repo_name
stringlengths
5
100
ref
stringlengths
12
67
path
stringlengths
4
244
copies
stringlengths
1
8
content
stringlengths
0
1.05M
pitch-sands/i-MPI
refs/heads/master
flask/Lib/site-packages/pip-1.5.6-py2.7.egg/pip/_vendor/requests/packages/urllib3/contrib/ntlmpool.py
714
# urllib3/contrib/ntlmpool.py # Copyright 2008-2013 Andrey Petrov and contributors (see CONTRIBUTORS.txt) # # This module is part of urllib3 and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """ NTLM authenticating pool, contributed by erikcederstran Issue #10, see: http://code.google.com/p/urllib3/issues/detail?id=10 """ try: from http.client import HTTPSConnection except ImportError: from httplib import HTTPSConnection from logging import getLogger from ntlm import ntlm from urllib3 import HTTPSConnectionPool log = getLogger(__name__) class NTLMConnectionPool(HTTPSConnectionPool): """ Implements an NTLM authentication version of an urllib3 connection pool """ scheme = 'https' def __init__(self, user, pw, authurl, *args, **kwargs): """ authurl is a random URL on the server that is protected by NTLM. user is the Windows user, probably in the DOMAIN\\username format. pw is the password for the user. """ super(NTLMConnectionPool, self).__init__(*args, **kwargs) self.authurl = authurl self.rawuser = user user_parts = user.split('\\', 1) self.domain = user_parts[0].upper() self.user = user_parts[1] self.pw = pw def _new_conn(self): # Performs the NTLM handshake that secures the connection. The socket # must be kept open while requests are performed. self.num_connections += 1 log.debug('Starting NTLM HTTPS connection no. %d: https://%s%s' % (self.num_connections, self.host, self.authurl)) headers = {} headers['Connection'] = 'Keep-Alive' req_header = 'Authorization' resp_header = 'www-authenticate' conn = HTTPSConnection(host=self.host, port=self.port) # Send negotiation message headers[req_header] = ( 'NTLM %s' % ntlm.create_NTLM_NEGOTIATE_MESSAGE(self.rawuser)) log.debug('Request headers: %s' % headers) conn.request('GET', self.authurl, None, headers) res = conn.getresponse() reshdr = dict(res.getheaders()) log.debug('Response status: %s %s' % (res.status, res.reason)) log.debug('Response headers: %s' % reshdr) log.debug('Response data: %s [...]' % res.read(100)) # Remove the reference to the socket, so that it can not be closed by # the response object (we want to keep the socket open) res.fp = None # Server should respond with a challenge message auth_header_values = reshdr[resp_header].split(', ') auth_header_value = None for s in auth_header_values: if s[:5] == 'NTLM ': auth_header_value = s[5:] if auth_header_value is None: raise Exception('Unexpected %s response header: %s' % (resp_header, reshdr[resp_header])) # Send authentication message ServerChallenge, NegotiateFlags = \ ntlm.parse_NTLM_CHALLENGE_MESSAGE(auth_header_value) auth_msg = ntlm.create_NTLM_AUTHENTICATE_MESSAGE(ServerChallenge, self.user, self.domain, self.pw, NegotiateFlags) headers[req_header] = 'NTLM %s' % auth_msg log.debug('Request headers: %s' % headers) conn.request('GET', self.authurl, None, headers) res = conn.getresponse() log.debug('Response status: %s %s' % (res.status, res.reason)) log.debug('Response headers: %s' % dict(res.getheaders())) log.debug('Response data: %s [...]' % res.read()[:100]) if res.status != 200: if res.status == 401: raise Exception('Server rejected request: wrong ' 'username or password') raise Exception('Wrong server response: %s %s' % (res.status, res.reason)) res.fp = None log.debug('Connection established') return conn def urlopen(self, method, url, body=None, headers=None, retries=3, redirect=True, assert_same_host=True): if headers is None: headers = {} headers['Connection'] = 'Keep-Alive' return super(NTLMConnectionPool, self).urlopen(method, url, body, headers, retries, redirect, assert_same_host)
FlaPer87/django-nonrel
refs/heads/master
tests/regressiontests/bug639/models.py
106
import tempfile from django.db import models from django.core.files.storage import FileSystemStorage from django.forms import ModelForm temp_storage_dir = tempfile.mkdtemp() temp_storage = FileSystemStorage(temp_storage_dir) class Photo(models.Model): title = models.CharField(max_length=30) image = models.FileField(storage=temp_storage, upload_to='tests') # Support code for the tests; this keeps track of how many times save() # gets called on each instance. def __init__(self, *args, **kwargs): super(Photo, self).__init__(*args, **kwargs) self._savecount = 0 def save(self, force_insert=False, force_update=False): super(Photo, self).save(force_insert, force_update) self._savecount += 1 class PhotoForm(ModelForm): class Meta: model = Photo
adobecs5/urp2015
refs/heads/master
lib/python3.4/site-packages/pip/basecommand.py
79
"""Base Command class, and related routines""" from __future__ import absolute_import import logging import os import sys import traceback import optparse import warnings from pip._vendor.six import StringIO from pip import cmdoptions from pip.locations import running_under_virtualenv from pip.download import PipSession from pip.exceptions import (BadCommand, InstallationError, UninstallationError, CommandError, PreviousBuildDirError) from pip.compat import logging_dictConfig from pip.baseparser import ConfigOptionParser, UpdatingDefaultsHelpFormatter from pip.status_codes import ( SUCCESS, ERROR, UNKNOWN_ERROR, VIRTUALENV_NOT_FOUND, PREVIOUS_BUILD_DIR_ERROR, ) from pip.utils import appdirs, get_prog, normalize_path from pip.utils.deprecation import RemovedInPip8Warning from pip.utils.filesystem import check_path_owner from pip.utils.logging import IndentingFormatter from pip.utils.outdated import pip_version_check __all__ = ['Command'] logger = logging.getLogger(__name__) class Command(object): name = None usage = None hidden = False log_stream = "ext://sys.stdout" def __init__(self, isolated=False): parser_kw = { 'usage': self.usage, 'prog': '%s %s' % (get_prog(), self.name), 'formatter': UpdatingDefaultsHelpFormatter(), 'add_help_option': False, 'name': self.name, 'description': self.__doc__, 'isolated': isolated, } self.parser = ConfigOptionParser(**parser_kw) # Commands should add options to this option group optgroup_name = '%s Options' % self.name.capitalize() self.cmd_opts = optparse.OptionGroup(self.parser, optgroup_name) # Add the general options gen_opts = cmdoptions.make_option_group( cmdoptions.general_group, self.parser, ) self.parser.add_option_group(gen_opts) def _build_session(self, options, retries=None, timeout=None): session = PipSession( cache=( normalize_path(os.path.join(options.cache_dir, "http")) if options.cache_dir else None ), retries=retries if retries is not None else options.retries, insecure_hosts=options.trusted_hosts, ) # Handle custom ca-bundles from the user if options.cert: session.verify = options.cert # Handle SSL client certificate if options.client_cert: session.cert = options.client_cert # Handle timeouts if options.timeout or timeout: session.timeout = ( timeout if timeout is not None else options.timeout ) # Handle configured proxies if options.proxy: session.proxies = { "http": options.proxy, "https": options.proxy, } # Determine if we can prompt the user for authentication or not session.auth.prompting = not options.no_input return session def parse_args(self, args): # factored out for testability return self.parser.parse_args(args) def main(self, args): options, args = self.parse_args(args) if options.quiet: level = "WARNING" elif options.verbose: level = "DEBUG" else: level = "INFO" # Compute the path for our debug log. debug_log_path = os.path.join(appdirs.user_log_dir("pip"), "debug.log") # Ensure that the path for our debug log is owned by the current user # and if it is not, disable the debug log. write_debug_log = check_path_owner(debug_log_path) logging_dictConfig({ "version": 1, "disable_existing_loggers": False, "formatters": { "indent": { "()": IndentingFormatter, "format": ( "%(message)s" if not options.log_explicit_levels else "[%(levelname)s] %(message)s" ), }, }, "handlers": { "console": { "level": level, "class": "pip.utils.logging.ColorizedStreamHandler", "stream": self.log_stream, "formatter": "indent", }, "debug_log": { "level": "DEBUG", "class": "pip.utils.logging.BetterRotatingFileHandler", "filename": debug_log_path, "maxBytes": 10 * 1000 * 1000, # 10 MB "backupCount": 1, "delay": True, "formatter": "indent", }, "user_log": { "level": "DEBUG", "class": "pip.utils.logging.BetterRotatingFileHandler", "filename": options.log or "/dev/null", "delay": True, "formatter": "indent", }, }, "root": { "level": level, "handlers": list(filter(None, [ "console", "debug_log" if write_debug_log else None, "user_log" if options.log else None, ])), }, # Disable any logging besides WARNING unless we have DEBUG level # logging enabled. These use both pip._vendor and the bare names # for the case where someone unbundles our libraries. "loggers": dict( ( name, { "level": ( "WARNING" if level in ["INFO", "ERROR"] else "DEBUG" ), }, ) for name in ["pip._vendor", "distlib", "requests", "urllib3"] ), }) # We add this warning here instead of up above, because the logger # hasn't been configured until just now. if not write_debug_log: logger.warning( "The directory '%s' or its parent directory is not owned by " "the current user and the debug log has been disabled. Please " "check the permissions and owner of that directory. If " "executing pip with sudo, you may want the -H flag.", os.path.dirname(debug_log_path), ) if options.log_explicit_levels: warnings.warn( "--log-explicit-levels has been deprecated and will be removed" " in a future version.", RemovedInPip8Warning, ) # TODO: try to get these passing down from the command? # without resorting to os.environ to hold these. if options.no_input: os.environ['PIP_NO_INPUT'] = '1' if options.exists_action: os.environ['PIP_EXISTS_ACTION'] = ' '.join(options.exists_action) if options.require_venv: # If a venv is required check if it can really be found if not running_under_virtualenv(): logger.critical( 'Could not find an activated virtualenv (required).' ) sys.exit(VIRTUALENV_NOT_FOUND) # Check if we're using the latest version of pip available if (not options.disable_pip_version_check and not getattr(options, "no_index", False)): with self._build_session( options, retries=0, timeout=min(5, options.timeout)) as session: pip_version_check(session) try: status = self.run(options, args) # FIXME: all commands should return an exit status # and when it is done, isinstance is not needed anymore if isinstance(status, int): return status except PreviousBuildDirError as exc: logger.critical(str(exc)) logger.debug('Exception information:\n%s', format_exc()) return PREVIOUS_BUILD_DIR_ERROR except (InstallationError, UninstallationError, BadCommand) as exc: logger.critical(str(exc)) logger.debug('Exception information:\n%s', format_exc()) return ERROR except CommandError as exc: logger.critical('ERROR: %s', exc) logger.debug('Exception information:\n%s', format_exc()) return ERROR except KeyboardInterrupt: logger.critical('Operation cancelled by user') logger.debug('Exception information:\n%s', format_exc()) return ERROR except: logger.critical('Exception:\n%s', format_exc()) return UNKNOWN_ERROR return SUCCESS def format_exc(exc_info=None): if exc_info is None: exc_info = sys.exc_info() out = StringIO() traceback.print_exception(*exc_info, **dict(file=out)) return out.getvalue()
lebabouin/CouchPotatoServer-develop
refs/heads/master
libs/pyutil/scripts/unsort.py
106
#!/usr/bin/env python # randomize the lines of stdin or a file import random, sys def main(): if len(sys.argv) > 1: fname = sys.argv[1] inf = open(fname, 'r') else: inf = sys.stdin lines = inf.readlines() random.shuffle(lines) sys.stdout.writelines(lines) if __name__ == '__main__': main()
JamesMGreene/phantomjs
refs/heads/master
src/qt/qtwebkit/Tools/CygwinDownloader/cygwin-downloader.py
120
#!/usr/bin/env python import os, random, sys, time, urllib # # Options # dry_run = len(sys.argv) > 1 and "--dry-run" in set(sys.argv[1:]) quiet = len(sys.argv) > 1 and "--quiet" in set(sys.argv[1:]) # # Functions and constants # def download_progress_hook(block_count, block_size, total_blocks): if quiet or random.random() > 0.5: return sys.stdout.write(".") sys.stdout.flush() def download_url_to_file(url, file, message): if not quiet: print message + " ", if not dry_run: dir = os.path.dirname(file) if len(dir) and not os.path.exists(dir): os.makedirs(dir) urllib.urlretrieve(url, file, download_progress_hook) if not quiet: print # This is mostly just the list of North America http mirrors from http://cygwin.com/mirrors.html, # but a few have been removed that seemed unresponsive from Cupertino. mirror_servers = ["http://cygwin.elite-systems.org/", "http://mirror.mcs.anl.gov/cygwin/", "http://cygwin.osuosl.org/", "http://mirrors.kernel.org/sourceware/cygwin/", "http://mirrors.xmission.com/cygwin/", "http://sourceware.mirrors.tds.net/pub/sourceware.org/cygwin/"] package_mirror_url = mirror_servers[random.choice(range(len(mirror_servers)))] def download_package(package, message): download_url_to_file(package_mirror_url + package["path"], package["path"], message) required_packages = frozenset(["apache", "bc", "bison", "curl", "diffutils", "e2fsprogs", "emacs", "flex", "gcc", "gperf", "keychain", "make", "minires", "nano", "openssh", "patch", "perl", "perl-libwin32", "python", "rebase", "rsync", "ruby", "subversion", "unzip", "vim", "zip"]) # # Main # print "Using Cygwin mirror server " + package_mirror_url + " to download setup.ini..." urllib.urlretrieve(package_mirror_url + "setup.ini", "setup.ini.orig") downloaded_packages_file_path = "setup.ini.orig" downloaded_packages_file = file(downloaded_packages_file_path, "r") if not dry_run: modified_packages_file = file("setup.ini", "w") packages = {} current_package = '' for line in downloaded_packages_file.readlines(): if line[0] == "@": current_package = line[2:-1] packages[current_package] = {"name": current_package, "needs_download": False, "requires": [], "path": ""} elif line[:10] == "category: ": if current_package in required_packages: line = "category: Base\n" if "Base" in set(line[10:-1].split()): packages[current_package]["needs_download"] = True elif line[:10] == "requires: ": packages[current_package]["requires"] = line[10:].split() packages[current_package]["requires"].sort() elif line[:9] == "install: " and not len(packages[current_package]["path"]): end_of_path = line.find(" ", 9) if end_of_path != -1: packages[current_package]["path"] = line[9:end_of_path] if not dry_run: modified_packages_file.write(line) downloaded_packages_file.close() os.remove(downloaded_packages_file_path) if not dry_run: modified_packages_file.close() names_to_download = set() package_names = packages.keys() package_names.sort() def add_package_and_dependencies(name): if name in names_to_download: return if not name in packages: return packages[name]["needs_download"] = True names_to_download.add(name) for dep in packages[name]["requires"]: add_package_and_dependencies(dep) for name in package_names: if packages[name]["needs_download"]: add_package_and_dependencies(name) downloaded_so_far = 0 for name in package_names: if packages[name]["needs_download"]: downloaded_so_far += 1 download_package(packages[name], "Downloading package %3d of %3d (%s)" % (downloaded_so_far, len(names_to_download), name)) download_url_to_file("http://cygwin.com/setup.exe", "setup.exe", "Downloading setup.exe") seconds_to_sleep = 10 print """ Finished downloading Cygwin. In %d seconds, I will run setup.exe. Select the "Install from Local Directory" option and browse to "%s" when asked for the "Local Package Directory". """ % (seconds_to_sleep, os.getcwd()) while seconds_to_sleep > 0: print "%d..." % seconds_to_sleep, sys.stdout.flush() time.sleep(1) seconds_to_sleep -= 1 print if not dry_run: os.execl("setup.exe")
jeroen92/reclass
refs/heads/master
setup.py
3
# # -*- coding: utf-8 -*- # # This file is part of reclass (http://github.com/madduck/reclass) # # Copyright © 2007–13 martin f. krafft <madduck@madduck.net> # Released under the terms of the Artistic Licence 2.0 # from reclass.version import * from setuptools import setup, find_packages ADAPTERS = ['salt', 'ansible'] console_scripts = ['reclass = reclass.cli:main'] console_scripts.extend('reclass-{0} = reclass.adapters.{0}:cli'.format(i) for i in ADAPTERS) setup( name = RECLASS_NAME, description = DESCRIPTION, version = VERSION, author = AUTHOR, author_email = AUTHOR_EMAIL, license = LICENCE, url = URL, packages = find_packages(), entry_points = { 'console_scripts': console_scripts }, install_requires = ['pyyaml'] )
rkmaddox/mne-python
refs/heads/master
mne/io/ctf/tests/test_ctf.py
4
# Authors: Eric Larson <larson.eric.d@gmail.com> # # License: BSD (3-clause) import copy import os from os import path as op import shutil import numpy as np from numpy import array_equal from numpy.testing import assert_allclose, assert_array_equal import pytest import mne from mne import (pick_types, read_annotations, create_info, events_from_annotations, make_forward_solution) from mne.transforms import apply_trans from mne.io import read_raw_fif, read_raw_ctf, RawArray from mne.io.compensator import get_current_comp from mne.io.ctf.constants import CTF from mne.io.tests.test_raw import _test_raw_reader from mne.tests.test_annotations import _assert_annotations_equal from mne.utils import _clean_names, catch_logging, _stamp_to_dt from mne.datasets import testing, spm_face, brainstorm from mne.io.constants import FIFF ctf_dir = op.join(testing.data_path(download=False), 'CTF') ctf_fname_continuous = 'testdata_ctf.ds' ctf_fname_1_trial = 'testdata_ctf_short.ds' ctf_fname_2_trials = 'testdata_ctf_pseudocontinuous.ds' ctf_fname_discont = 'testdata_ctf_short_discontinuous.ds' ctf_fname_somato = 'somMDYO-18av.ds' ctf_fname_catch = 'catch-alp-good-f.ds' somato_fname = op.join( brainstorm.bst_raw.data_path(download=False), 'MEG', 'bst_raw', 'subj001_somatosensory_20111109_01_AUX-f.ds' ) block_sizes = { ctf_fname_continuous: 12000, ctf_fname_1_trial: 4801, ctf_fname_2_trials: 12000, ctf_fname_discont: 1201, ctf_fname_somato: 313, ctf_fname_catch: 2500, } single_trials = ( ctf_fname_continuous, ctf_fname_1_trial, ) ctf_fnames = tuple(sorted(block_sizes.keys())) @pytest.mark.slowtest @testing.requires_testing_data def test_read_ctf(tmpdir): """Test CTF reader.""" temp_dir = str(tmpdir) out_fname = op.join(temp_dir, 'test_py_raw.fif') # Create a dummy .eeg file so we can test our reading/application of it os.mkdir(op.join(temp_dir, 'randpos')) ctf_eeg_fname = op.join(temp_dir, 'randpos', ctf_fname_catch) shutil.copytree(op.join(ctf_dir, ctf_fname_catch), ctf_eeg_fname) with pytest.warns(RuntimeWarning, match='RMSP .* changed to a MISC ch'): raw = _test_raw_reader(read_raw_ctf, directory=ctf_eeg_fname) picks = pick_types(raw.info, meg=False, eeg=True) pos = np.random.RandomState(42).randn(len(picks), 3) fake_eeg_fname = op.join(ctf_eeg_fname, 'catch-alp-good-f.eeg') # Create a bad file with open(fake_eeg_fname, 'wb') as fid: fid.write('foo\n'.encode('ascii')) pytest.raises(RuntimeError, read_raw_ctf, ctf_eeg_fname) # Create a good file with open(fake_eeg_fname, 'wb') as fid: for ii, ch_num in enumerate(picks): args = (str(ch_num + 1), raw.ch_names[ch_num],) + tuple( '%0.5f' % x for x in 100 * pos[ii]) # convert to cm fid.write(('\t'.join(args) + '\n').encode('ascii')) pos_read_old = np.array([raw.info['chs'][p]['loc'][:3] for p in picks]) with pytest.warns(RuntimeWarning, match='RMSP .* changed to a MISC ch'): raw = read_raw_ctf(ctf_eeg_fname) # read modified data pos_read = np.array([raw.info['chs'][p]['loc'][:3] for p in picks]) assert_allclose(apply_trans(raw.info['ctf_head_t'], pos), pos_read, rtol=1e-5, atol=1e-5) assert (pos_read == pos_read_old).mean() < 0.1 shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_randpos_raw.fif'), op.join(temp_dir, 'randpos', 'catch-alp-good-f.ds_raw.fif')) # Create a version with no hc, starting out *with* EEG pos (error) os.mkdir(op.join(temp_dir, 'nohc')) ctf_no_hc_fname = op.join(temp_dir, 'no_hc', ctf_fname_catch) shutil.copytree(ctf_eeg_fname, ctf_no_hc_fname) remove_base = op.join(ctf_no_hc_fname, op.basename(ctf_fname_catch[:-3])) os.remove(remove_base + '.hc') with pytest.warns(RuntimeWarning, match='MISC channel'): pytest.raises(RuntimeError, read_raw_ctf, ctf_no_hc_fname) os.remove(remove_base + '.eeg') shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_nohc_raw.fif'), op.join(temp_dir, 'no_hc', 'catch-alp-good-f.ds_raw.fif')) # All our files use_fnames = [op.join(ctf_dir, c) for c in ctf_fnames] for fname in use_fnames: raw_c = read_raw_fif(fname + '_raw.fif', preload=True) with pytest.warns(None): # sometimes matches "MISC channel" raw = read_raw_ctf(fname) # check info match assert_array_equal(raw.ch_names, raw_c.ch_names) assert_allclose(raw.times, raw_c.times) assert_allclose(raw._cals, raw_c._cals) assert (raw.info['meas_id']['version'] == raw_c.info['meas_id']['version'] + 1) for t in ('dev_head_t', 'dev_ctf_t', 'ctf_head_t'): assert_allclose(raw.info[t]['trans'], raw_c.info[t]['trans'], rtol=1e-4, atol=1e-7) # XXX 2019/11/29 : MNC-C FIF conversion files don't have meas_date set. # Consider adding meas_date to below checks once this is addressed in # MNE-C for key in ('acq_pars', 'acq_stim', 'bads', 'ch_names', 'custom_ref_applied', 'description', 'events', 'experimenter', 'highpass', 'line_freq', 'lowpass', 'nchan', 'proj_id', 'proj_name', 'projs', 'sfreq', 'subject_info'): assert raw.info[key] == raw_c.info[key], key if op.basename(fname) not in single_trials: # We don't force buffer size to be smaller like MNE-C assert raw.buffer_size_sec == raw_c.buffer_size_sec assert len(raw.info['comps']) == len(raw_c.info['comps']) for c1, c2 in zip(raw.info['comps'], raw_c.info['comps']): for key in ('colcals', 'rowcals'): assert_allclose(c1[key], c2[key]) assert c1['save_calibrated'] == c2['save_calibrated'] for key in ('row_names', 'col_names', 'nrow', 'ncol'): assert_array_equal(c1['data'][key], c2['data'][key]) assert_allclose(c1['data']['data'], c2['data']['data'], atol=1e-7, rtol=1e-5) assert_allclose(raw.info['hpi_results'][0]['coord_trans']['trans'], raw_c.info['hpi_results'][0]['coord_trans']['trans'], rtol=1e-5, atol=1e-7) assert len(raw.info['chs']) == len(raw_c.info['chs']) for ii, (c1, c2) in enumerate(zip(raw.info['chs'], raw_c.info['chs'])): for key in ('kind', 'scanno', 'unit', 'ch_name', 'unit_mul', 'range', 'coord_frame', 'coil_type', 'logno'): if c1['ch_name'] == 'RMSP' and \ 'catch-alp-good-f' in fname and \ key in ('kind', 'unit', 'coord_frame', 'coil_type', 'logno'): continue # XXX see below... if key == 'coil_type' and c1[key] == FIFF.FIFFV_COIL_EEG: # XXX MNE-C bug that this is not set assert c2[key] == FIFF.FIFFV_COIL_NONE continue assert c1[key] == c2[key], key for key in ('cal',): assert_allclose(c1[key], c2[key], atol=1e-6, rtol=1e-4, err_msg='raw.info["chs"][%d][%s]' % (ii, key)) # XXX 2016/02/24: fixed bug with normal computation that used # to exist, once mne-C tools are updated we should update our FIF # conversion files, then the slices can go away (and the check # can be combined with that for "cal") for key in ('loc',): if c1['ch_name'] == 'RMSP' and 'catch-alp-good-f' in fname: continue if (c2[key][:3] == 0.).all(): check = [np.nan] * 3 else: check = c2[key][:3] assert_allclose(c1[key][:3], check, atol=1e-6, rtol=1e-4, err_msg='raw.info["chs"][%d][%s]' % (ii, key)) if (c2[key][3:] == 0.).all(): check = [np.nan] * 3 else: check = c2[key][9:12] assert_allclose(c1[key][9:12], check, atol=1e-6, rtol=1e-4, err_msg='raw.info["chs"][%d][%s]' % (ii, key)) # Make sure all digitization points are in the MNE head coord frame for p in raw.info['dig']: assert p['coord_frame'] == FIFF.FIFFV_COORD_HEAD, \ 'dig points must be in FIFF.FIFFV_COORD_HEAD' if fname.endswith('catch-alp-good-f.ds'): # omit points from .pos file raw.info['dig'] = raw.info['dig'][:-10] # XXX: Next test would fail because c-tools assign the fiducials from # CTF data as HPI. Should eventually clarify/unify with Matti. # assert_dig_allclose(raw.info, raw_c.info) # check data match raw_c.save(out_fname, overwrite=True, buffer_size_sec=1.) raw_read = read_raw_fif(out_fname) # so let's check tricky cases based on sample boundaries rng = np.random.RandomState(0) pick_ch = rng.permutation(np.arange(len(raw.ch_names)))[:10] bnd = int(round(raw.info['sfreq'] * raw.buffer_size_sec)) assert bnd == raw._raw_extras[0]['block_size'] assert bnd == block_sizes[op.basename(fname)] slices = (slice(0, bnd), slice(bnd - 1, bnd), slice(3, bnd), slice(3, 300), slice(None)) if len(raw.times) >= 2 * bnd: # at least two complete blocks slices = slices + (slice(bnd, 2 * bnd), slice(bnd, bnd + 1), slice(0, bnd + 100)) for sl_time in slices: assert_allclose(raw[pick_ch, sl_time][0], raw_c[pick_ch, sl_time][0]) assert_allclose(raw_read[pick_ch, sl_time][0], raw_c[pick_ch, sl_time][0]) # all data / preload raw.load_data() assert_allclose(raw[:][0], raw_c[:][0], atol=1e-15) # test bad segment annotations if 'testdata_ctf_short.ds' in fname: assert 'bad' in raw.annotations.description[0] assert_allclose(raw.annotations.onset, [2.15]) assert_allclose(raw.annotations.duration, [0.0225]) with pytest.raises(TypeError, match='path-like'): read_raw_ctf(1) with pytest.raises(FileNotFoundError, match='does not exist'): read_raw_ctf(ctf_fname_continuous + 'foo.ds') # test ignoring of system clock read_raw_ctf(op.join(ctf_dir, ctf_fname_continuous), 'ignore') with pytest.raises(ValueError, match='system_clock'): read_raw_ctf(op.join(ctf_dir, ctf_fname_continuous), 'foo') @testing.requires_testing_data def test_rawctf_clean_names(): """Test RawCTF _clean_names method.""" # read test data with pytest.warns(RuntimeWarning, match='ref channel RMSP did not'): raw = read_raw_ctf(op.join(ctf_dir, ctf_fname_catch)) raw_cleaned = read_raw_ctf(op.join(ctf_dir, ctf_fname_catch), clean_names=True) test_channel_names = _clean_names(raw.ch_names) test_info_comps = copy.deepcopy(raw.info['comps']) # channel names should not be cleaned by default assert raw.ch_names != test_channel_names chs_ch_names = [ch['ch_name'] for ch in raw.info['chs']] assert chs_ch_names != test_channel_names for test_comp, comp in zip(test_info_comps, raw.info['comps']): for key in ('row_names', 'col_names'): assert not array_equal(_clean_names(test_comp['data'][key]), comp['data'][key]) # channel names should be cleaned if clean_names=True assert raw_cleaned.ch_names == test_channel_names for ch, test_ch_name in zip(raw_cleaned.info['chs'], test_channel_names): assert ch['ch_name'] == test_ch_name for test_comp, comp in zip(test_info_comps, raw_cleaned.info['comps']): for key in ('row_names', 'col_names'): assert _clean_names(test_comp['data'][key]) == comp['data'][key] @spm_face.requires_spm_data def test_read_spm_ctf(): """Test CTF reader with omitted samples.""" data_path = spm_face.data_path() raw_fname = op.join(data_path, 'MEG', 'spm', 'SPM_CTF_MEG_example_faces1_3D.ds') raw = read_raw_ctf(raw_fname) extras = raw._raw_extras[0] assert extras['n_samp'] == raw.n_times assert extras['n_samp'] != extras['n_samp_tot'] # Test that LPA, nasion and RPA are correct. coord_frames = np.array([d['coord_frame'] for d in raw.info['dig']]) assert np.all(coord_frames == FIFF.FIFFV_COORD_HEAD) cardinals = {d['ident']: d['r'] for d in raw.info['dig']} assert cardinals[1][0] < cardinals[2][0] < cardinals[3][0] # x coord assert cardinals[1][1] < cardinals[2][1] # y coord assert cardinals[3][1] < cardinals[2][1] # y coord for key in cardinals.keys(): assert_allclose(cardinals[key][2], 0, atol=1e-6) # z coord @testing.requires_testing_data @pytest.mark.parametrize('comp_grade', [0, 1]) def test_saving_picked(tmpdir, comp_grade): """Test saving picked CTF instances.""" temp_dir = str(tmpdir) out_fname = op.join(temp_dir, 'test_py_raw.fif') raw = read_raw_ctf(op.join(ctf_dir, ctf_fname_1_trial)) assert raw.info['meas_date'] == _stamp_to_dt((1367228160, 0)) raw.crop(0, 1).load_data() assert raw.compensation_grade == get_current_comp(raw.info) == 0 assert len(raw.info['comps']) == 5 pick_kwargs = dict(meg=True, ref_meg=False, verbose=True) raw.apply_gradient_compensation(comp_grade) with catch_logging() as log: raw_pick = raw.copy().pick_types(**pick_kwargs) assert len(raw.info['comps']) == 5 assert len(raw_pick.info['comps']) == 0 log = log.getvalue() assert 'Removing 5 compensators' in log raw_pick.save(out_fname, overwrite=True) # should work raw2 = read_raw_fif(out_fname) assert (raw_pick.ch_names == raw2.ch_names) assert_array_equal(raw_pick.times, raw2.times) assert_allclose(raw2[0:20][0], raw_pick[0:20][0], rtol=1e-6, atol=1e-20) # atol is very small but > 0 raw2 = read_raw_fif(out_fname, preload=True) assert (raw_pick.ch_names == raw2.ch_names) assert_array_equal(raw_pick.times, raw2.times) assert_allclose(raw2[0:20][0], raw_pick[0:20][0], rtol=1e-6, atol=1e-20) # atol is very small but > 0 @brainstorm.bst_raw.requires_bstraw_data def test_read_ctf_annotations(): """Test reading CTF marker file.""" EXPECTED_LATENCIES = np.array([ 5640, 7950, 9990, 12253, 14171, 16557, 18896, 20846, # noqa 22702, 24990, 26830, 28974, 30906, 33077, 34985, 36907, # noqa 38922, 40760, 42881, 45222, 47457, 49618, 51802, 54227, # noqa 56171, 58274, 60394, 62375, 64444, 66767, 68827, 71109, # noqa 73499, 75807, 78146, 80415, 82554, 84508, 86403, 88426, # noqa 90746, 92893, 94779, 96822, 98996, 99001, 100949, 103325, # noqa 105322, 107678, 109667, 111844, 113682, 115817, 117691, 119663, # noqa 121966, 123831, 126110, 128490, 130521, 132808, 135204, 137210, # noqa 139130, 141390, 143660, 145748, 147889, 150205, 152528, 154646, # noqa 156897, 159191, 161446, 163722, 166077, 168467, 170624, 172519, # noqa 174719, 176886, 179062, 181405, 183709, 186034, 188454, 190330, # noqa 192660, 194682, 196834, 199161, 201035, 203008, 204999, 207409, # noqa 209661, 211895, 213957, 216005, 218040, 220178, 222137, 224305, # noqa 226297, 228654, 230755, 232909, 235205, 237373, 239723, 241762, # noqa 243748, 245762, 247801, 250055, 251886, 254252, 256441, 258354, # noqa 260680, 263026, 265048, 267073, 269235, 271556, 273927, 276197, # noqa 278436, 280536, 282691, 284933, 287061, 288936, 290941, 293183, # noqa 295369, 297729, 299626, 301546, 303449, 305548, 307882, 310124, # noqa 312374, 314509, 316815, 318789, 320981, 322879, 324878, 326959, # noqa 329341, 331200, 331201, 333469, 335584, 337984, 340143, 342034, # noqa 344360, 346309, 348544, 350970, 353052, 355227, 357449, 359603, # noqa 361725, 363676, 365735, 367799, 369777, 371904, 373856, 376204, # noqa 378391, 380800, 382859, 385161, 387093, 389434, 391624, 393785, # noqa 396093, 398214, 400198, 402166, 404104, 406047, 408372, 410686, # noqa 413029, 414975, 416850, 418797, 420824, 422959, 425026, 427215, # noqa 429278, 431668 # noqa ]) - 1 # Fieldtrip has 1 sample difference with MNE raw = RawArray( data=np.empty((1, 432000), dtype=np.float64), info=create_info(ch_names=1, sfreq=1200.0)) raw.set_meas_date(read_raw_ctf(somato_fname).info['meas_date']) raw.set_annotations(read_annotations(somato_fname)) events, _ = events_from_annotations(raw) latencies = np.sort(events[:, 0]) assert_allclose(latencies, EXPECTED_LATENCIES, atol=1e-6) @testing.requires_testing_data def test_read_ctf_annotations_smoke_test(): """Test reading CTF marker file. `testdata_ctf_mc.ds` has no trials or offsets therefore its a plain reading of whatever is in the MarkerFile.mrk. """ EXPECTED_ONSET = [ 0., 0.1425, 0.285, 0.42833333, 0.57083333, 0.71416667, 0.85666667, 0.99916667, 1.1425, 1.285, 1.4275, 1.57083333, 1.71333333, 1.85666667, 1.99916667, 2.14166667, 2.285, 2.4275, 2.57083333, 2.71333333, 2.85583333, 2.99916667, 3.14166667, 3.28416667, 3.4275, 3.57, 3.71333333, 3.85583333, 3.99833333, 4.14166667, 4.28416667, 4.42666667, 4.57, 4.7125, 4.85583333, 4.99833333 ] fname = op.join(ctf_dir, 'testdata_ctf_mc.ds') annot = read_annotations(fname) assert_allclose(annot.onset, EXPECTED_ONSET) raw = read_raw_ctf(fname) _assert_annotations_equal(raw.annotations, annot, 1e-6) def _read_res4_mag_comp(dsdir): res = mne.io.ctf.res4._read_res4(dsdir) for ch in res['chs']: if ch['sensor_type_index'] == CTF.CTFV_REF_MAG_CH: ch['grad_order_no'] = 1 return res def _bad_res4_grad_comp(dsdir): res = mne.io.ctf.res4._read_res4(dsdir) for ch in res['chs']: if ch['sensor_type_index'] == CTF.CTFV_MEG_CH: ch['grad_order_no'] = 1 break return res @testing.requires_testing_data def test_read_ctf_mag_bad_comp(tmpdir, monkeypatch): """Test CTF reader with mag comps and bad comps.""" path = op.join(ctf_dir, ctf_fname_continuous) raw_orig = read_raw_ctf(path) assert raw_orig.compensation_grade == 0 monkeypatch.setattr(mne.io.ctf.ctf, '_read_res4', _read_res4_mag_comp) raw_mag_comp = read_raw_ctf(path) assert raw_mag_comp.compensation_grade == 0 sphere = mne.make_sphere_model() src = mne.setup_volume_source_space(pos=50., exclude=5., bem=sphere) assert src[0]['nuse'] == 26 for grade in (0, 1): raw_orig.apply_gradient_compensation(grade) raw_mag_comp.apply_gradient_compensation(grade) args = (None, src, sphere, True, False) fwd_orig = make_forward_solution(raw_orig.info, *args) fwd_mag_comp = make_forward_solution(raw_mag_comp.info, *args) assert_allclose(fwd_orig['sol']['data'], fwd_mag_comp['sol']['data']) monkeypatch.setattr(mne.io.ctf.ctf, '_read_res4', _bad_res4_grad_comp) with pytest.raises(RuntimeError, match='inconsistent compensation grade'): read_raw_ctf(path)
bixbydev/Bixby
refs/heads/master
google/gdata-2.0.18/samples/analytics/account_feed_demo.py
41
#!/usr/bin/python # # Copyright 2009 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Sample Google Analytics Data Export API Account Feed application. This sample demonstrates how to retrieve the important data from the Google Analytics Data Export API Account feed using the Python Client library. This requires a Google Analytics username and password and uses the Client Login authorization routine. Class AccountFeedDemo: Prints all the import Account Feed data. """ __author__ = 'api.nickm@google.com (Nick Mihailovski)' import gdata.analytics.client import gdata.sample_util def main(): """Main fucntion for the sample.""" demo = AccountFeedDemo() demo.PrintFeedDetails() demo.PrintAdvancedSegments() demo.PrintCustomVarForOneEntry() demo.PrintGoalsForOneEntry() demo.PrintAccountEntries() class AccountFeedDemo(object): """Prints the Google Analytics account feed Attributes: account_feed: Google Analytics AccountList returned form the API. """ def __init__(self): """Inits AccountFeedDemo.""" SOURCE_APP_NAME = 'Google-accountFeedDemoPython-v1' my_client = gdata.analytics.client.AnalyticsClient(source=SOURCE_APP_NAME) try: gdata.sample_util.authorize_client( my_client, service=my_client.auth_service, source=SOURCE_APP_NAME, scopes=['https://www.google.com/analytics/feeds/']) except gdata.client.BadAuthentication: exit('Invalid user credentials given.') except gdata.client.Error: exit('Login Error') account_query = gdata.analytics.client.AccountFeedQuery() self.feed = my_client.GetAccountFeed(account_query) def PrintFeedDetails(self): """Prints important Analytics related data found at the top of the feed.""" print '-------- Important Feed Data --------' print 'Feed Title = ' + self.feed.title.text print 'Feed Id = ' + self.feed.id.text print 'Total Results Found = ' + self.feed.total_results.text print 'Start Index = ' + self.feed.start_index.text print 'Results Returned = ' + self.feed.items_per_page.text def PrintAdvancedSegments(self): """Prints the advanced segments for this user.""" print '-------- Advances Segments --------' if not self.feed.segment: print 'No advanced segments found' else: for segment in self.feed.segment: print 'Segment Name = ' + segment.name print 'Segment Id = ' + segment.id print 'Segment Definition = ' + segment.definition.text def PrintCustomVarForOneEntry(self): """Prints custom variable information for the first profile that has custom variable configured.""" print '-------- Custom Variables --------' if not self.feed.entry: print 'No entries found' else: for entry in self.feed.entry: if entry.custom_variable: for custom_variable in entry.custom_variable: print 'Custom Variable Index = ' + custom_variable.index print 'Custom Variable Name = ' + custom_variable.name print 'Custom Variable Scope = ' + custom_variable.scope return print 'No custom variables defined for this user' def PrintGoalsForOneEntry(self): """Prints All the goal information for one profile.""" print '-------- Goal Configuration --------' if not self.feed.entry: print 'No entries found' else: for entry in self.feed.entry: if entry.goal: for goal in entry.goal: print 'Goal Number = ' + goal.number print 'Goal Name = ' + goal.name print 'Goal Value = ' + goal.value print 'Goal Active = ' + goal.active if goal.destination: self.PrintDestinationGoal(goal.destination) elif goal.engagement: self.PrintEngagementGoal(goal.engagement) return def PrintDestinationGoal(self, destination): """Prints the important information for destination goals including all the configured steps if they exist. Args: destination: gdata.data.Destination The destination goal configuration. """ print '----- Destination Goal -----' print 'Expression = ' + destination.expression print 'Match Type = ' + destination.match_type print 'Step 1 Required = ' + destination.step1_required print 'Case Sensitive = ' + destination.case_sensitive # Print goal steps. if destination.step: print '----- Destination Goal Steps -----' for step in destination.step: print 'Step Number = ' + step.number print 'Step Name = ' + step.name print 'Step Path = ' + step.path def PrintEngagementGoal(self, engagement): """Prints the important information for engagement goals. Args: engagement: gdata.data.Engagement The engagement goal configuration. """ print '----- Engagement Goal -----' print 'Goal Type = ' + engagement.type print 'Goal Engagement = ' + engagement.comparison print 'Goal Threshold = ' + engagement.threshold_value def PrintAccountEntries(self): """Prints important Analytics data found in each account entry""" print '-------- First 1000 Profiles in Account Feed --------' if not self.feed.entry: print 'No entries found' else: for entry in self.feed.entry: print 'Web Property ID = ' + entry.GetProperty('ga:webPropertyId').value print 'Account Name = ' + entry.GetProperty('ga:accountName').value print 'Account Id = ' + entry.GetProperty('ga:accountId').value print 'Profile Name = ' + entry.title.text print 'Profile ID = ' + entry.GetProperty('ga:profileId').value print 'Table ID = ' + entry.table_id.text print 'Currency = ' + entry.GetProperty('ga:currency').value print 'TimeZone = ' + entry.GetProperty('ga:timezone').value if entry.custom_variable: print 'This profile has custom variables' if entry.goal: print 'This profile has goals' if __name__ == '__main__': main()
rruebner/odoo
refs/heads/master
addons/pad/__init__.py
433
# -*- coding: utf-8 -*- import pad import res_company # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
indictranstech/fbd_erpnext
refs/heads/develop
erpnext/selling/report/sales_person_target_variance_item_group_wise/sales_person_target_variance_item_group_wise.py
52
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import frappe from frappe import _, msgprint from frappe.utils import flt from erpnext.accounts.utils import get_fiscal_year from erpnext.controllers.trends import get_period_date_ranges, get_period_month_ranges def execute(filters=None): if not filters: filters = {} columns = get_columns(filters) period_month_ranges = get_period_month_ranges(filters["period"], filters["fiscal_year"]) sim_map = get_salesperson_item_month_map(filters) data = [] for salesperson, salesperson_items in sim_map.items(): for item_group, monthwise_data in salesperson_items.items(): row = [salesperson, item_group] totals = [0, 0, 0] for relevant_months in period_month_ranges: period_data = [0, 0, 0] for month in relevant_months: month_data = monthwise_data.get(month, {}) for i, fieldname in enumerate(["target", "achieved", "variance"]): value = flt(month_data.get(fieldname)) period_data[i] += value totals[i] += value period_data[2] = period_data[0] - period_data[1] row += period_data totals[2] = totals[0] - totals[1] row += totals data.append(row) return columns, sorted(data, key=lambda x: (x[0], x[1])) def get_columns(filters): for fieldname in ["fiscal_year", "period", "target_on"]: if not filters.get(fieldname): label = (" ".join(fieldname.split("_"))).title() msgprint(_("Please specify") + ": " + label, raise_exception=True) columns = [_("Sales Person") + ":Link/Sales Person:120", _("Item Group") + ":Link/Item Group:120"] group_months = False if filters["period"] == "Monthly" else True for from_date, to_date in get_period_date_ranges(filters["period"], filters["fiscal_year"]): for label in [_("Target") + " (%s)", _("Achieved") + " (%s)", _("Variance") + " (%s)"]: if group_months: label = label % (_(from_date.strftime("%b")) + " - " + _(to_date.strftime("%b"))) else: label = label % _(from_date.strftime("%b")) columns.append(label+":Float:120") return columns + [_("Total Target") + ":Float:120", _("Total Achieved") + ":Float:120", _("Total Variance") + ":Float:120"] #Get sales person & item group details def get_salesperson_details(filters): return frappe.db.sql("""select sp.name, td.item_group, td.target_qty, td.target_amount, sp.distribution_id from `tabSales Person` sp, `tabTarget Detail` td where td.parent=sp.name and td.fiscal_year=%s order by sp.name""", (filters["fiscal_year"]), as_dict=1) #Get target distribution details of item group def get_target_distribution_details(filters): target_details = {} for d in frappe.db.sql("""select md.name, mdp.month, mdp.percentage_allocation from `tabMonthly Distribution Percentage` mdp, `tabMonthly Distribution` md where mdp.parent=md.name and md.fiscal_year=%s""", (filters["fiscal_year"]), as_dict=1): target_details.setdefault(d.name, {}).setdefault(d.month, flt(d.percentage_allocation)) return target_details #Get achieved details from sales order def get_achieved_details(filters): start_date, end_date = get_fiscal_year(fiscal_year = filters["fiscal_year"])[1:] item_details = frappe.db.sql("""select soi.item_code, soi.qty, soi.base_net_amount, so.transaction_date, st.sales_person, MONTHNAME(so.transaction_date) as month_name from `tabSales Order Item` soi, `tabSales Order` so, `tabSales Team` st where soi.parent=so.name and so.docstatus=1 and st.parent=so.name and so.transaction_date>=%s and so.transaction_date<=%s""" % ('%s', '%s'), (start_date, end_date), as_dict=1) item_actual_details = {} for d in item_details: item_actual_details.setdefault(d.sales_person, {}).setdefault(\ get_item_group(d.item_code), []).append(d) return item_actual_details def get_salesperson_item_month_map(filters): import datetime salesperson_details = get_salesperson_details(filters) tdd = get_target_distribution_details(filters) achieved_details = get_achieved_details(filters) sim_map = {} for sd in salesperson_details: for month_id in range(1, 13): month = datetime.date(2013, month_id, 1).strftime('%B') sim_map.setdefault(sd.name, {}).setdefault(sd.item_group, {})\ .setdefault(month, frappe._dict({ "target": 0.0, "achieved": 0.0 })) tav_dict = sim_map[sd.name][sd.item_group][month] month_percentage = tdd.get(sd.distribution_id, {}).get(month, 0) \ if sd.distribution_id else 100.0/12 for ad in achieved_details.get(sd.name, {}).get(sd.item_group, []): if (filters["target_on"] == "Quantity"): tav_dict.target = flt(sd.target_qty) * month_percentage / 100 if ad.month_name == month: tav_dict.achieved += ad.qty if (filters["target_on"] == "Amount"): tav_dict.target = flt(sd.target_amount) * month_percentage / 100 if ad.month_name == month: tav_dict.achieved += ad.base_net_amount return sim_map def get_item_group(item_name): return frappe.db.get_value("Item", item_name, "item_group")
talhajaved/nyuadmarket
refs/heads/master
flask/lib/python2.7/site-packages/setuptools/tests/test_integration.py
125
"""Run some integration tests. Try to install a few packages. """ import glob import os import sys import pytest from setuptools.command.easy_install import easy_install from setuptools.command import easy_install as easy_install_pkg from setuptools.dist import Distribution from setuptools.compat import urlopen def setup_module(module): packages = 'stevedore', 'virtualenvwrapper', 'pbr', 'novaclient' for pkg in packages: try: __import__(pkg) tmpl = "Integration tests cannot run when {pkg} is installed" pytest.skip(tmpl.format(**locals())) except ImportError: pass try: urlopen('https://pypi.python.org/pypi') except Exception as exc: pytest.skip(reason=str(exc)) @pytest.fixture def install_context(request, tmpdir, monkeypatch): """Fixture to set up temporary installation directory. """ # Save old values so we can restore them. new_cwd = tmpdir.mkdir('cwd') user_base = tmpdir.mkdir('user_base') user_site = tmpdir.mkdir('user_site') install_dir = tmpdir.mkdir('install_dir') def fin(): # undo the monkeypatch, particularly needed under # windows because of kept handle on cwd monkeypatch.undo() new_cwd.remove() user_base.remove() user_site.remove() install_dir.remove() request.addfinalizer(fin) # Change the environment and site settings to control where the # files are installed and ensure we do not overwrite anything. monkeypatch.chdir(new_cwd) monkeypatch.setattr(easy_install_pkg, '__file__', user_site.strpath) monkeypatch.setattr('site.USER_BASE', user_base.strpath) monkeypatch.setattr('site.USER_SITE', user_site.strpath) monkeypatch.setattr('sys.path', sys.path + [install_dir.strpath]) monkeypatch.setenv('PYTHONPATH', os.path.pathsep.join(sys.path)) # Set up the command for performing the installation. dist = Distribution() cmd = easy_install(dist) cmd.install_dir = install_dir.strpath return cmd def _install_one(requirement, cmd, pkgname, modulename): cmd.args = [requirement] cmd.ensure_finalized() cmd.run() target = cmd.install_dir dest_path = glob.glob(os.path.join(target, pkgname + '*.egg')) assert dest_path assert os.path.exists(os.path.join(dest_path[0], pkgname, modulename)) def test_stevedore(install_context): _install_one('stevedore', install_context, 'stevedore', 'extension.py') @pytest.mark.xfail def test_virtualenvwrapper(install_context): _install_one('virtualenvwrapper', install_context, 'virtualenvwrapper', 'hook_loader.py') def test_pbr(install_context): _install_one('pbr', install_context, 'pbr', 'core.py') @pytest.mark.xfail def test_python_novaclient(install_context): _install_one('python-novaclient', install_context, 'novaclient', 'base.py')
ShefaliGups11/Implementation-of-SFB-in-ns-3
refs/heads/master
bindings/python/rad_util.py
212
# Copyright (c) 2007 RADLogic # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """Provide various handy Python functions. Running this script directly will execute the doctests. Functions: int2bin(i, n) -- Convert integer to binary string. bin2int(bin_string) -- Convert binary string to integer. reverse(input_string) -- Reverse a string. transpose(matrix) -- Transpose a list of lists. polygon_area(points_list) -- Calculate the area of an arbitrary polygon. timestamp() -- Return string containing current time stamp. pt2str(point) -- Return prettier string version of point tuple. gcf(a, b) -- Return the greatest common factor of two numbers. lcm(a, b) -- Return the least common multiple of two numbers. permutations(input_list) -- Generate all permutations of a list of items. reduce_fraction(fraction) -- Reduce fraction (num, denom) to simplest form. quantile(l, p) -- Return p quantile of list l. E.g. p=0.25 for q1. trim(l) -- Discard values in list more than 1.5*IQR outside IQR. nice_units(value) -- Return value converted to human readable units. uniquify(seq) -- Return sequence with duplicate items in sequence seq removed. reverse_dict(d) -- Return the dictionary with the items as keys and vice-versa. lsb(x, n) -- Return the n least significant bits of x. gray_encode(i) -- Gray encode the given integer. random_vec(bits, max_value=None) -- Return a random binary vector. binary_range(bits) -- Return list of all possible binary numbers width=bits. float_range([start], stop, [step]) -- Return range of floats. find_common_fixes(s1, s2) -- Find common (prefix, suffix) of two strings. is_rotated(seq1, seq2) -- Return true if the list is a rotation of other list. getmodule(obj) -- Return the module that contains the object definition of obj. (use inspect.getmodule instead, though) get_args(argv) -- Store command-line args in a dictionary. This module requires Python >= 2.2 """ __author__ = 'Tim Wegener <twegener@radlogic.com.au>' __date__ = '$Date: 2007/03/27 03:15:06 $' __version__ = '$Revision: 0.45 $' __credits__ = """ David Chandler, for polygon area algorithm. (http://www.davidchandler.com/AreaOfAGeneralPolygon.pdf) """ import re import sys import time import random try: True, False except NameError: True, False = (1==1, 0==1) def int2bin(i, n): """Convert decimal integer i to n-bit binary number (string). >>> int2bin(0, 8) '00000000' >>> int2bin(123, 8) '01111011' >>> int2bin(123L, 8) '01111011' >>> int2bin(15, 2) Traceback (most recent call last): ValueError: Value too large for given number of bits. """ hex2bin = {'0': '0000', '1': '0001', '2': '0010', '3': '0011', '4': '0100', '5': '0101', '6': '0110', '7': '0111', '8': '1000', '9': '1001', 'a': '1010', 'b': '1011', 'c': '1100', 'd': '1101', 'e': '1110', 'f': '1111'} # Convert to hex then map each hex digit to binary equivalent. result = ''.join([hex2bin[x] for x in hex(i).lower().replace('l','')[2:]]) # Shrink result to appropriate length. # Raise an error if the value is changed by the truncation. if '1' in result[:-n]: raise ValueError("Value too large for given number of bits.") result = result[-n:] # Zero-pad if length longer than mapped result. result = '0'*(n-len(result)) + result return result def bin2int(bin_string): """Convert binary number string to decimal integer. Note: Python > v2 has int(bin_string, 2) >>> bin2int('1111') 15 >>> bin2int('0101') 5 """ ## result = 0 ## bin_list = list(bin_string) ## if len(filter(lambda x: x in ('1','0'), bin_list)) < len(bin_list): ## raise Exception ("bin2int: Error - not a binary number: %s" ## % bin_string) ## bit_list = map(int, bin_list) ## bit_list.reverse() # Make most significant bit have highest index. ## for bit_place in range(len(bit_list)): ## result = result + ((2**bit_place) * bit_list[bit_place]) ## return result return int(bin_string, 2) def reverse(input_string): """Reverse a string. Useful for strings of binary numbers. >>> reverse('abc') 'cba' """ str_list = list(input_string) str_list.reverse() return ''.join(str_list) def transpose(matrix): """Transpose a list of lists. >>> transpose([['a', 'b', 'c'], ['d', 'e', 'f'], ['g', 'h', 'i']]) [['a', 'd', 'g'], ['b', 'e', 'h'], ['c', 'f', 'i']] >>> transpose([['a', 'b', 'c'], ['d', 'e', 'f']]) [['a', 'd'], ['b', 'e'], ['c', 'f']] >>> transpose([['a', 'b'], ['d', 'e'], ['g', 'h']]) [['a', 'd', 'g'], ['b', 'e', 'h']] """ result = zip(*matrix) # Convert list of tuples to list of lists. # map is faster than a list comprehension since it is being used with # a built-in function as an argument. result = map(list, result) return result def polygon_area(points_list, precision=100): """Calculate area of an arbitrary polygon using an algorithm from the web. Return the area of the polygon as a positive float. Arguments: points_list -- list of point tuples [(x0, y0), (x1, y1), (x2, y2), ...] (Unclosed polygons will be closed automatically. precision -- Internal arithmetic precision (integer arithmetic). >>> polygon_area([(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 0), (0, 0)]) 3.0 Credits: Area of a General Polygon by David Chandler http://www.davidchandler.com/AreaOfAGeneralPolygon.pdf """ # Scale up co-ordinates and convert them to integers. for i in range(len(points_list)): points_list[i] = (int(points_list[i][0] * precision), int(points_list[i][1] * precision)) # Close polygon if not closed. if points_list[-1] != points_list[0]: points_list.append(points_list[0]) # Calculate area. area = 0 for i in range(len(points_list)-1): (x_i, y_i) = points_list[i] (x_i_plus_1, y_i_plus_1) = points_list[i+1] area = area + (x_i_plus_1 * y_i) - (y_i_plus_1 * x_i) area = abs(area / 2) # Unscale area. area = float(area)/(precision**2) return area def timestamp(): """Return string containing current time stamp. Note: In Python 2 onwards can use time.asctime() with no arguments. """ return time.asctime() def pt2str(point): """Return prettier string version of point tuple. >>> pt2str((1.8, 1.9)) '(1.8, 1.9)' """ return "(%s, %s)" % (str(point[0]), str(point[1])) def gcf(a, b, epsilon=1e-16): """Return the greatest common factor of a and b, using Euclidean algorithm. Arguments: a, b -- two numbers If both numbers are integers return an integer result, otherwise return a float result. epsilon -- floats less than this magnitude are considered to be zero (default: 1e-16) Examples: >>> gcf(12, 34) 2 >>> gcf(13.5, 4) 0.5 >>> gcf(-2, 4) 2 >>> gcf(5, 0) 5 By (a convenient) definition: >>> gcf(0, 0) 0 """ result = max(a, b) remainder = min(a, b) while remainder and abs(remainder) > epsilon: new_remainder = result % remainder result = remainder remainder = new_remainder return abs(result) def lcm(a, b, precision=None): """Return the least common multiple of a and b, using the gcf function. Arguments: a, b -- two numbers. If both are integers return an integer result, otherwise a return a float result. precision -- scaling factor if a and/or b are floats. >>> lcm(21, 6) 42 >>> lcm(2.5, 3.5) 17.5 >>> str(lcm(1.5e-8, 2.5e-8, precision=1e9)) '7.5e-08' By (an arbitary) definition: >>> lcm(0, 0) 0 """ # Note: Dummy precision argument is for backwards compatibility. # Do the division first. # (See http://en.wikipedia.org/wiki/Least_common_multiple ) denom = gcf(a, b) if denom == 0: result = 0 else: result = a * (b / denom) return result def permutations(input_list): """Return a list containing all permutations of the input list. Note: This is a recursive function. >>> perms = permutations(['a', 'b', 'c']) >>> perms.sort() >>> for perm in perms: ... print perm ['a', 'b', 'c'] ['a', 'c', 'b'] ['b', 'a', 'c'] ['b', 'c', 'a'] ['c', 'a', 'b'] ['c', 'b', 'a'] """ out_lists = [] if len(input_list) > 1: # Extract first item in list. item = input_list[0] # Find all permutations of remainder of list. (Recursive call.) sub_lists = permutations(input_list[1:]) # For every permutation of the sub list... for sub_list in sub_lists: # Insert the extracted first item at every position of the list. for i in range(len(input_list)): new_list = sub_list[:] new_list.insert(i, item) out_lists.append(new_list) else: # Termination condition: only one item in input list. out_lists = [input_list] return out_lists def reduce_fraction(fraction): """Reduce fraction tuple to simplest form. fraction=(num, denom) >>> reduce_fraction((14, 7)) (2, 1) >>> reduce_fraction((-2, 4)) (-1, 2) >>> reduce_fraction((0, 4)) (0, 1) >>> reduce_fraction((4, 0)) (1, 0) """ (numerator, denominator) = fraction common_factor = abs(gcf(numerator, denominator)) result = (numerator/common_factor, denominator/common_factor) return result def quantile(l, p): """Return p quantile of list l. E.g. p=0.25 for q1. See: http://rweb.stat.umn.edu/R/library/base/html/quantile.html """ l_sort = l[:] l_sort.sort() n = len(l) r = 1 + ((n - 1) * p) i = int(r) f = r - i if i < n: result = (1-f)*l_sort[i-1] + f*l_sort[i] else: result = l_sort[i-1] return result def trim(l): """Discard values in list more than 1.5*IQR outside IQR. (IQR is inter-quartile-range) This function uses rad_util.quantile 1.5*IQR -- mild outlier 3*IQR -- extreme outlier See: http://wind.cc.whecn.edu/~pwildman/statnew/section_7_-_exploratory_data_analysis.htm """ l_sort = l[:] l_sort.sort() # Calculate medianscore (based on stats.py lmedianscore by Gary Strangman) if len(l_sort) % 2 == 0: # If even number of scores, average middle 2. index = int(len(l_sort) / 2) # Integer division correct median = float(l_sort[index] + l_sort[index-1]) / 2 else: # int divsion gives mid value when count from 0 index = int(len(l_sort) / 2) median = l_sort[index] # Calculate IQR. q1 = quantile(l_sort, 0.25) q3 = quantile(l_sort, 0.75) iqr = q3 - q1 iqr_extra = iqr * 1.5 def in_interval(x, i=iqr_extra, q1=q1, q3=q3): return (x >= q1-i and x <= q3+i) l_trimmed = [x for x in l_sort if in_interval(x)] return l_trimmed def nice_units(value, dp=0, sigfigs=None, suffix='', space=' ', use_extra_prefixes=False, use_full_name=False, mode='si'): """Return value converted to human readable units eg milli, micro, etc. Arguments: value -- number in base units dp -- number of decimal places to display (rounded) sigfigs -- number of significant figures to display (rounded) This overrides dp if set. suffix -- optional unit suffix to append to unit multiplier space -- seperator between value and unit multiplier (default: ' ') use_extra_prefixes -- use hecto, deka, deci and centi as well if set. (default: False) use_full_name -- use full name for multiplier symbol, e.g. milli instead of m (default: False) mode -- 'si' for SI prefixes, 'bin' for binary multipliers (1024, etc.) (Default: 'si') SI prefixes from: http://physics.nist.gov/cuu/Units/prefixes.html (Greek mu changed to u.) Binary prefixes based on: http://physics.nist.gov/cuu/Units/binary.html >>> nice_units(2e-11) '20 p' >>> nice_units(2e-11, space='') '20p' """ si_prefixes = {1e24: ('Y', 'yotta'), 1e21: ('Z', 'zetta'), 1e18: ('E', 'exa'), 1e15: ('P', 'peta'), 1e12: ('T', 'tera'), 1e9: ('G', 'giga'), 1e6: ('M', 'mega'), 1e3: ('k', 'kilo'), 1e-3: ('m', 'milli'), 1e-6: ('u', 'micro'), 1e-9: ('n', 'nano'), 1e-12: ('p', 'pico'), 1e-15: ('f', 'femto'), 1e-18: ('a', 'atto'), 1e-21: ('z', 'zepto'), 1e-24: ('y', 'yocto') } if use_extra_prefixes: si_prefixes.update({1e2: ('h', 'hecto'), 1e1: ('da', 'deka'), 1e-1: ('d', 'deci'), 1e-2: ('c', 'centi') }) bin_prefixes = {2**10: ('K', 'kilo'), 2**20: ('M', 'mega'), 2**30: ('G', 'mega'), 2**40: ('T', 'tera'), 2**50: ('P', 'peta'), 2**60: ('E', 'exa') } if mode == 'bin': prefixes = bin_prefixes else: prefixes = si_prefixes prefixes[1] = ('', '') # Unity. # Determine appropriate multiplier. multipliers = prefixes.keys() multipliers.sort() mult = None for i in range(len(multipliers) - 1): lower_mult = multipliers[i] upper_mult = multipliers[i+1] if lower_mult <= value < upper_mult: mult_i = i break if mult is None: if value < multipliers[0]: mult_i = 0 elif value >= multipliers[-1]: mult_i = len(multipliers) - 1 mult = multipliers[mult_i] # Convert value for this multiplier. new_value = value / mult # Deal with special case due to rounding. if sigfigs is None: if mult_i < (len(multipliers) - 1) and \ round(new_value, dp) == \ round((multipliers[mult_i+1] / mult), dp): mult = multipliers[mult_i + 1] new_value = value / mult # Concatenate multiplier symbol. if use_full_name: label_type = 1 else: label_type = 0 # Round and truncate to appropriate precision. if sigfigs is None: str_value = eval('"%.'+str(dp)+'f" % new_value', locals(), {}) else: str_value = eval('"%.'+str(sigfigs)+'g" % new_value', locals(), {}) return str_value + space + prefixes[mult][label_type] + suffix def uniquify(seq, preserve_order=False): """Return sequence with duplicate items in sequence seq removed. The code is based on usenet post by Tim Peters. This code is O(N) if the sequence items are hashable, O(N**2) if not. Peter Bengtsson has a blog post with an empirical comparison of other approaches: http://www.peterbe.com/plog/uniqifiers-benchmark If order is not important and the sequence items are hashable then list(set(seq)) is readable and efficient. If order is important and the sequence items are hashable generator expressions can be used (in py >= 2.4) (useful for large sequences): seen = set() do_something(x for x in seq if x not in seen or seen.add(x)) Arguments: seq -- sequence preserve_order -- if not set the order will be arbitrary Using this option will incur a speed penalty. (default: False) Example showing order preservation: >>> uniquify(['a', 'aa', 'b', 'b', 'ccc', 'ccc', 'd'], preserve_order=True) ['a', 'aa', 'b', 'ccc', 'd'] Example using a sequence of un-hashable items: >>> uniquify([['z'], ['x'], ['y'], ['z']], preserve_order=True) [['z'], ['x'], ['y']] The sorted output or the non-order-preserving approach should equal that of the sorted order-preserving approach output: >>> unordered = uniquify([3, 3, 1, 2], preserve_order=False) >>> unordered.sort() >>> ordered = uniquify([3, 3, 1, 2], preserve_order=True) >>> ordered.sort() >>> ordered [1, 2, 3] >>> int(ordered == unordered) 1 """ try: # Attempt fast algorithm. d = {} if preserve_order: # This is based on Dave Kirby's method (f8) noted in the post: # http://www.peterbe.com/plog/uniqifiers-benchmark return [x for x in seq if (x not in d) and not d.__setitem__(x, 0)] else: for x in seq: d[x] = 0 return d.keys() except TypeError: # Have an unhashable object, so use slow algorithm. result = [] app = result.append for x in seq: if x not in result: app(x) return result # Alias to noun form for backward compatibility. unique = uniquify def reverse_dict(d): """Reverse a dictionary so the items become the keys and vice-versa. Note: The results will be arbitrary if the items are not unique. >>> d = reverse_dict({'a': 1, 'b': 2}) >>> d_items = d.items() >>> d_items.sort() >>> d_items [(1, 'a'), (2, 'b')] """ result = {} for key, value in d.items(): result[value] = key return result def lsb(x, n): """Return the n least significant bits of x. >>> lsb(13, 3) 5 """ return x & ((2 ** n) - 1) def gray_encode(i): """Gray encode the given integer.""" return i ^ (i >> 1) def random_vec(bits, max_value=None): """Generate a random binary vector of length bits and given max value.""" vector = "" for _ in range(int(bits / 10) + 1): i = int((2**10) * random.random()) vector += int2bin(i, 10) if max_value and (max_value < 2 ** bits - 1): vector = int2bin((int(vector, 2) / (2 ** bits - 1)) * max_value, bits) return vector[0:bits] def binary_range(bits): """Return a list of all possible binary numbers in order with width=bits. It would be nice to extend it to match the functionality of python's range() built-in function. """ l = [] v = ['0'] * bits toggle = [1] + [0] * bits while toggle[bits] != 1: v_copy = v[:] v_copy.reverse() l.append(''.join(v_copy)) toggle = [1] + [0]*bits i = 0 while i < bits and toggle[i] == 1: if toggle[i]: if v[i] == '0': v[i] = '1' toggle[i+1] = 0 else: v[i] = '0' toggle[i+1] = 1 i += 1 return l def float_range(start, stop=None, step=None): """Return a list containing an arithmetic progression of floats. Return a list of floats between 0.0 (or start) and stop with an increment of step. This is in functionality to python's range() built-in function but can accept float increments. As with range(), stop is omitted from the list. """ if stop is None: stop = float(start) start = 0.0 if step is None: step = 1.0 cur = float(start) l = [] while cur < stop: l.append(cur) cur += step return l def find_common_fixes(s1, s2): """Find common (prefix, suffix) of two strings. >>> find_common_fixes('abc', 'def') ('', '') >>> find_common_fixes('abcelephantdef', 'abccowdef') ('abc', 'def') >>> find_common_fixes('abcelephantdef', 'abccow') ('abc', '') >>> find_common_fixes('elephantdef', 'abccowdef') ('', 'def') """ prefix = [] suffix = [] i = 0 common_len = min(len(s1), len(s2)) while i < common_len: if s1[i] != s2[i]: break prefix.append(s1[i]) i += 1 i = 1 while i < (common_len + 1): if s1[-i] != s2[-i]: break suffix.append(s1[-i]) i += 1 suffix.reverse() prefix = ''.join(prefix) suffix = ''.join(suffix) return (prefix, suffix) def is_rotated(seq1, seq2): """Return true if the first sequence is a rotation of the second sequence. >>> seq1 = ['A', 'B', 'C', 'D'] >>> seq2 = ['C', 'D', 'A', 'B'] >>> int(is_rotated(seq1, seq2)) 1 >>> seq2 = ['C', 'D', 'B', 'A'] >>> int(is_rotated(seq1, seq2)) 0 >>> seq1 = ['A', 'B', 'C', 'A'] >>> seq2 = ['A', 'A', 'B', 'C'] >>> int(is_rotated(seq1, seq2)) 1 >>> seq2 = ['A', 'B', 'C', 'A'] >>> int(is_rotated(seq1, seq2)) 1 >>> seq2 = ['A', 'A', 'C', 'B'] >>> int(is_rotated(seq1, seq2)) 0 """ # Do a sanity check. if len(seq1) != len(seq2): return False # Look for occurrences of second sequence head item in first sequence. start_indexes = [] head_item = seq2[0] for index1 in range(len(seq1)): if seq1[index1] == head_item: start_indexes.append(index1) # Check that wrapped sequence matches. double_seq1 = seq1 + seq1 for index1 in start_indexes: if double_seq1[index1:index1+len(seq1)] == seq2: return True return False def getmodule(obj): """Return the module that contains the object definition of obj. Note: Use inspect.getmodule instead. Arguments: obj -- python obj, generally a class or a function Examples: A function: >>> module = getmodule(random.choice) >>> module.__name__ 'random' >>> module is random 1 A class: >>> module = getmodule(random.Random) >>> module.__name__ 'random' >>> module is random 1 A class inheriting from a class in another module: (note: The inheriting class must define at least one function.) >>> class MyRandom(random.Random): ... def play(self): ... pass >>> module = getmodule(MyRandom) >>> if __name__ == '__main__': ... name = 'rad_util' ... else: ... name = module.__name__ >>> name 'rad_util' >>> module is sys.modules[__name__] 1 Discussion: This approach is slightly hackish, and won't work in various situations. However, this was the approach recommended by GvR, so it's as good as you'll get. See GvR's post in this thread: http://groups.google.com.au/group/comp.lang.python/browse_thread/thread/966a7bdee07e3b34/c3cab3f41ea84236?lnk=st&q=python+determine+class+module&rnum=4&hl=en#c3cab3f41ea84236 """ if hasattr(obj, 'func_globals'): func = obj else: # Handle classes. func = None for item in obj.__dict__.values(): if hasattr(item, 'func_globals'): func = item break if func is None: raise ValueError("No functions attached to object: %r" % obj) module_name = func.func_globals['__name__'] # Get module. module = sys.modules[module_name] return module def round_grid(value, grid, mode=0): """Round off the given value to the given grid size. Arguments: value -- value to be roudne grid -- result must be a multiple of this mode -- 0 nearest, 1 up, -1 down Examples: >>> round_grid(7.5, 5) 10 >>> round_grid(7.5, 5, mode=-1) 5 >>> round_grid(7.3, 5, mode=1) 10 >>> round_grid(7.3, 5.0, mode=1) 10.0 """ off_grid = value % grid if mode == 0: add_one = int(off_grid >= (grid / 2.0)) elif mode == 1 and off_grid: add_one = 1 elif mode == -1 and off_grid: add_one = 0 result = ((int(value / grid) + add_one) * grid) return result def get_args(argv): """Store command-line args in a dictionary. -, -- prefixes are removed Items not prefixed with - or -- are stored as a list, indexed by 'args' For options that take a value use --option=value Consider using optparse or getopt (in Python standard library) instead. """ d = {} args = [] for arg in argv: if arg.startswith('-'): parts = re.sub(r'^-+', '', arg).split('=') if len(parts) == 2: d[parts[0]] = parts[1] else: d[parts[0]] = None else: args.append(arg) d['args'] = args return d if __name__ == '__main__': import doctest doctest.testmod(sys.modules['__main__'])
vidonme/xbmc
refs/heads/isengard.vidon
tools/EventClients/lib/python/ps3/sixaxis.py
155
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (C) 2008-2013 Team XBMC # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. import time import sys import struct import math import binascii from bluetooth import set_l2cap_mtu SX_SELECT = 1 << 0 SX_L3 = 1 << 1 SX_R3 = 1 << 2 SX_START = 1 << 3 SX_DUP = 1 << 4 SX_DRIGHT = 1 << 5 SX_DDOWN = 1 << 6 SX_DLEFT = 1 << 7 SX_L2 = 1 << 8 SX_R2 = 1 << 9 SX_L1 = 1 << 10 SX_R1 = 1 << 11 SX_TRIANGLE = 1 << 12 SX_CIRCLE = 1 << 13 SX_X = 1 << 14 SX_SQUARE = 1 << 15 SX_POWER = 1 << 16 SX_LSTICK_X = 0 SX_LSTICK_Y = 1 SX_RSTICK_X = 2 SX_RSTICK_Y = 3 # (map, key, amount index, axis) keymap_sixaxis = { SX_X : ('XG', 'A', 0, 0), SX_CIRCLE : ('XG', 'B', 0, 0), SX_SQUARE : ('XG', 'X', 0, 0), SX_TRIANGLE : ('XG', 'Y', 0, 0), SX_DUP : ('XG', 'dpadup', 0, 0), SX_DDOWN : ('XG', 'dpaddown', 0, 0), SX_DLEFT : ('XG', 'dpadleft', 0, 0), SX_DRIGHT : ('XG', 'dpadright', 0, 0), SX_START : ('XG', 'start', 0, 0), SX_SELECT : ('XG', 'back', 0, 0), SX_R1 : ('XG', 'white', 0, 0), SX_R2 : ('XG', 'rightanalogtrigger', 6, 1), SX_L2 : ('XG', 'leftanalogtrigger', 5, 1), SX_L1 : ('XG', 'black', 0, 0), SX_L3 : ('XG', 'leftthumbbutton', 0, 0), SX_R3 : ('XG', 'rightthumbbutton', 0, 0), } # (data index, left map, left action, right map, right action) axismap_sixaxis = { SX_LSTICK_X : ('XG', 'leftthumbstickleft' , 'leftthumbstickright'), SX_LSTICK_Y : ('XG', 'leftthumbstickup' , 'leftthumbstickdown'), SX_RSTICK_X : ('XG', 'rightthumbstickleft', 'rightthumbstickright'), SX_RSTICK_Y : ('XG', 'rightthumbstickup' , 'rightthumbstickdown'), } # to make sure all combination keys are checked first # we sort the keymap's button codes in reverse order # this guranties that any bit combined button code # will be processed first keymap_sixaxis_keys = keymap_sixaxis.keys() keymap_sixaxis_keys.sort() keymap_sixaxis_keys.reverse() def getkeys(bflags): keys = []; for k in keymap_sixaxis_keys: if (k & bflags) == k: keys.append(k) bflags = bflags & ~k return keys; def normalize(val): upperlimit = 65281 lowerlimit = 2 val_range = upperlimit - lowerlimit offset = 10000 val = (val + val_range / 2) % val_range upperlimit -= offset lowerlimit += offset if val < lowerlimit: val = lowerlimit if val > upperlimit: val = upperlimit val = ((float(val) - offset) / (float(upperlimit) - lowerlimit)) * 65535.0 if val <= 0: val = 1 return val def normalize_axis(val, deadzone): val = float(val) - 127.5 val = val / 127.5 if abs(val) < deadzone: return 0.0 if val > 0.0: val = (val - deadzone) / (1.0 - deadzone) else: val = (val + deadzone) / (1.0 - deadzone) return 65536.0 * val def normalize_angle(val, valrange): valrange *= 2 val = val / valrange if val > 1.0: val = 1.0 if val < -1.0: val = -1.0 return (val + 0.5) * 65535.0 def average(array): val = 0 for i in array: val += i return val / len(array) def smooth(arr, val): cnt = len(arr) arr.insert(0, val) arr.pop(cnt) return average(arr) def set_l2cap_mtu2(sock, mtu): SOL_L2CAP = 6 L2CAP_OPTIONS = 1 s = sock.getsockopt (SOL_L2CAP, L2CAP_OPTIONS, 12) o = list( struct.unpack ("HHHBBBH", s) ) o[0] = o[1] = mtu s = struct.pack ("HHHBBBH", *o) try: sock.setsockopt (SOL_L2CAP, L2CAP_OPTIONS, s) except: print "Warning: Unable to set mtu" class sixaxis(): def __init__(self, xbmc, control_sock, interrupt_sock): self.xbmc = xbmc self.num_samples = 16 self.sumx = [0] * self.num_samples self.sumy = [0] * self.num_samples self.sumr = [0] * self.num_samples self.axis_amount = [0, 0, 0, 0] self.released = set() self.pressed = set() self.pending = set() self.held = set() self.psflags = 0 self.psdown = 0 self.mouse_enabled = 0 set_l2cap_mtu2(control_sock, 64) set_l2cap_mtu2(interrupt_sock, 64) time.sleep(0.25) # If we ask to quickly here, it sometimes doesn't start # sixaxis needs this to enable it # 0x53 => HIDP_TRANS_SET_REPORT | HIDP_DATA_RTYPE_FEATURE control_sock.send("\x53\xf4\x42\x03\x00\x00") data = control_sock.recv(1) # This command will turn on the gyro and set the leds # I wonder if turning on the gyro makes it draw more current?? # it's probably a flag somewhere in the following command # HID Command: HIDP_TRANS_SET_REPORT | HIDP_DATA_RTYPE_OUTPUT # HID Report:1 bytes = [0x52, 0x1] bytes.extend([0x00, 0x00, 0x00]) bytes.extend([0xFF, 0x72]) bytes.extend([0x00, 0x00, 0x00, 0x00]) bytes.extend([0x02]) # 0x02 LED1, 0x04 LED2 ... 0x10 LED4 # The following sections should set the blink frequncy of # the leds on the controller, but i've not figured out how. # These values where suggusted in a mailing list, but no explination # for how they should be combined to the 5 bytes per led #0xFF = 0.5Hz #0x80 = 1Hz #0x40 = 2Hz bytes.extend([0xFF, 0x00, 0x01, 0x00, 0x01]) #LED4 [0xff, 0xff, 0x10, 0x10, 0x10] bytes.extend([0xFF, 0x00, 0x01, 0x00, 0x01]) #LED3 [0xff, 0x40, 0x08, 0x10, 0x10] bytes.extend([0xFF, 0x00, 0x01, 0x00, 0x01]) #LED2 [0xff, 0x00, 0x10, 0x30, 0x30] bytes.extend([0xFF, 0x00, 0x01, 0x00, 0x01]) #LED1 [0xff, 0x00, 0x10, 0x40, 0x10] bytes.extend([0x00, 0x00, 0x00, 0x00, 0x00]) bytes.extend([0x00, 0x00, 0x00, 0x00, 0x00]) control_sock.send(struct.pack("42B", *bytes)) data = control_sock.recv(1) def __del__(self): self.close() def close(self): for key in (self.held | self.pressed): (mapname, action, amount, axis) = keymap_sixaxis[key] self.xbmc.send_button_state(map=mapname, button=action, amount=0, down=0, axis=axis) self.held = set() self.pressed = set() def process_socket(self, isock): data = isock.recv(50) if data == None: return False return self.process_data(data) def process_data(self, data): if len(data) < 3: return False # make sure this is the correct report if struct.unpack("BBB", data[0:3]) != (0xa1, 0x01, 0x00): return False if len(data) >= 48: v1 = struct.unpack("h", data[42:44]) v2 = struct.unpack("h", data[44:46]) v3 = struct.unpack("h", data[46:48]) else: v1 = [0,0] v2 = [0,0] v3 = [0,0] if len(data) >= 50: v4 = struct.unpack("h", data[48:50]) else: v4 = [0,0] ax = float(v1[0]) ay = float(v2[0]) az = float(v3[0]) rz = float(v4[0]) at = math.sqrt(ax*ax + ay*ay + az*az) bflags = struct.unpack("<I", data[3:7])[0] if len(data) > 27: pressure = struct.unpack("BBBBBBBBBBBB", data[15:27]) else: pressure = [0,0,0,0,0,0,0,0,0,0,0,0,0] roll = -math.atan2(ax, math.sqrt(ay*ay + az*az)) pitch = math.atan2(ay, math.sqrt(ax*ax + az*az)) pitch -= math.radians(20); xpos = normalize_angle(roll, math.radians(30)) ypos = normalize_angle(pitch, math.radians(30)) axis = struct.unpack("BBBB", data[7:11]) return self.process_input(bflags, pressure, axis, xpos, ypos) def process_input(self, bflags, pressure, axis, xpos, ypos): xval = smooth(self.sumx, xpos) yval = smooth(self.sumy, ypos) analog = False for i in range(4): config = axismap_sixaxis[i] self.axis_amount[i] = self.send_singleaxis(axis[i], self.axis_amount[i], config[0], config[1], config[2]) if self.axis_amount[i] != 0: analog = True # send the mouse position to xbmc if self.mouse_enabled == 1: self.xbmc.send_mouse_position(xval, yval) if (bflags & SX_POWER) == SX_POWER: if self.psdown: if (time.time() - self.psdown) > 5: for key in (self.held | self.pressed): (mapname, action, amount, axis) = keymap_sixaxis[key] self.xbmc.send_button_state(map=mapname, button=action, amount=0, down=0, axis=axis) raise Exception("PS3 Sixaxis powering off, user request") else: self.psdown = time.time() else: if self.psdown: self.mouse_enabled = 1 - self.mouse_enabled self.psdown = 0 keys = set(getkeys(bflags)) self.released = (self.pressed | self.held) - keys self.held = (self.pressed | self.held) - self.released self.pressed = (keys - self.held) & self.pending self.pending = (keys - self.held) for key in self.released: (mapname, action, amount, axis) = keymap_sixaxis[key] self.xbmc.send_button_state(map=mapname, button=action, amount=0, down=0, axis=axis) for key in self.held: (mapname, action, amount, axis) = keymap_sixaxis[key] if amount > 0: amount = pressure[amount-1] * 256 self.xbmc.send_button_state(map=mapname, button=action, amount=amount, down=1, axis=axis) for key in self.pressed: (mapname, action, amount, axis) = keymap_sixaxis[key] if amount > 0: amount = pressure[amount-1] * 256 self.xbmc.send_button_state(map=mapname, button=action, amount=amount, down=1, axis=axis) if analog or keys or self.mouse_enabled: return True else: return False def send_singleaxis(self, axis, last_amount, mapname, action_min, action_pos): amount = normalize_axis(axis, 0.30) if last_amount < 0: last_action = action_min elif last_amount > 0: last_action = action_pos else: last_action = None if amount < 0: new_action = action_min elif amount > 0: new_action = action_pos else: new_action = None if last_action and new_action != last_action: self.xbmc.send_button_state(map=mapname, button=last_action, amount=0, axis=1) if new_action and amount != last_amount: self.xbmc.send_button_state(map=mapname, button=new_action, amount=abs(amount), axis=1) return amount
ageron/tensorflow
refs/heads/master
tensorflow/python/compat/compat.py
