repo_name
stringlengths
5
100
ref
stringlengths
12
67
path
stringlengths
4
244
copies
stringlengths
1
8
content
stringlengths
0
1.05M
jocave/snapcraft
refs/heads/master
snaps_tests/demos_tests/test_java_hello_world.py
9
# -*- Mode:Python; indent-tabs-mode:nil; tab-width:4 -*- # # Copyright (C) 2015, 2016 Canonical Ltd # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import snaps_tests class JavaHelloWorldTestCase(snaps_tests.SnapsTestCase): snap_content_dir = 'java-hello-world' def test_java_hello_world(self): snap_path = self.build_snap(self.snap_content_dir) self.install_snap(snap_path, 'java-hello-world', '0') self.assert_command_in_snappy_testbed( '/snap/bin/java-hello-world.hello', 'Hello World\n')
Havate/havate-openstack
refs/heads/master
proto-build/gui/config/urls.py
1
from django.conf.urls import patterns, include, url from config.views import HomePageView, SettingsView, NodeDiscoveryView, ScenarioDiscoveryView, SubmitSettingsView, SettingsTextView urlpatterns = patterns('', # url(r'^$', 'app_name.views.home', name='home'), # url(r'^openstack_installer/', include('openstack_installer.foo.urls')), url(r'^$', SettingsView.as_view(), name='home'), url(r'^settings/$', SettingsView.as_view(), name='settings'), url(r'^submit_settings/$', SubmitSettingsView.as_view(), name='submit_settings'), url(r'^settings_text_view/$', SettingsTextView.as_view(), name='settings_text_view'), url(r'^node_discovery/$', NodeDiscoveryView.as_view(), name='node_discovery'), url(r'^scenario_discovery/$', ScenarioDiscoveryView.as_view(), name='scenario_discovery'), )
lizardsystem/lizard-workspace
refs/heads/master
lizard_workspace/migrations/0016_auto__add_field_wmsserver_is_local_server.py
1
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'WmsServer.is_local_server' db.add_column('lizard_workspace_wmsserver', 'is_local_server', self.gf('django.db.models.fields.BooleanField')(default=False), keep_default=False) def backwards(self, orm): # Deleting field 'WmsServer.is_local_server' db.delete_column('lizard_workspace_wmsserver', 'is_local_server') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'lizard_map.backgroundmap': { 'Meta': {'ordering': "('index',)", 'object_name': 'BackgroundMap'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'default': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'google_type': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'index': ('django.db.models.fields.IntegerField', [], {'default': '100'}), 'is_base_layer': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'layer_names': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'layer_type': ('django.db.models.fields.IntegerField', [], {}), 'layer_url': ('django.db.models.fields.CharField', [], {'default': "'http://tile.openstreetmap.nl/tiles/${z}/${x}/${y}.png'", 'max_length': '200', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '20'}) }, 'lizard_map.workspacestorage': { 'Meta': {'object_name': 'WorkspaceStorage'}, 'absolute': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'background_map': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lizard_map.BackgroundMap']", 'null': 'True', 'blank': 'True'}), 'custom_time': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'dt': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'dt_end': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'dt_start': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'td': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'td_end': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'td_start': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'x_max': ('django.db.models.fields.FloatField', [], {'default': '1254790'}), 'x_min': ('django.db.models.fields.FloatField', [], {'default': '-14675'}), 'y_max': ('django.db.models.fields.FloatField', [], {'default': '6964942'}), 'y_min': ('django.db.models.fields.FloatField', [], {'default': '6668977'}) }, 'lizard_security.dataset': { 'Meta': {'ordering': "['name']", 'object_name': 'DataSet'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80', 'blank': 'True'}) }, 'lizard_workspace.app': { 'Meta': {'object_name': 'App'}, 'action_params': ('django.db.models.fields.TextField', [], {'default': "'{}'", 'blank': 'True'}), 'action_type': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'appscreen': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['lizard_workspace.AppScreen']"}), 'description': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'icon': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lizard_workspace.AppIcons']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mouse_over': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '256', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'root_map': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lizard_workspace.LayerFolder']", 'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'db_index': 'True'}) }, 'lizard_workspace.appicons': { 'Meta': {'object_name': 'AppIcons'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'url': ('django.db.models.fields.CharField', [], {'max_length': '256'}) }, 'lizard_workspace.appscreen': { 'Meta': {'object_name': 'AppScreen'}, 'apps': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'screen'", 'symmetrical': 'False', 'through': "orm['lizard_workspace.AppScreenAppItems']", 'to': "orm['lizard_workspace.App']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'db_index': 'True'}) }, 'lizard_workspace.appscreenappitems': { 'Meta': {'object_name': 'AppScreenAppItems'}, 'app': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lizard_workspace.App']"}), 'appscreen': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lizard_workspace.AppScreen']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'index': ('django.db.models.fields.IntegerField', [], {'default': '100'}) }, 'lizard_workspace.category': { 'Meta': {'object_name': 'Category'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'db_index': 'True'}) }, 'lizard_workspace.layer': { 'Meta': {'object_name': 'Layer'}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lizard_workspace.Category']", 'null': 'True', 'blank': 'True'}), 'data_set': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lizard_security.DataSet']", 'null': 'True', 'blank': 'True'}), 'filter': ('django.db.models.fields.CharField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_base_layer': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_clickable': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_local_server': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'layers': ('django.db.models.fields.CharField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'location_filter': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'ollayer_class': ('django.db.models.fields.CharField', [], {'default': "'OpenLayers.Layer.WMS'", 'max_length': '80'}), 'options': ('django.db.models.fields.TextField', [], {'default': "'{}'", 'null': 'True', 'blank': 'True'}), 'owner_type': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'request_params': ('django.db.models.fields.TextField', [], {'default': "'{}'", 'null': 'True', 'blank': 'True'}), 'server': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lizard_workspace.WmsServer']", 'null': 'True', 'blank': 'True'}), 'single_tile': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '200', 'db_index': 'True'}), 'source_ident': ('django.db.models.fields.CharField', [], {'max_length': '80', 'null': 'True', 'blank': 'True'}), 'tags': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['lizard_workspace.Tag']", 'null': 'True', 'blank': 'True'}), 'use_location_filter': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'valid': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'lizard_workspace.layerfolder': { 'Meta': {'object_name': 'LayerFolder'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'layer_tag': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['lizard_workspace.Tag']", 'null': 'True', 'blank': 'True'}), 'layers': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['lizard_workspace.Layer']", 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'children_set'", 'null': 'True', 'to': "orm['lizard_workspace.LayerFolder']"}) }, 'lizard_workspace.layerworkspace': { 'Meta': {'ordering': "['name']", 'object_name': 'LayerWorkspace', '_ormbases': ['lizard_map.WorkspaceStorage']}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lizard_workspace.Category']", 'null': 'True', 'blank': 'True'}), 'data_set': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lizard_security.DataSet']", 'null': 'True', 'blank': 'True'}), 'layers': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['lizard_workspace.Layer']", 'null': 'True', 'through': "orm['lizard_workspace.LayerWorkspaceItem']", 'blank': 'True'}), 'owner_type': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'personal_category': ('django.db.models.fields.CharField', [], {'max_length': '80', 'null': 'True', 'blank': 'True'}), 'workspacestorage_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['lizard_map.WorkspaceStorage']", 'unique': 'True', 'primary_key': 'True'}) }, 'lizard_workspace.layerworkspaceitem': { 'Meta': {'object_name': 'LayerWorkspaceItem'}, 'clickable': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'filter_string': ('django.db.models.fields.CharField', [], {'max_length': '124', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'index': ('django.db.models.fields.IntegerField', [], {'default': '100'}), 'layer': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lizard_workspace.Layer']"}), 'layer_workspace': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lizard_workspace.LayerWorkspace']"}), 'opacity': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'visible': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'lizard_workspace.synctask': { 'Meta': {'object_name': 'SyncTask'}, 'data_set': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lizard_security.DataSet']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_result': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'last_sync': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'server': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lizard_workspace.WmsServer']"}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'db_index': 'True'}), 'tag': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['lizard_workspace.Tag']", 'null': 'True', 'blank': 'True'}) }, 'lizard_workspace.tag': { 'Meta': {'object_name': 'Tag'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'db_index': 'True'}) }, 'lizard_workspace.thematicmap': { 'Meta': {'object_name': 'ThematicMap'}, 'description': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'db_index': 'True'}) }, 'lizard_workspace.wmsserver': { 'Meta': {'object_name': 'WmsServer'}, 'abstract': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_local_server': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'db_index': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '256', 'blank': 'True'}), 'url': ('django.db.models.fields.CharField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}) } } complete_apps = ['lizard_workspace']
danalec/dotfiles
refs/heads/master
sublime/.config/sublime-text-3/Packages/pygments/all/pygments/styles/native.py
50
# -*- coding: utf-8 -*- """ pygments.styles.native ~~~~~~~~~~~~~~~~~~~~~~ pygments version of my "native" vim theme. :copyright: Copyright 2006-2015 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ from pygments.style import Style from pygments.token import Keyword, Name, Comment, String, Error, \ Number, Operator, Generic, Token, Whitespace class NativeStyle(Style): """ Pygments version of the "native" vim theme. """ background_color = '#202020' highlight_color = '#404040' styles = { Token: '#d0d0d0', Whitespace: '#666666', Comment: 'italic #999999', Comment.Preproc: 'noitalic bold #cd2828', Comment.Special: 'noitalic bold #e50808 bg:#520000', Keyword: 'bold #6ab825', Keyword.Pseudo: 'nobold', Operator.Word: 'bold #6ab825', String: '#ed9d13', String.Other: '#ffa500', Number: '#3677a9', Name.Builtin: '#24909d', Name.Variable: '#40ffff', Name.Constant: '#40ffff', Name.Class: 'underline #447fcf', Name.Function: '#447fcf', Name.Namespace: 'underline #447fcf', Name.Exception: '#bbbbbb', Name.Tag: 'bold #6ab825', Name.Attribute: '#bbbbbb', Name.Decorator: '#ffa500', Generic.Heading: 'bold #ffffff', Generic.Subheading: 'underline #ffffff', Generic.Deleted: '#d22323', Generic.Inserted: '#589819', Generic.Error: '#d22323', Generic.Emph: 'italic', Generic.Strong: 'bold', Generic.Prompt: '#aaaaaa', Generic.Output: '#cccccc', Generic.Traceback: '#d22323', Error: 'bg:#e3d2d2 #a61717' }
SANDEISON/The-Huxley
refs/heads/master
Python/Invertido.py
3
num2 = int(input ()) invert = 0 while num2 > 0: invert *= 10 invert += num2 % 10 num2 //= 10 print (invert)
warriorYosemite/colorBrick
refs/heads/master
cocos2d/plugin/tools/toolsForGame/modifyProject.py
255
import sys, string, os from xml.etree import ElementTree as ET from xml.dom import minidom projFile = sys.argv[1] targetPath = sys.argv[2] def getLinkElement(): global targetPath ret = ET.Element('link') nameEle = ET.Element('name') nameEle.text = 'plugin-x' typeEle = ET.Element('type') typeEle.text = '2' locEle = ET.Element('locationURI') locEle.text = targetPath ret.append(nameEle) ret.append(typeEle) ret.append(locEle) return ret tree = ET.parse(projFile) root = tree.getroot() nodeLinkRes = root.find('linkedResources') if nodeLinkRes != None: linkNodes = nodeLinkRes.findall('link') haveTarget = False if linkNodes != None and len(linkNodes) > 0: for node in linkNodes: locNode = node.find('locationURI') if locNode == None: continue tempText = locNode.text tempText = tempText.strip(' \n\r\t') if tempText == targetPath: haveTarget = True break if not haveTarget: nodeLinkRes.append(getLinkElement()) tree.write(projFile, 'UTF-8') else: linkResEle = ET.Element('linkedResources') linkResEle.append(getLinkElement()) root.append(linkResEle) tree.write(projFile, 'UTF-8')
lsqtongxin/django
refs/heads/master
django/contrib/gis/utils/srs.py
450
from django.contrib.gis.gdal import SpatialReference from django.db import DEFAULT_DB_ALIAS, connections def add_srs_entry(srs, auth_name='EPSG', auth_srid=None, ref_sys_name=None, database=None): """ This function takes a GDAL SpatialReference system and adds its information to the `spatial_ref_sys` table of the spatial backend. Doing this enables database-level spatial transformations for the backend. Thus, this utility is useful for adding spatial reference systems not included by default with the backend: >>> from django.contrib.gis.utils import add_srs_entry >>> add_srs_entry(3857) Keyword Arguments: auth_name: This keyword may be customized with the value of the `auth_name` field. Defaults to 'EPSG'. auth_srid: This keyword may be customized with the value of the `auth_srid` field. Defaults to the SRID determined by GDAL. ref_sys_name: For SpatiaLite users only, sets the value of the `ref_sys_name` field. Defaults to the name determined by GDAL. database: The name of the database connection to use; the default is the value of `django.db.DEFAULT_DB_ALIAS` (at the time of this writing, its value is 'default'). """ if not database: database = DEFAULT_DB_ALIAS connection = connections[database] if not hasattr(connection.ops, 'spatial_version'): raise Exception('The `add_srs_entry` utility only works ' 'with spatial backends.') if not connection.features.supports_add_srs_entry: raise Exception('This utility does not support your database backend.') SpatialRefSys = connection.ops.spatial_ref_sys() # If argument is not a `SpatialReference` instance, use it as parameter # to construct a `SpatialReference` instance. if not isinstance(srs, SpatialReference): srs = SpatialReference(srs) if srs.srid is None: raise Exception('Spatial reference requires an SRID to be ' 'compatible with the spatial backend.') # Initializing the keyword arguments dictionary for both PostGIS # and SpatiaLite. kwargs = {'srid': srs.srid, 'auth_name': auth_name, 'auth_srid': auth_srid or srs.srid, 'proj4text': srs.proj4, } # Backend-specific fields for the SpatialRefSys model. srs_field_names = {f.name for f in SpatialRefSys._meta.get_fields()} if 'srtext' in srs_field_names: kwargs['srtext'] = srs.wkt if 'ref_sys_name' in srs_field_names: # Spatialite specific kwargs['ref_sys_name'] = ref_sys_name or srs.name # Creating the spatial_ref_sys model. try: # Try getting via SRID only, because using all kwargs may # differ from exact wkt/proj in database. SpatialRefSys.objects.using(database).get(srid=srs.srid) except SpatialRefSys.DoesNotExist: SpatialRefSys.objects.using(database).create(**kwargs) # Alias is for backwards-compatibility purposes. add_postgis_srs = add_srs_entry
healthchecks/healthchecks
refs/heads/master
hc/accounts/migrations/0032_auto_20200819_0757.py
2
# Generated by Django 3.1 on 2020-08-19 07:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0031_auto_20200803_1413'), ] operations = [ migrations.AddConstraint( model_name='member', constraint=models.UniqueConstraint(fields=('user', 'project'), name='accounts_member_no_duplicates'), ), ]
gasman/shortcrust
refs/heads/master
setup.py
2
from distutils.core import setup setup( name='Shortcrust', version='0.1dev', packages=['shortcrust',], license='MIT', long_description=open('README.txt').read(), )
clarkperkins/readthedocs.org
refs/heads/master
readthedocs/projects/migrations/0002_add_importedfile_model.py
36
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('builds', '0001_initial'), ('projects', '0001_initial'), ] operations = [ migrations.CreateModel( name='ImportedFile', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=255, verbose_name='Name')), ('slug', models.SlugField(verbose_name='Slug')), ('path', models.CharField(max_length=255, verbose_name='Path')), ('md5', models.CharField(max_length=255, verbose_name='MD5 checksum')), ('commit', models.CharField(max_length=255, verbose_name='Commit')), ('project', models.ForeignKey(related_name='imported_files', verbose_name='Project', to='projects.Project')), ('version', models.ForeignKey(related_name='imported_files', verbose_name='Version', to='builds.Version', null=True)), ], ), ]
XiaodunServerGroup/ddyedx
refs/heads/master
common/djangoapps/edxmako/template.py
30
# Copyright (c) 2008 Mikeal Rogers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from django.conf import settings from mako.template import Template as MakoTemplate from edxmako.shortcuts import marketing_link import edxmako import edxmako.middleware DJANGO_VARIABLES = ['output_encoding', 'encoding_errors'] # TODO: We should make this a Django Template subclass that simply has the MakoTemplate inside of it? (Intead of inheriting from MakoTemplate) class Template(MakoTemplate): """ This bridges the gap between a Mako template and a djano template. It can be rendered like it is a django template because the arguments are transformed in a way that MakoTemplate can understand. """ def __init__(self, *args, **kwargs): """Overrides base __init__ to provide django variable overrides""" if not kwargs.get('no_django', False): overrides = {k: getattr(edxmako, k, None) for k in DJANGO_VARIABLES} overrides['lookup'] = edxmako.LOOKUP['main'] kwargs.update(overrides) super(Template, self).__init__(*args, **kwargs) def render(self, context_instance): """ This takes a render call with a context (from Django) and translates it to a render call on the mako template. """ # collapse context_instance to a single dictionary for mako context_dictionary = {} # In various testing contexts, there might not be a current request context. if edxmako.middleware.requestcontext is not None: for d in edxmako.middleware.requestcontext: context_dictionary.update(d) for d in context_instance: context_dictionary.update(d) context_dictionary['settings'] = settings context_dictionary['EDX_ROOT_URL'] = settings.EDX_ROOT_URL context_dictionary['django_context'] = context_instance context_dictionary['marketing_link'] = marketing_link return super(Template, self).render_unicode(**context_dictionary)
jamespcole/home-assistant
refs/heads/master
homeassistant/components/nx584/__init__.py
36
"""Support for NX584 alarm control panels."""
joydeeps/googletest
refs/heads/master
test/gtest_list_tests_unittest.py
1898
#!/usr/bin/env python # # Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for Google Test's --gtest_list_tests flag. A user can ask Google Test to list all tests by specifying the --gtest_list_tests flag. This script tests such functionality by invoking gtest_list_tests_unittest_ (a program written with Google Test) the command line flags. """ __author__ = 'phanna@google.com (Patrick Hanna)' import gtest_test_utils import re # Constants. # The command line flag for enabling/disabling listing all tests. LIST_TESTS_FLAG = 'gtest_list_tests' # Path to the gtest_list_tests_unittest_ program. EXE_PATH = gtest_test_utils.GetTestExecutablePath('gtest_list_tests_unittest_') # The expected output when running gtest_list_tests_unittest_ with # --gtest_list_tests EXPECTED_OUTPUT_NO_FILTER_RE = re.compile(r"""FooDeathTest\. Test1 Foo\. Bar1 Bar2 DISABLED_Bar3 Abc\. Xyz Def FooBar\. Baz FooTest\. Test1 DISABLED_Test2 Test3 TypedTest/0\. # TypeParam = (VeryLo{245}|class VeryLo{239})\.\.\. TestA TestB TypedTest/1\. # TypeParam = int\s*\* TestA TestB TypedTest/2\. # TypeParam = .*MyArray<bool,\s*42> TestA TestB My/TypeParamTest/0\. # TypeParam = (VeryLo{245}|class VeryLo{239})\.\.\. TestA TestB My/TypeParamTest/1\. # TypeParam = int\s*\* TestA TestB My/TypeParamTest/2\. # TypeParam = .*MyArray<bool,\s*42> TestA TestB MyInstantiation/ValueParamTest\. TestA/0 # GetParam\(\) = one line TestA/1 # GetParam\(\) = two\\nlines TestA/2 # GetParam\(\) = a very\\nlo{241}\.\.\. TestB/0 # GetParam\(\) = one line TestB/1 # GetParam\(\) = two\\nlines TestB/2 # GetParam\(\) = a very\\nlo{241}\.\.\. """) # The expected output when running gtest_list_tests_unittest_ with # --gtest_list_tests and --gtest_filter=Foo*. EXPECTED_OUTPUT_FILTER_FOO_RE = re.compile(r"""FooDeathTest\. Test1 Foo\. Bar1 Bar2 DISABLED_Bar3 FooBar\. Baz FooTest\. Test1 DISABLED_Test2 Test3 """) # Utilities. def Run(args): """Runs gtest_list_tests_unittest_ and returns the list of tests printed.""" return gtest_test_utils.Subprocess([EXE_PATH] + args, capture_stderr=False).output # The unit test. class GTestListTestsUnitTest(gtest_test_utils.TestCase): """Tests using the --gtest_list_tests flag to list all tests.""" def RunAndVerify(self, flag_value, expected_output_re, other_flag): """Runs gtest_list_tests_unittest_ and verifies that it prints the correct tests. Args: flag_value: value of the --gtest_list_tests flag; None if the flag should not be present. expected_output_re: regular expression that matches the expected output after running command; other_flag: a different flag to be passed to command along with gtest_list_tests; None if the flag should not be present. """ if flag_value is None: flag = '' flag_expression = 'not set' elif flag_value == '0': flag = '--%s=0' % LIST_TESTS_FLAG flag_expression = '0' else: flag = '--%s' % LIST_TESTS_FLAG flag_expression = '1' args = [flag] if other_flag is not None: args += [other_flag] output = Run(args) if expected_output_re: self.assert_( expected_output_re.match(output), ('when %s is %s, the output of "%s" is "%s",\n' 'which does not match regex "%s"' % (LIST_TESTS_FLAG, flag_expression, ' '.join(args), output, expected_output_re.pattern))) else: self.assert_( not EXPECTED_OUTPUT_NO_FILTER_RE.match(output), ('when %s is %s, the output of "%s" is "%s"'% (LIST_TESTS_FLAG, flag_expression, ' '.join(args), output))) def testDefaultBehavior(self): """Tests the behavior of the default mode.""" self.RunAndVerify(flag_value=None, expected_output_re=None, other_flag=None) def testFlag(self): """Tests using the --gtest_list_tests flag.""" self.RunAndVerify(flag_value='0', expected_output_re=None, other_flag=None) self.RunAndVerify(flag_value='1', expected_output_re=EXPECTED_OUTPUT_NO_FILTER_RE, other_flag=None) def testOverrideNonFilterFlags(self): """Tests that --gtest_list_tests overrides the non-filter flags.""" self.RunAndVerify(flag_value='1', expected_output_re=EXPECTED_OUTPUT_NO_FILTER_RE, other_flag='--gtest_break_on_failure') def testWithFilterFlags(self): """Tests that --gtest_list_tests takes into account the --gtest_filter flag.""" self.RunAndVerify(flag_value='1', expected_output_re=EXPECTED_OUTPUT_FILTER_FOO_RE, other_flag='--gtest_filter=Foo*') if __name__ == '__main__': gtest_test_utils.Main()
Dragnalith/googletest
refs/heads/master
test/gtest_list_tests_unittest.py
1898
#!/usr/bin/env python # # Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for Google Test's --gtest_list_tests flag. A user can ask Google Test to list all tests by specifying the --gtest_list_tests flag. This script tests such functionality by invoking gtest_list_tests_unittest_ (a program written with Google Test) the command line flags. """ __author__ = 'phanna@google.com (Patrick Hanna)' import gtest_test_utils import re # Constants. # The command line flag for enabling/disabling listing all tests. LIST_TESTS_FLAG = 'gtest_list_tests' # Path to the gtest_list_tests_unittest_ program. EXE_PATH = gtest_test_utils.GetTestExecutablePath('gtest_list_tests_unittest_') # The expected output when running gtest_list_tests_unittest_ with # --gtest_list_tests EXPECTED_OUTPUT_NO_FILTER_RE = re.compile(r"""FooDeathTest\. Test1 Foo\. Bar1 Bar2 DISABLED_Bar3 Abc\. Xyz Def FooBar\. Baz FooTest\. Test1 DISABLED_Test2 Test3 TypedTest/0\. # TypeParam = (VeryLo{245}|class VeryLo{239})\.\.\. TestA TestB TypedTest/1\. # TypeParam = int\s*\* TestA TestB TypedTest/2\. # TypeParam = .*MyArray<bool,\s*42> TestA TestB My/TypeParamTest/0\. # TypeParam = (VeryLo{245}|class VeryLo{239})\.\.\. TestA TestB My/TypeParamTest/1\. # TypeParam = int\s*\* TestA TestB My/TypeParamTest/2\. # TypeParam = .*MyArray<bool,\s*42> TestA TestB MyInstantiation/ValueParamTest\. TestA/0 # GetParam\(\) = one line TestA/1 # GetParam\(\) = two\\nlines TestA/2 # GetParam\(\) = a very\\nlo{241}\.\.\. TestB/0 # GetParam\(\) = one line TestB/1 # GetParam\(\) = two\\nlines TestB/2 # GetParam\(\) = a very\\nlo{241}\.\.\. """) # The expected output when running gtest_list_tests_unittest_ with # --gtest_list_tests and --gtest_filter=Foo*. EXPECTED_OUTPUT_FILTER_FOO_RE = re.compile(r"""FooDeathTest\. Test1 Foo\. Bar1 Bar2 DISABLED_Bar3 FooBar\. Baz FooTest\. Test1 DISABLED_Test2 Test3 """) # Utilities. def Run(args): """Runs gtest_list_tests_unittest_ and returns the list of tests printed.""" return gtest_test_utils.Subprocess([EXE_PATH] + args, capture_stderr=False).output # The unit test. class GTestListTestsUnitTest(gtest_test_utils.TestCase): """Tests using the --gtest_list_tests flag to list all tests.""" def RunAndVerify(self, flag_value, expected_output_re, other_flag): """Runs gtest_list_tests_unittest_ and verifies that it prints the correct tests. Args: flag_value: value of the --gtest_list_tests flag; None if the flag should not be present. expected_output_re: regular expression that matches the expected output after running command; other_flag: a different flag to be passed to command along with gtest_list_tests; None if the flag should not be present. """ if flag_value is None: flag = '' flag_expression = 'not set' elif flag_value == '0': flag = '--%s=0' % LIST_TESTS_FLAG flag_expression = '0' else: flag = '--%s' % LIST_TESTS_FLAG flag_expression = '1' args = [flag] if other_flag is not None: args += [other_flag] output = Run(args) if expected_output_re: self.assert_( expected_output_re.match(output), ('when %s is %s, the output of "%s" is "%s",\n' 'which does not match regex "%s"' % (LIST_TESTS_FLAG, flag_expression, ' '.join(args), output, expected_output_re.pattern))) else: self.assert_( not EXPECTED_OUTPUT_NO_FILTER_RE.match(output), ('when %s is %s, the output of "%s" is "%s"'% (LIST_TESTS_FLAG, flag_expression, ' '.join(args), output))) def testDefaultBehavior(self): """Tests the behavior of the default mode.""" self.RunAndVerify(flag_value=None, expected_output_re=None, other_flag=None) def testFlag(self): """Tests using the --gtest_list_tests flag.""" self.RunAndVerify(flag_value='0', expected_output_re=None, other_flag=None) self.RunAndVerify(flag_value='1', expected_output_re=EXPECTED_OUTPUT_NO_FILTER_RE, other_flag=None) def testOverrideNonFilterFlags(self): """Tests that --gtest_list_tests overrides the non-filter flags.""" self.RunAndVerify(flag_value='1', expected_output_re=EXPECTED_OUTPUT_NO_FILTER_RE, other_flag='--gtest_break_on_failure') def testWithFilterFlags(self): """Tests that --gtest_list_tests takes into account the --gtest_filter flag.""" self.RunAndVerify(flag_value='1', expected_output_re=EXPECTED_OUTPUT_FILTER_FOO_RE, other_flag='--gtest_filter=Foo*') if __name__ == '__main__': gtest_test_utils.Main()
gautam1858/tensorflow
refs/heads/master
tensorflow/python/ops/image_ops_impl.py
2
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of image ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.compat import compat from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gen_image_ops from tensorflow.python.ops import gen_nn_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import string_ops from tensorflow.python.ops import variables from tensorflow.python.util import deprecation from tensorflow.python.util.tf_export import tf_export ops.NotDifferentiable('RandomCrop') # TODO(b/31222613): This op may be differentiable, and there may be # latent bugs here. ops.NotDifferentiable('RGBToHSV') # TODO(b/31222613): This op may be differentiable, and there may be # latent bugs here. ops.NotDifferentiable('HSVToRGB') ops.NotDifferentiable('DrawBoundingBoxes') ops.NotDifferentiable('SampleDistortedBoundingBox') ops.NotDifferentiable('SampleDistortedBoundingBoxV2') # TODO(bsteiner): Implement the gradient function for extract_glimpse # TODO(b/31222613): This op may be differentiable, and there may be # latent bugs here. ops.NotDifferentiable('ExtractGlimpse') ops.NotDifferentiable('NonMaxSuppression') ops.NotDifferentiable('NonMaxSuppressionV2') ops.NotDifferentiable('NonMaxSuppressionWithOverlaps') # pylint: disable=invalid-name def _assert(cond, ex_type, msg): """A polymorphic assert, works with tensors and boolean expressions. If `cond` is not a tensor, behave like an ordinary assert statement, except that a empty list is returned. If `cond` is a tensor, return a list containing a single TensorFlow assert op. Args: cond: Something evaluates to a boolean value. May be a tensor. ex_type: The exception class to use. msg: The error message. Returns: A list, containing at most one assert op. """ if _is_tensor(cond): return [control_flow_ops.Assert(cond, [msg])] else: if not cond: raise ex_type(msg) else: return [] def _is_tensor(x): """Returns `True` if `x` is a symbolic tensor-like object. Args: x: A python object to check. Returns: `True` if `x` is a `tf.Tensor` or `tf.Variable`, otherwise `False`. """ return isinstance(x, (ops.Tensor, variables.Variable)) def _ImageDimensions(image, rank): """Returns the dimensions of an image tensor. Args: image: A rank-D Tensor. For 3-D of shape: `[height, width, channels]`. rank: The expected rank of the image Returns: A list of corresponding to the dimensions of the input image. Dimensions that are statically known are python integers, otherwise they are integer scalar tensors. """ if image.get_shape().is_fully_defined(): return image.get_shape().as_list() else: static_shape = image.get_shape().with_rank(rank).as_list() dynamic_shape = array_ops.unstack(array_ops.shape(image), rank) return [ s if s is not None else d for s, d in zip(static_shape, dynamic_shape) ] def _Check3DImage(image, require_static=True): """Assert that we are working with properly shaped image. Args: image: 3-D Tensor of shape [height, width, channels] require_static: If `True`, requires that all dimensions of `image` are known and non-zero. Raises: ValueError: if `image.shape` is not a 3-vector. Returns: An empty list, if `image` has fully defined dimensions. Otherwise, a list containing an assert op is returned. """ try: image_shape = image.get_shape().with_rank(3) except ValueError: raise ValueError( "'image' (shape %s) must be three-dimensional." % image.shape) if require_static and not image_shape.is_fully_defined(): raise ValueError("'image' (shape %s) must be fully defined." % image_shape) if any(x == 0 for x in image_shape): raise ValueError("all dims of 'image.shape' must be > 0: %s" % image_shape) if not image_shape.is_fully_defined(): return [ check_ops.assert_positive( array_ops.shape(image), ["all dims of 'image.shape' " 'must be > 0.']) ] else: return [] def _Assert3DImage(image): """Assert that we are working with a properly shaped image. Performs the check statically if possible (i.e. if the shape is statically known). Otherwise adds a control dependency to an assert op that checks the dynamic shape. Args: image: 3-D Tensor of shape [height, width, channels] Raises: ValueError: if `image.shape` is not a 3-vector. Returns: If the shape of `image` could be verified statically, `image` is returned unchanged, otherwise there will be a control dependency added that asserts the correct dynamic shape. """ return control_flow_ops.with_dependencies( _Check3DImage(image, require_static=False), image) def _AssertAtLeast3DImage(image): """Assert that we are working with a properly shaped image. Performs the check statically if possible (i.e. if the shape is statically known). Otherwise adds a control dependency to an assert op that checks the dynamic shape. Args: image: >= 3-D Tensor of size [*, height, width, depth] Raises: ValueError: if image.shape is not a [>= 3] vector. Returns: If the shape of `image` could be verified statically, `image` is returned unchanged, otherwise there will be a control dependency added that asserts the correct dynamic shape. """ return control_flow_ops.with_dependencies( _CheckAtLeast3DImage(image, require_static=False), image) def _CheckAtLeast3DImage(image, require_static=True): """Assert that we are working with properly shaped image. Args: image: >= 3-D Tensor of size [*, height, width, depth] require_static: If `True`, requires that all dimensions of `image` are known and non-zero. Raises: ValueError: if image.shape is not a [>= 3] vector. Returns: An empty list, if `image` has fully defined dimensions. Otherwise, a list containing an assert op is returned. """ try: if image.get_shape().ndims is None: image_shape = image.get_shape().with_rank(3) else: image_shape = image.get_shape().with_rank_at_least(3) except ValueError: raise ValueError("'image' must be at least three-dimensional.") if require_static and not image_shape.is_fully_defined(): raise ValueError('\'image\' must be fully defined.') if any(x == 0 for x in image_shape): raise ValueError( 'all dims of \'image.shape\' must be > 0: %s' % image_shape) if not image_shape.is_fully_defined(): return [ check_ops.assert_positive( array_ops.shape(image), ["all dims of 'image.shape' " 'must be > 0.']) ] else: return [] def fix_image_flip_shape(image, result): """Set the shape to 3 dimensional if we don't know anything else. Args: image: original image size result: flipped or transformed image Returns: An image whose shape is at least None,None,None. """ image_shape = image.get_shape() if image_shape == tensor_shape.unknown_shape(): result.set_shape([None, None, None]) else: result.set_shape(image_shape) return result @tf_export('image.random_flip_up_down') def random_flip_up_down(image, seed=None): """Randomly flips an image vertically (upside down). With a 1 in 2 chance, outputs the contents of `image` flipped along the first dimension, which is `height`. Otherwise output the image as-is. Args: image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. seed: A Python integer. Used to create a random seed. See `tf.set_random_seed` for behavior. Returns: A tensor of the same type and shape as `image`. Raises: ValueError: if the shape of `image` not supported. """ return _random_flip(image, 0, seed, 'random_flip_up_down') @tf_export('image.random_flip_left_right') def random_flip_left_right(image, seed=None): """Randomly flip an image horizontally (left to right). With a 1 in 2 chance, outputs the contents of `image` flipped along the second dimension, which is `width`. Otherwise output the image as-is. Args: image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. seed: A Python integer. Used to create a random seed. See `tf.set_random_seed` for behavior. Returns: A tensor of the same type and shape as `image`. Raises: ValueError: if the shape of `image` not supported. """ return _random_flip(image, 1, seed, 'random_flip_left_right') def _random_flip(image, flip_index, seed, scope_name): """Randomly (50% chance) flip an image along axis `flip_index`. Args: image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. flip_index: Dimension along which to flip image. Vertical: 0, Horizontal: 1 seed: A Python integer. Used to create a random seed. See `tf.set_random_seed` for behavior. scope_name: Name of the scope in which the ops are added. Returns: A tensor of the same type and shape as `image`. Raises: ValueError: if the shape of `image` not supported. """ with ops.name_scope(None, scope_name, [image]) as scope: image = ops.convert_to_tensor(image, name='image') image = _AssertAtLeast3DImage(image) shape = image.get_shape() if shape.ndims == 3 or shape.ndims is None: uniform_random = random_ops.random_uniform([], 0, 1.0, seed=seed) mirror_cond = math_ops.less(uniform_random, .5) result = control_flow_ops.cond( mirror_cond, lambda: array_ops.reverse(image, [flip_index]), lambda: image, name=scope ) return fix_image_flip_shape(image, result) elif shape.ndims == 4: batch_size = array_ops.shape(image)[0] uniform_random = random_ops.random_uniform( [batch_size], 0, 1.0, seed=seed ) flips = math_ops.round( array_ops.reshape(uniform_random, [batch_size, 1, 1, 1]) ) flips = math_ops.cast(flips, image.dtype) flipped_input = array_ops.reverse(image, [flip_index + 1]) return flips * flipped_input + (1 - flips) * image else: raise ValueError('\'image\' must have either 3 or 4 dimensions.') @tf_export('image.flip_left_right') def flip_left_right(image): """Flip an image horizontally (left to right). Outputs the contents of `image` flipped along the width dimension. See also `reverse()`. Args: image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. Returns: A tensor of the same type and shape as `image`. Raises: ValueError: if the shape of `image` not supported. """ return _flip(image, 1, 'flip_left_right') @tf_export('image.flip_up_down') def flip_up_down(image): """Flip an image vertically (upside down). Outputs the contents of `image` flipped along the height dimension. See also `reverse()`. Args: image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. Returns: A tensor of the same type and shape as `image`. Raises: ValueError: if the shape of `image` not supported. """ return _flip(image, 0, 'flip_up_down') def _flip(image, flip_index, scope_name): """Flip an image either horizontally or vertically. Outputs the contents of `image` flipped along the dimension `flip_index`. See also `reverse()`. Args: image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. flip_index: 0 For vertical, 1 for horizontal. Returns: A tensor of the same type and shape as `image`. Raises: ValueError: if the shape of `image` not supported. """ with ops.name_scope(None, scope_name, [image]): image = ops.convert_to_tensor(image, name='image') image = _AssertAtLeast3DImage(image) shape = image.get_shape() if shape.ndims == 3 or shape.ndims is None: return fix_image_flip_shape(image, array_ops.reverse(image, [flip_index])) elif shape.ndims == 4: return array_ops.reverse(image, [flip_index+1]) else: raise ValueError('\'image\' must have either 3 or 4 dimensions.') @tf_export('image.rot90') def rot90(image, k=1, name=None): """Rotate image(s) counter-clockwise by 90 degrees. Args: image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. k: A scalar integer. The number of times the image is rotated by 90 degrees. name: A name for this operation (optional). Returns: A rotated tensor of the same type and shape as `image`. Raises: ValueError: if the shape of `image` not supported. """ with ops.name_scope(name, 'rot90', [image, k]) as scope: image = ops.convert_to_tensor(image, name='image') image = _AssertAtLeast3DImage(image) k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k') k.get_shape().assert_has_rank(0) k = math_ops.mod(k, 4) shape = image.get_shape() if shape.ndims == 3 or shape.ndims is None: return _rot90_3D(image, k, scope) elif shape.ndims == 4: return _rot90_4D(image, k, scope) else: raise ValueError('\'image\' must have either 3 or 4 dimensions.') def _rot90_3D(image, k, name_scope): """Rotate image counter-clockwise by 90 degrees `k` times. Args: image: 3-D Tensor of shape `[height, width, channels]`. k: A scalar integer. The number of times the image is rotated by 90 degrees. name_scope: A valid TensorFlow name scope. Returns: A 3-D tensor of the same type and shape as `image`. """ def _rot90(): return array_ops.transpose(array_ops.reverse_v2(image, [1]), [1, 0, 2]) def _rot180(): return array_ops.reverse_v2(image, [0, 1]) def _rot270(): return array_ops.reverse_v2(array_ops.transpose(image, [1, 0, 2]), [1]) cases = [(math_ops.equal(k, 1), _rot90), (math_ops.equal(k, 2), _rot180), (math_ops.equal(k, 3), _rot270)] result = control_flow_ops.case( cases, default=lambda: image, exclusive=True, name=name_scope) result.set_shape([None, None, image.get_shape()[2]]) return result def _rot90_4D(images, k, name_scope): """Rotate batch of images counter-clockwise by 90 degrees `k` times. Args: images: 4-D Tensor of shape `[height, width, channels]`. k: A scalar integer. The number of times the images are rotated by 90 degrees. name_scope: A valid TensorFlow name scope. Returns: A 4-D tensor of the same type and shape as `images`. """ def _rot90(): return array_ops.transpose(array_ops.reverse_v2(images, [2]), [0, 2, 1, 3]) def _rot180(): return array_ops.reverse_v2(images, [1, 2]) def _rot270(): return array_ops.reverse_v2(array_ops.transpose(images, [0, 2, 1, 3]), [2]) cases = [(math_ops.equal(k, 1), _rot90), (math_ops.equal(k, 2), _rot180), (math_ops.equal(k, 3), _rot270)] result = control_flow_ops.case( cases, default=lambda: images, exclusive=True, name=name_scope) shape = result.get_shape() result.set_shape([shape[0], None, None, shape[3]]) return result @tf_export(v1=['image.transpose', 'image.transpose_image']) def transpose_image(image): return transpose(image=image, name=None) @tf_export('image.transpose', v1=[]) def transpose(image, name=None): """Transpose image(s) by swapping the height and width dimension. Args: image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. name: A name for this operation (optional). Returns: If `image` was 4-D, a 4-D float Tensor of shape `[batch, width, height, channels]` If `image` was 3-D, a 3-D float Tensor of shape `[width, height, channels]` Raises: ValueError: if the shape of `image` not supported. """ with ops.name_scope(name, 'transpose', [image]): image = ops.convert_to_tensor(image, name='image') image = _AssertAtLeast3DImage(image) shape = image.get_shape() if shape.ndims == 3 or shape.ndims is None: return array_ops.transpose(image, [1, 0, 2], name=name) elif shape.ndims == 4: return array_ops.transpose(image, [0, 2, 1, 3], name=name) else: raise ValueError('\'image\' must have either 3 or 4 dimensions.') @tf_export('image.central_crop') def central_crop(image, central_fraction): """Crop the central region of the image(s). Remove the outer parts of an image but retain the central region of the image along each dimension. If we specify central_fraction = 0.5, this function returns the region marked with "X" in the below diagram. -------- | | | XXXX | | XXXX | | | where "X" is the central 50% of the image. -------- This function works on either a single image (`image` is a 3-D Tensor), or a batch of images (`image` is a 4-D Tensor). Args: image: Either a 3-D float Tensor of shape [height, width, depth], or a 4-D Tensor of shape [batch_size, height, width, depth]. central_fraction: float (0, 1], fraction of size to crop Raises: ValueError: if central_crop_fraction is not within (0, 1]. Returns: 3-D / 4-D float Tensor, as per the input. """ with ops.name_scope(None, 'central_crop', [image]): image = ops.convert_to_tensor(image, name='image') if central_fraction <= 0.0 or central_fraction > 1.0: raise ValueError('central_fraction must be within (0, 1]') if central_fraction == 1.0: return image _AssertAtLeast3DImage(image) rank = image.get_shape().ndims if rank != 3 and rank != 4: raise ValueError('`image` should either be a Tensor with rank = 3 or ' 'rank = 4. Had rank = {}.'.format(rank)) # Helper method to return the `idx`-th dimension of `tensor`, along with # a boolean signifying if the dimension is dynamic. def _get_dim(tensor, idx): static_shape = tensor.get_shape().dims[idx].value if static_shape is not None: return static_shape, False return array_ops.shape(tensor)[idx], True # Get the height, width, depth (and batch size, if the image is a 4-D # tensor). if rank == 3: img_h, dynamic_h = _get_dim(image, 0) img_w, dynamic_w = _get_dim(image, 1) img_d = image.get_shape()[2] else: img_bs = image.get_shape()[0] img_h, dynamic_h = _get_dim(image, 1) img_w, dynamic_w = _get_dim(image, 2) img_d = image.get_shape()[3] # Compute the bounding boxes for the crop. The type and value of the # bounding boxes depend on the `image` tensor's rank and whether / not the # dimensions are statically defined. if dynamic_h: img_hd = math_ops.to_double(img_h) bbox_h_start = math_ops.to_int32((img_hd - img_hd * central_fraction) / 2) else: img_hd = float(img_h) bbox_h_start = int((img_hd - img_hd * central_fraction) / 2) if dynamic_w: img_wd = math_ops.to_double(img_w) bbox_w_start = math_ops.to_int32((img_wd - img_wd * central_fraction) / 2) else: img_wd = float(img_w) bbox_w_start = int((img_wd - img_wd * central_fraction) / 2) bbox_h_size = img_h - bbox_h_start * 2 bbox_w_size = img_w - bbox_w_start * 2 if rank == 3: bbox_begin = array_ops.stack([bbox_h_start, bbox_w_start, 0]) bbox_size = array_ops.stack([bbox_h_size, bbox_w_size, -1]) else: bbox_begin = array_ops.stack([0, bbox_h_start, bbox_w_start, 0]) bbox_size = array_ops.stack([-1, bbox_h_size, bbox_w_size, -1]) image = array_ops.slice(image, bbox_begin, bbox_size) # Reshape the `image` tensor to the desired size. if rank == 3: image.set_shape([ None if dynamic_h else bbox_h_size, None if dynamic_w else bbox_w_size, img_d ]) else: image.set_shape([ img_bs, None if dynamic_h else bbox_h_size, None if dynamic_w else bbox_w_size, img_d ]) return image @tf_export('image.pad_to_bounding_box') def pad_to_bounding_box(image, offset_height, offset_width, target_height, target_width): """Pad `image` with zeros to the specified `height` and `width`. Adds `offset_height` rows of zeros on top, `offset_width` columns of zeros on the left, and then pads the image on the bottom and right with zeros until it has dimensions `target_height`, `target_width`. This op does nothing if `offset_*` is zero and the image already has size `target_height` by `target_width`. Args: image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. offset_height: Number of rows of zeros to add on top. offset_width: Number of columns of zeros to add on the left. target_height: Height of output image. target_width: Width of output image. Returns: If `image` was 4-D, a 4-D float Tensor of shape `[batch, target_height, target_width, channels]` If `image` was 3-D, a 3-D float Tensor of shape `[target_height, target_width, channels]` Raises: ValueError: If the shape of `image` is incompatible with the `offset_*` or `target_*` arguments, or either `offset_height` or `offset_width` is negative. """ with ops.name_scope(None, 'pad_to_bounding_box', [image]): image = ops.convert_to_tensor(image, name='image') is_batch = True image_shape = image.get_shape() if image_shape.ndims == 3: is_batch = False image = array_ops.expand_dims(image, 0) elif image_shape.ndims is None: is_batch = False image = array_ops.expand_dims(image, 0) image.set_shape([None] * 4) elif image_shape.ndims != 4: raise ValueError('\'image\' must have either 3 or 4 dimensions.') assert_ops = _CheckAtLeast3DImage(image, require_static=False) batch, height, width, depth = _ImageDimensions(image, rank=4) after_padding_width = target_width - offset_width - width after_padding_height = target_height - offset_height - height assert_ops += _assert(offset_height >= 0, ValueError, 'offset_height must be >= 0') assert_ops += _assert(offset_width >= 0, ValueError, 'offset_width must be >= 0') assert_ops += _assert(after_padding_width >= 0, ValueError, 'width must be <= target - offset') assert_ops += _assert(after_padding_height >= 0, ValueError, 'height must be <= target - offset') image = control_flow_ops.with_dependencies(assert_ops, image) # Do not pad on the depth dimensions. paddings = array_ops.reshape( array_ops.stack([ 0, 0, offset_height, after_padding_height, offset_width, after_padding_width, 0, 0 ]), [4, 2]) padded = array_ops.pad(image, paddings) padded_shape = [ None if _is_tensor(i) else i for i in [batch, target_height, target_width, depth] ] padded.set_shape(padded_shape) if not is_batch: padded = array_ops.squeeze(padded, axis=[0]) return padded @tf_export('image.crop_to_bounding_box') def crop_to_bounding_box(image, offset_height, offset_width, target_height, target_width): """Crops an image to a specified bounding box. This op cuts a rectangular part out of `image`. The top-left corner of the returned image is at `offset_height, offset_width` in `image`, and its lower-right corner is at `offset_height + target_height, offset_width + target_width`. Args: image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. offset_height: Vertical coordinate of the top-left corner of the result in the input. offset_width: Horizontal coordinate of the top-left corner of the result in the input. target_height: Height of the result. target_width: Width of the result. Returns: If `image` was 4-D, a 4-D float Tensor of shape `[batch, target_height, target_width, channels]` If `image` was 3-D, a 3-D float Tensor of shape `[target_height, target_width, channels]` Raises: ValueError: If the shape of `image` is incompatible with the `offset_*` or `target_*` arguments, or either `offset_height` or `offset_width` is negative, or either `target_height` or `target_width` is not positive. """ with ops.name_scope(None, 'crop_to_bounding_box', [image]): image = ops.convert_to_tensor(image, name='image') is_batch = True image_shape = image.get_shape() if image_shape.ndims == 3: is_batch = False image = array_ops.expand_dims(image, 0) elif image_shape.ndims is None: is_batch = False image = array_ops.expand_dims(image, 0) image.set_shape([None] * 4) elif image_shape.ndims != 4: raise ValueError('\'image\' must have either 3 or 4 dimensions.') assert_ops = _CheckAtLeast3DImage(image, require_static=False) batch, height, width, depth = _ImageDimensions(image, rank=4) assert_ops += _assert(offset_width >= 0, ValueError, 'offset_width must be >= 0.') assert_ops += _assert(offset_height >= 0, ValueError, 'offset_height must be >= 0.') assert_ops += _assert(target_width > 0, ValueError, 'target_width must be > 0.') assert_ops += _assert(target_height > 0, ValueError, 'target_height must be > 0.') assert_ops += _assert(width >= (target_width + offset_width), ValueError, 'width must be >= target + offset.') assert_ops += _assert(height >= (target_height + offset_height), ValueError, 'height must be >= target + offset.') image = control_flow_ops.with_dependencies(assert_ops, image) cropped = array_ops.slice( image, array_ops.stack([0, offset_height, offset_width, 0]), array_ops.stack([-1, target_height, target_width, -1])) cropped_shape = [ None if _is_tensor(i) else i for i in [batch, target_height, target_width, depth] ] cropped.set_shape(cropped_shape) if not is_batch: cropped = array_ops.squeeze(cropped, axis=[0]) return cropped @tf_export('image.resize_image_with_crop_or_pad') def resize_image_with_crop_or_pad(image, target_height, target_width): """Crops and/or pads an image to a target width and height. Resizes an image to a target width and height by either centrally cropping the image or padding it evenly with zeros. If `width` or `height` is greater than the specified `target_width` or `target_height` respectively, this op centrally crops along that dimension. If `width` or `height` is smaller than the specified `target_width` or `target_height` respectively, this op centrally pads with 0 along that dimension. Args: image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. target_height: Target height. target_width: Target width. Raises: ValueError: if `target_height` or `target_width` are zero or negative. Returns: Cropped and/or padded image. If `images` was 4-D, a 4-D float Tensor of shape `[batch, new_height, new_width, channels]`. If `images` was 3-D, a 3-D float Tensor of shape `[new_height, new_width, channels]`. """ with ops.name_scope(None, 'resize_image_with_crop_or_pad', [image]): image = ops.convert_to_tensor(image, name='image') image_shape = image.get_shape() is_batch = True if image_shape.ndims == 3: is_batch = False image = array_ops.expand_dims(image, 0) elif image_shape.ndims is None: is_batch = False image = array_ops.expand_dims(image, 0) image.set_shape([None] * 4) elif image_shape.ndims != 4: raise ValueError('\'image\' must have either 3 or 4 dimensions.') assert_ops = _CheckAtLeast3DImage(image, require_static=False) assert_ops += _assert(target_width > 0, ValueError, 'target_width must be > 0.') assert_ops += _assert(target_height > 0, ValueError, 'target_height must be > 0.') image = control_flow_ops.with_dependencies(assert_ops, image) # `crop_to_bounding_box` and `pad_to_bounding_box` have their own checks. # Make sure our checks come first, so that error messages are clearer. if _is_tensor(target_height): target_height = control_flow_ops.with_dependencies( assert_ops, target_height) if _is_tensor(target_width): target_width = control_flow_ops.with_dependencies(assert_ops, target_width) def max_(x, y): if _is_tensor(x) or _is_tensor(y): return math_ops.maximum(x, y) else: return max(x, y) def min_(x, y): if _is_tensor(x) or _is_tensor(y): return math_ops.minimum(x, y) else: return min(x, y) def equal_(x, y): if _is_tensor(x) or _is_tensor(y): return math_ops.equal(x, y) else: return x == y _, height, width, _ = _ImageDimensions(image, rank=4) width_diff = target_width - width offset_crop_width = max_(-width_diff // 2, 0) offset_pad_width = max_(width_diff // 2, 0) height_diff = target_height - height offset_crop_height = max_(-height_diff // 2, 0) offset_pad_height = max_(height_diff // 2, 0) # Maybe crop if needed. cropped = crop_to_bounding_box(image, offset_crop_height, offset_crop_width, min_(target_height, height), min_(target_width, width)) # Maybe pad if needed. resized = pad_to_bounding_box(cropped, offset_pad_height, offset_pad_width, target_height, target_width) # In theory all the checks below are redundant. if resized.get_shape().ndims is None: raise ValueError('resized contains no shape.') _, resized_height, resized_width, _ = _ImageDimensions(resized, rank=4) assert_ops = [] assert_ops += _assert( equal_(resized_height, target_height), ValueError, 'resized height is not correct.') assert_ops += _assert( equal_(resized_width, target_width), ValueError, 'resized width is not correct.') resized = control_flow_ops.with_dependencies(assert_ops, resized) if not is_batch: resized = array_ops.squeeze(resized, axis=[0]) return resized @tf_export('image.ResizeMethod') class ResizeMethod(object): BILINEAR = 0 NEAREST_NEIGHBOR = 1 BICUBIC = 2 AREA = 3 @tf_export(v1=['image.resize_images', 'image.resize']) def resize_images(images, size, method=ResizeMethod.BILINEAR, align_corners=False, preserve_aspect_ratio=False): return resize_images_v2( images=images, size=size, method=method, align_corners=align_corners, preserve_aspect_ratio=preserve_aspect_ratio, name=None) @tf_export('image.resize', v1=[]) def resize_images_v2(images, size, method=ResizeMethod.BILINEAR, align_corners=False, preserve_aspect_ratio=False, name=None): """Resize `images` to `size` using the specified `method`. Resized images will be distorted if their original aspect ratio is not the same as `size`. To avoid distortions see `tf.image.resize_image_with_pad`. `method` can be one of: * <b>`ResizeMethod.BILINEAR`</b>: [Bilinear interpolation.]( https://en.wikipedia.org/wiki/Bilinear_interpolation) * <b>`ResizeMethod.NEAREST_NEIGHBOR`</b>: [Nearest neighbor interpolation.]( https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation) * <b>`ResizeMethod.BICUBIC`</b>: [Bicubic interpolation.]