hexsha
stringlengths
40
40
size
int64
7
1.04M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
247
max_stars_repo_name
stringlengths
4
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
368k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
247
max_issues_repo_name
stringlengths
4
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
247
max_forks_repo_name
stringlengths
4
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.04M
avg_line_length
float64
1.77
618k
max_line_length
int64
1
1.02M
alphanum_fraction
float64
0
1
original_content
stringlengths
7
1.04M
filtered:remove_function_no_docstring
int64
-102
942k
filtered:remove_class_no_docstring
int64
-354
977k
filtered:remove_delete_markers
int64
0
60.1k
8cf2d55e40a7f8dba7559856ea643336c51f17b9
9,477
py
Python
lib/structures.py
logicplace/race-mini-editor
3f18b048ef5608e8ee96f87e6337d3e9fb63c95d
[ "MIT" ]
3
2020-08-08T09:41:51.000Z
2022-02-23T00:36:10.000Z
lib/structures.py
logicplace/race-mini-editor
3f18b048ef5608e8ee96f87e6337d3e9fb63c95d
[ "MIT" ]
null
null
null
lib/structures.py
logicplace/race-mini-editor
3f18b048ef5608e8ee96f87e6337d3e9fb63c95d
[ "MIT" ]
null
null
null
import re import struct from typing import Any, BinaryIO, Dict, NamedTuple, Optional, Sequence, Tuple from .util import music, tilesets, load_tileset, spritesets, load_spriteset, PokeImportError from .sound import MinLibSound from .encoders import encode_tiles
25.339572
92
0.661602
import re import struct from typing import Any, BinaryIO, Dict, NamedTuple, Optional, Sequence, Tuple from .util import music, tilesets, load_tileset, spritesets, load_spriteset, PokeImportError from .sound import MinLibSound from .encoders import encode_tiles def to3b(x: int): return x.to_bytes(3, "little") def read2b_base(f: BinaryIO, table_base: int, idx: int) -> int: f.seek(table_base + idx * 2) return (table_base & 0xff0000) + int.from_bytes(f.read(2), "little") def write2b_base_and_seek(f: BinaryIO, table_base: int, idx: int, addr: int): f.seek(table_base + idx * 2) f.write((addr & 0xffff).to_bytes(2, "little")) f.seek(addr) def readXb_until(f: BinaryIO, x: int, until: int): ret = [] comp = ~until while comp != until: data = f.read(x) ret.append(data) comp = data[0] return ret class TrackGhost: # 0bPRLDUCBA DPAD = 0x78 POWER = 0x80 RIGHT = 0x40 LEFT = 0x20 DOWN = 0x10 UP = 0x08 C = 0x04 B = 0x02 A = 0x01 _splitter = re.compile(r'#.*|\d+|[^\s\d#]+') dir_to_arrows = { 0: "", RIGHT: "→", LEFT: "←", DOWN: "↓", UP: "↑", RIGHT | DOWN: "↘", LEFT | DOWN: "↙", # Stupid ones RIGHT | UP: "↗", LEFT | UP: "↖", RIGHT | LEFT: "↔", DOWN | UP: "↕", RIGHT | LEFT | DOWN: "↔↓", RIGHT | LEFT | UP: "↔↑", RIGHT | DOWN | UP: "→↕", LEFT | DOWN | UP: "←↕", RIGHT | LEFT | DOWN | UP: "↔↕", } # yapf: disable arrow_to_dir = { "r": 0, ">": RIGHT, "→": RIGHT, "<": LEFT, "←": LEFT, "v": DOWN, "↓": DOWN, "^": UP, "↑": UP, "\\": RIGHT | DOWN, "↘": RIGHT | DOWN, "/": RIGHT | DOWN, "↙": RIGHT | DOWN, "C": C, "B": B, "A": A, "c": C, "b": B, "a": A, # Stupid ones "↗": RIGHT | UP, "↖": LEFT | UP, "↔": RIGHT | LEFT, "↕": DOWN | UP, } # yapf: enable def __init__(self): self.ops: Sequence[Tuple[int, int]] = [] @classmethod def from_bin(cls, source: BinaryIO) -> "TrackGhost": ret = cls() while True: data = source.read(10) for i in range(0, 10, 2): keys = data[i] ticks = data[i + 1] ret.ops.append((keys, ticks)) if keys == 0xff: source.seek(-(10 - i + 2), 1) return ret def to_bin(self) -> bytes: ret = bytearray() for op in self.ops: ret.extend(op) return bytes(ret) def to_string(self): ret = [] last_dir = 0 for keys, ticks in self.ops: op = [] if keys == 0: op.append("r") last_dir = 0 elif keys == 0xff: break elif keys == self.LEFT | self.B: op.append("↞") last_dir = self.LEFT elif keys == self.RIGHT | self.B: op.append("↠") last_dir = self.RIGHT else: direction = keys & self.DPAD arrows = self.dir_to_arrows[direction] if keys & self.A: if direction == last_dir: op.append("↥") else: op.append(arrows) op.append("A") else: op.append(arrows) if keys & self.B: op.append("B") last_dir = direction op.append(str(ticks)) ret.append("".join(op)) return " ".join(ret) @classmethod def from_string(cls, s: str) -> "TrackGhost": # ←< ↑^ →> ↓v ↘\ ↙/ and ↖↗↔↕ should work too I guess # r reset/rest # ↥ jump while continuing movement # ↞ dash left # ↠ dash right # ↳x typical jump dash, [(1, 8), (0, 16), (64, x)] ret = cls() matched = cls._splitter.finditer(s) for mo in matched: arrows: str = mo.group(0) if arrows[0] == "#": continue try: ticks: str = next(matched).group(0) except StopIteration: raise PokeImportError("Bad AI, missing tick count for final command.") from None if not ticks.isdecimal(): raise PokeImportError(f"Expected tick count, found {ticks}") ticks_i = int(ticks) if arrows[0] == "↥" and all(x in "ABC" for x in arrows[1:]): value = ret.ops[-1][0] | cls.A if "B" in arrows: value |= cls.B if "C" in arrows: value |= cls.C ret.ops.append((value, ticks_i)) elif arrows in ("↠", "»"): ret.ops.append((cls.RIGHT | cls.B, ticks_i)) elif arrows in ("↞", "«"): ret.ops.append((cls.LEFT | cls.B, ticks_i)) else: direction = 0 for a in arrows: if a in "↥↠»↞«": suggest = "A" if a == "↥" else "B" raise PokeImportError( f"{a} direction cannot be used with other directions. Use {suggest} instead." ) try: direction |= cls.arrow_to_dir[a] except KeyError: raise PokeImportError(f"Key {a} is unknown.") ret.ops.append((direction, ticks_i)) ret.ops.append((0xff, 0)) return ret class SpriteAttrs(NamedTuple): x: int y: int tile: int enable: bool invert_color: bool vflip: bool hflip: bool def to_bin(self) -> bytes: options = (0x08 if self.enable else 0x00) | (0x04 if self.invert_color else 0x00) | (0x02 if self.vflip else 0x00) | (0x01 if self.hflip else 0x00) return struct.pack("BBBB", self.x, self.y, self.tile, options) @classmethod def from_bin(cls, b: bytes) -> "TrackSplash": options = b[3] return cls( b[0], b[1], b[2], bool(options & 0x08), bool(options & 0x04), bool(options & 0x02), bool(options & 0x01) ) class GrandPrixTrackMetaData(NamedTuple): # bases are 3 bytes, the rest are 1 tileset_base: int tilemap_base: int width: int height: int bg_music: int starting_x: int starting_y: int unk2: int sprite_base: int preview_tileset_base: int preview_tilemap_base: int preview_map_width: int preview_map_height: int @classmethod def from_bin(cls, b: bytes) -> "GrandPrixTrackMetaData": return cls( *( int.from_bytes(a, "little") if isinstance(a, bytes) else a for a in struct.unpack("<3s3s6B3s3s3s2B", b) ) ) def to_bin(self) -> bin: return struct.pack( "<3s3s6B3s3s3s2B", to3b(self.tileset_base), to3b(self.tilemap_base), self.width, self.height, self.bg_music, self.starting_x, self.starting_y, self.unk2, to3b(self.sprite_base), to3b(self.preview_tileset_base), to3b(self.preview_tilemap_base), self.preview_map_width, self.preview_map_height ) class GrandPrixTrack: ident: str index: Optional[int] bases: Dict[str, int] metadata: GrandPrixTrackMetaData tilemap: Sequence[int] preview_tilemap: Sequence[int] title_ditto_tilemap: Sequence[int] title_ranking_tilemap: Sequence[int] splash_spritemap: Sequence[SpriteAttrs] bgm: MinLibSound ai_easy: TrackGhost ai_normal: TrackGhost ai_hard: TrackGhost def __init__(self, ident: str, index: int, *, config: Dict[str, Any]): self.bases = {} self.ident = ident self.index = index self.config = config def read(self, f: BinaryIO): idx, config = self.index, self.config metadata_base = read2b_base(f, config["metadata_array_base"], idx) title_ditto_base = read2b_base(f, config["titles_nobar_tilemaps_array_base"], idx) title_ranking_base = read2b_base(f, config["titles_bar_tilemaps_array_base"], idx) f.seek(config["track_screens_array_base"] + 2 * idx) splash_map_base = 0x070000 | int.from_bytes(f.read(2), "little") ai_easy_base = read2b_base(f, config["ai_easy_table_base"], idx) ai_normal_base = read2b_base(f, config["ai_normal_table_base"], idx) ai_hard_base = read2b_base(f, config["ai_hard_table_base"], idx) self.bases = { "ai_easy": ai_easy_base, "ai_normal": ai_normal_base, "ai_hard": ai_hard_base, "metadata": metadata_base, "title_ditto": title_ditto_base, "title_ranking": title_ranking_base, "splash_map": splash_map_base, } f.seek(splash_map_base) splash_map_data = f.read(12 * 4) self.splash_spritemap = [ SpriteAttrs.from_bin(splash_map_data[i:i + 4]) for i in range(0, 12 * 4, 4) ] f.seek(ai_easy_base) self.ai_easy = TrackGhost.from_bin(f) f.seek(ai_normal_base) self.ai_normal = TrackGhost.from_bin(f) f.seek(ai_hard_base) self.ai_hard = TrackGhost.from_bin(f) f.seek(metadata_base) self.metadata = GrandPrixTrackMetaData.from_bin(f.read(23)) load_tileset(f, self.metadata.tileset_base, height=10) load_tileset(f, self.metadata.preview_tileset_base) f.seek(self.metadata.tilemap_base) self.tilemap = f.read(self.metadata.width * self.metadata.height) f.seek(self.metadata.preview_tilemap_base) self.preview_tilemap = f.read( self.metadata.preview_map_width * self.metadata.preview_map_height ) # right-aligned f.seek(title_ditto_base) self.title_ditto_tilemap = f.read(8) # right-aligned and double lined (screen border) f.seek(title_ranking_base) self.title_ranking_tilemap = f.read(8) load_spriteset(f, self.metadata.sprite_base, height=12) def write(self, f: BinaryIO, update_out: dict): idx, config = self.index, self.config write2b_base_and_seek(f, config["metadata_array_base"], idx, self.bases["metadata"]) f.write(self.metadata.to_bin()) f.seek(self.metadata.tileset_base) f.write(encode_tiles(self.tileset)) f.seek(self.metadata.preview_tileset_base) f.write(encode_tiles(self.preview_tileset)) f.seek(self.metadata.tilemap_base) f.write(self.tilemap) f.seek(self.metadata.preview_tilemap_base) f.write(self.preview_tilemap) update_out["ai"].add(self) update_out["music"].add(self.bgm) update_out["tilesets"] |= {self.metadata.tileset_base, self.metadata.preview_tileset_base} update_out["spritesets"].add(self.metadata.sprite_base) @property def bgm(self): return music[self.metadata.bg_music] @property def tileset(self): return tilesets[self.metadata.tileset_base] @property def spriteset(self): return spritesets[self.metadata.sprite_base] @property def preview_tileset(self): return tilesets[self.metadata.preview_tileset_base]
6,938
2,197
184
02ab5ac38323d1a54c6ec402c2b0af7e9a378c0b
12,767
py
Python
robot.py
recantha/RedBoard
b47e3085d7550318473c73aaf2f089b950b6934a
[ "MIT" ]
21
2019-10-07T22:55:36.000Z
2020-12-09T20:07:03.000Z
robot.py
recantha/RedBoard
b47e3085d7550318473c73aaf2f089b950b6934a
[ "MIT" ]
5
2019-09-05T14:15:36.000Z
2020-03-17T20:21:42.000Z
robot.py
recantha/RedBoard
b47e3085d7550318473c73aaf2f089b950b6934a
[ "MIT" ]
5
2018-05-02T16:38:28.000Z
2020-01-02T15:06:02.000Z
# This is an example program showing different methods of controlling motors, servos, and Neopixels. # It works with a Rock Candy or PiHut PS3 controller. # The left stick controls the speed and direction of both motors - push up to go forwards, down for backwards and left or right to steer. # The right stick directly controls two servo motors connected to GPIO pins 21 and 22. # The R1 button starts or stops turbo mode (the robot goes faster!) . # The L1 and L2 buttons move a servo connected to GPIO 22 to two pre-set positions. # The Square button starts or stops a servo connected to GPIO 20 slowly sweeping left to right. This uses multiprocessing to run at the same time as the main program loop. # The Triangle, Circle, and X buttons start and stop different Neopixels sequences - also with multiprocessing. # Author: Neil Lambeth. neil@redrobotics.co.uk @NeilRedRobotics from __future__ import print_function # Make print work with python 2 & 3 from evdev import InputDevice, ecodes import redboard import multiprocessing import time try: import neopixels # Neopixels need to be run with 'sudo', just a reminder! except RuntimeError: print ('') print ("Remember to use 'sudo' if you're using neopixels!") print ('') exit() dev = InputDevice('/dev/input/event0') #print(dev) device = str(dev).find('Rock Candy') # Look for a Rock Candy or PiHut controller if device != -1: print ('Controller: Rock Candy PS3 Gamepad') controller = 1 else: print ('Controller: PiHut PS3 Gamepad') controller = 2 # Button mapping for different controllers if controller == 1: # Rock Candy triangle, x, square, circle = 307, 305, 304, 306 R1, R2, R3 = 309, 311, 315 L1, L2, L3 = 308, 310, 314 select, start, home = 312, 313, 316 if controller == 2: # PiHut triangle, x, square, circle = 308, 304, 307, 305 R1, R2, R3 = 311, 313, 318 L1, L2, L3 = 310, 312, 317 select, start, home = 314, 315, 316 # Set up variables RX = 0 LX = 0 RY = 0 RY = 0 LeftY = 0 LeftX = 0 LeftX_R = 0 LeftX_L = 0 Leftmotor = 0 Rightmotor = 0 LM_OLD = 0 RM_OLD = 0 turbo = False invertX = False triangleToggle = False xToggle = False circleToggle = False squareToggle = False # Function to use with multiprocessing to sweep a servo slowly left and right # without interrupting the normal program flow # Set up neopixel processes - neopixel code is in ~/RedBoard/neopixels.py p1 = multiprocessing.Process(target = neopixels.knightRider) p1.start() # Start the neopixel display when the program starts triangleToggle = True p2 = multiprocessing.Process(target = neopixels.headLights) p3 = multiprocessing.Process(target = neopixels.demo) p4 = multiprocessing.Process(target = servoSlowSweep) # Read gamepad buttons----------------------------------------------------------- for event in dev.read_loop(): #print(event) # Uncomment to show all button data if event.type == ecodes.EV_KEY: #print(event.code) # Uncomment to show each keycode # Button pressed code if event.value == 1: if event.code == triangle and triangleToggle == False: # Toggles the button press - one press for on - one press for off. triangleToggle = True print ('triangle on') # Start and stop the neopixel processes - it's important to only run one neopixel process at any one time. So check and stop other processes if they are running. if p1.is_alive() == False: # Make sure the process isn't already running if p2.is_alive() == True: # Kill the other process if it's running p2.terminate() if p3.is_alive() == True: # Kill the other process if it's running p3.terminate() p1 = multiprocessing.Process(target = neopixels.knightRider) p1.start() # Start the process elif event.code == triangle and triangleToggle == True: triangleToggle = False print ('triangle off') p1.terminate() neopixels.clear() elif event.code == x and xToggle == False: xToggle = True print ('X on') if p2.is_alive() == False: # Make sure the process isn't already running if p1.is_alive() == True: # Kill the other process if it's running p1.terminate() if p3.is_alive() == True: # Kill the other process if it's running p3.terminate() p2 = multiprocessing.Process(target = neopixels.headLights) p2.start() # Start the process elif event.code == x and xToggle == True: xToggle = False print ('x off') p2.terminate() neopixels.clear() elif event.code == circle and circleToggle == False: circleToggle = True print ('Circle on') if p3.is_alive() == False: # Make sure the process isn't already running if p1.is_alive() == True: # Kill the other process if it's running p1.terminate() if p2.is_alive() == True: # Kill the other process if it's running p2.terminate() p3 = multiprocessing.Process(target = neopixels.demo) p3.start() # Start the process elif event.code == circle and circleToggle == True: circleToggle = False print ('Circle off') p3.terminate() neopixels.clear() elif event.code == square and squareToggle == False: squareToggle = True print ('Square on') if p4.is_alive() == False: # Make sure the process isn't already running p4 = multiprocessing.Process(target = servoSlowSweep) p4.start() # Start the process elif event.code == square and squareToggle == True: squareToggle = False print ('Square off') p4.terminate() elif event.code == R1: print ('R1 - Turbo On') turbo = True elif event.code == R2: print ('R2') elif event.code == R3: print ('R3') elif event.code == L1: print ('L1') redboard.servo22(80) # Send the positon to the servo elif event.code == L2: print ('L2') redboard.servo22(-80) # Send the positon to the servo elif event.code == L3: print ('L3') elif event.code == select and invertX == False: print ('Invert X') invertX = True elif event.code == select and invertX == True: print ('Normal X') invertX = False elif event.code == start: print ('Start') elif event.code == home: print ('Home') # Button Release Code------------------------------------------------ if event.value == 0: # Button released if event.code == R1: # Turbo Off print ('R1 - Turbo Off') turbo = False elif event.code == R2: print ('R2') elif event.code == L1 or event.code == L2: # Servos Centre print ('Servo Centre') redboard.servo22(0) # Analogue Sticks and Dpad--------------------------------------------- if event.type == ecodes.EV_ABS: print('') print('---------------------------------') # Dpad if event.code == 16: if event.value == -1: print ('Dpad LEFT') if event.value == 1: print ('Dpad RIGHT') if event.code == 17: if event.value == -1: print ('Dpad UP') if event.value == 1: print ('Dpad DOWN') # Right analogue stick servo controls elif event.code == 5: # Right analogue Vertical stick RY = event.value #print (RY) S21 = redboard.mapServo(RY) # Scale the value from the # joystick to work with the servo redboard.servo21_P(S21) # Send the positon to the servo elif event.code == 2: # Right analogue Horizontal stick RX = event.value #print (RX) S22 = redboard.mapServo(RX) # Scale the value from the # joystick to work with the servo redboard.servo22_P(S22) # Send the positon to the servo # Left analogue stick motor controls if event.code == 1: # Left analogue Vertical stick # The analogue stick gives a value between 0-255 # Convert the value to 0-127 for forwards # and 0- -127 for backwards LY = event.value if LY < 128: # Forwards LeftY = 127 - LY #print('LY =',LY) #print('LeftY = ',LeftY) elif LY >= 128: # Backwards LeftY = LY - 128 LeftY = -LeftY # Make negative #print('LY =',LY) #print('LeftY = ',LeftY) elif event.code == 0: # Left analogue Horizontal stick # The analogue stick gives a value between 0-255 # Convert the value to 0-127 for left # and 0-127 for right LX = event.value if LX < 128: # Left LeftX_L = 127 - LX #print('LX =',LX) #print('LeftX_Left = ',LeftX_L) if LX > 128: # Right LeftX_R = LX - 128 #print('LX = ',LX) #print('LeftX_Right = ',LeftX_R) if LX == 128: # Make sure both values are zero if stick is in the centre LeftX_L = 0 LeftX_R = 0 # Prepare the values to send to the motors if LeftY == 0: #Turn on the spot if not going forwards or backwards if LX <= 128: # Turn Left Leftmotor = -LeftX_L # Reverse motor to turn on the spot Rightmotor = LeftX_L elif LX >= 127: # Turn Right Leftmotor = LeftX_R Rightmotor = -LeftX_R # Reverse motor to turn on the spot elif LY <= 128: # Forwards print ('Forwards') Leftmotor = LeftY - LeftX_L # Mix steering values if Leftmotor <1: # Stop motor going backwards Leftmotor = 0; Rightmotor = LeftY - LeftX_R # Mix steering values if Rightmotor <1: # Stop motor going backwards Rightmotor = 0; elif LY >= 127: # Backwards print('Backwards') Leftmotor = LeftY + LeftX_L # Mix steering values if Leftmotor >-1: # Stop motor going forwards Leftmotor = 0; Rightmotor = LeftY + LeftX_R # Mix steering values if Rightmotor >-1: # Stop motor going forwards Rightmotor = 0; if turbo == True: # Double speed for turbo LM = Leftmotor * 2 RM = Rightmotor * 2 else: # Normal speed LM = Leftmotor RM = Rightmotor if LM != LM_OLD or RM != RM_OLD: # Only print motor speeds if they have changed print ('Left motor =',LM) print ('Right motor =',RM) LM_OLD = LM RM_OLD = RM # Set motor speed and direction if invertX == True: # Reverse steering controls #print('Reverse steering') redboard.M2_8bit(RM) redboard.M1_8bit(LM) else: # Normal steering controls #print ('Normal steering') redboard.M2_8bit(LM) redboard.M1_8bit(RM)
31.9175
173
0.524242
# This is an example program showing different methods of controlling motors, servos, and Neopixels. # It works with a Rock Candy or PiHut PS3 controller. # The left stick controls the speed and direction of both motors - push up to go forwards, down for backwards and left or right to steer. # The right stick directly controls two servo motors connected to GPIO pins 21 and 22. # The R1 button starts or stops turbo mode (the robot goes faster!) . # The L1 and L2 buttons move a servo connected to GPIO 22 to two pre-set positions. # The Square button starts or stops a servo connected to GPIO 20 slowly sweeping left to right. This uses multiprocessing to run at the same time as the main program loop. # The Triangle, Circle, and X buttons start and stop different Neopixels sequences - also with multiprocessing. # Author: Neil Lambeth. neil@redrobotics.co.uk @NeilRedRobotics from __future__ import print_function # Make print work with python 2 & 3 from evdev import InputDevice, ecodes import redboard import multiprocessing import time try: import neopixels # Neopixels need to be run with 'sudo', just a reminder! except RuntimeError: print ('') print ("Remember to use 'sudo' if you're using neopixels!") print ('') exit() dev = InputDevice('/dev/input/event0') #print(dev) device = str(dev).find('Rock Candy') # Look for a Rock Candy or PiHut controller if device != -1: print ('Controller: Rock Candy PS3 Gamepad') controller = 1 else: print ('Controller: PiHut PS3 Gamepad') controller = 2 # Button mapping for different controllers if controller == 1: # Rock Candy triangle, x, square, circle = 307, 305, 304, 306 R1, R2, R3 = 309, 311, 315 L1, L2, L3 = 308, 310, 314 select, start, home = 312, 313, 316 if controller == 2: # PiHut triangle, x, square, circle = 308, 304, 307, 305 R1, R2, R3 = 311, 313, 318 L1, L2, L3 = 310, 312, 317 select, start, home = 314, 315, 316 # Set up variables RX = 0 LX = 0 RY = 0 RY = 0 LeftY = 0 LeftX = 0 LeftX_R = 0 LeftX_L = 0 Leftmotor = 0 Rightmotor = 0 LM_OLD = 0 RM_OLD = 0 turbo = False invertX = False triangleToggle = False xToggle = False circleToggle = False squareToggle = False # Function to use with multiprocessing to sweep a servo slowly left and right # without interrupting the normal program flow def servoSlowSweep(): #print ('Servo Slow') while True: for i in range(600,2400,5): redboard.servo20_P(i) time.sleep(0.05) for i in range(2400,600,-5): redboard.servo20_P(i) time.sleep(0.05) # Set up neopixel processes - neopixel code is in ~/RedBoard/neopixels.py p1 = multiprocessing.Process(target = neopixels.knightRider) p1.start() # Start the neopixel display when the program starts triangleToggle = True p2 = multiprocessing.Process(target = neopixels.headLights) p3 = multiprocessing.Process(target = neopixels.demo) p4 = multiprocessing.Process(target = servoSlowSweep) # Read gamepad buttons----------------------------------------------------------- for event in dev.read_loop(): #print(event) # Uncomment to show all button data if event.type == ecodes.EV_KEY: #print(event.code) # Uncomment to show each keycode # Button pressed code if event.value == 1: if event.code == triangle and triangleToggle == False: # Toggles the button press - one press for on - one press for off. triangleToggle = True print ('triangle on') # Start and stop the neopixel processes - it's important to only run one neopixel process at any one time. So check and stop other processes if they are running. if p1.is_alive() == False: # Make sure the process isn't already running if p2.is_alive() == True: # Kill the other process if it's running p2.terminate() if p3.is_alive() == True: # Kill the other process if it's running p3.terminate() p1 = multiprocessing.Process(target = neopixels.knightRider) p1.start() # Start the process elif event.code == triangle and triangleToggle == True: triangleToggle = False print ('triangle off') p1.terminate() neopixels.clear() elif event.code == x and xToggle == False: xToggle = True print ('X on') if p2.is_alive() == False: # Make sure the process isn't already running if p1.is_alive() == True: # Kill the other process if it's running p1.terminate() if p3.is_alive() == True: # Kill the other process if it's running p3.terminate() p2 = multiprocessing.Process(target = neopixels.headLights) p2.start() # Start the process elif event.code == x and xToggle == True: xToggle = False print ('x off') p2.terminate() neopixels.clear() elif event.code == circle and circleToggle == False: circleToggle = True print ('Circle on') if p3.is_alive() == False: # Make sure the process isn't already running if p1.is_alive() == True: # Kill the other process if it's running p1.terminate() if p2.is_alive() == True: # Kill the other process if it's running p2.terminate() p3 = multiprocessing.Process(target = neopixels.demo) p3.start() # Start the process elif event.code == circle and circleToggle == True: circleToggle = False print ('Circle off') p3.terminate() neopixels.clear() elif event.code == square and squareToggle == False: squareToggle = True print ('Square on') if p4.is_alive() == False: # Make sure the process isn't already running p4 = multiprocessing.Process(target = servoSlowSweep) p4.start() # Start the process elif event.code == square and squareToggle == True: squareToggle = False print ('Square off') p4.terminate() elif event.code == R1: print ('R1 - Turbo On') turbo = True elif event.code == R2: print ('R2') elif event.code == R3: print ('R3') elif event.code == L1: print ('L1') redboard.servo22(80) # Send the positon to the servo elif event.code == L2: print ('L2') redboard.servo22(-80) # Send the positon to the servo elif event.code == L3: print ('L3') elif event.code == select and invertX == False: print ('Invert X') invertX = True elif event.code == select and invertX == True: print ('Normal X') invertX = False elif event.code == start: print ('Start') elif event.code == home: print ('Home') # Button Release Code------------------------------------------------ if event.value == 0: # Button released if event.code == R1: # Turbo Off print ('R1 - Turbo Off') turbo = False elif event.code == R2: print ('R2') elif event.code == L1 or event.code == L2: # Servos Centre print ('Servo Centre') redboard.servo22(0) # Analogue Sticks and Dpad--------------------------------------------- if event.type == ecodes.EV_ABS: print('') print('---------------------------------') # Dpad if event.code == 16: if event.value == -1: print ('Dpad LEFT') if event.value == 1: print ('Dpad RIGHT') if event.code == 17: if event.value == -1: print ('Dpad UP') if event.value == 1: print ('Dpad DOWN') # Right analogue stick servo controls elif event.code == 5: # Right analogue Vertical stick RY = event.value #print (RY) S21 = redboard.mapServo(RY) # Scale the value from the # joystick to work with the servo redboard.servo21_P(S21) # Send the positon to the servo elif event.code == 2: # Right analogue Horizontal stick RX = event.value #print (RX) S22 = redboard.mapServo(RX) # Scale the value from the # joystick to work with the servo redboard.servo22_P(S22) # Send the positon to the servo # Left analogue stick motor controls if event.code == 1: # Left analogue Vertical stick # The analogue stick gives a value between 0-255 # Convert the value to 0-127 for forwards # and 0- -127 for backwards LY = event.value if LY < 128: # Forwards LeftY = 127 - LY #print('LY =',LY) #print('LeftY = ',LeftY) elif LY >= 128: # Backwards LeftY = LY - 128 LeftY = -LeftY # Make negative #print('LY =',LY) #print('LeftY = ',LeftY) elif event.code == 0: # Left analogue Horizontal stick # The analogue stick gives a value between 0-255 # Convert the value to 0-127 for left # and 0-127 for right LX = event.value if LX < 128: # Left LeftX_L = 127 - LX #print('LX =',LX) #print('LeftX_Left = ',LeftX_L) if LX > 128: # Right LeftX_R = LX - 128 #print('LX = ',LX) #print('LeftX_Right = ',LeftX_R) if LX == 128: # Make sure both values are zero if stick is in the centre LeftX_L = 0 LeftX_R = 0 # Prepare the values to send to the motors if LeftY == 0: #Turn on the spot if not going forwards or backwards if LX <= 128: # Turn Left Leftmotor = -LeftX_L # Reverse motor to turn on the spot Rightmotor = LeftX_L elif LX >= 127: # Turn Right Leftmotor = LeftX_R Rightmotor = -LeftX_R # Reverse motor to turn on the spot elif LY <= 128: # Forwards print ('Forwards') Leftmotor = LeftY - LeftX_L # Mix steering values if Leftmotor <1: # Stop motor going backwards Leftmotor = 0; Rightmotor = LeftY - LeftX_R # Mix steering values if Rightmotor <1: # Stop motor going backwards Rightmotor = 0; elif LY >= 127: # Backwards print('Backwards') Leftmotor = LeftY + LeftX_L # Mix steering values if Leftmotor >-1: # Stop motor going forwards Leftmotor = 0; Rightmotor = LeftY + LeftX_R # Mix steering values if Rightmotor >-1: # Stop motor going forwards Rightmotor = 0; if turbo == True: # Double speed for turbo LM = Leftmotor * 2 RM = Rightmotor * 2 else: # Normal speed LM = Leftmotor RM = Rightmotor if LM != LM_OLD or RM != RM_OLD: # Only print motor speeds if they have changed print ('Left motor =',LM) print ('Right motor =',RM) LM_OLD = LM RM_OLD = RM # Set motor speed and direction if invertX == True: # Reverse steering controls #print('Reverse steering') redboard.M2_8bit(RM) redboard.M1_8bit(LM) else: # Normal steering controls #print ('Normal steering') redboard.M2_8bit(LM) redboard.M1_8bit(RM)
252
0
22
a8e53e3b4dbf4f5115d1ab434dfe78e4bddcfa5a
3,429
py
Python
iceprod/server/globus.py
WIPACrepo/iceprod
83615da9b0e764bc2498ac588cc2e2b3f5277235
[ "MIT" ]
2
2017-01-23T17:12:41.000Z
2019-01-14T13:38:17.000Z
iceprod/server/globus.py
WIPACrepo/iceprod
83615da9b0e764bc2498ac588cc2e2b3f5277235
[ "MIT" ]
242
2016-05-09T18:46:51.000Z
2022-03-31T22:02:29.000Z
iceprod/server/globus.py
WIPACrepo/iceprod
83615da9b0e764bc2498ac588cc2e2b3f5277235
[ "MIT" ]
2
2017-03-27T09:13:40.000Z
2019-01-27T10:55:30.000Z
""" Tools to help manage Globus proxies """ import os import subprocess import logging from iceprod.server.config import IceProdConfig logger = logging.getLogger('globus') class SiteGlobusProxy(object): """ Manage site-wide globus proxy :param cfgfile: cfgfile location (optional) :param duration: proxy duration (optional, default 72 hours) """ def set_passphrase(self, p): """Set the passphrase""" self.cfg['passphrase'] = p def set_duration(self, d): """Set the duration""" self.cfg['duration'] = d def set_voms_vo(self, vo): """Set the voms VO""" self.cfg['voms_vo'] = vo def set_voms_role(self, r): """Set the voms role""" self.cfg['voms_role'] = r def update_proxy(self): """Update the proxy""" if 'passphrase' not in self.cfg: raise Exception('passphrase missing') if 'duration' not in self.cfg: raise Exception('duration missing') logger.info('duration: %r',self.cfg['duration']) if subprocess.call(['grid-proxy-info','-e', '-valid','%d:0'%self.cfg['duration'], ], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL): # proxy needs updating if 'voms_vo' in self.cfg and self.cfg['voms_vo']: cmd = ['voms-proxy-init'] if 'voms_role' in self.cfg and self.cfg['voms_role']: vo = self.cfg['voms_vo'] role = self.cfg['voms_role'] cmd.extend(['-voms', '{0}:/{0}/Role={1}'.format(vo, role)]) else: cmd.extend(['-voms', self.cfg['voms_vo']]) else: cmd = ['grid-proxy-init'] cmd.extend(['-pwstdin','-valid','%d:0'%(self.cfg['duration']+1)]) if 'out' in self.cfg: cmd.extend(['-out', self.cfg['out']]) inputbytes = (self.cfg['passphrase']+'\n').encode('utf-8') p = subprocess.run(cmd, input=inputbytes, capture_output=True, timeout=60, check=False) logger.info('proxy cmd: %r', p.args) logger.info('stdout: %s', p.stdout) logger.info('stderr: %s', p.stderr) if 'voms_vo' in self.cfg and self.cfg['voms_vo']: for line in p.stdout.decode('utf-8').split('\n'): if line.startswith('Creating proxy') and line.endswith('Done'): break # this is a good proxy else: raise Exception('voms-proxy-init failed') elif p.returncode > 0: raise Exception('grid-proxy-init failed') def get_proxy(self): """Get the proxy location""" if 'out' in self.cfg: return self.cfg['out'] FNULL = open(os.devnull, 'w') return subprocess.check_output(['grid-proxy-info','-path'], stderr=FNULL).decode('utf-8').strip()
37.681319
99
0.534267
""" Tools to help manage Globus proxies """ import os import subprocess import logging from iceprod.server.config import IceProdConfig logger = logging.getLogger('globus') class SiteGlobusProxy(object): """ Manage site-wide globus proxy :param cfgfile: cfgfile location (optional) :param duration: proxy duration (optional, default 72 hours) """ def __init__(self, cfgfile=None, duration=None): if not cfgfile: cfgfile = os.path.join(os.getcwd(),'globus_proxy.json') self.cfg = IceProdConfig(filename=cfgfile, defaults=False, validate=False) if duration: self.cfg['duration'] = duration elif 'duration' not in self.cfg: self.cfg['duration'] = 72 def set_passphrase(self, p): """Set the passphrase""" self.cfg['passphrase'] = p def set_duration(self, d): """Set the duration""" self.cfg['duration'] = d def set_voms_vo(self, vo): """Set the voms VO""" self.cfg['voms_vo'] = vo def set_voms_role(self, r): """Set the voms role""" self.cfg['voms_role'] = r def update_proxy(self): """Update the proxy""" if 'passphrase' not in self.cfg: raise Exception('passphrase missing') if 'duration' not in self.cfg: raise Exception('duration missing') logger.info('duration: %r',self.cfg['duration']) if subprocess.call(['grid-proxy-info','-e', '-valid','%d:0'%self.cfg['duration'], ], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL): # proxy needs updating if 'voms_vo' in self.cfg and self.cfg['voms_vo']: cmd = ['voms-proxy-init'] if 'voms_role' in self.cfg and self.cfg['voms_role']: vo = self.cfg['voms_vo'] role = self.cfg['voms_role'] cmd.extend(['-voms', '{0}:/{0}/Role={1}'.format(vo, role)]) else: cmd.extend(['-voms', self.cfg['voms_vo']]) else: cmd = ['grid-proxy-init'] cmd.extend(['-pwstdin','-valid','%d:0'%(self.cfg['duration']+1)]) if 'out' in self.cfg: cmd.extend(['-out', self.cfg['out']]) inputbytes = (self.cfg['passphrase']+'\n').encode('utf-8') p = subprocess.run(cmd, input=inputbytes, capture_output=True, timeout=60, check=False) logger.info('proxy cmd: %r', p.args) logger.info('stdout: %s', p.stdout) logger.info('stderr: %s', p.stderr) if 'voms_vo' in self.cfg and self.cfg['voms_vo']: for line in p.stdout.decode('utf-8').split('\n'): if line.startswith('Creating proxy') and line.endswith('Done'): break # this is a good proxy else: raise Exception('voms-proxy-init failed') elif p.returncode > 0: raise Exception('grid-proxy-init failed') def get_proxy(self): """Get the proxy location""" if 'out' in self.cfg: return self.cfg['out'] FNULL = open(os.devnull, 'w') return subprocess.check_output(['grid-proxy-info','-path'], stderr=FNULL).decode('utf-8').strip()
379
0
26
718f6a531ed9f39d127e9a33e63589d99008dec5
2,268
py
Python
percy/resource_loader.py
robopsi/python-percy-client
c3a80ed567ad40b2f1eaaea76f0886aa6f0367eb
[ "MIT" ]
1
2017-10-31T11:29:24.000Z
2017-10-31T11:29:24.000Z
percy/resource_loader.py
robopsi/python-percy-client
c3a80ed567ad40b2f1eaaea76f0886aa6f0367eb
[ "MIT" ]
1
2021-03-26T00:50:40.000Z
2021-03-26T00:50:40.000Z
percy/resource_loader.py
rob-opsi/python-percy-client
c3a80ed567ad40b2f1eaaea76f0886aa6f0367eb
[ "MIT" ]
2
2018-06-05T02:33:05.000Z
2021-03-02T11:17:47.000Z
import os import percy from percy import utils try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse __all__ = ['ResourceLoader'] MAX_FILESIZE_BYTES = 15 * 1024**2 # 15 MiB.
32.869565
85
0.593915
import os import percy from percy import utils try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse __all__ = ['ResourceLoader'] MAX_FILESIZE_BYTES = 15 * 1024**2 # 15 MiB. class BaseResourceLoader(object): @property def build_resources(self): raise NotImplementedError('subclass must implement abstract method') @property def snapshot_resources(self): raise NotImplementedError('subclass must implement abstract method') class ResourceLoader(BaseResourceLoader): def __init__(self, root_dir=None, base_url=None, webdriver=None): self.root_dir = root_dir self.base_url = base_url if self.base_url and self.base_url.endswith(os.path.sep): self.base_url = self.base_url[:-1] # TODO: more separate loader subclasses and pull out Selenium-specific logic? self.webdriver = webdriver @property def build_resources(self): resources = [] if not self.root_dir: return resources for root, dirs, files in os.walk(self.root_dir, followlinks=True): for file_name in files: path = os.path.join(root, file_name) if os.path.getsize(path) > MAX_FILESIZE_BYTES: continue with open(path, 'rb') as f: content = f.read() path_for_url = path.replace(self.root_dir, '', 1) resource_url = "{0}{1}".format(self.base_url, path_for_url) resource = percy.Resource( resource_url=resource_url, sha=utils.sha256hash(content), local_path=os.path.abspath(path), ) resources.append(resource) return resources @property def snapshot_resources(self): # Only one snapshot resource, the root page HTML. return [ percy.Resource( # Assumes a Selenium webdriver interface. resource_url=urlparse(self.webdriver.current_url).path, is_root=True, mimetype='text/html', content=self.webdriver.page_source, ) ]
1,778
221
46
b963a238595dc05d6bc40e6f5888099b52a8fc14
20,515
py
Python
tests/testing_server.py
ImportTaste/WebRequest
0cc385622624de16ec980e0c12d9080d593cab74
[ "WTFPL" ]
null
null
null
tests/testing_server.py
ImportTaste/WebRequest
0cc385622624de16ec980e0c12d9080d593cab74
[ "WTFPL" ]
null
null
null
tests/testing_server.py
ImportTaste/WebRequest
0cc385622624de16ec980e0c12d9080d593cab74
[ "WTFPL" ]
null
null
null
import traceback import uuid import socket import logging import os import base64 import zlib import gzip import time import datetime from http import cookies from http.server import BaseHTTPRequestHandler from http.server import HTTPServer from threading import Thread import WebRequest if __name__ == '__main__': wg = WebRequest.WebGetRobust() srv = start_server( assertion_class = None, from_wg = wg, skip_header_checks = True) print("running server on port: ", srv) while 1: time.sleep(1)
32.929374
165
0.640653
import traceback import uuid import socket import logging import os import base64 import zlib import gzip import time import datetime from http import cookies from http.server import BaseHTTPRequestHandler from http.server import HTTPServer from threading import Thread import WebRequest def capture_expected_headers(expected_headers, test_context, is_chromium=False, is_selenium_garbage_chromium=False, is_annoying_pjs=False, skip_header_checks=False): # print("Capturing expected headers:") # print(expected_headers) assert isinstance(expected_headers, dict), "expected_headers must be a dict. Passed a %s" & type(expected_headers) for key, val in expected_headers.items(): assert isinstance(key, str) assert isinstance(val, str) cookie_key = uuid.uuid4().hex log = logging.getLogger("Main.TestServer") sucuri_reqs_1 = 0 sucuri_reqs_2 = 0 sucuri_reqs_3 = 0 class MockServerRequestHandler(BaseHTTPRequestHandler): def log_message(self, format, *args): return def validate_headers(self): for key, value in expected_headers.items(): if (is_annoying_pjs or is_selenium_garbage_chromium or skip_header_checks) and key == 'Accept-Encoding': # So PhantomJS monkeys with accept-encoding headers # Just ignore that particular header, I guess. pass # Selenium is fucking retarded, and I can't override the user-agent # and other assorted parameters via their API at all. elif (is_selenium_garbage_chromium or skip_header_checks) and key == 'Accept-Language': pass elif (is_annoying_pjs or is_chromium or is_selenium_garbage_chromium or skip_header_checks) and key == 'Accept': pass elif not skip_header_checks: v1 = value.replace(" ", "") v2 = self.headers[key] if v2 is None: v2 = "" v2 = v2.replace(" ", "") test_context.assertEqual(v1, v2, msg="Mismatch in header parameter '{}' : '{}' -> '{}' ({})".format( key, value, self.headers[key], { 'is_annoying_pjs' : is_annoying_pjs, 'is_chromium' : is_chromium, 'is_selenium_garbage_chromium' : is_selenium_garbage_chromium, 'skip_header_checks' : skip_header_checks, }, ) ) def _get_handler(self): # Process an HTTP GET request and return a response with an HTTP 200 status. # print("Path: ", self.path) # print("Headers: ", self.headers) # print("Cookie(s): ", self.headers.get_all('Cookie', failobj=[])) try: self.validate_headers() except Exception: self.send_response(500) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"Headers failed validation!") raise if self.path == "/": self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"Root OK?") elif self.path == "/favicon.ico": self.send_response(404) self.end_headers() elif self.path == "/raw-txt": self.send_response(200) self.send_header('Content-type', "text/plain") self.end_headers() self.wfile.write(b"Root OK?") elif self.path == "/html-decode": self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"Root OK?") elif self.path == "/html/real": self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><body>Root OK?</body></html>") elif self.path == "/compressed/deflate": self.send_response(200) self.send_header('Content-Encoding', 'deflate') self.send_header('Content-type', "text/html") self.end_headers() inb = b"Root OK?" cobj = zlib.compressobj(wbits=-zlib.MAX_WBITS) t1 = cobj.compress(inb) + cobj.flush() self.wfile.write(t1) elif self.path == "/compressed/gzip": self.send_response(200) self.send_header('Content-Encoding', 'gzip') self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(gzip.compress(b"Root OK?")) elif self.path == "/json/invalid": self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"LOLWAT") elif self.path == "/json/valid": self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b'{"oh" : "hai"}') elif self.path == "/json/no-coding": self.send_response(200) self.end_headers() self.wfile.write(b'{"oh" : "hai"}') elif self.path == "/filename/path-only.txt": self.send_response(200) self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename/path-only-trailing-slash/": self.send_response(200) self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename/content-disposition": self.send_response(200) self.send_header('Content-Disposition', "filename=lolercoaster.txt") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/path-only.txt": self.send_response(200) self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/content-disposition": self.send_response(200) self.send_header('Content-Disposition', "filename=lolercoaster.txt") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/content-disposition-html-suffix": self.send_response(200) self.send_header('Content-Disposition', "filename=lolercoaster.html") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/content-disposition-quotes-1": self.send_response(200) self.send_header('Content-Disposition', "filename='lolercoaster.html'") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/content-disposition-quotes-2": self.send_response(200) self.send_header('Content-Disposition', "filename=\'lolercoaster.html\'") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/content-disposition-quotes-spaces-1": self.send_response(200) self.send_header('Content-Disposition', "filename='loler coaster.html'") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/content-disposition-quotes-spaces-2": self.send_response(200) self.send_header('Content-Disposition', "filename=\"loler coaster.html\"") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/filename_mime/explicit-html-mime": self.send_response(200) self.send_header('Content-Disposition', "filename=lolercoaster.html") self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"LOLWAT?") elif self.path == "/redirect/bad-1": self.send_response(302) self.end_headers() elif self.path == "/redirect/bad-2": self.send_response(302) self.send_header('location', "bad-2") self.end_headers() elif self.path == "/redirect/bad-3": self.send_response(302) self.send_header('location', "gopher://www.google.com") self.end_headers() elif self.path == "/redirect/from-1": self.send_response(302) self.send_header('location', "to-1") self.end_headers() elif self.path == "/redirect/to-1": self.send_response(200) self.end_headers() self.wfile.write(b"Redirect-To-1") elif self.path == "/redirect/from-2": self.send_response(302) self.send_header('uri', "to-2") self.end_headers() elif self.path == "/redirect/to-2": self.send_response(200) self.end_headers() self.wfile.write(b"Redirect-To-2") elif self.path == "/redirect/from-3": self.send_response(302) newurl = "http://{}:{}".format(self.server.server_address[0], self.server.server_address[1]) self.send_header('uri', newurl) self.end_headers() elif self.path == "/password/expect": # print("Password") # print(self.headers) self.send_response(200) self.end_headers() if not 'Authorization' in self.headers: self.wfile.write(b"Password not sent!!") return val = self.headers['Authorization'] passval = val.split(" ")[-1] passstr = base64.b64decode(passval) if passstr == b'lol:wat': self.wfile.write(b"Password Ok?") else: self.wfile.write(b"Password Bad!") elif self.path == "/content/have-title": self.send_response(200) self.end_headers() self.wfile.write(b"<html><head><title>I can haz title?</title></head><body>This page has a title!</body></html>") elif self.path == "/content/no-title": self.send_response(200) self.end_headers() self.wfile.write(b"<html><head></head><body>This page has no title. Sadface.jpg</body></html>") elif self.path == "/binary_ctnt": self.send_response(200) self.send_header('Content-type', "image/jpeg") self.end_headers() self.wfile.write(b"Binary!\x00\x01\x02\x03") elif self.path == "/binary_ctnt": self.send_response(200) self.send_header('Content-type', "image/jpeg") self.end_headers() self.wfile.write(b"Binary!\x00\x01\x02\x03") ################################################################################################################################## # Cookie stuff ################################################################################################################################## elif self.path == '/cookie_test': cook = cookies.SimpleCookie() cook['cookie_test_key'] = cookie_key cook['cookie_test_key']['path'] = "/" cook['cookie_test_key']['domain'] = "" expiration = datetime.datetime.now() + datetime.timedelta(days=30) cook['cookie_test_key']["expires"] = expiration.strftime("%a, %d-%b-%Y %H:%M:%S PST") self.send_response(200) self.send_header('Content-type', "text/html") self.send_header('Set-Cookie', cook['cookie_test_key'].OutputString()) self.end_headers() self.wfile.write(b"<html><body>CF Cookie Test</body></html>") elif self.path == '/cookie_require': if self.headers.get_all('Cookie', failobj=[]): cook = self.headers.get_all('Cookie', failobj=[])[0] cook_key, cook_value = cook.split("=", 1) if cook_key == 'cookie_test_key' and cook_value == cookie_key: self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><body>Cookie forwarded properly!</body></html>") return self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><body>Cookie is missing</body></html>") ################################################################################################################################## # Sucuri validation ################################################################################################################################## elif self.path == '/sucuri_shit_3': # I'd like to get this down to just 2 requests (cookie bounce, and fetch). # Doing that requires pulling html content out of chromium, though. # Annoying. nonlocal sucuri_reqs_3 sucuri_reqs_3 += 1 if sucuri_reqs_3 > 3: raise RuntimeError("Too many requests to sucuri_shit_3 (%s)!" % sucuri_reqs_3) if self.headers.get_all('Cookie', failobj=[]): cook = self.headers.get_all('Cookie', failobj=[])[0] cook_key, cook_value = cook.split("=", 1) if cook_key == 'sucuri_cloudproxy_uuid_6293e0004' and cook_value == '04cbb56494ebedbcd19a61b2d728c478': # if cook[''] self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><head><title>At target preemptive Sucuri page!</title></head><body>Preemptive waf circumvented OK (p3)?</body></html>") return container_dir = os.path.dirname(__file__) fpath = os.path.join(container_dir, "waf_garbage", 'sucuri_garbage.html') with open(fpath, "rb") as fp: plain_contents = fp.read() self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(plain_contents) elif self.path == '/sucuri_shit_2': # This particular path is the one we should already have a cookie for. # As such, we expect one request only nonlocal sucuri_reqs_2 sucuri_reqs_2 += 1 if sucuri_reqs_2 > 1: raise RuntimeError("Too many requests to sucuri_shit_2 (%s)!" % sucuri_reqs_2) if self.headers.get_all('Cookie', failobj=[]): cook = self.headers.get_all('Cookie', failobj=[])[0] cook_key, cook_value = cook.split("=", 1) if cook_key == 'sucuri_cloudproxy_uuid_6293e0004' and cook_value == '04cbb56494ebedbcd19a61b2d728c478': # if cook[''] self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><head><title>At target preemptive Sucuri page!</title></head><body>Preemptive waf circumvented OK (p2)?</body></html>") return container_dir = os.path.dirname(__file__) fpath = os.path.join(container_dir, "waf_garbage", 'sucuri_garbage.html') with open(fpath, "rb") as fp: plain_contents = fp.read() self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(plain_contents) elif self.path == '/sucuri_shit': nonlocal sucuri_reqs_1 sucuri_reqs_1 += 1 if sucuri_reqs_1 > 4: raise RuntimeError("Too many requests to sucuri_shit (%s)!" % sucuri_reqs_1) # print("Fetch for ", self.path) # print("Cookies:", self.headers.get_all('Cookie', failobj=[])) if self.headers.get_all('Cookie', failobj=[]): cook = self.headers.get_all('Cookie', failobj=[])[0] cook_key, cook_value = cook.split("=", 1) if cook_key == 'sucuri_cloudproxy_uuid_6293e0004' and cook_value == '04cbb56494ebedbcd19a61b2d728c478': # if cook[''] self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><head><title>At target Sucuri page!</title></head><body>Sucuri Redirected OK?</body></html>") return container_dir = os.path.dirname(__file__) fpath = os.path.join(container_dir, "waf_garbage", 'sucuri_garbage.html') with open(fpath, "rb") as fp: plain_contents = fp.read() self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(plain_contents) ################################################################################################################################## # Cloudflare validation ################################################################################################################################## elif self.path == '/cloudflare_under_attack_shit_2': if self.headers.get_all('Cookie', failobj=[]): cook = self.headers.get_all('Cookie', failobj=[])[0] cook_key, cook_value = cook.split("=", 1) if cook_key == 'cloudflare_validate_key' and cook_value == cookie_key: # if cook[''] self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><head><title>At target CF page!</title></head><body>CF Redirected OK?</body></html>") return container_dir = os.path.dirname(__file__) fpath = os.path.join(container_dir, "waf_garbage", 'cf_js_challenge_03_12_2018.html') with open(fpath, "rb") as fp: plain_contents = fp.read() self.server_version = "cloudflare is garbage" self.send_response(503) self.send_header('Server', "cloudflare is garbage") self.send_header('Content-type','text/html') self.end_headers() self.wfile.write(plain_contents) elif self.path == '/cloudflare_under_attack_shit': if self.headers.get_all('Cookie', failobj=[]): cook = self.headers.get_all('Cookie', failobj=[])[0] cook_key, cook_value = cook.split("=", 1) if cook_key == 'cloudflare_validate_key' and cook_value == cookie_key: # if cook[''] self.send_response(200) self.send_header('Content-type', "text/html") self.end_headers() self.wfile.write(b"<html><head><title>At target CF page!</title></head><body>CF Redirected OK?</body></html>") return container_dir = os.path.dirname(__file__) fpath = os.path.join(container_dir, "waf_garbage", 'cf_js_challenge_03_12_2018.html') with open(fpath, "rb") as fp: plain_contents = fp.read() self.server_version = "cloudflare is garbage" self.send_response(503) self.send_header('Server', "cloudflare is garbage") self.send_header('Content-type','text/html') self.end_headers() self.wfile.write(plain_contents) elif self.path == '/cdn-cgi/l/chk_jschl?jschl_vc=427c2b1cd4fba29608ee81b200e94bfa&pass=1543827239.915-44n9IE20mS&jschl_answer=9.66734594': cook = cookies.SimpleCookie() cook['cloudflare_validate_key'] = cookie_key cook['cloudflare_validate_key']['path'] = "/" cook['cloudflare_validate_key']['domain'] = "" expiration = datetime.datetime.now() + datetime.timedelta(days=30) cook['cloudflare_validate_key']["expires"] = expiration.strftime("%a, %d-%b-%Y %H:%M:%S PST") self.send_response(200) self.send_header('Content-type', "text/html") self.send_header('Set-Cookie', cook['cloudflare_validate_key'].OutputString()) self.end_headers() body = "<html><body>Setting cookies.<script>window.location.href='/cloudflare_under_attack_shit'</script></body></html>" self.wfile.write(body.encode("utf-8")) ################################################################################################################################## # Handle requests for an unknown path ################################################################################################################################## else: test_context.assertEqual(self.path, "This shouldn't happen!") def do_GET(self): # Process an HTTP GET request and return a response with an HTTP 200 status. log.info("Request for URL path: '%s'", self.path) # print("Headers: ", self.headers) # print("Cookie(s): ", self.headers.get_all('Cookie', failobj=[])) try: return self._get_handler() except Exception as e: log.error("Exception in handler!") for line in traceback.format_exc().split("\n"): log.error(line) raise e return MockServerRequestHandler def get_free_port(): s = socket.socket(socket.AF_INET, type=socket.SOCK_STREAM) s.bind(('localhost', 0)) address, port = s.getsockname() s.close() return port def start_server(assertion_class, from_wg, port_override = None, is_chromium = None, is_selenium_garbage_chromium = False, is_annoying_pjs = False, skip_header_checks = False ): # Configure mock server. if port_override: mock_server_port = port_override else: mock_server_port = get_free_port() expected_headers = dict(from_wg.browserHeaders) print(from_wg) print(expected_headers) assert isinstance(expected_headers, dict) captured_server = capture_expected_headers( expected_headers = expected_headers, test_context = assertion_class, is_chromium = is_chromium, is_selenium_garbage_chromium = is_selenium_garbage_chromium, is_annoying_pjs = is_annoying_pjs, skip_header_checks = skip_header_checks ) retries = 4 for x in range(retries + 1): try: mock_server = HTTPServer(('0.0.0.0', mock_server_port), captured_server) break except OSError: time.sleep(0.2) if x >= retries: raise # Start running mock server in a separate thread. # Daemon threads automatically shut down when the main process exits. mock_server_thread = Thread(target=mock_server.serve_forever) mock_server_thread.setDaemon(True) mock_server_thread.start() return mock_server_port, mock_server, mock_server_thread if __name__ == '__main__': wg = WebRequest.WebGetRobust() srv = start_server( assertion_class = None, from_wg = wg, skip_header_checks = True) print("running server on port: ", srv) while 1: time.sleep(1)
19,918
0
69
67270613f64a8a2bf43b95c90d08c32285cdbd1c
20,081
py
Python
modules/music/music.py
naschorr/hawking
cdc98b7bc90c72d634f1fe877c34e7f9908ec4a8
[ "MIT" ]
21
2017-08-06T02:47:05.000Z
2022-03-13T17:39:00.000Z
modules/music/music.py
naschorr/hawking
cdc98b7bc90c72d634f1fe877c34e7f9908ec4a8
[ "MIT" ]
87
2017-12-26T17:07:59.000Z
2022-03-11T01:31:48.000Z
modules/music/music.py
naschorr/hawking
cdc98b7bc90c72d634f1fe877c34e7f9908ec4a8
[ "MIT" ]
7
2019-10-23T17:30:34.000Z
2022-03-31T05:56:43.000Z
import re import math import random import logging from collections import OrderedDict from discord.ext import commands from common import utilities from common import dynamo_manager from common.module.discoverable_module import DiscoverableCog from common.module.module_initialization_container import ModuleInitializationContainer ## Config CONFIG_OPTIONS = utilities.load_config() ## Logging logger = utilities.initialize_logging(logging.getLogger(__name__)) class Music(DiscoverableCog): ''' Note that there's something wrong with the note parsing logic. It still works, but it takes waaay too long now. I'll look into it later. ''' ## Keys BPM_KEY = "bpm" OCTAVE_KEY = "octave" TONE_KEY = "tone" BAD_KEY = "bad" BAD_PERCENT_KEY = "bad_percent" ## Defaults BPM = CONFIG_OPTIONS.get(BPM_KEY, 100) OCTAVE = CONFIG_OPTIONS.get(OCTAVE_KEY, 2) TONE = CONFIG_OPTIONS.get(TONE_KEY, False) BAD = CONFIG_OPTIONS.get(BAD_KEY, False) BAD_PERCENT = CONFIG_OPTIONS.get(BAD_PERCENT_KEY, 10) ## Config ## todo: fix this NOTES = ["c", "c#", "d", "d#", "e", "f", "f#", "g", "g#", "a", "a#", "b"] HALF_STEPS = len(NOTES) OCTAVES = 10 NOTE_REPLACEMENT = "[laa<{},{}>]" REST = "r" REST_REPLACEMENT = "[_<{},{}>]" TONE_REPLACEMENT = "[:t <{},{}>]" SHARP = "#" ## Properties @property ## Methods ## Calculates the frequency of a note at a given number of half steps from the reference frequency ## Builds a dictionary of notes and their pitches at a given octave ## Pulls any TTS config options (ex. [:dv hs 10]) from the message string ## Pulls any music config options (ex. \bpm=N) from the message string ## Turns a list of Note objects into a string of TTS friendly phonemes ## Commands @commands.command(no_pm=True, brief="Sings the given notes aloud!") async def music(self, ctx, notes, ignore_char_limit=False): """ Sings the given notes aloud to your voice channel. A note (or notes) can look like any of these: 'a' - Just the 'a' quarter note in the default second octave. '2d' - A 'd' quarter note held for two beats, again in the second octave. 'c#4' - A 'c#' quarter note in the fourth octave. '2b#3' - A 'b#' quarter note held for two beats, in the third octave. 'r' - A quarter rest. '4r' - A quarter rest held for four beats. 'b/b' - Two 'b' eighth notes. '2c#/d#/a3/f' - A 'c#' sixteenth note held for two beats, a 'd#' sixteenth note, an 'a' sixteenth note in the third octave, and a 'f' sixteenth note. Formatting: Notes (at the moment) have four distinct parts (Duration?)(Note)(Sharp?)(Octave?). Only the base note is necessary, everything else can be omitted if necessary (see examples) A single space NEEDS to be inserted between notes. You can chain notes together by inserting a '/' between notes, this lets you create multiple shorter beats. This lets you approximate eighth notes, sixteenth notes, thirty-second notes, and really any other division of notes. (Twelfth, Twentieth, etc) You can also use the | character to help with formatting your bars (ex. 'c d e f | r g a b') Inline Configuration: BPM: The '\\bpm=N' line can be inserted anywhere to adjust the bpm of notes in that line. N can be any positive integer. (ex. '\\bpm=120' or '\\bpm=60') Octave: The '\\octave=N' line can be inserted anywhere to adjust the default octave of notes in that line. N can be any integer between 0 and 9 (inclusive) (ex. '\\octave=1' or '\\octave=3'), however 0 through 4 give the best results. Tones: The '\\tone=N' line can be inserted anywhere to set whether or not to use tones instead of phonemes on that line. N can be either 0 or 1, where 0 disables tones, and 1 enables them. Bad: The '\\bad=N' line can be inserted anywhere to set whether or not to make the notes on that line sound worse (See: https://www.youtube.com/watch?v=KolfEhV-KiA). N can be either 0 or 1, where 0 disables the badness, and 1 enables it. Bad_Percent: The '\\bad_percent=N' line can be inserted anywhere to set the level of badness, when using the \\bad config. N can be any positive integer. It works as a percentage where if N = 0, then it's not at all worse, and N = 100 would be 100% worse. Needs \\bad to be set to have any effect. Examples: My Heart Will Go On (first 7 bars): '\music \\bpm=100 f f f f | e 2f f | e 2f g | 2a 2g | f f f f | e 2f f | 2d 2r' Sandstorm (kinda): '\music \\bpm=136 \\octave=3 \\tone=1 b/b/b/b/b b/b/b/b/b/b/b e/e/e/e/e/e/e d/d/d/d/d/d/d a b/b/b/b/b/b b/b/b/b/b/b c# b/b/b/b/b/a' Defaults: bpm = 100 octave = 2 tone = 0 bad = 0 bad_percent = 10 """ ## Todo: preserve the position of tts_configs in the message tts_configs, message = self._extract_tts_configs(notes) music_configs, message = self._extract_music_configs(notes) bpm = music_configs.get(self.BPM_KEY, self.bpm) beat_length = 60 / bpm # for a quarter note octave = music_configs.get(self.OCTAVE_KEY, self.octave) notes = MusicParser(message, beat_length, octave).notes tts_notes = self._build_tts_note_string(notes, **music_configs) await self.speech_cog._say(ctx, " ".join(tts_configs) + tts_notes, ignore_char_limit=ignore_char_limit)
38.617308
120
0.598377
