repo_name
stringlengths
5
100
ref
stringlengths
12
67
path
stringlengths
4
244
copies
stringlengths
1
8
content
stringlengths
0
1.05M
safwanrahman/mozillians
refs/heads/master
vendor-local/lib/python/unidecode/x0b1.py
253
data = ( 'nyaess', # 0x00 'nyaeng', # 0x01 'nyaej', # 0x02 'nyaec', # 0x03 'nyaek', # 0x04 'nyaet', # 0x05 'nyaep', # 0x06 'nyaeh', # 0x07 'neo', # 0x08 'neog', # 0x09 'neogg', # 0x0a 'neogs', # 0x0b 'neon', # 0x0c 'neonj', # 0x0d 'neonh', # 0x0e 'neod', # 0x0f 'neol', # 0x10 'neolg', # 0x11 'neolm', # 0x12 'neolb', # 0x13 'neols', # 0x14 'neolt', # 0x15 'neolp', # 0x16 'neolh', # 0x17 'neom', # 0x18 'neob', # 0x19 'neobs', # 0x1a 'neos', # 0x1b 'neoss', # 0x1c 'neong', # 0x1d 'neoj', # 0x1e 'neoc', # 0x1f 'neok', # 0x20 'neot', # 0x21 'neop', # 0x22 'neoh', # 0x23 'ne', # 0x24 'neg', # 0x25 'negg', # 0x26 'negs', # 0x27 'nen', # 0x28 'nenj', # 0x29 'nenh', # 0x2a 'ned', # 0x2b 'nel', # 0x2c 'nelg', # 0x2d 'nelm', # 0x2e 'nelb', # 0x2f 'nels', # 0x30 'nelt', # 0x31 'nelp', # 0x32 'nelh', # 0x33 'nem', # 0x34 'neb', # 0x35 'nebs', # 0x36 'nes', # 0x37 'ness', # 0x38 'neng', # 0x39 'nej', # 0x3a 'nec', # 0x3b 'nek', # 0x3c 'net', # 0x3d 'nep', # 0x3e 'neh', # 0x3f 'nyeo', # 0x40 'nyeog', # 0x41 'nyeogg', # 0x42 'nyeogs', # 0x43 'nyeon', # 0x44 'nyeonj', # 0x45 'nyeonh', # 0x46 'nyeod', # 0x47 'nyeol', # 0x48 'nyeolg', # 0x49 'nyeolm', # 0x4a 'nyeolb', # 0x4b 'nyeols', # 0x4c 'nyeolt', # 0x4d 'nyeolp', # 0x4e 'nyeolh', # 0x4f 'nyeom', # 0x50 'nyeob', # 0x51 'nyeobs', # 0x52 'nyeos', # 0x53 'nyeoss', # 0x54 'nyeong', # 0x55 'nyeoj', # 0x56 'nyeoc', # 0x57 'nyeok', # 0x58 'nyeot', # 0x59 'nyeop', # 0x5a 'nyeoh', # 0x5b 'nye', # 0x5c 'nyeg', # 0x5d 'nyegg', # 0x5e 'nyegs', # 0x5f 'nyen', # 0x60 'nyenj', # 0x61 'nyenh', # 0x62 'nyed', # 0x63 'nyel', # 0x64 'nyelg', # 0x65 'nyelm', # 0x66 'nyelb', # 0x67 'nyels', # 0x68 'nyelt', # 0x69 'nyelp', # 0x6a 'nyelh', # 0x6b 'nyem', # 0x6c 'nyeb', # 0x6d 'nyebs', # 0x6e 'nyes', # 0x6f 'nyess', # 0x70 'nyeng', # 0x71 'nyej', # 0x72 'nyec', # 0x73 'nyek', # 0x74 'nyet', # 0x75 'nyep', # 0x76 'nyeh', # 0x77 'no', # 0x78 'nog', # 0x79 'nogg', # 0x7a 'nogs', # 0x7b 'non', # 0x7c 'nonj', # 0x7d 'nonh', # 0x7e 'nod', # 0x7f 'nol', # 0x80 'nolg', # 0x81 'nolm', # 0x82 'nolb', # 0x83 'nols', # 0x84 'nolt', # 0x85 'nolp', # 0x86 'nolh', # 0x87 'nom', # 0x88 'nob', # 0x89 'nobs', # 0x8a 'nos', # 0x8b 'noss', # 0x8c 'nong', # 0x8d 'noj', # 0x8e 'noc', # 0x8f 'nok', # 0x90 'not', # 0x91 'nop', # 0x92 'noh', # 0x93 'nwa', # 0x94 'nwag', # 0x95 'nwagg', # 0x96 'nwags', # 0x97 'nwan', # 0x98 'nwanj', # 0x99 'nwanh', # 0x9a 'nwad', # 0x9b 'nwal', # 0x9c 'nwalg', # 0x9d 'nwalm', # 0x9e 'nwalb', # 0x9f 'nwals', # 0xa0 'nwalt', # 0xa1 'nwalp', # 0xa2 'nwalh', # 0xa3 'nwam', # 0xa4 'nwab', # 0xa5 'nwabs', # 0xa6 'nwas', # 0xa7 'nwass', # 0xa8 'nwang', # 0xa9 'nwaj', # 0xaa 'nwac', # 0xab 'nwak', # 0xac 'nwat', # 0xad 'nwap', # 0xae 'nwah', # 0xaf 'nwae', # 0xb0 'nwaeg', # 0xb1 'nwaegg', # 0xb2 'nwaegs', # 0xb3 'nwaen', # 0xb4 'nwaenj', # 0xb5 'nwaenh', # 0xb6 'nwaed', # 0xb7 'nwael', # 0xb8 'nwaelg', # 0xb9 'nwaelm', # 0xba 'nwaelb', # 0xbb 'nwaels', # 0xbc 'nwaelt', # 0xbd 'nwaelp', # 0xbe 'nwaelh', # 0xbf 'nwaem', # 0xc0 'nwaeb', # 0xc1 'nwaebs', # 0xc2 'nwaes', # 0xc3 'nwaess', # 0xc4 'nwaeng', # 0xc5 'nwaej', # 0xc6 'nwaec', # 0xc7 'nwaek', # 0xc8 'nwaet', # 0xc9 'nwaep', # 0xca 'nwaeh', # 0xcb 'noe', # 0xcc 'noeg', # 0xcd 'noegg', # 0xce 'noegs', # 0xcf 'noen', # 0xd0 'noenj', # 0xd1 'noenh', # 0xd2 'noed', # 0xd3 'noel', # 0xd4 'noelg', # 0xd5 'noelm', # 0xd6 'noelb', # 0xd7 'noels', # 0xd8 'noelt', # 0xd9 'noelp', # 0xda 'noelh', # 0xdb 'noem', # 0xdc 'noeb', # 0xdd 'noebs', # 0xde 'noes', # 0xdf 'noess', # 0xe0 'noeng', # 0xe1 'noej', # 0xe2 'noec', # 0xe3 'noek', # 0xe4 'noet', # 0xe5 'noep', # 0xe6 'noeh', # 0xe7 'nyo', # 0xe8 'nyog', # 0xe9 'nyogg', # 0xea 'nyogs', # 0xeb 'nyon', # 0xec 'nyonj', # 0xed 'nyonh', # 0xee 'nyod', # 0xef 'nyol', # 0xf0 'nyolg', # 0xf1 'nyolm', # 0xf2 'nyolb', # 0xf3 'nyols', # 0xf4 'nyolt', # 0xf5 'nyolp', # 0xf6 'nyolh', # 0xf7 'nyom', # 0xf8 'nyob', # 0xf9 'nyobs', # 0xfa 'nyos', # 0xfb 'nyoss', # 0xfc 'nyong', # 0xfd 'nyoj', # 0xfe 'nyoc', # 0xff )
jacroe/spynot
refs/heads/master
google/protobuf/internal/wire_format.py
561
# Protocol Buffers - Google's data interchange format # Copyright 2008 Google Inc. All rights reserved. # http://code.google.com/p/protobuf/ # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Constants and static functions to support protocol buffer wire format.""" __author__ = 'robinson@google.com (Will Robinson)' import struct from google.protobuf import descriptor from google.protobuf import message TAG_TYPE_BITS = 3 # Number of bits used to hold type info in a proto tag. TAG_TYPE_MASK = (1 << TAG_TYPE_BITS) - 1 # 0x7 # These numbers identify the wire type of a protocol buffer value. # We use the least-significant TAG_TYPE_BITS bits of the varint-encoded # tag-and-type to store one of these WIRETYPE_* constants. # These values must match WireType enum in google/protobuf/wire_format.h. WIRETYPE_VARINT = 0 WIRETYPE_FIXED64 = 1 WIRETYPE_LENGTH_DELIMITED = 2 WIRETYPE_START_GROUP = 3 WIRETYPE_END_GROUP = 4 WIRETYPE_FIXED32 = 5 _WIRETYPE_MAX = 5 # Bounds for various integer types. INT32_MAX = int((1 << 31) - 1) INT32_MIN = int(-(1 << 31)) UINT32_MAX = (1 << 32) - 1 INT64_MAX = (1 << 63) - 1 INT64_MIN = -(1 << 63) UINT64_MAX = (1 << 64) - 1 # "struct" format strings that will encode/decode the specified formats. FORMAT_UINT32_LITTLE_ENDIAN = '<I' FORMAT_UINT64_LITTLE_ENDIAN = '<Q' FORMAT_FLOAT_LITTLE_ENDIAN = '<f' FORMAT_DOUBLE_LITTLE_ENDIAN = '<d' # We'll have to provide alternate implementations of AppendLittleEndian*() on # any architectures where these checks fail. if struct.calcsize(FORMAT_UINT32_LITTLE_ENDIAN) != 4: raise AssertionError('Format "I" is not a 32-bit number.') if struct.calcsize(FORMAT_UINT64_LITTLE_ENDIAN) != 8: raise AssertionError('Format "Q" is not a 64-bit number.') def PackTag(field_number, wire_type): """Returns an unsigned 32-bit integer that encodes the field number and wire type information in standard protocol message wire format. Args: field_number: Expected to be an integer in the range [1, 1 << 29) wire_type: One of the WIRETYPE_* constants. """ if not 0 <= wire_type <= _WIRETYPE_MAX: raise message.EncodeError('Unknown wire type: %d' % wire_type) return (field_number << TAG_TYPE_BITS) | wire_type def UnpackTag(tag): """The inverse of PackTag(). Given an unsigned 32-bit number, returns a (field_number, wire_type) tuple. """ return (tag >> TAG_TYPE_BITS), (tag & TAG_TYPE_MASK) def ZigZagEncode(value): """ZigZag Transform: Encodes signed integers so that they can be effectively used with varint encoding. See wire_format.h for more details. """ if value >= 0: return value << 1 return (value << 1) ^ (~0) def ZigZagDecode(value): """Inverse of ZigZagEncode().""" if not value & 0x1: return value >> 1 return (value >> 1) ^ (~0) # The *ByteSize() functions below return the number of bytes required to # serialize "field number + type" information and then serialize the value. def Int32ByteSize(field_number, int32): return Int64ByteSize(field_number, int32) def Int32ByteSizeNoTag(int32): return _VarUInt64ByteSizeNoTag(0xffffffffffffffff & int32) def Int64ByteSize(field_number, int64): # Have to convert to uint before calling UInt64ByteSize(). return UInt64ByteSize(field_number, 0xffffffffffffffff & int64) def UInt32ByteSize(field_number, uint32): return UInt64ByteSize(field_number, uint32) def UInt64ByteSize(field_number, uint64): return TagByteSize(field_number) + _VarUInt64ByteSizeNoTag(uint64) def SInt32ByteSize(field_number, int32): return UInt32ByteSize(field_number, ZigZagEncode(int32)) def SInt64ByteSize(field_number, int64): return UInt64ByteSize(field_number, ZigZagEncode(int64)) def Fixed32ByteSize(field_number, fixed32): return TagByteSize(field_number) + 4 def Fixed64ByteSize(field_number, fixed64): return TagByteSize(field_number) + 8 def SFixed32ByteSize(field_number, sfixed32): return TagByteSize(field_number) + 4 def SFixed64ByteSize(field_number, sfixed64): return TagByteSize(field_number) + 8 def FloatByteSize(field_number, flt): return TagByteSize(field_number) + 4 def DoubleByteSize(field_number, double): return TagByteSize(field_number) + 8 def BoolByteSize(field_number, b): return TagByteSize(field_number) + 1 def EnumByteSize(field_number, enum): return UInt32ByteSize(field_number, enum) def StringByteSize(field_number, string): return BytesByteSize(field_number, string.encode('utf-8')) def BytesByteSize(field_number, b): return (TagByteSize(field_number) + _VarUInt64ByteSizeNoTag(len(b)) + len(b)) def GroupByteSize(field_number, message): return (2 * TagByteSize(field_number) # START and END group. + message.ByteSize()) def MessageByteSize(field_number, message): return (TagByteSize(field_number) + _VarUInt64ByteSizeNoTag(message.ByteSize()) + message.ByteSize()) def MessageSetItemByteSize(field_number, msg): # First compute the sizes of the tags. # There are 2 tags for the beginning and ending of the repeated group, that # is field number 1, one with field number 2 (type_id) and one with field # number 3 (message). total_size = (2 * TagByteSize(1) + TagByteSize(2) + TagByteSize(3)) # Add the number of bytes for type_id. total_size += _VarUInt64ByteSizeNoTag(field_number) message_size = msg.ByteSize() # The number of bytes for encoding the length of the message. total_size += _VarUInt64ByteSizeNoTag(message_size) # The size of the message. total_size += message_size return total_size def TagByteSize(field_number): """Returns the bytes required to serialize a tag with this field number.""" # Just pass in type 0, since the type won't affect the tag+type size. return _VarUInt64ByteSizeNoTag(PackTag(field_number, 0)) # Private helper function for the *ByteSize() functions above. def _VarUInt64ByteSizeNoTag(uint64): """Returns the number of bytes required to serialize a single varint using boundary value comparisons. (unrolled loop optimization -WPierce) uint64 must be unsigned. """ if uint64 <= 0x7f: return 1 if uint64 <= 0x3fff: return 2 if uint64 <= 0x1fffff: return 3 if uint64 <= 0xfffffff: return 4 if uint64 <= 0x7ffffffff: return 5 if uint64 <= 0x3ffffffffff: return 6 if uint64 <= 0x1ffffffffffff: return 7 if uint64 <= 0xffffffffffffff: return 8 if uint64 <= 0x7fffffffffffffff: return 9 if uint64 > UINT64_MAX: raise message.EncodeError('Value out of range: %d' % uint64) return 10 NON_PACKABLE_TYPES = ( descriptor.FieldDescriptor.TYPE_STRING, descriptor.FieldDescriptor.TYPE_GROUP, descriptor.FieldDescriptor.TYPE_MESSAGE, descriptor.FieldDescriptor.TYPE_BYTES ) def IsTypePackable(field_type): """Return true iff packable = true is valid for fields of this type. Args: field_type: a FieldDescriptor::Type value. Returns: True iff fields of this type are packable. """ return field_type not in NON_PACKABLE_TYPES
joedursun/.emacs.d
refs/heads/master
elpa/elpy-20150226.1148/elpy/tests/compat.py
43
"""Python 2/3 compatibility definitions. These are used by the rest of Elpy to keep compatibility definitions in one place. """ import sys if sys.version_info >= (3, 0): PYTHON3 = True import builtins from io import StringIO else: PYTHON3 = False import __builtin__ as builtins # noqa from StringIO import StringIO # noqa
iseppi/zookeepr
refs/heads/master
zk/model/voucher.py
5
"""The application's model objects""" import sqlalchemy as sa from meta import Base from pylons.controllers.util import abort from person import Person from product import Product from meta import Session class Voucher(Base): __tablename__ = 'voucher' id = sa.Column(sa.types.Integer, primary_key=True) code = sa.Column(sa.types.Text, nullable=False, unique=True) comment = sa.Column(sa.types.Text, nullable=False) leader_id = sa.Column(sa.types.Integer, sa.ForeignKey('person.id'), nullable=False) creation_timestamp = sa.Column(sa.types.DateTime, nullable=False, default=sa.func.current_timestamp()) last_modification_timestamp = sa.Column(sa.types.DateTime, nullable=False, default=sa.func.current_timestamp(), onupdate=sa.func.current_timestamp()) leader = sa.orm.relation(Person, backref=sa.orm.backref('vouchers', cascade="all, delete-orphan")) def __init__(self, **kwargs): # remove the args that should never be set via creation super(Voucher, self).__init__(**kwargs) def __repr__(self): return '<Voucher id=%r code=%r comment=%r leader_id=%r>' % (self.id, self.code, self.comment, self.leader_id) @classmethod def find_all(cls): return Session.query(Voucher).order_by(Voucher.id).all() @classmethod def find_by_id(cls, id): return Session.query(Voucher).filter_by(id=id).first() @classmethod def find_by_code(cls, code): return Session.query(Voucher).filter_by(code=code).first() class VoucherProduct(Base): # table definitions __tablename__ = 'voucher_product' voucher_id = sa.Column(sa.Integer, sa.ForeignKey('voucher.id'), primary_key=True) product_id = sa.Column(sa.Integer, sa.ForeignKey('product.id'), primary_key=True) qty = sa.Column(sa.Integer, nullable=False) percentage = sa.Column(sa.Integer, nullable=False) # relations voucher = sa.orm.relation(Voucher, lazy=True, backref=sa.orm.backref('products', cascade="all, delete-orphan")) product = sa.orm.relation(Product, lazy=True, backref=sa.orm.backref('vouchers', cascade="all, delete-orphan")) def __init__(self, **kwargs): # remove the args that should never be set via creation super(VoucherProduct, self).__init__(**kwargs) def __repr__(self): return '<VoucherProduct>' @classmethod def find_all(cls): return Session.query(VoucherProduct).order_by(VoucherProduct.id).all()
