repo_name
stringlengths
5
100
ref
stringlengths
12
67
path
stringlengths
4
244
copies
stringlengths
1
8
content
stringlengths
0
1.05M
anisku11/sublimeku
refs/heads/master
Packages/CodeComplice/libs/chardet/mbcharsetprober.py
8
######################## BEGIN LICENSE BLOCK ######################## # The Original Code is Mozilla Universal charset detector code. # # The Initial Developer of the Original Code is # Netscape Communications Corporation. # Portions created by the Initial Developer are Copyright (C) 2001 # the Initial Developer. All Rights Reserved. # # Contributor(s): # Mark Pilgrim - port to Python # Shy Shalom - original C code # Proofpoint, Inc. # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA # 02110-1301 USA ######################### END LICENSE BLOCK ######################### import sys from . import constants from .constants import eStart, eError, eItsMe from .charsetprober import CharSetProber class MultiByteCharSetProber(CharSetProber): def __init__(self): CharSetProber.__init__(self) self._mDistributionAnalyzer = None self._mCodingSM = None self._mLastChar = [0, 0] def reset(self): CharSetProber.reset(self) if self._mCodingSM: self._mCodingSM.reset() if self._mDistributionAnalyzer: self._mDistributionAnalyzer.reset() self._mLastChar = [0, 0] def get_charset_name(self): pass def feed(self, aBuf): aLen = len(aBuf) for i in range(0, aLen): codingState = self._mCodingSM.next_state(aBuf[i]) if codingState == eError: if constants._debug: sys.stderr.write(self.get_charset_name() + ' prober hit error at byte ' + str(i) + '\n') self._mState = constants.eNotMe break elif codingState == eItsMe: self._mState = constants.eFoundIt break elif codingState == eStart: charLen = self._mCodingSM.get_current_charlen() if i == 0: self._mLastChar[1] = aBuf[0] self._mDistributionAnalyzer.feed(self._mLastChar, charLen) else: self._mDistributionAnalyzer.feed(aBuf[i-1:i+1], charLen) self._mLastChar[0] = aBuf[aLen - 1] if self.get_state() == constants.eDetecting: if self._mDistributionAnalyzer.got_enough_data() and \ (self.get_confidence() > constants.SHORTCUT_THRESHOLD): self._mState = constants.eFoundIt return self.get_state() def get_confidence(self): return self._mDistributionAnalyzer.get_confidence()
DougFirErickson/qgisSpaceSyntaxToolkit
refs/heads/master
esstoolkit/external/networkx/algorithms/isomorphism/matchhelpers.py
51
"""Functions which help end users define customize node_match and edge_match functions to use during isomorphism checks. """ from itertools import permutations import types import networkx as nx __all__ = ['categorical_node_match', 'categorical_edge_match', 'categorical_multiedge_match', 'numerical_node_match', 'numerical_edge_match', 'numerical_multiedge_match', 'generic_node_match', 'generic_edge_match', 'generic_multiedge_match', ] def copyfunc(f, name=None): """Returns a deepcopy of a function.""" try: # Python <3 return types.FunctionType(f.func_code, f.func_globals, name or f.__name__, f.func_defaults, f.func_closure) except AttributeError: # Python >=3 return types.FunctionType(f.__code__, f.__globals__, name or f.__name__, f.__defaults__, f.__closure__) def allclose(x, y, rtol=1.0000000000000001e-05, atol=1e-08): """Returns True if x and y are sufficiently close, elementwise. Parameters ---------- rtol : float The relative error tolerance. atol : float The absolute error tolerance. """ # assume finite weights, see numpy.allclose() for reference for xi, yi in zip(x,y): if not ( abs(xi-yi) <= atol + rtol * abs(yi) ): return False return True def close(x, y, rtol=1.0000000000000001e-05, atol=1e-08): """Returns True if x and y are sufficiently close. Parameters ---------- rtol : float The relative error tolerance. atol : float The absolute error tolerance. """ # assume finite weights, see numpy.allclose() for reference return abs(x-y) <= atol + rtol * abs(y) categorical_doc = """ Returns a comparison function for a categorical node attribute. The value(s) of the attr(s) must be hashable and comparable via the == operator since they are placed into a set([]) object. If the sets from G1 and G2 are the same, then the constructed function returns True. Parameters ---------- attr : string | list The categorical node attribute to compare, or a list of categorical node attributes to compare. default : value | list The default value for the categorical node attribute, or a list of default values for the categorical node attributes. Returns ------- match : function The customized, categorical `node_match` function. Examples -------- >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.categorical_node_match('size', 1) >>> nm = iso.categorical_node_match(['color', 'size'], ['red', 2]) """ def categorical_node_match(attr, default): if nx.utils.is_string_like(attr): def match(data1, data2): return data1.get(attr, default) == data2.get(attr, default) else: attrs = list(zip(attr, default)) # Python 3 def match(data1, data2): values1 = set([data1.get(attr, d) for attr, d in attrs]) values2 = set([data2.get(attr, d) for attr, d in attrs]) return values1 == values2 return match try: categorical_edge_match = copyfunc(categorical_node_match, 'categorical_edge_match') except NotImplementedError: # IronPython lacks support for types.FunctionType. # https://github.com/networkx/networkx/issues/949 # https://github.com/networkx/networkx/issues/1127 def categorical_edge_match(*args, **kwargs): return categorical_node_match(*args, **kwargs) def categorical_multiedge_match(attr, default): if nx.utils.is_string_like(attr): def match(datasets1, datasets2): values1 = set([data.get(attr, default) for data in datasets1.values()]) values2 = set([data.get(attr, default) for data in datasets2.values()]) return values1 == values2 else: attrs = list(zip(attr, default)) # Python 3 def match(datasets1, datasets2): values1 = set([]) for data1 in datasets1.values(): x = tuple( data1.get(attr, d) for attr, d in attrs ) values1.add(x) values2 = set([]) for data2 in datasets2.values(): x = tuple( data2.get(attr, d) for attr, d in attrs ) values2.add(x) return values1 == values2 return match # Docstrings for categorical functions. categorical_node_match.__doc__ = categorical_doc categorical_edge_match.__doc__ = categorical_doc.replace('node', 'edge') tmpdoc = categorical_doc.replace('node', 'edge') tmpdoc = tmpdoc.replace('categorical_edge_match', 'categorical_multiedge_match') categorical_multiedge_match.__doc__ = tmpdoc numerical_doc = """ Returns a comparison function for a numerical node attribute. The value(s) of the attr(s) must be numerical and sortable. If the sorted list of values from G1 and G2 are the same within some tolerance, then the constructed function returns True. Parameters ---------- attr : string | list The numerical node attribute to compare, or a list of numerical node attributes to compare. default : value | list The default value for the numerical node attribute, or a list of default values for the numerical node attributes. rtol : float The relative error tolerance. atol : float The absolute error tolerance. Returns ------- match : function The customized, numerical `node_match` function. Examples -------- >>> import networkx.algorithms.isomorphism as iso >>> nm = iso.numerical_node_match('weight', 1.0) >>> nm = iso.numerical_node_match(['weight', 'linewidth'], [.25, .5]) """ def numerical_node_match(attr, default, rtol=1.0000000000000001e-05, atol=1e-08): if nx.utils.is_string_like(attr): def match(data1, data2): return close(data1.get(attr, default), data2.get(attr, default), rtol=rtol, atol=atol) else: attrs = list(zip(attr, default)) # Python 3 def match(data1, data2): values1 = [data1.get(attr, d) for attr, d in attrs] values2 = [data2.get(attr, d) for attr, d in attrs] return allclose(values1, values2, rtol=rtol, atol=atol) return match try: numerical_edge_match = copyfunc(numerical_node_match, 'numerical_edge_match') except NotImplementedError: # IronPython lacks support for types.FunctionType. # https://github.com/networkx/networkx/issues/949 # https://github.com/networkx/networkx/issues/1127 def numerical_edge_match(*args, **kwargs): return numerical_node_match(*args, **kwargs) def numerical_multiedge_match(attr, default, rtol=1.0000000000000001e-05, atol=1e-08): if nx.utils.is_string_like(attr): def match(datasets1, datasets2): values1 = sorted([data.get(attr, default) for data in datasets1.values()]) values2 = sorted([data.get(attr, default) for data in datasets2.values()]) return allclose(values1, values2, rtol=rtol, atol=atol) else: attrs = list(zip(attr, default)) # Python 3 def match(datasets1, datasets2): values1 = [] for data1 in datasets1.values(): x = tuple( data1.get(attr, d) for attr, d in attrs ) values1.append(x) values2 = [] for data2 in datasets2.values(): x = tuple( data2.get(attr, d) for attr, d in attrs ) values2.append(x) values1.sort() values2.sort() for xi, yi in zip(values1, values2): if not allclose(xi, yi, rtol=rtol, atol=atol): return False else: return True return match # Docstrings for numerical functions. numerical_node_match.__doc__ = numerical_doc numerical_edge_match.__doc__ = numerical_doc.replace('node', 'edge') tmpdoc = numerical_doc.replace('node', 'edge') tmpdoc = tmpdoc.replace('numerical_edge_match', 'numerical_multiedge_match') numerical_multiedge_match.__doc__ = tmpdoc generic_doc = """ Returns a comparison function for a generic attribute. The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True. Parameters ---------- attr : string | list The node attribute to compare, or a list of node attributes to compare. default : value | list The default value for the node attribute, or a list of default values for the node attributes. op : callable | list The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute. Returns ------- match : function The customized, generic `node_match` function. Examples -------- >>> from operator import eq >>> from networkx.algorithms.isomorphism.matchhelpers import close >>> from networkx.algorithms.isomorphism import generic_node_match >>> nm = generic_node_match('weight', 1.0, close) >>> nm = generic_node_match('color', 'red', eq) >>> nm = generic_node_match(['weight', 'color'], [1.0, 'red'], [close, eq]) """ def generic_node_match(attr, default, op): if nx.utils.is_string_like(attr): def match(data1, data2): return op(data1.get(attr, default), data2.get(attr, default)) else: attrs = list(zip(attr, default, op)) # Python 3 def match(data1, data2): for attr, d, operator in attrs: if not operator(data1.get(attr, d), data2.get(attr, d)): return False else: return True return match try: generic_edge_match = copyfunc(generic_node_match, 'generic_edge_match') except NotImplementedError: # IronPython lacks support for types.FunctionType. # https://github.com/networkx/networkx/issues/949 # https://github.com/networkx/networkx/issues/1127 def generic_edge_match(*args, **kwargs): return generic_node_match(*args, **kwargs) def generic_multiedge_match(attr, default, op): """Returns a comparison function for a generic attribute. The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True. Potentially, the constructed edge_match function can be slow since it must verify that no isomorphism exists between the multiedges before it returns False. Parameters ---------- attr : string | list The edge attribute to compare, or a list of node attributes to compare. default : value | list The default value for the edge attribute, or a list of default values for the dgeattributes. op : callable | list The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute. Returns ------- match : function The customized, generic `edge_match` function. Examples -------- >>> from operator import eq >>> from networkx.algorithms.isomorphism.matchhelpers import close >>> from networkx.algorithms.isomorphism import generic_node_match >>> nm = generic_node_match('weight', 1.0, close) >>> nm = generic_node_match('color', 'red', eq) >>> nm = generic_node_match(['weight', 'color'], ... [1.0, 'red'], ... [close, eq]) ... """ # This is slow, but generic. # We must test every possible isomorphism between the edges. if nx.utils.is_string_like(attr): def match(datasets1, datasets2): values1 = [data.get(attr, default) for data in datasets1.values()] values2 = [data.get(attr, default) for data in datasets2.values()] for vals2 in permutations(values2): for xi, yi in zip(values1, vals2): if not op(xi, yi): # This is not an isomorphism, go to next permutation. break else: # Then we found an isomorphism. return True else: # Then there are no isomorphisms between the multiedges. return False else: attrs = list(zip(attr, default)) # Python 3 def match(datasets1, datasets2): values1 = [] for data1 in datasets1.values(): x = tuple( data1.get(attr, d) for attr, d in attrs ) values1.append(x) values2 = [] for data2 in datasets2.values(): x = tuple( data2.get(attr, d) for attr, d in attrs ) values2.append(x) for vals2 in permutations(values2): for xi, yi, operator in zip(values1, vals2, op): if not operator(xi, yi): return False else: return True return match # Docstrings for numerical functions. generic_node_match.__doc__ = generic_doc generic_edge_match.__doc__ = generic_doc.replace('node', 'edge')
rananda/cfme_tests
refs/heads/master
utils/ftp.py
15
# -*- coding: utf-8 -*- """ FTP manipulation library @author: Milan Falešník <mfalesni@redhat.com> """ import fauxfactory import ftplib import re from datetime import datetime from time import strptime, mktime try: from cStringIO import StringIO except ImportError: from StringIO import StringIO class FTPException(Exception): pass class FTPDirectory(object): """ FTP FS Directory encapsulation This class represents one directory. Contains pointers to all child directories (self.directories) and also all files in current directory (self.files) """ def __init__(self, client, name, items, parent_dir=None, time=None): """ Constructor Args: client: ftplib.FTP instance name: Name of this directory items: Content of this directory parent_dir: Pointer to a parent directory to maintain hierarchy. None if root time: Time of this object """ self.client = client self.parent_dir = parent_dir self.time = time self.name = name self.files = [] self.directories = [] for item in items: if isinstance(item, dict): # Is a directory self.directories.append(FTPDirectory(self.client, item["dir"], item["content"], parent_dir=self, time=item["time"])) else: self.files.append(FTPFile(self.client, item[0], self, item[1])) @property def path(self): """ Returns: whole path for this directory """ if self.parent_dir: return self.parent_dir.path + self.name + "/" else: return self.name def __repr__(self): return "<FTPDirectory {}>".format(self.path) def cd(self, path): """ Change to a directory Changes directory to a path specified by parameter path. There are three special cases: / - climbs by self.parent_dir up in the hierarchy until it reaches root element. . - does nothing .. - climbs one level up in hierarchy, if present, otherwise does the same as preceeding. Args: path: Path to change """ if path == ".": return self elif path == "..": result = self if result.parent_dir: result = result.parent_dir return result elif path == "/": result = self while result.parent_dir: result = result.parent_dir return result enter = path.strip("/").split("/", 1) remainder = None if len(enter) == 2: enter, remainder = enter for item in self.directories: if item.name == enter: if remainder: return item.cd("/".join(remainder)) else: return item raise FTPException("Directory {}{} does not exist!".format(self.path, enter)) def search(self, by, files=True, directories=True): """ Recursive search by string or regexp. Searches throughout all the filesystem structure from top till the bottom until it finds required files or dirctories. You can specify either plain string or regexp. String search does classic ``in``, regexp matching is done by exact matching (by.match). Args: by: Search string or regexp files: Whether look for files directories: Whether look for directories Returns: List of all objects found in FS """ def _scan(what, in_what): if isinstance(what, re._pattern_type): return what.match(in_what) is not None else: return what in in_what results = [] if files: for f in self.files: if _scan(by, f.name): results.append(f) for d in self.directories: if directories: if _scan(by, d.name): results.append(d) results.extend(d.search(by, files=files, directories=directories)) return results class FTPFile(object): """ FTP FS File encapsulation This class represents one file in the FS hierarchy. It encapsulates mainly its position in FS and adds the possibility of downloading the file. """ def __init__(self, client, name, parent_dir, time): """ Constructor Args: client: ftplib.FTP instance name: File name (without path) parent_dir: Directory in which this file is """ self.client = client self.parent_dir = parent_dir self.name = name self.time = time @property def path(self): """ Returns: whole path for this file """ if self.parent_dir: return self.parent_dir.path + self.name else: return self.name @property def local_time(self): """ Returns: time modified to match local computer's time zone """ return self.client.dt + self.time def __repr__(self): return "<FTPFile {}>".format(self.path) def retr(self, callback): """ Retrieve file Wrapper around ftplib.FTP.retrbinary(). This function cd's to the directory where this file is present, then calls the FTP's retrbinary() function with provided callable and then cd's back where it started to keep it consistent. Args: callback: Any callable that accepts one parameter as the data Raises: AssertionError: When any of the CWD or CDUP commands fail. ftplib.error_perm: When retrbinary call of ftplib fails """ dirs, f = self.path.rsplit("/", 1) dirs = dirs.lstrip("/").split("/") # Dive in for d in dirs: assert self.client.cwd(d), "Could not change into the directory {}!".format(d) self.client.retrbinary(f, callback) # Dive out for d in dirs: assert self.client.cdup(), "Could not get out of directory {}!".format(d) def download(self, target=None): """ Download file into this machine Wrapper around self.retr function. It downloads the file from remote filesystem into local filesystem. Name is either preserved original, or can be changed. Args: target: Target file name (None to preserver the original) """ if target is None: target = self.name with open(target, "wb") as output: self.retr(output.write) class FTPClient(object): """ FTP Client encapsulation This class provides basic encapsulation around ftplib's FTP class. It wraps some methods and allows to easily delete whole directory or walk through the directory tree. Usage: >>> from utils.ftp import FTPClient >>> ftp = FTPClient("host", "user", "password") >>> only_files_with_EVM_in_name = ftp.filesystem.search("EVM", directories=False) >>> only_files_by_regexp = ftp.filesystem.search(re.compile("regexp"), directories=False) >>> some_directory = ftp.filesystem.cd("a/b/c") # cd's to this directory >>> root = some_directory.cd("/") Always going through filesystem property is a bit slow as it parses the structure on each use. If you are sure that the structure will remain intact between uses, you can do as follows to save the time:: >>> fs = ftp.filesystem Let's download some files:: >>> for f in ftp.filesystem.search("IMPORTANT_FILE", directories=False): ... f.download() # To pickup its original name ... f.download("custom_name") We finished the testing, so we don't need the content of the directory:: >>> ftp.recursively_delete() And it's gone. """ def __init__(self, host, login, password, upload_dir="/"): """ Constructor Args: host: FTP server host login: FTP login password: FTP password """ self.host = host self.login = login self.password = password self.ftp = None self.dt = None self.upload_dir = upload_dir self.connect() self.update_time_difference() def connect(self): self.ftp = ftplib.FTP(self.host) self.ftp.login(self.login, self.password) def update_time_difference(self): """ Determine the time difference between the FTP server and this computer. This is done by uploading a fake file, reading its time and deleting it. Then the self.dt variable captures the time you need to ADD to the remote time or SUBTRACT from local time. The FTPFile object carries this automatically as it has .local_time property which adds the client's .dt to its time. """ TIMECHECK_FILE_NAME = fauxfactory.gen_alphanumeric(length=16) void_file = StringIO(fauxfactory.gen_alpha()) self.cwd(self.upload_dir) assert "Transfer complete" in self.storbinary(TIMECHECK_FILE_NAME, void_file),\ "Could not upload a file for time checking with name {}!".format(TIMECHECK_FILE_NAME) void_file.close() now = datetime.now() for d, name, time in self.ls(): if name == TIMECHECK_FILE_NAME: self.dt = now - time self.dele(TIMECHECK_FILE_NAME) self.cwd("/") return True raise FTPException("The timecheck file was not found in the current FTP directory") def ls(self): """ Lists the content of a directory. Returns: List of all items in current directory Return format is [(is_dir?, "name", remote_time), ...] """ result = [] def _callback(line): is_dir = line.upper().startswith("D") # Max 8, then the final is file which can contain something blank fields = re.split(r"\s+", line, maxsplit=8) # This is because how informations in LIST are presented # Nov 11 12:34 filename (from the end) date = strptime(str(datetime.now().year) + " " + fields[-4] + " " + fields[-3] + " " + fields[-2], "%Y %b %d %H:%M") # convert time.struct_time into datetime date = datetime.fromtimestamp(mktime(date)) result.append((is_dir, fields[-1], date)) self.ftp.dir(_callback) return result def pwd(self): """ Get current directory Returns: Current directory Raises: AssertionError: PWD command fails """ result = self.ftp.sendcmd("PWD") assert "is the current directory" in result, "PWD command failed" x, d, y = result.strip().split("\"") return d.strip() def cdup(self): """ Goes one level up in directory hierarchy (cd ..) """ return self.ftp.sendcmd("CDUP") def mkd(self, d): """ Create a directory Args: d: Directory name Returns: Success of the action """ try: return self.ftp.sendcmd("MKD {}".format(d)).startswith("250") except ftplib.error_perm: return False def rmd(self, d): """ Remove a directory Args: d: Directory name Returns: Success of the action """ try: return self.ftp.sendcmd("RMD {}".format(d)).startswith("250") except ftplib.error_perm: return False def dele(self, f): """ Remove a file Args: f: File name Returns: Success of the action """ try: return self.ftp.sendcmd("DELE {}".format(f)).startswith("250") except ftplib.error_perm: return False def cwd(self, d): """ Enter a directory Args: d: Directory name Returns: Success of the action """ try: return self.ftp.sendcmd("CWD {}".format(d)).startswith("250") except ftplib.error_perm: return False def close(self): """ Finish work and close connection """ self.ftp.quit() self.ftp.close() self.ftp = None def retrbinary(self, f, callback): """ Download file You need to specify the callback function, which accepts one parameter (data), to be processed. Args: f: Requested file name callback: Callable with one parameter accepting the data """ return self.ftp.retrbinary("RETR {}".format(f), callback) def storbinary(self, f, file_obj): """ Store file You need to specify the file object. Args: f: Requested file name file_obj: File object to be stored """ return self.ftp.storbinary("STOR {}".format(f), file_obj) def recursively_delete(self, d=None): """ Recursively deletes content of pwd WARNING: Destructive! Args: d: Directory to enter (None for not entering - root directory) d: str or None Raises: AssertionError: When some of the FTP commands fail. """ # Enter the directory if d: assert self.cwd(d), "Could not enter directory {}".format(d) # Work in it for isdir, name, time in self.ls(): if isdir: self.recursively_delete(name) else: assert self.dele(name), "Could not delete {}!".format(name) # Go out of it if d: # Go to parent directory assert self.cdup(), "Could not go to parent directory of {}!".format(d) # And delete it assert self.rmd(d), "Could not remove directory {}!".format(d) def tree(self, d=None): """ Walks the tree recursively and creates a tree Base structure is a list. List contains directory content and the type decides whether it's a directory or a file: - tuple: it's a file, therefore it represents file's name and time - dict: it's a directory. Then the dict structure is as follows:: dir: directory name content: list of directory content (recurse) Args: d: Directory to enter(None for no entering - root directory) Returns: Directory structure in lists nad dicts. Raises: AssertionError: When some of the FTP commands fail. """ # Enter the directory items = [] if d: assert self.cwd(d), "Could not enter directory {}".format(d) # Work in it for isdir, name, time in self.ls(): if isdir: items.append({"dir": name, "content": self.tree(name), "time": time}) else: items.append((name, time)) # Go out of it if d: # Go to parent directory assert self.cdup(), "Could not go to parent directory of {}!".format(d) return items @property def filesystem(self): """ Returns the object structure of the filesystem Returns: Root directory """ return FTPDirectory(self, "/", self.tree()) # Context management methods def __enter__(self): """ Entering the context does nothing, because the client is already connected """ return self def __exit__(self, type, value, traceback): """ Exiting the context means just calling .close() on the client. """ self.close()
MrLoick/python-for-android
refs/heads/master
python-build/python-libs/gdata/build/lib/gdata/blogger/data.py
136
#!/usr/bin/env python # # Copyright (C) 2009 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data model classes for parsing and generating XML for the Blogger API.""" __author__ = 'j.s@google.com (Jeff Scudder)' import re import atom.core import gdata.data LABEL_SCHEME = 'http://www.blogger.com/atom/ns#' THR_TEMPLATE = '{http://purl.org/syndication/thread/1.0}%s' BLOG_NAME_PATTERN = re.compile('(http://)(\w*)') BLOG_ID_PATTERN = re.compile('(tag:blogger.com,1999:blog-)(\w*)') BLOG_ID2_PATTERN = re.compile('tag:blogger.com,1999:user-(\d+)\.blog-(\d+)') POST_ID_PATTERN = re.compile( '(tag:blogger.com,1999:blog-)(\w*)(.post-)(\w*)') COMMENT_ID_PATTERN = re.compile('.*-(\w*)$') class BloggerEntry(gdata.data.GDEntry): """Adds convenience methods inherited by all Blogger entries.""" def get_blog_id(self): """Extracts the Blogger id of this blog. This method is useful when contructing URLs by hand. The blog id is often used in blogger operation URLs. This should not be confused with the id member of a BloggerBlog. The id element is the Atom id XML element. The blog id which this method returns is a part of the Atom id. Returns: The blog's unique id as a string. """ if self.id.text: match = BLOG_ID_PATTERN.match(self.id.text) if match: return match.group(2) else: return BLOG_ID2_PATTERN.match(self.id.text).group(2) return None GetBlogId = get_blog_id def get_blog_name(self): """Finds the name of this blog as used in the 'alternate' URL. An alternate URL is in the form 'http://blogName.blogspot.com/'. For an entry representing the above example, this method would return 'blogName'. Returns: The blog's URL name component as a string. """ for link in self.link: if link.rel == 'alternate': return BLOG_NAME_PATTERN.match(link.href).group(2) return None GetBlogName = get_blog_name class Blog(BloggerEntry): """Represents a blog which belongs to the user.""" class BlogFeed(gdata.data.GDFeed): entry = [Blog] class BlogPost(BloggerEntry): """Represents a single post on a blog.""" def add_label(self, label): """Adds a label to the blog post. The label is represented by an Atom category element, so this method is shorthand for appending a new atom.Category object. Args: label: str """ self.category.append(atom.data.Category(scheme=LABEL_SCHEME, term=label)) AddLabel = add_label def get_post_id(self): """Extracts the postID string from the entry's Atom id. Returns: A string of digits which identify this post within the blog. """ if self.id.text: return POST_ID_PATTERN.match(self.id.text).group(4) return None GetPostId = get_post_id class BlogPostFeed(gdata.data.GDFeed): entry = [BlogPost] class InReplyTo(atom.core.XmlElement): _qname = THR_TEMPLATE % 'in-reply-to' href = 'href' ref = 'ref' source = 'source' type = 'type' class Comment(BloggerEntry): """Blog post comment entry in a feed listing comments on a post or blog.""" in_reply_to = InReplyTo def get_comment_id(self): """Extracts the commentID string from the entry's Atom id. Returns: A string of digits which identify this post within the blog. """ if self.id.text: return COMMENT_ID_PATTERN.match(self.id.text).group(1) return None GetCommentId = get_comment_id class CommentFeed(gdata.data.GDFeed): entry = [Comment]
40223148/finaltest
refs/heads/master
static/Brython3.1.0-20150301-090019/Lib/unittest/result.py
727
"""Test result object""" import io import sys import traceback from . import util from functools import wraps __unittest = True def failfast(method): @wraps(method) def inner(self, *args, **kw): if getattr(self, 'failfast', False): self.stop() return method(self, *args, **kw) return inner STDOUT_LINE = '\nStdout:\n%s' STDERR_LINE = '\nStderr:\n%s' class TestResult(object): """Holder for test result information. Test results are automatically managed by the TestCase and TestSuite classes, and do not need to be explicitly manipulated by writers of tests. Each instance holds the total number of tests run, and collections of failures and errors that occurred among those test runs. The collections contain tuples of (testcase, exceptioninfo), where exceptioninfo is the formatted traceback of the error that occurred. """ _previousTestClass = None _testRunEntered = False _moduleSetUpFailed = False def __init__(self, stream=None, descriptions=None, verbosity=None): self.failfast = False self.failures = [] self.errors = [] self.testsRun = 0 self.skipped = [] self.expectedFailures = [] self.unexpectedSuccesses = [] self.shouldStop = False self.buffer = False self._stdout_buffer = None self._stderr_buffer = None self._original_stdout = sys.stdout self._original_stderr = sys.stderr self._mirrorOutput = False def printErrors(self): "Called by TestRunner after test run" #fixme brython pass def startTest(self, test): "Called when the given test is about to be run" self.testsRun += 1 self._mirrorOutput = False self._setupStdout() def _setupStdout(self): if self.buffer: if self._stderr_buffer is None: self._stderr_buffer = io.StringIO() self._stdout_buffer = io.StringIO() sys.stdout = self._stdout_buffer sys.stderr = self._stderr_buffer def startTestRun(self): """Called once before any tests are executed. See startTest for a method called before each test. """ def stopTest(self, test): """Called when the given test has been run""" self._restoreStdout() self._mirrorOutput = False def _restoreStdout(self): if self.buffer: if self._mirrorOutput: output = sys.stdout.getvalue() error = sys.stderr.getvalue() if output: if not output.endswith('\n'): output += '\n' self._original_stdout.write(STDOUT_LINE % output) if error: if not error.endswith('\n'): error += '\n' self._original_stderr.write(STDERR_LINE % error) sys.stdout = self._original_stdout sys.stderr = self._original_stderr self._stdout_buffer.seek(0) self._stdout_buffer.truncate() self._stderr_buffer.seek(0) self._stderr_buffer.truncate() def stopTestRun(self): """Called once after all tests are executed. See stopTest for a method called after each test. """ @failfast def addError(self, test, err): """Called when an error has occurred. 'err' is a tuple of values as returned by sys.exc_info(). """ self.errors.append((test, self._exc_info_to_string(err, test))) self._mirrorOutput = True @failfast def addFailure(self, test, err): """Called when an error has occurred. 'err' is a tuple of values as returned by sys.exc_info().""" self.failures.append((test, self._exc_info_to_string(err, test))) self._mirrorOutput = True def addSuccess(self, test): "Called when a test has completed successfully" pass def addSkip(self, test, reason): """Called when a test is skipped.""" self.skipped.append((test, reason)) def addExpectedFailure(self, test, err): """Called when an expected failure/error occured.""" self.expectedFailures.append( (test, self._exc_info_to_string(err, test))) @failfast def addUnexpectedSuccess(self, test): """Called when a test was expected to fail, but succeed.""" self.unexpectedSuccesses.append(test) def wasSuccessful(self): "Tells whether or not this result was a success" return len(self.failures) == len(self.errors) == 0 def stop(self): "Indicates that the tests should be aborted" self.shouldStop = True def _exc_info_to_string(self, err, test): """Converts a sys.exc_info()-style tuple of values into a string.""" exctype, value, tb = err # Skip test runner traceback levels while tb and self._is_relevant_tb_level(tb): tb = tb.tb_next if exctype is test.failureException: # Skip assert*() traceback levels length = self._count_relevant_tb_levels(tb) msgLines = traceback.format_exception(exctype, value, tb, length) else: msgLines = traceback.format_exception(exctype, value, tb) if self.buffer: output = sys.stdout.getvalue() error = sys.stderr.getvalue() if output: if not output.endswith('\n'): output += '\n' msgLines.append(STDOUT_LINE % output) if error: if not error.endswith('\n'): error += '\n' msgLines.append(STDERR_LINE % error) return ''.join(msgLines) def _is_relevant_tb_level(self, tb): #fix me brython #return '__unittest' in tb.tb_frame.f_globals return True #for now, lets just return False def _count_relevant_tb_levels(self, tb): length = 0 while tb and not self._is_relevant_tb_level(tb): length += 1 tb = tb.tb_next return length def __repr__(self): return ("<%s run=%i errors=%i failures=%i>" % (util.strclass(self.__class__), self.testsRun, len(self.errors), len(self.failures)))
marqueedev/django
refs/heads/master
tests/template_tests/filter_tests/test_yesno.py
430
from django.template.defaultfilters import yesno from django.test import SimpleTestCase class FunctionTests(SimpleTestCase): def test_true(self): self.assertEqual(yesno(True), 'yes') def test_false(self): self.assertEqual(yesno(False), 'no') def test_none(self): self.assertEqual(yesno(None), 'maybe') def test_true_arguments(self): self.assertEqual(yesno(True, 'certainly,get out of town,perhaps'), 'certainly') def test_false_arguments(self): self.assertEqual(yesno(False, 'certainly,get out of town,perhaps'), 'get out of town') def test_none_two_arguments(self): self.assertEqual(yesno(None, 'certainly,get out of town'), 'get out of town') def test_none_three_arguments(self): self.assertEqual(yesno(None, 'certainly,get out of town,perhaps'), 'perhaps')
mollstam/UnrealPy
refs/heads/master
UnrealPyEmbed/Development/Python/2015.08.07-Python2710-x64-Source-vs2015/Python27/Source/django-1.8.2/django/contrib/postgres/operations.py
111
from django.contrib.postgres.signals import register_hstore_handler from django.db.migrations.operations.base import Operation class CreateExtension(Operation): reversible = True def __init__(self, name): self.name = name def state_forwards(self, app_label, state): pass def database_forwards(self, app_label, schema_editor, from_state, to_state): schema_editor.execute("CREATE EXTENSION IF NOT EXISTS %s" % self.name) def database_backwards(self, app_label, schema_editor, from_state, to_state): schema_editor.execute("DROP EXTENSION %s" % self.name) def describe(self): return "Creates extension %s" % self.name class HStoreExtension(CreateExtension): def __init__(self): self.name = 'hstore' def database_forwards(self, app_label, schema_editor, from_state, to_state): super(HStoreExtension, self).database_forwards(app_label, schema_editor, from_state, to_state) # Register hstore straight away as it cannot be done before the # extension is installed, a subsequent data migration would use the # same connection register_hstore_handler(schema_editor.connection) class UnaccentExtension(CreateExtension): def __init__(self): self.name = 'unaccent'
binary-signal/mass-apk-installer
refs/heads/master
mass_apk/ziptools.py
1
"""Compression related functions.""" import os from zipfile import ZipFile, ZIP_DEFLATED, is_zipfile from typing import Optional, Union from pathlib import Path __all__ = ["unzipify", "zipify"] def zipify(src_path: Union[str, os.PathLike], dest_path: Union[str, os.PathLike]): """Compress a folder into a zip archive.""" with ZipFile(dest_path, "w", ZIP_DEFLATED) as zip_file: def dir_to_zip(path, out_file: ZipFile = zip_file): abs_src = os.path.abspath(path) if os.path.isdir(abs_src): apks = [ item for item in os.listdir(abs_src) if os.path.isfile(item) and item.endswith(".apk") ] for apk in apks: # don't preserver folder structure inside zip file abs_path = Path(os.path.join(abs_src, apk)) apk_name = abs_path.parts[-1] out_file.write(os.path.join(path, apk), apk_name) dir_to_zip(src_path, zip_file) def unzipify( file: Union[str, os.PathLike], dest_dir: Optional[Union[str, os.PathLike]] = None, ): """Decompress zip file into `dest_dir` path. If `dest_dir` is None use current working directory as `dest_dir` to extract data . raises ValueError if `file` arg is not a zip file. """ # create output directory if doesn't exist if dest_dir is None: dest_dir = os.getcwd() if not is_zipfile(file): raise ValueError(f"Not a zip file {file}") os.makedirs(dest_dir) with ZipFile(file, "r") as file: file.extractall(dest_dir)
fpsluozi/youtube-dl
refs/heads/master
youtube_dl/extractor/drtv.py
112
# coding: utf-8 from __future__ import unicode_literals from .common import InfoExtractor from ..utils import ( ExtractorError, parse_iso8601, ) class DRTVIE(InfoExtractor): _VALID_URL = r'https?://(?:www\.)?dr\.dk/tv/se/(?:[^/]+/)*(?P<id>[\da-z-]+)(?:[/#?]|$)' _TEST = { 'url': 'https://www.dr.dk/tv/se/boern/ultra/panisk-paske/panisk-paske-5', 'md5': 'dc515a9ab50577fa14cc4e4b0265168f', 'info_dict': { 'id': 'panisk-paske-5', 'ext': 'mp4', 'title': 'Panisk Påske (5)', 'description': 'md5:ca14173c5ab24cd26b0fcc074dff391c', 'timestamp': 1426984612, 'upload_date': '20150322', 'duration': 1455, }, } def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) if '>Programmet er ikke længere tilgængeligt' in webpage: raise ExtractorError( 'Video %s is not available' % video_id, expected=True) video_id = self._search_regex( r'data-(?:material-identifier|episode-slug)="([^"]+)"', webpage, 'video id') programcard = self._download_json( 'http://www.dr.dk/mu/programcard/expanded/%s' % video_id, video_id, 'Downloading video JSON') data = programcard['Data'][0] title = data['Title'] description = data['Description'] timestamp = parse_iso8601(data['CreatedTime']) thumbnail = None duration = None restricted_to_denmark = False formats = [] subtitles = {} for asset in data['Assets']: if asset['Kind'] == 'Image': thumbnail = asset['Uri'] elif asset['Kind'] == 'VideoResource': duration = asset['DurationInMilliseconds'] / 1000.0 restricted_to_denmark = asset['RestrictedToDenmark'] spoken_subtitles = asset['Target'] == 'SpokenSubtitles' for link in asset['Links']: uri = link['Uri'] target = link['Target'] format_id = target preference = None if spoken_subtitles: preference = -1 format_id += '-spoken-subtitles' if target == 'HDS': formats.extend(self._extract_f4m_formats( uri + '?hdcore=3.3.0&plugin=aasp-3.3.0.99.43', video_id, preference, f4m_id=format_id)) elif target == 'HLS': formats.extend(self._extract_m3u8_formats( uri, video_id, 'mp4', preference=preference, m3u8_id=format_id)) else: bitrate = link.get('Bitrate') if bitrate: format_id += '-%s' % bitrate formats.append({ 'url': uri, 'format_id': format_id, 'tbr': bitrate, 'ext': link.get('FileFormat'), }) subtitles_list = asset.get('SubtitlesList') if isinstance(subtitles_list, list): LANGS = { 'Danish': 'dk', } for subs in subtitles_list: lang = subs['Language'] subtitles[LANGS.get(lang, lang)] = [{'url': subs['Uri'], 'ext': 'vtt'}] if not formats and restricted_to_denmark: raise ExtractorError( 'Unfortunately, DR is not allowed to show this program outside Denmark.', expected=True) self._sort_formats(formats) return { 'id': video_id, 'title': title, 'description': description, 'thumbnail': thumbnail, 'timestamp': timestamp, 'duration': duration, 'formats': formats, 'subtitles': subtitles, }
legionus/billing
refs/heads/master
tests/test_database.py
1
import unithelper import uuid import time import random import unittest2 as unittest from bc import database class Test(unithelper.DBTestCase): def setUp(self): with database.DBConnect() as db: test_base_dropper = """ DROP TABLE IF EXISTS new_table; """ test_base_creator=""" CREATE TABLE new_table ( uuid varchar(36) NOT NULL PRIMARY KEY, big bigint NOT NULL, time int NOT NULL ); """ db.execute(test_base_dropper) db.execute(test_base_creator) @unittest.skipUnless(unithelper.haveDatabase(), True) def test_insert(self): """insert test""" with database.DBConnect() as db: dictionary = { 'uuid': str(uuid.uuid4()), 'big': 2**32, 'time': int(time.time()) } db.insert('new_table', dictionary) c = db.query("SELECT * FROM new_table WHERE uuid='{0}';".format(dictionary['uuid'])) self.assertEqual(dictionary, c.one()) @unittest.skipUnless(unithelper.haveDatabase(), True) def test_insert_many(self): """insert of many objects test""" with database.DBConnect() as db: l = [ { 'uuid': str(uuid.uuid4()), 'big': 2, 'time': int(time.time()) }, { 'uuid': str(uuid.uuid4()), 'big': 4, 'time': int(time.time()) }, { 'uuid': str(uuid.uuid4()), 'big': 8, 'time': int(time.time()) }, ] c = db.insert('new_table', l, returning={}) self.assertEqual(l, c.all()) def test_select_nowait(self): """test nowait scipping lock""" o = { 'uuid': str(uuid.uuid4()), 'big': 2**32, 'time': int(time.time()) } with database.DBConnect() as db: db.insert('new_table', o) with database.DBConnect(autocommit=False) as db1: db1.find('new_table', {'uuid':o['uuid']}, lock='update') with database.DBConnect() as db2: with self.assertRaises(database.OperationalError): db2.find('new_table', {'uuid':o['uuid']}, lock='update', nowait=True) def test_insert_return(self): """insert with return test""" with database.DBConnect() as db: o = { 'uuid': str(uuid.uuid4()), 'big': 2**32, 'time': int(time.time()) } c = db.insert('new_table', o, returning={}) self.assertEqual(o, c.one()) @unittest.skipUnless(unithelper.haveDatabase(), True) def test_insert_autocommit_false(self): """transaction insert test""" with database.DBConnect(autocommit=False) as db: data = [] for i in range(random.randint(5,10)): dictionary = { 'uuid': str(uuid.uuid4()), 'big': 2**32, 'time': int(time.time()) } db.insert('new_table', dictionary) data.append(dictionary) with database.DBConnect() as db1: #Must return empty set, because not commited yet self.assertEqual( set(), set(list(db1.query("SELECT * FROM new_table;").all())) ) get_id = lambda x:x['uuid'] #Must return all inserted data, because in transaction self.assertEqual( set(map(get_id, data)), set(map(get_id, db.query("SELECT * FROM new_table;").all())) ) db.commit() with database.DBConnect() as db2: #Must return all inserted data, because transaction was commited self.assertEqual( set(map(get_id, data)), set(map(get_id, db2.query("SELECT * FROM new_table;").all())) ) @unittest.skipUnless(unithelper.haveDatabase(), True) def test_update(self): """update test""" with database.DBConnect() as db: dictionary = { 'uuid': str(uuid.uuid4()), 'big': 2**32, 'time': int(time.time()) } db.insert('new_table', dictionary) dictionary['big'] = 2**30 dictionary['time'] = int(time.time()) dset = dictionary.copy() dsearch = {'uuid':dset['uuid']} del(dset['uuid']) db.update('new_table', dsearch, dset) c = db.query("SELECT * FROM new_table WHERE uuid='{0}';".format(dictionary['uuid'])) self.assertEqual(dictionary, c.one()) @unittest.skipUnless(unithelper.haveDatabase(), True) def test_update_return(self): """update with return test""" with database.DBConnect() as db: uid = str(uuid.uuid4()) ts = int(time.time()) db.insert('new_table', { 'uuid':uid, 'big':2**32, 'time':ts }) c = db.update('new_table', { 'uuid': uid }, { 'big': 2**30 }, returning={}) self.assertEqual(c.all(), [{ 'uuid':uid, 'big':2**30, 'time':ts }])
jodal/comics
refs/heads/main
comics/comics/nemibt.py
1
from comics.aggregator.crawler import CrawlerBase, CrawlerImage from comics.core.comic_data import ComicDataBase class ComicData(ComicDataBase): name = "Nemi (bt.no)" language = "no" url = "https://www.bt.no/kultur/tegneserier/" start_date = "1997-01-01" rights = "Lise Myhre" class Crawler(CrawlerBase): history_capable_date = "2008-07-01" schedule = "Mo,Tu,We,Th,Fr,Sa" time_zone = "Europe/Oslo" def crawl(self, pub_date): url = "https://cartoon-prod.schibsted.tech/nemi/{}.gif".format( pub_date.strftime("%d%m%y"), ) return CrawlerImage(url)
Orav/kbengine
refs/heads/master
kbe/res/scripts/common/Lib/test/test_userlist.py
2
# Check every path through every method of UserList from collections import UserList from test import support, list_tests class UserListTest(list_tests.CommonTest): type2test = UserList def test_getslice(self): super().test_getslice() l = [0, 1, 2, 3, 4] u = self.type2test(l) for i in range(-3, 6): self.assertEqual(u[:i], l[:i]) self.assertEqual(u[i:], l[i:]) for j in range(-3, 6): self.assertEqual(u[i:j], l[i:j]) def test_add_specials(self): u = UserList("spam") u2 = u + "eggs" self.assertEqual(u2, list("spameggs")) def test_radd_specials(self): u = UserList("eggs") u2 = "spam" + u self.assertEqual(u2, list("spameggs")) u2 = u.__radd__(UserList("spam")) self.assertEqual(u2, list("spameggs")) def test_iadd(self): super().test_iadd() u = [0, 1] u += UserList([0, 1]) self.assertEqual(u, [0, 1, 0, 1]) def test_mixedcmp(self): u = self.type2test([0, 1]) self.assertEqual(u, [0, 1]) self.assertNotEqual(u, [0]) self.assertNotEqual(u, [0, 2]) def test_mixedadd(self): u = self.type2test([0, 1]) self.assertEqual(u + [], u) self.assertEqual(u + [2], [0, 1, 2]) def test_getitemoverwriteiter(self): # Verify that __getitem__ overrides *are* recognized by __iter__ class T(self.type2test): def __getitem__(self, key): return str(key) + '!!!' self.assertEqual(next(iter(T((1,2)))), "0!!!") def test_userlist_copy(self): u = self.type2test([6, 8, 1, 9, 1]) v = u.copy() self.assertEqual(u, v) self.assertEqual(type(u), type(v)) def test_main(): support.run_unittest(UserListTest) if __name__ == "__main__": test_main()
chrishas35/django-travis-ci
refs/heads/master
tests/regressiontests/i18n/commands/compilation.py
4
import os try: from cStringIO import StringIO except ImportError: from StringIO import StringIO from django.core.management import CommandError from django.core.management.commands.compilemessages import compile_messages from django.test import TestCase from django.test.utils import override_settings from django.utils import translation test_dir = os.path.abspath(os.path.dirname(__file__)) class MessageCompilationTests(TestCase): def setUp(self): self._cwd = os.getcwd() def tearDown(self): os.chdir(self._cwd) class PoFileTests(MessageCompilationTests): LOCALE='es_AR' MO_FILE='locale/%s/LC_MESSAGES/django.mo' % LOCALE def test_bom_rejection(self): os.chdir(test_dir) # We don't use the django.core.management infrastructure (call_command() # et al) because CommandError's cause exit(1) there. We test the # underlying compile_messages function instead out = StringIO() self.assertRaises(CommandError, compile_messages, out, locale=self.LOCALE) self.assertFalse(os.path.exists(self.MO_FILE)) class PoFileContentsTests(MessageCompilationTests): # Ticket #11240 LOCALE='fr' MO_FILE='locale/%s/LC_MESSAGES/django.mo' % LOCALE def setUp(self): super(PoFileContentsTests, self).setUp() self.addCleanup(os.unlink, os.path.join(test_dir, self.MO_FILE)) def test_percent_symbol_in_po_file(self): os.chdir(test_dir) # We don't use the django.core.management infrastructure (call_command() # et al) because CommandError's cause exit(1) there. We test the # underlying compile_messages function instead out = StringIO() compile_messages(out, locale=self.LOCALE) self.assertTrue(os.path.exists(self.MO_FILE)) class PercentRenderingTests(MessageCompilationTests): # Ticket #11240 -- Testing rendering doesn't belong here but we are trying # to keep tests for all the stack together LOCALE='it' MO_FILE='locale/%s/LC_MESSAGES/django.mo' % LOCALE @override_settings(LOCALE_PATHS=(os.path.join(test_dir, 'locale'),)) def test_percent_symbol_escaping(self): from django.template import Template, Context os.chdir(test_dir) # We don't use the django.core.management infrastructure (call_command() # et al) because CommandError's cause exit(1) there. We test the # underlying compile_messages function instead out = StringIO() compile_messages(out, locale=self.LOCALE) with translation.override(self.LOCALE): t = Template('{% load i18n %}{% trans "Looks like a str fmt spec %% o but shouldn\'t be interpreted as such" %}') rendered = t.render(Context({})) self.assertEqual(rendered, 'IT translation contains %% for the above string') t = Template('{% load i18n %}{% trans "Completed 50%% of all the tasks" %}') rendered = t.render(Context({})) self.assertEqual(rendered, 'IT translation of Completed 50%% of all the tasks')
karimbahgat/Pipy
refs/heads/master
pipy/pip/__main__.py
834
from __future__ import absolute_import import os import sys # If we are running from a wheel, add the wheel to sys.path # This allows the usage python pip-*.whl/pip install pip-*.whl if __package__ == '': # __file__ is pip-*.whl/pip/__main__.py # first dirname call strips of '/__main__.py', second strips off '/pip' # Resulting path is the name of the wheel itself # Add that to sys.path so we can import pip path = os.path.dirname(os.path.dirname(__file__)) sys.path.insert(0, path) import pip # noqa if __name__ == '__main__': sys.exit(pip.main())
archyufa/CloudFerry
refs/heads/master
cloudferrylib/base/action/get_info_iter.py
2
# Copyright (c) 2014 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the License); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an AS IS BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and# # limitations under the License. from cloudferrylib.base.action import action from cloudferrylib.utils import utils as utl class GetInfoIter(action.Action): def __init__(self, init, iter_info_name='info_iter', info_name='info', resource_name=utl.INSTANCES_TYPE): self.iter_info_name = iter_info_name self.info_name = info_name self.resource_name = resource_name super(GetInfoIter, self).__init__(init) def run(self, **kwargs): info = kwargs[self.iter_info_name] objs = info[self.resource_name] obj_id = objs.keys()[0] obj = objs.pop(obj_id) new_info = { self.resource_name: {obj_id: obj} } return { self.iter_info_name: info, self.info_name: new_info }
Elucidation/schmeckle_bot
refs/heads/master
sb_helpers.py
1
# -*- coding: utf-8 -*- import re import time import locale from datetime import datetime from math import isinf # For converting from string numbers with english-based commas to floats #locale.setlocale(locale.LC_ALL, 'eng_USA') # Windows locale.setlocale(locale.LC_ALL, 'en_GB.utf8') # Linux (Raspberry Pi 2) def getResponseFooter(): return "\n\n---\n\n[^(1 Schmeckle = $148 USD)](https://www.reddit.com/r/IAmA/comments/202owt/we_are_dan_harmon_and_justin_roiland_creators_of/cfzfv79)^( | price not guaranteed |) [^(`what is my purpose`)](https://github.com/Elucidation/schmeckle_bot 'convert Schmeckles to USD')" def schmeckle2usd(schmeckle): """1 Schmeckle = $148 USD https://www.reddit.com/r/IAmA/comments/202owt/we_are_dan_harmon_and_justin_roiland_creators_of/cfzfv79""" return schmeckle * 148.0 def getValue(value_str): # Strings with more than 9000 characters are considered too big to handle so # we don't run into char limits when generating a reply if (len(value_str)) > 9000: value = locale.atof('inf') else: value = locale.atof(value_str) return value def getCommentDepth(comment): depth = 0 while not comment.is_root: comment = comment.parent() depth += 1 return depth def generateResponseMessage(search_result): match = search_result.groups()[1] # Middle group value_str = match.split()[0] if len(match) > 1000 or len(value_str) > 300: # message or value was too big, generate a different message msg = u"# **Nope.**\n" else: value = getValue(value_str) # pass found value string usd = schmeckle2usd(value) quote = u"> ... {}{}{} ...".format(search_result.groups()[0], match, search_result.groups()[2]) if value > 1e15: msg = u"{}\n\n* {:,g} Schmeckles → **${:,g} USD**\n".format( quote, value, usd) elif value.is_integer(): msg = u"{}\n\n* {:,d} Schmeckles → **${:,d} USD**\n".format( quote, int(value), int(usd)) else: msg = u"{}\n\n* {:,.8g} Schmeckles → **${:,.2f} USD**\n".format( quote, value, usd) return u"{}{}".format(msg, getResponseFooter()) # Look for '<number> schmeckle' ignore case (schmeckles accepted implicitly) # Also handles common mispellings of schmeckle # Works for positive negative floats, but fails softly on EXP # Also catches neighboring region around it # p = re.compile('(-?[\d|,]*\.{0,1}\d+ sc?hmeck?(?:le|el)[\w]{0,80})', re.IGNORECASE) # Ignore numbers > 300 chars on either side of decimal # Also require a question-mark in statement p = re.compile('([^\n\.\,\r\d-]{0,30})(-?[\d|,]{0,300}\.{0,1}\d{1,300} schmeckle[\w]{0,80})([^\n\.\,\r\d-]{0,30})', re.IGNORECASE) def searchForSchmeckles(body_text): if any([x in body_text.lower() for x in ['?', 'how much', 'what is']]): return p.search(body_text) return None # Check if comment has a comment by this bot already, or is a comment by bot def previouslyRepliedTo(comment, me): # Check if comment author is self, skip if so if comment.author == me: return True # Check if author of parent of comment is self if comment.parent().author == me: # Check if comment contains github self-link, skip if so as it's probably # a quote if 'github.com/Elucidation/schmeckle_bot' in comment.body: return True comment.refresh() # So we can see replies for reply in comment.replies.list(): if reply.author == me: return True return False def waitWithComments(sleep_time, segment=60): """Sleep for sleep_time seconds, printing to stdout every segment of time""" print("\t%s - %s seconds to go..." % (datetime.now(), sleep_time)) while sleep_time > segment: time.sleep(segment) # sleep in increments of 1 minute sleep_time -= segment print("\t%s - %s seconds to go..." % (datetime.now(), sleep_time)) time.sleep(sleep_time) def logMessage(comment, status=""): print("{} | {} {}: {}".format(datetime.now(), comment.id, status, comment.body[:80].replace('\n','\\n').encode('utf-8')))
jymannob/CouchPotatoServer
refs/heads/develop
libs/suds/umx/basic.py
211
# This program is free software; you can redistribute it and/or modify # it under the terms of the (LGPL) GNU Lesser General Public License as # published by the Free Software Foundation; either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library Lesser General Public License for more details at # ( http://www.gnu.org/licenses/lgpl.html ). # # You should have received a copy of the GNU Lesser General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # written by: Jeff Ortel ( jortel@redhat.com ) """ Provides basic unmarshaller classes. """ from logging import getLogger from suds import * from suds.umx import * from suds.umx.core import Core class Basic(Core): """ A object builder (unmarshaller). """ def process(self, node): """ Process an object graph representation of the xml I{node}. @param node: An XML tree. @type node: L{sax.element.Element} @return: A suds object. @rtype: L{Object} """ content = Content(node) return Core.process(self, content)
zisko/swift
refs/heads/master
utils/pass-pipeline/src/passes.py
22
from pass_pipeline import Pass # TODO: This should not be hard coded. Create a tool in the compiler that knows # how to dump the passes and the pipelines themselves. AADumper = Pass('AADumper') ABCOpt = Pass('ABCOpt') AddressLowering = Pass('AddressLowering') AllocBoxToStack = Pass('AllocBoxToStack') CFGPrinter = Pass('CFGPrinter') COWArrayOpts = Pass('COWArrayOpts') CSE = Pass('CSE') CapturePromotion = Pass('CapturePromotion') CapturePropagation = Pass('CapturePropagation') ClosureSpecializer = Pass('ClosureSpecializer') CodeMotion = Pass('CodeMotion') CopyForwarding = Pass('CopyForwarding') DCE = Pass('DCE') DeadFunctionElimination = Pass('DeadFunctionElimination') DeadObjectElimination = Pass('DeadObjectElimination') DefiniteInitialization = Pass('DefiniteInitialization') DiagnoseUnreachable = Pass('DiagnoseUnreachable') DiagnosticConstantPropagation = Pass('DiagnosticConstantPropagation') EarlyInliner = Pass('EarlyInliner') EmitDFDiagnostics = Pass('EmitDFDiagnostics') FunctionSignatureOpts = Pass('FunctionSignatureOpts') GlobalARCOpts = Pass('GlobalARCOpts') GlobalLoadStoreOpts = Pass('GlobalLoadStoreOpts') GlobalOpt = Pass('GlobalOpt') IVInfoPrinter = Pass('IVInfoPrinter') InstCount = Pass('InstCount') LICM = Pass('LICM') LateInliner = Pass('LateInliner') LoopInfoPrinter = Pass('LoopInfoPrinter') LoopRotate = Pass('LoopRotate') LowerAggregateInstrs = Pass('LowerAggregateInstrs') MandatoryInlining = Pass('MandatoryInlining') Mem2Reg = Pass('Mem2Reg') NoReturnFolding = Pass('NoReturnFolding') PerfInliner = Pass('PerfInliner') PerformanceConstantPropagation = Pass('PerformanceConstantPropagation') PredictableMemoryOptimizations = Pass('PredictableMemoryOptimizations') SILCleanup = Pass('SILCleanup') SILCombine = Pass('SILCombine') SILLinker = Pass('SILLinker') SROA = Pass('SROA') SimplifyCFG = Pass('SimplifyCFG') SpeculativeDevirtualizer = Pass('SpeculativeDevirtualizer') SplitAllCriticalEdges = Pass('SplitAllCriticalEdges') SplitNonCondBrCriticalEdges = Pass('SplitNonCondBrCriticalEdges') StripDebugInfo = Pass('StripDebugInfo') SwiftArrayOpts = Pass('SwiftArrayOpts') PASSES = [ AADumper, ABCOpt, AddressLowering, AllocBoxToStack, CFGPrinter, COWArrayOpts, CSE, CapturePromotion, CapturePropagation, ClosureSpecializer, CodeMotion, CopyForwarding, DCE, DeadFunctionElimination, DeadObjectElimination, DefiniteInitialization, DiagnoseUnreachable, DiagnosticConstantPropagation, EarlyInliner, EmitDFDiagnostics, FunctionSignatureOpts, GlobalARCOpts, GlobalLoadStoreOpts, GlobalOpt, IVInfoPrinter, InstCount, LICM, LateInliner, LoopInfoPrinter, LoopRotate, LowerAggregateInstrs, MandatoryInlining, Mem2Reg, NoReturnFolding, PerfInliner, PerformanceConstantPropagation, PredictableMemoryOptimizations, SILCleanup, SILCombine, SILLinker, SROA, SimplifyCFG, SpeculativeDevirtualizer, SplitAllCriticalEdges, SplitNonCondBrCriticalEdges, StripDebugInfo, SwiftArrayOpts, ]
mmnelemane/neutron
refs/heads/master
neutron/tests/unit/db/test_securitygroups_db.py
30
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import mock import testtools from neutron.callbacks import exceptions from neutron.callbacks import registry from neutron import context from neutron.db import common_db_mixin from neutron.db import securitygroups_db from neutron.extensions import securitygroup from neutron.tests.unit import testlib_api class SecurityGroupDbMixinImpl(securitygroups_db.SecurityGroupDbMixin, common_db_mixin.CommonDbMixin): pass class SecurityGroupDbMixinTestCase(testlib_api.SqlTestCase): def setUp(self): super(SecurityGroupDbMixinTestCase, self).setUp() self.ctx = context.get_admin_context() self.mixin = SecurityGroupDbMixinImpl() def test_create_security_group_conflict(self): with mock.patch.object(registry, "notify") as mock_notify: mock_notify.side_effect = exceptions.CallbackFailure(Exception()) secgroup = {'security_group': mock.ANY} with testtools.ExpectedException( securitygroup.SecurityGroupConflict): self.mixin.create_security_group(self.ctx, secgroup) def test_delete_security_group_in_use(self): with mock.patch.object(self.mixin, '_get_port_security_group_bindings'),\ mock.patch.object(self.mixin, '_get_security_group'),\ mock.patch.object(registry, "notify") as mock_notify: mock_notify.side_effect = exceptions.CallbackFailure(Exception()) with testtools.ExpectedException( securitygroup.SecurityGroupInUse): self.mixin.delete_security_group(self.ctx, mock.ANY) def test_update_security_group_conflict(self): with mock.patch.object(registry, "notify") as mock_notify: mock_notify.side_effect = exceptions.CallbackFailure(Exception()) secgroup = {'security_group': mock.ANY} with testtools.ExpectedException( securitygroup.SecurityGroupConflict): self.mixin.update_security_group(self.ctx, 'foo_id', secgroup) def test_create_security_group_rule_conflict(self): with mock.patch.object(self.mixin, '_validate_security_group_rule'),\ mock.patch.object(self.mixin, '_check_for_duplicate_rules_in_db'),\ mock.patch.object(registry, "notify") as mock_notify: mock_notify.side_effect = exceptions.CallbackFailure(Exception()) with testtools.ExpectedException( securitygroup.SecurityGroupConflict): self.mixin.create_security_group_rule( self.ctx, mock.MagicMock()) def test_delete_security_group_rule_in_use(self): with mock.patch.object(registry, "notify") as mock_notify: mock_notify.side_effect = exceptions.CallbackFailure(Exception()) with testtools.ExpectedException( securitygroup.SecurityGroupRuleInUse): self.mixin.delete_security_group_rule(self.ctx, mock.ANY) def test_delete_security_group_rule_raise_error_on_not_found(self): with testtools.ExpectedException( securitygroup.SecurityGroupRuleNotFound): self.mixin.delete_security_group_rule(self.ctx, 'foo_rule')
jackchi/interview-prep
refs/heads/master
trees/tree_trace.py
1
# Your previous Plain Text content is preserved below: # # ValueError ValueError ValueError # | | | | # foo foo -> foo zoo # | | / \ | # bar baz bar baz far # # # ValueError # | # zoo # | # var # # Given the list of exception traces. Merge them into a tree given a prefix merge criterion # illustrated above. # # Input -> k lists of exception traces # OUtput -> Tree # # // ["ValueError", "foo", "bar"] # // if tree's values doesn't contain exception or if node is null: # // create node[String] # // recurse pass children # Tree merge (List<List<String>> ets) # # # TODO: # Change list_of_nodes into dictionary Class ExceptionNode(object): def __init__(self, trace_name, list_of_nodes = {}): """ :type: :type: """ self.trace_name = trace_name self.list_of_nodes = list_of_nodes def addTrace(self, node): self.list_of_nodes.append(node) def getTraceName(self): pass def getNodes(self): return self.list_of_nodes def findNode(self, test_trace): for t in list_of_nodes: if t.getTraceName() == test_trace: return t return None trace1 = [] trace2 = [] def merge(list_of_exceptions): # ValueError as first stack_tree = ExceptionNode(list_of_exceptions[0][0]) root = stack_tree # Depth-first approach for trace in list_of_exceptions: for exp in trace[1:]: if exp is not in stack_tree.getNodes(): new_exp_tree = ExceptionNode(exp) stack_tree.addTrace(new_exp_tree) stack_tree = new_exp_tree else: stack_tree = stack_tree.findNode(exp) stack_tree = root return root
fjfnaranjo/fjfnaranjo-bot
refs/heads/dev
tests/test_auth.py
1
from contextlib import contextmanager from unittest import TestCase from unittest.mock import patch, sentinel from telegram.ext.dispatcher import DispatcherHandlerStop from fjfnaranjobot.auth import friends, logger, only_friends, only_owner, only_real from fjfnaranjobot.common import SORRY_TEXT, User from .base import ( BOT_USER, FIRST_FRIEND_USER, OWNER_USER, SECOND_FRIEND_USER, UNKNOWN_USER, BotHandlerTestCase, BotTestCase, ) MODULE_PATH = "fjfnaranjobot.auth" class AuthTests(BotHandlerTestCase): def test_only_real_no_user_no_message(self): noop = only_real(lambda _update, _context: True) self.user_is_none(remove_message=True) with self.assertLogs(logger) as logs: with self.assertRaises(DispatcherHandlerStop): noop(*self.update_and_context) assert ( "Message received with no user " "trying to access a only_real command. " "Command text: '<unknown>' (cropped to 10 chars)." ) in logs.output[0] def test_only_real_no_user_empty_command(self): noop = only_real(lambda _update, _context: True) self.user_is_none(remove_text=True) with self.assertLogs(logger) as logs: with self.assertRaises(DispatcherHandlerStop): noop(*self.update_and_context) assert ( "Message received with no user " "trying to access a only_real command. " "Command text: '<empty>' (cropped to 10 chars)." ) in logs.output[0] self.assert_message_chat_text(sentinel.chat_id_from_update, SORRY_TEXT) def test_only_real_no_user(self): noop = only_real(lambda _update, _context: True) self.user_is_none() self.set_string_command("cmd") with self.assertLogs(logger) as logs: with self.assertRaises(DispatcherHandlerStop): noop(*self.update_and_context) assert ( "Message received with no user " "trying to access a only_real command. " "Command text: 'cmd' (cropped to 10 chars)." ) in logs.output[0] self.assert_message_chat_text(sentinel.chat_id_from_update, SORRY_TEXT) def test_only_real_bot_no_message(self): noop = only_real(lambda _update, _context: True) self.user_is_bot(remove_message=True) with self.assertLogs(logger) as logs: with self.assertRaises(DispatcherHandlerStop): noop(*self.update_and_context) assert ( f"Bot with username {BOT_USER.username} and id {BOT_USER.id} " "tried to access a only_real command. " "Command text: '<unknown>' (cropped to 10 chars)." ) in logs.output[0] def test_only_real_bot_empty_command(self): noop = only_real(lambda _update, _context: True) self.user_is_bot(remove_text=True) with self.assertLogs(logger) as logs: with self.assertRaises(DispatcherHandlerStop): noop(*self.update_and_context) assert ( f"Bot with username {BOT_USER.username} and id {BOT_USER.id} " "tried to access a only_real command. " "Command text: '<empty>' (cropped to 10 chars)." ) in logs.output[0] self.assert_message_chat_text(sentinel.chat_id_from_update, SORRY_TEXT) def test_only_real_bot(self): noop = only_real(lambda _update, _context: True) self.user_is_bot() self.set_string_command("cmd") with self.assertLogs(logger) as logs: with self.assertRaises(DispatcherHandlerStop): noop(*self.update_and_context) assert ( f"Bot with username {BOT_USER.username} and id {BOT_USER.id} " "tried to access a only_real command. " "Command text: 'cmd' (cropped to 10 chars)." ) in logs.output[0] def test_only_real_user_ok(self): noop = only_real(lambda _update, _context: True) assert noop(*self.update_and_context) is True self.assert_message_calls([]) def test_only_owner_no_message(self): noop = only_owner(lambda _update, _context: True) self.user_is_unknown(remove_message=True) with self.assertLogs(logger) as logs: with self.assertRaises(DispatcherHandlerStop): noop(*self.update_and_context) assert ( f"User u with id {UNKNOWN_USER.id} " "tried to access a only_owner command. " "Command text: '<unknown>' (cropped to 10 chars)." ) in logs.output[0] def test_only_owner_empty_command(self): noop = only_owner(lambda _update, _context: True) self.user_is_unknown(remove_text=True) with self.assertLogs(logger) as logs: with self.assertRaises(DispatcherHandlerStop): noop(*self.update_and_context) assert ( f"User u with id {UNKNOWN_USER.id} " "tried to access a only_owner command. " "Command text: '<empty>' (cropped to 10 chars)." ) in logs.output[0] self.assert_message_chat_text(sentinel.chat_id_from_update, SORRY_TEXT) def test_only_owner_no_owner(self): noop = only_owner(lambda _update, _context: True) self.set_string_command("cmd") with self.assertLogs(logger) as logs: with self.assertRaises(DispatcherHandlerStop): assert noop(*self.update_and_context) is None assert ( f"User u with id {UNKNOWN_USER.id} " "tried to access a only_owner command. " "Command text: 'cmd' (cropped to 10 chars)." ) in logs.output[0] self.assert_message_chat_text(sentinel.chat_id_from_update, SORRY_TEXT) def test_only_owner_ok(self): noop = only_owner(lambda _update, _context: True) self.user_is_owner() assert noop(*self.update_and_context) is True self.assert_message_calls([]) def test_only_friends_no_message(self): noop = only_friends(lambda _update, _context: True) self.user_is_unknown(remove_message=True) with self.assertLogs(logger) as logs: with self.assertRaises(DispatcherHandlerStop): noop(*self.update_and_context) assert ( f"User u with id {UNKNOWN_USER.id} " "tried to access a only_friends command. " "Command text: '<unknown>' (cropped to 10 chars)." ) in logs.output[0] def test_only_friends_empty_command(self): noop = only_friends(lambda _update, _context: True) self.user_is_unknown(remove_text=True) with self.assertLogs(logger) as logs: with self.assertRaises(DispatcherHandlerStop): noop(*self.update_and_context) assert ( f"User u with id {UNKNOWN_USER.id} " "tried to access a only_friends command. " "Command text: '<empty>' (cropped to 10 chars)." ) in logs.output[0] self.assert_message_chat_text(sentinel.chat_id_from_update, SORRY_TEXT) def test_only_friends_not_friend(self): noop = only_friends(lambda _update, _context: True) self.set_string_command("cmd") with self.set_friends([FIRST_FRIEND_USER]): with self.assertLogs(logger) as logs: with self.assertRaises(DispatcherHandlerStop): noop(*self.update_and_context) assert ( f"User u with id {UNKNOWN_USER.id} " "tried to access a only_friends command. " "Command text: 'cmd' (cropped to 10 chars)." ) in logs.output[0] self.assert_message_chat_text(sentinel.chat_id_from_update, SORRY_TEXT) def test_only_friends_ok(self): noop = only_friends(lambda _update, _context: True) self.user_is_friend(FIRST_FRIEND_USER) with self.set_friends([FIRST_FRIEND_USER]): assert noop(*self.update_and_context) is True self.assert_message_calls([]) def test_only_owner_not_defined_no_message(self): with self.mocked_environ("fjfnaranjobot.auth.environ", None, ["BOT_OWNER_ID"]): noop = only_owner(lambda _update, _context: True) self.user_is_owner(remove_message=True) with self.assertLogs(logger) as logs: with self.assertRaises(DispatcherHandlerStop): assert noop(*self.update_and_context) is None assert ( f"User o with id {OWNER_USER.id} " "tried to access a only_owner command. " "Command text: '<unknown>' (cropped to 10 chars)." ) in logs.output[0] def test_only_owner_not_defined_empty_command(self): with self.mocked_environ("fjfnaranjobot.auth.environ", None, ["BOT_OWNER_ID"]): noop = only_owner(lambda _update, _context: True) self.user_is_owner(remove_text=True) with self.assertLogs(logger) as logs: with self.assertRaises(DispatcherHandlerStop): assert noop(*self.update_and_context) is None assert ( f"User o with id {OWNER_USER.id} " "tried to access a only_owner command. " "Command text: '<empty>' (cropped to 10 chars)." ) in logs.output[0] self.assert_message_chat_text(sentinel.chat_id_from_update, SORRY_TEXT) def test_only_owner_not_defined(self): with self.mocked_environ("fjfnaranjobot.auth.environ", None, ["BOT_OWNER_ID"]): noop = only_owner(lambda _update, _context: True) self.user_is_owner() self.set_string_command("cmd") with self.assertLogs(logger) as logs: with self.assertRaises(DispatcherHandlerStop): assert noop(*self.update_and_context) is None assert ( f"User o with id {OWNER_USER.id} " "tried to access a only_owner command. " "Command text: 'cmd' (cropped to 10 chars)." ) in logs.output[0] self.assert_message_chat_text(sentinel.chat_id_from_update, SORRY_TEXT) class FriendsTests(TestCase): def setUp(self): super().setUp() friends.clear() @contextmanager def friends(self, friends_list): friends.clear() for friend in friends_list: friends.add(friend) yield friends.clear() def test_le_not_implemented(self): with self.assertRaises(NotImplementedError): bool(friends <= 0) def test_no_friends(self): assert 0 == len(friends) def test_one_friend(self): with self.friends([FIRST_FRIEND_USER]): assert 1 == len(friends) assert FIRST_FRIEND_USER in friends def test_auth_get_friends_many_friends(self): with self.friends([FIRST_FRIEND_USER, SECOND_FRIEND_USER]): assert 2 == len(friends) assert FIRST_FRIEND_USER in friends assert SECOND_FRIEND_USER in friends def test_auth_get_friends_many_friends_sorted(self): with self.friends([SECOND_FRIEND_USER, FIRST_FRIEND_USER]): first_friend, second_friend = friends.sorted() assert FIRST_FRIEND_USER.id == first_friend.id assert SECOND_FRIEND_USER.id == second_friend.id def test_auth_add_friend(self): friends.add(FIRST_FRIEND_USER) assert 1 == len(friends) assert FIRST_FRIEND_USER in friends def test_auth_add_friend_already_friend(self): with self.friends([FIRST_FRIEND_USER]): friends.add(User(FIRST_FRIEND_USER.id, "x")) assert 1 == len(friends) assert FIRST_FRIEND_USER in friends for friend in friends: assert "x" == friend.username def test_auth_add_friend_is_owner(self): friends.add(OWNER_USER) assert 1 == len(friends) assert OWNER_USER in friends def test_auth_del_friend_not_friends(self): friends.discard(FIRST_FRIEND_USER) assert 0 == len(friends) def test_auth_del_friend_not_a_friend(self): with self.friends([FIRST_FRIEND_USER]): friends.discard(SECOND_FRIEND_USER) assert 1 == len(friends) assert FIRST_FRIEND_USER in friends def test_auth_del_friend_one_friend(self): with self.friends([FIRST_FRIEND_USER, SECOND_FRIEND_USER]): friends.discard(FIRST_FRIEND_USER) assert 1 == len(friends) assert SECOND_FRIEND_USER in friends def test_auth_del_friend_last_friend(self): with self.friends([FIRST_FRIEND_USER]): friends.discard(FIRST_FRIEND_USER) assert 0 == len(friends)