import re import math import random import logging from collections import OrderedDict from discord.ext import commands from common import utilities from common import dynamo_manager from common.module.discoverable_module import DiscoverableCog from common.module.module_initialization_container import ModuleInitializationContainer ## Config CONFIG_OPTIONS = utilities.load_config() ## Logging logger = utilities.initialize_logging(logging.getLogger(__name__)) class Note: def __init__(self, beat_length, duration, note, sharp=False, octave=4, sub_notes=[]): self.beat_length = beat_length self.duration = duration self.note = note self.sharp = sharp self.octave = octave self.sub_notes = sub_notes self.dynamo_db = dynamo_manager.DynamoManager() def __str__(self): return "{}{}{} {}*{} [{}]".format( self.note, self.sharp or "", self.octave, self.beat_length, self.duration, ", ".join(self.sub_notes) ) class MusicParser: ## Config INVALID_CHARS = ["|", ","] CHAR_REGEX = r"([a-z])" INT_REGEX = r"(\d)" SHARP_REGEX = r"(#)" CATCHALL_REGEX = r"(.?)" FRACTIONAL_REGEX = r"(\/)" ## Start State Machine Classes ## Base state that all other states inherit from class BaseState: # Todo: make virtual def __init__(self, exit_dict={}, error_handler=None): self.exit_dict = exit_dict self.error_handler = error_handler ## Try to get the first character of a string def emit_char(self, string): try: return string[0] except: return "" ## Try to get the first character of a string, and return the string that it was emitted from def emit_consume_char(self, string): try: return string[0], string[1:] except: return "", "" ## Unimplemented state enter handler def enter(self): raise NotImplementedError("State.enter() isn't implemented") ## State exit handler def exit(self, char, string, **kwargs): for regex_string, handler in self.exit_dict.items(): match = re.match(regex_string, char) ## logger.debug("MATCHING {}, {}, {}".format(regex_string, char, handler.__self__.__class__.__name__)) if(match): return handler(string, **kwargs) if(self.error_handler): self.error_handler(char, string) return None ## Initial state class StartState(BaseState): def enter(self, string, **kwargs): char = self.emit_char(string) ## logger.debug("Enter {} '{}', {}".format(self.__class__.__name__, string, kwargs)) return self.exit(char, string, **kwargs) ## Duration parsing state class DurationState(BaseState): def enter(self, string, **kwargs): char, consumed_str = self.emit_consume_char(string) ## logger.debug("Enter {} '{}' '{}', {}".format(self.__class__.__name__, consumed_str, char, kwargs)) return self.exit(self.emit_char(consumed_str), consumed_str, duration=int(char), **kwargs) ## Note parsing state class NoteState(BaseState): def enter(self, string, **kwargs): char, consumed_str = self.emit_consume_char(string) ## logger.debug("Enter {} '{}' '{}', {}".format(self.__class__.__name__, consumed_str, char, kwargs)) return self.exit(self.emit_char(consumed_str), consumed_str, note=char, **kwargs) ## Sharp parsing state class SharpState(BaseState): def enter(self, string, **kwargs): char, consumed_str = self.emit_consume_char(string) ## logger.debug("Enter {} '{}' '{}', {}".format(self.__class__.__name__, consumed_str, char, kwargs)) return self.exit(self.emit_char(consumed_str), consumed_str, sharp=char, **kwargs) ## Octave parsing state class OctaveState(BaseState): def enter(self, string, **kwargs): char, consumed_str = self.emit_consume_char(string) ## logger.debug("Enter {} '{}' '{}', {}".format(self.__class__.__name__, consumed_str, char, kwargs)) return self.exit(self.emit_char(consumed_str), consumed_str, octave=int(char), **kwargs) ## NoteObj creation state class NoteObjState(BaseState): def enter(self, string, **kwargs): char, consumed_str = self.emit_consume_char(string) ## logger.debug("Enter {} '{}' '{}', {}".format(self.__class__.__name__, consumed_str, char, kwargs)) beat_length = kwargs.get("beat_length", 0.25) duration = kwargs.get("duration", 1) note = kwargs.get("note") assert note is not None sharp = kwargs.get("sharp", False) octave = kwargs.get("octave", kwargs.get("default_octave", 2)) note_obj = Note(beat_length, duration, note, sharp, octave, []) ## Clean up kwargs for next pass kwargs.pop("note_obj", None) kwargs.pop("duration", None) kwargs.pop("note", None) kwargs.pop("sharp", None) kwargs.pop("octave", None) ## Next state return self.exit(char, string, note_obj=note_obj, **kwargs) ## SubNote creation state class SubNoteState(BaseState): def enter(self, string, **kwargs): char, consumed_str = self.emit_consume_char(string) ## logger.debug("Enter {} '{}' '{}', {}".format(self.__class__.__name__, consumed_str, char, kwargs)) note_obj = kwargs.get("note_obj") assert note_obj is not None sub_notes = kwargs.get("sub_notes", []) sub_notes.append(note_obj) ## Clean up kwargs for next pass kwargs.pop("note_obj", None) kwargs.pop("sub_notes", None) return self.exit(self.emit_char(consumed_str), consumed_str, sub_notes=sub_notes, **kwargs) ## Final output state class FinalState(BaseState): def enter(self, string, **kwargs): ## logger.debug("Enter {} '{}', {}".format(self.__class__.__name__, string, kwargs)) note_obj = kwargs.get("note_obj") sub_notes = kwargs.get("sub_notes", []) beat_length = kwargs.get("beat_length", 0.25) / (len(sub_notes) + 1) if(note_obj): for note in sub_notes: note.beat_length = beat_length note_obj.beat_length = beat_length note_obj.sub_notes = sub_notes return note_obj ## Error handling state class ErrorState(BaseState): def enter(self, char, string): logger.debug("Error in music state machine", char, string) return None ## End State Machine Classes def __init__(self, notes, beat_length=0.25, octave=4): self.beat_length = beat_length self.octave = octave self.notes_preparsed = self._notes_preparser(notes) self.parse_note = self._init_state_machine() self.notes = [] for note in self.notes_preparsed: parsed = self.parse_note(note.lower(), beat_length=self.beat_length, default_octave=self.octave) if(parsed): self.notes.append(parsed) ## Methods ## Initialize the note parsing state machine, returning a callable entry point (start.enter()) def _init_state_machine(self): ## Init error handler state error_state_dict = {} error_handler = self.ErrorState(error_state_dict, None).enter ## Init states start_state = self.StartState({}, error_handler) duration_state = self.DurationState({}, error_handler) note_state = self.NoteState({}, error_handler) sharp_state = self.SharpState({}, error_handler) octave_state = self.OctaveState({}, error_handler) note_obj_state = self.NoteObjState({}, error_handler) sub_note_state = self.SubNoteState({}, error_handler) final_state = self.FinalState({}, error_handler) ## Populate state exit_dicts start_state.exit_dict = OrderedDict([(self.INT_REGEX, duration_state.enter), (self.CHAR_REGEX, note_state.enter), (self.CATCHALL_REGEX, final_state.enter)]) duration_state.exit_dict = OrderedDict([(self.CHAR_REGEX, note_state.enter)]) note_state.exit_dict = OrderedDict([(self.SHARP_REGEX, sharp_state.enter), (self.INT_REGEX, octave_state.enter), (self.CATCHALL_REGEX, note_obj_state.enter)]) sharp_state.exit_dict = OrderedDict([(self.INT_REGEX, octave_state.enter), (self.CATCHALL_REGEX, note_obj_state.enter)]) octave_state.exit_dict = OrderedDict([(self.CATCHALL_REGEX, note_obj_state.enter)]) note_obj_state.exit_dict = OrderedDict([(self.FRACTIONAL_REGEX, sub_note_state.enter), (self.CATCHALL_REGEX, final_state.enter)]) sub_note_state.exit_dict = OrderedDict([(self.CATCHALL_REGEX, start_state.enter)]) ## Return an entry point into the fsm return start_state.enter def _notes_preparser(self, notes): ## Remove any invalid characters (usually used for formatting) for char in self.INVALID_CHARS: notes = notes.replace(char, "") ## Convert to a list of notes sans whitespace notes_list = " ".join(notes.split()).split() return notes_list class Music(DiscoverableCog): ''' Note that there's something wrong with the note parsing logic. It still works, but it takes waaay too long now. I'll look into it later. ''' ## Keys BPM_KEY = "bpm" OCTAVE_KEY = "octave" TONE_KEY = "tone" BAD_KEY = "bad" BAD_PERCENT_KEY = "bad_percent" ## Defaults BPM = CONFIG_OPTIONS.get(BPM_KEY, 100) OCTAVE = CONFIG_OPTIONS.get(OCTAVE_KEY, 2) TONE = CONFIG_OPTIONS.get(TONE_KEY, False) BAD = CONFIG_OPTIONS.get(BAD_KEY, False) BAD_PERCENT = CONFIG_OPTIONS.get(BAD_PERCENT_KEY, 10) ## Config ## todo: fix this NOTES = ["c", "c#", "d", "d#", "e", "f", "f#", "g", "g#", "a", "a#", "b"] HALF_STEPS = len(NOTES) OCTAVES = 10 NOTE_REPLACEMENT = "[laa<{},{}>]" REST = "r" REST_REPLACEMENT = "[_<{},{}>]" TONE_REPLACEMENT = "[:t <{},{}>]" SHARP = "#" def __init__(self, hawking, bot, **kwargs): super().__init__(*args, **kwargs) self.hawking = hawking self.bot = bot self.bpm = int(kwargs.get(self.BPM_KEY, self.BPM)) self.octave = int(kwargs.get(self.OCTAVE_KEY, self.OCTAVE)) self.tone = kwargs.get(self.TONE_KEY, self.TONE) self.bad = kwargs.get(self.BAD_KEY, self.BAD) self.bad_percent = int(kwargs.get(self.BAD_PERCENT_KEY, self.BAD_PERCENT)) self.pitches = [] for octave in range(self.OCTAVES): self.pitches.append(self._build_pitch_dict(octave)) ## Properties @property def audio_player_cog(self): return self.hawking.get_audio_player_cog() ## Methods ## Calculates the frequency of a note at a given number of half steps from the reference frequency def _get_frequency(self, half_steps, reference=440): a = 1.059463 frequency = int(reference * pow(a, half_steps)) return frequency ## Builds a dictionary of notes and their pitches at a given octave def _build_pitch_dict(self, octave): reference_frequency = 440 # A reference_octave = 4 refence_steps_from_c4 = 9 reference_steps_from_c0 = self.HALF_STEPS * reference_octave + refence_steps_from_c4 pitch_dict = {} for index, note in enumerate(self.NOTES): half_steps = octave * self.HALF_STEPS + index pitch_dict[note] = self._get_frequency(half_steps - reference_steps_from_c0, reference_frequency) return pitch_dict ## Pulls any TTS config options (ex. [:dv hs 10]) from the message string def _extract_tts_configs(self, string): tts_config_regex = r"(\[:.+?\])" tts_configs = [] tts_config = re.search(tts_config_regex, string) while(tts_config): tts_configs.append(tts_config.group(1)) string = string[:tts_config.start()] + string[tts_config.end():] tts_config = re.search(tts_config_regex, string) return tts_configs, string ## Pulls any music config options (ex. \bpm=N) from the message string def _extract_music_configs(self, string): music_config_regex = r"\\([a-z_]+)\s?=\s?(\d+)" music_configs = {} music_config = re.search(music_config_regex, string) while(music_config): key = music_config.group(1) value = int(music_config.group(2)) music_configs[key] = value string = string[:music_config.start()] + string[music_config.end():] music_config = re.search(music_config_regex, string) return music_configs, string ## Turns a list of Note objects into a string of TTS friendly phonemes def _build_tts_note_string(self, notes, **configs): use_tones = configs.get(self.TONE_KEY, self.tone) use_bad = configs.get(self.BAD_KEY, self.bad) bad_percent = configs.get(self.BAD_PERCENT_KEY, self.bad_percent) string = "" note_index = 0 for note in notes: ## Push any sub_notes into their appropriate position in the notes list sub_note_index = 0 for sub_note in note.sub_notes: notes.insert(note_index + 1 + sub_note_index, sub_note) sub_note_index += 1 ## Create a textual representation of the note note_str = note.note if(note.sharp): note_str += self.SHARP ## Select a format string for the type of note if(note_str in self.NOTES): replacement_str = self.NOTE_REPLACEMENT try: pitch = self.pitches[note.octave][note_str] except IndexError: continue elif(note_str == self.REST): replacement_str = self.REST_REPLACEMENT pitch = 10 # Arbitrary low pitch else: continue ## Assign a duration of time to hold the note for duration = note.duration ## Randomize the note's pitch and duration if use_bad is True if(use_bad): pitch_offset_max = pitch * (bad_percent / 100) pitch += random.uniform(-pitch_offset_max, pitch_offset_max) duration_offset_max = duration * (bad_percent / 100) duration += random.uniform(-duration_offset_max, duration_offset_max) ## Create the TTS friendly string for the note, and use the tone format string if necessary if(use_tones): string += self.TONE_REPLACEMENT.format(int(pitch), int(note.beat_length * duration * 1000)) else: string += replacement_str.format(int(note.beat_length * duration * 1000), int(pitch)) note_index += 1 return string ## Commands @commands.command(no_pm=True, brief="Sings the given notes aloud!") async def music(self, ctx, notes, ignore_char_limit=False): """ Sings the given notes aloud to your voice channel. A note (or notes) can look like any of these: 'a' - Just the 'a' quarter note in the default second octave. '2d' - A 'd' quarter note held for two beats, again in the second octave. 'c#4' - A 'c#' quarter note in the fourth octave. '2b#3' - A 'b#' quarter note held for two beats, in the third octave. 'r' - A quarter rest. '4r' - A quarter rest held for four beats. 'b/b' - Two 'b' eighth notes. '2c#/d#/a3/f' - A 'c#' sixteenth note held for two beats, a 'd#' sixteenth note, an 'a' sixteenth note in the third octave, and a 'f' sixteenth note. Formatting: Notes (at the moment) have four distinct parts (Duration?)(Note)(Sharp?)(Octave?). Only the base note is necessary, everything else can be omitted if necessary (see examples) A single space NEEDS to be inserted between notes. You can chain notes together by inserting a '/' between notes, this lets you create multiple shorter beats. This lets you approximate eighth notes, sixteenth notes, thirty-second notes, and really any other division of notes. (Twelfth, Twentieth, etc) You can also use the | character to help with formatting your bars (ex. 'c d e f | r g a b') Inline Configuration: BPM: The '\\bpm=N' line can be inserted anywhere to adjust the bpm of notes in that line. N can be any positive integer. (ex. '\\bpm=120' or '\\bpm=60') Octave: The '\\octave=N' line can be inserted anywhere to adjust the default octave of notes in that line. N can be any integer between 0 and 9 (inclusive) (ex. '\\octave=1' or '\\octave=3'), however 0 through 4 give the best results. Tones: The '\\tone=N' line can be inserted anywhere to set whether or not to use tones instead of phonemes on that line. N can be either 0 or 1, where 0 disables tones, and 1 enables them. Bad: The '\\bad=N' line can be inserted anywhere to set whether or not to make the notes on that line sound worse (See: https://www.youtube.com/watch?v=KolfEhV-KiA). N can be either 0 or 1, where 0 disables the badness, and 1 enables it. Bad_Percent: The '\\bad_percent=N' line can be inserted anywhere to set the level of badness, when using the \\bad config. N can be any positive integer. It works as a percentage where if N = 0, then it's not at all worse, and N = 100 would be 100% worse. Needs \\bad to be set to have any effect. Examples: My Heart Will Go On (first 7 bars): '\music \\bpm=100 f f f f | e 2f f | e 2f g | 2a 2g | f f f f | e 2f f | 2d 2r' Sandstorm (kinda): '\music \\bpm=136 \\octave=3 \\tone=1 b/b/b/b/b b/b/b/b/b/b/b e/e/e/e/e/e/e d/d/d/d/d/d/d a b/b/b/b/b/b b/b/b/b/b/b c# b/b/b/b/b/a' Defaults: bpm = 100 octave = 2 tone = 0 bad = 0 bad_percent = 10 """ ## Todo: preserve the position of tts_configs in the message tts_configs, message = self._extract_tts_configs(notes) music_configs, message = self._extract_music_configs(notes) bpm = music_configs.get(self.BPM_KEY, self.bpm) beat_length = 60 / bpm # for a quarter note octave = music_configs.get(self.OCTAVE_KEY, self.octave) notes = MusicParser(message, beat_length, octave).notes tts_notes = self._build_tts_note_string(notes, **music_configs) await self.speech_cog._say(ctx, " ".join(tts_configs) + tts_notes, ignore_char_limit=ignore_char_limit) def main() -> ModuleInitializationContainer: ## return ModuleInitializationContainer(Music) return False
11,993
1,762
305
16d91b413c5b0ff989f0583278802423f8821a13
7,359
py
Python
tests/keras/preprocessing/test_image.py
cnvrg/keras
7f9bea44d5d4512fe21d0263d00fd39a9fb5c671
[ "MIT" ]
1
2020-12-08T14:29:08.000Z
2020-12-08T14:29:08.000Z
tests/keras/preprocessing/test_image.py
cnvrg/keras
7f9bea44d5d4512fe21d0263d00fd39a9fb5c671
[ "MIT" ]
null
null
null
tests/keras/preprocessing/test_image.py
cnvrg/keras
7f9bea44d5d4512fe21d0263d00fd39a9fb5c671
[ "MIT" ]
null
null
null
import pytest from keras.preprocessing import image from PIL import Image import numpy as np import os import shutil import tempfile if __name__ == '__main__': pytest.main([__file__])
37.738462
107
0.555646
import pytest from keras.preprocessing import image from PIL import Image import numpy as np import os import shutil import tempfile class TestImage: def setup_class(cls): img_w = img_h = 20 rgb_images = [] gray_images = [] for n in range(8): bias = np.random.rand(img_w, img_h, 1) * 64 variance = np.random.rand(img_w, img_h, 1) * (255 - 64) imarray = np.random.rand(img_w, img_h, 3) * variance + bias im = Image.fromarray(imarray.astype('uint8')).convert('RGB') rgb_images.append(im) imarray = np.random.rand(img_w, img_h, 1) * variance + bias im = Image.fromarray(imarray.astype('uint8').squeeze()).convert('L') gray_images.append(im) cls.all_test_images = [rgb_images, gray_images] def teardown_class(cls): del cls.all_test_images def test_image_data_generator(self): for test_images in self.all_test_images: img_list = [] for im in test_images: img_list.append(image.img_to_array(im)[None, ...]) images = np.vstack(img_list) generator = image.ImageDataGenerator( featurewise_center=True, samplewise_center=True, featurewise_std_normalization=True, samplewise_std_normalization=True, zca_whitening=True, rotation_range=90., width_shift_range=0.1, height_shift_range=0.1, shear_range=0.5, zoom_range=0.2, channel_shift_range=0., fill_mode='nearest', cval=0.5, horizontal_flip=True, vertical_flip=True) generator.fit(images, augment=True) tmp_folder = tempfile.mkdtemp(prefix='test_images') for x, y in generator.flow(images, np.arange(images.shape[0]), shuffle=True, save_to_dir=tmp_folder): assert x.shape[1:] == images.shape[1:] break shutil.rmtree(tmp_folder) def test_image_data_generator_invalid_data(self): generator = image.ImageDataGenerator( featurewise_center=True, samplewise_center=True, featurewise_std_normalization=True, samplewise_std_normalization=True, zca_whitening=True, dim_ordering='tf') # Test fit with invalid data with pytest.raises(ValueError): x = np.random.random((3, 10, 10)) generator.fit(x) with pytest.raises(ValueError): x = np.random.random((32, 3, 10, 10)) generator.fit(x) with pytest.raises(ValueError): x = np.random.random((32, 10, 10, 5)) generator.fit(x) # Test flow with invalid data with pytest.raises(ValueError): x = np.random.random((32, 10, 10, 5)) generator.flow(np.arange(x.shape[0])) with pytest.raises(ValueError): x = np.random.random((32, 10, 10)) generator.flow(np.arange(x.shape[0])) with pytest.raises(ValueError): x = np.random.random((32, 3, 10, 10)) generator.flow(np.arange(x.shape[0])) def test_image_data_generator_fit(self): generator = image.ImageDataGenerator( featurewise_center=True, samplewise_center=True, featurewise_std_normalization=True, samplewise_std_normalization=True, zca_whitening=True, dim_ordering='tf') # Test grayscale x = np.random.random((32, 10, 10, 1)) generator.fit(x) # Test RBG x = np.random.random((32, 10, 10, 3)) generator.fit(x) generator = image.ImageDataGenerator( featurewise_center=True, samplewise_center=True, featurewise_std_normalization=True, samplewise_std_normalization=True, zca_whitening=True, dim_ordering='th') # Test grayscale x = np.random.random((32, 1, 10, 10)) generator.fit(x) # Test RBG x = np.random.random((32, 3, 10, 10)) generator.fit(x) def test_directory_iterator(self): num_classes = 2 tmp_folder = tempfile.mkdtemp(prefix='test_images') # create folders and subfolders paths = [] for cl in range(num_classes): class_directory = 'class-{}'.format(cl) classpaths = [ class_directory, os.path.join(class_directory, 'subfolder-1'), os.path.join(class_directory, 'subfolder-2'), os.path.join(class_directory, 'subfolder-1', 'sub-subfolder') ] for path in classpaths: os.mkdir(os.path.join(tmp_folder, path)) paths.append(classpaths) # save the images in the paths count = 0 filenames = [] for test_images in self.all_test_images: for im in test_images: # rotate image class im_class = count % num_classes # rotate subfolders classpaths = paths[im_class] filename = os.path.join(classpaths[count % len(classpaths)], 'image-{}.jpg'.format(count)) filenames.append(filename) im.save(os.path.join(tmp_folder, filename)) count += 1 # create iterator generator = image.ImageDataGenerator() dir_iterator = generator.flow_from_directory(tmp_folder) # check number of classes and images assert(len(dir_iterator.class_indices) == num_classes) assert(len(dir_iterator.classes) == count) assert(sorted(dir_iterator.filenames) == sorted(filenames)) shutil.rmtree(tmp_folder) def test_img_utils(self): height, width = 10, 8 # Test th dim ordering x = np.random.random((3, height, width)) img = image.array_to_img(x, dim_ordering='th') assert img.size == (width, height) x = image.img_to_array(img, dim_ordering='th') assert x.shape == (3, height, width) # Test 2D x = np.random.random((1, height, width)) img = image.array_to_img(x, dim_ordering='th') assert img.size == (width, height) x = image.img_to_array(img, dim_ordering='th') assert x.shape == (1, height, width) # Test tf dim ordering x = np.random.random((height, width, 3)) img = image.array_to_img(x, dim_ordering='tf') assert img.size == (width, height) x = image.img_to_array(img, dim_ordering='tf') assert x.shape == (height, width, 3) # Test 2D x = np.random.random((height, width, 1)) img = image.array_to_img(x, dim_ordering='tf') assert img.size == (width, height) x = image.img_to_array(img, dim_ordering='tf') assert x.shape == (height, width, 1) if __name__ == '__main__': pytest.main([__file__])
6,933
-5
228
d6583013d9b22bea192d0a72428b5f4e35977e91
1,132
py
Python
setup.py
zuiwan/CodingHub-CLI
9ced732de351412f1fd32b3a5eb67117e42779f6
[ "Apache-2.0" ]
null
null
null
setup.py
zuiwan/CodingHub-CLI
9ced732de351412f1fd32b3a5eb67117e42779f6
[ "Apache-2.0" ]
null
null
null
setup.py
zuiwan/CodingHub-CLI
9ced732de351412f1fd32b3a5eb67117e42779f6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python from setuptools import find_packages, setup project = "ch-cli" version = "0.1.0" setup( name=project, version=version, description="Command line tool for ch", author="Zuiwan", author_email="danceiny@gmail.com", url="https://github.com/zuiwan/CodingHub-CLI.git", packages=find_packages(exclude=("*.tests", "*.tests.*", "tests.*", "tests")), inchude_package_data=True, zip_safe=False, keywords="ch", install_requires=[ "click>=6.7", "requests>=2.12.4", "marshmallow>=2.11.1", "pytz>=2016.10", "shortuuid>=0.4.3", "tabulate>=0.7.7", "kafka-python>=1.3.3", "pathlib2>=2.3.0", "tzlocal>=1.4", "progressbar33>=2.4", "websocket-client>=0.44.0", ], setup_requires=[ "nose>=1.0", ], dependency_links=[ ], entry_points={ "console_scripts": [ "codehub = ch.main:cli", "ch-dev = ch.development.dev:cli", "ch-local = ch.development.local:cli", ], }, tests_require=[ "mock>=1.0.1", ], )
24.608696
81
0.539753
#!/usr/bin/env python from setuptools import find_packages, setup project = "ch-cli" version = "0.1.0" setup( name=project, version=version, description="Command line tool for ch", author="Zuiwan", author_email="danceiny@gmail.com", url="https://github.com/zuiwan/CodingHub-CLI.git", packages=find_packages(exclude=("*.tests", "*.tests.*", "tests.*", "tests")), inchude_package_data=True, zip_safe=False, keywords="ch", install_requires=[ "click>=6.7", "requests>=2.12.4", "marshmallow>=2.11.1", "pytz>=2016.10", "shortuuid>=0.4.3", "tabulate>=0.7.7", "kafka-python>=1.3.3", "pathlib2>=2.3.0", "tzlocal>=1.4", "progressbar33>=2.4", "websocket-client>=0.44.0", ], setup_requires=[ "nose>=1.0", ], dependency_links=[ ], entry_points={ "console_scripts": [ "codehub = ch.main:cli", "ch-dev = ch.development.dev:cli", "ch-local = ch.development.local:cli", ], }, tests_require=[ "mock>=1.0.1", ], )
0
0
0
c6781e3b5409730674626896503725c3c53ad9cf
4,135
py
Python
tronx/helpers/filters.py
JayPatel1314/Tron
d8f2d799eea344c0d76f0fe758ce385c7ceceea7
[ "MIT" ]
null
null
null
tronx/helpers/filters.py
JayPatel1314/Tron
d8f2d799eea344c0d76f0fe758ce385c7ceceea7
[ "MIT" ]
null
null
null
tronx/helpers/filters.py
JayPatel1314/Tron
d8f2d799eea344c0d76f0fe758ce385c7ceceea7
[ "MIT" ]
null
null
null
import os import re from typing import ( Union, List, Dict, Pattern ) from pyrogram.filters import create from pyrogram import filters, Client from pyrogram.types import ( Message, CallbackQuery, InlineQuery, InlineKeyboardMarkup, ReplyKeyboardMarkup, Update ) from config import Config from tronx.database.postgres.dv_sql import DVSQL dv = DVSQL() # custom regex filter def MyPrefix(): """Multiple prefix support function""" return dv.getdv("PREFIX").split() or Config.PREFIX.split() or "." # custom command filter
23.494318
106
0.685127
import os import re from typing import ( Union, List, Dict, Pattern ) from pyrogram.filters import create from pyrogram import filters, Client from pyrogram.types import ( Message, CallbackQuery, InlineQuery, InlineKeyboardMarkup, ReplyKeyboardMarkup, Update ) from config import Config from tronx.database.postgres.dv_sql import DVSQL dv = DVSQL() # custom regex filter def regex( pattern: Union[str, Pattern], flags: int = 0, allow: list = [] ): async def func(flt, client: Client, update: Update): # work for -> sudo & bot owner if sudo if "sudo" in allow: if update.from_user and not (update.from_user.is_self or update.from_user.id in client.SudoUsers()): return False # work only for -> bot owner if not sudo elif not "sudo" in allow: if update.from_user and not update.from_user.is_self: return False # work for -> forwarded message if not "forward" in allow: if update.forward_date: return False # work for -> messages in channel if not "channel" in allow: if update.chat.type == "channel": return False # work for -> edited message if not "edited" in allow: if update.edit_date: return False if isinstance(update, Message): value = update.text or update.caption elif isinstance(update, CallbackQuery): value = update.data elif isinstance(update, InlineQuery): value = update.query else: raise ValueError(f"Regex filter doesn't work with {type(update)}") if value: update.matches = list(flt.p.finditer(value)) or None return bool(update.matches) return create( func, "RegexCommandFilter", p=pattern if isinstance(pattern, Pattern) else re.compile(pattern, flags) ) def MyPrefix(): """Multiple prefix support function""" return dv.getdv("PREFIX").split() or Config.PREFIX.split() or "." # custom command filter def gen( commands: Union[str, List[str]], prefixes: Union[str, List[str]] = MyPrefix(), case_sensitive: bool = True, allow: list = [] ): # update the commands and information of commands. # modified func of pyrogram.filters.command command_re = re.compile(r"([\"'])(.*?)(?<!\\)\1|(\S+)") async def func(flt, client: Client, message: Message): # Username shared among all commands; used for mention commands, e.g.: /start@username global username username = "" text = message.text or message.caption message.command = None if not text: return False # work for -> sudo & bot owner if sudo if "sudo" in allow: if message.from_user and not (message.from_user.is_self or message.from_user.id in client.SudoUsers()): return False # work only for -> bot owner if not sudo elif not "sudo" in allow: if message.from_user and not message.from_user.is_self: return False # work for -> forwarded message if not "forward" in allow: if message.forward_date: return False # work for -> messages in channel if not "channel" in allow: if message.chat.type == "channel": return False # work for -> edited message if not "edited" in allow: if message.edit_date: return False for prefix in flt.prefixes: if not text.startswith(prefix): continue without_prefix = text[len(prefix):] username = None for cmd in flt.commands: if not re.match(rf"^(?:{cmd}(?:@?{username})?)(?:\s|$)", without_prefix, flags=re.IGNORECASE if not flt.case_sensitive else 0): continue without_command = re.sub(rf"{cmd}(?:@?{username})?\s?", "", without_prefix, count=1) message.command = [cmd] + [ re.sub(r"\\([\"'])", r"\1", m.group(2) or m.group(3) or "") for m in command_re.finditer(without_command) ] return True return False commands = commands if isinstance(commands, list) else [commands] commands = {c if case_sensitive else c.lower() for c in commands} prefixes = [] if prefixes is None else prefixes prefixes = prefixes if isinstance(prefixes, list) else [prefixes] prefixes = set(prefixes) if prefixes else {""} return create( func, "MessageCommandFilter", commands=commands, prefixes=prefixes, case_sensitive=case_sensitive )
3,541
0
44
897bbc983e66081213620110e136f15fdd0ac12c
1,071
py
Python
train_vqvae.py
bipashasen/How2Sign-Blob
6e2af881d96d477fdb93104b8e53d943765c64ff
[ "MIT" ]
6
2021-09-14T07:04:54.000Z
2022-03-24T16:07:41.000Z
train_vqvae.py
bipashasen/How2Sign-Blob
6e2af881d96d477fdb93104b8e53d943765c64ff
[ "MIT" ]
4
2021-10-14T22:18:47.000Z
2022-03-30T13:03:07.000Z
train_vqvae.py
bipashasen/How2Sign-Blob
6e2af881d96d477fdb93104b8e53d943765c64ff
[ "MIT" ]
3
2022-01-13T20:22:39.000Z
2022-03-03T12:52:44.000Z
import torch from dataset import DrivingDataset from vidvqvae import VQVAE from torch.utils.data import DataLoader from torch.utils.data import random_split import pytorch_lightning as pl from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.callbacks import ModelCheckpoint dataset = DrivingDataset("./generative", frames=16, skip=16) print(len(dataset)) train_set, val_set = random_split(dataset, [10000, 3009], generator=torch.Generator().manual_seed(42)) train_loader = DataLoader(train_set, batch_size=16, num_workers=12) val_loader = DataLoader(val_set, batch_size=8, num_workers=12) model = VQVAE( in_channel=3, channel=128, n_res_block=2, n_res_channel=32, embed_dim=64, n_embed=512, decay=0.99 ) # wandb_logger = WandbLogger(project="VidVQVAE", log_model="all") # wandb_logger.watch(model) # checkpoint_callback = ModelCheckpoint(monitor="val_loss") # trainer = pl.Trainer(gpus=1, logger=wandb_logger, callbacks=[checkpoint_callback]) trainer = pl.Trainer(gpus=1) trainer.fit(model, train_loader, val_loader)
31.5
102
0.782446
import torch from dataset import DrivingDataset from vidvqvae import VQVAE from torch.utils.data import DataLoader from torch.utils.data import random_split import pytorch_lightning as pl from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.callbacks import ModelCheckpoint dataset = DrivingDataset("./generative", frames=16, skip=16) print(len(dataset)) train_set, val_set = random_split(dataset, [10000, 3009], generator=torch.Generator().manual_seed(42)) train_loader = DataLoader(train_set, batch_size=16, num_workers=12) val_loader = DataLoader(val_set, batch_size=8, num_workers=12) model = VQVAE( in_channel=3, channel=128, n_res_block=2, n_res_channel=32, embed_dim=64, n_embed=512, decay=0.99 ) # wandb_logger = WandbLogger(project="VidVQVAE", log_model="all") # wandb_logger.watch(model) # checkpoint_callback = ModelCheckpoint(monitor="val_loss") # trainer = pl.Trainer(gpus=1, logger=wandb_logger, callbacks=[checkpoint_callback]) trainer = pl.Trainer(gpus=1) trainer.fit(model, train_loader, val_loader)
0
0
0
16460dd8cef3c4ca6e999f16951e9835cac32996
3,369
py
Python
euca2ools/commands/autoscaling/terminateinstanceinautoscalinggroup.py
salewski/euca2ools
6b3f62f2cb1c54f14d3bfa5fd92dab3c0ecafecb
[ "BSD-2-Clause" ]
30
2015-02-10T05:47:38.000Z
2022-01-20T08:48:43.000Z
euca2ools/commands/autoscaling/terminateinstanceinautoscalinggroup.py
salewski/euca2ools
6b3f62f2cb1c54f14d3bfa5fd92dab3c0ecafecb
[ "BSD-2-Clause" ]
16
2015-01-08T23:24:34.000Z
2018-07-18T07:15:40.000Z
euca2ools/commands/autoscaling/terminateinstanceinautoscalinggroup.py
salewski/euca2ools
6b3f62f2cb1c54f14d3bfa5fd92dab3c0ecafecb
[ "BSD-2-Clause" ]
19
2015-05-07T05:34:42.000Z
2020-12-13T10:50:14.000Z
# Copyright 2013 Eucalyptus Systems, Inc. # # Redistribution and use of this software in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse from requestbuilder import Arg, MutuallyExclusiveArgList from requestbuilder.mixins import TabifyingMixin from euca2ools.commands.autoscaling import AutoScalingRequest
48.826087
79
0.666667
# Copyright 2013 Eucalyptus Systems, Inc. # # Redistribution and use of this software in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse from requestbuilder import Arg, MutuallyExclusiveArgList from requestbuilder.mixins import TabifyingMixin from euca2ools.commands.autoscaling import AutoScalingRequest class TerminateInstanceInAutoScalingGroup(AutoScalingRequest, TabifyingMixin): DESCRIPTION = "Manually terminate an auto-scaling instance" ARGS = [Arg('InstanceId', metavar='INSTANCE', help='ID of the instance to terminate (required)'), MutuallyExclusiveArgList( Arg('-d', '--decrement-desired-capacity', action='store_const', dest='ShouldDecrementDesiredCapacity', const='true', help='''also reduce the desired capacity of the auto-scaling group by 1'''), Arg('-D', '--no-decrement-desired-capacity', dest='ShouldDecrementDesiredCapacity', action='store_const', const='false', help='''leave the auto-scaling group's desired capacity as-is. A new instance may be launched to compensate for the one being terminated.''')) .required(), Arg('--show-long', action='store_true', route_to=None, help='show extra info about the instance being terminated'), Arg('-f', '--force', action='store_true', route_to=None, help=argparse.SUPPRESS)] # for compatibility def print_result(self, result): activity = result['Activity'] bits = ['INSTANCE', activity.get('ActivityId'), activity.get('EndTime'), activity.get('StatusCode'), activity.get('Cause')] if self.args['show_long']: bits.append(activity.get('StatusMessage')) bits.append(activity.get('Progress')) bits.append(activity.get('Description')) bits.append(activity.get('StartTime')) print self.tabify(bits)
520
1,297
23
c055b680671015ae685487c0a21864dbeeb5d7bc
100
py
Python
Test.py
JonatasMSS/PythonProjects
795218987a4b50e7b4f62aa910d6647b8f91593b
[ "MIT" ]
null
null
null
Test.py
JonatasMSS/PythonProjects
795218987a4b50e7b4f62aa910d6647b8f91593b
[ "MIT" ]
null
null
null
Test.py
JonatasMSS/PythonProjects
795218987a4b50e7b4f62aa910d6647b8f91593b
[ "MIT" ]
null
null
null
from ColorText import ColorText Texto = ColorText.mudaCor('Olá Mundo!','blue','lo') print(Texto)
25
52
0.73
from ColorText import ColorText Texto = ColorText.mudaCor('Olá Mundo!','blue','lo') print(Texto)
0
0
0
3b94585921a2a79178522ecf37a1d9d48c8968b5
5,484
py
Python
test/test_colors.py
braniii/prettypyplot
39d7d133fe0dc6699fafd57e00a0ec07672fd344
[ "BSD-3-Clause" ]
null
null
null
test/test_colors.py
braniii/prettypyplot
39d7d133fe0dc6699fafd57e00a0ec07672fd344
[ "BSD-3-Clause" ]
null
null
null
test/test_colors.py
braniii/prettypyplot
39d7d133fe0dc6699fafd57e00a0ec07672fd344
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """Tests for the color module. BSD 3-Clause License Copyright (c) 2020-2021, Daniel Nagel All rights reserved. """ import numpy as np import pytest from matplotlib import colors as clr import prettypyplot @pytest.mark.parametrize('num, kwargs, error', [ (1, {}, None), (2, {'high': 2}, None), (2, {}, ValueError), ('a', {}, TypeError), ((1, 2), {}, TypeError), ]) def test__is_number_in_range(num, kwargs, error): """Test if number is in range.""" if error is None: prettypyplot.colors._is_number_in_range(num, **kwargs) else: with pytest.raises(error): prettypyplot.colors._is_number_in_range(num, **kwargs) @pytest.mark.parametrize('L1, L2, refcontrast', [ (1, 0, 21), (0.5, 0.5, 1), ]) def test__contrast(L1, L2, refcontrast): """Test contrast.""" for l1, l2 in ((L1, L2), (L2, L1)): contrast = prettypyplot.colors._contrast(l1, l2) assert contrast == refcontrast @pytest.mark.parametrize('rgb, refluminace', [ ((1, 1, 1), 1), ((1, 0, 0), 0.2126), ((0, 1, 0), 0.7152), ((0, 0, 0), 0), ]) def test__relative_luminance(rgb, refluminace): """Test luminance.""" luminance = prettypyplot.colors._relative_luminance(rgb) assert luminance == refluminace @pytest.mark.parametrize('bgcolor, kwargs, refcolor, error', [ ('w', {}, '#000000', None), ('b', {}, '#ffffff', None), ('w', {'colors': ('r', 'w', 'k')}, clr.to_rgb('k'), None), ('w', {'colors': ('r', 'w')}, clr.to_rgb('r'), None), ('#505050', {}, '#ffffff', None), ('#a0a0a0', {}, '#000000', None), ('notAColorCode', {}, None, ValueError), ('w', {'colors': ('notAColorCode')}, None, ValueError), ]) def test_text_color(bgcolor, kwargs, refcolor, error): """Test estimate text color.""" if error is None: color = prettypyplot.colors.text_color(bgcolor, **kwargs) assert clr.to_rgb(color) == clr.to_rgb(refcolor) else: with pytest.raises(error): prettypyplot.colors.text_color(bgcolor, **kwargs) @pytest.mark.parametrize('color, refbool, error', [ ('k', True, None), ('w', True, None), ('r', False, None), ('#212121', True, None), ('#212122', False, None), ('NoColorCode', None, ValueError), ]) def test_is_grayshade(color, refbool, error): """Test if color is gray shade.""" if error is None: assert refbool == prettypyplot.colors.is_greyshade(color) else: with pytest.raises(error): prettypyplot.colors.is_greyshade(color) @pytest.mark.parametrize('nsc, color, kwargs, refcolors, error', [ (2, 'k', {}, [[0, 0, 0], [0.75, 0.75, 0.75]], None), (2, 'k', {'return_hex': False}, ['#000000', '#bfbfbf'], None), (2, 'k', {'return_hex': True}, ['#000000', '#bfbfbf'], None), (3, 'r', {}, ['#ff0000', '#ff6060', '#ffbfbf'], None), (3, 'NoColorCoder', {}, None, ValueError), (1.2, 'k', {}, None, TypeError), ('s', 'k', {}, None, TypeError), (0, 'k', {}, None, ValueError), (-5, 'k', {}, None, ValueError), ]) def test_categorical_color(nsc, color, kwargs, refcolors, error): """Test categorical color.""" if error is None: colors = prettypyplot.colors.categorical_color(nsc, color, **kwargs) # convert colors to hex if 'return_hex' not in kwargs or not kwargs['return_hex']: colors = [clr.to_hex(c) for c in colors] assert all( c == clr.to_hex(rc) for c, rc in zip(colors, refcolors) ) else: with pytest.raises(error): prettypyplot.colors.categorical_color(nsc, color, **kwargs) @pytest.mark.parametrize('nc, nsc, kwargs, ref, error', [ ( 2, 2, {'cmap': 'tab10'}, [ [0.12, 0.47, 0.71], [0.75, 0.9, 1.0], [1.0, 0.5, 0.06], [1.0, 0.87, 0.75], ], None, ), ( 2, 2, {}, [ [0.12, 0.47, 0.71], [0.75, 0.9, 1.0], [1.0, 0.5, 0.06], [1.0, 0.87, 0.75], ], None, ), ( 2, 2, {'return_colors': True}, [ [0.12, 0.47, 0.71], [0.75, 0.9, 1.0], [1.0, 0.5, 0.06], [1.0, 0.87, 0.75], ], None, ), ( 1, 2, {'cmap': 'jet'}, [[0.0, 0.0, 0.5], [0.75, 0.75, 1.0]], None, ), (2, 2, {'cmap': 'NoColorMap'}, None, ValueError), (20, 2, {'cmap': 'tab10'}, None, ValueError), (-2, 2, {}, None, ValueError), (2, -2, {}, None, ValueError), (2, -2, {}, None, ValueError), ]) def test_categorical_cmap(nc, nsc, kwargs, ref, error): """Test categorical cmap.""" if error is None: colors = prettypyplot.colors.categorical_cmap(nc, nsc, **kwargs) # convert colors to hex if 'return_colors' in kwargs and kwargs['return_colors']: colors = colors.reshape(-1, 3) else: colors = colors.colors np.testing.assert_array_almost_equal(colors, ref, decimal=2) else: with pytest.raises(error): prettypyplot.colors.categorical_cmap(nc, nsc, **kwargs) # dummy coverage tests def test_load_colors(): """Check that no error get raised.""" prettypyplot.colors.load_colors() def test_load_cmaps(): """Check that no error get raised.""" prettypyplot.colors.load_cmaps()
28.712042
76
0.539752
# -*- coding: utf-8 -*- """Tests for the color module. BSD 3-Clause License Copyright (c) 2020-2021, Daniel Nagel All rights reserved. """ import numpy as np import pytest from matplotlib import colors as clr import prettypyplot @pytest.mark.parametrize('num, kwargs, error', [ (1, {}, None), (2, {'high': 2}, None), (2, {}, ValueError), ('a', {}, TypeError), ((1, 2), {}, TypeError), ]) def test__is_number_in_range(num, kwargs, error): """Test if number is in range.""" if error is None: prettypyplot.colors._is_number_in_range(num, **kwargs) else: with pytest.raises(error): prettypyplot.colors._is_number_in_range(num, **kwargs) @pytest.mark.parametrize('L1, L2, refcontrast', [ (1, 0, 21), (0.5, 0.5, 1), ]) def test__contrast(L1, L2, refcontrast): """Test contrast.""" for l1, l2 in ((L1, L2), (L2, L1)): contrast = prettypyplot.colors._contrast(l1, l2) assert contrast == refcontrast @pytest.mark.parametrize('rgb, refluminace', [ ((1, 1, 1), 1), ((1, 0, 0), 0.2126), ((0, 1, 0), 0.7152), ((0, 0, 0), 0), ]) def test__relative_luminance(rgb, refluminace): """Test luminance.""" luminance = prettypyplot.colors._relative_luminance(rgb) assert luminance == refluminace @pytest.mark.parametrize('bgcolor, kwargs, refcolor, error', [ ('w', {}, '#000000', None), ('b', {}, '#ffffff', None), ('w', {'colors': ('r', 'w', 'k')}, clr.to_rgb('k'), None), ('w', {'colors': ('r', 'w')}, clr.to_rgb('r'), None), ('#505050', {}, '#ffffff', None), ('#a0a0a0', {}, '#000000', None), ('notAColorCode', {}, None, ValueError), ('w', {'colors': ('notAColorCode')}, None, ValueError), ]) def test_text_color(bgcolor, kwargs, refcolor, error): """Test estimate text color.""" if error is None: color = prettypyplot.colors.text_color(bgcolor, **kwargs) assert clr.to_rgb(color) == clr.to_rgb(refcolor) else: with pytest.raises(error): prettypyplot.colors.text_color(bgcolor, **kwargs) @pytest.mark.parametrize('color, refbool, error', [ ('k', True, None), ('w', True, None), ('r', False, None), ('#212121', True, None), ('#212122', False, None), ('NoColorCode', None, ValueError), ]) def test_is_grayshade(color, refbool, error): """Test if color is gray shade.""" if error is None: assert refbool == prettypyplot.colors.is_greyshade(color) else: with pytest.raises(error): prettypyplot.colors.is_greyshade(color) @pytest.mark.parametrize('nsc, color, kwargs, refcolors, error', [ (2, 'k', {}, [[0, 0, 0], [0.75, 0.75, 0.75]], None), (2, 'k', {'return_hex': False}, ['#000000', '#bfbfbf'], None), (2, 'k', {'return_hex': True}, ['#000000', '#bfbfbf'], None), (3, 'r', {}, ['#ff0000', '#ff6060', '#ffbfbf'], None), (3, 'NoColorCoder', {}, None, ValueError), (1.2, 'k', {}, None, TypeError), ('s', 'k', {}, None, TypeError), (0, 'k', {}, None, ValueError), (-5, 'k', {}, None, ValueError), ]) def test_categorical_color(nsc, color, kwargs, refcolors, error): """Test categorical color.""" if error is None: colors = prettypyplot.colors.categorical_color(nsc, color, **kwargs) # convert colors to hex if 'return_hex' not in kwargs or not kwargs['return_hex']: colors = [clr.to_hex(c) for c in colors] assert all( c == clr.to_hex(rc) for c, rc in zip(colors, refcolors) ) else: with pytest.raises(error): prettypyplot.colors.categorical_color(nsc, color, **kwargs) @pytest.mark.parametrize('nc, nsc, kwargs, ref, error', [ ( 2, 2, {'cmap': 'tab10'}, [ [0.12, 0.47, 0.71], [0.75, 0.9, 1.0], [1.0, 0.5, 0.06], [1.0, 0.87, 0.75], ], None, ), ( 2, 2, {}, [ [0.12, 0.47, 0.71], [0.75, 0.9, 1.0], [1.0, 0.5, 0.06], [1.0, 0.87, 0.75], ], None, ), ( 2, 2, {'return_colors': True}, [ [0.12, 0.47, 0.71], [0.75, 0.9, 1.0], [1.0, 0.5, 0.06], [1.0, 0.87, 0.75], ], None, ), ( 1, 2, {'cmap': 'jet'}, [[0.0, 0.0, 0.5], [0.75, 0.75, 1.0]], None, ), (2, 2, {'cmap': 'NoColorMap'}, None, ValueError), (20, 2, {'cmap': 'tab10'}, None, ValueError), (-2, 2, {}, None, ValueError), (2, -2, {}, None, ValueError), (2, -2, {}, None, ValueError), ]) def test_categorical_cmap(nc, nsc, kwargs, ref, error): """Test categorical cmap.""" if error is None: colors = prettypyplot.colors.categorical_cmap(nc, nsc, **kwargs) # convert colors to hex if 'return_colors' in kwargs and kwargs['return_colors']: colors = colors.reshape(-1, 3) else: colors = colors.colors np.testing.assert_array_almost_equal(colors, ref, decimal=2) else: with pytest.raises(error): prettypyplot.colors.categorical_cmap(nc, nsc, **kwargs) # dummy coverage tests def test_load_colors(): """Check that no error get raised.""" prettypyplot.colors.load_colors() def test_load_cmaps(): """Check that no error get raised.""" prettypyplot.colors.load_cmaps()
0
0
0
83c0d62cdfe8ec13e3ea83047998446d9035f49a
927
py
Python
tests/conftest.py
RasaHQ/rasa_stack
f2a5637fee5bda0faa9fc691c453a40cffc36666
[ "Apache-2.0" ]
11
2018-11-03T20:20:36.000Z
2020-07-22T08:28:40.000Z
tests/conftest.py
RasaHQ/rasa_stack
f2a5637fee5bda0faa9fc691c453a40cffc36666
[ "Apache-2.0" ]
10
2019-01-24T13:25:11.000Z
2019-03-13T16:26:16.000Z
tests/conftest.py
RasaHQ/rasa_stack
f2a5637fee5bda0faa9fc691c453a40cffc36666
[ "Apache-2.0" ]
4
2019-02-10T10:48:38.000Z
2021-07-22T07:01:29.000Z
from typing import Text import os import pytest from rasa.constants import (DEFAULT_DOMAIN_PATH, DEFAULT_CONFIG_PATH, DEFAULT_MODELS_PATH, DEFAULT_DATA_PATH) @pytest.fixture(scope="session") @pytest.fixture(scope="session")
25.75
69
0.734628
from typing import Text import os import pytest from rasa.constants import (DEFAULT_DOMAIN_PATH, DEFAULT_CONFIG_PATH, DEFAULT_MODELS_PATH, DEFAULT_DATA_PATH) @pytest.fixture(scope="session") def project() -> Text: import tempfile from rasa.cli.scaffold import _create_initial_project directory = tempfile.mkdtemp() _create_initial_project(directory) return directory def train_model(project: Text, filename: Text = "test.tar.gz"): import rasa.train output = os.path.join(project, DEFAULT_MODELS_PATH, filename) domain = os.path.join(project, DEFAULT_DOMAIN_PATH) config = os.path.join(project, DEFAULT_CONFIG_PATH) training_files = os.path.join(project, DEFAULT_DATA_PATH) rasa.train(domain, config, training_files, output) return output @pytest.fixture(scope="session") def trained_model(project) -> Text: return train_model(project)
602
0
67
3d3b585878eec40a93008097771d36002f81b5a6
1,157
py
Python
test/test_01_decode_encode.py
hashberg-io/bases
9306573ee3794947efb91b70087d62f98607cadc
[ "MIT" ]
1
2021-12-31T19:29:55.000Z
2021-12-31T19:29:55.000Z
test/test_01_decode_encode.py
hashberg-io/bases
9306573ee3794947efb91b70087d62f98607cadc
[ "MIT" ]
null
null
null
test/test_01_decode_encode.py
hashberg-io/bases
9306573ee3794947efb91b70087d62f98607cadc
[ "MIT" ]
null
null
null
# pylint: disable = missing-docstring import pytest from bases import encoding from bases.encoding import BaseEncoding from bases import random from bases.random import rand_str random.set_options(min_bytes=0, max_bytes=16) nsamples = 1024 @pytest.mark.parametrize("enc_name,enc", list(encoding.table()))
34.029412
82
0.666379
# pylint: disable = missing-docstring import pytest from bases import encoding from bases.encoding import BaseEncoding from bases import random from bases.random import rand_str random.set_options(min_bytes=0, max_bytes=16) nsamples = 1024 def _test_decode_encode(i: int, s: str, enc_name: str, enc: BaseEncoding) -> None: try: error_msg = f"encoding {repr(enc_name)} failed at #{i} = {repr(s)}" b = enc.decode(s) error_msg += f" with b = {list(b)}" s_enc = enc.encode(b) error_msg += f" and s_enc = {repr(s_enc)}" s_canonical = enc.canonical_string(s) if s_canonical != s: error_msg += f" where s_canonical = {repr(s_canonical)}" assert s_enc == s_canonical, error_msg except Exception as e: if not isinstance(e, AssertionError): raise Exception(error_msg) from e raise e @pytest.mark.parametrize("enc_name,enc", list(encoding.table())) def test_decode_encode(enc_name: str, enc: BaseEncoding) -> None: test_data = rand_str(nsamples, encoding=enc) for i, s in enumerate(test_data): _test_decode_encode(i, s, enc_name, enc)
803
0
45
63c538aa0950d31879a3e1554c0b16512302bf07
136
py
Python
schemas/error_response.py
victorgrubio/flask-mongo-template-api
b82f444eb7daa2f7ee7c1ceb46046b7f2322b991
[ "Apache-2.0" ]
null
null
null
schemas/error_response.py
victorgrubio/flask-mongo-template-api
b82f444eb7daa2f7ee7c1ceb46046b7f2322b991
[ "Apache-2.0" ]
null
null
null
schemas/error_response.py
victorgrubio/flask-mongo-template-api
b82f444eb7daa2f7ee7c1ceb46046b7f2322b991
[ "Apache-2.0" ]
null
null
null
from marshmallow import Schema, fields
27.2
66
0.779412
from marshmallow import Schema, fields class ErrorResponse(Schema): error = fields.String(description="Error returned by the API")
0
74
23
f184523890bcf9b76f0ab06d67dc6de838d0acf5
710
py
Python
pystratis/api/connectionmanager/requestmodels/addnoderequest.py
TjadenFroyda/pyStratis
9cc7620d7506637f8a2b84003d931eceb36ac5f2
[ "MIT" ]
8
2021-06-30T20:44:22.000Z
2021-12-07T14:42:22.000Z
pystratis/api/connectionmanager/requestmodels/addnoderequest.py
TjadenFroyda/pyStratis
9cc7620d7506637f8a2b84003d931eceb36ac5f2
[ "MIT" ]
2
2021-07-01T11:50:18.000Z
2022-01-25T18:39:49.000Z
pystratis/api/connectionmanager/requestmodels/addnoderequest.py
TjadenFroyda/pyStratis
9cc7620d7506637f8a2b84003d931eceb36ac5f2
[ "MIT" ]
4
2021-07-01T04:36:42.000Z
2021-09-17T10:54:19.000Z
from pydantic import validator, Field from pystratis.api import Model # noinspection PyUnresolvedReferences class AddNodeRequest(Model): """A request model for the connectionmanager/addnode endpoint. Args: ipaddr (str): The endpoint. command (str): Allowed commands [add, remove, onetry] """ ipaddr: str = Field(alias='endpoint') command: str # noinspection PyMethodParameters,PyUnusedLocal @validator('command')
26.296296
68
0.625352
from pydantic import validator, Field from pystratis.api import Model # noinspection PyUnresolvedReferences class AddNodeRequest(Model): """A request model for the connectionmanager/addnode endpoint. Args: ipaddr (str): The endpoint. command (str): Allowed commands [add, remove, onetry] """ ipaddr: str = Field(alias='endpoint') command: str # noinspection PyMethodParameters,PyUnusedLocal @validator('command') def validate_command(cls, v, values): allowed = [ 'add', 'remove', 'onetry' ] if v not in allowed: raise ValueError(f'Invalid command. Must be: {allowed}') return v
223
0
26
3f510b14969b96c8ab32bc2699f596314fa605f0
61
py
Python
project.py
paraizofelipe/kong-wrapper
798917292cb089f98548af0098387c3a5d00f3ba
[ "BSD-3-Clause" ]
1
2017-10-18T03:21:40.000Z
2017-10-18T03:21:40.000Z
project.py
paraizofelipe/kong-wrapper
798917292cb089f98548af0098387c3a5d00f3ba
[ "BSD-3-Clause" ]
null
null
null
project.py
paraizofelipe/kong-wrapper
798917292cb089f98548af0098387c3a5d00f3ba
[ "BSD-3-Clause" ]
null
null
null
import os PATH = os.path.abspath(os.path.dirname(__file__))
15.25
49
0.754098
import os PATH = os.path.abspath(os.path.dirname(__file__))
0
0
0
c79c2009cad0bd80495b4043b43b3b05c18be1dd
1,465
py
Python
django_popup_view_field/fields.py
g1sky/django-popup-view-field
69eec162e336ebc82deaa2910c870bb53b216ab4
[ "MIT" ]
null
null
null
django_popup_view_field/fields.py
g1sky/django-popup-view-field
69eec162e336ebc82deaa2910c870bb53b216ab4
[ "MIT" ]
null
null
null
django_popup_view_field/fields.py
g1sky/django-popup-view-field
69eec162e336ebc82deaa2910c870bb53b216ab4
[ "MIT" ]
null
null
null
import urllib from django.forms.fields import CharField from django.utils.translation import ugettext_lazy as _ from django.views.generic import View from .exceptions import PopupViewIsNotSubclassView from .widgets import PopupViewWidget
33.295455
94
0.662116
import urllib from django.forms.fields import CharField from django.utils.translation import ugettext_lazy as _ from django.views.generic import View from .exceptions import PopupViewIsNotSubclassView from .widgets import PopupViewWidget class PopupViewField(CharField): def __init__(self, view_class, attrs=None, *args, **kwargs): """ view_class : View Class used to render content popup dialog view_class must be subclass of django.views.generic.View """ # Check view_class inherit from django View if not issubclass(view_class, View): raise PopupViewIsNotSubclassView() view_class_name = view_class.__name__ popup_dialog_title = kwargs.pop("popup_dialog_title", _("Popup Dialog: Select value")) callback_data = kwargs.pop("callback_data", {}) if not isinstance(callback_data, dict): raise AttributeError("callback_data argument must be a dictionary") try: callback_data = urllib.urlencode(callback_data) except AttributeError: callback_data = urllib.parse.urlencode(callback_data) super(PopupViewField, self).__init__( widget=PopupViewWidget( view_class_name=view_class_name, popup_dialog_title=popup_dialog_title, callback_data=callback_data, attrs=attrs ), *args, **kwargs )
0
1,201
23
213f2cd6824b25ae045c553e6540cce858ad3289
3,084
py
Python
gen_page.py
scristall/poe_gen_gwennen
6579424a382ecfb332c4f5aa48ba3b789e1d8079
[ "MIT" ]
null
null
null
gen_page.py
scristall/poe_gen_gwennen
6579424a382ecfb332c4f5aa48ba3b789e1d8079
[ "MIT" ]
null
null
null
gen_page.py
scristall/poe_gen_gwennen
6579424a382ecfb332c4f5aa48ba3b789e1d8079
[ "MIT" ]
null
null
null
from browser import document as doc from browser.html import TABLE, TR, TH, TD, INPUT, SELECT, OPTION, DIV, BUTTON, SPAN, LI, H2, H3, IMG, COLGROUP, COL, P, SECTION, BR from json import load from last_update import time # Create the static elements of the home page init_page() doc['loading'] <= DIV(Id='prerendered')
68.533333
345
0.690013
from browser import document as doc from browser.html import TABLE, TR, TH, TD, INPUT, SELECT, OPTION, DIV, BUTTON, SPAN, LI, H2, H3, IMG, COLGROUP, COL, P, SECTION, BR from json import load from last_update import time # Create the static elements of the home page def init_page(): doc['time'].text = f"poe.ninja data last updated at {time} PST" # selected cst = SELECT(Id=f"hide_low_value", Class=f"save onehundred") for s in ['hide', 'show']: cst <= OPTION(s.capitalize(), value=s) always_show = SELECT(Id=f"always_show", Class=f"save onehundred") for s in ['show', 'hide']: always_show <= OPTION(s.capitalize(), value=s) min_val = INPUT(Type='number', min='0', step="1", value='20', Id="chaos_filter", Class='save') t = TABLE(TR(TH() + TH('Selection'))) t <= TR(TD("Always show selected rows:", Class="right_text") + TD(always_show)) t <= TR(TD("Show low value items in row:", Class="right_text") + TD(cst)) t <= TR(TD("Minimum Chaos value to show:", Class="right_text") + TD(min_val)) t <= TR(TD("Keyword(s) Search:", Class="right_text") + TD(INPUT(Type='text', Id="keywords", Class='save') + BUTTON('x', Id='clear_keywords'))) doc['show_hide'] <= t + P("Hit enter or click outside the inputs to update the page. Items that are selected are only changed by using either button at the top of the list or clicking the box in the list.") doc['show_hide'] <= P("Note that the keyword search overrides all other filter settings. Clear keyword search to use them. Search can display an empty row if it's the combination of two or more uniques on a base that matches the search terms. EG gold rim will show Viridian Jewel base because 2 separate uniques partially match the search.") doc['show_hide'] <= DIV(BUTTON("Generate String", Id='generate') + " Will generate search strings based on all selected rows. This will cause many calculations and may take a bit to return a result") doc['show_hide'] <= DIV("No strings generated yet.", Id="generated_strings", Class='sec_div grind') doc['show_hide'] <= DIV(BUTTON("Select All Visible Only", Id='select_visible') + " This will deselect all hidden rows and select all visible rows.") doc['show_hide'] <= BUTTON("Clear Selected", Id='clear_selected') # Load and display league specific unique data t = TABLE(TR(TH("Selected", Class='col_1') + TH("Base", Class='col_2') + TH("Item(s)")), Class="borders onehundred") with open(f'{doc.query.getvalue("league", "sc")}_unique.json') as f: data = load(f) for base in data: base_l = base.lower() v = (DIV(IMG(src=x[2], alt=x[0], title=x[0], Class='item_icon', loading="lazy") + DIV(x[1], Class='bottom-right'), Class='container', data_value=x[1], data_search=f"{base_l}, {x[0].lower()}") for x in data[base]) searchstring = ', '.join([base_l] + [x[0].lower() for x in data[base]]) t <= TR(TD(INPUT(Id=f"check-{base_l.replace(' ', '_')}", type='checkbox', data_id=base_l, Class='save')) + TD(base) + TD(v), data_id=base_l, data_value=data[base][0][1], data_search=searchstring) doc['items'] <= t init_page() doc['loading'] <= DIV(Id='prerendered')
2,740
0
22
5acacf353c21991d44914adbe24f3d385bb6a103
2,944
py
Python
pyoptflow/utils.py
juhi24/fmio-server
3add2a2faab06637b6cf0a4ed337ef62b8188e0f
[ "MIT" ]
null
null
null
pyoptflow/utils.py
juhi24/fmio-server
3add2a2faab06637b6cf0a4ed337ef62b8188e0f
[ "MIT" ]
null
null
null
pyoptflow/utils.py
juhi24/fmio-server
3add2a2faab06637b6cf0a4ed337ef62b8188e0f
[ "MIT" ]
2
2017-10-28T18:41:40.000Z
2020-05-12T12:50:52.000Z
"""Conversion functions for weather radar and rainfall data.""" from numpy import isfinite, log, ubyte from scipy.ndimage import gaussian_filter from skimage.exposure import equalize_hist, rescale_intensity def dBZ_to_ubyte(I, dBZ_min=-10.0, dBZ_max=50.0, filter_stddev=3.0): """Convert a dBZ field into a 8-bit image, as required by Optflow. Optionally, apply a Gaussian smoothing filter. Parameters ---------- I : array-like The dBZ field. dBZ_min : float Minimum dBZ. Values smaller than dBZ_min are set to dBZ_min. If None, dBZ_min is computed from I. dBZ_max : float Maximum dBZ. Values greater than dBZ_max are set to dBZ_max. If None, dBZ_max is computed from I. filter_stddev : float Standard deviation of the Gaussian filter (0=no filtering) Returns ------- out : ndarray(dtype=ubyte) The processed dBZ field. """ I = I.copy() MASK = isfinite(I) if dBZ_min == None: dBZ_min = min(I[MASK]) if dBZ_max == None: dBZ_max = max(I[MASK]) I[~MASK] = dBZ_min I[I < dBZ_min] = dBZ_min I[I > dBZ_max] = dBZ_max if filter_stddev > 0.0: I = gaussian_filter(I, filter_stddev, mode="reflect") I = ((I - dBZ_min) / (dBZ_max - dBZ_min)) * 255.0 return I.astype(ubyte) def rainfall_to_ubyte(I, R_min=0.1, R_max=40.0, filter_stddev=3.0, logtrans=False): """Convert a rainfall intensity field into a 8-bit image, as required by Optflow. Optionally, apply a Gaussian smoothing filter. Parameters ---------- I : array-like The input rainfall field. R_min : float Minimum rainfall intensity. Values smaller than R_min are set to R_min. If None, R_min is computed from I. R_max : float Maximum rainfall intensity. Values greater than R_max are set to R_max. If None, R_max is computed from I. filter_stddev : float Standard deviation of the Gaussian filter (0=no filtering) logtrans : bool If True, apply a log-transform to the input rainfall field. In this case, R_min must be nonzero. Returns ------- out : ndarray(dtype=ubyte) The processed rainfall field. """ I = I.copy() MASK = isfinite(I) if R_min == None: R_min = min(I[MASK]) if R_max == None: R_max = max(I[MASK]) I[~MASK] = R_min I[I < R_min] = R_min I[I > R_max] = R_max if logtrans == True: if R_min == 0.0: raise ValueError("R_min must be nonzero if log-transform is used") I = log(I) R_min = log(R_min) R_max = log(R_max) # TESTING #I = rescale_intensity(I, (R_min, R_max), (0.0, 1.0)) #I = equalize_hist(I) #I = ((I - min(I)) / (max(I) - min(I))) * 255.0 MASK = I > R_min # TODO: Make the threshold 128 configurable. I[MASK] = 128.0 + ((I[MASK] - R_min) / (R_max - R_min)) * (255.0 - 128.0) I[~MASK] = 0.0 I = I.astype(ubyte) if filter_stddev > 0.0: I = gaussian_filter(I, filter_stddev, mode="reflect") return I
27.259259
83
0.647079
"""Conversion functions for weather radar and rainfall data.""" from numpy import isfinite, log, ubyte from scipy.ndimage import gaussian_filter from skimage.exposure import equalize_hist, rescale_intensity def dBZ_to_ubyte(I, dBZ_min=-10.0, dBZ_max=50.0, filter_stddev=3.0): """Convert a dBZ field into a 8-bit image, as required by Optflow. Optionally, apply a Gaussian smoothing filter. Parameters ---------- I : array-like The dBZ field. dBZ_min : float Minimum dBZ. Values smaller than dBZ_min are set to dBZ_min. If None, dBZ_min is computed from I. dBZ_max : float Maximum dBZ. Values greater than dBZ_max are set to dBZ_max. If None, dBZ_max is computed from I. filter_stddev : float Standard deviation of the Gaussian filter (0=no filtering) Returns ------- out : ndarray(dtype=ubyte) The processed dBZ field. """ I = I.copy() MASK = isfinite(I) if dBZ_min == None: dBZ_min = min(I[MASK]) if dBZ_max == None: dBZ_max = max(I[MASK]) I[~MASK] = dBZ_min I[I < dBZ_min] = dBZ_min I[I > dBZ_max] = dBZ_max if filter_stddev > 0.0: I = gaussian_filter(I, filter_stddev, mode="reflect") I = ((I - dBZ_min) / (dBZ_max - dBZ_min)) * 255.0 return I.astype(ubyte) def rainfall_to_ubyte(I, R_min=0.1, R_max=40.0, filter_stddev=3.0, logtrans=False): """Convert a rainfall intensity field into a 8-bit image, as required by Optflow. Optionally, apply a Gaussian smoothing filter. Parameters ---------- I : array-like The input rainfall field. R_min : float Minimum rainfall intensity. Values smaller than R_min are set to R_min. If None, R_min is computed from I. R_max : float Maximum rainfall intensity. Values greater than R_max are set to R_max. If None, R_max is computed from I. filter_stddev : float Standard deviation of the Gaussian filter (0=no filtering) logtrans : bool If True, apply a log-transform to the input rainfall field. In this case, R_min must be nonzero. Returns ------- out : ndarray(dtype=ubyte) The processed rainfall field. """ I = I.copy() MASK = isfinite(I) if R_min == None: R_min = min(I[MASK]) if R_max == None: R_max = max(I[MASK]) I[~MASK] = R_min I[I < R_min] = R_min I[I > R_max] = R_max if logtrans == True: if R_min == 0.0: raise ValueError("R_min must be nonzero if log-transform is used") I = log(I) R_min = log(R_min) R_max = log(R_max) # TESTING #I = rescale_intensity(I, (R_min, R_max), (0.0, 1.0)) #I = equalize_hist(I) #I = ((I - min(I)) / (max(I) - min(I))) * 255.0 MASK = I > R_min # TODO: Make the threshold 128 configurable. I[MASK] = 128.0 + ((I[MASK] - R_min) / (R_max - R_min)) * (255.0 - 128.0) I[~MASK] = 0.0 I = I.astype(ubyte) if filter_stddev > 0.0: I = gaussian_filter(I, filter_stddev, mode="reflect") return I
0
0
0
39ad90663cac888e7ef286d5a052d4d945b5475e
1,152
py
Python
scripts/fbx_importer/fbx_helper.py
tm8r/MayaFBXImporter
591bff828021e4ba03d05e9afc9016eaf2641967
[ "MIT" ]
2
2019-10-25T17:11:33.000Z
2021-05-21T06:45:45.000Z
scripts/fbx_importer/fbx_helper.py
tm8r/MayaFBXImporter
591bff828021e4ba03d05e9afc9016eaf2641967
[ "MIT" ]
null
null
null
scripts/fbx_importer/fbx_helper.py
tm8r/MayaFBXImporter
591bff828021e4ba03d05e9afc9016eaf2641967
[ "MIT" ]
2
2020-05-13T18:07:02.000Z
2020-05-13T19:54:37.000Z
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from .vendor.Qt import QtWidgets from .libs.maya import fbx from .libs.maya import namespace from . import history_helper def import_fbx(path, import_mode, parent): """import fbx Args: path (unicode): path import_mode (.libs.maya.fbx.FBXImportMode): import mode parent (QtWidgets.QWidget): parent """ namespaces = namespace.get_namespaces(return_separator=True, return_root=True) if len(namespaces) == 1: fbx.import_fbx(path, import_mode, namespaces[0]) history_helper.add_recent_file(path) return ns, confirmed = QtWidgets.QInputDialog.getItem(parent, "Select Namespace", "Namespace", namespaces, 0, False) if not confirmed: return fbx.import_fbx(path, import_mode, ns) history_helper.add_recent_file(path)
31.135135
82
0.547743
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from .vendor.Qt import QtWidgets from .libs.maya import fbx from .libs.maya import namespace from . import history_helper def import_fbx(path, import_mode, parent): """import fbx Args: path (unicode): path import_mode (.libs.maya.fbx.FBXImportMode): import mode parent (QtWidgets.QWidget): parent """ namespaces = namespace.get_namespaces(return_separator=True, return_root=True) if len(namespaces) == 1: fbx.import_fbx(path, import_mode, namespaces[0]) history_helper.add_recent_file(path) return ns, confirmed = QtWidgets.QInputDialog.getItem(parent, "Select Namespace", "Namespace", namespaces, 0, False) if not confirmed: return fbx.import_fbx(path, import_mode, ns) history_helper.add_recent_file(path)
0
0
0
85bd09bc7858e6df3f0144f0d023684434a7438d
1,065
py
Python
app/routers/auth.py
JuanDM93/fcc-fastapi-demo
7d20f91fa96989d22426632c1ab2550f62898789
[ "MIT" ]
null
null
null
app/routers/auth.py
JuanDM93/fcc-fastapi-demo
7d20f91fa96989d22426632c1ab2550f62898789
[ "MIT" ]
null
null
null
app/routers/auth.py
JuanDM93/fcc-fastapi-demo
7d20f91fa96989d22426632c1ab2550f62898789
[ "MIT" ]
null
null
null
from sqlalchemy import schema from sqlalchemy.orm import Session from fastapi import Depends, APIRouter, HTTPException, status from fastapi.security.oauth2 import OAuth2PasswordRequestForm from .. import db, models, schemas, utils, oauth2 router = APIRouter( tags=["Authentication"], ) @router.post("/login", response_model=schemas.Token)
32.272727
101
0.709859
from sqlalchemy import schema from sqlalchemy.orm import Session from fastapi import Depends, APIRouter, HTTPException, status from fastapi.security.oauth2 import OAuth2PasswordRequestForm from .. import db, models, schemas, utils, oauth2 router = APIRouter( tags=["Authentication"], ) @router.post("/login", response_model=schemas.Token) def login(user_credentials: OAuth2PasswordRequestForm = Depends(), db: Session = Depends(db.get_db)): user = db.query(models.User).filter( models.User.email == user_credentials.username).first() if not user: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect email or password", ) if not utils.verify(user_credentials.password, user.password): raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect email or password", ) acces_token = oauth2.create_access_token(data={"user_id": user.id}) return {"access_token": acces_token, "token_type": "bearer"}
695
0
22
714353cdd4eee160fe40085bfeaee7eb35bfec53
2,739
py
Python
agent/sn_agent/api/__init__.py
akolonin/singnet
3be30d40a2394325dc14bb55ea2871fe463b9405
[ "MIT" ]
null
null
null
agent/sn_agent/api/__init__.py
akolonin/singnet
3be30d40a2394325dc14bb55ea2871fe463b9405
[ "MIT" ]
null
null
null
agent/sn_agent/api/__init__.py
akolonin/singnet
3be30d40a2394325dc14bb55ea2871fe463b9405
[ "MIT" ]
1
2020-10-27T01:32:15.000Z
2020-10-27T01:32:15.000Z
import logging import os from aiohttp import web, WSMsgType from aiohttp.web_response import Response from jsonrpcserver.aio import methods from sn_agent import ontology from sn_agent.api.job import can_perform_service, perform_job from sn_agent.job.job_descriptor import JobDescriptor from sn_agent.ontology.service_descriptor import ServiceDescriptor logger = logging.getLogger(__name__) WS_FILE = os.path.join(os.path.dirname(__file__), 'websocket.html') @methods.add @methods.add