( https://en.wikipedia.org/wiki/Bicubic_interpolation) * <b>`ResizeMethod.AREA`</b>: Area interpolation. The return value has the same type as `images` if `method` is `ResizeMethod.NEAREST_NEIGHBOR`. It will also have the same type as `images` if the size of `images` can be statically determined to be the same as `size`, because `images` is returned in this case. Otherwise, the return value has type `float32`. Args: images: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. size: A 1-D int32 Tensor of 2 elements: `new_height, new_width`. The new size for the images. method: ResizeMethod. Defaults to `ResizeMethod.BILINEAR`. align_corners: bool. If True, the centers of the 4 corner pixels of the input and output tensors are aligned, preserving the values at the corner pixels. Defaults to `False`. preserve_aspect_ratio: Whether to preserve the aspect ratio. If this is set, then `images` will be resized to a size that fits in `size` while preserving the aspect ratio of the original image. Scales up the image if `size` is bigger than the current size of the `image`. Defaults to False. name: A name for this operation (optional). Raises: ValueError: if the shape of `images` is incompatible with the shape arguments to this function ValueError: if `size` has invalid shape or type. ValueError: if an unsupported resize method is specified. Returns: If `images` was 4-D, a 4-D float Tensor of shape `[batch, new_height, new_width, channels]`. If `images` was 3-D, a 3-D float Tensor of shape `[new_height, new_width, channels]`. """ with ops.name_scope(name, 'resize', [images, size]): images = ops.convert_to_tensor(images, name='images') if images.get_shape().ndims is None: raise ValueError('\'images\' contains no shape.') # TODO(shlens): Migrate this functionality to the underlying Op's. is_batch = True if images.get_shape().ndims == 3: is_batch = False images = array_ops.expand_dims(images, 0) elif images.get_shape().ndims != 4: raise ValueError('\'images\' must have either 3 or 4 dimensions.') _, height, width, _ = images.get_shape().as_list() try: size = ops.convert_to_tensor(size, dtypes.int32, name='size') except (TypeError, ValueError): raise ValueError('\'size\' must be a 1-D int32 Tensor') if not size.get_shape().is_compatible_with([2]): raise ValueError('\'size\' must be a 1-D Tensor of 2 elements: ' 'new_height, new_width') size_const_as_shape = tensor_util.constant_value_as_shape(size) new_height_const = size_const_as_shape.dims[0].value new_width_const = size_const_as_shape.dims[1].value if preserve_aspect_ratio: # Get the current shapes of the image, even if dynamic. _, current_height, current_width, _ = _ImageDimensions(images, rank=4) # do the computation to find the right scale and height/width. scale_factor_height = (math_ops.to_float(new_height_const) / math_ops.to_float(current_height)) scale_factor_width = (math_ops.to_float(new_width_const) / math_ops.to_float(current_width)) scale_factor = math_ops.minimum(scale_factor_height, scale_factor_width) scaled_height_const = math_ops.to_int32( math_ops.round(scale_factor * math_ops.to_float(current_height))) scaled_width_const = math_ops.to_int32( math_ops.round(scale_factor * math_ops.to_float(current_width))) # NOTE: Reset the size and other constants used later. size = ops.convert_to_tensor([scaled_height_const, scaled_width_const], dtypes.int32, name='size') size_const_as_shape = tensor_util.constant_value_as_shape(size) new_height_const = size_const_as_shape.dims[0].value new_width_const = size_const_as_shape.dims[1].value # If we can determine that the height and width will be unmodified by this # transformation, we avoid performing the resize. if all(x is not None for x in [new_width_const, width, new_height_const, height]) and ( width == new_width_const and height == new_height_const): if not is_batch: images = array_ops.squeeze(images, axis=[0]) return images if method == ResizeMethod.BILINEAR: images = gen_image_ops.resize_bilinear( images, size, align_corners=align_corners) elif method == ResizeMethod.NEAREST_NEIGHBOR: images = gen_image_ops.resize_nearest_neighbor( images, size, align_corners=align_corners) elif method == ResizeMethod.BICUBIC: images = gen_image_ops.resize_bicubic( images, size, align_corners=align_corners) elif method == ResizeMethod.AREA: images = gen_image_ops.resize_area( images, size, align_corners=align_corners) else: raise ValueError('Resize method is not implemented.') # NOTE(mrry): The shape functions for the resize ops cannot unpack # the packed values in `new_size`, so set the shape here. images.set_shape([None, new_height_const, new_width_const, None]) if not is_batch: images = array_ops.squeeze(images, axis=[0]) return images @tf_export('image.resize_image_with_pad') def resize_image_with_pad(image, target_height, target_width, method=ResizeMethod.BILINEAR): """Resizes and pads an image to a target width and height. Resizes an image to a target width and height by keeping the aspect ratio the same without distortion. If the target dimensions don't match the image dimensions, the image is resized and then padded with zeroes to match requested dimensions. Args: image: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. target_height: Target height. target_width: Target width. method: Method to use for resizing image. See `resize_images()` Raises: ValueError: if `target_height` or `target_width` are zero or negative. Returns: Resized and padded image. If `images` was 4-D, a 4-D float Tensor of shape `[batch, new_height, new_width, channels]`. If `images` was 3-D, a 3-D float Tensor of shape `[new_height, new_width, channels]`. """ with ops.name_scope(None, 'resize_image_with_pad', [image]): image = ops.convert_to_tensor(image, name='image') image_shape = image.get_shape() is_batch = True if image_shape.ndims == 3: is_batch = False image = array_ops.expand_dims(image, 0) elif image_shape.ndims is None: is_batch = False image = array_ops.expand_dims(image, 0) image.set_shape([None] * 4) elif image_shape.ndims != 4: raise ValueError('\'image\' must have either 3 or 4 dimensions.') assert_ops = _CheckAtLeast3DImage(image, require_static=False) assert_ops += _assert(target_width > 0, ValueError, 'target_width must be > 0.') assert_ops += _assert(target_height > 0, ValueError, 'target_height must be > 0.') image = control_flow_ops.with_dependencies(assert_ops, image) def max_(x, y): if _is_tensor(x) or _is_tensor(y): return math_ops.maximum(x, y) else: return max(x, y) _, height, width, _ = _ImageDimensions(image, rank=4) # convert values to float, to ease divisions f_height = math_ops.cast(height, dtype=dtypes.float64) f_width = math_ops.cast(width, dtype=dtypes.float64) f_target_height = math_ops.cast(target_height, dtype=dtypes.float64) f_target_width = math_ops.cast(target_width, dtype=dtypes.float64) # Find the ratio by which the image must be adjusted # to fit within the target ratio = max_(f_width / f_target_width, f_height / f_target_height) resized_height_float = f_height / ratio resized_width_float = f_width / ratio resized_height = math_ops.cast( math_ops.floor(resized_height_float), dtype=dtypes.int32) resized_width = math_ops.cast( math_ops.floor(resized_width_float), dtype=dtypes.int32) padding_height = (f_target_height - resized_height_float) / 2 padding_width = (f_target_width - resized_width_float) / 2 f_padding_height = math_ops.floor(padding_height) f_padding_width = math_ops.floor(padding_width) p_height = max_(0, math_ops.cast(f_padding_height, dtype=dtypes.int32)) p_width = max_(0, math_ops.cast(f_padding_width, dtype=dtypes.int32)) # Resize first, then pad to meet requested dimensions resized = resize_images(image, [resized_height, resized_width], method) padded = pad_to_bounding_box(resized, p_height, p_width, target_height, target_width) if padded.get_shape().ndims is None: raise ValueError('padded contains no shape.') _ImageDimensions(padded, rank=4) if not is_batch: padded = array_ops.squeeze(padded, axis=[0]) return padded @tf_export('image.per_image_standardization') def per_image_standardization(image): """Linearly scales `image` to have zero mean and unit variance. This op computes `(x - mean) / adjusted_stddev`, where `mean` is the average of all values in image, and `adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))`. `stddev` is the standard deviation of all values in `image`. It is capped away from zero to protect against division by 0 when handling uniform images. Args: image: An n-D Tensor where the last 3 dimensions are `[height, width, channels]`. Returns: The standardized image with same shape as `image`. Raises: ValueError: if the shape of 'image' is incompatible with this function. """ with ops.name_scope(None, 'per_image_standardization', [image]) as scope: image = ops.convert_to_tensor(image, name='image') image = _AssertAtLeast3DImage(image) num_pixels = math_ops.reduce_prod(array_ops.shape(image)[-3:]) image = math_ops.cast(image, dtype=dtypes.float32) image_mean = math_ops.reduce_mean(image, axis=[-1, -2, -3], keepdims=True) variance = ( math_ops.reduce_mean( math_ops.square(image), axis=[-1, -2, -3], keepdims=True) - math_ops.square(image_mean)) variance = gen_nn_ops.relu(variance) stddev = math_ops.sqrt(variance) # Apply a minimum normalization that protects us against uniform images. min_stddev = math_ops.rsqrt(math_ops.cast(num_pixels, dtypes.float32)) pixel_value_scale = math_ops.maximum(stddev, min_stddev) pixel_value_offset = image_mean image = math_ops.subtract(image, pixel_value_offset) image = math_ops.div(image, pixel_value_scale, name=scope) return image @tf_export('image.random_brightness') def random_brightness(image, max_delta, seed=None): """Adjust the brightness of images by a random factor. Equivalent to `adjust_brightness()` using a `delta` randomly picked in the interval `[-max_delta, max_delta)`. Args: image: An image or images to adjust. max_delta: float, must be non-negative. seed: A Python integer. Used to create a random seed. See `tf.set_random_seed` for behavior. Returns: The brightness-adjusted image(s). Raises: ValueError: if `max_delta` is negative. """ if max_delta < 0: raise ValueError('max_delta must be non-negative.') delta = random_ops.random_uniform([], -max_delta, max_delta, seed=seed) return adjust_brightness(image, delta) @tf_export('image.random_contrast') def random_contrast(image, lower, upper, seed=None): """Adjust the contrast of an image or images by a random factor. Equivalent to `adjust_contrast()` but uses a `contrast_factor` randomly picked in the interval `[lower, upper]`. Args: image: An image tensor with 3 or more dimensions. lower: float. Lower bound for the random contrast factor. upper: float. Upper bound for the random contrast factor. seed: A Python integer. Used to create a random seed. See `tf.set_random_seed` for behavior. Returns: The contrast-adjusted image(s). Raises: ValueError: if `upper <= lower` or if `lower < 0`. """ if upper <= lower: raise ValueError('upper must be > lower.') if lower < 0: raise ValueError('lower must be non-negative.') # Generate an a float in [lower, upper] contrast_factor = random_ops.random_uniform([], lower, upper, seed=seed) return adjust_contrast(image, contrast_factor) @tf_export('image.adjust_brightness') def adjust_brightness(image, delta): """Adjust the brightness of RGB or Grayscale images. This is a convenience method that converts RGB images to float representation, adjusts their brightness, and then converts them back to the original data type. If several adjustments are chained, it is advisable to minimize the number of redundant conversions. The value `delta` is added to all components of the tensor `image`. `image` is converted to `float` and scaled appropriately if it is in fixed-point representation, and `delta` is converted to the same data type. For regular images, `delta` should be in the range `[0,1)`, as it is added to the image in floating point representation, where pixel values are in the `[0,1)` range. Args: image: RGB image or images to adjust. delta: A scalar. Amount to add to the pixel values. Returns: A brightness-adjusted tensor of the same shape and type as `image`. """ with ops.name_scope(None, 'adjust_brightness', [image, delta]) as name: image = ops.convert_to_tensor(image, name='image') # Remember original dtype to so we can convert back if needed orig_dtype = image.dtype if orig_dtype in [dtypes.float16, dtypes.float32]: flt_image = image else: flt_image = convert_image_dtype(image, dtypes.float32) adjusted = math_ops.add( flt_image, math_ops.cast(delta, flt_image.dtype), name=name) return convert_image_dtype(adjusted, orig_dtype, saturate=True) @tf_export('image.adjust_contrast') def adjust_contrast(images, contrast_factor): """Adjust contrast of RGB or grayscale images. This is a convenience method that converts RGB images to float representation, adjusts their contrast, and then converts them back to the original data type. If several adjustments are chained, it is advisable to minimize the number of redundant conversions. `images` is a tensor of at least 3 dimensions. The last 3 dimensions are interpreted as `[height, width, channels]`. The other dimensions only represent a collection of images, such as `[batch, height, width, channels].` Contrast is adjusted independently for each channel of each image. For each channel, this Op computes the mean of the image pixels in the channel and then adjusts each component `x` of each pixel to `(x - mean) * contrast_factor + mean`. Args: images: Images to adjust. At least 3-D. contrast_factor: A float multiplier for adjusting contrast. Returns: The contrast-adjusted image or images. """ with ops.name_scope(None, 'adjust_contrast', [images, contrast_factor]) as name: images = ops.convert_to_tensor(images, name='images') # Remember original dtype to so we can convert back if needed orig_dtype = images.dtype if orig_dtype in (dtypes.float16, dtypes.float32): flt_images = images else: flt_images = convert_image_dtype(images, dtypes.float32) adjusted = gen_image_ops.adjust_contrastv2( flt_images, contrast_factor=contrast_factor, name=name) return convert_image_dtype(adjusted, orig_dtype, saturate=True) @tf_export('image.adjust_gamma') def adjust_gamma(image, gamma=1, gain=1): """Performs Gamma Correction on the input image. Also known as Power Law Transform. This function transforms the input image pixelwise according to the equation `Out = In**gamma` after scaling each pixel to the range 0 to 1. Args: image : A Tensor. gamma : A scalar or tensor. Non negative real number. gain : A scalar or tensor. The constant multiplier. Returns: A Tensor. Gamma corrected output image. Raises: ValueError: If gamma is negative. Notes: For gamma greater than 1, the histogram will shift towards left and the output image will be darker than the input image. For gamma less than 1, the histogram will shift towards right and the output image will be brighter than the input image. References: [1] http://en.wikipedia.org/wiki/Gamma_correction """ with ops.name_scope(None, 'adjust_gamma', [image, gamma, gain]) as name: # Convert pixel value to DT_FLOAT for computing adjusted image. img = ops.convert_to_tensor(image, name='img', dtype=dtypes.float32) # Keep image dtype for computing the scale of corresponding dtype. image = ops.convert_to_tensor(image, name='image') assert_op = _assert(gamma >= 0, ValueError, 'Gamma should be a non-negative real number.') if assert_op: gamma = control_flow_ops.with_dependencies(assert_op, gamma) # scale = max(dtype) - min(dtype). scale = constant_op.constant( image.dtype.limits[1] - image.dtype.limits[0], dtype=dtypes.float32) # According to the definition of gamma correction. adjusted_img = (img / scale)**gamma * scale * gain return adjusted_img @tf_export('image.convert_image_dtype') def convert_image_dtype(image, dtype, saturate=False, name=None): """Convert `image` to `dtype`, scaling its values if needed. Images that are represented using floating point values are expected to have values in the range [0,1). Image data stored in integer data types are expected to have values in the range `[0,MAX]`, where `MAX` is the largest positive representable number for the data type. This op converts between data types, scaling the values appropriately before casting. Note that converting from floating point inputs to integer types may lead to over/underflow problems. Set saturate to `True` to avoid such problem in problematic conversions. If enabled, saturation will clip the output into the allowed range before performing a potentially dangerous cast (and only before performing such a cast, i.e., when casting from a floating point to an integer type, and when casting from a signed to an unsigned type; `saturate` has no effect on casts between floats, or on casts that increase the type's range). Args: image: An image. dtype: A `DType` to convert `image` to. saturate: If `True`, clip the input before casting (if necessary). name: A name for this operation (optional). Returns: `image`, converted to `dtype`. """ image = ops.convert_to_tensor(image, name='image') if dtype == image.dtype: return array_ops.identity(image, name=name) with ops.name_scope(name, 'convert_image', [image]) as name: # Both integer: use integer multiplication in the larger range if image.dtype.is_integer and dtype.is_integer: scale_in = image.dtype.max scale_out = dtype.max if scale_in > scale_out: # Scaling down, scale first, then cast. The scaling factor will # cause in.max to be mapped to above out.max but below out.max+1, # so that the output is safely in the supported range. scale = (scale_in + 1) // (scale_out + 1) scaled = math_ops.div(image, scale) if saturate: return math_ops.saturate_cast(scaled, dtype, name=name) else: return math_ops.cast(scaled, dtype, name=name) else: # Scaling up, cast first, then scale. The scale will not map in.max to # out.max, but converting back and forth should result in no change. if saturate: cast = math_ops.saturate_cast(image, dtype) else: cast = math_ops.cast(image, dtype) scale = (scale_out + 1) // (scale_in + 1) return math_ops.multiply(cast, scale, name=name) elif image.dtype.is_floating and dtype.is_floating: # Both float: Just cast, no possible overflows in the allowed ranges. # Note: We're ignoreing float overflows. If your image dynamic range # exceeds float range you're on your own. return math_ops.cast(image, dtype, name=name) else: if image.dtype.is_integer: # Converting to float: first cast, then scale. No saturation possible. cast = math_ops.cast(image, dtype) scale = 1. / image.dtype.max return math_ops.multiply(cast, scale, name=name) else: # Converting from float: first scale, then cast scale = dtype.max + 0.5 # avoid rounding problems in the cast scaled = math_ops.multiply(image, scale) if saturate: return math_ops.saturate_cast(scaled, dtype, name=name) else: return math_ops.cast(scaled, dtype, name=name) @tf_export('image.rgb_to_grayscale') def rgb_to_grayscale(images, name=None): """Converts one or more images from RGB to Grayscale. Outputs a tensor of the same `DType` and rank as `images`. The size of the last dimension of the output is 1, containing the Grayscale value of the pixels. Args: images: The RGB tensor to convert. Last dimension must have size 3 and should contain RGB values. name: A name for the operation (optional). Returns: The converted grayscale image(s). """ with ops.name_scope(name, 'rgb_to_grayscale', [images]) as name: images = ops.convert_to_tensor(images, name='images') # Remember original dtype to so we can convert back if needed orig_dtype = images.dtype flt_image = convert_image_dtype(images, dtypes.float32) # Reference for converting between RGB and grayscale. # https://en.wikipedia.org/wiki/Luma_%28video%29 rgb_weights = [0.2989, 0.5870, 0.1140] gray_float = math_ops.tensordot(flt_image, rgb_weights, [-1, -1]) gray_float = array_ops.expand_dims(gray_float, -1) return convert_image_dtype(gray_float, orig_dtype, name=name) @tf_export('image.grayscale_to_rgb') def grayscale_to_rgb(images, name=None): """Converts one or more images from Grayscale to RGB. Outputs a tensor of the same `DType` and rank as `images`. The size of the last dimension of the output is 3, containing the RGB value of the pixels. Args: images: The Grayscale tensor to convert. Last dimension must be size 1. name: A name for the operation (optional). Returns: The converted grayscale image(s). """ with ops.name_scope(name, 'grayscale_to_rgb', [images]) as name: images = ops.convert_to_tensor(images, name='images') rank_1 = array_ops.expand_dims(array_ops.rank(images) - 1, 0) shape_list = ([array_ops.ones(rank_1, dtype=dtypes.int32)] + [array_ops.expand_dims(3, 0)]) multiples = array_ops.concat(shape_list, 0) rgb = array_ops.tile(images, multiples, name=name) rgb.set_shape(images.get_shape()[:-1].concatenate([3])) return rgb # pylint: disable=invalid-name @tf_export('image.random_hue') def random_hue(image, max_delta, seed=None): """Adjust the hue of RGB images by a random factor. Equivalent to `adjust_hue()` but uses a `delta` randomly picked in the interval `[-max_delta, max_delta]`. `max_delta` must be in the interval `[0, 0.5]`. Args: image: RGB image or images. Size of the last dimension must be 3. max_delta: float. Maximum value for the random delta. seed: An operation-specific seed. It will be used in conjunction with the graph-level seed to determine the real seeds that will be used in this operation. Please see the documentation of set_random_seed for its interaction with the graph-level random seed. Returns: Adjusted image(s), same shape and DType as `image`. Raises: ValueError: if `max_delta` is invalid. """ if max_delta > 0.5: raise ValueError('max_delta must be <= 0.5.') if max_delta < 0: raise ValueError('max_delta must be non-negative.') delta = random_ops.random_uniform([], -max_delta, max_delta, seed=seed) return adjust_hue(image, delta) @tf_export('image.adjust_hue') def adjust_hue(image, delta, name=None): """Adjust hue of RGB images. This is a convenience method that converts an RGB image to float representation, converts it to HSV, add an offset to the hue channel, converts back to RGB and then back to the original data type. If several adjustments are chained it is advisable to minimize the number of redundant conversions. `image` is an RGB image. The image hue is adjusted by converting the image(s) to HSV and rotating the hue channel (H) by `delta`. The image is then converted back to RGB. `delta` must be in the interval `[-1, 1]`. Args: image: RGB image or images. Size of the last dimension must be 3. delta: float. How much to add to the hue channel. name: A name for this operation (optional). Returns: Adjusted image(s), same shape and DType as `image`. """ with ops.name_scope(name, 'adjust_hue', [image]) as name: image = ops.convert_to_tensor(image, name='image') # Remember original dtype to so we can convert back if needed orig_dtype = image.dtype if orig_dtype in (dtypes.float16, dtypes.float32): flt_image = image else: flt_image = convert_image_dtype(image, dtypes.float32) rgb_altered = gen_image_ops.adjust_hue(flt_image, delta) return convert_image_dtype(rgb_altered, orig_dtype) # pylint: disable=invalid-name @tf_export('image.random_jpeg_quality') def random_jpeg_quality(image, min_jpeg_quality, max_jpeg_quality, seed=None): """Randomly changes jpeg encoding quality for inducing jpeg noise. `min_jpeg_quality` must be in the interval `[0, 100]` and less than `max_jpeg_quality`. `max_jpeg_quality` must be in the interval `[0, 100]`. Args: image: RGB image or images. Size of the last dimension must be 3. min_jpeg_quality: Minimum jpeg encoding quality to use. max_jpeg_quality: Maximum jpeg encoding quality to use. seed: An operation-specific seed. It will be used in conjunction with the graph-level seed to determine the real seeds that will be used in this operation. Please see the documentation of set_random_seed for its interaction with the graph-level random seed. Returns: Adjusted image(s), same shape and DType as `image`. Raises: ValueError: if `min_jpeg_quality` or `max_jpeg_quality` is invalid. """ if (min_jpeg_quality < 0 or max_jpeg_quality < 0 or min_jpeg_quality > 100 or max_jpeg_quality > 100): raise ValueError('jpeg encoding range must be between 0 and 100.') if min_jpeg_quality >= max_jpeg_quality: raise ValueError('`min_jpeg_quality` must be less than `max_jpeg_quality`.') np.random.seed(seed) jpeg_quality = np.random.randint(min_jpeg_quality, max_jpeg_quality) return adjust_jpeg_quality(image, jpeg_quality) @tf_export('image.adjust_jpeg_quality') def adjust_jpeg_quality(image, jpeg_quality, name=None): """Adjust jpeg encoding quality of an RGB image. This is a convenience method that adjusts jpeg encoding quality of an RGB image. `image` is an RGB image. The image's encoding quality is adjusted to `jpeg_quality`. `jpeg_quality` must be in the interval `[0, 100]`. Args: image: RGB image or images. Size of the last dimension must be 3. jpeg_quality: int. jpeg encoding quality. name: A name for this operation (optional). Returns: Adjusted image(s), same shape and DType as `image`. """ with ops.name_scope(name, 'adjust_jpeg_quality', [image]) as name: image = ops.convert_to_tensor(image, name='image') # Remember original dtype to so we can convert back if needed orig_dtype = image.dtype # Convert to uint8 image = convert_image_dtype(image, dtypes.uint8) # Encode image to jpeg with given jpeg quality image = gen_image_ops.encode_jpeg(image, quality=jpeg_quality) # Decode jpeg image image = gen_image_ops.decode_jpeg(image) # Convert back to original dtype and return return convert_image_dtype(image, orig_dtype) @tf_export('image.random_saturation') def random_saturation(image, lower, upper, seed=None): """Adjust the saturation of RGB images by a random factor. Equivalent to `adjust_saturation()` but uses a `saturation_factor` randomly picked in the interval `[lower, upper]`. Args: image: RGB image or images. Size of the last dimension must be 3. lower: float. Lower bound for the random saturation factor. upper: float. Upper bound for the random saturation factor. seed: An operation-specific seed. It will be used in conjunction with the graph-level seed to determine the real seeds that will be used in this operation. Please see the documentation of set_random_seed for its interaction with the graph-level random seed. Returns: Adjusted image(s), same shape and DType as `image`. Raises: ValueError: if `upper <= lower` or if `lower < 0`. """ if upper <= lower: raise ValueError('upper must be > lower.') if lower < 0: raise ValueError('lower must be non-negative.') # Pick a float in [lower, upper] saturation_factor = random_ops.random_uniform([], lower, upper, seed=seed) return adjust_saturation(image, saturation_factor) @tf_export('image.adjust_saturation') def adjust_saturation(image, saturation_factor, name=None): """Adjust saturation of RGB images. This is a convenience method that converts RGB images to float representation, converts them to HSV, add an offset to the saturation channel, converts back to RGB and then back to the original data type. If several adjustments are chained it is advisable to minimize the number of redundant conversions. `image` is an RGB image or images. The image saturation is adjusted by converting the images to HSV and multiplying the saturation (S) channel by `saturation_factor` and clipping. The images are then converted back to RGB. Args: image: RGB image or images. Size of the last dimension must be 3. saturation_factor: float. Factor to multiply the saturation by. name: A name for this operation (optional). Returns: Adjusted image(s), same shape and DType as `image`. """ with ops.name_scope(name, 'adjust_saturation', [image]) as name: image = ops.convert_to_tensor(image, name='image') # Remember original dtype to so we can convert back if needed orig_dtype = image.dtype if orig_dtype in (dtypes.float16, dtypes.float32): flt_image = image else: flt_image = convert_image_dtype(image, dtypes.float32) adjusted = gen_image_ops.adjust_saturation(flt_image, saturation_factor) return convert_image_dtype(adjusted, orig_dtype) @tf_export('io.is_jpeg', 'image.is_jpeg', v1=['io.is_jpeg', 'image.is_jpeg']) def is_jpeg(contents, name=None): r"""Convenience function to check if the 'contents' encodes a JPEG image. Args: contents: 0-D `string`. The encoded image bytes. name: A name for the operation (optional) Returns: A scalar boolean tensor indicating if 'contents' may be a JPEG image. is_jpeg is susceptible to false positives. """ # Normal JPEGs start with \xff\xd8\xff\xe0 # JPEG with EXIF stats with \xff\xd8\xff\xe1 # Use \xff\xd8\xff to cover both. with ops.name_scope(name, 'is_jpeg'): substr = string_ops.substr(contents, 0, 3) return math_ops.equal(substr, b'\xff\xd8\xff', name=name) def _is_png(contents, name=None): r"""Convenience function to check if the 'contents' encodes a PNG image. Args: contents: 0-D `string`. The encoded image bytes. name: A name for the operation (optional) Returns: A scalar boolean tensor indicating if 'contents' may be a PNG image. is_png is susceptible to false positives. """ with ops.name_scope(name, 'is_png'): substr = string_ops.substr(contents, 0, 3) return math_ops.equal(substr, b'\211PN', name=name) tf_export('io.decode_and_crop_jpeg', 'image.decode_and_crop_jpeg', v1=['io.decode_and_crop_jpeg', 'image.decode_and_crop_jpeg'])( gen_image_ops.decode_and_crop_jpeg) tf_export('io.decode_bmp', 'image.decode_bmp', v1=['io.decode_bmp', 'image.decode_bmp'])(gen_image_ops.decode_bmp) tf_export('io.decode_gif', 'image.decode_gif', v1=['io.decode_gif', 'image.decode_gif'])(gen_image_ops.decode_gif) tf_export('io.decode_jpeg', 'image.decode_jpeg', v1=['io.decode_jpeg', 'image.decode_jpeg'])(gen_image_ops.decode_jpeg) tf_export('io.decode_png', 'image.decode_png', v1=['io.decode_png', 'image.decode_png'])(gen_image_ops.decode_png) tf_export('io.encode_jpeg', 'image.encode_jpeg', v1=['io.encode_jpeg', 'image.encode_jpeg'])(gen_image_ops.encode_jpeg) tf_export('io.extract_jpeg_shape', 'image.extract_jpeg_shape', v1=['io.extract_jpeg_shape', 'image.extract_jpeg_shape'])( gen_image_ops.extract_jpeg_shape) @tf_export('io.decode_image', 'image.decode_image', v1=['io.decode_image', 'image.decode_image']) def decode_image(contents, channels=None, dtype=dtypes.uint8, name=None): """Convenience function for `decode_bmp`, `decode_gif`, `decode_jpeg`, and `decode_png`. Detects whether an image is a BMP, GIF, JPEG, or PNG, and performs the appropriate operation to convert the input bytes `string` into a `Tensor` of type `dtype`. Note: `decode_gif` returns a 4-D array `[num_frames, height, width, 3]`, as opposed to `decode_bmp`, `decode_jpeg` and `decode_png`, which return 3-D arrays `[height, width, num_channels]`. Make sure to take this into account when constructing your graph if you are intermixing GIF files with BMP, JPEG, and/or PNG files. Args: contents: 0-D `string`. The encoded image bytes. channels: An optional `int`. Defaults to `0`. Number of color channels for the decoded image. dtype: The desired DType of the returned `Tensor`. name: A name for the operation (optional) Returns: `Tensor` with type `dtype` and shape `[height, width, num_channels]` for BMP, JPEG, and PNG images and shape `[num_frames, height, width, 3]` for GIF images. Raises: ValueError: On incorrect number of channels. """ with ops.name_scope(name, 'decode_image'): if channels not in (None, 0, 1, 3, 4): raise ValueError('channels must be in (None, 0, 1, 3, 4)') substr = string_ops.substr(contents, 0, 3) def _bmp(): """Decodes a GIF image.""" signature = string_ops.substr(contents, 0, 2) # Create assert op to check that bytes are BMP decodable is_bmp = math_ops.equal(signature, 'BM', name='is_bmp') decode_msg = 'Unable to decode bytes as JPEG, PNG, GIF, or BMP' assert_decode = control_flow_ops.Assert(is_bmp, [decode_msg]) bmp_channels = 0 if channels is None else channels good_channels = math_ops.not_equal(bmp_channels, 1, name='check_channels') channels_msg = 'Channels must be in (None, 0, 3) when decoding BMP images' assert_channels = control_flow_ops.Assert(good_channels, [channels_msg]) with ops.control_dependencies([assert_decode, assert_channels]): return convert_image_dtype(gen_image_ops.decode_bmp(contents), dtype) def _gif(): # Create assert to make sure that channels is not set to 1 # Already checked above that channels is in (None, 0, 1, 3) gif_channels = 0 if channels is None else channels good_channels = math_ops.logical_and( math_ops.not_equal(gif_channels, 1, name='check_gif_channels'), math_ops.not_equal(gif_channels, 4, name='check_gif_channels')) channels_msg = 'Channels must be in (None, 0, 3) when decoding GIF images' assert_channels = control_flow_ops.Assert(good_channels, [channels_msg]) with ops.control_dependencies([assert_channels]): return convert_image_dtype(gen_image_ops.decode_gif(contents), dtype) def check_gif(): # Create assert op to check that bytes are GIF decodable is_gif = math_ops.equal(substr, b'\x47\x49\x46', name='is_gif') return control_flow_ops.cond(is_gif, _gif, _bmp, name='cond_gif') def _png(): """Decodes a PNG image.""" return convert_image_dtype( gen_image_ops.decode_png(contents, channels, dtype=dtypes.uint8 if dtype == dtypes.uint8 else dtypes.uint16), dtype) def check_png(): """Checks if an image is PNG.""" return control_flow_ops.cond( _is_png(contents), _png, check_gif, name='cond_png') def _jpeg(): """Decodes a jpeg image.""" jpeg_channels = 0 if channels is None else channels good_channels = math_ops.not_equal( jpeg_channels, 4, name='check_jpeg_channels') channels_msg = ('Channels must be in (None, 0, 1, 3) when decoding JPEG ' 'images') assert_channels = control_flow_ops.Assert(good_channels, [channels_msg]) with ops.control_dependencies([assert_channels]): return convert_image_dtype( gen_image_ops.decode_jpeg(contents, channels), dtype) # Decode normal JPEG images (start with \xff\xd8\xff\xe0) # as well as JPEG images with EXIF data (start with \xff\xd8\xff\xe1). return control_flow_ops.cond( is_jpeg(contents), _jpeg, check_png, name='cond_jpeg') @tf_export('image.total_variation') def total_variation(images, name=None): """Calculate and return the total variation for one or more images. The total variation is the sum of the absolute differences for neighboring pixel-values in the input images. This measures how much noise is in the images. This can be used as a loss-function during optimization so as to suppress noise in images. If you have a batch of images, then you should calculate the scalar loss-value as the sum: `loss = tf.reduce_sum(tf.image.total_variation(images))` This implements the anisotropic 2-D version of the formula described here: https://en.wikipedia.org/wiki/Total_variation_denoising Args: images: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. name: A name for the operation (optional). Raises: ValueError: if images.shape is not a 3-D or 4-D vector. Returns: The total variation of `images`. If `images` was 4-D, return a 1-D float Tensor of shape `[batch]` with the total variation for each image in the batch. If `images` was 3-D, return a scalar float with the total variation for that image. """ with ops.name_scope(name, 'total_variation'): ndims = images.get_shape().ndims if ndims == 3: # The input is a single image with shape [height, width, channels]. # Calculate the difference of neighboring pixel-values. # The images are shifted one pixel along the height and width by slicing. pixel_dif1 = images[1:, :, :] - images[:-1, :, :] pixel_dif2 = images[:, 1:, :] - images[:, :-1, :] # Sum for all axis. (None is an alias for all axis.) sum_axis = None elif ndims == 4: # The input is a batch of images with shape: # [batch, height, width, channels]. # Calculate the difference of neighboring pixel-values. # The images are shifted one pixel along the height and width by slicing. pixel_dif1 = images[:, 1:, :, :] - images[:, :-1, :, :] pixel_dif2 = images[:, :, 1:, :] - images[:, :, :-1, :] # Only sum for the last 3 axis. # This results in a 1-D tensor with the total variation for each image. sum_axis = [1, 2, 3] else: raise ValueError('\'images\' must be either 3 or 4-dimensional.') # Calculate the total variation by taking the absolute value of the # pixel-differences and summing over the appropriate axis. tot_var = ( math_ops.reduce_sum(math_ops.abs(pixel_dif1), axis=sum_axis) + math_ops.reduce_sum(math_ops.abs(pixel_dif2), axis=sum_axis)) return tot_var @tf_export('image.sample_distorted_bounding_box', v1=[]) def sample_distorted_bounding_box_v2(image_size, bounding_boxes, seed=0, min_object_covered=0.1, aspect_ratio_range=None, area_range=None, max_attempts=None, use_image_if_no_bounding_boxes=None, name=None): """Generate a single randomly distorted bounding box for an image. Bounding box annotations are often supplied in addition to ground-truth labels in image recognition or object localization tasks. A common technique for training such a system is to randomly distort an image while preserving its content, i.e. *data augmentation*. This Op outputs a randomly distorted localization of an object, i.e. bounding box, given an `image_size`, `bounding_boxes` and a series of constraints. The output of this Op is a single bounding box that may be used to crop the original image. The output is returned as 3 tensors: `begin`, `size` and `bboxes`. The first 2 tensors can be fed directly into `tf.slice` to crop the image. The latter may be supplied to `tf.image.draw_bounding_boxes` to visualize what the bounding box looks like. Bounding boxes are supplied and returned as `[y_min, x_min, y_max, x_max]`. The bounding box coordinates are floats in `[0.0, 1.0]` relative to the width and height of the underlying image. For example, ```python # Generate a single distorted bounding box. begin, size, bbox_for_draw = tf.image.sample_distorted_bounding_box( tf.shape(image), bounding_boxes=bounding_boxes, min_object_covered=0.1) # Draw the bounding box in an image summary. image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0), bbox_for_draw) tf.summary.image('images_with_box', image_with_box) # Employ the bounding box to distort the image. distorted_image = tf.slice(image, begin, size) ``` Note that if no bounding box information is available, setting `use_image_if_no_bounding_boxes = true` will assume there is a single implicit bounding box covering the whole image. If `use_image_if_no_bounding_boxes` is false and no bounding boxes are supplied, an error is raised. Args: image_size: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`. 1-D, containing `[height, width, channels]`. bounding_boxes: A `Tensor` of type `float32`. 3-D with shape `[batch, N, 4]` describing the N bounding boxes associated with the image. seed: An optional `int`. Defaults to `0`. If `seed` is set to non-zero, the random number generator is seeded by the given `seed`. Otherwise, it is seeded by a random seed. min_object_covered: A Tensor of type `float32`. Defaults to `0.1`. The cropped area of the image must contain at least this fraction of any bounding box supplied. The value of this parameter should be non-negative. In the case of 0, the cropped area does not need to overlap any of the bounding boxes supplied. aspect_ratio_range: An optional list of `floats`. Defaults to `[0.75, 1.33]`. The cropped area of the image must have an aspect `ratio = width / height` within this range. area_range: An optional list of `floats`. Defaults to `[0.05, 1]`. The cropped area of the image must contain a fraction of the supplied image within this range. max_attempts: An optional `int`. Defaults to `100`. Number of attempts at generating a cropped region of the image of the specified constraints. After `max_attempts` failures, return the entire image. use_image_if_no_bounding_boxes: An optional `bool`. Defaults to `False`. Controls behavior if no bounding boxes supplied. If true, assume an implicit bounding box covering the whole input. If false, raise an error. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (begin, size, bboxes). begin: A `Tensor`. Has the same type as `image_size`. 1-D, containing `[offset_height, offset_width, 0]`. Provide as input to `tf.slice`. size: A `Tensor`. Has the same type as `image_size`. 1-D, containing `[target_height, target_width, -1]`. Provide as input to `tf.slice`. bboxes: A `Tensor` of type `float32`. 3-D with shape `[1, 1, 4]` containing the distorted bounding box. Provide as input to `tf.image.draw_bounding_boxes`. """ seed1, seed2 = random_seed.get_seed(seed) if seed else (0, 0) return sample_distorted_bounding_box( image_size, bounding_boxes, seed1, seed2, min_object_covered, aspect_ratio_range, area_range, max_attempts, use_image_if_no_bounding_boxes, name) @tf_export(v1=['image.sample_distorted_bounding_box']) @deprecation.deprecated(date=None, instructions='`seed2` arg is deprecated.' 'Use sample_distorted_bounding_box_v2 instead.') def sample_distorted_bounding_box(image_size, bounding_boxes, seed=None, seed2=None, min_object_covered=0.1, aspect_ratio_range=None, area_range=None, max_attempts=None, use_image_if_no_bounding_boxes=None, name=None): """Generate a single randomly distorted bounding box for an image. Bounding box annotations are often supplied in addition to ground-truth labels in image recognition or object localization tasks. A common technique for training such a system is to randomly distort an image while preserving its content, i.e. *data augmentation*. This Op outputs a randomly distorted localization of an object, i.e. bounding box, given an `image_size`, `bounding_boxes` and a series of constraints. The output of this Op is a single bounding box that may be used to crop the original image. The output is returned as 3 tensors: `begin`, `size` and `bboxes`. The first 2 tensors can be fed directly into `tf.slice` to crop the image. The latter may be supplied to `tf.image.draw_bounding_boxes` to visualize what the bounding box looks like. Bounding boxes are supplied and returned as `[y_min, x_min, y_max, x_max]`. The bounding box coordinates are floats in `[0.0, 1.0]` relative to the width and height of the underlying image. For example, ```python # Generate a single distorted bounding box. begin, size, bbox_for_draw = tf.image.sample_distorted_bounding_box( tf.shape(image), bounding_boxes=bounding_boxes, min_object_covered=0.1) # Draw the bounding box in an image summary. image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0), bbox_for_draw) tf.summary.image('images_with_box', image_with_box) # Employ the bounding box to distort the image. distorted_image = tf.slice(image, begin, size) ``` Note that if no bounding box information is available, setting `use_image_if_no_bounding_boxes = true` will assume there is a single implicit bounding box covering the whole image. If `use_image_if_no_bounding_boxes` is false and no bounding boxes are supplied, an error is raised. Args: image_size: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`. 1-D, containing `[height, width, channels]`. bounding_boxes: A `Tensor` of type `float32`. 3-D with shape `[batch, N, 4]` describing the N bounding boxes associated with the image. seed: An optional `int`. Defaults to `0`. If either `seed` or `seed2` are set to non-zero, the random number generator is seeded by the given `seed`. Otherwise, it is seeded by a random seed. seed2: An optional `int`. Defaults to `0`. A second seed to avoid seed collision. min_object_covered: A Tensor of type `float32`. Defaults to `0.1`. The cropped area of the image must contain at least this fraction of any bounding box supplied. The value of this parameter should be non-negative. In the case of 0, the cropped area does not need to overlap any of the bounding boxes supplied. aspect_ratio_range: An optional list of `floats`. Defaults to `[0.75, 1.33]`. The cropped area of the image must have an aspect ratio = width / height within this range. area_range: An optional list of `floats`. Defaults to `[0.05, 1]`. The cropped area of the image must contain a fraction of the supplied image within this range. max_attempts: An optional `int`. Defaults to `100`. Number of attempts at generating a cropped region of the image of the specified constraints. After `max_attempts` failures, return the entire image. use_image_if_no_bounding_boxes: An optional `bool`. Defaults to `False`. Controls behavior if no bounding boxes supplied. If true, assume an implicit bounding box covering the whole input. If false, raise an error. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (begin, size, bboxes). begin: A `Tensor`. Has the same type as `image_size`. 1-D, containing `[offset_height, offset_width, 0]`. Provide as input to `tf.slice`. size: A `Tensor`. Has the same type as `image_size`. 1-D, containing `[target_height, target_width, -1]`. Provide as input to `tf.slice`. bboxes: A `Tensor` of type `float32`. 3-D with shape `[1, 1, 4]` containing the distorted bounding box. Provide as input to `tf.image.draw_bounding_boxes`. """ with ops.name_scope(name, 'sample_distorted_bounding_box'): return gen_image_ops.sample_distorted_bounding_box_v2( image_size, bounding_boxes, seed=seed, seed2=seed2, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts, use_image_if_no_bounding_boxes=use_image_if_no_bounding_boxes, name=name) @tf_export('image.non_max_suppression') def non_max_suppression(boxes, scores, max_output_size, iou_threshold=0.5, score_threshold=float('-inf'), name=None): """Greedily selects a subset of bounding boxes in descending order of score. Prunes away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. Bounding boxes are supplied as [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any diagonal pair of box corners and the coordinates can be provided as normalized (i.e., lying in the interval [0, 1]) or absolute. Note that this algorithm is agnostic to where the origin is in the coordinate system. Note that this algorithm is invariant to orthogonal transformations and translations of the coordinate system; thus translating or reflections of the coordinate system result in the same boxes being selected by the algorithm. The output of this operation is a set of integers indexing into the input collection of bounding boxes representing the selected boxes. The bounding box coordinates corresponding to the selected indices can then be obtained using the `tf.gather operation`. For example: selected_indices = tf.image.non_max_suppression( boxes, scores, max_output_size, iou_threshold) selected_boxes = tf.gather(boxes, selected_indices) Args: boxes: A 2-D float `Tensor` of shape `[num_boxes, 4]`. scores: A 1-D float `Tensor` of shape `[num_boxes]` representing a single score corresponding to each box (each row of boxes). max_output_size: A scalar integer `Tensor` representing the maximum number of boxes to be selected by non max suppression. iou_threshold: A float representing the threshold for deciding whether boxes overlap too much with respect to IOU. score_threshold: A float representing the threshold for deciding when to remove boxes based on score. name: A name for the operation (optional). Returns: selected_indices: A 1-D integer `Tensor` of shape `[M]` representing the selected indices from the boxes tensor, where `M <= max_output_size`. """ with ops.name_scope(name, 'non_max_suppression'): iou_threshold = ops.convert_to_tensor(iou_threshold, name='iou_threshold') score_threshold = ops.convert_to_tensor( score_threshold, name='score_threshold') return gen_image_ops.non_max_suppression_v3(boxes, scores, max_output_size, iou_threshold, score_threshold) @tf_export('image.non_max_suppression_padded') def non_max_suppression_padded(boxes, scores, max_output_size, iou_threshold=0.5, score_threshold=float('-inf'), pad_to_max_output_size=False, name=None): """Greedily selects a subset of bounding boxes in descending order of score. Performs algorithmically equivalent operation to tf.image.non_max_suppression, with the addition of an optional parameter which zero-pads the output to be of size `max_output_size`. The output of this operation is a tuple containing the set of integers indexing into the input collection of bounding boxes representing the selected boxes and the number of valid indices in the index set. The bounding box coordinates corresponding to the selected indices can then be obtained using the `tf.slice` and `tf.gather` operations. For example: selected_indices_padded, num_valid = tf.image.non_max_suppression_padded( boxes, scores, max_output_size, iou_threshold, score_threshold, pad_to_max_output_size=True) selected_indices = tf.slice( selected_indices_padded, tf.constant([0]), num_valid) selected_boxes = tf.gather(boxes, selected_indices) Args: boxes: A 2-D float `Tensor` of shape `[num_boxes, 4]`. scores: A 1-D float `Tensor` of shape `[num_boxes]` representing a single score corresponding to each box (each row of boxes). max_output_size: A scalar integer `Tensor` representing the maximum number of boxes to be selected by non max suppression. iou_threshold: A float representing the threshold for deciding whether boxes overlap too much with respect to IOU. score_threshold: A float representing the threshold for deciding when to remove boxes based on score. pad_to_max_output_size: bool. If True, size of `selected_indices` output is padded to `max_output_size`. name: A name for the operation (optional). Returns: selected_indices: A 1-D integer `Tensor` of shape `[M]` representing the selected indices from the boxes tensor, where `M <= max_output_size`. valid_outputs: A scalar integer `Tensor` denoting how many elements in `selected_indices` are valid. Valid elements occur first, then padding. """ with ops.name_scope(name, 'non_max_suppression_padded'): iou_threshold = ops.convert_to_tensor(iou_threshold, name='iou_threshold') score_threshold = ops.convert_to_tensor( score_threshold, name='score_threshold') if compat.forward_compatible(2018, 8, 7) or pad_to_max_output_size: return gen_image_ops.non_max_suppression_v4( boxes, scores, max_output_size, iou_threshold, score_threshold, pad_to_max_output_size) else: return gen_image_ops.non_max_suppression_v3( boxes, scores, max_output_size, iou_threshold, score_threshold) @tf_export('image.non_max_suppression_overlaps') def non_max_suppression_with_overlaps(overlaps, scores, max_output_size, overlap_threshold=0.5, score_threshold=float('-inf'), name=None): """Greedily selects a subset of bounding boxes in descending order of score. Prunes away boxes that have high overlap with previously selected boxes. N-by-n overlap values are supplied as square matrix. The output of this operation is a set of integers indexing into the input collection of bounding boxes representing the selected boxes. The bounding box coordinates corresponding to the selected indices can then be obtained using the `tf.gather operation`. For example: selected_indices = tf.image.non_max_suppression_overlaps( overlaps, scores, max_output_size, iou_threshold) selected_boxes = tf.gather(boxes, selected_indices) Args: overlaps: A 2-D float `Tensor` of shape `[num_boxes, num_boxes]`. scores: A 1-D float `Tensor` of shape `[num_boxes]` representing a single score corresponding to each box (each row of boxes). max_output_size: A scalar integer `Tensor` representing the maximum number of boxes to be selected by non max suppression. overlap_threshold: A float representing the threshold for deciding whether boxes overlap too much with respect to the provided overlap values. score_threshold: A float representing the threshold for deciding when to remove boxes based on score. name: A name for the operation (optional). Returns: selected_indices: A 1-D integer `Tensor` of shape `[M]` representing the selected indices from the overlaps tensor, where `M <= max_output_size`. """ with ops.name_scope(name, 'non_max_suppression_overlaps'): overlap_threshold = ops.convert_to_tensor( overlap_threshold, name='overlap_threshold') # pylint: disable=protected-access return gen_image_ops.non_max_suppression_with_overlaps( overlaps, scores, max_output_size, overlap_threshold, score_threshold) # pylint: enable=protected-access _rgb_to_yiq_kernel = [[0.299, 0.59590059, 0.2115], [0.587, -0.27455667, -0.52273617], [0.114, -0.32134392, 0.31119955]] @tf_export('image.rgb_to_yiq') def rgb_to_yiq(images): """Converts one or more images from RGB to YIQ. Outputs a tensor of the same shape as the `images` tensor, containing the YIQ value of the pixels. The output is only well defined if the value in images are in [0,1]. Args: images: 2-D or higher rank. Image data to convert. Last dimension must be size 3. Returns: images: tensor with the same shape as `images`. """ images = ops.convert_to_tensor(images, name='images') kernel = ops.convert_to_tensor( _rgb_to_yiq_kernel, dtype=images.dtype, name='kernel') ndims = images.get_shape().ndims return math_ops.tensordot(images, kernel, axes=[[ndims - 1], [0]]) _yiq_to_rgb_kernel = [[1, 1, 1], [0.95598634, -0.27201283, -1.10674021], [0.6208248, -0.64720424, 1.70423049]] @tf_export('image.yiq_to_rgb') def yiq_to_rgb(images): """Converts one or more images from YIQ to RGB. Outputs a tensor of the same shape as the `images` tensor, containing the RGB value of the pixels. The output is only well defined if the Y value in images are in [0,1], I value are in [-0.5957,0.5957] and Q value are in [-0.5226,0.5226]. Args: images: 2-D or higher rank. Image data to convert. Last dimension must be size 3. Returns: images: tensor with the same shape as `images`. """ images = ops.convert_to_tensor(images, name='images') kernel = ops.convert_to_tensor( _yiq_to_rgb_kernel, dtype=images.dtype, name='kernel') ndims = images.get_shape().ndims return math_ops.tensordot(images, kernel, axes=[[ndims - 1], [0]]) _rgb_to_yuv_kernel = [[0.299, -0.14714119, 0.61497538], [0.587, -0.28886916, -0.51496512], [0.114, 0.43601035, -0.10001026]] @tf_export('image.rgb_to_yuv') def rgb_to_yuv(images): """Converts one or more images from RGB to YUV. Outputs a tensor of the same shape as the `images` tensor, containing the YUV value of the pixels. The output is only well defined if the value in images are in [0,1]. Args: images: 2-D or higher rank. Image data to convert. Last dimension must be size 3. Returns: images: tensor with the same shape as `images`. """ images = ops.convert_to_tensor(images, name='images') kernel = ops.convert_to_tensor( _rgb_to_yuv_kernel, dtype=images.dtype, name='kernel') ndims = images.get_shape().ndims return math_ops.tensordot(images, kernel, axes=[[ndims - 1], [0]]) _yuv_to_rgb_kernel = [[1, 1, 1], [0, -0.394642334, 2.03206185], [1.13988303, -0.58062185, 0]] @tf_export('image.yuv_to_rgb') def yuv_to_rgb(images): """Converts one or more images from YUV to RGB. Outputs a tensor of the same shape as the `images` tensor, containing the RGB value of the pixels. The output is only well defined if the Y value in images are in [0,1], U and V value are in [-0.5,0.5]. Args: images: 2-D or higher rank. Image data to convert. Last dimension must be size 3. Returns: images: tensor with the same shape as `images`. """ images = ops.convert_to_tensor(images, name='images') kernel = ops.convert_to_tensor( _yuv_to_rgb_kernel, dtype=images.dtype, name='kernel') ndims = images.get_shape().ndims return math_ops.tensordot(images, kernel, axes=[[ndims - 1], [0]]) def _verify_compatible_image_shapes(img1, img2): """Checks if two image tensors are compatible for applying SSIM or PSNR. This function checks if two sets of images have ranks at least 3, and if the last three dimensions match. Args: img1: Tensor containing the first image batch. img2: Tensor containing the second image batch. Returns: A tuple containing: the first tensor shape, the second tensor shape, and a list of control_flow_ops.Assert() ops implementing the checks. Raises: ValueError: When static shape check fails. """ shape1 = img1.get_shape().with_rank_at_least(3) shape2 = img2.get_shape().with_rank_at_least(3) shape1[-3:].assert_is_compatible_with(shape2[-3:]) if shape1.ndims is not None and shape2.ndims is not None: for dim1, dim2 in zip(reversed(shape1.dims[:-3]), reversed(shape2.dims[:-3])): if not (dim1 == 1 or dim2 == 1 or dim1.is_compatible_with(dim2)): raise ValueError( 'Two images are not compatible: %s and %s' % (shape1, shape2)) # Now assign shape tensors. shape1, shape2 = array_ops.shape_n([img1, img2]) # TODO(sjhwang): Check if shape1[:-3] and shape2[:-3] are broadcastable. checks = [] checks.append(control_flow_ops.Assert( math_ops.greater_equal(array_ops.size(shape1), 3), [shape1, shape2], summarize=10)) checks.append(control_flow_ops.Assert( math_ops.reduce_all(math_ops.equal(shape1[-3:], shape2[-3:])), [shape1, shape2], summarize=10)) return shape1, shape2, checks @tf_export('image.psnr') def psnr(a, b, max_val, name=None): """Returns the Peak Signal-to-Noise Ratio between a and b. This is intended to be used on signals (or images). Produces a PSNR value for each image in batch. The last three dimensions of input are expected to be [height, width, depth]. Example: ```python # Read images from file. im1 = tf.decode_png('path/to/im1.png') im2 = tf.decode_png('path/to/im2.png') # Compute PSNR over tf.uint8 Tensors. psnr1 = tf.image.psnr(im1, im2, max_val=255) # Compute PSNR over tf.float32 Tensors. im1 = tf.image.convert_image_dtype(im1, tf.float32) im2 = tf.image.convert_image_dtype(im2, tf.float32) psnr2 = tf.image.psnr(im1, im2, max_val=1.0) # psnr1 and psnr2 both have type tf.float32 and are almost equal. ``` Arguments: a: First set of images. b: Second set of images. max_val: The dynamic range of the images (i.e., the difference between the maximum the and minimum allowed values). name: Namespace to embed the computation in. Returns: The scalar PSNR between a and b. The returned tensor has type `tf.float32` and shape [batch_size, 1]. """ with ops.name_scope(name, 'PSNR', [a, b]): # Need to convert the images to float32. Scale max_val accordingly so that # PSNR is computed correctly. max_val = math_ops.cast(max_val, a.dtype) max_val = convert_image_dtype(max_val, dtypes.float32) a = convert_image_dtype(a, dtypes.float32) b = convert_image_dtype(b, dtypes.float32) mse = math_ops.reduce_mean(math_ops.squared_difference(a, b), [-3, -2, -1]) psnr_val = math_ops.subtract( 20 * math_ops.log(max_val) / math_ops.log(10.0), np.float32(10 / np.log(10)) * math_ops.log(mse), name='psnr') _, _, checks = _verify_compatible_image_shapes(a, b) with ops.control_dependencies(checks): return array_ops.identity(psnr_val) _SSIM_K1 = 0.01 _SSIM_K2 = 0.03 def _ssim_helper(x, y, reducer, max_val, compensation=1.0): r"""Helper function for computing SSIM. SSIM estimates covariances with weighted sums. The default parameters use a biased estimate of the covariance: Suppose `reducer` is a weighted sum, then the mean estimators are \mu_x = \sum_i w_i x_i, \mu_y = \sum_i w_i y_i, where w_i's are the weighted-sum weights, and covariance estimator is cov_{xy} = \sum_i w_i (x_i - \mu_x) (y_i - \mu_y) with assumption \sum_i w_i = 1. This covariance estimator is biased, since E[cov_{xy}] = (1 - \sum_i w_i ^ 2) Cov(X, Y). For SSIM measure with unbiased covariance estimators, pass as `compensation` argument (1 - \sum_i w_i ^ 2). Arguments: x: First set of images. y: Second set of images. reducer: Function that computes 'local' averages from set of images. For non-covolutional version, this is usually tf.reduce_mean(x, [1, 2]), and for convolutional version, this is usually tf.nn.avg_pool or tf.nn.conv2d with weighted-sum kernel. max_val: The dynamic range (i.e., the difference between the maximum possible allowed value and the minimum allowed value). compensation: Compensation factor. See above. Returns: A pair containing the luminance measure, and the contrast-structure measure. """ c1 = (_SSIM_K1 * max_val) ** 2 c2 = (_SSIM_K2 * max_val) ** 2 # SSIM luminance measure is # (2 * mu_x * mu_y + c1) / (mu_x ** 2 + mu_y ** 2 + c1). mean0 = reducer(x) mean1 = reducer(y) num0 = mean0 * mean1 * 2.0 den0 = math_ops.square(mean0) + math_ops.square(mean1) luminance = (num0 + c1) / (den0 + c1) # SSIM contrast-structure measure is # (2 * cov_{xy} + c2) / (cov_{xx} + cov_{yy} + c2). # Note that `reducer` is a weighted sum with weight w_k, \sum_i w_i = 1, then # cov_{xy} = \sum_i w_i (x_i - \mu_x) (y_i - \mu_y) # = \sum_i w_i x_i y_i - (\sum_i w_i x_i) (\sum_j w_j y_j). num1 = reducer(x * y) * 2.0 den1 = reducer(math_ops.square(x) + math_ops.square(y)) c2 *= compensation cs = (num1 - num0 + c2) / (den1 - den0 + c2) # SSIM score is the product of the luminance and contrast-structure measures. return luminance, cs def _fspecial_gauss(size, sigma): """Function to mimic the 'fspecial' gaussian MATLAB function.""" size = ops.convert_to_tensor(size, dtypes.int32) sigma = ops.convert_to_tensor(sigma) coords = math_ops.cast(math_ops.range(size), sigma.dtype) coords -= math_ops.cast(size - 1, sigma.dtype) / 2.0 g = math_ops.square(coords) g *= -0.5 / math_ops.square(sigma) g = array_ops.reshape(g, shape=[1, -1]) + array_ops.reshape(g, shape=[-1, 1]) g = array_ops.reshape(g, shape=[1, -1]) # For tf.nn.softmax(). g = nn_ops.softmax(g) return array_ops.reshape(g, shape=[size, size, 1, 1]) def _ssim_per_channel(img1, img2, max_val=1.0): """Computes SSIM index between img1 and img2 per color channel. This function matches the standard SSIM implementation from: Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing. Details: - 11x11 Gaussian filter of width 1.5 is used. - k1 = 0.01, k2 = 0.03 as in the original paper. Args: img1: First image batch. img2: Second image batch. max_val: The dynamic range of the images (i.e., the difference between the maximum the and minimum allowed values). Returns: A pair of tensors containing and channel-wise SSIM and contrast-structure values. The shape is [..., channels]. """ filter_size = constant_op.constant(11, dtype=dtypes.int32) filter_sigma = constant_op.constant(1.5, dtype=img1.dtype) shape1, shape2 = array_ops.shape_n([img1, img2]) checks = [ control_flow_ops.Assert(math_ops.reduce_all(math_ops.greater_equal( shape1[-3:-1], filter_size)), [shape1, filter_size], summarize=8), control_flow_ops.Assert(math_ops.reduce_all(math_ops.greater_equal( shape2[-3:-1], filter_size)), [shape2, filter_size], summarize=8)] # Enforce the check to run before computation. with ops.control_dependencies(checks): img1 = array_ops.identity(img1) # TODO(sjhwang): Try to cache kernels and compensation factor. kernel = _fspecial_gauss(filter_size, filter_sigma) kernel = array_ops.tile(kernel, multiples=[1, 1, shape1[-1], 1]) # The correct compensation factor is `1.0 - tf.reduce_sum(tf.square(kernel))`, # but to match MATLAB implementation of MS-SSIM, we use 1.0 instead. compensation = 1.0 # TODO(sjhwang): Try FFT. # TODO(sjhwang): Gaussian kernel is separable in space. Consider applying # 1-by-n and n-by-1 Gaussain filters instead of an n-by-n filter. def reducer(x): shape = array_ops.shape(x) x = array_ops.reshape(x, shape=array_ops.concat([[-1], shape[-3:]], 0)) y = nn.depthwise_conv2d(x, kernel, strides=[1, 1, 1, 1], padding='VALID') return array_ops.reshape(y, array_ops.concat([shape[:-3], array_ops.shape(y)[1:]], 0)) luminance, cs = _ssim_helper(img1, img2, reducer, max_val, compensation) # Average over the second and the third from the last: height, width. axes = constant_op.constant([-3, -2], dtype=dtypes.int32) ssim_val = math_ops.reduce_mean(luminance * cs, axes) cs = math_ops.reduce_mean(cs, axes) return ssim_val, cs @tf_export('image.ssim') def ssim(img1, img2, max_val): """Computes SSIM index between img1 and img2. This function is based on the standard SSIM implementation from: Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing. Note: The true SSIM is only defined on grayscale. This function does not perform any colorspace transform. (If input is already YUV, then it will compute YUV SSIM average.) Details: - 11x11 Gaussian filter of width 1.5 is used. - k1 = 0.01, k2 = 0.03 as in the original paper. The image sizes must be at least 11x11 because of the filter size. Example: ```python # Read images from file. im1 = tf.decode_png('path/to/im1.png') im2 = tf.decode_png('path/to/im2.png') # Compute SSIM over tf.uint8 Tensors. ssim1 = tf.image.ssim(im1, im2, max_val=255) # Compute SSIM over tf.float32 Tensors. im1 = tf.image.convert_image_dtype(im1, tf.float32) im2 = tf.image.convert_image_dtype(im2, tf.float32) ssim2 = tf.image.ssim(im1, im2, max_val=1.0) # ssim1 and ssim2 both have type tf.float32 and are almost equal. ``` Args: img1: First image batch. img2: Second image batch. max_val: The dynamic range of the images (i.e., the difference between the maximum the and minimum allowed values). Returns: A tensor containing an SSIM value for each image in batch. Returned SSIM values are in range (-1, 1], when pixel values are non-negative. Returns a tensor with shape: broadcast(img1.shape[:-3], img2.shape[:-3]). """ _, _, checks = _verify_compatible_image_shapes(img1, img2) with ops.control_dependencies(checks): img1 = array_ops.identity(img1) # Need to convert the images to float32. Scale max_val accordingly so that # SSIM is computed correctly. max_val = math_ops.cast(max_val, img1.dtype) max_val = convert_image_dtype(max_val, dtypes.float32) img1 = convert_image_dtype(img1, dtypes.float32) img2 = convert_image_dtype(img2, dtypes.float32) ssim_per_channel, _ = _ssim_per_channel(img1, img2, max_val) # Compute average over color channels. return math_ops.reduce_mean(ssim_per_channel, [-1]) # Default values obtained by Wang et al. _MSSSIM_WEIGHTS = (0.0448, 0.2856, 0.3001, 0.2363, 0.1333) @tf_export('image.ssim_multiscale') def ssim_multiscale(img1, img2, max_val, power_factors=_MSSSIM_WEIGHTS): """Computes the MS-SSIM between img1 and img2. This function assumes that `img1` and `img2` are image batches, i.e. the last three dimensions are [height, width, channels]. Note: The true SSIM is only defined on grayscale. This function does not perform any colorspace transform. (If input is already YUV, then it will compute YUV SSIM average.) Original paper: Wang, Zhou, Eero P. Simoncelli, and Alan C. Bovik. "Multiscale structural similarity for image quality assessment." Signals, Systems and Computers, 2004. Arguments: img1: First image batch. img2: Second image batch. Must have the same rank as img1. max_val: The dynamic range of the images (i.e., the difference between the maximum the and minimum allowed values). power_factors: Iterable of weights for each of the scales. The number of scales used is the length of the list. Index 0 is the unscaled resolution's weight and each increasing scale corresponds to the image being downsampled by 2. Defaults to (0.0448, 0.2856, 0.3001, 0.2363, 0.1333), which are the values obtained in the original paper. Returns: A tensor containing an MS-SSIM value for each image in batch. The values are in range [0, 1]. Returns a tensor with shape: broadcast(img1.shape[:-3], img2.shape[:-3]). """ # Shape checking. shape1 = img1.get_shape().with_rank_at_least(3) shape2 = img2.get_shape().with_rank_at_least(3) shape1[-3:].merge_with(shape2[-3:]) with ops.name_scope(None, 'MS-SSIM', [img1, img2]): shape1, shape2, checks = _verify_compatible_image_shapes(img1, img2) with ops.control_dependencies(checks): img1 = array_ops.identity(img1) # Need to convert the images to float32. Scale max_val accordingly so that # SSIM is computed correctly. max_val = math_ops.cast(max_val, img1.dtype) max_val = convert_image_dtype(max_val, dtypes.float32) img1 = convert_image_dtype(img1, dtypes.float32) img2 = convert_image_dtype(img2, dtypes.float32) imgs = [img1, img2] shapes = [shape1, shape2] # img1 and img2 are assumed to be a (multi-dimensional) batch of # 3-dimensional images (height, width, channels). `heads` contain the batch # dimensions, and `tails` contain the image dimensions. heads = [s[:-3] for s in shapes] tails = [s[-3:] for s in shapes] divisor = [1, 2, 2, 1] divisor_tensor = constant_op.constant(divisor[1:], dtype=dtypes.int32) def do_pad(images, remainder): padding = array_ops.expand_dims(remainder, -1) padding = array_ops.pad(padding, [[1, 0], [1, 0]]) return [array_ops.pad(x, padding, mode='SYMMETRIC') for x in images] mcs = [] for k in range(len(power_factors)): with ops.name_scope(None, 'Scale%d' % k, imgs): if k > 0: # Avg pool takes rank 4 tensors. Flatten leading dimensions. flat_imgs = [ array_ops.reshape(x, array_ops.concat([[-1], t], 0)) for x, t in zip(imgs, tails) ] remainder = tails[0] % divisor_tensor need_padding = math_ops.reduce_any(math_ops.not_equal(remainder, 0)) # pylint: disable=cell-var-from-loop padded = control_flow_ops.cond(need_padding, lambda: do_pad(flat_imgs, remainder), lambda: flat_imgs) # pylint: enable=cell-var-from-loop downscaled = [nn_ops.avg_pool(x, ksize=divisor, strides=divisor, padding='VALID') for x in padded] tails = [x[1:] for x in array_ops.shape_n(downscaled)] imgs = [ array_ops.reshape(x, array_ops.concat([h, t], 0)) for x, h, t in zip(downscaled, heads, tails) ] # Overwrite previous ssim value since we only need the last one. ssim_per_channel, cs = _ssim_per_channel(*imgs, max_val=max_val) mcs.append(nn_ops.relu(cs)) # Remove the cs score for the last scale. In the MS-SSIM calculation, # we use the l(p) at the highest scale. l(p) * cs(p) is ssim(p). mcs.pop() # Remove the cs score for the last scale. mcs_and_ssim = array_ops.stack(mcs + [nn_ops.relu(ssim_per_channel)], axis=-1) # Take weighted geometric mean across the scale axis. ms_ssim = math_ops.reduce_prod(math_ops.pow(mcs_and_ssim, power_factors), [-1]) return math_ops.reduce_mean(ms_ssim, [-1]) # Avg over color channels. @tf_export('image.image_gradients') def image_gradients(image): """Returns image gradients (dy, dx) for each color channel. Both output tensors have the same shape as the input: [batch_size, h, w, d]. The gradient values are organized so that [I(x+1, y) - I(x, y)] is in location (x, y). That means that dy will always have zeros in the last row, and dx will always have zeros in the last column. Arguments: image: Tensor with shape [batch_size, h, w, d]. Returns: Pair of tensors (dy, dx) holding the vertical and horizontal image gradients (1-step finite difference). Raises: ValueError: If `image` is not a 4D tensor. """ if image.get_shape().ndims != 4: raise ValueError('image_gradients expects a 4D tensor ' '[batch_size, h, w, d], not %s.', image.get_shape()) image_shape = array_ops.shape(image) batch_size, height, width, depth = array_ops.unstack(image_shape) dy = image[:, 1:, :, :] - image[:, :-1, :, :] dx = image[:, :, 1:, :] - image[:, :, :-1, :] # Return tensors with same size as original image by concatenating # zeros. Place the gradient [I(x+1,y) - I(x,y)] on the base pixel (x, y). shape = array_ops.stack([batch_size, 1, width, depth]) dy = array_ops.concat([dy, array_ops.zeros(shape, image.dtype)], 1) dy = array_ops.reshape(dy, image_shape) shape = array_ops.stack([batch_size, height, 1, depth]) dx = array_ops.concat([dx, array_ops.zeros(shape, image.dtype)], 2) dx = array_ops.reshape(dx, image_shape) return dy, dx @tf_export('image.sobel_edges') def sobel_edges(image): """Returns a tensor holding Sobel edge maps. Arguments: image: Image tensor with shape [batch_size, h, w, d] and type float32 or float64. The image(s) must be 2x2 or larger. Returns: Tensor holding edge maps for each channel. Returns a tensor with shape [batch_size, h, w, d, 2] where the last two dimensions hold [[dy[0], dx[0]], [dy[1], dx[1]], ..., [dy[d-1], dx[d-1]]] calculated using the Sobel filter. """ # Define vertical and horizontal Sobel filters. static_image_shape = image.get_shape() image_shape = array_ops.shape(image) kernels = [[[-1, -2, -1], [0, 0, 0], [1, 2, 1]], [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]] num_kernels = len(kernels) kernels = np.transpose(np.asarray(kernels), (1, 2, 0)) kernels = np.expand_dims(kernels, -2) kernels_tf = constant_op.constant(kernels, dtype=image.dtype) kernels_tf = array_ops.tile(kernels_tf, [1, 1, image_shape[-1], 1], name='sobel_filters') # Use depth-wise convolution to calculate edge maps per channel. pad_sizes = [[0, 0], [1, 1], [1, 1], [0, 0]] padded = array_ops.pad(image, pad_sizes, mode='REFLECT') # Output tensor has shape [batch_size, h, w, d * num_kernels]. strides = [1, 1, 1, 1] output = nn.depthwise_conv2d(padded, kernels_tf, strides, 'VALID') # Reshape to [batch_size, h, w, d, num_kernels]. shape = array_ops.concat([image_shape, [num_kernels]], 0) output = array_ops.reshape(output, shape=shape) output.set_shape(static_image_shape.concatenate([num_kernels])) return output resize_area_deprecation = deprecation.deprecated( date=None, instructions=( 'Use `tf.image.resize(...method=ResizeMethod.AREA...)` instead.')) tf_export(v1=['image.resize_area'])( resize_area_deprecation(gen_image_ops.resize_area)) resize_bicubic_deprecation = deprecation.deprecated( date=None, instructions=( 'Use `tf.image.resize(...method=ResizeMethod.BICUBIC...)` instead.')) tf_export(v1=['image.resize_bicubic'])( resize_bicubic_deprecation(gen_image_ops.resize_bicubic)) resize_bilinear_deprecation = deprecation.deprecated( date=None, instructions=( 'Use `tf.image.resize(...method=ResizeMethod.BILINEAR...)` instead.')) tf_export(v1=['image.resize_bilinear'])( resize_bilinear_deprecation(gen_image_ops.resize_bilinear)) resize_nearest_neighbor_deprecation = deprecation.deprecated( date=None, instructions=( 'Use `tf.image.resize(...method=ResizeMethod.NEAREST_NEIGHBOR...)` ' 'instead.')) tf_export(v1=['image.resize_nearest_neighbor'])( resize_nearest_neighbor_deprecation(gen_image_ops.resize_nearest_neighbor)) @tf_export('image.crop_and_resize', v1=[]) def crop_and_resize_v2( image, boxes, box_indices, crop_size, method='bilinear', extrapolation_value=0, name=None): """Extracts crops from the input image tensor and resizes them. Extracts crops from the input image tensor and resizes them using bilinear sampling or nearest neighbor sampling (possibly with aspect ratio change) to a common output size specified by `crop_size`. This is more general than the `crop_to_bounding_box` op which extracts a fixed size slice from the input image and does not allow resizing or aspect ratio change. Returns a tensor with `crops` from the input `image` at positions defined at the bounding box locations in `boxes`. The cropped boxes are all resized (with bilinear or nearest neighbor interpolation) to a fixed `size = [crop_height, crop_width]`. The result is a 4-D tensor `[num_boxes, crop_height, crop_width, depth]`. The resizing is corner aligned. In particular, if `boxes = [[0, 0, 1, 1]]`, the method will give identical results to using `tf.image.resize_bilinear()` or `tf.image.resize_nearest_neighbor()`(depends on the `method` argument) with `align_corners=True`. Args: image: A 4-D tensor of shape `[batch, image_height, image_width, depth]`. Both `image_height` and `image_width` need to be positive. boxes: A 2-D tensor of shape `[num_boxes, 4]`. The `i`-th row of the tensor specifies the coordinates of a box in the `box_ind[i]` image and is specified in normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so as the `[0, 1]` interval of normalized image height is mapped to `[0, image_height - 1]` in image height coordinates. We do allow `y1` > `y2`, in which case the sampled crop is an up-down flipped version of the original image. The width dimension is treated similarly. Normalized coordinates outside the `[0, 1]` range are allowed, in which case we use `extrapolation_value` to extrapolate the input image values. box_indices: A 1-D tensor of shape `[num_boxes]` with int32 values in `[0, batch)`. The value of `box_ind[i]` specifies the image that the `i`-th box refers to. crop_size: A 1-D tensor of 2 elements, `size = [crop_height, crop_width]`. All cropped image patches are resized to this size. The aspect ratio of the image content is not preserved. Both `crop_height` and `crop_width` need to be positive. method: An optional string specifying the sampling method for resizing. It can be either `"bilinear"` or `"nearest"` and default to `"bilinear"`. Currently two sampling methods are supported: Bilinear and Nearest Neighbor. extrapolation_value: An optional `float`. Defaults to `0`. Value used for extrapolation, when applicable. name: A name for the operation (optional). Returns: A 4-D tensor of shape `[num_boxes, crop_height, crop_width, depth]`. """ return gen_image_ops.crop_and_resize( image, boxes, box_indices, crop_size, method, extrapolation_value, name) crop_and_resize_deprecation = deprecation.deprecated_args( None, 'box_ind is deprecated, use box_indices instead', 'box_ind') tf_export(v1=['image.crop_and_resize'])( crop_and_resize_deprecation(gen_image_ops.crop_and_resize))
SamuelMarks/kubernetes
refs/heads/master
build/json-extractor.py
413
#!/usr/bin/env python # Copyright 2014 The Kubernetes Authors All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This is a very simple utility that reads a JSON document from stdin, parses it # and returns the specified value. The value is described using a simple dot # notation. If any errors are encountered along the way, an error is output and # a failure value is returned. from __future__ import print_function import json import sys def PrintError(*err): print(*err, file=sys.stderr) def main(): try: obj = json.load(sys.stdin) except Exception, e: PrintError("Error loading JSON: {0}".format(str(e))) if len(sys.argv) == 1: # if we don't have a query string, return success return 0 elif len(sys.argv) > 2: PrintError("Usage: {0} <json query>".format(sys.args[0])) return 1 query_list = sys.argv[1].split('.') for q in query_list: if isinstance(obj, dict): if q not in obj: PrintError("Couldn't find '{0}' in dict".format(q)) return 1 obj = obj[q] elif isinstance(obj, list): try: index = int(q) except: PrintError("Can't use '{0}' to index into array".format(q)) return 1 if index >= len(obj): PrintError("Index ({0}) is greater than length of list ({1})".format(q, len(obj))) return 1 obj = obj[index] else: PrintError("Trying to query non-queryable object: {0}".format(q)) return 1 if isinstance(obj, str): print(obj) else: print(json.dumps(obj, indent=2)) if __name__ == "__main__": sys.exit(main())
jswope00/griffinx
refs/heads/master
pavelib/paver_tests/test_paver_bok_choy_cmds.py
8
import os import unittest from pavelib.utils.test.suites.bokchoy_suite import BokChoyTestSuite REPO_DIR = os.getcwd() class TestPaverBokChoyCmd(unittest.TestCase): def setUp(self): self.request = BokChoyTestSuite('') def _expected_command(self, expected_text_append, expected_default_store=None): if expected_text_append: expected_text_append = "/" + expected_text_append expected_statement = ("DEFAULT_STORE={default_store} SCREENSHOT_DIR='{repo_dir}/test_root/log' " "BOK_CHOY_HAR_DIR='{repo_dir}/test_root/log/hars' " "SELENIUM_DRIVER_LOG_DIR='{repo_dir}/test_root/log' " "nosetests {repo_dir}/common/test/acceptance/tests{exp_text} " "--with-xunit " "--xunit-file={repo_dir}/reports/bok_choy/xunit.xml " "--verbosity=2 ".format(default_store=expected_default_store, repo_dir=REPO_DIR, exp_text=expected_text_append)) return expected_statement def test_default_bokchoy(self): self.assertEqual(self.request.cmd, self._expected_command('')) def test_suite_request_bokchoy(self): self.request.test_spec = "test_foo.py" self.assertEqual(self.request.cmd, self._expected_command(self.request.test_spec)) def test_class_request_bokchoy(self): self.request.test_spec = "test_foo.py:FooTest" self.assertEqual(self.request.cmd, self._expected_command(self.request.test_spec)) def test_case_request_bokchoy(self): self.request.test_spec = "test_foo.py:FooTest.test_bar" self.assertEqual(self.request.cmd, self._expected_command(self.request.test_spec)) def test_default_bokchoy_with_draft_default_store(self): self.request.test_spec = "test_foo.py" self.request.default_store = "draft" self.assertEqual(self.request.cmd, self._expected_command(self.request.test_spec, "draft")) def test_default_bokchoy_with_invalid_default_store(self): # the cmd will dumbly compose whatever we pass in for the default_store self.request.test_spec = "test_foo.py" self.request.default_store = "invalid" self.assertEqual(self.request.cmd, self._expected_command(self.request.test_spec, "invalid"))
SaschaMester/delicium
refs/heads/master
build/android/gyp/pack_relocations.py
34
#!/usr/bin/env python # # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Pack relocations in a library (or copy unchanged). If --enable-packing and --configuration-name=='Release', invoke the relocation_packer tool to pack the .rel.dyn or .rela.dyn section in the given library files. This step is inserted after the libraries are stripped. If --enable-packing is zero, the script copies files verbatim, with no attempt to pack relocations. Any library listed in --exclude-packing-list is also copied verbatim, irrespective of any --enable-packing setting. Typically this would be 'libchromium_android_linker.so'. """ import optparse import os import shlex import shutil import sys import tempfile from util import build_utils def PackLibraryRelocations(android_pack_relocations, library_path, output_path): shutil.copy(library_path, output_path) pack_command = [android_pack_relocations, output_path] build_utils.CheckOutput(pack_command) def CopyLibraryUnchanged(library_path, output_path): shutil.copy(library_path, output_path) def main(args): args = build_utils.ExpandFileArgs(args) parser = optparse.OptionParser() build_utils.AddDepfileOption(parser) parser.add_option('--clear-dir', action='store_true', help='If set, the destination directory will be deleted ' 'before copying files to it. This is highly recommended to ' 'ensure that no stale files are left in the directory.') parser.add_option('--configuration-name', default='Release', help='Gyp configuration name (i.e. Debug, Release)') parser.add_option('--enable-packing', choices=['0', '1'], help=('Pack relocations if 1 and configuration name is \'Release\',' ' otherwise plain file copy')) parser.add_option('--exclude-packing-list', default='', help='Names of any libraries explicitly not packed') parser.add_option('--android-pack-relocations', help='Path to the relocations packer binary') parser.add_option('--stripped-libraries-dir', help='Directory for stripped libraries') parser.add_option('--packed-libraries-dir', help='Directory for packed libraries') parser.add_option('--libraries', action='append', help='List of libraries') parser.add_option('--stamp', help='Path to touch on success') options, _ = parser.parse_args(args) enable_packing = (options.enable_packing == '1' and options.configuration_name == 'Release') exclude_packing_set = set(shlex.split(options.exclude_packing_list)) libraries = [] for libs_arg in options.libraries: libraries += build_utils.ParseGypList(libs_arg) if options.clear_dir: build_utils.DeleteDirectory(options.packed_libraries_dir) build_utils.MakeDirectory(options.packed_libraries_dir) for library in libraries: library_path = os.path.join(options.stripped_libraries_dir, library) output_path = os.path.join( options.packed_libraries_dir, os.path.basename(library)) if enable_packing and library not in exclude_packing_set: PackLibraryRelocations(options.android_pack_relocations, library_path, output_path) else: CopyLibraryUnchanged(library_path, output_path) if options.depfile: build_utils.WriteDepfile( options.depfile, libraries + build_utils.GetPythonDependencies()) if options.stamp: build_utils.Touch(options.stamp) return 0 if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
AOSPU/external_chromium_org
refs/heads/android-5.0/py3
build/android/pylib/perf/cache_control.py
8
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from pylib import android_commands from pylib.device import device_utils class CacheControl(object): _DROP_CACHES = '/proc/sys/vm/drop_caches' def __init__(self, device): # TODO(jbudorick) Remove once telemetry gets switched over. if isinstance(device, android_commands.AndroidCommands): device = device_utils.DeviceUtils(device) self._device = device def DropRamCaches(self): """Drops the filesystem ram caches for performance testing.""" self._device.RunShellCommand('sync', root=True) self._device.old_interface.SetProtectedFileContents( CacheControl._DROP_CACHES, '3')
riemarc/pyinduct
refs/heads/develop
pyinduct/examples/rad_eq_diri_fem.py
3
import numpy as np import pyinduct as pi import pyinduct.parabolic as parabolic def run(show_plots): n_fem = 17 T = 1 l = 1 y0 = -1 y1 = 4 param = [1, 0, 0, None, None] # or try these: # param = [1, -0.5, -8, None, None] # :))) a2, a1, a0, _, _ = param temp_domain = pi.Domain(bounds=(0, T), num=100) spat_domain = pi.Domain(bounds=(0, l), num=n_fem * 11) # initial and test functions nodes = pi.Domain(spat_domain.bounds, num=n_fem) fem_base = pi.LagrangeFirstOrder.cure_interval(nodes) act_fem_base = pi.Base(fem_base[-1]) not_act_fem_base = pi.Base(fem_base[1:-1]) vis_fems_base = pi.Base(fem_base) pi.register_base("act_base", act_fem_base) pi.register_base("sim_base", not_act_fem_base) pi.register_base("vis_base", vis_fems_base) # trajectory u = parabolic.RadFeedForward(l, T, param_original=param, bound_cond_type="dirichlet", actuation_type="dirichlet", y_start=y0, y_end=y1) # weak form x = pi.FieldVariable("sim_base") x_dt = x.derive(temp_order=1) x_dz = x.derive(spat_order=1) phi = pi.TestFunction("sim_base") phi_dz = phi.derive(1) act_phi = pi.ScalarFunction("act_base") act_phi_dz = act_phi.derive(1) weak_form = pi.WeakFormulation([ # ... of the homogeneous part of the system pi.IntegralTerm(pi.Product(x_dt, phi), limits=spat_domain.bounds), pi.IntegralTerm(pi.Product(x_dz, phi_dz), limits=spat_domain.bounds, scale=a2), pi.IntegralTerm(pi.Product(x_dz, phi), limits=spat_domain.bounds, scale=-a1), pi.IntegralTerm(pi.Product(x, phi), limits=spat_domain.bounds, scale=-a0), # ... of the inhomogeneous part of the system pi.IntegralTerm(pi.Product(pi.Product(act_phi, phi), pi.Input(u, order=1)), limits=spat_domain.bounds), pi.IntegralTerm(pi.Product(pi.Product(act_phi_dz, phi_dz), pi.Input(u)), limits=spat_domain.bounds, scale=a2), pi.IntegralTerm(pi.Product(pi.Product(act_phi_dz, phi), pi.Input(u)), limits=spat_domain.bounds, scale=-a1), pi.IntegralTerm(pi.Product(pi.Product(act_phi, phi), pi.Input(u)), limits=spat_domain.bounds, scale=-a0)], name="main_system") # system matrices \dot x = A x + b0 u + b1 \dot u cf = pi.parse_weak_formulation(weak_form) ss = pi.create_state_space(cf) a_mat = ss.A[1] b0 = ss.B[0][1] b1 = ss.B[1][1] # transformation into \dot \bar x = \bar A \bar x + \bar b u a_tilde = np.diag(np.ones(a_mat.shape[0]), 0) a_tilde_inv = np.linalg.inv(a_tilde) a_bar = (a_tilde @ a_mat) @ a_tilde_inv b_bar = a_tilde @ (a_mat @ b1) + b0 # simulation def x0(z): return 0 + y0 * z start_func = pi.Function(x0, domain=spat_domain.bounds) full_start_state = np.array([pi.project_on_base(start_func, pi.get_base("vis_base") )]).flatten() initial_state = full_start_state[1:-1] start_state_bar = a_tilde @ initial_state - (b1 * u(time=0)).flatten() ss = pi.StateSpace(a_bar, b_bar, base_lbl="sim", input_handle=u) sim_temp_domain, sim_weights_bar = pi.simulate_state_space(ss, start_state_bar, temp_domain) # back-transformation u_vec = np.reshape(u.get_results(sim_temp_domain), (len(temp_domain), 1)) sim_weights = sim_weights_bar @ a_tilde_inv + u_vec @ b1.T # visualisation plots = list() save_pics = False vis_weights = np.hstack((np.zeros_like(u_vec), sim_weights, u_vec)) eval_d = pi.evaluate_approximation("vis_base", vis_weights, sim_temp_domain, spat_domain, spat_order=0) der_eval_d = pi.evaluate_approximation("vis_base", vis_weights, sim_temp_domain, spat_domain, spat_order=1) if show_plots: plots.append(pi.PgAnimatedPlot(eval_d, labels=dict(left='x(z,t)', bottom='z'), save_pics=save_pics)) plots.append(pi.PgAnimatedPlot(der_eval_d, labels=dict(left='x\'(z,t)', bottom='z'), save_pics=save_pics)) win1 = pi.surface_plot(eval_d, title="x(z,t)") win2 = pi.surface_plot(der_eval_d, title="x'(z,t)") # save pics if save_pics: path = pi.save_2d_pg_plot(u.get_plot(), 'rad_dirichlet_traj')[1] win1.gl_widget.grabFrameBuffer().save(path + 'rad_dirichlet_3d_x.png') win2.gl_widget.grabFrameBuffer().save(path + 'rad_dirichlet_3d_dx.png') pi.show() pi.tear_down(("act_base", "sim_base", "vis_base")) if __name__ == "__main__": run(True)
kshedstrom/pyroms
refs/heads/master
examples/Arctic_HYCOM/make_bdry_file.py
1
import matplotlib matplotlib.use('Agg') import subprocess import os import sys import commands import numpy as np from multiprocessing import Pool #import pdb #increase the maximum number of open files allowed #import resource #resource.setrlimit(resource.RLIMIT_NOFILE, (3000,-1)) import pyroms import pyroms_toolbox from remap_bdry import remap_bdry from remap_bdry_uv import remap_bdry_uv lst_year = sys.argv[1:] data_dir = '/archive/u1/uaf/kate/HYCOM/Svalbard/data/' dst_dir='./' lst_file = [] for year in lst_year: # lst = commands.getoutput('ls ' + data_dir + 'HYCOM_GLBa0.08_' + year + '*') lst = commands.getoutput('ls ' + data_dir + 'HYCOM_GLBa0.08_' + year + '_0*') # lst = commands.getoutput('ls ' + data_dir + 'HYCOM_GLBa0.08_' + year + '_0[4-9]*') lst = lst.split() lst_file = lst_file + lst print 'Build OBC file from the following file list:' print lst_file print ' ' src_grd_file = data_dir + '../HYCOM_GLBa0.08_North_grid2.nc' src_grd = pyroms_toolbox.Grid_HYCOM.get_nc_Grid_HYCOM(src_grd_file) dst_grd = pyroms.grid.get_ROMS_grid('ARCTIC2') def do_file(file): zeta = remap_bdry(file, 'ssh', src_grd, dst_grd, dst_dir=dst_dir) dst_grd2 = pyroms.grid.get_ROMS_grid('ARCTIC2', zeta=zeta) remap_bdry(file, 'temp', src_grd, dst_grd2, dst_dir=dst_dir) remap_bdry(file, 'salt', src_grd, dst_grd2, dst_dir=dst_dir) # pdb.set_trace() remap_bdry_uv(file, src_grd, dst_grd2, dst_dir=dst_dir) # merge file bdry_file = dst_dir + file.rsplit('/')[-1][:-3] + '_bdry_' + dst_grd.name + '.nc' out_file = dst_dir + file.rsplit('/')[-1][:-3] + '_ssh_bdry_' + dst_grd.name + '.nc' command = ('ncks', '-a', '-O', out_file, bdry_file) subprocess.check_call(command) os.remove(out_file) out_file = dst_dir + file.rsplit('/')[-1][:-3] + '_temp_bdry_' + dst_grd.name + '.nc' command = ('ncks', '-a', '-A', out_file, bdry_file) subprocess.check_call(command) os.remove(out_file) out_file = dst_dir + file.rsplit('/')[-1][:-3] + '_salt_bdry_' + dst_grd.name + '.nc' command = ('ncks', '-a', '-A', out_file, bdry_file) subprocess.check_call(command) os.remove(out_file) out_file = dst_dir + file.rsplit('/')[-1][:-3] + '_u_bdry_' + dst_grd.name + '.nc' command = ('ncks', '-a', '-A', out_file, bdry_file) subprocess.check_call(command) os.remove(out_file) out_file = dst_dir + file.rsplit('/')[-1][:-3] + '_v_bdry_' + dst_grd.name + '.nc' command = ('ncks', '-a', '-A', out_file, bdry_file) subprocess.check_call(command) os.remove(out_file) processes = 4 p = Pool(processes) results = p.map(do_file, lst_file)
sikmir/QGIS
refs/heads/master
python/plugins/processing/algs/grass7/ext/r_li_mps.py
45
# -*- coding: utf-8 -*- """ *************************************************************************** r_li_mps.py ----------- Date : February 2016 Copyright : (C) 2016 by Médéric Ribreux Email : medspx at medspx dot fr *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Médéric Ribreux' __date__ = 'February 2016' __copyright__ = '(C) 2016, Médéric Ribreux' from .r_li import checkMovingWindow, configFile def checkParameterValuesBeforeExecuting(alg, parameters, context): return checkMovingWindow(alg, parameters, context) def processCommand(alg, parameters, context, feedback): configFile(alg, parameters, context, feedback)
andim/scipy
refs/heads/master
scipy/linalg/blas.py
4
""" Low-level BLAS functions (:mod:`scipy.linalg.blas`) =================================================== This module contains low-level functions from the BLAS library. .. versionadded:: 0.12.0 .. warning:: These functions do little to no error checking. It is possible to cause crashes by mis-using them, so prefer using the higher-level routines in `scipy.linalg`. Finding functions ----------------- .. autosummary:: :toctree: generated/ get_blas_funcs find_best_blas_type BLAS Level 1 functions ---------------------- .. autosummary:: :toctree: generated/ caxpy ccopy cdotc cdotu crotg cscal csrot csscal cswap dasum daxpy dcopy ddot dnrm2 drot drotg drotm drotmg dscal dswap dzasum dznrm2 icamax idamax isamax izamax sasum saxpy scasum scnrm2 scopy sdot snrm2 srot srotg srotm srotmg sscal sswap zaxpy zcopy zdotc zdotu zdrot zdscal zrotg zscal zswap BLAS Level 2 functions ---------------------- .. autosummary:: :toctree: generated/ cgemv cgerc cgeru chemv ctrmv csyr cher cher2 dgemv dger dsymv dtrmv dsyr dsyr2 sgemv sger ssymv strmv ssyr ssyr2 zgemv zgerc zgeru zhemv ztrmv zsyr zher zher2 BLAS Level 3 functions ---------------------- .. autosummary:: :toctree: generated/ cgemm chemm cherk cher2k csymm csyrk csyr2k dgemm dsymm dsyrk dsyr2k sgemm ssymm ssyrk ssyr2k zgemm zhemm zherk zher2k zsymm zsyrk zsyr2k """ # # Author: Pearu Peterson, March 2002 # refactoring by Fabian Pedregosa, March 2010 # from __future__ import division, print_function, absolute_import __all__ = ['get_blas_funcs', 'find_best_blas_type'] import numpy as _np from scipy.linalg import _fblas try: from scipy.linalg import _cblas except ImportError: _cblas = None # Expose all functions (only fblas --- cblas is an implementation detail) empty_module = None from scipy.linalg._fblas import * del empty_module # 'd' will be default for 'i',.. _type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z', 'G': 'z'} # some convenience alias for complex functions _blas_alias = {'cnrm2': 'scnrm2', 'znrm2': 'dznrm2', 'cdot': 'cdotc', 'zdot': 'zdotc', 'cger': 'cgerc', 'zger': 'zgerc', 'sdotc': 'sdot', 'sdotu': 'sdot', 'ddotc': 'ddot', 'ddotu': 'ddot'} def find_best_blas_type(arrays=(), dtype=None): """Find best-matching BLAS/LAPACK type. Arrays are used to determine the optimal prefix of BLAS routines. Parameters ---------- arrays : sequence of ndarrays, optional Arrays can be given to determine optimal prefix of BLAS routines. If not given, double-precision routines will be used, otherwise the most generic type in arrays will be used. dtype : str or dtype, optional Data-type specifier. Not used if `arrays` is non-empty. Returns ------- prefix : str BLAS/LAPACK prefix character. dtype : dtype Inferred Numpy data type. prefer_fortran : bool Whether to prefer Fortran order routines over C order. """ dtype = _np.dtype(dtype) prefer_fortran = False if arrays: # use the most generic type in arrays dtypes = [ar.dtype for ar in arrays] dtype = _np.find_common_type(dtypes, ()) try: index = dtypes.index(dtype) except ValueError: index = 0 if arrays[index].flags['FORTRAN']: # prefer Fortran for leading array with column major order prefer_fortran = True prefix = _type_conv.get(dtype.char, 'd') return prefix, dtype, prefer_fortran def _get_funcs(names, arrays, dtype, lib_name, fmodule, cmodule, fmodule_name, cmodule_name, alias): """ Return available BLAS/LAPACK functions. Used also in lapack.py. See get_blas_funcs for docstring. """ funcs = [] unpack = False dtype = _np.dtype(dtype) module1 = (cmodule, cmodule_name) module2 = (fmodule, fmodule_name) if isinstance(names, str): names = (names,) unpack = True prefix, dtype, prefer_fortran = find_best_blas_type(arrays, dtype) if prefer_fortran: module1, module2 = module2, module1 for i, name in enumerate(names): func_name = prefix + name func_name = alias.get(func_name, func_name) func = getattr(module1[0], func_name, None) module_name = module1[1] if func is None: func = getattr(module2[0], func_name, None) module_name = module2[1] if func is None: raise ValueError( '%s function %s could not be found' % (lib_name, func_name)) func.module_name, func.typecode = module_name, prefix func.dtype = dtype func.prefix = prefix # Backward compatibility funcs.append(func) if unpack: return funcs[0] else: return funcs def get_blas_funcs(names, arrays=(), dtype=None): """Return available BLAS function objects from names. Arrays are used to determine the optimal prefix of BLAS routines. Parameters ---------- names : str or sequence of str Name(s) of BLAS functions without type prefix. arrays : sequence of ndarrays, optional Arrays can be given to determine optimal prefix of BLAS routines. If not given, double-precision routines will be used, otherwise the most generic type in arrays will be used. dtype : str or dtype, optional Data-type specifier. Not used if `arrays` is non-empty. Returns ------- funcs : list List containing the found function(s). Notes ----- This routine automatically chooses between Fortran/C interfaces. Fortran code is used whenever possible for arrays with column major order. In all other cases, C code is preferred. In BLAS, the naming convention is that all functions start with a type prefix, which depends on the type of the principal matrix. These can be one of {'s', 'd', 'c', 'z'} for the numpy types {float32, float64, complex64, complex128} respectively. The code and the dtype are stored in attributes `typecode` and `dtype` of the returned functions. """ return _get_funcs(names, arrays, dtype, "BLAS", _fblas, _cblas, "fblas", "cblas", _blas_alias)
harikvpy/crud
refs/heads/master
crud/wsgi.py
1
""" WSGI config for crud project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "crud.settings") application = get_wsgi_application()
ViDA-NYU/reprozip
refs/heads/1.0.x
reprounzip/reprounzip/signals.py
1
# Copyright (C) 2014-2017 New York University # This file is part of ReproZip which is released under the Revised BSD License # See file LICENSE for full license details. """Signal system. Emitting and subscribing to these signals is the framework for the plugin infrastructure. """ from __future__ import division, print_function, unicode_literals import traceback import warnings from reprounzip.utils import irange, iteritems class SignalWarning(UserWarning): """Warning from the Signal class. Mainly useful for testing (to turn these to errors), however a 'signal:' prefix is actually used in the messages because of Python bug 22543 http://bugs.python.org/issue22543 """ class Signal(object): """A signal, with its set of arguments. This holds the expected parameters that the signal expects, in several categories: * `expected_args` are the arguments of the signals that must be set. Trying to emit the signal without these will show a warning and won't touch the listeners. Listeners can rely on these being set. * `new_args` are new arguments that listeners cannot yet rely on but that emitters should try to pass in. Missing arguments doesn't show a warning yet but might in the future. * `old_args` are arguments that you might still pass in but that you should move away from; they will show a warning stating their deprecation. Listeners can subscribe to a signal, and may be any callable hashable object. """ REQUIRED, OPTIONAL, DEPRECATED = irange(3) def __init__(self, expected_args=[], new_args=[], old_args=[]): self._args = {} self._args.update((arg, Signal.REQUIRED) for arg in expected_args) self._args.update((arg, Signal.OPTIONAL) for arg in new_args) self._args.update((arg, Signal.DEPRECATED) for arg in old_args) if (len(expected_args) + len(new_args) + len(old_args) != len(self._args)): raise ValueError("Repeated argument names") self._listeners = set() def __call__(self, **kwargs): info = {} for arg, argtype in iteritems(self._args): if argtype == Signal.REQUIRED: try: info[arg] = kwargs.pop(arg) except KeyError: warnings.warn("signal: Missing required argument %s; " "signal ignored" % arg, category=SignalWarning, stacklevel=2) return else: if arg in kwargs: info[arg] = kwargs.pop(arg) if argtype == Signal.DEPRECATED: warnings.warn( "signal: Argument %s is deprecated" % arg, category=SignalWarning, stacklevel=2) if kwargs: arg = next(iter(kwargs)) warnings.warn( "signal: Unexpected argument %s; signal ignored" % arg, category=SignalWarning, stacklevel=2) return for listener in self._listeners: try: listener(**info) except Exception: traceback.print_exc() warnings.warn("signal: Got an exception calling a signal", category=SignalWarning) def subscribe(self, func): """Adds the given callable to the listeners. It must be callable and hashable (it will be put in a set). It will be called with the signals' arguments as keywords. Because new parameters might be introduced, it should accept these by using:: def my_listener(param1, param2, **kwargs_): """ if not callable(func): raise TypeError("%r object is not callable" % type(func)) self._listeners.add(func) def unsubscribe(self, func): """Removes the given callable from the listeners. If the listener wasn't subscribed, does nothing. """ self._listeners.discard(func) pre_setup = Signal(['target', 'pack']) post_setup = Signal(['target'], ['pack']) pre_destroy = Signal(['target']) post_destroy = Signal(['target']) pre_run = Signal(['target']) post_run = Signal(['target', 'retcode']) pre_parse_args = Signal(['parser', 'subparsers']) post_parse_args = Signal(['args']) application_finishing = Signal(['reason']) unpacker = None
Qusic/ycmd
refs/heads/master
cpp/ycm/tests/gmock/gtest/scripts/upload_gtest.py
1963
#!/usr/bin/env python # # Copyright 2009, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """upload_gtest.py v0.1.0 -- uploads a Google Test patch for review. This simple wrapper passes all command line flags and --cc=googletestframework@googlegroups.com to upload.py. USAGE: upload_gtest.py [options for upload.py] """ __author__ = 'wan@google.com (Zhanyong Wan)' import os import sys CC_FLAG = '--cc=' GTEST_GROUP = 'googletestframework@googlegroups.com' def main(): # Finds the path to upload.py, assuming it is in the same directory # as this file. my_dir = os.path.dirname(os.path.abspath(__file__)) upload_py_path = os.path.join(my_dir, 'upload.py') # Adds Google Test discussion group to the cc line if it's not there # already. upload_py_argv = [upload_py_path] found_cc_flag = False for arg in sys.argv[1:]: if arg.startswith(CC_FLAG): found_cc_flag = True cc_line = arg[len(CC_FLAG):] cc_list = [addr for addr in cc_line.split(',') if addr] if GTEST_GROUP not in cc_list: cc_list.append(GTEST_GROUP) upload_py_argv.append(CC_FLAG + ','.join(cc_list)) else: upload_py_argv.append(arg) if not found_cc_flag: upload_py_argv.append(CC_FLAG + GTEST_GROUP) # Invokes upload.py with the modified command line flags. os.execv(upload_py_path, upload_py_argv) if __name__ == '__main__': main()
robin-banks/android_kernel_htc_msm8974
refs/heads/cm-12.1
tools/perf/python/twatch.py
7370
#! /usr/bin/python # -*- python -*- # -*- coding: utf-8 -*- # twatch - Experimental use of the perf python interface # Copyright (C) 2011 Arnaldo Carvalho de Melo <acme@redhat.com> # # This application is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; version 2. # # This application is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. import perf def main(): cpus = perf.cpu_map() threads = perf.thread_map() evsel = perf.evsel(task = 1, comm = 1, mmap = 0, wakeup_events = 1, watermark = 1, sample_id_all = 1, sample_type = perf.SAMPLE_PERIOD | perf.SAMPLE_TID | perf.SAMPLE_CPU | perf.SAMPLE_TID) evsel.open(cpus = cpus, threads = threads); evlist = perf.evlist(cpus, threads) evlist.add(evsel) evlist.mmap() while True: evlist.poll(timeout = -1) for cpu in cpus: event = evlist.read_on_cpu(cpu) if not event: continue print "cpu: %2d, pid: %4d, tid: %4d" % (event.sample_cpu, event.sample_pid, event.sample_tid), print event if __name__ == '__main__': main()
awagnon/maraschino
refs/heads/new
lib/rtorrent/lib/xmlrpc/basic_auth.py
95
# # Copyright (c) 2013 Dean Gardiner, <gardiner91@gmail.com> # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from base64 import encodestring import string import xmlrpclib class BasicAuthTransport(xmlrpclib.Transport): def __init__(self, username=None, password=None): xmlrpclib.Transport.__init__(self) self.username = username self.password = password def send_auth(self, h): if self.username is not None and self.password is not None: h.putheader('AUTHORIZATION', "Basic %s" % string.replace( encodestring("%s:%s" % (self.username, self.password)), "\012", "" )) def single_request(self, host, handler, request_body, verbose=0): # issue XML-RPC request h = self.make_connection(host) if verbose: h.set_debuglevel(1) try: self.send_request(h, handler, request_body) self.send_host(h, host) self.send_user_agent(h) self.send_auth(h) self.send_content(h, request_body) response = h.getresponse(buffering=True) if response.status == 200: self.verbose = verbose return self.parse_response(response) except xmlrpclib.Fault: raise except Exception: self.close() raise #discard any response data and raise exception if response.getheader("content-length", 0): response.read() raise xmlrpclib.ProtocolError( host + handler, response.status, response.reason, response.msg, )
NikNitro/Python-iBeacon-Scan
refs/heads/master
sympy/matrices/expressions/matadd.py
8
from __future__ import print_function, division from sympy.core.compatibility import reduce from operator import add from sympy.core import Add, Basic, sympify from sympy.functions import adjoint from sympy.matrices.matrices import MatrixBase from sympy.matrices.expressions.transpose import transpose from sympy.strategies import (rm_id, unpack, flatten, sort, condition, exhaust, do_one, glom) from sympy.matrices.expressions.matexpr import MatrixExpr, ShapeError, ZeroMatrix from sympy.utilities import default_sort_key, sift class MatAdd(MatrixExpr): """A Sum of Matrix Expressions MatAdd inherits from and operates like SymPy Add >>> from sympy import MatAdd, MatrixSymbol >>> A = MatrixSymbol('A', 5, 5) >>> B = MatrixSymbol('B', 5, 5) >>> C = MatrixSymbol('C', 5, 5) >>> MatAdd(A, B, C) A + B + C """ is_MatAdd = True def __new__(cls, *args, **kwargs): args = list(map(sympify, args)) check = kwargs.get('check', True) obj = Basic.__new__(cls, *args) if check: validate(*args) return obj @property def shape(self): return self.args[0].shape def _entry(self, i, j): return Add(*[arg._entry(i, j) for arg in self.args]) def _eval_transpose(self): return MatAdd(*[transpose(arg) for arg in self.args]).doit() def _eval_adjoint(self): return MatAdd(*[adjoint(arg) for arg in self.args]).doit() def _eval_trace(self): from .trace import trace return Add(*[trace(arg) for arg in self.args]).doit() def doit(self, **kwargs): deep = kwargs.get('deep', True) if deep: args = [arg.doit(**kwargs) for arg in self.args] else: args = self.args return canonicalize(MatAdd(*args)) def validate(*args): if not all(arg.is_Matrix for arg in args): raise TypeError("Mix of Matrix and Scalar symbols") A = args[0] for B in args[1:]: if A.shape != B.shape: raise ShapeError("Matrices %s and %s are not aligned"%(A, B)) factor_of = lambda arg: arg.as_coeff_mmul()[0] matrix_of = lambda arg: unpack(arg.as_coeff_mmul()[1]) def combine(cnt, mat): if cnt == 1: return mat else: return cnt * mat def merge_explicit(matadd): """ Merge explicit MatrixBase arguments >>> from sympy import MatrixSymbol, eye, Matrix, MatAdd, pprint >>> from sympy.matrices.expressions.matadd import merge_explicit >>> A = MatrixSymbol('A', 2, 2) >>> B = eye(2) >>> C = Matrix([[1, 2], [3, 4]]) >>> X = MatAdd(A, B, C) >>> pprint(X) [1 0] [1 2] A + [ ] + [ ] [0 1] [3 4] >>> pprint(merge_explicit(X)) [2 2] A + [ ] [3 5] """ groups = sift(matadd.args, lambda arg: isinstance(arg, MatrixBase)) if len(groups[True]) > 1: return MatAdd(*(groups[False] + [reduce(add, groups[True])])) else: return matadd rules = (rm_id(lambda x: x == 0 or isinstance(x, ZeroMatrix)), unpack, flatten, glom(matrix_of, factor_of, combine), merge_explicit, sort(default_sort_key)) canonicalize = exhaust(condition(lambda x: isinstance(x, MatAdd), do_one(*rules)))
protatremy/buildbot
refs/heads/master
master/buildbot/test/unit/test_schedulers_timed_Periodic.py
4
# This file is part of Buildbot. Buildbot is free software: you can # redistribute it and/or modify it under the terms of the GNU General Public # License as published by the Free Software Foundation, version 2. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # Copyright Buildbot Team Members from __future__ import absolute_import from __future__ import print_function from twisted.internet import defer from twisted.internet import task from twisted.trial import unittest from buildbot import config from buildbot.schedulers import timed from buildbot.test.util import scheduler class Periodic(scheduler.SchedulerMixin, unittest.TestCase): OBJECTID = 23 SCHEDULERID = 3 def setUp(self): self.setUpScheduler() def makeScheduler(self, firstBuildDuration=0, exp_branch=None, **kwargs): self.sched = sched = timed.Periodic(**kwargs) self.attachScheduler(self.sched, self.OBJECTID, self.SCHEDULERID) # add a Clock to help checking timing issues self.clock = sched._reactor = task.Clock() # keep track of builds in self.events self.events = [] def addBuildsetForSourceStampsWithDefaults(reason, sourcestamps, waited_for=False, properties=None, builderNames=None, **kw): self.assertIn('Periodic scheduler named', reason) # TODO: check branch isFirst = (self.events == []) self.events.append('B@%d' % self.clock.seconds()) if isFirst and firstBuildDuration: d = defer.Deferred() self.clock.callLater(firstBuildDuration, d.callback, None) return d return defer.succeed(None) sched.addBuildsetForSourceStampsWithDefaults = addBuildsetForSourceStampsWithDefaults # handle state locally self.state = {} def getState(k, default): return defer.succeed(self.state.get(k, default)) sched.getState = getState def setState(k, v): self.state[k] = v return defer.succeed(None) sched.setState = setState return sched # tests def test_constructor_invalid(self): self.assertRaises(config.ConfigErrors, lambda: timed.Periodic(name='test', builderNames=['test'], periodicBuildTimer=-2)) def test_constructor_no_reason(self): sched = self.makeScheduler( name='test', builderNames=['test'], periodicBuildTimer=10) self.assertEqual( sched.reason, "The Periodic scheduler named 'test' triggered this build") def test_constructor_reason(self): sched = self.makeScheduler( name='test', builderNames=['test'], periodicBuildTimer=10, reason="periodic") self.assertEqual(sched.reason, "periodic") def test_iterations_simple(self): sched = self.makeScheduler(name='test', builderNames=['test'], periodicBuildTimer=13) sched.activate() self.clock.advance(0) # let it trigger the first build while self.clock.seconds() < 30: self.clock.advance(1) self.assertEqual(self.events, ['B@0', 'B@13', 'B@26']) self.assertEqual(self.state.get('last_build'), 26) d = sched.deactivate() return d def test_iterations_simple_branch(self): sched = self.makeScheduler(exp_branch='newfeature', name='test', builderNames=['test'], periodicBuildTimer=13, branch='newfeature') sched.activate() self.clock.advance(0) # let it trigger the first build while self.clock.seconds() < 30: self.clock.advance(1) self.assertEqual(self.events, ['B@0', 'B@13', 'B@26']) self.assertEqual(self.state.get('last_build'), 26) d = sched.deactivate() return d def test_iterations_long(self): sched = self.makeScheduler(name='test', builderNames=['test'], periodicBuildTimer=10, firstBuildDuration=15) # takes a while to start a build sched.activate() self.clock.advance(0) # let it trigger the first (longer) build while self.clock.seconds() < 40: self.clock.advance(1) self.assertEqual(self.events, ['B@0', 'B@15', 'B@25', 'B@35']) self.assertEqual(self.state.get('last_build'), 35) d = sched.deactivate() return d def test_iterations_stop_while_starting_build(self): sched = self.makeScheduler(name='test', builderNames=['test'], periodicBuildTimer=13, firstBuildDuration=6) # takes a while to start a build sched.activate() self.clock.advance(0) # let it trigger the first (longer) build self.clock.advance(3) # get partway into that build d = sched.deactivate() # begin stopping the service d.addCallback( lambda _: self.events.append('STOP@%d' % self.clock.seconds())) # run the clock out while self.clock.seconds() < 40: self.clock.advance(1) # note that the deactivate completes after the first build completes, and no # subsequent builds occur self.assertEqual(self.events, ['B@0', 'STOP@6']) self.assertEqual(self.state.get('last_build'), 0) return d def test_iterations_with_initial_state(self): sched = self.makeScheduler(name='test', builderNames=['test'], periodicBuildTimer=13) # so next build should start in 6s self.state['last_build'] = self.clock.seconds() - 7 sched.activate() self.clock.advance(0) # let it trigger the first build while self.clock.seconds() < 30: self.clock.advance(1) self.assertEqual(self.events, ['B@6', 'B@19']) self.assertEqual(self.state.get('last_build'), 19) d = sched.deactivate() return d def test_getNextBuildTime_None(self): sched = self.makeScheduler(name='test', builderNames=['test'], periodicBuildTimer=13) # given None, build right away d = sched.getNextBuildTime(None) d.addCallback(lambda t: self.assertEqual(t, 0)) return d def test_getNextBuildTime_given(self): sched = self.makeScheduler(name='test', builderNames=['test'], periodicBuildTimer=13) # given a time, add the periodicBuildTimer to it d = sched.getNextBuildTime(20) d.addCallback(lambda t: self.assertEqual(t, 33)) return d @defer.inlineCallbacks def test_enabled_callback(self): sched = self.makeScheduler(name='test', builderNames=['test'], periodicBuildTimer=13) expectedValue = not sched.enabled yield sched._enabledCallback(None, {'enabled': not sched.enabled}) self.assertEqual(sched.enabled, expectedValue) expectedValue = not sched.enabled yield sched._enabledCallback(None, {'enabled': not sched.enabled}) self.assertEqual(sched.enabled, expectedValue) @defer.inlineCallbacks def test_disabled_activate(self): sched = self.makeScheduler(name='test', builderNames=['test'], periodicBuildTimer=13) yield sched._enabledCallback(None, {'enabled': not sched.enabled}) self.assertEqual(sched.enabled, False) r = yield sched.activate() self.assertEqual(r, None) @defer.inlineCallbacks def test_disabled_deactivate(self): sched = self.makeScheduler(name='test', builderNames=['test'], periodicBuildTimer=13) yield sched._enabledCallback(None, {'enabled': not sched.enabled}) self.assertEqual(sched.enabled, False) r = yield sched.deactivate() self.assertEqual(r, None) @defer.inlineCallbacks def test_disabled_start_build(self): sched = self.makeScheduler(name='test', builderNames=['test'], periodicBuildTimer=13) yield sched._enabledCallback(None, {'enabled': not sched.enabled}) self.assertEqual(sched.enabled, False) r = yield sched.startBuild() self.assertEqual(r, None)
dparshin/phantomjs
refs/heads/master
src/qt/qtwebkit/Tools/Scripts/webkitpy/layout_tests/models/test_expectations_unittest.py
118
