request.POST.get('gender') # gender = gen_der.lower().lstrip().rstrip() # blood_type = request.POST.get('bloodtype') # bloodtype = blood_type.lower().lstrip().rstrip() e_mail = request.POST.get('email') email = e_mail.lower().lstrip().rstrip() # tele_phone = request.POST.get('telephone') # telephone = tele_phone.lower().lstrip().rstrip() # sta_te = request.POST.get('state') # state = sta_te.lower().lstrip().rstrip() pass_ = request.POST.get('pass') password = pass_.lower().lstrip().rstrip() pass_2 = request.POST.get('pass2') password2 = pass_2.lower().lstrip().rstrip() checkemail = User.objects.filter(email=email) checkuser = User.objects.filter(username=username) if password != password2: error = {'error':"Both passwords didn't match"} display = True xList.append(error) if len(password) < 6 : error = {'error':"Password should be at least 6 charaters long"} display = True xList.append(error) if checkuser.exists(): error = {'error':str(username) + " is not available"} display = True xList.append(error) if checkemail.exists(): error = {'error':str(email) + " has been used"} display = True xList.append(error) email = '' if ' ' not in full_name: error = {'error':"Please provide full name with a space"} display = True xList.append(error) if not display: random_number = random.randint(0,16777215) hex_number = format(random_number,'x') hex_number = '#'+hex_number # RefCode = ran_gen(8,'ABCDEFGHIJKLMPQRSTUVWXYZ123456789') name = full_name.split(' ') namex = full_name.replace(' ', '-') detail = User() detail.first_name = name[0] detail.last_name = name[1] detail.username = username detail.email = email detail.set_password(password) detail.active = True detail.staff_status = False detail.superuser_status = False detail.save() a = AP() a.username = username a.color_code = hex_number a.path = 'donor' a.save() a = DD() a.full_name = full_name a.username = username a.gender = '' a.bloodtype = '' a.email = email a.telephone = '' a.state = '' a.password = password a.save() a = ND() a.user = username a.expires = datetime.now() + timedelta(hours=24) a.save() user = authenticate(username=username, password=password) if user: if user.is_active: try: URL = 'https://safewayfx.com/api/v1/codeupblood/newUser/'+namex+'/'+email+'/'+username print(URL) ress = json.loads(requests.get(URL).json()) print(str(ress)) except Exception as e: print('>>>'+str(e)) login(request, user) return HttpResponseRedirect(reverse('accounts:donor_add')) data = { 'user_id':'CB-'+user_id, 'display':display, 'xLists':xList, 'full_name':full_name, 'username':username, 'email':email, } return render(request, 'accounts/donor_reg.html', data) def donor_recover(request): return render(request, 'accounts/donor_pwd.html') def rec_login(request): return render(request, 'accounts/rec_login.html') def rec_reg(request): user_id = ran_gen(6,'ABCDEFGHIJKLMPQRSTUVWXYZ123456789') data = { 'user_id':user_id, } return render(request, 'accounts/rec_reg.html', data) def rec_recover(request): return render(request, 'accounts/rec_pwd.html') def donor_add(request): user_login = request.user display = False # if request.user.is_authenticated: # check_path = AP.objects.filter(username=user_login) # check_ = DD.objects.filter(username=user_login) # for x in check_path: # path = x.path # if path == 'admin': # return HttpResponseRedirect(reverse('admin')) # elif path == 'donor': # if check_.exists(): # return HttpResponseRedirect(reverse('donor:home')) # else: # # return HttpResponseRedirect(reverse('reci:home')) # pass # else: if request.method == 'POST': te_le = request.POST.get('tele') tele = te_le.lower().lstrip().rstrip() addre_ss = request.POST.get('address') address = addre_ss.lower().lstrip().rstrip() locali_ty = request.POST.get('locality') locality = locali_ty.lower().lstrip().rstrip() sta_te = request.POST.get('state') state = sta_te.lower().lstrip().rstrip() count_ry = request.POST.get('country') country = count_ry.lower().lstrip().rstrip() gend_er = request.POST.get('gender') gender = gend_er.lower().lstrip().rstrip() bloodty_pe = request.POST.get('bloodtype') bloodtype = bloodty_pe.lower().lstrip().rstrip() xList = [] checkPhone = DD.objects.filter(telephone=tele) if checkPhone.exists(): error = {'error':"Telephone already exists"} display = True xList.append(error) if not display: checkPhone = DD.objects.filter(username=user_login) for x in checkPhone: a = DD() a.pk = x.pk a.full_name = x.full_name a.username = x.username a.gender = gender a.bloodtype = bloodtype a.email = x.email a.telephone = tele a.address = address a.city = locality a.state = state a.country = country a.password = x.password a.created = x.created a.save() return HttpResponseRedirect(reverse('donor:home')) return render(request, 'accounts/donor_add.html') @login_required(login_url='/accounts') def any_user_signout(request): auth = request.user message = 'You have successfully signed out' logout(request) context = { 'message':message, 'auth':auth, } return HttpResponseRedirect(reverse('accounts:home')) #================= FUCTIONS =================# def ran_gen(size, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for x in range(size))
13,692
0
228
6bdd6d4d7f38f692c96a75ae5e82669cba9cf73b
1,036
py
Python
programs_tutorial_2/direct_disks_multirun.py
golu-golu/statistcal-mechanics
8ff66280ee5a6a816e6ca70934e92001e624dfad
[ "MIT" ]
null
null
null
programs_tutorial_2/direct_disks_multirun.py
golu-golu/statistcal-mechanics
8ff66280ee5a6a816e6ca70934e92001e624dfad
[ "MIT" ]
null
null
null
programs_tutorial_2/direct_disks_multirun.py
golu-golu/statistcal-mechanics
8ff66280ee5a6a816e6ca70934e92001e624dfad
[ "MIT" ]
null
null
null
import random, math N = 16 eta = 0.26 sigma = math.sqrt(eta / N / math.pi) n_runs = 100 print 'Note that this program might take a while!' for run in range(n_runs): iterations, config = direct_disks(N, sigma) print 'run',run print iterations - 1, 'tabula rasa wipe-outs before producing the following configuration' print config print
26.564103
94
0.542471
import random, math def dist(x,y): d_x = abs(x[0] - y[0]) % 1.0 d_x = min(d_x, 1.0 - d_x) d_y = abs(x[1] - y[1]) % 1.0 d_y = min(d_y, 1.0 - d_y) return math.sqrt(d_x**2 + d_y**2) def direct_disks(N, sigma): n_iter = 0 condition = False while condition == False: n_iter += 1 L = [(random.random(), random.random())] for k in range(1, N): a = (random.random(), random.random()) min_dist = min(dist(a, b) for b in L) if min_dist < 2.0 * sigma: condition = False break else: L.append(a) condition = True return n_iter, L N = 16 eta = 0.26 sigma = math.sqrt(eta / N / math.pi) n_runs = 100 print 'Note that this program might take a while!' for run in range(n_runs): iterations, config = direct_disks(N, sigma) print 'run',run print iterations - 1, 'tabula rasa wipe-outs before producing the following configuration' print config print
628
0
50
9ae56ae95d290db134f2e153096fa8dd43af143f
190
py
Python
Python/Topics/Regexp functions in Python/Matching username requirements/main.py
drtierney/hyperskill-problems
b74da993f0ac7bcff1cbd5d89a3a1b06b05f33e0
[ "MIT" ]
5
2020-08-29T15:15:31.000Z
2022-03-01T18:22:34.000Z
Python/Topics/Regexp functions in Python/Matching username requirements/main.py
drtierney/hyperskill-problems
b74da993f0ac7bcff1cbd5d89a3a1b06b05f33e0
[ "MIT" ]
null
null
null
Python/Topics/Regexp functions in Python/Matching username requirements/main.py
drtierney/hyperskill-problems
b74da993f0ac7bcff1cbd5d89a3a1b06b05f33e0
[ "MIT" ]
1
2020-12-02T11:13:14.000Z
2020-12-02T11:13:14.000Z
import re template = r"[a-zA-Z]" username = input() match = re.match(template, username) if match: print("Thank you!") else: print("Oops! The username has to start with a letter.")
19
59
0.668421
import re template = r"[a-zA-Z]" username = input() match = re.match(template, username) if match: print("Thank you!") else: print("Oops! The username has to start with a letter.")
0
0
0
ac03251cb2681eb1fe70b4d5e22c86a343b0173e
1,428
py
Python
tools/get_comm.py
hfingler/ava
8ade884d82dc1465a24fd1ab682a54afe1765f6e
[ "BSD-2-Clause" ]
null
null
null
tools/get_comm.py
hfingler/ava
8ade884d82dc1465a24fd1ab682a54afe1765f6e
[ "BSD-2-Clause" ]
null
null
null
tools/get_comm.py
hfingler/ava
8ade884d82dc1465a24fd1ab682a54afe1765f6e
[ "BSD-2-Clause" ]
1
2021-06-17T16:13:27.000Z
2021-06-17T16:13:27.000Z
import argparse import numpy as np if __name__ == '__main__': main()
29.75
85
0.553221
import argparse import numpy as np def load_stats(file_name, stats): with open(file_name, 'r') as fin: for line in fin: sp = line.strip().split(",") time = sp[1].strip() namesp = sp[0].split(" ") name = namesp[1] if name not in stats: stats[name] = [0, []] stats[name][0] += 1 stats[name][1].append(int(time)) def main(): parser = argparse.ArgumentParser() parser.add_argument("--gstats", required=True, type=str, help="guest stats file") parser.add_argument("--wstats", required=True, help="worker stats file") args = parser.parse_args() guest_stats = {} worker_stats = {} load_stats(args.gstats, guest_stats) load_stats(args.wstats, worker_stats) keys = sorted(guest_stats.keys()) for n in keys: if n[-6:] == "_async": name = n[:-6] else: name = n if name in worker_stats: g_exec_time = np.array(guest_stats[n][1]) w_exec_time = np.array(worker_stats[name][1]) g_exec_time = g_exec_time / 1000000.0 w_exec_time = w_exec_time / 1000000.0 g_total = np.sum(g_exec_time) w_total = np.sum(w_exec_time) print(str(n), round(g_total, 3), round(w_total, 3), round(g_total - w_total, 3)) if __name__ == '__main__': main()
1,305
0
46
6f33ee5e698e01170b6449db0fd472335c766d53
814
py
Python
src/livecoding/pythonreloader.py
ashwoods/python-qt-live-coding
b87e6fed021c5a9af72dee3b7b32f9c799816b8e
[ "MIT" ]
37
2018-07-08T04:53:12.000Z
2022-03-17T07:33:21.000Z
src/livecoding/pythonreloader.py
ashwoods/python-qt-live-coding
b87e6fed021c5a9af72dee3b7b32f9c799816b8e
[ "MIT" ]
2
2020-01-07T22:03:29.000Z
2020-09-28T12:15:57.000Z
src/livecoding/pythonreloader.py
ashwoods/python-qt-live-coding
b87e6fed021c5a9af72dee3b7b32f9c799816b8e
[ "MIT" ]
6
2020-02-12T18:55:13.000Z
2021-12-31T03:54:40.000Z
# -*- coding: utf-8 -*- import os import sys import signal import inspect from qtpy.QtCore import QObject, Slot
30.148148
84
0.638821
# -*- coding: utf-8 -*- import os import sys import signal import inspect from qtpy.QtCore import QObject, Slot class PythonReloader(QObject): def __init__(self, main, parent=None): super(PythonReloader, self).__init__(parent) self._main = main @Slot() def restart(self): import_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..') python_path = os.environ.get('PYTHONPATH', '') if import_dir not in python_path: python_path += ':{}'.format(import_dir) os.environ['PYTHONPATH'] = python_path args = [sys.executable, self._main] + sys.argv[1:] handler = signal.getsignal(signal.SIGTERM) if handler: handler(signal.SIGTERM, inspect.currentframe()) os.execv(sys.executable, args)
603
74
23
28dbf580557251c65f5af58073dd31f05369dcdd
482
py
Python
sla_cli/src/db/accessors/abbreviations.py
DavidWalshe93/SL-CLI
c92ca8a6e57eb51bf9c9433013ce16d443f8d152
[ "MIT" ]
2
2022-01-07T09:59:32.000Z
2022-01-25T12:04:06.000Z
sla_cli/src/db/accessors/abbreviations.py
DavidWalshe93/SL-CLI
c92ca8a6e57eb51bf9c9433013ce16d443f8d152
[ "MIT" ]
null
null
null
sla_cli/src/db/accessors/abbreviations.py
DavidWalshe93/SL-CLI
c92ca8a6e57eb51bf9c9433013ce16d443f8d152
[ "MIT" ]
1
2021-04-07T17:14:37.000Z
2021-04-07T17:14:37.000Z
""" Author: David Walshe Date: 08 April 2021 """ import logging from tabulate import tabulate from sla_cli.src.db.accessors.base import Accessor logger = logging.getLogger(__name__)
24.1
143
0.69917
""" Author: David Walshe Date: 08 April 2021 """ import logging from tabulate import tabulate from sla_cli.src.db.accessors.base import Accessor logger = logging.getLogger(__name__) class Abbreviations(Accessor): def abbreviations(self, tablefmt: str = "simple") -> str: """Returns the abbreviation table.""" return tabulate([(abbrev, dataset) for dataset, abbrev in self.db.abbrev.items()], headers=["Abbrev.", "Diagnosis"], tablefmt=tablefmt)
0
262
23
2ef452770876cc4be160a58e302e2efdc1a66543
20,528
py
Python
tia/analysis/model/ret.py
lsternlicht/tia
fe74d1876260a946e52bd733bc32da0698749f2c
[ "BSD-3-Clause" ]
null
null
null
tia/analysis/model/ret.py
lsternlicht/tia
fe74d1876260a946e52bd733bc32da0698749f2c
[ "BSD-3-Clause" ]
null
null
null
tia/analysis/model/ret.py
lsternlicht/tia
fe74d1876260a946e52bd733bc32da0698749f2c
[ "BSD-3-Clause" ]
null
null
null
from collections import OrderedDict import pandas as pd import numpy as np from tia.util.decorator import lazy_property from tia.analysis.model.interface import TxnPlColumns as TPL from tia.analysis.perf import drawdown_info, drawdowns, guess_freq, downside_deviation, periodicity from tia.analysis.plots import plot_return_on_dollar from tia.util.mplot import AxesFormat from tia.util.fmt import PercentFormatter, new_percent_formatter, new_float_formatter __all__ = ['RoiiRetCalculator', 'AumRetCalculator', 'FixedAumRetCalculator', 'CumulativeRets', 'Performance'] def return_on_initial_capital(capital, period_pl, leverage=None): """Return the daily return series based on the capital""" if capital <= 0: raise ValueError('cost must be a positive number not %s' % capital) leverage = leverage or 1. eod = capital + (leverage * period_pl.cumsum()) ltd_rets = (eod / capital) - 1. dly_rets = ltd_rets dly_rets.iloc[1:] = (1. + ltd_rets).pct_change().iloc[1:] return dly_rets
42.589212
120
0.610581
from collections import OrderedDict import pandas as pd import numpy as np from tia.util.decorator import lazy_property from tia.analysis.model.interface import TxnPlColumns as TPL from tia.analysis.perf import drawdown_info, drawdowns, guess_freq, downside_deviation, periodicity from tia.analysis.plots import plot_return_on_dollar from tia.util.mplot import AxesFormat from tia.util.fmt import PercentFormatter, new_percent_formatter, new_float_formatter __all__ = ['RoiiRetCalculator', 'AumRetCalculator', 'FixedAumRetCalculator', 'CumulativeRets', 'Performance'] def return_on_initial_capital(capital, period_pl, leverage=None): """Return the daily return series based on the capital""" if capital <= 0: raise ValueError('cost must be a positive number not %s' % capital) leverage = leverage or 1. eod = capital + (leverage * period_pl.cumsum()) ltd_rets = (eod / capital) - 1. dly_rets = ltd_rets dly_rets.iloc[1:] = (1. + ltd_rets).pct_change().iloc[1:] return dly_rets class RetCalculator(object): def compute(self, txns): raise NotImplementedError() class RoiiRetCalculator(RetCalculator): def __init__(self, leverage=None): """ :param leverage: {None, scalar, Series}, number to scale the position returns :return: """ get_lev = None if leverage is None: pass elif np.isscalar(leverage): if leverage <= 0: raise ValueError('leverage must be a positive non-zero number, not %s' % leverage) else: get_lev = lambda ts: leverage elif isinstance(leverage, pd.Series): get_lev = lambda ts: leverage.asof(ts) else: raise ValueError( 'leverage must be {None, positive scalar, Datetime/Period indexed Series} not %s' % type(leverage)) self.leverage = leverage self.get_lev = get_lev def compute(self, txns): txnpl = txns.pl.txn_frame txnrets = pd.Series(0, index=txnpl.index, name='ret') get_lev = self.get_lev for pid, pframe in txnpl[[TPL.OPEN_VAL, TPL.PID, TPL.PL, TPL.DT]].groupby(TPL.PID): if pid != 0: cost = abs(pframe[TPL.OPEN_VAL].iloc[0]) ppl = pframe[TPL.PL] lev = None if get_lev is None else get_lev(pframe[TPL.DT].iloc[0]) ret = return_on_initial_capital(cost, ppl, lev) txnrets[ppl.index] = ret txnrets.index = txnpl[TPL.DT] crets = CumulativeRets(txnrets) return Performance(crets) class FixedAumRetCalculator(RetCalculator): def __init__(self, aum, reset_freq='M'): self.aum = aum self.reset_freq = reset_freq # capture what cash flows would be needed on reset date to reset the aum self.external_cash_flows = None def compute(self, txns): ltd = txns.pl.ltd_txn grouper = pd.TimeGrouper(self.reset_freq) period_rets = pd.Series(np.nan, index=ltd.index) aum = self.aum at = 0 cf = OrderedDict() for key, grp in ltd.groupby(grouper): if grp.empty: continue eod = aum + grp sod = eod.shift(1) sod.iloc[0] = aum period_rets.iloc[at:at + len(grp.index)] = eod / sod - 1. at += len(grp.index) # get aum back to fixed amount cf[key] = eod.iloc[-1] - aum self.external_cash_flows = pd.Series(cf) crets = CumulativeRets(period_rets) return Performance(crets) class AumRetCalculator(RetCalculator): def __init__(self, starting_aum, freq='M'): self.starting_aum = starting_aum self.freq = freq self.txn_aum = None def compute(self, txns): ltd = txns.pl.ltd_txn grouper = pd.TimeGrouper(self.freq) period_rets = pd.Series(np.nan, index=ltd.index) self.txn_aum = txn_aum = pd.Series(np.nan, index=ltd.index) sop = self.starting_aum at = 0 for key, grp in ltd.groupby(grouper): if grp.empty: continue eod = sop + grp sod = eod.shift(1) sod.iloc[0] = sop period_rets.iloc[at:at + len(grp.index)] = eod / sod - 1. txn_aum.iloc[at:at + len(grp.index)] = sod at += len(grp.index) sop = eod.iloc[-1] crets = CumulativeRets(period_rets) return Performance(crets) class CumulativeRets(object): def __init__(self, rets=None, ltd_rets=None): if rets is None and ltd_rets is None: raise ValueError('rets or ltd_rets must be specified') if rets is None: if ltd_rets.empty: rets = ltd_rets else: rets = (1. + ltd_rets).pct_change() rets.iloc[0] = ltd_rets.iloc[0] if ltd_rets is None: if rets.empty: ltd_rets = rets else: ltd_rets = (1. + rets).cumprod() - 1. self.rets = rets self.ltd_rets = ltd_rets pds_per_year = property(lambda self: periodicity(self.rets)) def asfreq(self, freq): other_pds_per_year = periodicity(freq) if self.pds_per_year < other_pds_per_year: msg = 'Cannot downsample returns. Cannot convert from %s periods/year to %s' raise ValueError(msg % (self.pds_per_year, other_pds_per_year)) if freq == 'B': rets = (1. + self.rets).groupby(self.rets.index.date).apply(lambda s: s.prod()) - 1. # If you do not do this, it will be an object index rets.index = pd.DatetimeIndex([i for i in rets.index]) return CumulativeRets(rets) else: rets = (1. + self.rets).resample(freq, how='prod') - 1. return CumulativeRets(rets) # ----------------------------------------------------------- # Resampled data dly = lazy_property(lambda self: self.asfreq('B'), 'dly') weekly = lazy_property(lambda self: self.asfreq('W'), 'weekly') monthly = lazy_property(lambda self: self.asfreq('M'), 'monthly') quarterly = lazy_property(lambda self: self.asfreq('Q'), 'quarterly') annual = lazy_property(lambda self: self.asfreq('A'), 'annual') # ----------------------------------------------------------- # Basic Metrics @lazy_property def ltd_rets_ann(self): return (1. + self.ltd_rets) ** (self.pds_per_year / pd.expanding_count(self.rets)) - 1. cnt = property(lambda self: self.rets.notnull().astype(int).sum()) mean = lazy_property(lambda self: self.rets.mean(), 'avg') mean_ann = lazy_property(lambda self: self.mean * self.pds_per_year, 'avg_ann') ltd = lazy_property(lambda self: self.ltd_rets.iloc[-1], name='ltd') ltd_ann = lazy_property(lambda self: self.ltd_rets_ann.iloc[-1], name='ltd_ann') std = lazy_property(lambda self: self.rets.std(), 'std') std_ann = lazy_property(lambda self: self.std * np.sqrt(self.pds_per_year), 'std_ann') drawdown_info = lazy_property(lambda