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for API compatibility between TensorFlow release versions. See [Version Compatibility](https://tensorflow.org/guide/version_compat#backward_forward) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import datetime from tensorflow.python.util import tf_contextlib from tensorflow.python.util.tf_export import tf_export _FORWARD_COMPATIBILITY_HORIZON = datetime.date(2019, 3, 4) @tf_export("compat.forward_compatible") def forward_compatible(year, month, day): """Return true if the forward compatibility window has expired. See [Version compatibility](https://tensorflow.org/guide/version_compat#backward_forward). Forward-compatibility refers to scenarios where the producer of a TensorFlow model (a GraphDef or SavedModel) is compiled against a version of the TensorFlow library newer than what the consumer was compiled against. The "producer" is typically a Python program that constructs and trains a model while the "consumer" is typically another program that loads and serves the model. TensorFlow has been supporting a 3 week forward-compatibility window for programs compiled from source at HEAD. For example, consider the case where a new operation `MyNewAwesomeAdd` is created with the intent of replacing the implementation of an existing Python wrapper - `tf.add`. The Python wrapper implementation should change from something like: ```python def add(inputs, name=None): return gen_math_ops.add(inputs, name) ``` to: ```python from tensorflow.python.compat import compat def add(inputs, name=None): if compat.forward_compatible(year, month, day): # Can use the awesome new implementation. return gen_math_ops.my_new_awesome_add(inputs, name) # To maintain forward compatibiltiy, use the old implementation. return gen_math_ops.add(inputs, name) ``` Where `year`, `month`, and `day` specify the date beyond which binaries that consume a model are expected to have been updated to include the new operations. This date is typically at least 3 weeks beyond the date the code that adds the new operation is committed. Args: year: A year (e.g., 2018). month: A month (1 <= month <= 12) in year. day: A day (1 <= day <= 31, or 30, or 29, or 28) in month. Returns: True if the caller can expect that serialized TensorFlow graphs produced can be consumed by programs that are compiled with the TensorFlow library source code after (year, month, day). """ return _FORWARD_COMPATIBILITY_HORIZON > datetime.date(year, month, day) @tf_export("compat.forward_compatibility_horizon") @tf_contextlib.contextmanager def forward_compatibility_horizon(year, month, day): """Context manager for testing forward compatibility of generated graphs. See [Version compatibility](https://tensorflow.org/guide/version_compat#backward_forward). To ensure forward compatibility of generated graphs (see `forward_compatible`) with older binaries, new features can be gated with: ```python if compat.forward_compatible(year=2018, month=08, date=01): generate_graph_with_new_features() else: generate_graph_so_older_binaries_can_consume_it() ``` However, when adding new features, one may want to unittest it before the forward compatibility window expires. This context manager enables such tests. For example: ```python from tensorflow.python.compat import compat def testMyNewFeature(self): with compat.forward_compatibility_horizon(2018, 08, 02): # Test that generate_graph_with_new_features() has an effect ``` Args : year: A year (e.g. 2018). month: A month (1 <= month <= 12) in year. day: A day (1 <= day <= 31, or 30, or 29, or 28) in month. Yields: Nothing. """ global _FORWARD_COMPATIBILITY_HORIZON try: old_compat_date = _FORWARD_COMPATIBILITY_HORIZON _FORWARD_COMPATIBILITY_HORIZON = datetime.date(year, month, day) yield finally: _FORWARD_COMPATIBILITY_HORIZON = old_compat_date
M4573R/BuildingMachineLearningSystemsWithPython
refs/heads/master
ch02/load.py
25
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License import numpy as np def load_dataset(dataset_name): ''' data,labels = load_dataset(dataset_name) Load a given dataset Returns ------- data : numpy ndarray labels : list of str ''' data = [] labels = [] with open('./data/{0}.tsv'.format(dataset_name)) as ifile: for line in ifile: tokens = line.strip().split('\t') data.append([float(tk) for tk in tokens[:-1]]) labels.append(tokens[-1]) data = np.array(data) labels = np.array(labels) return data, labels
htzy/bigfour
refs/heads/master
common/lib/xmodule/xmodule/video_module/video_xfields.py
16
""" XFields for video module. """ import datetime from xblock.fields import Scope, String, Float, Boolean, List, Dict, DateTime from xmodule.fields import RelativeTime from xmodule.mixin import LicenseMixin # Make '_' a no-op so we can scrape strings _ = lambda text: text class VideoFields(object): """Fields for `VideoModule` and `VideoDescriptor`.""" display_name = String( help=_("The name students see. This name appears in the course ribbon and as a header for the video."), display_name=_("Component Display Name"), default="Video", scope=Scope.settings ) saved_video_position = RelativeTime( help=_("Current position in the video."), scope=Scope.user_state, default=datetime.timedelta(seconds=0) ) # TODO: This should be moved to Scope.content, but this will # require data migration to support the old video module. youtube_id_1_0 = String( help=_("Optional, for older browsers: the YouTube ID for the normal speed video."), display_name=_("YouTube ID"), scope=Scope.settings, default="3_yD_cEKoCk" ) youtube_id_0_75 = String( help=_("Optional, for older browsers: the YouTube ID for the .75x speed video."), display_name=_("YouTube ID for .75x speed"), scope=Scope.settings, default="" ) youtube_id_1_25 = String( help=_("Optional, for older browsers: the YouTube ID for the 1.25x speed video."), display_name=_("YouTube ID for 1.25x speed"), scope=Scope.settings, default="" ) youtube_id_1_5 = String( help=_("Optional, for older browsers: the YouTube ID for the 1.5x speed video."), display_name=_("YouTube ID for 1.5x speed"), scope=Scope.settings, default="" ) start_time = RelativeTime( # datetime.timedelta object help=_( "Time you want the video to start if you don't want the entire video to play. " "Not supported in the native mobile app: the full video file will play. " "Formatted as HH:MM:SS. The maximum value is 23:59:59." ), display_name=_("Video Start Time"), scope=Scope.settings, default=datetime.timedelta(seconds=0) ) end_time = RelativeTime( # datetime.timedelta object help=_( "Time you want the video to stop if you don't want the entire video to play. " "Not supported in the native mobile app: the full video file will play. " "Formatted as HH:MM:SS. The maximum value is 23:59:59." ), display_name=_("Video Stop Time"), scope=Scope.settings, default=datetime.timedelta(seconds=0) ) #front-end code of video player checks logical validity of (start_time, end_time) pair. # `source` is deprecated field and should not be used in future. # `download_video` is used instead. source = String( help=_("The external URL to download the video."), display_name=_("Download Video"), scope=Scope.settings, default="" ) download_video = Boolean( help=_("Allow students to download versions of this video in different formats if they cannot use the edX video player or do not have access to YouTube. You must add at least one non-YouTube URL in the Video File URLs field."), display_name=_("Video Download Allowed"), scope=Scope.settings, default=False ) html5_sources = List( help=_("The URL or URLs where you've posted non-YouTube versions of the video. Each URL must end in .mpeg, .mp4, .ogg, or .webm and cannot be a YouTube URL. (For browser compatibility, we strongly recommend .mp4 and .webm format.) Students will be able to view the first listed video that's compatible with the student's computer. To allow students to download these videos, set Video Download Allowed to True."), display_name=_("Video File URLs"), scope=Scope.settings, ) track = String( help=_("By default, students can download an .srt or .txt transcript when you set Download Transcript Allowed to True. If you want to provide a downloadable transcript in a different format, we recommend that you upload a handout by using the Upload a Handout field. If this isn't possible, you can post a transcript file on the Files & Uploads page or on the Internet, and then add the URL for the transcript here. Students see a link to download that transcript below the video."), display_name=_("Downloadable Transcript URL"), scope=Scope.settings, default='' ) download_track = Boolean( help=_("Allow students to download the timed transcript. A link to download the file appears below the video. By default, the transcript is an .srt or .txt file. If you want to provide the transcript for download in a different format, upload a file by using the Upload Handout field."), display_name=_("Download Transcript Allowed"), scope=Scope.settings, default=False ) sub = String( help=_("The default transcript for the video, from the Default Timed Transcript field on the Basic tab. This transcript should be in English. You don't have to change this setting."), display_name=_("Default Timed Transcript"), scope=Scope.settings, default="" ) show_captions = Boolean( help=_("Specify whether the transcripts appear with the video by default."), display_name=_("Show Transcript"), scope=Scope.settings, default=True ) # Data format: {'de': 'german_translation', 'uk': 'ukrainian_translation'} transcripts = Dict( help=_("Add transcripts in different languages. Click below to specify a language and upload an .srt transcript file for that language."), display_name=_("Transcript Languages"), scope=Scope.settings, default={} ) transcript_language = String( help=_("Preferred language for transcript."), display_name=_("Preferred language for transcript"), scope=Scope.preferences, default="en" ) transcript_download_format = String( help=_("Transcript file format to download by user."), scope=Scope.preferences, values=[ # Translators: This is a type of file used for captioning in the video player. {"display_name": _("SubRip (.srt) file"), "value": "srt"}, {"display_name": _("Text (.txt) file"), "value": "txt"} ], default='srt', ) speed = Float( help=_("The last speed that the user specified for the video."), scope=Scope.user_state ) global_speed = Float( help=_("The default speed for the video."), scope=Scope.preferences, default=1.0 ) youtube_is_available = Boolean( help=_("Specify whether YouTube is available for the user."), scope=Scope.user_info, default=True ) handout = String( help=_("Upload a handout to accompany this video. Students can download the handout by clicking Download Handout under the video."), display_name=_("Upload Handout"), scope=Scope.settings, ) only_on_web = Boolean( help=_( "Specify whether access to this video is limited to browsers only, or if it can be " "accessed from other applications including mobile apps." ), display_name="Video Available on Web Only", scope=Scope.settings, default=False ) edx_video_id = String( help=_("If you were assigned a Video ID by edX for the video to play in this component, enter the ID here. In this case, do not enter values in the Default Video URL, the Video File URLs, and the YouTube ID fields. If you were not assigned a Video ID, enter values in those other fields and ignore this field."), # pylint: disable=line-too-long display_name=_("Video ID"), scope=Scope.settings, default="", ) bumper_last_view_date = DateTime( display_name=_("Date of the last view of the bumper"), scope=Scope.preferences, ) bumper_do_not_show_again = Boolean( display_name=_("Do not show bumper again"), scope=Scope.preferences, default=False, )
rkmaddox/mne-python
refs/heads/master
mne/viz/backends/tests/test_renderer.py
11
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Eric Larson <larson.eric.d@gmail.com> # Joan Massich <mailsik@gmail.com> # Guillaume Favelier <guillaume.favelier@gmail.com> # # License: Simplified BSD import os import pytest import numpy as np from mne.viz.backends.tests._utils import (skips_if_not_mayavi, skips_if_not_pyvista) from mne.viz.backends._utils import ALLOWED_QUIVER_MODES @pytest.fixture def backend_mocker(): """Help to test set up 3d backend.""" from mne.viz.backends import renderer del renderer.MNE_3D_BACKEND yield renderer.MNE_3D_BACKEND = None @pytest.mark.parametrize('backend', [ pytest.param('mayavi', marks=skips_if_not_mayavi), pytest.param('pyvista', marks=skips_if_not_pyvista), pytest.param('foo', marks=pytest.mark.xfail(raises=ValueError)), ]) def test_backend_environment_setup(backend, backend_mocker, monkeypatch): """Test set up 3d backend based on env.""" monkeypatch.setenv("MNE_3D_BACKEND", backend) assert os.environ['MNE_3D_BACKEND'] == backend # just double-check # reload the renderer to check if the 3d backend selection by # environment variable has been updated correctly from mne.viz.backends import renderer renderer.set_3d_backend(backend) assert renderer.MNE_3D_BACKEND == backend assert renderer.get_3d_backend() == backend def test_3d_functions(renderer): """Test figure management functions.""" fig = renderer.create_3d_figure((300, 300)) # Mayavi actually needs something in the display to set the title wrap_renderer = renderer.backend._Renderer(fig=fig) wrap_renderer.sphere(np.array([0., 0., 0.]), 'w', 1.) renderer.backend._check_3d_figure(fig) renderer.backend._set_3d_view(figure=fig, azimuth=None, elevation=None, focalpoint=(0., 0., 0.), distance=None) renderer.backend._set_3d_title(figure=fig, title='foo') renderer.backend._take_3d_screenshot(figure=fig) renderer.backend._close_all() def test_3d_backend(renderer): """Test default plot.""" # set data win_size = (600, 600) win_color = 'black' tet_size = 1.0 tet_x = np.array([0, tet_size, 0, 0]) tet_y = np.array([0, 0, tet_size, 0]) tet_z = np.array([0, 0, 0, tet_size]) tet_indices = np.array([[0, 1, 2], [0, 1, 3], [0, 2, 3], [1, 2, 3]]) tet_color = 'white' sph_center = np.column_stack((tet_x, tet_y, tet_z)) sph_color = 'red' sph_scale = tet_size / 3.0 ct_scalars = np.array([0.0, 0.0, 0.0, 1.0]) ct_levels = [0.2, 0.4, 0.6, 0.8] ct_surface = { "rr": sph_center, "tris": tet_indices } qv_color = 'blue' qv_scale = tet_size / 2.0 qv_center = np.array([np.mean((sph_center[va, :], sph_center[vb, :], sph_center[vc, :]), axis=0) for (va, vb, vc) in tet_indices]) center = np.mean(qv_center, axis=0) qv_dir = qv_center - center qv_scale_mode = 'scalar' qv_scalars = np.linspace(1.0, 2.0, 4) txt_x = 0.0 txt_y = 0.0 txt_text = "renderer" txt_size = 14 cam_distance = 5 * tet_size # init scene rend = renderer.create_3d_figure( size=win_size, bgcolor=win_color, smooth_shading=True, scene=False, ) for interaction in ('terrain', 'trackball'): rend.set_interaction(interaction) # use mesh mesh_data = rend.mesh( x=tet_x, y=tet_y, z=tet_z, triangles=tet_indices, color=tet_color, ) rend.remove_mesh(mesh_data) # use contour rend.contour(surface=ct_surface, scalars=ct_scalars, contours=ct_levels, kind='line') rend.contour(surface=ct_surface, scalars=ct_scalars, contours=ct_levels, kind='tube') # use sphere rend.sphere(center=sph_center, color=sph_color, scale=sph_scale, radius=1.0) # use quiver3d kwargs = dict( x=qv_center[:, 0], y=qv_center[:, 1], z=qv_center[:, 2], u=qv_dir[:, 0], v=qv_dir[:, 1], w=qv_dir[:, 2], color=qv_color, scale=qv_scale, scale_mode=qv_scale_mode, scalars=qv_scalars, ) for mode in ALLOWED_QUIVER_MODES: rend.quiver3d(mode=mode, **kwargs) with pytest.raises(ValueError, match='Invalid value'): rend.quiver3d(mode='foo', **kwargs) # use tube rend.tube(origin=np.array([[0, 0, 0]]), destination=np.array([[0, 1, 0]])) tube = rend.tube(origin=np.array([[1, 0, 0]]), destination=np.array([[1, 1, 0]]), scalars=np.array([[1.0, 1.0]])) # scalar bar rend.scalarbar(source=tube, title="Scalar Bar", bgcolor=[1, 1, 1]) # use text rend.text2d(x_window=txt_x, y_window=txt_y, text=txt_text, size=txt_size, justification='right') rend.text3d(x=0, y=0, z=0, text=txt_text, scale=1.0) rend.set_camera(azimuth=180.0, elevation=90.0, distance=cam_distance, focalpoint=center) rend.reset_camera() rend.show() def test_get_3d_backend(renderer): """Test get_3d_backend function call for side-effects.""" # Test twice to ensure the first call had no side-effect orig_backend = renderer.MNE_3D_BACKEND assert renderer.get_3d_backend() == orig_backend assert renderer.get_3d_backend() == orig_backend
fanor79/BotTwitterRetweet
refs/heads/master
test.py
1
#!/usr/bin/env python # coding: utf-8 import os import json import time import os.path import sqlite3 from twython import Twython from pprint import pprint from function import * api = Twython(CONSUMER_KEY, CONSUMER_SECRET, ACCESS_KEY, ACCESS_SECRET) #Permet de crée le fichier database.db et de crée la table dedans if os.path.exists('database.db') == False: con = sqlite3.connect('database.db') c = con.cursor() c.execute('CREATE TABLE Tweet(id text)') print('database.db crée avec la table Tweet') con.commit() lesTweets = lireTweet(api) for leTweet in lesTweets['statuses']: id_str = leTweet['id_str'] if rechercheId(id_str) == False and isSelfSource(leTweet) == False: api.retweet(id = id_str) ajoutListeTweet(id_str)
meghana1995/sympy
refs/heads/master
sympy/matrices/expressions/matmul.py
7
from __future__ import print_function, division from sympy.core import Mul, Basic, sympify, Add from sympy.core.compatibility import range from sympy.functions import adjoint from sympy.matrices.expressions.transpose import transpose from sympy.strategies import (rm_id, unpack, typed, flatten, exhaust, do_one, new) from sympy.matrices.expressions.matexpr import (MatrixExpr, ShapeError, Identity, ZeroMatrix) from sympy.matrices.matrices import MatrixBase class MatMul(MatrixExpr): """ A product of matrix expressions Examples ======== >>> from sympy import MatMul, MatrixSymbol >>> A = MatrixSymbol('A', 5, 4) >>> B = MatrixSymbol('B', 4, 3) >>> C = MatrixSymbol('C', 3, 6) >>> MatMul(A, B, C) A*B*C """ is_MatMul = True def __new__(cls, *args, **kwargs): check = kwargs.get('check', True) args = list(map(sympify, args)) obj = Basic.__new__(cls, *args) factor, matrices = obj.as_coeff_matrices() if check: validate(*matrices) return obj @property def shape(self): matrices = [arg for arg in self.args if arg.is_Matrix] return (matrices[0].rows, matrices[-1].cols) def _entry(self, i, j, expand=True): coeff, matrices = self.as_coeff_matrices() if len(matrices) == 1: # situation like 2*X, matmul is just X return coeff * matrices[0][i, j] head, tail = matrices[0], matrices[1:] if len(tail) == 0: raise ValueError("lenth of tail cannot be 0") X = head Y = MatMul(*tail) from sympy.core.symbol import Dummy from sympy.concrete.summations import Sum from sympy.matrices import ImmutableMatrix k = Dummy('k', integer=True) if X.has(ImmutableMatrix) or Y.has(ImmutableMatrix): return coeff*Add(*[X[i, k]*Y[k, j] for k in range(X.cols)]) result = Sum(coeff*X[i, k]*Y[k, j], (k, 0, X.cols - 1)) return result.doit() if expand else result def as_coeff_matrices(self): scalars = [x for x in self.args if not x.is_Matrix] matrices = [x for x in self.args if x.is_Matrix] coeff = Mul(*scalars) return coeff, matrices def as_coeff_mmul(self): coeff, matrices = self.as_coeff_matrices() return coeff, MatMul(*matrices) def _eval_transpose(self): return MatMul(*[transpose(arg) for arg in self.args[::-1]]).doit() def _eval_adjoint(self): return MatMul(*[adjoint(arg) for arg in self.args[::-1]]).doit() def _eval_trace(self): factor, mmul = self.as_coeff_mmul() if factor != 1: from .trace import Trace return factor * Trace(mmul) else: raise NotImplementedError("Can't simplify any further") def _eval_determinant(self): from sympy.matrices.expressions.determinant import Determinant factor, matrices = self.as_coeff_matrices() square_matrices = only_squares(*matrices) return factor**self.rows * Mul(*list(map(Determinant, square_matrices))) def _eval_inverse(self): try: return MatMul(*[ arg.inverse() if isinstance(arg, MatrixExpr) else arg**-1 for arg in self.args[::-1]]).doit() except ShapeError: from sympy.matrices.expressions.inverse import Inverse return Inverse(self) def doit(self, **kwargs): deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args return canonicalize(MatMul(*args)) def validate(*matrices): """ Checks for valid shapes for args of MatMul """ for i in range(len(matrices)-1): A, B = matrices[i:i+2] if A.cols != B.rows: raise ShapeError("Matrices %s and %s are not aligned"%(A, B)) # Rules def newmul(*args): if args[0] == 1: args = args[1:] return new(MatMul, *args) def any_zeros(mul): if any([arg.is_zero or (arg.is_Matrix and arg.is_ZeroMatrix) for arg in mul.args]): matrices = [arg for arg in mul.args if arg.is_Matrix] return ZeroMatrix(matrices[0].rows, matrices[-1].cols) return mul def merge_explicit(matmul): """ Merge explicit MatrixBase arguments >>> from sympy import MatrixSymbol, eye, Matrix, MatMul, pprint >>> from sympy.matrices.expressions.matmul import merge_explicit >>> A = MatrixSymbol('A', 2, 2) >>> B = Matrix([[1, 1], [1, 1]]) >>> C = Matrix([[1, 2], [3, 4]]) >>> X = MatMul(A, B, C) >>> pprint(X) A*[1 1]*[1 2] [ ] [ ] [1 1] [3 4] >>> pprint(merge_explicit(X)) A*[4 6] [ ] [4 6] >>> X = MatMul(B, A, C) >>> pprint(X) [1 1]*A*[1 2] [ ] [ ] [1 1] [3 4] >>> pprint(merge_explicit(X)) [1 1]*A*[1 2] [ ] [ ] [1 1] [3 4] """ if not any(isinstance(arg, MatrixBase) for arg in matmul.args): return matmul newargs = [] last = matmul.args[0] for arg in matmul.args[1:]: if isinstance(arg, MatrixBase) and isinstance(last, MatrixBase): last = last * arg else: newargs.append(last) last = arg newargs.append(last) return MatMul(*newargs) def xxinv(mul): """ Y * X * X.I -> Y """ factor, matrices = mul.as_coeff_matrices() for i, (X, Y) in enumerate(zip(matrices[:-1], matrices[1:])): try: if X.is_square and Y.is_square and X == Y.inverse(): I = Identity(X.rows) return newmul(factor, *(matrices[:i] + [I] + matrices[i+2:])) except ValueError: # Y might not be invertible pass return mul def remove_ids(mul): """ Remove Identities from a MatMul This is a modified version of sympy.strategies.rm_id. This is necesssary because MatMul may contain both MatrixExprs and Exprs as args. See Also -------- sympy.strategies.rm_id """ # Separate Exprs from MatrixExprs in args factor, mmul = mul.as_coeff_mmul() # Apply standard rm_id for MatMuls result = rm_id(lambda x: x.is_Identity is True)(mmul) if result != mmul: return newmul(factor, *result.args) # Recombine and return else: return mul def factor_in_front(mul): factor, matrices = mul.as_coeff_matrices() if factor != 1: return newmul(factor, *matrices) return mul rules = (any_zeros, remove_ids, xxinv, unpack, rm_id(lambda x: x == 1), merge_explicit, factor_in_front, flatten) canonicalize = exhaust(typed({MatMul: do_one(*rules)})) def only_squares(*matrices): """ factor matrices only if they are square """ if matrices[0].rows != matrices[-1].cols: raise RuntimeError("Invalid matrices being multiplied") out = [] start = 0 for i, M in enumerate(matrices): if M.cols == matrices[start].rows: out.append(MatMul(*matrices[start:i+1]).doit()) start = i+1 return out from sympy.assumptions.ask import ask, Q from sympy.assumptions.refine import handlers_dict def refine_MatMul(expr, assumptions): """ >>> from sympy import MatrixSymbol, Q, assuming, refine >>> X = MatrixSymbol('X', 2, 2) >>> expr = X * X.T >>> print(expr) X*X' >>> with assuming(Q.orthogonal(X)): ... print(refine(expr)) I """ newargs = [] last = expr.args[0] for arg in expr.args[1:]: if arg == last.T and ask(Q.orthogonal(arg), assumptions): last = Identity(arg.shape[0]) elif arg == last.conjugate() and ask(Q.unitary(arg), assumptions): last = Identity(arg.shape[0]) else: newargs.append(last) last = arg newargs.append(last) return MatMul(*newargs) handlers_dict['MatMul'] = refine_MatMul
h4de5ing/sees
refs/heads/master
lib/main.py
9
try: import sys import argparse import os from config import Config_Parser from exceptions import SeesExceptions from common import * except ImportError,e: import sys sys.stdout.write("%s\n" %e) sys.exit(1) def is_file_exists(file_list): for file in file_list: if not os.path.exists(file): print >> sys.stderr, bcolors.OKBLUE + "Error : " + bcolors.ENDC + bcolors.FAIL + "The file \"%s\" doesn't Exists On The System !!!"% (file) + bcolors.ENDC sys.exit(2) class AddressAction(argparse.Action): def __call__(self, parser, args, values, option = None): args.options = values if args.attach: if not args.options: parser.error("Usage --attach <file1 file2 file3> ") else: is_file_exists(args.options) class Main: def __init__(self): parser = argparse.ArgumentParser() group_parser = parser.add_mutually_exclusive_group(required = True) group_parser.add_argument('--attach', dest='attach', action='store_const', const='attach', help="Attach Email") group_parser.add_argument('--text', dest='text', action='store_const', const='text', help="Text Email") parser.add_argument('options', nargs='*', action = AddressAction) parser.add_argument('--config_file', '-c', action = 'store', dest = 'config_file', help = "Configuration Files", metavar="FILE", required = True) parser.add_argument('--mail_user', '-m', action = 'store', dest = 'mail_user_file', help = "Mail User File", metavar="FILE", required = True) parser.add_argument('--html_file', '-f', action = 'store', dest = 'html_file', help = "Content of Html File" ,metavar="FILE", required = True) parser.add_argument('--verbose', '-v', action = 'store_true', help = "Verbose For Eending Email", default = False) self.args = parser.parse_args() file_list = (self.args.config_file,self.args.mail_user_file,self.args.html_file) is_file_exists(file_list) def run(self): parser = Config_Parser(self.args.config_file) try: if self.args.attach: parser.run(self.args.mail_user_file, self.args.attach, self.args.html_file, self.args.verbose, self.args.options) else: parser.run(self.args.mail_user_file, self.args.text, self.args.html_file, self.args.verbose, None) except SeesExceptions, mess: raise SeesExceptions("%s"% mess)
sodafree/backend
refs/heads/master
django/views/generic/__init__.py
493
from django.views.generic.base import View, TemplateView, RedirectView from django.views.generic.dates import (ArchiveIndexView, YearArchiveView, MonthArchiveView, WeekArchiveView, DayArchiveView, TodayArchiveView, DateDetailView) from django.views.generic.detail import DetailView from django.views.generic.edit import FormView, CreateView, UpdateView, DeleteView from django.views.generic.list import ListView class GenericViewError(Exception): """A problem in a generic view.""" pass
Maillol/cricri
refs/heads/master
test/inet/test_http_client.py
2
import unittest from io import BytesIO import http.client from cricri.inet.http_client import (HTTPResponse, NoResponseProvidedError) class MockSocket: LINES = (b'HTTP/1.1 200 OK\r\n' b'Date: Tue, 21 Mar 2017 07:02:52 GMT\r\n' b'Server: CherryPy/10.2.1\r\n' b'Content-Type: application/json\r\n' b'Allow: DELETE, GET, HEAD, POST, PUT\r\n' b'Content-Length: 2\r\n' b'\r\n' b'[]') @classmethod def makefile(cls, _mode): return BytesIO(cls.LINES) class TestHTTPResponse(unittest.TestCase): @classmethod def setUpClass(cls): response = http.client.HTTPResponse(MockSocket) response.begin() cls.responses = HTTPResponse(response) def test_version_should_be_1_1(self): self.assertEqual(self.responses.version, 11) def test_status_code_must_be_200(self): self.assertEqual(self.responses.status_code, 200) def test_reason_must_ok(self): self.assertEqual(self.responses.reason, 'OK') def test_assert_header_has_should_raise(self): """ When HTTPResponse header has not value. """ with self.assertRaises(AssertionError): self.responses.assert_header_has('Allow', 'PATCH') def test_assert_header_has_should_not_raise(self): """ When HTTPResponse header has value. """ self.assertIsNone( self.responses.assert_header_has('Allow', 'DELETE') ) def test_assert_header_is_should_raise(self): """ When HTTPResponse header is not exactly. """ with self.assertRaises(AssertionError): self.responses.assert_header_is('Allow', 'GET, DELETE, HEAD, POST, PUT') def test_assert_header_is_should_not_raise(self): """ When HTTPResponse header is exactly the given value. """ self.assertIsNone( self.responses.assert_header_is('Allow', 'DELETE, GET, HEAD, POST, PUT') ) def test_assert_reason_should_raise(self): self.assertIsNone( self.responses.assert_reason('OK') ) def test_assert_reason_should_not_raise(self): with self.assertRaises(AssertionError): self.responses.assert_reason('FAILED') def test_assert_status_code_should_raise(self): with self.assertRaises(AssertionError): self.responses.assert_status_code(201) def test_assert_status_code_should_not_raise(self): self.assertIsNone( self.responses.assert_status_code(200) ) def test_should_not_use_assert_when_response_is_not_provided(self): with self.assertRaises(NoResponseProvidedError): response = HTTPResponse() self.assertIsNone( response.assert_status_code(200) )
cainiaocome/scikit-learn
refs/heads/master
sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
221
""" Testing for the gradient boosting loss functions and initial estimators. """ import numpy as np from numpy.testing import assert_array_equal from numpy.testing import assert_almost_equal from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.utils import check_random_state from sklearn.ensemble.gradient_boosting import BinomialDeviance from sklearn.ensemble.gradient_boosting import LogOddsEstimator from sklearn.ensemble.gradient_boosting import LeastSquaresError from sklearn.ensemble.gradient_boosting import RegressionLossFunction from sklearn.ensemble.gradient_boosting import LOSS_FUNCTIONS from sklearn.ensemble.gradient_boosting import _weighted_percentile def test_binomial_deviance(): # Check binomial deviance loss. # Check against alternative definitions in ESLII. bd = BinomialDeviance(2) # pred has the same BD for y in {0, 1} assert_equal(bd(np.array([0.0]), np.array([0.0])), bd(np.array([1.0]), np.array([0.0]))) assert_almost_equal(bd(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), 0.0) assert_almost_equal(bd(np.array([1.0, 0.0, 0.0]), np.array([100.0, -100.0, -100.0])), 0) # check if same results as alternative definition of deviance (from ESLII) alt_dev = lambda y, pred: np.mean(np.logaddexp(0.0, -2.0 * (2.0 * y - 1) * pred)) test_data = [(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([-100.0, -100.0, -100.0])), (np.array([1.0, 1.0, 1.0]), np.array([-100.0, -100.0, -100.0]))] for datum in test_data: assert_almost_equal(bd(*datum), alt_dev(*datum)) # check the gradient against the alt_ng = lambda y, pred: (2 * y - 1) / (1 + np.exp(2 * (2 * y - 1) * pred)) for datum in test_data: assert_almost_equal(bd.negative_gradient(*datum), alt_ng(*datum)) def test_log_odds_estimator(): # Check log odds estimator. est = LogOddsEstimator() assert_raises(ValueError, est.fit, None, np.array([1])) est.fit(None, np.array([1.0, 0.0])) assert_equal(est.prior, 0.0) assert_array_equal(est.predict(np.array([[1.0], [1.0]])), np.array([[0.0], [0.0]])) def test_sample_weight_smoke(): rng = check_random_state(13) y = rng.rand(100) pred = rng.rand(100) # least squares loss = LeastSquaresError(1) loss_wo_sw = loss(y, pred) loss_w_sw = loss(y, pred, np.ones(pred.shape[0], dtype=np.float32)) assert_almost_equal(loss_wo_sw, loss_w_sw) def test_sample_weight_init_estimators(): # Smoke test for init estimators with sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y else: k = 2 y = clf_y if Loss.is_multi_class: # skip multiclass continue loss = Loss(k) init_est = loss.init_estimator() init_est.fit(X, y) out = init_est.predict(X) assert_equal(out.shape, (y.shape[0], 1)) sw_init_est = loss.init_estimator() sw_init_est.fit(X, y, sample_weight=sample_weight) sw_out = init_est.predict(X) assert_equal(sw_out.shape, (y.shape[0], 1)) # check if predictions match assert_array_equal(out, sw_out) def test_weighted_percentile(): y = np.empty(102, dtype=np.float) y[:50] = 0 y[-51:] = 2 y[-1] = 100000 y[50] = 1 sw = np.ones(102, dtype=np.float) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 1 def test_weighted_percentile_equal(): y = np.empty(102, dtype=np.float) y.fill(0.0) sw = np.ones(102, dtype=np.float) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 0 def test_weighted_percentile_zero_weight(): y = np.empty(102, dtype=np.float) y.fill(1.0) sw = np.ones(102, dtype=np.float) sw.fill(0.0) score = _weighted_percentile(y, sw, 50) assert score == 1.0 def test_sample_weight_deviance(): # Test if deviance supports sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) mclf_y = rng.randint(0, 3, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y p = reg_y else: k = 2 y = clf_y p = clf_y if Loss.is_multi_class: k = 3 y = mclf_y # one-hot encoding p = np.zeros((y.shape[0], k), dtype=np.float64) for i in range(k): p[:, i] = y == i loss = Loss(k) deviance_w_w = loss(y, p, sample_weight) deviance_wo_w = loss(y, p) assert deviance_wo_w == deviance_w_w
javiergarridomellado/Empresa_django
refs/heads/master
devcodela/lib/python2.7/site-packages/django/contrib/gis/geometry/backend/__init__.py
128
from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.utils.importlib import import_module geom_backend = getattr(settings, 'GEOMETRY_BACKEND', 'geos') try: module = import_module('.%s' % geom_backend, 'django.contrib.gis.geometry.backend') except ImportError: try: module = import_module(geom_backend) except ImportError: raise ImproperlyConfigured('Could not import user-defined GEOMETRY_BACKEND ' '"%s".' % geom_backend) try: Geometry = module.Geometry GeometryException = module.GeometryException except AttributeError: raise ImproperlyConfigured('Cannot import Geometry from the "%s" ' 'geometry backend.' % geom_backend)
alexallah/django
refs/heads/master
tests/contenttypes_tests/urls.py
72
from django.conf.urls import url from django.contrib.contenttypes import views urlpatterns = [ url(r'^shortcut/([0-9]+)/(.*)/$', views.shortcut), ]
UAVCAN/pyuavcan
refs/heads/master
pyuavcan/dsdl/_composite_object.py
1
# Copyright (c) 2019 UAVCAN Consortium # This software is distributed under the terms of the MIT License. # Author: Pavel Kirienko <pavel@uavcan.org> from __future__ import annotations import abc import gzip import typing import pickle import base64 import logging import importlib import pydsdl from . import _serialized_representation _logger = logging.getLogger(__name__) class CompositeObject(abc.ABC): # Members are surrounded with underscores to avoid collisions with DSDL attributes. """ This is the base class for all Python classes generated from DSDL definitions. It does not have any public members. """ _MODEL_: pydsdl.CompositeType """Type definition as provided by PyDSDL.""" _EXTENT_BYTES_: int """Defined in generated classes.""" @abc.abstractmethod def _serialize_(self, _ser_: _serialized_representation.Serializer) -> None: """ Auto-generated serialization method. Appends the serialized representation of its object to the supplied Serializer instance. This is not a part of the API. """ raise NotImplementedError @staticmethod @abc.abstractmethod def _deserialize_(_des_: _serialized_representation.Deserializer) -> CompositeObject: """ Auto-generated deserialization method. Consumes (some) data from the supplied Deserializer instance. Raises a Deserializer.FormatError if the supplied serialized representation is invalid. Always returns a valid object unless an exception is raised. This is not a part of the API. """ raise NotImplementedError @staticmethod def _restore_constant_(encoded_string: str) -> object: """Recovers a pickled gzipped constant object from base85 string representation.""" out = pickle.loads(gzip.decompress(base64.b85decode(encoded_string))) assert isinstance(out, object) return out # These typing hints are provided here for use in the generated classes. They are obviously not part of the API. _SerializerTypeVar_ = typing.TypeVar("_SerializerTypeVar_", bound=_serialized_representation.Serializer) _DeserializerTypeVar_ = typing.TypeVar("_DeserializerTypeVar_", bound=_serialized_representation.Deserializer) class ServiceObject(CompositeObject): """ This is the base class for all Python classes generated from DSDL service type definitions. Observe that it inherits from the composite object class, just like the nested types Request and Response. """ Request: typing.Type[CompositeObject] """ Nested request type. Inherits from :class:`CompositeObject`. The base class provides a stub which is overridden in generated classes. """ Response: typing.Type[CompositeObject] """ Nested response type. Inherits from :class:`CompositeObject`. The base class provides a stub which is overridden in generated classes. """ _EXTENT_BYTES_ = 0 def _serialize_(self, _ser_: _serialized_representation.Serializer) -> None: raise TypeError(f"Service type {type(self).__name__} cannot be serialized") @staticmethod def _deserialize_(_des_: _serialized_representation.Deserializer) -> CompositeObject: raise TypeError("Service types cannot be deserialized") class FixedPortObject(abc.ABC): """ This is the base class for all Python classes generated from DSDL types that have a fixed port identifier. """ _FIXED_PORT_ID_: int class FixedPortCompositeObject(CompositeObject, FixedPortObject): @abc.abstractmethod def _serialize_(self, _ser_: _serialized_representation.Serializer) -> None: raise NotImplementedError @staticmethod @abc.abstractmethod def _deserialize_(_des_: _serialized_representation.Deserializer) -> CompositeObject: raise NotImplementedError class FixedPortServiceObject(ServiceObject, FixedPortObject): pass CompositeObjectTypeVar = typing.TypeVar("CompositeObjectTypeVar", bound=CompositeObject) def serialize(obj: CompositeObject) -> typing.Iterable[memoryview]: """ Constructs a serialized representation of the provided top-level object. The resulting serialized representation is padded to one byte in accordance with the UAVCAN specification. The constructed serialized representation is returned as a sequence of byte-aligned fragments which must be concatenated in order to obtain the final representation. The objective of this model is to avoid copying data into a temporary buffer when possible. Each yielded fragment is of type :class:`memoryview` pointing to raw unsigned bytes. It is guaranteed that at least one fragment is always returned (which may be empty). """ # TODO: update the Serializer class to emit an iterable of fragments. ser = _serialized_representation.Serializer.new(obj._EXTENT_BYTES_) # pylint: disable=protected-access obj._serialize_(ser) # pylint: disable=protected-access yield ser.buffer.data def deserialize( dtype: typing.Type[CompositeObjectTypeVar], fragmented_serialized_representation: typing.Sequence[memoryview] ) -> typing.Optional[CompositeObjectTypeVar]: """ Constructs an instance of the supplied DSDL-generated data type from its serialized representation. Returns None if the provided serialized representation is invalid. This function will never raise an exception for invalid input data; the only possible outcome of an invalid data being supplied is None at the output. A raised exception can only indicate an error in the deserialization logic. .. important:: The constructed object may contain arrays referencing the memory allocated for the serialized representation. Therefore, in order to avoid unintended data corruption, the caller should destroy all references to the serialized representation immediately after the invocation. .. important:: The supplied fragments of the serialized representation should be writeable. If they are not, some of the array-typed fields of the constructed object may be read-only. """ deserializer = _serialized_representation.Deserializer.new(fragmented_serialized_representation) try: return dtype._deserialize_(deserializer) # type: ignore # pylint: disable=protected-access except _serialized_representation.Deserializer.FormatError: _logger.info("Invalid serialized representation of %s: %s", get_model(dtype), deserializer, exc_info=True) return None def get_model(class_or_instance: typing.Union[typing.Type[CompositeObject], CompositeObject]) -> pydsdl.CompositeType: """ Obtains a PyDSDL model of the supplied DSDL-generated class or its instance. This is the inverse of :func:`get_class`. """ out = class_or_instance._MODEL_ # pylint: disable=protected-access assert isinstance(out, pydsdl.CompositeType) return out def get_class(model: pydsdl.CompositeType) -> typing.Type[CompositeObject]: """ Returns a generated native class implementing the specified DSDL type represented by its PyDSDL model object. Promotes the model to delimited type automatically if necessary. This is the inverse of :func:`get_model`. :raises: - :class:`ImportError` if the generated package or subpackage cannot be found. - :class:`AttributeError` if the package is found but it does not contain the requested type. - :class:`TypeError` if the requested type is found, but its model does not match the input argument. This error may occur if the DSDL source has changed since the type was generated. To fix this, regenerate the package and make sure that all components of the application use identical or compatible DSDL source files. """ def do_import(name_components: typing.List[str]) -> typing.Any: mod = None for comp in name_components: name = (mod.__name__ + "." + comp) if mod else comp # type: ignore try: mod = importlib.import_module(name) except ImportError: # We seem to have hit a reserved word; try with an underscore. mod = importlib.import_module(name + "_") return mod if model.has_parent_service: # uavcan.node.GetInfo.Request --> uavcan.node.GetInfo then Request parent_name, child_name = model.name_components[-2:] mod = do_import(model.name_components[:-2]) out = getattr(mod, f"{parent_name}_{model.version.major}_{model.version.minor}") assert issubclass(out, ServiceObject) out = getattr(out, child_name) else: mod = do_import(model.name_components[:-1]) out = getattr(mod, f"{model.short_name}_{model.version.major}_{model.version.minor}") out_model = get_model(out) if out_model.inner_type != model.inner_type: raise TypeError( f"The class has been generated using an incompatible DSDL definition. " f"Requested model: {model} defined in {model.source_file_path}. " f"Model found in the class: {out_model} defined in {out_model.source_file_path}." ) assert str(get_model(out)) == str(model) assert isinstance(out, type) assert issubclass(out, CompositeObject) return out def get_extent_bytes(class_or_instance: typing.Union[typing.Type[CompositeObject], CompositeObject]) -> int: return int(class_or_instance._EXTENT_BYTES_) # pylint: disable=protected-access def get_fixed_port_id( class_or_instance: typing.Union[typing.Type[FixedPortObject], FixedPortObject] ) -> typing.Optional[int]: """ Returns None if the supplied type has no fixed port-ID. """ try: out = int(class_or_instance._FIXED_PORT_ID_) # pylint: disable=protected-access except (TypeError, AttributeError): return None else: if (isinstance(class_or_instance, type) and issubclass(class_or_instance, CompositeObject)) or isinstance( class_or_instance, CompositeObject ): # pragma: no branch assert out == get_model(class_or_instance).fixed_port_id return out def get_attribute(obj: typing.Union[CompositeObject, typing.Type[CompositeObject]], name: str) -> typing.Any: """ DSDL type attributes whose names can't be represented in Python (such as ``def`` or ``type``) are suffixed with an underscore. This function allows the caller to read arbitrary attributes referring to them by their original DSDL names, e.g., ``def`` instead of ``def_``. This function behaves like :func:`getattr` if the attribute does not exist. """ try: return getattr(obj, name) except AttributeError: return getattr(obj, name + "_") def set_attribute(obj: CompositeObject, name: str, value: typing.Any) -> None: """ DSDL type attributes whose names can't be represented in Python (such as ``def`` or ``type``) are suffixed with an underscore. This function allows the caller to assign arbitrary attributes referring to them by their original DSDL names, e.g., ``def`` instead of ``def_``. If the attribute does not exist, raises :class:`AttributeError`. """ suffixed = name + "_" # We can't call setattr() without asking first because if it doesn't exist it will be created, # which would be disastrous. if hasattr(obj, name): setattr(obj, name, value) elif hasattr(obj, suffixed): setattr(obj, suffixed, value) else: raise AttributeError(name)
Drooids/erpnext
refs/heads/develop
erpnext/setup/page/setup_wizard/test_setup_wizard.py
45
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import frappe from erpnext.setup.page.setup_wizard.test_setup_data import args from erpnext.setup.page.setup_wizard.setup_wizard import setup_account import frappe.utils.scheduler if __name__=="__main__": frappe.connect() frappe.local.form_dict = frappe._dict(args) setup_account() frappe.utils.scheduler.disable_scheduler()
minhphung171093/GreenERP
refs/heads/master
openerp/addons/delivery/models/__init__.py
41
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. import delivery_carrier import delivery_price_rule import product_template import sale_order import partner import stock_picking import stock_move
flyher/pymo
refs/heads/master
symbian/PythonForS60_1.9.6/module-repo/standard-modules/BaseHTTPServer.py
91
"""HTTP server base class. Note: the class in this module doesn't implement any HTTP request; see SimpleHTTPServer for simple implementations of GET, HEAD and POST (including CGI scripts). It does, however, optionally implement HTTP/1.1 persistent connections, as of version 0.3. Contents: - BaseHTTPRequestHandler: HTTP request handler base class - test: test function XXX To do: - log requests even later (to capture byte count) - log user-agent header and other interesting goodies - send error log to separate file """ # See also: # # HTTP Working Group T. Berners-Lee # INTERNET-DRAFT R. T. Fielding # <draft-ietf-http-v10-spec-00.txt> H. Frystyk Nielsen # Expires September 8, 1995 March 8, 1995 # # URL: http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-v10-spec-00.txt # # and # # Network Working Group R. Fielding # Request for Comments: 2616 et al # Obsoletes: 2068 June 1999 # Category: Standards Track # # URL: http://www.faqs.org/rfcs/rfc2616.html # Log files # --------- # # Here's a quote from the NCSA httpd docs about log file format. # # | The logfile format is as follows. Each line consists of: # | # | host rfc931 authuser [DD/Mon/YYYY:hh:mm:ss] "request" ddd bbbb # | # | host: Either the DNS name or the IP number of the remote client # | rfc931: Any information returned by identd for this person, # | - otherwise. # | authuser: If user sent a userid for authentication, the user name, # | - otherwise. # | DD: Day # | Mon: Month (calendar name) # | YYYY: Year # | hh: hour (24-hour format, the machine's timezone) # | mm: minutes # | ss: seconds # | request: The first line of the HTTP request as sent by the client. # | ddd: the status code returned by the server, - if not available. # | bbbb: the total number of bytes sent, # | *not including the HTTP/1.0 header*, - if not available # | # | You can determine the name of the file accessed through request. # # (Actually, the latter is only true if you know the server configuration # at the time the request was made!) __version__ = "0.3" __all__ = ["HTTPServer", "BaseHTTPRequestHandler"] import sys import time import socket # For gethostbyaddr() import mimetools import SocketServer # Default error message DEFAULT_ERROR_MESSAGE = """\ <head> <title>Error response</title> </head> <body> <h1>Error response</h1> <p>Error code %(code)d. <p>Message: %(message)s. <p>Error code explanation: %(code)s = %(explain)s. </body> """ def _quote_html(html): return html.replace("&", "&amp;").replace("<", "&lt;").replace(">", "&gt;") class HTTPServer(SocketServer.TCPServer): allow_reuse_address = 1 # Seems to make sense in testing environment def server_bind(self): """Override server_bind to store the server name.""" SocketServer.TCPServer.server_bind(self) host, port = self.socket.getsockname()[:2] self.server_name = socket.getfqdn(host) self.server_port = port class BaseHTTPRequestHandler(SocketServer.StreamRequestHandler): """HTTP request handler base class. The following explanation of HTTP serves to guide you through the code as well as to expose any misunderstandings I may have about HTTP (so you don't need to read the code to figure out I'm wrong :-). HTTP (HyperText Transfer Protocol) is an extensible protocol on top of a reliable stream transport (e.g. TCP/IP). The protocol recognizes three parts to a request: 1. One line identifying the request type and path 2. An optional set of RFC-822-style headers 3. An optional data part The headers and data are separated by a blank line. The first line of the request has the form <command> <path> <version> where <command> is a (case-sensitive) keyword such as GET or POST, <path> is a string containing path information for the request, and <version> should be the string "HTTP/1.0" or "HTTP/1.1". <path> is encoded using the URL encoding scheme (using %xx to signify the ASCII character with hex code xx). The specification specifies that lines are separated by CRLF but for compatibility with the widest range of clients recommends servers also handle LF. Similarly, whitespace in the request line is treated sensibly (allowing multiple spaces between components and allowing trailing whitespace). Similarly, for output, lines ought to be separated by CRLF pairs but most clients grok LF characters just fine. If the first line of the request has the form <command> <path> (i.e. <version> is left out) then this is assumed to be an HTTP 0.9 request; this form has no optional headers and data part and the reply consists of just the data. The reply form of the HTTP 1.x protocol again has three parts: 1. One line giving the response code 2. An optional set of RFC-822-style headers 3. The data Again, the headers and data are separated by a blank line. The response code line has the form <version> <responsecode> <responsestring> where <version> is the protocol version ("HTTP/1.0" or "HTTP/1.1"), <responsecode> is a 3-digit response code indicating success or failure of the request, and <responsestring> is an optional human-readable string explaining what the response code means. This server parses the request and the headers, and then calls a function specific to the request type (<command>). Specifically, a request SPAM will be handled by a method do_SPAM(). If no such method exists the server sends an error response to the client. If it exists, it is called with no arguments: do_SPAM() Note that the request name is case sensitive (i.e. SPAM and spam are different requests). The various request details are stored in instance variables: - client_address is the client IP address in the form (host, port); - command, path and version are the broken-down request line; - headers is an instance of mimetools.Message (or a derived class) containing the header information; - rfile is a file object open for reading positioned at the start of the optional input data part; - wfile is a file object open for writing. IT IS IMPORTANT TO ADHERE TO THE PROTOCOL FOR WRITING! The first thing to be written must be the response line. Then follow 0 or more header lines, then a blank line, and then the actual data (if any). The meaning of the header lines depends on the command executed by the server; in most cases, when data is returned, there should be at least one header line of the form Content-type: <type>/<subtype> where <type> and <subtype> should be registered MIME types, e.g. "text/html" or "text/plain". """ # The Python system version, truncated to its first component. sys_version = "Python/" + sys.version.split()[0] # The server software version. You may want to override this. # The format is multiple whitespace-separated strings, # where each string is of the form name[/version]. server_version = "BaseHTTP/" + __version__ def parse_request(self): """Parse a request (internal). The request should be stored in self.raw_requestline; the results are in self.command, self.path, self.request_version and self.headers. Return True for success, False for failure; on failure, an error is sent back. """ self.command = None # set in case of error on the first line self.request_version = version = "HTTP/0.9" # Default self.close_connection = 1 requestline = self.raw_requestline if requestline[-2:] == '\r\n': requestline = requestline[:-2] elif requestline[-1:] == '\n': requestline = requestline[:-1] self.requestline = requestline words = requestline.split() if len(words) == 3: [command, path, version] = words if version[:5] != 'HTTP/': self.send_error(400, "Bad request version (%r)" % version) return False try: base_version_number = version.split('/', 1)[1] version_number = base_version_number.split(".") # RFC 2145 section 3.1 says there can be only one "." and # - major and minor numbers MUST be treated as # separate integers; # - HTTP/2.4 is a lower version than HTTP/2.13, which in # turn is lower than HTTP/12.3; # - Leading zeros MUST be ignored by recipients. if len(version_number) != 2: raise ValueError version_number = int(version_number[0]), int(version_number[1]) except (ValueError, IndexError): self.send_error(400, "Bad request version (%r)" % version) return False if version_number >= (1, 1) and self.protocol_version >= "HTTP/1.1": self.close_connection = 0 if version_number >= (2, 0): self.send_error(505, "Invalid HTTP Version (%s)" % base_version_number) return False elif len(words) == 2: [command, path] = words self.close_connection = 1 if command != 'GET': self.send_error(400, "Bad HTTP/0.9 request type (%r)" % command) return False elif not words: return False else: self.send_error(400, "Bad request syntax (%r)" % requestline) return False self.command, self.path, self.request_version = command, path, version # Examine the headers and look for a Connection directive self.headers = self.MessageClass(self.rfile, 0) conntype = self.headers.get('Connection', "") if conntype.lower() == 'close': self.close_connection = 1 elif (conntype.lower() == 'keep-alive' and self.protocol_version >= "HTTP/1.1"): self.close_connection = 0 return True def handle_one_request(self): """Handle a single HTTP request. You normally don't need to override this method; see the class __doc__ string for information on how to handle specific HTTP commands such as GET and POST. """ self.raw_requestline = self.rfile.readline() if not self.raw_requestline: self.close_connection = 1 return if not self.parse_request(): # An error code has been sent, just exit return mname = 'do_' + self.command if not hasattr(self, mname): self.send_error(501, "Unsupported method (%r)" % self.command) return method = getattr(self, mname) method() def handle(self): """Handle multiple requests if necessary.""" self.close_connection = 1 self.handle_one_request() while not self.close_connection: self.handle_one_request() def send_error(self, code, message=None): """Send and log an error reply. Arguments are the error code, and a detailed message. The detailed message defaults to the short entry matching the response code. This sends an error response (so it must be called before any output has been generated), logs the error, and finally sends a piece of HTML explaining the error to the user. """ try: short, long = self.responses[code] except KeyError: short, long = '???', '???' if message is None: message = short explain = long self.log_error("code %d, message %s", code, message) # using _quote_html to prevent Cross Site Scripting attacks (see bug #1100201) content = (self.error_message_format % {'code': code, 'message': _quote_html(message), 'explain': explain}) self.send_response(code, message) self.send_header("Content-Type", "text/html") self.send_header('Connection', 'close') self.end_headers() if self.command != 'HEAD' and code >= 200 and code not in (204, 304): self.wfile.write(content) error_message_format = DEFAULT_ERROR_MESSAGE def send_response(self, code, message=None): """Send the response header and log the response code. Also send two standard headers with the server software version and the current date. """ self.log_request(code) if message is None: if code in self.responses: message = self.responses[code][0] else: message = '' if self.request_version != 'HTTP/0.9': self.wfile.write("%s %d %s\r\n" % (self.protocol_version, code, message)) # print (self.protocol_version, code, message) self.send_header('Server', self.version_string()) self.send_header('Date', self.date_time_string()) def send_header(self, keyword, value): """Send a MIME header.""" if self.request_version != 'HTTP/0.9': self.wfile.write("%s: %s\r\n" % (keyword, value)) if keyword.lower() == 'connection': if value.lower() == 'close': self.close_connection = 1 elif value.lower() == 'keep-alive': self.close_connection = 0 def end_headers(self): """Send the blank line ending the MIME headers.""" if self.request_version != 'HTTP/0.9': self.wfile.write("\r\n") def log_request(self, code='-', size='-'): """Log an accepted request. This is called by send_response(). """ self.log_message('"%s" %s %s', self.requestline, str(code), str(size)) def log_error(self, *args): """Log an error. This is called when a request cannot be fulfilled. By default it passes the message on to log_message(). Arguments are the same as for log_message(). XXX This should go to the separate error log. """ self.log_message(*args) def log_message(self, format, *args): """Log an arbitrary message. This is used by all other logging functions. Override it if you have specific logging wishes. The first argument, FORMAT, is a format string for the message to be logged. If the format string contains any % escapes requiring parameters, they should be specified as subsequent arguments (it's just like printf!). The client host and current date/time are prefixed to every message. """ sys.stderr.write("%s - - [%s] %s\n" % (self.address_string(), self.log_date_time_string(), format%args)) def version_string(self): """Return the server software version string.""" return self.server_version + ' ' + self.sys_version def date_time_string(self, timestamp=None): """Return the current date and time formatted for a message header.""" if timestamp is None: timestamp = time.time() year, month, day, hh, mm, ss, wd, y, z = time.gmtime(timestamp) s = "%s, %02d %3s %4d %02d:%02d:%02d GMT" % ( self.weekdayname[wd], day, self.monthname[month], year, hh, mm, ss) return s def log_date_time_string(self): """Return the current time formatted for logging.""" now = time.time() year, month, day, hh, mm, ss, x, y, z = time.localtime(now) s = "%02d/%3s/%04d %02d:%02d:%02d" % ( day, self.monthname[month], year, hh, mm, ss) return s weekdayname = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] monthname = [None, 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] def address_string(self): """Return the client address formatted for logging. This version looks up the full hostname using gethostbyaddr(), and tries to find a name that contains at least one dot. """ host, port = self.client_address[:2] return socket.getfqdn(host) # Essentially static class variables # The version of the HTTP protocol we support. # Set this to HTTP/1.1 to enable automatic keepalive protocol_version = "HTTP/1.0" # The Message-like class used to parse headers MessageClass = mimetools.Message # Table mapping response codes to messages; entries have the # form {code: (shortmessage, longmessage)}. # See RFC 2616. responses = { 100: ('Continue', 'Request received, please continue'), 101: ('Switching Protocols', 'Switching to new protocol; obey Upgrade header'), 200: ('OK', 'Request fulfilled, document follows'), 201: ('Created', 'Document created, URL follows'), 202: ('Accepted', 'Request accepted, processing continues off-line'), 203: ('Non-Authoritative Information', 'Request fulfilled from cache'), 204: ('No Content', 'Request fulfilled, nothing follows'), 205: ('Reset Content', 'Clear input form for further input.'), 206: ('Partial Content', 'Partial content follows.'), 300: ('Multiple Choices', 'Object has several resources -- see URI list'), 301: ('Moved Permanently', 'Object moved permanently -- see URI list'), 302: ('Found', 'Object moved temporarily -- see URI list'), 303: ('See Other', 'Object moved -- see Method and URL list'), 304: ('Not Modified', 'Document has not changed since given time'), 305: ('Use Proxy', 'You must use proxy specified in Location to access this ' 'resource.'), 307: ('Temporary Redirect', 'Object moved temporarily -- see URI list'), 400: ('Bad Request', 'Bad request syntax or unsupported method'), 401: ('Unauthorized', 'No permission -- see authorization schemes'), 402: ('Payment Required', 'No payment -- see charging schemes'), 403: ('Forbidden', 'Request forbidden -- authorization will not help'), 404: ('Not Found', 'Nothing matches the given URI'), 405: ('Method Not Allowed', 'Specified method is invalid for this server.'), 406: ('Not Acceptable', 'URI not available in preferred format.'), 407: ('Proxy Authentication Required', 'You must authenticate with ' 'this proxy before proceeding.'), 408: ('Request Timeout', 'Request timed out; try again later.'), 409: ('Conflict', 'Request conflict.'), 410: ('Gone', 'URI no longer exists and has been permanently removed.'), 411: ('Length Required', 'Client must specify Content-Length.'), 412: ('Precondition Failed', 'Precondition in headers is false.'), 413: ('Request Entity Too Large', 'Entity is too large.'), 414: ('Request-URI Too Long', 'URI is too long.'), 415: ('Unsupported Media Type', 'Entity body in unsupported format.'), 416: ('Requested Range Not Satisfiable', 'Cannot satisfy request range.'), 417: ('Expectation Failed', 'Expect condition could not be satisfied.'), 500: ('Internal Server Error', 'Server got itself in trouble'), 501: ('Not Implemented', 'Server does not support this operation'), 502: ('Bad Gateway', 'Invalid responses from another server/proxy.'), 503: ('Service Unavailable', 'The server cannot process the request due to a high load'), 504: ('Gateway Timeout', 'The gateway server did not receive a timely response'), 505: ('HTTP Version Not Supported', 'Cannot fulfill request.'), } def test(HandlerClass = BaseHTTPRequestHandler, ServerClass = HTTPServer, protocol="HTTP/1.0"): """Test the HTTP request handler class. This runs an HTTP server on port 8000 (or the first command line argument). """ if sys.argv[1:]: port = int(sys.argv[1]) else: port = 8000 server_address = ('', port) HandlerClass.protocol_version = protocol httpd = ServerClass(server_address, HandlerClass) sa = httpd.socket.getsockname() print "Serving HTTP on", sa[0], "port", sa[1], "..." httpd.serve_forever() if __name__ == '__main__': test()
happyWilliam/qzb-api
refs/heads/master
sdk/Python/PhalApiClient/python2.x/PhalApiClient.py
3
#-*- coding:utf-8 -*- #gaoyiping (iam@gaoyiping.com) 2017-02-18 import json, urllib, urllib2 def PhalApiClient(host, service = None, params = None, timeout = None): url = host + ('' if service is None else ('?service=' + service)) if params is not None: assert type(params) is dict, 'params type must be dict' assert params, 'params must is valid values' params = urllib.urlencode(params) request = urllib2.Request(url) response = urllib2.urlopen(request, data = params, timeout = timeout) return {'info': response.info(), 'state': response.getcode(), 'data': json.loads(response.read())}
alistairlow/tensorflow
refs/heads/master
tensorflow/contrib/distributions/python/kernel_tests/bijectors/masked_autoregressive_test.py
8
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for MaskedAutoregressiveFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import test_util from tensorflow.contrib.distributions.python.ops.bijectors.invert import Invert from tensorflow.contrib.distributions.python.ops.bijectors.masked_autoregressive import masked_autoregressive_default_template from tensorflow.contrib.distributions.python.ops.bijectors.masked_autoregressive import MaskedAutoregressiveFlow from tensorflow.contrib.distributions.python.ops.bijectors.masked_autoregressive_impl import _gen_mask from tensorflow.python.framework import constant_op from tensorflow.python.ops import array_ops from tensorflow.python.ops import variables from tensorflow.python.ops.distributions import normal as normal_lib from tensorflow.python.ops.distributions import transformed_distribution as transformed_distribution_lib from tensorflow.python.platform import test class GenMaskTest(test.TestCase): def test346Exclusive(self): expected_mask = np.array( [[0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 0, 0]]) mask = _gen_mask(num_blocks=3, n_in=4, n_out=6, mask_type="exclusive") self.assertAllEqual(expected_mask, mask) def test346Inclusive(self): expected_mask = np.array( [[1, 0, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [1, 1, 1, 0]]) mask = _gen_mask(num_blocks=3, n_in=4, n_out=6, mask_type="inclusive") self.assertAllEqual(expected_mask, mask) class MaskedAutoregressiveFlowTest(test_util.VectorDistributionTestHelpers, test.TestCase): @property def _autoregressive_flow_kwargs(self): return { "shift_and_log_scale_fn": masked_autoregressive_default_template( hidden_layers=[2], shift_only=False), "is_constant_jacobian": False, } def testBijector(self): x_ = np.arange(3 * 4 * 2).astype(np.float32).reshape(3, 4, 2) with self.test_session() as sess: ma = MaskedAutoregressiveFlow( validate_args=True, **self._autoregressive_flow_kwargs) x = constant_op.constant(x_) forward_x = ma.forward(x) # Use identity to invalidate cache. inverse_y = ma.inverse(array_ops.identity(forward_x)) fldj = ma.forward_log_det_jacobian(x) # Use identity to invalidate cache. ildj = ma.inverse_log_det_jacobian(array_ops.identity(forward_x)) variables.global_variables_initializer().run() [ forward_x_, inverse_y_, ildj_, fldj_, ] = sess.run([ forward_x, inverse_y, ildj, fldj, ]) self.assertEqual("masked_autoregressive_flow", ma.name) self.assertAllClose(forward_x_, forward_x_, rtol=1e-6, atol=0.) self.assertAllClose(x_, inverse_y_, rtol=1e-5, atol=0.) self.assertAllClose(ildj_, -fldj_, rtol=1e-6, atol=0.) def testMutuallyConsistent(self): dims = 4 with self.test_session() as sess: ma = MaskedAutoregressiveFlow( validate_args=True, **self._autoregressive_flow_kwargs) dist = transformed_distribution_lib.TransformedDistribution( distribution=normal_lib.Normal(loc=0., scale=1.), bijector=ma, event_shape=[dims], validate_args=True) self.run_test_sample_consistent_log_prob( sess_run_fn=sess.run, dist=dist, num_samples=int(1e5), radius=1., center=0., rtol=0.02) def testInvertMutuallyConsistent(self): dims = 4 with self.test_session() as sess: ma = Invert(MaskedAutoregressiveFlow( validate_args=True, **self._autoregressive_flow_kwargs)) dist = transformed_distribution_lib.TransformedDistribution( distribution=normal_lib.Normal(loc=0., scale=1.), bijector=ma, event_shape=[dims], validate_args=True) self.run_test_sample_consistent_log_prob( sess_run_fn=sess.run, dist=dist, num_samples=int(1e5), radius=1., center=0., rtol=0.02) class MaskedAutoregressiveFlowShiftOnlyTest(MaskedAutoregressiveFlowTest): @property def _autoregressive_flow_kwargs(self): return { "shift_and_log_scale_fn": masked_autoregressive_default_template( hidden_layers=[2], shift_only=True), "is_constant_jacobian": True, } if __name__ == "__main__": test.main()
haxwithaxe/supybot
refs/heads/master
plugins/Success/config.py
15
### # Copyright (c) 2005, Daniel DiPaolo # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### import supybot.conf as conf import supybot.registry as registry def configure(advanced): # This will be called by supybot to configure this module. advanced is # a bool that specifies whether the user identified himself as an advanced # user or not. You should effect your configuration by manipulating the # registry as appropriate. from supybot.questions import expect, anything, something, yn conf.registerPlugin('Success', True) Success = conf.registerPlugin('Success') # This is where your configuration variables (if any) should go. For example: # conf.registerGlobalValue(Success, 'someConfigVariableName', # registry.Boolean(False, """Help for someConfigVariableName.""")) conf.registerChannelValue(conf.supybot.plugins.Success, 'prefixNick', registry.Boolean(True, """Determines whether the bot will prefix the nick of the user giving an invalid command to the success response.""")) # vim:set shiftwidth=4 softtabstop=8 expandtab textwidth=78
Incoin/incoin
refs/heads/master
contrib/wallettools/walletunlock.py
782
from jsonrpc import ServiceProxy access = ServiceProxy("http://127.0.0.1:9332") pwd = raw_input("Enter wallet passphrase: ") access.walletpassphrase(pwd, 60)
starrybeam/samba
refs/heads/master
third_party/pep8/testsuite/E21.py
62
#: E211 spam (1) #: E211 E211 dict ['key'] = list [index] #: E211 dict['key'] ['subkey'] = list[index] #: Okay spam(1) dict['key'] = list[index] # This is not prohibited by PEP8, but avoid it. class Foo (Bar, Baz): pass
pigeonflight/strider-plone
refs/heads/master
docker/appengine/lib/django-1.4/django/contrib/gis/gdal/tests/__init__.py
332
""" Module for executing all of the GDAL tests. None of these tests require the use of the database. """ from django.utils.unittest import TestSuite, TextTestRunner # Importing the GDAL test modules. import test_driver, test_ds, test_envelope, test_geom, test_srs test_suites = [test_driver.suite(), test_ds.suite(), test_envelope.suite(), test_geom.suite(), test_srs.suite(), ] def suite(): "Builds a test suite for the GDAL tests." s = TestSuite() map(s.addTest, test_suites) return s def run(verbosity=1): "Runs the GDAL tests." TextTestRunner(verbosity=verbosity).run(suite())
tilacog/rows
refs/heads/develop
rows/fields.py
1
# coding: utf-8 # Copyright 2014-2015 Álvaro Justen <https://github.com/turicas/rows/> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import unicode_literals import collections import datetime import locale import re import types from decimal import Decimal, InvalidOperation # Order matters here __all__ = ['BoolField', 'IntegerField', 'FloatField', 'DatetimeField', 'DateField', 'DecimalField', 'PercentField', 'UnicodeField', 'ByteField', 'Field'] REGEXP_ONLY_NUMBERS = re.compile('[^0-9]') SHOULD_NOT_USE_LOCALE = True # This variable is changed by rows.locale_manager NULL = (b'-', b'null', b'none', b'nil') class Field(object): """Base Field class - all fields should inherit from this As the fallback for all other field types are the ByteField, this Field actually implements what is expected in the ByteField """ TYPE = types.NoneType @classmethod def serialize(cls, value, *args, **kwargs): """Serialize a value to be exported `cls.serialize` should always return an unicode value, except for ByteField """ if value is None: value = '' return value @classmethod def deserialize(cls, value, *args, **kwargs): """Deserialize a value just after importing it `cls.deserialize` should always return a value of type `cls.TYPE` or `None`. """ if isinstance(value, cls.TYPE): return value elif is_null(value): return None else: return value class ByteField(Field): """Field class to represent byte arrays Is not locale-aware (does not need to be) """ TYPE = types.StringType @classmethod def serialize(cls, value, *args, **kwargs): if value is None: value = '' return cls.TYPE(value) @classmethod def deserialize(cls, value, *args, **kwargs): if value is None: return None else: return cls.TYPE(value) class BoolField(Field): """Base class to representing boolean Is not locale-aware (if you need to, please customize by changing its attributes like `TRUE_VALUES` and `FALSE_VALUES`) """ TYPE = types.BooleanType SERIALIZED_VALUES = {True: 'true', False: 'false', None: ''} TRUE_VALUES = (b'true', b'1', b'yes') FALSE_VALUES = (b'false', b'0', b'no') @classmethod def serialize(cls, value, *args, **kwargs): return cls.SERIALIZED_VALUES[value] @classmethod def deserialize(cls, value, *args, **kwargs): value = super(BoolField, cls).deserialize(value) if value is None or isinstance(value, cls.TYPE): return value value = as_string(value) if value in cls.TRUE_VALUES: return True elif value in cls.FALSE_VALUES: return False else: raise ValueError('Value is not boolean') class IntegerField(Field): """Field class to represent integer Is locale-aware """ TYPE = types.IntType @classmethod def serialize(cls, value, *args, **kwargs): if value is None: return '' if SHOULD_NOT_USE_LOCALE: return types.UnicodeType(value) else: grouping = kwargs.get('grouping', None) return locale.format('%d', value, grouping=grouping) @classmethod def deserialize(cls, value, *args, **kwargs): value = super(IntegerField, cls).deserialize(value) if value is None or isinstance(value, cls.TYPE): return value converted = int(value) if SHOULD_NOT_USE_LOCALE else locale.atoi(value) float_equivalent = FloatField.deserialize(value, *args, **kwargs) if float_equivalent == converted: return converted else: raise ValueError("It's float, not integer") class FloatField(Field): """Field class to represent float Is locale-aware """ TYPE = types.FloatType @classmethod def serialize(cls, value, *args, **kwargs): if value is None: return '' if SHOULD_NOT_USE_LOCALE: return types.UnicodeType(value) else: grouping = kwargs.get('grouping', None) return locale.format('%f', value, grouping=grouping) @classmethod def deserialize(cls, value, *args, **kwargs): value = super(FloatField, cls).deserialize(value) if value is None or isinstance(value, cls.TYPE): return value value = as_string(value) if SHOULD_NOT_USE_LOCALE: return float(value) else: return locale.atof(value) class DecimalField(Field): """Field class to represent decimal data (as Python's decimal.Decimal) Is locale-aware """ TYPE = Decimal @classmethod def serialize(cls, value, *args, **kwargs): if value is None: return '' value_as_string = types.UnicodeType(value) if SHOULD_NOT_USE_LOCALE: return value_as_string else: grouping = kwargs.get('grouping', None) has_decimal_places = value_as_string.find('.') != -1 if not has_decimal_places: string_format = '%d' else: decimal_places = len(value_as_string.split('.')[1]) string_format = '%.{}f'.format(decimal_places) return locale.format(string_format, value, grouping=grouping) @classmethod def deserialize(cls, value, *args, **kwargs): value = super(DecimalField, cls).deserialize(value) if value is None or isinstance(value, cls.TYPE): return value if SHOULD_NOT_USE_LOCALE: try: return Decimal(value) except InvalidOperation: raise ValueError("Can't be {}".format(cls.__name__)) else: locale_vars = locale.localeconv() decimal_separator = locale_vars['decimal_point'] interesting_vars = ['decimal_point', 'mon_decimal_point', 'mon_thousands_sep', 'negative_sign', 'positive_sign', 'thousands_sep'] chars = (locale_vars[x].replace('.', '\.').replace('-', '\-') for x in interesting_vars) interesting_chars = ''.join(set(chars)) regexp = re.compile(r'[^0-9{} ]'.format(interesting_chars)) if regexp.findall(value): raise ValueError("Can't be {}".format(cls.__name__)) parts = [REGEXP_ONLY_NUMBERS.subn('', number)[0] for number in value.split(decimal_separator)] if len(parts) > 2: raise ValueError("Can't deserialize with this locale.") try: value = Decimal(parts[0]) if len(parts) == 2: decimal_places = len(parts[1]) value = value + (Decimal(parts[1]) / (10 ** decimal_places)) except InvalidOperation: raise ValueError("Can't be {}".format(cls.__name__)) return value class PercentField(DecimalField): """Field class to represent percent values Is locale-aware (inherit this behaviour from `rows.DecimalField`) """ @classmethod def serialize(cls, value, *args, **kwargs): value = Decimal(str(value * 100)[:-2]) value = super(PercentField, cls).serialize(value, *args, **kwargs) return '{}%'.format(value) @classmethod def deserialize(cls, value, *args, **kwargs): if isinstance(value, cls.TYPE): return value elif is_null(value): return None value = as_string(value) if '%' not in value: raise ValueError("Can't be {}".format(cls.__name__)) value = value.replace('%', '') return super(PercentField, cls).deserialize(value) / 100 class DateField(Field): """Field class to represent date Is not locale-aware (does not need to be) """ TYPE = datetime.date INPUT_FORMAT = '%Y-%m-%d' OUTPUT_FORMAT = '%Y-%m-%d' @classmethod def serialize(cls, value, *args, **kwargs): if value is None: return '' return types.UnicodeType(value.strftime(cls.OUTPUT_FORMAT)) @classmethod def deserialize(cls, value, *args, **kwargs): value = super(DateField, cls).deserialize(value) if value is None or isinstance(value, cls.TYPE): return value value = as_string(value) dt_object = datetime.datetime.strptime(value, cls.INPUT_FORMAT) return datetime.date(dt_object.year, dt_object.month, dt_object.day) class DatetimeField(Field): """Field class to represent date-time Is not locale-aware (does not need to be) """ TYPE = datetime.datetime DATETIME_REGEXP = re.compile('^([0-9]{4})-([0-9]{2})-([0-9]{2})[ T]' '([0-9]{2}):([0-9]{2}):([0-9]{2})$') @classmethod def serialize(cls, value, *args, **kwargs): if value is None: return '' return types.UnicodeType(value.isoformat()) @classmethod def deserialize(cls, value, *args, **kwargs): value = super(DatetimeField, cls).deserialize(value) if value is None or isinstance(value, cls.TYPE): return value value = as_string(value) # TODO: may use iso8601 groups = cls.DATETIME_REGEXP.findall(value) if not groups: raise ValueError("Can't be {}".format(cls.__name__)) else: return datetime.datetime(*[int(x) for x in groups[0]]) class UnicodeField(Field): """Field class to represent unicode strings Is not locale-aware (does not need to be) """ TYPE = types.UnicodeType @classmethod def deserialize(cls, value, *args, **kwargs): value = super(UnicodeField, cls).deserialize(value) if value is None: return None if type(value) is cls.TYPE: return value elif 'encoding' in kwargs: return as_string(value).decode(kwargs['encoding']) else: return cls.TYPE(value) AVAILABLE_FIELD_TYPES = [locals()[element] for element in __all__ if 'Field' in element and element != 'Field'] def as_string(value): if isinstance(value, types.StringTypes): return value else: return types.StringType(value) def is_null(value): if value is None: return True value_str = as_string(value).strip().lower() return not value_str or value_str in NULL def detect_types(field_names, field_values, field_types=AVAILABLE_FIELD_TYPES, *args, **kwargs): """Where the magic happens""" # TODO: may receive 'type hints' # TODO: should support receiving unicode objects directly # TODO: should expect data in unicode or will be able to use binary data? number_of_fields = len(field_names) columns = zip(*[row for row in field_values if len(row) == number_of_fields]) if len(columns) != number_of_fields: raise ValueError('Number of fields differ') none_type = set([type(None)]) detected_types = collections.OrderedDict([(field_name, None) for field_name in field_names]) encoding = kwargs.get('encoding', None) for index, field_name in enumerate(field_names): data = set([value for value in set(columns[index]) if not is_null(value)]) if not data: # all rows with an empty field -> ByteField (can't identify) identified_type = ByteField else: # ok, let's try to identify the type of this column by # converting every non-null value in the sample possible_types = list(field_types) for value in data: cant_be = set() for type_ in possible_types: try: type_.deserialize(value, *args, **kwargs) except (ValueError, TypeError): cant_be.add(type_) for type_to_remove in cant_be: possible_types.remove(type_to_remove) identified_type = possible_types[0] # priorities matter detected_types[field_name] = identified_type return detected_types
dellis23/parsedatetime
