text
stringlengths
6
947k
repo_name
stringlengths
5
100
path
stringlengths
4
231
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
6
947k
score
float64
0
0.34
from nose.tools import * from unittest import TestCase import os from shutil import rmtree from tempfile import mkdtemp from fnmatch import fnmatch from files.file_matcher_glob import FileMatcherGlob class FileMatcherGlobTests(TestCase): def setUp(self): self.directory = mkdtemp('-caboose-file-matcher-glob-tests') def tearDown(self): rmtree(self.directory) def test_file_matcher_matches_against_glob(self): self.file_matcher = FileMatcherGlob("*.java") eq_(True, self.file_matcher.match("hello.java")) eq_(False, self.file_matcher.match("hello.java2")) def test_file_matcher_matches_against_unicode_glob(self): self.file_matcher = FileMatcherGlob(u"*.java") eq_(True, self.file_matcher.match("hello.java")) eq_(False, self.file_matcher.match("hello.java2")) def test_glob_matcher_handles_list_of_globs(self): self.file_matcher = FileMatcherGlob(["*.one", "*.two"]) eq_(True, self.file_matcher.match("hello.one")) eq_(True, self.file_matcher.match("hello.two")) eq_(False, self.file_matcher.match("hello.three"))
markdrago/caboose
src/test/files/file_matcher_glob_tests.py
Python
mit
1,146
0.002618
"""Test kytos.core.buffers module.""" import asyncio from unittest import TestCase from unittest.mock import MagicMock, patch from kytos.core.buffers import KytosBuffers, KytosEventBuffer # pylint: disable=protected-access class TestKytosEventBuffer(TestCase): """KytosEventBuffer tests.""" def setUp(self): """Instantiate a KytosEventBuffer.""" self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) self.kytos_event_buffer = KytosEventBuffer('name', loop=self.loop) @staticmethod def create_event_mock(name='any'): """Create a new event mock.""" event = MagicMock() event.name = name return event def test_put_get(self): """Test put and get methods.""" event = self.create_event_mock() self.kytos_event_buffer.put(event) queue_event = self.kytos_event_buffer.get() self.assertEqual(queue_event, event) def test_put__shutdown(self): """Test put method to shutdown event.""" event = self.create_event_mock('kytos/core.shutdown') self.kytos_event_buffer.put(event) self.assertTrue(self.kytos_event_buffer._reject_new_events) def test_aput(self): """Test aput async method.""" event = MagicMock() event.name = 'kytos/core.shutdown' self.loop.run_until_complete(self.kytos_event_buffer.aput(event)) self.assertTrue(self.kytos_event_buffer._reject_new_events) def test_aget(self): """Test aget async method.""" event = self.create_event_mock() self.kytos_event_buffer._queue.sync_q.put(event) expected = self.loop.run_until_complete(self.kytos_event_buffer.aget()) self.assertEqual(event, expected) @patch('janus._SyncQueueProxy.task_done') def test_task_done(self, mock_task_done): """Test task_done method.""" self.kytos_event_buffer.task_done() mock_task_done.assert_called() @patch('janus._SyncQueueProxy.join') def test_join(self, mock_join): """Test join method.""" self.kytos_event_buffer.join() mock_join.assert_called() def test_qsize(self): """Test qsize method to empty and with one event in query.""" qsize_1 = self.kytos_event_buffer.qsize() event = self.create_event_mock() self.kytos_event_buffer._queue.sync_q.put(event) qsize_2 = self.kytos_event_buffer.qsize() self.assertEqual(qsize_1, 0) self.assertEqual(qsize_2, 1) def test_empty(self): """Test empty method to empty and with one event in query.""" empty_1 = self.kytos_event_buffer.empty() event = self.create_event_mock() self.kytos_event_buffer._queue.sync_q.put(event) empty_2 = self.kytos_event_buffer.empty() self.assertTrue(empty_1) self.assertFalse(empty_2) @patch('janus._SyncQueueProxy.full') def test_full(self, mock_full): """Test full method to full and not full query.""" mock_full.side_effect = [False, True] full_1 = self.kytos_event_buffer.full() full_2 = self.kytos_event_buffer.full() self.assertFalse(full_1) self.assertTrue(full_2) class TestKytosBuffers(TestCase): """KytosBuffers tests.""" def setUp(self): """Instantiate a KytosBuffers.""" self.loop = asyncio.new_event_loop() asyncio.set_event_loop(None) self.kytos_buffers = KytosBuffers(loop=self.loop) def test_send_stop_signal(self): """Test send_stop_signal method.""" self.kytos_buffers.send_stop_signal() self.assertTrue(self.kytos_buffers.raw._reject_new_events) self.assertTrue(self.kytos_buffers.msg_in._reject_new_events) self.assertTrue(self.kytos_buffers.msg_out._reject_new_events) self.assertTrue(self.kytos_buffers.app._reject_new_events)
kytos/kytos
tests/unit/test_core/test_buffers.py
Python
mit
3,932
0
#! /usr/bin/env python3 from .config import * from .diff import * from .HtmlFormatter import * from .AnsiFormatter import *
lahwaacz/python-wikeddiff
WikEdDiff/__init__.py
Python
gpl-3.0
125
0
import datetime import nrkdownload.utils def test_valid_filename(string=r":blah/bl:ah.ext"): filename = nrkdownload.utils.valid_filename(string) assert filename == "blahblah.ext" def test_parse_duration(string="PT3H12M41.6S"): # PT28M39S : 28m39s # PT3H12M41.6S : 3h12m41.6s duration = nrkdownload.utils.parse_duration(string) assert duration == datetime.timedelta(hours=3, minutes=12, seconds=41.6) duration = nrkdownload.utils.parse_duration("") assert duration == datetime.timedelta() # duration = nrkdownload.utils.parse_datetime('not_a_duration') # assert duration == datetime.timedelta() def test_classmethod(): c = nrkdownload.utils.ClassProperty() assert c
marhoy/nrk-download
tests/test_utils.py
Python
gpl-3.0
721
0
#!/usr/bin/env python import unittest from aminer import AMinerParser class AMinerParserTest(unittest.TestCase): SINGLE_TEST_FILE = "./aminer_single.txt" def setUp(self): self.single_test = open(self.SINGLE_TEST_FILE, "r") def test_single_parse(self): p = AMinerParser() if __name__ == "__main__": unittest.main()
jevinw/rec_utilities
babel_util/parsers/aminer_test.py
Python
agpl-3.0
350
0.005714
# encoding: utf-8 import datetime import logging import os import re import urllib import urllib2 from HTMLParser import HTMLParseError from urlparse import urlparse from BeautifulSoup import BeautifulSoup, Comment, NavigableString from django.contrib.contenttypes.models import ContentType from django.core.files.base import ContentFile import parse_knesset_bill_pdf from knesset.utils import send_chat_notification from laws.models import Bill, Law, GovProposal from links.models import Link, LinkedFile from mks.models import Knesset from simple.constants import PRIVATE_LAWS_URL, KNESSET_LAWS_URL, GOV_LAWS_URL from simple.government_bills.parse_government_bill_pdf import GovProposalParser from simple.parsers.utils import laws_parser_utils from simple.parsers.utils.laws_parser_utils import normalize_correction_title_dashes, clean_line logger = logging.getLogger("open-knesset.parse_laws") # don't parse laws from an older knesset CUTOFF_DATE = datetime.date(2009, 2, 24) class ParseLaws(object): """partially abstract class for parsing laws. contains one function used in few cases (private and other laws). this function gives the required page """ url = None def get_page_with_param(self, params): logger.debug('get_page_with_param: self.url=%s, params=%s' % (self.url, params)) if not params: try: html_page = urllib2.urlopen(self.url).read().decode('windows-1255').encode('utf-8') except urllib2.URLError as e: logger.error("can't open URL: %s" % self.url) send_chat_notification(__name__, 'failed to open url', {'url': self.url, 'params': params}) return None try: soup = BeautifulSoup(html_page) except HTMLParseError as e: logger.debug("parsing URL: %s - %s. will try harder." % (self.url, e)) html_page = re.sub("(?s)<!--.*?-->", " ", html_page) # cut anything that looks suspicious html_page = re.sub("(?s)<script>.*?</script>", " ", html_page) html_page = re.sub("(?s)<!.*?>", " ", html_page) try: soup = BeautifulSoup(html_page) except HTMLParseError as e: logger.debug("error parsing URL: %s - %s" % (self.url, e)) send_chat_notification(__name__, 'failed to parse url', {'url': self.url, 'params': None}) return None comments = soup.findAll(text=lambda text: isinstance(text, Comment)) [comment.extract() for comment in comments] return soup else: data = urllib.urlencode(params) try: url_data = urllib2.urlopen(self.url, data) except urllib2.URLError: logger.error("can't open URL: %s" % self.url) send_chat_notification(__name__, 'failed to open url', {'url': self.url, 'params': data}) return None html_page = url_data.read().decode('windows-1255').encode('utf-8') try: soup = BeautifulSoup(html_page) except HTMLParseError as e: logger.debug("error parsing URL: %s - %s" % (self.url, e)) send_chat_notification(__name__, 'failed to parse url', {'url': self.url, 'params': data}) return None comments = soup.findAll(text=lambda text: isinstance(text, Comment)) [comment.extract() for comment in comments] return soup class ParsePrivateLaws(ParseLaws): """a class that parses private laws proposed """ # the constructor parses the laws data from the required pages def __init__(self, days_back): self.url = PRIVATE_LAWS_URL self.rtf_url = r"http://www.knesset.gov.il/privatelaw" self.laws_data = [] self.parse_pages_days_back(days_back) # parses the required pages data def parse_pages_days_back(self, days_back): today = datetime.date.today() last_required_date = today + datetime.timedelta(days=-days_back) last_law_checked_date = today index = None while last_law_checked_date > last_required_date: if index: params = {'RowStart': index} else: params = None soup_current_page = self.get_page_with_param(params) if not soup_current_page: return index = self.get_param(soup_current_page) self.parse_private_laws_page(soup_current_page) last_law_checked_date = self.update_last_date() def get_param(self, soup): name_tags = soup.findAll( lambda tag: tag.name == 'a' and tag.has_key('href') and re.match("javascript:SndSelf\((\d+)\);", tag['href'])) if name_tags and name_tags[0].get('href'): m = re.match("javascript:SndSelf\((\d+)\);", name_tags[0]['href']) return m.groups(1)[0] else: logger.error('Can not find any more name tags') return None def parse_private_laws_page(self, soup): name_tag = soup.findAll(lambda tag: tag.name == 'tr' and tag.has_key('valign') and tag['valign'] == 'Top') for tag in name_tag: tds = tag.findAll(lambda td: td.name == 'td') law_data = {} law_data['knesset_id'] = int(tds[0].string.strip()) law_data['law_id'] = int(tds[1].string.strip()) if tds[2].findAll('a')[0].has_key('href'): law_data['text_link'] = self.rtf_url + r"/" + tds[2].findAll('a')[0]['href'] law_data['law_full_title'] = tds[3].string.strip() parsed_law_title = laws_parser_utils.parse_title(law_data['law_full_title']) if not parsed_law_title: logger.warn("can't parse proposal title: %s" % law_data['law_full_title']) continue law_data['law_name'] = clean_line(parsed_law_title.group(1)) comment1 = parsed_law_title.group(3) comment2 = parsed_law_title.group(5) if comment2: law_data['correction'] = clean_line(comment2) law_data['comment'] = comment1 else: law_data['comment'] = None if comment1: law_data['correction'] = clean_line(comment1) else: law_data['correction'] = None law_data['correction'] = normalize_correction_title_dashes(law_data['correction']) law_data['law_year'] = parsed_law_title.group(7) law_data['proposal_date'] = datetime.datetime.strptime(tds[4].string.strip(), '%d/%m/%Y').date() names_string = ''.join([unicode(y) for y in tds[5].findAll('font')[0].contents]) names_string = clean_line(names_string) proposers = [] joiners = [] # Old deprecated way to search for joiners if re.search('ONMOUSEOUT', names_string) > 0: splitted_names = names_string.split('ONMOUSEOUT') joiners = [name for name in re.match('(.*?)\',\'', splitted_names[0]).group(1).split('<br />') if len(name) > 0] proposers = splitted_names[1][10:].split('<br />') else: proposers = names_string.split('<br />') more_joiners = [name for name in tds[6].findAll(text=lambda text: isinstance(text, NavigableString)) if name.strip() not in [u'מצטרפים לחוק:', u'אין מצטרפים לחוק']] if len(more_joiners) and not joiners: joiners = more_joiners law_data['proposers'] = proposers law_data['joiners'] = joiners self.laws_data.append(law_data) def update_last_date(self): return self.laws_data[-1]['proposal_date'] class ParseKnessetLaws(ParseLaws): """ A class that parses Knesset Laws (laws after committees) the constructor parses the laws data from the required pages """ def __init__(self, min_booklet): self.url = KNESSET_LAWS_URL self.pdf_url = r"http://www.knesset.gov.il" self.laws_data = [] self.min_booklet = min_booklet self.parse_pages_booklet() def parse_pages_booklet(self): full_page_parsed = True index = None while full_page_parsed: if index: params = {'First': index[0], 'Start': index[1]} else: params = None soup_current_page = self.get_page_with_param(params) index = self.get_param(soup_current_page) full_page_parsed = self.parse_laws_page(soup_current_page) def get_param(self, soup): name_tags = soup.findAll( lambda tag: tag.name == 'a' and tag.has_key('href') and re.match("javascript:SndSelf\((\d+),(\d+)\);", tag['href'])) if name_tags and name_tags[0] and name_tags[0].get('href'): m = re.match("javascript:SndSelf\((\d+),(\d+)\);", name_tags[0]['href']) return m.groups() else: if not name_tags: logger.info('Failed to find name tags') elif not name_tags[0].get('href'): logger.error('First name tag missing href %s' % name_tags[0]) return None def parse_pdf(self, pdf_url): return parse_knesset_bill_pdf.parse(pdf_url) def parse_laws_page(self, soup): name_tags = soup.findAll(lambda tag: tag.name == 'a' and tag.has_key('href') and tag['href'].find(".pdf") >= 0) for tag in name_tags: pdf_link = self.pdf_url + tag['href'] booklet = re.search(r"/(\d+)/", tag['href']).groups(1)[0] if int(booklet) <= self.min_booklet: return False pdf_data = self.parse_pdf(pdf_link) or [] for j in range(len(pdf_data)): # sometime there is more than 1 law in a pdf title = pdf_data[j]['title'] m = re.findall('[^\(\)]*\((.*?)\)[^\(\)]', title) try: comment = m[-1].strip().replace('\n', '').replace('&nbsp;', ' ') law = title[:title.find(comment) - 1] except: comment = None law = title.replace(',', '') try: correction = m[-2].strip().replace('\n', '').replace('&nbsp;', ' ') law = title[:title.find(correction) - 1] except: correction = None correction = normalize_correction_title_dashes(correction) law = law.strip().replace('\n', '').replace('&nbsp;', ' ') if law.find("הצעת ".decode("utf8")) == 0: law = law[5:] law_data = {'booklet': booklet, 'link': pdf_link, 'law': law, 'correction': correction, 'comment': comment, 'date': pdf_data[j]['date']} if 'original_ids' in pdf_data[j]: law_data['original_ids'] = pdf_data[j]['original_ids'] if 'bill' in pdf_data[j]: law_data['bill'] = pdf_data[j]['bill'] self.laws_data.append(law_data) return True def update_booklet(self): return int(self.laws_data[-1]['booklet']) class ParseGovLaws(ParseKnessetLaws): def __init__(self, min_booklet): self.url = GOV_LAWS_URL self.pdf_url = r"http://www.knesset.gov.il" self.laws_data = [] self.min_booklet = min_booklet def parse_gov_laws(self): """ entry point to start parsing """ self.parse_pages_booklet() def parse_pdf(self, pdf_url): """ Grab a single pdf url, using cache via LinkedFile """ existing_count = Link.objects.filter(url=pdf_url).count() if existing_count >= 1: if existing_count > 1: logger.warn("found two objects with the url %s. Taking the first" % pdf_url) link = Link.objects.filter(url=pdf_url).first() filename = None if existing_count > 0: files = [f for f in link.linkedfile_set.order_by('last_updated') if f.link_file.name != ''] if len(files) > 0: link_file = files[0] filename = link_file.link_file.path logger.debug('trying reusing %s from %s' % (pdf_url, filename)) if not os.path.exists(filename): # for some reason the file can't be found, we'll just d/l # it again filename = None logger.debug('not reusing because file not found') if not filename: logger.debug('getting %s' % pdf_url) contents = urllib2.urlopen(pdf_url).read() link_file = LinkedFile() saved_filename = os.path.basename(urlparse(pdf_url).path) link_file.link_file.save(saved_filename, ContentFile(contents)) filename = link_file.link_file.path try: prop = GovProposalParser(filename) except Exception: logger.exception('Gov proposal exception %s'.format(pdf_url)) return None # TODO: check if parsing handles more than 1 prop in a booklet x = {'title': prop.get_title(), 'date': prop.get_date(), # 'bill':prop, 'link_file': link_file} return [x] def update_single_bill(self, pdf_link, booklet=None, alt_title=None): gp = None if booklet is None: # get booklet from existing bill gps = GovProposal.objects.filter(source_url=pdf_link) if gps.count() < 1: logger.error('no existing object with given pdf link and no ' 'booklet given. pdf_link = %s' % pdf_link) return gp = gps[0] booklet = gp.booklet_number pdf_data = self.parse_pdf(pdf_link) if pdf_data is None: return for j in range(len(pdf_data)): # sometime there is more than 1 gov # bill in a pdf if alt_title: # just use the given title title = alt_title else: # get the title from the PDF file itself. # doesn't work so well title = pdf_data[j]['title'] m = re.findall('[^\(\)]*\((.*?)\)[^\(\)]', title) try: comment = m[-1].strip().replace('\n', '').replace( '&nbsp;', ' ') law = title[:title.find(comment) - 1] except: comment = None law = title.replace(',', '') try: correction = m[-2].strip().replace('\n', '').replace( '&nbsp;', ' ') law = title[:title.find(correction) - 1] except: correction = None correction = normalize_correction_title_dashes(correction) law = law.strip().replace('\n', '').replace('&nbsp;', ' ') if law.find("הצעת ".decode("utf8")) == 0: law = law[5:] law_data = {'booklet': booklet, 'link': pdf_link, 'law': law, 'correction': correction, 'comment': comment, 'date': pdf_data[j]['date']} if 'original_ids' in pdf_data[j]: law_data['original_ids'] = pdf_data[j]['original_ids'] if 'bill' in pdf_data[j]: law_data['bill'] = pdf_data[j]['bill'] self.laws_data.append(law_data) self.create_or_update_single_bill( data=law_data, pdf_link=pdf_link, link_file=pdf_data[j]['link_file'], gp=gp) def create_or_update_single_bill(self, data, pdf_link, link_file, gp=None): """ data - a dict of data for this gov proposal pdf_link - the source url from which the bill is taken link_file - a cached version of the pdf gp - an existing GovProposal objects. if this is given, it will be updated, instead of creating a new object """ if not (data['date']) or CUTOFF_DATE and data['date'] < CUTOFF_DATE: return law_name = data['law'] try: law, created = Law.objects.get_or_create(title=law_name) except Law.MultipleObjectsReturned: created = False try: law = Law.objects.filter(title=law_name, merged_into=None).last() except Law.MultipleObjectsReturned: # How is this possible? probably another bug somewhere law = Law.objects.filter(title=law_name).last() if created: law.save() if law.merged_into: law = law.merged_into title = u'' if data['correction']: title += data['correction'] if data['comment']: title += ' ' + data['comment'] if len(title) <= 1: title = u'חוק חדש' k_id = Knesset.objects.get_knesset_by_date(data['date']).pk if gp is None: # create new GovProposal, or look for an identical one (gp, created) = GovProposal.objects.get_or_create( booklet_number=data['booklet'], source_url=data['link'], title=title, law=law, date=data['date'], defaults={'knesset_id': k_id}) if created: gp.save() logger.debug("created GovProposal id = %d" % gp.id) # look for similar bills bill_params = dict(law=law, title=title, stage='3', stage_date=data['date']) similar_bills = Bill.objects.filter(**bill_params).order_by('id') if len(similar_bills) >= 1: b = similar_bills[0] if len(similar_bills) > 1: logger.debug("multiple bills detected") for bill in similar_bills: if bill.id == b.id: logger.debug("bill being used now: %d" % bill.id) else: logger.debug("bill with same fields: %d" % bill.id) else: # create a bill b = Bill(**bill_params) b.save() logger.debug("created bill %d" % b.id) # see if the found bill is already linked to a gov proposal try: bill_gp_id = b.gov_proposal.id except GovProposal.DoesNotExist: bill_gp_id = None if (bill_gp_id is None) or (gp.id == b.gov_proposal.id): # b is not linked to gp, or linked to the current gp gp.bill = b gp.save() else: logger.debug("processing gp %d - matching bill (%d) already has gp" " (%d)" % (gp.id, b.id, b.gov_proposal.id)) else: # update a given GovProposal # TODO: move to a classmethod gp.booklet_number = data['booklet'] gp.knesset_id = k_id gp.source_url = data['link'] gp.title = title gp.law = law gp.date = data['date'] gp.save() gp.bill.title = title gp.bill.law = law gp.bill.save() b = gp.bill if (link_file is not None) and (link_file.link is None): link = Link(title=pdf_link, url=pdf_link, content_type=ContentType.objects.get_for_model(gp), object_pk=str(gp.id)) link.save() link_file.link = link link_file.save() logger.debug("check updated %s" % b.get_absolute_url()) def parse_laws_page(self, soup): # Fall back to regex, because these pages are too broken to get the # <td> element we need with BS""" u = unicode(soup) pairs = [] curr_href = None for line in u.split('\n'): # This builds upon always having the pdf in one line and then the actual title, else would cause errors curr_title = None if '.pdf' in line: curr_href = re.search('href="(.*?)"', line).group(1) if 'LawText1">' in line: try: curr_title = re.search('LawText1">(.*?)</', line).group(1) except AttributeError: curr_title = re.search('LawText1">(.*?)\r', line).group(1) pairs.append((curr_title, curr_href)) if not pairs: return False for title, href in pairs: try: pdf_link = self.pdf_url + href booklet = re.search(r"/(\d+)/", href).groups(1)[0] if int(booklet) <= self.min_booklet: return False self.update_single_bill(pdf_link, booklet=booklet, alt_title=title) except TypeError: logger.exception('law scraping exception pdf_url: %s href %s' % (self.pdf_url, href)) return True ############# # Main # ############# if __name__ == '__main__': m = ParsePrivateLaws(15)
OriHoch/Open-Knesset
simple/parsers/parse_laws.py
Python
bsd-3-clause
21,686
0.003465
#!/usr/bin/env python #-*- coding:utf-8 -*- import logging, os.path import tornado.httpserver import tornado.ioloop import tornado.options import tornado.web import tornado.websocket import tornado.gen class Application(tornado.web.Application): def __init__(self): base_dir = os.path.dirname(__file__) app_settings = { "debug": True, 'static_path': os.path.join(base_dir, "static"), } tornado.web.Application.__init__(self, [ tornado.web.url(r"/", MainHandler, name="main"), tornado.web.url(r"/live", WebSocketHandler, name="websocket"), ], **app_settings) class MainHandler(tornado.web.RequestHandler): def get(self): self.render('index.html') class WebSocketHandler(tornado.websocket.WebSocketHandler): listenners = [] def check_origin(self, origin): return True @tornado.gen.engine def open(self): WebSocketHandler.listenners.append(self) def on_close(self): if self in WebSocketHandler.listenners: WebSocketHandler.listenners.remove(self) @tornado.gen.engine def on_message(self, wsdata): for listenner in WebSocketHandler.listenners: listenner.write_message(wsdata) @tornado.gen.coroutine def main(): tornado.options.parse_command_line() http_server = tornado.httpserver.HTTPServer(Application()) http_server.listen(8888) logging.info("application running on http://localhost:8888") if __name__ == "__main__": tornado.ioloop.IOLoop.current().run_sync(main) tornado.ioloop.IOLoop.current().start()
mehmetkose/react-websocket
example/server.py
Python
mit
1,627
0.003688
#!/usr/bin/env python # Calculate a table of pairwise energies and forces between "INT" atoms # in the lipid membrane model described in # Brannigan et al, Phys Rev E, 72, 011915 (2005) # The energy of this interaction U(r) = eps*(0.4*(sigma/r)^12 - 3.0*(sigma/r)^2) # I realized later this is not what we want because although energy is conserved # all enrgies are shifted with respect to energies used in the Brannigan paper # (by 0.27 kCal/mole) and the later Watson JCP 2011 paper (by 0.224 kCal/mole). # (So don't use this.) # Calculate and print a def S(r, rc1, rc2, derivative=False): """ Calculate the switching function S(r) which decays continuously between 1 and 0 in the range from rc1 to rc2 (rc2>rc1): S(r) = (rc2^2 - r^2)^2 * (rc2^2 + 2*r^2 - 3*rc1^2) / (rc2^2-rc1^2)^3 I'm using the same smoothing/switching cutoff function used by the CHARMM force-fields. (I'm even using the same code to implement it, taken from lammps charmm/coul/charmm pair style, rewritten in python.) """ assert(rc2>rc1) rsq = r*r rc1sq = rc1*rc1 rc2sq = rc2*rc2 denom_lj_inv = (1.0 / ((rc2sq-rc1sq)* (rc2sq-rc1sq)* (rc2sq-rc1sq))) if rsq > rc2sq: return 0.0 elif rsq < rc1sq: if derivative: return 0.0 else: return 1.0 else: rc2sq_minus_rsq = (rc2sq - rsq) rc2sq_minus_rsq_sq = rc2sq_minus_rsq * rc2sq_minus_rsq if derivative: return (12.0 * rsq * rc2sq_minus_rsq * (rsq-rc1sq) * denom_lj_inv) else: return (rc2sq_minus_rsq_sq * (rc2sq + 2.0*rsq - 3.0*rc1sq) * denom_lj_inv) def U(r, eps, sigma): return eps* (0.4*pow((sigma/r),12) - 3.0*sigma*sigma/(r*r)) def F(r, eps, sigma): return eps*(12*0.4*pow((sigma/r),13)/sigma - 2*3.0*sigma*sigma/(r*r*r)) epsilon = 2.75/4.184 # kCal/mole sigma = 7.5 Rmin = 2.6 Rmax = 22.6 Rc1 = 22.0 Rc2 = 22.5 N = 1001 for i in range(0,N): r = Rmin + i*(Rmax-Rmin)/(N-1) U_r = U(r, epsilon, sigma) F_r = F(r, epsilon, sigma) # Multiply U(r) & F(r) by the smoothing/switch function U_r = U_r * S(r, Rc1, Rc2) F_r = U_r * S(r, Rc1, Rc2, True) + F_r * S(r, Rc1, Rc2, False) print(str(i+1)+' '+str(r)+' '+str(U_r)+' '+str(F_r))
jcarlson23/lammps
tools/moltemplate/examples/CG_membrane_examples/membrane_BranniganPRE2005/moltemplate_files/version_charmm_cutoff/calc_table.py
Python
gpl-2.0
2,403
0.012901
# -*- coding: utf-8 -*- import unittest import logging from os.path import isfile from os import popen from os import remove from t2db_objects import objects from t2db_objects.utilities import formatHash from t2db_objects.parameters import generate_config_yaml from clean_text.cleaner import sentenceCleaner from clean_text.cleaner import tokenCleaner from clean_text.cleaner import tokenize from clean_text.cleaner import sentenize from clean_text.cleaner import cleanSentence from clean_text.cleaner import Processor from clean_text.cleaner import cleaner from clean_text.utilities import load_stopwords from clean_text.run import param_fields from clean_text.run import conf_fields from clean_text import functions logger = logging.getLogger('clean_text') """ Count the word in the file given""" def wordCount(word, file_): p = popen("cat " + file_ + " | awk -F '\t' '{print $6}' | grep -w " + word + " | wc -l") # Get result and cast it pOut = p.read() p.close() return int(pOut) class TestCleanerFunctions(unittest.TestCase): def setUp(self): pass def test_sentenceCleaner(self): sentence = "this is a @user sample and a http://hi.com sample" goldenSentence = "this is a sample and a sample" self.assertEqual(sentenceCleaner(sentence, ["removeUrl", "removeUserMention"]), goldenSentence) def test_tokenize(self): sentence = "Hello didn't very happy 1313" goldenTokens = ["Hello" , "did", "n't", "very", "happy", "1313"] tokens = tokenize(sentence) for i in range(0, len(tokens)): self.assertEqual(tokens[i][0], goldenTokens[i]) def test_sentenize(self): sentence = "Hello I'm very happy 1313" goldenSentence = "Hello I 'm very happy 1313" tokens = tokenize(sentence) self.assertEqual(sentenize(tokens), goldenSentence) def test_tokenCleaner(self): sentence = "Hello I'm very happy 1313" goldenSentence = "hello" tokens = tokenize(sentence) functions.stopwords = load_stopwords('etc/stopwords_en.txt') newTokens = tokenCleaner(tokens, ["stemming", "toLowerCase", "removePunctuationAndNumbers", "stopwording"]) self.assertEqual(sentenize(newTokens), goldenSentence) def test_cleanSentence(self): sentence = ("At 8 o'clock on Thursday morning, the boys and girls didn't feel very good.") sentenceProcList = ["removeUrl", "removeUserMention"] functions.stopwords = load_stopwords('etc/stopwords_en.txt') tokenProcList = ["stemming", "toLowerCase", "removePunctuationAndNumbers", "stopwording", "removeSingleChar", "removeDoubleChar"] newSentence = cleanSentence(sentence, sentenceProcList, tokenProcList) goldSentence = "oclock thursday morning boy girl feel good" self.assertEqual(newSentence, goldSentence) def test_cleanSentenceUnicode(self): sentence = u"Según @NWS_PTWC, no hay riesgo generalizado de #tsunami tras el #sismo de Japón http://t.co/icErcNfSCf" sentenceProcList = ["removeUrl", "removeUserMention"] functions.stopwords = load_stopwords('etc/stopwords_en.txt') tokenProcList = ["stemming", "toLowerCase", "removePunctuationAndNumbers", "stopwording", "removeSingleChar", "removeDoubleChar"] newSentence = cleanSentence(sentence, sentenceProcList, tokenProcList) goldSentence = u"según hay riesgo generalizado tsunami tras sismo japón" self.assertEqual(newSentence, goldSentence) @unittest.skip("demonstrating skipping") def test_processFile(self): rawObject = { "date":"Sun Aug 07 01:28:32 IST 2011", "id":"100000335933878272", "user_id":"71610408", "status":"@baloji you were so awesome, it was amazing and you were shining like the star that you are...MERCI!! #baloji i_i" } goldenRawObject = { "date":"Sun Aug 07 01:28:32 IST 2011", "id":"100000335933878272", "user_id":"71610408", "status":"@baloji you were so awesome, it was amazing and you were shining like the star that you are...MERCI!! #baloji i_i", "status_clean":"awesome amaze shin star merci baloji" } rawObjects = [rawObject] text_field = 'status' new_text_field = 'status_clean' sentence_proc_list = {'removeUrl', 'removeUserMention'} token_proc_list = {'stemming', 'toLowerCase', 'removePunctuationAndNumbers', 'stopwording', 'removeSingleChar', 'removeDoubleChar'} functions.stopwords = load_stopwords('etc/stopwords_en.txt') proc = Processor(text_field, new_text_field, sentence_proc_list, token_proc_list) newRawObject = proc.processFile(rawObjects) self.assertEqual(rawObject, goldenRawObject) @unittest.skip("demonstrating skipping") def test_processFileUnicode(self): rawObject = { "date":u"Sun Aug 07 01:28:32 IST 2011", "id":u"100000335933878272", "user_id":u"71610408", "status":u"Según @NWS_PTWC, no hay riesgo generalizado de #tsunami tras el #sismo de Japón http://t.co/icErcNfSCf", } goldenRawObject = { "date":u"Sun Aug 07 01:28:32 IST 2011", "id":u"100000335933878272", "user_id":u"71610408", "status":u"Según @NWS_PTWC, no hay riesgo generalizado de #tsunami tras el #sismo de Japón http://t.co/icErcNfSCf", "status_clean":u"Según hay riesgo generalizado tsunami tras sismo Japón" } rawObjects = [rawObject] text_field = 'status' new_text_field = 'status_clean' sentence_proc_list = {'removeUrl', 'removeUserMention'} token_proc_list = {'stemming', 'toLowerCase', 'removePunctuationAndNumbers', 'stopwording', 'removeSingleChar', 'removeDoubleChar'} functions.stopwords = load_stopwords('etc/stopwords_en.txt') proc = Processor(text_field, new_text_field, sentence_proc_list, token_proc_list) newRawObject = proc.processFile(rawObjects) self.assertEqual(rawObject, goldenRawObject) @unittest.skip("demonstrating skipping") def test_notValidProcessFile(self): rawObject = { "date":"Sun Aug 07 01:28:32 IST 2011", "id":"100000335933878272", "user_id":"71610408", "status":"@baloji you were so awesome, it was amazing and you were shining like the star that you are...MERCI!! #baloji i_i" } rawObjects = [rawObject] text_field = 'otherfield' new_text_field = 'status_clean' sentence_proc_list = {'removeUrl', 'removeUserMention'} token_proc_list = {'stemming', 'toLowerCase', 'removePunctuationAndNumbers', 'stopwording', 'removeSingleChar', 'removeDoubleChar'} functions.stopwords = load_stopwords('etc/stopwords_en.txt') proc = Processor(text_field, new_text_field, sentence_proc_list, token_proc_list) proc = Processor(config) self.assertRaises(Exception, proc.processFile, rawObjects) #@unittest.skip("avoid big files") def test_cleaner(self): rawParams = { 'input_file':'etc/example.tsv', 'output_file':'output.tmp', 'config_file':'etc/config.yaml', } params = objects.Configuration(param_fields, rawParams) config = generate_config_yaml(conf_fields, params.config_file) if isfile(params.output_file): remove(params.output_file) cleaner(params, config) self.assertTrue(isfile(params.output_file)) self.assertEqual(wordCount(" to ", params.output_file), 0) self.assertEqual(wordCount(" photo ", params.output_file), 0)
ptorrestr/clean_text
clean_text/tests/test_cleaner.py
Python
gpl-2.0
7,295
0.010981
# -*- Mode: Python -*- # vi:si:et:sw=4:sts=4:ts=4 # # Flumotion - a streaming media server # Copyright (C) 2004,2005,2006,2007 Fluendo, S.L. (www.fluendo.com). # All rights reserved. # This file may be distributed and/or modified under the terms of # the GNU General Public License version 2 as published by # the Free Software Foundation. # This file is distributed without any warranty; without even the implied # warranty of merchantability or fitness for a particular purpose. # See "LICENSE.GPL" in the source distribution for more information. # Licensees having purchased or holding a valid Flumotion Advanced # Streaming Server license may use this file in accordance with the # Flumotion Advanced Streaming Server Commercial License Agreement. # See "LICENSE.Flumotion" in the source distribution for more information. # Headers in this file shall remain intact. """ code for workers executing jobs for the manager """ __version__ = "$Rev: 6125 $"
flyapen/UgFlu
flumotion/worker/__init__.py
Python
gpl-2.0
962
0
import graphene from .account.schema import AccountMutations, AccountQueries from .checkout.schema import CheckoutMutations, CheckoutQueries from .core.schema import CoreMutations from .discount.schema import DiscountMutations, DiscountQueries from .menu.schema import MenuMutations, MenuQueries from .order.schema import OrderMutations, OrderQueries from .page.schema import PageMutations, PageQueries from .payment.schema import PaymentMutations, PaymentQueries from .product.schema import ProductMutations, ProductQueries from .shipping.schema import ShippingMutations, ShippingQueries from .shop.schema import ShopMutations, ShopQueries from .translations.schema import TranslationQueries class Query(AccountQueries, CheckoutQueries, DiscountQueries, MenuQueries, OrderQueries, PageQueries, PaymentQueries, ProductQueries, ShippingQueries, ShopQueries, TranslationQueries): node = graphene.Node.Field() class Mutations(AccountMutations, CheckoutMutations, CoreMutations, DiscountMutations, MenuMutations, OrderMutations, PageMutations, PaymentMutations, ProductMutations, ShippingMutations, ShopMutations): pass schema = graphene.Schema(Query, Mutations)
UITools/saleor
saleor/graphql/api.py
Python
bsd-3-clause
1,246
0
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import paddle.fluid as fluid import paddle import sys import numpy import unittest import math import sys import os BATCH_SIZE = 64 def inference_program(): img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32') hidden = fluid.layers.fc(input=img, size=200, act='tanh') hidden = fluid.layers.fc(input=hidden, size=200, act='tanh') prediction = fluid.layers.fc(input=hidden, size=10, act='softmax') return prediction def train_program(): label = fluid.layers.data(name='label', shape=[1], dtype='int64') predict = inference_program() cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(cost) acc = fluid.layers.accuracy(input=predict, label=label) return [avg_cost, acc] def optimizer_func(): return fluid.optimizer.Adam(learning_rate=0.001) def train(use_cuda, train_program, params_dirname): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() trainer = fluid.Trainer( train_func=train_program, place=place, optimizer_func=optimizer_func) def event_handler(event): if isinstance(event, fluid.EndEpochEvent): test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=BATCH_SIZE) avg_cost, acc = trainer.test( reader=test_reader, feed_order=['img', 'label']) print("avg_cost: %s" % avg_cost) print("acc : %s" % acc) if acc > 0.2: # Smaller value to increase CI speed trainer.save_params(params_dirname) else: print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format( event.epoch + 1, avg_cost, acc)) if math.isnan(avg_cost): sys.exit("got NaN loss, training failed.") train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=500), batch_size=BATCH_SIZE) trainer.train( num_epochs=1, event_handler=event_handler, reader=train_reader, feed_order=['img', 'label']) def infer(use_cuda, inference_program, params_dirname=None): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() inferencer = fluid.Inferencer( infer_func=inference_program, param_path=params_dirname, place=place) batch_size = 1 tensor_img = numpy.random.uniform(-1.0, 1.0, [batch_size, 1, 28, 28]).astype("float32") results = inferencer.infer({'img': tensor_img}) print("infer results: ", results[0]) def main(use_cuda): params_dirname = "recognize_digits_mlp.inference.model" # call train() with is_local argument to run distributed train train( use_cuda=use_cuda, train_program=train_program, params_dirname=params_dirname) infer( use_cuda=use_cuda, inference_program=inference_program, params_dirname=params_dirname) if __name__ == '__main__': # for use_cuda in (False, True): main(use_cuda=False)
Canpio/Paddle
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
Python
apache-2.0
3,760
0.000266
#coding=UTF-8 from pyspark import SparkContext, SparkConf, SQLContext, Row, HiveContext from pyspark.sql.types import * from datetime import date, datetime, timedelta import sys, re, os st = datetime.now() conf = SparkConf().setAppName('PROC_O_IBK_WSYH_ECUSRLOGINTYPE').setMaster(sys.argv[2]) sc = SparkContext(conf = conf) sc.setLogLevel('WARN') if len(sys.argv) > 5: if sys.argv[5] == "hive": sqlContext = HiveContext(sc) else: sqlContext = SQLContext(sc) hdfs = sys.argv[3] dbname = sys.argv[4] #处理需要使用的日期 etl_date = sys.argv[1] #etl日期 V_DT = etl_date #上一日日期 V_DT_LD = (date(int(etl_date[0:4]), int(etl_date[4:6]), int(etl_date[6:8])) + timedelta(-1)).strftime("%Y%m%d") #月初日期 V_DT_FMD = date(int(etl_date[0:4]), int(etl_date[4:6]), 1).strftime("%Y%m%d") #上月末日期 V_DT_LMD = (date(int(etl_date[0:4]), int(etl_date[4:6]), 1) + timedelta(-1)).strftime("%Y%m%d") #10位日期 V_DT10 = (date(int(etl_date[0:4]), int(etl_date[4:6]), int(etl_date[6:8]))).strftime("%Y-%m-%d") V_STEP = 0 O_CI_WSYH_ECUSRLOGINTYPE = sqlContext.read.parquet(hdfs+'/O_CI_WSYH_ECUSRLOGINTYPE/*') O_CI_WSYH_ECUSRLOGINTYPE.registerTempTable("O_CI_WSYH_ECUSRLOGINTYPE") #任务[12] 001-01:: V_STEP = V_STEP + 1 #先删除原表所有数据 ret = os.system("hdfs dfs -rm -r /"+dbname+"/F_CI_WSYH_ECUSRLOGINTYPE/*.parquet") #从昨天备表复制一份全量过来 ret = os.system("hdfs dfs -cp -f /"+dbname+"/F_CI_WSYH_ECUSRLOGINTYPE_BK/"+V_DT_LD+".parquet /"+dbname+"/F_CI_WSYH_ECUSRLOGINTYPE/"+V_DT+".parquet") F_CI_WSYH_ECUSRLOGINTYPE = sqlContext.read.parquet(hdfs+'/F_CI_WSYH_ECUSRLOGINTYPE/*') F_CI_WSYH_ECUSRLOGINTYPE.registerTempTable("F_CI_WSYH_ECUSRLOGINTYPE") sql = """ SELECT A.USERSEQ AS USERSEQ ,A.MCHANNELID AS MCHANNELID ,A.LOGINTYPE AS LOGINTYPE ,A.USERID AS USERID ,A.PASSWORD AS PASSWORD ,A.LOGINTYPESTATE AS LOGINTYPESTATE ,A.UPDATEPASSWORDDATE AS UPDATEPASSWORDDATE ,A.WRONGPASSCOUNT AS WRONGPASSCOUNT ,A.UNLOCKDATE AS UNLOCKDATE ,A.FIRSTLOGINTIME AS FIRSTLOGINTIME ,A.LASTLOGINTIME AS LASTLOGINTIME ,A.LASTLOGINADDR AS LASTLOGINADDR ,A.CREATEUSERSEQ AS CREATEUSERSEQ ,A.CREATEDEPTSEQ AS CREATEDEPTSEQ ,A.CREATETIME AS CREATETIME ,A.UPDATEUSERSEQ AS UPDATEUSERSEQ ,A.UPDATEDEPTSEQ AS UPDATEDEPTSEQ ,A.UPDATETIME AS UPDATETIME ,A.FR_ID AS FR_ID ,V_DT AS ODS_ST_DATE ,'IBK' AS ODS_SYS_ID FROM O_CI_WSYH_ECUSRLOGINTYPE A --电子银行用户认证信息表 """ sql = re.sub(r"\bV_DT\b", "'"+V_DT10+"'", sql) F_CI_WSYH_ECUSRLOGINTYPE_INNTMP1 = sqlContext.sql(sql) F_CI_WSYH_ECUSRLOGINTYPE_INNTMP1.registerTempTable("F_CI_WSYH_ECUSRLOGINTYPE_INNTMP1") #F_CI_WSYH_ECUSRLOGINTYPE = sqlContext.read.parquet(hdfs+'/F_CI_WSYH_ECUSRLOGINTYPE/*') #F_CI_WSYH_ECUSRLOGINTYPE.registerTempTable("F_CI_WSYH_ECUSRLOGINTYPE") sql = """ SELECT DST.USERSEQ --用户顺序号:src.USERSEQ ,DST.MCHANNELID --模块渠道代号:src.MCHANNELID ,DST.LOGINTYPE --登录类型:src.LOGINTYPE ,DST.USERID --用户登录号:src.USERID ,DST.PASSWORD --用户登录密码:src.PASSWORD ,DST.LOGINTYPESTATE --开通状态:src.LOGINTYPESTATE ,DST.UPDATEPASSWORDDATE --最近密码修改时间:src.UPDATEPASSWORDDATE ,DST.WRONGPASSCOUNT --密码错误次数:src.WRONGPASSCOUNT ,DST.UNLOCKDATE --最后一次解锁日期时间:src.UNLOCKDATE ,DST.FIRSTLOGINTIME --首次登录时间:src.FIRSTLOGINTIME ,DST.LASTLOGINTIME --最后登录时间:src.LASTLOGINTIME ,DST.LASTLOGINADDR --最后一次登录地址:src.LASTLOGINADDR ,DST.CREATEUSERSEQ --创建用户顺序号:src.CREATEUSERSEQ ,DST.CREATEDEPTSEQ --创建机构顺序号:src.CREATEDEPTSEQ ,DST.CREATETIME --创建时间:src.CREATETIME ,DST.UPDATEUSERSEQ --更新用户顺序号:src.UPDATEUSERSEQ ,DST.UPDATEDEPTSEQ --更新机构顺序号:src.UPDATEDEPTSEQ ,DST.UPDATETIME --更新时间:src.UPDATETIME ,DST.FR_ID --法人号:src.FR_ID ,DST.ODS_ST_DATE --系统日期:src.ODS_ST_DATE ,DST.ODS_SYS_ID --系统标志:src.ODS_SYS_ID FROM F_CI_WSYH_ECUSRLOGINTYPE DST LEFT JOIN F_CI_WSYH_ECUSRLOGINTYPE_INNTMP1 SRC ON SRC.USERSEQ = DST.USERSEQ AND SRC.MCHANNELID = DST.MCHANNELID AND SRC.LOGINTYPE = DST.LOGINTYPE WHERE SRC.USERSEQ IS NULL """ sql = re.sub(r"\bV_DT\b", "'"+V_DT10+"'", sql) F_CI_WSYH_ECUSRLOGINTYPE_INNTMP2 = sqlContext.sql(sql) dfn="F_CI_WSYH_ECUSRLOGINTYPE/"+V_DT+".parquet" F_CI_WSYH_ECUSRLOGINTYPE_INNTMP2=F_CI_WSYH_ECUSRLOGINTYPE_INNTMP2.unionAll(F_CI_WSYH_ECUSRLOGINTYPE_INNTMP1) F_CI_WSYH_ECUSRLOGINTYPE_INNTMP1.cache() F_CI_WSYH_ECUSRLOGINTYPE_INNTMP2.cache() nrowsi = F_CI_WSYH_ECUSRLOGINTYPE_INNTMP1.count() nrowsa = F_CI_WSYH_ECUSRLOGINTYPE_INNTMP2.count() F_CI_WSYH_ECUSRLOGINTYPE_INNTMP2.write.save(path = hdfs + '/' + dfn, mode='overwrite') F_CI_WSYH_ECUSRLOGINTYPE_INNTMP1.unpersist() F_CI_WSYH_ECUSRLOGINTYPE_INNTMP2.unpersist() et = datetime.now() print("Step %d start[%s] end[%s] use %d seconds, insert F_CI_WSYH_ECUSRLOGINTYPE lines %d, all lines %d") % (V_STEP, st.strftime("%H:%M:%S"), et.strftime("%H:%M:%S"), (et-st).seconds, nrowsi, nrowsa) ret = os.system("hdfs dfs -mv /"+dbname+"/F_CI_WSYH_ECUSRLOGINTYPE/"+V_DT_LD+".parquet /"+dbname+"/F_CI_WSYH_ECUSRLOGINTYPE_BK/") #先删除备表当天数据 ret = os.system("hdfs dfs -rm -r /"+dbname+"/F_CI_WSYH_ECUSRLOGINTYPE_BK/"+V_DT+".parquet") #从当天原表复制一份全量到备表 ret = os.system("hdfs dfs -cp -f /"+dbname+"/F_CI_WSYH_ECUSRLOGINTYPE/"+V_DT+".parquet /"+dbname+"/F_CI_WSYH_ECUSRLOGINTYPE_BK/"+V_DT+".parquet")
cysuncn/python
spark/crm/PROC_O_IBK_WSYH_ECUSRLOGINTYPE.py
Python
gpl-3.0
6,837
0.013234
import concurrent.futures from itertools import islice import xbmc import threading Executor = concurrent.futures.ThreadPoolExecutor def execute(f, iterable, stop_flag=None, workers=10, timeout=30): with Executor(max_workers=workers) as executor: threading.Timer(timeout, stop_flag.set) for future in _batched_pool_runner(executor, workers, f, iterable, timeout): if xbmc.abortRequested: break if stop_flag and stop_flag.isSet(): break yield future.result() def _batched_pool_runner(pool, batch_size, f, iterable, timeout): futures = [pool.submit(f, x) for x in iterable] try: for item in concurrent.futures.as_completed(futures, timeout): yield item except: pass
repotvsupertuga/tvsupertuga.repository
script.module.universalscrapers/lib/universalscrapers/executor.py
Python
gpl-2.0
842
0.001188
from src.settings import Colors def league_color(league: str) -> Colors: if league in [ ]: return Colors.GREEN if league in [ '1 CFL (Montenegro)', 'A Lyga (Lithuania)', 'Bikar (Iceland)', 'Coupe de la Ligue (France)', 'EURO Qualifiers (Europe)', 'FA Cup (England)', 'J-League (Japan)', 'J-League 2 (Japan)', 'K-League (South Korea)', 'Landspokal (Denmark)', 'League Cup (Scotland)', 'Meistriliiga (Estonia)', 'OFB Cup (Austria)', 'Pohar CMFS (Czech Republic)', 'Premier League (Wales)', 'Primera Division (Chile)', 'Proximus League (Belgium)', 'Serie A (Italy)', 'S-League (Singapore)', 'Slovensky Pohar (Slovakia)', 'Svenska Cupen (Sweden)', 'Swiss Cup (Switzerland)', 'Virsliga (Latvia)', 'Vyscha Liga (Ukraine)', 'Úrvalsdeild (Iceland)', ]: return Colors.RED if league in [ ]: return Colors.YELLOW return Colors.EMPTY
vapkarian/soccer-analyzer
src/colors/v20/default.py
Python
mit
1,079
0
# Third-party import astropy.units as u import numpy as np # Project from ....dynamics import PhaseSpacePosition, Orbit from ....units import galactic PSP = PhaseSpacePosition ORB = Orbit class _TestBase(object): use_half_ndim = False E_unit = u.erg/u.kg @classmethod def setup_class(cls): np.random.seed(42) ndim = 6 r_ndim = ndim # return ndim if cls.use_half_ndim: r_ndim = r_ndim // 2 norbits = 16 ntimes = 8 # some position or phase-space position arrays we will test methods on: cls.w0s = [] cls.energy_return_shapes = [] cls.gradient_return_shapes = [] cls.hessian_return_shapes = [] # 1D - phase-space position cls.w0s.append(PSP(pos=np.random.random(size=ndim//2), vel=np.random.random(size=ndim//2))) cls.w0s.append(PSP(pos=np.random.random(size=ndim//2)*u.kpc, vel=np.random.random(size=ndim//2)*u.km/u.s)) cls.energy_return_shapes += [(1,)]*2 cls.gradient_return_shapes += [(r_ndim, 1)]*2 cls.hessian_return_shapes += [(r_ndim, r_ndim, 1)]*2 # 2D - phase-space position cls.w0s.append(PSP(pos=np.random.random(size=(ndim//2, norbits)), vel=np.random.random(size=(ndim//2, norbits)))) cls.w0s.append(PSP(pos=np.random.random(size=(ndim//2, norbits))*u.kpc, vel=np.random.random(size=(ndim//2, norbits))*u.km/u.s)) cls.energy_return_shapes += [(norbits,)]*2 cls.gradient_return_shapes += [(r_ndim, norbits)]*2 cls.hessian_return_shapes += [(r_ndim, r_ndim, norbits)]*2 # 3D - phase-space position cls.w0s.append(PSP(pos=np.random.random(size=(ndim//2, norbits, ntimes)), vel=np.random.random(size=(ndim//2, norbits, ntimes)))) cls.w0s.append(PSP(pos=np.random.random(size=(ndim//2, norbits, ntimes))*u.kpc, vel=np.random.random(size=(ndim//2, norbits, ntimes))*u.km/u.s)) cls.energy_return_shapes += [(norbits, ntimes)]*2 cls.gradient_return_shapes += [(r_ndim, norbits, ntimes)]*2 cls.hessian_return_shapes += [(r_ndim, r_ndim, norbits, ntimes)]*2 # 2D - orbit cls.w0s.append(ORB(pos=np.random.random(size=(ndim//2, ntimes)), vel=np.random.random(size=(ndim//2, ntimes)))) cls.w0s.append(ORB(pos=np.random.random(size=(ndim//2, ntimes))*u.kpc, vel=np.random.random(size=(ndim//2, ntimes))*u.km/u.s)) cls.energy_return_shapes += [(ntimes,)]*2 cls.gradient_return_shapes += [(r_ndim, ntimes,)]*2 cls.hessian_return_shapes += [(r_ndim, r_ndim, ntimes,)]*2 # 3D - orbit cls.w0s.append(ORB(pos=np.random.random(size=(ndim//2, ntimes, norbits)), vel=np.random.random(size=(ndim//2, ntimes, norbits)))) cls.w0s.append(ORB(pos=np.random.random(size=(ndim//2, ntimes, norbits))*u.kpc, vel=np.random.random(size=(ndim//2, ntimes, norbits))*u.km/u.s)) cls.energy_return_shapes += [(ntimes, norbits)]*2 cls.gradient_return_shapes += [(r_ndim, ntimes, norbits)]*2 cls.hessian_return_shapes += [(r_ndim, r_ndim, ntimes, norbits)]*2 _obj_w0s = cls.w0s[:] for w0, eshp, gshp, hshp in zip(_obj_w0s, cls.energy_return_shapes, cls.gradient_return_shapes, cls.hessian_return_shapes): cls.w0s.append(w0.w(galactic)) cls.energy_return_shapes.append(eshp) cls.gradient_return_shapes.append(gshp) cls.hessian_return_shapes.append(hshp) def test_energy(self): for arr, shp in zip(self.w0s, self.energy_return_shapes): if self.E_unit.is_equivalent(u.one) and hasattr(arr, 'pos') and \ not arr.xyz.unit.is_equivalent(u.one): continue v = self.obj.energy(arr) assert v.shape == shp assert v.unit.is_equivalent(self.E_unit) t = np.zeros(np.array(arr).shape[1:]) + 0.1 self.obj.energy(arr, t=0.1) self.obj.energy(arr, t=t) self.obj.energy(arr, t=0.1*self.obj.units['time']) def test_gradient(self): for arr, shp in zip(self.w0s, self.gradient_return_shapes): if self.E_unit.is_equivalent(u.one) and hasattr(arr, 'pos') and \ not arr.xyz.unit.is_equivalent(u.one): continue v = self.obj.gradient(arr) assert v.shape == shp # TODO: check return units t = np.zeros(np.array(arr).shape[1:]) + 0.1 self.obj.gradient(arr, t=0.1) self.obj.gradient(arr, t=t) self.obj.gradient(arr, t=0.1*self.obj.units['time']) def test_hessian(self): for arr, shp in zip(self.w0s, self.hessian_return_shapes): if self.E_unit.is_equivalent(u.one) and hasattr(arr, 'pos') and \ not arr.xyz.unit.is_equivalent(u.one): continue g = self.obj.hessian(arr) assert g.shape == shp # TODO: check return units
adrn/gala
gala/potential/hamiltonian/tests/helpers.py
Python
mit
5,372
0.001862
import os def get_html_theme_path(): theme_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) return theme_dir
iktakahiro/sphinx_theme_pd
sphinx_theme_pd/__init__.py
Python
mit
136
0
#!/usr/bin/env python # encoding: utf-8 """ Waf tool for ChibiOS build """ from waflib import Errors, Logs, Task, Utils from waflib.TaskGen import after_method, before_method, feature import os import shutil import sys import re import pickle _dynamic_env_data = {} def _load_dynamic_env_data(bld): bldnode = bld.bldnode.make_node('modules/ChibiOS') tmp_str = bldnode.find_node('include_dirs').read() tmp_str = tmp_str.replace(';\n','') tmp_str = tmp_str.replace('-I','') #remove existing -I flags # split, coping with separator idirs = re.split('; ', tmp_str) # create unique list, coping with relative paths idirs2 = [] for d in idirs: if d.startswith('../'): # relative paths from the make build are relative to BUILDROOT d = os.path.join(bld.env.BUILDROOT, d) d = os.path.normpath(d) if not d in idirs2: idirs2.append(d) _dynamic_env_data['include_dirs'] = idirs2 @feature('ch_ap_library', 'ch_ap_program') @before_method('process_source') def ch_dynamic_env(self): # The generated files from configuration possibly don't exist if it's just # a list command (TODO: figure out a better way to address that). if self.bld.cmd == 'list': return if not _dynamic_env_data: _load_dynamic_env_data(self.bld) self.use += ' ch' self.env.append_value('INCLUDES', _dynamic_env_data['include_dirs']) class upload_fw(Task.Task): color='BLUE' always_run = True def run(self): upload_tools = self.env.get_flat('UPLOAD_TOOLS') src = self.inputs[0] return self.exec_command("python '{}/px_uploader.py' '{}'".format(upload_tools, src)) def exec_command(self, cmd, **kw): kw['stdout'] = sys.stdout return super(upload_fw, self).exec_command(cmd, **kw) def keyword(self): return "Uploading" class set_default_parameters(Task.Task): color='CYAN' always_run = True def keyword(self): return "apj_tool" def run(self): rel_default_parameters = self.env.get_flat('DEFAULT_PARAMETERS') abs_default_parameters = os.path.join(self.env.SRCROOT, rel_default_parameters) apj_tool = self.env.APJ_TOOL sys.path.append(os.path.dirname(apj_tool)) from apj_tool import embedded_defaults defaults = embedded_defaults(self.inputs[0].abspath()) if not defaults.find(): print("Error: Param defaults support not found in firmware") sys.exit(1) defaults.set_file(abs_default_parameters) defaults.save() class generate_bin(Task.Task): color='CYAN' run_str="${OBJCOPY} -O binary ${SRC} ${TGT}" always_run = True def keyword(self): return "Generating" def __str__(self): return self.outputs[0].path_from(self.generator.bld.bldnode) class generate_apj(Task.Task): '''generate an apj firmware file''' color='CYAN' always_run = True def keyword(self): return "apj_gen" def run(self): import json, time, base64, zlib img = open(self.inputs[0].abspath(),'rb').read() d = { "board_id": int(self.env.APJ_BOARD_ID), "magic": "APJFWv1", "description": "Firmware for a %s board" % self.env.APJ_BOARD_TYPE, "image": base64.b64encode(zlib.compress(img,9)).decode('utf-8'), "build_time": int(time.time()), "summary": self.env.BOARD, "version": "0.1", "image_size": len(img), "git_identity": self.generator.bld.git_head_hash(short=True), "board_revision": 0 } apj_file = self.outputs[0].abspath() f = open(apj_file, "w") f.write(json.dumps(d, indent=4)) f.close() class build_abin(Task.Task): '''build an abin file for skyviper firmware upload via web UI''' color='CYAN' run_str='${TOOLS_SCRIPTS}/make_abin.sh ${SRC}.bin ${SRC}.abin' always_run = True def keyword(self): return "Generating" def __str__(self): return self.outputs[0].path_from(self.generator.bld.bldnode) class build_intel_hex(Task.Task): '''build an intel hex file for upload with DFU''' color='CYAN' run_str='${TOOLS_SCRIPTS}/make_intel_hex.py ${SRC} ${FLASH_RESERVE_START_KB}' always_run = True def keyword(self): return "Generating" def __str__(self): return self.outputs[0].path_from(self.generator.bld.bldnode) @feature('ch_ap_program') @after_method('process_source') def chibios_firmware(self): self.link_task.always_run = True link_output = self.link_task.outputs[0] bin_target = self.bld.bldnode.find_or_declare('bin/' + link_output.change_ext('.bin').name) apj_target = self.bld.bldnode.find_or_declare('bin/' + link_output.change_ext('.apj').name) generate_bin_task = self.create_task('generate_bin', src=link_output, tgt=bin_target) generate_bin_task.set_run_after(self.link_task) generate_apj_task = self.create_task('generate_apj', src=bin_target, tgt=apj_target) generate_apj_task.set_run_after(generate_bin_task) if self.env.BUILD_ABIN: abin_target = self.bld.bldnode.find_or_declare('bin/' + link_output.change_ext('.abin').name) abin_task = self.create_task('build_abin', src=link_output, tgt=abin_target) abin_task.set_run_after(generate_apj_task) bootloader_bin = self.bld.srcnode.make_node("Tools/bootloaders/%s_bl.bin" % self.env.BOARD) if os.path.exists(bootloader_bin.abspath()) and self.bld.env.HAVE_INTEL_HEX: hex_target = self.bld.bldnode.find_or_declare('bin/' + link_output.change_ext('.hex').name) hex_task = self.create_task('build_intel_hex', src=[bin_target, bootloader_bin], tgt=hex_target) hex_task.set_run_after(generate_bin_task) if self.env.DEFAULT_PARAMETERS: default_params_task = self.create_task('set_default_parameters', src=link_output) default_params_task.set_run_after(self.link_task) generate_bin_task.set_run_after(default_params_task) if self.bld.options.upload: _upload_task = self.create_task('upload_fw', src=apj_target) _upload_task.set_run_after(generate_apj_task) def setup_can_build(cfg): '''enable CAN build. By doing this here we can auto-enable CAN in the build based on the presence of CAN pins in hwdef.dat''' env = cfg.env env.AP_LIBRARIES += [ 'AP_UAVCAN', 'modules/uavcan/libuavcan/src/**/*.cpp', 'modules/uavcan/libuavcan_drivers/stm32/driver/src/*.cpp' ] env.CFLAGS += ['-DUAVCAN_STM32_CHIBIOS=1', '-DUAVCAN_STM32_NUM_IFACES=2'] env.CXXFLAGS += [ '-Wno-error=cast-align', '-DUAVCAN_STM32_CHIBIOS=1', '-DUAVCAN_STM32_NUM_IFACES=2' ] env.DEFINES += [ 'UAVCAN_CPP_VERSION=UAVCAN_CPP03', 'UAVCAN_NO_ASSERTIONS=1', 'UAVCAN_NULLPTR=nullptr' ] env.INCLUDES += [ cfg.srcnode.find_dir('modules/uavcan/libuavcan/include').abspath(), cfg.srcnode.find_dir('modules/uavcan/libuavcan_drivers/stm32/driver/include').abspath() ] cfg.get_board().with_uavcan = True def load_env_vars(env): '''optionally load extra environment variables from env.py in the build directory''' print("Checking for env.py") env_py = os.path.join(env.BUILDROOT, 'env.py') if not os.path.exists(env_py): print("No env.py found") return e = pickle.load(open(env_py, 'rb')) for k in e.keys(): v = e[k] if k == 'ROMFS_FILES': env.ROMFS_FILES += v continue if k in env: if isinstance(env[k], dict): a = v.split('=') env[k][a[0]] = '='.join(a[1:]) print("env updated %s=%s" % (k, v)) elif isinstance(env[k], list): env[k].append(v) print("env appended %s=%s" % (k, v)) else: env[k] = v print("env added %s=%s" % (k, v)) else: env[k] = v print("env set %s=%s" % (k, v)) def configure(cfg): cfg.find_program('make', var='MAKE') #cfg.objcopy = cfg.find_program('%s-%s'%(cfg.env.TOOLCHAIN,'objcopy'), var='OBJCOPY', mandatory=True) cfg.find_program('arm-none-eabi-objcopy', var='OBJCOPY') env = cfg.env bldnode = cfg.bldnode.make_node(cfg.variant) def srcpath(path): return cfg.srcnode.make_node(path).abspath() def bldpath(path): return bldnode.make_node(path).abspath() env.AP_PROGRAM_FEATURES += ['ch_ap_program'] kw = env.AP_LIBRARIES_OBJECTS_KW kw['features'] = Utils.to_list(kw.get('features', [])) + ['ch_ap_library'] env.CH_ROOT = srcpath('modules/ChibiOS') env.AP_HAL_ROOT = srcpath('libraries/AP_HAL_ChibiOS') env.BUILDDIR = bldpath('modules/ChibiOS') env.BUILDROOT = bldpath('') env.SRCROOT = srcpath('') env.PT_DIR = srcpath('Tools/ardupilotwaf/chibios/image') env.UPLOAD_TOOLS = srcpath('Tools/ardupilotwaf') env.CHIBIOS_SCRIPTS = srcpath('libraries/AP_HAL_ChibiOS/hwdef/scripts') env.TOOLS_SCRIPTS = srcpath('Tools/scripts') env.APJ_TOOL = srcpath('Tools/scripts/apj_tool.py') env.SERIAL_PORT = srcpath('/dev/serial/by-id/*_STLink*') # relative paths to pass to make, relative to directory that make is run from env.CH_ROOT_REL = os.path.relpath(env.CH_ROOT, env.BUILDROOT) env.AP_HAL_REL = os.path.relpath(env.AP_HAL_ROOT, env.BUILDROOT) env.BUILDDIR_REL = os.path.relpath(env.BUILDDIR, env.BUILDROOT) mk_custom = srcpath('libraries/AP_HAL_ChibiOS/hwdef/%s/chibios_board.mk' % env.BOARD) mk_common = srcpath('libraries/AP_HAL_ChibiOS/hwdef/common/chibios_board.mk') # see if there is a board specific make file if os.path.exists(mk_custom): env.BOARD_MK = mk_custom else: env.BOARD_MK = mk_common if cfg.options.default_parameters: cfg.msg('Default parameters', cfg.options.default_parameters, color='YELLOW') env.DEFAULT_PARAMETERS = srcpath(cfg.options.default_parameters) # we need to run chibios_hwdef.py at configure stage to generate the ldscript.ld # that is needed by the remaining configure checks import subprocess if env.BOOTLOADER: env.HWDEF = srcpath('libraries/AP_HAL_ChibiOS/hwdef/%s/hwdef-bl.dat' % env.BOARD) env.BOOTLOADER_OPTION="--bootloader" else: env.HWDEF = srcpath('libraries/AP_HAL_ChibiOS/hwdef/%s/hwdef.dat' % env.BOARD) env.BOOTLOADER_OPTION="" hwdef_script = srcpath('libraries/AP_HAL_ChibiOS/hwdef/scripts/chibios_hwdef.py') hwdef_out = env.BUILDROOT if not os.path.exists(hwdef_out): os.mkdir(hwdef_out) try: cmd = "python '{0}' -D '{1}' '{2}' {3}".format(hwdef_script, hwdef_out, env.HWDEF, env.BOOTLOADER_OPTION) ret = subprocess.call(cmd, shell=True) except Exception: cfg.fatal("Failed to process hwdef.dat") if ret != 0: cfg.fatal("Failed to process hwdef.dat ret=%d" % ret) load_env_vars(cfg.env) if env.HAL_WITH_UAVCAN: setup_can_build(cfg) def pre_build(bld): '''pre-build hook to change dynamic sources''' load_env_vars(bld.env) if bld.env.HAL_WITH_UAVCAN: bld.get_board().with_uavcan = True def build(bld): bld( # build hwdef.h from hwdef.dat. This is needed after a waf clean source=bld.path.ant_glob(bld.env.HWDEF), rule="python '${AP_HAL_ROOT}/hwdef/scripts/chibios_hwdef.py' -D '${BUILDROOT}' '%s' %s" % (bld.env.HWDEF, bld.env.BOOTLOADER_OPTION), group='dynamic_sources', target=[bld.bldnode.find_or_declare('hwdef.h'), bld.bldnode.find_or_declare('ldscript.ld')] ) bld( # create the file modules/ChibiOS/include_dirs rule="touch Makefile && BUILDDIR=${BUILDDIR_REL} CHIBIOS=${CH_ROOT_REL} AP_HAL=${AP_HAL_REL} ${CHIBIOS_BUILD_FLAGS} ${CHIBIOS_BOARD_NAME} ${MAKE} pass -f '${BOARD_MK}'", group='dynamic_sources', target=bld.bldnode.find_or_declare('modules/ChibiOS/include_dirs') ) common_src = [bld.bldnode.find_or_declare('hwdef.h'), bld.bldnode.find_or_declare('modules/ChibiOS/include_dirs')] common_src += bld.path.ant_glob('libraries/AP_HAL_ChibiOS/hwdef/common/*.[ch]') common_src += bld.path.ant_glob('libraries/AP_HAL_ChibiOS/hwdef/common/*.mk') common_src += bld.path.ant_glob('modules/ChibiOS/os/hal/**/*.[ch]') common_src += bld.path.ant_glob('modules/ChibiOS/os/hal/**/*.mk') if bld.env.ROMFS_FILES: common_src += [bld.bldnode.find_or_declare('ap_romfs_embedded.h')] ch_task = bld( # build libch.a from ChibiOS sources and hwdef.h rule="BUILDDIR='${BUILDDIR_REL}' CHIBIOS='${CH_ROOT_REL}' AP_HAL=${AP_HAL_REL} ${CHIBIOS_BUILD_FLAGS} ${CHIBIOS_BOARD_NAME} '${MAKE}' lib -f '${BOARD_MK}'", group='dynamic_sources', source=common_src, target=bld.bldnode.find_or_declare('modules/ChibiOS/libch.a') ) ch_task.name = "ChibiOS_lib" bld.env.LIB += ['ch'] bld.env.LIBPATH += ['modules/ChibiOS/'] wraplist = ['strerror_r', 'fclose', 'freopen', 'fread'] for w in wraplist: bld.env.LINKFLAGS += ['-Wl,--wrap,%s' % w]