self: drawdown_info(self.rets), 'drawdown_info') drawdowns = lazy_property(lambda self: drawdowns(self.rets), 'drawdowns') maxdd = lazy_property(lambda self: self.drawdown_info['maxdd'].min(), 'maxdd') dd_avg = lazy_property(lambda self: self.drawdown_info['maxdd'].mean(), 'dd_avg') kurtosis = lazy_property(lambda self: self.rets.kurtosis(), 'kurtosis') skew = lazy_property(lambda self: self.rets.skew(), 'skew') sharpe_ann = lazy_property(lambda self: np.divide(self.ltd_ann, self.std_ann), 'sharpe_ann') downside_deviation = lazy_property(lambda self: downside_deviation(self.rets, mar=0, full=0, ann=1), 'downside_deviation') sortino = lazy_property(lambda self: self.ltd_ann / self.downside_deviation, 'sortino') @lazy_property def maxdd_dt(self): ddinfo = self.drawdown_info if ddinfo.empty: return None else: return self.drawdown_info['maxdd dt'].loc[self.drawdown_info['maxdd'].idxmin()] # ----------------------------------------------------------- # Expanding metrics expanding_mean = property(lambda self: pd.expanding_mean(self.rets), 'expanding_avg') expanding_mean_ann = property(lambda self: self.expanding_mean * self.pds_per_year, 'expanding_avg_ann') expanding_std = lazy_property(lambda self: pd.expanding_std(self.rets), 'expanding_std') expanding_std_ann = lazy_property(lambda self: self.expanding_std * np.sqrt(self.pds_per_year), 'expanding_std_ann') expanding_sharpe_ann = property(lambda self: np.divide(self.ltd_rets_ann, self.expanding_std_ann)) # ----------------------------------------------------------- # Rolling metrics rolling_mean = property(lambda self: pd.rolling_mean(self.rets), 'rolling_avg') rolling_mean_ann = property(lambda self: self.rolling_mean * self.pds_per_year, 'rolling_avg_ann') def rolling_ltd_rets(self, n): return pd.rolling_apply(self.rets, n, lambda s: (1. + s).prod() - 1.) def rolling_ltd_rets_ann(self, n): tot = self.rolling_ltd_rets(n) return tot ** (self.pds_per_year / n) def rolling_std(self, n): return pd.rolling_std(self.rets, n) def rolling_std_ann(self, n): return self.rolling_std(n) * np.sqrt(self.pds_per_year) def rolling_sharpe_ann(self, n): return self.rolling_ltd_rets_ann(n) / self.rolling_std_ann(n) def iter_by_year(self): """Split the return objects by year and iterate""" for key, grp in self.rets.groupby(lambda x: x.year): yield key, CumulativeRets(rets=grp) def truncate(self, before=None, after=None): rets = self.rets.truncate(before=before, after=after) return CumulativeRets(rets=rets) @lazy_property def summary(self): d = OrderedDict() d['ltd'] = self.ltd d['ltd ann'] = self.ltd_ann d['mean'] = self.mean d['mean ann'] = self.mean_ann d['std'] = self.std d['std ann'] = self.std_ann d['sharpe ann'] = self.sharpe_ann d['sortino'] = self.sortino d['maxdd'] = self.maxdd d['maxdd dt'] = self.maxdd_dt d['dd avg'] = self.dd_avg d['cnt'] = self.cnt return pd.Series(d, name=self.rets.index.freq or guess_freq(self.rets.index)) def _repr_html_(self): from tia.util.fmt import new_dynamic_formatter fmt = new_dynamic_formatter(method='row', precision=2, pcts=1, trunc_dot_zeros=1, parens=1) df = self.summary.to_frame() return fmt(df)._repr_html_() def get_alpha_beta(self, bm_rets): if isinstance(bm_rets, pd.Series): bm = CumulativeRets(bm_rets) elif isinstance(bm_rets, CumulativeRets): bm = bm_rets else: raise ValueError('bm_rets must be series or CumulativeRetPerformace not %s' % (type(bm_rets))) bm_freq = guess_freq(bm_rets) if self.pds_per_year != bm.pds_per_year: tgt = {'B': 'dly', 'W': 'weekly', 'M': 'monthly', 'Q': 'quarterly', 'A': 'annual'}.get(bm_freq, None) if tgt is None: raise ValueError('No mapping for handling benchmark with frequency: %s' % bm_freq) tmp = getattr(self, tgt) y = tmp.rets y_ann = tmp.ltd_ann else: y = self.rets y_ann = self.ltd_ann x = bm.rets.truncate(y.index[0], y.index[-1]) x_ann = bm.ltd_ann model = pd.ols(x=x, y=y) beta = model.beta[0] alpha = y_ann - beta * x_ann return pd.Series({'alpha': alpha, 'beta': beta}, name=bm_freq) def plot_ltd(self, ax=None, style='k', label='ltd', show_dd=1, title=True, legend=1): ltd = self.ltd_rets ax = ltd.plot(ax=ax, style=style, label=label) if show_dd: dd = self.drawdowns dd.plot(style='r', label='drawdowns', alpha=.5, ax=ax) ax.fill_between(dd.index, 0, dd.values, facecolor='red', alpha=.25) fmt = PercentFormatter AxesFormat().Y.percent().X.label("").apply(ax) legend and ax.legend(loc='upper left', prop={'size': 12}) # show the actualy date and value mdt, mdd = self.maxdd_dt, self.maxdd bbox_props = dict(boxstyle="round", fc="w", ec="0.5", alpha=0.25) try: dtstr = '{0}'.format(mdt.to_period()) except: # assume daily dtstr = '{0}'.format(hasattr(mdt, 'date') and mdt.date() or mdt) ax.text(mdt, dd[mdt], "{1} \n {0}".format(fmt(mdd), dtstr).strip(), ha="center", va="top", size=8, bbox=bbox_props) if title is True: pf = new_percent_formatter(1, parens=False, trunc_dot_zeros=True) ff = new_float_formatter(precision=1, parens=False, trunc_dot_zeros=True) total = pf(self.ltd_ann) vol = pf(self.std_ann) sh = ff(self.sharpe_ann) mdd = pf(self.maxdd) title = 'ret$\mathregular{_{ann}}$ %s vol$\mathregular{_{ann}}$ %s sharpe %s maxdd %s' % ( total, vol, sh, mdd) title and ax.set_title(title, fontdict=dict(fontsize=10, fontweight='bold')) return ax def plot_ret_on_dollar(self, title=None, show_maxdd=1, figsize=None, ax=None, append=0, label=None, **plot_args): plot_return_on_dollar(self.rets, title=title, show_maxdd=show_maxdd, figsize=figsize, ax=ax, append=append, label=label, **plot_args) def plot_hist(self, ax=None, **histplot_kwargs): pf = new_percent_formatter(precision=1, parens=False, trunc_dot_zeros=1) ff = new_float_formatter(precision=1, parens=False, trunc_dot_zeros=1) ax = self.rets.hist(ax=ax, **histplot_kwargs) AxesFormat().X.percent(1).apply(ax) m, s, sk, ku = pf(self.mean), pf(self.std), ff(self.skew), ff(self.kurtosis) txt = '$\mathregular{\mu}$=%s $\mathregular{\sigma}$=%s skew=%s kurt=%s' % (m, s, sk, ku) bbox = dict(facecolor='white', alpha=0.5) ax.text(0, 1, txt, fontdict={'fontweight': 'bold'}, bbox=bbox, ha='left', va='top', transform=ax.transAxes) return ax def filter(self, mask, keep_ltd=0): if isinstance(mask, pd.Series): mask = mask.values rets = self.rets.loc[mask] ltd = None if keep_ltd: ltd = self.ltd_rets.loc[mask] return CumulativeRets(rets=rets, ltd_rets=ltd) class Performance(object): def __init__(self, txn_rets): if isinstance(txn_rets, pd.Series): txn_rets = CumulativeRets(txn_rets) self.txn_details = txn_rets txn = property(lambda self: self.txn_details.rets) ltd_txn = property(lambda self: self.txn_details.ltd_rets) dly_details = lazy_property(lambda self: self.txn_details.dly, 'dly_details') dly = property(lambda self: self.dly_details.rets) ltd_dly = property(lambda self: self.dly_details.ltd_rets) ltd_dly_ann = property(lambda self: self.dly_details.ltd_rets_ann) weekly_details = lazy_property(lambda self: self.txn_details.weekly, 'weekly_details') weekly = property(lambda self: self.weekly_details.rets) ltd_weekly = property(lambda self: self.weekly_details.ltd_rets) ltd_weekly_ann = property(lambda self: self.weekly_details.ltd_rets_ann) monthly_details = lazy_property(lambda self: self.txn_details.monthly, 'monthly_details') monthly = property(lambda self: self.monthly_details.rets) ltd_monthly = property(lambda self: self.monthly_details.ltd_rets) ltd_monthly_ann = property(lambda self: self.monthly_details.ltd_rets_ann) quarterly_details = lazy_property(lambda self: self.txn_details.quarterly, 'quarterly_details') quarterly = property(lambda self: self.quarterly_details.rets) ltd_quarterly = property(lambda self: self.quarterly_details.ltd_rets) ltd_quarterly_ann = property(lambda self: self.quarterly_details.ltd_rets_ann) annual_details = lazy_property(lambda self: self.txn_details.annual, 'annual_details') annual = property(lambda self: self.annual_details.rets) ltd_annual = property(lambda self: self.annual_details.ltd_rets) ltd_annual_ann = property(lambda self: self.annual_details.ltd_rets_ann) def iter_by_year(self): """Split the return objects by year and iterate""" for yr, details in self.txn_details.iter_by_year(): yield yr, Performance(details) def filter(self, txn_mask): details = self.txn_details.filter(txn_mask) return Performance(details) def truncate(self, before=None, after=None): details = self.txn_details.truncate(before, after) return Performance(details) def report_by_year(self, summary_fct=None, years=None, ltd=1, prior_n_yrs=None, first_n_yrs=None, ranges=None, bm_rets=None): """Summary the returns :param summary_fct: function(Rets) and returns a dict or Series :param years: int, array, boolean or None. If boolean and False, then show no years. If int or array show only those years, else show all years if None :param ltd: include live to date summary :param prior_n_years: integer or list. Include summary for N years of return data prior to end date :param first_n_years: integer or list. Include summary for N years of return data after start date :param ranges: list of ranges. The range consists of a year start and year end :param dm_dly_rets: daily return series for the benchmark for beta/alpha calcs :return: DataFrame """ if years and np.isscalar(years): years = [years] if summary_fct is None: def summary_fct(performance): monthly = performance.monthly_details dly = performance.dly_details data = OrderedDict() data['ltd ann'] = monthly.ltd_ann data['mret avg'] = monthly.mean data['mret std ann'] = monthly.std_ann data['sharpe ann'] = monthly.sharpe_ann data['sortino'] = monthly.sortino data['maxdd'] = dly.maxdd data['maxdd dt'] = dly.maxdd_dt if bm_rets is not None: abseries = performance.get_alpha_beta(bm_rets) prefix = {'weekly': 'wkly ', 'monthly': 'mret '}.get(abseries.name, abseries.name) data['{0}beta'.format(prefix)] = abseries['beta'] data['{0}alpha'.format(prefix)] = abseries['alpha'] data['avg dd'] = dly.dd_avg data['best month'] = monthly.rets.max() data['worst month'] = monthly.rets.min() data['nmonths'] = monthly.cnt return data results = OrderedDict() if years is not False: for yr, robj in self.iter_by_year(): if years is None or yr in years: results[yr] = summary_fct(robj) # First n years if first_n_yrs: first_n_yrs = first_n_yrs if not np.isscalar(first_n_yrs) else [first_n_yrs] for first in first_n_yrs: after = '12/31/%s' % (self.dly.index[0].year + first) firstN = self.truncate(after=after) results['first {0}yrs'.format(first)] = summary_fct(firstN) # Ranges if ranges: for range in ranges: yr_start, yr_end = range rng_rets = self.truncate('1/1/%s' % yr_start, '12/31/%s' % yr_end) results['{0}-{1}'.format(yr_start, yr_end)] = summary_fct(rng_rets) # Prior n years if prior_n_yrs: prior_n_yrs = prior_n_yrs if not np.isscalar(prior_n_yrs) else [prior_n_yrs] for prior in prior_n_yrs: before = '1/1/%s' % (self.dly.index[-1].year - prior) priorN = self.truncate(before) results['past {0}yrs'.format(prior)] = summary_fct(priorN) # LTD if ltd: results['ltd'] = summary_fct(self) return pd.DataFrame(results, index=list(results.values())[0].keys()).T
10,461
8,768
270
90edd1b0fcff1bcb117d544390d61e218a49058d
158
py
Python
lib/solutions/HLO/hello_solution.py
DPNT-Sourcecode/FIZ-rsof01
a1820f2122c122dbf574077f08014967f83fbd9b
[ "Apache-2.0" ]
null
null
null
lib/solutions/HLO/hello_solution.py
DPNT-Sourcecode/FIZ-rsof01
a1820f2122c122dbf574077f08014967f83fbd9b
[ "Apache-2.0" ]
null
null
null
lib/solutions/HLO/hello_solution.py
DPNT-Sourcecode/FIZ-rsof01
a1820f2122c122dbf574077f08014967f83fbd9b
[ "Apache-2.0" ]
null
null
null
# noinspection PyUnusedLocal # friend_name = unicode string #print(hello("Mike"))
15.8
39
0.664557
# noinspection PyUnusedLocal # friend_name = unicode string def hello(friend_name): return("Hello, %s!" %friend_name ) #print(hello("Mike"))
42
0
25
bd98f8d6beada389f1d1528af29830037c5efe1e
3,535
py
Python
sketch/srft.py
wangshusen/PyRLA
066876545c8501dca8ec857676465553a0ebb822
[ "MIT" ]
12
2018-06-15T09:49:36.000Z
2020-05-08T12:42:06.000Z
sketch/srft.py
wangshusen/PyRLA
066876545c8501dca8ec857676465553a0ebb822
[ "MIT" ]
1
2020-06-09T11:46:05.000Z
2020-06-09T12:24:59.000Z
sketch/srft.py
wangshusen/PyRLA
066876545c8501dca8ec857676465553a0ebb822
[ "MIT" ]
3
2018-11-05T19:14:21.000Z
2019-10-23T02:41:10.000Z
import numpy # Remark: # Real FFT with even n is faster than real FFT with odd n. # I do not know why. def realfft_col(a_mat): ''' Real Fast Fourier Transform (FFT) Independently Applied to Each Column of A Input a_mat: n-by-d dense NumPy matrix. Output c_mat: n-by-d matrix C = F * A. Here F is the n-by-n orthogonal real FFT matrix (not explicitly formed) Notice that $C^T * C = A^T * A$; however, $C * C^T = A * A^T$ is not true. ''' n_int = a_mat.shape[0] fft_mat = numpy.fft.fft(a_mat, n=None, axis=0) / numpy.sqrt(n_int) if n_int % 2 == 1: cutoff_int = int((n_int+1) / 2) idx_real_vec = list(range(1, cutoff_int)) idx_imag_vec = list(range(cutoff_int, n_int)) else: cutoff_int = int(n_int/2) idx_real_vec = list(range(1, cutoff_int)) idx_imag_vec = list(range(cutoff_int+1, n_int)) c_mat = fft_mat.real c_mat[idx_real_vec, :] *= numpy.sqrt(2) c_mat[idx_imag_vec, :] = fft_mat[idx_imag_vec, :].imag * numpy.sqrt(2) return c_mat def realfft_row(a_mat): ''' Real Fast Fourier Transform (FFT) Independently Applied to Each Row of A Input a_mat: m-by-n dense NumPy matrix. Output c_mat: m-by-n matrix C = A * F. Here F is the n-by-n orthogonal real FFT matrix (not explicitly formed) Notice that $C * C^T = A * A^T$; however, $C^T * C = A^T * A$ is not true. ''' n_int = a_mat.shape[1] fft_mat = numpy.fft.fft(a_mat, n=None, axis=1) / numpy.sqrt(n_int) if n_int % 2 == 1: cutoff_int = int((n_int+1) / 2) idx_real_vec = list(range(1, cutoff_int)) idx_imag_vec = list(range(cutoff_int, n_int)) else: cutoff_int = int(n_int/2) idx_real_vec = list(range(1, cutoff_int)) idx_imag_vec = list(range(cutoff_int+1, n_int)) c_mat = fft_mat.real c_mat[:, idx_real_vec] *= numpy.sqrt(2) c_mat[:, idx_imag_vec] = fft_mat[:, idx_imag_vec].imag * numpy.sqrt(2) return c_mat def srft(a_mat, s_int): ''' Subsampled Randomized Fourier Transform (SRFT) for Dense Matrix Input a_mat: m-by-n dense NumPy matrix; s_int: sketch size. Output c_mat: m-by-s sketch C = A * S. Here S is the sketching matrix (not explicitly formed) ''' n_int = a_mat.shape[1] sign_vec = numpy.random.choice(2, n_int) * 2 - 1 idx_vec = numpy.random.choice(n_int, s_int, replace=False) a_mat = a_mat * sign_vec.reshape(1, n_int) a_mat = realfft_row(a_mat) c_mat = a_mat[:, idx_vec] * numpy.sqrt(n_int / s_int) return c_mat def srft2(a_mat, b_mat, s_int): ''' Subsampled Randomized Fourier Transform (SRFT) for Dense Matrix Input a_mat: m-by-n dense NumPy matrix; b_mat: d-by-n dense NumPy matrix; s_int: sketch size. Output c_mat: m-by-s sketch C = A * S; d_mat: d-by-s sketch D = B * S. Here S is the sketching matrix (not explicitly formed) ''' n_int = a_mat.shape[1] sign_vec = numpy.random.choice(2, n_int) * 2 - 1 idx_vec = numpy.random.choice(n_int, s_int, replace=False) a_mat = a_mat * sign_vec.reshape(1, n_int) a_mat = realfft_row(a_mat) c_mat = a_mat[:, idx_vec] * numpy.sqrt(n_int / s_int) b_mat = b_mat * sign_vec.reshape(1, n_int) b_mat = realfft_row(b_mat) d_mat = b_mat[:, idx_vec] * numpy.sqrt(n_int / s_int) return c_mat, d_mat
31.008772
79
0.604809
import numpy # Remark: # Real FFT with even n is faster than real FFT with odd n. # I do not know why. def realfft_col(a_mat): ''' Real Fast Fourier Transform (FFT) Independently Applied to Each Column of A Input a_mat: n-by-d dense NumPy matrix. Output c_mat: n-by-d matrix C = F * A. Here F is the n-by-n orthogonal real FFT matrix (not explicitly formed) Notice that $C^T * C = A^T * A$; however, $C * C^T = A * A^T$ is not true. ''' n_int = a_mat.shape[0] fft_mat = numpy.fft.fft(a_mat, n=None, axis=0) / numpy.sqrt(n_int) if n_int % 2 == 1: cutoff_int = int((n_int+1) / 2) idx_real_vec = list(range(1, cutoff_int)) idx_imag_vec = list(range(cutoff_int, n_int)) else: cutoff_int = int(n_int/2) idx_real_vec = list(range(1, cutoff_int)) idx_imag_vec = list(range(cutoff_int+1, n_int)) c_mat = fft_mat.real c_mat[idx_real_vec, :] *= numpy.sqrt(2) c_mat[idx_imag_vec, :] = fft_mat[idx_imag_vec, :].imag * numpy.sqrt(2) return c_mat def realfft_row(a_mat): ''' Real Fast Fourier Transform (FFT) Independently Applied to Each Row of A Input a_mat: m-by-n dense NumPy matrix. Output c_mat: m-by-n matrix C = A * F. Here F is the n-by-n orthogonal real FFT matrix (not explicitly formed) Notice that $C * C^T = A * A^T$; however, $C^T * C = A^T * A$ is not true. ''' n_int = a_mat.shape[1] fft_mat = numpy.fft.fft(a_mat, n=None, axis=1) / numpy.sqrt(n_int) if n_int % 2 == 1: cutoff_int = int((n_int+1) / 2) idx_real_vec = list(range(1, cutoff_int)) idx_imag_vec = list(range(cutoff_int, n_int)) else: cutoff_int = int(n_int/2) idx_real_vec = list(range(1, cutoff_int)) idx_imag_vec = list(range(cutoff_int+1, n_int)) c_mat = fft_mat.real c_mat[:, idx_real_vec] *= numpy.sqrt(2) c_mat[:, idx_imag_vec] = fft_mat[:, idx_imag_vec].imag * numpy.sqrt(2) return c_mat def srft(a_mat, s_int): ''' Subsampled Randomized Fourier Transform (SRFT) for Dense Matrix Input a_mat: m-by-n dense NumPy matrix; s_int: sketch size. Output c_mat: m-by-s sketch C = A * S. Here S is the sketching matrix (not explicitly formed) ''' n_int = a_mat.shape[1] sign_vec = numpy.random.choice(2, n_int) * 2 - 1 idx_vec = numpy.random.choice(n_int, s_int, replace=False) a_mat = a_mat * sign_vec.reshape(1, n_int) a_mat = realfft_row(a_mat) c_mat = a_mat[:, idx_vec] * numpy.sqrt(n_int / s_int) return c_mat def srft2(a_mat, b_mat, s_int): ''' Subsampled Randomized Fourier Transform (SRFT) for Dense Matrix Input a_mat: m-by-n dense NumPy matrix; b_mat: d-by-n dense NumPy matrix; s_int: sketch size. Output c_mat: m-by-s sketch C = A * S; d_mat: d-by-s sketch D = B * S. Here S is the sketching matrix (not explicitly formed) ''' n_int = a_mat.shape[1] sign_vec = numpy.random.choice(2, n_int) * 2 - 1 idx_vec = numpy.random.choice(n_int, s_int, replace=False) a_mat = a_mat * sign_vec.reshape(1, n_int) a_mat = realfft_row(a_mat) c_mat = a_mat[:, idx_vec] * numpy.sqrt(n_int / s_int) b_mat = b_mat * sign_vec.reshape(1, n_int) b_mat = realfft_row(b_mat) d_mat = b_mat[:, idx_vec] * numpy.sqrt(n_int / s_int) return c_mat, d_mat
0
0
0
72f88fd1c8c07e12acd9c900a420a669aa067518
1,162
py
Python
ifsp2019/publication_plot.py
andrekorol/flare-hunter
530d29275429b934d0ee8a20e21ed3ccc514e40c
[ "MIT" ]
null
null
null
ifsp2019/publication_plot.py
andrekorol/flare-hunter
530d29275429b934d0ee8a20e21ed3ccc514e40c
[ "MIT" ]
1
2021-08-31T19:17:19.000Z
2021-08-31T19:17:19.000Z
ifsp2019/publication_plot.py
andrekorol/flare-hunter
530d29275429b934d0ee8a20e21ed3ccc514e40c
[ "MIT" ]
null
null
null
from urldl import download from pycallisto import fitsfile callisto_archives = 'http://soleil80.cs.technik.fhnw.ch/' \ 'solarradio/data/2002-20yy_Callisto/' filelist = [ "BLEN7M_20110216_133009_24.fit.gz", "BLEN7M_20110216_134510_24.fit.gz", "BLEN7M_20110216_140011_24.fit.gz", "BLEN7M_20110216_141512_24.fit.gz", "BLEN7M_20110216_143014_24.fit.gz", "BLEN7M_20110216_144515_24.fit.gz", "BLEN7M_20110216_150016_24.fit.gz", "BLEN7M_20110216_151517_24.fit.gz", "BLEN7M_20110216_153019_24.fit.gz"] for filename in filelist: fits_year = filename.split('_')[1][:4] fits_month = filename.split('_')[1][4:6] fits_day = filename.split('_')[1][-2:] fits_url = f'{callisto_archives}/{fits_year}/{fits_month}/' \ f'{fits_day}/{filename}' download(fits_url) title = "Flare classe M1.6, 16/02/2011 (BLEN7M)" plot_filename = "for_publication" fitsfile.ECallistoFitsFile.plot_fits_files_list(filelist, title=title, plot_filename=plot_filename, show=True)