jspargo/AneMo
refs/heads/master
django/lib/python2.7/site-packages/django/db/backends/mysql/client.py
84
import os import sys from django.db.backends import BaseDatabaseClient class DatabaseClient(BaseDatabaseClient): executable_name = 'mysql' def runshell(self): settings_dict = self.connection.settings_dict args = [self.executable_name] db = settings_dict['OPTIONS'].get('db', settings_dict['NAME']) user = settings_dict['OPTIONS'].get('user', settings_dict['USER']) passwd = settings_dict['OPTIONS'].get('passwd', settings_dict['PASSWORD']) host = settings_dict['OPTIONS'].get('host', settings_dict['HOST']) port = settings_dict['OPTIONS'].get('port', settings_dict['PORT']) defaults_file = settings_dict['OPTIONS'].get('read_default_file') # Seems to be no good way to set sql_mode with CLI. if defaults_file: args += ["--defaults-file=%s" % defaults_file] if user: args += ["--user=%s" % user] if passwd: args += ["--password=%s" % passwd] if host: if '/' in host: args += ["--socket=%s" % host] else: args += ["--host=%s" % host] if port: args += ["--port=%s" % port] if db: args += [db] if os.name == 'nt': sys.exit(os.system(" ".join(args))) else: os.execvp(self.executable_name, args)
rodolfoams/tsp-solver
refs/heads/master
src/tspsolver/solver/geneticsearch.py
1
from random import shuffle, randint, random, choice from ..core import Edge from sys import maxint from math import sqrt, ceil mutationRate = 0.001 populationSize = 200 tournamentSize = 7 crossoverProbability = 0.85 eliteSize = 3 def totalCost(population): # return reduce(lambda x, y: x + y[1] if isinstance(x, int) else x[1] + y[1],population) return reduce(lambda x, y: x + y, map(lambda x: x[1],population)) # return sum([x[1] for x in population]) def cost(path, sparseMatrix): distance = 0 for i in xrange(len(path)): source = path[i] target = path[(i+1)%len(path)] distance += sparseMatrix[source.index][target.index] return distance def getFittest(population): bestPath = None bestDistance = maxint for individual in population: c = individual[1] if c < bestDistance: bestPath = individual[0] bestDistance = c return bestPath, bestDistance def tournamentSelection(population): tournament = list() tCost = totalCost(population) weighedPopulation = [k for k in population for i in xrange(int(ceil(float(tCost)/k[1])))] for i in xrange(tournamentSize): tournament.append(choice(weighedPopulation)) return getFittest(tournament)[0] def crossover(p1, p2): child = [None] * len(p1) startPos = randint(0,len(p1)) endPos = randint(0,len(p1)) for i in xrange(len(p1)): if startPos < endPos and i > startPos and i < endPos: child[i] = p1[i] elif startPos > endPos: if not (i < startPos and i > endPos): child[i] = p1[i] for i in xrange(len(p2)): if p2[i] not in child: for j in xrange(len(child)): if child[j] == None: child[j] = p2[i] break return child def mutate(path): individual = list(path) for i in xrange(len(individual)): if random() < mutationRate: j = randint(0,len(individual)-1) aux = individual[j] individual[j] = individual[i] individual[i] = aux return individual def evolvePopulation(population, sparseMatrix): population = sorted(population,key=lambda x: x[1]) elite = population[:eliteSize] newPopulation = list() for i in xrange(eliteSize,populationSize): child = None if random() <= crossoverProbability: parent1 = tournamentSelection(population) parent2 = tournamentSelection(population) child = crossover(parent1,parent2) else: child = population[i][0] newPopulation.append(child) for i in xrange(populationSize-eliteSize): newPopulation[i] = mutate(newPopulation[i]) return elite + [(x, cost(x,sparseMatrix)) for x in newPopulation] def geneticSearch(graph, iterations=100): vertices = list(graph.vertices) population = list() sparseMatrix = graph.sparseMatrix bestPath = None bestDistance = maxint for i in xrange(populationSize): shuffle(vertices) aux = list(vertices) population.append((aux,cost(aux,sparseMatrix))) bestPath, bestDistance = getFittest(population) for i in xrange(iterations): population = evolvePopulation(population,sparseMatrix) iterBestPath, iterBestDistance = getFittest(population) if iterBestDistance < bestDistance: bestDistance = iterBestDistance bestPath = iterBestPath return bestDistance
mlorbetske/PTVS
refs/heads/master
Python/Product/Django/Templates/Projects/DjangoWebRole/manage.py
57
#!/usr/bin/env python """ Command-line utility for administrative tasks. """ import os import sys if __name__ == "__main__": os.environ.setdefault( "DJANGO_SETTINGS_MODULE", "$safeprojectname$.settings" ) from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
linktlh/Toontown-journey
refs/heads/master
otp/distributed/AccountAI.py
5
from direct.directnotify import DirectNotifyGlobal from direct.distributed.DistributedObjectAI import DistributedObjectAI class AccountAI(DistributedObjectAI): notify = DirectNotifyGlobal.directNotify.newCategory("AccountAI")
thaim/ansible
refs/heads/fix-broken-link
test/units/modules/network/fortios/test_fortios_firewall_schedule_onetime.py
21
# Copyright 2019 Fortinet, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <https://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type import os import json import pytest from mock import ANY from ansible.module_utils.network.fortios.fortios import FortiOSHandler try: from ansible.modules.network.fortios import fortios_firewall_schedule_onetime except ImportError: pytest.skip("Could not load required modules for testing", allow_module_level=True) @pytest.fixture(autouse=True) def connection_mock(mocker): connection_class_mock = mocker.patch('ansible.modules.network.fortios.fortios_firewall_schedule_onetime.Connection') return connection_class_mock fos_instance = FortiOSHandler(connection_mock) def test_firewall_schedule_onetime_creation(mocker): schema_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.schema') set_method_result = {'status': 'success', 'http_method': 'POST', 'http_status': 200} set_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.set', return_value=set_method_result) input_data = { 'username': 'admin', 'state': 'present', 'firewall_schedule_onetime': { 'color': '3', 'end': 'test_value_4', 'expiration_days': '5', 'name': 'default_name_6', 'start': 'test_value_7' }, 'vdom': 'root'} is_error, changed, response = fortios_firewall_schedule_onetime.fortios_firewall_schedule(input_data, fos_instance) expected_data = { 'color': '3', 'end': 'test_value_4', 'expiration-days': '5', 'name': 'default_name_6', 'start': 'test_value_7' } set_method_mock.assert_called_with('firewall.schedule', 'onetime', data=expected_data, vdom='root') schema_method_mock.assert_not_called() assert not is_error assert changed assert response['status'] == 'success' assert response['http_status'] == 200 def test_firewall_schedule_onetime_creation_fails(mocker): schema_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.schema') set_method_result = {'status': 'error', 'http_method': 'POST', 'http_status': 500} set_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.set', return_value=set_method_result) input_data = { 'username': 'admin', 'state': 'present', 'firewall_schedule_onetime': { 'color': '3', 'end': 'test_value_4', 'expiration_days': '5', 'name': 'default_name_6', 'start': 'test_value_7' }, 'vdom': 'root'} is_error, changed, response = fortios_firewall_schedule_onetime.fortios_firewall_schedule(input_data, fos_instance) expected_data = { 'color': '3', 'end': 'test_value_4', 'expiration-days': '5', 'name': 'default_name_6', 'start': 'test_value_7' } set_method_mock.assert_called_with('firewall.schedule', 'onetime', data=expected_data, vdom='root') schema_method_mock.assert_not_called() assert is_error assert not changed assert response['status'] == 'error' assert response['http_status'] == 500 def test_firewall_schedule_onetime_removal(mocker): schema_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.schema') delete_method_result = {'status': 'success', 'http_method': 'POST', 'http_status': 200} delete_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.delete', return_value=delete_method_result) input_data = { 'username': 'admin', 'state': 'absent', 'firewall_schedule_onetime': { 'color': '3', 'end': 'test_value_4', 'expiration_days': '5', 'name': 'default_name_6', 'start': 'test_value_7' }, 'vdom': 'root'} is_error, changed, response = fortios_firewall_schedule_onetime.fortios_firewall_schedule(input_data, fos_instance) delete_method_mock.assert_called_with('firewall.schedule', 'onetime', mkey=ANY, vdom='root') schema_method_mock.assert_not_called() assert not is_error assert changed assert response['status'] == 'success' assert response['http_status'] == 200 def test_firewall_schedule_onetime_deletion_fails(mocker): schema_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.schema') delete_method_result = {'status': 'error', 'http_method': 'POST', 'http_status': 500} delete_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.delete', return_value=delete_method_result) input_data = { 'username': 'admin', 'state': 'absent', 'firewall_schedule_onetime': { 'color': '3', 'end': 'test_value_4', 'expiration_days': '5', 'name': 'default_name_6', 'start': 'test_value_7' }, 'vdom': 'root'} is_error, changed, response = fortios_firewall_schedule_onetime.fortios_firewall_schedule(input_data, fos_instance) delete_method_mock.assert_called_with('firewall.schedule', 'onetime', mkey=ANY, vdom='root') schema_method_mock.assert_not_called() assert is_error assert not changed assert response['status'] == 'error' assert response['http_status'] == 500 def test_firewall_schedule_onetime_idempotent(mocker): schema_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.schema') set_method_result = {'status': 'error', 'http_method': 'DELETE', 'http_status': 404} set_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.set', return_value=set_method_result) input_data = { 'username': 'admin', 'state': 'present', 'firewall_schedule_onetime': { 'color': '3', 'end': 'test_value_4', 'expiration_days': '5', 'name': 'default_name_6', 'start': 'test_value_7' }, 'vdom': 'root'} is_error, changed, response = fortios_firewall_schedule_onetime.fortios_firewall_schedule(input_data, fos_instance) expected_data = { 'color': '3', 'end': 'test_value_4', 'expiration-days': '5', 'name': 'default_name_6', 'start': 'test_value_7' } set_method_mock.assert_called_with('firewall.schedule', 'onetime', data=expected_data, vdom='root') schema_method_mock.assert_not_called() assert not is_error assert not changed assert response['status'] == 'error' assert response['http_status'] == 404 def test_firewall_schedule_onetime_filter_foreign_attributes(mocker): schema_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.schema') set_method_result = {'status': 'success', 'http_method': 'POST', 'http_status': 200} set_method_mock = mocker.patch('ansible.module_utils.network.fortios.fortios.FortiOSHandler.set', return_value=set_method_result) input_data = { 'username': 'admin', 'state': 'present', 'firewall_schedule_onetime': { 'random_attribute_not_valid': 'tag', 'color': '3', 'end': 'test_value_4', 'expiration_days': '5', 'name': 'default_name_6', 'start': 'test_value_7' }, 'vdom': 'root'} is_error, changed, response = fortios_firewall_schedule_onetime.fortios_firewall_schedule(input_data, fos_instance) expected_data = { 'color': '3', 'end': 'test_value_4', 'expiration-days': '5', 'name': 'default_name_6', 'start': 'test_value_7' } set_method_mock.assert_called_with('firewall.schedule', 'onetime', data=expected_data, vdom='root') schema_method_mock.assert_not_called() assert not is_error assert changed assert response['status'] == 'success' assert response['http_status'] == 200
apprentice3d/Wox
refs/heads/master
PythonHome/Lib/site-packages/requests/packages/chardet/langgreekmodel.py
2762