refs/heads/master
parsedatetime/tests/TestSimpleOffsets.py
6
""" Test parsing of 'simple' offsets """ import time import datetime import calendar import unittest import parsedatetime as pdt def _truncateResult(result, trunc_seconds=True, trunc_hours=False): try: dt, flag = result except ValueError: # wtf?! return result if trunc_seconds: dt = dt[:5] + (0,) * 4 if trunc_hours: dt = dt[:3] + (0,) * 6 return dt, flag _tr = _truncateResult class test(unittest.TestCase): @pdt.tests.assertEqualWithComparator def assertExpectedResult(self, result, check, **kwargs): return pdt.tests.compareResultByTimeTuplesAndFlags(result, check, **kwargs) def setUp(self): self.cal = pdt.Calendar() self.yr, self.mth, self.dy, self.hr, self.mn, self.sec, self.wd, self.yd, self.isdst = time.localtime() def testNow(self): s = datetime.datetime.now() start = s.timetuple() target = s.timetuple() self.assertExpectedResult(self.cal.parse('now', start), (target, 2)) def testMinutesFromNow(self): s = datetime.datetime.now() t = s + datetime.timedelta(minutes=5) start = s.timetuple() target = t.timetuple() self.assertExpectedResult(self.cal.parse('5 minutes from now', start), (target, 2)) self.assertExpectedResult(self.cal.parse('5 min from now', start), (target, 2)) self.assertExpectedResult(self.cal.parse('5m from now', start), (target, 2)) self.assertExpectedResult(self.cal.parse('in 5 minutes', start), (target, 2)) self.assertExpectedResult(self.cal.parse('in 5 min', start), (target, 2)) self.assertExpectedResult(self.cal.parse('5 minutes', start), (target, 2)) self.assertExpectedResult(self.cal.parse('5 min', start), (target, 2)) self.assertExpectedResult(self.cal.parse('5m', start), (target, 2)) self.assertExpectedResult(self.cal.parse('five minutes from now', start), (target, 2)) self.assertExpectedResult(self.cal.parse('five min from now', start), (target, 2)) self.assertExpectedResult(self.cal.parse('in five minutes', start), (target, 2)) self.assertExpectedResult(self.cal.parse('in five min', start), (target, 2)) self.assertExpectedResult(self.cal.parse('five minutes', start), (target, 2)) self.assertExpectedResult(self.cal.parse('five min', start), (target, 2)) def testMinutesBeforeNow(self): s = datetime.datetime.now() t = s + datetime.timedelta(minutes=-5) start = s.timetuple() target = t.timetuple() self.assertExpectedResult(self.cal.parse('5 minutes before now', start), (target, 2)) self.assertExpectedResult(self.cal.parse('5 min before now', start), (target, 2)) self.assertExpectedResult(self.cal.parse('5m before now', start), (target, 2)) self.assertExpectedResult(self.cal.parse('5 minutes ago', start), (target, 2)) self.assertExpectedResult(self.cal.parse('five minutes before now', start), (target, 2)) self.assertExpectedResult(self.cal.parse('five min before now', start), (target, 2)) def testWeekFromNow(self): s = datetime.datetime.now() t = s + datetime.timedelta(weeks=1) start = s.timetuple() target = t.timetuple() self.assertExpectedResult(self.cal.parse('in 1 week', start), (target, 1)) self.assertExpectedResult(self.cal.parse('1 week from now', start), (target, 3)) self.assertExpectedResult(self.cal.parse('in one week', start), (target, 1)) self.assertExpectedResult(self.cal.parse('one week from now', start), (target, 3)) self.assertExpectedResult(self.cal.parse('in a week', start), (target, 1)) self.assertExpectedResult(self.cal.parse('a week from now', start), (target, 3)) self.assertExpectedResult(self.cal.parse('in 7 days', start), (target, 1)) self.assertExpectedResult(self.cal.parse('7 days from now', start), (target, 3)) self.assertExpectedResult(self.cal.parse('in seven days', start), (target, 1)) self.assertExpectedResult(self.cal.parse('seven days from now', start), (target, 3)) self.assertEqual(_tr(self.cal.parse('next week', start), trunc_hours=True), _tr((target, 1), trunc_hours=True)) def testNextWeekDay(self): start = datetime.datetime.now() target = start + datetime.timedelta(days=4 + 7 - start.weekday()) start = start.timetuple() target = target.timetuple() self.assertExpectedResult(self.cal.parse('next friday', start), (target, 1), dateOnly=True) self.assertExpectedResult(self.cal.parse('next friday?', start), (target, 1), dateOnly=True) self.cal.ptc.StartTimeFromSourceTime = True self.assertExpectedResult(self.cal.parse('next friday', start), (target, 1)) def testWeekBeforeNow(self): s = datetime.datetime.now() t = s + datetime.timedelta(weeks=-1) start = s.timetuple() target = t.timetuple() self.assertEqual(_tr(self.cal.parse('1 week before now', start)), _tr((target, 3))) self.assertEqual(_tr(self.cal.parse('one week before now', start)), _tr((target, 3))) self.assertEqual(_tr(self.cal.parse('a week before now', start)), _tr((target, 3))) self.assertEqual(_tr(self.cal.parse('7 days before now', start)), _tr((target, 3))) self.assertEqual(_tr(self.cal.parse('seven days before now', start)), _tr((target, 3))) self.assertEqual(_tr(self.cal.parse('1 week ago', start)), _tr((target, 1))) self.assertEqual(_tr(self.cal.parse('a week ago', start)), _tr((target, 1))) self.assertEqual(_tr(self.cal.parse('last week', start), trunc_hours=True), _tr((target, 1), trunc_hours=True)) def testNextMonth(self): s = datetime.datetime(self.yr, self.mth, self.dy, self.hr, self.mn, self.sec) + datetime.timedelta(days=1) t = self.cal.inc(s, year=1) start = s.timetuple() target = t.timetuple() phrase = 'next %s %s' % (calendar.month_name[t.month], t.day) self.assertEqual(_tr(self.cal.parse(phrase, start)), _tr((target, 1))) def testSpecials(self): s = datetime.datetime.now() t = datetime.datetime(self.yr, self.mth, self.dy, 9, 0, 0) + datetime.timedelta(days=1) start = s.timetuple() target = t.timetuple() self.assertExpectedResult(self.cal.parse('tomorrow', start), (target, 1)) self.assertExpectedResult(self.cal.parse('next day', start), (target, 1)) t = datetime.datetime(self.yr, self.mth, self.dy, 9, 0, 0) + datetime.timedelta(days=-1) target = t.timetuple() self.assertExpectedResult(self.cal.parse('yesterday', start), (target, 1)) t = datetime.datetime(self.yr, self.mth, self.dy, 9, 0, 0) target = t.timetuple() self.assertExpectedResult(self.cal.parse('today', start), (target, 1)) if __name__ == "__main__": unittest.main()
malikcjm/qtcreator
refs/heads/work
tests/system/suite_general/tst_installed_languages/test.py
3
############################################################################# ## ## Copyright (C) 2013 Digia Plc and/or its subsidiary(-ies). ## Contact: http://www.qt-project.org/legal ## ## This file is part of Qt Creator. ## ## Commercial License Usage ## Licensees holding valid commercial Qt licenses may use this file in ## accordance with the commercial license agreement provided with the ## Software or, alternatively, in accordance with the terms contained in ## a written agreement between you and Digia. For licensing terms and ## conditions see http://qt.digia.com/licensing. For further information ## use the contact form at http://qt.digia.com/contact-us. ## ## GNU Lesser General Public License Usage ## Alternatively, this file may be used under the terms of the GNU Lesser ## General Public License version 2.1 as published by the Free Software ## Foundation and appearing in the file LICENSE.LGPL included in the ## packaging of this file. Please review the following information to ## ensure the GNU Lesser General Public License version 2.1 requirements ## will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ## ## In addition, as a special exception, Digia gives you certain additional ## rights. These rights are described in the Digia Qt LGPL Exception ## version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ## ############################################################################# source("../../shared/qtcreator.py") def main(): for lang in testData.dataset("languages.tsv"): overrideStartApplication() startApplication("qtcreator" + SettingsPath) if not startedWithoutPluginError(): return invokeMenuItem("Tools", "Options...") waitForObjectItem(":Options_QListView", "Environment") clickItem(":Options_QListView", "Environment", 14, 15, 0, Qt.LeftButton) clickOnTab(":Options.qt_tabwidget_tabbar_QTabBar", "General") languageName = testData.field(lang, "language") selectFromCombo(":User Interface.languageBox_QComboBox", languageName) clickButton(waitForObject(":Options.OK_QPushButton")) clickButton(waitForObject(":Restart required.OK_QPushButton")) invokeMenuItem("File", "Exit") waitForCleanShutdown() snooze(4) # wait for complete unloading of Creator overrideStartApplication() startApplication("qtcreator" + SettingsPath) try: invokeMenuItem(testData.field(lang, "File"), testData.field(lang, "Exit")) test.passes("Creator was running in %s translation." % languageName) except: test.fail("Creator seems to be missing %s translation" % languageName) sendEvent("QCloseEvent", ":Qt Creator_Core::Internal::MainWindow") waitForCleanShutdown() __removeTestingDir__() copySettingsToTmpDir()
darouwan/shadowsocks
refs/heads/master
shadowsocks/tcprelay.py
922
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2015 clowwindy # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import, division, print_function, \ with_statement import time import socket import errno import struct import logging import traceback import random from shadowsocks import encrypt, eventloop, shell, common from shadowsocks.common import parse_header # we clear at most TIMEOUTS_CLEAN_SIZE timeouts each time TIMEOUTS_CLEAN_SIZE = 512 MSG_FASTOPEN = 0x20000000 # SOCKS command definition CMD_CONNECT = 1 CMD_BIND = 2 CMD_UDP_ASSOCIATE = 3 # for each opening port, we have a TCP Relay # for each connection, we have a TCP Relay Handler to handle the connection # for each handler, we have 2 sockets: # local: connected to the client # remote: connected to remote server # for each handler, it could be at one of several stages: # as sslocal: # stage 0 SOCKS hello received from local, send hello to local # stage 1 addr received from local, query DNS for remote # stage 2 UDP assoc # stage 3 DNS resolved, connect to remote # stage 4 still connecting, more data from local received # stage 5 remote connected, piping local and remote # as ssserver: # stage 0 just jump to stage 1 # stage 1 addr received from local, query DNS for remote # stage 3 DNS resolved, connect to remote # stage 4 still connecting, more data from local received # stage 5 remote connected, piping local and remote STAGE_INIT = 0 STAGE_ADDR = 1 STAGE_UDP_ASSOC = 2 STAGE_DNS = 3 STAGE_CONNECTING = 4 STAGE_STREAM = 5 STAGE_DESTROYED = -1 # for each handler, we have 2 stream directions: # upstream: from client to server direction # read local and write to remote # downstream: from server to client direction # read remote and write to local STREAM_UP = 0 STREAM_DOWN = 1 # for each stream, it's waiting for reading, or writing, or both WAIT_STATUS_INIT = 0 WAIT_STATUS_READING = 1 WAIT_STATUS_WRITING = 2 WAIT_STATUS_READWRITING = WAIT_STATUS_READING | WAIT_STATUS_WRITING BUF_SIZE = 32 * 1024 class TCPRelayHandler(object): def __init__(self, server, fd_to_handlers, loop, local_sock, config, dns_resolver, is_local): self._server = server self._fd_to_handlers = fd_to_handlers self._loop = loop self._local_sock = local_sock self._remote_sock = None self._config = config self._dns_resolver = dns_resolver # TCP Relay works as either sslocal or ssserver # if is_local, this is sslocal self._is_local = is_local self._stage = STAGE_INIT self._encryptor = encrypt.Encryptor(config['password'], config['method']) self._fastopen_connected = False self._data_to_write_to_local = [] self._data_to_write_to_remote = [] self._upstream_status = WAIT_STATUS_READING self._downstream_status = WAIT_STATUS_INIT self._client_address = local_sock.getpeername()[:2] self._remote_address = None if 'forbidden_ip' in config: self._forbidden_iplist = config['forbidden_ip'] else: self._forbidden_iplist = None if is_local: self._chosen_server = self._get_a_server() fd_to_handlers[local_sock.fileno()] = self local_sock.setblocking(False) local_sock.setsockopt(socket.SOL_TCP, socket.TCP_NODELAY, 1) loop.add(local_sock, eventloop.POLL_IN | eventloop.POLL_ERR, self._server) self.last_activity = 0 self._update_activity() def __hash__(self): # default __hash__ is id / 16 # we want to eliminate collisions return id(self) @property def remote_address(self): return self._remote_address def _get_a_server(self): server = self._config['server'] server_port = self._config['server_port'] if type(server_port) == list: server_port = random.choice(server_port) if type(server) == list: server = random.choice(server) logging.debug('chosen server: %s:%d', server, server_port) return server, server_port def _update_activity(self, data_len=0): # tell the TCP Relay we have activities recently # else it will think we are inactive and timed out self._server.update_activity(self, data_len) def _update_stream(self, stream, status): # update a stream to a new waiting status # check if status is changed # only update if dirty dirty = False if stream == STREAM_DOWN: if self._downstream_status != status: self._downstream_status = status dirty = True elif stream == STREAM_UP: if self._upstream_status != status: self._upstream_status = status dirty = True if dirty: if self._local_sock: event = eventloop.POLL_ERR if self._downstream_status & WAIT_STATUS_WRITING: event |= eventloop.POLL_OUT if self._upstream_status & WAIT_STATUS_READING: event |= eventloop.POLL_IN self._loop.modify(self._local_sock, event) if self._remote_sock: event = eventloop.POLL_ERR if self._downstream_status & WAIT_STATUS_READING: event |= eventloop.POLL_IN if self._upstream_status & WAIT_STATUS_WRITING: event |= eventloop.POLL_OUT self._loop.modify(self._remote_sock, event) def _write_to_sock(self, data, sock): # write data to sock # if only some of the data are written, put remaining in the buffer # and update the stream to wait for writing if not data or not sock: return False uncomplete = False try: l = len(data) s = sock.send(data) if s < l: data = data[s:] uncomplete = True except (OSError, IOError) as e: error_no = eventloop.errno_from_exception(e) if error_no in (errno.EAGAIN, errno.EINPROGRESS, errno.EWOULDBLOCK): uncomplete = True else: shell.print_exception(e) self.destroy() return False if uncomplete: if sock == self._local_sock: self._data_to_write_to_local.append(data) self._update_stream(STREAM_DOWN, WAIT_STATUS_WRITING) elif sock == self._remote_sock: self._data_to_write_to_remote.append(data) self._update_stream(STREAM_UP, WAIT_STATUS_WRITING) else: logging.error('write_all_to_sock:unknown socket') else: if sock == self._local_sock: self._update_stream(STREAM_DOWN, WAIT_STATUS_READING) elif sock == self._remote_sock: self._update_stream(STREAM_UP, WAIT_STATUS_READING) else: logging.error('write_all_to_sock:unknown socket') return True def _handle_stage_connecting(self, data): if self._is_local: data = self._encryptor.encrypt(data) self._data_to_write_to_remote.append(data) if self._is_local and not self._fastopen_connected and \ self._config['fast_open']: # for sslocal and fastopen, we basically wait for data and use # sendto to connect try: # only connect once self._fastopen_connected = True remote_sock = \ self._create_remote_socket(self._chosen_server[0], self._chosen_server[1]) self._loop.add(remote_sock, eventloop.POLL_ERR, self._server) data = b''.join(self._data_to_write_to_remote) l = len(data) s = remote_sock.sendto(data, MSG_FASTOPEN, self._chosen_server) if s < l: data = data[s:] self._data_to_write_to_remote = [data] else: self._data_to_write_to_remote = [] self._update_stream(STREAM_UP, WAIT_STATUS_READWRITING) except (OSError, IOError) as e: if eventloop.errno_from_exception(e) == errno.EINPROGRESS: # in this case data is not sent at all self._update_stream(STREAM_UP, WAIT_STATUS_READWRITING) elif eventloop.errno_from_exception(e) == errno.ENOTCONN: logging.error('fast open not supported on this OS') self._config['fast_open'] = False self.destroy() else: shell.print_exception(e) if self._config['verbose']: traceback.print_exc() self.destroy() def _handle_stage_addr(self, data): try: if self._is_local: cmd = common.ord(data[1]) if cmd == CMD_UDP_ASSOCIATE: logging.debug('UDP associate') if self._local_sock.family == socket.AF_INET6: header = b'\x05\x00\x00\x04' else: header = b'\x05\x00\x00\x01' addr, port = self._local_sock.getsockname()[:2] addr_to_send = socket.inet_pton(self._local_sock.family, addr) port_to_send = struct.pack('>H', port) self._write_to_sock(header + addr_to_send + port_to_send, self._local_sock) self._stage = STAGE_UDP_ASSOC # just wait for the client to disconnect return elif cmd == CMD_CONNECT: # just trim VER CMD RSV data = data[3:] else: logging.error('unknown command %d', cmd) self.destroy() return header_result = parse_header(data) if header_result is None: raise Exception('can not parse header') addrtype, remote_addr, remote_port, header_length = header_result logging.info('connecting %s:%d from %s:%d' % (common.to_str(remote_addr), remote_port, self._client_address[0], self._client_address[1])) self._remote_address = (common.to_str(remote_addr), remote_port) # pause reading self._update_stream(STREAM_UP, WAIT_STATUS_WRITING) self._stage = STAGE_DNS if self._is_local: # forward address to remote self._write_to_sock((b'\x05\x00\x00\x01' b'\x00\x00\x00\x00\x10\x10'), self._local_sock) data_to_send = self._encryptor.encrypt(data) self._data_to_write_to_remote.append(data_to_send) # notice here may go into _handle_dns_resolved directly self._dns_resolver.resolve(self._chosen_server[0], self._handle_dns_resolved) else: if len(data) > header_length: self._data_to_write_to_remote.append(data[header_length:]) # notice here may go into _handle_dns_resolved directly self._dns_resolver.resolve(remote_addr, self._handle_dns_resolved) except Exception as e: self._log_error(e) if self._config['verbose']: traceback.print_exc() self.destroy() def _create_remote_socket(self, ip, port): addrs = socket.getaddrinfo(ip, port, 0, socket.SOCK_STREAM, socket.SOL_TCP) if len(addrs) == 0: raise Exception("getaddrinfo failed for %s:%d" % (ip, port)) af, socktype, proto, canonname, sa = addrs[0] if self._forbidden_iplist: if common.to_str(sa[0]) in self._forbidden_iplist: raise Exception('IP %s is in forbidden list, reject' % common.to_str(sa[0])) remote_sock = socket.socket(af, socktype, proto) self._remote_sock = remote_sock self._fd_to_handlers[remote_sock.fileno()] = self remote_sock.setblocking(False) remote_sock.setsockopt(socket.SOL_TCP, socket.TCP_NODELAY, 1) return remote_sock def _handle_dns_resolved(self, result, error): if error: self._log_error(error) self.destroy() return if result: ip = result[1] if ip: try: self._stage = STAGE_CONNECTING remote_addr = ip if self._is_local: remote_port = self._chosen_server[1] else: remote_port = self._remote_address[1] if self._is_local and self._config['fast_open']: # for fastopen: # wait for more data to arrive and send them in one SYN self._stage = STAGE_CONNECTING # we don't have to wait for remote since it's not # created self._update_stream(STREAM_UP, WAIT_STATUS_READING) # TODO when there is already data in this packet else: # else do connect remote_sock = self._create_remote_socket(remote_addr, remote_port) try: remote_sock.connect((remote_addr, remote_port)) except (OSError, IOError) as e: if eventloop.errno_from_exception(e) == \ errno.EINPROGRESS: pass self._loop.add(remote_sock, eventloop.POLL_ERR | eventloop.POLL_OUT, self._server) self._stage = STAGE_CONNECTING self._update_stream(STREAM_UP, WAIT_STATUS_READWRITING) self._update_stream(STREAM_DOWN, WAIT_STATUS_READING) return except Exception as e: shell.print_exception(e) if self._config['verbose']: traceback.print_exc() self.destroy() def _on_local_read(self): # handle all local read events and dispatch them to methods for # each stage if not self._local_sock: return is_local = self._is_local data = None try: data = self._local_sock.recv(BUF_SIZE) except (OSError, IOError) as e: if eventloop.errno_from_exception(e) in \ (errno.ETIMEDOUT, errno.EAGAIN, errno.EWOULDBLOCK): return if not data: self.destroy() return self._update_activity(len(data)) if not is_local: data = self._encryptor.decrypt(data) if not data: return if self._stage == STAGE_STREAM: if self._is_local: data = self._encryptor.encrypt(data) self._write_to_sock(data, self._remote_sock) return elif is_local and self._stage == STAGE_INIT: # TODO check auth method self._write_to_sock(b'\x05\00', self._local_sock) self._stage = STAGE_ADDR return elif self._stage == STAGE_CONNECTING: self._handle_stage_connecting(data) elif (is_local and self._stage == STAGE_ADDR) or \ (not is_local and self._stage == STAGE_INIT): self._handle_stage_addr(data) def _on_remote_read(self): # handle all remote read events data = None try: data = self._remote_sock.recv(BUF_SIZE) except (OSError, IOError) as e: if eventloop.errno_from_exception(e) in \ (errno.ETIMEDOUT, errno.EAGAIN, errno.EWOULDBLOCK): return if not data: self.destroy() return self._update_activity(len(data)) if self._is_local: data = self._encryptor.decrypt(data) else: data = self._encryptor.encrypt(data) try: self._write_to_sock(data, self._local_sock) except Exception as e: shell.print_exception(e) if self._config['verbose']: traceback.print_exc() # TODO use logging when debug completed self.destroy() def _on_local_write(self): # handle local writable event if self._data_to_write_to_local: data = b''.join(self._data_to_write_to_local) self._data_to_write_to_local = [] self._write_to_sock(data, self._local_sock) else: self._update_stream(STREAM_DOWN, WAIT_STATUS_READING) def _on_remote_write(self): # handle remote writable event self._stage = STAGE_STREAM if self._data_to_write_to_remote: data = b''.join(self._data_to_write_to_remote) self._data_to_write_to_remote = [] self._write_to_sock(data, self._remote_sock) else: self._update_stream(STREAM_UP, WAIT_STATUS_READING) def _on_local_error(self): logging.debug('got local error') if self._local_sock: logging.error(eventloop.get_sock_error(self._local_sock)) self.destroy() def _on_remote_error(self): logging.debug('got remote error') if self._remote_sock: logging.error(eventloop.get_sock_error(self._remote_sock)) self.destroy() def handle_event(self, sock, event): # handle all events in this handler and dispatch them to methods if self._stage == STAGE_DESTROYED: logging.debug('ignore handle_event: destroyed') return # order is important if sock == self._remote_sock: if event & eventloop.POLL_ERR: self._on_remote_error() if self._stage == STAGE_DESTROYED: return if event & (eventloop.POLL_IN | eventloop.POLL_HUP): self._on_remote_read() if self._stage == STAGE_DESTROYED: return if event & eventloop.POLL_OUT: self._on_remote_write() elif sock == self._local_sock: if event & eventloop.POLL_ERR: self._on_local_error() if self._stage == STAGE_DESTROYED: return if event & (eventloop.POLL_IN | eventloop.POLL_HUP): self._on_local_read() if self._stage == STAGE_DESTROYED: return if event & eventloop.POLL_OUT: self._on_local_write() else: logging.warn('unknown socket') def _log_error(self, e): logging.error('%s when handling connection from %s:%d' % (e, self._client_address[0], self._client_address[1])) def destroy(self): # destroy the handler and release any resources # promises: # 1. destroy won't make another destroy() call inside # 2. destroy releases resources so it prevents future call to destroy # 3. destroy won't raise any exceptions # if any of the promises are broken, it indicates a bug has been # introduced! mostly likely memory leaks, etc if self._stage == STAGE_DESTROYED: # this couldn't happen logging.debug('already destroyed') return self._stage = STAGE_DESTROYED if self._remote_address: logging.debug('destroy: %s:%d' % self._remote_address) else: logging.debug('destroy') if self._remote_sock: logging.debug('destroying remote') self._loop.remove(self._remote_sock) del self._fd_to_handlers[self._remote_sock.fileno()] self._remote_sock.close() self._remote_sock = None if self._local_sock: logging.debug('destroying local') self._loop.remove(self._local_sock) del self._fd_to_handlers[self._local_sock.fileno()] self._local_sock.close() self._local_sock = None self._dns_resolver.remove_callback(self._handle_dns_resolved) self._server.remove_handler(self) class TCPRelay(object): def __init__(self, config, dns_resolver, is_local, stat_callback=None): self._config = config self._is_local = is_local self._dns_resolver = dns_resolver self._closed = False self._eventloop = None self._fd_to_handlers = {} self._timeout = config['timeout'] self._timeouts = [] # a list for all the handlers # we trim the timeouts once a while self._timeout_offset = 0 # last checked position for timeout self._handler_to_timeouts = {} # key: handler value: index in timeouts if is_local: listen_addr = config['local_address'] listen_port = config['local_port'] else: listen_addr = config['server'] listen_port = config['server_port'] self._listen_port = listen_port addrs = socket.getaddrinfo(listen_addr, listen_port, 0, socket.SOCK_STREAM, socket.SOL_TCP) if len(addrs) == 0: raise Exception("can't get addrinfo for %s:%d" % (listen_addr, listen_port)) af, socktype, proto, canonname, sa = addrs[0] server_socket = socket.socket(af, socktype, proto) server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) server_socket.bind(sa) server_socket.setblocking(False) if config['fast_open']: try: server_socket.setsockopt(socket.SOL_TCP, 23, 5) except socket.error: logging.error('warning: fast open is not available') self._config['fast_open'] = False server_socket.listen(1024) self._server_socket = server_socket self._stat_callback = stat_callback def add_to_loop(self, loop): if self._eventloop: raise Exception('already add to loop') if self._closed: raise Exception('already closed') self._eventloop = loop self._eventloop.add(self._server_socket, eventloop.POLL_IN | eventloop.POLL_ERR, self) self._eventloop.add_periodic(self.handle_periodic) def remove_handler(self, handler): index = self._handler_to_timeouts.get(hash(handler), -1) if index >= 0: # delete is O(n), so we just set it to None self._timeouts[index] = None del self._handler_to_timeouts[hash(handler)] def update_activity(self, handler, data_len): if data_len and self._stat_callback: self._stat_callback(self._listen_port, data_len) # set handler to active now = int(time.time()) if now - handler.last_activity < eventloop.TIMEOUT_PRECISION: # thus we can lower timeout modification frequency return handler.last_activity = now index = self._handler_to_timeouts.get(hash(handler), -1) if index >= 0: # delete is O(n), so we just set it to None self._timeouts[index] = None length = len(self._timeouts) self._timeouts.append(handler) self._handler_to_timeouts[hash(handler)] = length def _sweep_timeout(self): # tornado's timeout memory management is more flexible than we need # we just need a sorted last_activity queue and it's faster than heapq # in fact we can do O(1) insertion/remove so we invent our own if self._timeouts: logging.log(shell.VERBOSE_LEVEL, 'sweeping timeouts') now = time.time() length = len(self._timeouts) pos = self._timeout_offset while pos < length: handler = self._timeouts[pos] if handler: if now - handler.last_activity < self._timeout: break else: if handler.remote_address: logging.warn('timed out: %s:%d' % handler.remote_address) else: logging.warn('timed out') handler.destroy() self._timeouts[pos] = None # free memory pos += 1 else: pos += 1 if pos > TIMEOUTS_CLEAN_SIZE and pos > length >> 1: # clean up the timeout queue when it gets larger than half # of the queue self._timeouts = self._timeouts[pos:] for key in self._handler_to_timeouts: self._handler_to_timeouts[key] -= pos pos = 0 self._timeout_offset = pos def handle_event(self, sock, fd, event): # handle events and dispatch to handlers if sock: logging.log(shell.VERBOSE_LEVEL, 'fd %d %s', fd, eventloop.EVENT_NAMES.get(event, event)) if sock == self._server_socket: if event & eventloop.POLL_ERR: # TODO raise Exception('server_socket error') try: logging.debug('accept') conn = self._server_socket.accept() TCPRelayHandler(self, self._fd_to_handlers, self._eventloop, conn[0], self._config, self._dns_resolver, self._is_local) except (OSError, IOError) as e: error_no = eventloop.errno_from_exception(e) if error_no in (errno.EAGAIN, errno.EINPROGRESS, errno.EWOULDBLOCK): return else: shell.print_exception(e) if self._config['verbose']: traceback.print_exc() else: if sock: handler = self._fd_to_handlers.get(fd, None) if handler: handler.handle_event(sock, event) else: logging.warn('poll removed fd') def handle_periodic(self): if self._closed: if self._server_socket: self._eventloop.remove(self._server_socket) self._server_socket.close() self._server_socket = None logging.info('closed TCP port %d', self._listen_port) if not self._fd_to_handlers: logging.info('stopping') self._eventloop.stop() self._sweep_timeout() def close(self, next_tick=False): logging.debug('TCP close') self._closed = True if not next_tick: if self._eventloop: self._eventloop.remove_periodic(self.handle_periodic) self._eventloop.remove(self._server_socket) self._server_socket.close() for handler in list(self._fd_to_handlers.values()): handler.destroy()
don-github/edx-platform
refs/heads/master
common/djangoapps/cache_toolbox/core.py
136
""" Core methods ------------ .. autofunction:: cache_toolbox.core.get_instance .. autofunction:: cache_toolbox.core.delete_instance .. autofunction:: cache_toolbox.core.instance_key """ from django.core.cache import cache from django.db import DEFAULT_DB_ALIAS from opaque_keys import InvalidKeyError from . import app_settings def get_instance(model, instance_or_pk, timeout=None, using=None): """ Returns the ``model`` instance with a primary key of ``instance_or_pk``. If the data is cached it will be returned from there, otherwise the regular Django ORM is queried for this instance and the data stored in the cache. If omitted, the timeout value defaults to ``settings.CACHE_TOOLBOX_DEFAULT_TIMEOUT`` instead of 0 (zero). Example:: >>> get_instance(User, 1) # Cache miss <User: lamby> >>> get_instance(User, 1) # Cache hit <User: lamby> >>> User.objects.get(pk=1) == get_instance(User, 1) True """ pk = getattr(instance_or_pk, 'pk', instance_or_pk) key = instance_key(model, instance_or_pk) data = cache.get(key) if data is not None: try: # Try and construct instance from dictionary instance = model(pk=pk, **data) # Ensure instance knows that it already exists in the database, # otherwise we will fail any uniqueness checks when saving the # instance. instance._state.adding = False # Specify database so that instance is setup correctly. We don't # namespace cached objects by their origin database, however. instance._state.db = using or DEFAULT_DB_ALIAS return instance except: # Error when deserialising - remove from the cache; we will # fallback and return the underlying instance cache.delete(key) # Use the default manager so we are never filtered by a .get_query_set() # import logging # log = logging.getLogger("tracking") # log.info( str(pk) ) instance = model._default_manager.using(using).get(pk=pk) data = {} for field in instance._meta.fields: # Harmless to save, but saves space in the dictionary - we already know # the primary key when we lookup if field.primary_key: continue if field.get_internal_type() == 'FileField': # Avoid problems with serializing FileFields # by only serializing the file name file = getattr(instance, field.attname) data[field.attname] = file.name else: data[field.attname] = getattr(instance, field.attname) if timeout is None: timeout = app_settings.CACHE_TOOLBOX_DEFAULT_TIMEOUT cache.set(key, data, timeout) return instance def delete_instance(model, *instance_or_pk): """ Purges the cache keys for the instances of this model. """ cache.delete_many([instance_key(model, x) for x in instance_or_pk]) def instance_key(model, instance_or_pk): """ Returns the cache key for this (model, instance) pair. """ return '%s.%s:%d' % ( model._meta.app_label, model._meta.module_name, getattr(instance_or_pk, 'pk', instance_or_pk), ) def set_cached_content(content): cache.set(unicode(content.location).encode("utf-8"), content) def get_cached_content(location): return cache.get(unicode(location).encode("utf-8")) def del_cached_content(location): """ delete content for the given location, as well as for content with run=None. it's possible that the content could have been cached without knowing the course_key - and so without having the run. """ def location_str(loc): return unicode(loc).encode("utf-8") locations = [location_str(location)] try: locations.append(location_str(location.replace(run=None))) except InvalidKeyError: # although deprecated keys allowed run=None, new keys don't if there is no version. pass cache.delete_many(locations)
Neetuj/softlayer-python
refs/heads/master
SoftLayer/CLI/iscsi/list.py
2
"""List iSCSI targets.""" # :license: MIT, see LICENSE for more details. import click import SoftLayer from SoftLayer.CLI import environment from SoftLayer.CLI import formatting from SoftLayer import utils @click.command() @environment.pass_env def cli(env): """List iSCSI targets.""" iscsi_mgr = SoftLayer.ISCSIManager(env.client) iscsi_list = iscsi_mgr.list_iscsi() iscsi_list = [utils.NestedDict(n) for n in iscsi_list] table = formatting.Table([ 'id', 'datacenter', 'size', 'username', 'password', 'server' ]) for iscsi in iscsi_list: table.add_row([ iscsi['id'], utils.lookup(iscsi, 'serviceResource', 'datacenter', 'name') or formatting.blank(), formatting.FormattedItem(iscsi.get('capacityGb', formatting.blank()), "%dGB" % iscsi.get('capacityGb', 0)), iscsi.get('username', formatting.blank()), iscsi.get('password', formatting.blank()), iscsi.get('serviceResourceBackendIpAddress', formatting.blank())]) env.fout(table)
JVillella/tensorflow
refs/heads/master
tensorflow/tools/common/public_api.py
71
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Visitor restricting traversal to only the public tensorflow API.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re from tensorflow.python.util import tf_inspect class PublicAPIVisitor(object): """Visitor to use with `traverse` to visit exactly the public TF API.""" def __init__(self, visitor): """Constructor. `visitor` should be a callable suitable as a visitor for `traverse`. It will be called only for members of the public TensorFlow API. Args: visitor: A visitor to call for the public API. """ self._visitor = visitor self._root_name = 'tf' # Modules/classes we want to suppress entirely. self._private_map = { # Some implementations have this internal module that we shouldn't # expose. 'tf.flags': ['cpp_flags'], } # Modules/classes we do not want to descend into if we hit them. Usually, # system modules exposed through platforms for compatibility reasons. # Each entry maps a module path to a name to ignore in traversal. self._do_not_descend_map = { 'tf': [ 'core', 'examples', 'flags', # Don't add flags # TODO(drpng): This can be removed once sealed off. 'platform', # TODO(drpng): This can be removed once sealed. 'pywrap_tensorflow', # TODO(drpng): This can be removed once sealed. 'user_ops', 'python', 'tools', 'tensorboard', ], ## Everything below here is legitimate. # It'll stay, but it's not officially part of the API. 'tf.app': ['flags'], # Imported for compatibility between py2/3. 'tf.test': ['mock'], } @property def private_map(self): """A map from parents to symbols that should not be included at all. This map can be edited, but it should not be edited once traversal has begun. Returns: The map marking symbols to not include. """ return self._private_map @property def do_not_descend_map(self): """A map from parents to symbols that should not be descended into. This map can be edited, but it should not be edited once traversal has begun. Returns: The map marking symbols to not explore. """ return self._do_not_descend_map def set_root_name(self, root_name): """Override the default root name of 'tf'.""" self._root_name = root_name def _is_private(self, path, name): """Return whether a name is private.""" # TODO(wicke): Find out what names to exclude. return ((path in self._private_map and name in self._private_map[path]) or (name.startswith('_') and not re.match('__.*__$', name) or name in ['__base__', '__class__'])) def _do_not_descend(self, path, name): """Safely queries if a specific fully qualified name should be excluded.""" return (path in self._do_not_descend_map and name in self._do_not_descend_map[path]) def __call__(self, path, parent, children): """Visitor interface, see `traverse` for details.""" # Avoid long waits in cases of pretty unambiguous failure. if tf_inspect.ismodule(parent) and len(path.split('.')) > 10: raise RuntimeError('Modules nested too deep:\n%s.%s\n\nThis is likely a ' 'problem with an accidental public import.' % (self._root_name, path)) # Includes self._root_name full_path = '.'.join([self._root_name, path]) if path else self._root_name # Remove things that are not visible. for name, child in list(children): if self._is_private(full_path, name): children.remove((name, child)) self._visitor(path, parent, children) # Remove things that are visible, but which should not be descended into. for name, child in list(children): if self._do_not_descend(full_path, name): children.remove((name, child))
blaggacao/odoo
refs/heads/master
addons/mail/__init__.py
382
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2009-Today OpenERP SA (<http://www.openerp.com>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import ir_attachment import mail_message_subtype import mail_alias import mail_followers import mail_message import mail_mail import mail_thread import mail_group import res_partner import res_users import report import wizard import res_config import mail_group_menu import update import controllers # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
etingof/pyasn1
refs/heads/master
pyasn1/type/char.py
2
# # This file is part of pyasn1 software. # # Copyright (c) 2005-2020, Ilya Etingof <etingof@gmail.com> # License: http://snmplabs.com/pyasn1/license.html # import sys from pyasn1 import error from pyasn1.type import tag from pyasn1.type import univ __all__ = ['NumericString', 'PrintableString', 'TeletexString', 'T61String', 'VideotexString', 'IA5String', 'GraphicString', 'VisibleString', 'ISO646String', 'GeneralString', 'UniversalString', 'BMPString', 'UTF8String'] NoValue = univ.NoValue noValue = univ.noValue class AbstractCharacterString(univ.OctetString): """Creates |ASN.1| schema or value object. |ASN.1| class is based on :class:`~pyasn1.type.base.SimpleAsn1Type`, its objects are immutable and duck-type Python 2 :class:`str` or Python 3 :class:`bytes`. When used in octet-stream context, |ASN.1| type assumes "|encoding|" encoding. Keyword Args ------------ value: :class:`unicode`, :class:`str`, :class:`bytes` or |ASN.1| object :class:`unicode` object (Python 2) or :class:`str` (Python 3), alternatively :class:`str` (Python 2) or :class:`bytes` (Python 3) representing octet-stream of serialised unicode string (note `encoding` parameter) or |ASN.1| class instance. If `value` is not given, schema object will be created. tagSet: :py:class:`~pyasn1.type.tag.TagSet` Object representing non-default ASN.1 tag(s) subtypeSpec: :py:class:`~pyasn1.type.constraint.ConstraintsIntersection` Object representing non-default ASN.1 subtype constraint(s). Constraints verification for |ASN.1| type occurs automatically on object instantiation. encoding: :py:class:`str` Unicode codec ID to encode/decode :class:`unicode` (Python 2) or :class:`str` (Python 3) the payload when |ASN.1| object is used in octet-stream context. Raises ------ ~pyasn1.error.ValueConstraintError, ~pyasn1.error.PyAsn1Error On constraint violation or bad initializer. """ if sys.version_info[0] <= 2: def __str__(self): try: # `str` is Py2 text representation return self._value.encode(self.encoding) except UnicodeEncodeError: exc = sys.exc_info()[1] raise error.PyAsn1UnicodeEncodeError( "Can't encode string '%s' with codec " "%s" % (self._value, self.encoding), exc ) def __unicode__(self): return unicode(self._value) def prettyIn(self, value): try: if isinstance(value, unicode): return value elif isinstance(value, str): return value.decode(self.encoding) elif isinstance(value, (tuple, list)): return self.prettyIn(''.join([chr(x) for x in value])) elif isinstance(value, univ.OctetString): return value.asOctets().decode(self.encoding) else: return unicode(value) except (UnicodeDecodeError, LookupError): exc = sys.exc_info()[1] raise error.PyAsn1UnicodeDecodeError( "Can't decode string '%s' with codec " "%s" % (value, self.encoding), exc ) def asOctets(self, padding=True): return str(self) def asNumbers(self, padding=True): return tuple([ord(x) for x in str(self)]) else: def __str__(self): # `unicode` is Py3 text representation return str(self._value) def __bytes__(self): try: return self._value.encode(self.encoding) except UnicodeEncodeError: exc = sys.exc_info()[1] raise error.PyAsn1UnicodeEncodeError( "Can't encode string '%s' with codec " "%s" % (self._value, self.encoding), exc ) def prettyIn(self, value): try: if isinstance(value, str): return value elif isinstance(value, bytes): return value.decode(self.encoding) elif isinstance(value, (tuple, list)): return self.prettyIn(bytes(value)) elif isinstance(value, univ.OctetString): return value.asOctets().decode(self.encoding) else: return str(value) except (UnicodeDecodeError, LookupError): exc = sys.exc_info()[1] raise error.PyAsn1UnicodeDecodeError( "Can't decode string '%s' with codec " "%s" % (value, self.encoding), exc ) def asOctets(self, padding=True): return bytes(self) def asNumbers(self, padding=True): return tuple(bytes(self)) # # See OctetString.prettyPrint() for the explanation # def prettyOut(self, value): return value def prettyPrint(self, scope=0): # first see if subclass has its own .prettyOut() value = self.prettyOut(self._value) if value is not self._value: return value return AbstractCharacterString.__str__(self) def __reversed__(self): return reversed(self._value) class NumericString(AbstractCharacterString): __doc__ = AbstractCharacterString.__doc__ #: Set (on class, not on instance) or return a #: :py:class:`~pyasn1.type.tag.TagSet` object representing ASN.1 tag(s) #: associated with |ASN.1| type. tagSet = AbstractCharacterString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 18) ) encoding = 'us-ascii' # Optimization for faster codec lookup typeId = AbstractCharacterString.getTypeId() class PrintableString(AbstractCharacterString): __doc__ = AbstractCharacterString.__doc__ #: Set (on class, not on instance) or return a #: :py:class:`~pyasn1.type.tag.TagSet` object representing ASN.1 tag(s) #: associated with |ASN.1| type. tagSet = AbstractCharacterString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 19) ) encoding = 'us-ascii' # Optimization for faster codec lookup typeId = AbstractCharacterString.getTypeId() class TeletexString(AbstractCharacterString): __doc__ = AbstractCharacterString.__doc__ #: Set (on class, not on instance) or return a #: :py:class:`~pyasn1.type.tag.TagSet` object representing ASN.1 tag(s) #: associated with |ASN.1| type. tagSet = AbstractCharacterString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 20) ) encoding = 'iso-8859-1' # Optimization for faster codec lookup typeId = AbstractCharacterString.getTypeId() class T61String(TeletexString): __doc__ = TeletexString.__doc__ # Optimization for faster codec lookup typeId = AbstractCharacterString.getTypeId() class VideotexString(AbstractCharacterString): __doc__ = AbstractCharacterString.__doc__ #: Set (on class, not on instance) or return a #: :py:class:`~pyasn1.type.tag.TagSet` object representing ASN.1 tag(s) #: associated with |ASN.1| type. tagSet = AbstractCharacterString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 21) ) encoding = 'iso-8859-1' # Optimization for faster codec lookup typeId = AbstractCharacterString.getTypeId() class IA5String(AbstractCharacterString): __doc__ = AbstractCharacterString.__doc__ #: Set (on class, not on instance) or return a #: :py:class:`~pyasn1.type.tag.TagSet` object representing ASN.1 tag(s) #: associated with |ASN.1| type. tagSet = AbstractCharacterString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 22) ) encoding = 'us-ascii' # Optimization for faster codec lookup typeId = AbstractCharacterString.getTypeId() class GraphicString(AbstractCharacterString): __doc__ = AbstractCharacterString.__doc__ #: Set (on class, not on instance) or return a #: :py:class:`~pyasn1.type.tag.TagSet` object representing ASN.1 tag(s) #: associated with |ASN.1| type. tagSet = AbstractCharacterString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 25) ) encoding = 'iso-8859-1' # Optimization for faster codec lookup typeId = AbstractCharacterString.getTypeId() class VisibleString(AbstractCharacterString): __doc__ = AbstractCharacterString.__doc__ #: Set (on class, not on instance) or return a #: :py:class:`~pyasn1.type.tag.TagSet` object representing ASN.1 tag(s) #: associated with |ASN.1| type. tagSet = AbstractCharacterString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 26) ) encoding = 'us-ascii' # Optimization for faster codec lookup typeId = AbstractCharacterString.getTypeId() class ISO646String(VisibleString): __doc__ = VisibleString.__doc__ # Optimization for faster codec lookup typeId = AbstractCharacterString.getTypeId() class GeneralString(AbstractCharacterString): __doc__ = AbstractCharacterString.__doc__ #: Set (on class, not on instance) or return a #: :py:class:`~pyasn1.type.tag.TagSet` object representing ASN.1 tag(s) #: associated with |ASN.1| type. tagSet = AbstractCharacterString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 27) ) encoding = 'iso-8859-1' # Optimization for faster codec lookup typeId = AbstractCharacterString.getTypeId() class UniversalString(AbstractCharacterString): __doc__ = AbstractCharacterString.__doc__ #: Set (on class, not on instance) or return a #: :py:class:`~pyasn1.type.tag.TagSet` object representing ASN.1 tag(s) #: associated with |ASN.1| type. tagSet = AbstractCharacterString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 28) ) encoding = "utf-32-be" # Optimization for faster codec lookup typeId = AbstractCharacterString.getTypeId() class BMPString(AbstractCharacterString): __doc__ = AbstractCharacterString.__doc__ #: Set (on class, not on instance) or return a #: :py:class:`~pyasn1.type.tag.TagSet` object representing ASN.1 tag(s) #: associated with |ASN.1| type. tagSet = AbstractCharacterString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 30) ) encoding = "utf-16-be" # Optimization for faster codec lookup typeId = AbstractCharacterString.getTypeId() class UTF8String(AbstractCharacterString): __doc__ = AbstractCharacterString.__doc__ #: Set (on class, not on instance) or return a #: :py:class:`~pyasn1.type.tag.TagSet` object representing ASN.1 tag(s) #: associated with |ASN.1| type. tagSet = AbstractCharacterString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 12) ) encoding = "utf-8" # Optimization for faster codec lookup typeId = AbstractCharacterString.getTypeId()
lesteve/sphinx-gallery
refs/heads/master
mayavi_examples/plot_3d.py
4
# -*- coding: utf-8 -*- """ Plotting simple 3D graph with Mayavi ==================================== A simple example of the plot of a 3D graph with Mayavi in order to test the autonomy of the gallery. """ # Code source: Alex Gramfort # License: BSD 3 clause # This will show the mlab.test_mesh figure in the gallery # sphinx_gallery_thumbnail_number = 4 from mayavi import mlab mlab.test_plot3d() mlab.figure() mlab.test_contour3d() ##################################################################### # Note: this shows that inside a cell matplotlib figures are always # put before mayavi in the example HTML. In other words, the order of # plotting is not respected between matplotlib and mayavi figures mlab.figure() mlab.test_mesh() mlab.figure() mlab.test_flow() import matplotlib.pyplot as plt plt.plot([1, 2, 3], [1, 2, 3])
bq/bitbloq-offline
refs/heads/master
app/res/web2board/darwin/Web2Board.app/Contents/Resources/platformio/platforms/linux_arm.py
5
# Copyright 2014-2015 Ivan Kravets <me@ikravets.com> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from platformio import exception, util from platformio.platforms.base import BasePlatform class Linux_armPlatform(BasePlatform): """ Linux ARM is a Unix-like and mostly POSIX-compliant computer operating system (OS) assembled under the model of free and open-source software development and distribution. Using host OS (Mac OS X, Linux ARM) you can build native application for Linux ARM platform. http://platformio.org/#!/platforms/linux_arm """ PACKAGES = { "toolchain-gccarmlinuxgnueabi": { "alias": "toolchain", "default": True }, "framework-wiringpi": { "alias": "framework" } } def __init__(self): if "linux_arm" in util.get_systype(): del self.PACKAGES['toolchain-gccarmlinuxgnueabi'] BasePlatform.__init__(self) def configure_default_packages(self, envoptions, targets): if (envoptions.get("framework") == "wiringpi" and "linux_arm" not in util.get_systype()): raise exception.PlatformioException( "PlatformIO does not support temporary cross-compilation " "for WiringPi framework. Please run PlatformIO directly on " "Raspberry Pi" ) return BasePlatform.configure_default_packages( self, envoptions, targets)
dbckz/ansible
refs/heads/devel
lib/ansible/modules/windows/win_acl.py
72
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright 2015, Phil Schwartz <schwartzmx@gmail.com> # Copyright 2015, Trond Hindenes # Copyright 2015, Hans-Joachim Kliemeck <git@kliemeck.de> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # this is a windows documentation stub. actual code lives in the .ps1 # file of the same name ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['preview'], 'supported_by': 'core'} DOCUMENTATION = r''' --- module: win_acl version_added: "2.0" short_description: Set file/directory permissions for a system user or group. description: - Add or remove rights/permissions for a given user or group for the specified src file or folder. - If adding ACL's for AppPool identities (available since 2.3), the Windows "Feature Web-Scripting-Tools" must be enabled options: path: description: - File or Directory required: yes user: description: - User or Group to add specified rights to act on src file/folder required: yes default: none state: description: - Specify whether to add C(present) or remove C(absent) the specified access rule required: no choices: - present - absent default: present type: description: - Specify whether to allow or deny the rights specified required: yes choices: - allow - deny default: none rights: description: - The rights/permissions that are to be allowed/denyed for the specified user or group for the given src file or directory. Can be entered as a comma separated list (Ex. "Modify, Delete, ExecuteFile"). For more information on the choices see MSDN FileSystemRights Enumeration. required: yes choices: - AppendData - ChangePermissions - Delete - DeleteSubdirectoriesAndFiles - ExecuteFile - FullControl - ListDirectory - Modify - Read - ReadAndExecute - ReadAttributes - ReadData - ReadExtendedAttributes - ReadPermissions - Synchronize - TakeOwnership - Traverse - Write - WriteAttributes - WriteData - WriteExtendedAttributes default: none inherit: description: - Inherit flags on the ACL rules. Can be specified as a comma separated list (Ex. "ContainerInherit, ObjectInherit"). For more information on the choices see MSDN InheritanceFlags Enumeration. required: no choices: - ContainerInherit - ObjectInherit - None default: For Leaf File, None; For Directory, ContainerInherit, ObjectInherit; propagation: description: - Propagation flag on the ACL rules. For more information on the choices see MSDN PropagationFlags Enumeration. required: no choices: - None - NoPropagateInherit - InheritOnly default: "None" author: Phil Schwartz (@schwartzmx), Trond Hindenes (@trondhindenes), Hans-Joachim Kliemeck (@h0nIg) ''' EXAMPLES = r''' - name: Restrict write and execute access to User Fed-Phil win_acl: user: Fed-Phil path: C:\Important\Executable.exe type: deny rights: ExecuteFile,Write - name: Add IIS_IUSRS allow rights win_acl: path: C:\inetpub\wwwroot\MySite user: IIS_IUSRS rights: FullControl type: allow state: present inherit: ContainerInherit, ObjectInherit propagation: 'None' # Remove previously added rule for IIS_IUSRS - name: Remove FullControl AccessRule for IIS_IUSRS win_acl: path: C:\inetpub\wwwroot\MySite user: IIS_IUSRS rights: FullControl type: allow state: absent inherit: ContainerInherit, ObjectInherit propagation: 'None' # Deny Intern - name: Deny Deny win_acl: path: C:\Administrator\Documents user: Intern rights: Read,Write,Modify,FullControl,Delete type: deny state: present '''
rhuitl/uClinux
refs/heads/master
user/samba/examples/scripts/shares/python/generate_parm_table.py
52
#!/usr/bin/env python ###################################################################### ## ## Generate parameter dictionary from param/loadparm.c ## ## Copyright (C) Gerald Carter 2004. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ## ###################################################################### import re, string, sys, commands HEADER = """###################################################################### ## ## autogenerated file of smb.conf parameters ## generate_parm_table <..../param/loadparm.c> ## ## Copyright (C) Gerald Carter 2004. ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, write to the Free Software ## Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ## ###################################################################### from SambaParm import SambaParmString, SambaParmBool, SambaParmBoolRev ## boolean defines for parm_table P_LOCAL = 0 P_GLOBAL = 1 """ FOOTER = """##### end of smbparm.y ########################################## #################################################################""" TESTPARM = "/usr/bin/testparm" ## fields in Samba's parameter table displayName = 0 type = 1 scope = 2 variable = 3 flags = 6 parm_table = {} var_table = {} def_values = {} obj_table = { 'P_BOOL' : 'SambaParmBool', 'P_BOOLREV' : 'SambaParmBoolRev', 'P_STRING' : 'SambaParmString', 'P_USTRING' : 'SambaParmString', 'P_GSTRING' : 'SambaParmString', 'P_LIST' : 'SambaParmString', 'P_ENUM' : 'SambaParmString', 'P_CHAR' : 'SambaParmString', 'P_OCTAL' : 'SambaParmString', 'P_INTEGER' : 'SambaParmString', } ###################################################################### ## BEGIN MAIN CODE ## ###################################################################### ## First thing is to build the dictionary of parmeter names ## ## based on the output from testparm ## cmd = "/usr/bin/testparm -s -v /dev/null" ( status, testparm_output ) = commands.getstatusoutput( cmd ) if status: sys.stderr.write( "Failed to execute testparm!\n%s\n" % testparm_output ) ## break the output into a list ## lines = string.split( testparm_output, "\n" ) ## loop through list -- parameters in testparm output have ## ## whitespace at the beginning of the line ## pattern = re.compile( "^\s+" ) for input_str in lines: if not pattern.search( input_str ): continue input_str = string.strip( input_str ) parts = string.split( input_str, "=" ) parts[0] = string.strip( parts[0] ) parts[1] = string.strip( parts[1] ) key = string.upper( string.join(string.split(parts[0]), "") ) new = parts[1].replace('\\', '\\\\') def_values[key] = new ## open loadparm.c and get the entire list of parameters ## ## including synonums ## if len(sys.argv) != 2: print "Usage: %s <.../param/loadparm.c>" % ( sys.argv[0] ) sys.exit( 1 ) try: fconfig = open( sys.argv[1], "r" ) except IOError: print "%s does not exist!" % sys.argv[1] sys.exit (1) ## Loop through loadparm.c -- all parameters are either ## ## P_LOCAL or P_GLOBAL ## synonyms = [] pattern = re.compile( '{".*P_[GL]' ) while True: input_str= fconfig.readline() if len(input_str) == 0 : break input_str= string.strip(input_str) ## see if we have a patch for a parameter definition ## parm = [] if pattern.search( input_str) : ## strip the surrounding '{.*},' ## input_str= input_str[1:-2] parm = string.split(input_str, ",") ## strip the ""'s and upper case ## name = (string.strip(parm[displayName])[1:-1]) key = string.upper( string.join(string.split(name), "") ) var_name = string.strip( parm[variable] ) ## try to catch synonyms -- if the parameter was not reported ## ## by testparm, then save it and come back after we will out ## ## the variable list ## if not def_values.has_key( key ): synonyms.append( input_str) continue var_table[var_name] = key parmType = string.strip(parm[type]) parm_table[key] = [ name , string.strip(parm[type]), string.strip(parm[scope]), def_values[key] ] ## Deal with any synonyms ## for input_str in synonyms: parm = string.split(input_str, ",") name = (string.strip(parm[displayName])[1:-1]) key = string.upper( string.join(string.split(name), "") ) var_name = string.strip( parm[variable] ) ## if there's no pre-existing key, then testparm doesn't know about it if not var_table.has_key( var_name ): continue ## just make a copy parm_table[key] = parm_table[var_table[var_name]][:] # parm_table[key][1] = parm[1] parm_table[key][1] = string.strip(parm[1]) ## ## ## print out smbparm.py ## ## ## try: smbparm = open ( "smbparm.py", "w" ) except IOError: print "Cannot write to smbparm.py" sys.exit( 1 ) smbparm.write( HEADER ) smbparm.write( "parm_table = {\n" ) for x in parm_table.keys(): key = "\"%s\"" % x smbparm.write("\t%-25s: (\"%s\", %s, %s, \"%s\"),\n" % ( key, parm_table[x][0], obj_table[parm_table[x][1]], parm_table[x][2], parm_table[x][3] )) smbparm.write( "}\n" ) smbparm.write( FOOTER ) smbparm.write( "\n" ) sys.exit(0) ## ## ## cut-n-paste area ## ## ## for x in parm_table.keys(): if def_values.has_key( x ): parm_table[x].append( def_values[x] ) else: parm_table[x].append( "" )
djangraw/PsychoPyParadigms
refs/heads/master
BasicExperiments/SingingTask_audio.py
1
#!/usr/bin/env python2 """Display multi-page text with interspersed thought probes. Then ask the subject comprehension questions at the end.""" # SingingTask_audio.py # # Created 4/12/17 by DJ based on SingingTask.py. from psychopy import core, gui, data, event, sound, logging #, visual # visual causes a bug in the guis, so I moved it down. from psychopy.tools.filetools import fromFile, toFile from random import shuffle import time, numpy as np import AppKit, os # for monitor size detection, files import PromptTools # ====================== # # ===== PARAMETERS ===== # # ====================== # # Save the parameters declared below? saveParams = True; newParamsFilename = 'SingingTaskParams.pickle' # Declare primary task parameters. params = { 'skipPrompts': True, # at the beginning 'tStartup': 10, # time after beginning of scan before starting first pre-trial message 'tempo_bpm': 90, # beats per minute (beat time = 60.0/tempo_bpm) 'trialTime': 20,#20.0,#20, # duration of song/exercise (in sec)... will be rounded down to nearest multiple of beat time 'msgTime': 6.0, # duration of pre-trial message (in sec)... will be rounded down to nearest multiple of beat time 'restTime': 14.0,#17, # duration of post-trial rest (in sec)... ITI = msgTime+restTime 'IBI': 14.0,#17, # time between end of block/probe and beginning of next block (in seconds) 'nBlocks': 3, # blocks for this run 'trialTypes': ['Scales','Speak','Sing'], # currently used only for instructions 'playSound': [False, True, True], # for each 'randomizeOrder': False, # randomize each block 'advanceKey': 'space', # key to skip block 'triggerKey': 't', # key from scanner that says scan is starting 'promptType': 'Default', # must correspond to keyword in PromptTools.py # declare other stimulus parameters 'fullScreen': True, # run in full screen mode? 'screenToShow': 0, # display on primary screen (0) or secondary (1)? 'fixCrossSize': 50, # size of cross, in pixels 'fixCrossPos': (0,0), # (x,y) pos of fixation cross displayed before each page (for drift correction) 'usePhotodiode': False, # add sync square in corner of screen #'textBoxSize': [800,600] # [640,360]# [700, 500] # width, height of text box (in pixels) # declare sound params 'soundFile': 'music/Major_Chords_Low/Grand Piano - Fazioli - major A', 'soundVolume': 1, 'tSoundStart': 0, 'tSoundStop': 0 # will be edited to match specified trial time } params['tSoundStop'] = params['tSoundStart']+params['trialTime'] # save parameters if saveParams: dlgResult = gui.fileSaveDlg(prompt='Save Params...',initFilePath = os.getcwd() + '/Params', initFileName = newParamsFilename, allowed="PICKLE files (.pickle)|.pickle|All files (.*)|") newParamsFilename = dlgResult if newParamsFilename is None: # keep going, but don't save saveParams = False else: toFile(newParamsFilename, params)# save it! # ========================== # # ===== SET UP LOGGING ===== # # ========================== # try:#try to get a previous parameters file expInfo = fromFile('lastSingInfo.pickle') expInfo['session'] +=1 # automatically increment session number expInfo['paramsFile'] = [expInfo['paramsFile'],'Load...'] except:#if not there then use a default set expInfo = {'subject':'1', 'session':1, 'paramsFile':['DEFAULT','Load...']} # overwrite if you just saved a new parameter set if saveParams: expInfo['paramsFile'] = [newParamsFilename,'Load...'] dateStr = time.strftime("%b_%d_%H%M", time.localtime()) # add the current time #present a dialogue to change params dlg = gui.DlgFromDict(expInfo, title='Singing task', order=['subject','session','paramsFile']) if not dlg.OK: core.quit()#the user hit cancel so exit # find parameter file if expInfo['paramsFile'] == 'Load...': dlgResult = gui.fileOpenDlg(prompt='Select parameters file',tryFilePath=os.getcwd(), allowed="PICKLE files (.pickle)|.pickle|All files (.*)|") expInfo['paramsFile'] = dlgResult[0] # load parameter file if expInfo['paramsFile'] not in ['DEFAULT', None]: # otherwise, just use defaults. # load params file params = fromFile(expInfo['paramsFile']) # print params to Output print 'params = {' for key in sorted(params.keys()): print " '%s': %s"%(key,params[key]) # print each value as-is (no quotes) print '}' # save experimental info toFile('lastSingingInfo.pickle', expInfo)#save params to file for next time #make a log file to save parameter/event data filename = 'Singing-%s-%d-%s'%(expInfo['subject'], expInfo['session'], dateStr) #'Sart-' + expInfo['subject'] + '-' + expInfo['session'] + '-' + dateStr logging.LogFile((filename+'.log'), level=logging.INFO)#, mode='w') # w=overwrite logging.log(level=logging.INFO, msg='---START PARAMETERS---') logging.log(level=logging.INFO, msg='filename: %s'%filename) logging.log(level=logging.INFO, msg='subject: %s'%expInfo['subject']) logging.log(level=logging.INFO, msg='session: %s'%expInfo['session']) logging.log(level=logging.INFO, msg='date: %s'%dateStr) for key in sorted(params.keys()): # in alphabetical order logging.log(level=logging.INFO, msg='%s: %s'%(key,params[key])) logging.log(level=logging.INFO, msg='---END PARAMETERS---') # ========================== # # ===== SET UP STIMULI ===== # # ========================== # from psychopy import visual # kluge for secondary monitor if params['fullScreen'] and params['screenToShow']>0: screens = AppKit.NSScreen.screens() screenRes = screens[params['screenToShow']].frame().size.width, screens[params['screenToShow']].frame().size.height # screenRes = [1920, 1200] params['fullScreen'] = False else: screenRes = [800,600] # Initialize deadline for displaying next frame tNextFlip = [0.0] # put in a list to make it mutable? #create window and stimuli globalClock = core.Clock()#to keep track of time trialClock = core.Clock()#to keep track of time win = visual.Window(screenRes, fullscr=params['fullScreen'], allowGUI=False, monitor='testMonitor', screen=params['screenToShow'], units='deg', name='win') #fixation = visual.GratingStim(win, color='black', tex=None, mask='circle',size=0.2) fCS = params['fixCrossSize'] # rename for brevity fcX = params['fixCrossPos'][0] # rename for brevity fcY = params['fixCrossPos'][1] # rename for brevity fCS_vertices = ((-fCS/2 + fcX, fcY),(fCS/2 + fcX, fcY),(fcX, fcY),(fcX, fCS/2 + fcY),(fcX, -fCS/2 + fcY)) fixation = visual.ShapeStim(win,lineColor='#000000',lineWidth=3.0,vertices=fCS_vertices,units='pix',closeShape=False); message1 = visual.TextStim(win, pos=[0, 0], wrapWidth=50, color='#000000', alignHoriz='center', name='topMsg', text="aaa", height=3) message2 = visual.TextStim(win, pos=[0,-10], wrapWidth=50, color='#000000', alignHoriz='center', name='bottomMsg', text="bbb", height=3) # initialize photodiode stimulus squareSize = 0.4 diodeSquare = visual.Rect(win,pos=[squareSize/4-1,squareSize/4-1],lineColor='white',fillColor='white',size=[squareSize,squareSize],units='norm') # Look up prompts [topPrompts,bottomPrompts] = PromptTools.GetPrompts(os.path.basename(__file__),params['promptType'],params) print('%d prompts loaded from %s'%(len(topPrompts),'PromptTools.py')) # Load sound file mySound = sound.Sound(value=params['soundFile'], volume=params['soundVolume'], start=params['tSoundStart'], stop=params['tSoundStop'], name='mySound') # ============================ # # ======= SUBFUNCTIONS ======= # # ============================ # # increment time of next window flip def AddToFlipTime(tIncrement=1.0): tNextFlip[0] += tIncrement # print("%1.3f --> %1.3f"%(globalClock.getTime(),tNextFlip[0])) def RunTrial(preTrialTime, trialTime, restTime, condition,playSound): # adjust pre-trial time timePerBeat = 60.0/params['tempo_bpm']; nPreTrialBeats = int(preTrialTime/timePerBeat) nTrialBeats = int(trialTime/timePerBeat) # Display pre-trial message win.clearBuffer() for iBeat in range(0, nPreTrialBeats): # set up frame message1.setText('%s in %d...'%(condition,nPreTrialBeats-iBeat)) message1.draw() win.logOnFlip(level=logging.EXP, msg='Display %sIn%d'%(condition,nPreTrialBeats-iBeat)) win.callOnFlip(AddToFlipTime,timePerBeat) # wait until it's time while (globalClock.getTime()<tNextFlip[0]): pass # flash photodiode if params['usePhotodiode']: diodeSquare.draw() win.flip() # erase diode square and re-draw message1.draw() # FLIP DISPLAY! win.flip() # check for escape characters thisKey = event.getKeys() if thisKey!=None and len(thisKey)>0 and thisKey[0] in ['q','escape']: core.quit() # Display trial message if playSound: message1.setText('%s'%(condition)) message1.draw() win.logOnFlip(level=logging.EXP, msg='Display %s'%(condition)) win.callOnFlip(AddToFlipTime,params['tSoundStop']-params['tSoundStart']) win.flip() mySound.play() while (globalClock.getTime()<tNextFlip[0]): # check for escape characters thisKey = event.getKeys() if thisKey!=None and len(thisKey)>0 and thisKey[0] in ['q','escape']: core.quit() # mySound.stop() # logging.log(level=logging.EXP, msg='here') else: for iBeat in range(0, nTrialBeats): message1.setText('%s (%d/%d)'%(condition,iBeat+1,nTrialBeats)) message1.draw() win.logOnFlip(level=logging.EXP, msg='Display %s(%d/%d)'%(condition,iBeat+1,nTrialBeats)) win.callOnFlip(AddToFlipTime,timePerBeat) # logging.log(level=logging.EXP, msg='here') # wait until it's time while (globalClock.getTime()<tNextFlip[0]): pass # flash photodiode if params['usePhotodiode']: diodeSquare.draw() win.flip() # erase diode square and re-draw message1.draw() # FLIP DISPLAY! win.flip() # check for escape characters thisKey = event.getKeys() if thisKey!=None and len(thisKey)>0 and thisKey[0] in ['q','escape']: core.quit() # # Flush the key buffer and mouse movements # event.clearEvents() # # Wait for relevant key press or 'maxPageTime' seconds # thisKey = event.waitKeys(maxWait=trialTime-0.5,keyList=[params['advanceKey'],'q','escape']) # Process key press # if thisKey!=None and len(thisKey)>0 and thisKey[0] in ['q','escape']: # core.quit() #allow the screen to update immediately # tNextFlip[0]=globalClock.getTime() if restTime>0: # draw fixation cross fixation.draw() win.logOnFlip(level=logging.EXP, msg='Display Fixation') win.callOnFlip(AddToFlipTime,restTime) # wait until it's time while (globalClock.getTime()<tNextFlip[0]): pass # flash photodiode if params['usePhotodiode']: diodeSquare.draw() win.flip() # erase diode square and re-draw fixation.draw() # FLIP DISPLAY! win.flip() # =========================== # # ======= RUN PROMPTS ======= # # =========================== # # display prompts if not params['skipPrompts']: PromptTools.RunPrompts(topPrompts,bottomPrompts,win,message1,message2) # wait for scanner message1.setText("Waiting for scanner to start...") message2.setText("(Press '%c' to override.)"%params['triggerKey'].upper()) message1.draw() message2.draw() win.logOnFlip(level=logging.EXP, msg='Display WaitingForScanner') win.flip() event.waitKeys(keyList=params['triggerKey']) tStartSession = globalClock.getTime() AddToFlipTime(tStartSession+params['tStartup']) # wait before first stimulus fixation.draw() win.logOnFlip(level=logging.EXP, msg='Display Fixation') win.flip() # =========================== # # ===== MAIN EXPERIMENT ===== # # =========================== # # set up other stuff logging.log(level=logging.EXP, msg='---START EXPERIMENT---') # Run trials for iBlock in range(0,params['nBlocks']): # for each block of pages # log new block logging.log(level=logging.EXP, msg='Start Block %d'%iBlock) # trial loop trialTypes = params['trialTypes'] if params['randomizeOrder']: shuffle(trialTypes) # TO DO: shuffle playSound in same way for iTrial in range(0,len(trialTypes)): # display text logging.log(level=logging.EXP, msg='Block %d, Trial %d'%(iBlock,iTrial)) if iTrial < (len(trialTypes)-1): RunTrial(params['msgTime'],params['trialTime'],params['restTime'],trialTypes[iTrial],params['playSound'][iTrial]) elif iBlock< (len(trialTypes)-1): RunTrial(params['msgTime'],params['trialTime'],params['IBI'],trialTypes[iTrial],params['playSound'][iTrial]) else: RunTrial(params['msgTime'],params['trialTime'],0,trialTypes[iTrial],params['playSound'][iTrial]) # handle end of block if iBlock == (params['nBlocks']-1): message1.setText("That's the end of this run!") message2.setText("Please stay still until the scanner noise stops.") win.logOnFlip(level=logging.EXP, msg='Display TheEnd') message1.draw() message2.draw() # change the screen win.flip() # wait until a button is pressed to exit thisKey = event.waitKeys(keyList=['q','escape']) # exit experiment core.quit()
jsteemann/arangodb
refs/heads/devel
3rdParty/V8-4.3.61/third_party/python_26/Lib/ctypes/test/test_refcounts.py
68
import unittest import ctypes import gc MyCallback = ctypes.CFUNCTYPE(ctypes.c_int, ctypes.c_int) OtherCallback = ctypes.CFUNCTYPE(ctypes.c_int, ctypes.c_int, ctypes.c_ulonglong) import _ctypes_test dll = ctypes.CDLL(_ctypes_test.__file__) class RefcountTestCase(unittest.TestCase): def test_1(self): from sys import getrefcount as grc f = dll._testfunc_callback_i_if f.restype = ctypes.c_int f.argtypes = [ctypes.c_int, MyCallback] def callback(value): #print "called back with", value return value self.failUnlessEqual(grc(callback), 2) cb = MyCallback(callback) self.failUnless(grc(callback) > 2) result = f(-10, cb) self.failUnlessEqual(result, -18) cb = None gc.collect() self.failUnlessEqual(grc(callback), 2) def test_refcount(self): from sys import getrefcount as grc def func(*args): pass # this is the standard refcount for func self.failUnlessEqual(grc(func), 2) # the CFuncPtr instance holds atr least one refcount on func: f = OtherCallback(func) self.failUnless(grc(func) > 2) # and may release it again del f self.failUnless(grc(func) >= 2) # but now it must be gone gc.collect() self.failUnless(grc(func) == 2) class X(ctypes.Structure): _fields_ = [("a", OtherCallback)] x = X() x.a = OtherCallback(func) # the CFuncPtr instance holds atr least one refcount on func: self.failUnless(grc(func) > 2) # and may release it again del x self.failUnless(grc(func) >= 2) # and now it must be gone again gc.collect() self.failUnlessEqual(grc(func), 2) f = OtherCallback(func) # the CFuncPtr instance holds atr least one refcount on func: self.failUnless(grc(func) > 2) # create a cycle f.cycle = f del f gc.collect() self.failUnlessEqual(grc(func), 2) class AnotherLeak(unittest.TestCase): def test_callback(self): import sys proto = ctypes.CFUNCTYPE(ctypes.c_int, ctypes.c_int, ctypes.c_int) def func(a, b): return a * b * 2 f = proto(func) a = sys.getrefcount(ctypes.c_int) f(1, 2) self.failUnlessEqual(sys.getrefcount(ctypes.c_int), a) if __name__ == '__main__': unittest.main()
pythonization/reminder2standBy
refs/heads/master
reminder2standBy/common_qt_app/helpers.py
1
"""Various helper functions.""" try: import prctl # to install run: # sudo apt install build-essential libcap-dev # pip3 install --user python-prctl except ImportError: prctl = None def give_name2thread(name, thread_obj): """Give name to current thread. if prctl installed, then also set name via this module. (Then you can see thread name in htop .) Do not delete calls of this function. Thread name useful for searching bugs. :param name: thread name :type name: str :param thread_obj: pass thread object to legacy python function :type thread_obj: Thread """ thread_obj.name = name if prctl: prctl.set_name(name)
heiko-r/paparazzi
refs/heads/master
sw/tools/px4/set_target.py
19
#!/usr/bin/env python import os import sys import serial import glob import time target = sys.argv[1] firmware_file = sys.argv[2] print "Target: " + target print "Firmware file: " + firmware_file # test if pprz cdm is connected mode = -1 port = "" try: port = "/dev/serial/by-id/usb-Paparazzi_UAV_CDC_Serial_STM32_*" if len(glob.glob(port)) > 1: print("Warning: multiple Paparazzi cdc devices found. Selecting the first one.") port = glob.glob(port)[0] ser = serial.Serial(port, timeout=0.5) mode = 1 print ("Paparazzi CDC device found at port: " + port) except (serial.serialutil.SerialException, IndexError): print("No Paparazzi CDC device found, looking further.") if mode == 1: if target == "fbw": line = "pprz0" else: line = "pprz1" print ("Sending target command to Paparazzi firmware...") ser.flush() ser.write(line) if target == "fbw": try: c = ser.read(7) print ("AP responded with: " + c) if c == "TIMEOUT": print( "Error: FBW bootloader TIMEOUT. Power cycle the board and wait between 5 seconds to 20 seconds to retry.") sys.exit(1) elif c != "FBWOKOK": print( "Error: unknown error. Power cycle the board and wait between 5 seconds to 20 seconds to retry.") sys.exit(1) except serial.serialutil.SerialException: pass print("Uploading using Paparazzi firmware...") if target == "ap": print("If the uploading does not start within a few seconds, please replug the usb (power cycle the board).") sys.exit(0) if mode == -1: # no pprz cdc was found, look for PX4 ports = glob.glob("/dev/serial/by-id/usb-3D_Robotics*") ports.append(glob.glob("/dev/serial/by-id/pci-3D_Robotics*")) for p in ports: if len(p) > 0: try: ser = serial.Serial(p, timeout=0.5) port = p mode = 2 print ("Original PX4 firmware CDC device found at port: " + port) except serial.serialutil.SerialException: print("Non working PX4 port found, continuing...") if mode == -1: print("No original PX4 CDC firmware found either.") print("Error: no compatible usb device found...") sys.exit(1) if target == "fbw": print("Error: original firmware cannot be used to upload the fbw code. Wait for the PX4 bootloader to exit (takes 5 seconds), or in case this is the first upload; first upload the Paparazzi ap target.") sys.exit(1) else: print("Uploading AP using original PX4 firmware...") print("If the uploading does not start within a few seconds, please replug the usb (power cycle the board).")