# Copyright (C) 2010 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import unittest2 as unittest from webkitpy.common.host_mock import MockHost from webkitpy.common.system.outputcapture import OutputCapture from webkitpy.layout_tests.models.test_configuration import * from webkitpy.layout_tests.models.test_expectations import * from webkitpy.layout_tests.models.test_configuration import * try: from collections import OrderedDict except ImportError: # Needed for Python < 2.7 from webkitpy.thirdparty.ordered_dict import OrderedDict class Base(unittest.TestCase): # Note that all of these tests are written assuming the configuration # being tested is Windows XP, Release build. def __init__(self, testFunc): host = MockHost() self._port = host.port_factory.get('test-win-xp', None) self._exp = None unittest.TestCase.__init__(self, testFunc) def get_test(self, test_name): # FIXME: Remove this routine and just reference test names directly. return test_name def get_basic_tests(self): return [self.get_test('failures/expected/text.html'), self.get_test('failures/expected/image_checksum.html'), self.get_test('failures/expected/crash.html'), self.get_test('failures/expected/missing_text.html'), self.get_test('failures/expected/image.html'), self.get_test('passes/text.html')] def get_basic_expectations(self): return """ Bug(test) failures/expected/text.html [ Failure ] Bug(test) failures/expected/crash.html [ WontFix ] Bug(test) failures/expected/missing_image.html [ Rebaseline Missing ] Bug(test) failures/expected/image_checksum.html [ WontFix ] Bug(test) failures/expected/image.html [ WontFix Mac ] """ def parse_exp(self, expectations, overrides=None, is_lint_mode=False): expectations_dict = OrderedDict() expectations_dict['expectations'] = expectations if overrides: expectations_dict['overrides'] = overrides self._port.expectations_dict = lambda: expectations_dict expectations_to_lint = expectations_dict if is_lint_mode else None self._exp = TestExpectations(self._port, self.get_basic_tests(), expectations_to_lint=expectations_to_lint) def assert_exp(self, test, result): self.assertEqual(self._exp.get_expectations(self.get_test(test)), set([result])) def assert_bad_expectations(self, expectations, overrides=None): self.assertRaises(ParseError, self.parse_exp, expectations, is_lint_mode=True, overrides=overrides) class BasicTests(Base): def test_basic(self): self.parse_exp(self.get_basic_expectations()) self.assert_exp('failures/expected/text.html', FAIL) self.assert_exp('failures/expected/image_checksum.html', PASS) self.assert_exp('passes/text.html', PASS) self.assert_exp('failures/expected/image.html', PASS) class MiscTests(Base): def test_multiple_results(self): self.parse_exp('Bug(x) failures/expected/text.html [ Crash Failure ]') self.assertEqual(self._exp.get_expectations( self.get_test('failures/expected/text.html')), set([FAIL, CRASH])) def test_result_was_expected(self): # test basics self.assertEqual(TestExpectations.result_was_expected(PASS, set([PASS]), test_needs_rebaselining=False, test_is_skipped=False), True) self.assertEqual(TestExpectations.result_was_expected(FAIL, set([PASS]), test_needs_rebaselining=False, test_is_skipped=False), False) # test handling of SKIPped tests and results self.assertEqual(TestExpectations.result_was_expected(SKIP, set([CRASH]), test_needs_rebaselining=False, test_is_skipped=True), True) self.assertEqual(TestExpectations.result_was_expected(SKIP, set([CRASH]), test_needs_rebaselining=False, test_is_skipped=False), False) # test handling of MISSING results and the REBASELINE modifier self.assertEqual(TestExpectations.result_was_expected(MISSING, set([PASS]), test_needs_rebaselining=True, test_is_skipped=False), True) self.assertEqual(TestExpectations.result_was_expected(MISSING, set([PASS]), test_needs_rebaselining=False, test_is_skipped=False), False) def test_remove_pixel_failures(self): self.assertEqual(TestExpectations.remove_pixel_failures(set([FAIL])), set([FAIL])) self.assertEqual(TestExpectations.remove_pixel_failures(set([PASS])), set([PASS])) self.assertEqual(TestExpectations.remove_pixel_failures(set([IMAGE])), set([PASS])) self.assertEqual(TestExpectations.remove_pixel_failures(set([FAIL])), set([FAIL])) self.assertEqual(TestExpectations.remove_pixel_failures(set([PASS, IMAGE, CRASH])), set([PASS, CRASH])) def test_suffixes_for_expectations(self): self.assertEqual(TestExpectations.suffixes_for_expectations(set([FAIL])), set(['txt', 'png', 'wav'])) self.assertEqual(TestExpectations.suffixes_for_expectations(set([IMAGE])), set(['png'])) self.assertEqual(TestExpectations.suffixes_for_expectations(set([FAIL, IMAGE, CRASH])), set(['txt', 'png', 'wav'])) self.assertEqual(TestExpectations.suffixes_for_expectations(set()), set()) def test_category_expectations(self): # This test checks unknown tests are not present in the # expectations and that known test part of a test category is # present in the expectations. exp_str = 'Bug(x) failures/expected [ WontFix ]' self.parse_exp(exp_str) test_name = 'failures/expected/unknown-test.html' unknown_test = self.get_test(test_name) self.assertRaises(KeyError, self._exp.get_expectations, unknown_test) self.assert_exp('failures/expected/crash.html', PASS) def test_get_modifiers(self): self.parse_exp(self.get_basic_expectations()) self.assertEqual(self._exp.get_modifiers( self.get_test('passes/text.html')), []) def test_get_expectations_string(self): self.parse_exp(self.get_basic_expectations()) self.assertEqual(self._exp.get_expectations_string( self.get_test('failures/expected/text.html')), 'FAIL') def test_expectation_to_string(self): # Normal cases are handled by other tests. self.parse_exp(self.get_basic_expectations()) self.assertRaises(ValueError, self._exp.expectation_to_string, -1) def test_get_test_set(self): # Handle some corner cases for this routine not covered by other tests. self.parse_exp(self.get_basic_expectations()) s = self._exp.get_test_set(WONTFIX) self.assertEqual(s, set([self.get_test('failures/expected/crash.html'), self.get_test('failures/expected/image_checksum.html')])) def test_parse_warning(self): try: filesystem = self._port.host.filesystem filesystem.write_text_file(filesystem.join(self._port.layout_tests_dir(), 'disabled-test.html-disabled'), 'content') self.get_test('disabled-test.html-disabled'), self.parse_exp("[ FOO ] failures/expected/text.html [ Failure ]\n" "Bug(rniwa) non-existent-test.html [ Failure ]\n" "Bug(rniwa) disabled-test.html-disabled [ ImageOnlyFailure ]", is_lint_mode=True) self.assertFalse(True, "ParseError wasn't raised") except ParseError, e: warnings = ("expectations:1 Unrecognized modifier 'foo' failures/expected/text.html\n" "expectations:2 Path does not exist. non-existent-test.html") self.assertEqual(str(e), warnings) def test_parse_warnings_are_logged_if_not_in_lint_mode(self): oc = OutputCapture() try: oc.capture_output() self.parse_exp('-- this should be a syntax error', is_lint_mode=False) finally: _, _, logs = oc.restore_output() self.assertNotEquals(logs, '') def test_error_on_different_platform(self): # parse_exp uses a Windows port. Assert errors on Mac show up in lint mode. self.assertRaises(ParseError, self.parse_exp, 'Bug(test) [ Mac ] failures/expected/text.html [ Failure ]\nBug(test) [ Mac ] failures/expected/text.html [ Failure ]', is_lint_mode=True) def test_error_on_different_build_type(self): # parse_exp uses a Release port. Assert errors on DEBUG show up in lint mode. self.assertRaises(ParseError, self.parse_exp, 'Bug(test) [ Debug ] failures/expected/text.html [ Failure ]\nBug(test) [ Debug ] failures/expected/text.html [ Failure ]', is_lint_mode=True) def test_overrides(self): self.parse_exp("Bug(exp) failures/expected/text.html [ Failure ]", "Bug(override) failures/expected/text.html [ ImageOnlyFailure ]") self.assert_exp('failures/expected/text.html', IMAGE) def test_overrides__directory(self): self.parse_exp("Bug(exp) failures/expected/text.html [ Failure ]", "Bug(override) failures/expected [ Crash ]") self.assert_exp('failures/expected/text.html', CRASH) self.assert_exp('failures/expected/image.html', CRASH) def test_overrides__duplicate(self): self.assert_bad_expectations("Bug(exp) failures/expected/text.html [ Failure ]", "Bug(override) failures/expected/text.html [ ImageOnlyFailure ]\n" "Bug(override) failures/expected/text.html [ Crash ]\n") def test_pixel_tests_flag(self): def match(test, result, pixel_tests_enabled): return self._exp.matches_an_expected_result( self.get_test(test), result, pixel_tests_enabled) self.parse_exp(self.get_basic_expectations()) self.assertTrue(match('failures/expected/text.html', FAIL, True)) self.assertTrue(match('failures/expected/text.html', FAIL, False)) self.assertFalse(match('failures/expected/text.html', CRASH, True)) self.assertFalse(match('failures/expected/text.html', CRASH, False)) self.assertTrue(match('failures/expected/image_checksum.html', PASS, True)) self.assertTrue(match('failures/expected/image_checksum.html', PASS, False)) self.assertTrue(match('failures/expected/crash.html', PASS, False)) self.assertTrue(match('passes/text.html', PASS, False)) def test_more_specific_override_resets_skip(self): self.parse_exp("Bug(x) failures/expected [ Skip ]\n" "Bug(x) failures/expected/text.html [ ImageOnlyFailure ]\n") self.assert_exp('failures/expected/text.html', IMAGE) self.assertFalse(self._port._filesystem.join(self._port.layout_tests_dir(), 'failures/expected/text.html') in self._exp.get_tests_with_result_type(SKIP)) class SkippedTests(Base): def check(self, expectations, overrides, skips, lint=False): port = MockHost().port_factory.get('qt') port._filesystem.write_text_file(port._filesystem.join(port.layout_tests_dir(), 'failures/expected/text.html'), 'foo') expectations_dict = OrderedDict() expectations_dict['expectations'] = expectations if overrides: expectations_dict['overrides'] = overrides port.expectations_dict = lambda: expectations_dict port.skipped_layout_tests = lambda tests: set(skips) expectations_to_lint = expectations_dict if lint else None exp = TestExpectations(port, ['failures/expected/text.html'], expectations_to_lint=expectations_to_lint) # Check that the expectation is for BUG_DUMMY SKIP : ... [ Pass ] self.assertEqual(exp.get_modifiers('failures/expected/text.html'), [TestExpectationParser.DUMMY_BUG_MODIFIER, TestExpectationParser.SKIP_MODIFIER, TestExpectationParser.WONTFIX_MODIFIER]) self.assertEqual(exp.get_expectations('failures/expected/text.html'), set([PASS])) def test_skipped_tests_work(self): self.check(expectations='', overrides=None, skips=['failures/expected/text.html']) def test_duplicate_skipped_test_fails_lint(self): self.assertRaises(ParseError, self.check, expectations='Bug(x) failures/expected/text.html [ Failure ]\n', overrides=None, skips=['failures/expected/text.html'], lint=True) def test_skipped_file_overrides_expectations(self): self.check(expectations='Bug(x) failures/expected/text.html [ Failure ]\n', overrides=None, skips=['failures/expected/text.html']) def test_skipped_dir_overrides_expectations(self): self.check(expectations='Bug(x) failures/expected/text.html [ Failure ]\n', overrides=None, skips=['failures/expected']) def test_skipped_file_overrides_overrides(self): self.check(expectations='', overrides='Bug(x) failures/expected/text.html [ Failure ]\n', skips=['failures/expected/text.html']) def test_skipped_dir_overrides_overrides(self): self.check(expectations='', overrides='Bug(x) failures/expected/text.html [ Failure ]\n', skips=['failures/expected']) def test_skipped_entry_dont_exist(self): port = MockHost().port_factory.get('qt') expectations_dict = OrderedDict() expectations_dict['expectations'] = '' port.expectations_dict = lambda: expectations_dict port.skipped_layout_tests = lambda tests: set(['foo/bar/baz.html']) capture = OutputCapture() capture.capture_output() exp = TestExpectations(port) _, _, logs = capture.restore_output() self.assertEqual('The following test foo/bar/baz.html from the Skipped list doesn\'t exist\n', logs) class ExpectationSyntaxTests(Base): def test_unrecognized_expectation(self): self.assert_bad_expectations('Bug(test) failures/expected/text.html [ Unknown ]') def test_macro(self): exp_str = 'Bug(test) [ Win ] failures/expected/text.html [ Failure ]' self.parse_exp(exp_str) self.assert_exp('failures/expected/text.html', FAIL) def assert_tokenize_exp(self, line, bugs=None, modifiers=None, expectations=None, warnings=None, comment=None, name='foo.html'): bugs = bugs or [] modifiers = modifiers or [] expectations = expectations or [] warnings = warnings or [] filename = 'TestExpectations' line_number = 1 expectation_line = TestExpectationParser._tokenize_line(filename, line, line_number) self.assertEqual(expectation_line.warnings, warnings) self.assertEqual(expectation_line.name, name) self.assertEqual(expectation_line.filename, filename) self.assertEqual(expectation_line.line_number, line_number) if not warnings: self.assertEqual(expectation_line.modifiers, modifiers) self.assertEqual(expectation_line.expectations, expectations) def test_bare_name(self): self.assert_tokenize_exp('foo.html', modifiers=['SKIP'], expectations=['PASS']) def test_bare_name_and_bugs(self): self.assert_tokenize_exp('webkit.org/b/12345 foo.html', modifiers=['BUGWK12345', 'SKIP'], expectations=['PASS']) self.assert_tokenize_exp('Bug(dpranke) foo.html', modifiers=['BUGDPRANKE', 'SKIP'], expectations=['PASS']) self.assert_tokenize_exp('webkit.org/b/12345 webkit.org/b/34567 foo.html', modifiers=['BUGWK12345', 'BUGWK34567', 'SKIP'], expectations=['PASS']) def test_comments(self): self.assert_tokenize_exp("# comment", name=None, comment="# comment") self.assert_tokenize_exp("foo.html # comment", comment="# comment", expectations=['PASS'], modifiers=['SKIP']) def test_config_modifiers(self): self.assert_tokenize_exp('[ Mac ] foo.html', modifiers=['MAC', 'SKIP'], expectations=['PASS']) self.assert_tokenize_exp('[ Mac Vista ] foo.html', modifiers=['MAC', 'VISTA', 'SKIP'], expectations=['PASS']) self.assert_tokenize_exp('[ Mac ] foo.html [ Failure ] ', modifiers=['MAC'], expectations=['FAIL']) def test_unknown_config(self): self.assert_tokenize_exp('[ Foo ] foo.html ', modifiers=['Foo', 'SKIP'], expectations=['PASS']) def test_unknown_expectation(self): self.assert_tokenize_exp('foo.html [ Audio ]', warnings=['Unrecognized expectation "Audio"']) def test_skip(self): self.assert_tokenize_exp('foo.html [ Skip ]', modifiers=['SKIP'], expectations=['PASS']) def test_slow(self): self.assert_tokenize_exp('foo.html [ Slow ]', modifiers=['SLOW'], expectations=['PASS']) def test_wontfix(self): self.assert_tokenize_exp('foo.html [ WontFix ]', modifiers=['WONTFIX', 'SKIP'], expectations=['PASS']) self.assert_tokenize_exp('foo.html [ WontFix ImageOnlyFailure ]', modifiers=['WONTFIX'], expectations=['IMAGE']) self.assert_tokenize_exp('foo.html [ WontFix Pass Failure ]', modifiers=['WONTFIX'], expectations=['PASS', 'FAIL']) def test_blank_line(self): self.assert_tokenize_exp('', name=None) def test_warnings(self): self.assert_tokenize_exp('[ Mac ]', warnings=['Did not find a test name.'], name=None) self.assert_tokenize_exp('[ [', warnings=['unexpected "["'], name=None) self.assert_tokenize_exp('webkit.org/b/12345 ]', warnings=['unexpected "]"'], name=None) self.assert_tokenize_exp('foo.html webkit.org/b/12345 ]', warnings=['"webkit.org/b/12345" is not at the start of the line.']) class SemanticTests(Base): def test_bug_format(self): self.assertRaises(ParseError, self.parse_exp, 'BUG1234 failures/expected/text.html [ Failure ]', is_lint_mode=True) def test_bad_bugid(self): try: self.parse_exp('BUG1234 failures/expected/text.html [ Failure ]', is_lint_mode=True) self.fail('should have raised an error about a bad bug identifier') except ParseError, exp: self.assertEqual(len(exp.warnings), 1) def test_missing_bugid(self): self.parse_exp('failures/expected/text.html [ Failure ]') self.assertFalse(self._exp.has_warnings()) self._port.warn_if_bug_missing_in_test_expectations = lambda: True self.parse_exp('failures/expected/text.html [ Failure ]') line = self._exp._model.get_expectation_line('failures/expected/text.html') self.assertFalse(line.is_invalid()) self.assertEqual(line.warnings, ['Test lacks BUG modifier.']) def test_skip_and_wontfix(self): # Skip is not allowed to have other expectations as well, because those # expectations won't be exercised and may become stale . self.parse_exp('failures/expected/text.html [ Failure Skip ]') self.assertTrue(self._exp.has_warnings()) self.parse_exp('failures/expected/text.html [ Crash WontFix ]') self.assertFalse(self._exp.has_warnings()) self.parse_exp('failures/expected/text.html [ Pass WontFix ]') self.assertFalse(self._exp.has_warnings()) def test_slow_and_timeout(self): # A test cannot be SLOW and expected to TIMEOUT. self.assertRaises(ParseError, self.parse_exp, 'Bug(test) failures/expected/timeout.html [ Slow Timeout ]', is_lint_mode=True) def test_rebaseline(self): # Can't lint a file w/ 'REBASELINE' in it. self.assertRaises(ParseError, self.parse_exp, 'Bug(test) failures/expected/text.html [ Failure Rebaseline ]', is_lint_mode=True) def test_duplicates(self): self.assertRaises(ParseError, self.parse_exp, """ Bug(exp) failures/expected/text.html [ Failure ] Bug(exp) failures/expected/text.html [ ImageOnlyFailure ]""", is_lint_mode=True) self.assertRaises(ParseError, self.parse_exp, self.get_basic_expectations(), overrides=""" Bug(override) failures/expected/text.html [ Failure ] Bug(override) failures/expected/text.html [ ImageOnlyFailure ]""", is_lint_mode=True) def test_missing_file(self): self.parse_exp('Bug(test) missing_file.html [ Failure ]') self.assertTrue(self._exp.has_warnings(), 1) class PrecedenceTests(Base): def test_file_over_directory(self): # This tests handling precedence of specific lines over directories # and tests expectations covering entire directories. exp_str = """ Bug(x) failures/expected/text.html [ Failure ] Bug(y) failures/expected [ WontFix ] """ self.parse_exp(exp_str) self.assert_exp('failures/expected/text.html', FAIL) self.assert_exp('failures/expected/crash.html', PASS) exp_str = """ Bug(x) failures/expected [ WontFix ] Bug(y) failures/expected/text.html [ Failure ] """ self.parse_exp(exp_str) self.assert_exp('failures/expected/text.html', FAIL) self.assert_exp('failures/expected/crash.html', PASS) def test_ambiguous(self): self.assert_bad_expectations("Bug(test) [ Release ] passes/text.html [ Pass ]\n" "Bug(test) [ Win ] passes/text.html [ Failure ]\n") def test_more_modifiers(self): self.assert_bad_expectations("Bug(test) [ Release ] passes/text.html [ Pass ]\n" "Bug(test) [ Win Release ] passes/text.html [ Failure ]\n") def test_order_in_file(self): self.assert_bad_expectations("Bug(test) [ Win Release ] : passes/text.html [ Failure ]\n" "Bug(test) [ Release ] : passes/text.html [ Pass ]\n") def test_macro_overrides(self): self.assert_bad_expectations("Bug(test) [ Win ] passes/text.html [ Pass ]\n" "Bug(test) [ XP ] passes/text.html [ Failure ]\n") class RemoveConfigurationsTest(Base): def test_remove(self): host = MockHost() test_port = host.port_factory.get('test-win-xp', None) test_port.test_exists = lambda test: True test_port.test_isfile = lambda test: True test_config = test_port.test_configuration() test_port.expectations_dict = lambda: {"expectations": """Bug(x) [ Linux Win Release ] failures/expected/foo.html [ Failure ] Bug(y) [ Win Mac Debug ] failures/expected/foo.html [ Crash ] """} expectations = TestExpectations(test_port, self.get_basic_tests()) actual_expectations = expectations.remove_configuration_from_test('failures/expected/foo.html', test_config) self.assertEqual("""Bug(x) [ Linux Vista Win7 Release ] failures/expected/foo.html [ Failure ] Bug(y) [ Win Mac Debug ] failures/expected/foo.html [ Crash ] """, actual_expectations) def test_remove_line(self): host = MockHost() test_port = host.port_factory.get('test-win-xp', None) test_port.test_exists = lambda test: True test_port.test_isfile = lambda test: True test_config = test_port.test_configuration() test_port.expectations_dict = lambda: {'expectations': """Bug(x) [ Win Release ] failures/expected/foo.html [ Failure ] Bug(y) [ Win Debug ] failures/expected/foo.html [ Crash ] """} expectations = TestExpectations(test_port) actual_expectations = expectations.remove_configuration_from_test('failures/expected/foo.html', test_config) actual_expectations = expectations.remove_configuration_from_test('failures/expected/foo.html', host.port_factory.get('test-win-vista', None).test_configuration()) actual_expectations = expectations.remove_configuration_from_test('failures/expected/foo.html', host.port_factory.get('test-win-win7', None).test_configuration()) self.assertEqual("""Bug(y) [ Win Debug ] failures/expected/foo.html [ Crash ] """, actual_expectations) class RebaseliningTest(Base): """Test rebaselining-specific functionality.""" def assertRemove(self, input_expectations, input_overrides, tests, expected_expectations, expected_overrides): self.parse_exp(input_expectations, is_lint_mode=False, overrides=input_overrides) actual_expectations = self._exp.remove_rebaselined_tests(tests, 'expectations') self.assertEqual(expected_expectations, actual_expectations) actual_overrides = self._exp.remove_rebaselined_tests(tests, 'overrides') self.assertEqual(expected_overrides, actual_overrides) def test_remove(self): self.assertRemove('Bug(x) failures/expected/text.html [ Failure Rebaseline ]\n' 'Bug(y) failures/expected/image.html [ ImageOnlyFailure Rebaseline ]\n' 'Bug(z) failures/expected/crash.html [ Crash ]\n', 'Bug(x0) failures/expected/image.html [ Crash ]\n', ['failures/expected/text.html'], 'Bug(y) failures/expected/image.html [ ImageOnlyFailure Rebaseline ]\n' 'Bug(z) failures/expected/crash.html [ Crash ]\n', 'Bug(x0) failures/expected/image.html [ Crash ]\n') # Ensure that we don't modify unrelated lines, even if we could rewrite them. # i.e., the second line doesn't get rewritten to "Bug(y) failures/expected/skip.html" self.assertRemove('Bug(x) failures/expected/text.html [ Failure Rebaseline ]\n' 'Bug(Y) failures/expected/image.html [ Skip ]\n' 'Bug(z) failures/expected/crash.html\n', '', ['failures/expected/text.html'], 'Bug(Y) failures/expected/image.html [ Skip ]\n' 'Bug(z) failures/expected/crash.html\n', '') def test_get_rebaselining_failures(self): # Make sure we find a test as needing a rebaseline even if it is not marked as a failure. self.parse_exp('Bug(x) failures/expected/text.html [ Rebaseline ]\n') self.assertEqual(len(self._exp.get_rebaselining_failures()), 1) self.parse_exp(self.get_basic_expectations()) self.assertEqual(len(self._exp.get_rebaselining_failures()), 0) class TestExpectationSerializationTests(unittest.TestCase): def __init__(self, testFunc): host = MockHost() test_port = host.port_factory.get('test-win-xp', None) self._converter = TestConfigurationConverter(test_port.all_test_configurations(), test_port.configuration_specifier_macros()) unittest.TestCase.__init__(self, testFunc) def _tokenize(self, line): return TestExpectationParser._tokenize_line('path', line, 0) def assert_round_trip(self, in_string, expected_string=None): expectation = self._tokenize(in_string) if expected_string is None: expected_string = in_string self.assertEqual(expected_string, expectation.to_string(self._converter)) def assert_list_round_trip(self, in_string, expected_string=None): host = MockHost() parser = TestExpectationParser(host.port_factory.get('test-win-xp', None), [], allow_rebaseline_modifier=False) expectations = parser.parse('path', in_string) if expected_string is None: expected_string = in_string self.assertEqual(expected_string, TestExpectations.list_to_string(expectations, self._converter)) def test_unparsed_to_string(self): expectation = TestExpectationLine() self.assertEqual(expectation.to_string(self._converter), '') expectation.comment = ' Qux.' self.assertEqual(expectation.to_string(self._converter), '# Qux.') expectation.name = 'bar' self.assertEqual(expectation.to_string(self._converter), 'bar # Qux.') expectation.modifiers = ['foo'] # FIXME: case should be preserved here but we can't until we drop the old syntax. self.assertEqual(expectation.to_string(self._converter), '[ FOO ] bar # Qux.') expectation.expectations = ['bAz'] self.assertEqual(expectation.to_string(self._converter), '[ FOO ] bar [ BAZ ] # Qux.') expectation.expectations = ['bAz1', 'baZ2'] self.assertEqual(expectation.to_string(self._converter), '[ FOO ] bar [ BAZ1 BAZ2 ] # Qux.') expectation.modifiers = ['foo1', 'foO2'] self.assertEqual(expectation.to_string(self._converter), '[ FOO1 FOO2 ] bar [ BAZ1 BAZ2 ] # Qux.') expectation.warnings.append('Oh the horror.') self.assertEqual(expectation.to_string(self._converter), '') expectation.original_string = 'Yes it is!' self.assertEqual(expectation.to_string(self._converter), 'Yes it is!') def test_unparsed_list_to_string(self): expectation = TestExpectationLine() expectation.comment = 'Qux.' expectation.name = 'bar' expectation.modifiers = ['foo'] expectation.expectations = ['bAz1', 'baZ2'] # FIXME: case should be preserved here but we can't until we drop the old syntax. self.assertEqual(TestExpectations.list_to_string([expectation]), '[ FOO ] bar [ BAZ1 BAZ2 ] #Qux.') def test_parsed_to_string(self): expectation_line = TestExpectationLine() expectation_line.parsed_bug_modifiers = ['BUGX'] expectation_line.name = 'test/name/for/realz.html' expectation_line.parsed_expectations = set([IMAGE]) self.assertEqual(expectation_line.to_string(self._converter), None) expectation_line.matching_configurations = set([TestConfiguration('xp', 'x86', 'release')]) self.assertEqual(expectation_line.to_string(self._converter), 'Bug(x) [ XP Release ] test/name/for/realz.html [ ImageOnlyFailure ]') expectation_line.matching_configurations = set([TestConfiguration('xp', 'x86', 'release'), TestConfiguration('xp', 'x86', 'debug')]) self.assertEqual(expectation_line.to_string(self._converter), 'Bug(x) [ XP ] test/name/for/realz.html [ ImageOnlyFailure ]') def test_serialize_parsed_expectations(self): expectation_line = TestExpectationLine() expectation_line.parsed_expectations = set([]) parsed_expectation_to_string = dict([[parsed_expectation, expectation_string] for expectation_string, parsed_expectation in TestExpectations.EXPECTATIONS.items()]) self.assertEqual(expectation_line._serialize_parsed_expectations(parsed_expectation_to_string), '') expectation_line.parsed_expectations = set([FAIL]) self.assertEqual(expectation_line._serialize_parsed_expectations(parsed_expectation_to_string), 'fail') expectation_line.parsed_expectations = set([PASS, IMAGE]) self.assertEqual(expectation_line._serialize_parsed_expectations(parsed_expectation_to_string), 'pass image') expectation_line.parsed_expectations = set([FAIL, PASS]) self.assertEqual(expectation_line._serialize_parsed_expectations(parsed_expectation_to_string), 'pass fail') def test_serialize_parsed_modifier_string(self): expectation_line = TestExpectationLine() expectation_line.parsed_bug_modifiers = ['garden-o-matic'] expectation_line.parsed_modifiers = ['for', 'the'] self.assertEqual(expectation_line._serialize_parsed_modifiers(self._converter, []), 'garden-o-matic for the') self.assertEqual(expectation_line._serialize_parsed_modifiers(self._converter, ['win']), 'garden-o-matic for the win') expectation_line.parsed_bug_modifiers = [] expectation_line.parsed_modifiers = [] self.assertEqual(expectation_line._serialize_parsed_modifiers(self._converter, []), '') self.assertEqual(expectation_line._serialize_parsed_modifiers(self._converter, ['win']), 'win') expectation_line.parsed_bug_modifiers = ['garden-o-matic', 'total', 'is'] self.assertEqual(expectation_line._serialize_parsed_modifiers(self._converter, ['win']), 'garden-o-matic is total win') expectation_line.parsed_bug_modifiers = [] expectation_line.parsed_modifiers = ['garden-o-matic', 'total', 'is'] self.assertEqual(expectation_line._serialize_parsed_modifiers(self._converter, ['win']), 'garden-o-matic is total win') def test_format_line(self): self.assertEqual(TestExpectationLine._format_line(['MODIFIERS'], 'name', ['EXPECTATIONS'], 'comment'), '[ MODIFIERS ] name [ EXPECTATIONS ] #comment') self.assertEqual(TestExpectationLine._format_line(['MODIFIERS'], 'name', ['EXPECTATIONS'], None), '[ MODIFIERS ] name [ EXPECTATIONS ]') def test_string_roundtrip(self): self.assert_round_trip('') self.assert_round_trip('FOO') self.assert_round_trip('[') self.assert_round_trip('FOO [') self.assert_round_trip('FOO ] bar') self.assert_round_trip(' FOO [') self.assert_round_trip(' [ FOO ] ') self.assert_round_trip('[ FOO ] bar [ BAZ ]') self.assert_round_trip('[ FOO ] bar [ BAZ ] # Qux.') self.assert_round_trip('[ FOO ] bar [ BAZ ] # Qux.') self.assert_round_trip('[ FOO ] bar [ BAZ ] # Qux. ') self.assert_round_trip('[ FOO ] bar [ BAZ ] # Qux. ') self.assert_round_trip('[ FOO ] ] ] bar BAZ') self.assert_round_trip('[ FOO ] ] ] bar [ BAZ ]') self.assert_round_trip('FOO ] ] bar ==== BAZ') self.assert_round_trip('=') self.assert_round_trip('#') self.assert_round_trip('# ') self.assert_round_trip('# Foo') self.assert_round_trip('# Foo') self.assert_round_trip('# Foo :') self.assert_round_trip('# Foo : =') def test_list_roundtrip(self): self.assert_list_round_trip('') self.assert_list_round_trip('\n') self.assert_list_round_trip('\n\n') self.assert_list_round_trip('bar') self.assert_list_round_trip('bar\n# Qux.') self.assert_list_round_trip('bar\n# Qux.\n') def test_reconstitute_only_these(self): lines = [] reconstitute_only_these = [] def add_line(matching_configurations, reconstitute): expectation_line = TestExpectationLine() expectation_line.original_string = "Nay" expectation_line.parsed_bug_modifiers = ['BUGX'] expectation_line.name = 'Yay' expectation_line.parsed_expectations = set([IMAGE]) expectation_line.matching_configurations = matching_configurations lines.append(expectation_line) if reconstitute: reconstitute_only_these.append(expectation_line) add_line(set([TestConfiguration('xp', 'x86', 'release')]), True) add_line(set([TestConfiguration('xp', 'x86', 'release'), TestConfiguration('xp', 'x86', 'debug')]), False) serialized = TestExpectations.list_to_string(lines, self._converter) self.assertEqual(serialized, "Bug(x) [ XP Release ] Yay [ ImageOnlyFailure ]\nBug(x) [ XP ] Yay [ ImageOnlyFailure ]") serialized = TestExpectations.list_to_string(lines, self._converter, reconstitute_only_these=reconstitute_only_these) self.assertEqual(serialized, "Bug(x) [ XP Release ] Yay [ ImageOnlyFailure ]\nNay") def disabled_test_string_whitespace_stripping(self): # FIXME: Re-enable this test once we rework the code to no longer support the old syntax. self.assert_round_trip('\n', '') self.assert_round_trip(' [ FOO ] bar [ BAZ ]', '[ FOO ] bar [ BAZ ]') self.assert_round_trip('[ FOO ] bar [ BAZ ]', '[ FOO ] bar [ BAZ ]') self.assert_round_trip('[ FOO ] bar [ BAZ ] # Qux.', '[ FOO ] bar [ BAZ ] # Qux.') self.assert_round_trip('[ FOO ] bar [ BAZ ] # Qux.', '[ FOO ] bar [ BAZ ] # Qux.') self.assert_round_trip('[ FOO ] bar [ BAZ ] # Qux.', '[ FOO ] bar [ BAZ ] # Qux.') self.assert_round_trip('[ FOO ] bar [ BAZ ] # Qux.', '[ FOO ] bar [ BAZ ] # Qux.')
pbfy0/visvis.dev
refs/heads/master
examples/volumes.py
8
#!/usr/bin/env python import visvis as vv import numpy as np app = vv.use() vv.clf() # create volume vol = vv.aVolume(size=64) # set labels vv.xlabel('x axis') vv.ylabel('y axis') vv.zlabel('z axis') # show t = vv.volshow(vol, renderStyle='mip') # try the differtent render styles, for examample # "t.renderStyle='iso'" or "t.renderStyle='ray'" # If the drawing hangs, your video drived decided to render in software mode. # This is unfortunately (as far as I know) not possible to detect. # It might help if your data is shaped a power of 2. # Get axes and set camera to orthographic mode (with a field of view of 70) a = vv.gca() a.camera.fov = 45 # Create colormap editor wibject. vv.ColormapEditor(a) # Start app app.Run()
DFoly/Blogg
refs/heads/master
app/__init__.py
5
from flask import Flask from flask_bootstrap import Bootstrap from flask_mail import Mail from flask_moment import Moment from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager from flask_pagedown import PageDown from config import config bootstrap = Bootstrap() mail = Mail() moment = Moment() db = SQLAlchemy() pagedown = PageDown() login_manager = LoginManager() login_manager.session_protection = 'strong' login_manager.login_view = 'auth.login' def create_app(config_name): app = Flask(__name__) app.config.from_object(config[config_name]) config[config_name].init_app(app) bootstrap.init_app(app) mail.init_app(app) moment.init_app(app) db.init_app(app) login_manager.init_app(app) pagedown.init_app(app) from .main import main as main_blueprint app.register_blueprint(main_blueprint) from .auth import auth as auth_blueprint app.register_blueprint(auth_blueprint, url_prefix='/auth') return app
DiCarloLab-Delft/PycQED_py3
refs/heads/develop
pycqed/analysis_v2/VQE_EVC_2.py
1
import time import numpy as np from pycqed.analysis import analysis_toolbox as a_tools import pycqed.analysis_v2.base_analysis as ba # import dataprep for tomography module # import tomography module # using the data prep module of analysis V2 # from pycqed.analysis_v2 import tomography_dataprep as dataprep from pycqed.analysis import measurement_analysis as ma try: import qutip as qt except ImportError as e: pass # logging.warning('Could not import qutip, tomo code will not work') def reshape_block(shots_data, segments_per_block=16, block_size=4092, mode='truncate'): """ inputs: shots_data 1D array of dimension N organizes data in blocks of dimension block_size. num of blocks is N/block_size """ N = len(shots_data) # Data dimension needs to be an integer multiple of block_size assert(N%block_size==0) num_blocks = N//block_size full_segments = block_size//segments_per_block orfan_segments = block_size % segments_per_block missing_segments = segments_per_block - orfan_segments # print(N,num_blocks,full_segments,orfan_segments,missing_segments) reshaped_data = shots_data.reshape((num_blocks,block_size)) if mode.lower()=='truncate': truncate_idx = full_segments*segments_per_block return reshaped_data[:,:truncate_idx] elif mode.lower()=='padd': padd_dim = (full_segments+1)*segments_per_block return_block = np.nan*np.ones((num_blocks,padd_dim)) return_block[:,:block_size] = reshaped_data return return_block else: raise ValueError('Mode not understood. Needs to be truncate or padd') def all_repetitions(shots_data,segments_per_block=16): flat_dim = shots_data.shape[0]*shots_data.shape[1] # Data dimension needs to divide the segments_per_block assert(flat_dim%segments_per_block==0) num_blocks = flat_dim // segments_per_block block_data = shots_data.reshape((num_blocks,segments_per_block)) return block_data def get_segments_average(shots_data, segments_per_block=16, block_size=4092, mode='truncate', average=True): reshaped_data = reshape_block(shots_data=shots_data, segments_per_block=segments_per_block, block_size=block_size, mode=mode) all_reps = all_repetitions(shots_data=reshaped_data, segments_per_block=segments_per_block) if average: return np.mean(all_reps,axis=0) else: return all_reps class ExpectationValueCalculation_mmt_computer: def __init__(self, auto=True, label='', timestamp=None, fig_format='png', q0_label='q0', q1_label='q1', close_fig=True, **kw): self.label = label self.timestamp = timestamp self.fig_format = fig_format # q0 == D2 self.q0_label = q0_label # q1 == A self.q1_label = q1_label self.n_states = 2 ** 2 self.ma_obj = ma.MeasurementAnalysis(auto=False, label=label, timestamp=timestamp) self.ma_obj.get_naming_and_values() # self.get_naming_and_values() # hard coded number of segments for a 2 qubit state tomography # constraint imposed by UHFLI self.nr_segments = 16 # self.exp_name = os.path.split(self.folder)[-1][7:] avg_h1 = self.ma_obj.measured_values[0] avg_h2 = self.ma_obj.measured_values[1] avg_h12 = self.ma_obj.measured_values[2] h1_00 = np.mean(avg_h1[36:36+7]) h1_01 = np.mean(avg_h1[43:43+7]) h1_10 = np.mean(avg_h1[50:50+7]) h1_11 = np.mean(avg_h1[57:]) h2_00 = np.mean(avg_h2[36:36+7]) h2_01 = np.mean(avg_h2[43:43+7]) h2_10 = np.mean(avg_h2[50:50+7]) h2_11 = np.mean(avg_h2[57:]) h12_00 = np.mean(avg_h12[36:36+7]) h12_01 = np.mean(avg_h12[43:43+7]) h12_10 = np.mean(avg_h12[50:50+7]) h12_11 = np.mean(avg_h12[57:]) measurement_channel_1 = np.array([avg_h1[0], avg_h1[1], avg_h1[7], avg_h1[8], avg_h1[14], avg_h1[21], avg_h1[28], avg_h1[35]]) measurement_channel_2 = np.array([avg_h2[0], avg_h2[1], avg_h2[7], avg_h2[8], avg_h2[14], avg_h2[21], avg_h2[28], avg_h2[35]]) measurement_channel_3 = np.array([avg_h12[0], avg_h12[1], avg_h12[7], avg_h12[8], avg_h12[14], avg_h12[21], avg_h12[28],avg_h12[35]]) self.measurements_tomo = np.array([measurement_channel_1, measurement_channel_2, measurement_channel_3]).flatten() # print(self.measurements_tomo) # print(len(self.measurements_tomo)) # 108 x 1 # get the calibration points by averaging over the five measurements # taken knowing the initial state we put in self.measurements_cal = np.array( [h1_00, h1_01, h1_10, h1_11, h2_00, h2_01, h2_10, h2_11, h12_00, h12_01, h12_10, h12_11]) def _calibrate_betas(self): """ calculates betas from calibration points for the initial measurement operator Betas are ordered by B0 -> II B1 -> IZ etc(binary counting) <0|Z|0> = 1, <1|Z|1> = -1 Keyword arguments: measurements_cal --- array(2 ** n_qubits) should be ordered correctly (00, 01, 10, 11) for 2 qubits """ cal_matrix = np.zeros((self.n_states, self.n_states)) # get the coefficient matrix for the betas for i in range(self.n_states): for j in range(self.n_states): # perform bitwise AND and count the resulting 1s cal_matrix[i, j] = (-1)**(bin((i & j)).count("1")) # invert solve the simple system of equations # print(cal_matrix) # print(np.linalg.inv(cal_matrix)) betas = np.zeros(12) # print(self.measurements_cal[0:4]) betas[0:4] = np.dot(np.linalg.inv(cal_matrix), self.measurements_cal[0:4]) self.betas_up = betas[0:4] betas[4:8] = np.dot(np.linalg.inv(cal_matrix), self.measurements_cal[4:8]) self.betas_p = betas[4:8] betas[8:] = np.dot(np.linalg.inv(cal_matrix), self.measurements_cal[8:12]) self.betas_pp = betas[8:] return betas def assemble_M_matrix_single_block(self, beta_array): M_matrix_single_block_row_1 = np.array([beta_array[0], beta_array[1], beta_array[2], beta_array[3], 0, 0, 0, 0, 0, 0]) M_matrix_single_block_row_2 = np.array([beta_array[0], -1*beta_array[1], beta_array[2], -1*beta_array[3], 0, 0, 0, 0, 0, 0]) M_matrix_single_block_row_3 = np.array([beta_array[0], beta_array[1], -1*beta_array[2], -1*beta_array[3], 0, 0, 0, 0, 0, 0]) M_matrix_single_block_row_4 = np.array([beta_array[0], -1*beta_array[1], -1*beta_array[2], beta_array[3], 0, 0, 0, 0, 0, 0]) M_matrix_single_block_row_5 = np.array([beta_array[0], 0, 0, 0, -beta_array[1], -beta_array[2], beta_array[3], 0, 0, 0]) M_matrix_single_block_row_6 = np.array([beta_array[0], 0, 0, 0, beta_array[1], beta_array[2], beta_array[3], 0, 0, 0]) M_matrix_single_block_row_7 = np.array([beta_array[0], 0, 0, 0, 0, 0, 0, beta_array[1], beta_array[2], beta_array[3]]) M_matrix_single_block_row_8 = np.array([beta_array[0], 0, 0, 0, 0, 0, 0, -beta_array[1], -beta_array[2], beta_array[3]]) M_matrix_single_block = np.vstack((M_matrix_single_block_row_1, M_matrix_single_block_row_2, M_matrix_single_block_row_3, M_matrix_single_block_row_4, M_matrix_single_block_row_5, M_matrix_single_block_row_6, M_matrix_single_block_row_7, M_matrix_single_block_row_8)) M_matrix_single_block = M_matrix_single_block.reshape(8, 10) return M_matrix_single_block def assemble_M_matrix(self): Block1 = self.assemble_M_matrix_single_block(self.betas_up) Block2 = self.assemble_M_matrix_single_block(self.betas_p) Block3 = self.assemble_M_matrix_single_block(self.betas_pp) self.M_matrix = np.vstack((Block1, Block2, Block3)).reshape(24, 10) return self.M_matrix def invert_M_matrix(self): self.inverse_matrix = np.linalg.pinv(self.M_matrix) return self.inverse_matrix def execute_error_signalling(self, ev): II = (ev[0] - ev[3])/(1 - ev[3]) IZ = (ev[1] - ev[2])/(1 - ev[3]) ZI = (ev[1] - ev[2])/(1 - ev[3]) ZZ = (ev[3] - ev[0])/(1 - ev[3]) XX = (ev[4] + ev[5])/(1 - ev[3]) YY = (ev[4] + ev[5])/(1 - ev[3]) ev_error_signalling = np.array([II, IZ, ZI, ZZ, XX, YY]) return ev_error_signalling def execute_expectation_value_calculation(self): # assemble matrix that connects RO with terms self._calibrate_betas() self.assemble_M_matrix() self.invert_M_matrix() # use it to get terms back from RO rescaled_measurements_tomo = self.measurements_tomo self.expect_values = np.dot(self.inverse_matrix, rescaled_measurements_tomo) expect_values_VQE = np.array([self.expect_values[0], self.expect_values[1], self.expect_values[2], self.expect_values[3], self.expect_values[6], self.expect_values[9]]) return expect_values_VQE def execute_expectation_value_calculation_traceone(self): # assemble matrix that connects RO with terms self._calibrate_betas() self.assemble_M_matrix() self.inverse_matrix = np.linalg.pinv(self.M_matrix[:, 1:]) # use it to get terms back from RO rescaled_measurements_tomo = self.measurements_tomo self.expect_values = np.dot(self.inverse_matrix, rescaled_measurements_tomo) expect_values_VQE = np.array([1, self.expect_values[0], self.expect_values[1], self.expect_values[2], self.expect_values[5], self.expect_values[8]]) return expect_values_VQE def execute_expectation_value_calculation_T1signaling(self): # assemble matrix that connects RO with terms self._calibrate_betas() self.assemble_M_matrix() self.inverse_matrix = np.linalg.pinv(self.M_matrix[:, 1:]) # use it to get terms back from RO rescaled_measurements_tomo = self.measurements_tomo self.expect_values = np.dot(self.inverse_matrix, rescaled_measurements_tomo) expect_values_VQE = np.array([1, self.expect_values[0], self.expect_values[1], self.expect_values[2], self.expect_values[5], self.expect_values[8]]) expect_values_VQE = self.execute_error_signalling(expect_values_VQE) return expect_values_VQE class ExpectationValueCalculation: def __init__(self, auto=True, label='', timestamp=None, fig_format='png', q0_label='q0', q1_label='q1', close_fig=True, **kw): self.label = label self.timestamp = timestamp self.fig_format = fig_format # q0 == D2 self.q0_label = q0_label # q1 == A self.q1_label = q1_label self.n_states = 2 ** 2 self.ma_obj = ma.MeasurementAnalysis(auto=False, label=label, timestamp=timestamp) self.ma_obj.get_naming_and_values() # self.get_naming_and_values() # hard coded number of segments for a 2 qubit state tomography # constraint imposed by UHFLI # self.nr_segments = 16 # self.exp_name = os.path.split(self.folder)[-1][7:] avg_h1 = self.ma_obj.measured_values[0] avg_h2 = self.ma_obj.measured_values[1] avg_h12 = self.ma_obj.measured_values[2] #this should be implemented with a flag #but h1_00 = np.mean(avg_h1[36:36+7]) h1_01 = np.mean(avg_h1[43:43+7]) h1_10 = np.mean(avg_h1[50:50+7]) h1_11 = np.mean(avg_h1[57:]) h2_00 = np.mean(avg_h2[36:36+7]) h2_01 = np.mean(avg_h2[43:43+7]) h2_10 = np.mean(avg_h2[50:50+7]) h2_11 = np.mean(avg_h2[57:]) h12_00 = np.mean(avg_h12[36:36+7]) h12_01 = np.mean(avg_h12[43:43+7]) h12_10 = np.mean(avg_h12[50:50+7]) h12_11 = np.mean(avg_h12[57:]) mean_h1 = (h1_00+h1_10+h1_01+h1_11)/4 mean_h2 = (h2_00+h2_01+h2_10+h2_11)/4 mean_h12 = (h12_00+h12_11+h12_01+h12_10)/4 #subtract beta 0 from all measurements #rescale them avg_h1 -= mean_h1 avg_h2 -= mean_h2 avg_h12 -= mean_h12 scale_h1 = (h1_00+h1_10-h1_01-h1_11)/4 scale_h2 = (h2_00+h2_01-h2_10-h2_11)/4 scale_h12 = (h12_00+h12_11-h12_01-h12_10)/4 avg_h1 = (avg_h1)/scale_h1 avg_h2 = (avg_h2)/scale_h2 avg_h12 = (avg_h12)/scale_h12 #The averages have been redefined so redefine the cal terms h1_00 = np.mean(avg_h1[36:36+7]) h1_01 = np.mean(avg_h1[43:43+7]) h1_10 = np.mean(avg_h1[50:50+7]) h1_11 = np.mean(avg_h1[57:]) h2_00 = np.mean(avg_h2[36:36+7]) h2_01 = np.mean(avg_h2[43:43+7]) h2_10 = np.mean(avg_h2[50:50+7]) h2_11 = np.mean(avg_h2[57:]) h12_00 = np.mean(avg_h12[36:36+7]) h12_01 = np.mean(avg_h12[43:43+7]) h12_10 = np.mean(avg_h12[50:50+7]) h12_11 = np.mean(avg_h12[57:]) measurement_channel_1 = np.array([avg_h1[0],avg_h1[1],avg_h1[7],avg_h1[8],avg_h1[14],avg_h1[21],avg_h1[28],avg_h1[35]]) measurement_channel_2 = np.array([avg_h2[0],avg_h2[1],avg_h2[7],avg_h2[8],avg_h2[14],avg_h2[21],avg_h2[28],avg_h2[35]]) measurement_channel_3 = np.array([avg_h12[0],avg_h12[1],avg_h12[7],avg_h12[8],avg_h12[14],avg_h12[21],avg_h12[28],avg_h12[35]]) self.measurements_tomo = np.array([measurement_channel_1,measurement_channel_2,measurement_channel_3]).flatten() # print(self.measurements_tomo) # print(len(self.measurements_tomo)) # 108 x 1 # get the calibration points by averaging over the five measurements # taken knowing the initial state we put in self.measurements_cal=np.array([h1_00, h1_01, h1_10, h1_11, h2_00, h2_01, h2_10, h2_11, h12_00, h12_01, h12_10, h12_11]) def _calibrate_betas(self): """ calculates betas from calibration points for the initial measurement operator Betas are ordered by B0 -> II B1 -> IZ etc(binary counting) <0|Z|0> = 1, <1|Z|1> = -1 Keyword arguments: measurements_cal --- array(2 ** n_qubits) should be ordered correctly (00, 01, 10, 11) for 2 qubits """ cal_matrix = np.zeros((self.n_states, self.n_states)) # get the coefficient matrix for the betas for i in range(self.n_states): for j in range(self.n_states): # perform bitwise AND and count the resulting 1s cal_matrix[i, j] = (-1)**(bin((i & j)).count("1")) # invert solve the simple system of equations # print(cal_matrix) # print(np.linalg.inv(cal_matrix)) self.betas = np.zeros(12) # print(self.measurements_cal[0:4]) self.betas[0:4] = np.dot(np.linalg.inv(cal_matrix), self.measurements_cal[0:4]) self.betas_up = self.betas[0:4] self.betas[4:8] = np.dot(np.linalg.inv(cal_matrix), self.measurements_cal[4:8]) self.betas_p = self.betas[4:8] self.betas[8:] = np.dot(np.linalg.inv(cal_matrix), self.measurements_cal[8:12]) self.betas_pp = self.betas[8:] return self.betas def assemble_M_matrix_single_block(self, beta_array): M_matrix_single_block_row_1 = np.array([beta_array[1], beta_array[2], beta_array[3], 0, 0, 0, 0, 0, 0]) M_matrix_single_block_row_2 = np.array([-1*beta_array[1], beta_array[2], -1*beta_array[3], 0, 0, 0, 0, 0, 0]) M_matrix_single_block_row_3 = np.array([beta_array[1], -1*beta_array[2], -1*beta_array[3], 0, 0, 0, 0, 0, 0]) M_matrix_single_block_row_4 = np.array([-1*beta_array[1], -1*beta_array[2], beta_array[3], 0, 0, 0, 0, 0, 0]) M_matrix_single_block_row_5 = np.array([0, 0, 0, -beta_array[1], -beta_array[2], beta_array[3], 0, 0, 0]) M_matrix_single_block_row_6 = np.array([0, 0, 0, beta_array[1], beta_array[2], beta_array[3], 0, 0, 0]) M_matrix_single_block_row_7 = np.array([0, 0, 0, 0, 0, 0, beta_array[1], beta_array[2], beta_array[3]]) M_matrix_single_block_row_8 = np.array([0, 0, 0, 0, 0, 0, -beta_array[1], -beta_array[2], beta_array[3]]) M_matrix_single_block = np.vstack((M_matrix_single_block_row_1, M_matrix_single_block_row_2, M_matrix_single_block_row_3, M_matrix_single_block_row_4, M_matrix_single_block_row_5, M_matrix_single_block_row_6, M_matrix_single_block_row_7, M_matrix_single_block_row_8)) M_matrix_single_block = M_matrix_single_block.reshape(8, 9) return M_matrix_single_block def assemble_M_matrix(self): Block1 = self.assemble_M_matrix_single_block(self.betas_up) Block2 = self.assemble_M_matrix_single_block(self.betas_p) Block3 = self.assemble_M_matrix_single_block(self.betas_pp) self.M_matrix = np.vstack((Block1, Block2, Block3)).reshape(24, 9) return self.M_matrix def invert_M_matrix(self): self.inverse_matrix = np.linalg.pinv(self.M_matrix) return self.inverse_matrix def execute_error_signalling(self, ev): II = (ev[0] - ev[3])/(1 - ev[3]) IZ = (ev[1] - ev[2])/(1 - ev[3]) ZI = (ev[1] - ev[2])/(1 - ev[3]) ZZ = (ev[3] - ev[0])/(1 - ev[3]) XX = (ev[4] + ev[5])/(1 - ev[3]) YY = (ev[4] + ev[5])/(1 - ev[3]) ev_error_signalling = np.array([II, IZ, ZI, ZZ, XX, YY]) return ev_error_signalling def execute_expectation_value_calculation_traceone(self): # assemble matrix that connects RO with terms self._calibrate_betas() self.assemble_M_matrix() self.inverse_matrix = np.linalg.pinv(self.M_matrix) # use it to get terms back from RO rescaled_measurements_tomo = self.measurements_tomo self.expect_values = np.dot(self.inverse_matrix, rescaled_measurements_tomo) expect_values_VQE = np.array([1, self.expect_values[0], self.expect_values[1], self.expect_values[2], self.expect_values[5], self.expect_values[8]]) return expect_values_VQE def execute_expectation_value_calculation_T1signaling(self): # assemble matrix that connects RO with terms self._calibrate_betas() self.assemble_M_matrix() self.inverse_matrix = np.linalg.pinv(self.M_matrix[:, 1:]) # use it to get terms back from RO rescaled_measurements_tomo = self.measurements_tomo self.expect_values = np.dot(self.inverse_matrix, rescaled_measurements_tomo) expect_values_VQE = np.array([1, self.expect_values[0], self.expect_values[1], self.expect_values[2], self.expect_values[5], self.expect_values[8]]) expect_values_VQE = self.execute_error_signalling(expect_values_VQE) return expect_values_VQE
c0hen/django-venv
refs/heads/master
lib/python3.4/site-packages/django/http/request.py
23
from __future__ import unicode_literals import copy import re import sys from io import BytesIO from itertools import chain from django.conf import settings from django.core import signing from django.core.exceptions import ( DisallowedHost, ImproperlyConfigured, RequestDataTooBig, ) from django.core.files import uploadhandler from django.http.multipartparser import MultiPartParser, MultiPartParserError from django.utils import six from django.utils.datastructures import ImmutableList, MultiValueDict from django.utils.encoding import ( escape_uri_path, force_bytes, force_str, force_text, iri_to_uri, ) from django.utils.http import is_same_domain, limited_parse_qsl from django.utils.six.moves.urllib.parse import ( quote, urlencode, urljoin, urlsplit, ) RAISE_ERROR = object() host_validation_re = re.compile(r"^([a-z0-9.-]+|\[[a-f0-9]*:[a-f0-9:]+\])(:\d+)?$") class UnreadablePostError(IOError): pass class RawPostDataException(Exception): """ You cannot access raw_post_data from a request that has multipart/* POST data if it has been accessed via POST, FILES, etc.. """ pass class HttpRequest(object): """A basic HTTP request.""" # The encoding used in GET/POST dicts. None means use default setting. _encoding = None _upload_handlers = [] def __init__(self): # WARNING: The `WSGIRequest` subclass doesn't call `super`. # Any variable assignment made here should also happen in # `WSGIRequest.__init__()`. self.GET = QueryDict(mutable=True) self.POST = QueryDict(mutable=True) self.COOKIES = {} self.META = {} self.FILES = MultiValueDict() self.path = '' self.path_info = '' self.method = None self.resolver_match = None self._post_parse_error = False self.content_type = None self.content_params = None def __repr__(self): if self.method is None or not self.get_full_path(): return force_str('<%s>' % self.__class__.__name__) return force_str( '<%s: %s %r>' % (self.__class__.__name__, self.method, force_str(self.get_full_path())) ) def _get_raw_host(self): """ Return the HTTP host using the environment or request headers. Skip allowed hosts protection, so may return an insecure host. """ # We try three options, in order of decreasing preference. if settings.USE_X_FORWARDED_HOST and ( 'HTTP_X_FORWARDED_HOST' in self.META): host = self.META['HTTP_X_FORWARDED_HOST'] elif 'HTTP_HOST' in self.META: host = self.META['HTTP_HOST'] else: # Reconstruct the host using the algorithm from PEP 333. host = self.META['SERVER_NAME'] server_port = self.get_port() if server_port != ('443' if self.is_secure() else '80'): host = '%s:%s' % (host, server_port) return host def get_host(self): """Return the HTTP host using the environment or request headers.""" host = self._get_raw_host() # Allow variants of localhost if ALLOWED_HOSTS is empty and DEBUG=True. allowed_hosts = settings.ALLOWED_HOSTS if settings.DEBUG and not allowed_hosts: allowed_hosts = ['localhost', '127.0.0.1', '[::1]'] domain, port = split_domain_port(host) if domain and validate_host(domain, allowed_hosts): return host else: msg = "Invalid HTTP_HOST header: %r." % host if domain: msg += " You may need to add %r to ALLOWED_HOSTS." % domain else: msg += " The domain name provided is not valid according to RFC 1034/1035." raise DisallowedHost(msg) def get_port(self): """Return the port number for the request as a string.""" if settings.USE_X_FORWARDED_PORT and 'HTTP_X_FORWARDED_PORT' in self.META: port = self.META['HTTP_X_FORWARDED_PORT'] else: port = self.META['SERVER_PORT'] return str(port) def get_full_path(self, force_append_slash=False): # RFC 3986 requires query string arguments to be in the ASCII range. # Rather than crash if this doesn't happen, we encode defensively. return '%s%s%s' % ( escape_uri_path(self.path), '/' if force_append_slash and not self.path.endswith('/') else '', ('?' + iri_to_uri(self.META.get('QUERY_STRING', ''))) if self.META.get('QUERY_STRING', '') else '' ) def get_signed_cookie(self, key, default=RAISE_ERROR, salt='', max_age=None): """ Attempts to return a signed cookie. If the signature fails or the cookie has expired, raises an exception... unless you provide the default argument in which case that value will be returned instead. """ try: cookie_value = self.COOKIES[key] except KeyError: if default is not RAISE_ERROR: return default else: raise try: value = signing.get_cookie_signer(salt=key + salt).unsign( cookie_value, max_age=max_age) except signing.BadSignature: if default is not RAISE_ERROR: return default else: raise return value def get_raw_uri(self): """ Return an absolute URI from variables available in this request. Skip allowed hosts protection, so may return insecure URI. """ return '{scheme}://{host}{path}'.format( scheme=self.scheme, host=self._get_raw_host(), path=self.get_full_path(), ) def build_absolute_uri(self, location=None): """ Builds an absolute URI from the location and the variables available in this request. If no ``location`` is specified, the absolute URI is built on ``request.get_full_path()``. Anyway, if the location is absolute, it is simply converted to an RFC 3987 compliant URI and returned and if location is relative or is scheme-relative (i.e., ``//example.com/``), it is urljoined to a base URL constructed from the request variables. """ if location is None: # Make it an absolute url (but schemeless and domainless) for the # edge case that the path starts with '//'. location = '//%s' % self.get_full_path() bits = urlsplit(location) if not (bits.scheme and bits.netloc): current_uri = '{scheme}://{host}{path}'.format(scheme=self.scheme, host=self.get_host(), path=self.path) # Join the constructed URL with the provided location, which will # allow the provided ``location`` to apply query strings to the # base path as well as override the host, if it begins with // location = urljoin(current_uri, location) return iri_to_uri(location) def _get_scheme(self): """ Hook for subclasses like WSGIRequest to implement. Returns 'http' by default. """ return 'http' @property def scheme(self): if settings.SECURE_PROXY_SSL_HEADER: try: header, value = settings.SECURE_PROXY_SSL_HEADER except ValueError: raise ImproperlyConfigured( 'The SECURE_PROXY_SSL_HEADER setting must be a tuple containing two values.' ) if self.META.get(header) == value: return 'https' return self._get_scheme() def is_secure(self): return self.scheme == 'https' def is_ajax(self): return self.META.get('HTTP_X_REQUESTED_WITH') == 'XMLHttpRequest' @property def encoding(self): return self._encoding @encoding.setter def encoding(self, val): """ Sets the encoding used for GET/POST accesses. If the GET or POST dictionary has already been created, it is removed and recreated on the next access (so that it is decoded correctly). """ self._encoding = val if hasattr(self, '_get'): del self._get if hasattr(self, '_post'): del self._post def _initialize_handlers(self): self._upload_handlers = [uploadhandler.load_handler(handler, self) for handler in settings.FILE_UPLOAD_HANDLERS] @property def upload_handlers(self): if not self._upload_handlers: # If there are no upload handlers defined, initialize them from settings. self._initialize_handlers() return self._upload_handlers @upload_handlers.setter def upload_handlers(self, upload_handlers): if hasattr(self, '_files'): raise AttributeError("You cannot set the upload handlers after the upload has been processed.") self._upload_handlers = upload_handlers def parse_file_upload(self, META, post_data): """Returns a tuple of (POST QueryDict, FILES MultiValueDict).""" self.upload_handlers = ImmutableList( self.upload_handlers, warning="You cannot alter upload handlers after the upload has been processed." ) parser = MultiPartParser(META, post_data, self.upload_handlers, self.encoding) return parser.parse() @property def body(self): if not hasattr(self, '_body'): if self._read_started: raise RawPostDataException("You cannot access body after reading from request's data stream") # Limit the maximum request data size that will be handled in-memory. if (settings.DATA_UPLOAD_MAX_MEMORY_SIZE is not None and int(self.META.get('CONTENT_LENGTH') or 0) > settings.DATA_UPLOAD_MAX_MEMORY_SIZE): raise RequestDataTooBig('Request body exceeded settings.DATA_UPLOAD_MAX_MEMORY_SIZE.') try: self._body = self.read() except IOError as e: six.reraise(UnreadablePostError, UnreadablePostError(*e.args), sys.exc_info()[2]) self._stream = BytesIO(self._body) return self._body def _mark_post_parse_error(self): self._post = QueryDict() self._files = MultiValueDict() self._post_parse_error = True def _load_post_and_files(self): """Populate self._post and self._files if the content-type is a form type""" if self.method != 'POST': self._post, self._files = QueryDict(encoding=self._encoding), MultiValueDict() return if self._read_started and not hasattr(self, '_body'): self._mark_post_parse_error() return if self.content_type == 'multipart/form-data': if hasattr(self, '_body'): # Use already read data data = BytesIO(self._body) else: data = self try: self._post, self._files = self.parse_file_upload(self.META, data) except MultiPartParserError: # An error occurred while parsing POST data. Since when # formatting the error the request handler might access # self.POST, set self._post and self._file to prevent # attempts to parse POST data again. # Mark that an error occurred. This allows self.__repr__ to # be explicit about it instead of simply representing an # empty POST self._mark_post_parse_error() raise elif self.content_type == 'application/x-www-form-urlencoded': self._post, self._files = QueryDict(self.body, encoding=self._encoding), MultiValueDict() else: self._post, self._files = QueryDict(encoding=self._encoding), MultiValueDict() def close(self): if hasattr(self, '_files'): for f in chain.from_iterable(l[1] for l in self._files.lists()): f.close() # File-like and iterator interface. # # Expects self._stream to be set to an appropriate source of bytes by # a corresponding request subclass (e.g. WSGIRequest). # Also when request data has already been read by request.POST or # request.body, self._stream points to a BytesIO instance # containing that data. def read(self, *args, **kwargs): self._read_started = True try: return self._stream.read(*args, **kwargs) except IOError as e: six.reraise(UnreadablePostError, UnreadablePostError(*e.args), sys.exc_info()[2]) def readline(self, *args, **kwargs): self._read_started = True try: return self._stream.readline(*args, **kwargs) except IOError as e: six.reraise(UnreadablePostError, UnreadablePostError(*e.args), sys.exc_info()[2]) def xreadlines(self): while True: buf = self.readline() if not buf: break yield buf __iter__ = xreadlines def readlines(self): return list(iter(self)) class QueryDict(MultiValueDict): """ A specialized MultiValueDict which represents a query string. A QueryDict can be used to represent GET or POST data. It subclasses MultiValueDict since keys in such data can be repeated, for instance in the data from a form with a <select multiple> field. By default QueryDicts are immutable, though the copy() method will always return a mutable copy. Both keys and values set on this class are converted from the given encoding (DEFAULT_CHARSET by default) to unicode. """ # These are both reset in __init__, but is specified here at the class # level so that unpickling will have valid values _mutable = True _encoding = None def __init__(self, query_string=None, mutable=False, encoding=None): super(QueryDict, self).__init__() if not encoding: encoding = settings.DEFAULT_CHARSET self.encoding = encoding query_string = query_string or '' parse_qsl_kwargs = { 'keep_blank_values': True, 'fields_limit': settings.DATA_UPLOAD_MAX_NUMBER_FIELDS, 'encoding': encoding, } if six.PY3: if isinstance(query_string, bytes): # query_string normally contains URL-encoded data, a subset of ASCII. try: query_string = query_string.decode(encoding) except UnicodeDecodeError: # ... but some user agents are misbehaving :-( query_string = query_string.decode('iso-8859-1') for key, value in limited_parse_qsl(query_string, **parse_qsl_kwargs): self.appendlist(key, value) else: for key, value in limited_parse_qsl(query_string, **parse_qsl_kwargs): try: value = value.decode(encoding) except UnicodeDecodeError: value = value.decode('iso-8859-1') self.appendlist(force_text(key, encoding, errors='replace'), value) self._mutable = mutable @property def encoding(self): if self._encoding is None: self._encoding = settings.DEFAULT_CHARSET return self._encoding @encoding.setter def encoding(self, value): self._encoding = value def _assert_mutable(self): if not self._mutable: raise AttributeError("This QueryDict instance is immutable") def __setitem__(self, key, value): self._assert_mutable() key = bytes_to_text(key, self.encoding) value = bytes_to_text(value, self.encoding) super(QueryDict, self).__setitem__(key, value) def __delitem__(self, key): self._assert_mutable() super(QueryDict, self).__delitem__(key) def __copy__(self): result = self.__class__('', mutable=True, encoding=self.encoding) for key, value in six.iterlists(self): result.setlist(key, value) return result def __deepcopy__(self, memo): result = self.__class__('', mutable=True, encoding=self.encoding) memo[id(self)] = result for key, value in six.iterlists(self): result.setlist(copy.deepcopy(key, memo), copy.deepcopy(value, memo)) return result def setlist(self, key, list_): self._assert_mutable() key = bytes_to_text(key, self.encoding) list_ = [bytes_to_text(elt, self.encoding) for elt in list_] super(QueryDict, self).setlist(key, list_) def setlistdefault(self, key, default_list=None): self._assert_mutable() return super(QueryDict, self).setlistdefault(key, default_list) def appendlist(self, key, value): self._assert_mutable() key = bytes_to_text(key, self.encoding) value = bytes_to_text(value, self.encoding) super(QueryDict, self).appendlist(key, value) def pop(self, key, *args): self._assert_mutable() return super(QueryDict, self).pop(key, *args) def popitem(self): self._assert_mutable() return super(QueryDict, self).popitem() def clear(self): self._assert_mutable() super(QueryDict, self).clear() def setdefault(self, key, default=None): self._assert_mutable() key = bytes_to_text(key, self.encoding) default = bytes_to_text(default, self.encoding) return super(QueryDict, self).setdefault(key, default) def copy(self): """Returns a mutable copy of this object.""" return self.__deepcopy__({}) def urlencode(self, safe=None): """ Returns an encoded string of all query string arguments. :arg safe: Used to specify characters which do not require quoting, for example:: >>> q = QueryDict(mutable=True) >>> q['next'] = '/a&b/' >>> q.urlencode() 'next=%2Fa%26b%2F' >>> q.urlencode(safe='/') 'next=/a%26b/' """ output = [] if safe: safe = force_bytes(safe, self.encoding) def encode(k, v): return '%s=%s' % ((quote(k, safe), quote(v, safe))) else: def encode(k, v): return urlencode({k: v}) for k, list_ in self.lists(): k = force_bytes(k, self.encoding) output.extend(encode(k, force_bytes(v, self.encoding)) for v in list_) return '&'.join(output) # It's neither necessary nor appropriate to use # django.utils.encoding.smart_text for parsing URLs and form inputs. Thus, # this slightly more restricted function, used by QueryDict. def bytes_to_text(s, encoding): """ Converts basestring objects to unicode, using the given encoding. Illegally encoded input characters are replaced with Unicode "unknown" codepoint (\ufffd). Returns any non-basestring objects without change. """ if isinstance(s, bytes): return six.text_type(s, encoding, 'replace') else: return s def split_domain_port(host): """ Return a (domain, port) tuple from a given host. Returned domain is lower-cased. If the host is invalid, the domain will be empty. """ host = host.lower() if not host_validation_re.match(host): return '', '' if host[-1] == ']': # It's an IPv6 address without a port. return host, '' bits = host.rsplit(':', 1) if len(bits) == 2: return tuple(bits) return bits[0], '' def validate_host(host, allowed_hosts): """ Validate the given host for this site. Check that the host looks valid and matches a host or host pattern in the given list of ``allowed_hosts``. Any pattern beginning with a period matches a domain and all its subdomains (e.g. ``.example.com`` matches ``example.com`` and any subdomain), ``*`` matches anything, and anything else must match exactly. Note: This function assumes that the given host is lower-cased and has already had the port, if any, stripped off. Return ``True`` for a valid host, ``False`` otherwise. """ host = host[:-1] if host.endswith('.') else host for pattern in allowed_hosts: if pattern == '*' or is_same_domain(host, pattern): return True return False
Yukarumya/Yukarum-Redfoxes
refs/heads/master
testing/web-platform/tests/tools/serve/__init__.py
458
import serve