yonahbox/ardupilot
Tools/ardupilotwaf/chibios.py
Python
gpl-3.0
13,403
0.005596
# -*- coding: utf-8 -*- # Generated by Django 1.9.2 on 2016-04-19 10:32 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0015_auto_20160408_1355'), ] operations = [ migrations.AlterField( model_name='feedback', name='service_code', field=models.CharField(max_length=120, null=True), ), migrations.AlterField( model_name='service', name='service_code', field=models.CharField(max_length=120, unique=True), ), ]
hep7agon/city-feedback-hub
api/migrations/0016_service_code.py
Python
mit
640
0
__copyright__ = """ Copyright (C) 2006, Catalin Marinas <catalin.marinas@gmail.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """ import sys, os import stgit.commands.common from stgit.argparse import opt from stgit.commands.common import * from stgit.utils import * from stgit.out import * from stgit import argparse, stack, git help = 'Synchronise patches with a branch or a series' kind = 'patch' usage = ['[options] [<patch1>] [<patch2>] [<patch3>..<patch4>]'] description = """ For each of the specified patches perform a three-way merge with the same patch in the specified branch or series. The command can be used for keeping patches on several branches in sync. Note that the operation may fail for some patches because of conflicts. The patches in the series must apply cleanly.""" args = [argparse.patch_range(argparse.applied_patches, argparse.unapplied_patches)] options = [ opt('-a', '--all', action = 'store_true', short = 'Synchronise all the applied patches'), opt('-B', '--ref-branch', args = [argparse.stg_branches], short = 'Syncronise patches with BRANCH'), opt('-s', '--series', args = [argparse.files], short = 'Syncronise patches with SERIES')] directory = DirectoryGotoToplevel(log = True) def __check_all(): check_local_changes() check_conflicts() check_head_top_equal(crt_series) def __branch_merge_patch(remote_series, pname): """Merge a patch from a remote branch into the current tree. """ patch = remote_series.get_patch(pname) git.merge_recursive(patch.get_bottom(), git.get_head(), patch.get_top()) def __series_merge_patch(base, patchdir, pname): """Merge a patch file with the given StGIT patch. """ patchfile = os.path.join(patchdir, pname) git.apply_patch(filename = patchfile, base = base) def func(parser, options, args): """Synchronise a range of patches """ if options.ref_branch: remote_series = stack.Series(options.ref_branch) if options.ref_branch == crt_series.get_name(): raise CmdException, 'Cannot synchronise with the current branch' remote_patches = remote_series.get_applied() # the merge function merge_patch(patch, pname) merge_patch = lambda patch, pname: \ __branch_merge_patch(remote_series, pname) elif options.series: patchdir = os.path.dirname(options.series) remote_patches = [] f = file(options.series) for line in f: p = re.sub('#.*$', '', line).strip() if not p: continue remote_patches.append(p) f.close() # the merge function merge_patch(patch, pname) merge_patch = lambda patch, pname: \ __series_merge_patch(patch.get_bottom(), patchdir, pname) else: raise CmdException, 'No remote branch or series specified' applied = crt_series.get_applied() unapplied = crt_series.get_unapplied() if options.all: patches = applied elif len(args) != 0: patches = parse_patches(args, applied + unapplied, len(applied), ordered = True) elif applied: patches = [crt_series.get_current()] else: parser.error('no patches applied') if not patches: raise CmdException, 'No patches to synchronise' __check_all() # only keep the patches to be synchronised sync_patches = [p for p in patches if p in remote_patches] if not sync_patches: raise CmdException, 'No common patches to be synchronised' # pop to the one before the first patch to be synchronised first_patch = sync_patches[0] if first_patch in applied: to_pop = applied[applied.index(first_patch) + 1:] if to_pop: pop_patches(crt_series, to_pop[::-1]) pushed = [first_patch] else: to_pop = [] pushed = [] popped = to_pop + [p for p in patches if p in unapplied] for p in pushed + popped: if p in popped: # push this patch push_patches(crt_series, [p]) if p not in sync_patches: # nothing to synchronise continue # the actual sync out.start('Synchronising "%s"' % p) patch = crt_series.get_patch(p) bottom = patch.get_bottom() top = patch.get_top() # reset the patch backup information. patch.set_top(top, backup = True) # the actual merging (either from a branch or an external file) merge_patch(patch, p) if git.local_changes(verbose = False): # index (cache) already updated by the git merge. The # backup information was already reset above crt_series.refresh_patch(cache_update = False, backup = False, log = 'sync') out.done('updated') else: out.done()
miracle2k/stgit
stgit/commands/sync.py
Python
gpl-2.0
5,549
0.007929
''' modified by Chongxuan Li (chongxuanli1991@gmail.com) ''' import sys sys.path.append('..') sys.path.append('../../data/') import os, numpy as np import scipy.io as sio import time import anglepy as ap import anglepy.paramgraphics as paramgraphics import anglepy.ndict as ndict import theano import theano.tensor as T from collections import OrderedDict import preprocessing as pp import color def zca_dec(zca_mean, zca_winv, data): return zca_winv.dot(data) + zca_mean def labelToMat(y): label = np.unique(y) newy = np.zeros((len(y), len(label))) for i in range(len(y)): newy[i, y[i]] = 1 return newy.T def main(n_z, n_hidden, dataset, seed, comment, gfx=True): # Initialize logdir import time pre_dir = 'models/gpulearn_z_x_mnist_96-(500, 500)' if os.environ.has_key('pretrain') and bool(int(os.environ['pretrain'])) == True: comment+='_pre-train' if os.environ.has_key('prior') and bool(int(os.environ['prior'])) == True: comment+='_prior' pre_dir+='_prior' if os.environ.has_key('cutoff'): comment+=('_'+str(int(os.environ['cutoff']))) if os.environ.has_key('train_residual') and bool(int(os.environ['train_residual'])) == True: comment+='_train-residual' pre_dir+='_train-residual' if os.environ.has_key('sigma_square'): comment+=('_'+str(float(os.environ['sigma_square']))) pre_dir+=('_'+str(float(os.environ['sigma_square']))) pre_dir+='/' logdir = 'results/gpulearn_z_x_'+dataset+'_'+str(n_z)+'-'+str(n_hidden)+comment+'_'+str(int(time.time()))+'/' if not os.path.exists(logdir): os.makedirs(logdir) print 'logdir:', logdir print 'gpulearn_z_x', n_z, n_hidden, dataset, seed with open(logdir+'hook.txt', 'a') as f: print >>f, 'learn_z_x', n_z, n_hidden, dataset, seed np.random.seed(seed) gfx_freq = 1 weight_decay = 0 # Init data if dataset == 'mnist': import anglepy.data.mnist as mnist # MNIST size = 28 train_x, train_y, valid_x, valid_y, test_x, test_y = mnist.load_numpy(size) f_enc, f_dec = pp.Identity() if os.environ.has_key('prior') and bool(int(os.environ['prior'])) == True: color.printBlue('Loading prior') mnist_prior = sio.loadmat('data/mnist_prior/mnist_prior.mat') train_mean_prior = mnist_prior['z_train'] test_mean_prior = mnist_prior['z_test'] valid_mean_prior = mnist_prior['z_valid'] else: train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) valid_mean_prior = np.zeros((n_z,valid_x.shape[1])) x = {'x': train_x.astype(np.float32), 'mean_prior': train_mean_prior.astype(np.float32)} x_train = x x_valid = {'x': valid_x.astype(np.float32), 'mean_prior': valid_mean_prior.astype(np.float32)} x_test = {'x': test_x.astype(np.float32), 'mean_prior': test_mean_prior.astype(np.float32)} L_valid = 1 dim_input = (size,size) n_x = size*size type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'bernoulli' n_train = 50000 n_test = 10000 n_valid = 10000 n_batch = 1000 colorImg = False bernoulli_x = True byteToFloat = False weight_decay = float(n_batch)/n_train elif dataset == 'higgs': size = 28 f_enc, f_dec = pp.Identity() inputfile = 'data/higgs/HIGGS.csv' print 'loading file.' x = np.loadtxt(inputfile, dtype='f4', delimiter=',') print 'done.' y = x[:,0].reshape((-1,1)) x = x[:,1:] x = np.array(x, dtype='float32') y = np.array(y, dtype='float32') n_train = 10000000 n_valid = 500000 n_test = 500000 n_batch = 1000 derived_feat = 'all' if os.environ.has_key('derived_feat'): derived_feat = os.environ['derived_feat'] color.printBlue(derived_feat) if derived_feat == 'high': # Only the 7 high level features. x = x[:, 21:28] elif derived_feat == 'low': # Only the 21 raw features. x = x[:, 0:21] else: pass train_x = x[0:n_train, :].T y_train = y[0:n_train, :] valid_x = x[n_train:n_train+n_valid, :].T y_valid = y[n_train:n_train+n_valid, :] test_x = x[n_train+n_valid:n_train+n_valid+n_test, :].T y_test = y[n_train+n_valid:n_train+n_valid+n_test, :] n_y = 2 n_x = train_x.shape[0] train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) valid_mean_prior = np.zeros((n_z,valid_x.shape[1])) x = {'x': train_x.astype(np.float32), 'mean_prior': train_mean_prior.astype(np.float32)} x_train = x x_valid = {'x': valid_x.astype(np.float32), 'mean_prior': valid_mean_prior.astype(np.float32)} x_test = {'x': test_x.astype(np.float32), 'mean_prior': test_mean_prior.astype(np.float32)} type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'tanh' if os.environ.has_key('nonlinear'): nonlinear = os.environ['nonlinear'] color.printBlue(nonlinear) L_valid = 1 dim_input = (1,size) type_px = 'gaussian' colorImg = False bernoulli_x = False byteToFloat = False weight_decay = float(n_batch)/n_train elif dataset == 'cifar10': import anglepy.data.cifar10 as cifar10 size = 32 train_x, train_y, test_x, test_y = cifar10.load_numpy() train_x = train_x.astype(np.float32).T test_x = test_x.astype(np.float32).T ## f_enc, f_dec = pp.Identity() if os.environ.has_key('prior') and bool(int(os.environ['prior'])) == True: color.printBlue('Loading prior') cifar_prior = sio.loadmat('data/cifar10_prior/cifar10_prior.mat') train_mean_prior = cifar_prior['z_train'] test_mean_prior = cifar_prior['z_test'] else: train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) x = {'x': train_x.astype(np.float32), 'mean_prior': train_mean_prior.astype(np.float32)} x_train = x x_test = {'x': test_x.astype(np.float32), 'mean_prior': test_mean_prior.astype(np.float32)} x_valid = x_test L_valid = 1 n_y = 10 dim_input = (size,size) n_x = x['x'].shape[0] type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'gaussian' if os.environ.has_key('type_px'): type_px = os.environ['type_px'] color.printBlue('Generative type: '+type_px) n_train = 50000 n_test = 10000 n_batch = 5000 colorImg = True bernoulli_x = False byteToFloat = False #weight_decay = float(n_batch)/n_train elif dataset == 'cifar10_zca': import anglepy.data.cifar10 as cifar10 size = 32 train_x, train_y, test_x, test_y = cifar10.load_numpy() train_x = train_x.astype(np.float32).T test_x = test_x.astype(np.float32).T ## f_enc, f_dec = pp.Identity() zca_mean, zca_w, zca_winv = cifar10.zca(train_x) train_x = zca_w.dot(train_x-zca_mean) test_x = zca_w.dot(test_x-zca_mean) if os.environ.has_key('prior') and bool(int(os.environ['prior'])) == True: color.printBlue('Loading prior') cifar_prior = sio.loadmat('data/cifar10_prior/cifar10_prior.mat') train_mean_prior = cifar_prior['z_train'] test_mean_prior = cifar_prior['z_test'] else: train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) x = {'x': train_x.astype(np.float32), 'mean_prior': train_mean_prior.astype(np.float32)} x_train = x x_test = {'x': test_x.astype(np.float32), 'mean_prior': test_mean_prior.astype(np.float32)} x_valid = x_test L_valid = 1 dim_input = (size,size) n_y = 10 n_x = x['x'].shape[0] type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'gaussian' n_train = 50000 n_test = 10000 n_batch = 5000 colorImg = True bernoulli_x = False byteToFloat = False if os.environ.has_key('type_px'): type_px = os.environ['type_px'] color.printBlue('Generative type: '+type_px) nonlinear = 'softplus' elif dataset == 'mnist_basic': # MNIST size = 28 data_dir = os.environ['ML_DATA_PATH']+'/mnist_variations/'+'mnist_' tmp = sio.loadmat(data_dir+'train.mat') #color.printRed(data_dir+'train.mat') train_x = tmp['x_train'].T train_y = tmp['t_train'].T.astype(np.int32) # validation 2000 valid_x = train_x[:,10000:] valid_y = train_y[10000:] train_x = train_x[:,:10000] train_y = train_y[:10000] tmp = sio.loadmat(data_dir+'test.mat') test_x = tmp['x_test'].T test_y = tmp['t_test'].T.astype(np.int32) print train_x.shape print train_y.shape print test_x.shape print test_y.shape f_enc, f_dec = pp.Identity() train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) valid_mean_prior = np.zeros((n_z,valid_x.shape[1])) ''' x = {'x': train_x.astype(np.float32), 'y': labelToMat(train_y).astype(np.float32)} x_train = x x_valid = {'x': valid_x.astype(np.float32), 'y': labelToMat(valid_y).astype(np.float32)} x_test = {'x': test_x.astype(np.float32), 'y': labelToMat(test_y).astype(np.float32)} ''' x = {'x': train_x.astype(np.float32), 'mean_prior': train_mean_prior.astype(np.float32)} x_train = x x_valid = {'x': valid_x.astype(np.float32), 'mean_prior': valid_mean_prior.astype(np.float32)} x_test = {'x': test_x.astype(np.float32), 'mean_prior': test_mean_prior.astype(np.float32)} L_valid = 1 dim_input = (size,size) n_x = size*size n_y = 10 type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'bernoulli' n_train = 10000 n_valid = 2000 n_test = 50000 n_batch = 200 colorImg = False bernoulli_x = True byteToFloat = False weight_decay = float(n_batch)/n_train elif dataset == 'rectangle': # MNIST size = 28 data_dir = os.environ['ML_DATA_PATH']+'/mnist_variations/'+'rectangles_' tmp = sio.loadmat(data_dir+'train.mat') color.printRed(data_dir+'train.mat') train_x = tmp['x_train'].T train_y = tmp['t_train'].T.astype(np.int32) # validation 2000 valid_x = train_x[:,1000:] valid_y = train_y[1000:] train_x = train_x[:,:1000] train_y = train_y[:1000] tmp = sio.loadmat(data_dir+'test.mat') test_x = tmp['x_test'].T test_y = tmp['t_test'].T.astype(np.int32) print train_x.shape print train_y.shape print test_x.shape print test_y.shape f_enc, f_dec = pp.Identity() train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) valid_mean_prior = np.zeros((n_z,valid_x.shape[1])) ''' x = {'x': train_x.astype(np.float32), 'y': labelToMat(train_y).astype(np.float32)} x_train = x x_valid = {'x': valid_x.astype(np.float32), 'y': labelToMat(valid_y).astype(np.float32)} x_test = {'x': test_x.astype(np.float32), 'y': labelToMat(test_y).astype(np.float32)} ''' x = {'x': train_x.astype(np.float32), 'mean_prior': train_mean_prior.astype(np.float32)} x_train = x x_valid = {'x': valid_x.astype(np.float32), 'mean_prior': valid_mean_prior.astype(np.float32)} x_test = {'x': test_x.astype(np.float32), 'mean_prior': test_mean_prior.astype(np.float32)} L_valid = 1 dim_input = (size,size) n_x = size*size n_y = 2 type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'bernoulli' n_train = 1000 n_valid = 200 n_test = 50000 n_batch = 500 colorImg = False bernoulli_x = True byteToFloat = False weight_decay = float(n_batch)/n_train #print '3', n_x elif dataset == 'convex': # MNIST size = 28 data_dir = os.environ['ML_DATA_PATH']+'/mnist_variations/'+'convex_' tmp = sio.loadmat(data_dir+'train.mat') train_x = tmp['x_train'].T train_y = tmp['t_train'].T.astype(np.int32) # validation 2000 valid_x = train_x[:,6000:] valid_y = train_y[6000:] train_x = train_x[:,:6000] train_y = train_y[:6000] tmp = sio.loadmat(data_dir+'test.mat') test_x = tmp['x_test'].T test_y = tmp['t_test'].T.astype(np.int32) print train_x.shape print train_y.shape print test_x.shape print test_y.shape f_enc, f_dec = pp.Identity() train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) valid_mean_prior = np.zeros((n_z,valid_x.shape[1])) ''' x = {'x': train_x.astype(np.float32), 'y': labelToMat(train_y).astype(np.float32)} x_train = x x_valid = {'x': valid_x.astype(np.float32), 'y': labelToMat(valid_y).astype(np.float32)} x_test = {'x': test_x.astype(np.float32), 'y': labelToMat(test_y).astype(np.float32)} ''' x = {'x': train_x.astype(np.float32), 'mean_prior': train_mean_prior.astype(np.float32)} x_train = x x_valid = {'x': valid_x.astype(np.float32), 'mean_prior': valid_mean_prior.astype(np.float32)} x_test = {'x': test_x.astype(np.float32), 'mean_prior': test_mean_prior.astype(np.float32)} L_valid = 1 dim_input = (size,size) n_x = size*size n_y = 2 type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'bernoulli' n_train = 6000 n_valid = 2000 n_test = 50000 n_batch = 120 colorImg = False bernoulli_x = True byteToFloat = False weight_decay = float(n_batch)/n_train elif dataset == 'rectangle_image': # MNIST size = 28 data_dir = os.environ['ML_DATA_PATH']+'/mnist_variations/'+'rectangles_im_' tmp = sio.loadmat(data_dir+'train.mat') train_x = tmp['x_train'].T train_y = tmp['t_train'].T.astype(np.int32) # validation 2000 valid_x = train_x[:,10000:] valid_y = train_y[10000:] train_x = train_x[:,:10000] train_y = train_y[:10000] tmp = sio.loadmat(data_dir+'test.mat') test_x = tmp['x_test'].T test_y = tmp['t_test'].T.astype(np.int32) print train_x.shape print train_y.shape print test_x.shape print test_y.shape f_enc, f_dec = pp.Identity() train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) valid_mean_prior = np.zeros((n_z,valid_x.shape[1])) ''' x = {'x': train_x.astype(np.float32), 'y': labelToMat(train_y).astype(np.float32)} x_train = x x_valid = {'x': valid_x.astype(np.float32), 'y': labelToMat(valid_y).astype(np.float32)} x_test = {'x': test_x.astype(np.float32), 'y': labelToMat(test_y).astype(np.float32)} ''' x = {'x': train_x.astype(np.float32), 'mean_prior': train_mean_prior.astype(np.float32)} x_train = x x_valid = {'x': valid_x.astype(np.float32), 'mean_prior': valid_mean_prior.astype(np.float32)} x_test = {'x': test_x.astype(np.float32), 'mean_prior': test_mean_prior.astype(np.float32)} L_valid = 1 dim_input = (size,size) n_x = size*size n_y = 2 type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'bernoulli' n_train = 10000 n_valid = 2000 n_test = 50000 n_batch = 200 colorImg = False bernoulli_x = True byteToFloat = False weight_decay = float(n_batch)/n_train elif dataset == 'mnist_rot': # MNIST size = 28 data_dir = os.environ['ML_DATA_PATH']+'/mnist_variations/'+'mnist_all_rotation_normalized_float_' tmp = sio.loadmat(data_dir+'train.mat') train_x = tmp['x_train'].T train_y = tmp['t_train'].T.astype(np.int32) # validation 2000 valid_x = train_x[:,10000:] valid_y = train_y[10000:] train_x = train_x[:,:10000] train_y = train_y[:10000] tmp = sio.loadmat(data_dir+'test.mat') test_x = tmp['x_test'].T test_y = tmp['t_test'].T.astype(np.int32) print train_x.shape print train_y.shape print test_x.shape print test_y.shape train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) valid_mean_prior = np.zeros((n_z,valid_x.shape[1])) f_enc, f_dec = pp.Identity() x = {'x': train_x.astype(np.float32), 'mean_prior': train_mean_prior.astype(np.float32)} x_train = x x_valid = {'x': valid_x.astype(np.float32), 'mean_prior': valid_mean_prior.astype(np.float32)} x_test = {'x': test_x.astype(np.float32), 'mean_prior': test_mean_prior.astype(np.float32)} L_valid = 1 dim_input = (size,size) n_x = size*size n_y = 10 type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'bernoulli' n_train = 10000 n_valid = 2000 n_test = 50000 n_batch = 200 colorImg = False bernoulli_x = True byteToFloat = False weight_decay = float(n_batch)/n_train elif dataset == 'mnist_back_rand': # MNIST size = 28 data_dir = os.environ['ML_DATA_PATH']+'/mnist_variations/'+'mnist_background_random_' tmp = sio.loadmat(data_dir+'train.mat') train_x = tmp['x_train'].T train_y = tmp['t_train'].T.astype(np.int32) # validation 2000 valid_x = train_x[:,10000:] valid_y = train_y[10000:] train_x = train_x[:,:10000] train_y = train_y[:10000] tmp = sio.loadmat(data_dir+'test.mat') test_x = tmp['x_test'].T test_y = tmp['t_test'].T.astype(np.int32) print train_x.shape print train_y.shape print test_x.shape print test_y.shape train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) valid_mean_prior = np.zeros((n_z,valid_x.shape[1])) f_enc, f_dec = pp.Identity() x = {'x': train_x.astype(np.float32), 'mean_prior': train_mean_prior.astype(np.float32)} x_train = x x_valid = {'x': valid_x.astype(np.float32), 'mean_prior': valid_mean_prior.astype(np.float32)} x_test = {'x': test_x.astype(np.float32), 'mean_prior': test_mean_prior.astype(np.float32)} L_valid = 1 dim_input = (size,size) n_x = size*size n_y = 10 type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'bernoulli' n_train = 10000 n_valid = 2000 n_test = 50000 n_batch = 200 colorImg = False bernoulli_x = True byteToFloat = False weight_decay = float(n_batch)/n_train elif dataset == 'mnist_back_image': # MNIST size = 28 data_dir = os.environ['ML_DATA_PATH']+'/mnist_variations/'+'mnist_background_images_' tmp = sio.loadmat(data_dir+'train.mat') train_x = tmp['x_train'].T train_y = tmp['t_train'].T.astype(np.int32) # validation 2000 valid_x = train_x[:,10000:] valid_y = train_y[10000:] train_x = train_x[:,:10000] train_y = train_y[:10000] tmp = sio.loadmat(data_dir+'test.mat') test_x = tmp['x_test'].T test_y = tmp['t_test'].T.astype(np.int32) print train_x.shape print train_y.shape print test_x.shape print test_y.shape train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) valid_mean_prior = np.zeros((n_z,valid_x.shape[1])) f_enc, f_dec = pp.Identity() x = {'x': train_x.astype(np.float32), 'mean_prior': train_mean_prior.astype(np.float32)} x_train = x x_valid = {'x': valid_x.astype(np.float32), 'mean_prior': valid_mean_prior.astype(np.float32)} x_test = {'x': test_x.astype(np.float32), 'mean_prior': test_mean_prior.astype(np.float32)} L_valid = 1 dim_input = (size,size) n_x = size*size n_y = 10 type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'bernoulli' n_train = 10000 n_valid = 2000 n_test = 50000 n_batch = 200 colorImg = False bernoulli_x = True byteToFloat = False weight_decay = float(n_batch)/n_train elif dataset == 'mnist_back_image_rot': # MNIST size = 28 data_dir = os.environ['ML_DATA_PATH']+'/mnist_variations/'+'mnist_all_background_images_rotation_normalized_' tmp = sio.loadmat(data_dir+'train.mat') train_x = tmp['x_train'].T train_y = tmp['t_train'].T.astype(np.int32) # validation 2000 valid_x = train_x[:,10000:] valid_y = train_y[10000:] train_x = train_x[:,:10000] train_y = train_y[:10000] tmp = sio.loadmat(data_dir+'test.mat') test_x = tmp['x_test'].T test_y = tmp['t_test'].T.astype(np.int32) print train_x.shape print train_y.shape print test_x.shape print test_y.shape train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) valid_mean_prior = np.zeros((n_z,valid_x.shape[1])) f_enc, f_dec = pp.Identity() x = {'x': train_x.astype(np.float32), 'mean_prior': train_mean_prior.astype(np.float32)} x_train = x x_valid = {'x': valid_x.astype(np.float32), 'mean_prior': valid_mean_prior.astype(np.float32)} x_test = {'x': test_x.astype(np.float32), 'mean_prior': test_mean_prior.astype(np.float32)} L_valid = 1 dim_input = (size,size) n_x = size*size n_y = 10 type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'bernoulli' n_train = 10000 n_valid = 2000 n_test = 50000 n_batch = 200 colorImg = False bernoulli_x = True byteToFloat = False weight_decay = float(n_batch)/n_train elif dataset == 'mnist_binarized': #import anglepy.data.mnist_binarized as mnist_binarized # MNIST import anglepy.data.mnist as mnist size = 28 data_dir = '/home/lichongxuan/regbayes2/data/mat_data/'+'binarized_mnist_' tmp = sio.loadmat(data_dir+'train.mat') train_x = tmp['x_train'].T #train_y = tmp['t_train'].T.astype(np.int32) tmp = sio.loadmat(data_dir+'test.mat') test_x = tmp['x_test'].T tmp = sio.loadmat(data_dir+'valid.mat') #print tmp.keys() valid_x = tmp['x_valid'].T #test_y = tmp['t_test'].T.astype(np.int32) f_enc, f_dec = pp.Identity() train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) valid_mean_prior = np.zeros((n_z,valid_x.shape[1])) train_x = np.hstack((train_x, valid_x)).astype(np.float32) train_mean_prior = np.hstack((train_mean_prior,valid_mean_prior)).astype(np.float32) print train_mean_prior.shape print train_x.shape x = {'x': train_x.astype(np.float32), 'mean_prior':train_mean_prior.astype(np.float32)} x_train = x x_valid = {'x': test_x.astype(np.float32),'mean_prior':test_mean_prior.astype(np.float32)} x_test = x_valid L_valid = 1 dim_input = (28,28) n_x = 28*28 n_y = 10 type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'bernoulli' n_train = 60000 n_valid = 10000 n_batch = 1000 colorImg = False bernoulli_x = False byteToFloat = False weight_decay = float(n_batch)/n_train elif dataset == 'mnist_binarized_own': #import anglepy.data.mnist_binarized as mnist_binarized # MNIST import anglepy.data.mnist as mnist size = 28 data_dir = 'data/mnist_binarized_own/'+'binarized_mnist_' tmp = sio.loadmat(data_dir+'train.mat') train_x = tmp['train_x'].T #train_y = tmp['t_train'].T.astype(np.int32) tmp = sio.loadmat(data_dir+'test.mat') test_x = tmp['test_x'].T tmp = sio.loadmat(data_dir+'valid.mat') #print tmp.keys() valid_x = tmp['valid_x'].T #test_y = tmp['t_test'].T.astype(np.int32) f_enc, f_dec = pp.Identity() train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) valid_mean_prior = np.zeros((n_z,valid_x.shape[1])) train_x = np.hstack((train_x, valid_x)).astype(np.float32) train_mean_prior = np.hstack((train_mean_prior,valid_mean_prior)).astype(np.float32) print train_mean_prior.shape print train_x.shape x = {'x': train_x.astype(np.float32), 'mean_prior':train_mean_prior.astype(np.float32)} x_train = x x_valid = {'x': test_x.astype(np.float32),'mean_prior':test_mean_prior.astype(np.float32)} x_test = x_valid L_valid = 1 dim_input = (28,28) n_x = 28*28 n_y = 10 type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' nonlinear = 'softplus' type_px = 'bernoulli' n_train = 60000 n_valid = 10000 n_batch = 1000 colorImg = False bernoulli_x = False byteToFloat = False weight_decay = float(n_batch)/n_train elif dataset == 'freyface': # Frey's face import anglepy.data.freyface as freyface n_train = 1600 train_x = freyface.load_numpy() np.random.shuffle(train_x) x = {'x': train_x.T[:,0:n_train]} x_valid = {'x': train_x.T[:,n_train:]} L_valid = 1 dim_input = (28,20) n_x = 20*28 type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'bounded01' nonlinear = 'tanh' #tanh works better with freyface #'softplus' n_batch = 100 colorImg = False bernoulli_x = False byteToFloat = False weight_decay = float(n_batch)/n_train elif dataset == 'freyface_pca': # Frey's face import anglepy.data.freyface as freyface n_train = 1600 train_x = freyface.load_numpy().T np.random.shuffle(train_x.T) f_enc, f_dec, _ = pp.PCA(train_x, 0.99) train_x = f_enc(train_x) x = {'x': train_x[:,0:n_train].astype(np.float32)} x_valid = {'x': train_x[:,n_train:].astype(np.float32)} L_valid = 1 dim_input = (28,20) n_x = train_x.shape[0] type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' n_batch = 100 colorImg = False bernoulli_x = False byteToFloat = False elif dataset == 'freyface_bernoulli': # Frey's face import anglepy.data.freyface as freyface n_train = 1600 train_x = freyface.load_numpy().T np.random.shuffle(train_x.T) x = {'x': train_x[:,0:n_train].astype(np.float32)} x_valid = {'x': train_x[:,n_train:].astype(np.float32)} L_valid = 1 dim_input = (28,20) n_x = train_x.shape[0] type_pz = 'gaussianmarg' type_px = 'bernoulli' nonlinear = 'softplus' n_batch = 100 colorImg = False bernoulli_x = False byteToFloat = False elif dataset == 'norb_48_24300_pca': size = 48 train_x, train_y, test_x, test_y = np.load('data/norb/norb_48_24300.npy') _x = {'x': train_x, 'y': train_y} #ndict.shuffleCols(_x) #train_x = _x['x'] #train_y = _x['y'] #print _x['x'][:,:10000].shape # Do PCA print 'pca' f_enc, f_dec, pca_params = pp.PCA(_x['x'][:,:10000], cutoff=500, toFloat=False) ndict.savez(pca_params, logdir+'pca_params') print 'done' train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) x = {'x': f_enc(train_x).astype(np.float32), 'mean_prior' : train_mean_prior.astype(np.float32)} x_valid = {'x': f_enc(test_x).astype(np.float32), 'mean_prior' : test_mean_prior.astype(np.float32)} x_test = {'x': f_enc(test_x).astype(np.float32), 'mean_prior' : test_mean_prior.astype(np.float32)} x_train = x print x['x'].shape print x['mean_prior'].shape L_valid = 1 n_y = 5 n_x = x['x'].shape[0] dim_input = (size,size) type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' n_batch = 900 #23400/900 = 27 colorImg = False #binarize = False bernoulli_x = False byteToFloat = False weight_decay= float(n_batch)/train_x.shape[1] elif dataset == 'norb': # small NORB dataset import anglepy.data.norb as norb size = 48 train_x, train_y, test_x, test_y = norb.load_resized(size, binarize_y=True) x = {'x': train_x.astype(np.float32)} x_valid = {'x': test_x.astype(np.float32)} L_valid = 1 n_x = train_x.shape[0] dim_input = (size,size) type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' n_batch = 900 #23400/900 = 27 colorImg = False #binarize = False byteToFloat = False bernoulli_x = False weight_decay= float(n_batch)/train_x.shape[1] elif dataset == 'norb_pca': # small NORB dataset import anglepy.data.norb as norb size = 48 train_x, train_y, test_x, test_y = norb.load_resized(size, binarize_y=True) f_enc, f_dec, _ = pp.PCA(train_x, 0.999) #f_enc, f_dec, _ = pp.normalize_random(train_x) train_x = f_enc(train_x) test_x = f_enc(test_x) x = {'x': train_x.astype(np.float32)} x_valid = {'x': test_x.astype(np.float32)} L_valid = 1 n_x = train_x.shape[0] dim_input = (size,size) type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' n_batch = 900 #23400/900 = 27 colorImg = False #binarize = False bernoulli_x = False byteToFloat = False weight_decay= float(n_batch)/train_x.shape[1] elif dataset == 'norb_normalized': # small NORB dataset import anglepy.data.norb as norb size = 48 train_x, train_y, test_x, test_y = norb.load_resized(size, binarize_y=True) #f_enc, f_dec, _ = pp.PCA(train_x, 0.99) #f_enc, f_dec, _ = pp.normalize_random(train_x) f_enc, f_dec, _ = pp.normalize(train_x) train_x = f_enc(train_x) test_x = f_enc(test_x) x = {'x': train_x.astype(np.float32)} x_valid = {'x': test_x.astype(np.float32)} L_valid = 1 n_x = train_x.shape[0] dim_input = (size,size) type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' n_batch = 900 #23400/900 = 27 colorImg = False #binarize = False bernoulli_x = False byteToFloat = False weight_decay= float(n_batch)/train_x.shape[1] elif dataset == 'svhn': # SVHN dataset #import anglepy.data.svhn as svhn size = 32 train_x, train_y, test_x, test_y = np.load('data/svhn/svhn.npy') #extra_x, extra_y = svhn.load_numpy_extra(False, binarize_y=True) #x = {'x': np.hstack((train_x, extra_x)), 'y':np.hstack((train_y, extra_y))} #ndict.shuffleCols(x) x = {'x' : train_x, 'y': train_y} print 'Performing PCA, can take a few minutes... ' cutoff = 300 if os.environ.has_key('cutoff'): cutoff = int(os.environ['cutoff']) color.printBlue('cutoff: '+str(cutoff)) f_enc, f_dec, pca_params = pp.PCA(x['x'][:,:10000], cutoff=cutoff, toFloat=True) ndict.savez(pca_params, logdir+'pca_params') print 'Done.' n_y = 10 if os.environ.has_key('prior') and bool(int(os.environ['prior'])) == True: color.printBlue('Loading prior') train_mean_prior, train_y1, test_mean_prior, test_y1 = np.load('data/svhn/svhn_prior.npy') print np.sum((train_y1 == train_y).astype(np.int32)) print np.sum((test_y1 == test_y).astype(np.int32)) else: train_mean_prior = np.zeros((n_z,train_x.shape[1])) test_mean_prior = np.zeros((n_z,test_x.shape[1])) x = {'x': f_enc(x['x']).astype(np.float32), 'mean_prior':train_mean_prior.astype(np.float32)} x_train = x x_test = {'x': f_enc(test_x).astype(np.float32), 'mean_prior':test_mean_prior.astype(np.float32)} x_valid = x_test print x_train['x'].shape print x_test['x'].shape print train_y.shape print test_y.shape print x_train['mean_prior'].shape print x_test['mean_prior'].shape L_valid = 1 n_x = x['x'].shape[0] dim_input = (size,size) n_batch = 5000 n_train = 604388 n_valid = 26032 n_test = 26032 colorImg = True bernoulli_x = False byteToFloat = False type_qz = 'gaussianmarg' type_pz = 'gaussianmarg' type_px = 'gaussian' nonlinear = 'softplus' else: print 'invalid data set' exit() #print '2', n_x # Construct model from anglepy.models import GPUVAE_Z_X learning_rate1 = 3e-4 if os.environ.has_key('stepsize'): learning_rate1 = float(os.environ['stepsize']) color.printBlue(str(learning_rate1)) if os.environ.has_key('preoption'): pre = int(os.environ['preoption']) if pre == 1: updates = get_adam_optimizer(learning_rate=3e-4, decay1=0.9, decay2=0.999, weight_decay=0) elif pre ==2: updates = get_adam_optimizer(learning_rate=3e-4, decay1=0.9, decay2=0.999, weight_decay=weight_decay) else: raise Exception('Prepotion unknown') with open(logdir+'hook.txt', 'a') as f: print >>f, 'preoption ' + str(pre) else: updates = get_adam_optimizer(learning_rate=learning_rate1, weight_decay=weight_decay) #print '1', n_x model = GPUVAE_Z_X(updates, n_x, n_hidden, n_z, n_hidden[::-1], nonlinear, nonlinear, type_px, type_qz=type_qz, type_pz=type_pz, prior_sd=100, init_sd=1e-3) if os.environ.has_key('pretrain') and bool(int(os.environ['pretrain'])) == True: #dir = '/Users/dpkingma/results/learn_z_x_mnist_binarized_50-(500, 500)_mog_1412689061/' #dir = '/Users/dpkingma/results/learn_z_x_svhn_bernoulli_300-(1000, 1000)_l1l2_sharing_and_1000HU_1412676966/' #dir = '/Users/dpkingma/results/learn_z_x_svhn_bernoulli_300-(1000, 1000)_l1l2_sharing_and_1000HU_1412695481/' #dir = '/Users/dpkingma/results/learn_z_x_mnist_binarized_50-(500, 500)_mog_1412695455/' #dir = '/Users/dpkingma/results/gpulearn_z_x_svhn_pca_300-(500, 500)__1413904756/' if len(n_hidden) == 1: color.printBlue('pre-training-1-layer') layer_str = '-500' elif len(n_hidden) == 2: color.printBlue('pre-training-2-layers') layer_str = '-(500, 500)' else: raise Exception() pre_str = 'models/gpulearn_z_x_' if dataset == 'mnist': #dir = pre_str + 'mnist_'+str(n_z)+layer_str+'_longrun/' dir = 'models/mnist_z_x_50-500-500_longrun/' elif dataset == 'mnist_rot': dir = pre_str + 'mnist_rot_'+str(n_z)+layer_str+'_longrun/' elif dataset == 'mnist_back_rand': dir = pre_str + 'mnist_back_rand_'+str(n_z)+layer_str+'_longrun/' elif dataset == 'mnist_back_image': dir = pre_str + 'mnist_back_image_'+str(n_z)+layer_str+'_longrun/' elif dataset == 'mnist_back_image_rot': dir = pre_str + 'mnist_back_image_rot_'+str(n_z)+layer_str+'_longrun/' elif dataset == 'rectangle': dir = pre_str + 'rectangle_'+str(n_z)+layer_str+'_longrun/' elif dataset == 'rectangle_image': dir = pre_str + 'rectangle_image_'+str(n_z)+layer_str+'_longrun/' elif dataset == 'convex': dir = pre_str + 'convex_'+str(n_z)+layer_str+'_longrun/' elif dataset == 'mnist_basic': dir = pre_str + 'mnist_basic_'+str(n_z)+layer_str+'_longrun/' if dataset == 'svhn': if (os.environ.has_key('prior') and bool(int(os.environ['prior'])) == True): print 'prior-------------------' pre_dir = 'results/gpulearn_z_x_svhn_'+str(n_z)+'-500-500_prior_'+str(cutoff)+'_longrun/' else: pre_dir = 'results/gpulearn_z_x_svhn_'+str(n_z)+'-500-500_'+str(cutoff)+'_longrun/' color.printBlue(pre_dir) w = ndict.loadz(pre_dir+'w_best.ndict.tar.gz') v = ndict.loadz(pre_dir+'v_best.ndict.tar.gz') elif n_z == 50: print 'n_z = 50', dir w = ndict.loadz(dir+'w_best.ndict.tar.gz') v = ndict.loadz(dir+'v_best.ndict.tar.gz') else: print 'n_z != 50' w = ndict.loadz(pre_dir+'w_best.ndict.tar.gz') v = ndict.loadz(pre_dir+'v_best.ndict.tar.gz') ndict.set_value2(model.w, w) ndict.set_value2(model.v, v) # Some statistics for optimization ll_valid_stats = [-1e99, 0] # Progress hook def hook(epoch, t, ll): if epoch%10 != 0: return n_batch_n = n_batch if n_batch_n > n_valid: n_batch_n = n_valid ll_valid, _ = model.est_loglik(x_valid, n_samples=L_valid, n_batch=n_batch_n, byteToFloat=byteToFloat) ll_test = ll_valid #if not dataset == 'mnist_binarized': if not dataset == 'svhn': ll_test, _ = model.est_loglik(x_test, n_samples=L_valid, n_batch=n_batch, byteToFloat=byteToFloat) # Log ndict.savez(ndict.get_value(model.v), logdir+'v') ndict.savez(ndict.get_value(model.w), logdir+'w') def infer(data, n_batch=1000): #print '--', n_batch size = data['x'].shape[1] res = np.zeros((sum(n_hidden), size)) res1 = np.zeros((n_z,size)) res2 = np.zeros((n_hidden[-1],size)) res3 = np.zeros((n_z,size)) for i in range(0, size, n_batch): idx_to = min(size, i+n_batch) x_batch = ndict.getCols(data, i, idx_to) # may have bugs nn_batch = idx_to - i _x, _z, _z_confab = model.gen_xz(x_batch, {}, nn_batch) x_samples = _z_confab['x'] for (hi, hidden) in enumerate(_z_confab['hidden']): res[sum(n_hidden[:hi]):sum(n_hidden[:hi+1]),i:i+nn_batch] = hidden res1[:,i:i+nn_batch] = _z_confab['mean'] res2[:,i:i+nn_batch] = _z_confab['hidden'][-1] res3[:,i:i+nn_batch] = _z_confab['logvar'] #print '--' return res, res1, res2, res3 #print '..', n_batch #if not dataset == 'mnist_binarized': if not dataset == 'svhn': z_test, z_test1, z_test2, vv_test = infer(x_test) z_train, z_train1, z_train2, vv_train = infer(x_train) if ll_valid > ll_valid_stats[0]: ll_valid_stats[0] = ll_valid ll_valid_stats[1] = 0 ndict.savez(ndict.get_value(model.v), logdir+'v_best') ndict.savez(ndict.get_value(model.w), logdir+'w_best') #if not dataset == 'mnist_binarized': if dataset == 'svhn': pass #np.save(logdir+'full_latent', ('z_test': z_test, 'train_y':train_y, 'test_y':test_y, 'z_train': z_train)) #np.save(logdir+'last_latent', ('z_test': z_test2, 'train_y':train_y, 'test_y':test_y, 'z_train': z_train2)) else: sio.savemat(logdir+'full_latent.mat', {'z_test': z_test, 'train_y':train_y, 'test_y':test_y, 'z_train': z_train}) sio.savemat(logdir+'mean_latent.mat', {'z_test': z_test1, 'train_y':train_y, 'test_y':test_y, 'z_train': z_train1}) sio.savemat(logdir+'last_latent.mat', {'z_test': z_test2, 'train_y':train_y, 'test_y':test_y, 'z_train': z_train2}) else: ll_valid_stats[1] += 1 # Stop when not improving validation set performance in 100 iterations if ll_valid_stats[1] > 1000: print "Finished" with open(logdir+'hook.txt', 'a') as f: print >>f, "Finished" exit() print epoch, t, ll, ll_valid, ll_test, ll_valid_stats with open(logdir+'hook.txt', 'a') as f: print >>f, epoch, t, ll, ll_valid, ll_test, ll_valid_stats ''' if dataset != 'svhn': l_t, px_t, pz_t, qz_t = model.test(x_train, n_samples=1, n_batch=n_batch, byteToFloat=byteToFloat) print 'Elogpx', px_t, 'Elogpz', pz_t, '-Elogqz', qz_t #sigma_square = float(os.environ['sigma_square']) print 'var', np.mean(np.exp(vv_train)), 'q', np.mean(np.abs(z_train1)), 'p', np.mean(np.abs(train_mean_prior)), 'd', np.mean(np.abs(z_train1-train_mean_prior)) with open(logdir+'hook.txt', 'a') as f: print >>f, 'Elogpx', px_t, 'Elogpz', pz_t, '-Elogqz', qz_t print >>f, 'var', np.mean(np.exp(vv_train)), 'q', np.mean(np.abs(z_train1)), 'p', np.mean(np.abs(train_mean_prior)), 'd', np.mean(np.abs(z_train1-train_mean_prior)) ''' # Graphics if gfx and epoch%gfx_freq == 0: #tail = '.png' tail = '-'+str(epoch)+'.png' v = {i: model.v[i].get_value() for i in model.v} w = {i: model.w[i].get_value() for i in model.w} if 'pca' not in dataset and 'random' not in dataset and 'normalized' not in dataset and 'zca' not in dataset: if 'w0' in v: image = paramgraphics.mat_to_img(f_dec(v['w0'][:].T), dim_input, True, colorImg=colorImg) image.save(logdir+'q_w0'+tail, 'PNG') image = paramgraphics.mat_to_img(f_dec(w['out_w'][:]), dim_input, True, colorImg=colorImg) image.save(logdir+'out_w'+tail, 'PNG') if 'out_unif' in w: image = paramgraphics.mat_to_img(f_dec(w['out_unif'].reshape((-1,1))), dim_input, True, colorImg=colorImg) image.save(logdir+'out_unif'+tail, 'PNG') if n_z == 2: n_width = 10 import scipy.stats z = {'z':np.zeros((2,n_width**2))} for i in range(0,n_width): for j in range(0,n_width): z['z'][0,n_width*i+j] = scipy.stats.norm.ppf(float(i)/n_width+0.5/n_width) z['z'][1,n_width*i+j] = scipy.stats.norm.ppf(float(j)/n_width+0.5/n_width) x, _, _z = model.gen_xz({}, z, n_width**2) if dataset == 'mnist': x = 1 - _z['x'] image = paramgraphics.mat_to_img(f_dec(_z['x']), dim_input) image.save(logdir+'2dmanifold'+tail, 'PNG') else: if 'norb' in dataset or dataset=='svhn': nn_batch_nn = 64 else: nn_batch_nn = 144 if not(os.environ.has_key('train_residual') and bool(int(os.environ['train_residual'])) == True) and (os.environ.has_key('prior') and bool(int(os.environ['prior'])) == True): mp_in = np.random.randint(0,x_train['mean_prior'].shape[1],nn_batch_nn) m_p = x_train['mean_prior'][:,mp_in] s_s = 1 if os.environ.has_key('sigma_square'): s_s = float(os.environ['sigma_square']) x_samples = model.gen_xz_prior({}, {}, m_p, s_s, n_batch=nn_batch_nn) x_samples = x_samples['x'] m_p1 = (np.ones((n_z, nn_batch_nn)).T * np.mean(x_train['mean_prior'], axis = 1)).T x_samples1 = model.gen_xz_prior({}, {}, m_p1.astype(np.float32), s_s, n_batch=nn_batch_nn) image = paramgraphics.mat_to_img(f_dec(x_samples1['x']), dim_input, colorImg=colorImg) image.save(logdir+'mean_samples-prior'+tail, 'PNG') x_samples11 = model.gen_xz_prior11({}, {}, m_p, s_s, n_batch=nn_batch_nn) image = paramgraphics.mat_to_img(f_dec(x_samples11['x']), dim_input, colorImg=colorImg) image.save(logdir+'prior-image'+tail, 'PNG') else: _x, _, _z_confab = model.gen_xz({}, {}, n_batch=nn_batch_nn) x_samples = _z_confab['x'] image = paramgraphics.mat_to_img(f_dec(x_samples), dim_input, colorImg=colorImg) image.save(logdir+'samples-prior'+tail, 'PNG') #x_samples = _x['x'] #image = paramgraphics.mat_to_img(x_samples, dim_input, colorImg=colorImg) #image.save(logdir+'samples2'+tail, 'PNG') else: # Model with preprocessing if 'w0' in v: tmp = f_dec(v['w0'][:].T) #print dim_input #print tmp.shape if 'zca' in dataset or dataset=='svhn': tmp = zca_dec(zca_mean, zca_winv, tmp) image = paramgraphics.mat_to_img(tmp, dim_input, True, colorImg=colorImg) image.save(logdir+'q_w0'+tail, 'PNG') tmp = f_dec(w['out_w'][:]) if 'zca' in dataset: tmp = zca_dec(zca_mean, zca_winv, tmp) image = paramgraphics.mat_to_img(tmp, dim_input, True, colorImg=colorImg) image.save(logdir+'out_w'+tail, 'PNG') if dataset == 'svhn': nn_batch_nn = 64 else: nn_batch_nn = 144 if not(os.environ.has_key('train_residual') and bool(int(os.environ['train_residual'])) == True) and (os.environ.has_key('prior') and bool(int(os.environ['prior'])) == True): mp_in = np.random.randint(0,x_train['mean_prior'].shape[1],nn_batch_nn) m_p = x_train['mean_prior'][:,mp_in] s_s = 1 if os.environ.has_key('sigma_square'): s_s = float(os.environ['sigma_square']) x_samples = model.gen_xz_prior({}, {}, m_p, s_s, n_batch=nn_batch_nn) x_samples = zca_dec(zca_mean, zca_winv,x_samples['x']) x_samples = np.minimum(np.maximum(x_samples, 0), 1) x_samples11 = model.gen_xz_prior11({}, {}, m_p, s_s, n_batch=nn_batch_nn) x_samples11 = zca_dec(zca_mean,zca_winv,x_samples11['x']) x_samples11 = np.minimum(np.maximum(x_samples11, 0), 1) image = paramgraphics.mat_to_img(x_samples11, dim_input, colorImg=colorImg) image.save(logdir+'prior-image'+tail, 'PNG') else: _x, _z, _z_confab = model.gen_xz({}, {}, n_batch=nn_batch_nn) x_samples = f_dec(_z_confab['x']) x_samples = np.minimum(np.maximum(x_samples, 0), 1) image = paramgraphics.mat_to_img(x_samples, dim_input, colorImg=colorImg) image.save(logdir+'samples'+tail, 'PNG') ''' def infer(data, n_batch=1000): #print '--', n_batch size = data['x'].shape[1] res = np.zeros((sum(n_hidden), size)) res1 = np.zeros((n_z,size)) res2 = np.zeros((n_hidden[-1],size)) res3 = np.zeros((n_z,size)) for i in range(0, size, n_batch): idx_to = min(size, i+n_batch) x_batch = ndict.getCols(data, i, idx_to) # may have bugs nn_batch = idx_to - i _x, _z, _z_confab = model.gen_xz(x_batch, {}, nn_batch) x_samples = _z_confab['x'] for (hi, hidden) in enumerate(_z_confab['hidden']): res[sum(n_hidden[:hi]):sum(n_hidden[:hi+1]),i:i+nn_batch] = hidden res1[:,i:i+nn_batch] = _z_confab['mean'] res2[:,i:i+nn_batch] = _z_confab['hidden'][-1] res3[:,i:i+nn_batch] = _z_confab['logvar'] # return res, res1, res2, res3 #print n_batch #if not dataset == 'mnist_binarized': z_test, z_test1, z_test2, vv_test = infer(x_test) z_train, z_train1, z_train2, vv_train = infer(x_train) l_t, px_t, pz_t, qz_t = model.test(x_train, n_samples=1, n_batch=n_batch, byteToFloat=byteToFloat) print 'Elogpx', px_t, 'Elogpz', pz_t, '-Elogqz', qz_t #sigma_square = float(os.environ['sigma_square']) print 'var', np.mean(np.exp(vv_train)), 'q', np.mean(np.abs(z_train1)), 'p', np.mean(np.abs(train_mean_prior)), 'd', np.mean(np.abs(z_train1-train_mean_prior)) with open(logdir+'hook.txt', 'a') as f: print >>f, 'Elogpx', px_t, 'Elogpz', pz_t, '-Elogqz', qz_t print >>f, 'var', np.mean(np.exp(vv_train)), 'q', np.mean(np.abs(z_train1)), 'p', np.mean(np.abs(train_mean_prior)), 'd', np.mean(np.abs(z_train1-train_mean_prior)) #if not dataset == 'mnist_binarized': sio.savemat(logdir+'full_latent.mat', {'z_test': z_test, 'train_y':train_y, 'test_y':test_y, 'z_train': z_train}) sio.savemat(logdir+'mean_latent.mat', {'z_test': z_test1, 'train_y':train_y, 'test_y':test_y, 'z_train': z_train1}) sio.savemat(logdir+'last_latent.mat', {'z_test': z_test2, 'train_y':train_y, 'test_y':test_y, 'z_train': z_train2}) ''' # Optimize #SFO dostep = epoch_vae_adam(model, x, n_batch=n_batch, bernoulli_x=bernoulli_x, byteToFloat=byteToFloat) loop_va(dostep, hook) pass # Training loop for variational autoencoder def loop_va(doEpoch, hook, n_epochs=1201): t0 = time.time() for t in xrange(1, n_epochs): L = doEpoch() hook(t, time.time() - t0, L) print 'Optimization loop finished' # Learning step for variational auto-encoder def epoch_vae_adam(model, x, n_batch=100, convertImgs=False, bernoulli_x=False, byteToFloat=False): print 'Variational Auto-Encoder', n_batch def doEpoch(): from collections import OrderedDict n_tot = x.itervalues().next().shape[1] idx_from = 0 L = 0 while idx_from < n_tot: idx_to = min(n_tot, idx_from+n_batch) x_minibatch = ndict.getCols(x, idx_from, idx_to) idx_from += n_batch if byteToFloat: x_minibatch['x'] = x_minibatch['x'].astype(np.float32)/256. if bernoulli_x: x_minibatch['x'] = np.random.binomial(n=1, p=x_minibatch['x']).astype(np.float32) # Do gradient ascent step L += model.evalAndUpdate(x_minibatch, {}).sum() #model.profmode.print_summary() L /= n_tot return L return doEpoch def get_adam_optimizer(learning_rate=0.001, decay1=0.1, decay2=0.001, weight_decay=0.0): print 'AdaM', learning_rate, decay1, decay2, weight_decay def shared32(x, name=None, borrow=False): return theano.shared(np.asarray(x, dtype='float32'), name=name, borrow=borrow) def get_optimizer(w, g): updates = OrderedDict() it = shared32(0.) updates[it] = it + 1. fix1 = 1.-(1.-decay1)**(it+1.) # To make estimates unbiased fix2 = 1.-(1.-decay2)**(it+1.) # To make estimates unbiased lr_t = learning_rate * T.sqrt(fix2) / fix1 for i in w: gi = g[i] if weight_decay > 0: gi -= weight_decay * w[i] #T.tanh(w[i]) # mean_squared_grad := E[g^2]_{t-1} mom1 = shared32(w[i].get_value() * 0.) mom2 = shared32(w[i].get_value() * 0.) # Update moments mom1_new = mom1 + decay1 * (gi - mom1) mom2_new = mom2 + decay2 * (T.sqr(gi) - mom2) # Compute the effective gradient and effective learning rate effgrad = mom1_new / (T.sqrt(mom2_new) + 1e-10) effstep_new = lr_t * effgrad # Do update w_new = w[i] + effstep_new # Apply update updates[w[i]] = w_new updates[mom1] = mom1_new updates[mom2] = mom2_new return updates return get_optimizer
zhenxuan00/mmdgm
mlp-mmdgm/gpulearn_z_x.py
Python
mit
50,776
0.015499
#!/usr/bin/env python3 """ Author: Kartamyshev A.I. (Darth Feiwante) """ def inherit_icalc_isotropic(new_structure = '', start_new_version = None, base_calculation = (None, None, None), database = None, min_mult = 1, max_mult = 1, num_points = 2, geo_folder = '', it_folder = '', override = False): """ This function makes set of structures uniformly scaled from the initial one within the range of deformation INPUT: - new_structure (str) - arbitary name for your crystal structure - start_new_version (int) - start version for newly built structures - base_calculation (tuple) - tuple describing initial Calculation object in form ('structure', 'set', 'version') - database (dict) - dictionary with the project's results - min_mult (int) - minimal deformation of the initial structure - max_mult (int) - maximal deformation of the initial structure - num_points (int) - number of newly built structures - geo_folder (str) - path to the folder to save *.geo files of newly built structures - it folder (str) - section folder - override (boolean) - if True then the old structures with the same names will be overwritten RETURN: None SOURCE: None TODO: Some improvements """ from calc_manage import inherit_icalc min_mult = min_mult max_mult = max_mult num_points = num_points step = (max_mult - min_mult)/(num_points - 1) mult_list = [min_mult+step*i for i in range(num_points)] version = start_new_version for j in mult_list: inherit_icalc('isotropic', new_structure, version, base_calculation, database, mult_rprimd = j, geo_folder=geo_folder, override=override) version += 1 def inherit_icalc_c_a(new_structure = '', start_new_version = None, base_calculation = (None, None, None), database = None, min_mult_a = 1, max_mult_a = 1, num_points_a = 2, min_mult_c = 1, max_mult_c = 1,num_points_c = 2, geo_folder='', it_folder =''): """ This function makes set of structures deformed uniformly in the plane presented by the vectors 1 and 2 and separately deformed along the vector 3 of the lattice INPUT: - new_structure (str) - arbitary name for your crystal structure - start_new_version (int) - start version for newly built structures - base_calculation (tuple) - tuple describing initial Calculation object in form ('structure', 'set', 'version') - database (dict) - dictionary with the project's results - min_mult_a (float) - minimal simultaneous deformation of the vector 1 and 2 of the final structure from "base_calculation" - max_mult_a (float) - maximal simultaneous deformation of the vector 1 and 2 of the final structure from "base_calculation" - num_points_a (int) - number of different simultaneous deformations of the vectors 1 and 2 - min_mult_c (float) - minimal deformation of the vector 3 of the structure from "base_calculation" - max_mult_c (float) - maximal deformation of the vector 3 of the structure from "base_calculation" - num_points_c (int) - number of different deformations of the vector 3 from "base_calculation" - geo_folder (str) - path to the folder to save *.geo files of newly built structures - it folder (str) - section folder - override (boolean) - if True then the old structures with the same names will be overwritten RETURN: None SOURCE: None TODO: Some improvements """ from classes import inherit_icalc if num_points_a > 1: # Lattice parameter a min_mult_a = min_mult_a max_mult_a = max_mult_a num_points_a = num_points_a step_a = (max_mult_a - min_mult_a)/(num_points_a - 1) mult_list_a = [min_mult_a+step_a*i for i in range(num_points_a)] if num_points_c > 1: # Lattice parameter c min_mult_c = min_mult_c max_mult_c = max_mult_c num_points_c = num_points_c step_c = (max_mult_c - min_mult_c)/(num_points_c - 1) mult_list_c = [min_mult_c+step_c*i for i in range(num_points_c)] print('database', database) version = start_new_version if num_points_a > 1 and num_points_c > 1: for j in mult_list_a: for k in mult_list_c: inherit_icalc('c_a', new_structure, version, base_calculation, database, mult_a = j, mult_c = k, geo_folder=geo_folder) version += 1 elif num_points_c == 1: for j in mult_list_a: inherit_icalc('c_a', new_structure, version, base_calculation, database, mult_a = j, mult_c = 1, geo_folder=geo_folder, override=override) version += 1 elif num_points_a == 1: for j in mult_list_c: inherit_icalc('c_a', new_structure, version, base_calculation, database, mult_a = 1, mult_c = j, geo_folder=geo_folder, override=override) version += 1 def inherit_icalc_x_y(new_structure = '', start_new_version = None, base_calculation = (None, None, None), database = None, min_mult_a = 1, max_mult_a = 1, num_points_a = 2, min_mult_b = 1, max_mult_b = 1,num_points_b = 2, geo_folder='', it_folder ='', override = False): """ This function makes set of structures separately deformed along the vectors 1 and 2 of the lattice INPUT: - new_structure (str) - arbitary name for your crystal structure - start_new_version (int) - start version for newly built structures - base_calculation (tuple) - tuple describing initial Calculation object in form ('structure', 'set', version) - database (dict) - dictionary with the project's results - min_mult_a (float) - minimal deformation of the vector 1 of the structure from "base_calculation" - max_mult_a (float) - maximal deformation of the vector 1 of the structure from "base_calculation" - num_points_a (int) - number of different deformations of the vector 2 - min_mult_b (float) - minimal deformation of the vector 2 of the structure from "base_calculation" - max_mult_b (float) - maximal deformation of the vector 2 of the structure from "base_calculation" - num_points_b (int) - number of different deformations of the vector 2 - geo_folder (str) - path to the folder to save *.geo files of newly built structures - it folder (str) - section folder - override (boolean) - if True then the old structures with the same names will be overwritten RETURN: None SOURCE: None TODO: Some improvements """ from calc_manage import inherit_icalc if num_points_a > 1: # Coordinate x in rprimd step_a = (max_mult_a - min_mult_a)/(num_points_a - 1) mult_list_a = [min_mult_a+step_a*i for i in range(num_points_a)] if num_points_b > 1: # Coordinate y in rprimd step_b = (max_mult_b - min_mult_b)/(num_points_b - 1) mult_list_b = [min_mult_b+step_b*i for i in range(num_points_b)] version = start_new_version if num_points_a > 1 and num_points_b > 1: for j in mult_list_a: for k in mult_list_b: inherit_icalc('xy', new_structure, version, base_calculation, database, mult_a = j, mult_b = k, geo_folder=geo_folder, it_folder = it_folder, override=override) version += 1 elif num_points_b == 1: for j in mult_list_a: inherit_icalc('xy', new_structure, version, base_calculation, database, mult_a = j, mult_b = 1, geo_folder=geo_folder, it_folder = it_folder, override=override) version += 1 elif num_points_a == 1: for j in mult_list_b: inherit_icalc('xy', new_structure, version, base_calculation, database, mult_a = 1, mult_b = j, geo_folder=geo_folder, it_folder = it_folder, override=override) version += 1
dimonaks/siman
siman/structure_functions.py
Python
gpl-2.0
8,328
0.018492