ademuk/django-oscar
refs/heads/master
sites/sandbox/apps/gateway/forms.py
60
from django import forms from django.contrib.auth.models import User from oscar.apps.customer.utils import normalise_email class GatewayForm(forms.Form): email = forms.EmailField() def clean_email(self): email = normalise_email(self.cleaned_data['email']) if User.objects.filter(email__iexact=email).exists(): raise forms.ValidationError( "A user already exists with email %s" % email ) return email
sgzsh269/django
refs/heads/master
tests/null_queries/tests.py
55
from __future__ import unicode_literals from django.core.exceptions import FieldError from django.test import TestCase from .models import Choice, Inner, OuterA, OuterB, Poll class NullQueriesTests(TestCase): def test_none_as_null(self): """ Regression test for the use of None as a query value. None is interpreted as an SQL NULL, but only in __exact and __iexact queries. Set up some initial polls and choices """ p1 = Poll(question='Why?') p1.save() c1 = Choice(poll=p1, choice='Because.') c1.save() c2 = Choice(poll=p1, choice='Why Not?') c2.save() # Exact query with value None returns nothing ("is NULL" in sql, # but every 'id' field has a value). self.assertQuerysetEqual(Choice.objects.filter(choice__exact=None), []) # The same behavior for iexact query. self.assertQuerysetEqual(Choice.objects.filter(choice__iexact=None), []) # Excluding the previous result returns everything. self.assertQuerysetEqual( Choice.objects.exclude(choice=None).order_by('id'), [ '<Choice: Choice: Because. in poll Q: Why? >', '<Choice: Choice: Why Not? in poll Q: Why? >' ] ) # Valid query, but fails because foo isn't a keyword with self.assertRaises(FieldError): Choice.objects.filter(foo__exact=None) # Can't use None on anything other than __exact and __iexact with self.assertRaises(ValueError): Choice.objects.filter(id__gt=None) # Related managers use __exact=None implicitly if the object hasn't been saved. p2 = Poll(question="How?") self.assertEqual(repr(p2.choice_set.all()), '<QuerySet []>') def test_reverse_relations(self): """ Querying across reverse relations and then another relation should insert outer joins correctly so as not to exclude results. """ obj = OuterA.objects.create() self.assertQuerysetEqual( OuterA.objects.filter(inner__third=None), ['<OuterA: OuterA object>'] ) self.assertQuerysetEqual( OuterA.objects.filter(inner__third__data=None), ['<OuterA: OuterA object>'] ) Inner.objects.create(first=obj) self.assertQuerysetEqual( Inner.objects.filter(first__inner__third=None), ['<Inner: Inner object>'] ) # Ticket #13815: check if <reverse>_isnull=False does not produce # faulty empty lists OuterB.objects.create(data="reverse") self.assertQuerysetEqual( OuterB.objects.filter(inner__isnull=False), [] ) Inner.objects.create(first=obj) self.assertQuerysetEqual( OuterB.objects.exclude(inner__isnull=False), ['<OuterB: OuterB object>'] )
fake-name/ReadableWebProxy
refs/heads/master
WebMirror/management/rss_parser_funcs/feed_parse_extractBoredtrans95440947WordpressCom.py
1
def extractBoredtrans95440947WordpressCom(item): ''' Parser for 'boredtrans95440947.wordpress.com' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
takeshineshiro/nova
refs/heads/master
nova/api/openstack/compute/floating_ips.py
3
# Copyright 2011 OpenStack Foundation # Copyright (c) 2011 X.commerce, a business unit of eBay Inc. # Copyright 2011 Grid Dynamics # Copyright 2011 Eldar Nugaev, Kirill Shileev, Ilya Alekseyev # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import netaddr from oslo_log import log as logging from oslo_utils import uuidutils import webob from nova.api.openstack import common from nova.api.openstack.compute.schemas import floating_ips from nova.api.openstack import extensions from nova.api.openstack import wsgi from nova.api import validation from nova import compute from nova.compute import utils as compute_utils from nova import exception from nova.i18n import _ from nova.i18n import _LW from nova import network LOG = logging.getLogger(__name__) ALIAS = 'os-floating-ips' authorize = extensions.os_compute_authorizer(ALIAS) def _translate_floating_ip_view(floating_ip): result = { 'id': floating_ip['id'], 'ip': floating_ip['address'], 'pool': floating_ip['pool'], } try: result['fixed_ip'] = floating_ip['fixed_ip']['address'] except (TypeError, KeyError, AttributeError): result['fixed_ip'] = None try: result['instance_id'] = floating_ip['fixed_ip']['instance_uuid'] except (TypeError, KeyError, AttributeError): result['instance_id'] = None return {'floating_ip': result} def _translate_floating_ips_view(floating_ips): return {'floating_ips': [_translate_floating_ip_view(ip)['floating_ip'] for ip in floating_ips]} def get_instance_by_floating_ip_addr(self, context, address): try: instance_id =\ self.network_api.get_instance_id_by_floating_address( context, address) except exception.FloatingIpNotFoundForAddress as ex: raise webob.exc.HTTPNotFound(explanation=ex.format_message()) except exception.FloatingIpMultipleFoundForAddress as ex: raise webob.exc.HTTPConflict(explanation=ex.format_message()) if instance_id: return common.get_instance(self.compute_api, context, instance_id) def disassociate_floating_ip(self, context, instance, address): try: self.network_api.disassociate_floating_ip(context, instance, address) except exception.Forbidden: raise webob.exc.HTTPForbidden() except exception.CannotDisassociateAutoAssignedFloatingIP: msg = _('Cannot disassociate auto assigned floating ip') raise webob.exc.HTTPForbidden(explanation=msg) class FloatingIPController(object): """The Floating IPs API controller for the OpenStack API.""" def __init__(self): self.compute_api = compute.API(skip_policy_check=True) self.network_api = network.API(skip_policy_check=True) super(FloatingIPController, self).__init__() @extensions.expected_errors((400, 404)) def show(self, req, id): """Return data about the given floating ip.""" context = req.environ['nova.context'] authorize(context) try: floating_ip = self.network_api.get_floating_ip(context, id) except (exception.NotFound, exception.FloatingIpNotFound): msg = _("Floating ip not found for id %s") % id raise webob.exc.HTTPNotFound(explanation=msg) except exception.InvalidID as e: raise webob.exc.HTTPBadRequest(explanation=e.format_message()) return _translate_floating_ip_view(floating_ip) @extensions.expected_errors(()) def index(self, req): """Return a list of floating ips allocated to a project.""" context = req.environ['nova.context'] authorize(context) floating_ips = self.network_api.get_floating_ips_by_project(context) return _translate_floating_ips_view(floating_ips) @extensions.expected_errors((403, 404)) def create(self, req, body=None): context = req.environ['nova.context'] authorize(context) pool = None if body and 'pool' in body: pool = body['pool'] try: address = self.network_api.allocate_floating_ip(context, pool) ip = self.network_api.get_floating_ip_by_address(context, address) except exception.NoMoreFloatingIps: if pool: msg = _("No more floating ips in pool %s.") % pool else: msg = _("No more floating ips available.") raise webob.exc.HTTPNotFound(explanation=msg) except exception.FloatingIpLimitExceeded: if pool: msg = _("IP allocation over quota in pool %s.") % pool else: msg = _("IP allocation over quota.") raise webob.exc.HTTPForbidden(explanation=msg) except exception.FloatingIpPoolNotFound as e: raise webob.exc.HTTPNotFound(explanation=e.format_message()) return _translate_floating_ip_view(ip) @wsgi.response(202) @extensions.expected_errors((400, 403, 404, 409)) def delete(self, req, id): context = req.environ['nova.context'] authorize(context) # get the floating ip object try: floating_ip = self.network_api.get_floating_ip(context, id) except (exception.NotFound, exception.FloatingIpNotFound): msg = _("Floating ip not found for id %s") % id raise webob.exc.HTTPNotFound(explanation=msg) except exception.InvalidID as e: raise webob.exc.HTTPBadRequest(explanation=e.format_message()) address = floating_ip['address'] # get the associated instance object (if any) instance = get_instance_by_floating_ip_addr(self, context, address) try: self.network_api.disassociate_and_release_floating_ip( context, instance, floating_ip) except exception.Forbidden: raise webob.exc.HTTPForbidden() except exception.CannotDisassociateAutoAssignedFloatingIP: msg = _('Cannot disassociate auto assigned floating ip') raise webob.exc.HTTPForbidden(explanation=msg) class FloatingIPActionController(wsgi.Controller): def __init__(self, *args, **kwargs): super(FloatingIPActionController, self).__init__(*args, **kwargs) self.compute_api = compute.API(skip_policy_check=True) self.network_api = network.API(skip_policy_check=True) @extensions.expected_errors((400, 403, 404)) @wsgi.action('addFloatingIp') @validation.schema(floating_ips.add_floating_ip) def _add_floating_ip(self, req, id, body): """Associate floating_ip to an instance.""" context = req.environ['nova.context'] authorize(context) address = body['addFloatingIp']['address'] instance = common.get_instance(self.compute_api, context, id) cached_nwinfo = compute_utils.get_nw_info_for_instance(instance) if not cached_nwinfo: LOG.warning( _LW('Info cache is %r during associate') % instance.info_cache, instance=instance) msg = _('No nw_info cache associated with instance') raise webob.exc.HTTPBadRequest(explanation=msg) fixed_ips = cached_nwinfo.fixed_ips() if not fixed_ips: msg = _('No fixed ips associated to instance') raise webob.exc.HTTPBadRequest(explanation=msg) fixed_address = None if 'fixed_address' in body['addFloatingIp']: fixed_address = body['addFloatingIp']['fixed_address'] for fixed in fixed_ips: if fixed['address'] == fixed_address: break else: msg = _('Specified fixed address not assigned to instance') raise webob.exc.HTTPBadRequest(explanation=msg) if not fixed_address: try: fixed_address = next(ip['address'] for ip in fixed_ips if netaddr.valid_ipv4(ip['address'])) except StopIteration: msg = _('Unable to associate floating ip %(address)s ' 'to any fixed IPs for instance %(id)s. ' 'Instance has no fixed IPv4 addresses to ' 'associate.') % ( {'address': address, 'id': id}) raise webob.exc.HTTPBadRequest(explanation=msg) if len(fixed_ips) > 1: LOG.warning(_LW('multiple fixed_ips exist, using the first ' 'IPv4 fixed_ip: %s'), fixed_address) try: self.network_api.associate_floating_ip(context, instance, floating_address=address, fixed_address=fixed_address) except exception.FloatingIpAssociated: msg = _('floating ip is already associated') raise webob.exc.HTTPBadRequest(explanation=msg) except exception.NoFloatingIpInterface: msg = _('l3driver call to add floating ip failed') raise webob.exc.HTTPBadRequest(explanation=msg) except exception.FloatingIpNotFoundForAddress: msg = _('floating ip not found') raise webob.exc.HTTPNotFound(explanation=msg) except exception.Forbidden as e: raise webob.exc.HTTPForbidden(explanation=e.format_message()) except Exception as e: msg = _('Unable to associate floating ip %(address)s to ' 'fixed ip %(fixed_address)s for instance %(id)s. ' 'Error: %(error)s') % ( {'address': address, 'fixed_address': fixed_address, 'id': id, 'error': e}) LOG.exception(msg) raise webob.exc.HTTPBadRequest(explanation=msg) return webob.Response(status_int=202) @extensions.expected_errors((400, 403, 404, 409)) @wsgi.action('removeFloatingIp') @validation.schema(floating_ips.remove_floating_ip) def _remove_floating_ip(self, req, id, body): """Dissociate floating_ip from an instance.""" context = req.environ['nova.context'] authorize(context) address = body['removeFloatingIp']['address'] # get the floating ip object try: floating_ip = self.network_api.get_floating_ip_by_address(context, address) except exception.FloatingIpNotFoundForAddress: msg = _("floating ip not found") raise webob.exc.HTTPNotFound(explanation=msg) # get the associated instance object (if any) instance = get_instance_by_floating_ip_addr(self, context, address) # disassociate if associated if (instance and floating_ip.get('fixed_ip_id') and (uuidutils.is_uuid_like(id) and [instance.uuid == id] or [instance.id == id])[0]): try: disassociate_floating_ip(self, context, instance, address) except exception.FloatingIpNotAssociated: msg = _('Floating ip is not associated') raise webob.exc.HTTPBadRequest(explanation=msg) return webob.Response(status_int=202) else: msg = _("Floating ip %(address)s is not associated with instance " "%(id)s.") % {'address': address, 'id': id} raise webob.exc.HTTPConflict(explanation=msg) class FloatingIps(extensions.V3APIExtensionBase): """Floating IPs support.""" name = "FloatingIps" alias = ALIAS version = 1 def get_resources(self): resource = [extensions.ResourceExtension(ALIAS, FloatingIPController())] return resource def get_controller_extensions(self): controller = FloatingIPActionController() extension = extensions.ControllerExtension(self, 'servers', controller) return [extension]
spradeepv/dive-into-python
refs/heads/master
hackerrank/domain/artificial_intelligence/alpha_beta_pruning/tic_tac_toe.py
1
""" Tic-tac-toe is a pencil-and-paper game for two players, X (ascii value 88) and O (ascii value 79), who take turns marking the spaces in a 3*3 grid. The player who succeeds in placing three respective marks in a horizontal, vertical, or diagonal row wins the game. Empty space is represented by _ ( ascii value 95), and the X player goes first. Here is an example game won by the first player, X: picture alt The function nextMove takes in a char player, and the 3x3 board as an array. Complete the function to print 2 space separated integers r and c which denote the row and column that will be marked in your next move. The top left position is denoted by (0,0). How does it work? Your code is run alternately with the opponent bot for every move. Example input: X ___ ___ _XO Example output: 1 0 Explanation: The board results in the following state after the above move ___ X__ _XO """ # !/bin/python import random # Complete the function below to print 2 integers separated by a single # space which will be your next move def nextMove(player, board): print board # If player is X, I'm the first player. # If player is O, I'm the second player. player = raw_input() # Read the board now. The board is a 3x3 array filled with X, O or _. board = [] for i in xrange(0, 3): board.append([x for x in raw_input().strip()]) nextMove(player, board)
christiantroy/xbmc
refs/heads/master
lib/libUPnP/Platinum/Build/Tools/Scripts/MakeAllVs.py
262
#! /usr/bin/env python import os import sys import getopt import subprocess configs = ['Debug', 'Release'] solutions = ['../../../Build/Targets/x86-microsoft-win32-vs2008/Platinum.sln'] try: opts, args = getopt.getopt(sys.argv[1:], "b:rc") except getopt.GetoptError, (msg, opt): print 'No build_config, defaulting to build all' for opt, arg in opts: if opt == '-b': config = arg def CallVsMake(sln, cfg): cmd = 'python VsMake.py -s %s -b %s' % (sln, cfg) print cmd retVal = subprocess.call(cmd.split()) if retVal != 0: sys.exit(retVal) for sln in solutions: if 'config' not in locals() and 'config' not in globals(): print '************ Building all configurations **************' for cfg in configs: CallVsMake(sln, cfg) else: print '************ Building configuration=' + config + ' ****************' CallVsMake(sln, config)
bratsche/Neutron-Drive
refs/heads/master
google_appengine/lib/django_0_96/django/utils/tzinfo.py
34
"Implementation of tzinfo classes for use with datetime.datetime." import time from datetime import timedelta, tzinfo class FixedOffset(tzinfo): "Fixed offset in minutes east from UTC." def __init__(self, offset): self.__offset = timedelta(minutes=offset) self.__name = "%+03d%02d" % (offset // 60, offset % 60) def __repr__(self): return self.__name def utcoffset(self, dt): return self.__offset def tzname(self, dt): return self.__name def dst(self, dt): return timedelta(0) class LocalTimezone(tzinfo): "Proxy timezone information from time module." def __init__(self, dt): tzinfo.__init__(self, dt) self._tzname = time.tzname[self._isdst(dt)] def __repr__(self): return self._tzname def utcoffset(self, dt): if self._isdst(dt): return timedelta(seconds=-time.altzone) else: return timedelta(seconds=-time.timezone) def dst(self, dt): if self._isdst(dt): return timedelta(seconds=-time.altzone) - timedelta(seconds=-time.timezone) else: return timedelta(0) def tzname(self, dt): return time.tzname[self._isdst(dt)] def _isdst(self, dt): tt = (dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, dt.weekday(), 0, -1) stamp = time.mktime(tt) tt = time.localtime(stamp) return tt.tm_isdst > 0
georgemarshall/django
refs/heads/master
django/template/loaders/app_directories.py
635
""" Wrapper for loading templates from "templates" directories in INSTALLED_APPS packages. """ from django.template.utils import get_app_template_dirs from .filesystem import Loader as FilesystemLoader class Loader(FilesystemLoader): def get_dirs(self): return get_app_template_dirs('templates')
NaturalSolutions/ecoReleve-Server
refs/heads/master
ecorelevesensor/models/monitored_site.py
1
""" Created on Mon Sep 1 14:38:09 2014 @author: Natural Solutions (Thomas) """ from sqlalchemy import ( Boolean, Column, DateTime, func, Index, Integer, Sequence, String, UniqueConstraint ) from sqlalchemy.orm import relationship from ..models import Base, dbConfig dialect = dbConfig['dialect'] class MonitoredSite(Base): __tablename__ = 'TMonitoredStations' id = Column('TGeo_pk_id', Integer, Sequence('seq_monitoredsite_pk_id'), primary_key=True) creator = Column(Integer) type_ = Column('name_Type', String(200)) name = Column(String(50)) id_type = Column('id_Type', Integer) creation_date = Column(DateTime, server_default=func.now(), nullable=False) active = Column(Boolean) positions = relationship('MonitoredSitePosition', lazy='joined', order_by='desc(MonitoredSitePosition.begin_date)') __table_args__ = ( Index('idx_Tmonitoredsite_name', name), UniqueConstraint(type_, name), ) def __json__(self, request): return { 'id':self.id, 'name':self.name, 'type':self.type_, 'positions':self.positions } """ A utiliser une fois qu'eReleve aura disparu ... __tablename__ = 'T_MonitoredSite' id = Column('PK_id', Integer, Sequence('seq_monitoredsite_pk_id'), primary_key=True) creator = Column('FK_creator', Integer, ForeignKey(User.id)) type_ = Column('FK_type', String(256), ForeignKey(Thesaurus.topic_en)) name = Column(String(50)) creation_date = Column(DateTime, server_default=func.now(), nullable=False) active = Column(Boolean) __table_args__ = ( Index('idx_Tmonitoredsite_name', name), {'schema': schema} ) """
StefanRijnhart/odoo
refs/heads/master
addons/hr/res_users.py
27
from openerp import api from openerp.osv import fields, osv class res_users(osv.Model): """ Update of res.users class - add field for the related employee of the user - if adding groups to an user, check if base.group_user is in it (member of 'Employee'), create an employee form linked to it. """ _name = 'res.users' _inherit = ['res.users'] _columns = { 'employee_ids': fields.one2many('hr.employee', 'user_id', 'Related employees'), 'display_employees_suggestions': fields.boolean("Display Employees Suggestions"), } _defaults = { 'display_employees_suggestions': True, } def __init__(self, pool, cr): """ Override of __init__ to add access rights on display_employees_suggestions fields. Access rights are disabled by default, but allowed on some specific fields defined in self.SELF_{READ/WRITE}ABLE_FIELDS. """ init_res = super(res_users, self).__init__(pool, cr) # duplicate list to avoid modifying the original reference self.SELF_WRITEABLE_FIELDS = list(self.SELF_WRITEABLE_FIELDS) self.SELF_WRITEABLE_FIELDS.append('display_employees_suggestions') # duplicate list to avoid modifying the original reference self.SELF_READABLE_FIELDS = list(self.SELF_READABLE_FIELDS) self.SELF_READABLE_FIELDS.append('display_employees_suggestions') return init_res def stop_showing_employees_suggestions(self, cr, uid, user_id, context=None): """Update display_employees_suggestions value to False""" if context is None: context = {} self.write(cr, uid, user_id, {"display_employees_suggestions": False}, context) def _create_welcome_message(self, cr, uid, user, context=None): """Do not welcome new users anymore, welcome new employees instead""" return True def _message_post_get_eid(self, cr, uid, thread_id, context=None): assert thread_id, "res.users does not support posting global messages" if context and 'thread_model' in context: context = dict(context or {}) context['thread_model'] = 'hr.employee' if isinstance(thread_id, (list, tuple)): thread_id = thread_id[0] return self.pool.get('hr.employee').search(cr, uid, [('user_id', '=', thread_id)], context=context) @api.cr_uid_ids_context def message_post(self, cr, uid, thread_id, context=None, **kwargs): """ Redirect the posting of message on res.users to the related employee. This is done because when giving the context of Chatter on the various mailboxes, we do not have access to the current partner_id. """ if kwargs.get('type') == 'email': return super(res_users, self).message_post(cr, uid, thread_id, context=context, **kwargs) res = None employee_ids = self._message_post_get_eid(cr, uid, thread_id, context=context) if not employee_ids: # no employee: fall back on previous behavior return super(res_users, self).message_post(cr, uid, thread_id, context=context, **kwargs) for employee_id in employee_ids: res = self.pool.get('hr.employee').message_post(cr, uid, employee_id, context=context, **kwargs) return res
USC-ACTLab/crazyswarm
refs/heads/master
ros_ws/src/crazyswarm/scripts/figure8_csv.py
1
#!/usr/bin/env python import numpy as np from pycrazyswarm import * import uav_trajectory if __name__ == "__main__": swarm = Crazyswarm() timeHelper = swarm.timeHelper allcfs = swarm.allcfs traj1 = uav_trajectory.Trajectory() traj1.loadcsv("figure8.csv") TRIALS = 1 TIMESCALE = 1.0 for i in range(TRIALS): for cf in allcfs.crazyflies: cf.uploadTrajectory(0, 0, traj1) allcfs.takeoff(targetHeight=1.0, duration=2.0) timeHelper.sleep(2.5) for cf in allcfs.crazyflies: pos = np.array(cf.initialPosition) + np.array([0, 0, 1.0]) cf.goTo(pos, 0, 2.0) timeHelper.sleep(2.5) allcfs.startTrajectory(0, timescale=TIMESCALE) timeHelper.sleep(traj1.duration * TIMESCALE + 2.0) allcfs.startTrajectory(0, timescale=TIMESCALE, reverse=True) timeHelper.sleep(traj1.duration * TIMESCALE + 2.0) allcfs.land(targetHeight=0.06, duration=2.0) timeHelper.sleep(3.0)
mariianna/kodi
refs/heads/master
core/ClientCookie/_Opener.py
17
"""Integration with Python standard library module urllib2: OpenerDirector class. Copyright 2004 John J Lee <jjl@pobox.com> This code is free software; you can redistribute it and/or modify it under the terms of the BSD License (see the file COPYING included with the distribution). """ try: True except NameError: True = 1 False = 0 import urllib2, string, bisect, urlparse from _Util import startswith, isstringlike from _Request import Request def methnames(obj): """Return method names of class instance. dir(obj) doesn't work across Python versions, this does. """ return methnames_of_instance_as_dict(obj).keys() def methnames_of_instance_as_dict(inst): names = {} names.update(methnames_of_class_as_dict(inst.__class__)) for methname in dir(inst): candidate = getattr(inst, methname) if callable(candidate): names[methname] = None return names def methnames_of_class_as_dict(klass): names = {} for methname in dir(klass): candidate = getattr(klass, methname) if callable(candidate): names[methname] = None for baseclass in klass.__bases__: names.update(methnames_of_class_as_dict(baseclass)) return names class OpenerMixin: def _request(self, url_or_req, data): if isstringlike(url_or_req): req = Request(url_or_req, data) else: # already a urllib2.Request or ClientCookie.Request instance req = url_or_req if data is not None: req.add_data(data) return req def retrieve(self, fullurl, filename=None, reporthook=None, data=None): """Returns (filename, headers). For remote objects, the default filename will refer to a temporary file. """ req = self._request(fullurl, data) type_ = req.get_type() fp = self.open(req) headers = fp.info() if filename is None and type == 'file': return url2pathname(req.get_selector()), headers if filename: tfp = open(filename, 'wb') else: path = urlparse(fullurl)[2] suffix = os.path.splitext(path)[1] tfp = tempfile.TemporaryFile("wb", suffix=suffix) result = filename, headers bs = 1024*8 size = -1 read = 0 blocknum = 1 if reporthook: if headers.has_key("content-length"): size = int(headers["Content-Length"]) reporthook(0, bs, size) while 1: block = fp.read(bs) read += len(block) if reporthook: reporthook(blocknum, bs, size) blocknum = blocknum + 1 if not block: break tfp.write(block) fp.close() tfp.close() del fp del tfp if size>=0 and read<size: raise IOError("incomplete retrieval error", "got only %d bytes out of %d" % (read,size)) return result class OpenerDirector(urllib2.OpenerDirector, OpenerMixin): def __init__(self): urllib2.OpenerDirector.__init__(self) self.process_response = {} self.process_request = {} def add_handler(self, handler): added = False for meth in methnames(handler): i = string.find(meth, "_") protocol = meth[:i] condition = meth[i+1:] if startswith(condition, "error"): j = string.find(meth[i+1:], "_") + i + 1 kind = meth[j+1:] try: kind = int(kind) except ValueError: pass lookup = self.handle_error.get(protocol, {}) self.handle_error[protocol] = lookup elif (condition == "open" and protocol not in ["do", "proxy"]): # hack -- see below kind = protocol lookup = self.handle_open elif (condition in ["response", "request"] and protocol != "redirect"): # yucky hack # hack above is to fix HTTPRedirectHandler problem, which # appears to above line to be a processor because of the # redirect_request method :-(( kind = protocol lookup = getattr(self, "process_"+condition) else: continue if lookup.has_key(kind): bisect.insort(lookup[kind], handler) else: lookup[kind] = [handler] added = True continue if added: # XXX why does self.handlers need to be sorted? bisect.insort(self.handlers, handler) handler.add_parent(self) def open(self, fullurl, data=None): req = self._request(fullurl, data) type_ = req.get_type() # pre-process request # XXX should we allow a Processor to change the type (URL # scheme) of the request? meth_name = type_+"_request" for processor in self.process_request.get(type_, []): meth = getattr(processor, meth_name) req = meth(req) response = urllib2.OpenerDirector.open(self, req, data) # post-process response meth_name = type_+"_response" for processor in self.process_response.get(type_, []): meth = getattr(processor, meth_name) response = meth(req, response) return response def error(self, proto, *args): if proto in ['http', 'https']: # XXX http[s] protocols are special-cased dict = self.handle_error['http'] # https is not different than http proto = args[2] # YUCK! meth_name = 'http_error_%s' % proto http_err = 1 orig_args = args else: dict = self.handle_error meth_name = proto + '_error' http_err = 0 args = (dict, proto, meth_name) + args result = apply(self._call_chain, args) if result: return result if http_err: args = (dict, 'default', 'http_error_default') + orig_args return apply(self._call_chain, args)
xavierwu/scikit-learn
refs/heads/master
sklearn/tests/test_base.py
216
# Author: Gael Varoquaux # License: BSD 3 clause import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.base import BaseEstimator, clone, is_classifier from sklearn.svm import SVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.utils import deprecated ############################################################################# # A few test classes class MyEstimator(BaseEstimator): def __init__(self, l1=0, empty=None): self.l1 = l1 self.empty = empty class K(BaseEstimator): def __init__(self, c=None, d=None): self.c = c self.d = d class T(BaseEstimator): def __init__(self, a=None, b=None): self.a = a self.b = b class DeprecatedAttributeEstimator(BaseEstimator): def __init__(self, a=None, b=None): self.a = a if b is not None: DeprecationWarning("b is deprecated and renamed 'a'") self.a = b @property @deprecated("Parameter 'b' is deprecated and renamed to 'a'") def b(self): return self._b class Buggy(BaseEstimator): " A buggy estimator that does not set its parameters right. " def __init__(self, a=None): self.a = 1 class NoEstimator(object): def __init__(self): pass def fit(self, X=None, y=None): return self def predict(self, X=None): return None class VargEstimator(BaseEstimator): """Sklearn estimators shouldn't have vargs.""" def __init__(self, *vargs): pass ############################################################################# # The tests def test_clone(): # Tests that clone creates a correct deep copy. # We create an estimator, make a copy of its original state # (which, in this case, is the current state of the estimator), # and check that the obtained copy is a correct deep copy. from sklearn.feature_selection import SelectFpr, f_classif selector = SelectFpr(f_classif, alpha=0.1) new_selector = clone(selector) assert_true(selector is not new_selector) assert_equal(selector.get_params(), new_selector.get_params()) selector = SelectFpr(f_classif, alpha=np.zeros((10, 2))) new_selector = clone(selector) assert_true(selector is not new_selector) def test_clone_2(): # Tests that clone doesn't copy everything. # We first create an estimator, give it an own attribute, and # make a copy of its original state. Then we check that the copy doesn't # have the specific attribute we manually added to the initial estimator. from sklearn.feature_selection import SelectFpr, f_classif selector = SelectFpr(f_classif, alpha=0.1) selector.own_attribute = "test" new_selector = clone(selector) assert_false(hasattr(new_selector, "own_attribute")) def test_clone_buggy(): # Check that clone raises an error on buggy estimators. buggy = Buggy() buggy.a = 2 assert_raises(RuntimeError, clone, buggy) no_estimator = NoEstimator() assert_raises(TypeError, clone, no_estimator) varg_est = VargEstimator() assert_raises(RuntimeError, clone, varg_est) def test_clone_empty_array(): # Regression test for cloning estimators with empty arrays clf = MyEstimator(empty=np.array([])) clf2 = clone(clf) assert_array_equal(clf.empty, clf2.empty) clf = MyEstimator(empty=sp.csr_matrix(np.array([[0]]))) clf2 = clone(clf) assert_array_equal(clf.empty.data, clf2.empty.data) def test_clone_nan(): # Regression test for cloning estimators with default parameter as np.nan clf = MyEstimator(empty=np.nan) clf2 = clone(clf) assert_true(clf.empty is clf2.empty) def test_repr(): # Smoke test the repr of the base estimator. my_estimator = MyEstimator() repr(my_estimator) test = T(K(), K()) assert_equal( repr(test), "T(a=K(c=None, d=None), b=K(c=None, d=None))" ) some_est = T(a=["long_params"] * 1000) assert_equal(len(repr(some_est)), 415) def test_str(): # Smoke test the str of the base estimator my_estimator = MyEstimator() str(my_estimator) def test_get_params(): test = T(K(), K()) assert_true('a__d' in test.get_params(deep=True)) assert_true('a__d' not in test.get_params(deep=False)) test.set_params(a__d=2) assert_true(test.a.d == 2) assert_raises(ValueError, test.set_params, a__a=2) def test_get_params_deprecated(): # deprecated attribute should not show up as params est = DeprecatedAttributeEstimator(a=1) assert_true('a' in est.get_params()) assert_true('a' in est.get_params(deep=True)) assert_true('a' in est.get_params(deep=False)) assert_true('b' not in est.get_params()) assert_true('b' not in est.get_params(deep=True)) assert_true('b' not in est.get_params(deep=False)) def test_is_classifier(): svc = SVC() assert_true(is_classifier(svc)) assert_true(is_classifier(GridSearchCV(svc, {'C': [0.1, 1]}))) assert_true(is_classifier(Pipeline([('svc', svc)]))) assert_true(is_classifier(Pipeline([('svc_cv', GridSearchCV(svc, {'C': [0.1, 1]}))]))) def test_set_params(): # test nested estimator parameter setting clf = Pipeline([("svc", SVC())]) # non-existing parameter in svc assert_raises(ValueError, clf.set_params, svc__stupid_param=True) # non-existing parameter of pipeline assert_raises(ValueError, clf.set_params, svm__stupid_param=True) # we don't currently catch if the things in pipeline are estimators # bad_pipeline = Pipeline([("bad", NoEstimator())]) # assert_raises(AttributeError, bad_pipeline.set_params, # bad__stupid_param=True) def test_score_sample_weight(): from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeRegressor from sklearn import datasets rng = np.random.RandomState(0) # test both ClassifierMixin and RegressorMixin estimators = [DecisionTreeClassifier(max_depth=2), DecisionTreeRegressor(max_depth=2)] sets = [datasets.load_iris(), datasets.load_boston()] for est, ds in zip(estimators, sets): est.fit(ds.data, ds.target) # generate random sample weights sample_weight = rng.randint(1, 10, size=len(ds.target)) # check that the score with and without sample weights are different assert_not_equal(est.score(ds.data, ds.target), est.score(ds.data, ds.target, sample_weight=sample_weight), msg="Unweighted and weighted scores " "are unexpectedly equal")
rochacbruno/flasgger
refs/heads/master
examples/swagger_config_2.py
1
""" In this example `openapi` version is used instead of `swagger` version. """ from flask import Flask, jsonify from flasgger import Swagger, swag_from app = Flask(__name__) swagger_config = { "headers": [], "specs": [ { "endpoint": "swagger", "route": "/characteristics/swagger.json", "rule_filter": lambda rule: True, # all in "model_filter": lambda tag: True, # all in } ], "title": "Product Characteristics APIs", "version": '', "termsOfService": "", "static_url_path": "/characteristics/static", "swagger_ui": True, "specs_route": "/characteristics/swagger/", "description": "", "securityDefinitions": { "oAuthSample": { "type": "oauth2", "flow": "application", "tokenUrl": "https://api.pgsmartshopassistant.com/o/token/", } } } colors_spec = { "tags": [ "colors" ], "parameters": [ { "name": "palette", "in": "path", "type": "string", "enum": [ "all", "rgb", "cmyk" ], "required": True, "default": "all", "description": "Which palette to filter?" } ], "operationId": "get_colors", "consumes": [ "application/json" ], "produces": [ "application/json" ], "security": { "colors_oauth": { "$ref": "#/securityDefinitions/oAuthSample" } }, "schemes": [ "http", "https" ], "externalDocs": { "description": "Project repository", "url": "http://github.com/rochacbruno/flasgger" }, "definitions": { "Palette": { "type": "object", "properties": { "palette_name": { "type": "array", "items": { "$ref": "#/definitions/Color" } } } }, "Color": { "type": "string" } }, "responses": { "200": { "description": "A list of colors (may be filtered by palette)", "schema": { "$ref": "#/definitions/Palette" }, "examples": { "rgb": [ "red", "green", "blue" ] } } } } @app.route('/colors/<palette>/') @swag_from(colors_spec) def colors(palette): """ Example using a dictionary as specification This is the description You can also set 'summary' and 'description' in specs_dict --- # values here overrides the specs dict """ all_colors = { 'cmyk': ['cian', 'magenta', 'yellow', 'black'], 'rgb': ['red', 'green', 'blue'] } if palette == 'all': result = all_colors else: result = {palette: all_colors.get(palette)} return jsonify(result) swag = Swagger(app, config=swagger_config) def test_swag(client, specs_data): """ This test is runs automatically in Travis CI :param client: Flask app test client :param specs_data: {'url': {swag_specs}} for every spec in app """ for spec in specs_data.values(): assert 'securityDefinitions' in spec assert 'oAuthSample' in spec['securityDefinitions'] if __name__ == '__main__': app.run(debug=True)
latendre/PythonCyc
refs/heads/master
setup.py
1
# Copyright (c) 2014, SRI International # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # ---------------------------------------------------------------------- from distutils.core import setup setup( name='PythonCyc', version='1.0', author='Mario Latendresse', author_email='latendre@ai.sri.com', packages=['pythoncyc'], license='LICENSE', description='A Python interface to Pathway Tools', long_description=open('README.md').read() )
xindus40223115/w16b_test
refs/heads/master
static/Brython3.1.1-20150328-091302/Lib/textwrap.py
745
"""Text wrapping and filling. """ # Copyright (C) 1999-2001 Gregory P. Ward. # Copyright (C) 2002, 2003 Python Software Foundation. # Written by Greg Ward <gward@python.net> import re __all__ = ['TextWrapper', 'wrap', 'fill', 'dedent', 'indent'] # Hardcode the recognized whitespace characters to the US-ASCII # whitespace characters. The main reason for doing this is that in # ISO-8859-1, 0xa0 is non-breaking whitespace, so in certain locales # that character winds up in string.whitespace. Respecting # string.whitespace in those cases would 1) make textwrap treat 0xa0 the # same as any other whitespace char, which is clearly wrong (it's a # *non-breaking* space), 2) possibly cause problems with Unicode, # since 0xa0 is not in range(128). _whitespace = '\t\n\x0b\x0c\r ' class TextWrapper: """ Object for wrapping/filling text. The public interface consists of the wrap() and fill() methods; the other methods are just there for subclasses to override in order to tweak the default behaviour. If you want to completely replace the main wrapping algorithm, you'll probably have to override _wrap_chunks(). Several instance attributes control various aspects of wrapping: width (default: 70) the maximum width of wrapped lines (unless break_long_words is false) initial_indent (default: "") string that will be prepended to the first line of wrapped output. Counts towards the line's width. subsequent_indent (default: "") string that will be prepended to all lines save the first of wrapped output; also counts towards each line's width. expand_tabs (default: true) Expand tabs in input text to spaces before further processing. Each tab will become 0 .. 'tabsize' spaces, depending on its position in its line. If false, each tab is treated as a single character. tabsize (default: 8) Expand tabs in input text to 0 .. 'tabsize' spaces, unless 'expand_tabs' is false. replace_whitespace (default: true) Replace all whitespace characters in the input text by spaces after tab expansion. Note that if expand_tabs is false and replace_whitespace is true, every tab will be converted to a single space! fix_sentence_endings (default: false) Ensure that sentence-ending punctuation is always followed by two spaces. Off by default because the algorithm is (unavoidably) imperfect. break_long_words (default: true) Break words longer than 'width'. If false, those words will not be broken, and some lines might be longer than 'width'. break_on_hyphens (default: true) Allow breaking hyphenated words. If true, wrapping will occur preferably on whitespaces and right after hyphens part of compound words. drop_whitespace (default: true) Drop leading and trailing whitespace from lines. """ unicode_whitespace_trans = {} uspace = ord(' ') for x in _whitespace: unicode_whitespace_trans[ord(x)] = uspace # This funky little regex is just the trick for splitting # text up into word-wrappable chunks. E.g. # "Hello there -- you goof-ball, use the -b option!" # splits into # Hello/ /there/ /--/ /you/ /goof-/ball,/ /use/ /the/ /-b/ /option! # (after stripping out empty strings). wordsep_re = re.compile( r'(\s+|' # any whitespace r'[^\s\w]*\w+[^0-9\W]-(?=\w+[^0-9\W])|' # hyphenated words r'(?<=[\w\!\"\'\&\.\,\?])-{2,}(?=\w))') # em-dash # This less funky little regex just split on recognized spaces. E.g. # "Hello there -- you goof-ball, use the -b option!" # splits into # Hello/ /there/ /--/ /you/ /goof-ball,/ /use/ /the/ /-b/ /option!/ wordsep_simple_re = re.compile(r'(\s+)') # XXX this is not locale- or charset-aware -- string.lowercase # is US-ASCII only (and therefore English-only) sentence_end_re = re.compile(r'[a-z]' # lowercase letter r'[\.\!\?]' # sentence-ending punct. r'[\"\']?' # optional end-of-quote r'\Z') # end of chunk def __init__(self, width=70, initial_indent="", subsequent_indent="", expand_tabs=True, replace_whitespace=True, fix_sentence_endings=False, break_long_words=True, drop_whitespace=True, break_on_hyphens=True, tabsize=8): self.width = width self.initial_indent = initial_indent self.subsequent_indent = subsequent_indent self.expand_tabs = expand_tabs self.replace_whitespace = replace_whitespace self.fix_sentence_endings = fix_sentence_endings self.break_long_words = break_long_words self.drop_whitespace = drop_whitespace self.break_on_hyphens = break_on_hyphens self.tabsize = tabsize # -- Private methods ----------------------------------------------- # (possibly useful for subclasses to override) def _munge_whitespace(self, text): """_munge_whitespace(text : string) -> string Munge whitespace in text: expand tabs and convert all other whitespace characters to spaces. Eg. " foo\tbar\n\nbaz" becomes " foo bar baz". """ if self.expand_tabs: text = text.expandtabs(self.tabsize) if self.replace_whitespace: text = text.translate(self.unicode_whitespace_trans) return text def _split(self, text): """_split(text : string) -> [string] Split the text to wrap into indivisible chunks. Chunks are not quite the same as words; see _wrap_chunks() for full details. As an example, the text Look, goof-ball -- use the -b option! breaks into the following chunks: 'Look,', ' ', 'goof-', 'ball', ' ', '--', ' ', 'use', ' ', 'the', ' ', '-b', ' ', 'option!' if break_on_hyphens is True, or in: 'Look,', ' ', 'goof-ball', ' ', '--', ' ', 'use', ' ', 'the', ' ', '-b', ' ', option!' otherwise. """ if self.break_on_hyphens is True: chunks = self.wordsep_re.split(text) else: chunks = self.wordsep_simple_re.split(text) chunks = [c for c in chunks if c] return chunks def _fix_sentence_endings(self, chunks): """_fix_sentence_endings(chunks : [string]) Correct for sentence endings buried in 'chunks'. Eg. when the original text contains "... foo.\nBar ...", munge_whitespace() and split() will convert that to [..., "foo.", " ", "Bar", ...] which has one too few spaces; this method simply changes the one space to two. """ i = 0 patsearch = self.sentence_end_re.search while i < len(chunks)-1: if chunks[i+1] == " " and patsearch(chunks[i]): chunks[i+1] = " " i += 2 else: i += 1 def _handle_long_word(self, reversed_chunks, cur_line, cur_len, width): """_handle_long_word(chunks : [string], cur_line : [string], cur_len : int, width : int) Handle a chunk of text (most likely a word, not whitespace) that is too long to fit in any line. """ # Figure out when indent is larger than the specified width, and make # sure at least one character is stripped off on every pass if width < 1: space_left = 1 else: space_left = width - cur_len # If we're allowed to break long words, then do so: put as much # of the next chunk onto the current line as will fit. if self.break_long_words: cur_line.append(reversed_chunks[-1][:space_left]) reversed_chunks[-1] = reversed_chunks[-1][space_left:] # Otherwise, we have to preserve the long word intact. Only add # it to the current line if there's nothing already there -- # that minimizes how much we violate the width constraint. elif not cur_line: cur_line.append(reversed_chunks.pop()) # If we're not allowed to break long words, and there's already # text on the current line, do nothing. Next time through the # main loop of _wrap_chunks(), we'll wind up here again, but # cur_len will be zero, so the next line will be entirely # devoted to the long word that we can't handle right now. def _wrap_chunks(self, chunks): """_wrap_chunks(chunks : [string]) -> [string] Wrap a sequence of text chunks and return a list of lines of length 'self.width' or less. (If 'break_long_words' is false, some lines may be longer than this.) Chunks correspond roughly to words and the whitespace between them: each chunk is indivisible (modulo 'break_long_words'), but a line break can come between any two chunks. Chunks should not have internal whitespace; ie. a chunk is either all whitespace or a "word". Whitespace chunks will be removed from the beginning and end of lines, but apart from that whitespace is preserved. """ lines = [] if self.width <= 0: raise ValueError("invalid width %r (must be > 0)" % self.width) # Arrange in reverse order so items can be efficiently popped # from a stack of chucks. chunks.reverse() while chunks: # Start the list of chunks that will make up the current line. # cur_len is just the length of all the chunks in cur_line. cur_line = [] cur_len = 0 # Figure out which static string will prefix this line. if lines: indent = self.subsequent_indent else: indent = self.initial_indent # Maximum width for this line. width = self.width - len(indent) # First chunk on line is whitespace -- drop it, unless this # is the very beginning of the text (ie. no lines started yet). if self.drop_whitespace and chunks[-1].strip() == '' and lines: del chunks[-1] while chunks: l = len(chunks[-1]) # Can at least squeeze this chunk onto the current line. if cur_len + l <= width: cur_line.append(chunks.pop()) cur_len += l # Nope, this line is full. else: break # The current line is full, and the next chunk is too big to # fit on *any* line (not just this one). if chunks and len(chunks[-1]) > width: self._handle_long_word(chunks, cur_line, cur_len, width) # If the last chunk on this line is all whitespace, drop it. if self.drop_whitespace and cur_line and cur_line[-1].strip() == '': del cur_line[-1] # Convert current line back to a string and store it in list # of all lines (return value). if cur_line: lines.append(indent + ''.join(cur_line)) return lines # -- Public interface ---------------------------------------------- def wrap(self, text): """wrap(text : string) -> [string] Reformat the single paragraph in 'text' so it fits in lines of no more than 'self.width' columns, and return a list of wrapped lines. Tabs in 'text' are expanded with string.expandtabs(), and all other whitespace characters (including newline) are converted to space. """ text = self._munge_whitespace(text) chunks = self._split(text) if self.fix_sentence_endings: self._fix_sentence_endings(chunks) return self._wrap_chunks(chunks) def fill(self, text): """fill(text : string) -> string Reformat the single paragraph in 'text' to fit in lines of no more than 'self.width' columns, and return a new string containing the entire wrapped paragraph. """ return "\n".join(self.wrap(text)) # -- Convenience interface --------------------------------------------- def wrap(text, width=70, **kwargs): """Wrap a single paragraph of text, returning a list of wrapped lines. Reformat the single paragraph in 'text' so it fits in lines of no more than 'width' columns, and return a list of wrapped lines. By default, tabs in 'text' are expanded with string.expandtabs(), and all other whitespace characters (including newline) are converted to space. See TextWrapper class for available keyword args to customize wrapping behaviour. """ w = TextWrapper(width=width, **kwargs) return w.wrap(text) def fill(text, width=70, **kwargs): """Fill a single paragraph of text, returning a new string. Reformat the single paragraph in 'text' to fit in lines of no more than 'width' columns, and return a new string containing the entire wrapped paragraph. As with wrap(), tabs are expanded and other whitespace characters converted to space. See TextWrapper class for available keyword args to customize wrapping behaviour. """ w = TextWrapper(width=width, **kwargs) return w.fill(text) # -- Loosely related functionality ------------------------------------- _whitespace_only_re = re.compile('^[ \t]+$', re.MULTILINE) _leading_whitespace_re = re.compile('(^[ \t]*)(?:[^ \t\n])', re.MULTILINE) def dedent(text): """Remove any common leading whitespace from every line in `text`. This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting them in the source code in indented form. Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and "\thello" are considered to have no common leading whitespace. (This behaviour is new in Python 2.5; older versions of this module incorrectly expanded tabs before searching for common leading whitespace.) """ # Look for the longest leading string of spaces and tabs common to # all lines. margin = None text = _whitespace_only_re.sub('', text) indents = _leading_whitespace_re.findall(text) for indent in indents: if margin is None: margin = indent # Current line more deeply indented than previous winner: # no change (previous winner is still on top). elif indent.startswith(margin): pass # Current line consistent with and no deeper than previous winner: # it's the new winner. elif margin.startswith(indent): margin = indent # Current line and previous winner have no common whitespace: # there is no margin. else: margin = "" break # sanity check (testing/debugging only) if 0 and margin: for line in text.split("\n"): assert not line or line.startswith(margin), \ "line = %r, margin = %r" % (line, margin) if margin: text = re.sub(r'(?m)^' + margin, '', text) return text def indent(text, prefix, predicate=None): """Adds 'prefix' to the beginning of selected lines in 'text'. If 'predicate' is provided, 'prefix' will only be added to the lines where 'predicate(line)' is True. If 'predicate' is not provided, it will default to adding 'prefix' to all non-empty lines that do not consist solely of whitespace characters. """ if predicate is None: def predicate(line): return line.strip() def prefixed_lines(): for line in text.splitlines(True): yield (prefix + line if predicate(line) else line) return ''.join(prefixed_lines()) if __name__ == "__main__": #print dedent("\tfoo\n\tbar") #print dedent(" \thello there\n \t how are you?") print(dedent("Hello there.\n This is indented."))
JetBrains/intellij-community
refs/heads/master
python/testData/quickFixes/PyUpdatePropertySignatureQuickFixTest/setter_after.py
80
class A(Aa): @property def x(self, r): return r @x.setter def x(self, r): self._x = ""
wilsonfreitas/pelican-plugins
refs/heads/master
i18n_subsites/__init__.py
75
from .i18n_subsites import *
meteorcloudy/bazel
refs/heads/master
src/test/py/bazel/bazel_windows_cpp_test.py
3
# Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os import unittest from src.test.py.bazel import test_base class BazelWindowsCppTest(test_base.TestBase): def createProjectFiles(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('BUILD', [ 'package(', ' default_visibility = ["//visibility:public"],', ' features=["windows_export_all_symbols"]', ')', '', 'cc_library(', ' name = "A",', ' srcs = ["a.cc"],', ' hdrs = ["a.h"],', ' copts = ["/DCOMPILING_A_DLL"],', ' features = ["no_windows_export_all_symbols"],', ')', '', 'cc_library(', ' name = "B",', ' srcs = ["b.cc"],', ' hdrs = ["b.h"],', ' deps = [":A"],', ' copts = ["/DNO_DLLEXPORT"],', ')', '', 'cc_binary(', ' name = "C",', ' srcs = ["c.cc"],', ' deps = [":A", ":B" ],', ' linkstatic = 0,', ')', ]) self.ScratchFile('a.cc', [ '#include <stdio.h>', '#include "a.h"', 'int a = 0;', 'void hello_A() {', ' a++;', ' printf("Hello A, %d\\n", a);', '}', ]) self.ScratchFile('b.cc', [ '#include <stdio.h>', '#include "a.h"', '#include "b.h"', 'void hello_B() {', ' hello_A();', ' printf("Hello B\\n");', '}', ]) header_temp = [ '#ifndef %{name}_H', '#define %{name}_H', '', '#if NO_DLLEXPORT', ' #define DLLEXPORT', '#elif COMPILING_%{name}_DLL', ' #define DLLEXPORT __declspec(dllexport)', '#else', ' #define DLLEXPORT __declspec(dllimport)', '#endif', '', 'DLLEXPORT void hello_%{name}();', '', '#endif', ] self.ScratchFile('a.h', [line.replace('%{name}', 'A') for line in header_temp]) self.ScratchFile('b.h', [line.replace('%{name}', 'B') for line in header_temp]) c_cc_content = [ '#include <stdio.h>', '#include "a.h"', '#include "b.h"', '', 'void hello_C() {', ' hello_A();', ' hello_B();', ' printf("Hello C\\n");', '}', '', 'int main() {', ' hello_C();', ' return 0;', '}', ] self.ScratchFile('c.cc', c_cc_content) self.ScratchFile('lib/BUILD', [ 'cc_library(', ' name = "A",', ' srcs = ["dummy.cc"],', ' features = ["windows_export_all_symbols"],', ' visibility = ["//visibility:public"],', ')', ]) self.ScratchFile('lib/dummy.cc', ['void dummy() {}']) self.ScratchFile('main/main.cc', c_cc_content) def getBazelInfo(self, info_key): exit_code, stdout, stderr = self.RunBazel(['info', info_key]) self.AssertExitCode(exit_code, 0, stderr) return stdout[0] def testBuildDynamicLibraryWithUserExportedSymbol(self): self.createProjectFiles() bazel_bin = self.getBazelInfo('bazel-bin') # //:A export symbols by itself using __declspec(dllexport), so it doesn't # need Bazel to export symbols using DEF file. exit_code, _, stderr = self.RunBazel( ['build', '//:A', '--output_groups=dynamic_library']) self.AssertExitCode(exit_code, 0, stderr) # TODO(pcloudy): change suffixes to .lib and .dll after making DLL # extensions correct on Windows. import_library = os.path.join(bazel_bin, 'A.if.lib') shared_library = os.path.join(bazel_bin, 'A_6f2d5ec56a.dll') empty_def_file = os.path.join(bazel_bin, 'A.gen.empty.def') self.assertTrue(os.path.exists(import_library)) self.assertTrue(os.path.exists(shared_library)) # An empty DEF file should be generated for //:A self.assertTrue(os.path.exists(empty_def_file)) def testBuildDynamicLibraryWithExportSymbolFeature(self): self.createProjectFiles() bazel_bin = self.getBazelInfo('bazel-bin') # //:B doesn't export symbols by itself, so it need Bazel to export symbols # using DEF file. exit_code, _, stderr = self.RunBazel( ['build', '//:B', '--output_groups=dynamic_library']) self.AssertExitCode(exit_code, 0, stderr) # TODO(pcloudy): change suffixes to .lib and .dll after making DLL # extensions correct on Windows. import_library = os.path.join(bazel_bin, 'B.if.lib') shared_library = os.path.join(bazel_bin, 'B_6f2d5ec56a.dll') def_file = os.path.join(bazel_bin, 'B.gen.def') self.assertTrue(os.path.exists(import_library)) self.assertTrue(os.path.exists(shared_library)) # DEF file should be generated for //:B self.assertTrue(os.path.exists(def_file)) # Test build //:B if windows_export_all_symbols feature is disabled by # no_windows_export_all_symbols. exit_code, _, stderr = self.RunBazel([ 'build', '//:B', '--output_groups=dynamic_library', '--features=no_windows_export_all_symbols' ]) self.AssertExitCode(exit_code, 0, stderr) import_library = os.path.join(bazel_bin, 'B.if.lib') shared_library = os.path.join(bazel_bin, 'B_6f2d5ec56a.dll') empty_def_file = os.path.join(bazel_bin, 'B.gen.empty.def') self.assertTrue(os.path.exists(import_library)) self.assertTrue(os.path.exists(shared_library)) # An empty DEF file should be generated for //:B self.assertTrue(os.path.exists(empty_def_file)) self.AssertFileContentNotContains(empty_def_file, 'hello_B') def testBuildCcBinaryWithDependenciesDynamicallyLinked(self): self.createProjectFiles() bazel_bin = self.getBazelInfo('bazel-bin') # Since linkstatic=0 is specified for //:C, it's dependencies should be # dynamically linked. exit_code, _, stderr = self.RunBazel(['build', '//:C']) self.AssertExitCode(exit_code, 0, stderr) # TODO(pcloudy): change suffixes to .lib and .dll after making DLL # extensions correct on # Windows. # a_import_library self.assertTrue(os.path.exists(os.path.join(bazel_bin, 'A.if.lib'))) # a_shared_library self.assertTrue(os.path.exists(os.path.join(bazel_bin, 'A_6f2d5ec56a.dll'))) # a_def_file self.assertTrue(os.path.exists(os.path.join(bazel_bin, 'A.gen.empty.def'))) # b_import_library self.assertTrue(os.path.exists(os.path.join(bazel_bin, 'B.if.lib'))) # b_shared_library self.assertTrue(os.path.exists(os.path.join(bazel_bin, 'B_6f2d5ec56a.dll'))) # b_def_file self.assertTrue(os.path.exists(os.path.join(bazel_bin, 'B.gen.def'))) # c_exe self.assertTrue(os.path.exists(os.path.join(bazel_bin, 'C.exe'))) def testBuildCcBinaryFromDifferentPackage(self): self.createProjectFiles() self.ScratchFile('main/BUILD', [ 'cc_binary(', ' name = "main",', ' srcs = ["main.cc"],', ' deps = ["//:B"],', ' linkstatic = 0,' ')', ]) bazel_bin = self.getBazelInfo('bazel-bin') exit_code, _, stderr = self.RunBazel(['build', '//main:main']) self.AssertExitCode(exit_code, 0, stderr) # Test if A.dll and B.dll are copied to the directory of main.exe main_bin = os.path.join(bazel_bin, 'main/main.exe') self.assertTrue(os.path.exists(main_bin)) self.assertTrue( os.path.exists(os.path.join(bazel_bin, 'main/A_6f2d5ec56a.dll'))) self.assertTrue( os.path.exists(os.path.join(bazel_bin, 'main/B_6f2d5ec56a.dll'))) # Run the binary to see if it runs successfully exit_code, stdout, stderr = self.RunProgram([main_bin]) self.AssertExitCode(exit_code, 0, stderr) self.assertEqual(['Hello A, 1', 'Hello A, 2', 'Hello B', 'Hello C'], stdout) def testBuildCcBinaryDependsOnConflictDLLs(self): self.createProjectFiles() self.ScratchFile( 'main/BUILD', [ 'cc_binary(', ' name = "main",', ' srcs = ["main.cc"],', ' deps = ["//:B", "//lib:A"],', # Transitively depends on //:A ' linkstatic = 0,' ')', ]) bazel_bin = self.getBazelInfo('bazel-bin') # //main:main depends on both //lib:A and //:A exit_code, _, stderr = self.RunBazel(['build', '//main:main']) self.AssertExitCode(exit_code, 0, stderr) # Run the binary to see if it runs successfully main_bin = os.path.join(bazel_bin, 'main/main.exe') exit_code, stdout, stderr = self.RunProgram([main_bin]) self.AssertExitCode(exit_code, 0, stderr) self.assertEqual(['Hello A, 1', 'Hello A, 2', 'Hello B', 'Hello C'], stdout) # There are 2 A_{hash}.dll since //main:main depends on both //lib:A and # //:A self.assertEqual( len(glob.glob(os.path.join(bazel_bin, 'main', 'A_*.dll'))), 2) # There is only 1 B_{hash}.dll self.assertEqual( len(glob.glob(os.path.join(bazel_bin, 'main', 'B_*.dll'))), 1) def testBuildDifferentCcBinariesDependOnConflictDLLs(self): self.createProjectFiles() self.ScratchFile( 'main/BUILD', [ 'cc_binary(', ' name = "main",', ' srcs = ["main.cc"],', ' deps = ["//:B"],', # Transitively depends on //:A ' linkstatic = 0,' ')', '', 'cc_binary(', ' name = "other_main",', ' srcs = ["other_main.cc"],', ' deps = ["//lib:A"],', ' linkstatic = 0,' ')', ]) bazel_bin = self.getBazelInfo('bazel-bin') self.ScratchFile('main/other_main.cc', ['int main() {return 0;}']) # Building //main:main should succeed exit_code, _, stderr = self.RunBazel( ['build', '//main:main', '--incompatible_avoid_conflict_dlls']) self.AssertExitCode(exit_code, 0, stderr) main_bin = os.path.join(bazel_bin, 'main/main.exe') # Run the main_bin binary to see if it runs successfully exit_code, stdout, stderr = self.RunProgram([main_bin]) self.AssertExitCode(exit_code, 0, stderr) self.assertEqual(['Hello A, 1', 'Hello A, 2', 'Hello B', 'Hello C'], stdout) # There is only 1 A_{hash}.dll since //main:main depends transitively on # //:A self.assertEqual( len(glob.glob(os.path.join(bazel_bin, 'main', 'A_*.dll'))), 1) # There is only 1 B_{hash}.dll self.assertEqual( len(glob.glob(os.path.join(bazel_bin, 'main', 'B_*.dll'))), 1) # Building //main:other_main should succeed exit_code, _, stderr = self.RunBazel([ 'build', '//main:main', '//main:other_main', '--incompatible_avoid_conflict_dlls' ]) self.AssertExitCode(exit_code, 0, stderr) other_main_bin = os.path.join(bazel_bin, 'main/other_main.exe') # Run the other_main_bin binary to see if it runs successfully exit_code, stdout, stderr = self.RunProgram([other_main_bin]) self.AssertExitCode(exit_code, 0, stderr) # There are 2 A_{hash}.dll since //main:main depends on //:A # and //main:other_main depends on //lib:A self.assertEqual( len(glob.glob(os.path.join(bazel_bin, 'main', 'A_*.dll'))), 2) def testDLLIsCopiedFromExternalRepo(self): self.ScratchFile('ext_repo/WORKSPACE') self.ScratchFile('ext_repo/BUILD', [ 'cc_library(', ' name = "A",', ' srcs = ["a.cc"],', ' features = ["windows_export_all_symbols"],', ' visibility = ["//visibility:public"],', ')', ]) self.ScratchFile('ext_repo/a.cc', [ '#include <stdio.h>', 'void hello_A() {', ' printf("Hello A\\n");', '}', ]) self.ScratchFile('WORKSPACE', [ 'local_repository(', ' name = "ext_repo",', ' path = "ext_repo",', ')', ]) self.ScratchFile('BUILD', [ 'cc_binary(', ' name = "main",', ' srcs = ["main.cc"],', ' deps = ["@ext_repo//:A"],', ' linkstatic = 0,', ')', ]) self.ScratchFile('main.cc', [ 'extern void hello_A();', '', 'int main() {', ' hello_A();', ' return 0;', '}', ]) bazel_bin = self.getBazelInfo('bazel-bin') exit_code, _, stderr = self.RunBazel(['build', '//:main', '-s']) self.AssertExitCode(exit_code, 0, stderr) # Test if A.dll is copied to the directory of main.exe main_bin = os.path.join(bazel_bin, 'main.exe') self.assertTrue(os.path.exists(main_bin)) self.assertTrue(os.path.exists(os.path.join(bazel_bin, 'A_128f2c79c3.dll'))) # Run the binary to see if it runs successfully exit_code, stdout, stderr = self.RunProgram([main_bin]) self.AssertExitCode(exit_code, 0, stderr) self.assertEqual(['Hello A'], stdout) def testDynamicLinkingMSVCRT(self): self.createProjectFiles() bazel_output = self.getBazelInfo('output_path') # By default, it should link to msvcrt dynamically. exit_code, _, stderr = self.RunBazel( ['build', '//:A', '--output_groups=dynamic_library', '-s']) paramfile = os.path.join( bazel_output, 'x64_windows-fastbuild/bin/A_6f2d5ec56a.dll-2.params') self.AssertExitCode(exit_code, 0, stderr) self.assertIn('/MD', ''.join(stderr)) self.AssertFileContentContains(paramfile, '/DEFAULTLIB:msvcrt.lib') self.assertNotIn('/MT', ''.join(stderr)) self.AssertFileContentNotContains(paramfile, '/DEFAULTLIB:libcmt.lib') # Test build in debug mode. exit_code, _, stderr = self.RunBazel( ['build', '-c', 'dbg', '//:A', '--output_groups=dynamic_library', '-s']) paramfile = os.path.join(bazel_output, 'x64_windows-dbg/bin/A_6f2d5ec56a.dll-2.params') self.AssertExitCode(exit_code, 0, stderr) self.assertIn('/MDd', ''.join(stderr)) self.AssertFileContentContains(paramfile, '/DEFAULTLIB:msvcrtd.lib') self.assertNotIn('/MTd', ''.join(stderr)) self.AssertFileContentNotContains(paramfile, '/DEFAULTLIB:libcmtd.lib') def testStaticLinkingMSVCRT(self): self.createProjectFiles() bazel_output = self.getBazelInfo('output_path') # With static_link_msvcrt feature, it should link to msvcrt statically. exit_code, _, stderr = self.RunBazel([ 'build', '//:A', '--output_groups=dynamic_library', '--features=static_link_msvcrt', '-s' ]) paramfile = os.path.join( bazel_output, 'x64_windows-fastbuild/bin/A_6f2d5ec56a.dll-2.params') self.AssertExitCode(exit_code, 0, stderr) self.assertNotIn('/MD', ''.join(stderr)) self.AssertFileContentNotContains(paramfile, '/DEFAULTLIB:msvcrt.lib') self.assertIn('/MT', ''.join(stderr)) self.AssertFileContentContains(paramfile, '/DEFAULTLIB:libcmt.lib') # Test build in debug mode. exit_code, _, stderr = self.RunBazel([ 'build', '-c', 'dbg', '//:A', '--output_groups=dynamic_library', '--features=static_link_msvcrt', '-s' ]) paramfile = os.path.join(bazel_output, 'x64_windows-dbg/bin/A_6f2d5ec56a.dll-2.params') self.AssertExitCode(exit_code, 0, stderr) self.assertNotIn('/MDd', ''.join(stderr)) self.AssertFileContentNotContains(paramfile, '/DEFAULTLIB:msvcrtd.lib') self.assertIn('/MTd', ''.join(stderr)) self.AssertFileContentContains(paramfile, '/DEFAULTLIB:libcmtd.lib') def testBuildSharedLibraryFromCcBinaryWithStaticLink(self): self.createProjectFiles() self.ScratchFile( 'main/BUILD', [ 'cc_binary(', ' name = "main.dll",', ' srcs = ["main.cc"],', ' deps = ["//:B"],', # Transitively depends on //:A ' linkstatic = 1,' ' linkshared = 1,' ' features=["windows_export_all_symbols"]', ')', ]) bazel_bin = self.getBazelInfo('bazel-bin') exit_code, _, stderr = self.RunBazel([ 'build', '//main:main.dll', '--output_groups=default,runtime_dynamic_libraries,interface_library' ]) self.AssertExitCode(exit_code, 0, stderr) main_library = os.path.join(bazel_bin, 'main/main.dll') main_interface = os.path.join(bazel_bin, 'main/main.dll.if.lib') def_file = os.path.join(bazel_bin, 'main/main.dll.gen.def') self.assertTrue(os.path.exists(main_library)) self.assertTrue(os.path.exists(main_interface)) self.assertTrue(os.path.exists(def_file)) # A.dll and B.dll should not be copied. self.assertFalse(os.path.exists(os.path.join(bazel_bin, 'main/A.dll'))) self.assertFalse(os.path.exists(os.path.join(bazel_bin, 'main/B.dll'))) self.AssertFileContentContains(def_file, 'hello_A') self.AssertFileContentContains(def_file, 'hello_B') self.AssertFileContentContains(def_file, 'hello_C') def testBuildSharedLibraryFromCcBinaryWithDynamicLink(self): self.createProjectFiles() self.ScratchFile( 'main/BUILD', [ 'cc_binary(', ' name = "main.dll",', ' srcs = ["main.cc"],', ' deps = ["//:B"],', # Transitively depends on //:A ' linkstatic = 0,' ' linkshared = 1,' ' features=["windows_export_all_symbols"]', ')', '', 'genrule(', ' name = "renamed_main",', ' srcs = [":main.dll"],', ' outs = ["main_renamed.dll"],', ' cmd = "cp $< $@",', ')', ]) bazel_bin = self.getBazelInfo('bazel-bin') exit_code, _, stderr = self.RunBazel([ 'build', '//main:main.dll', '--output_groups=default,runtime_dynamic_libraries,interface_library' ]) self.AssertExitCode(exit_code, 0, stderr) main_library = os.path.join(bazel_bin, 'main/main.dll') main_interface = os.path.join(bazel_bin, 'main/main.dll.if.lib') def_file = os.path.join(bazel_bin, 'main/main.dll.gen.def') self.assertTrue(os.path.exists(main_library)) self.assertTrue(os.path.exists(main_interface)) self.assertTrue(os.path.exists(def_file)) # A.dll and B.dll should be built and copied because they belong to # runtime_dynamic_libraries output group. self.assertTrue( os.path.exists(os.path.join(bazel_bin, 'main/A_6f2d5ec56a.dll'))) self.assertTrue( os.path.exists(os.path.join(bazel_bin, 'main/B_6f2d5ec56a.dll'))) # hello_A and hello_B should not be exported. self.AssertFileContentNotContains(def_file, 'hello_A') self.AssertFileContentNotContains(def_file, 'hello_B') self.AssertFileContentContains(def_file, 'hello_C') # The copy should succeed since //main:main.dll is only supposed to refer to # main.dll, A.dll and B.dll should be in a separate output group. exit_code, _, stderr = self.RunBazel(['build', '//main:renamed_main']) self.AssertExitCode(exit_code, 0, stderr) def testGetDefFileOfSharedLibraryFromCcBinary(self): self.createProjectFiles() self.ScratchFile( 'main/BUILD', [ 'cc_binary(', ' name = "main.dll",', ' srcs = ["main.cc"],', ' deps = ["//:B"],', # Transitively depends on //:A ' linkstatic = 1,' ' linkshared = 1,' ')', ]) bazel_bin = self.getBazelInfo('bazel-bin') exit_code, _, stderr = self.RunBazel( ['build', '//main:main.dll', '--output_groups=def_file']) self.AssertExitCode(exit_code, 0, stderr) # Although windows_export_all_symbols is not specified for this target, # we should still be able to get the DEF file by def_file output group. def_file = os.path.join(bazel_bin, 'main/main.dll.gen.def') self.assertTrue(os.path.exists(def_file)) self.AssertFileContentContains(def_file, 'hello_A') self.AssertFileContentContains(def_file, 'hello_B') self.AssertFileContentContains(def_file, 'hello_C') def testBuildSharedLibraryWithoutAnySymbolExported(self): self.createProjectFiles() self.ScratchFile('BUILD', [ 'cc_binary(', ' name = "A.dll",', ' srcs = ["a.cc", "a.h"],', ' copts = ["/DNO_DLLEXPORT"],', ' linkshared = 1,' ')', ]) bazel_bin = self.getBazelInfo('bazel-bin') exit_code, _, stderr = self.RunBazel(['build', '//:A.dll']) self.AssertExitCode(exit_code, 0, stderr) # Although windows_export_all_symbols is not specified for this target, # we should still be able to build a DLL without any symbol exported. empty_def_file = os.path.join(bazel_bin, 'A.dll.gen.empty.def') self.assertTrue(os.path.exists(empty_def_file)) self.AssertFileContentNotContains(empty_def_file, 'hello_A') def testUsingDefFileGeneratedFromCcLibrary(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('lib_A.cc', ['void hello_A() {}']) self.ScratchFile('lib_B.cc', ['void hello_B() {}']) self.ScratchFile('BUILD', [ 'cc_library(', ' name = "lib_A",', ' srcs = ["lib_A.cc"],', ')', '', 'cc_library(', ' name = "lib_B",', ' srcs = ["lib_B.cc"],', ' deps = [":lib_A"]', ')', '', 'filegroup(', ' name = "lib_B_symbols",', ' srcs = [":lib_B"],', ' output_group = "def_file",', ')', '', 'cc_binary(', ' name = "lib.dll",', ' deps = [":lib_B"],', ' win_def_file = ":lib_B_symbols",', ' linkshared = 1,', ')', ]) # Test specifying DEF file in cc_binary bazel_bin = self.getBazelInfo('bazel-bin') exit_code, _, stderr = self.RunBazel(['build', '//:lib.dll', '-s']) self.AssertExitCode(exit_code, 0, stderr) def_file = bazel_bin + '/lib_B.gen.def' self.assertTrue(os.path.exists(def_file)) # hello_A should not be exported self.AssertFileContentNotContains(def_file, 'hello_A') # hello_B should be exported self.AssertFileContentContains(def_file, 'hello_B') def testWinDefFileAttribute(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('lib.cc', ['void hello() {}']) self.ScratchFile('my_lib.def', [ 'EXPORTS', ' ?hello@@YAXXZ', ]) self.ScratchFile('BUILD', [ 'cc_library(', ' name = "lib",', ' srcs = ["lib.cc"],', ' win_def_file = "my_lib.def",', ')', '', 'cc_binary(', ' name = "lib_dy.dll",', ' srcs = ["lib.cc"],', ' win_def_file = "my_lib.def",', ' linkshared = 1,', ')', ]) # Test exporting symbols using custom DEF file in cc_library. # Auto-generating DEF file should be disabled when custom DEF file specified # Rename DLL shoud be disabled when when custom DEF file specified exit_code, _, stderr = self.RunBazel([ 'build', '//:lib', '-s', '--output_groups=dynamic_library', '--features=windows_export_all_symbols' ]) self.AssertExitCode(exit_code, 0, stderr) bazel_bin = self.getBazelInfo('bazel-bin') lib_if = os.path.join(bazel_bin, 'lib.if.lib') lib_def = os.path.join(bazel_bin, 'lib.gen.def') lib_dll = os.path.join(bazel_bin, 'lib.dll') self.assertTrue(os.path.exists(lib_if)) self.assertFalse(os.path.exists(lib_def)) self.assertTrue(os.path.exists(lib_dll)) # Test specifying DEF file in cc_binary exit_code, _, stderr = self.RunBazel(['build', '//:lib_dy.dll', '-s']) self.AssertExitCode(exit_code, 0, stderr) filepath = bazel_bin + '/lib_dy.dll-2.params' with open(filepath, 'r', encoding='latin-1') as param_file: self.assertIn('/DEF:my_lib.def', param_file.read()) def testCcImportRule(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('A.lib', []) self.ScratchFile('A.dll', []) self.ScratchFile('A.if.lib', []) self.ScratchFile('BUILD', [ 'cc_import(', ' name = "a_import",', ' static_library = "A.lib",', ' shared_library = "A.dll",', ' interface_library = "A.if.lib",', ' hdrs = ["a.h"],', ' alwayslink = 1,', ')', ]) exit_code, _, stderr = self.RunBazel([ 'build', '//:a_import', ]) self.AssertExitCode(exit_code, 0, stderr) def testCopyDLLAsSource(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('BUILD', [ 'cc_import(', ' name = "a_import",', ' shared_library = "A.dll",', ' visibility = ["//:__subpackages__"],', ')', '' 'filegroup(', ' name = "bin_src",', ' srcs = ["bin.cc"],', ' visibility = ["//:__subpackages__"],', ')', '', 'cc_binary(', ' name = "bin",', ' srcs = ["//:bin_src"],', ' deps = ["//:a_import"],', ')', ]) self.ScratchFile('package/BUILD', [ 'cc_binary(', ' name = "dir1/dir2/bin",', ' srcs = ["//:bin_src"],', ' deps = ["//:a_import"],', ')', ]) self.ScratchFile('A.dll') self.ScratchFile('bin.cc', [ 'int main() {', ' return 0;', '}', ]) exit_code, _, stderr = self.RunBazel([ 'build', '//:bin', '//package:dir1/dir2/bin', ]) self.AssertExitCode(exit_code, 0, stderr) bazel_bin = self.getBazelInfo('bazel-bin') # Even though A.dll is in the same package as bin.exe, it still should # be copied to the output directory of bin.exe. a_dll = os.path.join(bazel_bin, 'A.dll') self.assertTrue(os.path.exists(a_dll)) nested_a_dll = os.path.join(bazel_bin, 'package/dir1/dir2/A.dll') self.assertTrue(os.path.exists(nested_a_dll)) def testCppErrorShouldBeVisible(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('BUILD', [ 'cc_binary(', ' name = "bad",', ' srcs = ["bad.cc"],', ')', ]) self.ScratchFile('bad.cc', [ 'int main(int argc, char** argv) {', ' this_is_an_error();', '}', ]) exit_code, stdout, stderr = self.RunBazel(['build', '//:bad']) self.AssertExitCode(exit_code, 1, stderr) self.assertIn('this_is_an_error', ''.join(stdout)) def testBuildWithClangClByCompilerFlag(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('BUILD', [ 'cc_binary(', ' name = "main",', ' srcs = ["main.cc"],', ')', ]) self.ScratchFile('main.cc', [ 'int main() {', ' return 0;', '}', ]) exit_code, _, stderr = self.RunBazel([ 'build', '-s', '--compiler=clang-cl', '--incompatible_enable_cc_toolchain_resolution=false', '//:main' ]) self.AssertExitCode(exit_code, 0, stderr) self.assertIn('clang-cl.exe', ''.join(stderr)) def testBuildWithClangClByToolchainResolution(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE', [ 'register_execution_platforms(', ' ":windows_clang"', ')', '', 'register_toolchains(', ' "@local_config_cc//:cc-toolchain-x64_windows-clang-cl",', ')', ]) self.ScratchFile('BUILD', [ 'platform(', ' name = "windows_clang",', ' constraint_values = [', ' "@platforms//cpu:x86_64",', ' "@platforms//os:windows",', ' "@bazel_tools//tools/cpp:clang-cl",', ' ]', ')', '', 'cc_binary(', ' name = "main",', ' srcs = ["main.cc"],', ')', ]) self.ScratchFile('main.cc', [ 'int main() {', ' return 0;', '}', ]) exit_code, _, stderr = self.RunBazel([ 'build', '-s', '--incompatible_enable_cc_toolchain_resolution=true', '//:main' ]) self.AssertExitCode(exit_code, 0, stderr) self.assertIn('clang-cl.exe', ''.join(stderr)) def createSimpleCppWorkspace(self, name): work_dir = self.ScratchDir(name) self.ScratchFile(name + '/WORKSPACE', ['workspace(name = "%s")' % name]) self.ScratchFile( name + '/BUILD', ['cc_library(name = "lib", srcs = ["lib.cc"], hdrs = ["lib.h"])']) self.ScratchFile(name + '/lib.h', ['void hello();']) self.ScratchFile(name + '/lib.cc', ['#include "lib.h"', 'void hello() {}']) return work_dir # Regression test for https://github.com/bazelbuild/bazel/issues/9172 def testCacheBetweenWorkspaceWithDifferentNames(self): cache_dir = self.ScratchDir('cache') dir_a = self.createSimpleCppWorkspace('A') dir_b = self.createSimpleCppWorkspace('B') exit_code, _, stderr = self.RunBazel( ['build', '--disk_cache=' + cache_dir, ':lib'], cwd=dir_a) self.AssertExitCode(exit_code, 0, stderr) exit_code, _, stderr = self.RunBazel( ['build', '--disk_cache=' + cache_dir, ':lib'], cwd=dir_b) self.AssertExitCode(exit_code, 0, stderr) # Regression test for https://github.com/bazelbuild/bazel/issues/9321 def testCcCompileWithTreeArtifactAsSource(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('BUILD', [ 'load(":genccs.bzl", "genccs")', '', 'genccs(', ' name = "gen_tree",', ')', '', 'cc_library(', ' name = "main",', ' srcs = [ "gen_tree" ]', ')', '', 'cc_binary(', ' name = "genccs",', ' srcs = [ "genccs.cpp" ],', ')', ]) self.ScratchFile('genccs.bzl', [ 'def _impl(ctx):', ' tree = ctx.actions.declare_directory(ctx.attr.name + ".cc")', ' ctx.actions.run(', ' inputs = [],', ' outputs = [ tree ],', ' arguments = [ tree.path ],', ' progress_message = "Generating cc files into \'%s\'" % tree.path,', ' executable = ctx.executable._tool,', ' )', '', ' return [ DefaultInfo(files = depset([ tree ])) ]', '', 'genccs = rule(', ' implementation = _impl,', ' attrs = {', ' "_tool": attr.label(', ' executable = True,', ' cfg = "host",', ' allow_files = True,', ' default = Label("//:genccs"),', ' )', ' }', ')', ]) self.ScratchFile('genccs.cpp', [ '#include <fstream>', '#include <Windows.h>', 'using namespace std;', '', 'int main (int argc, char *argv[]) {', ' CreateDirectory(argv[1], NULL);', ' ofstream myfile;', ' myfile.open(string(argv[1]) + string("/foo.cpp"));', ' myfile << "int main() { return 42; }";', ' return 0;', '}', ]) exit_code, _, stderr = self.RunBazel(['build', '//:main']) self.AssertExitCode(exit_code, 0, stderr) def testBuild32BitCppBinaryWithMsvcCL(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('BUILD', [ 'cc_binary(', ' name = "main",', ' srcs = ["main.cc"],', ')', ]) self.ScratchFile('main.cc', [ 'int main() {', ' return 0;', '}', ]) exit_code, _, stderr = self.RunBazel( ['build', '-s', '--cpu=x64_x86_windows', '//:main']) self.AssertExitCode(exit_code, 0, stderr) self.assertIn('x86\\cl.exe', '\n'.join(stderr)) def testBuildArmCppBinaryWithMsvcCL(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('BUILD', [ 'cc_binary(', ' name = "main",', ' srcs = ["main.cc"],', ')', ]) self.ScratchFile('main.cc', [ 'int main() {', ' return 0;', '}', ]) exit_code, _, stderr = self.RunBazel( ['build', '-s', '--cpu=x64_arm_windows', '//:main']) self.AssertExitCode(exit_code, 0, stderr) self.assertIn('arm\\cl.exe', '\n'.join(stderr)) def testBuildArm64CppBinaryWithMsvcCL(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('BUILD', [ 'cc_binary(', ' name = "main",', ' srcs = ["main.cc"],', ')', ]) self.ScratchFile('main.cc', [ 'int main() {', ' return 0;', '}', ]) exit_code, _, stderr = self.RunBazel( ['build', '-s', '--cpu=x64_arm64_windows', '//:main']) self.AssertExitCode(exit_code, 0, stderr) self.assertIn('arm64\\cl.exe', '\n'.join(stderr)) def testBuildCppBinaryWithMingwGCC(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('BUILD', [ 'cc_binary(', ' name = "main",', ' srcs = ["main.cc"],', ')', ]) self.ScratchFile('main.cc', [ 'int main() {', ' return 0;', '}', ]) # Test build without debug and optimize modes. exit_code, _, stderr = self.RunBazel( ['build', '-s', '--compiler=mingw-gcc', '//:main']) self.AssertExitCode(exit_code, 0, stderr) self.assertIn('mingw64\\bin\\gcc', '\n'.join(stderr)) self.assertNotIn('-g -Og', ''.join(stderr)) self.assertNotIn('-g0 -O3 -DNDEBUG -ffunction-sections -fdata-sections', ''.join(stderr)) self.assertNotIn('-Wl,--gc-sections', ''.join(stderr)) # Test build in debug mode. exit_code, _, stderr = self.RunBazel( ['build', '-s', '--compiler=mingw-gcc', '-c', 'dbg', '//:main']) self.AssertExitCode(exit_code, 0, stderr) self.assertIn('mingw64\\bin\\gcc', '\n'.join(stderr)) self.assertIn('-g -Og', ''.join(stderr)) self.assertNotIn('-g0 -O3 -DNDEBUG -ffunction-sections -fdata-sections', ''.join(stderr)) self.assertNotIn('-Wl,--gc-sections', ''.join(stderr)) # Test build in optimize mode. exit_code, _, stderr = self.RunBazel( ['build', '-s', '--compiler=mingw-gcc', '-c', 'opt', '//:main']) self.AssertExitCode(exit_code, 0, stderr) self.assertIn('mingw64\\bin\\gcc', '\n'.join(stderr)) self.assertNotIn('-g -Og', ''.join(stderr)) self.assertIn('-g0 -O3 -DNDEBUG -ffunction-sections -fdata-sections', ''.join(stderr)) self.assertIn('-Wl,--gc-sections', ''.join(stderr)) def testBuildCppBinaryWithMsysGCC(self): self.CreateWorkspaceWithDefaultRepos('WORKSPACE') self.ScratchFile('BUILD', [ 'cc_binary(', ' name = "main",', ' srcs = ["main.cc"],', ')', ]) self.ScratchFile('main.cc', [ 'int main() {', ' return 0;', '}', ]) bazel_output = self.getBazelInfo('output_path') paramfile = 'x64_windows-%s/bin/main.exe-2.params' # Test build without debug and optimize modes. exit_code, _, stderr = self.RunBazel( ['build', '-s', '--compiler=msys-gcc', '//:main']) self.AssertExitCode(exit_code, 0, stderr) self.assertIn('usr\\bin\\gcc', '\n'.join(stderr)) self.assertNotIn('-g -Og', ''.join(stderr)) self.assertNotIn('-g0 -O3 -DNDEBUG -ffunction-sections -fdata-sections', ''.join(stderr)) self.AssertFileContentNotContains( os.path.join(bazel_output, paramfile % 'fastbuild'), '-Wl,--gc-sections') # Test build in debug mode. exit_code, _, stderr = self.RunBazel( ['build', '-s', '--compiler=msys-gcc', '-c', 'dbg', '//:main']) self.AssertExitCode(exit_code, 0, stderr) self.assertIn('usr\\bin\\gcc', '\n'.join(stderr)) self.assertIn('-g -Og', ''.join(stderr)) self.assertNotIn('-g0 -O3 -DNDEBUG -ffunction-sections -fdata-sections', ''.join(stderr)) self.AssertFileContentNotContains( os.path.join(bazel_output, paramfile % 'dbg'), '-Wl,--gc-sections') # Test build in optimize mode. exit_code, _, stderr = self.RunBazel( ['build', '-s', '--compiler=msys-gcc', '-c', 'opt', '//:main']) self.AssertExitCode(exit_code, 0, stderr) self.assertIn('usr\\bin\\gcc', '\n'.join(stderr)) self.assertNotIn('-g -Og', ''.join(stderr)) self.assertIn('-g0 -O3 -DNDEBUG -ffunction-sections -fdata-sections', ''.join(stderr)) self.AssertFileContentContains( os.path.join(bazel_output, paramfile % 'opt'), '-Wl,--gc-sections') if __name__ == '__main__': unittest.main()