######################## BEGIN LICENSE BLOCK ######################## # The Original Code is Mozilla Communicator client code. # # The Initial Developer of the Original Code is # Netscape Communications Corporation. # Portions created by the Initial Developer are Copyright (C) 1998 # the Initial Developer. All Rights Reserved. # # Contributor(s): # Mark Pilgrim - port to Python # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA # 02110-1301 USA ######################### END LICENSE BLOCK ######################### # 255: Control characters that usually does not exist in any text # 254: Carriage/Return # 253: symbol (punctuation) that does not belong to word # 252: 0 - 9 # Character Mapping Table: Latin7_CharToOrderMap = ( 255,255,255,255,255,255,255,255,255,255,254,255,255,254,255,255, # 00 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, # 10 253,253,253,253,253,253,253,253,253,253,253,253,253,253,253,253, # 20 252,252,252,252,252,252,252,252,252,252,253,253,253,253,253,253, # 30 253, 82,100,104, 94, 98,101,116,102,111,187,117, 92, 88,113, 85, # 40 79,118,105, 83, 67,114,119, 95, 99,109,188,253,253,253,253,253, # 50 253, 72, 70, 80, 81, 60, 96, 93, 89, 68,120, 97, 77, 86, 69, 55, # 60 78,115, 65, 66, 58, 76,106,103, 87,107,112,253,253,253,253,253, # 70 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, # 80 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, # 90 253,233, 90,253,253,253,253,253,253,253,253,253,253, 74,253,253, # a0 253,253,253,253,247,248, 61, 36, 46, 71, 73,253, 54,253,108,123, # b0 110, 31, 51, 43, 41, 34, 91, 40, 52, 47, 44, 53, 38, 49, 59, 39, # c0 35, 48,250, 37, 33, 45, 56, 50, 84, 57,120,121, 17, 18, 22, 15, # d0 124, 1, 29, 20, 21, 3, 32, 13, 25, 5, 11, 16, 10, 6, 30, 4, # e0 9, 8, 14, 7, 2, 12, 28, 23, 42, 24, 64, 75, 19, 26, 27,253, # f0 ) win1253_CharToOrderMap = ( 255,255,255,255,255,255,255,255,255,255,254,255,255,254,255,255, # 00 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, # 10 253,253,253,253,253,253,253,253,253,253,253,253,253,253,253,253, # 20 252,252,252,252,252,252,252,252,252,252,253,253,253,253,253,253, # 30 253, 82,100,104, 94, 98,101,116,102,111,187,117, 92, 88,113, 85, # 40 79,118,105, 83, 67,114,119, 95, 99,109,188,253,253,253,253,253, # 50 253, 72, 70, 80, 81, 60, 96, 93, 89, 68,120, 97, 77, 86, 69, 55, # 60 78,115, 65, 66, 58, 76,106,103, 87,107,112,253,253,253,253,253, # 70 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, # 80 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, # 90 253,233, 61,253,253,253,253,253,253,253,253,253,253, 74,253,253, # a0 253,253,253,253,247,253,253, 36, 46, 71, 73,253, 54,253,108,123, # b0 110, 31, 51, 43, 41, 34, 91, 40, 52, 47, 44, 53, 38, 49, 59, 39, # c0 35, 48,250, 37, 33, 45, 56, 50, 84, 57,120,121, 17, 18, 22, 15, # d0 124, 1, 29, 20, 21, 3, 32, 13, 25, 5, 11, 16, 10, 6, 30, 4, # e0 9, 8, 14, 7, 2, 12, 28, 23, 42, 24, 64, 75, 19, 26, 27,253, # f0 ) # Model Table: # total sequences: 100% # first 512 sequences: 98.2851% # first 1024 sequences:1.7001% # rest sequences: 0.0359% # negative sequences: 0.0148% GreekLangModel = ( 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,3,2,2,3,3,3,3,3,3,3,3,1,3,3,3,0,2,2,3,3,0,3,0,3,2,0,3,3,3,0, 3,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,3,3,3,3,0,3,3,0,3,2,3,3,0,3,2,3,3,3,0,0,3,0,3,0,3,3,2,0,0,0, 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0, 0,2,3,2,2,3,3,3,3,3,3,3,3,0,3,3,3,3,0,2,3,3,0,3,3,3,3,2,3,3,3,0, 2,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,2,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,0,2,1,3,3,3,3,2,3,3,2,3,3,2,0, 0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,3,3,3,0,3,3,3,3,3,3,0,3,3,0,3,3,3,3,3,3,3,3,3,3,0,3,2,3,3,0, 2,0,1,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 0,3,3,3,3,3,2,3,0,0,0,0,3,3,0,3,1,3,3,3,0,3,3,0,3,3,3,3,0,0,0,0, 2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,3,3,3,3,0,3,0,3,3,3,3,3,0,3,2,2,2,3,0,2,3,3,3,3,3,2,3,3,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,3,3,3,3,3,2,2,2,3,3,3,3,0,3,1,3,3,3,3,2,3,3,3,3,3,3,3,2,2,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,3,3,3,3,2,0,3,0,0,0,3,3,2,3,3,3,3,3,0,0,3,2,3,0,2,3,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,0,3,3,3,3,0,0,3,3,0,2,3,0,3,0,3,3,3,0,0,3,0,3,0,2,2,3,3,0,0, 0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,3,3,3,3,2,0,3,2,3,3,3,3,0,3,3,3,3,3,0,3,3,2,3,2,3,3,2,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,3,2,3,2,3,3,3,3,3,3,0,2,3,2,3,2,2,2,3,2,3,3,2,3,0,2,2,2,3,0, 2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,3,0,0,0,3,3,3,2,3,3,0,0,3,0,3,0,0,0,3,2,0,3,0,3,0,0,2,0,2,0, 0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,3,3,3,0,3,3,3,3,3,3,0,3,3,0,3,0,0,0,3,3,0,3,3,3,0,0,1,2,3,0, 3,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,3,3,3,3,2,0,0,3,2,2,3,3,0,3,3,3,3,3,2,1,3,0,3,2,3,3,2,1,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,3,3,0,2,3,3,3,3,3,3,0,0,3,0,3,0,0,0,3,3,0,3,2,3,0,0,3,3,3,0, 3,0,0,0,2,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,3,3,3,0,3,3,3,3,3,3,0,0,3,0,3,0,0,0,3,2,0,3,2,3,0,0,3,2,3,0, 2,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,3,1,2,2,3,3,3,3,3,3,0,2,3,0,3,0,0,0,3,3,0,3,0,2,0,0,2,3,1,0, 2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,0,3,3,3,3,0,3,0,3,3,2,3,0,3,3,3,3,3,3,0,3,3,3,0,2,3,0,0,3,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,0,3,3,3,0,0,3,0,0,0,3,3,0,3,0,2,3,3,0,0,3,0,3,0,3,3,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,3,0,0,0,3,3,3,3,3,3,0,0,3,0,2,0,0,0,3,3,0,3,0,3,0,0,2,0,2,0, 0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,3,3,3,3,3,0,3,0,2,0,3,2,0,3,2,3,2,3,0,0,3,2,3,2,3,3,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,3,0,0,2,3,3,3,3,3,0,0,0,3,0,2,1,0,0,3,2,2,2,0,3,0,0,2,2,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,0,3,3,3,2,0,3,0,3,0,3,3,0,2,1,2,3,3,0,0,3,0,3,0,3,3,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,2,3,3,3,0,3,3,3,3,3,3,0,2,3,0,3,0,0,0,2,1,0,2,2,3,0,0,2,2,2,0, 0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,3,0,0,2,3,3,3,2,3,0,0,1,3,0,2,0,0,0,0,3,0,1,0,2,0,0,1,1,1,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,3,3,3,3,1,0,3,0,0,0,3,2,0,3,2,3,3,3,0,0,3,0,3,2,2,2,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,0,3,3,3,0,0,3,0,0,0,0,2,0,2,3,3,2,2,2,2,3,0,2,0,2,2,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,3,3,3,2,0,0,0,0,0,0,2,3,0,2,0,2,3,2,0,0,3,0,3,0,3,1,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,3,2,3,3,2,2,3,0,2,0,3,0,0,0,2,0,0,0,0,1,2,0,2,0,2,0, 0,2,0,2,0,2,2,0,0,1,0,2,2,2,0,2,2,2,0,2,2,2,0,0,2,0,0,1,0,0,0,0, 0,2,0,3,3,2,0,0,0,0,0,0,1,3,0,2,0,2,2,2,0,0,2,0,3,0,0,2,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,3,0,2,3,2,0,2,2,0,2,0,2,2,0,2,0,2,2,2,0,0,0,0,0,0,2,3,0,0,0,2, 0,1,2,0,0,0,0,2,2,0,0,0,2,1,0,2,2,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0, 0,0,2,1,0,2,3,2,2,3,2,3,2,0,0,3,3,3,0,0,3,2,0,0,0,1,1,0,2,0,2,2, 0,2,0,2,0,2,2,0,0,2,0,2,2,2,0,2,2,2,2,0,0,2,0,0,0,2,0,1,0,0,0,0, 0,3,0,3,3,2,2,0,3,0,0,0,2,2,0,2,2,2,1,2,0,0,1,2,2,0,0,3,0,0,0,2, 0,1,2,0,0,0,1,2,0,0,0,0,0,0,0,2,2,0,1,0,0,2,0,0,0,2,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,2,3,3,2,2,0,0,0,2,0,2,3,3,0,2,0,0,0,0,0,0,2,2,2,0,2,2,0,2,0,2, 0,2,2,0,0,2,2,2,2,1,0,0,2,2,0,2,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0, 0,2,0,3,2,3,0,0,0,3,0,0,2,2,0,2,0,2,2,2,0,0,2,0,0,0,0,0,0,0,0,2, 0,0,2,2,0,0,2,2,2,0,0,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,2,0,0,3,2,0,2,2,2,2,2,0,0,0,2,0,0,0,0,2,0,1,0,0,2,0,1,0,0,0, 0,2,2,2,0,2,2,0,1,2,0,2,2,2,0,2,2,2,2,1,2,2,0,0,2,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 0,2,0,2,0,2,2,0,0,0,0,1,2,1,0,0,2,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,3,2,3,0,0,2,0,0,0,2,2,0,2,0,0,0,1,0,0,2,0,2,0,2,2,0,0,0,0, 0,0,2,0,0,0,0,2,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0, 0,2,2,3,2,2,0,0,0,0,0,0,1,3,0,2,0,2,2,0,0,0,1,0,2,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,2,0,2,0,3,2,0,2,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 0,0,2,0,0,0,0,1,1,0,0,2,1,2,0,2,2,0,1,0,0,1,0,0,0,2,0,0,0,0,0,0, 0,3,0,2,2,2,0,0,2,0,0,0,2,0,0,0,2,3,0,2,0,0,0,0,0,0,2,2,0,0,0,2, 0,1,2,0,0,0,1,2,2,1,0,0,0,2,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,2,1,2,0,2,2,0,2,0,0,2,0,0,0,0,1,2,1,0,2,1,0,0,0,0,0,0,0,0,0,0, 0,0,2,0,0,0,3,1,2,2,0,2,0,0,0,0,2,0,0,0,2,0,0,3,0,0,0,0,2,2,2,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,2,1,0,2,0,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,1,0,0,0,0,0,0,2, 0,2,2,0,0,2,2,2,2,2,0,1,2,0,0,0,2,2,0,1,0,2,0,0,2,2,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,2,0,0,0,0,0,0,0,0,2,0,2,0,0,0,0,2, 0,1,2,0,0,0,0,2,2,1,0,1,0,1,0,2,2,2,1,0,0,0,0,0,0,1,0,0,0,0,0,0, 0,2,0,1,2,0,0,0,0,0,0,0,0,0,0,2,0,0,2,2,0,0,0,0,1,0,0,0,0,0,0,2, 0,2,2,0,0,0,0,2,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0, 0,2,2,2,2,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,1, 0,0,2,0,0,0,0,1,2,0,0,0,0,0,0,2,2,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0, 0,2,0,2,2,2,0,0,2,0,0,0,0,0,0,0,2,2,2,0,0,0,2,0,0,0,0,0,0,0,0,2, 0,0,1,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 0,3,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,2,0,0,0,0,2, 0,0,2,0,0,0,0,2,2,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,2,0,2,2,1,0,0,0,0,0,0,2,0,0,2,0,2,2,2,0,0,0,0,0,0,2,0,0,0,0,2, 0,0,2,0,0,2,0,2,2,0,0,0,0,2,0,2,0,0,0,0,0,2,0,0,0,2,0,0,0,0,0,0, 0,0,3,0,0,0,2,2,0,2,2,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,0,0,0,0, 0,2,2,2,2,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1, 0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,2,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 0,2,0,0,0,2,0,0,0,0,0,1,0,0,0,0,2,2,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,2,0,0,0, 0,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,2,0,2,0,0,0, 0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,2,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, ) Latin7GreekModel = { 'charToOrderMap': Latin7_CharToOrderMap, 'precedenceMatrix': GreekLangModel, 'mTypicalPositiveRatio': 0.982851, 'keepEnglishLetter': False, 'charsetName': "ISO-8859-7" } Win1253GreekModel = { 'charToOrderMap': win1253_CharToOrderMap, 'precedenceMatrix': GreekLangModel, 'mTypicalPositiveRatio': 0.982851, 'keepEnglishLetter': False, 'charsetName': "windows-1253" } # flake8: noqa
nolanliou/tensorflow
refs/heads/master
tensorflow/examples/how_tos/reading_data/fully_connected_preloaded.py
130
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Trains the MNIST network using preloaded data in a constant. Run using bazel: bazel run --config opt \ <...>/tensorflow/examples/how_tos/reading_data:fully_connected_preloaded or, if installed via pip: cd tensorflow/examples/how_tos/reading_data python fully_connected_preloaded.py """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import time import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.examples.tutorials.mnist import mnist # Basic model parameters as external flags. FLAGS = None def run_training(): """Train MNIST for a number of epochs.""" # Get the sets of images and labels for training, validation, and # test on MNIST. data_sets = input_data.read_data_sets(FLAGS.train_dir, FLAGS.fake_data) # Tell TensorFlow that the model will be built into the default Graph. with tf.Graph().as_default(): with tf.name_scope('input'): # Input data, pin to CPU because rest of pipeline is CPU-only with tf.device('/cpu:0'): input_images = tf.constant(data_sets.train.images) input_labels = tf.constant(data_sets.train.labels) image, label = tf.train.slice_input_producer( [input_images, input_labels], num_epochs=FLAGS.num_epochs) label = tf.cast(label, tf.int32) images, labels = tf.train.batch( [image, label], batch_size=FLAGS.batch_size) # Build a Graph that computes predictions from the inference model. logits = mnist.inference(images, FLAGS.hidden1, FLAGS.hidden2) # Add to the Graph the Ops for loss calculation. loss = mnist.loss(logits, labels) # Add to the Graph the Ops that calculate and apply gradients. train_op = mnist.training(loss, FLAGS.learning_rate) # Add the Op to compare the logits to the labels during evaluation. eval_correct = mnist.evaluation(logits, labels) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Create a saver for writing training checkpoints. saver = tf.train.Saver() # Create the op for initializing variables. init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) # Create a session for running Ops on the Graph. sess = tf.Session() # Run the Op to initialize the variables. sess.run(init_op) # Instantiate a SummaryWriter to output summaries and the Graph. summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph) # Start input enqueue threads. coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # And then after everything is built, start the training loop. try: step = 0 while not coord.should_stop(): start_time = time.time() # Run one step of the model. _, loss_value = sess.run([train_op, loss]) duration = time.time() - start_time # Write the summaries and print an overview fairly often. if step % 100 == 0: # Print status to stdout. print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration)) # Update the events file. summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) step += 1 # Save a checkpoint periodically. if (step + 1) % 1000 == 0: print('Saving') saver.save(sess, FLAGS.train_dir, global_step=step) step += 1 except tf.errors.OutOfRangeError: print('Saving') saver.save(sess, FLAGS.train_dir, global_step=step) print('Done training for %d epochs, %d steps.' % (FLAGS.num_epochs, step)) finally: # When done, ask the threads to stop. coord.request_stop() # Wait for threads to finish. coord.join(threads) sess.close() def main(_): run_training() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--learning_rate', type=float, default=0.01, help='Initial learning rate.' ) parser.add_argument( '--num_epochs', type=int, default=2, help='Number of epochs to run trainer.' ) parser.add_argument( '--hidden1', type=int, default=128, help='Number of units in hidden layer 1.' ) parser.add_argument( '--hidden2', type=int, default=32, help='Number of units in hidden layer 2.' ) parser.add_argument( '--batch_size', type=int, default=100, help='Batch size. Must divide evenly into the dataset sizes.' ) parser.add_argument( '--train_dir', type=str, default='/tmp/data', help='Directory to put the training data.' ) parser.add_argument( '--fake_data', default=False, help='If true, uses fake data for unit testing.', action='store_true' ) FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