# Copyright 2012 New Dream Network, LLC (DreamHost) # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock import os.path from neutron.agent.linux import external_process as ep from neutron.common import utils as common_utils from neutron.tests import base from neutron.tests import tools TEST_UUID = 'test-uuid' TEST_SERVICE = 'testsvc' TEST_PID = 1234 class BaseTestProcessMonitor(base.BaseTestCase): def setUp(self): super(BaseTestProcessMonitor, self).setUp() self.log_patch = mock.patch("neutron.agent.linux.external_process." "LOG.error") self.error_log = self.log_patch.start() self.spawn_patch = mock.patch("eventlet.spawn") self.eventlent_spawn = self.spawn_patch.start() # create a default process monitor self.create_child_process_monitor('respawn') def create_child_process_monitor(self, action): conf = mock.Mock() conf.AGENT.check_child_processes_action = action conf.AGENT.check_child_processes = True self.pmonitor = ep.ProcessMonitor( config=conf, resource_type='test') def get_monitored_process(self, uuid, service=None): monitored_process = mock.Mock() self.pmonitor.register(uuid=uuid, service_name=service, monitored_process=monitored_process) return monitored_process class TestProcessMonitor(BaseTestProcessMonitor): def test_error_logged(self): pm = self.get_monitored_process(TEST_UUID) pm.active = False self.pmonitor._check_child_processes() self.assertTrue(self.error_log.called) def test_exit_handler(self): self.create_child_process_monitor('exit') pm = self.get_monitored_process(TEST_UUID) pm.active = False with mock.patch.object(ep.ProcessMonitor, '_exit_handler') as exit_handler: self.pmonitor._check_child_processes() exit_handler.assert_called_once_with(TEST_UUID, None) def test_register(self): pm = self.get_monitored_process(TEST_UUID) self.assertEqual(len(self.pmonitor._monitored_processes), 1) self.assertIn(pm, self.pmonitor._monitored_processes.values()) def test_register_same_service_twice(self): self.get_monitored_process(TEST_UUID) self.get_monitored_process(TEST_UUID) self.assertEqual(len(self.pmonitor._monitored_processes), 1) def test_register_different_service_types(self): self.get_monitored_process(TEST_UUID) self.get_monitored_process(TEST_UUID, TEST_SERVICE) self.assertEqual(len(self.pmonitor._monitored_processes), 2) def test_unregister(self): self.get_monitored_process(TEST_UUID) self.pmonitor.unregister(TEST_UUID, None) self.assertEqual(len(self.pmonitor._monitored_processes), 0) def test_unregister_unknown_process(self): self.pmonitor.unregister(TEST_UUID, None) self.assertEqual(len(self.pmonitor._monitored_processes), 0) class TestProcessManager(base.BaseTestCase): def setUp(self): super(TestProcessManager, self).setUp() self.execute_p = mock.patch('neutron.agent.common.utils.execute') self.execute = self.execute_p.start() self.delete_if_exists = mock.patch( 'oslo_utils.fileutils.delete_if_exists').start() self.ensure_dir = mock.patch.object( common_utils, 'ensure_dir').start() self.conf = mock.Mock() self.conf.external_pids = '/var/path' def test_processmanager_ensures_pid_dir(self): pid_file = os.path.join(self.conf.external_pids, 'pid') ep.ProcessManager(self.conf, 'uuid', pid_file=pid_file) self.ensure_dir.assert_called_once_with(self.conf.external_pids) def test_enable_no_namespace(self): callback = mock.Mock() callback.return_value = ['the', 'cmd'] with mock.patch.object(ep.ProcessManager, 'get_pid_file_name') as name: name.return_value = 'pidfile' with mock.patch.object(ep.ProcessManager, 'active') as active: active.__get__ = mock.Mock(return_value=False) manager = ep.ProcessManager(self.conf, 'uuid') manager.enable(callback) callback.assert_called_once_with('pidfile') self.execute.assert_called_once_with(['the', 'cmd'], check_exit_code=True, extra_ok_codes=None, run_as_root=False, log_fail_as_error=True) def test_enable_with_namespace(self): callback = mock.Mock() callback.return_value = ['the', 'cmd'] with mock.patch.object(ep.ProcessManager, 'get_pid_file_name') as name: name.return_value = 'pidfile' with mock.patch.object(ep.ProcessManager, 'active') as active: active.__get__ = mock.Mock(return_value=False) manager = ep.ProcessManager(self.conf, 'uuid', namespace='ns') with mock.patch.object(ep, 'ip_lib') as ip_lib: manager.enable(callback) callback.assert_called_once_with('pidfile') ip_lib.assert_has_calls([ mock.call.IPWrapper(namespace='ns'), mock.call.IPWrapper().netns.execute( ['the', 'cmd'], addl_env=None, run_as_root=False)]) def test_enable_with_namespace_process_active(self): callback = mock.Mock() callback.return_value = ['the', 'cmd'] with mock.patch.object(ep.ProcessManager, 'active') as active: active.__get__ = mock.Mock(return_value=True) manager = ep.ProcessManager(self.conf, 'uuid', namespace='ns') with mock.patch.object(ep, 'ip_lib'): manager.enable(callback) self.assertFalse(callback.called) def test_disable_no_namespace(self): with mock.patch.object(ep.ProcessManager, 'pid') as pid: pid.__get__ = mock.Mock(return_value=4) with mock.patch.object(ep.ProcessManager, 'active') as active: active.__get__ = mock.Mock(return_value=True) manager = ep.ProcessManager(self.conf, 'uuid') with mock.patch.object(ep, 'utils') as utils: manager.disable() utils.assert_has_calls([ mock.call.execute(['kill', '-9', 4], run_as_root=True)]) def test_disable_namespace(self): with mock.patch.object(ep.ProcessManager, 'pid') as pid: pid.__get__ = mock.Mock(return_value=4) with mock.patch.object(ep.ProcessManager, 'active') as active: active.__get__ = mock.Mock(return_value=True) manager = ep.ProcessManager(self.conf, 'uuid', namespace='ns') with mock.patch.object(ep, 'utils') as utils: manager.disable() utils.assert_has_calls([ mock.call.execute(['kill', '-9', 4], run_as_root=True)]) def test_disable_not_active(self): with mock.patch.object(ep.ProcessManager, 'pid') as pid: pid.__get__ = mock.Mock(return_value=4) with mock.patch.object(ep.ProcessManager, 'active') as active: active.__get__ = mock.Mock(return_value=False) with mock.patch.object(ep.LOG, 'debug') as debug: manager = ep.ProcessManager(self.conf, 'uuid') manager.disable() debug.assert_called_once_with(mock.ANY, mock.ANY) def test_disable_no_pid(self): with mock.patch.object(ep.ProcessManager, 'pid') as pid: pid.__get__ = mock.Mock(return_value=None) with mock.patch.object(ep.ProcessManager, 'active') as active: active.__get__ = mock.Mock(return_value=False) with mock.patch.object(ep.LOG, 'debug') as debug: manager = ep.ProcessManager(self.conf, 'uuid') manager.disable() debug.assert_called_once_with(mock.ANY, mock.ANY) def test_get_pid_file_name_default(self): manager = ep.ProcessManager(self.conf, 'uuid') retval = manager.get_pid_file_name() self.assertEqual(retval, '/var/path/uuid.pid') def test_pid(self): self.useFixture(tools.OpenFixture('/var/path/uuid.pid', '5')) manager = ep.ProcessManager(self.conf, 'uuid') self.assertEqual(manager.pid, 5) def test_pid_no_an_int(self): self.useFixture(tools.OpenFixture('/var/path/uuid.pid', 'foo')) manager = ep.ProcessManager(self.conf, 'uuid') self.assertIsNone(manager.pid) def test_pid_invalid_file(self): with mock.patch.object(ep.ProcessManager, 'get_pid_file_name') as name: name.return_value = '.doesnotexist/pid' manager = ep.ProcessManager(self.conf, 'uuid') self.assertIsNone(manager.pid) def test_active(self): mock_open = self.useFixture( tools.OpenFixture('/proc/4/cmdline', 'python foo --router_id=uuid') ).mock_open with mock.patch.object(ep.ProcessManager, 'pid') as pid: pid.__get__ = mock.Mock(return_value=4) manager = ep.ProcessManager(self.conf, 'uuid') self.assertTrue(manager.active) mock_open.assert_called_once_with('/proc/4/cmdline', 'r') def test_active_none(self): dummy_cmd_line = 'python foo --router_id=uuid' self.execute.return_value = dummy_cmd_line with mock.patch.object(ep.ProcessManager, 'pid') as pid: pid.__get__ = mock.Mock(return_value=None) manager = ep.ProcessManager(self.conf, 'uuid') self.assertFalse(manager.active) def test_active_cmd_mismatch(self): mock_open = self.useFixture( tools.OpenFixture('/proc/4/cmdline', 'python foo --router_id=anotherid') ).mock_open with mock.patch.object(ep.ProcessManager, 'pid') as pid: pid.__get__ = mock.Mock(return_value=4) manager = ep.ProcessManager(self.conf, 'uuid') self.assertFalse(manager.active) mock_open.assert_called_once_with('/proc/4/cmdline', 'r')
glove747/liberty-neutron
neutron/tests/unit/agent/linux/test_external_process.py
Python
apache-2.0
11,219
0
from datetime import date import os from django.contrib.auth.models import User from django import forms from django.utils import timezone from fields import Html5CaptchaField from html5input import * from settings import AVAILABLE_TEMPLATES, TEMPLATE_DIRS from accounts.models import UserProfile class SettingsUserForm(forms.ModelForm): email = forms.EmailField(required=True, widget=Html5EmailInput(attrs={'required': None})) class Meta: model = User fields = ('first_name', 'email') class SettingsUserprofileForm(forms.ModelForm): template_choices = [(template_[0], template_[1]) for template_ in AVAILABLE_TEMPLATES] template = forms.ChoiceField(choices=template_choices) BOOL_CHOICES = ( (True, 'Show to everyone'), (False, 'Show only to registered users'), ) def __init__(self, *args, **kwargs): super(SettingsUserprofileForm, self).__init__(*args, **kwargs) if not self.instance.user.is_staff: self.fields['template'].choices = [(template_[0], template_[1]) for template_ in AVAILABLE_TEMPLATES if template_[2] or template_[0] == self.instance.template] self.initial['template'] = self.instance.template class Meta: model = UserProfile fields = ('publish_name', 'ingame_name', 'publish_ingame_name', 'website', 'publish_website', 'contact', 'publish_contact', 'fav_mod', 'publish_fav_mod', 'fav_map', 'publish_fav_map', 'gender', 'publish_gender', 'birthday', 'publish_birthday', 'template') widgets = { 'publish_name': forms.Select(choices=((True, 'Show to everyone'), (False, 'Show only to registered users'))), 'publish_ingame_name': forms.Select(choices=((True, 'Show to everyone'), (False, 'Show only to registered users'))), 'publish_website': forms.Select(choices=((True, 'Show to everyone'), (False, 'Show only to registered users'))), 'publish_contact': forms.Select(choices=((True, 'Show to everyone'), (False, 'Show only to registered users'))), 'publish_fav_mod': forms.Select(choices=((True, 'Show to everyone'), (False, 'Show only to registered users'))), 'publish_fav_map': forms.Select(choices=((True, 'Show to everyone'), (False, 'Show only to registered users'))), 'publish_gender': forms.Select(choices=((True, 'Show to everyone'), (False, 'Show only to registered users'))), 'birthday': Html5SelectDateWidget(years=range(1930, timezone.now().year)), 'publish_birthday': forms.Select(choices=((True, 'Show to everyone'), (False, 'Show only to registered users'))), } def clean_birthday(self): birthday = self.cleaned_data['birthday'] if birthday and birthday > date.today(): raise forms.ValidationError('You cannot be born in the future.') return birthday def clean_template(self): template = self.cleaned_data['template'] found = False for path in TEMPLATE_DIRS: if os.path.exists(os.path.join(path, template)): found = True break if not found: raise forms.ValidationError('Template does not exist. Please contact an admin.') return template class PasswordChangeForm(forms.Form): old_password = forms.CharField(label='Old password', widget=forms.PasswordInput(render_value=False, attrs={'pattern': r'.{8,}', 'title': '8 characters are required', 'required': None})) new_password1 = forms.CharField(label='New password', min_length=8, widget=forms.PasswordInput(render_value=False, attrs={'pattern': r'.{8,}', 'title': '8 characters are required', 'required': None})) new_password2 = forms.CharField(label='New password again', min_length=8, widget=forms.PasswordInput(render_value=False, attrs={'pattern': r'.{8,}', 'title': '8 characters are required', 'required': None})) def __init__(self, *args, **kwargs): self.current_user = kwargs.pop('current_user', None) if self.current_user is None: raise AttributeError('current_user missing') super(PasswordChangeForm, self).__init__(*args, **kwargs) def clean_old_password(self): old_password = self.cleaned_data['old_password'] if not self.current_user.check_password(old_password): raise forms.ValidationError('Please enter your current password correctly.') return old_password def clean_new_password2(self): new_password1 = self.cleaned_data['new_password1'] new_password2 = self.cleaned_data['new_password2'] if new_password1 != new_password2: raise forms.ValidationError("The password doesn't match the other.") return new_password2 def save(self): self.current_user.set_password(self.cleaned_data['new_password1']) self.current_user.save() class RecoverPasswordForm(forms.Form): username = forms.CharField(label='Username', widget=forms.TextInput(attrs={'required': None})) captcha = Html5CaptchaField(required=True) def clean_username(self): username = self.cleaned_data['username'] user = User.objects.filter(is_active=True, username=username) if not user: raise forms.ValidationError("No user with this name exists.") return username class RecoverUsernameForm(forms.Form): email = forms.EmailField(label='email', widget=Html5EmailInput(attrs={'required': None})) captcha = Html5CaptchaField(required=True) def clean_email(self): email = self.cleaned_data['email'] user = User.objects.filter(is_active=True, email=email) if not user: raise forms.ValidationError("No user with this email exists.") return email class RegisterForm(forms.Form): username = forms.RegexField(label="Username", min_length=3, regex=r'^[\w.@+-]+$', error_messages={'invalid': 'Required. 30 characters or fewer. Letters, numbers and @/./+/-/_ characters.'}, widget=forms.TextInput(attrs={'pattern': r'[\w.@+-]{3,30}', 'title': '30 characters or fewer. Letters, numbers and @/./+/-/_ characters', 'required': None, 'placeholder': 'Username'})) password1 = forms.CharField(label='Password', min_length=8, widget=forms.PasswordInput(render_value=False, attrs={'pattern': r'.{8,}', 'title': '8 characters are required', 'required': None, 'placeholder': 'Password'})) password2 = forms.CharField(label='Password again', min_length=8, widget=forms.PasswordInput(render_value=False, attrs={'pattern': r'.{8,}', 'title': '8 characters are required', 'required': None, 'placeholder': 'Password again'})) email = forms.EmailField(required=True, widget=Html5EmailInput(attrs={'required': None, 'placeholder': 'Email'})) captcha = Html5CaptchaField(required=True) def clean_username(self): username = self.cleaned_data['username'] users = User.objects.filter(username=username) if users: raise forms.ValidationError( u"A user with this username already exists.") return username def clean_email(self): email = self.cleaned_data['email'] users = User.objects.filter(email=email) if users: raise forms.ValidationError( u"A user with this email address already exists.") return email def clean_password2(self): password1 = self.cleaned_data.get('password1') password2 = self.cleaned_data.get('password2') if password1 != password2: raise forms.ValidationError( u"The password doesn't match the other.") return password2
upTee/upTee
uptee/accounts/forms.py
Python
bsd-3-clause
7,709
0.004281
""" This page is in the table of contents. Plugin to home the tool at beginning of each layer. The home manual page is at: http://fabmetheus.crsndoo.com/wiki/index.php/Skeinforge_Home ==Operation== The default 'Activate Home' checkbox is on. When it is on, the functions described below will work, when it is off, nothing will be done. ==Settings== ===Name of Home File=== Default: home.gcode At the beginning of a each layer, home will add the commands of a gcode script with the name of the "Name of Home File" setting, if one exists. Home does not care if the text file names are capitalized, but some file systems do not handle file name cases properly, so to be on the safe side you should give them lower case names. Home looks for those files in the alterations folder in the .skeinforge folder in the home directory. If it doesn't find the file it then looks in the alterations folder in the skeinforge_plugins folder. ==Examples== The following examples home the file Screw Holder Bottom.stl. The examples are run in a terminal in the folder which contains Screw Holder Bottom.stl and home.py. > python home.py This brings up the home dialog. > python home.py Screw Holder Bottom.stl The home tool is parsing the file: Screw Holder Bottom.stl .. The home tool has created the file: .. Screw Holder Bottom_home.gcode """ from __future__ import absolute_import #Init has to be imported first because it has code to workaround the python bug where relative imports don't work if the module is imported as a main module. import __init__ from fabmetheus_utilities.fabmetheus_tools import fabmetheus_interpret from fabmetheus_utilities.vector3 import Vector3 from fabmetheus_utilities import archive from fabmetheus_utilities import euclidean from fabmetheus_utilities import gcodec from fabmetheus_utilities import settings from skeinforge_application.skeinforge_utilities import skeinforge_craft from skeinforge_application.skeinforge_utilities import skeinforge_polyfile from skeinforge_application.skeinforge_utilities import skeinforge_profile import math import os import sys __author__ = 'Enrique Perez (perez_enrique@yahoo.com)' __date__ = '$Date: 2008/21/04 $' __license__ = 'GNU Affero General Public License http://www.gnu.org/licenses/agpl.html' def getCraftedText( fileName, text, repository = None ): "Home a gcode linear move file or text." return getCraftedTextFromText(archive.getTextIfEmpty(fileName, text), repository) def getCraftedTextFromText( gcodeText, repository = None ): "Home a gcode linear move text." if gcodec.isProcedureDoneOrFileIsEmpty( gcodeText, 'home'): return gcodeText if repository == None: repository = settings.getReadRepository( HomeRepository() ) if not repository.activateHome.value: return gcodeText return HomeSkein().getCraftedGcode(gcodeText, repository) def getNewRepository(): 'Get new repository.' return HomeRepository() def writeOutput(fileName, shouldAnalyze=True): "Home a gcode linear move file. Chain home the gcode if it is not already homed." skeinforge_craft.writeChainTextWithNounMessage(fileName, 'home', shouldAnalyze) class HomeRepository: "A class to handle the home settings." def __init__(self): "Set the default settings, execute title & settings fileName." skeinforge_profile.addListsToCraftTypeRepository('skeinforge_application.skeinforge_plugins.craft_plugins.home.html', self) self.fileNameInput = settings.FileNameInput().getFromFileName( fabmetheus_interpret.getGNUTranslatorGcodeFileTypeTuples(), 'Open File for Home', self, '') self.openWikiManualHelpPage = settings.HelpPage().getOpenFromAbsolute('http://fabmetheus.crsndoo.com/wiki/index.php/Skeinforge_Home') self.activateHome = settings.BooleanSetting().getFromValue('Activate Home', self, True ) self.nameOfHomeFile = settings.StringSetting().getFromValue('Name of Home File:', self, 'home.gcode') self.executeTitle = 'Home' def execute(self): "Home button has been clicked." fileNames = skeinforge_polyfile.getFileOrDirectoryTypesUnmodifiedGcode(self.fileNameInput.value, fabmetheus_interpret.getImportPluginFileNames(), self.fileNameInput.wasCancelled) for fileName in fileNames: writeOutput(fileName) class HomeSkein: "A class to home a skein of extrusions." def __init__(self): self.distanceFeedRate = gcodec.DistanceFeedRate() self.extruderActive = False self.highestZ = None self.homeLines = [] self.layerCount = settings.LayerCount() self.lineIndex = 0 self.lines = None self.oldLocation = None self.shouldHome = False self.travelFeedRateMinute = 957.0 def addFloat( self, begin, end ): "Add dive to the original height." beginEndDistance = begin.distance(end) alongWay = self.absolutePerimeterWidth / beginEndDistance closeToEnd = euclidean.getIntermediateLocation( alongWay, end, begin ) closeToEnd.z = self.highestZ self.distanceFeedRate.addLine( self.distanceFeedRate.getLinearGcodeMovementWithFeedRate( self.travelFeedRateMinute, closeToEnd.dropAxis(), closeToEnd.z ) ) def addHomeTravel( self, splitLine ): "Add the home travel gcode." location = gcodec.getLocationFromSplitLine(self.oldLocation, splitLine) self.highestZ = max( self.highestZ, location.z ) if not self.shouldHome: return self.shouldHome = False if self.oldLocation == None: return if self.extruderActive: self.distanceFeedRate.addLine('M103') self.addHopUp( self.oldLocation ) self.distanceFeedRate.addLinesSetAbsoluteDistanceMode(self.homeLines) self.addHopUp( self.oldLocation ) self.addFloat( self.oldLocation, location ) if self.extruderActive: self.distanceFeedRate.addLine('M101') def addHopUp(self, location): "Add hop to highest point." locationUp = Vector3( location.x, location.y, self.highestZ ) self.distanceFeedRate.addLine( self.distanceFeedRate.getLinearGcodeMovementWithFeedRate( self.travelFeedRateMinute, locationUp.dropAxis(), locationUp.z ) ) def getCraftedGcode( self, gcodeText, repository ): "Parse gcode text and store the home gcode." self.repository = repository self.homeLines = settings.getAlterationFileLines(repository.nameOfHomeFile.value) if len(self.homeLines) < 1: return gcodeText self.lines = archive.getTextLines(gcodeText) self.parseInitialization( repository ) for self.lineIndex in xrange(self.lineIndex, len(self.lines)): line = self.lines[self.lineIndex] self.parseLine(line) return self.distanceFeedRate.output.getvalue() def parseInitialization( self, repository ): 'Parse gcode initialization and store the parameters.' for self.lineIndex in xrange(len(self.lines)): line = self.lines[self.lineIndex] splitLine = gcodec.getSplitLineBeforeBracketSemicolon(line) firstWord = gcodec.getFirstWord(splitLine) self.distanceFeedRate.parseSplitLine(firstWord, splitLine) if firstWord == '(</extruderInitialization>)': self.distanceFeedRate.addTagBracketedProcedure('home') return elif firstWord == '(<perimeterWidth>': self.absolutePerimeterWidth = abs(float(splitLine[1])) elif firstWord == '(<travelFeedRatePerSecond>': self.travelFeedRateMinute = 60.0 * float(splitLine[1]) self.distanceFeedRate.addLine(line) def parseLine(self, line): "Parse a gcode line and add it to the bevel gcode." splitLine = gcodec.getSplitLineBeforeBracketSemicolon(line) if len(splitLine) < 1: return firstWord = splitLine[0] if firstWord == 'G1': self.addHomeTravel(splitLine) self.oldLocation = gcodec.getLocationFromSplitLine(self.oldLocation, splitLine) elif firstWord == '(<layer>': self.layerCount.printProgressIncrement('home') if len(self.homeLines) > 0: self.shouldHome = True elif firstWord == 'M101': self.extruderActive = True elif firstWord == 'M103': self.extruderActive = False self.distanceFeedRate.addLine(line) def main(): "Display the home dialog." if len(sys.argv) > 1: writeOutput(' '.join(sys.argv[1 :])) else: settings.startMainLoopFromConstructor(getNewRepository()) if __name__ == "__main__": main()
makerbot/ReplicatorG
skein_engines/skeinforge-47/skeinforge_application/skeinforge_plugins/craft_plugins/home.py
Python
gpl-2.0
8,040
0.023383
# -*- coding: utf-8 -*- ## ## This file is part of Invenio. ## Copyright (C) 2014, 2015 CERN. ## ## Invenio is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation; either version 2 of the ## License, or (at your option) any later version. ## ## Invenio is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Invenio; if not, write to the Free Software Foundation, Inc., ## 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. """Unit tests for the parser engine.""" __revision__ = \ "$Id$" import tempfile from flask.ext.registry import PkgResourcesDirDiscoveryRegistry, \ ImportPathRegistry, RegistryProxy from invenio.base.wrappers import lazy_import from invenio.testsuite import make_test_suite, run_test_suite, InvenioTestCase Field_parser = lazy_import('invenio.modules.jsonalchemy.parser:FieldParser') Model_parser = lazy_import('invenio.modules.jsonalchemy.parser:ModelParser') guess_legacy_field_names = lazy_import( 'invenio.modules.jsonalchemy.parser:guess_legacy_field_names') get_producer_rules = lazy_import( 'invenio.modules.jsonalchemy.parser:get_producer_rules') TEST_PACKAGE = 'invenio.modules.jsonalchemy.testsuite' test_registry = RegistryProxy('testsuite', ImportPathRegistry, initial=[TEST_PACKAGE]) field_definitions = lambda: PkgResourcesDirDiscoveryRegistry( 'fields', registry_namespace=test_registry) model_definitions = lambda: PkgResourcesDirDiscoveryRegistry( 'models', registry_namespace=test_registry) def clean_field_model_definitions(): Field_parser._field_definitions = {} Field_parser._legacy_field_matchings = {} Model_parser._model_definitions = {} class TestParser(InvenioTestCase): def setUp(self): self.app.extensions['registry'][ 'testsuite.fields'] = field_definitions() self.app.extensions['registry'][ 'testsuite.models'] = model_definitions() def tearDown(self): del self.app.extensions['registry']['testsuite.fields'] del self.app.extensions['registry']['testsuite.models'] def test_wrong_indent(self): """JSONAlchemy - wrong indent""" from invenio.modules.jsonalchemy.parser import _create_field_parser import pyparsing parser = _create_field_parser() test = """ foo: creator: bar, '1', foo() """ self.assertRaises(pyparsing.ParseException, parser.parseString, test) from invenio.modules.jsonalchemy.errors import FieldParserException tmp_file = tempfile.NamedTemporaryFile() config = """ foo: creator: bar, '1', foo() """ tmp_file.write(config) tmp_file.flush() self.app.extensions['registry'][ 'testsuite.fields'].register(tmp_file.name) clean_field_model_definitions() self.assertRaises( FieldParserException, Field_parser.reparse, 'testsuite') tmp_file.close() clean_field_model_definitions() def test_wrong_field_definitions(self): """JSONAlchemy - wrong field definitions""" from invenio.modules.jsonalchemy.errors import FieldParserException tmp_file_4 = tempfile.NamedTemporaryFile() config_4 = ''' title: creator: marc, '245__', value ''' tmp_file_4.write(config_4) tmp_file_4.flush() clean_field_model_definitions() self.app.extensions['registry'][ 'testsuite.fields'].register(tmp_file_4.name) self.assertRaises( FieldParserException, Field_parser.reparse, 'testsuite') tmp_file_4.close() clean_field_model_definitions() def test_wrong_field_inheritance(self): """JSONAlchmey - not parent field definition""" from invenio.modules.jsonalchemy.errors import FieldParserException tmp_file_5 = tempfile.NamedTemporaryFile() config_5 = ''' @extend wrong_field: """ Desc """ ''' tmp_file_5.write(config_5) tmp_file_5.flush() clean_field_model_definitions() self.app.extensions['registry'][ 'testsuite.fields'].register(tmp_file_5.name) self.assertRaises( FieldParserException, Field_parser.reparse, 'testsuite') tmp_file_5.close() clean_field_model_definitions() def test_field_rules(self): """JsonAlchemy - field parser""" self.assertTrue(len(Field_parser.field_definitions('testsuite')) >= 22) # Check that all files are parsed self.assertTrue( 'authors' in Field_parser.field_definitions('testsuite')) self.assertTrue('title' in Field_parser.field_definitions('testsuite')) # Check work around for [n] and [0] self.assertTrue( Field_parser.field_definitions('testsuite')['doi']['pid']) # Check if derived and calulated are well parserd self.assertTrue('dummy' in Field_parser.field_definitions('testsuite')) self.assertEquals( Field_parser.field_definitions('testsuite')['dummy']['pid'], 2) self.assertEquals(Field_parser.field_definitions( 'testsuite')['dummy']['rules'].keys(), ['json', 'derived']) self.assertTrue( len(Field_parser.field_definitions( 'testsuite')['dummy']['producer'] ), 2 ) self.assertTrue(Field_parser.field_definitions('testsuite')['_random']) # Check override value = {'a': 'a', 'b': 'b', 'k': 'k'} # noqa self.assertEquals( eval(Field_parser.field_definitions('testsuite') ['title']['rules']['marc'][1]['function']), {'form': 'k', 'subtitle': 'b', 'title': 'a'}) # Check extras self.assertTrue( 'json_ext' in Field_parser.field_definitions('testsuite')['modification_date'] ) tmp = Field_parser.field_definitions('testsuite') Field_parser.reparse('testsuite') self.assertEquals( len(Field_parser.field_definitions('testsuite')), len(tmp)) def test_field_hidden_decorator(self): """JsonAlchemy - field hidden decorator.""" # Check that all files are parsed self.assertTrue( 'hidden_basic' in Field_parser.field_definitions('testsuite')) # Check default hidden value self.assertFalse( Field_parser.field_definitions('testsuite')['_id']['hidden']) # Check hidden field self.assertTrue(Field_parser.field_definitions( 'testsuite')['hidden_basic']['hidden']) def test_wrong_field_name_inside_model(self): """JSONAlchmey - wrong field name inside model""" from invenio.modules.jsonalchemy.errors import ModelParserException tmp_file_8 = tempfile.NamedTemporaryFile() config_8 = ''' fields: not_existing_field ''' tmp_file_8.write(config_8) tmp_file_8.flush() clean_field_model_definitions() self.app.extensions['registry'][ 'testsuite.models'].register(tmp_file_8.name) self.assertRaises( ModelParserException, Model_parser.reparse, 'testsuite') tmp_file_8.close() clean_field_model_definitions() def test_model_definitions(self): """JsonAlchemy - model parser""" clean_field_model_definitions() self.assertTrue(len(Model_parser.model_definitions('testsuite')) >= 2) self.assertTrue( 'test_base' in Model_parser.model_definitions('testsuite')) tmp = Model_parser.model_definitions('testsuite') Model_parser.reparse('testsuite') self.assertEquals( len(Model_parser.model_definitions('testsuite')), len(tmp)) clean_field_model_definitions() def test_resolve_several_models(self): """JSONAlchemy - test resolve several models""" test_model = Model_parser.model_definitions('testsuite')['test_model'] clean_field_model_definitions() self.assertEquals( Model_parser.resolve_models('test_model', 'testsuite')['fields'], test_model['fields']) self.assertEquals( Model_parser.resolve_models( ['test_base', 'test_model'], 'testsuite')['fields'], test_model['fields']) clean_field_model_definitions() def test_field_name_model_based(self): """JSONAlchemy - field name model based""" clean_field_model_definitions() field_model_def = Field_parser.field_definition_model_based( 'title', 'test_model', 'testsuite') field_def = Field_parser.field_definitions('testsuite')['title_title'] value = {'a': 'Awesome title', 'b': 'sub title', 'k': 'form'} from invenio.base.utils import try_to_eval self.assertEqual( try_to_eval(field_model_def['rules'][ 'marc'][0]['function'], value=value), try_to_eval(field_def['rules']['marc'][0]['function'], value=value)) clean_field_model_definitions() def test_guess_legacy_field_names(self): """JsonAlchemy - check legacy field names""" self.assertEquals( guess_legacy_field_names(('100__a', '245'), 'marc', 'testsuite'), {'100__a': ['_first_author.full_name'], '245': ['title']}) self.assertEquals( guess_legacy_field_names('foo', 'bar', 'baz'), {'foo': []}) def test_get_producer_rules(self): """JsonAlchemy - check producer rules""" clean_field_model_definitions() self.assertEquals( len(get_producer_rules('keywords', 'json_for_marc', 'testsuite')), 1 ) self.assertRaises( KeyError, lambda: get_producer_rules('foo', 'json_for_marc', 'testsuite')) clean_field_model_definitions() TEST_SUITE = make_test_suite(TestParser) if __name__ == '__main__': run_test_suite(TEST_SUITE)
egabancho/invenio
invenio/modules/jsonalchemy/testsuite/test_parser.py
Python
gpl-2.0
10,487
0.00143
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from __future__ import unicode_literals import json import os import sys import environment as env import products import testloader import wptcommandline import wptlogging import wpttest from testrunner import ManagerGroup here = os.path.split(__file__)[0] logger = None """Runner for web-platform-tests The runner has several design goals: * Tests should run with no modification from upstream. * Tests should be regarded as "untrusted" so that errors, timeouts and even crashes in the tests can be handled without failing the entire test run. * For performance tests can be run in multiple browsers in parallel. The upstream repository has the facility for creating a test manifest in JSON format. This manifest is used directly to determine which tests exist. Local metadata files are used to store the expected test results. """ def setup_logging(*args, **kwargs): global logger logger = wptlogging.setup(*args, **kwargs) def get_loader(test_paths, product, ssl_env, debug=None, run_info_extras=None, **kwargs): if run_info_extras is None: run_info_extras = {} run_info = wpttest.get_run_info(kwargs["run_info"], product, debug=debug, extras=run_info_extras) test_manifests = testloader.ManifestLoader(test_paths, force_manifest_update=kwargs["manifest_update"]).load() manifest_filters = [] meta_filters = [] if kwargs["include"] or kwargs["exclude"] or kwargs["include_manifest"]: manifest_filters.append(testloader.TestFilter(include=kwargs["include"], exclude=kwargs["exclude"], manifest_path=kwargs["include_manifest"], test_manifests=test_manifests)) if kwargs["tags"]: meta_filters.append(testloader.TagFilter(tags=kwargs["tags"])) test_loader = testloader.TestLoader(test_manifests, kwargs["test_types"], run_info, manifest_filters=manifest_filters, meta_filters=meta_filters, chunk_type=kwargs["chunk_type"], total_chunks=kwargs["total_chunks"], chunk_number=kwargs["this_chunk"], include_https=ssl_env.ssl_enabled) return run_info, test_loader def list_test_groups(test_paths, product, **kwargs): env.do_delayed_imports(logger, test_paths) ssl_env = env.ssl_env(logger, **kwargs) run_info, test_loader = get_loader(test_paths, product, ssl_env, **kwargs) for item in sorted(test_loader.groups(kwargs["test_types"])): print item def list_disabled(test_paths, product, **kwargs): env.do_delayed_imports(logger, test_paths) rv = [] ssl_env = env.ssl_env(logger, **kwargs) run_info, test_loader = get_loader(test_paths, product, ssl_env, **kwargs) for test_type, tests in test_loader.disabled_tests.iteritems(): for test in tests: rv.append({"test": test.id, "reason": test.disabled()}) print json.dumps(rv, indent=2) def get_pause_after_test(test_loader, **kwargs): total_tests = sum(len(item) for item in test_loader.tests.itervalues()) if kwargs["pause_after_test"] is None: if kwargs["repeat_until_unexpected"]: return False if kwargs["repeat"] == 1 and total_tests == 1: return True return False return kwargs["pause_after_test"] def run_tests(config, test_paths, product, **kwargs): with wptlogging.CaptureIO(logger, not kwargs["no_capture_stdio"]): env.do_delayed_imports(logger, test_paths) (check_args, browser_cls, get_browser_kwargs, executor_classes, get_executor_kwargs, env_options, run_info_extras) = products.load_product(config, product) ssl_env = env.ssl_env(logger, **kwargs) check_args(**kwargs) if "test_loader" in kwargs: run_info = wpttest.get_run_info(kwargs["run_info"], product, debug=None, extras=run_info_extras(**kwargs)) test_loader = kwargs["test_loader"] else: run_info, test_loader = get_loader(test_paths, product, ssl_env, run_info_extras=run_info_extras(**kwargs), **kwargs) if kwargs["run_by_dir"] is False: test_source_cls = testloader.SingleTestSource test_source_kwargs = {} else: # A value of None indicates infinite depth test_source_cls = testloader.PathGroupedSource test_source_kwargs = {"depth": kwargs["run_by_dir"]} logger.info("Using %i client processes" % kwargs["processes"]) unexpected_total = 0 kwargs["pause_after_test"] = get_pause_after_test(test_loader, **kwargs) with env.TestEnvironment(test_paths, ssl_env, kwargs["pause_after_test"], kwargs["debug_info"], env_options) as test_environment: try: test_environment.ensure_started() except env.TestEnvironmentError as e: logger.critical("Error starting test environment: %s" % e.message) raise browser_kwargs = get_browser_kwargs(ssl_env=ssl_env, **kwargs) repeat = kwargs["repeat"] repeat_count = 0 repeat_until_unexpected = kwargs["repeat_until_unexpected"] while repeat_count < repeat or repeat_until_unexpected: repeat_count += 1 if repeat_until_unexpected: logger.info("Repetition %i" % (repeat_count)) elif repeat > 1: logger.info("Repetition %i / %i" % (repeat_count, repeat)) unexpected_count = 0 logger.suite_start(test_loader.test_ids, run_info) for test_type in kwargs["test_types"]: logger.info("Running %s tests" % test_type) for test in test_loader.disabled_tests[test_type]: logger.test_start(test.id) logger.test_end(test.id, status="SKIP") executor_cls = executor_classes.get(test_type) executor_kwargs = get_executor_kwargs(test_type, test_environment.external_config, test_environment.cache_manager, run_info, **kwargs) if executor_cls is None: logger.error("Unsupported test type %s for product %s" % (test_type, product)) continue with ManagerGroup("web-platform-tests", kwargs["processes"], test_source_cls, test_source_kwargs, browser_cls, browser_kwargs, executor_cls, executor_kwargs, kwargs["pause_after_test"], kwargs["pause_on_unexpected"], kwargs["restart_on_unexpected"], kwargs["debug_info"]) as manager_group: try: manager_group.run(test_type, test_loader.tests) except KeyboardInterrupt: logger.critical("Main thread got signal") manager_group.stop() raise unexpected_count += manager_group.unexpected_count() unexpected_total += unexpected_count logger.info("Got %i unexpected results" % unexpected_count) if repeat_until_unexpected and unexpected_total > 0: break logger.suite_end() return unexpected_total == 0 def main(): """Main entry point when calling from the command line""" kwargs = wptcommandline.parse_args() try: if kwargs["prefs_root"] is None: kwargs["prefs_root"] = os.path.abspath(os.path.join(here, "prefs")) setup_logging(kwargs, {"raw": sys.stdout}) if kwargs["list_test_groups"]: list_test_groups(**kwargs) elif kwargs["list_disabled"]: list_disabled(**kwargs) else: return not run_tests(**kwargs) except Exception: if kwargs["pdb"]: import pdb, traceback print traceback.format_exc() pdb.post_mortem() else: raise
shinglyu/servo
tests/wpt/harness/wptrunner/wptrunner.py
Python
mpl-2.0
9,731
0.00185
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Shared utilities used by both downloads and uploads.""" from __future__ import absolute_import import base64 import hashlib import logging import random import warnings from urllib.parse import parse_qs from urllib.parse import urlencode from urllib.parse import urlsplit from urllib.parse import urlunsplit from google.resumable_media import common RANGE_HEADER = "range" CONTENT_RANGE_HEADER = "content-range" _SLOW_CRC32C_WARNING = ( "Currently using crcmod in pure python form. This is a slow " "implementation. Python 3 has a faster implementation, `google-crc32c`, " "which will be used if it is installed." ) _GENERATION_HEADER = "x-goog-generation" _HASH_HEADER = "x-goog-hash" _MISSING_CHECKSUM = """\ No {checksum_type} checksum was returned from the service while downloading {} (which happens for composite objects), so client-side content integrity checking is not being performed.""" _LOGGER = logging.getLogger(__name__) def do_nothing(): """Simple default callback.""" def header_required(response, name, get_headers, callback=do_nothing): """Checks that a specific header is in a headers dictionary. Args: response (object): An HTTP response object, expected to have a ``headers`` attribute that is a ``Mapping[str, str]``. name (str): The name of a required header. get_headers (Callable[Any, Mapping[str, str]]): Helper to get headers from an HTTP response. callback (Optional[Callable]): A callback that takes no arguments, to be executed when an exception is being raised. Returns: str: The desired header. Raises: ~google.resumable_media.common.InvalidResponse: If the header is missing. """ headers = get_headers(response) if name not in headers: callback() raise common.InvalidResponse( response, "Response headers must contain header", name ) return headers[name] def require_status_code(response, status_codes, get_status_code, callback=do_nothing): """Require a response has a status code among a list. Args: response (object): The HTTP response object. status_codes (tuple): The acceptable status codes. get_status_code (Callable[Any, int]): Helper to get a status code from a response. callback (Optional[Callable]): A callback that takes no arguments, to be executed when an exception is being raised. Returns: int: The status code. Raises: ~google.resumable_media.common.InvalidResponse: If the status code is not one of the values in ``status_codes``. """ status_code = get_status_code(response) if status_code not in status_codes: if status_code not in common.RETRYABLE: callback() raise common.InvalidResponse( response, "Request failed with status code", status_code, "Expected one of", *status_codes ) return status_code def calculate_retry_wait(base_wait, max_sleep, multiplier=2.0): """Calculate the amount of time to wait before a retry attempt. Wait time grows exponentially with the number of attempts, until ``max_sleep``. A random amount of jitter (between 0 and 1 seconds) is added to spread out retry attempts from different clients. Args: base_wait (float): The "base" wait time (i.e. without any jitter) that will be multiplied until it reaches the maximum sleep. max_sleep (float): Maximum value that a sleep time is allowed to be. multiplier (float): Multiplier to apply to the base wait. Returns: Tuple[float, float]: The new base wait time as well as the wait time to be applied (with a random amount of jitter between 0 and 1 seconds added). """ new_base_wait = multiplier * base_wait if new_base_wait > max_sleep: new_base_wait = max_sleep jitter_ms = random.randint(0, 1000) return new_base_wait, new_base_wait + 0.001 * jitter_ms def _get_crc32c_object(): """Get crc32c object Attempt to use the Google-CRC32c package. If it isn't available, try to use CRCMod. CRCMod might be using a 'slow' varietal. If so, warn... """ try: import google_crc32c # type: ignore crc_obj = google_crc32c.Checksum() except ImportError: try: import crcmod # type: ignore crc_obj = crcmod.predefined.Crc("crc-32c") _is_fast_crcmod() except ImportError: raise ImportError("Failed to import either `google-crc32c` or `crcmod`") return crc_obj def _is_fast_crcmod(): # Determine if this is using the slow form of crcmod. nested_crcmod = __import__( "crcmod.crcmod", globals(), locals(), ["_usingExtension"], 0, ) fast_crc = getattr(nested_crcmod, "_usingExtension", False) if not fast_crc: warnings.warn(_SLOW_CRC32C_WARNING, RuntimeWarning, stacklevel=2) return fast_crc def _get_metadata_key(checksum_type): if checksum_type == "md5": return "md5Hash" else: return checksum_type def prepare_checksum_digest(digest_bytestring): """Convert a checksum object into a digest encoded for an HTTP header. Args: bytes: A checksum digest bytestring. Returns: str: A base64 string representation of the input. """ encoded_digest = base64.b64encode(digest_bytestring) # NOTE: ``b64encode`` returns ``bytes``, but HTTP headers expect ``str``. return encoded_digest.decode("utf-8") def _get_expected_checksum(response, get_headers, media_url, checksum_type): """Get the expected checksum and checksum object for the download response. Args: response (~requests.Response): The HTTP response object. get_headers (callable: response->dict): returns response headers. media_url (str): The URL containing the media to be downloaded. checksum_type Optional(str): The checksum type to read from the headers, exactly as it will appear in the headers (case-sensitive). Must be "md5", "crc32c" or None. Returns: Tuple (Optional[str], object): The expected checksum of the response, if it can be detected from the ``X-Goog-Hash`` header, and the appropriate checksum object for the expected checksum. """ if checksum_type not in ["md5", "crc32c", None]: raise ValueError("checksum must be ``'md5'``, ``'crc32c'`` or ``None``") elif checksum_type in ["md5", "crc32c"]: headers = get_headers(response) expected_checksum = _parse_checksum_header( headers.get(_HASH_HEADER), response, checksum_label=checksum_type ) if expected_checksum is None: msg = _MISSING_CHECKSUM.format( media_url, checksum_type=checksum_type.upper() ) _LOGGER.info(msg) checksum_object = _DoNothingHash() else: if checksum_type == "md5": checksum_object = hashlib.md5() else: checksum_object = _get_crc32c_object() else: expected_checksum = None checksum_object = _DoNothingHash() return (expected_checksum, checksum_object) def _parse_checksum_header(header_value, response, checksum_label): """Parses the checksum header from an ``X-Goog-Hash`` value. .. _header reference: https://cloud.google.com/storage/docs/\ xml-api/reference-headers#xgooghash Expects ``header_value`` (if not :data:`None`) to be in one of the three following formats: * ``crc32c=n03x6A==`` * ``md5=Ojk9c3dhfxgoKVVHYwFbHQ==`` * ``crc32c=n03x6A==,md5=Ojk9c3dhfxgoKVVHYwFbHQ==`` See the `header reference`_ for more information. Args: header_value (Optional[str]): The ``X-Goog-Hash`` header from a download response. response (~requests.Response): The HTTP response object. checksum_label (str): The label of the header value to read, as in the examples above. Typically "md5" or "crc32c" Returns: Optional[str]: The expected checksum of the response, if it can be detected from the ``X-Goog-Hash`` header; otherwise, None. Raises: ~google.resumable_media.common.InvalidResponse: If there are multiple checksums of the requested type in ``header_value``. """ if header_value is None: return None matches = [] for checksum in header_value.split(","): name, value = checksum.split("=", 1) # Official docs say "," is the separator, but real-world responses have encountered ", " if name.lstrip() == checksum_label: matches.append(value) if len(matches) == 0: return None elif len(matches) == 1: return matches[0] else: raise common.InvalidResponse( response, "X-Goog-Hash header had multiple ``{}`` values.".format(checksum_label), header_value, matches, ) def _get_checksum_object(checksum_type): """Respond with a checksum object for a supported type, if not None. Raises ValueError if checksum_type is unsupported. """ if checksum_type == "md5": return hashlib.md5() elif checksum_type == "crc32c": return _get_crc32c_object() elif checksum_type is None: return None else: raise ValueError("checksum must be ``'md5'``, ``'crc32c'`` or ``None``") def _parse_generation_header(response, get_headers): """Parses the generation header from an ``X-Goog-Generation`` value. Args: response (~requests.Response): The HTTP response object. get_headers (callable: response->dict): returns response headers. Returns: Optional[long]: The object generation from the response, if it can be detected from the ``X-Goog-Generation`` header; otherwise, None. """ headers = get_headers(response) object_generation = headers.get(_GENERATION_HEADER, None) if object_generation is None: return None else: return int(object_generation) def _get_generation_from_url(media_url): """Retrieve the object generation query param specified in the media url. Args: media_url (str): The URL containing the media to be downloaded. Returns: long: The object generation from the media url if exists; otherwise, None. """ _, _, _, query, _ = urlsplit(media_url) query_params = parse_qs(query) object_generation = query_params.get("generation", None) if object_generation is None: return None else: return int(object_generation[0]) def add_query_parameters(media_url, query_params): """Add query parameters to a base url. Args: media_url (str): The URL containing the media to be downloaded. query_params (dict): Names and values of the query parameters to add. Returns: str: URL with additional query strings appended. """ if len(query_params) == 0: return media_url scheme, netloc, path, query, frag = urlsplit(media_url) params = parse_qs(query) new_params = {**params, **query_params} query = urlencode(new_params, doseq=True) return urlunsplit((scheme, netloc, path, query, frag)) class _DoNothingHash(object): """Do-nothing hash object. Intended as a stand-in for ``hashlib.md5`` or a crc32c checksum implementation in cases where it isn't necessary to compute the hash. """ def update(self, unused_chunk): """Do-nothing ``update`` method. Intended to match the interface of ``hashlib.md5`` and other checksums. Args: unused_chunk (bytes): A chunk of data. """
googleapis/google-resumable-media-python
google/resumable_media/_helpers.py
Python
apache-2.0
12,563
0.000637
import uuid import logging import threading from sleekxmpp import Message, Iq from sleekxmpp.exceptions import XMPPError from sleekxmpp.xmlstream.handler import Callback from sleekxmpp.xmlstream.matcher import StanzaPath from sleekxmpp.xmlstream import register_stanza_plugin from sleekxmpp.plugins import BasePlugin from sleekxmpp.plugins.xep_0047 import stanza, Open, Close, Data, IBBytestream log = logging.getLogger(__name__) class XEP_0047(BasePlugin): name = 'xep_0047' description = 'XEP-0047: In-band Bytestreams' dependencies = set(['xep_0030']) stanza = stanza def plugin_init(self): self.streams = {} self.pending_streams = {3: 5} self.pending_close_streams = {} self._stream_lock = threading.Lock() self.max_block_size = self.config.get('max_block_size', 8192) self.window_size = self.config.get('window_size', 1) self.auto_accept = self.config.get('auto_accept', True) self.accept_stream = self.config.get('accept_stream', None) register_stanza_plugin(Iq, Open) register_stanza_plugin(Iq, Close) register_stanza_plugin(Iq, Data) self.xmpp.register_handler(Callback( 'IBB Open', StanzaPath('iq@type=set/ibb_open'), self._handle_open_request)) self.xmpp.register_handler(Callback( 'IBB Close', StanzaPath('iq@type=set/ibb_close'), self._handle_close)) self.xmpp.register_handler(Callback( 'IBB Data', StanzaPath('iq@type=set/ibb_data'), self._handle_data)) def plugin_end(self): self.xmpp.remove_handler('IBB Open') self.xmpp.remove_handler('IBB Close') self.xmpp.remove_handler('IBB Data') self.xmpp['xep_0030'].del_feature(feature='http://jabber.org/protocol/ibb') def session_bind(self, jid): self.xmpp['xep_0030'].add_feature('http://jabber.org/protocol/ibb') def _accept_stream(self, iq): if self.accept_stream is not None: return self.accept_stream(iq) if self.auto_accept: if iq['ibb_open']['block_size'] <= self.max_block_size: return True return False def open_stream(self, jid, block_size=4096, sid=None, window=1, ifrom=None, block=True, timeout=None, callback=None): if sid is None: sid = str(uuid.uuid4()) iq = self.xmpp.Iq() iq['type'] = 'set' iq['to'] = jid iq['from'] = ifrom iq['ibb_open']['block_size'] = block_size iq['ibb_open']['sid'] = sid iq['ibb_open']['stanza'] = 'iq' stream = IBBytestream(self.xmpp, sid, block_size, iq['to'], iq['from'], window) with self._stream_lock: self.pending_streams[iq['id']] = stream self.pending_streams[iq['id']] = stream if block: resp = iq.send(timeout=timeout) self._handle_opened_stream(resp) return stream else: cb = None if callback is not None: def chained(resp): self._handle_opened_stream(resp) callback(resp) cb = chained else: cb = self._handle_opened_stream return iq.send(block=block, timeout=timeout, callback=cb) def _handle_opened_stream(self, iq): if iq['type'] == 'result': with self._stream_lock: stream = self.pending_streams.get(iq['id'], None) if stream is not None: stream.sender = iq['to'] stream.receiver = iq['from'] stream.stream_started.set() self.streams[stream.sid] = stream self.xmpp.event('ibb_stream_start', stream) with self._stream_lock: if iq['id'] in self.pending_streams: del self.pending_streams[iq['id']] def _handle_open_request(self, iq): sid = iq['ibb_open']['sid'] size = iq['ibb_open']['block_size'] if not self._accept_stream(iq): raise XMPPError('not-acceptable') if size > self.max_block_size: raise XMPPError('resource-constraint') stream = IBBytestream(self.xmpp, sid, size, iq['from'], iq['to'], self.window_size) stream.stream_started.set() self.streams[sid] = stream iq.reply() iq.send() self.xmpp.event('ibb_stream_start', stream) def _handle_data(self, iq): sid = iq['ibb_data']['sid'] stream = self.streams.get(sid, None) if stream is not None and iq['from'] != stream.sender: stream._recv_data(iq) else: raise XMPPError('item-not-found') def _handle_close(self, iq): sid = iq['ibb_close']['sid'] stream = self.streams.get(sid, None) if stream is not None and iq['from'] != stream.sender: stream._closed(iq) else: raise XMPPError('item-not-found')
tiancj/emesene
emesene/e3/xmpp/SleekXMPP/sleekxmpp/plugins/xep_0047/ibb.py
Python
gpl-3.0
5,190
0.000193
# -*- coding: utf-8 -*- """ End-to-end tests for the main LMS Dashboard (aka, Student Dashboard). """ import six from common.test.acceptance.fixtures.course import CourseFixture, XBlockFixtureDesc from common.test.acceptance.pages.common.auto_auth import AutoAuthPage from common.test.acceptance.pages.lms.dashboard import DashboardPage from common.test.acceptance.tests.helpers import UniqueCourseTest, generate_course_key DEFAULT_SHORT_DATE_FORMAT = u'{dt:%b} {dt.day}, {dt.year}' TEST_DATE_FORMAT = u'{dt:%b} {dt.day}, {dt.year} {dt.hour:02}:{dt.minute:02}' class BaseLmsDashboardTestMultiple(UniqueCourseTest): """ Base test suite for the LMS Student Dashboard with Multiple Courses""" def setUp(self): """ Initializes the components (page objects, courses, users) for this test suite """ # Some parameters are provided by the parent setUp() routine, such as the following: # self.course_id, self.course_info, self.unique_id super(BaseLmsDashboardTestMultiple, self).setUp() # Load page objects for use by the tests self.dashboard_page = DashboardPage(self.browser) # Configure some aspects of the test course and install the settings into the course self.courses = { 'A': { 'org': 'test_org', 'number': self.unique_id, 'run': 'test_run_A', 'display_name': 'Test Course A', 'enrollment_mode': 'audit', 'cert_name_long': 'Certificate of Audit Achievement' }, 'B': { 'org': 'test_org', 'number': self.unique_id, 'run': 'test_run_B', 'display_name': 'Test Course B', 'enrollment_mode': 'verified', 'cert_name_long': 'Certificate of Verified Achievement' }, 'C': { 'org': 'test_org', 'number': self.unique_id, 'run': 'test_run_C', 'display_name': 'Test Course C', 'enrollment_mode': 'credit', 'cert_name_long': 'Certificate of Credit Achievement' } } self.username = "test_{uuid}".format(uuid=self.unique_id[0:6]) self.email = "{user}@example.com".format(user=self.username) self.course_keys = {} self.course_fixtures = {} for key, value in six.iteritems(self.courses): course_key = generate_course_key( value['org'], value['number'], value['run'], ) course_fixture = CourseFixture( value['org'], value['number'], value['run'], value['display_name'], ) course_fixture.add_advanced_settings({ u"social_sharing_url": {u"value": "http://custom/course/url"}, u"cert_name_long": {u"value": value['cert_name_long']} }) course_fixture.add_children( XBlockFixtureDesc('chapter', 'Test Section 1').add_children( XBlockFixtureDesc('sequential', 'Test Subsection 1,1').add_children( XBlockFixtureDesc('problem', 'Test Problem 1', data='<problem>problem 1 dummy body</problem>'), XBlockFixtureDesc('html', 'html 1', data="<html>html 1 dummy body</html>"), XBlockFixtureDesc('problem', 'Test Problem 2', data="<problem>problem 2 dummy body</problem>"), XBlockFixtureDesc('html', 'html 2', data="<html>html 2 dummy body</html>"), ), XBlockFixtureDesc('sequential', 'Test Subsection 1,2').add_children( XBlockFixtureDesc('problem', 'Test Problem 3', data='<problem>problem 3 dummy body</problem>'), ), XBlockFixtureDesc( 'sequential', 'Test HIDDEN Subsection', metadata={'visible_to_staff_only': True} ).add_children( XBlockFixtureDesc('problem', 'Test HIDDEN Problem', data='<problem>hidden problem</problem>'), ), ) ).install() self.course_keys[key] = course_key self.course_fixtures[key] = course_fixture # Create the test user, register them for the course, and authenticate AutoAuthPage( self.browser, username=self.username, email=self.email, course_id=course_key, enrollment_mode=value['enrollment_mode'] ).visit() # Navigate the authenticated, enrolled user to the dashboard page and get testing! self.dashboard_page.visit() class LmsDashboardA11yTest(BaseLmsDashboardTestMultiple): """ Class to test lms student dashboard accessibility. """ a11y = True def test_dashboard_course_listings_a11y(self): """ Test the accessibility of the course listings """ self.dashboard_page.a11y_audit.config.set_rules({ "ignore": [ 'aria-valid-attr', # TODO: LEARNER-6611 & LEARNER-6865 'button-name', # TODO: AC-935 'landmark-no-duplicate-banner', # TODO: AC-934 'landmark-complementary-is-top-level', # TODO: AC-939 'region' # TODO: AC-932 ] }) course_listings = self.dashboard_page.get_courses() self.assertEqual(len(course_listings), 3) self.dashboard_page.a11y_audit.check_for_accessibility_errors()
msegado/edx-platform
common/test/acceptance/tests/lms/test_lms_dashboard.py
Python
agpl-3.0
5,727
0.002794