41.5
76
0.634251
from urldl import download from pycallisto import fitsfile callisto_archives = 'http://soleil80.cs.technik.fhnw.ch/' \ 'solarradio/data/2002-20yy_Callisto/' filelist = [ "BLEN7M_20110216_133009_24.fit.gz", "BLEN7M_20110216_134510_24.fit.gz", "BLEN7M_20110216_140011_24.fit.gz", "BLEN7M_20110216_141512_24.fit.gz", "BLEN7M_20110216_143014_24.fit.gz", "BLEN7M_20110216_144515_24.fit.gz", "BLEN7M_20110216_150016_24.fit.gz", "BLEN7M_20110216_151517_24.fit.gz", "BLEN7M_20110216_153019_24.fit.gz"] for filename in filelist: fits_year = filename.split('_')[1][:4] fits_month = filename.split('_')[1][4:6] fits_day = filename.split('_')[1][-2:] fits_url = f'{callisto_archives}/{fits_year}/{fits_month}/' \ f'{fits_day}/{filename}' download(fits_url) title = "Flare classe M1.6, 16/02/2011 (BLEN7M)" plot_filename = "for_publication" fitsfile.ECallistoFitsFile.plot_fits_files_list(filelist, title=title, plot_filename=plot_filename, show=True)
0
0
0
81ae7822a3dffbe5464ea6afa6466f1447ad89c3
420
py
Python
script.py
aptmess/detectime
8e0eac3c93a984448731b3311741ee22a7e881f4
[ "MIT" ]
2
2021-07-04T16:08:04.000Z
2021-08-03T08:42:03.000Z
script.py
aptmess/detectime
8e0eac3c93a984448731b3311741ee22a7e881f4
[ "MIT" ]
null
null
null
script.py
aptmess/detectime
8e0eac3c93a984448731b3311741ee22a7e881f4
[ "MIT" ]
null
null
null
import logging import yaml from detectime.detectime import detectron from definitions import ROOT_DIR from detectime.utils import convert_dict_to_tuple log = logging.getLogger(__name__) CONFIG_PATH = 'config.yml' if __name__ == '__main__': main()
20
51
0.747619
import logging import yaml from detectime.detectime import detectron from definitions import ROOT_DIR from detectime.utils import convert_dict_to_tuple log = logging.getLogger(__name__) CONFIG_PATH = 'config.yml' def main(): with open(ROOT_DIR / CONFIG_PATH) as f: data = yaml.safe_load(f) config = convert_dict_to_tuple(dictionary=data) detectron(config) if __name__ == '__main__': main()
141
0
23
3fe7567364e0b02ea873d5bd1fc31a5761c15b2e
2,090
py
Python
CloneWars.py
hallba/UnicornWrightFisher
9ed4cc5e21b47cee7f2c70dc8638d031169a4b9c
[ "MIT" ]
4
2021-04-09T19:45:47.000Z
2021-04-29T11:04:19.000Z
CloneWars.py
hallba/UnicornWrightFisher
9ed4cc5e21b47cee7f2c70dc8638d031169a4b9c
[ "MIT" ]
null
null
null
CloneWars.py
hallba/UnicornWrightFisher
9ed4cc5e21b47cee7f2c70dc8638d031169a4b9c
[ "MIT" ]
null
null
null
#!/usr/bin/env python """Clone wars simulator. Simulates the growth of clones in a 2D space. Mutations are induced by button presses. Currently untested. """ import splash splash.splashScreen("CloneWars!",rotation=270) import signal import sys import RPi.GPIO as GPIO try: import numpy as np except ImportError: import numpyReplace as np from UnicornWF import UnicornSimulator # Need to check the pin numbers RED_BUTTON_GPIO = 21 BLUE_BUTTON_GPIO = 16 GREEN_BUTTON_GPIO = 12 BLACK_BUTTON_GPIO = 25 GPIO.setmode(GPIO.BCM) buttons = [RED_BUTTON_GPIO, BLUE_BUTTON_GPIO, GREEN_BUTTON_GPIO, BLACK_BUTTON_GPIO] class DecayMutation(UnicornSimulator): """Random mutation turns cells black""" def mutate(self, colour=0): """Select a random cell and change fitness and colour to black.""" cell = np.random.randint(0, self.population) self.fitness[cell] += np.random.normal(loc=self.advantage, scale=0.1) if colour == None: self.colour[cell] = self.mutantColour else: self.colour[cell] = colour self.colourUpdate() if __name__ == "__main__": for BUTTON_GPIO in buttons: GPIO.setup(BUTTON_GPIO, GPIO.IN, pull_up_down=GPIO.PUD_UP) grid = DecayMutation(16, 30, 0.1, advantage=0.1) print("setup buttons") GPIO.add_event_detect(RED_BUTTON_GPIO, GPIO.FALLING, callback=redMutation, bouncetime=50) GPIO.add_event_detect(BLUE_BUTTON_GPIO, GPIO.FALLING, callback=blueMutation, bouncetime=50) GPIO.add_event_detect(GREEN_BUTTON_GPIO, GPIO.FALLING, callback=greenMutation, bouncetime=50) GPIO.add_event_detect(BLACK_BUTTON_GPIO, GPIO.FALLING, callback=blackMutation, bouncetime=50) print("enter loop") grid.runAndProject() GPIO.cleanup()
29.027778
83
0.688517
#!/usr/bin/env python """Clone wars simulator. Simulates the growth of clones in a 2D space. Mutations are induced by button presses. Currently untested. """ import splash splash.splashScreen("CloneWars!",rotation=270) import signal import sys import RPi.GPIO as GPIO try: import numpy as np except ImportError: import numpyReplace as np from UnicornWF import UnicornSimulator # Need to check the pin numbers RED_BUTTON_GPIO = 21 BLUE_BUTTON_GPIO = 16 GREEN_BUTTON_GPIO = 12 BLACK_BUTTON_GPIO = 25 GPIO.setmode(GPIO.BCM) buttons = [RED_BUTTON_GPIO, BLUE_BUTTON_GPIO, GREEN_BUTTON_GPIO, BLACK_BUTTON_GPIO] class DecayMutation(UnicornSimulator): """Random mutation turns cells black""" def mutate(self, colour=0): """Select a random cell and change fitness and colour to black.""" cell = np.random.randint(0, self.population) self.fitness[cell] += np.random.normal(loc=self.advantage, scale=0.1) if colour == None: self.colour[cell] = self.mutantColour else: self.colour[cell] = colour self.colourUpdate() if __name__ == "__main__": for BUTTON_GPIO in buttons: GPIO.setup(BUTTON_GPIO, GPIO.IN, pull_up_down=GPIO.PUD_UP) grid = DecayMutation(16, 30, 0.1, advantage=0.1) def redMutation(channel): print("red") grid.mutate(1) def blueMutation(channel): print("blue") grid.mutate(3) def greenMutation(channel): grid.mutate(2) def blackMutation(channel): grid.mutate(1) print("setup buttons") GPIO.add_event_detect(RED_BUTTON_GPIO, GPIO.FALLING, callback=redMutation, bouncetime=50) GPIO.add_event_detect(BLUE_BUTTON_GPIO, GPIO.FALLING, callback=blueMutation, bouncetime=50) GPIO.add_event_detect(GREEN_BUTTON_GPIO, GPIO.FALLING, callback=greenMutation, bouncetime=50) GPIO.add_event_detect(BLACK_BUTTON_GPIO, GPIO.FALLING, callback=blackMutation, bouncetime=50) print("enter loop") grid.runAndProject() GPIO.cleanup()
156
0
104
0d008bce694ff1d6c230937c72eb568aa96b7de2
3,146
py
Python
policy/migrations/0001_initial.py
agnihotri7/demo-api
ffccd7e7a21b99cb8282045b4c3343ff5888c527
[ "RSA-MD" ]
null
null
null
policy/migrations/0001_initial.py
agnihotri7/demo-api
ffccd7e7a21b99cb8282045b4c3343ff5888c527
[ "RSA-MD" ]
null
null
null
policy/migrations/0001_initial.py
agnihotri7/demo-api
ffccd7e7a21b99cb8282045b4c3343ff5888c527
[ "RSA-MD" ]
null
null
null
# Generated by Django 4.0.2 on 2022-02-06 09:41 from django.conf import settings from django.db import migrations, models import django.db.models.deletion
47.666667
219
0.579148
# Generated by Django 4.0.2 on 2022-02-06 09:41 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Quote', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('quote_type', models.CharField(max_length=200, verbose_name='Type')), ('status', models.CharField(choices=[('quoted', 'Quoted'), ('accepted', 'Accepted'), ('paid', 'Payment'), ('activated', 'Activated'), ('cancelled', 'Cancelled'), ('expired', 'Expired')], max_length=30)), ('sum_insured', models.FloatField(verbose_name='Sum insured in Policy')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('customer', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name': 'Quote', 'verbose_name_plural': 'Quotes', 'db_table': 'quote', }, ), migrations.CreateModel( name='UserPolicyHistory', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('status', models.CharField(choices=[('quoted', 'Quoted'), ('accepted', 'Accepted'), ('paid', 'Payment'), ('activated', 'Activated'), ('cancelled', 'Cancelled'), ('expired', 'Expired')], max_length=30)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('quote', models.ForeignKey(on_delete=django.db.models.deletion.RESTRICT, to='policy.quote')), ], options={ 'verbose_name': 'Policy History', 'verbose_name_plural': 'Policies Histories', 'db_table': 'policy_history', }, ), migrations.CreateModel( name='Policy', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('is_active', models.BooleanField(default=True, verbose_name='active')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('customer', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('quote', models.ForeignKey(on_delete=django.db.models.deletion.RESTRICT, to='policy.quote')), ], options={ 'verbose_name': 'Policy', 'verbose_name_plural': 'Policies', 'db_table': 'policy', }, ), ]
0
2,966
23
3b6a9325a976409cce0829d84577cbe4814d5ff2
2,660
py
Python
ann/neuralnetwork.py
manoloesparta/logicnet
97c6ee9be9bce9060c9cc4b51d0344df246500f9
[ "MIT" ]
2
2020-07-15T01:41:41.000Z
2020-12-10T03:19:40.000Z
ann/neuralnetwork.py
manoloesparta/logicnet
97c6ee9be9bce9060c9cc4b51d0344df246500f9
[ "MIT" ]
null
null
null
ann/neuralnetwork.py
manoloesparta/logicnet
97c6ee9be9bce9060c9cc4b51d0344df246500f9
[ "MIT" ]
null
null
null
import numpy as np
45.862069
113
0.687594
import numpy as np class NeuralNetwork: def __init__(self, inputs_nodes, hidden_layer1, hidden_layer2, output_nodes, learning_rate): self.inputs_nodes = inputs_nodes self.hidden_layer1 = hidden_layer1 self.hidden_layer2 = hidden_layer2 self.output_nodes = output_nodes self.learning_rate = learning_rate self.weights_inputs_layer1 = 2 * np.random.random((self.inputs_nodes, self.hidden_layer1)) - 1 self.weights_layer1_layer2 = 2 * np.random.random((self.hidden_layer1,self.hidden_layer2)) - 1 self.weights_layer2_output = 2 * np.random.random((self.hidden_layer2,self.output_nodes)) - 1 def train(self, input_list, output_list, epochs): for i in range(epochs): inputs = np.array(input_list) outputs = np.array(output_list) layer1_output = NeuralNetwork.sigmoid(np.dot(inputs, self.weights_inputs_layer1)) layer2_output = NeuralNetwork.sigmoid(np.dot(layer1_output, self.weights_layer1_layer2)) layer3_output = NeuralNetwork.sigmoid(np.dot(layer2_output, self.weights_layer2_output)) layer3_error = outputs - layer3_output layer3_delta = self.learning_rate * (layer3_error * NeuralNetwork.sigmoid(layer3_output, deriv=True)) layer2_error = np.dot(layer3_delta, self.weights_layer2_output.T) layer2_delta = self.learning_rate * (layer2_error * NeuralNetwork.sigmoid(layer2_output, deriv=True)) layer1_error = np.dot(layer2_delta, self.weights_layer1_layer2.T) layer1_delta = self.learning_rate * (layer1_error * NeuralNetwork.sigmoid(layer1_output, deriv=True)) self.weights_layer2_output += layer2_output.T.dot(layer3_delta) self.weights_layer1_layer2 += layer1_output.T.dot(layer2_delta) self.weights_inputs_layer1 += inputs.T.dot(layer1_delta) if (i % (epochs / 10)) == 0: print("Error: {:.8f}".format(np.mean(np.abs(layer3_error)))) return 'trained' def predict(self, input_data): inputs = np.array(input_data) layer1_output = NeuralNetwork.sigmoid(np.dot(inputs, self.weights_inputs_layer1)) layer2_output = NeuralNetwork.sigmoid(np.dot(layer1_output, self.weights_layer1_layer2)) layer3_output = NeuralNetwork.sigmoid(np.dot(layer2_output, self.weights_layer2_output)) print(layer3_output) return layer3_output @staticmethod def sigmoid(x, deriv=False): if deriv == True: return NeuralNetwork.sigmoid(x) * (1 - NeuralNetwork.sigmoid(x)) return 1 / (1 + np.exp(-x))
2,493
126
23
17ff2db4a4ef5d618281004b11bf14de2106dc58
885
py
Python
lh/tdd.py
skyf0cker/Statistical_learning_method
8151f3b8595ac086f08d161dc0cb961946f4b7fc
[ "MIT" ]
3
2019-03-25T14:15:30.000Z
2019-08-29T15:02:47.000Z
lh/tdd.py
skyf0cker/Statistical_learning_method
8151f3b8595ac086f08d161dc0cb961946f4b7fc
[ "MIT" ]
null
null
null
lh/tdd.py
skyf0cker/Statistical_learning_method
8151f3b8595ac086f08d161dc0cb961946f4b7fc
[ "MIT" ]
null
null
null
from EMAlgorithm import EmAlgorithm import numpy as np def create_data(mu0, sigma0, mu1, sigma1, alpha0, alpha1): ''' 初始化数据集 这里通过服从高斯分布的随机函数来伪造数据集 :param mu0: 高斯0的均值 :param sigma0: 高斯0的方差 :param mu1: 高斯1的均值 :param sigma1: 高斯1的方差 :param alpha0: 高斯0的系数 :param alpha1: 高斯1的系数 :return: 混合了两个高斯分布的数据 ''' #定义数据集长度为1000 length = 1000 #初始化第一个高斯分布,生成数据,数据长度为length * alpha系数,以此来 #满足alpha的作用 data0 = np.random.normal(mu0, sigma0, int(length * alpha0)) #第二个高斯分布的数据 data1 = np.random.normal(mu1, sigma1, int(length * alpha1)) #初始化总数据集 #两个高斯分布的数据混合后会放在该数据集中返回 dataSet = [] #将第一个数据集的内容添加进去 dataSet.extend(data0) #添加第二个数据集的数据 dataSet.extend(data1) #返回伪造好的数据集 return dataSet data = create_data(2, 2, 4, 2, 0.6, 0.4) e = EmAlgorithm(data, 2) e.train() # a = e.compute_gama() # e.update()
21.071429
63
0.656497
from EMAlgorithm import EmAlgorithm import numpy as np def create_data(mu0, sigma0, mu1, sigma1, alpha0, alpha1): ''' 初始化数据集 这里通过服从高斯分布的随机函数来伪造数据集 :param mu0: 高斯0的均值 :param sigma0: 高斯0的方差 :param mu1: 高斯1的均值 :param sigma1: 高斯1的方差 :param alpha0: 高斯0的系数 :param alpha1: 高斯1的系数 :return: 混合了两个高斯分布的数据 ''' #定义数据集长度为1000 length = 1000 #初始化第一个高斯分布,生成数据,数据长度为length * alpha系数,以此来 #满足alpha的作用 data0 = np.random.normal(mu0, sigma0, int(length * alpha0)) #第二个高斯分布的数据 data1 = np.random.normal(mu1, sigma1, int(length * alpha1)) #初始化总数据集 #两个高斯分布的数据混合后会放在该数据集中返回 dataSet = [] #将第一个数据集的内容添加进去 dataSet.extend(data0) #添加第二个数据集的数据 dataSet.extend(data1) #返回伪造好的数据集 return dataSet data = create_data(2, 2, 4, 2, 0.6, 0.4) e = EmAlgorithm(data, 2) e.train() # a = e.compute_gama() # e.update()
0
0
0
df7dd05fd77b54c6bccf40f3142f23f5cd3af718
662
py
Python
fcos_core/data/datasets/create_eccv_index.py
touchylk/fcoseccv
f9141bf98ffed6bd1292779ac022742c15d4555d
[ "BSD-2-Clause" ]
null
null
null
fcos_core/data/datasets/create_eccv_index.py
touchylk/fcoseccv
f9141bf98ffed6bd1292779ac022742c15d4555d
[ "BSD-2-Clause" ]
null
null
null
fcos_core/data/datasets/create_eccv_index.py
touchylk/fcoseccv
f9141bf98ffed6bd1292779ac022742c15d4555d
[ "BSD-2-Clause" ]
1
2020-10-04T13:23:33.000Z
2020-10-04T13:23:33.000Z
import os xmldir = '/media/e813/E/dataset/eccv/eccv/VisDrone2018-VID-val/xmlannotations' # datasetdir = '/media/e813/E/dataset/eccv/eccv/VisDrone2018-VID-train' # file = os.path.join(datasetdir,'index.txt') # f = open(file,'w') count=0 for seq in os.listdir(xmldir): seqpath = os.path.join(xmldir,seq) for n,xml_name in enumerate(os.listdir(seqpath)): count += 1 if n%4==0: name = xml_name[:-4] # f.write('{} {}\n'.format(seq,name)) print(count) # f.close() # with open(file) as f: # xmls = f.readlines() # xmls =[x.strip("\n") for x in xmls] # xmls = [x.split(' ') for x in xmls] # print(xmls[1:10])
30.090909
78
0.610272
import os xmldir = '/media/e813/E/dataset/eccv/eccv/VisDrone2018-VID-val/xmlannotations' # datasetdir = '/media/e813/E/dataset/eccv/eccv/VisDrone2018-VID-train' # file = os.path.join(datasetdir,'index.txt') # f = open(file,'w') count=0 for seq in os.listdir(xmldir): seqpath = os.path.join(xmldir,seq) for n,xml_name in enumerate(os.listdir(seqpath)): count += 1 if n%4==0: name = xml_name[:-4] # f.write('{} {}\n'.format(seq,name)) print(count) # f.close() # with open(file) as f: # xmls = f.readlines() # xmls =[x.strip("\n") for x in xmls] # xmls = [x.split(' ') for x in xmls] # print(xmls[1:10])
0
0
0
176c7ac46bee6e48a191724b39af0f412b02198f
3,298
py
Python
pepys_admin/maintenance/dialogs/add_dialog.py
debrief/pepys-import
12d29c0e0f69e1119400334983947893e7679b6b
[ "Apache-2.0" ]
4
2021-05-14T08:22:47.000Z
2022-02-04T19:48:25.000Z
pepys_admin/maintenance/dialogs/add_dialog.py
debrief/pepys-import
12d29c0e0f69e1119400334983947893e7679b6b
[ "Apache-2.0" ]
1,083
2019-11-06T17:01:07.000Z
2022-03-25T10:26:51.000Z
pepys_admin/maintenance/dialogs/add_dialog.py
debrief/pepys-import
12d29c0e0f69e1119400334983947893e7679b6b
[ "Apache-2.0" ]
4
2019-11-06T12:00:45.000Z
2021-06-09T04:18:28.000Z
import textwrap from asyncio import Future from prompt_toolkit.layout.containers import HSplit from prompt_toolkit.layout.dimension import D from prompt_toolkit.widgets import Button, Label from prompt_toolkit.widgets.dialogs import Dialog from pepys_admin.maintenance.utils import get_system_name_mappings from pepys_admin.maintenance.widgets.entry_edit_widget import EntryEditWidget
35.462366
97
0.650091
import textwrap from asyncio import Future from prompt_toolkit.layout.containers import HSplit from prompt_toolkit.layout.dimension import D from prompt_toolkit.widgets import Button, Label from prompt_toolkit.widgets.dialogs import Dialog from pepys_admin.maintenance.utils import get_system_name_mappings from pepys_admin.maintenance.widgets.entry_edit_widget import EntryEditWidget class AddDialog: def __init__(self, edit_data, table_object): """ A dialog for adding entries to a table :param column_data: The column_data dictionary for the given table object :type column_data: dict :param table_object: SQLAlchemy Table object, such as Platform, Sensor or Nationality :type table_object: SQLAlchemy Table Object """ self.future = Future() ok_button = Button(text="Add", handler=self.handle_ok) cancel_button = Button(text="Cancel", handler=self.handle_cancel) self.edit_data = edit_data self.required_columns = set( [value["system_name"] for key, value in self.edit_data.items() if value["required"]] ) self.entry_edit_widget = EntryEditWidget(self.edit_data, show_required_fields=True) self.error_message = Label("", style="class:error-message") instructions = Label( "Press TAB to move between fields. Required fields are marked with a *.", style="class:instruction-text-dark", ) self.body = HSplit([instructions, self.entry_edit_widget, self.error_message], padding=1) self.dialog = Dialog( title=f"Add {table_object.__name__}", body=self.body, buttons=[ok_button, cancel_button], width=D(preferred=80), modal=True, ) # Get the keybindings for the dialog and add a binding for Esc # to close the dialog dialog_kb = self.dialog.container.container.content.key_bindings @dialog_kb.add("escape") def _(event) -> None: self.handle_cancel() def handle_ok(self): try: output = self.entry_edit_widget.output except Exception: self.error_message.text = "Error converting values, please edit and try again" return provided_cols = set(output.keys()) if self.required_columns.issubset(provided_cols): # In this case, the user has entered values for all of the required columns self.future.set_result(output) else: # In this case they haven't, so display a sensible error message diff_list = self.required_columns.difference(provided_cols) ( system_name_to_display_name, _, ) = get_system_name_mappings(self.edit_data) diff_list_display_names = sorted( [system_name_to_display_name[sys_name] for sys_name in diff_list] ) diff_list_str = ", ".join(diff_list_display_names) self.error_message.text = textwrap.fill( f"Some required values missing: {diff_list_str}", 70 ) def handle_cancel(self): self.future.set_result(None) def __pt_container__(self): return self.dialog
1,180
1,707
23
bf0caeb72b9942c65f74bec1e761950a9b7f6e2d
624
py
Python
array/mergeTwoSortedArray.py
saai/LeetcodePythonSolutions
201f2054dda3f303ae6a376b40cbc7f98688322c
[ "MIT" ]
null
null
null
array/mergeTwoSortedArray.py
saai/LeetcodePythonSolutions
201f2054dda3f303ae6a376b40cbc7f98688322c
[ "MIT" ]
null
null
null
array/mergeTwoSortedArray.py
saai/LeetcodePythonSolutions
201f2054dda3f303ae6a376b40cbc7f98688322c
[ "MIT" ]
null
null
null
# @param {integer[]} nums1 # @param {integer} m # @param {integer[]} nums2 # @param {integer} n # @return {void} Do not return anything, modify nums1 in-place instead.