fritsvanveen/QGIS
refs/heads/master
python/plugins/db_manager/db_plugins/__init__.py
3
# -*- coding: utf-8 -*- """ /*************************************************************************** Name : DB Manager Description : Database manager plugin for QGIS Date : May 23, 2011 copyright : (C) 2011 by Giuseppe Sucameli email : brush.tyler@gmail.com ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ """ from builtins import str class NotSupportedDbType(Exception): def __init__(self, dbtype): self.msg = self.tr("%s is not supported yet") % dbtype Exception(self, self.msg) def __str__(self): return self.msg.encode('utf-8') def initDbPluginList(): import os current_dir = os.path.dirname(__file__) for name in os.listdir(current_dir): if name == '__pycache__': continue if not os.path.isdir(os.path.join(current_dir, name)): continue try: exec(u"from .%s import plugin as mod" % name, globals()) except ImportError as e: DBPLUGIN_ERRORS.append(u"%s: %s" % (name, str(e))) continue pluginclass = mod.classFactory() # NOQA SUPPORTED_DBTYPES[pluginclass.typeName()] = pluginclass return len(SUPPORTED_DBTYPES) > 0 def supportedDbTypes(): return sorted(SUPPORTED_DBTYPES.keys()) def getDbPluginErrors(): return DBPLUGIN_ERRORS def createDbPlugin(dbtype, conn_name=None): if dbtype not in SUPPORTED_DBTYPES: raise NotSupportedDbType(dbtype) dbplugin = SUPPORTED_DBTYPES[dbtype] return dbplugin if conn_name is None else dbplugin(conn_name) # initialize the plugin list SUPPORTED_DBTYPES = {} DBPLUGIN_ERRORS = [] initDbPluginList()
jn7163/django
refs/heads/master
tests/expressions/models.py
261
""" Tests for F() query expression syntax. """ from __future__ import unicode_literals from django.db import models from django.utils.encoding import python_2_unicode_compatible @python_2_unicode_compatible class Employee(models.Model): firstname = models.CharField(max_length=50) lastname = models.CharField(max_length=50) salary = models.IntegerField(blank=True, null=True) def __str__(self): return '%s %s' % (self.firstname, self.lastname) @python_2_unicode_compatible class Company(models.Model): name = models.CharField(max_length=100) num_employees = models.PositiveIntegerField() num_chairs = models.PositiveIntegerField() ceo = models.ForeignKey( Employee, models.CASCADE, related_name='company_ceo_set') point_of_contact = models.ForeignKey( Employee, models.SET_NULL, related_name='company_point_of_contact_set', null=True) def __str__(self): return self.name @python_2_unicode_compatible class Number(models.Model): integer = models.BigIntegerField(db_column='the_integer') float = models.FloatField(null=True, db_column='the_float') def __str__(self): return '%i, %.3f' % (self.integer, self.float) class Experiment(models.Model): name = models.CharField(max_length=24) assigned = models.DateField() completed = models.DateField() estimated_time = models.DurationField() start = models.DateTimeField() end = models.DateTimeField() class Meta: ordering = ('name',) def duration(self): return self.end - self.start @python_2_unicode_compatible class Time(models.Model): time = models.TimeField(null=True) def __str__(self): return "%s" % self.time @python_2_unicode_compatible class UUID(models.Model): uuid = models.UUIDField(null=True) def __str__(self): return "%s" % self.uuid
rupran/ansible
refs/heads/devel
lib/ansible/utils/module_docs_fragments/asa.py
123
# # (c) 2016, Peter Sprygada <psprygada@ansible.com> # (c) 2016, Patrick Ogenstad <@ogenstad> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. class ModuleDocFragment(object): # Standard files documentation fragment DOCUMENTATION = """ options: authorize: description: - Instructs the module to enter privileged mode on the remote device before sending any commands. If not specified, the device will attempt to execute all commands in non-privileged mode. If the value is not specified in the task, the value of environment variable C(ANSIBLE_NET_AUTHORIZE) will be used instead. default: no choices: ['yes', 'no'] context: description: - Specifies which context to target if you are running in the ASA in multiple context mode. Defaults to the current context you login to. default: null provider: description: - A dict object containing connection details. default: null suboptions: host: description: - Specifies the DNS host name or address for connecting to the remote device over the specified transport. The value of host is used as the destination address for the transport. port: description: - Specifies the port to use when building the connection to the remote device. default: 22 username: description: - Configures the username to use to authenticate the connection to the remote device. This value is used to authenticate the SSH session. If the value is not specified in the task, the value of environment variable C(ANSIBLE_NET_USERNAME) will be used instead. password: description: - Specifies the password to use to authenticate the connection to the remote device. This value is used to authenticate the SSH session. If the value is not specified in the task, the value of environment variable C(ANSIBLE_NET_PASSWORD) will be used instead. default: null ssh_keyfile: description: - Specifies the SSH key to use to authenticate the connection to the remote device. This value is the path to the key used to authenticate the SSH session. If the value is not specified in the task, the value of environment variable C(ANSIBLE_NET_SSH_KEYFILE) will be used instead. authorize: description: - Instructs the module to enter privileged mode on the remote device before sending any commands. If not specified, the device will attempt to execute all commands in non-privileged mode. If the value is not specified in the task, the value of environment variable C(ANSIBLE_NET_AUTHORIZE) will be used instead. default: no choices: ['yes', 'no'] auth_pass: description: - Specifies the password to use if required to enter privileged mode on the remote device. If I(authorize) is false, then this argument does nothing. If the value is not specified in the task, the value of environment variable C(ANSIBLE_NET_AUTH_PASS) will be used instead. default: none timeout: description: - Specifies idle timeout in seconds for the connection, in seconds. Useful if the console freezes before continuing. For example when saving configurations. default: 10 """
eayunstack/ceilometer
refs/heads/master
ceilometer/tests/unit/compute/pollsters/test_location_metadata.py
6
# # Copyright 2012 eNovance <licensing@enovance.com> # Copyright 2012 Red Hat, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Tests for the compute pollsters. """ import mock from oslotest import base import six from ceilometer.agent import manager from ceilometer.compute.pollsters import util class FauxInstance(object): def __init__(self, **kwds): for name, value in kwds.items(): setattr(self, name, value) def __getitem__(self, key): return getattr(self, key) def get(self, key, default): try: return getattr(self, key) except AttributeError: return default class TestLocationMetadata(base.BaseTestCase): @mock.patch('ceilometer.pipeline.setup_pipeline', mock.MagicMock()) def setUp(self): self.manager = manager.AgentManager() super(TestLocationMetadata, self).setUp() # Mimics an instance returned from nova api call self.INSTANCE_PROPERTIES = {'name': 'display name', 'id': ('234cbe81-4e09-4f64-9b2a-' '714f6b9046e3'), 'OS-EXT-SRV-ATTR:instance_name': 'instance-000001', 'OS-EXT-AZ:availability_zone': 'foo-zone', 'reservation_id': 'reservation id', 'architecture': 'x86_64', 'kernel_id': 'kernel id', 'os_type': 'linux', 'ramdisk_id': 'ramdisk id', 'status': 'active', 'ephemeral_gb': 0, 'root_gb': 20, 'disk_gb': 20, 'image': {'id': 1, 'links': [{"rel": "bookmark", 'href': 2}]}, 'hostId': '1234-5678', 'flavor': {'name': 'm1.tiny', 'id': 1, 'disk': 20, 'ram': 512, 'vcpus': 2, 'ephemeral': 0}, 'metadata': {'metering.autoscale.group': 'X' * 512, 'metering.ephemeral_gb': 42}} self.instance = FauxInstance(**self.INSTANCE_PROPERTIES) def test_metadata(self): md = util._get_metadata_from_object(self.instance) for prop, value in six.iteritems(self.INSTANCE_PROPERTIES): if prop not in ("metadata"): # Special cases if prop == 'name': prop = 'display_name' elif prop == 'hostId': prop = "host" elif prop == 'OS-EXT-SRV-ATTR:instance_name': prop = 'name' elif prop == "id": prop = "instance_id" self.assertEqual(value, md[prop]) user_metadata = md['user_metadata'] expected = self.INSTANCE_PROPERTIES[ 'metadata']['metering.autoscale.group'][:256] self.assertEqual(expected, user_metadata['autoscale_group']) self.assertEqual(1, len(user_metadata)) def test_metadata_empty_image(self): self.INSTANCE_PROPERTIES['image'] = None self.instance = FauxInstance(**self.INSTANCE_PROPERTIES) md = util._get_metadata_from_object(self.instance) self.assertIsNone(md['image']) self.assertIsNone(md['image_ref']) self.assertIsNone(md['image_ref_url']) def test_metadata_image_through_conductor(self): # There should be no links here, should default to None self.INSTANCE_PROPERTIES['image'] = {'id': 1} self.instance = FauxInstance(**self.INSTANCE_PROPERTIES) md = util._get_metadata_from_object(self.instance) self.assertEqual(1, md['image_ref']) self.assertIsNone(md['image_ref_url'])
Adnn/django
refs/heads/master
django/core/mail/backends/dummy.py
835
""" Dummy email backend that does nothing. """ from django.core.mail.backends.base import BaseEmailBackend class EmailBackend(BaseEmailBackend): def send_messages(self, email_messages): return len(list(email_messages))
sonaht/ansible
refs/heads/devel
lib/ansible/modules/cloud/ovirt/ovirt_affinity_labels_facts.py
45
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (c) 2016 Red Hat, Inc. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: ovirt_affinity_labels_facts short_description: Retrieve facts about one or more oVirt/RHV affinity labels author: "Ondra Machacek (@machacekondra)" version_added: "2.3" description: - "Retrieve facts about one or more oVirt/RHV affinity labels." notes: - "This module creates a new top-level C(ovirt_affinity_labels) fact, which contains a list of affinity labels." options: name: description: - "Name of the affinity labels which should be listed." vm: description: - "Name of the VM, which affinity labels should be listed." host: description: - "Name of the host, which affinity labels should be listed." extends_documentation_fragment: ovirt_facts ''' EXAMPLES = ''' # Examples don't contain auth parameter for simplicity, # look at ovirt_auth module to see how to reuse authentication: # Gather facts about all affinity labels, which names start with C(label): - ovirt_affinity_labels_facts: name: label* - debug: var: affinity_labels # Gather facts about all affinity labels, which are assigned to VMs # which names start with C(postgres): - ovirt_affinity_labels_facts: vm: postgres* - debug: var: affinity_labels # Gather facts about all affinity labels, which are assigned to hosts # which names start with C(west): - ovirt_affinity_labels_facts: host: west* - debug: var: affinity_labels # Gather facts about all affinity labels, which are assigned to hosts # which names start with C(west) or VMs which names start with C(postgres): - ovirt_affinity_labels_facts: host: west* vm: postgres* - debug: var: affinity_labels ''' RETURN = ''' ovirt_affinity_labels: description: "List of dictionaries describing the affinity labels. Affinity labels attribues are mapped to dictionary keys, all affinity labels attributes can be found at following url: http://ovirt.github.io/ovirt-engine-api-model/master/#types/affinity_label." returned: On success. type: list ''' import fnmatch import traceback from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.ovirt import ( check_sdk, create_connection, get_dict_of_struct, ovirt_facts_full_argument_spec, ) def main(): argument_spec = ovirt_facts_full_argument_spec( name=dict(default=None), host=dict(default=None), vm=dict(default=None), ) module = AnsibleModule(argument_spec) check_sdk(module) try: auth = module.params.pop('auth') connection = create_connection(auth) affinity_labels_service = connection.system_service().affinity_labels_service() labels = [] all_labels = affinity_labels_service.list() if module.params['name']: labels.extend([ l for l in all_labels if fnmatch.fnmatch(l.name, module.params['name']) ]) if module.params['host']: hosts_service = connection.system_service().hosts_service() labels.extend([ label for label in all_labels for host in connection.follow_link(label.hosts) if fnmatch.fnmatch(hosts_service.service(host.id).get().name, module.params['host']) ]) if module.params['vm']: vms_service = connection.system_service().vms_service() labels.extend([ label for label in all_labels for vm in connection.follow_link(label.vms) if fnmatch.fnmatch(vms_service.service(vm.id).get().name, module.params['vm']) ]) if not (module.params['vm'] or module.params['host'] or module.params['name']): labels = all_labels module.exit_json( changed=False, ansible_facts=dict( ovirt_affinity_labels=[ get_dict_of_struct( struct=l, connection=connection, fetch_nested=module.params.get('fetch_nested'), attributes=module.params.get('nested_attributes'), ) for l in labels ], ), ) except Exception as e: module.fail_json(msg=str(e), exception=traceback.format_exc()) finally: connection.close(logout=auth.get('token') is None) if __name__ == '__main__': main()
alexei-matveev/ccp1gui
refs/heads/master
interfaces/mndo.py
1
# # This file is part of the CCP1 Graphical User Interface (ccp1gui) # # (C) 2002-2007 CCLRC Daresbury Laboratory # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. # import os,sys if __name__ == "__main__": # Need to add the gui directory to the python path so # that all the modules can be imported gui_path = os.path.split(os.path.dirname( os.path.realpath( __file__ ) ))[0] sys.path.append(gui_path) else: from viewer.paths import gui_path # Import python modules import unittest # Import our modules import qm import tools import viewer import objects import jobmanager from objects.periodic import z_to_el # Import external modules import Tkinter import Pmw homolumoa = 0 MENU_ENER = "Energy" MENU_GRAD = "Gradient" MENU_OPT = "Geometry Optimisation" class MNDOCalc(qm.QMCalc): """MNDO specific calculation class""" def __init__(self,**kw): qm.QMCalc.__init__(self,**kw) self.set_name('unnamed') self.set_parameter("task",MENU_ENER) self.set_parameter("theory","AM1") self.set_parameter("symmetry",1) self.set_parameter("scf_method","rhf") self.set_parameter("hamiltonian","am1") self.set_parameter("basis","STO") self.set_parameter("scf_maxcyc","200") self.set_parameter("restart","0") self.set_parameter("accuracy","medium") self.set_output("ana_frequencies",0) # need to replace with MNDO's accuracy parameter self.set_parameter("scf_threshold",6) # this stuff almost certainly shouldnt be here # but it enables WriteInput to run directory = self.get_parameter("directory") job_name = self.get_name() self.infile = directory+os.sep+job_name+'.in' self.outfile = directory+os.sep+job_name+'.out' def get_editor_class(self): return MNDOCalcEd def WriteInput(self,filename=None): mol_name = self.get_input("mol_name") mol_obj = self.get_input("mol_obj") job_name = self.get_name() directory = self.get_parameter("directory") if filename: self.infile=filename else: filename = self.infile writeinput_err = self.__WriteInput(mol_obj,filename) if writeinput_err: return # load contents of input for viewing file = open(self.infile,"r") input = file.readlines() self.set_input("input_file",input) file.close() def __WriteInput(self,mol,filename): """MNDO input writer, based on parts of the ChemShell function written by the group of Walter Thiel """ file = open(filename,'w') task = self.get_parameter("task") scf_method = self.get_parameter("scf_method") link_atom_indices=[] link_atom_option=None # Set to 1 when old vectors are available on fort.11 self.chk = 0 # SCF type / multiplicity # scftype mult imult iuhf #------------------------------- # rhf 1 undef undef # rhf N N -1 # rohf 1 1 -1 # rohf N N -1 # uhf 1 1 1 # uhf N N 1 scftype = self.get_parameter("scf_method") mult = self.get_parameter("spin") if scftype == "rhf": if mult == 1: imult=None iuhf=None else: imult=mult iuhf=-1 elif scftype == "rohf": if mult == 1: imult=1 iuhf=-1 else: imult=mult iuhf=-1 elif scftype == "uhf": if mult == 1: imult=1 iuhf=1 else: imult=mult iuhf=1 # mndo string settings based on the keyword setting charge = self.get_parameter("charge") if charge != 0: khargestr = "kharge"+str(charge) else: khargestr = "" hamiltonian = self.get_parameter("hamiltonian") # hamiltonian (iop=) ham_to_iop = { "mndo/d" : -10, "pm3" : -7, "am1" : -2, "mndo" : 0, "mindo/3" : 1, "cndo/2" : 2, "om1" : -5, "om2" : -6 } iop = None if iop == None: try: iopstr = "iop="+str(ham_to_iop[hamiltonian]) except KeyError: print 'unrecognised hamiltonian' return None else: iopstr="iop="+str(iop) if imult == None: imultstr="" else: imultstr="imult="+str(imult) if iuhf == None: iuhfstr="" else: iuhfstr="iuhf="+str(iuhf) nprint = None if nprint == None: nprintstr="" else: nprintstr="nprint="+str(nprint) iscf = None if iscf == None: iscfstr="" else: iscfstr="iscf="+str(iscf) idiis = None if idiis == None: idiisstr="" else: idiisstr="idiis="+str(idiis) ipsana = None if ipsana == None: ipsanastr ="" else: ipsanastr ="ipsana="+str(ipsana) mprint = None if mprint == None: mprintstr ="" else: mprintstr ="mprint="+str(mprint) nstart = None if nstart == None: nstartstr ="" else: nstartstr ="nstart="+str(nstart) # Build up the input lines for the mndo input file optstr1 = khargestr + " " + iopstr + " " + idiisstr + " " + ipsanastr + " " + \ nstartstr + " " + imultstr + " " + iuhfstr optstr2 = nprintstr + " " + mprintstr + " " + iscfstr optstr3="igeom=1 iform=1 nsav15=4 ipubo=1" if self.chk: trialstr="ktrial=11" else: trialstr="" if task == MENU_ENER: optstr3 = optstr3 + " jop=-1" enerflag = 1 gradflag = 0 elif task == MENU_GRAD: optstr3 = optstr3 + " jop=-2" enerflag = 1 gradflag = 1 elif task == MENU_OPT: optstr3 = optstr3 + " jop=0" enerflag = 1 gradflag = 1 # # ================= Generate MNDO97 input file ================= # # Keyword cards file.write(optstr1+" + \n") file.write(optstr2+" + \n") optstr = "" if len(optstr) or len(trialstr) != 0: file.write(optstr+" "+trialstr) ###set nbq [ get_number_of_bqs coords=$coords ] nbq=0 file.write(optstr3 + "\n") file.write("MNDO file from the CCP1 GUI\n\n") # # Output coordinate information # (see helper functions in ../interface_gamess/interface.c) # if task == MENU_OPT: tt = ' 1 ' else: tt = ' 0 ' for a in mol.atom: file.write( str(a.get_number()) + ' ' + str(a.coord[0]) + tt + str(a.coord[1]) + tt + str(a.coord[2]) + tt + '\n') # Termination of coordinates file.write("0 0.0 0 0.0 0 0.0 0\n") # Output of point charges #if { $binary == 1 } { #format_mndo_bq_list_long file $jobname.in #} else { #format_mndo_bq_list file $jobname.in #} # Input writing finishes here file.close() return 0 def makejob(self,writeinput=1,graph=None): """Build the MNDO job""" self.GetModel() mol_obj = self.get_input("mol_obj") job_name = self.get_name() directory = self.get_parameter("directory") self.infile = directory+os.sep+job_name+'.in' self.outfile = directory+os.sep+job_name+'.out' if writeinput: self.WriteInput() else: input = self.get_input("input_file") file = open(self.infile,'w') for a in input: file.write(a) file.close() job = self.get_job() if not job: job = self.create_job() job.name = job_name # Delete old vectors if self.chk == 0: job.add_step(jobmanager.job.DELETE_FILE,'remove old vectors',remote_filename="fort.11",kill_on_error=0) job.add_step(jobmanager.job.DELETE_FILE,'remove old output',remote_filename=self.outfile,kill_on_error=0) job.add_step(jobmanager.job.COPY_OUT_FILE,'transfer input',local_filename=self.infile) # Local windows job, search for local executable if sys.platform[:3] == 'win': # Name of executable, assume install of exe into exe subdirectory try: install_dir = os.environ['MNDO_BIN'] mndo_exe=install_dir+'\mndo.exe' except KeyError: mndo_exe=gui_path+'/exe/mndo.exe' print 'Using MNDO path ' + mndo_exe job.add_step(jobmanager.job.RUN_APP,'run MNDO',local_command=mndo_exe,stdin_file=None,stdout_file=None) else: mndo_exe="mndo" job.add_step(jobmanager.job.RUN_APP,'run MNDO',local_command=mndo_exe,stdin_file=self.infile,stdout_file=self.outfile) job.add_step(jobmanager.job.COPY_BACK_FILE,'recover log',remote_filename=self.outfile) job.add_step(jobmanager.job.PYTHON_CMD,'load results',proc=lambda s=self,g=graph: s.endjob(g)) job.add_tidy(self.endjob2) return job def endjob(self,graph): """This is executed when the job completes successfully from within the job thread it should not perform Tk operations """ return 0,"" def endjob2(self,code=0): """This function is executed in the main thread if the job completes satisfactorily""" print 'endjob2' if self.debug: print 'running endjob2 code=',code # load contents of listing for viewing if self.debug_slave: print 'endjob....' job_name = self.get_name() directory = self.get_parameter("directory") #file = open(directory+'/'+job_name+'.out','r') file = open(self.outfile,'r') self.ReadOutput(file) file.close() # load in fort.15 ... only in case of success if code: return fp = open(directory + '/fort.15',"r") line = fp.readline() ttt = ["coordinates angstrom"] if line[:31] == " CARTESIAN COORDINATES: NUMAT =": nat_rd = int(line[31:]) for i in range(nat_rd): line = fp.readline() words = line.split() txt = z_to_el[int(words[1])] + " " + words[2] + " " + words[3] + " " + words[4] ttt.append(txt) print ttt o = self.get_input("mol_obj") res = Zmatrix(list=ttt) res.connect() res.name = "unnamed" res.title = "untitled" print res res.list() #self.results = [ res ] # problem here as that as we are running in a slave thread # we cannot use Tk .. so this is silent ed = self.get_editor() if ed: try: ed.connect_model(res) except AttributeError: pass if ed.graph: #ed.graph.import_objects(self.results) txt = "Objects loaded from punchfile:" txt = txt + "Structure update" '\n' #for r in self.results: # txt = txt + r.title + '\n' ed.Info(txt) # Update if ed.update_func: o = self.get_input("mol_obj") #name = self.get_input("mol_name") print 'performing update using res' ed.update_func(res) def get_theory(self): return self.get_parameter("theory") def check_direct(self): return 0 class MNDOCalcEd(qm.QMCalcEd): def __init__(self,root,calc,graph,**kw): qm.QMCalcEd.__init__(self,root,calc,graph,**kw) self.tasks = [MENU_ENER, MENU_GRAD, MENU_OPT] ## self.tasks = ["energy", ## "optimise internal coord.", ## "optimise cartesian coord."] self.theories["energy"] = ["AM1", "PM3" ] self.basissets = ["STO"] # Don't do this until there is something in there to show... #self.AddPage("SCFPage","SCF") self.scf_methods = {} tmp = ["rhf","rohf","uhf"] self.scf_methods[MENU_ENER] = tmp self.scf_methods[MENU_GRAD] = tmp self.scf_methods[MENU_OPT] = tmp self.hamiltonians = [ "mndo/d", "pm3", "am1", "mndo", "mindo/3", "cndo/2", "om1" , "om2" ] # self.AddPage("DirectivesPage","Directives") self.homolumo = Tkinter.BooleanVar() self.chargeden = Tkinter.BooleanVar() self.frequencies = Tkinter.BooleanVar() #Create the tools used in the Molecule tab - spin & charge created in QM. self.task_tool = tools.SelectOptionTool(self,'task','Task',self.tasks,command=self.__taskupdate) #Used to specify task self.tasktoolvalue = self.task_tool.widget.getvalue() self.checkspin_widget = Tkinter.Button(self.interior(), text = 'Check Spin', command = self.__CheckSpin) self.symmetry_tool = tools.BooleanTool(self,'symmetry','Use Symmetry') mol_obj = self.calc.get_input('mol_obj') ## # need to propagate the default basis back ## self.basis_manager = self.calc.basis_manager ## self.basis_tool = BasisTool(self,'basis','ECP','default_basis', ## molecule=mol_obj,basis_manager=self.basis_manager) ## #Create the tools used in the Theory tab ## #self.guess_tool = GamessGuessTool(self,self.__guesscommand) ## self.guessoption_tool = SelectOptionTool(self,'guess_method','Vectors',self.guess_options, ## self.__guesstype) ## self.guessatoms_tool = SelectOptionTool(self,'guess_comp',None,self.compute_options) ## self.guesssection1_tool = tools.IntegerTool(self,'guess_sect1','Section a',0) ## self.guesssection2_tool = tools.IntegerTool(self,'guess_sect2','Section b',0) ## self.guessgetqblock1_tool = tools.IntegerTool(self,'getq_block1','File Block a',0) ## self.guessgetqblock2_tool = tools.IntegerTool(self,'getq_block2','File Block b',0) ## self.guessgetqsection1_tool = tools.IntegerTool(self,'getq_sect1','File Section a',0) ## self.guessgetqsection2_tool = tools.IntegerTool(self,'getq_sect2','File Section b',0) self.scfmethod_tool = tools.SelectOptionTool(self,'scf_method', 'SCF Method', self.scf_methods[self.tasktoolvalue], self.__scfmethod) self.hamiltonian_tool = tools.SelectOptionTool(self,'hamiltonian', 'Hamiltonian', self.hamiltonians) self.scfmaxcycles_tool = tools.IntegerTool(self,'scf_maxcyc','Max. Cycles',1) self.scfthreshold_tool = tools.IntegerTool(self,'scf_threshold','Threshold',3) ## self.scfbypass_tool = BooleanTool(self,'scf_bypass', 'Bypass SCF') ## self.scflevelinit_tool = FloatTool(self,'scf_level_init','Initial Levelshifter Value',0.0) ## self.scflevelit_tool = tools.IntegerTool(self,'scf_level_it','Cycle to change on',1) ## self.scflevelfinal_tool = FloatTool(self,'scf_level_final','Final Levelshifter Value',0.0) ## self.postscfmethod_tool = tools.SelectOptionTool(self,'postscf_method', ## 'Method', ## self.postscf_methods[self.tasktoolvalue]) ## #Create the tools for the DFT tab ## self.dftfunctional_tool = tools.SelectOptionTool(self,'dft_functional','Functional',self.dft_functionals) ## self.dftaccuracy_tool = tools.SelectOptionTool(self,'dft_grid','Grid setting',self.dft_grids) ## self.dftweightscheme_tool = tools.SelectOptionTool(self,'dft_weights', ## 'DFT weighting scheme', ## self.dft_weights) ## self.dftradial_tool = MenuCounterTool(self, ## 'dft_radialgrid', ## 'Radial Grid', ## self.dft_radialgrids, ## 'dft_radialgridpoints', ## 'Number of points', ## command = self.__dftradialgridpoints ## ) ## self.radialgrid = self.dftradial_tool.firstmenu.getvalue() ## self.dftangular_tool = MenuCounterMenuTool(self, ## 'dft_angulargrid', ## 'Angular Grid', ## self.dft_angulargrids, ## 'dft_angulargridpoints', ## 'Number of points', ## 'dft_angulargridpoints', ## 'Number of points', ## self.dft_lebedevpoints, ## command = self.__dftangulargridpoints ## ) ## self.angulargrid = self.dftangular_tool.firstmenu.getvalue() ## self.dftjfit_tool = BooleanTool(self,'dft_jfit','Use Coulomb Fitting',self.__dftjbasselect) ## self.dftjbas_tool = tools.SelectOptionTool(self,'dft_jbas','Fitting Basis',self.dft_jbas) ## self.dftschwarz_tool = tools.IntegerTool(self,'dft_schwarz','Schwarz cutoff') ## #Create the tools used in the Properties tab ## self.homolumo_tool = BooleanTool(self, 'ana_homolumo', 'HOMO/LUMO') ## self.homolumo1_tool = BooleanTool(self, 'ana_homolumo1', 'HOMO1/LUMO1') ## self.homolumo2_tool = BooleanTool(self, 'ana_homolumo2', 'HOMO2/LUMO2') ## self.homolumo3_tool = BooleanTool(self, 'ana_homolumo2', 'HOMO3/LUMO3') ## self.homolumo4_tool = BooleanTool(self, 'ana_homolumo4', 'HOMO4/LUMO4') ## self.homolumo5_tool = BooleanTool(self, 'ana_homolumo5', 'HOMO5/LUMO5') ## self.chargeden_tool = BooleanTool(self, 'ana_chargeden', 'Charge Density') ## self.diffden_tool = BooleanTool(self, 'ana_diffden', 'Difference Density') ## self.potential_tool = BooleanTool(self, 'ana_potential', 'Potential') ## self.chargedengrad_tool = BooleanTool(self, 'ana_chargedengrad', 'Gradient Density') ## self.spinden_tool = BooleanTool(self, 'ana_spinden', 'Spin Density') ## self.frequencies_tool = BooleanTool(self, 'ana_frequencies', 'Finite Difference') ## self.hessian_tool = BooleanTool(self, 'ana_hessian', "Analytic") ## #Create the tools used in the Optimisation tab ## self.optcoords_tool = tools.SelectOptionTool(self,'optimiser', 'Opt. Coords', ## self.optcoord_opts, self.__selectcoords) ## self.find_ts_tool = BooleanTool(self,"find_ts","Locate Transition State",self.__findts) ## # self.optmethod_tool = tools.SelectOptionTool(self,'optimiser_method','Method',self.optmethodopts) ## self.optmaxcyc1_tool = tools.IntegerTool(self,'max_opt_step','Energy evaluations',0) ## self.optmaxcyc2_tool = tools.IntegerTool(self,'max_opt_line','Line searches',0) ## self.optxtol_tool = FloatTool(self,'opt_conv_thsld','Convergence Thresh.',0.0) ## self.optstepmax_tool = FloatTool(self,'max_opt_step_len','Max. Step size',0.0) ## self.optvalue_tool = FloatTool(self,'opt_value','Turning Point Accuracy',0.0) ## self.optjorg_tool = BooleanTool(self,'opt_jorgensen','Use Jorgensen-Simons Algorithm', ## self.__optjorgensen) ## self.optpowell_tool = BooleanTool(self,'opt_powell','Use Powell Hessian update') ## self.optbfgs_tool = tools.SelectOptionTool(self,'opt_hess_update', 'Hessian Update Procedure', ## self.optbfgs_opts) ## self.optminhess_tool = FloatTool(self,'opt_min_hess','Min. Hessian Eigenvalue') ## self.optmaxhess_tool = FloatTool(self,'opt_max_hess','Max. Hessian Eigenvalue') ## self.optrfo_tool = MenuAndBooleanTool(self,'opt_rfo','opt_rfomode', ## 'Use Rational Function Optimisation', ## 'RFO Mode',self.optrfo_opts) ## #Create the tools used for the Job tab ## self.jobname_tool = TextFieldTool(self,'job_name','Job Name') ## self.hostname_tool = tools.SelectOptionTool(self,'hostname', 'Host name', ## self.hostnames, command=self.__sethost) ## self.hostname = self.hostname_tool.widget.getvalue()# get the hostname for the below tool ## self.submission_tool = tools.SelectOptionTool(self,'submission','Job Submission', ## self.submissionpolicies[self.hostname]) ## self.username_tool = TextFieldTool(self,'username','User Name') ## self.workingdirectory_tool = ChangeDirectoryTool(self,'directory','Working Directory') ## #Create the tools used in the Restart Group ## self.ed0keep_tool = BooleanTool(self, 'ed0_keep', 'specify', ## command=lambda s=self: s.__keepfile('ed0')) ## self.ed0path_tool = ChangeDirectoryTool(self,'ed0_path','') ## self.ed2keep_tool = BooleanTool(self, 'ed2_keep', 'keep', ## command=lambda s= self: s.__keepfile('ed2')) ## self.ed2name_tool = BooleanTool (self, 'ed2_specify','specify ', ## command=lambda s=self: s.__keepfile('ed2')) ## self.ed2path_tool = FileTool(self,'ed2_path','', ## filetypes=[('Mainfiles','*.ed2'), ('All files','*.*')]) ## self.ed3keep_tool = BooleanTool(self, 'ed3_keep', 'keep', ## command=lambda s = self: s.__keepfile('ed3')) ## self.ed3name_tool = BooleanTool (self, 'ed3_specify','specify ', ## command=lambda s=self: s.__keepfile('ed3')) ## self.ed3path_tool = FileTool(self,'ed3_path','', ## filetypes=[('Dumpfiles','*.ed3'), ('All files','*.*')]) ## self.ed7keep_tool = BooleanTool(self, 'ed7_keep', 'keep', ## command=lambda s = self: s.__keepfile('ed7')) ## self.ed7name_tool = BooleanTool (self, 'ed7_specify','specify ', ## command=lambda s=self: s.__keepfile('ed7')) ## self.ed7path_tool = FileTool(self,'ed7_path','', ## filetypes=[('Tempfiles','*.ed7'), ('All files','*.*')]) ## self.ed14keep_tool = BooleanTool(self, 'ed14_keep', 'specify', ## command=lambda s=self: s.__keepfile('ed14')) ## self.ed14path_tool = FileTool(self,'ed14_path','', ## filetypes=[('Dumpfiles','*.ed3'), ('All files','*.*')], ## action="open") self.LayoutToolsTk() self.__initialisetools() def __initialisetools(self): pass def __taskupdate(self,task): """Update the SCF and post-SCF methods for the task that has been selected and hide the optimisation tab """ self.scfmethod_tool.SetItems(self.scf_methods[task]) #### self.postscfmethod_tool.SetItems(self.postscf_methods[task]) # if task != MENU_OPT: # self.notebook.tab('Optimisation').configure(state="disabled") # else: # self.notebook.tab('Optimisation').configure(state="active") def LayoutToolsTk(self): """Place the widgets belonging to the tools (ChargeTool etc) This will generally be replaced by a more specific function for a particular code interface. """ #Add Molecule tab page = self.notebook.add('Molecule',tab_text='Molecule') # Associate helpfile with notebook frame tab = self.notebook.tab('Molecule') viewer.help.sethelp(tab,'Molecule Tab') page.optgroup = Pmw.Group(page,tag_text="Options") page.optgroup.pack(expand='yes',fill='both') ## page.basisgroup = Pmw.Group(page,tag_text="Basis Selector") ## page.basisgroup.pack(expand='yes',fill='both') self.title_tool.widget.pack(in_=page.optgroup.interior()) self.task_tool.widget.pack(in_=page.optgroup.interior()) self.scfmethod_tool.widget.pack(in_=page.optgroup.interior()) self.hamiltonian_tool.widget.pack(in_=page.optgroup.interior()) self.charge_tool.widget.pack(in_=page.optgroup.interior()) self.spin_tool.widget.pack(in_=page.optgroup.interior()) self.checkspin_widget.pack(in_=page.optgroup.interior()) ## self.symmetry_tool.widget.pack(in_=page.optgroup.interior()) ## Pmw.alignlabels([self.charge_tool.widget, self.spin_tool.widget]) ## self.basis_tool.widget.pack(in_=page.basisgroup.interior()) ## #Add Theory tab ## page = self.notebook.add('Theory',tab_text='Theory') ## # Associate helpfile with notebook frame ## tab = self.notebook.tab('Theory') ## tkmolview.help.sethelp(tab,'Theory Tab') ## page.guessgroup = Pmw.Group(page,tag_text="Guess") ## page.guessgroup.pack(expand='yes',fill='both') ## self.guessoption_tool.widget.pack(in_=page.guessgroup.interior(),side='left') ## page.guessframe = Tkinter.Frame(page.guessgroup.interior()) ## page.guessframe.pack(in_=page.guessgroup.interior(),side='left') ## self.guessatoms_tool.SetParent(page.guessframe) ## self.guesssection1_tool.SetParent(page.guessframe) ## self.guesssection2_tool.SetParent(page.guessframe) ## self.guessgetqblock1_tool.SetParent(page.guessframe) ## self.guessgetqsection1_tool.SetParent(page.guessframe) ## self.guessgetqblock2_tool.SetParent(page.guessframe) ## self.guessgetqsection2_tool.SetParent(page.guessframe) ## page.scfgroup = Pmw.Group(page,tag_text="SCF") ## page.scfgroup.pack(expand='yes',fill='both') ## self.scfmethod_tool.widget.pack(in_=page.scfgroup.interior()) ## self.scfmaxcycles_tool.widget.pack(in_=page.scfgroup.interior()) ## self.scfthreshold_tool.widget.pack(in_=page.scfgroup.interior()) ## self.scfbypass_tool.widget.pack(in_=page.scfgroup.interior()) ## page.scflevelgroup = Pmw.Group(page,tag_text="SCF Level Shifters") ## page.scflevelgroup.pack(in_=page.scfgroup.interior(), ## expand='yes', ## fill='both', ## padx=10, ## pady=10) ## self.scflevelinit_tool.widget.pack(in_=page.scflevelgroup.interior()) ## self.scflevelit_tool.widget.pack(in_=page.scflevelgroup.interior()) ## self.scflevelfinal_tool.widget.pack(in_=page.scflevelgroup.interior()) ## page.postscfgroup = Pmw.Group(page,tag_text="Post SCF") ## page.postscfgroup.pack(expand='yes',fill='both') ## self.postscfmethod_tool.widget.pack(in_=page.postscfgroup.interior()) ## #Add DFT tab ## page = self.notebook.add('DFT',tab_text='DFT') ## # Associate helpfile with notebook frame ## tab = self.notebook.tab('DFT') ## tkmolview.help.sethelp(tab,'DFT Tab') ## page.dftgroup1 = Pmw.Group(page,tag_text="Functional") ## page.dftgroup1.pack(expand='yes',fill='both') ## page.dftgroup2 = Pmw.Group(page,tag_text="Accuracy") ## page.dftgroup2.pack(expand='yes',fill='both') ## page.dftgroup3 = Pmw.Group(page,tag_text="Quadrature Types") ## page.dftgroup3.pack(expand='yes',fill='both') ## #page.dftgroup4 = Pmw.Group(page,tag_text="DFT Options4") ## #page.dftgroup4.pack(expand='yes',fill='both') ## page.dftgroup5 = Pmw.Group(page,tag_text="Coulomb Fitting") ## page.dftgroup5.pack(expand='yes',fill='both') ## self.dftfunctional_tool.widget.pack(in_=page.dftgroup1.interior()) ## self.dftaccuracy_tool.widget.pack(in_=page.dftgroup2.interior()) ## self.dftweightscheme_tool.widget.pack(in_=page.dftgroup2.interior()) ## self.dftradial_tool.widget.pack(in_=page.dftgroup3.interior(),side='top') ## self.dftangular_tool.widget.pack(in_=page.dftgroup3.interior(),side='top') ## self.dftjfit_tool.SetParent(page.dftgroup5.interior()) ## self.dftjfit_tool.Pack() ## self.dftjbas_tool.SetParent(page.dftgroup5.interior()) ## self.dftschwarz_tool.SetParent(page.dftgroup5.interior()) ## # Add Properties tab ## page = self.notebook.add('Properties',tab_text='Properties') ## # Associate helpfile with notebook frame ## tab = self.notebook.tab('Properties') ## tkmolview.help.sethelp(tab,'Properties Tab') ## page.grgroup = Pmw.Group(page,tag_text="Graphical options") ## page.grgroup.pack(expand='yes',fill='x') ## page.mogroup = Pmw.Group(page.grgroup.interior(),tag_text="Orbital Plots") ## page.mogroup.pack(expand='yes',fill='x',side='right') ## self.homolumo_tool.widget.pack(in_=page.mogroup.interior()) ## self.homolumo1_tool.widget.pack(in_=page.mogroup.interior()) ## self.homolumo2_tool.widget.pack(in_=page.mogroup.interior()) ## self.homolumo3_tool.widget.pack(in_=page.mogroup.interior()) ## self.homolumo4_tool.widget.pack(in_=page.mogroup.interior()) ## self.homolumo5_tool.widget.pack(in_=page.mogroup.interior()) ## f = Frame(page.grgroup.interior()) ## f.pack(expand='yes',fill='x',side='left') ## page.group2 = Pmw.Group(f,tag_text="Density and Potential") ## page.group2.pack(expand='yes',fill='x',side='top') ## self.chargeden_tool.widget.pack(in_=page.group2.interior()) ## self.diffden_tool.widget.pack(in_=page.group2.interior()) ## self.potential_tool.widget.pack(in_=page.group2.interior()) ## self.chargedengrad_tool.widget.pack(in_=page.group2.interior()) ## self.spinden_tool.widget.pack(in_=page.group2.interior()) ## page.editgrid_button = Tkinter.Button(f,command=self.edit_grid) ## page.editgrid_button.config(text="Edit Grid") ## page.editgrid_button.pack(side='bottom',padx=10,pady=20) ## page.vgroup = Pmw.Group(page,tag_text="Frequencies") ## page.vgroup.pack(expand='yes',fill='x') ## self.frequencies_tool.widget.pack(in_=page.vgroup.interior()) ## self.hessian_tool.widget.pack(in_=page.vgroup.interior()) ## Pmw.alignlabels([self.homolumo_tool.widget, ## self.homolumo1_tool.widget, ## self.homolumo2_tool.widget, ## self.homolumo3_tool.widget, ## self.homolumo4_tool.widget, ## self.homolumo5_tool.widget]) ## Pmw.alignlabels([self.potential_tool.widget, ## self.chargeden_tool.widget, ## self.diffden_tool.widget, ## self.chargedengrad_tool.widget, ## self.spinden_tool.widget, ## page.editgrid_button]) ## #Add Optimisation tab ## page = self.notebook.add('Optimisation',tab_text='Optimisation') ## # Associate helpfile with notebook frame ## tab = self.notebook.tab('Optimisation') ## viewer.help.sethelp(tab,'Optimisation Tab') ## page.rungroup = Pmw.Group(page,tag_text="Runtype") ## page.rungroup.pack(expand='yes',fill='both') ## self.optcoords_tool.widget.pack(in_=page.rungroup.interior()) ## self.find_ts_tool.widget.pack(in_=page.rungroup.interior()) ## page.searchgroup = Pmw.Group(page,tag_text="Search Procedure") ## page.searchgroup.pack(expand='yes',fill='both') ## self.optmaxcyc1_tool.SetParent(page.searchgroup.interior()) ## self.optmaxcyc1_tool.Pack() ## self.optmaxcyc2_tool.SetParent(page.searchgroup.interior()) ## self.optmaxcyc2_tool.Pack() ## self.optxtol_tool.SetParent(page.searchgroup.interior()) ## self.optxtol_tool.Pack() ## self.optstepmax_tool.SetParent(page.searchgroup.interior()) ## self.optstepmax_tool.Pack() ## self.optvalue_tool.SetParent(page.searchgroup.interior()) ## self.optvalue_tool.Pack() ## Pmw.alignlabels([self.optmaxcyc1_tool.widget, self.optmaxcyc2_tool.widget, ## self.optxtol_tool.widget, self.optstepmax_tool.widget, ## self.optvalue_tool.widget]) ## page.jorggroup = Pmw.Group(page,tag_text="Jorgensen-Simons Algorithm") ## page.jorggroup.pack(expand='yes',fill='both') ## self.optjorg_tool.SetParent(page.jorggroup.interior()) ## self.optjorg_tool.Pack() ## self.optpowell_tool.SetParent(page.jorggroup.interior()) ## self.optbfgs_tool.SetParent(page.jorggroup.interior()) ## self.optminhess_tool.SetParent(page.jorggroup.interior()) ## self.optmaxhess_tool.SetParent(page.jorggroup.interior()) ## self.optrfo_tool.SetParent(page.jorggroup.interior()) ## Pmw.alignlabels([self.optjorg_tool.widget, self.optpowell_tool.widget, ## self.optbfgs_tool.widget, self.optminhess_tool.widget, ## self.optmaxhess_tool.widget, self.optrfo_tool.widget]) ## #Add Job tab ## page = self.notebook.add('Job',tab_text='Job') ## # Associate helpfile with notebook frame ## tab = self.notebook.tab('Job') ## tkmolview.help.sethelp(tab,'Job Tab') ## page.jobgroup = Pmw.Group(page,tag_text="Job Group") ## page.jobgroup.pack(side='top',expand='yes',fill='both') ## self.jobname_tool.widget.pack(in_=page.jobgroup.interior()) ## self.hostname_tool.widget.pack(in_=page.jobgroup.interior()) ## self.submission_tool.widget.pack(in_=page.jobgroup.interior()) ## self.username_tool.widget.pack(in_=page.jobgroup.interior()) ## self.workingdirectory_tool.widget.pack(in_=page.jobgroup.interior()) ## #Add Restart group ## page.fpathgroup = Pmw.Group(page,tag_text="File Path Group") ## page.fpathgroup.pack(expand='yes',fill='both') ## #Need to create multiple frames so things can be packed and forgotten ## # without the order getting all jumbled. ## page.ed0frame = Tkinter.Frame(page.fpathgroup.interior()) ## page.ed0frame.pack(in_=page.fpathgroup.interior(),side='top', ## expand='yes', fill='both') ## ed0label = Tkinter.Label(page.ed0frame, text='ECP Libraries (ed0) ') ## ed0label.pack(side='left') ## self.ed0keep_tool.SetParent(page.ed0frame) ## self.ed0path_tool.SetParent(page.ed0frame) ## self.ed0keep_tool.widget.pack(in_=page.ed0frame, side='left') ## page.ed2frame = Tkinter.Frame(page.fpathgroup.interior()) ## page.ed2frame.pack(in_=page.fpathgroup.interior(),side='top', ## expand='yes', fill='both') ## ed2label = Tkinter.Label(page.ed2frame, text='Mainfile (ed2) ') ## ed2label.pack(side='left') ## self.ed2keep_tool.SetParent(page.ed2frame) ## self.ed2name_tool.SetParent(page.ed2frame) ## self.ed2path_tool.SetParent(page.ed2frame) ## self.ed2keep_tool.widget.pack(in_=page.ed2frame, side='left') ## page.ed3frame = Tkinter.Frame(page.fpathgroup.interior()) ## page.ed3frame.pack(in_=page.fpathgroup.interior(),side='top', ## expand='yes', fill='x') ## ed3label = Tkinter.Label(page.ed3frame, text='Dumpfile (ed3) ') ## ed3label.pack(side='left') ## self.ed3keep_tool.SetParent(page.ed3frame) ## self.ed3path_tool.SetParent(page.ed3frame) ## self.ed3name_tool.SetParent(page.ed3frame) ## self.ed3keep_tool.widget.pack(in_=page.ed3frame, side='left') ## page.ed7frame = Tkinter.Frame(page.fpathgroup.interior()) ## page.ed7frame.pack(in_=page.fpathgroup.interior(),side='top', ## expand='yes', fill='both') ## ed7label = Tkinter.Label(page.ed7frame, text='Tempfile (ed7) ') ## ed7label.pack(side='left') ## self.ed7keep_tool.SetParent(page.ed7frame) ## self.ed7name_tool.SetParent(page.ed7frame) ## self.ed7path_tool.SetParent(page.ed7frame) ## self.ed7keep_tool.widget.pack(in_=page.ed7frame, side='left') ## page.ed14frame = Tkinter.Frame(page.fpathgroup.interior()) ## page.ed14frame.pack(in_=page.fpathgroup.interior(),side='top', ## expand='yes', fill='both') ## ed14label = Tkinter.Label(page.ed14frame, text='Foreign Dumpfile (ed14) ') ## ed14label.pack(side='left') ## self.ed14keep_tool.SetParent(page.ed14frame) ## self.ed14path_tool.SetParent(page.ed14frame) ## self.ed14keep_tool.widget.pack(in_=page.ed14frame, side='left') ## Pmw.alignlabels([self.ed0keep_tool.widget, ## self.ed0path_tool.widget, ## self.ed2keep_tool.widget, ## self.ed2path_tool.widget, ## self.ed2name_tool.widget, ## self.ed2keep_tool.widget, ## self.ed3path_tool.widget, ## self.ed3name_tool.widget, ## self.ed3keep_tool.widget, ## self.ed7path_tool.widget, ## self.ed7name_tool.widget, ## self.ed7keep_tool.widget, ## self.ed14path_tool.widget, ## self.ed14keep_tool.widget]) def TaskPage(self,page,action): QMCalcEd.TaskPage(self,page,action) # Create a group for the checkboxes if action == Create: page.group = Pmw.Group(page,tag_text="Analysis options") page.group.pack(expand='yes',fill='x') def SCFPage(self,page,action): """Maintain the SCF page.""" labels = [] def DirectivesPage(self,page,action): """Entry for various directives not covered by GUI yet""" pass def __CheckSpin(self): for tool in self.tools: tool.ReadWidget() self.calc.CheckSpin() def __scfmethod(self,scf): """Configure all widgets and variables that depend on the SCF type. """ self.scfmethod_tool.ReadWidget() #if (scf == 'DFT') or (scf == 'UDFT') or (scf == 'Direct DFT') or (scf == 'Direct UDFT'): # self.notebook.tab('DFT').configure(state="active") #else: # self.notebook.tab('DFT').configure(state="disabled") # # REM the default 'enter' and 'vectors' sections are configured in the __guesstype # method as this is always run after the __scfmethod is invoked #guess = self.calc.get_parameter("guess_method") #self.__guesstype("") ########################################## # # Unittesting stuff # ########################################## class MNDOCalcEdTestCases(unittest.TestCase): exdir=gui_path+os.sep+'examples'+os.sep def testOpt(self): # tkroot either created in this module if we run standalone, or passed in by the # testall script if run as part of all the tests global tkroot calc = MNDOCalc() m = objects.zmatrix.Zmatrix(file=self.exdir+'water.zmt') calc.set_input('mol_obj',m) calc.set_parameter('task',MENU_OPT) jm = jobmanager.JobManager() je = jobmanager.jobeditor.JobEditor(tkroot,jm) vt = MNDOCalcEd(tkroot,calc,None,job_editor=je) vt.Run() def testMe(): """Return a unittest test suite with all the testcases that should be run by the main gui testing framework.""" return unittest.TestLoader().loadTestsFromTestCase(MNDOCalcEdTestCases) if __name__ == "__main__": tkroot=Tkinter.Tk() if 0: unittest.main() else: # # Test editor in standalone mode # calc = MNDOCalc() m = objects.zmatrix.Zmatrix(file=gui_path+os.sep+'examples'+os.sep+'water.zmt') calc.set_input('mol_obj',m) calc.set_parameter('task',MENU_OPT) jm = jobmanager.JobManager() je = jobmanager.jobeditor.JobEditor(tkroot,jm) vt = MNDOCalcEd(tkroot,calc,None,job_editor=je) #vt.Run() #calc.WriteInput() tkroot.mainloop()
code-google-com/shaderman
refs/heads/master
modes/Unix/__init__.py
4
import os import subprocess def name(): return "Unix" def generator(self, filename, code): print code #code = "bash -c '%s'" % code #os.system(code) #pipe = subprocess.Popen(code, shell=True, stdout=subprocess.PIPE).stdout #buffer = str("".join(pipe.readlines())) #print buffer #print `pwd` p = subprocess.Popen([code], shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) sts = os.waitpid(p.pid, 0) buffer = str("".join(p.stdout.readlines()+p.stderr.readlines())) print buffer
pfnet/chainer
refs/heads/master
tests/chainerx_tests/unit_tests/routines_tests/test_indexing.py
3
import unittest import numpy import pytest import chainer.testing import chainerx import chainerx.testing from chainerx_tests import array_utils from chainerx_tests import dtype_utils from chainerx_tests import math_utils from chainerx_tests import op_utils @op_utils.op_test(['native:0', 'cuda:0']) @chainer.testing.parameterize_pytest('shape,indices', [ # empty indexing ((), ()), ((3,), ()), ((2, 2, 2), ()), # integer indexing - non-tuple indexing ((3,), 0), ((3,), 1), ((3,), 2), ((3,), -1), ((2, 3), 0), ((2, 3), 1), ((2, 3), numpy.int8(-1)), ((2, 3), numpy.int32(0)), ((2, 3), numpy.uint64(1)), # integer indexining - tuple indexing ((3,), (0,)), ((3,), (1,)), ((3,), (2,)), ((3,), (-1,)), ((2, 3), (0,)), ((2, 3), (1,)), ((2, 3), (0, 0)), ((2, 3), (1, 1)), ((2, 3, 4), (0, -2, 3)), ((2, 3, 4), (1, 0)), # slice indexing - non-tuple indexing ((3,), slice(None)), ((3,), slice(2)), ((3,), slice(0, 3)), ((3,), slice(0, 2)), ((3,), slice(1, 3)), ((3,), slice(0, 0)), ((3,), slice(0, 1)), ((3,), slice(2, 0, -1)), ((3,), slice(-2, -1)), ((3,), slice(2, None, -1)), ((3,), slice(None, 0, 1)), ((3,), slice(None, -1, -1)), ((3,), slice(None, -2, -1)), ((6,), slice(0, 6, 2)), ((6,), slice(1, 6, 2)), ((6,), slice(5, None, -2)), ((6,), slice(4, 10)), ((6,), slice(10, 5, -1)), ((6,), slice(5, -1)), ((6,), slice(5, -1, -1)), ((6,), slice(-1, 5)), ((6,), slice(-1, 5, -1)), # slice indexing - tuple indexing ((3,), (slice(None),)), ((3,), (slice(2),)), ((3,), (slice(0, 3),)), ((3,), (slice(0, 2),)), ((3,), (slice(1, 3),)), ((3,), (slice(0, 0),)), ((3,), (slice(0, 1),)), ((3,), (slice(2, 0, -1),)), ((3,), (slice(-2, -1),)), ((3,), (slice(2, None, -1),)), ((3,), (slice(None, 0, 1),)), ((3,), (slice(None, -1, -1),)), ((3,), (slice(None, -2, -1),)), ((6,), (slice(0, 6, 2),)), ((6,), (slice(1, 6, 2),)), ((6,), (slice(5, None, -2),)), ((6,), (slice(50, 1, -1),)), ((6,), (slice(3, 3, 1),)), ((6,), (slice(3, 3, -2),)), ((6,), (slice(50, 50, 1),)), ((6,), (slice(50, 50, -2),)), ((6,), (slice(-50, -50, 1),)), ((6,), (slice(-50, -50, -2),)), ((2, 3), (slice(None), slice(None))), ((2, 3), (slice(1), slice(2))), ((2, 3), (slice(0, 2), slice(0, 3))), ((2, 3), (slice(0, 2), slice(0, -1))), ((2, 3), (slice(0, None, -1), slice(2, 3))), ((2, 3), (slice(0, None, None), slice(-2, 0, -1))), ((2, 3), (slice(1, 2), slice(0, 2))), ((2, 3), (slice(-2, None, -1), slice(0, 3))), ((2, 3), (slice(-2, None, -1), slice(-3, None, -1))), ((2, 3), (slice(-2, None, -1), slice(None, None, -2))), ((2, 3), (slice(1, 2), slice(None, None, 1))), ((2, 3), (slice(1, 2), slice(None, None, 2))), ((2, 3, 4), (slice(1), slice(-2, 3), slice(1, None, -1))), # newaxis indexing - non-tuple indexing ((), chainerx.newaxis), ((3,), chainerx.newaxis), # newaxis indexing - tuple indexing ((), (chainerx.newaxis,)), ((3,), (chainerx.newaxis,)), ((2, 3), (chainerx.newaxis, chainerx.newaxis)), # ellipsis indexing - non-tuple indexing ((), Ellipsis), ((3,), Ellipsis), # ellipsis indexing - tuple indexing ((), (Ellipsis,)), ((2, 3), (Ellipsis,)), # mixed indexing - tuple indexing ((2, 3), (0, slice(1, 3))), ((4, 3), (slice(1, 3), 1)), ((2, 3, 4), (1, slice(2,), slice(1, 3))), ((2, 3), (1, chainerx.newaxis, slice(1, 3))), ((2, 3, 4), (slice(0, 1), slice(1, 2), slice(1, 3), chainerx.newaxis)), ((2, 3, 4), (slice(0, 1), slice(1, 2), chainerx.newaxis, slice(1, 3))), ((2, 3, 4), (slice(0, 1), chainerx.newaxis, slice(1, 2), slice(1, 3))), ((2, 3, 4), (chainerx.newaxis, slice(0, 1), slice(1, 2), slice(1, 3))), ((2, 3, 4), (1, slice(2,), chainerx.newaxis, slice(1, 3), chainerx.newaxis)), ((2, 3, 4), (0, Ellipsis)), ((2, 3, 4), (Ellipsis, 2)), ((2, 3, 4), (1, Ellipsis, 2)), ((2, 3, 4), (1, Ellipsis, 2, 3)), ((2, 3, 4), (chainerx.newaxis, Ellipsis, chainerx.newaxis)), ((2, 3, 4), (1, Ellipsis, chainerx.newaxis, 3)), ((2, 3, 4), (1, Ellipsis, 2, chainerx.newaxis, 3)), ((2, 3, 4), (slice(0, 1), Ellipsis, slice(1, 3))), ]) class TestGetitem(op_utils.NumpyOpTest): # TODO(niboshi): Remove this check_numpy_strides_compliance = False def generate_inputs(self): x = numpy.random.uniform(-1, 1, self.shape).astype('float32') return x, def forward_xp(self, inputs, xp): x, = inputs y = x[self.indices] return y, @pytest.mark.parametrize_device(['native:0', 'cuda:0']) @pytest.mark.parametrize('shape,indices', [ ((), 0), ((), (1,)), ((), (1, 0)), ((3,), 3), ((3,), (0, 1)), ((2, 3,), (2, 0)), ((2,), (2, chainerx.newaxis, 3)), ((2,), (2, Ellipsis, chainerx.newaxis, 3)), ((2,), (Ellipsis, Ellipsis)), ]) def test_getitem_index_error(device, shape, indices): a = array_utils.create_dummy_ndarray(chainerx, shape, 'float32') with pytest.raises(IndexError): a[indices] @pytest.mark.parametrize_device(['native:0', 'cuda:0']) def test_getitem_zero_sized_offsets(device): a = chainerx.arange(6) b = a[3:3] # Test pre-conditions. assert b.size == 0 assert b.offset == 12 # The offset of `c` should be the same as `b` since `b` is empty. c = b[2:] assert c.size == 0 assert c.offset == b.offset @op_utils.op_test(['native:0', 'cuda:0']) # TODO(hvy): Add cases where axis=None, when supported. @chainer.testing.parameterize_pytest('shape,indices,axis', [ # Valid parameters ((3,), [0], 0), ((3,), [1], 0), ((2, 3), [0], 0), ((2, 3), [0], 1), ((2, 3), [0], -1), ((2, 3), [1], 0), ((2, 3), [0, -1], 0), ((2, 3), [1, 0], 0), ((2, 3), [1, 2], 1), ((2, 3), [2, 1], 1), ((2, 3), [[0], [1]], 0), # Take from a duplicate index ((3, 2), [1, 1], 0), # Invalid: Axis out of bounds ((2, 3), [0], 2), ((2, 3), [0], -3), ]) @chainer.testing.parameterize_pytest('is_module', [True, False]) @chainer.testing.parameterize_pytest( 'indices_type', ['list', 'numpy', 'xp']) # TODO(niboshi): indices_dtype is ignored if indices_type == 'list', which is # wasteful. @chainer.testing.parameterize_pytest( 'indices_dtype', chainerx.testing.integral_dtypes) @chainer.testing.parameterize_pytest( 'mode', ['raise', 'wrap', 'clip']) @chainer.testing.parameterize_pytest( 'a_dtype', chainerx.testing.all_dtypes) class TestTake(op_utils.NumpyOpTest): check_numpy_strides_compliance = False forward_accept_errors = (chainerx.DimensionError, numpy.AxisError) def setup(self): if (self.mode == 'raise' and numpy.dtype(self.indices_dtype).kind == 'u' and (numpy.array(self.indices, 'int64') < 0).any()): raise unittest.SkipTest( 'Indices underflows and index out of bounds cannot be tested.') if self.a_dtype == 'float16': self.check_backward_options.update( {'rtol': 1e-3, 'atol': 1e-3}) self.check_double_backward_options.update( {'rtol': 1e-3, 'atol': 1e-3}) def generate_inputs(self): a = numpy.random.uniform(-1, 1, self.shape).astype(self.a_dtype) return a, def forward_xp(self, inputs, xp): indices = self.indices axis = self.axis indices_type = self.indices_type a, = inputs if (xp is chainerx and self.mode == 'raise' and 'cuda' in xp.get_default_device().name): pytest.skip('CUDA is not supportted with mode="raise"') assert isinstance(indices, list) if indices_type == 'list': pass elif indices_type == 'numpy': indices = numpy.array(indices).astype(self.indices_dtype) elif indices_type == 'xp': indices = xp.array(indices).astype(self.indices_dtype) else: assert False, indices_type if self.is_module: b = xp.take(a, indices, axis, mode=self.mode) else: b = a.take(indices, axis, mode=self.mode) return b, @pytest.mark.parametrize_device(['native:0', 'cuda:0']) @pytest.mark.parametrize('shape,indices,axis', [ # Invalid: Index out of bounds ((2, 3), [2], 0), ((2, 3), [-3], 0), ]) def test_take_index_error(device, shape, indices, axis): a = array_utils.create_dummy_ndarray(chainerx, shape, 'float32') indices = numpy.array(indices).astype(numpy.int32) error = IndexError if device.backend.name == 'cuda': error = chainerx.BackendError # Not supported in CUDA with pytest.raises(error): chainerx.take(a, indices, axis, mode='raise') def _random_condition(shape, dtype, *, random_state=None): if random_state is None: random_state = numpy.random.RandomState() neg_mask = random_state.randint(0, 2, size=shape).astype('bool') cond = array_utils.uniform(shape, dtype, random_state=random_state) # Replace zeros with nonzero, making the average number of zero elements # in cond independent of the dtype. cond[cond == 0] = 1 cond[neg_mask] = 0 return cond @pytest.mark.parametrize_device(['native:0', 'cuda:0']) @pytest.mark.parametrize('shape,indices,axis', [ # Invalid: Index out of bounds ((2, 3), [1, 1], 0), ((2, 3, 4), [0, 1, 1], 1), ]) def test_take_non_contiguous(device, shape, indices, axis): a = numpy.random.uniform(-1, 1, shape).astype('float32') indices = numpy.array(indices).astype(numpy.int32) chx_a = chainerx.array(a).astype('float32') a = numpy.transpose(a, axes=range(chx_a.ndim)[::-1]) chx_a = chainerx.transpose(chx_a, axes=range(chx_a.ndim)[::-1]) assert(not chx_a.is_contiguous) chx_indices = chainerx.array(indices).astype(numpy.int32) chx_out = chainerx.take(chx_a, chx_indices, axis) np_out = numpy.take(a, indices, axis) numpy.testing.assert_array_equal(chx_out, np_out) @op_utils.op_test(['native:0', 'cuda:0']) @chainer.testing.parameterize(*( # Special shapes chainer.testing.product({ 'cond_shape,in_shapes': [ # Same Shapes ((2, 3), ((2, 3), (2, 3))), # Broadcast Shapes ((2, 3), ((1, 3), (1, 3))), ((2, 3), ((2, 1), (1, 3))), ((2, 3), ((2, 3), (1, 3))), ((4, 5), ((3, 4, 1), (1, 5))), ((1, 4, 5), ((3, 4, 1), (3, 1, 5))), ], 'cond_dtype': ['bool_'], 'in_dtypes,out_dtype': dtype_utils.result_dtypes_two_arrays, }) # Dtype combinations + chainer.testing.product({ 'cond_shape,in_shapes': [((2, 3), ((2, 3), (2, 3)))], 'cond_dtype': chainerx.testing.all_dtypes, 'in_dtypes,out_dtype': dtype_utils.result_dtypes_two_arrays, }) )) class TestWhere(math_utils.BinaryMathTestBase, op_utils.NumpyOpTest): check_numpy_strides_compliance = False dodge_nondifferentiable = True input_lhs = 'random' input_rhs = 'random' def setup(self): super().setup() self.condition = _random_condition(self.cond_shape, self.cond_dtype) def func(self, xp, x, y): condition = xp.array(self.condition) return xp.where(condition, x, y) @chainerx.testing.numpy_chainerx_array_equal( accept_error=( chainerx.DimensionError, ValueError)) @pytest.mark.parametrize('cond_shape,x_shape,y_shape', [ ((2, 3), (3, 4), (2, 3)), ((2, 3), (2, 3), (3, 4)), ((2, 3), (1, 3), (2, 4)) ]) def test_where_invalid_shapes(xp, cond_shape, x_shape, y_shape): x = array_utils.create_dummy_ndarray(xp, x_shape, 'float32') y = array_utils.create_dummy_ndarray(xp, y_shape, 'float32') c = array_utils.create_dummy_ndarray(xp, cond_shape, 'float32') return xp.where(c, x, y) @op_utils.op_test(['native:0', 'cuda:0']) @chainer.testing.parameterize(*( # Special shapes chainer.testing.product({ 'cond_shape,shape': math_utils.shapes_combination_inplace_binary, 'cond_dtype': ['bool_'], 'in_dtypes,scalar_type,out_dtype': ( dtype_utils.result_dtypes_array_scalar), 'is_scalar_rhs': [True, False], }) # Dtype combinations + chainer.testing.product({ 'cond_shape,shape': [((2, 3), (2, 3))], 'cond_dtype': chainerx.testing.all_dtypes, 'in_dtypes,scalar_type,out_dtype': ( dtype_utils.result_dtypes_array_scalar), 'is_scalar_rhs': [True, False], }) )) class TestWhereScalar(math_utils.MathScalarTestBase, op_utils.NumpyOpTest): check_numpy_strides_compliance = False input = 'random' scalar_value = 3 def setup(self): super().setup() self.condition = _random_condition(self.cond_shape, self.cond_dtype) def func_scalar(self, xp, a, scalar): condition = xp.array(self.condition) if self.is_scalar_rhs: return xp.where(condition, a, scalar) else: return xp.where(condition, scalar, a) _in_out_dtypes_where_scalar = [ ((bool, bool), 'bool_'), ((bool, int), 'int32'), ((bool, float), 'float32'), ((int, bool), 'int32'), ((int, int), 'int32'), ((int, float), 'float32'), ((float, bool), 'float32'), ((float, int), 'float32'), ((float, float), 'float32'), ] @chainerx.testing.numpy_chainerx_array_equal() @pytest.mark.parametrize('cond_shape', [(2, 3)]) @pytest.mark.parametrize('cond_dtype', chainerx.testing.all_dtypes) @pytest.mark.parametrize('in_types,out_dtype', _in_out_dtypes_where_scalar) def test_where_scalar_scalar(xp, cond_shape, cond_dtype, in_types, out_dtype): cond = _random_condition( cond_shape, cond_dtype, random_state=numpy.random.RandomState(seed=0)) cond = xp.array(cond) x_type, y_type = in_types x = x_type(0) y = y_type(2) out = xp.where(cond, x, y) return dtype_utils.cast_if_numpy_array(xp, out, out_dtype) @op_utils.op_test(['native:0', 'cuda:0']) @chainer.testing.parameterize(*( chainer.testing.product({ 'dtype': chainerx.testing.all_dtypes, 'input': [ [], [[]], [0], [1], [2, 0, 5], [4, 0, 0, 0], [0, 0, 0, 4], [0, 0, 0, 0], [[4, 0, 0, 1], [0, 0, 4, 1]], [[4, 4, 1, 1], [4, 1, 4, 1]], [[0, 0, 0, 0], [0, 0, 0, 0]], ] }) )) class TestNonzero(op_utils.NumpyOpTest): check_numpy_strides_compliance = False skip_backward_test = True skip_double_backward_test = True def generate_inputs(self): x = numpy.asarray(self.input).astype(self.dtype) return x, def forward_xp(self, inputs, xp): x, = inputs return xp.nonzero(x)
wjzhang/pyOCD
refs/heads/master
pyOCD/gdbserver/signals.py
14
""" mbed CMSIS-DAP debugger Copyright (c) 2006-2015 ARM Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ SIGINT = 2 SIGSEGV = 11 SIGILL = 4 SIGSTOP = 17 SIGTRAP = 5 SIGBUS = 10
akosyakov/intellij-community
refs/heads/master
python/testData/inspections/PyCallingNonCallableInspection/tupleNonCallable.py
83
<warning descr="'(int, int)' object is not callable">(1,2)()</warning>
rgommers/statsmodels
refs/heads/master
statsmodels/nonparametric/smoothers_lowess.py
37
# -*- coding: utf-8 -*- """Lowess - wrapper for cythonized extension Author : Chris Jordan-Squire Author : Carl Vogel Author : Josef Perktold """ import numpy as np from ._smoothers_lowess import lowess as _lowess def lowess(endog, exog, frac=2.0/3.0, it=3, delta=0.0, is_sorted=False, missing='drop', return_sorted=True): '''LOWESS (Locally Weighted Scatterplot Smoothing) A lowess function that outs smoothed estimates of endog at the given exog values from points (exog, endog) Parameters ---------- endog: 1-D numpy array The y-values of the observed points exog: 1-D numpy array The x-values of the observed points frac: float Between 0 and 1. The fraction of the data used when estimating each y-value. it: int The number of residual-based reweightings to perform. delta: float Distance within which to use linear-interpolation instead of weighted regression. is_sorted : bool If False (default), then the data will be sorted by exog before calculating lowess. If True, then it is assumed that the data is already sorted by exog. missing : str Available options are 'none', 'drop', and 'raise'. If 'none', no nan checking is done. If 'drop', any observations with nans are dropped. If 'raise', an error is raised. Default is 'drop'. return_sorted : bool If True (default), then the returned array is sorted by exog and has missing (nan or infinite) observations removed. If False, then the returned array is in the same length and the same sequence of observations as the input array. Returns ------- out: ndarray, float The returned array is two-dimensional if return_sorted is True, and one dimensional if return_sorted is False. If return_sorted is True, then a numpy array with two columns. The first column contains the sorted x (exog) values and the second column the associated estimated y (endog) values. If return_sorted is False, then only the fitted values are returned, and the observations will be in the same order as the input arrays. Notes ----- This lowess function implements the algorithm given in the reference below using local linear estimates. Suppose the input data has N points. The algorithm works by estimating the `smooth` y_i by taking the frac*N closest points to (x_i,y_i) based on their x values and estimating y_i using a weighted linear regression. The weight for (x_j,y_j) is tricube function applied to abs(x_i-x_j). If it > 1, then further weighted local linear regressions are performed, where the weights are the same as above times the _lowess_bisquare function of the residuals. Each iteration takes approximately the same amount of time as the original fit, so these iterations are expensive. They are most useful when the noise has extremely heavy tails, such as Cauchy noise. Noise with less heavy-tails, such as t-distributions with df>2, are less problematic. The weights downgrade the influence of points with large residuals. In the extreme case, points whose residuals are larger than 6 times the median absolute residual are given weight 0. `delta` can be used to save computations. For each `x_i`, regressions are skipped for points closer than `delta`. The next regression is fit for the farthest point within delta of `x_i` and all points in between are estimated by linearly interpolating between the two regression fits. Judicious choice of delta can cut computation time considerably for large data (N > 5000). A good choice is ``delta = 0.01 * range(exog)``. Some experimentation is likely required to find a good choice of `frac` and `iter` for a particular dataset. References ---------- Cleveland, W.S. (1979) "Robust Locally Weighted Regression and Smoothing Scatterplots". Journal of the American Statistical Association 74 (368): 829-836. Examples -------- The below allows a comparison between how different the fits from lowess for different values of frac can be. >>> import numpy as np >>> import statsmodels.api as sm >>> lowess = sm.nonparametric.lowess >>> x = np.random.uniform(low = -2*np.pi, high = 2*np.pi, size=500) >>> y = np.sin(x) + np.random.normal(size=len(x)) >>> z = lowess(y, x) >>> w = lowess(y, x, frac=1./3) This gives a similar comparison for when it is 0 vs not. >>> import numpy as np >>> import scipy.stats as stats >>> import statsmodels.api as sm >>> lowess = sm.nonparametric.lowess >>> x = np.random.uniform(low = -2*np.pi, high = 2*np.pi, size=500) >>> y = np.sin(x) + stats.cauchy.rvs(size=len(x)) >>> z = lowess(y, x, frac= 1./3, it=0) >>> w = lowess(y, x, frac=1./3) ''' endog = np.asarray(endog, float) exog = np.asarray(exog, float) # Inputs should be vectors (1-D arrays) of the # same length. if exog.ndim != 1: raise ValueError('exog must be a vector') if endog.ndim != 1: raise ValueError('endog must be a vector') if endog.shape[0] != exog.shape[0] : raise ValueError('exog and endog must have same length') if missing in ['drop', 'raise']: # Cut out missing values mask_valid = (np.isfinite(exog) & np.isfinite(endog)) all_valid = np.all(mask_valid) if all_valid: y = endog x = exog else: if missing == 'drop': x = exog[mask_valid] y = endog[mask_valid] else: raise ValueError('nan or inf found in data') elif missing == 'none': y = endog x = exog all_valid = True # we assume it's true if missing='none' else: raise ValueError("missing can only be 'none', 'drop' or 'raise'") if not is_sorted: # Sort both inputs according to the ascending order of x values sort_index = np.argsort(x) x = np.array(x[sort_index]) y = np.array(y[sort_index]) res = _lowess(y, x, frac=frac, it=it, delta=delta) _, yfitted = res.T if return_sorted: return res else: # rebuild yfitted with original indices # a bit messy: y might have been selected twice if not is_sorted: yfitted_ = np.empty_like(y) yfitted_.fill(np.nan) yfitted_[sort_index] = yfitted yfitted = yfitted_ else: yfitted = yfitted if not all_valid: yfitted_ = np.empty_like(endog) yfitted_.fill(np.nan) yfitted_[mask_valid] = yfitted yfitted = yfitted_ # we don't need to return exog anymore return yfitted
jeasoft/odoo
refs/heads/marcos-8.0
comunity_modules/menu_collapsible/__init__.py
3
# -*- coding: utf-8 -*- ############################################################################## # # Copyright (C) 2015 ONESTEiN BV (<http://www.onestein.nl>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ##############################################################################
SKA-ScienceDataProcessor/integration-prototype
refs/heads/master
sip/science_pipeline_workflows/ical_dask/pipelines/imaging_processing.py
1
#!/usr/bin/python3 -u # coding: utf-8 """Pipeline processing using Dask (processing stage only). This script demonstrates the continuum imaging and ICAL pipelines. """ import logging import pprint import pickle import numpy import sys import json from data_models.polarisation import PolarisationFrame from data_models.data_model_helpers import import_blockvisibility_from_hdf5 from processing_components.calibration.calibration_control import \ create_calibration_controls from processing_components.image.operations import export_image_to_fits, \ qa_image from processing_components.imaging.base import create_image_from_visibility from workflows.arlexecute.pipelines.pipeline_arlexecute import continuum_imaging_arlexecute, \ ical_arlexecute from processing_components.imaging.base import advise_wide_field from workflows.arlexecute.execution_support.arlexecute import arlexecute from workflows.arlexecute.execution_support.dask_init import get_dask_Client PP = pprint.PrettyPrinter() RESULTS_DIR = 'results' LOG = logging.getLogger('sip.ical.generate_data') def init_logging(): """Initialise Python logging.""" fmt = '%(asctime)s.%(msecs)03d | %(name)-60s | %(levelname)-7s ' \ '| %(message)s' logging.basicConfig(format=fmt, datefmt='%H:%M:%S', level=logging.DEBUG) def main(): """Run the workflow.""" init_logging() LOG.info("Starting imaging-pipeline") # Read parameters PARFILE = 'parameters.json' if len(sys.argv) > 1: PARFILE = sys.argv[1] LOG.info("JSON parameter file = %s", PARFILE) try: with open(PARFILE, "r") as par_file: jspar = json.load(par_file) except AssertionError as error: LOG.critical('ERROR %s', error) return # We will use dask arlexecute.set_client(get_dask_Client()) arlexecute.run(init_logging) # Import visibility list from HDF5 file vis_list = import_blockvisibility_from_hdf5( '%s/%s' % (RESULTS_DIR, jspar["files"]["vis_list"])) # Now read the BlockVisibilities constructed using a model drawn from GLEAM predicted_vislist = import_blockvisibility_from_hdf5( '%s/%s' % (RESULTS_DIR, jspar["files"]["predicted_vis_list"])) corrupted_vislist = import_blockvisibility_from_hdf5( '%s/%s' % (RESULTS_DIR, jspar["files"]["corrupted_vis_list"])) # Reproduce parameters from the visibility data ntimes = vis_list[0].nvis phasecentre = vis_list[0].phasecentre print(phasecentre) polframe = vis_list[0].polarisation_frame.type LOG.info("Polarisation Frame of vis_list: %s", polframe) wprojection_planes = jspar["advice"]["wprojection_planes"] guard_band_image = jspar["advice"]["guard_band_image"] delA = jspar["advice"]["delA"] advice_low = advise_wide_field(vis_list[0], guard_band_image=guard_band_image, delA=delA, wprojection_planes=wprojection_planes) advice_high = advise_wide_field(vis_list[-1], guard_band_image=guard_band_image, delA=delA, wprojection_planes=wprojection_planes) vis_slices = advice_low['vis_slices'] npixel = advice_high['npixels2'] cellsize = min(advice_low['cellsize'], advice_high['cellsize']) # Recovering frequencies fstart = vis_list[0].frequency fend = vis_list[-1].frequency num_freq_win = len(vis_list) frequency = numpy.linspace(fstart, fend, num_freq_win) # Recovering bandwidths channel_bandwidth = numpy.array(num_freq_win * [vis_list[1].frequency - vis_list[0].frequency]) # Get the LSM. This is currently blank. model_list = [ arlexecute.execute(create_image_from_visibility)( vis_list[f], npixel=npixel, frequency=[frequency[f]], channel_bandwidth=[channel_bandwidth[f]], cellsize=cellsize, phasecentre=phasecentre, polarisation_frame=PolarisationFrame(polframe)) for f, freq in enumerate(frequency) ] # future_predicted_vislist = arlexecute.scatter(predicted_vislist) # Create and execute graphs to make the dirty image and PSF # LOG.info('About to run invert to get dirty image') # dirty_list = invert_component(future_predicted_vislist, model_list, # context='wstack', # vis_slices=vis_slices, dopsf=False) # dirty_list = arlexecute.compute(dirty_list, sync=True) # LOG.info('About to run invert to get PSF') # psf_list = invert_component(future_predicted_vislist, model_list, # context='wstack', # vis_slices=vis_slices, dopsf=True) # psf_list = arlexecute.compute(psf_list, sync=True) # Now deconvolve using msclean # LOG.info('About to run deconvolve') # deconvolve_list, _ = deconvolve_component( # dirty_list, psf_list, # model_imagelist=model_list, # deconvolve_facets=8, # deconvolve_overlap=16, # deconvolve_taper='tukey', # scales=[0, 3, 10], # algorithm='msclean', # niter=1000, # fractional_threshold=0.1, # threshold=0.1, # gain=0.1, # psf_support=64) # deconvolved = arlexecute.compute(deconvolve_list, sync=True) LOG.info('About to run continuum imaging') continuum_imaging_list = continuum_imaging_arlexecute( predicted_vislist, model_imagelist = model_list, context = jspar["processing"]["continuum_imaging"]["context"] , #'wstack', vis_slices = vis_slices, scales = jspar["processing"]["continuum_imaging"]["scales"], #[0, 3, 10], algorithm = jspar["processing"]["continuum_imaging"]["algorithm"], #'mmclean', nmoment = jspar["processing"]["continuum_imaging"]["nmoment"], #3, niter = jspar["processing"]["continuum_imaging"]["niter"], #1000, fractional_threshold = jspar["processing"]["continuum_imaging"]["fractional_threshold"], #0.1, threshold = jspar["processing"]["continuum_imaging"]["threshold"], #0.1, nmajor = jspar["processing"]["continuum_imaging"]["nmajor"], #5, gain = jspar["processing"]["continuum_imaging"]["gain"], #0.25, deconvolve_facets = jspar["processing"]["continuum_imaging"]["deconvolve_facets"], #8, deconvolve_overlap = jspar["processing"]["continuum_imaging"]["deconvolve_overlap"], #16, deconvolve_taper = jspar["processing"]["continuum_imaging"]["deconvolve_taper"], #'tukey', psf_support = jspar["processing"]["continuum_imaging"]["psf_support"] ) #64) result = arlexecute.compute(continuum_imaging_list, sync=True) deconvolved = result[0][0] residual = result[1][0] restored = result[2][0] print(qa_image(deconvolved, context='Clean image - no selfcal')) print(qa_image(restored, context='Restored clean image - no selfcal')) export_image_to_fits(restored, '%s/%s' % (RESULTS_DIR, jspar["files"]["continuum_imaging_restored"])) print(qa_image(residual[0], context='Residual clean image - no selfcal')) export_image_to_fits(residual[0], '%s/%s' % (RESULTS_DIR, jspar["files"]["continuum_imaging_residual"])) controls = create_calibration_controls() controls['T']['first_selfcal'] = jspar["processing"]["controls"]["T"]["first_selfcal"] controls['G']['first_selfcal'] = jspar["processing"]["controls"]["G"]["first_selfcal"] controls['B']['first_selfcal'] = jspar["processing"]["controls"]["B"]["first_selfcal"] controls['T']['timescale'] = jspar["processing"]["controls"]["T"]["timescale"] controls['G']['timescale'] = jspar["processing"]["controls"]["G"]["timescale"] controls['B']['timescale'] = jspar["processing"]["controls"]["B"]["timescale"] PP.pprint(controls) future_corrupted_vislist = arlexecute.scatter(corrupted_vislist) ical_list = ical_arlexecute(future_corrupted_vislist, model_imagelist = model_list, context = jspar["processing"]["ical"]["context"] , #'wstack', calibration_context = jspar["processing"]["ical"]["calibration_context"] , #'TG', controls = controls, vis_slices = ntimes, scales = jspar["processing"]["ical"]["scales"], #[0, 3, 10], timeslice = jspar["processing"]["ical"]["timeslice"], #'auto', algorithm = jspar["processing"]["ical"]["algorithm"], #'mmclean', nmoment = jspar["processing"]["ical"]["nmoment"], #3, niter = jspar["processing"]["ical"]["niter"], #1000, fractional_threshold = jspar["processing"]["ical"]["fractional_threshold"], #0.1, threshold = jspar["processing"]["ical"]["threshold"], #0.1, nmajor = jspar["processing"]["ical"]["nmajor"], #5, gain = jspar["processing"]["ical"]["gain"], #0.25, deconvolve_facets = jspar["processing"]["ical"]["deconvolve_facets"], #8, deconvolve_overlap = jspar["processing"]["ical"]["deconvolve_overlap"], #16, deconvolve_taper = jspar["processing"]["ical"]["deconvolve_taper"], #'tukey', global_solution = jspar["processing"]["ical"]["global_solution"], #False, do_selfcal = jspar["processing"]["ical"]["do_selfcal"], #True, psf_support = jspar["processing"]["ical"]["psf_support"]) #64 LOG.info('About to run ical') result = arlexecute.compute(ical_list, sync=True) deconvolved = result[0][0] residual = result[1][0] restored = result[2][0] print(qa_image(deconvolved, context='Clean image')) print(qa_image(restored, context='Restored clean image')) export_image_to_fits(restored, '%s/%s' % (RESULTS_DIR, jspar["files"]["ical_restored"])) print(qa_image(residual[0], context='Residual clean image')) export_image_to_fits(residual[0], '%s/%s' % (RESULTS_DIR, jspar["files"]["ical_residual"])) arlexecute.close() if __name__ == '__main__': main()