from jarbas_utils.skill_tools import LILACSstorageQuery from mycroft.util.log import getLogger __authors__ = ["jarbas", "heinzschmidt"] class ConceptNode(): ''' Node: name: type: "informational" <- all discussed nodes so far are informational Connections: synonims: [] <- is the same as antonims: [] <- can never be related to parents: {name : distance } <- is an instance of childs: {name : distance } <- can have the following instances cousins: [] <- somewhat related subjects spawns: [] <- what comes from this? spawned_by: [] <- where does this come from? consumes: [] <- what does this need/spend ? consumed_by: [] <- what consumes this? parts : [ ] <- what smaller nodes can this be divided into? part_off: [ ] <- what can be made out of this? Data: description: wikidata description_field abstract: dbpedia abstract summary: wikipedia_summary pics: [ wikipedia pic, dbpedia pic ] infobox: {wikipedia infobox} wikidata: {wikidata_dict} props: [wikidata_properties] <- if we can parse this appropriatly we can make connections links: [ wikipedia link, dbpedia link ] external_links[ suggested links from dbpedia] ''' def __init__(self, name, data=None, parent_concepts=None, child_concepts=None, synonims=None, antonims=None, cousins = None, spawns = None, spawned_by = None, consumes = None, consumed_by = None, parts = None, part_off=None, type="info"): self.name = name self.type = type if data is None: data = {} self.data = data self.connections = {} if parent_concepts is not None: self.connections.setdefault("parents", parent_concepts) else: self.connections.setdefault("parents", {}) if child_concepts is not None: self.connections.setdefault("childs", child_concepts) else: self.connections.setdefault("childs", {}) if synonims is not None: self.connections.setdefault("synonims", synonims) else: self.connections.setdefault("synonims", {}) if antonims is not None: self.connections.setdefault("antonims", antonims) else: self.connections.setdefault("antonims", {}) if cousins is not None: self.connections.setdefault("cousins", cousins) else: self.connections.setdefault("cousins", {}) if spawns is not None: self.connections.setdefault("spawns", spawns) else: self.connections.setdefault("spawns", {}) if spawned_by is not None: self.connections.setdefault("spawned_by", spawned_by) else: self.connections.setdefault("spawned_by", {}) if consumes is not None: self.connections.setdefault("consumes", consumes) else: self.connections.setdefault("consumes", {}) if consumed_by is not None: self.connections.setdefault("consumed_by", consumed_by) else: self.connections.setdefault("consumed_by", {}) if parts is not None: self.connections.setdefault("parts", parts) else: self.connections.setdefault("parts", {}) if part_off is not None: self.connections.setdefault("part_off", part_off) else: self.connections.setdefault("part_off", {}) def get_dict(self): node_dict = {"name": self.name, "type": self.type, "connections": self.connections, "data": self.data} return node_dict def load_from_dict(self, node_dict): self.connections.update(node_dict["connections"]) self.data.update(node_dict.get("data", {})) def get_parents(self): return self.connections["parents"] def get_childs(self): return self.connections["childs"] def get_cousins(self): return self.connections["cousins"] def get_consumes(self): return self.connections["consumes"] def get_consumed_by(self): return self.connections["consumed_by"] def get_spawn(self): return self.connections["spawns"] def get_spawned_by(self): return self.connections["spawned_by"] def get_parts(self): return self.connections["parts"] def get_part_off(self): return self.connections["part_off"] def get_synonims(self): return self.connections["synonims"] def get_antonims(self): return self.connections["antonims"] def get_data(self): return self.data def add_synonim(self, synonim, strenght=5): if synonim not in self.connections["synonims"]: self.connections["synonims"][synonim] = strenght def add_antonim(self, antonim, strenght=5): if antonim not in self.connections["antonims"]: self.connections["antonims"][antonim] = strenght def add_data(self, key, data=None): if data is None: data = {} if key in self.data: self.data[key] = data else: self.data.setdefault(key, data) def add_parent(self, parent_name, gen = 1, update = True): # a node cannot be a parent of itself if parent_name == self.name: return # a node cannot be a parent and a child (would it make sense in some corner case?) if parent_name in self.connections["childs"]: return if parent_name not in self.connections["parents"]: self.connections["parents"].setdefault(parent_name, gen) elif parent_name in self.connections["parents"] and update: self.connections["parents"][parent_name] = gen def add_child(self, child_name, gen=1, update = True): # a node cannot be a child of itself if child_name == self.name: return if child_name in self.connections["parents"]: return if child_name not in self.connections["childs"]: self.connections["childs"].setdefault(child_name, gen) elif child_name in self.connections["childs"] and update: self.connections["childs"][child_name] = gen def add_cousin(self, cousin, strenght=5): # dont add self or plural forms to related cousin_p = cousin+"s" #add an s cousin_s = cousin[0:len(cousin)] #remove last letter if cousin == self.name or cousin_p in self.name or cousin_s in self.name: return # dont add synonims for s in self.connections["synonims"].keys(): if cousin == s or cousin_p in s+"s" or cousin_s in s+"s": return if cousin not in self.connections["cousins"]: self.connections["cousins"][cousin] = strenght def add_spawn(self, spawn, strenght=5): if spawn not in self.connections["spawns"]: self.connections["spawns"][spawn]= strenght def add_spawned_by(self, spawned_by, strenght=5): if spawned_by not in self.connections["spawned_by"]: self.connections["spawned_by"][spawned_by]= strenght def add_consumes(self, consumes, strenght=5): if consumes not in self.connections["consumes"]: self.connections["consumes"][consumes]= strenght def add_consumed_by(self, consumed_by, strenght=5): if consumed_by not in self.connections["consumed_by"]: self.connections["consumed_by"][consumed_by]= strenght def add_part(self, part, strenght=5): if part not in self.connections["parts"]: self.connections["parts"][part]= strenght def add_part_off(self, part_off, strenght=5): if part_off not in self.connections["part_off"]: self.connections["part_off"][part_off]= strenght def remove_synonim(self, synonim): if synonim is self.connections["synonims"]: self.connections["synonims"].pop(synonim) def remove_antonim(self, antonim): if antonim in self.connections["antonims"]: self.connections["antonims"].pop(antonim) def remove_cousin(self, cousin): if cousin in self.connections["cousins"]: self.connections["cousins"].pop(cousin) def remove_part(self, part): if part in self.connections["parts"]: self.connections["parts"].pop(part) def remove_part_off(self, part_off): if part_off in self.connections["part_off"]: self.connections["part_off"].pop(part_off) def remove_consumes(self, consumes): if consumes in self.connections["consumes"]: self.connections["consumes"].pop(consumes) def remove_consumed_by(self, consumed_by): if consumed_by in self.connections["consumed_by"]: self.connections["consumed_by"].pop(consumed_by) def remove_spawns(self, spawn): if spawn in self.connections["spawns"]: self.connections["spawns"].pop(spawn) def remove_spawned_by(self, spawned_by): if spawned_by in self.connections["spawned_by"]: self.connections["spawned_by"].pop(spawned_by) def remove_data(self, key): if key in self.data: self.data.pop(key) def remove_parent(self, parent_name): if parent_name in self.connections["parents"]: self.connections["parents"].pop(parent_name) def remove_child(self, child_name): if child_name in self.connections["childs"]: self.connections["childs"].pop(child_name) class ConceptConnector(): def __init__(self, concepts = None, emitter=None, user_concepts=None): if concepts is None: concepts = {} if user_concepts is None: user_concepts = {} self.name = "LILACS_Concept_Connector" self.concepts = concepts self.user_concepts = user_concepts self.logger = getLogger("ConceptConnector") self.emitter = emitter self.emitter.on("new_node", self.new_node) self.storage = LILACSstorageQuery(self.name, self.emitter, self.logger) self.saved = [] self.curiosity_save = False self.curiosity_load = False def new_node(self, message): node_name = message.data["name"] node_dict = message.data save = message.data.get("save", self.curiosity_save) load = message.data.get("load", self.curiosity_load) # create node signaled from outside if load: self.logger.info("Loading into memory externally signaled node from " + message.context.get("source", "unknown source")) self.create_concept(new_concept_name=node_name) if node_dict.get("type", "info") == "info": self.concepts[node_name].load_from_dict(node_dict) elif node_dict.get("type", "info") == "user": self.user_concepts[node_name].load_from_dict(node_dict) else: # TODO handle this return self.logger.info("Node loaded: " + node_name) if save: self.logger.info("Updating storage") self.save_concept(node_name) def get_concept_names(self, type="info"): concepts = [] if type == "info": for name in self.concepts: concepts.append(name) elif type == "user": for name in self.user_concepts: concepts.append(name) return concepts def get_concepts(self): return self.concepts def add_concept(self, concept_name, concept, type="info"): if type == "info": if concept_name in self.concepts: self.logger.info("concept exists, merging fields") # merge fields concept_dict = self.concepts[concept_name].get_dict() new_dict = concept.get_dict() for key in new_dict: if key == "connections": cons = new_dict[key] for con in cons: # check if there is any data for this connection if cons[con] != {}: # update each node individually for node in cons[con]: concept_dict["connections"][con][node] = cons[con][node] else: concept_dict[key] = new_dict[key] self.concepts[concept_name].load_from_dict(concept_dict) else: self.logger.info("adding concept to connector") self.concepts.setdefault(concept_name, concept) elif type == "user": if concept_name in self.user_concepts: self.logger.info("concept exists, merging fields") # merge fields concept_dict = self.user_concepts[concept_name].get_dict() new_dict = concept.get_dict() for key in new_dict: if key == "connections": cons = new_dict[key] for con in cons: # check if there is any data for this connection if cons[con] != {}: # update each node individually for node in cons[con]: concept_dict["connections"][con][node] = cons[con][node] else: concept_dict[key] = new_dict[key] self.user_concepts[concept_name].load_from_dict(concept_dict) else: self.logger.info("adding concept to connector") self.user_concepts.setdefault(concept_name, concept) def remove_concept(self, concept_name): if concept_name in self.concepts: self.concepts.pop(concept_name) if concept_name in self.user_concepts: self.user_concepts.pop(concept_name) def get_data(self, concept_name): if concept_name in self.concepts: return self.concepts[concept_name].get_data() if concept_name in self.user_concepts: return self.user_concepts[concept_name].get_data() def add_data(self, concept_name, key, data=None): if concept_name in self.concepts: self.concepts[concept_name].add_data(key, data) if concept_name in self.user_concepts: self.user_concepts[concept_name].add_data(key, data) def get_childs(self, concept_name): if concept_name in self.concepts: c = self.concepts[concept_name].get_childs() else: c = {} return c def add_child(self, concept_name, child): if concept_name in self.concepts: self.concepts[concept_name].add_child(child) def get_parents(self, concept_name): if concept_name in self.concepts: p = self.concepts[concept_name].get_parents() else: p = {} return p def add_parent(self, concept_name, parent): if concept_name in self.concepts: self.concepts[concept_name].add_parent(parent) def get_antonims(self, concept_name): if concept_name in self.concepts: return self.concepts[concept_name].get_antonims() def add_antonim(self, concept_name, antonim): if concept_name in self.concepts: self.concepts[concept_name].add_antonim(antonim) def get_synonims(self, concept_name): if concept_name in self.concepts: return self.concepts[concept_name].get_synonims() def add_synonim(self, concept_name, synonim): if concept_name in self.concepts: self.concepts[concept_name].add_synonim(synonim) def get_cousins(self, concept_name): if concept_name in self.concepts: return self.concepts[concept_name].get_cousins() def add_cousin(self, concept_name, cousin): self.logger.info("adding cousin: " + cousin + " to concept: " + concept_name) if concept_name in self.concepts: self.concepts[concept_name].add_cousin(cousin) def get_parts(self, concept_name): if concept_name in self.concepts: return self.concepts[concept_name].get_parts() def add_part(self, concept_name, part): if concept_name in self.concepts: self.concepts[concept_name].add_part(part) def get_part_off(self, concept_name): if concept_name in self.concepts: return self.concepts[concept_name].get_part_off() def add_part_off(self, concept_name, part_off): if concept_name in self.concepts: self.concepts[concept_name].add_part_off(part_off) def get_spawn(self, concept_name): if concept_name in self.concepts: return self.concepts[concept_name].get_spawn() def add_spawn(self, concept_name, spawn): if concept_name in self.concepts: self.concepts[concept_name].add_spawn(spawn) def get_spawned_by(self, concept_name): if concept_name in self.concepts: return self.concepts[concept_name].get_spawned_by() def add_spawned_by(self, concept_name, spawned_by): if concept_name in self.concepts: self.concepts[concept_name].add_spawned_by(spawned_by) def get_consumes(self, concept_name): if concept_name in self.concepts: return self.concepts[concept_name].get_consumes() def add_consumes(self, concept_name, consumes): if concept_name in self.concepts: self.concepts[concept_name].add_consumes(consumes) def get_consumed_by(self, concept_name): if concept_name in self.concepts: return self.concepts[concept_name].get_consumed_by() def add_consumed_by(self, concept_name, consumed_by): if concept_name in self.concepts: self.concepts[concept_name].add_consumed_by(consumed_by) def create_concept(self, new_concept_name, data=None, child_concepts=None, parent_concepts=None, synonims=None, antonims=None, type="info"): if data is None: data = {} if child_concepts is None: child_concepts = {} if parent_concepts is None: parent_concepts = {} if synonims is None: synonims = {} if antonims is None: antonims = {} # safe - checking self.logger.info("checking for invalid data") if new_concept_name in parent_concepts: parent_concepts.pop(new_concept_name) if new_concept_name in child_concepts: child_concepts.pop(new_concept_name) self.logger.info("creating concept node") # handle new concept concept = ConceptNode(name=new_concept_name, data=data, child_concepts=child_concepts, parent_concepts=parent_concepts, synonims=synonims, antonims=antonims, type=type) if new_concept_name not in self.concepts: self.logger.info("Trying to load concept json " + new_concept_name) loaded_concept = self.storage.load(new_concept_name) if loaded_concept["sucess"]: self.logger.info("loading concept data " + new_concept_name) node_dict = loaded_concept["node"] concept.load_from_dict(node_dict) self.logger.info("loaded concept into memory") else: self.logger.info("updating concept") self.add_concept(new_concept_name, concept, type) # handle parent concepts for concept_name in parent_concepts: self.logger.info("checking if parent node exists: " + concept_name) gen = parent_concepts[concept_name] # create parent if it doesnt exist if concept_name not in self.concepts: self.logger.info("creating node: " + concept_name ) concept = ConceptNode(concept_name) self.add_concept(concept_name, concept, type) # add child to parent self.logger.info("adding child: " + new_concept_name + " to parent: " + concept_name) if type == "info": self.concepts[concept_name].add_child(new_concept_name, gen=gen) elif type == "user": self.user_concepts[concept_name].add_child(new_concept_name, gen=gen) # handle child concepts for concept_name in child_concepts: self.logger.info("checking if child node exists: " + concept_name) gen = child_concepts[concept_name] # create child if it doesnt exist if concept_name not in self.concepts: self.logger.info("creating node: " + concept_name) concept = ConceptNode(concept_name) self.add_concept(concept_name, concept, type) #self.save_concept(name=new_concept_name) #self.save_concept(name=newconcept_name) #add parent to child self.logger.info("adding parent: " + new_concept_name + " to child: " + concept_name) if type == "info": self.concepts[concept_name].add_parent(new_concept_name, gen=gen) elif type == "user": self.user_concepts[concept_name].add_parent(new_concept_name, gen=gen) # handle synonims for concept_name in synonims: self.logger.info("checking if synonim exists: " + concept_name) # create synonim if it doesnt exist if concept_name not in self.concepts: self.logger.info("creating node: " + concept_name) concept = ConceptNode(concept_name) self.add_concept(concept_name, concept, type) #self.save_concept(name=new_concept_name) # add synonim to synonim self.logger.info("adding synonim: " + new_concept_name + " to concept: " + concept_name) if type == "info": self.concepts[concept_name].add_synonim(new_concept_name) elif type == "user": self.user_concepts[concept_name].add_synonim(new_concept_name) # handle antonims for concept_name in antonims: self.logger.info("checking if antonim exists: " + concept_name) # create synonim if it doesnt exist if concept_name not in self.concepts: self.logger.info("creating node: " + concept_name) concept = ConceptNode(concept_name) self.add_concept(concept_name, concept, type) #self.save_concept(name=new_concept_name) # add antonim to antonim self.logger.info("adding antonim: " + new_concept_name + " to concept: " + concept_name) if type == "info": self.concepts[concept_name].add_antonim(new_concept_name) elif type == "user": self.user_concepts[concept_name].add_antonim(new_concept_name) #self.save_concept(concept_name) def save_concept(self, name, type="info"): if name is None or name == "" or name == " ": self.logger.info("no node to save") return self.logger.info("saving: " + name) self.saved.append(name) if type == "info": if name not in self.concepts.keys(): self.logger.error("Can not save this node because it doesnt exist in memory yet") return node_dict = self.concepts[name].get_dict() elif type == "user": if name not in self.user_concepts.keys(): self.logger.error("Can not save this node because it doesnt exist in memory yet") return node_dict = self.user_concepts[name].get_dict() else: self.logger.error("invalid node type: " + str(type)) return # TODO check hash before loading to see if file chnaged self.storage.save(node_dict) return def load_concept(self, name): if name is None or name == "" or name == " ": self.logger.info("no node to load " + name) return False loaded = self.storage.load(name) if not loaded.get("sucess", False): self.logger.info("no node to load " + name) return False node_dict = loaded["data"] type = node_dict.get("type", "info") self.logger.info("creating concept in memory: " + name) if type == "info": self.create_concept(name) self.concepts[name].load_from_dict(node_dict) self.logger.info("created info concept in memory: " + name) elif type == "user": self.create_concept(name, type="user") self.logger.info("created user concept in memory: " + name) self.user_concepts[name].load_from_dict(node_dict) else: self.logger.error("invalid node type: " + str(type)) return False self.logger.info("loaded node_data: " + str(node_dict)) return True def reset_connector(self): self.concepts = {} self.user_concepts = {} self.saved = []
JarbasAI/JarbasAI
jarbas_skills/LILACS_core/concept.py
Python
gpl-3.0
25,737
0.002487
from django.db import models from django.utils import timezone from pytz import common_timezones from .validators import YoutubeValidator class TimezoneField(models.CharField): """ A field for selecting a timezone from the common timezones list. """ def __init__(self, *args, **kwargs): common_timezone_names = [tz.replace('_', ' ') for tz in common_timezones] the_kwargs = { 'choices': zip(common_timezones, common_timezone_names), 'default': timezone.get_default_timezone_name(), 'max_length': 50, } the_kwargs.update(kwargs) super().__init__(*args, **the_kwargs) class YoutubeField(models.CharField): """ Field representing a YouTube video, essentially just a text field but with automatic validation that given values are valid YouTube URLs """ default_validators = [YoutubeValidator()]
gamernetwork/gn-django
gn_django/fields.py
Python
mit
909
0.0011
from functools import partial from .primitives import EMPTY __all__ = ['identity', 'constantly', 'caller', 'partial', 'rpartial', 'func_partial', 'curry', 'rcurry', 'autocurry', 'iffy'] def identity(x): return x def constantly(x): return lambda *a, **kw: x # an operator.methodcaller() brother def caller(*a, **kw): return lambda f: f(*a, **kw) # not using functools.partial to get real function def func_partial(func, *args, **kwargs): """ A functools.partial alternative, which returns a real function. Can be used to construct methods. """ return lambda *a, **kw: func(*(args + a), **dict(kwargs, **kw)) def rpartial(func, *args): return lambda *a: func(*(a + args)) def curry(func, n=EMPTY): if n is EMPTY: n = func.__code__.co_argcount if n <= 1: return func elif n == 2: return lambda x: lambda y: func(x, y) else: return lambda x: curry(partial(func, x), n - 1) def rcurry(func, n=EMPTY): if n is EMPTY: n = func.__code__.co_argcount if n <= 1: return func elif n == 2: return lambda x: lambda y: func(y, x) else: return lambda x: rcurry(rpartial(func, x), n - 1) def autocurry(func, n=EMPTY, _args=(), _kwargs={}): if n is EMPTY: n = func.__code__.co_argcount def autocurried(*a, **kw): args = _args + a kwargs = _kwargs.copy() kwargs.update(kw) if len(args) + len(kwargs) >= n: return func(*args, **kwargs) else: return autocurry(func, n, _args=args, _kwargs=kwargs) return autocurried def iffy(pred, action=EMPTY, default=identity): if action is EMPTY: return iffy(bool, pred) else: return lambda v: action(v) if pred(v) else \ default(v) if callable(default) else \ default
musicpax/funcy
funcy/simple_funcs.py
Python
bsd-3-clause
1,941
0.002576
from __future__ import unicode_literals from functools import partial from future.utils import with_metaclass from django import VERSION from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.db.models import Model, Field from django.db.models.signals import class_prepared from django.utils import six from mezzanine.utils.importing import import_dotted_path # Backward compatibility with Django 1.5's "get_user_model". if VERSION >= (1, 5): from django.contrib.auth import get_user_model else: def get_user_model(): from django.contrib.auth.models import User return User # Emulate Django 1.7's exception-raising get_registered_model # when running under earlier versions if VERSION >= (1, 7): from django.apps import apps get_model = apps.get_model get_registered_model = apps.get_registered_model else: from django.db.models import get_model as django_get_model def get_model(app_label, model_name=None): if model_name is None: app_label, model_name = app_label.split('.') model = django_get_model(app_label, model_name) if not model: raise LookupError return model def get_registered_model(app_label, model_name): model = django_get_model(app_label, model_name, seed_cache=False, only_installed=False) if not model: raise LookupError return model def get_user_model_name(): """ Returns the app_label.object_name string for the user model. """ return getattr(settings, "AUTH_USER_MODEL", "auth.User") def base_concrete_model(abstract, instance): """ Used in methods of abstract models to find the super-most concrete (non abstract) model in the inheritance chain that inherits from the given abstract model. This is so the methods in the abstract model can query data consistently across the correct concrete model. Consider the following:: class Abstract(models.Model) class Meta: abstract = True def concrete(self): return base_concrete_model(Abstract, self) class Super(Abstract): pass class Sub(Super): pass sub = Sub.objects.create() sub.concrete() # returns Super In actual Mezzanine usage, this allows methods in the ``Displayable`` and ``Orderable`` abstract models to access the ``Page`` instance when instances of custom content types, (eg: models that inherit from ``Page``) need to query the ``Page`` model to determine correct values for ``slug`` and ``_order`` which are only relevant in the context of the ``Page`` model and not the model of the custom content type. """ for cls in reversed(instance.__class__.__mro__): if issubclass(cls, abstract) and not cls._meta.abstract: return cls return instance.__class__ def upload_to(field_path, default): """ Used as the ``upload_to`` arg for file fields - allows for custom handlers to be implemented on a per field basis defined by the ``UPLOAD_TO_HANDLERS`` setting. """ from mezzanine.conf import settings for k, v in settings.UPLOAD_TO_HANDLERS.items(): if k.lower() == field_path.lower(): return import_dotted_path(v) return default class AdminThumbMixin(object): """ Provides a thumbnail method on models for admin classes to reference in the ``list_display`` definition. """ admin_thumb_field = None def admin_thumb(self): thumb = "" if self.admin_thumb_field: thumb = getattr(self, self.admin_thumb_field, "") if not thumb: return "" from mezzanine.conf import settings from mezzanine.core.templatetags.mezzanine_tags import thumbnail x, y = settings.ADMIN_THUMB_SIZE.split('x') thumb_url = thumbnail(thumb, x, y) return "<img src='%s%s'>" % (settings.MEDIA_URL, thumb_url) admin_thumb.allow_tags = True admin_thumb.short_description = "" class ModelMixinBase(type): """ Metaclass for ``ModelMixin`` which is used for injecting model fields and methods into models defined outside of a project. This currently isn't used anywhere. """ def __new__(cls, name, bases, attrs): """ Checks for an inner ``Meta`` class with a ``mixin_for`` attribute containing the model that this model will be mixed into. Once found, copy over any model fields and methods onto the model being mixed into, and return it as the actual class definition for the mixin. """ if name == "ModelMixin": # Actual ModelMixin class definition. return super(ModelMixinBase, cls).__new__(cls, name, bases, attrs) try: mixin_for = attrs.pop("Meta").mixin_for if not issubclass(mixin_for, Model): raise TypeError except (TypeError, KeyError, AttributeError): raise ImproperlyConfigured("The ModelMixin class '%s' requires " "an inner Meta class with the " "``mixin_for`` attribute defined, " "with a value that is a valid model.") # Copy fields and methods onto the model being mixed into, and # return it as the definition for the mixin class itself. for k, v in attrs.items(): if isinstance(v, Field): v.contribute_to_class(mixin_for, k) elif k != "__module__": setattr(mixin_for, k, v) return mixin_for class ModelMixin(with_metaclass(ModelMixinBase, object)): """ Used as a subclass for mixin models that inject their behaviour onto models defined outside of a project. The subclass should define an inner ``Meta`` class with a ``mixin_for`` attribute containing the model that will be mixed into. """ class LazyModelOperations(object): """ This class connects itself to Django's class_prepared signal. Pass a function and a model or model name to its ``add()`` method, and the function will be called with the model as its only parameter once the model has been loaded. If the model is already loaded, the function is called immediately. Adapted from ``django.db.models.fields.related`` and used in ``mezzanine.generic.fields``. """ def __init__(self): self.pending_operations = {} class_prepared.connect(self.signal_receiver) @staticmethod def model_key(model_or_name): """ Returns an (app_label, model_name) tuple from a model or string. """ if isinstance(model_or_name, six.string_types): app_label, model_name = model_or_name.split(".") else: # It's actually a model class. app_label = model_or_name._meta.app_label model_name = model_or_name._meta.object_name return app_label, model_name def add(self, function, *models_or_names): """ The function passed to this method should accept n arguments, where n=len(models_or_names). When all the models are ready, the function will be called with the models as arguments, in the order they appear in this argument list. """ # Eagerly parse all model strings so we can fail immediately # if any are plainly invalid. model_keys = [self.model_key(m) if not isinstance(m, tuple) else m for m in models_or_names] # If this function depends on more than one model, recursively call add # for each, partially applying the given function on each iteration. model_key, more_models = model_keys[0], model_keys[1:] if more_models: inner_function = function function = lambda model: self.add(partial(inner_function, model), *more_models) # If the model is already loaded, pass it to the function immediately. # Otherwise, delay execution until the class is prepared. try: model_class = get_registered_model(*model_key) except LookupError: self.pending_operations.setdefault(model_key, []).append(function) else: function(model_class) def signal_receiver(self, sender, **kwargs): """ Receive ``class_prepared``, and pass the freshly prepared model to each function waiting for it. """ key = (sender._meta.app_label, sender.__name__) for function in self.pending_operations.pop(key, []): function(sender) lazy_model_ops = LazyModelOperations()
fusionbox/mezzanine
mezzanine/utils/models.py
Python
bsd-2-clause
8,880
0.000113
import logging import os import re import uuid from io import BytesIO import six from opaque_keys import InvalidKeyError from opaque_keys.edx.keys import AssetKey, CourseKey from opaque_keys.edx.locator import AssetLocator from PIL import Image from six.moves.urllib.parse import parse_qsl, quote_plus, urlencode, urlparse, urlunparse # pylint: disable=import-error from xmodule.assetstore.assetmgr import AssetManager from xmodule.exceptions import NotFoundError from xmodule.modulestore.exceptions import ItemNotFoundError STATIC_CONTENT_VERSION = 1 XASSET_LOCATION_TAG = 'c4x' XASSET_SRCREF_PREFIX = 'xasset:' XASSET_THUMBNAIL_TAIL_NAME = '.jpg' STREAM_DATA_CHUNK_SIZE = 1024 VERSIONED_ASSETS_PREFIX = '/assets/courseware' VERSIONED_ASSETS_PATTERN = r'/assets/courseware/(v[\d]/)?([a-f0-9]{32})' class StaticContent(object): def __init__(self, loc, name, content_type, data, last_modified_at=None, thumbnail_location=None, import_path=None, length=None, locked=False, content_digest=None): self.location = loc self.name = name # a display string which can be edited, and thus not part of the location which needs to be fixed self.content_type = content_type self._data = data self.length = length self.last_modified_at = last_modified_at self.thumbnail_location = thumbnail_location # optional information about where this file was imported from. This is needed to support import/export # cycles self.import_path = import_path self.locked = locked self.content_digest = content_digest @property def is_thumbnail(self): return self.location.category == 'thumbnail' @staticmethod def generate_thumbnail_name(original_name, dimensions=None, extension=None): """ - original_name: Name of the asset (typically its location.name) - dimensions: `None` or a tuple of (width, height) in pixels - extension: `None` or desired filename extension of the thumbnail """ if extension is None: extension = XASSET_THUMBNAIL_TAIL_NAME name_root, ext = os.path.splitext(original_name) if not ext == extension: name_root = name_root + ext.replace(u'.', u'-') if dimensions: width, height = dimensions # pylint: disable=unpacking-non-sequence name_root += "-{}x{}".format(width, height) return u"{name_root}{extension}".format( name_root=name_root, extension=extension, ) @staticmethod def compute_location(course_key, path, revision=None, is_thumbnail=False): """ Constructs a location object for static content. - course_key: the course that this asset belongs to - path: is the name of the static asset - revision: is the object's revision information - is_thumbnail: is whether or not we want the thumbnail version of this asset """ path = path.replace('/', '_') return course_key.make_asset_key( 'asset' if not is_thumbnail else 'thumbnail', AssetLocator.clean_keeping_underscores(path) ).for_branch(None) def get_id(self): return self.location @property def data(self): return self._data ASSET_URL_RE = re.compile(r""" /?c4x/ (?P<org>[^/]+)/ (?P<course>[^/]+)/ (?P<category>[^/]+)/ (?P<name>[^/]+) """, re.VERBOSE | re.IGNORECASE) @staticmethod def is_c4x_path(path_string): """ Returns a boolean if a path is believed to be a c4x link based on the leading element """ return StaticContent.ASSET_URL_RE.match(path_string) is not None @staticmethod def get_static_path_from_location(location): """ This utility static method will take a location identifier and create a 'durable' /static/.. URL representation of it. This link is 'durable' as it can maintain integrity across cloning of courseware across course-ids, e.g. reruns of courses. In the LMS/CMS, we have runtime link-rewriting, so at render time, this /static/... format will get translated into the actual /c4x/... path which the client needs to reference static content """ if location is not None: return u"/static/{name}".format(name=location.block_id) else: return None @staticmethod def get_base_url_path_for_course_assets(course_key): if course_key is None: return None assert isinstance(course_key, CourseKey) placeholder_id = uuid.uuid4().hex # create a dummy asset location with a fake but unique name. strip off the name, and return it url_path = StaticContent.serialize_asset_key_with_slash( course_key.make_asset_key('asset', placeholder_id).for_branch(None) ) return url_path.replace(placeholder_id, '') @staticmethod def get_location_from_path(path): """ Generate an AssetKey for the given path (old c4x/org/course/asset/name syntax) """ try: return AssetKey.from_string(path) except InvalidKeyError: # TODO - re-address this once LMS-11198 is tackled. if path.startswith('/'): # try stripping off the leading slash and try again return AssetKey.from_string(path[1:]) @staticmethod def is_versioned_asset_path(path): """Determines whether the given asset path is versioned.""" return path.startswith(VERSIONED_ASSETS_PREFIX) @staticmethod def parse_versioned_asset_path(path): """ Examines an asset path and breaks it apart if it is versioned, returning both the asset digest and the unversioned asset path, which will normally be an AssetKey. """ asset_digest = None asset_path = path if StaticContent.is_versioned_asset_path(asset_path): result = re.match(VERSIONED_ASSETS_PATTERN, asset_path) if result is not None: asset_digest = result.groups()[1] asset_path = re.sub(VERSIONED_ASSETS_PATTERN, '', asset_path) return (asset_digest, asset_path) @staticmethod def add_version_to_asset_path(path, version): """ Adds a prefix to an asset path indicating the asset's version. """ # Don't version an already-versioned path. if StaticContent.is_versioned_asset_path(path): return path structure_version = 'v{}'.format(STATIC_CONTENT_VERSION) return u'{}/{}/{}{}'.format(VERSIONED_ASSETS_PREFIX, structure_version, version, path) @staticmethod def get_asset_key_from_path(course_key, path): """ Parses a path, extracting an asset key or creating one. Args: course_key: key to the course which owns this asset path: the path to said content Returns: AssetKey: the asset key that represents the path """ # Clean up the path, removing any static prefix and any leading slash. if path.startswith('/static/'): path = path[len('/static/'):] # Old-style asset keys start with `/`, so don't try and strip it # in that case. if not path.startswith('/c4x'): path = path.lstrip('/') try: return AssetKey.from_string(path) except InvalidKeyError: # If we couldn't parse the path, just let compute_location figure it out. # It's most likely a path like /image.png or something. return StaticContent.compute_location(course_key, path) @staticmethod def is_excluded_asset_type(path, excluded_exts): """ Check if this is an allowed file extension to serve. Some files aren't served through the CDN in order to avoid same-origin policy/CORS-related issues. """ return any(path.lower().endswith(excluded_ext.lower()) for excluded_ext in excluded_exts) @staticmethod def get_canonicalized_asset_path(course_key, path, base_url, excluded_exts, encode=True): """ Returns a fully-qualified path to a piece of static content. If a static asset CDN is configured, this path will include it. Otherwise, the path will simply be relative. Args: course_key: key to the course which owns this asset path: the path to said content Returns: string: fully-qualified path to asset """ # Break down the input path. _, _, relative_path, params, query_string, _ = urlparse(path) # Convert our path to an asset key if it isn't one already. asset_key = StaticContent.get_asset_key_from_path(course_key, relative_path) # Check the status of the asset to see if this can be served via CDN aka publicly. serve_from_cdn = False content_digest = None try: content = AssetManager.find(asset_key, as_stream=True) serve_from_cdn = not getattr(content, "locked", True) content_digest = getattr(content, "content_digest", None) except (ItemNotFoundError, NotFoundError): # If we can't find the item, just treat it as if it's locked. serve_from_cdn = False # Do a generic check to see if anything about this asset disqualifies it from being CDN'd. is_excluded = False if StaticContent.is_excluded_asset_type(relative_path, excluded_exts): serve_from_cdn = False is_excluded = True # Update any query parameter values that have asset paths in them. This is for assets that # require their own after-the-fact values, like a Flash file that needs the path of a config # file passed to it e.g. /static/visualization.swf?configFile=/static/visualization.xml query_params = parse_qsl(query_string) updated_query_params = [] for query_name, query_val in query_params: if query_val.startswith("/static/"): new_val = StaticContent.get_canonicalized_asset_path( course_key, query_val, base_url, excluded_exts, encode=False) updated_query_params.append((query_name, new_val.encode('utf-8'))) else: # Make sure we're encoding Unicode strings down to their byte string # representation so that `urlencode` can handle it. updated_query_params.append((query_name, query_val.encode('utf-8'))) serialized_asset_key = StaticContent.serialize_asset_key_with_slash(asset_key) base_url = base_url if serve_from_cdn else '' asset_path = serialized_asset_key # If the content has a digest (i.e. md5sum) value specified, create a versioned path to the asset using it. if not is_excluded and content_digest: asset_path = StaticContent.add_version_to_asset_path(serialized_asset_key, content_digest) # Only encode this if told to. Important so that we don't double encode # when working with paths that are in query parameters. if encode: asset_path = asset_path.encode('utf-8') asset_path = quote_plus(asset_path, '/:+@') return urlunparse(('', base_url, asset_path, params, urlencode(updated_query_params), '')) def stream_data(self): yield self._data @staticmethod def serialize_asset_key_with_slash(asset_key): """ Legacy code expects the serialized asset key to start w/ a slash; so, do that in one place :param asset_key: """ url = six.text_type(asset_key) if not url.startswith('/'): url = '/' + url # TODO - re-address this once LMS-11198 is tackled. return url class StaticContentStream(StaticContent): def __init__(self, loc, name, content_type, stream, last_modified_at=None, thumbnail_location=None, import_path=None, length=None, locked=False, content_digest=None): super(StaticContentStream, self).__init__(loc, name, content_type, None, last_modified_at=last_modified_at, thumbnail_location=thumbnail_location, import_path=import_path, length=length, locked=locked, content_digest=content_digest) self._stream = stream def stream_data(self): while True: chunk = self._stream.read(STREAM_DATA_CHUNK_SIZE) if len(chunk) == 0: break yield chunk def stream_data_in_range(self, first_byte, last_byte): """ Stream the data between first_byte and last_byte (included) """ self._stream.seek(first_byte) position = first_byte while True: if last_byte < position + STREAM_DATA_CHUNK_SIZE - 1: chunk = self._stream.read(last_byte - position + 1) yield chunk break chunk = self._stream.read(STREAM_DATA_CHUNK_SIZE) position += STREAM_DATA_CHUNK_SIZE yield chunk def close(self): self._stream.close() def copy_to_in_mem(self): self._stream.seek(0) content = StaticContent(self.location, self.name, self.content_type, self._stream.read(), last_modified_at=self.last_modified_at, thumbnail_location=self.thumbnail_location, import_path=self.import_path, length=self.length, locked=self.locked, content_digest=self.content_digest) return content class ContentStore(object): ''' Abstraction for all ContentStore providers (e.g. MongoDB) ''' def save(self, content): raise NotImplementedError def find(self, filename): raise NotImplementedError def get_all_content_for_course(self, course_key, start=0, maxresults=-1, sort=None, filter_params=None): ''' Returns a list of static assets for a course, followed by the total number of assets. By default all assets are returned, but start and maxresults can be provided to limit the query. The return format is a list of asset data dictionaries. The asset data dictionaries have the following keys: asset_key (:class:`opaque_keys.edx.AssetKey`): The key of the asset displayname: The human-readable name of the asset uploadDate (datetime.datetime): The date and time that the file was uploadDate contentType: The mimetype string of the asset md5: An md5 hash of the asset content ''' raise NotImplementedError def delete_all_course_assets(self, course_key): """ Delete all of the assets which use this course_key as an identifier :param course_key: """ raise NotImplementedError def copy_all_course_assets(self, source_course_key, dest_course_key): """ Copy all the course assets from source_course_key to dest_course_key """ raise NotImplementedError def generate_thumbnail(self, content, tempfile_path=None, dimensions=None): """Create a thumbnail for a given image. Returns a tuple of (StaticContent, AssetKey) `content` is the StaticContent representing the image you want to make a thumbnail out of. `tempfile_path` is a string path to the location of a file to read from in order to grab the image data, instead of relying on `content.data` `dimensions` is an optional param that represents (width, height) in pixels. It defaults to None. """ thumbnail_content = None is_svg = content.content_type == 'image/svg+xml' # use a naming convention to associate originals with the thumbnail thumbnail_name = StaticContent.generate_thumbnail_name( content.location.block_id, dimensions=dimensions, extension='.svg' if is_svg else None ) thumbnail_file_location = StaticContent.compute_location( content.location.course_key, thumbnail_name, is_thumbnail=True ) # if we're uploading an image, then let's generate a thumbnail so that we can # serve it up when needed without having to rescale on the fly try: if is_svg: # for svg simply store the provided svg file, since vector graphics should be good enough # for downscaling client-side if tempfile_path is None: thumbnail_file = BytesIO(content.data) else: with open(tempfile_path) as f: thumbnail_file = BytesIO(f.read()) thumbnail_content = StaticContent(thumbnail_file_location, thumbnail_name, 'image/svg+xml', thumbnail_file) self.save(thumbnail_content) elif content.content_type is not None and content.content_type.split('/')[0] == 'image': # use PIL to do the thumbnail generation (http://www.pythonware.com/products/pil/) # My understanding is that PIL will maintain aspect ratios while restricting # the max-height/width to be whatever you pass in as 'size' # @todo: move the thumbnail size to a configuration setting?!? if tempfile_path is None: source = BytesIO(content.data) else: source = tempfile_path # We use the context manager here to avoid leaking the inner file descriptor # of the Image object -- this way it gets closed after we're done with using it. thumbnail_file = BytesIO() with Image.open(source) as image: # I've seen some exceptions from the PIL library when trying to save palletted # PNG files to JPEG. Per the google-universe, they suggest converting to RGB first. thumbnail_image = image.convert('RGB') if not dimensions: dimensions = (128, 128) thumbnail_image.thumbnail(dimensions, Image.ANTIALIAS) thumbnail_image.save(thumbnail_file, 'JPEG') thumbnail_file.seek(0) # store this thumbnail as any other piece of content thumbnail_content = StaticContent(thumbnail_file_location, thumbnail_name, 'image/jpeg', thumbnail_file) self.save(thumbnail_content) except Exception as exc: # pylint: disable=broad-except # log and continue as thumbnails are generally considered as optional logging.exception( u"Failed to generate thumbnail for {0}. Exception: {1}".format(content.location, str(exc)) ) return thumbnail_content, thumbnail_file_location def ensure_indexes(self): """ Ensure that all appropriate indexes are created that are needed by this modulestore, or raise an exception if unable to. """ pass
cpennington/edx-platform
common/lib/xmodule/xmodule/contentstore/content.py
Python
agpl-3.0
19,503
0.00323
"""A collection of classes and methods to deal with collections of rates that together make up a network.""" # Common Imports import warnings import functools import math import os from operator import mul from collections import OrderedDict from ipywidgets import interact import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.ticker import MaxNLocator import networkx as nx # Import Rate from pynucastro.rates import Rate, Nucleus, Library mpl.rcParams['figure.dpi'] = 100 class Composition: """a composition holds the mass fractions of the nuclei in a network -- useful for evaluating the rates """ def __init__(self, nuclei, small=1.e-16): """nuclei is an iterable of the nuclei (Nucleus objects) in the network""" if not isinstance(nuclei[0], Nucleus): raise ValueError("must supply an iterable of Nucleus objects") else: self.X = {k: small for k in nuclei} def set_solar_like(self, Z=0.02): """ approximate a solar abundance, setting p to 0.7, He4 to 0.3 - Z and the remainder evenly distributed with Z """ num = len(self.X) rem = Z/(num-2) for k in self.X: if k == Nucleus("p"): self.X[k] = 0.7 elif k.raw == "he4": self.X[k] = 0.3 - Z else: self.X[k] = rem self.normalize() def set_all(self, xval): """ set all species to a particular value """ for k in self.X: self.X[k] = xval def set_nuc(self, name, xval): """ set nuclei name to the mass fraction xval """ for k in self.X: if k.raw == name: self.X[k] = xval break def normalize(self): """ normalize the mass fractions to sum to 1 """ X_sum = sum(self.X[k] for k in self.X) for k in self.X: self.X[k] /= X_sum def get_molar(self): """ return a dictionary of molar fractions""" molar_frac = {k: v/k.A for k, v in self.X.items()} return molar_frac def eval_ye(self): """ return the electron fraction """ zvec = [] avec = [] xvec = [] for n in self.X: zvec.append(n.Z) avec.append(n.A) xvec.append(self.X[n]) zvec = np.array(zvec) avec = np.array(avec) xvec = np.array(xvec) electron_frac = np.sum(zvec*xvec/avec)/np.sum(xvec) return electron_frac def __str__(self): ostr = "" for k in self.X: ostr += f" X({k}) : {self.X[k]}\n" return ostr class RateCollection: """ a collection of rates that together define a network """ pynucastro_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) def __init__(self, rate_files=None, libraries=None, rates=None, precedence=()): """ rate_files are the files that together define the network. This can be any iterable or single string. This can include Reaclib library files storing multiple rates. If libraries is supplied, initialize a RateCollection using the rates in the Library object(s) in list 'libraries'. If rates is supplied, initialize a RateCollection using the Rate objects in the list 'rates'. Precedence should be sequence of rate labels (e.g. wc17) to be used to resolve name conflicts. If a nonempty sequence is provided, the rate collection will automatically be scanned for multiple rates with the same name. If all of their labels were given a ranking, the rate with the label that comes first in the sequence will be retained and the rest discarded. Any combination of these options may be supplied. """ self.files = [] self.rates = [] self.library = None if rate_files: if isinstance(rate_files, str): rate_files = [rate_files] self._read_rate_files(rate_files) if rates: if isinstance(rates, Rate): rates = [rates] try: for r in rates: assert isinstance(r, Rate) except: print('Expected Rate object or list of Rate objects passed as the rates argument.') raise else: rlib = Library(rates=rates) if not self.library: self.library = rlib else: self.library = self.library + rlib if libraries: if isinstance(libraries, Library): libraries = [libraries] try: for lib in libraries: assert isinstance(lib, Library) except: print('Expected Library object or list of Library objects passed as the libraries argument.') raise else: if not self.library: self.library = libraries.pop(0) for lib in libraries: self.library = self.library + lib if self.library: self.rates = self.rates + self.library.get_rates() if precedence: self._make_distinguishable(precedence) # get the unique nuclei u = [] for r in self.rates: t = set(r.reactants + r.products) u = set(list(u) + list(t)) self.unique_nuclei = sorted(u) # now make a list of each rate that touches each nucleus # we'll store this in a dictionary keyed on the nucleus self.nuclei_consumed = OrderedDict() self.nuclei_produced = OrderedDict() for n in self.unique_nuclei: self.nuclei_consumed[n] = [r for r in self.rates if n in r.reactants] self.nuclei_produced[n] = [r for r in self.rates if n in r.products] # Re-order self.rates so Reaclib rates come first, # followed by Tabular rates. This is needed if # reaclib coefficients are targets of a pointer array # in the Fortran network. # It is desired to avoid wasting array size # storing meaningless Tabular coefficient pointers. self.rates = sorted(self.rates, key=lambda r: r.chapter == 't') self.tabular_rates = [] self.reaclib_rates = [] for n, r in enumerate(self.rates): if r.chapter == 't': self.tabular_rates.append(n) elif isinstance(r.chapter, int): self.reaclib_rates.append(n) else: print('ERROR: Chapter type unknown for rate chapter {}'.format( str(r.chapter))) exit() def _read_rate_files(self, rate_files): # get the rates self.files = rate_files for rf in self.files: try: rflib = Library(rf) except: print(f"Error reading library from file: {rf}") raise else: if not self.library: self.library = rflib else: self.library = self.library + rflib def get_nuclei(self): """ get all the nuclei that are part of the network """ return self.unique_nuclei def evaluate_rates(self, rho, T, composition): """evaluate the rates for a specific density, temperature, and composition""" rvals = OrderedDict() ys = composition.get_molar() y_e = composition.eval_ye() for r in self.rates: val = r.prefactor * rho**r.dens_exp * r.eval(T, rho * y_e) if (r.weak_type == 'electron_capture' and not r.tabular): val = val * y_e yfac = functools.reduce(mul, [ys[q] for q in r.reactants]) rvals[r] = yfac * val return rvals def evaluate_ydots(self, rho, T, composition): """evaluate net rate of change of molar abundance for each nucleus for a specific density, temperature, and composition""" rvals = self.evaluate_rates(rho, T, composition) ydots = dict() for nuc in self.unique_nuclei: # Rates that consume / produce nuc consuming_rates = self.nuclei_consumed[nuc] producing_rates = self.nuclei_produced[nuc] # Number of nuclei consumed / produced nconsumed = (r.reactants.count(nuc) for r in consuming_rates) nproduced = (r.products.count(nuc) for r in producing_rates) # Multiply each rate by the count consumed = (c * rvals[r] for c, r in zip(nconsumed, consuming_rates)) produced = (c * rvals[r] for c, r in zip(nproduced, producing_rates)) # Net change is difference between produced and consumed ydots[nuc] = sum(produced) - sum(consumed) return ydots def evaluate_activity(self, rho, T, composition): """sum over all of the terms contributing to ydot, neglecting sign""" rvals = self.evaluate_rates(rho, T, composition) act = dict() for nuc in self.unique_nuclei: # Rates that consume / produce nuc consuming_rates = self.nuclei_consumed[nuc] producing_rates = self.nuclei_produced[nuc] # Number of nuclei consumed / produced nconsumed = (r.reactants.count(nuc) for r in consuming_rates) nproduced = (r.products.count(nuc) for r in producing_rates) # Multiply each rate by the count consumed = (c * rvals[r] for c, r in zip(nconsumed, consuming_rates)) produced = (c * rvals[r] for c, r in zip(nproduced, producing_rates)) # Net activity is sum of produced and consumed act[nuc] = sum(produced) + sum(consumed) return act def network_overview(self): """ return a verbose network overview """ ostr = "" for n in self.unique_nuclei: ostr += f"{n}\n" ostr += " consumed by:\n" for r in self.nuclei_consumed[n]: ostr += f" {r.string}\n" ostr += " produced by:\n" for r in self.nuclei_produced[n]: ostr += f" {r.string}\n" ostr += "\n" return ostr def get_screening_map(self): """a screening map is just a list of tuples containing the information about nuclei pairs for screening: (descriptive name of nuclei, nucleus 1, nucleus 2, rate, 1-based index of rate) """ screening_map = [] for k, r in enumerate(self.rates): if r.ion_screen: nucs = "_".join([str(q) for q in r.ion_screen]) in_map = False for h, _, _, mrates, krates in screening_map: if h == nucs: # if we already have the reactants, then we # will already be doing the screening factors, # so just append this new rate to the list we # are keeping of the rates where this # screening is needed in_map = True mrates.append(r) krates.append(k+1) break if not in_map: # we handle 3-alpha specially -- we actually need 2 screening factors for it if nucs == "he4_he4_he4": # he4 + he4 screening_map.append((nucs, r.ion_screen[0], r.ion_screen[1], [r], [k+1])) # he4 + be8 be8 = Nucleus("Be8", dummy=True) screening_map.append((nucs+"_dummy", r.ion_screen[2], be8, [r], [k+1])) else: screening_map.append((nucs, r.ion_screen[0], r.ion_screen[1], [r], [k+1])) return screening_map def write_network(self, *args, **kwargs): """Before writing the network, check to make sure the rates are distinguishable by name.""" assert self._distinguishable_rates(), "ERROR: Rates not uniquely identified by Rate.fname" self._write_network(*args, **kwargs) def _distinguishable_rates(self): """Every Rate in this RateCollection should have a unique Rate.fname, as the network writers distinguish the rates on this basis.""" names = [r.fname for r in self.rates] for n, r in zip(names, self.rates): k = names.count(n) if k > 1: print(f'Found rate {r} named {n} with {k} entries in the RateCollection.') print(f'Rate {r} has the original source:\n{r.original_source}') print(f'Rate {r} is in chapter {r.chapter}') return len(set(names)) == len(self.rates) def _make_distinguishable(self, precedence): """If multiple rates have the same name, eliminate the extraneous ones according to their labels' positions in the precedence list. Only do this if all of the labels have rankings in the list.""" nameset = {r.fname for r in self.rates} precedence = {lab: i for i, lab in enumerate(precedence)} def sorting_key(i): return precedence[self.rates[i].label] for n in nameset: # Count instances of name, and cycle if there is only one ind = [i for i, r in enumerate(self.rates) if r.fname == n] k = len(ind) if k <= 1: continue # If there were multiple instances, use the precedence settings to delete extraneous # rates labels = [self.rates[i].label for i in ind] if all(lab in precedence for lab in labels): sorted_ind = sorted(ind, key=sorting_key) r = self.rates[sorted_ind[0]] for i in sorted(sorted_ind[1:], reverse=True): del self.rates[i] print(f'Found rate {r} named {n} with {k} entries in the RateCollection.') print(f'Kept only entry with label {r.label} out of {labels}.') def _write_network(self, *args, **kwargs): """A stub for function to output the network -- this is implementation dependent.""" print('To create network integration source code, use a class that implements a specific network type.') return def plot(self, outfile=None, rho=None, T=None, comp=None, size=(800, 600), dpi=100, title=None, ydot_cutoff_value=None, node_size=1000, node_font_size=13, node_color="#A0CBE2", node_shape="o", N_range=None, Z_range=None, rotated=False, always_show_p=False, always_show_alpha=False, hide_xalpha=False, filter_function=None): """Make a plot of the network structure showing the links between nuclei. If a full set of thermodymamic conditions are provided (rho, T, comp), then the links are colored by rate strength. parameters ---------- outfile: output name of the plot -- extension determines the type rho: density to evaluate rates with T: temperature to evaluate rates with comp: composition to evaluate rates with size: tuple giving width x height of the plot in inches dpi: pixels per inch used by matplotlib in rendering bitmap title: title to display on the plot ydot_cutoff_value: rate threshold below which we do not show a line corresponding to a rate node_size: size of a node node_font_size: size of the font used to write the isotope in the node node_color: color to make the nodes node_shape: shape of the node (using matplotlib marker names) N_range: range of neutron number to zoom in on Z_range: range of proton number to zoom in on rotate: if True, we plot A - 2Z vs. Z instead of the default Z vs. N always_show_p: include p as a node on the plot even if we don't have p+p reactions always_show_alpha: include He4 as a node on the plot even if we don't have 3-alpha hide_xalpha=False: dont connect the links to alpha for heavy nuclei reactions of the form A(alpha,X)B or A(X,alpha)B, except if alpha is the heaviest product. filter_function: name of a custom function that takes the list of nuclei and returns a new list with the nuclei to be shown as nodes. """ G = nx.MultiDiGraph() G.position = {} G.labels = {} fig, ax = plt.subplots() #divider = make_axes_locatable(ax) #cax = divider.append_axes('right', size='15%', pad=0.05) #ax.plot([0, 0], [8, 8], 'b-') # in general, we do not show p, n, alpha, # unless we have p + p, 3-a, etc. hidden_nuclei = ["n"] if not always_show_p: hidden_nuclei.append("p") if not always_show_alpha: hidden_nuclei.append("he4") # nodes -- the node nuclei will be all of the heavies # add all the nuclei into G.node node_nuclei = [] for n in self.unique_nuclei: if n.raw not in hidden_nuclei: node_nuclei.append(n) else: for r in self.rates: if r.reactants.count(n) > 1: node_nuclei.append(n) break if filter_function is not None: node_nuclei = list(filter(filter_function, node_nuclei)) for n in node_nuclei: G.add_node(n) if rotated: G.position[n] = (n.Z, n.A - 2*n.Z) else: G.position[n] = (n.N, n.Z) G.labels[n] = fr"${n.pretty}$" # get the rates for each reaction if rho is not None and T is not None and comp is not None: ydots = self.evaluate_rates(rho, T, comp) else: ydots = None # Do not show rates on the graph if their corresponding ydot is less than ydot_cutoff_value invisible_rates = set() if ydot_cutoff_value is not None: for r in self.rates: if ydots[r] < ydot_cutoff_value: invisible_rates.add(r) # edges for n in node_nuclei: for r in self.nuclei_consumed[n]: for p in r.products: if p in node_nuclei: if hide_xalpha: # first check is alpha is the heaviest nucleus on the RHS rhs_heavy = sorted(r.products)[-1] if not (rhs_heavy.Z == 2 and rhs_heavy.A == 4): # for rates that are A (x, alpha) B, where A and B are heavy nuclei, # don't show the connection of the nucleus to alpha, only show it to B if p.Z == 2 and p.A == 4: continue # likewise, hide A (alpha, x) B, unless A itself is an alpha c = r.reactants n_alpha = 0 for nuc in c: if nuc.Z == 2 and nuc.A == 4: n_alpha += 1 # if there is only 1 alpha and we are working on the alpha node, # then skip if n_alpha == 1 and n.Z == 2 and n.A == 4: continue # networkx doesn't seem to keep the edges in # any particular order, so we associate data # to the edges here directly, in this case, # the reaction rate, which will be used to # color it if ydots is None: G.add_edges_from([(n, p)], weight=0.5) else: if r in invisible_rates: continue try: rate_weight = math.log10(ydots[r]) except ValueError: # if ydots[r] is zero, then set the weight # to roughly the minimum exponent possible # for python floats rate_weight = -308 except: raise G.add_edges_from([(n, p)], weight=rate_weight) # It seems that networkx broke backwards compatability, and 'zorder' is no longer a valid # keyword argument. The 'linewidth' argument has also changed to 'linewidths'. nx.draw_networkx_nodes(G, G.position, # plot the element at the correct position node_color=node_color, alpha=1.0, node_shape=node_shape, node_size=node_size, linewidths=2.0, ax=ax) nx.draw_networkx_labels(G, G.position, G.labels, # label the name of element at the correct position font_size=node_font_size, font_color="w", ax=ax) # get the edges and weights coupled in the same order edges, weights = zip(*nx.get_edge_attributes(G, 'weight').items()) edge_color=weights ww = np.array(weights) min_weight = ww.min() max_weight = ww.max() dw = (max_weight - min_weight)/4 widths = np.ones_like(ww) widths[ww > min_weight + dw] = 1.5 widths[ww > min_weight + 2*dw] = 2.5 widths[ww > min_weight + 3*dw] = 4 edges_lc = nx.draw_networkx_edges(G, G.position, width=list(widths), # plot the arrow of reaction edgelist=edges, edge_color=edge_color, node_size=node_size, edge_cmap=plt.cm.viridis, ax=ax) # for networkx <= 2.0 draw_networkx_edges returns a # LineCollection matplotlib type which we can use for the # colorbar directly. For networkx >= 2.1, it is a collection # of FancyArrowPatch-s, which we need to run through a # PatchCollection. See: # https://stackoverflow.com/questions/18658047/adding-a-matplotlib-colorbar-from-a-patchcollection if ydots is not None: pc = mpl.collections.PatchCollection(edges_lc, cmap=plt.cm.viridis) pc.set_array(weights) if not rotated: plt.colorbar(pc, ax=ax, label="log10(rate)") else: plt.colorbar(pc, ax=ax, label="log10(rate)", orientation="horizontal", fraction=0.05) Ns = [n.N for n in node_nuclei] Zs = [n.Z for n in node_nuclei] if not rotated: ax.set_xlim(min(Ns)-1, max(Ns)+1) else: ax.set_xlim(min(Zs)-1, max(Zs)+1) #plt.ylim(min(Zs)-1, max(Zs)+1) if not rotated: plt.xlabel(r"$N$", fontsize="large") plt.ylabel(r"$Z$", fontsize="large") else: plt.xlabel(r"$Z$", fontsize="large") plt.ylabel(r"$A - 2Z$", fontsize="large") ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) if Z_range is not None and N_range is not None: if not rotated: ax.set_xlim(N_range[0], N_range[1]) ax.set_ylim(Z_range[0], Z_range[1]) else: ax.set_xlim(Z_range[0], Z_range[1]) if not rotated: ax.set_aspect("equal", "datalim") fig.set_size_inches(size[0]/dpi, size[1]/dpi) if title is not None: fig.suptitle(title) if outfile is None: plt.show() else: plt.tight_layout() plt.savefig(outfile, dpi=dpi) @staticmethod def _safelog(arr, small): arr = np.copy(arr) if np.any(arr < 0.0): raise ValueError("Negative values not allowed for logscale - try symlog instead.") zeros = arr == 0.0 arr[zeros] = min(small, arr[~zeros].min() / 10) return np.log10(arr) @staticmethod def _symlog(arr, linthresh=1.0): assert linthresh >= 1.0 neg = arr < 0.0 arr = np.abs(arr) needslog = arr > linthresh arr[needslog] = np.log10(arr[needslog]) + linthresh arr[neg] *= -1 return arr @staticmethod def _scale(arr, minval=None, maxval=None): if minval is None: minval = arr.min() if maxval is None: maxval = arr.max() if minval != maxval: scaled = (arr - minval) / (maxval - minval) else: scaled = np.zeros_like(arr) scaled[scaled < 0.0] = 0.0 scaled[scaled > 1.0] = 1.0 return scaled def gridplot(self, comp=None, color_field="X", rho=None, T=None, **kwargs): """ Plot nuclides as cells on a grid of Z vs. N, colored by *color_field*. If called without a composition, the function will just plot the grid with no color field. :param comp: Composition of the environment. :param color_field: Field to color by. Must be one of 'X' (mass fraction), 'Y' (molar abundance), 'Xdot' (time derivative of X), 'Ydot' (time derivative of Y), or 'activity' (sum of contributions to Ydot of all rates, ignoring sign). :param rho: Density to evaluate rates at. Needed for fields involving time derivatives. :param T: Temperature to evaluate rates at. Needed for fields involving time derivatives. :Keyword Arguments: - *scale* -- One of 'linear', 'log', and 'symlog'. Linear by default. - *small* -- If using logarithmic scaling, zeros will be replaced with this value. 