DevriesL/HeroQLTE_ImageBreaker
refs/heads/master
tools/perf/scripts/python/sctop.py
1996
# system call top # (c) 2010, Tom Zanussi <tzanussi@gmail.com> # Licensed under the terms of the GNU GPL License version 2 # # Periodically displays system-wide system call totals, broken down by # syscall. If a [comm] arg is specified, only syscalls called by # [comm] are displayed. If an [interval] arg is specified, the display # will be refreshed every [interval] seconds. The default interval is # 3 seconds. import os, sys, thread, time sys.path.append(os.environ['PERF_EXEC_PATH'] + \ '/scripts/python/Perf-Trace-Util/lib/Perf/Trace') from perf_trace_context import * from Core import * from Util import * usage = "perf script -s sctop.py [comm] [interval]\n"; for_comm = None default_interval = 3 interval = default_interval if len(sys.argv) > 3: sys.exit(usage) if len(sys.argv) > 2: for_comm = sys.argv[1] interval = int(sys.argv[2]) elif len(sys.argv) > 1: try: interval = int(sys.argv[1]) except ValueError: for_comm = sys.argv[1] interval = default_interval syscalls = autodict() def trace_begin(): thread.start_new_thread(print_syscall_totals, (interval,)) pass def raw_syscalls__sys_enter(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, common_callchain, id, args): if for_comm is not None: if common_comm != for_comm: return try: syscalls[id] += 1 except TypeError: syscalls[id] = 1 def syscalls__sys_enter(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, id, args): raw_syscalls__sys_enter(**locals()) def print_syscall_totals(interval): while 1: clear_term() if for_comm is not None: print "\nsyscall events for %s:\n\n" % (for_comm), else: print "\nsyscall events:\n\n", print "%-40s %10s\n" % ("event", "count"), print "%-40s %10s\n" % ("----------------------------------------", \ "----------"), for id, val in sorted(syscalls.iteritems(), key = lambda(k, v): (v, k), \ reverse = True): try: print "%-40s %10d\n" % (syscall_name(id), val), except TypeError: pass syscalls.clear() time.sleep(interval)
dlazz/ansible
refs/heads/devel
test/integration/targets/wait_for/files/testserver.py
222
import sys if __name__ == '__main__': if sys.version_info[0] >= 3: import http.server import socketserver PORT = int(sys.argv[1]) Handler = http.server.SimpleHTTPRequestHandler httpd = socketserver.TCPServer(("", PORT), Handler) httpd.serve_forever() else: import mimetypes mimetypes.init() mimetypes.add_type('application/json', '.json') import SimpleHTTPServer SimpleHTTPServer.test()
Fkawala/gcloud-python
refs/heads/master
bigquery/google/__init__.py
194
# Copyright 2016 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: import pkg_resources pkg_resources.declare_namespace(__name__) except ImportError: import pkgutil __path__ = pkgutil.extend_path(__path__, __name__)
fighterCui/L4ReFiascoOC
refs/heads/master
l4/pkg/python/contrib/Lib/pyclbr.py
182
"""Parse a Python module and describe its classes and methods. Parse enough of a Python file to recognize imports and class and method definitions, and to find out the superclasses of a class. The interface consists of a single function: readmodule_ex(module [, path]) where module is the name of a Python module, and path is an optional list of directories where the module is to be searched. If present, path is prepended to the system search path sys.path. The return value is a dictionary. The keys of the dictionary are the names of the classes defined in the module (including classes that are defined via the from XXX import YYY construct). The values are class instances of the class Class defined here. One special key/value pair is present for packages: the key '__path__' has a list as its value which contains the package search path. A class is described by the class Class in this module. Instances of this class have the following instance variables: module -- the module name name -- the name of the class super -- a list of super classes (Class instances) methods -- a dictionary of methods file -- the file in which the class was defined lineno -- the line in the file on which the class statement occurred The dictionary of methods uses the method names as keys and the line numbers on which the method was defined as values. If the name of a super class is not recognized, the corresponding entry in the list of super classes is not a class instance but a string giving the name of the super class. Since import statements are recognized and imported modules are scanned as well, this shouldn't happen often. A function is described by the class Function in this module. Instances of this class have the following instance variables: module -- the module name name -- the name of the class file -- the file in which the class was defined lineno -- the line in the file on which the class statement occurred """ import sys import imp import tokenize from token import NAME, DEDENT, OP from operator import itemgetter __all__ = ["readmodule", "readmodule_ex", "Class", "Function"] _modules = {} # cache of modules we've seen # each Python class is represented by an instance of this class class Class: '''Class to represent a Python class.''' def __init__(self, module, name, super, file, lineno): self.module = module self.name = name if super is None: super = [] self.super = super self.methods = {} self.file = file self.lineno = lineno def _addmethod(self, name, lineno): self.methods[name] = lineno class Function: '''Class to represent a top-level Python function''' def __init__(self, module, name, file, lineno): self.module = module self.name = name self.file = file self.lineno = lineno def readmodule(module, path=None): '''Backwards compatible interface. Call readmodule_ex() and then only keep Class objects from the resulting dictionary.''' res = {} for key, value in _readmodule(module, path or []).items(): if isinstance(value, Class): res[key] = value return res def readmodule_ex(module, path=None): '''Read a module file and return a dictionary of classes. Search for MODULE in PATH and sys.path, read and parse the module and return a dictionary with one entry for each class found in the module. ''' return _readmodule(module, path or []) def _readmodule(module, path, inpackage=None): '''Do the hard work for readmodule[_ex]. If INPACKAGE is given, it must be the dotted name of the package in which we are searching for a submodule, and then PATH must be the package search path; otherwise, we are searching for a top-level module, and PATH is combined with sys.path. ''' # Compute the full module name (prepending inpackage if set) if inpackage is not None: fullmodule = "%s.%s" % (inpackage, module) else: fullmodule = module # Check in the cache if fullmodule in _modules: return _modules[fullmodule] # Initialize the dict for this module's contents dict = {} # Check if it is a built-in module; we don't do much for these if module in sys.builtin_module_names and inpackage is None: _modules[module] = dict return dict # Check for a dotted module name i = module.rfind('.') if i >= 0: package = module[:i] submodule = module[i+1:] parent = _readmodule(package, path, inpackage) if inpackage is not None: package = "%s.%s" % (inpackage, package) return _readmodule(submodule, parent['__path__'], package) # Search the path for the module f = None if inpackage is not None: f, fname, (_s, _m, ty) = imp.find_module(module, path) else: f, fname, (_s, _m, ty) = imp.find_module(module, path + sys.path) if ty == imp.PKG_DIRECTORY: dict['__path__'] = [fname] path = [fname] + path f, fname, (_s, _m, ty) = imp.find_module('__init__', [fname]) _modules[fullmodule] = dict if ty != imp.PY_SOURCE: # not Python source, can't do anything with this module f.close() return dict stack = [] # stack of (class, indent) pairs g = tokenize.generate_tokens(f.readline) try: for tokentype, token, start, _end, _line in g: if tokentype == DEDENT: lineno, thisindent = start # close nested classes and defs while stack and stack[-1][1] >= thisindent: del stack[-1] elif token == 'def': lineno, thisindent = start # close previous nested classes and defs while stack and stack[-1][1] >= thisindent: del stack[-1] tokentype, meth_name, start = g.next()[0:3] if tokentype != NAME: continue # Syntax error if stack: cur_class = stack[-1][0] if isinstance(cur_class, Class): # it's a method cur_class._addmethod(meth_name, lineno) # else it's a nested def else: # it's a function dict[meth_name] = Function(fullmodule, meth_name, fname, lineno) stack.append((None, thisindent)) # Marker for nested fns elif token == 'class': lineno, thisindent = start # close previous nested classes and defs while stack and stack[-1][1] >= thisindent: del stack[-1] tokentype, class_name, start = g.next()[0:3] if tokentype != NAME: continue # Syntax error # parse what follows the class name tokentype, token, start = g.next()[0:3] inherit = None if token == '(': names = [] # List of superclasses # there's a list of superclasses level = 1 super = [] # Tokens making up current superclass while True: tokentype, token, start = g.next()[0:3] if token in (')', ',') and level == 1: n = "".join(super) if n in dict: # we know this super class n = dict[n] else: c = n.split('.') if len(c) > 1: # super class is of the form # module.class: look in module for # class m = c[-2] c = c[-1] if m in _modules: d = _modules[m] if c in d: n = d[c] names.append(n) super = [] if token == '(': level += 1 elif token == ')': level -= 1 if level == 0: break elif token == ',' and level == 1: pass # only use NAME and OP (== dot) tokens for type name elif tokentype in (NAME, OP) and level == 1: super.append(token) # expressions in the base list are not supported inherit = names cur_class = Class(fullmodule, class_name, inherit, fname, lineno) if not stack: dict[class_name] = cur_class stack.append((cur_class, thisindent)) elif token == 'import' and start[1] == 0: modules = _getnamelist(g) for mod, _mod2 in modules: try: # Recursively read the imported module if inpackage is None: _readmodule(mod, path) else: try: _readmodule(mod, path, inpackage) except ImportError: _readmodule(mod, []) except: # If we can't find or parse the imported module, # too bad -- don't die here. pass elif token == 'from' and start[1] == 0: mod, token = _getname(g) if not mod or token != "import": continue names = _getnamelist(g) try: # Recursively read the imported module d = _readmodule(mod, path, inpackage) except: # If we can't find or parse the imported module, # too bad -- don't die here. continue # add any classes that were defined in the imported module # to our name space if they were mentioned in the list for n, n2 in names: if n in d: dict[n2 or n] = d[n] elif n == '*': # don't add names that start with _ for n in d: if n[0] != '_': dict[n] = d[n] except StopIteration: pass f.close() return dict def _getnamelist(g): # Helper to get a comma-separated list of dotted names plus 'as' # clauses. Return a list of pairs (name, name2) where name2 is # the 'as' name, or None if there is no 'as' clause. names = [] while True: name, token = _getname(g) if not name: break if token == 'as': name2, token = _getname(g) else: name2 = None names.append((name, name2)) while token != "," and "\n" not in token: token = g.next()[1] if token != ",": break return names def _getname(g): # Helper to get a dotted name, return a pair (name, token) where # name is the dotted name, or None if there was no dotted name, # and token is the next input token. parts = [] tokentype, token = g.next()[0:2] if tokentype != NAME and token != '*': return (None, token) parts.append(token) while True: tokentype, token = g.next()[0:2] if token != '.': break tokentype, token = g.next()[0:2] if tokentype != NAME: break parts.append(token) return (".".join(parts), token) def _main(): # Main program for testing. import os mod = sys.argv[1] if os.path.exists(mod): path = [os.path.dirname(mod)] mod = os.path.basename(mod) if mod.lower().endswith(".py"): mod = mod[:-3] else: path = [] dict = readmodule_ex(mod, path) objs = dict.values() objs.sort(lambda a, b: cmp(getattr(a, 'lineno', 0), getattr(b, 'lineno', 0))) for obj in objs: if isinstance(obj, Class): print "class", obj.name, obj.super, obj.lineno methods = sorted(obj.methods.iteritems(), key=itemgetter(1)) for name, lineno in methods: if name != "__path__": print " def", name, lineno elif isinstance(obj, Function): print "def", obj.name, obj.lineno if __name__ == "__main__": _main()
gitisaac/gitinspector
refs/heads/master
gitinspector/format.py
46
# coding: utf-8 # # Copyright © 2012-2014 Ejwa Software. All rights reserved. # # This file is part of gitinspector. # # gitinspector is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # gitinspector is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with gitinspector. If not, see <http://www.gnu.org/licenses/>. from __future__ import print_function from __future__ import unicode_literals import localization import version import base64 import basedir import os import terminal import textwrap import time import zipfile __available_formats__ = ["html", "htmlembedded", "text", "xml"] DEFAULT_FORMAT = __available_formats__[2] __selected_format__ = DEFAULT_FORMAT class InvalidFormatError(Exception): def __init__(self, msg): super(InvalidFormatError, self).__init__(msg) self.msg = msg def select(format): global __selected_format__ __selected_format__ = format return format in __available_formats__ def get_selected(): return __selected_format__ def is_interactive_format(): return __selected_format__ == "text" def __output_html_template__(name): template_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), name) file_r = open(template_path, "rb") return file_r.read().decode("utf-8", "replace") def __get_zip_file_content__(name, file_name="/html/flot.zip"): zip_file = zipfile.ZipFile(basedir.get_basedir() + file_name, "r") content = zip_file.read(name) zip_file.close() return content.decode("utf-8", "replace") def output_header(): if __selected_format__ == "html" or __selected_format__ == "htmlembedded": base = basedir.get_basedir() html_header = __output_html_template__(base + "/html/html.header") tablesorter_js = __get_zip_file_content__("jquery.tablesorter.min.js", "/html/jquery.tablesorter.min.js.zip").encode("latin-1", "replace") tablesorter_js = tablesorter_js.decode("utf-8", "ignore") flot_js = __get_zip_file_content__("jquery.flot.js") pie_js = __get_zip_file_content__("jquery.flot.pie.js") resize_js = __get_zip_file_content__("jquery.flot.resize.js") logo_file = open(base + "/html/gitinspector_piclet.png", "rb") logo = logo_file.read() logo_file.close() logo = base64.b64encode(logo) if __selected_format__ == "htmlembedded": jquery_js = ">" + __get_zip_file_content__("jquery.js") else: jquery_js = " src=\"https://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js\">" print(html_header.format(title = _("Repository statistics for {0}").format(os.path.basename(basedir.get_basedir_git())), jquery = jquery_js, jquery_tablesorter = tablesorter_js, jquery_flot = flot_js, jquery_flot_pie = pie_js, jquery_flot_resize = resize_js, logo = logo.decode("utf-8", "replace"), logo_text = _("The output has been generated by {0} {1}. The statistical analysis tool" " for git repositories.").format( "<a href=\"https://gitinspector.googlecode.com\">gitinspector</a>", version.__version__), repo_text = _("Statistical information for the repository '{0}' was gathered on {1}.").format( os.path.basename(basedir. get_basedir_git()), localization.get_date()), show_minor_authors = _("Show minor authors"), hide_minor_authors = _("Hide minor authors"), show_minor_rows = _("Show rows with minor work"), hide_minor_rows = _("Hide rows with minor work"))) elif __selected_format__ == "xml": print("<gitinspector>") print("\t<version>" + version.__version__ + "</version>") print("\t<repository>" + os.path.basename(basedir. get_basedir_git()) + "</repository>") print("\t<report-date>" + time.strftime("%Y/%m/%d") + "</report-date>") else: print(textwrap.fill(_("Statistical information for the repository '{0}' was gathered on {1}.").format( os.path.basename(basedir.get_basedir_git()), localization.get_date()), width=terminal.get_size()[0])) def output_footer(): if __selected_format__ == "html" or __selected_format__ == "htmlembedded": base = basedir.get_basedir() html_footer = __output_html_template__(base + "/html/html.footer") print(html_footer) elif __selected_format__ == "xml": print("</gitinspector>")
elena/django
refs/heads/master
tests/apps/explicit_default_config_mismatch_app/apps.py
21
from django.apps import AppConfig class ImplicitDefaultConfigMismatch(AppConfig): name = 'apps.explicit_default_config_mismatch_app'
dahlstrom-g/intellij-community
refs/heads/master
python/testData/resolve/multiFile/pkgResourcesNamespaceWithDocstring/root1/pkg/a.py
64
import pkg.second # <ref>
MalloyPower/parsing-python
refs/heads/master
front-end/testsuite-python-lib/Python-2.4.3/Lib/plat-mac/Carbon/AH.py
82
from _AH import *
igemsoftware2017/USTC-Software-2017
refs/heads/master
tests/core/files/test_views.py
1
from rest_framework.test import APITestCase from django.urls import reverse from django.test import override_settings from biohub.accounts.models import User from ._utils import open_sample @override_settings(DEBUG=True) class Test(APITestCase): def test_upload_fail(self): url = reverse('default:files:upload') self.assertEqual(403, self.client.post(url, {}).status_code) def test_upload(self, filename='2.txt.txt'): url = reverse('default:files:upload') me = User.objects.create_test_user('me') self.client.force_authenticate(me) sample = open_sample(filename) content = sample.read() sample.seek(0) # Phase 1 resp = self.client.post(url + '?store_db=1', dict(file=sample)) self.assertIn('id', resp.data) self.assertEqual(resp.data['name'], filename) self.assertEqual( content, b''.join( self.client.get(resp.data['file']).streaming_content)) # Phase 2 sample.seek(0) resp = self.client.post(url, dict(file=sample)) self.assertNotIn('id', resp.data) self.assertEqual( content, b''.join( self.client.get(resp.data['file']).streaming_content)) def test_upload2(self): self.test_upload('2')
gregorv/sipm_analyse
refs/heads/master
extract_pulse_spectrum.py
1
# -*- coding: utf-8 -*- import platform if platform.python_implementation() == "PyPy": import numpypy else: import matplotlib.pyplot as plt from scipy.optimize import leastsq fig = plt.figure() import numpy as np #import scipy import datafile import sys import os import time import argparse from pulse import * filter_kernel = None def get_events(t, sig): a = filter(lambda x: (x[1]-x[0]) > 2 or not x[2], flankenize(t, sig)) #for x in collapse_flanks(a): #print not x[2], sig[x[1]] - sig[x[0]] b = filter(lambda x: not x[2] and (sig[x[1]] - sig[x[0]]) < -5, collapse_flanks(a)) #plt.plot(t, sig, "x-") #for start_idx, end_idx, pos in b: #print [t[start_idx], t[end_idx]], [sig[start_idx], sig[end_idx]] #plt.plot([t[start_idx], t[end_idx]], #[sig[start_idx], sig[end_idx]], color="red") #fig.savefig("test.pdf") #fig.clf() return [t[end_idx] for start_idx, end_idx, pos in b] def process_frame(number, t, sig): t, smooth_signal = integrate_signal(t, sig) # Get events events = get_events(t, smooth_signal) # Fit exp. curve to get each events amplitude result = [] t_0 = None for i, t_ev in enumerate(events): try: t_ev_next = events[i+1] except IndexError: t_ev_next = None t_ev_fit, amplitude = fit_decay(t, sig, t_ev, t_ev_next) #print "x_1", x if t_ev_fit-200 < 0.0 or t_ev_fit > t[-1]: continue if amplitude > 1000.0: sys.stderr.write("\nSorted out! Frame idx {0}\n".format(number)) return [] if t_0 is None: t_0 = t_ev_fit else: result.append((t_ev_fit-t_0, amplitude)) # prepare return set return result def process_frame_quick(number, t, sig): t_start = 200 t, smooth_signal = integrate_signal(t, sig) #plt.plot(t, smooth_signal) #plt.savefig("test.png") #plt.clf() # Get events a = filter(lambda x: (x[1]-x[0]) > 2 or not x[2], flankenize(t, smooth_signal)) b = filter(lambda x: not x[2] and (smooth_signal[x[1]] - smooth_signal[x[0]]) < -5, collapse_flanks(a)) c = filter(lambda x: int(t_start/(t[-1] - t[0])*len(t)) < x[0], b) events = [] for start_idx, end_idx, _ in c: end_idx -= 3 # empiric offset events.append((t[end_idx], sig[end_idx] - sig[start_idx])) if len(events) > 1: return [(t_ev-events[0][0], amplitude) for t_ev, amplitude in events[1:]] else: return [] def process_frame_full_spectrum(number, t, sig): t, smooth_signal = integrate_signal(t, sig) a = filter(lambda x: (x[1]-x[0]) > 2 or not x[2], flankenize(t, smooth_signal)) b = filter(lambda x: not x[2] and (smooth_signal[x[1]] - smooth_signal[x[0]]) < -5, collapse_flanks(a)) return [(t[end_idx], sig[end_idx] - sig[start_idx]) for start_idx, end_idx, pos in b] def integrate_signal(time, signal): new_sig = [] half_window_size = 5 for i in xrange(len(signal)): used_samples = 0 sig = 0 for j in xrange(i-half_window_size, i+half_window_size): try: sig += signal[j] used_samples += 1 except IndexError: pass sig /= used_samples new_sig.append(sig) return time, new_sig def time_string(seconds): s = "" seconds = int(seconds) if (seconds / 86400) > 0: s = ''.join((s, str(seconds / 86400), "d ")) seconds %= 86400 if (seconds / 3600) > 0: s = ''.join((s, str(seconds / 3600), "h ")) seconds %= 3600 if (seconds / 60) > 0: s = ''.join((s, str(seconds / 60), "m ")) seconds %= 60 return ''.join((s, str(seconds), "s")) if __name__ == "__main__": parser = argparse.ArgumentParser(sys.argv[0]) parser.add_argument("-d", "--dataset", default=None, metavar="dataset") parser.add_argument("-o", "--outfile", default='', metavar="outfile") parser.add_argument("-s", "--silent", default=False, action="store_true") parser.add_argument("-q", "--quick-and-dirty", default=False, action="store_true") parser.add_argument("-S", "--full-spectrum", default=False, action="store_true", help="If set, *all* pulses in the frame are placed in output. The default is to write only the pulses after a certain initial pulse that occured in a certain time-range. The -S output is used for countrates, without it, it is usefull for time-structure analysis (after-pulsing etc.)") parser.add_argument("data", nargs="+", type=str) args = parser.parse_args() if args.outfile: try: f = open(args.outfile, "r") f.close() while 1: sys.stderr.write("Target file '{0}' already exists. Overwrite and continue? [y/N] ".format(args.outfile)) answer = raw_input() if answer.lower() == "y": break elif answer.lower() in ("n", ""): sys.exit(0) except IOError: # file does not exist pass outfile = open(args.outfile, "w") else: outfile = sys.stdout try: if args.dataset: dataset = set() groups = args.dataset.split(",") for g in groups: if ":" in g: low, high = map(int, g.split(":")) dataset.update(range(low, high+1)) else: dataset.add(int(g)) else: dataset = None num_frames, num_frames_processed = 0, 0 clock_start = 0 clock_end = 0 try: info = datafile.get_dta_info(args.data[0]) if info: header = datafile.get_dta_userheader(args.data[0]) out_header = ("# "+"\n# ".join(("{0} = {1}".format(*k) for k in header.iteritems()) ) + "\n" if len(header) > 0 else "") out_header += "# full_spectrum_b = {0}\n".format("True" if args.full_spectrum else "False") outfile.write("\n## Original user header\n{0}##\n\n".format(out_header)) except Exception: outfile.write("# full_spectrum_b = {0}\n".format("True" if args.full_spectrum else "False")) raise if args.quick_and_dirty: process_function = process_frame_quick else: process_function = process_frame if args.full_spectrum: process_function = process_frame_full_spectrum def print_status(): #elapsed_time = (time.clock() if clock_end == 0 else clock_end) - clock_start elapsed_time = time.clock() - clock_start if num_frames_processed > 0: time_remaining = elapsed_time/num_frames_processed * (num_frames - num_frames_processed) sys.stderr.write("\33[2K\rProcess frame {0} of {1}, {2} elapsed, {3:.1f}ms/frame, about {4} remaining" .format(num_frames_processed, num_frames, time_string(elapsed_time), elapsed_time/num_frames_processed*1000.0 if num_frames_processed > 0 else 0.0, time_string(time_remaining) if num_frames_processed > 0 else '?' ) ) outfile.flush() if args.data[0].endswith("/"): dirname = os.path.basename(args.data[0][:-1]) else: dirname = os.path.basename(args.data[0]) output_name = dirname+".csv" clock_start = time.clock() outfile.write("# Source data: "+", ".join(args.data)) outfile.write("\n#Delta T(ns)\tAmplitude(mV)\tFrame Idx\n") for num_frames, frame_idx, t, signal in datafile.get_all_data(args.data, dataset): #if dataset is not None and frame_idx not in dataset: #continue try: if 1 and (num_frames_processed % 50) == 0: try: print_status() sys.stdout.flush() except ZeroDivisionError: pass event_list = process_function(frame_idx, t, signal) for delta_t, amplitude in event_list: outfile.write("{0}\t{1}\t{2}\n".format(delta_t, amplitude, frame_idx)) num_frames_processed += 1 except KeyboardInterrupt: clock_end = time.clock() if not args.silent: print_status() sys.stderr.write("\nKeyboard interrupt, save recent datapoints\n") break else: clock_end = time.clock() if not args.silent: print_status() sys.stderr.write("\nAll frames processed\n") finally: outfile.close() #print "Results will be written to", output_name #if not 0: #print "No events? O.o" #elif len(time_differences) < 2: #print "Not enough events" ##else: #fig = plt.figure() #plt.xlabel(u"Zeitabstand (ns)") #plt.ylabel(u"Zählrate") #plt.text("Hallo") #plt.hist(time_differences, bins=30, log=True) #plt.savefig("time_difference_histogram.pdf") #del fig
manashmndl/LearningPyQt
refs/heads/master
ML/ProjectEEESwissKnife/ProjectEEESwissKnife/ProjectEEESwissKnife.py
1
from ui_plottercreator import * import sys class PlotterCreator(QtGui.QDialog): def __init__(self, parent = None): QtGui.QWidget.__init__(self, parent) self.ui = Ui_PlotterCreator() self.ui.setupUi(self) QtCore.QObject.connect(self.ui.noOfDataLineEdit, QtCore.SIGNAL('textEdited(QString)'), self.parseData) """ Convert 1 2 3 into 1:2:3 """ def parseData(self, input_string = ""): self.parsedString = str(input_string) self.parsedString = self.parsedString.replace(' ', ':') self.ui.noOfDataLineEdit.setText(self.parsedString) if __name__ == "__main__": app = QtGui.QApplication(sys.argv) PlotterCreatorApp = PlotterCreator() PlotterCreatorApp.show() sys.exit(app.exec_())
Communities-Communications/cc-odoo
refs/heads/master
addons/website_report/report.py
257
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2014-Today OpenERP SA (<http://www.openerp.com>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.addons.web.http import request from openerp.osv import osv class Report(osv.Model): _inherit = 'report' def translate_doc(self, cr, uid, doc_id, model, lang_field, template, values, context=None): if request and hasattr(request, 'website'): if request.website is not None: v = request.website.get_template(template) request.session['report_view_ids'].append({ 'name': v.name, 'id': v.id, 'xml_id': v.xml_id, 'inherit_id': v.inherit_id.id, 'header': False, 'active': v.active, }) return super(Report, self).translate_doc(cr, uid, doc_id, model, lang_field, template, values, context=context) def render(self, cr, uid, ids, template, values=None, context=None): if request and hasattr(request, 'website'): if request.website is not None: request.session['report_view_ids'] = [] return super(Report, self).render(cr, uid, ids, template, values=values, context=context)
vermpy/thespotlight
refs/heads/master
src/interviews/templatetags/order_by.py
1
from django.template import Library register = Library() @register.filter_function def order_by(queryset, args): args = [x.strip() for x in args.split(',')] return queryset.order_by(*args)
SerCeMan/intellij-community
refs/heads/master
python/helpers/docutils/parsers/rst/languages/pl.py
56
# $Id$ # Author: Robert Wojciechowicz <rw@smsnet.pl> # Copyright: This module has been placed in the public domain. # New language mappings are welcome. Before doing a new translation, please # read <http://docutils.sf.net/docs/howto/i18n.html>. Two files must be # translated for each language: one in docutils/languages, the other in # docutils/parsers/rst/languages. """ Polish-language mappings for language-dependent features of reStructuredText. """ __docformat__ = 'reStructuredText' directives = { # language-dependent: fixed u'uwaga': 'attention', u'ostro\u017cnie': 'caution', u'niebezpiecze\u0144stwo': 'danger', u'b\u0142\u0105d': 'error', u'wskaz\u00f3wka': 'hint', u'wa\u017cne': 'important', u'przypis': 'note', u'rada': 'tip', u'ostrze\u017cenie': 'warning', u'upomnienie': 'admonition', u'ramka': 'sidebar', u'temat': 'topic', u'blok-linii': 'line-block', u'sparsowany-litera\u0142': 'parsed-literal', u'rubryka': 'rubric', u'epigraf': 'epigraph', u'highlights': 'highlights', # FIXME no polish equivalent? u'pull-quote': 'pull-quote', # FIXME no polish equivalent? u'z\u0142o\u017cony': 'compound', u'kontener': 'container', #'questions': 'questions', u'tabela': 'table', u'tabela-csv': 'csv-table', u'tabela-listowa': 'list-table', #'qa': 'questions', #'faq': 'questions', u'meta': 'meta', #'imagemap': 'imagemap', u'obraz': 'image', u'rycina': 'figure', u'do\u0142\u0105cz': 'include', u'surowe': 'raw', u'zast\u0105p': 'replace', u'unikod': 'unicode', u'data': 'date', u'klasa': 'class', u'rola': 'role', u'rola-domy\u015blna': 'default-role', u'tytu\u0142': 'title', u'tre\u015b\u0107': 'contents', u'sectnum': 'sectnum', u'numeracja-sekcji': 'sectnum', u'nag\u0142\u00f3wek': 'header', u'stopka': 'footer', #'footnotes': 'footnotes', #'citations': 'citations', u'target-notes': 'target-notes', # FIXME no polish equivalent? u'restructuredtext-test-directive': 'restructuredtext-test-directive'} """Polish name to registered (in directives/__init__.py) directive name mapping.""" roles = { # language-dependent: fixed u'skr\u00f3t': 'abbreviation', u'akronim': 'acronym', u'indeks': 'index', u'indeks-dolny': 'subscript', u'indeks-g\u00f3rny': 'superscript', u'referencja-tytu\u0142': 'title-reference', u'referencja-pep': 'pep-reference', u'referencja-rfc': 'rfc-reference', u'podkre\u015blenie': 'emphasis', u'wyt\u0142uszczenie': 'strong', u'dos\u0142ownie': 'literal', u'referencja-nazwana': 'named-reference', u'referencja-anonimowa': 'anonymous-reference', u'referencja-przypis': 'footnote-reference', u'referencja-cytat': 'citation-reference', u'referencja-podstawienie': 'substitution-reference', u'cel': 'target', u'referencja-uri': 'uri-reference', u'uri': 'uri-reference', u'url': 'uri-reference', u'surowe': 'raw',} """Mapping of Polish role names to canonical role names for interpreted text. """
cyanna/edx-platform
refs/heads/master
common/djangoapps/cors_csrf/helpers.py
162
"""Helper methods for CORS and CSRF checks. """ import logging import urlparse import contextlib from django.conf import settings log = logging.getLogger(__name__) def is_cross_domain_request_allowed(request): """Check whether we should allow the cross-domain request. We allow a cross-domain request only if: 1) The request is made securely and the referer has "https://" as the protocol. 2) The referer domain has been whitelisted. Arguments: request (HttpRequest) Returns: bool """ referer = request.META.get('HTTP_REFERER') referer_parts = urlparse.urlparse(referer) if referer else None referer_hostname = referer_parts.hostname if referer_parts is not None else None # Use CORS_ALLOW_INSECURE *only* for development and testing environments; # it should never be enabled in production. if not getattr(settings, 'CORS_ALLOW_INSECURE', False): if not request.is_secure(): log.debug( u"Request is not secure, so we cannot send the CSRF token. " u"For testing purposes, you can disable this check by setting " u"`CORS_ALLOW_INSECURE` to True in the settings" ) return False if not referer: log.debug(u"No referer provided over a secure connection, so we cannot check the protocol.") return False if not referer_parts.scheme == 'https': log.debug(u"Referer '%s' must have the scheme 'https'") return False domain_is_whitelisted = ( getattr(settings, 'CORS_ORIGIN_ALLOW_ALL', False) or referer_hostname in getattr(settings, 'CORS_ORIGIN_WHITELIST', []) ) if not domain_is_whitelisted: if referer_hostname is None: # If no referer is specified, we can't check if it's a cross-domain # request or not. log.debug(u"Referrer hostname is `None`, so it is not on the whitelist.") elif referer_hostname != request.get_host(): log.info( ( u"Domain '%s' is not on the cross domain whitelist. " u"Add the domain to `CORS_ORIGIN_WHITELIST` or set " u"`CORS_ORIGIN_ALLOW_ALL` to True in the settings." ), referer_hostname ) else: log.debug( ( u"Domain '%s' is the same as the hostname in the request, " u"so we are not going to treat it as a cross-domain request." ), referer_hostname ) return False return True @contextlib.contextmanager def skip_cross_domain_referer_check(request): """Skip the cross-domain CSRF referer check. Django's CSRF middleware performs the referer check only when the request is made over a secure connection. To skip the check, we patch `request.is_secure()` to False. """ is_secure_default = request.is_secure request.is_secure = lambda: False try: yield finally: request.is_secure = is_secure_default
marceloomens/appointments
refs/heads/master
appointments/apps/timeslots/migrations/0004_auto_20141103_0840.py
1
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('timeslots', '0003_auto_20141102_0853'), ] operations = [ migrations.AlterField( model_name='holiday', name='reason', field=models.CharField(default=b'', max_length=128, verbose_name='reason', blank=True), preserve_default=True, ), ]
hmen89/odoo
refs/heads/master
addons/sale_margin/sale_margin.py
65
############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2009 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.osv import fields, osv class sale_order_line(osv.osv): _inherit = "sale.order.line" def product_id_change(self, cr, uid, ids, pricelist, product, qty=0, uom=False, qty_uos=0, uos=False, name='', partner_id=False, lang=False, update_tax=True, date_order=False, packaging=False, fiscal_position=False, flag=False, context=None): res = super(sale_order_line, self).product_id_change(cr, uid, ids, pricelist, product, qty=qty, uom=uom, qty_uos=qty_uos, uos=uos, name=name, partner_id=partner_id, lang=lang, update_tax=update_tax, date_order=date_order, packaging=packaging, fiscal_position=fiscal_position, flag=flag, context=context) if not pricelist: return res frm_cur = self.pool.get('res.users').browse(cr, uid, uid).company_id.currency_id.id to_cur = self.pool.get('product.pricelist').browse(cr, uid, [pricelist])[0].currency_id.id if product: purchase_price = self.pool.get('product.product').browse(cr, uid, product).standard_price price = self.pool.get('res.currency').compute(cr, uid, frm_cur, to_cur, purchase_price, round=False) res['value'].update({'purchase_price': price}) return res def _product_margin(self, cr, uid, ids, field_name, arg, context=None): res = {} for line in self.browse(cr, uid, ids, context=context): res[line.id] = 0 if line.product_id: if line.purchase_price: res[line.id] = round((line.price_unit*line.product_uos_qty*(100.0-line.discount)/100.0) -(line.purchase_price*line.product_uos_qty), 2) else: res[line.id] = round((line.price_unit*line.product_uos_qty*(100.0-line.discount)/100.0) -(line.product_id.standard_price*line.product_uos_qty), 2) return res _columns = { 'margin': fields.function(_product_margin, string='Margin', store = True), 'purchase_price': fields.float('Cost Price', digits=(16,2)) } class sale_order(osv.osv): _inherit = "sale.order" def _product_margin(self, cr, uid, ids, field_name, arg, context=None): result = {} for sale in self.browse(cr, uid, ids, context=context): result[sale.id] = 0.0 for line in sale.order_line: result[sale.id] += line.margin or 0.0 return result def _get_order(self, cr, uid, ids, context=None): result = {} for line in self.pool.get('sale.order.line').browse(cr, uid, ids, context=context): result[line.order_id.id] = True return result.keys() _columns = { 'margin': fields.function(_product_margin, string='Margin', help="It gives profitability by calculating the difference between the Unit Price and the cost price.", store={ 'sale.order.line': (_get_order, ['margin'], 20), 'sale.order': (lambda self, cr, uid, ids, c={}: ids, ['order_line'], 20), }), } # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
buhii/tomato
refs/heads/master
tomato/__init__.py
1
from tomato.swf_processor import Swf from tomato.swf_image_replacer import SwfImage from tomato.swf_injector import create_swf
Jollytown/Garuda
refs/heads/master
server/garuda/lib/python2.7/site-packages/setuptools/tests/test_find_packages.py
151
"""Tests for setuptools.find_packages().""" import os import sys import shutil import tempfile import platform import pytest import setuptools from setuptools import find_packages find_420_packages = setuptools.PEP420PackageFinder.find # modeled after CPython's test.support.can_symlink def can_symlink(): TESTFN = tempfile.mktemp() symlink_path = TESTFN + "can_symlink" try: os.symlink(TESTFN, symlink_path) can = True except (OSError, NotImplementedError, AttributeError): can = False else: os.remove(symlink_path) globals().update(can_symlink=lambda: can) return can def has_symlink(): bad_symlink = ( # Windows symlink directory detection is broken on Python 3.2 platform.system() == 'Windows' and sys.version_info[:2] == (3,2) ) return can_symlink() and not bad_symlink class TestFindPackages: def setup_method(self, method): self.dist_dir = tempfile.mkdtemp() self._make_pkg_structure() def teardown_method(self, method): shutil.rmtree(self.dist_dir) def _make_pkg_structure(self): """Make basic package structure. dist/ docs/ conf.py pkg/ __pycache__/ nspkg/ mod.py subpkg/ assets/ asset __init__.py setup.py """ self.docs_dir = self._mkdir('docs', self.dist_dir) self._touch('conf.py', self.docs_dir) self.pkg_dir = self._mkdir('pkg', self.dist_dir) self._mkdir('__pycache__', self.pkg_dir) self.ns_pkg_dir = self._mkdir('nspkg', self.pkg_dir) self._touch('mod.py', self.ns_pkg_dir) self.sub_pkg_dir = self._mkdir('subpkg', self.pkg_dir) self.asset_dir = self._mkdir('assets', self.sub_pkg_dir) self._touch('asset', self.asset_dir) self._touch('__init__.py', self.sub_pkg_dir) self._touch('setup.py', self.dist_dir) def _mkdir(self, path, parent_dir=None): if parent_dir: path = os.path.join(parent_dir, path) os.mkdir(path) return path def _touch(self, path, dir_=None): if dir_: path = os.path.join(dir_, path) fp = open(path, 'w') fp.close() return path def test_regular_package(self): self._touch('__init__.py', self.pkg_dir) packages = find_packages(self.dist_dir) assert packages == ['pkg', 'pkg.subpkg'] def test_exclude(self): self._touch('__init__.py', self.pkg_dir) packages = find_packages(self.dist_dir, exclude=('pkg.*',)) assert packages == ['pkg'] def test_include_excludes_other(self): """ If include is specified, other packages should be excluded. """ self._touch('__init__.py', self.pkg_dir) alt_dir = self._mkdir('other_pkg', self.dist_dir) self._touch('__init__.py', alt_dir) packages = find_packages(self.dist_dir, include=['other_pkg']) assert packages == ['other_pkg'] def test_dir_with_dot_is_skipped(self): shutil.rmtree(os.path.join(self.dist_dir, 'pkg/subpkg/assets')) data_dir = self._mkdir('some.data', self.pkg_dir) self._touch('__init__.py', data_dir) self._touch('file.dat', data_dir) packages = find_packages(self.dist_dir) assert 'pkg.some.data' not in packages def test_dir_with_packages_in_subdir_is_excluded(self): """ Ensure that a package in a non-package such as build/pkg/__init__.py is excluded. """ build_dir = self._mkdir('build', self.dist_dir) build_pkg_dir = self._mkdir('pkg', build_dir) self._touch('__init__.py', build_pkg_dir) packages = find_packages(self.dist_dir) assert 'build.pkg' not in packages @pytest.mark.skipif(not has_symlink(), reason='Symlink support required') def test_symlinked_packages_are_included(self): """ A symbolically-linked directory should be treated like any other directory when matched as a package. Create a link from lpkg -> pkg. """ self._touch('__init__.py', self.pkg_dir) linked_pkg = os.path.join(self.dist_dir, 'lpkg') os.symlink('pkg', linked_pkg) assert os.path.isdir(linked_pkg) packages = find_packages(self.dist_dir) assert 'lpkg' in packages def _assert_packages(self, actual, expected): assert set(actual) == set(expected) def test_pep420_ns_package(self): packages = find_420_packages( self.dist_dir, include=['pkg*'], exclude=['pkg.subpkg.assets']) self._assert_packages(packages, ['pkg', 'pkg.nspkg', 'pkg.subpkg']) def test_pep420_ns_package_no_includes(self): packages = find_420_packages( self.dist_dir, exclude=['pkg.subpkg.assets']) self._assert_packages(packages, ['docs', 'pkg', 'pkg.nspkg', 'pkg.subpkg']) def test_pep420_ns_package_no_includes_or_excludes(self): packages = find_420_packages(self.dist_dir) expected = [ 'docs', 'pkg', 'pkg.nspkg', 'pkg.subpkg', 'pkg.subpkg.assets'] self._assert_packages(packages, expected) def test_regular_package_with_nested_pep420_ns_packages(self): self._touch('__init__.py', self.pkg_dir) packages = find_420_packages( self.dist_dir, exclude=['docs', 'pkg.subpkg.assets']) self._assert_packages(packages, ['pkg', 'pkg.nspkg', 'pkg.subpkg']) def test_pep420_ns_package_no_non_package_dirs(self): shutil.rmtree(self.docs_dir) shutil.rmtree(os.path.join(self.dist_dir, 'pkg/subpkg/assets')) packages = find_420_packages(self.dist_dir) self._assert_packages(packages, ['pkg', 'pkg.nspkg', 'pkg.subpkg'])
aidanlister/django
refs/heads/master
django/contrib/auth/migrations/0003_alter_user_email_max_length.py
586
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('auth', '0002_alter_permission_name_max_length'), ] operations = [ migrations.AlterField( model_name='user', name='email', field=models.EmailField(max_length=254, verbose_name='email address', blank=True), ), ]
bzennn/blog_flask
refs/heads/master
python/lib/python3.5/site-packages/pip/commands/show.py
344
from __future__ import absolute_import from email.parser import FeedParser import logging import os from pip.basecommand import Command from pip.status_codes import SUCCESS, ERROR from pip._vendor import pkg_resources from pip._vendor.packaging.utils import canonicalize_name logger = logging.getLogger(__name__) class ShowCommand(Command): """Show information about one or more installed packages.""" name = 'show' usage = """ %prog [options] <package> ...""" summary = 'Show information about installed packages.' def __init__(self, *args, **kw): super(ShowCommand, self).__init__(*args, **kw) self.cmd_opts.add_option( '-f', '--files', dest='files', action='store_true', default=False, help='Show the full list of installed files for each package.') self.parser.insert_option_group(0, self.cmd_opts) def run(self, options, args): if not args: logger.warning('ERROR: Please provide a package name or names.') return ERROR query = args results = search_packages_info(query) if not print_results( results, list_files=options.files, verbose=options.verbose): return ERROR return SUCCESS def search_packages_info(query): """ Gather details from installed distributions. Print distribution name, version, location, and installed files. Installed files requires a pip generated 'installed-files.txt' in the distributions '.egg-info' directory. """ installed = {} for p in pkg_resources.working_set: installed[canonicalize_name(p.project_name)] = p query_names = [canonicalize_name(name) for name in query] for dist in [installed[pkg] for pkg in query_names if pkg in installed]: package = { 'name': dist.project_name, 'version': dist.version, 'location': dist.location, 'requires': [dep.project_name for dep in dist.requires()], } file_list = None metadata = None if isinstance(dist, pkg_resources.DistInfoDistribution): # RECORDs should be part of .dist-info metadatas if dist.has_metadata('RECORD'): lines = dist.get_metadata_lines('RECORD') paths = [l.split(',')[0] for l in lines] paths = [os.path.join(dist.location, p) for p in paths] file_list = [os.path.relpath(p, dist.location) for p in paths] if dist.has_metadata('METADATA'): metadata = dist.get_metadata('METADATA') else: # Otherwise use pip's log for .egg-info's if dist.has_metadata('installed-files.txt'): paths = dist.get_metadata_lines('installed-files.txt') paths = [os.path.join(dist.egg_info, p) for p in paths] file_list = [os.path.relpath(p, dist.location) for p in paths] if dist.has_metadata('PKG-INFO'): metadata = dist.get_metadata('PKG-INFO') if dist.has_metadata('entry_points.txt'): entry_points = dist.get_metadata_lines('entry_points.txt') package['entry_points'] = entry_points if dist.has_metadata('INSTALLER'): for line in dist.get_metadata_lines('INSTALLER'): if line.strip(): package['installer'] = line.strip() break # @todo: Should pkg_resources.Distribution have a # `get_pkg_info` method? feed_parser = FeedParser() feed_parser.feed(metadata) pkg_info_dict = feed_parser.close() for key in ('metadata-version', 'summary', 'home-page', 'author', 'author-email', 'license'): package[key] = pkg_info_dict.get(key) # It looks like FeedParser cannot deal with repeated headers classifiers = [] for line in metadata.splitlines(): if line.startswith('Classifier: '): classifiers.append(line[len('Classifier: '):]) package['classifiers'] = classifiers if file_list: package['files'] = sorted(file_list) yield package def print_results(distributions, list_files=False, verbose=False): """ Print the informations from installed distributions found. """ results_printed = False for i, dist in enumerate(distributions): results_printed = True if i > 0: logger.info("---") logger.info("Name: %s", dist.get('name', '')) logger.info("Version: %s", dist.get('version', '')) logger.info("Summary: %s", dist.get('summary', '')) logger.info("Home-page: %s", dist.get('home-page', '')) logger.info("Author: %s", dist.get('author', '')) logger.info("Author-email: %s", dist.get('author-email', '')) logger.info("License: %s", dist.get('license', '')) logger.info("Location: %s", dist.get('location', '')) logger.info("Requires: %s", ', '.join(dist.get('requires', []))) if verbose: logger.info("Metadata-Version: %s", dist.get('metadata-version', '')) logger.info("Installer: %s", dist.get('installer', '')) logger.info("Classifiers:") for classifier in dist.get('classifiers', []): logger.info(" %s", classifier) logger.info("Entry-points:") for entry in dist.get('entry_points', []): logger.info(" %s", entry.strip()) if list_files: logger.info("Files:") for line in dist.get('files', []): logger.info(" %s", line.strip()) if "files" not in dist: logger.info("Cannot locate installed-files.txt") return results_printed
rebstar6/servo
refs/heads/master
tests/wpt/web-platform-tests/tools/py/testing/root/test_py_imports.py
163
import py import types import sys def checksubpackage(name): obj = getattr(py, name) if hasattr(obj, '__map__'): # isinstance(obj, Module): keys = dir(obj) assert len(keys) > 0 print (obj.__map__) for name in list(obj.__map__): assert hasattr(obj, name), (obj, name) def test_dir(): for name in dir(py): if not name.startswith('_'): yield checksubpackage, name def test_virtual_module_identity(): from py import path as path1 from py import path as path2 assert path1 is path2 from py.path import local as local1 from py.path import local as local2 assert local1 is local2 def test_importall(): base = py._pydir nodirs = [ ] if sys.version_info >= (3,0): nodirs.append(base.join('_code', '_assertionold.py')) else: nodirs.append(base.join('_code', '_assertionnew.py')) def recurse(p): return p.check(dotfile=0) and p.basename != "attic" for p in base.visit('*.py', recurse): if p.basename == '__init__.py': continue relpath = p.new(ext='').relto(base) if base.sep in relpath: # not py/*.py itself for x in nodirs: if p == x or p.relto(x): break else: relpath = relpath.replace(base.sep, '.') modpath = 'py.%s' % relpath try: check_import(modpath) except py.test.skip.Exception: pass def check_import(modpath): py.builtin.print_("checking import", modpath) assert __import__(modpath) def test_all_resolves(): seen = py.builtin.set([py]) lastlength = None while len(seen) != lastlength: lastlength = len(seen) for item in py.builtin.frozenset(seen): for value in item.__dict__.values(): if isinstance(value, type(py.test)): seen.add(value)
zahari/samba
refs/heads/master
ctdb/tests/takeover/simulation/nondet_path_01.py
31
#!/usr/bin/env python # This is a contrived example that makes the balancing algorithm fail # for nondeterministic IPs (run with "-dv --nd" to see the failure). from ctdb_takeover import Cluster, Node, process_args process_args() addresses1 = ['A', 'B', 'C', 'D'] addresses2 = ['B', 'E', 'F'] c = Cluster() for i in range(2): c.add_node(Node(addresses1)) c.add_node(Node(addresses2)) c.recover() c.unhealthy(1) c.recover() c.healthy(1) c.recover()
ibmsoe/tensorflow
refs/heads/master
tensorflow/python/ops/script_ops.py
32
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Script Language Operators. See the @{python/script_ops} guide. @@py_func """ # pylint: disable=g-bad-name from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading import numpy as np from tensorflow.python import pywrap_tensorflow from tensorflow.python.framework import function from tensorflow.python.framework import ops from tensorflow.python.ops import gen_script_ops class FuncRegistry(object): """A helper class to keep track of registered py functions. FuncRegistry keeps a map from unique tokens (string) to python functions, which takes numpy arrays and outputs numpy arrays. """ def __init__(self): self._lock = threading.Lock() self._unique_id = 0 # GUARDED_BY(self._lock) self._funcs = {} def insert(self, func): """Registers `func` and returns a unique token for this entry.""" token = self._next_unique_token() self._funcs[token] = func return token def remove(self, token): """Removes the registered function corresponding to `token`.""" self._funcs.pop(token, None) @staticmethod def _convert(value): """Converts an arg to numpy, avoiding dangerous string and unicode dtypes. Numpy pads with zeros when using string and unicode dtypes if different components of a tensor have different lengths. This is bad: ignoring the padding is wrong for text data, and removing the padding is wrong for binary data. To avoid this bug, we redo the conversion using an object dtype. Args: value: Value to convert to a numpy array. Returns: A numpy array. """ result = np.asarray(value, order="C") if result.dtype.char in "SU" and result is not value: return np.asarray(value, order="C", dtype=object) return result def __call__(self, token, args): """Calls the registered function for `token` with args.""" func = self._funcs[token] if func is None: raise ValueError("callback %s is not found" % token) ret = func(*args) # Ensures that we return either a single numpy array or a list of numpy # arrays. if isinstance(ret, (tuple, list)): return [self._convert(x) for x in ret] else: return self._convert(ret) def size(self): """Returns how many functions are currently registered.""" return len(self._funcs) def _next_unique_token(self): """Returns a unique token.""" with self._lock: uid = self._unique_id self._unique_id += 1 return "pyfunc_%d" % uid # Global registry for py functions. _py_funcs = FuncRegistry() pywrap_tensorflow.InitializePyTrampoline(_py_funcs) class CleanupFunc(object): """A helper class to remove a registered function from _py_funcs.""" def __init__(self, token): self._token = token def __del__(self): _py_funcs.remove(self._token) def py_func(func, inp, Tout, stateful=True, name=None): """Wraps a python function and uses it as a TensorFlow op. Given a python function `func`, which takes numpy arrays as its inputs and returns numpy arrays as its outputs, wrap this function as an operation in a TensorFlow graph. The following snippet constructs a simple TensorFlow graph that invokes the `np.sinh()` NumPy function as a operation in the graph: ```python def my_func(x): # x will be a numpy array with the contents of the placeholder below return np.sinh(x) inp = tf.placeholder(tf.float32) y = tf.py_func(my_func, [inp], tf.float32) ``` **N.B.** The `tf.py_func()` operation has the following known limitations: * The body of the function (i.e. `func`) will not be serialized in a `GraphDef`. Therefore, you should not use this function if you need to serialize your model and restore it in a different environment. * The operation must run in the same address space as the Python program that calls `tf.py_func()`. If you are using distributed TensorFlow, you must run a `tf.train.Server` in the same process as the program that calls `tf.py_func()` and you must pin the created operation to a device in that server (e.g. using `with tf.device():`). Args: func: A Python function, which accepts a list of NumPy `ndarray` objects having element types that match the corresponding `tf.Tensor` objects in `inp`, and returns a list of `ndarray` objects (or a single `ndarray`) having element types that match the corresponding values in `Tout`. inp: A list of `Tensor` objects. Tout: A list or tuple of tensorflow data types or a single tensorflow data type if there is only one, indicating what `func` returns. stateful: (Boolean.) If True, the function should be considered stateful. If a function is stateless, when given the same input it will return the same output and have no observable side effects. Optimizations such as common subexpression elimination are only performed on stateless operations. name: A name for the operation (optional). Returns: A list of `Tensor` or a single `Tensor` which `func` computes. """ token = _py_funcs.insert(func) # We tie the registered function's life-time with the current # default graph. I.e., when the current graph is destroyed, we # should remove its py funcs. g = ops.get_default_graph() # pylint: disable=protected-access while isinstance(g, function._FuncGraph): # If the py_func was declared inside a _FuncGraph, its lifetime should be # bound to that of the outer graph instead. g = g._outer_graph cleanup = CleanupFunc(token) # TODO(zhifengc): Consider adding a Graph method to collect # `cleanup` objects in one of its member. if not hasattr(g, "_cleanup_py_funcs_used_in_graph"): g._cleanup_py_funcs_used_in_graph = [] # When g is destroyed, elements in _cleanup_py_funcs_used_in_graph # will be destroyed and their __del__ will remove the 'token' from # the funcs registry. g._cleanup_py_funcs_used_in_graph.append(cleanup) # pylint: enable=protected-access if isinstance(Tout, (list, tuple)): is_list_or_tuple = True else: Tout = [Tout] is_list_or_tuple = False # pylint: disable=protected-access if stateful: result = gen_script_ops._py_func( input=inp, token=token, Tout=Tout, name=name) else: result = gen_script_ops._py_func_stateless( input=inp, token=token, Tout=Tout, name=name) # pylint: enable=protected-access return result if is_list_or_tuple else result[0] ops.NotDifferentiable("PyFunc") ops.NotDifferentiable("PyFuncStateless")
willingc/oh-mainline
refs/heads/master
mysite/profile/migrations/0059_delete_blank_tags.py
17