26.852941
89
0.686017
import logging import os from aiohttp import web, WSMsgType from aiohttp.web_response import Response from jsonrpcserver.aio import methods from sn_agent import ontology from sn_agent.api.job import can_perform_service, perform_job from sn_agent.job.job_descriptor import JobDescriptor from sn_agent.ontology.service_descriptor import ServiceDescriptor logger = logging.getLogger(__name__) WS_FILE = os.path.join(os.path.dirname(__file__), 'websocket.html') @methods.add async def can_perform(service_node_id=None, context=None): # figure out what we are being asked to perform and answer service = ServiceDescriptor(service_node_id) app = context return await can_perform_service(app, service) @methods.add async def perform(service_node_id=None, job_params=None, context=None): service_descriptor = ServiceDescriptor(service_node_id) job = JobDescriptor(service_descriptor, job_params) app = context result = await perform_job(app, job) logging.debug('Result of perform was %s', result) return result async def http_handler(request): app = request.app request_text = await request.text() response = await methods.dispatch(request_text, app) if response.is_notification: return web.Response() else: return web.json_response(response, status=response.http_status) async def ws_handler(request): logger.debug('WebSocket Handler started') app = request.app resp = web.WebSocketResponse() ok, protocol = resp.can_prepare(request) if not ok: with open(WS_FILE, 'rb') as fp: return Response(body=fp.read(), content_type='text/html') await resp.prepare(request) logger.debug('WebSocket data received') try: request.app['sockets'].append(resp) async for msg in resp: logger.debug('Processing WebSocket message: %s', msg.type) if msg.type == WSMsgType.TEXT: response = await methods.dispatch(msg.data, app) if not response.is_notification: await resp.send_str(str(response)) elif msg.type == WSMsgType.ERROR: logger.debug('ws connection closed with exception %s' % resp.exception()) else: logger.debug("Unhandled message type") return resp return resp finally: request.app['sockets'].remove(resp) logger.debug('Someone disconnected.') async def on_shutdown(app): for ws in app['sockets']: await ws.close() def setup_api(app): app['sockets'] = [] app.router.add_post('/api', http_handler) app.router.add_get('/api/ws', ws_handler) app.on_shutdown.append(on_shutdown)
2,107
0
136
f67cc3a36214f247ea7458d7048481056a241c09
384
py
Python
Python_Ex_vazio/ex055.py
matheusmiguelsa/Exerc-cios-de-Python
53387266b747f79e67964356993b38c2267ac04a
[ "MIT" ]
null
null
null
Python_Ex_vazio/ex055.py
matheusmiguelsa/Exerc-cios-de-Python
53387266b747f79e67964356993b38c2267ac04a
[ "MIT" ]
null
null
null
Python_Ex_vazio/ex055.py
matheusmiguelsa/Exerc-cios-de-Python
53387266b747f79e67964356993b38c2267ac04a
[ "MIT" ]
null
null
null
maior = 0 menor = 0 for p in range(1, 6): peso = float(input(f'Digite a massa da {p}º pessoa em quilos: ')) if p == 1: maior = peso menor = peso else: if peso > maior: maior = peso if peso < menor: menor = peso print('O maior peso lido foi de {}Kg'.format(maior)) print('O menor peso lido foi de {}Kg'.format(menor))
27.428571
69
0.546875
maior = 0 menor = 0 for p in range(1, 6): peso = float(input(f'Digite a massa da {p}º pessoa em quilos: ')) if p == 1: maior = peso menor = peso else: if peso > maior: maior = peso if peso < menor: menor = peso print('O maior peso lido foi de {}Kg'.format(maior)) print('O menor peso lido foi de {}Kg'.format(menor))
0
0
0
ef94fa3cdab88cb3c5513b937bac0106e56972d2
1,803
py
Python
userlixo/utils/patches.py
annihilatorrrr/UserLixo
d9d9bdcdab6c7489c41f2658b288e1f59674d3b3
[ "MIT" ]
1
2022-03-28T15:38:27.000Z
2022-03-28T15:38:27.000Z
userlixo/utils/patches.py
Smartgirl2/UserLixo
73c900e0488239ff9330efb1cf9e939e7f43c496
[ "MIT" ]
null
null
null
userlixo/utils/patches.py
Smartgirl2/UserLixo
73c900e0488239ff9330efb1cf9e939e7f43c496
[ "MIT" ]
null
null
null
# SPDX-License-Identifier: MIT # Copyright (c) 2018-2022 Amano Team from pyrogram import types from pyrogram.helpers import bki, ikb from userlixo.database import Message
30.05
86
0.693844
# SPDX-License-Identifier: MIT # Copyright (c) 2018-2022 Amano Team from pyrogram import types from pyrogram.helpers import bki, ikb from userlixo.database import Message async def query_edit( self, text: str, reply_markup=None, answer_kwargs={}, *args, **kwargs ): try: await self.answer(**answer_kwargs) except BaseException: pass edit = await self.edit_message_text( text=text, reply_markup=reply_markup, *args, **kwargs ) return edit def remove_keyboard(self, message_id=None, *args, **kwargs): return self._client.edit_message_reply_markup( self.chat.id, message_id or self.message_id, {} ) async def edit_text(self, text: str, reply_markup=None, *args, **kwargs): if type(reply_markup) == list: reply_markup = ikb(reply_markup) return await self._client.edit_message_text( self.chat.id, self.message_id, text, reply_markup=reply_markup, **kwargs ) async def reply_text(self, text: str, reply_markup=None, *args, **kwargs): if not reply_markup or self._client.session_name == "bot": return await self.reply_text(text, reply_markup=reply_markup, *args, **kwargs) if type(reply_markup) == types.InlineKeyboardMarkup: reply_markup = bki(reply_markup) message = await Message.create(text=text, keyboard=reply_markup) bot = self._client.assistant inline_results = await self._client.get_inline_bot_results( bot.me.username or bot.me.id, str(message.key) ) result = inline_results.results[0] reply_to = None if kwargs.get("quote"): reply_to = self.message_id return await self._client.send_inline_bot_result( self.chat.id, inline_results.query_id, result.id, reply_to_message_id=reply_to, )
1,534
0
92
beffdc1038d5ff506f4d888b134dc83884effb8f
1,245
py
Python
src/methodComparison/plotResultsGraph.py
UMCUGenetics/svMIL
b17f9b34702aac976dd5e233cb4e1ce051d19bbf
[ "MIT" ]
null
null
null
src/methodComparison/plotResultsGraph.py
UMCUGenetics/svMIL
b17f9b34702aac976dd5e233cb4e1ce051d19bbf
[ "MIT" ]
null
null
null
src/methodComparison/plotResultsGraph.py
UMCUGenetics/svMIL
b17f9b34702aac976dd5e233cb4e1ce051d19bbf
[ "MIT" ]
1
2021-01-19T09:25:47.000Z
2021-01-19T09:25:47.000Z
import matplotlib.pyplot as plt import sys import os outDir = sys.argv[1] finalOutDir = outDir + '/figure3d/' if not os.path.exists(finalOutDir): os.makedirs(finalOutDir) #make a plot showing the true positive and false positive rates of each method. #each sv type will get its own icon, and methods can be labeled by color methods = ['chrCV MIL', 'chrCV simple RF', 'VEP', 'SVScore'] methodColors = ['#0055d4ff', '#c83737ff', 'orange', '#808080ff'] #These are obtained from running the individual scripts for each method (see workflow.sh) tprsDEL = [0.53, 0.56, 0.02, 0.009] fprsDEL = [0.20, 0.56, 0.2, 0.09] tprsDUP = [0.58, 0.45, 0.08, 0.03] fprsDUP = [0.30, 0.46, 0.46, 0.08] tprsINV = [0.60, 0.38, 0, 0.007] fprsINV = [0.25, 0.37, 0, 0.03] tprsITX = [0.62, 0.47, 0, 0] fprsITX = [0.30, 0.43, 0, 0.02] #make the scatter plot plt.scatter(fprsDEL, tprsDEL, marker='.', facecolor=methodColors, edgecolor=methodColors) plt.scatter(fprsDUP, tprsDUP, marker='s', facecolor=methodColors, edgecolor=methodColors) plt.scatter(fprsINV, tprsINV, marker='^', facecolor=methodColors, edgecolor=methodColors) plt.scatter(fprsITX, tprsITX, marker='*', facecolor=methodColors, edgecolor=methodColors) plt.savefig(finalOutDir + '/tpr_fpr.svg')
31.125
89
0.711647
import matplotlib.pyplot as plt import sys import os outDir = sys.argv[1] finalOutDir = outDir + '/figure3d/' if not os.path.exists(finalOutDir): os.makedirs(finalOutDir) #make a plot showing the true positive and false positive rates of each method. #each sv type will get its own icon, and methods can be labeled by color methods = ['chrCV MIL', 'chrCV simple RF', 'VEP', 'SVScore'] methodColors = ['#0055d4ff', '#c83737ff', 'orange', '#808080ff'] #These are obtained from running the individual scripts for each method (see workflow.sh) tprsDEL = [0.53, 0.56, 0.02, 0.009] fprsDEL = [0.20, 0.56, 0.2, 0.09] tprsDUP = [0.58, 0.45, 0.08, 0.03] fprsDUP = [0.30, 0.46, 0.46, 0.08] tprsINV = [0.60, 0.38, 0, 0.007] fprsINV = [0.25, 0.37, 0, 0.03] tprsITX = [0.62, 0.47, 0, 0] fprsITX = [0.30, 0.43, 0, 0.02] #make the scatter plot plt.scatter(fprsDEL, tprsDEL, marker='.', facecolor=methodColors, edgecolor=methodColors) plt.scatter(fprsDUP, tprsDUP, marker='s', facecolor=methodColors, edgecolor=methodColors) plt.scatter(fprsINV, tprsINV, marker='^', facecolor=methodColors, edgecolor=methodColors) plt.scatter(fprsITX, tprsITX, marker='*', facecolor=methodColors, edgecolor=methodColors) plt.savefig(finalOutDir + '/tpr_fpr.svg')
0
0
0
f9f3f26ea4b675f6359e66f744047dae89d21734
2,847
py
Python
madness/bracket.py
turtlebayjai/madness
19268ffe3fc20f048018656e5dd990ace8f5855a
[ "MIT" ]
null
null
null
madness/bracket.py
turtlebayjai/madness
19268ffe3fc20f048018656e5dd990ace8f5855a
[ "MIT" ]
null
null
null
madness/bracket.py
turtlebayjai/madness
19268ffe3fc20f048018656e5dd990ace8f5855a
[ "MIT" ]
null
null
null
from collections import deque from math import ceil, log from division import Division from picker import Picker
29.05102
68
0.527573
from collections import deque from math import ceil, log from division import Division from picker import Picker class BracketNode: def __init__(self, team=None, left=None, right=None): self.team = team self.left = left self.right = right def play(self, picker): if not self.left and not self.right: return self.team leftWinner = rightWinner = None if self.left: leftWinner = self.left.play(picker) if self.right: rightWinner = self.right.play(picker) self.team = picker.pickWinner(leftWinner, rightWinner) return self.team def __str__(self): string = "" queue = deque([self]) while queue: roundResult = "\n" for i in range(len(queue)): node = queue.popleft() roundResult += str(node.team) + " | " if node.left: queue.append(node.left) if node.right: queue.append(node.right) string += roundResult + "\n" + ("--" * 40) return string class Bracket: def __init__(self, orderedDivisions, picker=None): """ orderedDivisions = [ Division (object), Division (object), ... ], picker: Picker (object) """ self.orderedDivisions = orderedDivisions if not picker: picker = Picker("simpleSeed") self.picker = picker def build(self, division): leaves = deque(division.orderedTeams) levels = int(ceil(log(len(leaves), 2))) root = BracketNode() queue = deque([root]) for i in range(levels - 1): for j in range(len(queue)): node = queue.popleft() node.left, node.right = BracketNode(), BracketNode() queue.append(node.left) queue.append(node.right) while queue: node = queue.popleft() node.left = BracketNode(team=leaves.popleft()) node.right = BracketNode(team=leaves.popleft()) return root def simulate(self, quiet=False): finalTeams = [] for division in self.orderedDivisions: root = self.build(division) finalTeams.append(root.play(self.picker)) if not quiet: print(f"\n* {division.name} *") print(root) if not finalTeams: return None winner = finalTeams[0] if len(finalTeams) > 1: finals = Division(finalTeams, "Finals") root = self.build(finals) winner = root.play(self.picker) if not quiet: print(f"\n* {finals.name} *") print(root) return winner
2,189
416
126
48f5c233085c88dc7df004bb3107e6ba9e591625
3,203
py
Python
kicad_bom_seeedstudio.py
ahmetcumhurarslan/kicad-bom-seeedstudio
cdd97327dbdce0f143a272f82b4a8b05e0aabbfe
[ "Apache-2.0" ]
19
2017-07-31T09:33:34.000Z
2021-05-19T03:18:11.000Z
kicad_bom_seeedstudio.py
ahmetcumhurarslan/kicad-bom-seeedstudio
cdd97327dbdce0f143a272f82b4a8b05e0aabbfe
[ "Apache-2.0" ]
2
2017-10-19T22:03:33.000Z
2019-05-11T19:56:51.000Z
kicad_bom_seeedstudio.py
imrehg/kicad-bom-seeedstudio
cdd97327dbdce0f143a272f82b4a8b05e0aabbfe
[ "Apache-2.0" ]
7
2017-10-19T20:38:24.000Z
2021-02-26T00:55:06.000Z
#!/usr/bin/env python3 import csv import sys import xml.etree.ElementTree as ET ### Natural key sorting for orders like : C1, C5, C10, C12 ... (instead of C1, C10, C12, C5...) # http://stackoverflow.com/a/5967539 import re def natural_keys(text): ''' alist.sort(key=natural_keys) sorts in human order http://nedbatchelder.com/blog/200712/human_sorting.html (See Toothy's implementation in the comments) ''' return [ atoi(c) for c in re.split('(\d+)', text) ] ### def parse_kicad_xml(input_file): """Parse the KiCad XML file and look for the part designators as done in the case of the official KiCad Open Parts Library: * OPL parts are designated with "SKU" (preferred) * other parts are designated with "MPN" """ components = {} parts = {} missing = [] tree = ET.parse(input_file) root = tree.getroot() for f in root.findall('./components/'): name = f.attrib['ref'] info = {} fields = f.find('fields') opl, mpn = None, None if fields is not None: for x in fields: if x.attrib['name'].upper() == 'SKU': opl = x.text elif x.attrib['name'].upper() == 'MPN': mpn = x.text if opl: components[name] = opl elif mpn: components[name] = mpn else: missing += [name] continue if components[name] not in parts: parts[components[name]] = [] parts[components[name]] += [name] return components, missing def write_bom_seeed(output_file_slug, components): """Write the BOM according to the Seeed Studio Fusion PCBA template available at: https://statics3.seeedstudio.com/assets/file/fusion/bom_template_2016-08-18.csv ``` Part/Designator,Manufacture Part Number/Seeed SKU,Quantity C1,RHA,1 "D1,D2",CC0603KRX7R9BB102,2 ``` The output is a CSV file at the `output_file_slug`.csv location. """ parts = {} for c in components: if components[c] not in parts: parts[components[c]] = [] parts[components[c]] += [c] field_names = ['Part/Designator', 'Manufacture Part Number/Seeed SKU', 'Quantity'] with open("{}.csv".format(output_file_slug), 'w') as csvfile: bomwriter = csv.DictWriter(csvfile, fieldnames=field_names, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) bomwriter.writeheader() for p in sorted(parts.keys()): pieces = sorted(parts[p], key=natural_keys) designators = ",".join(pieces) bomwriter.writerow({'Part/Designator': designators, 'Manufacture Part Number/Seeed SKU': p, 'Quantity': len(pieces)}) if __name__ == "__main__": input_file = sys.argv[1] output_file = sys.argv[2] components, missing = parse_kicad_xml(input_file) write_bom_seeed(output_file, components) if len(missing) > 0: print("** Warning **: there were parts with missing SKU/MFP") print(missing)
33.020619
95
0.597877
#!/usr/bin/env python3 import csv import sys import xml.etree.ElementTree as ET ### Natural key sorting for orders like : C1, C5, C10, C12 ... (instead of C1, C10, C12, C5...) # http://stackoverflow.com/a/5967539 import re def atoi(text): return int(text) if text.isdigit() else text def natural_keys(text): ''' alist.sort(key=natural_keys) sorts in human order http://nedbatchelder.com/blog/200712/human_sorting.html (See Toothy's implementation in the comments) ''' return [ atoi(c) for c in re.split('(\d+)', text) ] ### def parse_kicad_xml(input_file): """Parse the KiCad XML file and look for the part designators as done in the case of the official KiCad Open Parts Library: * OPL parts are designated with "SKU" (preferred) * other parts are designated with "MPN" """ components = {} parts = {} missing = [] tree = ET.parse(input_file) root = tree.getroot() for f in root.findall('./components/'): name = f.attrib['ref'] info = {} fields = f.find('fields') opl, mpn = None, None if fields is not None: for x in fields: if x.attrib['name'].upper() == 'SKU': opl = x.text elif x.attrib['name'].upper() == 'MPN': mpn = x.text if opl: components[name] = opl elif mpn: components[name] = mpn else: missing += [name] continue if components[name] not in parts: parts[components[name]] = [] parts[components[name]] += [name] return components, missing def write_bom_seeed(output_file_slug, components): """Write the BOM according to the Seeed Studio Fusion PCBA template available at: https://statics3.seeedstudio.com/assets/file/fusion/bom_template_2016-08-18.csv ``` Part/Designator,Manufacture Part Number/Seeed SKU,Quantity C1,RHA,1 "D1,D2",CC0603KRX7R9BB102,2 ``` The output is a CSV file at the `output_file_slug`.csv location. """ parts = {} for c in components: if components[c] not in parts: parts[components[c]] = [] parts[components[c]] += [c] field_names = ['Part/Designator', 'Manufacture Part Number/Seeed SKU', 'Quantity'] with open("{}.csv".format(output_file_slug), 'w') as csvfile: bomwriter = csv.DictWriter(csvfile, fieldnames=field_names, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) bomwriter.writeheader() for p in sorted(parts.keys()): pieces = sorted(parts[p], key=natural_keys) designators = ",".join(pieces) bomwriter.writerow({'Part/Designator': designators, 'Manufacture Part Number/Seeed SKU': p, 'Quantity': len(pieces)}) if __name__ == "__main__": input_file = sys.argv[1] output_file = sys.argv[2] components, missing = parse_kicad_xml(input_file) write_bom_seeed(output_file, components) if len(missing) > 0: print("** Warning **: there were parts with missing SKU/MFP") print(missing)
43
0
23
c6ff96beb7b31da28f265ad6877c8d563618606d
6,957
py
Python
miner/crawlers/event_crawler.py
HeavenDuke/GithubMiner
3d14c40c9cbdee6f22e7ade3493888aff708ad5b
[ "MIT" ]
2
2017-05-22T10:31:15.000Z
2017-05-23T06:52:58.000Z
miner/crawlers/event_crawler.py
HeavenDuke/GithubMiner
3d14c40c9cbdee6f22e7ade3493888aff708ad5b
[ "MIT" ]
null
null
null
miner/crawlers/event_crawler.py
HeavenDuke/GithubMiner
3d14c40c9cbdee6f22e7ade3493888aff708ad5b
[ "MIT" ]
null
null
null
import wget import gzip import time as t import json import fileinput import os
35.136364
108
0.531838
import wget import gzip import time as t import json import fileinput import os class Meta(object): base_url = "http://data.githubarchive.org/{year}-{month}-{day}-{hour}.json.gz" base_output = "./tmp/{year}-{month}-{day}-{hour}.json" @classmethod def construct(cls, year, month, day, hour): url = cls.base_url out = cls.base_output url = url.replace("{year}", str(year)) url = url.replace("{month}", str(month)) url = url.replace("{day}", str(day)) url = url.replace("{hour}", str(hour)) out = out.replace("{year}", str(year)) out = out.replace("{month}", str(month)) out = out.replace("{day}", str(day)) out = out.replace("{hour}", str(hour)) return {"url": url, "out": out, "compressed": out + ".gz"} class PackageRequester(object): @classmethod def fetch_package(cls, url, output = None): wget.download(url = url, out = output) class Unzip(object): @classmethod def unzip(cls, path, output): g = gzip.GzipFile(filename = path, mode = "rb") f = open(output, "wb") f.write(g.read()) g.close() f.close() class Transformer(object): def __init__(self): pass @classmethod def transform(cls, graph, data, ar = ()): for item in data.data: if item["type"] == "MemberEvent": if cls.is_legal_event(item, ar): cls.parse_membership(data, item) else: pass elif item["type"] == "WatchEvent": if cls.is_legal_event(item, ar): cls.parse_star(data, item) else: pass elif item["type"] == "ForkEvent": if cls.is_legal_event(item, ar): cls.parse_fork(data, item) else: pass elif item["type"] in ["PullRequestEvent", "PushEvent"]: if cls.is_legal_event(item, ar): cls.parse_contribute(data, item) else: pass elif item["type"] in ["IssuesEvent", "IssueCommentEvent"]: if cls.is_legal_event(item, ar): cls.parse_issue(data, item) else: pass cls.flush(graph, data) @classmethod def is_legal_event(cls, event, ar = ()): return event["repo"]["id"] in ar @classmethod def parse_membership(cls, data, item): cls.upsert_user(data, item["actor"]) cls.upsert_relationship(data, item["actor"], item["repo"], "Membership", item["created_at"]) return item["repo"], item["actor"] @classmethod def parse_fork(cls, data, item): cls.upsert_user(data, item["actor"]) cls.upsert_relationship(data, item["actor"], item["repo"], "Fork", item["created_at"]) return item["repo"], item["actor"] @classmethod def parse_star(cls, data, item): cls.upsert_user(data, item["actor"]) cls.upsert_relationship(data, item["actor"], item["repo"], "Star", item["created_at"]) return item["repo"], item["actor"] @classmethod def parse_issue(cls, data, item): cls.upsert_user(data, item["actor"]) cls.upsert_relationship(data, item["actor"], item["repo"], "Issue", item["created_at"]) return item["repo"], item["actor"] @classmethod def parse_contribute(cls, data, item): cls.upsert_user(data, item["actor"]) cls.upsert_relationship(data, item["actor"], item["repo"], "Contribute", item["created_at"]) return item["repo"], item["actor"] @classmethod def upsert_user(cls, data, user): if user["id"] not in data.related_data: data.related_data[user["id"]] = { "value": { "login": user["login"], "user_id": user["id"], "avatar_url": user["avatar_url"] }, "repositories": {} } @classmethod def upsert_relationship(cls, data, user, repository, label, time): _time = t.mktime(t.strptime(time, "%Y-%m-%dT%H:%M:%SZ")) _repo = data.related_data[user["id"]]["repositories"] if repository["id"] not in _repo: _repo[repository["id"]] = {} if label not in _repo[repository["id"]]: _repo[repository["id"]][label] = {} if _time not in _repo[repository["id"]][label]: _repo[repository["id"]][label][_time] = True @classmethod def flush(cls, graph, data): def flush_events(graph, user, repository, events): if len(events) == 0: return query = "MATCH (r:Repository {repository_id: %d})" % repository query += " MERGE (u:User {user_id: %d})" % user["user_id"] query += " SET u.login='%s', u.avatar_url='%s'" % (user["login"], user["avatar_url"]) query += " CREATE UNIQUE " first = True for label in events: times = events[label] for time in times: if not first: query += "," query += "(u)-[:%s {created_at: %d, type: '%s'}]->(r)" % (label, time, label) first = False graph.run(query) for uid in data.related_data: repositories = data.related_data[uid]["repositories"] uvalue = data.related_data[uid]["value"] for rid in repositories: flush_events(graph = graph, user = uvalue, repository = rid, events = repositories[rid]) class EventData(object): def __init__(self, path): self.data = [] self.related_data = {} if path is not None: for line in fileinput.input(path): if line != "": d = json.loads(line) self.data.append(d) else: raise IOError("file not exist!") class EventCrawler(object): @classmethod def crawl(cls, time, graph, ar = ()): meta = Meta.construct(year = time.year, month = time.month, day = time.day, hour = time.hour) try: if not os.path.exists(meta["compressed"]): PackageRequester.fetch_package(url = meta["url"], output = meta["compressed"]) if not os.path.exists(meta["out"]): Unzip.unzip(path = meta["compressed"], output = meta["out"]) data = EventData(path = meta["out"]) Transformer.transform(graph = graph, data = data, ar = ar) except: print "Unable to crawl event data at %s-%s-%s %s" % (time.year, time.month, time.day, time.hour) if os.path.exists(meta["compressed"]): os.remove(meta["compressed"]) if os.path.exists(meta["out"]): os.remove(meta["out"])
5,906
802
164
2a3ed8a00c44639bcf90af5b5d1068dde31685b4
61
py
Python
ace/samples/__init__.py
partofthething/ace
689d0caac3ba0708444be6ebf62627137b08ae46
[ "MIT" ]
47
2015-04-29T06:52:03.000Z
2022-03-15T11:05:01.000Z
ace/samples/__init__.py
Jimmy-INL/ace
689d0caac3ba0708444be6ebf62627137b08ae46
[ "MIT" ]
12
2015-05-29T15:21:25.000Z
2020-10-08T15:03:41.000Z
ace/samples/__init__.py
Jimmy-INL/ace
689d0caac3ba0708444be6ebf62627137b08ae46
[ "MIT" ]
22
2015-06-02T17:30:35.000Z
2022-02-16T20:46:24.000Z
"""Sample ace and supersmoother problems from literature."""
30.5
60
0.770492
"""Sample ace and supersmoother problems from literature."""
0
0
0
c983fcf6ecba02fec1316fc2ea22d85c6f139bb0
662
py
Python
geoip.py
vlzx/outlier
4a8a30d7661472e18c9809c0e6f68f3e67389d93
[ "MIT" ]
null
null
null
geoip.py
vlzx/outlier
4a8a30d7661472e18c9809c0e6f68f3e67389d93
[ "MIT" ]
null
null
null
geoip.py
vlzx/outlier
4a8a30d7661472e18c9809c0e6f68f3e67389d93
[ "MIT" ]
null
null
null
from threading import Lock import geoip2.database from util import resource_path
25.461538
85
0.63142
from threading import Lock import geoip2.database from util import resource_path class SingletonMeta(type): _instance = None _lock = Lock() def __call__(cls, *args, **kwargs): with cls._lock: if cls._instance is None: cls._instance = super(SingletonMeta, cls).__call__(*args, **kwargs) return cls._instance class GeoIP(metaclass=SingletonMeta): def __init__(self): self.reader = geoip2.database.Reader(resource_path('GeoLite2-Country.mmdb')) def country(self, ip: str) -> str: data = self.reader.country(ip) return data.country.iso_code
372
93
105
720bd2b1acb5d635f24a79aa2ddb890b5d2d825e
368
py
Python
stable_baselines/td3/__init__.py
iDurugkar/adversarial-intrinsic-motivation
e0ece991fe9b8278596c0ad9c68ccfc98a71e1e2
[ "MIT" ]
2
2022-03-11T15:26:00.000Z
2022-03-15T12:20:57.000Z
stable_baselines/td3/__init__.py
iDurugkar/adversarial-intrinsic-motivation
e0ece991fe9b8278596c0ad9c68ccfc98a71e1e2
[ "MIT" ]
null
null
null
stable_baselines/td3/__init__.py
iDurugkar/adversarial-intrinsic-motivation
e0ece991fe9b8278596c0ad9c68ccfc98a71e1e2
[ "MIT" ]
null
null
null
from stable_baselines.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise from stable_baselines.td3.rnd import RND from stable_baselines.td3.td3 import TD3 from stable_baselines.td3.dist_predictor import Predictor from stable_baselines.td3.ddl_td3 import DDLTD3 from stable_baselines.td3.policies import MlpPolicy, CnnPolicy, LnMlpPolicy, LnCnnPolicy
46
89
0.877717
from stable_baselines.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise from stable_baselines.td3.rnd import RND from stable_baselines.td3.td3 import TD3 from stable_baselines.td3.dist_predictor import Predictor from stable_baselines.td3.ddl_td3 import DDLTD3 from stable_baselines.td3.policies import MlpPolicy, CnnPolicy, LnMlpPolicy, LnCnnPolicy
0
0
0
1b8c0435205adcc1c2622b72a1f7168216808432
691
py
Python
passwordGenerator/generator/views.py
zahrakoohestani/passwordGenerator
c8a912ce159f04b488dabbbddcd8446672075be2
[ "MIT" ]
1
2020-06-19T18:14:26.000Z
2020-06-19T18:14:26.000Z
passwordGenerator/generator/views.py
zahrakoohestani/passwordGenerator
c8a912ce159f04b488dabbbddcd8446672075be2
[ "MIT" ]
null
null
null
passwordGenerator/generator/views.py
zahrakoohestani/passwordGenerator
c8a912ce159f04b488dabbbddcd8446672075be2
[ "MIT" ]
null
null
null
from django.shortcuts import render import random
32.904762
79
0.688857
from django.shortcuts import render import random def home(request): return render(request, 'generator/home.html') def password(request): characters=list('asdfghjklqwertyuiopzxcvbnm') if request.GET.get('uppercase'): characters.extend(list('ASDFGHJKLQWERTYUIOPZXCVBNM')) if request.GET.get('symbols'): characters.extend(list('!@#$%^&*()_+')) if request.GET.get('numbers'): characters.extend(list('1234567890')) length=request.GET.get('length') length=int(length) thePassword='' for i in range(length): thePassword+=random.choice(characters) return render(request, 'generator/password.html', {'password':thePassword})
595
0
46
e716e82f1750b35f58a08d3424c1fe6702b9bd50
8,630
py
Python
restApp/tests.py
ibamacsr/painelmma_api
a11a6cd63e312f09f445b139fcff8c11ab383764
[ "MIT" ]
null
null
null
restApp/tests.py
ibamacsr/painelmma_api
a11a6cd63e312f09f445b139fcff8c11ab383764
[ "MIT" ]
null
null
null
restApp/tests.py
ibamacsr/painelmma_api
a11a6cd63e312f09f445b139fcff8c11ab383764
[ "MIT" ]
null
null
null
#from django.test import TestCase from datetime import date from decimal import * from django.core.urlresolvers import reverse from django.contrib.auth.models import User from rest_framework.test import APITestCase from rest_framework.authtoken.models import Token from .models import * from .mommy_recipes import * # def test_response(self): # response = get_response(self.client, self.url, None) # self.assertEqual(response.status_code, 200) # def test_public_deter_response(self): # public_deter_1.make() # public_deter_2.make() # params = {'uf': 'MA', 'ano': 2015, 'mes': 8, # 'tipo': 'DETER', 'estagio': 'Corte Raso'} # response = get_response(self.client, self.url, params) # def test_daily_deter_qualif_response(self): # daily_deter_qualif_1.make() # daily_deter_qualif_2.make() # params = {'uf': 'MA', 'ano': 2015, 'mes': 8, # 'tipo': 'DETER', 'estagio': 'Corte Raso'} # response = get_response(self.client, self.url, params) # self.assertEqual(response.status_code, 200) # self.assertEqual(response.status_code, 200) # def test_public_deter_qualif_response(self): # public_deter_qualif_1.make() # public_deter_qualif_2.make() # params = {'uf': 'MA', 'ano': 2015, 'mes': 8, # 'tipo': 'DETER', 'estagio': 'Corte Raso'} # response = get_response(self.client, self.url, params) # self.assertEqual(response.status_code, 200) # def test_deter_awifs_response(self): # deter_awifs_1.make() # deter_awifs_2.make() # params = {'uf': 'MA', 'ano': 2015, 'mes': 8, # 'tipo': 'DETER', 'estagio': 'Corte Raso'} # response = get_response(self.client, self.url, params) # self.assertEqual(response.status_code, 200)
37.359307
79
0.626188
#from django.test import TestCase from datetime import date from decimal import * from django.core.urlresolvers import reverse from django.contrib.auth.models import User from rest_framework.test import APITestCase from rest_framework.authtoken.models import Token from .models import * from .mommy_recipes import * def get_response(client, url, params): return client.get( url, params, format='json' ) class TestDiarioAwifs(APITestCase): def setUp(self): self.url = reverse('api:estatisticas-diario') self.params = {'uf': 'MT', 'ano': 2015, 'mes': 10, 'tipo': 'AWIFS'} deter_awifs_1.make(data_imagem=date(2015, 10, 10)) def test_response(self): response = get_response(self.client, self.url, self.params) self.assertEqual(response.status_code, 200) self.assertEqual(len(response.data), 1) def test_response_diario(self): response = get_response(self.client, self.url, self.params) data_received = response.data[0]['data'] self.assertEqual(len(data_received), 1) self.assertEqual(data_received[0]['dia'], 10) self.assertEqual(data_received[0]['total'], Decimal('0.13')) deter_awifs_1.make(data_imagem=date(2015, 10, 12), area_km2=0.29) response = get_response(self.client, self.url, self.params) data_received = response.data[0]['data'] self.assertEqual(len(data_received), 2) self.assertEqual(data_received[1]['dia'], 12) self.assertEqual(data_received[1]['total'], Decimal('0.29')) deter_awifs_1.make(data_imagem=date(2015, 10, 12), area_km2=0.31) response = get_response(self.client, self.url, self.params) data_received = response.data[0]['data'] self.assertEqual(len(data_received), 2) self.assertEqual(data_received[1]['dia'], 12) self.assertEqual(data_received[1]['total'], Decimal('0.60')) deter_awifs_1.make(data_imagem=date(2015, 10, 12), area_km2=1) response = get_response(self.client, self.url, self.params) data_received = response.data[0]['data'] self.assertEqual(len(data_received), 2) self.assertEqual(data_received[1]['dia'], 12) self.assertEqual(data_received[1]['total'], Decimal('1.60')) deter_awifs_2.make(data_imagem=date(2015, 11, 1)) deter_awifs_2.make(data_imagem=date(2015, 11, 1)) deter_awifs_2.make(data_imagem=date(2015, 11, 2)) deter_awifs_2.make(data_imagem=date(2015, 11, 3), area_km2=1.2) self.params = {'uf': 'MT', 'ano': 2015, 'mes': 11, 'tipo': 'AWIFS'} response = get_response(self.client, self.url, self.params) data_received = response.data[0]['data'] self.assertEqual(len(data_received), 3) self.assertEqual(response.data[0]['data'][0]['dia'], 1) self.assertEqual(response.data[0]['data'][0]['total'], Decimal('1.64')) self.assertEqual(response.data[0]['data'][1]['dia'], 2) self.assertEqual(response.data[0]['data'][1]['total'], Decimal('0.82')) self.assertEqual(response.data[0]['data'][2]['dia'], 3) self.assertEqual(response.data[0]['data'][2]['total'], Decimal('1.2')) class TestDiarioDeter(APITestCase): def setUp(self): self.url = reverse('api:estatisticas-diario') self.params = {'uf': 'MA', 'ano': 2015, 'mes': 8, 'tipo': 'DETER', 'estagio': 'Corte Raso'} daily_deter_1.make(data_imagem=date(2015, 8, 1)) def test_response(self): response = get_response(self.client, self.url, self.params) self.assertEqual(response.status_code, 200) def test_response_diario(self): response = get_response(self.client, self.url, self.params) data_received = response.data[0]['data'] day = data_received[0]['dia'] area = data_received[0]['total'] self.assertEqual(len(data_received), 1) self.assertEqual(day, 1) self.assertEqual(area, Decimal('0.23')) daily_deter_1.make(data_imagem=date(2015, 8, 1), area_km2=1) response = get_response(self.client, self.url, self.params) data_received = response.data[0]['data'] day = data_received[0]['dia'] area = data_received[0]['total'] self.assertEqual(len(data_received), 1) self.assertEqual(day, 1) self.assertEqual(area, Decimal('1.23')) daily_deter_1.make(data_imagem=date(2015, 8, 9), area_km2=1.89) response = get_response(self.client, self.url, self.params) data_received = response.data[0]['data'] day = data_received[1]['dia'] area = data_received[1]['total'] self.assertEqual(len(data_received), 2) self.assertEqual(day, 9) self.assertEqual(area, Decimal('1.89')) daily_deter_1.make(data_imagem=date(2015, 8, 10), area_km2=1) daily_deter_1.make(data_imagem=date(2015, 8, 11), area_km2=1) daily_deter_1.make(data_imagem=date(2015, 8, 10), area_km2=2) daily_deter_1.make(data_imagem=date(2015, 8, 30), area_km2=2) response = get_response(self.client, self.url, self.params) data_received = response.data[0]['data'] self.assertEqual(len(data_received), 5) self.assertEqual(data_received[0]['dia'], 1) self.assertEqual(data_received[1]['dia'], 9) self.assertEqual(data_received[2]['dia'], 10) self.assertEqual(data_received[3]['dia'], 11) self.assertEqual(data_received[4]['dia'], 30) self.assertEqual(data_received[0]['total'], Decimal('1.23')) self.assertEqual(data_received[1]['total'], Decimal('1.89')) self.assertEqual(data_received[2]['total'], Decimal('3')) self.assertEqual(data_received[3]['total'], Decimal('1')) self.assertEqual(data_received[4]['total'], Decimal('2')) class TestDiarioQualif(APITestCase): def setUp(self): self.url = reverse('api:estatisticas-diario') self.params = {'uf': 'BA', 'ano': 2013, 'mes': 9, 'tipo': 'DETER', 'estagio': 'Corte Raso'} def test_response(self): response = get_response(self.client, self.url, self.params) self.assertEqual(response.status_code, 200) class TestMontly(APITestCase): def setUp(self): self.url = reverse('api:estatisticas-mensal') # self.user = User.objects.create_user( # 'test', 'test@test.com', 'password' # ) # self.token = Token.objects.get(user=self.user) # def test_response(self): # response = get_response(self.client, self.url, None) # self.assertEqual(response.status_code, 200) def test_daily_deter_response(self): daily_deter_1.make() daily_deter_2.make() response = self.client.post( revese("api:login"), {'username': 'test', 'password': 'password'}, format='json' ) params = {'uf': 'MA', 'ano': 2015, 'mes': 8, 'tipo': 'DETER'} response = get_response(self.client, self.url, params) self.assertEqual(response.status_code, 200) data_received = response.data[0]['data'] self.assertEqual(len(data_received), 1) # def test_public_deter_response(self): # public_deter_1.make() # public_deter_2.make() # params = {'uf': 'MA', 'ano': 2015, 'mes': 8, # 'tipo': 'DETER', 'estagio': 'Corte Raso'} # response = get_response(self.client, self.url, params) # def test_daily_deter_qualif_response(self): # daily_deter_qualif_1.make() # daily_deter_qualif_2.make() # params = {'uf': 'MA', 'ano': 2015, 'mes': 8, # 'tipo': 'DETER', 'estagio': 'Corte Raso'} # response = get_response(self.client, self.url, params) # self.assertEqual(response.status_code, 200) # self.assertEqual(response.status_code, 200) # def test_public_deter_qualif_response(self): # public_deter_qualif_1.make() # public_deter_qualif_2.make() # params = {'uf': 'MA', 'ano': 2015, 'mes': 8, # 'tipo': 'DETER', 'estagio': 'Corte Raso'} # response = get_response(self.client, self.url, params) # self.assertEqual(response.status_code, 200) # def test_deter_awifs_response(self): # deter_awifs_1.make() # deter_awifs_2.make() # params = {'uf': 'MA', 'ano': 2015, 'mes': 8, # 'tipo': 'DETER', 'estagio': 'Corte Raso'} # response = get_response(self.client, self.url, params) # self.assertEqual(response.status_code, 200)
6,320
52
385
c6f50421da170da4e7c1f28fd95dffc055cc033a
3,719
py
Python
apps/DeepFaceLive/ui/widgets/QBackendPanel.py
jkennedyvz/DeepFaceLive
274c20808da089eb7fc0fc0e8abe649379a29ffe
[ "MIT" ]
null
null
null
apps/DeepFaceLive/ui/widgets/QBackendPanel.py
jkennedyvz/DeepFaceLive
274c20808da089eb7fc0fc0e8abe649379a29ffe
[ "MIT" ]
null
null
null
apps/DeepFaceLive/ui/widgets/QBackendPanel.py
jkennedyvz/DeepFaceLive
274c20808da089eb7fc0fc0e8abe649379a29ffe
[ "MIT" ]
null
null
null
from localization import L from resources.fonts import QXFontDB from resources.gfx import QXImageDB, QXImageSequenceDB from xlib import qt as qtx from ...backend import BackendHost class QBackendPanel(qtx.QXWidget): """ Base panel for CSW backend """
39.989247
159
0.613606
from localization import L from resources.fonts import QXFontDB from resources.gfx import QXImageDB, QXImageSequenceDB from xlib import qt as qtx from ...backend import BackendHost class QBackendPanel(qtx.QXWidget): """ Base panel for CSW backend """ def __init__(self, backend : BackendHost, name : str, layout, content_align_top=False): super().__init__() if not isinstance(backend, BackendHost): raise ValueError('backend must be an instance of BackendHost') self._backend = backend self._name = name backend.call_on_state_change(self._on_backend_state_change) backend.call_on_profile_timing(self._on_backend_profile_timing) btn_on_off = self._btn_on_off = qtx.QXPushButton(tooltip_text=L('@QBackendPanel.start'), released=self._on_btn_on_off_released, fixed_width=20) btn_reset_state = self._btn_reset_state = qtx.QXPushButton(image=QXImageDB.settings_reset_outline('gray'), released=self._on_btn_reset_state_released, tooltip_text=L('@QBackendPanel.reset_settings'), fixed_width=20) fps_label = self._fps_label = qtx.QXLabel() bar_widget = self._bar_widget = \ qtx.QXFrameHBox(widgets=[btn_on_off, 1, btn_reset_state, 2, qtx.QXLabel(name, font=QXFontDB.get_default_font(10)), (fps_label, qtx.AlignRight), 2], size_policy=('expanding', 'fixed'), fixed_height=24) content_widget = self._content_widget = qtx.QXFrameHBox([layout], contents_margins=2, enabled=False) l_widgets = [bar_widget, 1] if not content_align_top: l_widgets += [ qtx.QXFrame(size_policy=('expanding','expanding') ) ] l_widgets += [content_widget] l_widgets += [ qtx.QXFrame(size_policy=('expanding', 'expanding') ) ] self.setLayout(qtx.QXVBoxLayout(l_widgets)) btn_on_off.set_image( QXImageDB.power_outline('red') ) def _on_backend_state_change(self, backend, started, starting, stopping, stopped, busy): btn_on_off = self._btn_on_off if started or starting or stopping: btn_on_off.setToolTip(L('@QBackendPanel.stop')) if stopped: btn_on_off.setToolTip(L('@QBackendPanel.start')) if busy or starting or stopping: btn_on_off.set_image_sequence(QXImageSequenceDB.icon_loading('yellow'), loop_count=0) elif started: btn_on_off.set_image( QXImageDB.power_outline('lime') ) elif stopped: btn_on_off.set_image( QXImageDB.power_outline('red') ) if started and not busy: qtx.show_and_enable([self._content_widget, self._fps_label]) self._fps_label.setText(None) else: qtx.hide_and_disable([self._content_widget, self._fps_label]) self._fps_label.setText(None) def _on_backend_profile_timing(self, timing : float): fps = int(1.0 / timing if timing != 0 else 0) if fps < 10: self._fps_label.set_color('red') else: self._fps_label.set_color(None) self._fps_label.setText(f"{fps} {L('@QBackendPanel.FPS')}") def _on_btn_on_off_released(self): backend = self._backend if backend.is_stopped(): backend.start() else: backend.stop() def _on_btn_reset_state_released(self): self._backend.reset_state()
3,319
0
134
19f84f2a13776fdcf0bd9bd795f06cdd34f69809
443
py
Python
tests/hmc_test.py
dfm/rmhmc
df14344296250e54ef50cf065798b94ef6d641bc
[ "MIT" ]
4
2021-09-24T00:12:52.000Z
2022-01-02T08:38:07.000Z
tests/hmc_test.py
dfm/rmhmc
df14344296250e54ef50cf065798b94ef6d641bc
[ "MIT" ]
null
null
null
tests/hmc_test.py
dfm/rmhmc
df14344296250e54ef50cf065798b94ef6d641bc
[ "MIT" ]
null
null
null
import jax.numpy as jnp import numpy as np from jax import random from rmhmc.hmc import hmc from .problems import banana
23.315789
64
0.715576
import jax.numpy as jnp import numpy as np from jax import random from rmhmc.hmc import hmc from .problems import banana def test_divergence() -> None: system = hmc(banana(False, False), initial_step_size=1000.0) state = system.init(jnp.array([0.3, 0.5])) state_ = system.step(state, random.PRNGKey(5)) assert state_[2].diverging assert not state_[2].accept np.testing.assert_allclose(state_[2].accept_prob, 0.0)
296
0
23
cc4b92f8c2b0fb7e78022602f5dcd214422a4189
27,874
py
Python
sdk/python/pulumi_rancher2/namespace.py
pulumi/pulumi-rancher2
7a98af8cf598b711084a7f46c0fe71b43ed7a8ac
[ "ECL-2.0", "Apache-2.0" ]
3
2020-03-23T15:59:11.000Z
2021-01-29T00:37:32.000Z
sdk/python/pulumi_rancher2/namespace.py
pulumi/pulumi-rancher2
7a98af8cf598b711084a7f46c0fe71b43ed7a8ac
[ "ECL-2.0", "Apache-2.0" ]
76
2020-01-16T20:00:25.000Z
2022-03-31T20:30:08.000Z
sdk/python/pulumi_rancher2/namespace.py
pulumi/pulumi-rancher2
7a98af8cf598b711084a7f46c0fe71b43ed7a8ac
[ "ECL-2.0", "Apache-2.0" ]
2
2020-03-27T17:39:59.000Z
2020-11-24T23:09:24.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities from . import outputs from ._inputs import * __all__ = ['NamespaceArgs', 'Namespace'] @pulumi.input_type @pulumi.input_type
44.958065
268
0.643431
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities from . import outputs from ._inputs import * __all__ = ['NamespaceArgs', 'Namespace'] @pulumi.input_type class NamespaceArgs: def __init__(__self__, *, project_id: pulumi.Input[str], annotations: Optional[pulumi.Input[Mapping[str, Any]]] = None, container_resource_limit: Optional[pulumi.Input['NamespaceContainerResourceLimitArgs']] = None, description: Optional[pulumi.Input[str]] = None, labels: Optional[pulumi.Input[Mapping[str, Any]]] = None, name: Optional[pulumi.Input[str]] = None, resource_quota: Optional[pulumi.Input['NamespaceResourceQuotaArgs']] = None, wait_for_cluster: Optional[pulumi.Input[bool]] = None): """ The set of arguments for constructing a Namespace resource. :param pulumi.Input[str] project_id: The project id where assign namespace. It's on the form `project_id=<cluster_id>:<id>`. Updating `<id>` part on same `<cluster_id>` namespace will be moved between projects (string) :param pulumi.Input[Mapping[str, Any]] annotations: Annotations for Node Pool object (map) :param pulumi.Input['NamespaceContainerResourceLimitArgs'] container_resource_limit: Default containers resource limits on namespace (List maxitem:1) :param pulumi.Input[str] description: A namespace description (string) :param pulumi.Input[Mapping[str, Any]] labels: Labels for Node Pool object (map) :param pulumi.Input[str] name: The name of the namespace (string) :param pulumi.Input['NamespaceResourceQuotaArgs'] resource_quota: Resource quota for namespace. Rancher v2.1.x or higher (list maxitems:1) :param pulumi.Input[bool] wait_for_cluster: Wait for cluster becomes active. Default `false` (bool) """ pulumi.set(__self__, "project_id", project_id) if annotations is not None: pulumi.set(__self__, "annotations", annotations) if container_resource_limit is not None: pulumi.set(__self__, "container_resource_limit", container_resource_limit) if description is not None: pulumi.set(__self__, "description", description) if labels is not None: pulumi.set(__self__, "labels", labels) if name is not None: pulumi.set(__self__, "name", name) if resource_quota is not None: pulumi.set(__self__, "resource_quota", resource_quota) if wait_for_cluster is not None: pulumi.set(__self__, "wait_for_cluster", wait_for_cluster) @property @pulumi.getter(name="projectId") def project_id(self) -> pulumi.Input[str]: """ The project id where assign namespace. It's on the form `project_id=<cluster_id>:<id>`. Updating `<id>` part on same `<cluster_id>` namespace will be moved between projects (string) """ return pulumi.get(self, "project_id") @project_id.setter def project_id(self, value: pulumi.Input[str]): pulumi.set(self, "project_id", value) @property @pulumi.getter def annotations(self) -> Optional[pulumi.Input[Mapping[str, Any]]]: """ Annotations for Node Pool object (map) """ return pulumi.get(self, "annotations") @annotations.setter def annotations(self, value: Optional[pulumi.Input[Mapping[str, Any]]]): pulumi.set(self, "annotations", value) @property @pulumi.getter(name="containerResourceLimit") def container_resource_limit(self) -> Optional[pulumi.Input['NamespaceContainerResourceLimitArgs']]: """ Default containers resource limits on namespace (List maxitem:1) """ return pulumi.get(self, "container_resource_limit") @container_resource_limit.setter def container_resource_limit(self, value: Optional[pulumi.Input['NamespaceContainerResourceLimitArgs']]): pulumi.set(self, "container_resource_limit", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ A namespace description (string) """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def labels(self) -> Optional[pulumi.Input[Mapping[str, Any]]]: """ Labels for Node Pool object (map) """ return pulumi.get(self, "labels") @labels.setter def labels(self, value: Optional[pulumi.Input[Mapping[str, Any]]]): pulumi.set(self, "labels", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the namespace (string) """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="resourceQuota") def resource_quota(self) -> Optional[pulumi.Input['NamespaceResourceQuotaArgs']]: """ Resource quota for namespace. Rancher v2.1.x or higher (list maxitems:1) """ return pulumi.get(self, "resource_quota") @resource_quota.setter def resource_quota(self, value: Optional[pulumi.Input['NamespaceResourceQuotaArgs']]): pulumi.set(self, "resource_quota", value) @property @pulumi.getter(name="waitForCluster") def wait_for_cluster(self) -> Optional[pulumi.Input[bool]]: """ Wait for cluster becomes active. Default `false` (bool) """ return pulumi.get(self, "wait_for_cluster") @wait_for_cluster.setter def wait_for_cluster(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "wait_for_cluster", value) @pulumi.input_type class _NamespaceState: def __init__(__self__, *, annotations: Optional[pulumi.Input[Mapping[str, Any]]] = None, container_resource_limit: Optional[pulumi.Input['NamespaceContainerResourceLimitArgs']] = None, description: Optional[pulumi.Input[str]] = None, labels: Optional[pulumi.Input[Mapping[str, Any]]] = None, name: Optional[pulumi.Input[str]] = None, project_id: Optional[pulumi.Input[str]] = None, resource_quota: Optional[pulumi.Input['NamespaceResourceQuotaArgs']] = None, wait_for_cluster: Optional[pulumi.Input[bool]] = None): """ Input properties used for looking up and filtering Namespace resources. :param pulumi.Input[Mapping[str, Any]] annotations: Annotations for Node Pool object (map) :param pulumi.Input['NamespaceContainerResourceLimitArgs'] container_resource_limit: Default containers resource limits on namespace (List maxitem:1) :param pulumi.Input[str] description: A namespace description (string) :param pulumi.Input[Mapping[str, Any]] labels: Labels for Node Pool object (map) :param pulumi.Input[str] name: The name of the namespace (string) :param pulumi.Input[str] project_id: The project id where assign namespace. It's on the form `project_id=<cluster_id>:<id>`. Updating `<id>` part on same `<cluster_id>` namespace will be moved between projects (string) :param pulumi.Input['NamespaceResourceQuotaArgs'] resource_quota: Resource quota for namespace. Rancher v2.1.x or higher (list maxitems:1) :param pulumi.Input[bool] wait_for_cluster: Wait for cluster becomes active. Default `false` (bool) """ if annotations is not None: pulumi.set(__self__, "annotations", annotations) if container_resource_limit is not None: pulumi.set(__self__, "container_resource_limit", container_resource_limit) if description is not None: pulumi.set(__self__, "description", description) if labels is not None: pulumi.set(__self__, "labels", labels) if name is not None: pulumi.set(__self__, "name", name) if project_id is not None: pulumi.set(__self__, "project_id", project_id) if resource_quota is not None: pulumi.set(__self__, "resource_quota", resource_quota) if wait_for_cluster is not None: pulumi.set(__self__, "wait_for_cluster", wait_for_cluster) @property @pulumi.getter def annotations(self) -> Optional[pulumi.Input[Mapping[str, Any]]]: """ Annotations for Node Pool object (map) """ return pulumi.get(self, "annotations") @annotations.setter def annotations(self, value: Optional[pulumi.Input[Mapping[str, Any]]]): pulumi.set(self, "annotations", value) @property @pulumi.getter(name="containerResourceLimit") def container_resource_limit(self) -> Optional[pulumi.Input['NamespaceContainerResourceLimitArgs']]: """ Default containers resource limits on namespace (List maxitem:1) """ return pulumi.get(self, "container_resource_limit") @container_resource_limit.setter def container_resource_limit(self, value: Optional[pulumi.Input['NamespaceContainerResourceLimitArgs']]): pulumi.set(self, "container_resource_limit", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ A namespace description (string) """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter def labels(self) -> Optional[pulumi.Input[Mapping[str, Any]]]: """ Labels for Node Pool object (map) """ return pulumi.get(self, "labels") @labels.setter def labels(self, value: Optional[pulumi.Input[Mapping[str, Any]]]): pulumi.set(self, "labels", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the namespace (string) """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="projectId") def project_id(self) -> Optional[pulumi.Input[str]]: """ The project id where assign namespace. It's on the form `project_id=<cluster_id>:<id>`. Updating `<id>` part on same `<cluster_id>` namespace will be moved between projects (string) """ return pulumi.get(self, "project_id") @project_id.setter def project_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project_id", value) @property @pulumi.getter(name="resourceQuota") def resource_quota(self) -> Optional[pulumi.Input['NamespaceResourceQuotaArgs']]: """ Resource quota for namespace. Rancher v2.1.x or higher (list maxitems:1) """ return pulumi.get(self, "resource_quota") @resource_quota.setter def resource_quota(self, value: Optional[pulumi.Input['NamespaceResourceQuotaArgs']]): pulumi.set(self, "resource_quota", value) @property @pulumi.getter(name="waitForCluster") def wait_for_cluster(self) -> Optional[pulumi.Input[bool]]: """ Wait for cluster becomes active. Default `false` (bool) """ return pulumi.get(self, "wait_for_cluster") @wait_for_cluster.setter def wait_for_cluster(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "wait_for_cluster", value) class Namespace(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, annotations: Optional[pulumi.Input[Mapping[str, Any]]] = None, container_resource_limit: Optional[pulumi.Input[pulumi.InputType['NamespaceContainerResourceLimitArgs']]] = None, description: Optional[pulumi.Input[str]] = None, labels: Optional[pulumi.Input[Mapping[str, Any]]] = None, name: Optional[pulumi.Input[str]] = None, project_id: Optional[pulumi.Input[str]] = None, resource_quota: Optional[pulumi.Input[pulumi.InputType['NamespaceResourceQuotaArgs']]] = None, wait_for_cluster: Optional[pulumi.Input[bool]] = None, __props__=None): """ Provides a Rancher v2 Namespace resource. This can be used to create namespaces for Rancher v2 environments and retrieve their information. ## Example Usage ```python import pulumi import pulumi_rancher2 as rancher2 # Create a new rancher2 Namespace foo = rancher2.Namespace("foo", container_resource_limit=rancher2.NamespaceContainerResourceLimitArgs( limits_cpu="20m", limits_memory="20Mi", requests_cpu="1m", requests_memory="1Mi", ), description="foo namespace", project_id="<PROJECT_ID>", resource_quota=rancher2.NamespaceResourceQuotaArgs( limit=rancher2.NamespaceResourceQuotaLimitArgs( limits_cpu="100m", limits_memory="100Mi", requests_storage="1Gi", ), )) ``` ```python import pulumi import pulumi_rancher2 as rancher2 # Create a new rancher2 Cluster foo_custom = rancher2.Cluster("foo-custom", description="Foo rancher2 custom cluster", rke_config=rancher2.ClusterRkeConfigArgs( network=rancher2.ClusterRkeConfigNetworkArgs( plugin="canal", ), )) # Create a new rancher2 Namespace assigned to default cluster project foo = rancher2.Namespace("foo", project_id=foo_custom.default_project_id, description="foo namespace", resource_quota=rancher2.NamespaceResourceQuotaArgs( limit=rancher2.NamespaceResourceQuotaLimitArgs( limits_cpu="100m", limits_memory="100Mi", requests_storage="1Gi", ), ), container_resource_limit=rancher2.NamespaceContainerResourceLimitArgs( limits_cpu="20m", limits_memory="20Mi", requests_cpu="1m", requests_memory="1Mi", )) ``` ## Import Namespaces can be imported using the namespace ID in the format `<project_id>.<namespace_id>` ```sh $ pulumi import rancher2:index/namespace:Namespace foo &lt;project_id&gt;.&lt;namespaces_id&gt; ``` `<project_id>` is in the format `<cluster_id>:<id>`, but <id> part is optional: - If full project_id is provided, `<project_id>=<cluster_id>:<id>`, the namespace'll be assigned to corresponding cluster project once it's imported. - If `<id>` part is omitted `<project_id>=<cluster_id>`, the namespace'll not be assigned to any project. To move it into a project, `<project_id>=<cluster_id>:<id>` needs to be updated in tf file. Namespace movement is only supported inside same `cluster_id`. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Mapping[str, Any]] annotations: Annotations for Node Pool object (map) :param pulumi.Input[pulumi.InputType['NamespaceContainerResourceLimitArgs']] container_resource_limit: Default containers resource limits on namespace (List maxitem:1) :param pulumi.Input[str] description: A namespace description (string) :param pulumi.Input[Mapping[str, Any]] labels: Labels for Node Pool object (map) :param pulumi.Input[str] name: The name of the namespace (string) :param pulumi.Input[str] project_id: The project id where assign namespace. It's on the form `project_id=<cluster_id>:<id>`. Updating `<id>` part on same `<cluster_id>` namespace will be moved between projects (string) :param pulumi.Input[pulumi.InputType['NamespaceResourceQuotaArgs']] resource_quota: Resource quota for namespace. Rancher v2.1.x or higher (list maxitems:1) :param pulumi.Input[bool] wait_for_cluster: Wait for cluster becomes active. Default `false` (bool) """ ... @overload def __init__(__self__, resource_name: str, args: NamespaceArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Provides a Rancher v2 Namespace resource. This can be used to create namespaces for Rancher v2 environments and retrieve their information. ## Example Usage ```python import pulumi import pulumi_rancher2 as rancher2 # Create a new rancher2 Namespace foo = rancher2.Namespace("foo", container_resource_limit=rancher2.NamespaceContainerResourceLimitArgs( limits_cpu="20m", limits_memory="20Mi", requests_cpu="1m", requests_memory="1Mi", ), description="foo namespace", project_id="<PROJECT_ID>", resource_quota=rancher2.NamespaceResourceQuotaArgs( limit=rancher2.NamespaceResourceQuotaLimitArgs( limits_cpu="100m", limits_memory="100Mi", requests_storage="1Gi", ), )) ``` ```python import pulumi import pulumi_rancher2 as rancher2 # Create a new rancher2 Cluster foo_custom = rancher2.Cluster("foo-custom", description="Foo rancher2 custom cluster", rke_config=rancher2.ClusterRkeConfigArgs( network=rancher2.ClusterRkeConfigNetworkArgs( plugin="canal", ), )) # Create a new rancher2 Namespace assigned to default cluster project foo = rancher2.Namespace("foo", project_id=foo_custom.default_project_id, description="foo namespace", resource_quota=rancher2.NamespaceResourceQuotaArgs( limit=rancher2.NamespaceResourceQuotaLimitArgs( limits_cpu="100m", limits_memory="100Mi", requests_storage="1Gi", ), ), container_resource_limit=rancher2.NamespaceContainerResourceLimitArgs( limits_cpu="20m", limits_memory="20Mi", requests_cpu="1m", requests_memory="1Mi", )) ``` ## Import Namespaces can be imported using the namespace ID in the format `<project_id>.<namespace_id>` ```sh $ pulumi import rancher2:index/namespace:Namespace foo &lt;project_id&gt;.&lt;namespaces_id&gt; ``` `<project_id>` is in the format `<cluster_id>:<id>`, but <id> part is optional: - If full project_id is provided, `<project_id>=<cluster_id>:<id>`, the namespace'll be assigned to corresponding cluster project once it's imported. - If `<id>` part is omitted `<project_id>=<cluster_id>`, the namespace'll not be assigned to any project. To move it into a project, `<project_id>=<cluster_id>:<id>` needs to be updated in tf file. Namespace movement is only supported inside same `cluster_id`. :param str resource_name: The name of the resource. :param NamespaceArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(NamespaceArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, annotations: Optional[pulumi.Input[Mapping[str, Any]]] = None, container_resource_limit: Optional[pulumi.Input[pulumi.InputType['NamespaceContainerResourceLimitArgs']]] = None, description: Optional[pulumi.Input[str]] = None, labels: Optional[pulumi.Input[Mapping[str, Any]]] = None, name: Optional[pulumi.Input[str]] = None, project_id: Optional[pulumi.Input[str]] = None, resource_quota: Optional[pulumi.Input[pulumi.InputType['NamespaceResourceQuotaArgs']]] = None, wait_for_cluster: Optional[pulumi.Input[bool]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = NamespaceArgs.__new__(NamespaceArgs) __props__.__dict__["annotations"] = annotations __props__.__dict__["container_resource_limit"] = container_resource_limit __props__.__dict__["description"] = description __props__.__dict__["labels"] = labels __props__.__dict__["name"] = name if project_id is None and not opts.urn: raise TypeError("Missing required property 'project_id'") __props__.__dict__["project_id"] = project_id __props__.__dict__["resource_quota"] = resource_quota __props__.__dict__["wait_for_cluster"] = wait_for_cluster super(Namespace, __self__).__init__( 'rancher2:index/namespace:Namespace', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, annotations: Optional[pulumi.Input[Mapping[str, Any]]] = None, container_resource_limit: Optional[pulumi.Input[pulumi.InputType['NamespaceContainerResourceLimitArgs']]] = None, description: Optional[pulumi.Input[str]] = None, labels: Optional[pulumi.Input[Mapping[str, Any]]] = None, name: Optional[pulumi.Input[str]] = None, project_id: Optional[pulumi.Input[str]] = None, resource_quota: Optional[pulumi.Input[pulumi.InputType['NamespaceResourceQuotaArgs']]] = None, wait_for_cluster: Optional[pulumi.Input[bool]] = None) -> 'Namespace': """ Get an existing Namespace resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Mapping[str, Any]] annotations: Annotations for Node Pool object (map) :param pulumi.Input[pulumi.InputType['NamespaceContainerResourceLimitArgs']] container_resource_limit: Default containers resource limits on namespace (List maxitem:1) :param pulumi.Input[str] description: A namespace description (string) :param pulumi.Input[Mapping[str, Any]] labels: Labels for Node Pool object (map) :param pulumi.Input[str] name: The name of the namespace (string) :param pulumi.Input[str] project_id: The project id where assign namespace. It's on the form `project_id=<cluster_id>:<id>`. Updating `<id>` part on same `<cluster_id>` namespace will be moved between projects (string) :param pulumi.Input[pulumi.InputType['NamespaceResourceQuotaArgs']] resource_quota: Resource quota for namespace. Rancher v2.1.x or higher (list maxitems:1) :param pulumi.Input[bool] wait_for_cluster: Wait for cluster becomes active. Default `false` (bool) """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _NamespaceState.__new__(_NamespaceState) __props__.__dict__["annotations"] = annotations __props__.__dict__["container_resource_limit"] = container_resource_limit __props__.__dict__["description"] = description __props__.__dict__["labels"] = labels __props__.__dict__["name"] = name __props__.__dict__["project_id"] = project_id __props__.__dict__["resource_quota"] = resource_quota __props__.__dict__["wait_for_cluster"] = wait_for_cluster return Namespace(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def annotations(self) -> pulumi.Output[Mapping[str, Any]]: """ Annotations for Node Pool object (map) """ return pulumi.get(self, "annotations") @property @pulumi.getter(name="containerResourceLimit") def container_resource_limit(self) -> pulumi.Output[Optional['outputs.NamespaceContainerResourceLimit']]: """ Default containers resource limits on namespace (List maxitem:1) """ return pulumi.get(self, "container_resource_limit") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ A namespace description (string) """ return pulumi.get(self, "description") @property @pulumi.getter def labels(self) -> pulumi.Output[Mapping[str, Any]]: """ Labels for Node Pool object (map) """ return pulumi.get(self, "labels") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the namespace (string) """ return pulumi.get(self, "name") @property @pulumi.getter(name="projectId") def project_id(self) -> pulumi.Output[str]: """ The project id where assign namespace. It's on the form `project_id=<cluster_id>:<id>`. Updating `<id>` part on same `<cluster_id>` namespace will be moved between projects (string) """ return pulumi.get(self, "project_id") @property @pulumi.getter(name="resourceQuota") def resource_quota(self) -> pulumi.Output['outputs.NamespaceResourceQuota']: """ Resource quota for namespace. Rancher v2.1.x or higher (list maxitems:1) """ return pulumi.get(self, "resource_quota") @property @pulumi.getter(name="waitForCluster") def wait_for_cluster(self) -> pulumi.Output[Optional[bool]]: """ Wait for cluster becomes active. Default `false` (bool) """ return pulumi.get(self, "wait_for_cluster")
4,055
23,291
67
04240f905ddfcb37b6a4655974a95272768d65ab
1,791
py
Python
cortex_DIM/evaluation_models/msssim_eval.py
Soapy-Salted-Fish-King/DIM
bac4765a8126746675f517c7bfa1b04b88044d51
[ "BSD-3-Clause" ]
749
2018-08-24T13:55:34.000Z
2022-03-29T20:30:59.000Z
cortex_DIM/evaluation_models/msssim_eval.py
Soapy-Salted-Fish-King/DIM
bac4765a8126746675f517c7bfa1b04b88044d51
[ "BSD-3-Clause" ]
50
2018-09-09T13:27:40.000Z
2022-01-25T16:45:28.000Z
cortex_DIM/evaluation_models/msssim_eval.py
Soapy-Salted-Fish-King/DIM
bac4765a8126746675f517c7bfa1b04b88044d51
[ "BSD-3-Clause" ]
98
2018-08-24T15:55:23.000Z
2022-01-05T14:40:58.000Z
'''Encoder eval for MS-SSIM ''' from cortex.main import run from cortex_DIM.configs.deconvnets import configs as decoder_configs from cortex_DIM.models.decoder import Decoder class MSSSIMEval(Decoder): '''Measure MS-SSIM through a decoder trained with reconstruction. ''' defaults = dict( data=dict(batch_size=dict(train=64, test=64), inputs=dict(inputs='images'), skip_last_batch=True), optimizer=dict(learning_rate=1e-4, scheduler='MultiStepLR', scheduler_options=dict(milestones=[50, 100], gamma=0.1)) ) def build(self, encoder, config_, task_idx=-1, config='basic32x32', args={}): '''Builds MINE evaluator. Args: encoder_key: Dictionary key for the encoder. task_idx: Index of output tensor to measure MS-SSIM. config: Config name for decoder. See `configs` for details. args: Arguments to update config with. ''' self.nets.encoder = encoder X = self.inputs('data.images') self.task_idx = task_idx out = self.nets.encoder(X, return_all_activations=True)[self.task_idx] config = decoder_configs.get(config) config.update(**args) super().build(out.size()[1:], args=config) if __name__ == '__main__': run(MSSSIMEval())