28.363636
75
0.421474
class Solution: # @param {integer[]} nums1 # @param {integer} m # @param {integer[]} nums2 # @param {integer} n # @return {void} Do not return anything, modify nums1 in-place instead. def merge(self, nums1, m, nums2, n): p1 = m-1 p2 = n-1 p3 = m+n-1 while(p1>=0 and p2>=0): if nums1[p1]>nums2[p2]: nums1[p3] = nums1[p1] p1 -= 1 else: nums1[p3] = nums2[p2] p2 -= 1 p3 -= 1 while (p2>=0): nums1[p3] = nums2[p2] p3 -= 1 p2 -= 1
395
-6
48
b9200d72886d859c7087fdff26f823fe6a74a941
4,928
py
Python
molecule/default/tests/test_default.py
chas0amx/ansible-postfix
b129c57fdddf00447a715cccea0758878de22d0b
[ "Apache-2.0" ]
1
2022-02-28T10:22:07.000Z
2022-02-28T10:22:07.000Z
molecule/default/tests/test_default.py
chas0amx/ansible-postfix
b129c57fdddf00447a715cccea0758878de22d0b
[ "Apache-2.0" ]
7
2021-11-18T07:25:50.000Z
2022-03-31T12:25:24.000Z
molecule/default/tests/test_default.py
chas0amx/ansible-postfix
b129c57fdddf00447a715cccea0758878de22d0b
[ "Apache-2.0" ]
1
2022-03-02T10:17:23.000Z
2022-03-02T10:17:23.000Z
from ansible.parsing.dataloader import DataLoader from ansible.template import Templar import json import pytest import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') @pytest.fixture() def get_vars(host): """ """ base_dir, molecule_dir = base_directory() distribution = host.system_info.distribution if distribution in ['debian', 'ubuntu']: os = "debian" elif distribution in ['redhat', 'ol', 'centos', 'rocky', 'almalinux']: os = "redhat" elif distribution in ['arch']: os = "archlinux" print(" -> {} / {}".format(distribution, os)) file_defaults = "file={}/defaults/main.yml name=role_defaults".format(base_dir) file_vars = "file={}/vars/main.yml name=role_vars".format(base_dir) file_molecule = "file={}/group_vars/all/vars.yml name=test_vars".format(molecule_dir) file_distibution = "file={}/vars/{}.yml name=role_distibution".format(base_dir, os) defaults_vars = host.ansible("include_vars", file_defaults).get("ansible_facts").get("role_defaults") vars_vars = host.ansible("include_vars", file_vars).get("ansible_facts").get("role_vars") distibution_vars = host.ansible("include_vars", file_distibution).get("ansible_facts").get("role_distibution") molecule_vars = host.ansible("include_vars", file_molecule).get("ansible_facts").get("test_vars") ansible_vars = defaults_vars ansible_vars.update(vars_vars) ansible_vars.update(distibution_vars) ansible_vars.update(molecule_vars) templar = Templar(loader=DataLoader(), variables=ansible_vars) result = templar.template(ansible_vars, fail_on_undefined=False) return result def test_directories(host, get_vars): """ used config directory debian based: /etc/mysql redhat based: /etc/my.cnf.d arch based : /etc/my.cnf.d """ pp_json(get_vars) directories = [ "/etc/postfix", "/etc/postfix/maps.d", "/etc/postfix/postfix-files.d", "/etc/postfix/dynamicmaps.cf.d" ] directories.append(get_vars.get("postfix_config_directory")) for dirs in directories: d = host.file(dirs) assert d.is_directory def test_files(host, get_vars): """ created config files """ files = [ "/etc/postfix/main.cf", "/etc/postfix/master.cf", "/etc/postfix/maps.d/generic", "/etc/postfix/maps.d/header_checks", "/etc/postfix/maps.d/sender_canonical_maps", ] files.append(get_vars.get("postfix_mailname_file")) files.append(get_vars.get("postfix_aliases_file")) for _file in files: f = host.file(_file) assert f.is_file def test_user(host, get_vars): """ created user """ shell = '/usr/sbin/nologin' distribution = host.system_info.distribution if distribution in ['redhat', 'ol', 'centos', 'rocky', 'almalinux']: shell = "/sbin/nologin" elif distribution == "arch": shell = "/usr/bin/nologin" user_name = "postfix" u = host.user(user_name) g = host.group(user_name) assert g.exists assert u.exists assert user_name in u.groups assert u.shell == shell def test_service_running_and_enabled(host, get_vars): """ running service """ service_name = "postfix" service = host.service(service_name) assert service.is_running assert service.is_enabled def test_listening_socket(host, get_vars): """ """ listening = host.socket.get_listening_sockets() interfaces = host.interface.names() eth = [] if "eth0" in interfaces: eth = host.interface("eth0").addresses for i in listening: print(i) for i in interfaces: print(i) for i in eth: print(i) distribution = host.system_info.distribution release = host.system_info.release bind_address = eth[0] bind_port = 25 socket_name = "private/smtp" listen = [] listen.append("tcp://{}:{}".format(bind_address, bind_port)) if not (distribution == 'ubuntu' and release == '18.04'): listen.append("unix://{}".format(socket_name)) for spec in listen: socket = host.socket(spec) assert socket.is_listening
26.494624
114
0.656859
from ansible.parsing.dataloader import DataLoader from ansible.template import Templar import json import pytest import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') def pp_json(json_thing, sort=True, indents=2): if type(json_thing) is str: print(json.dumps(json.loads(json_thing), sort_keys=sort, indent=indents)) else: print(json.dumps(json_thing, sort_keys=sort, indent=indents)) return None def base_directory(): cwd = os.getcwd() if('group_vars' in os.listdir(cwd)): directory = "../.." molecule_directory = "." else: directory = "." molecule_directory = "molecule/{}".format(os.environ.get('MOLECULE_SCENARIO_NAME')) return directory, molecule_directory @pytest.fixture() def get_vars(host): """ """ base_dir, molecule_dir = base_directory() distribution = host.system_info.distribution if distribution in ['debian', 'ubuntu']: os = "debian" elif distribution in ['redhat', 'ol', 'centos', 'rocky', 'almalinux']: os = "redhat" elif distribution in ['arch']: os = "archlinux" print(" -> {} / {}".format(distribution, os)) file_defaults = "file={}/defaults/main.yml name=role_defaults".format(base_dir) file_vars = "file={}/vars/main.yml name=role_vars".format(base_dir) file_molecule = "file={}/group_vars/all/vars.yml name=test_vars".format(molecule_dir) file_distibution = "file={}/vars/{}.yml name=role_distibution".format(base_dir, os) defaults_vars = host.ansible("include_vars", file_defaults).get("ansible_facts").get("role_defaults") vars_vars = host.ansible("include_vars", file_vars).get("ansible_facts").get("role_vars") distibution_vars = host.ansible("include_vars", file_distibution).get("ansible_facts").get("role_distibution") molecule_vars = host.ansible("include_vars", file_molecule).get("ansible_facts").get("test_vars") ansible_vars = defaults_vars ansible_vars.update(vars_vars) ansible_vars.update(distibution_vars) ansible_vars.update(molecule_vars) templar = Templar(loader=DataLoader(), variables=ansible_vars) result = templar.template(ansible_vars, fail_on_undefined=False) return result def test_directories(host, get_vars): """ used config directory debian based: /etc/mysql redhat based: /etc/my.cnf.d arch based : /etc/my.cnf.d """ pp_json(get_vars) directories = [ "/etc/postfix", "/etc/postfix/maps.d", "/etc/postfix/postfix-files.d", "/etc/postfix/dynamicmaps.cf.d" ] directories.append(get_vars.get("postfix_config_directory")) for dirs in directories: d = host.file(dirs) assert d.is_directory def test_files(host, get_vars): """ created config files """ files = [ "/etc/postfix/main.cf", "/etc/postfix/master.cf", "/etc/postfix/maps.d/generic", "/etc/postfix/maps.d/header_checks", "/etc/postfix/maps.d/sender_canonical_maps", ] files.append(get_vars.get("postfix_mailname_file")) files.append(get_vars.get("postfix_aliases_file")) for _file in files: f = host.file(_file) assert f.is_file def test_user(host, get_vars): """ created user """ shell = '/usr/sbin/nologin' distribution = host.system_info.distribution if distribution in ['redhat', 'ol', 'centos', 'rocky', 'almalinux']: shell = "/sbin/nologin" elif distribution == "arch": shell = "/usr/bin/nologin" user_name = "postfix" u = host.user(user_name) g = host.group(user_name) assert g.exists assert u.exists assert user_name in u.groups assert u.shell == shell def test_service_running_and_enabled(host, get_vars): """ running service """ service_name = "postfix" service = host.service(service_name) assert service.is_running assert service.is_enabled def test_listening_socket(host, get_vars): """ """ listening = host.socket.get_listening_sockets() interfaces = host.interface.names() eth = [] if "eth0" in interfaces: eth = host.interface("eth0").addresses for i in listening: print(i) for i in interfaces: print(i) for i in eth: print(i) distribution = host.system_info.distribution release = host.system_info.release bind_address = eth[0] bind_port = 25 socket_name = "private/smtp" listen = [] listen.append("tcp://{}:{}".format(bind_address, bind_port)) if not (distribution == 'ubuntu' and release == '18.04'): listen.append("unix://{}".format(socket_name)) for spec in listen: socket = host.socket(spec) assert socket.is_listening
528
0
46
c7055528d28431a2d229dc6240bb39f42df97a2f
42,845
py
Python
tests/pydevtest/test_chunkydevtest.py
PlantandFoodResearch/irods
9dfe7ffe5aa0760b7493bd9392ea1270df9335d4
[ "BSD-3-Clause" ]
null
null
null
tests/pydevtest/test_chunkydevtest.py
PlantandFoodResearch/irods
9dfe7ffe5aa0760b7493bd9392ea1270df9335d4
[ "BSD-3-Clause" ]
null
null
null
tests/pydevtest/test_chunkydevtest.py
PlantandFoodResearch/irods
9dfe7ffe5aa0760b7493bd9392ea1270df9335d4
[ "BSD-3-Clause" ]
null
null
null
import sys if (sys.version_info >= (2,7)): import unittest else: import unittest2 as unittest import pydevtest_sessions as s from pydevtest_common import assertiCmd, assertiCmdFail, interruptiCmd from resource_suite import ResourceBase import commands import os, stat import datetime import time import shutil import random
49.474596
180
0.61328
import sys if (sys.version_info >= (2,7)): import unittest else: import unittest2 as unittest import pydevtest_sessions as s from pydevtest_common import assertiCmd, assertiCmdFail, interruptiCmd from resource_suite import ResourceBase import commands import os, stat import datetime import time import shutil import random class ChunkyDevTest(ResourceBase): def test_beginning_from_devtest(self): # build expected variables with similar devtest names progname = __file__ myssize = str(os.stat(progname).st_size) username = s.adminsession.getUserName() irodszone = s.adminsession.getZoneName() testuser1 = s.sessions[1].getUserName() irodshome = "/"+irodszone+"/home/rods/"+s.adminsession.sessionId irodsdefresource = s.adminsession.getDefResource() dir_w = "." sfile2 = dir_w+"/sfile2" commands.getstatusoutput( "cat "+progname+" "+progname+" > "+sfile2 ) mysdir = "/tmp/irodssdir" myldir = dir_w+"/ldir" if os.path.exists( myldir ): shutil.rmtree( myldir ) assertiCmd(s.adminsession,"imkdir icmdtest") # test basic informational commands assertiCmd(s.adminsession,"iinit -l", "LIST", s.adminsession.getUserName() ) assertiCmd(s.adminsession,"iinit -l", "LIST", s.adminsession.getZoneName() ) assertiCmd(s.adminsession,"iinit -l", "LIST", s.adminsession.getDefResource() ) res = s.adminsession.runCmd('ils', ['-V']) assert (res[0].count('NOTICE: irodsHost') == 1 and res[0].count('NOTICE: irodsPort') == 1 and res[0].count('NOTICE: irodsDefResource') == 1) # begin original devtest assertiCmd(s.adminsession,"ilsresc", "LIST", self.testresc) assertiCmd(s.adminsession,"ilsresc -l", "LIST", self.testresc) assertiCmd(s.adminsession,"imiscsvrinfo", "LIST", ["relVersion"] ) assertiCmd(s.adminsession,"iuserinfo", "LIST", "name: "+username ) assertiCmd(s.adminsession,"ienv", "LIST", "irodsZone" ) assertiCmd(s.adminsession,"ipwd", "LIST", "home" ) assertiCmd(s.adminsession,"ihelp ils", "LIST", "ils" ) assertiCmd(s.adminsession,"ierror -14000", "LIST", "SYS_API_INPUT_ERR" ) assertiCmd(s.adminsession,"iexecmd hello", "LIST", "Hello world" ) assertiCmd(s.adminsession,"ips -v", "LIST", "ips" ) assertiCmd(s.adminsession,"iqstat", "LIST", "No delayed rules pending for user rods" ) # put and list basic file information assertiCmd(s.adminsession,"ils -AL","LIST","home") # debug assertiCmd(s.adminsession,"iput -K --wlock "+progname+" "+irodshome+"/icmdtest/foo1" ) assertiCmd(s.adminsession,"ichksum -f "+irodshome+"/icmdtest/foo1", "LIST", "performed = 1" ) assertiCmd(s.adminsession,"iput -kf "+progname+" "+irodshome+"/icmdtest/foo1" ) assertiCmd(s.adminsession,"ils "+irodshome+"/icmdtest/foo1" , "LIST", "foo1" ) assertiCmd(s.adminsession,"ils -l "+irodshome+"/icmdtest/foo1", "LIST", ["foo1",myssize] ) assertiCmd(s.adminsession,"iadmin ls "+irodshome+"/icmdtest", "LIST", "foo1" ) assertiCmd(s.adminsession,"ils -A "+irodshome+"/icmdtest/foo1", "LIST", username+"#"+irodszone+":own" ) assertiCmd(s.adminsession,"ichmod read "+testuser1+" "+irodshome+"/icmdtest/foo1" ) assertiCmd(s.adminsession,"ils -A "+irodshome+"/icmdtest/foo1", "LIST", testuser1+"#"+irodszone+":read" ) # basic replica assertiCmd(s.adminsession,"irepl -B -R "+self.testresc+" --rlock "+irodshome+"/icmdtest/foo1" ) assertiCmd(s.adminsession,"ils -l "+irodshome+"/icmdtest/foo1", "LIST", self.testresc ) # overwrite a copy assertiCmd(s.adminsession,"itrim -S "+irodsdefresource+" -N1 "+irodshome+"/icmdtest/foo1" ) assertiCmdFail(s.adminsession,"ils -L "+irodshome+"/icmdtest/foo1", "LIST", irodsdefresource ) assertiCmd(s.adminsession,"iphymv -R "+irodsdefresource+" "+irodshome+"/icmdtest/foo1" ) assertiCmd(s.adminsession,"ils -l "+irodshome+"/icmdtest/foo1", "LIST", irodsdefresource[0:19] ) # basic metadata shuffle assertiCmd(s.adminsession,"imeta add -d "+irodshome+"/icmdtest/foo1 testmeta1 180 cm" ) assertiCmd(s.adminsession,"imeta ls -d "+irodshome+"/icmdtest/foo1", "LIST", ["testmeta1"] ) assertiCmd(s.adminsession,"imeta ls -d "+irodshome+"/icmdtest/foo1", "LIST", ["180"] ) assertiCmd(s.adminsession,"imeta ls -d "+irodshome+"/icmdtest/foo1", "LIST", ["cm"] ) assertiCmd(s.adminsession,"icp -K -R "+self.testresc+" "+irodshome+"/icmdtest/foo1 "+irodshome+"/icmdtest/foo2" ) # new file mode check assertiCmd(s.adminsession,"iget -fK --rlock "+irodshome+"/icmdtest/foo2 /tmp/" ) assert oct(stat.S_IMODE(os.stat("/tmp/foo2").st_mode)) == '0640' os.unlink( "/tmp/foo2" ) assertiCmd(s.adminsession,"ils "+irodshome+"/icmdtest/foo2", "LIST", "foo2" ) assertiCmd(s.adminsession,"imv "+irodshome+"/icmdtest/foo2 "+irodshome+"/icmdtest/foo4" ) assertiCmd(s.adminsession,"ils -l "+irodshome+"/icmdtest/foo4", "LIST", "foo4" ) assertiCmd(s.adminsession,"imv "+irodshome+"/icmdtest/foo4 "+irodshome+"/icmdtest/foo2" ) assertiCmd(s.adminsession,"ils -l "+irodshome+"/icmdtest/foo2", "LIST", "foo2" ) assertiCmd(s.adminsession,"ichksum "+irodshome+"/icmdtest/foo2", "LIST", "foo2" ) assertiCmd(s.adminsession,"imeta add -d "+irodshome+"/icmdtest/foo2 testmeta1 180 cm" ) assertiCmd(s.adminsession,"imeta add -d "+irodshome+"/icmdtest/foo1 testmeta2 hello" ) assertiCmd(s.adminsession,"imeta ls -d "+irodshome+"/icmdtest/foo1", "LIST", ["testmeta1"] ) assertiCmd(s.adminsession,"imeta ls -d "+irodshome+"/icmdtest/foo1", "LIST", ["hello"] ) assertiCmd(s.adminsession,"imeta qu -d testmeta1 = 180", "LIST", "foo1" ) assertiCmd(s.adminsession,"imeta qu -d testmeta2 = hello", "LIST", "dataObj: foo1" ) assertiCmd(s.adminsession,"iget -f -K --rlock "+irodshome+"/icmdtest/foo2 "+dir_w ) assert myssize == str(os.stat(dir_w+"/foo2").st_size) os.unlink( dir_w+"/foo2" ) # we have foo1 in $irodsdefresource and foo2 in testresource # cleanup os.unlink( sfile2 ) def test_iput_ibun_gzip_bzip2_from_devtest(self): # build expected variables with similar devtest names progname = __file__ myssize = str(os.stat(progname).st_size) username = s.adminsession.getUserName() irodszone = s.adminsession.getZoneName() testuser1 = s.sessions[1].getUserName() irodshome = "/"+irodszone+"/home/rods/"+s.adminsession.sessionId irodsdefresource = s.adminsession.getDefResource() dir_w = "." sfile2 = dir_w+"/sfile2" commands.getstatusoutput( "cat "+progname+" "+progname+" > "+sfile2 ) mysdir = "/tmp/irodssdir" myldir = dir_w+"/ldir" if os.path.exists( myldir ): shutil.rmtree( myldir ) assertiCmd(s.adminsession,"imkdir icmdtest") # make a directory containing 20 small files if not os.path.isdir(mysdir): os.mkdir(mysdir) for i in range(20): mysfile = mysdir+"/sfile"+str(i) shutil.copyfile( progname, mysfile ) # we put foo1 in $irodsdefresource and foo2 in testresource assertiCmd(s.adminsession,"iput -K --wlock "+progname+" "+irodshome+"/icmdtest/foo1" ) assertiCmd(s.adminsession,"icp -K -R "+self.testresc+" "+irodshome+"/icmdtest/foo1 "+irodshome+"/icmdtest/foo2" ) assertiCmd(s.adminsession,"irepl -B -R "+self.testresc+" "+irodshome+"/icmdtest/foo1" ) phypath = dir_w+"/"+"foo1."+str(random.randrange(10000000)) assertiCmd(s.adminsession,"iput -kfR "+irodsdefresource+" "+sfile2+" "+irodshome+"/icmdtest/foo1" ) # show have 2 different copies assertiCmd(s.adminsession,"ils -l "+irodshome+"/icmdtest/foo1", "LIST", ["foo1",myssize] ) assertiCmd(s.adminsession,"ils -l "+irodshome+"/icmdtest/foo1", "LIST", ["foo1",str(os.stat(sfile2).st_size)] ) # update all old copies assertiCmd(s.adminsession,"irepl -U "+irodshome+"/icmdtest/foo1" ) # make sure the old size is not there assertiCmdFail(s.adminsession,"ils -l "+irodshome+"/icmdtest/foo1", "LIST", myssize ) assertiCmd(s.adminsession,"itrim -S "+irodsdefresource+" "+irodshome+"/icmdtest/foo1" ) # bulk test assertiCmd(s.adminsession,"iput -bIvPKr "+mysdir+" "+irodshome+"/icmdtest", "LIST", "Bulk upload" ) # iput with a lot of options rsfile = dir_w+"/rsfile" if os.path.isfile( rsfile ): os.unlink( rsfile ) assertiCmd(s.adminsession,"iput -PkITr -X "+rsfile+" --retries 10 "+mysdir+" "+irodshome+"/icmdtestw", "LIST", "Processing" ) assertiCmd(s.adminsession,"imv "+irodshome+"/icmdtestw "+irodshome+"/icmdtestw1" ) assertiCmd(s.adminsession,"ils -lr "+irodshome+"/icmdtestw1", "LIST", "sfile10" ) assertiCmd(s.adminsession,"ils -Ar "+irodshome+"/icmdtestw1", "LIST", "sfile10" ) assertiCmd(s.adminsession,"irm -rvf "+irodshome+"/icmdtestw1", "LIST", "num files done" ) if os.path.isfile( rsfile ): os.unlink( rsfile ) assertiCmd(s.adminsession,"iget -vIKPfr -X rsfile --retries 10 "+irodshome+"/icmdtest "+dir_w+"/testx", "LIST", "opened" ) if os.path.isfile( rsfile ): os.unlink( rsfile ) commands.getstatusoutput( "tar -chf "+dir_w+"/testx.tar -C "+dir_w+"/testx ." ) assertiCmd(s.adminsession,"iput "+dir_w+"/testx.tar "+irodshome+"/icmdtestx.tar" ) assertiCmd(s.adminsession,"ibun -x "+irodshome+"/icmdtestx.tar "+irodshome+"/icmdtestx" ) assertiCmd(s.adminsession,"ils -lr "+irodshome+"/icmdtestx", "LIST", ["foo2"] ) assertiCmd(s.adminsession,"ils -lr "+irodshome+"/icmdtestx", "LIST", ["sfile10"] ) assertiCmd(s.adminsession,"ibun -cDtar "+irodshome+"/icmdtestx1.tar "+irodshome+"/icmdtestx" ) assertiCmd(s.adminsession,"ils -l "+irodshome+"/icmdtestx1.tar", "LIST", "testx1.tar" ) if os.path.exists(dir_w+"/testx1"): shutil.rmtree(dir_w+"/testx1") os.mkdir( dir_w+"/testx1" ) if os.path.isfile( dir_w+"/testx1.tar" ): os.unlink( dir_w+"/testx1.tar" ) assertiCmd(s.adminsession,"iget "+irodshome+"/icmdtestx1.tar "+dir_w+"/testx1.tar" ) commands.getstatusoutput( "tar -xvf "+dir_w+"/testx1.tar -C "+dir_w+"/testx1" ) output = commands.getstatusoutput( "diff -r "+dir_w+"/testx "+dir_w+"/testx1/icmdtestx" ) print "output is ["+str(output)+"]" assert output[0] == 0 assert output[1] == "", "diff output was not empty..." # test ibun with gzip assertiCmd(s.adminsession,"ibun -cDgzip "+irodshome+"/icmdtestx1.tar.gz "+irodshome+"/icmdtestx" ) assertiCmd(s.adminsession,"ibun -x "+irodshome+"/icmdtestx1.tar.gz "+irodshome+"/icmdtestgz") if os.path.isfile( "icmdtestgz" ): os.unlink( "icmdtestgz" ) assertiCmd(s.adminsession,"iget -vr "+irodshome+"/icmdtestgz "+dir_w+"", "LIST", "icmdtestgz") output = commands.getstatusoutput( "diff -r "+dir_w+"/testx "+dir_w+"/icmdtestgz/icmdtestx" ) print "output is ["+str(output)+"]" assert output[0] == 0 assert output[1] == "", "diff output was not empty..." shutil.rmtree( dir_w+"/icmdtestgz") assertiCmd(s.adminsession,"ibun --add "+irodshome+"/icmdtestx1.tar.gz "+irodshome+"/icmdtestgz") assertiCmd(s.adminsession,"irm -rf "+irodshome+"/icmdtestx1.tar.gz "+irodshome+"/icmdtestgz") # test ibun with bzip2 assertiCmd(s.adminsession,"ibun -cDbzip2 "+irodshome+"/icmdtestx1.tar.bz2 "+irodshome+"/icmdtestx") assertiCmd(s.adminsession,"ibun -xb "+irodshome+"/icmdtestx1.tar.bz2 "+irodshome+"/icmdtestbz2") if os.path.isfile( "icmdtestbz2" ): os.unlink( "icmdtestbz2" ) assertiCmd(s.adminsession,"iget -vr "+irodshome+"/icmdtestbz2 "+dir_w+"", "LIST", "icmdtestbz2") output = commands.getstatusoutput( "diff -r "+dir_w+"/testx "+dir_w+"/icmdtestbz2/icmdtestx" ) print "output is ["+str(output)+"]" assert output[0] == 0 assert output[1] == "", "diff output was not empty..." shutil.rmtree( dir_w+"/icmdtestbz2" ) assertiCmd(s.adminsession,"irm -rf "+irodshome+"/icmdtestx1.tar.bz2") assertiCmd(s.adminsession,"iphybun -R "+self.anotherresc+" -Dbzip2 "+irodshome+"/icmdtestbz2" ) assertiCmd(s.adminsession,"itrim -N1 -S "+self.testresc+" -r "+irodshome+"/icmdtestbz2", "LIST", "Total size