# This file is part of OpenHatch. # Copyright (C) 2009 OpenHatch, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from south.db import db from django.db import models from mysite.profile.models import * class Migration: no_dry_run = True def forwards(self, orm): # Changing field 'DataImportAttempt.date_created' # (to signature: django.db.models.fields.DateTimeField(default=datetime.datetime(2009, 11, 5, 16, 51, 32, 968240))) db.alter_column('profile_dataimportattempt', 'date_created', orm['profile.dataimportattempt:date_created']) # Changing field 'PortfolioEntry.date_created' # (to signature: django.db.models.fields.DateTimeField(default=datetime.datetime(2009, 11, 5, 16, 51, 33, 603219))) db.alter_column('profile_portfolioentry', 'date_created', orm['profile.portfolioentry:date_created']) # Changing field 'Citation.date_created' # (to signature: django.db.models.fields.DateTimeField(default=datetime.datetime(2009, 11, 5, 16, 51, 33, 672464))) db.alter_column('profile_citation', 'date_created', orm['profile.citation:date_created']) for tag in orm['profile.tag'].objects.filter(text=''): tag.delete() def backwards(self, orm): # Changing field 'DataImportAttempt.date_created' # (to signature: django.db.models.fields.DateTimeField(default=datetime.datetime(2009, 11, 5, 16, 25, 13, 868366))) db.alter_column('profile_dataimportattempt', 'date_created', orm['profile.dataimportattempt:date_created']) # Changing field 'PortfolioEntry.date_created' # (to signature: django.db.models.fields.DateTimeField(default=datetime.datetime(2009, 11, 5, 16, 25, 13, 518378))) db.alter_column('profile_portfolioentry', 'date_created', orm['profile.portfolioentry:date_created']) # Changing field 'Citation.date_created' # (to signature: django.db.models.fields.DateTimeField(default=datetime.datetime(2009, 11, 5, 16, 25, 14, 117042))) db.alter_column('profile_citation', 'date_created', orm['profile.citation:date_created']) models = { 'auth.group': { 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'unique_together': "(('content_type', 'codename'),)"}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'blank': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'unique_together': "(('app_label', 'model'),)", 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'customs.webresponse': { 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'response_headers': ('django.db.models.fields.TextField', [], {}), 'status': ('django.db.models.fields.IntegerField', [], {}), 'text': ('django.db.models.fields.TextField', [], {}), 'url': ('django.db.models.fields.TextField', [], {}) }, 'profile.citation': { 'contributor_role': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}), 'data_import_attempt': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profile.DataImportAttempt']", 'null': 'True'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2009, 11, 5, 16, 51, 34, 256027)'}), 'distinct_months': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'first_commit_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ignored_due_to_duplicate': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'is_deleted': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'is_published': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'languages': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}), 'old_summary': ('django.db.models.fields.TextField', [], {'default': 'None', 'null': 'True'}), 'portfolio_entry': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profile.PortfolioEntry']"}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True'}) }, 'profile.dataimportattempt': { 'completed': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2009, 11, 5, 16, 51, 34, 74559)'}), 'failed': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'person': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profile.Person']"}), 'query': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'source': ('django.db.models.fields.CharField', [], {'max_length': '2'}), 'web_response': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['customs.WebResponse']", 'null': 'True'}) }, 'profile.link_person_tag': { 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'person': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profile.Person']"}), 'source': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'tag': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profile.Tag']"}) }, 'profile.link_project_tag': { 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['search.Project']"}), 'source': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'tag': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profile.Tag']"}) }, 'profile.link_projectexp_tag': { 'Meta': {'unique_together': "[('tag', 'project_exp', 'source')]"}, 'favorite': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project_exp': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profile.ProjectExp']"}), 'source': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'tag': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profile.Tag']"}) }, 'profile.link_sf_proj_dude_fm': { 'Meta': {'unique_together': "[('person', 'project')]"}, 'date_collected': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_admin': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'person': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profile.SourceForgePerson']"}), 'position': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profile.SourceForgeProject']"}) }, 'profile.person': { 'blacklisted_repository_committers': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['profile.RepositoryCommitter']"}), 'gotten_name_from_ohloh': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'interested_in_working_on': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '1024'}), 'last_polled': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(1970, 1, 1, 0, 0)'}), 'photo': ('django.db.models.fields.files.ImageField', [], {'default': "''", 'max_length': '100'}), 'photo_thumbnail': ('django.db.models.fields.files.ImageField', [], {'default': "''", 'max_length': '100', 'null': 'True'}), 'show_email': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'unique': 'True'}) }, 'profile.portfolioentry': { 'date_created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2009, 11, 5, 16, 51, 34, 616868)'}), 'experience_description': ('django.db.models.fields.TextField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_deleted': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'is_published': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'person': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profile.Person']"}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['search.Project']"}), 'project_description': ('django.db.models.fields.TextField', [], {}) }, 'profile.projectexp': { 'data_import_attempt': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profile.DataImportAttempt']", 'null': 'True'}), 'description': ('django.db.models.fields.TextField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'man_months': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True'}), 'modified': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'person': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profile.Person']", 'null': 'True'}), 'person_role': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'primary_language': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['search.Project']"}), 'should_show_this': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'source': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True'}) }, 'profile.repositorycommitter': { 'Meta': {'unique_together': "(('project', 'data_import_attempt'),)"}, 'data_import_attempt': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profile.DataImportAttempt']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['search.Project']"}) }, 'profile.sourceforgeperson': { 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'profile.sourceforgeproject': { 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'unixname': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'profile.tag': { 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'tag_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['profile.TagType']"}), 'text': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'profile.tagtype': { 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'prefix': ('django.db.models.fields.CharField', [], {'max_length': '20'}) }, 'search.project': { 'date_icon_was_fetched_from_ohloh': ('django.db.models.fields.DateTimeField', [], {'default': 'None', 'null': 'True'}), 'icon': ('django.db.models.fields.files.ImageField', [], {'default': 'None', 'max_length': '100', 'null': 'True'}), 'icon_smaller_for_badge': ('django.db.models.fields.files.ImageField', [], {'default': 'None', 'max_length': '100', 'null': 'True'}), 'icon_url': ('django.db.models.fields.URLField', [], {'max_length': '200'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '200'}) } } complete_apps = ['profile']
null--/graviton
refs/heads/master
code/external/upx/src/stub/src/arch/i086/wdis2gas.py
1
#! /usr/bin/env python ## vim:set ts=4 sw=4 et: -*- coding: utf-8 -*- # # wdis2gas.py -- # # This file is part of the UPX executable compressor. # # Copyright (C) 1996-2013 Markus Franz Xaver Johannes Oberhumer # All Rights Reserved. # # UPX and the UCL library are free software; you can redistribute them # and/or modify them under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of # the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; see the file COPYING. # If not, write to the Free Software Foundation, Inc., # 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # # Markus F.X.J. Oberhumer Laszlo Molnar # <markus@oberhumer.com> <ml1050@users.sourceforge.net> # import getopt, os, re, string, sys class opts: arch = "i086" label_prefix = ".L" verbose = 0 # /*********************************************************************** # // main # ************************************************************************/ def main(argv): shortopts, longopts = "qv", [ "arch", "label-prefix=", "quiet", "verbose" ] xopts, args = getopt.gnu_getopt(argv[1:], shortopts, longopts) for opt, optarg in xopts: if 0: pass elif opt in ["-q", "--quiet"]: opts.verbose = opts.verbose - 1 elif opt in ["-v", "--verbose"]: opts.verbose = opts.verbose + 1 elif opt in ["--arch"]: opts.arch = optarg elif opt in ["--label-prefix"]: opts.label_prefix = optarg else: assert 0, ("getopt problem:", opt, optarg, xopts, args) # assert len(args) == 2 ifile = args[0] ofile = args[1] # read ifile lines = open(ifile, "rb").readlines() lines = map(string.rstrip, lines) # section = None func = None olines = [] for i in range(len(lines)): l = lines[i] if not l: continue m = re.search(r"^No disassembly errors", l) if m: continue m = re.search(r"^Module:", l) if m: continue m = re.search(r"^GROUP:", l) if m: continue m = re.search(r"^(BSS|Routine) Size:", l) if m: continue m = re.search(r"^Segment:\s+(.+)\s+([0-9a-fA-F]+)\s+bytes$", l) if m: s = re.split(r"\s+", m.group(1)) assert len(s) == 3, (i, l, s, m.groups()) section = s func = None continue m = re.search(r"^Comdat:\s+(.+)\s+SEGMENT NONE '(\w+)'\s+([0-9a-fA-F]+)\s+bytes$", l) if m: section = [m.group(2)] assert section[0].endswith("_TEXT"), (i, l, section) func = re.sub(r"^[_@]+|[_@]+$", "", m.group(1)) olines.append(".section .text." + func) continue assert section, (i, l) m = re.search(r"^0000\s+(\w+):$", l) if m: assert section[0].endswith("_TEXT"), (i, l, section) func = re.sub(r"^[_@]+|[_@]+$", "", m.group(1)) olines.append(".section .text." + func) continue assert func, (i, l, section) m = re.search(r"^[0-9a-fA-F]{4}\s+L\$(\d+):$", l) if m: olines.append(opts.label_prefix + m.group(1) + ":") continue m = re.search(r"^[0-9a-fA-F]{4} (([0-9a-fA-F]{2} )+)\s+(.+)$", l) assert m, (i, l) if m.group(3).startswith("call"): s = re.split(r"\s+", m.group(3)) assert len(s) == 2, (i, l, s, m.groups()) f = re.sub(r"^[@]+|[@]+$", "", s[1]) olines.append(" call " + f) elif 1: s = m.group(3).strip() s = re.sub(r"L\$(\d+)", opts.label_prefix + r"\g<1>", s) olines.append(" " + s) else: s = re.split(r"\s+", m.group(1).strip()) assert 1 <= len(s) <= 5, (i, l, s, m.groups()) s = ["0x" + x for x in s] olines.append(" .byte " + ",".join(s)) # write ofile ofp = open(ofile, "wb") ofp.write(".code16\n") ofp.write(".intel_syntax noprefix\n") if opts.arch in ["i086", "8086", "i8086"]: ofp.write(".arch i8086, jumps\n") elif opts.arch in ["i286"]: ofp.write(".arch i286, jumps\n") else: assert 0, ("invalid arch", opts.arch) if 0: for sym in ["__AHSHIFT", "__AHINCR", "__LMUL", "__aNahdiff"]: ofp.write(".extern %s\n" % (sym)) ofp.write(".type %s,@function\n" % (sym)) ofp.write(".size %s,2\n" % (sym)) for l in olines: ofp.write(l.rstrip() + "\n") ofp.close() ##print olines if __name__ == "__main__": sys.exit(main(sys.argv))
quasiben/bokeh
refs/heads/master
bokeh/server/exceptions.py
17
''' Provide named exceptions having to do with Bokeh Server operation. ''' from __future__ import absolute_import class MessageError(Exception): ''' Indicate an error in constructing a Bokeh Message object. ''' pass class ProtocolError(Exception): ''' Indicate an error in processing wire protocol fragments. ''' pass class ValidationError(Exception): ''' Indicate an error validating wire protocol fragments. ''' pass
LethusTI/supportcenter
refs/heads/master
vendor/django/django/contrib/staticfiles/views.py
98
""" Views and functions for serving static files. These are only to be used during development, and SHOULD NOT be used in a production setting. """ import os import posixpath import urllib from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.http import Http404 from django.views import static from django.contrib.staticfiles import finders def serve(request, path, document_root=None, insecure=False, **kwargs): """ Serve static files below a given point in the directory structure or from locations inferred from the staticfiles finders. To use, put a URL pattern such as:: (r'^(?P<path>.*)$', 'django.contrib.staticfiles.views.serve') in your URLconf. It uses the django.views.static view to serve the found files. """ if not settings.DEBUG and not insecure: raise ImproperlyConfigured("The staticfiles view can only be used in " "debug mode or if the the --insecure " "option of 'runserver' is used") normalized_path = posixpath.normpath(urllib.unquote(path)).lstrip('/') absolute_path = finders.find(normalized_path) if not absolute_path: if path.endswith('/') or path == '': raise Http404("Directory indexes are not allowed here.") raise Http404("'%s' could not be found" % path) document_root, path = os.path.split(absolute_path) return static.serve(request, path, document_root=document_root, **kwargs)
akionakamura/scikit-learn
refs/heads/master
examples/model_selection/randomized_search.py
201
""" ========================================================================= Comparing randomized search and grid search for hyperparameter estimation ========================================================================= Compare randomized search and grid search for optimizing hyperparameters of a random forest. All parameters that influence the learning are searched simultaneously (except for the number of estimators, which poses a time / quality tradeoff). The randomized search and the grid search explore exactly the same space of parameters. The result in parameter settings is quite similar, while the run time for randomized search is drastically lower. The performance is slightly worse for the randomized search, though this is most likely a noise effect and would not carry over to a held-out test set. Note that in practice, one would not search over this many different parameters simultaneously using grid search, but pick only the ones deemed most important. """ print(__doc__) import numpy as np from time import time from operator import itemgetter from scipy.stats import randint as sp_randint from sklearn.grid_search import GridSearchCV, RandomizedSearchCV from sklearn.datasets import load_digits from sklearn.ensemble import RandomForestClassifier # get some data digits = load_digits() X, y = digits.data, digits.target # build a classifier clf = RandomForestClassifier(n_estimators=20) # Utility function to report best scores def report(grid_scores, n_top=3): top_scores = sorted(grid_scores, key=itemgetter(1), reverse=True)[:n_top] for i, score in enumerate(top_scores): print("Model with rank: {0}".format(i + 1)) print("Mean validation score: {0:.3f} (std: {1:.3f})".format( score.mean_validation_score, np.std(score.cv_validation_scores))) print("Parameters: {0}".format(score.parameters)) print("") # specify parameters and distributions to sample from param_dist = {"max_depth": [3, None], "max_features": sp_randint(1, 11), "min_samples_split": sp_randint(1, 11), "min_samples_leaf": sp_randint(1, 11), "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # run randomized search n_iter_search = 20 random_search = RandomizedSearchCV(clf, param_distributions=param_dist, n_iter=n_iter_search) start = time() random_search.fit(X, y) print("RandomizedSearchCV took %.2f seconds for %d candidates" " parameter settings." % ((time() - start), n_iter_search)) report(random_search.grid_scores_) # use a full grid over all parameters param_grid = {"max_depth": [3, None], "max_features": [1, 3, 10], "min_samples_split": [1, 3, 10], "min_samples_leaf": [1, 3, 10], "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # run grid search grid_search = GridSearchCV(clf, param_grid=param_grid) start = time() grid_search.fit(X, y) print("GridSearchCV took %.2f seconds for %d candidate parameter settings." % (time() - start, len(grid_search.grid_scores_))) report(grid_search.grid_scores_)
pavlova-marina/QGIS
refs/heads/master
python/plugins/processing/algs/qgis/FieldsCalculator.py
4
# -*- coding: utf-8 -*- """ *************************************************************************** FieldsCalculator.py --------------------- Date : August 2012 Copyright : (C) 2012 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Victor Olaya' __date__ = 'August 2012' __copyright__ = '(C) 2012, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' from PyQt4.QtCore import QVariant from qgis.core import QgsExpression, QgsFeature, QgsField, QgsDistanceArea, QgsProject, GEO_NONE from qgis.utils import iface from processing.core.GeoAlgorithm import GeoAlgorithm from processing.core.GeoAlgorithmExecutionException import GeoAlgorithmExecutionException from processing.core.parameters import ParameterVector from processing.core.parameters import ParameterString from processing.core.parameters import ParameterNumber from processing.core.parameters import ParameterBoolean from processing.core.parameters import ParameterSelection from processing.core.outputs import OutputVector from processing.tools import dataobjects, vector, system from ui.FieldsCalculatorDialog import FieldsCalculatorDialog class FieldsCalculator(GeoAlgorithm): INPUT_LAYER = 'INPUT_LAYER' NEW_FIELD = 'NEW_FIELD' FIELD_NAME = 'FIELD_NAME' FIELD_TYPE = 'FIELD_TYPE' FIELD_LENGTH = 'FIELD_LENGTH' FIELD_PRECISION = 'FIELD_PRECISION' FORMULA = 'FORMULA' OUTPUT_LAYER = 'OUTPUT_LAYER' TYPE_NAMES = ['Float', 'Integer', 'String', 'Date'] TYPES = [QVariant.Double, QVariant.Int, QVariant.String, QVariant.Date] def defineCharacteristics(self): self.name = 'Field calculator' self.group = 'Vector table tools' self.addParameter(ParameterVector(self.INPUT_LAYER, self.tr('Input layer'), [ParameterVector.VECTOR_TYPE_ANY], False)) self.addParameter(ParameterString(self.FIELD_NAME, self.tr('Result field name'))) self.addParameter(ParameterSelection(self.FIELD_TYPE, self.tr('Field type'), self.TYPE_NAMES)) self.addParameter(ParameterNumber(self.FIELD_LENGTH, self.tr('Field length'), 1, 255, 10)) self.addParameter(ParameterNumber(self.FIELD_PRECISION, self.tr('Field precision'), 0, 15, 3)) self.addParameter(ParameterBoolean(self.NEW_FIELD, self.tr('Create new field'), True)) self.addParameter(ParameterString(self.FORMULA, self.tr('Formula'))) self.addOutput(OutputVector(self.OUTPUT_LAYER, self.tr('Output layer'))) def processAlgorithm(self, progress): layer = dataobjects.getObjectFromUri(self.getParameterValue(self.INPUT_LAYER)) fieldName = self.getParameterValue(self.FIELD_NAME) fieldType = self.TYPES[self.getParameterValue(self.FIELD_TYPE)] width = self.getParameterValue(self.FIELD_LENGTH) precision = self.getParameterValue(self.FIELD_PRECISION) newField = self.getParameterValue(self.NEW_FIELD) formula = self.getParameterValue(self.FORMULA) output = self.getOutputFromName(self.OUTPUT_LAYER) if output.value == '': ext = output.getDefaultFileExtension(self) output.value = system.getTempFilenameInTempFolder( output.name + '.' + ext) provider = layer.dataProvider() fields = layer.pendingFields() if newField: fields.append(QgsField(fieldName, fieldType, '', width, precision)) writer = output.getVectorWriter(fields, provider.geometryType(), layer.crs()) exp = QgsExpression(formula) da = QgsDistanceArea() da.setSourceCrs(layer.crs().srsid()) da.setEllipsoidalMode( iface.mapCanvas().mapSettings().hasCrsTransformEnabled()) da.setEllipsoid(QgsProject.instance().readEntry( 'Measure', '/Ellipsoid', GEO_NONE)[0]) exp.setGeomCalculator(da) if not exp.prepare(layer.pendingFields()): raise GeoAlgorithmExecutionException( self.tr('Evaluation error: %s' % exp.evalErrorString())) outFeature = QgsFeature() outFeature.initAttributes(len(fields)) outFeature.setFields(fields) error = '' calculationSuccess = True current = 0 features = vector.features(layer) total = 100.0 / len(features) rownum = 1 for current, f in enumerate(features): rownum = current + 1 exp.setCurrentRowNumber(rownum) value = exp.evaluate(f) if exp.hasEvalError(): calculationSuccess = False error = exp.evalErrorString() break else: outFeature.setGeometry(f.geometry()) for fld in f.fields(): outFeature[fld.name()] = f[fld.name()] outFeature[fieldName] = value writer.addFeature(outFeature) progress.setPercentage(int(current * total)) del writer if not calculationSuccess: raise GeoAlgorithmExecutionException( self.tr('An error occured while evaluating the calculation ' 'string:\n%s' % error)) def checkParameterValuesBeforeExecuting(self): newField = self.getParameterValue(self.NEW_FIELD) fieldName = self.getParameterValue(self.FIELD_NAME) if newField and len(fieldName) == 0: raise GeoAlgorithmExecutionException( self.tr('Field name is not set. Please enter a field name')) outputName = self.getOutputValue(self.OUTPUT_LAYER) if outputName == '': raise GeoAlgorithmExecutionException( self.tr('Output is not set. Please specify valid filename')) def getCustomParametersDialog(self): return FieldsCalculatorDialog(self)
illicitonion/givabit
refs/heads/master
lib/sdks/google_appengine_1.7.1/google_appengine/lib/django_0_96/django/middleware/transaction.py
447
from django.db import transaction class TransactionMiddleware(object): """ Transaction middleware. If this is enabled, each view function will be run with commit_on_response activated - that way a save() doesn't do a direct commit, the commit is done when a successful response is created. If an exception happens, the database is rolled back. """ def process_request(self, request): """Enters transaction management""" transaction.enter_transaction_management() transaction.managed(True) def process_exception(self, request, exception): """Rolls back the database and leaves transaction management""" if transaction.is_dirty(): transaction.rollback() transaction.leave_transaction_management() def process_response(self, request, response): """Commits and leaves transaction management.""" if transaction.is_managed(): if transaction.is_dirty(): transaction.commit() transaction.leave_transaction_management() return response
pandaxcl/gyp
refs/heads/master
test/win/linker-flags/update_pgd.py
106
#!/usr/bin/env python # Copyright (c) 2013 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from optparse import OptionParser import glob import os import subprocess parser = OptionParser() parser.add_option('--exe', dest='exe') parser.add_option('--vcbindir', dest='vcbindir') parser.add_option('--pgd', dest='pgd') (options, args) = parser.parse_args() # Instrumented binaries fail to run unless the Visual C++'s bin dir is included # in the PATH environment variable. os.environ['PATH'] = os.environ['PATH'] + os.pathsep + options.vcbindir # Run Instrumented binary. The profile will be recorded into *.pgc file. subprocess.call([options.exe]) # Merge *.pgc files into a *.pgd (Profile-Guided Database) file. subprocess.call(['pgomgr', '/merge', options.pgd]) # *.pgc files are no longer necessary. Clear all of them. pgd_file = os.path.abspath(options.pgd) pgd_dir = os.path.dirname(pgd_file) (pgd_basename, _) = os.path.splitext(os.path.basename(pgd_file)) pgc_filepattern = os.path.join(pgd_dir, '%s!*.pgc' % pgd_basename) pgc_files= glob.glob(pgc_filepattern) for pgc_file in pgc_files: os.unlink(pgc_file)
csuttles/utils
refs/heads/master
python/todo-api/flask/lib/python2.7/site-packages/pkg_resources/_vendor/packaging/_compat.py
901
# Copyright 2014 Donald Stufft # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import sys PY2 = sys.version_info[0] == 2 PY3 = sys.version_info[0] == 3 # flake8: noqa if PY3: string_types = str, else: string_types = basestring, def with_metaclass(meta, *bases): """ Create a base class with a metaclass. """ # This requires a bit of explanation: the basic idea is to make a dummy # metaclass for one level of class instantiation that replaces itself with # the actual metaclass. class metaclass(meta): def __new__(cls, name, this_bases, d): return meta(name, bases, d) return type.__new__(metaclass, 'temporary_class', (), {})
accentgan/iclr2018
refs/heads/master
main.py
1
from __future__ import print_function import tensorflow as tf import numpy as np from model import SEGAN, SEAE from gru_model import GRUGAN from ddpg_model import DDPGGAN import os from tensorflow.python.client import device_lib from scipy.io import wavfile from data_loader import pre_emph devices = device_lib.list_local_devices() flags = tf.app.flags flags.DEFINE_integer("seed",111, "Random seed (Def: 111).") flags.DEFINE_integer("epoch", 150, "Epochs to train (Def: 150).") flags.DEFINE_integer("batch_size", 150, "Batch size (Def: 150).") flags.DEFINE_integer("save_freq", 1000, "Batch save freq (Def: 50).") flags.DEFINE_integer("canvas_size", 2**13, "Canvas size (Def: 2^14).") flags.DEFINE_integer("denoise_epoch", 5, "Epoch where noise in disc is " "removed (Def: 5).") flags.DEFINE_integer("l1_remove_epoch", 150, "Epoch where L1 in G is " "removed (Def: 150).") flags.DEFINE_boolean("bias_deconv", True, "Flag to specify if we bias deconvs (Def: False)") flags.DEFINE_boolean("bias_downconv", True, "flag to specify if we bias downconvs (def: false)") flags.DEFINE_boolean("bias_D_conv", True, "flag to specify if we bias D_convs (def: false)") # TODO: noise decay is under check flags.DEFINE_float("denoise_lbound", 0.01, "Min noise std to be still alive (Def: 0.001)") flags.DEFINE_float("noise_decay", 0.7, "Decay rate of noise std (Def: 0.7)") flags.DEFINE_float("d_label_smooth", 0.25, "Smooth factor in D (Def: 0.25)") flags.DEFINE_float("init_noise_std", 0.5, "Init noise std (Def: 0.5)") flags.DEFINE_float("init_l1_weight", 100., "Init L1 lambda (Def: 100)") flags.DEFINE_integer("z_dim", 256, "Dimension of input noise to G (Def: 256).") flags.DEFINE_integer("z_depth", 256, "Depth of input noise to G (Def: 256).") flags.DEFINE_string("save_path", "segan_results", "Path to save out model " "files. (Def: dwavegan_model" ").") flags.DEFINE_string("g_nl", "leaky", "Type of nonlinearity in G: leaky or prelu. (Def: leaky).") flags.DEFINE_string("model", "gan", "Type of model to train: gan or ae. (Def: gan).") flags.DEFINE_string("deconv_type", "deconv", "Type of deconv method: deconv or " "nn_deconv (Def: deconv).") flags.DEFINE_string("g_type", "ae", "Type of G to use: ae or dwave. (Def: ae).") flags.DEFINE_float("g_learning_rate", 0.0002, "G learning_rate (Def: 0.0002)") flags.DEFINE_float("d_learning_rate", 0.0002, "D learning_rate (Def: 0.0002)") flags.DEFINE_float("beta_1", 0.5, "Adam beta 1 (Def: 0.5)") flags.DEFINE_float("preemph", 0.95, "Pre-emph factor (Def: 0.95)") flags.DEFINE_string("synthesis_path", "dwavegan_samples", "Path to save output" " generated samples." " (Def: dwavegan_sam" "ples).") flags.DEFINE_string("e2e_dataset", "data/cslu.tfrecords", "TFRecords" " (Def: data/" "segan.tfrecords.") flags.DEFINE_string("save_clean_path", "test_clean_results", "Path to save clean utts") flags.DEFINE_string("test_wav", None, "name of test wav (it won't train)") flags.DEFINE_string("weights", None, "Weights file") flags.DEFINE_integer("accent_class",5,"number of classes of accents") flags.DEFINE_integer("slice_num",4,"number of recurrent iterations") flags.DEFINE_float("g_policy_learning_rate", 5e-4, "Learning rate for generator network in policy gradient setting") flags.DEFINE_boolean("adam",True, "Whether to use Adam for policy gradients") flags.DEFINE_integer("num_runs",2, "Number of runs for estimating reward function in MC manner") flags.DEFINE_integer("start_epoch",0,"Starting epoch while training") flags.DEFINE_integer("sample_rate",8e3,"value of sample rate for speech document") FLAGS = flags.FLAGS def pre_emph_test(coeff, canvas_size): x_ = tf.placeholder(tf.float32, shape=[canvas_size,]) x_preemph = pre_emph(x_, coeff) return x_, x_preemph def main(_): print('Parsed arguments: ', FLAGS.__flags) # make save path if it is required if not os.path.exists(FLAGS.save_path): os.makedirs(FLAGS.save_path) if not os.path.exists(FLAGS.synthesis_path): os.makedirs(FLAGS.synthesis_path) np.random.seed(FLAGS.seed) config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement=True udevices = [] for device in devices: if len(devices) > 1 and 'cpu' in device.name: # Use cpu only when we dont have gpus continue print('Using device: ', device.name) udevices.append(device.name) # execute the session with tf.Session(config=config) as sess: if FLAGS.model == 'gan': print('Creating GAN model') se_model = SEGAN(sess, FLAGS, udevices) elif FLAGS.model == 'ae': print('Creating AE model') se_model = SEAE(sess, FLAGS, udevices) elif FLAGS.model == 'gru' : print("Creating GRU model") se_model = GRUGAN(sess, FLAGS, udevices) elif FLAGS.model == 'ddpg' : print("Creating DDPG model") se_model = DDPGGAN(sess, FLAGS, udevices) else: raise ValueError('{} model type not understood!'.format(FLAGS.model)) if FLAGS.test_wav is None: se_model.train(FLAGS, udevices) else: if FLAGS.weights is None: raise ValueError('weights must be specified!') print('Loading model weights...') se_model.load(FLAGS.save_path, FLAGS.weights) fm, wav_data = wavfile.read(FLAGS.test_wav) wavname = FLAGS.test_wav.split('/')[-1] if fm != 16000: raise ValueError('16kHz required! Test file is different') wave = (2./65535.) * (wav_data.astype(np.float32) - 32767) + 1. if FLAGS.preemph > 0: print('preemph test wave with {}'.format(FLAGS.preemph)) x_pholder, preemph_op = pre_emph_test(FLAGS.preemph, wave.shape[0]) wave = sess.run(preemph_op, feed_dict={x_pholder:wave}) print('test wave shape: ', wave.shape) print('test wave min:{} max:{}'.format(np.min(wave), np.max(wave))) c_wave = se_model.clean(wave) print('c wave min:{} max:{}'.format(np.min(c_wave), np.max(c_wave))) wavfile.write(os.path.join(FLAGS.save_clean_path, wavname), 16e3, c_wave) print('Done cleaning {} and saved ' 'to {}'.format(FLAGS.test_wav, os.path.join(FLAGS.save_clean_path, wavname))) if __name__ == '__main__': tf.app.run()
tbabej/astropy
refs/heads/master
astropy/utils/tests/data/test_package/__init__.py
4
from astropy.utils.data import get_pkg_data_filename def get_data_filename(): return get_pkg_data_filename('data/foo.txt')
mbayon/TFG-MachineLearning
refs/heads/master
venv/lib/python3.6/site-packages/pandas/tests/indexes/datetimes/test_formats.py
15
from pandas import DatetimeIndex import numpy as np import pandas.util.testing as tm import pandas as pd def test_to_native_types(): index = DatetimeIndex(freq='1D', periods=3, start='2017-01-01') # First, with no arguments. expected = np.array(['2017-01-01', '2017-01-02', '2017-01-03'], dtype=object) result = index.to_native_types() tm.assert_numpy_array_equal(result, expected) # No NaN values, so na_rep has no effect result = index.to_native_types(na_rep='pandas') tm.assert_numpy_array_equal(result, expected) # Make sure slicing works expected = np.array(['2017-01-01', '2017-01-03'], dtype=object) result = index.to_native_types([0, 2]) tm.assert_numpy_array_equal(result, expected) # Make sure date formatting works expected = np.array(['01-2017-01', '01-2017-02', '01-2017-03'], dtype=object) result = index.to_native_types(date_format='%m-%Y-%d') tm.assert_numpy_array_equal(result, expected) # NULL object handling should work index = DatetimeIndex(['2017-01-01', pd.NaT, '2017-01-03']) expected = np.array(['2017-01-01', 'NaT', '2017-01-03'], dtype=object) result = index.to_native_types() tm.assert_numpy_array_equal(result, expected) expected = np.array(['2017-01-01', 'pandas', '2017-01-03'], dtype=object) result = index.to_native_types(na_rep='pandas') tm.assert_numpy_array_equal(result, expected)
endlessm/chromium-browser
refs/heads/master
tools/swarming_client/third_party/depot_tools/git_number.py
1
#!/usr/bin/env vpython3 # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Usage: %prog [options] [<commitref>]* If no <commitref>'s are supplied, it defaults to HEAD. Calculates the generation number for one or more commits in a git repo. Generation number of a commit C with parents P is defined as: generation_number(C, []) = 0 generation_number(C, P) = max(map(generation_number, P)) + 1 This number can be used to order commits relative to each other, as long as for any pair of the commits, one is an ancestor of the other. Since calculating the generation number of a commit requires walking that commit's entire history, this script caches all calculated data inside the git repo that it operates on in the ref 'refs/number/commits'. """ from __future__ import print_function from __future__ import division import binascii import collections import logging import optparse import os import struct import sys import tempfile import git_common as git import subprocess2 CHUNK_FMT = '!20sL' CHUNK_SIZE = struct.calcsize(CHUNK_FMT) DIRTY_TREES = collections.defaultdict(int) REF = 'refs/number/commits' AUTHOR_NAME = 'git-number' AUTHOR_EMAIL = 'chrome-infrastructure-team@google.com' # Number of bytes to use for the prefix on our internal number structure. # 0 is slow to deserialize. 2 creates way too much bookeeping overhead (would # need to reimplement cache data structures to be a bit more sophisticated than # dicts. 1 seems to be just right. PREFIX_LEN = 1 # Set this to 'threads' to gather coverage data while testing. POOL_KIND = 'procs' def pathlify(hash_prefix): """Converts a binary object hash prefix into a posix path, one folder per byte. >>> pathlify('\xDE\xAD') 'de/ad' """ if sys.version_info.major == 3: return '/'.join('%02x' % b for b in hash_prefix) else: return '/'.join('%02x' % ord(b) for b in hash_prefix) @git.memoize_one(threadsafe=False) def get_number_tree(prefix_bytes): """Returns a dictionary of the git-number registry specified by |prefix_bytes|. This is in the form of {<full binary ref>: <gen num> ...} >>> get_number_tree('\x83\xb4') {'\x83\xb4\xe3\xe4W\xf9J*\x8f/c\x16\xecD\xd1\x04\x8b\xa9qz': 169, ...} """ ref = '%s:%s' % (REF, pathlify(prefix_bytes)) try: raw = git.run('cat-file', 'blob', ref, autostrip=False, decode=False) return dict(struct.unpack_from(CHUNK_FMT, raw, i * CHUNK_SIZE) for i in range(len(raw) // CHUNK_SIZE)) except subprocess2.CalledProcessError: return {} @git.memoize_one(threadsafe=False) def get_num(commit_hash): """Returns the generation number for a commit. Returns None if the generation number for this commit hasn't been calculated yet (see load_generation_numbers()). """ return get_number_tree(commit_hash[:PREFIX_LEN]).get(commit_hash) def clear_caches(on_disk=False): """Clears in-process caches for e.g. unit testing.""" get_number_tree.clear() get_num.clear() if on_disk: git.run('update-ref', '-d', REF) def intern_number_tree(tree): """Transforms a number tree (in the form returned by |get_number_tree|) into a git blob. Returns the git blob id as hex-encoded string. >>> d = {'\x83\xb4\xe3\xe4W\xf9J*\x8f/c\x16\xecD\xd1\x04\x8b\xa9qz': 169} >>> intern_number_tree(d) 'c552317aa95ca8c3f6aae3357a4be299fbcb25ce' """ with tempfile.TemporaryFile() as f: for k, v in sorted(tree.items()): f.write(struct.pack(CHUNK_FMT, k, v)) f.seek(0) return git.intern_f(f) def leaf_map_fn(pre_tree): """Converts a prefix and number tree into a git index line.""" pre, tree = pre_tree return '100644 blob %s\t%s\0' % (intern_number_tree(tree), pathlify(pre)) def finalize(targets): """Saves all cache data to the git repository. After calculating the generation number for |targets|, call finalize() to save all the work to the git repository. This in particular saves the trees referred to by DIRTY_TREES. """ if not DIRTY_TREES: return msg = 'git-number Added %s numbers' % sum(DIRTY_TREES.values()) idx = os.path.join(git.run('rev-parse', '--git-dir'), 'number.idx') env = os.environ.copy() env['GIT_INDEX_FILE'] = idx progress_message = 'Finalizing: (%%(count)d/%d)' % len(DIRTY_TREES) with git.ProgressPrinter(progress_message) as inc: git.run('read-tree', REF, env=env) prefixes_trees = ((p, get_number_tree(p)) for p in sorted(DIRTY_TREES)) updater = subprocess2.Popen(['git', 'update-index', '-z', '--index-info'], stdin=subprocess2.PIPE, env=env) with git.ScopedPool(kind=POOL_KIND) as leaf_pool: for item in leaf_pool.imap(leaf_map_fn, prefixes_trees): updater.stdin.write(item.encode()) inc() updater.stdin.close() updater.wait() assert updater.returncode == 0 tree_id = git.run('write-tree', env=env) commit_cmd = [ # Git user.name and/or user.email may not be configured, so specifying # them explicitly. They are not used, but requried by Git. '-c', 'user.name=%s' % AUTHOR_NAME, '-c', 'user.email=%s' % AUTHOR_EMAIL, 'commit-tree', '-m', msg, '-p'] + git.hash_multi(REF) for t in targets: commit_cmd.extend(['-p', binascii.hexlify(t).decode()]) commit_cmd.append(tree_id) commit_hash = git.run(*commit_cmd) git.run('update-ref', REF, commit_hash) DIRTY_TREES.clear() def preload_tree(prefix): """Returns the prefix and parsed tree object for the specified prefix.""" return prefix, get_number_tree(prefix) def all_prefixes(depth=PREFIX_LEN): if sys.version_info.major == 3: prefixes = [bytes([i]) for i in range(255)] else: prefixes = [chr(i) for i in range(255)] for x in prefixes: # This isn't covered because PREFIX_LEN currently == 1 if depth > 1: # pragma: no cover for r in all_prefixes(depth - 1): yield x + r else: yield x def load_generation_numbers(targets): """Populates the caches of get_num and get_number_tree so they contain the results for |targets|. Loads cached numbers from disk, and calculates missing numbers if one or more of |targets| is newer than the cached calculations. Args: targets - An iterable of binary-encoded full git commit hashes. """ # In case they pass us a generator, listify targets. targets = list(targets) if all(get_num(t) is not None for t in targets): return if git.tree(REF) is None: empty = git.mktree({}) commit_hash = git.run( # Git user.name and/or user.email may not be configured, so specifying # them explicitly. They are not used, but requried by Git. '-c', 'user.name=%s' % AUTHOR_NAME, '-c', 'user.email=%s' % AUTHOR_EMAIL, 'commit-tree', '-m', 'Initial commit from git-number', empty) git.run('update-ref', REF, commit_hash) with git.ScopedPool(kind=POOL_KIND) as pool: preload_iter = pool.imap_unordered(preload_tree, all_prefixes()) rev_list = [] with git.ProgressPrinter('Loading commits: %(count)d') as inc: # Curiously, buffering the list into memory seems to be the fastest # approach in python (as opposed to iterating over the lines in the # stdout as they're produced). GIL strikes again :/ cmd = [ 'rev-list', '--topo-order', '--parents', '--reverse', '^' + REF, ] + [binascii.hexlify(target).decode() for target in targets] for line in git.run(*cmd).splitlines(): tokens = [binascii.unhexlify(token) for token in line.split()] rev_list.append((tokens[0], tokens[1:])) inc() get_number_tree.update(preload_iter) with git.ProgressPrinter('Counting: %%(count)d/%d' % len(rev_list)) as inc: for commit_hash, pars in rev_list: num = max(map(get_num, pars)) + 1 if pars else 0 prefix = commit_hash[:PREFIX_LEN] get_number_tree(prefix)[commit_hash] = num DIRTY_TREES[prefix] += 1 get_num.set(commit_hash, num) inc() def main(): # pragma: no cover parser = optparse.OptionParser(usage=sys.modules[__name__].__doc__) parser.add_option('--no-cache', action='store_true', help='Do not actually cache anything we calculate.') parser.add_option('--reset', action='store_true', help='Reset the generation number cache and quit.') parser.add_option('-v', '--verbose', action='count', default=0, help='Be verbose. Use more times for more verbosity.') opts, args = parser.parse_args() levels = [logging.ERROR, logging.INFO, logging.DEBUG] logging.basicConfig(level=levels[min(opts.verbose, len(levels) - 1)]) # 'git number' should only be used on bots. if os.getenv('CHROME_HEADLESS') != '1': logging.error("'git-number' is an infrastructure tool that is only " "intended to be used internally by bots. Developers should " "use the 'Cr-Commit-Position' value in the commit's message.") return 1 if opts.reset: clear_caches(on_disk=True) return try: targets = git.parse_commitrefs(*(args or ['HEAD'])) except git.BadCommitRefException as e: parser.error(e) load_generation_numbers(targets) if not opts.no_cache: finalize(targets) print('\n'.join(map(str, map(get_num, targets)))) return 0 if __name__ == '__main__': # pragma: no cover try: sys.exit(main()) except KeyboardInterrupt: sys.stderr.write('interrupted\n') sys.exit(1)
pgleeson/TempRepo3
refs/heads/master
pythonnC/Ex2_SaveProject.py
5
# # # A file which opens a neuroConstruct project, changes the value of the # amplitude in the electrical stimulation to a random value, then saves the project # # Author: Padraig Gleeson # # This file has been developed as part of the neuroConstruct project # This work has been funded by the Medical Research Council and the # Wellcome Trust # # try: from java.io import File from java.lang import System except ImportError: print "Note: this file should be run using ..\\nC.bat -python XXX.py' or './nC.sh -python XXX.py'" print "See http://www.neuroconstruct.org/docs/python.html for more details" quit() from ucl.physiol.neuroconstruct.project import ProjectManager from ucl.physiol.neuroconstruct.utils import NumberGenerator from math import * from random import * # Load an existing neuroConstruct project projFile = File("TestPython/TestPython.neuro.xml") print "Loading project from file: " + projFile.getAbsolutePath()+", exists: "+ str(projFile.exists()) pm = ProjectManager() myProject = pm.loadProject(projFile) print "Loaded project: " + myProject.getProjectName() # Get first electrical stimulation & reset it stim = myProject.elecInputInfo.getStim(0) print "First stimulation setting: "+ str(stim) newAmp = random()*0.2 stim.setAmp(NumberGenerator(newAmp)) myProject.elecInputInfo.updateStim(stim) print "Stimulation now: "+ str(myProject.elecInputInfo.getStim(0)) # Save project & exit myProject.markProjectAsEdited() myProject.saveProject() System.exit(0)
mgit-at/ansible
refs/heads/devel
lib/ansible/modules/storage/netapp/netapp_e_auth.py
5
#!/usr/bin/python # (c) 2016, NetApp, Inc # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: netapp_e_auth short_description: NetApp E-Series set or update the password for a storage array. description: - Sets or updates the password for a storage array. When the password is updated on the storage array, it must be updated on the SANtricity Web Services proxy. Note, all storage arrays do not have a Monitor or RO role. version_added: "2.2" author: Kevin Hulquest (@hulquest) options: validate_certs: required: false default: true description: - Should https certificates be validated? type: bool name: description: - The name of the storage array. Note that if more than one storage array with this name is detected, the task will fail and you'll have to use the ID instead. required: False ssid: description: - the identifier of the storage array in the Web Services Proxy. required: False set_admin: description: - Boolean value on whether to update the admin password. If set to false then the RO account is updated. type: bool default: False current_password: description: - The current admin password. This is not required if the password hasn't been set before. required: False new_password: description: - The password you would like to set. Cannot be more than 30 characters. required: True api_url: description: - The full API url. - "Example: http://ENDPOINT:8080/devmgr/v2" - This can optionally be set via an environment variable, API_URL required: False api_username: description: - The username used to authenticate against the API - This can optionally be set via an environment variable, API_USERNAME required: False api_password: description: - The password used to authenticate against the API - This can optionally be set via an environment variable, API_PASSWORD required: False ''' EXAMPLES = ''' - name: Test module netapp_e_auth: name: trex current_password: OldPasswd new_password: NewPasswd set_admin: yes api_url: '{{ netapp_api_url }}' api_username: '{{ netapp_api_username }}' api_password: '{{ netapp_api_password }}' ''' RETURN = ''' msg: description: Success message returned: success type: string sample: "Password Updated Successfully" ''' import json import traceback from ansible.module_utils.api import basic_auth_argument_spec from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.six.moves.urllib.error import HTTPError from ansible.module_utils._text import to_native from ansible.module_utils.urls import open_url HEADERS = { "Content-Type": "application/json", "Accept": "application/json", "x-netapp-password-validate-method": "none" } def request(url, data=None, headers=None, method='GET', use_proxy=True, force=False, last_mod_time=None, timeout=10, validate_certs=True, url_username=None, url_password=None, http_agent=None, force_basic_auth=True, ignore_errors=False): try: r = open_url(url=url, data=data, headers=headers, method=method, use_proxy=use_proxy, force=force, last_mod_time=last_mod_time, timeout=timeout, validate_certs=validate_certs, url_username=url_username, url_password=url_password, http_agent=http_agent, force_basic_auth=force_basic_auth) except HTTPError as e: r = e.fp try: raw_data = r.read() if raw_data: data = json.loads(raw_data) else: raw_data = None except: if ignore_errors: pass else: raise Exception(raw_data) resp_code = r.getcode() if resp_code >= 400 and not ignore_errors: raise Exception(resp_code, data) else: return resp_code, data def get_ssid(module, name, api_url, user, pwd): count = 0 all_systems = 'storage-systems' systems_url = api_url + all_systems rc, data = request(systems_url, headers=HEADERS, url_username=user, url_password=pwd, validate_certs=module.validate_certs) for system in data: if system['name'] == name: count += 1 if count > 1: module.fail_json( msg="You supplied a name for the Storage Array but more than 1 array was found with that name. " + "Use the id instead") else: ssid = system['id'] else: continue if count == 0: module.fail_json(msg="No storage array with the name %s was found" % name) else: return ssid def get_pwd_status(module, ssid, api_url, user, pwd): pwd_status = "storage-systems/%s/passwords" % ssid url = api_url + pwd_status try: rc, data = request(url, headers=HEADERS, url_username=user, url_password=pwd, validate_certs=module.validate_certs) return data['readOnlyPasswordSet'], data['adminPasswordSet'] except HTTPError as e: module.fail_json(msg="There was an issue with connecting, please check that your " "endpoint is properly defined and your credentials are correct: %s" % to_native(e)) def update_storage_system_pwd(module, ssid, pwd, api_url, api_usr, api_pwd): """Update the stored storage-system password""" update_pwd = 'storage-systems/%s' % ssid url = api_url + update_pwd post_body = json.dumps(dict(storedPassword=pwd)) try: rc, data = request(url, data=post_body, method='POST', headers=HEADERS, url_username=api_usr, url_password=api_pwd, validate_certs=module.validate_certs) return rc, data except Exception as e: module.fail_json(msg="Failed to update system password. Id [%s]. Error [%s]" % (ssid, to_native(e))) def set_password(module, ssid, api_url, user, pwd, current_password=None, new_password=None, set_admin=False): """Set the storage-system password""" set_pass = "storage-systems/%s/passwords" % ssid url = api_url + set_pass if not current_password: current_password = "" post_body = json.dumps( dict(currentAdminPassword=current_password, adminPassword=set_admin, newPassword=new_password)) try: rc, data = request(url, method='POST', data=post_body, headers=HEADERS, url_username=user, url_password=pwd, ignore_errors=True, validate_certs=module.validate_certs) except Exception as e: module.fail_json(msg="Failed to set system password. Id [%s]. Error [%s]" % (ssid, to_native(e)), exception=traceback.format_exc()) if rc == 422: post_body = json.dumps(dict(currentAdminPassword='', adminPassword=set_admin, newPassword=new_password)) try: rc, data = request(url, method='POST', data=post_body, headers=HEADERS, url_username=user, url_password=pwd, validate_certs=module.validate_certs) except: # TODO(lorenp): Resolve ignored rc, data module.fail_json(msg="Wrong or no admin password supplied. Please update your playbook and try again") if int(rc) >= 300: module.fail_json(msg="Failed to set system password. Id [%s] Code [%s]. Error [%s]" % (ssid, rc, data)) rc, update_data = update_storage_system_pwd(module, ssid, new_password, api_url, user, pwd) if int(rc) < 300: return update_data else: module.fail_json(msg="%s:%s" % (rc, update_data)) def main(): argument_spec = basic_auth_argument_spec() argument_spec.update(dict( name=dict(required=False, type='str'), ssid=dict(required=False, type='str'), current_password=dict(required=False, no_log=True), new_password=dict(required=True, no_log=True), set_admin=dict(required=True, type='bool'), api_url=dict(required=True), api_username=dict(required=False), api_password=dict(required=False, no_log=True) ) ) module = AnsibleModule(argument_spec=argument_spec, mutually_exclusive=[['name', 'ssid']], required_one_of=[['name', 'ssid']]) name = module.params['name'] ssid = module.params['ssid'] current_password = module.params['current_password'] new_password = module.params['new_password'] set_admin = module.params['set_admin'] user = module.params['api_username'] pwd = module.params['api_password'] api_url = module.params['api_url'] module.validate_certs = module.params['validate_certs'] if not api_url.endswith('/'): api_url += '/' if name: ssid = get_ssid(module, name, api_url, user, pwd) ro_pwd, admin_pwd = get_pwd_status(module, ssid, api_url, user, pwd) if admin_pwd and not current_password: module.fail_json( msg="Admin account has a password set. " + "You must supply current_password in order to update the RO or Admin passwords") if len(new_password) > 30: module.fail_json(msg="Passwords must not be greater than 30 characters in length") result = set_password(module, ssid, api_url, user, pwd, current_password=current_password, new_password=new_password, set_admin=set_admin) module.exit_json(changed=True, msg="Password Updated Successfully", password_set=result['passwordSet'], password_status=result['passwordStatus']) if __name__ == '__main__': main()
mohsraspi/mhscs14
refs/heads/master
robert/pyramid2.py
1
import minecraft as minecraft import time mc= minecraft.Minecraft.create() friendgame = minecraft.Minecraft.create("10.52.4.54") #position = friendgame.player.getTilePos() #x = position.x #y = position.y #z = position.z x = 110 y = 33 z = -70 base = 5 x1 = x x2 = x + base z1 = z z2 = z + base while x2 - x1>=0: friendgame.setBlocks(x1,y,z1,x2,y,z2,46,1) x1 = x1+1 x2 = x2 - 1 z1 = z1+1 z2 = z2 -1 y = y+1
ver007/Beebeeto-framework
refs/heads/master
demo/utils/payload/webshell/php.py
20
#author: fyth from webshell import * class PhpShell(Webshell): _password = 'cmd' _content = "<?php var_dump(md5(123));@assert($_REQUEST['{0}']);?>" _check_statement = 'var_dump(md5(123));' _keyword = '202cb962ac59075b964b07152d234b70' class PhpVerify(VerifyShell): _content = "<?php var_dump(md5(123));unlink(__FILE__);?>" _keyword = '202cb962ac59075b964b07152d234b70'
leeping/mdtraj
refs/heads/master
mdtraj/testing/docscrape.py
17
"""Extract reference documentation from the NumPy source tree. """ # This code is copied directly from numpy # numpy / doc / sphinxext / docscrape.py # Copyright (c) 2005-2011, NumPy Developers. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # * Neither the name of the NumPy Developers nor the names of any # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import print_function, division import inspect import textwrap import re import pydoc from warnings import warn from mdtraj.utils.six import StringIO, iteritems class Reader(object): """A line-based string reader. """ def __init__(self, data): """ Parameters ---------- data : str String with lines separated by '\n'. """ if isinstance(data,list): self._str = data else: self._str = data.split('\n') # store string as list of lines self.reset() def __getitem__(self, n): return self._str[n] def reset(self): self._l = 0 # current line nr def read(self): if not self.eof(): out = self[self._l] self._l += 1 return out else: return '' def seek_next_non_empty_line(self): for l in self[self._l:]: if l.strip(): break else: self._l += 1 def eof(self): return self._l >= len(self._str) def read_to_condition(self, condition_func): start = self._l for line in self[start:]: if condition_func(line): return self[start:self._l] self._l += 1 if self.eof(): return self[start:self._l+1] return [] def read_to_next_empty_line(self): self.seek_next_non_empty_line() def is_empty(line): return not line.strip() return self.read_to_condition(is_empty) def read_to_next_unindented_line(self): def is_unindented(line): return (line.strip() and (len(line.lstrip()) == len(line))) return self.read_to_condition(is_unindented) def peek(self,n=0): if self._l + n < len(self._str): return self[self._l + n] else: return '' def is_empty(self): return not ''.join(self._str).strip() class NumpyDocString(object): def __init__(self, docstring, config={}): docstring = textwrap.dedent(docstring).split('\n') self._doc = Reader(docstring) self._parsed_data = { 'Signature': '', 'Summary': [''], 'Extended Summary': [], 'Parameters': [], 'Returns': [], 'Raises': [], 'Warns': [], 'Other Parameters': [], 'Attributes': [], 'Methods': [], 'See Also': [], 'Notes': [], 'Warnings': [], 'References': '', 'Examples': '', 'index': {} } self._parse() def __getitem__(self,key): return self._parsed_data[key] def __setitem__(self,key,val): if not key in self._parsed_data: warn("Unknown section %s" % key) else: self._parsed_data[key] = val def _is_at_section(self): self._doc.seek_next_non_empty_line() if self._doc.eof(): return False l1 = self._doc.peek().strip() # e.g. Parameters if l1.startswith('.. index::'): return True l2 = self._doc.peek(1).strip() # ---------- or ========== return l2.startswith('-'*len(l1)) or l2.startswith('='*len(l1)) def _strip(self,doc): i = 0 j = 0 for i,line in enumerate(doc): if line.strip(): break for j,line in enumerate(doc[::-1]): if line.strip(): break return doc[i:len(doc)-j] def _read_to_next_section(self): section = self._doc.read_to_next_empty_line() while not self._is_at_section() and not self._doc.eof(): if not self._doc.peek(-1).strip(): # previous line was empty section += [''] section += self._doc.read_to_next_empty_line() return section def _read_sections(self): while not self._doc.eof(): data = self._read_to_next_section() name = data[0].strip() if name.startswith('..'): # index section yield name, data[1:] elif len(data) < 2: yield StopIteration else: yield name, self._strip(data[2:]) def _parse_param_list(self,content): r = Reader(content) params = [] while not r.eof(): header = r.read().strip() if ' : ' in header: arg_name, arg_type = header.split(' : ')[:2] else: arg_name, arg_type = header, '' desc = r.read_to_next_unindented_line() desc = dedent_lines(desc) params.append((arg_name,arg_type,desc)) return params _name_rgx = re.compile(r"^\s*(:(?P<role>\w+):`(?P<name>[a-zA-Z0-9_.-]+)`|" r" (?P<name2>[a-zA-Z0-9_.-]+))\s*", re.X) def _parse_see_also(self, content): """ func_name : Descriptive text continued text another_func_name : Descriptive text func_name1, func_name2, :meth:`func_name`, func_name3 """ items = [] def parse_item_name(text): """Match ':role:`name`' or 'name'""" m = self._name_rgx.match(text) if m: g = m.groups() if g[1] is None: return g[3], None else: return g[2], g[1] raise ValueError("%s is not a item name" % text) def push_item(name, rest): if not name: return name, role = parse_item_name(name) items.append((name, list(rest), role)) del rest[:] current_func = None rest = [] for line in content: if not line.strip(): continue m = self._name_rgx.match(line) if m and line[m.end():].strip().startswith(':'): push_item(current_func, rest) current_func, line = line[:m.end()], line[m.end():] rest = [line.split(':', 1)[1].strip()] if not rest[0]: rest = [] elif not line.startswith(' '): push_item(current_func, rest) current_func = None if ',' in line: for func in line.split(','): if func.strip(): push_item(func, []) elif line.strip(): current_func = line elif current_func is not None: rest.append(line.strip()) push_item(current_func, rest) return items def _parse_index(self, section, content): """ .. index: default :refguide: something, else, and more """ def strip_each_in(lst): return [s.strip() for s in lst] out = {} section = section.split('::') if len(section) > 1: out['default'] = strip_each_in(section[1].split(','))[0] for line in content: line = line.split(':') if len(line) > 2: out[line[1]] = strip_each_in(line[2].split(',')) return out def _parse_summary(self): """Grab signature (if given) and summary""" if self._is_at_section(): return summary = self._doc.read_to_next_empty_line() summary_str = " ".join([s.strip() for s in summary]).strip() if re.compile('^([\w., ]+=)?\s*[\w\.]+\(.*\)$').match(summary_str): self['Signature'] = summary_str if not self._is_at_section(): self['Summary'] = self._doc.read_to_next_empty_line() else: self['Summary'] = summary if not self._is_at_section(): self['Extended Summary'] = self._read_to_next_section() def _parse(self): self._doc.reset() self._parse_summary() for (section,content) in self._read_sections(): if not section.startswith('..'): section = ' '.join([s.capitalize() for s in section.split(' ')]) if section in ('Parameters', 'Returns', 'Raises', 'Warns', 'Other Parameters', 'Attributes', 'Methods'): self[section] = self._parse_param_list(content) elif section.startswith('.. index::'): self['index'] = self._parse_index(section, content) elif section == 'See Also': self['See Also'] = self._parse_see_also(content) else: self[section] = content # string conversion routines def _str_header(self, name, symbol='-'): return [name, len(name)*symbol] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): if self['Signature']: return [self['Signature'].replace('*','\*')] + [''] else: return [''] def _str_summary(self): if self['Summary']: return self['Summary'] + [''] else: return [] def _str_extended_summary(self): if self['Extended Summary']: return self['Extended Summary'] + [''] else: return [] def _str_param_list(self, name): out = [] if self[name]: out += self._str_header(name) for param,param_type,desc in self[name]: out += ['%s : %s' % (param, param_type)] out += self._str_indent(desc) out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += self[name] out += [''] return out def _str_see_also(self, func_role): if not self['See Also']: return [] out = [] out += self._str_header("See Also") last_had_desc = True for func, desc, role in self['See Also']: if role: link = ':%s:`%s`' % (role, func) elif func_role: link = ':%s:`%s`' % (func_role, func) else: link = "`%s`_" % func if desc or last_had_desc: out += [''] out += [link] else: out[-1] += ", %s" % link if desc: out += self._str_indent([' '.join(desc)]) last_had_desc = True else: last_had_desc = False out += [''] return out def _str_index(self): idx = self['index'] out = [] out += ['.. index:: %s' % idx.get('default','')] for section, references in iteritems(idx): if section == 'default': continue out += [' :%s: %s' % (section, ', '.join(references))] return out def __str__(self, func_role=''): out = [] out += self._str_signature() out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Other Parameters', 'Raises', 'Warns'): out += self._str_param_list(param_list) out += self._str_section('Warnings') out += self._str_see_also(func_role) for s in ('Notes','References','Examples'): out += self._str_section(s) for param_list in ('Attributes', 'Methods'): out += self._str_param_list(param_list) out += self._str_index() return '\n'.join(out) def indent(str,indent=4): indent_str = ' '*indent if str is None: return indent_str lines = str.split('\n') return '\n'.join(indent_str + l for l in lines) def dedent_lines(lines): """Deindent a list of lines maximally""" return textwrap.dedent("\n".join(lines)).split("\n") def header(text, style='-'): return text + '\n' + style*len(text) + '\n' class FunctionDoc(NumpyDocString): def __init__(self, func, role='func', doc=None, config={}): self._f = func self._role = role # e.g. "func" or "meth" if doc is None: if func is None: raise ValueError("No function or docstring given") doc = inspect.getdoc(func) or '' NumpyDocString.__init__(self, doc) if not self['Signature'] and func is not None: func, func_name = self.get_func() try: # try to read signature argspec = inspect.getargspec(func) argspec = inspect.formatargspec(*argspec) argspec = argspec.replace('*','\*') signature = '%s%s' % (func_name, argspec) except TypeError as e: signature = '%s()' % func_name self['Signature'] = signature def get_func(self): func_name = getattr(self._f, '__name__', self.__class__.__name__) if inspect.isclass(self._f): func = getattr(self._f, '__call__', self._f.__init__) else: func = self._f return func, func_name def __str__(self): out = '' func, func_name = self.get_func() signature = self['Signature'].replace('*', '\*') roles = {'func': 'function', 'meth': 'method'} if self._role: if not self._roles in roles: print("Warning: invalid role %s" % self._role) out += '.. %s:: %s\n \n\n' % (roles.get(self._role,''), func_name) out += super(FunctionDoc, self).__str__(func_role=self._role) return out class ClassDoc(NumpyDocString): extra_public_methods = ['__call__'] def __init__(self, cls, doc=None, modulename='', func_doc=FunctionDoc, config={}): if not inspect.isclass(cls) and cls is not None: raise ValueError("Expected a class or None, but got %r" % cls) self._cls = cls if modulename and not modulename.endswith('.'): modulename += '.' self._mod = modulename if doc is None: if cls is None: raise ValueError("No class or documentation string given") doc = pydoc.getdoc(cls) NumpyDocString.__init__(self, doc) if config.get('show_class_members', True): if not self['Methods']: self['Methods'] = [(name, '', '') for name in sorted(self.methods)] if not self['Attributes']: self['Attributes'] = [(name, '', '') for name in sorted(self.properties)] @property def methods(self): if self._cls is None: return [] return [name for name,func in inspect.getmembers(self._cls) if ((not name.startswith('_') or name in self.extra_public_methods) and callable(func))] @property def properties(self): if self._cls is None: return [] return [name for name,func in inspect.getmembers(self._cls) if not name.startswith('_') and func is None]