29.360656
83
0.61474
'''Encoder eval for MS-SSIM ''' from cortex.main import run from cortex_DIM.configs.deconvnets import configs as decoder_configs from cortex_DIM.models.decoder import Decoder class MSSSIMEval(Decoder): '''Measure MS-SSIM through a decoder trained with reconstruction. ''' defaults = dict( data=dict(batch_size=dict(train=64, test=64), inputs=dict(inputs='images'), skip_last_batch=True), optimizer=dict(learning_rate=1e-4, scheduler='MultiStepLR', scheduler_options=dict(milestones=[50, 100], gamma=0.1)) ) def build(self, encoder, config_, task_idx=-1, config='basic32x32', args={}): '''Builds MINE evaluator. Args: encoder_key: Dictionary key for the encoder. task_idx: Index of output tensor to measure MS-SSIM. config: Config name for decoder. See `configs` for details. args: Arguments to update config with. ''' self.nets.encoder = encoder X = self.inputs('data.images') self.task_idx = task_idx out = self.nets.encoder(X, return_all_activations=True)[self.task_idx] config = decoder_configs.get(config) config.update(**args) super().build(out.size()[1:], args=config) def routine(self, outs=None): X = self.inputs('data.images') if outs is None: outs = self.nets.encoder(X, return_all_activations=True) out = outs[self.task_idx] super().routine(X, out.detach()) def visualize(self, inputs): out = self.nets.encoder(inputs, return_all_activations=True)[self.task_idx] super().visualize(out) if __name__ == '__main__': run(MSSSIMEval())
339
0
54
8d0910cd5960f52a9db19fe70f314beaa84f3f9b
3,742
py
Python
btsprice/yahoo.py
pch957/btsprice
8a6913dfc0d74e668e116855ea8bb1caf3af6c04
[ "MIT" ]
18
2016-09-16T16:07:35.000Z
2020-08-03T13:14:56.000Z
btsprice/yahoo.py
roelandp/btsprice
ad2f4d6d694a4ac71d5b227a22731160f700323b
[ "MIT" ]
5
2017-08-31T00:14:02.000Z
2019-10-18T12:44:22.000Z
btsprice/yahoo.py
roelandp/btsprice
ad2f4d6d694a4ac71d5b227a22731160f700323b
[ "MIT" ]
20
2016-06-27T09:46:18.000Z
2020-10-26T05:17:47.000Z
# -*- coding: utf-8 -*- import asyncio import aiohttp if __name__ == "__main__": loop = asyncio.get_event_loop() yahoo = Yahoo() loop.run_until_complete(yahoo.fetch_price()) loop.run_forever()
35.638095
80
0.512293
# -*- coding: utf-8 -*- import asyncio import aiohttp def is_float_try(str): try: float(str) return True except ValueError: return False class Yahoo(object): def __init__(self): header = { 'content-type': 'application/json', 'User-Agent': 'Mozilla/5.0 Gecko/20100101 Firefox/22.0'} self.session = aiohttp.ClientSession(headers=header) self.param_s = {} self.quote = {} self.scale = {} self.init_param_dict1() self.init_param_dict2() self.init_param_dict3() self.rate = {'CNY': {'CNY': 1.0}, 'USD': {'USD': 1.0}} def init_param_dict1(self): assets = ["CNY", "KRW", "TRY", "SGD", "HKD", "RUB", "SEK", "NZD", "MXN", "CAD", "CHF", "AUD", "GBP", "JPY", "EUR", "BTC", "ARS"] for asset in assets: self.param_s[asset] = asset + "USD=X" # todo, GOLD/SILVER wrong from yahoo # self.param_s["GOLD"] = "XAUUSD=X" # self.param_s["SILVER"] = "XAGUSD=X" for asset in self.param_s: self.quote[asset] = "USD" def init_param_dict2(self): # todo:"OIL", GAS", "DIESEL" self.param_s["SHENZHEN"] = '399106.SZ' self.quote["SHENZHEN"] = "CNY" # todo, wrong from yahoo # self.param_s["SHANGHAI"] = '000001.SS' # self.quote["SHANGHAI"] = "CNY" self.param_s["NASDAQC"] = '^IXIC' self.quote["NASDAQC"] = "USD" self.param_s["NIKKEI"] = '^N225' self.quote["NIKKEI"] = "JPY" self.param_s["HANGSENG"] = '^HSI' self.quote["HANGSENG"] = "HKD" def init_param_dict3(self): self.param_s["BDR.AAPL"] = 'AAPL' self.quote["BDR.AAPL"] = "USD" self.scale["BDR.AAPL"] = 0.001 def get_query_param(self, assets): query_string = ','.join( '%s' % (self.param_s[asset]) for asset in assets) params = {'s': query_string, 'f': 'l1', 'e': '.csv'} return params @asyncio.coroutine def fetch_price(self, assets=None): if assets is None: assets = self.param_s.keys() url = "http://download.finance.yahoo.com/d/quotes.csv" try: params = self.get_query_param(assets) response = yield from asyncio.wait_for(self.session.get( url, params=params), 120) response = yield from response.read() price = dict(zip(assets, response.split())) for asset in assets: if is_float_try(price[asset]): scale = 1.0 if asset in self.scale: scale = self.scale[asset] if self.quote[asset] == "CNY": self.rate["CNY"][asset] = float(price[asset]) elif self.quote[asset] == "USD": self.rate["USD"][asset] = float(price[asset]) else: self.rate["USD"][asset] = float(price[asset]) * \ float(price[self.quote[asset]]) * scale # need throw a exception is not float else: raise # there is a bug for yahoo api.... if asset == "GOLD" or asset == "SILVER": if self.rate["USD"][asset] < 1: self.rate["USD"][asset] = 1/self.rate["USD"][asset] except Exception as e: print("Error fetching results from yahoo!", e) # print(self.rate) return self.rate if __name__ == "__main__": loop = asyncio.get_event_loop() yahoo = Yahoo() loop.run_until_complete(yahoo.fetch_price()) loop.run_forever()
3,301
183
46
cd03445dfd6bb3e838191ac085b921cb783539d5
322
py
Python
divik/core/io/__init__.py
Hirni-Meshram/divik
0f542ec2669428458a4ecf6bb450dc90c33b0653
[ "Apache-2.0" ]
10
2020-01-10T13:10:38.000Z
2022-03-17T05:08:40.000Z
divik/core/io/__init__.py
Hirni-Meshram/divik
0f542ec2669428458a4ecf6bb450dc90c33b0653
[ "Apache-2.0" ]
45
2019-10-26T12:42:50.000Z
2022-03-12T07:50:40.000Z
divik/core/io/__init__.py
Hirni-Meshram/divik
0f542ec2669428458a4ecf6bb450dc90c33b0653
[ "Apache-2.0" ]
5
2021-11-24T04:55:45.000Z
2021-12-17T23:38:19.000Z
"""Reusable utilities for data and model I/O""" from ._data_io import ( load_data, save_csv, try_load_data, try_load_xy, ) from ._model_io import save, saver DIVIK_RESULT_FNAME = "result.pkl" __all__ = [ "load_data", "save_csv", "try_load_data", "try_load_xy", "save", "saver", ]
16.1
47
0.636646
"""Reusable utilities for data and model I/O""" from ._data_io import ( load_data, save_csv, try_load_data, try_load_xy, ) from ._model_io import save, saver DIVIK_RESULT_FNAME = "result.pkl" __all__ = [ "load_data", "save_csv", "try_load_data", "try_load_xy", "save", "saver", ]
0
0
0
78b4aa6b5ba61bb43545a9d39e85f0a3741e827a
441
py
Python
client/asteroid.py
remremrem/EV-Tribute
c7dd412eedad4b8eba0cf2d4c95d539d4b80c852
[ "MIT" ]
1
2015-06-23T03:48:03.000Z
2015-06-23T03:48:03.000Z
client/asteroid.py
remremrem/EV-Tribute
c7dd412eedad4b8eba0cf2d4c95d539d4b80c852
[ "MIT" ]
null
null
null
client/asteroid.py
remremrem/EV-Tribute
c7dd412eedad4b8eba0cf2d4c95d539d4b80c852
[ "MIT" ]
null
null
null
import pyglet import rabbyt from pyglet.window import key from pyglet.window import mouse from pyglet.gl import * from tools import *
24.5
61
0.62585
import pyglet import rabbyt from pyglet.window import key from pyglet.window import mouse from pyglet.gl import * from tools import * class Asteroid: def __init__(self,window,panel): self.sprite = rabbyt.Sprite(texture = "asteroid.png") self.sprite.xy = (0,0) self.speed = 50 self.pos = [0, 0] self.pos_time = 0 self.rps = .5 self.vector = 0 self.time = rabbyt.get_time()
264
-6
49
76bd6d76686e284e16cd6ff1f9bb9c73128a6fce
843
py
Python
data_cleaning/create_png_dataset.py
bioinfoUQAM/Canadian-cropland-dataset
bfac01c80e20f6eb224e446e480b16dc5fed2547
[ "MIT" ]
2
2021-09-15T02:36:53.000Z
2022-03-30T16:05:07.000Z
data_cleaning/create_png_dataset.py
bioinfoUQAM/Canadian-cropland-dataset
bfac01c80e20f6eb224e446e480b16dc5fed2547
[ "MIT" ]
null
null
null
data_cleaning/create_png_dataset.py
bioinfoUQAM/Canadian-cropland-dataset
bfac01c80e20f6eb224e446e480b16dc5fed2547
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Fri Apr 30 22:41:09 2021 @author: amanda """ # loop through the .zip files and create images in .png format # import necessary libraries import os import image_to_png directory = "dataset_zip" #file_extensions = ["OSAVI", "NDVI", "GNDVI", "PSRI", "NDVI45"] extension = "OSAVI" print("Extension: ", extension) # crawling through directory and subdirectories for root, directories, files in os.walk(directory): for filename in files: print("filname", filename) # join the two strings in order to form the full filepath. filepath = os.path.join(root, filename) print("Filepath: ", filepath) """ For creating RGB images, no extension is required""" #image_to_png.RGB_spliter(filepath) image_to_png.three_channel_spliter(filepath, extension)
27.193548
66
0.688019
# -*- coding: utf-8 -*- """ Created on Fri Apr 30 22:41:09 2021 @author: amanda """ # loop through the .zip files and create images in .png format # import necessary libraries import os import image_to_png directory = "dataset_zip" #file_extensions = ["OSAVI", "NDVI", "GNDVI", "PSRI", "NDVI45"] extension = "OSAVI" print("Extension: ", extension) # crawling through directory and subdirectories for root, directories, files in os.walk(directory): for filename in files: print("filname", filename) # join the two strings in order to form the full filepath. filepath = os.path.join(root, filename) print("Filepath: ", filepath) """ For creating RGB images, no extension is required""" #image_to_png.RGB_spliter(filepath) image_to_png.three_channel_spliter(filepath, extension)
0
0
0
4ce5ed3f89af7fd520b5af53b81ee7407fa15d83
938
py
Python
analytics/utils.py
iamnkc/tournesol
4a09985f494577917c357783a37dfae02c57fd82
[ "CC0-1.0" ]
null
null
null
analytics/utils.py
iamnkc/tournesol
4a09985f494577917c357783a37dfae02c57fd82
[ "CC0-1.0" ]
null
null
null
analytics/utils.py
iamnkc/tournesol
4a09985f494577917c357783a37dfae02c57fd82
[ "CC0-1.0" ]
null
null
null
import pandas as pd CRITERIA = [ "largely_recommended", "reliability", "importance", "engaging", "pedagogy", "layman_friendly", "entertaining_relaxing", "better_habits", "diversity_inclusion", "backfire_risk", ] TCOLOR = [ "#1282b2", "#DC8A5D", "#C28BED", "#4C72D5", "#4BB061", "#D37A80", "#DFC642", "#76C6CB", "#9DD654", "#D8836D", ] MSG_NO_DATA = "You should first load the public dataset at the top of the page." def set_df(data, users=[]): """Set up the dataframe""" df_tmp = pd.read_csv(data) index = ["video_a", "video_b", "public_username"] df = df_tmp.pivot(index=index, columns="criteria", values="score") df.reset_index(inplace=True) if users: df = df[df["public_username"].isin(users)] return df
18.038462
80
0.602345
import pandas as pd CRITERIA = [ "largely_recommended", "reliability", "importance", "engaging", "pedagogy", "layman_friendly", "entertaining_relaxing", "better_habits", "diversity_inclusion", "backfire_risk", ] TCOLOR = [ "#1282b2", "#DC8A5D", "#C28BED", "#4C72D5", "#4BB061", "#D37A80", "#DFC642", "#76C6CB", "#9DD654", "#D8836D", ] MSG_NO_DATA = "You should first load the public dataset at the top of the page." def set_df(data, users=[]): """Set up the dataframe""" df_tmp = pd.read_csv(data) index = ["video_a", "video_b", "public_username"] df = df_tmp.pivot(index=index, columns="criteria", values="score") df.reset_index(inplace=True) if users: df = df[df["public_username"].isin(users)] return df def get_unique_video_list(df): return list(set(df["video_a"].tolist() + df["video_b"].tolist()))
80
0
23
e0249aa077ed0d6f12ca41eadfc35b890bcae4a2
21,271
py
Python
networking_bgpvpn/neutron/services/service_drivers/bagpipe/bagpipe.py
openstack/networking-bgpvpn
1789824ec90505d7d67c3b624d318c36b798fb12
[ "Apache-2.0" ]
38
2015-06-23T08:06:16.000Z
2022-01-25T16:03:10.000Z
networking_bgpvpn/neutron/services/service_drivers/bagpipe/bagpipe.py
openstack/networking-bgpvpn
1789824ec90505d7d67c3b624d318c36b798fb12
[ "Apache-2.0" ]
null
null
null
networking_bgpvpn/neutron/services/service_drivers/bagpipe/bagpipe.py
openstack/networking-bgpvpn
1789824ec90505d7d67c3b624d318c36b798fb12
[ "Apache-2.0" ]
17
2015-11-28T00:45:22.000Z
2021-07-22T09:22:30.000Z
# Copyright (c) 2015 Orange. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from sqlalchemy import orm from sqlalchemy import sql from neutron.db.models import l3 from neutron.db import models_v2 from neutron.debug import debug_agent from neutron_lib.api.definitions import portbindings from neutron_lib.callbacks import events from neutron_lib.callbacks import registry from neutron_lib.callbacks import resources from neutron_lib import constants as const from neutron_lib.db import api as db_api from oslo_log import helpers as log_helpers from oslo_log import log as logging from networking_bagpipe.agent.bgpvpn import rpc_client from networking_bgpvpn.neutron.db import bgpvpn_db from networking_bgpvpn.neutron.services.common import utils from networking_bgpvpn.neutron.services.service_drivers.bagpipe \ import bagpipe_v2 as v2 LOG = logging.getLogger(__name__) @log_helpers.log_method_call @db_api.CONTEXT_READER def get_network_info_for_port(context, port_id, network_id): """Get MAC, IP and Gateway IP addresses informations for a specific port""" try: net_info = (context.session. query(models_v2.Port.mac_address, models_v2.IPAllocation.ip_address, models_v2.Subnet.cidr, models_v2.Subnet.gateway_ip). join(models_v2.IPAllocation, models_v2.IPAllocation.port_id == models_v2.Port.id). join(models_v2.Subnet, models_v2.IPAllocation.subnet_id == models_v2.Subnet.id). filter(models_v2.Subnet.ip_version == 4). filter(models_v2.Port.id == port_id).one()) (mac_address, ip_address, cidr, gateway_ip) = net_info except orm.exc.NoResultFound: return gateway_mac = ( context.session. query(models_v2.Port.mac_address). filter( models_v2.Port.network_id == network_id, (models_v2.Port.device_owner == const.DEVICE_OWNER_ROUTER_INTF) ). one_or_none() ) return {'mac_address': mac_address, 'ip_address': ip_address + cidr[cidr.index('/'):], 'gateway_ip': gateway_ip, 'gateway_mac': gateway_mac[0] if gateway_mac else None} @db_api.CONTEXT_READER @db_api.CONTEXT_READER @db_api.CONTEXT_READER @db_api.CONTEXT_READER @db_api.CONTEXT_READER @db_api.CONTEXT_READER @db_api.CONTEXT_READER @registry.has_registry_receivers class BaGPipeBGPVPNDriver(v2.BaGPipeBGPVPNDriver): """BGPVPN Service Driver class for BaGPipe""" def _format_bgpvpn(self, context, bgpvpn, network_id): """JSON-format BGPVPN BGPVPN, network identifiers, and route targets. """ formatted_bgpvpn = {'id': bgpvpn['id'], 'network_id': network_id, 'gateway_mac': get_gateway_mac(context, network_id)} formatted_bgpvpn.update( self._format_bgpvpn_network_route_targets([bgpvpn])) return formatted_bgpvpn def _format_bgpvpn_network_route_targets(self, bgpvpns): """Format BGPVPN network informations (VPN type and route targets) [{ 'type': 'l3', 'route_targets': ['12345:1', '12345:2'], 'import_targets': ['12345:3'], 'export_targets': ['12345:4'] }, { 'type': 'l3', 'route_targets': ['12346:1'] }, { 'type': 'l2', 'route_targets': ['12347:1'] } ] to { 'l3vpn' : { 'import_rt': ['12345:1', '12345:2', '12345:3', '12346:1'], 'export_rt': ['12345:1', '12345:2', '12345:4', '12346:1'] }, 'l2vpn' : { 'import_rt': ['12347:1'], 'export_rt': ['12347:1'] } } """ bgpvpn_rts = {} for bgpvpn in bgpvpns: # Add necessary keys to BGP VPN route targets dictionary if bgpvpn['type'] + 'vpn' not in bgpvpn_rts: bgpvpn_rts.update( {bgpvpn['type'] + 'vpn': {'import_rt': [], 'export_rt': []}} ) if 'route_targets' in bgpvpn: bgpvpn_rts[bgpvpn['type'] + 'vpn']['import_rt'] += ( bgpvpn['route_targets'] ) bgpvpn_rts[bgpvpn['type'] + 'vpn']['export_rt'] += ( bgpvpn['route_targets'] ) if 'import_targets' in bgpvpn: bgpvpn_rts[bgpvpn['type'] + 'vpn']['import_rt'] += ( bgpvpn['import_targets'] ) if 'export_targets' in bgpvpn: bgpvpn_rts[bgpvpn['type'] + 'vpn']['export_rt'] += ( bgpvpn['export_targets'] ) for attribute in ('import_rt', 'export_rt'): if bgpvpn_rts[bgpvpn['type'] + 'vpn'][attribute]: bgpvpn_rts[bgpvpn['type'] + 'vpn'][attribute] = list( set(bgpvpn_rts[bgpvpn['type'] + 'vpn'][attribute])) return bgpvpn_rts def _retrieve_bgpvpn_network_info_for_port(self, context, port): """Retrieve BGP VPN network informations for a specific port { 'network_id': <UUID>, 'mac_address': '00:00:de:ad:be:ef', 'ip_address': '10.0.0.2', 'gateway_ip': '10.0.0.1', 'gateway_mac': 'aa:bb:cc:dd:ee:ff', # if a router interface exists 'l3vpn' : { 'import_rt': ['12345:1', '12345:2', '12345:3'], 'export_rt': ['12345:1', '12345:2', '12345:4'] } } """ port_id = port['id'] network_id = port['network_id'] bgpvpn_network_info = {} bgpvpns = self._bgpvpns_for_network(context, network_id) # NOTE(tmorin): We currently need to send 'network_id', 'mac_address', # 'ip_address', 'gateway_ip' to the agent, even in the absence of # a BGPVPN bound to the port. If we don't this information will # lack on an update_bgpvpn RPC. When the agent will have the ability # to retrieve this info by itself, we'll change this method # to return {} if there is no bound bgpvpn. bgpvpn_rts = self._format_bgpvpn_network_route_targets(bgpvpns) LOG.debug("Port connected on BGPVPN network %s with route targets " "%s" % (network_id, bgpvpn_rts)) bgpvpn_network_info.update(bgpvpn_rts) LOG.debug("Getting port %s network details" % port_id) network_info = get_network_info_for_port(context, port_id, network_id) if not network_info: LOG.warning("No network information for net %s", network_id) return bgpvpn_network_info.update(network_info) return bgpvpn_network_info @db_api.CONTEXT_READER @log_helpers.log_method_call @log_helpers.log_method_call @log_helpers.log_method_call @log_helpers.log_method_call @registry.receives(resources.PORT, [events.AFTER_UPDATE]) @log_helpers.log_method_call @registry.receives(resources.PORT, [events.AFTER_DELETE]) @log_helpers.log_method_call # contrary to mother class, no need to subscribe to router interface # before-delete, because after delete, we still can generate RPCs @registry.receives(resources.ROUTER_INTERFACE, [events.AFTER_DELETE]) @log_helpers.log_method_call
38.744991
79
0.593249
# Copyright (c) 2015 Orange. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from sqlalchemy import orm from sqlalchemy import sql from neutron.db.models import l3 from neutron.db import models_v2 from neutron.debug import debug_agent from neutron_lib.api.definitions import portbindings from neutron_lib.callbacks import events from neutron_lib.callbacks import registry from neutron_lib.callbacks import resources from neutron_lib import constants as const from neutron_lib.db import api as db_api from oslo_log import helpers as log_helpers from oslo_log import log as logging from networking_bagpipe.agent.bgpvpn import rpc_client from networking_bgpvpn.neutron.db import bgpvpn_db from networking_bgpvpn.neutron.services.common import utils from networking_bgpvpn.neutron.services.service_drivers.bagpipe \ import bagpipe_v2 as v2 LOG = logging.getLogger(__name__) @log_helpers.log_method_call @db_api.CONTEXT_READER def get_network_info_for_port(context, port_id, network_id): """Get MAC, IP and Gateway IP addresses informations for a specific port""" try: net_info = (context.session. query(models_v2.Port.mac_address, models_v2.IPAllocation.ip_address, models_v2.Subnet.cidr, models_v2.Subnet.gateway_ip). join(models_v2.IPAllocation, models_v2.IPAllocation.port_id == models_v2.Port.id). join(models_v2.Subnet, models_v2.IPAllocation.subnet_id == models_v2.Subnet.id). filter(models_v2.Subnet.ip_version == 4). filter(models_v2.Port.id == port_id).one()) (mac_address, ip_address, cidr, gateway_ip) = net_info except orm.exc.NoResultFound: return gateway_mac = ( context.session. query(models_v2.Port.mac_address). filter( models_v2.Port.network_id == network_id, (models_v2.Port.device_owner == const.DEVICE_OWNER_ROUTER_INTF) ). one_or_none() ) return {'mac_address': mac_address, 'ip_address': ip_address + cidr[cidr.index('/'):], 'gateway_ip': gateway_ip, 'gateway_mac': gateway_mac[0] if gateway_mac else None} @db_api.CONTEXT_READER def get_gateway_mac(context, network_id): gateway_mac = ( context.session. query(models_v2.Port.mac_address). filter( models_v2.Port.network_id == network_id, (models_v2.Port.device_owner == const.DEVICE_OWNER_ROUTER_INTF) ). one_or_none() ) return gateway_mac[0] if gateway_mac else None @db_api.CONTEXT_READER def get_network_ports(context, network_id): # NOTE(tmorin): currents callers don't look at detailed results # but only test if at least one result exist => can be optimized # by returning a count, rather than all port information return (context.session.query(models_v2.Port). filter(models_v2.Port.network_id == network_id, models_v2.Port.admin_state_up == sql.true()).all()) @db_api.CONTEXT_READER def get_router_ports(context, router_id): return ( context.session.query(models_v2.Port). filter( models_v2.Port.device_id == router_id, models_v2.Port.device_owner == const.DEVICE_OWNER_ROUTER_INTF ).all() ) @db_api.CONTEXT_READER def get_router_bgpvpn_assocs(context, router_id): return ( context.session.query(bgpvpn_db.BGPVPNRouterAssociation). filter( bgpvpn_db.BGPVPNRouterAssociation.router_id == router_id ).all() ) @db_api.CONTEXT_READER def get_network_bgpvpn_assocs(context, net_id): return ( context.session.query(bgpvpn_db.BGPVPNNetAssociation). filter( bgpvpn_db.BGPVPNNetAssociation.network_id == net_id ).all() ) @db_api.CONTEXT_READER def get_bgpvpns_of_router_assocs_by_network(context, net_id): return ( context.session.query(bgpvpn_db.BGPVPN). join(bgpvpn_db.BGPVPN.router_associations). join(bgpvpn_db.BGPVPNRouterAssociation.router). join(l3.Router.attached_ports). join(l3.RouterPort.port). filter( models_v2.Port.network_id == net_id ).all() ) @db_api.CONTEXT_READER def get_networks_for_router(context, router_id): ports = get_router_ports(context, router_id) if ports: return {port['network_id'] for port in ports} else: return [] def _log_callback_processing_exception(resource, event, trigger, kwargs, e): LOG.exception("Error during notification processing " "%(resource)s %(event)s, %(trigger)s, " "%(kwargs)s: %(exc)s", {'trigger': trigger, 'resource': resource, 'event': event, 'kwargs': kwargs, 'exc': e}) @registry.has_registry_receivers class BaGPipeBGPVPNDriver(v2.BaGPipeBGPVPNDriver): """BGPVPN Service Driver class for BaGPipe""" def __init__(self, service_plugin): super(BaGPipeBGPVPNDriver, self).__init__(service_plugin) self.agent_rpc = rpc_client.BGPVPNAgentNotifyApi() def _format_bgpvpn(self, context, bgpvpn, network_id): """JSON-format BGPVPN BGPVPN, network identifiers, and route targets. """ formatted_bgpvpn = {'id': bgpvpn['id'], 'network_id': network_id, 'gateway_mac': get_gateway_mac(context, network_id)} formatted_bgpvpn.update( self._format_bgpvpn_network_route_targets([bgpvpn])) return formatted_bgpvpn def _format_bgpvpn_network_route_targets(self, bgpvpns): """Format BGPVPN network informations (VPN type and route targets) [{ 'type': 'l3', 'route_targets': ['12345:1', '12345:2'], 'import_targets': ['12345:3'], 'export_targets': ['12345:4'] }, { 'type': 'l3', 'route_targets': ['12346:1'] }, { 'type': 'l2', 'route_targets': ['12347:1'] } ] to { 'l3vpn' : { 'import_rt': ['12345:1', '12345:2', '12345:3', '12346:1'], 'export_rt': ['12345:1', '12345:2', '12345:4', '12346:1'] }, 'l2vpn' : { 'import_rt': ['12347:1'], 'export_rt': ['12347:1'] } } """ bgpvpn_rts = {} for bgpvpn in bgpvpns: # Add necessary keys to BGP VPN route targets dictionary if bgpvpn['type'] + 'vpn' not in bgpvpn_rts: bgpvpn_rts.update( {bgpvpn['type'] + 'vpn': {'import_rt': [], 'export_rt': []}} ) if 'route_targets' in bgpvpn: bgpvpn_rts[bgpvpn['type'] + 'vpn']['import_rt'] += ( bgpvpn['route_targets'] ) bgpvpn_rts[bgpvpn['type'] + 'vpn']['export_rt'] += ( bgpvpn['route_targets'] ) if 'import_targets' in bgpvpn: bgpvpn_rts[bgpvpn['type'] + 'vpn']['import_rt'] += ( bgpvpn['import_targets'] ) if 'export_targets' in bgpvpn: bgpvpn_rts[bgpvpn['type'] + 'vpn']['export_rt'] += ( bgpvpn['export_targets'] ) for attribute in ('import_rt', 'export_rt'): if bgpvpn_rts[bgpvpn['type'] + 'vpn'][attribute]: bgpvpn_rts[bgpvpn['type'] + 'vpn'][attribute] = list( set(bgpvpn_rts[bgpvpn['type'] + 'vpn'][attribute])) return bgpvpn_rts def _bgpvpns_for_network(self, context, network_id): return ( self.bgpvpn_db.get_bgpvpns( context, filters={ 'networks': [network_id], }, ) or self.retrieve_bgpvpns_of_router_assocs_by_network(context, network_id) ) def _networks_for_bgpvpn(self, context, bgpvpn): networks = [] networks.extend(bgpvpn['networks']) for router_id in bgpvpn['routers']: networks.extend(get_networks_for_router(context, router_id)) return list(set(networks)) def _retrieve_bgpvpn_network_info_for_port(self, context, port): """Retrieve BGP VPN network informations for a specific port { 'network_id': <UUID>, 'mac_address': '00:00:de:ad:be:ef', 'ip_address': '10.0.0.2', 'gateway_ip': '10.0.0.1', 'gateway_mac': 'aa:bb:cc:dd:ee:ff', # if a router interface exists 'l3vpn' : { 'import_rt': ['12345:1', '12345:2', '12345:3'], 'export_rt': ['12345:1', '12345:2', '12345:4'] } } """ port_id = port['id'] network_id = port['network_id'] bgpvpn_network_info = {} bgpvpns = self._bgpvpns_for_network(context, network_id) # NOTE(tmorin): We currently need to send 'network_id', 'mac_address', # 'ip_address', 'gateway_ip' to the agent, even in the absence of # a BGPVPN bound to the port. If we don't this information will # lack on an update_bgpvpn RPC. When the agent will have the ability # to retrieve this info by itself, we'll change this method # to return {} if there is no bound bgpvpn. bgpvpn_rts = self._format_bgpvpn_network_route_targets(bgpvpns) LOG.debug("Port connected on BGPVPN network %s with route targets " "%s" % (network_id, bgpvpn_rts)) bgpvpn_network_info.update(bgpvpn_rts) LOG.debug("Getting port %s network details" % port_id) network_info = get_network_info_for_port(context, port_id, network_id) if not network_info: LOG.warning("No network information for net %s", network_id) return bgpvpn_network_info.update(network_info) return bgpvpn_network_info @db_api.CONTEXT_READER def retrieve_bgpvpns_of_router_assocs_by_network(self, context, network_id): return [self.bgpvpn_db._make_bgpvpn_dict(bgpvpn) for bgpvpn in get_bgpvpns_of_router_assocs_by_network(context, network_id)] def delete_bgpvpn_postcommit(self, context, bgpvpn): for net_id in self._networks_for_bgpvpn(context, bgpvpn): if get_network_ports(context, net_id): # Format BGPVPN before sending notification self.agent_rpc.delete_bgpvpn( context, self._format_bgpvpn(context, bgpvpn, net_id)) def update_bgpvpn_postcommit(self, context, old_bgpvpn, bgpvpn): super(BaGPipeBGPVPNDriver, self).update_bgpvpn_postcommit( context, old_bgpvpn, bgpvpn) (added_keys, removed_keys, changed_keys) = ( utils.get_bgpvpn_differences(bgpvpn, old_bgpvpn)) ATTRIBUTES_TO_IGNORE = set('name') moving_keys = added_keys | removed_keys | changed_keys if len(moving_keys ^ ATTRIBUTES_TO_IGNORE): for net_id in self._networks_for_bgpvpn(context, bgpvpn): if (get_network_ports(context, net_id)): self._update_bgpvpn_for_network(context, net_id, bgpvpn) def _update_bgpvpn_for_net_with_id(self, context, network_id, bgpvpn_id): if get_network_ports(context, network_id): bgpvpn = self.get_bgpvpn(context, bgpvpn_id) self._update_bgpvpn_for_network(context, network_id, bgpvpn) def _update_bgpvpn_for_network(self, context, net_id, bgpvpn): formated_bgpvpn = self._format_bgpvpn(context, bgpvpn, net_id) self.agent_rpc.update_bgpvpn(context, formated_bgpvpn) def create_net_assoc_postcommit(self, context, net_assoc): super(BaGPipeBGPVPNDriver, self).create_net_assoc_postcommit(context, net_assoc) self._update_bgpvpn_for_net_with_id(context, net_assoc['network_id'], net_assoc['bgpvpn_id']) def delete_net_assoc_postcommit(self, context, net_assoc): if get_network_ports(context, net_assoc['network_id']): bgpvpn = self.get_bgpvpn(context, net_assoc['bgpvpn_id']) formated_bgpvpn = self._format_bgpvpn(context, bgpvpn, net_assoc['network_id']) self.agent_rpc.delete_bgpvpn(context, formated_bgpvpn) def _ignore_port(self, context, port): if (port['device_owner'].startswith( const.DEVICE_OWNER_NETWORK_PREFIX) and not port['device_owner'] in (debug_agent.DEVICE_OWNER_COMPUTE_PROBE, debug_agent.DEVICE_OWNER_NETWORK_PROBE)): LOG.info("Port %s owner is network:*, we'll do nothing", port['id']) return True if v2.network_is_external(context, port['network_id']): LOG.info("Port %s is on an external network, we'll do nothing", port['id']) return True return False @log_helpers.log_method_call def notify_port_updated(self, context, port, original_port): if self._ignore_port(context, port): return agent_host = port[portbindings.HOST_ID] port_bgpvpn_info = {'id': port['id'], 'network_id': port['network_id']} if (port['status'] == const.PORT_STATUS_ACTIVE and original_port['status'] != const.PORT_STATUS_ACTIVE): LOG.debug("notify_port_updated, port became ACTIVE") bgpvpn_network_info = ( self._retrieve_bgpvpn_network_info_for_port(context, port) ) if bgpvpn_network_info: port_bgpvpn_info.update(bgpvpn_network_info) self.agent_rpc.attach_port_on_bgpvpn(context, port_bgpvpn_info, agent_host) else: # currently not reached, because we need # _retrieve_bgpvpn_network_info_for_port to always # return network information, even in the absence # of any BGPVPN port bound. pass elif (port['status'] == const.PORT_STATUS_DOWN and original_port['status'] != const.PORT_STATUS_DOWN): LOG.debug("notify_port_updated, port became DOWN") self.agent_rpc.detach_port_from_bgpvpn(context, port_bgpvpn_info, agent_host) else: LOG.debug("new port status is %s, origin status was %s," " => no action", port['status'], original_port['status']) @log_helpers.log_method_call def notify_port_deleted(self, context, port): port_bgpvpn_info = {'id': port['id'], 'network_id': port['network_id']} if self._ignore_port(context, port): return self.agent_rpc.detach_port_from_bgpvpn(context, port_bgpvpn_info, port[portbindings.HOST_ID]) def create_router_assoc_postcommit(self, context, router_assoc): super(BaGPipeBGPVPNDriver, self).create_router_assoc_postcommit( context, router_assoc) for net_id in get_networks_for_router(context, router_assoc['router_id']): self._update_bgpvpn_for_net_with_id(context, net_id, router_assoc['bgpvpn_id']) def delete_router_assoc_postcommit(self, context, router_assoc): for net_id in get_networks_for_router(context, router_assoc['router_id']): net_assoc = {'network_id': net_id, 'bgpvpn_id': router_assoc['bgpvpn_id']} self.delete_net_assoc_postcommit(context, net_assoc) @log_helpers.log_method_call def notify_router_interface_created(self, context, router_id, net_id): super(BaGPipeBGPVPNDriver, self).notify_router_interface_created( context, router_id, net_id) net_assocs = get_network_bgpvpn_assocs(context, net_id) router_assocs = get_router_bgpvpn_assocs(context, router_id) # if this router_interface is on a network bound to a BGPVPN, # or if this router is bound to a BGPVPN, # then we need to send and update for this network, including # the gateway_mac if net_assocs or router_assocs: for bgpvpn in self._bgpvpns_for_network(context, net_id): self._update_bgpvpn_for_network(context, net_id, bgpvpn) for router_assoc in router_assocs: self._update_bgpvpn_for_net_with_id(context, net_id, router_assoc['bgpvpn_id']) @log_helpers.log_method_call def notify_router_interface_deleted(self, context, router_id, net_id): super(BaGPipeBGPVPNDriver, self).notify_router_interface_deleted( context, router_id, net_id) net_assocs = get_network_bgpvpn_assocs(context, net_id) router_assocs = get_router_bgpvpn_assocs(context, router_id) if net_assocs or router_assocs: for bgpvpn in self._bgpvpns_for_network(context, net_id): self._update_bgpvpn_for_network(context, net_id, bgpvpn) for router_assoc in router_assocs: net_assoc = {'network_id': net_id, 'bgpvpn_id': router_assoc['bgpvpn_id']} self.delete_net_assoc_postcommit(context, net_assoc) @registry.receives(resources.PORT, [events.AFTER_UPDATE]) @log_helpers.log_method_call def registry_port_updated(self, resource, event, trigger, payload): try: context = payload.context port = payload.latest_state original_port = payload.states[0] self.notify_port_updated(context, port, original_port) except Exception as e: _log_callback_processing_exception(resource, event, trigger, payload.metadata, e) @registry.receives(resources.PORT, [events.AFTER_DELETE]) @log_helpers.log_method_call def registry_port_deleted(self, resource, event, trigger, payload): try: context = payload.context port = payload.latest_state self.notify_port_deleted(context, port) except Exception as e: _log_callback_processing_exception(resource, event, trigger, payload.metadata, e) # contrary to mother class, no need to subscribe to router interface # before-delete, because after delete, we still can generate RPCs @registry.receives(resources.ROUTER_INTERFACE, [events.AFTER_DELETE]) @log_helpers.log_method_call def registry_router_interface_deleted(self, resource, event, trigger, payload=None): try: context = payload.context # for router_interface after_delete, in stable/newton, the # callback does not include the router_id directly, but we find # it in the port device_id router_id = payload.metadata.get('port')['device_id'] net_id = payload.metadata.get('port')['network_id'] self.notify_router_interface_deleted(context, router_id, net_id) except Exception as e: _log_callback_processing_exception(resource, event, trigger, payload.metadata, e)
12,219
0
709
3bf82136b95654948d1c922678337c70dedf2483
857
py
Python
doc/snippets/rph_deserializer.py
michael-the1/diepvries
ddba9c91ee5fb2014dc576ffb74faa40c3d0d04f
[ "MIT" ]
67
2021-08-20T14:30:49.000Z
2022-03-22T23:37:08.000Z
doc/snippets/rph_deserializer.py
michael-the1/diepvries
ddba9c91ee5fb2014dc576ffb74faa40c3d0d04f
[ "MIT" ]
1
2022-01-22T08:19:38.000Z
2022-02-02T08:48:34.000Z
doc/snippets/rph_deserializer.py
michael-the1/diepvries
ddba9c91ee5fb2014dc576ffb74faa40c3d0d04f
[ "MIT" ]
6
2021-09-03T17:21:16.000Z
2021-12-22T12:11:51.000Z
from diepvries.deserializers.snowflake_deserializer import ( DatabaseConfiguration, SnowflakeDeserializer, ) if __name__ == "__main__": deserialize()
26.78125
83
0.667445
from diepvries.deserializers.snowflake_deserializer import ( DatabaseConfiguration, SnowflakeDeserializer, ) def deserialize(): database_configuration = DatabaseConfiguration( database="<DB>", user="<USER>", password="<PASSWORD>", warehouse="<WAREHOUSE>", account="<ACCOUNT>", ) deserializer = SnowflakeDeserializer( target_schema="dv", target_tables=["h_account", "h_account_supplier", "h_account_transporter"], database_configuration=database_configuration, role_playing_hubs={ "h_account_supplier": "h_account", "h_account_transporter": "h_account", }, ) print(deserializer.deserialized_target_tables) print([x.name for x in deserializer.deserialized_target_tables]) if __name__ == "__main__": deserialize()
669
0
23
caa7fc2ab467b003c39e1164d5b171219ed1bd62
1,073
py
Python
metrics/uncertainty_confidence.py
Karthik-Ragunath/DDU
b9daae9304bdeb222857884ef8cb3b6b3d004d33
[ "MIT" ]
43
2021-05-20T14:07:53.000Z
2022-03-23T12:58:26.000Z
metrics/uncertainty_confidence.py
Karthik-Ragunath/DDU
b9daae9304bdeb222857884ef8cb3b6b3d004d33
[ "MIT" ]
3
2021-09-19T20:49:21.000Z
2022-03-07T10:25:47.000Z
metrics/uncertainty_confidence.py
Karthik-Ragunath/DDU
b9daae9304bdeb222857884ef8cb3b6b3d004d33
[ "MIT" ]
8
2021-06-26T15:28:45.000Z
2022-02-19T02:07:05.000Z
""" Metrics measuring either uncertainty or confidence of a model. """ import torch import torch.nn.functional as F
21.897959
63
0.664492
""" Metrics measuring either uncertainty or confidence of a model. """ import torch import torch.nn.functional as F def entropy(logits): p = F.softmax(logits, dim=1) logp = F.log_softmax(logits, dim=1) plogp = p * logp entropy = -torch.sum(plogp, dim=1) return entropy def logsumexp(logits): return torch.logsumexp(logits, dim=1, keepdim=False) def confidence(logits): p = F.softmax(logits, dim=1) confidence, _ = torch.max(p, dim=1) return confidence def entropy_prob(probs): p = probs eps = 1e-12 logp = torch.log(p + eps) plogp = p * logp entropy = -torch.sum(plogp, dim=1) return entropy def mutual_information_prob(probs): mean_output = torch.mean(probs, dim=0) predictive_entropy = entropy_prob(mean_output) # Computing expectation of entropies p = probs eps = 1e-12 logp = torch.log(p + eps) plogp = p * logp exp_entropies = torch.mean(-torch.sum(plogp, dim=2), dim=0) # Computing mutual information mi = predictive_entropy - exp_entropies return mi
837
0
115
4bd8f34b13a613b9fbf79810fcb40ce5c3a6a951
3,717
py
Python
pysnmp-with-texts/TUBS-IBR-AGENT-CAPABILITIES.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
8
2019-05-09T17:04:00.000Z
2021-06-09T06:50:51.000Z
pysnmp-with-texts/TUBS-IBR-AGENT-CAPABILITIES.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
4
2019-05-31T16:42:59.000Z
2020-01-31T21:57:17.000Z
pysnmp-with-texts/TUBS-IBR-AGENT-CAPABILITIES.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module TUBS-IBR-AGENT-CAPABILITIES (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/TUBS-IBR-AGENT-CAPABILITIES # Produced by pysmi-0.3.4 at Wed May 1 15:27:47 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, SingleValueConstraint, ValueRangeConstraint, ValueSizeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "SingleValueConstraint", "ValueRangeConstraint", "ValueSizeConstraint", "ConstraintsUnion") ModuleCompliance, AgentCapabilities, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "AgentCapabilities", "NotificationGroup") Gauge32, ObjectIdentity, Counter64, Counter32, NotificationType, MibScalar, MibTable, MibTableRow, MibTableColumn, TimeTicks, IpAddress, MibIdentifier, Bits, Integer32, ModuleIdentity, Unsigned32, iso = mibBuilder.importSymbols("SNMPv2-SMI", "Gauge32", "ObjectIdentity", "Counter64", "Counter32", "NotificationType", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "TimeTicks", "IpAddress", "MibIdentifier", "Bits", "Integer32", "ModuleIdentity", "Unsigned32", "iso") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") ibr, = mibBuilder.importSymbols("TUBS-SMI", "ibr") ibrAgentCapabilities = ModuleIdentity((1, 3, 6, 1, 4, 1, 1575, 1, 6)) ibrAgentCapabilities.setRevisions(('2000-02-09 00:00', '1998-08-05 16:23', '1997-02-14 10:23',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ibrAgentCapabilities.setRevisionsDescriptions(('Updated IMPORTS and minor stylistic fixes.', 'Added agent capabilities for the WWW-MIB subagent version 1.0.', 'The initial revision of this module.',)) if mibBuilder.loadTexts: ibrAgentCapabilities.setLastUpdated('200002090000Z') if mibBuilder.loadTexts: ibrAgentCapabilities.setOrganization('TU Braunschweig') if mibBuilder.loadTexts: ibrAgentCapabilities.setContactInfo('Juergen Schoenwaelder TU Braunschweig Bueltenweg 74/75 38106 Braunschweig Germany Tel: +49 531 391 3283 Fax: +49 531 391 5936 E-mail: schoenw@ibr.cs.tu-bs.de') if mibBuilder.loadTexts: ibrAgentCapabilities.setDescription('Agent capability statements.') linux = MibIdentifier((1, 3, 6, 1, 4, 1, 1575, 1, 6, 1)) linuxAgent3dot3 = AgentCapabilities((1, 3, 6, 1, 4, 1, 1575, 1, 6, 2)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): linuxAgent3dot3 = linuxAgent3dot3.setProductRelease('cmu-snmp-linux-3.3') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): linuxAgent3dot3 = linuxAgent3dot3.setStatus('current') if mibBuilder.loadTexts: linuxAgent3dot3.setDescription('CMU SNMP v1.1b + SNMPv2 USEC + LINUX') wwwSubagent1dot0 = AgentCapabilities((1, 3, 6, 1, 4, 1, 1575, 1, 6, 3)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): wwwSubagent1dot0 = wwwSubagent1dot0.setProductRelease('TUBS Apache WWW-MIB sub-agent version 1.0') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): wwwSubagent1dot0 = wwwSubagent1dot0.setStatus('current') if mibBuilder.loadTexts: wwwSubagent1dot0.setDescription('TUBS WWW-MIB sub-agent version 1.0 for Solaris.') mibBuilder.exportSymbols("TUBS-IBR-AGENT-CAPABILITIES", linuxAgent3dot3=linuxAgent3dot3, ibrAgentCapabilities=ibrAgentCapabilities, PYSNMP_MODULE_ID=ibrAgentCapabilities, wwwSubagent1dot0=wwwSubagent1dot0, linux=linux)
97.815789
477
0.769438
# # PySNMP MIB module TUBS-IBR-AGENT-CAPABILITIES (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/TUBS-IBR-AGENT-CAPABILITIES # Produced by pysmi-0.3.4 at Wed May 1 15:27:47 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, SingleValueConstraint, ValueRangeConstraint, ValueSizeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "SingleValueConstraint", "ValueRangeConstraint", "ValueSizeConstraint", "ConstraintsUnion") ModuleCompliance, AgentCapabilities, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "AgentCapabilities", "NotificationGroup") Gauge32, ObjectIdentity, Counter64, Counter32, NotificationType, MibScalar, MibTable, MibTableRow, MibTableColumn, TimeTicks, IpAddress, MibIdentifier, Bits, Integer32, ModuleIdentity, Unsigned32, iso = mibBuilder.importSymbols("SNMPv2-SMI", "Gauge32", "ObjectIdentity", "Counter64", "Counter32", "NotificationType", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "TimeTicks", "IpAddress", "MibIdentifier", "Bits", "Integer32", "ModuleIdentity", "Unsigned32", "iso") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") ibr, = mibBuilder.importSymbols("TUBS-SMI", "ibr") ibrAgentCapabilities = ModuleIdentity((1, 3, 6, 1, 4, 1, 1575, 1, 6)) ibrAgentCapabilities.setRevisions(('2000-02-09 00:00', '1998-08-05 16:23', '1997-02-14 10:23',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ibrAgentCapabilities.setRevisionsDescriptions(('Updated IMPORTS and minor stylistic fixes.', 'Added agent capabilities for the WWW-MIB subagent version 1.0.', 'The initial revision of this module.',)) if mibBuilder.loadTexts: ibrAgentCapabilities.setLastUpdated('200002090000Z') if mibBuilder.loadTexts: ibrAgentCapabilities.setOrganization('TU Braunschweig') if mibBuilder.loadTexts: ibrAgentCapabilities.setContactInfo('Juergen Schoenwaelder TU Braunschweig Bueltenweg 74/75 38106 Braunschweig Germany Tel: +49 531 391 3283 Fax: +49 531 391 5936 E-mail: schoenw@ibr.cs.tu-bs.de') if mibBuilder.loadTexts: ibrAgentCapabilities.setDescription('Agent capability statements.') linux = MibIdentifier((1, 3, 6, 1, 4, 1, 1575, 1, 6, 1)) linuxAgent3dot3 = AgentCapabilities((1, 3, 6, 1, 4, 1, 1575, 1, 6, 2)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): linuxAgent3dot3 = linuxAgent3dot3.setProductRelease('cmu-snmp-linux-3.3') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): linuxAgent3dot3 = linuxAgent3dot3.setStatus('current') if mibBuilder.loadTexts: linuxAgent3dot3.setDescription('CMU SNMP v1.1b + SNMPv2 USEC + LINUX') wwwSubagent1dot0 = AgentCapabilities((1, 3, 6, 1, 4, 1, 1575, 1, 6, 3)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): wwwSubagent1dot0 = wwwSubagent1dot0.setProductRelease('TUBS Apache WWW-MIB sub-agent version 1.0') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): wwwSubagent1dot0 = wwwSubagent1dot0.setStatus('current') if mibBuilder.loadTexts: wwwSubagent1dot0.setDescription('TUBS WWW-MIB sub-agent version 1.0 for Solaris.') mibBuilder.exportSymbols("TUBS-IBR-AGENT-CAPABILITIES", linuxAgent3dot3=linuxAgent3dot3, ibrAgentCapabilities=ibrAgentCapabilities, PYSNMP_MODULE_ID=ibrAgentCapabilities, wwwSubagent1dot0=wwwSubagent1dot0, linux=linux)
0
0
0
7075d8ceddff8373d1448de790f5c8e02b65488c
2,373
py
Python
generate_letter.py
drewlinsley/cabc
74726509e542d5f0f04bf297c211cca9f6e87b56
[ "MIT" ]
2
2020-04-19T01:19:10.000Z
2021-06-08T02:04:48.000Z
generate_letter.py
drewlinsley/cabc
74726509e542d5f0f04bf297c211cca9f6e87b56
[ "MIT" ]
null
null
null
generate_letter.py
drewlinsley/cabc
74726509e542d5f0f04bf297c211cca9f6e87b56
[ "MIT" ]
null
null
null
import PIL from PIL import ImageFont from PIL import Image from PIL import ImageDraw import numpy as np import matplotlib.pyplot as plt import os from skimage.filters import threshold_otsu import scipy from scipy import ndimage from scipy.interpolate import griddata import cv2 import preprocess if __name__ == "__main__": # DEFINE AND LOAD FONT script_root = '/Users/junkyungkim/Documents/PycharmProjects/cluttered_nist' fontnames = ['FUTRFW.ttf', 'Instruction.otf', 'absender1.ttf', '5Identification-Mono.ttf', '7Segment.ttf', 'VCR_OSD_MONO_1.001.ttf', 'Instruction.otf', 'Segment16B Regular.ttf'] std_fontsizes = [225, 240, 225, 150, 255, 255, 255, 255] std_thin_iters = [6, 15, 4, 9, 9, 2] scale = 1 # 0.5 for fontname, std_fontsize, std_thin_iter in zip(fontnames, std_fontsizes, std_thin_iters): std_fontsize = int(std_fontsize*scale) std_thin_iter = int(std_thin_iter*scale) font = ImageFont.truetype(os.path.join(script_root,'fonts',fontname), std_fontsize) # RENDER img=Image.new("RGBA", (2500, 300), (255, 255, 255)) draw = ImageDraw.Draw(img) draw.text((0, 0), "ABCDEFGXYZ", (0, 0, 0), font=font) draw = ImageDraw.Draw(img) # MORPHOLOGICAL POSTPROC (FOR CONSTNAT STROKE THICKNESS) img = 255 - np.mean(np.array(img), axis=2) binary = img > 128 # img_closed = scipy.ndimage.binary_closing(binary.astype(np.int), iterations=20)##np.maximum(iterations / 2, 1)) img_eroded = (scipy.ndimage.morphology.binary_erosion(binary, iterations=std_thin_iter) * 255).astype(np.uint8) landscape = preprocess.generate_distortion_mask(img_eroded, sigma=[4000,2000], num_centers=[30,20]) warped = preprocess.custom_warp(img_eroded, landscape, power=0.07) # img_dist = img_eroded # distCoeffs = [-.1, 1.0, 1.0, 1.0] # focal_length = [1000, 1000] # for coord in [[400,100],[500,150],[600,200]]: # distCoeffs[0] = distCoeffs[0]*-1 # img_dist = custom_fisheye(img_dist, coord, distCoeffs, focal_length) # import preprocess # im_pixelated = preprocess.pixelate_obj(img_eroded, [10 * scale, 10 * scale], 0.1, 5 * scale, ignore_fit=True) plt.subplot(211);plt.imshow(binary, cmap='gray') plt.subplot(212);plt.imshow(warped, cmap='gray') plt.show() # thinned = zhangSuen(binary) # plt.subplot(121) # plt.imshow(img) # plt.subplot(122) # plt.imshow(thinned) # plt.show()
32.958333
115
0.710072
import PIL from PIL import ImageFont from PIL import Image from PIL import ImageDraw import numpy as np import matplotlib.pyplot as plt import os from skimage.filters import threshold_otsu import scipy from scipy import ndimage from scipy.interpolate import griddata import cv2 import preprocess if __name__ == "__main__": # DEFINE AND LOAD FONT script_root = '/Users/junkyungkim/Documents/PycharmProjects/cluttered_nist' fontnames = ['FUTRFW.ttf', 'Instruction.otf', 'absender1.ttf', '5Identification-Mono.ttf', '7Segment.ttf', 'VCR_OSD_MONO_1.001.ttf', 'Instruction.otf', 'Segment16B Regular.ttf'] std_fontsizes = [225, 240, 225, 150, 255, 255, 255, 255] std_thin_iters = [6, 15, 4, 9, 9, 2] scale = 1 # 0.5 for fontname, std_fontsize, std_thin_iter in zip(fontnames, std_fontsizes, std_thin_iters): std_fontsize = int(std_fontsize*scale) std_thin_iter = int(std_thin_iter*scale) font = ImageFont.truetype(os.path.join(script_root,'fonts',fontname), std_fontsize) # RENDER img=Image.new("RGBA", (2500, 300), (255, 255, 255)) draw = ImageDraw.Draw(img) draw.text((0, 0), "ABCDEFGXYZ", (0, 0, 0), font=font) draw = ImageDraw.Draw(img) # MORPHOLOGICAL POSTPROC (FOR CONSTNAT STROKE THICKNESS) img = 255 - np.mean(np.array(img), axis=2) binary = img > 128 # img_closed = scipy.ndimage.binary_closing(binary.astype(np.int), iterations=20)##np.maximum(iterations / 2, 1)) img_eroded = (scipy.ndimage.morphology.binary_erosion(binary, iterations=std_thin_iter) * 255).astype(np.uint8) landscape = preprocess.generate_distortion_mask(img_eroded, sigma=[4000,2000], num_centers=[30,20]) warped = preprocess.custom_warp(img_eroded, landscape, power=0.07) # img_dist = img_eroded # distCoeffs = [-.1, 1.0, 1.0, 1.0] # focal_length = [1000, 1000] # for coord in [[400,100],[500,150],[600,200]]: # distCoeffs[0] = distCoeffs[0]*-1 # img_dist = custom_fisheye(img_dist, coord, distCoeffs, focal_length) # import preprocess # im_pixelated = preprocess.pixelate_obj(img_eroded, [10 * scale, 10 * scale], 0.1, 5 * scale, ignore_fit=True) plt.subplot(211);plt.imshow(binary, cmap='gray') plt.subplot(212);plt.imshow(warped, cmap='gray') plt.show() # thinned = zhangSuen(binary) # plt.subplot(121) # plt.imshow(img) # plt.subplot(122) # plt.imshow(thinned) # plt.show()
0
0
0
2bf52aa5f62814599fc3741d49983e8f1296f5e3
3,503
py
Python
qlknn/plots/load_data.py
Karel-van-de-Plassche/QLKNN-develop
f2d29be625c2ddbddad6c1e98e5c03a43cf2797f
[ "MIT" ]
null
null
null
qlknn/plots/load_data.py
Karel-van-de-Plassche/QLKNN-develop
f2d29be625c2ddbddad6c1e98e5c03a43cf2797f
[ "MIT" ]
null
null
null
qlknn/plots/load_data.py
Karel-van-de-Plassche/QLKNN-develop
f2d29be625c2ddbddad6c1e98e5c03a43cf2797f
[ "MIT" ]
2
2018-02-28T14:18:43.000Z
2018-11-26T11:06:08.000Z
import os import sys import numpy as np import scipy.stats as stats import pandas as pd from IPython import embed from qlknn.NNDB.model import Network, NetworkJSON from qlknn.models.ffnn import QuaLiKizNDNN shortname = {'Ate': '$R/L_{T_e}$', 'Ati': '$R/L_{T_i}$'} longname ={ 'Ate': 'Normalized electron temperature gradient $R/L_{T_e}$', 'Ati': 'Normalized ion temperature gradient $R/L_{T_i}$'} nameconvert = { 'An': '$R/L_n$', #'Nustar': '$\\nu^*$', 'Nustar': '$log_{10}(\\nu^*)$', 'logNustar': '$log_{10}(\\nu^*)$', 'Ti_Te': 'Relative temperature $T_i/T_e$', 'Zeff': '$Z_{eff}$', 'q': '$q$', 'smag': 'Magnetic shear $\hat{s}$', 'x': '$\\varepsilon\,(r/R)$', 'efe_GB': '$q_e\,[GB]$', 'efi_GB': '$q_i\,[GB]$', 'efiITG_GB': '$q_{ITG, i}\,[GB]$', 'efeITG_GB': '$q_{ITG, e}\,[GB]$', 'efiTEM_GB': '$q_{TEM, i}\,[GB]$', 'efeTEM_GB': '$q_{TEM, e}\,[GB]$', 'efeETG_GB': 'Normalized heat flux $q$', 'pfe_GB': '$\Gamma_e\,[GB]$', 'pfi_GB': '$\Gamma_i\,[GB]$', 'pfeITG_GB': '$\Gamma_{ITG, i}\,[GB]$', 'pfeTEM_GB': '$\Gamma_{TEM, i}\,[GB]$', 'gam_leq_GB': '$\gamma_{max, \leq 2}\,[GB]$' } comboname = { 'efiTEM_GB_div_efeTEM_GB': nameconvert['efiTEM_GB'] + '/' + nameconvert['efeTEM_GB'], 'pfeTEM_GB_div_efeTEM_GB': nameconvert['pfeTEM_GB'] + '/' + nameconvert['efeTEM_GB'], 'efeITG_GB_div_efiITG_GB': nameconvert['efeITG_GB'] + '/' + nameconvert['efiITG_GB'], 'pfeITG_GB_div_efiITG_GB': nameconvert['pfeITG_GB'] + '/' + nameconvert['efiITG_GB'] } nameconvert.update(shortname) nameconvert.update(comboname)
29.940171
89
0.586355
import os import sys import numpy as np import scipy.stats as stats import pandas as pd from IPython import embed from qlknn.NNDB.model import Network, NetworkJSON from qlknn.models.ffnn import QuaLiKizNDNN def load_data(id): store = pd.HDFStore('../7D_nions0_flat.h5') input = store['megarun1/input'] data = store['megarun1/flattened'] root_name = '/megarun1/nndb_nn/' query = (Network.select(Network.target_names).where(Network.id == id).tuples()).get() target_names = query[0] if len(target_names) == 1: target_name = target_names[0] else: NotImplementedError('Multiple targets not implemented yet') print(target_name) parent_name = root_name + target_name + '/' network_name = parent_name + str(id) network_name += '_noclip' nn = load_nn(id) df = data[target_name].to_frame('target') df['prediction'] = store[network_name].iloc[:, 0] df = df.astype('float64') df['residuals'] = df['target'] - df['prediction'] df['maxgam'] = pd.DataFrame({'leq': data['gam_leq_GB'], 'less': data['gam_less_GB']}).max(axis=1) return input, df, nn def load_nn(id): subquery = (Network.select(NetworkJSON.network_json) .where(Network.id == id) .join(NetworkJSON) .tuples()).get() json_dict = subquery[0] nn = QuaLiKizNDNN(json_dict) return nn shortname = {'Ate': '$R/L_{T_e}$', 'Ati': '$R/L_{T_i}$'} longname ={ 'Ate': 'Normalized electron temperature gradient $R/L_{T_e}$', 'Ati': 'Normalized ion temperature gradient $R/L_{T_i}$'} nameconvert = { 'An': '$R/L_n$', #'Nustar': '$\\nu^*$', 'Nustar': '$log_{10}(\\nu^*)$', 'logNustar': '$log_{10}(\\nu^*)$', 'Ti_Te': 'Relative temperature $T_i/T_e$', 'Zeff': '$Z_{eff}$', 'q': '$q$', 'smag': 'Magnetic shear $\hat{s}$', 'x': '$\\varepsilon\,(r/R)$', 'efe_GB': '$q_e\,[GB]$', 'efi_GB': '$q_i\,[GB]$', 'efiITG_GB': '$q_{ITG, i}\,[GB]$', 'efeITG_GB': '$q_{ITG, e}\,[GB]$', 'efiTEM_GB': '$q_{TEM, i}\,[GB]$', 'efeTEM_GB': '$q_{TEM, e}\,[GB]$', 'efeETG_GB': 'Normalized heat flux $q$', 'pfe_GB': '$\Gamma_e\,[GB]$', 'pfi_GB': '$\Gamma_i\,[GB]$', 'pfeITG_GB': '$\Gamma_{ITG, i}\,[GB]$', 'pfeTEM_GB': '$\Gamma_{TEM, i}\,[GB]$', 'gam_leq_GB': '$\gamma_{max, \leq 2}\,[GB]$' } comboname = { 'efiTEM_GB_div_efeTEM_GB': nameconvert['efiTEM_GB'] + '/' + nameconvert['efeTEM_GB'], 'pfeTEM_GB_div_efeTEM_GB': nameconvert['pfeTEM_GB'] + '/' + nameconvert['efeTEM_GB'], 'efeITG_GB_div_efiITG_GB': nameconvert['efeITG_GB'] + '/' + nameconvert['efiITG_GB'], 'pfeITG_GB_div_efiITG_GB': nameconvert['pfeITG_GB'] + '/' + nameconvert['efiITG_GB'] } nameconvert.update(shortname) nameconvert.update(comboname) def prettify_df(input, data): try: del input['nions'] except KeyError: pass for ii, col in enumerate(input): if col == u'Nustar': input[col] = input[col].apply(np.log10) #se = input[col] #se.name = nameconvert[se.name] input['x'] = (input['x'] / 3) input.rename(columns=nameconvert, inplace=True) data.rename(columns=nameconvert, inplace=True) #for ii, col in enumerate(data): # se = data[col] # try: # se.name = nameconvert[se.name] # except KeyError: # warn('Did not translate name for ' + se.name) return input, data
1,801
0
68
2bcc82625a9e7a68e52a4eca462930e5ea09cbb5
4,424
py
Python
src/arclet/alconna/builtin/actions.py
ArcletProject/Alconna
e7532fe04a425ac2a1f64a0604017194f7cdc535
[ "MIT" ]
13
2021-12-14T05:47:03.000Z
2022-03-10T15:52:27.000Z
src/arclet/alconna/builtin/actions.py
ArcletProject/Alconna
e7532fe04a425ac2a1f64a0604017194f7cdc535
[ "MIT" ]
31
2021-12-14T15:16:01.000Z
2022-03-27T16:51:33.000Z
src/arclet/alconna/builtin/actions.py
ArcletProject/Alconna
e7532fe04a425ac2a1f64a0604017194f7cdc535
[ "MIT" ]
1
2022-03-22T13:33:04.000Z
2022-03-22T13:33:04.000Z
"""Alconna ArgAction相关""" from datetime import datetime from typing import Any, Optional, TYPE_CHECKING, Literal from arclet.alconna.components.action import ArgAction from arclet.alconna.components.behavior import ArpamarBehavior from arclet.alconna.exceptions import BehaveCancelled, OutBoundsBehavior from arclet.alconna.config import config class _StoreValue(ArgAction): """针对特定值的类""" def store_value(value: Any): """存储一个值""" return _StoreValue(value) if TYPE_CHECKING: from arclet.alconna import alconna_version from arclet.alconna.arpamar import Arpamar def version(value: Optional[tuple]): """返回一个以元组形式存储的版本信息""" return _StoreValue(value) if value else _StoreValue(alconna_version) def set_default(value: Any, option: Optional[str] = None, subcommand: Optional[str] = None): """ 设置一个选项的默认值, 在无该选项时会被设置 当option与subcommand同时传入时, 则会被设置为该subcommand内option的默认值 Args: value: 默认值 option: 选项名 subcommand: 子命令名 """ return _SetDefault() def exclusion(target_path: str, other_path: str): """ 当设置的两个路径同时存在时, 抛出异常 Args: target_path: 目标路径 other_path: 其他路径 """ return _EXCLUSION() def cool_down(seconds: float): """ 当设置的时间间隔内被调用时, 抛出异常 Args: seconds: 时间间隔 """ return _CoolDown() def inclusion(*targets: str, flag: Literal["any", "all"] = "any"): """ 当设置的路径不存在时, 抛出异常 Args: targets: 路径列表 flag: 匹配方式, 可选值为"any"或"all", 默认为"any" """ return _Inclusion()
32.291971
105
0.618445
"""Alconna ArgAction相关""" from datetime import datetime from typing import Any, Optional, TYPE_CHECKING, Literal from arclet.alconna.components.action import ArgAction from arclet.alconna.components.behavior import ArpamarBehavior from arclet.alconna.exceptions import BehaveCancelled, OutBoundsBehavior from arclet.alconna.config import config class _StoreValue(ArgAction): """针对特定值的类""" def __init__(self, value: Any): super().__init__(lambda: value) def handle(self, option_dict, varargs=None, kwargs=None, is_raise_exception=False): return self.action() def store_value(value: Any): """存储一个值""" return _StoreValue(value) if TYPE_CHECKING: from arclet.alconna import alconna_version from arclet.alconna.arpamar import Arpamar def version(value: Optional[tuple]): """返回一个以元组形式存储的版本信息""" return _StoreValue(value) if value else _StoreValue(alconna_version) def set_default(value: Any, option: Optional[str] = None, subcommand: Optional[str] = None): """ 设置一个选项的默认值, 在无该选项时会被设置 当option与subcommand同时传入时, 则会被设置为该subcommand内option的默认值 Args: value: 默认值 option: 选项名 subcommand: 子命令名 """ class _SetDefault(ArpamarBehavior): def operate(self, interface: "Arpamar"): if not option and not subcommand: raise BehaveCancelled if option and subcommand is None: options = interface.query("options", {}) options.setdefault(option, {"value": value, "args": {}}) if subcommand and option is None: subcommands = interface.query("subcommands", {}) subcommands.setdefault(subcommand, {"value": value, "args": {}, "options": {}}) if option and subcommand: sub_options = interface.query(f"{subcommand}.options", {}) sub_options.setdefault(option, {"value": value, "args": {}}) return _SetDefault() def exclusion(target_path: str, other_path: str): """ 当设置的两个路径同时存在时, 抛出异常 Args: target_path: 目标路径 other_path: 其他路径 """ class _EXCLUSION(ArpamarBehavior): def operate(self, interface: "Arpamar"): if interface.query(target_path) and interface.query(other_path): interface.matched = False if interface.source.is_raise_exception: raise OutBoundsBehavior( config.lang.behavior_exclude_matched.format(target=target_path, other=other_path) ) interface.error_info = OutBoundsBehavior( config.lang.behavior_exclude_matched.format(target=target_path, other=other_path) ) return _EXCLUSION() def cool_down(seconds: float): """ 当设置的时间间隔内被调用时, 抛出异常 Args: seconds: 时间间隔 """ class _CoolDown(ArpamarBehavior): def __init__(self): self.last_time = datetime.now() def operate(self, interface: "Arpamar"): current_time = datetime.now() if (current_time - self.last_time).total_seconds() < seconds: if interface.source.is_raise_exception: raise OutBoundsBehavior(config.lang.behavior_cooldown_matched) interface.matched = False interface.error_info = OutBoundsBehavior(config.lang.behavior_cooldown_matched) else: self.last_time = current_time return _CoolDown() def inclusion(*targets: str, flag: Literal["any", "all"] = "any"): """ 当设置的路径不存在时, 抛出异常 Args: targets: 路径列表 flag: 匹配方式, 可选值为"any"或"all", 默认为"any" """ class _Inclusion(ArpamarBehavior): def operate(self, interface: "Arpamar"): if flag == "all": for target in targets: if not interface.query(target): interface.matched = False interface.error_info = OutBoundsBehavior(config.lang.behavior_inclusion_matched) break else: all_count = len(targets) - sum(1 for target in targets if interface.require(target)) if all_count > 0: interface.matched = False interface.error_info = OutBoundsBehavior(config.lang.behavior_inclusion_matched) return _Inclusion()
2,505
52
313
a49de0f42e9244dddb80c5007220619b2b81057e
142
py
Python
notification/admin.py
tiagocdr/twitter-clone
53737774f2f7766c69f9f9d96458a630124fa6d8
[ "MIT" ]
null
null
null
notification/admin.py
tiagocdr/twitter-clone
53737774f2f7766c69f9f9d96458a630124fa6d8
[ "MIT" ]
null
null
null
notification/admin.py
tiagocdr/twitter-clone
53737774f2f7766c69f9f9d96458a630124fa6d8
[ "MIT" ]
null
null
null
from django.contrib import admin from notification.models import Notifications # Register your models here. admin.site.register(Notifications)
35.5
45
0.852113
from django.contrib import admin from notification.models import Notifications # Register your models here. admin.site.register(Notifications)
0
0
0
3eb8467a6d27f9eb162881b64089f508aede1b60
5,742
py
Python
src/main.py
westernmagic/outer_ear
a2d193c6c2ddb22f0aee8ad6971b019d1096c114
[ "Apache-2.0" ]
null
null
null
src/main.py
westernmagic/outer_ear
a2d193c6c2ddb22f0aee8ad6971b019d1096c114
[ "Apache-2.0" ]
null
null
null
src/main.py
westernmagic/outer_ear
a2d193c6c2ddb22f0aee8ad6971b019d1096c114
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python ''' Outer ear simulator Author: Michal Sudwoj <msudwoj@student.ethz.ch> Version: 1.0.0 Data: 2019-09-09 ''' from typing import Tuple import numpy as np import scipy.io.wavfile as wav import scipy.signal as ss from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from pysofaconventions import SOFAFile def head(data : np.ndarray, sofa : SOFAFile, azimuth : float, elevation : float): ''' Apply effects of the head (HRTF) ''' from scipy.spatial import KDTree s = get_sofa(sofa) pos = s.getVariableValue('SourcePosition') # find closest position to requested azimuth and elevation # TODO: consider normalizing position units to eg. degrees index = KDTree(pos).query([azimuth, elevation, 1])[1] hrir = s.getDataIR()[index, :, :] data = data.T left = ss.fftconvolve(data, hrir[0]) right = ss.fftconvolve(data, hrir[1]) output = np.asarray([left, right]).swapaxes(-1, 0) return output def canal(input : np.ndarray, f_s: int, l : float, d : float): ''' Apply effects of the ear canal Modeled as a bandpass filter, as in 'Matlab Auditory Periphery (MAP)' ''' assert f_s > 0 assert l >= 0 assert d >= 0 v = 343 gain = 10 order = 1 f_nyq = f_s / 2 for n in [1, 3, 5]: # 'Stopped pipe' resonator; resonating frequency f_r = (n * v) / (4 * l / 1000 + 0.4 * d / 1000) # bandpass cut offsets somewhat chosen s.t. for the first mode, they coincide with the parameters from MAP lowcut = f_r - 1500 # Hz highcut = f_r + 500 # Hz low = lowcut / f_nyq high = highcut / f_nyq b, a = ss.butter(order, [low, high], btype = 'band') input += gain * ss.lfilter(b, a, input) return input def middle(input): ''' Apply the effects of the middle ear Modelled soley as impedence mismatch and lever ''' z_air = 414 # kg m^-2 s^-1 z_water = 1.48e6 # kg m^-2 s^-1 A_eardrum = 60 # mm^2 A_oval = 3.2 # mm^2 lever_malleus = 1.3 reflected = ((z_air - z_water) / (z_air + z_water)) ** 2 transmitted = 1 - reflected return input * transmitted * (A_eardrum / A_oval) * lever_malleus def read(filename : str) -> Tuple[np.ndarray, float]: ''' Read WAV file and normalize to float array ''' f_s, data = wav.read(filename) if data.dtype == 'uint8': data = data / 255 - 0.5 elif data.dtype == 'int16': data = data / 32767 elif data.dtype == 'int32': data = data / 2147483647 elif data.dtype == 'float32': data = 1.0 * data else: eprint(f'Input error: data.dtype = {data.dtype}') exit(1) if data.ndim == 1: # mono pass elif data.ndim == 2: data = data[:, 0] else: eprint(f'Input error: data.ndim = {data.ndim}') exit(1) return data, f_s if __name__ == "__main__": main()
24.965217
114
0.574713