sephii/django
refs/heads/master
django/utils/autoreload.py
40
# Autoreloading launcher. # Borrowed from Peter Hunt and the CherryPy project (http://www.cherrypy.org). # Some taken from Ian Bicking's Paste (http://pythonpaste.org/). # # Portions copyright (c) 2004, CherryPy Team (team@cherrypy.org) # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the CherryPy Team nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import absolute_import # Avoid importing `importlib` from this package. import os import signal import sys import time import traceback from django.apps import apps from django.conf import settings from django.core.signals import request_finished try: from django.utils.six.moves import _thread as thread except ImportError: from django.utils.six.moves import _dummy_thread as thread # This import does nothing, but it's necessary to avoid some race conditions # in the threading module. See http://code.djangoproject.com/ticket/2330 . try: import threading # NOQA except ImportError: pass try: import termios except ImportError: termios = None USE_INOTIFY = False try: # Test whether inotify is enabled and likely to work import pyinotify fd = pyinotify.INotifyWrapper.create().inotify_init() if fd >= 0: USE_INOTIFY = True os.close(fd) except ImportError: pass RUN_RELOADER = True FILE_MODIFIED = 1 I18N_MODIFIED = 2 _mtimes = {} _win = (sys.platform == "win32") _error_files = [] _cached_modules = set() _cached_filenames = [] def gen_filenames(only_new=False): """ Returns a list of filenames referenced in sys.modules and translation files. """ # N.B. ``list(...)`` is needed, because this runs in parallel with # application code which might be mutating ``sys.modules``, and this will # fail with RuntimeError: cannot mutate dictionary while iterating global _cached_modules, _cached_filenames module_values = set(sys.modules.values()) _cached_filenames = clean_files(_cached_filenames) if _cached_modules == module_values: # No changes in module list, short-circuit the function if only_new: return [] else: return _cached_filenames new_modules = module_values - _cached_modules new_filenames = clean_files( [filename.__file__ for filename in new_modules if hasattr(filename, '__file__')]) if not _cached_filenames and settings.USE_I18N: # Add the names of the .mo files that can be generated # by compilemessages management command to the list of files watched. basedirs = [os.path.join(os.path.dirname(os.path.dirname(__file__)), 'conf', 'locale'), 'locale'] for app_config in reversed(list(apps.get_app_configs())): basedirs.append(os.path.join(app_config.path, 'locale')) basedirs.extend(settings.LOCALE_PATHS) basedirs = [os.path.abspath(basedir) for basedir in basedirs if os.path.isdir(basedir)] for basedir in basedirs: for dirpath, dirnames, locale_filenames in os.walk(basedir): for filename in locale_filenames: if filename.endswith('.mo'): new_filenames.append(os.path.join(dirpath, filename)) _cached_modules = _cached_modules.union(new_modules) _cached_filenames += new_filenames if only_new: return new_filenames else: return _cached_filenames + clean_files(_error_files) def clean_files(filelist): filenames = [] for filename in filelist: if not filename: continue if filename.endswith(".pyc") or filename.endswith(".pyo"): filename = filename[:-1] if filename.endswith("$py.class"): filename = filename[:-9] + ".py" if os.path.exists(filename): filenames.append(filename) return filenames def reset_translations(): import gettext from django.utils.translation import trans_real gettext._translations = {} trans_real._translations = {} trans_real._default = None trans_real._active = threading.local() def inotify_code_changed(): """ Checks for changed code using inotify. After being called it blocks until a change event has been fired. """ class EventHandler(pyinotify.ProcessEvent): modified_code = None def process_default(self, event): if event.path.endswith('.mo'): EventHandler.modified_code = I18N_MODIFIED else: EventHandler.modified_code = FILE_MODIFIED wm = pyinotify.WatchManager() notifier = pyinotify.Notifier(wm, EventHandler()) def update_watch(sender=None, **kwargs): if sender and getattr(sender, 'handles_files', False): # No need to update watches when request serves files. # (sender is supposed to be a django.core.handlers.BaseHandler subclass) return mask = ( pyinotify.IN_MODIFY | pyinotify.IN_DELETE | pyinotify.IN_ATTRIB | pyinotify.IN_MOVED_FROM | pyinotify.IN_MOVED_TO | pyinotify.IN_CREATE ) for path in gen_filenames(only_new=True): wm.add_watch(path, mask) # New modules may get imported when a request is processed. request_finished.connect(update_watch) # Block until an event happens. update_watch() notifier.check_events(timeout=None) notifier.read_events() notifier.process_events() notifier.stop() # If we are here the code must have changed. return EventHandler.modified_code def code_changed(): global _mtimes, _win for filename in gen_filenames(): stat = os.stat(filename) mtime = stat.st_mtime if _win: mtime -= stat.st_ctime if filename not in _mtimes: _mtimes[filename] = mtime continue if mtime != _mtimes[filename]: _mtimes = {} try: del _error_files[_error_files.index(filename)] except ValueError: pass return I18N_MODIFIED if filename.endswith('.mo') else FILE_MODIFIED return False def check_errors(fn): def wrapper(*args, **kwargs): try: fn(*args, **kwargs) except (ImportError, IndentationError, NameError, SyntaxError, TypeError, AttributeError): et, ev, tb = sys.exc_info() if getattr(ev, 'filename', None) is None: # get the filename from the last item in the stack filename = traceback.extract_tb(tb)[-1][0] else: filename = ev.filename if filename not in _error_files: _error_files.append(filename) raise return wrapper def ensure_echo_on(): if termios: fd = sys.stdin if fd.isatty(): attr_list = termios.tcgetattr(fd) if not attr_list[3] & termios.ECHO: attr_list[3] |= termios.ECHO if hasattr(signal, 'SIGTTOU'): old_handler = signal.signal(signal.SIGTTOU, signal.SIG_IGN) else: old_handler = None termios.tcsetattr(fd, termios.TCSANOW, attr_list) if old_handler is not None: signal.signal(signal.SIGTTOU, old_handler) def reloader_thread(): ensure_echo_on() if USE_INOTIFY: fn = inotify_code_changed else: fn = code_changed while RUN_RELOADER: change = fn() if change == FILE_MODIFIED: sys.exit(3) # force reload elif change == I18N_MODIFIED: reset_translations() time.sleep(1) def restart_with_reloader(): while True: args = [sys.executable] + ['-W%s' % o for o in sys.warnoptions] + sys.argv if sys.platform == "win32": args = ['"%s"' % arg for arg in args] new_environ = os.environ.copy() new_environ["RUN_MAIN"] = 'true' exit_code = os.spawnve(os.P_WAIT, sys.executable, args, new_environ) if exit_code != 3: return exit_code def python_reloader(main_func, args, kwargs): if os.environ.get("RUN_MAIN") == "true": thread.start_new_thread(main_func, args, kwargs) try: reloader_thread() except KeyboardInterrupt: pass else: try: exit_code = restart_with_reloader() if exit_code < 0: os.kill(os.getpid(), -exit_code) else: sys.exit(exit_code) except KeyboardInterrupt: pass def jython_reloader(main_func, args, kwargs): from _systemrestart import SystemRestart thread.start_new_thread(main_func, args) while True: if code_changed(): raise SystemRestart time.sleep(1) def main(main_func, args=None, kwargs=None): if args is None: args = () if kwargs is None: kwargs = {} if sys.platform.startswith('java'): reloader = jython_reloader else: reloader = python_reloader wrapped_main_func = check_errors(main_func) reloader(wrapped_main_func, args, kwargs)
regras/btc_offline_pos
refs/heads/master
terminal_de_baixo_custo/python-cgi/bitcoin/ripemd.py
31
## ripemd.py - pure Python implementation of the RIPEMD-160 algorithm. ## Bjorn Edstrom <be@bjrn.se> 16 december 2007. ## ## Copyrights ## ========== ## ## This code is a derived from an implementation by Markus Friedl which is ## subject to the following license. This Python implementation is not ## subject to any other license. ## ##/* ## * Copyright (c) 2001 Markus Friedl. All rights reserved. ## * ## * Redistribution and use in source and binary forms, with or without ## * modification, are permitted provided that the following conditions ## * are met: ## * 1. Redistributions of source code must retain the above copyright ## * notice, this list of conditions and the following disclaimer. ## * 2. Redistributions in binary form must reproduce the above copyright ## * notice, this list of conditions and the following disclaimer in the ## * documentation and/or other materials provided with the distribution. ## * ## * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ## * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ## * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ## * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ## * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ## * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ## * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ## * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ## * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ## * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ## */ ##/* ## * Preneel, Bosselaers, Dobbertin, "The Cryptographic Hash Function RIPEMD-160", ## * RSA Laboratories, CryptoBytes, Volume 3, Number 2, Autumn 1997, ## * ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto3n2.pdf ## */ try: import psyco psyco.full() except ImportError: pass import sys is_python2 = sys.version_info.major == 2 #block_size = 1 digest_size = 20 digestsize = 20 try: range = xrange except: pass class RIPEMD160: """Return a new RIPEMD160 object. An optional string argument may be provided; if present, this string will be automatically hashed.""" def __init__(self, arg=None): self.ctx = RMDContext() if arg: self.update(arg) self.dig = None def update(self, arg): """update(arg)""" RMD160Update(self.ctx, arg, len(arg)) self.dig = None def digest(self): """digest()""" if self.dig: return self.dig ctx = self.ctx.copy() self.dig = RMD160Final(self.ctx) self.ctx = ctx return self.dig def hexdigest(self): """hexdigest()""" dig = self.digest() hex_digest = '' for d in dig: if (is_python2): hex_digest += '%02x' % ord(d) else: hex_digest += '%02x' % d return hex_digest def copy(self): """copy()""" import copy return copy.deepcopy(self) def new(arg=None): """Return a new RIPEMD160 object. An optional string argument may be provided; if present, this string will be automatically hashed.""" return RIPEMD160(arg) # # Private. # class RMDContext: def __init__(self): self.state = [0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0] # uint32 self.count = 0 # uint64 self.buffer = [0]*64 # uchar def copy(self): ctx = RMDContext() ctx.state = self.state[:] ctx.count = self.count ctx.buffer = self.buffer[:] return ctx K0 = 0x00000000 K1 = 0x5A827999 K2 = 0x6ED9EBA1 K3 = 0x8F1BBCDC K4 = 0xA953FD4E KK0 = 0x50A28BE6 KK1 = 0x5C4DD124 KK2 = 0x6D703EF3 KK3 = 0x7A6D76E9 KK4 = 0x00000000 def ROL(n, x): return ((x << n) & 0xffffffff) | (x >> (32 - n)) def F0(x, y, z): return x ^ y ^ z def F1(x, y, z): return (x & y) | (((~x) % 0x100000000) & z) def F2(x, y, z): return (x | ((~y) % 0x100000000)) ^ z def F3(x, y, z): return (x & z) | (((~z) % 0x100000000) & y) def F4(x, y, z): return x ^ (y | ((~z) % 0x100000000)) def R(a, b, c, d, e, Fj, Kj, sj, rj, X): a = ROL(sj, (a + Fj(b, c, d) + X[rj] + Kj) % 0x100000000) + e c = ROL(10, c) return a % 0x100000000, c PADDING = [0x80] + [0]*63 import sys import struct def RMD160Transform(state, block): #uint32 state[5], uchar block[64] x = [0]*16 if sys.byteorder == 'little': if is_python2: x = struct.unpack('<16L', ''.join([chr(x) for x in block[0:64]])) else: x = struct.unpack('<16L', bytes(block[0:64])) else: raise "Error!!" a = state[0] b = state[1] c = state[2] d = state[3] e = state[4] #/* Round 1 */ a, c = R(a, b, c, d, e, F0, K0, 11, 0, x); e, b = R(e, a, b, c, d, F0, K0, 14, 1, x); d, a = R(d, e, a, b, c, F0, K0, 15, 2, x); c, e = R(c, d, e, a, b, F0, K0, 12, 3, x); b, d = R(b, c, d, e, a, F0, K0, 5, 4, x); a, c = R(a, b, c, d, e, F0, K0, 8, 5, x); e, b = R(e, a, b, c, d, F0, K0, 7, 6, x); d, a = R(d, e, a, b, c, F0, K0, 9, 7, x); c, e = R(c, d, e, a, b, F0, K0, 11, 8, x); b, d = R(b, c, d, e, a, F0, K0, 13, 9, x); a, c = R(a, b, c, d, e, F0, K0, 14, 10, x); e, b = R(e, a, b, c, d, F0, K0, 15, 11, x); d, a = R(d, e, a, b, c, F0, K0, 6, 12, x); c, e = R(c, d, e, a, b, F0, K0, 7, 13, x); b, d = R(b, c, d, e, a, F0, K0, 9, 14, x); a, c = R(a, b, c, d, e, F0, K0, 8, 15, x); #/* #15 */ #/* Round 2 */ e, b = R(e, a, b, c, d, F1, K1, 7, 7, x); d, a = R(d, e, a, b, c, F1, K1, 6, 4, x); c, e = R(c, d, e, a, b, F1, K1, 8, 13, x); b, d = R(b, c, d, e, a, F1, K1, 13, 1, x); a, c = R(a, b, c, d, e, F1, K1, 11, 10, x); e, b = R(e, a, b, c, d, F1, K1, 9, 6, x); d, a = R(d, e, a, b, c, F1, K1, 7, 15, x); c, e = R(c, d, e, a, b, F1, K1, 15, 3, x); b, d = R(b, c, d, e, a, F1, K1, 7, 12, x); a, c = R(a, b, c, d, e, F1, K1, 12, 0, x); e, b = R(e, a, b, c, d, F1, K1, 15, 9, x); d, a = R(d, e, a, b, c, F1, K1, 9, 5, x); c, e = R(c, d, e, a, b, F1, K1, 11, 2, x); b, d = R(b, c, d, e, a, F1, K1, 7, 14, x); a, c = R(a, b, c, d, e, F1, K1, 13, 11, x); e, b = R(e, a, b, c, d, F1, K1, 12, 8, x); #/* #31 */ #/* Round 3 */ d, a = R(d, e, a, b, c, F2, K2, 11, 3, x); c, e = R(c, d, e, a, b, F2, K2, 13, 10, x); b, d = R(b, c, d, e, a, F2, K2, 6, 14, x); a, c = R(a, b, c, d, e, F2, K2, 7, 4, x); e, b = R(e, a, b, c, d, F2, K2, 14, 9, x); d, a = R(d, e, a, b, c, F2, K2, 9, 15, x); c, e = R(c, d, e, a, b, F2, K2, 13, 8, x); b, d = R(b, c, d, e, a, F2, K2, 15, 1, x); a, c = R(a, b, c, d, e, F2, K2, 14, 2, x); e, b = R(e, a, b, c, d, F2, K2, 8, 7, x); d, a = R(d, e, a, b, c, F2, K2, 13, 0, x); c, e = R(c, d, e, a, b, F2, K2, 6, 6, x); b, d = R(b, c, d, e, a, F2, K2, 5, 13, x); a, c = R(a, b, c, d, e, F2, K2, 12, 11, x); e, b = R(e, a, b, c, d, F2, K2, 7, 5, x); d, a = R(d, e, a, b, c, F2, K2, 5, 12, x); #/* #47 */ #/* Round 4 */ c, e = R(c, d, e, a, b, F3, K3, 11, 1, x); b, d = R(b, c, d, e, a, F3, K3, 12, 9, x); a, c = R(a, b, c, d, e, F3, K3, 14, 11, x); e, b = R(e, a, b, c, d, F3, K3, 15, 10, x); d, a = R(d, e, a, b, c, F3, K3, 14, 0, x); c, e = R(c, d, e, a, b, F3, K3, 15, 8, x); b, d = R(b, c, d, e, a, F3, K3, 9, 12, x); a, c = R(a, b, c, d, e, F3, K3, 8, 4, x); e, b = R(e, a, b, c, d, F3, K3, 9, 13, x); d, a = R(d, e, a, b, c, F3, K3, 14, 3, x); c, e = R(c, d, e, a, b, F3, K3, 5, 7, x); b, d = R(b, c, d, e, a, F3, K3, 6, 15, x); a, c = R(a, b, c, d, e, F3, K3, 8, 14, x); e, b = R(e, a, b, c, d, F3, K3, 6, 5, x); d, a = R(d, e, a, b, c, F3, K3, 5, 6, x); c, e = R(c, d, e, a, b, F3, K3, 12, 2, x); #/* #63 */ #/* Round 5 */ b, d = R(b, c, d, e, a, F4, K4, 9, 4, x); a, c = R(a, b, c, d, e, F4, K4, 15, 0, x); e, b = R(e, a, b, c, d, F4, K4, 5, 5, x); d, a = R(d, e, a, b, c, F4, K4, 11, 9, x); c, e = R(c, d, e, a, b, F4, K4, 6, 7, x); b, d = R(b, c, d, e, a, F4, K4, 8, 12, x); a, c = R(a, b, c, d, e, F4, K4, 13, 2, x); e, b = R(e, a, b, c, d, F4, K4, 12, 10, x); d, a = R(d, e, a, b, c, F4, K4, 5, 14, x); c, e = R(c, d, e, a, b, F4, K4, 12, 1, x); b, d = R(b, c, d, e, a, F4, K4, 13, 3, x); a, c = R(a, b, c, d, e, F4, K4, 14, 8, x); e, b = R(e, a, b, c, d, F4, K4, 11, 11, x); d, a = R(d, e, a, b, c, F4, K4, 8, 6, x); c, e = R(c, d, e, a, b, F4, K4, 5, 15, x); b, d = R(b, c, d, e, a, F4, K4, 6, 13, x); #/* #79 */ aa = a; bb = b; cc = c; dd = d; ee = e; a = state[0] b = state[1] c = state[2] d = state[3] e = state[4] #/* Parallel round 1 */ a, c = R(a, b, c, d, e, F4, KK0, 8, 5, x) e, b = R(e, a, b, c, d, F4, KK0, 9, 14, x) d, a = R(d, e, a, b, c, F4, KK0, 9, 7, x) c, e = R(c, d, e, a, b, F4, KK0, 11, 0, x) b, d = R(b, c, d, e, a, F4, KK0, 13, 9, x) a, c = R(a, b, c, d, e, F4, KK0, 15, 2, x) e, b = R(e, a, b, c, d, F4, KK0, 15, 11, x) d, a = R(d, e, a, b, c, F4, KK0, 5, 4, x) c, e = R(c, d, e, a, b, F4, KK0, 7, 13, x) b, d = R(b, c, d, e, a, F4, KK0, 7, 6, x) a, c = R(a, b, c, d, e, F4, KK0, 8, 15, x) e, b = R(e, a, b, c, d, F4, KK0, 11, 8, x) d, a = R(d, e, a, b, c, F4, KK0, 14, 1, x) c, e = R(c, d, e, a, b, F4, KK0, 14, 10, x) b, d = R(b, c, d, e, a, F4, KK0, 12, 3, x) a, c = R(a, b, c, d, e, F4, KK0, 6, 12, x) #/* #15 */ #/* Parallel round 2 */ e, b = R(e, a, b, c, d, F3, KK1, 9, 6, x) d, a = R(d, e, a, b, c, F3, KK1, 13, 11, x) c, e = R(c, d, e, a, b, F3, KK1, 15, 3, x) b, d = R(b, c, d, e, a, F3, KK1, 7, 7, x) a, c = R(a, b, c, d, e, F3, KK1, 12, 0, x) e, b = R(e, a, b, c, d, F3, KK1, 8, 13, x) d, a = R(d, e, a, b, c, F3, KK1, 9, 5, x) c, e = R(c, d, e, a, b, F3, KK1, 11, 10, x) b, d = R(b, c, d, e, a, F3, KK1, 7, 14, x) a, c = R(a, b, c, d, e, F3, KK1, 7, 15, x) e, b = R(e, a, b, c, d, F3, KK1, 12, 8, x) d, a = R(d, e, a, b, c, F3, KK1, 7, 12, x) c, e = R(c, d, e, a, b, F3, KK1, 6, 4, x) b, d = R(b, c, d, e, a, F3, KK1, 15, 9, x) a, c = R(a, b, c, d, e, F3, KK1, 13, 1, x) e, b = R(e, a, b, c, d, F3, KK1, 11, 2, x) #/* #31 */ #/* Parallel round 3 */ d, a = R(d, e, a, b, c, F2, KK2, 9, 15, x) c, e = R(c, d, e, a, b, F2, KK2, 7, 5, x) b, d = R(b, c, d, e, a, F2, KK2, 15, 1, x) a, c = R(a, b, c, d, e, F2, KK2, 11, 3, x) e, b = R(e, a, b, c, d, F2, KK2, 8, 7, x) d, a = R(d, e, a, b, c, F2, KK2, 6, 14, x) c, e = R(c, d, e, a, b, F2, KK2, 6, 6, x) b, d = R(b, c, d, e, a, F2, KK2, 14, 9, x) a, c = R(a, b, c, d, e, F2, KK2, 12, 11, x) e, b = R(e, a, b, c, d, F2, KK2, 13, 8, x) d, a = R(d, e, a, b, c, F2, KK2, 5, 12, x) c, e = R(c, d, e, a, b, F2, KK2, 14, 2, x) b, d = R(b, c, d, e, a, F2, KK2, 13, 10, x) a, c = R(a, b, c, d, e, F2, KK2, 13, 0, x) e, b = R(e, a, b, c, d, F2, KK2, 7, 4, x) d, a = R(d, e, a, b, c, F2, KK2, 5, 13, x) #/* #47 */ #/* Parallel round 4 */ c, e = R(c, d, e, a, b, F1, KK3, 15, 8, x) b, d = R(b, c, d, e, a, F1, KK3, 5, 6, x) a, c = R(a, b, c, d, e, F1, KK3, 8, 4, x) e, b = R(e, a, b, c, d, F1, KK3, 11, 1, x) d, a = R(d, e, a, b, c, F1, KK3, 14, 3, x) c, e = R(c, d, e, a, b, F1, KK3, 14, 11, x) b, d = R(b, c, d, e, a, F1, KK3, 6, 15, x) a, c = R(a, b, c, d, e, F1, KK3, 14, 0, x) e, b = R(e, a, b, c, d, F1, KK3, 6, 5, x) d, a = R(d, e, a, b, c, F1, KK3, 9, 12, x) c, e = R(c, d, e, a, b, F1, KK3, 12, 2, x) b, d = R(b, c, d, e, a, F1, KK3, 9, 13, x) a, c = R(a, b, c, d, e, F1, KK3, 12, 9, x) e, b = R(e, a, b, c, d, F1, KK3, 5, 7, x) d, a = R(d, e, a, b, c, F1, KK3, 15, 10, x) c, e = R(c, d, e, a, b, F1, KK3, 8, 14, x) #/* #63 */ #/* Parallel round 5 */ b, d = R(b, c, d, e, a, F0, KK4, 8, 12, x) a, c = R(a, b, c, d, e, F0, KK4, 5, 15, x) e, b = R(e, a, b, c, d, F0, KK4, 12, 10, x) d, a = R(d, e, a, b, c, F0, KK4, 9, 4, x) c, e = R(c, d, e, a, b, F0, KK4, 12, 1, x) b, d = R(b, c, d, e, a, F0, KK4, 5, 5, x) a, c = R(a, b, c, d, e, F0, KK4, 14, 8, x) e, b = R(e, a, b, c, d, F0, KK4, 6, 7, x) d, a = R(d, e, a, b, c, F0, KK4, 8, 6, x) c, e = R(c, d, e, a, b, F0, KK4, 13, 2, x) b, d = R(b, c, d, e, a, F0, KK4, 6, 13, x) a, c = R(a, b, c, d, e, F0, KK4, 5, 14, x) e, b = R(e, a, b, c, d, F0, KK4, 15, 0, x) d, a = R(d, e, a, b, c, F0, KK4, 13, 3, x) c, e = R(c, d, e, a, b, F0, KK4, 11, 9, x) b, d = R(b, c, d, e, a, F0, KK4, 11, 11, x) #/* #79 */ t = (state[1] + cc + d) % 0x100000000; state[1] = (state[2] + dd + e) % 0x100000000; state[2] = (state[3] + ee + a) % 0x100000000; state[3] = (state[4] + aa + b) % 0x100000000; state[4] = (state[0] + bb + c) % 0x100000000; state[0] = t % 0x100000000; pass def RMD160Update(ctx, inp, inplen): if type(inp) == str: inp = [ord(i)&0xff for i in inp] have = int((ctx.count // 8) % 64) inplen = int(inplen) need = 64 - have ctx.count += 8 * inplen off = 0 if inplen >= need: if have: for i in range(need): ctx.buffer[have+i] = inp[i] RMD160Transform(ctx.state, ctx.buffer) off = need have = 0 while off + 64 <= inplen: RMD160Transform(ctx.state, inp[off:]) #<--- off += 64 if off < inplen: # memcpy(ctx->buffer + have, input+off, len-off); for i in range(inplen - off): ctx.buffer[have+i] = inp[off+i] def RMD160Final(ctx): size = struct.pack("<Q", ctx.count) padlen = 64 - ((ctx.count // 8) % 64) if padlen < 1+8: padlen += 64 RMD160Update(ctx, PADDING, padlen-8) RMD160Update(ctx, size, 8) return struct.pack("<5L", *ctx.state) assert '37f332f68db77bd9d7edd4969571ad671cf9dd3b' == \ new('The quick brown fox jumps over the lazy dog').hexdigest() assert '132072df690933835eb8b6ad0b77e7b6f14acad7' == \ new('The quick brown fox jumps over the lazy cog').hexdigest() assert '9c1185a5c5e9fc54612808977ee8f548b2258d31' == \ new('').hexdigest()
hiaselhans/OpenGlider
refs/heads/develop
openglider/glider/parametric/export_ods.py
2
import copy import math import ezodf import openglider.glider import openglider.glider.parametric.glider from openglider.glider.ballooning import BallooningBezierNeu from openglider.glider.cell import DiagonalRib from openglider.glider.parametric.arc import ArcCurve from openglider.utils.table import Table file_version = "V3" def export_ods_2d(glider, filename): doc = ezodf.newdoc(doctype="ods", filename=filename) assert isinstance(glider, openglider.glider.parametric.glider.ParametricGlider) doc.sheets.append(get_geom_sheet(glider)) cell_sheet = get_cell_sheet(glider) cell_sheet.name = "Cell Elements" rib_sheet = get_rib_sheet(glider) rib_sheet.name = "Rib Elements" attachment_points = glider.lineset.get_attachment_point_table() rib_sheet.append_right(attachment_points[0]) cell_sheet.append_right(attachment_points[1]) doc.sheets.append(cell_sheet.get_ods_sheet()) doc.sheets.append(rib_sheet.get_ods_sheet()) doc.sheets.append(get_airfoil_sheet(glider)) doc.sheets.append(get_ballooning_sheet(glider)) doc.sheets.append(get_parametric_sheet(glider)) doc.sheets.append(get_lines_sheet(glider)) doc.sheets.append(get_data_sheet(glider)) # airfoil sheet doc.saveas(filename) def get_airfoil_sheet(glider_2d): profiles = glider_2d.profiles max_length = max(len(p) for p in profiles) sheet = ezodf.Sheet(name="Airfoils", size=(max_length+1, len(profiles)*2)) for i, profile in enumerate(profiles): sheet[0, 2*i].set_value(profile.name or "unnamed") for j, p in enumerate(profile): sheet[j+1, 2*i].set_value(p[0]) sheet[j+1, 2*i+1].set_value(p[1]) return sheet def get_geom_sheet(glider_2d): geom_page = ezodf.Sheet(name="geometry", size=(glider_2d.shape.half_cell_num + 2, 10)) # rib_nos geom_page[0, 0].set_value("Ribs") shape = glider_2d.shape.get_half_shape() geom_page[0, 1].set_value("Chord") for i, chord in enumerate(shape.chords): geom_page[i+1, 1].set_value(chord) geom_page[0, 2].set_value("Le x (m)") geom_page[0, 3].set_value("Le y (m)") for i, p in enumerate(shape.front): geom_page[i+1, 2].set_value(p[0]) geom_page[i+1, 3].set_value(-p[1]) # set arc values geom_page[0, 4].set_value("Arc") last_angle = 0 cell_angles = glider_2d.arc.get_cell_angles(glider_2d.shape.rib_x_values) if glider_2d.shape.has_center_cell: cell_angles = cell_angles[1:] for i, angle in enumerate(cell_angles + [cell_angles[-1]]): this_angle = angle * 180/math.pi geom_page[i+1, 4].set_value(this_angle-last_angle) last_angle = this_angle geom_page[0, 5].set_value("AOA") geom_page[0, 6].set_value("Z-rotation") geom_page[0, 7].set_value("Y-rotation") geom_page[0, 8].set_value("profile-merge") geom_page[0, 9].set_value("ballooning-merge") aoa_int = glider_2d.aoa.interpolation(num=100) profile_int = glider_2d.profile_merge_curve.interpolation(num=100) ballooning_int = glider_2d.ballooning_merge_curve.interpolation(num=100) for rib_no, x in enumerate(glider_2d.shape.rib_x_values): geom_page[rib_no+1, 0].set_value(rib_no+1) geom_page[rib_no+1, 5].set_value(aoa_int(x)*180/math.pi) geom_page[rib_no+1, 6].set_value(0) geom_page[rib_no+1, 7].set_value(0) geom_page[rib_no+1, 8].set_value(profile_int(x)) geom_page[rib_no+1, 9].set_value(ballooning_int(x)) return geom_page def get_cell_sheet(glider): cell_num = glider.shape.half_cell_num row_num = glider.shape.half_cell_num table = Table() table["A1"] = file_version for i in range(1, row_num+1): table[i, 0] = str(i) elems = glider.elements # cuts cuts_table = Table() cuts_per_cell = [] for cell_no in range(cell_num): cuts_this = [] for cut in elems["cuts"]: if cell_no in cut["cells"]: cuts_this.append((cut["left"], cut["right"], cut["type"])) cuts_this.sort(key=lambda x: sum(x[:2])) cuts_per_cell.append(cuts_this) def find_next(cut, cell_no): cuts_this = cuts_per_cell[cell_no] for new_cut in cuts_this: if cut[1] == new_cut[0] and new_cut[2] == cut[2]: cuts_this.remove(new_cut) return new_cut def add_column(cell_no): cuts_this = cuts_per_cell[cell_no] if not cuts_this: return False cut = cuts_this[0] column = Table() column[0, 0] = cut[2] column.insert_row(cut[:2], cell_no+1) cuts_this.remove(cut) for cell_no_temp in range(cell_no+1, cell_num): cut_next = find_next(cut, cell_no_temp) if not cut_next: break column.insert_row(cut_next[:2], cell_no_temp+1) cut = cut_next cuts_table.append_right(column) return column for cell_no in range(cell_num): while add_column(cell_no): pass table.append_right(cuts_table) # Diagonals for diagonal in elems["diagonals"]: diagonal_table = Table() diagonal = copy.copy(diagonal) diagonal_table[0, 0] = "QR" cells = diagonal.pop("cells") _diagonal = DiagonalRib(**diagonal) for cell_no in cells: # center_left, center_right, width_left, width_right, height_left, height_right diagonal_table[cell_no+1, 0] = _diagonal.center_left diagonal_table[cell_no+1, 1] = _diagonal.center_right diagonal_table[cell_no+1, 2] = _diagonal.width_left diagonal_table[cell_no+1, 3] = _diagonal.width_right diagonal_table[cell_no+1, 4] = _diagonal.left_front[1] diagonal_table[cell_no+1, 5] = _diagonal.right_front[1] table.append_right(diagonal_table) # Straps for strap in elems["straps"]: strap_table = Table() strap_table[0, 0] = "STRAP" for cell_no in strap["cells"]: # strap_table[cell_no+1, 0] = strap["left"] strap_table[cell_no+1, 1] = strap["right"] strap_table[cell_no+1, 2] = strap["width"] table.append_right(strap_table) # Material material_table = Table() for cell_no, cell in enumerate(elems["materials"]): for part_no, part in enumerate(cell): material_table[cell_no+1, part_no] = part for part_no in range(material_table.num_columns): material_table[0, part_no] = "MATERIAL" table.append_right(material_table) return table def get_rib_sheet(glider_2d): table = Table() table[0, 0] = file_version for i in range(1, glider_2d.shape.half_cell_num+1): table[i, 0] = f"rib{i}" # holes for hole in glider_2d.elements["holes"]: hole_table = Table() hole_table[0, 0] = "HOLE" for rib_no in hole["ribs"]: table[rib_no+1, 0] = hole["pos"] table[rib_no+1, 1] = hole["size"] table.append_right(hole_table) # rigidfoils rigidfoils = glider_2d.elements.get("rigidfoils", []) rigidfoils.sort(key=lambda r: r["start"]) for rigidfoil in rigidfoils: rigidfoil_table = Table() rigidfoil_table[0, 0] = "RIGIDFOIL" for rib_no in rigidfoil["ribs"]: rigidfoil_table[rib_no+1, 0] = rigidfoil["start"] rigidfoil_table[rib_no+1, 1] = rigidfoil["end"] rigidfoil_table[rib_no+1, 2] = rigidfoil["distance"] table.append_right(rigidfoil_table) return table def get_ballooning_sheet(glider_2d): balloonings = glider_2d.balloonings table = Table() #row_num = max([len(b.upper_spline.controlpoints)+len(b.lower_spline.controlpoints) for b in balloonings])+1 #sheet = ezodf.Sheet(name="Balloonings", size=(row_num, 2*len(balloonings))) for ballooning_no, ballooning in enumerate(balloonings): #sheet.append_columns(2) table[0, 2*ballooning_no] = "ballooning_{}".format(ballooning_no) if type(ballooning) is BallooningBezierNeu: table[0, 2*ballooning_no+1] = "V3" pts = ballooning.controlpoints else: table[0, 2*ballooning_no+1] = "V2" pts = list(ballooning.upper_spline.controlpoints) + list(ballooning.lower_spline.controlpoints) for i, point in enumerate(pts): table[i+1, 2*ballooning_no] = point[0] table[i+1, 2*ballooning_no+1] = point[1] ods_sheet = table.get_ods_sheet() ods_sheet.name = "Balloonings" return ods_sheet def get_parametric_sheet(glider : "openglider.glider.parametric.glider.ParametricGlider"): line_no = 1 + max([ glider.shape.front_curve.numpoints, glider.shape.back_curve.numpoints, glider.shape.rib_distribution.numpoints, glider.arc.curve.numpoints, glider.zrot.numpoints, glider.aoa.numpoints, glider.ballooning_merge_curve.numpoints, glider.profile_merge_curve.numpoints ]) sheet = ezodf.Sheet(name="Parametric", size=(line_no, 16)) def add_curve(name, curve, column_no): #sheet.append_columns(2) sheet[0, column_no].set_value(name) for i, p in enumerate(curve): sheet[i+1, column_no].set_value(p[0]) sheet[i+1, column_no+1].set_value(p[1]) add_curve("front", glider.shape.front_curve.controlpoints, 0) add_curve("back", glider.shape.back_curve.controlpoints, 2) add_curve("rib_distribution", glider.shape.rib_distribution.controlpoints, 4) add_curve("arc", glider.arc.curve.controlpoints, 6) add_curve("aoa", glider.aoa.controlpoints, 8) add_curve("zrot", glider.zrot.controlpoints, 10) add_curve("ballooning_merge_curve", glider.ballooning_merge_curve.controlpoints, 12) add_curve("profile_merge_curve", glider.profile_merge_curve.controlpoints, 14) return sheet def get_lines_sheet(glider, places=3): table = glider.lineset.get_input_table() ods_sheet = table.get_ods_sheet("Lines") return ods_sheet def get_data_sheet(glider): ods_sheet = ezodf.Sheet(name="Data", size=(3, 10)) ods_sheet[0,0].set_value("Data") current_row = 1 # lower attachment_points for pt_no, att_pt in enumerate(glider.lineset.get_lower_attachment_points()): ods_sheet.append_rows(3) for i, axis in enumerate(['X', 'Y', 'Z']): ods_sheet[current_row + i, 0].set_value("AHP{}{}".format(axis, att_pt.name)) ods_sheet[current_row + i, 1].set_value(att_pt.pos_3D[i]) current_row += 3 ods_sheet[current_row, 0].set_value("SPEED") ods_sheet[current_row, 1].set_value(glider.speed) ods_sheet[current_row+1, 0].set_value("GLIDE") ods_sheet[current_row+1, 1].set_value(glider.glide) return ods_sheet # for i, value in enumerate(("Ribs", "Chord", "x: (m)", "y LE (m)", "kruemmung", "aoa", "Z-rotation", # "Y-Rotation-Offset", "merge", "balooning")): # geom_page.get_cell((0, i)).value = value # # ribs = glider.ribs() # x = [rib[0][0] for rib in ribs] # y = [rib[0][1] for rib in ribs] # chord = [rib[0][1] - rib[1][1] for rib in ribs]
tph-thuering/vnetsource
refs/heads/master
ts_om/models.py
2
from StringIO import StringIO import datetime from xml.etree.ElementTree import ParseError from django.core.exceptions import MultipleObjectsReturned from django.utils import timezone from django.db import models from django.contrib.auth.models import User from lxml import etree from lxml.etree import XMLSyntaxError import vecnet.openmalaria.scenario from data_services.models import Simulation, SimulationGroup, DimUser class ExperimentFile(models.Model): name = models.CharField(max_length=200) file = models.FileField(upload_to='ts_om/experiments/%Y/%m/%d') user = models.ForeignKey(User) test_sim_group = models.ForeignKey(SimulationGroup, null=True, related_name="test_submit_group") sim_group = models.ForeignKey(SimulationGroup, null=True, related_name="submit_group") def __unicode__(self): return self.name @property def state(self): pass class BaselineScenario(models.Model): name = models.CharField(max_length=200) xml = models.TextField() def __unicode__(self): return self.name class DemographicsSnippet(models.Model): name = models.CharField(max_length=200) maximum_age_yrs = models.CharField(max_length=200) xml = models.TextField() title = models.CharField(max_length=200) url = models.CharField(max_length=200) def __unicode__(self): return self.title class ModelSnippet(models.Model): """ These snippets provide parameters calibrated by model fitting as well as some model options chosen to differentiate the model. Downloaded from https://code.google.com/p/openmalaria/source/browse/v32/models+5-day/?repo=snippets See the publication "Ensemble Modeling of the Likely Public Health Impact of a Pre-Erythrocytic Malaria Vaccine", Smith et al, for a description of these models: http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.1001157 Summary of the description is available on http://www.plosmedicine.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pmed.1001157.t002&representation=PNG_L """ name = models.CharField(max_length=200) xml = models.TextField() def __unicode__(self): return self.name class Scenario(models.Model): xml = models.TextField() start_date = models.IntegerField(default=datetime.datetime.now().year) user = models.ForeignKey(User) simulation = models.ForeignKey(Simulation, null=True, blank=True) last_modified = models.DateTimeField(auto_now=True) deleted = models.BooleanField(default=False) description = models.TextField(null=True, blank=True) is_public = models.BooleanField(default=False) # ------------------------------------------------- # name property setter and getter @property def name(self): try: tree = etree.parse(StringIO(str(self.xml))) except XMLSyntaxError: name = "Invalid xml document" else: try: name = tree.getroot().xpath('@name')[0] except IndexError: name = "Unnamed scenario" return name @name.setter def name(self, value): tree = etree.parse(StringIO(str(self.xml))) scenario = tree.getroot() scenario.attrib['name'] = value self.xml = etree.tostring(tree.getroot(), pretty_print=True) # # ---------------------------------------------------- @property def status(self): try: status = self.simulation.status except Exception: status = None return status class AnophelesSnippet(models.Model): # Vector description in /om:scenario/entomology/vector/anopheles section of xml anopheles = models.TextField(null=False, blank=False) # anophelesParams in /om:scenario/interventions/human/component/GVI section. # Only required if GVI interventions are applied. gvi_anophelesParams = models.TextField(null=True, blank=True) # anophelesParams in /om:scenario/interventions/human/component/ITN section. # Only required if ITN interventions are applied. itn_anophelesParams = models.TextField(null=True, blank=True) # anophelesParams in /om:scenario/interventions/human/component/IRS section. # Only required if IRS interventions are applied. irs_anophelesParams = models.TextField(null=True, blank=True) @property def name(self): try: tree = etree.parse(StringIO(str(self.anopheles))) except XMLSyntaxError: name = "Invalid xml snippet" else: try: name = tree.getroot().xpath('@mosquito')[0] except IndexError: name = "Unnamed anopheles snippet" return name def __unicode__(self): return self.name class InterventionComponent(models.Model): name = models.CharField(max_length=200) tag = models.CharField(max_length=200) def __unicode__(self): return self.name class InterventionSnippet(models.Model): name = models.CharField(max_length=200) component = models.ForeignKey(InterventionComponent, null=False) xml = models.TextField(null=False, blank=False) def __unicode__(self): return self.name class Experiment(models.Model): """ OpenMalaria Experiment is just a collection of Scenarios. We also need SimulationGroup - to track status of this Experiment, and optional base - to show differences between individual scenarios and base scenario of this Experiment """ name = models.TextField() description = models.TextField(blank=True, default="") sim_group = models.ForeignKey(SimulationGroup, null=True, blank=True) # base = models.TextField(null=True, blank=True) # # Experiment Specification is JSON document that includes experiment template, Sweep Memorandum # and describes which combinations of sweeps and arms will be generated. # More details: https://docs.google.com/document/d/1SSBqc-0fDhsGtMuBWsGfM2m2GxTAT8Io7oikoEF4sRQ/edit # # If Experiment was generated expernally, Experiment Specification may not be available experiment_specification = models.TextField(null=True, blank=True) def get_sweeps(self): """ Return list of all sweeps in this experiment This function implies that this is full factorial experiment :return dictionary - sweep name:list of arm names for that sweep """ # Get list of sweep that belongs to this Experiment sweeps_names = SweepArmMappingToScenario.objects.filter(experiment=self).distinct(["sweep_name"]) sweeps = dict() for sweep_name in sweeps_names: # Create list of arm names arms = [arm.name for arm in SweepArmMappingToScenario.objects.filter(experiment=self, sweep_name=sweep_name)] sweeps[sweep_name] = arms return sweeps def get_scenario(self, keys): sweep = SweepArmMappingToScenario.objects.filter(experiment=self, **keys) if sweep.count() == 1: return sweep[0].scenario if sweep.count() == 0: return None raise MultipleObjectsReturned("Too many scenarios found, key list maybe incomplete") class SweepArmMappingToScenario(models.Model): """ Each Scenario in Experiment will be associated with a list values for each sweep (one value for one parameter) """ experiment = models.ForeignKey(Experiment) scenario = models.ForeignKey(Scenario) sweep_name = models.CharField(max_length=127) arm_name = models.CharField(max_length=127) # class ScenarioTemplate(models.Model): # pass class RunMetaData(): # results_base_url = 'https://ci.vecnet.org/ts_emod/output/results_viewer/' def __init__(self, scenario): self.scenario = scenario self.getMetaData() def getMetaData(self): # Stuff retrieved from derived scenario = self.scenario simulation = scenario.simulation django_user = scenario.user user = DimUser.objects.get_or_create(username=django_user.username) try: scenario_wrapper = vecnet.openmalaria.scenario.Scenario(scenario.xml) except ParseError: scenario_wrapper = None try: duration_in_years = scenario_wrapper.monitoring.surveys[-1] * 5 / 365 except AttributeError: duration_in_years = 0 meta_data = scenario.metadata self.coordinates = [] self.species = [] self.creator = user.username # user.first_name + user.last_name self.results_url = "" # self.results_url = "https://ci-qa.vecnet.org" + reverse("ts_emod_run_details", args=[dimRun.id, experiment.id]) # self.coordinates = self.getCoordinates() self.coordinates = ["", ""] self.time_period = [scenario.start_date, scenario.start_date + duration_in_years] # for specie in configJson['parameters']['Vector_Species_Params']: # self.species.append("An. " + specie) self.species.append("") # for intervention in campaignJson['Events']: # interventions.append(self.Intervention(intervention)) # self.interventions = list(set([intervention.name for intervention in interventions])) self.interventions = [""] self.interventions_set = list(set(self.interventions)) self.model_version = simulation.version self.simulation_type = "" # configJson['parameters']['Simulation_Type'] self.run_date = scenario.time_launched # Stuff retrieved from database if meta_data is None: meta_data = {} self.is_public = meta_data.get('isPublic', 'True') self.title = self.scenario.name # metaData.get('title', '') self.citation = meta_data.get('citation', '') self.location = meta_data.get('location', '') self.tags = meta_data.get('tags', '') self.description = meta_data.get('description', '') self.parameters_of_interest = meta_data.get('parametersOfInterest', '') self.metadata_last_update_date = meta_data.get('metaDataLastUpdateDate', self.run_date) # Generate autoname/autoid # interventions_label = "" # unique_labels = set() # for intervention in interventions: # unique_labels.add(intervention.type) # for label in unique_labels: # interventions_label += label # # days = (scenario.end_date_key.timestamp - scenario.start_date_key.timestamp).days # if days < 365: # duration = "%sm" % (days / 30) # else: # duration = "%sy" % (days / 365) # self.autoname = str(self.creator) + str(interventions_label) + \ # str(self.location.replace(" ", "").replace(",", "")) + str(duration) + str(self.scenario.id) self.autoname = "AUTO" def getCoordinates(self): # location = GisBaseTable.objects.all().filter(id=self.scenario.location_key.geom_key) # Ignore PyCharm warning below # GisBaseTable.objects is models.GeoManager() and it does produce GeoQuerySet which has centroid function # Somehow PyCharm thinks it is normal QuerySet # Please refer to https://docs.djangoproject.com/en/dev/ref/contrib/gis/geoquerysets/#centroid for more details # centroid = location.centroid(model_att='centroid')[0].centroid # return {'latitude': centroid.y, 'longitude': centroid.x} pass def saveMetaData(self): if self.scenario.metadata is None: self.scenario.metadata = {} self.scenario.metadata['isPublic'] = self.is_public # self.dimRun.metadata['title'] = self.title self.scenario.name = self.title self.scenario.metadata['citation'] = self.citation self.scenario.metadata['location'] = self.location self.scenario.metadata['tags'] = self.tags self.scenario.metadata['description'] = self.description self.scenario.metadata['parametersOfInterest'] = self.parameters_of_interest self.scenario.metadata['metaDataLastUpdateDate'] = timezone.now() self.scenario.save()
heukelum/linux
refs/heads/devel
tools/perf/scripts/python/sctop.py
1996
# system call top # (c) 2010, Tom Zanussi <tzanussi@gmail.com> # Licensed under the terms of the GNU GPL License version 2 # # Periodically displays system-wide system call totals, broken down by # syscall. If a [comm] arg is specified, only syscalls called by # [comm] are displayed. If an [interval] arg is specified, the display # will be refreshed every [interval] seconds. The default interval is # 3 seconds. import os, sys, thread, time sys.path.append(os.environ['PERF_EXEC_PATH'] + \ '/scripts/python/Perf-Trace-Util/lib/Perf/Trace') from perf_trace_context import * from Core import * from Util import * usage = "perf script -s sctop.py [comm] [interval]\n"; for_comm = None default_interval = 3 interval = default_interval if len(sys.argv) > 3: sys.exit(usage) if len(sys.argv) > 2: for_comm = sys.argv[1] interval = int(sys.argv[2]) elif len(sys.argv) > 1: try: interval = int(sys.argv[1]) except ValueError: for_comm = sys.argv[1] interval = default_interval syscalls = autodict() def trace_begin(): thread.start_new_thread(print_syscall_totals, (interval,)) pass def raw_syscalls__sys_enter(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, common_callchain, id, args): if for_comm is not None: if common_comm != for_comm: return try: syscalls[id] += 1 except TypeError: syscalls[id] = 1 def syscalls__sys_enter(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, id, args): raw_syscalls__sys_enter(**locals()) def print_syscall_totals(interval): while 1: clear_term() if for_comm is not None: print "\nsyscall events for %s:\n\n" % (for_comm), else: print "\nsyscall events:\n\n", print "%-40s %10s\n" % ("event", "count"), print "%-40s %10s\n" % ("----------------------------------------", \ "----------"), for id, val in sorted(syscalls.iteritems(), key = lambda(k, v): (v, k), \ reverse = True): try: print "%-40s %10d\n" % (syscall_name(id), val), except TypeError: pass syscalls.clear() time.sleep(interval)
dnozay/lettuce
refs/heads/master
tests/integration/lib/Django-1.3/django/contrib/gis/geometry/backend/__init__.py
388
from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.utils.importlib import import_module geom_backend = getattr(settings, 'GEOMETRY_BACKEND', 'geos') try: module = import_module('.%s' % geom_backend, 'django.contrib.gis.geometry.backend') except ImportError, e: try: module = import_module(geom_backend) except ImportError, e_user: raise ImproperlyConfigured('Could not import user-defined GEOMETRY_BACKEND ' '"%s".' % geom_backend) try: Geometry = module.Geometry GeometryException = module.GeometryException except AttributeError: raise ImproperlyConfigured('Cannot import Geometry from the "%s" ' 'geometry backend.' % geom_backend)
sparkslabs/kamaelia
refs/heads/master
Sketches/MPS/BugReports/FixTests/Kamaelia/Kamaelia/UI/OpenGL/Vector.py
12
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------- """\ =============== 3D Vector class =============== A class for 3 dimensional vectors providing several methods for common vector operations. """ from math import * # ===================== # Vector: used for handling 3D Vectors # ===================== class Vector: """\ Vector([x][,y][,z]) -> A new Vector object. Keyword arguments: - x,y,z -- Initial values. """ def __init__(self, x=0.0, y=0.0, z=0.0): """x.__init__(...) initializes x; see x.__class__.__doc__ for signature""" self.x = float(x) self.y = float(y) self.z = float(z) def zero(self): """ Set all values to zero. """ self.x = 0.0 self.y = 0.0 self.z = 0.0 return self def invert(self): """ Changes the sign of each vector component. """ self.x = -self.x self.y = -self.y self.z = -self.z return self def copy(self): """ Returns a copy of the Vector object. """ return Vector(self.x,self.y,self.z) def toTuple(self): """ Returns a tuple (x,y,z). """ return (self.x,self.y,self.z) def length(self): """ Returns the length of the vector. """ return sqrt(self.x*self.x + self.y*self.y + self.z*self.z) def dot(self, other): """ Returns the dot product between self and other. """ return self.x*other.x + self.y*other.y + self.z*other.z def cross(self, other): """ Returns the cross product between self and other. """ return Vector(self.y*other.z - self.z*other.y, self.z*other.x - self.x*other.z, self.x*other.y - self.y*other.x) def norm(self): """ Returns a normalised version of the vector. """ l = sqrt(self.x*self.x + self.y*self.y + self.z*self.z) return Vector(self.x / l, self.y / l, self.z / l) def __str__(self): return str([self.x,self.y,self.z]) def __eq__(self, other): if self.x == other.x and self.y == other.y and self.z == other.z: return True return False def __ne__(self, other): if self.x == other.x and self.y == other.y and self.z == other.z: return False return True def __mul__(self, factor): return Vector(self.x * factor, self.y * factor, self.z * factor) def __div__(self, factor): return Vector(self.x / factor, self.y / factor, self.z / factor) def __mod__(self, factor): return Vector(self.x % factor, self.y % factor, self.z % factor) def __add__(self, other): return Vector(self.x +other.x, self.y +other.y, self.z +other.z) def __sub__(self, other): return Vector(self.x -other.x, self.y -other.y, self.z-other.z) def __imul__(self, factor): return Vector(self.x * factor, self.y * factor, self.z * factor) def __idiv__(self, factor): return Vector(self.x / factor, self.y / factor, self.z / factor) def __imod__(self, factor): return Vector(self.x % factor, self.y % factor, self.z % factor) def __iadd__(self, other): return Vector(self.x +other.x, self.y +other.y, self.z +other.z) def __isub__(self, other): return Vector(self.x -other.x, self.y -other.y, self.z-other.z) def __neg__(self): return Vector(-self.x, -self.y, -self.z) # Licensed to the BBC under a Contributor Agreement: THF
Zyell/home-assistant
refs/heads/master
tests/components/binary_sensor/test_command_line.py
8
"""The tests for the Command line Binary sensor platform.""" import unittest from homeassistant.const import (STATE_ON, STATE_OFF) from homeassistant.components.binary_sensor import command_line from tests.common import get_test_home_assistant class TestCommandSensorBinarySensor(unittest.TestCase): """Test the Command line Binary sensor.""" def setUp(self): """Setup things to be run when tests are started.""" self.hass = get_test_home_assistant() def tearDown(self): """Stop everything that was started.""" self.hass.stop() def test_setup(self): """Test sensor setup.""" config = {'name': 'Test', 'command': 'echo 1', 'payload_on': '1', 'payload_off': '0'} devices = [] def add_dev_callback(devs): """Add callback to add devices.""" for dev in devs: devices.append(dev) command_line.setup_platform( self.hass, config, add_dev_callback) self.assertEqual(1, len(devices)) entity = devices[0] self.assertEqual('Test', entity.name) self.assertEqual(STATE_ON, entity.state) def test_setup_bad_config(self): """Test the setup with a bad configuration.""" config = {} devices = [] def add_dev_callback(devs): """Add callback to add devices.""" for dev in devs: devices.append(dev) self.assertFalse(command_line.setup_platform( self.hass, config, add_dev_callback)) self.assertEqual(0, len(devices)) def test_template(self): """Test setting the state with a template.""" data = command_line.CommandSensorData('echo 10') entity = command_line.CommandBinarySensor( self.hass, data, 'test', None, '1.0', '0', '{{ value | multiply(0.1) }}') self.assertEqual(STATE_ON, entity.state) def test_sensor_off(self): """Test setting the state with a template.""" data = command_line.CommandSensorData('echo 0') entity = command_line.CommandBinarySensor( self.hass, data, 'test', None, '1', '0', None) self.assertEqual(STATE_OFF, entity.state)
leeseulstack/openstack
refs/heads/master
neutron/tests/unit/ml2/test_security_group.py
12
# Copyright (c) 2013 OpenStack Foundation # Copyright 2013, Nachi Ueno, NTT MCL, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import math import mock from neutron.api.v2 import attributes from neutron.common import constants as const from neutron.extensions import securitygroup as ext_sg from neutron import manager from neutron.tests.unit import test_api_v2 from neutron.tests.unit import test_extension_security_group as test_sg from neutron.tests.unit import test_security_groups_rpc as test_sg_rpc PLUGIN_NAME = 'neutron.plugins.ml2.plugin.Ml2Plugin' NOTIFIER = 'neutron.plugins.ml2.rpc.AgentNotifierApi' class Ml2SecurityGroupsTestCase(test_sg.SecurityGroupDBTestCase): _plugin_name = PLUGIN_NAME def setUp(self, plugin=None): test_sg_rpc.set_firewall_driver(test_sg_rpc.FIREWALL_HYBRID_DRIVER) notifier_p = mock.patch(NOTIFIER) notifier_cls = notifier_p.start() self.notifier = mock.Mock() notifier_cls.return_value = self.notifier self._attribute_map_bk_ = {} for item in attributes.RESOURCE_ATTRIBUTE_MAP: self._attribute_map_bk_[item] = (attributes. RESOURCE_ATTRIBUTE_MAP[item]. copy()) super(Ml2SecurityGroupsTestCase, self).setUp(PLUGIN_NAME) def tearDown(self): super(Ml2SecurityGroupsTestCase, self).tearDown() attributes.RESOURCE_ATTRIBUTE_MAP = self._attribute_map_bk_ class TestMl2SecurityGroups(Ml2SecurityGroupsTestCase, test_sg.TestSecurityGroups, test_sg_rpc.SGNotificationTestMixin): def setUp(self): super(TestMl2SecurityGroups, self).setUp() plugin = manager.NeutronManager.get_plugin() plugin.start_rpc_listeners() def _make_port_with_new_sec_group(self, net_id): sg = self._make_security_group(self.fmt, 'name', 'desc') port = self._make_port( self.fmt, net_id, security_groups=[sg['security_group']['id']]) return port['port'] def _make_port_without_sec_group(self, net_id): port = self._make_port( self.fmt, net_id, security_groups=[]) return port['port'] def test_security_group_get_ports_from_devices(self): with self.network() as n: with self.subnet(n): orig_ports = [ self._make_port_with_new_sec_group(n['network']['id']), self._make_port_with_new_sec_group(n['network']['id']), self._make_port_without_sec_group(n['network']['id']) ] plugin = manager.NeutronManager.get_plugin() # should match full ID and starting chars ports = plugin.get_ports_from_devices( [orig_ports[0]['id'], orig_ports[1]['id'][0:8], orig_ports[2]['id']]) self.assertEqual(len(orig_ports), len(ports)) for port_dict in ports: p = next(p for p in orig_ports if p['id'] == port_dict['id']) self.assertEqual(p['id'], port_dict['id']) self.assertEqual(p['security_groups'], port_dict[ext_sg.SECURITYGROUPS]) self.assertEqual([], port_dict['security_group_rules']) self.assertEqual([p['fixed_ips'][0]['ip_address']], port_dict['fixed_ips']) self._delete('ports', p['id']) def test_security_group_get_ports_from_devices_with_bad_id(self): plugin = manager.NeutronManager.get_plugin() ports = plugin.get_ports_from_devices(['bad_device_id']) self.assertFalse(ports) def test_security_group_no_db_calls_with_no_ports(self): plugin = manager.NeutronManager.get_plugin() with mock.patch( 'neutron.plugins.ml2.db.get_sg_ids_grouped_by_port' ) as get_mock: self.assertFalse(plugin.get_ports_from_devices([])) self.assertFalse(get_mock.called) def test_large_port_count_broken_into_parts(self): plugin = manager.NeutronManager.get_plugin() max_ports_per_query = 5 ports_to_query = 73 for max_ports_per_query in (1, 2, 5, 7, 9, 31): with contextlib.nested( mock.patch('neutron.plugins.ml2.db.MAX_PORTS_PER_QUERY', new=max_ports_per_query), mock.patch('neutron.plugins.ml2.db.get_sg_ids_grouped_by_port', return_value={}), ) as (max_mock, get_mock): plugin.get_ports_from_devices( ['%s%s' % (const.TAP_DEVICE_PREFIX, i) for i in range(ports_to_query)]) all_call_args = map(lambda x: x[1][0], get_mock.mock_calls) last_call_args = all_call_args.pop() # all but last should be getting MAX_PORTS_PER_QUERY ports self.assertTrue( all(map(lambda x: len(x) == max_ports_per_query, all_call_args)) ) remaining = ports_to_query % max_ports_per_query if remaining: self.assertEqual(remaining, len(last_call_args)) # should be broken into ceil(total/MAX_PORTS_PER_QUERY) calls self.assertEqual( math.ceil(ports_to_query / float(max_ports_per_query)), get_mock.call_count ) def test_full_uuids_skip_port_id_lookup(self): plugin = manager.NeutronManager.get_plugin() # when full UUIDs are provided, the _or statement should only # have one matching 'IN' critiera for all of the IDs with contextlib.nested( mock.patch('neutron.plugins.ml2.db.or_'), mock.patch('neutron.plugins.ml2.db.db_api.get_session') ) as (or_mock, sess_mock): fmock = sess_mock.query.return_value.outerjoin.return_value.filter # return no ports to exit the method early since we are mocking # the query fmock.return_value.all.return_value = [] plugin.get_ports_from_devices([test_api_v2._uuid(), test_api_v2._uuid()]) # the or_ function should only have one argument or_mock.assert_called_once_with(mock.ANY) class TestMl2SGServerRpcCallBack( Ml2SecurityGroupsTestCase, test_sg_rpc.SGServerRpcCallBackTestCase): pass
KitKatXperience/platform_external_chromium_org
refs/heads/kk
chrome/test/pyautolib/pyauto_errors.py
69
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """PyAuto Errors.""" class JavascriptRuntimeError(RuntimeError): """Represent an error raised by injected Javascript.""" pass class JSONInterfaceError(RuntimeError): """Represent an error in the JSON IPC interface.""" pass class AutomationCommandFail(JSONInterfaceError): """Represent an automation command failure. These failures are passed back from the Chrome side of the IPC. """ pass class AutomationCommandTimeout(JSONInterfaceError): """Represent an automation command failure due to timeout.""" pass class NTPThumbnailNotShownError(RuntimeError): """Represent an error while attempting to manipulate a NTP thumbnail. This is due to it not being visible to a real user. """ pass
xinchoubiology/cuda-convnet2
refs/heads/master
layer.py
162
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from math import exp import sys import ConfigParser as cfg import os import numpy as n import numpy.random as nr from math import ceil, floor from collections import OrderedDict from os import linesep as NL from python_util.options import OptionsParser import re class LayerParsingError(Exception): pass # A neuron that doesn't take parameters class NeuronParser: def __init__(self, type, func_str, uses_acts=True, uses_inputs=True): self.type = type self.func_str = func_str self.uses_acts = uses_acts self.uses_inputs = uses_inputs def parse(self, type): if type == self.type: return {'type': self.type, 'params': {}, 'usesActs': self.uses_acts, 'usesInputs': self.uses_inputs} return None # A neuron that takes parameters class ParamNeuronParser(NeuronParser): neuron_regex = re.compile(r'^\s*(\w+)\s*\[\s*(\w+(\s*,\w+)*)\s*\]\s*$') def __init__(self, type, func_str, uses_acts=True, uses_inputs=True): NeuronParser.__init__(self, type, func_str, uses_acts, uses_inputs) m = self.neuron_regex.match(type) self.base_type = m.group(1) self.param_names = m.group(2).split(',') assert len(set(self.param_names)) == len(self.param_names) def parse(self, type): m = re.match(r'^%s\s*\[([\d,\.\s\-]*)\]\s*$' % self.base_type, type) if m: try: param_vals = [float(v.strip()) for v in m.group(1).split(',')] if len(param_vals) == len(self.param_names): return {'type': self.base_type, 'params': dict(zip(self.param_names, param_vals)), 'usesActs': self.uses_acts, 'usesInputs': self.uses_inputs} except TypeError: pass return None class AbsTanhNeuronParser(ParamNeuronParser): def __init__(self): ParamNeuronParser.__init__(self, 'abstanh[a,b]', 'f(x) = a * |tanh(b * x)|') def parse(self, type): dic = ParamNeuronParser.parse(self, type) # Make b positive, since abs(tanh(bx)) = abs(tanh(-bx)) and the C++ code # assumes b is positive. if dic: dic['params']['b'] = abs(dic['params']['b']) return dic class ParamParser: lrs_regex = re.compile(r'^\s*(\w+)\s*(?:\[\s*(\w+(\s*;\w+)*)\s*\])?\s*$') param_converters = {'i': int, 'f': float} def __init__(self, type): m = self.lrs_regex.match(type) self.base_type = m.group(1) param_names_with_type = m.group(2).split(';') if m.group(2) is not None else [] self.param_names = [p[1:] for p in param_names_with_type] self.param_types = [self.param_converters[p[0]] for p in param_names_with_type] self.param_regex_inner = ";".join([('\s*%s\s*=\s*[^;,\s=]+\s*' % p) for p in self.param_names]) self.regex_str = ('^%s\s*(?:\[(%s)\])?\s*$') % (self.base_type, self.param_regex_inner) assert len(set(self.param_names)) == len(self.param_names) def parse(self, type): m = re.match(self.regex_str, type, flags=re.IGNORECASE) if m: try: param_vals = [ptype(v.split('=')[1].strip()) for ptype,v in zip(self.param_types, m.group(1).split(';'))] if m.group(1) is not None else [] if len(param_vals) == len(self.param_names): return {'type': self.base_type, 'params': dict(zip(self.param_names, param_vals))} except TypeError: pass return None # Subclass that throws more convnet-specific exceptions than the default class MyConfigParser(cfg.SafeConfigParser): def safe_get(self, section, option, f=cfg.SafeConfigParser.get, typestr=None, default=None): try: return f(self, section, option) except cfg.NoOptionError, e: if default is not None: return default raise LayerParsingError("Layer '%s': required parameter '%s' missing" % (section, option)) except ValueError, e: if typestr is None: raise e raise LayerParsingError("Layer '%s': parameter '%s' must be %s" % (section, option, typestr)) def safe_get_list(self, section, option, f=str, typestr='strings', default=None): v = self.safe_get(section, option, default=default) if type(v) == list: return v try: return [f(x.strip()) for x in v.split(',')] except: raise LayerParsingError("Layer '%s': parameter '%s' must be ','-delimited list of %s" % (section, option, typestr)) def safe_get_int(self, section, option, default=None): return self.safe_get(section, option, f=cfg.SafeConfigParser.getint, typestr='int', default=default) def safe_get_float(self, section, option, default=None): return self.safe_get(section, option, f=cfg.SafeConfigParser.getfloat, typestr='float', default=default) def safe_get_bool(self, section, option, default=None): return self.safe_get(section, option, f=cfg.SafeConfigParser.getboolean, typestr='bool', default=default) def safe_get_float_list(self, section, option, default=None): return self.safe_get_list(section, option, float, typestr='floats', default=default) def safe_get_int_list(self, section, option, default=None): return self.safe_get_list(section, option, int, typestr='ints', default=default) def safe_get_bool_list(self, section, option, default=None): return self.safe_get_list(section, option, lambda x: x.lower() in ('true', '1'), typestr='bools', default=default) # A class that implements part of the interface of MyConfigParser class FakeConfigParser(object): def __init__(self, dic): self.dic = dic def safe_get(self, section, option, default=None): if option in self.dic: return self.dic[option] return default def safe_get_int(self, section, option, default=None): return int(self.safe_get(section, option, default)) def safe_get_int_list(self, section, option, default=None): return list(self.safe_get(section, option, default)) class LayerParser: def __init__(self): self.dic = {} self.set_defaults() # Post-processing step -- this is called after all layers have been initialized def optimize(self, layers): self.dic['actsTarget'] = -1 self.dic['actsGradTarget'] = -1 if len(set(len(l['gpu']) for l in layers.values() if 'inputs' in l and self.dic['name'] in l['inputs'])) > 1: # print set(len(l['gpu']) for l in layers.values()) raise LayerParsingError("Layer '%s': all next layers must have equal number of replicas." % (self.dic['name'])) def parse_params(self, vals, parsers, param_name, human_name, num_params=1): dic, name = self.dic, self.dic['name'] # print vals if len(vals) != num_params and len(vals) != 1: raise LayerParsingError("Layer '%s': expected list of length %d for %s but got list of length %d."% (name, num_params, param_name, len(vals))) parsed = [] # print vals for v in vals: for p in parsers: parsedv = p.parse(v) if parsedv: parsed += [parsedv] break if len(parsed) == 1 and num_params > 1: parsed = parsed * num_params if len(parsed) == num_params: return parsed # print parsed, vals raise LayerParsingError("Layer '%s': unable to parse %s %s=%s." % (name, human_name, param_name, ",".join(vals))) # Add parameters from layer parameter file def add_params(self, mcp): pass # self.dic['conserveMem'] = mcp.convnet.op.get_value('conserve_mem') if mcp.convnet is not None else 0 def init(self, dic): self.dic = dic return self def set_defaults(self): self.dic['outputs'] = 0 self.dic['parser'] = self self.dic['requiresParams'] = False # Does this layer use its own activity matrix # for some purpose other than computing its output? # Usually, this will only be true for layers that require their # own activity matrix for gradient computations. For example, layers # with logistic units must compute the gradient y * (1 - y), where y is # the activity matrix. # # Layers that do not not use their own activity matrix should advertise # this, since this will enable memory-saving matrix re-use optimizations. # # The default value of this property is True, for safety purposes. # If a layer advertises that it does not use its own activity matrix when # in fact it does, bad things will happen. self.dic['usesActs'] = True # Does this layer use the activity matrices of its input layers # for some purpose other than computing its output? # # Again true by default for safety self.dic['usesInputs'] = True # Force this layer to use its own activity gradient matrix, # instead of borrowing one from one of its inputs. # # This should be true for layers where the mapping from output # gradient to input gradient is non-elementwise. self.dic['forceOwnActs'] = True # Does this layer need the gradient at all? # Should only be true for layers with parameters (weights). self.dic['gradConsumer'] = False # The gpu indices on which this layer runs self.dic['gpu'] = [-1] def parse(self, name, mcp, prev_layers, model=None): self.prev_layers = prev_layers self.dic['name'] = name self.dic['type'] = mcp.safe_get(name, 'type') self.dic['id'] = len(prev_layers) return self.dic def verify_float_range(self, v, param_name, _min, _max): self.verify_num_range(v, param_name, _min, _max, strconv=lambda x: '%.3f' % x) def verify_num_range(self, v, param_name, _min, _max, strconv=lambda x:'%d' % x): if type(v) == list: for i,vv in enumerate(v): self._verify_num_range(vv, param_name, _min, _max, i, strconv=strconv) else: self._verify_num_range(v, param_name, _min, _max, strconv=strconv) def _verify_num_range(self, v, param_name, _min, _max, input=-1, strconv=lambda x:'%d' % x): layer_name = self.dic['name'] if input < 0 else '%s[%d]' % (self.dic['name'], input) if _min is not None and _max is not None and (v < _min or v > _max): raise LayerParsingError("Layer '%s': parameter '%s' must be in the range %s-%s" % (layer_name, param_name, strconv(_min), strconv(_max))) elif _min is not None and v < _min: raise LayerParsingError("Layer '%s': parameter '%s' must be greater than or equal to %s" % (layer_name, param_name, strconv(_min))) elif _max is not None and v > _max: raise LayerParsingError("Layer '%s': parameter '%s' must be smaller than or equal to %s" % (layer_name, param_name, strconv(_max))) def verify_divisible(self, value, div, value_name, div_name=None, input_idx=0): layer_name = self.dic['name'] if len(self.dic['inputs']) == 0 else '%s[%d]' % (self.dic['name'], input_idx) if value % div != 0: raise LayerParsingError("Layer '%s': parameter '%s' must be divisible by %s" % (layer_name, value_name, str(div) if div_name is None else "'%s'" % div_name)) def verify_str_in(self, value, param_name, lst, input_idx=-1): lname = self.dic['name'] if input_idx == -1 else ('%s[%d]' % (self.dic['name'], input_idx)) if value not in lst: raise LayerParsingError("Layer '%s': parameter '%s' must be one of %s" % (lname, param_name, ", ".join("'%s'" % s for s in lst))) def verify_int_in(self, value, param_name, lst): if value not in lst: raise LayerParsingError("Layer '%s': parameter '%s' must be one of %s" % (self.dic['name'], param_name, ", ".join("'%d'" % s for s in lst))) def verify_all_ints_in(self, values, param_name, lst): if len([v for v in values if v not in lst]) > 0: raise LayerParsingError("Layer '%s': all parameters to '%s' must be among %s" % (self.dic['name'], param_name, ", ".join("'%d'" % s for s in lst))) def verify_input_dims(self, dims): for i,d in enumerate(dims): if d is not None and self.dic['numInputs'][i] != d: # first input must be labels raise LayerParsingError("Layer '%s': dimensionality of input %d must be %d" % (self.dic['name'], i, d)) # This looks for neuron=x arguments in various layers, and creates # separate layer definitions for them. @staticmethod def detach_neuron_layers(layers): for name,l in layers.items(): if l['type'] != 'neuron' and 'neuron' in l and l['neuron']: NeuronLayerParser().detach_neuron_layer(name, layers) @staticmethod def parse_layers(layer_cfg_path, param_cfg_path, model, layers={}): try: if not os.path.exists(layer_cfg_path): raise LayerParsingError("Layer definition file '%s' does not exist" % layer_cfg_path) if not os.path.exists(param_cfg_path): raise LayerParsingError("Layer parameter file '%s' does not exist" % param_cfg_path) if len(layers) == 0: mcp = MyConfigParser(dict_type=OrderedDict) mcp.readfp(open(layer_cfg_path)) for name in mcp.sections(): if not mcp.has_option(name, 'type'): raise LayerParsingError("Layer '%s': no type given" % name) ltype = mcp.safe_get(name, 'type') if ltype not in layer_parsers: raise LayerParsingError("Layer '%s': Unknown layer type: '%s'" % (name, ltype)) layers[name] = layer_parsers[ltype]().parse(name, mcp, layers, model) LayerParser.detach_neuron_layers(layers) for l in layers.values(): l['parser'].optimize(layers) del l['parser'] for name,l in layers.items(): if not l['type'].startswith('cost.'): found = max(name in l2['inputs'] for l2 in layers.values() if 'inputs' in l2) if not found: raise LayerParsingError("Layer '%s' of type '%s' is unused" % (name, l['type'])) mcp = MyConfigParser(dict_type=OrderedDict) mcp.readfp(open(param_cfg_path)) # mcp.convnet = model for name,l in layers.items(): if not mcp.has_section(name) and l['requiresParams']: raise LayerParsingError("Layer '%s' of type '%s' requires extra parameters, but none given in file '%s'." % (name, l['type'], param_cfg_path)) lp = layer_parsers[l['type']]().init(l) lp.add_params(mcp) except LayerParsingError, e: print e sys.exit(1) return layers @staticmethod def register_layer_parser(ltype, cls): if ltype in layer_parsers: raise LayerParsingError("Layer type '%s' already registered" % ltype) layer_parsers[ltype] = cls # Any layer that takes an input (i.e. non-data layer) class LayerWithInputParser(LayerParser): def __init__(self, num_inputs=-1): LayerParser.