named-data-ndnSIM/ns-3-dev
refs/heads/ndnSIM-ns-3.29
src/click/test/examples-to-run.py
62
#! /usr/bin/env python ## -*- Mode: python; py-indent-offset: 4; indent-tabs-mode: nil; coding: utf-8; -*- # A list of C++ examples to run in order to ensure that they remain # buildable and runnable over time. Each tuple in the list contains # # (example_name, do_run, do_valgrind_run). # # See test.py for more information. cpp_examples = [ ("nsclick-simple-lan --clickConfigFolder=../../src/click/examples", "NSCLICK == True", "False"), ("nsclick-raw-wlan --clickConfigFolder=../../src/click/examples", "NSCLICK == True", "False"), ("nsclick-udp-client-server-csma --clickConfigFolder=../../src/click/examples", "NSCLICK == True", "False"), ("nsclick-udp-client-server-wifi --clickConfigFolder=../../src/click/examples", "NSCLICK == True", "False"), ("nsclick-routing --clickConfigFolder=../../src/click/examples", "NSCLICK == True", "False"), ("nsclick-defines --clickConfigFolder=../../src/click/examples", "NSCLICK == True", "False"), ] # A list of Python examples to run in order to ensure that they remain # runnable over time. Each tuple in the list contains # # (example_name, do_run). # # See test.py for more information. python_examples = []
rcommande/decorrelate
refs/heads/master
decorrelate/tests/test_decorrelate.py
1
import pytest import sys @pytest.fixture def clean_registry(): import decorrelate registry = decorrelate.get_registry() registry._registered = {} ressources_module_name = 'decorrelate.tests.ressources' if ressources_module_name in sys.modules: del sys.modules[ressources_module_name] def test_get_proxy(clean_registry): import decorrelate registry = decorrelate.get_registry() def func(): pass def callback(): pass decorrelate.get_proxy(func, callback) assert len(registry) == 1 def test_get_proxy_with_category(clean_registry): import decorrelate registry = decorrelate.get_registry() def func(): pass def callback(): pass decorrelate.get_proxy(func, callback, category='test_category') assert len(registry) == 1 def test_original(clean_registry): import decorrelate registry = decorrelate.get_registry() def decorator(wrapped): def callback(callable): callable.wrapped = True return callable return decorrelate.get_proxy(wrapped, callback) @decorator def test_func(): pass assert hasattr(test_func, 'wrapped') is False assert len(registry) == 1 def test_activates(clean_registry): import decorrelate registry = decorrelate.get_registry() def decorator(wrapped): def callback(callable): callable.wrapped = True return callable return decorrelate.get_proxy(wrapped, callback) @decorator def test_func(): pass assert hasattr(test_func, 'wrapped') is False assert len(registry) == 1 decorrelate.activates() assert hasattr(test_func, 'wrapped') assert len(registry) == 0 def test_activates_proxy_attributes(clean_registry): import decorrelate def decorator(wrapped): def callback(callable): callable.wrapped = True callable.__doc__ = 'A test function after wrapping' return callable return decorrelate.get_proxy(wrapped, callback) @decorator def test_func(): """A test function""" pass assert test_func.__doc__ == 'A test function' assert isinstance(test_func, decorrelate.Proxy) assert test_func.__name__ == 'test_func' assert not repr(test_func).startswith('<decorrelate.Proxy object') decorrelate.activates() assert test_func.__doc__ == 'A test function after wrapping' assert isinstance(test_func, decorrelate.Proxy) assert test_func.__name__ == 'test_func' assert not repr(test_func).startswith('<decorrelate.Proxy object') def test_activates_decorator_with_parameter(clean_registry): import decorrelate registry = decorrelate.get_registry() def decorator(value, **kwargs): def wrapper(wrapped): def callback(callable): callable.wrapped = True callable.value = value for key, val in kwargs.items(): setattr(callable, key, val) return callable return decorrelate.get_proxy(wrapped, callback) return wrapper @decorator('My value', one=1, two=2, three=3) def test_func(): pass assert hasattr(test_func, 'wrapped') is False assert hasattr(test_func, 'value') is False assert hasattr(test_func, 'one') is False assert hasattr(test_func, 'two') is False assert hasattr(test_func, 'three') is False assert len(registry) == 1 decorrelate.activates() assert hasattr(test_func, 'wrapped') assert hasattr(test_func, 'value') assert test_func.value == 'My value' assert hasattr(test_func, 'one') assert test_func.one == 1 assert hasattr(test_func, 'two') assert test_func.two == 2 assert hasattr(test_func, 'three') assert test_func.three == 3 assert len(registry) == 0 def test_activates_with_category(clean_registry): import decorrelate registry = decorrelate.get_registry() def decorator(wrapped): def callback(callable): callable.wrapped = True return callable return decorrelate.get_proxy(wrapped, callback, category='a category') def decorator2(wrapped): def callback(callable): callable.wrapped = True return callable return decorrelate.get_proxy(wrapped, callback) @decorator def test_func(): pass @decorator2 def test_func2(): pass assert hasattr(test_func, 'wrapped') is False assert len(registry) == 2 decorrelate.activates(category='a category') assert hasattr(test_func, 'wrapped') assert len(registry) == 1 assert len(registry._registered['default']) == 1 assert len(registry._registered['a category']) == 0 def test_activates_with_same_category(clean_registry): import decorrelate registry = decorrelate.get_registry() def decorator(wrapped): def callback(callable): callable.wrapped = True return callable return decorrelate.get_proxy(wrapped, callback, category='a category') def decorator2(wrapped): def callback(callable): callable.wrapped = True return callable return decorrelate.get_proxy(wrapped, callback, category='a category') @decorator def test_func(): pass @decorator2 def test_func2(): pass assert hasattr(test_func, 'wrapped') is False assert len(registry) == 2 decorrelate.activates(category='a category') assert hasattr(test_func, 'wrapped') assert len(registry) == 0 assert len(registry._registered['a category']) == 0 def test_singleton(clean_registry): import decorrelate assert decorrelate.get_registry() == decorrelate.get_registry() assert id(decorrelate.get_registry()) == id(decorrelate.get_registry()) def test_decorrate_a_function(clean_registry): import decorrelate def decorator(wrapped): def callback(callable): callable.wrapped = True return callable return decorrelate.get_proxy(wrapped, callback) @decorator def a_test_function(): pass assert hasattr(a_test_function, 'wrapped') is False decorrelate.activates() assert hasattr(a_test_function, 'wrapped') def test_decorrate_a_function_from_another_module(clean_registry): import decorrelate from decorrelate.tests.ressources import a_test_function assert hasattr(a_test_function, 'wrapped') is False decorrelate.activates() assert hasattr(a_test_function, 'wrapped') def test_decorrate_a_class(clean_registry): import decorrelate def decorator(wrapped): def callback(callable): callable.wrapped = True return callable return decorrelate.get_proxy(wrapped, callback) @decorator class ATestClass(object): def __init__(self, *args, **kwargs): pass def __call__(self): pass assert hasattr(ATestClass(), 'wrapped') is False assert repr(ATestClass) == repr(ATestClass._callable) decorrelate.activates() assert hasattr(ATestClass(), 'wrapped') def test_decorrate_a_class_from_another_module(clean_registry): import decorrelate from decorrelate.tests.ressources import ATestClass assert hasattr(ATestClass(), 'wrapped') is False assert repr(ATestClass) == repr(ATestClass._callable) decorrelate.activates() assert hasattr(ATestClass(), 'wrapped') def test_decorrate_a_method(clean_registry): import decorrelate def decorator(wrapped): def callback(callable): callable.wrapped = True return callable return decorrelate.get_proxy(wrapped, callback) class ATestClass(object): def __init__(self, *args, **kwargs): pass @decorator def a_test_method(self): pass def __call__(self): pass assert hasattr(ATestClass().a_test_method, 'wrapped') is False decorrelate.activates() assert hasattr(ATestClass().a_test_method, 'wrapped') def test_decorrate_a_method_from_another_module(clean_registry): import decorrelate from decorrelate.tests.ressources import ATestClassWithDecoratedMethod assert hasattr(ATestClassWithDecoratedMethod().a_test_method, 'wrapped') is False decorrelate.activates() assert hasattr(ATestClassWithDecoratedMethod().a_test_method, 'wrapped')
plotly/python-api
refs/heads/master
packages/python/plotly/plotly/validators/area/marker/__init__.py
1
import sys if sys.version_info < (3, 7): from ._symbolsrc import SymbolsrcValidator from ._symbol import SymbolValidator from ._sizesrc import SizesrcValidator from ._size import SizeValidator from ._opacitysrc import OpacitysrcValidator from ._opacity import OpacityValidator from ._colorsrc import ColorsrcValidator from ._color import ColorValidator else: from _plotly_utils.importers import relative_import __all__, __getattr__, __dir__ = relative_import( __name__, [], [ "._symbolsrc.SymbolsrcValidator", "._symbol.SymbolValidator", "._sizesrc.SizesrcValidator", "._size.SizeValidator", "._opacitysrc.OpacitysrcValidator", "._opacity.OpacityValidator", "._colorsrc.ColorsrcValidator", "._color.ColorValidator", ], )
felixbuenemann/sentry
refs/heads/master
tests/sentry/metrics/test_datadog.py
14
from __future__ import absolute_import from mock import patch from datadog.util.hostname import get_hostname from sentry.metrics.datadog import DatadogMetricsBackend from sentry.testutils import TestCase class DatadogMetricsBackendTest(TestCase): def setUp(self): self.backend = DatadogMetricsBackend(prefix='sentrytest.') @patch('datadog.threadstats.base.ThreadStats.increment') def test_incr(self, mock_incr): self.backend.incr('foo', instance='bar') mock_incr.assert_called_once_with( 'sentrytest.foo', 1, tags=['instance:bar'], host=get_hostname(), ) @patch('datadog.threadstats.base.ThreadStats.timing') def test_timing(self, mock_timing): self.backend.timing('foo', 30, instance='bar') mock_timing.assert_called_once_with( 'sentrytest.foo', 30, sample_rate=1, tags=['instance:bar'], host=get_hostname(), )
swiperthefox/python-source-browser
refs/heads/master
app/__main__.py
1
from __future__ import ( absolute_import, print_function, unicode_literals ) import os import errno import logging import argparse from flask import Flask, request, jsonify, g, current_app, send_from_directory # Workaround for the werkzeug reloader removing the current directory from the # path. It's nasty, but it works! Inspired by: # https://github.com/mitsuhiko/flask/issues/1246 os.environ['PYTHONPATH'] = os.getcwd() from app.mktags import make_tags from app.htmlizer import pygmentize from app.db import PSBDatabase from app.path_utils import list_dir from app.search import search DATABASE = 'to be configured' DEBUG = False SECRET_KEY = 'we do not need it' USERNAME = 'no' PASSWORD = 'no' PROJECTROOT = 'to be configured' app = Flask(__name__) app.config.from_object(__name__) def config_app(project_root): """Configuration based on the proejct_root""" rel_project_root = os.path.relpath(project_root) abs_project_root = os.path.abspath(project_root) datadir = os.path.join(abs_project_root, "psb") uniquename = abs_project_root.replace(os.path.sep, "_") # root_as_file_name = os.path.abspath(project_root).replace(os.path.sep, '_') dbfile = os.path.join(datadir, uniquename + '.sqlite') tagsfile = os.path.join(datadir, uniquename + '.tags') config = { 'DATABASE': dbfile, 'PROJECTROOT': os.path.abspath(project_root), 'TAGSFILE': tagsfile } app.config.update(config) # create directories for data try: os.makedirs(datadir) except OSError as err: # it's ok if the directories already exist dirs_exist = err.errno == errno.EEXIST if not dirs_exist: raise # initialize the database only on the first time if not os.path.isfile(app.config['DATABASE']): with app.open_resource('schema.sql', mode='r') as schema_fd: PSBDatabase.initialize_db(app.config['DATABASE'], schema_fd.read()) make_tags(rel_project_root, app.config['TAGSFILE']) def get_db(): """Opens a new database connection if there is none yet for the current application context. """ if not hasattr(g, 'sqlite_db'): g.sqlite_db = PSBDatabase(app.config['DATABASE']) return g.sqlite_db @app.teardown_appcontext def close_db(error): """Closes the database again at the end of the request.""" if hasattr(g, 'sqlite_db'): g.sqlite_db.close() @app.route('/notes') def get_notes(): psb_db = get_db() result = psb_db.get_notes() return jsonify(data=result) @app.route('/notes', methods = ['POST']) def create_note(): psb_db = get_db() data = request.get_json(force=True) psb_db.add_note([data[key] for key in ('location', 'symbol', 'note')]) newNoteList = psb_db.get_notes() return jsonify(data=newNoteList) @app.route('/file/', defaults={'path': ''}) @app.route('/file/<path:path>') def get_source(path, use_cache=False): if path == '': return jsonify(list_dir(current_app.config['PROJECTROOT'])) pygments_config = { 'tagurlformat': '/file/%(path)s%(fname)s%(fext)s', 'tagsfile': current_app.config['TAGSFILE'] } full_path = os.path.join(current_app.config['PROJECTROOT'], path) if use_cache: psb_db = get_db() result = psb_db.get_html(path) if result is None: full_path = os.path.join(current_app.config['PROJECTROOT'], path) result = pygmentize(full_path, pygments_config) psb_db.save_html(path, result) else: result = pygmentize(full_path, pygments_config) return result @app.route('/') def index(): print ("index") return send_from_directory(os.path.dirname(__file__), 'index.html') @app.route('/search') def search_code(): term = request.values['term'] exact_word_search = request.values.get('exact', False) result = search(term, app.config['PROJECTROOT'], exact_word_search) return jsonify(data=result) def make_argparser(): parser = argparse.ArgumentParser(description="Browse the source code in given directory.") parser.add_argument('-p', '--port', default=9999, type=int, help="The port to be used.") parser.add_argument("project_root", help="The root directory of the project") return parser def main(): import sys import webbrowser import threading args = make_argparser().parse_args() port = args.port url = "http://localhost:%d" % port project_root = args.project_root config_app(project_root) # wait for 1 second so that the server can start threading.Timer(1, lambda: webbrowser.open(url, autoraise=True)).start() app.run(port=port, debug=DEBUG) if __name__ == '__main__': main()