#!/usr/bin/env python ''' Outer ear simulator Author: Michal Sudwoj <msudwoj@student.ethz.ch> Version: 1.0.0 Data: 2019-09-09 ''' from typing import Tuple import numpy as np import scipy.io.wavfile as wav import scipy.signal as ss from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from pysofaconventions import SOFAFile def main() -> None: args = arg_parser().parse_args() data, f_s = read(args.input_file) if args.head: data = head(data, args.sofa, args.azimuth, args.elevation) if args.canal: data = canal(data, f_s, args.l, args.d) if args.middle: data = middle(data) wav.write(args.output_file, f_s, data) def head(data : np.ndarray, sofa : SOFAFile, azimuth : float, elevation : float): ''' Apply effects of the head (HRTF) ''' from scipy.spatial import KDTree s = get_sofa(sofa) pos = s.getVariableValue('SourcePosition') # find closest position to requested azimuth and elevation # TODO: consider normalizing position units to eg. degrees index = KDTree(pos).query([azimuth, elevation, 1])[1] hrir = s.getDataIR()[index, :, :] data = data.T left = ss.fftconvolve(data, hrir[0]) right = ss.fftconvolve(data, hrir[1]) output = np.asarray([left, right]).swapaxes(-1, 0) return output def canal(input : np.ndarray, f_s: int, l : float, d : float): ''' Apply effects of the ear canal Modeled as a bandpass filter, as in 'Matlab Auditory Periphery (MAP)' ''' assert f_s > 0 assert l >= 0 assert d >= 0 v = 343 gain = 10 order = 1 f_nyq = f_s / 2 for n in [1, 3, 5]: # 'Stopped pipe' resonator; resonating frequency f_r = (n * v) / (4 * l / 1000 + 0.4 * d / 1000) # bandpass cut offsets somewhat chosen s.t. for the first mode, they coincide with the parameters from MAP lowcut = f_r - 1500 # Hz highcut = f_r + 500 # Hz low = lowcut / f_nyq high = highcut / f_nyq b, a = ss.butter(order, [low, high], btype = 'band') input += gain * ss.lfilter(b, a, input) return input def middle(input): ''' Apply the effects of the middle ear Modelled soley as impedence mismatch and lever ''' z_air = 414 # kg m^-2 s^-1 z_water = 1.48e6 # kg m^-2 s^-1 A_eardrum = 60 # mm^2 A_oval = 3.2 # mm^2 lever_malleus = 1.3 reflected = ((z_air - z_water) / (z_air + z_water)) ** 2 transmitted = 1 - reflected return input * transmitted * (A_eardrum / A_oval) * lever_malleus def arg_parser() -> ArgumentParser: parser = ArgumentParser( formatter_class = ArgumentDefaultsHelpFormatter ) parser.add_argument( '--head', help = 'Consider head effects', dest = 'head', action = 'store_true' ) parser.add_argument( '--no-head', dest = 'head', action = 'store_false' ) parser.set_defaults(head = True) parser.add_argument( '--canal', help = 'Consider ear canal effects', dest = 'canal', action = 'store_true' ) parser.add_argument( '--no-canal', dest = 'canal', action = 'store_false' ) parser.set_defaults(canal = True) parser.add_argument( '--middle', help = 'Consider middle ear effects', dest = 'middle', action = 'store_true' ) parser.add_argument( '--no-middle', dest = 'middle', action = 'store_false' ) parser.set_defaults(middle = True) parser.add_argument( '--sofa', help = 'HTRF Sofa file', default = 'http://sofacoustics.org/data/database/cipic/subject_003.sofa' ) parser.add_argument( '-a', '--azimuth', help = 'Azimuth of source in SOFA file units', default = 0, type = float ) parser.add_argument( '-e', '--elevation', help = 'Elevation of source in SOFA file units', default = 0, type = float ) parser.add_argument( '-l', help = 'Ear canal length in mm', default = 22, type = float ) parser.add_argument( '-d', help = 'Ear canal diameter in mm', default = 7, type = float ) parser.add_argument( 'input_file', help = 'Input file' ) parser.add_argument( 'output_file', help = 'Output file' ) return parser def read(filename : str) -> Tuple[np.ndarray, float]: ''' Read WAV file and normalize to float array ''' f_s, data = wav.read(filename) if data.dtype == 'uint8': data = data / 255 - 0.5 elif data.dtype == 'int16': data = data / 32767 elif data.dtype == 'int32': data = data / 2147483647 elif data.dtype == 'float32': data = 1.0 * data else: eprint(f'Input error: data.dtype = {data.dtype}') exit(1) if data.ndim == 1: # mono pass elif data.ndim == 2: data = data[:, 0] else: eprint(f'Input error: data.ndim = {data.ndim}') exit(1) return data, f_s def get_sofa(url : str) -> SOFAFile: import requests from tempfile import NamedTemporaryFile if url.startswith(('http://', 'https://')): r = requests.get(url) r.raise_for_status() with NamedTemporaryFile() as f: f.write(r.content) return SOFAFile(f.name, 'r') elif url.startswith('file://'): url = url[7:] return SOFAFile(url, 'r') def eprint(*args, **kwargs): from sys import stderr print(*args, file = stderr, **kwargs) if __name__ == "__main__": main()
2,691
0
92
149445d25276388416e37946f3f84ca77c5a5c53
238
py
Python
geometry.py
kareltucek/digraph_browser
c5358aa0c6ff71e6959211770390b1467915807f
[ "MIT" ]
3
2018-06-25T13:52:51.000Z
2021-12-01T09:51:56.000Z
geometry.py
kareltucek/digraph_browser
c5358aa0c6ff71e6959211770390b1467915807f
[ "MIT" ]
null
null
null
geometry.py
kareltucek/digraph_browser
c5358aa0c6ff71e6959211770390b1467915807f
[ "MIT" ]
null
null
null
import numpy as np import math
14
43
0.613445
import numpy as np import math def vector(x, y): return np.array([x,y]) def zerovector(): return vector(0.0, 0.0) def length(v): return math.sqrt(v[0]*v[0] + v[1]*v[1]) def scale_to(vec, l): return vec/length(vec)*l
113
0
92
03ee90dbd506d67950bf67048c286a932430249f
2,549
py
Python
auth.py
Yodart/banky
604c37ab80d95bb9f81d91534df512b20df5cd10
[ "MIT" ]
1
2021-04-23T10:51:26.000Z
2021-04-23T10:51:26.000Z
auth.py
Yodart/banky
604c37ab80d95bb9f81d91534df512b20df5cd10
[ "MIT" ]
null
null
null
auth.py
Yodart/banky
604c37ab80d95bb9f81d91534df512b20df5cd10
[ "MIT" ]
null
null
null
from flask import Flask, Blueprint, request, jsonify, make_response, redirect, url_for from werkzeug.security import generate_password_hash, check_password_hash from functools import wraps from db import db_connect import datetime import jwt import sys auth = Blueprint('auth', __name__) @auth.route('/login') @db_connect
39.828125
137
0.608474
from flask import Flask, Blueprint, request, jsonify, make_response, redirect, url_for from werkzeug.security import generate_password_hash, check_password_hash from functools import wraps from db import db_connect import datetime import jwt import sys auth = Blueprint('auth', __name__) def require_auth_token(f): @wraps(f) @db_connect def decorated(db_cursor, db_connection, *args, **kwargs): token = None account = None if 'x-access-token' in request.headers: token = request.headers['x-access-token'] if not token: return jsonify({'error': 'Missing auth token'}), 401 try: data = jwt.decode(token, 'secret') db_cursor.execute( "SELECT id,name,last_name,account_number,balance FROM accounts WHERE account_number=%s", ([data['account_number']])) account_data = db_cursor.fetchall()[0] account = {'id': account_data[0], 'name': account_data[1], 'last_name': account_data[2], 'account_number': account_data[3], 'balance': account_data[4]} except: return jsonify({'error': 'Invalid auth token.'}), 401 return f(account, *args, **kwargs) return decorated @auth.route('/login') @db_connect def login(db_cursor, db_connection): auth = request.authorization if not auth or not auth.username or not auth.password: return make_response('Could not verify', 401, {'WWW-Authenticate': 'Basic realm="Login required!"'}) try: db_cursor.execute( "SELECT id,name,last_name,account_number,balance,password FROM accounts WHERE account_number=%s", ([auth.username])) account_data = db_cursor.fetchall()[0] account = {'id': account_data[0], 'name': account_data[1], 'last_name': account_data[2], 'account_number': account_data[3], 'balance': account_data[4], 'password': account_data[5]} if check_password_hash(account['password'], auth.password): token = jwt.encode( {'account_number': account['account_number'], 'exp': datetime.datetime.utcnow() + datetime.timedelta(days=30)}, 'secret') return jsonify({'token': token.decode('UTF-8')}), 200 return {'message': "Wrong Password"}, 401 except: return {'error': "Unable to find account", "traceback": str(sys.exc_info())}, 401
2,178
0
45
bd3f48038a738c477c55e470123e442f51b07416
361
py
Python
yelp/urls.py
elizabethts/tally_ai_ds
20c63420a532d277e8832a11af75d5c4ffa9215c
[ "MIT" ]
3
2020-04-01T22:17:48.000Z
2021-01-24T19:04:19.000Z
yelp/urls.py
elizabethts/tally_ai_ds
20c63420a532d277e8832a11af75d5c4ffa9215c
[ "MIT" ]
8
2020-06-05T21:05:14.000Z
2021-12-13T20:43:05.000Z
yelp/urls.py
elizabethts/tally_ai_ds
20c63420a532d277e8832a11af75d5c4ffa9215c
[ "MIT" ]
2
2020-04-11T20:14:13.000Z
2021-01-06T01:06:10.000Z
# yelp/urls.py from django.urls import path from django.conf.urls import url from rest_framework.urlpatterns import format_suffix_patterns # view functions from .views import hello from .views import home urlpatterns = { path('', hello, name='hello'), path('<slug:business_id>', home, name='home'), } urlpatterns = format_suffix_patterns(urlpatterns)
24.066667
61
0.759003
# yelp/urls.py from django.urls import path from django.conf.urls import url from rest_framework.urlpatterns import format_suffix_patterns # view functions from .views import hello from .views import home urlpatterns = { path('', hello, name='hello'), path('<slug:business_id>', home, name='home'), } urlpatterns = format_suffix_patterns(urlpatterns)
0
0
0
1e220db752c0243838f7243836c9a10b0fa287c8
3,661
py
Python
mini-projects/aic-15-image-search-engine/utils/model.py
elbertsoftware/SpringboardAIC
54278548c94d1a7a61ab977ecb47d96f73f94060
[ "Unlicense" ]
3
2019-04-06T12:37:55.000Z
2021-01-28T01:38:45.000Z
mini-projects/aic-15-image-search-engine/utils/model.py
elbertsoftware/SpringboardAIC
54278548c94d1a7a61ab977ecb47d96f73f94060
[ "Unlicense" ]
16
2020-03-24T18:22:38.000Z
2022-01-13T02:24:27.000Z
mini-projects/aic-15-image-search-engine/utils/model.py
elbertsoftware/SpringboardAIC
54278548c94d1a7a61ab977ecb47d96f73f94060
[ "Unlicense" ]
1
2019-11-30T09:06:46.000Z
2019-11-30T09:06:46.000Z
import tensorflow as tf def model_inputs(image_size): ''' Defines CNN inputs (placeholders). :param image_size: tuple, (height, width) of an image ''' #-> [Batch_size, image_size[0], image_size[1], 3] inputs = tf.placeholder(dtype=tf.float32, shape=[None, image_size[0], image_size[1], 3], name='images') targets = tf.placeholder(dtype=tf.int32, shape=[None,], name='targets') dropout_prob = tf.placeholder(dtype=tf.float32, name='dropout_probs') return inputs, targets, dropout_prob def conv_block(inputs, number_of_filters, kernel_size, strides=(1, 1), padding='SAME', activation=tf.nn.relu, max_pool=True, batch_norm=True): ''' Defines convolutional block layer. :param inputs: data from a previous layer :param number_of_filters: integer, number of conv filters :param kernel_size: tuple, size of conv layer kernel :param padding: string, type of padding technique: SAME or VALID :param activation: tf.object, activation function used on the layer :param max_pool: boolean, if true the conv block will use max_pool :param batch_norm: boolean, if true the conv block will use batch normalization ''' conv_features = layer = tf.layers.conv2d(inputs=inputs, filters=number_of_filters, kernel_size=kernel_size, strides=strides, padding=padding, activation=activation) if max_pool: layer = tf.layers.max_pooling2d(layer, pool_size=(2, 2), strides=(2, 2), padding='SAME') if batch_norm: layer = tf.layers.batch_normalization(layer) return layer, conv_features def dense_block(inputs, units, activation=tf.nn.relu, dropout_rate=None, batch_norm=True): ''' Defines dense block layer. :param inputs: data from a previous layer :param units: integer, number of neurons/units for a dense layer :param activation: tf.object, activation function used on the layer :param dropout_rate: dropout rate used in this dense block :param batch_norm: boolean, if true the conv block will use batch normalization ''' dense_features = layer = tf.layers.dense(inputs, units=units, activation=activation) if dropout_rate is not None: layer = tf.layers.dropout(layer, rate=dropout_rate) if batch_norm: layer = tf.layers.batch_normalization(layer) return layer, dense_features def opt_loss(logits, targets, learning_rate): ''' Defines model's optimizer and loss functions. :param logits: pre-activated model outputs :param targets: true labels for each input sample :param learning_rate: learning_rate ''' loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=targets, logits=logits)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss) return loss, optimizer
35.543689
108
0.556405
import tensorflow as tf def model_inputs(image_size): ''' Defines CNN inputs (placeholders). :param image_size: tuple, (height, width) of an image ''' #-> [Batch_size, image_size[0], image_size[1], 3] inputs = tf.placeholder(dtype=tf.float32, shape=[None, image_size[0], image_size[1], 3], name='images') targets = tf.placeholder(dtype=tf.int32, shape=[None,], name='targets') dropout_prob = tf.placeholder(dtype=tf.float32, name='dropout_probs') return inputs, targets, dropout_prob def conv_block(inputs, number_of_filters, kernel_size, strides=(1, 1), padding='SAME', activation=tf.nn.relu, max_pool=True, batch_norm=True): ''' Defines convolutional block layer. :param inputs: data from a previous layer :param number_of_filters: integer, number of conv filters :param kernel_size: tuple, size of conv layer kernel :param padding: string, type of padding technique: SAME or VALID :param activation: tf.object, activation function used on the layer :param max_pool: boolean, if true the conv block will use max_pool :param batch_norm: boolean, if true the conv block will use batch normalization ''' conv_features = layer = tf.layers.conv2d(inputs=inputs, filters=number_of_filters, kernel_size=kernel_size, strides=strides, padding=padding, activation=activation) if max_pool: layer = tf.layers.max_pooling2d(layer, pool_size=(2, 2), strides=(2, 2), padding='SAME') if batch_norm: layer = tf.layers.batch_normalization(layer) return layer, conv_features def dense_block(inputs, units, activation=tf.nn.relu, dropout_rate=None, batch_norm=True): ''' Defines dense block layer. :param inputs: data from a previous layer :param units: integer, number of neurons/units for a dense layer :param activation: tf.object, activation function used on the layer :param dropout_rate: dropout rate used in this dense block :param batch_norm: boolean, if true the conv block will use batch normalization ''' dense_features = layer = tf.layers.dense(inputs, units=units, activation=activation) if dropout_rate is not None: layer = tf.layers.dropout(layer, rate=dropout_rate) if batch_norm: layer = tf.layers.batch_normalization(layer) return layer, dense_features def opt_loss(logits, targets, learning_rate): ''' Defines model's optimizer and loss functions. :param logits: pre-activated model outputs :param targets: true labels for each input sample :param learning_rate: learning_rate ''' loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=targets, logits=logits)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss) return loss, optimizer
0
0
0
49d827b18611982ce6bdabdd882d794ee52b953a
12,001
py
Python
QC/datasets/utils.py
phcavelar/graph-odenet
cba1224c041e53ea221e31bf9103ef950b8bd460
[ "MIT" ]
4
2019-12-10T18:49:03.000Z
2022-02-16T03:21:30.000Z
QC/datasets/utils.py
phcavelar/graph-odenet
cba1224c041e53ea221e31bf9103ef950b8bd460
[ "MIT" ]
1
2020-11-04T04:41:09.000Z
2021-01-07T18:52:37.000Z
QC/datasets/utils.py
phcavelar/graph-odenet
cba1224c041e53ea221e31bf9103ef950b8bd460
[ "MIT" ]
2
2020-04-03T12:05:33.000Z
2020-10-10T11:57:48.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # Adapted from https://github.com/priba/nmp_qc """ utils.py: Functions to process dataset graphs. Usage: """ from __future__ import print_function import rdkit import torch from joblib import Parallel, delayed import multiprocessing import networkx as nx import numpy as np import shutil import os __author__ = "Pedro HC Avelar, Pau Riba, Anjan Dutta" __email__ = "phcavelar@inf.ufrgs.br, priba@cvc.uab.cat, adutta@cvc.uab.cat" def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() pred = pred.type_as(target) target = target.type_as(pred) correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res #end collate_g_concat #end collate_g_concat #end collate_g_concat_dict
31.664908
177
0.548371
#!/usr/bin/python # -*- coding: utf-8 -*- # Adapted from https://github.com/priba/nmp_qc """ utils.py: Functions to process dataset graphs. Usage: """ from __future__ import print_function import rdkit import torch from joblib import Parallel, delayed import multiprocessing import networkx as nx import numpy as np import shutil import os __author__ = "Pedro HC Avelar, Pau Riba, Anjan Dutta" __email__ = "phcavelar@inf.ufrgs.br, priba@cvc.uab.cat, adutta@cvc.uab.cat" def qm9_nodes(g, hydrogen=False): h = [] for n, d in g.nodes(data=True): h_t = [] # Atom type (One-hot H, C, N, O F) h_t += [int(d['a_type'] == x) for x in ['H', 'C', 'N', 'O', 'F']] # Atomic number h_t.append(d['a_num']) # Partial Charge h_t.append(d['pc']) # Acceptor h_t.append(d['acceptor']) # Donor h_t.append(d['donor']) # Aromatic h_t.append(int(d['aromatic'])) # Hybradization h_t += [int(d['hybridization'] == x) for x in [rdkit.Chem.rdchem.HybridizationType.SP, rdkit.Chem.rdchem.HybridizationType.SP2, rdkit.Chem.rdchem.HybridizationType.SP3]] # If number hydrogen is used as a if hydrogen: h_t.append(d['num_h']) h.append(h_t) return h def qm9_edges(g, e_representation='raw_distance'): remove_edges = [] e={} for n1, n2, d in g.edges(data=True): e_t = [] # Raw distance function if e_representation == 'chem_graph': if d['b_type'] is None: remove_edges += [(n1, n2)] else: e_t += [i+1 for i, x in enumerate([rdkit.Chem.rdchem.BondType.SINGLE, rdkit.Chem.rdchem.BondType.DOUBLE, rdkit.Chem.rdchem.BondType.TRIPLE, rdkit.Chem.rdchem.BondType.AROMATIC]) if x == d['b_type']] elif e_representation == 'distance_bin': if d['b_type'] is None: step = (6-2)/8.0 start = 2 b = 9 for i in range(0, 9): if d['distance'] < (start+i*step): b = i break e_t.append(b+5) else: e_t += [i+1 for i, x in enumerate([rdkit.Chem.rdchem.BondType.SINGLE, rdkit.Chem.rdchem.BondType.DOUBLE, rdkit.Chem.rdchem.BondType.TRIPLE, rdkit.Chem.rdchem.BondType.AROMATIC]) if x == d['b_type']] elif e_representation == 'raw_distance': if d['b_type'] is None: remove_edges += [(n1, n2)] else: e_t.append(d['distance']) e_t += [int(d['b_type'] == x) for x in [rdkit.Chem.rdchem.BondType.SINGLE, rdkit.Chem.rdchem.BondType.DOUBLE, rdkit.Chem.rdchem.BondType.TRIPLE, rdkit.Chem.rdchem.BondType.AROMATIC]] else: print('Incorrect Edge representation transform') quit() if e_t: e[(n1, n2)] = e_t for edg in remove_edges: g.remove_edge(*edg) return nx.to_numpy_matrix(g), e def normalize_data(data, mean, std): data_norm = (data-mean)/std return data_norm def get_values(obj, start, end, prop): vals = [] for i in range(start, end): v = {} if 'degrees' in prop: v['degrees'] = set(sum(obj[i][0][0].sum(axis=0, dtype='int').tolist(), [])) if 'edge_labels' in prop: v['edge_labels'] = set(sum(list(obj[i][0][2].values()), [])) if 'target_mean' in prop or 'target_std' in prop: v['params'] = obj[i][1] vals.append(v) return vals def get_graph_stats(graph_obj_handle, prop='degrees'): # if prop == 'degrees': num_cores = multiprocessing.cpu_count() inputs = [int(i*len(graph_obj_handle)/num_cores) for i in range(num_cores)] + [len(graph_obj_handle)] res = Parallel(n_jobs=num_cores)(delayed(get_values)(graph_obj_handle, inputs[i], inputs[i+1], prop) for i in range(num_cores)) stat_dict = {} if 'degrees' in prop: stat_dict['degrees'] = list(set([d for core_res in res for file_res in core_res for d in file_res['degrees']])) if 'edge_labels' in prop: stat_dict['edge_labels'] = list(set([d for core_res in res for file_res in core_res for d in file_res['edge_labels']])) if 'target_mean' in prop or 'target_std' in prop: param = np.array([file_res['params'] for core_res in res for file_res in core_res]) if 'target_mean' in prop: stat_dict['target_mean'] = np.mean(param, axis=0) if 'target_std' in prop: stat_dict['target_std'] = np.std(param, axis=0) return stat_dict def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() pred = pred.type_as(target) target = target.type_as(pred) correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def collate_g_concat_edge_data(batch): g_M = lambda g: g[0][0] g_n = lambda g: g_M(g).shape[0] g_x = lambda g: g[0][1] g_x_d = lambda g: len(g_x(g)[0]) g_e = lambda g: g[0][2] g_m = lambda g: len(g_e(g)) g_e_keys = lambda g: list(g_e(g).keys()) g_e_values = lambda g: list(g_e(g).values()) g_e_d = lambda g: len(g_e_values(g)[0]) g_o = lambda g: g[1] g_o_d = lambda g: len(g[1]) n_d, e_d, o_d = g_x_d(batch[0]), g_e_d(batch[0]), g_o_d(batch[0]) N = 0 M = 0 batch_size = len(batch) for g in batch: n = g_n(g) m = g_m(g) N += n M += m #end for G = np.zeros([N, N]) B = np.zeros([N], dtype=np.int64) X = np.zeros([N, n_d]) E_d = np.zeros([2*M, e_d]) E_src = np.zeros([2*M], dtype=np.int64) E_tgt = np.zeros([2*M,2], dtype=np.int64) Y = np.zeros([batch_size, o_d]) n_acc = 0 m_acc = 0 for b, g in enumerate(batch): n = g_n(g) G[n_acc:n_acc+n,n_acc:n_acc+n] = g_M(g) B[n_acc:n_acc+n] = b X[n_acc:n_acc+n,:] = g_x(g) for edge_id, edge in enumerate(sorted(g_e_keys(g))): src, tgt = edge src_edge_id = m_acc+edge_id E_d[src_edge_id,:] = g_e(g)[edge] E_src[src_edge_id] = src E_tgt[src_edge_id,:] = [tgt,src_edge_id] tgt_edge_id = M+m_acc+edge_id E_d[tgt_edge_id,:] = g_e(g)[edge] E_src[tgt_edge_id] = tgt E_tgt[tgt_edge_id] = [src,tgt_edge_id] #end for Y[b] = g_o(g) n_acc+=n m_acc+=g_m(g) #end for G = torch.FloatTensor(G) B = torch.LongTensor(B) X = torch.FloatTensor(X) E_d = torch.FloatTensor(E_d) E_src = torch.LongTensor(E_src) E_tgt = torch.sparse.FloatTensor(torch.LongTensor(E_tgt.transpose()),torch.FloatTensor(np.ones(2*M)),torch.Size([N,2*M])).to_dense() Y = torch.FloatTensor(Y) return batch_size,G,B,X,E_d,E_src,E_tgt,Y #end collate_g_concat def collate_g_concat(batch): g_M = lambda g: g[0][0] g_n = lambda g: g_M(g).shape[0] g_x = lambda g: g[0][1] g_x_d = lambda g: len(g_x(g)[0]) g_e = lambda g: g[0][2] g_m = lambda g: len(g_e(g)) g_e_keys = lambda g: list(g_e(g).keys()) g_e_values = lambda g: list(g_e(g).values()) g_e_d = lambda g: len(g_e_values(g)[0]) g_o = lambda g: g[1] g_o_d = lambda g: len(g[1]) n_d, e_d, o_d = g_x_d(batch[0]), g_e_d(batch[0]), g_o_d(batch[0]) N = 0 M = 0 batch_size = len(batch) for g in batch: n = g_n(g) m = g_m(g) N += n M += m #end for G = np.zeros([N, N]) B = np.zeros([N], dtype=np.int64) X = np.zeros([N, n_d]) E_d = np.zeros([N, N, e_d]) E_i = np.zeros([M, 2], dtype=np.int64) Y = np.zeros([batch_size, o_d]) n_acc = 0 for b, g in enumerate(batch): n = g_n(g) G[n_acc:n_acc+n,n_acc:n_acc+n] = g_M(g) B[n_acc:n_acc+n] = b X[n_acc:n_acc+n,:] = g_x(g) for edge_id, edge in enumerate(sorted(g_e_keys(g))): src, tgt = edge E_i[edge_id,:] = [min(src,tgt),max(src,tgt)] E_d[n_acc+src,n_acc+tgt,:] = g_e(g)[edge] E_d[n_acc+tgt,n_acc+src,:] = g_e(g)[edge] #end for Y[b] = g_o(g) n_acc+=n #end for G = torch.FloatTensor(G) B = torch.LongTensor(B) X = torch.FloatTensor(X) E_d = torch.FloatTensor(E_d) E_i = torch.LongTensor(E_i) Y = torch.FloatTensor(Y) return G,B,X,E_d,E_i,Y #end collate_g_concat def collate_g_concat_dict(batch): g_M = lambda g: g[0][0] g_n = lambda g: g_M(g).shape[0] g_x = lambda g: g[0][1] g_x_d = lambda g: len(g_x(g)[0]) g_e = lambda g: g[0][2] g_e_keys = lambda g: list(g_e(g).keys()) g_e_values = lambda g: list(g_e(g).values()) g_e_d = lambda g: len(g_e_values(g)[0]) g_o = lambda g: g[1] g_o_d = lambda g: len(g[1]) n_d, e_d, o_d = g_x_d(batch[0]), g_e_d(batch[0]), g_o_d(batch[0]) N = 0 batch_size = len(batch) for g in batch: M = g_M(g) n = g_n(g) N += n #end for G = np.zeros([N, N]) B = np.zeros([N], dtype=np.int64) X = np.zeros([N, n_d]) E = {} Y = np.zeros([batch_size, o_d]) n_acc = 0 print( "bla" ) for b, g in enumerate(batch): n = g_n(g) G[n_acc:n_acc+n,n_acc:n_acc+n] = g_M(g) B[n_acc:n_acc+n] = b X[n_acc:n_acc+n,:] = g_x(g) for edge in g_e_keys(g): src,tgt=edge E[n_acc+src,n_acc+tgt] = g_e(g)[edge] E[n_acc+tgt,n_acc+src] = g_e(g)[edge] #end for Y[b] = g_o(g) n_acc+=n #end for G = torch.FloatTensor(G) B = torch.LongTensor(B) X = torch.FloatTensor(X) print( "ble" ) for k in E.keys(): E[k] = torch.FloatTensor(E[k]) #end for Y = torch.FloatTensor(Y) return G,B,X,E,Y #end collate_g_concat_dict def collate_g(batch): batch_sizes = np.max(np.array([[len(input_b[1]), len(input_b[1][0]), len(input_b[2]), len(list(input_b[2].values())[0])] if input_b[2] else [len(input_b[1]), len(input_b[1][0]), 0,0] for (input_b, target_b) in batch]), axis=0) g = np.zeros((len(batch), batch_sizes[0], batch_sizes[0])) h = np.zeros((len(batch), batch_sizes[0], batch_sizes[1])) e = np.zeros((len(batch), batch_sizes[0], batch_sizes[0], batch_sizes[3])) target = np.zeros((len(batch), len(batch[0][1]))) for i in range(len(batch)): num_nodes = len(batch[i][0][1]) # Adjacency matrix g[i, 0:num_nodes, 0:num_nodes] = batch[i][0][0] # Node features h[i, 0:num_nodes, :] = batch[i][0][1] # Edges for edge in batch[i][0][2].keys(): e[i, edge[0], edge[1], :] = batch[i][0][2][edge] e[i, edge[1], edge[0], :] = batch[i][0][2][edge] # Target target[i, :] = batch[i][1] g = torch.FloatTensor(g) h = torch.FloatTensor(h) e = torch.FloatTensor(e) target = torch.FloatTensor(target) return g, h, e, target def save_checkpoint(state, is_best, directory): if not os.path.isdir(directory): os.makedirs(directory) checkpoint_file = os.path.join(directory, 'checkpoint.pth') best_model_file = os.path.join(directory, 'model_best.pth') torch.save(state, checkpoint_file) if is_best: shutil.copyfile(checkpoint_file, best_model_file)
10,692
0
230
50691cf6b0a343a60746294d17b9d62fdcf4fa2d
675
py
Python
__init__.py
SachaSchwarz/whitepeaks
fd6d14b47f6fb80516d9a06941d79b23d8314e50
[ "MIT" ]
null
null
null
__init__.py
SachaSchwarz/whitepeaks
fd6d14b47f6fb80516d9a06941d79b23d8314e50
[ "MIT" ]
null
null
null
__init__.py
SachaSchwarz/whitepeaks
fd6d14b47f6fb80516d9a06941d79b23d8314e50
[ "MIT" ]
null
null
null
''' ############################################################################### Ultrafast Quantum Optics Package ############################################################################### Quantum Optics and Quantum Information Group Written by > Jean-Philippe MacLean: jpmaclean@uwaterloo.ca > Sacha Schwarz sacha.schwarz@uwaterloo.ca ''' #Initialize modules from .whitepeaks.analytics import * from .whitepeaks.interface import * from .whitepeaks.methods import * from .whitepeaks.states import * #Define constants c=0.299792458 #Speed of light in um/fs or mm/ps import warnings warnings.filterwarnings("ignore") from timeit import default_timer as time
27
79
0.601481
''' ############################################################################### Ultrafast Quantum Optics Package ############################################################################### Quantum Optics and Quantum Information Group Written by > Jean-Philippe MacLean: jpmaclean@uwaterloo.ca > Sacha Schwarz sacha.schwarz@uwaterloo.ca ''' #Initialize modules from .whitepeaks.analytics import * from .whitepeaks.interface import * from .whitepeaks.methods import * from .whitepeaks.states import * #Define constants c=0.299792458 #Speed of light in um/fs or mm/ps import warnings warnings.filterwarnings("ignore") from timeit import default_timer as time
0
0
0
840d8ae323c0daf347b4937320a2c80c2d7c1d9f
7,645
py
Python
app/switch/controller.py
conatel-i-d/sm-api
1a57e8303ae5f33ae4c8ac8247449fac5b0c848d
[ "MIT" ]
1
2020-09-20T07:44:33.000Z
2020-09-20T07:44:33.000Z
app/switch/controller.py
conatel-i-d/sm-api
1a57e8303ae5f33ae4c8ac8247449fac5b0c848d
[ "MIT" ]
2
2019-12-10T13:00:36.000Z
2021-04-30T21:04:42.000Z
app/switch/controller.py
conatel-i-d/sm-api
1a57e8303ae5f33ae4c8ac8247449fac5b0c848d
[ "MIT" ]
null
null
null
import os, sys from flask import request from flask_restplus import Namespace, Resource, fields from flask.wrappers import Response from app.utils.async_action import async_action from app.api_response import ApiResponse from app.errors import ApiException, JobTemplateNotFound, PlaybookFailure, PlaybookTimeout, SwitchNotFound from .service import SwitchService from .model import Switch from .interfaces import SwitchInterfaces from app.utils.authorization import authorize from app.utils.logger import log from app.utils.b64 import decode from app.macs.service import MacService api_description = """ Representación de los switches de la empresa. """ api = Namespace('Switch', description=api_description) interfaces = SwitchInterfaces(api) @api.route("/") @api.response(400, 'Bad Request', interfaces.error_response_model) @api.doc(responses={ 401: 'Unauthorized', 403: 'Forbidden', 500: 'Internal server error', 502: 'Bad Gateway', 503: 'Service Unavailable', }) class SwitchResource(Resource): """ Switch Resource """ @api.response(200, 'Lista de Switches', interfaces.many_response_model) @log @async_action @authorize async def get(self): """ Devuelve la lista de Switches """ try: entities = await SwitchService.get_all() return ApiResponse(interfaces.many_schema.dump(entities).data) except JobTemplateNotFound: raise ApiException('No existe un playbook para obtener la infrmación de las interfaces') except PlaybookTimeout: raise ApiException('La ejecución de la tarea supero el tiempo del timeout') except PlaybookFailure: raise ApiException('Fallo la ejecución de la tarea') @api.expect(interfaces.create_model) @api.response(200, 'Nuevo Switch', interfaces.single_response_model) @log @authorize def post(self): """ Crea un nuevo Switch. """ json_data = request.get_json() if json_data is None: raise ApiException('JSON body is undefined') body = interfaces.single_schema.load(json_data).data Switch = SwitchService.create(body) return ApiResponse(interfaces.single_schema.dump(Switch).data) @api.expect(interfaces.update_model) @api.response(200, 'Switches Actualizados', interfaces.many_response_model) @log @authorize def put(self, id: int): """ Actualiza un batch de Switches por su ID. """ json_data = request.get_json() sw_updated = [] for item in json_data: sw = interfaces.single_schema.load(request.json).data sw_updated.append(SwitchService.update(id, sw)) return ApiResponse(interfaces.many_schema.dump(sw_updated).data) @api.route("/<int:id>") @api.param("id", "Identificador único del Switch") @api.response(400, 'Bad Request', interfaces.error_response_model) @api.doc(responses={ 401: 'Unauthorized', 403: 'Forbidden', 500: 'Internal server error', 502: 'Bad Gateway', 503: 'Service Unavailable', }) @api.route("/inventory") @api.response(400, 'Bad Request', interfaces.error_response_model) @api.doc(responses={ 401: 'Unauthorized', 403: 'Forbidden', 500: 'Internal server error', 502: 'Bad Gateway', 503: 'Service Unavailable', }) class SwitchInventoryResource(Resource): """ Inventory switch Resource """ @api.response(200, 'Inventario con lista de swithces') @async_action async def get(self): """ Devuelve la lista de Switches """ try: entities = await SwitchService.get_all() ansible_switches_vars = {} for x in entities: ansible_switches_vars[x.name] = { "ansible_host": x.ip, "ansible_become": True, "ansible_become_method": "enable", "ansible_connection": "network_cli", "ansible_network_os": "ios", "ansible_port": x.ansible_ssh_port or 22, "ansible_user": decode(x.ansible_user), "ansible_ssh_pass": decode(x.ansible_ssh_pass) } ansible_switches_hostnames = map(lambda x : x.name, entities) sw_inv = { 'group': { 'hosts': list(ansible_switches_hostnames), }, '_meta': { 'hostvars': ansible_switches_vars } } return ApiResponse(sw_inv) except JobTemplateNotFound: raise ApiException('No existe un playbook para obtener la infrmación de las interfaces') except PlaybookTimeout: raise ApiException('La ejecución de la tarea supero el tiempo del timeout') except PlaybookFailure: raise ApiException('Fallo la ejecución de la tarea') @api.route("/<int:id>/macs") @api.param("id", "Identificador único del Switch") class SwitchMacResource(Resource): """ Mac Resource """ @api.response(200, 'Lista de Interfaces con sus respectivas macs', interfaces.many_response_model) @log @async_action @authorize async def get(self, switch_id: int): """ Devuelve la lista de todaslas macs del switch """ try: resp = await MacService.get(switch_id) return ApiResponse(resp) except SwitchNotFound: raise ApiException(f'No se encuentra un switch con el id:{switch_id}') except JobTemplateNotFound: raise ApiException('No existe un playbook para obtener la infrmación de las interfaces') except PlaybookTimeout: raise ApiException('La ejecución de la tarea supero el tiempo del timeout') except PlaybookFailure: raise ApiException('Fallo la ejecución de la tarea')
35.230415
106
0.63898
import os, sys from flask import request from flask_restplus import Namespace, Resource, fields from flask.wrappers import Response from app.utils.async_action import async_action from app.api_response import ApiResponse from app.errors import ApiException, JobTemplateNotFound, PlaybookFailure, PlaybookTimeout, SwitchNotFound from .service import SwitchService from .model import Switch from .interfaces import SwitchInterfaces from app.utils.authorization import authorize from app.utils.logger import log from app.utils.b64 import decode from app.macs.service import MacService api_description = """ Representación de los switches de la empresa. """ api = Namespace('Switch', description=api_description) interfaces = SwitchInterfaces(api) @api.route("/") @api.response(400, 'Bad Request', interfaces.error_response_model) @api.doc(responses={ 401: 'Unauthorized', 403: 'Forbidden', 500: 'Internal server error', 502: 'Bad Gateway', 503: 'Service Unavailable', }) class SwitchResource(Resource): """ Switch Resource """ @api.response(200, 'Lista de Switches', interfaces.many_response_model) @log @async_action @authorize async def get(self): """ Devuelve la lista de Switches """ try: entities = await SwitchService.get_all() return ApiResponse(interfaces.many_schema.dump(entities).data) except JobTemplateNotFound: raise ApiException('No existe un playbook para obtener la infrmación de las interfaces') except PlaybookTimeout: raise ApiException('La ejecución de la tarea supero el tiempo del timeout') except PlaybookFailure: raise ApiException('Fallo la ejecución de la tarea') @api.expect(interfaces.create_model) @api.response(200, 'Nuevo Switch', interfaces.single_response_model) @log @authorize def post(self): """ Crea un nuevo Switch. """ json_data = request.get_json() if json_data is None: raise ApiException('JSON body is undefined') body = interfaces.single_schema.load(json_data).data Switch = SwitchService.create(body) return ApiResponse(interfaces.single_schema.dump(Switch).data) @api.expect(interfaces.update_model) @api.response(200, 'Switches Actualizados', interfaces.many_response_model) @log @authorize def put(self, id: int): """ Actualiza un batch de Switches por su ID. """ json_data = request.get_json() sw_updated = [] for item in json_data: sw = interfaces.single_schema.load(request.json).data sw_updated.append(SwitchService.update(id, sw)) return ApiResponse(interfaces.many_schema.dump(sw_updated).data) @api.route("/<int:id>") @api.param("id", "Identificador único del Switch") @api.response(400, 'Bad Request', interfaces.error_response_model) @api.doc(responses={ 401: 'Unauthorized', 403: 'Forbidden', 500: 'Internal server error', 502: 'Bad Gateway', 503: 'Service Unavailable', }) class SwitchIdResource(Resource): @api.response(200, 'Switch', interfaces.single_response_model) @log @async_action @authorize async def get(self, id: int): """ Obtiene un único Switch por ID. """ try: switch = await SwitchService.get_by_id(id) return ApiResponse(interfaces.single_schema.dump(switch).data) except SwitchNotFound: raise ApiException(f'No se encuentra un switch con el id:{id}') except JobTemplateNotFound: raise ApiException('No existe un playbook para obtener la infrmación de las interfaces') except PlaybookTimeout: raise ApiException('La ejecución de la tarea supero el tiempo del timeout') except PlaybookFailure: raise ApiException('Fallo la ejecución de la tarea') @api.response(204, 'No Content') @log @authorize def delete(self, id: int) -> Response: """ Elimina un único Switch por ID. """ from flask import jsonify id = SwitchService.delete_by_id(id) return ApiResponse(None, 204) @api.expect(interfaces.update_model) @api.response(200, 'Switch Actualizado', interfaces.single_response_model) @log @authorize def put(self, id: int): """ Actualiza un único Switch por ID. """ try: body = interfaces.single_schema.load(request.json).data Switch = SwitchService.update(id, body) return ApiResponse(interfaces.single_schema.dump(Switch).data) except SwitchNotFound: raise ApiException(f'No se encuentra un switch con el id:{id}') @api.route("/inventory") @api.response(400, 'Bad Request', interfaces.error_response_model) @api.doc(responses={ 401: 'Unauthorized', 403: 'Forbidden', 500: 'Internal server error', 502: 'Bad Gateway', 503: 'Service Unavailable', }) class SwitchInventoryResource(Resource): """ Inventory switch Resource """ @api.response(200, 'Inventario con lista de swithces') @async_action async def get(self): """ Devuelve la lista de Switches """ try: entities = await SwitchService.get_all() ansible_switches_vars = {} for x in entities: ansible_switches_vars[x.name] = { "ansible_host": x.ip, "ansible_become": True, "ansible_become_method": "enable", "ansible_connection": "network_cli", "ansible_network_os": "ios", "ansible_port": x.ansible_ssh_port or 22, "ansible_user": decode(x.ansible_user), "ansible_ssh_pass": decode(x.ansible_ssh_pass) } ansible_switches_hostnames = map(lambda x : x.name, entities) sw_inv = { 'group': { 'hosts': list(ansible_switches_hostnames), }, '_meta': { 'hostvars': ansible_switches_vars } } return ApiResponse(sw_inv) except JobTemplateNotFound: raise ApiException('No existe un playbook para obtener la infrmación de las interfaces') except PlaybookTimeout: raise ApiException('La ejecución de la tarea supero el tiempo del timeout') except PlaybookFailure: raise ApiException('Fallo la ejecución de la tarea') @api.route("/<int:id>/macs") @api.param("id", "Identificador único del Switch") class SwitchMacResource(Resource): """ Mac Resource """ @api.response(200, 'Lista de Interfaces con sus respectivas macs', interfaces.many_response_model) @log @async_action @authorize async def get(self, switch_id: int): """ Devuelve la lista de todaslas macs del switch """ try: resp = await MacService.get(switch_id) return ApiResponse(resp) except SwitchNotFound: raise ApiException(f'No se encuentra un switch con el id:{switch_id}') except JobTemplateNotFound: raise ApiException('No existe un playbook para obtener la infrmación de las interfaces') except PlaybookTimeout: raise ApiException('La ejecución de la tarea supero el tiempo del timeout') except PlaybookFailure: raise ApiException('Fallo la ejecución de la tarea')
0
1,669
22
5ccb6a24d0e76921694aa036b37017f07029dff1
7,057
py
Python
linlearn/estimator/tmean.py
LinLearn/linlearn
de5752d47bbe8e2fb62d41b0dcf2526f87545e1c
[ "BSD-3-Clause" ]
null
null
null
linlearn/estimator/tmean.py
LinLearn/linlearn
de5752d47bbe8e2fb62d41b0dcf2526f87545e1c
[ "BSD-3-Clause" ]
null
null
null
linlearn/estimator/tmean.py
LinLearn/linlearn
de5752d47bbe8e2fb62d41b0dcf2526f87545e1c
[ "BSD-3-Clause" ]
null
null
null
# Authors: Stephane Gaiffas <stephane.gaiffas@gmail.com> # Ibrahim Merad <imerad7@gmail.com> # License: BSD 3 clause """ This module implement the ``TMean`` class for the trimmed-means robust estimator. `StateTMean` is a place-holder for the TMean estimator containing: """ from collections import namedtuple import numpy as np from numba import jit from ._base import Estimator, jit_kwargs from .._utils import np_float, trimmed_mean, fast_trimmed_mean StateTMean = namedtuple( "StateTMean", [ "deriv_samples", "deriv_samples_outer_prods", "gradient", "loss_derivative", "partial_derivative", ], ) class TMean(Estimator): """Trimmed-mean estimator"""
37.94086
128
0.54655
# Authors: Stephane Gaiffas <stephane.gaiffas@gmail.com> # Ibrahim Merad <imerad7@gmail.com> # License: BSD 3 clause """ This module implement the ``TMean`` class for the trimmed-means robust estimator. `StateTMean` is a place-holder for the TMean estimator containing: """ from collections import namedtuple import numpy as np from numba import jit from ._base import Estimator, jit_kwargs from .._utils import np_float, trimmed_mean, fast_trimmed_mean StateTMean = namedtuple( "StateTMean", [ "deriv_samples", "deriv_samples_outer_prods", "gradient", "loss_derivative", "partial_derivative", ], ) class TMean(Estimator): """Trimmed-mean estimator""" def __init__(self, X, y, loss, n_classes, fit_intercept, percentage): Estimator.__init__(self, X, y, loss, n_classes, fit_intercept) self.percentage = percentage # Number of samples excluded from both tails (left and right) self.n_excluded_tails = max(1, int(len(X) * percentage)) self.one_hot_cols = np.sum(X == 0.0, axis=0) > X.shape[0]/20 if fit_intercept: self.one_hot_cols = np.insert(self.one_hot_cols, 0, False) def get_state(self): return StateTMean( deriv_samples=np.empty( (self.n_samples, self.n_classes), dtype=np_float, order="F" ), deriv_samples_outer_prods=np.empty( (self.n_samples, self.n_classes), dtype=np_float, order="F" ), gradient=np.empty( (self.n_features + int(self.fit_intercept), self.n_classes), dtype=np_float, order="F", ), loss_derivative=np.empty(self.n_classes, dtype=np_float), partial_derivative=np.empty(self.n_classes, dtype=np_float), ) def partial_deriv_factory(self): X = self.X y = self.y loss = self.loss deriv_loss = loss.deriv_factory() n_samples = self.n_samples n_classes = self.n_classes one_hot_cols = self.one_hot_cols n_excluded_tails = self.n_excluded_tails if self.fit_intercept: @jit(**jit_kwargs) def partial_deriv(j, inner_products, state): deriv_samples = state.deriv_samples partial_derivative = state.partial_derivative if j == 0: for i in range(n_samples): deriv_loss(y[i], inner_products[i], deriv_samples[i]) else: for i in range(n_samples): deriv_loss(y[i], inner_products[i], deriv_samples[i]) for k in range(n_classes): deriv_samples[i, k] *= X[i, j - 1] # TODO: Hand-made mean ? # TODO: Try out different sorting mechanisms, since at some point the # sorting order won't change much... if one_hot_cols[j]: for k in range(n_classes): partial_derivative[k] = trimmed_mean(deriv_samples[:, k], n_samples, n_excluded_tails) else: for k in range(n_classes): partial_derivative[k] = fast_trimmed_mean(deriv_samples[:, k], n_samples, n_excluded_tails) return partial_deriv else: @jit(**jit_kwargs) def partial_deriv(j, inner_products, state): deriv_samples = state.deriv_samples partial_derivative = state.partial_derivative for i in range(n_samples): deriv_loss(y[i], inner_products[i], deriv_samples[i]) for k in range(n_classes): deriv_samples[i, k] *= X[i, j] if one_hot_cols[j]: for k in range(n_classes): partial_derivative[k] = trimmed_mean(deriv_samples[:, k], n_samples, n_excluded_tails) else: for k in range(n_classes): partial_derivative[k] = fast_trimmed_mean(deriv_samples[:, k], n_samples, n_excluded_tails) return partial_deriv def grad_factory(self): X = self.X y = self.y loss = self.loss deriv_loss = loss.deriv_factory() n_samples = self.n_samples n_features = self.n_features n_classes = self.n_classes one_hot_cols = self.one_hot_cols n_excluded_tails = self.n_excluded_tails if self.fit_intercept: @jit(**jit_kwargs) def grad(inner_products, state): deriv_samples = state.deriv_samples deriv_samples_outer_prods = state.deriv_samples_outer_prods gradient = state.gradient for i in range(n_samples): deriv_loss(y[i], inner_products[i], deriv_samples[i]) for k in range(n_classes): deriv_samples_outer_prods[i, k] = deriv_samples[i, k] for k in range(n_classes): gradient[0, k] = fast_trimmed_mean(deriv_samples_outer_prods[:, k], n_samples, n_excluded_tails) # gradient[0, k] = trimmed_mean(deriv_samples_outer_prods[:, k], n_samples, n_excluded_tails) for k in range(n_classes): for j in range(n_features): for i in range(n_samples): deriv_samples_outer_prods[i, k] = ( deriv_samples[i, k] * X[i, j] ) if one_hot_cols[j]: gradient[j + 1, k] = trimmed_mean(deriv_samples_outer_prods[:, k], n_samples, n_excluded_tails) else: gradient[j + 1, k] = fast_trimmed_mean(deriv_samples_outer_prods[:, k], n_samples, n_excluded_tails) return grad else: @jit(**jit_kwargs) def grad(inner_products, state): deriv_samples = state.deriv_samples deriv_samples_outer_prods = state.deriv_samples_outer_prods gradient = state.gradient for i in range(n_samples): deriv_loss(y[i], inner_products[i], deriv_samples[i]) for j in range(n_features): if one_hot_cols[j]: tmean_fct = trimmed_mean else: tmean_fct = fast_trimmed_mean for k in range(n_classes): for i in range(n_samples): deriv_samples_outer_prods[i, k] = ( deriv_samples[i, k] * X[i, j] ) gradient[j, k] = tmean_fct(deriv_samples_outer_prods[:, k], n_samples, n_excluded_tails) return 0 return grad
6,224
0
108
9c53f7fb441dbb00045923c0e4b9ace6c6b0a5b3
2,427
py
Python
bauh/gems/arch/confirmation.py
octopusSD/bauh
c1f210fef87ddb4614b201ec2030330b71e43fe4
[ "Zlib" ]
1
2020-02-20T05:08:46.000Z
2020-02-20T05:08:46.000Z
bauh/gems/arch/confirmation.py
octopusSD/bauh
c1f210fef87ddb4614b201ec2030330b71e43fe4
[ "Zlib" ]
null
null
null
bauh/gems/arch/confirmation.py
octopusSD/bauh
c1f210fef87ddb4614b201ec2030330b71e43fe4
[ "Zlib" ]
null
null
null
from typing import Set, List, Tuple from bauh.api.abstract.handler import ProcessWatcher from bauh.api.abstract.view import MultipleSelectComponent, InputOption from bauh.commons import resource from bauh.commons.html import bold from bauh.gems.arch import ROOT_DIR from bauh.view.util.translation import I18n
44.944444
186
0.619695
from typing import Set, List, Tuple from bauh.api.abstract.handler import ProcessWatcher from bauh.api.abstract.view import MultipleSelectComponent, InputOption from bauh.commons import resource from bauh.commons.html import bold from bauh.gems.arch import ROOT_DIR from bauh.view.util.translation import I18n def _get_mirror_icon(mirror: str): return resource.get_path('img/{}.svg'.format('arch' if mirror == 'aur' else 'mirror'), ROOT_DIR) def request_optional_deps(pkgname: str, pkg_mirrors: dict, watcher: ProcessWatcher, i18n: I18n) -> Set[str]: opts = [] for p, d in pkg_mirrors.items(): op = InputOption('{}{} ( {}: {} )'.format(p, ': ' + d['desc'] if d['desc'] else '', i18n['repository'], d['mirror'].upper()), p) op.icon_path = _get_mirror_icon(d['mirror']) opts.append(op) view_opts = MultipleSelectComponent(label='', options=opts, default_options=None) install = watcher.request_confirmation(title=i18n['arch.install.optdeps.request.title'], body='<p>{}.</p><p>{}:</p>'.format(i18n['arch.install.optdeps.request.body'].format(bold(pkgname)), i18n['arch.install.optdeps.request.help']), components=[view_opts], confirmation_label=i18n['install'].capitalize(), deny_label=i18n['do_not.install'].capitalize()) if install: return {o.value for o in view_opts.values} def request_install_missing_deps(pkgname: str, deps: List[Tuple[str, str]], watcher: ProcessWatcher, i18n: I18n) -> bool: msg = '<p>{}</p>'.format(i18n['arch.missing_deps.body'].format(name=bold(pkgname) if pkgname else '', deps=bold(str(len(deps))))) opts = [] sorted_deps = [*deps] sorted_deps.sort(key=lambda e: e[0]) for dep in sorted_deps: op = InputOption('{} ( {}: {} )'.format(dep[0], i18n['repository'], dep[1].upper()), dep[0]) op.read_only = True op.icon_path = _get_mirror_icon(dep[1]) opts.append(op) comp = MultipleSelectComponent(label='', options=opts, default_options=set(opts)) return watcher.request_confirmation(i18n['arch.missing_deps.title'], msg, [comp], confirmation_label=i18n['continue'].capitalize(), deny_label=i18n['cancel'].capitalize())
2,044
0
69
8c8b782e7893e9058796384c46f91ed54d54153c
154
py
Python
tests/unit/equality/test_effective_action.py
etta-trust/PolicyGlass
72157189a9af3172e6efbdcc2050969796cfa99f
[ "MIT" ]
49
2021-12-21T23:15:55.000Z
2022-03-28T09:38:30.000Z
tests/unit/equality/test_effective_action.py
etta-trust/PolicyGlass
72157189a9af3172e6efbdcc2050969796cfa99f
[ "MIT" ]
3
2021-12-23T22:02:02.000Z
2022-01-10T14:16:24.000Z
tests/unit/equality/test_effective_action.py
etta-trust/PolicyGlass
72157189a9af3172e6efbdcc2050969796cfa99f
[ "MIT" ]
1
2022-02-22T11:03:27.000Z
2022-02-22T11:03:27.000Z
from policyglass import Action, EffectiveAction
25.666667
77
0.746753
from policyglass import Action, EffectiveAction def test_equality_true(): assert EffectiveAction(Action("s3:*")) == EffectiveAction(Action("s3:*"))
82
0
23
f370feeb4f230cf0228e838425c9a052204e009d
447
py
Python
tests/test_model.py
rychallener/TauREx3_public
eb0eeeeca8f47e5e7d64d8d70b43a3af370b7677
[ "BSD-3-Clause" ]
null
null
null
tests/test_model.py
rychallener/TauREx3_public
eb0eeeeca8f47e5e7d64d8d70b43a3af370b7677
[ "BSD-3-Clause" ]
null
null
null
tests/test_model.py
rychallener/TauREx3_public
eb0eeeeca8f47e5e7d64d8d70b43a3af370b7677
[ "BSD-3-Clause" ]
null
null
null
import unittest import shutil import tempfile from os import path from unittest.mock import patch, mock_open from taurex.model.model import ForwardModel from taurex.model.simplemodel import SimpleForwardModel import numpy as np import pickle
19.434783
55
0.782998
import unittest import shutil import tempfile from os import path from unittest.mock import patch, mock_open from taurex.model.model import ForwardModel from taurex.model.simplemodel import SimpleForwardModel import numpy as np import pickle class ForwardModelTest(unittest.TestCase): def test_init(self): pass class SimpleForwardModelTest(unittest.TestCase): def test_init(self): model = SimpleForwardModel('test')
54
48
100
76070ea40a45d68adecb44f6e49e28cbf613905d
610
py
Python
LeetCode_589.py
xulu199705/LeetCode
9a654a10117a93f9ad9728d6b86eb3713185545e
[ "MIT" ]
null
null
null
LeetCode_589.py
xulu199705/LeetCode
9a654a10117a93f9ad9728d6b86eb3713185545e
[ "MIT" ]
null
null
null
LeetCode_589.py
xulu199705/LeetCode
9a654a10117a93f9ad9728d6b86eb3713185545e
[ "MIT" ]
null
null
null
from typing import List # 迭代先序遍历
22.592593
58
0.503279
from typing import List class Node: def __init__(self, val=None, children=None): self.val = val self.children = children # 迭代先序遍历 class Solution: def preorder(self, root: 'Node') -> List[int]: if root == None: return [] ans = [] stack = [] stack.append(root) while stack: tmp = stack.pop() ans.append(tmp.val) # print(ans) for i in range(len(tmp.children) - 1, -1, -1): stack.append(tmp.children[i]) # print([it.val for it in stack]) return ans
495
-16
97
81c9590de251767964ac11b32b67667e2d773702
448
py
Python
Examples/Session09/yield_example.py
Sharmila8/intropython2016
a69aa6f6d0cd28c6a29d0b8adb9ef1ff9e2e8479
[ "Unlicense" ]
null
null
null
Examples/Session09/yield_example.py
Sharmila8/intropython2016
a69aa6f6d0cd28c6a29d0b8adb9ef1ff9e2e8479
[ "Unlicense" ]
null
null
null
Examples/Session09/yield_example.py
Sharmila8/intropython2016
a69aa6f6d0cd28c6a29d0b8adb9ef1ff9e2e8479
[ "Unlicense" ]
null
null
null
# if __name__ == '__main__': # print "the generator function:" # print repr(counter) # print "call generator function" # c = counter() # print "the generator:" # print repr(c) # print 'iterate' # for item in c: # print 'received:', item
19.478261
38
0.540179
def counter(): print('counter: starting counter') i = -3 while i < 3: i = i + 1 print('counter: yield', i) yield i return None # if __name__ == '__main__': # print "the generator function:" # print repr(counter) # print "call generator function" # c = counter() # print "the generator:" # print repr(c) # print 'iterate' # for item in c: # print 'received:', item
145
0
22
ea7cde7eec2b5e8c99aacc733efb17738221bb81
4,318
py
Python
startrek-py/startrek/net/hub.py
moky/wormhole
bbfcfce13eb0ee86f8bb006deb7a3881173352c2
[ "MIT" ]
5
2020-05-24T03:35:00.000Z
2021-06-05T00:27:54.000Z
startrek-py/startrek/net/hub.py
moky/wormhole
bbfcfce13eb0ee86f8bb006deb7a3881173352c2
[ "MIT" ]
null
null
null
startrek-py/startrek/net/hub.py
moky/wormhole
bbfcfce13eb0ee86f8bb006deb7a3881173352c2
[ "MIT" ]
2
2020-09-11T05:29:11.000Z
2022-03-13T15:45:22.000Z
# -*- coding: utf-8 -*- # # Star Trek: Interstellar Transport # # Written in 2021 by Moky <albert.moky@gmail.com> # # ============================================================================== # MIT License # # Copyright (c) 2021 Albert Moky # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ============================================================================== import socket from abc import ABC, abstractmethod from typing import Optional, Set from ..fsm import Processor from .channel import Channel from .connection import Connection class Hub(Processor, ABC): """ Connections & Channels Container """ @abstractmethod def open_channel(self, remote: Optional[tuple], local: Optional[tuple]) -> Optional[Channel]: """ Open a channel with direction (remote, local) :param remote: remote address to connected :param local: local address to bound :return: None on socket error """ raise NotImplemented @abstractmethod def close_channel(self, channel: Channel): """ Close socket channel :param channel: socket channel :return: """ raise NotImplemented @abstractmethod def connect(self, remote: tuple, local: Optional[tuple] = None) -> Optional[Connection]: """ Get connection with direction (remote, local) :param remote: remote address :param local: local address :return: None on channel not opened """ raise NotImplemented @abstractmethod def disconnect(self, remote: tuple = None, local: Optional[tuple] = None, connection: Connection = None) -> Optional[Connection]: """ Close connection :param remote: remote address :param local: local address :param connection: closing connection :return: closed connection """ raise NotImplemented # # Local Address # @classmethod @classmethod @classmethod @classmethod
32.223881
119
0.603057
# -*- coding: utf-8 -*- # # Star Trek: Interstellar Transport # # Written in 2021 by Moky <albert.moky@gmail.com> # # ============================================================================== # MIT License # # Copyright (c) 2021 Albert Moky # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ============================================================================== import socket from abc import ABC, abstractmethod from typing import Optional, Set from ..fsm import Processor from .channel import Channel from .connection import Connection class Hub(Processor, ABC): """ Connections & Channels Container """ @abstractmethod def open_channel(self, remote: Optional[tuple], local: Optional[tuple]) -> Optional[Channel]: """ Open a channel with direction (remote, local) :param remote: remote address to connected :param local: local address to bound :return: None on socket error """ raise NotImplemented @abstractmethod def close_channel(self, channel: Channel): """ Close socket channel :param channel: socket channel :return: """ raise NotImplemented @abstractmethod def connect(self, remote: tuple, local: Optional[tuple] = None) -> Optional[Connection]: """ Get connection with direction (remote, local) :param remote: remote address :param local: local address :return: None on channel not opened """ raise NotImplemented @abstractmethod def disconnect(self, remote: tuple = None, local: Optional[tuple] = None, connection: Connection = None) -> Optional[Connection]: """ Close connection :param remote: remote address :param local: local address :param connection: closing connection :return: closed connection """ raise NotImplemented # # Local Address # @classmethod def host_name(cls) -> str: return socket.gethostname() @classmethod def addr_info(cls): # -> List[Tuple[Union[AddressFamily, int], Union[SocketKind, int], int, str, Tuple[Any, ...]]] host = socket.gethostname() if host is not None: try: return socket.getaddrinfo(host, None) except socket.error as error: print('[NET] failed to get address info: %s' % error) return [] @classmethod def inet_addresses(cls) -> Set[str]: addresses = set() info = cls.addr_info() for item in info: addresses.add(item[4][0]) return addresses @classmethod def inet_address(cls) -> Optional[str]: # get from addr info info = cls.addr_info() for item in info: ip = item[4][0] if ':' not in ip and '127.0.0.1' != ip: return ip # get from UDP socket sock = None try: sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) remote = ('8.8.8.8', 8888) sock.connect(remote) ip = sock.getsockname()[0] finally: if sock is not None: sock.close() return ip
1,119
0
104
2b3dc140b83bd17428d4540aee0588d643a72af6
2,405
py
Python
Python_Misc/TMWP_OO_CustDataStructures.py
TheMitchWorksPro/DataTech_Playground
d62266d21762315f431fb4f707940095901b85e6
[ "MIT" ]
null
null
null
Python_Misc/TMWP_OO_CustDataStructures.py
TheMitchWorksPro/DataTech_Playground
d62266d21762315f431fb4f707940095901b85e6
[ "MIT" ]
null
null
null
Python_Misc/TMWP_OO_CustDataStructures.py
TheMitchWorksPro/DataTech_Playground
d62266d21762315f431fb4f707940095901b85e6
[ "MIT" ]
null
null
null
#!/usr/bin/python # Filename: TMWP_OO_CustDataStructures.py # TMWP = TheMitchWorksPro # Functions and/or Objects for smarter handling of common data structures # required imports are noted in the code where used/required # from ... import ... version = '0.1' python_version_support = 'code shoud be compatibile w/ Python 2.7 and Python 3.x' import collections # source: https://code.activestate.com/recipes/576694/ # added to collection for testing but may or may not be tested yet # notes say this was created for Python 2.6 but should be compatible w/ 2.7 and 3.x # Alternatives: from sortedcontainers import SortedSet # pip install sortedcontainers library to use it # libraries needed: import collections
30.833333
92
0.575468
#!/usr/bin/python # Filename: TMWP_OO_CustDataStructures.py # TMWP = TheMitchWorksPro # Functions and/or Objects for smarter handling of common data structures # required imports are noted in the code where used/required # from ... import ... version = '0.1' python_version_support = 'code shoud be compatibile w/ Python 2.7 and Python 3.x' import collections class OrderedSet(collections.MutableSet): # source: https://code.activestate.com/recipes/576694/ # added to collection for testing but may or may not be tested yet # notes say this was created for Python 2.6 but should be compatible w/ 2.7 and 3.x # Alternatives: from sortedcontainers import SortedSet # pip install sortedcontainers library to use it # libraries needed: import collections def __init__(self, iterable=None): self.end = end = [] end += [None, end, end] # sentinel node for doubly linked list self.map = {} # key --> [key, prev, next] if iterable is not None: self |= iterable def __len__(self): return len(self.map) def __contains__(self, key): return key in self.map def add(self, key): if key not in self.map: end = self.end curr = end[1] curr[2] = end[1] = self.map[key] = [key, curr, end] def discard(self, key): if key in self.map: key, prev, next = self.map.pop(key) prev[2] = next next[1] = prev def __iter__(self): end = self.end curr = end[2] while curr is not end: yield curr[0] curr = curr[2] def __reversed__(self): end = self.end curr = end[1] while curr is not end: yield curr[0] curr = curr[1] def pop(self, last=True): if not self: raise KeyError('set is empty') key = self.end[1][0] if last else self.end[2][0] self.discard(key) return key def __repr__(self): if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, list(self)) def __eq__(self, other): if isinstance(other, OrderedSet): return len(self) == len(other) and list(self) == list(other) return set(self) == set(other)
1,325
20
294
afc7055446a0082505c7e85721cf070a71325344
30,535
py
Python
py/instalog/plugins/buffer_file_common.py
arccode/factory
a1b0fccd68987d8cd9c89710adc3c04b868347ec
[ "BSD-3-Clause" ]
3
2022-01-06T16:52:52.000Z
2022-03-07T11:30:47.000Z
py/instalog/plugins/buffer_file_common.py
arccode/factory
a1b0fccd68987d8cd9c89710adc3c04b868347ec
[ "BSD-3-Clause" ]
null
null
null
py/instalog/plugins/buffer_file_common.py
arccode/factory
a1b0fccd68987d8cd9c89710adc3c04b868347ec
[ "BSD-3-Clause" ]
1
2021-10-24T01:47:22.000Z
2021-10-24T01:47:22.000Z