__init__(self) self.num_inputs = num_inputs def verify_num_params(self, params, auto_expand=True): for param in params: if len(self.dic[param]) != len(self.dic['inputs']): if auto_expand and len(self.dic[param]) == 1: self.dic[param] *= len(self.dic['inputs']) else: raise LayerParsingError("Layer '%s': %s list length does not match number of inputs" % (self.dic['name'], param)) # layers: dictionary: name -> layer def optimize(self, layers): LayerParser.optimize(self, layers) dic = self.dic # Check if I have an input that no one else uses. #print "Layer %s optimizing" % dic['name'] if not dic['forceOwnActs']: for i, inp in enumerate(dic['inputLayers']): if inp['outputs'] == dic['outputs'] and sum(('inputs' in ll) and (inp['name'] in ll['inputs']) for ll in layers.itervalues()) == 1: # I can share my activity matrix with this layer # if it does not use its activity matrix, and I # do not need to remember my inputs. # TODO: a dropout layer should always be able to overwrite # its input. Make it so. # print "Layer %s(uses inputs=%d), input %s(uses acts = %d)" % (dic['name'], dic['usesInputs'], inp['name'], inp['usesActs']) if not inp['usesActs'] and not dic['usesInputs']: dic['actsTarget'] = i print "Layer %s using acts from layer %s" % (dic['name'], inp['name']) # print "Layer '%s' sharing activity matrix with layer '%s'" % (dic['name'], l['name']) # I can share my gradient matrix with this layer if we're on the same GPU. # This is different from the logic for actsTarget because this guy doesn't # have an actsGrad matrix on my GPU if our GPUs are different, so there's # nothing to share. if dic['gpu'] == inp['gpu']: dic['actsGradTarget'] = i # print "Layer '%s' sharing activity gradient matrix with layer '%s'" % (dic['name'], l['name']) def parse(self, name, mcp, prev_layers, model=None): dic = LayerParser.parse(self, name, mcp, prev_layers, model) dic['inputs'] = [inp.strip() for inp in mcp.safe_get(name, 'inputs').split(',')] for inp in dic['inputs']: if inp not in prev_layers: raise LayerParsingError("Layer '%s': input layer '%s' not defined" % (name, inp)) dic['inputLayers'] = [prev_layers[inp] for inp in dic['inputs']] dic['gpu'] = mcp.safe_get_int_list(name, 'gpu', default=dic['inputLayers'][0]['gpu']) dic['gpus'] = ", ".join('%s' % d for d in dic['gpu']) dic['numReplicas'] = len(dic['gpu']) if len(set(dic['gpu'])) != len(dic['gpu']): raise LayerParsingError("Layer '%s': all replicas must run on different GPUs." % (name)) for inp in dic['inputs']: # Data layers do not explicitly define how many replicas they have. # The number of replicas for a data layer is given by the number of replicas # in the next layer(s). So we set that here. inpl = prev_layers[inp] if inpl['type'] == 'data': inpl['numReplicas'] = dic['numReplicas'] if inpl['numReplicas'] % dic['numReplicas'] != 0: raise LayerParsingError("Layer '%s': number of replicas (%d) must divide number of replicas in all input layers (input %s has %d replicas)." % (name, dic['numReplicas'], inpl['name'], inpl['numReplicas'])) if len(set(inp['numReplicas'] for inp in dic['inputLayers'])) != 1: raise LayerParsingError("Layer '%s': all input layers must have equal numbers of replicas." % (name)) # Need to also assert that all *next* layers have equal number of replicas but this is hard so it's done in Layer.optimize for inp in dic['inputLayers']: if inp['outputs'] == 0: raise LayerParsingError("Layer '%s': input layer '%s' does not produce any output" % (name, inp['name'])) dic['numInputs'] = [inp['outputs'] for inp in dic['inputLayers']] # Layers can declare a neuron activation function to apply to their output, as a shortcut # to avoid declaring a separate neuron layer above themselves. dic['neuron'] = mcp.safe_get(name, 'neuron', default="") if self.num_inputs > 0 and len(dic['numInputs']) != self.num_inputs: raise LayerParsingError("Layer '%s': number of inputs must be %d" % (name, self.num_inputs)) if model: self.verify_all_ints_in(dic['gpu'], 'gpu', range(len(model.op.get_value('gpu')))) return dic def verify_img_size(self): dic = self.dic if dic['numInputs'][0] % dic['imgPixels'] != 0 or dic['imgSize'] * dic['imgSize'] != dic['imgPixels']: raise LayerParsingError("Layer '%s': has %-d dimensional input, not interpretable as %d-channel images" % (dic['name'], dic['numInputs'][0], dic['channels'])) @staticmethod def grad_consumers_below(dic): if dic['gradConsumer']: return True if 'inputLayers' in dic: return any(LayerWithInputParser.grad_consumers_below(l) for l in dic['inputLayers']) def verify_no_grads(self): if LayerWithInputParser.grad_consumers_below(self.dic): raise LayerParsingError("Layer '%s': layers of type '%s' cannot propagate gradient and must not be placed over layers with parameters." % (self.dic['name'], self.dic['type'])) class NailbedLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') dic['stride'] = mcp.safe_get_int(name, 'stride') self.verify_num_range(dic['channels'], 'channels', 1, None) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['outputsX'] = (dic['imgSize'] + dic['stride'] - 1) / dic['stride'] dic['start'] = (dic['imgSize'] - dic['stride'] * (dic['outputsX'] - 1)) / 2 dic['outputs'] = dic['channels'] * dic['outputsX']**2 self.verify_num_range(dic['outputsX'], 'outputsX', 0, None) self.verify_img_size() print "Initialized bed-of-nails layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (name, dic['gpus'], dic['outputsX'], dic['outputsX'], dic['channels']) return dic class GaussianBlurLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['outputs'] = dic['numInputs'][0] dic['channels'] = mcp.safe_get_int(name, 'channels') dic['filterSize'] = mcp.safe_get_int(name, 'filterSize') dic['stdev'] = mcp.safe_get_float(name, 'stdev') self.verify_num_range(dic['channels'], 'channels', 1, None) self.verify_int_in(dic['filterSize'], 'filterSize', [3, 5, 7, 9]) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['filter'] = n.array([exp(-(dic['filterSize']/2 - i)**2 / float(2 * dic['stdev']**2)) for i in xrange(dic['filterSize'])], dtype=n.float32).reshape(1, dic['filterSize']) dic['filter'] /= dic['filter'].sum() self.verify_img_size() if dic['filterSize'] > dic['imgSize']: raise LayerParsingError("Later '%s': filter size (%d) must be smaller than image size (%d)." % (dic['name'], dic['filterSize'], dic['imgSize'])) print "Initialized Gaussian blur layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class HorizontalReflectionLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = dic['numInputs'][0] dic['channels'] = mcp.safe_get_int(name, 'channels') self.verify_num_range(dic['channels'], 'channels', 1, 3) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) self.verify_img_size() print "Initialized horizontal reflection layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class ResizeLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['scale'] = mcp.safe_get_float(name, 'scale') dic['tgtSize'] = int(floor(dic['imgSize'] / dic['scale'])) dic['tgtPixels'] = dic['tgtSize']**2 self.verify_num_range(dic['channels'], 'channels', 1, None) # Really not recommended to use this for such severe scalings self.verify_float_range(dic['scale'], 'scale', 0.5, 2) dic['outputs'] = dic['channels'] * dic['tgtPixels'] self.verify_img_size() self.verify_no_grads() print "Initialized resize layer '%s', producing %dx%d %d-channel output" % (name, dic['tgtSize'], dic['tgtSize'], dic['channels']) return dic class RandomScaleLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') self.verify_num_range(dic['channels'], 'channels', 1, None) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['maxScale'] = mcp.safe_get_float(name, 'maxScale') dic['tgtSize'] = mcp.safe_get_int(name, 'tgtSize') min_size = int(floor(dic['imgSize'] / dic['maxScale'])) max_size = dic['imgSize'] #int(floor(dic['imgSize'] * dic['maxScale'])) if dic['tgtSize'] < min_size: raise LayerParsingError("Layer '%s': target size must be greater than minimum image size after rescaling (%d)" % (name, min_size)) if dic['tgtSize'] > max_size: raise LayerParsingError("Layer '%s': target size must be smaller than maximum image size after rescaling (%d)" % (name, max_size)) dic['tgtPixels'] = dic['tgtSize']**2 self.verify_float_range(dic['maxScale'], 'maxScale', 1, 2) dic['outputs'] = dic['channels'] * dic['tgtPixels'] self.verify_img_size() self.verify_no_grads() print "Initialized random scale layer '%s', producing %dx%d %d-channel output" % (name, dic['tgtSize'], dic['tgtSize'], dic['channels']) return dic class CropLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') self.verify_num_range(dic['channels'], 'channels', 1, None) dic['startX'] = mcp.safe_get_int(name, 'startX') dic['startY'] = mcp.safe_get_int(name, 'startY', default=dic['startX']) dic['sizeX'] = mcp.safe_get_int(name, 'sizeX') # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['outputs'] = dic['channels'] * (dic['sizeX']**2) self.verify_num_range(dic['startX'], 'startX', 0, dic['imgSize']-1) self.verify_num_range(dic['sizeX'], 'sizeX', 1, dic['imgSize']) self.verify_num_range(dic['startY'], 'startY', 0, dic['imgSize']-1) self.verify_img_size() self.verify_no_grads() if dic['startX'] + dic['sizeX'] > dic['imgSize']: raise LayerParsingError("Layer '%s': startX (%d) + sizeX (%d) > imgSize (%d)" % (name, dic['startX'], dic['sizeX'], dic['imgSize'])) print "Initialized cropping layer '%s', producing %dx%d %d-channel output" % (name, dic['sizeX'], dic['sizeX'], dic['channels']) return dic class ColorTransformLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False # Computed values dic['imgPixels'] = dic['numInputs'][0] / 3 dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['channels'] = 3 dic['outputs'] = dic['numInputs'][0] self.verify_img_size() self.verify_no_grads() return dic class RGBToYUVLayerParser(ColorTransformLayerParser): def __init__(self): ColorTransformLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model=None): dic = ColorTransformLayerParser.parse(self, name, mcp, prev_layers, model) print "Initialized RGB --> YUV layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class RGBToLABLayerParser(ColorTransformLayerParser): def __init__(self): ColorTransformLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model=None): dic = ColorTransformLayerParser.parse(self, name, mcp, prev_layers, model) dic['center'] = mcp.safe_get_bool(name, 'center', default=False) print "Initialized RGB --> LAB layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class NeuronLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) @staticmethod def get_unused_layer_name(layers, wish): if wish not in layers: return wish for i in xrange(1, 100): name = '%s.%d' % (wish, i) if name not in layers: return name raise LayerParsingError("This is insane.") def parse_neuron(self, neuron_str): for n in neuron_parsers: p = n.parse(neuron_str) if p: # Successfully parsed neuron, return it self.dic['neuron'] = p self.dic['usesActs'] = self.dic['neuron']['usesActs'] self.dic['usesInputs'] = self.dic['neuron']['usesInputs'] return # Could not parse neuron # Print available neuron types colnames = ['Neuron type', 'Function'] m = max(len(colnames[0]), OptionsParser._longest_value(neuron_parsers, key=lambda x:x.type)) + 2 ntypes = [OptionsParser._bold(colnames[0].ljust(m))] + [n.type.ljust(m) for n in neuron_parsers] fnames = [OptionsParser._bold(colnames[1])] + [n.func_str for n in neuron_parsers] usage_lines = NL.join(ntype + fname for ntype,fname in zip(ntypes, fnames)) raise LayerParsingError("Layer '%s': unable to parse neuron type '%s'. Valid neuron types: %sWhere neurons have parameters, they must be floats." % (self.dic['name'], neuron_str, NL + usage_lines + NL)) def detach_neuron_layer(self, src_name, layers): dic = self.dic # self.set_defaults() dic['name'] = NeuronLayerParser.get_unused_layer_name(layers, '%s_neuron' % src_name) dic['type'] = 'neuron' dic['inputs'] = src_name dic['neuron'] = layers[src_name]['neuron'] dic['gpu'] = layers[src_name]['gpu'] # Yes it's not entirely correct to pass all of layers as prev_layers, but it's harmless dic = self.parse(dic['name'], FakeConfigParser(dic), layers) dic['src_layer'] = src_name # Link upper layers to this new one for l in layers.values(): if 'inputs' in l: l['inputs'] = [inp if inp != src_name else dic['name'] for inp in l['inputs']] l['inputLayers'] = [inp if inp['name'] != src_name else dic for inp in l['inputLayers']] layers[dic['name']] = dic def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = dic['numInputs'][0] self.parse_neuron(dic['neuron']) dic['forceOwnActs'] = False print "Initialized neuron layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class EltwiseSumLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['coeffs'] = mcp.safe_get_float_list(name, 'coeffs', default=[1.0] * len(dic['inputs'])) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) if len(set(dic['numInputs'])) != 1: raise LayerParsingError("Layer '%s': all inputs must have the same dimensionality. Got dimensionalities: %s" % (name, ", ".join(str(s) for s in dic['numInputs']))) dic['outputs'] = dic['numInputs'][0] dic['usesInputs'] = False dic['usesActs'] = False dic['forceOwnActs'] = False dic['requiresParams'] = True print "Initialized elementwise sum layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class EltwiseMaxLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) if len(dic['inputs']) < 2: raise LayerParsingError("Layer '%s': elementwise max layer must have at least 2 inputs, got %d." % (name, len(dic['inputs']))) if len(set(dic['numInputs'])) != 1: raise LayerParsingError("Layer '%s': all inputs must have the same dimensionality. Got dimensionalities: %s" % (name, ", ".join(str(s) for s in dic['numInputs']))) dic['outputs'] = dic['numInputs'][0] print "Initialized elementwise max layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class SumLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['stride'] = mcp.safe_get_int(name, 'stride', default=1) self.verify_divisible(dic['numInputs'][0], dic['stride'], 'input dimensionality', 'stride') dic['outputs'] = dic['numInputs'][0] / dic['stride'] print "Initialized sum layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class DropoutLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['enable'] = mcp.safe_get_bool(name, 'enable', default=True) dic['keep'] = mcp.safe_get_float(name, 'keep', default=0.5) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['usesInputs'] = False dic['usesActs'] = False dic['forceOwnActs'] = False dic['outputs'] = dic['numInputs'][0] print "Initialized %s layer '%s' on GPUs %s, producing %d outputs" % (dic['type'], name, dic['gpus'], dic['outputs']) return dic class Dropout2LayerParser(DropoutLayerParser): def __init__(self): DropoutLayerParser.__init__(self) class WeightLayerParser(LayerWithInputParser): LAYER_PAT = re.compile(r'^\s*([^\s\[]+)(?:\[(\d+)\])?\s*$') # matches things like layername[5], etc def __init__(self, num_inputs=-1): LayerWithInputParser.__init__(self, num_inputs=num_inputs) @staticmethod def get_layer_name(name_str): m = WeightLayerParser.LAYER_PAT.match(name_str) if not m: return None return m.group(1), m.group(2) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['momW'] = mcp.safe_get_float_list(name, 'momW') dic['momB'] = mcp.safe_get_float(name, 'momB') dic['superEps'] = mcp.safe_get_float(name, 'superEps', default=0.0) dic['superMom'] = mcp.safe_get_float(name, 'superMom', default=0.0) dic['wc'] = mcp.safe_get_float_list(name, 'wc', default=[0.0] * len(dic['inputs'])) dic['wball'] = mcp.safe_get_float_list(name, 'wball', default=[0.0] * len(dic['inputs'])) self.verify_num_params(['momW', 'wc', 'wball']) # dic['wballNormed'] = [wball * nweights for wball,nweights in zip(dic['wball'], dic['weightsPerFilter'])] dic['wballNormed'] = dic['wball'] # Convert from old-style 0.001,0.02 hyperparam specification to new-stye # const[base=0.001],const[base=0.02] and so forth def convert_scalars_to_schedules(scalars): parts = scalars.split(',') for i,p in enumerate(parts): p = p.strip() if re.match('(?:\d*\.)?\d+$', p): parts[i] = 'const[base=%s]' % p return parts dic['epsW'] = self.parse_params(convert_scalars_to_schedules(mcp.safe_get(name, 'epsW')), lrs_parsers, 'epsW', 'learning rate schedule', num_params=len(dic['inputs'])) dic['epsB'] = self.parse_params(convert_scalars_to_schedules(mcp.safe_get(name, 'epsB')), lrs_parsers, 'epsB', 'learning rate schedule', num_params=1)[0] dic['updatePeriod'] = mcp.safe_get_int(name, 'updatePeriod', default=0) # 0 means update as often as possible # TODO: assert that updatePeriod is a multiple of active pass period, which is unknown here. # the assert has to go in some post-processing step.. dic['gradConsumer'] = dic['epsB']['params']['base'] > 0 or any(w['params']['base'] > 0 for w in dic['epsW']) @staticmethod def unshare_weights(layer, layers, matrix_idx=None): def unshare(layer, layers, indices): for i in indices: if layer['weightSourceLayers'][i] >= 0: src_matrix_idx = layer['weightSourceMatrixIndices'][i] layer['weightSourceLayers'][i] = "" layer['weightSourceMatrixIndices'][i] = -1 layer['weights'][i] = layer['weights'][i].copy() layer['weightsInc'][i] = n.zeros_like(layer['weights'][i]) print "Unshared weight matrix %s[%d] from %s[%d]." % (layer['name'], i, layer['weightSourceLayers'][i], src_matrix_idx) else: print "Weight matrix %s[%d] already unshared." % (layer['name'], i) if 'weightSourceLayers' in layer: unshare(layer, layers, range(len(layer['inputs'])) if matrix_idx is None else [matrix_idx]) # Load weight/biases initialization module def call_init_func(self, param_name, shapes, input_idx=-1): dic = self.dic func_pat = re.compile('^([^\.]+)\.([^\(\)]+)\s*(?:\(([^,]+(?:,[^,]+)*)\))?$') m = func_pat.match(dic[param_name]) if not m: raise LayerParsingError("Layer '%s': '%s' parameter must have format 'moduleName.functionName(param1,param2,...)'; got: %s." % (dic['name'], param_name, dic['initWFunc'])) module, func = m.group(1), m.group(2) params = m.group(3).split(',') if m.group(3) is not None else [] try: mod = __import__(module) return getattr(mod, func)(dic['name'], input_idx, shapes, params=params) if input_idx >= 0 else getattr(mod, func)(dic['name'], shapes, params=params) except (ImportError, AttributeError, TypeError), e: raise LayerParsingError("Layer '%s': %s." % (dic['name'], e)) def make_weights(self, initW, rows, cols, order='C'): dic = self.dic dic['weights'], dic['weightsInc'] = [], [] if dic['initWFunc']: # Initialize weights from user-supplied python function # Initialization function is supplied in the format # module.func for i in xrange(len(dic['inputs'])): dic['weights'] += [self.call_init_func('initWFunc', (rows[i], cols[i]), input_idx=i)] if type(dic['weights'][i]) != n.ndarray: raise LayerParsingError("Layer '%s[%d]': weight initialization function %s must return numpy.ndarray object. Got: %s." % (dic['name'], i, dic['initWFunc'], type(dic['weights'][i]))) if dic['weights'][i].dtype != n.float32: raise LayerParsingError("Layer '%s[%d]': weight initialization function %s must weight matrices consisting of single-precision floats. Got: %s." % (dic['name'], i, dic['initWFunc'], dic['weights'][i].dtype)) if dic['weights'][i].shape != (rows[i], cols[i]): raise LayerParsingError("Layer '%s[%d]': weight matrix returned by weight initialization function %s has wrong shape. Should be: %s; got: %s." % (dic['name'], i, dic['initWFunc'], (rows[i], cols[i]), dic['weights'][i].shape)) # Convert to desired order dic['weights'][i] = n.require(dic['weights'][i], requirements=order) dic['weightsInc'] += [n.zeros_like(dic['weights'][i])] print "Layer '%s[%d]' initialized weight matrices from function %s" % (dic['name'], i, dic['initWFunc']) else: for i in xrange(len(dic['inputs'])): if dic['weightSourceLayers'][i] != '': # Shared weight matrix src_layer = self.prev_layers[dic['weightSourceLayers'][i]] if dic['weightSourceLayers'][i] != dic['name'] else dic dic['weights'] += [src_layer['weights'][dic['weightSourceMatrixIndices'][i]]] dic['weightsInc'] += [src_layer['weightsInc'][dic['weightSourceMatrixIndices'][i]]] if dic['weights'][i].shape != (rows[i], cols[i]): raise LayerParsingError("Layer '%s': weight sharing source matrix '%s' has shape %dx%d; should be %dx%d." % (dic['name'], dic['weightSource'][i], dic['weights'][i].shape[0], dic['weights'][i].shape[1], rows[i], cols[i])) print "Layer '%s' initialized weight matrix %d from %s" % (dic['name'], i, dic['weightSource'][i]) else: dic['weights'] += [n.array(initW[i] * nr.randn(rows[i], cols[i]), dtype=n.single, order=order)] dic['weightsInc'] += [n.zeros_like(dic['weights'][i])] def make_biases(self, rows, cols, order='C'): dic = self.dic if dic['initBFunc']: dic['biases'] = self.call_init_func('initBFunc', (rows, cols)) if type(dic['biases']) != n.ndarray: raise LayerParsingError("Layer '%s': bias initialization function %s must return numpy.ndarray object. Got: %s." % (dic['name'], dic['initBFunc'], type(dic['biases']))) if dic['biases'].dtype != n.float32: raise LayerParsingError("Layer '%s': bias initialization function %s must return numpy.ndarray object consisting of single-precision floats. Got: %s." % (dic['name'], dic['initBFunc'], dic['biases'].dtype)) if dic['biases'].shape != (rows, cols): raise LayerParsingError("Layer '%s': bias vector returned by bias initialization function %s has wrong shape. Should be: %s; got: %s." % (dic['name'], dic['initBFunc'], (rows, cols), dic['biases'].shape)) dic['biases'] = n.require(dic['biases'], requirements=order) print "Layer '%s' initialized bias vector from function %s" % (dic['name'], dic['initBFunc']) else: dic['biases'] = dic['initB'] * n.ones((rows, cols), order=order, dtype=n.single) dic['biasesInc'] = n.zeros_like(dic['biases']) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['gradConsumer'] = True dic['usesActs'] = False dic['initW'] = mcp.safe_get_float_list(name, 'initW', default=0.01) dic['initB'] = mcp.safe_get_float(name, 'initB', default=0) dic['initWFunc'] = mcp.safe_get(name, 'initWFunc', default="") dic['initBFunc'] = mcp.safe_get(name, 'initBFunc', default="") # Find shared weight matrices dic['weightSource'] = mcp.safe_get_list(name, 'weightSource', default=[''] * len(dic['inputs'])) self.verify_num_params(['initW']) self.verify_num_params(['weightSource'], auto_expand=False) dic['weightSourceLayers'] = [] dic['weightSourceMatrixIndices'] = [] for i, src_name in enumerate(dic['weightSource']): src_layer_matrix_idx = -1 src_layer_name = '' if src_name != '': src_layer_match = WeightLayerParser.get_layer_name(src_name) if src_layer_match is None: raise LayerParsingError("Layer '%s': unable to parse weight sharing source '%s'. Format is layer[idx] or just layer, in which case idx=0 is used." % (name, src_name)) src_layer_name = src_layer_match[0] src_layer_matrix_idx = int(src_layer_match[1]) if src_layer_match[1] is not None else 0 if src_layer_name not in prev_layers and src_layer_name != name: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' does not exist." % (name, src_layer_name)) # src_layer_idx = prev_names.index(src_layer_name) if src_layer_name != name else len(prev_names) src_layer = prev_layers[src_layer_name] if src_layer_name != name else dic if src_layer['gpu'] != dic['gpu']: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' runs on GPUs %s, while '%s' runs on GPUs %s." % (name, src_layer_name, src_layer['gpu'], name, dic['gpu'])) if src_layer['type'] != dic['type']: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' is of type '%s'; should be '%s'." % (name, src_layer_name, src_layer['type'], dic['type'])) if src_layer_name != name and len(src_layer['weights']) <= src_layer_matrix_idx: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' has %d weight matrices, but '%s[%d]' requested." % (name, src_layer_name, len(src_layer['weights']), src_name, src_layer_matrix_idx)) if src_layer_name == name and src_layer_matrix_idx >= i: raise LayerParsingError("Layer '%s': weight sharing source '%s[%d]' not defined yet." % (name, name, src_layer_matrix_idx)) dic['weightSourceLayers'] += [src_layer_name] dic['weightSourceMatrixIndices'] += [src_layer_matrix_idx] return dic class FCLayerParser(WeightLayerParser): def __init__(self): WeightLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = WeightLayerParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = mcp.safe_get_int(name, 'outputs') dic['weightsPerFilter'] = dic['numInputs'] self.verify_num_range(dic['outputs'], 'outputs', 1, None) self.make_weights(dic['initW'], dic['numInputs'], [dic['outputs']] * len(dic['numInputs']), order='F') self.make_biases(1, dic['outputs'], order='F') print "Initialized fully-connected layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class SplitFCLayerParser(WeightLayerParser): def __init__(self): WeightLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = WeightLayerParser.parse(self, name, mcp, prev_layers, model) dic['parts'] = mcp.safe_get_int(name, 'parts') dic['outputs'] = mcp.safe_get_int(name, 'outputs') * dic['parts'] dic['weightsPerFilter'] = dic['numInputs'] self.verify_num_range(dic['parts'], 'parts', 1, None) self.make_weights(dic['initW'], dic['numInputs'], [dic['outputs']/dic['parts']] * len(dic['numInputs']), order='F') self.make_biases(1, dic['outputs'], order='F') for i in xrange(len(dic['numInputs'])): self.verify_divisible(dic['numInputs'][i], dic['parts'], 'numInputs', 'parts', input_idx=i) print "Initialized split fully-connected layer '%s' on GPUs %s, producing %d outputs in %d parts" % (name, dic['gpus'], dic['outputs'], dic['parts']) return dic class LocalLayerParser(WeightLayerParser): def __init__(self): WeightLayerParser.__init__(self) # Convert convolutional layer to unshared, locally-connected layer @staticmethod def conv_to_local(layers, lname): layer = layers[lname] if layer['type'] == 'conv': layer['type'] = 'local' for inp,inpname in enumerate(layer['inputs']): src_layer_name = layer['weightSourceLayers'][inp] if src_layer_name != '': src_layer = layers[src_layer_name] src_matrix_idx = layer['weightSourceMatrixIndices'][inp] LocalLayerParser.conv_to_local(layers, src_layer_name) for w in ('weights', 'weightsInc'): layer[w][inp] = src_layer[w][src_matrix_idx] else: layer['weights'][inp] = n.require(n.reshape(n.tile(n.reshape(layer['weights'][inp], (1, n.prod(layer['weights'][inp].shape))), (layer['modules'], 1)), (layer['modules'] * layer['filterChannels'][inp] * layer['filterPixels'][inp], layer['filters'])), requirements='C') layer['weightsInc'][inp] = n.zeros_like(layer['weights'][inp]) if layer['sharedBiases']: layer['biases'] = n.require(n.repeat(layer['biases'], layer['modules'], axis=0), requirements='C') layer['biasesInc'] = n.zeros_like(layer['biases']) print "Converted layer '%s' from convolutional to unshared, locally-connected" % layer['name'] # Also call this function on any layers sharing my weights for l in layers: if 'weightSourceLayers' in l and lname in l['weightSourceLayers']: LocalLayerParser.conv_to_local(layers, l) return layer def parse(self, name, mcp, prev_layers, model): dic = WeightLayerParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['usesActs'] = False # Supplied values dic['channels'] = mcp.safe_get_int_list(name, 'channels') dic['padding'] = mcp.safe_get_int_list(name, 'padding', default=[0]*len(dic['inputs'])) dic['stride'] = mcp.safe_get_int_list(name, 'stride', default=[1]*len(dic['inputs'])) dic['filterSize'] = mcp.safe_get_int_list(name, 'filterSize') dic['filters'] = mcp.safe_get_int_list(name, 'filters') dic['groups'] = mcp.safe_get_int_list(name, 'groups', default=[1]*len(dic['inputs'])) dic['initW'] = mcp.safe_get_float_list(name, 'initW') dic['initCFunc'] = mcp.safe_get(name, 'initCFunc', default='') dic['modulesX'] = mcp.safe_get_int(name, 'modulesX', default=0) self.verify_num_params(['channels', 'padding', 'stride', 'filterSize', \ 'filters', 'groups', 'initW']) self.verify_num_range(dic['stride'], 'stride', 1, None) self.verify_num_range(dic['filterSize'],'filterSize', 1, None) self.verify_num_range(dic['padding'], 'padding', 0, None) self.verify_num_range(dic['channels'], 'channels', 1, None) self.verify_num_range(dic['groups'], 'groups', 1, None) self.verify_num_range(dic['modulesX'], 'modulesX', 0, None) for i in xrange(len(dic['filters'])): self.verify_divisible(dic['filters'][i], 16, 'filters', input_idx=i) # Computed values dic['imgPixels'] = [numInputs/channels for numInputs,channels in zip(dic['numInputs'], dic['channels'])] dic['imgSize'] = [int(n.sqrt(imgPixels)) for imgPixels in dic['imgPixels']] self.verify_num_range(dic['imgSize'], 'imgSize', 1, None) dic['filters'] = [filters*groups for filters,groups in zip(dic['filters'], dic['groups'])] dic['filterPixels'] = [filterSize**2 for filterSize in dic['filterSize']] if dic['modulesX'] <= 0: dic['modulesX'] = [1 + int(ceil((2*padding + imgSize - filterSize) / float(stride))) for padding,imgSize,filterSize,stride in zip(dic['padding'], dic['imgSize'], dic['filterSize'], dic['stride'])] else: dic['modulesX'] = [dic['modulesX']] * len(dic['inputs']) dic['filterChannels'] = [channels/groups for channels,groups in zip(dic['channels'], dic['groups'])] if len(set(dic['modulesX'])) != 1 or len(set(dic['filters'])) != 1: raise LayerParsingError("Layer '%s': all inputs must produce equally-dimensioned output. Dimensions are: %s." % (name, ", ".join("%dx%dx%d" % (filters, modulesX, modulesX) for filters,modulesX in zip(dic['filters'], dic['modulesX'])))) dic['modulesX'] = dic['modulesX'][0] dic['modules'] = dic['modulesX']**2 dic['filters'] = dic['filters'][0] dic['outputs'] = dic['modules'] * dic['filters'] # dic['filterConns'] = [[]] * len(dic['inputs']) for i in xrange(len(dic['inputs'])): if dic['numInputs'][i] % dic['imgPixels'][i] != 0 or dic['imgSize'][i] * dic['imgSize'][i] != dic['imgPixels'][i]: raise LayerParsingError("Layer '%s[%d]': has %-d dimensional input, not interpretable as square %d-channel images" % (name, i, dic['numInputs'][i], dic['channels'][i])) if dic['channels'][i] > 3 and dic['channels'][i] % 4 != 0: raise LayerParsingError("Layer '%s[%d]': number of channels must be smaller than 4 or divisible by 4" % (name, i)) # if dic['filterSize'][i] > totalPadding[i] + dic['imgSize'][i]: # raise LayerParsingError("Layer '%s[%d]': filter size (%d) greater than image size + padding (%d)" % (name, i, dic['filterSize'][i], dic['padding'][i] + dic['imgSize'][i])) if -dic['padding'][i] + dic['stride'][i] * (dic['modulesX'] - 1) + dic['filterSize'][i] < dic['imgSize'][i]: raise LayerParsingError("Layer '%s[%d]': %dx%d output map with padding=%d, stride=%d does not cover entire input image." % (name, i, dic['modulesX'], dic['outputsX'], dic['padding'][i], dic['stride'][i])) if dic['groups'][i] > 1: self.verify_divisible(dic['channels'][i], 4*dic['groups'][i], 'channels', '4 * groups', input_idx=i) self.verify_divisible(dic['channels'][i], dic['groups'][i], 'channels', 'groups', input_idx=i) self.verify_divisible(dic['filters'], 16*dic['groups'][i], 'filters * groups', input_idx=i) dic['padding'][i] = -dic['padding'][i] # dic['overSample'] = [groups*filterChannels/channels for groups,filterChannels,channels in zip(dic['groups'], dic['filterChannels'], dic['channels'])] dic['weightsPerFilter'] = [fc * (fz**2) for fc, fz in zip(dic['filterChannels'], dic['filterSize'])] return dic class ConvLayerParser(LocalLayerParser): def __init__(self): LocalLayerParser.__init__(self) def add_params(self, mcp): LocalLayerParser.add_params(self, mcp) self.dic['wcNormMax'] = mcp.safe_get_float_list(self.dic['name'], 'wcNormMax', default=[0.0] * len(self.dic['inputs'])) self.dic['wcNormMin'] = mcp.safe_get_float_list(self.dic['name'], 'wcNormMin', default=[0.0] * len(self.dic['inputs'])) self.verify_num_params(['wcNormMax', 'wcNormMin']) for min,max in zip(self.dic['wcNormMin'], self.dic['wcNormMax']): if min > max: raise LayerParsingError("Layer '%s': wcNormMin must be <= wcNormMax." % (self.dic['name'])) def parse(self, name, mcp, prev_layers, model): dic = LocalLayerParser.parse(self, name, mcp, prev_layers, model) dic['sumWidth'] = mcp.safe_get_int(name, 'sumWidth') dic['sharedBiases'] = mcp.safe_get_bool(name, 'sharedBiases', default=True) num_biases = dic['filters'] if dic['sharedBiases'] else dic['modules']*dic['filters'] eltmult = lambda list1, list2: [l1 * l2 for l1,l2 in zip(list1, list2)] self.make_weights(dic['initW'], eltmult(dic['filterPixels'], dic['filterChannels']), [dic['filters']] * len(dic['inputs']), order='C') self.make_biases(num_biases, 1, order='C') print "Initialized convolutional layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (name, dic['gpus'], dic['modulesX'], dic['modulesX'], dic['filters']) return dic class LocalUnsharedLayerParser(LocalLayerParser): def __init__(self): LocalLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LocalLayerParser.parse(self, name, mcp, prev_layers, model) eltmult = lambda list1, list2: [l1 * l2 for l1,l2 in zip(list1, list2)] scmult = lambda x, lst: [x * l for l in lst] self.make_weights(dic['initW'], scmult(dic['modules'], eltmult(dic['filterPixels'], dic['filterChannels'])), [dic['filters']] * len(dic['inputs']), order='C') self.make_biases(dic['modules'] * dic['filters'], 1, order='C') print "Initialized locally-connected layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (name, dic['gpus'], dic['modulesX'], dic['modulesX'], dic['filters']) return dic class DataLayerParser(LayerParser): def __init__(self): LayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LayerParser.parse(self, name, mcp, prev_layers, model) dic['dataIdx'] = mcp.safe_get_int(name, 'dataIdx') dic['start'] = mcp.safe_get_int(name, 'start', default=0) dic['end'] = mcp.safe_get_int(name, 'end', default=model.train_data_provider.get_data_dims(idx=dic['dataIdx'])) dic['outputs'] = dic['end'] - dic['start'] # dic['usesActs'] = False print "Initialized data layer '%s', producing %d outputs" % (name, dic['outputs']) return dic class SoftmaxLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = dic['inputLayers'][0]['outputs'] print "Initialized softmax layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class ConcatentionLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = sum(l['outputs'] for l in dic['inputLayers']) dic['copyOffsets'] = [sum(dic['inputLayers'][j]['outputs'] for j in xrange(i)) for i in xrange(len(dic['inputLayers']))] print "Initialized concatenation layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class PassThroughLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) # Note: this doesn't verify all the necessary constraints. Layer construction may still fail in C++ code. # For example, it does not verify that every layer only has one pass-through parent. Obviously having # two such parents is incoherent. def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) # if len(dic['inputLayers']) == 1: # raise LayerParsingError("Layer %s: pass-through layer must have more than one input." % dic['name']) if len(dic['gpu']) != len(dic['inputLayers'][0]['gpu']): raise LayerParsingError("Layer '%s': number of replicas in pass-through layer must be equivalent to number of replicas in input layers." % dic['name']) for inp in dic['inputLayers']: conflicting_layers = [l for l in prev_layers.values() if l['type'] == 'pass' and inp['name'] in l['inputs'] and len(set(dic['gpu']).intersection(set(l['gpu']))) > 0] if len(conflicting_layers) > 0: raise LayerParsingError("Layer '%s' conflicts with layer '%s'. Both pass-through layers take layer '%s' as input and operate on an overlapping set of GPUs." % (dic['name'], conflicting_layers[0]['name'], inp['name'])) dic['outputs'] = sum(l['outputs'] for l in dic['inputLayers']) # dic['copyOffsets'] = [sum(dic['inputLayers'][j]['outputs'] for j in xrange(i)) for i in xrange(len(dic['inputLayers']))] print "Initialized pass-through layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class PoolLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['channels'] = mcp.safe_get_int(name, 'channels') dic['sizeX'] = mcp.safe_get_int(name, 'sizeX') dic['start'] = mcp.safe_get_int(name, 'start', default=0) dic['stride'] = mcp.safe_get_int(name, 'stride') dic['outputsX'] = mcp.safe_get_int(name, 'outputsX', default=0) dic['pool'] = mcp.safe_get(name, 'pool') # Avg pooler does not use its acts or inputs dic['usesActs'] = dic['pool'] != 'avg' dic['usesInputs'] = dic['pool'] != 'avg' dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) if dic['pool'] == 'avg': dic['sum'] = mcp.safe_get_bool(name, 'sum', default=False) self.verify_num_range(dic['sizeX'], 'sizeX', 1, dic['imgSize']) self.verify_num_range(dic['stride'], 'stride', 1, dic['sizeX']) self.verify_num_range(dic['outputsX'], 'outputsX', 0, None) self.verify_num_range(dic['channels'], 'channels', 1, None) if LayerWithInputParser.grad_consumers_below(dic): self.verify_divisible(dic['channels'], 16, 'channels') self.verify_str_in(dic['pool'], 'pool', ['max', 'maxabs', 'avg']) self.verify_img_size() if dic['outputsX'] <= 0: dic['outputsX'] = int(ceil((dic['imgSize'] - dic['start'] - dic['sizeX']) / float(dic['stride']))) + 1; dic['outputs'] = dic['outputsX']**2 * dic['channels'] print "Initialized %s-pooling layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (dic['pool'], name, dic['gpus'], dic['outputsX'], dic['outputsX'], dic['channels']) return dic class CrossMapPoolLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['channels'] = mcp.safe_get_int(name, 'channels') dic['size'] = mcp.safe_get_int(name, 'size') dic['start'] = mcp.safe_get_int(name, 'start', default=0) dic['stride'] = mcp.safe_get_int(name, 'stride') dic['outputChannels'] = mcp.safe_get_int(name, 'outputs', default=0) dic['pool'] = mcp.safe_get(name, 'pool') dic['requiresParams'] = False # Avg pooler does not use its acts or inputs dic['usesActs'] = 'pool' != 'avg' dic['usesInputs'] = 'pool' != 'avg' dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['outputs'] = dic['outputChannels'] * dic['imgPixels'] self.verify_num_range(dic['size'], 'size', 1, dic['channels']) self.verify_num_range(dic['stride'], 'stride', 1, dic['size']) self.verify_num_range(dic['outputChannels'], 'outputChannels', 0, None) self.verify_num_range(dic['channels'], 'channels', 1, None) self.verify_num_range(dic['start'], 'start', None, 0) self.verify_str_in(dic['pool'], 'pool', ['max']) self.verify_img_size() covered_chans = dic['start'] + (dic['outputChannels'] - 1) * dic['stride'] + dic['size'] if covered_chans < dic['channels']: raise LayerParsingError("Layer '%s': cross-map pooling with start=%d, stride=%d, size=%d, outputs=%d covers only %d of %d input channels." % \ (name, dic['start'], dic['stride'], dic['size'], dic['outputChannels'], covered_chans, dic['channels'])) print "Initialized cross-map %s-pooling layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (dic['pool'], name, dic['gpus'], dic['imgSize'], dic['imgSize'], dic['outputChannels']) return dic class NormLayerParser(LayerWithInputParser): RESPONSE_NORM = 'response' CONTRAST_NORM = 'contrast' CROSSMAP_RESPONSE_NORM = 'cross-map response' def __init__(self, norm_type): LayerWithInputParser.__init__(self, num_inputs=1) self.norm_type = norm_type def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['scale'] = mcp.safe_get_float(name, 'scale') dic['scale'] /= dic['size'] if self.norm_type == self.CROSSMAP_RESPONSE_NORM else dic['size']**2 dic['pow'] = mcp.safe_get_float(name, 'pow') dic['minDiv'] = mcp.safe_get_float(name, 'minDiv', default=1.0) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['channels'] = mcp.safe_get_int(name, 'channels') dic['size'] = mcp.safe_get_int(name, 'size') dic['blocked'] = mcp.safe_get_bool(name, 'blocked', default=False) dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) # Contrast normalization layer does not use its inputs dic['usesInputs'] = self.norm_type != self.CONTRAST_NORM self.verify_num_range(dic['channels'], 'channels', 1, None) if self.norm_type == self.CROSSMAP_RESPONSE_NORM: self.verify_num_range(dic['size'], 'size', 2, dic['channels']) if dic['channels'] % 16 != 0: raise LayerParsingError("Layer '%s': number of channels must be divisible by 16 when using crossMap" % name) else: self.verify_num_range(dic['size'], 'size', 1, dic['imgSize']) if self.norm_type != self.CROSSMAP_RESPONSE_NORM and dic['channels'] > 3 and dic['channels'] % 4 != 0: raise LayerParsingError("Layer '%s': number of channels must be smaller than 4 or divisible by 4" % name) self.verify_img_size() dic['outputs'] = dic['imgPixels'] * dic['channels'] print "Initialized %s-normalization layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (self.norm_type, name, dic['gpus'], dic['imgSize'], dic['imgSize'], dic['channels']) return dic class CostParser(LayerWithInputParser): def __init__(self, num_inputs=-1): LayerWithInputParser.__init__(self, num_inputs=num_inputs) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True # Stored as string because python can't pickle lambda functions dic['outputFilter'] = 'lambda costs,num_cases: [c/num_cases for c in costs]' dic['children'] = mcp.safe_get_list(name, 'children', default=[]) # Aggregated costs only produce outputs which are additive. for c in dic['children']: if c not in prev_layers: raise LayerParsingError("Layer '%s': child cost layer '%s' not defined" % (name, c)) if prev_layers[c]['type'] != dic['type']: raise LayerParsingError("Layer '%s': child cost layer '%s' must have same type as parent" % (name, c)) prev_layers[c]['aggregated'] = 1 dic['aggregated'] = dic['children'] != [] del dic['neuron'] return dic def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['coeff'] = mcp.safe_get_float(name, 'coeff') dic['gradConsumer'] = dic['coeff'] > 0 class CrossEntCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=2) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) if dic['numInputs'][0] != model.train_data_provider.get_num_classes(): # first input must be labels raise LayerParsingError("Layer '%s': Dimensionality of first input must be equal to number of labels" % name) if dic['inputLayers'][1]['type'] != 'softmax': raise LayerParsingError("Layer '%s': Second input must be softmax layer" % name) if dic['numInputs'][1] != model.train_data_provider.get_num_classes(): raise LayerParsingError("Layer '%s': Softmax input '%s' must produce %d outputs, because that is the number of classes in the dataset" \ % (name, dic['inputs'][1], model.train_data_provider.get_num_classes())) print "Initialized cross-entropy cost '%s' on GPUs %s" % (name, dic['gpus']) return dic class LogregCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=2) def add_params(self, mcp): CostParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['topk'] = mcp.safe_get_int(name, 'topk', default=1) if dic['topk'] > dic['numInputs'][1]: raise LayerParsingError("Layer '%s': parameter 'topk'must not have value greater than the number of classess." % (name)) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True if dic['numInputs'][0] != 1: # first input must be labels raise LayerParsingError("Layer '%s': dimensionality of first input must be 1" % name) if dic['inputLayers'][1]['type'] != 'softmax': raise LayerParsingError("Layer '%s': second input must be softmax layer" % name) if dic['numInputs'][1] != model.train_data_provider.get_num_classes(): raise LayerParsingError("Layer '%s': softmax input '%s' must produce %d outputs, because that is the number of classes in the dataset" \ % (name, dic['inputs'][1], model.train_data_provider.get_num_classes())) print "Initialized logistic regression cost '%s' on GPUs %s" % (name, dic['gpus']) return dic class BinomialCrossEntCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=2) def add_params(self, mcp): CostParser.add_params(self, mcp) self.dic['posWeight'] = mcp.safe_get_float(self.dic['name'], 'posWeight', default=1.0) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) if dic['numInputs'][0] != dic['numInputs'][1]: raise LayerParsingError("Layer '%s': both inputs must produce the same number of outputs" % (name)) if 'neuron' not in dic['inputLayers'][1] or dic['inputLayers'][1]['neuron'] != 'logistic': print "WARNING: Layer '%s': input '%s' is not logistic, results may not be what you intend." % (dic['name'], dic['inputs'][1]) if dic['type'] == 'cost.bce': print "Initialized binomial cross-entropy cost '%s' on GPUs %s" % (name, dic['gpus']) dic['computeSoftmaxErrorRate'] = True return dic class DetectionCrossEntCostParser(BinomialCrossEntCostParser): def __init__(self): BinomialCrossEntCostParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = BinomialCrossEntCostParser.parse(self, name, mcp, prev_layers, model) if dic['numInputs'][0] != model.train_data_provider.get_num_classes(): # first input must be labels raise LayerParsingError("Layer '%s': Dimensionality of first input must be equal to number of labels" % name) dic['computeSoftmaxErrorRate'] = False dic['outputFilter'] = 'lambda costs,num_cases: [c/num_cases for c in costs[:2]] + [(class_cost[2] / class_cost[j] if class_cost[j] > 0 else n.inf) for class_cost in [costs[2:][i*3:(i+1)*3] for i in range(len(costs[2:])/3)] for j in range(2)]' dic['outputFilterFormatter'] = 'lambda self,costs: "(crossent) %.6f, (err) %.6f, " % (costs[0], costs[1]) + ", ".join("(%s) %.6f, %.6f" % (self.train_data_provider.batch_meta["label_names"][i/2-1],costs[i],costs[i+1]) for i in xrange(2, len(costs), 2))' print "Initialized detection cross-entropy cost '%s' on GPUs %s" % (name, dic['gpus']) return dic class SumOfSquaresCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) print "Initialized sum-of-squares cost '%s' on GPUs %s" % (name, dic['gpus']) return dic # All the layer parsers layer_parsers = {'data' : lambda : DataLayerParser(), 'fc': lambda : FCLayerParser(), 'sfc': lambda : SplitFCLayerParser(), 'conv': lambda : ConvLayerParser(), 'local': lambda : LocalUnsharedLayerParser(), 'softmax': lambda : SoftmaxLayerParser(), 'eltsum': lambda : EltwiseSumLayerParser(), 'eltmax': lambda : EltwiseMaxLayerParser(), 'sum': lambda : SumLayerParser(), 'neuron': lambda : NeuronLayerParser(), 'pool': lambda : PoolLayerParser(), 'cmpool': lambda : CrossMapPoolLayerParser(), 'rnorm': lambda : NormLayerParser(NormLayerParser.RESPONSE_NORM), 'cnorm': lambda : NormLayerParser(NormLayerParser.CONTRAST_NORM), 'cmrnorm': lambda : NormLayerParser(NormLayerParser.CROSSMAP_RESPONSE_NORM), 'nailbed': lambda : NailbedLayerParser(), 'blur': lambda : GaussianBlurLayerParser(), 'href': lambda : HorizontalReflectionLayerParser(), 'resize': lambda : ResizeLayerParser(), 'rgb2yuv': lambda : RGBToYUVLayerParser(), 'rgb2lab': lambda : RGBToLABLayerParser(), 'rscale': lambda : RandomScaleLayerParser(), 'crop': lambda : CropLayerParser(), 'concat': lambda : ConcatentionLayerParser(), 'pass': lambda : PassThroughLayerParser(), 'dropout': lambda : DropoutLayerParser(), 'dropout2': lambda : Dropout2LayerParser(), 'cost.logreg': lambda : LogregCostParser(), 'cost.crossent': lambda : CrossEntCostParser(), 'cost.bce': lambda : BinomialCrossEntCostParser(), 'cost.dce': lambda : DetectionCrossEntCostParser(), 'cost.sum2': lambda : SumOfSquaresCostParser()} # All the neuron parsers # This isn't a name --> parser mapping as the layer parsers above because neurons don't have fixed names. # A user may write tanh[0.5,0.25], etc. neuron_parsers = sorted([NeuronParser('ident', 'f(x) = x', uses_acts=False, uses_inputs=False), NeuronParser('logistic', 'f(x) = 1 / (1 + e^-x)', uses_acts=True, uses_inputs=False), NeuronParser('abs', 'f(x) = |x|', uses_acts=False, uses_inputs=True), NeuronParser('relu', 'f(x) = max(0, x)', uses_acts=True, uses_inputs=False), NeuronParser('nrelu', 'f(x) = max(0, x) + noise', uses_acts=True, uses_inputs=False), NeuronParser('softrelu', 'f(x) = log(1 + e^x)', uses_acts=True, uses_inputs=False), NeuronParser('square', 'f(x) = x^2', uses_acts=False, uses_inputs=True), NeuronParser('sqrt', 'f(x) = sqrt(x)', uses_acts=True, uses_inputs=False), ParamNeuronParser('log[a]', 'f(x) = log(a + x)', uses_acts=False, uses_inputs=True), ParamNeuronParser('tanh[a,b]', 'f(x) = a * tanh(b * x)', uses_acts=True, uses_inputs=False), ParamNeuronParser('brelu[a]', 'f(x) = min(a, max(0, x))', uses_acts=True, uses_inputs=False), ParamNeuronParser('linear[a,b]', 'f(x) = a * x + b', uses_acts=True, uses_inputs=False), ParamNeuronParser('drelu[a]', 'f(x) = x - a * tanh(x / a)', uses_acts=False, uses_inputs=True)], key=lambda x:x.type) # Learning rate schedules lrs_parsers = sorted([ParamParser('const[fbase]'), ParamParser('linear[fbase;ftgtFactor]'), ParamParser('exp[fbase;ftgtFactor]'), ParamParser('dexp[fbase;ftgtFactor;inumSteps]')])
jonparrott/gcloud-python
refs/heads/master
websecurityscanner/google/cloud/websecurityscanner_v1alpha/proto/crawled_url_pb2_grpc.py
591
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc
codito/pomito
refs/heads/master
tests/plugins/ui/test_timer_window.py
1
# -*- coding: utf-8 -*- """Tests for the timer window.""" import pytest from pomito.plugins.ui.qt.timer_window import TimerWindow from pomito.test import PomitoTestFactory, FakeKeyBinder @pytest.fixture(scope="function") def timer_window(qtbot): factory = PomitoTestFactory() pomodoro_service = factory.create_fake_service() timer = TimerWindow(pomodoro_service, FakeKeyBinder()) qtbot.addWidget(timer) return timer @pytest.mark.integration def test_timer_window_pomodoro_session(qtbot, timer_window): # with qtbot.waitSignal(task_window.task_selected): # task_window.get_task() # assert task_window.list_task is not None pass
nagyistoce/edx-platform
refs/heads/master
openedx/core/lib/tests/test_course_tabs.py
116
""" Tests of specific tabs. """ from mock import patch, Mock from unittest import TestCase import xmodule.tabs as xmodule_tabs from openedx.core.lib.course_tabs import CourseTabPluginManager class CourseTabPluginManagerTestCase(TestCase): """Test cases for CourseTabPluginManager class""" @patch('openedx.core.lib.course_tabs.CourseTabPluginManager.get_available_plugins') def test_get_tab_types(self, get_available_plugins): """ Verify that get_course_view_types sorts appropriately """ def create_mock_plugin(tab_type, priority): """ Create a mock plugin with the specified name and priority. """ mock_plugin = Mock() mock_plugin.type = tab_type mock_plugin.priority = priority return mock_plugin mock_plugins = { "Last": create_mock_plugin(tab_type="Last", priority=None), "Duplicate1": create_mock_plugin(tab_type="Duplicate", priority=None), "Duplicate2": create_mock_plugin(tab_type="Duplicate", priority=None), "First": create_mock_plugin(tab_type="First", priority=1), "Second": create_mock_plugin(tab_type="Second", priority=1), "Third": create_mock_plugin(tab_type="Third", priority=3), } get_available_plugins.return_value = mock_plugins self.assertEqual( [plugin.type for plugin in CourseTabPluginManager.get_tab_types()], ["First", "Second", "Third", "Duplicate", "Duplicate", "Last"] ) class KeyCheckerTestCase(TestCase): """Test cases for KeyChecker class""" def setUp(self): super(KeyCheckerTestCase, self).setUp() self.valid_keys = ['a', 'b'] self.invalid_keys = ['a', 'v', 'g'] self.dict_value = {'a': 1, 'b': 2, 'c': 3} def test_key_checker(self): self.assertTrue(xmodule_tabs.key_checker(self.valid_keys)(self.dict_value, raise_error=False)) self.assertFalse(xmodule_tabs.key_checker(self.invalid_keys)(self.dict_value, raise_error=False)) with self.assertRaises(xmodule_tabs.InvalidTabsException): xmodule_tabs.key_checker(self.invalid_keys)(self.dict_value) class NeedNameTestCase(TestCase): """Test cases for NeedName validator""" def setUp(self): super(NeedNameTestCase, self).setUp() self.valid_dict1 = {'a': 1, 'name': 2} self.valid_dict2 = {'name': 1} self.valid_dict3 = {'a': 1, 'name': 2, 'b': 3} self.invalid_dict = {'a': 1, 'b': 2} def test_need_name(self): self.assertTrue(xmodule_tabs.need_name(self.valid_dict1)) self.assertTrue(xmodule_tabs.need_name(self.valid_dict2)) self.assertTrue(xmodule_tabs.need_name(self.valid_dict3)) with self.assertRaises(xmodule_tabs.InvalidTabsException): xmodule_tabs.need_name(self.invalid_dict)
rahatm1/kinect-drone
refs/heads/master
libardrone/demo.py
3
#!/usr/bin/env python # Copyright (c) 2011 Bastian Venthur # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """Demo app for the AR.Drone. This simple application allows to control the drone and see the drone's video stream. """ import pygame import pygame.surfarray import pygame.transform import libardrone def main(): pygame.init() W, H = 320, 240 screen = pygame.display.set_mode((W, H)) drone = libardrone.ARDrone(True) drone.reset() clock = pygame.time.Clock() running = True while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False elif event.type == pygame.KEYUP: drone.hover() elif event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: drone.reset() running = False # takeoff / land elif event.key == pygame.K_RETURN: print("return") drone.takeoff() elif event.key == pygame.K_SPACE: print("space") drone.land() # emergency elif event.key == pygame.K_BACKSPACE: drone.reset() # forward / backward elif event.key == pygame.K_w: drone.move_forward() elif event.key == pygame.K_s: drone.move_backward() # left / right elif event.key == pygame.K_a: drone.move_left() elif event.key == pygame.K_d: drone.move_right() # up / down elif event.key == pygame.K_UP: drone.move_up() elif event.key == pygame.K_DOWN: drone.move_down() # turn left / turn right elif event.key == pygame.K_LEFT: drone.turn_left() elif event.key == pygame.K_RIGHT: drone.turn_right() # speed elif event.key == pygame.K_1: drone.speed = 0.1 elif event.key == pygame.K_2: drone.speed = 0.2 elif event.key == pygame.K_3: drone.speed = 0.3 elif event.key == pygame.K_4: drone.speed = 0.4 elif event.key == pygame.K_5: drone.speed = 0.5 elif event.key == pygame.K_6: drone.speed = 0.6 elif event.key == pygame.K_7: drone.speed = 0.7 elif event.key == pygame.K_8: drone.speed = 0.8 elif event.key == pygame.K_9: drone.speed = 0.9 elif event.key == pygame.K_0: drone.speed = 1.0 try: # print pygame.image pixelarray = drone.get_image() if pixelarray != None: surface = pygame.surfarray.make_surface(pixelarray) rotsurface = pygame.transform.rotate(surface, 270) screen.blit(rotsurface, (0, 0)) # battery status hud_color = (255, 0, 0) if drone.navdata.get('drone_state', dict()).get('emergency_mask', 1) else (10, 10, 255) bat = drone.navdata.get(0, dict()).get('battery', 0) f = pygame.font.Font(None, 20) hud = f.render('Battery: %i%%' % bat, True, hud_color) screen.blit(hud, (10, 10)) except: pass pygame.display.flip() clock.tick(50) pygame.display.set_caption("FPS: %.2f" % clock.get_fps()) print("Shutting down...") drone.halt() print("Ok.") if __name__ == '__main__': main()
muravjov/ansible
refs/heads/stable-1.9
v2/ansible/executor/play_iterator.py
5
# (c) 2012-2014, Michael DeHaan <michael.dehaan@gmail.com> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type from ansible.errors import * from ansible.playbook.task import Task from ansible.utils.boolean import boolean __all__ = ['PlayIterator'] class HostState: def __init__(self, blocks): self._blocks = blocks[:] self.cur_block = 0 self.cur_regular_task = 0 self.cur_rescue_task = 0 self.cur_always_task = 0 self.cur_role = None self.run_state = PlayIterator.ITERATING_SETUP self.fail_state = PlayIterator.FAILED_NONE self.pending_setup = False def __repr__(self): return "HOST STATE: block=%d, task=%d, rescue=%d, always=%d, role=%s, run_state=%d, fail_state=%d, pending_setup=%s" % ( self.cur_block, self.cur_regular_task, self.cur_rescue_task, self.cur_always_task, self.cur_role, self.run_state, self.fail_state, self.pending_setup, ) def get_current_block(self): return self._blocks[self.cur_block] def copy(self): new_state = HostState(self._blocks) new_state.cur_block = self.cur_block new_state.cur_regular_task = self.cur_regular_task new_state.cur_rescue_task = self.cur_rescue_task new_state.cur_always_task = self.cur_always_task new_state.cur_role = self.cur_role new_state.run_state = self.run_state new_state.fail_state = self.fail_state new_state.pending_setup = self.pending_setup return new_state class PlayIterator: # the primary running states for the play iteration ITERATING_SETUP = 0 ITERATING_TASKS = 1 ITERATING_RESCUE = 2 ITERATING_ALWAYS = 3 ITERATING_COMPLETE = 4 # the failure states for the play iteration, which are powers # of 2 as they may be or'ed together in certain circumstances FAILED_NONE = 0 FAILED_SETUP = 1 FAILED_TASKS = 2 FAILED_RESCUE = 4 FAILED_ALWAYS = 8 def __init__(self, inventory, play): # FIXME: should we save the post_validated play from below here instead? self._play = play # post validate the play, as we need some fields to be finalized now # so that we can use them to setup the iterator properly all_vars = inventory._variable_manager.get_vars(loader=inventory._loader, play=play) new_play = play.copy() new_play.post_validate(all_vars, fail_on_undefined=False) self._blocks = new_play.compile() self._host_states = {} for host in inventory.get_hosts(new_play.hosts): self._host_states[host.name] = HostState(blocks=self._blocks) def get_host_state(self, host): try: return self._host_states[host.name].copy() except KeyError: raise AnsibleError("invalid host (%s) specified for playbook iteration" % host) def get_next_task_for_host(self, host, peek=False, lock_step=True): s = self.get_host_state(host) task = None if s.run_state == self.ITERATING_COMPLETE: return None else: while True: try: cur_block = s._blocks[s.cur_block] except IndexError: s.run_state = self.ITERATING_COMPLETE break if s.run_state == self.ITERATING_SETUP: s.run_state = self.ITERATING_TASKS if self._play._gather_facts == 'smart' and not host.gathered_facts or boolean(self._play._gather_facts): # mark the host as having gathered facts host.set_gathered_facts(True) task = Task() task.action = 'setup' task.set_loader(self._play._loader) elif s.run_state == self.ITERATING_TASKS: # clear the pending setup flag, since we're past that and it didn't fail if s.pending_setup: s.pending_setup = False if s.fail_state & self.FAILED_TASKS == self.FAILED_TASKS: s.run_state = self.ITERATING_RESCUE elif s.cur_regular_task >= len(cur_block.block): s.run_state = self.ITERATING_ALWAYS else: task = cur_block.block[s.cur_regular_task] s.cur_regular_task += 1 break elif s.run_state == self.ITERATING_RESCUE: if s.fail_state & self.FAILED_RESCUE == self.FAILED_RESCUE: s.run_state = self.ITERATING_ALWAYS elif s.cur_rescue_task >= len(cur_block.rescue): if len(cur_block.rescue) > 0: s.fail_state = self.FAILED_NONE s.run_state = self.ITERATING_ALWAYS else: task = cur_block.rescue[s.cur_rescue_task] s.cur_rescue_task += 1 break elif s.run_state == self.ITERATING_ALWAYS: if s.cur_always_task >= len(cur_block.always): if s.fail_state != self.FAILED_NONE: s.run_state = self.ITERATING_COMPLETE break else: s.cur_block += 1 s.cur_regular_task = 0 s.cur_rescue_task = 0 s.cur_always_task = 0 s.run_state = self.ITERATING_TASKS else: task= cur_block.always[s.cur_always_task] s.cur_always_task += 1 break if task and task._role: # if we had a current role, mark that role as completed if s.cur_role and task._role != s.cur_role and s.cur_role._had_task_run and not peek: s.cur_role._completed = True s.cur_role = task._role if not peek: self._host_states[host.name] = s return (s, task) def mark_host_failed(self, host): s = self.get_host_state(host) if s.pending_setup: s.fail_state |= self.FAILED_SETUP s.run_state = self.ITERATING_COMPLETE elif s.run_state == self.ITERATING_TASKS: s.fail_state |= self.FAILED_TASKS s.run_state = self.ITERATING_RESCUE elif s.run_state == self.ITERATING_RESCUE: s.fail_state |= self.FAILED_RESCUE s.run_state = self.ITERATING_ALWAYS elif s.run_state == self.ITERATING_ALWAYS: s.fail_state |= self.FAILED_ALWAYS s.run_state = self.ITERATING_COMPLETE self._host_states[host.name] = s def get_failed_hosts(self): return dict((host, True) for (host, state) in self._host_states.iteritems() if state.run_state == self.ITERATING_COMPLETE and state.failed_state != self.FAILED_NONE) def get_original_task(self, host, task): ''' Finds the task in the task list which matches the UUID of the given task. The executor engine serializes/deserializes objects as they are passed through the different processes, and not all data structures are preserved. This method allows us to find the original task passed into the executor engine. ''' s = self.get_host_state(host) for block in s._blocks: if block.block: for t in block.block: if t._uuid == task._uuid: return t if block.rescue: for t in block.rescue: if t._uuid == task._uuid: return t if block.always: for t in block.always: if t._uuid == task._uuid: return t return None def add_tasks(self, host, task_list): s = self.get_host_state(host) target_block = s._blocks[s.cur_block].copy() if s.run_state == self.ITERATING_TASKS: before = target_block.block[:s.cur_regular_task] after = target_block.block[s.cur_regular_task:] target_block.block = before + task_list + after elif s.run_state == self.ITERATING_RESCUE: before = target_block.rescue[:s.cur_rescue_task] after = target_block.rescue[s.cur_rescue_task:] target_block.rescue = before + task_list + after elif s.run_state == self.ITERATING_ALWAYS: before = target_block.always[:s.cur_always_task] after = target_block.always[s.cur_always_task:] target_block.always = before + task_list + after s._blocks[s.cur_block] = target_block self._host_states[host.name] = s
TheTypoMaster/asuswrt
refs/heads/master
release/src/router/libxml2/python/tests/xpathext.py
87
#!/usr/bin/python -u import sys import libxml2 # Memory debug specific libxml2.debugMemory(1) def foo(ctx, x): return x + 1 def bar(ctx, x): return "%d" % (x + 2) doc = libxml2.parseFile("tst.xml") ctxt = doc.xpathNewContext() res = ctxt.xpathEval("//*") if len(res) != 2: print "xpath query: wrong node set size" sys.exit(1) if res[0].name != "doc" or res[1].name != "foo": print "xpath query: wrong node set value" sys.exit(1) libxml2.registerXPathFunction(ctxt._o, "foo", None, foo) libxml2.registerXPathFunction(ctxt._o, "bar", None, bar) i = 10000 while i > 0: res = ctxt.xpathEval("foo(1)") if res != 2: print "xpath extension failure" sys.exit(1) i = i - 1 i = 10000 while i > 0: res = ctxt.xpathEval("bar(1)") if res != "3": print "xpath extension failure got %s expecting '3'" sys.exit(1) i = i - 1 doc.freeDoc() ctxt.xpathFreeContext() # Memory debug specific libxml2.cleanupParser() if libxml2.debugMemory(1) == 0: print "OK" else: print "Memory leak %d bytes" % (libxml2.debugMemory(1)) libxml2.dumpMemory()
duhzecca/cinder
refs/heads/master
cinder/volume/drivers/infortrend/eonstor_ds_cli/common_cli.py
20