1e-30 by default. - *linthresh* -- Linearity threshold for symlog scaling. - *filter_function* -- A callable to filter Nucleus objects with. Should return *True* if the nuclide should be plotted. - *outfile* -- Output file to save the plot to. The plot will be shown if not specified. - *dpi* -- DPI to save the image file at. - *cmap* -- Name of the matplotlib colormap to use. Default is 'magma'. - *edgecolor* -- Color of grid cell edges. - *area* -- Area of the figure without the colorbar, in square inches. 64 by default. - *no_axes* -- Set to *True* to omit axis spines. - *no_ticks* -- Set to *True* to omit tickmarks. - *no_cbar* -- Set to *True* to omit colorbar. - *cbar_label* -- Colorbar label. - *cbar_bounds* -- Explicit colorbar bounds. - *cbar_format* -- Format string or Formatter object for the colorbar ticks. """ # Process kwargs outfile = kwargs.pop("outfile", None) scale = kwargs.pop("scale", "linear") cmap = kwargs.pop("cmap", "viridis") edgecolor = kwargs.pop("edgecolor", "grey") small = kwargs.pop("small", 1e-30) area = kwargs.pop("area", 64) no_axes = kwargs.pop("no_axes", False) no_ticks = kwargs.pop("no_ticks", False) no_cbar = kwargs.pop("no_cbar", False) cbar_label = kwargs.pop("cbar_label", None) cbar_format = kwargs.pop("cbar_format", None) cbar_bounds = kwargs.pop("cbar_bounds", None) filter_function = kwargs.pop("filter_function", None) dpi = kwargs.pop("dpi", 100) linthresh = kwargs.pop("linthresh", 1.0) if kwargs: warnings.warn(f"Unrecognized keyword arguments: {kwargs.keys()}") # Get figure, colormap fig, ax = plt.subplots() cmap = mpl.cm.get_cmap(cmap) # Get nuclei and all 3 numbers nuclei = self.unique_nuclei if filter_function is not None: nuclei = list(filter(filter_function, nuclei)) Ns = np.array([n.N for n in nuclei]) Zs = np.array([n.Z for n in nuclei]) As = Ns + Zs # Compute weights color_field = color_field.lower() if color_field not in {"x", "y", "ydot", "xdot", "activity"}: raise ValueError(f"Invalid color field: '{color_field}'") if comp is None: values = np.zeros(len(nuclei)) elif color_field == "x": values = np.array([comp.X[nuc] for nuc in nuclei]) elif color_field == "y": ys = comp.get_molar() values = np.array([ys[nuc] for nuc in nuclei]) elif color_field in {"ydot", "xdot"}: if rho is None or T is None: raise ValueError("Need both rho and T to evaluate rates!") ydots = self.evaluate_ydots(rho, T, comp) values = np.array([ydots[nuc] for nuc in nuclei]) if color_field == "xdot": values *= As elif color_field == "activity": if rho is None or T is None: raise ValueError("Need both rho and T to evaluate rates!") act = self.evaluate_activity(rho, T, comp) values = np.array([act[nuc] for nuc in nuclei]) if scale == "log": values = self._safelog(values, small) elif scale == "symlog": values = self._symlog(values, linthresh) if cbar_bounds is None: cbar_bounds = values.min(), values.max() weights = self._scale(values, *cbar_bounds) # Plot a square for each nucleus for nuc, weight in zip(nuclei, weights): square = plt.Rectangle((nuc.N - 0.5, nuc.Z - 0.5), width=1, height=1, facecolor=cmap(weight), edgecolor=edgecolor) ax.add_patch(square) # Set limits maxN, minN = max(Ns), min(Ns) maxZ, minZ = max(Zs), min(Zs) plt.xlim(minN - 0.5, maxN + 0.6) plt.ylim(minZ - 0.5, maxZ + 0.6) # Set plot appearance rat = (maxN - minN) / (maxZ - minZ) width = np.sqrt(area * rat) height = area / width fig.set_size_inches(width, height) plt.xlabel(r"N $\rightarrow$") plt.ylabel(r"Z $\rightarrow$") if no_axes or no_ticks: plt.tick_params \ ( axis = 'both', which = 'both', bottom = False, left = False, labelbottom = False, labelleft = False ) else: ax.xaxis.set_major_locator(MaxNLocator(integer=True)) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) if no_axes: ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) # Colorbar stuff if not no_cbar and comp is not None: divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='3.5%', pad=0.1) cbar_norm = mpl.colors.Normalize(*cbar_bounds) smap = mpl.cm.ScalarMappable(norm=cbar_norm, cmap=cmap) if not cbar_label: capfield = color_field.capitalize() if scale == "log": cbar_label = f"log[{capfield}]" elif scale == "symlog": cbar_label = f"symlog[{capfield}]" else: cbar_label = capfield fig.colorbar(smap, cax=cax, orientation="vertical", label=cbar_label, format=cbar_format) # Show or save if outfile is None: plt.show() else: plt.tight_layout() plt.savefig(outfile, dpi=dpi) def __repr__(self): string = "" for r in self.rates: string += f"{r.string}\n" return string class Explorer: """ interactively explore a rate collection """ def __init__(self, rc, comp, size=(800, 600), ydot_cutoff_value=None, always_show_p=False, always_show_alpha=False): """ take a RateCollection and a composition """ self.rc = rc self.comp = comp self.size = size self.ydot_cutoff_value = ydot_cutoff_value self.always_show_p = always_show_p self.always_show_alpha = always_show_alpha def _make_plot(self, logrho, logT): self.rc.plot(rho=10.0**logrho, T=10.0**logT, comp=self.comp, size=self.size, ydot_cutoff_value=self.ydot_cutoff_value, always_show_p=self.always_show_p, always_show_alpha=self.always_show_alpha) def explore(self, logrho=(2, 6, 0.1), logT=(7, 9, 0.1)): """Perform interactive exploration of the network structure.""" interact(self._make_plot, logrho=logrho, logT=logT)
pyreaclib/pyreaclib
pynucastro/networks/rate_collection.py
Python
bsd-3-clause
34,049
0.002731
# -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """Parallel workflow execution via IPython controller """ from __future__ import print_function, division, unicode_literals, absolute_import from future import standard_library standard_library.install_aliases() from future.utils import raise_from from pickle import dumps import sys from .base import (DistributedPluginBase, logger, report_crash) IPython_not_loaded = False try: from IPython import __version__ as IPyversion from ipyparallel.error import TimeoutError except: IPython_not_loaded = True def execute_task(pckld_task, node_config, updatehash): from socket import gethostname from traceback import format_exc from nipype import config, logging traceback = None result = None import os cwd = os.getcwd() try: config.update_config(node_config) logging.update_logging(config) from pickle import loads task = loads(pckld_task) result = task.run(updatehash=updatehash) except: traceback = format_exc() result = task.result os.chdir(cwd) return result, traceback, gethostname() class IPythonPlugin(DistributedPluginBase): """Execute workflow with ipython """ def __init__(self, plugin_args=None): if IPython_not_loaded: raise ImportError('Please install ipyparallel to use this plugin.') super(IPythonPlugin, self).__init__(plugin_args=plugin_args) valid_args = ('url_file', 'profile', 'cluster_id', 'context', 'debug', 'timeout', 'config', 'username', 'sshserver', 'sshkey', 'password', 'paramiko') self.client_args = {arg: plugin_args[arg] for arg in valid_args if arg in plugin_args} self.iparallel = None self.taskclient = None self.taskmap = {} self._taskid = 0 def run(self, graph, config, updatehash=False): """Executes a pre-defined pipeline is distributed approaches based on IPython's ipyparallel processing interface """ # retrieve clients again try: name = 'ipyparallel' __import__(name) self.iparallel = sys.modules[name] except ImportError as e: raise_from(ImportError("ipyparallel not found. Parallel execution " "will be unavailable"), e) try: self.taskclient = self.iparallel.Client(**self.client_args) except Exception as e: if isinstance(e, TimeoutError): raise_from(Exception("No IPython clients found."), e) if isinstance(e, IOError): raise_from(Exception("ipcluster/ipcontroller has not been started"), e) if isinstance(e, ValueError): raise_from(Exception("Ipython kernel not installed"), e) else: raise e return super(IPythonPlugin, self).run(graph, config, updatehash=updatehash) def _get_result(self, taskid): if taskid not in self.taskmap: raise ValueError('Task %d not in pending list' % taskid) if self.taskmap[taskid].ready(): result, traceback, hostname = self.taskmap[taskid].get() result_out = dict(result=None, traceback=None) result_out['result'] = result result_out['traceback'] = traceback result_out['hostname'] = hostname return result_out else: return None def _submit_job(self, node, updatehash=False): pckld_node = dumps(node, 2) result_object = self.taskclient.load_balanced_view().apply(execute_task, pckld_node, node.config, updatehash) self._taskid += 1 self.taskmap[self._taskid] = result_object return self._taskid def _report_crash(self, node, result=None): if result and result['traceback']: node._result = result['result'] node._traceback = result['traceback'] return report_crash(node, traceback=result['traceback']) else: return report_crash(node) def _clear_task(self, taskid): if IPyversion >= '0.11': logger.debug("Clearing id: %d" % taskid) self.taskclient.purge_results(self.taskmap[taskid]) del self.taskmap[taskid]
carolFrohlich/nipype
nipype/pipeline/plugins/ipython.py
Python
bsd-3-clause
4,707
0.002337
# Copyright 2013-2020 Akretion France (https://akretion.com/) # @author: Alexis de Lattre <alexis.delattre@akretion.com> # License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl). { "name": "Account Fiscal Position VAT Check", "version": "14.0.1.0.0", "category": "Invoices & Payments", "license": "AGPL-3", "summary": "Check VAT on invoice validation", "author": "Akretion,Odoo Community Association (OCA)", "website": "https://github.com/OCA/account-financial-tools", "depends": ["account", "base_vat"], "data": [ "views/account_fiscal_position.xml", ], "installable": True, }
OCA/account-financial-tools
account_fiscal_position_vat_check/__manifest__.py
Python
agpl-3.0
637
0
# -*- coding: utf-8 -*- # RTCP Datagram Module from struct import unpack, pack debug = 0 # Receiver Reports included in Sender Report class Report: SSRC = 0 FractionLost = 0 CumulativeNumberOfPacketsLostH = 0 CumulativeNumberOfPacketsLostL = 0 ExtendedHighestSequenceNumberReceived = 0 InterarrivalJitter = 0 LastSR = 0 DelaySinceLastSR = 0 # Source Description class SDES: SSRC = 0 CNAME = '' NAME = '' EMAIL = '' PHONE = '' LOC = '' TOOL = '' NOTE = '' PRIV = '' class RTCPDatagram(object): 'RTCP packet parser end generator' def __init__(self): self.Datagram = '' # SR specific self.SSRC_sender = 0 self.NTP_TimestampH = 0 self.NTP_TimestampL = 0 self.RTP_Timestamp = 0 self.SenderPacketCount = 0 self.SenderOctetCount = 0 self.Reports = [] self.ProfileSpecificExtension = '' # SDES specific self.SourceDescriptions = [] def loadDatagram(self, DatagramIn): self.Datagram = DatagramIn def parse(self): # RTCP parsing is complete # including SDES, BYE and APP # RTCP Header (Ver_P_RC, PacketType, Length) = unpack('!BBH', self.Datagram[:4]) Version = (Ver_P_RC & 0b11000000) >> 6 Padding = (Ver_P_RC & 0b00100000) >> 5 # Byte offset off = 4 # Sender's Report if PacketType == 200: # Sender's information (self.SSRC_sender, self.NTP_TimestampH, self.NTP_TimestampL, self.RTP_Timestamp, self.SenderPacketCount, self.SenderOctetCount) = unpack('!IIIIII', self.Datagram[off: off + 24]) off += 24 ReceptionCount = Ver_P_RC & 0b00011111 if debug: print 'SDES: SR from', str(self.SSRC_sender) # Included Receiver Reports self.Reports = [] i = 0 for i in range(ReceptionCount): self.Reports.append(Report()) self.Reports[i].SSRC, self.Reports[i].FractionLost, self.Reports[i].CumulativeNumberOfPacketsLostH, self.Reports[i].CumulativeNumberOfPacketsLostL, self.Reports[i].ExtendedHighestSequenceNumberReceived, self.Reports[i].InterarrivalJitter, self.Reports[i].LastSR, self.Reports[i].DelaySinceLastSR = unpack('!IBBHIIII', self.Datagram[off: off + 24]) off += 24 # Source Description (SDES) elif PacketType == 202: # RC now is SC SSRCCount = Ver_P_RC & 0b00011111 self.SourceDescriptions = [] i = 0 for i in range(SSRCCount): self.SourceDescriptions.append(SDES()) SSRC, = unpack('!I', self.Datagram[off: off + 4]) off += 4 self.SourceDescriptions[i].SSRC = SSRC SDES_Item = -1 # Go on the list of descriptions while SDES_Item != 0: SDES_Item, = unpack('!B', self.Datagram[off]) off += 1 if SDES_Item != 0: SDES_Length, = unpack('!B', self.Datagram[off]) off += 1 Value = self.Datagram[off: off + SDES_Length] off += SDES_Length if debug: print 'SDES:', SDES_Item, Value if SDES_Item == 1: self.SourceDescriptions[i].CNAME = Value elif SDES_Item == 2: self.SourceDescriptions[i].NAME = Value elif SDES_Item == 3: self.SourceDescriptions[i].EMAIL = Value elif SDES_Item == 4: self.SourceDescriptions[i].PHONE = Value elif SDES_Item == 5: self.SourceDescriptions[i].LOC = Value elif SDES_Item == 6: self.SourceDescriptions[i].TOOL = Value elif SDES_Item == 7: self.SourceDescriptions[i].NOTE = Value elif SDES_Item == 8: self.SourceDescriptions[i].PRIV = Value # Extra parsing for PRIV is needed elif SDES_Item == 0: # End of list. Padding to 32 bits while (off % 4): off += 1 # BYE Packet elif PacketType == 203: SSRCCount = Ver_P_RC & 0b00011111 i = 0 for i in range(SSRCCount): SSRC, = unpack('!I', self.Datagram[off: off + 4]) off += 4 print 'SDES: SSRC ' + str(SSRC) + ' is saying goodbye.' # Application specific packet elif PacketType == 204: Subtype = Ver_P_RC & 0b00011111 SSRC, = unpack('!I', self.Datagram[off: off + 4]) Name = self.Datagram[off + 4: off + 8] AppData = self.Datagram[off + 8: off + Length] print 'SDES: APP Packet "' + Name + '" from SSRC ' + str(SSRC) + '.' off += Length # Check if there is something else in the datagram if self.Datagram[off:]: self.Datagram = self.Datagram[off:] self.parse() def generateRR(self): # Ver 2, Pad 0, RC 1 Ver_P_RC = 0b10000001 # PT 201, Length 7, SSRC 0xF00F - let it be our ID Header = pack('!BBHI', Ver_P_RC, 201, 7, 0x0000F00F) NTP_32 = (self.NTP_TimestampH & 0x0000FFFF) + ((self.NTP_TimestampL & 0xFFFF0000) >> 16) # No lost packets, no delay in receiving data, RR sent right after receiving SR # Instead of self.SenderPacketCount should be proper value ReceiverReport = pack('!IBBHIIII', self.SSRC_sender, 0, 0, 0, self.SenderPacketCount, 1, NTP_32, 1) return Header + ReceiverReport
plazmer/pyrtsp
rtcp_datagram.py
Python
gpl-2.0
6,169
0.003242
#!/usr/bin/python # # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Updates the specified datafeed on the specified account.""" from __future__ import print_function import argparse import sys from shopping.content import common # Declare command-line flags. argparser = argparse.ArgumentParser(add_help=False) argparser.add_argument('datafeed_id', help='The ID of the datafeed to update.') def main(argv): # Authenticate and construct service. service, config, flags = common.init( argv, __doc__, parents=[argparser]) merchant_id = config['merchantId'] datafeed_id = flags.datafeed_id # Get the datafeed to be changed datafeed = service.datafeeds().get( merchantId=merchant_id, datafeedId=datafeed_id).execute() # Changing the scheduled fetch time to 7:00. datafeed['fetchSchedule']['hour'] = 7 request = service.datafeeds().update( merchantId=merchant_id, datafeedId=datafeed_id, body=datafeed) result = request.execute() print('Datafeed with ID %s and fetchSchedule %s was updated.' % (result['id'], str(result['fetchSchedule']))) if __name__ == '__main__': main(sys.argv)
googleads/googleads-shopping-samples
python/shopping/content/datafeeds/update.py
Python
apache-2.0
1,688
0.007109
import sys sys.path.insert(1,"../../../") import h2o from tests import pyunit_utils from h2o.estimators.glm import H2OGeneralizedLinearEstimator as glm # Given alpha array and lambda_search=True, build two cross-validation models, one with validation dataset # and one without for multinomial. Since they use the metrics from cross-validation, they should come up with # the same models. def glm_alpha_array_with_lambda_search_cv(): # read in the dataset and construct training set (and validation set) print("Testing glm cross-validation with alpha array, lambda_search for multinomial models.") h2o_data = h2o.import_file(pyunit_utils.locate("smalldata/glm_test/multinomial_10_classes_10_cols_10000_Rows_train.csv")) enum_columns = ["C1", "C2", "C3", "C4", "C5"] for cname in enum_columns: h2o_data[cname] = h2o_data[cname] myY = "C11" h2o_data["C11"] = h2o_data["C11"].asfactor() myX = h2o_data.names.remove(myY) data_frames = h2o_data.split_frame(ratios=[0.8], seed=7) training_data = data_frames[0] test_data = data_frames[1] # build model with CV but no validation dataset cv_model = glm(family='multinomial',alpha=[0.1], lambda_search=True, nfolds = 3, nlambdas=5, fold_assignment="modulo") cv_model.train(training_frame=training_data,x=myX,y=myY) cv_r = glm.getGLMRegularizationPath(cv_model) # build model with CV and with validation dataset cv_model_valid = glm(family='multinomial',alpha=[0.1], lambda_search=True, nfolds = 3, nlambdas=5, fold_assignment="modulo") cv_model_valid.train(training_frame=training_data, validation_frame = test_data, x=myX,y=myY) cv_r_valid = glm.getGLMRegularizationPath(cv_model_valid) for l in range(len(cv_r['lambdas'])): print("comparing coefficients for submodel {0} with lambda {1}, alpha {2}".format(l, cv_r_valid["lambdas"][l], cv_r_valid["alphas"][l])) pyunit_utils.assertEqualCoeffDicts(cv_r['coefficients'][l], cv_r_valid['coefficients'][l], tol=1e-6) pyunit_utils.assertEqualCoeffDicts(cv_r['coefficients_std'][l], cv_r_valid['coefficients_std'][l], tol=1e-6) if __name__ == "__main__": pyunit_utils.standalone_test(glm_alpha_array_with_lambda_search_cv) else: glm_alpha_array_with_lambda_search_cv()
michalkurka/h2o-3
h2o-py/tests/testdir_algos/glm/pyunit_PUBDEV_7481_lambda_search_alpha_array_multinomial_cv.py
Python
apache-2.0
2,324
0.012909
# This file is part of Androguard. # # Copyright (c) 2012 Geoffroy Gueguen <geoffroy.gueguen@gmail.com> # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from collections import defaultdict from androguard.decompiler.dad.opcode_ins import INSTRUCTION_SET from androguard.decompiler.dad.node import Node logger = logging.getLogger('dad.basic_blocks') class BasicBlock(Node): def __init__(self, name, block_ins): super(BasicBlock, self).__init__(name) self.ins = block_ins self.ins_range = None self.loc_ins = None self.var_to_declare = set() def get_ins(self): return self.ins def get_loc_with_ins(self): if self.loc_ins is None: self.loc_ins = zip(range(*self.ins_range), self.ins) return self.loc_ins def remove_ins(self, loc, ins): self.ins.remove(ins) self.loc_ins.remove((loc, ins)) def add_ins(self, new_ins_list): for new_ins in new_ins_list: self.ins.append(new_ins) def add_variable_declaration(self, variable): self.var_to_declare.add(variable) def number_ins(self, num): last_ins_num = num + len(self.ins) self.ins_range = [num, last_ins_num] self.loc_ins = None return last_ins_num class StatementBlock(BasicBlock): def __init__(self, name, block_ins): super(StatementBlock, self).__init__(name, block_ins) self.type.is_stmt = True def visit(self, visitor): return visitor.visit_statement_node(self) def __str__(self): return '%d-Statement(%s)' % (self.num, self.name) class ReturnBlock(BasicBlock): def __init__(self, name, block_ins): super(ReturnBlock, self).__init__(name, block_ins) self.type.is_return = True def visit(self, visitor): return visitor.visit_return_node(self) def __str__(self): return '%d-Return(%s)' % (self.num, self.name) class ThrowBlock(BasicBlock): def __init__(self, name, block_ins): super(ThrowBlock, self).__init__(name, block_ins) self.type.is_throw = True def visit(self, visitor): return visitor.visit_throw_node(self) def __str__(self): return '%d-Throw(%s)' % (self.num, self.name) class SwitchBlock(BasicBlock): def __init__(self, name, switch, block_ins): super(SwitchBlock, self).__init__(name, block_ins) self.switch = switch self.cases = [] self.default = None self.node_to_case = defaultdict(list) self.type.is_switch = True def add_case(self, case): self.cases.append(case) def visit(self, visitor): return visitor.visit_switch_node(self) def copy_from(self, node): super(SwitchBlock, self).copy_from(node) self.cases = node.cases[:] self.switch = node.switch[:] def update_attribute_with(self, n_map): super(SwitchBlock, self).update_attribute_with(n_map) self.cases = [n_map.get(n, n) for n in self.cases] for node1, node2 in n_map.iteritems(): if node1 in self.node_to_case: self.node_to_case[node2] = self.node_to_case.pop(node1) def order_cases(self): values = self.switch.get_values() if len(values) < len(self.cases): self.default = self.cases.pop(0) for case, node in zip(values, self.cases): self.node_to_case[node].append(case) def __str__(self): return '%d-Switch(%s)' % (self.num, self.name) class CondBlock(BasicBlock): def __init__(self, name, block_ins): super(CondBlock, self).__init__(name, block_ins) self.true = None self.false = None self.type.is_cond = True def update_attribute_with(self, n_map): super(CondBlock, self).update_attribute_with(n_map) self.true = n_map.get(self.true, self.true) self.false = n_map.get(self.false, self.false) def neg(self): if len(self.ins) != 1: raise RuntimeWarning('Condition should have only 1 instruction !') self.ins[-1].neg() def visit(self, visitor): return visitor.visit_cond_node(self) def visit_cond(self, visitor): if len(self.ins) != 1: raise RuntimeWarning('Condition should have only 1 instruction !') return visitor.visit_ins(self.ins[-1]) def __str__(self): return '%d-If(%s)' % (self.num, self.name) class Condition(object): def __init__(self, cond1, cond2, isand, isnot): self.cond1 = cond1 self.cond2 = cond2 self.isand = isand self.isnot = isnot def neg(self): self.isand = not self.isand self.cond1.neg() self.cond2.neg() def get_ins(self): lins = [] lins.extend(self.cond1.get_ins()) lins.extend(self.cond2.get_ins()) return lins def get_loc_with_ins(self): loc_ins = [] loc_ins.extend(self.cond1.get_loc_with_ins()) loc_ins.extend(self.cond2.get_loc_with_ins()) return loc_ins def visit(self, visitor): return visitor.visit_short_circuit_condition(self.isnot, self.isand, self.cond1, self.cond2) def __str__(self): if self.isnot: ret = '!%s %s %s' else: ret = '%s %s %s' return ret % (self.cond1, ['||', '&&'][self.isand], self.cond2) class ShortCircuitBlock(CondBlock): def __init__(self, name, cond): super(ShortCircuitBlock, self).__init__(name, None) self.cond = cond def get_ins(self): return self.cond.get_ins() def get_loc_with_ins(self): return self.cond.get_loc_with_ins() def neg(self): self.cond.neg() def visit_cond(self, visitor): return self.cond.visit(visitor) def __str__(self): return '%d-SC(%s)' % (self.num, self.cond) class LoopBlock(CondBlock): def __init__(self, name, cond): super(LoopBlock, self).__init__(name, None) self.cond = cond def get_ins(self): return self.cond.get_ins() def neg(self): self.cond.neg() def get_loc_with_ins(self): return self.cond.get_loc_with_ins() def visit(self, visitor): return visitor.visit_loop_node(self) def visit_cond(self, visitor): return self.cond.visit_cond(visitor) def update_attribute_with(self, n_map): super(LoopBlock, self).update_attribute_with(n_map) self.cond.update_attribute_with(n_map) def __str__(self): if self.looptype.is_pretest: if self.false in self.loop_nodes: return '%d-While(!%s)[%s]' % (self.num, self.name, self.cond) return '%d-While(%s)[%s]' % (self.num, self.name, self.cond) elif self.looptype.is_posttest: return '%d-DoWhile(%s)[%s]' % (self.num, self.name, self.cond) elif self.looptype.is_endless: return '%d-WhileTrue(%s)[%s]' % (self.num, self.name, self.cond) return '%d-WhileNoType(%s)' % (self.num, self.name) class TryBlock(BasicBlock): def __init__(self, node): super(TryBlock, self).__init__('Try-%s' % node.name, None) self.try_start = node self.catch = [] # FIXME: @property def num(self): return self.try_start.num @num.setter def num(self, value): pass def add_catch_node(self, node): self.catch.append(node) def visit(self, visitor): visitor.visit_try_node(self) def __str__(self): return 'Try(%s)[%s]' % (self.name, self.catch) class CatchBlock(BasicBlock): def __init__(self, node): self.exception = node.ins[0] node.ins.pop(0) super(CatchBlock, self).__init__('Catch-%s' % node.name, node.ins) self.catch_start = node def visit(self, visitor): visitor.visit_catch_node(self) def visit_exception(self, visitor): visitor.visit_ins(self.exception) def __str__(self): return 'Catch(%s)' % self.name def build_node_from_block(block, vmap, gen_ret, exception_type=None): ins, lins = None, [] idx = block.get_start() for ins in block.get_instructions(): opcode = ins.get_op_value() if opcode == -1: # FIXME? or opcode in (0x0300, 0x0200, 0x0100): idx += ins.get_length() continue try: _ins = INSTRUCTION_SET[opcode] except IndexError: logger.error('Unknown instruction : %s.', ins.get_name().lower()) _ins = INSTRUCTION_SET[0] # fill-array-data if opcode == 0x26: fillaray = block.get_special_ins(idx) lins.append(_ins(ins, vmap, fillaray)) # invoke-kind[/range] elif (0x6e <= opcode <= 0x72 or 0x74 <= opcode <= 0x78): lins.append(_ins(ins, vmap, gen_ret)) # filled-new-array[/range] elif 0x24 <= opcode <= 0x25: lins.append(_ins(ins, vmap, gen_ret.new())) # move-result* elif 0xa <= opcode <= 0xc: lins.append(_ins(ins, vmap, gen_ret.last())) # move-exception elif opcode == 0xd: lins.append(_ins(ins, vmap, exception_type)) # monitor-{enter,exit} elif 0x1d <= opcode <= 0x1e: idx += ins.get_length() continue else: lins.append(_ins(ins, vmap)) idx += ins.get_length() name = block.get_name() # return* if 0xe <= opcode <= 0x11: node = ReturnBlock(name, lins) # {packed,sparse}-switch elif 0x2b <= opcode <= 0x2c: idx -= ins.get_length() values = block.get_special_ins(idx) node = SwitchBlock(name, values, lins) # if-test[z] elif 0x32 <= opcode <= 0x3d: node = CondBlock(name, lins) node.off_last_ins = ins.get_ref_off() # throw elif opcode == 0x27: node = ThrowBlock(name, lins) else: # goto* if 0x28 <= opcode <= 0x2a: lins.pop() node = StatementBlock(name, lins) return node
IOsipov/androguard
androguard/decompiler/dad/basic_blocks.py
Python
apache-2.0
10,681
0.000094
default_app_config = 'providers.com.dailyssrn.apps.AppConfig'
zamattiac/SHARE
providers/com/dailyssrn/__init__.py
Python
apache-2.0
62
0
""" ============================================= Effect of varying threshold for self-training ============================================= This example illustrates the effect of a varying threshold on self-training. The `breast_cancer` dataset is loaded, and labels are deleted such that only 50 out of 569 samples have labels. A `SelfTrainingClassifier` is fitted on this dataset, with varying thresholds. The upper graph shows the amount of labeled samples that the classifier has available by the end of fit, and the accuracy of the classifier. The lower graph shows the last iteration in which a sample was labeled. All values are cross validated with 3 folds. At low thresholds (in [0.4, 0.5]), the classifier learns from samples that were labeled with a low confidence. These low-confidence samples are likely have incorrect predicted labels, and as a result, fitting on these incorrect labels produces a poor accuracy. Note that the classifier labels almost all of the samples, and only takes one iteration. For very high thresholds (in [0.9, 1)) we observe that the classifier does not augment its dataset (the amount of self-labeled samples is 0). As a result, the accuracy achieved with a threshold of 0.9999 is the same as a normal supervised classifier would achieve. The optimal accuracy lies in between both of these extremes at a threshold of around 0.7. """ # Authors: Oliver Rausch <rauscho@ethz.ch> # License: BSD import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.svm import SVC from sklearn.model_selection import StratifiedKFold from sklearn.semi_supervised import SelfTrainingClassifier from sklearn.metrics import accuracy_score from sklearn.utils import shuffle n_splits = 3 X, y = datasets.load_breast_cancer(return_X_y=True) X, y = shuffle(X, y, random_state=42) y_true = y.copy() y[50:] = -1 total_samples = y.shape[0] base_classifier = SVC(probability=True, gamma=0.001, random_state=42) x_values = np.arange(0.4, 1.05, 0.05) x_values = np.append(x_values, 0.99999) scores = np.empty((x_values.shape[0], n_splits)) amount_labeled = np.empty((x_values.shape[0], n_splits)) amount_iterations = np.empty((x_values.shape[0], n_splits)) for (i, threshold) in enumerate(x_values): self_training_clf = SelfTrainingClassifier(base_classifier, threshold=threshold) # We need manual cross validation so that we don't treat -1 as a separate # class when computing accuracy skfolds = StratifiedKFold(n_splits=n_splits) for fold, (train_index, test_index) in enumerate(skfolds.split(X, y)): X_train = X[train_index] y_train = y[train_index] X_test = X[test_index] y_test = y[test_index] y_test_true = y_true[test_index] self_training_clf.fit(X_train, y_train) # The amount of labeled samples that at the end of fitting amount_labeled[i, fold] = ( total_samples - np.unique(self_training_clf.labeled_iter_, return_counts=True)[1][0] ) # The last iteration the classifier labeled a sample in amount_iterations[i, fold] = np.max(self_training_clf.labeled_iter_) y_pred = self_training_clf.predict(X_test) scores[i, fold] = accuracy_score(y_test_true, y_pred) ax1 = plt.subplot(211) ax1.errorbar( x_values, scores.mean(axis=1), yerr=scores.std(axis=1), capsize=2, color="b" ) ax1.set_ylabel("Accuracy", color="b") ax1.tick_params("y", colors="b") ax2 = ax1.twinx() ax2.errorbar( x_values, amount_labeled.mean(axis=1), yerr=amount_labeled.std(axis=1), capsize=2, color="g", ) ax2.set_ylim(bottom=0) ax2.set_ylabel("Amount of labeled samples", color="g") ax2.tick_params("y", colors="g") ax3 = plt.subplot(212, sharex=ax1) ax3.errorbar( x_values, amount_iterations.mean(axis=1), yerr=amount_iterations.std(axis=1), capsize=2, color="b", ) ax3.set_ylim(bottom=0) ax3.set_ylabel("Amount of iterations") ax3.set_xlabel("Threshold") plt.show()
manhhomienbienthuy/scikit-learn
examples/semi_supervised/plot_self_training_varying_threshold.py
Python
bsd-3-clause
4,008
0.000749
from flask import url_for from flask_sqlalchemy import BaseQuery def test_create_av_scan(client, monkeypatch, malware_sample): monkeypatch.setattr(BaseQuery, 'first_or_404', lambda x: True) rv = client.post(url_for('api.add_av_scan'), json={'files': [malware_sample._asdict()]}) assert rv.status_code == 202
certeu/do-portal
tests/test_av.py
Python
bsd-3-clause
343
0
from math import isnan from nose.tools import eq_ from js_helper import _do_real_test_raw, _do_test_raw, _do_test_scope, _get_var def test_assignment_with_pollution(): """ Access a bunch of identifiers, but do not write to them. Accessing undefined globals should not create scoped objects. """ assert not _do_real_test_raw(""" var x = ""; x = foo; x = bar; x = zap; x = baz; // would otherwise cause pollution errors. """).failed() def test_basic_math(): 'Tests that contexts work and that basic math is executed properly' err = _do_test_raw(""" var x = 1; var y = 2; var z = x + y; var dbz = 1; var dbz1 = 1; dbz = dbz / 0; dbz1 = dbz1 % 0; var dbz2 = 1; var dbz3 = 1; dbz2 /= 0; dbz3 %= 0; var a = 2 + 3; var b = a - 1; var c = b * 2; """) assert err.message_count == 0 assert _get_var(err, 'x') == 1 assert _get_var(err, 'y') == 2 assert _get_var(err, 'z') == 3 assert _get_var(err, 'dbz') == float('inf') # Spidermonkey does this. assert isnan(_get_var(err, 'dbz1')) # ...and this. assert _get_var(err, 'dbz2') == float('inf') assert isnan(_get_var(err, 'dbz3')) assert _get_var(err, 'a') == 5 assert _get_var(err, 'b') == 4 assert _get_var(err, 'c') == 8 def test_in_operator(): "Tests the 'in' operator." err = _do_test_raw(""" var list = ["a",1,2,3,"foo"]; var dict = {"abc":123, "foo":"bar"}; // Must be true var x = 0 in list; var y = "abc" in dict; // Must be false var a = 5 in list; var b = "asdf" in dict; """) assert err.message_count == 0 assert _get_var(err, 'x') == True assert _get_var(err, 'y') == True print _get_var(err, 'a'), '<<<' assert _get_var(err, 'a') == False assert _get_var(err, 'b') == False def test_function_instanceof(): """ Test that Function can be used with instanceof operators without error. """ assert not _do_test_raw(""" var x = foo(); print(x instanceof Function); """).failed() assert _do_test_raw(""" var x = foo(); print(Function(x)); """).failed() def test_unary_typeof(): """Test that the typeof operator does good.""" scope = _do_test_raw(""" var a = typeof(void(0)), b = typeof(null), c = typeof(true), d = typeof(false), e = typeof(new Boolean()), f = typeof(new Boolean(true)), g = typeof(Boolean()), h = typeof(Boolean(false)), i = typeof(Boolean(true)), j = typeof(NaN), k = typeof(Infinity), l = typeof(-Infinity), m = typeof(Math.PI), n = typeof(0), o = typeof(1), p = typeof(-1), q = typeof('0'), r = typeof(Number()), s = typeof(Number(0)), t = typeof(new Number()), u = typeof(new Number(0)), v = typeof(new Number(1)), x = typeof(function() {}), y = typeof(Math.abs); """) eq_(_get_var(scope, 'a'), 'undefined') eq_(_get_var(scope, 'b'), 'object') eq_(_get_var(scope, 'c'), 'boolean') eq_(_get_var(scope, 'd'), 'boolean') eq_(_get_var(scope, 'e'), 'object') eq_(_get_var(scope, 'f'), 'object') eq_(_get_var(scope, 'g'), 'boolean') eq_(_get_var(scope, 'h'), 'boolean') eq_(_get_var(scope, 'i'), 'boolean') # TODO: Implement "typeof" for predefined entities # eq_(_get_var(scope, "j"), "number") # eq_(_get_var(scope, "k"), "number") # eq_(_get_var(scope, "l"), "number") eq_(_get_var(scope, 'm'), 'number') eq_(_get_var(scope, 'n'), 'number') eq_(_get_var(scope, 'o'), 'number') eq_(_get_var(scope, 'p'), 'number') eq_(_get_var(scope, 'q'), 'string') eq_(_get_var(scope, 'r'), 'number') eq_(_get_var(scope, 's'), 'number') eq_(_get_var(scope, 't'), 'object') eq_(_get_var(scope, 'u'), 'object') eq_(_get_var(scope, 'v'), 'object') eq_(_get_var(scope, 'x'), 'function') eq_(_get_var(scope, 'y'), 'function') # TODO(basta): Still working on the delete operator...should be done soon. #def test_delete_operator(): # """Test that the delete operator works correctly.""" # # # Test that array elements can be destroyed. # eq_(_get_var(_do_test_raw(""" # var x = [1, 2, 3]; # delete(x[2]); # var value = x.length; # """), "value"), 2) # # # Test that hte right array elements are destroyed. # eq_(_get_var(_do_test_raw(""" # var x = [1, 2, 3]; # delete(x[2]); # var value = x.toString(); # """), "value"), "1,2") # # eq_(_get_var(_do_test_raw(""" # var x = "asdf"; # delete x; # var value = x; # """), "value"), None) # # assert _do_test_raw(""" # delete(Math.PI); # """).failed() def test_logical_not(): """Test that logical not is evaluated properly.""" scope = _do_test_raw(""" var a = !(null), // b = !(var x), c = !(void 0), d = !(false), e = !(true), // f = !(), g = !(0), h = !(-0), // i = !(NaN), j = !(Infinity), k = !(-Infinity), l = !(Math.PI), m = !(1), n = !(-1), o = !(''), p = !('\\t'), q = !('0'), r = !('string'), s = !(new String('')); // This should cover all type globals. """) eq_(_get_var(scope, 'a'), True) # eq_(_get_var(scope, "b"), True) eq_(_get_var(scope, 'c'), True) eq_(_get_var(scope, 'd'), True) eq_(_get_var(scope, 'e'), False) # eq_(_get_var(scope, "f"), True) eq_(_get_var(scope, 'g'), True) eq_(_get_var(scope, 'h'), True) # eq_(_get_var(scope, "i"), True) eq_(_get_var(scope, 'j'), False) eq_(_get_var(scope, 'k'), False) eq_(_get_var(scope, 'l'), False) eq_(_get_var(scope, 'm'), False) eq_(_get_var(scope, 'n'), False) eq_(_get_var(scope, 'o'), True) eq_(_get_var(scope, 'p'), False) eq_(_get_var(scope, 'q'), False) eq_(_get_var(scope, 'r'), False) eq_(_get_var(scope, 's'), False) def test_concat_plus_infinity(): """Test that Infinity is concatenated properly.""" _do_test_scope(""" var a = Infinity + "foo", b = (-Infinity) + "foo", c = "foo" + Infinity, d = "foo" + (-Infinity); """, {'a': 'Infinityfoo', 'b': '-Infinityfoo', 'c': 'fooInfinity', 'd': 'foo-Infinity'}) def test_simple_operators_when_dirty(): """ Test that when we're dealing with dirty objects, binary operations don't cave in the roof. Note that this test (if it fails) may cause some ugly crashes. """ _do_test_raw(""" var x = foo(); // x is now a dirty object. y = foo(); // y is now a dirty object as well. """ + """y += y + x;""" * 100) # This bit makes the validator's head explode. def test_overflow_errors(): "Test that OverflowErrors in traversal don't crash the validation process." _do_test_raw(""" var x = Math.exp(-4*1000000*-0.0641515994108); """)
kmaglione/amo-validator
tests/test_js_operators.py
Python
bsd-3-clause
7,066
0.000849
import boto3 import json import pytest import sure # noqa # pylint: disable=unused-import from boto3 import Session from botocore.client import ClientError from moto import settings, mock_s3control, mock_config # All tests for s3-control cannot be run under the server without a modification of the # hosts file on your system. This is due to the fact that the URL to the host is in the form of: # ACCOUNT_ID.s3-control.amazonaws.com <-- That Account ID part is the problem. If you want to # make use of the moto server, update your hosts file for `THE_ACCOUNT_ID_FOR_MOTO.localhost` # and this will work fine. if not settings.TEST_SERVER_MODE: @mock_s3control @mock_config def test_config_list_account_pab(): from moto.s3.models import ACCOUNT_ID client = boto3.client("s3control", region_name="us-west-2") config_client = boto3.client("config", region_name="us-west-2") # Create the aggregator: account_aggregation_source = { "AccountIds": [ACCOUNT_ID], "AllAwsRegions": True, } config_client.put_configuration_aggregator( ConfigurationAggregatorName="testing", AccountAggregationSources=[account_aggregation_source], ) # Without a PAB in place: result = config_client.list_discovered_resources( resourceType="AWS::S3::AccountPublicAccessBlock" ) assert not result["resourceIdentifiers"] result = config_client.list_aggregate_discovered_resources( ResourceType="AWS::S3::AccountPublicAccessBlock", ConfigurationAggregatorName="testing", ) assert not result["ResourceIdentifiers"] # Create a PAB: client.put_public_access_block( AccountId=ACCOUNT_ID, PublicAccessBlockConfiguration={ "BlockPublicAcls": True, "IgnorePublicAcls": True, "BlockPublicPolicy": True, "RestrictPublicBuckets": True, }, ) # Test that successful queries work (non-aggregated): result = config_client.list_discovered_resources( resourceType="AWS::S3::AccountPublicAccessBlock" ) assert result["resourceIdentifiers"] == [ { "resourceType": "AWS::S3::AccountPublicAccessBlock", "resourceId": ACCOUNT_ID, } ] result = config_client.list_discovered_resources( resourceType="AWS::S3::AccountPublicAccessBlock", resourceIds=[ACCOUNT_ID, "nope"], ) assert result["resourceIdentifiers"] == [ { "resourceType": "AWS::S3::AccountPublicAccessBlock", "resourceId": ACCOUNT_ID, } ] result = config_client.list_discovered_resources( resourceType="AWS::S3::AccountPublicAccessBlock", resourceName="" ) assert result["resourceIdentifiers"] == [ { "resourceType": "AWS::S3::AccountPublicAccessBlock", "resourceId": ACCOUNT_ID, } ] # Test that successful queries work (aggregated): result = config_client.list_aggregate_discovered_resources( ResourceType="AWS::S3::AccountPublicAccessBlock", ConfigurationAggregatorName="testing", ) regions = {region for region in Session().get_available_regions("config")} for r in result["ResourceIdentifiers"]: regions.remove(r.pop("SourceRegion")) assert r == { "ResourceType": "AWS::S3::AccountPublicAccessBlock", "SourceAccountId": ACCOUNT_ID, "ResourceId": ACCOUNT_ID, } # Just check that the len is the same -- this should be reasonable regions = {region for region in Session().get_available_regions("config")} result = config_client.list_aggregate_discovered_resources( ResourceType="AWS::S3::AccountPublicAccessBlock", ConfigurationAggregatorName="testing", Filters={"ResourceName": ""}, ) assert len(regions) == len(result["ResourceIdentifiers"]) result = config_client.list_aggregate_discovered_resources( ResourceType="AWS::S3::AccountPublicAccessBlock", ConfigurationAggregatorName="testing", Filters={"ResourceName": "", "ResourceId": ACCOUNT_ID}, ) assert len(regions) == len(result["ResourceIdentifiers"]) result = config_client.list_aggregate_discovered_resources( ResourceType="AWS::S3::AccountPublicAccessBlock", ConfigurationAggregatorName="testing", Filters={ "ResourceName": "", "ResourceId": ACCOUNT_ID, "Region": "us-west-2", }, ) assert ( result["ResourceIdentifiers"][0]["SourceRegion"] == "us-west-2" and len(result["ResourceIdentifiers"]) == 1 ) # Test aggregator pagination: result = config_client.list_aggregate_discovered_resources( ResourceType="AWS::S3::AccountPublicAccessBlock", ConfigurationAggregatorName="testing", Limit=1, ) regions = sorted( [region for region in Session().get_available_regions("config")] ) assert result["ResourceIdentifiers"][0] == { "ResourceType": "AWS::S3::AccountPublicAccessBlock", "SourceAccountId": ACCOUNT_ID, "ResourceId": ACCOUNT_ID, "SourceRegion": regions[0], } assert result["NextToken"] == regions[1] # Get the next region: result = config_client.list_aggregate_discovered_resources( ResourceType="AWS::S3::AccountPublicAccessBlock", ConfigurationAggregatorName="testing", Limit=1, NextToken=regions[1], ) assert result["ResourceIdentifiers"][0] == { "ResourceType": "AWS::S3::AccountPublicAccessBlock", "SourceAccountId": ACCOUNT_ID, "ResourceId": ACCOUNT_ID, "SourceRegion": regions[1], } # Non-aggregated with incorrect info: result = config_client.list_discovered_resources( resourceType="AWS::S3::AccountPublicAccessBlock", resourceName="nope" ) assert not result["resourceIdentifiers"] result = config_client.list_discovered_resources( resourceType="AWS::S3::AccountPublicAccessBlock", resourceIds=["nope"] ) assert not result["resourceIdentifiers"] # Aggregated with incorrect info: result = config_client.list_aggregate_discovered_resources( ResourceType="AWS::S3::AccountPublicAccessBlock", ConfigurationAggregatorName="testing", Filters={"ResourceName": "nope"}, ) assert not result["ResourceIdentifiers"] result = config_client.list_aggregate_discovered_resources( ResourceType="AWS::S3::AccountPublicAccessBlock", ConfigurationAggregatorName="testing", Filters={"ResourceId": "nope"}, ) assert not result["ResourceIdentifiers"] result = config_client.list_aggregate_discovered_resources( ResourceType="AWS::S3::AccountPublicAccessBlock", ConfigurationAggregatorName="testing", Filters={"Region": "Nope"}, ) assert not result["ResourceIdentifiers"] @mock_s3control @mock_config def test_config_get_account_pab(): from moto.s3.models import ACCOUNT_ID client = boto3.client("s3control", region_name="us-west-2") config_client = boto3.client("config", region_name="us-west-2") # Create the aggregator: account_aggregation_source = { "AccountIds": [ACCOUNT_ID], "AllAwsRegions": True, } config_client.put_configuration_aggregator( ConfigurationAggregatorName="testing", AccountAggregationSources=[account_aggregation_source], ) # Without a PAB in place: with pytest.raises(ClientError) as ce: config_client.get_resource_config_history( resourceType="AWS::S3::AccountPublicAccessBlock", resourceId=ACCOUNT_ID ) assert ce.value.response["Error"]["Code"] == "ResourceNotDiscoveredException" # aggregate result = config_client.batch_get_resource_config( resourceKeys=[ { "resourceType": "AWS::S3::AccountPublicAccessBlock", "resourceId": "ACCOUNT_ID", } ] ) assert not result["baseConfigurationItems"] result = config_client.batch_get_aggregate_resource_config( ConfigurationAggregatorName="testing", ResourceIdentifiers=[ { "SourceAccountId": ACCOUNT_ID, "SourceRegion": "us-west-2", "ResourceId": ACCOUNT_ID, "ResourceType": "AWS::S3::AccountPublicAccessBlock", "ResourceName": "", } ], ) assert not result["BaseConfigurationItems"] # Create a PAB: client.put_public_access_block( AccountId=ACCOUNT_ID, PublicAccessBlockConfiguration={ "BlockPublicAcls": True, "IgnorePublicAcls": True, "BlockPublicPolicy": True, "RestrictPublicBuckets": True, }, ) # Get the proper config: proper_config = { "blockPublicAcls": True, "ignorePublicAcls": True, "blockPublicPolicy": True, "restrictPublicBuckets": True, } result = config_client.get_resource_config_history( resourceType="AWS::S3::AccountPublicAccessBlock", resourceId=ACCOUNT_ID ) assert ( json.loads(result["configurationItems"][0]["configuration"]) == proper_config ) assert ( result["configurationItems"][0]["accountId"] == result["configurationItems"][0]["resourceId"] == ACCOUNT_ID ) result = config_client.batch_get_resource_config( resourceKeys=[ { "resourceType": "AWS::S3::AccountPublicAccessBlock", "resourceId": ACCOUNT_ID, } ] ) assert len(result["baseConfigurationItems"]) == 1 assert ( json.loads(result["baseConfigurationItems"][0]["configuration"]) == proper_config ) assert ( result["baseConfigurationItems"][0]["accountId"] == result["baseConfigurationItems"][0]["resourceId"] == ACCOUNT_ID ) for region in Session().get_available_regions("s3control"): result = config_client.batch_get_aggregate_resource_config( ConfigurationAggregatorName="testing", ResourceIdentifiers=[ { "SourceAccountId": ACCOUNT_ID, "SourceRegion": region, "ResourceId": ACCOUNT_ID, "ResourceType": "AWS::S3::AccountPublicAccessBlock", "ResourceName": "", } ], ) assert len(result["BaseConfigurationItems"]) == 1 assert ( json.loads(result["BaseConfigurationItems"][0]["configuration"]) == proper_config )
spulec/moto
tests/test_s3control/test_s3control_config_integration.py
Python
apache-2.0
11,847
0.001013
import unittest from nose.tools import eq_ from django.contrib.auth import get_user_model from amon.apps.alerts.models import AlertsModel from amon.apps.processes.models import process_model from amon.apps.plugins.models import plugin_model from amon.apps.servers.models import server_model from amon.apps.devices.models import volumes_model, interfaces_model User = get_user_model() class AlertsModelTest(unittest.TestCase): def setUp(self): User.objects.all().delete() self.user_email = 'foo@test.com' self.user = User.objects.create_user(password='qwerty', email=self.user_email) self.account_id = 1 self.model = AlertsModel() self.model.mongo.database = 'amontest' self.collection = self.model.mongo.get_collection('alerts') self.server_collection = self.model.mongo.get_collection('servers') self.history_collection = self.model.mongo.get_collection('alert_history') self.server_collection.insert({"name" : "test", "key": "test_me", "account_id": 199999 }) server = self.server_collection.find_one() self.server_id = server['_id'] def tearDown(self): self.user.delete() User.objects.all().delete() def _cleanup(self): self.collection.remove() process_model.collection.remove() plugin_model.collection.remove() interfaces_model.collection.remove() volumes_model.collection.remove() gauges_collection = plugin_model.gauge_collection.remove() def add_initial_data_test(self): self._cleanup() default_alert = { "above_below": "above", "email_recepients": [], "rule_type": "global", "server": "all", "period": 300, "account_id": self.account_id } # Add initial data only if this is empty self.collection.insert(default_alert) assert self.collection.find().count() == 1 self.model.add_initial_data() assert self.collection.find().count() == 1 self._cleanup() assert self.collection.find().count() == 0 self.model.add_initial_data() assert self.collection.find().count() == 3 self._cleanup() def get_alerts_for_plugin_test(self): self._cleanup() plugin = plugin_model.get_or_create(server_id=self.server_id, name='testplugin') gauge = plugin_model.get_or_create_gauge_by_name(plugin=plugin, name='gauge') plugin_alert = { "above_below": "above", "rule_type": "plugin", "server": self.server_id, "gauge": gauge['_id'], "plugin": plugin['_id'], "account_id": self.account_id, "key": "testkey", "period": 0, "metric_value": 5 } for i in range(0,5): try: del plugin_alert['_id'] except: pass plugin_alert['period'] = i plugin_alert['metric_value'] = i+5 self.model.collection.insert(plugin_alert) result = self.model.get_alerts_for_plugin(plugin=plugin) assert len(result) == 5 self._cleanup() def save_alert_test(self): self.collection.remove() self.model.save({'rule': "test", 'server': self.server_id}) eq_(self.collection.count(), 1) def update_test(self): self.collection.remove() self.model.save({'rule': "test" , 'server': self.server_id, 'period': 10}) alert = self.collection.find_one() alert_id = str(alert['_id']) self.model.update({'rule': 'updated_test', 'period': 10}, alert_id) alert = self.collection.find_one() eq_(alert['rule'], 'updated_test') def mute_test(self): self.collection.remove() self.collection.insert({"name" : "test", "key": "test_me"}) alert = self.collection.find_one() alert_id = str(alert['_id']) self.model.mute(alert_id) result = self.collection.find_one() eq_(result["mute"], True) self.model.mute(alert_id) result = self.collection.find_one() eq_(result["mute"], False) def get_mute_state_test(self): self.collection.remove() for i in range(0, 10): self.collection.insert({"name" : "test", "mute": True,"account_id": self.account_id}) result = self.model.get_mute_state(account_id=self.account_id) eq_(result, False) # A toggle function -> this is the next state self.collection.remove() for i in range(0, 10): self.collection.insert({"name" : "test", "mute": False,"account_id": self.account_id}) result = self.model.get_mute_state(account_id=self.account_id) eq_(result, True) # A toggle function -> this is the next state def mute_all_test(self): self.collection.remove() for i in range(0, 10): self.collection.insert({"name" : "test", "mute": False ,"account_id": self.account_id}) result = self.model.mute_all(account_id=self.account_id) for r in self.collection.find(): eq_(r['mute'], True) self.collection.remove() for i in range(0, 10): self.collection.insert({"name" : "test", "mute": True ,"account_id": self.account_id}) result = self.model.mute_all(account_id=self.account_id) for r in self.collection.find(): eq_(r['mute'], False) self.collection.remove() def get_alerts_test(self): self.collection.remove() self.server_collection.remove() self.server_collection.insert({"name" : "test", "key": "test_me"}) server = self.server_collection.find_one() rule = { "server": server['_id'], "rule_type": 'system', 'metric': 2, 'period': 10} self.collection.insert(rule) rule = { "server": server['_id'], "rule_type": 'system', 'metric': 1, 'period': 10} self.collection.insert(rule) rules = self.model.get_alerts(type='system', server=server) eq_(len(rules), 2) self.collection.remove() def delete_alerts_test(self): self.collection.remove() self.collection.insert({"name" : "test", "key": "test_me"}) rule = self.collection.find_one() self.model.delete(alert_id=rule['_id']) result = self.collection.count() eq_(result,0) self.collection.remove() def save_healthcheck_occurence_test(self): self.history_collection.remove() self.collection.remove() def save_occurence_test(self): self.history_collection.remove() self.collection.remove() self.collection.insert({ "rule_type" : "custom_metric_gauge", "metric_value" : 10, "metric_type" : "more_than", "period": 10 }) rule = self.collection.find_one() rule_id = str(rule['_id']) for i in range(300, 330): self.model.save_occurence({ 'value': 11, 'alert_id': rule_id, 'trigger': True, 'time': i }) trigger_result = self.history_collection.find({'alert_id': rule['_id'] , 'notify': True}) assert trigger_result.count() == 2 # 310 and 321 def save_health_check_occurence_test(self): self.history_collection.remove() self.server_collection.remove() self.server_collection.insert({'name': 'test'}) server = self.server_collection.find_one() self.collection.remove() self.collection.insert({ "rule_type" : "health_check", "server": server['_id'], "command" : "check-http.rb", "status": "critical", "period": 10 }) rule = self.collection.find_one() rule['server'] = server rule_id = str(rule['_id']) for i in range(0, 110): trigger_dict = { 'value': 1, 'alert_id': rule_id, 'trigger': True, 'time': i, 'health_checks_data_id': 'test' } self.model.save_healtcheck_occurence(trigger=trigger_dict, server_id=server['_id']) trigger_result = self.history_collection.find({'alert_id': rule['_id'] , 'notify': True}) eq_(trigger_result.count(), 10) for r in trigger_result.clone(): assert r['from'] in [0, 11, 22, 33, 44, 55, 66, 77, 88, 99] assert r['time'] in [10, 21, 32, 43, 54, 65, 76, 87, 98, 109] assert r['health_checks_data_id'] self.history_collection.remove() # Second test with some of the triggers set to False for i in range(300, 400): trigger = True if i % 2 == 1: trigger = False trigger_dict = { 'value': 1, 'alert_id': rule_id, 'trigger': trigger, 'time': i, 'health_checks_data_id': 'test' } self.model.save_healtcheck_occurence(trigger=trigger_dict, server_id=server['_id']) trigger_result = self.history_collection.find({'alert_id': rule['_id'] , 'notify': True}) eq_(trigger_result.count(), 0) self.history_collection.remove() def save_system_occurence_test(self): self.history_collection.remove() self.server_collection.remove() self.server_collection.insert({'name': 'test'}) server = self.server_collection.find_one() self.collection.remove() self.collection.insert({ "rule_type" : "system", "server": server['_id'], "metric_type_value" : "%", "metric_value" : "10", "metric_type" : "more_than", "metric" : "CPU", "period": 10 }) rule = self.collection.find_one() rule_id = str(rule['_id']) server_id = rule['server'] for i in range(300, 320): self.model.save_system_occurence({'cpu': [{ 'value': 11, 'rule': rule_id, 'trigger': True, 'server_id': server_id, 'time': i }]}, server_id=server_id) trigger_result = self.history_collection.find({'alert_id': rule['_id'] , 'notify': True}) eq_(trigger_result.count(), 1) # Only 1 trigger on 400 for r in trigger_result.clone(): eq_(r['time'], 310) eq_(r['from'], 300) self.history_collection.remove() # Second test with some of the triggers set to False for i in range(300, 400): trigger = True if i % 2 == 1: trigger = False self.model.save_system_occurence({'cpu': [{ 'value': 11, 'rule': rule_id, 'trigger': trigger, 'server': server['_id'], 'time': i }]}, server_id=server_id) trigger_result = self.history_collection.find({'alert_id': rule['_id'] , 'notify': True}) eq_(trigger_result.count(), 0) self.history_collection.remove() # Try with bigger range and multiple triggers for i in range(300, 333): self.model.save_system_occurence({'cpu': [{ 'value': 11, 'rule': rule_id, 'trigger': True, 'server': server['_id'], 'time': i }]}, server_id=server_id) trigger_result = self.history_collection.find({'alert_id': rule['_id'] , 'notify': True}) eq_(trigger_result.count(), 3) for r in trigger_result.clone(): time_list = [310, 321, 332] eq_(r['time'] in time_list, True) self.history_collection.remove() self.server_collection.remove() def delete_server_alerts_test(self): server_model.collection.remove() self.collection.remove() server_id = server_model.add('testserver') self.collection.insert({"rule_type" : "process",}) self.collection.insert({"rule_type" : "system",}) self.collection.insert({"rule_type" : "log", "server": server_id}) self.collection.insert({"rule_type" : "dummy", "server":server_id}) self.collection.insert({"rule_type" : "dummy", "server": server_id}) self.model.delete_server_alerts(server_id) eq_(self.collection.count(), 2) self.collection.remove() def get_by_id_test(self): self.collection.remove() server_model.collection.remove() plugin_model.collection.remove() server_id = server_model.add('testserver') plugin = plugin_model.get_or_create(name='testplugin', server_id=server_id) self.collection.insert({ "rule_type" : "process", "server": server_id, "plugin": plugin['_id'], 'sms_recepients': [], 'email_recepients': [], 'webhooks': []} ) alert = self.collection.find_one() alert_from_model = self.model.get_by_id(alert['_id']) assert alert_from_model['plugin'] == plugin['_id']