# Copyright 2017 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """File-based buffer common. A file-based buffer which writes its events to a single file on disk, and separately maintains metadata. There are three files maintained, plus one for each consumer created: data.json: Stores actual data. Each line corresponds to one event. As events are written to disk, each one is given a sequence number. Format of each line: [SEQ_NUM, {EVENT_DATA}, CRC_SUM] Writing SEQ_NUM to data.json is not strictly necessary since we keep track of sequence numbers in metadata, but it is useful for debugging, and could also help when restoring a corrupt database. metadata.json: Stores current sequence numbers and cursor positions. The "first seq" and "start pos" are taken to be absolute to the original untruncated data file, and refer to the beginning of data currently stored on disk. So if seq=1 was consumed by all Consumers, and Truncate removed it from disk, first_seq would be set to 2. Note that since the cursor positions are absolute, start_pos must be subtracted to get the actual position in the file on disk, e.g.: f.seek(current_pos - start_pos) consumers.json: Stores a list of all active Consumers. If a Consumer is removed, it will be removed from this list, but its metadata file will continue to exist. If it is ever re-created, the existing metadata will be used. If this is undesired behaviour, the metadata file for that Consumer should be manually deleted. consumer_X.json: Stores the sequence number and cursor position of a particular Consumer. Versioning: Another concept that is worth explaining separately is "versioning". We want to support truncating, that is, when our file contains N records which have already been consumed by all Consumers, and M remaining records, remove the first N records from the main data file in order to save disk space. After rewriting the data file, update metadata accordingly. But what happens if a failure occurs in between these two steps? Our "old" metadata now is now paired with a "new" data file, which means we will likely be unable to read anything properly. To solve this problem, before re-writing the main data file, we save a metadata file to disk with both "old" and "new" metadata versions *before* performing a truncate on the main data file. The key is a CRC hash of the first line of the main data file. When the buffer first starts, it will check to see which key matches the first line, and it will use this metadata version. Thus, if a failure occurs *before* writing the main data file, the "old" metadata can be used. If a failure occurs *after* writing the main data file, the "new" metadata can be used. """ import copy import json import logging import os import shutil import zlib from cros.factory.instalog import datatypes from cros.factory.instalog import lock_utils from cros.factory.instalog import log_utils from cros.factory.instalog import plugin_base from cros.factory.instalog.utils import file_utils # The number of bytes to buffer when retrieving events from a file. _BUFFER_SIZE_BYTES = 4 * 1024 # 4kb class SimpleFileException(Exception): """General exception type for this plugin.""" def GetChecksumLegacy(data): """Generates an 8-character CRC32 checksum of given string.""" # TODO(chuntsen): Remove this legacy function. # The function crc32() returns a signed 32-bit integer in Python2, but it # returns an unsigned 32-bit integer in Python3. To generate the same value # across all Python versions, we convert unsigned integer to signed integer. checksum = zlib.crc32(data.encode('utf-8')) if checksum >= 2**31: checksum -= 2**32 return '{:08x}'.format(abs(checksum)) def GetChecksum(data): """Generates an 8-character CRC32 checksum of given string.""" # The function crc32() returns a signed 32-bit integer in Python2, but it # returns an unsigned 32-bit integer in Python3. To generate the same value # across all Python versions, we use "crc32() & 0xffffffff". return '{:08x}'.format(zlib.crc32(data.encode('utf-8')) & 0xffffffff) def FormatRecord(seq, record): """Returns a record formatted as a line to be written to disk.""" data = '%d, %s' % (seq, record) checksum = GetChecksum(data) return '[%s, "%s"]\n' % (data, checksum) def ParseRecord(line, logger_name=None): """Parses and returns a line from disk as a record. Returns: A tuple of (seq_number, record), or None on failure. """ logger = logging.getLogger(logger_name) line_inner = line.rstrip()[1:-1] # Strip [] and newline data, _, checksum = line_inner.rpartition(', ') # TODO(chuntsen): Change this method after a long time. checksum = checksum.strip('"') seq, _, record = data.partition(', ') if not seq or not record: logger.warning('Parsing error for record %s', line.rstrip()) return None, None if checksum != GetChecksum(data) and checksum != GetChecksumLegacy(data): logger.warning('Checksum error for record %s', line.rstrip()) return None, None return int(seq), record def TryLoadJSON(path, logger_name=None): """Attempts to load JSON from the given file. Returns: Parsed data from the file. None if the file does not exist. Raises: Exception if there was some other problem reading the file, or if something went wrong parsing the data. """ logger = logging.getLogger(logger_name) if not os.path.isfile(path): logger.debug('%s: does not exist', path) return None try: with open(path, 'r') as f: return json.load(f) except Exception: logger.exception('%s: Error reading disk or loading JSON', path) raise def CopyAttachmentsToTempDir(att_paths, tmp_dir, logger_name=None): """Copys attachments to the temporary directory.""" logger = logging.getLogger(logger_name) try: for att_path in att_paths: # Check that the source file exists. if not os.path.isfile(att_path): raise ValueError('Attachment path `%s` specified in event does not ' 'exist' % att_path) target_path = os.path.join(tmp_dir, att_path.replace('/', '_')) logger.debug('Copying attachment: %s --> %s', att_path, target_path) with open(target_path, 'w') as dst_f: with open(att_path, 'r') as src_f: shutil.copyfileobj(src_f, dst_f) # Fsync the file and the containing directory to make sure it # is flushed to disk. dst_f.flush() os.fdatasync(dst_f) # Fsync the containing directory to make sure all attachments are flushed # to disk. dirfd = os.open(tmp_dir, os.O_DIRECTORY) os.fsync(dirfd) os.close(dirfd) return True except Exception: logger.exception('Exception encountered when copying attachments') return False def MoveAndWrite(config_dct, events): """Moves the atts, serializes the events and writes them to the data_path.""" logger = logging.getLogger(config_dct['logger_name']) metadata_dct = RestoreMetadata(config_dct) cur_seq = metadata_dct['last_seq'] + 1 cur_pos = metadata_dct['end_pos'] - metadata_dct['start_pos'] # Truncate the size of the file in case of a previously unfinished # transaction. with open(config_dct['data_path'], 'a') as f: f.truncate(cur_pos) with open(config_dct['data_path'], 'a') as f: # On some machines, the file handle offset isn't set to EOF until # a write occurs. Thus we must manually seek to the end to ensure # that f.tell() will return useful results. f.seek(0, 2) # 2 means use EOF as the reference point. assert f.tell() == cur_pos for event in events: for att_id, att_path in event.attachments.items(): target_name = '%s_%s' % (cur_seq, att_id) target_path = os.path.join(config_dct['attachments_dir'], target_name) event.attachments[att_id] = target_name logger.debug('Relocating attachment %s: %s --> %s', att_id, att_path, target_path) # Note: This could potentially overwrite an existing file that got # written just before Instalog process stopped unexpectedly. os.rename(att_path, target_path) logger.debug('Writing event with cur_seq=%d, cur_pos=%d', cur_seq, cur_pos) output = FormatRecord(cur_seq, event.Serialize()) # Store the version for SaveMetadata to use. if cur_pos == 0: metadata_dct['version'] = GetChecksum(output) f.write(output) cur_seq += 1 cur_pos += len(output) if config_dct['args'].enable_fsync: # Fsync the file and the containing directory to make sure it # is flushed to disk. f.flush() os.fdatasync(f) dirfd = os.open(os.path.dirname(config_dct['data_path']), os.O_DIRECTORY) os.fsync(dirfd) os.close(dirfd) metadata_dct['last_seq'] = cur_seq - 1 metadata_dct['end_pos'] = metadata_dct['start_pos'] + cur_pos SaveMetadata(config_dct, metadata_dct) def SaveMetadata(config_dct, metadata_dct, old_metadata_dct=None): """Writes metadata of main database to disk.""" if not metadata_dct['version']: raise SimpleFileException('No `version` available for SaveMetadata') data = {metadata_dct['version']: metadata_dct} if old_metadata_dct and old_metadata_dct['version']: if metadata_dct['version'] == old_metadata_dct['version']: raise SimpleFileException( 'Same `version` from new metadata and old metadata') data[old_metadata_dct['version']] = old_metadata_dct with file_utils.AtomicWrite(config_dct['metadata_path'], fsync=True) as f: json.dump(data, f) def RestoreMetadata(config_dct): """Restores version from the main data file on disk. If the metadata file does not exist, will silently return. """ logger = logging.getLogger(config_dct['logger_name']) metadata_dct = {'first_seq': 1, 'last_seq': 0, 'start_pos': 0, 'end_pos': 0, 'version': '00000000'} data = TryLoadJSON(config_dct['metadata_path'], logger.name) if data is not None: try: with open(config_dct['data_path'], 'r') as f: metadata_dct['version'] = GetChecksum(f.readline()) except Exception: logger.error('Data file unexpectedly missing; resetting metadata') return metadata_dct if metadata_dct['version'] not in data: logger.error('Could not find metadata version %s (available: %s); ' 'recovering metadata from data file', metadata_dct['version'], ', '.join(data.keys())) RecoverMetadata(config_dct, metadata_dct) return metadata_dct if len(data) > 1: logger.info('Metadata contains multiple versions %s; choosing %s', ', '.join(data.keys()), metadata_dct['version']) metadata_dct.update(data[metadata_dct['version']]) if (metadata_dct['end_pos'] > metadata_dct['start_pos'] + os.path.getsize(config_dct['data_path'])): logger.error('end_pos in restored metadata is larger than start_pos + ' 'data file; recovering metadata from data file') RecoverMetadata(config_dct, metadata_dct) else: if os.path.isfile(config_dct['data_path']): logger.error('Could not find metadata file, but we have data file; ' 'recovering metadata from data file') RecoverMetadata(config_dct, metadata_dct) else: logger.info('Creating metadata file and data file') SaveMetadata(config_dct, metadata_dct) file_utils.TouchFile(config_dct['data_path']) return metadata_dct def RecoverMetadata(config_dct, metadata_dct): """Recovers metadata from the main data file on disk. Uses the first valid record for first_seq and start_pos, and the last valid record for last_seq and end_pos. """ logger = logging.getLogger(config_dct['logger_name']) first_record = True cur_pos = 0 with open(config_dct['data_path'], 'r') as f: for line in f: seq, _unused_record = ParseRecord(line, config_dct['logger_name']) if first_record and seq: metadata_dct['first_seq'] = seq metadata_dct['start_pos'] = cur_pos first_record = False cur_pos += len(line) if seq: metadata_dct['last_seq'] = seq metadata_dct['end_pos'] = cur_pos logger.info('Finished recovering metadata; sequence range found: %d to %d', metadata_dct['first_seq'], metadata_dct['last_seq']) SaveMetadata(config_dct, metadata_dct) def TruncateAttachments(config_dct, metadata_dct): """Deletes attachments of events no longer stored within data.json.""" logger = logging.getLogger(config_dct['logger_name']) for fname in os.listdir(config_dct['attachments_dir']): fpath = os.path.join(config_dct['attachments_dir'], fname) if not os.path.isfile(fpath): continue seq, unused_underscore, unused_att_id = fname.partition('_') if not seq.isdigit(): continue if int(seq) < metadata_dct['first_seq']: logger.debug('Truncating attachment (<seq=%d): %s', metadata_dct['first_seq'], fname) os.unlink(fpath) def Truncate(config_dct, min_seq, min_pos): """Truncates the main data file to only contain unprocessed records. See file-level docstring for more information about versions. """ logger = logging.getLogger(config_dct['logger_name']) metadata_dct = RestoreMetadata(config_dct) # Does the buffer already have data in it? if not metadata_dct['version']: return if metadata_dct['first_seq'] == min_seq: logger.info('No need to truncate') return try: logger.debug('Will truncate up until seq=%d, pos=%d', min_seq, min_pos) # Prepare the old vs. new metadata to write to disk. old_metadata_dct = copy.deepcopy(metadata_dct) metadata_dct['first_seq'] = min_seq metadata_dct['start_pos'] = min_pos with file_utils.AtomicWrite(config_dct['data_path'], fsync=True) as new_f: # AtomicWrite opens a file handle to a temporary file right next to # the real file (data_path), so we can open a "read" handle on data_path # without affecting AtomicWrite's handle. Only when AtomicWrite's context # block ends will the temporary be moved to replace data_path. with open(config_dct['data_path'], 'r') as old_f: old_f.seek(min_pos - old_metadata_dct['start_pos']) # Deal with the first line separately to get the new version. first_line = old_f.readline() metadata_dct['version'] = GetChecksum(first_line) new_f.write(first_line) shutil.copyfileobj(old_f, new_f) # Before performing the "replace" step of write-replace (when # the file_utils.AtomicWrite context ends), save metadata to disk in # case of disk failure. SaveMetadata(config_dct, metadata_dct, old_metadata_dct) # After we use AtomicWrite, we can remove old metadata. SaveMetadata(config_dct, metadata_dct) except Exception: logger.exception('Exception occurred during Truncate operation') raise class Consumer(log_utils.LoggerMixin, plugin_base.BufferEventStream): """Represents a Consumer and its BufferEventStream. Since SimpleFile has only a single database file, there can only ever be one functioning BufferEventStream at any given time. So we bundle the Consumer and its BufferEventStream into one object. When CreateStream is called, a lock is acquired and the Consumer object is return. The lock must first be acquired before any of Next, Commit, or Abort can be used. """ def CreateStream(self): """Creates a BufferEventStream object to be used by Instalog core. Since this class doubles as BufferEventStream, we mark that the BufferEventStream is "unexpired" by setting self._stream_lock, and return self. Returns: `self` if BufferEventStream not already in use, None if busy. """ return self if self._stream_lock.acquire(False) else None def _SaveMetadata(self): """Saves metadata for this Consumer to disk (seq and pos).""" data = {'cur_seq': self.cur_seq, 'cur_pos': self.cur_pos} with file_utils.AtomicWrite(self.metadata_path, fsync=True) as f: json.dump(data, f) def RestoreConsumerMetadata(self): """Restores metadata for this Consumer from disk (seq and pos). On each restore, ensure that the available window of records on disk has not surpassed our own current record. How would this happen? If the Consumer is removed, records it still hasn't read are truncated from the main database, and the Consumer is re-added under the same name. If the metadata file does not exist, will silently return. """ data = TryLoadJSON(self.metadata_path, self.logger.name) if data is not None: if 'cur_seq' not in data or 'cur_pos' not in data: self.error('Consumer %s metadata file invalid; resetting', self.name) return # Make sure we are still ahead of simple_file. with self.read_lock: metadata_dct = RestoreMetadata(self.simple_file.ConfigToDict()) self.cur_seq = min(max(metadata_dct['first_seq'], data['cur_seq']), metadata_dct['last_seq'] + 1) self.cur_pos = min(max(metadata_dct['start_pos'], data['cur_pos']), metadata_dct['end_pos']) if (data['cur_seq'] < metadata_dct['first_seq'] or data['cur_seq'] > (metadata_dct['last_seq'] + 1)): self.error('Consumer %s cur_seq=%d is out of buffer range %d to %d, ' 'correcting to %d', self.name, data['cur_seq'], metadata_dct['first_seq'], metadata_dct['last_seq'] + 1, self.cur_seq) self.new_seq = self.cur_seq self.new_pos = self.cur_pos def _Buffer(self): """Returns a list of pending records. Stores the current buffer internally at self.read_buf. If it already has data in it, self.read_buf will be returned as-is. It will be "refilled" when it is empty. Reads up to _BUFFER_SIZE_BYTES from the file on each "refill". Returns: A list of records, where each is a three-element tuple: (record_seq, record_data, line_bytes). """ if self.read_buf: return self.read_buf # Does the buffer already have data in it? if not os.path.exists(self.simple_file.data_path): return self.read_buf self.debug('_Buffer: waiting for read_lock') try: # When the buffer is truncating, we can't get the read_lock. if not self.read_lock.acquire(timeout=0.5): return [] metadata_dct = RestoreMetadata(self.simple_file.ConfigToDict()) with open(self.simple_file.data_path, 'r') as f: cur = self.new_pos - metadata_dct['start_pos'] f.seek(cur) total_bytes = 0 skipped_bytes = 0 for line in f: if total_bytes > _BUFFER_SIZE_BYTES: break size = len(line) cur += size if cur > (metadata_dct['end_pos'] - metadata_dct['start_pos']): break seq, record = ParseRecord(line, self.logger.name) if seq is None: # Parsing of this line failed for some reason. skipped_bytes += size continue # Only add to total_bytes for a valid line. total_bytes += size # Include any skipped bytes from previously skipped records in the # "size" of this record, in order to allow the consumer to skip to the # proper offset. self.read_buf.append((seq, record, size + skipped_bytes)) skipped_bytes = 0 finally: self.read_lock.CheckAndRelease() return self.read_buf def _Next(self): """Helper for Next, also used for testing purposes. Returns: A tuple of (seq, record), or (None, None) if no records available. """ if not self._stream_lock.IsHolder(): raise plugin_base.EventStreamExpired buf = self._Buffer() if not buf: return None, None seq, record, size = buf.pop(0) self.new_seq = seq + 1 self.new_pos += size return seq, record def Next(self): """See BufferEventStream.Next.""" seq, record = self._Next() if not seq: return None event = datatypes.Event.Deserialize(record) return self.simple_file.ExternalizeEvent(event) def Commit(self): """See BufferEventStream.Commit.""" if not self._stream_lock.IsHolder(): raise plugin_base.EventStreamExpired self.cur_seq = self.new_seq self.cur_pos = self.new_pos # Ensure that regardless of any errors, locks are released. try: self._SaveMetadata() except Exception: # TODO(kitching): Instalog core or PluginSandbox should catch this # exception and attempt to safely shut down. self.exception('Commit: Write exception occurred, Events may be ' 'processed by output plugin multiple times') finally: try: self._stream_lock.release() except Exception: # TODO(kitching): Instalog core or PluginSandbox should catch this # exception and attempt to safely shut down. self.exception('Commit: Internal error occurred') def Abort(self): """See BufferEventStream.Abort.""" if not self._stream_lock.IsHolder(): raise plugin_base.EventStreamExpired self.new_seq = self.cur_seq self.new_pos = self.cur_pos self.read_buf = [] try: self._stream_lock.release() except Exception: # TODO(kitching): Instalog core or PluginSandbox should catch this # exception and attempt to safely shut down. self.exception('Abort: Internal error occurred')
38.360553
80
0.684166
# Copyright 2017 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """File-based buffer common. A file-based buffer which writes its events to a single file on disk, and separately maintains metadata. There are three files maintained, plus one for each consumer created: data.json: Stores actual data. Each line corresponds to one event. As events are written to disk, each one is given a sequence number. Format of each line: [SEQ_NUM, {EVENT_DATA}, CRC_SUM] Writing SEQ_NUM to data.json is not strictly necessary since we keep track of sequence numbers in metadata, but it is useful for debugging, and could also help when restoring a corrupt database. metadata.json: Stores current sequence numbers and cursor positions. The "first seq" and "start pos" are taken to be absolute to the original untruncated data file, and refer to the beginning of data currently stored on disk. So if seq=1 was consumed by all Consumers, and Truncate removed it from disk, first_seq would be set to 2. Note that since the cursor positions are absolute, start_pos must be subtracted to get the actual position in the file on disk, e.g.: f.seek(current_pos - start_pos) consumers.json: Stores a list of all active Consumers. If a Consumer is removed, it will be removed from this list, but its metadata file will continue to exist. If it is ever re-created, the existing metadata will be used. If this is undesired behaviour, the metadata file for that Consumer should be manually deleted. consumer_X.json: Stores the sequence number and cursor position of a particular Consumer. Versioning: Another concept that is worth explaining separately is "versioning". We want to support truncating, that is, when our file contains N records which have already been consumed by all Consumers, and M remaining records, remove the first N records from the main data file in order to save disk space. After rewriting the data file, update metadata accordingly. But what happens if a failure occurs in between these two steps? Our "old" metadata now is now paired with a "new" data file, which means we will likely be unable to read anything properly. To solve this problem, before re-writing the main data file, we save a metadata file to disk with both "old" and "new" metadata versions *before* performing a truncate on the main data file. The key is a CRC hash of the first line of the main data file. When the buffer first starts, it will check to see which key matches the first line, and it will use this metadata version. Thus, if a failure occurs *before* writing the main data file, the "old" metadata can be used. If a failure occurs *after* writing the main data file, the "new" metadata can be used. """ import copy import json import logging import os import shutil import zlib from cros.factory.instalog import datatypes from cros.factory.instalog import lock_utils from cros.factory.instalog import log_utils from cros.factory.instalog import plugin_base from cros.factory.instalog.utils import file_utils # The number of bytes to buffer when retrieving events from a file. _BUFFER_SIZE_BYTES = 4 * 1024 # 4kb class SimpleFileException(Exception): """General exception type for this plugin.""" def GetChecksumLegacy(data): """Generates an 8-character CRC32 checksum of given string.""" # TODO(chuntsen): Remove this legacy function. # The function crc32() returns a signed 32-bit integer in Python2, but it # returns an unsigned 32-bit integer in Python3. To generate the same value # across all Python versions, we convert unsigned integer to signed integer. checksum = zlib.crc32(data.encode('utf-8')) if checksum >= 2**31: checksum -= 2**32 return '{:08x}'.format(abs(checksum)) def GetChecksum(data): """Generates an 8-character CRC32 checksum of given string.""" # The function crc32() returns a signed 32-bit integer in Python2, but it # returns an unsigned 32-bit integer in Python3. To generate the same value # across all Python versions, we use "crc32() & 0xffffffff". return '{:08x}'.format(zlib.crc32(data.encode('utf-8')) & 0xffffffff) def FormatRecord(seq, record): """Returns a record formatted as a line to be written to disk.""" data = '%d, %s' % (seq, record) checksum = GetChecksum(data) return '[%s, "%s"]\n' % (data, checksum) def ParseRecord(line, logger_name=None): """Parses and returns a line from disk as a record. Returns: A tuple of (seq_number, record), or None on failure. """ logger = logging.getLogger(logger_name) line_inner = line.rstrip()[1:-1] # Strip [] and newline data, _, checksum = line_inner.rpartition(', ') # TODO(chuntsen): Change this method after a long time. checksum = checksum.strip('"') seq, _, record = data.partition(', ') if not seq or not record: logger.warning('Parsing error for record %s', line.rstrip()) return None, None if checksum != GetChecksum(data) and checksum != GetChecksumLegacy(data): logger.warning('Checksum error for record %s', line.rstrip()) return None, None return int(seq), record def TryLoadJSON(path, logger_name=None): """Attempts to load JSON from the given file. Returns: Parsed data from the file. None if the file does not exist. Raises: Exception if there was some other problem reading the file, or if something went wrong parsing the data. """ logger = logging.getLogger(logger_name) if not os.path.isfile(path): logger.debug('%s: does not exist', path) return None try: with open(path, 'r') as f: return json.load(f) except Exception: logger.exception('%s: Error reading disk or loading JSON', path) raise def CopyAttachmentsToTempDir(att_paths, tmp_dir, logger_name=None): """Copys attachments to the temporary directory.""" logger = logging.getLogger(logger_name) try: for att_path in att_paths: # Check that the source file exists. if not os.path.isfile(att_path): raise ValueError('Attachment path `%s` specified in event does not ' 'exist' % att_path) target_path = os.path.join(tmp_dir, att_path.replace('/', '_')) logger.debug('Copying attachment: %s --> %s', att_path, target_path) with open(target_path, 'w') as dst_f: with open(att_path, 'r') as src_f: shutil.copyfileobj(src_f, dst_f) # Fsync the file and the containing directory to make sure it # is flushed to disk. dst_f.flush() os.fdatasync(dst_f) # Fsync the containing directory to make sure all attachments are flushed # to disk. dirfd = os.open(tmp_dir, os.O_DIRECTORY) os.fsync(dirfd) os.close(dirfd) return True except Exception: logger.exception('Exception encountered when copying attachments') return False def MoveAndWrite(config_dct, events): """Moves the atts, serializes the events and writes them to the data_path.""" logger = logging.getLogger(config_dct['logger_name']) metadata_dct = RestoreMetadata(config_dct) cur_seq = metadata_dct['last_seq'] + 1 cur_pos = metadata_dct['end_pos'] - metadata_dct['start_pos'] # Truncate the size of the file in case of a previously unfinished # transaction. with open(config_dct['data_path'], 'a') as f: f.truncate(cur_pos) with open(config_dct['data_path'], 'a') as f: # On some machines, the file handle offset isn't set to EOF until # a write occurs. Thus we must manually seek to the end to ensure # that f.tell() will return useful results. f.seek(0, 2) # 2 means use EOF as the reference point. assert f.tell() == cur_pos for event in events: for att_id, att_path in event.attachments.items(): target_name = '%s_%s' % (cur_seq, att_id) target_path = os.path.join(config_dct['attachments_dir'], target_name) event.attachments[att_id] = target_name logger.debug('Relocating attachment %s: %s --> %s', att_id, att_path, target_path) # Note: This could potentially overwrite an existing file that got # written just before Instalog process stopped unexpectedly. os.rename(att_path, target_path) logger.debug('Writing event with cur_seq=%d, cur_pos=%d', cur_seq, cur_pos) output = FormatRecord(cur_seq, event.Serialize()) # Store the version for SaveMetadata to use. if cur_pos == 0: metadata_dct['version'] = GetChecksum(output) f.write(output) cur_seq += 1 cur_pos += len(output) if config_dct['args'].enable_fsync: # Fsync the file and the containing directory to make sure it # is flushed to disk. f.flush() os.fdatasync(f) dirfd = os.open(os.path.dirname(config_dct['data_path']), os.O_DIRECTORY) os.fsync(dirfd) os.close(dirfd) metadata_dct['last_seq'] = cur_seq - 1 metadata_dct['end_pos'] = metadata_dct['start_pos'] + cur_pos SaveMetadata(config_dct, metadata_dct) def SaveMetadata(config_dct, metadata_dct, old_metadata_dct=None): """Writes metadata of main database to disk.""" if not metadata_dct['version']: raise SimpleFileException('No `version` available for SaveMetadata') data = {metadata_dct['version']: metadata_dct} if old_metadata_dct and old_metadata_dct['version']: if metadata_dct['version'] == old_metadata_dct['version']: raise SimpleFileException( 'Same `version` from new metadata and old metadata') data[old_metadata_dct['version']] = old_metadata_dct with file_utils.AtomicWrite(config_dct['metadata_path'], fsync=True) as f: json.dump(data, f) def RestoreMetadata(config_dct): """Restores version from the main data file on disk. If the metadata file does not exist, will silently return. """ logger = logging.getLogger(config_dct['logger_name']) metadata_dct = {'first_seq': 1, 'last_seq': 0, 'start_pos': 0, 'end_pos': 0, 'version': '00000000'} data = TryLoadJSON(config_dct['metadata_path'], logger.name) if data is not None: try: with open(config_dct['data_path'], 'r') as f: metadata_dct['version'] = GetChecksum(f.readline()) except Exception: logger.error('Data file unexpectedly missing; resetting metadata') return metadata_dct if metadata_dct['version'] not in data: logger.error('Could not find metadata version %s (available: %s); ' 'recovering metadata from data file', metadata_dct['version'], ', '.join(data.keys())) RecoverMetadata(config_dct, metadata_dct) return metadata_dct if len(data) > 1: logger.info('Metadata contains multiple versions %s; choosing %s', ', '.join(data.keys()), metadata_dct['version']) metadata_dct.update(data[metadata_dct['version']]) if (metadata_dct['end_pos'] > metadata_dct['start_pos'] + os.path.getsize(config_dct['data_path'])): logger.error('end_pos in restored metadata is larger than start_pos + ' 'data file; recovering metadata from data file') RecoverMetadata(config_dct, metadata_dct) else: if os.path.isfile(config_dct['data_path']): logger.error('Could not find metadata file, but we have data file; ' 'recovering metadata from data file') RecoverMetadata(config_dct, metadata_dct) else: logger.info('Creating metadata file and data file') SaveMetadata(config_dct, metadata_dct) file_utils.TouchFile(config_dct['data_path']) return metadata_dct def RecoverMetadata(config_dct, metadata_dct): """Recovers metadata from the main data file on disk. Uses the first valid record for first_seq and start_pos, and the last valid record for last_seq and end_pos. """ logger = logging.getLogger(config_dct['logger_name']) first_record = True cur_pos = 0 with open(config_dct['data_path'], 'r') as f: for line in f: seq, _unused_record = ParseRecord(line, config_dct['logger_name']) if first_record and seq: metadata_dct['first_seq'] = seq metadata_dct['start_pos'] = cur_pos first_record = False cur_pos += len(line) if seq: metadata_dct['last_seq'] = seq metadata_dct['end_pos'] = cur_pos logger.info('Finished recovering metadata; sequence range found: %d to %d', metadata_dct['first_seq'], metadata_dct['last_seq']) SaveMetadata(config_dct, metadata_dct) def TruncateAttachments(config_dct, metadata_dct): """Deletes attachments of events no longer stored within data.json.""" logger = logging.getLogger(config_dct['logger_name']) for fname in os.listdir(config_dct['attachments_dir']): fpath = os.path.join(config_dct['attachments_dir'], fname) if not os.path.isfile(fpath): continue seq, unused_underscore, unused_att_id = fname.partition('_') if not seq.isdigit(): continue if int(seq) < metadata_dct['first_seq']: logger.debug('Truncating attachment (<seq=%d): %s', metadata_dct['first_seq'], fname) os.unlink(fpath) def Truncate(config_dct, min_seq, min_pos): """Truncates the main data file to only contain unprocessed records. See file-level docstring for more information about versions. """ logger = logging.getLogger(config_dct['logger_name']) metadata_dct = RestoreMetadata(config_dct) # Does the buffer already have data in it? if not metadata_dct['version']: return if metadata_dct['first_seq'] == min_seq: logger.info('No need to truncate') return try: logger.debug('Will truncate up until seq=%d, pos=%d', min_seq, min_pos) # Prepare the old vs. new metadata to write to disk. old_metadata_dct = copy.deepcopy(metadata_dct) metadata_dct['first_seq'] = min_seq metadata_dct['start_pos'] = min_pos with file_utils.AtomicWrite(config_dct['data_path'], fsync=True) as new_f: # AtomicWrite opens a file handle to a temporary file right next to # the real file (data_path), so we can open a "read" handle on data_path # without affecting AtomicWrite's handle. Only when AtomicWrite's context # block ends will the temporary be moved to replace data_path. with open(config_dct['data_path'], 'r') as old_f: old_f.seek(min_pos - old_metadata_dct['start_pos']) # Deal with the first line separately to get the new version. first_line = old_f.readline() metadata_dct['version'] = GetChecksum(first_line) new_f.write(first_line) shutil.copyfileobj(old_f, new_f) # Before performing the "replace" step of write-replace (when # the file_utils.AtomicWrite context ends), save metadata to disk in # case of disk failure. SaveMetadata(config_dct, metadata_dct, old_metadata_dct) # After we use AtomicWrite, we can remove old metadata. SaveMetadata(config_dct, metadata_dct) except Exception: logger.exception('Exception occurred during Truncate operation') raise class BufferFile(log_utils.LoggerMixin): def __init__(self, args, logger_name, data_dir): """Sets up the plugin.""" self.args = args self.logger = logging.getLogger(logger_name) self.data_dir = data_dir self.data_path = os.path.join( data_dir, 'data.json') self.metadata_path = os.path.join( data_dir, 'metadata.json') self.consumers_list_path = os.path.join( data_dir, 'consumers.json') self.consumer_path_format = os.path.join( data_dir, 'consumer_%s.json') self.attachments_dir = os.path.join( data_dir, 'attachments') if not os.path.exists(self.attachments_dir): os.makedirs(self.attachments_dir) # Lock for writing to the self.data_path file. Used by # Produce and Truncate. self.data_write_lock = lock_utils.Lock(logger_name) # Lock for modifying the self.consumers variable or for # preventing other threads from changing it. self._consumer_lock = lock_utils.Lock(logger_name) self.consumers = {} self._RestoreConsumers() @property def first_seq(self): return RestoreMetadata(self.ConfigToDict())['first_seq'] @property def last_seq(self): return RestoreMetadata(self.ConfigToDict())['last_seq'] @property def start_pos(self): return RestoreMetadata(self.ConfigToDict())['start_pos'] @property def end_pos(self): return RestoreMetadata(self.ConfigToDict())['end_pos'] @property def version(self): return RestoreMetadata(self.ConfigToDict())['version'] def _SaveConsumers(self): """Saves the current list of active Consumers to disk.""" with file_utils.AtomicWrite(self.consumers_list_path, fsync=True) as f: json.dump(list(self.consumers), f) def _RestoreConsumers(self): """Restore Consumers from disk. Creates a corresponding Consumer object for each Consumer listed on disk. Only ever called when the buffer first starts up, so we don't need to check for any existing Consumers in self.consumers. """ data = TryLoadJSON(self.consumers_list_path, self.logger.name) if data: for name in data: self.consumers[name] = self._CreateConsumer(name) def ExternalizeEvent(self, event): """Modifies attachment paths of given event to be absolute.""" for att_id in event.attachments.keys(): # Reconstruct the full path to the attachment on disk. event.attachments[att_id] = os.path.abspath(os.path.join( self.attachments_dir, event.attachments[att_id])) return event def ConfigToDict(self): return {'logger_name': self.logger.name, 'args': self.args, 'data_dir': self.data_dir, 'data_path': self.data_path, 'metadata_path': self.metadata_path, 'consumers_list_path': self.consumers_list_path, 'consumer_path_format': self.consumer_path_format, 'attachments_dir': self.attachments_dir} def ProduceEvents(self, events, process_pool=None): """Moves attachments, serializes events and writes them to the data_path.""" with self.data_write_lock: # If we are going to write the first line which will change the version, # we should prevent the data and metadata from being read by consumers. metadata_dct = RestoreMetadata(self.ConfigToDict()) first_line = (metadata_dct['start_pos'] == metadata_dct['end_pos']) try: if first_line: self._consumer_lock.acquire() for consumer in self.consumers.values(): consumer.read_lock.acquire() if process_pool is None: MoveAndWrite(self.ConfigToDict(), events) else: process_pool.apply(MoveAndWrite, (self.ConfigToDict(), events)) except Exception: self.exception('Exception occurred during ProduceEvents operation') raise finally: # Ensure that regardless of any errors, locks are released. if first_line: for consumer in self.consumers.values(): consumer.read_lock.CheckAndRelease() self._consumer_lock.CheckAndRelease() def _GetFirstUnconsumedRecord(self): """Returns the seq and pos of the first unprocessed record. Checks each Consumer to find the earliest unprocessed record, and returns that record's seq and pos. """ metadata_dct = RestoreMetadata(self.ConfigToDict()) min_seq = metadata_dct['last_seq'] + 1 min_pos = metadata_dct['end_pos'] for consumer in self.consumers.values(): min_seq = min(min_seq, consumer.cur_seq) min_pos = min(min_pos, consumer.cur_pos) return min_seq, min_pos def Truncate(self, truncate_attachments=True, process_pool=None): """Truncates the main data file to only contain unprocessed records. See file-level docstring for more information about versions. Args: truncate_attachments: Whether or not to truncate attachments. For testing. """ new_metadata_dct = {} with self.data_write_lock, self._consumer_lock: min_seq, min_pos = self._GetFirstUnconsumedRecord() try: for consumer in self.consumers.values(): consumer.read_lock.acquire() if process_pool is None: Truncate(self.ConfigToDict(), min_seq, min_pos) else: process_pool.apply( Truncate, (self.ConfigToDict(), min_seq, min_pos)) new_metadata_dct = RestoreMetadata(self.ConfigToDict()) except Exception: self.exception('Exception occurred during Truncate operation') # If any exceptions occurred, restore metadata, to make sure we are # using the correct version, since we aren't sure if the write succeeded # or not. raise finally: # Ensure that regardless of any errors, locks are released. for consumer in self.consumers.values(): consumer.read_lock.CheckAndRelease() # Now that we have written the new data and metadata to disk, remove any # unused attachments. if truncate_attachments: TruncateAttachments(self.ConfigToDict(), new_metadata_dct) def _CreateConsumer(self, name): """Returns a new Consumer object with the given name.""" return Consumer( name, self, self.consumer_path_format % name, self.logger.name) def AddConsumer(self, name): """See BufferPlugin.AddConsumer.""" self.debug('Add consumer %s', name) with self.data_write_lock, self._consumer_lock: if name in self.consumers: raise SimpleFileException('Consumer %s already exists' % name) self.consumers[name] = self._CreateConsumer(name) self._SaveConsumers() def RemoveConsumer(self, name): """See BufferPlugin.RemoveConsumer.""" self.debug('Remove consumer %s', name) with self.data_write_lock, self._consumer_lock: if name not in self.consumers: raise SimpleFileException('Consumer %s does not exist' % name) del self.consumers[name] self._SaveConsumers() def ListConsumers(self): """See BufferPlugin.ListConsumers.""" with self._consumer_lock: # cur_seq represents the sequence ID of the consumer's next event. If # that event doesn't exist yet, it will be set to the next (non-existent) # sequence ID. We must subtract 1 to get the "last completed" event. cur_seqs = {key: consumer.cur_seq - 1 for key, consumer in self.consumers.items()} # Grab last_seq at the end, in order to guarantee that for any consumer, # last_seq >= cur_seq, and that all last_seq are equal. last_seq = self.last_seq return {key: (cur_seq, last_seq) for key, cur_seq in cur_seqs.items()} def Consume(self, name): """See BufferPlugin.Consume.""" return self.consumers[name].CreateStream() class Consumer(log_utils.LoggerMixin, plugin_base.BufferEventStream): """Represents a Consumer and its BufferEventStream. Since SimpleFile has only a single database file, there can only ever be one functioning BufferEventStream at any given time. So we bundle the Consumer and its BufferEventStream into one object. When CreateStream is called, a lock is acquired and the Consumer object is return. The lock must first be acquired before any of Next, Commit, or Abort can be used. """ def __init__(self, name, simple_file, metadata_path, logger_name): self.name = name self.simple_file = simple_file self.metadata_path = metadata_path self.logger = logging.getLogger(logger_name) self._stream_lock = lock_utils.Lock(logger_name) self.read_lock = lock_utils.Lock(logger_name) self.read_buf = [] with self.read_lock: metadata_dct = RestoreMetadata(self.simple_file.ConfigToDict()) self.cur_seq = metadata_dct['first_seq'] self.cur_pos = metadata_dct['start_pos'] self.new_seq = self.cur_seq self.new_pos = self.cur_pos # Try restoring metadata, if it exists. self.RestoreConsumerMetadata() self._SaveMetadata() def CreateStream(self): """Creates a BufferEventStream object to be used by Instalog core. Since this class doubles as BufferEventStream, we mark that the BufferEventStream is "unexpired" by setting self._stream_lock, and return self. Returns: `self` if BufferEventStream not already in use, None if busy. """ return self if self._stream_lock.acquire(False) else None def _SaveMetadata(self): """Saves metadata for this Consumer to disk (seq and pos).""" data = {'cur_seq': self.cur_seq, 'cur_pos': self.cur_pos} with file_utils.AtomicWrite(self.metadata_path, fsync=True) as f: json.dump(data, f) def RestoreConsumerMetadata(self): """Restores metadata for this Consumer from disk (seq and pos). On each restore, ensure that the available window of records on disk has not surpassed our own current record. How would this happen? If the Consumer is removed, records it still hasn't read are truncated from the main database, and the Consumer is re-added under the same name. If the metadata file does not exist, will silently return. """ data = TryLoadJSON(self.metadata_path, self.logger.name) if data is not None: if 'cur_seq' not in data or 'cur_pos' not in data: self.error('Consumer %s metadata file invalid; resetting', self.name) return # Make sure we are still ahead of simple_file. with self.read_lock: metadata_dct = RestoreMetadata(self.simple_file.ConfigToDict()) self.cur_seq = min(max(metadata_dct['first_seq'], data['cur_seq']), metadata_dct['last_seq'] + 1) self.cur_pos = min(max(metadata_dct['start_pos'], data['cur_pos']), metadata_dct['end_pos']) if (data['cur_seq'] < metadata_dct['first_seq'] or data['cur_seq'] > (metadata_dct['last_seq'] + 1)): self.error('Consumer %s cur_seq=%d is out of buffer range %d to %d, ' 'correcting to %d', self.name, data['cur_seq'], metadata_dct['first_seq'], metadata_dct['last_seq'] + 1, self.cur_seq) self.new_seq = self.cur_seq self.new_pos = self.cur_pos def _Buffer(self): """Returns a list of pending records. Stores the current buffer internally at self.read_buf. If it already has data in it, self.read_buf will be returned as-is. It will be "refilled" when it is empty. Reads up to _BUFFER_SIZE_BYTES from the file on each "refill". Returns: A list of records, where each is a three-element tuple: (record_seq, record_data, line_bytes). """ if self.read_buf: return self.read_buf # Does the buffer already have data in it? if not os.path.exists(self.simple_file.data_path): return self.read_buf self.debug('_Buffer: waiting for read_lock') try: # When the buffer is truncating, we can't get the read_lock. if not self.read_lock.acquire(timeout=0.5): return [] metadata_dct = RestoreMetadata(self.simple_file.ConfigToDict()) with open(self.simple_file.data_path, 'r') as f: cur = self.new_pos - metadata_dct['start_pos'] f.seek(cur) total_bytes = 0 skipped_bytes = 0 for line in f: if total_bytes > _BUFFER_SIZE_BYTES: break size = len(line) cur += size if cur > (metadata_dct['end_pos'] - metadata_dct['start_pos']): break seq, record = ParseRecord(line, self.logger.name) if seq is None: # Parsing of this line failed for some reason. skipped_bytes += size continue # Only add to total_bytes for a valid line. total_bytes += size # Include any skipped bytes from previously skipped records in the # "size" of this record, in order to allow the consumer to skip to the # proper offset. self.read_buf.append((seq, record, size + skipped_bytes)) skipped_bytes = 0 finally: self.read_lock.CheckAndRelease() return self.read_buf def _Next(self): """Helper for Next, also used for testing purposes. Returns: A tuple of (seq, record), or (None, None) if no records available. """ if not self._stream_lock.IsHolder(): raise plugin_base.EventStreamExpired buf = self._Buffer() if not buf: return None, None seq, record, size = buf.pop(0) self.new_seq = seq + 1 self.new_pos += size return seq, record def Next(self): """See BufferEventStream.Next.""" seq, record = self._Next() if not seq: return None event = datatypes.Event.Deserialize(record) return self.simple_file.ExternalizeEvent(event) def Commit(self): """See BufferEventStream.Commit.""" if not self._stream_lock.IsHolder(): raise plugin_base.EventStreamExpired self.cur_seq = self.new_seq self.cur_pos = self.new_pos # Ensure that regardless of any errors, locks are released. try: self._SaveMetadata() except Exception: # TODO(kitching): Instalog core or PluginSandbox should catch this # exception and attempt to safely shut down. self.exception('Commit: Write exception occurred, Events may be ' 'processed by output plugin multiple times') finally: try: self._stream_lock.release() except Exception: # TODO(kitching): Instalog core or PluginSandbox should catch this # exception and attempt to safely shut down. self.exception('Commit: Internal error occurred') def Abort(self): """See BufferEventStream.Abort.""" if not self._stream_lock.IsHolder(): raise plugin_base.EventStreamExpired self.new_seq = self.cur_seq self.new_pos = self.cur_pos self.read_buf = [] try: self._stream_lock.release() except Exception: # TODO(kitching): Instalog core or PluginSandbox should catch this # exception and attempt to safely shut down. self.exception('Abort: Internal error occurred')
1,321
7,147
48
543088b20a8479e7f442e1d23bca724597885950
11,927
py
Python
model/trainer.py
anonymous165/PGRA
e14105ceeb881b3567dc4317171340155be50b0b
[ "MIT" ]
null
null
null
model/trainer.py
anonymous165/PGRA
e14105ceeb881b3567dc4317171340155be50b0b
[ "MIT" ]
null
null
null
model/trainer.py
anonymous165/PGRA
e14105ceeb881b3567dc4317171340155be50b0b
[ "MIT" ]
null
null
null
from model.pgra import PGRA from model.pgra_function.sc import Score from data_utils.data_gen import LinkGenerator, init_seed_fn from torch.utils.data import DataLoader from time import perf_counter import torch import numpy as np import config from model.modules.regularizer import Regularizer import tempfile from collections import Counter from tqdm import tqdm import os from model.tracker import LossTracker, MultiClsTracker
42.294326
120
0.594282
from model.pgra import PGRA from model.pgra_function.sc import Score from data_utils.data_gen import LinkGenerator, init_seed_fn from torch.utils.data import DataLoader from time import perf_counter import torch import numpy as np import config from model.modules.regularizer import Regularizer import tempfile from collections import Counter from tqdm import tqdm import os from model.tracker import LossTracker, MultiClsTracker class Trainer: _default_optim = 'Adam' _default_optim_params = {'lr': 1e-4} def __init__(self, graph, edge_label, emb_size=128, degree=2, n_neighbor=20, batch_size=100, n_neg=5, num_workers=4, score='inner', self_loop=True, test_batch_size=None, **kwargs): super().__init__() self.dataset_name = graph.name self.graph = graph self.edge_label = edge_label self.n_edge_types = len(edge_label.edge_types) self.emb_size = emb_size self._cuda = False subG = self.graph.G.edge_subgraph(self.edge_label.train_edges) self.batch_size = batch_size self.self_loop = self_loop if self_loop: subG = subG.copy() for node in subG.nodes: subG.add_edge(node, node, key=self.n_edge_types, label=self.n_edge_types) self.subG = subG self.n_neighbor = n_neighbor adj_node, adj_rela = self.create_node_neighbors() self.model = PGRA(graph.node_size, self.n_edge_types + (1 if self_loop else 0), emb_size, n_hop=degree, n_neighbor=n_neighbor, **kwargs) self.model.register_neighbors(adj_node, adj_rela) self.model.reset() self.lp_model = Score(score=score) link_gen_train = LinkGenerator(edge_label, graph.nodes_of_types, n_neg=n_neg) nt2id = dict(link_gen_train.node_type_to_id) link_gen_val = LinkGenerator(edge_label, graph.nodes_of_types, n_neg=10, mode=1, node_type_to_id=nt2id) link_gen_test = LinkGenerator(edge_label, graph.nodes_of_types, n_neg=10, mode=2, node_type_to_id=nt2id) self.data_loader_val = None self.data_loader_test = None lg_collate = LinkGenerator.collate_fn self.data_loader_train = DataLoader(link_gen_train, batch_size=batch_size, num_workers=num_workers, shuffle=True, collate_fn=lg_collate, worker_init_fn=init_seed_fn()) self.data_loader_train_iter = iter(self.data_loader_train) if test_batch_size is None: test_batch_size = batch_size // 4 if len(link_gen_val) > 0: self.data_loader_val = DataLoader(link_gen_val, batch_size=test_batch_size, num_workers=num_workers, shuffle=True, collate_fn=lg_collate, worker_init_fn=init_seed_fn()) if len(link_gen_test) > 0: self.data_loader_test = DataLoader(link_gen_test, batch_size=test_batch_size, num_workers=num_workers, collate_fn=lg_collate, worker_init_fn=init_seed_fn()) self.used_keys = ['r', 'h', 't', 'h_neg', 't_neg'] self.optim = self._default_optim self.optim_params = self._default_optim_params self.optimizer = None self.total_epoch = 0 self.total_steps = 0 self.pre_name = 'PGRA' self.temp_dir = tempfile.mkstemp()[1] self.best_iter = None self.best_scores = None self.test_scores = None def create_node_neighbors(self): print('create node neighbors') adj_entity = np.zeros([self.graph.node_size, self.n_neighbor], dtype=np.int64) adj_relation = np.zeros([self.graph.node_size, self.n_neighbor], dtype=np.int64) for i in self.subG.nodes: nbs = list(self.subG.edges(i, data='label')) edge_type_ct = Counter() for x in nbs: edge_type_ct[x[2]] += 1 sampled = np.random.choice(len(nbs), size=self.n_neighbor, replace=True) adj_entity[i] = [nbs[x][1] for x in sampled] adj_relation[i] = [nbs[x][2] for x in sampled] return adj_entity, adj_relation def run(self, lr=0.0001, weight_decay=0, max_steps=50000, cuda=True, patience=10, metric='mrr', optim='Adam', save=True): if cuda: self.cuda() self.create_optimizer(optim, lr=lr, weight_decay=weight_decay) self.train(max_steps=max_steps, patience=patience, metric=metric, save=save) def train(self, max_steps=50000, patience=10, metric='mrr', save=True, eval_step=None): if self.optimizer is None: self.create_optimizer() min_loss = float('inf') t0 = perf_counter() if eval_step is None: eval_step = len(self.data_loader_train) if eval_step > 500: eval_step = 500 patience *= eval_step reduce_lr = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=2, verbose=True, cooldown=20, threshold=1e-3) best_step = 0 self.best_scores = None print('Training') for step in range(0, max_steps, eval_step): t = perf_counter() losses = self.train_one_epoch(steps=eval_step) # scores = self._eval(self.data_loader_train, ('mrr',)) # print('Train:', scores) is_best = False if self.data_loader_val is not None: scores = self.eval(val=True) print("Epoch:", '%04d' % (self.total_epoch + 1), "Step:", step, "train_loss=", losses, "Val:", scores, "time=", "{:.5f}".format(perf_counter() - t)) if self.best_scores is None or scores[metric] > self.best_scores[metric]: self.best_scores, best_step = scores, step self.best_iter = best_step is_best = True else: loss = losses.value if min_loss > loss: min_loss, best_step = loss, step self.best_iter = step is_best = True if is_best and save: self._save(self.temp_dir) if step - best_step > patience: print("Early stopping...") break reduce_lr.step(losses.value) if reduce_lr.cooldown_counter == reduce_lr.cooldown: reduce_lr.best = reduce_lr.mode_worse train_time = perf_counter() - t0 print("Train time: {:.4f}s".format(train_time, )) if self.total_steps > 0 and save: print("Optimization Finished!") print('Load model') self._load(self.temp_dir) self.save() if self.data_loader_test is not None: if self.data_loader_val is not None: val_scores = self.eval(val=True) print("Val:", val_scores) self.test_scores = self.eval(val=False) print("Test:", self.test_scores) def cuda(self): self._cuda = True self.model.cuda() def create_optimizer(self, optim=None, **kwargs): if optim is not None: self.optim = optim self.optim_params.update(kwargs) self.optimizer = getattr(torch.optim, self.optim)( list(self.model.parameters()), **self.optim_params) def save(self): self._save(self.get_model_path()) def _save(self, path): state = { 'model': self.model.state_dict(), 'best_iter': self.best_iter } torch.save(state, path) def load(self): self._load(self.get_model_path(build_path=False)) def _load(self, path): state = torch.load(path, map_location='cpu') self.model.load_state_dict(state['model'], strict=False) self.best_iter = state['best_iter'] if self._cuda: self.cuda() def get_model_path(self, build_path=True): folder = config.model_dir / self.dataset_name if build_path: folder.mkdir(parents=True, exist_ok=True) path_model = folder / self._join(self.pre_name, self.emb_size, self.edge_label.code) return path_model @staticmethod def _join(*args, sep='_'): return sep.join([str(arg) for arg in args]) def get_train_data(self): try: data = next(self.data_loader_train_iter) except StopIteration: self.data_loader_train_iter = iter(self.data_loader_train) self.total_epoch += 1 data = next(self.data_loader_train_iter) return data def train_one_epoch(self, steps=None): if steps is None: steps = len(self.data_loader_train) pbar = tqdm(range(steps), disable=os.environ.get("DISABLE_TQDM", False)) losses = LossTracker() self.model.train() self.lp_model.train() t = 0 for step in pbar: _t = perf_counter() all_data = self.get_train_data() if self._cuda: all_data = {k: v.cuda() for k, v in all_data.items()} data = [all_data[x] for x in self.used_keys] nodes_vec = [self.get_embedding(x, data[0]) for i, x in enumerate(data[1:])] train_losses = self.lp_model(data[0], *nodes_vec) if not isinstance(train_losses, tuple) and not isinstance(train_losses, list): train_losses = [train_losses] reg_losses = [m.loss for m in self.model.modules() if isinstance(m, Regularizer) and m.loss is not None] train_losses = train_losses + reg_losses losses.update(train_losses) sum(train_losses).backward() self.optimizer.step() for m in self.model.modules(): if isinstance(m, Regularizer): m.loss = None self.model.constraint() self.total_steps += 1 t += perf_counter() - _t pbar.set_description( 'epoch {} loss:{} time:{:.2f}'.format(self.total_epoch, losses, t * len(pbar) / (step + 1))) return losses def eval(self, val=True, metrics=('mrr',)): data_loader = self.data_loader_val if val else self.data_loader_test return self._eval(data_loader, metrics, n=60000 if val else -1) def _eval(self, data_loader, metrics, n=-1): self.model.eval() self.lp_model.eval() lp_tracker = MultiClsTracker(metrics, self.n_edge_types) with torch.no_grad(): for all_data in data_loader: data = [all_data[x] for x in self.used_keys] if self._cuda: data = [x.cuda() for x in data] r, p1, p2, n1, n2 = data pos, neg = (p1, p2), (n1, n2) for i in (0, 1): feat1 = self.get_embedding(torch.cat((pos[i].unsqueeze(-1), neg[i]), dim=-1), r) feat2 = self.get_embedding(pos[1 - i], r) feat_args = (feat1, feat2) if i == 0 else (feat2, feat1) ratings = self.lp_model.predict(r, *feat_args) lp_tracker.update(ratings, r) if 0 < n < len(lp_tracker): break print(lp_tracker.macro) lp_tracker.summarize() return lp_tracker def get_embedding(self, node_idx, target_idx): old_size = node_idx.size() if target_idx is not None: target_idx = target_idx.unsqueeze(1) if len(target_idx.size()) != len(node_idx.size()) else target_idx target_idx = target_idx.expand_as(node_idx).contiguous().view(-1) node_idx = node_idx.contiguous().view(-1) return self.model(node_idx, target_idx).view(*old_size, -1)
10,933
539
23
df16ed42b4b9cb418284439c991e0ec166bf5c24
5,338
py
Python
autolens/pipeline/phase/imaging/phase.py
PyJedi/PyAutoLens
bcfb2e7b447aa24508fc648d60b6fd9b4fd852e7
[ "MIT" ]
null
null
null
autolens/pipeline/phase/imaging/phase.py
PyJedi/PyAutoLens
bcfb2e7b447aa24508fc648d60b6fd9b4fd852e7
[ "MIT" ]
null
null
null
autolens/pipeline/phase/imaging/phase.py
PyJedi/PyAutoLens
bcfb2e7b447aa24508fc648d60b6fd9b4fd852e7
[ "MIT" ]
null
null
null
from astropy import cosmology as cosmo import autofit as af from autolens.pipeline import tagging from autolens.pipeline.phase import dataset from autolens.pipeline.phase.imaging.analysis import Analysis from autolens.pipeline.phase.imaging.meta_imaging import MetaImaging from autolens.pipeline.phase.imaging.result import Result
33.15528
113
0.652117
from astropy import cosmology as cosmo import autofit as af from autolens.pipeline import tagging from autolens.pipeline.phase import dataset from autolens.pipeline.phase.imaging.analysis import Analysis from autolens.pipeline.phase.imaging.meta_imaging import MetaImaging from autolens.pipeline.phase.imaging.result import Result class PhaseImaging(dataset.PhaseDataset): galaxies = af.PhaseProperty("galaxies") hyper_image_sky = af.PhaseProperty("hyper_image_sky") hyper_background_noise = af.PhaseProperty("hyper_background_noise") Analysis = Analysis Result = Result @af.convert_paths def __init__( self, paths, *, galaxies=None, hyper_image_sky=None, hyper_background_noise=None, non_linear_class=af.MultiNest, cosmology=cosmo.Planck15, sub_size=2, signal_to_noise_limit=None, bin_up_factor=None, psf_shape_2d=None, auto_positions_factor=None, positions_threshold=None, pixel_scale_interpolation_grid=None, inversion_uses_border=True, inversion_pixel_limit=None, ): """ A phase in an lens pipeline. Uses the set non_linear optimizer to try to fit models and hyper_galaxies passed to it. Parameters ---------- non_linear_class: class The class of a non_linear optimizer sub_size: int The side length of the subgrid """ phase_tag = tagging.phase_tag_from_phase_settings( sub_size=sub_size, signal_to_noise_limit=signal_to_noise_limit, bin_up_factor=bin_up_factor, psf_shape_2d=psf_shape_2d, auto_positions_factor=auto_positions_factor, positions_threshold=positions_threshold, pixel_scale_interpolation_grid=pixel_scale_interpolation_grid, ) paths.phase_tag = phase_tag super().__init__( paths, galaxies=galaxies, non_linear_class=non_linear_class, cosmology=cosmology, ) self.hyper_image_sky = hyper_image_sky self.hyper_background_noise = hyper_background_noise self.is_hyper_phase = False self.meta_dataset = MetaImaging( model=self.model, bin_up_factor=bin_up_factor, psf_shape_2d=psf_shape_2d, sub_size=sub_size, signal_to_noise_limit=signal_to_noise_limit, auto_positions_factor=auto_positions_factor, positions_threshold=positions_threshold, pixel_scale_interpolation_grid=pixel_scale_interpolation_grid, inversion_uses_border=inversion_uses_border, inversion_pixel_limit=inversion_pixel_limit, ) def make_phase_attributes(self, analysis): return PhaseAttributes( cosmology=self.cosmology, hyper_model_image=analysis.hyper_model_image, hyper_galaxy_image_path_dict=analysis.hyper_galaxy_image_path_dict, ) def make_analysis( self, dataset, mask, results=af.ResultsCollection(), positions=None ): """ Create an lens object. Also calls the prior passing and masked_imaging modifying functions to allow child classes to change the behaviour of the phase. Parameters ---------- positions mask: Mask The default masks passed in by the pipeline dataset: im.Imaging An masked_imaging that has been masked results: autofit.tools.pipeline.ResultsCollection The result from the previous phase Returns ------- lens : Analysis An lens object that the non-linear optimizer calls to determine the fit of a set of values """ self.meta_dataset.model = self.model masked_imaging = self.meta_dataset.masked_dataset_from( dataset=dataset, mask=mask, positions=positions, results=results ) self.output_phase_info() analysis = self.Analysis( masked_imaging=masked_imaging, cosmology=self.cosmology, image_path=self.optimizer.paths.image_path, results=results, ) return analysis def output_phase_info(self): file_phase_info = "{}/{}".format( self.optimizer.paths.phase_output_path, "phase.info" ) with open(file_phase_info, "w") as phase_info: phase_info.write("Optimizer = {} \n".format(type(self.optimizer).__name__)) phase_info.write("Sub-grid size = {} \n".format(self.meta_dataset.sub_size)) phase_info.write("PSF shape = {} \n".format(self.meta_dataset.psf_shape_2d)) phase_info.write( "Positions Threshold = {} \n".format( self.meta_dataset.positions_threshold ) ) phase_info.write("Cosmology = {} \n".format(self.cosmology)) phase_info.close() class PhaseAttributes: def __init__(self, cosmology, hyper_model_image, hyper_galaxy_image_path_dict): self.cosmology = cosmology self.hyper_model_image = hyper_model_image self.hyper_galaxy_image_path_dict = hyper_galaxy_image_path_dict
1,183
3,749
72
b2005ebd2213536fab5e45ed07b20f3bde3d470d
3,806
py
Python
utils/base_dataset.py
stegmuel/DANN_py3
8718fbc9e0e809a4ab4399c55d0df336dd44a092
[ "MIT" ]
null
null
null
utils/base_dataset.py
stegmuel/DANN_py3
8718fbc9e0e809a4ab4399c55d0df336dd44a092
[ "MIT" ]
null
null
null
utils/base_dataset.py
stegmuel/DANN_py3
8718fbc9e0e809a4ab4399c55d0df336dd44a092
[ "MIT" ]
null
null
null
from torch.utils.data import Dataset import h5py import abc
41.824176
119
0.636626
from torch.utils.data import Dataset import h5py import abc class BaseDatasetHDF(Dataset): def __init__(self, hdf5_filepath, phase, batch_size, use_cache, cache_size=30): """ Initializes the class BaseDatasetHDF relying on a .hdf5 file that contains the complete data for all phases (train, test, validation). It contains the input data as well as the target data to reduce the amount of computation done in fly. The samples are first split w.r.t. the phase (train, test, validation) and then w.r.t. the status (input, target). A pair of (input, target) samples is accessed with the same index. For a given phase a pair is accessed as: (hdf[phase]['input'][index], hdf[phase]['target'][index]). The .hdf5 file is stored on disk and only the queried samples are loaded in RAM. To increase retrieval speed a small cache in RAM is implemented. When using the cache, one should note the following observations: - The speed will only improve if the data is not shuffled. - The cache size must be adapted to the computer used. - The number of workers of the data loader must be adapted to the computer used and the cache size. - The cache size must be a multiple of the chunk size that was used when filling the .hdf5 file. :param hdf5_filepath: location of the .hdf5 file. :param phase: phase in which the dataset is used ('train'/'valid'/'test'). :param batch_size: size of a single batch. :param use_cache: boolean indicating if the cache should be used or not. :param cache_size: size of the cache in number of batches. """ self.hdf5_filepath = hdf5_filepath self.phase = phase self.batch_size = batch_size # Initialize cache to store in RAM self.use_cache = use_cache if self.use_cache: self.cache = {'input': None, 'target': None} self.cache_size = cache_size * batch_size self.cache_min_index = None self.cache_max_index = None self.load_chunk_to_cache(0) def __len__(self): """ Returns the total length of the dataset. :return: length of the dataset. """ with h5py.File(self.hdf5_filepath, 'r') as hdf: length = hdf[self.phase]['input'].shape[0] return length def is_in_cache(self, index): """ Checks if the queried data is in cache. :param index: index of the sample to load. :return: boolean indicating if the data is available in cache. """ return index in set(range(self.cache_min_index, self.cache_max_index)) def load_chunk_to_cache(self, index): """ Loads a chunk of data in cache from disk. The chunk of data is the block of size self.size_cache and contains the samples following the current index. This is only efficient if data is not shuffled. :param index: index of a single sample that is currently being queried. :return: None. """ with h5py.File(self.hdf5_filepath, 'r') as hdf: self.cache_min_index = index self.cache_max_index = min(len(self), index + self.cache_size) self.cache['input'] = hdf[self.phase]['input'][self.cache_min_index: self.cache_max_index] self.cache['target'] = hdf[self.phase]['target'][self.cache_min_index: self.cache_max_index] @abc.abstractmethod def transform(self, x): """ :param x: :return: """ @abc.abstractmethod def get_image_transformer(self): """ :return: """ @abc.abstractmethod def transform(self, x): """ :param x: :return: """
0
3,722
23
b4d3fe982d7be10dd3d9466b7731e2b90baea895
17,861
py
Python
model/utils.py
Open-Debin/aCASTLE
4c539c53ad35bae4592165ca45488d0de90cbc29
[ "MIT" ]
1
2021-04-19T12:59:54.000Z
2021-04-19T12:59:54.000Z
model/utils.py
Open-Debin/aCASTLE
4c539c53ad35bae4592165ca45488d0de90cbc29
[ "MIT" ]
null
null
null
model/utils.py
Open-Debin/aCASTLE
4c539c53ad35bae4592165ca45488d0de90cbc29
[ "MIT" ]
null
null
null
import os import shutil import time import pprint import torch import argparse import numpy as np ## ------------------------ Basic Functions ------------------------ def one_hot(indices, depth): """ Returns a one-hot tensor. This is a PyTorch equivalent of Tensorflow's tf.one_hot. Parameters: indices: a (n_batch, m) Tensor or (m) Tensor. depth: a scalar. Represents the depth of the one hot dimension. Returns: a (n_batch, m, depth) Tensor or (m, depth) Tensor. """ encoded_indicies = torch.zeros(indices.size() + torch.Size([depth])) if indices.is_cuda: encoded_indicies = encoded_indicies.cuda() index = indices.view(indices.size()+torch.Size([1])) encoded_indicies = encoded_indicies.scatter_(1,index,1) return encoded_indicies _utils_pp = pprint.PrettyPrinter() def compute_confidence_interval(data): """ Compute 95% confidence interval :param data: An array of mean accuracy (or mAP) across a number of sampled episodes. :return: the 95% confidence interval for this data. """ a = 1.0 * np.array(data) m = np.mean(a) std = np.std(a) pm = 1.96 * (std / np.sqrt(len(a))) return m, pm ## ------------------------ GFSL Measures ------------------------ # the method to count harmonic mean in low-shot learning paper # based on the seen-joint and unseen_joint performnace from sklearn.metrics import average_precision_score # based on the seen-joint and unseen_joint performnace based on MAP # change recall = tps / tps[-1] in sklearn/metrics/ranking.py to recall = np.ones(tps.size) if tps[-1] == 0 else tps / tps[-1] ## ------------------------GFSL Training Arguments Related ------------------------ ## ------------------------GFSL Evaluation Arguments Related ------------------------
43.038554
167
0.641621