# Copyright (c) 2015 Infortrend Technology, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Infortrend Common CLI. """ import math import time from oslo_concurrency import lockutils from oslo_config import cfg from oslo_log import log as logging from oslo_service import loopingcall from oslo_utils import timeutils from oslo_utils import units from cinder import exception from cinder.i18n import _, _LE, _LI, _LW from cinder.volume.drivers.infortrend.eonstor_ds_cli import cli_factory as cli from cinder.volume.drivers.san import san from cinder.volume import volume_types from cinder.zonemanager import utils as fczm_utils LOG = logging.getLogger(__name__) infortrend_esds_opts = [ cfg.StrOpt('infortrend_pools_name', default='', help='Infortrend raid pool name list. ' 'It is separated with comma.'), cfg.StrOpt('infortrend_cli_path', default='/opt/bin/Infortrend/raidcmd_ESDS10.jar', help='The Infortrend CLI absolute path. ' 'By default, it is at ' '/opt/bin/Infortrend/raidcmd_ESDS10.jar'), cfg.IntOpt('infortrend_cli_max_retries', default=5, help='Maximum retry time for cli. Default is 5.'), cfg.IntOpt('infortrend_cli_timeout', default=30, help='Default timeout for CLI copy operations in minutes. ' 'Support: migrate volume, create cloned volume and ' 'create volume from snapshot. ' 'By Default, it is 30 minutes.'), cfg.StrOpt('infortrend_slots_a_channels_id', default='0,1,2,3,4,5,6,7', help='Infortrend raid channel ID list on Slot A ' 'for OpenStack usage. It is separated with comma. ' 'By default, it is the channel 0~7.'), cfg.StrOpt('infortrend_slots_b_channels_id', default='0,1,2,3,4,5,6,7', help='Infortrend raid channel ID list on Slot B ' 'for OpenStack usage. It is separated with comma. ' 'By default, it is the channel 0~7.'), ] infortrend_esds_extra_opts = [ cfg.StrOpt('infortrend_provisioning', default='full', help='Let the volume use specific provisioning. ' 'By default, it is the full provisioning. ' 'The supported options are full or thin.'), cfg.StrOpt('infortrend_tiering', default='0', help='Let the volume use specific tiering level. ' 'By default, it is the level 0. ' 'The supported levels are 0,2,3,4.'), ] CONF = cfg.CONF CONF.register_opts(infortrend_esds_opts) CONF.register_opts(infortrend_esds_extra_opts) CLI_RC_FILTER = { 'CreatePartition': {'error': _('Failed to create partition.')}, 'DeletePartition': {'error': _('Failed to delete partition.')}, 'SetPartition': {'error': _('Failed to set partition.')}, 'CreateMap': { 'warning': {20: _LW('The MCS Channel is grouped.')}, 'error': _('Failed to create map.'), }, 'DeleteMap': { 'warning': {11: _LW('No mapping.')}, 'error': _('Failed to delete map.'), }, 'CreateSnapshot': {'error': _('Failed to create snapshot.')}, 'DeleteSnapshot': {'error': _('Failed to delete snapshot.')}, 'CreateReplica': {'error': _('Failed to create replica.')}, 'DeleteReplica': {'error': _('Failed to delete replica.')}, 'CreateIQN': { 'warning': {20: _LW('IQN already existed.')}, 'error': _('Failed to create iqn.'), }, 'DeleteIQN': { 'warning': { 20: _LW('IQN has been used to create map.'), 11: _LW('No such host alias name.'), }, 'error': _('Failed to delete iqn.'), }, 'ShowLV': {'error': _('Failed to get lv info.')}, 'ShowPartition': {'error': _('Failed to get partition info.')}, 'ShowSnapshot': {'error': _('Failed to get snapshot info.')}, 'ShowDevice': {'error': _('Failed to get device info.')}, 'ShowChannel': {'error': _('Failed to get channel info.')}, 'ShowMap': {'error': _('Failed to get map info.')}, 'ShowNet': {'error': _('Failed to get network info.')}, 'ShowLicense': {'error': _('Failed to get license info.')}, 'ShowReplica': {'error': _('Failed to get replica info.')}, 'ShowWWN': {'error': _('Failed to get wwn info.')}, 'ShowIQN': {'error': _('Failed to get iqn info.')}, 'ExecuteCommand': {'error': _('Failed to execute common command.')}, } def log_func(func): def inner(self, *args, **kwargs): LOG.debug('Entering: %(method)s', {'method': func.__name__}) start = timeutils.utcnow() ret = func(self, *args, **kwargs) end = timeutils.utcnow() LOG.debug( 'Leaving: %(method)s, ' 'Spent: %(time)s sec, ' 'Return: %(ret)s.', { 'method': func.__name__, 'time': timeutils.delta_seconds(start, end), 'ret': ret}) return ret return inner def mi_to_gi(mi_size): return mi_size * units.Mi / units.Gi def gi_to_mi(gi_size): return gi_size * units.Gi / units.Mi class InfortrendCommon(object): """The Infortrend's Common Command using CLI. Version history: 1.0.0 - Initial driver 1.0.1 - Support DS4000 """ VERSION = '1.0.1' constants = { 'ISCSI_PORT': 3260, 'MAX_LUN_MAP_PER_CHL': 128 } provisioning_values = ['thin', 'full'] tiering_values = ['0', '2', '3', '4'] def __init__(self, protocol, configuration=None): self.protocol = protocol self.configuration = configuration self.configuration.append_config_values(san.san_opts) self.configuration.append_config_values(infortrend_esds_opts) self.configuration.append_config_values(infortrend_esds_extra_opts) self.iscsi_multipath = self.configuration.use_multipath_for_image_xfer self.path = self.configuration.infortrend_cli_path self.password = self.configuration.san_password self.ip = self.configuration.san_ip self.cli_retry_time = self.configuration.infortrend_cli_max_retries self.cli_timeout = self.configuration.infortrend_cli_timeout * 60 self.iqn = 'iqn.2002-10.com.infortrend:raid.uid%s.%s%s%s' self.unmanaged_prefix = 'cinder-unmanaged-%s' if self.ip == '': msg = _('san_ip is not set.') LOG.error(msg) raise exception.VolumeDriverException(message=msg) self.fc_lookup_service = fczm_utils.create_lookup_service() self._volume_stats = None self._model_type = 'R' self._replica_timeout = self.cli_timeout self.map_dict = { 'slot_a': {}, 'slot_b': {}, } self.map_dict_init = False self.target_dict = { 'slot_a': {}, 'slot_b': {}, } if self.protocol == 'iSCSI': self.mcs_dict = { 'slot_a': {}, 'slot_b': {}, } self._init_pool_list() self._init_channel_list() self.cli_conf = { 'path': self.path, 'password': self.password, 'ip': self.ip, 'cli_retry_time': int(self.cli_retry_time), } def _init_pool_list(self): pools_name = self.configuration.infortrend_pools_name if pools_name == '': msg = _('Pools name is not set.') LOG.error(msg) raise exception.VolumeDriverException(message=msg) tmp_pool_list = pools_name.split(',') self.pool_list = [pool.strip() for pool in tmp_pool_list] def _init_channel_list(self): self.channel_list = { 'slot_a': [], 'slot_b': [], } tmp_channel_list = ( self.configuration.infortrend_slots_a_channels_id.split(',') ) self.channel_list['slot_a'] = ( [channel.strip() for channel in tmp_channel_list] ) tmp_channel_list = ( self.configuration.infortrend_slots_b_channels_id.split(',') ) self.channel_list['slot_b'] = ( [channel.strip() for channel in tmp_channel_list] ) def _execute_command(self, cli_type, *args, **kwargs): command = getattr(cli, cli_type) return command(self.cli_conf).execute(*args, **kwargs) def _execute(self, cli_type, *args, **kwargs): LOG.debug('Executing command type: %(type)s.', {'type': cli_type}) rc, out = self._execute_command(cli_type, *args, **kwargs) if rc != 0: if ('warning' in CLI_RC_FILTER[cli_type] and rc in CLI_RC_FILTER[cli_type]['warning']): LOG.warning(CLI_RC_FILTER[cli_type]['warning'][rc]) else: msg = CLI_RC_FILTER[cli_type]['error'] LOG.error(msg) raise exception.InfortrendCliException( err=msg, param=args, rc=rc, out=out) return rc, out @log_func def _init_map_info(self, multipath=False): if not self.map_dict_init: rc, channel_info = self._execute('ShowChannel') if 'BID' in channel_info[0]: self._model_type = 'R' else: self._model_type = 'G' self._set_channel_id(channel_info, 'slot_a', multipath) if multipath and self._model_type == 'R': self._set_channel_id(channel_info, 'slot_b', multipath) self.map_dict_init = True @log_func def _update_map_info(self, multipath=False): """Record the driver mapping information. map_dict = { 'slot_a': { '0': [1, 2, 3, 4] # Slot A Channel 0 map lun 1, 2, 3, 4 }, 'slot_b' : { '1': [0, 1, 3] # Slot B Channel 1 map lun 0, 1, 3 } } """ rc, map_info = self._execute('ShowMap') self._update_map_info_by_slot(map_info, 'slot_a') if multipath and self._model_type == 'R': self._update_map_info_by_slot(map_info, 'slot_b') return map_info @log_func def _update_map_info_by_slot(self, map_info, slot_key): for key, value in self.map_dict[slot_key].items(): self.map_dict[slot_key][key] = list( range(self.constants['MAX_LUN_MAP_PER_CHL'])) if len(map_info) > 0 and isinstance(map_info, list): for entry in map_info: ch = entry['Ch'] lun = entry['LUN'] if ch not in self.map_dict[slot_key].keys(): continue target_id = self.target_dict[slot_key][ch] if (entry['Target'] == target_id and int(lun) in self.map_dict[slot_key][ch]): self.map_dict[slot_key][ch].remove(int(lun)) def _check_initiator_has_lun_map(self, initiator_wwns, map_info): for initiator in initiator_wwns: for entry in map_info: if initiator.lower() == entry['Host-ID'].lower(): return True return False @log_func def _set_channel_id( self, channel_info, controller='slot_a', multipath=False): if self.protocol == 'iSCSI': check_channel_type = 'NETWORK' else: check_channel_type = 'FIBRE' for entry in channel_info: if entry['Type'] == check_channel_type: if entry['Ch'] in self.channel_list[controller]: self.map_dict[controller][entry['Ch']] = [] if self.protocol == 'iSCSI': self._update_mcs_dict( entry['Ch'], entry['MCS'], controller) self._update_target_dict(entry, controller) @log_func def _update_target_dict(self, channel, controller): """Record the target id for mapping. # R model target_dict = { 'slot_a': { '0': '0', '1': '0', }, 'slot_b': { '0': '1', '1': '1', }, } # G model target_dict = { 'slot_a': { '2': '32', '3': '112', } } """ if self._model_type == 'G': self.target_dict[controller][channel['Ch']] = channel['ID'] else: if controller == 'slot_a': self.target_dict[controller][channel['Ch']] = channel['AID'] else: self.target_dict[controller][channel['Ch']] = channel['BID'] def _update_mcs_dict(self, channel_id, mcs_id, controller): """Record the iSCSI MCS topology. # R model with mcs, but it not working with iSCSI multipath mcs_dict = { 'slot_a': { '0': ['0', '1'], '1': ['2'] }, 'slot_b': { '0': ['0', '1'], '1': ['2'] } } # G model with mcs mcs_dict = { 'slot_a': { '0': ['0', '1'], '1': ['2'] }, 'slot_b': {} } """ if mcs_id not in self.mcs_dict[controller]: self.mcs_dict[controller][mcs_id] = [] self.mcs_dict[controller][mcs_id].append(channel_id) def _check_tiers_setup(self): tiering = self.configuration.infortrend_tiering if tiering != '0': self._check_extraspec_value( tiering, self.tiering_values) tier_levels_list = list(range(int(tiering))) tier_levels_list = list(map(str, tier_levels_list)) rc, lv_info = self._execute('ShowLV', 'tier') for pool in self.pool_list: support_tier_levels = tier_levels_list[:] for entry in lv_info: if (entry['LV-Name'] == pool and entry['Tier'] in support_tier_levels): support_tier_levels.remove(entry['Tier']) if len(support_tier_levels) == 0: break if len(support_tier_levels) != 0: msg = _('Please create %(tier_levels)s ' 'tier in pool %(pool)s in advance!') % { 'tier_levels': support_tier_levels, 'pool': pool} LOG.error(msg) raise exception.VolumeDriverException(message=msg) def _check_pools_setup(self): pool_list = self.pool_list[:] rc, lv_info = self._execute('ShowLV') for lv in lv_info: if lv['Name'] in pool_list: pool_list.remove(lv['Name']) if len(pool_list) == 0: break if len(pool_list) != 0: msg = _('Please create %(pool_list)s pool in advance!') % { 'pool_list': pool_list} LOG.error(msg) raise exception.VolumeDriverException(message=msg) def check_for_setup_error(self): self._check_pools_setup() self._check_tiers_setup() def create_volume(self, volume): """Create a Infortrend partition.""" volume_id = volume['id'].replace('-', '') self._create_partition_by_default(volume) part_id = self._get_part_id(volume_id) system_id = self._get_system_id(self.ip) model_dict = { 'system_id': system_id, 'partition_id': part_id, } model_update = { "provider_location": self._concat_provider_location(model_dict), } LOG.info(_LI('Create Volume %(volume_id)s completed.'), { 'volume_id': volume_id}) return model_update def _create_partition_by_default(self, volume): pool_id = self._get_target_pool_id(volume) self._create_partition_with_pool(volume, pool_id) def _create_partition_with_pool( self, volume, pool_id, extraspecs=None): volume_id = volume['id'].replace('-', '') volume_size = gi_to_mi(volume['size']) if extraspecs is None: extraspecs = self._get_extraspecs_dict(volume['volume_type_id']) provisioning = self._get_extraspecs_value(extraspecs, 'provisioning') tiering = self._get_extraspecs_value(extraspecs, 'tiering') extraspecs_dict = {} cmd = '' if provisioning == 'thin': provisioning = int(volume_size * 0.2) extraspecs_dict['provisioning'] = provisioning extraspecs_dict['init'] = 'disable' else: self._check_extraspec_value( provisioning, self.provisioning_values) if tiering != '0': self._check_extraspec_value( tiering, self.tiering_values) tier_levels_list = list(range(int(tiering))) tier_levels_list = list(map(str, tier_levels_list)) self._check_tiering_existing(tier_levels_list, pool_id) extraspecs_dict['provisioning'] = 0 extraspecs_dict['init'] = 'disable' if extraspecs_dict: cmd = self._create_part_parameters_str(extraspecs_dict) commands = (pool_id, volume_id, 'size=%s' % volume_size, cmd) self._execute('CreatePartition', *commands) def _create_part_parameters_str(self, extraspecs_dict): parameters_list = [] parameters = { 'provisioning': 'min=%sMB', 'tiering': 'tier=%s', 'init': 'init=%s', } for extraspec in extraspecs_dict.keys(): value = parameters[extraspec] % (extraspecs_dict[extraspec]) parameters_list.append(value) cmd = ' '.join(parameters_list) return cmd def _check_tiering_existing(self, tier_levels, pool_id): rc, lv_info = self._execute('ShowLV', 'tier') for entry in lv_info: if entry['LV-ID'] == pool_id and entry['Tier'] in tier_levels: tier_levels.remove(entry['Tier']) if len(tier_levels) == 0: break if len(tier_levels) != 0: msg = _('Have not created %(tier_levels)s tier(s).') % { 'tier_levels': tier_levels} LOG.error(msg) raise exception.VolumeDriverException(message=msg) @log_func def _create_map_with_lun_filter( self, part_id, channel_id, lun_id, host, controller='slot_a'): host_filter = self._create_target_id_and_host_filter( controller, host) target_id = self.target_dict[controller][channel_id] commands = ( 'part', part_id, channel_id, target_id, lun_id, host_filter ) self._execute('CreateMap', *commands) @log_func def _create_map_with_mcs( self, part_id, channel_list, lun_id, host, controller='slot_a'): map_channel_id = None for channel_id in channel_list: host_filter = self._create_target_id_and_host_filter( controller, host) target_id = self.target_dict[controller][channel_id] commands = ( 'part', part_id, channel_id, target_id, lun_id, host_filter ) rc, out = self._execute('CreateMap', *commands) if rc == 0: map_channel_id = channel_id break if map_channel_id is None: msg = _('Failed to create map on mcs, no channel can map.') LOG.error(msg) raise exception.VolumeDriverException(message=msg) return map_channel_id def _create_target_id_and_host_filter(self, controller, host): if self.protocol == 'iSCSI': host_filter = 'iqn=%s' % host else: host_filter = 'wwn=%s' % host return host_filter def _get_extraspecs_dict(self, volume_type_id): extraspecs = {} if volume_type_id: extraspecs = volume_types.get_volume_type_extra_specs( volume_type_id) return extraspecs def _get_extraspecs_value(self, extraspecs, key): value = None if key == 'provisioning': if (extraspecs and 'infortrend_provisioning' in extraspecs.keys()): value = extraspecs['infortrend_provisioning'].lower() else: value = self.configuration.infortrend_provisioning.lower() elif key == 'tiering': value = self.configuration.infortrend_tiering return value def _select_most_free_capacity_pool_id(self, lv_info): largest_free_capacity_gb = 0.0 dest_pool_id = None for lv in lv_info: if lv['Name'] in self.pool_list: available_space = float(lv['Available'].split(' ', 1)[0]) free_capacity_gb = round(mi_to_gi(available_space)) if free_capacity_gb > largest_free_capacity_gb: largest_free_capacity_gb = free_capacity_gb dest_pool_id = lv['ID'] return dest_pool_id def _get_target_pool_id(self, volume): extraspecs = self._get_extraspecs_dict(volume['volume_type_id']) pool_id = None rc, lv_info = self._execute('ShowLV') if 'pool_name' in extraspecs.keys(): poolname = extraspecs['pool_name'] for entry in lv_info: if entry['Name'] == poolname: pool_id = entry['ID'] else: pool_id = self._select_most_free_capacity_pool_id(lv_info) if pool_id is None: msg = _('Failed to get pool id with volume %(volume_id)s.') % { 'volume_id': volume['id']} LOG.error(msg) raise exception.VolumeBackendAPIException(data=msg) return pool_id def _get_system_id(self, system_ip): rc, device_info = self._execute('ShowDevice') for entry in device_info: if system_ip == entry['Connected-IP']: return str(int(entry['ID'], 16)) return @log_func def _get_lun_id(self, ch_id, controller='slot_a'): lun_id = -1 if len(self.map_dict[controller][ch_id]) > 0: lun_id = self.map_dict[controller][ch_id][0] self.map_dict[controller][ch_id].remove(lun_id) if lun_id == -1: msg = _('LUN number is out of bound ' 'on channel id: %(ch_id)s.') % {'ch_id': ch_id} LOG.error(msg) raise exception.VolumeDriverException(message=msg) else: return lun_id @log_func def _get_mapping_info(self, multipath): if self.iscsi_multipath or multipath: return self._get_mapping_info_with_mcs() else: return self._get_mapping_info_with_normal() def _get_mapping_info_with_mcs(self): """Get the minimun mapping channel id and multi lun id mapping info. # R model with mcs map_chl = { 'slot_a': ['0', '1'] } map_lun = ['0'] # G model with mcs map_chl = { 'slot_a': ['1', '2'] } map_lun = ['0'] :returns: minimun mapping channel id per slot and multi lun id """ map_chl = { 'slot_a': [] } min_lun_num = 0 map_mcs_group = None for mcs in self.mcs_dict['slot_a']: if len(self.mcs_dict['slot_a'][mcs]) > 1: if min_lun_num < self._get_mcs_channel_lun_map_num(mcs): min_lun_num = self._get_mcs_channel_lun_map_num(mcs) map_mcs_group = mcs if map_mcs_group is None: msg = _('Raid did not have MCS Channel.') LOG.error(msg) raise exception.VolumeDriverException(message=msg) map_chl['slot_a'] = self.mcs_dict['slot_a'][map_mcs_group] map_lun = self._get_mcs_channel_lun_map(map_chl['slot_a']) return map_chl, map_lun, map_mcs_group def _get_mcs_channel_lun_map_num(self, mcs_id): lun_num = 0 for channel in self.mcs_dict['slot_a'][mcs_id]: lun_num += len(self.map_dict['slot_a'][channel]) return lun_num def _get_mcs_channel_lun_map(self, channel_list): """Find the common lun id in mcs channel.""" map_lun = [] for lun_id in range(self.constants['MAX_LUN_MAP_PER_CHL']): check_map = True for channel_id in channel_list: if lun_id not in self.map_dict['slot_a'][channel_id]: check_map = False if check_map: map_lun.append(str(lun_id)) break return map_lun @log_func def _get_mapping_info_with_normal(self): """Get the minimun mapping channel id and lun id mapping info. # G model and R model map_chl = { 'slot_a': ['1'] } map_lun = ['0'] :returns: minimun mapping channel id per slot and lun id """ map_chl = { 'slot_a': [] } map_lun = [] ret_chl = self._get_minimun_mapping_channel_id('slot_a') lun_id = self._get_lun_id(ret_chl, 'slot_a') mcs_id = self._get_mcs_id_by_channel_id(ret_chl) map_chl['slot_a'].append(ret_chl) map_lun.append(str(lun_id)) return map_chl, map_lun, mcs_id @log_func def _get_minimun_mapping_channel_id(self, controller): empty_lun_num = 0 min_map_chl = -1 for key, value in self.map_dict[controller].items(): if empty_lun_num < len(value): min_map_chl = key empty_lun_num = len(value) if int(min_map_chl) < 0: msg = _('LUN map overflow on every channel.') LOG.error(msg) raise exception.VolumeDriverException(message=msg) else: return min_map_chl def _get_common_lun_map_id(self, wwpn_channel_info): map_lun = None for lun_id in range(self.constants['MAX_LUN_MAP_PER_CHL']): lun_id_exist = False for slot_name in ['slot_a', 'slot_b']: for wwpn in wwpn_channel_info: channel_id = wwpn_channel_info[wwpn]['channel'] if channel_id not in self.map_dict[slot_name]: continue elif lun_id not in self.map_dict[slot_name][channel_id]: lun_id_exist = True if not lun_id_exist: map_lun = str(lun_id) break return map_lun def _get_mcs_id_by_channel_id(self, channel_id): mcs_id = None for mcs in self.mcs_dict['slot_a']: if channel_id in self.mcs_dict['slot_a'][mcs]: mcs_id = mcs break if mcs_id is None: msg = _('Cannot get mcs_id by channel id: %(channel_id)s.') % { 'channel_id': channel_id} LOG.error(msg) raise exception.VolumeDriverException(message=msg) return mcs_id def _concat_provider_location(self, model_dict): return '@'.join([i + '^' + str(model_dict[i]) for i in model_dict]) def delete_volume(self, volume): """Delete the specific volume.""" volume_id = volume['id'].replace('-', '') has_pair = False have_map = False part_id = self._extract_specific_provider_location( volume['provider_location'], 'partition_id') (check_exist, have_map, part_id) = ( self._check_volume_exist(volume_id, part_id) ) if not check_exist: LOG.warning(_LW('Volume %(volume_id)s already deleted.'), { 'volume_id': volume_id}) return rc, replica_list = self._execute('ShowReplica', '-l') for entry in replica_list: if (volume_id == entry['Source-Name'] and part_id == entry['Source']): if not self._check_replica_completed(entry): has_pair = True LOG.warning(_LW('Volume still %(status)s ' 'Cannot delete volume.'), { 'status': entry['Status']}) else: have_map = entry['Source-Mapped'] == 'Yes' self._execute('DeleteReplica', entry['Pair-ID'], '-y') elif (volume_id == entry['Target-Name'] and part_id == entry['Target']): have_map = entry['Target-Mapped'] == 'Yes' self._execute('DeleteReplica', entry['Pair-ID'], '-y') if not has_pair: rc, snapshot_list = self._execute( 'ShowSnapshot', 'part=%s' % part_id) for snapshot in snapshot_list: si_has_pair = self._delete_pair_with_snapshot( snapshot['SI-ID'], replica_list) if si_has_pair: msg = _('Failed to delete SI ' 'for volume_id: %(volume_id)s ' 'because it has pair.') % { 'volume_id': volume_id} LOG.error(msg) raise exception.VolumeDriverException(message=msg) self._execute('DeleteSnapshot', snapshot['SI-ID'], '-y') rc, map_info = self._execute('ShowMap', 'part=%s' % part_id) if have_map or len(map_info) > 0: self._execute('DeleteMap', 'part', part_id, '-y') self._execute('DeletePartition', part_id, '-y') LOG.info(_LI('Delete Volume %(volume_id)s completed.'), { 'volume_id': volume_id}) else: msg = _('Failed to delete volume ' 'for volume_id: %(volume_id)s ' 'because it has pair.') % { 'volume_id': volume_id} LOG.error(msg) raise exception.VolumeDriverException(message=msg) def _check_replica_completed(self, replica): if ((replica['Type'] == 'Copy' and replica['Status'] == 'Completed') or (replica['Type'] == 'Mirror' and replica['Status'] == 'Mirror')): return True return False def _check_volume_exist(self, volume_id, part_id): check_exist = False have_map = False result_part_id = part_id rc, part_list = self._execute('ShowPartition', '-l') for entry in part_list: if entry['Name'] == volume_id: check_exist = True if part_id is None: result_part_id = entry['ID'] if entry['Mapped'] == 'true': have_map = True if check_exist: return (check_exist, have_map, result_part_id) else: return (False, False, None) def create_cloned_volume(self, volume, src_vref): """Create a clone of the volume by volume copy.""" volume_id = volume['id'].replace('-', '') # Step1 create a snapshot of the volume src_part_id = self._extract_specific_provider_location( src_vref['provider_location'], 'partition_id') if src_part_id is None: src_part_id = self._get_part_id(volume_id) model_update = self._create_volume_from_volume(volume, src_part_id) LOG.info(_LI('Create Cloned Volume %(volume_id)s completed.'), { 'volume_id': volume['id']}) return model_update def _create_volume_from_volume(self, dst_volume, src_part_id): # create the target volume for volume copy dst_volume_id = dst_volume['id'].replace('-', '') self._create_partition_by_default(dst_volume) dst_part_id = self._get_part_id(dst_volume_id) # prepare return value system_id = self._get_system_id(self.ip) model_dict = { 'system_id': system_id, 'partition_id': dst_part_id, } model_info = self._concat_provider_location(model_dict) model_update = {"provider_location": model_info} # clone the volume from the origin partition commands = ( 'Cinder-Cloned', 'part', src_part_id, 'part', dst_part_id ) self._execute('CreateReplica', *commands) self._wait_replica_complete(dst_part_id) return model_update def _extract_specific_provider_location(self, provider_location, key): provider_location_dict = self._extract_all_provider_location( provider_location) result = provider_location_dict.get(key, None) return result @log_func def _extract_all_provider_location(self, provider_location): provider_location_dict = {} dict_entry = provider_location.split("@") for entry in dict_entry: key, value = entry.split('^', 1) if value == 'None': value = None provider_location_dict[key] = value return provider_location_dict def create_export(self, context, volume): model_update = volume['provider_location'] LOG.info(_LI('Create export done from Volume %(volume_id)s.'), { 'volume_id': volume['id']}) return {'provider_location': model_update} def get_volume_stats(self, refresh=False): """Get volume status. If refresh is True, update the status first. """ if self._volume_stats is None or refresh: self._update_volume_stats() LOG.info(_LI( 'Successfully update volume stats. ' 'backend: %(volume_backend_name)s, ' 'vendor: %(vendor_name)s, ' 'driver version: %(driver_version)s, ' 'storage protocol: %(storage_protocol)s.'), self._volume_stats) return self._volume_stats def _update_volume_stats(self): backend_name = self.configuration.safe_get('volume_backend_name') data = { 'volume_backend_name': backend_name, 'vendor_name': 'Infortrend', 'driver_version': self.VERSION, 'storage_protocol': self.protocol, 'pools': self._update_pools_stats(), } self._volume_stats = data def _update_pools_stats(self): enable_specs_dict = self._get_enable_specs_on_array() if 'Thin Provisioning' in enable_specs_dict.keys(): provisioning = 'thin' provisioning_support = True else: provisioning = 'full' provisioning_support = False rc, part_list = self._execute('ShowPartition', '-l') rc, pools_info = self._execute('ShowLV') pools = [] for pool in pools_info: if pool['Name'] in self.pool_list: total_space = float(pool['Size'].split(' ', 1)[0]) available_space = float(pool['Available'].split(' ', 1)[0]) total_capacity_gb = round(mi_to_gi(total_space), 2) free_capacity_gb = round(mi_to_gi(available_space), 2) provisioning_factor = self.configuration.safe_get( 'max_over_subscription_ratio') provisioned_space = self._get_provisioned_space( pool['ID'], part_list) provisioned_capacity_gb = round(mi_to_gi(provisioned_space), 2) new_pool = { 'pool_name': pool['Name'], 'pool_id': pool['ID'], 'total_capacity_gb': total_capacity_gb, 'free_capacity_gb': free_capacity_gb, 'reserved_percentage': 0, 'QoS_support': False, 'provisioned_capacity_gb': provisioned_capacity_gb, 'max_over_subscription_ratio': provisioning_factor, 'thin_provisioning_support': provisioning_support, 'thick_provisioning_support': True, 'infortrend_provisioning': provisioning, } pools.append(new_pool) return pools def _get_provisioned_space(self, pool_id, part_list): provisioning_space = 0 for entry in part_list: if entry['LV-ID'] == pool_id: provisioning_space += int(entry['Size']) return provisioning_space def create_snapshot(self, snapshot): """Creates a snapshot.""" snapshot_id = snapshot['id'].replace('-', '') volume_id = snapshot['volume_id'].replace('-', '') LOG.debug('Create Snapshot %(snapshot)s volume %(volume)s.', {'snapshot': snapshot_id, 'volume': volume_id}) model_update = {} part_id = self._get_part_id(volume_id) if part_id is None: msg = _('Failed to get Partition ID for volume %(volume_id)s.') % { 'volume_id': volume_id} LOG.error(msg) raise exception.VolumeBackendAPIException(data=msg) @lockutils.synchronized( 'snapshot-' + part_id, 'infortrend-', True) def do_create_snapshot(): self._execute('CreateSnapshot', 'part', part_id) rc, tmp_snapshot_list = self._execute( 'ShowSnapshot', 'part=%s' % part_id) return tmp_snapshot_list snapshot_list = do_create_snapshot() LOG.info(_LI( 'Create success. ' 'Snapshot: %(snapshot)s, ' 'Snapshot ID in raid: %(raid_snapshot_id)s, ' 'volume: %(volume)s.'), { 'snapshot': snapshot_id, 'raid_snapshot_id': snapshot_list[-1]['SI-ID'], 'volume': volume_id}) model_update['provider_location'] = snapshot_list[-1]['SI-ID'] return model_update def delete_snapshot(self, snapshot): """Delete the snapshot.""" snapshot_id = snapshot['id'].replace('-', '') volume_id = snapshot['volume_id'].replace('-', '') LOG.debug('Delete Snapshot %(snapshot)s volume %(volume)s.', {'snapshot': snapshot_id, 'volume': volume_id}) raid_snapshot_id = self._get_raid_snapshot_id(snapshot) if raid_snapshot_id: rc, replica_list = self._execute('ShowReplica', '-l') has_pair = self._delete_pair_with_snapshot( raid_snapshot_id, replica_list) if not has_pair: self._execute('DeleteSnapshot', raid_snapshot_id, '-y') LOG.info(_LI('Delete Snapshot %(snapshot_id)s completed.'), { 'snapshot_id': snapshot_id}) else: msg = _('Failed to delete snapshot ' 'for snapshot_id: %s ' 'because it has pair.') % snapshot_id LOG.error(msg) raise exception.VolumeDriverException(message=msg) else: msg = _( 'Failed to get Raid Snapshot ID ' 'from Snapshot %(snapshot_id)s.') % { 'snapshot_id': snapshot_id} LOG.error(msg) raise exception.VolumeBackendAPIException(data=msg) def _get_raid_snapshot_id(self, snapshot): if 'provider_location' not in snapshot: LOG.warning(_LW( 'Failed to get Raid Snapshot ID and ' 'did not store in snapshot.')) return return snapshot['provider_location'] def _delete_pair_with_snapshot(self, snapshot_id, replica_list): has_pair = False for entry in replica_list: if entry['Source'] == snapshot_id: if not self._check_replica_completed(entry): has_pair = True LOG.warning(_LW( 'Snapshot still %(status)s Cannot delete snapshot.'), { 'status': entry['Status']}) else: self._execute('DeleteReplica', entry['Pair-ID'], '-y') return has_pair def _get_part_id(self, volume_id, pool_id=None, part_list=None): if part_list is None: rc, part_list = self._execute('ShowPartition') for entry in part_list: if pool_id is None: if entry['Name'] == volume_id: return entry['ID'] else: if entry['Name'] == volume_id and entry['LV-ID'] == pool_id: return entry['ID'] return def create_volume_from_snapshot(self, volume, snapshot): raid_snapshot_id = self._get_raid_snapshot_id(snapshot) if raid_snapshot_id is None: msg = _('Failed to get Raid Snapshot ID ' 'from snapshot: %(snapshot_id)s.') % { 'snapshot_id': snapshot['id']} LOG.error(msg) raise exception.VolumeBackendAPIException(data=msg) src_part_id = self._check_snapshot_filled_block(raid_snapshot_id) model_update = self._create_volume_from_snapshot_id( volume, raid_snapshot_id, src_part_id) LOG.info(_LI( 'Create Volume %(volume_id)s from ' 'snapshot %(snapshot_id)s completed.'), { 'volume_id': volume['id'], 'snapshot_id': snapshot['id']}) return model_update def _check_snapshot_filled_block(self, raid_snapshot_id): rc, snapshot_list = self._execute( 'ShowSnapshot', 'si=%s' % raid_snapshot_id, '-l') if snapshot_list and snapshot_list[0]['Total-filled-block'] == '0': return snapshot_list[0]['Partition-ID'] return def _create_volume_from_snapshot_id( self, dst_volume, raid_snapshot_id, src_part_id): # create the target volume for volume copy dst_volume_id = dst_volume['id'].replace('-', '') self._create_partition_by_default(dst_volume) dst_part_id = self._get_part_id(dst_volume_id) # prepare return value system_id = self._get_system_id(self.ip) model_dict = { 'system_id': system_id, 'partition_id': dst_part_id, } model_info = self._concat_provider_location(model_dict) model_update = {"provider_location": model_info} if src_part_id: # clone the volume from the origin partition commands = ( 'Cinder-Snapshot', 'part', src_part_id, 'part', dst_part_id ) self._execute('CreateReplica', *commands) self._wait_replica_complete(dst_part_id) # clone the volume from the snapshot commands = ( 'Cinder-Snapshot', 'si', raid_snapshot_id, 'part', dst_part_id ) self._execute('CreateReplica', *commands) self._wait_replica_complete(dst_part_id) return model_update @lockutils.synchronized('connection', 'infortrend-', True) def initialize_connection(self, volume, connector): if self.protocol == 'iSCSI': multipath = connector.get('multipath', False) return self._initialize_connection_iscsi( volume, connector, multipath) elif self.protocol == 'FC': return self._initialize_connection_fc( volume, connector) else: msg = _('Unknown protocol: %(protocol)s.') % { 'protocol': self.protocol} LOG.error(msg) raise exception.VolumeDriverException(message=msg) def _initialize_connection_fc(self, volume, connector): self._init_map_info(True) self._update_map_info(True) map_lun, target_wwpns, initiator_target_map = ( self._do_fc_connection(volume, connector) ) properties = self._generate_fc_connection_properties( map_lun, target_wwpns, initiator_target_map) LOG.info(_LI('Successfully initialized connection. ' 'target_wwn: %(target_wwn)s, ' 'initiator_target_map: %(initiator_target_map)s, ' 'lun: %(target_lun)s.'), properties['data']) return properties def _do_fc_connection(self, volume, connector): volume_id = volume['id'].replace('-', '') target_wwpns = [] partition_data = self._extract_all_provider_location( volume['provider_location']) part_id = partition_data['partition_id'] if part_id is None: part_id = self._get_part_id(volume_id) wwpn_list, wwpn_channel_info = self._get_wwpn_list() initiator_target_map, target_wwpns = self._build_initiator_target_map( connector, wwpn_list) map_lun = self._get_common_lun_map_id(wwpn_channel_info) for initiator_wwpn in initiator_target_map: for target_wwpn in initiator_target_map[initiator_wwpn]: channel_id = wwpn_channel_info[target_wwpn.upper()]['channel'] controller = wwpn_channel_info[target_wwpn.upper()]['slot'] self._create_map_with_lun_filter( part_id, channel_id, map_lun, initiator_wwpn, controller=controller) return map_lun, target_wwpns, initiator_target_map def _build_initiator_target_map(self, connector, all_target_wwpns): initiator_target_map = {} target_wwpns = [] if self.fc_lookup_service: lookup_map = ( self.fc_lookup_service.get_device_mapping_from_network( connector['wwpns'], all_target_wwpns) ) for fabric_name in lookup_map: fabric = lookup_map[fabric_name] target_wwpns.extend(fabric['target_port_wwn_list']) for initiator in fabric['initiator_port_wwn_list']: initiator_target_map[initiator] = ( fabric['target_port_wwn_list'] ) else: initiator_wwns = connector['wwpns'] target_wwpns = all_target_wwpns for initiator in initiator_wwns: initiator_target_map[initiator] = all_target_wwpns return initiator_target_map, target_wwpns def _generate_fc_connection_properties( self, lun_id, target_wwpns, initiator_target_map): return { 'driver_volume_type': 'fibre_channel', 'data': { 'target_discovered': True, 'target_lun': int(lun_id), 'target_wwn': target_wwpns, 'access_mode': 'rw', 'initiator_target_map': initiator_target_map, }, } @log_func def _initialize_connection_iscsi(self, volume, connector, multipath): self._init_map_info(multipath) self._update_map_info(multipath) volume_id = volume['id'].replace('-', '') partition_data = self._extract_all_provider_location( volume['provider_location']) # system_id, part_id part_id = partition_data['partition_id'] if part_id is None: part_id = self._get_part_id(volume_id) self._set_host_iqn(connector['initiator']) map_chl, map_lun, mcs_id = self._get_mapping_info(multipath) lun_id = map_lun[0] if self.iscsi_multipath or multipath: channel_id = self._create_map_with_mcs( part_id, map_chl['slot_a'], lun_id, connector['initiator']) else: channel_id = map_chl['slot_a'][0] self._create_map_with_lun_filter( part_id, channel_id, lun_id, connector['initiator']) rc, net_list = self._execute('ShowNet') ip = self._get_ip_by_channel(channel_id, net_list) if ip is None: msg = _( 'Failed to get ip on Channel %(channel_id)s ' 'with volume: %(volume_id)s.') % { 'channel_id': channel_id, 'volume_id': volume_id} LOG.error(msg) raise exception.VolumeDriverException(message=msg) partition_data = self._combine_channel_lun_target_id( partition_data, mcs_id, lun_id, channel_id) property_value = [{ 'lun_id': partition_data['lun_id'], 'iqn': self._generate_iqn(partition_data), 'ip': ip, 'port': self.constants['ISCSI_PORT'], }] properties = self._generate_iscsi_connection_properties( property_value, volume) LOG.info(_LI('Successfully initialized connection ' 'with volume: %(volume_id)s.'), properties['data']) return properties @log_func def _combine_channel_lun_target_id( self, partition_data, mcs_id, lun_id, channel_id): target_id = self.target_dict['slot_a'][channel_id] partition_data['mcs_id'] = mcs_id partition_data['lun_id'] = lun_id partition_data['target_id'] = target_id partition_data['slot_id'] = 1 return partition_data def _set_host_iqn(self, host_iqn): rc, iqn_list = self._execute('ShowIQN') check_iqn_exist = False for entry in iqn_list: if entry['IQN'] == host_iqn: check_iqn_exist = True if not check_iqn_exist: self._execute( 'CreateIQN', host_iqn, self._truncate_host_name(host_iqn)) def _truncate_host_name(self, iqn): if len(iqn) > 16: return iqn[-16:] else: return iqn @log_func def _generate_iqn(self, partition_data): return self.iqn % ( partition_data['system_id'], partition_data['mcs_id'], partition_data['target_id'], partition_data['slot_id']) @log_func def _get_ip_by_channel( self, channel_id, net_list, controller='slot_a'): slot_name = 'slotA' if controller == 'slot_a' else 'slotB' for entry in net_list: if entry['ID'] == channel_id and entry['Slot'] == slot_name: return entry['IPv4'] return def _get_wwpn_list(self): rc, wwn_list = self._execute('ShowWWN') wwpn_list = [] wwpn_channel_info = {} for entry in wwn_list: channel_id = entry['CH'] if 'BID' in entry['ID']: slot_name = 'slot_b' else: slot_name = 'slot_a' if channel_id in self.map_dict[slot_name]: wwpn_list.append(entry['WWPN']) wwpn_channel_info[entry['WWPN']] = { 'channel': channel_id, 'slot': slot_name, } return wwpn_list, wwpn_channel_info @log_func def _generate_iscsi_connection_properties( self, property_value, volume): properties = {} discovery_exist = False specific_property = property_value[0] discovery_ip = '%s:%s' % ( specific_property['ip'], specific_property['port']) discovery_iqn = specific_property['iqn'] if self._do_iscsi_discovery(discovery_iqn, discovery_ip): properties['target_portal'] = discovery_ip properties['target_iqn'] = discovery_iqn properties['target_lun'] = int(specific_property['lun_id']) discovery_exist = True if not discovery_exist: msg = _( 'Could not find iSCSI target ' 'for volume: %(volume_id)s.') % { 'volume_id': volume['id']} LOG.error(msg) raise exception.VolumeDriverException(message=msg) properties['target_discovered'] = discovery_exist properties['volume_id'] = volume['id'] if 'provider_auth' in volume: auth = volume['provider_auth'] if auth: (auth_method, auth_username, auth_secret) = auth.split() properties['auth_method'] = auth_method properties['auth_username'] = auth_username properties['auth_password'] = auth_secret return { 'driver_volume_type': 'iscsi', 'data': properties, } @log_func def _do_iscsi_discovery(self, target_iqn, target_ip): rc, out = self._execute( 'ExecuteCommand', 'iscsiadm', '-m', 'discovery', '-t', 'sendtargets', '-p', target_ip, run_as_root=True) if rc != 0: LOG.error(_LE( 'Can not discovery in %(target_ip)s with %(target_iqn)s.'), { 'target_ip': target_ip, 'target_iqn': target_iqn}) return False else: for target in out.splitlines(): if target_iqn in target and target_ip in target: return True return False def extend_volume(self, volume, new_size): volume_id = volume['id'].replace('-', '') part_id = self._extract_specific_provider_location( volume['provider_location'], 'partition_id') if part_id is None: part_id = self._get_part_id(volume_id) expand_size = new_size - volume['size'] if '.' in ('%s' % expand_size): expand_size = round(gi_to_mi(float(expand_size))) expand_command = 'size=%sMB' % expand_size else: expand_command = 'size=%sGB' % expand_size self._execute('SetPartition', 'expand', part_id, expand_command) LOG.info(_LI( 'Successfully extended volume %(volume_id)s to size %(size)s.'), { 'volume_id': volume['id'], 'size': new_size}) @lockutils.synchronized('connection', 'infortrend-', True) def terminate_connection(self, volume, connector): volume_id = volume['id'].replace('-', '') multipath = connector.get('multipath', False) conn_info = None part_id = self._extract_specific_provider_location( volume['provider_location'], 'partition_id') if part_id is None: part_id = self._get_part_id(volume_id) self._execute('DeleteMap', 'part', part_id, '-y') if self.protocol == 'iSCSI': self._execute( 'DeleteIQN', self._truncate_host_name(connector['initiator'])) map_info = self._update_map_info(multipath) if self.protocol == 'FC' and self.fc_lookup_service: lun_map_exist = self._check_initiator_has_lun_map( connector['wwpns'], map_info) if not lun_map_exist: conn_info = {'driver_volume_type': 'fibre_channel', 'data': {}} wwpn_list, wwpn_channel_info = self._get_wwpn_list() init_target_map, target_wwpns = ( self._build_initiator_target_map(connector, wwpn_list) ) conn_info['data']['initiator_target_map'] = init_target_map LOG.info(_LI( 'Successfully terminated connection for volume: %(volume_id)s.'), { 'volume_id': volume['id']}) return conn_info def migrate_volume(self, volume, host, new_extraspecs=None): is_valid, dst_pool_id = ( self._is_valid_for_storage_assisted_migration(host) ) if not is_valid: return (False, None) model_dict = self._migrate_volume_with_pool( volume, dst_pool_id, new_extraspecs) model_update = { "provider_location": self._concat_provider_location(model_dict), } LOG.info(_LI('Migrate Volume %(volume_id)s completed.'), { 'volume_id': volume['id']}) return (True, model_update) def _is_valid_for_storage_assisted_migration(self, host): if 'pool_id' not in host['capabilities']: LOG.warning(_LW('Failed to get target pool id.')) return (False, None) dst_pool_id = host['capabilities']['pool_id'] if dst_pool_id is None: return (False, None) return (True, dst_pool_id) def _migrate_volume_with_pool(self, volume, dst_pool_id, extraspecs=None): volume_id = volume['id'].replace('-', '') # Get old partition data for delete map partition_data = self._extract_all_provider_location( volume['provider_location']) src_part_id = partition_data['partition_id'] if src_part_id is None: src_part_id = self._get_part_id(volume_id) # Create New Partition self._create_partition_with_pool(volume, dst_pool_id, extraspecs) dst_part_id = self._get_part_id( volume_id, pool_id=dst_pool_id) if dst_part_id is None: msg = _('Failed to get new part id in new pool: %(pool_id)s.') % { 'pool_id': dst_pool_id} LOG.error(msg) raise exception.VolumeDriverException(message=msg) # Volume Mirror from old partition into new partition commands = ( 'Cinder-Migrate', 'part', src_part_id, 'part', dst_part_id, 'type=mirror' ) self._execute('CreateReplica', *commands) self._wait_replica_complete(dst_part_id) self._execute('DeleteMap', 'part', src_part_id, '-y') self._execute('DeletePartition', src_part_id, '-y') model_dict = { 'system_id': partition_data['system_id'], 'partition_id': dst_part_id, } return model_dict def _wait_replica_complete(self, part_id): start_time = int(time.time()) timeout = self._replica_timeout def _inner(): check_done = False try: rc, replica_list = self._execute('ShowReplica', '-l') for entry in replica_list: if (entry['Target'] == part_id and self._check_replica_completed(entry)): check_done = True self._execute('DeleteReplica', entry['Pair-ID'], '-y') except Exception: check_done = False LOG.exception(_LE('Cannot detect replica status.')) if check_done: raise loopingcall.LoopingCallDone() if int(time.time()) - start_time > timeout: msg = _('Wait replica complete timeout.') LOG.error(msg) raise exception.VolumeDriverException(message=msg) timer = loopingcall.FixedIntervalLoopingCall(_inner) timer.start(interval=10).wait() def _check_extraspec_value(self, extraspec, validvalues): if not extraspec: LOG.debug("The given extraspec is None.") elif extraspec not in validvalues: msg = _("The extraspec: %(extraspec)s is not valid.") % { 'extraspec': extraspec} LOG.error(msg) raise exception.VolumeDriverException(message=msg) def _get_enable_specs_on_array(self): enable_specs = {} rc, license_list = self._execute('ShowLicense') for key, value in license_list.items(): if value['Support']: enable_specs[key] = value return enable_specs def manage_existing_get_size(self, volume, ref): """Return size of volume to be managed by manage_existing.""" volume_name = self._get_existing_volume_ref_name(ref) part_entry = self._get_latter_volume_dict(volume_name) if part_entry is None: msg = _('Specified logical volume does not exist.') LOG.error(msg) raise exception.ManageExistingInvalidReference( existing_ref=ref, reason=msg) rc, map_info = self._execute('ShowMap', 'part=%s' % part_entry['ID']) if len(map_info) != 0: msg = _('The specified volume is mapped to a host.') LOG.error(msg) raise exception.VolumeBackendAPIException(data=msg) return int(math.ceil(mi_to_gi(float(part_entry['Size'])))) def manage_existing(self, volume, ref): volume_name = self._get_existing_volume_ref_name(ref) volume_id = volume['id'].replace('-', '') part_entry = self._get_latter_volume_dict(volume_name) if part_entry is None: msg = _('Specified logical volume does not exist.') LOG.error(msg) raise exception.ManageExistingInvalidReference( existing_ref=ref, reason=msg) self._execute('SetPartition', part_entry['ID'], 'name=%s' % volume_id) model_dict = { 'system_id': self._get_system_id(self.ip), 'partition_id': part_entry['ID'], } model_update = { "provider_location": self._concat_provider_location(model_dict), } LOG.info(_LI('Rename Volume %(volume_id)s completed.'), { 'volume_id': volume['id']}) return model_update def _get_existing_volume_ref_name(self, ref): volume_name = None if 'source-name' in ref: volume_name = ref['source-name'] elif 'source-id' in ref: volume_name = self._get_unmanaged_volume_name( ref['source-id'].replace('-', '')) else: msg = _('Reference must contain source-id or source-name.') LOG.error(msg) raise exception.ManageExistingInvalidReference( existing_ref=ref, reason=msg) return volume_name def unmanage(self, volume): volume_id = volume['id'].replace('-', '') part_id = self._extract_specific_provider_location( volume['provider_location'], 'partition_id') if part_id is None: part_id = self._get_part_id(volume_id) new_vol_name = self._get_unmanaged_volume_name(volume_id) self._execute('SetPartition', part_id, 'name=%s' % new_vol_name) LOG.info(_LI('Unmanage volume %(volume_id)s completed.'), { 'volume_id': volume_id}) def _get_unmanaged_volume_name(self, volume_id): return self.unmanaged_prefix % volume_id[:-17] def _get_specific_volume_dict(self, volume_id): ref_dict = {} rc, part_list = self._execute('ShowPartition') for entry in part_list: if entry['Name'] == volume_id: ref_dict = entry break return ref_dict def _get_latter_volume_dict(self, volume_name): rc, part_list = self._execute('ShowPartition', '-l') latest_timestamps = 0 ref_dict = None for entry in part_list: if entry['Name'] == volume_name: timestamps = self._get_part_timestamps( entry['Creation-time']) if timestamps > latest_timestamps: ref_dict = entry latest_timestamps = timestamps return ref_dict def _get_part_timestamps(self, time_string): """Transform 'Sat, Jan 11 22:18:40 2020' into timestamps with sec.""" first, value = time_string.split(',') timestamps = time.mktime( time.strptime(value, " %b %d %H:%M:%S %Y")) return timestamps def _check_volume_attachment(self, volume): if not volume['volume_attachment']: return False return True def _check_volume_has_snapshot(self, volume): part_id = self._extract_specific_provider_location( volume['provider_location'], 'partition_id') rc, snapshot_list = self._execute('ShowSnapshot', 'part=%s' % part_id) if len(snapshot_list) > 0: return True return False def retype(self, ctxt, volume, new_type, diff, host): """Convert the volume to be of the new type.""" if volume['host'] != host['host']: if self._check_volume_attachment(volume): LOG.warning(_LW( 'Volume %(volume_id)s cannot be retyped ' 'during attachment.'), { 'volume_id': volume['id']}) return False if self._check_volume_has_snapshot(volume): LOG.warning(_LW( 'Volume %(volume_id)s cannot be retyped ' 'because it has snapshot.'), { 'volume_id': volume['id']}) return False new_extraspecs = new_type['extra_specs'] rc, model_update = self.migrate_volume( volume, host, new_extraspecs) if rc: LOG.info(_LI( 'Retype Volume %(volume_id)s is done ' 'and migrated to pool %(pool_id)s.'), { 'volume_id': volume['id'], 'pool_id': host['capabilities']['pool_id']}) return (rc, model_update) else: if ('infortrend_provisioning' in diff['extra_specs'] and (diff['extra_specs']['infortrend_provisioning'][0] != diff['extra_specs']['infortrend_provisioning'][1])): LOG.warning(_LW( 'The provisioning: %(provisioning)s ' 'is not valid.'), { 'provisioning': diff['extra_specs']['infortrend_provisioning'][1]}) return False LOG.info(_LI('Retype Volume %(volume_id)s is completed.'), { 'volume_id': volume['id']}) return True def update_migrated_volume(self, ctxt, volume, new_volume, original_volume_status): """Return model update for migrated volume.""" src_volume_id = volume['id'].replace('-', '') dst_volume_id = new_volume['id'].replace('-', '') part_id = self._extract_specific_provider_location( new_volume['provider_location'], 'partition_id') if part_id is None: part_id = self._get_part_id(dst_volume_id) LOG.debug( 'Rename partition %(part_id)s ' 'into new volume %(new_volume)s.', { 'part_id': part_id, 'new_volume': dst_volume_id}) try: self._execute('SetPartition', part_id, 'name=%s' % src_volume_id) except exception.InfortrendCliException: LOG.exception(_LE('Failed to rename %(new_volume)s into ' '%(volume)s.'), {'new_volume': new_volume['id'], 'volume': volume['id']}) return {'_name_id': new_volume['_name_id'] or new_volume['id']} LOG.info(_LI('Update migrated volume %(new_volume)s completed.'), { 'new_volume': new_volume['id']}) model_update = { '_name_id': None, 'provider_location': new_volume['provider_location'], } return model_update
SCPR/firetracker
refs/heads/master
calfire_tracker/migrations/0010_auto__add_wildfiretweet.py
1
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'WildfireTweet' db.create_table('calfire_tracker_wildfiretweet', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('twitter_hashtag', self.gf('django.db.models.fields.related.ForeignKey')(blank=True, related_name='calwildfire_twitter_hashtag', null=True, to=orm['calfire_tracker.CalWildfire'])), ('tweet_text', self.gf('django.db.models.fields.CharField')(max_length=1024, null=True, blank=True)), ('tweet_created_at', self.gf('django.db.models.fields.DateTimeField')(null=True, blank=True)), ('tweet_id', self.gf('django.db.models.fields.CharField')(max_length=1024, null=True, blank=True)), ('tweet_screen_name', self.gf('django.db.models.fields.CharField')(max_length=1024, null=True, blank=True)), ('tweet_profile_image_url', self.gf('django.db.models.fields.URLField')(max_length=1024, null=True, blank=True)), )) db.send_create_signal('calfire_tracker', ['WildfireTweet']) def backwards(self, orm): # Deleting model 'WildfireTweet' db.delete_table('calfire_tracker_wildfiretweet') models = { 'calfire_tracker.calwildfire': { 'Meta': {'object_name': 'CalWildfire'}, 'acres_burned': ('django.db.models.fields.IntegerField', [], {'max_length': '8', 'null': 'True', 'blank': 'True'}), 'administrative_unit': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'air_quality_rating': ('django.db.models.fields.IntegerField', [], {'max_length': '3', 'null': 'True', 'blank': 'True'}), 'asset_host_image_id': ('django.db.models.fields.CharField', [], {'max_length': '140', 'null': 'True', 'blank': 'True'}), 'cause': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'computed_location': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'conditions': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'containment_percent': ('django.db.models.fields.IntegerField', [], {'max_length': '4', 'null': 'True', 'blank': 'True'}), 'cooperating_agencies': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'county': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'county_slug': ('django.db.models.fields.SlugField', [], {'max_length': '140', 'null': 'True', 'blank': 'True'}), 'created_fire_id': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}), 'current_situation': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'damage_assessment': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'data_source': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'date_time_started': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'evacuations': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'fire_name': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'fire_slug': ('django.db.models.fields.SlugField', [], {'max_length': '140', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'injuries': ('django.db.models.fields.CharField', [], {'max_length': '2024', 'null': 'True', 'blank': 'True'}), 'last_scraped': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'last_updated': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'location': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'location_geocode_error': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'location_latitude': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'location_longitude': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'more_info': ('django.db.models.fields.URLField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'notes': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'phone_numbers': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'promoted_fire': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'road_closures': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'school_closures': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'structures_destroyed': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'structures_threatened': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'total_airtankers': ('django.db.models.fields.IntegerField', [], {'max_length': '10', 'null': 'True', 'blank': 'True'}), 'total_dozers': ('django.db.models.fields.IntegerField', [], {'max_length': '10', 'null': 'True', 'blank': 'True'}), 'total_fire_crews': ('django.db.models.fields.IntegerField', [], {'max_length': '10', 'null': 'True', 'blank': 'True'}), 'total_fire_engines': ('django.db.models.fields.IntegerField', [], {'max_length': '10', 'null': 'True', 'blank': 'True'}), 'total_fire_personnel': ('django.db.models.fields.IntegerField', [], {'max_length': '10', 'null': 'True', 'blank': 'True'}), 'total_helicopters': ('django.db.models.fields.IntegerField', [], {'max_length': '10', 'null': 'True', 'blank': 'True'}), 'total_water_tenders': ('django.db.models.fields.IntegerField', [], {'max_length': '10', 'null': 'True', 'blank': 'True'}), 'training': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'twitter_hashtag': ('django.db.models.fields.CharField', [], {'max_length': '140', 'null': 'True', 'blank': 'True'}) }, 'calfire_tracker.wildfiretweet': { 'Meta': {'object_name': 'WildfireTweet'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'tweet_created_at': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'tweet_id': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'tweet_profile_image_url': ('django.db.models.fields.URLField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'tweet_screen_name': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'tweet_text': ('django.db.models.fields.CharField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'twitter_hashtag': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'calwildfire_twitter_hashtag'", 'null': 'True', 'to': "orm['calfire_tracker.CalWildfire']"}) }, 'calfire_tracker.wildfireupdate': { 'Meta': {'object_name': 'WildfireUpdate'}, 'date_time_update': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'fire_name': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'calwildfire_fire_name'", 'null': 'True', 'to': "orm['calfire_tracker.CalWildfire']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'source': ('django.db.models.fields.URLField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'update_text': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}) } } complete_apps = ['calfire_tracker']
TheKK/Shedskin
refs/heads/master
setup.py
3
#!/usr/bin/env python from distutils.core import setup, Command import os class run_tests(Command): description = "run testsuite" user_options = [] def initialize_options(self): pass def finalize_options(self): self.cwd = os.getcwd() ss_dir = os.path.abspath(__file__).split(os.path.sep)[:-1] ss_dir.append('tests') self.tests_dir = os.path.sep.join(ss_dir) def run(self): os.chdir(self.tests_dir) os.system('./run.py') os.chdir(self.cwd) setup(name='shedskin', version='0.9.4', description='Shed Skin is an experimental compiler, that can translate pure, but implicitly statically typed Python programs into optimized C++. It can generate stand-alone programs or extension modules that can be imported and used in larger Python programs.', url='http://code.google.com/p/shedskin/', scripts=['scripts/shedskin'], cmdclass={'test':run_tests}, packages=['shedskin'], package_data={'shedskin': ['lib/*.cpp', 'lib/*.hpp', 'lib/builtin/*.cpp', 'lib/builtin/*.hpp', 'lib/*.py', 'lib/os/*.cpp', 'lib/os/*.hpp', 'lib/os/*.py', 'FLAGS*', 'illegal']}, )
scripni/rethinkdb
refs/heads/next
external/v8_3.30.33.16/build/gyp/test/hello/gyptest-regyp.py
268
#!/usr/bin/env python # Copyright (c) 2012 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Verifies that Makefiles get rebuilt when a source gyp file changes. """ import TestGyp # Regenerating build files when a gyp file changes is currently only supported # by the make generator. test = TestGyp.TestGyp(formats=['make']) test.run_gyp('hello.gyp') test.build('hello.gyp', test.ALL) test.run_built_executable('hello', stdout="Hello, world!\n") # Sleep so that the changed gyp file will have a newer timestamp than the # previously generated build files. test.sleep() test.write('hello.gyp', test.read('hello2.gyp')) test.build('hello.gyp', test.ALL) test.run_built_executable('hello', stdout="Hello, two!\n") test.pass_test()
admiraltoad/ScotchPy
refs/heads/master
scripts/unpackfiles.py
1
""" Unpack Files """ import os, sys, shutil, errno from ScotchPy.application import Application, get_root_directory from ScotchPy.utils import folder_utils, file_utils class UnpackFilesApp(Application): def __init__(self): super(UnpackFilesApp, self).__init__("Unpack Files") def run(self): """ Run the application instance in the calling directory. """ self.unpackfiles(get_root_directory()) def unpackfiles(self, search_directory): """ Move all files in subdirectories under [search_directory] to root. """ file_utils.remove_useless_files(search_directory) for root, directories, filenames in os.walk(search_directory): for filename in filenames: source_filename = os.path.join(root, filename) if os.path.isfile(source_filename): destination = os.path.join(search_directory, filename) file_utils.move_file(source_filename, destination) self.log.write("moved_from:{0};moved_to:{1};\n".format(source_filename, destination)) for directory in directories: subdirectory = os.path.join(root, directory) folder_utils.remove_if_empty(subdirectory) folder_utils.remove_if_empty(search_directory) if __name__ == "__main__": try: main = UnpackFilesApp() main.run() sys.exit(0) except Exception as ex: print("Error:", str(ex), "\n") raise sys.exit(-1)
MoritzS/django
refs/heads/master
tests/flatpages_tests/test_forms.py
43
from django.conf import settings from django.contrib.flatpages.forms import FlatpageForm from django.contrib.flatpages.models import FlatPage from django.contrib.sites.models import Site from django.test import TestCase, modify_settings, override_settings from django.utils import translation @modify_settings(INSTALLED_APPS={'append': ['django.contrib.flatpages', ]}) @override_settings(SITE_ID=1) class FlatpageAdminFormTests(TestCase): @classmethod def setUpTestData(cls): # don't use the manager because we want to ensure the site exists # with pk=1, regardless of whether or not it already exists. cls.site1 = Site(pk=1, domain='example.com', name='example.com') cls.site1.save() def setUp(self): # Site fields cache needs to be cleared after flatpages is added to # INSTALLED_APPS Site._meta._expire_cache() self.form_data = { 'title': "A test page", 'content': "This is a test", 'sites': [settings.SITE_ID], } def test_flatpage_admin_form_url_validation(self): "The flatpage admin form correctly validates urls" self.assertTrue(FlatpageForm(data=dict(url='/new_flatpage/', **self.form_data)).is_valid()) self.assertTrue(FlatpageForm(data=dict(url='/some.special~chars/', **self.form_data)).is_valid()) self.assertTrue(FlatpageForm(data=dict(url='/some.very_special~chars-here/', **self.form_data)).is_valid()) self.assertFalse(FlatpageForm(data=dict(url='/a space/', **self.form_data)).is_valid()) self.assertFalse(FlatpageForm(data=dict(url='/a % char/', **self.form_data)).is_valid()) self.assertFalse(FlatpageForm(data=dict(url='/a ! char/', **self.form_data)).is_valid()) self.assertFalse(FlatpageForm(data=dict(url='/a & char/', **self.form_data)).is_valid()) self.assertFalse(FlatpageForm(data=dict(url='/a ? char/', **self.form_data)).is_valid()) def test_flatpage_requires_leading_slash(self): form = FlatpageForm(data=dict(url='no_leading_slash/', **self.form_data)) with translation.override('en'): self.assertFalse(form.is_valid()) self.assertEqual(form.errors['url'], ["URL is missing a leading slash."]) @override_settings(APPEND_SLASH=True, MIDDLEWARE=['django.middleware.common.CommonMiddleware']) def test_flatpage_requires_trailing_slash_with_append_slash(self): form = FlatpageForm(data=dict(url='/no_trailing_slash', **self.form_data)) with translation.override('en'): self.assertFalse(form.is_valid()) self.assertEqual(form.errors['url'], ["URL is missing a trailing slash."]) @override_settings(APPEND_SLASH=False, MIDDLEWARE=['django.middleware.common.CommonMiddleware']) def test_flatpage_doesnt_requires_trailing_slash_without_append_slash(self): form = FlatpageForm(data=dict(url='/no_trailing_slash', **self.form_data)) self.assertTrue(form.is_valid()) def test_flatpage_admin_form_url_uniqueness_validation(self): "The flatpage admin form correctly enforces url uniqueness among flatpages of the same site" data = dict(url='/myflatpage1/', **self.form_data) FlatpageForm(data=data).save() f = FlatpageForm(data=data) with translation.override('en'): self.assertFalse(f.is_valid()) self.assertEqual( f.errors, {'__all__': ['Flatpage with url /myflatpage1/ already exists for site example.com']}) def test_flatpage_admin_form_edit(self): """ Existing flatpages can be edited in the admin form without triggering the url-uniqueness validation. """ existing = FlatPage.objects.create( url="/myflatpage1/", title="Some page", content="The content") existing.sites.add(settings.SITE_ID) data = dict(url='/myflatpage1/', **self.form_data) f = FlatpageForm(data=data, instance=existing) self.assertTrue(f.is_valid(), f.errors) updated = f.save() self.assertEqual(updated.title, "A test page") def test_flatpage_nosites(self): data = dict(url='/myflatpage1/', **self.form_data) data.update({'sites': ''}) f = FlatpageForm(data=data) self.assertFalse(f.is_valid()) self.assertEqual(f.errors, {'sites': [translation.gettext('This field is required.')]})
40223144/2015cdafinal
refs/heads/master
static/Brython3.1.1-20150328-091302/Lib/antigravity.py
917
import webbrowser import hashlib webbrowser.open("http://xkcd.com/353/") def geohash(latitude, longitude, datedow): '''Compute geohash() using the Munroe algorithm. >>> geohash(37.421542, -122.085589, b'2005-05-26-10458.68') 37.857713 -122.544543 ''' # http://xkcd.com/426/ h = hashlib.md5(datedow).hexdigest() p, q = [('%f' % float.fromhex('0.' + x)) for x in (h[:16], h[16:32])] print('%d%s %d%s' % (latitude, p[1:], longitude, q[1:]))
stgraber/snapcraft
refs/heads/master
integration_tests/test_clean.py
7
# -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2015 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os from testtools.matchers import ( DirExists, Not ) import integration_tests class CleanTestCase(integration_tests.TestCase): def test_clean(self): project_dir = 'simple-make' self.run_snapcraft('snap', project_dir) snap_dirs = ('stage', 'parts', 'prime') for dir_ in snap_dirs: self.assertThat( os.path.join(project_dir, dir_), DirExists()) self.run_snapcraft('clean', project_dir) for dir_ in snap_dirs: self.assertThat( os.path.join(project_dir, dir_), Not(DirExists())) def test_clean_again(self): # Clean a second time doesn't fail. # Regression test for https://bugs.launchpad.net/snapcraft/+bug/1497371 project_dir = 'simple-make' self.run_snapcraft('snap', project_dir) self.run_snapcraft('clean', project_dir) self.run_snapcraft('clean', project_dir)
arnaud-morvan/QGIS
refs/heads/master
python/plugins/processing/algs/qgis/HubDistancePoints.py
12
# -*- coding: utf-8 -*- """ *************************************************************************** HubDistancePoints.py --------------------- Date : May 2010 Copyright : (C) 2010 by Michael Minn Email : pyqgis at michaelminn dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Michael Minn' __date__ = 'May 2010' __copyright__ = '(C) 2010, Michael Minn' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' from qgis.PyQt.QtCore import QVariant from qgis.core import (QgsField, QgsGeometry, QgsFeatureSink, QgsDistanceArea, QgsFeature, QgsFeatureRequest, QgsSpatialIndex, QgsWkbTypes, QgsUnitTypes, QgsProcessing, QgsProcessingParameterFeatureSource, QgsProcessingParameterField, QgsProcessingParameterEnum, QgsProcessingParameterFeatureSink, QgsProcessingException) from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm class HubDistancePoints(QgisAlgorithm): INPUT = 'INPUT' HUBS = 'HUBS' FIELD = 'FIELD' UNIT = 'UNIT' OUTPUT = 'OUTPUT' LAYER_UNITS = 'LAYER_UNITS' UNITS = [QgsUnitTypes.DistanceMeters, QgsUnitTypes.DistanceFeet, QgsUnitTypes.DistanceMiles, QgsUnitTypes.DistanceKilometers, LAYER_UNITS ] def group(self): return self.tr('Vector analysis') def groupId(self): return 'vectoranalysis' def __init__(self): super().__init__() def initAlgorithm(self, config=None): self.units = [self.tr('Meters'), self.tr('Feet'), self.tr('Miles'), self.tr('Kilometers'), self.tr('Layer units')] self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT, self.tr('Source points layer'))) self.addParameter(QgsProcessingParameterFeatureSource(self.HUBS, self.tr('Destination hubs layer'))) self.addParameter(QgsProcessingParameterField(self.FIELD, self.tr('Hub layer name attribute'), parentLayerParameterName=self.HUBS)) self.addParameter(QgsProcessingParameterEnum(self.UNIT, self.tr('Measurement unit'), self.units)) self.addParameter(QgsProcessingParameterFeatureSink(self.OUTPUT, self.tr('Hub distance'), QgsProcessing.TypeVectorPoint)) def name(self): return 'distancetonearesthubpoints' def displayName(self): return self.tr('Distance to nearest hub (points)') def processAlgorithm(self, parameters, context, feedback): if parameters[self.INPUT] == parameters[self.HUBS]: raise QgsProcessingException( self.tr('Same layer given for both hubs and spokes')) point_source = self.parameterAsSource(parameters, self.INPUT, context) if point_source is None: raise QgsProcessingException(self.invalidSourceError(parameters, self.INPUT)) hub_source = self.parameterAsSource(parameters, self.HUBS, context) if hub_source is None: raise QgsProcessingException(self.invalidSourceError(parameters, self.HUBS)) fieldName = self.parameterAsString(parameters, self.FIELD, context) units = self.UNITS[self.parameterAsEnum(parameters, self.UNIT, context)] fields = point_source.fields() fields.append(QgsField('HubName', QVariant.String)) fields.append(QgsField('HubDist', QVariant.Double)) (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context, fields, QgsWkbTypes.Point, point_source.sourceCrs()) if sink is None: raise QgsProcessingException(self.invalidSinkError(parameters, self.OUTPUT)) index = QgsSpatialIndex(hub_source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([]).setDestinationCrs(point_source.sourceCrs(), context.transformContext()))) distance = QgsDistanceArea() distance.setSourceCrs(point_source.sourceCrs(), context.transformContext()) distance.setEllipsoid(context.project().ellipsoid()) # Scan source points, find nearest hub, and write to output file features = point_source.getFeatures() total = 100.0 / point_source.featureCount() if point_source.featureCount() else 0 for current, f in enumerate(features): if feedback.isCanceled(): break if not f.hasGeometry(): sink.addFeature(f, QgsFeatureSink.FastInsert) continue src = f.geometry().boundingBox().center() neighbors = index.nearestNeighbor(src, 1) ft = next(hub_source.getFeatures(QgsFeatureRequest().setFilterFid(neighbors[0]).setSubsetOfAttributes([fieldName], hub_source.fields()).setDestinationCrs(point_source.sourceCrs(), context.transformContext()))) closest = ft.geometry().boundingBox().center() hubDist = distance.measureLine(src, closest) if units != self.LAYER_UNITS: hub_dist_in_desired_units = distance.convertLengthMeasurement(hubDist, units) else: hub_dist_in_desired_units = hubDist attributes = f.attributes() attributes.append(ft[fieldName]) attributes.append(hub_dist_in_desired_units) feat = QgsFeature() feat.setAttributes(attributes) feat.setGeometry(QgsGeometry.fromPointXY(src)) sink.addFeature(feat, QgsFeatureSink.FastInsert) feedback.setProgress(int(current * total)) return {self.OUTPUT: dest_id}
franky88/emperioanimesta
refs/heads/master
env/Lib/os.py
15
r"""OS routines for NT or Posix depending on what system we're on. This exports: - all functions from posix, nt or ce, e.g. unlink, stat, etc. - os.path is either posixpath or ntpath - os.name is either 'posix', 'nt' or 'ce'. - os.curdir is a string representing the current directory ('.' or ':') - os.pardir is a string representing the parent directory ('..' or '::') - os.sep is the (or a most common) pathname separator ('/' or ':' or '\\') - os.extsep is the extension separator (always '.') - os.altsep is the alternate pathname separator (None or '/') - os.pathsep is the component separator used in $PATH etc - os.linesep is the line separator in text files ('\r' or '\n' or '\r\n') - os.defpath is the default search path for executables - os.devnull is the file path of the null device ('/dev/null', etc.) Programs that import and use 'os' stand a better chance of being portable between different platforms. Of course, they must then only use functions that are defined by all platforms (e.g., unlink and opendir), and leave all pathname manipulation to os.path (e.g., split and join). """ #' import sys, errno import stat as st _names = sys.builtin_module_names # Note: more names are added to __all__ later. __all__ = ["altsep", "curdir", "pardir", "sep", "pathsep", "linesep", "defpath", "name", "path", "devnull", "SEEK_SET", "SEEK_CUR", "SEEK_END", "fsencode", "fsdecode", "get_exec_path", "fdopen", "popen", "extsep"] def _exists(name): return name in globals() def _get_exports_list(module): try: return list(module.__all__) except AttributeError: return [n for n in dir(module) if n[0] != '_'] # Any new dependencies of the os module and/or changes in path separator # requires updating importlib as well. if 'posix' in _names: name = 'posix' linesep = '\n' from posix import * try: from posix import _exit __all__.append('_exit') except ImportError: pass import posixpath as path try: from posix import _have_functions except ImportError: pass import posix __all__.extend(_get_exports_list(posix)) del posix elif 'nt' in _names: name = 'nt' linesep = '\r\n' from nt import * try: from nt import _exit __all__.append('_exit') except ImportError: pass import ntpath as path import nt __all__.extend(_get_exports_list(nt)) del nt try: from nt import _have_functions except ImportError: pass elif 'ce' in _names: name = 'ce' linesep = '\r\n' from ce import * try: from ce import _exit __all__.append('_exit') except ImportError: pass # We can use the standard Windows path. import ntpath as path import ce __all__.extend(_get_exports_list(ce)) del ce try: from ce import _have_functions except ImportError: pass else: raise ImportError('no os specific module found') sys.modules['os.path'] = path from os.path import (curdir, pardir, sep, pathsep, defpath, extsep, altsep, devnull) del _names if _exists("_have_functions"): _globals = globals() def _add(str, fn): if (fn in _globals) and (str in _have_functions): _set.add(_globals[fn]) _set = set() _add("HAVE_FACCESSAT", "access") _add("HAVE_FCHMODAT", "chmod") _add("HAVE_FCHOWNAT", "chown") _add("HAVE_FSTATAT", "stat") _add("HAVE_FUTIMESAT", "utime") _add("HAVE_LINKAT", "link") _add("HAVE_MKDIRAT", "mkdir") _add("HAVE_MKFIFOAT", "mkfifo") _add("HAVE_MKNODAT", "mknod") _add("HAVE_OPENAT", "open") _add("HAVE_READLINKAT", "readlink") _add("HAVE_RENAMEAT", "rename") _add("HAVE_SYMLINKAT", "symlink") _add("HAVE_UNLINKAT", "unlink") _add("HAVE_UNLINKAT", "rmdir") _add("HAVE_UTIMENSAT", "utime") supports_dir_fd = _set _set = set() _add("HAVE_FACCESSAT", "access") supports_effective_ids = _set _set = set() _add("HAVE_FCHDIR", "chdir") _add("HAVE_FCHMOD", "chmod") _add("HAVE_FCHOWN", "chown") _add("HAVE_FDOPENDIR", "listdir") _add("HAVE_FEXECVE", "execve") _set.add(stat) # fstat always works _add("HAVE_FTRUNCATE", "truncate") _add("HAVE_FUTIMENS", "utime") _add("HAVE_FUTIMES", "utime") _add("HAVE_FPATHCONF", "pathconf") if _exists("statvfs") and _exists("fstatvfs"): # mac os x10.3 _add("HAVE_FSTATVFS", "statvfs") supports_fd = _set _set = set() _add("HAVE_FACCESSAT", "access") # Some platforms don't support lchmod(). Often the function exists # anyway, as a stub that always returns ENOSUP or perhaps EOPNOTSUPP. # (No, I don't know why that's a good design.) ./configure will detect # this and reject it--so HAVE_LCHMOD still won't be defined on such # platforms. This is Very Helpful. # # However, sometimes platforms without a working lchmod() *do* have # fchmodat(). (Examples: Linux kernel 3.2 with glibc 2.15, # OpenIndiana 3.x.) And fchmodat() has a flag that theoretically makes # it behave like lchmod(). So in theory it would be a suitable # replacement for lchmod(). But when lchmod() doesn't work, fchmodat()'s # flag doesn't work *either*. Sadly ./configure isn't sophisticated # enough to detect this condition--it only determines whether or not # fchmodat() minimally works. # # Therefore we simply ignore fchmodat() when deciding whether or not # os.chmod supports follow_symlinks. Just checking lchmod() is # sufficient. After all--if you have a working fchmodat(), your # lchmod() almost certainly works too. # # _add("HAVE_FCHMODAT", "chmod") _add("HAVE_FCHOWNAT", "chown") _add("HAVE_FSTATAT", "stat") _add("HAVE_LCHFLAGS", "chflags") _add("HAVE_LCHMOD", "chmod") if _exists("lchown"): # mac os x10.3 _add("HAVE_LCHOWN", "chown") _add("HAVE_LINKAT", "link") _add("HAVE_LUTIMES", "utime") _add("HAVE_LSTAT", "stat") _add("HAVE_FSTATAT", "stat") _add("HAVE_UTIMENSAT", "utime") _add("MS_WINDOWS", "stat") supports_follow_symlinks = _set del _set del _have_functions del _globals del _add # Python uses fixed values for the SEEK_ constants; they are mapped # to native constants if necessary in posixmodule.c # Other possible SEEK values are directly imported from posixmodule.c SEEK_SET = 0 SEEK_CUR = 1 SEEK_END = 2 # Super directory utilities. # (Inspired by Eric Raymond; the doc strings are mostly his) def makedirs(name, mode=0o777, exist_ok=False): """makedirs(name [, mode=0o777][, exist_ok=False]) Super-mkdir; create a leaf directory and all intermediate ones. Works like mkdir, except that any intermediate path segment (not just the rightmost) will be created if it does not exist. If the target directory already exists, raise an OSError if exist_ok is False. Otherwise no exception is raised. This is recursive. """ head, tail = path.split(name) if not tail: head, tail = path.split(head) if head and tail and not path.exists(head): try: makedirs(head, mode, exist_ok) except FileExistsError: # Defeats race condition when another thread created the path pass cdir = curdir if isinstance(tail, bytes): cdir = bytes(curdir, 'ASCII') if tail == cdir: # xxx/newdir/. exists if xxx/newdir exists return try: mkdir(name, mode) except OSError: # Cannot rely on checking for EEXIST, since the operating system # could give priority to other errors like EACCES or EROFS if not exist_ok or not path.isdir(name): raise def removedirs(name): """removedirs(name) Super-rmdir; remove a leaf directory and all empty intermediate ones. Works like rmdir except that, if the leaf directory is successfully removed, directories corresponding to rightmost path segments will be pruned away until either the whole path is consumed or an error occurs. Errors during this latter phase are ignored -- they generally mean that a directory was not empty. """ rmdir(name) head, tail = path.split(name) if not tail: head, tail = path.split(head) while head and tail: try: rmdir(head) except OSError: break head, tail = path.split(head) def renames(old, new): """renames(old, new) Super-rename; create directories as necessary and delete any left empty. Works like rename, except creation of any intermediate directories needed to make the new pathname good is attempted first. After the rename, directories corresponding to rightmost path segments of the old name will be pruned until either the whole path is consumed or a nonempty directory is found. Note: this function can fail with the new directory structure made if you lack permissions needed to unlink the leaf directory or file. """ head, tail = path.split(new) if head and tail and not path.exists(head): makedirs(head) rename(old, new) head, tail = path.split(old) if head and tail: try: removedirs(head) except OSError: pass __all__.extend(["makedirs", "removedirs", "renames"]) def walk(top, topdown=True, onerror=None, followlinks=False): """Directory tree generator. For each directory in the directory tree rooted at top (including top itself, but excluding '.' and '..'), yields a 3-tuple dirpath, dirnames, filenames dirpath is a string, the path to the directory. dirnames is a list of the names of the subdirectories in dirpath (excluding '.' and '..'). filenames is a list of the names of the non-directory files in dirpath. Note that the names in the lists are just names, with no path components. To get a full path (which begins with top) to a file or directory in dirpath, do os.path.join(dirpath, name). If optional arg 'topdown' is true or not specified, the triple for a directory is generated before the triples for any of its subdirectories (directories are generated top down). If topdown is false, the triple for a directory is generated after the triples for all of its subdirectories (directories are generated bottom up). When topdown is true, the caller can modify the dirnames list in-place (e.g., via del or slice assignment), and walk will only recurse into the subdirectories whose names remain in dirnames; this can be used to prune the search, or to impose a specific order of visiting. Modifying dirnames when topdown is false is ineffective, since the directories in dirnames have already been generated by the time dirnames itself is generated. No matter the value of topdown, the list of subdirectories is retrieved before the tuples for the directory and its subdirectories are generated. By default errors from the os.scandir() call are ignored. If optional arg 'onerror' is specified, it should be a function; it will be called with one argument, an OSError instance. It can report the error to continue with the walk, or raise the exception to abort the walk. Note that the filename is available as the filename attribute of the exception object. By default, os.walk does not follow symbolic links to subdirectories on systems that support them. In order to get this functionality, set the optional argument 'followlinks' to true. Caution: if you pass a relative pathname for top, don't change the current working directory between resumptions of walk. walk never changes the current directory, and assumes that the client doesn't either. Example: import os from os.path import join, getsize for root, dirs, files in os.walk('python/Lib/email'): print(root, "consumes", end="") print(sum([getsize(join(root, name)) for name in files]), end="") print("bytes in", len(files), "non-directory files") if 'CVS' in dirs: dirs.remove('CVS') # don't visit CVS directories """ dirs = [] nondirs = [] # We may not have read permission for top, in which case we can't # get a list of the files the directory contains. os.walk # always suppressed the exception then, rather than blow up for a # minor reason when (say) a thousand readable directories are still # left to visit. That logic is copied here. try: if name == 'nt' and isinstance(top, bytes): scandir_it = _dummy_scandir(top) else: # Note that scandir is global in this module due # to earlier import-*. scandir_it = scandir(top) entries = list(scandir_it) except OSError as error: if onerror is not None: onerror(error) return for entry in entries: try: is_dir = entry.is_dir() except OSError: # If is_dir() raises an OSError, consider that the entry is not # a directory, same behaviour than os.path.isdir(). is_dir = False if is_dir: dirs.append(entry.name) else: nondirs.append(entry.name) if not topdown and is_dir: # Bottom-up: recurse into sub-directory, but exclude symlinks to # directories if followlinks is False if followlinks: walk_into = True else: try: is_symlink = entry.is_symlink() except OSError: # If is_symlink() raises an OSError, consider that the # entry is not a symbolic link, same behaviour than # os.path.islink(). is_symlink = False walk_into = not is_symlink if walk_into: yield from walk(entry.path, topdown, onerror, followlinks) # Yield before recursion if going top down if topdown: yield top, dirs, nondirs # Recurse into sub-directories islink, join = path.islink, path.join for dirname in dirs: new_path = join(top, dirname) # Issue #23605: os.path.islink() is used instead of caching # entry.is_symlink() result during the loop on os.scandir() because # the caller can replace the directory entry during the "yield" # above. if followlinks or not islink(new_path): yield from walk(new_path, topdown, onerror, followlinks) else: # Yield after recursion if going bottom up yield top, dirs, nondirs class _DummyDirEntry: """Dummy implementation of DirEntry Only used internally by os.walk(bytes). Since os.walk() doesn't need the follow_symlinks parameter: don't implement it, always follow symbolic links. """ def __init__(self, dir, name): self.name = name self.path = path.join(dir, name) # Mimick FindFirstFile/FindNextFile: we should get file attributes # while iterating on a directory self._stat = None self._lstat = None try: self.stat(follow_symlinks=False) except OSError: pass def stat(self, *, follow_symlinks=True): if follow_symlinks: if self._stat is None: self._stat = stat(self.path) return self._stat else: if self._lstat is None: self._lstat = stat(self.path, follow_symlinks=False) return self._lstat def is_dir(self): if self._lstat is not None and not self.is_symlink(): # use the cache lstat stat = self.stat(follow_symlinks=False) return st.S_ISDIR(stat.st_mode) stat = self.stat() return st.S_ISDIR(stat.st_mode) def is_symlink(self): stat = self.stat(follow_symlinks=False) return st.S_ISLNK(stat.st_mode) def _dummy_scandir(dir): # listdir-based implementation for bytes patches on Windows for name in listdir(dir): yield _DummyDirEntry(dir, name) __all__.append("walk") if {open, stat} <= supports_dir_fd and {listdir, stat} <= supports_fd: def fwalk(top=".", topdown=True, onerror=None, *, follow_symlinks=False, dir_fd=None): """Directory tree generator. This behaves exactly like walk(), except that it yields a 4-tuple dirpath, dirnames, filenames, dirfd `dirpath`, `dirnames` and `filenames` are identical to walk() output, and `dirfd` is a file descriptor referring to the directory `dirpath`. The advantage of fwalk() over walk() is that it's safe against symlink races (when follow_symlinks is False). If dir_fd is not None, it should be a file descriptor open to a directory, and top should be relative; top will then be relative to that directory. (dir_fd is always supported for fwalk.) Caution: Since fwalk() yields file descriptors, those are only valid until the next iteration step, so you should dup() them if you want to keep them for a longer period. Example: import os for root, dirs, files, rootfd in os.fwalk('python/Lib/email'): print(root, "consumes", end="") print(sum([os.stat(name, dir_fd=rootfd).st_size for name in files]), end="") print("bytes in", len(files), "non-directory files") if 'CVS' in dirs: dirs.remove('CVS') # don't visit CVS directories """ # Note: To guard against symlink races, we use the standard # lstat()/open()/fstat() trick. orig_st = stat(top, follow_symlinks=False, dir_fd=dir_fd) topfd = open(top, O_RDONLY, dir_fd=dir_fd) try: if (follow_symlinks or (st.S_ISDIR(orig_st.st_mode) and path.samestat(orig_st, stat(topfd)))): yield from _fwalk(topfd, top, topdown, onerror, follow_symlinks) finally: close(topfd) def _fwalk(topfd, toppath, topdown, onerror, follow_symlinks): # Note: This uses O(depth of the directory tree) file descriptors: if # necessary, it can be adapted to only require O(1) FDs, see issue # #13734. names = listdir(topfd) dirs, nondirs = [], [] for name in names: try: # Here, we don't use AT_SYMLINK_NOFOLLOW to be consistent with # walk() which reports symlinks to directories as directories. # We do however check for symlinks before recursing into # a subdirectory. if st.S_ISDIR(stat(name, dir_fd=topfd).st_mode): dirs.append(name) else: nondirs.append(name) except FileNotFoundError: try: # Add dangling symlinks, ignore disappeared files if st.S_ISLNK(stat(name, dir_fd=topfd, follow_symlinks=False) .st_mode): nondirs.append(name) except FileNotFoundError: continue if topdown: yield toppath, dirs, nondirs, topfd for name in dirs: try: orig_st = stat(name, dir_fd=topfd, follow_symlinks=follow_symlinks) dirfd = open(name, O_RDONLY, dir_fd=topfd) except OSError as err: if onerror is not None: onerror(err) continue try: if follow_symlinks or path.samestat(orig_st, stat(dirfd)): dirpath = path.join(toppath, name) yield from _fwalk(dirfd, dirpath, topdown, onerror, follow_symlinks) finally: close(dirfd) if not topdown: yield toppath, dirs, nondirs, topfd __all__.append("fwalk") # Make sure os.environ exists, at least try: environ except NameError: environ = {} def execl(file, *args): """execl(file, *args) Execute the executable file with argument list args, replacing the current process. """ execv(file, args) def execle(file, *args): """execle(file, *args, env) Execute the executable file with argument list args and environment env, replacing the current process. """ env = args[-1] execve(file, args[:-1], env) def execlp(file, *args): """execlp(file, *args) Execute the executable file (which is searched for along $PATH) with argument list args, replacing the current process. """ execvp(file, args) def execlpe(file, *args): """execlpe(file, *args, env) Execute the executable file (which is searched for along $PATH) with argument list args and environment env, replacing the current process. """ env = args[-1] execvpe(file, args[:-1], env) def execvp(file, args): """execvp(file, args) Execute the executable file (which is searched for along $PATH) with argument list args, replacing the current process. args may be a list or tuple of strings. """ _execvpe(file, args) def execvpe(file, args, env): """execvpe(file, args, env) Execute the executable file (which is searched for along $PATH) with argument list args and environment env , replacing the current process. args may be a list or tuple of strings. """ _execvpe(file, args, env) __all__.extend(["execl","execle","execlp","execlpe","execvp","execvpe"]) def _execvpe(file, args, env=None): if env is not None: exec_func = execve argrest = (args, env) else: exec_func = execv argrest = (args,) env = environ head, tail = path.split(file) if head: exec_func(file, *argrest) return last_exc = saved_exc = None saved_tb = None path_list = get_exec_path(env) if name != 'nt': file = fsencode(file) path_list = map(fsencode, path_list) for dir in path_list: fullname = path.join(dir, file) try: exec_func(fullname, *argrest) except OSError as e: last_exc = e tb = sys.exc_info()[2] if (e.errno != errno.ENOENT and e.errno != errno.ENOTDIR and saved_exc is None): saved_exc = e saved_tb = tb if saved_exc: raise saved_exc.with_traceback(saved_tb) raise last_exc.with_traceback(tb) def get_exec_path(env=None): """Returns the sequence of directories that will be searched for the named executable (similar to a shell) when launching a process. *env* must be an environment variable dict or None. If *env* is None, os.environ will be used. """ # Use a local import instead of a global import to limit the number of # modules loaded at startup: the os module is always loaded at startup by # Python. It may also avoid a bootstrap issue. import warnings if env is None: env = environ # {b'PATH': ...