trimmed" ) assertiCmd(s.adminsession,"itrim -N1 -S "+irodsdefresource+" -r "+irodshome+"/icmdtestbz2", "LIST", "Total size trimmed" ) # get the name of bundle file output = commands.getstatusoutput( "ils -L "+irodshome+"/icmdtestbz2/icmdtestx/foo1 | tail -n1 | awk '{ print $NF }'") print output[1] bunfile = output[1] assertiCmd(s.adminsession,"ils --bundle "+bunfile, "LIST", "Subfiles" ) assertiCmd(s.adminsession,"irm -rf "+irodshome+"/icmdtestbz2") assertiCmd(s.adminsession,"irm -f --empty "+bunfile ) # cleanup os.unlink( dir_w+"/testx1.tar" ) os.unlink( dir_w+"/testx.tar" ) shutil.rmtree( dir_w+"/testx1" ) shutil.rmtree( dir_w+"/testx" ) os.unlink( sfile2 ) if os.path.exists( myldir ): shutil.rmtree( myldir ) if os.path.exists( mysdir ): shutil.rmtree( mysdir ) def test_ireg_from_devtest(self): # build expected variables with similar devtest names progname = __file__ myssize = str(os.stat(progname).st_size) username = s.adminsession.getUserName() irodszone = s.adminsession.getZoneName() testuser1 = s.sessions[1].getUserName() irodshome = "/"+irodszone+"/home/rods/"+s.adminsession.sessionId irodsdefresource = s.adminsession.getDefResource() dir_w = "." sfile2 = dir_w+"/sfile2" commands.getstatusoutput( "cat "+progname+" "+progname+" > "+sfile2 ) mysdir = "/tmp/irodssdir" myldir = dir_w+"/ldir" if os.path.exists( myldir ): shutil.rmtree( myldir ) assertiCmd(s.adminsession,"imkdir icmdtest") # make a directory containing 20 small files if not os.path.isdir(mysdir): os.mkdir(mysdir) for i in range(20): mysfile = mysdir+"/sfile"+str(i) shutil.copyfile( progname, mysfile ) commands.getstatusoutput( "mv "+sfile2+" /tmp/sfile2" ) commands.getstatusoutput( "cp /tmp/sfile2 /tmp/sfile2r" ) assertiCmd(s.adminsession,"ireg -KR "+self.testresc+" /tmp/sfile2 "+irodshome+"/foo5" ) # <-- FAILING - REASON FOR SKIPPING commands.getstatusoutput( "cp /tmp/sfile2 /tmp/sfile2r" ) assertiCmd(s.adminsession,"ireg -KR "+self.anotherresc+" --repl /tmp/sfile2r "+irodshome+"/foo5" ) assertiCmd(s.adminsession,"iget -fK "+irodshome+"/foo5 "+dir_w+"/foo5" ) output = commands.getstatusoutput("diff /tmp/sfile2 "+dir_w+"/foo5") print "output is ["+str(output)+"]" assert output[0] == 0 assert output[1] == "", "diff output was not empty..." assertiCmd(s.adminsession,"ireg -KCR "+self.testresc+" "+mysdir+" "+irodshome+"/icmdtesta" ) if os.path.exists(dir_w+"/testa"): shutil.rmtree( dir_w+"/testa" ) assertiCmd(s.adminsession,"iget -fvrK "+irodshome+"/icmdtesta "+dir_w+"/testa", "LIST", "testa" ) output = commands.getstatusoutput("diff -r "+mysdir+" "+dir_w+"/testa" ) print "output is ["+str(output)+"]" assert output[0] == 0 assert output[1] == "", "diff output was not empty..." shutil.rmtree( dir_w+"/testa" ) # test ireg with normal user testuser2home = "/"+irodszone+"/home/"+s.sessions[2].getUserName() commands.getstatusoutput( "cp /tmp/sfile2 /tmp/sfile2c" ) assertiCmd(s.sessions[2],"ireg -KR "+self.testresc+" /tmp/sfile2c "+testuser2home+"/foo5", "ERROR", "PATH_REG_NOT_ALLOWED" ) assertiCmd(s.sessions[2],"iput -R "+self.testresc+" /tmp/sfile2c "+testuser2home+"/foo5" ) assertiCmd(s.sessions[2],"irm -f "+testuser2home+"/foo5" ) # cleanup os.unlink( "/tmp/sfile2c" ) os.unlink( dir_w+"/foo5" ) if os.path.exists( myldir ): shutil.rmtree( myldir ) if os.path.exists( mysdir ): shutil.rmtree( mysdir ) def test_mcoll_from_devtest(self): # build expected variables with similar devtest names progname = __file__ myssize = str(os.stat(progname).st_size) username = s.adminsession.getUserName() irodszone = s.adminsession.getZoneName() testuser1 = s.sessions[1].getUserName() irodshome = "/"+irodszone+"/home/rods/"+s.adminsession.sessionId irodsdefresource = s.adminsession.getDefResource() dir_w = "." sfile2 = dir_w+"/sfile2" commands.getstatusoutput( "cat "+progname+" "+progname+" > "+sfile2 ) mysdir = "/tmp/irodssdir" myldir = dir_w+"/ldir" if os.path.exists( myldir ): shutil.rmtree( myldir ) # make a directory containing 20 small files if not os.path.isdir(mysdir): os.mkdir(mysdir) for i in range(20): mysfile = mysdir+"/sfile"+str(i) shutil.copyfile( progname, mysfile ) assertiCmd(s.adminsession,"imkdir icmdtest") # we put foo1 in $irodsdefresource and foo2 in testresource assertiCmd(s.adminsession,"iput -K --wlock "+progname+" "+irodshome+"/icmdtest/foo1" ) assertiCmd(s.adminsession,"icp -K -R "+self.testresc+" "+irodshome+"/icmdtest/foo1 "+irodshome+"/icmdtest/foo2" ) # prepare icmdtesta assertiCmd(s.adminsession,"ireg -KCR "+self.testresc+" "+mysdir+" "+irodshome+"/icmdtesta" ) # mcoll test assertiCmd(s.adminsession,"imcoll -m link "+irodshome+"/icmdtesta "+irodshome+"/icmdtestb" ) assertiCmd(s.adminsession,"ils -lr "+irodshome+"/icmdtestb", "LIST", "icmdtestb" ) if os.path.exists(dir_w+"/testb"): shutil.rmtree( dir_w+"/testb" ) assertiCmd(s.adminsession,"iget -fvrK "+irodshome+"/icmdtestb "+dir_w+"/testb", "LIST", "testb" ) output = commands.getstatusoutput("diff -r "+mysdir+" "+dir_w+"/testb" ) print "output is ["+str(output)+"]" assert output[0] == 0 assert output[1] == "", "diff output was not empty..." assertiCmd(s.adminsession,"imcoll -U "+irodshome+"/icmdtestb" ) assertiCmd(s.adminsession,"irm -rf "+irodshome+"/icmdtestb" ) shutil.rmtree( dir_w+"/testb" ) assertiCmd(s.adminsession,"imkdir "+irodshome+"/icmdtestm" ) assertiCmd(s.adminsession,"imcoll -m filesystem -R "+self.testresc+" "+mysdir+" "+irodshome+"/icmdtestm" ) assertiCmd(s.adminsession,"imkdir "+irodshome+"/icmdtestm/testmm" ) assertiCmd(s.adminsession,"iput "+progname+" "+irodshome+"/icmdtestm/testmm/foo1" ) assertiCmd(s.adminsession,"iput "+progname+" "+irodshome+"/icmdtestm/testmm/foo11" ) assertiCmd(s.adminsession,"imv "+irodshome+"/icmdtestm/testmm/foo1 "+irodshome+"/icmdtestm/testmm/foo2" ) assertiCmd(s.adminsession,"imv "+irodshome+"/icmdtestm/testmm "+irodshome+"/icmdtestm/testmm1" ) # mv to normal collection assertiCmd(s.adminsession,"imv "+irodshome+"/icmdtestm/testmm1/foo2 "+irodshome+"/icmdtest/foo100" ) assertiCmd(s.adminsession,"ils -l "+irodshome+"/icmdtest/foo100", "LIST", "foo100" ) assertiCmd(s.adminsession,"imv "+irodshome+"/icmdtestm/testmm1 "+irodshome+"/icmdtest/testmm1" ) assertiCmd(s.adminsession,"ils -lr "+irodshome+"/icmdtest/testmm1", "LIST", "foo11" ) assertiCmd(s.adminsession,"irm -rf "+irodshome+"/icmdtest/testmm1 "+irodshome+"/icmdtest/foo100" ) if os.path.exists(dir_w+"/testm"): shutil.rmtree( dir_w+"/testm" ) assertiCmd(s.adminsession,"iget -fvrK "+irodshome+"/icmdtesta "+dir_w+"/testm", "LIST", "testm") output = commands.getstatusoutput("diff -r "+mysdir+" "+dir_w+"/testm" ) print "output is ["+str(output)+"]" assert output[0] == 0 assert output[1] == "", "diff output was not empty..." assertiCmd(s.adminsession,"imcoll -U "+irodshome+"/icmdtestm" ) assertiCmd(s.adminsession,"irm -rf "+irodshome+"/icmdtestm" ) shutil.rmtree( dir_w+"/testm" ) assertiCmd(s.adminsession,"imkdir "+irodshome+"/icmdtestt_mcol" ) assertiCmd(s.adminsession,"ibun -c "+irodshome+"/icmdtestx.tar "+irodshome+"/icmdtest" ) # added so icmdtestx.tar exists assertiCmd(s.adminsession,"imcoll -m tar "+irodshome+"/icmdtestx.tar "+irodshome+"/icmdtestt_mcol" ) assertiCmd(s.adminsession,"ils -lr "+irodshome+"/icmdtestt_mcol", "LIST", ["foo2"] ) assertiCmd(s.adminsession,"ils -lr "+irodshome+"/icmdtestt_mcol", "LIST", ["foo1"] ) if os.path.exists(dir_w+"/testt"): shutil.rmtree( dir_w+"/testt" ) if os.path.exists(dir_w+"/testx"): shutil.rmtree( dir_w+"/testx" ) assertiCmd(s.adminsession,"iget -vr "+irodshome+"/icmdtest "+dir_w+"/testx", "LIST", "testx" ) assertiCmd(s.adminsession,"iget -vr "+irodshome+"/icmdtestt_mcol/icmdtest "+dir_w+"/testt", "LIST", "testt" ) output = commands.getstatusoutput("diff -r "+dir_w+"/testx "+dir_w+"/testt" ) print "output is ["+str(output)+"]" assert output[0] == 0 assert output[1] == "", "diff output was not empty..." assertiCmd(s.adminsession,"imkdir "+irodshome+"/icmdtestt_mcol/mydirtt" ) assertiCmd(s.adminsession,"iput "+progname+" "+irodshome+"/icmdtestt_mcol/mydirtt/foo1mt" ) assertiCmd(s.adminsession,"imv "+irodshome+"/icmdtestt_mcol/mydirtt/foo1mt "+irodshome+"/icmdtestt_mcol/mydirtt/foo1mtx" ) # unlink assertiCmd(s.adminsession,"imcoll -U "+irodshome+"/icmdtestt_mcol" ) # cleanup os.unlink( sfile2 ) shutil.rmtree( dir_w+"/testt" ) shutil.rmtree( dir_w+"/testx" ) if os.path.exists( mysdir ): shutil.rmtree( mysdir ) def test_large_dir_and_mcoll_from_devtest(self): # build expected variables with similar devtest names progname = __file__ myssize = str(os.stat(progname).st_size) username = s.adminsession.getUserName() irodszone = s.adminsession.getZoneName() testuser1 = s.sessions[1].getUserName() irodshome = "/"+irodszone+"/home/rods/"+s.adminsession.sessionId irodsdefresource = s.adminsession.getDefResource() dir_w = "." sfile2 = dir_w+"/sfile2" commands.getstatusoutput( "cat "+progname+" "+progname+" > "+sfile2 ) mysdir = "/tmp/irodssdir" myldir = dir_w+"/ldir" if os.path.exists( myldir ): shutil.rmtree( myldir ) assertiCmd(s.adminsession,"imkdir icmdtest") # we put foo1 in $irodsdefresource and foo2 in testresource assertiCmd(s.adminsession,"iput -K --wlock "+progname+" "+irodshome+"/icmdtest/foo1" ) assertiCmd(s.adminsession,"icp -K -R "+self.testresc+" "+irodshome+"/icmdtest/foo1 "+irodshome+"/icmdtest/foo2" ) assertiCmd(s.adminsession,"ibun -c "+irodshome+"/icmdtestx.tar "+irodshome+"/icmdtest" ) # added so icmdtestx.tar exists assertiCmd(s.adminsession,"imkdir "+irodshome+"/icmdtestt_large" ) assertiCmd(s.adminsession,"imcoll -m tar "+irodshome+"/icmdtestx.tar "+irodshome+"/icmdtestt_large" ) assertiCmd(s.adminsession,"imkdir "+irodshome+"/icmdtestt_large/mydirtt" ) # make a directory of 2 large files and 2 small files lfile = dir_w+"/lfile" lfile1 = dir_w+"/lfile1" commands.getstatusoutput( "echo 012345678901234567890123456789012345678901234567890123456789012 > "+lfile ) for i in range(6): commands.getstatusoutput( "cat "+lfile+" "+lfile+" "+lfile+" "+lfile+" "+lfile+" "+lfile+" "+lfile+" "+lfile+" "+lfile+" > "+lfile1 ) os.rename ( lfile1, lfile ) os.mkdir( myldir ) for i in range(1,3): mylfile = myldir+"/lfile"+str(i) mysfile = myldir+"/sfile"+str(i) if i != 2: shutil.copyfile( lfile, mylfile ) else: os.rename( lfile, mylfile ) shutil.copyfile( progname, mysfile ) # test adding a large file to a mounted collection assertiCmd(s.adminsession,"iput "+myldir+"/lfile1 "+irodshome+"/icmdtestt_large/mydirtt" ) assertiCmd(s.adminsession,"iget "+irodshome+"/icmdtestt_large/mydirtt/lfile1 "+dir_w+"/testt" ) assertiCmd(s.adminsession,"irm -rf "+irodshome+"/icmdtestt_large/mydirtt" ) assertiCmd(s.adminsession,"imcoll -s "+irodshome+"/icmdtestt_large" ) assertiCmd(s.adminsession,"imcoll -p "+irodshome+"/icmdtestt_large" ) assertiCmd(s.adminsession,"imcoll -U "+irodshome+"/icmdtestt_large" ) assertiCmd(s.adminsession,"irm -rf "+irodshome+"/icmdtestt_large" ) os.unlink( dir_w+"/testt" ) # cleanup os.unlink( sfile2 ) if os.path.exists( myldir ): shutil.rmtree( myldir ) def test_phybun_from_devtest(self): # build expected variables with similar devtest names progname = __file__ myssize = str(os.stat(progname).st_size) username = s.adminsession.getUserName() irodszone = s.adminsession.getZoneName() testuser1 = s.sessions[1].getUserName() irodshome = "/"+irodszone+"/home/rods/"+s.adminsession.sessionId irodsdefresource = s.adminsession.getDefResource() dir_w = "." sfile2 = dir_w+"/sfile2" commands.getstatusoutput( "cat "+progname+" "+progname+" > "+sfile2 ) mysdir = "/tmp/irodssdir" myldir = dir_w+"/ldir" if os.path.exists( myldir ): shutil.rmtree( myldir ) assertiCmd(s.adminsession,"imkdir icmdtest") # make a directory containing 20 small files if not os.path.isdir(mysdir): os.mkdir(mysdir) for i in range(20): mysfile = mysdir+"/sfile"+str(i) shutil.copyfile( progname, mysfile ) # iphybun test assertiCmd(s.adminsession,"iput -rR "+self.testresc+" "+mysdir+" "+irodshome+"/icmdtestp" ) assertiCmd(s.adminsession,"iphybun -KR "+self.anotherresc+" "+irodshome+"/icmdtestp" ) assertiCmd(s.adminsession,"itrim -rS "+self.testresc+" -N1 "+irodshome+"/icmdtestp", "LIST", "files trimmed" ) output = commands.getstatusoutput( "ils -L "+irodshome+"/icmdtestp/sfile1 | tail -n1 | awk '{ print $NF }'") print output[1] bunfile = output[1] assertiCmd(s.adminsession,"irepl --purgec -R "+self.anotherresc+" "+bunfile ) assertiCmd(s.adminsession,"itrim -rS "+self.testresc+" -N1 "+irodshome+"/icmdtestp", "LIST", "files trimmed" ) # get the name of bundle file assertiCmd(s.adminsession,"irm -f --empty "+bunfile ) # should not be able to remove it because it is not empty assertiCmd(s.adminsession,"ils "+bunfile, "LIST", bunfile ) assertiCmd(s.adminsession,"irm -rvf "+irodshome+"/icmdtestp", "LIST", "num files done" ) assertiCmd(s.adminsession,"irm -f --empty "+bunfile ) if os.path.exists(dir_w+"/testp"): shutil.rmtree( dir_w+"/testp" ) shutil.rmtree( mysdir ) # cleanup os.unlink( sfile2 ) if os.path.exists( myldir ): shutil.rmtree( myldir ) if os.path.exists( mysdir ): shutil.rmtree( mysdir ) def test_irsync_from_devtest(self): # build expected variables with similar devtest names progname = __file__ myssize = str(os.stat(progname).st_size) username = s.adminsession.getUserName() irodszone = s.adminsession.getZoneName() testuser1 = s.sessions[1].getUserName() irodshome = "/"+irodszone+"/home/rods/"+s.adminsession.sessionId irodsdefresource = s.adminsession.getDefResource() dir_w = "." sfile2 = dir_w+"/sfile2" commands.getstatusoutput( "cat "+progname+" "+progname+" > "+sfile2 ) mysdir = "/tmp/irodssdir" myldir = dir_w+"/ldir" if os.path.exists( myldir ): shutil.rmtree( myldir ) assertiCmd(s.adminsession,"imkdir icmdtest") # testing irsync assertiCmd(s.adminsession,"irsync "+progname+" i:"+irodshome+"/icmdtest/foo100" ) assertiCmd(s.adminsession,"irsync i:"+irodshome+"/icmdtest/foo100 "+dir_w+"/foo100" ) assertiCmd(s.adminsession,"irsync i:"+irodshome+"/icmdtest/foo100 i:"+irodshome+"/icmdtest/foo200" ) assertiCmd(s.adminsession,"irm -f "+irodshome+"/icmdtest/foo100 "+irodshome+"/icmdtest/foo200") assertiCmd(s.adminsession,"iput -R "+self.testresc+" "+progname+" "+irodshome+"/icmdtest/foo100") assertiCmd(s.adminsession,"irsync "+progname+" i:"+irodshome+"/icmdtest/foo100" ) assertiCmd(s.adminsession,"iput -R "+self.testresc+" "+progname+" "+irodshome+"/icmdtest/foo200") assertiCmd(s.adminsession,"irsync i:"+irodshome+"/icmdtest/foo100 i:"+irodshome+"/icmdtest/foo200" ) os.unlink( dir_w+"/foo100" ) # cleanup os.unlink( sfile2 ) def test_xml_protocol_from_devtest(self): # build expected variables with similar devtest names progname = __file__ myssize = str(os.stat(progname).st_size) username = s.adminsession.getUserName() irodszone = s.adminsession.getZoneName() testuser1 = s.sessions[1].getUserName() irodshome = "/"+irodszone+"/home/rods/"+s.adminsession.sessionId irodsdefresource = s.adminsession.getDefResource() dir_w = "." sfile2 = dir_w+"/sfile2" commands.getstatusoutput( "cat "+progname+" "+progname+" > "+sfile2 ) mysdir = "/tmp/irodssdir" myldir = dir_w+"/ldir" if os.path.exists( myldir ): shutil.rmtree( myldir ) assertiCmd(s.adminsession,"imkdir icmdtest") lrsfile = dir_w+"/lrsfile" rsfile = dir_w+"/rsfile" # do test using xml protocol os.environ['irodsProt'] = "1" assertiCmd(s.adminsession,"ilsresc", "LIST", self.testresc ) assertiCmd(s.adminsession,"imiscsvrinfo", "LIST", "relVersion" ) assertiCmd(s.adminsession,"iuserinfo", "LIST", "name: "+username ) assertiCmd(s.adminsession,"ienv", "LIST", "Release Version" ) assertiCmd(s.adminsession,"icd "+irodshome ) assertiCmd(s.adminsession,"ipwd", "LIST", "home" ) assertiCmd(s.adminsession,"ihelp ils", "LIST", "ils" ) assertiCmd(s.adminsession,"ierror -14000", "LIST", "SYS_API_INPUT_ERR" ) assertiCmd(s.adminsession,"iexecmd hello", "LIST", "Hello world" ) assertiCmd(s.adminsession,"ips -v", "LIST", "ips" ) assertiCmd(s.adminsession,"iqstat", "LIST", "No delayed rules" ) assertiCmd(s.adminsession,"imkdir "+irodshome+"/icmdtest1" ) # make a directory of large files assertiCmd(s.adminsession,"iput -kf "+progname+" "+irodshome+"/icmdtest1/foo1" ) assertiCmd(s.adminsession,"ils -l "+irodshome+"/icmdtest1/foo1", "LIST", ["foo1", myssize] ) assertiCmd(s.adminsession,"iadmin ls "+irodshome+"/icmdtest1", "LIST", "foo1" ) assertiCmd(s.adminsession,"ichmod read "+s.sessions[1].getUserName()+" "+irodshome+"/icmdtest1/foo1" ) assertiCmd(s.adminsession,"ils -A "+irodshome+"/icmdtest1/foo1", "LIST", s.sessions[1].getUserName()+"#"+irodszone+":read" ) assertiCmd(s.adminsession,"irepl -B -R "+self.testresc+" "+irodshome+"/icmdtest1/foo1" ) # overwrite a copy assertiCmd(s.adminsession,"itrim -S "+irodsdefresource+" -N1 "+irodshome+"/icmdtest1/foo1" ) assertiCmd(s.adminsession,"iphymv -R "+irodsdefresource+" "+irodshome+"/icmdtest1/foo1" ) assertiCmd(s.adminsession,"imeta add -d "+irodshome+"/icmdtest1/foo1 testmeta1 180 cm" ) assertiCmd(s.adminsession,"imeta ls -d "+irodshome+"/icmdtest1/foo1", "LIST", "testmeta1" ) assertiCmd(s.adminsession,"imeta ls -d "+irodshome+"/icmdtest1/foo1", "LIST", "180" ) assertiCmd(s.adminsession,"imeta ls -d "+irodshome+"/icmdtest1/foo1", "LIST", "cm" ) assertiCmd(s.adminsession,"icp -K -R "+self.testresc+" "+irodshome+"/icmdtest1/foo1 "+irodshome+"/icmdtest1/foo2" ) assertiCmd(s.adminsession,"imv "+irodshome+"/icmdtest1/foo2 "+irodshome+"/icmdtest1/foo4" ) assertiCmd(s.adminsession,"imv "+irodshome+"/icmdtest1/foo4 "+irodshome+"/icmdtest1/foo2" ) assertiCmd(s.adminsession,"ichksum -K "+irodshome+"/icmdtest1/foo2", "LIST", "foo2" ) assertiCmd(s.adminsession,"iget -f -K "+irodshome+"/icmdtest1/foo2 "+dir_w ) os.unlink ( dir_w+"/foo2" ) assertiCmd(s.adminsession,"irsync "+progname+" i:"+irodshome+"/icmdtest1/foo1" ) assertiCmd(s.adminsession,"irsync i:"+irodshome+"/icmdtest1/foo1 /tmp/foo1" ) assertiCmd(s.adminsession,"irsync i:"+irodshome+"/icmdtest1/foo1 i:"+irodshome+"/icmdtest1/foo2" ) os.unlink ( "/tmp/foo1" ) os.environ['irodsProt'] = "0" # cleanup os.unlink( sfile2 ) def test_large_files_from_devtest(self): # build expected variables with similar devtest names progname = __file__ myssize = str(os.stat(progname).st_size) username = s.adminsession.getUserName() irodszone = s.adminsession.getZoneName() testuser1 = s.sessions[1].getUserName() irodshome = "/"+irodszone+"/home/rods/"+s.adminsession.sessionId irodsdefresource = s.adminsession.getDefResource() dir_w = "." sfile2 = dir_w+"/sfile2" commands.getstatusoutput( "cat "+progname+" "+progname+" > "+sfile2 ) mysdir = "/tmp/irodssdir" myldir = dir_w+"/ldir" if os.path.exists( myldir ): shutil.rmtree( myldir ) assertiCmd(s.adminsession,"imkdir icmdtest") # make a directory of 2 large files and 2 small files lfile = dir_w+"/lfile" lfile1 = dir_w+"/lfile1" commands.getstatusoutput( "echo 012345678901234567890123456789012345678901234567890123456789012 > "+lfile ) for i in range(6): commands.getstatusoutput( "cat "+lfile+" "+lfile+" "+lfile+" "+lfile+" "+lfile+" "+lfile+" "+lfile+" "+lfile+" "+lfile+" > "+lfile1 ) os.rename ( lfile1, lfile ) os.mkdir( myldir ) for i in range(1,3): mylfile = myldir+"/lfile"+str(i) mysfile = myldir+"/sfile"+str(i) if i != 2: shutil.copyfile( lfile, mylfile ) else: os.rename( lfile, mylfile ) shutil.copyfile( progname, mysfile ) # do the large files tests lrsfile = dir_w+"/lrsfile" rsfile = dir_w+"/rsfile" if os.path.isfile( lrsfile ): os.unlink( lrsfile ) if os.path.isfile( rsfile ): os.unlink( rsfile ) assertiCmd(s.adminsession,"iput -vbPKr --retries 10 --wlock -X "+rsfile+" --lfrestart "+lrsfile+" -N 2 "+myldir+" "+irodshome+"/icmdtest/testy", "LIST", "New restartFile" ) assertiCmd(s.adminsession,"ichksum -rK "+irodshome+"/icmdtest/testy", "LIST", "Total checksum performed" ) if os.path.isfile( lrsfile ): os.unlink( lrsfile ) if os.path.isfile( rsfile ): os.unlink( rsfile ) assertiCmd(s.adminsession,"irepl -BvrPT -R "+self.testresc+" --rlock "+irodshome+"/icmdtest/testy", "LIST", "icmdtest/testy" ) assertiCmd(s.adminsession,"itrim -vrS "+irodsdefresource+" --dryrun --age 1 -N 1 "+irodshome+"/icmdtest/testy", "LIST", "This is a DRYRUN" ) assertiCmd(s.adminsession,"itrim -vrS "+irodsdefresource+" -N 1 "+irodshome+"/icmdtest/testy", "LIST", "a copy trimmed" ) assertiCmd(s.adminsession,"icp -vKPTr -N 2 "+irodshome+"/icmdtest/testy "+irodshome+"/icmdtest/testz", "LIST", "Processing lfile1" ) assertiCmd(s.adminsession,"irsync -r i:"+irodshome+"/icmdtest/testy i:"+irodshome+"/icmdtest/testz" ) assertiCmd(s.adminsession,"irm -vrf "+irodshome+"/icmdtest/testy" ) assertiCmd(s.adminsession,"iphymv -vrS "+irodsdefresource+" -R "+self.testresc+" "+irodshome+"/icmdtest/testz", "LIST", "icmdtest/testz" ) if os.path.isfile( lrsfile ): os.unlink( lrsfile ) if os.path.isfile( rsfile ): os.unlink( rsfile ) if os.path.exists(dir_w+"/testz"): shutil.rmtree( dir_w+"/testz" ) assertiCmd(s.adminsession,"iget -vPKr --retries 10 -X "+rsfile+" --lfrestart "+lrsfile+" --rlock -N 2 "+irodshome+"/icmdtest/testz "+dir_w+"/testz", "LIST", "testz" ) assertiCmd(s.adminsession,"irsync -r "+dir_w+"/testz