RasmusD/SiRe
refs/heads/master
SiReData/txt2lmscore.py
1
########################################################################## #Copyright 2015 Rasmus Dall # # # #Licensed under the Apache License, Version 2.0 (the "License"); # #you may not use this file except in compliance with the License. # #You may obtain a copy of the License at # # # #http://www.apache.org/licenses/LICENSE-2.0 # # # #Unless required by applicable law or agreed to in writing, software # #distributed under the License is distributed on an "AS IS" BASIS, # #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# #See the License for the specific language governing permissions and # #limitations under the License. # ########################################################################## #Takes the txt files in a directory and scores them using a LM outputting #one .scores file per .txt file containing each word line by line with its #LM probability. #Load the SiReImports.pth file #Note this assumes we are in the SiReData dir when calling the script. import site site.addsitedir("../") import argparse, os, subprocess, dictionary, lattice_tools import sire_io as io #Combines all txt files in a dir to one txt file where the others are written line by line. def combine_txt(indirpath, outfilepath, overwrite=False): lines = io.load_txt_dir(indirpath) wf = io.open_writefile_safe(outfilepath, overwrite) for line in lines: wf.write(" ".join(line[1:])+"\n") wf.close() def score_word_ngram(args): #Combine all txt files into one for LM scoring in one go. comb_file = os.path.join(args.outdirpath, "combined.txt") combine_txt(args.txtdir, comb_file, args.f) if args.no_tmp_file: return subprocess.check_output(args.lm_binary+" -ppl "+comb_file+" -lm "+args.lm_path + options, shell=True) else: subprocess.call(args.lm_binary+" -ppl "+comb_file+" -lm "+args.lm_path + options +" > "+os.path.join(args.outdirpath, "scored.txt"), shell=True) return open(os.path.join(args.outdirpath, "scored.txt"), "r").read() def write_word_score_files(scores, args): #First split on empty lines and then split on lines scores = [x.split("\n") for x in scores.split("\n\n")] #Pop the overall stats scores.pop(-1) #Take away unnecessaries scores = [x[1:-3] for x in scores] #Fix each line in each entry for i, e in enumerate(scores): for n, l in enumerate(e): l = l.split() scores[i][n] = l[1]+ " "+ l[-2] #Match up each scored sent with a txt file. #This relies on positions when listing txt dir. #Will fail if other files than txt files in dir or txtdir has been modified since scoring. #Could also rely on content <- safer see TODO. txt = os.listdir(args.txtdir) n = 0 for t in txt: if ".txt" in t: wf = io.open_writefile_safe(os.path.join(args.outdirpath, t[:-3]+"scored"), args.f) for l in scores[n]: wf.write(l+"\n") wf.close() n+=1 #Create all the slfs and a list with paths to each file def create_lattices_and_list(txtlist, outdirpath, dictionary, overwrite=False): path_list = [] for txt in txtlist: path = os.path.join(outdirpath, txt[0]+".phoneme_slf") #Make the slf slf = lattice_tools.make_phoneme_slf(txt[1:], dictionary, pronoun_variant=True, no_syll_stress=True) #Write it out wf = io.open_writefile_safe(path, overwrite) for l in slf: wf.write(l) wf.close() #Everything has gone well so we add the path path_list.append(path) #Write out the path file. wf = io.open_writefile_safe(os.path.join(outdirpath, "lattices.list")) for p in path_list: wf.write(p+"\n") wf.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description='Load a dir of txt and output LM scores for each word in the sent or for the most likely phoneme path for each word from a phoneme LM. This currently supports only SRILM NGRAM LMs.') parser.add_argument('txtdir', type=str, help="The input directory.") parser.add_argument('outdirpath', type=str, help="The output directory path.") parser.add_argument('lm_path', type=str, help="Path to the LM to use.") parser.add_argument('lm_binary', type=str, help="Path to the LM binary to use. This should be the SRILM NGRAM binary for WORD_NGRAM and SRILM LATTICE_TOOLS for PHONEME_NGRAM.") parser.add_argument('-lm_type', type=str, help="The type of LM to use.", choices=['WORD_NGRAM', 'PHONEME_NGRAM'], default='WORD_NGRAM') parser.add_argument('-lm_binary_options', type=str, nargs=argparse.REMAINDER, help="Additional arguments to be forwarded to the ngram binary. This overwrites the defaults for each -lm_type. As these differ for each type please see the code for details of the defaults. Note that the input/output options are always already specified by the arguments passed to this python script.") parser.add_argument('-f', action="store_true", help="Overwrite all output files without asking.") parser.add_argument('-no_tmp_file', action="store_true", help="If true a scored.txt file will not be written out and the .scored files produced directly.") parser.add_argument('-pre_scored', action="store_true", help="Indicates that a scored.txt file already exists and do not need to be remade. I.e. if LM does no need to be run.") parser.add_argument('-lattices_exist', action="store_true", help="Indicates that lattices have already been created for each txt file and resides in the outdirpath.") parser.add_argument('-combilexpath', type=str, help="Path to the combilex dictionary for creating lattices from if lm_type is PHONEME_NGRAM.") args = parser.parse_args() if args.lm_binary_options: options += " "+" ".join(args.lm_binary_options) else: if args.lm_type == "WORD_NGRAM": options = " -debug 2 -tolower -unk" elif args.lm_type == "PHONEME_NGRAM": # options = " -viterbi-decode -read-htk -order 4 -debug 1 -no-expansion -nbest-decode 10 -out-nbest-dir "+args.outdirpath options = " -viterbi-decode -read-htk -order 4 -debug 1 -no-expansion -nbest-decode 10" if args.f: options += " -overwrite" if args.lm_type == "WORD_NGRAM": if not args.pre_scored: scores = score_word_ngram(args) else: scores = open(os.path.join(args.outdirpath, "scored.txt"), "r").read() #Do the work write_word_score_files(scores, args) elif args.lm_type == "PHONEME_NGRAM": #First create lattices if not args.lattices_exist: txt = io.load_txt_dir(args.txtdir) dictionary = dictionary.Dictionary(args.combilexpath) create_lattices_and_list(txt, args.outdirpath, dictionary, args.f) #Then score them lattice_list_path = os.path.join(args.outdirpath, "lattices.list") subprocess.call(args.lm_binary+" -lm "+args.lm_path+" -in-lattice-list "+lattice_list_path+options+" > "+os.path.join(args.outdirpath, "scored.txt"), shell=True)
mbauskar/helpdesk-erpnext
refs/heads/master
erpnext/patches/v5_0/convert_stock_reconciliation.py
104
import frappe, json def execute(): # stock reco now amendable frappe.db.sql("""update tabDocPerm set `amend` = 1 where parent='Stock Reconciliation' and submit = 1""") frappe.reload_doc("stock", "doctype", "stock_reconciliation_item") frappe.reload_doctype("Stock Reconciliation") if frappe.db.has_column("Stock Reconciliation", "reconciliation_json"): for sr in frappe.db.get_all("Stock Reconciliation", ["name"], {"reconciliation_json": ["!=", ""]}): start = False sr = frappe.get_doc("Stock Reconciliation", sr.name) for row in json.loads(sr.reconciliation_json): if start: sr.append("items", { "item_code": row[0], "warehouse": row[1], "qty": row[2] if len(row) > 2 else None, "valuation_rate": row[3] if len(row) > 3 else None }) elif row[0]=="Item Code": start = True for item in sr.items: item.db_update()
OptiPop/external_chromium_org
refs/heads/opti-5.1
content/test/gpu/page_sets/PRESUBMIT.py
52
# Copyright (c) 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import re import sys def _GetTelemetryPath(input_api): return os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname( input_api.PresubmitLocalPath())))), 'tools', 'telemetry') def LoadSupport(input_api): if 'cloud_storage' not in globals(): # Avoid leaking changes to global sys.path. _old_sys_path = sys.path try: telemetry_path = _GetTelemetryPath(input_api) sys.path = [telemetry_path] + sys.path from telemetry.util import cloud_storage globals()['cloud_storage'] = cloud_storage finally: sys.path = _old_sys_path return globals()['cloud_storage'] def _GetFilesNotInCloud(input_api): """Searches for .sha1 files and checks to see if they have already been uploaded Cloud Storage. Returns a list of those that have not. """ hash_paths = [] for affected_file in input_api.AffectedFiles(include_deletes=False): hash_path = affected_file.AbsoluteLocalPath() _, extension = os.path.splitext(hash_path) if extension == '.sha1': hash_paths.append(hash_path) if not hash_paths: return [] cloud_storage = LoadSupport(input_api) # Look in both buckets, in case the user uploaded the file manually. hashes_in_cloud_storage = cloud_storage.List(cloud_storage.PUBLIC_BUCKET) try: hashes_in_cloud_storage += cloud_storage.List(cloud_storage.INTERNAL_BUCKET) except (cloud_storage.PermissionError, cloud_storage.CredentialsError): pass files = [] for hash_path in hash_paths: file_hash = cloud_storage.ReadHash(hash_path) if file_hash not in hashes_in_cloud_storage: files.append((hash_path, file_hash)) return files def _VerifyFilesInCloud(input_api, output_api): """Fails presubmit if any .sha1 files have not been previously uploaded to Cloud storage. """ results = [] hash_paths = _GetFilesNotInCloud(input_api) file_paths = [] for hash_path, _ in hash_paths: results.append(output_api.PresubmitError( 'Attemping to commit hash file, but corresponding ' 'data file is not in Cloud Storage: %s' % hash_path)) file_paths.append(os.path.splitext(hash_path)[0]) if len(file_paths) > 0: upload_script_path = os.path.join( _GetTelemetryPath(input_api), 'cloud_storage') results.append(output_api.PresubmitError( 'To upload missing files, Run: \n' '%s upload %s google-only' % (upload_script_path, ' '.join(file_paths)))) return results def CheckChangeOnUpload(input_api, output_api): results = _VerifyFilesInCloud(input_api, output_api) return results def CheckChangeOnCommit(input_api, output_api): results = _VerifyFilesInCloud(input_api, output_api) return results
timokoola/hslbot
refs/heads/master
docutils/utils/code_analyzer.py
86
#!/usr/bin/python # coding: utf-8 """Lexical analysis of formal languages (i.e. code) using Pygments.""" # :Author: Georg Brandl; Felix Wiemann; Günter Milde # :Date: $Date: 2011-12-20 15:14:21 +0100 (Die, 20. Dez 2011) $ # :Copyright: This module has been placed in the public domain. from docutils import ApplicationError try: import pygments from pygments.lexers import get_lexer_by_name from pygments.formatters.html import _get_ttype_class with_pygments = True except ImportError: with_pygments = False # Filter the following token types from the list of class arguments: unstyled_tokens = ['token', # Token (base token type) 'text', # Token.Text ''] # short name for Token and Text # (Add, e.g., Token.Punctuation with ``unstyled_tokens += 'punctuation'``.) class LexerError(ApplicationError): pass class Lexer(object): """Parse `code` lines and yield "classified" tokens. Arguments code -- string of source code to parse, language -- formal language the code is written in, tokennames -- either 'long', 'short', or '' (see below). Merge subsequent tokens of the same token-type. Iterating over an instance yields the tokens as ``(tokentype, value)`` tuples. The value of `tokennames` configures the naming of the tokentype: 'long': downcased full token type name, 'short': short name defined by pygments.token.STANDARD_TYPES (= class argument used in pygments html output), 'none': skip lexical analysis. """ def __init__(self, code, language, tokennames='short'): """ Set up a lexical analyzer for `code` in `language`. """ self.code = code self.language = language self.tokennames = tokennames self.lexer = None # get lexical analyzer for `language`: if language in ('', 'text') or tokennames == 'none': return if not with_pygments: raise LexerError('Cannot analyze code. ' 'Pygments package not found.') try: self.lexer = get_lexer_by_name(self.language) except pygments.util.ClassNotFound: raise LexerError('Cannot analyze code. ' 'No Pygments lexer found for "%s".' % language) # Since version 1.2. (released Jan 01, 2010) Pygments has a # TokenMergeFilter. However, this requires Python >= 2.4. When Docutils # requires same minimal version, ``self.merge(tokens)`` in __iter__ can # be replaced by ``self.lexer.add_filter('tokenmerge')`` in __init__. def merge(self, tokens): """Merge subsequent tokens of same token-type. Also strip the final newline (added by pygments). """ tokens = iter(tokens) (lasttype, lastval) = tokens.next() for ttype, value in tokens: if ttype is lasttype: lastval += value else: yield(lasttype, lastval) (lasttype, lastval) = (ttype, value) if lastval.endswith('\n'): lastval = lastval[:-1] if lastval: yield(lasttype, lastval) def __iter__(self): """Parse self.code and yield "classified" tokens. """ if self.lexer is None: yield ([], self.code) return tokens = pygments.lex(self.code, self.lexer) for tokentype, value in self.merge(tokens): if self.tokennames == 'long': # long CSS class args classes = str(tokentype).lower().split('.') else: # short CSS class args classes = [_get_ttype_class(tokentype)] classes = [cls for cls in classes if cls not in unstyled_tokens] yield (classes, value) class NumberLines(object): """Insert linenumber-tokens at the start of every code line. Arguments tokens -- iterable of ``(classes, value)`` tuples startline -- first line number endline -- last line number Iterating over an instance yields the tokens with a ``(['ln'], '<the line number>')`` token added for every code line. Multi-line tokens are splitted.""" def __init__(self, tokens, startline, endline): self.tokens = tokens self.startline = startline # pad linenumbers, e.g. endline == 100 -> fmt_str = '%3d ' self.fmt_str = '%%%dd ' % len(str(endline)) def __iter__(self): lineno = self.startline yield (['ln'], self.fmt_str % lineno) for ttype, value in self.tokens: lines = value.split('\n') for line in lines[:-1]: yield (ttype, line + '\n') lineno += 1 yield (['ln'], self.fmt_str % lineno) yield (ttype, lines[-1])
chaowyc/youtube-dl
refs/heads/master
youtube_dl/extractor/drbonanza.py
109
from __future__ import unicode_literals import json import re from .common import InfoExtractor from ..utils import ( int_or_none, parse_iso8601, ) class DRBonanzaIE(InfoExtractor): _VALID_URL = r'https?://(?:www\.)?dr\.dk/bonanza/(?:[^/]+/)+(?:[^/])+?(?:assetId=(?P<id>\d+))?(?:[#&]|$)' _TESTS = [{ 'url': 'http://www.dr.dk/bonanza/serie/portraetter/Talkshowet.htm?assetId=65517', 'info_dict': { 'id': '65517', 'ext': 'mp4', 'title': 'Talkshowet - Leonard Cohen', 'description': 'md5:8f34194fb30cd8c8a30ad8b27b70c0ca', 'thumbnail': 're:^https?://.*\.(?:gif|jpg)$', 'timestamp': 1295537932, 'upload_date': '20110120', 'duration': 3664, }, 'params': { 'skip_download': True, # requires rtmp }, }, { 'url': 'http://www.dr.dk/bonanza/radio/serie/sport/fodbold.htm?assetId=59410', 'md5': '6dfe039417e76795fb783c52da3de11d', 'info_dict': { 'id': '59410', 'ext': 'mp3', 'title': 'EM fodbold 1992 Danmark - Tyskland finale Transmission', 'description': 'md5:501e5a195749480552e214fbbed16c4e', 'thumbnail': 're:^https?://.*\.(?:gif|jpg)$', 'timestamp': 1223274900, 'upload_date': '20081006', 'duration': 7369, }, }] def _real_extract(self, url): url_id = self._match_id(url) webpage = self._download_webpage(url, url_id) if url_id: info = json.loads(self._html_search_regex(r'({.*?%s.*})' % url_id, webpage, 'json')) else: # Just fetch the first video on that page info = json.loads(self._html_search_regex(r'bonanzaFunctions.newPlaylist\(({.*})\)', webpage, 'json')) asset_id = str(info['AssetId']) title = info['Title'].rstrip(' \'\"-,.:;!?') duration = int_or_none(info.get('Duration'), scale=1000) # First published online. "FirstPublished" contains the date for original airing. timestamp = parse_iso8601( re.sub(r'\.\d+$', '', info['Created'])) def parse_filename_info(url): match = re.search(r'/\d+_(?P<width>\d+)x(?P<height>\d+)x(?P<bitrate>\d+)K\.(?P<ext>\w+)$', url) if match: return { 'width': int(match.group('width')), 'height': int(match.group('height')), 'vbr': int(match.group('bitrate')), 'ext': match.group('ext') } match = re.search(r'/\d+_(?P<bitrate>\d+)K\.(?P<ext>\w+)$', url) if match: return { 'vbr': int(match.group('bitrate')), 'ext': match.group(2) } return {} video_types = ['VideoHigh', 'VideoMid', 'VideoLow'] preferencemap = { 'VideoHigh': -1, 'VideoMid': -2, 'VideoLow': -3, 'Audio': -4, } formats = [] for file in info['Files']: if info['Type'] == "Video": if file['Type'] in video_types: format = parse_filename_info(file['Location']) format.update({ 'url': file['Location'], 'format_id': file['Type'].replace('Video', ''), 'preference': preferencemap.get(file['Type'], -10), }) if format['url'].startswith('rtmp'): rtmp_url = format['url'] format['rtmp_live'] = True # --resume does not work if '/bonanza/' in rtmp_url: format['play_path'] = rtmp_url.split('/bonanza/')[1] formats.append(format) elif file['Type'] == "Thumb": thumbnail = file['Location'] elif info['Type'] == "Audio": if file['Type'] == "Audio": format = parse_filename_info(file['Location']) format.update({ 'url': file['Location'], 'format_id': file['Type'], 'vcodec': 'none', }) formats.append(format) elif file['Type'] == "Thumb": thumbnail = file['Location'] description = '%s\n%s\n%s\n' % ( info['Description'], info['Actors'], info['Colophon']) self._sort_formats(formats) display_id = re.sub(r'[^\w\d-]', '', re.sub(r' ', '-', title.lower())) + '-' + asset_id display_id = re.sub(r'-+', '-', display_id) return { 'id': asset_id, 'display_id': display_id, 'title': title, 'formats': formats, 'description': description, 'thumbnail': thumbnail, 'timestamp': timestamp, 'duration': duration, }
mogeiwang/nest
refs/heads/master
pynest/examples/HillTononi/ht_poisson.py
4
# -*- coding: utf-8 -*- # # ht_poisson.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. # """ A small example using the ht_neuron. The neuron is bombarded with spike trains from four Poisson generators, which are connected to the AMPA, NMDA, GABA_A, and GABA_B synapses, respectively. Once simulation is completed, membrane potential and threshold, as well as synaptic conductances and intrinsic currents are shown. """ import nest import numpy as np import matplotlib.pyplot as pl nest.ResetKernel() # create neuron nrn = nest.Create('ht_neuron') # get receptor ID information, so we can connect to the # different synapses receptors = nest.GetDefaults('ht_neuron')['receptor_types'] # create multimeter and configure it to record all information # we want at 0.1ms resolution mm = nest.Create('multimeter') nest.SetStatus(mm, {'interval': 0.1, 'record_from': ['V_m', 'Theta', # membrane potential, threshold # synaptic conductances 'g_AMPA', 'g_NMDA', 'g_GABAA', 'g_GABAB', # intrinsic currents 'I_NaP', 'I_KNa', 'I_T', 'I_h']}) # create four Poisson generators g = nest.Create('poisson_generator', 4, params={'rate': 100.}) # we cannot connect Poisson generators to neurons via dynamic synapses directly, # so we put parrot neurons in between p = nest.Create('parrot_neuron', 4) # connect each generator to synapse with given weight # using the adapting ht_synapse; connections pass through parrot neuron for s in zip(g, p, [('AMPA', 500.0), ('NMDA', 50.), ('GABA_A', 250.), ('GABA_B', 100.0)]): nest.Connect([s[0]], [s[1]]) nest.Connect([s[1]], nrn, syn_spec={'weight': s[2][1], 'receptor_type': receptors[s[2][0]], 'model': 'ht_synapse'}) # connect multimeter nest.Connect(mm, nrn) # simulate for n in range(10): nest.Simulate(100) # extract data from multimeter events = nest.GetStatus(mm)[0]['events'] t = events['times']; # time axis pl.clf() pl.subplot(311) pl.plot(t, events['V_m'], 'b', t, events['Theta'], 'g') pl.legend(['V_m', 'Theta']) pl.ylabel('Membrane potential [mV]') pl.title('ht_neuron driven by Poisson procs through AMPA, NMDA, GABA_A, GABA_B') pl.subplot(312) pl.plot(t, events['g_AMPA'], 'b', t, events['g_NMDA'], 'g', t, events['g_GABAA'], 'r', t, events['g_GABAB'], 'm') pl.legend(['AMPA', 'NMDA', 'GABA_A', 'GABA_B']) pl.ylabel('Synaptic conductance [nS]') pl.subplot(313) pl.plot(t, events['I_h'], 'maroon', t, events['I_T'], 'orange', t, events['I_NaP'], 'crimson', t, events['I_KNa'], 'aqua') pl.legend(['I_h', 'I_T', 'I_NaP', 'I_KNa']) pl.ylabel('Intrinsic current [pA]') pl.xlabel('Time [ms]') pl.plot()
simion/django-trampoline
refs/heads/develop
tests/test_paginator.py
2
""" Test paginator for trampoline. """ from elasticsearch_dsl import Index from elasticsearch_dsl import Search from trampoline.paginator import ESSearchPaginator from tests.base import BaseTestCase from tests.models import Token from tests.views import PaginatedContentView class TestPaginator(BaseTestCase): def setUp(self): super(TestPaginator, self).setUp() self.doc_type = Token.get_es_doc_type() self.index = Index(self.doc_type._doc_type.index) self.index.doc_type(self.doc_type) self.index.create() self.refresh() for i in range(3): Token.objects.create(name='token {0}'.format(i)) self.refresh() def tearDown(self): super(TestPaginator, self).tearDown() self.index.delete() def test_paginator(self): search = Search( index=Token.es_doc_type._doc_type.index, doc_type=Token.es_doc_type._doc_type.name ) search = search.sort('name') page_size = 2 paginator = ESSearchPaginator(search, page_size) page = paginator.page(1) self.assertTrue(page.has_other_pages) self.assertEqual(len(page.hits), page_size) self.assertEqual(page.total_count, 3) self.assertEqual(page.hits[0]['name'], 'token 0') self.assertEqual(page.hits[1]['name'], 'token 1') self.assertEqual(page.paginator, paginator) self.assertEqual(page.number, 1) self.assertIsNotNone(page.response) page = paginator.page(2) self.assertFalse(page.has_other_pages) self.assertEqual(len(page.hits), 1) self.assertEqual(page.hits[0]['name'], 'token 2') def test_pagination_mixin(self): class Request(object): GET = {} view = PaginatedContentView() view.request = Request() self.assertEqual(view.page_size, 2) view.request.GET = {} self.assertEqual(view.get_page_number(), 1) view.request.GET = {'page': -2} self.assertEqual(view.get_page_number(), 1) view.request.GET = {'page': 'foobar'} self.assertEqual(view.get_page_number(), 1) view.request.GET = {'page': 5} self.assertEqual(view.get_page_number(), 5) page = view.paginate_search() self.assertIsNotNone(page) self.assertIsNotNone(view.page) self.assertEqual(view.get_context_data()['page'], view.page)
rbaumg/trac
refs/heads/trunk
trac/admin/test.py
1
# -*- coding: utf-8 -*- # # Copyright (C) 2004-2019 Edgewall Software # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://trac.edgewall.org/wiki/TracLicense. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://trac.edgewall.org/log/. import difflib import inspect import io import os import re import sys import unittest from trac.admin.console import AdminCommandManager, TracAdmin, _run STRIP_TRAILING_SPACE = re.compile(r'( +)$', re.MULTILINE) def load_expected_results(file, pattern): """Reads the file, named file, which contains test results separated by the regular expression pattern. The test results are returned as a dictionary. """ expected = {} compiled_pattern = re.compile(pattern) with open(file) as f: test = None for line in f: line = line.rstrip().decode('utf-8') match = compiled_pattern.search(line) if match: test = match.groups()[0] expected[test] = '' else: expected[test] += line + '\n' return expected def _execute(func, strip_trailing_space=True, input=None): _in = sys.stdin _err = sys.stderr _out = sys.stdout try: if input: sys.stdin = io.BytesIO(input.encode('utf-8')) sys.stdin.encoding = 'utf-8' # fake input encoding sys.stderr = sys.stdout = out = io.BytesIO() out.encoding = 'utf-8' # fake output encoding return_val = func() value = out.getvalue() if isinstance(value, str): # reverse what print_listing did value = value.decode('utf-8') if strip_trailing_space: return return_val, STRIP_TRAILING_SPACE.sub('', value) else: return return_val, value finally: sys.stdin = _in sys.stderr = _err sys.stdout = _out def execute_cmd(tracadmin, cmd, strip_trailing_space=True, input=None): def func(): try: return tracadmin.onecmd(cmd) except SystemExit: return None return _execute(func, strip_trailing_space, input) class TracAdminTestCaseBase(unittest.TestCase): expected_results_filename = 'console-tests.txt' @classmethod def setUpClass(cls): cls.environ = os.environ.copy() @classmethod def tearDownClass(cls): for name in set(os.environ) - set(cls.environ): del os.environ[name] os.environ.update(cls.environ) @property def expected_results_file(self): results_file = sys.modules[self.__class__.__module__].__file__ return os.path.join(os.path.dirname(results_file), self.expected_results_filename) @property def expected_results(self): return load_expected_results(self.expected_results_file, '===== (test_[^ ]+) =====') def execute(self, cmd, strip_trailing_space=True, input=None): if hasattr(self, 'admin'): admin = self.admin else: admin = TracAdmin() return execute_cmd(admin, cmd, strip_trailing_space=strip_trailing_space, input=input) def assertExpectedResult(self, output, args=None): test_name = inspect.stack()[1][3] expected_result = self.expected_results[test_name] if args is not None: expected_result %= args def diff(): # Create a useful delta between the output and the expected output output_lines = ['%s\n' % x for x in output.split('\n')] expected_lines = ['%s\n' % x for x in expected_result.split('\n')] return ''.join(difflib.unified_diff(expected_lines, output_lines, 'expected', 'actual')) msg = "%r != %r\n%s" % (expected_result, output, diff()) if '[...]' in expected_result: m = re.match('.*'.join(map(re.escape, expected_result.split('[...]'))) + '\Z', output, re.DOTALL) self.assertTrue(m, msg) else: self.assertEqual(expected_result, output, msg) @classmethod def execute_run(cls, args): def func(): try: return _run(args) except SystemExit: return None return _execute(func) def get_command_help(self, *args): docs = AdminCommandManager(self.env).get_command_help(list(args)) self.assertEqual(1, len(docs)) return docs[0][2] def complete_command(self, *args): return AdminCommandManager(self.env).complete_command(list(args))
simbha/GAE-appswell
refs/heads/master
appspot/framework/vendor/google_api/atom/mock_service.py
277
#!/usr/bin/python # # Copyright (C) 2008 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MockService provides CRUD ops. for mocking calls to AtomPub services. MockService: Exposes the publicly used methods of AtomService to provide a mock interface which can be used in unit tests. """ import atom.service import pickle __author__ = 'api.jscudder (Jeffrey Scudder)' # Recordings contains pairings of HTTP MockRequest objects with MockHttpResponse objects. recordings = [] # If set, the mock service HttpRequest are actually made through this object. real_request_handler = None def ConcealValueWithSha(source): import sha return sha.new(source[:-5]).hexdigest() def DumpRecordings(conceal_func=ConcealValueWithSha): if conceal_func: for recording_pair in recordings: recording_pair[0].ConcealSecrets(conceal_func) return pickle.dumps(recordings) def LoadRecordings(recordings_file_or_string): if isinstance(recordings_file_or_string, str): atom.mock_service.recordings = pickle.loads(recordings_file_or_string) elif hasattr(recordings_file_or_string, 'read'): atom.mock_service.recordings = pickle.loads( recordings_file_or_string.read()) def HttpRequest(service, operation, data, uri, extra_headers=None, url_params=None, escape_params=True, content_type='application/atom+xml'): """Simulates an HTTP call to the server, makes an actual HTTP request if real_request_handler is set. This function operates in two different modes depending on if real_request_handler is set or not. If real_request_handler is not set, HttpRequest will look in this module's recordings list to find a response which matches the parameters in the function call. If real_request_handler is set, this function will call real_request_handler.HttpRequest, add the response to the recordings list, and respond with the actual response. Args: service: atom.AtomService object which contains some of the parameters needed to make the request. The following members are used to construct the HTTP call: server (str), additional_headers (dict), port (int), and ssl (bool). operation: str The HTTP operation to be performed. This is usually one of 'GET', 'POST', 'PUT', or 'DELETE' data: ElementTree, filestream, list of parts, or other object which can be converted to a string. Should be set to None when performing a GET or PUT. If data is a file-like object which can be read, this method will read a chunk of 100K bytes at a time and send them. If the data is a list of parts to be sent, each part will be evaluated and sent. uri: The beginning of the URL to which the request should be sent. Examples: '/', '/base/feeds/snippets', '/m8/feeds/contacts/default/base' extra_headers: dict of strings. HTTP headers which should be sent in the request. These headers are in addition to those stored in service.additional_headers. url_params: dict of strings. Key value pairs to be added to the URL as URL parameters. For example {'foo':'bar', 'test':'param'} will become ?foo=bar&test=param. escape_params: bool default True. If true, the keys and values in url_params will be URL escaped when the form is constructed (Special characters converted to %XX form.) content_type: str The MIME type for the data being sent. Defaults to 'application/atom+xml', this is only used if data is set. """ full_uri = atom.service.BuildUri(uri, url_params, escape_params) (server, port, ssl, uri) = atom.service.ProcessUrl(service, uri) current_request = MockRequest(operation, full_uri, host=server, ssl=ssl, data=data, extra_headers=extra_headers, url_params=url_params, escape_params=escape_params, content_type=content_type) # If the request handler is set, we should actually make the request using # the request handler and record the response to replay later. if real_request_handler: response = real_request_handler.HttpRequest(service, operation, data, uri, extra_headers=extra_headers, url_params=url_params, escape_params=escape_params, content_type=content_type) # TODO: need to copy the HTTP headers from the real response into the # recorded_response. recorded_response = MockHttpResponse(body=response.read(), status=response.status, reason=response.reason) # Insert a tuple which maps the request to the response object returned # when making an HTTP call using the real_request_handler. recordings.append((current_request, recorded_response)) return recorded_response else: # Look through available recordings to see if one matches the current # request. for request_response_pair in recordings: if request_response_pair[0].IsMatch(current_request): return request_response_pair[1] return None class MockRequest(object): """Represents a request made to an AtomPub server. These objects are used to determine if a client request matches a recorded HTTP request to determine what the mock server's response will be. """ def __init__(self, operation, uri, host=None, ssl=False, port=None, data=None, extra_headers=None, url_params=None, escape_params=True, content_type='application/atom+xml'): """Constructor for a MockRequest Args: operation: str One of 'GET', 'POST', 'PUT', or 'DELETE' this is the HTTP operation requested on the resource. uri: str The URL describing the resource to be modified or feed to be retrieved. This should include the protocol (http/https) and the host (aka domain). For example, these are some valud full_uris: 'http://example.com', 'https://www.google.com/accounts/ClientLogin' host: str (optional) The server name which will be placed at the beginning of the URL if the uri parameter does not begin with 'http'. Examples include 'example.com', 'www.google.com', 'www.blogger.com'. ssl: boolean (optional) If true, the request URL will begin with https instead of http. data: ElementTree, filestream, list of parts, or other object which can be converted to a string. (optional) Should be set to None when performing a GET or PUT. If data is a file-like object which can be read, the constructor will read the entire file into memory. If the data is a list of parts to be sent, each part will be evaluated and stored. extra_headers: dict (optional) HTTP headers included in the request. url_params: dict (optional) Key value pairs which should be added to the URL as URL parameters in the request. For example uri='/', url_parameters={'foo':'1','bar':'2'} could become '/?foo=1&bar=2'. escape_params: boolean (optional) Perform URL escaping on the keys and values specified in url_params. Defaults to True. content_type: str (optional) Provides the MIME type of the data being sent. """ self.operation = operation self.uri = _ConstructFullUrlBase(uri, host=host, ssl=ssl) self.data = data self.extra_headers = extra_headers self.url_params = url_params or {} self.escape_params = escape_params self.content_type = content_type def ConcealSecrets(self, conceal_func): """Conceal secret data in this request.""" if self.extra_headers.has_key('Authorization'): self.extra_headers['Authorization'] = conceal_func( self.extra_headers['Authorization']) def IsMatch(self, other_request): """Check to see if the other_request is equivalent to this request. Used to determine if a recording matches an incoming request so that a recorded response should be sent to the client. The matching is not exact, only the operation and URL are examined currently. Args: other_request: MockRequest The request which we want to check this (self) MockRequest against to see if they are equivalent. """ # More accurate matching logic will likely be required. return (self.operation == other_request.operation and self.uri == other_request.uri) def _ConstructFullUrlBase(uri, host=None, ssl=False): """Puts URL components into the form http(s)://full.host.strinf/uri/path Used to construct a roughly canonical URL so that URLs which begin with 'http://example.com/' can be compared to a uri of '/' when the host is set to 'example.com' If the uri contains 'http://host' already, the host and ssl parameters are ignored. Args: uri: str The path component of the URL, examples include '/' host: str (optional) The host name which should prepend the URL. Example: 'example.com' ssl: boolean (optional) If true, the returned URL will begin with https instead of http. Returns: String which has the form http(s)://example.com/uri/string/contents """ if uri.startswith('http'): return uri if ssl: return 'https://%s%s' % (host, uri) else: return 'http://%s%s' % (host, uri) class MockHttpResponse(object): """Returned from MockService crud methods as the server's response.""" def __init__(self, body=None, status=None, reason=None, headers=None): """Construct a mock HTTPResponse and set members. Args: body: str (optional) The HTTP body of the server's response. status: int (optional) reason: str (optional) headers: dict (optional) """ self.body = body self.status = status self.reason = reason self.headers = headers or {} def read(self): return self.body def getheader(self, header_name): return self.headers[header_name]
guncoin/guncoin
refs/heads/master
test/functional/test_framework/test_node.py
3
#!/usr/bin/env python3 # Copyright (c) 2017-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Class for bitcoind node under test""" import contextlib import decimal import errno from enum import Enum import http.client import json import logging import os import re import subprocess import tempfile import time import urllib.parse from .authproxy import JSONRPCException from .util import ( append_config, delete_cookie_file, get_rpc_proxy, rpc_url, wait_until, p2p_port, ) # For Python 3.4 compatibility JSONDecodeError = getattr(json, "JSONDecodeError", ValueError) BITCOIND_PROC_WAIT_TIMEOUT = 60 class FailedToStartError(Exception): """Raised when a node fails to start correctly.""" class ErrorMatch(Enum): FULL_TEXT = 1 FULL_REGEX = 2 PARTIAL_REGEX = 3 class TestNode(): """A class for representing a bitcoind node under test. This class contains: - state about the node (whether it's running, etc) - a Python subprocess.Popen object representing the running process - an RPC connection to the node - one or more P2P connections to the node To make things easier for the test writer, any unrecognised messages will be dispatched to the RPC connection.""" def __init__(self, i, datadir, *, rpchost, timewait, bitcoind, bitcoin_cli, mocktime, coverage_dir, extra_conf=None, extra_args=None, use_cli=False): self.index = i self.datadir = datadir self.stdout_dir = os.path.join(self.datadir, "stdout") self.stderr_dir = os.path.join(self.datadir, "stderr") self.rpchost = rpchost self.rpc_timeout = timewait self.binary = bitcoind self.coverage_dir = coverage_dir if extra_conf != None: append_config(datadir, extra_conf) # Most callers will just need to add extra args to the standard list below. # For those callers that need more flexibility, they can just set the args property directly. # Note that common args are set in the config file (see initialize_datadir) self.extra_args = extra_args self.args = [ self.binary, "-datadir=" + self.datadir, "-logtimemicros", "-debug", "-debugexclude=libevent", "-debugexclude=leveldb", "-mocktime=" + str(mocktime), "-uacomment=testnode%d" % i ] self.cli = TestNodeCLI(bitcoin_cli, self.datadir) self.use_cli = use_cli self.running = False self.process = None self.rpc_connected = False self.rpc = None self.url = None self.log = logging.getLogger('TestFramework.node%d' % i) self.cleanup_on_exit = True # Whether to kill the node when this object goes away self.p2ps = [] def get_deterministic_priv_key(self): """Return a deterministic priv key in base58, that only depends on the node's index""" PRIV_KEYS = [ # adress , privkey ('mjTkW3DjgyZck4KbiRusZsqTgaYTxdSz6z', 'cVpF924EspNh8KjYsfhgY96mmxvT6DgdWiTYMtMjuM74hJaU5psW'), ('msX6jQXvxiNhx3Q62PKeLPrhrqZQdSimTg', 'cUxsWyKyZ9MAQTaAhUQWJmBbSvHMwSmuv59KgxQV7oZQU3PXN3KE'), ('mnonCMyH9TmAsSj3M59DsbH8H63U3RKoFP', 'cTrh7dkEAeJd6b3MRX9bZK8eRmNqVCMH3LSUkE3dSFDyzjU38QxK'), ('mqJupas8Dt2uestQDvV2NH3RU8uZh2dqQR', 'cVuKKa7gbehEQvVq717hYcbE9Dqmq7KEBKqWgWrYBa2CKKrhtRim'), ('msYac7Rvd5ywm6pEmkjyxhbCDKqWsVeYws', 'cQDCBuKcjanpXDpCqacNSjYfxeQj8G6CAtH1Dsk3cXyqLNC4RPuh'), ('n2rnuUnwLgXqf9kk2kjvVm8R5BZK1yxQBi', 'cQakmfPSLSqKHyMFGwAqKHgWUiofJCagVGhiB4KCainaeCSxeyYq'), ('myzuPxRwsf3vvGzEuzPfK9Nf2RfwauwYe6', 'cQMpDLJwA8DBe9NcQbdoSb1BhmFxVjWD5gRyrLZCtpuF9Zi3a9RK'), ('mumwTaMtbxEPUswmLBBN3vM9oGRtGBrys8', 'cSXmRKXVcoouhNNVpcNKFfxsTsToY5pvB9DVsFksF1ENunTzRKsy'), ('mpV7aGShMkJCZgbW7F6iZgrvuPHjZjH9qg', 'cSoXt6tm3pqy43UMabY6eUTmR3eSUYFtB2iNQDGgb3VUnRsQys2k'), ] return PRIV_KEYS[self.index] def _node_msg(self, msg: str) -> str: """Return a modified msg that identifies this node by its index as a debugging aid.""" return "[node %d] %s" % (self.index, msg) def _raise_assertion_error(self, msg: str): """Raise an AssertionError with msg modified to identify this node.""" raise AssertionError(self._node_msg(msg)) def __del__(self): # Ensure that we don't leave any bitcoind processes lying around after # the test ends if self.process and self.cleanup_on_exit: # Should only happen on test failure # Avoid using logger, as that may have already been shutdown when # this destructor is called. print(self._node_msg("Cleaning up leftover process")) self.process.kill() def __getattr__(self, name): """Dispatches any unrecognised messages to the RPC connection or a CLI instance.""" if self.use_cli: return getattr(self.cli, name) else: assert self.rpc_connected and self.rpc is not None, self._node_msg("Error: no RPC connection") return getattr(self.rpc, name) def start(self, extra_args=None, *, stdout=None, stderr=None, **kwargs): """Start the node.""" if extra_args is None: extra_args = self.extra_args # Add a new stdout and stderr file each time bitcoind is started if stderr is None: stderr = tempfile.NamedTemporaryFile(dir=self.stderr_dir, delete=False) if stdout is None: stdout = tempfile.NamedTemporaryFile(dir=self.stdout_dir, delete=False) self.stderr = stderr self.stdout = stdout # Delete any existing cookie file -- if such a file exists (eg due to # unclean shutdown), it will get overwritten anyway by bitcoind, and # potentially interfere with our attempt to authenticate delete_cookie_file(self.datadir) # add environment variable LIBC_FATAL_STDERR_=1 so that libc errors are written to stderr and not the terminal subp_env = dict(os.environ, LIBC_FATAL_STDERR_="1") self.process = subprocess.Popen(self.args + extra_args, env=subp_env, stdout=stdout, stderr=stderr, **kwargs) self.running = True self.log.debug("bitcoind started, waiting for RPC to come up") def wait_for_rpc_connection(self): """Sets up an RPC connection to the bitcoind process. Returns False if unable to connect.""" # Poll at a rate of four times per second poll_per_s = 4 for _ in range(poll_per_s * self.rpc_timeout): if self.process.poll() is not None: raise FailedToStartError(self._node_msg( 'bitcoind exited with status {} during initialization'.format(self.process.returncode))) try: self.rpc = get_rpc_proxy(rpc_url(self.datadir, self.index, self.rpchost), self.index, timeout=self.rpc_timeout, coveragedir=self.coverage_dir) self.rpc.getblockcount() # If the call to getblockcount() succeeds then the RPC connection is up self.rpc_connected = True self.url = self.rpc.url self.log.debug("RPC successfully started") return except IOError as e: if e.errno != errno.ECONNREFUSED: # Port not yet open? raise # unknown IO error except JSONRPCException as e: # Initialization phase if e.error['code'] != -28: # RPC in warmup? raise # unknown JSON RPC exception except ValueError as e: # cookie file not found and no rpcuser or rpcassword. bitcoind still starting if "No RPC credentials" not in str(e): raise time.sleep(1.0 / poll_per_s) self._raise_assertion_error("Unable to connect to bitcoind") def get_wallet_rpc(self, wallet_name): if self.use_cli: return self.cli("-rpcwallet={}".format(wallet_name)) else: assert self.rpc_connected and self.rpc, self._node_msg("RPC not connected") wallet_path = "wallet/{}".format(urllib.parse.quote(wallet_name)) return self.rpc / wallet_path def stop_node(self, expected_stderr=''): """Stop the node.""" if not self.running: return self.log.debug("Stopping node") try: self.stop() except http.client.CannotSendRequest: self.log.exception("Unable to stop node.") # Check that stderr is as expected self.stderr.seek(0) stderr = self.stderr.read().decode('utf-8').strip() if stderr != expected_stderr: raise AssertionError("Unexpected stderr {} != {}".format(stderr, expected_stderr)) self.stdout.close() self.stderr.close() del self.p2ps[:] def is_node_stopped(self): """Checks whether the node has stopped. Returns True if the node has stopped. False otherwise. This method is responsible for freeing resources (self.process).""" if not self.running: return True return_code = self.process.poll() if return_code is None: return False # process has stopped. Assert that it didn't return an error code. assert return_code == 0, self._node_msg( "Node returned non-zero exit code (%d) when stopping" % return_code) self.running = False self.process = None self.rpc_connected = False self.rpc = None self.log.debug("Node stopped") return True def wait_until_stopped(self, timeout=BITCOIND_PROC_WAIT_TIMEOUT): wait_until(self.is_node_stopped, timeout=timeout) @contextlib.contextmanager def assert_debug_log(self, expected_msgs): debug_log = os.path.join(self.datadir, 'regtest', 'debug.log') with open(debug_log, encoding='utf-8') as dl: dl.seek(0, 2) prev_size = dl.tell() try: yield finally: with open(debug_log, encoding='utf-8') as dl: dl.seek(prev_size) log = dl.read() print_log = " - " + "\n - ".join(log.splitlines()) for expected_msg in expected_msgs: if re.search(re.escape(expected_msg), log, flags=re.MULTILINE) is None: self._raise_assertion_error('Expected message "{}" does not partially match log:\n\n{}\n\n'.format(expected_msg, print_log)) def assert_start_raises_init_error(self, extra_args=None, expected_msg=None, match=ErrorMatch.FULL_TEXT, *args, **kwargs): """Attempt to start the node and expect it to raise an error. extra_args: extra arguments to pass through to bitcoind expected_msg: regex that stderr should match when bitcoind fails Will throw if bitcoind starts without an error. Will throw if an expected_msg is provided and it does not match bitcoind's stdout.""" with tempfile.NamedTemporaryFile(dir=self.stderr_dir, delete=False) as log_stderr, \ tempfile.NamedTemporaryFile(dir=self.stdout_dir, delete=False) as log_stdout: try: self.start(extra_args, stdout=log_stdout, stderr=log_stderr, *args, **kwargs) self.wait_for_rpc_connection() self.stop_node() self.wait_until_stopped() except FailedToStartError as e: self.log.debug('bitcoind failed to start: %s', e) self.running = False self.process = None # Check stderr for expected message if expected_msg is not None: log_stderr.seek(0) stderr = log_stderr.read().decode('utf-8').strip() if match == ErrorMatch.PARTIAL_REGEX: if re.search(expected_msg, stderr, flags=re.MULTILINE) is None: self._raise_assertion_error( 'Expected message "{}" does not partially match stderr:\n"{}"'.format(expected_msg, stderr)) elif match == ErrorMatch.FULL_REGEX: if re.fullmatch(expected_msg, stderr) is None: self._raise_assertion_error( 'Expected message "{}" does not fully match stderr:\n"{}"'.format(expected_msg, stderr)) elif match == ErrorMatch.FULL_TEXT: if expected_msg != stderr: self._raise_assertion_error( 'Expected message "{}" does not fully match stderr:\n"{}"'.format(expected_msg, stderr)) else: if expected_msg is None: assert_msg = "bitcoind should have exited with an error" else: assert_msg = "bitcoind should have exited with expected error " + expected_msg self._raise_assertion_error(assert_msg) def node_encrypt_wallet(self, passphrase): """"Encrypts the wallet. This causes bitcoind to shutdown, so this method takes care of cleaning up resources.""" self.encryptwallet(passphrase) self.wait_until_stopped() def add_p2p_connection(self, p2p_conn, *, wait_for_verack=True, **kwargs): """Add a p2p connection to the node. This method adds the p2p connection to the self.p2ps list and also returns the connection to the caller.""" if 'dstport' not in kwargs: kwargs['dstport'] = p2p_port(self.index) if 'dstaddr' not in kwargs: kwargs['dstaddr'] = '127.0.0.1' p2p_conn.peer_connect(**kwargs)() self.p2ps.append(p2p_conn) if wait_for_verack: p2p_conn.wait_for_verack() return p2p_conn @property def p2p(self): """Return the first p2p connection Convenience property - most tests only use a single p2p connection to each node, so this saves having to write node.p2ps[0] many times.""" assert self.p2ps, self._node_msg("No p2p connection") return self.p2ps[0] def disconnect_p2ps(self): """Close all p2p connections to the node.""" for p in self.p2ps: p.peer_disconnect() del self.p2ps[:] class TestNodeCLIAttr: def __init__(self, cli, command): self.cli = cli self.command = command def __call__(self, *args, **kwargs): return self.cli.send_cli(self.command, *args, **kwargs) def get_request(self, *args, **kwargs): return lambda: self(*args, **kwargs) class TestNodeCLI(): """Interface to bitcoin-cli for an individual node""" def __init__(self, binary, datadir): self.options = [] self.binary = binary self.datadir = datadir self.input = None self.log = logging.getLogger('TestFramework.bitcoincli') def __call__(self, *options, input=None): # TestNodeCLI is callable with bitcoin-cli command-line options cli = TestNodeCLI(self.binary, self.datadir) cli.options = [str(o) for o in options] cli.input = input return cli def __getattr__(self, command): return TestNodeCLIAttr(self, command) def batch(self, requests): results = [] for request in requests: try: results.append(dict(result=request())) except JSONRPCException as e: results.append(dict(error=e)) return results def send_cli(self, command=None, *args, **kwargs): """Run bitcoin-cli command. Deserializes returned string as python object.""" pos_args = [str(arg).lower() if type(arg) is bool else str(arg) for arg in args] named_args = [str(key) + "=" + str(value) for (key, value) in kwargs.items()] assert not (pos_args and named_args), "Cannot use positional arguments and named arguments in the same bitcoin-cli call" p_args = [self.binary, "-datadir=" + self.datadir] + self.options if named_args: p_args += ["-named"] if command is not None: p_args += [command] p_args += pos_args + named_args self.log.debug("Running bitcoin-cli command: %s" % command) process = subprocess.Popen(p_args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) cli_stdout, cli_stderr = process.communicate(input=self.input) returncode = process.poll() if returncode: match = re.match(r'error code: ([-0-9]+)\nerror message:\n(.*)', cli_stderr) if match: code, message = match.groups() raise JSONRPCException(dict(code=int(code), message=message)) # Ignore cli_stdout, raise with cli_stderr raise subprocess.CalledProcessError(returncode, self.binary, output=cli_stderr) try: return json.loads(cli_stdout, parse_float=decimal.Decimal) except JSONDecodeError: return cli_stdout.rstrip("\n")
Eseoghene/bite-project
refs/heads/master
deps/gdata-python-client/samples/apps/adminsettings_example.py
41
#!/usr/bin/python # # Copyright 2009 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains a Sample for Google Apps Admin Settings. AdminSettingsSample: shows everything you ever wanted to know about your Google Apps Domain but were afraid to ask. """ __author__ = 'jlee@pbu.edu' import getopt import getpass import sys import time import gdata.apps.service import gdata.apps.adminsettings.service class AdminSettingsSample(object): """AdminSettingsSample object demos Admin Settings API.""" def __init__(self, email, password, domain): """Constructor for the AdminSettingsSample object. Takes an email and password corresponding to a google apps admin account to demon the Admin Settings API. Args: email: [string] The e-mail address of the account to use for the sample. password: [string] The password corresponding to the account specified by the email parameter. domain: [string] The domain for the Profiles feed """ self.gd_client = gdata.apps.adminsettings.service.AdminSettingsService() self.gd_client.domain = domain self.gd_client.email = email self.gd_client.password = password self.gd_client.source = 'GoogleInc-AdminSettingsPythonSample-1' self.gd_client.ProgrammaticLogin() def Run(self): #pause 1 sec inbetween calls to prevent quota warning print 'Google Apps Domain: ', self.gd_client.domain time.sleep(1) print 'Default Language: ', self.gd_client.GetDefaultLanguage() time.sleep(1) print 'Organization Name: ', self.gd_client.GetOrganizationName() time.sleep(1) print 'Maximum Users: ', self.gd_client.GetMaximumNumberOfUsers() time.sleep(1) print 'Current Users: ', self.gd_client.GetCurrentNumberOfUsers() time.sleep(1) print 'Domain is Verified: ',self.gd_client.IsDomainVerified() time.sleep(1) print 'Support PIN: ',self.gd_client.GetSupportPIN() time.sleep(1) print 'Domain Edition: ', self.gd_client.GetEdition() time.sleep(1) print 'Customer PIN: ', self.gd_client.GetCustomerPIN() time.sleep(1) print 'Domain Creation Time: ', self.gd_client.GetCreationTime() time.sleep(1) print 'Domain Country Code: ', self.gd_client.GetCountryCode() time.sleep(1) print 'Admin Secondary Email: ', self.gd_client.GetAdminSecondaryEmail() time.sleep(1) cnameverificationstatus = self.gd_client.GetCNAMEVerificationStatus() print 'CNAME Verification Record Name: ', cnameverificationstatus['recordName'] print 'CNAME Verification Verified: ', cnameverificationstatus['verified'] print 'CNAME Verification Method: ', cnameverificationstatus['verificationMethod'] time.sleep(1) mxverificationstatus = self.gd_client.GetMXVerificationStatus() print 'MX Verification Verified: ', mxverificationstatus['verified'] print 'MX Verification Method: ', mxverificationstatus['verificationMethod'] time.sleep(1) ssosettings = self.gd_client.GetSSOSettings() print 'SSO Enabled: ', ssosettings['enableSSO'] print 'SSO Signon Page: ', ssosettings['samlSignonUri'] print 'SSO Logout Page: ', ssosettings['samlLogoutUri'] print 'SSO Password Page: ', ssosettings['changePasswordUri'] print 'SSO Whitelist IPs: ', ssosettings['ssoWhitelist'] print 'SSO Use Domain Specific Issuer: ', ssosettings['useDomainSpecificIssuer'] time.sleep(1) ssokey = self.gd_client.GetSSOKey() print 'SSO Key Modulus: ', ssokey['modulus'] print 'SSO Key Exponent: ', ssokey['exponent'] print 'SSO Key Algorithm: ', ssokey['algorithm'] print 'SSO Key Format: ', ssokey['format'] print 'User Migration Enabled: ', self.gd_client.IsUserMigrationEnabled() time.sleep(1) outboundgatewaysettings = self.gd_client.GetOutboundGatewaySettings() print 'Outbound Gateway Smart Host: ', outboundgatewaysettings['smartHost'] print 'Outbound Gateway Mode: ', outboundgatewaysettings['smtpMode'] def main(): """Demonstrates use of the Admin Settings API using the AdminSettingsSample object.""" # Parse command line options try: opts, args = getopt.getopt(sys.argv[1:], '', ['user=', 'pw=', 'domain=']) except getopt.error, msg: print 'python adminsettings_example.py --user [username] --pw [password]' print ' --domain [domain]' sys.exit(2) user = '' pw = '' domain = '' # Process options for option, arg in opts: if option == '--user': user = arg elif option == '--pw': pw = arg elif option == '--domain': domain = arg while not domain: print 'NOTE: Please run these tests only with a test account.' domain = raw_input('Please enter your apps domain: ') while not user: user = raw_input('Please enter a administrator account: ')+'@'+domain while not pw: pw = getpass.getpass('Please enter password: ') if not pw: print 'Password cannot be blank.' try: sample = AdminSettingsSample(user, pw, domain) except gdata.service.BadAuthentication: print 'Invalid user credentials given.' return sample.Run() if __name__ == '__main__': main()
yaroslavvb/tensorflow
refs/heads/master
tensorflow/python/kernel_tests/spacetodepth_op_test.py
90
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional tests for SpacetoDepth op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import math_ops from tensorflow.python.platform import test class SpaceToDepthTest(test.TestCase): def _testOne(self, inputs, block_size, outputs): with self.test_session(use_gpu=True): x_tf = array_ops.space_to_depth(math_ops.to_float(inputs), block_size) self.assertAllEqual(x_tf.eval(), outputs) def testBasic(self): x_np = [[[[1], [2]], [[3], [4]]]] block_size = 2 x_out = [[[[1, 2, 3, 4]]]] self._testOne(x_np, block_size, x_out) # Tests for larger input dimensions. To make sure elements are # correctly ordered spatially. def testLargerInput2x2(self): x_np = [[[[1], [2], [5], [6]], [[3], [4], [7], [8]], [[9], [10], [13], [14]], [[11], [12], [15], [16]]]] block_size = 2 x_out = [[[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12], [13, 14, 15, 16]]]] self._testOne(x_np, block_size, x_out) # Tests for larger input dimensions. To make sure elements are # correctly ordered in depth. Here, larger block size. def testLargerInput4x4(self): x_np = [[[[1], [2], [5], [6]], [[3], [4], [7], [8]], [[9], [10], [13], [14]], [[11], [12], [15], [16]]]] block_size = 4 x_out = [[[[1, 2, 5, 6, 3, 4, 7, 8, 9, 10, 13, 14, 11, 12, 15, 16]]]] self._testOne(x_np, block_size, x_out) # Tests for larger input depths. # To make sure elements are properly interleaved in depth. def testDepthInterleaved(self): x_np = [[[[1, 10], [2, 20]], [[3, 30], [4, 40]]]] block_size = 2 x_out = [[[[1, 10, 2, 20, 3, 30, 4, 40]]]] self._testOne(x_np, block_size, x_out) # Tests for larger input depths. Here an odd depth. # To make sure elements are properly interleaved in depth. def testDepthInterleavedDepth3(self): x_np = [[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]] block_size = 2 x_out = [[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]] self._testOne(x_np, block_size, x_out) # Tests for larger input dimensions AND for larger input depths. # To make sure elements are properly interleaved in depth and ordered # spatially. def testDepthInterleavedLarge(self): x_np = [[[[1, 10], [2, 20], [5, 50], [6, 60]], [[3, 30], [4, 40], [7, 70], [8, 80]], [[9, 90], [10, 100], [13, 130], [14, 140]], [[11, 110], [12, 120], [15, 150], [16, 160]]]] block_size = 2 x_out = [[[[1, 10, 2, 20, 3, 30, 4, 40], [5, 50, 6, 60, 7, 70, 8, 80]], [[9, 90, 10, 100, 11, 110, 12, 120], [13, 130, 14, 140, 15, 150, 16, 160]]]] self._testOne(x_np, block_size, x_out) def testBlockSize2Batch10(self): block_size = 2 def batch_input_elt(i): return [[[1 * i], [2 * i], [5 * i], [6 * i]], [[3 * i], [4 * i], [7 * i], [8 * i]], [[9 * i], [10 * i], [13 * i], [14 * i]], [[11 * i], [12 * i], [15 * i], [16 * i]]] def batch_output_elt(i): return [[[1 * i, 2 * i, 3 * i, 4 * i], [5 * i, 6 * i, 7 * i, 8 * i]], [[9 * i, 10 * i, 11 * i, 12 * i], [13 * i, 14 * i, 15 * i, 16 * i]]] batch_size = 10 x_np = [batch_input_elt(i) for i in range(batch_size)] x_out = [batch_output_elt(i) for i in range(batch_size)] self._testOne(x_np, block_size, x_out) # Tests for different width and height. def testNonSquare(self): x_np = [[[[1, 10], [2, 20]], [[3, 30], [4, 40]], [[5, 50], [6, 60]], [[7, 70], [8, 80]], [[9, 90], [10, 100]], [[11, 110], [12, 120]]]] block_size = 2 x_out = [[[[1, 10, 2, 20, 3, 30, 4, 40]], [[5, 50, 6, 60, 7, 70, 8, 80]], [[9, 90, 10, 100, 11, 110, 12, 120]]]] self._testOne(x_np, block_size, x_out) # Error handling: def testInputWrongDimMissingDepth(self): # The input is missing the last dimension ("depth") x_np = [[[1, 2], [3, 4]]] block_size = 2 with self.assertRaises(ValueError): out_tf = array_ops.space_to_depth(x_np, block_size) out_tf.eval() def testInputWrongDimMissingBatch(self): # The input is missing the first dimension ("batch") x_np = [[[1], [2]], [[3], [4]]] block_size = 2 with self.assertRaises(ValueError): _ = array_ops.space_to_depth(x_np, block_size) def testBlockSize0(self): # The block size is 0. x_np = [[[[1], [2]], [[3], [4]]]] block_size = 0 with self.assertRaises(ValueError): out_tf = array_ops.space_to_depth(x_np, block_size) out_tf.eval() def testBlockSizeOne(self): # The block size is 1. The block size needs to be > 1. x_np = [[[[1], [2]], [[3], [4]]]] block_size = 1 with self.assertRaises(ValueError): out_tf = array_ops.space_to_depth(x_np, block_size) out_tf.eval() def testBlockSizeLarger(self): # The block size is too large for this input. x_np = [[[[1], [2]], [[3], [4]]]] block_size = 10 with self.assertRaises(ValueError): out_tf = array_ops.space_to_depth(x_np, block_size) out_tf.eval() def testBlockSizeNotDivisibleWidth(self): # The block size divides width but not height. x_np = [[[[1], [2], [3]], [[3], [4], [7]]]] block_size = 3 with self.assertRaises(ValueError): _ = array_ops.space_to_depth(x_np, block_size) def testBlockSizeNotDivisibleHeight(self): # The block size divides height but not width. x_np = [[[[1], [2]], [[3], [4]], [[5], [6]]]] block_size = 3 with self.assertRaises(ValueError): _ = array_ops.space_to_depth(x_np, block_size) def testBlockSizeNotDivisibleBoth(self): # The block size does not divide neither width or height. x_np = [[[[1], [2]], [[3], [4]]]] block_size = 3 with self.assertRaises(ValueError): _ = array_ops.space_to_depth(x_np, block_size) def testUnknownShape(self): t = array_ops.space_to_depth( array_ops.placeholder(dtypes.float32), block_size=4) self.assertEqual(4, t.get_shape().ndims) class SpaceToDepthGradientTest(test.TestCase): # Check the gradients. def _checkGrad(self, x, block_size): assert 4 == x.ndim with self.test_session(use_gpu=True): tf_x = ops.convert_to_tensor(x) tf_y = array_ops.space_to_depth(tf_x, block_size) epsilon = 1e-2 ((x_jacob_t, x_jacob_n)) = gradient_checker.compute_gradient( tf_x, x.shape, tf_y, tf_y.get_shape().as_list(), x_init_value=x, delta=epsilon) self.assertAllClose(x_jacob_t, x_jacob_n, rtol=1e-2, atol=epsilon) # Tests a gradient for space_to_depth of x which is a four dimensional # tensor of shape [b, h * block_size, w * block_size, d]. def _compare(self, b, h, w, d, block_size): block_size_sq = block_size * block_size x = np.random.normal(0, 1, b * h * w * d * block_size_sq).astype(np.float32).reshape( [b, h * block_size, w * block_size, d]) self._checkGrad(x, block_size) # Don't use very large numbers as dimensions here as the result is tensor # with cartesian product of the dimensions. def testSmall(self): block_size = 2 self._compare(1, 2, 3, 5, block_size) def testSmall2(self): block_size = 2 self._compare(2, 4, 3, 2, block_size) if __name__ == "__main__": test.main()