}.get('PATH') and {'PATH': ...}.get(b'PATH') emit a # BytesWarning when using python -b or python -bb: ignore the warning with warnings.catch_warnings(): warnings.simplefilter("ignore", BytesWarning) try: path_list = env.get('PATH') except TypeError: path_list = None if supports_bytes_environ: try: path_listb = env[b'PATH'] except (KeyError, TypeError): pass else: if path_list is not None: raise ValueError( "env cannot contain 'PATH' and b'PATH' keys") path_list = path_listb if path_list is not None and isinstance(path_list, bytes): path_list = fsdecode(path_list) if path_list is None: path_list = defpath return path_list.split(pathsep) # Change environ to automatically call putenv(), unsetenv if they exist. from _collections_abc import MutableMapping class _Environ(MutableMapping): def __init__(self, data, encodekey, decodekey, encodevalue, decodevalue, putenv, unsetenv): self.encodekey = encodekey self.decodekey = decodekey self.encodevalue = encodevalue self.decodevalue = decodevalue self.putenv = putenv self.unsetenv = unsetenv self._data = data def __getitem__(self, key): try: value = self._data[self.encodekey(key)] except KeyError: # raise KeyError with the original key value raise KeyError(key) from None return self.decodevalue(value) def __setitem__(self, key, value): key = self.encodekey(key) value = self.encodevalue(value) self.putenv(key, value) self._data[key] = value def __delitem__(self, key): encodedkey = self.encodekey(key) self.unsetenv(encodedkey) try: del self._data[encodedkey] except KeyError: # raise KeyError with the original key value raise KeyError(key) from None def __iter__(self): for key in self._data: yield self.decodekey(key) def __len__(self): return len(self._data) def __repr__(self): return 'environ({{{}}})'.format(', '.join( ('{!r}: {!r}'.format(self.decodekey(key), self.decodevalue(value)) for key, value in self._data.items()))) def copy(self): return dict(self) def setdefault(self, key, value): if key not in self: self[key] = value return self[key] try: _putenv = putenv except NameError: _putenv = lambda key, value: None else: if "putenv" not in __all__: __all__.append("putenv") try: _unsetenv = unsetenv except NameError: _unsetenv = lambda key: _putenv(key, "") else: if "unsetenv" not in __all__: __all__.append("unsetenv") def _createenviron(): if name == 'nt': # Where Env Var Names Must Be UPPERCASE def check_str(value): if not isinstance(value, str): raise TypeError("str expected, not %s" % type(value).__name__) return value encode = check_str decode = str def encodekey(key): return encode(key).upper() data = {} for key, value in environ.items(): data[encodekey(key)] = value else: # Where Env Var Names Can Be Mixed Case encoding = sys.getfilesystemencoding() def encode(value): if not isinstance(value, str): raise TypeError("str expected, not %s" % type(value).__name__) return value.encode(encoding, 'surrogateescape') def decode(value): return value.decode(encoding, 'surrogateescape') encodekey = encode data = environ return _Environ(data, encodekey, decode, encode, decode, _putenv, _unsetenv) # unicode environ environ = _createenviron() del _createenviron def getenv(key, default=None): """Get an environment variable, return None if it doesn't exist. The optional second argument can specify an alternate default. key, default and the result are str.""" return environ.get(key, default) supports_bytes_environ = (name != 'nt') __all__.extend(("getenv", "supports_bytes_environ")) if supports_bytes_environ: def _check_bytes(value): if not isinstance(value, bytes): raise TypeError("bytes expected, not %s" % type(value).__name__) return value # bytes environ environb = _Environ(environ._data, _check_bytes, bytes, _check_bytes, bytes, _putenv, _unsetenv) del _check_bytes def getenvb(key, default=None): """Get an environment variable, return None if it doesn't exist. The optional second argument can specify an alternate default. key, default and the result are bytes.""" return environb.get(key, default) __all__.extend(("environb", "getenvb")) def _fscodec(): encoding = sys.getfilesystemencoding() if encoding == 'mbcs': errors = 'strict' else: errors = 'surrogateescape' def fsencode(filename): """ Encode filename to the filesystem encoding with 'surrogateescape' error handler, return bytes unchanged. On Windows, use 'strict' error handler if the file system encoding is 'mbcs' (which is the default encoding). """ if isinstance(filename, bytes): return filename elif isinstance(filename, str): return filename.encode(encoding, errors) else: raise TypeError("expect bytes or str, not %s" % type(filename).__name__) def fsdecode(filename): """ Decode filename from the filesystem encoding with 'surrogateescape' error handler, return str unchanged. On Windows, use 'strict' error handler if the file system encoding is 'mbcs' (which is the default encoding). """ if isinstance(filename, str): return filename elif isinstance(filename, bytes): return filename.decode(encoding, errors) else: raise TypeError("expect bytes or str, not %s" % type(filename).__name__) return fsencode, fsdecode fsencode, fsdecode = _fscodec() del _fscodec # Supply spawn*() (probably only for Unix) if _exists("fork") and not _exists("spawnv") and _exists("execv"): P_WAIT = 0 P_NOWAIT = P_NOWAITO = 1 __all__.extend(["P_WAIT", "P_NOWAIT", "P_NOWAITO"]) # XXX Should we support P_DETACH? I suppose it could fork()**2 # and close the std I/O streams. Also, P_OVERLAY is the same # as execv*()? def _spawnvef(mode, file, args, env, func): # Internal helper; func is the exec*() function to use pid = fork() if not pid: # Child try: if env is None: func(file, args) else: func(file, args, env) except: _exit(127) else: # Parent if mode == P_NOWAIT: return pid # Caller is responsible for waiting! while 1: wpid, sts = waitpid(pid, 0) if WIFSTOPPED(sts): continue elif WIFSIGNALED(sts): return -WTERMSIG(sts) elif WIFEXITED(sts): return WEXITSTATUS(sts) else: raise OSError("Not stopped, signaled or exited???") def spawnv(mode, file, args): """spawnv(mode, file, args) -> integer Execute file with arguments from args in a subprocess. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return _spawnvef(mode, file, args, None, execv) def spawnve(mode, file, args, env): """spawnve(mode, file, args, env) -> integer Execute file with arguments from args in a subprocess with the specified environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return _spawnvef(mode, file, args, env, execve) # Note: spawnvp[e] is't currently supported on Windows def spawnvp(mode, file, args): """spawnvp(mode, file, args) -> integer Execute file (which is looked for along $PATH) with arguments from args in a subprocess. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return _spawnvef(mode, file, args, None, execvp) def spawnvpe(mode, file, args, env): """spawnvpe(mode, file, args, env) -> integer Execute file (which is looked for along $PATH) with arguments from args in a subprocess with the supplied environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return _spawnvef(mode, file, args, env, execvpe) __all__.extend(["spawnv", "spawnve", "spawnvp", "spawnvpe"]) if _exists("spawnv"): # These aren't supplied by the basic Windows code # but can be easily implemented in Python def spawnl(mode, file, *args): """spawnl(mode, file, *args) -> integer Execute file with arguments from args in a subprocess. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return spawnv(mode, file, args) def spawnle(mode, file, *args): """spawnle(mode, file, *args, env) -> integer Execute file with arguments from args in a subprocess with the supplied environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ env = args[-1] return spawnve(mode, file, args[:-1], env) __all__.extend(["spawnl", "spawnle"]) if _exists("spawnvp"): # At the moment, Windows doesn't implement spawnvp[e], # so it won't have spawnlp[e] either. def spawnlp(mode, file, *args): """spawnlp(mode, file, *args) -> integer Execute file (which is looked for along $PATH) with arguments from args in a subprocess with the supplied environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return spawnvp(mode, file, args) def spawnlpe(mode, file, *args): """spawnlpe(mode, file, *args, env) -> integer Execute file (which is looked for along $PATH) with arguments from args in a subprocess with the supplied environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ env = args[-1] return spawnvpe(mode, file, args[:-1], env) __all__.extend(["spawnlp", "spawnlpe"]) # Supply os.popen() def popen(cmd, mode="r", buffering=-1): if not isinstance(cmd, str): raise TypeError("invalid cmd type (%s, expected string)" % type(cmd)) if mode not in ("r", "w"): raise ValueError("invalid mode %r" % mode) if buffering == 0 or buffering is None: raise ValueError("popen() does not support unbuffered streams") import subprocess, io if mode == "r": proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, bufsize=buffering) return _wrap_close(io.TextIOWrapper(proc.stdout), proc) else: proc = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE, bufsize=buffering) return _wrap_close(io.TextIOWrapper(proc.stdin), proc) # Helper for popen() -- a proxy for a file whose close waits for the process class _wrap_close: def __init__(self, stream, proc): self._stream = stream self._proc = proc def close(self): self._stream.close() returncode = self._proc.wait() if returncode == 0: return None if name == 'nt': return returncode else: return returncode << 8 # Shift left to match old behavior def __enter__(self): return self def __exit__(self, *args): self.close() def __getattr__(self, name): return getattr(self._stream, name) def __iter__(self): return iter(self._stream) # Supply os.fdopen() def fdopen(fd, *args, **kwargs): if not isinstance(fd, int): raise TypeError("invalid fd type (%s, expected integer)" % type(fd)) import io return io.open(fd, *args, **kwargs)
mastizada/kuma
refs/heads/master
vendor/packages/ipython/IPython/testing/plugin/setup.py
46
#!/usr/bin/env python """A Nose plugin to support IPython doctests. """ from setuptools import setup setup(name='IPython doctest plugin', version='0.1', author='The IPython Team', description = 'Nose plugin to load IPython-extended doctests', license = 'LGPL', py_modules = ['ipdoctest'], entry_points = { 'nose.plugins.0.10': ['ipdoctest = ipdoctest:IPythonDoctest', 'extdoctest = ipdoctest:ExtensionDoctest', ], }, )
RydrDojo/Ridr_app
refs/heads/master
pylotVenv/lib/python2.7/site-packages/wheel/test/test_basic.py
472
""" Basic wheel tests. """ import os import pkg_resources import json import sys from pkg_resources import resource_filename import wheel.util import wheel.tool from wheel import egg2wheel from wheel.install import WheelFile from zipfile import ZipFile from shutil import rmtree test_distributions = ("complex-dist", "simple.dist", "headers.dist") def teardown_module(): """Delete eggs/wheels created by tests.""" base = pkg_resources.resource_filename('wheel.test', '') for dist in test_distributions: for subdir in ('build', 'dist'): try: rmtree(os.path.join(base, dist, subdir)) except OSError: pass def setup_module(): build_wheel() build_egg() def build_wheel(): """Build wheels from test distributions.""" for dist in test_distributions: pwd = os.path.abspath(os.curdir) distdir = pkg_resources.resource_filename('wheel.test', dist) os.chdir(distdir) try: sys.argv = ['', 'bdist_wheel'] exec(compile(open('setup.py').read(), 'setup.py', 'exec')) finally: os.chdir(pwd) def build_egg(): """Build eggs from test distributions.""" for dist in test_distributions: pwd = os.path.abspath(os.curdir) distdir = pkg_resources.resource_filename('wheel.test', dist) os.chdir(distdir) try: sys.argv = ['', 'bdist_egg'] exec(compile(open('setup.py').read(), 'setup.py', 'exec')) finally: os.chdir(pwd) def test_findable(): """Make sure pkg_resources can find us.""" assert pkg_resources.working_set.by_key['wheel'].version def test_egg_re(): """Make sure egg_info_re matches.""" egg_names = open(pkg_resources.resource_filename('wheel', 'eggnames.txt')) for line in egg_names: line = line.strip() if not line: continue assert egg2wheel.egg_info_re.match(line), line def test_compatibility_tags(): """Test compatibilty tags are working.""" wf = WheelFile("package-1.0.0-cp32.cp33-noabi-noarch.whl") assert (list(wf.compatibility_tags) == [('cp32', 'noabi', 'noarch'), ('cp33', 'noabi', 'noarch')]) assert (wf.arity == 2) wf2 = WheelFile("package-1.0.0-1st-cp33-noabi-noarch.whl") wf2_info = wf2.parsed_filename.groupdict() assert wf2_info['build'] == '1st', wf2_info def test_convert_egg(): base = pkg_resources.resource_filename('wheel.test', '') for dist in test_distributions: distdir = os.path.join(base, dist, 'dist') eggs = [e for e in os.listdir(distdir) if e.endswith('.egg')] wheel.tool.convert(eggs, distdir, verbose=False) def test_unpack(): """ Make sure 'wheel unpack' works. This also verifies the integrity of our testing wheel files. """ for dist in test_distributions: distdir = pkg_resources.resource_filename('wheel.test', os.path.join(dist, 'dist')) for wheelfile in (w for w in os.listdir(distdir) if w.endswith('.whl')): wheel.tool.unpack(os.path.join(distdir, wheelfile), distdir) def test_no_scripts(): """Make sure entry point scripts are not generated.""" dist = "complex-dist" basedir = pkg_resources.resource_filename('wheel.test', dist) for (dirname, subdirs, filenames) in os.walk(basedir): for filename in filenames: if filename.endswith('.whl'): whl = ZipFile(os.path.join(dirname, filename)) for entry in whl.infolist(): assert not '.data/scripts/' in entry.filename def test_pydist(): """Make sure pydist.json exists and validates against our schema.""" # XXX this test may need manual cleanup of older wheels import jsonschema def open_json(filename): return json.loads(open(filename, 'rb').read().decode('utf-8')) pymeta_schema = open_json(resource_filename('wheel.test', 'pydist-schema.json')) valid = 0 for dist in ("simple.dist", "complex-dist"): basedir = pkg_resources.resource_filename('wheel.test', dist) for (dirname, subdirs, filenames) in os.walk(basedir): for filename in filenames: if filename.endswith('.whl'): whl = ZipFile(os.path.join(dirname, filename)) for entry in whl.infolist(): if entry.filename.endswith('/metadata.json'): pymeta = json.loads(whl.read(entry).decode('utf-8')) jsonschema.validate(pymeta, pymeta_schema) valid += 1 assert valid > 0, "No metadata.json found" def test_util(): """Test functions in util.py.""" for i in range(10): before = b'*' * i encoded = wheel.util.urlsafe_b64encode(before) assert not encoded.endswith(b'=') after = wheel.util.urlsafe_b64decode(encoded) assert before == after def test_pick_best(): """Test the wheel ranking algorithm.""" def get_tags(res): info = res[-1].parsed_filename.groupdict() return info['pyver'], info['abi'], info['plat'] cand_tags = [('py27', 'noabi', 'noarch'), ('py26', 'noabi', 'noarch'), ('cp27', 'noabi', 'linux_i686'), ('cp26', 'noabi', 'linux_i686'), ('cp27', 'noabi', 'linux_x86_64'), ('cp26', 'noabi', 'linux_x86_64')] cand_wheels = [WheelFile('testpkg-1.0-%s-%s-%s.whl' % t) for t in cand_tags] supported = [('cp27', 'noabi', 'linux_i686'), ('py27', 'noabi', 'noarch')] supported2 = [('cp27', 'noabi', 'linux_i686'), ('py27', 'noabi', 'noarch'), ('cp26', 'noabi', 'linux_i686'), ('py26', 'noabi', 'noarch')] supported3 = [('cp26', 'noabi', 'linux_i686'), ('py26', 'noabi', 'noarch'), ('cp27', 'noabi', 'linux_i686'), ('py27', 'noabi', 'noarch')] for supp in (supported, supported2, supported3): context = lambda: list(supp) for wheel in cand_wheels: wheel.context = context best = max(cand_wheels) assert list(best.tags)[0] == supp[0] # assert_equal( # list(map(get_tags, pick_best(cand_wheels, supp, top=False))), supp)
edcomstock/werkzeug
refs/heads/master
werkzeug/testapp.py
364
# -*- coding: utf-8 -*- """ werkzeug.testapp ~~~~~~~~~~~~~~~~ Provide a small test application that can be used to test a WSGI server and check it for WSGI compliance. :copyright: (c) 2014 by the Werkzeug Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ import os import sys import werkzeug from textwrap import wrap from werkzeug.wrappers import BaseRequest as Request, BaseResponse as Response from werkzeug.utils import escape import base64 logo = Response(base64.b64decode(''' R0lGODlhoACgAOMIAAEDACwpAEpCAGdgAJaKAM28AOnVAP3rAP///////// //////////////////////yH5BAEKAAgALAAAAACgAKAAAAT+EMlJq704680R+F0ojmRpnuj0rWnrv nB8rbRs33gu0bzu/0AObxgsGn3D5HHJbCUFyqZ0ukkSDlAidctNFg7gbI9LZlrBaHGtzAae0eloe25 7w9EDOX2fst/xenyCIn5/gFqDiVVDV4aGeYiKkhSFjnCQY5OTlZaXgZp8nJ2ekaB0SQOjqphrpnOiq ncEn65UsLGytLVmQ6m4sQazpbtLqL/HwpnER8bHyLrLOc3Oz8PRONPU1crXN9na263dMt/g4SzjMeX m5yDpLqgG7OzJ4u8lT/P69ej3JPn69kHzN2OIAHkB9RUYSFCFQYQJFTIkCDBiwoXWGnowaLEjRm7+G p9A7Hhx4rUkAUaSLJlxHMqVMD/aSycSZkyTplCqtGnRAM5NQ1Ly5OmzZc6gO4d6DGAUKA+hSocWYAo SlM6oUWX2O/o0KdaVU5vuSQLAa0ADwQgMEMB2AIECZhVSnTno6spgbtXmHcBUrQACcc2FrTrWS8wAf 78cMFBgwIBgbN+qvTt3ayikRBk7BoyGAGABAdYyfdzRQGV3l4coxrqQ84GpUBmrdR3xNIDUPAKDBSA ADIGDhhqTZIWaDcrVX8EsbNzbkvCOxG8bN5w8ly9H8jyTJHC6DFndQydbguh2e/ctZJFXRxMAqqPVA tQH5E64SPr1f0zz7sQYjAHg0In+JQ11+N2B0XXBeeYZgBZFx4tqBToiTCPv0YBgQv8JqA6BEf6RhXx w1ENhRBnWV8ctEX4Ul2zc3aVGcQNC2KElyTDYyYUWvShdjDyMOGMuFjqnII45aogPhz/CodUHFwaDx lTgsaOjNyhGWJQd+lFoAGk8ObghI0kawg+EV5blH3dr+digkYuAGSaQZFHFz2P/cTaLmhF52QeSb45 Jwxd+uSVGHlqOZpOeJpCFZ5J+rkAkFjQ0N1tah7JJSZUFNsrkeJUJMIBi8jyaEKIhKPomnC91Uo+NB yyaJ5umnnpInIFh4t6ZSpGaAVmizqjpByDegYl8tPE0phCYrhcMWSv+uAqHfgH88ak5UXZmlKLVJhd dj78s1Fxnzo6yUCrV6rrDOkluG+QzCAUTbCwf9SrmMLzK6p+OPHx7DF+bsfMRq7Ec61Av9i6GLw23r idnZ+/OO0a99pbIrJkproCQMA17OPG6suq3cca5ruDfXCCDoS7BEdvmJn5otdqscn+uogRHHXs8cbh EIfYaDY1AkrC0cqwcZpnM6ludx72x0p7Fo/hZAcpJDjax0UdHavMKAbiKltMWCF3xxh9k25N/Viud8 ba78iCvUkt+V6BpwMlErmcgc502x+u1nSxJSJP9Mi52awD1V4yB/QHONsnU3L+A/zR4VL/indx/y64 gqcj+qgTeweM86f0Qy1QVbvmWH1D9h+alqg254QD8HJXHvjQaGOqEqC22M54PcftZVKVSQG9jhkv7C JyTyDoAJfPdu8v7DRZAxsP/ky9MJ3OL36DJfCFPASC3/aXlfLOOON9vGZZHydGf8LnxYJuuVIbl83y Az5n/RPz07E+9+zw2A2ahz4HxHo9Kt79HTMx1Q7ma7zAzHgHqYH0SoZWyTuOLMiHwSfZDAQTn0ajk9 YQqodnUYjByQZhZak9Wu4gYQsMyEpIOAOQKze8CmEF45KuAHTvIDOfHJNipwoHMuGHBnJElUoDmAyX c2Qm/R8Ah/iILCCJOEokGowdhDYc/yoL+vpRGwyVSCWFYZNljkhEirGXsalWcAgOdeAdoXcktF2udb qbUhjWyMQxYO01o6KYKOr6iK3fE4MaS+DsvBsGOBaMb0Y6IxADaJhFICaOLmiWTlDAnY1KzDG4ambL cWBA8mUzjJsN2KjSaSXGqMCVXYpYkj33mcIApyhQf6YqgeNAmNvuC0t4CsDbSshZJkCS1eNisKqlyG cF8G2JeiDX6tO6Mv0SmjCa3MFb0bJaGPMU0X7c8XcpvMaOQmCajwSeY9G0WqbBmKv34DsMIEztU6Y2 KiDlFdt6jnCSqx7Dmt6XnqSKaFFHNO5+FmODxMCWBEaco77lNDGXBM0ECYB/+s7nKFdwSF5hgXumQe EZ7amRg39RHy3zIjyRCykQh8Zo2iviRKyTDn/zx6EefptJj2Cw+Ep2FSc01U5ry4KLPYsTyWnVGnvb UpyGlhjBUljyjHhWpf8OFaXwhp9O4T1gU9UeyPPa8A2l0p1kNqPXEVRm1AOs1oAGZU596t6SOR2mcB Oco1srWtkaVrMUzIErrKri85keKqRQYX9VX0/eAUK1hrSu6HMEX3Qh2sCh0q0D2CtnUqS4hj62sE/z aDs2Sg7MBS6xnQeooc2R2tC9YrKpEi9pLXfYXp20tDCpSP8rKlrD4axprb9u1Df5hSbz9QU0cRpfgn kiIzwKucd0wsEHlLpe5yHXuc6FrNelOl7pY2+11kTWx7VpRu97dXA3DO1vbkhcb4zyvERYajQgAADs ='''), mimetype='image/png') TEMPLATE = u'''\ <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <title>WSGI Information</title> <style type="text/css"> @import url(http://fonts.googleapis.com/css?family=Ubuntu); body { font-family: 'Lucida Grande', 'Lucida Sans Unicode', 'Geneva', 'Verdana', sans-serif; background-color: white; color: #000; font-size: 15px; text-align: center; } #logo { float: right; padding: 0 0 10px 10px; } div.box { text-align: left; width: 45em; margin: auto; padding: 50px 0; background-color: white; } h1, h2 { font-family: 'Ubuntu', 'Lucida Grande', 'Lucida Sans Unicode', 'Geneva', 'Verdana', sans-serif; font-weight: normal; } h1 { margin: 0 0 30px 0; } h2 { font-size: 1.4em; margin: 1em 0 0.5em 0; } table { width: 100%%; border-collapse: collapse; border: 1px solid #AFC5C9 } table th { background-color: #AFC1C4; color: white; font-size: 0.72em; font-weight: normal; width: 18em; vertical-align: top; padding: 0.5em 0 0.1em 0.5em; } table td { border: 1px solid #AFC5C9; padding: 0.1em 0 0.1em 0.5em; } code { font-family: 'Consolas', 'Monaco', 'Bitstream Vera Sans Mono', monospace; font-size: 0.7em; } ul li { line-height: 1.5em; } ul.path { font-size: 0.7em; margin: 0 -30px; padding: 8px 30px; list-style: none; background: #E8EFF0; } ul.path li { line-height: 1.6em; } li.virtual { color: #999; text-decoration: underline; } li.exp { background: white; } </style> <div class="box"> <img src="?resource=logo" id="logo" alt="[The Werkzeug Logo]" /> <h1>WSGI Information</h1> <p> This page displays all available information about the WSGI server and the underlying Python interpreter. <h2 id="python-interpreter">Python Interpreter</h2> <table> <tr> <th>Python Version <td>%(python_version)s <tr> <th>Platform <td>%(platform)s [%(os)s] <tr> <th>API Version <td>%(api_version)s <tr> <th>Byteorder <td>%(byteorder)s <tr> <th>Werkzeug Version <td>%(werkzeug_version)s </table> <h2 id="wsgi-environment">WSGI Environment</h2> <table>%(wsgi_env)s</table> <h2 id="installed-eggs">Installed Eggs</h2> <p> The following python packages were installed on the system as Python eggs: <ul>%(python_eggs)s</ul> <h2 id="sys-path">System Path</h2> <p> The following paths are the current contents of the load path. The following entries are looked up for Python packages. Note that not all items in this path are folders. Gray and underlined items are entries pointing to invalid resources or used by custom import hooks such as the zip importer. <p> Items with a bright background were expanded for display from a relative path. If you encounter such paths in the output you might want to check your setup as relative paths are usually problematic in multithreaded environments. <ul class="path">%(sys_path)s</ul> </div> ''' def iter_sys_path(): if os.name == 'posix': def strip(x): prefix = os.path.expanduser('~') if x.startswith(prefix): x = '~' + x[len(prefix):] return x else: strip = lambda x: x cwd = os.path.abspath(os.getcwd()) for item in sys.path: path = os.path.join(cwd, item or os.path.curdir) yield strip(os.path.normpath(path)), \ not os.path.isdir(path), path != item def render_testapp(req): try: import pkg_resources except ImportError: eggs = () else: eggs = sorted(pkg_resources.working_set, key=lambda x: x.project_name.lower()) python_eggs = [] for egg in eggs: try: version = egg.version except (ValueError, AttributeError): version = 'unknown' python_eggs.append('<li>%s <small>[%s]</small>' % ( escape(egg.project_name), escape(version) )) wsgi_env = [] sorted_environ = sorted(req.environ.items(), key=lambda x: repr(x[0]).lower()) for key, value in sorted_environ: wsgi_env.append('<tr><th>%s<td><code>%s</code>' % ( escape(str(key)), ' '.join(wrap(escape(repr(value)))) )) sys_path = [] for item, virtual, expanded in iter_sys_path(): class_ = [] if virtual: class_.append('virtual') if expanded: class_.append('exp') sys_path.append('<li%s>%s' % ( class_ and ' class="%s"' % ' '.join(class_) or '', escape(item) )) return (TEMPLATE % { 'python_version': '<br>'.join(escape(sys.version).splitlines()), 'platform': escape(sys.platform), 'os': escape(os.name), 'api_version': sys.api_version, 'byteorder': sys.byteorder, 'werkzeug_version': werkzeug.__version__, 'python_eggs': '\n'.join(python_eggs), 'wsgi_env': '\n'.join(wsgi_env), 'sys_path': '\n'.join(sys_path) }).encode('utf-8') def test_app(environ, start_response): """Simple test application that dumps the environment. You can use it to check if Werkzeug is working properly: .. sourcecode:: pycon >>> from werkzeug.serving import run_simple >>> from werkzeug.testapp import test_app >>> run_simple('localhost', 3000, test_app) * Running on http://localhost:3000/ The application displays important information from the WSGI environment, the Python interpreter and the installed libraries. """ req = Request(environ, populate_request=False) if req.args.get('resource') == 'logo': response = logo else: response = Response(render_testapp(req), mimetype='text/html') return response(environ, start_response) if __name__ == '__main__': from werkzeug.serving import run_simple run_simple('localhost', 5000, test_app, use_reloader=True)
FlintHill/SUAS-Competition
refs/heads/master
env/lib/python2.7/site-packages/pip/_vendor/cachecontrol/cache.py
74
""" The cache object API for implementing caches. The default is a thread safe in-memory dictionary. """ from threading import Lock class BaseCache(object): def get(self, key): raise NotImplementedError() def set(self, key, value): raise NotImplementedError() def delete(self, key): raise NotImplementedError() def close(self): pass class DictCache(BaseCache): def __init__(self, init_dict=None): self.lock = Lock() self.data = init_dict or {} def get(self, key): return self.data.get(key, None) def set(self, key, value): with self.lock: self.data.update({key: value}) def delete(self, key): with self.lock: if key in self.data: self.data.pop(key)
Venturi/cms
refs/heads/master
env/lib/python2.7/site-packages/cms/migrations/0010_migrate_use_structure.py
7
# -*- coding: utf-8 -*- import warnings from django.contrib.auth.models import Permission, Group from django.contrib.contenttypes.models import ContentType from django.conf import settings from django.db import models, migrations def forwards(apps, schema_editor): user_model = apps.get_model(settings.AUTH_USER_MODEL) ph_model = apps.get_model('cms', 'Placeholder') page_model = apps.get_model('cms', 'Page') try: ph_ctype = ContentType.objects.get_for_model(ph_model) page_ctype = ContentType.objects.get_for_model(page_model) permission, __ = Permission.objects.get_or_create( codename='use_structure', content_type=ph_ctype, name=u"Can use Structure mode") page_permission, __ = Permission.objects.get_or_create(codename='change_page', content_type=page_ctype) for user in user_model.objects.filter(is_superuser=False, is_staff=True): if user.user_permissions.filter(codename='change_page', content_type_id=page_ctype.pk).exists(): user.user_permissions.add(permission.pk) for group in Group.objects.all(): if page_permission in group.permissions.all(): group.permissions.add(permission.pk) except Exception: warnings.warn(u'Users not migrated to use_structure permission, please add the permission manually') def backwards(apps, schema_editor): user_model = apps.get_model(settings.AUTH_USER_MODEL) ph_model = apps.get_model('cms', 'Placeholder') ph_ctype = ContentType.objects.get(app_label=ph_model._meta.app_label, model=ph_model._meta.model_name) try: permission, __ = Permission.objects.get_or_create( codename='use_structure', content_type=ph_ctype, name=u"Can use Structure mode") for user in user_model.objects.filter(is_superuser=False, is_staff=True): user.user_permissions.remove(permission.pk) for group in Group.objects.all(): if permission in group.permissions.all(): group.permissions.remove(permission.pk) except Exception: warnings.warn(u'use_structure not removed from all the users, please check the permission manually') class Migration(migrations.Migration): dependencies = [ ('cms', '0009_merge'), ('contenttypes', '__latest__'), ] operations = [ migrations.AlterModelOptions( name='placeholder', options={'permissions': (('use_structure', 'Can use Structure mode'),)}, ), migrations.RunPython(forwards, backwards) ]
zverevalexei/trex-http-proxy
refs/heads/master
trex_client/external_libs/pyzmq-14.5.0/python3/fedora18/64bit/zmq/sugar/__init__.py
33
"""pure-Python sugar wrappers for core 0MQ objects.""" # Copyright (C) PyZMQ Developers # Distributed under the terms of the Modified BSD License. from zmq.sugar import ( constants, context, frame, poll, socket, tracker, version ) from zmq import error __all__ = ['constants'] for submod in ( constants, context, error, frame, poll, socket, tracker, version ): __all__.extend(submod.__all__) from zmq.error import * from zmq.sugar.context import * from zmq.sugar.tracker import * from zmq.sugar.socket import * from zmq.sugar.constants import * from zmq.sugar.frame import * from zmq.sugar.poll import * # from zmq.sugar.stopwatch import * # from zmq.sugar._device import * from zmq.sugar.version import *
thonkify/thonkify
refs/heads/master
src/lib/google/protobuf/type_pb2.py
8
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/protobuf/type.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import any_pb2 as google_dot_protobuf_dot_any__pb2 from google.protobuf import source_context_pb2 as google_dot_protobuf_dot_source__context__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/protobuf/type.proto', package='google.protobuf', syntax='proto3', serialized_pb=_b('\n\x1agoogle/protobuf/type.proto\x12\x0fgoogle.protobuf\x1a\x19google/protobuf/any.proto\x1a$google/protobuf/source_context.proto\"\xd7\x01\n\x04Type\x12\x0c\n\x04name\x18\x01 \x01(\t\x12&\n\x06\x66ields\x18\x02 \x03(\x0b\x32\x16.google.protobuf.Field\x12\x0e\n\x06oneofs\x18\x03 \x03(\t\x12(\n\x07options\x18\x04 \x03(\x0b\x32\x17.google.protobuf.Option\x12\x36\n\x0esource_context\x18\x05 \x01(\x0b\x32\x1e.google.protobuf.SourceContext\x12\'\n\x06syntax\x18\x06 \x01(\x0e\x32\x17.google.protobuf.Syntax\"\xd5\x05\n\x05\x46ield\x12)\n\x04kind\x18\x01 \x01(\x0e\x32\x1b.google.protobuf.Field.Kind\x12\x37\n\x0b\x63\x61rdinality\x18\x02 \x01(\x0e\x32\".google.protobuf.Field.Cardinality\x12\x0e\n\x06number\x18\x03 \x01(\x05\x12\x0c\n\x04name\x18\x04 \x01(\t\x12\x10\n\x08type_url\x18\x06 \x01(\t\x12\x13\n\x0boneof_index\x18\x07 \x01(\x05\x12\x0e\n\x06packed\x18\x08 \x01(\x08\x12(\n\x07options\x18\t \x03(\x0b\x32\x17.google.protobuf.Option\x12\x11\n\tjson_name\x18\n \x01(\t\x12\x15\n\rdefault_value\x18\x0b \x01(\t\"\xc8\x02\n\x04Kind\x12\x10\n\x0cTYPE_UNKNOWN\x10\x00\x12\x0f\n\x0bTYPE_DOUBLE\x10\x01\x12\x0e\n\nTYPE_FLOAT\x10\x02\x12\x0e\n\nTYPE_INT64\x10\x03\x12\x0f\n\x0bTYPE_UINT64\x10\x04\x12\x0e\n\nTYPE_INT32\x10\x05\x12\x10\n\x0cTYPE_FIXED64\x10\x06\x12\x10\n\x0cTYPE_FIXED32\x10\x07\x12\r\n\tTYPE_BOOL\x10\x08\x12\x0f\n\x0bTYPE_STRING\x10\t\x12\x0e\n\nTYPE_GROUP\x10\n\x12\x10\n\x0cTYPE_MESSAGE\x10\x0b\x12\x0e\n\nTYPE_BYTES\x10\x0c\x12\x0f\n\x0bTYPE_UINT32\x10\r\x12\r\n\tTYPE_ENUM\x10\x0e\x12\x11\n\rTYPE_SFIXED32\x10\x0f\x12\x11\n\rTYPE_SFIXED64\x10\x10\x12\x0f\n\x0bTYPE_SINT32\x10\x11\x12\x0f\n\x0bTYPE_SINT64\x10\x12\"t\n\x0b\x43\x61rdinality\x12\x17\n\x13\x43\x41RDINALITY_UNKNOWN\x10\x00\x12\x18\n\x14\x43\x41RDINALITY_OPTIONAL\x10\x01\x12\x18\n\x14\x43\x41RDINALITY_REQUIRED\x10\x02\x12\x18\n\x14\x43\x41RDINALITY_REPEATED\x10\x03\"\xce\x01\n\x04\x45num\x12\x0c\n\x04name\x18\x01 \x01(\t\x12-\n\tenumvalue\x18\x02 \x03(\x0b\x32\x1a.google.protobuf.EnumValue\x12(\n\x07options\x18\x03 \x03(\x0b\x32\x17.google.protobuf.Option\x12\x36\n\x0esource_context\x18\x04 \x01(\x0b\x32\x1e.google.protobuf.SourceContext\x12\'\n\x06syntax\x18\x05 \x01(\x0e\x32\x17.google.protobuf.Syntax\"S\n\tEnumValue\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0e\n\x06number\x18\x02 \x01(\x05\x12(\n\x07options\x18\x03 \x03(\x0b\x32\x17.google.protobuf.Option\";\n\x06Option\x12\x0c\n\x04name\x18\x01 \x01(\t\x12#\n\x05value\x18\x02 \x01(\x0b\x32\x14.google.protobuf.Any*.\n\x06Syntax\x12\x11\n\rSYNTAX_PROTO2\x10\x00\x12\x11\n\rSYNTAX_PROTO3\x10\x01\x42L\n\x13\x63om.google.protobufB\tTypeProtoP\x01\xa0\x01\x01\xa2\x02\x03GPB\xaa\x02\x1eGoogle.Protobuf.WellKnownTypesb\x06proto3') , dependencies=[google_dot_protobuf_dot_any__pb2.DESCRIPTOR,google_dot_protobuf_dot_source__context__pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _SYNTAX = _descriptor.EnumDescriptor( name='Syntax', full_name='google.protobuf.Syntax', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='SYNTAX_PROTO2', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='SYNTAX_PROTO3', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=1413, serialized_end=1459, ) _sym_db.RegisterEnumDescriptor(_SYNTAX) Syntax = enum_type_wrapper.EnumTypeWrapper(_SYNTAX) SYNTAX_PROTO2 = 0 SYNTAX_PROTO3 = 1 _FIELD_KIND = _descriptor.EnumDescriptor( name='Kind', full_name='google.protobuf.Field.Kind', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='TYPE_UNKNOWN', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_DOUBLE', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_FLOAT', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_INT64', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_UINT64', index=4, number=4, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_INT32', index=5, number=5, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_FIXED64', index=6, number=6, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_FIXED32', index=7, number=7, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_BOOL', index=8, number=8, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_STRING', index=9, number=9, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_GROUP', index=10, number=10, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_MESSAGE', index=11, number=11, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_BYTES', index=12, number=12, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_UINT32', index=13, number=13, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_ENUM', index=14, number=14, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_SFIXED32', index=15, number=15, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_SFIXED64', index=16, number=16, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_SINT32', index=17, number=17, options=None, type=None), _descriptor.EnumValueDescriptor( name='TYPE_SINT64', index=18, number=18, options=None, type=None), ], containing_type=None, options=None, serialized_start=610, serialized_end=938, ) _sym_db.RegisterEnumDescriptor(_FIELD_KIND) _FIELD_CARDINALITY = _descriptor.EnumDescriptor( name='Cardinality', full_name='google.protobuf.Field.Cardinality', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='CARDINALITY_UNKNOWN', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='CARDINALITY_OPTIONAL', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='CARDINALITY_REQUIRED', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='CARDINALITY_REPEATED', index=3, number=3, options=None, type=None), ], containing_type=None, options=None, serialized_start=940, serialized_end=1056, ) _sym_db.RegisterEnumDescriptor(_FIELD_CARDINALITY) _TYPE = _descriptor.Descriptor( name='Type', full_name='google.protobuf.Type', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='google.protobuf.Type.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='fields', full_name='google.protobuf.Type.fields', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='oneofs', full_name='google.protobuf.Type.oneofs', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='options', full_name='google.protobuf.Type.options', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='source_context', full_name='google.protobuf.Type.source_context', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='syntax', full_name='google.protobuf.Type.syntax', index=5, number=6, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=113, serialized_end=328, ) _FIELD = _descriptor.Descriptor( name='Field', full_name='google.protobuf.Field', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='kind', full_name='google.protobuf.Field.kind', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='cardinality', full_name='google.protobuf.Field.cardinality', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='number', full_name='google.protobuf.Field.number', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='name', full_name='google.protobuf.Field.name', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='type_url', full_name='google.protobuf.Field.type_url', index=4, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='oneof_index', full_name='google.protobuf.Field.oneof_index', index=5, number=7, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='packed', full_name='google.protobuf.Field.packed', index=6, number=8, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='options', full_name='google.protobuf.Field.options', index=7, number=9, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='json_name', full_name='google.protobuf.Field.json_name', index=8, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='default_value', full_name='google.protobuf.Field.default_value', index=9, number=11, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _FIELD_KIND, _FIELD_CARDINALITY, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=331, serialized_end=1056, ) _ENUM = _descriptor.Descriptor( name='Enum', full_name='google.protobuf.Enum', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='google.protobuf.Enum.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='enumvalue', full_name='google.protobuf.Enum.enumvalue', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='options', full_name='google.protobuf.Enum.options', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='source_context', full_name='google.protobuf.Enum.source_context', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='syntax', full_name='google.protobuf.Enum.syntax', index=4, number=5, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1059, serialized_end=1265, ) _ENUMVALUE = _descriptor.Descriptor( name='EnumValue', full_name='google.protobuf.EnumValue', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='google.protobuf.EnumValue.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='number', full_name='google.protobuf.EnumValue.number', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='options', full_name='google.protobuf.EnumValue.options', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1267, serialized_end=1350, ) _OPTION = _descriptor.Descriptor( name='Option', full_name='google.protobuf.Option', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='google.protobuf.Option.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='google.protobuf.Option.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1352, serialized_end=1411, ) _TYPE.fields_by_name['fields'].message_type = _FIELD _TYPE.fields_by_name['options'].message_type = _OPTION _TYPE.fields_by_name['source_context'].message_type = google_dot_protobuf_dot_source__context__pb2._SOURCECONTEXT _TYPE.fields_by_name['syntax'].enum_type = _SYNTAX _FIELD.fields_by_name['kind'].enum_type = _FIELD_KIND _FIELD.fields_by_name['cardinality'].enum_type = _FIELD_CARDINALITY _FIELD.fields_by_name['options'].message_type = _OPTION _FIELD_KIND.containing_type = _FIELD _FIELD_CARDINALITY.containing_type = _FIELD _ENUM.fields_by_name['enumvalue'].message_type = _ENUMVALUE _ENUM.fields_by_name['options'].message_type = _OPTION _ENUM.fields_by_name['source_context'].message_type = google_dot_protobuf_dot_source__context__pb2._SOURCECONTEXT _ENUM.fields_by_name['syntax'].enum_type = _SYNTAX _ENUMVALUE.fields_by_name['options'].message_type = _OPTION _OPTION.fields_by_name['value'].message_type = google_dot_protobuf_dot_any__pb2._ANY DESCRIPTOR.message_types_by_name['Type'] = _TYPE DESCRIPTOR.message_types_by_name['Field'] = _FIELD DESCRIPTOR.message_types_by_name['Enum'] = _ENUM DESCRIPTOR.message_types_by_name['EnumValue'] = _ENUMVALUE DESCRIPTOR.message_types_by_name['Option'] = _OPTION DESCRIPTOR.enum_types_by_name['Syntax'] = _SYNTAX Type = _reflection.GeneratedProtocolMessageType('Type', (_message.Message,), dict( DESCRIPTOR = _TYPE, __module__ = 'google.protobuf.type_pb2' # @@protoc_insertion_point(class_scope:google.protobuf.Type) )) _sym_db.RegisterMessage(Type) Field = _reflection.GeneratedProtocolMessageType('Field', (_message.Message,), dict( DESCRIPTOR = _FIELD, __module__ = 'google.protobuf.type_pb2' # @@protoc_insertion_point(class_scope:google.protobuf.Field) )) _sym_db.RegisterMessage(Field) Enum = _reflection.GeneratedProtocolMessageType('Enum', (_message.Message,), dict( DESCRIPTOR = _ENUM, __module__ = 'google.protobuf.type_pb2' # @@protoc_insertion_point(class_scope:google.protobuf.Enum) )) _sym_db.RegisterMessage(Enum) EnumValue = _reflection.GeneratedProtocolMessageType('EnumValue', (_message.Message,), dict( DESCRIPTOR = _ENUMVALUE, __module__ = 'google.protobuf.type_pb2' # @@protoc_insertion_point(class_scope:google.protobuf.EnumValue) )) _sym_db.RegisterMessage(EnumValue) Option = _reflection.GeneratedProtocolMessageType('Option', (_message.Message,), dict( DESCRIPTOR = _OPTION, __module__ = 'google.protobuf.type_pb2' # @@protoc_insertion_point(class_scope:google.protobuf.Option) )) _sym_db.RegisterMessage(Option) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\023com.google.protobufB\tTypeProtoP\001\240\001\001\242\002\003GPB\252\002\036Google.Protobuf.WellKnownTypes')) # @@protoc_insertion_point(module_scope)
Rhadow/leetcode
refs/heads/master
lintcode/Medium/140_Fast_Power.py
1
class Solution: """ @param a, b, n: 32bit integers @return: An integer """ def fastPower(self, a, b, n): # write your code here res = 1 while (n > 0): if (n % 2 == 1): res *= a % b n /= 2 a *= a % b return (res % b);
jesopo/bitbot
refs/heads/master
src/utils/datetime/common.py
1
import datetime as _datetime import enum ISO8601_FORMAT_DT = "%Y-%m-%dT%H:%M:%S" ISO8601_FORMAT_TZ = "%z" TIME_HUMAN = "%H:%M:%S" DATE_HUMAN = "%Y-%m-%d" class TimeSpec(enum.Enum): NORMAL = 1 MILLISECOND = 2 TIME_SECOND = 1 TIME_MINUTE = TIME_SECOND*60 TIME_HOUR = TIME_MINUTE*60 TIME_DAY = TIME_HOUR*24 TIME_WEEK = TIME_DAY*7 SECONDS_MINUTES = 60 SECONDS_HOURS = SECONDS_MINUTES*60 SECONDS_DAYS = SECONDS_HOURS*24 SECONDS_WEEKS = SECONDS_DAYS*7 UNIT_MINIMUM = 6 UNIT_SECOND = 5 UNIT_MINUTE = 4 UNIT_HOUR = 3 UNIT_DAY = 2 UNIT_WEEK = 1 UNIT_MONTH = 1 UNIT_YEAR = 1 def utcnow() -> _datetime.datetime: return _datetime.datetime.utcnow().replace(tzinfo=_datetime.timezone.utc) def timestamp(seconds: float) -> _datetime.datetime: return _datetime.datetime.fromtimestamp(seconds).replace( tzinfo=_datetime.timezone.utc) def seconds_since(dt: _datetime.datetime) -> float: return (utcnow()-dt).total_seconds() class RelativeDirection(enum.Enum): FORWARD = 1 BACKWARD = 2
sam-tsai/django-old
refs/heads/master
tests/modeltests/transactions/models.py
11
""" 15. Transactions Django handles transactions in three different ways. The default is to commit each transaction upon a write, but you can decorate a function to get commit-on-success behavior. Alternatively, you can manage the transaction manually. """ from django.db import models, DEFAULT_DB_ALIAS class Reporter(models.Model): first_name = models.CharField(max_length=30) last_name = models.CharField(max_length=30) email = models.EmailField() class Meta: ordering = ('first_name', 'last_name') def __unicode__(self): return u"%s %s" % (self.first_name, self.last_name) __test__ = {'API_TESTS':""" >>> from django.db import connection, transaction """} from django.conf import settings building_docs = getattr(settings, 'BUILDING_DOCS', False) if building_docs or settings.DATABASES[DEFAULT_DB_ALIAS]['ENGINE'] != 'django.db.backends.mysql': __test__['API_TESTS'] += """ # the default behavior is to autocommit after each save() action >>> def create_a_reporter_then_fail(first, last): ... a = Reporter(first_name=first, last_name=last) ... a.save() ... raise Exception("I meant to do that") ... >>> create_a_reporter_then_fail("Alice", "Smith") Traceback (most recent call last): ... Exception: I meant to do that # The object created before the exception still exists >>> Reporter.objects.all() [<Reporter: Alice Smith>] # the autocommit decorator works exactly the same as the default behavior >>> autocomitted_create_then_fail = transaction.autocommit(create_a_reporter_then_fail) >>> autocomitted_create_then_fail("Ben", "Jones") Traceback (most recent call last): ... Exception: I meant to do that # Same behavior as before >>> Reporter.objects.all() [<Reporter: Alice Smith>, <Reporter: Ben Jones>] # the autocommit decorator also works with a using argument >>> using_autocomitted_create_then_fail = transaction.autocommit(using='default')(create_a_reporter_then_fail) >>> using_autocomitted_create_then_fail("Carol", "Doe") Traceback (most recent call last): ... Exception: I meant to do that # Same behavior as before >>> Reporter.objects.all() [<Reporter: Alice Smith>, <Reporter: Ben Jones>, <Reporter: Carol Doe>] # With the commit_on_success decorator, the transaction is only committed if the # function doesn't throw an exception >>> committed_on_success = transaction.commit_on_success(create_a_reporter_then_fail) >>> committed_on_success("Dirk", "Gently") Traceback (most recent call last): ... Exception: I meant to do that # This time the object never got saved >>> Reporter.objects.all() [<Reporter: Alice Smith>, <Reporter: Ben Jones>, <Reporter: Carol Doe>] # commit_on_success decorator also works with a using argument >>> using_committed_on_success = transaction.commit_on_success(using='default')(create_a_reporter_then_fail) >>> using_committed_on_success("Dirk", "Gently") Traceback (most recent call last): ... Exception: I meant to do that # This time the object never got saved >>> Reporter.objects.all() [<Reporter: Alice Smith>, <Reporter: Ben Jones>, <Reporter: Carol Doe>] # If there aren't any exceptions, the data will get saved >>> def remove_a_reporter(): ... r = Reporter.objects.get(first_name="Alice") ... r.delete() ... >>> remove_comitted_on_success = transaction.commit_on_success(remove_a_reporter) >>> remove_comitted_on_success() >>> Reporter.objects.all() [<Reporter: Ben Jones>, <Reporter: Carol Doe>] # You can manually manage transactions if you really want to, but you # have to remember to commit/rollback >>> def manually_managed(): ... r = Reporter(first_name="Dirk", last_name="Gently") ... r.save() ... transaction.commit() >>> manually_managed = transaction.commit_manually(manually_managed) >>> manually_managed() >>> Reporter.objects.all() [<Reporter: Ben Jones>, <Reporter: Carol Doe>, <Reporter: Dirk Gently>] # If you forget, you'll get bad errors >>> def manually_managed_mistake(): ... r = Reporter(first_name="Edward", last_name="Woodward") ... r.save() ... # oops, I forgot to commit/rollback! >>> manually_managed_mistake = transaction.commit_manually(manually_managed_mistake) >>> manually_managed_mistake() Traceback (most recent call last): ... TransactionManagementError: Transaction managed block ended with pending COMMIT/ROLLBACK # commit_manually also works with a using argument >>> using_manually_managed_mistake = transaction.commit_manually(using='default')(manually_managed_mistake) >>> using_manually_managed_mistake() Traceback (most recent call last): ... TransactionManagementError: Transaction managed block ended with pending COMMIT/ROLLBACK """ # Regression for #11900: If a function wrapped by commit_on_success writes a # transaction that can't be committed, that transaction should be rolled back. # The bug is only visible using the psycopg2 backend, though # the fix is generally a good idea. pgsql_backends = ('django.db.backends.postgresql_psycopg2', 'postgresql_psycopg2',) if building_docs or settings.DATABASES[DEFAULT_DB_ALIAS]['ENGINE'] in pgsql_backends: __test__['API_TESTS'] += """ >>> def execute_bad_sql(): ... cursor = connection.cursor() ... cursor.execute("INSERT INTO transactions_reporter (first_name, last_name) VALUES ('Douglas', 'Adams');") ... transaction.set_dirty() ... >>> execute_bad_sql = transaction.commit_on_success(execute_bad_sql) >>> execute_bad_sql() Traceback (most recent call last): ... IntegrityError: null value in column "email" violates not-null constraint <BLANKLINE> >>> transaction.rollback() """
barryrobison/arsenalsuite
refs/heads/master
cpp/lib/PyQt4/examples/itemviews/editabletreemodel/ui_mainwindow.py
15
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'mainwindow.ui' # # Created: Fri Mar 27 22:12:50 2009 # by: PyQt4 UI code generator 4.4.4 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(573, 468) self.centralwidget = QtGui.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.vboxlayout = QtGui.QVBoxLayout(self.centralwidget) self.vboxlayout.setMargin(0) self.vboxlayout.setSpacing(0) self.vboxlayout.setObjectName("vboxlayout") self.view = QtGui.QTreeView(self.centralwidget) self.view.setAlternatingRowColors(True) self.view.setSelectionBehavior(QtGui.QAbstractItemView.SelectItems) self.view.setHorizontalScrollMode(QtGui.QAbstractItemView.ScrollPerPixel) self.view.setAnimated(False) self.view.setAllColumnsShowFocus(True) self.view.setObjectName("view") self.vboxlayout.addWidget(self.view) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtGui.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 573, 31)) self.menubar.setObjectName("menubar") self.fileMenu = QtGui.QMenu(self.menubar) self.fileMenu.setObjectName("fileMenu") self.actionsMenu = QtGui.QMenu(self.menubar) self.actionsMenu.setObjectName("actionsMenu") MainWindow.setMenuBar(self.menubar) self.statusbar = QtGui.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.exitAction = QtGui.QAction(MainWindow) self.exitAction.setObjectName("exitAction") self.insertRowAction = QtGui.QAction(MainWindow) self.insertRowAction.setObjectName("insertRowAction") self.removeRowAction = QtGui.QAction(MainWindow) self.removeRowAction.setObjectName("removeRowAction") self.insertColumnAction = QtGui.QAction(MainWindow) self.insertColumnAction.setObjectName("insertColumnAction") self.removeColumnAction = QtGui.QAction(MainWindow) self.removeColumnAction.setObjectName("removeColumnAction") self.insertChildAction = QtGui.QAction(MainWindow) self.insertChildAction.setObjectName("insertChildAction") self.fileMenu.addAction(self.exitAction) self.actionsMenu.addAction(self.insertRowAction) self.actionsMenu.addAction(self.insertColumnAction) self.actionsMenu.addSeparator() self.actionsMenu.addAction(self.removeRowAction) self.actionsMenu.addAction(self.removeColumnAction) self.actionsMenu.addSeparator() self.actionsMenu.addAction(self.insertChildAction) self.menubar.addAction(self.fileMenu.menuAction()) self.menubar.addAction(self.actionsMenu.menuAction()) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(QtGui.QApplication.translate("MainWindow", "Editable Tree Model", None, QtGui.QApplication.UnicodeUTF8)) self.fileMenu.setTitle(QtGui.QApplication.translate("MainWindow", "&File", None, QtGui.QApplication.UnicodeUTF8)) self.actionsMenu.setTitle(QtGui.QApplication.translate("MainWindow", "&Actions", None, QtGui.QApplication.UnicodeUTF8)) self.exitAction.setText(QtGui.QApplication.translate("MainWindow", "E&xit", None, QtGui.QApplication.UnicodeUTF8)) self.exitAction.setShortcut(QtGui.QApplication.translate("MainWindow", "Ctrl+Q", None, QtGui.QApplication.UnicodeUTF8)) self.insertRowAction.setText(QtGui.QApplication.translate("MainWindow", "Insert Row", None, QtGui.QApplication.UnicodeUTF8)) self.insertRowAction.setShortcut(QtGui.QApplication.translate("MainWindow", "Ctrl+I, R", None, QtGui.QApplication.UnicodeUTF8)) self.removeRowAction.setText(QtGui.QApplication.translate("MainWindow", "Remove Row", None, QtGui.QApplication.UnicodeUTF8)) self.removeRowAction.setShortcut(QtGui.QApplication.translate("MainWindow", "Ctrl+R, R", None, QtGui.QApplication.UnicodeUTF8)) self.insertColumnAction.setText(QtGui.QApplication.translate("MainWindow", "Insert Column", None, QtGui.QApplication.UnicodeUTF8)) self.insertColumnAction.setShortcut(QtGui.QApplication.translate("MainWindow", "Ctrl+I, C", None, QtGui.QApplication.UnicodeUTF8)) self.removeColumnAction.setText(QtGui.QApplication.translate("MainWindow", "Remove Column", None, QtGui.QApplication.UnicodeUTF8)) self.removeColumnAction.setShortcut(QtGui.QApplication.translate("MainWindow", "Ctrl+R, C", None, QtGui.QApplication.UnicodeUTF8)) self.insertChildAction.setText(QtGui.QApplication.translate("MainWindow", "Insert Child", None, QtGui.QApplication.UnicodeUTF8)) self.insertChildAction.setShortcut(QtGui.QApplication.translate("MainWindow", "Ctrl+N", None, QtGui.QApplication.UnicodeUTF8)) import editabletreemodel_rc
lizaifang/zinnia
refs/heads/master
python/test.py
12
#!/usr/bin/python import zinnia input = "(character (width 1000)(height 1000)(strokes ((243 273)(393 450))((700 253)(343 486)(280 716)(393 866)(710 880))))"; try: s = zinnia.Character() r = zinnia.Recognizer() r.open("/usr/local/lib/zinnia/model/tomoe/handwriting-ja.model") if (not s.parse(input)): print s.what() result = r.classify(s, 10) size = result.size() for i in range(0, (size - 1)): print "%s\t%f" % (result.value(i), result.score(i)) s.clear(); s.set_width(300) s.set_height(300) s.add(0, 51, 29) s.add(0, 117, 41) s.add(1, 99, 65) s.add(1, 219, 77) s.add(2, 27, 131) s.add(2, 261, 131) s.add(3, 129, 17) s.add(3, 57, 203) s.add(4, 111, 71) s.add(4, 219, 173) s.add(5, 81, 161) s.add(5, 93, 281) s.add(6, 99, 167) s.add(6, 207, 167) s.add(6, 189, 245) s.add(7, 99, 227) s.add(7, 189, 227) s.add(8, 111, 257) s.add(8, 189, 245) result = r.classify(s, 10) size = result.size() for i in range(0, (size - 1)): print "%s\t%f" % (result.value(i), result.score(i)) except RuntimeError, e: print "RuntimeError: ", e,
timm/timmnix
refs/heads/master
pypy3-v5.5.0-linux64/lib-python/3/test/test_email/test_policy.py
34
import io import types import textwrap import unittest import email.policy import email.parser import email.generator from email import headerregistry def make_defaults(base_defaults, differences): defaults = base_defaults.copy() defaults.update(differences) return defaults class PolicyAPITests(unittest.TestCase): longMessage = True # Base default values. compat32_defaults = { 'max_line_length': 78, 'linesep': '\n', 'cte_type': '8bit', 'raise_on_defect': False, } # These default values are the ones set on email.policy.default. # If any of these defaults change, the docs must be updated. policy_defaults = compat32_defaults.copy() policy_defaults.update({ 'raise_on_defect': False, 'header_factory': email.policy.EmailPolicy.header_factory, 'refold_source': 'long', }) # For each policy under test, we give here what we expect the defaults to # be for that policy. The second argument to make defaults is the # difference between the base defaults and that for the particular policy. new_policy = email.policy.EmailPolicy() policies = { email.policy.compat32: make_defaults(compat32_defaults, {}), email.policy.default: make_defaults(policy_defaults, {}), email.policy.SMTP: make_defaults(policy_defaults, {'linesep': '\r\n'}), email.policy.HTTP: make_defaults(policy_defaults, {'linesep': '\r\n', 'max_line_length': None}), email.policy.strict: make_defaults(policy_defaults, {'raise_on_defect': True}), new_policy: make_defaults(policy_defaults, {}), } # Creating a new policy creates a new header factory. There is a test # later that proves this. policies[new_policy]['header_factory'] = new_policy.header_factory def test_defaults(self): for policy, expected in self.policies.items(): for attr, value in expected.items(): self.assertEqual(getattr(policy, attr), value, ("change {} docs/docstrings if defaults have " "changed").format(policy)) def test_all_attributes_covered(self): for policy, expected in self.policies.items(): for attr in dir(policy): if (attr.startswith('_') or isinstance(getattr(email.policy.EmailPolicy, attr), types.FunctionType)): continue else: self.assertIn(attr, expected, "{} is not fully tested".format(attr)) def test_abc(self): with self.assertRaises(TypeError) as cm: email.policy.Policy() msg = str(cm.exception) abstract_methods = ('fold', 'fold_binary', 'header_fetch_parse', 'header_source_parse', 'header_store_parse') for method in abstract_methods: self.assertIn(method, msg) def test_policy_is_immutable(self): for policy, defaults in self.policies.items(): for attr in defaults: with self.assertRaisesRegex(AttributeError, attr+".*read-only"): setattr(policy, attr, None) with self.assertRaisesRegex(AttributeError, 'no attribute.*foo'): policy.foo = None def test_set_policy_attrs_when_cloned(self): # None of the attributes has a default value of None, so we set them # all to None in the clone call and check that it worked. for policyclass, defaults in self.policies.items(): testattrdict = {attr: None for attr in defaults} policy = policyclass.clone(**testattrdict) for attr in defaults: self.assertIsNone(getattr(policy, attr)) def test_reject_non_policy_keyword_when_called(self): for policyclass in self.policies: with self.assertRaises(TypeError): policyclass(this_keyword_should_not_be_valid=None) with self.assertRaises(TypeError): policyclass(newtline=None) def test_policy_addition(self): expected = self.policy_defaults.copy() p1 = email.policy.default.clone(max_line_length=100) p2 = email.policy.default.clone(max_line_length=50) added = p1 + p2 expected.update(max_line_length=50) for attr, value in expected.items(): self.assertEqual(getattr(added, attr), value) added = p2 + p1 expected.update(max_line_length=100) for attr, value in expected.items(): self.assertEqual(getattr(added, attr), value) added = added + email.policy.default for attr, value in expected.items(): self.assertEqual(getattr(added, attr), value) def test_register_defect(self): class Dummy: def __init__(self): self.defects = [] obj = Dummy() defect = object() policy = email.policy.EmailPolicy() policy.register_defect(obj, defect) self.assertEqual(obj.defects, [defect]) defect2 = object() policy.register_defect(obj, defect2) self.assertEqual(obj.defects, [defect, defect2]) class MyObj: def __init__(self): self.defects = [] class MyDefect(Exception): pass def test_handle_defect_raises_on_strict(self): foo = self.MyObj() defect = self.MyDefect("the telly is broken") with self.assertRaisesRegex(self.MyDefect, "the telly is broken"): email.policy.strict.handle_defect(foo, defect) def test_handle_defect_registers_defect(self): foo = self.MyObj() defect1 = self.MyDefect("one") email.policy.default.handle_defect(foo, defect1) self.assertEqual(foo.defects, [defect1]) defect2 = self.MyDefect("two") email.policy.default.handle_defect(foo, defect2) self.assertEqual(foo.defects, [defect1, defect2]) class MyPolicy(email.policy.EmailPolicy): defects = None def __init__(self, *args, **kw): super().__init__(*args, defects=[], **kw) def register_defect(self, obj, defect): self.defects.append(defect) def test_overridden_register_defect_still_raises(self): foo = self.MyObj() defect = self.MyDefect("the telly is broken") with self.assertRaisesRegex(self.MyDefect, "the telly is broken"): self.MyPolicy(raise_on_defect=True).handle_defect(foo, defect) def test_overriden_register_defect_works(self): foo = self.MyObj() defect1 = self.MyDefect("one") my_policy = self.MyPolicy() my_policy.handle_defect(foo, defect1) self.assertEqual(my_policy.defects, [defect1]) self.assertEqual(foo.defects, []) defect2 = self.MyDefect("two") my_policy.handle_defect(foo, defect2) self.assertEqual(my_policy.defects, [defect1, defect2]) self.assertEqual(foo.defects, []) def test_default_header_factory(self): h = email.policy.default.header_factory('Test', 'test') self.assertEqual(h.name, 'Test') self.assertIsInstance(h, headerregistry.UnstructuredHeader) self.assertIsInstance(h, headerregistry.BaseHeader) class Foo: parse = headerregistry.UnstructuredHeader.parse def test_each_Policy_gets_unique_factory(self): policy1 = email.policy.EmailPolicy() policy2 = email.policy.EmailPolicy() policy1.header_factory.map_to_type('foo', self.Foo) h = policy1.header_factory('foo', 'test') self.assertIsInstance(h, self.Foo) self.assertNotIsInstance(h, headerregistry.UnstructuredHeader) h = policy2.header_factory('foo', 'test') self.assertNotIsInstance(h, self.Foo) self.assertIsInstance(h, headerregistry.UnstructuredHeader) def test_clone_copies_factory(self): policy1 = email.policy.EmailPolicy() policy2 = policy1.clone() policy1.header_factory.map_to_type('foo', self.Foo) h = policy1.header_factory('foo', 'test') self.assertIsInstance(h, self.Foo) h = policy2.header_factory('foo', 'test') self.assertIsInstance(h, self.Foo) def test_new_factory_overrides_default(self): mypolicy = email.policy.EmailPolicy() myfactory = mypolicy.header_factory newpolicy = mypolicy + email.policy.strict self.assertEqual(newpolicy.header_factory, myfactory) newpolicy = email.policy.strict + mypolicy self.assertEqual(newpolicy.header_factory, myfactory) def test_adding_default_policies_preserves_default_factory(self): newpolicy = email.policy.default + email.policy.strict self.assertEqual(newpolicy.header_factory, email.policy.EmailPolicy.header_factory) self.assertEqual(newpolicy.__dict__, {'raise_on_defect': True}) # XXX: Need subclassing tests. # For adding subclassed objects, make sure the usual rules apply (subclass # wins), but that the order still works (right overrides left). class TestPolicyPropagation(unittest.TestCase): # The abstract methods are used by the parser but not by the wrapper # functions that call it, so if the exception gets raised we know that the # policy was actually propagated all the way to feedparser. class MyPolicy(email.policy.Policy): def badmethod(self, *args, **kw): raise Exception("test") fold = fold_binary = header_fetch_parser = badmethod header_source_parse = header_store_parse = badmethod def test_message_from_string(self): with self.assertRaisesRegex(Exception, "^test$"): email.message_from_string("Subject: test\n\n", policy=self.MyPolicy) def test_message_from_bytes(self): with self.assertRaisesRegex(Exception, "^test$"): email.message_from_bytes(b"Subject: test\n\n", policy=self.MyPolicy) def test_message_from_file(self): f = io.StringIO('Subject: test\n\n') with self.assertRaisesRegex(Exception, "^test$"): email.message_from_file(f, policy=self.MyPolicy) def test_message_from_binary_file(self): f = io.BytesIO(b'Subject: test\n\n') with self.assertRaisesRegex(Exception, "^test$"): email.message_from_binary_file(f, policy=self.MyPolicy) # These are redundant, but we need them for black-box completeness. def test_parser(self): p = email.parser.Parser(policy=self.MyPolicy) with self.assertRaisesRegex(Exception, "^test$"): p.parsestr('Subject: test\n\n') def test_bytes_parser(self): p = email.parser.BytesParser(policy=self.MyPolicy) with self.assertRaisesRegex(Exception, "^test$"): p.parsebytes(b'Subject: test\n\n') # Now that we've established that all the parse methods get the # policy in to feedparser, we can use message_from_string for # the rest of the propagation tests. def _make_msg(self, source='Subject: test\n\n', policy=None): self.policy = email.policy.default.clone() if policy is None else policy return email.message_from_string(source, policy=self.policy) def test_parser_propagates_policy_to_message(self): msg = self._make_msg() self.assertIs(msg.policy, self.policy) def test_parser_propagates_policy_to_sub_messages(self): msg = self._make_msg(textwrap.dedent("""\ Subject: mime test MIME-Version: 1.0 Content-Type: multipart/mixed, boundary="XXX" --XXX Content-Type: text/plain test --XXX Content-Type: text/plain test2 --XXX-- """)) for part in msg.walk(): self.assertIs(part.policy, self.policy) def test_message_policy_propagates_to_generator(self): msg = self._make_msg("Subject: test\nTo: foo\n\n", policy=email.policy.default.clone(linesep='X')) s = io.StringIO() g = email.generator.Generator(s) g.flatten(msg) self.assertEqual(s.getvalue(), "Subject: testXTo: fooXX") def test_message_policy_used_by_as_string(self): msg = self._make_msg("Subject: test\nTo: foo\n\n", policy=email.policy.default.clone(linesep='X')) self.assertEqual(msg.as_string(), "Subject: testXTo: fooXX") if __name__ == '__main__': unittest.main()
jlmadurga/microbot
refs/heads/master
permabots/views/hooks/kik_hook.py
2