import os import shutil import time import pprint import torch import argparse import numpy as np ## ------------------------ Basic Functions ------------------------ def one_hot(indices, depth): """ Returns a one-hot tensor. This is a PyTorch equivalent of Tensorflow's tf.one_hot. Parameters: indices: a (n_batch, m) Tensor or (m) Tensor. depth: a scalar. Represents the depth of the one hot dimension. Returns: a (n_batch, m, depth) Tensor or (m, depth) Tensor. """ encoded_indicies = torch.zeros(indices.size() + torch.Size([depth])) if indices.is_cuda: encoded_indicies = encoded_indicies.cuda() index = indices.view(indices.size()+torch.Size([1])) encoded_indicies = encoded_indicies.scatter_(1,index,1) return encoded_indicies def set_gpu(x): os.environ['CUDA_VISIBLE_DEVICES'] = x print('using gpu:', x) def ensure_path(dir_path, scripts_to_save=None): if os.path.exists(dir_path): if input('{} exists, remove? ([y]/n)'.format(dir_path)) != 'n': shutil.rmtree(dir_path) os.mkdir(dir_path) else: os.mkdir(dir_path) print('Experiment dir : {}'.format(dir_path)) if scripts_to_save is not None: script_path = os.path.join(dir_path, 'scripts') if not os.path.exists(script_path): os.makedirs(script_path) for src_file in scripts_to_save: dst_file = os.path.join(dir_path, 'scripts', os.path.basename(src_file)) print('copy {} to {}'.format(src_file, dst_file)) if os.path.isdir(src_file): shutil.copytree(src_file, dst_file) else: shutil.copyfile(src_file, dst_file) class Averager(): def __init__(self): self.n = 0 self.v = 0 def add(self, x): self.v = (self.v * self.n + x) / (self.n + 1) self.n += 1 def item(self): return self.v def count_acc(logits, label): pred = torch.argmax(logits, dim=1) if torch.cuda.is_available(): return (pred == label).type(torch.cuda.FloatTensor).mean().item() else: return (pred == label).type(torch.FloatTensor).mean().item() def count_acc2(logits, label, mask1, mask2): pred = torch.argmax(logits, dim=1) if torch.cuda.is_available(): temp = (pred == label).type(torch.cuda.FloatTensor) acc = (torch.mean(temp.masked_select(mask1)) + torch.mean(temp.masked_select(mask2))) / 2 else: temp = (pred == label).type(torch.FloatTensor) acc = (torch.mean(temp.masked_select(mask1)) + torch.mean(temp.masked_select(mask2))) / 2 return acc.item() def euclidean_metric(a, b): n = a.shape[0] m = b.shape[0] a = a.unsqueeze(1).expand(n, m, -1) b = b.unsqueeze(0).expand(n, m, -1) logits = -((a - b)**2).sum(dim=2) return logits class Timer(): def __init__(self): self.o = time.time() def measure(self, p=1): x = (time.time() - self.o) / p x = int(x) if x >= 3600: return '{:.1f}h'.format(x / 3600) if x >= 60: return '{}m'.format(round(x / 60)) return '{}s'.format(x) _utils_pp = pprint.PrettyPrinter() def pprint(x): _utils_pp.pprint(x) def compute_confidence_interval(data): """ Compute 95% confidence interval :param data: An array of mean accuracy (or mAP) across a number of sampled episodes. :return: the 95% confidence interval for this data. """ a = 1.0 * np.array(data) m = np.mean(a) std = np.std(a) pm = 1.96 * (std / np.sqrt(len(a))) return m, pm def top1accuracy(output, target): _, pred = output.max(dim=1) pred = pred.view(-1) target = target.view(-1) accuracy = 100 * pred.eq(target).float().mean() return accuracy ## ------------------------ GFSL Measures ------------------------ def count_acc_harmonic(logits, label, th): pred = torch.argmax(logits, dim=1) if torch.cuda.is_available(): result = (pred == label).type(torch.cuda.FloatTensor) else: result = (pred == label).type(torch.FloatTensor) seen_acc = result[:th].mean().item() unseen_acc = result[th:].mean().item() return 2 * (seen_acc * unseen_acc) / (seen_acc + unseen_acc + 1e-12) # the method to count harmonic mean in low-shot learning paper def count_acc_harmonic_low_shot(logits, label, th, nKbase): seen_acc = top1accuracy(logits[:th,:nKbase], label[:th]) unseen_acc = top1accuracy(logits[th:,nKbase:], (label[th:]-nKbase)) return 2 * (seen_acc * unseen_acc) / (seen_acc + unseen_acc + 1e-12), seen_acc, unseen_acc # based on the seen-joint and unseen_joint performnace def count_acc_harmonic_low_shot_joint(logits, label, th): seen_acc = top1accuracy(logits[:th, :], label[:th]) unseen_acc = top1accuracy(logits[th:, :], label[th:]) return 2 * (seen_acc * unseen_acc) / (seen_acc + unseen_acc + 1e-12), seen_acc, unseen_acc def count_delta_value(logits, label, th, nKbase): seen_acc = top1accuracy(logits[:th,:nKbase], label[:th]) unseen_acc = top1accuracy(logits[th:,nKbase:], (label[th:]-nKbase)) joint_acc = top1accuracy(logits, label) delta1 = 0.5 * (seen_acc + unseen_acc - 2 * joint_acc) seen_acc_joint = top1accuracy(logits[:th, :], label[:th]) unseen_acc_joint = top1accuracy(logits[th:, :], label[th:]) delta2 = 0.5 * ((seen_acc - seen_acc_joint) + (unseen_acc - unseen_acc_joint)) return delta1, delta2 from sklearn.metrics import average_precision_score def compute_map(output, target, average_mode): num_class = output.shape[1] target = one_hot(target, num_class).cpu().numpy() output = output.detach().cpu().numpy() return average_precision_score(target, output, average = average_mode) def compute_weight_map(output, target, th2=64): num_class = output.shape[1] target = one_hot(target, num_class).cpu().numpy() output = output.cpu().numpy() map_list1 = [] map_list2 = [] selected_mask1 = np.where(np.sum(target[:,:th2], 0) > 0)[0] selected_mask2 = np.where(np.sum(target[:,th2:], 0) > 0)[0] + th2 for i in selected_mask1: map_list1.append(average_precision_score(target[:,i], output[:,i])) for i in selected_mask2: map_list2.append(average_precision_score(target[:,i], output[:,i])) map_seen = np.array(map_list1) map_unseen = np.array(map_list2) return np.mean(map_seen), np.mean(map_unseen) # based on the seen-joint and unseen_joint performnace based on MAP # change recall = tps / tps[-1] in sklearn/metrics/ranking.py to recall = np.ones(tps.size) if tps[-1] == 0 else tps / tps[-1] def count_acc_harmonic_MAP(logits, label, th, average_mode = 'macro'): if average_mode == 'weighted': seen_map, unseen_map = compute_weight_map(logits, label) else: seen_map = compute_map(logits[:th, :], label[:th], average_mode) unseen_map = compute_map(logits[th:, :], label[th:], average_mode) return 2 * (seen_map * unseen_map) / (seen_map + unseen_map + 1e-12), seen_map, unseen_map def AUC_eval_class_count(Ypred_S, Ypred_U, label_S, label_U, Ytrue): # get number counts for AUC evaluation L_S = label_S.shape[0] L_U = label_U.shape[0] class_count_S = np.zeros((L_S, 1)) class_count_U = np.zeros((L_U, 1)) class_correct_S = np.zeros((L_S, 1)) class_correct_U = np.zeros((L_U, 1)) class_count_S = [sum(Ytrue == label_S[i]) for i in range(L_S)] class_correct_S = [sum((Ytrue == label_S[i]) & (Ypred_S == label_S[i])) for i in range(L_S)] class_count_U = [sum(Ytrue == label_U[i]) for i in range(L_U)] class_correct_U = [sum((Ytrue == label_U[i]) & (Ypred_U == label_U[i])) for i in range(L_U)] class_count_S = np.array(class_count_S) class_correct_S = np.array(class_correct_S) class_count_U = np.array(class_count_U) class_correct_U = np.array(class_correct_U) class_count_S[class_count_S == 0] = 10 ^ 10; class_count_U[class_count_U == 0] = 10 ^ 10; return class_correct_S, class_correct_U, class_count_S, class_count_U def Compute_HM(acc): HM = 2 * acc[0] * acc[1] / (acc[0] + acc[1] + 1e-12); return HM def Compute_AUSUC(score_S, score_U, Y, label_S, label_U): Y = Y.reshape(-1) label_S = label_S.reshape(-1) label_U = label_U.reshape(-1) AUC_record = np.zeros((Y.shape[0] + 1, 2)) label_S = np.unique(label_S) label_U = np.unique(label_U) L_S = label_S.shape[0] L_U = label_U.shape[0] num_inst = score_S.shape[0] # effective bias searching loc_S = np.argmax(score_S, axis=1) max_S = score_S[np.arange(num_inst), loc_S] Ypred_S = label_S[loc_S] loc_U = np.argmax(score_U, axis=1) max_U = score_U[np.arange(num_inst), loc_U] Ypred_U = label_U[loc_U] class_correct_S, class_correct_U, class_count_S, class_count_U = AUC_eval_class_count(Ypred_S, Ypred_U, label_S, label_U, Y) Y_correct_S = (Ypred_S == Y).astype(float) Y_correct_U = (Ypred_U == Y).astype(float) bias = max_S - max_U loc_B = np.argsort(bias) _, unique_bias_loc = np.unique(sorted(bias), return_index=True) unique_bias_loc = unique_bias_loc[1:] unique_bias_loc = np.append(unique_bias_loc, num_inst) - 1 bias = np.array(sorted(set(bias))) # efficient evaluation acc_change_S = np.divide(Y_correct_S[loc_B], class_count_S[loc_S[loc_B]] + 1e-12) / L_S acc_change_U = np.divide(Y_correct_U[loc_B], class_count_U[loc_U[loc_B]] + 1e-12) / L_U AUC_record[:, 0] = np.concatenate([np.array([0]), np.cumsum(-acc_change_S)]) + np.mean(class_correct_S / (class_count_S + 1e-12)) AUC_record[:, 1] = np.concatenate([np.array([0]), np.cumsum(acc_change_U)]) AUC_record = AUC_record[np.concatenate([np.array([0]), unique_bias_loc.reshape(-1)+ 1]), :] AUC_record[AUC_record < 0] = 0 # Compute AUC AUC_val = np.trapz(AUC_record[:, 0], AUC_record[:, 1]) return AUC_val, AUC_record def Compute_biasedHM(score_S, score_U, Y, label_S, label_U, fixed_bias): # fixed_bias is a list input Y = Y.reshape(-1) label_S = label_S.reshape(-1) label_U = label_U.reshape(-1) AUC_record = np.zeros((Y.shape[0] + 1, 2)) label_S = np.unique(label_S) label_U = np.unique(label_U) L_S = label_S.shape[0] L_U = label_U.shape[0] num_inst = score_S.shape[0] # effective bias searching loc_S = np.argmax(score_S, axis=1) max_S = score_S[np.arange(num_inst), loc_S] Ypred_S = label_S[loc_S] loc_U = np.argmax(score_U, axis=1) max_U = score_U[np.arange(num_inst), loc_U] Ypred_U = label_U[loc_U] class_correct_S, class_correct_U, class_count_S, class_count_U = AUC_eval_class_count(Ypred_S, Ypred_U, label_S, label_U, Y) Y_correct_S = (Ypred_S == Y).astype(float) Y_correct_U = (Ypred_U == Y).astype(float) bias = max_S - max_U loc_B = np.argsort(bias) _, unique_bias_loc = np.unique(sorted(bias), return_index=True) unique_bias_loc = unique_bias_loc[1:] unique_bias_loc = np.append(unique_bias_loc, num_inst) - 1 bias = np.array(sorted(set(bias))) # efficient evaluation acc_change_S = np.divide(Y_correct_S[loc_B], class_count_S[loc_S[loc_B]] + 1e-12) / L_S acc_change_U = np.divide(Y_correct_U[loc_B], class_count_U[loc_U[loc_B]] + 1e-12) / L_U AUC_record[:, 0] = np.concatenate([np.array([0]), np.cumsum(-acc_change_S)]) + np.mean(class_correct_S / (class_count_S + 1e-12)) AUC_record[:, 1] = np.concatenate([np.array([0]), np.cumsum(acc_change_U)]) AUC_record = AUC_record[np.concatenate([np.array([0]), unique_bias_loc.reshape(-1)+ 1]), :] AUC_record[AUC_record < 0] = 0 acc_noBias = AUC_record[sum(bias <= 0), :] # Compute Harmonic mean HM_nobias = Compute_HM(acc_noBias) accs = [AUC_record[sum(bias <= f_bias), :] for f_bias in fixed_bias] HM = [Compute_HM(acc) for acc in accs] return HM, HM_nobias, accs, acc_noBias ## ------------------------GFSL Training Arguments Related ------------------------ def postprocess_args(args): save_path1 = args.test_mode + '-' + '-'.join([args.dataset, args.model_class, args.backbone_class, '{:02d}w{:02d}s{:02}q'.format(args.way, args.shot, args.query)]) save_path2 = '_'.join([str('_'.join(args.step_size.split(','))), str(args.gamma), 'lr{:.2g}'.format(args.lr), 'btz{}'.format(args.batch_size), str(args.lr_scheduler), str(args.temperature), 'ntask{}nclass{}T{}'.format(args.num_tasks, args.sample_class, args.temperature), #'gpu{}'.format(args.gpu) if args.multi_gpu else 'gpu0', # str(time.strftime('%Y%m%d_%H%M%S')) ]) if args.init_weights is not None: save_path1 += '-Pre' if args.augment: save_path2 += '-Aug' if args.lr_mul > 1.0: save_path2 += 'lrmul{:.2g}'.format(args.lr_mul) if args.model_class in ['Castle', 'ACastle']: save_path2 += 'dp{}-h{}'.format(args.dp_rate, args.head) if not os.path.exists(args.save_dir): os.mkdir(args.save_dir) if not os.path.exists(os.path.join(args.save_dir, save_path1)): os.mkdir(os.path.join(args.save_dir, save_path1)) args.save_path = os.path.join(args.save_dir, save_path1, save_path2) return args def get_command_line_parser(): parser = argparse.ArgumentParser() # task configurations parser.add_argument('--sample_class', type=int, default=8) parser.add_argument('--way', type=int, default=5) parser.add_argument('--eval_way', type=int, default=5) parser.add_argument('--shot', type=int, default=1) parser.add_argument('--eval_shot', type=int, default=1) parser.add_argument('--query', type=int, default=15) parser.add_argument('--eval_query', type=int, default=15) parser.add_argument('--num_tasks', type=int, default=3) parser.add_argument('--test_mode', type=str, default='FSL', choices=['FSL', 'GFSL']) # important # optimization parameters parser.add_argument('--max_epoch', type=int, default=200) parser.add_argument('--batch_size', type=int, default=32) parser.add_argument('--lr', type=float, default=0.1) parser.add_argument('--lr_mul', type=float, default=1) parser.add_argument('--lr_scheduler', type=str, default='cosine', choices=['multistep', 'step', 'cosine']) parser.add_argument('--step_size', type=str, default='2,4,6,8') parser.add_argument('--gamma', type=float, default=0.5) parser.add_argument('--augment', action='store_true', default=False) parser.add_argument('--gpu', default='0') parser.add_argument('--init_weights', type=str, default=None) parser.add_argument('--temperature', type=float, default=1) # model parameters parser.add_argument('--model_class', type=str, default='Castle', choices=['Castle', 'ACastle']) parser.add_argument('--backbone_class', type=str, default='Res12', choices=['Res12']) parser.add_argument('--dataset', type=str, default='MiniImageNet', choices=['MiniImageNet', 'TieredImageNet']) # Castle-relate model parameters parser.add_argument('--head', type=int, default=1) parser.add_argument('--dp_rate', type=float, default=0.1) # usually untouched parameters parser.add_argument('--orig_imsize', type=int, default=-1) # -1 for no cache, and -2 for no resize parser.add_argument('--mom', type=float, default=0.9) parser.add_argument('--weight_decay', type=float, default=0.0005) parser.add_argument('--num_workers', default=2, type=int) parser.add_argument('--log_interval', type=int, default=100) parser.add_argument('--eval_interval', type=int, default=200) parser.add_argument('--save_dir', type=str, default='./checkpoints') parser.add_argument('--num_eval_episodes', type=int, default=10000) return parser ## ------------------------GFSL Evaluation Arguments Related ------------------------ def postprocess_eval_args(args): assert(args.model_path is not None) return args def get_eval_command_line_parser(): parser = argparse.ArgumentParser() # basic configurations parser.add_argument('--eval_way', type=int, default=5) parser.add_argument('--eval_shot', type=int, default=1) parser.add_argument('--eval_query', type=int, default=15) parser.add_argument('--gpu', default='0') parser.add_argument('--model_path', type=str, default=None) # criteria related parser.add_argument('--criteria', type=str, help='A list contains criteria from [Acc, HMeanAcc, HMeanMAP, Delta, AUSUC]', default='Acc, HMeanAcc, HMeanMAP, Delta, AUSUC') # # model parameters parser.add_argument('--model_class', type=str, default='Castle', choices=['CLS', 'ProtoNet', 'Castle', 'ACastle']) parser.add_argument('--backbone_class', type=str, default='Res12', choices=['Res12']) parser.add_argument('--dataset', type=str, default='MiniImageNet', choices=['MiniImageNet', 'TieredImageNet']) # Castle-relate model parameters parser.add_argument('--head', type=int, default=1) parser.add_argument('--dp_rate', type=float, default=0.1) # usually untouched parameters parser.add_argument('--orig_imsize', type=int, default=-1) # -1 for no cache, and -2 for no resize parser.add_argument('--num_workers', type=int, default=2) parser.add_argument('--num_eval_episodes', type=int, default=500) parser.add_argument('--temperature', type=float, default=1) return parser
15,373
-11
679
3908e95eda71412d07981a24d2f8a254c1d195e7
920
py
Python
tests/test_align.py
Wytamma/boiga
0efa7f910b090c7ef716501bff9ae9a753f3943e
[ "MIT" ]
null
null
null
tests/test_align.py
Wytamma/boiga
0efa7f910b090c7ef716501bff9ae9a753f3943e
[ "MIT" ]
2
2020-06-26T13:17:22.000Z
2020-06-27T04:57:37.000Z
tests/test_align.py
Wytamma/boiga
0efa7f910b090c7ef716501bff9ae9a753f3943e
[ "MIT" ]
null
null
null
from pyoinformatics.align import lcs, format_matrix from pyoinformatics.seq import Seq
24.864865
66
0.401087
from pyoinformatics.align import lcs, format_matrix from pyoinformatics.seq import Seq def test_lcs(): assert lcs(Seq("AACCTTGG"), Seq("ACACTGTGA")) == Seq("AACTTG") def test_format_matrix(): Seq1 = Seq("AACCTTGG") Seq2 = Seq("ACACTGTGA") M = [ [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 2, 2, 2, 2, 2, 2], [1, 2, 2, 2, 2, 2, 2, 2], [1, 2, 3, 3, 3, 3, 3, 3], [1, 2, 3, 3, 4, 4, 4, 4], [1, 2, 3, 3, 4, 4, 5, 5], [1, 2, 3, 3, 4, 5, 5, 5], [1, 2, 3, 3, 4, 5, 6, 6], [1, 2, 3, 3, 4, 5, 6, 6], ] assert format_matrix(Seq1, Seq2, M) == [ " A A C C T T G G", "A 1 1 1 1 1 1 1 1", "C 1 1 2 2 2 2 2 2", "A 1 2 2 2 2 2 2 2", "C 1 2 3 3 3 3 3 3", "T 1 2 3 3 4 4 4 4", "G 1 2 3 3 4 4 5 5", "T 1 2 3 3 4 5 5 5", "G 1 2 3 3 4 5 6 6", "A 1 2 3 3 4 5 6 6", ]
785
0
46
1ac556c1e79ea42c23fedfe570a7165833c427cc
1,569
py
Python
openhab_creator/output/items/__init__.py
DerOetzi/openhab_creator
197876df5aae84192c34418f6b9a7cfcee23b195
[ "MIT" ]
1
2021-11-16T22:48:26.000Z
2021-11-16T22:48:26.000Z
openhab_creator/output/items/__init__.py
DerOetzi/openhab_creator
197876df5aae84192c34418f6b9a7cfcee23b195
[ "MIT" ]
null
null
null
openhab_creator/output/items/__init__.py
DerOetzi/openhab_creator
197876df5aae84192c34418f6b9a7cfcee23b195
[ "MIT" ]
null
null
null
from __future__ import annotations import os from importlib import import_module from typing import TYPE_CHECKING, List, Type, Dict, Union from openhab_creator import logger if TYPE_CHECKING: from openhab_creator.models.configuration import Configuration from openhab_creator.output.items.baseitemscreator import BaseItemsCreator
30.173077
82
0.67304
from __future__ import annotations import os from importlib import import_module from typing import TYPE_CHECKING, List, Type, Dict, Union from openhab_creator import logger if TYPE_CHECKING: from openhab_creator.models.configuration import Configuration from openhab_creator.output.items.baseitemscreator import BaseItemsCreator class ItemsCreator(object): def __init__(self, outputdir: str): self.outputdir: str = outputdir def build(self, configuration: Configuration) -> None: ItemsCreatorPipeline.build(self.outputdir, configuration) class ItemsCreatorPipeline(object): pipeline: List[Dict[str, Union[int, Type[BaseItemsCreator]]]] = [] initialized: bool = False def __init__(self, order_id: int): self.order_id: int = order_id def __call__(self, itemscreator_cls: Type[BaseItemsCreator]): ItemsCreatorPipeline.pipeline.insert(self.order_id, { 'order': self.order_id, 'class': itemscreator_cls }) @classmethod def _init(cls): if not cls.initialized: import_module( 'openhab_creator.output.items.creators') cls.initialized = True @classmethod def build(cls, outputdir: str, configuration: Configuration) -> None: cls._init() for creator in sorted(cls.pipeline, key=lambda x: x['order']): logger.info( f'Item creator: {creator["class"].__name__} ({creator["order"]})') c = creator['class'](outputdir) c.build(configuration)
864
263
99
283f91dc3ccaf741fa166962553da42322f2d25f
1,736
py
Python
clean.py
SatvikVejendla/Titanic-Survival-AI
bff812d1753de361a60202e9e729b3780b8a50ac
[ "MIT" ]
null
null
null
clean.py
SatvikVejendla/Titanic-Survival-AI
bff812d1753de361a60202e9e729b3780b8a50ac
[ "MIT" ]
null
null
null
clean.py
SatvikVejendla/Titanic-Survival-AI
bff812d1753de361a60202e9e729b3780b8a50ac
[ "MIT" ]
null
null
null
import pandas as pd from imblearn.over_sampling import RandomOverSampler import math #Training Data re = RandomOverSampler() df = pd.read_csv("data/raw/train.csv") y = df["Survived"] x = df.drop(["Survived", "Cabin", "Name", "PassengerId", "Ticket"], axis=1) embark = ["C", "Q", "S"] genders = ["male", "female"] for i, v in enumerate(x["Embarked"]): try: x.at[i, "Embarked"] = embark.index(v) + 1 except ValueError as n: x.at[i, "Embarked"] = 0 for i, v in enumerate(x["Sex"]): x.at[i, "Sex"] = genders.index(v) mean_age = df.describe()["Age"]["mean"] for i, v in enumerate(x["Age"]): if(math.isnan(v)): x.at[i, "Age"] = mean_age x,y = re.fit_resample(x,y) df = pd.concat([x,y], axis=1) df.to_csv("data/processed/train.csv", index=False) #Test Data test_df = pd.read_csv("data/raw/test.csv") test_df = test_df.drop(["Cabin", "Name", "PassengerId", "Ticket"], axis=1) for i, v in enumerate(test_df["Embarked"]): try: test_df.at[i, "Embarked"] = embark.index(v) + 1 except ValueError as n: test_df.at[i, "Embarked"] = 0 for i, v in enumerate(test_df["Sex"]): test_df.at[i, "Sex"] = genders.index(v) for i, v in enumerate(test_df["Age"]): if(math.isnan(v)): test_df.at[i, "Age"] = mean_age for i, v in enumerate(test_df["Age"]): if(math.isnan(v)): test_df.at[i, "Age"] = mean_age mean_fare = df.describe()["Fare"]["mean"] for i, v in enumerate(test_df["Fare"]): if(math.isnan(v)): test_df.at[i, "Fare"] = mean_fare test_y = pd.read_csv("data/raw/gender.csv") test_y = test_y.drop(["PassengerId"], axis=1) test_df = pd.concat([test_df, test_y], axis=1) test_df.to_csv("data/processed/test.csv", index=False)
22.842105
75
0.619816
import pandas as pd from imblearn.over_sampling import RandomOverSampler import math #Training Data re = RandomOverSampler() df = pd.read_csv("data/raw/train.csv") y = df["Survived"] x = df.drop(["Survived", "Cabin", "Name", "PassengerId", "Ticket"], axis=1) embark = ["C", "Q", "S"] genders = ["male", "female"] for i, v in enumerate(x["Embarked"]): try: x.at[i, "Embarked"] = embark.index(v) + 1 except ValueError as n: x.at[i, "Embarked"] = 0 for i, v in enumerate(x["Sex"]): x.at[i, "Sex"] = genders.index(v) mean_age = df.describe()["Age"]["mean"] for i, v in enumerate(x["Age"]): if(math.isnan(v)): x.at[i, "Age"] = mean_age x,y = re.fit_resample(x,y) df = pd.concat([x,y], axis=1) df.to_csv("data/processed/train.csv", index=False) #Test Data test_df = pd.read_csv("data/raw/test.csv") test_df = test_df.drop(["Cabin", "Name", "PassengerId", "Ticket"], axis=1) for i, v in enumerate(test_df["Embarked"]): try: test_df.at[i, "Embarked"] = embark.index(v) + 1 except ValueError as n: test_df.at[i, "Embarked"] = 0 for i, v in enumerate(test_df["Sex"]): test_df.at[i, "Sex"] = genders.index(v) for i, v in enumerate(test_df["Age"]): if(math.isnan(v)): test_df.at[i, "Age"] = mean_age for i, v in enumerate(test_df["Age"]): if(math.isnan(v)): test_df.at[i, "Age"] = mean_age mean_fare = df.describe()["Fare"]["mean"] for i, v in enumerate(test_df["Fare"]): if(math.isnan(v)): test_df.at[i, "Fare"] = mean_fare test_y = pd.read_csv("data/raw/gender.csv") test_y = test_y.drop(["PassengerId"], axis=1) test_df = pd.concat([test_df, test_y], axis=1) test_df.to_csv("data/processed/test.csv", index=False)
0
0
0
641b121922a6092e913d2f84335b0aad5dc05398
2,145
py
Python
src/harness/testcases/cu_pass/dpa_calculator/features/steps/dpa_neighborhood/environment/contexts/context_docker.py
NSF-Swift/Spectrum-Access-System
02cf3490c9fd0cec38074d3bdb3bca63bb7d03bf
[ "Apache-2.0" ]
null
null
null
src/harness/testcases/cu_pass/dpa_calculator/features/steps/dpa_neighborhood/environment/contexts/context_docker.py
NSF-Swift/Spectrum-Access-System
02cf3490c9fd0cec38074d3bdb3bca63bb7d03bf
[ "Apache-2.0" ]
null
null
null
src/harness/testcases/cu_pass/dpa_calculator/features/steps/dpa_neighborhood/environment/contexts/context_docker.py
NSF-Swift/Spectrum-Access-System
02cf3490c9fd0cec38074d3bdb3bca63bb7d03bf
[ "Apache-2.0" ]
null
null
null
from typing import List from cu_pass.dpa_calculator.aggregate_interference_calculator.configuration.support.eirps import \ EIRP_DISTRIBUTION_MAP_TYPE from cu_pass.dpa_calculator.cbsd.cbsd import CbsdCategories from cu_pass.dpa_calculator.dpa.builder import RadioAstronomyFacilityNames from cu_pass.dpa_calculator.dpa.dpa import Dpa from testcases.cu_pass.dpa_calculator.features.environment.hooks import ContextSas from testcases.cu_pass.dpa_calculator.features.steps.dpa_neighborhood.environment.contexts.context_cbsd_deployment_options import \ ContextCbsdDeploymentOptions from testcases.cu_pass.dpa_calculator.features.steps.dpa_neighborhood.environment.contexts.context_monte_carlo_iterations import \ ContextMonteCarloIterations from testcases.cu_pass.dpa_calculator.features.steps.dpa_neighborhood.environment.parsers.parse_dpa import parse_dpa ARBITRARY_BUCKET_NAME = 'arbitrary_bucket_name' ARBITRARY_DPA_NAME = RadioAstronomyFacilityNames.HatCreek.value ARBITRARY_NUMBER_OF_ITERATIONS = 1 ARBITRARY_RADIUS_IN_KILOMETERS = 2 ARBITRARY_OUTPUT_DIRECTORY = 'arbitrary_output_directory'
44.6875
131
0.844289
from typing import List from cu_pass.dpa_calculator.aggregate_interference_calculator.configuration.support.eirps import \ EIRP_DISTRIBUTION_MAP_TYPE from cu_pass.dpa_calculator.cbsd.cbsd import CbsdCategories from cu_pass.dpa_calculator.dpa.builder import RadioAstronomyFacilityNames from cu_pass.dpa_calculator.dpa.dpa import Dpa from testcases.cu_pass.dpa_calculator.features.environment.hooks import ContextSas from testcases.cu_pass.dpa_calculator.features.steps.dpa_neighborhood.environment.contexts.context_cbsd_deployment_options import \ ContextCbsdDeploymentOptions from testcases.cu_pass.dpa_calculator.features.steps.dpa_neighborhood.environment.contexts.context_monte_carlo_iterations import \ ContextMonteCarloIterations from testcases.cu_pass.dpa_calculator.features.steps.dpa_neighborhood.environment.parsers.parse_dpa import parse_dpa ARBITRARY_BUCKET_NAME = 'arbitrary_bucket_name' ARBITRARY_DPA_NAME = RadioAstronomyFacilityNames.HatCreek.value ARBITRARY_NUMBER_OF_ITERATIONS = 1 ARBITRARY_RADIUS_IN_KILOMETERS = 2 ARBITRARY_OUTPUT_DIRECTORY = 'arbitrary_output_directory' class ContextDocker(ContextCbsdDeploymentOptions, ContextMonteCarloIterations, ContextSas): beamwidth: float dpa: Dpa eirp_distribution: EIRP_DISTRIBUTION_MAP_TYPE local_output_directory: str include_ue_runs: bool interference_threshold: int neighborhood_categories: List[CbsdCategories] precreate_bucket: bool s3_bucket: str s3_output_directory: str def set_docker_context_defaults(context: ContextDocker) -> None: context.beamwidth = None context.dpa = parse_dpa(text=ARBITRARY_DPA_NAME) context.eirp_distribution = None context.include_ue_runs = False context.local_output_directory = ARBITRARY_OUTPUT_DIRECTORY context.interference_threshold = None context.neighborhood_categories = [] context.precreate_bucket = True context.number_of_iterations = ARBITRARY_NUMBER_OF_ITERATIONS context.simulation_area_radius = ARBITRARY_RADIUS_IN_KILOMETERS context.s3_bucket = ARBITRARY_BUCKET_NAME context.s3_output_directory = ARBITRARY_OUTPUT_DIRECTORY
622
369
46
bf6189581c930d132f1857c28d3c0be6972362de
6,966
py
Python
tftpy/context/client.py
jcarswell/tftpy
9c171c7e969b80f2c00728df21d5534b3191620a
[ "MIT" ]
null
null
null
tftpy/context/client.py
jcarswell/tftpy
9c171c7e969b80f2c00728df21d5534b3191620a
[ "MIT" ]
null
null
null
tftpy/context/client.py
jcarswell/tftpy
9c171c7e969b80f2c00728df21d5534b3191620a
[ "MIT" ]
null
null
null
import logging import os import sys import time from typing import Union from io import IOBase from .base import Client from tftpy.shared import TIMEOUT_RETRIES from tftpy.packet import types from tftpy.exceptions import TftpException,TftpTimeout,TftpFileNotFoundError from tftpy.states import SentReadRQ,SentWriteRQ logger = logging.getLogger('tftpy.context.client') class Upload(Client): """The upload context for the client during an upload. Note: If input is a hyphen, then we will use stdin.""" def __init__(self, host: str, port: int, timeout: int, input: Union[IOBase,str], **kwargs) -> None: """Upload context for uploading data to a server. Args: host (str): Server Address port (int): Server Port timeout (int): socket timeout input ([IOBase,str]): Input data, can be one of - An open file object - A path to a file - a '-' indicating read from STDIN """ super().__init__(host, port, timeout, **kwargs) # If the input object has a read() function, assume it is file-like. if hasattr(input, 'read'): self.fileobj = input elif input == '-': self.fileobj = sys.stdin else: self.fileobj = open(input, "rb") logger.debug("tftpy.context.client.upload.__init__()") logger.debug(f" file_to_transfer = {self.file_to_transfer}, options = {self.options}") def start(self) -> None: """Main loop to read data in and send file to the server.""" logger.info(f"Sending tftp upload request to {self.host}") logger.info(f" filename -> {self.file_to_transfer}") logger.info(f" options -> {self.options}") self.metrics.start_time = time.time() logger.debug(f"Set metrics.start_time to {self.metrics.start_time}") pkt = types.WriteRQ() pkt.filename = self.file_to_transfer pkt.mode = self.mode pkt.options = self.options self.send(pkt) self.state = SentWriteRQ(self) while self.state: try: logger.debug(f"State is {self.state}") self.cycle() except TftpTimeout as err: logger.error(str(err)) self.retry_count += 1 if self.retry_count >= TIMEOUT_RETRIES: logger.debug("hit max retries, giving up") raise else: logger.warning("resending last packet") self.state.resend_last() def end(self, *args): """Finish up the context.""" super().end() self.metrics.end_time = time.time() logger.debug(f"Set metrics.end_time to {self.metrics.end_time}") self.metrics.compute() class Download(Client): """The download context for the client during a download. Note: If output is a hyphen, then the output will be sent to stdout.""" def __init__(self, host: str, port: int, timeout: int, output: Union[IOBase,str], **kwargs) -> None: """Initalize the Download context with the server and where to save the data Args: host (str): Server Address port (int): Server port timeout (int): Socket Timeout output (Union[IOBase,str]): Output data, can be one of - An open file object - A path to a file - '-' indicating write to STDOUT Raises: TftpException: unable to open the destiation file for writing """ super().__init__(host, port, timeout, **kwargs) self.filelike_fileobj = False # If the output object has a write() function, assume it is file-like. if hasattr(output, 'write'): self.fileobj = output self.filelike_fileobj = True # If the output filename is -, then use stdout elif output == '-': self.fileobj = sys.stdout self.filelike_fileobj = True else: try: self.fileobj = open(output, "wb") except OSError as err: raise TftpException("Could not open output file", err) logger.debug("tftpy.context.client.Download.__init__()") logger.debug(f" file_to_transfer = {self.file_to_transfer}, options = {self.options}") def start(self) -> None: """Initiate the download. Raises: TftpTimeout: Failed to connect to the server TftpFileNotFoundError: Recieved a File not fount error """ logger.info(f"Sending tftp download request to {self.host}") logger.info(f" filename -> {self.file_to_transfer}") logger.info(f" options -> {self.options}") self.metrics.start_time = time.time() logger.debug(f"Set metrics.start_time to {self.metrics.start_time}") pkt = types.ReadRQ() pkt.filename = self.file_to_transfer pkt.mode = self.mode pkt.options = self.options self.send(pkt) self.state = SentReadRQ(self) while self.state: try: logger.debug(f"State is {self.state}") self.cycle() except TftpTimeout as err: logger.error(str(err)) self.retry_count += 1 if self.retry_count >= TIMEOUT_RETRIES: logger.debug("hit max retries, giving up") raise TftpTimeout("Max retries reached") else: logger.warning("resending last packet") self.state.resend_last() except TftpFileNotFoundError as err: # If we received file not found, then we should not save the open # output file or we'll be left with a size zero file. Delete it, # if it exists. logger.error("Received File not found error") if self.fileobj is not None and not self.filelike_fileobj and os.path.exists(self.fileobj.name): logger.debug(f"unlinking output file of {self.fileobj.name}") os.unlink(self.fileobj.name) raise TftpFileNotFoundError(err) def end(self) -> None: """Finish up the context.""" super().end(not self.filelike_fileobj) self.metrics.end_time = time.time() logger.debug(f"Set metrics.end_time to {self.metrics.end_time}") self.metrics.compute()
36.663158
113
0.548665
import logging import os import sys import time from typing import Union from io import IOBase from .base import Client from tftpy.shared import TIMEOUT_RETRIES from tftpy.packet import types from tftpy.exceptions import TftpException,TftpTimeout,TftpFileNotFoundError from tftpy.states import SentReadRQ,SentWriteRQ logger = logging.getLogger('tftpy.context.client') class Upload(Client): """The upload context for the client during an upload. Note: If input is a hyphen, then we will use stdin.""" def __init__(self, host: str, port: int, timeout: int, input: Union[IOBase,str], **kwargs) -> None: """Upload context for uploading data to a server. Args: host (str): Server Address port (int): Server Port timeout (int): socket timeout input ([IOBase,str]): Input data, can be one of - An open file object - A path to a file - a '-' indicating read from STDIN """ super().__init__(host, port, timeout, **kwargs) # If the input object has a read() function, assume it is file-like. if hasattr(input, 'read'): self.fileobj = input elif input == '-': self.fileobj = sys.stdin else: self.fileobj = open(input, "rb") logger.debug("tftpy.context.client.upload.__init__()") logger.debug(f" file_to_transfer = {self.file_to_transfer}, options = {self.options}") def start(self) -> None: """Main loop to read data in and send file to the server.""" logger.info(f"Sending tftp upload request to {self.host}") logger.info(f" filename -> {self.file_to_transfer}") logger.info(f" options -> {self.options}") self.metrics.start_time = time.time() logger.debug(f"Set metrics.start_time to {self.metrics.start_time}") pkt = types.WriteRQ() pkt.filename = self.file_to_transfer pkt.mode = self.mode pkt.options = self.options self.send(pkt) self.state = SentWriteRQ(self) while self.state: try: logger.debug(f"State is {self.state}") self.cycle() except TftpTimeout as err: logger.error(str(err)) self.retry_count += 1 if self.retry_count >= TIMEOUT_RETRIES: logger.debug("hit max retries, giving up") raise else: logger.warning("resending last packet") self.state.resend_last() def end(self, *args): """Finish up the context.""" super().end() self.metrics.end_time = time.time() logger.debug(f"Set metrics.end_time to {self.metrics.end_time}") self.metrics.compute() class Download(Client): """The download context for the client during a download. Note: If output is a hyphen, then the output will be sent to stdout.""" def __init__(self, host: str, port: int, timeout: int, output: Union[IOBase,str], **kwargs) -> None: """Initalize the Download context with the server and where to save the data Args: host (str): Server Address port (int): Server port timeout (int): Socket Timeout output (Union[IOBase,str]): Output data, can be one of - An open file object - A path to a file - '-' indicating write to STDOUT Raises: TftpException: unable to open the destiation file for writing """ super().__init__(host, port, timeout, **kwargs) self.filelike_fileobj = False # If the output object has a write() function, assume it is file-like. if hasattr(output, 'write'): self.fileobj = output self.filelike_fileobj = True # If the output filename is -, then use stdout elif output == '-': self.fileobj = sys.stdout self.filelike_fileobj = True else: try: self.fileobj = open(output, "wb") except OSError as err: raise TftpException("Could not open output file", err) logger.debug("tftpy.context.client.Download.__init__()") logger.debug(f" file_to_transfer = {self.file_to_transfer}, options = {self.options}") def start(self) -> None: """Initiate the download. Raises: TftpTimeout: Failed to connect to the server TftpFileNotFoundError: Recieved a File not fount error """ logger.info(f"Sending tftp download request to {self.host}") logger.info(f" filename -> {self.file_to_transfer}") logger.info(f" options -> {self.options}") self.metrics.start_time = time.time() logger.debug(f"Set metrics.start_time to {self.metrics.start_time}") pkt = types.ReadRQ() pkt.filename = self.file_to_transfer pkt.mode = self.mode pkt.options = self.options self.send(pkt) self.state = SentReadRQ(self) while self.state: try: logger.debug(f"State is {self.state}") self.cycle() except TftpTimeout as err: logger.error(str(err)) self.retry_count += 1 if self.retry_count >= TIMEOUT_RETRIES: logger.debug("hit max retries, giving up") raise TftpTimeout("Max retries reached") else: logger.warning("resending last packet") self.state.resend_last() except TftpFileNotFoundError as err: # If we received file not found, then we should not save the open # output file or we'll be left with a size zero file. Delete it, # if it exists. logger.error("Received File not found error") if self.fileobj is not None and not self.filelike_fileobj and os.path.exists(self.fileobj.name): logger.debug(f"unlinking output file of {self.fileobj.name}") os.unlink(self.fileobj.name) raise TftpFileNotFoundError(err) def end(self) -> None: """Finish up the context.""" super().end(not self.filelike_fileobj) self.metrics.end_time = time.time() logger.debug(f"Set metrics.end_time to {self.metrics.end_time}") self.metrics.compute()
0
0
0
b479d83b071cc8495e2321dfdca00c29ab7b085e
1,778
py
Python
lola/tests/test_coin_game.py
jleni/lola
9b9a2122aefc97d9ed1529b875912816f1acb5d6
[ "MIT" ]
125
2018-07-08T18:50:08.000Z
2022-03-07T09:31:12.000Z
lola/tests/test_coin_game.py
jleni/lola
9b9a2122aefc97d9ed1529b875912816f1acb5d6
[ "MIT" ]
11
2018-07-09T17:55:56.000Z
2021-04-13T23:49:40.000Z
lola/tests/test_coin_game.py
jleni/lola
9b9a2122aefc97d9ed1529b875912816f1acb5d6
[ "MIT" ]
36
2018-07-09T08:05:14.000Z
2022-03-12T19:52:49.000Z
import importlib max_steps = 1000 terminate_prob = 0.998 batch_size = 5 gameEnv = importlib.import_module('coin_game_v') env = gameEnv.gameEnv(terminate_prob=terminate_prob, max_steps=max_steps, batch_size=batch_size) print('state_space', env.state_space) print('red_pos', env.red_pos) print('blue_pos', env.blue_pos) print('red_coin', env.red_coin) print('coin_pos', env.coin_pos) # test red agent picks up red coin env.red_coin = [1, 1, 1, 1, 1] env.red_pos = ( env.coin_pos - env.actions[1] ) % env.grid_size state, reward, done = env.step(actions=[[1,1], [1,1], [1,1], [1,1], [1,1]]) print('red_pos', env.red_pos) print('blue_pos', env.blue_pos) print('red_coin', env.red_coin) print('coin_pos', env.coin_pos) print('reward', reward) print('state', state) # # test red agent picks up blue coin # env.red_coin = 0 # env.red_pos = ( env.coin_pos - env.actions[1] ) % env.grid_size # _, reward, done = env.step(action=1, agent='red') # print('red_pos', env.red_pos) # print('blue_pos', env.blue_pos) # print('red_coin', env.red_coin) # print('coin_pos', env.coin_pos) # print('reward', reward) # # test blue agent picks up red coin # env.red_coin = 1 # env.blue_pos = ( env.coin_pos - env.actions[1] ) % env.grid_size # _, reward, done = env.step(action=1, agent='blue') # print('red_pos', env.red_pos) # print('blue_pos', env.blue_pos) # print('red_coin', env.red_coin) # print('coin_pos', env.coin_pos) # print('reward', reward) # # test blue agent picks up blue coin # env.red_coin = 0 # env.blue_pos = ( env.coin_pos - env.actions[1] ) % env.grid_size # _, reward, done = env.step(action=1, agent='blue') # print('red_pos', env.red_pos) # print('blue_pos', env.blue_pos) # print('red_coin', env.red_coin) # print('coin_pos', env.coin_pos) # print('reward', reward)
31.192982
96
0.697975
import importlib max_steps = 1000 terminate_prob = 0.998 batch_size = 5 gameEnv = importlib.import_module('coin_game_v') env = gameEnv.gameEnv(terminate_prob=terminate_prob, max_steps=max_steps, batch_size=batch_size) print('state_space', env.state_space) print('red_pos', env.red_pos) print('blue_pos', env.blue_pos) print('red_coin', env.red_coin) print('coin_pos', env.coin_pos) # test red agent picks up red coin env.red_coin = [1, 1, 1, 1, 1] env.red_pos = ( env.coin_pos - env.actions[1] ) % env.grid_size state, reward, done = env.step(actions=[[1,1], [1,1], [1,1], [1,1], [1,1]]) print('red_pos', env.red_pos) print('blue_pos', env.blue_pos) print('red_coin', env.red_coin) print('coin_pos', env.coin_pos) print('reward', reward) print('state', state) # # test red agent picks up blue coin # env.red_coin = 0 # env.red_pos = ( env.coin_pos - env.actions[1] ) % env.grid_size # _, reward, done = env.step(action=1, agent='red') # print('red_pos', env.red_pos) # print('blue_pos', env.blue_pos) # print('red_coin', env.red_coin) # print('coin_pos', env.coin_pos) # print('reward', reward) # # test blue agent picks up red coin # env.red_coin = 1 # env.blue_pos = ( env.coin_pos - env.actions[1] ) % env.grid_size # _, reward, done = env.step(action=1, agent='blue') # print('red_pos', env.red_pos) # print('blue_pos', env.blue_pos) # print('red_coin', env.red_coin) # print('coin_pos', env.coin_pos) # print('reward', reward) # # test blue agent picks up blue coin # env.red_coin = 0 # env.blue_pos = ( env.coin_pos - env.actions[1] ) % env.grid_size # _, reward, done = env.step(action=1, agent='blue') # print('red_pos', env.red_pos) # print('blue_pos', env.blue_pos) # print('red_coin', env.red_coin) # print('coin_pos', env.coin_pos) # print('reward', reward)
0
0
0
1b639764948babc8a713fc8d7eae08b3a9be84bf
1,780
py
Python
src/sprites/Upgrade.py
NEKERAFA/Soul-Tower
d37c0bf6bcbf253ec5b2c41f802adeeca31fb384
[ "MIT" ]
null
null
null
src/sprites/Upgrade.py
NEKERAFA/Soul-Tower
d37c0bf6bcbf253ec5b2c41f802adeeca31fb384
[ "MIT" ]
null
null
null
src/sprites/Upgrade.py
NEKERAFA/Soul-Tower
d37c0bf6bcbf253ec5b2c41f802adeeca31fb384
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import pygame, os from src.sprites.MyStaticSprite import * from src.sprites.Interactive import * from src.ResourceManager import * from src.scenes.stage.OnDialogueState import * SPRITE_FILES = os.path.join("sprites", "interactives")
40.454545
108
0.629775
# -*- coding: utf-8 -*- import pygame, os from src.sprites.MyStaticSprite import * from src.sprites.Interactive import * from src.ResourceManager import * from src.scenes.stage.OnDialogueState import * SPRITE_FILES = os.path.join("sprites", "interactives") class Upgrade(MyStaticSprite, Interactive): def __init__(self, position, imageFile, cost, upgrade): # Llamamos al constructor de la clase MyStaticSprite.__init__(self) # Obtenemos la imagen self.image = ResourceManager.load_image(os.path.join(SPRITE_FILES, imageFile), -1) self.rect = self.image.get_rect() self.rect.bottomleft = position # Cargamos el objeto interactivo Interactive.__init__(self, self.rect) # Cambiamos la posición del sprite self.change_position(position) # Guardamos el coste y de quien es la mejora self.cost = cost self.upgrade = upgrade def activate(self, stage): if stage.player.souls >= self.cost: # Llamamos al jugador para quitarle almas stage.player.decrement_souls(self.cost) if self.upgrade == 'ranged': # Mejora de leraila stage.set_state(OnDialogueState('lerailaUpgrade.json', stage)) stage.player.rangedLevel += 1 elif self.upgrade == 'melee': # Mejora de Daric stage.player.meleeLevel += 1 stage.set_state(OnDialogueState('daricUpgrade.json', stage)) # Quitamos el sprite de todos los grupos self.kill() else: dialogue = [{"text": [["Necesitas " + str(self.cost) + " almas para obtener esta", "mejora."]]}] stage.set_state(OnDialogueState(dialogue, stage, False))
1,424
22
76
e911a7d22b3f23667f14d95f7d6333c90dc8d5e9
1,034
py
Python
ml_ops/visualization_blog/lambdas/createdataset/dataset.py
sriharshams/amazon-forecast-samples
d33392329311f52e86fb414ffd9a1e944d36e881
[ "MIT-0" ]
405
2018-12-02T21:36:15.000Z
2022-03-29T12:52:40.000Z
ml_ops/visualization_blog/lambdas/createdataset/dataset.py
sriharshams/amazon-forecast-samples
d33392329311f52e86fb414ffd9a1e944d36e881
[ "MIT-0" ]
78
2018-12-20T21:33:02.000Z
2022-02-02T12:43:27.000Z
ml_ops/visualization_blog/lambdas/createdataset/dataset.py
sriharshams/amazon-forecast-samples
d33392329311f52e86fb414ffd9a1e944d36e881
[ "MIT-0" ]
344
2018-12-11T15:58:25.000Z
2022-03-31T11:09:41.000Z
from os import environ from boto3 import client import actions from loader import Loader ACCOUNTID = client('sts').get_caller_identity()['Account'] ARN = 'arn:aws:forecast:{region}:{account}:dataset/{name}' LOADER = Loader()
30.411765
79
0.673114
from os import environ from boto3 import client import actions from loader import Loader ACCOUNTID = client('sts').get_caller_identity()['Account'] ARN = 'arn:aws:forecast:{region}:{account}:dataset/{name}' LOADER = Loader() def lambda_handler(event, context): datasets = event['params']['Datasets'] status = None event['DatasetArn'] = ARN.format( account=ACCOUNTID, name=datasets[0]['DatasetName'], region=environ['AWS_REGION'] ) event['AccountID'] = ACCOUNTID try: status = LOADER.forecast_cli.describe_dataset( DatasetArn=event['DatasetArn'] ) except LOADER.forecast_cli.exceptions.ResourceNotFoundException: LOADER.logger.info('Dataset not found! Will follow to create dataset.') for dataset in datasets: LOADER.forecast_cli.create_dataset(**dataset) status = LOADER.forecast_cli.describe_dataset( DatasetArn=event['DatasetArn'] ) actions.take_action(status['Status']) return event
784
0
23
3a807d7d060e94e9383acbae2b77682c4bf36733
2,834
py
Python
examples/id_based_encryption.py
elliptic-shiho/ecpy
ccdb872124ca2c218b8a7261a2956efd5ec83705
[ "MIT" ]
48
2016-03-30T07:20:49.000Z
2022-01-27T10:48:43.000Z
examples/id_based_encryption.py
elliptic-shiho/ecpy
ccdb872124ca2c218b8a7261a2956efd5ec83705
[ "MIT" ]
11
2017-03-26T11:03:20.000Z
2021-06-01T15:54:03.000Z
examples/id_based_encryption.py
elliptic-shiho/ecpy
ccdb872124ca2c218b8a7261a2956efd5ec83705
[ "MIT" ]
12
2016-06-05T19:09:26.000Z
2021-04-18T04:23:20.000Z
from ecpy import EllipticCurve, ExtendedFiniteField, symmetric_tate_pairing import hashlib import random import cPickle # PKI secret secret = 0xdeadbeef p = int("501794446334189957604282155189438160845433783392772743395579628617109" "929160215221425142482928909270259580854362463493326988807453595748573" "76419559953437557") l = (p + 1) / 6 F = ExtendedFiniteField(p, "x^2+x+1") E = EllipticCurve(F, 0, 1) P = E(3, int("1418077311270457886139292292020587683642898636677353664354101171" "7684401801069777797699258667061922178009879315047772033936311133" "535564812495329881887557081")) sP = E(int("129862491850266001914601437161941818413833907050695770313188660767" "152646233571458109764766382285470424230719843324368007925375351295" "39576510740045312772012"), int("452543250979361708074026409576755302296698208397782707067096515523" "033579018123253402743775747767548650767928190884624134827869137911" "24188897792458334596297")) if __name__ == "__main__": main()
29.520833
79
0.613973
from ecpy import EllipticCurve, ExtendedFiniteField, symmetric_tate_pairing import hashlib import random import cPickle # PKI secret secret = 0xdeadbeef p = int("501794446334189957604282155189438160845433783392772743395579628617109" "929160215221425142482928909270259580854362463493326988807453595748573" "76419559953437557") l = (p + 1) / 6 F = ExtendedFiniteField(p, "x^2+x+1") E = EllipticCurve(F, 0, 1) P = E(3, int("1418077311270457886139292292020587683642898636677353664354101171" "7684401801069777797699258667061922178009879315047772033936311133" "535564812495329881887557081")) sP = E(int("129862491850266001914601437161941818413833907050695770313188660767" "152646233571458109764766382285470424230719843324368007925375351295" "39576510740045312772012"), int("452543250979361708074026409576755302296698208397782707067096515523" "033579018123253402743775747767548650767928190884624134827869137911" "24188897792458334596297")) def H(x): return x.x * x.field.p + x.y def get_user_public(E, P, id, l): v = int(hashlib.sha512(id).hexdigest().encode("hex"), 16) return P * v def get_user_secret(E, pubkey, l): global secret return pubkey * secret def encrypt(E, P, sP, pubkey, m, l): assert isinstance(m, (int, long)) # r = rand() r = random.randint(2**30, 2**31) # r*P, m xor e_l(secret * P, Q)^r = e_l(P, Q) ^ (secret * r) return (r * P, m ^ H(E.field(symmetric_tate_pairing(E, sP, pubkey, l) ** r))) def decrypt(E, K, c, l): # c1, c2 = r*P, m xor e_l(secret * P, Q) ^ r = e_l(P, Q) ^ (secret * r) # a = e_l(c1, K) = e_l(r*P, secret * Q) = e_l(P, Q) ^ (secret * r) return c[1] ^ H(E.field(symmetric_tate_pairing(E, c[0], K, l))) def main(): global P, sP, l print "Please tell me your ID :", ID = raw_input().strip() Q = get_user_public(E, P, ID, l) sQ = get_user_secret(E, Q, l) while True: print "What to do?" print "Encryption -> e, Decryption -> d, Quit -> q :", t = raw_input().strip().lower() if t == "e": print "[+] Message? :", m = int(raw_input().strip().encode("hex"), 16) C = encrypt(E, P, sP, Q, m, l) t = tuple(C[0]) c = cPickle.dumps((t[0], t[1], C[1])).encode("zlib").encode("base64") c = c.replace("\n", "") print "[+] Your Encrypted Message: %s" % c elif t == "d": print "Ciphertext? :", d = raw_input().strip().decode("base64").decode("zlib") x, y, c = cPickle.loads(d) C1 = E(x, y) C2 = c C = (C1, C2) m = decrypt(E, sQ, C, l) m = hex(m)[2:-1] if len(m) % 2 == 1: m = "0" + m m = m.decode("hex") print "[+] Your Message :", m elif t == "q": print "[+] Quit" break if __name__ == "__main__": main()
1,621
0
138
db6094ae5dcf25106c386a249c62bbdac1127a6e
4,784
py
Python
src/byro/plugins/sepa/migrations/0001_initial.py
dnet/byro
26dac998dfc2408224ebddc008f3df85f88f4a1a
[ "Apache-2.0" ]
114
2017-08-12T16:47:49.000Z
2022-03-17T12:22:59.000Z
src/byro/plugins/sepa/migrations/0001_initial.py
dnet/byro
26dac998dfc2408224ebddc008f3df85f88f4a1a
[ "Apache-2.0" ]
191
2017-08-13T09:12:37.000Z
2022-03-30T19:57:18.000Z
src/byro/plugins/sepa/migrations/0001_initial.py
dnet/byro
26dac998dfc2408224ebddc008f3df85f88f4a1a
[ "Apache-2.0" ]
45
2017-08-13T09:32:19.000Z
2022-03-11T21:36:29.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2017-10-12 20:32 from __future__ import unicode_literals import annoying.fields import byro.common.models.auditable from django.db import migrations, models import django.db.models.deletion import localflavor.generic.models
33.690141
139
0.354724
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2017-10-12 20:32 from __future__ import unicode_literals import annoying.fields import byro.common.models.auditable from django.db import migrations, models import django.db.models.deletion import localflavor.generic.models class Migration(migrations.Migration): initial = True dependencies = [("members", "0002_auto_20171012_1857")] operations = [ migrations.CreateModel( name="MemberSepa", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "iban", localflavor.generic.models.IBANField( blank=True, include_countries=None, max_length=34, null=True, use_nordea_extensions=False, verbose_name="IBAN", ), ), ( "bic", localflavor.generic.models.BICField( blank=True, max_length=11, null=True, verbose_name="BIC" ), ), ( "institute", models.CharField( blank=True, max_length=255, null=True, verbose_name="IBAN Institute", ), ), ( "issue_date", models.DateField( blank=True, help_text="The issue date of the direct debit mandate. (1970-01-01 means there is no issue date in the database )", null=True, verbose_name="IBAN Issue Date", ), ), ( "fullname", models.CharField( blank=True, help_text="Full name for IBAN account owner", max_length=255, null=True, verbose_name="IBAN full name", ), ), ( "address", models.CharField( blank=True, help_text="Address line (e.g. Street / House Number)", max_length=255, null=True, verbose_name="IBAN address", ), ), ( "zip_code", models.CharField( blank=True, help_text="ZIP Code", max_length=20, null=True, verbose_name="IBAN zip code", ), ), ( "city", models.CharField( blank=True, max_length=255, null=True, verbose_name="IBAN City" ), ), ( "country", models.CharField( blank=True, default="Deutschland", max_length=255, null=True, verbose_name="IBAN Country", ), ), ( "mandate_reference", models.CharField( blank=True, max_length=255, null=True, verbose_name="IBAN Mandate Reference", ), ), ( "mandate_reason", models.CharField( blank=True, max_length=255, null=True, verbose_name="IBAN Mandate Reason", ), ), ( "member", annoying.fields.AutoOneToOneField( on_delete=django.db.models.deletion.PROTECT, related_name="sepa", to="members.Member", ), ), ], bases=(byro.common.models.auditable.Auditable, models.Model), ) ]
0
4,479
23
1d56bd0859c31a8e9b68e858edb002f8e9a04340
5,438
py
Python
src/api/bkuser_core/categories/plugins/ldap/adaptor.py
shabbywu/bk-user
8ea590958a5c6dd3c71d0b72e1d4866ce327efda
[ "MIT" ]
null
null
null
src/api/bkuser_core/categories/plugins/ldap/adaptor.py
shabbywu/bk-user
8ea590958a5c6dd3c71d0b72e1d4866ce327efda
[ "MIT" ]
null
null
null
src/api/bkuser_core/categories/plugins/ldap/adaptor.py
shabbywu/bk-user
8ea590958a5c6dd3c71d0b72e1d4866ce327efda
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from dataclasses import dataclass from typing import Any, Dict, List, NamedTuple, Optional from bkuser_core.categories.plugins.ldap.models import DepartmentProfile, UserProfile from bkuser_core.user_settings.loader import ConfigProvider from django.utils.encoding import force_str from ldap3.utils import dn as dn_utils @dataclass class ProfileFieldMapper: """从 ldap 对象属性中获取用户字段""" config_loader: ConfigProvider setting_field_map: dict def get_field(self, user_meta: Dict[str, List[bytes]], field_name: str, raise_exception: bool = False) -> str: """根据字段映射关系, 从 ldap 中获取 `field_name` 的值""" try: setting_name = self.setting_field_map[field_name] except KeyError: if raise_exception: raise ValueError("该用户字段没有在配置中有对应项,无法同步") return "" try: ldap_field_name = self.config_loader[setting_name] except KeyError: if raise_exception: raise ValueError(f"用户目录配置中缺失字段 {setting_name}") return "" try: if user_meta[ldap_field_name]: return force_str(user_meta[ldap_field_name][0]) return "" except KeyError: if raise_exception: raise ValueError(f"搜索数据中没有对应的字段 {ldap_field_name}") return "" def get_user_attributes(self) -> list: """获取远端属性名列表""" return [self.config_loader[x] for x in self.setting_field_map.values() if self.config_loader[x]] class RDN(NamedTuple): """RelativeDistinguishedName""" type: str value: str separator: str def parse_dn_tree(dn: str, restrict_types: List[str] = None) -> List[RDN]: """A DN is a sequence of relative distinguished names (RDN) connected by commas, For examples: we have a dn = "CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM", this method will parse the dn to: >>> parse_dn_tree("CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM") [RDN(type='CN', value='Jeff Smith', separator=','), RDN(type='OU', value='Sales', separator=','), RDN(type='DC', value='Fabrikam', separator=','), RDN(type='DC', value='COM', separator='')] if provide restrict_types, this method will ignore the attribute not in restrict_types, For examples: >>> parse_dn_tree("CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM", restrict_types=["DC"]) [RDN(type='DC', value='Fabrikam', separator=','), RDN(type='DC', value='COM', separator='')] Furthermore, restrict_types is Case-insensitive, the ["DC"], ["dc"], ["Dc"] are Exactly equal. >>> parse_dn_tree("CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM", restrict_types=["dc"]) [RDN(type='DC', value='Fabrikam', separator=','), RDN(type='DC', value='COM', separator='')] See Also: https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ldap/distinguished-names """ restrict_types = [type_.upper() for type_ in (restrict_types or [])] items = dn_utils.parse_dn(dn, escape=True) if restrict_types: parts = [RDN(*i) for i in items if i[0].upper() in restrict_types] else: parts = [RDN(*i) for i in items] return parts def parse_dn_value_list(dn: str, restrict_types: List[str] = None) -> List[str]: """this method work like parse_dn_tree, be only return values of those attributes, For examples: >>> parse_dn_value_list("CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM") ['Jeff Smith', 'Sales', 'Fabrikam', 'COM'] if provide restrict_types, this method will ignore the attribute not in restrict_types, For examples: >>> parse_dn_value_list("CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM", restrict_types=["DC"]) ['Fabrikam', 'COM'] """ tree = parse_dn_tree(dn, restrict_types) parts = [] for part in tree: parts.append(part.value) return parts
38.295775
115
0.668444
# -*- coding: utf-8 -*- from dataclasses import dataclass from typing import Any, Dict, List, NamedTuple, Optional from bkuser_core.categories.plugins.ldap.models import DepartmentProfile, UserProfile from bkuser_core.user_settings.loader import ConfigProvider from django.utils.encoding import force_str from ldap3.utils import dn as dn_utils @dataclass class ProfileFieldMapper: """从 ldap 对象属性中获取用户字段""" config_loader: ConfigProvider setting_field_map: dict def get_field(self, user_meta: Dict[str, List[bytes]], field_name: str, raise_exception: bool = False) -> str: """根据字段映射关系, 从 ldap 中获取 `field_name` 的值""" try: setting_name = self.setting_field_map[field_name] except KeyError: if raise_exception: raise ValueError("该用户字段没有在配置中有对应项,无法同步") return "" try: ldap_field_name = self.config_loader[setting_name] except KeyError: if raise_exception: raise ValueError(f"用户目录配置中缺失字段 {setting_name}") return "" try: if user_meta[ldap_field_name]: return force_str(user_meta[ldap_field_name][0]) return "" except KeyError: if raise_exception: raise ValueError(f"搜索数据中没有对应的字段 {ldap_field_name}") return "" def get_user_attributes(self) -> list: """获取远端属性名列表""" return [self.config_loader[x] for x in self.setting_field_map.values() if self.config_loader[x]] def user_adapter( code: str, user_meta: Dict[str, Any], field_mapper: ProfileFieldMapper, restrict_types: List[str] ) -> UserProfile: groups = user_meta["attributes"][field_mapper.config_loader["user_member_of"]] return UserProfile( username=field_mapper.get_field(user_meta=user_meta["raw_attributes"], field_name="username"), email=field_mapper.get_field(user_meta=user_meta["raw_attributes"], field_name="email"), telephone=field_mapper.get_field(user_meta=user_meta["raw_attributes"], field_name="telephone"), display_name=field_mapper.get_field(user_meta=user_meta["raw_attributes"], field_name="display_name"), code=code, # TODO: 完成转换 departments 的逻辑 departments=[ # 根据约定, dn 中除去第一个成分以外的部分即为用户所在的部门, 因此需要取 [1:] list(reversed(parse_dn_value_list(user_meta["dn"], restrict_types)[1:])), # 用户与用户组之间的关系 *[list(reversed(parse_dn_value_list(group, restrict_types))) for group in groups], ], ) def department_adapter(code: str, dept_meta: Dict, is_group: bool, restrict_types: List[str]) -> DepartmentProfile: dn = dept_meta["dn"] dn_values = parse_dn_value_list(dn, restrict_types=restrict_types) parent_dept: Optional[DepartmentProfile] = None for dept_name in reversed(dn_values): parent_dept = DepartmentProfile( name=dept_name, parent=parent_dept, is_group=is_group, ) assert parent_dept is not None, "未从 dn 中提取到任何部门信息" parent_dept.code = code return parent_dept class RDN(NamedTuple): """RelativeDistinguishedName""" type: str value: str separator: str def parse_dn_tree(dn: str, restrict_types: List[str] = None) -> List[RDN]: """A DN is a sequence of relative distinguished names (RDN) connected by commas, For examples: we have a dn = "CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM", this method will parse the dn to: >>> parse_dn_tree("CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM") [RDN(type='CN', value='Jeff Smith', separator=','), RDN(type='OU', value='Sales', separator=','), RDN(type='DC', value='Fabrikam', separator=','), RDN(type='DC', value='COM', separator='')] if provide restrict_types, this method will ignore the attribute not in restrict_types, For examples: >>> parse_dn_tree("CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM", restrict_types=["DC"]) [RDN(type='DC', value='Fabrikam', separator=','), RDN(type='DC', value='COM', separator='')] Furthermore, restrict_types is Case-insensitive, the ["DC"], ["dc"], ["Dc"] are Exactly equal. >>> parse_dn_tree("CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM", restrict_types=["dc"]) [RDN(type='DC', value='Fabrikam', separator=','), RDN(type='DC', value='COM', separator='')] See Also: https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ldap/distinguished-names """ restrict_types = [type_.upper() for type_ in (restrict_types or [])] items = dn_utils.parse_dn(dn, escape=True) if restrict_types: parts = [RDN(*i) for i in items if i[0].upper() in restrict_types] else: parts = [RDN(*i) for i in items] return parts def parse_dn_value_list(dn: str, restrict_types: List[str] = None) -> List[str]: """this method work like parse_dn_tree, be only return values of those attributes, For examples: >>> parse_dn_value_list("CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM") ['Jeff Smith', 'Sales', 'Fabrikam', 'COM'] if provide restrict_types, this method will ignore the attribute not in restrict_types, For examples: >>> parse_dn_value_list("CN=Jeff Smith,OU=Sales,DC=Fabrikam,DC=COM", restrict_types=["DC"]) ['Fabrikam', 'COM'] """ tree = parse_dn_tree(dn, restrict_types) parts = [] for part in tree: parts.append(part.value) return parts
1,656
0
46
f1ebbe6c83b7976dc88a8d4893dacd7fb0cdb353
1,540
py
Python
Day04.py
lsiepman/AdventOfCode2017
3ec620bef0971ceeadee28605ec8defba33b4bc5
[ "MIT" ]
null
null
null
Day04.py
lsiepman/AdventOfCode2017
3ec620bef0971ceeadee28605ec8defba33b4bc5
[ "MIT" ]
null
null
null
Day04.py
lsiepman/AdventOfCode2017
3ec620bef0971ceeadee28605ec8defba33b4bc5
[ "MIT" ]
null
null
null
# IMPORTS # DATA data = [] with open("Data - Day04.txt") as file: for line in file: data.append(line.strip().split(" ")) # GOAL 1 """ A new system policy has been put in place that requires all accounts to use a passphrase instead of simply a password. A passphrase consists of a series of words (lowercase letters) separated by spaces. To ensure security, a valid passphrase must contain no duplicate words. The system's full passphrase list is available as your puzzle input. How many passphrases are valid? """ # ANSWER 1 data_sets = [] for phrase in data: data_sets.append(set(phrase)) num_valid = 0 for i in range(len(data)): if len(data[i]) == len(data_sets[i]): num_valid += 1 print(f"Answer 4a: {num_valid}") # GOAL 2 """ For added security, yet another system policy has been put in place. Now, a valid passphrase must contain no two words that are anagrams of each other - that is, a passphrase is invalid if any word's letters can be rearranged to form any other word in the passphrase. """ sorted_data = [] sorted_data_sets = [] for i in data: new_i = is_anagram(i) sorted_data.append(new_i) sorted_data_sets.append(set(new_i)) num_valid_b = 0 for i in range(len(sorted_data)): if len(sorted_data[i]) == len(sorted_data_sets[i]): num_valid_b += 1 print(f"Answer 4b: {num_valid_b}")
25.666667
105
0.698701
# IMPORTS # DATA data = [] with open("Data - Day04.txt") as file: for line in file: data.append(line.strip().split(" ")) # GOAL 1 """ A new system policy has been put in place that requires all accounts to use a passphrase instead of simply a password. A passphrase consists of a series of words (lowercase letters) separated by spaces. To ensure security, a valid passphrase must contain no duplicate words. The system's full passphrase list is available as your puzzle input. How many passphrases are valid? """ # ANSWER 1 data_sets = [] for phrase in data: data_sets.append(set(phrase)) num_valid = 0 for i in range(len(data)): if len(data[i]) == len(data_sets[i]): num_valid += 1 print(f"Answer 4a: {num_valid}") # GOAL 2 """ For added security, yet another system policy has been put in place. Now, a valid passphrase must contain no two words that are anagrams of each other - that is, a passphrase is invalid if any word's letters can be rearranged to form any other word in the passphrase. """ def is_anagram(phrase): alpha_phrase = [] for word in phrase: alpha_word = sorted(word) alpha_phrase.append("".join(alpha_word)) return alpha_phrase sorted_data = [] sorted_data_sets = [] for i in data: new_i = is_anagram(i) sorted_data.append(new_i) sorted_data_sets.append(set(new_i)) num_valid_b = 0 for i in range(len(sorted_data)): if len(sorted_data[i]) == len(sorted_data_sets[i]): num_valid_b += 1 print(f"Answer 4b: {num_valid_b}")
156
0
23
f3a48cb7c9060bd4d80fd365373cb167e56aa4aa
710
py
Python
src/azure-cli-core/azure/cli/core/auth/tests/test_adal_authentication.py
YuanyuanNi/azure-cli
63844964374858bfacd209bfe1b69eb456bd64ca
[ "MIT" ]
3,287
2016-07-26T17:34:33.000Z
2022-03-31T09:52:13.000Z
src/azure-cli-core/azure/cli/core/auth/tests/test_adal_authentication.py
YuanyuanNi/azure-cli
63844964374858bfacd209bfe1b69eb456bd64ca
[ "MIT" ]
19,206
2016-07-26T07:04:42.000Z
2022-03-31T23:57:09.000Z
src/azure-cli-core/azure/cli/core/auth/tests/test_adal_authentication.py
YuanyuanNi/azure-cli
63844964374858bfacd209bfe1b69eb456bd64ca
[ "MIT" ]
2,575
2016-07-26T06:44:40.000Z
2022-03-31T22:56:06.000Z
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import unittest from azure.cli.core.auth.adal_authentication import _normalize_expires_on if __name__ == '__main__': unittest.main()
37.368421
94
0.557746
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import unittest from azure.cli.core.auth.adal_authentication import _normalize_expires_on class TestUtil(unittest.TestCase): def test_normalize_expires_on(self): assert _normalize_expires_on("11/05/2021 15:18:31 +00:00") == 1636125511 assert _normalize_expires_on('1636125511') == 1636125511 if __name__ == '__main__': unittest.main()