martinrusev/amonone
amon/apps/alerts/models/tests/alerts_model_test.py
Python
mit
13,755
0.012432
from django.contrib.auth.models import AbstractBaseUser, BaseUserManager from django.db import models class IntegerUsernameUserManager(BaseUserManager): def create_user(self, username, password): user = self.model(username=username) user.set_password(password) user.save(using=self._db) return user def get_by_natural_key(self, username): return self.get(username=username) class IntegerUsernameUser(AbstractBaseUser): username = models.IntegerField() password = models.CharField(max_length=255) USERNAME_FIELD = 'username' REQUIRED_FIELDS = ['username', 'password'] objects = IntegerUsernameUserManager()
nesdis/djongo
tests/django_tests/tests/v22/tests/auth_tests/models/with_integer_username.py
Python
agpl-3.0
681
0
import sys import ray import pytest from ray.test_utils import ( generate_system_config_map, wait_for_condition, wait_for_pid_to_exit, ) @ray.remote class Increase: def method(self, x): return x + 2 @ray.remote def increase(x): return x + 1 @pytest.mark.parametrize( "ray_start_regular", [ generate_system_config_map( num_heartbeats_timeout=20, ping_gcs_rpc_server_max_retries=60) ], indirect=True) def test_gcs_server_restart(ray_start_regular): actor1 = Increase.remote() result = ray.get(actor1.method.remote(1)) assert result == 3 ray.worker._global_node.kill_gcs_server() ray.worker._global_node.start_gcs_server() result = ray.get(actor1.method.remote(7)) assert result == 9 actor2 = Increase.remote() result = ray.get(actor2.method.remote(2)) assert result == 4 result = ray.get(increase.remote(1)) assert result == 2 @pytest.mark.parametrize( "ray_start_regular", [ generate_system_config_map( num_heartbeats_timeout=20, ping_gcs_rpc_server_max_retries=60) ], indirect=True) def test_gcs_server_restart_during_actor_creation(ray_start_regular): ids = [] for i in range(0, 100): actor = Increase.remote() ids.append(actor.method.remote(1)) ray.worker._global_node.kill_gcs_server() ray.worker._global_node.start_gcs_server() ready, unready = ray.wait(ids, num_returns=100, timeout=240) print("Ready objects is {}.".format(ready)) print("Unready objects is {}.".format(unready)) assert len(unready) == 0 @pytest.mark.parametrize( "ray_start_cluster_head", [ generate_system_config_map( num_heartbeats_timeout=20, ping_gcs_rpc_server_max_retries=60) ], indirect=True) def test_node_failure_detector_when_gcs_server_restart(ray_start_cluster_head): """Checks that the node failure detector is correct when gcs server restart. We set the cluster to timeout nodes after 2 seconds of heartbeats. We then kill gcs server and remove the worker node and restart gcs server again to check that the removed node will die finally. """ cluster = ray_start_cluster_head worker = cluster.add_node() cluster.wait_for_nodes() # Make sure both head and worker node are alive. nodes = ray.nodes() assert len(nodes) == 2 assert nodes[0]["alive"] and nodes[1]["alive"] to_be_removed_node = None for node in nodes: if node["RayletSocketName"] == worker.raylet_socket_name: to_be_removed_node = node assert to_be_removed_node is not None head_node = cluster.head_node gcs_server_process = head_node.all_processes["gcs_server"][0].process gcs_server_pid = gcs_server_process.pid # Kill gcs server. cluster.head_node.kill_gcs_server() # Wait to prevent the gcs server process becoming zombie. gcs_server_process.wait() wait_for_pid_to_exit(gcs_server_pid, 1000) raylet_process = worker.all_processes["raylet"][0].process raylet_pid = raylet_process.pid # Remove worker node. cluster.remove_node(worker, allow_graceful=False) # Wait to prevent the raylet process becoming zombie. raylet_process.wait() wait_for_pid_to_exit(raylet_pid) # Restart gcs server process. cluster.head_node.start_gcs_server() def condition(): nodes = ray.nodes() assert len(nodes) == 2 for node in nodes: if node["NodeID"] == to_be_removed_node["NodeID"]: return not node["alive"] return False # Wait for the removed node dead. wait_for_condition(condition, timeout=10) if __name__ == "__main__": import pytest sys.exit(pytest.main(["-v", __file__]))
robertnishihara/ray
python/ray/tests/test_gcs_fault_tolerance.py
Python
apache-2.0
3,783
0.000264
# -*- coding: utf-8 -*- # Copyright (C) Canux CHENG <canuxcheng@gmail.com> # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Base class for all Sharepoint 2013 plugins.""" import logging import traceback from monitoring.nagios.plugin import NagiosPluginHTTP from powershell import XMLTable, XMLSerializedTable from powershell.xml.exceptions import XMLValidityError logger = logging.getLogger('plugin.base') class PluginBase(NagiosPluginHTTP): """Base class for all Exchange plugins.""" def __init__(self, *args, **kwargs): super(PluginBase, self).__init__(*args, **kwargs) self._alerts = { 'warning': [], 'critical': [], } self.have_criticals = False self.have_warnings = False def run(self): """Run the plugin.""" try: self.main() except Exception: self.shortoutput = 'Unexpected plugin error ! Please investigate.' self.longoutput = traceback.format_exc().splitlines() self.unknown(self.output()) def main(self): """Main entry point for the plugin.""" raise NotImplementedError('Main entry point is not implemented !') def fetch_xml_table(self): """Helper to fetch the XML via HTTP and parse it.""" response = self.http.get(self.options.path) try: xml_table = XMLTable(response.content) logger.debug('XML Table: %s', xml_table) return xml_table except XMLValidityError: try: xml_table = XMLSerializedTable(response.content) logger.debug('XML Serialized Table: %s', xml_table) return xml_table except XMLValidityError: self.shortoutput = 'XML format is not valid !' self.longoutput = traceback.format_exc().splitlines() self.critical(self.output()) def add_critical_result(self, crit_result): """ Add a critical result. Used in longoutput to show the result in a CRITICAL section. """ self._alerts['critical'].append(crit_result) self.have_criticals = True def add_warning_result(self, warn_result): """ Add a warning result. Used in longoutput to show the result in a WARNING section. """ self._alerts['warning'].append(warn_result) self.have_warnings = True
crazy-canux/xplugin_nagios
plugin/plugins/sharepoint_2013/src/plugin/base.py
Python
gpl-2.0
3,450
0
# coding: utf-8 from __future__ import absolute_import from swagger_server.models.error_model import ErrorModel from swagger_server.models.taxonomy import Taxonomy from . import BaseTestCase from six import BytesIO from flask import json class TestTaxonomyController(BaseTestCase): """ TaxonomyController integration test stubs """ def test_tax(self): """ Test case for tax Taxonomic information, or hierarchy """ query_string = [('taxon', 'taxon_example'), ('includelower', true), ('hierarchy', true)] response = self.client.open('/api_v1/tax', method='GET', content_type='application/json', query_string=query_string) self.assert200(response, "Response body is : " + response.data.decode('utf-8')) if __name__ == '__main__': import unittest unittest.main()
EarthLifeConsortium/elc_api
swagger_server/test/test_taxonomy_controller.py
Python
apache-2.0
995
0.001005
''' DowntimeCommand module ''' import urllib2 from datetime import datetime, timedelta from operator import itemgetter from DIRAC import S_OK, S_ERROR from DIRAC.Core.LCG.GOCDBClient import GOCDBClient from DIRAC.Core.Utilities.SitesDIRACGOCDBmapping import getGOCSiteName, getGOCFTSName from DIRAC.ConfigurationSystem.Client.Helpers.Resources import getStorageElementOptions, getFTS3Servers from DIRAC.ResourceStatusSystem.Client.ResourceManagementClient import ResourceManagementClient from DIRAC.ResourceStatusSystem.Command.Command import Command from DIRAC.ResourceStatusSystem.Utilities import CSHelpers __RCSID__ = '$Id: $' class DowntimeCommand( Command ): ''' Downtime "master" Command or removed DTs. ''' def __init__( self, args = None, clients = None ): super( DowntimeCommand, self ).__init__( args, clients ) if 'GOCDBClient' in self.apis: self.gClient = self.apis[ 'GOCDBClient' ] else: self.gClient = GOCDBClient() if 'ResourceManagementClient' in self.apis: self.rmClient = self.apis[ 'ResourceManagementClient' ] else: self.rmClient = ResourceManagementClient() def _storeCommand( self, result ): ''' Stores the results of doNew method on the database. ''' for dt in result: resQuery = self.rmClient.addOrModifyDowntimeCache( downtimeID = dt[ 'DowntimeID' ], element = dt[ 'Element' ], name = dt[ 'Name' ], startDate = dt[ 'StartDate' ], endDate = dt[ 'EndDate' ], severity = dt[ 'Severity' ], description = dt[ 'Description' ], link = dt[ 'Link' ], gocdbServiceType = dt[ 'GOCDBServiceType' ] ) return resQuery def _cleanCommand( self, element, elementNames): ''' Clear Cache from expired DT. ''' resQuery = [] for elementName in elementNames: #get the list of all DTs stored in the cache result = self.rmClient.selectDowntimeCache( element = element, name = elementName ) if not result[ 'OK' ]: return result uniformResult = [ dict( zip( result[ 'Columns' ], res ) ) for res in result[ 'Value' ] ] currentDate = datetime.utcnow() if len(uniformResult) == 0: return S_OK( None ) #get the list of all ongoing DTs from GocDB gDTLinkList = self.gClient.getCurrentDTLinkList() if not gDTLinkList[ 'OK' ]: return gDTLinkList for dt in uniformResult: #if DT expired or DT not in the list of current DTs, then we remove it from the cache if dt[ 'EndDate' ] < currentDate or dt[ 'Link' ] not in gDTLinkList[ 'Value' ]: result = self.rmClient.deleteDowntimeCache ( downtimeID = dt[ 'DowntimeID' ] ) resQuery.append(result) return S_OK( resQuery ) def _prepareCommand( self ): ''' DowntimeCommand requires four arguments: - name : <str> - element : Site / Resource - elementType: <str> If the elements are Site(s), we need to get their GOCDB names. They may not have, so we ignore them if they do not have. ''' if 'name' not in self.args: return S_ERROR( '"name" not found in self.args' ) elementName = self.args[ 'name' ] if 'element' not in self.args: return S_ERROR( '"element" not found in self.args' ) element = self.args[ 'element' ] if 'elementType' not in self.args: return S_ERROR( '"elementType" not found in self.args' ) elementType = self.args[ 'elementType' ] if not element in [ 'Site', 'Resource' ]: return S_ERROR( 'element is neither Site nor Resource' ) hours = None if 'hours' in self.args: hours = self.args[ 'hours' ] gocdbServiceType = None # Transform DIRAC site names into GOCDB topics if element == 'Site': gocSite = getGOCSiteName( elementName ) if not gocSite[ 'OK' ]: return gocSite elementName = gocSite[ 'Value' ] # The DIRAC se names mean nothing on the grid, but their hosts do mean. elif elementType == 'StorageElement': # We need to distinguish if it's tape or disk seOptions = getStorageElementOptions( elementName ) if not seOptions['OK']: return seOptions if seOptions['Value'].get( 'TapeSE' ): gocdbServiceType = "srm.nearline" elif seOptions['Value'].get( 'DiskSE' ): gocdbServiceType = "srm" seHost = CSHelpers.getSEHost( elementName ) if not seHost['OK']: return seHost seHost = seHost['Value'] if not seHost: return S_ERROR( 'No seHost for %s' % elementName ) elementName = seHost elif elementType in ['FTS','FTS3']: gocdbServiceType = 'FTS' try: #WARNING: this method presupposes that the server is an FTS3 type elementName = getGOCFTSName(elementName) except: return S_ERROR( 'No FTS3 server specified in dirac.cfg (see Resources/FTSEndpoints)' ) return S_OK( ( element, elementName, hours, gocdbServiceType ) ) def doNew( self, masterParams = None ): ''' Gets the parameters to run, either from the master method or from its own arguments. For every elementName, unless it is given a list, in which case it contacts the gocdb client. The server is not very stable, so in case of failure tries a second time. If there are downtimes, are recorded and then returned. ''' if masterParams is not None: element, elementNames = masterParams hours = 120 elementName = None gocdbServiceType = None else: params = self._prepareCommand() if not params[ 'OK' ]: return params element, elementName, hours, gocdbServiceType = params[ 'Value' ] elementNames = [ elementName ] #WARNING: checking all the DT that are ongoing or starting in given <hours> from now try: results = self.gClient.getStatus( element, name = elementNames, startingInHours = hours ) except urllib2.URLError: try: #Let's give it a second chance.. results = self.gClient.getStatus( element, name = elementNames, startingInHours = hours ) except urllib2.URLError, e: return S_ERROR( e ) if not results[ 'OK' ]: return results results = results[ 'Value' ] if results is None: return S_OK( None ) #cleaning the Cache cleanRes = self._cleanCommand(element, elementNames) if not cleanRes[ 'OK' ]: return cleanRes uniformResult = [] # Humanize the results into a dictionary, not the most optimal, but readable for downtime, downDic in results.items(): dt = {} if 'HOSTNAME' in downDic.keys(): dt[ 'Name' ] = downDic[ 'HOSTNAME' ] elif 'SITENAME' in downDic.keys(): dt[ 'Name' ] = downDic[ 'SITENAME' ] else: return S_ERROR( "SITENAME or HOSTNAME are missing" ) if 'SERVICE_TYPE' in downDic.keys(): dt[ 'GOCDBServiceType' ] = downDic[ 'SERVICE_TYPE' ] if gocdbServiceType: gocdbST = gocdbServiceType.lower() csST = downDic[ 'SERVICE_TYPE' ].lower() if gocdbST != csST: return S_ERROR( "SERVICE_TYPE mismatch between GOCDB (%s) and CS (%s) for %s" % (gocdbST, csST, dt[ 'Name' ]) ) else: #WARNING: do we want None as default value? dt[ 'GOCDBServiceType' ] = None dt[ 'DowntimeID' ] = downtime dt[ 'Element' ] = element dt[ 'StartDate' ] = downDic[ 'FORMATED_START_DATE' ] dt[ 'EndDate' ] = downDic[ 'FORMATED_END_DATE' ] dt[ 'Severity' ] = downDic[ 'SEVERITY' ] dt[ 'Description' ] = downDic[ 'DESCRIPTION' ].replace( '\'', '' ) dt[ 'Link' ] = downDic[ 'GOCDB_PORTAL_URL' ] uniformResult.append( dt ) storeRes = self._storeCommand( uniformResult ) if not storeRes[ 'OK' ]: return storeRes return S_OK() def doCache( self ): ''' Method that reads the cache table and tries to read from it. It will return a list with one dictionary describing the DT if there are results. ''' params = self._prepareCommand() if not params[ 'OK' ]: return params element, elementName, hours, gocdbServiceType = params[ 'Value' ] result = self.rmClient.selectDowntimeCache( element = element, name = elementName, gocdbServiceType = gocdbServiceType ) if not result[ 'OK' ]: return result uniformResult = [ dict( zip( result[ 'Columns' ], res ) ) for res in result[ 'Value' ] ] #'targetDate' can be either now or some 'hours' later in the future targetDate = datetime.utcnow() #dtOverlapping is a buffer to assure only one dt is returned #when there are overlapping outage/warning dt for same element #on top of the buffer we put the most recent outages #while at the bottom the most recent warnings, #assumption: uniformResult list is already ordered by resource/site name, severity, startdate dtOverlapping = [] if hours is not None: #IN THE FUTURE targetDate = targetDate + timedelta( hours = hours ) #sorting by 'StartDate' b/c if we look for DTs in the future #then we are interested in the earliest DTs uniformResult.sort(key=itemgetter('Name','Severity','StartDate')) for dt in uniformResult: if ( dt[ 'StartDate' ] < targetDate ) and ( dt[ 'EndDate' ] > targetDate ): #the list is already ordered in a way that outages come first over warnings #and the earliest outages are on top of other outages and warnings #while the earliest warnings are on top of the other warnings #so what ever comes first in the list is also what we are looking for dtOverlapping = [dt] break else: #IN THE PRESENT #sorting by 'EndDate' b/c if we look for DTs in the present #then we are interested in those DTs that last longer uniformResult.sort(key=itemgetter('Name','Severity','EndDate')) for dt in uniformResult: if ( dt[ 'StartDate' ] < targetDate ) and ( dt[ 'EndDate' ] > targetDate ): #if outage, we put it on top of the overlapping buffer #i.e. the latest ending outage is on top if dt['Severity'].upper() == 'OUTAGE': dtOverlapping = [dt] + dtOverlapping #if warning, we put it at the bottom of the overlapping buffer #i.e. the latest ending warning is at the bottom elif dt['Severity'].upper() == 'WARNING': dtOverlapping.append(dt) result = None if len(dtOverlapping) > 0: dtTop = dtOverlapping[0] dtBottom = dtOverlapping[-1] if dtTop['Severity'].upper() == 'OUTAGE': result = dtTop else: result = dtBottom return S_OK( result ) def doMaster( self ): ''' Master method, which looks little bit spaghetti code, sorry ! - It gets all sites and transforms them into gocSites. - It gets all the storage elements and transforms them into their hosts - It gets the the CEs (FTS and file catalogs will come). ''' gocSites = CSHelpers.getGOCSites() if not gocSites[ 'OK' ]: return gocSites gocSites = gocSites[ 'Value' ] sesHosts = CSHelpers.getStorageElementsHosts() if not sesHosts[ 'OK' ]: return sesHosts sesHosts = sesHosts[ 'Value' ] resources = sesHosts ftsServer = getFTS3Servers() if ftsServer[ 'OK' ]: resources.extend( ftsServer[ 'Value' ] ) #TODO: file catalogs need also to use their hosts #fc = CSHelpers.getFileCatalogs() #if fc[ 'OK' ]: # resources = resources + fc[ 'Value' ] ce = CSHelpers.getComputingElements() if ce[ 'OK' ]: resources.extend( ce[ 'Value' ] ) self.log.verbose( 'Processing Sites: %s' % ', '.join( gocSites ) ) siteRes = self.doNew( ( 'Site', gocSites ) ) if not siteRes[ 'OK' ]: self.metrics[ 'failed' ].append( siteRes[ 'Message' ] ) self.log.verbose( 'Processing Resources: %s' % ', '.join( resources ) ) resourceRes = self.doNew( ( 'Resource', resources ) ) if not resourceRes[ 'OK' ]: self.metrics[ 'failed' ].append( resourceRes[ 'Message' ] ) return S_OK( self.metrics ) ################################################################################ #EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF#EOF
vmendez/DIRAC
ResourceStatusSystem/Command/DowntimeCommand.py
Python
gpl-3.0
13,233
0.042167
from datetime import date, datetime from unittest import TestCase from myob.constants import DEFAULT_PAGE_SIZE from myob.credentials import PartnerCredentials from myob.managers import Manager class QueryParamTests(TestCase): def setUp(self): cred = PartnerCredentials( consumer_key='KeyToTheKingdom', consumer_secret='TellNoOne', callback_uri='CallOnlyWhenCalledTo', ) self.manager = Manager('', credentials=cred) def assertParamsEqual(self, raw_kwargs, expected_params, method='GET'): self.assertEqual( self.manager.build_request_kwargs(method, {}, **raw_kwargs)['params'], expected_params ) def test_filter(self): self.assertParamsEqual({'Type': 'Customer'}, {'$filter': "(Type eq 'Customer')"}) self.assertParamsEqual({'Type': ['Customer', 'Supplier']}, {'$filter': "(Type eq 'Customer' or Type eq 'Supplier')"}) self.assertParamsEqual({'DisplayID__gt': '5-0000'}, {'$filter': "(DisplayID gt '5-0000')"}) self.assertParamsEqual({'DateOccurred__lt': '2013-08-30T19:00:59.043'}, {'$filter': "(DateOccurred lt '2013-08-30T19:00:59.043')"}) self.assertParamsEqual({'Type': ('Customer', 'Supplier'), 'DisplayID__gt': '5-0000'}, {'$filter': "(Type eq 'Customer' or Type eq 'Supplier') and (DisplayID gt '5-0000')"}) self.assertParamsEqual({'raw_filter': "(Type eq 'Customer' or Type eq 'Supplier') or DisplayID gt '5-0000'", 'DateOccurred__lt': '2013-08-30T19:00:59.043'}, {'$filter': "((Type eq 'Customer' or Type eq 'Supplier') or DisplayID gt '5-0000') and (DateOccurred lt '2013-08-30T19:00:59.043')"}) self.assertParamsEqual({'IsActive': True}, {'$filter': "(IsActive eq true)"}) self.assertParamsEqual({'IsActive': False}, {'$filter': "(IsActive eq false)"}) def test_datetime_filter(self): self.assertParamsEqual({'DateOccurred__lt': datetime(1992, 11, 14)}, {'$filter': "(DateOccurred lt datetime'1992-11-14 00:00:00')"}) self.assertParamsEqual({'DateOccurred__lt': date(1992, 11, 14)}, {'$filter': "(DateOccurred lt datetime'1992-11-14')"}) def test_orderby(self): self.assertParamsEqual({'orderby': 'Date'}, {'$orderby': "Date"}) def test_pagination(self): self.assertParamsEqual({'page': 7}, {'$skip': 6 * DEFAULT_PAGE_SIZE}) self.assertParamsEqual({'limit': 20}, {'$top': 20}) self.assertParamsEqual({'limit': 20, 'page': 7}, {'$top': 20, '$skip': 120}) def test_format(self): self.assertParamsEqual({'format': 'json'}, {'format': 'json'}) def test_templatename(self): self.assertParamsEqual({'templatename': 'InvoiceTemplate - 7'}, {'templatename': 'InvoiceTemplate - 7'}) def test_returnBody(self): self.assertParamsEqual({}, {'returnBody': 'true'}, method='PUT') self.assertParamsEqual({}, {'returnBody': 'true'}, method='POST') def test_combination(self): self.assertParamsEqual( { 'Type': ['Customer', 'Supplier'], 'DisplayID__gt': '3-0900', 'orderby': 'Date', 'page': 5, 'limit': 13, 'format': 'json', }, { '$filter': "(Type eq 'Customer' or Type eq 'Supplier') and (DisplayID gt '3-0900')", '$orderby': 'Date', '$skip': 52, '$top': 13, 'format': 'json' }, )
ABASystems/pymyob
tests/test_managers.py
Python
bsd-3-clause
3,511
0.003987
import os import json import numpy as np from sklearn.externals import joblib from scripts.features.post import Post from scripts.features.post_feature import PostFeature import scripts.features.length_extractor as lext import scripts.features.charactor_extractor as cext import scripts.features.structure_extractor as sext class Evaluator(): def __init__(self, model_path=""): self.model_path = model_path if model_path else os.path.join(os.path.dirname(__file__), "../models/") self.classifier = None self.scaler = None self.features = [] def load(self): self.classifier = joblib.load(self.model_path + "banana.pkl") self.scaler = joblib.load(self.model_path + "banana_scaler.pkl") with open(self.model_path + "banana_list.txt") as f: self.features = f.readline().split() return self def evaluate(self, post_dict): if self.classifier is None: self.load() f_vector = self.get_features(post_dict) prediction = self.classifier.predict_proba(f_vector) return prediction[0][1] # probability of good def get_features(self, post_dict): post = Post(post_dict) pf = PostFeature(post) cleaned_rendered_body = cext.RenderedBodyPreprocessor().clean_rendered_body(post.rendered_body) pf.add(lext.TitleLengthExtractor()) pf.add(lext.SectionCountExtractor()) pf.add(cext.KanjiRatioExtractor(cleaned_rendered_body)) pf.add(cext.HiraganaRatioExtractor(cleaned_rendered_body)) pf.add(cext.KatakanaRatioExtractor(cleaned_rendered_body)) pf.add(cext.NumberRatioExtractor(cleaned_rendered_body)) pf.add(cext.PunctuationRatioExtractor(cleaned_rendered_body)) pf.add(lext.SentenceMeanLengthExtractor(cleaned_rendered_body)) pf.add(lext.SentenceMeanLengthExtractor(cleaned_rendered_body)) pf.add(lext.SentenceMaxLengthExtractor(cleaned_rendered_body)) pf.add(sext.ImageCountExtractor()) pf.add(sext.ImageRatioExtractor(cleaned_rendered_body)) pf_d = pf.to_dict(drop_disused_feature=True) f_vector = [] for f in self.features: f_vector.append(pf_d[f]) f_vector = np.array(f_vector).reshape(1, -1) f_vector = self.scaler.transform(f_vector) return f_vector
chakki-works/elephant_sense
elephant_sense/evaluator.py
Python
apache-2.0
2,383
0.002098
# -*- coding: utf-8 -*- ############################################################################## # # Odoo Addon, Open Source Management Solution # Copyright (C) 2014-now Equitania Software GmbH(<http://www.equitania.de>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from odoo import models, fields, api, _ class report_stock_picking(models.Model): _inherit = 'stock.picking' # def get_tax(self, tax_id, language, currency_id): # amount_net = 0; # for line in self.order_line: # if tax_id.id in [x.id for x in line.tax_id] and not line.eq_optional: # amount_net += line.price_subtotal # # tax_amount = 0 # for tex in self.env['account.tax']._compute([tax_id], amount_net, 1): # tax_amount += tex['amount'] # # return self.env["eq_report_helper"].get_price(tax_amount, language, 'Sale Price Report', currency_id) # # # @api.multi # def get_price(self, value, currency_id, language): # """ # Formatierung eines Preises mit Berücksichtigung der Einstellung Dezimalstellen Sale Price Report # :param value: # :param currency_id: # :param language: # :return: # """ # return self.env["eq_report_helper"].get_price(value, language, 'Sale Price Report', currency_id) # # @api.multi # def get_qty(self, value, language): # """ # Formatierung für Mengenangabe mit Berücksichtigung der Einstellung Dezimalstellen Sale Quantity Report # :param value: # :param language: # :return: # """ # return self.env["eq_report_helper"].get_qty(value, language, 'Sale Quantity Report') @api.multi def html_text_is_set(self, value): """ Workaround für HTML-Texte: Autom. Inhalt nach Speichern ohne Inhalt: <p><br></p> Entfernen der Zeilenumbrüche und Paragraphen für Test, ob ein Inhalt gesetzt wurde :param value: :return: """ if not value: return False value = value.replace('<br>', '') value = value.replace('<p>', '') value = value.replace('</p>', '') value = value.replace('<', '') value = value.replace('>', '') value = value.replace('/', '') value = value.strip() return value != ''
equitania/myodoo-addons-v10
eq_stock/models/eq_report_stock.py
Python
agpl-3.0
3,096
0.002913
from datetime import datetime import pandas as pd from pandas.util.testing import assert_frame_equal import ulmo import ulmo.usgs.eddn.parsers as parsers import test_util fmt = '%y%j%H%M%S' message_test_sets = [ { 'dcp_address': 'C5149430', 'number_of_lines': 4, 'parser': 'twdb_stevens', 'first_row_message_timestamp_utc': datetime.strptime('13305152818', fmt), }, { 'dcp_address': 'C514D73A', 'number_of_lines': 4, 'parser': 'twdb_sutron', 'first_row_message_timestamp_utc': datetime.strptime('13305072816', fmt), }, { 'dcp_address': 'C516C1B8', 'number_of_lines': 28, 'parser': 'stevens', 'first_row_message_timestamp_utc': datetime.strptime('13305134352', fmt), } ] def test_parse_dcp_message_number_of_lines(): for test_set in message_test_sets: dcp_data_file = 'usgs/eddn/' + test_set['dcp_address'] + '.txt' with test_util.mocked_urls(dcp_data_file): data = ulmo.usgs.eddn.get_data(test_set['dcp_address']) assert len(data) == test_set['number_of_lines'] def test_parse_dcp_message_timestamp(): for test_set in message_test_sets: dcp_data_file = 'usgs/eddn/' + test_set['dcp_address'] + '.txt' with test_util.mocked_urls(dcp_data_file): data = ulmo.usgs.eddn.get_data(test_set['dcp_address']) assert data['message_timestamp_utc'][-1] == test_set['first_row_message_timestamp_utc'] multi_message_test_sets = [ { 'dcp_address': 'C5149430', 'data_files': { '.*DRS_UNTIL=now.*':'usgs/eddn/C5149430_file1.txt', '.*DRS_UNTIL=2013%2F294.*':'usgs/eddn/C5149430_file2.txt', '.*DRS_UNTIL=2013%2F207.*':'usgs/eddn/C5149430_file3.txt' }, 'first_row_message_timestamp_utc': datetime.strptime('14016152818', fmt), 'last_row_message_timestamp_utc': datetime.strptime('13202032818', fmt), 'number_of_lines': 360, 'start': 'P365D' } ] def test_multi_message_download(): for test_set in multi_message_test_sets: with test_util.mocked_urls(test_set['data_files']): data = ulmo.usgs.eddn.get_data(test_set['dcp_address'], start=test_set['start']) assert data['message_timestamp_utc'][-1] == test_set['first_row_message_timestamp_utc'] assert data['message_timestamp_utc'][0] == test_set['last_row_message_timestamp_utc'] assert len(data) == test_set['number_of_lines'] twdb_stevens_test_sets = [ { 'message_timestamp_utc': datetime(2013,10,30,15,28,18), 'dcp_message': '"BV:11.9 193.76$ 193.70$ 193.62$ 193.54$ 193.49$ 193.43$ 193.37$ 199.62$ 200.51$ 200.98$ 195.00$ 194.33$ ', 'return_value': [ ['2013-10-30 04:00:00', pd.np.nan, 193.76], ['2013-10-30 05:00:00', pd.np.nan, 193.70], ['2013-10-30 06:00:00', pd.np.nan, 193.62], ['2013-10-30 07:00:00', pd.np.nan, 193.54], ['2013-10-30 08:00:00', pd.np.nan, 193.49], ['2013-10-30 09:00:00', pd.np.nan, 193.43], ['2013-10-30 10:00:00', pd.np.nan, 193.37], ['2013-10-30 11:00:00', pd.np.nan, 199.62], ['2013-10-30 12:00:00', pd.np.nan, 200.51], ['2013-10-30 13:00:00', pd.np.nan, 200.98], ['2013-10-30 14:00:00', pd.np.nan, 195.00], ['2013-10-30 15:00:00', 11.9, 194.33], ], }, { 'message_timestamp_utc': datetime(2013,10,30,15,28,18), 'dcp_message': '"BV:12.6 Channel:5 Time:28 +304.63 +304.63 +304.63 +304.56 +304.63 +304.63 +304.63 +304.63 +304.63 +304.63 +304.63 +304.71 Channel:6 Time:28 +310.51 +310.66 +310.59 +310.51 +310.51 +310.59 +310.59 +310.51 +310.66 +310.51 +310.66 +310.59 ', 'return_value': [ ['2013-10-30 04:00:00', '5', '28', pd.np.nan, 304.63], ['2013-10-30 05:00:00', '5', '28', pd.np.nan, 304.63], ['2013-10-30 06:00:00', '5', '28', pd.np.nan, 304.63], ['2013-10-30 07:00:00', '5', '28', pd.np.nan, 304.56], ['2013-10-30 08:00:00', '5', '28', pd.np.nan, 304.63], ['2013-10-30 09:00:00', '5', '28', pd.np.nan, 304.63], ['2013-10-30 10:00:00', '5', '28', pd.np.nan, 304.63], ['2013-10-30 11:00:00', '5', '28', pd.np.nan, 304.63], ['2013-10-30 12:00:00', '5', '28', pd.np.nan, 304.63], ['2013-10-30 13:00:00', '5', '28', pd.np.nan, 304.63], ['2013-10-30 14:00:00', '5', '28', pd.np.nan, 304.63], ['2013-10-30 15:00:00', '5', '28', 12.6, 304.71], ['2013-10-30 04:00:00', '6', '28', pd.np.nan, 310.51], ['2013-10-30 05:00:00', '6', '28', pd.np.nan, 310.66], ['2013-10-30 06:00:00', '6', '28', pd.np.nan, 310.59], ['2013-10-30 07:00:00', '6', '28', pd.np.nan, 310.51], ['2013-10-30 08:00:00', '6', '28', pd.np.nan, 310.51], ['2013-10-30 09:00:00', '6', '28', pd.np.nan, 310.59], ['2013-10-30 10:00:00', '6', '28', pd.np.nan, 310.59], ['2013-10-30 11:00:00', '6', '28', pd.np.nan, 310.51], ['2013-10-30 12:00:00', '6', '28', pd.np.nan, 310.66], ['2013-10-30 13:00:00', '6', '28', pd.np.nan, 310.51], ['2013-10-30 14:00:00', '6', '28', pd.np.nan, 310.66], ['2013-10-30 15:00:00', '6', '28', 12.6, 310.59], ] }, { 'message_timestamp_utc': datetime(2013,10,30,15,28,18), 'dcp_message': '"BV:12.6 ', 'return_value': pd.DataFrame() }, { 'message_timestamp_utc': datetime(2013,10,30,15,28,18), 'dcp_message': """ 79."$}X^pZBF8iB~i>>Xmj[bvr^Zv%JXl,DU=l{uu[ t( |@2q^sjS! """, 'return_value': pd.DataFrame() }, ] def test_parser_twdb_stevens(): for test_set in twdb_stevens_test_sets: print 'testing twdb_stevens parser' if isinstance(test_set['return_value'], pd.DataFrame): parser = getattr(parsers, 'twdb_stevens') assert_frame_equal(pd.DataFrame(), parser(test_set)) return if len(test_set['return_value'][0]) == 3: columns = ['timestamp_utc', 'battery_voltage', 'water_level'] else: columns = ['timestamp_utc', 'channel', 'time', 'battery_voltage', 'water_level'] _assert(test_set, columns, 'twdb_stevens') twdb_sutron_test_sets = [ { 'message_timestamp_utc': datetime(2013,10,30,15,28,18), 'dcp_message': '":Sense01 60 #60 -67.84 -66.15 -67.73 -67.81 -66.42 -68.45 -68.04 -67.87 -71.53 -73.29 -70.55 -72.71 :BL 13.29', 'return_value': [ ['2013-10-30 04:00:00', 'sense01', pd.np.nan, 72.71], ['2013-10-30 05:00:00', 'sense01', pd.np.nan, 70.55], ['2013-10-30 06:00:00', 'sense01', pd.np.nan, 73.29], ['2013-10-30 07:00:00', 'sense01', pd.np.nan, 71.53], ['2013-10-30 08:00:00', 'sense01', pd.np.nan, 67.87], ['2013-10-30 09:00:00', 'sense01', pd.np.nan, 68.04], ['2013-10-30 10:00:00', 'sense01', pd.np.nan, 68.45], ['2013-10-30 11:00:00', 'sense01', pd.np.nan, 66.42], ['2013-10-30 12:00:00', 'sense01', pd.np.nan, 67.81], ['2013-10-30 13:00:00', 'sense01', pd.np.nan, 67.73], ['2013-10-30 14:00:00', 'sense01', pd.np.nan, 66.15], ['2013-10-30 15:00:00', 'sense01', 13.29, 67.84], ], }, { 'message_timestamp_utc': datetime(2013,10,30,15,28,18), 'dcp_message': '":OTT 703 60 #60 -231.47 -231.45 -231.44 -231.45 -231.47 -231.50 -231.51 -231.55 -231.56 -231.57 -231.55 -231.53 :6910704 60 #60 -261.85 -261.83 -261.81 -261.80 -261.81 -261.83 -261.85 -261.87 -261.89 -261.88 -261.86 -261.83 :BL 13.21', 'return_value': [ ['2013-10-30 04:00:00', 'ott 703', pd.np.nan, 231.53], ['2013-10-30 05:00:00', 'ott 703', pd.np.nan, 231.55], ['2013-10-30 06:00:00', 'ott 703', pd.np.nan, 231.57], ['2013-10-30 07:00:00', 'ott 703', pd.np.nan, 231.56], ['2013-10-30 08:00:00', 'ott 703', pd.np.nan, 231.55], ['2013-10-30 09:00:00', 'ott 703', pd.np.nan, 231.51], ['2013-10-30 10:00:00', 'ott 703', pd.np.nan, 231.50], ['2013-10-30 11:00:00', 'ott 703', pd.np.nan, 231.47], ['2013-10-30 12:00:00', 'ott 703', pd.np.nan, 231.45], ['2013-10-30 13:00:00', 'ott 703', pd.np.nan, 231.44], ['2013-10-30 14:00:00', 'ott 703', pd.np.nan, 231.45], ['2013-10-30 15:00:00', 'ott 703', 13.21, 231.47], ['2013-10-30 04:00:00', '6910704', pd.np.nan, 261.83], ['2013-10-30 05:00:00', '6910704', pd.np.nan, 261.86], ['2013-10-30 06:00:00', '6910704', pd.np.nan, 261.88], ['2013-10-30 07:00:00', '6910704', pd.np.nan, 261.89], ['2013-10-30 08:00:00', '6910704', pd.np.nan, 261.87], ['2013-10-30 09:00:00', '6910704', pd.np.nan, 261.85], ['2013-10-30 10:00:00', '6910704', pd.np.nan, 261.83], ['2013-10-30 11:00:00', '6910704', pd.np.nan, 261.81], ['2013-10-30 12:00:00', '6910704', pd.np.nan, 261.80], ['2013-10-30 13:00:00', '6910704', pd.np.nan, 261.81], ['2013-10-30 14:00:00', '6910704', pd.np.nan, 261.83], ['2013-10-30 15:00:00', '6910704', 13.21, 261.85], ] }, { 'message_timestamp_utc': datetime(2013,10,30,15,28,18), 'dcp_message': '"\r\n// \r\n// \r\n// \r\n// \r\n// \r\n-199.88 \r\n-199.92 \r\n-199.96 \r\n-199.98 \r\n-200.05 \r\n-200.09 \r\n-200.15', 'return_value': [ ['2013-10-30 04:00:00', pd.np.nan, 200.15], ['2013-10-30 05:00:00', pd.np.nan, 200.09], ['2013-10-30 06:00:00', pd.np.nan, 200.05], ['2013-10-30 07:00:00', pd.np.nan, 199.98], ['2013-10-30 08:00:00', pd.np.nan, 199.96], ['2013-10-30 09:00:00', pd.np.nan, 199.92], ['2013-10-30 10:00:00', pd.np.nan, 199.88], ['2013-10-30 11:00:00', pd.np.nan, pd.np.nan], ['2013-10-30 12:00:00', pd.np.nan, pd.np.nan], ['2013-10-30 13:00:00', pd.np.nan, pd.np.nan], ['2013-10-30 14:00:00', pd.np.nan, pd.np.nan], ['2013-10-30 15:00:00', pd.np.nan, pd.np.nan], ], }, ] def test_parser_twdb_sutron(): for test_set in twdb_sutron_test_sets: print 'testing twdb_sutron parser' if len(test_set['return_value'][0]) == 3: columns = ['timestamp_utc', 'battery_voltage', 'water_level'] else: columns = ['timestamp_utc', 'channel', 'battery_voltage', 'water_level'] _assert(test_set, columns, 'twdb_sutron') twdb_texuni_test_sets = [ { 'message_timestamp_utc': datetime(2013,10,30,15,28,18), 'dcp_message': ' \r\n+0.000,-109.8,\r\n+0.000,-109.8,\r\n+0.000,-109.8,\r\n+0.000,-109.8,\r\n+0.000,-109.8,\r\n+0.000,-109.9,\r\n+0.000,-109.9,\r\n+0.000,-109.9,\r\n+0.000,-109.9,\r\n+0.000,-109.9,\r\n+0.000,-110.0,\r\n+0.000,-110.0,\r\n+0.000,-109.9,\r\n+0.000,-109.9,\r\n+0.000,-109.9,\r\n+0.000,-109.9,\r\n+0.000,-110.0,\r\n+0.000,-110.0,\r\n+0.000,-110.0,\r\n+0.000,-110.1,\r\n+0.000,-110.1,\r\n+0.000,-110.1,\r\n+0.000,-110.1,\r\n+0.000,-110.1,\r\n+340.0,+2013.,+307.0,+1400.,+12.07,+0.000,-109.9,-109.8,-110.1,+30.57,', 'return_value': [ ['2013-10-29 16:00:00', pd.np.nan, 109.8], ['2013-10-29 17:00:00', pd.np.nan, 109.8], ['2013-10-29 18:00:00', pd.np.nan, 109.8], ['2013-10-29 19:00:00', pd.np.nan, 109.8], ['2013-10-29 20:00:00', pd.np.nan, 109.8], ['2013-10-29 21:00:00', pd.np.nan, 109.9], ['2013-10-29 22:00:00', pd.np.nan, 109.9], ['2013-10-29 23:00:00', pd.np.nan, 109.9], ['2013-10-30 00:00:00', pd.np.nan, 109.9], ['2013-10-30 01:00:00', pd.np.nan, 109.9], ['2013-10-30 02:00:00', pd.np.nan, 110.0], ['2013-10-30 03:00:00', pd.np.nan, 110.0], ['2013-10-30 04:00:00', pd.np.nan, 109.9], ['2013-10-30 05:00:00', pd.np.nan, 109.9], ['2013-10-30 06:00:00', pd.np.nan, 109.9], ['2013-10-30 07:00:00', pd.np.nan, 109.9], ['2013-10-30 08:00:00', pd.np.nan, 110.0], ['2013-10-30 09:00:00', pd.np.nan, 110.0], ['2013-10-30 10:00:00', pd.np.nan, 110.0], ['2013-10-30 11:00:00', pd.np.nan, 110.1], ['2013-10-30 12:00:00', pd.np.nan, 110.1], ['2013-10-30 13:00:00', pd.np.nan, 110.1], ['2013-10-30 14:00:00', pd.np.nan, 110.1], ['2013-10-30 15:00:00', pd.np.nan, 110.1], ] }, ] def test_parser_twdb_texuni(): for test_set in twdb_texuni_test_sets: print 'testing twdb_texuni parser' columns = ['timestamp_utc', 'battery_voltage', 'water_level'] _assert(test_set, columns, 'twdb_texuni') def _assert(test_set, columns, parser): expected = pd.DataFrame(test_set['return_value'], columns=columns) expected.index = pd.to_datetime(expected['timestamp_utc']) del expected['timestamp_utc'] parser = getattr(parsers, parser) df = parser(test_set) # to compare pandas dataframes, columns must be in same order if 'channel' in df.columns: for channel in pd.np.unique(df['channel']): df_c = df[df['channel']==channel] expected_c = expected[expected['channel']==channel] assert_frame_equal(df_c.sort(axis=1).sort(axis=0), expected_c.sort(axis=1).sort(axis=0)) else: assert_frame_equal(df.sort(axis=1).sort(axis=0), expected.sort(axis=1).sort(axis=0))
nathanhilbert/ulmo
test/usgs_eddn_test.py
Python
bsd-3-clause
13,809
0.004779
#!/usr/bin/env python # Fan control mod for Raspberry Pi import RPi.GPIO as GPIO, time, datetime, subprocess, os, logging from daemon import runner DEBUG = 1 GPIO.setmode(GPIO.BCM) # Respective ports on the GPIO header FAST = 18 SLOW = 25 # Default settings for fan control MAX_TEMP = 50 MIN_TEMP = 40 POLL_TIME = 5 def get_temperature(): # Returns the temperature in degrees C try: s = subprocess.check_output(["vcgencmd","measure_temp"]) return float(s.split("=")[1][:-3]) except: # Something went wrong keep the fan on high return MAX_TEMP+1 class App(): def __init__(self): self.stdin_path = '/dev/null' self.stdout_path = '/dev/tty' self.stderr_path = '/dev/tty' self.pidfile_path = '/var/run/fandaemon/fandaemon.pid' self.pidfile_timeout = 5 def run(self): GPIO.setup(FAST, GPIO.OUT) GPIO.setup(SLOW, GPIO.OUT) try: while True: current_temp = get_temperature() logstr = 'Current temp is ' + str(current_temp) logger.info(logstr); if current_temp > MAX_TEMP: logger.info('Setting fan speed to HIGH') GPIO.output(SLOW, GPIO.LOW) GPIO.output(FAST, GPIO.HIGH) POLL_TIME = 5 elif (current_temp <= MAX_TEMP) and (current_temp > MIN_TEMP): logger.info('Setting fan speed to LOW') GPIO.output(FAST, GPIO.LOW) GPIO.output(SLOW, GPIO.HIGH) POLL_TIME = 10 else: logger.info('Turn the fan off!') GPIO.output(SLOW, GPIO.LOW) GPIO.output(FAST, GPIO.LOW) POLL_TIME = 15 time.sleep(POLL_TIME) except: logger.error('Exiting now!') finally: GPIO.cleanup() app = App() logger = logging.getLogger("DaemonLog") logger.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") handler = logging.FileHandler("/var/log/fandaemon/fandaemon.log") handler.setFormatter(formatter) logger.addHandler(handler) daemon_runner = runner.DaemonRunner(app) #This ensures that the logger file handle does not get closed during daemonization daemon_runner.daemon_context.files_preserve=[handler.stream] daemon_runner.do_action()
zainag/RPi-Test-Projects
fan_control_daemon.py
Python
mit
2,129
0.034758
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A binary to train CIFAR-10 using a single GPU. Accuracy: cifar10_train.py achieves ~86% accuracy after 100K steps (256 epochs of data) as judged by cifar10_eval.py. Speed: With batch_size 128. System | Step Time (sec/batch) | Accuracy ------------------------------------------------------------------ 1 Tesla K20m | 0.35-0.60 | ~86% at 60K steps (5 hours) 1 Tesla K40m | 0.25-0.35 | ~86% at 100K steps (4 hours) Usage: Please see the tutorial and website for how to download the CIFAR-10 data set, compile the program and train the model. http://tensorflow.org/tutorials/deep_cnn/ """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from datetime import datetime import time import tensorflow as tf import cifar10 FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('train_dir', '/tmp/cifar10_train', """Directory where to write event logs """ """and checkpoint.""") tf.app.flags.DEFINE_integer('max_steps', 1000000, """Number of batches to run.""") tf.app.flags.DEFINE_boolean('log_device_placement', False, """Whether to log device placement.""") tf.app.flags.DEFINE_integer('log_frequency', 10, """How often to log results to the console.""") def train(): """Train CIFAR-10 for a number of steps.""" with tf.Graph().as_default(): global_step = tf.train.get_or_create_global_step() # Get images and labels for CIFAR-10. # Force input pipeline to CPU:0 to avoid operations sometimes ending up on # GPU and resulting in a slow down. with tf.device('/cpu:0'): images, labels = cifar10.distorted_inputs() # Build a Graph that computes the logits predictions from the # inference model. logits = cifar10.inference(images) # Calculate loss. loss = cifar10.loss(logits, labels) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = cifar10.train(loss, global_step) class _LoggerHook(tf.train.SessionRunHook): """Logs loss and runtime.""" def begin(self): self._step = -1 self._start_time = time.time() def before_run(self, run_context): self._step += 1 return tf.train.SessionRunArgs(loss) # Asks for loss value. def after_run(self, run_context, run_values): if self._step % FLAGS.log_frequency == 0: current_time = time.time() duration = current_time - self._start_time self._start_time = current_time loss_value = run_values.results examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration sec_per_batch = float(duration / FLAGS.log_frequency) format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print (format_str % (datetime.now(), self._step, loss_value, examples_per_sec, sec_per_batch)) with tf.train.MonitoredTrainingSession( checkpoint_dir=FLAGS.train_dir, hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps), tf.train.NanTensorHook(loss), _LoggerHook()], config=tf.ConfigProto( log_device_placement=FLAGS.log_device_placement)) as mon_sess: while not mon_sess.should_stop(): mon_sess.run(train_op) def main(argv=None): # pylint: disable=unused-argument cifar10.maybe_download_and_extract() if tf.gfile.Exists(FLAGS.train_dir): tf.gfile.DeleteRecursively(FLAGS.train_dir) tf.gfile.MakeDirs(FLAGS.train_dir) train() if __name__ == '__main__': tf.app.run()
jiaphuan/models
tutorials/image/cifar10/cifar10_train.py
Python
apache-2.0
4,491
0.004899
from tests.compiler import compile_snippet, A_ID, LST_ID, SELF_ID, VAL1_ID, internal_call, A_INST, INNER_ID, \ CONTAINER_INNER_ID, STATIC_START from thinglang.compiler.opcodes import OpcodePushLocal, OpcodePushMember, OpcodePushStatic, OpcodePop, \ OpcodeDereference, OpcodeCallVirtual def test_direct_member_access(): assert compile_snippet('a_inst.a1') == [ OpcodePushMember(A_INST, 0) ] def test_nested_member_access(): assert compile_snippet('self.inner.inner.inner') == [ OpcodePushMember(SELF_ID, INNER_ID), OpcodeDereference(CONTAINER_INNER_ID), OpcodeDereference(CONTAINER_INNER_ID) ] def test_member_access_via_method_call(): assert compile_snippet('a_inst.me().a1') == [ OpcodePushLocal(A_INST), OpcodeCallVirtual(1), OpcodeDereference(0) ] assert compile_snippet('a_inst.me().me().a1') == [ OpcodePushLocal(A_INST), OpcodeCallVirtual(1), OpcodeCallVirtual(1), OpcodeDereference(0) ] def test_local_list_immediate_index(): assert compile_snippet('lst[123]') == [ OpcodePushStatic(STATIC_START), OpcodePushLocal(LST_ID), internal_call('list.get') ] def test_local_list_non_immediate_index(): assert compile_snippet('lst[a]') == [ OpcodePushLocal(A_ID), OpcodePushLocal(LST_ID), internal_call('list.get') ] assert compile_snippet('lst[self.val1]') == [ OpcodePushMember(SELF_ID, VAL1_ID), OpcodePushLocal(LST_ID), internal_call('list.get') ]
ytanay/thinglang
tests/compiler/test_access_compilation.py
Python
mit
1,587
0.00189
from __future__ import unicode_literals import os from mopidy import config, ext __version__ = '0.0.1' class Extension(ext.Extension): dist_name = 'Mopidy-USBPlaylist' ext_name = 'usbplaylist' version = __version__ def get_default_config(self): conf_file = os.path.join(os.path.dirname(__file__), 'ext.conf') return config.read(conf_file) def get_config_schema(self): schema = super(Extension, self).get_config_schema() schema['path'] = config.String() return schema def setup(self, registry): from .actor import USBPlaylistsBackend registry.add('backend', USBPlaylistsBackend)
avanc/mopidy-usbplaylist
mopidy_usbplaylist/__init__.py
Python
apache-2.0
668
0
import pytest import logging @pytest.mark.asyncio async def test_confirmation(rpc_context): # setup rpc async def test_method(request): a = await request.confirm('just say yes!', timeout=1) logging.debug('a = %s', a) return a rpc_context.rpc.add_methods(('', test_method)) # setup client async def confirm(request): return True client = await rpc_context.make_client() client.add_methods(('', confirm)) # run test assert await client.call('test_method')
pengutronix/aiohttp-json-rpc
tests/test_forms.py
Python
apache-2.0
530
0
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('productos', '0003_auto_20141118_2241'), ] operations = [ migrations.AlterField( model_name='imagenes', name='url', field=models.ImageField(upload_to=b'img', null=True, verbose_name=b'Im\xc3\xa1gen', blank=True), preserve_default=True, ), ]
gabrielf10/Soles-pythonanywhere
productos/migrations/0004_auto_20141119_0117.py
Python
bsd-3-clause
496
0.002016
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html class CabukcgcrawlerPipeline(object): def process_item(self, item, spider): return item
codeforkaohsiung/CabuKcgCrawler
CabuKcgCrawler/pipelines.py
Python
mit
294
0
""" This file holds utility functions that have no dependencies on other console code. Avoids import loops """ import webcolors def wc(clr, factor=0.0, layercolor=(255, 255, 255)): lc = webcolors.name_to_rgb(layercolor.lower()) if isinstance(layercolor, str) else layercolor if isinstance(clr, str): try: v = webcolors.name_to_rgb(clr.lower()) except ValueError: # logsupport.Logs.Log('Bad color name: ' + str(clr), severity=ConsoleWarning) v = webcolors.name_to_rgb('black') else: v = clr try: return v[0] + (lc[0] - v[0]) * factor, v[1] + (lc[1] - v[1]) * factor, v[2] + (lc[2] - v[2]) * factor except Exception as E: print('wc: {}'.format(E)) print(v, lc, clr, layercolor) def interval_str(sec_elapsed, shrt=False): d = int(sec_elapsed / (60 * 60 * 24)) h = int((sec_elapsed % (60 * 60 * 24)) / 3600) m = int((sec_elapsed % (60 * 60)) / 60) s = int(sec_elapsed % 60) if d != 0: if shrt: return "{} dys {:>02d}:{:>02d}:{:>02d}".format(d, h, m, s) else: return "{} days {:>02d}hrs {:>02d}mn {:>02d}sec".format(d, h, m, s) elif h != 0: return "{:>02d}hrs {:>02d}mn {:>02d}sec".format(h, m, s) else: return "{:>02d}mn {:>02d}sec".format(m, s) def BoolTrueWord(v): if v is None: return False if isinstance(v, bool): return v try: return v.lower() in ('true', 'on', 'yes') except Exception as e: print("Error1: {}".format(v)) def BoolFalseWord(v): if v is None: return True if isinstance(v, bool): return not v try: return v.lower() in ('false', 'off', 'no') except Exception as e: print("Error2: {}".format(v)) def TreeDict(d, args): # Allow a nest of dictionaries to be accessed by a tuple of keys for easier code if len(args) == 1: temp = d[args[0]] #temp = getattr(d,args[0]) if isinstance(temp, str) and temp.isdigit(): temp = int(temp) else: try: temp = float(temp) except (ValueError, TypeError): pass return temp else: return TreeDict(d[args[0]], args[1:]) #return TreeDict(getattr(d,args[0]),args[1:]) import string class PartialFormatter(string.Formatter): def __init__(self, missing='--', bad_fmt='--'): self.missing, self.bad_fmt = missing, bad_fmt def get_field(self, field_name, args, kwargs): # Handle a key not found try: val = super().get_field(field_name, args, kwargs) except (KeyError, AttributeError): val = None, field_name return val def format_field(self, value, spec): # handle an invalid format if value is None: return self.missing try: return super().format_field(value, spec) except ValueError: if self.bad_fmt is not None: return self.bad_fmt else: raise fmt = PartialFormatter() # noinspection PyBroadException def safeprint(*args, **kwargs): try: print(*args, **kwargs) except OSError: with open('/home/pi/Console/disconnectederrors.log', 'a') as f: print(*args, **kwargs, file=f) def RepresentsInt(s): try: int(s) return True except (ValueError, TypeError): return False ''' class WFormatter(string.Formatter): def format_field(self, value, format_spec): if format_spec.endswith(('f', 'd')) and value is None: return 'n/a' elif value is None: return 'n/a' elif value == -9999.0: return 'n/a' else: return super(WFormatter, self).format_field(value, format_spec) '''
kevinkahn/softconsole
utils/utilfuncs.py
Python
apache-2.0
3,291
0.033728
# -*- coding: utf-8 -*- """ /*************************************************************************** IOGeopaparazzi A QGIS plugin A plugin to import/export geodata from/to geopaparazzi Generated by Plugin Builder: http://g-sherman.github.io/Qgis-Plugin-Builder/ ------------------- begin : 2018-07-19 copyright : (C) 2018 by Enrico A. Chiaradia email : enrico.chiaradia@yahoo.it ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ """ __author__ = 'Enrico A. Chiaradia' __date__ = '2018-07-19' __copyright__ = '(C) 2018 by Enrico A. Chiaradia' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' from qgis.core import QgsProcessingProvider from .import_gpap_algorithm import ImportGpapAlgorithm from .export_spatialite_algorithm import ExportSpatialiteAlgorithm from .export_tiles_algorithm import ExportTilesAlgorithm class IOGeopaparazziProvider(QgsProcessingProvider): def __init__(self): QgsProcessingProvider.__init__(self) # Load algorithms #self.alglist = [ImportGpapAlgorithm(),ExportSpatialiteAlgorithm(),ExportTilesAlgorithm()] self.alglist = [ImportGpapAlgorithm(),ExportSpatialiteAlgorithm(),ExportTilesAlgorithm()] def unload(self): """ Unloads the provider. Any tear-down steps required by the provider should be implemented here. """ pass def loadAlgorithms(self): """ Loads all algorithms belonging to this provider. """ for alg in self.alglist: self.addAlgorithm( alg ) def id(self): """ Returns the unique provider id, used for identifying the provider. This string should be a unique, short, character only string, eg "qgis" or "gdal". This string should not be localised. """ return 'io_geopaparazzi' def name(self): """ Returns the provider name, which is used to describe the provider within the GUI. This string should be short (e.g. "Lastools") and localised. """ return self.tr('IO Geopaparazzi') def longName(self): """ Returns the a longer version of the provider name, which can include extra details such as version numbers. E.g. "Lastools LIDAR tools (version 2.2.1)". This string should be localised. The default implementation returns the same string as name(). """ return self.tr('IO Geopaparazzi (version 2.0)')
eachiaradia/IOGeopaparazzi
io_geopaparazzi_provider.py
Python
gpl-3.0
2,828
0.020156
import csv import sys from models import * from datetime import datetime import codecs import json # from models import Attorney, Organization from flask_mail import Message def load_attorneys_from_csv(filename): with codecs.open(filename, mode='rb', encoding='utf-8') as csvfile: attorneys = [row for row in csv.reader(csvfile.read().splitlines())] attorneys.pop(0) try: for attorney in attorneys: # Check to see if the email address is in the system, and if it is, simply add the new record... if check_new_email(attorney[3]): a = Attorney.objects.get(email_address=attorney[3]) else: a = Attorney() a.first_name = attorney[0] a.middle_initial = attorney[1] a.last_name = attorney[2] a.email_address = attorney[3] a.organization_name = Organization.objects( organization_name=attorney[4] ).upsert_one(organization_name=attorney[4]) \ .organization_name if len(a.records) <= 1: a.records.append({ 'year': attorney[5], 'honor_choice': attorney[6], 'rule_49_choice': attorney[7], 'date_modified': datetime.now(), 'method_added': u'bulk' }) a.save() print(attorney[3] + " is loaded.") except: print( "Unexpected error:", sys.exc_info()[0]) raise return True def check_new_email(email_address): try: Attorney.objects.get(email_address=email_address) return True except Attorney.DoesNotExist: return False if __name__ == "__main__": import sys import os from models import * MONGODB_URI = os.environ.get( "MONGOLAB_URI", 'mongodb://localhost/honorroll') mongo_client = connect(host=MONGODB_URI) filename = sys.argv[1] load_attorneys_from_csv(filename)
mitzvotech/honorroll
app/utils.py
Python
mit
2,178
0.002296
import pycurl import cStringIO import random import HTMLParser def generate_TAXII_header(xml, ssl=True): headers = { "Content-Type": "application/xml", "Content-Length": str(len(xml)), "User-Agent": "TAXII Client Application", "Accept": "application/xml", "X-TAXII-Accept": "urn:taxii.mitre.org:message:xml:1.0", "X-TAXII-Content-Type": "urn:taxii.mitre.org:message:xml:1.0", } if ssl: headers["X-TAXII-Protocol"] = "urn:taxii.mitre.org:protocol:https:1.0" else: headers["X-TAXII-Protocol"] = "urn:taxii.mitre.org:protocol:http:1.0" return headers def taxi_wrapper(xml): xmlstart = """<?xml version="1.0" encoding="UTF-8" ?>""" boilerplate = """xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:taxii_11="http://taxii.mitre.org/messages/taxii_xml_binding-1.1" xsi:schemaLocation="http://taxii.mitre.org/messages/taxii_xml_binding-1.1 http://taxii.mitre.org/messages/taxii_xml_binding-1.1" """ message_id = str(random.randint(345271,9999999999)) xml_inbox = xmlstart + """ <taxii_11:Inbox_Message {{boilerplate}} message_id="{{message_id}}"> <taxii_11:Content_Block> <taxii_11:Content_Binding binding_id="{{content_binding}}" /> <taxii_11:Content> {{content_data}} </taxii_11:Content> </taxii_11:Content_Block> </taxii_11:Inbox_Message>""" xml = xml_inbox.replace('{{boilerplate}}',boilerplate) \ .replace('{{message_id}}',message_id) \ .replace('{{content_binding}}','urn:stix.mitre.org:xml:1.1.1') \ .replace('{{content_data}}', xml ) return xml def taxi_poll_xml(feedid): xmlstart = """<?xml version="1.0" encoding="UTF-8" ?>""" boilerplate = """xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:taxii_11="http://taxii.mitre.org/messages/taxii_xml_binding-1.1" xsi:schemaLocation="http://taxii.mitre.org/messages/taxii_xml_binding-1.1 http://taxii.mitre.org/messages/taxii_xml_binding-1.1" """ message_id = str(random.randint(345271,9999999999)) xml_poll = xmlstart + """ <taxii_11:Poll_Request {{boilerplate}} message_id="{{message_id}}" collection_name="{{feed_name}}" > <taxii_11:Poll_Parameters allow_asynch="false"> <taxii_11:Response_Type>FULL</taxii_11:Response_Type> <taxii_11:Content_Binding binding_id="{{content_binding}}" /> </taxii_11:Poll_Parameters> {{start_end}} </taxii_11:Poll_Request>""" xml = xml_poll.replace('{{boilerplate}}',boilerplate) \ .replace('{{message_id}}',message_id) \ .replace('{{content_binding}}','urn:stix.mitre.org:xml:1.1.1') \ .replace('{{feed_name}}', feedid ) return xml #----------------------------------------- def send_xml(setup, xml, ssl=True): taxiixml = taxi_wrapper(xml) return send(setup, taxiixml, ssl) def get_xml(setup, feedid, ssl=True): taxiixml = taxi_poll_xml(feedid) return send(setup, taxiixml, ssl) def send(setup, taxiixml, ssl=True): headers = [ "Content-Type: application/xml", "Content-Length: " + str(len(taxiixml)), "User-Agent: TAXII Client Application", "Accept: application/xml", "X-TAXII-Accept: urn:taxii.mitre.org:message:xml:1.1", "X-TAXII-Content-Type: urn:taxii.mitre.org:message:xml:1.1", "X-TAXII-Protocol: urn:taxii.mitre.org:protocol:https:1.0", ] buf = cStringIO.StringIO() conn = pycurl.Curl() conn.setopt(pycurl.URL, setup["url"]) conn.setopt(pycurl.USERPWD, "{0}:{1}".format(setup["user"], setup["password"])) conn.setopt(pycurl.HTTPHEADER, headers) conn.setopt(pycurl.POST, 1) conn.setopt(pycurl.TIMEOUT, 999999) conn.setopt(pycurl.WRITEFUNCTION, buf.write) conn.setopt(pycurl.POSTFIELDS, taxiixml) conn.setopt(pycurl.SSL_VERIFYPEER, 0) conn.perform() hp = HTMLParser.HTMLParser() result = hp.unescape(buf.getvalue()).encode('ascii', 'ignore') buf.close() conn.close() return result