from rest_framework.views import APIView from permabots.serializers import KikMessageSerializer from permabots.models import KikBot, KikUser, KikChat, KikMessage from rest_framework.response import Response from rest_framework import status import logging from permabots.tasks import handle_message from datetime import datetime from permabots import caching import sys import traceback logger = logging.getLogger(__name__) class OnlyTextMessages(Exception): pass class KikHookView(APIView): """ View for Kik webhook. """ def create_user(self, username): try: user = caching.get_or_set(KikUser, username) except KikUser.DoesNotExist: user, _ = KikUser.objects.get_or_create(username=username) return user def create_message(self, serializer, bot): sender = self.create_user(serializer.data['from']) try: chat = caching.get_or_set(KikChat, serializer.data['chatId']) except KikChat.DoesNotExist: chat, _ = KikChat.objects.get_or_create(id=serializer.data['chatId']) if 'participants' in serializer.data: for participant in serializer.data['participants']: chat.participants.add(self.create_user(participant)) if serializer.data['type'] == 'start-chatting': body = "/start" elif serializer.data['type'] == 'scan-data': body = "/start" else: body = serializer.data['body'] message, _ = KikMessage.objects.get_or_create(message_id=serializer.data['id'], from_user=sender, timestamp=datetime.fromtimestamp(serializer.data['timestamp']), chat=chat, body=body) caching.set(message) return message def accepted_types(self, serializer): return serializer.data['type'] == 'start-chatting' or serializer.data['type'] == 'text' or serializer.data['type'] == 'scan-data' def post(self, request, hook_id): """ Process Kik webhook: 1. Get an enabled Kik bot 2. Verify Kik signature 3. Serialize each message 4. For each message create :class:`KikMessage <permabots.models.kik_api.KikMessage>` and :class:`KikUser <permabots.models.kik_api.KikUser>` 5. Delay each message processing to a task 6. Response provider """ try: bot = caching.get_or_set(KikBot, hook_id) except KikBot.DoesNotExist: logger.warning("Hook id %s not associated to a bot" % hook_id) return Response(status=status.HTTP_404_NOT_FOUND) signature = request.META.get('HTTP_X_KIK_SIGNATURE') if signature: signature.encode('utf-8') if not bot._bot.verify_signature(signature, request.stream.body): logger.debug("Kik Bot data %s not verified %s" % (request.data, signature)) return Response(status=403) logger.debug("Kik Bot data %s verified" % (request.data)) for kik_message in request.data['messages']: serializer = KikMessageSerializer(data=kik_message) logger.debug("Kik message %s serialized" % (kik_message)) if serializer.is_valid(): try: if not self.accepted_types(serializer): raise OnlyTextMessages message = self.create_message(serializer, bot) if bot.enabled: logger.debug("Kik Bot %s attending request %s" % (bot, kik_message)) handle_message.delay(message.id, bot.id) else: logger.error("Message %s ignored by disabled bot %s" % (message, bot)) except OnlyTextMessages: logger.warning("Not text message %s for bot %s" % (kik_message, hook_id)) return Response(status=status.HTTP_200_OK) except: exc_info = sys.exc_info() traceback.print_exception(*exc_info) logger.error("Error processing %s for bot %s" % (kik_message, hook_id)) return Response(serializer.errors, status=status.HTTP_500_INTERNAL_SERVER_ERROR) else: logger.error("Validation error: %s from kik message %s" % (serializer.errors, kik_message)) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) return Response(serializer.data, status=status.HTTP_200_OK)
jounex/hue
refs/heads/master
desktop/core/ext-py/Django-1.6.10/tests/template_tests/test_unicode.py
110
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.template import Template, TemplateEncodingError, Context from django.utils.safestring import SafeData from django.utils import six from django.utils.unittest import TestCase class UnicodeTests(TestCase): def test_template(self): # Templates can be created from unicode strings. t1 = Template('ŠĐĆŽćžšđ {{ var }}') # Templates can also be created from bytestrings. These are assumed to # be encoded using UTF-8. s = b'\xc5\xa0\xc4\x90\xc4\x86\xc5\xbd\xc4\x87\xc5\xbe\xc5\xa1\xc4\x91 {{ var }}' t2 = Template(s) s = b'\x80\xc5\xc0' self.assertRaises(TemplateEncodingError, Template, s) # Contexts can be constructed from unicode or UTF-8 bytestrings. c1 = Context({b"var": b"foo"}) c2 = Context({"var": b"foo"}) c3 = Context({b"var": "Đđ"}) c4 = Context({"var": b"\xc4\x90\xc4\x91"}) # Since both templates and all four contexts represent the same thing, # they all render the same (and are returned as unicode objects and # "safe" objects as well, for auto-escaping purposes). self.assertEqual(t1.render(c3), t2.render(c3)) self.assertIsInstance(t1.render(c3), six.text_type) self.assertIsInstance(t1.render(c3), SafeData)
goodwinnk/intellij-community
refs/heads/master
python/lib/Lib/site-packages/django/utils/dateformat.py
234
""" PHP date() style date formatting See http://www.php.net/date for format strings Usage: >>> import datetime >>> d = datetime.datetime.now() >>> df = DateFormat(d) >>> print df.format('jS F Y H:i') 7th October 2003 11:39 >>> """ import re import time import calendar from django.utils.dates import MONTHS, MONTHS_3, MONTHS_ALT, MONTHS_AP, WEEKDAYS, WEEKDAYS_ABBR from django.utils.tzinfo import LocalTimezone from django.utils.translation import ugettext as _ from django.utils.encoding import force_unicode re_formatchars = re.compile(r'(?<!\\)([aAbBcdDEfFgGhHiIjlLmMnNOPrsStTUuwWyYzZ])') re_escaped = re.compile(r'\\(.)') class Formatter(object): def format(self, formatstr): pieces = [] for i, piece in enumerate(re_formatchars.split(force_unicode(formatstr))): if i % 2: pieces.append(force_unicode(getattr(self, piece)())) elif piece: pieces.append(re_escaped.sub(r'\1', piece)) return u''.join(pieces) class TimeFormat(Formatter): def __init__(self, t): self.data = t def a(self): "'a.m.' or 'p.m.'" if self.data.hour > 11: return _('p.m.') return _('a.m.') def A(self): "'AM' or 'PM'" if self.data.hour > 11: return _('PM') return _('AM') def B(self): "Swatch Internet time" raise NotImplementedError def f(self): """ Time, in 12-hour hours and minutes, with minutes left off if they're zero. Examples: '1', '1:30', '2:05', '2' Proprietary extension. """ if self.data.minute == 0: return self.g() return u'%s:%s' % (self.g(), self.i()) def g(self): "Hour, 12-hour format without leading zeros; i.e. '1' to '12'" if self.data.hour == 0: return 12 if self.data.hour > 12: return self.data.hour - 12 return self.data.hour def G(self): "Hour, 24-hour format without leading zeros; i.e. '0' to '23'" return self.data.hour def h(self): "Hour, 12-hour format; i.e. '01' to '12'" return u'%02d' % self.g() def H(self): "Hour, 24-hour format; i.e. '00' to '23'" return u'%02d' % self.G() def i(self): "Minutes; i.e. '00' to '59'" return u'%02d' % self.data.minute def P(self): """ Time, in 12-hour hours, minutes and 'a.m.'/'p.m.', with minutes left off if they're zero and the strings 'midnight' and 'noon' if appropriate. Examples: '1 a.m.', '1:30 p.m.', 'midnight', 'noon', '12:30 p.m.' Proprietary extension. """ if self.data.minute == 0 and self.data.hour == 0: return _('midnight') if self.data.minute == 0 and self.data.hour == 12: return _('noon') return u'%s %s' % (self.f(), self.a()) def s(self): "Seconds; i.e. '00' to '59'" return u'%02d' % self.data.second def u(self): "Microseconds" return self.data.microsecond class DateFormat(TimeFormat): year_days = [None, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334] def __init__(self, dt): # Accepts either a datetime or date object. self.data = dt self.timezone = getattr(dt, 'tzinfo', None) if hasattr(self.data, 'hour') and not self.timezone: self.timezone = LocalTimezone(dt) def b(self): "Month, textual, 3 letters, lowercase; e.g. 'jan'" return MONTHS_3[self.data.month] def c(self): """ ISO 8601 Format Example : '2008-01-02T10:30:00.000123' """ return self.data.isoformat() def d(self): "Day of the month, 2 digits with leading zeros; i.e. '01' to '31'" return u'%02d' % self.data.day def D(self): "Day of the week, textual, 3 letters; e.g. 'Fri'" return WEEKDAYS_ABBR[self.data.weekday()] def E(self): "Alternative month names as required by some locales. Proprietary extension." return MONTHS_ALT[self.data.month] def F(self): "Month, textual, long; e.g. 'January'" return MONTHS[self.data.month] def I(self): "'1' if Daylight Savings Time, '0' otherwise." if self.timezone and self.timezone.dst(self.data): return u'1' else: return u'0' def j(self): "Day of the month without leading zeros; i.e. '1' to '31'" return self.data.day def l(self): "Day of the week, textual, long; e.g. 'Friday'" return WEEKDAYS[self.data.weekday()] def L(self): "Boolean for whether it is a leap year; i.e. True or False" return calendar.isleap(self.data.year) def m(self): "Month; i.e. '01' to '12'" return u'%02d' % self.data.month def M(self): "Month, textual, 3 letters; e.g. 'Jan'" return MONTHS_3[self.data.month].title() def n(self): "Month without leading zeros; i.e. '1' to '12'" return self.data.month def N(self): "Month abbreviation in Associated Press style. Proprietary extension." return MONTHS_AP[self.data.month] def O(self): "Difference to Greenwich time in hours; e.g. '+0200'" seconds = self.Z() return u"%+03d%02d" % (seconds // 3600, (seconds // 60) % 60) def r(self): "RFC 2822 formatted date; e.g. 'Thu, 21 Dec 2000 16:01:07 +0200'" return self.format('D, j M Y H:i:s O') def S(self): "English ordinal suffix for the day of the month, 2 characters; i.e. 'st', 'nd', 'rd' or 'th'" if self.data.day in (11, 12, 13): # Special case return u'th' last = self.data.day % 10 if last == 1: return u'st' if last == 2: return u'nd' if last == 3: return u'rd' return u'th' def t(self): "Number of days in the given month; i.e. '28' to '31'" return u'%02d' % calendar.monthrange(self.data.year, self.data.month)[1] def T(self): "Time zone of this machine; e.g. 'EST' or 'MDT'" name = self.timezone and self.timezone.tzname(self.data) or None if name is None: name = self.format('O') return unicode(name) def U(self): "Seconds since the Unix epoch (January 1 1970 00:00:00 GMT)" if getattr(self.data, 'tzinfo', None): return int(calendar.timegm(self.data.utctimetuple())) else: return int(time.mktime(self.data.timetuple())) def w(self): "Day of the week, numeric, i.e. '0' (Sunday) to '6' (Saturday)" return (self.data.weekday() + 1) % 7 def W(self): "ISO-8601 week number of year, weeks starting on Monday" # Algorithm from http://www.personal.ecu.edu/mccartyr/ISOwdALG.txt week_number = None jan1_weekday = self.data.replace(month=1, day=1).weekday() + 1 weekday = self.data.weekday() + 1 day_of_year = self.z() if day_of_year <= (8 - jan1_weekday) and jan1_weekday > 4: if jan1_weekday == 5 or (jan1_weekday == 6 and calendar.isleap(self.data.year-1)): week_number = 53 else: week_number = 52 else: if calendar.isleap(self.data.year): i = 366 else: i = 365 if (i - day_of_year) < (4 - weekday): week_number = 1 else: j = day_of_year + (7 - weekday) + (jan1_weekday - 1) week_number = j // 7 if jan1_weekday > 4: week_number -= 1 return week_number def y(self): "Year, 2 digits; e.g. '99'" return unicode(self.data.year)[2:] def Y(self): "Year, 4 digits; e.g. '1999'" return self.data.year def z(self): "Day of the year; i.e. '0' to '365'" doy = self.year_days[self.data.month] + self.data.day if self.L() and self.data.month > 2: doy += 1 return doy def Z(self): """ Time zone offset in seconds (i.e. '-43200' to '43200'). The offset for timezones west of UTC is always negative, and for those east of UTC is always positive. """ if not self.timezone: return 0 offset = self.timezone.utcoffset(self.data) # Only days can be negative, so negative offsets have days=-1 and # seconds positive. Positive offsets have days=0 return offset.days * 86400 + offset.seconds def format(value, format_string): "Convenience function" df = DateFormat(value) return df.format(format_string) def time_format(value, format_string): "Convenience function" tf = TimeFormat(value) return tf.format(format_string)
alorchhota/bioinformatics-algorithms-1
refs/heads/master
week9/code/7.SuffixArrayConstruction.py
1
import os import csv import sys import re import importlib import networkx as nx # settings #curDir = 'E:/GitHub/bioinformatics-algorithms-1/week9' curDir = 'D:/GitHub/bioinformatics-algorithms-1/week9' inputFile = './data/7.SuffixArrayConstruction-2.txt' inputFile = 'C:/Users/Ashis/Downloads/dataset_310_2.txt' outputFile = './results/7.SuffixArrayConstruction.txt' # set current directory os.chdir(curDir) ## read input with open(inputFile) as f: inputs = f.readlines() genome = inputs[0].strip() #genome = 'GFEDCBA' #genome = genome[0:50000] genomeLen = len(genome) suffix = lambda idx: genome[idx:] ## function to find longest common prefix def longestCommonPrefix(str1, str2): n = min([len(str1), len(str2)]) i = 0 while i < n and str1[i]==str2[i]: i += 1 prefix = str1[0:i] return prefix ## function to build a suffix tree from a genome def suffixTree(genome): ## build suffix tree g = nx.DiGraph() g.add_node(1) # add root with id 1 # two required function neighborsWithLabelPrefix = lambda node, prefix: [e[1] for e in g.edges_iter(node, data=True) if genome[e[2]['labelIdx'][0]] == prefix] getNewNode = lambda : len(g.nodes())+1 #print(longestCommonPrefix('abc','ab')) genomeLen = len(genome) for idx in range(genomeLen): # traverse as long as pattern matches curNode = 1 i = idx while(i < genomeLen): # find the edge with the first prefix character nextNode = neighborsWithLabelPrefix(curNode, genome[i]) # if there is no edge with the first prefix character, # it must be a new edge with the rest of the string. if len(nextNode) == 0: newNode = getNewNode() g.add_edge(curNode, newNode, {'labelIdx':[i,genomeLen]}) g.node[newNode]['startIdx'] = idx break # get the edge label nextNode = nextNode[0] edgeLabelIndices = g.edge[curNode][nextNode]['labelIdx'] edgeLabel = genome[edgeLabelIndices[0]:edgeLabelIndices[1]] edgeLabelLen = len(edgeLabel) # if the rest of the string starts with edgeLabel, # move to the next node if genome[i:i+edgeLabelLen] == edgeLabel: curNode = nextNode i += edgeLabelLen else: # edgeLabel matches partially prefix = longestCommonPrefix(genome[i:i+edgeLabelLen], edgeLabel) prefixLen = len(prefix) # create two new node, one intermediate, another for unmatched string intermediateNode = getNewNode() unmatchedNode = intermediateNode + 1 # remove existing edge from curNode to nextNode g.remove_edge(curNode, nextNode) # add edge from curNode to intermediateNode g.add_edge(curNode, intermediateNode, {'labelIdx':(edgeLabelIndices[0],edgeLabelIndices[0]+prefixLen)}) # add edge from intermediateNode to nextNode g.add_edge(intermediateNode, nextNode, {'labelIdx':(edgeLabelIndices[0]+prefixLen, edgeLabelIndices[1])}) # add edge from intermediateNode to unmatchedNode g.add_edge(intermediateNode, unmatchedNode, {'labelIdx':(i+prefixLen, genomeLen)}) g.node[unmatchedNode]['startIdx'] = idx break return g #tree = suffixTree(genome) #indexList = list(range(genomeLen)) #indexList.sort(key=lambda x: genome[x:]) #genome = 'AACGATAGCGGTAGA$' def merge_sort(m): if len(m) <= 1: return m middle = int(len(m) / 2) left = m[:middle] right = m[middle:] left = merge_sort(left) right = merge_sort(right) return list(merge(left, right)) def merge(left, right): result = [] left_idx, right_idx = 0, 0 while left_idx < len(left) and right_idx < len(right): # change the direction of this comparison to change the direction of the sort if suffix(left[left_idx]) <= suffix(right[right_idx]): result.append(left[left_idx]) left_idx += 1 else: result.append(right[right_idx]) right_idx += 1 if left: result.extend(left[left_idx:]) if right: result.extend(right[right_idx:]) return result indexList = list(range(genomeLen)) sortedList = merge_sort(indexList) #print(sortedList) ## output with open(outputFile, "w") as f: f.writelines(', '.join([str(i) for i in sortedList])) print('done.')
chachan/nodeshot
refs/heads/master
nodeshot/core/websockets/urls.py
8
from django.conf.urls import patterns, url from django.conf import settings urlpatterns = patterns('',) if settings.DEBUG: urlpatterns += patterns('nodeshot.core.websockets.views', url(r'^test/$', 'test', name='websocket_test'), )
vasilenkomike/xen-api
refs/heads/master
ocaml/idl/binding_sanity_checks/create_vm.py
34
#!/usr/bin/env python import XenAPI import provision import sanitychecklib #log in session=sanitychecklib.getsession() sx=session.xenapi #find the template for Debian Etch vms = sx.VM.get_all() print "Server", sanitychecklib.server, "has ", len(vms), "VMs", etch_template_list = [x for x in vms if (('Etch' in sx.VM.get_name_label(x)) and (sx.VM.get_is_a_template(x)))] print "including", len(etch_template_list), "template for 'Etch'" etch_template=etch_template_list[0] print "We pick the first template: " print "name: ", sx.VM.get_name_label(etch_template) print "description:", sx.VM.get_name_description(etch_template) #Make a copy of the template print "Cloning..." clone=sx.VM.clone(etch_template, sanitychecklib.test_vm_name) #find out where to put the new machine's disks by getting the first pool (I don't think there can be more than one) #and using its default storage repository pool_list=sx.pool.get_all() if len(pool_list)==1: print "There's only one pool" else: print "There are", len(pool_list), "pools" print "We pick the first one:" first_pool=pool_list[0] print "name:", sx.pool.get_name_label(first_pool) print "description: ", sx.pool.get_name_description(first_pool) default_SR=sx.pool.get_default_SR(first_pool) print "The default SR is: " print "Name:", sx.SR.get_name_label(default_SR) print "Description:", sx.SR.get_name_description(default_SR) #set the new copy to have its disks in the default SR #this is a debian template specific hack which allows us to create Debian VMs easily spec=provision.getProvisionSpec(session, clone) spec.setSR(sx.SR.get_uuid(default_SR)) provision.setProvisionSpec(session, clone, spec) #now 'provision' it, which causes the disks to actually be created. print "provisioning...." sx.VM.provision(clone) print "provisioned" #now find out which network to attach the new machine to #by finding out what the pool master host is connected to. pool_master=sx.pool.get_master(first_pool) master_PIFs=sx.host.get_PIFs(pool_master) primary_PIF=master_PIFs[0] master_network=sx.PIF.get_network(primary_PIF) #attach new VM to default SR and master network print "Creating VIF..." new_vif = { 'device': '0', 'network': master_network, 'VM': clone, 'MAC': "", 'MTU': "1500", "qos_algorithm_type": "", "qos_algorithm_params": {}, "other_config": {} } sx.VIF.create(new_vif) #Another Debian template specific hack. If 'noninteractive' is passed on the kernel command line, #the new machine will boot without asking for its root and VNC passwords to be set, and just use 'xensource'. print "Adding noninteractive to the kernel commandline" print "This is a hack in the template to enable the root account to be created with password 'xensource'" sx.VM.set_PV_args(clone, "noninteractive") #Should be all set now. Fire up the machine. print "booting..." sx.VM.start(clone, False, True) #log out print "logging out" session.logout()
harish1696/Midterm-Project
refs/heads/master
vendor/googletest/googletest/test/gtest_break_on_failure_unittest.py
2140
#!/usr/bin/env python # # Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for Google Test's break-on-failure mode. A user can ask Google Test to seg-fault when an assertion fails, using either the GTEST_BREAK_ON_FAILURE environment variable or the --gtest_break_on_failure flag. This script tests such functionality by invoking gtest_break_on_failure_unittest_ (a program written with Google Test) with different environments and command line flags. """ __author__ = 'wan@google.com (Zhanyong Wan)' import gtest_test_utils import os import sys # Constants. IS_WINDOWS = os.name == 'nt' # The environment variable for enabling/disabling the break-on-failure mode. BREAK_ON_FAILURE_ENV_VAR = 'GTEST_BREAK_ON_FAILURE' # The command line flag for enabling/disabling the break-on-failure mode. BREAK_ON_FAILURE_FLAG = 'gtest_break_on_failure' # The environment variable for enabling/disabling the throw-on-failure mode. THROW_ON_FAILURE_ENV_VAR = 'GTEST_THROW_ON_FAILURE' # The environment variable for enabling/disabling the catch-exceptions mode. CATCH_EXCEPTIONS_ENV_VAR = 'GTEST_CATCH_EXCEPTIONS' # Path to the gtest_break_on_failure_unittest_ program. EXE_PATH = gtest_test_utils.GetTestExecutablePath( 'gtest_break_on_failure_unittest_') environ = gtest_test_utils.environ SetEnvVar = gtest_test_utils.SetEnvVar # Tests in this file run a Google-Test-based test program and expect it # to terminate prematurely. Therefore they are incompatible with # the premature-exit-file protocol by design. Unset the # premature-exit filepath to prevent Google Test from creating # the file. SetEnvVar(gtest_test_utils.PREMATURE_EXIT_FILE_ENV_VAR, None) def Run(command): """Runs a command; returns 1 if it was killed by a signal, or 0 otherwise.""" p = gtest_test_utils.Subprocess(command, env=environ) if p.terminated_by_signal: return 1 else: return 0 # The tests. class GTestBreakOnFailureUnitTest(gtest_test_utils.TestCase): """Tests using the GTEST_BREAK_ON_FAILURE environment variable or the --gtest_break_on_failure flag to turn assertion failures into segmentation faults. """ def RunAndVerify(self, env_var_value, flag_value, expect_seg_fault): """Runs gtest_break_on_failure_unittest_ and verifies that it does (or does not) have a seg-fault. Args: env_var_value: value of the GTEST_BREAK_ON_FAILURE environment variable; None if the variable should be unset. flag_value: value of the --gtest_break_on_failure flag; None if the flag should not be present. expect_seg_fault: 1 if the program is expected to generate a seg-fault; 0 otherwise. """ SetEnvVar(BREAK_ON_FAILURE_ENV_VAR, env_var_value) if env_var_value is None: env_var_value_msg = ' is not set' else: env_var_value_msg = '=' + env_var_value if flag_value is None: flag = '' elif flag_value == '0': flag = '--%s=0' % BREAK_ON_FAILURE_FLAG else: flag = '--%s' % BREAK_ON_FAILURE_FLAG command = [EXE_PATH] if flag: command.append(flag) if expect_seg_fault: should_or_not = 'should' else: should_or_not = 'should not' has_seg_fault = Run(command) SetEnvVar(BREAK_ON_FAILURE_ENV_VAR, None) msg = ('when %s%s, an assertion failure in "%s" %s cause a seg-fault.' % (BREAK_ON_FAILURE_ENV_VAR, env_var_value_msg, ' '.join(command), should_or_not)) self.assert_(has_seg_fault == expect_seg_fault, msg) def testDefaultBehavior(self): """Tests the behavior of the default mode.""" self.RunAndVerify(env_var_value=None, flag_value=None, expect_seg_fault=0) def testEnvVar(self): """Tests using the GTEST_BREAK_ON_FAILURE environment variable.""" self.RunAndVerify(env_var_value='0', flag_value=None, expect_seg_fault=0) self.RunAndVerify(env_var_value='1', flag_value=None, expect_seg_fault=1) def testFlag(self): """Tests using the --gtest_break_on_failure flag.""" self.RunAndVerify(env_var_value=None, flag_value='0', expect_seg_fault=0) self.RunAndVerify(env_var_value=None, flag_value='1', expect_seg_fault=1) def testFlagOverridesEnvVar(self): """Tests that the flag overrides the environment variable.""" self.RunAndVerify(env_var_value='0', flag_value='0', expect_seg_fault=0) self.RunAndVerify(env_var_value='0', flag_value='1', expect_seg_fault=1) self.RunAndVerify(env_var_value='1', flag_value='0', expect_seg_fault=0) self.RunAndVerify(env_var_value='1', flag_value='1', expect_seg_fault=1) def testBreakOnFailureOverridesThrowOnFailure(self): """Tests that gtest_break_on_failure overrides gtest_throw_on_failure.""" SetEnvVar(THROW_ON_FAILURE_ENV_VAR, '1') try: self.RunAndVerify(env_var_value=None, flag_value='1', expect_seg_fault=1) finally: SetEnvVar(THROW_ON_FAILURE_ENV_VAR, None) if IS_WINDOWS: def testCatchExceptionsDoesNotInterfere(self): """Tests that gtest_catch_exceptions doesn't interfere.""" SetEnvVar(CATCH_EXCEPTIONS_ENV_VAR, '1') try: self.RunAndVerify(env_var_value='1', flag_value='1', expect_seg_fault=1) finally: SetEnvVar(CATCH_EXCEPTIONS_ENV_VAR, None) if __name__ == '__main__': gtest_test_utils.Main()
alivecor/tensorflow
refs/heads/master
tensorflow/python/keras/_impl/keras/layers/recurrent.py
6
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=protected-access """Recurrent layers. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import tensor_shape from tensorflow.python.keras._impl.keras import activations from tensorflow.python.keras._impl.keras import backend as K from tensorflow.python.keras._impl.keras import constraints from tensorflow.python.keras._impl.keras import initializers from tensorflow.python.keras._impl.keras import regularizers from tensorflow.python.keras._impl.keras.engine import InputSpec from tensorflow.python.keras._impl.keras.engine import Layer # pylint: disable=access-member-before-definition def _time_distributed_dense(x, w, b=None, dropout=None, input_dim=None, output_dim=None, timesteps=None, training=None): """Apply `y . w + b` for every temporal slice y of x. Arguments: x: input tensor. w: weight matrix. b: optional bias vector. dropout: whether to apply dropout (same dropout mask for every temporal slice of the input). input_dim: integer; optional dimensionality of the input. output_dim: integer; optional dimensionality of the output. timesteps: integer; optional number of timesteps. training: training phase tensor or boolean. Returns: Output tensor. """ if not input_dim: input_dim = K.shape(x)[2] if not timesteps: timesteps = K.shape(x)[1] if not output_dim: output_dim = K.shape(w)[1] if dropout is not None and 0. < dropout < 1.: # apply the same dropout pattern at every timestep ones = K.ones_like(K.reshape(x[:, 0, :], (-1, input_dim))) dropout_matrix = K.dropout(ones, dropout) expanded_dropout_matrix = K.repeat(dropout_matrix, timesteps) x = K.in_train_phase(x * expanded_dropout_matrix, x, training=training) # collapse time dimension and batch dimension together x = K.reshape(x, (-1, input_dim)) x = K.dot(x, w) if b is not None: x = K.bias_add(x, b) # reshape to 3D tensor if K.backend() == 'tensorflow': x = K.reshape(x, K.stack([-1, timesteps, output_dim])) x.set_shape([None, None, output_dim]) else: x = K.reshape(x, (-1, timesteps, output_dim)) return x class Recurrent(Layer): """Abstract base class for recurrent layers. Do not use in a model -- it's not a valid layer! Use its children classes `LSTM`, `GRU` and `SimpleRNN` instead. All recurrent layers (`LSTM`, `GRU`, `SimpleRNN`) also follow the specifications of this class and accept the keyword arguments listed below. Example: ```python # as the first layer in a Sequential model model = Sequential() model.add(LSTM(32, input_shape=(10, 64))) # now model.output_shape == (None, 32) # note: `None` is the batch dimension. # for subsequent layers, no need to specify the input size: model.add(LSTM(16)) # to stack recurrent layers, you must use return_sequences=True # on any recurrent layer that feeds into another recurrent layer. # note that you only need to specify the input size on the first layer. model = Sequential() model.add(LSTM(64, input_dim=64, input_length=10, return_sequences=True)) model.add(LSTM(32, return_sequences=True)) model.add(LSTM(10)) ``` Arguments: weights: list of Numpy arrays to set as initial weights. The list should have 3 elements, of shapes: `[(input_dim, output_dim), (output_dim, output_dim), (output_dim,)]`. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. return_state: Boolean. Whether to return the last state in addition to the output. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. implementation: one of {0, 1, or 2}. If set to 0, the RNN will use an implementation that uses fewer, larger matrix products, thus running faster on CPU but consuming more memory. If set to 1, the RNN will use more matrix products, but smaller ones, thus running slower (may actually be faster on GPU) while consuming less memory. If set to 2 (LSTM/GRU only), the RNN will combine the input gate, the forget gate and the output gate into a single matrix, enabling more time-efficient parallelization on the GPU. Note: RNN dropout must be shared for all gates, resulting in a slightly reduced regularization. input_dim: dimensionality of the input (integer). This argument (or alternatively, the keyword argument `input_shape`) is required when using this layer as the first layer in a model. input_length: Length of input sequences, to be specified when it is constant. This argument is required if you are going to connect `Flatten` then `Dense` layers upstream (without it, the shape of the dense outputs cannot be computed). Note that if the recurrent layer is not the first layer in your model, you would need to specify the input length at the level of the first layer (e.g. via the `input_shape` argument) Input shape:s 3D tensor with shape `(batch_size, timesteps, input_dim)`, (Optional) 2D tensors with shape `(batch_size, output_dim)`. Output shape: - if `return_state`: a list of tensors. The first tensor is the output. The remaining tensors are the last states, each with shape `(batch_size, units)`. - if `return_sequences`: 3D tensor with shape `(batch_size, timesteps, units)`. - else, 2D tensor with shape `(batch_size, units)`. # Masking This layer supports masking for input data with a variable number of timesteps. To introduce masks to your data, use an `Embedding` layer with the `mask_zero` parameter set to `True`. # Note on using statefulness in RNNs You can set RNN layers to be 'stateful', which means that the states computed for the samples in one batch will be reused as initial states for the samples in the next batch. This assumes a one-to-one mapping between samples in different successive batches. To enable statefulness: - specify `stateful=True` in the layer constructor. - specify a fixed batch size for your model, by passing if sequential model: `batch_input_shape=(...)` to the first layer in your model. else for functional model with 1 or more Input layers: `batch_shape=(...)` to all the first layers in your model. This is the expected shape of your inputs *including the batch size*. It should be a tuple of integers, e.g. `(32, 10, 100)`. - specify `shuffle=False` when calling fit(). To reset the states of your model, call `.reset_states()` on either a specific layer, or on your entire model. # Note on specifying the initial state of RNNs You can specify the initial state of RNN layers symbolically by calling them with the keyword argument `initial_state`. The value of `initial_state` should be a tensor or list of tensors representing the initial state of the RNN layer. You can specify the initial state of RNN layers numerically by calling `reset_states` with the keyword argument `states`. The value of `states` should be a numpy array or list of numpy arrays representing the initial state of the RNN layer. """ def __init__(self, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, implementation=0, **kwargs): super(Recurrent, self).__init__(**kwargs) self.return_sequences = return_sequences self.return_state = return_state self.go_backwards = go_backwards self.stateful = stateful self.unroll = unroll self.implementation = implementation self.supports_masking = True self.input_spec = [InputSpec(ndim=3)] self.state_spec = None self.dropout = 0 self.recurrent_dropout = 0 def _compute_output_shape(self, input_shape): if isinstance(input_shape, list): input_shape = input_shape[0] input_shape = tensor_shape.TensorShape(input_shape).as_list() if self.return_sequences: output_shape = (input_shape[0], input_shape[1], self.units) else: output_shape = (input_shape[0], self.units) if self.return_state: state_shape = [tensor_shape.TensorShape( (input_shape[0], self.units)) for _ in self.states] return [tensor_shape.TensorShape(output_shape)] + state_shape return tensor_shape.TensorShape(output_shape) def compute_mask(self, inputs, mask): if isinstance(mask, list): mask = mask[0] output_mask = mask if self.return_sequences else None if self.return_state: state_mask = [None for _ in self.states] return [output_mask] + state_mask return output_mask def step(self, inputs, states): raise NotImplementedError def get_constants(self, inputs, training=None): return [] def get_initial_state(self, inputs): # build an all-zero tensor of shape (samples, output_dim) initial_state = K.zeros_like(inputs) # (samples, timesteps, input_dim) initial_state = K.sum(initial_state, axis=(1, 2)) # (samples,) initial_state = K.expand_dims(initial_state) # (samples, 1) initial_state = K.tile(initial_state, [1, self.units]) # (samples, output_dim) initial_state = [initial_state for _ in range(len(self.states))] return initial_state def preprocess_input(self, inputs, training=None): return inputs def __call__(self, inputs, initial_state=None, **kwargs): if (isinstance(inputs, (list, tuple)) and len(inputs) > 1 and initial_state is None): initial_state = inputs[1:] inputs = inputs[0] # If `initial_state` is specified, # and if it a Keras tensor, # then add it to the inputs and temporarily # modify the input spec to include the state. if initial_state is None: return super(Recurrent, self).__call__(inputs, **kwargs) if not isinstance(initial_state, (list, tuple)): initial_state = [initial_state] is_keras_tensor = hasattr(initial_state[0], '_keras_history') for tensor in initial_state: if hasattr(tensor, '_keras_history') != is_keras_tensor: raise ValueError('The initial state of an RNN layer cannot be' ' specified with a mix of Keras tensors and' ' non-Keras tensors') if is_keras_tensor: # Compute the full input spec, including state input_spec = self.input_spec state_spec = self.state_spec if not isinstance(input_spec, list): input_spec = [input_spec] if not isinstance(state_spec, list): state_spec = [state_spec] self.input_spec = input_spec + state_spec # Compute the full inputs, including state inputs = [inputs] + list(initial_state) # Perform the call output = super(Recurrent, self).__call__(inputs, **kwargs) # Restore original input spec self.input_spec = input_spec return output else: kwargs['initial_state'] = initial_state return super(Recurrent, self).__call__(inputs, **kwargs) def call(self, inputs, mask=None, training=None, initial_state=None): # input shape: `(samples, time (padded with zeros), input_dim)` # note that the .build() method of subclasses MUST define # self.input_spec and self.state_spec with complete input shapes. if isinstance(inputs, list): initial_state = inputs[1:] inputs = inputs[0] elif initial_state is not None: pass elif self.stateful: initial_state = self.states else: initial_state = self.get_initial_state(inputs) if isinstance(mask, list): mask = mask[0] if len(initial_state) != len(self.states): raise ValueError('Layer has ' + str(len(self.states)) + ' states but was passed ' + str(len(initial_state)) + ' initial states.') input_shape = K.int_shape(inputs) if self.unroll and input_shape[1] is None: raise ValueError('Cannot unroll a RNN if the ' 'time dimension is undefined. \n' '- If using a Sequential model, ' 'specify the time dimension by passing ' 'an `input_shape` or `batch_input_shape` ' 'argument to your first layer. If your ' 'first layer is an Embedding, you can ' 'also use the `input_length` argument.\n' '- If using the functional API, specify ' 'the time dimension by passing a `shape` ' 'or `batch_shape` argument to your Input layer.') constants = self.get_constants(inputs, training=None) preprocessed_input = self.preprocess_input(inputs, training=None) last_output, outputs, states = K.rnn( self.step, preprocessed_input, initial_state, go_backwards=self.go_backwards, mask=mask, constants=constants, unroll=self.unroll) if self.stateful: updates = [] for i in range(len(states)): updates.append((self.states[i], states[i])) self.add_update(updates, inputs) # Properly set learning phase if 0 < self.dropout + self.recurrent_dropout: last_output._uses_learning_phase = True outputs._uses_learning_phase = True if not self.return_sequences: outputs = last_output if self.return_state: if not isinstance(states, (list, tuple)): states = [states] else: states = list(states) return [outputs] + states return outputs def reset_states(self, states=None): if not self.stateful: raise AttributeError('Layer must be stateful.') batch_size = self.input_spec[0].shape[0] if not batch_size: raise ValueError('If a RNN is stateful, it needs to know ' 'its batch size. Specify the batch size ' 'of your input tensors: \n' '- If using a Sequential model, ' 'specify the batch size by passing ' 'a `batch_input_shape` ' 'argument to your first layer.\n' '- If using the functional API, specify ' 'the time dimension by passing a ' '`batch_shape` argument to your Input layer.') # initialize state if None if self.states[0] is None: self.states = [K.zeros((batch_size, self.units)) for _ in self.states] elif states is None: for state in self.states: K.set_value(state, np.zeros((batch_size, self.units))) else: if not isinstance(states, (list, tuple)): states = [states] if len(states) != len(self.states): raise ValueError('Layer ' + self.name + ' expects ' + str(len(self.states)) + ' states, ' 'but it received ' + str(len(states)) + ' state values. Input received: ' + str(states)) for index, (value, state) in enumerate(zip(states, self.states)): if value.shape != (batch_size, self.units): raise ValueError('State ' + str(index) + ' is incompatible with layer ' + self.name + ': expected shape=' + str((batch_size, self.units)) + ', found shape=' + str(value.shape)) K.set_value(state, value) def get_config(self): config = { 'return_sequences': self.return_sequences, 'return_state': self.return_state, 'go_backwards': self.go_backwards, 'stateful': self.stateful, 'unroll': self.unroll, 'implementation': self.implementation } base_config = super(Recurrent, self).get_config() return dict(list(base_config.items()) + list(config.items())) class SimpleRNN(Recurrent): """Fully-connected RNN where the output is to be fed back to input. Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. If you don't specify anything, no activation is applied If you pass None, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs.. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state.. bias_initializer: Initializer for the bias vector. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. activity_regularizer: Regularizer function applied to the output of the layer (its "activation").. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. References: - [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks](http://arxiv.org/abs/1512.05287) """ def __init__(self, units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., **kwargs): super(SimpleRNN, self).__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1., max(0., dropout)) self.recurrent_dropout = min(1., max(0., recurrent_dropout)) self.state_spec = InputSpec(shape=(None, self.units)) def build(self, input_shape): if isinstance(input_shape, list): input_shape = input_shape[0] input_shape = tensor_shape.TensorShape(input_shape).as_list() batch_size = input_shape[0] if self.stateful else None self.input_dim = input_shape[2] self.input_spec[0] = InputSpec(shape=(batch_size, None, self.input_dim)) self.states = [None] if self.stateful: self.reset_states() self.kernel = self.add_weight( shape=(self.input_dim, self.units), name='kernel', initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), name='recurrent_kernel', initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint) if self.use_bias: self.bias = self.add_weight( shape=(self.units,), name='bias', initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.built = True def preprocess_input(self, inputs, training=None): if self.implementation > 0: return inputs else: input_shape = inputs.get_shape().as_list() input_dim = input_shape[2] timesteps = input_shape[1] return _time_distributed_dense( inputs, self.kernel, self.bias, self.dropout, input_dim, self.units, timesteps, training=training) def step(self, inputs, states): if self.implementation == 0: h = inputs else: if 0 < self.dropout < 1: h = K.dot(inputs * states[1], self.kernel) else: h = K.dot(inputs, self.kernel) if self.bias is not None: h = K.bias_add(h, self.bias) prev_output = states[0] if 0 < self.recurrent_dropout < 1: prev_output *= states[2] output = h + K.dot(prev_output, self.recurrent_kernel) if self.activation is not None: output = self.activation(output) # Properly set learning phase on output tensor. if 0 < self.dropout + self.recurrent_dropout: output._uses_learning_phase = True return output, [output] def get_constants(self, inputs, training=None): constants = [] if self.implementation != 0 and 0 < self.dropout < 1: input_shape = K.int_shape(inputs) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) def dropped_inputs(): return K.dropout(ones, self.dropout) dp_mask = K.in_train_phase(dropped_inputs, ones, training=training) constants.append(dp_mask) else: constants.append(K.cast_to_floatx(1.)) if 0 < self.recurrent_dropout < 1: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): # pylint: disable=function-redefined return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = K.in_train_phase(dropped_inputs, ones, training=training) constants.append(rec_dp_mask) else: constants.append(K.cast_to_floatx(1.)) return constants def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout } base_config = super(SimpleRNN, self).get_config() return dict(list(base_config.items()) + list(config.items())) class GRU(Recurrent): """Gated Recurrent Unit - Cho et al. 2014. Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. If you pass None, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs.. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state.. bias_initializer: Initializer for the bias vector. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. activity_regularizer: Regularizer function applied to the output of the layer (its "activation").. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. References: - [On the Properties of Neural Machine Translation: Encoder-Decoder Approaches](https://arxiv.org/abs/1409.1259) - [Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling](http://arxiv.org/abs/1412.3555v1) - [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks](http://arxiv.org/abs/1512.05287) """ def __init__(self, units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., **kwargs): super(GRU, self).__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.recurrent_activation = activations.get(recurrent_activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1., max(0., dropout)) self.recurrent_dropout = min(1., max(0., recurrent_dropout)) self.state_spec = InputSpec(shape=(None, self.units)) def build(self, input_shape): if isinstance(input_shape, list): input_shape = input_shape[0] input_shape = tensor_shape.TensorShape(input_shape).as_list() batch_size = input_shape[0] if self.stateful else None self.input_dim = input_shape[2] self.input_spec[0] = InputSpec(shape=(batch_size, None, self.input_dim)) self.states = [None] if self.stateful: self.reset_states() self.kernel = self.add_weight( shape=(self.input_dim, self.units * 3), name='kernel', initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units * 3), name='recurrent_kernel', initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint) if self.use_bias: self.bias = self.add_weight( shape=(self.units * 3,), name='bias', initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.kernel_z = self.kernel[:, :self.units] self.recurrent_kernel_z = self.recurrent_kernel[:, :self.units] self.kernel_r = self.kernel[:, self.units:self.units * 2] self.recurrent_kernel_r = self.recurrent_kernel[:, self.units: self.units * 2] self.kernel_h = self.kernel[:, self.units * 2:] self.recurrent_kernel_h = self.recurrent_kernel[:, self.units * 2:] if self.use_bias: self.bias_z = self.bias[:self.units] self.bias_r = self.bias[self.units:self.units * 2] self.bias_h = self.bias[self.units * 2:] else: self.bias_z = None self.bias_r = None self.bias_h = None self.built = True def preprocess_input(self, inputs, training=None): if self.implementation == 0: input_shape = inputs.get_shape().as_list() input_dim = input_shape[2] timesteps = input_shape[1] x_z = _time_distributed_dense( inputs, self.kernel_z, self.bias_z, self.dropout, input_dim, self.units, timesteps, training=training) x_r = _time_distributed_dense( inputs, self.kernel_r, self.bias_r, self.dropout, input_dim, self.units, timesteps, training=training) x_h = _time_distributed_dense( inputs, self.kernel_h, self.bias_h, self.dropout, input_dim, self.units, timesteps, training=training) return K.concatenate([x_z, x_r, x_h], axis=2) else: return inputs def get_constants(self, inputs, training=None): constants = [] if self.implementation != 0 and 0 < self.dropout < 1: input_shape = K.int_shape(inputs) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) def dropped_inputs(): return K.dropout(ones, self.dropout) dp_mask = [ K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(3) ] constants.append(dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) if 0 < self.recurrent_dropout < 1: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): # pylint: disable=function-redefined return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = [ K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(3) ] constants.append(rec_dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(3)]) return constants def step(self, inputs, states): h_tm1 = states[0] # previous memory dp_mask = states[1] # dropout matrices for recurrent units rec_dp_mask = states[2] if self.implementation == 2: matrix_x = K.dot(inputs * dp_mask[0], self.kernel) if self.use_bias: matrix_x = K.bias_add(matrix_x, self.bias) matrix_inner = K.dot(h_tm1 * rec_dp_mask[0], self.recurrent_kernel[:, :2 * self.units]) x_z = matrix_x[:, :self.units] x_r = matrix_x[:, self.units:2 * self.units] recurrent_z = matrix_inner[:, :self.units] recurrent_r = matrix_inner[:, self.units:2 * self.units] z = self.recurrent_activation(x_z + recurrent_z) r = self.recurrent_activation(x_r + recurrent_r) x_h = matrix_x[:, 2 * self.units:] recurrent_h = K.dot(r * h_tm1 * rec_dp_mask[0], self.recurrent_kernel[:, 2 * self.units:]) hh = self.activation(x_h + recurrent_h) else: if self.implementation == 0: x_z = inputs[:, :self.units] x_r = inputs[:, self.units:2 * self.units] x_h = inputs[:, 2 * self.units:] elif self.implementation == 1: x_z = K.dot(inputs * dp_mask[0], self.kernel_z) x_r = K.dot(inputs * dp_mask[1], self.kernel_r) x_h = K.dot(inputs * dp_mask[2], self.kernel_h) if self.use_bias: x_z = K.bias_add(x_z, self.bias_z) x_r = K.bias_add(x_r, self.bias_r) x_h = K.bias_add(x_h, self.bias_h) else: raise ValueError('Unknown `implementation` mode.') z = self.recurrent_activation(x_z + K.dot(h_tm1 * rec_dp_mask[0], self.recurrent_kernel_z)) r = self.recurrent_activation(x_r + K.dot(h_tm1 * rec_dp_mask[1], self.recurrent_kernel_r)) hh = self.activation(x_h + K.dot(r * h_tm1 * rec_dp_mask[2], self.recurrent_kernel_h)) h = z * h_tm1 + (1 - z) * hh if 0 < self.dropout + self.recurrent_dropout: h._uses_learning_phase = True return h, [h] def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout } base_config = super(GRU, self).get_config() return dict(list(base_config.items()) + list(config.items())) class LSTM(Recurrent): """Long-Short Term Memory unit - Hochreiter 1997. For a step-by-step description of the algorithm, see [this tutorial](http://deeplearning.net/tutorial/lstm.html). Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. If you pass None, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs.. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state.. bias_initializer: Initializer for the bias vector. unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate at initialization. Setting it to true will also force `bias_initializer="zeros"`. This is recommended in [Jozefowicz et al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. activity_regularizer: Regularizer function applied to the output of the layer (its "activation").. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. References: - [Long short-term memory]((http://www.bioinf.jku.at/publications/older/2604.pdf) (original 1997 paper) - [Supervised sequence labeling with recurrent neural networks](http://www.cs.toronto.edu/~graves/preprint.pdf) - [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks](http://arxiv.org/abs/1512.05287) """ def __init__(self, units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., **kwargs): super(LSTM, self).__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.recurrent_activation = activations.get(recurrent_activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.unit_forget_bias = unit_forget_bias self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1., max(0., dropout)) self.recurrent_dropout = min(1., max(0., recurrent_dropout)) self.state_spec = [ InputSpec(shape=(None, self.units)), InputSpec(shape=(None, self.units)) ] def build(self, input_shape): if isinstance(input_shape, list): input_shape = input_shape[0] input_shape = tensor_shape.TensorShape(input_shape).as_list() batch_size = input_shape[0] if self.stateful else None self.input_dim = input_shape[2] self.input_spec[0] = InputSpec(shape=(batch_size, None, self.input_dim)) self.states = [None, None] if self.stateful: self.reset_states() self.kernel = self.add_weight( shape=(self.input_dim, self.units * 4), name='kernel', initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units * 4), name='recurrent_kernel', initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint) if self.use_bias: if self.unit_forget_bias: def bias_initializer(_, *args, **kwargs): return K.concatenate([ self.bias_initializer((self.units,), *args, **kwargs), initializers.Ones()((self.units,), *args, **kwargs), self.bias_initializer((self.units * 2,), *args, **kwargs), ]) else: bias_initializer = self.bias_initializer self.bias = self.add_weight( shape=(self.units * 4,), name='bias', initializer=bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.kernel_i = self.kernel[:, :self.units] self.kernel_f = self.kernel[:, self.units:self.units * 2] self.kernel_c = self.kernel[:, self.units * 2:self.units * 3] self.kernel_o = self.kernel[:, self.units * 3:] self.recurrent_kernel_i = self.recurrent_kernel[:, :self.units] self.recurrent_kernel_f = self.recurrent_kernel[:, self.units: self.units * 2] self.recurrent_kernel_c = self.recurrent_kernel[:, self.units * 2: self.units * 3] self.recurrent_kernel_o = self.recurrent_kernel[:, self.units * 3:] if self.use_bias: self.bias_i = self.bias[:self.units] self.bias_f = self.bias[self.units:self.units * 2] self.bias_c = self.bias[self.units * 2:self.units * 3] self.bias_o = self.bias[self.units * 3:] else: self.bias_i = None self.bias_f = None self.bias_c = None self.bias_o = None self.built = True def preprocess_input(self, inputs, training=None): if self.implementation == 0: input_shape = inputs.get_shape().as_list() input_dim = input_shape[2] timesteps = input_shape[1] x_i = _time_distributed_dense( inputs, self.kernel_i, self.bias_i, self.dropout, input_dim, self.units, timesteps, training=training) x_f = _time_distributed_dense( inputs, self.kernel_f, self.bias_f, self.dropout, input_dim, self.units, timesteps, training=training) x_c = _time_distributed_dense( inputs, self.kernel_c, self.bias_c, self.dropout, input_dim, self.units, timesteps, training=training) x_o = _time_distributed_dense( inputs, self.kernel_o, self.bias_o, self.dropout, input_dim, self.units, timesteps, training=training) return K.concatenate([x_i, x_f, x_c, x_o], axis=2) else: return inputs def get_constants(self, inputs, training=None): constants = [] if self.implementation != 0 and 0 < self.dropout < 1: input_shape = K.int_shape(inputs) input_dim = input_shape[-1] ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, int(input_dim))) def dropped_inputs(): return K.dropout(ones, self.dropout) dp_mask = [ K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(4) ] constants.append(dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) if 0 < self.recurrent_dropout < 1: ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1))) ones = K.tile(ones, (1, self.units)) def dropped_inputs(): # pylint: disable=function-redefined return K.dropout(ones, self.recurrent_dropout) rec_dp_mask = [ K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(4) ] constants.append(rec_dp_mask) else: constants.append([K.cast_to_floatx(1.) for _ in range(4)]) return constants def step(self, inputs, states): h_tm1 = states[0] c_tm1 = states[1] dp_mask = states[2] rec_dp_mask = states[3] if self.implementation == 2: z = K.dot(inputs * dp_mask[0], self.kernel) z += K.dot(h_tm1 * rec_dp_mask[0], self.recurrent_kernel) if self.use_bias: z = K.bias_add(z, self.bias) z0 = z[:, :self.units] z1 = z[:, self.units:2 * self.units] z2 = z[:, 2 * self.units:3 * self.units] z3 = z[:, 3 * self.units:] i = self.recurrent_activation(z0) f = self.recurrent_activation(z1) c = f * c_tm1 + i * self.activation(z2) o = self.recurrent_activation(z3) else: if self.implementation == 0: x_i = inputs[:, :self.units] x_f = inputs[:, self.units:2 * self.units] x_c = inputs[:, 2 * self.units:3 * self.units] x_o = inputs[:, 3 * self.units:] elif self.implementation == 1: x_i = K.dot(inputs * dp_mask[0], self.kernel_i) + self.bias_i x_f = K.dot(inputs * dp_mask[1], self.kernel_f) + self.bias_f x_c = K.dot(inputs * dp_mask[2], self.kernel_c) + self.bias_c x_o = K.dot(inputs * dp_mask[3], self.kernel_o) + self.bias_o else: raise ValueError('Unknown `implementation` mode.') i = self.recurrent_activation(x_i + K.dot(h_tm1 * rec_dp_mask[0], self.recurrent_kernel_i)) f = self.recurrent_activation(x_f + K.dot(h_tm1 * rec_dp_mask[1], self.recurrent_kernel_f)) c = f * c_tm1 + i * self.activation( x_c + K.dot(h_tm1 * rec_dp_mask[2], self.recurrent_kernel_c)) o = self.recurrent_activation(x_o + K.dot(h_tm1 * rec_dp_mask[3], self.recurrent_kernel_o)) h = o * self.activation(c) if 0 < self.dropout + self.recurrent_dropout: h._uses_learning_phase = True return h, [h, c] def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout } base_config = super(LSTM, self).get_config() return dict(list(base_config.items()) + list(config.items()))
gundalow/ansible
refs/heads/devel
lib/ansible/module_utils/facts/system/lsb.py
95
# Collect facts related to LSB (Linux Standard Base) # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) __metaclass__ = type import os from ansible.module_utils.facts.utils import get_file_lines from ansible.module_utils.facts.collector import BaseFactCollector class LSBFactCollector(BaseFactCollector): name = 'lsb' _fact_ids = set() STRIP_QUOTES = r'\'\"\\' def _lsb_release_bin(self, lsb_path, module): lsb_facts = {} if not lsb_path: return lsb_facts rc, out, err = module.run_command([lsb_path, "-a"], errors='surrogate_then_replace') if rc != 0: return lsb_facts for line in out.splitlines(): if len(line) < 1 or ':' not in line: continue value = line.split(':', 1)[1].strip() if 'LSB Version:' in line: lsb_facts['release'] = value elif 'Distributor ID:' in line: lsb_facts['id'] = value elif 'Description:' in line: lsb_facts['description'] = value elif 'Release:' in line: lsb_facts['release'] = value elif 'Codename:' in line: lsb_facts['codename'] = value return lsb_facts def _lsb_release_file(self, etc_lsb_release_location): lsb_facts = {} if not os.path.exists(etc_lsb_release_location): return lsb_facts for line in get_file_lines(etc_lsb_release_location): value = line.split('=', 1)[1].strip() if 'DISTRIB_ID' in line: lsb_facts['id'] = value elif 'DISTRIB_RELEASE' in line: lsb_facts['release'] = value elif 'DISTRIB_DESCRIPTION' in line: lsb_facts['description'] = value elif 'DISTRIB_CODENAME' in line: lsb_facts['codename'] = value return lsb_facts def collect(self, module=None, collected_facts=None): facts_dict = {} lsb_facts = {} if not module: return facts_dict lsb_path = module.get_bin_path('lsb_release') # try the 'lsb_release' script first if lsb_path: lsb_facts = self._lsb_release_bin(lsb_path, module=module) # no lsb_release, try looking in /etc/lsb-release if not lsb_facts: lsb_facts = self._lsb_release_file('/etc/lsb-release') if lsb_facts and 'release' in lsb_facts: lsb_facts['major_release'] = lsb_facts['release'].split('.')[0] for k, v in lsb_facts.items(): if v: lsb_facts[k] = v.strip(LSBFactCollector.STRIP_QUOTES) facts_dict['lsb'] = lsb_facts return facts_dict
chevah/python-cffi
refs/heads/master
demo/readdir_build.py
12
import sys from cffi import FFI if not sys.platform.startswith('linux'): raise Exception("Linux-only demo") ffi = FFI() ffi.cdef(""" typedef void DIR; typedef long ino_t; typedef long off_t; struct dirent { ino_t d_ino; /* inode number */ off_t d_off; /* offset to the next dirent */ unsigned short d_reclen; /* length of this record */ unsigned char d_type; /* type of file; not supported by all file system types */ char d_name[256]; /* filename */ }; int readdir_r(DIR *dirp, struct dirent *entry, struct dirent **result); int openat(int dirfd, const char *pathname, int flags); DIR *fdopendir(int fd); int closedir(DIR *dirp); """) ffi.set_source("_readdir", None) if __name__ == '__main__': ffi.compile()
eul721/The-Perfect-Pokemon-Team-Balancer
refs/heads/master
libs/env/Lib/encodings/unicode_escape.py
852
""" Python 'unicode-escape' Codec Written by Marc-Andre Lemburg (mal@lemburg.com). (c) Copyright CNRI, All Rights Reserved. NO WARRANTY. """ import codecs ### Codec APIs class Codec(codecs.Codec): # Note: Binding these as C functions will result in the class not # converting them to methods. This is intended. encode = codecs.unicode_escape_encode decode = codecs.unicode_escape_decode class IncrementalEncoder(codecs.IncrementalEncoder): def encode(self, input, final=False): return codecs.unicode_escape_encode(input, self.errors)[0] class IncrementalDecoder(codecs.IncrementalDecoder): def decode(self, input, final=False): return codecs.unicode_escape_decode(input, self.errors)[0] class StreamWriter(Codec,codecs.StreamWriter): pass class StreamReader(Codec,codecs.StreamReader): pass ### encodings module API def getregentry(): return codecs.CodecInfo( name='unicode-escape', encode=Codec.encode, decode=Codec.decode, incrementalencoder=IncrementalEncoder, incrementaldecoder=IncrementalDecoder, streamwriter=StreamWriter, streamreader=StreamReader, )
runtimejs/runtime
refs/heads/master
deps/v8/tools/testrunner/local/statusfile.py
2
# Copyright 2012 the V8 project authors. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os # These outcomes can occur in a TestCase's outcomes list: SKIP = "SKIP" FAIL = "FAIL" PASS = "PASS" OKAY = "OKAY" TIMEOUT = "TIMEOUT" CRASH = "CRASH" SLOW = "SLOW" FAST_VARIANTS = "FAST_VARIANTS" NO_IGNITION = "NO_IGNITION" NO_VARIANTS = "NO_VARIANTS" # These are just for the status files and are mapped below in DEFS: FAIL_OK = "FAIL_OK" PASS_OR_FAIL = "PASS_OR_FAIL" FAIL_SLOPPY = "FAIL_SLOPPY" ALWAYS = "ALWAYS" KEYWORDS = {} for key in [SKIP, FAIL, PASS, OKAY, TIMEOUT, CRASH, SLOW, FAIL_OK, FAST_VARIANTS, NO_IGNITION, NO_VARIANTS, PASS_OR_FAIL, FAIL_SLOPPY, ALWAYS]: KEYWORDS[key] = key DEFS = {FAIL_OK: [FAIL, OKAY], PASS_OR_FAIL: [PASS, FAIL]} # Support arches, modes to be written as keywords instead of strings. VARIABLES = {ALWAYS: True} for var in ["debug", "release", "big", "little", "android_arm", "android_arm64", "android_ia32", "android_x87", "android_x64", "arm", "arm64", "ia32", "mips", "mipsel", "mips64", "mips64el", "x64", "x87", "nacl_ia32", "nacl_x64", "ppc", "ppc64", "s390", "s390x", "macos", "windows", "linux", "aix"]: VARIABLES[var] = var def DoSkip(outcomes): return SKIP in outcomes def IsSlow(outcomes): return SLOW in outcomes def NoIgnitionVariant(outcomes): return NO_IGNITION in outcomes def OnlyStandardVariant(outcomes): return NO_VARIANTS in outcomes def OnlyFastVariants(outcomes): return FAST_VARIANTS in outcomes def IsPassOrFail(outcomes): return ((PASS in outcomes) and (FAIL in outcomes) and (not CRASH in outcomes) and (not OKAY in outcomes)) def IsFailOk(outcomes): return (FAIL in outcomes) and (OKAY in outcomes) def _AddOutcome(result, new): global DEFS if new in DEFS: mapped = DEFS[new] if type(mapped) == list: for m in mapped: _AddOutcome(result, m) elif type(mapped) == str: _AddOutcome(result, mapped) else: result.add(new) def _ParseOutcomeList(rule, outcomes, target_dict, variables): result = set([]) if type(outcomes) == str: outcomes = [outcomes] for item in outcomes: if type(item) == str: _AddOutcome(result, item) elif type(item) == list: if not eval(item[0], variables): continue for outcome in item[1:]: assert type(outcome) == str _AddOutcome(result, outcome) else: assert False if len(result) == 0: return if rule in target_dict: target_dict[rule] |= result else: target_dict[rule] = result def ReadContent(path): with open(path) as f: global KEYWORDS return eval(f.read(), KEYWORDS) def ReadStatusFile(path, variables): contents = ReadContent(path) rules = {} wildcards = {} variables.update(VARIABLES) for section in contents: assert type(section) == list assert len(section) == 2 if not eval(section[0], variables): continue section = section[1] assert type(section) == dict for rule in section: assert type(rule) == str if rule[-1] == '*': _ParseOutcomeList(rule, section[rule], wildcards, variables) else: _ParseOutcomeList(rule, section[rule], rules, variables) return rules, wildcards def PresubmitCheck(path): contents = ReadContent(path) root_prefix = os.path.basename(os.path.dirname(path)) + "/" status = {"success": True} def _assert(check, message): # Like "assert", but doesn't throw. if not check: print("%s: Error: %s" % (path, message)) status["success"] = False try: for section in contents: _assert(type(section) == list, "Section must be a list") _assert(len(section) == 2, "Section list must have exactly 2 entries") section = section[1] _assert(type(section) == dict, "Second entry of section must be a dictionary") for rule in section: _assert(type(rule) == str, "Rule key must be a string") _assert(not rule.startswith(root_prefix), "Suite name prefix must not be used in rule keys") _assert(not rule.endswith('.js'), ".js extension must not be used in rule keys.") return status["success"] except Exception as e: print e return False
yxping/leetcode
refs/heads/master
solutions/102.Binary_Tree_Level_Order_Traversal/AC_dfs_n.py
7
#!/usr/bin/python # -*- coding: utf-8 -*- # Author: illuz <iilluzen[at]gmail.com> # File: AC_dfs_n.py # Create Date: 2015-03-09 09:30:11 # Usage: AC_dfs_n.py # Descripton: # Definition for a binary tree node class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: # @param root, a tree node # @return a list of lists of integers def levelOrder(self, root): ret = [] def dfs(root, level): if root: if level >= len(ret): ret.append([]) ret[level].append(root.val) dfs(root.left, level + 1) dfs(root.right, level + 1) dfs(root, 0) return ret
40223119/2015cd_0505
refs/heads/master
static/Brython3.1.1-20150328-091302/Lib/copy.py
628
"""Generic (shallow and deep) copying operations. Interface summary: import copy x = copy.copy(y) # make a shallow copy of y x = copy.deepcopy(y) # make a deep copy of y For module specific errors, copy.Error is raised. The difference between shallow and deep copying is only relevant for compound objects (objects that contain other objects, like lists or class instances). - A shallow copy constructs a new compound object and then (to the extent possible) inserts *the same objects* into it that the original contains. - A deep copy constructs a new compound object and then, recursively, inserts *copies* into it of the objects found in the original. Two problems often exist with deep copy operations that don't exist with shallow copy operations: a) recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a recursive loop b) because deep copy copies *everything* it may copy too much, e.g. administrative data structures that should be shared even between copies Python's deep copy operation avoids these problems by: a) keeping a table of objects already copied during the current copying pass b) letting user-defined classes override the copying operation or the set of components copied This version does not copy types like module, class, function, method, nor stack trace, stack frame, nor file, socket, window, nor array, nor any similar types. Classes can use the same interfaces to control copying that they use to control pickling: they can define methods called __getinitargs__(), __getstate__() and __setstate__(). See the documentation for module "pickle" for information on these methods. """ import types import weakref from copyreg import dispatch_table import builtins class Error(Exception): pass error = Error # backward compatibility # module org.python.core does not exist in Brython, so lets just ignore # this import request. #try: # from org.python.core import PyStringMap #except ImportError: # PyStringMap = None PyStringMap = None __all__ = ["Error", "copy", "deepcopy"] def copy(x): """Shallow copy operation on arbitrary Python objects. See the module's __doc__ string for more info. """ cls = type(x) copier = _copy_dispatch.get(cls) if copier: return copier(x) copier = getattr(cls, "__copy__", None) if copier: return copier(x) reductor = dispatch_table.get(cls) if reductor: rv = reductor(x) else: reductor = getattr(x, "__reduce_ex__", None) if reductor: rv = reductor(2) else: reductor = getattr(x, "__reduce__", None) if reductor: rv = reductor() else: raise Error("un(shallow)copyable object of type %s" % cls) return _reconstruct(x, rv, 0) _copy_dispatch = d = {} def _copy_immutable(x): return x for t in (type(None), int, float, bool, str, tuple, frozenset, type, range, types.BuiltinFunctionType, type(Ellipsis), types.FunctionType, weakref.ref): d[t] = _copy_immutable t = getattr(types, "CodeType", None) if t is not None: d[t] = _copy_immutable for name in ("complex", "unicode"): t = getattr(builtins, name, None) if t is not None: d[t] = _copy_immutable def _copy_with_constructor(x): return type(x)(x) for t in (list, dict, set): d[t] = _copy_with_constructor def _copy_with_copy_method(x): return x.copy() if PyStringMap is not None: d[PyStringMap] = _copy_with_copy_method del d def deepcopy(x, memo=None, _nil=[]): """Deep copy operation on arbitrary Python objects. See the module's __doc__ string for more info. """ if memo is None: memo = {} d = id(x) y = memo.get(d, _nil) if y is not _nil: return y cls = type(x) copier = _deepcopy_dispatch.get(cls) if copier: y = copier(x, memo) else: try: issc = issubclass(cls, type) except TypeError: # cls is not a class (old Boost; see SF #502085) issc = 0 if issc: y = _deepcopy_atomic(x, memo) else: copier = getattr(x, "__deepcopy__", None) if copier: y = copier(memo) else: reductor = dispatch_table.get(cls) if reductor: rv = reductor(x) else: reductor = getattr(x, "__reduce_ex__", None) if reductor: rv = reductor(2) else: reductor = getattr(x, "__reduce__", None) if reductor: rv = reductor() else: raise Error( "un(deep)copyable object of type %s" % cls) y = _reconstruct(x, rv, 1, memo) # If is its own copy, don't memoize. if y is not x: memo[d] = y _keep_alive(x, memo) # Make sure x lives at least as long as d return y _deepcopy_dispatch = d = {} def _deepcopy_atomic(x, memo): return x d[type(None)] = _deepcopy_atomic d[type(Ellipsis)] = _deepcopy_atomic d[int] = _deepcopy_atomic d[float] = _deepcopy_atomic d[bool] = _deepcopy_atomic try: d[complex] = _deepcopy_atomic except NameError: pass d[bytes] = _deepcopy_atomic d[str] = _deepcopy_atomic try: d[types.CodeType] = _deepcopy_atomic except AttributeError: pass d[type] = _deepcopy_atomic d[range] = _deepcopy_atomic d[types.BuiltinFunctionType] = _deepcopy_atomic d[types.FunctionType] = _deepcopy_atomic d[weakref.ref] = _deepcopy_atomic def _deepcopy_list(x, memo): y = [] memo[id(x)] = y for a in x: y.append(deepcopy(a, memo)) return y d[list] = _deepcopy_list def _deepcopy_tuple(x, memo): y = [] for a in x: y.append(deepcopy(a, memo)) # We're not going to put the tuple in the memo, but it's still important we # check for it, in case the tuple contains recursive mutable structures. try: return memo[id(x)] except KeyError: pass for i in range(len(x)): if x[i] is not y[i]: y = tuple(y) break else: y = x return y d[tuple] = _deepcopy_tuple def _deepcopy_dict(x, memo): y = {} memo[id(x)] = y for key, value in x.items(): y[deepcopy(key, memo)] = deepcopy(value, memo) return y d[dict] = _deepcopy_dict if PyStringMap is not None: d[PyStringMap] = _deepcopy_dict def _deepcopy_method(x, memo): # Copy instance methods return type(x)(x.__func__, deepcopy(x.__self__, memo)) _deepcopy_dispatch[types.MethodType] = _deepcopy_method def _keep_alive(x, memo): """Keeps a reference to the object x in the memo. Because we remember objects by their id, we have to assure that possibly temporary objects are kept alive by referencing them. We store a reference at the id of the memo, which should normally not be used unless someone tries to deepcopy the memo itself... """ try: memo[id(memo)].append(x) except KeyError: # aha, this is the first one :-) memo[id(memo)]=[x] def _reconstruct(x, info, deep, memo=None): if isinstance(info, str): return x assert isinstance(info, tuple) if memo is None: memo = {} n = len(info) assert n in (2, 3, 4, 5) callable, args = info[:2] if n > 2: state = info[2] else: state = {} if n > 3: listiter = info[3] else: listiter = None if n > 4: dictiter = info[4] else: dictiter = None if deep: args = deepcopy(args, memo) y = callable(*args) memo[id(x)] = y if state: if deep: state = deepcopy(state, memo) if hasattr(y, '__setstate__'): y.__setstate__(state) else: if isinstance(state, tuple) and len(state) == 2: state, slotstate = state else: slotstate = None if state is not None: y.__dict__.update(state) if slotstate is not None: for key, value in slotstate.items(): setattr(y, key, value) if listiter is not None: for item in listiter: if deep: item = deepcopy(item, memo) y.append(item) if dictiter is not None: for key, value in dictiter: if deep: key = deepcopy(key, memo) value = deepcopy(value, memo) y[key] = value return y del d del types # Helper for instance creation without calling __init__ class _EmptyClass: pass
lmazuel/azure-sdk-for-python
refs/heads/master
azure-servicefabric/azure/servicefabric/models/property_batch_operation.py
1
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class PropertyBatchOperation(Model): """Represents the base type for property operations that can be put into a batch and submitted. You probably want to use the sub-classes and not this class directly. Known sub-classes are: CheckExistsPropertyBatchOperation, CheckSequencePropertyBatchOperation, CheckValuePropertyBatchOperation, DeletePropertyBatchOperation, GetPropertyBatchOperation, PutPropertyBatchOperation :param property_name: The name of the Service Fabric property. :type property_name: str :param kind: Constant filled by server. :type kind: str """ _validation = { 'property_name': {'required': True}, 'kind': {'required': True}, } _attribute_map = { 'property_name': {'key': 'PropertyName', 'type': 'str'}, 'kind': {'key': 'Kind', 'type': 'str'}, } _subtype_map = { 'kind': {'CheckExists': 'CheckExistsPropertyBatchOperation', 'CheckSequence': 'CheckSequencePropertyBatchOperation', 'CheckValue': 'CheckValuePropertyBatchOperation', 'Delete': 'DeletePropertyBatchOperation', 'Get': 'GetPropertyBatchOperation', 'Put': 'PutPropertyBatchOperation'} } def __init__(self, property_name): super(PropertyBatchOperation, self).__init__() self.property_name = property_name self.kind = None
empeeu/numpy
refs/heads/master
numpy/polynomial/legendre.py
75