161
13
49
cc8b768dfe5908a23f0c137ef0e57006b53db5c0
5,861
py
Python
loggers_control/scripts/solo_escape_vpg_train.py
IRASatUC/two_loggers
c5c99868a9c896aa2fdb940f2f7b7173abed9e00
[ "MIT" ]
null
null
null
loggers_control/scripts/solo_escape_vpg_train.py
IRASatUC/two_loggers
c5c99868a9c896aa2fdb940f2f7b7173abed9e00
[ "MIT" ]
null
null
null
loggers_control/scripts/solo_escape_vpg_train.py
IRASatUC/two_loggers
c5c99868a9c896aa2fdb940f2f7b7173abed9e00
[ "MIT" ]
null
null
null
#! /usr/bin/env python """ An implementation of Vanilla Policy Gradient (VPG) for solo_escape_task VPG is a model free, on policy, reinforcement learning algorithm (https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf) Author: LinZHanK (linzhank@gmail.com) """ from __future__ import absolute_import, division, print_function import sys import os import time from datetime import datetime import numpy as np import tensorflow as tf import rospy from envs.solo_escape_task_env import SoloEscapeEnv from utils import data_utils, solo_utils, tf_utils from utils.data_utils import bcolors from agents.vpg import VPGAgent if __name__ == "__main__": # create argument parser args = data_utils.get_args() # start timing training rospy.init_node("solo_escape_dqn", anonymous=True, log_level=rospy.INFO) # make an instance from env class env = SoloEscapeEnv() env.reset() agent_params = {} train_params = {} # agent parameters agent_params["dim_state"] = len(solo_utils.obs_to_state(env.observation)) agent_params["actions"] = np.array([np.array([1, -1]), np.array([1, 1])]) agent_params["layer_sizes"] = args.layer_sizes agent_params["learning_rate"] = args.learning_rate # training params if args.datetime: train_params["datetime"] = args.datetime else: train_params["datetime"] = datetime.now().strftime("%Y-%m-%d-%H-%M") train_params["num_epochs"] = args.num_epochs train_params["num_steps"] = args.num_steps train_params["time_bonus"] = -1./train_params['num_steps'] train_params["success_bonus"] = 0 train_params["wall_bonus"] = -10./train_params["num_steps"] train_params["door_bonus"] = 0 train_params["sample_size"] = args.sample_size # instantiate agent agent = VPGAgent(agent_params) # specify model path model_path = os.path.dirname(sys.path[0])+"/saved_models/solo_escape/vpg/"+train_params["datetime"]+"/agent/model.h5" update_counter = 0 episodic_returns = [] episode = 0 step = 0 start_time = time.time() for ep in range(train_params['num_epochs']): # init training batches batch_states = [] batch_acts = [] batch_rtaus = [] # init episode obs, _ = env.reset() state_0 = solo_utils.obs_to_state(obs) done, ep_rewards = False, [] batch_counter = 0 while True: # take action by sampling policy_net predictions act_id = agent.sample_action(state_0) action = agent.actions[act_id] obs, rew, done, info = env.step(action) state_1 = solo_utils.obs_to_state(obs) # adjust reward rew, done = solo_utils.adjust_reward(train_params, env) # fill training batch batch_acts.append(act_id) batch_states.append(state_0) # update ep_rewards.append(rew) state_0 = state_1 print( bcolors.OKGREEN, "Epoch: {} \nEpisode: {}, Step: {} \naction: {}->{}, state: {}, reward/episodic_return: {}/{}, status: {}, success: {}".format( ep, episode, step, act_id, action, state_1, rew, sum(ep_rewards), info, env.success_count ), bcolors.ENDC ) # step increment step += 1 if done: ep_return, ep_length = sum(ep_rewards), len(ep_rewards) batch_rtaus += list(solo_utils.reward_to_go(ep_rewards)) assert len(batch_rtaus) == len(batch_states) # store episodic_return episodic_returns.append(ep_return) # reset to a new episode obs, _ = env.reset() done, ep_rewards = False, [] state_0 = solo_utils.obs_to_state(obs) episode += 1 step = 0 print( bcolors.OKGREEN, "current batch size: {}".format(len(batch_rtaus)), bcolors.ENDC ) if len(batch_rtaus) > train_params['sample_size']: break agent.train(batch_states, batch_acts, batch_rtaus) agent.save_model(model_path) # time training end_time = time.time() training_time = end_time - start_time # plot episodic returns data_utils.plot_returns(returns=episodic_returns, mode=0, save_flag=True, fdir=os.path.dirname(model_path)) # plot accumulated returns data_utils.plot_returns(returns=episodic_returns, mode=1, save_flag=True, fdir=os.path.dirname(model_path)) # plot averaged return data_utils.plot_returns(returns=episodic_returns, mode=2, save_flag=True, fdir=os.path.dirname(model_path)) # save agent parameters data_utils.save_pkl(content=agent_params, fdir=os.path.dirname(model_path), fname="agent_parameters.pkl") # save returns data_utils.save_pkl(content=episodic_returns, fdir=os.path.dirname(os.path.dirname(model_path)), fname="episodic_returns.pkl") # save results train_info = train_params train_info["success_count"] = env.success_count train_info["training_time"] = training_time train_info["learning_rate"] = agent_params["learning_rate"] train_info["state_dimension"] = agent_params["dim_state"] train_info["action_options"] = agent_params["actions"] train_info["layer_sizes"] = agent_params["layer_sizes"] data_utils.save_csv(content=train_info, fdir=os.path.dirname(os.path.dirname(model_path)), fname="train_information.csv")
40.42069
183
0.627026
#! /usr/bin/env python """ An implementation of Vanilla Policy Gradient (VPG) for solo_escape_task VPG is a model free, on policy, reinforcement learning algorithm (https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf) Author: LinZHanK (linzhank@gmail.com) """ from __future__ import absolute_import, division, print_function import sys import os import time from datetime import datetime import numpy as np import tensorflow as tf import rospy from envs.solo_escape_task_env import SoloEscapeEnv from utils import data_utils, solo_utils, tf_utils from utils.data_utils import bcolors from agents.vpg import VPGAgent if __name__ == "__main__": # create argument parser args = data_utils.get_args() # start timing training rospy.init_node("solo_escape_dqn", anonymous=True, log_level=rospy.INFO) # make an instance from env class env = SoloEscapeEnv() env.reset() agent_params = {} train_params = {} # agent parameters agent_params["dim_state"] = len(solo_utils.obs_to_state(env.observation)) agent_params["actions"] = np.array([np.array([1, -1]), np.array([1, 1])]) agent_params["layer_sizes"] = args.layer_sizes agent_params["learning_rate"] = args.learning_rate # training params if args.datetime: train_params["datetime"] = args.datetime else: train_params["datetime"] = datetime.now().strftime("%Y-%m-%d-%H-%M") train_params["num_epochs"] = args.num_epochs train_params["num_steps"] = args.num_steps train_params["time_bonus"] = -1./train_params['num_steps'] train_params["success_bonus"] = 0 train_params["wall_bonus"] = -10./train_params["num_steps"] train_params["door_bonus"] = 0 train_params["sample_size"] = args.sample_size # instantiate agent agent = VPGAgent(agent_params) # specify model path model_path = os.path.dirname(sys.path[0])+"/saved_models/solo_escape/vpg/"+train_params["datetime"]+"/agent/model.h5" update_counter = 0 episodic_returns = [] episode = 0 step = 0 start_time = time.time() for ep in range(train_params['num_epochs']): # init training batches batch_states = [] batch_acts = [] batch_rtaus = [] # init episode obs, _ = env.reset() state_0 = solo_utils.obs_to_state(obs) done, ep_rewards = False, [] batch_counter = 0 while True: # take action by sampling policy_net predictions act_id = agent.sample_action(state_0) action = agent.actions[act_id] obs, rew, done, info = env.step(action) state_1 = solo_utils.obs_to_state(obs) # adjust reward rew, done = solo_utils.adjust_reward(train_params, env) # fill training batch batch_acts.append(act_id) batch_states.append(state_0) # update ep_rewards.append(rew) state_0 = state_1 print( bcolors.OKGREEN, "Epoch: {} \nEpisode: {}, Step: {} \naction: {}->{}, state: {}, reward/episodic_return: {}/{}, status: {}, success: {}".format( ep, episode, step, act_id, action, state_1, rew, sum(ep_rewards), info, env.success_count ), bcolors.ENDC ) # step increment step += 1 if done: ep_return, ep_length = sum(ep_rewards), len(ep_rewards) batch_rtaus += list(solo_utils.reward_to_go(ep_rewards)) assert len(batch_rtaus) == len(batch_states) # store episodic_return episodic_returns.append(ep_return) # reset to a new episode obs, _ = env.reset() done, ep_rewards = False, [] state_0 = solo_utils.obs_to_state(obs) episode += 1 step = 0 print( bcolors.OKGREEN, "current batch size: {}".format(len(batch_rtaus)), bcolors.ENDC ) if len(batch_rtaus) > train_params['sample_size']: break agent.train(batch_states, batch_acts, batch_rtaus) agent.save_model(model_path) # time training end_time = time.time() training_time = end_time - start_time # plot episodic returns data_utils.plot_returns(returns=episodic_returns, mode=0, save_flag=True, fdir=os.path.dirname(model_path)) # plot accumulated returns data_utils.plot_returns(returns=episodic_returns, mode=1, save_flag=True, fdir=os.path.dirname(model_path)) # plot averaged return data_utils.plot_returns(returns=episodic_returns, mode=2, save_flag=True, fdir=os.path.dirname(model_path)) # save agent parameters data_utils.save_pkl(content=agent_params, fdir=os.path.dirname(model_path), fname="agent_parameters.pkl") # save returns data_utils.save_pkl(content=episodic_returns, fdir=os.path.dirname(os.path.dirname(model_path)), fname="episodic_returns.pkl") # save results train_info = train_params train_info["success_count"] = env.success_count train_info["training_time"] = training_time train_info["learning_rate"] = agent_params["learning_rate"] train_info["state_dimension"] = agent_params["dim_state"] train_info["action_options"] = agent_params["actions"] train_info["layer_sizes"] = agent_params["layer_sizes"] data_utils.save_csv(content=train_info, fdir=os.path.dirname(os.path.dirname(model_path)), fname="train_information.csv")
0
0
0
e45667b241db8c1639b0fc558affff0913b99a11
855
py
Python
buycoins/auth.py
iyanuashiri/buycoin-python-sdk
c791ad48dc2ca518c5e05c09fbcaf8e05f8a22b9
[ "MIT" ]
1
2021-05-12T11:24:11.000Z
2021-05-12T11:24:11.000Z
buycoins/auth.py
iyanuashiri/buycoin-python-sdk
c791ad48dc2ca518c5e05c09fbcaf8e05f8a22b9
[ "MIT" ]
null
null
null
buycoins/auth.py
iyanuashiri/buycoin-python-sdk
c791ad48dc2ca518c5e05c09fbcaf8e05f8a22b9
[ "MIT" ]
null
null
null
# Buycoin Python SDK # Copyright 2021 Iyanuoluwa Ajao # See LICENCE for details. """ Authentication is handled by the :any:`Airtable` class. >>> airtable = Airtable(base_key, table_name, api_key) Note: You can also use this class to handle authentication for you if you are making your own wrapper: >>> auth = BuycoinsAuth(api_key) >>> >>> response = requests.get('https://api.airtable.com/v0/{basekey}/{table_name}', auth=auth) """ from requests.auth import AuthBase
25.147059
96
0.65731
# Buycoin Python SDK # Copyright 2021 Iyanuoluwa Ajao # See LICENCE for details. """ Authentication is handled by the :any:`Airtable` class. >>> airtable = Airtable(base_key, table_name, api_key) Note: You can also use this class to handle authentication for you if you are making your own wrapper: >>> auth = BuycoinsAuth(api_key) >>> >>> response = requests.get('https://api.airtable.com/v0/{basekey}/{table_name}', auth=auth) """ from requests.auth import AuthBase class BuycoinsAuth(AuthBase): def __int__(self, api_key): """ Authentication used by Buycoin :param api_key: :return: """ self.api_key = api_key def __call__(self, request): auth_token = {"Authorization": f"Basic {self.api_key}"} request.headers.update(auth_token) return request
137
202
23
3fbb3343817355008ebb4eef4a88009376424e09
5,360
py
Python
Utilities/ReleaseScripts/scripts/ws_sso_content_reader.py
Purva-Chaudhari/cmssw
32e5cbfe54c4d809d60022586cf200b7c3020bcf
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
Utilities/ReleaseScripts/scripts/ws_sso_content_reader.py
Purva-Chaudhari/cmssw
32e5cbfe54c4d809d60022586cf200b7c3020bcf
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
Utilities/ReleaseScripts/scripts/ws_sso_content_reader.py
Purva-Chaudhari/cmssw
32e5cbfe54c4d809d60022586cf200b7c3020bcf
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
#!/usr/bin/env python3 ###Description: The tool reads cern web services behind SSO using user certificates from __future__ import print_function import os, urllib, urllib2, httplib, cookielib, sys, HTMLParser, re from optparse import OptionParser if __name__ == "__main__": parser = OptionParser(usage="%prog [-d(ebug)] -o(ut) COOKIE_FILENAME -c(cert) CERN-PEM -k(ey) CERT-KEY -u(rl) URL") parser.add_option("-d", "--debug", dest="debug", help="Enable pycurl debugging. Prints to data and headers to stderr.", action="store_true", default=False) parser.add_option("-p", "--postdata", dest="postdata", help="Data to be sent as post request", action="store", default=None) parser.add_option("-c", "--cert", dest="cert_path", help="[REQUIRED] Absolute path to cert file.", action="store") parser.add_option("-k", "--key", dest="key_path", help="[REQUIRED] Absolute path to key file.", action="store") parser.add_option("-u", "--url", dest="url", help="[REQUIRED] Url to a service behind the SSO", action="store") (opts, args) = parser.parse_args() checkRequiredArguments(opts, parser) content = getContent(opts.url, opts.cert_path, opts.key_path, opts.postdata, opts.debug) print(content)
44.666667
157
0.705037
#!/usr/bin/env python3 ###Description: The tool reads cern web services behind SSO using user certificates from __future__ import print_function import os, urllib, urllib2, httplib, cookielib, sys, HTMLParser, re from optparse import OptionParser def getFile(path): npath = os.path.expanduser(path) while os.path.islink(npath): path = os.readlink(npath) if path[0] != "/": path = os.path.join(os.path.dirname(npath),path) npath = path return npath class HTTPSClientAuthHandler(urllib2.HTTPSHandler): def __init__(self, key, cert): urllib2.HTTPSHandler.__init__(self) self.key = getFile(key) self.cert = getFile(cert) def https_open(self, req): return self.do_open(self.getConnection, req) def getConnection(self, host, timeout=300): return httplib.HTTPSConnection(host, key_file=self.key, cert_file=self.cert) def _getResponse(opener, url, post_data=None, debug=False): response = opener.open(url, post_data) if debug: sys.stderr.write("Code: %s\n" % response.code) sys.stderr.write("Headers: %s\n" % response.headers) sys.stderr.write("Msg: %s\n" % response.msg) sys.stderr.write("Url: %s\n" % response.url) return response def getResponseContent(opener, url, post_data=None, debug=False): return _getResponse(opener, url, post_data, debug).read() def getResponseURL(opener, url, post_data=None, debug=False): return urllib2.unquote(_getResponse(opener, url, post_data, debug).url) def getParentURL(url): items = url.split("/") return '%s//%s/%s/' % (items[0],items[2],items[3]) def getSSOCookie(opener, target_url, cookie, debug=False): opener.addheaders = [('User-agent', 'curl-sso-certificate/0.0.2')] #in sync with cern-get-sso-cookie tool url = getResponseURL(opener, getParentURL(target_url), debug=debug) content = getResponseContent(opener, url, debug=debug) ret = re.search('<form .+? action="(.+?)">', content) if ret == None: raise Exception("error: The page doesn't have the form with adfs url, check 'User-agent' header") url = urllib2.unquote(ret.group(1)) h = HTMLParser.HTMLParser() post_data_local = '' for match in re.finditer('input type="hidden" name="([^"]*)" value="([^"]*)"', content): post_data_local += "&%s=%s" % (match.group(1), urllib.quote(h.unescape(match.group(2)))) is_link_found = True if not is_link_found: raise Exception("error: The page doesn't have the form with security attributes, check 'User-agent' header") post_data_local = post_data_local[1:] #remove first & getResponseContent(opener, url, post_data_local, debug) def getContent(target_url, cert_path, key_path, post_data=None, debug=False, adfslogin=None): opener = urllib2.build_opener(urllib2.HTTPSHandler()) if adfslogin: opener.addheaders = [('Adfs-Login', adfslogin)] #local version of tc test #try to access the url first try: content = getResponseContent(opener, target_url, post_data, debug) if not 'Sign in with your CERN account' in content: return content except Exception: if debug: sys.stderr.write("The request has an error, will try to create a new cookie\n") cookie = cookielib.CookieJar() opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cookie), HTTPSClientAuthHandler(key_path, cert_path)) #will use private key and ceritifcate if debug: sys.stderr.write("The return page is sso login page, will request cookie.") hasCookie = False # if the access gave an exception, try to get a cookie try: getSSOCookie(opener, target_url, cookie, debug) hasCookie = True result = getResponseContent(opener, target_url, post_data, debug) except Exception as e: result = "" print(sys.stderr.write("ERROR:"+str(e))) if hasCookie: burl = getParentURL(target_url) try: _getResponse(opener, burl+"signOut").read() _getResponse(opener, "https://login.cern.ch/adfs/ls/?wa=wsignout1.0").read() except: sys.stderr.write("Error, could not logout correctly from server") return result def checkRequiredArguments(opts, parser): missing_options = [] for option in parser.option_list: if re.match(r'^\[REQUIRED\]', option.help) and eval('opts. %s' % option.dest) == None: missing_options.extend(option._long_opts) if len(missing_options) > 0: parser.error('Missing REQUIRED parameters: %s' % str(missing_options)) if __name__ == "__main__": parser = OptionParser(usage="%prog [-d(ebug)] -o(ut) COOKIE_FILENAME -c(cert) CERN-PEM -k(ey) CERT-KEY -u(rl) URL") parser.add_option("-d", "--debug", dest="debug", help="Enable pycurl debugging. Prints to data and headers to stderr.", action="store_true", default=False) parser.add_option("-p", "--postdata", dest="postdata", help="Data to be sent as post request", action="store", default=None) parser.add_option("-c", "--cert", dest="cert_path", help="[REQUIRED] Absolute path to cert file.", action="store") parser.add_option("-k", "--key", dest="key_path", help="[REQUIRED] Absolute path to key file.", action="store") parser.add_option("-u", "--url", dest="url", help="[REQUIRED] Url to a service behind the SSO", action="store") (opts, args) = parser.parse_args() checkRequiredArguments(opts, parser) content = getContent(opts.url, opts.cert_path, opts.key_path, opts.postdata, opts.debug) print(content)
3,832
30
290
dfa763b060a7dac72bb41d68286cd5c008f99b9d
5,437
py
Python
client/verta/tests/custom_modules/test_custom_modules.py
mitdbg/modeldb
1d42591ea7ce2a1f7211e40dc46a79e53fa290f0
[ "MIT" ]
835
2017-02-08T20:14:24.000Z
2020-03-12T17:37:49.000Z
client/verta/tests/custom_modules/test_custom_modules.py
mitdbg/modeldb
1d42591ea7ce2a1f7211e40dc46a79e53fa290f0
[ "MIT" ]
113
2017-02-12T02:04:37.000Z
2019-12-05T09:33:12.000Z
client/verta/tests/custom_modules/test_custom_modules.py
mitdbg/modeldb
1d42591ea7ce2a1f7211e40dc46a79e53fa290f0
[ "MIT" ]
170
2017-02-13T14:49:22.000Z
2020-02-19T17:59:12.000Z
# -*- coding: utf-8 -*- import filecmp import json import os import pkgutil import zipfile import hypothesis import pytest import six from verta.tracking.entities._deployable_entity import _DeployableEntity from verta._internal_utils.custom_modules import CustomModules from .. import utils from . import contexts
39.398551
97
0.622034
# -*- coding: utf-8 -*- import filecmp import json import os import pkgutil import zipfile import hypothesis import pytest import six from verta.tracking.entities._deployable_entity import _DeployableEntity from verta._internal_utils.custom_modules import CustomModules from .. import utils from . import contexts class TestPipInstalledModule: @staticmethod def assert_in_custom_modules(custom_modules, module_name): module = CustomModules.get_module_path(module_name) with utils.tempdir() as custom_modules_dir: with zipfile.ZipFile(custom_modules, "r") as zipf: zipf.extractall(custom_modules_dir) # TODO: extract sys.path from _verta_config.py instead of walking for parent_dir, dirnames, filenames in os.walk(custom_modules_dir): if os.path.basename(module) in dirnames + filenames: retrieved_module = os.path.join( parent_dir, os.path.basename(module), ) break else: raise ValueError("module not found in custom modules") if os.path.isfile(module): assert filecmp.cmp(module, retrieved_module) else: utils.assert_dirs_match(module, retrieved_module) @pytest.mark.parametrize( "name", sorted(module[1] for module in pkgutil.iter_modules()), ) def test_module(self, name): """pip-installed module can be collected.""" if name == "tests" or name == "conftest" or name.startswith("test_"): pytest.skip( "pytest modifies both import mechanisms and module objects," " which we can't handle right now" ) if six.PY2 and name == "pytest_forked": pytest.skip( "pytest_forked insists on having an empty __pycache__," " which custom modules ignores, which fails our match check" ) if CustomModules.get_module_path(name) in ("built-in", "frozen"): pytest.skip("built into Python; no module file to collect") if six.PY2 and (name.startswith("tensorflow_") or name == "torch"): pytest.skip("takes too long") custom_modules = _DeployableEntity._custom_modules_as_artifact([name]) self.assert_in_custom_modules(custom_modules, name) @pytest.mark.parametrize( "names", [ ["cloudpickle", "hypothesis"], ["cloudpickle", "hypothesis", "pytest"], ], ) def test_multiple_modules(self, names): """Multiple pip-installed modules can be collected at once.""" custom_modules = _DeployableEntity._custom_modules_as_artifact(names) for name in names: self.assert_in_custom_modules(custom_modules, name) def test_module_and_local_dir_have_same_name(self, worker_id): """If a pip-installed module and a local directory share a name, the module is collected. If a user can import a package "foo" in their environment, and uses custom modules to find "foo", we will prefer that package over a directory/file "foo" in the cwd. Otherwise, it is very difficult or impossible to force the installed package. """ name = worker_id # avoid using an existing package name hypothesis.assume(not CustomModules.is_importable(name)) with utils.chtempdir(): # create local directory with same name as package local_dir = os.path.abspath(name) os.mkdir(local_dir) with open(os.path.join(local_dir, "empty.json"), "w") as f: json.dump({}, f) # create package in another directory and install with utils.tempdir() as tempd: with contexts.installable_package(name, dir=tempd) as pkg_dir: with contexts.installed_local_package(pkg_dir, name): # collect and validate custom modules custom_modules = _DeployableEntity._custom_modules_as_artifact( [name], ) self.assert_in_custom_modules(custom_modules, name) def test_module_and_local_pkg_have_same_name(self, worker_id): """A specific case of :meth:`test_module_and_local_dir_have_same_name`. The local directory *is* a Python package repository (but not directly importable without ``cd``ing one level into it). A user may have a monolithic project with model management scripts alongside Python package directories (that may *also* be installed into the environment). """ name = worker_id # avoid using an existing package name hypothesis.assume(not CustomModules.is_importable(name)) with utils.chtempdir(): # create package in *current* directory and install with contexts.installable_package(name, dir=".") as pkg_dir: with contexts.installed_local_package(pkg_dir, name): # collect and validate custom modules custom_modules = _DeployableEntity._custom_modules_as_artifact( [name], ) self.assert_in_custom_modules(custom_modules, name)
954
4,141
23
9f0907cd2068ea5228993bfd0610324a10152909
135
py
Python
src/privatemedia/fileutils.py
Talengi/phase
60ff6f37778971ae356c5b2b20e0d174a8288bfe
[ "MIT" ]
8
2016-01-29T11:53:40.000Z
2020-03-02T22:42:02.000Z
src/privatemedia/fileutils.py
PhaseDMS/phase
4f776d0b1b5e7916a3e26aee890b3c2b9454ef0e
[ "MIT" ]
289
2015-03-23T07:42:52.000Z
2022-03-11T23:26:10.000Z
src/privatemedia/fileutils.py
Talengi/phase
60ff6f37778971ae356c5b2b20e0d174a8288bfe
[ "MIT" ]
7
2015-12-08T09:03:20.000Z
2020-05-11T15:36:51.000Z
# We need those imports for migrations compatibility purpose from privatemedia.storage import ProtectedStorage, PrivateStorage # noqa
45
73
0.844444
# We need those imports for migrations compatibility purpose from privatemedia.storage import ProtectedStorage, PrivateStorage # noqa
0
0
0
2d7635ac6f4ed320e89fc80aef9f0d67f08346b4
1,786
py
Python
remote/vagrant_api.py
devaos/sublime-remote
d0dd57f464d599f0277b76bc19a4ba8c940f081d
[ "MIT" ]
2
2016-12-30T12:43:54.000Z
2018-06-23T20:08:24.000Z
remote/vagrant_api.py
devaos/sublime-remote
d0dd57f464d599f0277b76bc19a4ba8c940f081d
[ "MIT" ]
null
null
null
remote/vagrant_api.py
devaos/sublime-remote
d0dd57f464d599f0277b76bc19a4ba8c940f081d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (c) 2014 Ari Aosved # http://github.com/devaos/sublime-remote/blob/master/LICENSE """This module implements an API layer for Vagrant related functionality.""" import re import subprocess # ============================================================================= def parse_vm_id(line): """Determine if a line appears to be from `vagrant global-status`.""" parts = re.split("\s+", line) if len(parts) == 5 and parts[0] != "id" \ and re.match("^[0-9a-f]{1,7}$", parts[0]): return parts[0] return None def get_vm_list(opt): """Pull a list of all running vagrant VMs for the user to choose from.""" p1 = subprocess.Popen(["/usr/bin/vagrant", "global-status"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) while True: buf = p1.stdout.readline() decoded = buf.decode("utf-8").rstrip() if decoded == "" and p1.poll() is not None: break if decoded == "": continue if parse_vm_id(decoded) is not None: opt.append(decoded) return opt def get_ssh_options(vm): """Pull the ssh options required to connect to a specific vagrant VM.""" cmd = 'PATH="${PATH}:/usr/local/bin" /usr/bin/vagrant ssh-config' cmd = cmd + ' ' + vm + '; exit 0' print("ssh options cmd", cmd) out = subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True) out = out.decode("utf-8").rstrip() print("ssh options output", out) obj = [s.strip().split(' ') for s in out.splitlines()] opt = [] for field in obj: if field[0] != "Host": opt.append("=".join(field)) opt = "-o " + " -o ".join(opt) print("ssh options parsed", opt) return opt
27.476923
79
0.56383
# -*- coding: utf-8 -*- # # Copyright (c) 2014 Ari Aosved # http://github.com/devaos/sublime-remote/blob/master/LICENSE """This module implements an API layer for Vagrant related functionality.""" import re import subprocess # ============================================================================= def parse_vm_id(line): """Determine if a line appears to be from `vagrant global-status`.""" parts = re.split("\s+", line) if len(parts) == 5 and parts[0] != "id" \ and re.match("^[0-9a-f]{1,7}$", parts[0]): return parts[0] return None def get_vm_list(opt): """Pull a list of all running vagrant VMs for the user to choose from.""" p1 = subprocess.Popen(["/usr/bin/vagrant", "global-status"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) while True: buf = p1.stdout.readline() decoded = buf.decode("utf-8").rstrip() if decoded == "" and p1.poll() is not None: break if decoded == "": continue if parse_vm_id(decoded) is not None: opt.append(decoded) return opt def get_ssh_options(vm): """Pull the ssh options required to connect to a specific vagrant VM.""" cmd = 'PATH="${PATH}:/usr/local/bin" /usr/bin/vagrant ssh-config' cmd = cmd + ' ' + vm + '; exit 0' print("ssh options cmd", cmd) out = subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True) out = out.decode("utf-8").rstrip() print("ssh options output", out) obj = [s.strip().split(' ') for s in out.splitlines()] opt = [] for field in obj: if field[0] != "Host": opt.append("=".join(field)) opt = "-o " + " -o ".join(opt) print("ssh options parsed", opt) return opt
0
0
0
a1a8c31e5c119dbb7727ceec4702308b97c2a5f5
2,814
py
Python
gym_framework/panda_ctrl/panda_mujoco_torque_ctrl.py
Yucheng-Tang/SimulationFrameworkPublic
3a65cbc0f18ac4b04f8aef7e6e2f9ad9790179c6
[ "MIT" ]
3
2020-11-16T09:01:56.000Z
2021-12-21T09:24:45.000Z
gym_framework/panda_ctrl/panda_mujoco_torque_ctrl.py
Yucheng-Tang/SimulationFrameworkPublic
3a65cbc0f18ac4b04f8aef7e6e2f9ad9790179c6
[ "MIT" ]
null
null
null
gym_framework/panda_ctrl/panda_mujoco_torque_ctrl.py
Yucheng-Tang/SimulationFrameworkPublic
3a65cbc0f18ac4b04f8aef7e6e2f9ad9790179c6
[ "MIT" ]
8
2020-11-24T15:59:01.000Z
2022-02-18T15:15:26.000Z
import gym import numpy as np from gym_framework.panda_ctrl.panda_mujoco_base_ctrl import PandaBase class PandaTorqueControl(PandaBase): """ Control the Panda robot by directly applying torques (control=torque). """ @property @property @property @property
36.545455
111
0.603412
import gym import numpy as np from gym_framework.panda_ctrl.panda_mujoco_base_ctrl import PandaBase class PandaTorqueControl(PandaBase): """ Control the Panda robot by directly applying torques (control=torque). """ def __init__(self, render=True): super().__init__(render=render) self._action_dimension = 8 # 7 x actuator torque; 1 gripper width def apply_action(self, action): assert len(action) == self.action_dimension, ("Error, wrong action dimension. Expected: " + str(self.action_dimension) + ". Got:" + str(len(action))) action = self.bound_action(action).copy() gripper_ctrl = action[7] joint_action = action[:7] * self.sim.model.opt.timestep # Set the joint command for the simulation self.sim.data.ctrl[:] = np.concatenate(([gripper_ctrl, gripper_ctrl], joint_action)) # Apply gravity compensation self.sim.data.qfrc_applied[self.joint_indices] = self.sim.data.qfrc_bias[self.joint_indices] # Forward the simulation self.sim.step() # Render the scene if self.render and self.viewer is not None: self.viewer.render() @property def ctrl_name(self): return 'torque' @property def action_dimension(self): return self._action_dimension @property def action_space(self): # upper and lower bounds on the actions low = [-87, -87, -87, -87, -12, -12, -12, -50] high = [87, 87, 87, 87, 12, 12, 12, 50] action_space = gym.spaces.Box(low=np.array(low), high=np.array(high)) return action_space @property def state(self): current_joint_position = [self.sim.data.get_joint_qpos(j_name) for j_name in self.joint_names] current_joint_velocity = [self.sim.data.get_joint_qvel(j_name) for j_name in self.joint_names] current_finger_position = [self.sim.data.get_joint_qpos(j_name) for j_name in self.gripper_names] current_finger_velocity = [self.sim.data.get_joint_qvel(j_name) for j_name in self.gripper_names] tcp_pos = self.sim.data.get_body_xpos('tcp').copy() tcp_quat = self.sim.data.get_body_xquat('tcp').copy() tcp_velp = self.sim.data.get_body_xvelp('tcp').copy() tcp_velr = self.sim.data.get_body_xvelr('tcp').copy() return np.concatenate([current_joint_position, current_joint_velocity, current_finger_position, current_finger_velocity, tcp_pos, tcp_quat, tcp_velp, tcp_velr])
2,365
0
158
041bab6ee68b38136895b05d676af598dec6d4bb
10,708
py
Python
main.py
Aus-miner/Miner-Model
f7abc9f74cec00f82a2df6e359363670a64ad72f
[ "MIT" ]
18
2021-04-18T03:51:22.000Z
2022-03-16T13:14:36.000Z
main.py
Aus-miner/Miner-Model
f7abc9f74cec00f82a2df6e359363670a64ad72f
[ "MIT" ]
1
2021-05-04T14:27:02.000Z
2021-05-04T14:27:02.000Z
main.py
Aus-miner/Miner-Model
f7abc9f74cec00f82a2df6e359363670a64ad72f
[ "MIT" ]
8
2021-05-03T19:24:19.000Z
2022-02-20T22:20:18.000Z
import plotly.express as px import plotly.io as pio import plotly.graph_objects as go from plotly.subplots import make_subplots import pandas as pd import numpy as np from agents import * from generators import * from CMDataLoader import CMDataLoader from Simulator import Simulator from plotutils import update_layout_wrapper import config import constants import random # my_palette = ["#264653","#9D1DC8","#287271", "#645DAC","#636EFA", "#ECA400","#FE484E","#8484E8", "#03b800" ,"#9251e1","#F4A261"] # my_palette = ["#54478c","#9D1DC8","#2c699a","#048ba8","#0db39e","#16db93","#83e377","#b9e769","#efea5a","#f1c453","#f29e4c"] my_palette = ["#1f00a7","#9d1dc8","#00589f","#009b86","#00a367","#67a300","#645dac","#eca400","#fd7e00","#b6322b", "#FE484E"] hardware_palette = ["#009b86", "#9D1DC8"] opex_palette = ["#9D1DC8","#264653","#8484E8"] primary_color = ["#9d1dc8"] if __name__ == '__main__': random.seed(1032009) np.random.seed(1032009) n_trials = 25 fee_params = CMDataLoader.get_historical_fee_params() block_subsidy = 6.25 historical_price_params = CMDataLoader.get_historical_price_params() get_summary_plots(historical_price_params, fee_params, block_subsidy, n_trials, "with Historical Parameters", "historical") bearish_price_params = (historical_price_params[0], -1 * abs(historical_price_params[1]), historical_price_params[2]) get_summary_plots(bearish_price_params, fee_params, block_subsidy, n_trials, "with Bearish Parameters", "bearish") corrections_price_params = (historical_price_params[0], 0, historical_price_params[2] * 1.25) get_summary_plots(corrections_price_params, fee_params, block_subsidy, n_trials, "in Bull Market with Corrections", "corrections") s9_s19_prices = {key: config.machine_prices[key] for key in [constants.MachineName.ANTMINER_S9, constants.MachineName.ANTMINER_S19]} get_summary_plots(historical_price_params, fee_params, block_subsidy, n_trials, "with Historical Parameters", "historical-machines", s9_s19_prices, [0.03], hardware_palette) get_summary_plots_opex(bearish_price_params, fee_params, block_subsidy, n_trials, "with Bearish Parameters", "bearish-opex", s9_s19_prices, [0.03, 0.04, 0.05], opex_palette)
67.345912
201
0.653063
import plotly.express as px import plotly.io as pio import plotly.graph_objects as go from plotly.subplots import make_subplots import pandas as pd import numpy as np from agents import * from generators import * from CMDataLoader import CMDataLoader from Simulator import Simulator from plotutils import update_layout_wrapper import config import constants import random # my_palette = ["#264653","#9D1DC8","#287271", "#645DAC","#636EFA", "#ECA400","#FE484E","#8484E8", "#03b800" ,"#9251e1","#F4A261"] # my_palette = ["#54478c","#9D1DC8","#2c699a","#048ba8","#0db39e","#16db93","#83e377","#b9e769","#efea5a","#f1c453","#f29e4c"] my_palette = ["#1f00a7","#9d1dc8","#00589f","#009b86","#00a367","#67a300","#645dac","#eca400","#fd7e00","#b6322b", "#FE484E"] hardware_palette = ["#009b86", "#9D1DC8"] opex_palette = ["#9D1DC8","#264653","#8484E8"] primary_color = ["#9d1dc8"] def save_csvs(prices, global_hash_rate, n_trials, user_positions, file_suffix): pd.DataFrame({'price': prices, 'hashrate': global_hash_rate, 'trials': n_trials}).to_csv(f"plots/{file_suffix}/env_values_{file_suffix}.csv", index = False) user_positions.to_csv(f"plots/{file_suffix}/user_values_{file_suffix}.csv", index = False) def get_environment_plots(prices, global_hash_rate, n_trials, title_suffix): price_fig = update_layout_wrapper(px.line(x = list(range(len(prices))), y = prices, labels = {"y": "Price (USD)", "x": "Day"}, title = f"Simulated Bitcoin Price over {n_trials} Trials {title_suffix}", color_discrete_sequence = primary_color, width=1600, height=900)) hashrate_fig = update_layout_wrapper(px.line(x = list(range(len(global_hash_rate))), y = global_hash_rate, labels = {"y": "Hash Rate (EH/s)", "x": "Day"}, title = f"Simulated Bitcoin Network Hash Rate over {n_trials} Trials {title_suffix}", color_discrete_sequence = primary_color, width=1600, height=900)) return (price_fig, hashrate_fig) def get_user_plots(user_positions, n_trials, title_suffix, elec_cost, palette): user_positions_e_c = user_positions.loc[user_positions.elec_cost == elec_cost] long_btc_fig = update_layout_wrapper(px.line(user_positions_e_c.loc[user_positions_e_c.strategy == constants.Strategy.LONG_BTC.value].sort_values(by=['day']), x = "day", y = "total_position_usd", color = "machine_type", labels = {"total_position_usd": "Simulated Position (USD)", "day": "Day", "machine_type": "Machine Type "}, title = f"Simulated Position Value over {n_trials} Trials {title_suffix}, Long BTC, ${elec_cost} per kWh", color_discrete_sequence = palette, width=1600, height=900)) sell_daily_fig = update_layout_wrapper(px.line(user_positions_e_c.loc[user_positions_e_c.strategy == constants.Strategy.SELL_DAILY.value].sort_values(by=['day']), x = "day", y = "total_position_usd", color = "machine_type", labels = {"total_position_usd": "Simulated Position (USD)", "day": "Day", "machine_type": "Machine Type "}, title = f"Simulated Position Value over {n_trials} Trials {title_suffix}, Selling Daily, ${elec_cost} per kWh", color_discrete_sequence = palette, width=1600, height=900)) return (long_btc_fig, sell_daily_fig) def get_summary_plots(price_params, fee_params, block_subsidy, n_trials, title_suffix, file_suffix, user_machine_prices = config.machine_prices, elec_costs = [0.04, 0.07], palette = my_palette): init_prices = PriceGenerator(price_params).generate_prices() user_miners_long_btc, user_miners_sell_daily = UserMinerGenerator().generate_user_miners(machine_prices = user_machine_prices, elec_costs = elec_costs) env_miners = MinerGenerator().generate_miner_distribution() sim = Simulator(env_miners = env_miners, user_miners_long_btc = user_miners_long_btc, user_miners_sell_daily = user_miners_sell_daily, prices = init_prices, price_params = price_params, fee_params = fee_params, block_subsidy = block_subsidy) sim.run_simulation_n_trials(n_trials) user_positions = sim.get_avg_user_positions() prices = sim.get_avg_prices() global_hash_rate = sim.get_avg_global_hash_rate() price_fig, hashrate_fig = get_environment_plots(prices, global_hash_rate, n_trials, title_suffix) price_fig.write_image(f"plots/{file_suffix}/price_plot_{file_suffix}.png", scale=8) hashrate_fig.write_image(f"plots/{file_suffix}/hashrate_plot_{file_suffix}.png", scale=8) for elec_cost in user_positions.elec_cost.unique(): user_figs = get_user_plots(user_positions, n_trials, title_suffix, elec_cost, palette) user_figs[0].write_image(f"plots/{file_suffix}/long_btc_plot_{file_suffix}_{int(elec_cost * 100)}.png", scale=8) user_figs[1].write_image(f"plots/{file_suffix}/sell_daily_plot_{file_suffix}_{int(elec_cost * 100)}.png", scale=8) save_csvs(prices, global_hash_rate, n_trials, user_positions, file_suffix) def get_user_opex_plots(user_positions, n_trials, title_suffix, machine_type, palette): user_positions_m_t = user_positions.loc[user_positions.machine_type == machine_type.value] long_btc_fig = update_layout_wrapper(px.line(user_positions_m_t.loc[user_positions_m_t.strategy == constants.Strategy.LONG_BTC.value].sort_values(by=['day']), x = "day", y = "total_position_usd", color = "elec_cost", labels = {"total_position_usd": "Simulated Position (USD)", "day": "Day", "elec_cost": "Electricity Cost (USD/kWh) "}, title = f"Simulated Position Value over {n_trials} Trials using {machine_type.value} {title_suffix}, Long BTC", color_discrete_sequence = palette, width=1600, height=900)) sell_daily_fig = update_layout_wrapper(px.line(user_positions_m_t.loc[user_positions_m_t.strategy == constants.Strategy.SELL_DAILY.value].sort_values(by=['day']), x = "day", y = "total_position_usd", color = "elec_cost", labels = {"total_position_usd": "Simulated Position (USD)", "day": "Day", "elec_cost": "Electricity Cost (USD/kWh) "}, title = f"Simulated Position Value over {n_trials} Trials using {machine_type.value} {title_suffix}, Selling Daily", color_discrete_sequence = palette, width=1600, height=900)) return (long_btc_fig, sell_daily_fig) def get_summary_plots_opex(price_params, fee_params, block_subsidy, n_trials, title_suffix, file_suffix, user_machine_prices = config.machine_prices, elec_costs = [0.04, 0.07], palette = opex_palette): init_prices = PriceGenerator(price_params).generate_prices() user_miners_long_btc, user_miners_sell_daily = UserMinerGenerator().generate_user_miners(machine_prices = user_machine_prices, elec_costs = elec_costs) env_miners = MinerGenerator().generate_miner_distribution() sim = Simulator(env_miners = env_miners, user_miners_long_btc = user_miners_long_btc, user_miners_sell_daily = user_miners_sell_daily, prices = init_prices, price_params = price_params, fee_params = fee_params, block_subsidy = block_subsidy) sim.run_simulation_n_trials(n_trials) user_positions = sim.get_avg_user_positions() prices = sim.get_avg_prices() global_hash_rate = sim.get_avg_global_hash_rate() price_fig, hashrate_fig = get_environment_plots(prices, global_hash_rate, n_trials, title_suffix) price_fig.write_image(f"plots/{file_suffix}/price_plot_{file_suffix}.png", scale=8) hashrate_fig.write_image(f"plots/{file_suffix}/hashrate_plot_{file_suffix}.png", scale=8) for machine_type in user_machine_prices: user_figs = get_user_opex_plots(user_positions, n_trials, title_suffix, machine_type, palette) user_figs[0].write_image(f"plots/{file_suffix}/long_btc_plot_{file_suffix}_{machine_type.value}.png", scale=8) user_figs[1].write_image(f"plots/{file_suffix}/sell_daily_plot_{file_suffix}_{machine_type.value}.png", scale=8) save_csvs(prices, global_hash_rate, n_trials, user_positions, file_suffix) if __name__ == '__main__': random.seed(1032009) np.random.seed(1032009) n_trials = 25 fee_params = CMDataLoader.get_historical_fee_params() block_subsidy = 6.25 historical_price_params = CMDataLoader.get_historical_price_params() get_summary_plots(historical_price_params, fee_params, block_subsidy, n_trials, "with Historical Parameters", "historical") bearish_price_params = (historical_price_params[0], -1 * abs(historical_price_params[1]), historical_price_params[2]) get_summary_plots(bearish_price_params, fee_params, block_subsidy, n_trials, "with Bearish Parameters", "bearish") corrections_price_params = (historical_price_params[0], 0, historical_price_params[2] * 1.25) get_summary_plots(corrections_price_params, fee_params, block_subsidy, n_trials, "in Bull Market with Corrections", "corrections") s9_s19_prices = {key: config.machine_prices[key] for key in [constants.MachineName.ANTMINER_S9, constants.MachineName.ANTMINER_S19]} get_summary_plots(historical_price_params, fee_params, block_subsidy, n_trials, "with Historical Parameters", "historical-machines", s9_s19_prices, [0.03], hardware_palette) get_summary_plots_opex(bearish_price_params, fee_params, block_subsidy, n_trials, "with Bearish Parameters", "bearish-opex", s9_s19_prices, [0.03, 0.04, 0.05], opex_palette)
8,331
0
138
2bd8edda0f4c727b34799dc6c9399a18d23a45a7
903
py
Python
src/testplates/impl/base/any_type.py
kprzybyla/testplates
156a373d9a0818c6074ec8d622d6ef1f867eafd3
[ "MIT" ]
null
null
null
src/testplates/impl/base/any_type.py
kprzybyla/testplates
156a373d9a0818c6074ec8d622d6ef1f867eafd3
[ "MIT" ]
null
null
null
src/testplates/impl/base/any_type.py
kprzybyla/testplates
156a373d9a0818c6074ec8d622d6ef1f867eafd3
[ "MIT" ]
null
null
null
__all__ = ( "extract_value", "extract_errors", ) from typing import ( cast, Any, Type, Union, List, ) from testplates.impl.value import ( MISSING, ) from testplates.impl.exceptions import ( TestplatesError, ) from .attrs import ( TESTPLATES_ERRORS_ATTR, TESTPLATES_VALUE_ATTR, ) def extract_value( instance: Any, ) -> Any: """ Extracts value. For internal use only. """ value = getattr(instance, TESTPLATES_VALUE_ATTR, MISSING) return value def extract_errors( cls_or_instance: Union[Type[Any], Any], ) -> List[TestplatesError]: """ Extracts errors. For internal use only. """ errors = getattr(cls_or_instance, TESTPLATES_ERRORS_ATTR, MISSING) if errors is MISSING: setattr(cls_or_instance, TESTPLATES_ERRORS_ATTR, errors := list()) return cast(List[TestplatesError], errors)
15.842105
74
0.657807
__all__ = ( "extract_value", "extract_errors", ) from typing import ( cast, Any, Type, Union, List, ) from testplates.impl.value import ( MISSING, ) from testplates.impl.exceptions import ( TestplatesError, ) from .attrs import ( TESTPLATES_ERRORS_ATTR, TESTPLATES_VALUE_ATTR, ) def extract_value( instance: Any, ) -> Any: """ Extracts value. For internal use only. """ value = getattr(instance, TESTPLATES_VALUE_ATTR, MISSING) return value def extract_errors( cls_or_instance: Union[Type[Any], Any], ) -> List[TestplatesError]: """ Extracts errors. For internal use only. """ errors = getattr(cls_or_instance, TESTPLATES_ERRORS_ATTR, MISSING) if errors is MISSING: setattr(cls_or_instance, TESTPLATES_ERRORS_ATTR, errors := list()) return cast(List[TestplatesError], errors)
0
0
0
2d31ec77e7510699d2cc7549a1833146864202d2
7,699
py
Python
savu/plugins/alignment/projection_shift.py
elainehoml/Savu
e4772704606f71d6803d832084e10faa585e7358
[ "Apache-2.0" ]
39
2015-03-30T14:03:42.000Z
2022-03-16T16:50:33.000Z
savu/plugins/alignment/projection_shift.py
elainehoml/Savu
e4772704606f71d6803d832084e10faa585e7358
[ "Apache-2.0" ]
670
2015-02-11T11:08:09.000Z
2022-03-21T09:27:57.000Z
savu/plugins/alignment/projection_shift.py
elainehoml/Savu
e4772704606f71d6803d832084e10faa585e7358
[ "Apache-2.0" ]
54
2015-02-13T14:09:52.000Z
2022-01-24T13:57:09.000Z
# Copyright 2014 Diamond Light Source Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. module:: projection_shift :platform: Unix :synopsis: Calculate horizontal and vertical shifts in the projection\ images over time, using template matching. .. moduleauthor:: Nicola Wadeson <scientificsoftware@diamond.ac.uk> """ import logging import numpy as np from skimage.feature import match_template, match_descriptors, ORB from scipy.linalg import lstsq from skimage.transform import AffineTransform from skimage.measure import ransac from savu.plugins.utils import register_plugin from savu.plugins.filters.base_filter import BaseFilter from savu.plugins.driver.cpu_plugin import CpuPlugin @register_plugin class ProjectionShift(BaseFilter, CpuPlugin): """ """
38.113861
81
0.630471
# Copyright 2014 Diamond Light Source Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. module:: projection_shift :platform: Unix :synopsis: Calculate horizontal and vertical shifts in the projection\ images over time, using template matching. .. moduleauthor:: Nicola Wadeson <scientificsoftware@diamond.ac.uk> """ import logging import numpy as np from skimage.feature import match_template, match_descriptors, ORB from scipy.linalg import lstsq from skimage.transform import AffineTransform from skimage.measure import ransac from savu.plugins.utils import register_plugin from savu.plugins.filters.base_filter import BaseFilter from savu.plugins.driver.cpu_plugin import CpuPlugin @register_plugin class ProjectionShift(BaseFilter, CpuPlugin): """ """ def __init__(self): logging.debug("initialising Sinogram Alignment") super(ProjectionShift, self).__init__("ProjectionShift") self.template = None self.threshold = 0 def pre_process(self): if self.parameters['method'] == 'template_matching': self.template_params = [] for p in self.parameters['template']: start, end = p.split(':') self.template_params.append(slice(int(start), int(end))) self._calculate_shift = self._template_matching_shift elif self.parameters['method'] == 'orb_ransac': self._calculate_shift = self._orb_ransac_shift if self.parameters['threshold']: self.threshold = self.parameters['threshold'] self.sl = [slice(None)]*3 self.sl2 = [slice(None)]*3 self.slice_dir = self.get_plugin_in_datasets()[0].get_slice_dimension() self.A = self._calculate_frame_matrix() def _calculate_frame_matrix(self): n_unknowns = self.get_max_frames() + 2 # 2 padded frames frame_list = self._calculate_frame_list(np.arange(n_unknowns)) n_equations = len(frame_list) A = np.zeros((n_equations, n_unknowns)) for i in range(len(frame_list)): for f in frame_list[i][1:]: A[i, f] = 1 return A def process_frames(self, data): data, nFrames, output, shift_array = self._initial_setup(data) return self._sub_pixel_shift_adjustment(data) def _initial_setup(self, data): data = data[0] shape = list(data.shape) nFrames = data.shape[self.slice_dir]-2 shape[self.slice_dir] += -2 output = np.zeros(tuple(shape)) shift_array = np.zeros((nFrames, 2)) return data, nFrames, output, shift_array def _get_shift(self, data, frame1, frame2): self.sl[self.slice_dir] = frame1 self.sl2[self.slice_dir] = frame2 d1 = data[self.sl] d2 = data[self.sl2] if self.template: self.template = data[self.sl][self.template_params] if self.threshold: d1[d1 > self.threshold[0]] = self.threshold[1] d2[d2 > self.threshold[0]] = self.threshold[1] if self.template: self.template[self.template > self.threshold[0]] = \ self.threshold[1] return self._calculate_shift(d1, d2, self.template) def _orb_ransac_shift(self, im1, im2, template): descriptor_extractor = ORB() #n_keypoints=self.parameters['n_keypoints']) key1, des1 = self._find_key_points(descriptor_extractor, im1) key2, des2 = self._find_key_points(descriptor_extractor, im2) matches = match_descriptors(des1, des2, cross_check=True) # estimate affine transform model using all coordinates src = key1[matches[:, 0]] dst = key2[matches[:, 1]] # robustly estimate affine transform model with RANSAC model_robust, inliers = ransac((src, dst), AffineTransform, min_samples=3, residual_threshold=1, max_trials=100) # diff = [] # for p1, p2 in zip(src[inliers], dst[inliers]): # diff.append(p2-p1) # return np.mean(diff, axis=0) return model_robust.translation def _find_key_points(self, desc_extractor, image): desc_extractor.detect_and_extract(image) keypoints = desc_extractor.keypoints descriptors = desc_extractor.descriptors return keypoints, descriptors def _template_matching_shift(self, im1, im2, template): index = [] for im in [im1, im2]: match = match_template(im, template) index.append(np.unravel_index(np.argmax(match), match.shape)) index = np.array(index) shift = index[1] - index[0] return shift def _sub_pixel_shift_adjustment(self, data): frame_list = \ self._calculate_frame_list(np.arange(data.shape[self.slice_dir])) new_shift = [] for f in frame_list: new_shift.append( self._get_shift(data, f[0], f[-1]).astype(np.float64)) return self._calculate_new_shift_array(np.array(new_shift)) def _calculate_frame_list(self, frames): sixes = list(zip(*(frames[i:] for i in range(6)))) fives = list(zip(*(frames[i:] for i in range(5)))) fours = list(zip(*(frames[i:] for i in range(4)))) threes = list(zip(*(frames[i:] for i in range(3)))) return sixes + fives + fours + threes def _calculate_new_shift_array(self, shift): new_shift = [] for i in range(2): new_shift.append(lstsq(self.A, shift[:, i])[0]) return np.transpose(np.array(new_shift))[1:-1] def post_process(self): out_data = self.get_out_datasets()[0] self.get_in_datasets()[0].meta_data.set( 'proj_align_shift_local', out_data.data[:, :]) self.get_in_datasets()[0].meta_data.set( 'proj_align_shift', np.cumsum(out_data.data[:, :], axis=0)) def get_max_frames(self): # Do not change this number as 8 is currently a requirement. return 8 def nOutput_datasets(self): return 1 def setup(self): # set up the output dataset that is created by the plugin in_dataset, out_dataset = self.get_datasets() in_pData, out_pData = self.get_plugin_datasets() in_pData[0].plugin_data_setup('PROJECTION', self.get_max_frames(), fixed=True) new_shape = (in_dataset[0].get_shape()[ in_dataset[0].get_slice_directions()[0]], 2) out_dataset[0].create_dataset(shape=new_shape, axis_labels=['x.pixels', 'y.pixels'], remove=True) out_dataset[0].add_pattern("METADATA", core_dims=(1,), slice_dims=(0,)) out_pData[0].plugin_data_setup('METADATA', self.get_max_frames(), fixed=True) def set_filter_padding(self, in_data, out_data): pad_dim = in_data[0].get_slice_directions()[0] in_data[0].padding = {'pad_directions': [str(pad_dim) + '.1']} #in_data[0].padding = {'pad_directions': [str(pad_dim) + '.before.1']}
5,948
0
459
6599a738ef385fda4ba36a0d5ccca971daa06188
458
py
Python
python_torch_test/test_index.py
wenhaopeter/read_pytorch_code
491f989cd918cf08874dd4f671fb7f0142a0bc4f
[ "Intel", "X11" ]
null
null
null
python_torch_test/test_index.py
wenhaopeter/read_pytorch_code
491f989cd918cf08874dd4f671fb7f0142a0bc4f
[ "Intel", "X11" ]
null
null
null
python_torch_test/test_index.py
wenhaopeter/read_pytorch_code
491f989cd918cf08874dd4f671fb7f0142a0bc4f
[ "Intel", "X11" ]
null
null
null
import torch # cand_ids = torch.randint(0,10000,(10,)) # print(cand_ids.dtype) # print(cand_ids.shape) scores = torch.Tensor([[ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8],[ 9, 10, 11]]) a=scores[0:2] # print(a) # print(scores.dtype) # print(scores.shape) # scores[[1,2,3]] # with torch.autograd.profiler.profile(record_shapes=True) as prof: # print(scores[[1,2],[0,2]]) # print(prof.key_averages(group_by_input_shape=True).table(sort_by="self_cpu_time_total"))
26.941176
90
0.672489
import torch # cand_ids = torch.randint(0,10000,(10,)) # print(cand_ids.dtype) # print(cand_ids.shape) scores = torch.Tensor([[ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8],[ 9, 10, 11]]) a=scores[0:2] # print(a) # print(scores.dtype) # print(scores.shape) # scores[[1,2,3]] # with torch.autograd.profiler.profile(record_shapes=True) as prof: # print(scores[[1,2],[0,2]]) # print(prof.key_averages(group_by_input_shape=True).table(sort_by="self_cpu_time_total"))
0
0
0
ff0aa4a18334faa1025b3b565c1234e541538556
4,378
py
Python
tests/test_workstation.py
soundstripe/jamberry
e5f7400ca274ceb357ef7098a32068f1b21db324
[ "MIT" ]
null
null
null
tests/test_workstation.py
soundstripe/jamberry
e5f7400ca274ceb357ef7098a32068f1b21db324
[ "MIT" ]
null
null
null
tests/test_workstation.py
soundstripe/jamberry
e5f7400ca274ceb357ef7098a32068f1b21db324
[ "MIT" ]
null
null
null
import csv from decimal import Decimal from itertools import islice from datetime import datetime, timedelta import pytest from bs4 import BeautifulSoup from src.jamberry.workstation import extract_shipping_address, extract_line_items, parse_order_row_soup, \ JamberryWorkstation # uncomment these lines to see requests # import logging # logging.basicConfig(level=logging.DEBUG) @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.usefixtures('order_detail_html') @pytest.mark.usefixtures('order_detail_html') @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.usefixtures('order_row_html') @pytest.mark.online @pytest.mark.usefixtures('ws') @pytest.mark.online @pytest.mark.usefixtures('ws')
29.38255
106
0.731841
import csv from decimal import Decimal from itertools import islice from datetime import datetime, timedelta import pytest from bs4 import BeautifulSoup from src.jamberry.workstation import extract_shipping_address, extract_line_items, parse_order_row_soup, \ JamberryWorkstation # uncomment these lines to see requests # import logging # logging.basicConfig(level=logging.DEBUG) @pytest.mark.online @pytest.mark.usefixtures('ws') def test_fetch_tar(ws): # test fetching current TAR tar = ws.fetch_team_activity_csv() assert ws.logged_in tar_str = str(tar, encoding='utf8') i = tar_str.find('\n', 0, 1024) # next line will raise an exception if there is a problem tar_csv_dialect = csv.Sniffer().sniff(tar_str[:i]) assert tar_csv_dialect is not None # test fetching last months TAR t = datetime.now() - timedelta(weeks=35) last_month_tar = ws.fetch_team_activity_csv(year=t.year, month=t.month) last_month_tar_str = str(last_month_tar, encoding='utf8') i = last_month_tar_str.find('\n', 0, 1024) tar_csv_dialect = csv.Sniffer().sniff(last_month_tar_str[:i]) assert tar_csv_dialect is not None # if they match, something is wrong with the date selector assert tar_str != last_month_tar_str @pytest.mark.online @pytest.mark.usefixtures('ws') def test_login_logout(ws): ws.login() assert ws.logged_in ws.logout() assert not ws.logged_in @pytest.mark.online @pytest.mark.usefixtures('ws') def test_fetch_orders(ws): orders = ws.fetch_orders() assert ws.logged_in assert orders is not None @pytest.mark.online @pytest.mark.usefixtures('ws') def test_fetch_archive_orders(ws): orders = ws.fetch_archive_orders() assert ws.logged_in assert orders is not None @pytest.mark.online @pytest.mark.usefixtures('ws') def test_create_and_delete_tmp_search_cart_retail(ws): ws.create_tmp_search_cart_retail() assert ws._cart_url is not None assert 'cart/display' in ws._cart_url ws.delete_tmp_search_cart_retail() resp = ws.br.get('https://workstation.jamberry.com/us/en/wscart') assert b'tmpSearchRetail' not in resp.content assert ws._cart_url is None @pytest.mark.online @pytest.mark.usefixtures('ws') def test_orders(ws): order_generator = ws.orders() first_50_orders = islice(order_generator, 0, 50) orders = list(first_50_orders) assert orders is not None @pytest.mark.usefixtures('order_detail_html') def test_extract_shipping_address(order_detail_html): soup = BeautifulSoup(order_detail_html) address = extract_shipping_address(soup) lines = address.split('\n') assert lines[0] == '123 Somewhere St' assert lines[1] == 'Somewhere, CA 12345-6789' @pytest.mark.usefixtures('order_detail_html') def test_extract_line_items(order_detail_html): soup = BeautifulSoup(order_detail_html) line_items = extract_line_items(soup) assert line_items[0].name == 'Cotton Candy Kisses' assert line_items[0].quantity == 1 assert line_items[3].total == Decimal('19.20') @pytest.mark.online @pytest.mark.usefixtures('ws') def test_downline_consultants(ws): for consultant, activity in ws.downline_consultants(): assert consultant.id is not None assert activity.timestamp is not None @pytest.mark.usefixtures('order_row_html') def test_parse_order_row(order_row_html): soup = BeautifulSoup(order_row_html).tr order = parse_order_row_soup(soup) assert order.id == '12345678' assert order.customer_name == 'Foo Bar' assert order.shipping_name == 'Foo Bar' assert order.order_date == datetime(2017, 10, 1, 6, 0) assert order.status == 'Shipped' assert order.order_type == 'Party' assert order.order_details_url == 'OrderDetails.aspx?id=12345678' assert order.customer_id == '1234567' assert order.hostess == 'Foo Manchu' assert order.party == 'What a Party!' assert order.ship_date == datetime(2017, 10, 1) @pytest.mark.online @pytest.mark.usefixtures('ws') def test_customers(ws): for customer in ws.customers(): assert customer.name is not None def test_ws_no_config_file(): with pytest.raises(IOError): ws = JamberryWorkstation() @pytest.mark.online @pytest.mark.usefixtures('ws') def test_catalog_products(ws): for p in ws.catalog_products(): assert p.sku is not None
3,083
0
287
425fb837364f81528c19644a726599516ada187d
336
py
Python
address/migrations/0004_merge_20200328_0849.py
pedrovgp/cpm-django-address
f7c780aadb9a51df14677bd4681da073b68358cb
[ "BSD-3-Clause" ]
null
null
null
address/migrations/0004_merge_20200328_0849.py
pedrovgp/cpm-django-address
f7c780aadb9a51df14677bd4681da073b68358cb
[ "BSD-3-Clause" ]
null
null
null
address/migrations/0004_merge_20200328_0849.py
pedrovgp/cpm-django-address
f7c780aadb9a51df14677bd4681da073b68358cb
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2020-03-28 11:49 from __future__ import unicode_literals from django.db import migrations
19.764706
47
0.66369
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2020-03-28 11:49 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('address', '0003_auto_20170718_1615'), ('address', '0002_auto_20160213_1726'), ] operations = [ ]
0
167
23
1577d38738d1df21a60bdf096aa6ca9a02c9b4ef
2,391
py
Python
coref/clustering_utils.py
AndreFCruz/coref-web-platform
845fd5461aad19a0f221077dbfbfd1d01766f0d6
[ "MIT" ]
9
2018-09-18T14:34:57.000Z
2022-01-28T12:34:50.000Z
coref/clustering_utils.py
AndreFCruz/coref-web-platform
845fd5461aad19a0f221077dbfbfd1d01766f0d6
[ "MIT" ]
null
null
null
coref/clustering_utils.py
AndreFCruz/coref-web-platform
845fd5461aad19a0f221077dbfbfd1d01766f0d6
[ "MIT" ]
null
null
null
""" clustering_utils.py: utilitary functions for the clustering.py module. """ import numpy as np from enum import IntEnum from .utils import find_in_sequence class Link(IntEnum): """ Represents state of coreferring links. Must be negative integers to not interfere with the clustering process. """ NO_ANTECEDENT = -1 PROCESSED = -2 def cluster_labels_to_entity_clusters(cluster_labels): """ @cluster_labels is the second return from the affinity_matrix computation, and cluster_labels[mention_idx] = mention's cluster """ clusters = dict() for idx, label in enumerate(cluster_labels): if label not in clusters: clusters[label] = list() clusters[label].append(idx) return [clusters[key] for key in clusters.keys()] def coreference_links_to_entity_clusters(links): """ Transforms the given array of coreference links into a set of entities (mention clusters). Each entity/cluster is represented by the mentions' indices. """ clusters = [] for i in range(len(links) - 1, -1, -1): new_cluster = set() j = i while True: antecedent = links[j] links[j] = Link.PROCESSED new_cluster.add(j) # end of coreference link if antecedent == Link.NO_ANTECEDENT: clusters.append(new_cluster) break # linking to previously processed cluster elif antecedent == Link.PROCESSED: previous_cluster_idx = find_in_sequence(lambda s: j in s, clusters) clusters[previous_cluster_idx].update(new_cluster) break j = antecedent return clusters def generate_affinity_matrix(document, mention_pair_predictions): """ Generates an affinity/similarity matrix from the given mention-pair scores. @returns affinity_matrix[m1_idx, m2_idx] = affinity_score """ num_mentions = len(document.mentions) affinity_matrix = np.ndarray(shape=(num_mentions, num_mentions), dtype=np.float32) affinity_matrix.fill(0) for idx in range(len(mention_pair_predictions)): i1, i2 = document.pairwise_combinations[idx] affinity_matrix[i1,i2] = mention_pair_predictions[idx] affinity_matrix[i2,i1] = mention_pair_predictions[idx] return affinity_matrix
30.653846
94
0.662066
""" clustering_utils.py: utilitary functions for the clustering.py module. """ import numpy as np from enum import IntEnum from .utils import find_in_sequence class Link(IntEnum): """ Represents state of coreferring links. Must be negative integers to not interfere with the clustering process. """ NO_ANTECEDENT = -1 PROCESSED = -2 def cluster_labels_to_entity_clusters(cluster_labels): """ @cluster_labels is the second return from the affinity_matrix computation, and cluster_labels[mention_idx] = mention's cluster """ clusters = dict() for idx, label in enumerate(cluster_labels): if label not in clusters: clusters[label] = list() clusters[label].append(idx) return [clusters[key] for key in clusters.keys()] def coreference_links_to_entity_clusters(links): """ Transforms the given array of coreference links into a set of entities (mention clusters). Each entity/cluster is represented by the mentions' indices. """ clusters = [] for i in range(len(links) - 1, -1, -1): new_cluster = set() j = i while True: antecedent = links[j] links[j] = Link.PROCESSED new_cluster.add(j) # end of coreference link if antecedent == Link.NO_ANTECEDENT: clusters.append(new_cluster) break # linking to previously processed cluster elif antecedent == Link.PROCESSED: previous_cluster_idx = find_in_sequence(lambda s: j in s, clusters) clusters[previous_cluster_idx].update(new_cluster) break j = antecedent return clusters def generate_affinity_matrix(document, mention_pair_predictions): """ Generates an affinity/similarity matrix from the given mention-pair scores. @returns affinity_matrix[m1_idx, m2_idx] = affinity_score """ num_mentions = len(document.mentions) affinity_matrix = np.ndarray(shape=(num_mentions, num_mentions), dtype=np.float32) affinity_matrix.fill(0) for idx in range(len(mention_pair_predictions)): i1, i2 = document.pairwise_combinations[idx] affinity_matrix[i1,i2] = mention_pair_predictions[idx] affinity_matrix[i2,i1] = mention_pair_predictions[idx] return affinity_matrix
0
0
0