i:"+irodshome+"/icmdtest/testz" ) assertiCmd(s.adminsession,"irsync -r i:"+irodshome+"/icmdtest/testz "+dir_w+"/testz" ) if os.path.isfile( lrsfile ): os.unlink( lrsfile ) if os.path.isfile( rsfile ): os.unlink( rsfile ) output = commands.getstatusoutput( "diff -r "+dir_w+"/testz "+myldir ) print "output is ["+str(output)+"]" assert output[0] == 0 assert output[1] == "", "diff output was not empty..." # test -N0 transfer assertiCmd(s.adminsession,"iput -N0 -R "+self.testresc+" "+myldir+"/lfile1 "+irodshome+"/icmdtest/testz/lfoo100" ) if os.path.isfile( dir_w+"/lfoo100" ): os.unlink( dir_w+"/lfoo100" ) assertiCmd(s.adminsession,"iget -N0 "+irodshome+"/icmdtest/testz/lfoo100 "+dir_w+"/lfoo100" ) output = commands.getstatusoutput( "diff "+myldir+"/lfile1 "+dir_w+"/lfoo100" ) print "output is ["+str(output)+"]" assert output[0] == 0 assert output[1] == "", "diff output was not empty..." shutil.rmtree( dir_w+"/testz" ) os.unlink( dir_w+"/lfoo100" ) assertiCmd(s.adminsession,"irm -vrf "+irodshome+"/icmdtest/testz" ) # cleanup os.unlink( sfile2 ) if os.path.exists( myldir ): shutil.rmtree( myldir ) def test_large_files_with_RBUDP_from_devtest(self): # build expected variables with similar devtest names progname = __file__ myssize = str(os.stat(progname).st_size) username = s.adminsession.getUserName() irodszone = s.adminsession.getZoneName() testuser1 = s.sessions[1].getUserName() irodshome = "/"+irodszone+"/home/rods/"+s.adminsession.sessionId irodsdefresource = s.adminsession.getDefResource() dir_w = "." sfile2 = dir_w+"/sfile2" commands.getstatusoutput( "cat "+progname+" "+progname+" > "+sfile2 ) mysdir = "/tmp/irodssdir" myldir = dir_w+"/ldir" if os.path.exists( myldir ): shutil.rmtree( myldir ) assertiCmd(s.adminsession,"imkdir icmdtest") # make a directory of 2 large files and 2 small files lfile = dir_w+"/lfile" lfile1 = dir_w+"/lfile1" commands.getstatusoutput( "echo 012345678901234567890123456789012345678901234567890123456789012 > "+lfile ) for i in range(6): commands.getstatusoutput( "cat "+lfile+" "+lfile+" "+lfile+" "+lfile+" "+lfile+" "+lfile+" "+lfile+" "+lfile+" "+lfile+" > "+lfile1 ) os.rename ( lfile1, lfile ) os.mkdir( myldir ) for i in range(1,3): mylfile = myldir+"/lfile"+str(i) mysfile = myldir+"/sfile"+str(i) if i != 2: shutil.copyfile( lfile, mylfile ) else: os.rename( lfile, mylfile ) shutil.copyfile( progname, mysfile ) # do the large files tests using RBUDP lrsfile = dir_w+"/lrsfile" rsfile = dir_w+"/rsfile" if os.path.isfile( lrsfile ): os.unlink( lrsfile ) if os.path.isfile( rsfile ): os.unlink( rsfile ) assertiCmd(s.adminsession,"iput -vQPKr --retries 10 -X "+rsfile+" --lfrestart "+lrsfile+" "+myldir+" "+irodshome+"/icmdtest/testy", "LIST", "icmdtest/testy" ) assertiCmd(s.adminsession,"irepl -BQvrPT -R "+self.testresc+" "+irodshome+"/icmdtest/testy", "LIST", "icmdtest/testy" ) assertiCmd(s.adminsession,"itrim -vrS "+irodsdefresource+" -N 1 "+irodshome+"/icmdtest/testy", "LIST", "a copy trimmed" ) assertiCmd(s.adminsession,"icp -vQKPTr "+irodshome+"/icmdtest/testy "+irodshome+"/icmdtest/testz", "LIST", "Processing sfile1" ) assertiCmd(s.adminsession,"irm -vrf "+irodshome+"/icmdtest/testy" ) if os.path.isfile( lrsfile ): os.unlink( lrsfile ) if os.path.isfile( rsfile ): os.unlink( rsfile ) if os.path.exists(dir_w+"/testz"): shutil.rmtree( dir_w+"/testz" ) assertiCmd(s.adminsession,"iget -vQPKr --retries 10 -X "+rsfile+" --lfrestart "+lrsfile+" "+irodshome+"/icmdtest/testz "+dir_w+"/testz", "LIST", "Processing sfile2" ) if os.path.isfile( lrsfile ): os.unlink( lrsfile ) if os.path.isfile( rsfile ): os.unlink( rsfile ) output = commands.getstatusoutput( "diff -r "+dir_w+"/testz "+myldir ) print "output is ["+str(output)+"]" assert output[0] == 0 assert output[1] == "", "diff output was not empty..." shutil.rmtree( dir_w+"/testz" ) assertiCmd(s.adminsession,"irm -vrf "+irodshome+"/icmdtest/testz" ) shutil.rmtree( myldir ) # cleanup os.unlink( sfile2 ) if os.path.exists( myldir ): shutil.rmtree( myldir )
41,733
13
297
df366a12904a7d087fb699c3ddcbd77bc7584ac9
1,920
py
Python
app/models/trade_models.py
VaughnDV/instrument-trader
1d4d4b8a36ee834c7111768e9f0d8bc15d027893
[ "MIT" ]
null
null
null
app/models/trade_models.py
VaughnDV/instrument-trader
1d4d4b8a36ee834c7111768e9f0d8bc15d027893
[ "MIT" ]
null
null
null
app/models/trade_models.py
VaughnDV/instrument-trader
1d4d4b8a36ee834c7111768e9f0d8bc15d027893
[ "MIT" ]
null
null
null
from sqlalchemy import Column, ForeignKey, Integer, String, Enum, Float, DateTime, func from sqlalchemy.orm import relationship import enum from app.database import Base
31.47541
87
0.717708
from sqlalchemy import Column, ForeignKey, Integer, String, Enum, Float, DateTime, func from sqlalchemy.orm import relationship import enum from app.database import Base class Trader(Base): __tablename__ = "trader" id = Column(Integer, primary_key=True, index=True) name = Column(String, unique=True, index=True) trade = relationship("Trade", back_populates="trader") class Instrument(Base): __tablename__ = "instrument" id = Column(String, primary_key=True, index=True) name = Column(String, unique=True, index=True) trade = relationship("Trade", back_populates="instrument") class TradeBuySellEnum(enum.Enum): BUY = "buy" SELL = "sell" class AssetClassEnum(enum.Enum): BOND = "bond" EQUITY = "equity" FX = "fx" class TradeDetail(Base): __tablename__ = "trade_detail" id = Column(Integer, primary_key=True, index=True) buy_sell_indicator = Column(Enum(TradeBuySellEnum), nullable=False) price = Column(Float(precision=2), nullable=False) quantity = Column(Integer, nullable=False) trade = relationship("Trade", uselist=False, back_populates="trade_detail") class Trade(Base): __tablename__ = "trade" trade_id = Column(Integer, primary_key=True, index=True) asset_class = Column(Enum(AssetClassEnum), nullable=False) counterparty = Column(String, nullable=True) trade_date_time = Column(DateTime, default=func.now()) # One to One with TradeDetail trade_detail_id = Column(Integer, ForeignKey("trade_detail.id")) trade_detail = relationship("TradeDetail", back_populates="trade") # Many to One with Instrument instrument_id = Column(Integer, ForeignKey("instrument.id")) instrument = relationship("Instrument", back_populates="trade") # Many to One with Trader trader_id = Column(Integer, ForeignKey("trader.name")) trader = relationship("Trader", back_populates="trade")
0
1,606
138
15c2fef63b2d4ac40cf07d490bc31012681666a9
7,940
py
Python
APC400000/MelodicComponent.py
martinpechmann/APC400000
0783dd2f7c3846684f785b15e651c61edf95e27c
[ "BSD-Source-Code" ]
6
2019-09-15T18:46:49.000Z
2021-09-10T06:36:10.000Z
APC400000/MelodicComponent.py
martinpechmann/APC400000
0783dd2f7c3846684f785b15e651c61edf95e27c
[ "BSD-Source-Code" ]
3
2015-06-14T22:47:01.000Z
2015-06-17T14:24:47.000Z
APC400000/MelodicComponent.py
martinpechmann/APC400000
0783dd2f7c3846684f785b15e651c61edf95e27c
[ "BSD-Source-Code" ]
1
2016-12-21T12:18:14.000Z
2016-12-21T12:18:14.000Z
# Embedded file name: c:\Jenkins\live\output\win_32_static\Release\midi-remote-scripts\Push\MelodicComponent.py from __future__ import with_statement from _Framework.Util import forward_property, find_if from _Framework.SubjectSlot import subject_slot from _Framework.ModesComponent import ModesComponent, LayerMode from MessageBoxComponent import Messenger from MatrixMaps import FEEDBACK_CHANNELS, NON_FEEDBACK_CHANNEL from InstrumentComponent import InstrumentComponent from NoteEditorComponent import NoteEditorComponent from PlayheadComponent import PlayheadComponent from MelodicPattern import pitch_index_to_string from LoopSelectorComponent import LoopSelectorComponent from NoteEditorPaginator import NoteEditorPaginator NUM_NOTE_EDITORS = 7
44.111111
233
0.693955
# Embedded file name: c:\Jenkins\live\output\win_32_static\Release\midi-remote-scripts\Push\MelodicComponent.py from __future__ import with_statement from _Framework.Util import forward_property, find_if from _Framework.SubjectSlot import subject_slot from _Framework.ModesComponent import ModesComponent, LayerMode from MessageBoxComponent import Messenger from MatrixMaps import FEEDBACK_CHANNELS, NON_FEEDBACK_CHANNEL from InstrumentComponent import InstrumentComponent from NoteEditorComponent import NoteEditorComponent from PlayheadComponent import PlayheadComponent from MelodicPattern import pitch_index_to_string from LoopSelectorComponent import LoopSelectorComponent from NoteEditorPaginator import NoteEditorPaginator NUM_NOTE_EDITORS = 7 class MelodicComponent(ModesComponent, Messenger): def __init__(self, clip_creator = None, parameter_provider = None, grid_resolution = None, note_editor_settings = None, skin = None, instrument_play_layer = None, instrument_sequence_layer = None, layer = None, *a, **k): super(MelodicComponent, self).__init__(*a, **k) self._matrices = None self._grid_resolution = grid_resolution self._instrument = self.register_component(InstrumentComponent()) self._note_editors = self.register_components(*[ NoteEditorComponent(settings_mode=note_editor_settings, clip_creator=clip_creator, grid_resolution=self._grid_resolution, is_enabled=False) for _ in xrange(NUM_NOTE_EDITORS) ]) self._paginator = NoteEditorPaginator(self._note_editors) self._loop_selector = self.register_component(LoopSelectorComponent(clip_creator=clip_creator, paginator=self._paginator, is_enabled=False)) self._playhead = None self._playhead_component = self.register_component(PlayheadComponent(grid_resolution=grid_resolution, paginator=self._paginator, follower=self._loop_selector, is_enabled=False)) self.add_mode('play', LayerMode(self._instrument, instrument_play_layer)) self.add_mode('sequence', [LayerMode(self._instrument, instrument_sequence_layer), self._loop_selector, note_editor_settings, LayerMode(self, layer), self._playhead_component] + self._note_editors) self.selected_mode = 'play' scales = self._instrument.scales self._on_detail_clip_changed.subject = self.song().view self._on_scales_changed.subject = scales self._on_scales_preset_changed.subject = scales._presets self._on_notes_changed.subject = self._instrument self._on_selected_mode_changed.subject = self self._on_detail_clip_changed() self._update_note_editors() self._skin = skin self._playhead_color = 'Melodic.Playhead' self._update_playhead_color() return scales_menu = forward_property('_instrument')('scales_menu') scales = forward_property('_instrument')('scales') def set_playhead(self, playhead): self._playhead = playhead self._playhead_component.set_playhead(playhead) self._update_playhead_color() @forward_property('_loop_selector') def set_loop_selector_matrix(self, matrix): pass @forward_property('_loop_selector') def set_short_loop_selector_matrix(self, matrix): pass next_loop_page_button = forward_property('_loop_selector')('next_page_button') prev_loop_page_button = forward_property('_loop_selector')('prev_page_button') def set_note_editor_matrices(self, matrices): if matrices and not len(matrices) <= NUM_NOTE_EDITORS: raise AssertionError self._matrices = matrices for editor, matrix in map(None, self._note_editors, matrices or []): if editor: editor.set_button_matrix(matrix) self._update_matrix_channels_for_playhead() return def _get_playhead_color(self): self._playhead_color def _set_playhead_color(self, value): self._playhead_color = 'Melodic.' + value self._update_playhead_color() playhead_color = property(_get_playhead_color, _set_playhead_color) @subject_slot('detail_clip') def _on_detail_clip_changed(self): if self.is_enabled(): clip = self.song().view.detail_clip clip = clip if self.is_enabled() and clip and clip.is_midi_clip else None for note_editor in self._note_editors: note_editor.set_detail_clip(clip) self._loop_selector.set_detail_clip(clip) self._playhead_component.set_clip(clip) self._instrument.set_detail_clip(clip) return def _set_full_velocity(self, enable): for note_editor in self._note_editors: note_editor.full_velocity = enable def _get_full_velocity(self): self._note_editors[0].full_velocity full_velocity = property(_get_full_velocity, _set_full_velocity) def set_quantization_buttons(self, buttons): self._grid_resolution.set_buttons(buttons) def set_mute_button(self, button): for e in self._note_editors: e.set_mute_button(button) @subject_slot('selected_mode') def _on_selected_mode_changed(self, mode): self._show_notes_information(mode) @subject_slot('position') def _on_notes_changed(self, *args): self._update_note_editors() self._show_notes_information() @subject_slot('selected_mode') def _on_scales_preset_changed(self, mode): self._update_note_editors() @subject_slot('scales_changed') def _on_scales_changed(self): self._update_note_editors() def _update_note_editors(self, *a): for row, note_editor in enumerate(self._note_editors): note_info = self._instrument.pattern[row] note_editor.background_color = 'NoteEditor.' + note_info.color note_editor.editing_note = note_info.index self._update_matrix_channels_for_playhead() def _update_matrix_channels_for_playhead(self): if self.is_enabled() and self._matrices != None: pattern = self._instrument.pattern for matrix, (y, _) in self._matrices.iterbuttons(): if matrix: for x, button in enumerate(matrix): if button: if pattern[y].index != None: button.set_identifier(x) button.set_channel(FEEDBACK_CHANNELS[y]) else: button.set_identifier(button._original_identifier) button.set_channel(NON_FEEDBACK_CHANNEL) return def _update_playhead_color(self): if self.is_enabled() and self._skin and self._playhead: self._playhead.velocity = int(self._skin[self._playhead_color]) def update(self): super(MelodicComponent, self).update() self._on_detail_clip_changed() self._update_playhead_color() def _show_notes_information(self, mode = None): if self.is_enabled(): if mode is None: mode = self.selected_mode if mode == 'sequence': message = 'Sequence %s to %s' first = find_if(lambda editor: editor.editing_note != None, self._note_editors) last = find_if(lambda editor: editor.editing_note != None, reversed(self._note_editors)) start_note = first.editing_note if first != None else None end_note = last.editing_note if last != None else None else: message = 'Play %s to %s' start_note = self._instrument._pattern.note(0, 0).index end_note = self._instrument._pattern.note(7, 7).index self.show_notification(message % (pitch_index_to_string(start_note), pitch_index_to_string(end_note))) return
5,891
1,276
23
1b385350022d77771f9fd2a0d89d1eb2b4a50830
2,917
py
Python
coral_deeplab/pretrained.py
xadrianzetx/coral-deeplab
aa685a9b694339685d3fc7510296ecbe513838bb
[ "MIT" ]
5
2021-03-15T10:26:14.000Z
2022-03-03T14:33:07.000Z
coral_deeplab/pretrained.py
xadrianzetx/coral-deeplab
aa685a9b694339685d3fc7510296ecbe513838bb
[ "MIT" ]
3
2021-06-28T22:07:29.000Z
2021-10-16T17:48:31.000Z
coral_deeplab/pretrained.py
xadrianzetx/coral-deeplab
aa685a9b694339685d3fc7510296ecbe513838bb
[ "MIT" ]
2
2021-06-29T08:06:02.000Z
2021-09-30T08:15:08.000Z
# MIT License # Copyright (c) 2021 xadrianzetx # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from enum import Enum
39.418919
80
0.731231
# MIT License # Copyright (c) 2021 xadrianzetx # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from enum import Enum class MLModel(Enum): pass class KerasModel(MLModel): DEEPLAB_V3_DM1 = { 'origin': '1CE7cMfgViNgFxXKbCq0wFXeO8slV0Z01', 'filename': 'deeplabv3_mnv2_dm1_voc_tainaug_os16.h5', 'checksum': 'b326724d7e89d8cc7f409edbf1b11105' } DEEPLAB_V3_DM05 = { 'origin': '1J-8hCUNYxbWgazflv8CGVYgmqoFHxB_N', 'filename': 'deeplabv3_mnv2_dm05_voc_tainaug_os16.h5', 'checksum': '36e1e957a62848451db92c53abc1d7d7' } DEEPLAB_V3_PLUS_DM1 = { 'origin': '191I3qg-S245BD8aX1jfGF2Yy3H9-1A1l', 'filename': 'deeplabv3plus_mnv2_dm1_voc_trainaug_os4.h5', 'checksum': 'c43f0acf3a256daa237da66ecedb4565' } DEEPLAB_V3_PLUS_DM05 = { 'origin': '17wv_wRPZMnj2s_y_nol8whkwda0C2O77', 'filename': 'deeplabv3plus_mnv2_dm05_voc_trainaug_os4.h5', 'checksum': 'e3e002c39716bc54f966bae657fc2f78' } class EdgeTPUModel(MLModel): DEEPLAB_V3_DM1 = { 'origin': '1YmaaQ9qOxlMfB9eAI7roOqgeo4y7Mosg', 'filename': 'deeplabv3_mnv2_dm1_voc_tainaug_os16_edgetpu.tflite', 'checksum': '6c0ade5b647dc137f6231a9724cf65e6' } DEEPLAB_V3_DM05 = { 'origin': '1bukSOJf8JL_RSQwrCIypvzxxamEhO9cV', 'filename': 'deeplabv3_mnv2_dm05_voc_tainaug_os16_edgetpu.tflite', 'checksum': '2d3ad50d08c12dba4d5ea61f59bb0b79' } DEEPLAB_V3_PLUS_DM1 = { 'origin': '1-2U13RHX5b-h7rIfhxovpxeC4c6DNA8r', 'filename': 'deeplabv3plus_mnv2_dm1_voc_trainaug_os4_edgetpu.tflite', 'checksum': '3ad64d967a3e526d7df4a3b3a8a60f8a' } DEEPLAB_V3_PLUS_DM05 = { 'origin': '1DJ11luO0SMU69egtPShP-4-rSVYki-HP', 'filename': 'deeplabv3plus_mnv2_dm05_voc_trainaug_os4_edgetpu.tflite', 'checksum': 'abab0449b81be44efcfab4cacccc7f1b' }
0
1,720
69
73296fabb1841f8ea0d871204567b5801050b15c
1,619
py
Python
metalprot/database/database_download.py
lonelu/Metalprot
e51bee472c975aa171bdb6ee426a07ca69f110ee
[ "MIT" ]
null
null
null
metalprot/database/database_download.py
lonelu/Metalprot
e51bee472c975aa171bdb6ee426a07ca69f110ee
[ "MIT" ]
null
null
null
metalprot/database/database_download.py
lonelu/Metalprot
e51bee472c975aa171bdb6ee426a07ca69f110ee
[ "MIT" ]
null
null
null
import os import prody as pr # Manipulate rcsb file def organize_rcsb_file(workdir = "/mnt/e/DesignData/ligands/NI_rcsb/"): ''' The .csv files downloaded from rcsb database will be combined first, then generate tab deliminated txt file. ''' all_lines = [] for file in os.listdir(workdir): if file.endswith(".csv"): with open(workdir + file, 'r') as f: all_lines.extend(f.readlines()) with open(workdir + 'all_rcsb.txt', 'w') as f: f.write('\t'.join(all_lines[0].split(','))) for r in all_lines: if 'Entry ID' not in r and r.split(',')[0]!= '': f.write('\t'.join(r.split(','))) # download rcsb pdb files
30.54717
91
0.551575
import os import prody as pr # Manipulate rcsb file def organize_rcsb_file(workdir = "/mnt/e/DesignData/ligands/NI_rcsb/"): ''' The .csv files downloaded from rcsb database will be combined first, then generate tab deliminated txt file. ''' all_lines = [] for file in os.listdir(workdir): if file.endswith(".csv"): with open(workdir + file, 'r') as f: all_lines.extend(f.readlines()) with open(workdir + 'all_rcsb.txt', 'w') as f: f.write('\t'.join(all_lines[0].split(','))) for r in all_lines: if 'Entry ID' not in r and r.split(',')[0]!= '': f.write('\t'.join(r.split(','))) # download rcsb pdb files def download_pdb(workdir, filename, resolution = 2.5): if not os.path.exists(workdir): os.mkdir(workdir) all_pdbs = [] with open(workdir + filename, 'r') as f: for line in f.readlines(): #print(line) r = line.split('\t') #print(r) if r[0] == '"Entry ID"': continue if r[0] == '' or r[4]== '' or (',' in r[4]) or float(r[4].split('"')[1]) > 2.5: continue all_pdbs.append(r[0].split('"')[1]) exist_pdb = set() for file in os.listdir(workdir): if file.endswith(".pdb.gz"): exist_pdb.add(file.split('.')[0].upper()) pr.pathPDBFolder(workdir) for p in all_pdbs: if p in exist_pdb: continue pr.fetchPDBviaFTP(p, compressed = False) # #Then unzip them in linux with: # cd /mnt/e/DesignData/ligands/NI_rcsb/ # gunzip *.gz
879
0
23
0ce7701a7823d8739f05f92a5128f0b1ff249404
2,146
py
Python
config.py
jackgibson2/lambda-cleaner
433fbf7b7393a6d49771346e5b48939428ed663a
[ "MIT" ]
null
null
null
config.py
jackgibson2/lambda-cleaner
433fbf7b7393a6d49771346e5b48939428ed663a
[ "MIT" ]
null
null
null
config.py
jackgibson2/lambda-cleaner
433fbf7b7393a6d49771346e5b48939428ed663a
[ "MIT" ]
null
null
null
import os import json import boto3 REGION = 'us-east-2' session = boto3.session.Session(profile_name='sandbox') #iam = boto3.resource('iam', region_name=REGION) policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": "ec2:DeleteVolume", "Resource": "arn:aws:ec2:us-east-2:xxxxx:volume/*" }, { "Effect": "Allow", "Action": "ec2:DeleteSnapshot", "Resource": "arn:aws:ec2:us-east-2:xxxxx:snapshot/*" }, { "Effect": "Allow", "Action": [ "ec2:DescribeInstances", "autoscaling:SetDesiredCapacity", "ssm:DescribeParameters", "autoscaling:DescribeAutoScalingGroups", "ec2:DescribeVolumes", "ec2:DescribeSnapshots" ], "Resource": "*" }, { "Effect": "Allow", "Action": "ssm:GetParameters", "Resource": "arn:aws:ssm:us-east-2:xxxxx:parameter/mysandbox/*" }, { "Effect": "Allow", "Action": "ssm:PutParameter", "Resource": "arn:aws:ssm:us-east-2:xxxxx:parameter/mysandbox/*" }, { "Effect": "Allow", "Action": [ "ec2:TerminateInstances", "ec2:StopInstances" ], "Resource": "arn:aws:ec2:us-east-2:xxxxx:instance/*" } ] } parameterRoot = '/AccountCleaner/' retentionDays = 7 ssm = session.client('ssm', region_name=REGION) ssm.put_parameter( Name=parameterRoot + 'retentionDays', Description='Days to retain snapsots', Value=str(retentionDays), Type='String', Overwrite=True) ssm.put_parameter( Name=parameterRoot + 'Enalbed', Description='Flag to turn off cleaner lambdas globally', Value='True', Type='String', Overwrite=True) ssm.put_parameter( Name=parameterRoot + 'DryRun', Description='Flag to turn dry run on for cleaner lambdas globally', Value='False', Type='String', Overwrite=True)