dexterx17/nodoSocket
refs/heads/master
clients/Python-2.7.6/Lib/encodings/punycode.py
586
# -*- coding: iso-8859-1 -*- """ Codec for the Punicode encoding, as specified in RFC 3492 Written by Martin v. Löwis. """ import codecs ##################### Encoding ##################################### def segregate(str): """3.1 Basic code point segregation""" base = [] extended = {} for c in str: if ord(c) < 128: base.append(c) else: extended[c] = 1 extended = extended.keys() extended.sort() return "".join(base).encode("ascii"),extended def selective_len(str, max): """Return the length of str, considering only characters below max.""" res = 0 for c in str: if ord(c) < max: res += 1 return res def selective_find(str, char, index, pos): """Return a pair (index, pos), indicating the next occurrence of char in str. index is the position of the character considering only ordinals up to and including char, and pos is the position in the full string. index/pos is the starting position in the full string.""" l = len(str) while 1: pos += 1 if pos == l: return (-1, -1) c = str[pos] if c == char: return index+1, pos elif c < char: index += 1 def insertion_unsort(str, extended): """3.2 Insertion unsort coding""" oldchar = 0x80 result = [] oldindex = -1 for c in extended: index = pos = -1 char = ord(c) curlen = selective_len(str, char) delta = (curlen+1) * (char - oldchar) while 1: index,pos = selective_find(str,c,index,pos) if index == -1: break delta += index - oldindex result.append(delta-1) oldindex = index delta = 0 oldchar = char return result def T(j, bias): # Punycode parameters: tmin = 1, tmax = 26, base = 36 res = 36 * (j + 1) - bias if res < 1: return 1 if res > 26: return 26 return res digits = "abcdefghijklmnopqrstuvwxyz0123456789" def generate_generalized_integer(N, bias): """3.3 Generalized variable-length integers""" result = [] j = 0 while 1: t = T(j, bias) if N < t: result.append(digits[N]) return result result.append(digits[t + ((N - t) % (36 - t))]) N = (N - t) // (36 - t) j += 1 def adapt(delta, first, numchars): if first: delta //= 700 else: delta //= 2 delta += delta // numchars # ((base - tmin) * tmax) // 2 == 455 divisions = 0 while delta > 455: delta = delta // 35 # base - tmin divisions += 36 bias = divisions + (36 * delta // (delta + 38)) return bias def generate_integers(baselen, deltas): """3.4 Bias adaptation""" # Punycode parameters: initial bias = 72, damp = 700, skew = 38 result = [] bias = 72 for points, delta in enumerate(deltas): s = generate_generalized_integer(delta, bias) result.extend(s) bias = adapt(delta, points==0, baselen+points+1) return "".join(result) def punycode_encode(text): base, extended = segregate(text) base = base.encode("ascii") deltas = insertion_unsort(text, extended) extended = generate_integers(len(base), deltas) if base: return base + "-" + extended return extended ##################### Decoding ##################################### def decode_generalized_number(extended, extpos, bias, errors): """3.3 Generalized variable-length integers""" result = 0 w = 1 j = 0 while 1: try: char = ord(extended[extpos]) except IndexError: if errors == "strict": raise UnicodeError, "incomplete punicode string" return extpos + 1, None extpos += 1 if 0x41 <= char <= 0x5A: # A-Z digit = char - 0x41 elif 0x30 <= char <= 0x39: digit = char - 22 # 0x30-26 elif errors == "strict": raise UnicodeError("Invalid extended code point '%s'" % extended[extpos]) else: return extpos, None t = T(j, bias) result += digit * w if digit < t: return extpos, result w = w * (36 - t) j += 1 def insertion_sort(base, extended, errors): """3.2 Insertion unsort coding""" char = 0x80 pos = -1 bias = 72 extpos = 0 while extpos < len(extended): newpos, delta = decode_generalized_number(extended, extpos, bias, errors) if delta is None: # There was an error in decoding. We can't continue because # synchronization is lost. return base pos += delta+1 char += pos // (len(base) + 1) if char > 0x10FFFF: if errors == "strict": raise UnicodeError, ("Invalid character U+%x" % char) char = ord('?') pos = pos % (len(base) + 1) base = base[:pos] + unichr(char) + base[pos:] bias = adapt(delta, (extpos == 0), len(base)) extpos = newpos return base def punycode_decode(text, errors): pos = text.rfind("-") if pos == -1: base = "" extended = text else: base = text[:pos] extended = text[pos+1:] base = unicode(base, "ascii", errors) extended = extended.upper() return insertion_sort(base, extended, errors) ### Codec APIs class Codec(codecs.Codec): def encode(self,input,errors='strict'): res = punycode_encode(input) return res, len(input) def decode(self,input,errors='strict'): if errors not in ('strict', 'replace', 'ignore'): raise UnicodeError, "Unsupported error handling "+errors res = punycode_decode(input, errors) return res, len(input) class IncrementalEncoder(codecs.IncrementalEncoder): def encode(self, input, final=False): return punycode_encode(input) class IncrementalDecoder(codecs.IncrementalDecoder): def decode(self, input, final=False): if self.errors not in ('strict', 'replace', 'ignore'): raise UnicodeError, "Unsupported error handling "+self.errors return punycode_decode(input, self.errors) class StreamWriter(Codec,codecs.StreamWriter): pass class StreamReader(Codec,codecs.StreamReader): pass ### encodings module API def getregentry(): return codecs.CodecInfo( name='punycode', encode=Codec().encode, decode=Codec().decode, incrementalencoder=IncrementalEncoder, incrementaldecoder=IncrementalDecoder, streamwriter=StreamWriter, streamreader=StreamReader, )
tdaylan/tdgu
refs/heads/master
sdss_glob.py
1
# coding: utf-8 # In[ ]: # numpy import numpy as np from numpy import * from numpy.random import * from numpy.random import choice import matplotlib.pyplot as plt # scipy import scipy as sp from scipy import ndimage from scipy.interpolate import * from scipy.special import erfinv, erf from scipy.stats import poisson as pss from scipy import ndimage # multiprocessing import multiprocessing as mp # healpy import healpy as hp from healpy.rotator import angdist from healpy import ang2pix # pyfits import pyfits as pf # utilities import os, time, sys, datetime, warnings, getpass, glob, inspect # tdpy import tdpy import sympy # In[2]: def writ_sdss(): pixlsize = 0.396 # [arcsec] npixlside = 100 maxmgang = npixlside * pixlsize / 3600. / 2. npixlheal = npixlside**2 * 12 apix = deg2rad(pixlsize / 3600.)**2 enerstrg = ['i', 'r', 'g'] nener = len(enerstrg) iener = arange(nener) nevtt = 1 from astropy.coordinates import ICRS, Galactic from astropy import units as u sdssdataflux = zeros((nener, npixlside, npixlside, nevtt)) for i in iener: path = os.environ["PCAT_DATA_PATH"] + '/frame-' + enerstrg[i] + '-001458-4-0700.fits' data, hdr = pf.getdata(path, 0, header=True) rasccntr = hdr['CRVAL1'] declcntr = hdr['CRVAL2'] rascbndr = zeros(4) declbndr = zeros(4) rascbndr[0] = rasccntr - hdr['CRPIX1'] * hdr['CD2_1'] - hdr['CRPIX2'] * hdr['CD2_2'] declbndr[0] = declcntr - hdr['CRPIX1'] * hdr['CD1_1'] - hdr['CRPIX2'] * hdr['CD1_2'] rascbndr[1] = rasccntr - hdr['CRPIX1'] * hdr['CD2_1'] - hdr['CRPIX2'] * hdr['CD2_2'] declbndr[1] = declcntr + hdr['CRPIX1'] * hdr['CD1_1'] - hdr['CRPIX2'] * hdr['CD1_2'] rascbndr[1] = rasccntr - hdr['CRPIX1'] * hdr['CD2_1'] - hdr['CRPIX2'] * hdr['CD2_2'] declbndr[1] = declcntr - hdr['CRPIX1'] * hdr['CD1_1'] - hdr['CRPIX2'] * hdr['CD1_2'] rascbndr[0] = rasccntr - hdr['CRPIX1'] * hdr['CD2_1'] - hdr['CRPIX2'] * hdr['CD2_2'] declbndr[0] = declcntr - hdr['CRPIX1'] * hdr['CD1_1'] - hdr['CRPIX2'] * hdr['CD1_2'] #CRPIX1 = 1.02450000000000E+03 / Column Pixel Coordinate of Reference #CRPIX2 = 7.44500000000000E+02 / Row Pixel Coordinate of Reference Pix #CRVAL1 = 6.42142612400000E+01 / DEC at Reference Pixel #CRVAL2 = 2.51207342810000E+02 / RA at Reference Pixel #CD1_1 = 4.75626416015645E-05 / DEC degrees per column pixel #CD1_2 = -9.9116868279565E-05 / DEC degrees per row pixel #CD2_1 = 9.91802898939385E-05 / RA degrees per column pixel print 'rascbndr' print rascbndr print 'declbndr' print declbndr print 'data.shape' print data.shape calb, hdr = pf.getdata(path, 1, header=True) back, hdr = pf.getdata(path, 2, header=True) xaxi = arange(back['ALLSKY'].shape[1], dtype=float) yaxi = arange(back['ALLSKY'].shape[2], dtype=float) back = interp2d(xaxi, yaxi, back['ALLSKY'])(back['XINTERP'].flatten(), back['YINTERP'].flatten()) data /= calb[None, :] data += back print 'amin(data)' print amin(data) print 'amax(data)' print amax(data) print 'amin(back)' print amin(back) print 'amax(back)' print amax(back) print data /= apix print 'Frame RA: ', rasccntr print 'Frame DEC: ', declcntr #rasccntr = rasccntr + rascpixlsize * (data.shape[0] - npixlside) / 2. / 3600. #declcntr = declcntr - declpixlsize * (data.shape[1] - npixlside) / 2. / 3600. objt = ICRS(ra=rasccntr, dec=declcntr, unit=(u.degree, u.degree)) lgalcntr = objt.galactic.l.degree bgalcntr = objt.galactic.b.degree print 'Patch RA: ', rasccntr print 'Patch DEC: ', declcntr print 'Patch l: ', lgalcntr print 'Patch b: ', bgalcntr sdssdataflux[i, :, :, 0] = data[-npixlside:, -npixlside:] path = os.environ["PCAT_DATA_PATH"] + '/sdssdataflux.fits' pf.writeto(path, sdssdataflux, clobber=True) sdssbackflux = ones((nener, npixlside, npixlside, nevtt)) / apix path = os.environ["PCAT_DATA_PATH"] + '/sdssbackflux.fits' pf.writeto(path, sdssbackflux, clobber=True) sdssexpo = ones((nener, npixlside, npixlside, nevtt)) path = os.environ["PCAT_DATA_PATH"] + '/sdssexpo.fits' pf.writeto(path, sdssexpo, clobber=True) def cnfg_sdss_mock(): indxenerincl = arange(3) indxevttincl = arange(1) init( \ pathdata=os.environ["PCAT_DATA_PATH"], \ numbswep=100000, \ minmflux=array([1e3]), \ maxmflux=array([1e5]), \ initnumbpnts=array([100]), \ exprtype='sdss', \ pixltype='cart', \ regitype='mes5', \ stdvlbhl=2./3600., \ lgalcntr=202., \ bgalcntr=2., \ radispmrlbhl=5./3600., \ maxmgang=30./3600., \ margsize=2./3600., \ back=['unit'], \ psfntype='doubgaus', \ strgexpo='unit', \ indxevttincl=indxevttincl, \ indxenerincl=indxenerincl, \ datatype='mock', \ numbsidecart=100, \ mockfluxdistslop=array([1.9]), \ ) def cnfg_sdss_expr(): init( \ pathdata=os.environ["PCAT_DATA_PATH"], \ trueinfo=False, \ numbswep=1000000, \ minmflux=ones(3) * 1e3, \ maxmflux=ones(3) * 1e5, \ initnumbpnts=array([10]), \ exprtype='sdss', \ datatype='inpt', \ pixltype='cart', \ regitype='mes5', \ stdvlbhl=2./3600., \ lgalcntr=202., \ bgalcntr=2., \ radispmrlbhl=0.5/3600., \ stdvflux=0.05, \ margsize=2./3600., \ maxmgang=30./3600., \ strgexpr='sdssflux.fits', \ strgexpo='sdssexpo.fits', \ psfntype='doubgaus', \ stdvback=1e-4, \ indxevttincl=arange(1), \ indxenerincl=arange(1), \ )
crunchsec/fimap
refs/heads/master
src/xgoogle/search.py
13
#!/usr/bin/python # # Peteris Krumins (peter@catonmat.net) # http://www.catonmat.net -- good coders code, great reuse # # http://www.catonmat.net/blog/python-library-for-google-search/ # # Code is licensed under MIT license. # import re import urllib from htmlentitydefs import name2codepoint from BeautifulSoup import BeautifulSoup from browser import Browser, BrowserError class SearchError(Exception): """ Base class for Google Search exceptions. """ pass class ParseError(SearchError): """ Parse error in Google results. self.msg attribute contains explanation why parsing failed self.tag attribute contains BeautifulSoup object with the most relevant tag that failed to parse Thrown only in debug mode """ def __init__(self, msg, tag): self.msg = msg self.tag = tag def __str__(self): return self.msg def html(self): return self.tag.prettify() class SearchResult: def __init__(self, title, url, desc): self.title = title self.url = url self.desc = desc def __str__(self): return 'Google Search Result: "%s"' % self.title class GoogleSearch(object): SEARCH_URL_0 = "http://www.google.com/search?q=%(query)s&btnG=Google+Search" NEXT_PAGE_0 = "http://www.google.com/search?q=%(query)s&start=%(start)d" SEARCH_URL_1 = "http://www.google.com/search?q=%(query)s&num=%(num)d&btnG=Google+Search" NEXT_PAGE_1 = "http://www.google.com/search?q=%(query)s&num=%(num)d&start=%(start)d" def __init__(self, query, random_agent=False, debug=False, page=0): self.query = query self.debug = debug self.browser = Browser(debug=debug) self.results_info = None self.eor = False # end of results self._page = page self._results_per_page = 10 self._last_from = 0 if random_agent: self.browser.set_random_user_agent() @property def num_results(self): if not self.results_info: page = self._get_results_page() self.results_info = self._extract_info(page) if self.results_info['total'] == 0: self.eor = True return self.results_info['total'] def _get_page(self): return self._page def _set_page(self, page): self._page = page page = property(_get_page, _set_page) def _get_results_per_page(self): return self._results_per_page def _set_results_par_page(self, rpp): self._results_per_page = rpp results_per_page = property(_get_results_per_page, _set_results_par_page) def get_results(self): """ Gets a page of results """ if self.eor: return [] MAX_VALUE = 1000000 page = self._get_results_page() #search_info = self._extract_info(page) results = self._extract_results(page) search_info = {'from': self.results_per_page*self._page, 'to': self.results_per_page*self._page + len(results), 'total': MAX_VALUE} if not self.results_info: self.results_info = search_info if self.num_results == 0: self.eor = True return [] if not results: self.eor = True return [] if self._page > 0 and search_info['from'] == self._last_from: self.eor = True return [] if search_info['to'] == search_info['total']: self.eor = True self._page += 1 self._last_from = search_info['from'] return results def _maybe_raise(self, cls, *arg): if self.debug: raise cls(*arg) def _get_results_page(self): if self._page == 0: if self._results_per_page == 10: url = GoogleSearch.SEARCH_URL_0 else: url = GoogleSearch.SEARCH_URL_1 else: if self._results_per_page == 10: url = GoogleSearch.NEXT_PAGE_0 else: url = GoogleSearch.NEXT_PAGE_1 safe_url = url % { 'query': urllib.quote_plus(self.query), 'start': self._page * self._results_per_page, 'num': self._results_per_page } try: page = self.browser.get_page(safe_url) except BrowserError, e: raise SearchError, "Failed getting %s: %s" % (e.url, e.error) return BeautifulSoup(page) def _extract_info(self, soup): empty_info = {'from': 0, 'to': 0, 'total': 0} div_ssb = soup.find('div', id='ssb') if not div_ssb: self._maybe_raise(ParseError, "Div with number of results was not found on Google search page", soup) return empty_info p = div_ssb.find('p') if not p: self._maybe_raise(ParseError, """<p> tag within <div id="ssb"> was not found on Google search page""", soup) return empty_info txt = ''.join(p.findAll(text=True)) txt = txt.replace(',', '') matches = re.search(r'Results (\d+) - (\d+) of (?:about )?(\d+)', txt, re.U) if not matches: return empty_info return {'from': int(matches.group(1)), 'to': int(matches.group(2)), 'total': int(matches.group(3))} def _extract_results(self, soup): results = soup.findAll('li', {'class': 'g'}) ret_res = [] for result in results: eres = self._extract_result(result) if eres: ret_res.append(eres) return ret_res def _extract_result(self, result): title, url = self._extract_title_url(result) desc = self._extract_description(result) if not title or not url or not desc: return None return SearchResult(title, url, desc) def _extract_title_url(self, result): #title_a = result.find('a', {'class': re.compile(r'\bl\b')}) title_a = result.find('a') if not title_a: self._maybe_raise(ParseError, "Title tag in Google search result was not found", result) return None, None title = ''.join(title_a.findAll(text=True)) title = self._html_unescape(title) url = title_a['href'] match = re.match(r'/url\?q=(http[^&]+)&', url) if match: url = urllib.unquote(match.group(1)) return title, url def _extract_description(self, result): desc_div = result.find('div', {'class': re.compile(r'\bs\b')}) if not desc_div: self._maybe_raise(ParseError, "Description tag in Google search result was not found", result) return None desc_strs = [] def looper(tag): if not tag: return for t in tag: try: if t.name == 'br': break except AttributeError: pass try: desc_strs.append(t.string) except AttributeError: desc_strs.append(t) looper(desc_div) looper(desc_div.find('wbr')) # BeautifulSoup does not self-close <wbr> desc = ''.join(s for s in desc_strs if s) return self._html_unescape(desc) def _html_unescape(self, str): def entity_replacer(m): entity = m.group(1) if entity in name2codepoint: return unichr(name2codepoint[entity]) else: return m.group(0) def ascii_replacer(m): cp = int(m.group(1)) if cp <= 255: return unichr(cp) else: return m.group(0) s = re.sub(r'&#(\d+);', ascii_replacer, str, re.U) return re.sub(r'&([^;]+);', entity_replacer, s, re.U)
andyneff/voxel-globe
refs/heads/master
voxel_globe/clif/tools.py
1
import os def split_clif(filename): ''' Return dir, camera_id, image_number, extention''' dirname = os.path.dirname(filename) filename = os.path.basename(filename) (filename, extention) = os.path.splitext(filename) (camera_id, image_number) = filename.split('-') return (dirname, camera_id, image_number, extention)
igorkramaric/resigner
refs/heads/master
test_project/resigner_tests/urls.py
2
from django.conf.urls import * from .views import my_test_api_view urlpatterns = [ url(r'^my_test_api_url/', my_test_api_view, name="my_test_api"), ]
ashutrix03/inteygrate_flaskapp-master
refs/heads/master
build/lib/yowsup/layers/protocol_privacy/protocolentities/privacylist_iq.py
68
from yowsup.layers.protocol_iq.protocolentities import IqProtocolEntity from yowsup.structs import ProtocolTreeNode class PrivacyListIqProtocolEntity(IqProtocolEntity): def __init__(self, name = "default"): super(PrivacyListIqProtocolEntity, self).__init__("jabber:iq:privacy", _type="get") self.setListName(name) def setListName(self, name): self.listName = name def toProtocolTreeNode(self): node = super(PrivacyListIqProtocolEntity, self).toProtocolTreeNode() queryNode = ProtocolTreeNode("query") listNode = ProtocolTreeNode("list", {"name": self.listName}) queryNode.addChild(listNode) node.addChild(queryNode) return node @staticmethod def fromProtocolTreeNode(node): entity = IqProtocolEntity.fromProtocolTreeNode(node) entity.__class__ = PrivacyListIqProtocolEntity entity.setListName(node.getChild("query").getChild("list")["name"]) return entity
List3nt0/CodeLibrary
refs/heads/master
qrcode-generator-master/src/pyqrgen/test.py
4
#!/usr/bin/env python import cairo import pyqrgen SIZE = 220 surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, SIZE, SIZE) ctx = cairo.Context(surface) #ctx.scale(WIDTH, HEIGHT) ctx.rectangle(0, 0, SIZE, SIZE) ctx.set_source_rgb(1, 1, 1) ctx.fill() # autoversion, mode Byte, ecl h pyqrgen.generate("green pride", 0, 4, 2, 3, ctx, SIZE) surface.write_to_png("example.png")
aehlke/epywing
refs/heads/master
src/epywing/tests/epwing.py
1
# -*- coding: utf-8 -*- # import unittest #from epywing.bookmanager import BookManager from epywing.bookmanager import BookManager from epywing.epwing import EpwingBook import os #class TestEpwing(unittest.TestCase): # def setUp(self): # self. def test_epwing_integrations(): search_path = os.path.split(os.path.abspath(__file__))[0] print search_path manager = BookManager() book_paths = manager.find_books_in_path(search_path) print book_paths manager.add_books(*book_paths) ej = manager.books.items()[1][1] tai = manager.books.items()[0][1] print list(ej.search('cute')) list(tai.search(u'horse')) list(tai.search(u'horse', search_method='prefix'))[1] list(manager.search_all('good')) print list(manager.search_all_and_combine_results('good')) if __name__ == "__main__": test_epwing_integrations()
jness/django-rest-framework
refs/heads/master
tests/browsable_api/auth_urls.py
95
from __future__ import unicode_literals from django.conf.urls import include, url from .views import MockView urlpatterns = [ url(r'^$', MockView.as_view()), url(r'^auth/', include('rest_framework.urls', namespace='rest_framework')), ]
StevenYCChou/android-kernel
refs/heads/master
tools/perf/util/setup.py
4998
#!/usr/bin/python2 from distutils.core import setup, Extension from os import getenv from distutils.command.build_ext import build_ext as _build_ext from distutils.command.install_lib import install_lib as _install_lib class build_ext(_build_ext): def finalize_options(self): _build_ext.finalize_options(self) self.build_lib = build_lib self.build_temp = build_tmp class install_lib(_install_lib): def finalize_options(self): _install_lib.finalize_options(self) self.build_dir = build_lib cflags = ['-fno-strict-aliasing', '-Wno-write-strings'] cflags += getenv('CFLAGS', '').split() build_lib = getenv('PYTHON_EXTBUILD_LIB') build_tmp = getenv('PYTHON_EXTBUILD_TMP') ext_sources = [f.strip() for f in file('util/python-ext-sources') if len(f.strip()) > 0 and f[0] != '#'] perf = Extension('perf', sources = ext_sources, include_dirs = ['util/include'], extra_compile_args = cflags, ) setup(name='perf', version='0.1', description='Interface with the Linux profiling infrastructure', author='Arnaldo Carvalho de Melo', author_email='acme@redhat.com', license='GPLv2', url='http://perf.wiki.kernel.org', ext_modules=[perf], cmdclass={'build_ext': build_ext, 'install_lib': install_lib})
ceramos/micropython
refs/heads/master
tests/basics/list_extend.py
101
# test list.__iadd__ and list.extend (they are equivalent) l = [1, 2] l.extend([]) print(l) l.extend([3]) print(l) l.extend([4, 5]) print(l) l.extend(range(6, 10)) print(l) l.extend("abc") print(l) l = [1, 2] l += [] print(l) l += [3] print(l) l += [4, 5] print(l) l += range(6, 10) print(l) l += "abc" print(l)
glaubitz/fs-uae-debian
refs/heads/master
launcher/OpenGL/raw/GLES1/_glgets.py
33
"""glGet* auto-generation of output arrays (DO NOT EDIT, AUTOGENERATED)""" try: from OpenGL.raw.GL._lookupint import LookupInt as _L except ImportError: def _L(*args): raise RuntimeError( "Need to define a lookupint for this api" ) _glget_size_mapping = _m = {} # _m[0x8095] = TODO # GL_DETAIL_TEXTURE_2D_SGIS # _m[0x809C] = TODO # GL_DETAIL_TEXTURE_FUNC_POINTS_SGIS # _m[0x809A] = TODO # GL_DETAIL_TEXTURE_LEVEL_SGIS # _m[0x809B] = TODO # GL_DETAIL_TEXTURE_MODE_SGIS # _m[0x8124] = TODO # GL_DUAL_TEXTURE_SELECT_SGIS # _m[0x8191] = TODO # GL_GENERATE_MIPMAP_SGIS # _m[0x8182] = TODO # GL_LIST_PRIORITY_SGIX # _m[0x85A0] = TODO # GL_PACK_SUBSAMPLE_RATE_SGIX # _m[0x8063] = TODO # GL_PROXY_TEXTURE_1D # _m[0x8063] = TODO # GL_PROXY_TEXTURE_1D_EXT # _m[0x8064] = TODO # GL_PROXY_TEXTURE_2D # _m[0x8064] = TODO # GL_PROXY_TEXTURE_2D_EXT # _m[0x8070] = TODO # GL_PROXY_TEXTURE_3D # _m[0x8070] = TODO # GL_PROXY_TEXTURE_3D_EXT # _m[0x8135] = TODO # GL_PROXY_TEXTURE_4D_SGIS # _m[0x8125] = TODO # GL_QUAD_TEXTURE_SELECT_SGIS # _m[0x80BF] = TODO # GL_SHADOW_AMBIENT_SGIX # _m[0x81FB] = TODO # GL_SHARED_TEXTURE_PALETTE_EXT # _m[0x80B0] = TODO # GL_SHARPEN_TEXTURE_FUNC_POINTS_SGIS # _m[0x8136] = TODO # GL_TEXTURE_4DSIZE_SGIS # _m[0x8175] = TODO # GL_TEXTURE_CLIPMAP_LOD_OFFSET_SGIX # _m[0x1003] = TODO # GL_TEXTURE_COMPONENTS # _m[0x8147] = TODO # GL_TEXTURE_FILTER4_SIZE_SGIS # _m[0x819D] = TODO # GL_TEXTURE_GEQUAL_R_SGIX # _m[0x819C] = TODO # GL_TEXTURE_LEQUAL_R_SGIX # _m[0x85A1] = TODO # GL_UNPACK_SUBSAMPLE_RATE_SGIX _m[0x0D5B] = (1,) # GL_ACCUM_ALPHA_BITS _m[0x0D5A] = (1,) # GL_ACCUM_BLUE_BITS _m[0x0B80] = (4,) # GL_ACCUM_CLEAR_VALUE _m[0x0D59] = (1,) # GL_ACCUM_GREEN_BITS _m[0x0D58] = (1,) # GL_ACCUM_RED_BITS _m[0x8B89] = (1,) # GL_ACTIVE_ATTRIBUTES _m[0x8B8A] = (1,) # GL_ACTIVE_ATTRIBUTE_MAX_LENGTH _m[0x8259] = (1,) # GL_ACTIVE_PROGRAM _m[0x92F5] = (1,) # GL_ACTIVE_RESOURCES _m[0x8911] = (1,) # GL_ACTIVE_STENCIL_FACE_EXT _m[0x84E0] = (1,) # GL_ACTIVE_TEXTURE _m[0x84E0] = (1,) # GL_ACTIVE_TEXTURE_ARB _m[0x8B86] = (1,) # GL_ACTIVE_UNIFORMS _m[0x8A36] = (1,) # GL_ACTIVE_UNIFORM_BLOCKS _m[0x8A35] = (1,) # GL_ACTIVE_UNIFORM_BLOCK_MAX_NAME_LENGTH _m[0x8B87] = (1,) # GL_ACTIVE_UNIFORM_MAX_LENGTH _m[0x9305] = (1,) # GL_ACTIVE_VARIABLES _m[0x86A5] = (1,) # GL_ACTIVE_VERTEX_UNITS_ARB _m[0x846E] = (2,) # GL_ALIASED_LINE_WIDTH_RANGE _m[0x846D] = (2,) # GL_ALIASED_POINT_SIZE_RANGE _m[0x0D1D] = (1,) # GL_ALPHA_BIAS _m[0x0D55] = (1,) # GL_ALPHA_BITS _m[0x8567] = (1,) # GL_ALPHA_MAX_CLAMP_INGR _m[0x8563] = (1,) # GL_ALPHA_MIN_CLAMP_INGR _m[0x0D1C] = (1,) # GL_ALPHA_SCALE _m[0x0BC0] = (1,) # GL_ALPHA_TEST _m[0x0BC1] = (1,) # GL_ALPHA_TEST_FUNC _m[0x0BC1] = (1,) # GL_ALPHA_TEST_FUNC_QCOM _m[0x0BC0] = (1,) # GL_ALPHA_TEST_QCOM _m[0x0BC2] = (1,) # GL_ALPHA_TEST_REF _m[0x0BC2] = (1,) # GL_ALPHA_TEST_REF_QCOM _m[0x1200] = (4,) # GL_AMBIENT _m[0x1602] = (4,) # GL_AMBIENT_AND_DIFFUSE _m[0x8894] = (1,) # GL_ARRAY_BUFFER_BINDING _m[0x8894] = (1,) # GL_ARRAY_BUFFER_BINDING_ARB _m[0x81A9] = (1,) # GL_ARRAY_ELEMENT_LOCK_COUNT_EXT _m[0x81A8] = (1,) # GL_ARRAY_ELEMENT_LOCK_FIRST_EXT _m[0x92FB] = (1,) # GL_ARRAY_SIZE _m[0x92FE] = (1,) # GL_ARRAY_STRIDE _m[0x835D] = (1,) # GL_ASYNC_DRAW_PIXELS_SGIX _m[0x832C] = (1,) # GL_ASYNC_HISTOGRAM_SGIX _m[0x8329] = (1,) # GL_ASYNC_MARKER_SGIX _m[0x835E] = (1,) # GL_ASYNC_READ_PIXELS_SGIX _m[0x835C] = (1,) # GL_ASYNC_TEX_IMAGE_SGIX _m[0x92C1] = (1,) # GL_ATOMIC_COUNTER_BUFFER_BINDING _m[0x9301] = (1,) # GL_ATOMIC_COUNTER_BUFFER_INDEX _m[0x8B85] = (1,) # GL_ATTACHED_SHADERS _m[0x0BB0] = (1,) # GL_ATTRIB_STACK_DEPTH _m[0x0D80] = (1,) # GL_AUTO_NORMAL _m[0x0C00] = (1,) # GL_AUX_BUFFERS _m[0x843A] = (1,) # GL_BINORMAL_ARRAY_EXT _m[0x8443] = (1,) # GL_BINORMAL_ARRAY_POINTER_EXT _m[0x8441] = (1,) # GL_BINORMAL_ARRAY_STRIDE_EXT _m[0x8440] = (1,) # GL_BINORMAL_ARRAY_TYPE_EXT _m[0x0BE2] = (1,) # GL_BLEND _m[0x8005] = (4,) # GL_BLEND_COLOR _m[0x8005] = (4,) # GL_BLEND_COLOR_EXT _m[0x0BE0] = (1,) # GL_BLEND_DST _m[0x80CA] = (1,) # GL_BLEND_DST_ALPHA _m[0x80CA] = (1,) # GL_BLEND_DST_ALPHA_EXT _m[0x80C8] = (1,) # GL_BLEND_DST_RGB _m[0x80C8] = (1,) # GL_BLEND_DST_RGB_EXT _m[0x8009] = (1,) # GL_BLEND_EQUATION _m[0x883D] = (1,) # GL_BLEND_EQUATION_ALPHA _m[0x883D] = (1,) # GL_BLEND_EQUATION_ALPHA_EXT _m[0x8009] = (1,) # GL_BLEND_EQUATION_EXT _m[0x8009] = (1,) # GL_BLEND_EQUATION_RGB _m[0x0BE1] = (1,) # GL_BLEND_SRC _m[0x80CB] = (1,) # GL_BLEND_SRC_ALPHA _m[0x80CB] = (1,) # GL_BLEND_SRC_ALPHA_EXT _m[0x80C9] = (1,) # GL_BLEND_SRC_RGB _m[0x80C9] = (1,) # GL_BLEND_SRC_RGB_EXT _m[0x92FD] = (1,) # GL_BLOCK_INDEX _m[0x0D1B] = (1,) # GL_BLUE_BIAS _m[0x0D54] = (1,) # GL_BLUE_BITS _m[0x8566] = (1,) # GL_BLUE_MAX_CLAMP_INGR _m[0x8562] = (1,) # GL_BLUE_MIN_CLAMP_INGR _m[0x0D1A] = (1,) # GL_BLUE_SCALE _m[0x88BB] = (1,) # GL_BUFFER_ACCESS _m[0x911F] = (1,) # GL_BUFFER_ACCESS_FLAGS _m[0x9302] = (1,) # GL_BUFFER_BINDING _m[0x9303] = (1,) # GL_BUFFER_DATA_SIZE _m[0x88BC] = (1,) # GL_BUFFER_MAPPED _m[0x9120] = (1,) # GL_BUFFER_MAP_LENGTH _m[0x9121] = (1,) # GL_BUFFER_MAP_OFFSET _m[0x88BD] = (1,) # GL_BUFFER_MAP_POINTER _m[0x8764] = (1,) # GL_BUFFER_SIZE _m[0x8765] = (1,) # GL_BUFFER_USAGE _m[0x877C] = (1,) # GL_BUMP_TARGET_ATI _m[0x8183] = (1,) # GL_CALLIGRAPHIC_FRAGMENT_SGIX _m[0x891B] = (1,) # GL_CLAMP_FRAGMENT_COLOR _m[0x891B] = (1,) # GL_CLAMP_FRAGMENT_COLOR_ARB _m[0x891C] = (1,) # GL_CLAMP_READ_COLOR _m[0x891C] = (1,) # GL_CLAMP_READ_COLOR_ARB _m[0x891A] = (1,) # GL_CLAMP_VERTEX_COLOR _m[0x891A] = (1,) # GL_CLAMP_VERTEX_COLOR_ARB _m[0x84E1] = (1,) # GL_CLIENT_ACTIVE_TEXTURE _m[0x84E1] = (1,) # GL_CLIENT_ACTIVE_TEXTURE_ARB _m[0x0BB1] = (1,) # GL_CLIENT_ATTRIB_STACK_DEPTH _m[0x3000] = (1,) # GL_CLIP_DISTANCE0 _m[0x3001] = (1,) # GL_CLIP_DISTANCE1 _m[0x3002] = (1,) # GL_CLIP_DISTANCE2 _m[0x3003] = (1,) # GL_CLIP_DISTANCE3 _m[0x3004] = (1,) # GL_CLIP_DISTANCE4 _m[0x3005] = (1,) # GL_CLIP_DISTANCE5 _m[0x3006] = (1,) # GL_CLIP_DISTANCE6 _m[0x3007] = (1,) # GL_CLIP_DISTANCE7 _m[0x3000] = (1,) # GL_CLIP_PLANE0 _m[0x3001] = (1,) # GL_CLIP_PLANE1 _m[0x3002] = (1,) # GL_CLIP_PLANE2 _m[0x3003] = (1,) # GL_CLIP_PLANE3 _m[0x3004] = (1,) # GL_CLIP_PLANE4 _m[0x3005] = (1,) # GL_CLIP_PLANE5 _m[0x80F0] = (1,) # GL_CLIP_VOLUME_CLIPPING_HINT_EXT _m[0x8975] = (1,) # GL_COLOR_ALPHA_PAIRING_ATI _m[0x8076] = (1,) # GL_COLOR_ARRAY _m[0x8898] = (1,) # GL_COLOR_ARRAY_BUFFER_BINDING _m[0x8898] = (1,) # GL_COLOR_ARRAY_BUFFER_BINDING_ARB _m[0x8084] = (1,) # GL_COLOR_ARRAY_COUNT_EXT _m[0x8076] = (1,) # GL_COLOR_ARRAY_EXT _m[0x8F2D] = (1,) # GL_COLOR_ARRAY_LENGTH_NV _m[0x8090] = (1,) # GL_COLOR_ARRAY_POINTER _m[0x8081] = (1,) # GL_COLOR_ARRAY_SIZE _m[0x8081] = (1,) # GL_COLOR_ARRAY_SIZE_EXT _m[0x8083] = (1,) # GL_COLOR_ARRAY_STRIDE _m[0x8083] = (1,) # GL_COLOR_ARRAY_STRIDE_EXT _m[0x8082] = (1,) # GL_COLOR_ARRAY_TYPE _m[0x8082] = (1,) # GL_COLOR_ARRAY_TYPE_EXT _m[0x8835] = (4,) # GL_COLOR_CLEAR_UNCLAMPED_VALUE_ATI _m[0x0C22] = (4,) # GL_COLOR_CLEAR_VALUE _m[0x8A0F] = (1,) # GL_COLOR_FLOAT_APPLE _m[0x1603] = (3,) # GL_COLOR_INDEXES _m[0x0BF2] = (1,) # GL_COLOR_LOGIC_OP _m[0x0B57] = (1,) # GL_COLOR_MATERIAL _m[0x0B55] = (1,) # GL_COLOR_MATERIAL_FACE _m[0x0B56] = (1,) # GL_COLOR_MATERIAL_PARAMETER _m[0x80B1] = (4,4) # GL_COLOR_MATRIX _m[0x80B1] = (4,4) # GL_COLOR_MATRIX_SGI _m[0x80B2] = (1,) # GL_COLOR_MATRIX_STACK_DEPTH _m[0x80B2] = (1,) # GL_COLOR_MATRIX_STACK_DEPTH_SGI _m[0x8E20] = (1,) # GL_COLOR_SAMPLES_NV _m[0x8458] = (1,) # GL_COLOR_SUM _m[0x8458] = (1,) # GL_COLOR_SUM_ARB _m[0x854F] = (1,) # GL_COLOR_SUM_CLAMP_NV _m[0x8458] = (1,) # GL_COLOR_SUM_EXT _m[0x80D0] = (1,) # GL_COLOR_TABLE _m[0x80DD] = (1,) # GL_COLOR_TABLE_ALPHA_SIZE _m[0x80DD] = (1,) # GL_COLOR_TABLE_ALPHA_SIZE_SGI _m[0x80D7] = (4,) # GL_COLOR_TABLE_BIAS _m[0x80D7] = (4,) # GL_COLOR_TABLE_BIAS_SGI _m[0x80DC] = (1,) # GL_COLOR_TABLE_BLUE_SIZE _m[0x80DC] = (1,) # GL_COLOR_TABLE_BLUE_SIZE_SGI _m[0x80D8] = (1,) # GL_COLOR_TABLE_FORMAT _m[0x80D8] = (1,) # GL_COLOR_TABLE_FORMAT_SGI _m[0x80DB] = (1,) # GL_COLOR_TABLE_GREEN_SIZE _m[0x80DB] = (1,) # GL_COLOR_TABLE_GREEN_SIZE_SGI _m[0x80DF] = (1,) # GL_COLOR_TABLE_INTENSITY_SIZE _m[0x80DF] = (1,) # GL_COLOR_TABLE_INTENSITY_SIZE_SGI _m[0x80DE] = (1,) # GL_COLOR_TABLE_LUMINANCE_SIZE _m[0x80DE] = (1,) # GL_COLOR_TABLE_LUMINANCE_SIZE_SGI _m[0x80DA] = (1,) # GL_COLOR_TABLE_RED_SIZE _m[0x80DA] = (1,) # GL_COLOR_TABLE_RED_SIZE_SGI _m[0x80D6] = (4,) # GL_COLOR_TABLE_SCALE _m[0x80D6] = (4,) # GL_COLOR_TABLE_SCALE_SGI _m[0x80D0] = (1,) # GL_COLOR_TABLE_SGI _m[0x80D9] = (1,) # GL_COLOR_TABLE_WIDTH _m[0x80D9] = (1,) # GL_COLOR_TABLE_WIDTH_SGI _m[0x0C23] = (4,) # GL_COLOR_WRITEMASK _m[0x8572] = (1,) # GL_COMBINE_ALPHA _m[0x8571] = (1,) # GL_COMBINE_RGB _m[0x8E4B] = (1,) # GL_COMPATIBLE_SUBROUTINES _m[0x8B81] = (1,) # GL_COMPILE_STATUS _m[0x86A3] = (_L(0x86A2),) # GL_COMPRESSED_TEXTURE_FORMATS _m[0x86A3] = (_L(0x86A2),) # GL_COMPRESSED_TEXTURE_FORMATS_ARB _m[0x91B9] = (1,) # GL_COMPUTE_SHADER _m[0x1207] = (1,) # GL_CONSTANT_ATTENUATION _m[0x852A] = (4,) # GL_CONSTANT_COLOR0_NV _m[0x852B] = (4,) # GL_CONSTANT_COLOR1_NV _m[0x86E5] = (3,) # GL_CONST_EYE_NV _m[0x821E] = (1,) # GL_CONTEXT_FLAGS _m[0x00000002] = (1,) # GL_CONTEXT_FLAG_DEBUG_BIT _m[0x00000004] = (1,) # GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB _m[0x9126] = (1,) # GL_CONTEXT_PROFILE_MASK _m[0x8010] = (1,) # GL_CONVOLUTION_1D _m[0x8010] = (1,) # GL_CONVOLUTION_1D_EXT _m[0x8011] = (1,) # GL_CONVOLUTION_2D _m[0x8011] = (1,) # GL_CONVOLUTION_2D_EXT _m[0x8154] = (4,) # GL_CONVOLUTION_BORDER_COLOR _m[0x8013] = (1,) # GL_CONVOLUTION_BORDER_MODE _m[0x8013] = (1,) # GL_CONVOLUTION_BORDER_MODE_EXT _m[0x8015] = (4,) # GL_CONVOLUTION_FILTER_BIAS _m[0x8015] = (4,) # GL_CONVOLUTION_FILTER_BIAS_EXT _m[0x8014] = (4,) # GL_CONVOLUTION_FILTER_SCALE _m[0x8014] = (4,) # GL_CONVOLUTION_FILTER_SCALE_EXT _m[0x8017] = (1,) # GL_CONVOLUTION_FORMAT _m[0x8019] = (1,) # GL_CONVOLUTION_HEIGHT _m[0x8316] = (1,) # GL_CONVOLUTION_HINT_SGIX _m[0x8018] = (1,) # GL_CONVOLUTION_WIDTH _m[0x8862] = (1,) # GL_COORD_REPLACE _m[0x8F36] = (1,) # GL_COPY_READ_BUFFER _m[0x8F37] = (1,) # GL_COPY_WRITE_BUFFER _m[0x8ED4] = (1,) # GL_COVERAGE_SAMPLES_NV _m[0x0B44] = (1,) # GL_CULL_FACE _m[0x0B45] = (1,) # GL_CULL_FACE_MODE _m[0x86E0] = (4,) # GL_CULL_MODES_NV _m[0x81AA] = (1,) # GL_CULL_VERTEX_EXT _m[0x81AB] = (1,) # GL_CULL_VERTEX_EYE_POSITION_EXT _m[0x81AC] = (1,) # GL_CULL_VERTEX_OBJECT_POSITION_EXT _m[0x843C] = (1,) # GL_CURRENT_BINORMAL_EXT _m[0x0B00] = (4,) # GL_CURRENT_COLOR _m[0x8453] = (1,) # GL_CURRENT_FOG_COORD _m[0x8453] = (1,) # GL_CURRENT_FOG_COORDINATE _m[0x8453] = (1,) # GL_CURRENT_FOG_COORDINATE_EXT _m[0x0B01] = (1,) # GL_CURRENT_INDEX _m[0x8641] = (4, 4) # GL_CURRENT_MATRIX_ARB _m[0x8845] = (1,) # GL_CURRENT_MATRIX_INDEX_ARB _m[0x8641] = (4, 4) # GL_CURRENT_MATRIX_NV _m[0x8640] = (1,) # GL_CURRENT_MATRIX_STACK_DEPTH_ARB _m[0x8640] = (1,) # GL_CURRENT_MATRIX_STACK_DEPTH_NV _m[0x0B02] = (3,) # GL_CURRENT_NORMAL _m[0x8865] = (1,) # GL_CURRENT_OCCLUSION_QUERY_ID_NV _m[0x8843] = (1,) # GL_CURRENT_PALETTE_MATRIX_ARB _m[0x8B8D] = (1,) # GL_CURRENT_PROGRAM _m[0x8865] = (1,) # GL_CURRENT_QUERY _m[0x0B04] = (4,) # GL_CURRENT_RASTER_COLOR _m[0x0B09] = (1,) # GL_CURRENT_RASTER_DISTANCE _m[0x0B05] = (1,) # GL_CURRENT_RASTER_INDEX _m[0x8406] = (1,) # GL_CURRENT_RASTER_NORMAL_SGIX _m[0x0B07] = (4,) # GL_CURRENT_RASTER_POSITION _m[0x0B08] = (1,) # GL_CURRENT_RASTER_POSITION_VALID _m[0x0B06] = (4,) # GL_CURRENT_RASTER_TEXTURE_COORDS _m[0x8459] = (4,) # GL_CURRENT_SECONDARY_COLOR _m[0x8459] = (1,) # GL_CURRENT_SECONDARY_COLOR_EXT _m[0x843B] = (1,) # GL_CURRENT_TANGENT_EXT _m[0x0B03] = (4,) # GL_CURRENT_TEXTURE_COORDS _m[0x8626] = (4,) # GL_CURRENT_VERTEX_ATTRIB _m[0x850B] = (1,) # GL_CURRENT_VERTEX_WEIGHT_EXT _m[0x86A8] = (1,) # GL_CURRENT_WEIGHT_ARB _m[0x8244] = (1,) # GL_DEBUG_CALLBACK_FUNCTION _m[0x8245] = (1,) # GL_DEBUG_CALLBACK_USER_PARAM _m[0x826D] = (1,) # GL_DEBUG_GROUP_STACK_DEPTH _m[0x9145] = (1,) # GL_DEBUG_LOGGED_MESSAGES _m[0x9145] = (1,) # GL_DEBUG_LOGGED_MESSAGES_AMD _m[0x9145] = (1,) # GL_DEBUG_LOGGED_MESSAGES_ARB _m[0x8243] = (1,) # GL_DEBUG_NEXT_LOGGED_MESSAGE_LENGTH _m[0x8243] = (1,) # GL_DEBUG_NEXT_LOGGED_MESSAGE_LENGTH_ARB _m[0x92E0] = (1,) # GL_DEBUG_OUTPUT _m[0x8242] = (1,) # GL_DEBUG_OUTPUT_SYNCHRONOUS _m[0x8196] = (1,) # GL_DEFORMATIONS_MASK_SGIX _m[0x8B80] = (1,) # GL_DELETE_STATUS _m[0x0D1F] = (1,) # GL_DEPTH_BIAS _m[0x0D56] = (1,) # GL_DEPTH_BITS _m[0x8891] = (1,) # GL_DEPTH_BOUNDS_EXT _m[0x8890] = (1,) # GL_DEPTH_BOUNDS_TEST_EXT _m[0x8DAF] = (1,) # GL_DEPTH_BUFFER_FLOAT_MODE_NV _m[0x864F] = (1,) # GL_DEPTH_CLAMP _m[0x901F] = (1,) # GL_DEPTH_CLAMP_FAR_AMD _m[0x901E] = (1,) # GL_DEPTH_CLAMP_NEAR_AMD _m[0x864F] = (1,) # GL_DEPTH_CLAMP_NV _m[0x0B73] = (1,) # GL_DEPTH_CLEAR_VALUE _m[0x0B74] = (1,) # GL_DEPTH_FUNC _m[0x0B70] = (2,) # GL_DEPTH_RANGE _m[0x0D1E] = (1,) # GL_DEPTH_SCALE _m[0x90EA] = (1,) # GL_DEPTH_STENCIL_TEXTURE_MODE _m[0x0B71] = (1,) # GL_DEPTH_TEST _m[0x884B] = (1,) # GL_DEPTH_TEXTURE_MODE _m[0x0B72] = (1,) # GL_DEPTH_WRITEMASK _m[0x8096] = (1,) # GL_DETAIL_TEXTURE_2D_BINDING_SGIS _m[0x1201] = (4,) # GL_DIFFUSE _m[0x90EF] = (1,) # GL_DISPATCH_INDIRECT_BUFFER_BINDING _m[0x8129] = (3,) # GL_DISTANCE_ATTENUATION_SGIS _m[0x0BD0] = (1,) # GL_DITHER _m[0x0C32] = (1,) # GL_DOUBLEBUFFER _m[0x0C01] = (1,) # GL_DRAW_BUFFER _m[0x8825] = (1,) # GL_DRAW_BUFFER0 _m[0x8825] = (1,) # GL_DRAW_BUFFER0_ARB _m[0x8825] = (1,) # GL_DRAW_BUFFER0_ATI _m[0x8826] = (1,) # GL_DRAW_BUFFER1 _m[0x882F] = (1,) # GL_DRAW_BUFFER10 _m[0x882F] = (1,) # GL_DRAW_BUFFER10_ARB _m[0x882F] = (1,) # GL_DRAW_BUFFER10_ATI _m[0x8830] = (1,) # GL_DRAW_BUFFER11 _m[0x8830] = (1,) # GL_DRAW_BUFFER11_ARB _m[0x8830] = (1,) # GL_DRAW_BUFFER11_ATI _m[0x8831] = (1,) # GL_DRAW_BUFFER12 _m[0x8831] = (1,) # GL_DRAW_BUFFER12_ARB _m[0x8831] = (1,) # GL_DRAW_BUFFER12_ATI _m[0x8832] = (1,) # GL_DRAW_BUFFER13 _m[0x8832] = (1,) # GL_DRAW_BUFFER13_ARB _m[0x8832] = (1,) # GL_DRAW_BUFFER13_ATI _m[0x8833] = (1,) # GL_DRAW_BUFFER14 _m[0x8833] = (1,) # GL_DRAW_BUFFER14_ARB _m[0x8833] = (1,) # GL_DRAW_BUFFER14_ATI _m[0x8834] = (1,) # GL_DRAW_BUFFER15 _m[0x8834] = (1,) # GL_DRAW_BUFFER15_ARB _m[0x8834] = (1,) # GL_DRAW_BUFFER15_ATI _m[0x8826] = (1,) # GL_DRAW_BUFFER1_ARB _m[0x8826] = (1,) # GL_DRAW_BUFFER1_ATI _m[0x8827] = (1,) # GL_DRAW_BUFFER2 _m[0x8827] = (1,) # GL_DRAW_BUFFER2_ARB _m[0x8827] = (1,) # GL_DRAW_BUFFER2_ATI _m[0x8828] = (1,) # GL_DRAW_BUFFER3 _m[0x8828] = (1,) # GL_DRAW_BUFFER3_ARB _m[0x8828] = (1,) # GL_DRAW_BUFFER3_ATI _m[0x8829] = (1,) # GL_DRAW_BUFFER4 _m[0x8829] = (1,) # GL_DRAW_BUFFER4_ARB _m[0x8829] = (1,) # GL_DRAW_BUFFER4_ATI _m[0x882A] = (1,) # GL_DRAW_BUFFER5 _m[0x882A] = (1,) # GL_DRAW_BUFFER5_ARB _m[0x882A] = (1,) # GL_DRAW_BUFFER5_ATI _m[0x882B] = (1,) # GL_DRAW_BUFFER6 _m[0x882B] = (1,) # GL_DRAW_BUFFER6_ARB _m[0x882B] = (1,) # GL_DRAW_BUFFER6_ATI _m[0x882C] = (1,) # GL_DRAW_BUFFER7 _m[0x882C] = (1,) # GL_DRAW_BUFFER7_ARB _m[0x882C] = (1,) # GL_DRAW_BUFFER7_ATI _m[0x882D] = (1,) # GL_DRAW_BUFFER8 _m[0x882D] = (1,) # GL_DRAW_BUFFER8_ARB _m[0x882D] = (1,) # GL_DRAW_BUFFER8_ATI _m[0x882E] = (1,) # GL_DRAW_BUFFER9 _m[0x882E] = (1,) # GL_DRAW_BUFFER9_ARB _m[0x882E] = (1,) # GL_DRAW_BUFFER9_ATI _m[0x0C01] = (1,) # GL_DRAW_BUFFER_EXT _m[0x8CA9] = (1,) # GL_DRAW_FRAMEBUFFER _m[0x8CA6] = (1,) # GL_DRAW_FRAMEBUFFER_BINDING _m[0x8F43] = (1,) # GL_DRAW_INDIRECT_BUFFER_BINDING _m[0x8716] = (1,) # GL_DS_BIAS_NV _m[0x8710] = (1,) # GL_DS_SCALE_NV _m[0x8717] = (1,) # GL_DT_BIAS_NV _m[0x8711] = (1,) # GL_DT_SCALE_NV _m[0x0B43] = (1,) # GL_EDGE_FLAG _m[0x8079] = (1,) # GL_EDGE_FLAG_ARRAY _m[0x889B] = (1,) # GL_EDGE_FLAG_ARRAY_BUFFER_BINDING _m[0x889B] = (1,) # GL_EDGE_FLAG_ARRAY_BUFFER_BINDING_ARB _m[0x808D] = (1,) # GL_EDGE_FLAG_ARRAY_COUNT_EXT _m[0x8079] = (1,) # GL_EDGE_FLAG_ARRAY_EXT _m[0x8F30] = (1,) # GL_EDGE_FLAG_ARRAY_LENGTH_NV _m[0x8093] = (1,) # GL_EDGE_FLAG_ARRAY_POINTER _m[0x808C] = (1,) # GL_EDGE_FLAG_ARRAY_STRIDE _m[0x808C] = (1,) # GL_EDGE_FLAG_ARRAY_STRIDE_EXT _m[0x8895] = (1,) # GL_ELEMENT_ARRAY_BUFFER_BINDING _m[0x8895] = (1,) # GL_ELEMENT_ARRAY_BUFFER_BINDING_ARB _m[0x8F33] = (1,) # GL_ELEMENT_ARRAY_LENGTH_NV _m[0x8A0D] = (1,) # GL_ELEMENT_ARRAY_TYPE_APPLE _m[0x8769] = (1,) # GL_ELEMENT_ARRAY_TYPE_ATI _m[0x1600] = (4,) # GL_EMISSION _m[0x86C5] = (1,) # GL_EVAL_FRACTIONAL_TESSELLATION_NV _m[0x86C6] = (1,) # GL_EVAL_VERTEX_ATTRIB0_NV _m[0x86D0] = (1,) # GL_EVAL_VERTEX_ATTRIB10_NV _m[0x86D1] = (1,) # GL_EVAL_VERTEX_ATTRIB11_NV _m[0x86D2] = (1,) # GL_EVAL_VERTEX_ATTRIB12_NV _m[0x86D3] = (1,) # GL_EVAL_VERTEX_ATTRIB13_NV _m[0x86D4] = (1,) # GL_EVAL_VERTEX_ATTRIB14_NV _m[0x86D5] = (1,) # GL_EVAL_VERTEX_ATTRIB15_NV _m[0x86C7] = (1,) # GL_EVAL_VERTEX_ATTRIB1_NV _m[0x86C8] = (1,) # GL_EVAL_VERTEX_ATTRIB2_NV _m[0x86C9] = (1,) # GL_EVAL_VERTEX_ATTRIB3_NV _m[0x86CA] = (1,) # GL_EVAL_VERTEX_ATTRIB4_NV _m[0x86CB] = (1,) # GL_EVAL_VERTEX_ATTRIB5_NV _m[0x86CC] = (1,) # GL_EVAL_VERTEX_ATTRIB6_NV _m[0x86CD] = (1,) # GL_EVAL_VERTEX_ATTRIB7_NV _m[0x86CE] = (1,) # GL_EVAL_VERTEX_ATTRIB8_NV _m[0x86CF] = (1,) # GL_EVAL_VERTEX_ATTRIB9_NV _m[0x1F03] = (1,) # GL_EXTENSIONS _m[0x81F6] = (7,) # GL_EYE_LINE_SGIS _m[0x2502] = (4,) # GL_EYE_PLANE _m[0x81F4] = (4,) # GL_EYE_POINT_SGIS _m[0x0DF0] = (1,) # GL_FEEDBACK_BUFFER_POINTER _m[0x0DF1] = (1,) # GL_FEEDBACK_BUFFER_SIZE _m[0x0DF2] = (1,) # GL_FEEDBACK_BUFFER_TYPE _m[0x888D] = (4,) # GL_FLOAT_CLEAR_COLOR_VALUE_NV _m[0x888E] = (1,) # GL_FLOAT_RGBA_MODE_NV _m[0x0B60] = (1,) # GL_FOG _m[0x0B66] = (4,) # GL_FOG_COLOR _m[0x889D] = (1,) # GL_FOG_COORDINATE_ARRAY_BUFFER_BINDING_ARB _m[0x8455] = (1,) # GL_FOG_COORDINATE_ARRAY_STRIDE_EXT _m[0x8454] = (1,) # GL_FOG_COORDINATE_ARRAY_TYPE_EXT _m[0x8457] = (1,) # GL_FOG_COORD_ARRAY _m[0x889D] = (1,) # GL_FOG_COORD_ARRAY_BUFFER_BINDING _m[0x8F32] = (1,) # GL_FOG_COORD_ARRAY_LENGTH_NV _m[0x8455] = (1,) # GL_FOG_COORD_ARRAY_STRIDE _m[0x8454] = (1,) # GL_FOG_COORD_ARRAY_TYPE _m[0x8450] = (1,) # GL_FOG_COORD_SRC _m[0x0B62] = (1,) # GL_FOG_DENSITY _m[0x855A] = (1,) # GL_FOG_DISTANCE_MODE_NV _m[0x0B64] = (1,) # GL_FOG_END _m[0x812B] = (1,) # GL_FOG_FUNC_POINTS_SGIS _m[0x0C54] = (1,) # GL_FOG_HINT _m[0x0B61] = (1,) # GL_FOG_INDEX _m[0x0B65] = (1,) # GL_FOG_MODE _m[0x8198] = (1,) # GL_FOG_OFFSET_SGIX _m[0x8199] = (4,) # GL_FOG_OFFSET_VALUE_SGIX _m[0x0B63] = (1,) # GL_FOG_START _m[0x8402] = (1,) # GL_FRAGMENT_COLOR_MATERIAL_FACE_SGIX _m[0x8403] = (1,) # GL_FRAGMENT_COLOR_MATERIAL_PARAMETER_SGIX _m[0x8401] = (1,) # GL_FRAGMENT_COLOR_MATERIAL_SGIX _m[0x840C] = (1,) # GL_FRAGMENT_LIGHT0_SGIX _m[0x8400] = (1,) # GL_FRAGMENT_LIGHTING_SGIX _m[0x840A] = (4,) # GL_FRAGMENT_LIGHT_MODEL_AMBIENT_SGIX _m[0x8408] = (1,) # GL_FRAGMENT_LIGHT_MODEL_LOCAL_VIEWER_SGIX _m[0x840B] = (1,) # GL_FRAGMENT_LIGHT_MODEL_NORMAL_INTERPOLATION_SGIX _m[0x8409] = (1,) # GL_FRAGMENT_LIGHT_MODEL_TWO_SIDE_SGIX _m[0x8804] = (1,) # GL_FRAGMENT_PROGRAM_ARB _m[0x8873] = (1,) # GL_FRAGMENT_PROGRAM_BINDING_NV _m[0x8870] = (1,) # GL_FRAGMENT_PROGRAM_NV _m[0x8B30] = (1,) # GL_FRAGMENT_SHADER _m[0x8920] = (1,) # GL_FRAGMENT_SHADER_ATI _m[0x8B8B] = (1,) # GL_FRAGMENT_SHADER_DERIVATIVE_HINT _m[0x8B8B] = (1,) # GL_FRAGMENT_SHADER_DERIVATIVE_HINT_ARB _m[0x8215] = (1,) # GL_FRAMEBUFFER_ATTACHMENT_ALPHA_SIZE _m[0x8214] = (1,) # GL_FRAMEBUFFER_ATTACHMENT_BLUE_SIZE _m[0x8210] = (1,) # GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING _m[0x8211] = (1,) # GL_FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE _m[0x8216] = (1,) # GL_FRAMEBUFFER_ATTACHMENT_DEPTH_SIZE _m[0x8213] = (1,) # GL_FRAMEBUFFER_ATTACHMENT_GREEN_SIZE _m[0x8DA7] = (1,) # GL_FRAMEBUFFER_ATTACHMENT_LAYERED _m[0x8CD1] = (1,) # GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME _m[0x8CD0] = (1,) # GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE _m[0x8212] = (1,) # GL_FRAMEBUFFER_ATTACHMENT_RED_SIZE _m[0x8217] = (1,) # GL_FRAMEBUFFER_ATTACHMENT_STENCIL_SIZE _m[0x8CD3] = (1,) # GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE _m[0x8CD4] = (1,) # GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER _m[0x8CD2] = (1,) # GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL _m[0x8CA6] = (1,) # GL_FRAMEBUFFER_BINDING_EXT _m[0x9314] = (1,) # GL_FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_LOCATIONS _m[0x9311] = (1,) # GL_FRAMEBUFFER_DEFAULT_HEIGHT _m[0x9312] = (1,) # GL_FRAMEBUFFER_DEFAULT_LAYERS _m[0x9313] = (1,) # GL_FRAMEBUFFER_DEFAULT_SAMPLES _m[0x9310] = (1,) # GL_FRAMEBUFFER_DEFAULT_WIDTH _m[0x8DB9] = (1,) # GL_FRAMEBUFFER_SRGB _m[0x8DBA] = (1,) # GL_FRAMEBUFFER_SRGB_CAPABLE_EXT _m[0x8DB9] = (1,) # GL_FRAMEBUFFER_SRGB_EXT _m[0x818C] = (1,) # GL_FRAMEZOOM_FACTOR_SGIX _m[0x818B] = (1,) # GL_FRAMEZOOM_SGIX _m[0x0B46] = (1,) # GL_FRONT_FACE _m[0x8191] = (1,) # GL_GENERATE_MIPMAP _m[0x8192] = (1,) # GL_GENERATE_MIPMAP_HINT _m[0x8192] = (1,) # GL_GENERATE_MIPMAP_HINT_SGIS _m[0x8DDB] = (1,) # GL_GEOMETRY_INPUT_TYPE_ARB _m[0x8DDC] = (1,) # GL_GEOMETRY_OUTPUT_TYPE_ARB _m[0x8DD9] = (1,) # GL_GEOMETRY_SHADER _m[0x8DDA] = (1,) # GL_GEOMETRY_VERTICES_OUT_ARB _m[0x81DA] = (1,) # GL_GLOBAL_ALPHA_FACTOR_SUN _m[0x9049] = (1,) # GL_GPU_MEMORY_INFO_CURRENT_AVAILABLE_VIDMEM_NVX _m[0x9047] = (1,) # GL_GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX _m[0x904B] = (1,) # GL_GPU_MEMORY_INFO_EVICTED_MEMORY_NVX _m[0x904A] = (1,) # GL_GPU_MEMORY_INFO_EVICTION_COUNT_NVX _m[0x9048] = (1,) # GL_GPU_MEMORY_INFO_TOTAL_AVAILABLE_MEMORY_NVX _m[0x0D19] = (1,) # GL_GREEN_BIAS _m[0x0D53] = (1,) # GL_GREEN_BITS _m[0x8565] = (1,) # GL_GREEN_MAX_CLAMP_INGR _m[0x8561] = (1,) # GL_GREEN_MIN_CLAMP_INGR _m[0x0D18] = (1,) # GL_GREEN_SCALE _m[0x8024] = (1,) # GL_HISTOGRAM _m[0x802B] = (1,) # GL_HISTOGRAM_ALPHA_SIZE _m[0x802B] = (1,) # GL_HISTOGRAM_ALPHA_SIZE_EXT _m[0x802A] = (1,) # GL_HISTOGRAM_BLUE_SIZE _m[0x802A] = (1,) # GL_HISTOGRAM_BLUE_SIZE_EXT _m[0x8024] = (1,) # GL_HISTOGRAM_EXT _m[0x8027] = (1,) # GL_HISTOGRAM_FORMAT _m[0x8027] = (1,) # GL_HISTOGRAM_FORMAT_EXT _m[0x8029] = (1,) # GL_HISTOGRAM_GREEN_SIZE _m[0x8029] = (1,) # GL_HISTOGRAM_GREEN_SIZE_EXT _m[0x802C] = (1,) # GL_HISTOGRAM_LUMINANCE_SIZE _m[0x802C] = (1,) # GL_HISTOGRAM_LUMINANCE_SIZE_EXT _m[0x8028] = (1,) # GL_HISTOGRAM_RED_SIZE _m[0x8028] = (1,) # GL_HISTOGRAM_RED_SIZE_EXT _m[0x802D] = (1,) # GL_HISTOGRAM_SINK _m[0x802D] = (1,) # GL_HISTOGRAM_SINK_EXT _m[0x8026] = (1,) # GL_HISTOGRAM_WIDTH _m[0x8026] = (1,) # GL_HISTOGRAM_WIDTH_EXT _m[0x8714] = (1,) # GL_HI_BIAS_NV _m[0x870E] = (1,) # GL_HI_SCALE_NV _m[0x8B9B] = (1,) # GL_IMPLEMENTATION_COLOR_READ_FORMAT _m[0x8B9A] = (1,) # GL_IMPLEMENTATION_COLOR_READ_TYPE _m[0x8077] = (1,) # GL_INDEX_ARRAY _m[0x8899] = (1,) # GL_INDEX_ARRAY_BUFFER_BINDING _m[0x8899] = (1,) # GL_INDEX_ARRAY_BUFFER_BINDING_ARB _m[0x8087] = (1,) # GL_INDEX_ARRAY_COUNT_EXT _m[0x8077] = (1,) # GL_INDEX_ARRAY_EXT _m[0x8F2E] = (1,) # GL_INDEX_ARRAY_LENGTH_NV _m[0x8091] = (1,) # GL_INDEX_ARRAY_POINTER _m[0x8086] = (1,) # GL_INDEX_ARRAY_STRIDE _m[0x8086] = (1,) # GL_INDEX_ARRAY_STRIDE_EXT _m[0x8085] = (1,) # GL_INDEX_ARRAY_TYPE _m[0x8085] = (1,) # GL_INDEX_ARRAY_TYPE_EXT _m[0x0D51] = (1,) # GL_INDEX_BITS _m[0x0C20] = (1,) # GL_INDEX_CLEAR_VALUE _m[0x0BF1] = (1,) # GL_INDEX_LOGIC_OP _m[0x0C30] = (1,) # GL_INDEX_MODE _m[0x0D13] = (1,) # GL_INDEX_OFFSET _m[0x0D12] = (1,) # GL_INDEX_SHIFT _m[0x0C21] = (1,) # GL_INDEX_WRITEMASK _m[0x8B84] = (1,) # GL_INFO_LOG_LENGTH _m[0x8181] = (1,) # GL_INSTRUMENT_MEASUREMENTS_SGIX _m[0x8980] = (1,) # GL_INTERLACE_OML _m[0x8568] = (1,) # GL_INTERLACE_READ_INGR _m[0x8981] = (1,) # GL_INTERLACE_READ_OML _m[0x8094] = (1,) # GL_INTERLACE_SGIX _m[0x817F] = (1,) # GL_IR_INSTRUMENT1_SGIX _m[0x92E7] = (1,) # GL_IS_PER_PATCH _m[0x9300] = (1,) # GL_IS_ROW_MAJOR _m[0x825E] = (1,) # GL_LAYER_PROVOKING_VERTEX _m[0x4000] = (1,) # GL_LIGHT0 _m[0x4001] = (1,) # GL_LIGHT1 _m[0x4002] = (1,) # GL_LIGHT2 _m[0x4003] = (1,) # GL_LIGHT3 _m[0x4004] = (1,) # GL_LIGHT4 _m[0x4005] = (1,) # GL_LIGHT5 _m[0x4006] = (1,) # GL_LIGHT6 _m[0x4007] = (1,) # GL_LIGHT7 _m[0x0B50] = (1,) # GL_LIGHTING _m[0x8407] = (1,) # GL_LIGHT_ENV_MODE_SGIX _m[0x0B53] = (4,) # GL_LIGHT_MODEL_AMBIENT _m[0x81F8] = (1,) # GL_LIGHT_MODEL_COLOR_CONTROL _m[0x81F8] = (1,) # GL_LIGHT_MODEL_COLOR_CONTROL_EXT _m[0x0B51] = (1,) # GL_LIGHT_MODEL_LOCAL_VIEWER _m[0x0B52] = (1,) # GL_LIGHT_MODEL_TWO_SIDE _m[0x1208] = (1,) # GL_LINEAR_ATTENUATION _m[0x0B20] = (1,) # GL_LINE_SMOOTH _m[0x0C52] = (1,) # GL_LINE_SMOOTH_HINT _m[0x0B24] = (1,) # GL_LINE_STIPPLE _m[0x0B25] = (1,) # GL_LINE_STIPPLE_PATTERN _m[0x0B26] = (1,) # GL_LINE_STIPPLE_REPEAT _m[0x0B21] = (1,) # GL_LINE_WIDTH _m[0x0B23] = (1,) # GL_LINE_WIDTH_GRANULARITY _m[0x0B22] = (2,) # GL_LINE_WIDTH_RANGE _m[0x8B82] = (1,) # GL_LINK_STATUS _m[0x0B32] = (1,) # GL_LIST_BASE _m[0x0B33] = (1,) # GL_LIST_INDEX _m[0x0B30] = (1,) # GL_LIST_MODE _m[0x930E] = (1,) # GL_LOCATION _m[0x930F] = (1,) # GL_LOCATION_INDEX _m[0x0BF1] = (1,) # GL_LOGIC_OP _m[0x0BF0] = (1,) # GL_LOGIC_OP_MODE _m[0x8252] = (1,) # GL_LOSE_CONTEXT_ON_RESET_ARB _m[0x8715] = (1,) # GL_LO_BIAS_NV _m[0x870F] = (1,) # GL_LO_SCALE_NV _m[0x8718] = (1,) # GL_MAGNITUDE_BIAS_NV _m[0x8712] = (1,) # GL_MAGNITUDE_SCALE_NV _m[0x821B] = (1,) # GL_MAJOR_VERSION _m[0x0D90] = (1,) # GL_MAP1_COLOR_4 _m[0x0DD0] = (2,) # GL_MAP1_GRID_DOMAIN _m[0x0DD1] = (1,) # GL_MAP1_GRID_SEGMENTS _m[0x0D91] = (1,) # GL_MAP1_INDEX _m[0x0D92] = (1,) # GL_MAP1_NORMAL _m[0x0D93] = (1,) # GL_MAP1_TEXTURE_COORD_1 _m[0x0D94] = (1,) # GL_MAP1_TEXTURE_COORD_2 _m[0x0D95] = (1,) # GL_MAP1_TEXTURE_COORD_3 _m[0x0D96] = (1,) # GL_MAP1_TEXTURE_COORD_4 _m[0x0D97] = (1,) # GL_MAP1_VERTEX_3 _m[0x0D98] = (1,) # GL_MAP1_VERTEX_4 _m[0x8660] = (4,) # GL_MAP1_VERTEX_ATTRIB0_4_NV _m[0x866A] = (4,) # GL_MAP1_VERTEX_ATTRIB10_4_NV _m[0x866B] = (4,) # GL_MAP1_VERTEX_ATTRIB11_4_NV _m[0x866C] = (4,) # GL_MAP1_VERTEX_ATTRIB12_4_NV _m[0x866D] = (4,) # GL_MAP1_VERTEX_ATTRIB13_4_NV _m[0x866E] = (4,) # GL_MAP1_VERTEX_ATTRIB14_4_NV _m[0x866F] = (4,) # GL_MAP1_VERTEX_ATTRIB15_4_NV _m[0x8661] = (4,) # GL_MAP1_VERTEX_ATTRIB1_4_NV _m[0x8662] = (4,) # GL_MAP1_VERTEX_ATTRIB2_4_NV _m[0x8663] = (4,) # GL_MAP1_VERTEX_ATTRIB3_4_NV _m[0x8664] = (4,) # GL_MAP1_VERTEX_ATTRIB4_4_NV _m[0x8665] = (4,) # GL_MAP1_VERTEX_ATTRIB5_4_NV _m[0x8666] = (4,) # GL_MAP1_VERTEX_ATTRIB6_4_NV _m[0x8667] = (4,) # GL_MAP1_VERTEX_ATTRIB7_4_NV _m[0x8668] = (4,) # GL_MAP1_VERTEX_ATTRIB8_4_NV _m[0x8669] = (4,) # GL_MAP1_VERTEX_ATTRIB9_4_NV _m[0x0DB0] = (1,) # GL_MAP2_COLOR_4 _m[0x0DD2] = (4,) # GL_MAP2_GRID_DOMAIN _m[0x0DD3] = (2,) # GL_MAP2_GRID_SEGMENTS _m[0x0DB1] = (1,) # GL_MAP2_INDEX _m[0x0DB2] = (1,) # GL_MAP2_NORMAL _m[0x0DB3] = (1,) # GL_MAP2_TEXTURE_COORD_1 _m[0x0DB4] = (1,) # GL_MAP2_TEXTURE_COORD_2 _m[0x0DB5] = (1,) # GL_MAP2_TEXTURE_COORD_3 _m[0x0DB6] = (1,) # GL_MAP2_TEXTURE_COORD_4 _m[0x0DB7] = (1,) # GL_MAP2_VERTEX_3 _m[0x0DB8] = (1,) # GL_MAP2_VERTEX_4 _m[0x8670] = (4,) # GL_MAP2_VERTEX_ATTRIB0_4_NV _m[0x867A] = (4,) # GL_MAP2_VERTEX_ATTRIB10_4_NV _m[0x867B] = (4,) # GL_MAP2_VERTEX_ATTRIB11_4_NV _m[0x867C] = (4,) # GL_MAP2_VERTEX_ATTRIB12_4_NV _m[0x867D] = (4,) # GL_MAP2_VERTEX_ATTRIB13_4_NV _m[0x867E] = (4,) # GL_MAP2_VERTEX_ATTRIB14_4_NV _m[0x867F] = (4,) # GL_MAP2_VERTEX_ATTRIB15_4_NV _m[0x8671] = (4,) # GL_MAP2_VERTEX_ATTRIB1_4_NV _m[0x8672] = (4,) # GL_MAP2_VERTEX_ATTRIB2_4_NV _m[0x8673] = (4,) # GL_MAP2_VERTEX_ATTRIB3_4_NV _m[0x8674] = (4,) # GL_MAP2_VERTEX_ATTRIB4_4_NV _m[0x8675] = (4,) # GL_MAP2_VERTEX_ATTRIB5_4_NV _m[0x8676] = (4,) # GL_MAP2_VERTEX_ATTRIB6_4_NV _m[0x8677] = (4,) # GL_MAP2_VERTEX_ATTRIB7_4_NV _m[0x8678] = (4,) # GL_MAP2_VERTEX_ATTRIB8_4_NV _m[0x8679] = (4,) # GL_MAP2_VERTEX_ATTRIB9_4_NV _m[0x0D10] = (1,) # GL_MAP_COLOR _m[0x0D11] = (1,) # GL_MAP_STENCIL _m[0x8844] = (1,) # GL_MATRIX_INDEX_ARRAY_ARB _m[0x8849] = (1,) # GL_MATRIX_INDEX_ARRAY_POINTER_ARB _m[0x8846] = (1,) # GL_MATRIX_INDEX_ARRAY_SIZE_ARB _m[0x8848] = (1,) # GL_MATRIX_INDEX_ARRAY_STRIDE_ARB _m[0x8847] = (1,) # GL_MATRIX_INDEX_ARRAY_TYPE_ARB _m[0x0BA0] = (1,) # GL_MATRIX_MODE _m[0x8840] = (1,) # GL_MATRIX_PALETTE_ARB _m[0x92FF] = (1,) # GL_MATRIX_STRIDE _m[0x8073] = (1,) # GL_MAX_3D_TEXTURE_SIZE _m[0x8073] = (1,) # GL_MAX_3D_TEXTURE_SIZE_EXT _m[0x8138] = (1,) # GL_MAX_4D_TEXTURE_SIZE_SGIS _m[0x8405] = (1,) # GL_MAX_ACTIVE_LIGHTS_SGIX _m[0x88FF] = (1,) # GL_MAX_ARRAY_TEXTURE_LAYERS _m[0x88FF] = (1,) # GL_MAX_ARRAY_TEXTURE_LAYERS_EXT _m[0x8360] = (1,) # GL_MAX_ASYNC_DRAW_PIXELS_SGIX _m[0x832D] = (1,) # GL_MAX_ASYNC_HISTOGRAM_SGIX _m[0x8361] = (1,) # GL_MAX_ASYNC_READ_PIXELS_SGIX _m[0x835F] = (1,) # GL_MAX_ASYNC_TEX_IMAGE_SGIX _m[0x92DC] = (1,) # GL_MAX_ATOMIC_COUNTER_BUFFER_BINDINGS _m[0x92D8] = (1,) # GL_MAX_ATOMIC_COUNTER_BUFFER_SIZE _m[0x0D35] = (1,) # GL_MAX_ATTRIB_STACK_DEPTH _m[0x8DED] = (1,) # GL_MAX_BINDABLE_UNIFORM_SIZE_EXT _m[0x0D3B] = (1,) # GL_MAX_CLIENT_ATTRIB_STACK_DEPTH _m[0x8177] = (1,) # GL_MAX_CLIPMAP_DEPTH_SGIX _m[0x8178] = (1,) # GL_MAX_CLIPMAP_VIRTUAL_DEPTH_SGIX _m[0x0D32] = (1,) # GL_MAX_CLIP_DISTANCES _m[0x0D32] = (1,) # GL_MAX_CLIP_PLANES _m[0x8CDF] = (1,) # GL_MAX_COLOR_ATTACHMENTS _m[0x8CDF] = (1,) # GL_MAX_COLOR_ATTACHMENTS_EXT _m[0x80B3] = (1,) # GL_MAX_COLOR_MATRIX_STACK_DEPTH _m[0x80B3] = (1,) # GL_MAX_COLOR_MATRIX_STACK_DEPTH_SGI _m[0x910E] = (1,) # GL_MAX_COLOR_TEXTURE_SAMPLES _m[0x92D7] = (1,) # GL_MAX_COMBINED_ATOMIC_COUNTERS _m[0x92D1] = (1,) # GL_MAX_COMBINED_ATOMIC_COUNTER_BUFFERS _m[0x8266] = (1,) # GL_MAX_COMBINED_COMPUTE_UNIFORM_COMPONENTS _m[0x8A33] = (1,) # GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS _m[0x8A32] = (1,) # GL_MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS _m[0x90CF] = (1,) # GL_MAX_COMBINED_IMAGE_UNIFORMS _m[0x8F39] = (1,) # GL_MAX_COMBINED_IMAGE_UNITS_AND_FRAGMENT_OUTPUTS _m[0x8F39] = (1,) # GL_MAX_COMBINED_IMAGE_UNITS_AND_FRAGMENT_OUTPUTS_EXT _m[0x90DC] = (1,) # GL_MAX_COMBINED_SHADER_STORAGE_BLOCKS _m[0x8E1E] = (1,) # GL_MAX_COMBINED_TESS_CONTROL_UNIFORM_COMPONENTS _m[0x8E1F] = (1,) # GL_MAX_COMBINED_TESS_EVALUATION_UNIFORM_COMPONENTS _m[0x8B4D] = (1,) # GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS _m[0x8B4D] = (1,) # GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS_ARB _m[0x8A2E] = (1,) # GL_MAX_COMBINED_UNIFORM_BLOCKS _m[0x8A31] = (1,) # GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS _m[0x8265] = (1,) # GL_MAX_COMPUTE_ATOMIC_COUNTERS _m[0x8264] = (1,) # GL_MAX_COMPUTE_ATOMIC_COUNTER_BUFFERS _m[0x91BD] = (1,) # GL_MAX_COMPUTE_IMAGE_UNIFORMS _m[0x90DB] = (1,) # GL_MAX_COMPUTE_SHADER_STORAGE_BLOCKS _m[0x8262] = (1,) # GL_MAX_COMPUTE_SHARED_MEMORY_SIZE _m[0x91BC] = (1,) # GL_MAX_COMPUTE_TEXTURE_IMAGE_UNITS _m[0x91BB] = (1,) # GL_MAX_COMPUTE_UNIFORM_BLOCKS _m[0x8263] = (1,) # GL_MAX_COMPUTE_UNIFORM_COMPONENTS _m[0x91BE] = (3,) # GL_MAX_COMPUTE_WORK_GROUP_COUNT _m[0x91BF] = (3,) # GL_MAX_COMPUTE_WORK_GROUP_SIZE _m[0x801B] = (1,) # GL_MAX_CONVOLUTION_HEIGHT _m[0x801A] = (1,) # GL_MAX_CONVOLUTION_WIDTH _m[0x851C] = (1,) # GL_MAX_CUBE_MAP_TEXTURE_SIZE _m[0x851C] = (1,) # GL_MAX_CUBE_MAP_TEXTURE_SIZE_ARB _m[0x826C] = (1,) # GL_MAX_DEBUG_GROUP_STACK_DEPTH _m[0x9144] = (1,) # GL_MAX_DEBUG_LOGGED_MESSAGES _m[0x9144] = (1,) # GL_MAX_DEBUG_LOGGED_MESSAGES_AMD _m[0x9144] = (1,) # GL_MAX_DEBUG_LOGGED_MESSAGES_ARB _m[0x9143] = (1,) # GL_MAX_DEBUG_MESSAGE_LENGTH _m[0x9143] = (1,) # GL_MAX_DEBUG_MESSAGE_LENGTH_AMD _m[0x9143] = (1,) # GL_MAX_DEBUG_MESSAGE_LENGTH_ARB _m[0x90D1] = (1,) # GL_MAX_DEEP_3D_TEXTURE_DEPTH_NV _m[0x90D0] = (2,) # GL_MAX_DEEP_3D_TEXTURE_WIDTH_HEIGHT_NV _m[0x910F] = (1,) # GL_MAX_DEPTH_TEXTURE_SAMPLES _m[0x8824] = (1,) # GL_MAX_DRAW_BUFFERS _m[0x8824] = (1,) # GL_MAX_DRAW_BUFFERS_ARB _m[0x8824] = (1,) # GL_MAX_DRAW_BUFFERS_ATI _m[0x88FC] = (1,) # GL_MAX_DUAL_SOURCE_DRAW_BUFFERS _m[0x80E9] = (1,) # GL_MAX_ELEMENTS_INDICES _m[0x80E8] = (1,) # GL_MAX_ELEMENTS_VERTICES _m[0x8D6B] = (1,) # GL_MAX_ELEMENT_INDEX _m[0x0D30] = (1,) # GL_MAX_EVAL_ORDER _m[0x812C] = (1,) # GL_MAX_FOG_FUNC_POINTS_SGIS _m[0x92D6] = (1,) # GL_MAX_FRAGMENT_ATOMIC_COUNTERS _m[0x92D0] = (1,) # GL_MAX_FRAGMENT_ATOMIC_COUNTER_BUFFERS _m[0x8DE3] = (1,) # GL_MAX_FRAGMENT_BINDABLE_UNIFORMS_EXT _m[0x90CE] = (1,) # GL_MAX_FRAGMENT_IMAGE_UNIFORMS _m[0x8E5C] = (1,) # GL_MAX_FRAGMENT_INTERPOLATION_OFFSET _m[0x8E5C] = (1,) # GL_MAX_FRAGMENT_INTERPOLATION_OFFSET_NV _m[0x8404] = (1,) # GL_MAX_FRAGMENT_LIGHTS_SGIX _m[0x8868] = (1,) # GL_MAX_FRAGMENT_PROGRAM_LOCAL_PARAMETERS_NV _m[0x90DA] = (1,) # GL_MAX_FRAGMENT_SHADER_STORAGE_BLOCKS _m[0x8A2D] = (1,) # GL_MAX_FRAGMENT_UNIFORM_BLOCKS _m[0x8B49] = (1,) # GL_MAX_FRAGMENT_UNIFORM_COMPONENTS _m[0x8B49] = (1,) # GL_MAX_FRAGMENT_UNIFORM_COMPONENTS_ARB _m[0x8DFD] = (1,) # GL_MAX_FRAGMENT_UNIFORM_VECTORS _m[0x9316] = (1,) # GL_MAX_FRAMEBUFFER_HEIGHT _m[0x9317] = (1,) # GL_MAX_FRAMEBUFFER_LAYERS _m[0x9318] = (1,) # GL_MAX_FRAMEBUFFER_SAMPLES _m[0x9315] = (1,) # GL_MAX_FRAMEBUFFER_WIDTH _m[0x818D] = (1,) # GL_MAX_FRAMEZOOM_FACTOR_SGIX _m[0x854D] = (1,) # GL_MAX_GENERAL_COMBINERS_NV _m[0x92D5] = (1,) # GL_MAX_GEOMETRY_ATOMIC_COUNTERS _m[0x92CF] = (1,) # GL_MAX_GEOMETRY_ATOMIC_COUNTER_BUFFERS _m[0x8DE4] = (1,) # GL_MAX_GEOMETRY_BINDABLE_UNIFORMS_EXT _m[0x90CD] = (1,) # GL_MAX_GEOMETRY_IMAGE_UNIFORMS _m[0x8DE0] = (1,) # GL_MAX_GEOMETRY_OUTPUT_VERTICES _m[0x8DE0] = (1,) # GL_MAX_GEOMETRY_OUTPUT_VERTICES_ARB _m[0x8DE0] = (1,) # GL_MAX_GEOMETRY_OUTPUT_VERTICES_EXT _m[0x8E5A] = (1,) # GL_MAX_GEOMETRY_PROGRAM_INVOCATIONS_NV _m[0x8E5A] = (1,) # GL_MAX_GEOMETRY_SHADER_INVOCATIONS _m[0x90D7] = (1,) # GL_MAX_GEOMETRY_SHADER_STORAGE_BLOCKS _m[0x8C29] = (1,) # GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS _m[0x8C29] = (1,) # GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS_ARB _m[0x8C29] = (1,) # GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS_EXT _m[0x8DE1] = (1,) # GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS _m[0x8DE1] = (1,) # GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS_ARB _m[0x8DE1] = (1,) # GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS_EXT _m[0x8A2C] = (1,) # GL_MAX_GEOMETRY_UNIFORM_BLOCKS _m[0x8DDF] = (1,) # GL_MAX_GEOMETRY_UNIFORM_COMPONENTS _m[0x8DDF] = (1,) # GL_MAX_GEOMETRY_UNIFORM_COMPONENTS_ARB _m[0x8DDF] = (1,) # GL_MAX_GEOMETRY_UNIFORM_COMPONENTS_EXT _m[0x8DDD] = (1,) # GL_MAX_GEOMETRY_VARYING_COMPONENTS_ARB _m[0x8DDD] = (1,) # GL_MAX_GEOMETRY_VARYING_COMPONENTS_EXT _m[0x906D] = (1,) # GL_MAX_IMAGE_SAMPLES _m[0x906D] = (1,) # GL_MAX_IMAGE_SAMPLES_EXT _m[0x8F38] = (1,) # GL_MAX_IMAGE_UNITS _m[0x8F38] = (1,) # GL_MAX_IMAGE_UNITS_EXT _m[0x9110] = (1,) # GL_MAX_INTEGER_SAMPLES _m[0x82E8] = (1,) # GL_MAX_LABEL_LENGTH _m[0x0D31] = (1,) # GL_MAX_LIGHTS _m[0x0B31] = (1,) # GL_MAX_LIST_NESTING _m[0x86D6] = (1,) # GL_MAX_MAP_TESSELLATION_NV _m[0x8841] = (1,) # GL_MAX_MATRIX_PALETTE_STACK_DEPTH_ARB _m[0x0D36] = (1,) # GL_MAX_MODELVIEW_STACK_DEPTH _m[0x8E11] = (1,) # GL_MAX_MULTISAMPLE_COVERAGE_MODES_NV _m[0x92F6] = (1,) # GL_MAX_NAME_LENGTH _m[0x0D37] = (1,) # GL_MAX_NAME_STACK_DEPTH _m[0x92F7] = (1,) # GL_MAX_NUM_ACTIVE_VARIABLES _m[0x92F8] = (1,) # GL_MAX_NUM_COMPATIBLE_SUBROUTINES _m[0x87CA] = (1,) # GL_MAX_OPTIMIZED_VERTEX_SHADER_INSTRUCTIONS_EXT _m[0x87CE] = (1,) # GL_MAX_OPTIMIZED_VERTEX_SHADER_LOCALS_EXT _m[0x87CC] = (1,) # GL_MAX_OPTIMIZED_VERTEX_SHADER_LOCAL_CONSTANTS_EXT _m[0x87CB] = (1,) # GL_MAX_OPTIMIZED_VERTEX_SHADER_VARIANTS_EXT _m[0x8842] = (1,) # GL_MAX_PALETTE_MATRICES_ARB _m[0x8E7D] = (1,) # GL_MAX_PATCH_VERTICES _m[0x0D34] = (1,) # GL_MAX_PIXEL_MAP_TABLE _m[0x8337] = (1,) # GL_MAX_PIXEL_TRANSFORM_2D_STACK_DEPTH_EXT _m[0x87F1] = (1,) # GL_MAX_PN_TRIANGLES_TESSELATION_LEVEL_ATI _m[0x88B1] = (1,) # GL_MAX_PROGRAM_ADDRESS_REGISTERS_ARB _m[0x880B] = (1,) # GL_MAX_PROGRAM_ALU_INSTRUCTIONS_ARB _m[0x88AD] = (1,) # GL_MAX_PROGRAM_ATTRIBS_ARB _m[0x88F5] = (1,) # GL_MAX_PROGRAM_CALL_DEPTH_NV _m[0x88B5] = (1,) # GL_MAX_PROGRAM_ENV_PARAMETERS_ARB _m[0x88F4] = (1,) # GL_MAX_PROGRAM_EXEC_INSTRUCTIONS_NV _m[0x88F6] = (1,) # GL_MAX_PROGRAM_IF_DEPTH_NV _m[0x88A1] = (1,) # GL_MAX_PROGRAM_INSTRUCTIONS_ARB _m[0x88B4] = (1,) # GL_MAX_PROGRAM_LOCAL_PARAMETERS_ARB _m[0x88F8] = (1,) # GL_MAX_PROGRAM_LOOP_COUNT_NV _m[0x88F7] = (1,) # GL_MAX_PROGRAM_LOOP_DEPTH_NV _m[0x862F] = (1,) # GL_MAX_PROGRAM_MATRICES_ARB _m[0x862E] = (1,) # GL_MAX_PROGRAM_MATRIX_STACK_DEPTH_ARB _m[0x88B3] = (1,) # GL_MAX_PROGRAM_NATIVE_ADDRESS_REGISTERS_ARB _m[0x880E] = (1,) # GL_MAX_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB _m[0x88AF] = (1,) # GL_MAX_PROGRAM_NATIVE_ATTRIBS_ARB _m[0x88A3] = (1,) # GL_MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB _m[0x88AB] = (1,) # GL_MAX_PROGRAM_NATIVE_PARAMETERS_ARB _m[0x88A7] = (1,) # GL_MAX_PROGRAM_NATIVE_TEMPORARIES_ARB _m[0x8810] = (1,) # GL_MAX_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB _m[0x880F] = (1,) # GL_MAX_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB _m[0x8C27] = (1,) # GL_MAX_PROGRAM_OUTPUT_VERTICES_NV _m[0x88A9] = (1,) # GL_MAX_PROGRAM_PARAMETERS_ARB _m[0x88A5] = (1,) # GL_MAX_PROGRAM_TEMPORARIES_ARB _m[0x8905] = (1,) # GL_MAX_PROGRAM_TEXEL_OFFSET _m[0x8F9F] = (1,) # GL_MAX_PROGRAM_TEXTURE_GATHER_COMPONENTS_ARB _m[0x8E5F] = (1,) # GL_MAX_PROGRAM_TEXTURE_GATHER_OFFSET_ARB _m[0x8E5F] = (1,) # GL_MAX_PROGRAM_TEXTURE_GATHER_OFFSET_NV _m[0x880D] = (1,) # GL_MAX_PROGRAM_TEX_INDIRECTIONS_ARB _m[0x880C] = (1,) # GL_MAX_PROGRAM_TEX_INSTRUCTIONS_ARB _m[0x8C28] = (1,) # GL_MAX_PROGRAM_TOTAL_OUTPUT_COMPONENTS_NV _m[0x0D38] = (1,) # GL_MAX_PROJECTION_STACK_DEPTH _m[0x86D7] = (1,) # GL_MAX_RATIONAL_EVAL_ORDER_NV _m[0x84F8] = (1,) # GL_MAX_RECTANGLE_TEXTURE_SIZE _m[0x84F8] = (1,) # GL_MAX_RECTANGLE_TEXTURE_SIZE_ARB _m[0x84F8] = (1,) # GL_MAX_RECTANGLE_TEXTURE_SIZE_NV _m[0x84E8] = (1,) # GL_MAX_RENDERBUFFER_SIZE _m[0x84E8] = (1,) # GL_MAX_RENDERBUFFER_SIZE_EXT _m[0x8D57] = (1,) # GL_MAX_SAMPLES _m[0x8D57] = (1,) # GL_MAX_SAMPLES_EXT _m[0x8E59] = (1,) # GL_MAX_SAMPLE_MASK_WORDS _m[0x8E59] = (1,) # GL_MAX_SAMPLE_MASK_WORDS_NV _m[0x9111] = (1,) # GL_MAX_SERVER_WAIT_TIMEOUT _m[0x90DE] = (1,) # GL_MAX_SHADER_STORAGE_BLOCK_SIZE _m[0x90DD] = (1,) # GL_MAX_SHADER_STORAGE_BUFFER_BINDINGS _m[0x8504] = (1,) # GL_MAX_SHININESS_NV _m[0x919A] = (1,) # GL_MAX_SPARSE_ARRAY_TEXTURE_LAYERS _m[0x8505] = (1,) # GL_MAX_SPOT_EXPONENT_NV _m[0x8DE7] = (1,) # GL_MAX_SUBROUTINES _m[0x8DE8] = (1,) # GL_MAX_SUBROUTINE_UNIFORM_LOCATIONS _m[0x92D3] = (1,) # GL_MAX_TESS_CONTROL_ATOMIC_COUNTERS _m[0x92CD] = (1,) # GL_MAX_TESS_CONTROL_ATOMIC_COUNTER_BUFFERS _m[0x90CB] = (1,) # GL_MAX_TESS_CONTROL_IMAGE_UNIFORMS _m[0x886C] = (1,) # GL_MAX_TESS_CONTROL_INPUT_COMPONENTS _m[0x8E83] = (1,) # GL_MAX_TESS_CONTROL_OUTPUT_COMPONENTS _m[0x90D8] = (1,) # GL_MAX_TESS_CONTROL_SHADER_STORAGE_BLOCKS _m[0x8E81] = (1,) # GL_MAX_TESS_CONTROL_TEXTURE_IMAGE_UNITS _m[0x8E85] = (1,) # GL_MAX_TESS_CONTROL_TOTAL_OUTPUT_COMPONENTS _m[0x8E89] = (1,) # GL_MAX_TESS_CONTROL_UNIFORM_BLOCKS _m[0x8E7F] = (1,) # GL_MAX_TESS_CONTROL_UNIFORM_COMPONENTS _m[0x92D4] = (1,) # GL_MAX_TESS_EVALUATION_ATOMIC_COUNTERS _m[0x92CE] = (1,) # GL_MAX_TESS_EVALUATION_ATOMIC_COUNTER_BUFFERS _m[0x90CC] = (1,) # GL_MAX_TESS_EVALUATION_IMAGE_UNIFORMS _m[0x886D] = (1,) # GL_MAX_TESS_EVALUATION_INPUT_COMPONENTS _m[0x8E86] = (1,) # GL_MAX_TESS_EVALUATION_OUTPUT_COMPONENTS _m[0x90D9] = (1,) # GL_MAX_TESS_EVALUATION_SHADER_STORAGE_BLOCKS _m[0x8E82] = (1,) # GL_MAX_TESS_EVALUATION_TEXTURE_IMAGE_UNITS _m[0x8E8A] = (1,) # GL_MAX_TESS_EVALUATION_UNIFORM_BLOCKS _m[0x8E80] = (1,) # GL_MAX_TESS_EVALUATION_UNIFORM_COMPONENTS _m[0x8E7E] = (1,) # GL_MAX_TESS_GEN_LEVEL _m[0x8E84] = (1,) # GL_MAX_TESS_PATCH_COMPONENTS _m[0x8C2B] = (1,) # GL_MAX_TEXTURE_BUFFER_SIZE _m[0x8C2B] = (1,) # GL_MAX_TEXTURE_BUFFER_SIZE_ARB _m[0x8C2B] = (1,) # GL_MAX_TEXTURE_BUFFER_SIZE_EXT _m[0x8871] = (1,) # GL_MAX_TEXTURE_COORDS _m[0x8871] = (1,) # GL_MAX_TEXTURE_COORDS_ARB _m[0x8871] = (1,) # GL_MAX_TEXTURE_COORDS_NV _m[0x8872] = (1,) # GL_MAX_TEXTURE_IMAGE_UNITS _m[0x8872] = (1,) # GL_MAX_TEXTURE_IMAGE_UNITS_ARB _m[0x8872] = (1,) # GL_MAX_TEXTURE_IMAGE_UNITS_NV _m[0x84FD] = (1,) # GL_MAX_TEXTURE_LOD_BIAS _m[0x84FD] = (1,) # GL_MAX_TEXTURE_LOD_BIAS_EXT _m[0x84FF] = (1,) # GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT _m[0x0D33] = (1,) # GL_MAX_TEXTURE_SIZE _m[0x0D39] = (1,) # GL_MAX_TEXTURE_STACK_DEPTH _m[0x84E2] = (1,) # GL_MAX_TEXTURE_UNITS _m[0x84E2] = (1,) # GL_MAX_TEXTURE_UNITS_ARB _m[0x862F] = (1,) # GL_MAX_TRACK_MATRICES_NV _m[0x862E] = (1,) # GL_MAX_TRACK_MATRIX_STACK_DEPTH_NV _m[0x8E70] = (1,) # GL_MAX_TRANSFORM_FEEDBACK_BUFFERS _m[0x8A30] = (1,) # GL_MAX_UNIFORM_BLOCK_SIZE _m[0x8A2F] = (1,) # GL_MAX_UNIFORM_BUFFER_BINDINGS _m[0x826E] = (1,) # GL_MAX_UNIFORM_LOCATIONS _m[0x8B4B] = (1,) # GL_MAX_VARYING_COMPONENTS _m[0x8B4B] = (1,) # GL_MAX_VARYING_COMPONENTS_EXT _m[0x8B4B] = (1,) # GL_MAX_VARYING_FLOATS _m[0x8B4B] = (1,) # GL_MAX_VARYING_FLOATS_ARB _m[0x8DFC] = (1,) # GL_MAX_VARYING_VECTORS _m[0x8520] = (1,) # GL_MAX_VERTEX_ARRAY_RANGE_ELEMENT_NV _m[0x92D2] = (1,) # GL_MAX_VERTEX_ATOMIC_COUNTERS _m[0x92CC] = (1,) # GL_MAX_VERTEX_ATOMIC_COUNTER_BUFFERS _m[0x8869] = (1,) # GL_MAX_VERTEX_ATTRIBS _m[0x8869] = (1,) # GL_MAX_VERTEX_ATTRIBS_ARB _m[0x82DA] = (1,) # GL_MAX_VERTEX_ATTRIB_BINDINGS _m[0x82D9] = (1,) # GL_MAX_VERTEX_ATTRIB_RELATIVE_OFFSET _m[0x8DE2] = (1,) # GL_MAX_VERTEX_BINDABLE_UNIFORMS_EXT _m[0x90CA] = (1,) # GL_MAX_VERTEX_IMAGE_UNIFORMS _m[0x87C5] = (1,) # GL_MAX_VERTEX_SHADER_INSTRUCTIONS_EXT _m[0x87C7] = (1,) # GL_MAX_VERTEX_SHADER_INVARIANTS_EXT _m[0x87C9] = (1,) # GL_MAX_VERTEX_SHADER_LOCALS_EXT _m[0x87C8] = (1,) # GL_MAX_VERTEX_SHADER_LOCAL_CONSTANTS_EXT _m[0x90D6] = (1,) # GL_MAX_VERTEX_SHADER_STORAGE_BLOCKS _m[0x87C6] = (1,) # GL_MAX_VERTEX_SHADER_VARIANTS_EXT _m[0x8E71] = (1,) # GL_MAX_VERTEX_STREAMS _m[0x876B] = (1,) # GL_MAX_VERTEX_STREAMS_ATI _m[0x8B4C] = (1,) # GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS _m[0x8B4C] = (1,) # GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB _m[0x8A2B] = (1,) # GL_MAX_VERTEX_UNIFORM_BLOCKS _m[0x8B4A] = (1,) # GL_MAX_VERTEX_UNIFORM_COMPONENTS _m[0x8B4A] = (1,) # GL_MAX_VERTEX_UNIFORM_COMPONENTS_ARB _m[0x8DFB] = (1,) # GL_MAX_VERTEX_UNIFORM_VECTORS _m[0x86A4] = (1,) # GL_MAX_VERTEX_UNITS_ARB _m[0x8DDE] = (1,) # GL_MAX_VERTEX_VARYING_COMPONENTS_ARB _m[0x8DDE] = (1,) # GL_MAX_VERTEX_VARYING_COMPONENTS_EXT _m[0x825B] = (1,) # GL_MAX_VIEWPORTS _m[0x0D3A] = (2,) # GL_MAX_VIEWPORT_DIMS _m[0x802E] = (1,) # GL_MINMAX _m[0x802E] = (1,) # GL_MINMAX_EXT _m[0x802F] = (1,) # GL_MINMAX_FORMAT _m[0x802F] = (1,) # GL_MINMAX_FORMAT_EXT _m[0x8030] = (1,) # GL_MINMAX_SINK _m[0x8030] = (1,) # GL_MINMAX_SINK_EXT _m[0x821C] = (1,) # GL_MINOR_VERSION _m[0x8904] = (1,) # GL_MIN_PROGRAM_TEXEL_OFFSET _m[0x0BA6] = (4,4) # GL_MODELVIEW0_MATRIX_EXT _m[0x0BA3] = (1,) # GL_MODELVIEW0_STACK_DEPTH_EXT _m[0x872A] = (4,4) # GL_MODELVIEW10_ARB _m[0x872B] = (4,4) # GL_MODELVIEW11_ARB _m[0x872C] = (4,4) # GL_MODELVIEW12_ARB _m[0x872D] = (4,4) # GL_MODELVIEW13_ARB _m[0x872E] = (4,4) # GL_MODELVIEW14_ARB _m[0x872F] = (4,4) # GL_MODELVIEW15_ARB _m[0x8730] = (4,4) # GL_MODELVIEW16_ARB _m[0x8731] = (4,4) # GL_MODELVIEW17_ARB _m[0x8732] = (4,4) # GL_MODELVIEW18_ARB _m[0x8733] = (4,4) # GL_MODELVIEW19_ARB _m[0x8506] = (4,4) # GL_MODELVIEW1_MATRIX_EXT _m[0x8502] = (1,) # GL_MODELVIEW1_STACK_DEPTH_EXT _m[0x8734] = (4,4) # GL_MODELVIEW20_ARB _m[0x8735] = (4,4) # GL_MODELVIEW21_ARB _m[0x8736] = (4,4) # GL_MODELVIEW22_ARB _m[0x8737] = (4,4) # GL_MODELVIEW23_ARB _m[0x8738] = (4,4) # GL_MODELVIEW24_ARB _m[0x8739] = (4,4) # GL_MODELVIEW25_ARB _m[0x873A] = (4,4) # GL_MODELVIEW26_ARB _m[0x873B] = (4,4) # GL_MODELVIEW27_ARB _m[0x873C] = (4,4) # GL_MODELVIEW28_ARB _m[0x873D] = (4,4) # GL_MODELVIEW29_ARB _m[0x8722] = (4,4) # GL_MODELVIEW2_ARB _m[0x873E] = (4,4) # GL_MODELVIEW30_ARB _m[0x873F] = (4,4) # GL_MODELVIEW31_ARB _m[0x8723] = (4,4) # GL_MODELVIEW3_ARB _m[0x8724] = (4,4) # GL_MODELVIEW4_ARB _m[0x8725] = (4,4) # GL_MODELVIEW5_ARB _m[0x8726] = (4,4) # GL_MODELVIEW6_ARB _m[0x8727] = (4,4) # GL_MODELVIEW7_ARB _m[0x8728] = (4,4) # GL_MODELVIEW8_ARB _m[0x8729] = (4,4) # GL_MODELVIEW9_ARB _m[0x0BA6] = (4, 4) # GL_MODELVIEW_MATRIX _m[0x0BA3] = (1,) # GL_MODELVIEW_STACK_DEPTH _m[0x809D] = (1,) # GL_MULTISAMPLE _m[0x86B2] = (1,) # GL_MULTISAMPLE_3DFX _m[0x809D] = (1,) # GL_MULTISAMPLE_ARB _m[0x809D] = (1,) # GL_MULTISAMPLE_EXT _m[0x8534] = (1,) # GL_MULTISAMPLE_FILTER_HINT_NV _m[0x809D] = (1,) # GL_MULTISAMPLE_SGIS _m[0x8DEA] = (1,) # GL_NAMED_STRING_TYPE_ARB _m[0x92F9] = (1,) # GL_NAME_LENGTH _m[0x0D70] = (1,) # GL_NAME_STACK_DEPTH _m[0x0BA1] = (1,) # GL_NORMALIZE _m[0x8075] = (1,) # GL_NORMAL_ARRAY _m[0x8897] = (1,) # GL_NORMAL_ARRAY_BUFFER_BINDING _m[0x8897] = (1,) # GL_NORMAL_ARRAY_BUFFER_BINDING_ARB _m[0x8080] = (1,) # GL_NORMAL_ARRAY_COUNT_EXT _m[0x8075] = (1,) # GL_NORMAL_ARRAY_EXT _m[0x8F2C] = (1,) # GL_NORMAL_ARRAY_LENGTH_NV _m[0x808F] = (1,) # GL_NORMAL_ARRAY_POINTER _m[0x807F] = (1,) # GL_NORMAL_ARRAY_STRIDE _m[0x807F] = (1,) # GL_NORMAL_ARRAY_STRIDE_EXT _m[0x807E] = (1,) # GL_NORMAL_ARRAY_TYPE _m[0x807E] = (1,) # GL_NORMAL_ARRAY_TYPE_EXT _m[0x8261] = (1,) # GL_NO_RESET_NOTIFICATION_ARB _m[0x9304] = (1,) # GL_NUM_ACTIVE_VARIABLES _m[0x8E4A] = (1,) # GL_NUM_COMPATIBLE_SUBROUTINES _m[0x86A2] = (1,) # GL_NUM_COMPRESSED_TEXTURE_FORMATS _m[0x86A2] = (1,) # GL_NUM_COMPRESSED_TEXTURE_FORMATS_ARB _m[0x821D] = (1,) # GL_NUM_EXTENSIONS _m[0x896F] = (1,) # GL_NUM_FRAGMENT_CONSTANTS_ATI _m[0x896E] = (1,) # GL_NUM_FRAGMENT_REGISTERS_ATI _m[0x854E] = (1,) # GL_NUM_GENERAL_COMBINERS_NV _m[0x8973] = (1,) # GL_NUM_INPUT_INTERPOLATOR_COMPONENTS_ATI _m[0x8971] = (1,) # GL_NUM_INSTRUCTIONS_PER_PASS_ATI _m[0x8972] = (1,) # GL_NUM_INSTRUCTIONS_TOTAL_ATI _m[0x8974] = (1,) # GL_NUM_LOOPBACK_COMPONENTS_ATI _m[0x8970] = (1,) # GL_NUM_PASSES_ATI _m[0x87FE] = (1,) # GL_NUM_PROGRAM_BINARY_FORMATS _m[0x8DF9] = (1,) # GL_NUM_SHADER_BINARY_FORMATS _m[0x81F7] = (7,) # GL_OBJECT_LINE_SGIS _m[0x2501] = (4,) # GL_OBJECT_PLANE _m[0x81F5] = (4,) # GL_OBJECT_POINT_SGIS _m[0x8B4E] = (1,) # GL_OBJECT_TYPE_ARB _m[0x8165] = (1,) # GL_OCCLUSION_TEST_HP _m[0x8166] = (1,) # GL_OCCLUSION_TEST_RESULT_HP _m[0x92FC] = (1,) # GL_OFFSET _m[0x86E3] = (1,) # GL_OFFSET_TEXTURE_BIAS_NV _m[0x86E1] = (4,) # GL_OFFSET_TEXTURE_MATRIX_NV _m[0x86E2] = (1,) # GL_OFFSET_TEXTURE_SCALE_NV _m[0x8598] = (1,) # GL_OPERAND0_ALPHA _m[0x8590] = (1,) # GL_OPERAND0_RGB _m[0x8599] = (1,) # GL_OPERAND1_ALPHA _m[0x8591] = (1,) # GL_OPERAND1_RGB _m[0x859A] = (1,) # GL_OPERAND2_ALPHA _m[0x8592] = (1,) # GL_OPERAND2_RGB _m[0x859B] = (1,) # GL_OPERAND3_ALPHA_NV _m[0x8593] = (1,) # GL_OPERAND3_RGB_NV _m[0x0D05] = (1,) # GL_PACK_ALIGNMENT _m[0x800E] = (1,) # GL_PACK_CMYK_HINT_EXT _m[0x912D] = (1,) # GL_PACK_COMPRESSED_BLOCK_DEPTH _m[0x912C] = (1,) # GL_PACK_COMPRESSED_BLOCK_HEIGHT _m[0x912E] = (1,) # GL_PACK_COMPRESSED_BLOCK_SIZE _m[0x912B] = (1,) # GL_PACK_COMPRESSED_BLOCK_WIDTH _m[0x8131] = (1,) # GL_PACK_IMAGE_DEPTH_SGIS _m[0x806C] = (1,) # GL_PACK_IMAGE_HEIGHT _m[0x806C] = (1,) # GL_PACK_IMAGE_HEIGHT_EXT _m[0x8758] = (1,) # GL_PACK_INVERT_MESA _m[0x0D01] = (1,) # GL_PACK_LSB_FIRST _m[0x8984] = (1,) # GL_PACK_RESAMPLE_OML _m[0x842C] = (1,) # GL_PACK_RESAMPLE_SGIX _m[0x8A15] = (1,) # GL_PACK_ROW_BYTES_APPLE _m[0x0D02] = (1,) # GL_PACK_ROW_LENGTH _m[0x806B] = (1,) # GL_PACK_SKIP_IMAGES _m[0x806B] = (1,) # GL_PACK_SKIP_IMAGES_EXT _m[0x0D04] = (1,) # GL_PACK_SKIP_PIXELS _m[0x0D03] = (1,) # GL_PACK_SKIP_ROWS _m[0x8130] = (1,) # GL_PACK_SKIP_VOLUMES_SGIS _m[0x0D00] = (1,) # GL_PACK_SWAP_BYTES _m[0x83F4] = (1,) # GL_PARALLEL_ARRAYS_INTEL _m[0x8E73] = (1,) # GL_PATCH_DEFAULT_INNER_LEVEL _m[0x8E74] = (1,) # GL_PATCH_DEFAULT_OUTER_LEVEL _m[0x8E72] = (1,) # GL_PATCH_VERTICES _m[0x90AC] = (1,) # GL_PATH_FOG_GEN_MODE_NV _m[0x90BD] = (1,) # GL_PATH_STENCIL_DEPTH_OFFSET_FACTOR_NV _m[0x90BE] = (1,) # GL_PATH_STENCIL_DEPTH_OFFSET_UNITS_NV _m[0x90B7] = (1,) # GL_PATH_STENCIL_FUNC_NV _m[0x90B8] = (1,) # GL_PATH_STENCIL_REF_NV _m[0x90B9] = (1,) # GL_PATH_STENCIL_VALUE_MASK_NV _m[0x0C50] = (1,) # GL_PERSPECTIVE_CORRECTION_HINT _m[0x8535] = (1,) # GL_PER_STAGE_CONSTANTS_NV _m[0x8864] = (1,) # GL_PIXEL_COUNTER_BITS_NV _m[0x8355] = (1,) # GL_PIXEL_FRAGMENT_ALPHA_SOURCE_SGIS _m[0x8354] = (1,) # GL_PIXEL_FRAGMENT_RGB_SOURCE_SGIS _m[0x8356] = (1,) # GL_PIXEL_GROUP_COLOR_SGIS _m[0x0C79] = (_L(0xCB9),) # GL_PIXEL_MAP_A_TO_A _m[0x0CB9] = (1,) # GL_PIXEL_MAP_A_TO_A_SIZE _m[0x0C78] = (_L(0xCB8),) # GL_PIXEL_MAP_B_TO_B _m[0x0CB8] = (1,) # GL_PIXEL_MAP_B_TO_B_SIZE _m[0x0C77] = (_L(0xCB7),) # GL_PIXEL_MAP_G_TO_G _m[0x0CB7] = (1,) # GL_PIXEL_MAP_G_TO_G_SIZE _m[0x0C75] = (_L(0xCB5),) # GL_PIXEL_MAP_I_TO_A _m[0x0CB5] = (1,) # GL_PIXEL_MAP_I_TO_A_SIZE _m[0x0C74] = (_L(0xCB4),) # GL_PIXEL_MAP_I_TO_B _m[0x0CB4] = (1,) # GL_PIXEL_MAP_I_TO_B_SIZE _m[0x0C73] = (_L(0xCB3),) # GL_PIXEL_MAP_I_TO_G _m[0x0CB3] = (1,) # GL_PIXEL_MAP_I_TO_G_SIZE _m[0x0C70] = (_L(0xCB0),) # GL_PIXEL_MAP_I_TO_I _m[0x0CB0] = (1,) # GL_PIXEL_MAP_I_TO_I_SIZE _m[0x0C72] = (_L(0xCB2),) # GL_PIXEL_MAP_I_TO_R _m[0x0CB2] = (1,) # GL_PIXEL_MAP_I_TO_R_SIZE _m[0x0C76] = (_L(0xCB6),) # GL_PIXEL_MAP_R_TO_R _m[0x0CB6] = (1,) # GL_PIXEL_MAP_R_TO_R_SIZE _m[0x0C71] = (_L(0xCB1),) # GL_PIXEL_MAP_S_TO_S _m[0x0CB1] = (1,) # GL_PIXEL_MAP_S_TO_S_SIZE _m[0x88ED] = (1,) # GL_PIXEL_PACK_BUFFER_BINDING _m[0x88ED] = (1,) # GL_PIXEL_PACK_BUFFER_BINDING_ARB _m[0x88ED] = (1,) # GL_PIXEL_PACK_BUFFER_BINDING_EXT _m[0x8353] = (1,) # GL_PIXEL_TEXTURE_SGIS _m[0x832B] = (1,) # GL_PIXEL_TEX_GEN_MODE_SGIX _m[0x8139] = (1,) # GL_PIXEL_TEX_GEN_SGIX _m[0x813E] = (1,) # GL_PIXEL_TILE_BEST_ALIGNMENT_SGIX _m[0x813F] = (1,) # GL_PIXEL_TILE_CACHE_INCREMENT_SGIX _m[0x8145] = (1,) # GL_PIXEL_TILE_CACHE_SIZE_SGIX _m[0x8144] = (1,) # GL_PIXEL_TILE_GRID_DEPTH_SGIX _m[0x8143] = (1,) # GL_PIXEL_TILE_GRID_HEIGHT_SGIX _m[0x8142] = (1,) # GL_PIXEL_TILE_GRID_WIDTH_SGIX _m[0x8141] = (1,) # GL_PIXEL_TILE_HEIGHT_SGIX _m[0x8140] = (1,) # GL_PIXEL_TILE_WIDTH_SGIX _m[0x8336] = (1,) # GL_PIXEL_TRANSFORM_2D_STACK_DEPTH_EXT _m[0x88EF] = (1,) # GL_PIXEL_UNPACK_BUFFER_BINDING _m[0x88EF] = (1,) # GL_PIXEL_UNPACK_BUFFER_BINDING_ARB _m[0x88EF] = (1,) # GL_PIXEL_UNPACK_BUFFER_BINDING_EXT _m[0x87F3] = (1,) # GL_PN_TRIANGLES_NORMAL_MODE_ATI _m[0x87F2] = (1,) # GL_PN_TRIANGLES_POINT_MODE_ATI _m[0x87F4] = (1,) # GL_PN_TRIANGLES_TESSELATION_LEVEL_ATI _m[0x8129] = (3,) # GL_POINT_DISTANCE_ATTENUATION _m[0x8129] = (3,) # GL_POINT_DISTANCE_ATTENUATION_ARB _m[0x8128] = (1,) # GL_POINT_FADE_THRESHOLD_SIZE _m[0x8128] = (1,) # GL_POINT_FADE_THRESHOLD_SIZE_ARB _m[0x8128] = (1,) # GL_POINT_FADE_THRESHOLD_SIZE_SGIS _m[0x0B11] = (1,) # GL_POINT_SIZE _m[0x0B13] = (1,) # GL_POINT_SIZE_GRANULARITY _m[0x8127] = (1,) # GL_POINT_SIZE_MAX _m[0x8127] = (1,) # GL_POINT_SIZE_MAX_ARB _m[0x8127] = (1,) # GL_POINT_SIZE_MAX_SGIS _m[0x8126] = (1,) # GL_POINT_SIZE_MIN _m[0x8126] = (1,) # GL_POINT_SIZE_MIN_ARB _m[0x8126] = (1,) # GL_POINT_SIZE_MIN_SGIS _m[0x0B12] = (2,) # GL_POINT_SIZE_RANGE _m[0x0B10] = (1,) # GL_POINT_SMOOTH _m[0x0C51] = (1,) # GL_POINT_SMOOTH_HINT _m[0x8861] = (1,) # GL_POINT_SPRITE _m[0x8861] = (1,) # GL_POINT_SPRITE_ARB _m[0x8CA0] = (1,) # GL_POINT_SPRITE_COORD_ORIGIN _m[0x8861] = (1,) # GL_POINT_SPRITE_NV _m[0x8863] = (1,) # GL_POINT_SPRITE_R_MODE_NV _m[0x0B40] = (2,) # GL_POLYGON_MODE _m[0x8039] = (1,) # GL_POLYGON_OFFSET_BIAS_EXT _m[0x8037] = (1,) # GL_POLYGON_OFFSET_EXT _m[0x8038] = (1,) # GL_POLYGON_OFFSET_FACTOR _m[0x8038] = (1,) # GL_POLYGON_OFFSET_FACTOR_EXT _m[0x8037] = (1,) # GL_POLYGON_OFFSET_FILL _m[0x2A02] = (1,) # GL_POLYGON_OFFSET_LINE _m[0x2A01] = (1,) # GL_POLYGON_OFFSET_POINT _m[0x2A00] = (1,) # GL_POLYGON_OFFSET_UNITS _m[0x0B41] = (1,) # GL_POLYGON_SMOOTH _m[0x0C53] = (1,) # GL_POLYGON_SMOOTH_HINT _m[0x0B42] = (1,) # GL_POLYGON_STIPPLE _m[0x1203] = (4,) # GL_POSITION _m[0x80BB] = (1,) # GL_POST_COLOR_MATRIX_ALPHA_BIAS _m[0x80BB] = (1,) # GL_POST_COLOR_MATRIX_ALPHA_BIAS_SGI _m[0x80B7] = (1,) # GL_POST_COLOR_MATRIX_ALPHA_SCALE _m[0x80B7] = (1,) # GL_POST_COLOR_MATRIX_ALPHA_SCALE_SGI _m[0x80BA] = (1,) # GL_POST_COLOR_MATRIX_BLUE_BIAS _m[0x80BA] = (1,) # GL_POST_COLOR_MATRIX_BLUE_BIAS_SGI _m[0x80B6] = (1,) # GL_POST_COLOR_MATRIX_BLUE_SCALE _m[0x80B6] = (1,) # GL_POST_COLOR_MATRIX_BLUE_SCALE_SGI _m[0x80D2] = (1,) # GL_POST_COLOR_MATRIX_COLOR_TABLE _m[0x80D2] = (1,) # GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI _m[0x80B9] = (1,) # GL_POST_COLOR_MATRIX_GREEN_BIAS _m[0x80B9] = (1,) # GL_POST_COLOR_MATRIX_GREEN_BIAS_SGI _m[0x80B5] = (1,) # GL_POST_COLOR_MATRIX_GREEN_SCALE _m[0x80B5] = (1,) # GL_POST_COLOR_MATRIX_GREEN_SCALE_SGI _m[0x80B8] = (1,) # GL_POST_COLOR_MATRIX_RED_BIAS _m[0x80B8] = (1,) # GL_POST_COLOR_MATRIX_RED_BIAS_SGI _m[0x80B4] = (1,) # GL_POST_COLOR_MATRIX_RED_SCALE _m[0x80B4] = (1,) # GL_POST_COLOR_MATRIX_RED_SCALE_SGI _m[0x8023] = (1,) # GL_POST_CONVOLUTION_ALPHA_BIAS _m[0x8023] = (1,) # GL_POST_CONVOLUTION_ALPHA_BIAS_EXT _m[0x801F] = (1,) # GL_POST_CONVOLUTION_ALPHA_SCALE _m[0x801F] = (1,) # GL_POST_CONVOLUTION_ALPHA_SCALE_EXT _m[0x8022] = (1,) # GL_POST_CONVOLUTION_BLUE_BIAS _m[0x8022] = (1,) # GL_POST_CONVOLUTION_BLUE_BIAS_EXT _m[0x801E] = (1,) # GL_POST_CONVOLUTION_BLUE_SCALE _m[0x801E] = (1,) # GL_POST_CONVOLUTION_BLUE_SCALE_EXT _m[0x80D1] = (1,) # GL_POST_CONVOLUTION_COLOR_TABLE _m[0x80D1] = (1,) # GL_POST_CONVOLUTION_COLOR_TABLE_SGI _m[0x8021] = (1,) # GL_POST_CONVOLUTION_GREEN_BIAS _m[0x8021] = (1,) # GL_POST_CONVOLUTION_GREEN_BIAS_EXT _m[0x801D] = (1,) # GL_POST_CONVOLUTION_GREEN_SCALE _m[0x801D] = (1,) # GL_POST_CONVOLUTION_GREEN_SCALE_EXT _m[0x8020] = (1,) # GL_POST_CONVOLUTION_RED_BIAS _m[0x8020] = (1,) # GL_POST_CONVOLUTION_RED_BIAS_EXT _m[0x801C] = (1,) # GL_POST_CONVOLUTION_RED_SCALE _m[0x801C] = (1,) # GL_POST_CONVOLUTION_RED_SCALE_EXT _m[0x817B] = (1,) # GL_POST_TEXTURE_FILTER_BIAS_RANGE_SGIX _m[0x8179] = (1,) # GL_POST_TEXTURE_FILTER_BIAS_SGIX _m[0x817C] = (1,) # GL_POST_TEXTURE_FILTER_SCALE_RANGE_SGIX _m[0x817A] = (1,) # GL_POST_TEXTURE_FILTER_SCALE_SGIX _m[0x86E4] = (1,) # GL_PREVIOUS_TEXTURE_INPUT_NV _m[0x8F9D] = (1,) # GL_PRIMITIVE_RESTART _m[0x8D69] = (1,) # GL_PRIMITIVE_RESTART_FIXED_INDEX _m[0x8F9E] = (1,) # GL_PRIMITIVE_RESTART_INDEX _m[0x8559] = (1,) # GL_PRIMITIVE_RESTART_INDEX_NV _m[0x8558] = (1,) # GL_PRIMITIVE_RESTART_NV _m[0x88B0] = (1,) # GL_PROGRAM_ADDRESS_REGISTERS_ARB _m[0x8805] = (1,) # GL_PROGRAM_ALU_INSTRUCTIONS_ARB _m[0x88AC] = (1,) # GL_PROGRAM_ATTRIBS_ARB _m[0x8741] = (1,) # GL_PROGRAM_BINARY_LENGTH _m[0x8677] = (1,) # GL_PROGRAM_BINDING_ARB _m[0x864B] = (1,) # GL_PROGRAM_ERROR_POSITION_ARB _m[0x864B] = (1,) # GL_PROGRAM_ERROR_POSITION_NV _m[0x8874] = (1,) # GL_PROGRAM_ERROR_STRING_ARB _m[0x8876] = (1,) # GL_PROGRAM_FORMAT_ARB _m[0x88A0] = (1,) # GL_PROGRAM_INSTRUCTIONS_ARB _m[0x8627] = (1,) # GL_PROGRAM_LENGTH_ARB _m[0x88B2] = (1,) # GL_PROGRAM_NATIVE_ADDRESS_REGISTERS_ARB _m[0x8808] = (1,) # GL_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB _m[0x88AE] = (1,) # GL_PROGRAM_NATIVE_ATTRIBS_ARB _m[0x88A2] = (1,) # GL_PROGRAM_NATIVE_INSTRUCTIONS_ARB _m[0x88AA] = (1,) # GL_PROGRAM_NATIVE_PARAMETERS_ARB _m[0x88A6] = (1,) # GL_PROGRAM_NATIVE_TEMPORARIES_ARB _m[0x880A] = (1,) # GL_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB _m[0x8809] = (1,) # GL_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB _m[0x8B40] = (1,) # GL_PROGRAM_OBJECT_ARB _m[0x88A8] = (1,) # GL_PROGRAM_PARAMETERS_ARB _m[0x825A] = (1,) # GL_PROGRAM_PIPELINE_BINDING _m[0x8642] = (1,) # GL_PROGRAM_POINT_SIZE _m[0x8642] = (1,) # GL_PROGRAM_POINT_SIZE_ARB _m[0x8642] = (1,) # GL_PROGRAM_POINT_SIZE_EXT _m[0x8647] = (1,) # GL_PROGRAM_RESIDENT_NV _m[0x8628] = (1,) # GL_PROGRAM_STRING_ARB _m[0x8646] = (1,) # GL_PROGRAM_TARGET_NV _m[0x88A4] = (1,) # GL_PROGRAM_TEMPORARIES_ARB _m[0x8807] = (1,) # GL_PROGRAM_TEX_INDIRECTIONS_ARB _m[0x8806] = (1,) # GL_PROGRAM_TEX_INSTRUCTIONS_ARB _m[0x88B6] = (1,) # GL_PROGRAM_UNDER_NATIVE_LIMITS_ARB _m[0x0BA7] = (4, 4) # GL_PROJECTION_MATRIX _m[0x0BA4] = (1,) # GL_PROJECTION_STACK_DEPTH _m[0x8E4F] = (1,) # GL_PROVOKING_VERTEX _m[0x8E4F] = (1,) # GL_PROVOKING_VERTEX_EXT _m[0x1209] = (1,) # GL_QUADRATIC_ATTENUATION _m[0x8E4C] = (1,) # GL_QUADS_FOLLOW_PROVOKING_VERTEX_CONVENTION _m[0x8E4C] = (1,) # GL_QUADS_FOLLOW_PROVOKING_VERTEX_CONVENTION_EXT _m[0x9193] = (1,) # GL_QUERY_BUFFER_BINDING_AMD _m[0x8864] = (1,) # GL_QUERY_COUNTER_BITS _m[0x8864] = (1,) # GL_QUERY_COUNTER_BITS_ARB _m[0x8866] = (1,) # GL_QUERY_RESULT _m[0x8867] = (1,) # GL_QUERY_RESULT_AVAILABLE _m[0x8C89] = (1,) # GL_RASTERIZER_DISCARD _m[0x19262] = (1,) # GL_RASTER_POSITION_UNCLIPPED_IBM _m[0x0C02] = (1,) # GL_READ_BUFFER _m[0x0C02] = (1,) # GL_READ_BUFFER_EXT _m[0x0C02] = (1,) # GL_READ_BUFFER_NV _m[0x8CA8] = (1,) # GL_READ_FRAMEBUFFER _m[0x8CAA] = (1,) # GL_READ_FRAMEBUFFER_BINDING _m[0x887B] = (1,) # GL_READ_PIXEL_DATA_RANGE_LENGTH_NV _m[0x0D15] = (1,) # GL_RED_BIAS _m[0x0D52] = (1,) # GL_RED_BITS _m[0x8564] = (1,) # GL_RED_MAX_CLAMP_INGR _m[0x8560] = (1,) # GL_RED_MIN_CLAMP_INGR _m[0x0D14] = (1,) # GL_RED_SCALE _m[0x930B] = (1,) # GL_REFERENCED_BY_COMPUTE_SHADER _m[0x930A] = (1,) # GL_REFERENCED_BY_FRAGMENT_SHADER _m[0x9309] = (1,) # GL_REFERENCED_BY_GEOMETRY_SHADER _m[0x9307] = (1,) # GL_REFERENCED_BY_TESS_CONTROL_SHADER _m[0x9308] = (1,) # GL_REFERENCED_BY_TESS_EVALUATION_SHADER _m[0x9306] = (1,) # GL_REFERENCED_BY_VERTEX_SHADER _m[0x817E] = (4,) # GL_REFERENCE_PLANE_EQUATION_SGIX _m[0x817D] = (1,) # GL_REFERENCE_PLANE_SGIX _m[0x8522] = (1,) # GL_REGISTER_COMBINERS_NV _m[0x8D53] = (1,) # GL_RENDERBUFFER_ALPHA_SIZE _m[0x8CA7] = (1,) # GL_RENDERBUFFER_BINDING _m[0x8CA7] = (1,) # GL_RENDERBUFFER_BINDING_EXT _m[0x8D52] = (1,) # GL_RENDERBUFFER_BLUE_SIZE _m[0x8D54] = (1,) # GL_RENDERBUFFER_DEPTH_SIZE _m[0x87FD] = (1,) # GL_RENDERBUFFER_FREE_MEMORY_ATI _m[0x8D51] = (1,) # GL_RENDERBUFFER_GREEN_SIZE _m[0x8D43] = (1,) # GL_RENDERBUFFER_HEIGHT _m[0x8D44] = (1,) # GL_RENDERBUFFER_INTERNAL_FORMAT _m[0x8D50] = (1,) # GL_RENDERBUFFER_RED_SIZE _m[0x8CAB] = (1,) # GL_RENDERBUFFER_SAMPLES _m[0x8D55] = (1,) # GL_RENDERBUFFER_STENCIL_SIZE _m[0x8D42] = (1,) # GL_RENDERBUFFER_WIDTH _m[0x1F01] = (1,) # GL_RENDERER _m[0x0C40] = (1,) # GL_RENDER_MODE _m[0x85C2] = (1,) # GL_REPLACEMENT_CODE_ARRAY_STRIDE_SUN _m[0x85C1] = (1,) # GL_REPLACEMENT_CODE_ARRAY_TYPE_SUN _m[0x81D8] = (1,) # GL_REPLACEMENT_CODE_SUN _m[0x803A] = (1,) # GL_RESCALE_NORMAL _m[0x803A] = (1,) # GL_RESCALE_NORMAL_EXT _m[0x8256] = (1,) # GL_RESET_NOTIFICATION_STRATEGY_ARB _m[0x8820] = (1,) # GL_RGBA_FLOAT_MODE_ARB _m[0x8820] = (1,) # GL_RGBA_FLOAT_MODE_ATI _m[0x8D9E] = (1,) # GL_RGBA_INTEGER_MODE_EXT _m[0x0C31] = (1,) # GL_RGBA_MODE _m[0x8C3C] = (1,) # GL_RGBA_SIGNED_COMPONENTS_EXT _m[0x86D9] = (1,) # GL_RGBA_UNSIGNED_DOT_PRODUCT_MAPPING_NV _m[0x8573] = (1,) # GL_RGB_SCALE _m[0x8919] = (1,) # GL_SAMPLER_BINDING _m[0x80A9] = (1,) # GL_SAMPLES _m[0x86B4] = (1,) # GL_SAMPLES_3DFX _m[0x80A9] = (1,) # GL_SAMPLES_ARB _m[0x80A9] = (1,) # GL_SAMPLES_SGIS _m[0x809E] = (1,) # GL_SAMPLE_ALPHA_TO_COVERAGE _m[0x809E] = (1,) # GL_SAMPLE_ALPHA_TO_COVERAGE_ARB _m[0x809E] = (1,) # GL_SAMPLE_ALPHA_TO_MASK_EXT _m[0x809E] = (1,) # GL_SAMPLE_ALPHA_TO_MASK_SGIS _m[0x809F] = (1,) # GL_SAMPLE_ALPHA_TO_ONE _m[0x809F] = (1,) # GL_SAMPLE_ALPHA_TO_ONE_ARB _m[0x809F] = (1,) # GL_SAMPLE_ALPHA_TO_ONE_EXT _m[0x809F] = (1,) # GL_SAMPLE_ALPHA_TO_ONE_SGIS _m[0x80A8] = (1,) # GL_SAMPLE_BUFFERS _m[0x86B3] = (1,) # GL_SAMPLE_BUFFERS_3DFX _m[0x80A8] = (1,) # GL_SAMPLE_BUFFERS_ARB _m[0x80A8] = (1,) # GL_SAMPLE_BUFFERS_SGIS _m[0x80A0] = (1,) # GL_SAMPLE_COVERAGE _m[0x80A0] = (1,) # GL_SAMPLE_COVERAGE_ARB _m[0x80AB] = (1,) # GL_SAMPLE_COVERAGE_INVERT _m[0x80AB] = (1,) # GL_SAMPLE_COVERAGE_INVERT_ARB _m[0x80AA] = (1,) # GL_SAMPLE_COVERAGE_VALUE _m[0x80AA] = (1,) # GL_SAMPLE_COVERAGE_VALUE_ARB _m[0x8E51] = (1,) # GL_SAMPLE_MASK _m[0x80A0] = (1,) # GL_SAMPLE_MASK_EXT _m[0x80AB] = (1,) # GL_SAMPLE_MASK_INVERT_SGIS _m[0x8E51] = (1,) # GL_SAMPLE_MASK_NV _m[0x80A0] = (1,) # GL_SAMPLE_MASK_SGIS _m[0x8E52] = (1,) # GL_SAMPLE_MASK_VALUE _m[0x80AA] = (1,) # GL_SAMPLE_MASK_VALUE_SGIS _m[0x80AC] = (1,) # GL_SAMPLE_PATTERN_EXT _m[0x80AC] = (1,) # GL_SAMPLE_PATTERN_SGIS _m[0x8E50] = (1,) # GL_SAMPLE_POSITION _m[0x8C36] = (1,) # GL_SAMPLE_SHADING_ARB _m[0x0C10] = (4,) # GL_SCISSOR_BOX _m[0x0C11] = (1,) # GL_SCISSOR_TEST _m[0x845E] = (1,) # GL_SECONDARY_COLOR_ARRAY _m[0x889C] = (1,) # GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING _m[0x889C] = (1,) # GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING_ARB _m[0x8F31] = (1,) # GL_SECONDARY_COLOR_ARRAY_LENGTH_NV _m[0x845A] = (1,) # GL_SECONDARY_COLOR_ARRAY_SIZE _m[0x845A] = (1,) # GL_SECONDARY_COLOR_ARRAY_SIZE_EXT _m[0x845C] = (1,) # GL_SECONDARY_COLOR_ARRAY_STRIDE _m[0x845C] = (1,) # GL_SECONDARY_COLOR_ARRAY_STRIDE_EXT _m[0x845B] = (1,) # GL_SECONDARY_COLOR_ARRAY_TYPE _m[0x845B] = (1,) # GL_SECONDARY_COLOR_ARRAY_TYPE_EXT _m[0x0DF3] = (1,) # GL_SELECTION_BUFFER_POINTER _m[0x0DF4] = (1,) # GL_SELECTION_BUFFER_SIZE _m[0x8012] = (1,) # GL_SEPARABLE_2D _m[0x8012] = (1,) # GL_SEPARABLE_2D_EXT _m[0x8DFA] = (1,) # GL_SHADER_COMPILER _m[0x86DF] = (1,) # GL_SHADER_OPERATION_NV _m[0x8B88] = (1,) # GL_SHADER_SOURCE_LENGTH _m[0x90D2] = (1,) # GL_SHADER_STORAGE_BUFFER _m[0x90D3] = (1,) # GL_SHADER_STORAGE_BUFFER_BINDING _m[0x90DF] = (1,) # GL_SHADER_STORAGE_BUFFER_OFFSET_ALIGNMENT _m[0x90D5] = (1,) # GL_SHADER_STORAGE_BUFFER_SIZE _m[0x90D4] = (1,) # GL_SHADER_STORAGE_BUFFER_START _m[0x8B4F] = (1,) # GL_SHADER_TYPE _m[0x0B54] = (1,) # GL_SHADE_MODEL _m[0x8B8C] = (1,) # GL_SHADING_LANGUAGE_VERSION _m[0x1601] = (1,) # GL_SHININESS _m[0x0B23] = (1,) # GL_SMOOTH_LINE_WIDTH_GRANULARITY _m[0x0B22] = (2,) # GL_SMOOTH_LINE_WIDTH_RANGE _m[0x0B13] = (1,) # GL_SMOOTH_POINT_SIZE_GRANULARITY _m[0x0B12] = (2,) # GL_SMOOTH_POINT_SIZE_RANGE _m[0x858B] = (1,) # GL_SOURCE3_ALPHA_NV _m[0x8583] = (1,) # GL_SOURCE3_RGB_NV _m[0x1202] = (4,) # GL_SPECULAR _m[0x1206] = (1,) # GL_SPOT_CUTOFF _m[0x1204] = (3,) # GL_SPOT_DIRECTION _m[0x1205] = (1,) # GL_SPOT_EXPONENT _m[0x814A] = (3,) # GL_SPRITE_AXIS_SGIX _m[0x8149] = (1,) # GL_SPRITE_MODE_SGIX _m[0x8148] = (1,) # GL_SPRITE_SGIX _m[0x814B] = (3,) # GL_SPRITE_TRANSLATION_SGIX _m[0x8588] = (1,) # GL_SRC0_ALPHA _m[0x8580] = (1,) # GL_SRC0_RGB _m[0x8589] = (1,) # GL_SRC1_ALPHA _m[0x8581] = (1,) # GL_SRC1_RGB _m[0x858A] = (1,) # GL_SRC2_ALPHA _m[0x8582] = (1,) # GL_SRC2_RGB _m[0x8801] = (1,) # GL_STENCIL_BACK_FAIL _m[0x8801] = (1,) # GL_STENCIL_BACK_FAIL_ATI _m[0x8800] = (1,) # GL_STENCIL_BACK_FUNC _m[0x8800] = (1,) # GL_STENCIL_BACK_FUNC_ATI _m[0x874D] = (1,) # GL_STENCIL_BACK_OP_VALUE_AMD _m[0x8802] = (1,) # GL_STENCIL_BACK_PASS_DEPTH_FAIL _m[0x8802] = (1,) # GL_STENCIL_BACK_PASS_DEPTH_FAIL_ATI _m[0x8803] = (1,) # GL_STENCIL_BACK_PASS_DEPTH_PASS _m[0x8803] = (1,) # GL_STENCIL_BACK_PASS_DEPTH_PASS_ATI _m[0x8CA3] = (1,) # GL_STENCIL_BACK_REF _m[0x8CA4] = (1,) # GL_STENCIL_BACK_VALUE_MASK _m[0x8CA5] = (1,) # GL_STENCIL_BACK_WRITEMASK _m[0x0D57] = (1,) # GL_STENCIL_BITS _m[0x88F3] = (1,) # GL_STENCIL_CLEAR_TAG_VALUE_EXT _m[0x0B91] = (1,) # GL_STENCIL_CLEAR_VALUE _m[0x0B94] = (1,) # GL_STENCIL_FAIL _m[0x0B92] = (1,) # GL_STENCIL_FUNC _m[0x874C] = (1,) # GL_STENCIL_OP_VALUE_AMD _m[0x0B95] = (1,) # GL_STENCIL_PASS_DEPTH_FAIL _m[0x0B96] = (1,) # GL_STENCIL_PASS_DEPTH_PASS _m[0x0B97] = (1,) # GL_STENCIL_REF _m[0x88F2] = (1,) # GL_STENCIL_TAG_BITS_EXT _m[0x0B90] = (1,) # GL_STENCIL_TEST _m[0x8910] = (1,) # GL_STENCIL_TEST_TWO_SIDE_EXT _m[0x0B93] = (1,) # GL_STENCIL_VALUE_MASK _m[0x0B98] = (1,) # GL_STENCIL_WRITEMASK _m[0x0C33] = (1,) # GL_STEREO _m[0x0D50] = (1,) # GL_SUBPIXEL_BITS _m[0x8439] = (1,) # GL_TANGENT_ARRAY_EXT _m[0x8442] = (1,) # GL_TANGENT_ARRAY_POINTER_EXT _m[0x843F] = (1,) # GL_TANGENT_ARRAY_STRIDE_EXT _m[0x843E] = (1,) # GL_TANGENT_ARRAY_TYPE_EXT _m[0x9004] = (1,) # GL_TESSELLATION_MODE_AMD _m[0x8E88] = (1,) # GL_TESS_CONTROL_SHADER _m[0x8E87] = (1,) # GL_TESS_EVALUATION_SHADER _m[0x8E76] = (1,) # GL_TESS_GEN_MODE _m[0x8E79] = (1,) # GL_TESS_GEN_POINT_MODE _m[0x8E77] = (1,) # GL_TESS_GEN_SPACING _m[0x8E78] = (1,) # GL_TESS_GEN_VERTEX_ORDER _m[0x0DE0] = (1,) # GL_TEXTURE_1D _m[0x8068] = (1,) # GL_TEXTURE_1D_BINDING_EXT _m[0x875D] = (1,) # GL_TEXTURE_1D_STACK_BINDING_MESAX _m[0x8759] = (1,) # GL_TEXTURE_1D_STACK_MESAX _m[0x0DE1] = (1,) # GL_TEXTURE_2D _m[0x8069] = (1,) # GL_TEXTURE_2D_BINDING_EXT _m[0x875E] = (1,) # GL_TEXTURE_2D_STACK_BINDING_MESAX _m[0x875A] = (1,) # GL_TEXTURE_2D_STACK_MESAX _m[0x806F] = (1,) # GL_TEXTURE_3D _m[0x806A] = (1,) # GL_TEXTURE_3D_BINDING_EXT _m[0x806F] = (1,) # GL_TEXTURE_3D_EXT _m[0x806F] = (1,) # GL_TEXTURE_3D_OES _m[0x814F] = (1,) # GL_TEXTURE_4D_BINDING_SGIS _m[0x8134] = (1,) # GL_TEXTURE_4D_SGIS _m[0x805F] = (1,) # GL_TEXTURE_ALPHA_SIZE _m[0x8C13] = (1,) # GL_TEXTURE_ALPHA_TYPE _m[0x834F] = (1,) # GL_TEXTURE_APPLICATION_MODE_EXT _m[0x813C] = (1,) # GL_TEXTURE_BASE_LEVEL _m[0x813C] = (1,) # GL_TEXTURE_BASE_LEVEL_SGIS _m[0x8068] = (1,) # GL_TEXTURE_BINDING_1D _m[0x8C1C] = (1,) # GL_TEXTURE_BINDING_1D_ARRAY _m[0x8C1C] = (1,) # GL_TEXTURE_BINDING_1D_ARRAY_EXT _m[0x8069] = (1,) # GL_TEXTURE_BINDING_2D _m[0x8C1D] = (1,) # GL_TEXTURE_BINDING_2D_ARRAY _m[0x8C1D] = (1,) # GL_TEXTURE_BINDING_2D_ARRAY_EXT _m[0x9104] = (1,) # GL_TEXTURE_BINDING_2D_MULTISAMPLE _m[0x9105] = (1,) # GL_TEXTURE_BINDING_2D_MULTISAMPLE_ARRAY _m[0x806A] = (1,) # GL_TEXTURE_BINDING_3D _m[0x8C2C] = (1,) # GL_TEXTURE_BINDING_BUFFER _m[0x8C2C] = (1,) # GL_TEXTURE_BINDING_BUFFER_ARB _m[0x8C2C] = (1,) # GL_TEXTURE_BINDING_BUFFER_EXT _m[0x8514] = (1,) # GL_TEXTURE_BINDING_CUBE_MAP _m[0x8514] = (1,) # GL_TEXTURE_BINDING_CUBE_MAP_ARB _m[0x900A] = (1,) # GL_TEXTURE_BINDING_CUBE_MAP_ARRAY _m[0x900A] = (1,) # GL_TEXTURE_BINDING_CUBE_MAP_ARRAY_ARB _m[0x84F6] = (1,) # GL_TEXTURE_BINDING_RECTANGLE _m[0x84F6] = (1,) # GL_TEXTURE_BINDING_RECTANGLE_ARB _m[0x84F6] = (1,) # GL_TEXTURE_BINDING_RECTANGLE_NV _m[0x8E53] = (1,) # GL_TEXTURE_BINDING_RENDERBUFFER_NV _m[0x805E] = (1,) # GL_TEXTURE_BLUE_SIZE _m[0x8C12] = (1,) # GL_TEXTURE_BLUE_TYPE _m[0x1005] = (1,) # GL_TEXTURE_BORDER _m[0x1004] = (4,) # GL_TEXTURE_BORDER_COLOR _m[0x1004] = (4,) # GL_TEXTURE_BORDER_COLOR_NV _m[0x8C2A] = (1,) # GL_TEXTURE_BUFFER _m[0x8C2A] = (1,) # GL_TEXTURE_BUFFER_ARB _m[0x8C2D] = (1,) # GL_TEXTURE_BUFFER_DATA_STORE_BINDING _m[0x8C2D] = (1,) # GL_TEXTURE_BUFFER_DATA_STORE_BINDING_ARB _m[0x8C2D] = (1,) # GL_TEXTURE_BUFFER_DATA_STORE_BINDING_EXT _m[0x8C2A] = (1,) # GL_TEXTURE_BUFFER_EXT _m[0x8C2E] = (1,) # GL_TEXTURE_BUFFER_FORMAT_ARB _m[0x8C2E] = (1,) # GL_TEXTURE_BUFFER_FORMAT_EXT _m[0x919D] = (1,) # GL_TEXTURE_BUFFER_OFFSET _m[0x919F] = (1,) # GL_TEXTURE_BUFFER_OFFSET_ALIGNMENT _m[0x919E] = (1,) # GL_TEXTURE_BUFFER_SIZE _m[0x8171] = (2,) # GL_TEXTURE_CLIPMAP_CENTER_SGIX _m[0x8176] = (1,) # GL_TEXTURE_CLIPMAP_DEPTH_SGIX _m[0x8172] = (1,) # GL_TEXTURE_CLIPMAP_FRAME_SGIX _m[0x8173] = (2,) # GL_TEXTURE_CLIPMAP_OFFSET_SGIX _m[0x8174] = (3,) # GL_TEXTURE_CLIPMAP_VIRTUAL_DEPTH_SGIX _m[0x80BC] = (1,) # GL_TEXTURE_COLOR_TABLE_SGI _m[0x81EF] = (4,) # GL_TEXTURE_COLOR_WRITEMASK_SGIS _m[0x80BF] = (1,) # GL_TEXTURE_COMPARE_FAIL_VALUE_ARB _m[0x884D] = (1,) # GL_TEXTURE_COMPARE_FUNC _m[0x884C] = (1,) # GL_TEXTURE_COMPARE_MODE _m[0x819B] = (1,) # GL_TEXTURE_COMPARE_OPERATOR_SGIX _m[0x819A] = (1,) # GL_TEXTURE_COMPARE_SGIX _m[0x86A1] = (1,) # GL_TEXTURE_COMPRESSED _m[0x86A0] = (1,) # GL_TEXTURE_COMPRESSED_IMAGE_SIZE _m[0x84EF] = (1,) # GL_TEXTURE_COMPRESSION_HINT _m[0x84EF] = (1,) # GL_TEXTURE_COMPRESSION_HINT_ARB _m[0x8078] = (1,) # GL_TEXTURE_COORD_ARRAY _m[0x889A] = (1,) # GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING _m[0x889A] = (1,) # GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING_ARB _m[0x808B] = (1,) # GL_TEXTURE_COORD_ARRAY_COUNT_EXT _m[0x8078] = (1,) # GL_TEXTURE_COORD_ARRAY_EXT _m[0x8092] = (1,) # GL_TEXTURE_COORD_ARRAY_POINTER _m[0x8088] = (1,) # GL_TEXTURE_COORD_ARRAY_SIZE _m[0x8088] = (1,) # GL_TEXTURE_COORD_ARRAY_SIZE_EXT _m[0x808A] = (1,) # GL_TEXTURE_COORD_ARRAY_STRIDE _m[0x808A] = (1,) # GL_TEXTURE_COORD_ARRAY_STRIDE_EXT _m[0x8089] = (1,) # GL_TEXTURE_COORD_ARRAY_TYPE _m[0x8089] = (1,) # GL_TEXTURE_COORD_ARRAY_TYPE_EXT _m[0x8B9D] = (4,) # GL_TEXTURE_CROP_RECT_OES _m[0x8513] = (1,) # GL_TEXTURE_CUBE_MAP _m[0x8513] = (1,) # GL_TEXTURE_CUBE_MAP_ARB _m[0x9009] = (1,) # GL_TEXTURE_CUBE_MAP_ARRAY _m[0x884F] = (1,) # GL_TEXTURE_CUBE_MAP_SEAMLESS _m[0x8071] = (1,) # GL_TEXTURE_DEPTH _m[0x8071] = (1,) # GL_TEXTURE_DEPTH_EXT _m[0x884A] = (1,) # GL_TEXTURE_DEPTH_SIZE _m[0x8C16] = (1,) # GL_TEXTURE_DEPTH_TYPE _m[0x2201] = (4,) # GL_TEXTURE_ENV_COLOR _m[0x2200] = (1,) # GL_TEXTURE_ENV_MODE _m[0x9107] = (1,) # GL_TEXTURE_FIXED_SAMPLE_LOCATIONS _m[0x87FC] = (1,) # GL_TEXTURE_FREE_MEMORY_ATI _m[0x2500] = (1,) # GL_TEXTURE_GEN_MODE _m[0x0C63] = (1,) # GL_TEXTURE_GEN_Q _m[0x0C62] = (1,) # GL_TEXTURE_GEN_R _m[0x0C60] = (1,) # GL_TEXTURE_GEN_S _m[0x0C61] = (1,) # GL_TEXTURE_GEN_T _m[0x805D] = (1,) # GL_TEXTURE_GREEN_SIZE _m[0x8C11] = (1,) # GL_TEXTURE_GREEN_TYPE _m[0x1001] = (1,) # GL_TEXTURE_HEIGHT _m[0x912F] = (1,) # GL_TEXTURE_IMMUTABLE_FORMAT _m[0x82DF] = (1,) # GL_TEXTURE_IMMUTABLE_LEVELS _m[0x80ED] = (1,) # GL_TEXTURE_INDEX_SIZE_EXT _m[0x8061] = (1,) # GL_TEXTURE_INTENSITY_SIZE _m[0x8C15] = (1,) # GL_TEXTURE_INTENSITY_TYPE _m[0x1003] = (1,) # GL_TEXTURE_INTERNAL_FORMAT _m[0x8350] = (1,) # GL_TEXTURE_LIGHT_EXT _m[0x8501] = (1,) # GL_TEXTURE_LOD_BIAS _m[0x8190] = (1,) # GL_TEXTURE_LOD_BIAS_R_SGIX _m[0x818E] = (1,) # GL_TEXTURE_LOD_BIAS_S_SGIX _m[0x818F] = (1,) # GL_TEXTURE_LOD_BIAS_T_SGIX _m[0x8060] = (1,) # GL_TEXTURE_LUMINANCE_SIZE _m[0x8C14] = (1,) # GL_TEXTURE_LUMINANCE_TYPE _m[0x2800] = (1,) # GL_TEXTURE_MAG_FILTER _m[0x8351] = (1,) # GL_TEXTURE_MATERIAL_FACE_EXT _m[0x8352] = (1,) # GL_TEXTURE_MATERIAL_PARAMETER_EXT _m[0x0BA8] = (4, 4) # GL_TEXTURE_MATRIX _m[0x84FE] = (1,) # GL_TEXTURE_MAX_ANISOTROPY_EXT _m[0x836B] = (1,) # GL_TEXTURE_MAX_CLAMP_R_SGIX _m[0x8369] = (1,) # GL_TEXTURE_MAX_CLAMP_S_SGIX _m[0x836A] = (1,) # GL_TEXTURE_MAX_CLAMP_T_SGIX _m[0x813D] = (1,) # GL_TEXTURE_MAX_LEVEL _m[0x813D] = (1,) # GL_TEXTURE_MAX_LEVEL_SGIS _m[0x813B] = (1,) # GL_TEXTURE_MAX_LOD _m[0x813B] = (1,) # GL_TEXTURE_MAX_LOD_SGIS _m[0x2801] = (1,) # GL_TEXTURE_MIN_FILTER _m[0x813A] = (1,) # GL_TEXTURE_MIN_LOD _m[0x813A] = (1,) # GL_TEXTURE_MIN_LOD_SGIS _m[0x8066] = (1,) # GL_TEXTURE_PRIORITY _m[0x85B8] = (1,) # GL_TEXTURE_RANGE_POINTER_APPLE _m[0x84F5] = (1,) # GL_TEXTURE_RECTANGLE _m[0x84F5] = (1,) # GL_TEXTURE_RECTANGLE_ARB _m[0x84F5] = (1,) # GL_TEXTURE_RECTANGLE_NV _m[0x805C] = (1,) # GL_TEXTURE_RED_SIZE _m[0x8C10] = (1,) # GL_TEXTURE_RED_TYPE _m[0x8E54] = (1,) # GL_TEXTURE_RENDERBUFFER_DATA_STORE_BINDING_NV _m[0x8067] = (1,) # GL_TEXTURE_RESIDENT _m[0x9106] = (1,) # GL_TEXTURE_SAMPLES _m[0x86DE] = (1,) # GL_TEXTURE_SHADER_NV _m[0x8A48] = (1,) # GL_TEXTURE_SRGB_DECODE_EXT _m[0x0BA5] = (1,) # GL_TEXTURE_STACK_DEPTH _m[0x88F1] = (1,) # GL_TEXTURE_STENCIL_SIZE _m[0x85BC] = (1,) # GL_TEXTURE_STORAGE_HINT_APPLE _m[0x8E45] = (1,) # GL_TEXTURE_SWIZZLE_A _m[0x8E44] = (1,) # GL_TEXTURE_SWIZZLE_B _m[0x8E43] = (1,) # GL_TEXTURE_SWIZZLE_G _m[0x8E42] = (1,) # GL_TEXTURE_SWIZZLE_R _m[0x8E46] = (4,) # GL_TEXTURE_SWIZZLE_RGBA _m[0x888F] = (1,) # GL_TEXTURE_UNSIGNED_REMAP_MODE_NV _m[0x82DD] = (1,) # GL_TEXTURE_VIEW_MIN_LAYER _m[0x82DB] = (1,) # GL_TEXTURE_VIEW_MIN_LEVEL _m[0x82DE] = (1,) # GL_TEXTURE_VIEW_NUM_LAYERS _m[0x82DC] = (1,) # GL_TEXTURE_VIEW_NUM_LEVELS _m[0x1000] = (1,) # GL_TEXTURE_WIDTH _m[0x8137] = (1,) # GL_TEXTURE_WRAP_Q_SGIS _m[0x8072] = (1,) # GL_TEXTURE_WRAP_R _m[0x8072] = (1,) # GL_TEXTURE_WRAP_R_EXT _m[0x2802] = (1,) # GL_TEXTURE_WRAP_S _m[0x2803] = (1,) # GL_TEXTURE_WRAP_T _m[0x8200] = (1,) # GL_TEXT_FRAGMENT_SHADER_ATI _m[0x8E28] = (1,) # GL_TIMESTAMP _m[0x930C] = (1,) # GL_TOP_LEVEL_ARRAY_SIZE _m[0x930D] = (1,) # GL_TOP_LEVEL_ARRAY_STRIDE _m[0x8E25] = (1,) # GL_TRANSFORM_FEEDBACK_BINDING _m[0x8E25] = (1,) # GL_TRANSFORM_FEEDBACK_BINDING_NV _m[0x8E24] = (1,) # GL_TRANSFORM_FEEDBACK_BUFFER_ACTIVE _m[0x8E24] = (1,) # GL_TRANSFORM_FEEDBACK_BUFFER_ACTIVE_NV _m[0x8C8F] = (1,) # GL_TRANSFORM_FEEDBACK_BUFFER_BINDING _m[0x8C7F] = (1,) # GL_TRANSFORM_FEEDBACK_BUFFER_MODE_NV _m[0x8E23] = (1,) # GL_TRANSFORM_FEEDBACK_BUFFER_PAUSED _m[0x8E23] = (1,) # GL_TRANSFORM_FEEDBACK_BUFFER_PAUSED_NV _m[0x8C85] = (1,) # GL_TRANSFORM_FEEDBACK_BUFFER_SIZE _m[0x8C84] = (1,) # GL_TRANSFORM_FEEDBACK_BUFFER_START _m[0x84E6] = (4,4) # GL_TRANSPOSE_COLOR_MATRIX _m[0x84E6] = (4,4) # GL_TRANSPOSE_COLOR_MATRIX_ARB _m[0x88B7] = (4, 4) # GL_TRANSPOSE_CURRENT_MATRIX_ARB _m[0x84E3] = (4,4) # GL_TRANSPOSE_MODELVIEW_MATRIX _m[0x84E3] = (4,4) # GL_TRANSPOSE_MODELVIEW_MATRIX_ARB _m[0x84E4] = (4,4) # GL_TRANSPOSE_PROJECTION_MATRIX _m[0x84E4] = (4,4) # GL_TRANSPOSE_PROJECTION_MATRIX_ARB _m[0x84E5] = (4,4) # GL_TRANSPOSE_TEXTURE_MATRIX _m[0x84E5] = (4,4) # GL_TRANSPOSE_TEXTURE_MATRIX_ARB _m[0x92FA] = (1,) # GL_TYPE _m[0x8A3C] = (1,) # GL_UNIFORM_ARRAY_STRIDE _m[0x8A42] = (1,) # GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS _m[0x8A43] = (1,) # GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES _m[0x8A3F] = (1,) # GL_UNIFORM_BLOCK_BINDING _m[0x8A40] = (1,) # GL_UNIFORM_BLOCK_DATA_SIZE _m[0x8A3A] = (1,) # GL_UNIFORM_BLOCK_INDEX _m[0x8A41] = (1,) # GL_UNIFORM_BLOCK_NAME_LENGTH _m[0x8A46] = (1,) # GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER _m[0x8A45] = (1,) # GL_UNIFORM_BLOCK_REFERENCED_BY_GEOMETRY_SHADER _m[0x84F0] = (1,) # GL_UNIFORM_BLOCK_REFERENCED_BY_TESS_CONTROL_SHADER _m[0x84F1] = (1,) # GL_UNIFORM_BLOCK_REFERENCED_BY_TESS_EVALUATION_SHADER _m[0x8A44] = (1,) # GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER _m[0x8A28] = (1,) # GL_UNIFORM_BUFFER_BINDING _m[0x8DEF] = (1,) # GL_UNIFORM_BUFFER_BINDING_EXT _m[0x8A34] = (1,) # GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT _m[0x8A2A] = (1,) # GL_UNIFORM_BUFFER_SIZE _m[0x8A29] = (1,) # GL_UNIFORM_BUFFER_START _m[0x8A3E] = (1,) # GL_UNIFORM_IS_ROW_MAJOR _m[0x8A3D] = (1,) # GL_UNIFORM_MATRIX_STRIDE _m[0x8A39] = (1,) # GL_UNIFORM_NAME_LENGTH _m[0x8A3B] = (1,) # GL_UNIFORM_OFFSET _m[0x8A38] = (1,) # GL_UNIFORM_SIZE _m[0x8A37] = (1,) # GL_UNIFORM_TYPE _m[0x0CF5] = (1,) # GL_UNPACK_ALIGNMENT _m[0x85B2] = (1,) # GL_UNPACK_CLIENT_STORAGE_APPLE _m[0x800F] = (1,) # GL_UNPACK_CMYK_HINT_EXT _m[0x9129] = (1,) # GL_UNPACK_COMPRESSED_BLOCK_DEPTH _m[0x9128] = (1,) # GL_UNPACK_COMPRESSED_BLOCK_HEIGHT _m[0x912A] = (1,) # GL_UNPACK_COMPRESSED_BLOCK_SIZE _m[0x9127] = (1,) # GL_UNPACK_COMPRESSED_BLOCK_WIDTH _m[0x8133] = (1,) # GL_UNPACK_IMAGE_DEPTH_SGIS _m[0x806E] = (1,) # GL_UNPACK_IMAGE_HEIGHT _m[0x806E] = (1,) # GL_UNPACK_IMAGE_HEIGHT_EXT _m[0x0CF1] = (1,) # GL_UNPACK_LSB_FIRST _m[0x8985] = (1,) # GL_UNPACK_RESAMPLE_OML _m[0x842D] = (1,) # GL_UNPACK_RESAMPLE_SGIX _m[0x8A16] = (1,) # GL_UNPACK_ROW_BYTES_APPLE _m[0x0CF2] = (1,) # GL_UNPACK_ROW_LENGTH _m[0x806D] = (1,) # GL_UNPACK_SKIP_IMAGES _m[0x806D] = (1,) # GL_UNPACK_SKIP_IMAGES_EXT _m[0x0CF4] = (1,) # GL_UNPACK_SKIP_PIXELS _m[0x0CF3] = (1,) # GL_UNPACK_SKIP_ROWS _m[0x8132] = (1,) # GL_UNPACK_SKIP_VOLUMES_SGIS _m[0x0CF0] = (1,) # GL_UNPACK_SWAP_BYTES _m[0x8B83] = (1,) # GL_VALIDATE_STATUS _m[0x87E7] = (1,) # GL_VARIANT_ARRAY_TYPE_EXT _m[0x87FB] = (1,) # GL_VBO_FREE_MEMORY_ATI _m[0x1F00] = (1,) # GL_VENDOR _m[0x1F02] = (1,) # GL_VERSION _m[0x8074] = (1,) # GL_VERTEX_ARRAY _m[0x85B5] = (1,) # GL_VERTEX_ARRAY_BINDING _m[0x85B5] = (1,) # GL_VERTEX_ARRAY_BINDING_APPLE _m[0x8896] = (1,) # GL_VERTEX_ARRAY_BUFFER_BINDING _m[0x8896] = (1,) # GL_VERTEX_ARRAY_BUFFER_BINDING_ARB _m[0x807D] = (1,) # GL_VERTEX_ARRAY_COUNT_EXT _m[0x8074] = (1,) # GL_VERTEX_ARRAY_EXT _m[0x8F2B] = (1,) # GL_VERTEX_ARRAY_LENGTH_NV _m[0x808E] = (1,) # GL_VERTEX_ARRAY_POINTER _m[0x851E] = (1,) # GL_VERTEX_ARRAY_RANGE_LENGTH_APPLE _m[0x851E] = (1,) # GL_VERTEX_ARRAY_RANGE_LENGTH_NV _m[0x851D] = (1,) # GL_VERTEX_ARRAY_RANGE_NV _m[0x8521] = (1,) # GL_VERTEX_ARRAY_RANGE_POINTER_NV _m[0x851F] = (1,) # GL_VERTEX_ARRAY_RANGE_VALID_NV _m[0x807A] = (1,) # GL_VERTEX_ARRAY_SIZE _m[0x807A] = (1,) # GL_VERTEX_ARRAY_SIZE_EXT _m[0x807C] = (1,) # GL_VERTEX_ARRAY_STRIDE _m[0x807C] = (1,) # GL_VERTEX_ARRAY_STRIDE_EXT _m[0x807B] = (1,) # GL_VERTEX_ARRAY_TYPE _m[0x807B] = (1,) # GL_VERTEX_ARRAY_TYPE_EXT _m[0x8650] = (1,) # GL_VERTEX_ATTRIB_ARRAY0_NV _m[0x865A] = (1,) # GL_VERTEX_ATTRIB_ARRAY10_NV _m[0x865B] = (1,) # GL_VERTEX_ATTRIB_ARRAY11_NV _m[0x865C] = (1,) # GL_VERTEX_ATTRIB_ARRAY12_NV _m[0x865D] = (1,) # GL_VERTEX_ATTRIB_ARRAY13_NV _m[0x865E] = (1,) # GL_VERTEX_ATTRIB_ARRAY14_NV _m[0x865F] = (1,) # GL_VERTEX_ATTRIB_ARRAY15_NV _m[0x8651] = (1,) # GL_VERTEX_ATTRIB_ARRAY1_NV _m[0x8652] = (1,) # GL_VERTEX_ATTRIB_ARRAY2_NV _m[0x8653] = (1,) # GL_VERTEX_ATTRIB_ARRAY3_NV _m[0x8654] = (1,) # GL_VERTEX_ATTRIB_ARRAY4_NV _m[0x8655] = (1,) # GL_VERTEX_ATTRIB_ARRAY5_NV _m[0x8656] = (1,) # GL_VERTEX_ATTRIB_ARRAY6_NV _m[0x8657] = (1,) # GL_VERTEX_ATTRIB_ARRAY7_NV _m[0x8658] = (1,) # GL_VERTEX_ATTRIB_ARRAY8_NV _m[0x8659] = (1,) # GL_VERTEX_ATTRIB_ARRAY9_NV _m[0x889F] = (1,) # GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING _m[0x88FE] = (1,) # GL_VERTEX_ATTRIB_ARRAY_DIVISOR _m[0x8622] = (1,) # GL_VERTEX_ATTRIB_ARRAY_ENABLED _m[0x88FD] = (1,) # GL_VERTEX_ATTRIB_ARRAY_INTEGER _m[0x886A] = (1,) # GL_VERTEX_ATTRIB_ARRAY_NORMALIZED _m[0x8645] = (1,) # GL_VERTEX_ATTRIB_ARRAY_POINTER _m[0x8623] = (1,) # GL_VERTEX_ATTRIB_ARRAY_SIZE _m[0x8624] = (1,) # GL_VERTEX_ATTRIB_ARRAY_STRIDE _m[0x8625] = (1,) # GL_VERTEX_ATTRIB_ARRAY_TYPE _m[0x82D4] = (1,) # GL_VERTEX_ATTRIB_BINDING _m[0x82D5] = (1,) # GL_VERTEX_ATTRIB_RELATIVE_OFFSET _m[0x82D6] = (1,) # GL_VERTEX_BINDING_DIVISOR _m[0x82D7] = (1,) # GL_VERTEX_BINDING_OFFSET _m[0x82D8] = (1,) # GL_VERTEX_BINDING_STRIDE _m[0x86A7] = (1,) # GL_VERTEX_BLEND_ARB _m[0x83EF] = (1,) # GL_VERTEX_PRECLIP_HINT_SGIX _m[0x83EE] = (1,) # GL_VERTEX_PRECLIP_SGIX _m[0x8620] = (1,) # GL_VERTEX_PROGRAM_ARB _m[0x864A] = (1,) # GL_VERTEX_PROGRAM_BINDING_NV _m[0x8620] = (1,) # GL_VERTEX_PROGRAM_NV _m[0x8DA2] = (1,) # GL_VERTEX_PROGRAM_PARAMETER_BUFFER_NV _m[0x8642] = (1,) # GL_VERTEX_PROGRAM_POINT_SIZE _m[0x8642] = (1,) # GL_VERTEX_PROGRAM_POINT_SIZE_ARB _m[0x8642] = (1,) # GL_VERTEX_PROGRAM_POINT_SIZE_NV _m[0x8643] = (1,) # GL_VERTEX_PROGRAM_TWO_SIDE _m[0x8643] = (1,) # GL_VERTEX_PROGRAM_TWO_SIDE_ARB _m[0x8643] = (1,) # GL_VERTEX_PROGRAM_TWO_SIDE_NV _m[0x8B31] = (1,) # GL_VERTEX_SHADER _m[0x8781] = (1,) # GL_VERTEX_SHADER_BINDING_EXT _m[0x8780] = (1,) # GL_VERTEX_SHADER_EXT _m[0x87CF] = (1,) # GL_VERTEX_SHADER_INSTRUCTIONS_EXT _m[0x87D1] = (1,) # GL_VERTEX_SHADER_INVARIANTS_EXT _m[0x87D3] = (1,) # GL_VERTEX_SHADER_LOCALS_EXT _m[0x87D2] = (1,) # GL_VERTEX_SHADER_LOCAL_CONSTANTS_EXT _m[0x87D4] = (1,) # GL_VERTEX_SHADER_OPTIMIZED_EXT _m[0x87D0] = (1,) # GL_VERTEX_SHADER_VARIANTS_EXT _m[0x850C] = (1,) # GL_VERTEX_WEIGHT_ARRAY_EXT _m[0x8510] = (1,) # GL_VERTEX_WEIGHT_ARRAY_POINTER_EXT _m[0x850D] = (1,) # GL_VERTEX_WEIGHT_ARRAY_SIZE_EXT _m[0x850F] = (1,) # GL_VERTEX_WEIGHT_ARRAY_STRIDE_EXT _m[0x850E] = (1,) # GL_VERTEX_WEIGHT_ARRAY_TYPE_EXT _m[0x8719] = (1,) # GL_VIBRANCE_BIAS_NV _m[0x8713] = (1,) # GL_VIBRANCE_SCALE_NV _m[0x9021] = (1,) # GL_VIDEO_BUFFER_BINDING_NV _m[0x0BA2] = (4,) # GL_VIEWPORT _m[0x825D] = (2,) # GL_VIEWPORT_BOUNDS_RANGE _m[0x825F] = (1,) # GL_VIEWPORT_INDEX_PROVOKING_VERTEX _m[0x825C] = (1,) # GL_VIEWPORT_SUBPIXEL_BITS _m[0x86AD] = (1,) # GL_WEIGHT_ARRAY_ARB _m[0x889E] = (1,) # GL_WEIGHT_ARRAY_BUFFER_BINDING _m[0x889E] = (1,) # GL_WEIGHT_ARRAY_BUFFER_BINDING_ARB _m[0x86AC] = (1,) # GL_WEIGHT_ARRAY_POINTER_ARB _m[0x86AB] = (1,) # GL_WEIGHT_ARRAY_SIZE_ARB _m[0x86AA] = (1,) # GL_WEIGHT_ARRAY_STRIDE_ARB _m[0x86A9] = (1,) # GL_WEIGHT_ARRAY_TYPE_ARB _m[0x86A6] = (1,) # GL_WEIGHT_SUM_UNITY_ARB _m[0x887A] = (1,) # GL_WRITE_PIXEL_DATA_RANGE_LENGTH_NV _m[0x0D16] = (1,) # GL_ZOOM_X _m[0x0D17] = (1,) # GL_ZOOM_Y
bobobox/ansible
refs/heads/devel
lib/ansible/modules/cloud/docker/docker_network.py
22
#!/usr/bin/python # # Copyright 2016 Red Hat | Ansible # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'committer', 'version': '1.0'} DOCUMENTATION = ''' module: docker_network version_added: "2.2" short_description: Manage Docker networks description: - Create/remove Docker networks and connect containers to them. - Performs largely the same function as the "docker network" CLI subcommand. options: name: description: - Name of the network to operate on. required: true aliases: - network_name connected: description: - List of container names or container IDs to connect to a network. default: null aliases: - containers driver: description: - Specify the type of network. Docker provides bridge and overlay drivers, but 3rd party drivers can also be used. default: bridge driver_options: description: - Dictionary of network settings. Consult docker docs for valid options and values. default: null force: description: - With state I(absent) forces disconnecting all containers from the network prior to deleting the network. With state I(present) will disconnect all containers, delete the network and re-create the network. This option is required if you have changed the IPAM or driver options and want an existing network to be updated to use the new options. default: false appends: description: - By default the connected list is canonical, meaning containers not on the list are removed from the network. Use C(appends) to leave existing containers connected. default: false aliases: - incremental ipam_driver: description: - Specify an IPAM driver. default: null ipam_options: description: - Dictionary of IPAM options. default: null state: description: - I(absent) deletes the network. If a network has connected containers, it cannot be deleted. Use the C(force) option to disconnect all containers and delete the network. - I(present) creates the network, if it does not already exist with the specified parameters, and connects the list of containers provided via the connected parameter. Containers not on the list will be disconnected. An empty list will leave no containers connected to the network. Use the C(appends) option to leave existing containers connected. Use the C(force) options to force re-creation of the network. default: present choices: - absent - present extends_documentation_fragment: - docker authors: - "Ben Keith (@keitwb)" - "Chris Houseknecht (@chouseknecht)" requirements: - "python >= 2.6" - "docker-py >= 1.7.0" - "The docker server >= 1.9.0" ''' EXAMPLES = ''' - name: Create a network docker_network: name: network_one - name: Remove all but selected list of containers docker_network: name: network_one connected: - container_a - container_b - container_c - name: Remove a single container docker_network: name: network_one connected: "{{ fulllist|difference(['container_a']) }}" - name: Add a container to a network, leaving existing containers connected docker_network: name: network_one connected: - container_a appends: yes - name: Create a network with options docker_network: name: network_two driver_options: com.docker.network.bridge.name: net2 ipam_options: subnet: '172.3.26.0/16' gateway: 172.3.26.1 iprange: '192.168.1.0/24' - name: Delete a network, disconnecting all containers docker_network: name: network_one state: absent force: yes ''' RETURN = ''' facts: description: Network inspection results for the affected network. returned: success type: complex sample: {} ''' from ansible.module_utils.docker_common import * try: from docker import utils if HAS_DOCKER_PY_2: from docker.types import Ulimit, IPAMPool, IPAMConfig else: from docker.utils.types import Ulimit except: # missing docker-py handled in ansible.module_utils.docker pass class TaskParameters(DockerBaseClass): def __init__(self, client): super(TaskParameters, self).__init__() self.client = client self.network_name = None self.connected = None self.driver = None self.driver_options = None self.ipam_driver = None self.ipam_options = None self.appends = None self.force = None self.debug = None for key, value in client.module.params.items(): setattr(self, key, value) def container_names_in_network(network): return [c['Name'] for c in network['Containers'].values()] class DockerNetworkManager(object): def __init__(self, client): self.client = client self.parameters = TaskParameters(client) self.check_mode = self.client.check_mode self.results = { u'changed': False, u'actions': [] } self.diff = self.client.module._diff self.existing_network = self.get_existing_network() if not self.parameters.connected and self.existing_network: self.parameters.connected = container_names_in_network(self.existing_network) state = self.parameters.state if state == 'present': self.present() elif state == 'absent': self.absent() def get_existing_network(self): networks = self.client.networks() network = None for n in networks: if n['Name'] == self.parameters.network_name: network = n return network def has_different_config(self, net): ''' Evaluates an existing network and returns a tuple containing a boolean indicating if the configuration is different and a list of differences. :param net: the inspection output for an existing network :return: (bool, list) ''' different = False differences = [] if self.parameters.driver and self.parameters.driver != net['Driver']: different = True differences.append('driver') if self.parameters.driver_options: if not net.get('Options'): different = True differences.append('driver_options') else: for key, value in self.parameters.driver_options.items(): if not net['Options'].get(key) or value != net['Options'][key]: different = True differences.append('driver_options.%s' % key) if self.parameters.ipam_driver: if not net.get('IPAM') or net['IPAM']['Driver'] != self.parameters.ipam_driver: different = True differences.append('ipam_driver') if self.parameters.ipam_options: if not net.get('IPAM') or not net['IPAM'].get('Config'): different = True differences.append('ipam_options') else: for key, value in self.parameters.ipam_options.items(): camelkey = None for net_key in net['IPAM']['Config'][0]: if key == net_key.lower(): camelkey = net_key break if not camelkey: # key not found different = True differences.append('ipam_options.%s' % key) elif net['IPAM']['Config'][0].get(camelkey) != value: # key has different value different = True differences.append('ipam_options.%s' % key) return different, differences def create_network(self): if not self.existing_network: ipam_pools = [] if self.parameters.ipam_options: if HAS_DOCKER_PY_2: ipam_pools.append(IPAMPool(**self.parameters.ipam_options)) else: ipam_pools.append(utils.create_ipam_pool(**self.parameters.ipam_options)) if HAS_DOCKER_PY_2: ipam_config = IPAMConfig(driver=self.parameters.ipam_driver, pool_configs=ipam_pools) else: ipam_config = utils.create_ipam_config(driver=self.parameters.ipam_driver, pool_configs=ipam_pools) if not self.check_mode: resp = self.client.create_network(self.parameters.network_name, driver=self.parameters.driver, options=self.parameters.driver_options, ipam=ipam_config) self.existing_network = self.client.inspect_network(resp['Id']) self.results['actions'].append("Created network %s with driver %s" % (self.parameters.network_name, self.parameters.driver)) self.results['changed'] = True def remove_network(self): if self.existing_network: self.disconnect_all_containers() if not self.check_mode: self.client.remove_network(self.parameters.network_name) self.results['actions'].append("Removed network %s" % (self.parameters.network_name,)) self.results['changed'] = True def is_container_connected(self, container_name): return container_name in container_names_in_network(self.existing_network) def connect_containers(self): for name in self.parameters.connected: if not self.is_container_connected(name): if not self.check_mode: self.client.connect_container_to_network(name, self.parameters.network_name) self.results['actions'].append("Connected container %s" % (name,)) self.results['changed'] = True def disconnect_missing(self): for c in self.existing_network['Containers'].values(): name = c['Name'] if name not in self.parameters.connected: self.disconnect_container(name) def disconnect_all_containers(self): containers = self.client.inspect_network(self.parameters.network_name)['Containers'] for cont in containers.values(): self.disconnect_container(cont['Name']) def disconnect_container(self, container_name): if not self.check_mode: self.client.disconnect_container_from_network(container_name, self.parameters.network_name) self.results['actions'].append("Disconnected container %s" % (container_name,)) self.results['changed'] = True def present(self): different = False differences = [] if self.existing_network: different, differences = self.has_different_config(self.existing_network) if self.parameters.force or different: self.remove_network() self.existing_network = None self.create_network() self.connect_containers() if not self.parameters.appends: self.disconnect_missing() if self.diff or self.check_mode or self.parameters.debug: self.results['diff'] = differences if not self.check_mode and not self.parameters.debug: self.results.pop('actions') self.results['ansible_facts'] = {u'ansible_docker_network': self.get_existing_network()} def absent(self): self.remove_network() def main(): argument_spec = dict( network_name = dict(type='str', required=True, aliases=['name']), connected = dict(type='list', default=[], aliases=['containers']), state = dict(type='str', default='present', choices=['present', 'absent']), driver = dict(type='str', default='bridge'), driver_options = dict(type='dict', default={}), force = dict(type='bool', default=False), appends = dict(type='bool', default=False, aliases=['incremental']), ipam_driver = dict(type='str', default=None), ipam_options = dict(type='dict', default={}), debug = dict(type='bool', default=False) ) client = AnsibleDockerClient( argument_spec=argument_spec, supports_check_mode=True ) cm = DockerNetworkManager(client) client.module.exit_json(**cm.results) # import module snippets from ansible.module_utils.basic import * if __name__ == '__main__': main()
olea/PyConES-2016
refs/heads/develop
pycones/sponsorship/admin.py
2
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from sponsorship.models import BenefitLevel, SponsorLevel, Sponsor, Benefit from sponsorship.models import SponsorBenefit class BenefitLevelInline(admin.TabularInline): model = BenefitLevel extra = 0 class SponsorBenefitInline(admin.StackedInline): model = SponsorBenefit extra = 0 fieldsets = [ (None, { "fields": [ ("benefit", "active"), ("max_words", "other_limits"), "text", "upload", ] }) ] class SponsorAdmin(admin.ModelAdmin): save_on_top = True fieldsets = [ (None, { "fields": [ ("name", "applicant"), ("level", "active"), "external_url", "annotation", ("contact_name", "contact_email") ] }), ("Metadata", { "fields": ["added"], "classes": ["collapse"] }) ] inlines = [SponsorBenefitInline] list_display = ["name", "external_url", "level", "active"] def get_form(self, *args, **kwargs): # @@@ kinda ugly but using choices= on NullBooleanField is broken form = super(SponsorAdmin, self).get_form(*args, **kwargs) form.base_fields["active"].widget.choices = [ (u"1", "unreviewed"), (u"2", "approved"), (u"3", "rejected") ] return form class BenefitAdmin(admin.ModelAdmin): list_display = ["name", "type", "description"] inlines = [BenefitLevelInline] class SponsorLevelAdmin(admin.ModelAdmin): inlines = [BenefitLevelInline] admin.site.register(SponsorLevel, SponsorLevelAdmin) admin.site.register(Sponsor, SponsorAdmin) admin.site.register(Benefit, BenefitAdmin)
aricchen/openHR
refs/heads/master
openerp/addons/board/board.py
18
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # Copyright (C) 2010-2012 OpenERP s.a. (<http://openerp.com>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from operator import itemgetter from textwrap import dedent from openerp import tools from openerp.osv import fields, osv class board_board(osv.osv): _name = 'board.board' _description = "Board" _auto = False _columns = {} @tools.cache() def list(self, cr, uid, context=None): Actions = self.pool.get('ir.actions.act_window') Menus = self.pool.get('ir.ui.menu') IrValues = self.pool.get('ir.values') act_ids = Actions.search(cr, uid, [('res_model', '=', self._name)], context=context) refs = ['%s,%s' % (Actions._name, act_id) for act_id in act_ids] # cannot search "action" field on menu (non stored function field without search_fnct) irv_ids = IrValues.search(cr, uid, [ ('model', '=', 'ir.ui.menu'), ('key', '=', 'action'), ('key2', '=', 'tree_but_open'), ('value', 'in', refs), ], context=context) menu_ids = map(itemgetter('res_id'), IrValues.read(cr, uid, irv_ids, ['res_id'], context=context)) menu_names = Menus.name_get(cr, uid, menu_ids, context=context) return [dict(id=m[0], name=m[1]) for m in menu_names] def _clear_list_cache(self): self.list.clear_cache(self) def create(self, cr, user, vals, context=None): return 0 def fields_view_get(self, cr, user, view_id=None, view_type='form', context=None, toolbar=False, submenu=False): """ Overrides orm field_view_get. @return: Dictionary of Fields, arch and toolbar. """ res = {} res = super(board_board, self).fields_view_get(cr, user, view_id, view_type, context, toolbar=toolbar, submenu=submenu) CustView = self.pool.get('ir.ui.view.custom') vids = CustView.search(cr, user, [('user_id', '=', user), ('ref_id', '=', view_id)], context=context) if vids: view_id = vids[0] arch = CustView.browse(cr, user, view_id, context=context) res['custom_view_id'] = view_id res['arch'] = arch.arch res['arch'] = self._arch_preprocessing(cr, user, res['arch'], context=context) res['toolbar'] = {'print': [], 'action': [], 'relate': []} return res def _arch_preprocessing(self, cr, user, arch, context=None): from lxml import etree def remove_unauthorized_children(node): for child in node.iterchildren(): if child.tag == 'action' and child.get('invisible'): node.remove(child) else: child = remove_unauthorized_children(child) return node def encode(s): if isinstance(s, unicode): return s.encode('utf8') return s archnode = etree.fromstring(encode(arch)) return etree.tostring(remove_unauthorized_children(archnode), pretty_print=True) class board_create(osv.osv_memory): def board_create(self, cr, uid, ids, context=None): assert len(ids) == 1 this = self.browse(cr, uid, ids[0], context=context) view_arch = dedent("""<?xml version="1.0"?> <form string="%s" version="7.0"> <board style="2-1"> <column/> <column/> </board> </form> """.strip() % (this.name,)) view_id = self.pool.get('ir.ui.view').create(cr, uid, { 'name': this.name, 'model': 'board.board', 'priority': 16, 'type': 'form', 'arch': view_arch, }, context=context) action_id = self.pool.get('ir.actions.act_window').create(cr, uid, { 'name': this.name, 'view_type': 'form', 'view_mode': 'form', 'res_model': 'board.board', 'usage': 'menu', 'view_id': view_id, 'help': dedent('''<div class="oe_empty_custom_dashboard"> <p> <b>This dashboard is empty.</b> </p><p> To add the first report into this dashboard, go to any menu, switch to list or graph view, and click <i>'Add to Dashboard'</i> in the extended search options. </p><p> You can filter and group data before inserting into the dashboard using the search options. </p> </div> ''') }, context=context) menu_id = self.pool.get('ir.ui.menu').create(cr, uid, { 'name': this.name, 'parent_id': this.menu_parent_id.id, 'action': 'ir.actions.act_window,%s' % (action_id,) }, context=context) self.pool.get('board.board')._clear_list_cache() return { 'type': 'ir.actions.client', 'tag': 'reload', 'params': { 'menu_id': menu_id }, } def _default_menu_parent_id(self, cr, uid, context=None): _, menu_id = self.pool.get('ir.model.data').get_object_reference(cr, uid, 'base', 'menu_reporting_dashboard') return menu_id _name = "board.create" _description = "Board Creation" _columns = { 'name': fields.char('Board Name', size=64, required=True), 'menu_parent_id': fields.many2one('ir.ui.menu', 'Parent Menu', required=True), } _defaults = { 'menu_parent_id': _default_menu_parent_id, } # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
Ms2ger/servo
refs/heads/master
tests/wpt/css-tests/css-text-decor-3_dev/xhtml1print/reference/support/generate-text-emphasis-ruby-tests.py
829
#!/usr/bin/env python # - * - coding: UTF-8 - * - """ This script generates tests text-emphasis-ruby-001 ~ 004 which tests emphasis marks with ruby in four directions. It outputs a list of all tests it generated in the format of Mozilla reftest.list to the stdout. """ from __future__ import unicode_literals TEST_FILE = 'text-emphasis-ruby-{:03}{}.html' TEST_TEMPLATE = '''<!DOCTYPE html> <meta charset="utf-8"> <title>CSS Test: text-emphasis and ruby, {wm}, {pos}</title> <link rel="author" title="Xidorn Quan" href="https://www.upsuper.org"> <link rel="author" title="Mozilla" href="https://www.mozilla.org"> <link rel="help" href="https://drafts.csswg.org/css-text-decor-3/#text-emphasis-position-property"> <meta name="assert" content="emphasis marks are drawn outside the ruby"> <link rel="match" href="text-emphasis-ruby-{index:03}-ref.html"> <p>Pass if the emphasis marks are outside the ruby:</p> <div style="line-height: 5; writing-mode: {wm}; ruby-position: {ruby_pos}; text-emphasis-position: {posval}">ルビ<span style="text-emphasis: circle">と<ruby>圏<rt>けん</rt>点<rt>てん</rt></ruby>を</span>同時</div> ''' REF_FILE = 'text-emphasis-ruby-{:03}-ref.html' REF_TEMPLATE = '''<!DOCTYPE html> <meta charset="utf-8"> <title>CSS Reference: text-emphasis and ruby, {wm}, {pos}</title> <link rel="author" title="Xidorn Quan" href="https://www.upsuper.org"> <link rel="author" title="Mozilla" href="https://www.mozilla.org"> <style> rtc {{ font-variant-east-asian: inherit; }} </style> <p>Pass if the emphasis marks are outside the ruby:</p> <div style="line-height: 5; writing-mode: {wm}; ruby-position: {posval}">ルビ<ruby>と<rtc>&#x25CF;</rtc>圏<rt>けん</rt><rtc>&#x25CF;</rtc>点<rt>てん</rt><rtc>&#x25CF;</rtc>を<rtc>&#x25CF;</rtc></ruby>同時</div> ''' TEST_CASES = [ ('top', 'horizontal-tb', 'over', [ ('horizontal-tb', 'over right')]), ('bottom', 'horizontal-tb', 'under', [ ('horizontal-tb', 'under right')]), ('right', 'vertical-rl', 'over', [ ('vertical-rl', 'over right'), ('vertical-lr', 'over right')]), ('left', 'vertical-rl', 'under', [ ('vertical-rl', 'over left'), ('vertical-lr', 'over left')]), ] SUFFIXES = ['', 'a'] def write_file(filename, content): with open(filename, 'wb') as f: f.write(content.encode('UTF-8')) print("# START tests from {}".format(__file__)) idx = 0 for pos, ref_wm, ruby_pos, subtests in TEST_CASES: idx += 1 ref_file = REF_FILE.format(idx) ref_content = REF_TEMPLATE.format(pos=pos, wm=ref_wm, posval=ruby_pos) write_file(ref_file, ref_content) suffix = iter(SUFFIXES) for wm, posval in subtests: test_file = TEST_FILE.format(idx, next(suffix)) test_content = TEST_TEMPLATE.format( wm=wm, pos=pos, index=idx, ruby_pos=ruby_pos, posval=posval) write_file(test_file, test_content) print("== {} {}".format(test_file, ref_file)) print("# END tests from {}".format(__file__))
t794104/ansible
refs/heads/devel
lib/ansible/module_utils/facts/__init__.py
172
# This code is part of Ansible, but is an independent component. # This particular file snippet, and this file snippet only, is BSD licensed. # Modules you write using this snippet, which is embedded dynamically by Ansible # still belong to the author of the module, and may assign their own license # to the complete work. # # (c) 2017 Red Hat Inc. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from __future__ import (absolute_import, division, print_function) __metaclass__ = type # import from the compat api because 2.0-2.3 had a module_utils.facts.ansible_facts # and get_all_facts in top level namespace from ansible.module_utils.facts.compat import ansible_facts, get_all_facts # noqa
mezz64/home-assistant
refs/heads/dev
homeassistant/components/incomfort/binary_sensor.py
16
"""Support for an Intergas heater via an InComfort/InTouch Lan2RF gateway.""" from typing import Any, Dict, Optional from homeassistant.components.binary_sensor import ( DOMAIN as BINARY_SENSOR_DOMAIN, BinarySensorEntity, ) from . import DOMAIN, IncomfortChild async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up an InComfort/InTouch binary_sensor device.""" if discovery_info is None: return client = hass.data[DOMAIN]["client"] heaters = hass.data[DOMAIN]["heaters"] async_add_entities([IncomfortFailed(client, h) for h in heaters]) class IncomfortFailed(IncomfortChild, BinarySensorEntity): """Representation of an InComfort Failed sensor.""" def __init__(self, client, heater) -> None: """Initialize the binary sensor.""" super().__init__() self._unique_id = f"{heater.serial_no}_failed" self.entity_id = f"{BINARY_SENSOR_DOMAIN}.{DOMAIN}_failed" self._name = "Boiler Fault" self._client = client self._heater = heater @property def is_on(self) -> bool: """Return the status of the sensor.""" return self._heater.status["is_failed"] @property def device_state_attributes(self) -> Optional[Dict[str, Any]]: """Return the device state attributes.""" return {"fault_code": self._heater.status["fault_code"]}
NCIP/gdc-docs
refs/heads/develop
docs/API/Users_Guide/scripts/BAM_Slice.py
1
import requests import json ''' This script will not work until $TOKEN_FILE_PATH is replaced with an actual path. ''' token_file = "$TOKEN_FILE_PATH" file_id = "11443f3c-9b8b-4e47-b5b7-529468fec098" data_endpt = "https://api.gdc.cancer.gov/slicing/view/{}".format(file_id) with open(token_file,"r") as token: token_string = str(token.read().strip()) params = {"gencode": ["BRCA1", "BRCA2"]} response = requests.post(data_endpt, data = json.dumps(params), headers = { "Content-Type": "application/json", "X-Auth-Token": token_string }) file_name = "brca_slices.bam" with open(file_name, "wb") as output_file: output_file.write(response.content)
sugarlabs/sugar-toolkit
refs/heads/master
src/sugar/graphics/panel.py
3
# Copyright (C) 2007, Red Hat, Inc. # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the # Free Software Foundation, Inc., 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. """ STABLE. """ import gtk class Panel(gtk.VBox): __gtype_name__ = 'SugarPanel' def __init__(self): gtk.VBox.__init__(self)
xbmc/xbmc-antiquated
refs/heads/master
xbmc/lib/libPython/Python/Lib/idlelib/OutputWindow.py
67
from Tkinter import * from EditorWindow import EditorWindow import re import tkMessageBox import IOBinding class OutputWindow(EditorWindow): """An editor window that can serve as an output file. Also the future base class for the Python shell window. This class has no input facilities. """ def __init__(self, *args): EditorWindow.__init__(self, *args) self.text.bind("<<goto-file-line>>", self.goto_file_line) # Customize EditorWindow def ispythonsource(self, filename): # No colorization needed return 0 def short_title(self): return "Output" def maybesave(self): # Override base class method -- don't ask any questions if self.get_saved(): return "yes" else: return "no" # Act as output file def write(self, s, tags=(), mark="insert"): # Tk assumes that byte strings are Latin-1; # we assume that they are in the locale's encoding if isinstance(s, str): try: s = unicode(s, IOBinding.encoding) except UnicodeError: # some other encoding; let Tcl deal with it pass self.text.insert(mark, s, tags) self.text.see(mark) self.text.update() def writelines(self, l): map(self.write, l) def flush(self): pass # Our own right-button menu rmenu_specs = [ ("Go to file/line", "<<goto-file-line>>"), ] file_line_pats = [ r'file "([^"]*)", line (\d+)', r'([^\s]+)\((\d+)\)', r'([^\s]+):\s*(\d+):', ] file_line_progs = None def goto_file_line(self, event=None): if self.file_line_progs is None: l = [] for pat in self.file_line_pats: l.append(re.compile(pat, re.IGNORECASE)) self.file_line_progs = l # x, y = self.event.x, self.event.y # self.text.mark_set("insert", "@%d,%d" % (x, y)) line = self.text.get("insert linestart", "insert lineend") result = self._file_line_helper(line) if not result: # Try the previous line. This is handy e.g. in tracebacks, # where you tend to right-click on the displayed source line line = self.text.get("insert -1line linestart", "insert -1line lineend") result = self._file_line_helper(line) if not result: tkMessageBox.showerror( "No special line", "The line you point at doesn't look like " "a valid file name followed by a line number.", master=self.text) return filename, lineno = result edit = self.flist.open(filename) edit.gotoline(lineno) def _file_line_helper(self, line): for prog in self.file_line_progs: m = prog.search(line) if m: break else: return None filename, lineno = m.group(1, 2) try: f = open(filename, "r") f.close() except IOError: return None try: return filename, int(lineno) except TypeError: return None # These classes are currently not used but might come in handy class OnDemandOutputWindow: tagdefs = { # XXX Should use IdlePrefs.ColorPrefs "stdout": {"foreground": "blue"}, "stderr": {"foreground": "#007700"}, } def __init__(self, flist): self.flist = flist self.owin = None def write(self, s, tags, mark): if not self.owin: self.setup() self.owin.write(s, tags, mark) def setup(self): self.owin = owin = OutputWindow(self.flist) text = owin.text for tag, cnf in self.tagdefs.items(): if cnf: text.tag_configure(tag, **cnf) text.tag_raise('sel') self.write = self.owin.write #class PseudoFile: # # def __init__(self, owin, tags, mark="end"): # self.owin = owin # self.tags = tags # self.mark = mark # def write(self, s): # self.owin.write(s, self.tags, self.mark) # def writelines(self, l): # map(self.write, l) # def flush(self): # pass
Dandandan/wikiprogramming
refs/heads/master
jsrepl/extern/python/unclosured/lib/python2.7/smtpd.py
76
#! /usr/bin/env python """An RFC 2821 smtp proxy. Usage: %(program)s [options] [localhost:localport [remotehost:remoteport]] Options: --nosetuid -n This program generally tries to setuid `nobody', unless this flag is set. The setuid call will fail if this program is not run as root (in which case, use this flag). --version -V Print the version number and exit. --class classname -c classname Use `classname' as the concrete SMTP proxy class. Uses `PureProxy' by default. --debug -d Turn on debugging prints. --help -h Print this message and exit. Version: %(__version__)s If localhost is not given then `localhost' is used, and if localport is not given then 8025 is used. If remotehost is not given then `localhost' is used, and if remoteport is not given, then 25 is used. """ # Overview: # # This file implements the minimal SMTP protocol as defined in RFC 821. It # has a hierarchy of classes which implement the backend functionality for the # smtpd. A number of classes are provided: # # SMTPServer - the base class for the backend. Raises NotImplementedError # if you try to use it. # # DebuggingServer - simply prints each message it receives on stdout. # # PureProxy - Proxies all messages to a real smtpd which does final # delivery. One known problem with this class is that it doesn't handle # SMTP errors from the backend server at all. This should be fixed # (contributions are welcome!). # # MailmanProxy - An experimental hack to work with GNU Mailman # <www.list.org>. Using this server as your real incoming smtpd, your # mailhost will automatically recognize and accept mail destined to Mailman # lists when those lists are created. Every message not destined for a list # gets forwarded to a real backend smtpd, as with PureProxy. Again, errors # are not handled correctly yet. # # Please note that this script requires Python 2.0 # # Author: Barry Warsaw <barry@python.org> # # TODO: # # - support mailbox delivery # - alias files # - ESMTP # - handle error codes from the backend smtpd import sys import os import errno import getopt import time import socket import asyncore import asynchat __all__ = ["SMTPServer","DebuggingServer","PureProxy","MailmanProxy"] program = sys.argv[0] __version__ = 'Python SMTP proxy version 0.2' class Devnull: def write(self, msg): pass def flush(self): pass DEBUGSTREAM = Devnull() NEWLINE = '\n' EMPTYSTRING = '' COMMASPACE = ', ' def usage(code, msg=''): print >> sys.stderr, __doc__ % globals() if msg: print >> sys.stderr, msg sys.exit(code) class SMTPChannel(asynchat.async_chat): COMMAND = 0 DATA = 1 def __init__(self, server, conn, addr): asynchat.async_chat.__init__(self, conn) self.__server = server self.__conn = conn self.__addr = addr self.__line = [] self.__state = self.COMMAND self.__greeting = 0 self.__mailfrom = None self.__rcpttos = [] self.__data = '' self.__fqdn = socket.getfqdn() try: self.__peer = conn.getpeername() except socket.error, err: # a race condition may occur if the other end is closing # before we can get the peername self.close() if err[0] != errno.ENOTCONN: raise return print >> DEBUGSTREAM, 'Peer:', repr(self.__peer) self.push('220 %s %s' % (self.__fqdn, __version__)) self.set_terminator('\r\n') # Overrides base class for convenience def push(self, msg): asynchat.async_chat.push(self, msg + '\r\n') # Implementation of base class abstract method def collect_incoming_data(self, data): self.__line.append(data) # Implementation of base class abstract method def found_terminator(self): line = EMPTYSTRING.join(self.__line) print >> DEBUGSTREAM, 'Data:', repr(line) self.__line = [] if self.__state == self.COMMAND: if not line: self.push('500 Error: bad syntax') return method = None i = line.find(' ') if i < 0: command = line.upper() arg = None else: command = line[:i].upper() arg = line[i+1:].strip() method = getattr(self, 'smtp_' + command, None) if not method: self.push('502 Error: command "%s" not implemented' % command) return method(arg) return else: if self.__state != self.DATA: self.push('451 Internal confusion') return # Remove extraneous carriage returns and de-transparency according # to RFC 821, Section 4.5.2. data = [] for text in line.split('\r\n'): if text and text[0] == '.': data.append(text[1:]) else: data.append(text) self.__data = NEWLINE.join(data) status = self.__server.process_message(self.__peer, self.__mailfrom, self.__rcpttos, self.__data) self.__rcpttos = [] self.__mailfrom = None self.__state = self.COMMAND self.set_terminator('\r\n') if not status: self.push('250 Ok') else: self.push(status) # SMTP and ESMTP commands def smtp_HELO(self, arg): if not arg: self.push('501 Syntax: HELO hostname') return if self.__greeting: self.push('503 Duplicate HELO/EHLO') else: self.__greeting = arg self.push('250 %s' % self.__fqdn) def smtp_NOOP(self, arg): if arg: self.push('501 Syntax: NOOP') else: self.push('250 Ok') def smtp_QUIT(self, arg): # args is ignored self.push('221 Bye') self.close_when_done() # factored def __getaddr(self, keyword, arg): address = None keylen = len(keyword) if arg[:keylen].upper() == keyword: address = arg[keylen:].strip() if not address: pass elif address[0] == '<' and address[-1] == '>' and address != '<>': # Addresses can be in the form <person@dom.com> but watch out # for null address, e.g. <> address = address[1:-1] return address def smtp_MAIL(self, arg): print >> DEBUGSTREAM, '===> MAIL', arg address = self.__getaddr('FROM:', arg) if arg else None if not address: self.push('501 Syntax: MAIL FROM:<address>') return if self.__mailfrom: self.push('503 Error: nested MAIL command') return self.__mailfrom = address print >> DEBUGSTREAM, 'sender:', self.__mailfrom self.push('250 Ok') def smtp_RCPT(self, arg): print >> DEBUGSTREAM, '===> RCPT', arg if not self.__mailfrom: self.push('503 Error: need MAIL command') return address = self.__getaddr('TO:', arg) if arg else None if not address: self.push('501 Syntax: RCPT TO: <address>') return self.__rcpttos.append(address) print >> DEBUGSTREAM, 'recips:', self.__rcpttos self.push('250 Ok') def smtp_RSET(self, arg): if arg: self.push('501 Syntax: RSET') return # Resets the sender, recipients, and data, but not the greeting self.__mailfrom = None self.__rcpttos = [] self.__data = '' self.__state = self.COMMAND self.push('250 Ok') def smtp_DATA(self, arg): if not self.__rcpttos: self.push('503 Error: need RCPT command') return if arg: self.push('501 Syntax: DATA') return self.__state = self.DATA self.set_terminator('\r\n.\r\n') self.push('354 End data with <CR><LF>.<CR><LF>') class SMTPServer(asyncore.dispatcher): def __init__(self, localaddr, remoteaddr): self._localaddr = localaddr self._remoteaddr = remoteaddr asyncore.dispatcher.__init__(self) try: self.create_socket(socket.AF_INET, socket.SOCK_STREAM) # try to re-use a server port if possible self.set_reuse_addr() self.bind(localaddr) self.listen(5) except: # cleanup asyncore.socket_map before raising self.close() raise else: print >> DEBUGSTREAM, \ '%s started at %s\n\tLocal addr: %s\n\tRemote addr:%s' % ( self.__class__.__name__, time.ctime(time.time()), localaddr, remoteaddr) def handle_accept(self): pair = self.accept() if pair is not None: conn, addr = pair print >> DEBUGSTREAM, 'Incoming connection from %s' % repr(addr) channel = SMTPChannel(self, conn, addr) # API for "doing something useful with the message" def process_message(self, peer, mailfrom, rcpttos, data): """Override this abstract method to handle messages from the client. peer is a tuple containing (ipaddr, port) of the client that made the socket connection to our smtp port. mailfrom is the raw address the client claims the message is coming from. rcpttos is a list of raw addresses the client wishes to deliver the message to. data is a string containing the entire full text of the message, headers (if supplied) and all. It has been `de-transparencied' according to RFC 821, Section 4.5.2. In other words, a line containing a `.' followed by other text has had the leading dot removed. This function should return None, for a normal `250 Ok' response; otherwise it returns the desired response string in RFC 821 format. """ raise NotImplementedError class DebuggingServer(SMTPServer): # Do something with the gathered message def process_message(self, peer, mailfrom, rcpttos, data): inheaders = 1 lines = data.split('\n') print '---------- MESSAGE FOLLOWS ----------' for line in lines: # headers first if inheaders and not line: print 'X-Peer:', peer[0] inheaders = 0 print line print '------------ END MESSAGE ------------' class PureProxy(SMTPServer): def process_message(self, peer, mailfrom, rcpttos, data): lines = data.split('\n') # Look for the last header i = 0 for line in lines: if not line: break i += 1 lines.insert(i, 'X-Peer: %s' % peer[0]) data = NEWLINE.join(lines) refused = self._deliver(mailfrom, rcpttos, data) # TBD: what to do with refused addresses? print >> DEBUGSTREAM, 'we got some refusals:', refused def _deliver(self, mailfrom, rcpttos, data): import smtplib refused = {} try: s = smtplib.SMTP() s.connect(self._remoteaddr[0], self._remoteaddr[1]) try: refused = s.sendmail(mailfrom, rcpttos, data) finally: s.quit() except smtplib.SMTPRecipientsRefused, e: print >> DEBUGSTREAM, 'got SMTPRecipientsRefused' refused = e.recipients except (socket.error, smtplib.SMTPException), e: print >> DEBUGSTREAM, 'got', e.__class__ # All recipients were refused. If the exception had an associated # error code, use it. Otherwise,fake it with a non-triggering # exception code. errcode = getattr(e, 'smtp_code', -1) errmsg = getattr(e, 'smtp_error', 'ignore') for r in rcpttos: refused[r] = (errcode, errmsg) return refused class MailmanProxy(PureProxy): def process_message(self, peer, mailfrom, rcpttos, data): from cStringIO import StringIO from Mailman import Utils from Mailman import Message from Mailman import MailList # If the message is to a Mailman mailing list, then we'll invoke the # Mailman script directly, without going through the real smtpd. # Otherwise we'll forward it to the local proxy for disposition. listnames = [] for rcpt in rcpttos: local = rcpt.lower().split('@')[0] # We allow the following variations on the theme # listname # listname-admin # listname-owner # listname-request # listname-join # listname-leave parts = local.split('-') if len(parts) > 2: continue listname = parts[0] if len(parts) == 2: command = parts[1] else: command = '' if not Utils.list_exists(listname) or command not in ( '', 'admin', 'owner', 'request', 'join', 'leave'): continue listnames.append((rcpt, listname, command)) # Remove all list recipients from rcpttos and forward what we're not # going to take care of ourselves. Linear removal should be fine # since we don't expect a large number of recipients. for rcpt, listname, command in listnames: rcpttos.remove(rcpt) # If there's any non-list destined recipients left, print >> DEBUGSTREAM, 'forwarding recips:', ' '.join(rcpttos) if rcpttos: refused = self._deliver(mailfrom, rcpttos, data) # TBD: what to do with refused addresses? print >> DEBUGSTREAM, 'we got refusals:', refused # Now deliver directly to the list commands mlists = {} s = StringIO(data) msg = Message.Message(s) # These headers are required for the proper execution of Mailman. All # MTAs in existence seem to add these if the original message doesn't # have them. if not msg.getheader('from'): msg['From'] = mailfrom if not msg.getheader('date'): msg['Date'] = time.ctime(time.time()) for rcpt, listname, command in listnames: print >> DEBUGSTREAM, 'sending message to', rcpt mlist = mlists.get(listname) if not mlist: mlist = MailList.MailList(listname, lock=0) mlists[listname] = mlist # dispatch on the type of command if command == '': # post msg.Enqueue(mlist, tolist=1) elif command == 'admin': msg.Enqueue(mlist, toadmin=1) elif command == 'owner': msg.Enqueue(mlist, toowner=1) elif command == 'request': msg.Enqueue(mlist, torequest=1) elif command in ('join', 'leave'): # TBD: this is a hack! if command == 'join': msg['Subject'] = 'subscribe' else: msg['Subject'] = 'unsubscribe' msg.Enqueue(mlist, torequest=1) class Options: setuid = 1 classname = 'PureProxy' def parseargs(): global DEBUGSTREAM try: opts, args = getopt.getopt( sys.argv[1:], 'nVhc:d', ['class=', 'nosetuid', 'version', 'help', 'debug']) except getopt.error, e: usage(1, e) options = Options() for opt, arg in opts: if opt in ('-h', '--help'): usage(0) elif opt in ('-V', '--version'): print >> sys.stderr, __version__ sys.exit(0) elif opt in ('-n', '--nosetuid'): options.setuid = 0 elif opt in ('-c', '--class'): options.classname = arg elif opt in ('-d', '--debug'): DEBUGSTREAM = sys.stderr # parse the rest of the arguments if len(args) < 1: localspec = 'localhost:8025' remotespec = 'localhost:25' elif len(args) < 2: localspec = args[0] remotespec = 'localhost:25' elif len(args) < 3: localspec = args[0] remotespec = args[1] else: usage(1, 'Invalid arguments: %s' % COMMASPACE.join(args)) # split into host/port pairs i = localspec.find(':') if i < 0: usage(1, 'Bad local spec: %s' % localspec) options.localhost = localspec[:i] try: options.localport = int(localspec[i+1:]) except ValueError: usage(1, 'Bad local port: %s' % localspec) i = remotespec.find(':') if i < 0: usage(1, 'Bad remote spec: %s' % remotespec) options.remotehost = remotespec[:i] try: options.remoteport = int(remotespec[i+1:]) except ValueError: usage(1, 'Bad remote port: %s' % remotespec) return options if __name__ == '__main__': options = parseargs() # Become nobody if options.setuid: try: import pwd except ImportError: print >> sys.stderr, \ 'Cannot import module "pwd"; try running with -n option.' sys.exit(1) nobody = pwd.getpwnam('nobody')[2] try: os.setuid(nobody) except OSError, e: if e.errno != errno.EPERM: raise print >> sys.stderr, \ 'Cannot setuid "nobody"; try running with -n option.' sys.exit(1) classname = options.classname if "." in classname: lastdot = classname.rfind(".") mod = __import__(classname[:lastdot], globals(), locals(), [""]) classname = classname[lastdot+1:] else: import __main__ as mod class_ = getattr(mod, classname) proxy = class_((options.localhost, options.localport), (options.remotehost, options.remoteport)) try: asyncore.loop() except KeyboardInterrupt: pass
mpreisler/scap-security-guide-debian
refs/heads/master
scap-security-guide-0.1.21/OpenStack/utils/verify-references.py
3
#!/usr/bin/python import sys # always use shared/modules version SHARED_MODULE_PATH = "../../shared/modules" sys.path.insert(0, SHARED_MODULE_PATH) import verify_references_module if __name__ == "__main__": verify_references_module.main()
passiweinberger/nupic
refs/heads/master
src/nupic/swarming/HypersearchV2.py
31