Jonas-Drotleff/yo
refs/heads/master
requests/packages/chardet/universaldetector.py
1775
######################## BEGIN LICENSE BLOCK ######################## # The Original Code is Mozilla Universal charset detector code. # # The Initial Developer of the Original Code is # Netscape Communications Corporation. # Portions created by the Initial Developer are Copyright (C) 2001 # the Initial Developer. All Rights Reserved. # # Contributor(s): # Mark Pilgrim - port to Python # Shy Shalom - original C code # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA # 02110-1301 USA ######################### END LICENSE BLOCK ######################### from . import constants import sys import codecs from .latin1prober import Latin1Prober # windows-1252 from .mbcsgroupprober import MBCSGroupProber # multi-byte character sets from .sbcsgroupprober import SBCSGroupProber # single-byte character sets from .escprober import EscCharSetProber # ISO-2122, etc. import re MINIMUM_THRESHOLD = 0.20 ePureAscii = 0 eEscAscii = 1 eHighbyte = 2 class UniversalDetector: def __init__(self): self._highBitDetector = re.compile(b'[\x80-\xFF]') self._escDetector = re.compile(b'(\033|~{)') self._mEscCharSetProber = None self._mCharSetProbers = [] self.reset() def reset(self): self.result = {'encoding': None, 'confidence': 0.0} self.done = False self._mStart = True self._mGotData = False self._mInputState = ePureAscii self._mLastChar = b'' if self._mEscCharSetProber: self._mEscCharSetProber.reset() for prober in self._mCharSetProbers: prober.reset() def feed(self, aBuf): if self.done: return aLen = len(aBuf) if not aLen: return if not self._mGotData: # If the data starts with BOM, we know it is UTF if aBuf[:3] == codecs.BOM_UTF8: # EF BB BF UTF-8 with BOM self.result = {'encoding': "UTF-8-SIG", 'confidence': 1.0} elif aBuf[:4] == codecs.BOM_UTF32_LE: # FF FE 00 00 UTF-32, little-endian BOM self.result = {'encoding': "UTF-32LE", 'confidence': 1.0} elif aBuf[:4] == codecs.BOM_UTF32_BE: # 00 00 FE FF UTF-32, big-endian BOM self.result = {'encoding': "UTF-32BE", 'confidence': 1.0} elif aBuf[:4] == b'\xFE\xFF\x00\x00': # FE FF 00 00 UCS-4, unusual octet order BOM (3412) self.result = { 'encoding': "X-ISO-10646-UCS-4-3412", 'confidence': 1.0 } elif aBuf[:4] == b'\x00\x00\xFF\xFE': # 00 00 FF FE UCS-4, unusual octet order BOM (2143) self.result = { 'encoding': "X-ISO-10646-UCS-4-2143", 'confidence': 1.0 } elif aBuf[:2] == codecs.BOM_LE: # FF FE UTF-16, little endian BOM self.result = {'encoding': "UTF-16LE", 'confidence': 1.0} elif aBuf[:2] == codecs.BOM_BE: # FE FF UTF-16, big endian BOM self.result = {'encoding': "UTF-16BE", 'confidence': 1.0} self._mGotData = True if self.result['encoding'] and (self.result['confidence'] > 0.0): self.done = True return if self._mInputState == ePureAscii: if self._highBitDetector.search(aBuf): self._mInputState = eHighbyte elif ((self._mInputState == ePureAscii) and self._escDetector.search(self._mLastChar + aBuf)): self._mInputState = eEscAscii self._mLastChar = aBuf[-1:] if self._mInputState == eEscAscii: if not self._mEscCharSetProber: self._mEscCharSetProber = EscCharSetProber() if self._mEscCharSetProber.feed(aBuf) == constants.eFoundIt: self.result = {'encoding': self._mEscCharSetProber.get_charset_name(), 'confidence': self._mEscCharSetProber.get_confidence()} self.done = True elif self._mInputState == eHighbyte: if not self._mCharSetProbers: self._mCharSetProbers = [MBCSGroupProber(), SBCSGroupProber(), Latin1Prober()] for prober in self._mCharSetProbers: if prober.feed(aBuf) == constants.eFoundIt: self.result = {'encoding': prober.get_charset_name(), 'confidence': prober.get_confidence()} self.done = True break def close(self): if self.done: return if not self._mGotData: if constants._debug: sys.stderr.write('no data received!\n') return self.done = True if self._mInputState == ePureAscii: self.result = {'encoding': 'ascii', 'confidence': 1.0} return self.result if self._mInputState == eHighbyte: proberConfidence = None maxProberConfidence = 0.0 maxProber = None for prober in self._mCharSetProbers: if not prober: continue proberConfidence = prober.get_confidence() if proberConfidence > maxProberConfidence: maxProberConfidence = proberConfidence maxProber = prober if maxProber and (maxProberConfidence > MINIMUM_THRESHOLD): self.result = {'encoding': maxProber.get_charset_name(), 'confidence': maxProber.get_confidence()} return self.result if constants._debug: sys.stderr.write('no probers hit minimum threshhold\n') for prober in self._mCharSetProbers[0].mProbers: if not prober: continue sys.stderr.write('%s confidence = %s\n' % (prober.get_charset_name(), prober.get_confidence()))
sorenk/ansible
refs/heads/devel
lib/ansible/modules/network/aci/aci_contract_subject_to_filter.py
12
#!/usr/bin/python # -*- coding: utf-8 -*- # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = r''' --- module: aci_contract_subject_to_filter short_description: Bind Contract Subjects to Filters (vz:RsSubjFiltAtt) description: - Bind Contract Subjects to Filters on Cisco ACI fabrics. notes: - The C(tenant), C(contract), C(subject), and C(filter_name) must exist before using this module in your playbook. - The M(aci_tenant), M(aci_contract), M(aci_contract_subject), and M(aci_filter) modules can be used for these. - More information about the internal APIC class B(vz:RsSubjFiltAtt) from L(the APIC Management Information Model reference,https://developer.cisco.com/docs/apic-mim-ref/). author: - Jacob McGill (@jmcgill298) version_added: '2.4' options: contract: description: - The name of the contract. aliases: [ contract_name ] filter: description: - The name of the Filter to bind to the Subject. aliases: [ filter_name ] log: description: - Determines if the binding should be set to log. - The APIC defaults new Subject to Filter bindings to C(none). choices: [ log, none ] aliases: [ directive ] subject: description: - The name of the Contract Subject. aliases: [ contract_subject, subject_name ] state: description: - Use C(present) or C(absent) for adding or removing. - Use C(query) for listing an object or multiple objects. choices: [ absent, present, query ] default: present tenant: description: - The name of the tenant. required: yes aliases: [ tenant_name ] extends_documentation_fragment: aci ''' EXAMPLES = r''' - name: Add a new contract subject to filer binding aci_contract_subject_to_filter: host: apic username: admin password: SomeSecretPassword tenant: production contract: web_to_db subject: test filter: '{{ filter }}' log: '{{ log }}' state: present - name: Remove an existing contract subject to filter binding aci_contract_subject_to_filter: host: apic username: admin password: SomeSecretPassword tenant: production contract: web_to_db subject: test filter: '{{ filter }}' log: '{{ log }}' state: present - name: Query a specific contract subject to filter binding aci_contract_subject_to_filter: host: apic username: admin password: SomeSecretPassword tenant: production contract: web_to_db subject: test filter: '{{ filter }}' state: query - name: Query all contract subject to filter bindings aci_contract_subject_to_filter: host: apic username: admin password: SomeSecretPassword tenant: production contract: web_to_db subject: test state: query ''' RETURN = r''' current: description: The existing configuration from the APIC after the module has finished returned: success type: list sample: [ { "fvTenant": { "attributes": { "descr": "Production environment", "dn": "uni/tn-production", "name": "production", "nameAlias": "", "ownerKey": "", "ownerTag": "" } } } ] error: description: The error information as returned from the APIC returned: failure type: dict sample: { "code": "122", "text": "unknown managed object class foo" } raw: description: The raw output returned by the APIC REST API (xml or json) returned: parse error type: string sample: '<?xml version="1.0" encoding="UTF-8"?><imdata totalCount="1"><error code="122" text="unknown managed object class foo"/></imdata>' sent: description: The actual/minimal configuration pushed to the APIC returned: info type: list sample: { "fvTenant": { "attributes": { "descr": "Production environment" } } } previous: description: The original configuration from the APIC before the module has started returned: info type: list sample: [ { "fvTenant": { "attributes": { "descr": "Production", "dn": "uni/tn-production", "name": "production", "nameAlias": "", "ownerKey": "", "ownerTag": "" } } } ] proposed: description: The assembled configuration from the user-provided parameters returned: info type: dict sample: { "fvTenant": { "attributes": { "descr": "Production environment", "name": "production" } } } filter_string: description: The filter string used for the request returned: failure or debug type: string sample: ?rsp-prop-include=config-only method: description: The HTTP method used for the request to the APIC returned: failure or debug type: string sample: POST response: description: The HTTP response from the APIC returned: failure or debug type: string sample: OK (30 bytes) status: description: The HTTP status from the APIC returned: failure or debug type: int sample: 200 url: description: The HTTP url used for the request to the APIC returned: failure or debug type: string sample: https://10.11.12.13/api/mo/uni/tn-production.json ''' from ansible.module_utils.network.aci.aci import ACIModule, aci_argument_spec from ansible.module_utils.basic import AnsibleModule def main(): argument_spec = aci_argument_spec() argument_spec.update( contract=dict(type='str', aliases=['contract_name']), # Not required for querying all objects filter=dict(type='str', aliases=['filter_name']), # Not required for querying all objects log=dict(tyep='str', choices=['log', 'none'], aliases=['directive']), subject=dict(type='str', aliases=['contract_subject', 'subject_name']), # Not required for querying all objects tenant=dict(type='str', aliases=['tenant_name']), # Not required for querying all objects state=dict(type='str', default='present', choices=['absent', 'present', 'query']), method=dict(type='str', choices=['delete', 'get', 'post'], aliases=['action'], removed_in_version='2.6'), # Deprecated starting from v2.6 protocol=dict(type='str', removed_in_version='2.6'), # Deprecated in v2.6 ) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=True, required_if=[ ['state', 'absent', ['contract', 'filter', 'subject', 'tenant']], ['state', 'present', ['contract', 'filter', 'subject', 'tenant']], ], ) contract = module.params['contract'] filter_name = module.params['filter'] log = module.params['log'] subject = module.params['subject'] tenant = module.params['tenant'] state = module.params['state'] # Add subject_filter key to modul.params for building the URL module.params['subject_filter'] = filter_name # Convert log to empty string if none, as that is what API expects. An empty string is not a good option to present the user. if log == 'none': log = '' aci = ACIModule(module) aci.construct_url( root_class=dict( aci_class='fvTenant', aci_rn='tn-{0}'.format(tenant), filter_target='eq(fvTenant.name, "{0}")'.format(tenant), module_object=tenant, ), subclass_1=dict( aci_class='vzBrCP', aci_rn='brc-{0}'.format(contract), filter_target='eq(vzBrCP.name, "{0}")'.format(contract), module_object=contract, ), subclass_2=dict( aci_class='vzSubj', aci_rn='subj-{0}'.format(subject), filter_target='eq(vzSubj.name, "{0}")'.format(subject), module_object=subject, ), subclass_3=dict( aci_class='vzRsSubjFiltAtt', aci_rn='rssubjFiltAtt-{0}'.format(filter_name), filter_target='eq(vzRsSubjFiltAtt.tnVzFilterName, "{0}")'.format(filter_name), module_object=filter_name, ), ) aci.get_existing() if state == 'present': aci.payload( aci_class='vzRsSubjFiltAtt', class_config=dict( tnVzFilterName=filter_name, directives=log, ), ) aci.get_diff(aci_class='vzRsSubjFiltAtt') aci.post_config() elif state == 'absent': aci.delete_config() # Remove subject_filter used to build URL from module.params module.params.pop('subject_filter') aci.exit_json() if __name__ == "__main__": main()