""" Legendre Series (:mod: `numpy.polynomial.legendre`) =================================================== .. currentmodule:: numpy.polynomial.polynomial This module provides a number of objects (mostly functions) useful for dealing with Legendre series, including a `Legendre` class that encapsulates the usual arithmetic operations. (General information on how this module represents and works with such polynomials is in the docstring for its "parent" sub-package, `numpy.polynomial`). Constants --------- .. autosummary:: :toctree: generated/ legdomain Legendre series default domain, [-1,1]. legzero Legendre series that evaluates identically to 0. legone Legendre series that evaluates identically to 1. legx Legendre series for the identity map, ``f(x) = x``. Arithmetic ---------- .. autosummary:: :toctree: generated/ legmulx multiply a Legendre series in P_i(x) by x. legadd add two Legendre series. legsub subtract one Legendre series from another. legmul multiply two Legendre series. legdiv divide one Legendre series by another. legpow raise a Legendre series to an positive integer power legval evaluate a Legendre series at given points. legval2d evaluate a 2D Legendre series at given points. legval3d evaluate a 3D Legendre series at given points. leggrid2d evaluate a 2D Legendre series on a Cartesian product. leggrid3d evaluate a 3D Legendre series on a Cartesian product. Calculus -------- .. autosummary:: :toctree: generated/ legder differentiate a Legendre series. legint integrate a Legendre series. Misc Functions -------------- .. autosummary:: :toctree: generated/ legfromroots create a Legendre series with specified roots. legroots find the roots of a Legendre series. legvander Vandermonde-like matrix for Legendre polynomials. legvander2d Vandermonde-like matrix for 2D power series. legvander3d Vandermonde-like matrix for 3D power series. leggauss Gauss-Legendre quadrature, points and weights. legweight Legendre weight function. legcompanion symmetrized companion matrix in Legendre form. legfit least-squares fit returning a Legendre series. legtrim trim leading coefficients from a Legendre series. legline Legendre series representing given straight line. leg2poly convert a Legendre series to a polynomial. poly2leg convert a polynomial to a Legendre series. Classes ------- Legendre A Legendre series class. See also -------- numpy.polynomial.polynomial numpy.polynomial.chebyshev numpy.polynomial.laguerre numpy.polynomial.hermite numpy.polynomial.hermite_e """ from __future__ import division, absolute_import, print_function import warnings import numpy as np import numpy.linalg as la from . import polyutils as pu from ._polybase import ABCPolyBase __all__ = [ 'legzero', 'legone', 'legx', 'legdomain', 'legline', 'legadd', 'legsub', 'legmulx', 'legmul', 'legdiv', 'legpow', 'legval', 'legder', 'legint', 'leg2poly', 'poly2leg', 'legfromroots', 'legvander', 'legfit', 'legtrim', 'legroots', 'Legendre', 'legval2d', 'legval3d', 'leggrid2d', 'leggrid3d', 'legvander2d', 'legvander3d', 'legcompanion', 'leggauss', 'legweight'] legtrim = pu.trimcoef def poly2leg(pol): """ Convert a polynomial to a Legendre series. Convert an array representing the coefficients of a polynomial (relative to the "standard" basis) ordered from lowest degree to highest, to an array of the coefficients of the equivalent Legendre series, ordered from lowest to highest degree. Parameters ---------- pol : array_like 1-D array containing the polynomial coefficients Returns ------- c : ndarray 1-D array containing the coefficients of the equivalent Legendre series. See Also -------- leg2poly Notes ----- The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance. Examples -------- >>> from numpy import polynomial as P >>> p = P.Polynomial(np.arange(4)) >>> p Polynomial([ 0., 1., 2., 3.], [-1., 1.]) >>> c = P.Legendre(P.poly2leg(p.coef)) >>> c Legendre([ 1. , 3.25, 1. , 0.75], [-1., 1.]) """ [pol] = pu.as_series([pol]) deg = len(pol) - 1 res = 0 for i in range(deg, -1, -1): res = legadd(legmulx(res), pol[i]) return res def leg2poly(c): """ Convert a Legendre series to a polynomial. Convert an array representing the coefficients of a Legendre series, ordered from lowest degree to highest, to an array of the coefficients of the equivalent polynomial (relative to the "standard" basis) ordered from lowest to highest degree. Parameters ---------- c : array_like 1-D array containing the Legendre series coefficients, ordered from lowest order term to highest. Returns ------- pol : ndarray 1-D array containing the coefficients of the equivalent polynomial (relative to the "standard" basis) ordered from lowest order term to highest. See Also -------- poly2leg Notes ----- The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance. Examples -------- >>> c = P.Legendre(range(4)) >>> c Legendre([ 0., 1., 2., 3.], [-1., 1.]) >>> p = c.convert(kind=P.Polynomial) >>> p Polynomial([-1. , -3.5, 3. , 7.5], [-1., 1.]) >>> P.leg2poly(range(4)) array([-1. , -3.5, 3. , 7.5]) """ from .polynomial import polyadd, polysub, polymulx [c] = pu.as_series([c]) n = len(c) if n < 3: return c else: c0 = c[-2] c1 = c[-1] # i is the current degree of c1 for i in range(n - 1, 1, -1): tmp = c0 c0 = polysub(c[i - 2], (c1*(i - 1))/i) c1 = polyadd(tmp, (polymulx(c1)*(2*i - 1))/i) return polyadd(c0, polymulx(c1)) # # These are constant arrays are of integer type so as to be compatible # with the widest range of other types, such as Decimal. # # Legendre legdomain = np.array([-1, 1]) # Legendre coefficients representing zero. legzero = np.array([0]) # Legendre coefficients representing one. legone = np.array([1]) # Legendre coefficients representing the identity x. legx = np.array([0, 1]) def legline(off, scl): """ Legendre series whose graph is a straight line. Parameters ---------- off, scl : scalars The specified line is given by ``off + scl*x``. Returns ------- y : ndarray This module's representation of the Legendre series for ``off + scl*x``. See Also -------- polyline, chebline Examples -------- >>> import numpy.polynomial.legendre as L >>> L.legline(3,2) array([3, 2]) >>> L.legval(-3, L.legline(3,2)) # should be -3 -3.0 """ if scl != 0: return np.array([off, scl]) else: return np.array([off]) def legfromroots(roots): """ Generate a Legendre series with given roots. The function returns the coefficients of the polynomial .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n), in Legendre form, where the `r_n` are the roots specified in `roots`. If a zero has multiplicity n, then it must appear in `roots` n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The roots can appear in any order. If the returned coefficients are `c`, then .. math:: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x) The coefficient of the last term is not generally 1 for monic polynomials in Legendre form. Parameters ---------- roots : array_like Sequence containing the roots. Returns ------- out : ndarray 1-D array of coefficients. If all roots are real then `out` is a real array, if some of the roots are complex, then `out` is complex even if all the coefficients in the result are real (see Examples below). See Also -------- polyfromroots, chebfromroots, lagfromroots, hermfromroots, hermefromroots. Examples -------- >>> import numpy.polynomial.legendre as L >>> L.legfromroots((-1,0,1)) # x^3 - x relative to the standard basis array([ 0. , -0.4, 0. , 0.4]) >>> j = complex(0,1) >>> L.legfromroots((-j,j)) # x^2 + 1 relative to the standard basis array([ 1.33333333+0.j, 0.00000000+0.j, 0.66666667+0.j]) """ if len(roots) == 0: return np.ones(1) else: [roots] = pu.as_series([roots], trim=False) roots.sort() p = [legline(-r, 1) for r in roots] n = len(p) while n > 1: m, r = divmod(n, 2) tmp = [legmul(p[i], p[i+m]) for i in range(m)] if r: tmp[0] = legmul(tmp[0], p[-1]) p = tmp n = m return p[0] def legadd(c1, c2): """ Add one Legendre series to another. Returns the sum of two Legendre series `c1` + `c2`. The arguments are sequences of coefficients ordered from lowest order term to highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. Parameters ---------- c1, c2 : array_like 1-D arrays of Legendre series coefficients ordered from low to high. Returns ------- out : ndarray Array representing the Legendre series of their sum. See Also -------- legsub, legmul, legdiv, legpow Notes ----- Unlike multiplication, division, etc., the sum of two Legendre series is a Legendre series (without having to "reproject" the result onto the basis set) so addition, just like that of "standard" polynomials, is simply "component-wise." Examples -------- >>> from numpy.polynomial import legendre as L >>> c1 = (1,2,3) >>> c2 = (3,2,1) >>> L.legadd(c1,c2) array([ 4., 4., 4.]) """ # c1, c2 are trimmed copies [c1, c2] = pu.as_series([c1, c2]) if len(c1) > len(c2): c1[:c2.size] += c2 ret = c1 else: c2[:c1.size] += c1 ret = c2 return pu.trimseq(ret) def legsub(c1, c2): """ Subtract one Legendre series from another. Returns the difference of two Legendre series `c1` - `c2`. The sequences of coefficients are from lowest order term to highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. Parameters ---------- c1, c2 : array_like 1-D arrays of Legendre series coefficients ordered from low to high. Returns ------- out : ndarray Of Legendre series coefficients representing their difference. See Also -------- legadd, legmul, legdiv, legpow Notes ----- Unlike multiplication, division, etc., the difference of two Legendre series is a Legendre series (without having to "reproject" the result onto the basis set) so subtraction, just like that of "standard" polynomials, is simply "component-wise." Examples -------- >>> from numpy.polynomial import legendre as L >>> c1 = (1,2,3) >>> c2 = (3,2,1) >>> L.legsub(c1,c2) array([-2., 0., 2.]) >>> L.legsub(c2,c1) # -C.legsub(c1,c2) array([ 2., 0., -2.]) """ # c1, c2 are trimmed copies [c1, c2] = pu.as_series([c1, c2]) if len(c1) > len(c2): c1[:c2.size] -= c2 ret = c1 else: c2 = -c2 c2[:c1.size] += c1 ret = c2 return pu.trimseq(ret) def legmulx(c): """Multiply a Legendre series by x. Multiply the Legendre series `c` by x, where x is the independent variable. Parameters ---------- c : array_like 1-D array of Legendre series coefficients ordered from low to high. Returns ------- out : ndarray Array representing the result of the multiplication. Notes ----- The multiplication uses the recursion relationship for Legendre polynomials in the form .. math:: xP_i(x) = ((i + 1)*P_{i + 1}(x) + i*P_{i - 1}(x))/(2i + 1) """ # c is a trimmed copy [c] = pu.as_series([c]) # The zero series needs special treatment if len(c) == 1 and c[0] == 0: return c prd = np.empty(len(c) + 1, dtype=c.dtype) prd[0] = c[0]*0 prd[1] = c[0] for i in range(1, len(c)): j = i + 1 k = i - 1 s = i + j prd[j] = (c[i]*j)/s prd[k] += (c[i]*i)/s return prd def legmul(c1, c2): """ Multiply one Legendre series by another. Returns the product of two Legendre series `c1` * `c2`. The arguments are sequences of coefficients, from lowest order "term" to highest, e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. Parameters ---------- c1, c2 : array_like 1-D arrays of Legendre series coefficients ordered from low to high. Returns ------- out : ndarray Of Legendre series coefficients representing their product. See Also -------- legadd, legsub, legdiv, legpow Notes ----- In general, the (polynomial) product of two C-series results in terms that are not in the Legendre polynomial basis set. Thus, to express the product as a Legendre series, it is necessary to "reproject" the product onto said basis set, which may produce "unintuitive" (but correct) results; see Examples section below. Examples -------- >>> from numpy.polynomial import legendre as L >>> c1 = (1,2,3) >>> c2 = (3,2) >>> P.legmul(c1,c2) # multiplication requires "reprojection" array([ 4.33333333, 10.4 , 11.66666667, 3.6 ]) """ # s1, s2 are trimmed copies [c1, c2] = pu.as_series([c1, c2]) if len(c1) > len(c2): c = c2 xs = c1 else: c = c1 xs = c2 if len(c) == 1: c0 = c[0]*xs c1 = 0 elif len(c) == 2: c0 = c[0]*xs c1 = c[1]*xs else: nd = len(c) c0 = c[-2]*xs c1 = c[-1]*xs for i in range(3, len(c) + 1): tmp = c0 nd = nd - 1 c0 = legsub(c[-i]*xs, (c1*(nd - 1))/nd) c1 = legadd(tmp, (legmulx(c1)*(2*nd - 1))/nd) return legadd(c0, legmulx(c1)) def legdiv(c1, c2): """ Divide one Legendre series by another. Returns the quotient-with-remainder of two Legendre series `c1` / `c2`. The arguments are sequences of coefficients from lowest order "term" to highest, e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``. Parameters ---------- c1, c2 : array_like 1-D arrays of Legendre series coefficients ordered from low to high. Returns ------- quo, rem : ndarrays Of Legendre series coefficients representing the quotient and remainder. See Also -------- legadd, legsub, legmul, legpow Notes ----- In general, the (polynomial) division of one Legendre series by another results in quotient and remainder terms that are not in the Legendre polynomial basis set. Thus, to express these results as a Legendre series, it is necessary to "reproject" the results onto the Legendre basis set, which may produce "unintuitive" (but correct) results; see Examples section below. Examples -------- >>> from numpy.polynomial import legendre as L >>> c1 = (1,2,3) >>> c2 = (3,2,1) >>> L.legdiv(c1,c2) # quotient "intuitive," remainder not (array([ 3.]), array([-8., -4.])) >>> c2 = (0,1,2,3) >>> L.legdiv(c2,c1) # neither "intuitive" (array([-0.07407407, 1.66666667]), array([-1.03703704, -2.51851852])) """ # c1, c2 are trimmed copies [c1, c2] = pu.as_series([c1, c2]) if c2[-1] == 0: raise ZeroDivisionError() lc1 = len(c1) lc2 = len(c2) if lc1 < lc2: return c1[:1]*0, c1 elif lc2 == 1: return c1/c2[-1], c1[:1]*0 else: quo = np.empty(lc1 - lc2 + 1, dtype=c1.dtype) rem = c1 for i in range(lc1 - lc2, - 1, -1): p = legmul([0]*i + [1], c2) q = rem[-1]/p[-1] rem = rem[:-1] - q*p[:-1] quo[i] = q return quo, pu.trimseq(rem) def legpow(c, pow, maxpower=16): """Raise a Legendre series to a power. Returns the Legendre series `c` raised to the power `pow`. The arguement `c` is a sequence of coefficients ordered from low to high. i.e., [1,2,3] is the series ``P_0 + 2*P_1 + 3*P_2.`` Parameters ---------- c : array_like 1-D array of Legendre series coefficients ordered from low to high. pow : integer Power to which the series will be raised maxpower : integer, optional Maximum power allowed. This is mainly to limit growth of the series to unmanageable size. Default is 16 Returns ------- coef : ndarray Legendre series of power. See Also -------- legadd, legsub, legmul, legdiv Examples -------- """ # c is a trimmed copy [c] = pu.as_series([c]) power = int(pow) if power != pow or power < 0: raise ValueError("Power must be a non-negative integer.") elif maxpower is not None and power > maxpower: raise ValueError("Power is too large") elif power == 0: return np.array([1], dtype=c.dtype) elif power == 1: return c else: # This can be made more efficient by using powers of two # in the usual way. prd = c for i in range(2, power + 1): prd = legmul(prd, c) return prd def legder(c, m=1, scl=1, axis=0): """ Differentiate a Legendre series. Returns the Legendre series coefficients `c` differentiated `m` times along `axis`. At each iteration the result is multiplied by `scl` (the scaling factor is for use in a linear change of variable). The argument `c` is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series ``1*L_0 + 2*L_1 + 3*L_2`` while [[1,2],[1,2]] represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``. Parameters ---------- c : array_like Array of Legendre series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. m : int, optional Number of derivatives taken, must be non-negative. (Default: 1) scl : scalar, optional Each differentiation is multiplied by `scl`. The end result is multiplication by ``scl**m``. This is for use in a linear change of variable. (Default: 1) axis : int, optional Axis over which the derivative is taken. (Default: 0). .. versionadded:: 1.7.0 Returns ------- der : ndarray Legendre series of the derivative. See Also -------- legint Notes ----- In general, the result of differentiating a Legendre series does not resemble the same operation on a power series. Thus the result of this function may be "unintuitive," albeit correct; see Examples section below. Examples -------- >>> from numpy.polynomial import legendre as L >>> c = (1,2,3,4) >>> L.legder(c) array([ 6., 9., 20.]) >>> L.legder(c, 3) array([ 60.]) >>> L.legder(c, scl=-1) array([ -6., -9., -20.]) >>> L.legder(c, 2,-1) array([ 9., 60.]) """ c = np.array(c, ndmin=1, copy=1) if c.dtype.char in '?bBhHiIlLqQpP': c = c.astype(np.double) cnt, iaxis = [int(t) for t in [m, axis]] if cnt != m: raise ValueError("The order of derivation must be integer") if cnt < 0: raise ValueError("The order of derivation must be non-negative") if iaxis != axis: raise ValueError("The axis must be integer") if not -c.ndim <= iaxis < c.ndim: raise ValueError("The axis is out of range") if iaxis < 0: iaxis += c.ndim if cnt == 0: return c c = np.rollaxis(c, iaxis) n = len(c) if cnt >= n: c = c[:1]*0 else: for i in range(cnt): n = n - 1 c *= scl der = np.empty((n,) + c.shape[1:], dtype=c.dtype) for j in range(n, 2, -1): der[j - 1] = (2*j - 1)*c[j] c[j - 2] += c[j] if n > 1: der[1] = 3*c[2] der[0] = c[1] c = der c = np.rollaxis(c, 0, iaxis + 1) return c def legint(c, m=1, k=[], lbnd=0, scl=1, axis=0): """ Integrate a Legendre series. Returns the Legendre series coefficients `c` integrated `m` times from `lbnd` along `axis`. At each iteration the resulting series is **multiplied** by `scl` and an integration constant, `k`, is added. The scaling factor is for use in a linear change of variable. ("Buyer beware": note that, depending on what one is doing, one may want `scl` to be the reciprocal of what one might expect; for more information, see the Notes section below.) The argument `c` is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series ``L_0 + 2*L_1 + 3*L_2`` while [[1,2],[1,2]] represents ``1*L_0(x)*L_0(y) + 1*L_1(x)*L_0(y) + 2*L_0(x)*L_1(y) + 2*L_1(x)*L_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``. Parameters ---------- c : array_like Array of Legendre series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. m : int, optional Order of integration, must be positive. (Default: 1) k : {[], list, scalar}, optional Integration constant(s). The value of the first integral at ``lbnd`` is the first value in the list, the value of the second integral at ``lbnd`` is the second value, etc. If ``k == []`` (the default), all constants are set to zero. If ``m == 1``, a single scalar can be given instead of a list. lbnd : scalar, optional The lower bound of the integral. (Default: 0) scl : scalar, optional Following each integration the result is *multiplied* by `scl` before the integration constant is added. (Default: 1) axis : int, optional Axis over which the integral is taken. (Default: 0). .. versionadded:: 1.7.0 Returns ------- S : ndarray Legendre series coefficient array of the integral. Raises ------ ValueError If ``m < 0``, ``len(k) > m``, ``np.isscalar(lbnd) == False``, or ``np.isscalar(scl) == False``. See Also -------- legder Notes ----- Note that the result of each integration is *multiplied* by `scl`. Why is this important to note? Say one is making a linear change of variable :math:`u = ax + b` in an integral relative to `x`. Then .. math::`dx = du/a`, so one will need to set `scl` equal to :math:`1/a` - perhaps not what one would have first thought. Also note that, in general, the result of integrating a C-series needs to be "reprojected" onto the C-series basis set. Thus, typically, the result of this function is "unintuitive," albeit correct; see Examples section below. Examples -------- >>> from numpy.polynomial import legendre as L >>> c = (1,2,3) >>> L.legint(c) array([ 0.33333333, 0.4 , 0.66666667, 0.6 ]) >>> L.legint(c, 3) array([ 1.66666667e-02, -1.78571429e-02, 4.76190476e-02, -1.73472348e-18, 1.90476190e-02, 9.52380952e-03]) >>> L.legint(c, k=3) array([ 3.33333333, 0.4 , 0.66666667, 0.6 ]) >>> L.legint(c, lbnd=-2) array([ 7.33333333, 0.4 , 0.66666667, 0.6 ]) >>> L.legint(c, scl=2) array([ 0.66666667, 0.8 , 1.33333333, 1.2 ]) """ c = np.array(c, ndmin=1, copy=1) if c.dtype.char in '?bBhHiIlLqQpP': c = c.astype(np.double) if not np.iterable(k): k = [k] cnt, iaxis = [int(t) for t in [m, axis]] if cnt != m: raise ValueError("The order of integration must be integer") if cnt < 0: raise ValueError("The order of integration must be non-negative") if len(k) > cnt: raise ValueError("Too many integration constants") if iaxis != axis: raise ValueError("The axis must be integer") if not -c.ndim <= iaxis < c.ndim: raise ValueError("The axis is out of range") if iaxis < 0: iaxis += c.ndim if cnt == 0: return c c = np.rollaxis(c, iaxis) k = list(k) + [0]*(cnt - len(k)) for i in range(cnt): n = len(c) c *= scl if n == 1 and np.all(c[0] == 0): c[0] += k[i] else: tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype) tmp[0] = c[0]*0 tmp[1] = c[0] if n > 1: tmp[2] = c[1]/3 for j in range(2, n): t = c[j]/(2*j + 1) tmp[j + 1] = t tmp[j - 1] -= t tmp[0] += k[i] - legval(lbnd, tmp) c = tmp c = np.rollaxis(c, 0, iaxis + 1) return c def legval(x, c, tensor=True): """ Evaluate a Legendre series at points x. If `c` is of length `n + 1`, this function returns the value: .. math:: p(x) = c_0 * L_0(x) + c_1 * L_1(x) + ... + c_n * L_n(x) The parameter `x` is converted to an array only if it is a tuple or a list, otherwise it is treated as a scalar. In either case, either `x` or its elements must support multiplication and addition both with themselves and with the elements of `c`. If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If `c` is multidimensional, then the shape of the result depends on the value of `tensor`. If `tensor` is true the shape will be c.shape[1:] + x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that scalars have shape (,). Trailing zeros in the coefficients will be used in the evaluation, so they should be avoided if efficiency is a concern. Parameters ---------- x : array_like, compatible object If `x` is a list or tuple, it is converted to an ndarray, otherwise it is left unchanged and treated as a scalar. In either case, `x` or its elements must support addition and multiplication with with themselves and with the elements of `c`. c : array_like Array of coefficients ordered so that the coefficients for terms of degree n are contained in c[n]. If `c` is multidimensional the remaining indices enumerate multiple polynomials. In the two dimensional case the coefficients may be thought of as stored in the columns of `c`. tensor : boolean, optional If True, the shape of the coefficient array is extended with ones on the right, one for each dimension of `x`. Scalars have dimension 0 for this action. The result is that every column of coefficients in `c` is evaluated for every element of `x`. If False, `x` is broadcast over the columns of `c` for the evaluation. This keyword is useful when `c` is multidimensional. The default value is True. .. versionadded:: 1.7.0 Returns ------- values : ndarray, algebra_like The shape of the return value is described above. See Also -------- legval2d, leggrid2d, legval3d, leggrid3d Notes ----- The evaluation uses Clenshaw recursion, aka synthetic division. Examples -------- """ c = np.array(c, ndmin=1, copy=0) if c.dtype.char in '?bBhHiIlLqQpP': c = c.astype(np.double) if isinstance(x, (tuple, list)): x = np.asarray(x) if isinstance(x, np.ndarray) and tensor: c = c.reshape(c.shape + (1,)*x.ndim) if len(c) == 1: c0 = c[0] c1 = 0 elif len(c) == 2: c0 = c[0] c1 = c[1] else: nd = len(c) c0 = c[-2] c1 = c[-1] for i in range(3, len(c) + 1): tmp = c0 nd = nd - 1 c0 = c[-i] - (c1*(nd - 1))/nd c1 = tmp + (c1*x*(2*nd - 1))/nd return c0 + c1*x def legval2d(x, y, c): """ Evaluate a 2-D Legendre series at points (x, y). This function returns the values: .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * L_i(x) * L_j(y) The parameters `x` and `y` are converted to arrays only if they are tuples or a lists, otherwise they are treated as a scalars and they must have the same shape after conversion. In either case, either `x` and `y` or their elements must support multiplication and addition both with themselves and with the elements of `c`. If `c` is a 1-D array a one is implicitly appended to its shape to make it 2-D. The shape of the result will be c.shape[2:] + x.shape. Parameters ---------- x, y : array_like, compatible objects The two dimensional series is evaluated at the points `(x, y)`, where `x` and `y` must have the same shape. If `x` or `y` is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged and if it isn't an ndarray it is treated as a scalar. c : array_like Array of coefficients ordered so that the coefficient of the term of multi-degree i,j is contained in ``c[i,j]``. If `c` has dimension greater than two the remaining indices enumerate multiple sets of coefficients. Returns ------- values : ndarray, compatible object The values of the two dimensional Legendre series at points formed from pairs of corresponding values from `x` and `y`. See Also -------- legval, leggrid2d, legval3d, leggrid3d Notes ----- .. versionadded::1.7.0 """ try: x, y = np.array((x, y), copy=0) except: raise ValueError('x, y are incompatible') c = legval(x, c) c = legval(y, c, tensor=False) return c def leggrid2d(x, y, c): """ Evaluate a 2-D Legendre series on the Cartesian product of x and y. This function returns the values: .. math:: p(a,b) = \sum_{i,j} c_{i,j} * L_i(a) * L_j(b) where the points `(a, b)` consist of all pairs formed by taking `a` from `x` and `b` from `y`. The resulting points form a grid with `x` in the first dimension and `y` in the second. The parameters `x` and `y` are converted to arrays only if they are tuples or a lists, otherwise they are treated as a scalars. In either case, either `x` and `y` or their elements must support multiplication and addition both with themselves and with the elements of `c`. If `c` has fewer than two dimensions, ones are implicitly appended to its shape to make it 2-D. The shape of the result will be c.shape[2:] + x.shape + y.shape. Parameters ---------- x, y : array_like, compatible objects The two dimensional series is evaluated at the points in the Cartesian product of `x` and `y`. If `x` or `y` is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged and, if it isn't an ndarray, it is treated as a scalar. c : array_like Array of coefficients ordered so that the coefficient of the term of multi-degree i,j is contained in `c[i,j]`. If `c` has dimension greater than two the remaining indices enumerate multiple sets of coefficients. Returns ------- values : ndarray, compatible object The values of the two dimensional Chebyshev series at points in the Cartesian product of `x` and `y`. See Also -------- legval, legval2d, legval3d, leggrid3d Notes ----- .. versionadded::1.7.0 """ c = legval(x, c) c = legval(y, c) return c def legval3d(x, y, z, c): """ Evaluate a 3-D Legendre series at points (x, y, z). This function returns the values: .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * L_i(x) * L_j(y) * L_k(z) The parameters `x`, `y`, and `z` are converted to arrays only if they are tuples or a lists, otherwise they are treated as a scalars and they must have the same shape after conversion. In either case, either `x`, `y`, and `z` or their elements must support multiplication and addition both with themselves and with the elements of `c`. If `c` has fewer than 3 dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the result will be c.shape[3:] + x.shape. Parameters ---------- x, y, z : array_like, compatible object The three dimensional series is evaluated at the points `(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If any of `x`, `y`, or `z` is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged and if it isn't an ndarray it is treated as a scalar. c : array_like Array of coefficients ordered so that the coefficient of the term of multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension greater than 3 the remaining indices enumerate multiple sets of coefficients. Returns ------- values : ndarray, compatible object The values of the multidimensional polynomial on points formed with triples of corresponding values from `x`, `y`, and `z`. See Also -------- legval, legval2d, leggrid2d, leggrid3d Notes ----- .. versionadded::1.7.0 """ try: x, y, z = np.array((x, y, z), copy=0) except: raise ValueError('x, y, z are incompatible') c = legval(x, c) c = legval(y, c, tensor=False) c = legval(z, c, tensor=False) return c def leggrid3d(x, y, z, c): """ Evaluate a 3-D Legendre series on the Cartesian product of x, y, and z. This function returns the values: .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * L_i(a) * L_j(b) * L_k(c) where the points `(a, b, c)` consist of all triples formed by taking `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form a grid with `x` in the first dimension, `y` in the second, and `z` in the third. The parameters `x`, `y`, and `z` are converted to arrays only if they are tuples or a lists, otherwise they are treated as a scalars. In either case, either `x`, `y`, and `z` or their elements must support multiplication and addition both with themselves and with the elements of `c`. If `c` has fewer than three dimensions, ones are implicitly appended to its shape to make it 3-D. The shape of the result will be c.shape[3:] + x.shape + y.shape + z.shape. Parameters ---------- x, y, z : array_like, compatible objects The three dimensional series is evaluated at the points in the Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a list or tuple, it is first converted to an ndarray, otherwise it is left unchanged and, if it isn't an ndarray, it is treated as a scalar. c : array_like Array of coefficients ordered so that the coefficients for terms of degree i,j are contained in ``c[i,j]``. If `c` has dimension greater than two the remaining indices enumerate multiple sets of coefficients. Returns ------- values : ndarray, compatible object The values of the two dimensional polynomial at points in the Cartesian product of `x` and `y`. See Also -------- legval, legval2d, leggrid2d, legval3d Notes ----- .. versionadded::1.7.0 """ c = legval(x, c) c = legval(y, c) c = legval(z, c) return c def legvander(x, deg): """Pseudo-Vandermonde matrix of given degree. Returns the pseudo-Vandermonde matrix of degree `deg` and sample points `x`. The pseudo-Vandermonde matrix is defined by .. math:: V[..., i] = L_i(x) where `0 <= i <= deg`. The leading indices of `V` index the elements of `x` and the last index is the degree of the Legendre polynomial. If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the array ``V = legvander(x, n)``, then ``np.dot(V, c)`` and ``legval(x, c)`` are the same up to roundoff. This equivalence is useful both for least squares fitting and for the evaluation of a large number of Legendre series of the same degree and sample points. Parameters ---------- x : array_like Array of points. The dtype is converted to float64 or complex128 depending on whether any of the elements are complex. If `x` is scalar it is converted to a 1-D array. deg : int Degree of the resulting matrix. Returns ------- vander : ndarray The pseudo-Vandermonde matrix. The shape of the returned matrix is ``x.shape + (deg + 1,)``, where The last index is the degree of the corresponding Legendre polynomial. The dtype will be the same as the converted `x`. """ ideg = int(deg) if ideg != deg: raise ValueError("deg must be integer") if ideg < 0: raise ValueError("deg must be non-negative") x = np.array(x, copy=0, ndmin=1) + 0.0 dims = (ideg + 1,) + x.shape dtyp = x.dtype v = np.empty(dims, dtype=dtyp) # Use forward recursion to generate the entries. This is not as accurate # as reverse recursion in this application but it is more efficient. v[0] = x*0 + 1 if ideg > 0: v[1] = x for i in range(2, ideg + 1): v[i] = (v[i-1]*x*(2*i - 1) - v[i-2]*(i - 1))/i return np.rollaxis(v, 0, v.ndim) def legvander2d(x, y, deg): """Pseudo-Vandermonde matrix of given degrees. Returns the pseudo-Vandermonde matrix of degrees `deg` and sample points `(x, y)`. The pseudo-Vandermonde matrix is defined by .. math:: V[..., deg[1]*i + j] = L_i(x) * L_j(y), where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of `V` index the points `(x, y)` and the last index encodes the degrees of the Legendre polynomials. If ``V = legvander2d(x, y, [xdeg, ydeg])``, then the columns of `V` correspond to the elements of a 2-D coefficient array `c` of shape (xdeg + 1, ydeg + 1) in the order .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ... and ``np.dot(V, c.flat)`` and ``legval2d(x, y, c)`` will be the same up to roundoff. This equivalence is useful both for least squares fitting and for the evaluation of a large number of 2-D Legendre series of the same degrees and sample points. Parameters ---------- x, y : array_like Arrays of point coordinates, all of the same shape. The dtypes will be converted to either float64 or complex128 depending on whether any of the elements are complex. Scalars are converted to 1-D arrays. deg : list of ints List of maximum degrees of the form [x_deg, y_deg]. Returns ------- vander2d : ndarray The shape of the returned matrix is ``x.shape + (order,)``, where :math:`order = (deg[0]+1)*(deg([1]+1)`. The dtype will be the same as the converted `x` and `y`. See Also -------- legvander, legvander3d. legval2d, legval3d Notes ----- .. versionadded::1.7.0 """ ideg = [int(d) for d in deg] is_valid = [id == d and id >= 0 for id, d in zip(ideg, deg)] if is_valid != [1, 1]: raise ValueError("degrees must be non-negative integers") degx, degy = ideg x, y = np.array((x, y), copy=0) + 0.0 vx = legvander(x, degx) vy = legvander(y, degy) v = vx[..., None]*vy[..., None,:] return v.reshape(v.shape[:-2] + (-1,)) def legvander3d(x, y, z, deg): """Pseudo-Vandermonde matrix of given degrees. Returns the pseudo-Vandermonde matrix of degrees `deg` and sample points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`, then The pseudo-Vandermonde matrix is defined by .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = L_i(x)*L_j(y)*L_k(z), where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading indices of `V` index the points `(x, y, z)` and the last index encodes the degrees of the Legendre polynomials. If ``V = legvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns of `V` correspond to the elements of a 3-D coefficient array `c` of shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},... and ``np.dot(V, c.flat)`` and ``legval3d(x, y, z, c)`` will be the same up to roundoff. This equivalence is useful both for least squares fitting and for the evaluation of a large number of 3-D Legendre series of the same degrees and sample points. Parameters ---------- x, y, z : array_like Arrays of point coordinates, all of the same shape. The dtypes will be converted to either float64 or complex128 depending on whether any of the elements are complex. Scalars are converted to 1-D arrays. deg : list of ints List of maximum degrees of the form [x_deg, y_deg, z_deg]. Returns ------- vander3d : ndarray The shape of the returned matrix is ``x.shape + (order,)``, where :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`. The dtype will be the same as the converted `x`, `y`, and `z`. See Also -------- legvander, legvander3d. legval2d, legval3d Notes ----- .. versionadded::1.7.0 """ ideg = [int(d) for d in deg] is_valid = [id == d and id >= 0 for id, d in zip(ideg, deg)] if is_valid != [1, 1, 1]: raise ValueError("degrees must be non-negative integers") degx, degy, degz = ideg x, y, z = np.array((x, y, z), copy=0) + 0.0 vx = legvander(x, degx) vy = legvander(y, degy) vz = legvander(z, degz) v = vx[..., None, None]*vy[..., None,:, None]*vz[..., None, None,:] return v.reshape(v.shape[:-3] + (-1,)) def legfit(x, y, deg, rcond=None, full=False, w=None): """ Least squares fit of Legendre series to data. Return the coefficients of a Legendre series of degree `deg` that is the least squares fit to the data values `y` given at points `x`. If `y` is 1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple fits are done, one for each column of `y`, and the resulting coefficients are stored in the corresponding columns of a 2-D return. The fitted polynomial(s) are in the form .. math:: p(x) = c_0 + c_1 * L_1(x) + ... + c_n * L_n(x), where `n` is `deg`. Parameters ---------- x : array_like, shape (M,) x-coordinates of the M sample points ``(x[i], y[i])``. y : array_like, shape (M,) or (M, K) y-coordinates of the sample points. Several data sets of sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array that contains one dataset per column. deg : int Degree of the fitting polynomial rcond : float, optional Relative condition number of the fit. Singular values smaller than this relative to the largest singular value will be ignored. The default value is len(x)*eps, where eps is the relative precision of the float type, about 2e-16 in most cases. full : bool, optional Switch determining nature of return value. When it is False (the default) just the coefficients are returned, when True diagnostic information from the singular value decomposition is also returned. w : array_like, shape (`M`,), optional Weights. If not None, the contribution of each point ``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the weights are chosen so that the errors of the products ``w[i]*y[i]`` all have the same variance. The default value is None. .. versionadded:: 1.5.0 Returns ------- coef : ndarray, shape (M,) or (M, K) Legendre coefficients ordered from low to high. If `y` was 2-D, the coefficients for the data in column k of `y` are in column `k`. [residuals, rank, singular_values, rcond] : list These values are only returned if `full` = True resid -- sum of squared residuals of the least squares fit rank -- the numerical rank of the scaled Vandermonde matrix sv -- singular values of the scaled Vandermonde matrix rcond -- value of `rcond`. For more details, see `linalg.lstsq`. Warns ----- RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warning is only raised if `full` = False. The warnings can be turned off by >>> import warnings >>> warnings.simplefilter('ignore', RankWarning) See Also -------- chebfit, polyfit, lagfit, hermfit, hermefit legval : Evaluates a Legendre series. legvander : Vandermonde matrix of Legendre series. legweight : Legendre weight function (= 1). linalg.lstsq : Computes a least-squares fit from the matrix. scipy.interpolate.UnivariateSpline : Computes spline fits. Notes ----- The solution is the coefficients of the Legendre series `p` that minimizes the sum of the weighted squared errors .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2, where :math:`w_j` are the weights. This problem is solved by setting up as the (typically) overdetermined matrix equation .. math:: V(x) * c = w * y, where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the coefficients to be solved for, `w` are the weights, and `y` are the observed values. This equation is then solved using the singular value decomposition of `V`. If some of the singular values of `V` are so small that they are neglected, then a `RankWarning` will be issued. This means that the coefficient values may be poorly determined. Using a lower order fit will usually get rid of the warning. The `rcond` parameter can also be set to a value smaller than its default, but the resulting fit may be spurious and have large contributions from roundoff error. Fits using Legendre series are usually better conditioned than fits using power series, but much can depend on the distribution of the sample points and the smoothness of the data. If the quality of the fit is inadequate splines may be a good alternative. References ---------- .. [1] Wikipedia, "Curve fitting", http://en.wikipedia.org/wiki/Curve_fitting Examples -------- """ order = int(deg) + 1 x = np.asarray(x) + 0.0 y = np.asarray(y) + 0.0 # check arguments. if deg < 0: raise ValueError("expected deg >= 0") if x.ndim != 1: raise TypeError("expected 1D vector for x") if x.size == 0: raise TypeError("expected non-empty vector for x") if y.ndim < 1 or y.ndim > 2: raise TypeError("expected 1D or 2D array for y") if len(x) != len(y): raise TypeError("expected x and y to have same length") # set up the least squares matrices in transposed form lhs = legvander(x, deg).T rhs = y.T if w is not None: w = np.asarray(w) + 0.0 if w.ndim != 1: raise TypeError("expected 1D vector for w") if len(x) != len(w): raise TypeError("expected x and w to have same length") # apply weights. Don't use inplace operations as they # can cause problems with NA. lhs = lhs * w rhs = rhs * w # set rcond if rcond is None: rcond = len(x)*np.finfo(x.dtype).eps # Determine the norms of the design matrix columns. if issubclass(lhs.dtype.type, np.complexfloating): scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(1)) else: scl = np.sqrt(np.square(lhs).sum(1)) scl[scl == 0] = 1 # Solve the least squares problem. c, resids, rank, s = la.lstsq(lhs.T/scl, rhs.T, rcond) c = (c.T/scl).T # warn on rank reduction if rank != order and not full: msg = "The fit may be poorly conditioned" warnings.warn(msg, pu.RankWarning) if full: return c, [resids, rank, s, rcond] else: return c def legcompanion(c): """Return the scaled companion matrix of c. The basis polynomials are scaled so that the companion matrix is symmetric when `c` is an Legendre basis polynomial. This provides better eigenvalue estimates than the unscaled case and for basis polynomials the eigenvalues are guaranteed to be real if `numpy.linalg.eigvalsh` is used to obtain them. Parameters ---------- c : array_like 1-D array of Legendre series coefficients ordered from low to high degree. Returns ------- mat : ndarray Scaled companion matrix of dimensions (deg, deg). Notes ----- .. versionadded::1.7.0 """ # c is a trimmed copy [c] = pu.as_series([c]) if len(c) < 2: raise ValueError('Series must have maximum degree of at least 1.') if len(c) == 2: return np.array([[-c[0]/c[1]]]) n = len(c) - 1 mat = np.zeros((n, n), dtype=c.dtype) scl = 1./np.sqrt(2*np.arange(n) + 1) top = mat.reshape(-1)[1::n+1] bot = mat.reshape(-1)[n::n+1] top[...] = np.arange(1, n)*scl[:n-1]*scl[1:n] bot[...] = top mat[:, -1] -= (c[:-1]/c[-1])*(scl/scl[-1])*(n/(2*n - 1)) return mat def legroots(c): """ Compute the roots of a Legendre series. Return the roots (a.k.a. "zeros") of the polynomial .. math:: p(x) = \\sum_i c[i] * L_i(x). Parameters ---------- c : 1-D array_like 1-D array of coefficients. Returns ------- out : ndarray Array of the roots of the series. If all the roots are real, then `out` is also real, otherwise it is complex. See Also -------- polyroots, chebroots, lagroots, hermroots, hermeroots Notes ----- The root estimates are obtained as the eigenvalues of the companion matrix, Roots far from the origin of the complex plane may have large errors due to the numerical instability of the series for such values. Roots with multiplicity greater than 1 will also show larger errors as the value of the series near such points is relatively insensitive to errors in the roots. Isolated roots near the origin can be improved by a few iterations of Newton's method. The Legendre series basis polynomials aren't powers of ``x`` so the results of this function may seem unintuitive. Examples -------- >>> import numpy.polynomial.legendre as leg >>> leg.legroots((1, 2, 3, 4)) # 4L_3 + 3L_2 + 2L_1 + 1L_0, all real roots array([-0.85099543, -0.11407192, 0.51506735]) """ # c is a trimmed copy [c] = pu.as_series([c]) if len(c) < 2: return np.array([], dtype=c.dtype) if len(c) == 2: return np.array([-c[0]/c[1]]) m = legcompanion(c) r = la.eigvals(m) r.sort() return r def leggauss(deg): """ Gauss-Legendre quadrature. Computes the sample points and weights for Gauss-Legendre quadrature. These sample points and weights will correctly integrate polynomials of degree :math:`2*deg - 1` or less over the interval :math:`[-1, 1]` with the weight function :math:`f(x) = 1`. Parameters ---------- deg : int Number of sample points and weights. It must be >= 1. Returns ------- x : ndarray 1-D ndarray containing the sample points. y : ndarray 1-D ndarray containing the weights. Notes ----- .. versionadded::1.7.0 The results have only been tested up to degree 100, higher degrees may be problematic. The weights are determined by using the fact that .. math:: w_k = c / (L'_n(x_k) * L_{n-1}(x_k)) where :math:`c` is a constant independent of :math:`k` and :math:`x_k` is the k'th root of :math:`L_n`, and then scaling the results to get the right value when integrating 1. """ ideg = int(deg) if ideg != deg or ideg < 1: raise ValueError("deg must be a non-negative integer") # first approximation of roots. We use the fact that the companion # matrix is symmetric in this case in order to obtain better zeros. c = np.array([0]*deg + [1]) m = legcompanion(c) x = la.eigvalsh(m) # improve roots by one application of Newton dy = legval(x, c) df = legval(x, legder(c)) x -= dy/df # compute the weights. We scale the factor to avoid possible numerical # overflow. fm = legval(x, c[1:]) fm /= np.abs(fm).max() df /= np.abs(df).max() w = 1/(fm * df) # for Legendre we can also symmetrize w = (w + w[::-1])/2 x = (x - x[::-1])/2 # scale w to get the right value w *= 2. / w.sum() return x, w def legweight(x): """ Weight function of the Legendre polynomials. The weight function is :math:`1` and the interval of integration is :math:`[-1, 1]`. The Legendre polynomials are orthogonal, but not normalized, with respect to this weight function. Parameters ---------- x : array_like Values at which the weight function will be computed. Returns ------- w : ndarray The weight function at `x`. Notes ----- .. versionadded::1.7.0 """ w = x*0.0 + 1.0 return w # # Legendre series class # class Legendre(ABCPolyBase): """A Legendre series class. The Legendre class provides the standard Python numerical methods '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the attributes and methods listed in the `ABCPolyBase` documentation. Parameters ---------- coef : array_like Legendre coefficients in order of increasing degree, i.e., ``(1, 2, 3)`` gives ``1*P_0(x) + 2*P_1(x) + 3*P_2(x)``. domain : (2,) array_like, optional Domain to use. The interval ``[domain[0], domain[1]]`` is mapped to the interval ``[window[0], window[1]]`` by shifting and scaling. The default value is [-1, 1]. window : (2,) array_like, optional Window, see `domain` for its use. The default value is [-1, 1]. .. versionadded:: 1.6.0 """ # Virtual Functions _add = staticmethod(legadd) _sub = staticmethod(legsub) _mul = staticmethod(legmul) _div = staticmethod(legdiv) _pow = staticmethod(legpow) _val = staticmethod(legval) _int = staticmethod(legint) _der = staticmethod(legder) _fit = staticmethod(legfit) _line = staticmethod(legline) _roots = staticmethod(legroots) _fromroots = staticmethod(legfromroots) # Virtual properties nickname = 'leg' domain = np.array(legdomain) window = np.array(legdomain)
crossin/yuan-xin
refs/heads/master
settings.py
11
# -*- coding: utf-8 -*- # Django settings for the example project. import os DEBUG = True TEMPLATE_DEBUG = False ##LANGUAGE_CODE = 'zh-CN' ##LANGUAGE_CODE = 'fr' LOCALE_PATHS = 'locale' USE_I18N = True TEMPLATE_LOADERS=('django.template.loaders.filesystem.load_template_source', 'ziploader.zip_loader.load_template_source')
barma1309/Kalista
refs/heads/master
.virtualenvs/Kalista/lib/python3.4/site-packages/django/contrib/gis/measure.py
344
# Copyright (c) 2007, Robert Coup <robert.coup@onetrackmind.co.nz> # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of Distance nor the names of its contributors may be used # to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # """ Distance and Area objects to allow for sensible and convenient calculation and conversions. Authors: Robert Coup, Justin Bronn, Riccardo Di Virgilio Inspired by GeoPy (http://exogen.case.edu/projects/geopy/) and Geoff Biggs' PhD work on dimensioned units for robotics. """ __all__ = ['A', 'Area', 'D', 'Distance'] from decimal import Decimal from functools import total_ordering from django.utils import six NUMERIC_TYPES = six.integer_types + (float, Decimal) AREA_PREFIX = "sq_" def pretty_name(obj): return obj.__name__ if obj.__class__ == type else obj.__class__.__name__ @total_ordering class MeasureBase(object): STANDARD_UNIT = None ALIAS = {} UNITS = {} LALIAS = {} def __init__(self, default_unit=None, **kwargs): value, self._default_unit = self.default_units(kwargs) setattr(self, self.STANDARD_UNIT, value) if default_unit and isinstance(default_unit, six.string_types): self._default_unit = default_unit def _get_standard(self): return getattr(self, self.STANDARD_UNIT) def _set_standard(self, value): setattr(self, self.STANDARD_UNIT, value) standard = property(_get_standard, _set_standard) def __getattr__(self, name): if name in self.UNITS: return self.standard / self.UNITS[name] else: raise AttributeError('Unknown unit type: %s' % name) def __repr__(self): return '%s(%s=%s)' % (pretty_name(self), self._default_unit, getattr(self, self._default_unit)) def __str__(self): return '%s %s' % (getattr(self, self._default_unit), self._default_unit) # **** Comparison methods **** def __eq__(self, other): if isinstance(other, self.__class__): return self.standard == other.standard else: return NotImplemented def __lt__(self, other): if isinstance(other, self.__class__): return self.standard < other.standard else: return NotImplemented # **** Operators methods **** def __add__(self, other): if isinstance(other, self.__class__): return self.__class__(default_unit=self._default_unit, **{self.STANDARD_UNIT: (self.standard + other.standard)}) else: raise TypeError('%(class)s must be added with %(class)s' % {"class": pretty_name(self)}) def __iadd__(self, other): if isinstance(other, self.__class__): self.standard += other.standard return self else: raise TypeError('%(class)s must be added with %(class)s' % {"class": pretty_name(self)}) def __sub__(self, other): if isinstance(other, self.__class__): return self.__class__(default_unit=self._default_unit, **{self.STANDARD_UNIT: (self.standard - other.standard)}) else: raise TypeError('%(class)s must be subtracted from %(class)s' % {"class": pretty_name(self)}) def __isub__(self, other): if isinstance(other, self.__class__): self.standard -= other.standard return self else: raise TypeError('%(class)s must be subtracted from %(class)s' % {"class": pretty_name(self)}) def __mul__(self, other): if isinstance(other, NUMERIC_TYPES): return self.__class__(default_unit=self._default_unit, **{self.STANDARD_UNIT: (self.standard * other)}) else: raise TypeError('%(class)s must be multiplied with number' % {"class": pretty_name(self)}) def __imul__(self, other): if isinstance(other, NUMERIC_TYPES): self.standard *= float(other) return self else: raise TypeError('%(class)s must be multiplied with number' % {"class": pretty_name(self)}) def __rmul__(self, other): return self * other def __truediv__(self, other): if isinstance(other, self.__class__): return self.standard / other.standard if isinstance(other, NUMERIC_TYPES): return self.__class__(default_unit=self._default_unit, **{self.STANDARD_UNIT: (self.standard / other)}) else: raise TypeError('%(class)s must be divided with number or %(class)s' % {"class": pretty_name(self)}) def __div__(self, other): # Python 2 compatibility return type(self).__truediv__(self, other) def __itruediv__(self, other): if isinstance(other, NUMERIC_TYPES): self.standard /= float(other) return self else: raise TypeError('%(class)s must be divided with number' % {"class": pretty_name(self)}) def __idiv__(self, other): # Python 2 compatibility return type(self).__itruediv__(self, other) def __bool__(self): return bool(self.standard) def __nonzero__(self): # Python 2 compatibility return type(self).__bool__(self) def default_units(self, kwargs): """ Return the unit value and the default units specified from the given keyword arguments dictionary. """ val = 0.0 default_unit = self.STANDARD_UNIT for unit, value in six.iteritems(kwargs): if not isinstance(value, float): value = float(value) if unit in self.UNITS: val += self.UNITS[unit] * value default_unit = unit elif unit in self.ALIAS: u = self.ALIAS[unit] val += self.UNITS[u] * value default_unit = u else: lower = unit.lower() if lower in self.UNITS: val += self.UNITS[lower] * value default_unit = lower elif lower in self.LALIAS: u = self.LALIAS[lower] val += self.UNITS[u] * value default_unit = u else: raise AttributeError('Unknown unit type: %s' % unit) return val, default_unit @classmethod def unit_attname(cls, unit_str): """ Retrieves the unit attribute name for the given unit string. For example, if the given unit string is 'metre', 'm' would be returned. An exception is raised if an attribute cannot be found. """ lower = unit_str.lower() if unit_str in cls.UNITS: return unit_str elif lower in cls.UNITS: return lower elif lower in cls.LALIAS: return cls.LALIAS[lower] else: raise Exception('Could not find a unit keyword associated with "%s"' % unit_str) class Distance(MeasureBase): STANDARD_UNIT = "m" UNITS = { 'chain': 20.1168, 'chain_benoit': 20.116782, 'chain_sears': 20.1167645, 'british_chain_benoit': 20.1167824944, 'british_chain_sears': 20.1167651216, 'british_chain_sears_truncated': 20.116756, 'cm': 0.01, 'british_ft': 0.304799471539, 'british_yd': 0.914398414616, 'clarke_ft': 0.3047972654, 'clarke_link': 0.201166195164, 'fathom': 1.8288, 'ft': 0.3048, 'german_m': 1.0000135965, 'gold_coast_ft': 0.304799710181508, 'indian_yd': 0.914398530744, 'inch': 0.0254, 'km': 1000.0, 'link': 0.201168, 'link_benoit': 0.20116782, 'link_sears': 0.20116765, 'm': 1.0, 'mi': 1609.344, 'mm': 0.001, 'nm': 1852.0, 'nm_uk': 1853.184, 'rod': 5.0292, 'sears_yd': 0.91439841, 'survey_ft': 0.304800609601, 'um': 0.000001, 'yd': 0.9144, } # Unit aliases for `UNIT` terms encountered in Spatial Reference WKT. ALIAS = { 'centimeter': 'cm', 'foot': 'ft', 'inches': 'inch', 'kilometer': 'km', 'kilometre': 'km', 'meter': 'm', 'metre': 'm', 'micrometer': 'um', 'micrometre': 'um', 'millimeter': 'mm', 'millimetre': 'mm', 'mile': 'mi', 'yard': 'yd', 'British chain (Benoit 1895 B)': 'british_chain_benoit', 'British chain (Sears 1922)': 'british_chain_sears', 'British chain (Sears 1922 truncated)': 'british_chain_sears_truncated', 'British foot (Sears 1922)': 'british_ft', 'British foot': 'british_ft', 'British yard (Sears 1922)': 'british_yd', 'British yard': 'british_yd', "Clarke's Foot": 'clarke_ft', "Clarke's link": 'clarke_link', 'Chain (Benoit)': 'chain_benoit', 'Chain (Sears)': 'chain_sears', 'Foot (International)': 'ft', 'German legal metre': 'german_m', 'Gold Coast foot': 'gold_coast_ft', 'Indian yard': 'indian_yd', 'Link (Benoit)': 'link_benoit', 'Link (Sears)': 'link_sears', 'Nautical Mile': 'nm', 'Nautical Mile (UK)': 'nm_uk', 'US survey foot': 'survey_ft', 'U.S. Foot': 'survey_ft', 'Yard (Indian)': 'indian_yd', 'Yard (Sears)': 'sears_yd' } LALIAS = {k.lower(): v for k, v in ALIAS.items()} def __mul__(self, other): if isinstance(other, self.__class__): return Area(default_unit=AREA_PREFIX + self._default_unit, **{AREA_PREFIX + self.STANDARD_UNIT: (self.standard * other.standard)}) elif isinstance(other, NUMERIC_TYPES): return self.__class__(default_unit=self._default_unit, **{self.STANDARD_UNIT: (self.standard * other)}) else: raise TypeError('%(distance)s must be multiplied with number or %(distance)s' % { "distance": pretty_name(self.__class__), }) class Area(MeasureBase): STANDARD_UNIT = AREA_PREFIX + Distance.STANDARD_UNIT # Getting the square units values and the alias dictionary. UNITS = {'%s%s' % (AREA_PREFIX, k): v ** 2 for k, v in Distance.UNITS.items()} ALIAS = {k: '%s%s' % (AREA_PREFIX, v) for k, v in Distance.ALIAS.items()} LALIAS = {k.lower(): v for k, v in ALIAS.items()} def __truediv__(self, other): if isinstance(other, NUMERIC_TYPES): return self.__class__(default_unit=self._default_unit, **{self.STANDARD_UNIT: (self.standard / other)}) else: raise TypeError('%(class)s must be divided by a number' % {"class": pretty_name(self)}) def __div__(self, other): # Python 2 compatibility return type(self).__truediv__(self, other) # Shortcuts D = Distance A = Area
RoboJackets/robocup-software
refs/heads/staging
soccer/gameplay/plays/testing/test_one_touch_pass.py
2
import play import behavior import tactics.one_touch_pass ## Continually runs a one_touch_pass pass tactic class TestOneTouchPass(play.Play): def __init__(self): super().__init__(continuous=True) self.add_transition(behavior.Behavior.State.start, behavior.Behavior.State.running, lambda: True, 'immediately') pass_bhvr = tactics.one_touch_pass.OneTouchPass() self.add_subbehavior(pass_bhvr, 'pass') def execute_running(self): pass_bhvr = self.subbehavior_with_name('pass') if pass_bhvr.is_done_running(): pass_bhvr.restart()
nikhilgarg459/bcs
refs/heads/master
bcs_server/config.py
2
__doc__ = """ This module all the config parameters for bcs serevr """ # Storage config DB_FILE = 'bank.db' # Server config TCP_IP = '127.0.0.1' TCP_PORT = 5010 MAX_CONNECTIONS = 2 MESSAGE_LENGTH = 1024 # Superuser account ADMIN_NAME = 'admin' ADMIN_EMAIL = 'admin@bcs.com' ADMIN_PASSWORD = 'admin' # Log config LOG_FILENAME = 'logs/bcs_server.log' MAX_SIZE_IN_KB = 20 NUMBER_OF_FILES = 5
jacquesd/indico
refs/heads/master
indico/util/fossilize/__init__.py
2
# This file is part of Indico. # Copyright (C) 2002 - 2015 European Organization for Nuclear Research (CERN). # # Indico is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 3 of the # License, or (at your option) any later version. # # Indico is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Indico; if not, see <http://www.gnu.org/licenses/>. """ ``fossilize`` allows us to "serialize" complex python objects into dictionaries and lists. Such operation is very useful for generating JSON data structures from business objects. It works as a wrapper around ``zope.interface``. Some of the features are: * Different "fossil" types for the same source class; * Built-in inheritance support; """ import logging import inspect import re import threading import zope.interface from types import NoneType from itertools import ifilter _fossil_cache = threading.local() def fossilizes(*classList): """ Simple wrapper around 'implements' """ zope.interface.declarations._implements("fossilizes", classList, zope.interface.classImplements) def addFossil(klazz, fossils): """ Declares fossils for a class :param klazz: a class object :type klass: class object :param fossils: a fossil class (or a list of fossil classes) """ if not type(fossils) is list: fossils = [fossils] for fossil in fossils: zope.interface.classImplements(klazz, fossil) def clearCache(): """ Shortcut for Fossilizable.clearCache() """ Fossilizable.clearCache() class NonFossilizableException(Exception): """ Object is not fossilizable (doesn't implement Fossilizable) """ class InvalidFossilException(Exception): """ The fossil name doesn't follow the convention I(\w+)Fossil or has an invalid method name and did not declare a .name tag for it """ class IFossil(zope.interface.Interface): """ Fossil base interface. All fossil classes should derive from this one. """ class Fossilizable(object): """ Base class for all the objects that can be fossilized """ __fossilNameRE = re.compile('^I(\w+)Fossil$') __methodNameRE = re.compile('^get(\w+)|(has\w+)|(is\w+)$') @classmethod def __extractName(cls, name): """ 'De-camelcase' the name """ if name in _fossil_cache.methodName: return _fossil_cache.methodName[name] else: nmatch = cls.__methodNameRE.match(name) if not nmatch: raise InvalidFossilException("method name '%s' is not valid! " "has to start by 'get', 'has', 'is' " "or use 'name' tag" % name) else: group = nmatch.group(1) or nmatch.group(2) or nmatch.group(3) extractedName = group[0:1].lower() + group[1:] _fossil_cache.methodName[name] = extractedName return extractedName @classmethod def __extractFossilName(cls, name): """ Extracts the fossil name from a I(.*)Fossil class name. IMyObjectBasicFossil -> myObjectBasic """ if name in _fossil_cache.fossilName: fossilName = _fossil_cache.fossilName[name] else: fossilNameMatch = Fossilizable.__fossilNameRE.match(name) if fossilNameMatch is None: raise InvalidFossilException("Invalid fossil name: %s." " A fossil name should follow the" " pattern: I(\w+)Fossil." % name) else: fossilName = fossilNameMatch.group(1)[0].lower() + \ fossilNameMatch.group(1)[1:] _fossil_cache.fossilName[name] = fossilName return fossilName @classmethod def __obtainInterface(cls, obj, interfaceArg): """ Obtains the appropriate interface for this object. :param interfaceArg: the target fossile type :type interfaceArg: IFossil, NoneType, or dict * If IFossil, we will use it. * If None, we will take the default fossil (the first one of this class's 'fossilizes' list) * If a dict, we will use the objects class, class name, or full class name as key. Also verifies that the interface obtained through these 3 methods is effectively provided by the object. """ if interfaceArg is None: # we try to take the 1st interface declared with fossilizes implementedInterfaces = list( i for i in zope.interface.implementedBy(obj.__class__) \ if i.extends(IFossil) ) if not implementedInterfaces: raise NonFossilizableException( "Object %s of class %s cannot be fossilized," "no fossils were declared for it" % (str(obj), obj.__class__.__name__)) else: interface = implementedInterfaces[0] elif type(interfaceArg) is dict: className = obj.__class__.__module__ + '.' + \ obj.__class__.__name__ # interfaceArg is a dictionary of class:Fossil pairs if className in interfaceArg: interface = interfaceArg[className] elif obj.__class__ in interfaceArg: interface = interfaceArg[obj.__class__] else: raise NonFossilizableException( "Object %s of class %s cannot be fossilized; " "its class was not a key in the provided fossils dictionary" % (str(obj), obj.__class__.__name__)) else: interface = interfaceArg return interface @classmethod def clearCache(cls): """ Clears the fossil attribute cache """ _fossil_cache.methodName = {} _fossil_cache.fossilName = {} _fossil_cache.fossilInterface = {} _fossil_cache.fossilAttrs = {} # Attribute Cache for Fossils with # fields that are repeated @classmethod def fossilizeIterable(cls, target, interface, useAttrCache=False, filterBy=None, **kwargs): """ Fossilizes an object, be it a 'direct' fossilizable object, or an iterable (dict, list, set); """ if isinstance(target, Fossilizable): return target.fossilize(interface, useAttrCache, **kwargs) else: ttype = type(target) if ttype in [int, str, float, bool, NoneType]: return target elif ttype is dict: container = {} for key, value in target.iteritems(): container[key] = fossilize(value, interface, useAttrCache, **kwargs) return container elif hasattr(target, '__iter__'): if filterBy: iterator = ifilter(filterBy, target) else: iterator = iter(target) # we turn sets and tuples into lists since JSON does not # have sets / tuples return list(fossilize(elem, interface, useAttrCache, **kwargs) for elem in iterator) # If the object is a wrapper for an iterable, by default we fossilize # the iterable the object is wrapping. This behaviour is included in # order to let objects like legacy PersistentLists to be fossilized elif hasattr(target, '__dict__') and len(target.__dict__) == 1 and \ hasattr(target.__dict__.values()[0], '__iter__'): return list(fossilize(elem, interface, useAttrCache, **kwargs) for elem in target.__dict__.values()[0]) elif cls.__obtainInterface(target, interface): return cls.fossilize_obj(target, interface, useAttrCache, **kwargs) else: raise NonFossilizableException("Type %s is not fossilizable!" % ttype) return fossilize(target, interface, useAttrCache, **kwargs) def fossilize(self, interfaceArg=None, useAttrCache=False, **kwargs): return self.fossilize_obj(self, interfaceArg=interfaceArg, useAttrCache=useAttrCache, **kwargs) @classmethod def fossilize_obj(cls, obj, interfaceArg=None, useAttrCache=False, mapClassType=None, **kwargs): """ Fossilizes the object, using the fossil provided by `interface`. :param interfaceArg: the target fossile type :type interfaceArg: IFossil, NoneType, or dict :param useAttrCache: use caching of attributes if same fields are repeated for a fossil :type useAttrCache: boolean """ mapClassType = dict(mapClassType or {}, AvatarUserWrapper='Avatar', AvatarProvisionalWrapper='Avatar', EmailPrincipal='Email') interface = cls.__obtainInterface(obj, interfaceArg) name = interface.getName() fossilName = cls.__extractFossilName(name) result = {} # cache method names for each interface names = _fossil_cache.fossilInterface.get(interface) if names is None: names = interface.names(all=True) _fossil_cache.fossilInterface[interface] = names ### for methodName in names: method = interface[methodName] tags = method.getTaggedValueTags() isAttribute = False if 'onlyIf' in tags: onlyIf = method.getTaggedValue('onlyIf') # If the condition not in the kwargs or the condition False, we do not fossilize the method if not kwargs.get(onlyIf, False): continue # In some cases it is better to use the attribute cache to # speed up the fossilization cacheUsed = False if useAttrCache: try: methodResult = _fossil_cache.fossilAttrs[obj._p_oid][methodName] cacheUsed = True except KeyError: pass if not cacheUsed: # Please use 'produce' as little as possible; # there is almost always a more elegant and modular solution! if 'produce' in tags: methodResult = method.getTaggedValue('produce')(obj) else: attr = getattr(obj, methodName) if callable(attr): try: methodResult = attr() except: logging.getLogger('indico.fossilize').error("Problem fossilizing '%r' with '%s'" % (obj, interfaceArg)) raise else: methodResult = attr isAttribute = True if hasattr(obj, "_p_oid"): _fossil_cache.fossilAttrs.setdefault(obj._p_oid, {})[methodName] = methodResult if 'filterBy' in tags: if 'filters' not in kwargs: raise Exception('No filters defined!') filterName = method.getTaggedValue('filterBy') if filterName in kwargs['filters']: filterBy = kwargs['filters'][filterName] else: raise Exception("No filter '%s' defined!" % filterName) else: filterBy = None # Result conversion if 'result' in tags: targetInterface = method.getTaggedValue('result') #targetInterface = globals()[targetInterfaceName] methodResult = Fossilizable.fossilizeIterable( methodResult, targetInterface, filterBy=filterBy, mapClassType=mapClassType, **kwargs) # Conversion function if 'convert' in tags: convertFunction = method.getTaggedValue('convert') converterArgNames = inspect.getargspec(convertFunction)[0] converterArgs = dict((name, kwargs[name]) for name in converterArgNames if name in kwargs) if '_obj' in converterArgNames: converterArgs['_obj'] = obj try: methodResult = convertFunction(methodResult, **converterArgs) except: logging.getLogger('indico.fossilize').error("Problem fossilizing '%r' with '%s' (%s)" % (obj, interfaceArg, methodName)) raise # Re-name the attribute produced by the method if 'name' in tags: attrName = method.getTaggedValue('name') elif isAttribute: attrName = methodName else: attrName = cls.__extractName(methodName) # In case the name contains dots, each of the 'domains' but the # last one are translated into nested dictionnaries. For example, # if we want to re-name an attribute into "foo.bar.tofu", the # corresponding fossilized attribute will be of the form: # {"foo":{"bar":{"tofu": res,...},...},...} # instead of: # {"foo.bar.tofu": res, ...} current = result attrList = attrName.split('.') while len(attrList) > 1: attr = attrList.pop(0) if attr not in current: current[attr] = {} current = current[attr] # For the last attribute level current[attrList[0]] = methodResult if "_type" in result or "_fossil" in result: raise InvalidFossilException('"_type" or "_fossil"' ' cannot be a fossil attribute name') else: result["_type"] = mapClassType.get(obj.__class__.__name__, obj.__class__.__name__) if fossilName: #we check that it's not an empty string result["_fossil"] = fossilName else: result["_fossil"] = "" return result def fossilize(target, interfaceArg=None, useAttrCache=False, **kwargs): """ Method that allows the "fossilization" process to be called on data structures (lists, dictionaries and sets) as well as normal `Fossilizable` objects. :param target: target object to be fossilized :type target: Fossilizable :param interfaceArg: target fossil type :type interfaceArg: IFossil, NoneType, or dict :param useAttrCache: use the attribute caching :type useAttrCache: boolean """ return Fossilizable.fossilizeIterable(target, interfaceArg, useAttrCache, **kwargs)
bmcfee/gordon
refs/heads/master
examples/playdar_resolver/playdar.py
1
#!/usr/bin/python # Copyright (C) 2010 Michael Mandel # # This file is part of Gordon. # # Gordon is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Gordon is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Gordon. If not, see <http://www.gnu.org/licenses/>. """Basic script to search playdar for a track and get the url.""" import sys import simplejson as json import urllib import time base_url = 'http://localhost:60210' wait_time = 2 def main(): artist, track = sys.argv[1:3] # '/api/?method=resolve&artist=weezer&track=buddy%20holly' res = get_json("%s/api" % base_url, {"artist":artist, "track":track, "method":"resolve"}) qid = res["qid"] # Wait a little for results time.sleep(wait_time) # '/api/?method=get_results&qid=386C50C9-9F9E-4633-B9AE-33EB41E31312' res = get_json("%s/api" % base_url, {"method":"get_results","qid":qid}) if len(res["results"]) > 0: print res["results"][0] sid = res["results"][0]["sid"] # '/sid/E042363C-075C-43AA-8BC2-CC3C18CA0008' print "%s/sid/%s" % (base_url, sid) def get_json(url, params): """Make a request at a url with a dictionary of parameters. Return a dictionary parsed from a json response. """ p_enc = urllib.urlencode(params) full_url = '%s/?%s' % (url, p_enc) print full_url f = urllib.urlopen(full_url) return json.loads(f.read()) if __name__=='__main__': main()
qilicun/python
refs/heads/master
python3/matplotlib/spines_demo_bounds.py
7
""" Demo of spines using custom bounds to limit the extent of the spine. """ import numpy as np import matplotlib.pyplot as plt x = np.linspace(0, 2*np.pi, 50) y = np.sin(x) y2 = y + 0.1 * np.random.normal(size=x.shape) fig, ax = plt.subplots() ax.plot(x, y, 'k--') ax.plot(x, y2, 'ro') # set ticks and tick labels ax.set_xlim((0, 2*np.pi)) ax.set_xticks([0, np.pi, 2*np.pi]) ax.set_xticklabels(['0', '$\pi$','2$\pi$']) ax.set_ylim((-1.5, 1.5)) ax.set_yticks([-1, 0, 1]) # Only draw spine between the y-ticks ax.spines['left'].set_bounds(-1, 1) # Hide the right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') plt.show()
sidartaoliveira/ansible
refs/heads/devel
lib/ansible/compat/__init__.py
241
# (c) 2014, Toshio Kuratomi <tkuratomi@ansible.com> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type ''' Compat library for ansible. This contains compatibility definitions for older python When we need to import a module differently depending on python version, do it here. Then in the code we can simply import from compat in order to get what we want. '''
gleon99/rpyc
refs/heads/logs
rpyc/lib/colls.py
1
from __future__ import with_statement import weakref from threading import Lock import logging class WeakValueDict(object): """a light-weight version of weakref.WeakValueDictionary""" __slots__ = ("_dict",) def __init__(self): self._dict = {} def __repr__(self): return repr(self._dict) def __iter__(self): return self.iterkeys() def __len__(self): return len(self._dict) def __contains__(self, key): try: self[key] except KeyError: return False else: return True def get(self, key, default = None): try: return self[key] except KeyError: return default def __getitem__(self, key): obj = self._dict[key]() if obj is None: raise KeyError(key) return obj def __setitem__(self, key, value): def remover(wr, _dict = self._dict, key = key): _dict.pop(key, None) self._dict[key] = weakref.ref(value, remover) def __delitem__(self, key): del self._dict[key] def iterkeys(self): return self._dict.keys() def keys(self): return self._dict.keys() def itervalues(self): for k in self: yield self[k] def values(self): return list(self.itervalues()) def iteritems(self): for k in self: yield k, self[k] def items(self): return list(self.iteritems()) def clear(self): self._dict.clear() class RefCountingColl(object): """a set-like object that implements refcounting on its contained objects""" __slots__ = ("_lock", "_dict") def __init__(self): self._lock = Lock() self._dict = {} def __repr__(self): logging.info("repr({0})".format(self._dict)) return repr(self._dict) def add(self, obj): with self._lock: logging.info("add({0}),id={1}".format(obj, id(obj))) key = id(obj) slot = self._dict.get(key, None) if slot is None: slot = [obj, 0] else: slot[1] += 1 self._dict[key] = slot logging.info("slot[1]={0}".format(slot[1])) def clear(self): with self._lock: logging.info("clr({0})".format(self._dict)) self._dict.clear() def decref(self, key): with self._lock: logging.info("dec({0})".format(key)) slot = self._dict[key] if slot[1] < 1: logging.info("del {0}".format(slot[0])) del self._dict[key] else: slot[1] -= 1 self._dict[key] = slot logging.info("slot={0}".format(slot)) def __getitem__(self, key): with self._lock: logging.info("get({0})".format(key)) slot = self._dict.get(key, None) logging.info("slot={0}".format(slot)) return slot[0]