AsimmHirani/ISpyPi
refs/heads/master
tensorflow/contrib/tensorflow-master/tensorflow/python/util/future_api_test.py
173
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for future_api.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=unused-import from tensorflow.python.util import future_api # pylint: enable=unused-import class ExampleParserConfigurationTest(tf.test.TestCase): def testBasic(self): self.assertFalse(hasattr(tf, 'arg_max')) self.assertTrue(hasattr(tf, 'argmax')) if __name__ == '__main__': tf.test.main()
masayukig/tempest
refs/heads/master
tempest/api/compute/images/test_list_image_filters.py
2
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import time import six import testtools from tempest.api.compute import base from tempest.common import image as common_image from tempest.common import waiters from tempest import config from tempest.lib.common.utils import data_utils from tempest.lib.common.utils import test_utils from tempest.lib import decorators from tempest.lib import exceptions CONF = config.CONF class ListImageFiltersTestJSON(base.BaseV2ComputeTest): max_microversion = '2.35' @classmethod def skip_checks(cls): super(ListImageFiltersTestJSON, cls).skip_checks() if not CONF.service_available.glance: skip_msg = ("%s skipped as glance is not available" % cls.__name__) raise cls.skipException(skip_msg) @classmethod def setup_clients(cls): super(ListImageFiltersTestJSON, cls).setup_clients() cls.client = cls.compute_images_client # Check if glance v1 is available to determine which client to use. We # prefer glance v1 for the compute API tests since the compute image # API proxy was written for glance v1. if CONF.image_feature_enabled.api_v1: cls.glance_client = cls.os_primary.image_client elif CONF.image_feature_enabled.api_v2: cls.glance_client = cls.os_primary.image_client_v2 else: raise exceptions.InvalidConfiguration( 'Either api_v1 or api_v2 must be True in ' '[image-feature-enabled].') @classmethod def resource_setup(cls): super(ListImageFiltersTestJSON, cls).resource_setup() def _create_image(): params = { 'name': data_utils.rand_name(cls.__name__ + '-image'), 'container_format': 'bare', 'disk_format': 'raw' } if CONF.image_feature_enabled.api_v1: params.update({'is_public': False}) params = {'headers': common_image.image_meta_to_headers(**params)} else: params.update({'visibility': 'private'}) body = cls.glance_client.create_image(**params) body = body['image'] if 'image' in body else body image_id = body['id'] cls.addClassResourceCleanup( test_utils.call_and_ignore_notfound_exc, cls.compute_images_client.delete_image, image_id) # Wait 1 second between creation and upload to ensure a delta # between created_at and updated_at. time.sleep(1) image_file = six.BytesIO((b'*' * 1024)) if CONF.image_feature_enabled.api_v1: cls.glance_client.update_image(image_id, data=image_file) else: cls.glance_client.store_image_file(image_id, data=image_file) waiters.wait_for_image_status(cls.client, image_id, 'ACTIVE') body = cls.client.show_image(image_id)['image'] return body # Create non-snapshot images via glance cls.image1 = _create_image() cls.image1_id = cls.image1['id'] cls.image2 = _create_image() cls.image2_id = cls.image2['id'] cls.image3 = _create_image() cls.image3_id = cls.image3['id'] if not CONF.compute_feature_enabled.snapshot: return # Create instances and snapshots via nova cls.server1 = cls.create_test_server() cls.server2 = cls.create_test_server(wait_until='ACTIVE') # NOTE(sdague) this is faster than doing the sync wait_util on both waiters.wait_for_server_status(cls.servers_client, cls.server1['id'], 'ACTIVE') # Create images to be used in the filter tests cls.snapshot1 = cls.create_image_from_server( cls.server1['id'], wait_until='ACTIVE') cls.snapshot1_id = cls.snapshot1['id'] # Servers have a hidden property for when they are being imaged # Performing back-to-back create image calls on a single # server will sometimes cause failures cls.snapshot3 = cls.create_image_from_server( cls.server2['id'], wait_until='ACTIVE') cls.snapshot3_id = cls.snapshot3['id'] # Wait for the server to be active after the image upload cls.snapshot2 = cls.create_image_from_server( cls.server1['id'], wait_until='ACTIVE') cls.snapshot2_id = cls.snapshot2['id'] @decorators.idempotent_id('a3f5b513-aeb3-42a9-b18e-f091ef73254d') def test_list_images_filter_by_status(self): # The list of images should contain only images with the # provided status params = {'status': 'ACTIVE'} images = self.client.list_images(**params)['images'] self.assertNotEmpty([i for i in images if i['id'] == self.image1_id]) self.assertNotEmpty([i for i in images if i['id'] == self.image2_id]) self.assertNotEmpty([i for i in images if i['id'] == self.image3_id]) @decorators.idempotent_id('33163b73-79f5-4d07-a7ea-9213bcc468ff') def test_list_images_filter_by_name(self): # List of all images should contain the expected images filtered # by name params = {'name': self.image1['name']} images = self.client.list_images(**params)['images'] self.assertNotEmpty([i for i in images if i['id'] == self.image1_id]) self.assertEmpty([i for i in images if i['id'] == self.image2_id]) self.assertEmpty([i for i in images if i['id'] == self.image3_id]) @decorators.idempotent_id('9f238683-c763-45aa-b848-232ec3ce3105') @testtools.skipUnless(CONF.compute_feature_enabled.snapshot, 'Snapshotting is not available.') def test_list_images_filter_by_server_id(self): # The images should contain images filtered by server id params = {'server': self.server1['id']} images = self.client.list_images(**params)['images'] self.assertNotEmpty([i for i in images if i['id'] == self.snapshot1_id], "Failed to find image %s in images. " "Got images %s" % (self.image1_id, images)) self.assertNotEmpty([i for i in images if i['id'] == self.snapshot2_id]) self.assertEmpty([i for i in images if i['id'] == self.snapshot3_id]) @decorators.idempotent_id('05a377b8-28cf-4734-a1e6-2ab5c38bf606') @testtools.skipUnless(CONF.compute_feature_enabled.snapshot, 'Snapshotting is not available.') def test_list_images_filter_by_server_ref(self): # The list of servers should be filtered by server ref server_links = self.server2['links'] # Try all server link types for link in server_links: params = {'server': link['href']} images = self.client.list_images(**params)['images'] self.assertEmpty([i for i in images if i['id'] == self.snapshot1_id]) self.assertEmpty([i for i in images if i['id'] == self.snapshot2_id]) self.assertNotEmpty([i for i in images if i['id'] == self.snapshot3_id]) @decorators.idempotent_id('e3356918-4d3e-4756-81d5-abc4524ba29f') @testtools.skipUnless(CONF.compute_feature_enabled.snapshot, 'Snapshotting is not available.') def test_list_images_filter_by_type(self): # The list of servers should be filtered by image type params = {'type': 'snapshot'} images = self.client.list_images(**params)['images'] self.assertNotEmpty([i for i in images if i['id'] == self.snapshot1_id]) self.assertNotEmpty([i for i in images if i['id'] == self.snapshot2_id]) self.assertNotEmpty([i for i in images if i['id'] == self.snapshot3_id]) self.assertEmpty([i for i in images if i['id'] == self.image_ref]) @decorators.idempotent_id('3a484ca9-67ba-451e-b494-7fcf28d32d62') def test_list_images_limit_results(self): # Verify only the expected number of results are returned params = {'limit': '1'} images = self.client.list_images(**params)['images'] self.assertEqual(1, len([x for x in images if 'id' in x])) @decorators.idempotent_id('18bac3ae-da27-436c-92a9-b22474d13aab') def test_list_images_filter_by_changes_since(self): # Verify only updated images are returned in the detailed list # Becoming ACTIVE will modify the updated time # Filter by the image's created time params = {'changes-since': self.image3['created']} images = self.client.list_images(**params)['images'] found = [i for i in images if i['id'] == self.image3_id] self.assertNotEmpty(found) @decorators.idempotent_id('9b0ea018-6185-4f71-948a-a123a107988e') def test_list_images_with_detail_filter_by_status(self): # Detailed list of all images should only contain images # with the provided status params = {'status': 'ACTIVE'} images = self.client.list_images(detail=True, **params)['images'] self.assertNotEmpty([i for i in images if i['id'] == self.image1_id]) self.assertNotEmpty([i for i in images if i['id'] == self.image2_id]) self.assertNotEmpty([i for i in images if i['id'] == self.image3_id]) @decorators.idempotent_id('644ea267-9bd9-4f3b-af9f-dffa02396a17') def test_list_images_with_detail_filter_by_name(self): # Detailed list of all images should contain the expected # images filtered by name params = {'name': self.image1['name']} images = self.client.list_images(detail=True, **params)['images'] self.assertNotEmpty([i for i in images if i['id'] == self.image1_id]) self.assertEmpty([i for i in images if i['id'] == self.image2_id]) self.assertEmpty([i for i in images if i['id'] == self.image3_id]) @decorators.idempotent_id('ba2fa9a9-b672-47cc-b354-3b4c0600e2cb') def test_list_images_with_detail_limit_results(self): # Verify only the expected number of results (with full details) # are returned params = {'limit': '1'} images = self.client.list_images(detail=True, **params)['images'] self.assertEqual(1, len(images)) @decorators.idempotent_id('8c78f822-203b-4bf6-8bba-56ebd551cf84') @testtools.skipUnless(CONF.compute_feature_enabled.snapshot, 'Snapshotting is not available.') def test_list_images_with_detail_filter_by_server_ref(self): # Detailed list of servers should be filtered by server ref server_links = self.server2['links'] # Try all server link types for link in server_links: params = {'server': link['href']} images = self.client.list_images(detail=True, **params)['images'] self.assertEmpty([i for i in images if i['id'] == self.snapshot1_id]) self.assertEmpty([i for i in images if i['id'] == self.snapshot2_id]) self.assertNotEmpty([i for i in images if i['id'] == self.snapshot3_id]) @decorators.idempotent_id('888c0cc0-7223-43c5-9db0-b125fd0a393b') @testtools.skipUnless(CONF.compute_feature_enabled.snapshot, 'Snapshotting is not available.') def test_list_images_with_detail_filter_by_type(self): # The detailed list of servers should be filtered by image type params = {'type': 'snapshot'} images = self.client.list_images(detail=True, **params)['images'] self.client.show_image(self.image_ref) self.assertNotEmpty([i for i in images if i['id'] == self.snapshot1_id]) self.assertNotEmpty([i for i in images if i['id'] == self.snapshot2_id]) self.assertNotEmpty([i for i in images if i['id'] == self.snapshot3_id]) self.assertEmpty([i for i in images if i['id'] == self.image_ref]) @decorators.idempotent_id('7d439e18-ac2e-4827-b049-7e18004712c4') def test_list_images_with_detail_filter_by_changes_since(self): # Verify an update image is returned # Becoming ACTIVE will modify the updated time # Filter by the image's created time params = {'changes-since': self.image1['created']} images = self.client.list_images(detail=True, **params)['images'] self.assertNotEmpty([i for i in images if i['id'] == self.image1_id])
GarethNelson/distcc
refs/heads/master
test/comfychair.py
24
#! /usr/bin/env python # Copyright (C) 2002, 2003 by Martin Pool <mbp@samba.org> # Copyright (C) 2003 by Tim Potter <tpot@samba.org> # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, # USA. """comfychair: a Python-based instrument of software torture. Copyright (C) 2002, 2003 by Martin Pool <mbp@samba.org> Copyright (C) 2003 by Tim Potter <tpot@samba.org> This is a test framework designed for testing programs written in Python, or (through a fork/exec interface) any other language. For more information, see the file README.comfychair. To run a test suite based on ComfyChair, just run it as a program. """ import sys, os, re, shutil class TestCase: """A base class for tests. This class defines required functions which can optionally be overridden by subclasses. It also provides some utility functions for""" def __init__(self): self.test_log = "" self.background_pids = [] self._cleanups = [] self._enter_rundir() self._save_environment() self.add_cleanup(self.teardown) # Prevent localizations interfering with attempts to parse # program output and error messages. LC_ALL has higher # priority (see locale(7)), but set both just in case. os.environ['LANG'] = 'C' os.environ['LC_ALL'] = 'C' # -------------------------------------------------- # Save and restore directory def _enter_rundir(self): self.basedir = os.getcwd() self.add_cleanup(self._restore_directory) self.rundir = os.path.join(self.basedir, '_testtmp', self.__class__.__name__) self.tmpdir = os.path.join(self.rundir, 'tmp') shutil.rmtree(self.rundir, ignore_errors=1) os.makedirs(self.tmpdir) os.chdir(self.rundir) def _restore_directory(self): os.chdir(self.basedir) # -------------------------------------------------- # Save and restore environment def _save_environment(self): self._saved_environ = os.environ.copy() self.add_cleanup(self._restore_environment) def _restore_environment(self): os.environ.clear() os.environ.update(self._saved_environ) def setup(self): """Set up test fixture.""" pass def teardown(self): """Tear down test fixture.""" pass def runtest(self): """Run the test.""" pass def add_cleanup(self, c): """Queue a cleanup to be run when the test is complete.""" self._cleanups.append(c) def apply_cleanups(self, debugger): """Apply cleanup functions and return error code. Returns: 0 on success; 2 if a KeyboardInterrupt occurs; 1 if any other exception occurs. """ while self._cleanups: try: apply(self._cleanups.pop()) except KeyboardInterrupt: print "interrupted during cleanups" _report_error(self, debugger) return 2 except: print "error during cleanups" _report_error(self, debugger) return 1 return 0 def fail(self, reason = ""): """Say the test failed.""" raise AssertionError(reason) ############################################################# # Requisition methods def require(self, predicate, message): """Check a predicate for running this test. If the predicate value is not true, the test is skipped with a message explaining why.""" if not predicate: raise NotRunError, message def require_root(self): """Skip this test unless run by root.""" self.require(os.getuid() == 0, "must be root to run this test") ############################################################# # Assertion methods def assert_(self, expr, reason = ""): if not expr: raise AssertionError(reason) def assert_equal(self, a, b): if not a == b: raise AssertionError("assertEquals failed: %s" % `(a, b)`) def assert_notequal(self, a, b): if a == b: raise AssertionError("assertNotEqual failed: %s" % `(a, b)`) def assert_re_match(self, pattern, s): """Assert that a string matches a particular pattern Inputs: pattern string: regular expression s string: to be matched Raises: AssertionError if not matched """ if not re.match(pattern, s): raise AssertionError("string does not match regexp\n" " string: %s\n" " re: %s" % (`s`, `pattern`)) def assert_re_search(self, pattern, s): """Assert that a string *contains* a particular pattern Inputs: pattern string: regular expression s string: to be searched Raises: AssertionError if not matched """ if not re.search(pattern, s): raise AssertionError("string does not contain regexp\n" " string: %s\n" " re: %s" % (`s`, `pattern`)) def assert_no_file(self, filename): assert not os.path.exists(filename), ("file exists but should not: %s" % filename) ############################################################# # Methods for running programs def runcmd_background(self, cmd): self.test_log = self.test_log + "Run in background:\n" + `cmd` + "\n" pid = os.fork() if pid == 0: # child try: os.execvp("/bin/sh", ["/bin/sh", "-c", cmd]) finally: os._exit(127) self.test_log = self.test_log + "pid: %d\n" % pid return pid def runcmd(self, cmd, expectedResult = 0): """Run a command, fail if the command returns an unexpected exit code. Return the output produced.""" rc, output, stderr = self.runcmd_unchecked(cmd) if rc != expectedResult: raise AssertionError("""command returned %d; expected %s: \"%s\" stdout: %s stderr: %s""" % (rc, expectedResult, cmd, output, stderr)) return output, stderr def run_captured(self, cmd): """Run a command, capturing stdout and stderr. Based in part on popen2.py Returns (waitstatus, stdout, stderr).""" import types pid = os.fork() if pid == 0: # child try: pid = os.getpid() openmode = os.O_WRONLY|os.O_CREAT|os.O_TRUNC outfd = os.open('%d.out' % pid, openmode, 0666) os.dup2(outfd, 1) os.close(outfd) errfd = os.open('%d.err' % pid, openmode, 0666) os.dup2(errfd, 2) os.close(errfd) if isinstance(cmd, types.StringType): cmd = ['/bin/sh', '-c', cmd] os.execvp(cmd[0], cmd) finally: os._exit(127) else: # parent exited_pid, waitstatus = os.waitpid(pid, 0) stdout = open('%d.out' % pid).read() stderr = open('%d.err' % pid).read() return waitstatus, stdout, stderr def runcmd_unchecked(self, cmd, skip_on_noexec = 0): """Invoke a command; return (exitcode, stdout, stderr)""" waitstatus, stdout, stderr = self.run_captured(cmd) assert not os.WIFSIGNALED(waitstatus), \ ("%s terminated with signal %d" % (`cmd`, os.WTERMSIG(waitstatus))) rc = os.WEXITSTATUS(waitstatus) self.test_log = self.test_log + ("""Run command: %s Wait status: %#x (exit code %d, signal %d) stdout: %s stderr: %s""" % (cmd, waitstatus, os.WEXITSTATUS(waitstatus), os.WTERMSIG(waitstatus), stdout, stderr)) if skip_on_noexec and rc == 127: # Either we could not execute the command or the command # returned exit code 127. According to system(3) we can't # tell the difference. raise NotRunError, "could not execute %s" % `cmd` return rc, stdout, stderr def explain_failure(self, exc_info = None): print "test_log:" print self.test_log def log(self, msg): """Log a message to the test log. This message is displayed if the test fails, or when the runtests function is invoked with the verbose option.""" self.test_log = self.test_log + msg + "\n" class NotRunError(Exception): """Raised if a test must be skipped because of missing resources""" def __init__(self, value = None): self.value = value def _report_error(case, debugger): """Ask the test case to explain failure, and optionally run a debugger Input: case TestCase instance debugger if true, a debugger function to be applied to the traceback """ ex = sys.exc_info() print "-----------------------------------------------------------------" if ex: import traceback traceback.print_exc(file=sys.stdout) case.explain_failure() print "-----------------------------------------------------------------" if debugger: tb = ex[2] debugger(tb) def runtest(testcase_class, ret, verbose=0, debugger=None, subtest=0): """Instantiate test class, run it, and catch and report exceptions. Inputs: testcase_class a class derived from TestCase ret return status, an integer verbose an integer (used as boolean) debugger debugger object to be applied to errors subtest an integer (used as boolean) Returns: a new return status Raises: KeyboardInterrupt If subtest is true, then the ordinary information about the test progress is not printed. """ if not subtest: print "%-30s" % _test_name(testcase_class), def failure_print(message): print message else: def failure_print(message): print '[%s %s]' % (_test_name(testcase_class), message) # flush now so that long running tests are easier to follow sys.stdout.flush() obj = None try: try: # run test and sometimes show result obj = testcase_class() obj.setup() obj.runtest() if not subtest: print "OK" except KeyboardInterrupt: failure_print("INTERRUPT") if obj: _report_error(obj, debugger) raise except NotRunError, msg: failure_print("NOTRUN, %s" % msg.value) except: failure_print("FAIL") if obj: _report_error(obj, debugger) return 1 finally: if obj: ret = obj.apply_cleanups(debugger) or ret # Display log file if we're verbose if ret == 0 and verbose: obj.explain_failure() return ret def runtests(test_list, verbose = 0, debugger = None): """Run a series of tests. Inputs: test_list sequence of TestCase classes verbose print more information as testing proceeds debugger debugger object to be applied to errors Returns: unix return code: 0 for success, 1 for failures, 2 for test failure """ import traceback ret = 0 for testcase_class in test_list: try: ret = runtest(testcase_class, ret, verbose=verbose, debugger=debugger) except KeyboardInterrupt: ret = 2 break return ret def _test_name(test_class): """Return a human-readable name for a test class. """ try: return test_class.__name__ except: return `test_class` def print_help(): """Help for people running tests""" print """%s: software test suite based on ComfyChair usage: To run all tests, just run this program. To run particular tests, list them on the command line. options: --help show usage message --list list available tests --verbose, -v show more information while running tests --post-mortem, -p enter Python debugger on error """ % sys.argv[0] def print_list(test_list): """Show list of available tests""" for test_class in test_list: print " %s" % _test_name(test_class) def main(tests, extra_tests=[]): """Main entry point for test suites based on ComfyChair. inputs: tests Sequence of TestCase subclasses to be run by default. extra_tests Sequence of TestCase subclasses that are available but not run by default. Test suites should contain this boilerplate: if __name__ == '__main__': comfychair.main(tests) This function handles standard options such as --help and --list, and by default runs all tests in the suggested order. Calls sys.exit() on completion. """ import getopt, sys opt_verbose = 0 debugger = None opts, args = getopt.getopt(sys.argv[1:], 'pv', ['help', 'list', 'verbose', 'post-mortem']) for opt, opt_arg in opts: if opt == '--help': print_help() return elif opt == '--list': print_list(tests + extra_tests) return elif opt == '--verbose' or opt == '-v': opt_verbose = 1 elif opt == '--post-mortem' or opt == '-p': import pdb debugger = pdb.post_mortem if args: all_tests = tests + extra_tests by_name = {} for t in all_tests: by_name[_test_name(t)] = t which_tests = [] for name in args: which_tests.append(by_name[name]) else: which_tests = tests sys.exit(runtests(which_tests, verbose=opt_verbose, debugger=debugger)) if __name__ == '__main__': print __doc__
noamelf/Open-Knesset
refs/heads/master
hashnav/__init__.py
14
from functools import wraps, update_wrapper from base import View from list import ListView from detail import DetailView def method_decorator(decorator): """ Converts a view function decorator into a method decorator. the special thing about view decorators is that they expect 'request' to be their first argument. Example: class MyView(View): allowed_methods = ['GET','POST'], @method_decorator(login_required) def POST(*arg, **kwargs): ... """ def _dec(func): def _wrapper(self, *args, **kwargs): def bound_func(request, *args2, **kwargs2): return func(self, *args2, **kwargs2) # bound_func has the signature that 'decorator' expects i.e. no # 'self' argument, but it is a closure over self so it can call # 'func' correctly. return decorator(bound_func)(self.request, *args, **kwargs) return wraps(func)(_wrapper) update_wrapper(_dec, decorator) # Change the name to aid debugging. _dec.__name__ = 'method_dec(%s)' % decorator.__name__ return _dec
Mozta/pagina-diagnostijuego
refs/heads/master
venv/lib/python2.7/site-packages/django/middleware/locale.py
32
"This is the locale selecting middleware that will look at accept headers" from django.conf import settings from django.conf.urls.i18n import is_language_prefix_patterns_used from django.http import HttpResponseRedirect from django.urls import get_script_prefix, is_valid_path from django.utils import translation from django.utils.cache import patch_vary_headers from django.utils.deprecation import MiddlewareMixin class LocaleMiddleware(MiddlewareMixin): """ This is a very simple middleware that parses a request and decides what translation object to install in the current thread context. This allows pages to be dynamically translated to the language the user desires (if the language is available, of course). """ response_redirect_class = HttpResponseRedirect def process_request(self, request): urlconf = getattr(request, 'urlconf', settings.ROOT_URLCONF) i18n_patterns_used, prefixed_default_language = is_language_prefix_patterns_used(urlconf) language = translation.get_language_from_request(request, check_path=i18n_patterns_used) language_from_path = translation.get_language_from_path(request.path_info) if not language_from_path and i18n_patterns_used and not prefixed_default_language: language = settings.LANGUAGE_CODE translation.activate(language) request.LANGUAGE_CODE = translation.get_language() def process_response(self, request, response): language = translation.get_language() language_from_path = translation.get_language_from_path(request.path_info) urlconf = getattr(request, 'urlconf', settings.ROOT_URLCONF) i18n_patterns_used, prefixed_default_language = is_language_prefix_patterns_used(urlconf) if response.status_code == 404 and not language_from_path and i18n_patterns_used: language_path = '/%s%s' % (language, request.path_info) path_valid = is_valid_path(language_path, urlconf) path_needs_slash = ( not path_valid and ( settings.APPEND_SLASH and not language_path.endswith('/') and is_valid_path('%s/' % language_path, urlconf) ) ) if path_valid or path_needs_slash: script_prefix = get_script_prefix() # Insert language after the script prefix and before the # rest of the URL language_url = request.get_full_path(force_append_slash=path_needs_slash).replace( script_prefix, '%s%s/' % (script_prefix, language), 1 ) return self.response_redirect_class(language_url) if not (i18n_patterns_used and language_from_path): patch_vary_headers(response, ('Accept-Language',)) if 'Content-Language' not in response: response['Content-Language'] = language return response
hthompson6/contrail-controller
refs/heads/master
src/base/factory_macros.py
15
#!/usr/bin/python # # Copyright (c) 2013 Juniper Networks, Inc. All rights reserved. # def generate_header(file): header = """// // Generated by base/factory_macros.py // """ file.write(header) macro_tmpl = """#define FACTORY_TYPE_N%(cardinality)d(_Module, _T%(comma)s%(argument_types)s) public: template <class U> static typename boost::enable_if<boost::is_same<U, _T>, void>::type Register(boost::function<_T *(%(argument_types)s)> function) { _Module *obj = GetInstance(); obj->make_ ## _T ## _ = function; } template <class U> static typename boost::enable_if<boost::is_same<U, _T>, _T *>::type Create(%(argument_decl)s) { _Module *obj = GetInstance(); return obj->make_ ## _T ## _(%(call_arguments)s); } private: boost::function<_T *(%(argument_types)s)> make_ ## _T ##_ """ def generate_n(file, cardinality): call_arguments = '' decl = '' types = '' for n in range(cardinality): if n: call_arguments += ', ' decl += ', ' types += ', ' call_arguments += 'a%d' % n decl += 'A%d a%d' % (n, n) types += 'A%d' % n if cardinality: comma = ', ' else: comma = '' macro = macro_tmpl % { 'argument_decl': decl, 'argument_types': types, 'call_arguments': call_arguments, 'cardinality': cardinality, 'comma': comma, } file.write(macro.replace('\n', '\\\n')) file.write('\n') def generate(filename): file = open(filename, 'w') generate_header(file) for n in range(8): generate_n(file, n) file.close() if __name__ == '__main__': generate("src/base/factory_macros.h")
samuelshaner/openmc
refs/heads/develop
tests/test_trigger_batch_interval/test_trigger_batch_interval.py
8
#!/usr/bin/env python import os import sys sys.path.insert(0, os.pardir) from testing_harness import TestHarness if __name__ == '__main__': harness = TestHarness('statepoint.15.*', True) harness.main()
gdhungana/desispec
refs/heads/master
py/desispec/io/brick.py
2
""" desispec.io.brick ================= I/O routines for working with per-brick files. See ``doc/DESI_SPECTRO_REDUX/SPECPROD/bricks/BRICKID/*-BRICKID.rst`` in desidatamodel for a description of the relevant data models. See :doc:`coadd` and `DESI-doc-1056 <https://desi.lbl.gov/DocDB/cgi-bin/private/ShowDocument?docid=1056>`_ for general information about the coaddition dataflow and algorithms. """ import os import os.path import re import warnings import numpy as np import astropy.io.fits from desiutil.depend import add_dependencies import desispec.io.util #- For backwards compatibility, derive brickname from filename def _parse_brick_filename(filepath): """return (channel, brickname) from /path/to/brick-[brz]-{brickname}.fits """ filename = os.path.basename(filepath) warnings.warn('Deriving channel and brickname from filename {} instead of contents'.format(filename)) m = re.match('brick-([brz])-(\w+).fits', filename) if m is None: raise ValueError('Unable to derive channel and brickname from '+filename) else: return m.groups() #- (channel, brickname) class BrickBase(object): """Represents objects in a single brick and possibly also a single band b,r,z. The constructor will open an existing file and create a new file and parent directory if necessary. The :meth:`close` method must be called for any updates or new data to be recorded. Successful completion of the constructor does not guarantee that :meth:`close` will succeed. Args: path(str): Path to the brick file to open. mode(str): File access mode to use. Should normally be 'readonly' or 'update'. Use 'update' to create a new file and its parent directory if necessary. header: An optional header specification used to create a new file. See :func:`desispec.io.util.fitsheader` for details on allowed values. Raises: RuntimeError: Invalid mode requested. IOError: Unable to open existing file in 'readonly' mode. OSError: Unable to create a new parent directory in 'update' mode. """ def __init__(self,path,mode = 'readonly',header = None): if mode not in ('readonly','update'): raise RuntimeError('Invalid mode %r' % mode) self.path = path self.mode = mode # Create a new file if necessary. if self.mode == 'update' and not os.path.exists(self.path): # BRICKNAM must be in header if creating the file for the first time if header is None or 'BRICKNAM' not in header: raise ValueError('header must have BRICKNAM when creating new brick file') self.brickname = header['BRICKNAM'] if 'CHANNEL' in header: self.channel = header['CHANNEL'] else: self.channel = 'brz' #- could be any spectrograph channel # Create the parent directory, if necessary. head,tail = os.path.split(self.path) if not os.path.exists(head): os.makedirs(head) # Create empty HDUs. It would be good to refactor io.frame to avoid any duplication here. hdr = desispec.io.util.fitsheader(header) add_dependencies(hdr) hdr['EXTNAME'] = ('FLUX', 'no dimension') hdu0 = astropy.io.fits.PrimaryHDU(header = hdr) hdr['EXTNAME'] = ('IVAR', 'no dimension') hdu1 = astropy.io.fits.ImageHDU(header = hdr) hdr['EXTNAME'] = ('WAVELENGTH', '[Angstroms]') hdu2 = astropy.io.fits.ImageHDU(header = hdr) hdr['EXTNAME'] = ('RESOLUTION', 'no dimension') hdu3 = astropy.io.fits.ImageHDU(header = hdr) # Create an HDU4 using the columns from fibermap with a few extras added. columns = desispec.io.fibermap.fibermap_columns[:] columns.extend([ ('NIGHT','i4'), ('EXPID','i4'), ('INDEX','i4'), ]) data = np.empty(shape = (0,),dtype = columns) hdr = desispec.io.util.fitsheader(header) #- ignore incorrect and harmless fits TDIM7 warning for #- FILTER column that is a 2D array of strings with warnings.catch_warnings(): warnings.simplefilter('ignore') hdu4 = astropy.io.fits.BinTableHDU(data=data, header=hdr, name='FIBERMAP') # Add comments for fibermap columns. num_fibermap_columns = len(desispec.io.fibermap.fibermap_comments) for i in range(1,1+num_fibermap_columns): key = 'TTYPE%d' % i name = hdu4.header[key] comment = desispec.io.fibermap.fibermap_comments[name] hdu4.header[key] = (name,comment) # Add comments for our additional columns. hdu4.header['TTYPE%d' % (1+num_fibermap_columns)] = ('NIGHT','Night of exposure YYYYMMDD') hdu4.header['TTYPE%d' % (2+num_fibermap_columns)] = ('EXPID','Exposure ID') hdu4.header['TTYPE%d' % (3+num_fibermap_columns)] = ('INDEX','Index of this object in other HDUs') self.hdu_list = astropy.io.fits.HDUList([hdu0,hdu1,hdu2,hdu3,hdu4]) else: self.hdu_list = astropy.io.fits.open(path,mode = self.mode) try: self.brickname = self.hdu_list[0].header['BRICKNAM'] self.channel = self.hdu_list[0].header['CHANNEL'] except KeyError: self.channel, self.brickname = _parse_brick_filename(path) def add_objects(self,flux,ivar,wave,resolution): """Add a list of objects to this brick file from the same night and exposure. Args: flux(numpy.ndarray): Array of (nobj,nwave) flux values for nobj objects tabulated at nwave wavelengths. ivar(numpy.ndarray): Array of (nobj,nwave) inverse-variance values. wave(numpy.ndarray): Array of (nwave,) wavelength values in Angstroms. All objects are assumed to use the same wavelength grid. resolution(numpy.ndarray): Array of (nobj,nres,nwave) resolution matrix elements. Raises: RuntimeError: Can only add objects in update mode. """ if self.mode != 'update': raise RuntimeError('Can only add objects in update mode.') # Concatenate the new per-object image HDU data or use it to initialize the HDU. # HDU2 contains the wavelength grid shared by all objects so we only add it once. if self.hdu_list[0].data is not None: self.hdu_list[0].data = np.concatenate((self.hdu_list[0].data,flux,)) self.hdu_list[1].data = np.concatenate((self.hdu_list[1].data,ivar,)) assert np.array_equal(self.hdu_list[2].data,wave),'Wavelength arrays do not match.' self.hdu_list[3].data = np.concatenate((self.hdu_list[3].data,resolution,)) else: self.hdu_list[0].data = flux self.hdu_list[1].data = ivar self.hdu_list[2].data = wave self.hdu_list[3].data = resolution def get_wavelength_grid(self): """Return the wavelength grid used in this brick file. """ return self.hdu_list[2].data def get_target(self,target_id): """Get the spectra and info for one target ID. Args: target_id(int): Target ID number to lookup. Returns: tuple: Tuple of numpy arrays (flux,ivar,resolution,info) of data associated with this target ID. The flux,ivar,resolution arrays will have one entry for each spectrum and the info array will have one entry per exposure. The returned arrays are slices into the FITS file HDU data arrays, so this call is relatively cheap (and any changes will be saved to the file if it was opened in update mode.) """ exposures = (self.hdu_list[4].data['TARGETID'] == target_id) index_list = np.unique(self.hdu_list[4].data['INDEX'][exposures]) return (self.hdu_list[0].data[index_list],self.hdu_list[1].data[index_list], self.hdu_list[3].data[index_list],self.hdu_list[4].data[exposures]) def get_target_ids(self): """Return set of unique target IDs in this brick. """ return list(set(self.hdu_list[4].data['TARGETID'])) def get_num_spectra(self): """Get the number of spectra contained in this brick file. Returns: int: Number of objects contained in this brick file. """ return len(self.hdu_list[0].data) def get_num_targets(self): """Get the number of distinct targets with at least one spectrum in this brick file. Returns: int: Number of unique targets represented with spectra in this brick file. """ return len(np.unique(self.hdu_list[4].data['TARGETID'])) def close(self): """Write any updates and close the brick file. """ if self.mode == 'update': self.hdu_list.writeto(self.path,clobber = True) self.hdu_list.close() class Brick(BrickBase): """Represents the combined cframe exposures in a single brick and band. See :class:`BrickBase` for constructor info. """ def __init__(self,path,mode = 'readonly',header = None): BrickBase.__init__(self,path,mode,header) def add_objects(self,flux,ivar,wave,resolution,object_data,night,expid): """Add a list of objects to this brick file from the same night and exposure. Args: flux(numpy.ndarray): Array of (nobj,nwave) flux values for nobj objects tabulated at nwave wavelengths. ivar(numpy.ndarray): Array of (nobj,nwave) inverse-variance values. wave(numpy.ndarray): Array of (nwave,) wavelength values in Angstroms. All objects are assumed to use the same wavelength grid. resolution(numpy.ndarray): Array of (nobj,nres,nwave) resolution matrix elements. object_data(numpy.ndarray): Record array of fibermap rows for the objects to add. night(str): Date string for the night these objects were observed in the format YYYYMMDD. expid(int): Exposure number for these objects. Raises: RuntimeError: Can only add objects in update mode. """ BrickBase.add_objects(self,flux,ivar,wave,resolution) # Augment object_data with constant NIGHT and EXPID columns. augmented_data = np.empty(shape = object_data.shape,dtype = self.hdu_list[4].data.dtype) for column_def in desispec.io.fibermap.fibermap_columns: name = column_def[0] # Special handling for the fibermap FILTER array, which is not output correctly # by astropy.io.fits so we convert it to a comma-separated list. if name == 'FILTER' and augmented_data[name].shape != object_data[name].shape: for i,filters in enumerate(object_data[name]): augmented_data[name][i] = ','.join(filters) else: augmented_data[name] = object_data[name] augmented_data['NIGHT'] = int(night) augmented_data['EXPID'] = expid begin_index = len(self.hdu_list[4].data) end_index = begin_index + len(flux) augmented_data['INDEX'] = np.arange(begin_index,end_index,dtype=int) # Always concatenate to our table since a new file will be created with a zero-length table. self.hdu_list[4].data = np.concatenate((self.hdu_list[4].data,augmented_data,)) class CoAddedBrick(BrickBase): """Represents the co-added exposures in a single brick and, possibly, a single band. See :class:`BrickBase` for constructor info. """ def __init__(self,path,mode = 'readonly',header = None): BrickBase.__init__(self,path,mode,header)
proxysh/Safejumper-for-Desktop
refs/heads/master
buildlinux/env32/local/lib/python2.7/ntpath.py
16
# Module 'ntpath' -- common operations on WinNT/Win95 pathnames """Common pathname manipulations, WindowsNT/95 version. Instead of importing this module directly, import os and refer to this module as os.path. """ import os import sys import stat import genericpath import warnings from genericpath import * __all__ = ["normcase","isabs","join","splitdrive","split","splitext", "basename","dirname","commonprefix","getsize","getmtime", "getatime","getctime", "islink","exists","lexists","isdir","isfile", "ismount","walk","expanduser","expandvars","normpath","abspath", "splitunc","curdir","pardir","sep","pathsep","defpath","altsep", "extsep","devnull","realpath","supports_unicode_filenames","relpath"] # strings representing various path-related bits and pieces curdir = '.' pardir = '..' extsep = '.' sep = '\\' pathsep = ';' altsep = '/' defpath = '.;C:\\bin' if 'ce' in sys.builtin_module_names: defpath = '\\Windows' elif 'os2' in sys.builtin_module_names: # OS/2 w/ VACPP altsep = '/' devnull = 'nul' # Normalize the case of a pathname and map slashes to backslashes. # Other normalizations (such as optimizing '../' away) are not done # (this is done by normpath). def normcase(s): """Normalize case of pathname. Makes all characters lowercase and all slashes into backslashes.""" return s.replace("/", "\\").lower() # Return whether a path is absolute. # Trivial in Posix, harder on the Mac or MS-DOS. # For DOS it is absolute if it starts with a slash or backslash (current # volume), or if a pathname after the volume letter and colon / UNC resource # starts with a slash or backslash. def isabs(s): """Test whether a path is absolute""" s = splitdrive(s)[1] return s != '' and s[:1] in '/\\' # Join two (or more) paths. def join(path, *paths): """Join two or more pathname components, inserting "\\" as needed.""" result_drive, result_path = splitdrive(path) for p in paths: p_drive, p_path = splitdrive(p) if p_path and p_path[0] in '\\/': # Second path is absolute if p_drive or not result_drive: result_drive = p_drive result_path = p_path continue elif p_drive and p_drive != result_drive: if p_drive.lower() != result_drive.lower(): # Different drives => ignore the first path entirely result_drive = p_drive result_path = p_path continue # Same drive in different case result_drive = p_drive # Second path is relative to the first if result_path and result_path[-1] not in '\\/': result_path = result_path + '\\' result_path = result_path + p_path return result_drive + result_path # Split a path in a drive specification (a drive letter followed by a # colon) and the path specification. # It is always true that drivespec + pathspec == p def splitdrive(p): """Split a pathname into drive and path specifiers. Returns a 2-tuple "(drive,path)"; either part may be empty""" if p[1:2] == ':': return p[0:2], p[2:] return '', p # Parse UNC paths def splitunc(p): """Split a pathname into UNC mount point and relative path specifiers. Return a 2-tuple (unc, rest); either part may be empty. If unc is not empty, it has the form '//host/mount' (or similar using backslashes). unc+rest is always the input path. Paths containing drive letters never have an UNC part. """ if p[1:2] == ':': return '', p # Drive letter present firstTwo = p[0:2] if firstTwo == '//' or firstTwo == '\\\\': # is a UNC path: # vvvvvvvvvvvvvvvvvvvv equivalent to drive letter # \\machine\mountpoint\directories... # directory ^^^^^^^^^^^^^^^ normp = p.replace('\\', '/') index = normp.find('/', 2) if index <= 2: return '', p index2 = normp.find('/', index + 1) # a UNC path can't have two slashes in a row # (after the initial two) if index2 == index + 1: return '', p if index2 == -1: index2 = len(p) return p[:index2], p[index2:] return '', p # Split a path in head (everything up to the last '/') and tail (the # rest). After the trailing '/' is stripped, the invariant # join(head, tail) == p holds. # The resulting head won't end in '/' unless it is the root. def split(p): """Split a pathname. Return tuple (head, tail) where tail is everything after the final slash. Either part may be empty.""" d, p = splitdrive(p) # set i to index beyond p's last slash i = len(p) while i and p[i-1] not in '/\\': i = i - 1 head, tail = p[:i], p[i:] # now tail has no slashes # remove trailing slashes from head, unless it's all slashes head2 = head while head2 and head2[-1] in '/\\': head2 = head2[:-1] head = head2 or head return d + head, tail # Split a path in root and extension. # The extension is everything starting at the last dot in the last # pathname component; the root is everything before that. # It is always true that root + ext == p. def splitext(p): return genericpath._splitext(p, sep, altsep, extsep) splitext.__doc__ = genericpath._splitext.__doc__ # Return the tail (basename) part of a path. def basename(p): """Returns the final component of a pathname""" return split(p)[1] # Return the head (dirname) part of a path. def dirname(p): """Returns the directory component of a pathname""" return split(p)[0] # Is a path a symbolic link? # This will always return false on systems where posix.lstat doesn't exist. def islink(path): """Test for symbolic link. On WindowsNT/95 and OS/2 always returns false """ return False # alias exists to lexists lexists = exists # Is a path a mount point? Either a root (with or without drive letter) # or an UNC path with at most a / or \ after the mount point. def ismount(path): """Test whether a path is a mount point (defined as root of drive)""" unc, rest = splitunc(path) if unc: return rest in ("", "/", "\\") p = splitdrive(path)[1] return len(p) == 1 and p[0] in '/\\' # Directory tree walk. # For each directory under top (including top itself, but excluding # '.' and '..'), func(arg, dirname, filenames) is called, where # dirname is the name of the directory and filenames is the list # of files (and subdirectories etc.) in the directory. # The func may modify the filenames list, to implement a filter, # or to impose a different order of visiting. def walk(top, func, arg): """Directory tree walk with callback function. For each directory in the directory tree rooted at top (including top itself, but excluding '.' and '..'), call func(arg, dirname, fnames). dirname is the name of the directory, and fnames a list of the names of the files and subdirectories in dirname (excluding '.' and '..'). func may modify the fnames list in-place (e.g. via del or slice assignment), and walk will only recurse into the subdirectories whose names remain in fnames; this can be used to implement a filter, or to impose a specific order of visiting. No semantics are defined for, or required of, arg, beyond that arg is always passed to func. It can be used, e.g., to pass a filename pattern, or a mutable object designed to accumulate statistics. Passing None for arg is common.""" warnings.warnpy3k("In 3.x, os.path.walk is removed in favor of os.walk.", stacklevel=2) try: names = os.listdir(top) except os.error: return func(arg, top, names) for name in names: name = join(top, name) if isdir(name): walk(name, func, arg) # Expand paths beginning with '~' or '~user'. # '~' means $HOME; '~user' means that user's home directory. # If the path doesn't begin with '~', or if the user or $HOME is unknown, # the path is returned unchanged (leaving error reporting to whatever # function is called with the expanded path as argument). # See also module 'glob' for expansion of *, ? and [...] in pathnames. # (A function should also be defined to do full *sh-style environment # variable expansion.) def expanduser(path): """Expand ~ and ~user constructs. If user or $HOME is unknown, do nothing.""" if path[:1] != '~': return path i, n = 1, len(path) while i < n and path[i] not in '/\\': i = i + 1 if 'HOME' in os.environ: userhome = os.environ['HOME'] elif 'USERPROFILE' in os.environ: userhome = os.environ['USERPROFILE'] elif not 'HOMEPATH' in os.environ: return path else: try: drive = os.environ['HOMEDRIVE'] except KeyError: drive = '' userhome = join(drive, os.environ['HOMEPATH']) if i != 1: #~user userhome = join(dirname(userhome), path[1:i]) return userhome + path[i:] # Expand paths containing shell variable substitutions. # The following rules apply: # - no expansion within single quotes # - '$$' is translated into '$' # - '%%' is translated into '%' if '%%' are not seen in %var1%%var2% # - ${varname} is accepted. # - $varname is accepted. # - %varname% is accepted. # - varnames can be made out of letters, digits and the characters '_-' # (though is not verified in the ${varname} and %varname% cases) # XXX With COMMAND.COM you can use any characters in a variable name, # XXX except '^|<>='. def expandvars(path): """Expand shell variables of the forms $var, ${var} and %var%. Unknown variables are left unchanged.""" if '$' not in path and '%' not in path: return path import string varchars = string.ascii_letters + string.digits + '_-' if isinstance(path, unicode): encoding = sys.getfilesystemencoding() def getenv(var): return os.environ[var.encode(encoding)].decode(encoding) else: def getenv(var): return os.environ[var] res = '' index = 0 pathlen = len(path) while index < pathlen: c = path[index] if c == '\'': # no expansion within single quotes path = path[index + 1:] pathlen = len(path) try: index = path.index('\'') res = res + '\'' + path[:index + 1] except ValueError: res = res + path index = pathlen - 1 elif c == '%': # variable or '%' if path[index + 1:index + 2] == '%': res = res + c index = index + 1 else: path = path[index+1:] pathlen = len(path) try: index = path.index('%') except ValueError: res = res + '%' + path index = pathlen - 1 else: var = path[:index] try: res = res + getenv(var) except KeyError: res = res + '%' + var + '%' elif c == '$': # variable or '$$' if path[index + 1:index + 2] == '$': res = res + c index = index + 1 elif path[index + 1:index + 2] == '{': path = path[index+2:] pathlen = len(path) try: index = path.index('}') var = path[:index] try: res = res + getenv(var) except KeyError: res = res + '${' + var + '}' except ValueError: res = res + '${' + path index = pathlen - 1 else: var = '' index = index + 1 c = path[index:index + 1] while c != '' and c in varchars: var = var + c index = index + 1 c = path[index:index + 1] try: res = res + getenv(var) except KeyError: res = res + '$' + var if c != '': index = index - 1 else: res = res + c index = index + 1 return res # Normalize a path, e.g. A//B, A/./B and A/foo/../B all become A\B. # Previously, this function also truncated pathnames to 8+3 format, # but as this module is called "ntpath", that's obviously wrong! def normpath(path): """Normalize path, eliminating double slashes, etc.""" # Preserve unicode (if path is unicode) backslash, dot = (u'\\', u'.') if isinstance(path, unicode) else ('\\', '.') if path.startswith(('\\\\.\\', '\\\\?\\')): # in the case of paths with these prefixes: # \\.\ -> device names # \\?\ -> literal paths # do not do any normalization, but return the path unchanged return path path = path.replace("/", "\\") prefix, path = splitdrive(path) # We need to be careful here. If the prefix is empty, and the path starts # with a backslash, it could either be an absolute path on the current # drive (\dir1\dir2\file) or a UNC filename (\\server\mount\dir1\file). It # is therefore imperative NOT to collapse multiple backslashes blindly in # that case. # The code below preserves multiple backslashes when there is no drive # letter. This means that the invalid filename \\\a\b is preserved # unchanged, where a\\\b is normalised to a\b. It's not clear that there # is any better behaviour for such edge cases. if prefix == '': # No drive letter - preserve initial backslashes while path[:1] == "\\": prefix = prefix + backslash path = path[1:] else: # We have a drive letter - collapse initial backslashes if path.startswith("\\"): prefix = prefix + backslash path = path.lstrip("\\") comps = path.split("\\") i = 0 while i < len(comps): if comps[i] in ('.', ''): del comps[i] elif comps[i] == '..': if i > 0 and comps[i-1] != '..': del comps[i-1:i+1] i -= 1 elif i == 0 and prefix.endswith("\\"): del comps[i] else: i += 1 else: i += 1 # If the path is now empty, substitute '.' if not prefix and not comps: comps.append(dot) return prefix + backslash.join(comps) # Return an absolute path. try: from nt import _getfullpathname except ImportError: # not running on Windows - mock up something sensible def abspath(path): """Return the absolute version of a path.""" if not isabs(path): if isinstance(path, unicode): cwd = os.getcwdu() else: cwd = os.getcwd() path = join(cwd, path) return normpath(path) else: # use native Windows method on Windows def abspath(path): """Return the absolute version of a path.""" if path: # Empty path must return current working directory. try: path = _getfullpathname(path) except WindowsError: pass # Bad path - return unchanged. elif isinstance(path, unicode): path = os.getcwdu() else: path = os.getcwd() return normpath(path) # realpath is a no-op on systems without islink support realpath = abspath # Win9x family and earlier have no Unicode filename support. supports_unicode_filenames = (hasattr(sys, "getwindowsversion") and sys.getwindowsversion()[3] >= 2) def _abspath_split(path): abs = abspath(normpath(path)) prefix, rest = splitunc(abs) is_unc = bool(prefix) if not is_unc: prefix, rest = splitdrive(abs) return is_unc, prefix, [x for x in rest.split(sep) if x] def relpath(path, start=curdir): """Return a relative version of a path""" if not path: raise ValueError("no path specified") start_is_unc, start_prefix, start_list = _abspath_split(start) path_is_unc, path_prefix, path_list = _abspath_split(path) if path_is_unc ^ start_is_unc: raise ValueError("Cannot mix UNC and non-UNC paths (%s and %s)" % (path, start)) if path_prefix.lower() != start_prefix.lower(): if path_is_unc: raise ValueError("path is on UNC root %s, start on UNC root %s" % (path_prefix, start_prefix)) else: raise ValueError("path is on drive %s, start on drive %s" % (path_prefix, start_prefix)) # Work out how much of the filepath is shared by start and path. i = 0 for e1, e2 in zip(start_list, path_list): if e1.lower() != e2.lower(): break i += 1 rel_list = [pardir] * (len(start_list)-i) + path_list[i:] if not rel_list: return curdir return join(*rel_list) try: # The genericpath.isdir implementation uses os.stat and checks the mode # attribute to tell whether or not the path is a directory. # This is overkill on Windows - just pass the path to GetFileAttributes # and check the attribute from there. from nt import _isdir as isdir except ImportError: # Use genericpath.isdir as imported above. pass
gis4dis/poster
refs/heads/master
apps/importing/admin.py
1
import logging from functools import update_wrapper from django.contrib import admin from django.db.models import Count, DateTimeField, Min, Max from django.db.models.functions import Trunc from .models import Provider, ProviderLog, ReadonlyProviderLog logger = logging.getLogger(__name__) # noinspection PyAttributeOutsideInit,PyUnresolvedReferences class FieldsMixin(object): def add_view(self, request, form_url='', extra_context=None): try: if hasattr(self, 'add_fields'): self.fields = self.add_fields elif hasattr(self, 'default_fields'): self.fields = self.default_fields elif hasattr(self, 'fields'): del self.fields except Exception as e: logger.debug(e, exc_info=True) try: if hasattr(self, 'add_readonly_fields'): self.readonly_fields = self.add_readonly_fields elif hasattr(self, 'default_readonly_fields'): self.readonly_fields = self.default_readonly_fields elif hasattr(self, 'readonly_fields'): del self.readonly_fields except Exception as e: logger.debug(e, exc_info=True) return super(FieldsMixin, self).add_view(request, form_url, extra_context) def change_view(self, request, object_id, form_url='', extra_context=None): try: if hasattr(self, 'change_fields'): self.fields = self.change_fields elif hasattr(self, 'default_fields'): self.fields = self.default_fields elif hasattr(self, 'fields'): del self.fields except Exception as e: logger.debug(e, exc_info=True) try: if hasattr(self, 'change_readonly_fields'): self.readonly_fields = self.change_readonly_fields elif hasattr(self, 'default_readonly_fields'): self.readonly_fields = self.default_readonly_fields elif hasattr(self, 'readonly_fields'): del self.readonly_fields except Exception as e: logger.debug(e, exc_info=True) return super(FieldsMixin, self).change_view(request, object_id, form_url, extra_context) class ProviderAdmin(FieldsMixin, admin.ModelAdmin): list_display = ['name', 'code'] fields = ['name', 'code'] readonly_fields = ['token', 'url'] add_fields = fields change_fields = fields + readonly_fields class ProviderLogAdmin(FieldsMixin, admin.ModelAdmin): list_display = ['provider', 'content_type', 'received_time', 'is_valid', ] list_filter = ['provider__name', 'content_type', 'received_time', 'is_valid', ] fields = ['provider', 'content_type', 'body', ('file_name', 'ext'), 'file_path', 'received_time', 'is_valid', 'uuid4', ] readonly_fields = ['uuid4', ] # https://medium.com/@hakibenita/how-to-turn-django-admin-into-a-lightweight-dashboard-a0e0bbf609ad # Wonderful way to add some graphs :) # noinspection PyProtectedMember class ReadonlyProviderLogAdmin(FieldsMixin, admin.ModelAdmin): change_list_template = 'admin/readonly_provider_change_list.html' date_hierarchy = 'received_time' list_display = ['provider', 'content_type', 'received_time', 'is_valid', ] list_filter = ['received_time', 'provider__name', 'content_type', 'is_valid', ] default_fields = ['provider', 'content_type', 'file_name', 'file_path', 'ext', 'received_time', 'is_valid', 'uuid4', 'parsed_body'] default_readonly_fields = [] add_fields = ['provider', 'content_type', 'body', 'file_name', 'ext', 'received_time', 'is_valid', ] change_fields = ['provider', 'content_type', ('file_name', 'ext'), 'file_path', 'received_time', 'is_valid', 'uuid4', 'parsed_body'] change_readonly_fields = ['provider', 'content_type', 'file_name', 'ext', 'file_path', 'received_time', 'is_valid', 'uuid4', 'parsed_body'] def stats_view(self, request, extra_context=None): def get_next_in_date_hierarchy(req, date_hierarchy): if date_hierarchy + '__day' in req.GET: return 'hour' if date_hierarchy + '__month' in req.GET: return 'day' if date_hierarchy + '__year' in req.GET: return 'month' return 'month' response = self.changelist_view(request, extra_context) response.template_name = 'admin/readonly_provider_log_summary_change_list.html' try: qs = response.context_data['cl'].queryset except (AttributeError, KeyError): return response metrics = { 'total': Count('id'), } summary = list( qs.values('provider__name') .annotate(**metrics) .order_by('-total') ) response.context_data['summary'] = summary summary_total = dict( qs.aggregate(**metrics) ) response.context_data['summary_total'] = summary_total period = get_next_in_date_hierarchy( request, self.date_hierarchy, ) response.context_data['period'] = period summary_over_time = qs.annotate( period=Trunc( 'received_time', period, output_field=DateTimeField(), ), ) \ .values('period') \ .annotate(total=Count('id')) \ .order_by('period') summary_range = summary_over_time.aggregate( low=Min('total'), high=Max('total'), ) high = summary_range.get('high', 0) low = summary_range.get('low', 0) response.context_data['summary_over_time'] = [ { 'period': x['period'], 'total': x['total'] or 0, 'pct': ((x['total'] or 0) / high) * 100 if high > low else 100, } for x in summary_over_time] return response def get_urls(self): urlpatterns = super(ReadonlyProviderLogAdmin, self).get_urls() from django.conf.urls import url def wrap(view): def wrapper(*args, **kwargs): return self.admin_site.admin_view(view)(*args, **kwargs) wrapper.model_admin = self return update_wrapper(wrapper, view) info = self.model._meta.app_label, self.model._meta.model_name urlpatterns = [ url(r'^statistics/$', wrap(self.stats_view), name='%s_%s_statistics' % info), ] + urlpatterns return urlpatterns admin.site.register(Provider, ProviderAdmin) admin.site.register(ProviderLog, ProviderLogAdmin) admin.site.register(ReadonlyProviderLog, ReadonlyProviderLogAdmin)