26.825
75
0.536813
import os import json import boto3 REGION = 'us-east-2' session = boto3.session.Session(profile_name='sandbox') #iam = boto3.resource('iam', region_name=REGION) policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": "ec2:DeleteVolume", "Resource": "arn:aws:ec2:us-east-2:xxxxx:volume/*" }, { "Effect": "Allow", "Action": "ec2:DeleteSnapshot", "Resource": "arn:aws:ec2:us-east-2:xxxxx:snapshot/*" }, { "Effect": "Allow", "Action": [ "ec2:DescribeInstances", "autoscaling:SetDesiredCapacity", "ssm:DescribeParameters", "autoscaling:DescribeAutoScalingGroups", "ec2:DescribeVolumes", "ec2:DescribeSnapshots" ], "Resource": "*" }, { "Effect": "Allow", "Action": "ssm:GetParameters", "Resource": "arn:aws:ssm:us-east-2:xxxxx:parameter/mysandbox/*" }, { "Effect": "Allow", "Action": "ssm:PutParameter", "Resource": "arn:aws:ssm:us-east-2:xxxxx:parameter/mysandbox/*" }, { "Effect": "Allow", "Action": [ "ec2:TerminateInstances", "ec2:StopInstances" ], "Resource": "arn:aws:ec2:us-east-2:xxxxx:instance/*" } ] } parameterRoot = '/AccountCleaner/' retentionDays = 7 ssm = session.client('ssm', region_name=REGION) ssm.put_parameter( Name=parameterRoot + 'retentionDays', Description='Days to retain snapsots', Value=str(retentionDays), Type='String', Overwrite=True) ssm.put_parameter( Name=parameterRoot + 'Enalbed', Description='Flag to turn off cleaner lambdas globally', Value='True', Type='String', Overwrite=True) ssm.put_parameter( Name=parameterRoot + 'DryRun', Description='Flag to turn dry run on for cleaner lambdas globally', Value='False', Type='String', Overwrite=True)
0
0
0
35ad11a063628120bac86d92a7d8d61ab2e3bf24
11,098
py
Python
python_modules/dagster-graphql/dagster_graphql/dauphin_registry.py
ericct/dagster
dd2c9f05751e1bae212a30dbc54381167a14f6c5
[ "Apache-2.0" ]
1
2021-04-30T00:19:20.000Z
2021-04-30T00:19:20.000Z
python_modules/dagster-graphql/dagster_graphql/dauphin_registry.py
ericct/dagster
dd2c9f05751e1bae212a30dbc54381167a14f6c5
[ "Apache-2.0" ]
null
null
null
python_modules/dagster-graphql/dagster_graphql/dauphin_registry.py
ericct/dagster
dd2c9f05751e1bae212a30dbc54381167a14f6c5
[ "Apache-2.0" ]
null
null
null
""" Dauphin is wrapper module around graphene meant to provide a couple additional features. Most importantly is a type registry. Instead of referring to the class that corresponds to the GraphQL type everywhere, you are instead allows to use the GraphQL string. This solves an immediate short term problem in that it is quite irritating to manage dependencies in a graphql schema where the types refer to each other in cyclic fashion. Breaking up a schema into multiple files without this feature (Python has no notion of forward declarations) is difficult. Dauphin is meant to totally wrap graphene. That means if you are viewing a code sample online or within the graphene docs, one should be be able use dauphin.ChooseYourClass instead of graphene.ChooseYourClass. We also use dauphin as disintermediation layer between our application code and graphene in places where we want additional strictness or more convenient idioms. e.g. dauphin.non_null_list(dauphin.String) as opposed to graphene.NonNull(graphene.List(graphene.NonNull(graphene.String))) """ from functools import partial import graphene from graphene.types.definitions import GrapheneGraphQLType, GrapheneObjectType, GrapheneUnionType from graphene.types.enum import EnumMeta from graphene.types.generic import GenericScalar from graphene.types.typemap import TypeMap as GrapheneTypeMap from graphene.types.typemap import resolve_type from graphene.utils.subclass_with_meta import SubclassWithMeta_Meta from graphql.type.introspection import IntrospectionSchema GRAPHENE_TYPES = [ graphene.ObjectType, graphene.InputObjectType, graphene.Interface, graphene.Scalar, ] GRAPHENE_BUILT_IN = [ graphene.String, graphene.Int, graphene.Float, graphene.Boolean, graphene.ID, GenericScalar, ] # we change map to map_ in construct_union override because of collision with built-in # pylint: disable=W0221
35.915858
100
0.67769
""" Dauphin is wrapper module around graphene meant to provide a couple additional features. Most importantly is a type registry. Instead of referring to the class that corresponds to the GraphQL type everywhere, you are instead allows to use the GraphQL string. This solves an immediate short term problem in that it is quite irritating to manage dependencies in a graphql schema where the types refer to each other in cyclic fashion. Breaking up a schema into multiple files without this feature (Python has no notion of forward declarations) is difficult. Dauphin is meant to totally wrap graphene. That means if you are viewing a code sample online or within the graphene docs, one should be be able use dauphin.ChooseYourClass instead of graphene.ChooseYourClass. We also use dauphin as disintermediation layer between our application code and graphene in places where we want additional strictness or more convenient idioms. e.g. dauphin.non_null_list(dauphin.String) as opposed to graphene.NonNull(graphene.List(graphene.NonNull(graphene.String))) """ from functools import partial import graphene from graphene.types.definitions import GrapheneGraphQLType, GrapheneObjectType, GrapheneUnionType from graphene.types.enum import EnumMeta from graphene.types.generic import GenericScalar from graphene.types.typemap import TypeMap as GrapheneTypeMap from graphene.types.typemap import resolve_type from graphene.utils.subclass_with_meta import SubclassWithMeta_Meta from graphql.type.introspection import IntrospectionSchema GRAPHENE_TYPES = [ graphene.ObjectType, graphene.InputObjectType, graphene.Interface, graphene.Scalar, ] GRAPHENE_BUILT_IN = [ graphene.String, graphene.Int, graphene.Float, graphene.Boolean, graphene.ID, GenericScalar, ] # we change map to map_ in construct_union override because of collision with built-in # pylint: disable=W0221 def get_meta(graphene_type): return graphene_type._meta # pylint: disable=W0212 class DauphinRegistry: def __init__(self): self._typeMap = {} self.Field = create_registry_field(self) self.Argument = create_registry_argument(self) self.List = create_registry_list(self) self.NonNull = create_registry_nonnull(self) registering_metaclass = create_registering_metaclass(self) self.Union = create_union(registering_metaclass, self) self.Enum = create_enum(registering_metaclass) self.Mutation = graphene.Mutation # Not looping over GRAPHENE_TYPES in order to not fool lint self.ObjectType = create_registering_class(graphene.ObjectType, registering_metaclass) self.InputObjectType = create_registering_class( graphene.InputObjectType, registering_metaclass ) self.Interface = create_registering_class(graphene.Interface, registering_metaclass) self.Scalar = create_registering_class(graphene.Scalar, registering_metaclass) # Not looping over GRAPHENE_BUILTINS in order to not fool lint self.String = graphene.String self.addType(graphene.String) self.Int = graphene.Int self.addType(graphene.Int) self.Float = graphene.Float self.addType(graphene.Float) self.Boolean = graphene.Boolean self.addType(graphene.Boolean) self.ID = graphene.ID self.addType(graphene.ID) self.GenericScalar = GenericScalar self.addType(GenericScalar) def create_schema(self): return DauphinSchema( query=self.getType("Query"), mutation=self.getTypeOrNull("Mutation"), subscription=self.getTypeOrNull("Subscription"), types=self.getAllImplementationTypes(), registry=self, ) def getTypeOrNull(self, typeName): return self._typeMap.get(typeName) def getType(self, typeName): graphene_type = self.getTypeOrNull(typeName) if not graphene_type: raise Exception("No such type {typeName}.".format(typeName=typeName)) return graphene_type def getAllTypes(self): return self._typeMap.values() def getAllImplementationTypes(self): return [t for t in self._typeMap.values() if issubclass(t, self.ObjectType)] def addType(self, graphene_type): meta = get_meta(graphene_type) if meta: if not graphene_type in self._typeMap: self._typeMap[meta.name] = graphene_type else: raise Exception( "Type {typeName} already exists in the registry.".format(typeName=meta.name) ) else: raise Exception("Cannot add unnamed type or a non-type to registry.") def non_null_list(self, of_type): return self.NonNull(self.List(self.NonNull(of_type))) class DauphinSchema(graphene.Schema): def __init__(self, registry, **kwargs): self._typeRegistry = registry super(DauphinSchema, self).__init__(**kwargs) def build_typemap(self): initial_types = [self._query, self._mutation, self._subscription, IntrospectionSchema] if self.types: initial_types += self.types self._type_map = DauphinTypeMap( initial_types, auto_camelcase=self.auto_camelcase, schema=self, typeRegistry=self._typeRegistry, ) def type_named(self, name): return getattr(self, name) class DauphinTypeMap(GrapheneTypeMap): def __init__(self, types, typeRegistry=None, **kwargs): self._typeRegistry = typeRegistry super(DauphinTypeMap, self).__init__(types, **kwargs) def construct_object_type(self, map_, graphene_type): type_meta = get_meta(graphene_type) if type_meta.name in map_: mapped_type = map_[get_meta(graphene_type).name] if isinstance(mapped_type, GrapheneGraphQLType): assert mapped_type.graphene_type == graphene_type, ( "Found different types with the same name in the schema: {}, {}." ).format(mapped_type.graphene_type, graphene_type) return mapped_type # TODO the codepath below appears to be untested def interfaces(): interfaces = [] for interface in type_meta.interfaces: if isinstance(interface, str): interface = self._typeRegistry.getType(interface) self.graphene_reducer(map_, interface) internal_type = map_[get_meta(interface).name] assert internal_type.graphene_type == interface interfaces.append(internal_type) return interfaces if type_meta.possible_types: # FIXME: is_type_of_from_possible_types does not exist # is_type_of = partial(is_type_of_from_possible_types, type_meta.possible_types) raise Exception("Not sure what is going on here. Untested codepath") else: is_type_of = type.is_type_of return GrapheneObjectType( graphene_type=type, name=type_meta.name, description=type_meta.description, fields=partial(self.construct_fields_for_type, map_, type), is_type_of=is_type_of, interfaces=interfaces, ) def construct_union(self, map_, graphene_type): union_resolve_type = None type_meta = get_meta(graphene_type) if graphene_type.resolve_type: union_resolve_type = partial( resolve_type, graphene_type.resolve_type, map_, type_meta.name ) def types(): union_types = [] for objecttype in type_meta.types: if isinstance(objecttype, str): objecttype = self._typeRegistry.getType(objecttype) self.graphene_reducer(map_, objecttype) internal_type = map_[get_meta(objecttype).name] assert internal_type.graphene_type == objecttype union_types.append(internal_type) return union_types return GrapheneUnionType( graphene_type=graphene_type, name=type_meta.name, description=type_meta.description, types=types, resolve_type=union_resolve_type, ) def create_registering_metaclass(registry): class RegisteringMetaclass(SubclassWithMeta_Meta): def __init__(cls, name, bases, namespaces): super(RegisteringMetaclass, cls).__init__( # pylint: disable=no-value-for-parameter name, bases, namespaces ) if any(base for base in bases if getattr(base, "__dauphinCoreType", False)): registry.addType(cls) return RegisteringMetaclass def create_registering_class(cls, metaclass): new_cls = metaclass(cls.__name__, (cls,), {}) setattr(new_cls, "__dauphinCoreType", True) return new_cls def create_union(metaclass, _registry): meta_class = type("Meta", (object,), {"types": ("__", "__")}) Union = metaclass("Union", (graphene.Union,), {"Meta": meta_class}) setattr(Union, "__dauphinCoreType", True) return Union def create_enum(metaclass): class EnumRegisteringMetaclass(metaclass, EnumMeta): pass def from_enum(cls, enum, description=None, deprecation_reason=None): description = description or enum.__doc__ meta_dict = { "enum": enum, "description": description, "deprecation_reason": deprecation_reason, } meta_class = type("Meta", (object,), meta_dict) return type(meta_class.enum.__name__, (cls,), {"Meta": meta_class}) Enum = EnumRegisteringMetaclass("Enum", (graphene.Enum,), {"from_enum": classmethod(from_enum)}) setattr(Enum, "__dauphinCoreType", True) return Enum def get_type_fn(registry, dauphin_type): if isinstance(dauphin_type, str): return lambda: registry.getType(dauphin_type) else: return dauphin_type def create_registry_field(registry): class Field(graphene.Field): def __init__(self, dauphin_type, *args, **kwargs): super(Field, self).__init__(get_type_fn(registry, dauphin_type), *args, **kwargs) return Field def create_registry_argument(registry): class Argument(graphene.Argument): def __init__(self, dauphin_type, *args, **kwargs): super(Argument, self).__init__(get_type_fn(registry, dauphin_type), *args, **kwargs) return Argument def create_registry_list(registry): class List(graphene.List): def __init__(self, of_type, *args, **kwargs): super(List, self).__init__(get_type_fn(registry, of_type), *args, **kwargs) return List def create_registry_nonnull(registry): class NonNull(graphene.NonNull): def __init__(self, of_type, *args, **kwargs): super(NonNull, self).__init__(get_type_fn(registry, of_type), *args, **kwargs) return NonNull
8,463
34
674
434f9a60d0158ff1d591eee55a9eecd875a4fe07
155
py
Python
10/00/7.py
pylangstudy/201708
126b1af96a1d1f57522d5a1d435b58597bea2e57
[ "CC0-1.0" ]
null
null
null
10/00/7.py
pylangstudy/201708
126b1af96a1d1f57522d5a1d435b58597bea2e57
[ "CC0-1.0" ]
39
2017-07-31T22:54:01.000Z
2017-08-31T00:19:03.000Z
10/00/7.py
pylangstudy/201708
126b1af96a1d1f57522d5a1d435b58597bea2e57
[ "CC0-1.0" ]
null
null
null
#!python3.6 print("int: {0:d}; hex: {0:x}; oct: {0:o}; bin: {0:b}".format(42)) print("int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: {0:#b}".format(42))
38.75
72
0.477419
#!python3.6 print("int: {0:d}; hex: {0:x}; oct: {0:o}; bin: {0:b}".format(42)) print("int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: {0:#b}".format(42))
0
0
0
aa2b998413ca4e625b5b5ade9809014351a9b998
1,592
py
Python
server.py
nagasudhirpulla/grafana_smscountry_webhook
d8ab182b8f5ec12f00eaf966ec15a234782154e0
[ "MIT" ]
null
null
null
server.py
nagasudhirpulla/grafana_smscountry_webhook
d8ab182b8f5ec12f00eaf966ec15a234782154e0
[ "MIT" ]
null
null
null
server.py
nagasudhirpulla/grafana_smscountry_webhook
d8ab182b8f5ec12f00eaf966ec15a234782154e0
[ "MIT" ]
null
null
null
from flask import Flask, request from waitress import serve from src.config.appConfig import loadAppConfig from src.logs.loggerFactory import getFileLogger from src.services.smsSender import SmsApi # get application config appConf = loadAppConfig() # setup logging based on application config backUpCount = appConf["backUpCount"] fileRollingHrs = appConf["fileRollingHrs"] logFilePath = appConf["logFilePath"] logger = getFileLogger( "app_logger", logFilePath, backUpCount, fileRollingHrs) # create webhook server app = Flask(__name__) app.secret_key = appConf['flaskSecret'] app.logger = logger # initialize sms api sender with required parameters from application config smsApi = SmsApi(appConf["smsUsername"], appConf["smsPassword"], appConf["persons"], appConf["groups"]) @app.route('/') @app.route('/api/send-sms/<grpName>', methods=['POST']) if __name__ == '__main__': serverMode: str = appConf['mode'] if serverMode.lower() == 'd': app.run(host=appConf["flaskHost"], port=int( appConf["flaskPort"]), debug=True) else: serve(app, host=appConf["flaskHost"], port=int( appConf["flaskPort"]), threads=1)
29.481481
76
0.702261
from flask import Flask, request from waitress import serve from src.config.appConfig import loadAppConfig from src.logs.loggerFactory import getFileLogger from src.services.smsSender import SmsApi # get application config appConf = loadAppConfig() # setup logging based on application config backUpCount = appConf["backUpCount"] fileRollingHrs = appConf["fileRollingHrs"] logFilePath = appConf["logFilePath"] logger = getFileLogger( "app_logger", logFilePath, backUpCount, fileRollingHrs) # create webhook server app = Flask(__name__) app.secret_key = appConf['flaskSecret'] app.logger = logger # initialize sms api sender with required parameters from application config smsApi = SmsApi(appConf["smsUsername"], appConf["smsPassword"], appConf["persons"], appConf["groups"]) @app.route('/') def index(): # end point for testing the webhook return 'Hello, World!' @app.route('/api/send-sms/<grpName>', methods=['POST']) def sendSms(grpName: str): # api end point to send sms msgJson = request.json alertMsg = msgJson["message"] alertState = msgJson["state"].capitalize() smsStr = "[{0}] {1}".format(alertState, alertMsg) isSuccess = smsApi.sendSmsToGroup(grpName, smsStr) # logger.log(smsStr) return isSuccess if __name__ == '__main__': serverMode: str = appConf['mode'] if serverMode.lower() == 'd': app.run(host=appConf["flaskHost"], port=int( appConf["flaskPort"]), debug=True) else: serve(app, host=appConf["flaskHost"], port=int( appConf["flaskPort"]), threads=1)
358
0
44
2b3d9561450c764cc9dff63f42c7c64befb8dd30
1,213
py
Python
gans/CGAN/loader.py
IvLabs/Variational-DL
cd431564ae77ba42a485db17416a6033b32c48fb
[ "MIT" ]
37
2020-12-24T10:03:16.000Z
2022-01-18T05:37:07.000Z
gans/CGAN/loader.py
vignesh-creator/Variational-DL
cd431564ae77ba42a485db17416a6033b32c48fb
[ "MIT" ]
1
2021-10-03T20:04:36.000Z
2021-10-04T17:21:51.000Z
gans/CGAN/loader.py
vignesh-creator/Variational-DL
cd431564ae77ba42a485db17416a6033b32c48fb
[ "MIT" ]
36
2020-12-27T16:38:27.000Z
2022-03-21T17:20:22.000Z
import torch from torchvision import transforms, datasets from torch.utils.data import DataLoader device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') training_data = datasets.CIFAR10(root="data", train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ])) validation_data = datasets.CIFAR10(root="data", train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ])) #Hyper parameters batch_size = 128 d_lr = 2e-4 #learning rate of discriminator g_lr = 2e-4 #learning rate of generator epochs = 20 train_shape = training_data.data.shape[0] training_loader = DataLoader(training_data,batch_size=batch_size, shuffle=True,pin_memory=True) validation_loader = DataLoader(validation_data,batch_size=16,shuffle=True,pin_memory=True)
44.925926
96
0.575433
import torch from torchvision import transforms, datasets from torch.utils.data import DataLoader device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') training_data = datasets.CIFAR10(root="data", train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ])) validation_data = datasets.CIFAR10(root="data", train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ])) #Hyper parameters batch_size = 128 d_lr = 2e-4 #learning rate of discriminator g_lr = 2e-4 #learning rate of generator epochs = 20 train_shape = training_data.data.shape[0] training_loader = DataLoader(training_data,batch_size=batch_size, shuffle=True,pin_memory=True) validation_loader = DataLoader(validation_data,batch_size=16,shuffle=True,pin_memory=True)
0
0
0
cc96cf4d5225718933a96ae5b76fe27a222e3d90
11,003
py
Python
eservice/pdo/sservice/block_store_manager.py
sambacha/private-data-objects
635049918b362ba81ad74469cbea6b2c53380d9e
[ "Apache-2.0" ]
84
2018-05-04T15:07:53.000Z
2022-03-23T09:38:17.000Z
eservice/pdo/sservice/block_store_manager.py
sambacha/private-data-objects
635049918b362ba81ad74469cbea6b2c53380d9e
[ "Apache-2.0" ]
218
2018-05-07T20:10:25.000Z
2022-03-23T17:27:44.000Z
eservice/pdo/sservice/block_store_manager.py
sambacha/private-data-objects
635049918b362ba81ad74469cbea6b2c53380d9e
[ "Apache-2.0" ]
33
2018-03-02T20:32:18.000Z
2021-09-17T07:07:57.000Z