Meninblack007/android_kernel_yu_msm8916
refs/heads/almighty-v1.0
tools/perf/scripts/python/sctop.py
11180
# system call top # (c) 2010, Tom Zanussi <tzanussi@gmail.com> # Licensed under the terms of the GNU GPL License version 2 # # Periodically displays system-wide system call totals, broken down by # syscall. If a [comm] arg is specified, only syscalls called by # [comm] are displayed. If an [interval] arg is specified, the display # will be refreshed every [interval] seconds. The default interval is # 3 seconds. import os, sys, thread, time sys.path.append(os.environ['PERF_EXEC_PATH'] + \ '/scripts/python/Perf-Trace-Util/lib/Perf/Trace') from perf_trace_context import * from Core import * from Util import * usage = "perf script -s sctop.py [comm] [interval]\n"; for_comm = None default_interval = 3 interval = default_interval if len(sys.argv) > 3: sys.exit(usage) if len(sys.argv) > 2: for_comm = sys.argv[1] interval = int(sys.argv[2]) elif len(sys.argv) > 1: try: interval = int(sys.argv[1]) except ValueError: for_comm = sys.argv[1] interval = default_interval syscalls = autodict() def trace_begin(): thread.start_new_thread(print_syscall_totals, (interval,)) pass def raw_syscalls__sys_enter(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, id, args): if for_comm is not None: if common_comm != for_comm: return try: syscalls[id] += 1 except TypeError: syscalls[id] = 1 def print_syscall_totals(interval): while 1: clear_term() if for_comm is not None: print "\nsyscall events for %s:\n\n" % (for_comm), else: print "\nsyscall events:\n\n", print "%-40s %10s\n" % ("event", "count"), print "%-40s %10s\n" % ("----------------------------------------", \ "----------"), for id, val in sorted(syscalls.iteritems(), key = lambda(k, v): (v, k), \ reverse = True): try: print "%-40s %10d\n" % (syscall_name(id), val), except TypeError: pass syscalls.clear() time.sleep(interval)
jessstrap/servotk
refs/heads/master
tests/wpt/css-tests/css-text-decor-3_dev/xhtml1print/support/generate-text-emphasis-line-height-tests.py
829
#!/usr/bin/env python # - * - coding: UTF-8 - * - """ This script generates tests text-emphasis-line-height-001 ~ 004 except 001z. They test the line height expansion in different directions. This script outputs a list of all tests it generated in the format of Mozilla reftest.list to the stdout. """ from __future__ import unicode_literals TEST_FILE = 'text-emphasis-line-height-{:03}{}.html' TEST_TEMPLATE = '''<!DOCTYPE html> <meta charset="utf-8"> <title>CSS Test: text-emphasis line height, {pos}, {wm}, {tag}</title> <link rel="author" title="Xidorn Quan" href="https://www.upsuper.org"> <link rel="author" title="Mozilla" href="https://www.mozilla.org"> <link rel="help" href="https://drafts.csswg.org/css-text-decor-3/#text-emphasis-position-property"> <meta name="assert" content="text emphasis marks should expand the line height like ruby if necessary"> <link rel="match" href="text-emphasis-line-height-{index:03}-ref.html"> <p>Pass if the emphasis marks are {dir} the black line:</p> {start}試験テスト{end} ''' REF_FILE = 'text-emphasis-line-height-{:03}-ref.html' REF_TEMPLATE='''<!DOCTYPE html> <meta charset="utf-8"> <title>CSS Reference: text-emphasis line height, {pos}</title> <link rel="author" title="Xidorn Quan" href="https://www.upsuper.org"> <link rel="author" title="Mozilla" href="https://www.mozilla.org"> <style> rt {{ font-variant-east-asian: inherit; }} </style> <p>Pass if the emphasis marks are {dir} the black line:</p> <div style="line-height: 1; border-{pos}: 1px solid black; writing-mode: {wm}; ruby-position: {posval}"><ruby>試<rt>&#x25CF;</rt>験<rt>&#x25CF;</rt>テ<rt>&#x25CF;</rt>ス<rt>&#x25CF;</rt>ト<rt>&#x25CF;</rt></ruby></div> ''' STYLE1 = 'line-height: 1; border-{pos}: 1px solid black; ' + \ 'writing-mode: {wm}; text-emphasis-position: {posval};' STYLE2 = 'text-emphasis: circle;' TAGS = [ # (tag, start, end) ('div', '<div style="{style1}{style2}">', '</div>'), ('span', '<div style="{style1}"><span style="{style2}">', '</span></div>'), ] POSITIONS = [ # pos, text-emphasis-position, ruby-position, # writing-modes, dir text ('top', 'over right', 'over', ['horizontal-tb'], 'below'), ('bottom', 'under right', 'under', ['horizontal-tb'], 'over'), ('right', 'over right', 'over', ['vertical-rl', 'vertical-lr'], 'to the left of'), ('left', 'over left', 'under', ['vertical-rl', 'vertical-lr'], 'to the right of'), ] import string def write_file(filename, content): with open(filename, 'wb') as f: f.write(content.encode('UTF-8')) print("# START tests from {}".format(__file__)) idx = 0 for (pos, emphasis_pos, ruby_pos, wms, dir) in POSITIONS: idx += 1 ref_file = REF_FILE.format(idx) content = REF_TEMPLATE.format(pos=pos, dir=dir, wm=wms[0], posval=ruby_pos) write_file(ref_file, content) suffix = iter(string.ascii_lowercase) for wm in wms: style1 = STYLE1.format(pos=pos, wm=wm, posval=emphasis_pos) for (tag, start, end) in TAGS: test_file = TEST_FILE.format(idx, next(suffix)) content = TEST_TEMPLATE.format( pos=pos, wm=wm, tag=tag, index=idx, dir=dir, start=start.format(style1=style1, style2=STYLE2), end=end) write_file(test_file, content) print("== {} {}".format(test_file, ref_file)) print("# END tests from {}".format(__file__))
adityamogadala/xLiMeSemanticIntegrator
refs/heads/master
xlimedataparser/DataCollector.py
1
# -*- coding: utf-8 -*- #============================================================================== #Description : Call all types of data collectors #Author : Aditya Mogadala #email : aditya.mogadala@kit.edu #Version : 1.0.1 #Copyright : Institute AIFB, Karlsruhe Institute of Technology (KIT) #============================================================================== import commands import time import sys import re import VicoSocialMediaStream import ZattooTvMetadata import JsiNewsStream import SubtitlesProcessing import AdvancedSpeechKafkaProcessing from threading import Thread from os.path import expanduser class AutomatePushToMongo: def __init__(self,path,confdic): self.path = path self.configdict = confdic def continous_java_run(self,topic): tot = "java -cp ../utils/kafkaextractor_smallest.jar:. aifb.kit.xlime.kafkaextracor.RunExtractor "+topic+" "+self.configdict['KafkaConsumerGroupID']+" "+self.configdict['KafkaZookeeperPath'] # For using smallest offset of Kafka # tot = "java -cp ../utils/kafkaextractor_largest.jar:. aifb.kit.xlime.kafkaextracor.RunExtractor "+topic+" "+self.configdict['KafkaConsumerGroupID']+" "+self.configdict['KafkaZookeeperPath'] # For using largest offset of Kafka vals = commands.getoutput(tot) time.sleep(2) def continous_mongo_socialmedia(self): topic=self.configdict['KafkaTopicSocialMedia'] path1=self.path+topic+"/" sm = VicoSocialMediaStream.SocialMediaToMongo(path1,self.configdict,topic) sm.MongoData() def continous_mongo_zattoosub(self): topic=self.configdict['KafkaTopicSubtitles'] path1=self.path+topic+"/" sm = SubtitlesProcessing.PushToMongoSubtitles(path1,self.configdict,topic) sm.MongoData() def continous_mongo_zattooepg(self): topic=self.configdict['KafkaTopicTVMetadata'] path1=self.path+topic+"/" metadata = ZattooTvMetadata.ZattooToMongo(path1,self.configdict,topic) metadata.MongoData() def continous_mongo_zattooasr(self): topic=self.configdict['KafkaTopicASR'] path1=self.path+topic+"/" asrdata = AdvancedSpeechKafkaProcessing.PushToMongoSpeech(path1,self.configdict,topic) asrdata.MongoData() def continous_mongo_news(self): topic=self.configdict['KafkaTopicNews'] path1=self.path+topic+"/" news = JsiNewsStream.Producer(path1,self.configdict,topic) news.run() ##### Add more here to support different types of data ####################### def main(): home = expanduser("~") path = home+'/storedata/' configdict={} config = '../config/Config.conf' with open(config) as config_file: for lines in config_file: if re.search(r'=',lines): key = lines.strip('\n').strip().split('=') configdict[key[0]]=key[1] generatedata = AutomatePushToMongo(path,configdict) try: t1 = Thread(target=generatedata.continous_java_run, args=(configdict['KafkaTopicSocialMedia'],)) t1.start() t2 = Thread(target=generatedata.continous_java_run, args=(configdict['KafkaTopicTVMetadata'],)) t2.start() t0 = Thread(target=generatedata.continous_java_run, args=(configdict['KafkaTopicNews'],)) t0.start() t6 = Thread(target=generatedata.continous_java_run, args=(configdict['KafkaTopicSubtitles'],)) t6.start() t8 = Thread(target=generatedata.continous_java_run, args=(configdict['KafkaTopicASR'],)) t8.start() t3 = Thread(target=generatedata.continous_mongo_socialmedia) t3.start() t4=Thread(target=generatedata.continous_mongo_zattooepg) t4.start() t5=Thread(target=generatedata.continous_mongo_news) t5.start() t7=Thread(target=generatedata.continous_mongo_zattoosub) t7.start() t9=Thread(target=generatedata.continous_mongo_zattooasr) t9.start() ##### Add more here to support different types of data ####################### except: pass if __name__ =='__main__': main()
kanagasabapathi/python-for-android
refs/heads/master
python3-alpha/python3-src/Lib/test/inspect_fodder2.py
179
# line 1 def wrap(foo=None): def wrapper(func): return func return wrapper # line 7 def replace(func): def insteadfunc(): print('hello') return insteadfunc # line 13 @wrap() @wrap(wrap) def wrapped(): pass # line 19 @replace def gone(): pass # line 24 oll = lambda m: m # line 27 tll = lambda g: g and \ g and \ g # line 32 tlli = lambda d: d and \ d # line 36 def onelinefunc(): pass # line 39 def manyargs(arg1, arg2, arg3, arg4): pass # line 43 def twolinefunc(m): return m and \ m # line 47 a = [None, lambda x: x, None] # line 52 def setfunc(func): globals()["anonymous"] = func setfunc(lambda x, y: x*y) # line 57 def with_comment(): # hello world # line 61 multiline_sig = [ lambda x, \ y: x+y, None, ] # line 68 def func69(): class cls70: def func71(): pass return cls70 extra74 = 74 # line 76 def func77(): pass (extra78, stuff78) = 'xy' extra79 = 'stop' # line 81 class cls82: def func83(): pass (extra84, stuff84) = 'xy' extra85 = 'stop' # line 87 def func88(): # comment return 90 # line 92 def f(): class X: def g(): "doc" return 42 return X method_in_dynamic_class = f().g #line 101 def keyworded(*arg1, arg2=1): pass #line 105 def annotated(arg1: list): pass #line 109 def keyword_only_arg(*, arg): pass
nyu-devops-echo/shopcarts
refs/heads/master
db_create.py
1
#!usr//bin/python """ Database Creation Script This Python script will create the database base on the environment variables DATABASE_URI or SQLALCHEMY_DATABASE_URI in that order. (DATABASE_URI overrides SQLALCHEMY_DATABASE_URI) You can also override the database name in the URI by passing in a new name. Enviroment Variables: --------------------- - SQLALCHEMY_DATABASE_URI : connection string from config - DATABASE_URI: override config string Arguments: ---------- - database_name : String the name of the database """ import os import sys import pymysql from app import app, db # DATABASE_URI = 'mysql+pymysql://root:passw0rd@localhost:3306/development' DATABASE_URI = os.getenv('DATABASE_URI', None) if DATABASE_URI: app.config['SQLALCHEMY_DATABASE_URI'] = DATABASE_URI # check to see if there is a database name override if len(sys.argv) > 1: dbname = sys.argv[1] app.config['SQLALCHEMY_DATABASE_URI'] = '{}/{}'.format( app.config['SQLALCHEMY_DATABASE_URI'].rsplit('/', 1)[0], dbname ) print('Database URI {}'.format(app.config['SQLALCHEMY_DATABASE_URI'])) try: print("Creating database tables") db.create_all() except Exception as error: print('Oops, got error {}'.format(error)) # Parse the URI for user, password, host data = app.config['SQLALCHEMY_DATABASE_URI'].split('//')[1] dbname = data.split('/')[1] host = data.split('@')[1].split(':')[0] creds = data.split('@')[0] user = creds.split(':')[0] password = creds.split(':')[1] # Connect and create the database conn = pymysql.connect(host=host, user=user, password=password) conn.cursor().execute('create database IF NOT EXISTS {}'.format(dbname)) print("Creating database tables") db.create_all()
montanapr/Plugin.Video.Mercy
refs/heads/master
servers/watchfreeinhd.py
44