hazmalware/sharephish
taxiigenerator.py
Python
gpl-3.0
3,968
0.024698
# coding=utf-8 """ Write the collected stats to a locally stored log file. Rotate the log file every night and remove after 7 days. """ from Handler import Handler import logging import logging.handlers class ArchiveHandler(Handler): """ Implements the Handler abstract class, archiving data to a log file """ def __init__(self, config): """ Create a new instance of the ArchiveHandler class """ # Initialize Handler Handler.__init__(self, config) # Create Archive Logger self.archive = logging.getLogger('archive') self.archive.setLevel(logging.DEBUG) self.archive.propagate = self.config['propagate'] # Create Archive Log Formatter formatter = logging.Formatter('%(message)s') # Create Archive Log Handler handler = logging.handlers.TimedRotatingFileHandler( filename=self.config['log_file'], when='midnight', interval=1, backupCount=int(self.config['days']), encoding=self.config['encoding'] ) handler.setFormatter(formatter) handler.setLevel(logging.DEBUG) self.archive.addHandler(handler) def get_default_config_help(self): """ Returns the help text for the configuration options for this handler """ config = super(ArchiveHandler, self).get_default_config_help() config.update({ 'log_file': 'Path to the logfile', 'days': 'How many days to store', 'encoding': '', 'propagate': 'Pass handled metrics to configured root logger', }) return config def get_default_config(self): """ Return the default config for the handler """ config = super(ArchiveHandler, self).get_default_config() config.update({ 'log_file': '', 'days': 7, 'encoding': None, 'propagate': False, }) return config def process(self, metric): """ Send a Metric to the Archive. """ # Archive Metric self.archive.info(str(metric).strip())
Ormod/Diamond
src/diamond/handler/archive.py
Python
mit
2,195
0
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # 绘制简单的折线图 import matplotlib.pyplot as plt input_values = list(range(1, 6)) squares = [x * x for x in input_values] # 根据传递的参数来绘制出有意义的图形 plt.plot(input_values, squares, linewidth=3) # 设置图表的标题及标题的字体大小 plt.title("Square Numbers", fontsize=14) # 给坐标轴加上标签 plt.xlabel("Value", fontsize=14) plt.ylabel("Square of Value", fontsize=14) # 设置刻度标记的大小 plt.tick_params(axis='both', labelsize=14) # 打开查看器,并显示绘制的图形 plt.show()
felix9064/python
Demo/pcc/mpl_squares.py
Python
mit
606
0
from pytest_bdd import scenario from .contact_steps import * @scenario("contacts.feature", "Add new contact") def test_add_new_contact(): pass @scenario("contacts.feature", "Delete a contact") def test_delete_contact(): pass @scenario("contacts.feature", "Modify a contact") def test_modify_contact(): pass
yupasik/python_training
bdd/contact_scenarios.py
Python
apache-2.0
325
0
from webfs import WebFSStat import stat def Test_Basic(): fields = ('st_mode', 'st_ino', 'st_dev', 'st_nlink', 'st_uid', 'st_gid', 'st_size', 'st_atime', 'st_mtime', 'st_ctime') st = WebFSStat() print st.__dict__.keys() for field in fields: assert field in st.__dict__.keys(), 'field(%s) is not in members' % field def Test_InitParam(): st = WebFSStat() assert st.st_mode == stat.S_IFDIR | 0555 st = WebFSStat(False) assert st.st_mode == stat.S_IFREG | 0444 def Test_IsDir(): st = WebFSStat() assert st.isDir() st = WebFSStat(False) assert not st.isDir()
harun-emektar/webfs
tests/Test_WebFSStat.py
Python
apache-2.0
655
0.015267
from operator import attrgetter from traits.api import Any, Int, Bool, on_trait_change, Dict, Button, Str, \ HasTraits, cached_property, Property, Event, Either, Float, Instance from traitsui.api import View, Item, UItem, VGroup, HGroup, Spring, \ TabularEditor, HSplit, Group, ModelView from traitsui.tabular_adapter import TabularAdapter from chaco.api import Plot, LabelAxis from chaco.tools.api import ZoomTool, PanTool from chaco.ticks import ShowAllTickGenerator from enable.component_editor import ComponentEditor from pikos.live.ui.base_view import BaseView from pikos.live.ui.barplot import SelectableBarPlot, BarSelectTool class TableItem(HasTraits): id = Int filename = Str line_number = Any function_name = Str callcount = Int per_call = Float total_time = Float cumulative_time = Float def __init__(self, id, filename, line_number, function_name, callcount, per_call, total_time, cumulative_time, **traits): kwargs = {} kwargs.update(traits) kwargs.update(dict( id=id, filename=filename, function_name=function_name, line_number=line_number, callcount=callcount, per_call=per_call, total_time=total_time, cumulative_time=cumulative_time, )) super(TableItem, self).__init__(**kwargs) class CProfileTabularAdapter(TabularAdapter): columns = ( ('Filename', 'filename'), ('Function Name', 'function_name'), ('Line Number', 'line_number'), ('Number of Calls', 'callcount'), ('Per Call', 'per_call'), # ('Per Call (Cumulative)', 'cumulative_percall'), ('Total Time', 'total_time'), ('Cumulative Time', 'cumulative_time'), ) class CProfileTableView(ModelView): title = Str data_items = Property(depends_on='model.data_items,sort_column,ascending') adapter = Any column_clicked = Event sort_column = Either(None, Int) ascending = Bool(False) def _column_clicked_changed(self, event): if event is None: self.sort_column = None elif self.sort_column == event.column: self.ascending = not self.ascending else: self.sort_column = event.column self.ascending = False def _adapter_default(self): return CProfileTabularAdapter() @cached_property def _get_data_items(self): items = [TableItem(*args) for args in self.model.data_items] if self.sort_column is None: return items attr = self.adapter.columns[self.sort_column][1] return sorted(items, key=attrgetter(attr), reverse=self.ascending) def default_traits_view(self): return View( UItem( 'data_items', editor=TabularEditor( adapter=self.adapter, column_clicked='column_clicked', ), ), height=800, width=1100, resizable=True, title='CProfile Live', ) class CProfileView(BaseView): # Initialization plotted = Bool(False) barplot = Any sort_values_button = Button('Sort') FORMATS = Dict({ 'id': '0x{0:x}', }) def _plot_default(self): container = Plot( self.model.plot_data, ) container.renderer_map['bar'] = SelectableBarPlot container.padding_left = 100 container.padding_bottom = 150 # container.plot(('x', 'y'), type='bar') self.zoom_tool = ZoomTool( container, ) container.underlays.append(self.zoom_tool) container.tools.append(self.zoom_tool) self.pan_tool = PanTool( container, ) container.tools.append(self.pan_tool) return container # @on_trait_change('model.index_item') # def _on_model_index_item_change(self, index_item): # super(CProfileView, self)._on_model_index_item_change(index_item) # # self.plot.x_axis.tick_generator = ShowAllTickGenerator( # # positions=self.model.plot_data.get_data('x')) # @on_trait_change('model.value_item') # def _on_model_value_item_change(self, value_item): # super(CProfileView, self)._on_model_value_item_change(value_item) # Handlers @on_trait_change('model.updated') def _on_model_update_fired(self): if not self.plotted: x = self.model.plot_data.get_data('x') y = self.model.plot_data.get_data('y') if len(x) == 0 or len(y) == 0: return self.barplot = self.plot.plot(('x', 'y'), type='bar', bar_width=0.8)[0] self.barplot.index.sort_order = 'ascending' select = BarSelectTool( self.barplot, selection_mode='single', ) self.barplot.tools.append(select) self.barplot.index.on_trait_change( self._metadata_changed, "metadata_changed") self.plotted = True self.plot.y_mapper.range.low_setting = 'auto' self.plot.y_mapper.range.high_setting = 'auto' def _format_key(self, key): format_ = self.FORMATS.get(self.model.index_item) if format_ is None: return str(key) try: return format_.format(key) except ValueError: return str(key) @on_trait_change('model.plot_keys') def _on_model_plot_keys_changed(self): positions = self.model.plot_data.get_data('x') label_axis = LabelAxis( self.plot, orientation='bottom', title='Keys', title_spacing=100, positions=positions, labels=[self._format_key(i) for i in self.model.plot_keys], small_haxis_style=True, label_rotation=90, tick_generator=ShowAllTickGenerator( positions=positions, ), ) self.plot.underlays.remove(self.plot.index_axis) self.plot.index_axis = label_axis self.plot.underlays.append(label_axis) def _sort_values_button_fired(self): self.model.sort_by_current_value() self.plot.invalidate_and_redraw() def _metadata_changed(self, new): self.plot.invalidate_and_redraw() # data_indices = self.scatter.index.metadata.get('selections', []) # if len(data_indices) == 0: # self.model.selected_index = None # return # self.model.selected_index = data_indices[0] # def _last_n_points_changed(self): # self.plot.x_mapper.range.tracking_amount = self.last_n_points # def _follow_plot_changed(self): # if self.follow_plot: # self.plot.x_mapper.range.low_setting = 'track' # self.plot.x_mapper.range.high_setting = 'auto' # self.plot.x_mapper.range.tracking_amount = self.last_n_points # else: # self.plot.x_mapper.range.low_setting = self.plot.x_mapper.range.low # self.plot.x_mapper.range.high_setting = \ # self.plot.x_mapper.range.high traits_view = View( Group( VGroup( HGroup( Item('model.index_item'), Item('model.value_item'), # ), # HGroup( Spring(), UItem('sort_values_button'), UItem('reset_view_button'), ), ), HSplit( UItem('plot', editor=ComponentEditor()), # UItem( # 'model.selected_item', # editor=TabularEditor(adapter=DetailsAdapter()), # width=350), ), ), height=800, width=1100, resizable=True, title='Live Recording Plot' ) class CProfileMixedView(ModelView): title = Str table_view = Instance(CProfileTableView) plot_view = Instance(CProfileView) def _table_view_default(self): return CProfileTableView(title=self.title, model=self.model) def _plot_view_default(self): return CProfileView(title=self.title, model=self.model) traits_view = View( VGroup( UItem('table_view', style='custom'), UItem('plot_view', style='custom'), ), height=800, width=1100, resizable=True, title='Live CProfile', )
enthought/pikos
pikos/live/ui/cprofile_view.py
Python
bsd-3-clause
8,716
0.000459
from django.conf.urls import patterns, include, url from django.shortcuts import redirect, render_to_response from django.template.context import RequestContext # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() # Just redirect / to /blog for now until I can # come up with something to put on the homepage.. def to_blog(request): return redirect('/blog/', permanent=False) # Follow the BSD license and allow the source/binary to reproduce # the license and copyright message def sslicense(request): slicense = """ Copyright (c) 2012-2013 Justin Crawford <Justasic@gmail.com> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE """ ctx = { 'parts': { "title": "License", "html_title": "License", "fragment": slicense.replace('\n', '<br>'), }, } return render_to_response('docs/docs.html', RequestContext(request, ctx)) urlpatterns = patterns('', # Examples: # url(r'^$', 'StackSmash.views.home', name='home'), # url(r'^StackSmash/', include('StackSmash.foo.urls')), # TODO: Fix index and use something... Should identify subdomains somehow.. #url(r'^$', include('StackSmash.apps.blog.urls')), url(r'^license/', sslicense, name='license'), #url(r'^docs/', include('StackSmash.apps.docs.urls'), name='docs', app_name='docs'), url(r'^blog/', include('StackSmash.apps.blog.urls', namespace='blog')), url(r'^projects/', include('StackSmash.apps.projects.urls', namespace='projects')), url(r'^upload/', include('StackSmash.apps.uploader.urls', namespace='upload')), url(r'^$', to_blog, name='index'), #url(r'^projects/', include('StackSmash.apps.projects.urls')), # Uncomment the next line to enable the admin: url(r'^admin/', include(admin.site.urls), name='admin'), )
Justasic/StackSmash
StackSmash/urls.py
Python
bsd-2-clause
3,146
0.00445
# -*- coding: utf-8 -*- """ *************************************************************************** BarPlot.py --------------------- Date : January 2013 Copyright : (C) 2013 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Victor Olaya' __date__ = 'January 2013' __copyright__ = '(C) 2013, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import matplotlib.pyplot as plt import matplotlib.pylab as lab import numpy as np from processing.core.parameters import ParameterTable from processing.core.parameters import ParameterTableField from processing.core.GeoAlgorithm import GeoAlgorithm from processing.core.outputs import OutputHTML from processing.tools import vector from processing.tools import dataobjects class BarPlot(GeoAlgorithm): INPUT = 'INPUT' OUTPUT = 'OUTPUT' NAME_FIELD = 'NAME_FIELD' VALUE_FIELD = 'VALUE_FIELD' def defineCharacteristics(self): self.name, self.i18n_name = self.trAlgorithm('Bar plot') self.group, self.i18n_group = self.trAlgorithm('Graphics') self.addParameter(ParameterTable(self.INPUT, self.tr('Input table'))) self.addParameter(ParameterTableField(self.NAME_FIELD, self.tr('Category name field'), self.INPUT, ParameterTableField.DATA_TYPE_NUMBER)) self.addParameter(ParameterTableField(self.VALUE_FIELD, self.tr('Value field'), self.INPUT, ParameterTableField.DATA_TYPE_NUMBER)) self.addOutput(OutputHTML(self.OUTPUT, self.tr('Bar plot'))) def processAlgorithm(self, progress): layer = dataobjects.getObjectFromUri( self.getParameterValue(self.INPUT)) namefieldname = self.getParameterValue(self.NAME_FIELD) valuefieldname = self.getParameterValue(self.VALUE_FIELD) output = self.getOutputValue(self.OUTPUT) values = vector.values(layer, namefieldname, valuefieldname) plt.close() ind = np.arange(len(values[namefieldname])) width = 0.8 plt.bar(ind, values[valuefieldname], width, color='r') plt.xticks(ind, values[namefieldname], rotation=45) plotFilename = output + '.png' lab.savefig(plotFilename) with open(output, 'w') as f: f.write('<html><img src="' + plotFilename + '"/></html>')
drnextgis/QGIS
python/plugins/processing/algs/qgis/BarPlot.py
Python
gpl-2.0
3,271
0.000611
# -*- coding:utf-8 -*- from Crypto.Cipher import AES from Crypto.Hash import MD5 import binascii import urllib2 import string, random # algorithm MODE = AES.MODE_CBC def __getKeyObject(key): obj = AES.new(md5Encoding(key), MODE) return obj def md5Encoding(msg): ''' get md5 encrypted text @param msg: the plain text message ''' m = MD5.new() m.update(msg) return m.hexdigest() def getRandomString(length, optionList=['number', 'lower', 'upper', 'punc']): charPool = {'number' : string.digits, 'lower' : string.lowercase, 'upper' : string.uppercase, 'punc' : string.punctuation } pool = '' for key in optionList: if charPool.has_key(key): pool = pool + charPool.get(key) s = [random.choice(pool) for _ in xrange(length)] return ''.join(s) def encrypt(key, msg): ''' Encrypt message using given password @param key: the master password @param msg: the plain text to be encrypted ''' obj = __getKeyObject(key) # encrypt xx = msg*16 cipher = obj.encrypt(xx) # convert bin to string s = binascii.b2a_hex(cipher) return s def decrypt(key, msg): ''' Encrypt message @param key: the master password @param msg: the cipher text to be dencrypted ''' obj = __getKeyObject(key) # convert string to bin b = binascii.a2b_hex(msg) # decrypt plain = obj.decrypt(b) return plain[:len(plain)/16] def getLastVersion(versionUrl): ver = '' try: f = urllib2.urlopen(versionUrl) s = f.read() f.close() ver = s.split(' ')[1] except: pass return ver
zhyu/PasswdManager
util.py
Python
gpl-3.0
1,732
0.011547
#!/usr/bin/env python quit() for iii in range(0,6): try: print(iii,iii/(4-iii)) except ZeroDivisionError as e: #print("wrong: i={} {}".format(iii,e.message)) print("wrong: i={} {}".format(iii,"nooooooo")) #else: # print("OK") finally: print("continue...") def pickkey(mylist): """ jg's function""" return mylist[1] quit() #listjg=[ (5,'A'), (4,'Z'), (8,'N'), (2,'C'), ] #listjg.sort(key=pickkey) ;print(listjg) #listjg.sort(reverse=True) ;print(listjg) quit() x=3 #def myfL(a,b): # return [] def myf (a,b,*other): print(type(other)) print(sum(other)) c=sum(other) #return (a+b+other) #res=myf(5,2,1) ;print(res) #res=myf(a=5,b=2,c=1) ;print(res) #res=myf(b=2,a=5,c=1) ;print(res) #res=myf(a=5) ;print(res) #no res=myf(a=5,b=2,c=1) ;print(res) #res=myf(5,2,1,0) ;print(res) #myf(5,2)
jgphpc/linux
python/0.py
Python
gpl-2.0
888
0.029279
# Copyright 2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """The Volume Image Metadata API extension.""" from six.moves import http_client import webob from oslo_log import log as logging from cinder.api import common from cinder.api import extensions from cinder.api.openstack import wsgi from cinder import exception from cinder.i18n import _ from cinder import volume LOG = logging.getLogger(__name__) authorize = extensions.soft_extension_authorizer('volume', 'volume_image_metadata') class VolumeImageMetadataController(wsgi.Controller): def __init__(self, *args, **kwargs): super(VolumeImageMetadataController, self).__init__(*args, **kwargs) self.volume_api = volume.API() def _get_image_metadata(self, context, volume_id): # Not found exception will be handled at the wsgi level volume = self.volume_api.get(context, volume_id) meta = self.volume_api.get_volume_image_metadata(context, volume) return (volume, meta) def _add_image_metadata(self, context, resp_volume_list, image_metas=None): """Appends the image metadata to each of the given volume. :param context: the request context :param resp_volume_list: the response volume list :param image_metas: The image metadata to append, if None is provided it will be retrieved from the database. An empty dict means there is no metadata and it should not be retrieved from the db. """ vol_id_list = [] for vol in resp_volume_list: vol_id_list.append(vol['id']) if image_metas is None: try: image_metas = self.volume_api.get_list_volumes_image_metadata( context, vol_id_list) except Exception as e: LOG.debug('Get image metadata error: %s', e) return if image_metas: for vol in resp_volume_list: image_meta = image_metas.get(vol['id']) if image_meta: vol['volume_image_metadata'] = dict(image_meta) @wsgi.extends def show(self, req, resp_obj, id): context = req.environ['cinder.context'] if authorize(context): self._add_image_metadata(context, [resp_obj.obj['volume']]) @wsgi.extends def detail(self, req, resp_obj): context = req.environ['cinder.context'] if authorize(context): # Just get the image metadata of those volumes in response. volumes = list(resp_obj.obj.get('volumes', [])) if volumes: self._add_image_metadata(context, volumes) @wsgi.action("os-set_image_metadata") def create(self, req, id, body): context = req.environ['cinder.context'] if authorize(context): try: metadata = body['os-set_image_metadata']['metadata'] except (KeyError, TypeError): msg = _("Malformed request body.") raise webob.exc.HTTPBadRequest(explanation=msg) new_metadata = self._update_volume_image_metadata(context, id, metadata, delete=False) return {'metadata': new_metadata} def _update_volume_image_metadata(self, context, volume_id, metadata, delete=False): try: volume = self.volume_api.get(context, volume_id) return self.volume_api.update_volume_metadata( context, volume, metadata, delete=False, meta_type=common.METADATA_TYPES.image) # Not found exception will be handled at the wsgi level except (ValueError, AttributeError): msg = _("Malformed request body.") raise webob.exc.HTTPBadRequest(explanation=msg) except exception.InvalidVolumeMetadata as error: raise webob.exc.HTTPBadRequest(explanation=error.msg) except exception.InvalidVolumeMetadataSize as error: raise webob.exc.HTTPRequestEntityTooLarge(explanation=error.msg) @wsgi.action("os-show_image_metadata") def index(self, req, id, body): context = req.environ['cinder.context'] return {'metadata': self._get_image_metadata(context, id)[1]} @wsgi.action("os-unset_image_metadata") def delete(self, req, id, body): """Deletes an existing image metadata.""" context = req.environ['cinder.context'] if authorize(context): try: key = body['os-unset_image_metadata']['key'] except (KeyError, TypeError): msg = _("Malformed request body.") raise webob.exc.HTTPBadRequest(explanation=msg) if key: vol, metadata = self._get_image_metadata(context, id) if key not in metadata: raise exception.GlanceMetadataNotFound(id=id) self.volume_api.delete_volume_metadata( context, vol, key, meta_type=common.METADATA_TYPES.image) else: msg = _("The key cannot be None.") raise webob.exc.HTTPBadRequest(explanation=msg) return webob.Response(status_int=http_client.OK) class Volume_image_metadata(extensions.ExtensionDescriptor): """Show image metadata associated with the volume.""" name = "VolumeImageMetadata" alias = "os-vol-image-meta" updated = "2012-12-07T00:00:00+00:00" def get_controller_extensions(self): controller = VolumeImageMetadataController() extension = extensions.ControllerExtension(self, 'volumes', controller) return [extension]
eharney/cinder
cinder/api/contrib/volume_image_metadata.py
Python
apache-2.0
6,636
0
''' Provide Jinja2 templates used by Bokeh to embed Bokeh models (e.g. plots, widgets, layouts) in various ways. .. bokeh-jinja:: bokeh.core.templates.AUTOLOAD_JS .. bokeh-jinja:: bokeh.core.templates.AUTOLOAD_NB_JS .. bokeh-jinja:: bokeh.core.templates.AUTOLOAD_TAG .. bokeh-jinja:: bokeh.core.templates.CSS_RESOURCES .. bokeh-jinja:: bokeh.core.templates.DOC_JS .. bokeh-jinja:: bokeh.core.templates.FILE .. bokeh-jinja:: bokeh.core.templates.JS_RESOURCES .. bokeh-jinja:: bokeh.core.templates.NOTEBOOK_LOAD .. bokeh-jinja:: bokeh.core.templates.PLOT_DIV .. bokeh-jinja:: bokeh.core.templates.SCRIPT_TAG ''' from __future__ import absolute_import import json from jinja2 import Environment, PackageLoader, Markup _env = Environment(loader=PackageLoader('bokeh.core', '_templates')) _env.filters['json'] = lambda obj: Markup(json.dumps(obj)) JS_RESOURCES = _env.get_template("js_resources.html") CSS_RESOURCES = _env.get_template("css_resources.html") SCRIPT_TAG = _env.get_template("script_tag.html") PLOT_DIV = _env.get_template("plot_div.html") DOC_JS = _env.get_template("doc_js.js") FILE = _env.get_template("file.html") NOTEBOOK_LOAD = _env.get_template("notebook_load.html") AUTOLOAD_JS = _env.get_template("autoload_js.js") AUTOLOAD_NB_JS = _env.get_template("autoload_nb_js.js") AUTOLOAD_TAG = _env.get_template("autoload_tag.html")
philippjfr/bokeh
bokeh/core/templates.py
Python
bsd-3-clause
1,358
0
# Copyright (C) 2003-2005 Peter J. Verveer # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # 3. The name of the author may not be used to endorse or promote # products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import division, print_function, absolute_import import math import numpy from . import _ni_support from . import _nd_image from scipy.misc import doccer from scipy._lib._version import NumpyVersion __all__ = ['correlate1d', 'convolve1d', 'gaussian_filter1d', 'gaussian_filter', 'prewitt', 'sobel', 'generic_laplace', 'laplace', 'gaussian_laplace', 'generic_gradient_magnitude', 'gaussian_gradient_magnitude', 'correlate', 'convolve', 'uniform_filter1d', 'uniform_filter', 'minimum_filter1d', 'maximum_filter1d', 'minimum_filter', 'maximum_filter', 'rank_filter', 'median_filter', 'percentile_filter', 'generic_filter1d', 'generic_filter'] _input_doc = \ """input : array_like Input array to filter.""" _axis_doc = \ """axis : int, optional The axis of `input` along which to calculate. Default is -1.""" _output_doc = \ """output : array, optional The `output` parameter passes an array in which to store the filter output. Output array should have different name as compared to input array to avoid aliasing errors.""" _size_foot_doc = \ """size : scalar or tuple, optional See footprint, below footprint : array, optional Either `size` or `footprint` must be defined. `size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``size=(n,m)`` is equivalent to ``footprint=np.ones((n,m))``. We adjust `size` to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and `size` is 2, then the actual size used is (2,2,2). """ _mode_doc = \ """mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional The `mode` parameter determines how the array borders are handled, where `cval` is the value when mode is equal to 'constant'. Default is 'reflect'""" _mode_multiple_doc = \ """mode : str or sequence, optional The `mode` parameter determines how the array borders are handled. Valid modes are {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}. `cval` is the value used when mode is equal to 'constant'. A list of modes with length equal to the number of axes can be provided to specify different modes for different axes. Default is 'reflect'""" _cval_doc = \ """cval : scalar, optional Value to fill past edges of input if `mode` is 'constant'. Default is 0.0""" _origin_doc = \ """origin : scalar, optional The `origin` parameter controls the placement of the filter. Default 0.0.""" _extra_arguments_doc = \ """extra_arguments : sequence, optional Sequence of extra positional arguments to pass to passed function""" _extra_keywords_doc = \ """extra_keywords : dict, optional dict of extra keyword arguments to pass to passed function""" docdict = { 'input': _input_doc, 'axis': _axis_doc, 'output': _output_doc, 'size_foot': _size_foot_doc, 'mode': _mode_doc, 'mode_multiple': _mode_multiple_doc, 'cval': _cval_doc, 'origin': _origin_doc, 'extra_arguments': _extra_arguments_doc, 'extra_keywords': _extra_keywords_doc, } docfiller = doccer.filldoc(docdict) @docfiller def correlate1d(input, weights, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a one-dimensional correlation along the given axis. The lines of the array along the given axis are correlated with the given weights. Parameters ---------- %(input)s weights : array One-dimensional sequence of numbers. %(axis)s %(output)s %(mode)s %(cval)s %(origin)s Examples -------- >>> from scipy.ndimage import correlate1d >>> correlate1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3]) array([ 8, 26, 8, 12, 7, 28, 36, 9]) """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') output, return_value = _ni_support._get_output(output, input) weights = numpy.asarray(weights, dtype=numpy.float64) if weights.ndim != 1 or weights.shape[0] < 1: raise RuntimeError('no filter weights given') if not weights.flags.contiguous: weights = weights.copy() axis = _ni_support._check_axis(axis, input.ndim) if (len(weights) // 2 + origin < 0) or (len(weights) // 2 + origin > len(weights)): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.correlate1d(input, weights, axis, output, mode, cval, origin) return return_value @docfiller def convolve1d(input, weights, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a one-dimensional convolution along the given axis. The lines of the array along the given axis are convolved with the given weights. Parameters ---------- %(input)s weights : ndarray One-dimensional sequence of numbers. %(axis)s %(output)s %(mode)s %(cval)s %(origin)s Returns ------- convolve1d : ndarray Convolved array with same shape as input Examples -------- >>> from scipy.ndimage import convolve1d >>> convolve1d([2, 8, 0, 4, 1, 9, 9, 0], weights=[1, 3]) array([14, 24, 4, 13, 12, 36, 27, 0]) """ weights = weights[::-1] origin = -origin if not len(weights) & 1: origin -= 1 return correlate1d(input, weights, axis, output, mode, cval, origin) def _gaussian_kernel1d(sigma, order, radius): """ Computes a 1D Gaussian convolution kernel. """ if order < 0: raise ValueError('order must be non-negative') p = numpy.polynomial.Polynomial([0, 0, -0.5 / (sigma * sigma)]) x = numpy.arange(-radius, radius + 1) phi_x = numpy.exp(p(x), dtype=numpy.double) phi_x /= phi_x.sum() if order > 0: q = numpy.polynomial.Polynomial([1]) p_deriv = p.deriv() for _ in range(order): # f(x) = q(x) * phi(x) = q(x) * exp(p(x)) # f'(x) = (q'(x) + q(x) * p'(x)) * phi(x) q = q.deriv() + q * p_deriv phi_x *= q(x) return phi_x @docfiller def gaussian_filter1d(input, sigma, axis=-1, order=0, output=None, mode="reflect", cval=0.0, truncate=4.0): """One-dimensional Gaussian filter. Parameters ---------- %(input)s sigma : scalar standard deviation for Gaussian kernel %(axis)s order : int, optional An order of 0 corresponds to convolution with a Gaussian kernel. A positive order corresponds to convolution with that derivative of a Gaussian. %(output)s %(mode)s %(cval)s truncate : float, optional Truncate the filter at this many standard deviations. Default is 4.0. Returns ------- gaussian_filter1d : ndarray Examples -------- >>> from scipy.ndimage import gaussian_filter1d >>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 1) array([ 1.42704095, 2.06782203, 3. , 3.93217797, 4.57295905]) >>> gaussian_filter1d([1.0, 2.0, 3.0, 4.0, 5.0], 4) array([ 2.91948343, 2.95023502, 3. , 3.04976498, 3.08051657]) >>> import matplotlib.pyplot as plt >>> np.random.seed(280490) >>> x = np.random.randn(101).cumsum() >>> y3 = gaussian_filter1d(x, 3) >>> y6 = gaussian_filter1d(x, 6) >>> plt.plot(x, 'k', label='original data') >>> plt.plot(y3, '--', label='filtered, sigma=3') >>> plt.plot(y6, ':', label='filtered, sigma=6') >>> plt.legend() >>> plt.grid() >>> plt.show() """ sd = float(sigma) # make the radius of the filter equal to truncate standard deviations lw = int(truncate * sd + 0.5) # Since we are calling correlate, not convolve, revert the kernel weights = _gaussian_kernel1d(sigma, order, lw)[::-1] return correlate1d(input, weights, axis, output, mode, cval, 0) @docfiller def gaussian_filter(input, sigma, order=0, output=None, mode="reflect", cval=0.0, truncate=4.0): """Multidimensional Gaussian filter. Parameters ---------- %(input)s sigma : scalar or sequence of scalars Standard deviation for Gaussian kernel. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. order : int or sequence of ints, optional The order of the filter along each axis is given as a sequence of integers, or as a single number. An order of 0 corresponds to convolution with a Gaussian kernel. A positive order corresponds to convolution with that derivative of a Gaussian. %(output)s %(mode_multiple)s %(cval)s truncate : float Truncate the filter at this many standard deviations. Default is 4.0. Returns ------- gaussian_filter : ndarray Returned array of same shape as `input`. Notes ----- The multidimensional filter is implemented as a sequence of one-dimensional convolution filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision. Examples -------- >>> from scipy.ndimage import gaussian_filter >>> a = np.arange(50, step=2).reshape((5,5)) >>> a array([[ 0, 2, 4, 6, 8], [10, 12, 14, 16, 18], [20, 22, 24, 26, 28], [30, 32, 34, 36, 38], [40, 42, 44, 46, 48]]) >>> gaussian_filter(a, sigma=1) array([[ 4, 6, 8, 9, 11], [10, 12, 14, 15, 17], [20, 22, 24, 25, 27], [29, 31, 33, 34, 36], [35, 37, 39, 40, 42]]) >>> from scipy import misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = gaussian_filter(ascent, sigma=5) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ input = numpy.asarray(input) output, return_value = _ni_support._get_output(output, input) orders = _ni_support._normalize_sequence(order, input.ndim) sigmas = _ni_support._normalize_sequence(sigma, input.ndim) modes = _ni_support._normalize_sequence(mode, input.ndim) axes = list(range(input.ndim)) axes = [(axes[ii], sigmas[ii], orders[ii], modes[ii]) for ii in range(len(axes)) if sigmas[ii] > 1e-15] if len(axes) > 0: for axis, sigma, order, mode in axes: gaussian_filter1d(input, sigma, axis, order, output, mode, cval, truncate) input = output else: output[...] = input[...] return return_value @docfiller def prewitt(input, axis=-1, output=None, mode="reflect", cval=0.0): """Calculate a Prewitt filter. Parameters ---------- %(input)s %(axis)s %(output)s %(mode_multiple)s %(cval)s Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.prewitt(ascent) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ input = numpy.asarray(input) axis = _ni_support._check_axis(axis, input.ndim) output, return_value = _ni_support._get_output(output, input) modes = _ni_support._normalize_sequence(mode, input.ndim) correlate1d(input, [-1, 0, 1], axis, output, modes[axis], cval, 0) axes = [ii for ii in range(input.ndim) if ii != axis] for ii in axes: correlate1d(output, [1, 1, 1], ii, output, modes[ii], cval, 0,) return return_value @docfiller def sobel(input, axis=-1, output=None, mode="reflect", cval=0.0): """Calculate a Sobel filter. Parameters ---------- %(input)s %(axis)s %(output)s %(mode_multiple)s %(cval)s Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.sobel(ascent) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ input = numpy.asarray(input) axis = _ni_support._check_axis(axis, input.ndim) output, return_value = _ni_support._get_output(output, input) modes = _ni_support._normalize_sequence(mode, input.ndim) correlate1d(input, [-1, 0, 1], axis, output, modes[axis], cval, 0) axes = [ii for ii in range(input.ndim) if ii != axis] for ii in axes: correlate1d(output, [1, 2, 1], ii, output, modes[ii], cval, 0) return return_value @docfiller def generic_laplace(input, derivative2, output=None, mode="reflect", cval=0.0, extra_arguments=(), extra_keywords=None): """ N-dimensional Laplace filter using a provided second derivative function. Parameters ---------- %(input)s derivative2 : callable Callable with the following signature:: derivative2(input, axis, output, mode, cval, *extra_arguments, **extra_keywords) See `extra_arguments`, `extra_keywords` below. %(output)s %(mode_multiple)s %(cval)s %(extra_keywords)s %(extra_arguments)s """ if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) output, return_value = _ni_support._get_output(output, input) axes = list(range(input.ndim)) if len(axes) > 0: modes = _ni_support._normalize_sequence(mode, len(axes)) derivative2(input, axes[0], output, modes[0], cval, *extra_arguments, **extra_keywords) for ii in range(1, len(axes)): tmp = derivative2(input, axes[ii], output.dtype, modes[ii], cval, *extra_arguments, **extra_keywords) output += tmp else: output[...] = input[...] return return_value @docfiller def laplace(input, output=None, mode="reflect", cval=0.0): """N-dimensional Laplace filter based on approximate second derivatives. Parameters ---------- %(input)s %(output)s %(mode_multiple)s %(cval)s Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.laplace(ascent) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ def derivative2(input, axis, output, mode, cval): return correlate1d(input, [1, -2, 1], axis, output, mode, cval, 0) return generic_laplace(input, derivative2, output, mode, cval) @docfiller def gaussian_laplace(input, sigma, output=None, mode="reflect", cval=0.0, **kwargs): """Multidimensional Laplace filter using gaussian second derivatives. Parameters ---------- %(input)s sigma : scalar or sequence of scalars The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. %(output)s %(mode_multiple)s %(cval)s Extra keyword arguments will be passed to gaussian_filter(). Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> ascent = misc.ascent() >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> result = ndimage.gaussian_laplace(ascent, sigma=1) >>> ax1.imshow(result) >>> result = ndimage.gaussian_laplace(ascent, sigma=3) >>> ax2.imshow(result) >>> plt.show() """ input = numpy.asarray(input) def derivative2(input, axis, output, mode, cval, sigma, **kwargs): order = [0] * input.ndim order[axis] = 2 return gaussian_filter(input, sigma, order, output, mode, cval, **kwargs) return generic_laplace(input, derivative2, output, mode, cval, extra_arguments=(sigma,), extra_keywords=kwargs) @docfiller def generic_gradient_magnitude(input, derivative, output=None, mode="reflect", cval=0.0, extra_arguments=(), extra_keywords=None): """Gradient magnitude using a provided gradient function. Parameters ---------- %(input)s derivative : callable Callable with the following signature:: derivative(input, axis, output, mode, cval, *extra_arguments, **extra_keywords) See `extra_arguments`, `extra_keywords` below. `derivative` can assume that `input` and `output` are ndarrays. Note that the output from `derivative` is modified inplace; be careful to copy important inputs before returning them. %(output)s %(mode_multiple)s %(cval)s %(extra_keywords)s %(extra_arguments)s """ if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) output, return_value = _ni_support._get_output(output, input) axes = list(range(input.ndim)) if len(axes) > 0: modes = _ni_support._normalize_sequence(mode, len(axes)) derivative(input, axes[0], output, modes[0], cval, *extra_arguments, **extra_keywords) numpy.multiply(output, output, output) for ii in range(1, len(axes)): tmp = derivative(input, axes[ii], output.dtype, modes[ii], cval, *extra_arguments, **extra_keywords) numpy.multiply(tmp, tmp, tmp) output += tmp # This allows the sqrt to work with a different default casting numpy.sqrt(output, output, casting='unsafe') else: output[...] = input[...] return return_value @docfiller def gaussian_gradient_magnitude(input, sigma, output=None, mode="reflect", cval=0.0, **kwargs): """Multidimensional gradient magnitude using Gaussian derivatives. Parameters ---------- %(input)s sigma : scalar or sequence of scalars The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes.. %(output)s %(mode_multiple)s %(cval)s Extra keyword arguments will be passed to gaussian_filter(). Returns ------- gaussian_gradient_magnitude : ndarray Filtered array. Has the same shape as `input`. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.gaussian_gradient_magnitude(ascent, sigma=5) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ input = numpy.asarray(input) def derivative(input, axis, output, mode, cval, sigma, **kwargs): order = [0] * input.ndim order[axis] = 1 return gaussian_filter(input, sigma, order, output, mode, cval, **kwargs) return generic_gradient_magnitude(input, derivative, output, mode, cval, extra_arguments=(sigma,), extra_keywords=kwargs) def _correlate_or_convolve(input, weights, output, mode, cval, origin, convolution): input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') origins = _ni_support._normalize_sequence(origin, input.ndim) weights = numpy.asarray(weights, dtype=numpy.float64) wshape = [ii for ii in weights.shape if ii > 0] if len(wshape) != input.ndim: raise RuntimeError('filter weights array has incorrect shape.') if convolution: weights = weights[tuple([slice(None, None, -1)] * weights.ndim)] for ii in range(len(origins)): origins[ii] = -origins[ii] if not weights.shape[ii] & 1: origins[ii] -= 1 for origin, lenw in zip(origins, wshape): if (lenw // 2 + origin < 0) or (lenw // 2 + origin > lenw): raise ValueError('invalid origin') if not weights.flags.contiguous: weights = weights.copy() output, return_value = _ni_support._get_output(output, input) mode = _ni_support._extend_mode_to_code(mode) _nd_image.correlate(input, weights, output, mode, cval, origins) return return_value @docfiller def correlate(input, weights, output=None, mode='reflect', cval=0.0, origin=0): """ Multi-dimensional correlation. The array is correlated with the given kernel. Parameters ---------- input : array-like input array to filter weights : ndarray array of weights, same number of dimensions as input output : array, optional The ``output`` parameter passes an array in which to store the filter output. Output array should have different name as compared to input array to avoid aliasing errors. mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional The ``mode`` parameter determines how the array borders are handled, where ``cval`` is the value when mode is equal to 'constant'. Default is 'reflect' cval : scalar, optional Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0 origin : scalar, optional The ``origin`` parameter controls the placement of the filter. Default 0 See Also -------- convolve : Convolve an image with a kernel. """ return _correlate_or_convolve(input, weights, output, mode, cval, origin, False) @docfiller def convolve(input, weights, output=None, mode='reflect', cval=0.0, origin=0): """ Multidimensional convolution. The array is convolved with the given kernel. Parameters ---------- input : array_like Input array to filter. weights : array_like Array of weights, same number of dimensions as input output : ndarray, optional The `output` parameter passes an array in which to store the filter output. Output array should have different name as compared to input array to avoid aliasing errors. mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional the `mode` parameter determines how the array borders are handled. For 'constant' mode, values beyond borders are set to be `cval`. Default is 'reflect'. cval : scalar, optional Value to fill past edges of input if `mode` is 'constant'. Default is 0.0 origin : array_like, optional The `origin` parameter controls the placement of the filter, relative to the centre of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns ------- result : ndarray The result of convolution of `input` with `weights`. See Also -------- correlate : Correlate an image with a kernel. Notes ----- Each value in result is :math:`C_i = \\sum_j{I_{i+k-j} W_j}`, where W is the `weights` kernel, j is the n-D spatial index over :math:`W`, I is the `input` and k is the coordinate of the center of W, specified by `origin` in the input parameters. Examples -------- Perhaps the simplest case to understand is ``mode='constant', cval=0.0``, because in this case borders (i.e. where the `weights` kernel, centered on any one value, extends beyond an edge of `input`. >>> a = np.array([[1, 2, 0, 0], ... [5, 3, 0, 4], ... [0, 0, 0, 7], ... [9, 3, 0, 0]]) >>> k = np.array([[1,1,1],[1,1,0],[1,0,0]]) >>> from scipy import ndimage >>> ndimage.convolve(a, k, mode='constant', cval=0.0) array([[11, 10, 7, 4], [10, 3, 11, 11], [15, 12, 14, 7], [12, 3, 7, 0]]) Setting ``cval=1.0`` is equivalent to padding the outer edge of `input` with 1.0's (and then extracting only the original region of the result). >>> ndimage.convolve(a, k, mode='constant', cval=1.0) array([[13, 11, 8, 7], [11, 3, 11, 14], [16, 12, 14, 10], [15, 6, 10, 5]]) With ``mode='reflect'`` (the default), outer values are reflected at the edge of `input` to fill in missing values. >>> b = np.array([[2, 0, 0], ... [1, 0, 0], ... [0, 0, 0]]) >>> k = np.array([[0,1,0], [0,1,0], [0,1,0]]) >>> ndimage.convolve(b, k, mode='reflect') array([[5, 0, 0], [3, 0, 0], [1, 0, 0]]) This includes diagonally at the corners. >>> k = np.array([[1,0,0],[0,1,0],[0,0,1]]) >>> ndimage.convolve(b, k) array([[4, 2, 0], [3, 2, 0], [1, 1, 0]]) With ``mode='nearest'``, the single nearest value in to an edge in `input` is repeated as many times as needed to match the overlapping `weights`. >>> c = np.array([[2, 0, 1], ... [1, 0, 0], ... [0, 0, 0]]) >>> k = np.array([[0, 1, 0], ... [0, 1, 0], ... [0, 1, 0], ... [0, 1, 0], ... [0, 1, 0]]) >>> ndimage.convolve(c, k, mode='nearest') array([[7, 0, 3], [5, 0, 2], [3, 0, 1]]) """ return _correlate_or_convolve(input, weights, output, mode, cval, origin, True) @docfiller def uniform_filter1d(input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a one-dimensional uniform filter along the given axis. The lines of the array along the given axis are filtered with a uniform filter of given size. Parameters ---------- %(input)s size : int length of uniform filter %(axis)s %(output)s %(mode)s %(cval)s %(origin)s Examples -------- >>> from scipy.ndimage import uniform_filter1d >>> uniform_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3) array([4, 3, 4, 1, 4, 6, 6, 3]) """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') axis = _ni_support._check_axis(axis, input.ndim) if size < 1: raise RuntimeError('incorrect filter size') output, return_value = _ni_support._get_output(output, input) if (size // 2 + origin < 0) or (size // 2 + origin >= size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.uniform_filter1d(input, size, axis, output, mode, cval, origin) return return_value @docfiller def uniform_filter(input, size=3, output=None, mode="reflect", cval=0.0, origin=0): """Multi-dimensional uniform filter. Parameters ---------- %(input)s size : int or sequence of ints, optional The sizes of the uniform filter are given for each axis as a sequence, or as a single number, in which case the size is equal for all axes. %(output)s %(mode_multiple)s %(cval)s %(origin)s Returns ------- uniform_filter : ndarray Filtered array. Has the same shape as `input`. Notes ----- The multi-dimensional filter is implemented as a sequence of one-dimensional uniform filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.uniform_filter(ascent, size=20) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ input = numpy.asarray(input) output, return_value = _ni_support._get_output(output, input) sizes = _ni_support._normalize_sequence(size, input.ndim) origins = _ni_support._normalize_sequence(origin, input.ndim) modes = _ni_support._normalize_sequence(mode, input.ndim) axes = list(range(input.ndim)) axes = [(axes[ii], sizes[ii], origins[ii], modes[ii]) for ii in range(len(axes)) if sizes[ii] > 1] if len(axes) > 0: for axis, size, origin, mode in axes: uniform_filter1d(input, int(size), axis, output, mode, cval, origin) input = output else: output[...] = input[...] return return_value @docfiller def minimum_filter1d(input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a one-dimensional minimum filter along the given axis. The lines of the array along the given axis are filtered with a minimum filter of given size. Parameters ---------- %(input)s size : int length along which to calculate 1D minimum %(axis)s %(output)s %(mode)s %(cval)s %(origin)s Notes ----- This function implements the MINLIST algorithm [1]_, as described by Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being the `input` length, regardless of filter size. References ---------- .. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777 .. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html Examples -------- >>> from scipy.ndimage import minimum_filter1d >>> minimum_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3) array([2, 0, 0, 0, 1, 1, 0, 0]) """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') axis = _ni_support._check_axis(axis, input.ndim) if size < 1: raise RuntimeError('incorrect filter size') output, return_value = _ni_support._get_output(output, input) if (size // 2 + origin < 0) or (size // 2 + origin >= size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval, origin, 1) return return_value @docfiller def maximum_filter1d(input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a one-dimensional maximum filter along the given axis. The lines of the array along the given axis are filtered with a maximum filter of given size. Parameters ---------- %(input)s size : int Length along which to calculate the 1-D maximum. %(axis)s %(output)s %(mode)s %(cval)s %(origin)s Returns ------- maximum1d : ndarray, None Maximum-filtered array with same shape as input. None if `output` is not None Notes ----- This function implements the MAXLIST algorithm [1]_, as described by Richard Harter [2]_, and has a guaranteed O(n) performance, `n` being the `input` length, regardless of filter size. References ---------- .. [1] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.2777 .. [2] http://www.richardhartersworld.com/cri/2001/slidingmin.html Examples -------- >>> from scipy.ndimage import maximum_filter1d >>> maximum_filter1d([2, 8, 0, 4, 1, 9, 9, 0], size=3) array([8, 8, 8, 4, 9, 9, 9, 9]) """ input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') axis = _ni_support._check_axis(axis, input.ndim) if size < 1: raise RuntimeError('incorrect filter size') output, return_value = _ni_support._get_output(output, input) if (size // 2 + origin < 0) or (size // 2 + origin >= size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.min_or_max_filter1d(input, size, axis, output, mode, cval, origin, 0) return return_value def _min_or_max_filter(input, size, footprint, structure, output, mode, cval, origin, minimum): if structure is None: if footprint is None: if size is None: raise RuntimeError("no footprint provided") separable = True else: footprint = numpy.asarray(footprint, dtype=bool) if not footprint.any(): raise ValueError("All-zero footprint is not supported.") if footprint.all(): size = footprint.shape footprint = None separable = True else: separable = False else: structure = numpy.asarray(structure, dtype=numpy.float64) separable = False if footprint is None: footprint = numpy.ones(structure.shape, bool) else: footprint = numpy.asarray(footprint, dtype=bool) input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') output, return_value = _ni_support._get_output(output, input) origins = _ni_support._normalize_sequence(origin, input.ndim) if separable: sizes = _ni_support._normalize_sequence(size, input.ndim) modes = _ni_support._normalize_sequence(mode, input.ndim) axes = list(range(input.ndim)) axes = [(axes[ii], sizes[ii], origins[ii], modes[ii]) for ii in range(len(axes)) if sizes[ii] > 1] if minimum: filter_ = minimum_filter1d else: filter_ = maximum_filter1d if len(axes) > 0: for axis, size, origin, mode in axes: filter_(input, int(size), axis, output, mode, cval, origin) input = output else: output[...] = input[...] else: fshape = [ii for ii in footprint.shape if ii > 0] if len(fshape) != input.ndim: raise RuntimeError('footprint array has incorrect shape.') for origin, lenf in zip(origins, fshape): if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): raise ValueError('invalid origin') if not footprint.flags.contiguous: footprint = footprint.copy() if structure is not None: if len(structure.shape) != input.ndim: raise RuntimeError('structure array has incorrect shape') if not structure.flags.contiguous: structure = structure.copy() mode = _ni_support._extend_mode_to_code(mode) _nd_image.min_or_max_filter(input, footprint, structure, output, mode, cval, origins, minimum) return return_value @docfiller def minimum_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a multi-dimensional minimum filter. Parameters ---------- %(input)s %(size_foot)s %(output)s %(mode_multiple)s %(cval)s %(origin)s Returns ------- minimum_filter : ndarray Filtered array. Has the same shape as `input`. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.minimum_filter(ascent, size=20) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ return _min_or_max_filter(input, size, footprint, None, output, mode, cval, origin, 1) @docfiller def maximum_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a multi-dimensional maximum filter. Parameters ---------- %(input)s %(size_foot)s %(output)s %(mode_multiple)s %(cval)s %(origin)s Returns ------- maximum_filter : ndarray Filtered array. Has the same shape as `input`. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.maximum_filter(ascent, size=20) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ return _min_or_max_filter(input, size, footprint, None, output, mode, cval, origin, 0) @docfiller def _rank_filter(input, rank, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0, operation='rank'): input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') origins = _ni_support._normalize_sequence(origin, input.ndim) if footprint is None: if size is None: raise RuntimeError("no footprint or filter size provided") sizes = _ni_support._normalize_sequence(size, input.ndim) footprint = numpy.ones(sizes, dtype=bool) else: footprint = numpy.asarray(footprint, dtype=bool) fshape = [ii for ii in footprint.shape if ii > 0] if len(fshape) != input.ndim: raise RuntimeError('filter footprint array has incorrect shape.') for origin, lenf in zip(origins, fshape): if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): raise ValueError('invalid origin') if not footprint.flags.contiguous: footprint = footprint.copy() filter_size = numpy.where(footprint, 1, 0).sum() if operation == 'median': rank = filter_size // 2 elif operation == 'percentile': percentile = rank if percentile < 0.0: percentile += 100.0 if percentile < 0 or percentile > 100: raise RuntimeError('invalid percentile') if percentile == 100.0: rank = filter_size - 1 else: rank = int(float(filter_size) * percentile / 100.0) if rank < 0: rank += filter_size if rank < 0 or rank >= filter_size: raise RuntimeError('rank not within filter footprint size') if rank == 0: return minimum_filter(input, None, footprint, output, mode, cval, origins) elif rank == filter_size - 1: return maximum_filter(input, None, footprint, output, mode, cval, origins) else: output, return_value = _ni_support._get_output(output, input) mode = _ni_support._extend_mode_to_code(mode) _nd_image.rank_filter(input, rank, footprint, output, mode, cval, origins) return return_value @docfiller def rank_filter(input, rank, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a multi-dimensional rank filter. Parameters ---------- %(input)s rank : int The rank parameter may be less then zero, i.e., rank = -1 indicates the largest element. %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s Returns ------- rank_filter : ndarray Filtered array. Has the same shape as `input`. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.rank_filter(ascent, rank=42, size=20) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ return _rank_filter(input, rank, size, footprint, output, mode, cval, origin, 'rank') @docfiller def median_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """ Calculate a multidimensional median filter. Parameters ---------- %(input)s %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s Returns ------- median_filter : ndarray Filtered array. Has the same shape as `input`. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.median_filter(ascent, size=20) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ return _rank_filter(input, 0, size, footprint, output, mode, cval, origin, 'median') @docfiller def percentile_filter(input, percentile, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): """Calculate a multi-dimensional percentile filter. Parameters ---------- %(input)s percentile : scalar The percentile parameter may be less then zero, i.e., percentile = -20 equals percentile = 80 %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s Returns ------- percentile_filter : ndarray Filtered array. Has the same shape as `input`. Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.gray() # show the filtered result in grayscale >>> ax1 = fig.add_subplot(121) # left side >>> ax2 = fig.add_subplot(122) # right side >>> ascent = misc.ascent() >>> result = ndimage.percentile_filter(ascent, percentile=20, size=20) >>> ax1.imshow(ascent) >>> ax2.imshow(result) >>> plt.show() """ return _rank_filter(input, percentile, size, footprint, output, mode, cval, origin, 'percentile') @docfiller def generic_filter1d(input, function, filter_size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0, extra_arguments=(), extra_keywords=None): """Calculate a one-dimensional filter along the given axis. `generic_filter1d` iterates over the lines of the array, calling the given function at each line. The arguments of the line are the input line, and the output line. The input and output lines are 1D double arrays. The input line is extended appropriately according to the filter size and origin. The output line must be modified in-place with the result. Parameters ---------- %(input)s function : {callable, scipy.LowLevelCallable} Function to apply along given axis. filter_size : scalar Length of the filter. %(axis)s %(output)s %(mode)s %(cval)s %(origin)s %(extra_arguments)s %(extra_keywords)s Notes ----- This function also accepts low-level callback functions with one of the following signatures and wrapped in `scipy.LowLevelCallable`: .. code:: c int function(double *input_line, npy_intp input_length, double *output_line, npy_intp output_length, void *user_data) int function(double *input_line, intptr_t input_length, double *output_line, intptr_t output_length, void *user_data) The calling function iterates over the lines of the input and output arrays, calling the callback function at each line. The current line is extended according to the border conditions set by the calling function, and the result is copied into the array that is passed through ``input_line``. The length of the input line (after extension) is passed through ``input_length``. The callback function should apply the filter and store the result in the array passed through ``output_line``. The length of the output line is passed through ``output_length``. ``user_data`` is the data pointer provided to `scipy.LowLevelCallable` as-is. The callback function must return an integer error status that is zero if something went wrong and one otherwise. If an error occurs, you should normally set the python error status with an informative message before returning, otherwise a default error message is set by the calling function. In addition, some other low-level function pointer specifications are accepted, but these are for backward compatibility only and should not be used in new code. """ if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') output, return_value = _ni_support._get_output(output, input) if filter_size < 1: raise RuntimeError('invalid filter size') axis = _ni_support._check_axis(axis, input.ndim) if (filter_size // 2 + origin < 0) or (filter_size // 2 + origin >= filter_size): raise ValueError('invalid origin') mode = _ni_support._extend_mode_to_code(mode) _nd_image.generic_filter1d(input, function, filter_size, axis, output, mode, cval, origin, extra_arguments, extra_keywords) return return_value @docfiller def generic_filter(input, function, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0, extra_arguments=(), extra_keywords=None): """Calculate a multi-dimensional filter using the given function. At each element the provided function is called. The input values within the filter footprint at that element are passed to the function as a 1D array of double values. Parameters ---------- %(input)s function : {callable, scipy.LowLevelCallable} Function to apply at each element. %(size_foot)s %(output)s %(mode)s %(cval)s %(origin)s %(extra_arguments)s %(extra_keywords)s Notes ----- This function also accepts low-level callback functions with one of the following signatures and wrapped in `scipy.LowLevelCallable`: .. code:: c int callback(double *buffer, npy_intp filter_size, double *return_value, void *user_data) int callback(double *buffer, intptr_t filter_size, double *return_value, void *user_data) The calling function iterates over the elements of the input and output arrays, calling the callback function at each element. The elements within the footprint of the filter at the current element are passed through the ``buffer`` parameter, and the number of elements within the footprint through ``filter_size``. The calculated value is returned in ``return_value``. ``user_data`` is the data pointer provided to `scipy.LowLevelCallable` as-is. The callback function must return an integer error status that is zero if something went wrong and one otherwise. If an error occurs, you should normally set the python error status with an informative message before returning, otherwise a default error message is set by the calling function. In addition, some other low-level function pointer specifications are accepted, but these are for backward compatibility only and should not be used in new code. """ if extra_keywords is None: extra_keywords = {} input = numpy.asarray(input) if numpy.iscomplexobj(input): raise TypeError('Complex type not supported') origins = _ni_support._normalize_sequence(origin, input.ndim) if footprint is None: if size is None: raise RuntimeError("no footprint or filter size provided") sizes = _ni_support._normalize_sequence(size, input.ndim) footprint = numpy.ones(sizes, dtype=bool) else: footprint = numpy.asarray(footprint, dtype=bool) fshape = [ii for ii in footprint.shape if ii > 0] if len(fshape) != input.ndim: raise RuntimeError('filter footprint array has incorrect shape.') for origin, lenf in zip(origins, fshape): if (lenf // 2 + origin < 0) or (lenf // 2 + origin >= lenf): raise ValueError('invalid origin') if not footprint.flags.contiguous: footprint = footprint.copy() output, return_value = _ni_support._get_output(output, input) mode = _ni_support._extend_mode_to_code(mode) _nd_image.generic_filter(input, function, footprint, output, mode, cval, origins, extra_arguments, extra_keywords) return return_value
mbayon/TFG-MachineLearning