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import sys import os import time import logging import json import hashlib import itertools import StringIO import shutil import tempfile import copy import pprint from operator import itemgetter from nupic.frameworks.opf import opfhelpers from nupic.swarming.hypersearch.utils import sortedJSONDumpS, rApply, rCopy from nupic.support.configuration import Configuration from nupic.swarming.hypersearch.utils import clippedObj from nupic.swarming.hypersearch.errorcodes import ErrorCodes from nupic.swarming.hypersearch.experimentutils import InferenceType from nupic.database.ClientJobsDAO import ( ClientJobsDAO, InvalidConnectionException) from nupic.swarming.hypersearch.utils import (runModelGivenBaseAndParams, runDummyModel) from nupic.swarming.permutationhelpers import * from nupic.swarming.exp_generator.ExpGenerator import expGenerator def _flattenKeys(keys): return '|'.join(keys) class SwarmTerminator(object): """Class that records the performane of swarms in a sprint and makes decisions about which swarms should stop running. This is a usful optimization that identifies field combinations that no longer need to be run. """ MATURITY_WINDOW = None MAX_GENERATIONS = None _DEFAULT_MILESTONES = [1.0 / (x + 1) for x in xrange(12)] def __init__(self, milestones=None, logLevel=None): # Set class constants. self.MATURITY_WINDOW = int(Configuration.get( "nupic.hypersearch.swarmMaturityWindow")) self.MAX_GENERATIONS = int(Configuration.get( "nupic.hypersearch.swarmMaxGenerations")) if self.MAX_GENERATIONS < 0: self.MAX_GENERATIONS = None # Set up instsance variables. self._isTerminationEnabled = bool(int(Configuration.get( 'nupic.hypersearch.enableSwarmTermination'))) self.swarmBests = dict() self.swarmScores = dict() self.terminatedSwarms = set([]) self._logger = logging.getLogger(".".join( ['com.numenta', self.__class__.__module__, self.__class__.__name__])) if milestones is not None: self.milestones = milestones else: self.milestones = copy.deepcopy(self._DEFAULT_MILESTONES) def recordDataPoint(self, swarmId, generation, errScore): """Record the best score for a swarm's generation index (x) Returns list of swarmIds to terminate. """ terminatedSwarms = [] # Append score to existing swarm. if swarmId in self.swarmScores: entry = self.swarmScores[swarmId] assert(len(entry) == generation) entry.append(errScore) entry = self.swarmBests[swarmId] entry.append(min(errScore, entry[-1])) assert(len(self.swarmBests[swarmId]) == len(self.swarmScores[swarmId])) else: # Create list of scores for a new swarm assert (generation == 0) self.swarmScores[swarmId] = [errScore] self.swarmBests[swarmId] = [errScore] # If the current swarm hasn't completed at least MIN_GENERATIONS, it should # not be candidate for maturation or termination. This prevents the initial # allocation of particles in PSO from killing off a field combination too # early. if generation + 1 < self.MATURITY_WINDOW: return terminatedSwarms # If the swarm has completed more than MAX_GENERATIONS, it should be marked # as mature, regardless of how its value is changing. if self.MAX_GENERATIONS is not None and generation > self.MAX_GENERATIONS: self._logger.info( 'Swarm %s has matured (more than %d generations). Stopping' % (swarmId, self.MAX_GENERATIONS)) terminatedSwarms.append(swarmId) if self._isTerminationEnabled: terminatedSwarms.extend(self._getTerminatedSwarms(generation)) # Return which swarms to kill when we've reached maturity # If there is no change in the swarm's best for some time, # Mark it dead cumulativeBestScores = self.swarmBests[swarmId] if cumulativeBestScores[-1] == cumulativeBestScores[-self.MATURITY_WINDOW]: self._logger.info('Swarm %s has matured (no change in %d generations).' 'Stopping...'% (swarmId, self.MATURITY_WINDOW)) terminatedSwarms.append(swarmId) self.terminatedSwarms = self.terminatedSwarms.union(terminatedSwarms) return terminatedSwarms def numDataPoints(self, swarmId): if swarmId in self.swarmScores: return len(self.swarmScores[swarmId]) else: return 0 def _getTerminatedSwarms(self, generation): terminatedSwarms = [] generationScores = dict() for swarm, scores in self.swarmScores.iteritems(): if len(scores) > generation and swarm not in self.terminatedSwarms: generationScores[swarm] = scores[generation] if len(generationScores) == 0: return bestScore = min(generationScores.values()) tolerance = self.milestones[generation] for swarm, score in generationScores.iteritems(): if score > (1 + tolerance) * bestScore: self._logger.info('Swarm %s is doing poorly at generation %d.\n' 'Current Score:%s \n' 'Best Score:%s \n' 'Tolerance:%s. Stopping...', swarm, generation, score, bestScore, tolerance) terminatedSwarms.append(swarm) return terminatedSwarms class ResultsDB(object): """This class holds all the information we have accumulated on completed models, which particles were used, etc. When we get updated results sent to us (via recordModelProgress), we record it here for access later by various functions in this module. """ def __init__(self, hsObj): """ Instantiate our results database Parameters: -------------------------------------------------------------------- hsObj: Reference to the HypersearchV2 instance """ self._hsObj = hsObj # This list holds all the results we have so far on every model. In # addition, we maintain mutliple other data structures which provide # faster access into portions of this list self._allResults = [] # Models that completed with errors and all completed. # These are used to determine when we should abort because of too many # errors self._errModels = set() self._numErrModels = 0 self._completedModels = set() self._numCompletedModels = 0 # Map of the model ID to index of result in _allResults self._modelIDToIdx = dict() # The global best result on the optimize metric so far, and the model ID self._bestResult = numpy.inf self._bestModelID = None # This is a dict of dicts. The top level dict has the swarmId as the key. # Each entry is a dict of genIdx: (modelId, errScore) entries. self._swarmBestOverall = dict() # For each swarm, we keep track of how many particles we have per generation # The key is the swarmId, the value is a list of the number of particles # at each generation self._swarmNumParticlesPerGeneration = dict() # The following variables are used to support the # getMaturedSwarmGenerations() call. # # The _modifiedSwarmGens set contains the set of (swarmId, genIdx) tuples # that have had results reported to them since the last time # getMaturedSwarmGenerations() was called. # # The maturedSwarmGens contains (swarmId,genIdx) tuples, one for each # swarm generation index which we have already detected has matured. This # insures that if by chance we get a rogue report from a model in a swarm # generation index which we have already assumed was matured that we won't # report on it again. self._modifiedSwarmGens = set() self._maturedSwarmGens = set() # For each particle, we keep track of it's best score (across all # generations) and the position it was at when it got that score. The keys # in this dict are the particleId, the values are (bestResult, position), # where position is a dict with varName:position items in it. self._particleBest = dict() # For each particle, we keep track of it's latest generation index. self._particleLatestGenIdx = dict() # For each swarm, we keep track of which models are in it. The key # is the swarmId, the value is a list of indexes into self._allResults. self._swarmIdToIndexes = dict() # ParamsHash to index mapping self._paramsHashToIndexes = dict() def update(self, modelID, modelParams, modelParamsHash, metricResult, completed, completionReason, matured, numRecords): """ Insert a new entry or update an existing one. If this is an update of an existing entry, then modelParams will be None Parameters: -------------------------------------------------------------------- modelID: globally unique modelID of this model modelParams: params dict for this model, or None if this is just an update of a model that it already previously reported on. See the comments for the createModels() method for a description of this dict. modelParamsHash: hash of the modelParams dict, generated by the worker that put it into the model database. metricResult: value on the optimizeMetric for this model. May be None if we have no results yet. completed: True if the model has completed evaluation, False if it is still running (and these are online results) completionReason: One of the ClientJobsDAO.CMPL_REASON_XXX equates matured: True if this model has matured numRecords: Number of records that have been processed so far by this model. retval: Canonicalized result on the optimize metric """ # The modelParamsHash must always be provided - it can change after a # model is inserted into the models table if it got detected as an # orphan assert (modelParamsHash is not None) # We consider a model metricResult as "final" if it has completed or # matured. By default, assume anything that has completed has matured if completed: matured = True # Get the canonicalized optimize metric results. For this metric, lower # is always better if metricResult is not None and matured and \ completionReason in [ClientJobsDAO.CMPL_REASON_EOF, ClientJobsDAO.CMPL_REASON_STOPPED]: # Canonicalize the error score so that lower is better if self._hsObj._maximize: errScore = -1 * metricResult else: errScore = metricResult if errScore < self._bestResult: self._bestResult = errScore self._bestModelID = modelID self._hsObj.logger.info("New best model after %d evaluations: errScore " "%g on model %s" % (len(self._allResults), self._bestResult, self._bestModelID)) else: errScore = numpy.inf # If this model completed with an unacceptable completion reason, set the # errScore to infinite and essentially make this model invisible to # further queries if completed and completionReason in [ClientJobsDAO.CMPL_REASON_ORPHAN]: errScore = numpy.inf hidden = True else: hidden = False # Update our set of erred models and completed models. These are used # to determine if we should abort the search because of too many errors if completed: self._completedModels.add(modelID) self._numCompletedModels = len(self._completedModels) if completionReason == ClientJobsDAO.CMPL_REASON_ERROR: self._errModels.add(modelID) self._numErrModels = len(self._errModels) # Are we creating a new entry? wasHidden = False if modelID not in self._modelIDToIdx: assert (modelParams is not None) entry = dict(modelID=modelID, modelParams=modelParams, modelParamsHash=modelParamsHash, errScore=errScore, completed=completed, matured=matured, numRecords=numRecords, hidden=hidden) self._allResults.append(entry) entryIdx = len(self._allResults) - 1 self._modelIDToIdx[modelID] = entryIdx self._paramsHashToIndexes[modelParamsHash] = entryIdx swarmId = modelParams['particleState']['swarmId'] if not hidden: # Update the list of particles in each swarm if swarmId in self._swarmIdToIndexes: self._swarmIdToIndexes[swarmId].append(entryIdx) else: self._swarmIdToIndexes[swarmId] = [entryIdx] # Update number of particles at each generation in this swarm genIdx = modelParams['particleState']['genIdx'] numPsEntry = self._swarmNumParticlesPerGeneration.get(swarmId, [0]) while genIdx >= len(numPsEntry): numPsEntry.append(0) numPsEntry[genIdx] += 1 self._swarmNumParticlesPerGeneration[swarmId] = numPsEntry # Replacing an existing one else: entryIdx = self._modelIDToIdx.get(modelID, None) assert (entryIdx is not None) entry = self._allResults[entryIdx] wasHidden = entry['hidden'] # If the paramsHash changed, note that. This can happen for orphaned # models if entry['modelParamsHash'] != modelParamsHash: self._paramsHashToIndexes.pop(entry['modelParamsHash']) self._paramsHashToIndexes[modelParamsHash] = entryIdx entry['modelParamsHash'] = modelParamsHash # Get the model params, swarmId, and genIdx modelParams = entry['modelParams'] swarmId = modelParams['particleState']['swarmId'] genIdx = modelParams['particleState']['genIdx'] # If this particle just became hidden, remove it from our swarm counts if hidden and not wasHidden: assert (entryIdx in self._swarmIdToIndexes[swarmId]) self._swarmIdToIndexes[swarmId].remove(entryIdx) self._swarmNumParticlesPerGeneration[swarmId][genIdx] -= 1 # Update the entry for the latest info entry['errScore'] = errScore entry['completed'] = completed entry['matured'] = matured entry['numRecords'] = numRecords entry['hidden'] = hidden # Update the particle best errScore particleId = modelParams['particleState']['id'] genIdx = modelParams['particleState']['genIdx'] if matured and not hidden: (oldResult, pos) = self._particleBest.get(particleId, (numpy.inf, None)) if errScore < oldResult: pos = Particle.getPositionFromState(modelParams['particleState']) self._particleBest[particleId] = (errScore, pos) # Update the particle latest generation index prevGenIdx = self._particleLatestGenIdx.get(particleId, -1) if not hidden and genIdx > prevGenIdx: self._particleLatestGenIdx[particleId] = genIdx elif hidden and not wasHidden and genIdx == prevGenIdx: self._particleLatestGenIdx[particleId] = genIdx-1 # Update the swarm best score if not hidden: swarmId = modelParams['particleState']['swarmId'] if not swarmId in self._swarmBestOverall: self._swarmBestOverall[swarmId] = [] bestScores = self._swarmBestOverall[swarmId] while genIdx >= len(bestScores): bestScores.append((None, numpy.inf)) if errScore < bestScores[genIdx][1]: bestScores[genIdx] = (modelID, errScore) # Update the self._modifiedSwarmGens flags to support the # getMaturedSwarmGenerations() call. if not hidden: key = (swarmId, genIdx) if not key in self._maturedSwarmGens: self._modifiedSwarmGens.add(key) return errScore def getNumErrModels(self): """Return number of models that completed with errors. Parameters: --------------------------------------------------------------------- retval: # if models """ return self._numErrModels def getErrModelIds(self): """Return list of models IDs that completed with errors. Parameters: --------------------------------------------------------------------- retval: # if models """ return list(self._errModels) def getNumCompletedModels(self): """Return total number of models that completed. Parameters: --------------------------------------------------------------------- retval: # if models that completed """ return self._numCompletedModels def getModelIDFromParamsHash(self, paramsHash): """ Return the modelID of the model with the given paramsHash, or None if not found. Parameters: --------------------------------------------------------------------- paramsHash: paramsHash to look for retval: modelId, or None if not found """ entryIdx = self. _paramsHashToIndexes.get(paramsHash, None) if entryIdx is not None: return self._allResults[entryIdx]['modelID'] else: return None def numModels(self, swarmId=None, includeHidden=False): """Return the total # of models we have in our database (if swarmId is None) or in a specific swarm. Parameters: --------------------------------------------------------------------- swarmId: A string representation of the sorted list of encoders in this swarm. For example '__address_encoder.__gym_encoder' includeHidden: If False, this will only return the number of models that are not hidden (i.e. orphanned, etc.) retval: numModels """ # Count all models if includeHidden: if swarmId is None: return len(self._allResults) else: return len(self._swarmIdToIndexes.get(swarmId, [])) # Only count non-hidden models else: if swarmId is None: entries = self._allResults else: entries = [self._allResults[entryIdx] for entryIdx in self._swarmIdToIndexes.get(swarmId,[])] return len([entry for entry in entries if not entry['hidden']]) def bestModelIdAndErrScore(self, swarmId=None, genIdx=None): """Return the model ID of the model with the best result so far and it's score on the optimize metric. If swarm is None, then it returns the global best, otherwise it returns the best for the given swarm for all generatons up to and including genIdx. Parameters: --------------------------------------------------------------------- swarmId: A string representation of the sorted list of encoders in this swarm. For example '__address_encoder.__gym_encoder' genIdx: consider the best in all generations up to and including this generation if not None. retval: (modelID, result) """ if swarmId is None: return (self._bestModelID, self._bestResult) else: if swarmId not in self._swarmBestOverall: return (None, numpy.inf) # Get the best score, considering the appropriate generations genScores = self._swarmBestOverall[swarmId] bestModelId = None bestScore = numpy.inf for (i, (modelId, errScore)) in enumerate(genScores): if genIdx is not None and i > genIdx: break if errScore < bestScore: bestScore = errScore bestModelId = modelId return (bestModelId, bestScore) def getParticleInfo(self, modelId): """Return particle info for a specific modelId. Parameters: --------------------------------------------------------------------- modelId: which model Id retval: (particleState, modelId, errScore, completed, matured) """ entry = self._allResults[self._modelIDToIdx[modelId]] return (entry['modelParams']['particleState'], modelId, entry['errScore'], entry['completed'], entry['matured']) def getParticleInfos(self, swarmId=None, genIdx=None, completed=None, matured=None, lastDescendent=False): """Return a list of particleStates for all particles we know about in the given swarm, their model Ids, and metric results. Parameters: --------------------------------------------------------------------- swarmId: A string representation of the sorted list of encoders in this swarm. For example '__address_encoder.__gym_encoder' genIdx: If not None, only return particles at this specific generation index. completed: If not None, only return particles of the given state (either completed if 'completed' is True, or running if 'completed' is false matured: If not None, only return particles of the given state (either matured if 'matured' is True, or not matured if 'matured' is false. Note that any model which has completed is also considered matured. lastDescendent: If True, only return particles that are the last descendent, that is, the highest generation index for a given particle Id retval: (particleStates, modelIds, errScores, completed, matured) particleStates: list of particleStates modelIds: list of modelIds errScores: list of errScores, numpy.inf is plugged in if we don't have a result yet completed: list of completed booleans matured: list of matured booleans """ # The indexes of all the models in this swarm. This list excludes hidden # (orphaned) models. if swarmId is not None: entryIdxs = self._swarmIdToIndexes.get(swarmId, []) else: entryIdxs = range(len(self._allResults)) if len(entryIdxs) == 0: return ([], [], [], [], []) # Get the particles of interest particleStates = [] modelIds = [] errScores = [] completedFlags = [] maturedFlags = [] for idx in entryIdxs: entry = self._allResults[idx] # If this entry is hidden (i.e. it was an orphaned model), it should # not be in this list if swarmId is not None: assert (not entry['hidden']) # Get info on this model modelParams = entry['modelParams'] isCompleted = entry['completed'] isMatured = entry['matured'] particleState = modelParams['particleState'] particleGenIdx = particleState['genIdx'] particleId = particleState['id'] if genIdx is not None and particleGenIdx != genIdx: continue if completed is not None and (completed != isCompleted): continue if matured is not None and (matured != isMatured): continue if lastDescendent \ and (self._particleLatestGenIdx[particleId] != particleGenIdx): continue # Incorporate into return values particleStates.append(particleState) modelIds.append(entry['modelID']) errScores.append(entry['errScore']) completedFlags.append(isCompleted) maturedFlags.append(isMatured) return (particleStates, modelIds, errScores, completedFlags, maturedFlags) def getOrphanParticleInfos(self, swarmId, genIdx): """Return a list of particleStates for all particles in the given swarm generation that have been orphaned. Parameters: --------------------------------------------------------------------- swarmId: A string representation of the sorted list of encoders in this swarm. For example '__address_encoder.__gym_encoder' genIdx: If not None, only return particles at this specific generation index. retval: (particleStates, modelIds, errScores, completed, matured) particleStates: list of particleStates modelIds: list of modelIds errScores: list of errScores, numpy.inf is plugged in if we don't have a result yet completed: list of completed booleans matured: list of matured booleans """ entryIdxs = range(len(self._allResults)) if len(entryIdxs) == 0: return ([], [], [], [], []) # Get the particles of interest particleStates = [] modelIds = [] errScores = [] completedFlags = [] maturedFlags = [] for idx in entryIdxs: # Get info on this model entry = self._allResults[idx] if not entry['hidden']: continue modelParams = entry['modelParams'] if modelParams['particleState']['swarmId'] != swarmId: continue isCompleted = entry['completed'] isMatured = entry['matured'] particleState = modelParams['particleState'] particleGenIdx = particleState['genIdx'] particleId = particleState['id'] if genIdx is not None and particleGenIdx != genIdx: continue # Incorporate into return values particleStates.append(particleState) modelIds.append(entry['modelID']) errScores.append(entry['errScore']) completedFlags.append(isCompleted) maturedFlags.append(isMatured) return (particleStates, modelIds, errScores, completedFlags, maturedFlags) def getMaturedSwarmGenerations(self): """Return a list of swarm generations that have completed and the best (minimal) errScore seen for each of them. Parameters: --------------------------------------------------------------------- retval: list of tuples. Each tuple is of the form: (swarmId, genIdx, bestErrScore) """ # Return results go in this list result = [] # For each of the swarm generations which have had model result updates # since the last time we were called, see which have completed. modifiedSwarmGens = sorted(self._modifiedSwarmGens) # Walk through them in order from lowest to highest generation index for key in modifiedSwarmGens: (swarmId, genIdx) = key # Skip it if we've already reported on it. This should happen rarely, if # ever. It means that some worker has started and completed a model in # this generation after we've determined that the generation has ended. if key in self._maturedSwarmGens: self._modifiedSwarmGens.remove(key) continue # If the previous generation for this swarm is not complete yet, don't # bother evaluating this one. if (genIdx >= 1) and not (swarmId, genIdx-1) in self._maturedSwarmGens: continue # We found a swarm generation that had some results reported since last # time, see if it's complete or not (_, _, errScores, completedFlags, maturedFlags) = \ self.getParticleInfos(swarmId, genIdx) maturedFlags = numpy.array(maturedFlags) numMatured = maturedFlags.sum() if numMatured >= self._hsObj._minParticlesPerSwarm \ and numMatured == len(maturedFlags): errScores = numpy.array(errScores) bestScore = errScores.min() self._maturedSwarmGens.add(key) self._modifiedSwarmGens.remove(key) result.append((swarmId, genIdx, bestScore)) # Return results return result def firstNonFullGeneration(self, swarmId, minNumParticles): """ Return the generation index of the first generation in the given swarm that does not have numParticles particles in it, either still in the running state or completed. This does not include orphaned particles. Parameters: --------------------------------------------------------------------- swarmId: A string representation of the sorted list of encoders in this swarm. For example '__address_encoder.__gym_encoder' minNumParticles: minium number of partices required for a full generation. retval: generation index, or None if no particles at all. """ if not swarmId in self._swarmNumParticlesPerGeneration: return None numPsPerGen = self._swarmNumParticlesPerGeneration[swarmId] numPsPerGen = numpy.array(numPsPerGen) firstNonFull = numpy.where(numPsPerGen < minNumParticles)[0] if len(firstNonFull) == 0: return len(numPsPerGen) else: return firstNonFull[0] def highestGeneration(self, swarmId): """ Return the generation index of the highest generation in the given swarm. Parameters: --------------------------------------------------------------------- swarmId: A string representation of the sorted list of encoders in this swarm. For example '__address_encoder.__gym_encoder' retval: generation index """ numPsPerGen = self._swarmNumParticlesPerGeneration[swarmId] return len(numPsPerGen)-1 def getParticleBest(self, particleId): """ Return the best score and position for a given particle. The position is given as a dict, with varName:varPosition items in it. Parameters: --------------------------------------------------------------------- particleId: which particle retval: (bestResult, bestPosition) """ return self._particleBest.get(particleId, (None, None)) def getResultsPerChoice(self, swarmId, maxGenIdx, varName): """ Return a dict of the errors obtained on models that were run with each value from a PermuteChoice variable. For example, if a PermuteChoice variable has the following choices: ['a', 'b', 'c'] The dict will have 3 elements. The keys are the stringified choiceVars, and each value is tuple containing (choiceVar, errors) where choiceVar is the original form of the choiceVar (before stringification) and errors is the list of errors received from models that used the specific choice: retval: ['a':('a', [0.1, 0.2, 0.3]), 'b':('b', [0.5, 0.1, 0.6]), 'c':('c', [])] Parameters: --------------------------------------------------------------------- swarmId: swarm Id of the swarm to retrieve info from maxGenIdx: max generation index to consider from other models, ignored if None varName: which variable to retrieve retval: list of the errors obtained from each choice. """ results = dict() # Get all the completed particles in this swarm (allParticles, _, resultErrs, _, _) = self.getParticleInfos(swarmId, genIdx=None, matured=True) for particleState, resultErr in itertools.izip(allParticles, resultErrs): # Consider this generation? if maxGenIdx is not None: if particleState['genIdx'] > maxGenIdx: continue # Ignore unless this model completed successfully if resultErr == numpy.inf: continue position = Particle.getPositionFromState(particleState) varPosition = position[varName] varPositionStr = str(varPosition) if varPositionStr in results: results[varPositionStr][1].append(resultErr) else: results[varPositionStr] = (varPosition, [resultErr]) return results class Particle(object): """Construct a particle. Each particle evaluates one or more models serially. Each model represents a position that the particle is evaluated at. Each position is a set of values chosen for each of the permutation variables. The particle's best position is the value of the permutation variables when it did best on the optimization metric. Some permutation variables are treated like traditional particle swarm variables - that is they have a position and velocity. Others are simply choice variables, for example a list of strings. We follow a different methodology for choosing each permutation variable value depending on its type. A particle belongs to 1 and only 1 swarm. A swarm is a collection of particles that all share the same global best position. A swarm is identified by its specific combination of fields. If we are evaluating multiple different field combinations, then there will be multiple swarms. A Hypersearch Worker (HSW) will only instantiate and run one particle at a time. When done running a particle, another worker can pick it up, pick a new position, for it and run it based on the particle state information which is stored in each model table entry. Each particle has a generationIdx. It starts out at generation #0. Every time a model evaluation completes and the particle is moved to a different position (to evaluate a different model), the generation index is incremented. Every particle that is created has a unique particleId. The particleId is a string formed as '<workerConnectionId>.<particleIdx>', where particleIdx starts at 0 for each worker and increments by 1 every time a new particle is created by that worker. """ _nextParticleID = 0 def __init__(self, hsObj, resultsDB, flattenedPermuteVars, swarmId=None, newFarFrom=None, evolveFromState=None, newFromClone=None, newParticleId=False): """ Create a particle. There are 3 fundamentally different methods of instantiating a particle: 1.) You can instantiate a new one from scratch, at generation index #0. This particle gets a new particleId. required: swarmId optional: newFarFrom must be None: evolveFromState, newFromClone 2.) You can instantiate one from savedState, in which case it's generation index is incremented (from the value stored in the saved state) and its particleId remains the same. required: evolveFromState optional: must be None: flattenedPermuteVars, swarmId, newFromClone 3.) You can clone another particle, creating a new particle at the same generationIdx but a different particleId. This new particle will end up at exactly the same position as the one it was cloned from. If you want to move it to the next position, or just jiggle it a bit, call newPosition() or agitate() after instantiation. required: newFromClone optional: must be None: flattenedPermuteVars, swarmId, evolveFromState Parameters: -------------------------------------------------------------------- hsObj: The HypersearchV2 instance resultsDB: the ResultsDB instance that holds all the model results flattenedPermuteVars: dict() containing the (key, PermuteVariable) pairs of the flattened permutation variables as read from the permutations file. swarmId: String that represents the encoder names of the encoders that are to be included in this particle's model. Of the form 'encoder1.encoder2'. Required for creation method #1. newFarFrom: If not None, this is a list of other particleState dicts in the swarm that we want to be as far away from as possible. Optional argument for creation method #1. evolveFromState: If not None, evolve an existing particle. This is a dict containing the particle's state. Preserve the particleId, but increment the generation index. Required for creation method #2. newFromClone: If not None, clone this other particle's position and generation index, with small random perturbations. This is a dict containing the particle's state. Required for creation method #3. newParticleId: Only applicable when newFromClone is True. Give the clone a new particle ID. """ # Save constructor arguments self._hsObj = hsObj self.logger = hsObj.logger self._resultsDB = resultsDB # See the random number generator used for all the variables in this # particle. We will seed it differently based on the construction method, # below. self._rng = random.Random() self._rng.seed(42) # Setup our variable set by taking what's in flattenedPermuteVars and # stripping out vars that belong to encoders we are not using. def _setupVars(flattenedPermuteVars): allowedEncoderNames = self.swarmId.split('.') self.permuteVars = copy.deepcopy(flattenedPermuteVars) # Remove fields we don't want. varNames = self.permuteVars.keys() for varName in varNames: # Remove encoders we're not using if ':' in varName: # if an encoder if varName.split(':')[0] not in allowedEncoderNames: self.permuteVars.pop(varName) continue # All PermuteChoice variables need to know all prior results obtained # with each choice. if isinstance(self.permuteVars[varName], PermuteChoices): if self._hsObj._speculativeParticles: maxGenIdx = None else: maxGenIdx = self.genIdx-1 resultsPerChoice = self._resultsDB.getResultsPerChoice( swarmId=self.swarmId, maxGenIdx=maxGenIdx, varName=varName) self.permuteVars[varName].setResultsPerChoice( resultsPerChoice.values()) # Method #1 # Create from scratch, optionally pushing away from others that already # exist. if swarmId is not None: assert (evolveFromState is None) assert (newFromClone is None) # Save construction param self.swarmId = swarmId # Assign a new unique ID to this particle self.particleId = "%s.%s" % (str(self._hsObj._workerID), str(Particle._nextParticleID)) Particle._nextParticleID += 1 # Init the generation index self.genIdx = 0 # Setup the variables to initial locations. _setupVars(flattenedPermuteVars) # Push away from other particles? if newFarFrom is not None: for varName in self.permuteVars.iterkeys(): otherPositions = [] for particleState in newFarFrom: otherPositions.append(particleState['varStates'][varName]['position']) self.permuteVars[varName].pushAwayFrom(otherPositions, self._rng) # Give this particle a unique seed. self._rng.seed(str(otherPositions)) # Method #2 # Instantiate from saved state, preserving particleId but incrementing # generation index. elif evolveFromState is not None: assert (swarmId is None) assert (newFarFrom is None) assert (newFromClone is None) # Setup other variables from saved state self.particleId = evolveFromState['id'] self.genIdx = evolveFromState['genIdx'] + 1 self.swarmId = evolveFromState['swarmId'] # Setup the variables to initial locations. _setupVars(flattenedPermuteVars) # Override the position and velocity of each variable from # saved state self.initStateFrom(self.particleId, evolveFromState, newBest=True) # Move it to the next position. We need the swarm best for this. self.newPosition() # Method #3 # Clone another particle, producing a new particle at the same genIdx with # the same particleID. This is used to re-run an orphaned model. elif newFromClone is not None: assert (swarmId is None) assert (newFarFrom is None) assert (evolveFromState is None) # Setup other variables from clone particle self.particleId = newFromClone['id'] if newParticleId: self.particleId = "%s.%s" % (str(self._hsObj._workerID), str(Particle._nextParticleID)) Particle._nextParticleID += 1 self.genIdx = newFromClone['genIdx'] self.swarmId = newFromClone['swarmId'] # Setup the variables to initial locations. _setupVars(flattenedPermuteVars) # Override the position and velocity of each variable from # the clone self.initStateFrom(self.particleId, newFromClone, newBest=False) else: assert False, "invalid creation parameters" # Log it self.logger.debug("Created particle: %s" % (str(self))) def __repr__(self): return "Particle(swarmId=%s) [particleId=%s, genIdx=%d, " \ "permuteVars=\n%s]" % (self.swarmId, self.particleId, self.genIdx, pprint.pformat(self.permuteVars, indent=4)) def getState(self): """Get the particle state as a dict. This is enough information to instantiate this particle on another worker.""" varStates = dict() for varName, var in self.permuteVars.iteritems(): varStates[varName] = var.getState() return dict(id = self.particleId, genIdx = self.genIdx, swarmId = self.swarmId, varStates = varStates) def initStateFrom(self, particleId, particleState, newBest): """Init all of our variable positions, velocities, and optionally the best result and best position from the given particle. If newBest is true, we get the best result and position for this new generation from the resultsDB, This is used when evoloving a particle because the bestResult and position as stored in was the best AT THE TIME THAT PARTICLE STARTED TO RUN and does not include the best since that particle completed. """ # Get the update best position and result? if newBest: (bestResult, bestPosition) = self._resultsDB.getParticleBest(particleId) else: bestResult = bestPosition = None # Replace with the position and velocity of each variable from # saved state varStates = particleState['varStates'] for varName in varStates.keys(): varState = copy.deepcopy(varStates[varName]) if newBest: varState['bestResult'] = bestResult if bestPosition is not None: varState['bestPosition'] = bestPosition[varName] self.permuteVars[varName].setState(varState) def copyEncoderStatesFrom(self, particleState): """Copy all encoder variables from particleState into this particle. Parameters: -------------------------------------------------------------- particleState: dict produced by a particle's getState() method """ # Set this to false if you don't want the variable to move anymore # after we set the state allowedToMove = True for varName in particleState['varStates']: if ':' in varName: # if an encoder # If this particle doesn't include this field, don't copy it if varName not in self.permuteVars: continue # Set the best position to the copied position state = copy.deepcopy(particleState['varStates'][varName]) state['_position'] = state['position'] state['bestPosition'] = state['position'] if not allowedToMove: state['velocity'] = 0 # Set the state now self.permuteVars[varName].setState(state) if allowedToMove: # Let the particle move in both directions from the best position # it found previously and set it's initial velocity to a known # fraction of the total distance. self.permuteVars[varName].resetVelocity(self._rng) def copyVarStatesFrom(self, particleState, varNames): """Copy specific variables from particleState into this particle. Parameters: -------------------------------------------------------------- particleState: dict produced by a particle's getState() method varNames: which variables to copy """ # Set this to false if you don't want the variable to move anymore # after we set the state allowedToMove = True for varName in particleState['varStates']: if varName in varNames: # If this particle doesn't include this field, don't copy it if varName not in self.permuteVars: continue # Set the best position to the copied position state = copy.deepcopy(particleState['varStates'][varName]) state['_position'] = state['position'] state['bestPosition'] = state['position'] if not allowedToMove: state['velocity'] = 0 # Set the state now self.permuteVars[varName].setState(state) if allowedToMove: # Let the particle move in both directions from the best position # it found previously and set it's initial velocity to a known # fraction of the total distance. self.permuteVars[varName].resetVelocity(self._rng) def getPosition(self): """Return the position of this particle. This returns a dict() of key value pairs where each key is the name of the flattened permutation variable and the value is its chosen value. Parameters: -------------------------------------------------------------- retval: dict() of flattened permutation choices """ result = dict() for (varName, value) in self.permuteVars.iteritems(): result[varName] = value.getPosition() return result @staticmethod def getPositionFromState(pState): """Return the position of a particle given its state dict. Parameters: -------------------------------------------------------------- retval: dict() of particle position, keys are the variable names, values are their positions """ result = dict() for (varName, value) in pState['varStates'].iteritems(): result[varName] = value['position'] return result def agitate(self): """Agitate this particle so that it is likely to go to a new position. Every time agitate is called, the particle is jiggled an even greater amount. Parameters: -------------------------------------------------------------- retval: None """ for (varName, var) in self.permuteVars.iteritems(): var.agitate() self.newPosition() def newPosition(self, whichVars=None): # TODO: incorporate data from choice variables.... # TODO: make sure we're calling this when appropriate. """Choose a new position based on results obtained so far from all other particles. Parameters: -------------------------------------------------------------- whichVars: If not None, only move these variables retval: new position """ # Get the global best position for this swarm generation globalBestPosition = None # If speculative particles are enabled, use the global best considering # even particles in the current generation. This gives better results # but does not provide repeatable results because it depends on # worker timing if self._hsObj._speculativeParticles: genIdx = self.genIdx else: genIdx = self.genIdx - 1 if genIdx >= 0: (bestModelId, _) = self._resultsDB.bestModelIdAndErrScore(self.swarmId, genIdx) if bestModelId is not None: (particleState, _, _, _, _) = self._resultsDB.getParticleInfo(bestModelId) globalBestPosition = Particle.getPositionFromState(particleState) # Update each variable for (varName, var) in self.permuteVars.iteritems(): if whichVars is not None and varName not in whichVars: continue if globalBestPosition is None: var.newPosition(None, self._rng) else: var.newPosition(globalBestPosition[varName], self._rng) # get the new position position = self.getPosition() # Log the new position if self.logger.getEffectiveLevel() <= logging.DEBUG: msg = StringIO.StringIO() print >> msg, "New particle position: \n%s" % (pprint.pformat(position, indent=4)) print >> msg, "Particle variables:" for (varName, var) in self.permuteVars.iteritems(): print >> msg, " %s: %s" % (varName, str(var)) self.logger.debug(msg.getvalue()) msg.close() return position class HsState(object): """This class encapsulates the Hypersearch state which we share with all other workers. This state gets serialized into a JSON dict and written to the engWorkerState field of the job record. Whenever a worker changes this state, it does an atomic setFieldIfEqual to insure it has the latest state as updated by any other worker as a base. Here is an example snapshot of this state information: swarms = {'a': {'status': 'completed', # 'active','completing','completed', # or 'killed' 'bestModelId': <modelID>, # Only set for 'completed' swarms 'bestErrScore': <errScore>, # Only set for 'completed' swarms 'sprintIdx': 0, }, 'a.b': {'status': 'active', 'bestModelId': None, 'bestErrScore': None, 'sprintIdx': 1, } } sprints = [{'status': 'completed', # 'active','completing','completed' 'bestModelId': <modelID>, # Only set for 'completed' sprints 'bestErrScore': <errScore>, # Only set for 'completed' sprints }, {'status': 'completing', 'bestModelId': <None>, 'bestErrScore': <None> } {'status': 'active', 'bestModelId': None 'bestErrScore': None } ] """ def __init__(self, hsObj): """ Create our state object. Parameters: --------------------------------------------------------------------- hsObj: Reference to the HypersesarchV2 instance cjDAO: ClientJobsDAO instance logger: logger to use jobID: our JobID """ # Save constructor parameters self._hsObj = hsObj # Convenient access to the logger self.logger = self._hsObj.logger # This contains our current state, and local working changes self._state = None # This contains the state we last read from the database self._priorStateJSON = None # Set when we make a change to our state locally self._dirty = False # Read in the initial state self.readStateFromDB() def isDirty(self): """Return true if our local copy of the state has changed since the last time we read from the DB. """ return self._dirty def isSearchOver(self): """Return true if the search should be considered over.""" return self._state['searchOver'] def readStateFromDB(self): """Set our state to that obtained from the engWorkerState field of the job record. Parameters: --------------------------------------------------------------------- stateJSON: JSON encoded state from job record """ self._priorStateJSON = self._hsObj._cjDAO.jobGetFields(self._hsObj._jobID, ['engWorkerState'])[0] # Init if no prior state yet if self._priorStateJSON is None: swarms = dict() # Fast Swarm, first and only sprint has one swarm for each field # in fixedFields if self._hsObj._fixedFields is not None: print self._hsObj._fixedFields encoderSet = [] for field in self._hsObj._fixedFields: if field =='_classifierInput': continue encoderName = self.getEncoderKeyFromName(field) assert encoderName in self._hsObj._encoderNames, "The field '%s' " \ " specified in the fixedFields list is not present in this " \ " model." % (field) encoderSet.append(encoderName) encoderSet.sort() swarms['.'.join(encoderSet)] = { 'status': 'active', 'bestModelId': None, 'bestErrScore': None, 'sprintIdx': 0, } # Temporal prediction search, first sprint has N swarms of 1 field each, # the predicted field may or may not be that one field. elif self._hsObj._searchType == HsSearchType.temporal: for encoderName in self._hsObj._encoderNames: swarms[encoderName] = { 'status': 'active', 'bestModelId': None, 'bestErrScore': None, 'sprintIdx': 0, } # Classification prediction search, first sprint has N swarms of 1 field # each where this field can NOT be the predicted field. elif self._hsObj._searchType == HsSearchType.classification: for encoderName in self._hsObj._encoderNames: if encoderName == self._hsObj._predictedFieldEncoder: continue swarms[encoderName] = { 'status': 'active', 'bestModelId': None, 'bestErrScore': None, 'sprintIdx': 0, } # Legacy temporal. This is either a model that uses reconstruction or # an older multi-step model that doesn't have a separate # 'classifierOnly' encoder for the predicted field. Here, the predicted # field must ALWAYS be present and the first sprint tries the predicted # field only elif self._hsObj._searchType == HsSearchType.legacyTemporal: swarms[self._hsObj._predictedFieldEncoder] = { 'status': 'active', 'bestModelId': None, 'bestErrScore': None, 'sprintIdx': 0, } else: raise RuntimeError("Unsupported search type: %s" % \ (self._hsObj._searchType)) # Initialize the state. self._state = dict( # The last time the state was updated by a worker. lastUpdateTime = time.time(), # Set from within setSwarmState() if we detect that the sprint we just # completed did worse than a prior sprint. This stores the index of # the last good sprint. lastGoodSprint = None, # Set from within setSwarmState() if lastGoodSprint is True and all # sprints have completed. searchOver = False, # This is a summary of the active swarms - this information can also # be obtained from the swarms entry that follows, but is summarized here # for easier reference when viewing the state as presented by # log messages and prints of the hsState data structure (by # permutations_runner). activeSwarms = swarms.keys(), # All the swarms that have been created so far. swarms = swarms, # All the sprints that have completed or are in progress. sprints = [{'status': 'active', 'bestModelId': None, 'bestErrScore': None}], # The list of encoders we have "blacklisted" because they # performed so poorly. blackListedEncoders = [], ) # This will do nothing if the value of engWorkerState is not still None. self._hsObj._cjDAO.jobSetFieldIfEqual( self._hsObj._jobID, 'engWorkerState', json.dumps(self._state), None) self._priorStateJSON = self._hsObj._cjDAO.jobGetFields( self._hsObj._jobID, ['engWorkerState'])[0] assert (self._priorStateJSON is not None) # Read state from the database self._state = json.loads(self._priorStateJSON) self._dirty = False def writeStateToDB(self): """Update the state in the job record with our local changes (if any). If we don't have the latest state in our priorStateJSON, then re-load in the latest state and return False. If we were successful writing out our changes, return True Parameters: --------------------------------------------------------------------- retval: True if we were successful writing out our changes False if our priorState is not the latest that was in the DB. In this case, we will re-load our state from the DB """ # If no changes, do nothing if not self._dirty: return True # Set the update time self._state['lastUpdateTime'] = time.time() newStateJSON = json.dumps(self._state) success = self._hsObj._cjDAO.jobSetFieldIfEqual(self._hsObj._jobID, 'engWorkerState', str(newStateJSON), str(self._priorStateJSON)) if success: self.logger.debug("Success changing hsState to: \n%s " % \ (pprint.pformat(self._state, indent=4))) self._priorStateJSON = newStateJSON # If no success, read in the current state from the DB else: self.logger.debug("Failed to change hsState to: \n%s " % \ (pprint.pformat(self._state, indent=4))) self._priorStateJSON = self._hsObj._cjDAO.jobGetFields(self._hsObj._jobID, ['engWorkerState'])[0] self._state = json.loads(self._priorStateJSON) self.logger.info("New hsState has been set by some other worker to: " " \n%s" % (pprint.pformat(self._state, indent=4))) return success def getEncoderNameFromKey(self, key): """ Given an encoder dictionary key, get the encoder name. Encoders are a sub-dict within model params, and in HSv2, their key is structured like this for example: 'modelParams|sensorParams|encoders|home_winloss' The encoderName is the last word in the | separated key name """ return key.split('|')[-1] def getEncoderKeyFromName(self, name): """ Given an encoder name, get the key. Encoders are a sub-dict within model params, and in HSv2, their key is structured like this for example: 'modelParams|sensorParams|encoders|home_winloss' The encoderName is the last word in the | separated key name """ return 'modelParams|sensorParams|encoders|%s' % (name) def getFieldContributions(self): """Return the field contributions statistics. Parameters: --------------------------------------------------------------------- retval: Dictionary where the keys are the field names and the values are how much each field contributed to the best score. """ #in the fast swarm, there is only 1 sprint and field contributions are #not defined if self._hsObj._fixedFields is not None: return dict(), dict() # Get the predicted field encoder name predictedEncoderName = self._hsObj._predictedFieldEncoder # ----------------------------------------------------------------------- # Collect all the single field scores fieldScores = [] for swarmId, info in self._state['swarms'].iteritems(): encodersUsed = swarmId.split('.') if len(encodersUsed) != 1: continue field = self.getEncoderNameFromKey(encodersUsed[0]) bestScore = info['bestErrScore'] # If the bestScore is None, this swarm hasn't completed yet (this could # happen if we're exiting because of maxModels), so look up the best # score so far if bestScore is None: (_modelId, bestScore) = \ self._hsObj._resultsDB.bestModelIdAndErrScore(swarmId) fieldScores.append((bestScore, field)) # ----------------------------------------------------------------------- # If we only have 1 field that was tried in the first sprint, then use that # as the base and get the contributions from the fields in the next sprint. if self._hsObj._searchType == HsSearchType.legacyTemporal: assert(len(fieldScores)==1) (baseErrScore, baseField) = fieldScores[0] for swarmId, info in self._state['swarms'].iteritems(): encodersUsed = swarmId.split('.') if len(encodersUsed) != 2: continue fields = [self.getEncoderNameFromKey(name) for name in encodersUsed] fields.remove(baseField) fieldScores.append((info['bestErrScore'], fields[0])) # The first sprint tried a bunch of fields, pick the worst performing one # (within the top self._hsObj._maxBranching ones) as the base else: fieldScores.sort(reverse=True) # If maxBranching was specified, pick the worst performing field within # the top maxBranching+1 fields as our base, which will give that field # a contribution of 0. if self._hsObj._maxBranching > 0 \ and len(fieldScores) > self._hsObj._maxBranching: baseErrScore = fieldScores[-self._hsObj._maxBranching-1][0] else: baseErrScore = fieldScores[0][0] # ----------------------------------------------------------------------- # Prepare and return the fieldContributions dict pctFieldContributionsDict = dict() absFieldContributionsDict = dict() # If we have no base score, can't compute field contributions. This can # happen when we exit early due to maxModels or being cancelled if baseErrScore is not None: # If the base error score is 0, we can't compute a percent difference # off of it, so move it to a very small float if abs(baseErrScore) < 0.00001: baseErrScore = 0.00001 for (errScore, field) in fieldScores: if errScore is not None: pctBetter = (baseErrScore - errScore) * 100.0 / baseErrScore else: pctBetter = 0.0 errScore = baseErrScore # for absFieldContribution pctFieldContributionsDict[field] = pctBetter absFieldContributionsDict[field] = baseErrScore - errScore self.logger.debug("FieldContributions: %s" % (pctFieldContributionsDict)) return pctFieldContributionsDict, absFieldContributionsDict def getAllSwarms(self, sprintIdx): """Return the list of all swarms in the given sprint. Parameters: --------------------------------------------------------------------- retval: list of active swarm Ids in the given sprint """ swarmIds = [] for swarmId, info in self._state['swarms'].iteritems(): if info['sprintIdx'] == sprintIdx: swarmIds.append(swarmId) return swarmIds def getActiveSwarms(self, sprintIdx=None): """Return the list of active swarms in the given sprint. These are swarms which still need new particles created in them. Parameters: --------------------------------------------------------------------- sprintIdx: which sprint to query. If None, get active swarms from all sprints retval: list of active swarm Ids in the given sprint """ swarmIds = [] for swarmId, info in self._state['swarms'].iteritems(): if sprintIdx is not None and info['sprintIdx'] != sprintIdx: continue if info['status'] == 'active': swarmIds.append(swarmId) return swarmIds def getNonKilledSwarms(self, sprintIdx): """Return the list of swarms in the given sprint that were not killed. This is called when we are trying to figure out which encoders to carry forward to the next sprint. We don't want to carry forward encoder combintations which were obviously bad (in killed swarms). Parameters: --------------------------------------------------------------------- retval: list of active swarm Ids in the given sprint """ swarmIds = [] for swarmId, info in self._state['swarms'].iteritems(): if info['sprintIdx'] == sprintIdx and info['status'] != 'killed': swarmIds.append(swarmId) return swarmIds def getCompletedSwarms(self): """Return the list of all completed swarms. Parameters: --------------------------------------------------------------------- retval: list of active swarm Ids """ swarmIds = [] for swarmId, info in self._state['swarms'].iteritems(): if info['status'] == 'completed': swarmIds.append(swarmId) return swarmIds def getCompletingSwarms(self): """Return the list of all completing swarms. Parameters: --------------------------------------------------------------------- retval: list of active swarm Ids """ swarmIds = [] for swarmId, info in self._state['swarms'].iteritems(): if info['status'] == 'completing': swarmIds.append(swarmId) return swarmIds def bestModelInCompletedSwarm(self, swarmId): """Return the best model ID and it's errScore from the given swarm. If the swarm has not completed yet, the bestModelID will be None. Parameters: --------------------------------------------------------------------- retval: (modelId, errScore) """ swarmInfo = self._state['swarms'][swarmId] return (swarmInfo['bestModelId'], swarmInfo['bestErrScore']) def bestModelInCompletedSprint(self, sprintIdx): """Return the best model ID and it's errScore from the given sprint. If the sprint has not completed yet, the bestModelID will be None. Parameters: --------------------------------------------------------------------- retval: (modelId, errScore) """ sprintInfo = self._state['sprints'][sprintIdx] return (sprintInfo['bestModelId'], sprintInfo['bestErrScore']) def bestModelInSprint(self, sprintIdx): """Return the best model ID and it's errScore from the given sprint, which may still be in progress. This returns the best score from all models in the sprint which have matured so far. Parameters: --------------------------------------------------------------------- retval: (modelId, errScore) """ # Get all the swarms in this sprint swarms = self.getAllSwarms(sprintIdx) # Get the best model and score from each swarm bestModelId = None bestErrScore = numpy.inf for swarmId in swarms: (modelId, errScore) = self._hsObj._resultsDB.bestModelIdAndErrScore(swarmId) if errScore < bestErrScore: bestModelId = modelId bestErrScore = errScore return (bestModelId, bestErrScore) def setSwarmState(self, swarmId, newStatus): """Change the given swarm's state to 'newState'. If 'newState' is 'completed', then bestModelId and bestErrScore must be provided. Parameters: --------------------------------------------------------------------- swarmId: swarm Id newStatus: new status, either 'active', 'completing', 'completed', or 'killed' """ assert (newStatus in ['active', 'completing', 'completed', 'killed']) # Set the swarm status swarmInfo = self._state['swarms'][swarmId] if swarmInfo['status'] == newStatus: return # If some other worker noticed it as completed, setting it to completing # is obviously old information.... if swarmInfo['status'] == 'completed' and newStatus == 'completing': return self._dirty = True swarmInfo['status'] = newStatus if newStatus == 'completed': (modelId, errScore) = self._hsObj._resultsDB.bestModelIdAndErrScore(swarmId) swarmInfo['bestModelId'] = modelId swarmInfo['bestErrScore'] = errScore # If no longer active, remove it from the activeSwarms entry if newStatus != 'active' and swarmId in self._state['activeSwarms']: self._state['activeSwarms'].remove(swarmId) # If new status is 'killed', kill off any running particles in that swarm if newStatus=='killed': self._hsObj.killSwarmParticles(swarmId) # In case speculative particles are enabled, make sure we generate a new # swarm at this time if all of the swarms in the current sprint have # completed. This will insure that we don't mark the sprint as completed # before we've created all the possible swarms. sprintIdx = swarmInfo['sprintIdx'] self.isSprintActive(sprintIdx) # Update the sprint status. Check all the swarms that belong to this sprint. # If they are all completed, the sprint is completed. sprintInfo = self._state['sprints'][sprintIdx] statusCounts = dict(active=0, completing=0, completed=0, killed=0) bestModelIds = [] bestErrScores = [] for info in self._state['swarms'].itervalues(): if info['sprintIdx'] != sprintIdx: continue statusCounts[info['status']] += 1 if info['status'] == 'completed': bestModelIds.append(info['bestModelId']) bestErrScores.append(info['bestErrScore']) if statusCounts['active'] > 0: sprintStatus = 'active' elif statusCounts['completing'] > 0: sprintStatus = 'completing' else: sprintStatus = 'completed' sprintInfo['status'] = sprintStatus # If the sprint is complete, get the best model from all of its swarms and # store that as the sprint best if sprintStatus == 'completed': if len(bestErrScores) > 0: whichIdx = numpy.array(bestErrScores).argmin() sprintInfo['bestModelId'] = bestModelIds[whichIdx] sprintInfo['bestErrScore'] = bestErrScores[whichIdx] else: # This sprint was empty, most likely because all particles were # killed. Give it a huge error score sprintInfo['bestModelId'] = 0 sprintInfo['bestErrScore'] = numpy.inf # See if our best err score got NO BETTER as compared to a previous # sprint. If so, stop exploring subsequent sprints (lastGoodSprint # is no longer None). bestPrior = numpy.inf for idx in range(sprintIdx): if self._state['sprints'][idx]['status'] == 'completed': (_, errScore) = self.bestModelInCompletedSprint(idx) if errScore is None: errScore = numpy.inf else: errScore = numpy.inf if errScore < bestPrior: bestPrior = errScore if sprintInfo['bestErrScore'] >= bestPrior: self._state['lastGoodSprint'] = sprintIdx-1 # If ALL sprints up to the last good one are done, the search is now over if self._state['lastGoodSprint'] is not None \ and not self.anyGoodSprintsActive(): self._state['searchOver'] = True def anyGoodSprintsActive(self): """Return True if there are any more good sprints still being explored. A 'good' sprint is one that is earlier than where we detected an increase in error from sprint to subsequent sprint. """ if self._state['lastGoodSprint'] is not None: goodSprints = self._state['sprints'][0:self._state['lastGoodSprint']+1] else: goodSprints = self._state['sprints'] for sprint in goodSprints: if sprint['status'] == 'active': anyActiveSprints = True break else: anyActiveSprints = False return anyActiveSprints def isSprintCompleted(self, sprintIdx): """Return True if the given sprint has completed.""" numExistingSprints = len(self._state['sprints']) if sprintIdx >= numExistingSprints: return False return (self._state['sprints'][sprintIdx]['status'] == 'completed') def killUselessSwarms(self): """See if we can kill off some speculative swarms. If an earlier sprint has finally completed, we can now tell which fields should *really* be present in the sprints we've already started due to speculation, and kill off the swarms that should not have been included. """ # Get number of existing sprints numExistingSprints = len(self._state['sprints']) # Should we bother killing useless swarms? if self._hsObj._searchType == HsSearchType.legacyTemporal: if numExistingSprints <= 2: return else: if numExistingSprints <= 1: return # Form completedSwarms as a list of tuples, each tuple contains: # (swarmName, swarmState, swarmBestErrScore) # ex. completedSwarms: # [('a', {...}, 1.4), # ('b', {...}, 2.0), # ('c', {...}, 3.0)] completedSwarms = self.getCompletedSwarms() completedSwarms = [(swarm, self._state["swarms"][swarm], self._state["swarms"][swarm]["bestErrScore"]) \ for swarm in completedSwarms] # Form the completedMatrix. Each row corresponds to a sprint. Each row # contains the list of swarm tuples that belong to that sprint, sorted # by best score. Each swarm tuple contains (swarmName, swarmState, # swarmBestErrScore). # ex. completedMatrix: # [(('a', {...}, 1.4), ('b', {...}, 2.0), ('c', {...}, 3.0)), # (('a.b', {...}, 3.0), ('b.c', {...}, 4.0))] completedMatrix = [[] for i in range(numExistingSprints)] for swarm in completedSwarms: completedMatrix[swarm[1]["sprintIdx"]].append(swarm) for sprint in completedMatrix: sprint.sort(key=itemgetter(2)) # Form activeSwarms as a list of tuples, each tuple contains: # (swarmName, swarmState, swarmBestErrScore) # Include all activeSwarms and completingSwarms # ex. activeSwarms: # [('d', {...}, 1.4), # ('e', {...}, 2.0), # ('f', {...}, 3.0)] activeSwarms = self.getActiveSwarms() # Append the completing swarms activeSwarms.extend(self.getCompletingSwarms()) activeSwarms = [(swarm, self._state["swarms"][swarm], self._state["swarms"][swarm]["bestErrScore"]) \ for swarm in activeSwarms] # Form the activeMatrix. Each row corresponds to a sprint. Each row # contains the list of swarm tuples that belong to that sprint, sorted # by best score. Each swarm tuple contains (swarmName, swarmState, # swarmBestErrScore) # ex. activeMatrix: # [(('d', {...}, 1.4), ('e', {...}, 2.0), ('f', {...}, 3.0)), # (('d.e', {...}, 3.0), ('e.f', {...}, 4.0))] activeMatrix = [[] for i in range(numExistingSprints)] for swarm in activeSwarms: activeMatrix[swarm[1]["sprintIdx"]].append(swarm) for sprint in activeMatrix: sprint.sort(key=itemgetter(2)) # Figure out which active swarms to kill toKill = [] for i in range(1, numExistingSprints): for swarm in activeMatrix[i]: curSwarmEncoders = swarm[0].split(".") # If previous sprint is complete, get the best swarm and kill all active # sprints that are not supersets if(len(activeMatrix[i-1])==0): # If we are trying all possible 3 field combinations, don't kill any # off in sprint 2 if i==2 and (self._hsObj._tryAll3FieldCombinations or \ self._hsObj._tryAll3FieldCombinationsWTimestamps): pass else: bestInPrevious = completedMatrix[i-1][0] bestEncoders = bestInPrevious[0].split('.') for encoder in bestEncoders: if not encoder in curSwarmEncoders: toKill.append(swarm) # if there are more than two completed encoders sets that are complete and # are worse than at least one active swarm in the previous sprint. Remove # any combinations that have any pair of them since they cannot have the best encoder. #elif(len(completedMatrix[i-1])>1): # for completedSwarm in completedMatrix[i-1]: # activeMatrix[i-1][0][2]<completed # Mark the bad swarms as killed if len(toKill) > 0: print "ParseMe: Killing encoders:" + str(toKill) for swarm in toKill: self.setSwarmState(swarm[0], "killed") return def isSprintActive(self, sprintIdx): """If the given sprint exists and is active, return active=True. If the sprint does not exist yet, this call will create it (and return active=True). If it already exists, but is completing or complete, return active=False. If sprintIdx is past the end of the possible sprints, return active=False, noMoreSprints=True IMPORTANT: When speculative particles are enabled, this call has some special processing to handle speculative sprints: * When creating a new speculative sprint (creating sprint N before sprint N-1 has completed), it initially only puts in only ONE swarm into the sprint. * Every time it is asked if sprint N is active, it also checks to see if it is time to add another swarm to the sprint, and adds a new swarm if appropriate before returning active=True * We decide it is time to add a new swarm to a speculative sprint when ALL of the currently active swarms in the sprint have all the workers they need (number of running (not mature) particles is _minParticlesPerSwarm). This means that we have capacity to run additional particles in a new swarm. It is expected that the sprints will be checked IN ORDER from 0 on up. (It is an error not to) The caller should always try to allocate from the first active sprint it finds. If it can't, then it can call this again to find/create the next active sprint. Parameters: --------------------------------------------------------------------- retval: (active, noMoreSprints) active: True if the given sprint is active noMoreSprints: True if there are no more sprints possible """ while True: numExistingSprints = len(self._state['sprints']) # If this sprint already exists, see if it is active if sprintIdx <= numExistingSprints-1: # With speculation off, it's simple, just return whether or not the # asked for sprint has active status if not self._hsObj._speculativeParticles: active = (self._state['sprints'][sprintIdx]['status'] == 'active') return (active, False) # With speculation on, if the sprint is still marked active, we also # need to see if it's time to add a new swarm to it. else: active = (self._state['sprints'][sprintIdx]['status'] == 'active') if not active: return (active, False) # See if all of the existing swarms are at capacity (have all the # workers they need): activeSwarmIds = self.getActiveSwarms(sprintIdx) swarmSizes = [self._hsObj._resultsDB.getParticleInfos(swarmId, matured=False)[0] for swarmId in activeSwarmIds] notFullSwarms = [len(swarm) for swarm in swarmSizes \ if len(swarm) < self._hsObj._minParticlesPerSwarm] # If some swarms have room return that the swarm is active. if len(notFullSwarms) > 0: return (True, False) # If the existing swarms are at capacity, we will fall through to the # logic below which tries to add a new swarm to the sprint. # Stop creating new sprints? if self._state['lastGoodSprint'] is not None: return (False, True) # if fixedFields is set, we are running a fast swarm and only run sprint0 if self._hsObj._fixedFields is not None: return (False, True) # ---------------------------------------------------------------------- # Get the best model (if there is one) from the prior sprint. That gives # us the base encoder set for the next sprint. For sprint zero make sure # it does not take the last sprintidx because of wrapping. if sprintIdx > 0 \ and self._state['sprints'][sprintIdx-1]['status'] == 'completed': (bestModelId, _) = self.bestModelInCompletedSprint(sprintIdx-1) (particleState, _, _, _, _) = self._hsObj._resultsDB.getParticleInfo( bestModelId) bestSwarmId = particleState['swarmId'] baseEncoderSets = [bestSwarmId.split('.')] # If there is no best model yet, then use all encoder sets from the prior # sprint that were not killed else: bestSwarmId = None particleState = None # Build up more combinations, using ALL of the sets in the current # sprint. baseEncoderSets = [] for swarmId in self.getNonKilledSwarms(sprintIdx-1): baseEncoderSets.append(swarmId.split('.')) # ---------------------------------------------------------------------- # Which encoders should we add to the current base set? encoderAddSet = [] # If we have constraints on how many fields we carry forward into # subsequent sprints (either nupic.hypersearch.max.field.branching or # nupic.hypersearch.min.field.contribution was set), then be more # picky about which fields we add in. limitFields = False if self._hsObj._maxBranching > 0 \ or self._hsObj._minFieldContribution >= 0: if self._hsObj._searchType == HsSearchType.temporal or \ self._hsObj._searchType == HsSearchType.classification: if sprintIdx >= 1: limitFields = True baseSprintIdx = 0 elif self._hsObj._searchType == HsSearchType.legacyTemporal: if sprintIdx >= 2: limitFields = True baseSprintIdx = 1 else: raise RuntimeError("Unimplemented search type %s" % \ (self._hsObj._searchType)) # Only add top _maxBranching encoders to the swarms? if limitFields: # Get field contributions to filter added fields pctFieldContributions, absFieldContributions = \ self.getFieldContributions() toRemove = [] self.logger.debug("FieldContributions min: %s" % \ (self._hsObj._minFieldContribution)) for fieldname in pctFieldContributions: if pctFieldContributions[fieldname] < self._hsObj._minFieldContribution: self.logger.debug("FieldContributions removing: %s" % (fieldname)) toRemove.append(self.getEncoderKeyFromName(fieldname)) else: self.logger.debug("FieldContributions keeping: %s" % (fieldname)) # Grab the top maxBranching base sprint swarms. swarms = self._state["swarms"] sprintSwarms = [(swarm, swarms[swarm]["bestErrScore"]) \ for swarm in swarms if swarms[swarm]["sprintIdx"] == baseSprintIdx] sprintSwarms = sorted(sprintSwarms, key=itemgetter(1)) if self._hsObj._maxBranching > 0: sprintSwarms = sprintSwarms[0:self._hsObj._maxBranching] # Create encoder set to generate further swarms. for swarm in sprintSwarms: swarmEncoders = swarm[0].split(".") for encoder in swarmEncoders: if not encoder in encoderAddSet: encoderAddSet.append(encoder) encoderAddSet = [encoder for encoder in encoderAddSet \ if not str(encoder) in toRemove] # If no limit on the branching or min contribution, simply use all of the # encoders. else: encoderAddSet = self._hsObj._encoderNames # ----------------------------------------------------------------------- # Build up the new encoder combinations for the next sprint. newSwarmIds = set() # See if the caller wants to try more extensive field combinations with # 3 fields. if (self._hsObj._searchType == HsSearchType.temporal \ or self._hsObj._searchType == HsSearchType.legacyTemporal) \ and sprintIdx == 2 \ and (self._hsObj._tryAll3FieldCombinations or \ self._hsObj._tryAll3FieldCombinationsWTimestamps): if self._hsObj._tryAll3FieldCombinations: newEncoders = set(self._hsObj._encoderNames) if self._hsObj._predictedFieldEncoder in newEncoders: newEncoders.remove(self._hsObj._predictedFieldEncoder) else: # Just make sure the timestamp encoders are part of the mix newEncoders = set(encoderAddSet) if self._hsObj._predictedFieldEncoder in newEncoders: newEncoders.remove(self._hsObj._predictedFieldEncoder) for encoder in self._hsObj._encoderNames: if encoder.endswith('_timeOfDay') or encoder.endswith('_weekend') \ or encoder.endswith('_dayOfWeek'): newEncoders.add(encoder) allCombos = list(itertools.combinations(newEncoders, 2)) for combo in allCombos: newSet = list(combo) newSet.append(self._hsObj._predictedFieldEncoder) newSet.sort() newSwarmId = '.'.join(newSet) if newSwarmId not in self._state['swarms']: newSwarmIds.add(newSwarmId) # If a speculative sprint, only add the first encoder, if not add # all of them. if (len(self.getActiveSwarms(sprintIdx-1)) > 0): break # Else, we only build up by adding 1 new encoder to the best combination(s) # we've seen from the prior sprint else: for baseEncoderSet in baseEncoderSets: for encoder in encoderAddSet: if encoder not in self._state['blackListedEncoders'] \ and encoder not in baseEncoderSet: newSet = list(baseEncoderSet) newSet.append(encoder) newSet.sort() newSwarmId = '.'