# -*- coding: utf-8 -*- #------------------------------------------------------------ # pelisalacarta - XBMC Plugin # Conector para watchfreeinhd # http://blog.tvalacarta.info/plugin-xbmc/pelisalacarta/ #------------------------------------------------------------ import urlparse,urllib2,urllib,re import os from core import scrapertools from core import logger from core import config def get_video_url( page_url , premium = False , user="" , password="", video_password="" ): logger.info("[watchfreeinhd.py] get_video_url(page_url='%s')" % page_url) video_urls = [] # Descarga la página, el usuario tiene dos botones de "Descargar" o "Ver" data = scrapertools.cache_page(page_url) # La descarga de nuevo como si hubiera pulsado el botón "Ver" # http://srv.hdplay.org/storage/flv/xGylz8.flv?token=703acade4b51aa6b26ad264327c4a4cf data = scrapertools.cache_page(page_url,post="agree=") patron = '<div id="playerHolder">[^<]+' patron += '<a href="([^"]+)"' matches = re.compile(patron,re.DOTALL).findall(data) if len(matches)>0: video_urls.append( ["[watchfreeinhd]",matches[0] ] ) for video_url in video_urls: logger.info("[watchfreeinhd.py] %s - %s" % (video_url[0],video_url[1])) return video_urls # Encuentra vídeos del servidor en el texto pasado def find_videos(data): encontrados = set() devuelve = [] # http://www.watchfreeinhd.com/r0GUbN patronvideos = '(http://www.watchfreeinhd.com/[A-Za-z0-9]+)' logger.info("[watchfreeinhd.py] find_videos #"+patronvideos+"#") matches = re.compile(patronvideos,re.DOTALL).findall(data) for match in matches: titulo = "[watchfreeinhd]" url = match if url not in encontrados: logger.info(" url="+url) devuelve.append( [ titulo , url , 'watchfreeinhd' ] ) encontrados.add(url) else: logger.info(" url duplicada="+url) return devuelve
yzl0083/orange
refs/heads/master
Orange/OrangeCanvas/help/intersphinx.py
6
""" Parsers for intersphinx inventory files Taken from `sphinx.ext.intersphinx` """ import re import codecs import zlib b = str UTF8StreamReader = codecs.lookup('utf-8')[2] def read_inventory_v1(f, uri, join): f = UTF8StreamReader(f) invdata = {} line = f.next() projname = line.rstrip()[11:] line = f.next() version = line.rstrip()[11:] for line in f: name, type, location = line.rstrip().split(None, 2) location = join(uri, location) # version 1 did not add anchors to the location if type == 'mod': type = 'py:module' location += '#module-' + name else: type = 'py:' + type location += '#' + name invdata.setdefault(type, {})[name] = (projname, version, location, '-') return invdata def read_inventory_v2(f, uri, join, bufsize=16*1024): invdata = {} line = f.readline() projname = line.rstrip()[11:].decode('utf-8') line = f.readline() version = line.rstrip()[11:].decode('utf-8') line = f.readline().decode('utf-8') if 'zlib' not in line: raise ValueError def read_chunks(): decompressor = zlib.decompressobj() for chunk in iter(lambda: f.read(bufsize), b('')): yield decompressor.decompress(chunk) yield decompressor.flush() def split_lines(iter): buf = b('') for chunk in iter: buf += chunk lineend = buf.find(b('\n')) while lineend != -1: yield buf[:lineend].decode('utf-8') buf = buf[lineend+1:] lineend = buf.find(b('\n')) assert not buf for line in split_lines(read_chunks()): # be careful to handle names with embedded spaces correctly m = re.match(r'(?x)(.+?)\s+(\S*:\S*)\s+(\S+)\s+(\S+)\s+(.*)', line.rstrip()) if not m: continue name, type, prio, location, dispname = m.groups() if location.endswith(u'$'): location = location[:-1] + name location = join(uri, location) invdata.setdefault(type, {})[name] = (projname, version, location, dispname) return invdata
ArtsiomCh/tensorflow
refs/heads/master
tensorflow/contrib/distributions/python/__init__.py
959
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ops module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
Juniper/python-neutronclient
refs/heads/master
neutronclient/tests/unit/test_cli20_securitygroup.py
1
#!/usr/bin/env python # Copyright 2012 Red Hat # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import sys import uuid from mox3 import mox import six from neutronclient.common import exceptions from neutronclient.common import utils from neutronclient.neutron.v2_0 import securitygroup from neutronclient.tests.unit import test_cli20 class CLITestV20SecurityGroupsJSON(test_cli20.CLITestV20Base): non_admin_status_resources = ['security_group', 'security_group_rule'] def test_create_security_group(self): # Create security group: webservers. resource = 'security_group' cmd = securitygroup.CreateSecurityGroup( test_cli20.MyApp(sys.stdout), None) name = 'webservers' myid = 'myid' args = [name, ] position_names = ['name'] position_values = [name] self._test_create_resource(resource, cmd, name, myid, args, position_names, position_values) def test_create_security_group_tenant(self): # Create security group: webservers. resource = 'security_group' cmd = securitygroup.CreateSecurityGroup( test_cli20.MyApp(sys.stdout), None) name = 'webservers' description = 'my webservers' myid = 'myid' args = ['--tenant_id', 'tenant_id', '--description', description, name] position_names = ['name', 'description'] position_values = [name, description] self._test_create_resource(resource, cmd, name, myid, args, position_names, position_values, tenant_id='tenant_id') def test_create_security_group_with_description(self): # Create security group: webservers. resource = 'security_group' cmd = securitygroup.CreateSecurityGroup( test_cli20.MyApp(sys.stdout), None) name = 'webservers' description = 'my webservers' myid = 'myid' args = [name, '--description', description] position_names = ['name', 'description'] position_values = [name, description] self._test_create_resource(resource, cmd, name, myid, args, position_names, position_values) def test_list_security_groups(self): resources = "security_groups" cmd = securitygroup.ListSecurityGroup( test_cli20.MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, True) def test_list_security_groups_pagination(self): resources = "security_groups" cmd = securitygroup.ListSecurityGroup( test_cli20.MyApp(sys.stdout), None) self._test_list_resources_with_pagination(resources, cmd) def test_list_security_groups_sort(self): resources = "security_groups" cmd = securitygroup.ListSecurityGroup( test_cli20.MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, sort_key=["name", "id"], sort_dir=["asc", "desc"]) def test_list_security_groups_limit(self): resources = "security_groups" cmd = securitygroup.ListSecurityGroup( test_cli20.MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, page_size=1000) def test_show_security_group_id(self): resource = 'security_group' cmd = securitygroup.ShowSecurityGroup( test_cli20.MyApp(sys.stdout), None) args = ['--fields', 'id', self.test_id] self._test_show_resource(resource, cmd, self.test_id, args, ['id']) def test_show_security_group_id_name(self): resource = 'security_group' cmd = securitygroup.ShowSecurityGroup( test_cli20.MyApp(sys.stdout), None) args = ['--fields', 'id', '--fields', 'name', self.test_id] self._test_show_resource(resource, cmd, self.test_id, args, ['id', 'name']) def test_delete_security_group(self): # Delete security group: myid. resource = 'security_group' cmd = securitygroup.DeleteSecurityGroup( test_cli20.MyApp(sys.stdout), None) myid = 'myid' args = [myid] self._test_delete_resource(resource, cmd, myid, args) def test_update_security_group(self): # Update security group: myid --name myname --description desc. resource = 'security_group' cmd = securitygroup.UpdateSecurityGroup( test_cli20.MyApp(sys.stdout), None) self._test_update_resource(resource, cmd, 'myid', ['myid', '--name', 'myname', '--description', 'mydescription'], {'name': 'myname', 'description': 'mydescription'} ) def test_update_security_group_with_unicode(self): resource = 'security_group' cmd = securitygroup.UpdateSecurityGroup( test_cli20.MyApp(sys.stdout), None) self._test_update_resource(resource, cmd, 'myid', ['myid', '--name', u'\u7f51\u7edc', '--description', u'\u7f51\u7edc'], {'name': u'\u7f51\u7edc', 'description': u'\u7f51\u7edc'} ) def test_create_security_group_rule_full(self): # Create security group rule. resource = 'security_group_rule' cmd = securitygroup.CreateSecurityGroupRule( test_cli20.MyApp(sys.stdout), None) myid = 'myid' direction = 'ingress' ethertype = 'IPv4' protocol = 'tcp' port_range_min = '22' port_range_max = '22' remote_ip_prefix = '10.0.0.0/24' security_group_id = '1' remote_group_id = '1' args = ['--remote_ip_prefix', remote_ip_prefix, '--direction', direction, '--ethertype', ethertype, '--protocol', protocol, '--port_range_min', port_range_min, '--port_range_max', port_range_max, '--remote_group_id', remote_group_id, security_group_id, '--description', 'PCI policy 1421912'] position_names = ['remote_ip_prefix', 'direction', 'ethertype', 'protocol', 'port_range_min', 'port_range_max', 'remote_group_id', 'security_group_id'] position_values = [remote_ip_prefix, direction, ethertype, protocol, port_range_min, port_range_max, remote_group_id, security_group_id] self._test_create_resource(resource, cmd, None, myid, args, position_names, position_values, description='PCI policy 1421912') def test_create_security_group_rule_with_integer_protocol_value(self): resource = 'security_group_rule' cmd = securitygroup.CreateSecurityGroupRule( test_cli20.MyApp(sys.stdout), None) myid = 'myid' direction = 'ingress' ethertype = 'IPv4' protocol = '2' port_range_min = '22' port_range_max = '22' remote_ip_prefix = '10.0.0.0/24' security_group_id = '1' remote_group_id = '1' args = ['--remote_ip_prefix', remote_ip_prefix, '--direction', direction, '--ethertype', ethertype, '--protocol', protocol, '--port_range_min', port_range_min, '--port_range_max', port_range_max, '--remote_group_id', remote_group_id, security_group_id] position_names = ['remote_ip_prefix', 'direction', 'ethertype', 'protocol', 'port_range_min', 'port_range_max', 'remote_group_id', 'security_group_id'] position_values = [remote_ip_prefix, direction, ethertype, protocol, port_range_min, port_range_max, remote_group_id, security_group_id] self._test_create_resource(resource, cmd, None, myid, args, position_names, position_values) def test_delete_security_group_rule(self): # Delete security group rule: myid. resource = 'security_group_rule' cmd = securitygroup.DeleteSecurityGroupRule( test_cli20.MyApp(sys.stdout), None) myid = 'myid' args = [myid] self._test_delete_resource(resource, cmd, myid, args) def test_list_security_group_rules(self): resources = "security_group_rules" cmd = securitygroup.ListSecurityGroupRule( test_cli20.MyApp(sys.stdout), None) self.mox.StubOutWithMock(securitygroup.ListSecurityGroupRule, "extend_list") securitygroup.ListSecurityGroupRule.extend_list(mox.IsA(list), mox.IgnoreArg()) self._test_list_resources(resources, cmd, True) def _test_extend_list(self, mox_calls, data): resources = "security_groups" cmd = securitygroup.ListSecurityGroupRule( test_cli20.MyApp(sys.stdout), None) self.mox.StubOutWithMock(cmd, "get_client") self.mox.StubOutWithMock(self.client.httpclient, "request") cmd.get_client().MultipleTimes().AndReturn(self.client) path = getattr(self.client, resources + '_path') mox_calls(path, data) self.mox.ReplayAll() known_args, _vs = cmd.get_parser( 'list' + resources).parse_known_args() cmd.extend_list(data, known_args) self.mox.VerifyAll() self.mox.UnsetStubs() def _build_test_data(self, data, excess=0): # Length of a query filter on security group rule id # in these testcases, id='secgroupid%02d' (with len(id)=12) sec_group_id_filter_len = 12 response = [] replace_rules = {'security_group_id': 'security_group', 'remote_group_id': 'remote_group'} search_opts = {'fields': ['id', 'name']} sec_group_ids = set() for rule in data: for key in replace_rules: if rule.get(key): sec_group_ids.add(rule[key]) response.append({'id': rule[key], 'name': 'default'}) sec_group_ids = list(sec_group_ids) result = [] sec_group_count = len(sec_group_ids) max_size = ((sec_group_id_filter_len * sec_group_count) - excess) chunk_size = max_size // sec_group_id_filter_len for i in range(0, sec_group_count, chunk_size): search_opts['id'] = sec_group_ids[i: i + chunk_size] params = utils.safe_encode_dict(search_opts) resp_str = self.client.serialize({'security_groups': response}) result.append({ 'filter': six.moves.urllib.parse.urlencode(params, doseq=1), 'response': (test_cli20.MyResp(200), resp_str), }) return result def test_extend_list(self): def mox_calls(path, data): responses = self._build_test_data(data) self.client.httpclient.request( test_cli20.MyUrlComparator(test_cli20.end_url( path, responses[0]['filter']), self.client), 'GET', body=None, headers=mox.ContainsKeyValue( 'X-Auth-Token', test_cli20.TOKEN)).AndReturn( responses[0]['response']) data = [{'name': 'default', 'remote_group_id': 'remgroupid%02d' % i} for i in range(10)] data.append({'name': 'default', 'remote_group_id': None}) self._test_extend_list(mox_calls, data) def test_extend_list_exceed_max_uri_len(self): def mox_calls(path, data): # 1 char of extra URI len will cause a split in 2 requests self.mox.StubOutWithMock(self.client.httpclient, '_check_uri_length') self.client.httpclient._check_uri_length(mox.IgnoreArg()).AndRaise( exceptions.RequestURITooLong(excess=1)) responses = self._build_test_data(data, excess=1) for item in responses: self.client.httpclient._check_uri_length( mox.IgnoreArg()).AndReturn(None) self.client.httpclient.request( test_cli20.MyUrlComparator( test_cli20.end_url(path, item['filter']), self.client), 'GET', body=None, headers=mox.ContainsKeyValue( 'X-Auth-Token', test_cli20.TOKEN)).AndReturn( item['response']) data = [{'name': 'default', 'security_group_id': 'secgroupid%02d' % i, 'remote_group_id': 'remgroupid%02d' % i} for i in range(10)] data.append({'name': 'default', 'security_group_id': 'secgroupid10', 