# Copyright 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """helper.py This file defines a class to implement the various storage service operations on the lmdb file. """ import base64 import hashlib import lmdb import struct import time import pdo.common.keys as keys from pdo.service_client.storage import StorageException import logging logger = logging.getLogger(__name__) class BlockMetadata(object) : """Implements a wrapper for block metadata. """ minimum_expiration_time = 60 @classmethod class BlockStoreManager(object) : """Implements the storage service operations in a way that provides symmetry with the storage service client. """ map_size = 1 << 40 def __init__(self, block_store_file, service_keys = None, create_block_store=False) : """Initialize storage service class instance :param block_store_file string: name of the lmdb file used for block storage :param service_keys ServiceKeys: ECDSA keys used to sign storage contracts :param create_block_store boolean: flag to note that missing blockstore file should be created """ self.service_keys = service_keys if self.service_keys is None : self.service_keys = keys.ServiceKeys.create_service_keys() self.block_store_env = lmdb.open( block_store_file, create=create_block_store, max_dbs=2, subdir=False, sync=False, map_size=self.map_size) def close(self) : """Sync the database to disk and close the handles """ self.block_store_env.sync() self.block_store_env.close() self.block_store_env = None def get_service_info(self) : """Return useful information about the service :return dict: dictionary of information about the storage service """ return {'verifying_key' : self.service_keys.verifying_key } def list_blocks(self, encoding='b64') : """Return a list of all block identifiers currently stored in the database; mostly for debugging purposes :param encoding string: encoding to use for block identifiers, raw/b64 :return list of string: list of block identifiers """ encoding_fn = lambda x : x if encoding == 'b64' : encoding_fn = lambda x : base64.urlsafe_b64encode(x).decode() mdb = self.block_store_env.open_db(b'meta_data') block_ids = [] with self.block_store_env.begin() as txn : cursor = txn.cursor(db=mdb) for key, value in cursor : block_ids.append(encoding_fn(key)) return block_ids def get_block(self, block_id, encoding='b64') : """Return the data for a block given the hash of the block :param block_id string: block identifier :param encoding string: encoding to use for block identifiers, raw/b64 :return string: block data """ decoding_fn = lambda x : x if encoding == 'b64' : decoding_fn = lambda x : base64.urlsafe_b64decode(x) block_hash = decoding_fn(block_id) bdb = self.block_store_env.open_db(b'block_data') with self.block_store_env.begin() as txn : block_data = txn.get(block_hash, db=bdb) return block_data # return block_data_list def get_blocks(self, block_ids, encoding='b64') : """Return the data for a list of blocks """ # the iterator means that we don't have to use as much memory # for operations that can process the blocks one at a time return self.__block_iterator__(block_ids, encoding) def store_block(self, block_data, expiration=60, encoding='b64') : """Add a new data block to the store :param block_data string: binary content of the block :param encoding string: encoding to use for block identifiers, raw/b64 :return string: block identifier """ return self.store_blocks([block_data], expiration, encoding) def store_blocks(self, block_data_list, expiration=60, encoding='b64') : """Save a list of blocks in the store :param iterable block_data_list: iterable collection of blocks to store :param expiration int: number of seconds to use for expiration :param encoding string: encoding to use for block identifiers, raw/b64 :return list of string: list of block identifiers """ encoding_fn = lambda x : x if encoding == 'b64' : encoding_fn = lambda x : base64.urlsafe_b64encode(x).decode() current_time = int(time.time()) expiration_time = current_time + expiration mdb = self.block_store_env.open_db(b'meta_data') bdb = self.block_store_env.open_db(b'block_data') block_hashes = [] # this might keep the database locked for too long for a write transaction # might want to flip the order, one transaction per update with self.block_store_env.begin(write=True) as txn : for block_data in block_data_list : block_hash = hashlib.sha256(block_data).digest() block_hashes.append(block_hash) # need to check to see if the block already exists, if it # does then just extend the expiration time if necessary raw_metadata = txn.get(block_hash, db=mdb) if raw_metadata : metadata = BlockMetadata.unpack(raw_metadata) if expiration_time > metadata.expiration_time : metadata.expiration_time = expiration_time if not txn.put(block_hash, metadata.pack(), db=mdb, overwrite=True) : raise StorageException("failed to update metadata") continue # this is a new block that needs to be added metadata = BlockMetadata() metadata.block_size = len(block_data) metadata.create_time = current_time metadata.expiration_time = expiration_time metadata.mark = 0 if not txn.put(block_hash, metadata.pack(), db=mdb) : raise StorageException("failed to save metadata") if not txn.put(block_hash, block_data, db=bdb) : raise StorageException("failed to save block data") try : # going to just concatenate all hashes, safe since these are all fixed size signing_hash_accumulator = expiration.to_bytes(32, byteorder='big', signed=False) signing_hash_accumulator += b''.join(block_hashes) signing_hash = hashlib.sha256(signing_hash_accumulator).digest() signature = self.service_keys.sign(signing_hash, encoding=encoding) except Exception as e : logger.error("unknown exception packing response (BlockStatus); %s", str(e)) return StorageException('signature failed') result = dict() result['signature'] = signature result['block_ids'] = list(map(encoding_fn, block_hashes)) return result def check_blocks(self, block_ids, encoding='b64') : """Check status of a list of block :param block_ids list of string: block identifiers :param encoding string: encoding to use for block identifiers, raw/b64 :return list of dict: list of block status """ decoding_fn = lambda x : x if encoding == 'b64' : decoding_fn = lambda x : base64.urlsafe_b64decode(x) current_time = int(time.time()) mdb = self.block_store_env.open_db(b'meta_data') block_status_list = [] with self.block_store_env.begin() as txn : for block_id in block_ids : # use the input format for the output block identifier block_status = { 'block_id' : block_id, 'size' : 0, 'expiration' : 0 } block_hash = decoding_fn(block_id) raw_metadata = txn.get(block_hash, db=mdb) if raw_metadata : metadata = BlockMetadata.unpack(raw_metadata) block_status['size'] = metadata.block_size block_status['expiration'] = metadata.expiration_time - current_time if block_status['expiration'] < 0 : block_status['expiration'] = 0 block_status_list.append(block_status) return block_status_list def expire_blocks(self) : """Delete data and metadata for blocks that have expired """ try : mdb = self.block_store_env.open_db(b'meta_data') bdb = self.block_store_env.open_db(b'block_data') current_time = int(time.time()) count = 0 with self.block_store_env.begin() as txn : cursor = txn.cursor(db=mdb) for key, value in cursor : metadata = BlockMetadata.unpack(value) if metadata.expiration_time < current_time : logger.debug('expire block %s',base64.urlsafe_b64encode(key).decode()) count += 1 with self.block_store_env.begin(write=True) as dtxn : assert dtxn.delete(key, db=bdb) assert dtxn.delete(key, db=mdb) logger.info('expired %d blocks', count) except Exception as e : logger.error('garbage collection failed; %s', str(e)) return None return count
37.42517
103
0.624375
# Copyright 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """helper.py This file defines a class to implement the various storage service operations on the lmdb file. """ import base64 import hashlib import lmdb import struct import time import pdo.common.keys as keys from pdo.service_client.storage import StorageException import logging logger = logging.getLogger(__name__) class BlockMetadata(object) : """Implements a wrapper for block metadata. """ minimum_expiration_time = 60 @classmethod def unpack(cls, value) : metadata = struct.unpack('LLLL', value) obj = cls() obj.block_size = metadata[0] obj.create_time = metadata[1] obj.expiration_time = metadata[2] obj.mark = metadata[3] return obj def __init__(self) : self.block_size = 0 self.create_time = 0 self.expiration_time = 0 self.mark = 0 def pack(self) : value = struct.pack('LLLL', self.block_size, self.create_time, self.expiration_time, self.mark) return value class BlockStoreManager(object) : """Implements the storage service operations in a way that provides symmetry with the storage service client. """ map_size = 1 << 40 def __init__(self, block_store_file, service_keys = None, create_block_store=False) : """Initialize storage service class instance :param block_store_file string: name of the lmdb file used for block storage :param service_keys ServiceKeys: ECDSA keys used to sign storage contracts :param create_block_store boolean: flag to note that missing blockstore file should be created """ self.service_keys = service_keys if self.service_keys is None : self.service_keys = keys.ServiceKeys.create_service_keys() self.block_store_env = lmdb.open( block_store_file, create=create_block_store, max_dbs=2, subdir=False, sync=False, map_size=self.map_size) def close(self) : """Sync the database to disk and close the handles """ self.block_store_env.sync() self.block_store_env.close() self.block_store_env = None def get_service_info(self) : """Return useful information about the service :return dict: dictionary of information about the storage service """ return {'verifying_key' : self.service_keys.verifying_key } def list_blocks(self, encoding='b64') : """Return a list of all block identifiers currently stored in the database; mostly for debugging purposes :param encoding string: encoding to use for block identifiers, raw/b64 :return list of string: list of block identifiers """ encoding_fn = lambda x : x if encoding == 'b64' : encoding_fn = lambda x : base64.urlsafe_b64encode(x).decode() mdb = self.block_store_env.open_db(b'meta_data') block_ids = [] with self.block_store_env.begin() as txn : cursor = txn.cursor(db=mdb) for key, value in cursor : block_ids.append(encoding_fn(key)) return block_ids def get_block(self, block_id, encoding='b64') : """Return the data for a block given the hash of the block :param block_id string: block identifier :param encoding string: encoding to use for block identifiers, raw/b64 :return string: block data """ decoding_fn = lambda x : x if encoding == 'b64' : decoding_fn = lambda x : base64.urlsafe_b64decode(x) block_hash = decoding_fn(block_id) bdb = self.block_store_env.open_db(b'block_data') with self.block_store_env.begin() as txn : block_data = txn.get(block_hash, db=bdb) return block_data # return block_data_list def __block_iterator__(self, block_ids, encoding) : for block_id in block_ids : yield self.get_block(block_id, encoding) def get_blocks(self, block_ids, encoding='b64') : """Return the data for a list of blocks """ # the iterator means that we don't have to use as much memory # for operations that can process the blocks one at a time return self.__block_iterator__(block_ids, encoding) def store_block(self, block_data, expiration=60, encoding='b64') : """Add a new data block to the store :param block_data string: binary content of the block :param encoding string: encoding to use for block identifiers, raw/b64 :return string: block identifier """ return self.store_blocks([block_data], expiration, encoding) def store_blocks(self, block_data_list, expiration=60, encoding='b64') : """Save a list of blocks in the store :param iterable block_data_list: iterable collection of blocks to store :param expiration int: number of seconds to use for expiration :param encoding string: encoding to use for block identifiers, raw/b64 :return list of string: list of block identifiers """ encoding_fn = lambda x : x if encoding == 'b64' : encoding_fn = lambda x : base64.urlsafe_b64encode(x).decode() current_time = int(time.time()) expiration_time = current_time + expiration mdb = self.block_store_env.open_db(b'meta_data') bdb = self.block_store_env.open_db(b'block_data') block_hashes = [] # this might keep the database locked for too long for a write transaction # might want to flip the order, one transaction per update with self.block_store_env.begin(write=True) as txn : for block_data in block_data_list : block_hash = hashlib.sha256(block_data).digest() block_hashes.append(block_hash) # need to check to see if the block already exists, if it # does then just extend the expiration time if necessary raw_metadata = txn.get(block_hash, db=mdb) if raw_metadata : metadata = BlockMetadata.unpack(raw_metadata) if expiration_time > metadata.expiration_time : metadata.expiration_time = expiration_time if not txn.put(block_hash, metadata.pack(), db=mdb, overwrite=True) : raise StorageException("failed to update metadata") continue # this is a new block that needs to be added metadata = BlockMetadata() metadata.block_size = len(block_data) metadata.create_time = current_time metadata.expiration_time = expiration_time metadata.mark = 0 if not txn.put(block_hash, metadata.pack(), db=mdb) : raise StorageException("failed to save metadata") if not txn.put(block_hash, block_data, db=bdb) : raise StorageException("failed to save block data") try : # going to just concatenate all hashes, safe since these are all fixed size signing_hash_accumulator = expiration.to_bytes(32, byteorder='big', signed=False) signing_hash_accumulator += b''.join(block_hashes) signing_hash = hashlib.sha256(signing_hash_accumulator).digest() signature = self.service_keys.sign(signing_hash, encoding=encoding) except Exception as e : logger.error("unknown exception packing response (BlockStatus); %s", str(e)) return StorageException('signature failed') result = dict() result['signature'] = signature result['block_ids'] = list(map(encoding_fn, block_hashes)) return result def check_block(self, block_id, encoding='b64') : pass def check_blocks(self, block_ids, encoding='b64') : """Check status of a list of block :param block_ids list of string: block identifiers :param encoding string: encoding to use for block identifiers, raw/b64 :return list of dict: list of block status """ decoding_fn = lambda x : x if encoding == 'b64' : decoding_fn = lambda x : base64.urlsafe_b64decode(x) current_time = int(time.time()) mdb = self.block_store_env.open_db(b'meta_data') block_status_list = [] with self.block_store_env.begin() as txn : for block_id in block_ids : # use the input format for the output block identifier block_status = { 'block_id' : block_id, 'size' : 0, 'expiration' : 0 } block_hash = decoding_fn(block_id) raw_metadata = txn.get(block_hash, db=mdb) if raw_metadata : metadata = BlockMetadata.unpack(raw_metadata) block_status['size'] = metadata.block_size block_status['expiration'] = metadata.expiration_time - current_time if block_status['expiration'] < 0 : block_status['expiration'] = 0 block_status_list.append(block_status) return block_status_list def expire_blocks(self) : """Delete data and metadata for blocks that have expired """ try : mdb = self.block_store_env.open_db(b'meta_data') bdb = self.block_store_env.open_db(b'block_data') current_time = int(time.time()) count = 0 with self.block_store_env.begin() as txn : cursor = txn.cursor(db=mdb) for key, value in cursor : metadata = BlockMetadata.unpack(value) if metadata.expiration_time < current_time : logger.debug('expire block %s',base64.urlsafe_b64encode(key).decode()) count += 1 with self.block_store_env.begin(write=True) as dtxn : assert dtxn.delete(key, db=bdb) assert dtxn.delete(key, db=mdb) logger.info('expired %d blocks', count) except Exception as e : logger.error('garbage collection failed; %s', str(e)) return None return count
631
0
133
c47aef6a568a84a910fe9d901ba372f17176b9e3
1,435
py
Python
pymc/examples/gp/PyMCmodel.py
rsumner31/pymc3-23
539c0fc04c196679a1cdcbf4bc2dbea4dee10080
[ "Apache-2.0" ]
1
2019-03-01T02:47:20.000Z
2019-03-01T02:47:20.000Z
pymc/examples/gp/PyMCmodel.py
rsumner31/pymc3-23
539c0fc04c196679a1cdcbf4bc2dbea4dee10080
[ "Apache-2.0" ]
1
2019-08-17T06:58:38.000Z
2019-08-17T06:58:38.000Z
pymc/examples/gp/PyMCmodel.py
rsumner31/pymc3-23
539c0fc04c196679a1cdcbf4bc2dbea4dee10080
[ "Apache-2.0" ]
null
null
null
import pymc as pm import pymc.gp as gp from pymc.gp.cov_funs import matern import numpy as np import matplotlib.pyplot as pl from numpy.random import normal x = np.arange(-1.,1.,.1) # Prior parameters of C diff_degree = pm.Uniform('diff_degree', .1, 3) amp = pm.Lognormal('amp', mu=.4, tau=1.) scale = pm.Lognormal('scale', mu=.5, tau=1.) # The covariance dtrm C is valued as a Covariance object. @pm.deterministic # Prior parameters of M a = pm.Normal('a', mu=1., tau=1.) b = pm.Normal('b', mu=.5, tau=1.) c = pm.Normal('c', mu=2., tau=1.) # The mean M is valued as a Mean object. @pm.deterministic # The GP itself fmesh = np.linspace(-np.pi/3.3,np.pi/3.3,4) f = gp.GP(name="f", M=M, C=C, mesh=fmesh, init_mesh_vals = 0.*fmesh) # Observation precision # V = Gamma('V', alpha=3., beta=3./.002, value=.002) V = .0001 # The data d is just array-valued. It's normally distributed about GP.f(obs_x). @pm.observed @pm.stochastic def d(value=np.random.normal(size=len(fmesh)), mu=f, V=V): """ Data """ mu_eval = mu(fmesh) return pm.flib.normal(value, mu_eval, 1./V)
25.625
89
0.65993
import pymc as pm import pymc.gp as gp from pymc.gp.cov_funs import matern import numpy as np import matplotlib.pyplot as pl from numpy.random import normal x = np.arange(-1.,1.,.1) # Prior parameters of C diff_degree = pm.Uniform('diff_degree', .1, 3) amp = pm.Lognormal('amp', mu=.4, tau=1.) scale = pm.Lognormal('scale', mu=.5, tau=1.) # The covariance dtrm C is valued as a Covariance object. @pm.deterministic def C(eval_fun = gp.matern.euclidean, diff_degree=diff_degree, amp=amp, scale=scale): return gp.FullRankCovariance(eval_fun, diff_degree=diff_degree, amp=amp, scale=scale) # Prior parameters of M a = pm.Normal('a', mu=1., tau=1.) b = pm.Normal('b', mu=.5, tau=1.) c = pm.Normal('c', mu=2., tau=1.) # The mean M is valued as a Mean object. def linfun(x, a, b, c): # return a * x ** 2 + b * x + c return 0.*x + c @pm.deterministic def M(eval_fun = linfun, a=a, b=b, c=c): return gp.Mean(eval_fun, a=a, b=b, c=c) # The GP itself fmesh = np.linspace(-np.pi/3.3,np.pi/3.3,4) f = gp.GP(name="f", M=M, C=C, mesh=fmesh, init_mesh_vals = 0.*fmesh) # Observation precision # V = Gamma('V', alpha=3., beta=3./.002, value=.002) V = .0001 # The data d is just array-valued. It's normally distributed about GP.f(obs_x). @pm.observed @pm.stochastic def d(value=np.random.normal(size=len(fmesh)), mu=f, V=V): """ Data """ mu_eval = mu(fmesh) return pm.flib.normal(value, mu_eval, 1./V)
275
0
66
1ff0470a82f8e325dec69db737d3ded8bf488a17
734
py
Python
HW4/PyMaxflow-master/examples/simple.py
ardaduz/math-cgv
bc89c0ce9beca9a9f02ca23bcf4a9116be187882
[ "MIT" ]
null
null
null
HW4/PyMaxflow-master/examples/simple.py
ardaduz/math-cgv
bc89c0ce9beca9a9f02ca23bcf4a9116be187882
[ "MIT" ]
null
null
null
HW4/PyMaxflow-master/examples/simple.py
ardaduz/math-cgv
bc89c0ce9beca9a9f02ca23bcf4a9116be187882
[ "MIT" ]
1
2021-02-14T10:41:17.000Z
2021-02-14T10:41:17.000Z
import maxflow # Create a graph with integer capacities. g = maxflow.Graph[int](2, 2) # Add two (non-terminal) nodes. Get the index to the first one. nodes = g.add_nodes(2) # Create two edges (forwards and backwards) with the given capacities. # The indices of the nodes are always consecutive. g.add_edge(nodes[0], nodes[1], 1, 2) # Set the capacities of the terminal edges... # ...for the first node. g.add_tedge(nodes[0], 2, 5) # ...for the second node. g.add_tedge(nodes[1], 9, 4) # Find the maxflow. flow = g.maxflow() print("Maximum flow: {}".format(flow)) # Print the segment of each node. print("Segment of the node 0: {}".format(g.get_segment(nodes[0]))) print("Segment of the node 1: {}".format(g.get_segment(nodes[1])))
31.913043
70
0.701635
import maxflow # Create a graph with integer capacities. g = maxflow.Graph[int](2, 2) # Add two (non-terminal) nodes. Get the index to the first one. nodes = g.add_nodes(2) # Create two edges (forwards and backwards) with the given capacities. # The indices of the nodes are always consecutive. g.add_edge(nodes[0], nodes[1], 1, 2) # Set the capacities of the terminal edges... # ...for the first node. g.add_tedge(nodes[0], 2, 5) # ...for the second node. g.add_tedge(nodes[1], 9, 4) # Find the maxflow. flow = g.maxflow() print("Maximum flow: {}".format(flow)) # Print the segment of each node. print("Segment of the node 0: {}".format(g.get_segment(nodes[0]))) print("Segment of the node 1: {}".format(g.get_segment(nodes[1])))
0
0
0
bb753e65a660ad6b0da4c898f341c53f5a413d54
395
py
Python
storm_analysis/diagnostics/frc/analyze_data.py
oxfordni/storm-analysis
835a5c17497c563c3632db561ae7e7c9144a8dd1
[ "CNRI-Python" ]
null
null
null
storm_analysis/diagnostics/frc/analyze_data.py
oxfordni/storm-analysis
835a5c17497c563c3632db561ae7e7c9144a8dd1
[ "CNRI-Python" ]
null
null
null
storm_analysis/diagnostics/frc/analyze_data.py
oxfordni/storm-analysis
835a5c17497c563c3632db561ae7e7c9144a8dd1
[ "CNRI-Python" ]
null
null
null
#!/usr/bin/env python """ Analyze FRC data. Hazen 01/18 """ import glob import storm_analysis.frc.frc_calc2d as frcCalc2d dirs = sorted(glob.glob("test*")) total_time = 0.0 for a_dir in dirs: print() print("Analyzing:", a_dir) print() hdf5 = a_dir + "/test.hdf5" frc_text = a_dir + "/frc.txt" # Run FRC analysis. frcCalc2d.frcCalc2d(hdf5, frc_text) print()
15.8
49
0.643038
#!/usr/bin/env python """ Analyze FRC data. Hazen 01/18 """ import glob import storm_analysis.frc.frc_calc2d as frcCalc2d dirs = sorted(glob.glob("test*")) total_time = 0.0 for a_dir in dirs: print() print("Analyzing:", a_dir) print() hdf5 = a_dir + "/test.hdf5" frc_text = a_dir + "/frc.txt" # Run FRC analysis. frcCalc2d.frcCalc2d(hdf5, frc_text) print()
0
0
0