.join(newSet) if newSwarmId not in self._state['swarms']: newSwarmIds.add(newSwarmId) # If a speculative sprint, only add the first encoder, if not add # all of them. if (len(self.getActiveSwarms(sprintIdx-1)) > 0): break # ---------------------------------------------------------------------- # Sort the new swarm Ids newSwarmIds = sorted(newSwarmIds) # If no more swarms can be found for this sprint... if len(newSwarmIds) == 0: # if sprint is not an empty sprint return that it is active but do not # add anything to it. if len(self.getAllSwarms(sprintIdx)) > 0: return (True, False) # If this is an empty sprint and we couldn't find any new swarms to # add (only bad fields are remaining), the search is over else: return (False, True) # Add this sprint and the swarms that are in it to our state self._dirty = True # Add in the new sprint if necessary if len(self._state["sprints"]) == sprintIdx: self._state['sprints'].append({'status': 'active', 'bestModelId': None, 'bestErrScore': None}) # Add in the new swarm(s) to the sprint for swarmId in newSwarmIds: self._state['swarms'][swarmId] = {'status': 'active', 'bestModelId': None, 'bestErrScore': None, 'sprintIdx': sprintIdx} # Update the list of active swarms self._state['activeSwarms'] = self.getActiveSwarms() # Try to set new state success = self.writeStateToDB() # Return result if successful if success: return (True, False) # No success, loop back with the updated state and try again class HsSearchType(object): """This class enumerates the types of search we can perform.""" temporal = 'temporal' legacyTemporal = 'legacyTemporal' classification = 'classification' class HypersearchV2(object): """The v2 Hypersearch implementation. This is one example of a Hypersearch implementation that can be used by the HypersearchWorker. Other implementations just have to implement the following methods: createModels() recordModelProgress() getPermutationVariables() getComplexVariableLabelLookupDict() This implementation uses a hybrid of Particle Swarm Optimization (PSO) and the old "ronamatic" logic from Hypersearch V1. Variables which are lists of choices (i.e. string values, integer values that represent different categories) are searched using the ronamatic logic whereas floats and integers that represent a range of values are searched using PSO. For prediction experiments, this implementation starts out evaluating only single encoder models that encode the predicted field. This is the first "sprint". Once it finds the optimum set of variables for that, it starts to build up by adding in combinations of 2 fields (the second "sprint"), where one of them is the predicted field. Once the top 2-field combination(s) are discovered, it starts to build up on those by adding in a 3rd field, etc. Each new set of field combinations is called a sprint. For classification experiments, this implementation starts out evaluating two encoder models, where one of the encoders is the classified field. This is the first "sprint". Once it finds the optimum set of variables for that, it starts to build up by evauating combinations of 3 fields (the second "sprint"), where two of them are the best 2 fields found in the first sprint (one of those of course being the classified field). Once the top 3-field combination(s) are discovered, it starts to build up on those by adding in a 4th field, etc. In classification models, the classified field, although it has an encoder, is not sent "into" the network. Rather, the encoded value just goes directly to the classifier as the classifier input. At any one time, there are 1 or more swarms being evaluated at the same time - each swarm representing a certain field combination within the sprint. We try to load balance the swarms and have the same number of models evaluated for each swarm at any one time. Each swarm contains N particles, and we also try to keep N >= some mininum number. Each position of a particle corresponds to a model. When a worker is ready to evaluate a new model, it first picks the swarm with the least number of models so far (least number of evaluated particle positions). If that swarm does not have the min number of particles in it yet, or does not yet have a particle created by this worker, the worker will create a new particle, else it will choose another particle from that swarm that it had created in the past which has the least number of evaluated positions so far. """ def __init__(self, searchParams, workerID=None, cjDAO=None, jobID=None, logLevel=None): """Instantiate the HyperseachV2 instance. Parameters: ---------------------------------------------------------------------- searchParams: a dict of the job's search parameters. The format is: persistentJobGUID: REQUIRED. Persistent, globally-unique identifier for this job for use in constructing persistent model checkpoint keys. MUST be compatible with S3 key-naming rules, but MUST NOT contain forward slashes. This GUID is expected to retain its global uniqueness across clusters and cluster software updates (unlike the record IDs in the Engine's jobs table, which recycle upon table schema change and software update). In the future, this may also be instrumental for checkpoint garbage collection. permutationsPyFilename: OPTIONAL - path to permutations.py file permutationsPyContents: OPTIONAL - JSON encoded string with contents of permutations.py file descriptionPyContents: OPTIONAL - JSON encoded string with contents of base description.py file description: OPTIONAL - JSON description of the search createCheckpoints: OPTIONAL - Whether to create checkpoints useTerminators OPTIONAL - True of False (default config.xml). When set to False, the model and swarm terminators are disabled maxModels: OPTIONAL - max # of models to generate NOTE: This is a deprecated location for this setting. Now, it should be specified through the maxModels variable within the permutations file, or maxModels in the JSON description dummyModel: OPTIONAL - Either (True/False) or a dict of parameters for a dummy model. If this key is absent, a real model is trained. See utils.py/OPFDummyModel runner for the schema of the dummy parameters speculativeParticles OPTIONAL - True or False (default obtained from nupic.hypersearch.speculative.particles.default configuration property). See note below. NOTE: The caller must provide just ONE of the following to describe the hypersearch: 1.) permutationsPyFilename OR 2.) permutationsPyContents & permutationsPyContents OR 3.) description The schema for the description element can be found at: "py/nupic/frameworks/opf/expGenerator/experimentDescriptionSchema.json" NOTE about speculativeParticles: If true (not 0), hypersearch workers will go ahead and create and run particles in subsequent sprints and generations before the current generation or sprint has been completed. If false, a worker will wait in a sleep loop until the current generation or sprint has finished before choosing the next particle position or going into the next sprint. When true, the best model can be found faster, but results are less repeatable due to the randomness of when each worker completes each particle. This property can be overridden via the speculativeParticles element of the Hypersearch job params. workerID: our unique Hypersearch worker ID cjDAO: ClientJobsDB Data Access Object jobID: job ID for this hypersearch job logLevel: override logging level to this value, if not None """ # Instantiate our logger self.logger = logging.getLogger(".".join( ['com.numenta', self.__class__.__module__, self.__class__.__name__])) # Override log level? if logLevel is not None: self.logger.setLevel(logLevel) # This is how to check the logging level #if self.logger.getEffectiveLevel() <= logging.DEBUG: # print "at debug level" # Init random seed random.seed(42) # Save the search info self._searchParams = searchParams self._workerID = workerID self._cjDAO = cjDAO self._jobID = jobID # Log search params self.logger.info("searchParams: \n%s" % (pprint.pformat( clippedObj(searchParams)))) self._createCheckpoints = self._searchParams.get('createCheckpoints', False) self._maxModels = self._searchParams.get('maxModels', None) if self._maxModels == -1: self._maxModels = None self._predictionCacheMaxRecords = self._searchParams.get('predictionCacheMaxRecords', None) # Speculative particles? self._speculativeParticles = self._searchParams.get('speculativeParticles', bool(int(Configuration.get( 'nupic.hypersearch.speculative.particles.default')))) self._speculativeWaitSecondsMax = float(Configuration.get( 'nupic.hypersearch.speculative.particles.sleepSecondsMax')) # Maximum Field Branching self._maxBranching= int(Configuration.get( 'nupic.hypersearch.max.field.branching')) # Minimum Field Contribution self._minFieldContribution= float(Configuration.get( 'nupic.hypersearch.min.field.contribution')) # This gets set if we detect that the job got cancelled self._jobCancelled = False # Use terminators (typically set by permutations_runner.py) if 'useTerminators' in self._searchParams: useTerminators = self._searchParams['useTerminators'] useTerminators = str(int(useTerminators)) Configuration.set('nupic.hypersearch.enableModelTermination', useTerminators) Configuration.set('nupic.hypersearch.enableModelMaturity', useTerminators) Configuration.set('nupic.hypersearch.enableSwarmTermination', useTerminators) # Special test mode? if 'NTA_TEST_exitAfterNModels' in os.environ: self._maxModels = int(os.environ['NTA_TEST_exitAfterNModels']) self._dummyModel = self._searchParams.get('dummyModel', None) # Holder for temporary directory, if any, that needs to be cleaned up # in our close() method. self._tempDir = None try: # Get the permutations info. This can be either: # 1.) JSON encoded search description (this will be used to generate a # permutations.py and description.py files using ExpGenerator) # 2.) path to a pre-generated permutations.py file. The description.py is # assumed to be in the same directory # 3.) contents of the permutations.py and descrption.py files. if 'description' in self._searchParams: if ('permutationsPyFilename' in self._searchParams or 'permutationsPyContents' in self._searchParams or 'descriptionPyContents' in self._searchParams): raise RuntimeError( "Either 'description', 'permutationsPyFilename' or" "'permutationsPyContents' & 'permutationsPyContents' should be " "specified, but not two or more of these at once.") # Calculate training period for anomaly models searchParamObj = self._searchParams anomalyParams = searchParamObj['description'].get('anomalyParams', dict()) # This is used in case searchParamObj['description']['anomalyParams'] # is set to None. if anomalyParams is None: anomalyParams = dict() if (('autoDetectWaitRecords' not in anomalyParams) or (anomalyParams['autoDetectWaitRecords'] is None)): streamDef = self._getStreamDef(searchParamObj['description']) from nupic.data.stream_reader import StreamReader try: streamReader = StreamReader(streamDef, isBlocking=False, maxTimeout=0, eofOnTimeout=True) anomalyParams['autoDetectWaitRecords'] = \ streamReader.getDataRowCount() except Exception: anomalyParams['autoDetectWaitRecords'] = None self._searchParams['description']['anomalyParams'] = anomalyParams # Call the experiment generator to generate the permutations and base # description file. outDir = self._tempDir = tempfile.mkdtemp() expGenerator([ '--description=%s' % ( json.dumps(self._searchParams['description'])), '--version=v2', '--outDir=%s' % (outDir)]) # Get the name of the permutations script. permutationsScript = os.path.join(outDir, 'permutations.py') elif 'permutationsPyFilename' in self._searchParams: if ('description' in self._searchParams or 'permutationsPyContents' in self._searchParams or 'descriptionPyContents' in self._searchParams): raise RuntimeError( "Either 'description', 'permutationsPyFilename' or " "'permutationsPyContents' & 'permutationsPyContents' should be " "specified, but not two or more of these at once.") permutationsScript = self._searchParams['permutationsPyFilename'] elif 'permutationsPyContents' in self._searchParams: if ('description' in self._searchParams or 'permutationsPyFilename' in self._searchParams): raise RuntimeError( "Either 'description', 'permutationsPyFilename' or" "'permutationsPyContents' & 'permutationsPyContents' should be " "specified, but not two or more of these at once.") assert ('descriptionPyContents' in self._searchParams) # Generate the permutations.py and description.py files outDir = self._tempDir = tempfile.mkdtemp() permutationsScript = os.path.join(outDir, 'permutations.py') fd = open(permutationsScript, 'w') fd.write(self._searchParams['permutationsPyContents']) fd.close() fd = open(os.path.join(outDir, 'description.py'), 'w') fd.write(self._searchParams['descriptionPyContents']) fd.close() else: raise RuntimeError ("Either 'description' or 'permutationsScript' must be" "specified") # Get the base path of the experiment and read in the base description self._basePath = os.path.dirname(permutationsScript) self._baseDescription = open(os.path.join(self._basePath, 'description.py')).read() self._baseDescriptionHash = hashlib.md5(self._baseDescription).digest() # Read the model config to figure out the inference type modelDescription, _ = opfhelpers.loadExperiment(self._basePath) # Read info from permutations file. This sets up the following member # variables: # _predictedField # _permutations # _flattenedPermutations # _encoderNames # _reportKeys # _filterFunc # _optimizeKey # _maximize # _dummyModelParamsFunc self._readPermutationsFile(permutationsScript, modelDescription) # Fill in and save the base description and permutations file contents # if they haven't already been filled in by another worker if self._cjDAO is not None: updated = self._cjDAO.jobSetFieldIfEqual(jobID=self._jobID, fieldName='genBaseDescription', curValue=None, newValue = self._baseDescription) if updated: permContents = open(permutationsScript).read() self._cjDAO.jobSetFieldIfEqual(jobID=self._jobID, fieldName='genPermutations', curValue=None, newValue = permContents) # if user provided an artificialMetric, force use of the dummy model if self._dummyModelParamsFunc is not None: if self._dummyModel is None: self._dummyModel = dict() # If at DEBUG log level, print out permutations info to the log if self.logger.getEffectiveLevel() <= logging.DEBUG: msg = StringIO.StringIO() print >> msg, "Permutations file specifications: " info = dict() for key in ['_predictedField', '_permutations', '_flattenedPermutations', '_encoderNames', '_reportKeys', '_optimizeKey', '_maximize']: info[key] = getattr(self, key) print >> msg, pprint.pformat(info) self.logger.debug(msg.getvalue()) msg.close() # Instantiate our database to hold the results we received so far self._resultsDB = ResultsDB(self) # Instantiate the Swarm Terminator self._swarmTerminator = SwarmTerminator() # Initial hypersearch state self._hsState = None # The Max # of attempts we will make to create a unique model before # giving up. self._maxUniqueModelAttempts = int(Configuration.get( 'nupic.hypersearch.maxUniqueModelAttempts')) # The max amount of time allowed before a model is considered orphaned. self._modelOrphanIntervalSecs = float(Configuration.get( 'nupic.hypersearch.modelOrphanIntervalSecs')) # The max percent of models that can complete with errors self._maxPctErrModels = float(Configuration.get( 'nupic.hypersearch.maxPctErrModels')) except: # Clean up our temporary directory, if any if self._tempDir is not None: shutil.rmtree(self._tempDir) self._tempDir = None raise return def _getStreamDef(self, modelDescription): """ Generate stream definition based on """ #-------------------------------------------------------------------------- # Generate the string containing the aggregation settings. aggregationPeriod = { 'days': 0, 'hours': 0, 'microseconds': 0, 'milliseconds': 0, 'minutes': 0, 'months': 0, 'seconds': 0, 'weeks': 0, 'years': 0, } # Honor any overrides provided in the stream definition aggFunctionsDict = {} if 'aggregation' in modelDescription['streamDef']: for key in aggregationPeriod.keys(): if key in modelDescription['streamDef']['aggregation']: aggregationPeriod[key] = modelDescription['streamDef']['aggregation'][key] if 'fields' in modelDescription['streamDef']['aggregation']: for (fieldName, func) in modelDescription['streamDef']['aggregation']['fields']: aggFunctionsDict[fieldName] = str(func) # Do we have any aggregation at all? hasAggregation = False for v in aggregationPeriod.values(): if v != 0: hasAggregation = True break # Convert the aggFunctionsDict to a list aggFunctionList = aggFunctionsDict.items() aggregationInfo = dict(aggregationPeriod) aggregationInfo['fields'] = aggFunctionList streamDef = copy.deepcopy(modelDescription['streamDef']) streamDef['aggregation'] = copy.deepcopy(aggregationInfo) return streamDef def __del__(self): """Destructor; NOTE: this is not guaranteed to be called (bugs like circular references could prevent it from being called). """ self.close() return def close(self): """Deletes temporary system objects/files. """ if self._tempDir is not None and os.path.isdir(self._tempDir): self.logger.debug("Removing temporary directory %r", self._tempDir) shutil.rmtree(self._tempDir) self._tempDir = None return def _readPermutationsFile(self, filename, modelDescription): """ Read the permutations file and initialize the following member variables: _predictedField: field name of the field we are trying to predict _permutations: Dict containing the full permutations dictionary. _flattenedPermutations: Dict containing the flattened version of _permutations. The keys leading to the value in the dict are joined with a period to create the new key and permute variables within encoders are pulled out of the encoder. _encoderNames: keys from self._permutations of only the encoder variables. _reportKeys: The 'report' list from the permutations file. This is a list of the items from each experiment's pickled results file that should be included in the final report. The format of each item is a string of key names separated by colons, each key being one level deeper into the experiment results dict. For example, 'key1:key2'. _filterFunc: a user-supplied function that can be used to filter out specific permutation combinations. _optimizeKey: which report key to optimize for _maximize: True if we should try and maximize the optimizeKey metric. False if we should minimize it. _dummyModelParamsFunc: a user-supplied function that can be used to artificially generate CLA model results. When supplied, the model is not actually run through the OPF, but instead is run through a "Dummy Model" (nupic.swarming.ModelRunner. OPFDummyModelRunner). This function returns the params dict used to control various options in the dummy model (the returned metric, the execution time, etc.). This is used for hypersearch algorithm development. Parameters: --------------------------------------------------------- filename: Name of permutations file retval: None """ # Open and execute the permutations file vars = {} permFile = execfile(filename, globals(), vars) # Read in misc info. self._reportKeys = vars.get('report', []) self._filterFunc = vars.get('permutationFilter', None) self._dummyModelParamsFunc = vars.get('dummyModelParams', None) self._predictedField = None # default self._predictedFieldEncoder = None # default self._fixedFields = None # default # The fastSwarm variable, if present, contains the params from a best # model from a previous swarm. If present, use info from that to seed # a fast swarm self._fastSwarmModelParams = vars.get('fastSwarmModelParams', None) if self._fastSwarmModelParams is not None: encoders = self._fastSwarmModelParams['structuredParams']['modelParams']\ ['sensorParams']['encoders'] self._fixedFields = [] for fieldName in encoders: if encoders[fieldName] is not None: self._fixedFields.append(fieldName) if 'fixedFields' in vars: self._fixedFields = vars['fixedFields'] # Get min number of particles per swarm from either permutations file or # config. self._minParticlesPerSwarm = vars.get('minParticlesPerSwarm') if self._minParticlesPerSwarm == None: self._minParticlesPerSwarm = Configuration.get( 'nupic.hypersearch.minParticlesPerSwarm') self._minParticlesPerSwarm = int(self._minParticlesPerSwarm) # Enable logic to kill off speculative swarms when an earlier sprint # has found that it contains poorly performing field combination? self._killUselessSwarms = vars.get('killUselessSwarms', True) # The caller can request that the predicted field ALWAYS be included ("yes") # or optionally include ("auto"). The setting of "no" is N/A and ignored # because in that case the encoder for the predicted field will not even # be present in the permutations file. # When set to "yes", this will force the first sprint to try the predicted # field only (the legacy mode of swarming). # When set to "auto", the first sprint tries all possible fields (one at a # time) in the first sprint. self._inputPredictedField = vars.get("inputPredictedField", "yes") # Try all possible 3-field combinations? Normally, we start with the best # 2-field combination as a base. When this flag is set though, we try # all possible 3-field combinations which takes longer but can find a # better model. self._tryAll3FieldCombinations = vars.get('tryAll3FieldCombinations', False) # Always include timestamp fields in the 3-field swarms? # This is a less compute intensive version of tryAll3FieldCombinations. # Instead of trying ALL possible 3 field combinations, it just insures # that the timestamp fields (dayOfWeek, timeOfDay, weekend) are never left # out when generating the 3-field swarms. self._tryAll3FieldCombinationsWTimestamps = vars.get( 'tryAll3FieldCombinationsWTimestamps', False) # Allow the permutations file to override minFieldContribution. This would # be set to a negative number for large swarms so that you don't disqualify # a field in an early sprint just because it did poorly there. Sometimes, # a field that did poorly in an early sprint could help accuracy when # added in a later sprint minFieldContribution = vars.get('minFieldContribution', None) if minFieldContribution is not None: self._minFieldContribution = minFieldContribution # Allow the permutations file to override maxBranching. maxBranching = vars.get('maxFieldBranching', None) if maxBranching is not None: self._maxBranching = maxBranching # Read in the optimization info. if 'maximize' in vars: self._optimizeKey = vars['maximize'] self._maximize = True elif 'minimize' in vars: self._optimizeKey = vars['minimize'] self._maximize = False else: raise RuntimeError("Permutations file '%s' does not include a maximize" " or minimize metric.") # The permutations file is the new location for maxModels. The old location, # in the jobParams is deprecated. maxModels = vars.get('maxModels') if maxModels is not None: if self._maxModels is None: self._maxModels = maxModels else: raise RuntimeError('It is an error to specify maxModels both in the job' ' params AND in the permutations file.') # Figure out if what kind of search this is: # # If it's a temporal prediction search: # the first sprint has 1 swarm, with just the predicted field # elif it's a spatial prediction search: # the first sprint has N swarms, each with predicted field + one # other field. # elif it's a classification search: # the first sprint has N swarms, each with 1 field inferenceType = modelDescription['modelParams']['inferenceType'] if not InferenceType.validate(inferenceType): raise ValueError("Invalid inference type %s" %inferenceType) if inferenceType in [InferenceType.TemporalMultiStep, InferenceType.NontemporalMultiStep]: # If it does not have a separate encoder for the predicted field that # goes to the classifier, it is a legacy multi-step network classifierOnlyEncoder = None for encoder in modelDescription["modelParams"]["sensorParams"]\ ["encoders"].values(): if encoder.get("classifierOnly", False) \ and encoder["fieldname"] == vars.get('predictedField', None): classifierOnlyEncoder = encoder break if classifierOnlyEncoder is None or self._inputPredictedField=="yes": # If we don't have a separate encoder for the classifier (legacy # MultiStep) or the caller explicitly wants to include the predicted # field, then use the legacy temporal search methodology. self._searchType = HsSearchType.legacyTemporal else: self._searchType = HsSearchType.temporal elif inferenceType in [InferenceType.TemporalNextStep, InferenceType.TemporalAnomaly]: self._searchType = HsSearchType.legacyTemporal elif inferenceType in (InferenceType.TemporalClassification, InferenceType.NontemporalClassification): self._searchType = HsSearchType.classification else: raise RuntimeError("Unsupported inference type: %s" % inferenceType) # Get the predicted field. Note that even classification experiments # have a "predicted" field - which is the field that contains the # classification value. self._predictedField = vars.get('predictedField', None) if self._predictedField is None: raise RuntimeError("Permutations file '%s' does not have the required" " 'predictedField' variable" % filename) # Read in and validate the permutations dict if 'permutations' not in vars: raise RuntimeError("Permutations file '%s' does not define permutations" % filename) if not isinstance(vars['permutations'], dict): raise RuntimeError("Permutations file '%s' defines a permutations variable " "but it is not a dict") self._encoderNames = [] self._permutations = vars['permutations'] self._flattenedPermutations = dict() def _flattenPermutations(value, keys): if ':' in keys[-1]: raise RuntimeError("The permutation variable '%s' contains a ':' " "character, which is not allowed.") flatKey = _flattenKeys(keys) if isinstance(value, PermuteEncoder): self._encoderNames.append(flatKey) # If this is the encoder for the predicted field, save its name. if value.fieldName == self._predictedField: self._predictedFieldEncoder = flatKey # Store the flattened representations of the variables within the # encoder. for encKey, encValue in value.kwArgs.iteritems(): if isinstance(encValue, PermuteVariable): self._flattenedPermutations['%s:%s' % (flatKey, encKey)] = encValue elif isinstance(value, PermuteVariable): self._flattenedPermutations[flatKey] = value else: if isinstance(value, PermuteVariable): self._flattenedPermutations[key] = value rApply(self._permutations, _flattenPermutations) def getExpectedNumModels(self): """Computes the number of models that are expected to complete as part of this instances's HyperSearch. NOTE: This is compute-intensive for HyperSearches with a huge number of combinations. NOTE/TODO: THIS ONLY WORKS FOR RONOMATIC: This method is exposed for the benefit of perutations_runner.py for use in progress reporting. Parameters: --------------------------------------------------------- retval: The total number of expected models, if known; -1 if unknown """ return -1 def getModelNames(self): """Generates a list of model names that are expected to complete as part of this instances's HyperSearch. NOTE: This is compute-intensive for HyperSearches with a huge number of combinations. NOTE/TODO: THIS ONLY WORKS FOR RONOMATIC: This method is exposed for the benefit of perutations_runner.py. Parameters: --------------------------------------------------------- retval: List of model names for this HypersearchV2 instance, or None of not applicable """ return None def getPermutationVariables(self): """Returns a dictionary of permutation variables. Parameters: --------------------------------------------------------- retval: A dictionary of permutation variables; keys are flat permutation variable names and each value is a sub-class of PermuteVariable. """ return self._flattenedPermutations def getComplexVariableLabelLookupDict(self): """Generates a lookup dictionary of permutation variables whose values are too complex for labels, so that artificial labels have to be generated for them. Parameters: --------------------------------------------------------- retval: A look-up dictionary of permutation variables whose values are too complex for labels, so artificial labels were generated instead (e.g., "Choice0", "Choice1", etc.); the key is the name of the complex variable and the value is: dict(labels=<list_of_labels>, values=<list_of_values>). """ raise NotImplementedError def getOptimizationMetricInfo(self): """Retrives the optimization key name and optimization function. Parameters: --------------------------------------------------------- retval: (optimizationMetricKey, maximize) optimizationMetricKey: which report key to optimize for maximize: True if we should try and maximize the optimizeKey metric. False if we should minimize it. """ return (self._optimizeKey, self._maximize) def _checkForOrphanedModels (self): """If there are any models that haven't been updated in a while, consider them dead, and mark them as hidden in our resultsDB. We also change the paramsHash and particleHash of orphaned models so that we can re-generate that particle and/or model again if we desire. Parameters: ---------------------------------------------------------------------- retval: """ self.logger.debug("Checking for orphaned models older than %s" % \ (self._modelOrphanIntervalSecs)) while True: orphanedModelId = self._cjDAO.modelAdoptNextOrphan(self._jobID, self._modelOrphanIntervalSecs) if orphanedModelId is None: return self.logger.info("Removing orphaned model: %d" % (orphanedModelId)) # Change the model hash and params hash as stored in the models table so # that we can insert a new model with the same paramsHash for attempt in range(100): paramsHash = hashlib.md5("OrphanParams.%d.%d" % (orphanedModelId, attempt)).digest() particleHash = hashlib.md5("OrphanParticle.%d.%d" % (orphanedModelId, attempt)).digest() try: self._cjDAO.modelSetFields(orphanedModelId, dict(engParamsHash=paramsHash, engParticleHash=particleHash)) success = True except: success = False if success: break if not success: raise RuntimeError("Unexpected failure to change paramsHash and " "particleHash of orphaned model") # Mark this model as complete, with reason "orphaned" self._cjDAO.modelSetCompleted(modelID=orphanedModelId, completionReason=ClientJobsDAO.CMPL_REASON_ORPHAN, completionMsg="Orphaned") # Update our results DB immediately, rather than wait for the worker # to inform us. This insures that the getParticleInfos() calls we make # below don't include this particle. Setting the metricResult to None # sets it to worst case self._resultsDB.update(modelID=orphanedModelId, modelParams=None, modelParamsHash=paramsHash, metricResult=None, completed = True, completionReason = ClientJobsDAO.CMPL_REASON_ORPHAN, matured = True, numRecords = 0) def _hsStatePeriodicUpdate(self, exhaustedSwarmId=None): """ Periodically, check to see if we should remove a certain field combination from evaluation (because it is doing so poorly) or move on to the next sprint (add in more fields). This method is called from _getCandidateParticleAndSwarm(), which is called right before we try and create a new model to run. Parameters: ----------------------------------------------------------------------- removeSwarmId: If not None, force a change to the current set of active swarms by removing this swarm. This is used in situations where we can't find any new unique models to create in this swarm. In these situations, we update the hypersearch state regardless of the timestamp of the last time another worker updated it. """ if self._hsState is None: self._hsState = HsState(self) # Read in current state from the DB self._hsState.readStateFromDB() # This will hold the list of completed swarms that we find completedSwarms = set() # Mark the exhausted swarm as completing/completed, if any if exhaustedSwarmId is not None: self.logger.info("Removing swarm %s from the active set " "because we can't find any new unique particle " "positions" % (exhaustedSwarmId)) # Is it completing or completed? (particles, _, _, _, _) = self._resultsDB.getParticleInfos( swarmId=exhaustedSwarmId, matured=False) if len(particles) > 0: exhaustedSwarmStatus = 'completing' else: exhaustedSwarmStatus = 'completed' # Kill all swarms that don't need to be explored based on the most recent # information. if self._killUselessSwarms: self._hsState.killUselessSwarms() # For all swarms that were in the 'completing' state, see if they have # completed yet. # # Note that we are not quite sure why this doesn't automatically get handled # when we receive notification that a model finally completed in a swarm. # But, we ARE running into a situation, when speculativeParticles is off, # where we have one or more swarms in the 'completing' state even though all # models have since finished. This logic will serve as a failsafe against # this situation. completingSwarms = self._hsState.getCompletingSwarms() for swarmId in completingSwarms: # Is it completed? (particles, _, _, _, _) = self._resultsDB.getParticleInfos( swarmId=swarmId, matured=False) if len(particles) == 0: completedSwarms.add(swarmId) # Are there any swarms we can remove (because they have matured)? completedSwarmGens = self._resultsDB.getMaturedSwarmGenerations() priorCompletedSwarms = self._hsState.getCompletedSwarms() for (swarmId, genIdx, errScore) in completedSwarmGens: # Don't need to report it if the swarm already completed if swarmId in priorCompletedSwarms: continue completedList = self._swarmTerminator.recordDataPoint( swarmId=swarmId, generation=genIdx, errScore=errScore) # Update status message statusMsg = "Completed generation #%d of swarm '%s' with a best" \ " errScore of %g" % (genIdx, swarmId, errScore) if len(completedList) > 0: statusMsg = "%s. Matured swarm(s): %s" % (statusMsg, completedList) self.logger.info(statusMsg) self._cjDAO.jobSetFields (jobID=self._jobID, fields=dict(engStatus=statusMsg), useConnectionID=False, ignoreUnchanged=True) # Special test mode to check which swarms have terminated if 'NTA_TEST_recordSwarmTerminations' in os.environ: while True: resultsStr = self._cjDAO.jobGetFields(self._jobID, ['results'])[0] if resultsStr is None: results = {} else: results = json.loads(resultsStr) if not 'terminatedSwarms' in results: results['terminatedSwarms'] = {} for swarm in completedList: if swarm not in results['terminatedSwarms']: results['terminatedSwarms'][swarm] = (genIdx, self._swarmTerminator.swarmScores[swarm]) newResultsStr = json.dumps(results) if newResultsStr == resultsStr: break updated = self._cjDAO.jobSetFieldIfEqual(jobID=self._jobID, fieldName='results', curValue=resultsStr, newValue = json.dumps(results)) if updated: break if len(completedList) > 0: for name in completedList: self.logger.info("Swarm matured: %s. Score at generation %d: " "%s" % (name, genIdx, errScore)) completedSwarms = completedSwarms.union(completedList) if len(completedSwarms)==0 and (exhaustedSwarmId is None): return # We need to mark one or more swarms as completed, keep trying until # successful, or until some other worker does it for us. while True: if exhaustedSwarmId is not None: self._hsState.setSwarmState(exhaustedSwarmId, exhaustedSwarmStatus) # Mark the completed swarms as completed for swarmId in completedSwarms: self._hsState.setSwarmState(swarmId, 'completed') # If nothing changed, we're done if not self._hsState.isDirty(): return # Update the shared Hypersearch state now # This will do nothing and return False if some other worker beat us to it success = self._hsState.writeStateToDB() if success: # Go through and cancel all models that are still running, except for # the best model. Once the best model changes, the one that used to be # best (and has matured) will notice that and stop itself at that point. jobResultsStr = self._cjDAO.jobGetFields(self._jobID, ['results'])[0] if jobResultsStr is not None: jobResults = json.loads(jobResultsStr) bestModelId = jobResults.get('bestModel', None) else: bestModelId = None for swarmId in list(completedSwarms): (_, modelIds, _, _, _) = self._resultsDB.getParticleInfos( swarmId=swarmId, completed=False) if bestModelId in modelIds: modelIds.remove(bestModelId) if len(modelIds) == 0: continue self.logger.info("Killing the following models in swarm '%s' because" "the swarm is being terminated: %s" % (swarmId, str(modelIds))) for modelId in modelIds: self._cjDAO.modelSetFields(modelId, dict(engStop=ClientJobsDAO.STOP_REASON_KILLED), ignoreUnchanged = True) return # We were not able to change the state because some other worker beat us # to it. # Get the new state, and try again to apply our changes. self._hsState.readStateFromDB() self.logger.debug("New hsState has been set by some other worker to: " " \n%s" % (pprint.pformat(self._hsState._state, indent=4))) def _getCandidateParticleAndSwarm (self, exhaustedSwarmId=None): """Find or create a candidate particle to produce a new model. At any one time, there is an active set of swarms in the current sprint, where each swarm in the sprint represents a particular combination of fields. Ideally, we should try to balance the number of models we have evaluated for each swarm at any time. This method will see how many models have been evaluated for each active swarm in the current active sprint(s) and then try and choose a particle from the least represented swarm in the first possible active sprint, with the following constraints/rules: for each active sprint: for each active swarm (preference to those with least# of models so far): 1.) The particle will be created from new (generation #0) if there are not already self._minParticlesPerSwarm particles in the swarm. 2.) Find the first gen that has a completed particle and evolve that particle to the next generation. 3.) If we got to here, we know that we have satisfied the min# of particles for the swarm, and they are all currently running (probably at various generation indexes). Go onto the next swarm If we couldn't find a swarm to allocate a particle in, go onto the next sprint and start allocating particles there.... Parameters: ---------------------------------------------------------------- exhaustedSwarmId: If not None, force a change to the current set of active swarms by marking this swarm as either 'completing' or 'completed'. If there are still models being evaluaed in it, mark it as 'completing', else 'completed. This is used in situations where we can't find any new unique models to create in this swarm. In these situations, we force an update to the hypersearch state so no other worker wastes time try to use this swarm. retval: (exit, particle, swarm) exit: If true, this worker is ready to exit (particle and swarm will be None) particle: Which particle to run swarm: which swarm the particle is in NOTE: When particle and swarm are None and exit is False, it means that we need to wait for one or more other worker(s) to finish their respective models before we can pick a particle to run. This will generally only happen when speculativeParticles is set to False. """ # Cancel search? jobCancel = self._cjDAO.jobGetFields(self._jobID, ['cancel'])[0] if jobCancel: self._jobCancelled = True # Did a worker cancel the job because of an error? (workerCmpReason, workerCmpMsg) = self._cjDAO.jobGetFields(self._jobID, ['workerCompletionReason', 'workerCompletionMsg']) if workerCmpReason == ClientJobsDAO.CMPL_REASON_SUCCESS: self.logger.info("Exiting due to job being cancelled") self._cjDAO.jobSetFields(self._jobID, dict(workerCompletionMsg="Job was cancelled"), useConnectionID=False, ignoreUnchanged=True) else: self.logger.error("Exiting because some worker set the " "workerCompletionReason to %s. WorkerCompletionMsg: %s" % (workerCmpReason, workerCmpMsg)) return (True, None, None) # Perform periodic updates on the Hypersearch state. if self._hsState is not None: priorActiveSwarms = self._hsState.getActiveSwarms() else: priorActiveSwarms = None # Update the HypersearchState, checking for matured swarms, and marking # the passed in swarm as exhausted, if any self._hsStatePeriodicUpdate(exhaustedSwarmId=exhaustedSwarmId) # The above call may have modified self._hsState['activeSwarmIds'] # Log the current set of active swarms activeSwarms = self._hsState.getActiveSwarms() if activeSwarms != priorActiveSwarms: self.logger.info("Active swarms changed to %s (from %s)" % (activeSwarms, priorActiveSwarms)) self.logger.debug("Active swarms: %s" % (activeSwarms)) # If too many model errors were detected, exit totalCmpModels = self._resultsDB.getNumCompletedModels() if totalCmpModels > 5: numErrs = self._resultsDB.getNumErrModels() if (float(numErrs) / totalCmpModels) > self._maxPctErrModels: # Get one of the errors errModelIds = self._resultsDB.getErrModelIds() resInfo = self._cjDAO.modelsGetResultAndStatus([errModelIds[0]])[0] modelErrMsg = resInfo.completionMsg cmpMsg = "%s: Exiting due to receiving too many models failing" \ " from exceptions (%d out of %d). \nModel Exception: %s" % \ (ErrorCodes.tooManyModelErrs, numErrs, totalCmpModels, modelErrMsg) self.logger.error(cmpMsg) # Cancel the entire job now, if it has not already been cancelled workerCmpReason = self._cjDAO.jobGetFields(self._jobID, ['workerCompletionReason'])[0] if workerCmpReason == ClientJobsDAO.CMPL_REASON_SUCCESS: self._cjDAO.jobSetFields( self._jobID, fields=dict( cancel=True, workerCompletionReason = ClientJobsDAO.CMPL_REASON_ERROR, workerCompletionMsg = cmpMsg), useConnectionID=False, ignoreUnchanged=True) return (True, None, None) # If HsState thinks the search is over, exit. It is seeing if the results # on the sprint we just completed are worse than a prior sprint. if self._hsState.isSearchOver(): cmpMsg = "Exiting because results did not improve in most recently" \ " completed sprint." self.logger.info(cmpMsg) self._cjDAO.jobSetFields(self._jobID, dict(workerCompletionMsg=cmpMsg), useConnectionID=False, ignoreUnchanged=True) return (True, None, None) # Search successive active sprints, until we can find a candidate particle # to work with sprintIdx = -1 while True: # Is this sprint active? sprintIdx += 1 (active, eos) = self._hsState.isSprintActive(sprintIdx) # If no more sprints to explore: if eos: # If any prior ones are still being explored, finish up exploring them if self._hsState.anyGoodSprintsActive(): self.logger.info("No more sprints to explore, waiting for prior" " sprints to complete") return (False, None, None) # Else, we're done else: cmpMsg = "Exiting because we've evaluated all possible field " \ "combinations" self._cjDAO.jobSetFields(self._jobID, dict(workerCompletionMsg=cmpMsg), useConnectionID=False, ignoreUnchanged=True) self.logger.info(cmpMsg) return (True, None, None) if not active: if not self._speculativeParticles: if not self._hsState.isSprintCompleted(sprintIdx): self.logger.info("Waiting for all particles in sprint %d to complete" "before evolving any more particles" % (sprintIdx)) return (False, None, None) continue # ==================================================================== # Look for swarms that have particle "holes" in their generations. That is, # an earlier generation with less than minParticlesPerSwarm. This can # happen if a model that was started eariler got orphaned. If we detect # this, start a new particle in that generation. swarmIds = self._hsState.getActiveSwarms(sprintIdx) for swarmId in swarmIds: firstNonFullGenIdx = self._resultsDB.firstNonFullGeneration( swarmId=swarmId, minNumParticles=self._minParticlesPerSwarm) if firstNonFullGenIdx is None: continue if firstNonFullGenIdx < self._resultsDB.highestGeneration(swarmId): self.logger.info("Cloning an earlier model in generation %d of swarm " "%s (sprintIdx=%s) to replace an orphaned model" % ( firstNonFullGenIdx, swarmId, sprintIdx)) # Clone a random orphaned particle from the incomplete generation (allParticles, allModelIds, errScores, completed, matured) = \ self._resultsDB.getOrphanParticleInfos(swarmId, firstNonFullGenIdx) if len(allModelIds) > 0: # We have seen instances where we get stuck in a loop incessantly # trying to clone earlier models (NUP-1511). My best guess is that # we've already successfully cloned each of the orphaned models at # least once, but still need at least one more. If we don't create # a new particleID, we will never be able to instantiate another # model (since particleID hash is a unique key in the models table). # So, on 1/8/2013 this logic was changed to create a new particleID # whenever we clone an orphan. newParticleId = True self.logger.info("Cloning an orphaned model") # If there is no orphan, clone one of the other particles. We can # have no orphan if this was a speculative generation that only # continued particles completed in the prior generation. else: newParticleId = True self.logger.info("No orphans found, so cloning a non-orphan") (allParticles, allModelIds, errScores, completed, matured) = \ self._resultsDB.getParticleInfos(swarmId=swarmId, genIdx=firstNonFullGenIdx) # Clone that model modelId = random.choice(allModelIds) self.logger.info("Cloning model %r" % (modelId)) (particleState, _, _, _, _) = self._resultsDB.getParticleInfo(modelId) particle = Particle(hsObj = self, resultsDB = self._resultsDB, flattenedPermuteVars=self._flattenedPermutations, newFromClone=particleState, newParticleId=newParticleId) return (False, particle, swarmId) # ==================================================================== # Sort the swarms in priority order, trying the ones with the least # number of models first swarmSizes = numpy.array([self._resultsDB.numModels(x) for x in swarmIds]) swarmSizeAndIdList = zip(swarmSizes, swarmIds) swarmSizeAndIdList.sort() for (_, swarmId) in swarmSizeAndIdList: # ------------------------------------------------------------------- # 1.) The particle will be created from new (at generation #0) if there # are not already self._minParticlesPerSwarm particles in the swarm. (allParticles, allModelIds, errScores, completed, matured) = ( self._resultsDB.getParticleInfos(swarmId)) if len(allParticles) < self._minParticlesPerSwarm: particle = Particle(hsObj=self, resultsDB=self._resultsDB, flattenedPermuteVars=self._flattenedPermutations, swarmId=swarmId, newFarFrom=allParticles) # Jam in the best encoder state found from the first sprint bestPriorModel = None if sprintIdx >= 1: (bestPriorModel, errScore) = self._hsState.bestModelInSprint(0) if bestPriorModel is not None: self.logger.info("Best model and errScore from previous sprint(%d):" " %s, %g" % (0, str(bestPriorModel), errScore)) (baseState, modelId, errScore, completed, matured) \ = self._resultsDB.getParticleInfo(bestPriorModel) particle.copyEncoderStatesFrom(baseState) # Copy the best inference type from the earlier sprint particle.copyVarStatesFrom(baseState, ['modelParams|inferenceType']) # It's best to jiggle the best settings from the prior sprint, so # compute a new position starting from that previous best # Only jiggle the vars we copied from the prior model whichVars = [] for varName in baseState['varStates']: if ':' in varName: whichVars.append(varName) particle.newPosition(whichVars) self.logger.debug("Particle after incorporating encoder vars from best " "model in previous sprint: \n%s" % (str(particle))) return (False, particle, swarmId) # ------------------------------------------------------------------- # 2.) Look for a completed particle to evolve # Note that we use lastDescendent. We only want to evolve particles that # are at their most recent generation index. (readyParticles, readyModelIds, readyErrScores, _, _) = ( self._resultsDB.getParticleInfos(swarmId, genIdx=None, matured=True, lastDescendent=True)) # If we have at least 1 ready particle to evolve... if len(readyParticles) > 0: readyGenIdxs = [x['genIdx'] for x in readyParticles] sortedGenIdxs = sorted(set(readyGenIdxs)) genIdx = sortedGenIdxs[0] # Now, genIdx has the generation of the particle we want to run, # Get a particle from that generation and evolve it. useParticle = None for particle in readyParticles: if particle['genIdx'] == genIdx: useParticle = particle break # If speculativeParticles is off, we don't want to evolve a particle # into the next generation until all particles in the current # generation have completed. if not self._speculativeParticles: (particles, _, _, _, _) = self._resultsDB.getParticleInfos( swarmId, genIdx=genIdx, matured=False) if len(particles) > 0: continue particle = Particle(hsObj=self, resultsDB=self._resultsDB, flattenedPermuteVars=self._flattenedPermutations, evolveFromState=useParticle) return (False, particle, swarmId) # END: for (swarmSize, swarmId) in swarmSizeAndIdList: # No success in this swarm, onto next swarm # ==================================================================== # We couldn't find a particle in this sprint ready to evolve. If # speculative particles is OFF, we have to wait for one or more other # workers to finish up their particles before we can do anything. if not self._speculativeParticles: self.logger.info("Waiting for one or more of the %s swarms " "to complete a generation before evolving any more particles" \ % (str(swarmIds))) return (False, None, None) # END: while True: # No success in this sprint, into next sprint def _okToExit(self): """Test if it's OK to exit this worker. This is only called when we run out of prospective new models to evaluate. This method sees if all models have matured yet. If not, it will sleep for a bit and return False. This will indicate to the hypersearch worker that we should keep running, and check again later. This gives this worker a chance to pick up and adopt any model which may become orphaned by another worker before it matures. If all models have matured, this method will send a STOP message to all matured, running models (presummably, there will be just one - the model which thinks it's the best) before returning True. """ # Send an update status periodically to the JobTracker so that it doesn't # think this worker is dead. print >> sys.stderr, "reporter:status:In hypersearchV2: _okToExit" # Any immature models still running? if not self._jobCancelled: (_, modelIds, _, _, _) = self._resultsDB.getParticleInfos(matured=False) if len(modelIds) > 0: self.logger.info("Ready to end hyperseach, but not all models have " \ "matured yet. Sleeping a bit to wait for all models " \ "to mature.") # Sleep for a bit, no need to check for orphaned models very often time.sleep(5.0 * random.random()) return False # All particles have matured, send a STOP signal to any that are still # running. (_, modelIds, _, _, _) = self._resultsDB.getParticleInfos(completed=False) for modelId in modelIds: self.logger.info("Stopping model %d because the search has ended" \ % (modelId)) self._cjDAO.modelSetFields(modelId, dict(engStop=ClientJobsDAO.STOP_REASON_STOPPED), ignoreUnchanged = True) # Update the HsState to get the accurate field contributions. self._hsStatePeriodicUpdate() pctFieldContributions, absFieldContributions = \ self._hsState.getFieldContributions() # Update the results field with the new field contributions. jobResultsStr = self._cjDAO.jobGetFields(self._jobID, ['results'])[0] if jobResultsStr is not None: jobResults = json.loads(jobResultsStr) else: jobResults = {} # Update the fieldContributions field. if pctFieldContributions != jobResults.get('fieldContributions', None): jobResults['fieldContributions'] = pctFieldContributions jobResults['absoluteFieldContributions'] = absFieldContributions isUpdated = self._cjDAO.jobSetFieldIfEqual(self._jobID, fieldName='results', curValue=jobResultsStr, newValue=json.dumps(jobResults)) if isUpdated: self.logger.info('Successfully updated the field contributions:%s', pctFieldContributions) else: self.logger.info('Failed updating the field contributions, ' \ 'another hypersearch worker must have updated it') return True def killSwarmParticles(self, swarmID): (_, modelIds, _, _, _) = self._resultsDB.getParticleInfos( swarmId=swarmID, completed=False) for modelId in modelIds: self.logger.info("Killing the following models in swarm '%s' because" "the swarm is being terminated: %s" % (swarmID, str(modelIds))) self._cjDAO.modelSetFields( modelId, dict(engStop=ClientJobsDAO.STOP_REASON_KILLED), ignoreUnchanged=True) def createModels(self, numModels=1): """Create one or more new models for evaluation. These should NOT be models that we already know are in progress (i.e. those that have been sent to us via recordModelProgress). We return a list of models to the caller (HypersearchWorker) and if one can be successfully inserted into the models table (i.e. it is not a duplicate) then HypersearchWorker will turn around and call our runModel() method, passing in this model. If it is a duplicate, HypersearchWorker will call this method again. A model is a duplicate if either the modelParamsHash or particleHash is identical to another entry in the model table. The numModels is provided by HypersearchWorker as a suggestion as to how many models to generate. This particular implementation only ever returns 1 model. Before choosing some new models, we first do a sweep for any models that may have been abandonded by failed workers. If/when we detect an abandoned model, we mark it as complete and orphaned and hide it from any subsequent queries to our ResultsDB. This effectively considers it as if it never existed. We also change the paramsHash and particleHash in the model record of the models table so that we can create another model with the same params and particle status and run it (which we then do immediately). The modelParamsHash returned for each model should be a hash (max allowed size of ClientJobsDAO.hashMaxSize) that uniquely identifies this model by it's params and the optional particleHash should be a hash of the particleId and generation index. Every model that gets placed into the models database, either by this worker or another worker, will have these hashes computed for it. The recordModelProgress gets called for every model in the database and the hash is used to tell which, if any, are the same as the ones this worker generated. NOTE: We check first ourselves for possible duplicates using the paramsHash before we return a model. If HypersearchWorker failed to insert it (because some other worker beat us to it), it will turn around and call our recordModelProgress with that other model so that we now know about it. It will then call createModels() again. This methods returns an exit boolean and the model to evaluate. If there is no model to evalulate, we may return False for exit because we want to stay alive for a while, waiting for all other models to finish. This gives us a chance to detect and pick up any possibly orphaned model by another worker. Parameters: ---------------------------------------------------------------------- numModels: number of models to generate retval: (exit, models) exit: true if this worker should exit. models: list of tuples, one for each model. Each tuple contains: (modelParams, modelParamsHash, particleHash) modelParams is a dictionary containing the following elements: structuredParams: dictionary containing all variables for this model, with encoders represented as a dict within this dict (or None if they are not included. particleState: dictionary containing the state of this particle. This includes the position and velocity of each of it's variables, the particleId, and the particle generation index. It contains the following keys: id: The particle Id of the particle we are using to generate/track this model. This is a string of the form <hypesearchWorkerId>.<particleIdx> genIdx: the particle's generation index. This starts at 0 and increments every time we move the particle to a new position. swarmId: The swarmId, which is a string of the form <encoder>.<encoder>... that describes this swarm varStates: dict of the variable states. The key is the variable name, the value is a dict of the variable's position, velocity, bestPosition, bestResult, etc. """ # Check for and mark orphaned models self._checkForOrphanedModels() modelResults = [] for _ in xrange(numModels): candidateParticle = None # If we've reached the max # of model to evaluate, we're done. if (self._maxModels is not None and (self._resultsDB.numModels() - self._resultsDB.getNumErrModels()) >= self._maxModels): return (self._okToExit(), []) # If we don't already have a particle to work on, get a candidate swarm and # particle to work with. If None is returned for the particle it means # either that the search is over (if exitNow is also True) or that we need # to wait for other workers to finish up their models before we can pick # another particle to run (if exitNow is False). if candidateParticle is None: (exitNow, candidateParticle, candidateSwarm) = ( self._getCandidateParticleAndSwarm()) if candidateParticle is None: if exitNow: return (self._okToExit(), []) else: # Send an update status periodically to the JobTracker so that it doesn't # think this worker is dead. print >> sys.stderr, "reporter:status:In hypersearchV2: speculativeWait" time.sleep(self._speculativeWaitSecondsMax * random.random()) return (False, []) useEncoders = candidateSwarm.split('.') numAttempts = 0 # Loop until we can create a unique model that we haven't seen yet. while True: # If this is the Nth attempt with the same candidate, agitate it a bit # to find a new unique position for it. if numAttempts >= 1: self.logger.debug("Agitating particle to get unique position after %d " "failed attempts in a row" % (numAttempts)) candidateParticle.agitate() # Create the hierarchical params expected by the base description. Note # that this is where we incorporate encoders that have no permuted # values in them. position = candidateParticle.getPosition() structuredParams = dict() def _buildStructuredParams(value, keys): flatKey = _flattenKeys(keys) # If it's an encoder, either put in None if it's not used, or replace # all permuted constructor params with the actual position. if flatKey in self._encoderNames: if flatKey in useEncoders: # Form encoder dict, substituting in chosen permutation values. return value.getDict(flatKey, position) # Encoder not used. else: return None # Regular top-level variable. elif flatKey in position: return position[flatKey] # Fixed override of a parameter in the base description. else: return value structuredParams = rCopy(self._permutations, _buildStructuredParams, discardNoneKeys=False) # Create the modelParams. modelParams = dict( structuredParams=structuredParams, particleState = candidateParticle.getState() ) # And the hashes. m = hashlib.md5() m.update(sortedJSONDumpS(structuredParams)) m.update(self._baseDescriptionHash) paramsHash = m.digest() particleInst = "%s.%s" % (modelParams['particleState']['id'], modelParams['particleState']['genIdx']) particleHash = hashlib.md5(particleInst).digest() # Increase attempt counter numAttempts += 1 # If this is a new one, and passes the filter test, exit with it. # TODO: There is currently a problem with this filters implementation as # it relates to self._maxUniqueModelAttempts. When there is a filter in # effect, we should try a lot more times before we decide we have # exhausted the parameter space for this swarm. The question is, how many # more times? if self._filterFunc and not self._filterFunc(structuredParams): valid = False else: valid = True if valid and self._resultsDB.getModelIDFromParamsHash(paramsHash) is None: break # If we've exceeded the max allowed number of attempts, mark this swarm # as completing or completed, so we don't try and allocate any more new # particles to it, and pick another. if numAttempts >= self._maxUniqueModelAttempts: (exitNow, candidateParticle, candidateSwarm) \ = self._getCandidateParticleAndSwarm( exhaustedSwarmId=candidateSwarm) if candidateParticle is None: if exitNow: return (self._okToExit(), []) else: time.sleep(self._speculativeWaitSecondsMax * random.random()) return (False, []) numAttempts = 0 useEncoders = candidateSwarm.split('.') # Log message if self.logger.getEffectiveLevel() <= logging.DEBUG: self.logger.debug("Submitting new potential model to HypersearchWorker: \n%s" % (pprint.pformat(modelParams, indent=4))) modelResults.append((modelParams, paramsHash, particleHash)) return (False, modelResults) def recordModelProgress(self, modelID, modelParams, modelParamsHash, results, completed, completionReason, matured, numRecords): """Record or update the results for a model. This is called by the HSW whenever it gets results info for another model, or updated results on a model that is still running. The first time this is called for a given modelID, the modelParams will contain the params dict for that model and the modelParamsHash will contain the hash of the params. Subsequent updates of the same modelID will have params and paramsHash values of None (in order to save overhead). The Hypersearch object should save these results into it's own working memory into some table, which it then uses to determine what kind of new models to create next time createModels() is called. Parameters: ---------------------------------------------------------------------- modelID: ID of this model in models table modelParams: params dict for this model, or None if this is just an update of a model that it already previously reported on. See the comments for the createModels() method for a description of this dict. modelParamsHash: hash of the modelParams dict, generated by the worker that put it into the model database. results: tuple containing (allMetrics, optimizeMetric). Each is a dict containing metricName:result pairs. . May be none if we have no results yet. completed: True if the model has completed evaluation, False if it is still running (and these are online results) completionReason: One of the ClientJobsDAO.CMPL_REASON_XXX equates matured: True if this model has matured. In most cases, once a model matures, it will complete as well. The only time a model matures and does not complete is if it's currently the best model and we choose to keep it running to generate predictions. numRecords: Number of records that have been processed so far by this model. """ if results is None: metricResult = None else: metricResult = results[1].values()[0] # Update our database. errScore = self._resultsDB.update(modelID=modelID, modelParams=modelParams,modelParamsHash=modelParamsHash, metricResult=metricResult, completed=completed, completionReason=completionReason, matured=matured, numRecords=numRecords) # Log message. self.logger.debug('Received progress on model %d: completed: %s, ' 'cmpReason: %s, numRecords: %d, errScore: %s' , modelID, completed, completionReason, numRecords, errScore) # Log best so far. (bestModelID, bestResult) = self._resultsDB.bestModelIdAndErrScore() self.logger.debug('Best err score seen so far: %s on model %s' % \ (bestResult, bestModelID)) def runModel(self, modelID, jobID, modelParams, modelParamsHash, jobsDAO, modelCheckpointGUID): """Run the given model. This runs the model described by 'modelParams'. Periodically, it updates the results seen on the model to the model database using the databaseAO (database Access Object) methods. Parameters: ------------------------------------------------------------------------- modelID: ID of this model in models table jobID: ID for this hypersearch job in the jobs table modelParams: parameters of this specific model modelParams is a dictionary containing the name/value pairs of each variable we are permuting over. Note that variables within an encoder spec have their name structure as: <encoderName>.<encodrVarName> modelParamsHash: hash of modelParamValues jobsDAO jobs data access object - the interface to the jobs database where model information is stored modelCheckpointGUID: A persistent, globally-unique identifier for constructing the model checkpoint key """ # We're going to make an assumption that if we're not using streams, that # we also don't need checkpoints saved. For now, this assumption is OK # (if there are no streams, we're typically running on a single machine # and just save models to files) but we may want to break this out as # a separate controllable parameter in the future if not self._createCheckpoints: modelCheckpointGUID = None # Register this model in our database self._resultsDB.update(modelID=modelID, modelParams=modelParams, modelParamsHash=modelParamsHash, metricResult = None, completed = False, completionReason = None, matured = False, numRecords = 0) # Get the structured params, which we pass to the base description structuredParams = modelParams['structuredParams'] if self.logger.getEffectiveLevel() <= logging.DEBUG: self.logger.debug("Running Model. \nmodelParams: %s, \nmodelID=%s, " % \ (pprint.pformat(modelParams, indent=4), modelID)) # Record time.clock() so that we can report on cpu time cpuTimeStart = time.clock() # Run the experiment. This will report the results back to the models # database for us as well. logLevel = self.logger.getEffectiveLevel() try: if self._dummyModel is None or self._dummyModel is False: (cmpReason, cmpMsg) = runModelGivenBaseAndParams( modelID=modelID, jobID=jobID, baseDescription=self._baseDescription, params=structuredParams, predictedField=self._predictedField, reportKeys=self._reportKeys, optimizeKey=self._optimizeKey, jobsDAO=jobsDAO, modelCheckpointGUID=modelCheckpointGUID, logLevel=logLevel, predictionCacheMaxRecords=self._predictionCacheMaxRecords) else: dummyParams = dict(self._dummyModel) dummyParams['permutationParams'] = structuredParams if self._dummyModelParamsFunc is not None: permInfo = dict(structuredParams) permInfo ['generation'] = modelParams['particleState']['genIdx'] dummyParams.update(self._dummyModelParamsFunc(permInfo)) (cmpReason, cmpMsg) = runDummyModel( modelID=modelID, jobID=jobID, params=dummyParams, predictedField=self._predictedField, reportKeys=self._reportKeys, optimizeKey=self._optimizeKey, jobsDAO=jobsDAO, modelCheckpointGUID=modelCheckpointGUID, logLevel=logLevel, predictionCacheMaxRecords=self._predictionCacheMaxRecords) # Write out the completion reason and message jobsDAO.modelSetCompleted(modelID, completionReason = cmpReason, completionMsg = cmpMsg, cpuTime = time.clock() - cpuTimeStart) except InvalidConnectionException, e: self.logger.warn("%s", e)
matiasmenares/Shuffle
refs/heads/master
core/terminal.py
1
import sys import os import urllib import json import requests from core.server import Server class Terminal: def __init__(self,url,password): self.url = url self.password = password self.server = Server(url,password) def terminal(self,send,cookie): command = self.command(send) if command == False: return self.execute(send,cookie) def command(self,send): if send == "exit": print "\n#> Connection Closet by user." sys.exit(2) else: return False def execute(self,cmd,cookie): if self.server.beat(): return json.loads(requests.post(self.url, data = {'pass': self.password,'cmd': cmd} ,cookies=cookie).text) def loop(self): server = self.server.connection() if server['response']: print "#> Conecction Established, Enjoy!\n" while True: info = self.server.info(server['cookie']) send = raw_input(info['server_name']+"@"+info['user']+"["+info['pwd'].rstrip('\n')+"]"+info['user_bash']+">") terminal = self.terminal(send,server['cookie']) print terminal['command'] elif server['response'] == False: print "robot@shuffle[~]$> Response: "+server['msg'] else: print "robot@shuffle[~]$> Connection fail."
plotly/plotly.py
refs/heads/master
packages/python/plotly/plotly/validators/funnelarea/domain/_row.py
1
import _plotly_utils.basevalidators class RowValidator(_plotly_utils.basevalidators.IntegerValidator): def __init__(self, plotly_name="row", parent_name="funnelarea.domain", **kwargs): super(RowValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), **kwargs )
azaghal/ansible
refs/heads/devel
test/units/utils/test_shlex.py
197
# (c) 2015, Marius Gedminas <marius@gedmin.as> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. import unittest from ansible.utils.shlex import shlex_split class TestSplit(unittest.TestCase): def test_trivial(self): self.assertEqual(shlex_split("a b c"), ["a", "b", "c"]) def test_unicode(self): self.assertEqual(shlex_split(u"a b \u010D"), [u"a", u"b", u"\u010D"]) def test_quoted(self): self.assertEqual(shlex_split('"a b" c'), ["a b", "c"]) def test_comments(self): self.assertEqual(shlex_split('"a b" c # d', comments=True), ["a b", "c"]) def test_error(self): self.assertRaises(ValueError, shlex_split, 'a "b')
rfhk/awo-custom
refs/heads/8.0
stock_transfer_lot_filter/__init__.py
6
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) Rooms For (Hong Kong) Limited T/A OSCG (<http://www.openerp-asia.net>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import stock import stock_transfer_detail
RevelSystems/django
refs/heads/master
tests/sites_tests/tests.py
27
from __future__ import unicode_literals from django.apps import apps from django.conf import settings from django.contrib.sites import models from django.contrib.sites.management import create_default_site from django.contrib.sites.middleware import CurrentSiteMiddleware from django.contrib.sites.models import Site, clear_site_cache from django.contrib.sites.requests import RequestSite from django.contrib.sites.shortcuts import get_current_site from django.core.exceptions import ObjectDoesNotExist, ValidationError from django.db.models.signals import post_migrate from django.http import HttpRequest from django.test import TestCase, modify_settings, override_settings from django.test.utils import captured_stdout @modify_settings(INSTALLED_APPS={'append': 'django.contrib.sites'}) class SitesFrameworkTests(TestCase): multi_db = True def setUp(self): self.site = Site( id=settings.SITE_ID, domain="example.com", name="example.com", ) self.site.save() def test_site_manager(self): # Make sure that get_current() does not return a deleted Site object. s = Site.objects.get_current() self.assertIsInstance(s, Site) s.delete() self.assertRaises(ObjectDoesNotExist, Site.objects.get_current) def test_site_cache(self): # After updating a Site object (e.g. via the admin), we shouldn't return a # bogus value from the SITE_CACHE. site = Site.objects.get_current() self.assertEqual("example.com", site.name) s2 = Site.objects.get(id=settings.SITE_ID) s2.name = "Example site" s2.save() site = Site.objects.get_current() self.assertEqual("Example site", site.name) def test_delete_all_sites_clears_cache(self): # When all site objects are deleted the cache should also # be cleared and get_current() should raise a DoesNotExist. self.assertIsInstance(Site.objects.get_current(), Site) Site.objects.all().delete() self.assertRaises(Site.DoesNotExist, Site.objects.get_current) @override_settings(ALLOWED_HOSTS=['example.com']) def test_get_current_site(self): # Test that the correct Site object is returned request = HttpRequest() request.META = { "SERVER_NAME": "example.com", "SERVER_PORT": "80", } site = get_current_site(request) self.assertIsInstance(site, Site) self.assertEqual(site.id, settings.SITE_ID) # Test that an exception is raised if the sites framework is installed # but there is no matching Site site.delete() self.assertRaises(ObjectDoesNotExist, get_current_site, request) # A RequestSite is returned if the sites framework is not installed with self.modify_settings(INSTALLED_APPS={'remove': 'django.contrib.sites'}): site = get_current_site(request) self.assertIsInstance(site, RequestSite) self.assertEqual(site.name, "example.com") @override_settings(SITE_ID='', ALLOWED_HOSTS=['example.com']) def test_get_current_site_no_site_id(self): request = HttpRequest() request.META = { "SERVER_NAME": "example.com", "SERVER_PORT": "80", } del settings.SITE_ID site = get_current_site(request) self.assertEqual(site.name, "example.com") def test_domain_name_with_whitespaces(self): # Regression for #17320 # Domain names are not allowed contain whitespace characters site = Site(name="test name", domain="test test") self.assertRaises(ValidationError, site.full_clean) site.domain = "test\ttest" self.assertRaises(ValidationError, site.full_clean) site.domain = "test\ntest" self.assertRaises(ValidationError, site.full_clean) def test_clear_site_cache(self): request = HttpRequest() request.META = { "SERVER_NAME": "example.com", "SERVER_PORT": "80", } self.assertEqual(models.SITE_CACHE, {}) get_current_site(request) expected_cache = {self.site.id: self.site} self.assertEqual(models.SITE_CACHE, expected_cache) with self.settings(SITE_ID=''): get_current_site(request) expected_cache.update({self.site.domain: self.site}) self.assertEqual(models.SITE_CACHE, expected_cache) clear_site_cache(Site, instance=self.site, using='default') self.assertEqual(models.SITE_CACHE, {}) @override_settings(SITE_ID='') def test_clear_site_cache_domain(self): site = Site.objects.create(name='example2.com', domain='example2.com') request = HttpRequest() request.META = { "SERVER_NAME": "example2.com", "SERVER_PORT": "80", } get_current_site(request) # prime the models.SITE_CACHE expected_cache = {site.domain: site} self.assertEqual(models.SITE_CACHE, expected_cache) # Site exists in 'default' database so using='other' shouldn't clear. clear_site_cache(Site, instance=site, using='other') self.assertEqual(models.SITE_CACHE, expected_cache) # using='default' should clear. clear_site_cache(Site, instance=site, using='default') self.assertEqual(models.SITE_CACHE, {}) class JustOtherRouter(object): def allow_migrate(self, db, app_label, **hints): return db == 'other' @modify_settings(INSTALLED_APPS={'append': 'django.contrib.sites'}) class CreateDefaultSiteTests(TestCase): multi_db = True def setUp(self): self.app_config = apps.get_app_config('sites') # Delete the site created as part of the default migration process. Site.objects.all().delete() def test_basic(self): """ #15346, #15573 - create_default_site() creates an example site only if none exist. """ with captured_stdout() as stdout: create_default_site(self.app_config) self.assertEqual(Site.objects.count(), 1) self.assertIn("Creating example.com", stdout.getvalue()) with captured_stdout() as stdout: create_default_site(self.app_config) self.assertEqual(Site.objects.count(), 1) self.assertEqual("", stdout.getvalue()) @override_settings(DATABASE_ROUTERS=[JustOtherRouter()]) def test_multi_db_with_router(self): """ #16353, #16828 - The default site creation should respect db routing. """ create_default_site(self.app_config, using='default', verbosity=0) create_default_site(self.app_config, using='other', verbosity=0) self.assertFalse(Site.objects.using('default').exists()) self.assertTrue(Site.objects.using('other').exists()) def test_multi_db(self): create_default_site(self.app_config, using='default', verbosity=0) create_default_site(self.app_config, using='other', verbosity=0) self.assertTrue(Site.objects.using('default').exists()) self.assertTrue(Site.objects.using('other').exists()) def test_save_another(self): """ #17415 - Another site can be created right after the default one. On some backends the sequence needs to be reset after saving with an explicit ID. Test that there isn't a sequence collisions by saving another site. This test is only meaningful with databases that use sequences for automatic primary keys such as PostgreSQL and Oracle. """ create_default_site(self.app_config, verbosity=0) Site(domain='example2.com', name='example2.com').save() def test_signal(self): """ #23641 - Sending the ``post_migrate`` signal triggers creation of the default site. """ post_migrate.send(sender=self.app_config, app_config=self.app_config, verbosity=0) self.assertTrue(Site.objects.exists()) @override_settings(SITE_ID=35696) def test_custom_site_id(self): """ #23945 - The configured ``SITE_ID`` should be respected. """ create_default_site(self.app_config, verbosity=0) self.assertEqual(Site.objects.get().pk, 35696) @override_settings() # Restore original ``SITE_ID`` afterwards. def test_no_site_id(self): """ #24488 - The pk should default to 1 if no ``SITE_ID`` is configured. """ del settings.SITE_ID create_default_site(self.app_config, verbosity=0) self.assertEqual(Site.objects.get().pk, 1) class MiddlewareTest(TestCase): def test_request(self): """ Makes sure that the request has correct `site` attribute. """ middleware = CurrentSiteMiddleware() request = HttpRequest() middleware.process_request(request) self.assertEqual(request.site.id, settings.SITE_ID)