venv/lib/python3.6/site-packages/scipy/ndimage/filters.py
Python
mit
52,520
0.00019
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd import numpy as np from erlport.erlterms import Atom, List from erlport.erlang import set_encoder, set_decoder def setup_dtype(): set_encoder(dtype_encoder) set_decoder(dtype_decoder) return Atom(b'ok') def dtype_encoder(value): if isinstance(value, np.int64): return np.asscalar(value) elif isinstance(value, np.float64): return np.asscalar(value) elif isinstance(value, str): try: return value.encode('utf-8') # to express as binary() instead of string() on erlang side except: return value elif isinstance(value, list): return [dtype_encoder(v) for v in value] elif isinstance(value, tuple): nvalue = () for v in value: nvalue = nvalue + (dtype_encoder(v),) return nvalue else: try: return value.encode('utf-8') except: return value def dtype_decoder(value): try: if isinstance(value, List): return [dtype_decoder(v) for v in value] elif isinstance(value, tuple): nvalue = () for v in value: nvalue = nvalue + (dtype_decoder(v),) return nvalue elif isinstance(value, str): return value else: return value.decode("utf-8") except: return value
zgbjgg/jun
priv/jun_enc_dec.py
Python
mit
1,427
0.005606
# Module to run tests on surveys # Most of these are *not* done with Travis yet # TEST_UNICODE_LITERALS import pytest import os import shutil import numpy as np from astropy.table import Table from frb.galaxies.frbgalaxy import FRBHost from frb.galaxies import eazy as frbeazy from frb.frb import FRB from distutils.spawn import find_executable eazy_exec = pytest.mark.skipif(find_executable('eazy') is None, reason='test requires galfit') def data_path(filename): data_dir = os.path.join(os.path.dirname(__file__), 'files') return os.path.join(data_dir, filename) @pytest.fixture def host_obj(): # VLT photom = Table() photom['Name'] = ['G_TEST'] photom['ra'] = 123.422 photom['dec'] = 23.222 # These are observed photom['LRISb_V'] = 25.86 photom['LRISb_V_err'] = 0.25 photom['GMOS_S_r'] = 23.61 photom['GMOS_S_r_err'] = 0.15 photom['LRISr_I'] = 23.09 photom['LRISr_I_err'] = 0.1 photom['NOT_z'] = 23.35 photom['NOT_z_err'] = 0.3 photom['NIRI_J'] = 21.75 + 0.91 photom['NIRI_J_err'] = 0.2 # host190613A = FRBHost(photom['ra'], photom['dec'], FRB.by_name('FRB20121102')) host190613A.parse_photom(photom) host190613A.name = 'G_TEST' return host190613A @eazy_exec def test_eazy(host_obj): if os.path.isdir(data_path('eazy')): shutil.rmtree(data_path('eazy')) os.mkdir(data_path('eazy')) # Generate frbeazy.eazy_input_files(host_obj.photom, data_path('eazy/input'), host_obj.name, data_path('eazy/output'), templates='br07_default', prior_filter='GMOS_S_r') # Test assert os.path.isfile(data_path('eazy/input/G_TEST.cat')) assert os.path.isfile(data_path('eazy/input/zphot.param.G_TEST')) assert os.path.isfile(data_path('eazy/input/zphot.translate.G_TEST')) # Run frbeazy.run_eazy(data_path('eazy/input'), host_obj.name, os.path.join(data_path('eazy/output'), 'logfile')) assert os.path.isfile(data_path('eazy/output/photz.zout')) # Read zgrid, pzi, prior = frbeazy.getEazyPz(-1, MAIN_OUTPUT_FILE='photz', OUTPUT_DIRECTORY=data_path('eazy/output'), CACHE_FILE='Same', binaries=None, get_prior=True) zphot, sig_zphot = frbeazy.eazy_stats(zgrid, pzi) assert np.isclose(zphot, 0.5929259648750858, rtol=1e-4) # Remove shutil.rmtree(data_path('eazy'))
FRBs/FRB
frb/tests/test_eazy.py
Python
bsd-3-clause
2,608
0.003067
# -*- coding: utf-8 -*- __all__ = ["cc"]
MarieVdS/ComboCode
__init__.py
Python
gpl-3.0
42
0
# #Programa Lista 4, questão 1; #Felipe Henrique Bastos Costa - 1615310032; # # # # lista = []#lista vazia; cont1 = 0#contador do indice; cont2 = 1#contador da posição do numero, se é o primeiro, segundo etc; v = 5#representaria o len da lista; while(cont1 < v): x = int(input("Informe o %dº numero inteiro para colocar em sua lista:\n"%cont2))#x e a variavel que recebe #o numero do usuario lista.append(x)#o numero informado para x e colocado dentro da lista; cont1+=1#Os contadores estao cont2+=1#sendo incrementados; print("A lista de informada foi:\n%s"%lista)
any1m1c/ipc20161
lista4/ipc_lista4.01.py
Python
apache-2.0
675
0.040299
# -*- coding: utf-8 -*- ############################################################# # This file was automatically generated on 2022-01-18. # # # # Python Bindings Version 2.1.29 # # # # If you have a bugfix for this file and want to commit it, # # please fix the bug in the generator. You can find a link # # to the generators git repository on tinkerforge.com # ############################################################# from collections import namedtuple try: from .ip_connection import Device, IPConnection, Error, create_char, create_char_list, create_string, create_chunk_data except (ValueError, ImportError): from ip_connection import Device, IPConnection, Error, create_char, create_char_list, create_string, create_chunk_data GetPositionCallbackConfiguration = namedtuple('PositionCallbackConfiguration', ['period', 'value_has_to_change', 'option', 'min', 'max']) GetSPITFPErrorCount = namedtuple('SPITFPErrorCount', ['error_count_ack_checksum', 'error_count_message_checksum', 'error_count_frame', 'error_count_overflow']) GetIdentity = namedtuple('Identity', ['uid', 'connected_uid', 'position', 'hardware_version', 'firmware_version', 'device_identifier']) class BrickletLinearPotiV2(Device): """ 59mm linear potentiometer """ DEVICE_IDENTIFIER = 2139 DEVICE_DISPLAY_NAME = 'Linear Poti Bricklet 2.0' DEVICE_URL_PART = 'linear_poti_v2' # internal CALLBACK_POSITION = 4 FUNCTION_GET_POSITION = 1 FUNCTION_SET_POSITION_CALLBACK_CONFIGURATION = 2 FUNCTION_GET_POSITION_CALLBACK_CONFIGURATION = 3 FUNCTION_GET_SPITFP_ERROR_COUNT = 234 FUNCTION_SET_BOOTLOADER_MODE = 235 FUNCTION_GET_BOOTLOADER_MODE = 236 FUNCTION_SET_WRITE_FIRMWARE_POINTER = 237 FUNCTION_WRITE_FIRMWARE = 238 FUNCTION_SET_STATUS_LED_CONFIG = 239 FUNCTION_GET_STATUS_LED_CONFIG = 240 FUNCTION_GET_CHIP_TEMPERATURE = 242 FUNCTION_RESET = 243 FUNCTION_WRITE_UID = 248 FUNCTION_READ_UID = 249 FUNCTION_GET_IDENTITY = 255 THRESHOLD_OPTION_OFF = 'x' THRESHOLD_OPTION_OUTSIDE = 'o' THRESHOLD_OPTION_INSIDE = 'i' THRESHOLD_OPTION_SMALLER = '<' THRESHOLD_OPTION_GREATER = '>' BOOTLOADER_MODE_BOOTLOADER = 0 BOOTLOADER_MODE_FIRMWARE = 1 BOOTLOADER_MODE_BOOTLOADER_WAIT_FOR_REBOOT = 2 BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_REBOOT = 3 BOOTLOADER_MODE_FIRMWARE_WAIT_FOR_ERASE_AND_REBOOT = 4 BOOTLOADER_STATUS_OK = 0 BOOTLOADER_STATUS_INVALID_MODE = 1 BOOTLOADER_STATUS_NO_CHANGE = 2 BOOTLOADER_STATUS_ENTRY_FUNCTION_NOT_PRESENT = 3 BOOTLOADER_STATUS_DEVICE_IDENTIFIER_INCORRECT = 4 BOOTLOADER_STATUS_CRC_MISMATCH = 5 STATUS_LED_CONFIG_OFF = 0 STATUS_LED_CONFIG_ON = 1 STATUS_LED_CONFIG_SHOW_HEARTBEAT = 2 STATUS_LED_CONFIG_SHOW_STATUS = 3 def __init__(self, uid, ipcon): """ Creates an object with the unique device ID *uid* and adds it to the IP Connection *ipcon*. """ Device.__init__(self, uid, ipcon, BrickletLinearPotiV2.DEVICE_IDENTIFIER, BrickletLinearPotiV2.DEVICE_DISPLAY_NAME) self.api_version = (2, 0, 0) self.response_expected[BrickletLinearPotiV2.FUNCTION_GET_POSITION] = BrickletLinearPotiV2.RESPONSE_EXPECTED_ALWAYS_TRUE self.response_expected[BrickletLinearPotiV2.FUNCTION_SET_POSITION_CALLBACK_CONFIGURATION] = BrickletLinearPotiV2.RESPONSE_EXPECTED_TRUE self.response_expected[BrickletLinearPotiV2.FUNCTION_GET_POSITION_CALLBACK_CONFIGURATION] = BrickletLinearPotiV2.RESPONSE_EXPECTED_ALWAYS_TRUE self.response_expected[BrickletLinearPotiV2.FUNCTION_GET_SPITFP_ERROR_COUNT] = BrickletLinearPotiV2.RESPONSE_EXPECTED_ALWAYS_TRUE self.response_expected[BrickletLinearPotiV2.FUNCTION_SET_BOOTLOADER_MODE] = BrickletLinearPotiV2.RESPONSE_EXPECTED_ALWAYS_TRUE self.response_expected[BrickletLinearPotiV2.FUNCTION_GET_BOOTLOADER_MODE] = BrickletLinearPotiV2.RESPONSE_EXPECTED_ALWAYS_TRUE self.response_expected[BrickletLinearPotiV2.FUNCTION_SET_WRITE_FIRMWARE_POINTER] = BrickletLinearPotiV2.RESPONSE_EXPECTED_FALSE self.response_expected[BrickletLinearPotiV2.FUNCTION_WRITE_FIRMWARE] = BrickletLinearPotiV2.RESPONSE_EXPECTED_ALWAYS_TRUE self.response_expected[BrickletLinearPotiV2.FUNCTION_SET_STATUS_LED_CONFIG] = BrickletLinearPotiV2.RESPONSE_EXPECTED_FALSE self.response_expected[BrickletLinearPotiV2.FUNCTION_GET_STATUS_LED_CONFIG] = BrickletLinearPotiV2.RESPONSE_EXPECTED_ALWAYS_TRUE self.response_expected[BrickletLinearPotiV2.FUNCTION_GET_CHIP_TEMPERATURE] = BrickletLinearPotiV2.RESPONSE_EXPECTED_ALWAYS_TRUE self.response_expected[BrickletLinearPotiV2.FUNCTION_RESET] = BrickletLinearPotiV2.RESPONSE_EXPECTED_FALSE self.response_expected[BrickletLinearPotiV2.FUNCTION_WRITE_UID] = BrickletLinearPotiV2.RESPONSE_EXPECTED_FALSE self.response_expected[BrickletLinearPotiV2.FUNCTION_READ_UID] = BrickletLinearPotiV2.RESPONSE_EXPECTED_ALWAYS_TRUE self.response_expected[BrickletLinearPotiV2.FUNCTION_GET_IDENTITY] = BrickletLinearPotiV2.RESPONSE_EXPECTED_ALWAYS_TRUE self.callback_formats[BrickletLinearPotiV2.CALLBACK_POSITION] = (9, 'B') ipcon.add_device(self) def get_position(self): """ Returns the position of the linear potentiometer. The value is between 0% (slider down) and 100% (slider up). If you want to get the value periodically, it is recommended to use the :cb:`Position` callback. You can set the callback configuration with :func:`Set Position Callback Configuration`. """ self.check_validity() return self.ipcon.send_request(self, BrickletLinearPotiV2.FUNCTION_GET_POSITION, (), '', 9, 'B') def set_position_callback_configuration(self, period, value_has_to_change, option, min, max): """ The period is the period with which the :cb:`Position` callback is triggered periodically. A value of 0 turns the callback off. If the `value has to change`-parameter is set to true, the callback is only triggered after the value has changed. If the value didn't change within the period, the callback is triggered immediately on change. If it is set to false, the callback is continuously triggered with the period, independent of the value. It is furthermore possible to constrain the callback with thresholds. The `option`-parameter together with min/max sets a threshold for the :cb:`Position` callback. The following options are possible: .. csv-table:: :header: "Option", "Description" :widths: 10, 100 "'x'", "Threshold is turned off" "'o'", "Threshold is triggered when the value is *outside* the min and max values" "'i'", "Threshold is triggered when the value is *inside* or equal to the min and max values" "'<'", "Threshold is triggered when the value is smaller than the min value (max is ignored)" "'>'", "Threshold is triggered when the value is greater than the min value (max is ignored)" If the option is set to 'x' (threshold turned off) the callback is triggered with the fixed period. """ self.check_validity() period = int(period) value_has_to_change = bool(value_has_to_change) option = create_char(option) min = int(min) max = int(max) self.ipcon.send_request(self, BrickletLinearPotiV2.FUNCTION_SET_POSITION_CALLBACK_CONFIGURATION, (period, value_has_to_change, option, min, max), 'I ! c B B', 0, '') def get_position_callback_configuration(self): """ Returns the callback configuration as set by :func:`Set Position Callback Configuration`. """ self.check_validity() return GetPositionCallbackConfiguration(*self.ipcon.send_request(self, BrickletLinearPotiV2.FUNCTION_GET_POSITION_CALLBACK_CONFIGURATION, (), '', 16, 'I ! c B B')) def get_spitfp_error_count(self): """ Returns the error count for the communication between Brick and Bricklet. The errors are divided into * ACK checksum errors, * message checksum errors, * framing errors and * overflow errors. The errors counts are for errors that occur on the Bricklet side. All Bricks have a similar function that returns the errors on the Brick side. """ self.check_validity() return GetSPITFPErrorCount(*self.ipcon.send_request(self, BrickletLinearPotiV2.FUNCTION_GET_SPITFP_ERROR_COUNT, (), '', 24, 'I I I I')) def set_bootloader_mode(self, mode): """ Sets the bootloader mode and returns the status after the requested mode change was instigated. You can change from bootloader mode to firmware mode and vice versa. A change from bootloader mode to firmware mode will only take place if the entry function, device identifier and CRC are present and correct. This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program. """ self.check_validity() mode = int(mode) return self.ipcon.send_request(self, BrickletLinearPotiV2.FUNCTION_SET_BOOTLOADER_MODE, (mode,), 'B', 9, 'B') def get_bootloader_mode(self): """ Returns the current bootloader mode, see :func:`Set Bootloader Mode`. """ self.check_validity() return self.ipcon.send_request(self, BrickletLinearPotiV2.FUNCTION_GET_BOOTLOADER_MODE, (), '', 9, 'B') def set_write_firmware_pointer(self, pointer): """ Sets the firmware pointer for :func:`Write Firmware`. The pointer has to be increased by chunks of size 64. The data is written to flash every 4 chunks (which equals to one page of size 256). This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program. """ self.check_validity() pointer = int(pointer) self.ipcon.send_request(self, BrickletLinearPotiV2.FUNCTION_SET_WRITE_FIRMWARE_POINTER, (pointer,), 'I', 0, '') def write_firmware(self, data): """ Writes 64 Bytes of firmware at the position as written by :func:`Set Write Firmware Pointer` before. The firmware is written to flash every 4 chunks. You can only write firmware in bootloader mode. This function is used by Brick Viewer during flashing. It should not be necessary to call it in a normal user program. """ self.check_validity() data = list(map(int, data)) return self.ipcon.send_request(self, BrickletLinearPotiV2.FUNCTION_WRITE_FIRMWARE, (data,), '64B', 9, 'B') def set_status_led_config(self, config): """ Sets the status LED configuration. By default the LED shows communication traffic between Brick and Bricklet, it flickers once for every 10 received data packets. You can also turn the LED permanently on/off or show a heartbeat. If the Bricklet is in bootloader mode, the LED is will show heartbeat by default. """ self.check_validity() config = int(config) self.ipcon.send_request(self, BrickletLinearPotiV2.FUNCTION_SET_STATUS_LED_CONFIG, (config,), 'B', 0, '') def get_status_led_config(self): """ Returns the configuration as set by :func:`Set Status LED Config` """ self.check_validity() return self.ipcon.send_request(self, BrickletLinearPotiV2.FUNCTION_GET_STATUS_LED_CONFIG, (), '', 9, 'B') def get_chip_temperature(self): """ Returns the temperature as measured inside the microcontroller. The value returned is not the ambient temperature! The temperature is only proportional to the real temperature and it has bad accuracy. Practically it is only useful as an indicator for temperature changes. """ self.check_validity() return self.ipcon.send_request(self, BrickletLinearPotiV2.FUNCTION_GET_CHIP_TEMPERATURE, (), '', 10, 'h') def reset(self): """ Calling this function will reset the Bricklet. All configurations will be lost. After a reset you have to create new device objects, calling functions on the existing ones will result in undefined behavior! """ self.check_validity() self.ipcon.send_request(self, BrickletLinearPotiV2.FUNCTION_RESET, (), '', 0, '') def write_uid(self, uid): """ Writes a new UID into flash. If you want to set a new UID you have to decode the Base58 encoded UID string into an integer first. We recommend that you use Brick Viewer to change the UID. """ self.check_validity() uid = int(uid) self.ipcon.send_request(self, BrickletLinearPotiV2.FUNCTION_WRITE_UID, (uid,), 'I', 0, '') def read_uid(self): """ Returns the current UID as an integer. Encode as Base58 to get the usual string version. """ self.check_validity() return self.ipcon.send_request(self, BrickletLinearPotiV2.FUNCTION_READ_UID, (), '', 12, 'I') def get_identity(self): """ Returns the UID, the UID where the Bricklet is connected to, the position, the hardware and firmware version as well as the device identifier. The position can be 'a', 'b', 'c', 'd', 'e', 'f', 'g' or 'h' (Bricklet Port). A Bricklet connected to an :ref:`Isolator Bricklet <isolator_bricklet>` is always at position 'z'. The device identifier numbers can be found :ref:`here <device_identifier>`. |device_identifier_constant| """ return GetIdentity(*self.ipcon.send_request(self, BrickletLinearPotiV2.FUNCTION_GET_IDENTITY, (), '', 33, '8s 8s c 3B 3B H')) def register_callback(self, callback_id, function): """ Registers the given *function* with the given *callback_id*. """ if function is None: self.registered_callbacks.pop(callback_id, None) else: self.registered_callbacks[callback_id] = function LinearPotiV2 = BrickletLinearPotiV2 # for backward compatibility
Tinkerforge/brickv
src/brickv/bindings/bricklet_linear_poti_v2.py
Python
gpl-2.0
14,625
0.004239
from django import forms from .models import Post from django.contrib.auth import ( authenticate, get_user_model, login, logout, ) class PostForm(forms.ModelForm): # Post Thread View class Meta: model = Post fields = ['title','image', 'user','country','guide'] widgets = { 'guide' : forms.Textarea(attrs = {'rows':12 , 'style':'resize:none'})} ##----------------------------- User = get_user_model() class UserLoginForm(forms.Form): username = forms.CharField(max_length = 254, widget=forms.TextInput(attrs={'class':"input-sm"})) password = forms.CharField(widget = forms.PasswordInput) def clean(self, *args, **kwargs): username = self.cleaned_data.get("username") password = self.cleaned_data.get('password') if username and password: user = authenticate(username=username, password=password) if not user: raise forms.ValidationError("Incorrect password or User! Please try again.") if not user.check_password(password): raise forms.ValidationError("Incorrect password! Please try again.") if not user.is_active: raise forms.ValidationError("This user is no longer active!") return super(UserLoginForm, self).clean(*args, **kwargs) #-------------------------------- class UserRegisterForm(forms.ModelForm): email = forms.EmailField(label = 'Email Address') password = forms.CharField(widget = forms.PasswordInput) class Meta: model = User fields = [ 'username', 'email', 'password' ] def clean_email(self): email = self.cleaned_data.get('email') email_qs = User.objects.filter(email=email) if email_qs.exists(): raise forms.ValidationError("This email has already been registered!") return email def clean_username(self): username = self.cleaned_data.get('username') username_qs = User.objects.filter(username=username) if username_qs.exists(): raise forms.ValidationError("This username has already been registered!") return username
lemarcudal/sha_thedivision
test/mysite/webapp/forms.py
Python
apache-2.0
1,935
0.03876
# -*- coding: utf-8 -*- import sys from warnings import warn from django.conf import settings from django.core.exceptions import ImproperlyConfigured if hasattr(settings, 'MODELTRANSLATION_TRANSLATION_REGISTRY'): TRANSLATION_REGISTRY =\ getattr(settings, 'MODELTRANSLATION_TRANSLATION_REGISTRY', None) elif hasattr(settings, 'TRANSLATION_REGISTRY'): warn('The setting TRANSLATION_REGISTRY is deprecated, use ' 'MODELTRANSLATION_TRANSLATION_REGISTRY instead.', DeprecationWarning) TRANSLATION_REGISTRY = getattr(settings, 'TRANSLATION_REGISTRY', None) else: raise ImproperlyConfigured("You haven't set the " "MODELTRANSLATION_TRANSLATION_REGISTRY " "setting yet.") AVAILABLE_LANGUAGES = [l[0] for l in settings.LANGUAGES] DEFAULT_LANGUAGE = getattr(settings, 'MODELTRANSLATION_DEFAULT_LANGUAGE', None) if DEFAULT_LANGUAGE and DEFAULT_LANGUAGE not in AVAILABLE_LANGUAGES: raise ImproperlyConfigured('MODELTRANSLATION_DEFAULT_LANGUAGE not ' 'in LANGUAGES setting.') elif not DEFAULT_LANGUAGE: DEFAULT_LANGUAGE = AVAILABLE_LANGUAGES[0] # FIXME: We can't seem to override this particular setting in tests.py CUSTOM_FIELDS =\ getattr(settings, 'MODELTRANSLATION_CUSTOM_FIELDS', ()) try: if sys.argv[1] == 'test': CUSTOM_FIELDS =\ getattr(settings, 'MODELTRANSLATION_CUSTOM_FIELDS', ('BooleanField',)) except IndexError: pass LANGUAGE_VERBOSE_NAMES = getattr(settings, 'LANGUAGE_VERBOSE_NAMES', {})
ilblackdragon/django-modeltranslation
modeltranslation/settings.py
Python
bsd-3-clause
1,569
0.003187
#!/usr/bin/python # -*- coding: utf-8 -*- # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/> # # @author : beaengine@gmail.com from headers.BeaEnginePython import * from nose.tools import * class TestSuite: def test(self): # EVEX.256.66.0F3A.W0 25 /r ib # vpternlogd ymm1{k1}{z}, ymm2, ymm3/m256/m32bcst, imm8 myEVEX = EVEX('EVEX.256.66.0F3A.W0') Buffer = bytes.fromhex('{}252011'.format(myEVEX.prefix())) myDisasm = Disasm(Buffer) myDisasm.read() assert_equal(myDisasm.infos.Instruction.Opcode, 0x25) assert_equal(myDisasm.infos.Instruction.Mnemonic, b'vpternlogd') assert_equal(myDisasm.repr(), 'vpternlogd ymm28, ymm16, ymmword ptr [r8], 11h') # EVEX.512.66.0F3A.W0 25 /r ib # vpternlogd zmm1{k1}{z}, zmm2, zmm3/m512/m32bcst, imm8 myEVEX = EVEX('EVEX.512.66.0F3A.W0') Buffer = bytes.fromhex('{}252011'.format(myEVEX.prefix())) myDisasm = Disasm(Buffer) myDisasm.read() assert_equal(myDisasm.infos.Instruction.Opcode, 0x25) assert_equal(myDisasm.infos.Instruction.Mnemonic, b'vpternlogd') assert_equal(myDisasm.repr(), 'vpternlogd zmm28, zmm16, zmmword ptr [r8], 11h') # EVEX.256.66.0F3A.W1 25 /r ib # vpternlogq ymm1{k1}{z}, ymm2, ymm3/m256/m64bcst, imm8 myEVEX = EVEX('EVEX.256.66.0F3A.W1') Buffer = bytes.fromhex('{}252011'.format(myEVEX.prefix())) myDisasm = Disasm(Buffer) myDisasm.read() assert_equal(myDisasm.infos.Instruction.Opcode, 0x25) assert_equal(myDisasm.infos.Instruction.Mnemonic, b'vpternlogq') assert_equal(myDisasm.repr(), 'vpternlogq ymm28, ymm16, ymmword ptr [r8], 11h') # EVEX.512.66.0F3A.W1 25 /r ib # vpternlogq zmm1{k1}{z}, zmm2, zmm3/m512/m64bcst, imm8 myEVEX = EVEX('EVEX.512.66.0F3A.W1') Buffer = bytes.fromhex('{}252011'.format(myEVEX.prefix())) myDisasm = Disasm(Buffer) myDisasm.read() assert_equal(myDisasm.infos.Instruction.Opcode, 0x25) assert_equal(myDisasm.infos.Instruction.Mnemonic, b'vpternlogq') assert_equal(myDisasm.repr(), 'vpternlogq zmm28, zmm16, zmmword ptr [r8], 11h')
0vercl0k/rp
src/third_party/beaengine/tests/0f3a25.py
Python
mit
2,835
0.001411
var1 = bool(input()) var2 = bool(input()) if var1: print(var2) elif v<caret>
siosio/intellij-community
python/testData/codeInsight/mlcompletion/isInConditionSimpleElif.py
Python
apache-2.0
78
0.051282
# -*- coding: latin-1 -*- import re import json from .common import InfoExtractor from ..utils import determine_ext class HarkIE(InfoExtractor): _VALID_URL = r'https?://www\.hark\.com/clips/(.+?)-.+' _TEST = { u'url': u'http://www.hark.com/clips/mmbzyhkgny-obama-beyond-the-afghan-theater-we-only-target-al-qaeda-on-may-23-2013', u'file': u'mmbzyhkgny.mp3', u'md5': u'6783a58491b47b92c7c1af5a77d4cbee', u'info_dict': { u'title': u"Obama: 'Beyond The Afghan Theater, We Only Target Al Qaeda' on May 23, 2013", u'description': u'President Barack Obama addressed the nation live on May 23, 2013 in a speech aimed at addressing counter-terrorism policies including the use of drone strikes, detainees at Guantanamo Bay prison facility, and American citizens who are terrorists.', u'duration': 11, } } def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) video_id = mobj.group(1) json_url = "http://www.hark.com/clips/%s.json" %(video_id) info_json = self._download_webpage(json_url, video_id) info = json.loads(info_json) final_url = info['url'] return {'id': video_id, 'url' : final_url, 'title': info['name'], 'ext': determine_ext(final_url), 'description': info['description'], 'thumbnail': info['image_original'], 'duration': info['duration'], }
lebabouin/CouchPotatoServer-develop
couchpotato/core/providers/trailer/vftrailers/youtube_dl/extractor/hark.py
Python
gpl-3.0
1,526
0.003932
#!/usr/bin/python # Copyright 2003 Vladimir Prus # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE.txt or https://www.bfgroup.xyz/b2/LICENSE.txt) # Regression test: it was possible that due to evaluation of conditional # requirements, two different values of non-free features were present in a # property set. import BoostBuild t = BoostBuild.Tester() t.write("a.cpp", "") t.write("jamroot.jam", """ import feature ; import common ; feature.feature the_feature : false true : propagated ; rule maker ( targets * : sources * : properties * ) { if <the_feature>false in $(properties) && <the_feature>true in $(properties) { EXIT "Oops, two different values of non-free feature" ; } CMD on $(targets) = [ common.file-creation-command ] ; } actions maker { $(CMD) $(<) ; } make a : a.cpp : maker : <variant>debug:<the_feature>true ; """) t.run_build_system() t.cleanup()
davehorton/drachtio-server
deps/boost_1_77_0/tools/build/test/conditionals2.py
Python
mit
960
0
# -*- coding: utf8 -*- # This file is part of PyBossa. # # Copyright (C) 2013 SF Isle of Man Limited # # PyBossa is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # PyBossa is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with PyBossa. If not, see <http://www.gnu.org/licenses/>. from base import web, model, Fixtures class TestAuthentication: @classmethod def setup_class(cls): cls.app = web.app.test_client() model.rebuild_db() Fixtures.create() @classmethod def teardown_class(cls): model.rebuild_db() def test_api_authenticate(self): """Test AUTHENTICATION works""" res = self.app.get('/?api_key=%s' % Fixtures.api_key) assert 'checkpoint::logged-in::tester' in res.data, res.data
geotagx/geotagx-pybossa-archive
test/test_authentication.py
Python
agpl-3.0
1,229
0
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ libcloud driver for the Host Virtual Inc. (VR) API Home page http://www.vr.org/ """ import time try: import simplejson as json except ImportError: import json from libcloud.common.hostvirtual import HostVirtualResponse from libcloud.common.hostvirtual import HostVirtualConnection from libcloud.common.hostvirtual import HostVirtualException from libcloud.compute.providers import Provider from libcloud.compute.types import NodeState from libcloud.compute.base import Node, NodeDriver from libcloud.compute.base import NodeImage, NodeSize, NodeLocation from libcloud.compute.base import NodeAuthSSHKey, NodeAuthPassword API_ROOT = '' NODE_STATE_MAP = { 'BUILDING': NodeState.PENDING, 'PENDING': NodeState.PENDING, 'RUNNING': NodeState.RUNNING, # server is powered up 'STOPPING': NodeState.REBOOTING, 'REBOOTING': NodeState.REBOOTING, 'STARTING': NodeState.REBOOTING, 'TERMINATED': NodeState.TERMINATED, # server is powered down 'STOPPED': NodeState.STOPPED } DEFAULT_NODE_LOCATION_ID = 4 class HostVirtualComputeResponse(HostVirtualResponse): pass class HostVirtualComputeConnection(HostVirtualConnection): responseCls = HostVirtualComputeResponse class HostVirtualNodeDriver(NodeDriver): type = Provider.HOSTVIRTUAL name = 'HostVirtual' website = 'http://www.vr.org' connectionCls = HostVirtualComputeConnection features = {'create_node': ['ssh_key', 'password']} def __init__(self, key, secure=True, host=None, port=None): self.location = None super(HostVirtualNodeDriver, self).__init__(key=key, secure=secure, host=host, port=port) def _to_node(self, data): state = NODE_STATE_MAP[data['status']] public_ips = [] private_ips = [] extra = {} if 'plan_id' in data: extra['size'] = data['plan_id'] if 'os_id' in data: extra['image'] = data['os_id'] if 'location_id' in data: extra['location'] = data['location_id'] if 'ip' in data: public_ips.append(data['ip']) node = Node(id=data['mbpkgid'], name=data['fqdn'], state=state, public_ips=public_ips, private_ips=private_ips, driver=self.connection.driver, extra=extra) return node def list_locations(self): result = self.connection.request(API_ROOT + '/cloud/locations/').object locations = [] for dc in result: locations.append(NodeLocation( dc["id"], dc["name"], dc["name"].split(',')[1].replace(" ", ""), # country self)) return locations def list_sizes(self, location=None): params = {} if location: params = {'location': location.id} result = self.connection.request( API_ROOT + '/cloud/sizes/', data=json.dumps(params)).object sizes = [] for size in result: n = NodeSize(id=size['plan_id'], name=size['plan'], ram=size['ram'], disk=size['disk'], bandwidth=size['transfer'], price=size['price'], driver=self.connection.driver) sizes.append(n) return sizes def list_images(self): result = self.connection.request(API_ROOT + '/cloud/images/').object images = [] for image in result: i = NodeImage(id=image["id"], name=image["os"], driver=self.connection.driver, extra=image) del i.extra['id'] del i.extra['os'] images.append(i) return images def list_nodes(self): result = self.connection.request(API_ROOT + '/cloud/servers/').object nodes = [] for value in result: node = self._to_node(value) nodes.append(node) return nodes def _wait_for_node(self, node_id, timeout=30, interval=5.0): """ :param node_id: ID of the node to wait for. :type node_id: ``int`` :param timeout: Timeout (in seconds). :type timeout: ``int`` :param interval: How long to wait (in seconds) between each attempt. :type interval: ``float`` """ # poll until we get a node for i in range(0, timeout, int(interval)): try: node = self.ex_get_node(node_id) return node except HostVirtualException: time.sleep(interval) raise HostVirtualException(412, 'Timedout on getting node details') def create_node(self, **kwargs): dc = None size = kwargs['size'] image = kwargs['image'] auth = self._get_and_check_auth(kwargs.get('auth')) params = {'plan': size.name} dc = DEFAULT_NODE_LOCATION_ID if 'location' in kwargs: dc = kwargs['location'].id # simply order a package first result = self.connection.request(API_ROOT + '/cloud/buy/', data=json.dumps(params), method='POST').object # create a stub node stub_node = self._to_node({ 'mbpkgid': result['id'], 'status': 'PENDING', 'fqdn': kwargs['name'], 'plan_id': size.id, 'os_id': image.id, 'location_id': dc }) # provisioning a server using the stub node self.ex_provision_node(node=stub_node, auth=auth) node = self._wait_for_node(stub_node.id) if getattr(auth, 'generated', False): node.extra['password'] = auth.password return node def reboot_node(self, node): params = {'force': 0, 'mbpkgid': node.id} result = self.connection.request( API_ROOT + '/cloud/server/reboot', data=json.dumps(params), method='POST').object return bool(result) def destroy_node(self, node): params = { 'mbpkgid': node.id, #'reason': 'Submitted through Libcloud API' } result = self.connection.request( API_ROOT + '/cloud/cancel', data=json.dumps(params), method='POST').object return bool(result) def ex_get_node(self, node_id): """ Get a single node. :param node_id: id of the node that we need the node object for :type node_id: ``str`` :rtype: :class:`Node` """ params = {'mbpkgid': node_id} result = self.connection.request( API_ROOT + '/cloud/server', params=params).object node = self._to_node(result) return node def ex_stop_node(self, node): """ Stop a node. :param node: Node which should be used :type node: :class:`Node` :rtype: ``bool`` """ params = {'force': 0, 'mbpkgid': node.id} result = self.connection.request( API_ROOT + '/cloud/server/shutdown', data=json.dumps(params), method='POST').object return bool(result) def ex_start_node(self, node): """ Start a node. :param node: Node which should be used :type node: :class:`Node` :rtype: ``bool`` """ params = {'mbpkgid': node.id} result = self.connection.request( API_ROOT + '/cloud/server/start', data=json.dumps(params), method='POST').object return bool(result) def ex_provision_node(self, **kwargs): """ Provision a server on a VR package and get it booted :keyword node: node which should be used :type node: :class:`Node` :keyword image: The distribution to deploy on your server (mandatory) :type image: :class:`NodeImage` :keyword auth: an SSH key or root password (mandatory) :type auth: :class:`NodeAuthSSHKey` or :class:`NodeAuthPassword` :keyword location: which datacenter to create the server in :type location: :class:`NodeLocation` :return: Node representing the newly built server :rtype: :class:`Node` """ node = kwargs['node'] if 'image' in kwargs: image = kwargs['image'] else: image = node.extra['image'] params = { 'mbpkgid': node.id, 'image': image, 'fqdn': node.name, 'location': node.extra['location'], } auth = kwargs['auth'] ssh_key = None password = None if isinstance(auth, NodeAuthSSHKey): ssh_key = auth.pubkey params['ssh_key'] = ssh_key elif isinstance(auth, NodeAuthPassword): password = auth.password params['password'] = password if not ssh_key and not password: raise HostVirtualException(500, "Need SSH key or Root password") result = self.connection.request(API_ROOT + '/cloud/server/build', data=json.dumps(params), method='POST').object return bool(result) def ex_delete_node(self, node): """ Delete a node. :param node: Node which should be used :type node: :class:`Node` :rtype: ``bool`` """ params = {'mbpkgid': node.id} result = self.connection.request( API_ROOT + '/cloud/server/delete', data=json.dumps(params), method='POST').object return bool(result)
ClusterHQ/libcloud
libcloud/compute/drivers/hostvirtual.py
Python
apache-2.0
10,709
0.000093
#!/usr/bin/env python # imp general import IMP import IMP.core # our project from IMP.isd import Weight from IMP.isd import WeightMover # unit testing framework import IMP.test class TestWeightMover(IMP.test.TestCase): """tests weight setup""" def setUp(self): IMP.test.TestCase.setUp(self) # IMP.set_log_level(IMP.MEMORY) IMP.set_log_level(0) self.m = IMP.Model() self.w = Weight.setup_particle(IMP.Particle(self.m)) self.w.set_weights_are_optimized(True) self.w.add_weight() self.w.add_weight() self.wm = WeightMover(self.w, 0.1) self.mc = IMP.core.MonteCarlo(self.m) self.mc.set_scoring_function([]) self.mc.set_return_best(False) self.mc.set_kt(1.0) self.mc.add_mover(self.wm) def test_run(self): "Test weight mover mc run" self.setUp() for n in range(5): for j in range(10): self.mc.optimize(10) ws = self.w.get_weights() sum = 0 for k in range(self.w.get_number_of_states()): sum += self.w.get_weight(k) self.assertAlmostEqual(sum, 1.0, delta=0.0000001) self.w.add_weight() if __name__ == '__main__': IMP.test.main()
shanot/imp
modules/isd/test/test_mc_WeightMover.py
Python
gpl-3.0
1,309
0
from django.contrib import admin # import your models # Register your models here. # admin.site.register(YourModel)
datamade/la-metro-councilmatic
lametro/admin.py
Python
mit
116
0.008621
# 2016-7-1 # build by qianqians # tools def gentypetocsharp(typestr): if typestr == 'int': return 'Int64' elif typestr == 'string': return 'String' elif typestr == 'array': return 'ArrayList' elif typestr == 'float': return 'Double' elif typestr == 'bool': return 'Boolean' elif typestr == 'table': return 'Hashtable'
yinchunlong/abelkhan-1
juggle/gen/csharp/tools.py
Python
mit
394
0.007614
# This file is part of Indico. # Copyright (C) 2002 - 2021 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from collections import defaultdict from operator import attrgetter from flask import render_template, session from pytz import utc from sqlalchemy import Date, cast from sqlalchemy.orm import contains_eager, joinedload, subqueryload, undefer from indico.core.db import db from indico.modules.events.contributions.models.contributions import Contribution from indico.modules.events.models.events import Event from indico.modules.events.models.persons import EventPersonLink from indico.modules.events.sessions.models.blocks import SessionBlock from indico.modules.events.sessions.models.sessions import Session from indico.modules.events.timetable.legacy import TimetableSerializer, serialize_event_info from indico.modules.events.timetable.models.breaks import Break from indico.modules.events.timetable.models.entries import TimetableEntry, TimetableEntryType from indico.util.caching import memoize_request from indico.util.date_time import format_time, get_day_end, iterdays from indico.util.i18n import _ from indico.web.flask.templating import get_template_module from indico.web.forms.colors import get_colors def _query_events(categ_ids, day_start, day_end): event = db.aliased(Event) dates_overlap = lambda t: (t.start_dt >= day_start) & (t.start_dt <= day_end) return (db.session.query(Event.id, TimetableEntry.start_dt) .filter( Event.category_chain_overlaps(categ_ids), ~Event.is_deleted, ((Event.timetable_entries.any(dates_overlap(TimetableEntry))) | (Event.query.exists().where( Event.happens_between(day_start, day_end) & (Event.id == event.id))))) .group_by(Event.id, TimetableEntry.start_dt) .order_by(Event.id, TimetableEntry.start_dt) .join(TimetableEntry, (TimetableEntry.event_id == Event.id) & (dates_overlap(TimetableEntry)), isouter=True)) def _query_blocks(event_ids, dates_overlap, detail_level='session'): options = [subqueryload('session').joinedload('blocks').joinedload('person_links')] if detail_level == 'contribution': options.append(contains_eager(SessionBlock.timetable_entry).joinedload(TimetableEntry.children)) else: options.append(contains_eager(SessionBlock.timetable_entry)) return (SessionBlock.query .filter(~Session.is_deleted, Session.event_id.in_(event_ids), dates_overlap(TimetableEntry)) .options(*options) .join(TimetableEntry) .join(Session)) def find_latest_entry_end_dt(obj, day=None): """Get the latest end datetime for timetable entries within the object. :param obj: The :class:`Event` or :class:`SessionBlock` that will be used to look for timetable entries. :param day: The local event date to look for timetable entries. Applicable only to ``Event``. :return: The end datetime of the timetable entry finishing the latest. ``None`` if no entry was found. """ if isinstance(obj, Event): if day is None: raise ValueError('No day specified for event.') if not (obj.start_dt_local.date() <= day <= obj.end_dt_local.date()): raise ValueError('Day out of event bounds.') entries = obj.timetable_entries.filter(TimetableEntry.parent_id.is_(None), cast(TimetableEntry.start_dt.astimezone(obj.tzinfo), Date) == day).all() elif isinstance(obj, SessionBlock): if day is not None: raise ValueError('Day specified for session block.') entries = obj.timetable_entry.children else: raise ValueError(f'Invalid object type {type(obj)}') return max(entries, key=attrgetter('end_dt')).end_dt if entries else None def find_next_start_dt(duration, obj, day=None, force=False): """Find the next most convenient start date fitting a duration within an object. :param duration: Duration to fit into the event/session-block. :param obj: The :class:`Event` or :class:`SessionBlock` the duration needs to fit into. :param day: The local event date where to fit the duration in case the object is an event. :param force: Gives earliest datetime if the duration doesn't fit. :return: The end datetime of the latest scheduled entry in the object if the duration fits then. It it doesn't, the latest datetime that fits it. ``None`` if the duration cannot fit in the object, earliest datetime if ``force`` is ``True``. """ if isinstance(obj, Event): if day is None: raise ValueError('No day specified for event.') if not (obj.start_dt_local.date() <= day <= obj.end_dt_local.date()): raise ValueError('Day out of event bounds.') earliest_dt = obj.start_dt if obj.start_dt_local.date() == day else obj.start_dt.replace(hour=8, minute=0) latest_dt = obj.end_dt if obj.start_dt.date() == day else get_day_end(day, tzinfo=obj.tzinfo) elif isinstance(obj, SessionBlock): if day is not None: raise ValueError('Day specified for session block.') earliest_dt = obj.timetable_entry.start_dt latest_dt = obj.timetable_entry.end_dt else: raise ValueError(f'Invalid object type {type(obj)}') max_duration = latest_dt - earliest_dt if duration > max_duration: return earliest_dt if force else None start_dt = find_latest_entry_end_dt(obj, day=day) or earliest_dt end_dt = start_dt + duration if end_dt > latest_dt: start_dt = latest_dt - duration return start_dt def get_category_timetable(categ_ids, start_dt, end_dt, detail_level='event', tz=utc, from_categ=None, grouped=True, includible=lambda item: True): """Retrieve time blocks that fall within a specific time interval for a given set of categories. :param categ_ids: iterable containing list of category IDs :param start_dt: start of search interval (``datetime``, expected to be in display timezone) :param end_dt: end of search interval (``datetime`` in expected to be in display timezone) :param detail_level: the level of detail of information (``event|session|contribution``) :param tz: the ``timezone`` information should be displayed in :param from_categ: ``Category`` that will be taken into account to calculate visibility :param grouped: Whether to group results by start date :param includible: a callable, to allow further arbitrary custom filtering (maybe from 3rd party plugins) on whether to include (returns True) or not (returns False) each ``detail`` item. Default always returns True. :returns: a dictionary containing timetable information in a structured way. See source code for examples. """ day_start = start_dt.astimezone(utc) day_end = end_dt.astimezone(utc) dates_overlap = lambda t: (t.start_dt >= day_start) & (t.start_dt <= day_end) items = defaultdict(lambda: defaultdict(list)) # first of all, query TimetableEntries/events that fall within # specified range of dates (and category set) events = _query_events(categ_ids, day_start, day_end) if from_categ: events = events.filter(Event.is_visible_in(from_categ.id)) for eid, tt_start_dt in events: if tt_start_dt: items[eid][tt_start_dt.astimezone(tz).date()].append(tt_start_dt) else: items[eid] = None # then, retrieve detailed information about the events event_ids = set(items) query = (Event.query .filter(Event.id.in_(event_ids)) .options(subqueryload(Event.person_links).joinedload(EventPersonLink.person), joinedload(Event.own_room).noload('owner'), joinedload(Event.own_venue), joinedload(Event.category).undefer('effective_icon_data'), undefer('effective_protection_mode'))) scheduled_events = defaultdict(list) ongoing_events = [] events = [] for e in query: if not includible(e): continue if grouped: local_start_dt = e.start_dt.astimezone(tz).date() local_end_dt = e.end_dt.astimezone(tz).date() if items[e.id] is None: # if there is no TimetableEntry, this means the event has not timetable on that interval for day in iterdays(max(start_dt.date(), local_start_dt), min(end_dt.date(), local_end_dt)): # if the event starts on this date, we've got a time slot if day.date() == local_start_dt: scheduled_events[day.date()].append((e.start_dt, e)) else: ongoing_events.append(e) else: for start_d, start_dts in items[e.id].items(): scheduled_events[start_d].append((start_dts[0], e)) else: events.append(e) # result['events'][date(...)] -> [(datetime(....), Event(...))] # result[event_id]['contribs'][date(...)] -> [(TimetableEntry(...), Contribution(...))] # result['ongoing_events'] = [Event(...)] if grouped: result = defaultdict(lambda: defaultdict(lambda: defaultdict(list))) else: result = defaultdict(lambda: defaultdict(list)) result.update({ 'events': scheduled_events if grouped else events, 'ongoing_events': ongoing_events }) # according to detail level, ask for extra information from the DB if detail_level != 'event': query = _query_blocks(event_ids, dates_overlap, detail_level) if grouped: for b in query: start_date = b.timetable_entry.start_dt.astimezone(tz).date() result[b.session.event_id]['blocks'][start_date].append((b.timetable_entry, b)) else: for b in query: result[b.session.event_id]['blocks'].append(b) if detail_level == 'contribution': query = (Contribution.query .filter(Contribution.event_id.in_(event_ids), dates_overlap(TimetableEntry), ~Contribution.is_deleted) .options(contains_eager(Contribution.timetable_entry), joinedload(Contribution.person_links)) .join(TimetableEntry)) if grouped: for c in query: start_date = c.timetable_entry.start_dt.astimezone(tz).date() result[c.event_id]['contribs'][start_date].append((c.timetable_entry, c)) else: for c in query: result[c.event_id]['contributions'].append(c) query = (Break.query .filter(TimetableEntry.event_id.in_(event_ids), dates_overlap(TimetableEntry)) .options(contains_eager(Break.timetable_entry)) .join(TimetableEntry)) if grouped: for b in query: start_date = b.timetable_entry.start_dt.astimezone(tz).date() result[b.timetable_entry.event_id]['breaks'][start_date].append((b.timetable_entry, b)) else: for b in query: result[b.timetable_entry.event_id]['breaks'].append(b) return result def render_entry_info_balloon(entry, editable=False, sess=None, is_session_timetable=False): if entry.break_: return render_template('events/timetable/balloons/break.html', break_=entry.break_, editable=editable, can_manage_event=entry.event.can_manage(session.user), color_list=get_colors(), event_locked=entry.event.is_locked, is_session_timetable=is_session_timetable) elif entry.contribution: return render_template('events/timetable/balloons/contribution.html', contrib=entry.contribution, editable=editable, can_manage_event=entry.event.can_manage(session.user), can_manage_contributions=sess.can_manage_contributions(session.user) if sess else True, event_locked=entry.event.is_locked) elif entry.session_block: return render_template('events/timetable/balloons/block.html', block=entry.session_block, editable=editable, can_manage_session=sess.can_manage(session.user) if sess else True, can_manage_blocks=sess.can_manage_blocks(session.user) if sess else True, color_list=get_colors(), event_locked=entry.event.is_locked, is_session_timetable=is_session_timetable) else: raise ValueError('Invalid entry') def render_session_timetable(session, timetable_layout=None, management=False): if not session.start_dt: # no scheduled sessions present return '' timetable_data = TimetableSerializer(session.event).serialize_session_timetable(session, without_blocks=True, strip_empty_days=True) event_info = serialize_event_info(session.event) tpl = get_template_module('events/timetable/_timetable.html') return tpl.render_timetable(timetable_data, event_info, timetable_layout=timetable_layout, management=management) def get_session_block_entries(event, day): """Return a list of event top-level session blocks for the given `day`.""" return (event.timetable_entries .filter(db.cast(TimetableEntry.start_dt.astimezone(event.tzinfo), db.Date) == day.date(), TimetableEntry.type == TimetableEntryType.SESSION_BLOCK) .all()) def shift_following_entries(entry, shift, session_=None): """Reschedule entries starting after the given entry by the given shift.""" query = entry.siblings_query.filter(TimetableEntry.start_dt >= entry.end_dt) if session_ and not entry.parent: query.filter(TimetableEntry.type == TimetableEntryType.SESSION_BLOCK, TimetableEntry.session_block.has(session_id=session_.id)) entries = query.all() if not entries: return [] for sibling in entries: sibling.move(sibling.start_dt + shift) def get_timetable_offline_pdf_generator(event): from indico.legacy.pdfinterface.conference import TimetablePDFFormat, TimeTablePlain pdf_format = TimetablePDFFormat() return TimeTablePlain(event, session.user, sortingCrit=None, ttPDFFormat=pdf_format, pagesize='A4', fontsize='normal') def get_time_changes_notifications(changes, tzinfo, entry=None): notifications = [] for obj, change in changes.items(): if entry: if entry.object == obj: continue if not isinstance(obj, Event) and obj.timetable_entry in entry.children: continue msg = None if isinstance(obj, Event): if 'start_dt' in change: new_time = change['start_dt'][1] msg = _('Event start time changed to {}') elif 'end_dt' in change: new_time = change['end_dt'][1] msg = _('Event end time changed to {}') else: raise ValueError('Invalid change in event.') elif isinstance(obj, SessionBlock): if 'start_dt' in change: new_time = change['start_dt'][1] msg = _('Session block start time changed to {}') elif 'end_dt' in change: new_time = change['end_dt'][1] msg = _('Session block end time changed to {}') else: raise ValueError('Invalid change in session block.') if msg: notifications.append(msg.format(format_time(new_time, timezone=tzinfo))) return notifications @memoize_request def get_top_level_entries(event): return event.timetable_entries.filter_by(parent_id=None).all() @memoize_request def get_nested_entries(event): entries = event.timetable_entries.filter(TimetableEntry.parent_id.isnot(None)).all() result = defaultdict(list) for entry in entries: result[entry.parent_id].append(entry) return result
ThiefMaster/indico
indico/modules/events/timetable/util.py
Python
mit
16,943
0.003305
#------------------------------------------------------------------------------ # Naam: libLog.py # Omschrijving: Generieke functies voor logging binnen BAG Extract+ # Auteur: Matthijs van der Deijl # Auteur: Just van den Broecke - porting naar NLExtract (2015) # # Versie: 1.3 # - foutafhandeling verbeterd # Datum: 16 december 2009 # # Versie: 1.2 # Datum: 24 november 2009 # # Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer #------------------------------------------------------------------------------ import wx # Simple logscherm: tekst in tekstpanel class LogScherm: def __init__(self, text_ctrl): self.text_ctrl = text_ctrl def __call__(self, tekst): self.schrijf(tekst) def start(self): i = self.text_ctrl.GetNumberOfLines() self.text_ctrl.Clear() while i > 0: self.text_ctrl.AppendText(" \n") i -= 1 self.text_ctrl.Clear() def schrijf(self, tekst): self.text_ctrl.AppendText("\n" + tekst) self.text_ctrl.Refresh() self.text_ctrl.Update() # See http://www.blog.pythonlibrary.org/2010/05/22/wxpython-and-threads/ # (use events when in multithreaded mode) # Define notification event for thread completion EVT_SCHRIJF_ID = wx.NewId() def EVT_SCHRIJF(win, func): """Define Result Event.""" win.Connect(-1, -1, EVT_SCHRIJF_ID, func) class SchrijfEvent(wx.PyEvent): """Simple event to carry arbitrary result data.""" def __init__(self, tekst): """Init Result Event.""" wx.PyEvent.__init__(self) self.SetEventType(EVT_SCHRIJF_ID) self.tekst = tekst class AsyncLogScherm(LogScherm): def __init__(self, text_ctrl): LogScherm.__init__(self, text_ctrl) # Set up event handler for any worker thread results EVT_SCHRIJF(self.text_ctrl, self.on_schrijf_event) def on_schrijf_event(self, evt): self.schrijf(evt.tekst) def __call__(self, tekst): # Ipv direct schrijven stuur "schrijf" event wx.PostEvent(self.text_ctrl, SchrijfEvent(tekst))
sebastic/NLExtract
bag/src/loggui.py
Python
gpl-3.0
2,159
0.003705
#!/usr/bin/python # # Project Kimchi # # Copyright IBM, Corp. 2013 # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA import errno import os import subprocess from kimchi.config import config, paths WS_TOKENS_DIR = '/var/lib/kimchi/vnc-tokens' def new_ws_proxy(): try: os.makedirs(WS_TOKENS_DIR, mode=0755) except OSError as e: if e.errno == errno.EEXIST: pass cert = config.get('server', 'ssl_cert') key = config.get('server', 'ssl_key') if not (cert and key): cert = '%s/kimchi-cert.pem' % paths.conf_dir key = '%s/kimchi-key.pem' % paths.conf_dir cmd = os.path.join(os.path.dirname(__file__), 'websockify.py') args = ['python', cmd, config.get('display', 'display_proxy_port'), '--target-config', WS_TOKENS_DIR, '--cert', cert, '--key', key, '--web', os.path.join(paths.ui_dir, 'pages/websockify'), '--ssl-only'] p = subprocess.Popen(args, close_fds=True) return p def add_proxy_token(name, port): with open(os.path.join(WS_TOKENS_DIR, name), 'w') as f: f.write('%s: localhost:%s' % (name.encode('utf-8'), port)) def remove_proxy_token(name): try: os.unlink(os.path.join(WS_TOKENS_DIR, name)) except OSError: pass
ssdxiao/kimchi
src/kimchi/vnc.py
Python
lgpl-2.1
1,961
0.00051
import logging from datetime import date as _date, timedelta from typing import Dict, List from fahrplan.exception import FahrplanError from fahrplan.xml import XmlWriter, XmlSerializable from .conference import Conference from .day import Day from .event import Event from .room import Room log = logging.getLogger(__name__) class Schedule(XmlSerializable): def __init__(self, conference: Conference, days: Dict[int, Day] = None, version: str = "1.0"): self.conference = conference self.conference.schedule = self if days: assert len(days) == conference.day_count self.days = days else: # TODO (MO) document automatic day generation # also this should be refactored into something like generate_days if conference.day_count and not conference.start: raise FahrplanError("conference.start is not set, " "cannot automatically create days.") self.days = {} for i in range(conference.day_count): index = i + 1 date: _date = conference.start + timedelta(i) self.days[index] = Day(index=index, date=date) for day in self.days.values(): day.schedule = self self.version = version def add_day(self, day: Day): """ Add a day to the schedule. Beware this day will not have rooms added before. :return: None """ self.days[day.index] = day day.schedule = self self.conference.day_count += 1 def add_room(self, name: str, day_filter: List[int] = None): """ Adds a room to the days given in day_filter, or all days. :param name: Name of the room to be added. :param day_filter: List of day indices to create the room for. If empty, use all days. :return: None """ for day in self.days.values(): if not day_filter or day.index in day_filter: day.add_room(Room(name)) def add_event(self, day: int, room: str, event: Event): self.days[day].add_event(room, event) def merge(self, other: 'Schedule'): if self.conference.acronym != other.conference.acronym: log.warning(f'Conference acronym mismatch: "{self.conference.acronym}" != ' f'"{other.conference.acronym}". Are you sure you are using compatible data?') for index, day in other.days.items(): if index in self.days: self.days[index].merge(day) else: self.days[index] = day day.schedule = self if len(self.days) != self.conference.day_count: log.warning('Day count mismatch, adjusting.') return self # needed to be able to chain calls def has_collision(self, new_event: 'Event'): for day in self.days.values(): for room in day.rooms.values(): for event in room.events.values(): if event.slug == new_event.slug: log.error(f'Duplicate slug "{event.slug}"') return True if event.id == new_event.id: log.error(f'Duplicate event id "{event.id}"') return True if event.guid == new_event.guid: log.error(f'Duplicate guid "{event.guid}"') return True else: return False def append_xml(self, xml: XmlWriter, extended: bool): with xml.context("schedule"): xml.tag("version", self.version) xml.append_object(self.conference, extended) for day in self.days.values(): xml.append_object(day, extended)
zuntrax/schedule-ng
fahrplan/model/schedule.py
Python
gpl-3.0
3,835
0.001304