'remote_group_id': None}) self._test_extend_list(mox_calls, data) def test_list_security_group_rules_pagination(self): resources = "security_group_rules" cmd = securitygroup.ListSecurityGroupRule( test_cli20.MyApp(sys.stdout), None) self.mox.StubOutWithMock(securitygroup.ListSecurityGroupRule, "extend_list") securitygroup.ListSecurityGroupRule.extend_list(mox.IsA(list), mox.IgnoreArg()) self._test_list_resources_with_pagination(resources, cmd) def test_list_security_group_rules_sort(self): resources = "security_group_rules" cmd = securitygroup.ListSecurityGroupRule( test_cli20.MyApp(sys.stdout), None) self.mox.StubOutWithMock(securitygroup.ListSecurityGroupRule, "extend_list") securitygroup.ListSecurityGroupRule.extend_list(mox.IsA(list), mox.IgnoreArg()) self._test_list_resources(resources, cmd, sort_key=["name", "id"], sort_dir=["asc", "desc"]) def test_list_security_group_rules_limit(self): resources = "security_group_rules" cmd = securitygroup.ListSecurityGroupRule( test_cli20.MyApp(sys.stdout), None) self.mox.StubOutWithMock(securitygroup.ListSecurityGroupRule, "extend_list") securitygroup.ListSecurityGroupRule.extend_list(mox.IsA(list), mox.IgnoreArg()) self._test_list_resources(resources, cmd, page_size=1000) def test_show_security_group_rule(self): resource = 'security_group_rule' cmd = securitygroup.ShowSecurityGroupRule( test_cli20.MyApp(sys.stdout), None) args = ['--fields', 'id', self.test_id] self._test_show_resource(resource, cmd, self.test_id, args, ['id']) def _test_list_security_group_rules_extend(self, api_data, expected, args=(), conv=True, query_fields=None): def setup_list_stub(resources, data, query): reses = {resources: data} resstr = self.client.serialize(reses) resp = (test_cli20.MyResp(200), resstr) path = getattr(self.client, resources + '_path') self.client.httpclient.request( test_cli20.MyUrlComparator( test_cli20.end_url(path, query), self.client), 'GET', body=None, headers=mox.ContainsKeyValue( 'X-Auth-Token', test_cli20.TOKEN)).AndReturn(resp) cmd = securitygroup.ListSecurityGroupRule( test_cli20.MyApp(sys.stdout), None) self.mox.StubOutWithMock(cmd, 'get_client') self.mox.StubOutWithMock(self.client.httpclient, 'request') cmd.get_client().MultipleTimes().AndReturn(self.client) query = '' if query_fields: query = '&'.join(['fields=' + f for f in query_fields]) setup_list_stub('security_group_rules', api_data, query) if conv: sec_ids = set() for n in api_data: sec_ids.add(n['security_group_id']) if n.get('remote_group_id'): sec_ids.add(n['remote_group_id']) filters = '' for id in sec_ids: filters = filters + "&id=%s" % id setup_list_stub('security_groups', [{'id': 'myid1', 'name': 'group1'}, {'id': 'myid2', 'name': 'group2'}, {'id': 'myid3', 'name': 'group3'}], query='fields=id&fields=name' + filters) self.mox.ReplayAll() cmd_parser = cmd.get_parser('list_security_group_rules') parsed_args = cmd_parser.parse_args(args) result = cmd.take_action(parsed_args) self.mox.VerifyAll() self.mox.UnsetStubs() # Check columns self.assertEqual(expected['cols'], result[0]) # Check data _result = [x for x in result[1]] self.assertEqual(len(expected['data']), len(_result)) for res, exp in zip(_result, expected['data']): self.assertEqual(len(exp), len(res)) self.assertEqual(exp, res) def _test_list_security_group_rules_extend_sg_name( self, expected_mode=None, args=(), conv=True, query_field=False): if query_field: field_filters = ['id', 'security_group_id', 'remote_ip_prefix', 'remote_group_id'] else: field_filters = None data = [self._prepare_rule(rule_id='ruleid1', sg_id='myid1', remote_group_id='myid1', filters=field_filters), self._prepare_rule(rule_id='ruleid2', sg_id='myid2', remote_group_id='myid3', filters=field_filters), self._prepare_rule(rule_id='ruleid3', sg_id='myid2', remote_group_id='myid2', filters=field_filters), ] if expected_mode == 'noconv': expected = {'cols': ['id', 'security_group_id', 'remote_group_id'], 'data': [('ruleid1', 'myid1', 'myid1'), ('ruleid2', 'myid2', 'myid3'), ('ruleid3', 'myid2', 'myid2')]} elif expected_mode == 'remote_group_id': expected = {'cols': ['id', 'security_group', 'remote_group'], 'data': [('ruleid1', 'group1', 'group1'), ('ruleid2', 'group2', 'group3'), ('ruleid3', 'group2', 'group2')]} else: expected = {'cols': ['id', 'security_group', 'remote'], 'data': [('ruleid1', 'group1', 'group1 (group)'), ('ruleid2', 'group2', 'group3 (group)'), ('ruleid3', 'group2', 'group2 (group)')]} self._test_list_security_group_rules_extend( data, expected, args=args, conv=conv, query_fields=field_filters) def test_list_security_group_rules_extend_remote_sg_name(self): args = '-c id -c security_group -c remote'.split() self._test_list_security_group_rules_extend_sg_name(args=args) def test_list_security_group_rules_extend_sg_name_noconv(self): args = '--no-nameconv -c id -c security_group_id -c remote_group_id' args = args.split() self._test_list_security_group_rules_extend_sg_name( expected_mode='noconv', args=args, conv=False) def test_list_security_group_rules_extend_sg_name_with_columns(self): args = '-c id -c security_group_id -c remote_group_id'.split() self._test_list_security_group_rules_extend_sg_name( expected_mode='remote_group_id', args=args) def test_list_security_group_rules_extend_sg_name_with_columns_no_id(self): args = '-c id -c security_group -c remote_group'.split() self._test_list_security_group_rules_extend_sg_name( expected_mode='remote_group_id', args=args) def test_list_security_group_rules_extend_sg_name_with_fields(self): # NOTE: remote_ip_prefix is required to show "remote" column args = ('-F id -F security_group_id ' '-F remote_ip_prefix -F remote_group_id').split() self._test_list_security_group_rules_extend_sg_name( args=args, query_field=True) def test_list_security_group_rules_extend_sg_name_with_fields_no_id(self): # NOTE: remote_ip_prefix is required to show "remote" column args = ('-F id -F security_group ' '-F remote_ip_prefix -F remote_group').split() self._test_list_security_group_rules_extend_sg_name(args=args, query_field=True) def test_list_security_group_rules_extend_remote(self): args = '-c id -c security_group -c remote'.split() data = [self._prepare_rule(rule_id='ruleid1', sg_id='myid1', remote_ip_prefix='172.16.18.0/24'), self._prepare_rule(rule_id='ruleid2', sg_id='myid2', remote_ip_prefix='172.16.20.0/24'), self._prepare_rule(rule_id='ruleid3', sg_id='myid2', remote_group_id='myid3')] expected = {'cols': ['id', 'security_group', 'remote'], 'data': [('ruleid1', 'group1', '172.16.18.0/24 (CIDR)'), ('ruleid2', 'group2', '172.16.20.0/24 (CIDR)'), ('ruleid3', 'group2', 'group3 (group)')]} self._test_list_security_group_rules_extend(data, expected, args) def test_list_security_group_rules_extend_proto_port(self): data = [self._prepare_rule(rule_id='ruleid1', sg_id='myid1', protocol='tcp', port_range_min=22, port_range_max=22), self._prepare_rule(rule_id='ruleid2', sg_id='myid2', direction='egress', ethertype='IPv6', protocol='udp', port_range_min=80, port_range_max=81), self._prepare_rule(rule_id='ruleid3', sg_id='myid2', protocol='icmp', remote_ip_prefix='10.2.0.0/16')] expected = { 'cols': ['id', 'security_group', 'direction', 'ethertype', 'port/protocol', 'remote'], 'data': [ ('ruleid1', 'group1', 'ingress', 'IPv4', '22/tcp', 'any'), ('ruleid2', 'group2', 'egress', 'IPv6', '80-81/udp', 'any'), ('ruleid3', 'group2', 'ingress', 'IPv4', 'icmp', '10.2.0.0/16 (CIDR)') ]} self._test_list_security_group_rules_extend(data, expected) def _prepare_rule(self, rule_id=None, sg_id=None, tenant_id=None, direction=None, ethertype=None, protocol=None, port_range_min=None, port_range_max=None, remote_ip_prefix=None, remote_group_id=None, filters=None): rule = {'id': rule_id or str(uuid.uuid4()), 'tenant_id': tenant_id or str(uuid.uuid4()), 'security_group_id': sg_id or str(uuid.uuid4()), 'direction': direction or 'ingress', 'ethertype': ethertype or 'IPv4', 'protocol': protocol, 'port_range_min': port_range_min, 'port_range_max': port_range_max, 'remote_ip_prefix': remote_ip_prefix, 'remote_group_id': remote_group_id} if filters: return dict([(k, v) for k, v in rule.items() if k in filters]) else: return rule def test__get_remote_both_unspecified(self): sg_rule = self._prepare_rule(remote_ip_prefix=None, remote_group_id=None) self.assertIsNone(securitygroup._get_remote(sg_rule)) def test__get_remote_remote_ip_prefix_specified(self): sg_rule = self._prepare_rule(remote_ip_prefix='172.16.18.0/24') self.assertEqual('172.16.18.0/24 (CIDR)', securitygroup._get_remote(sg_rule)) def test__get_remote_remote_group_specified(self): sg_rule = self._prepare_rule(remote_group_id='sg_id1') self.assertEqual('sg_id1 (group)', securitygroup._get_remote(sg_rule)) def test__get_protocol_port_all_none(self): sg_rule = self._prepare_rule() self.assertIsNone(securitygroup._get_protocol_port(sg_rule)) def test__get_protocol_port_tcp_all_port(self): sg_rule = self._prepare_rule(protocol='tcp') self.assertEqual('tcp', securitygroup._get_protocol_port(sg_rule)) def test__get_protocol_port_tcp_one_port(self): sg_rule = self._prepare_rule(protocol='tcp', port_range_min=22, port_range_max=22) self.assertEqual('22/tcp', securitygroup._get_protocol_port(sg_rule)) def test__get_protocol_port_tcp_port_range(self): sg_rule = self._prepare_rule(protocol='tcp', port_range_min=5000, port_range_max=5010) self.assertEqual('5000-5010/tcp', securitygroup._get_protocol_port(sg_rule)) def test__get_protocol_port_udp_all_port(self): sg_rule = self._prepare_rule(protocol='udp') self.assertEqual('udp', securitygroup._get_protocol_port(sg_rule)) def test__get_protocol_port_udp_one_port(self): sg_rule = self._prepare_rule(protocol='udp', port_range_min=22, port_range_max=22) self.assertEqual('22/udp', securitygroup._get_protocol_port(sg_rule)) def test__get_protocol_port_udp_port_range(self): sg_rule = self._prepare_rule(protocol='udp', port_range_min=5000, port_range_max=5010) self.assertEqual('5000-5010/udp', securitygroup._get_protocol_port(sg_rule)) def test__get_protocol_port_icmp_all(self): sg_rule = self._prepare_rule(protocol='icmp') self.assertEqual('icmp', securitygroup._get_protocol_port(sg_rule)) def test_get_ethertype_for_protocol_icmpv6(self): self.assertEqual('IPv6', securitygroup.generate_default_ethertype('icmpv6')) def test_get_ethertype_for_protocol_icmp(self): self.assertEqual('IPv4', securitygroup.generate_default_ethertype('icmp')) def test__get_protocol_port_udp_code_type(self): sg_rule = self._prepare_rule(protocol='icmp', port_range_min=1, port_range_max=8) self.assertEqual('icmp (type:1, code:8)', securitygroup._get_protocol_port(sg_rule)) def test__format_sg_rules(self): rules = [self._prepare_rule(), self._prepare_rule(protocol='tcp', port_range_min=80, port_range_max=80), self._prepare_rule(remote_ip_prefix='192.168.1.0/24'), self._prepare_rule(remote_group_id='group1'), self._prepare_rule(protocol='tcp', remote_ip_prefix='10.1.1.0/24'), self._prepare_rule(direction='egress'), self._prepare_rule(direction='egress', ethertype='IPv6'), ] sg = {'security_group_rules': rules} expected_data = ['ingress, IPv4', 'ingress, IPv4, 80/tcp', 'ingress, IPv4, remote_ip_prefix: 192.168.1.0/24', 'ingress, IPv4, remote_group_id: group1', 'ingress, IPv4, tcp, remote_ip_prefix: 10.1.1.0/24', 'egress, IPv4', 'egress, IPv6', ] expected = '\n'.join(sorted(expected_data)) self.assertEqual(expected, securitygroup._format_sg_rules(sg))
currychou/1
refs/heads/master
static/Brython3.1.3-20150514-095342/Lib/copy.py
628
"""Generic (shallow and deep) copying operations. Interface summary: import copy x = copy.copy(y) # make a shallow copy of y x = copy.deepcopy(y) # make a deep copy of y For module specific errors, copy.Error is raised. The difference between shallow and deep copying is only relevant for compound objects (objects that contain other objects, like lists or class instances). - A shallow copy constructs a new compound object and then (to the extent possible) inserts *the same objects* into it that the original contains. - A deep copy constructs a new compound object and then, recursively, inserts *copies* into it of the objects found in the original. Two problems often exist with deep copy operations that don't exist with shallow copy operations: a) recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a recursive loop b) because deep copy copies *everything* it may copy too much, e.g. administrative data structures that should be shared even between copies Python's deep copy operation avoids these problems by: a) keeping a table of objects already copied during the current copying pass b) letting user-defined classes override the copying operation or the set of components copied This version does not copy types like module, class, function, method, nor stack trace, stack frame, nor file, socket, window, nor array, nor any similar types. Classes can use the same interfaces to control copying that they use to control pickling: they can define methods called __getinitargs__(), __getstate__() and __setstate__(). See the documentation for module "pickle" for information on these methods. """ import types import weakref from copyreg import dispatch_table import builtins class Error(Exception): pass error = Error # backward compatibility # module org.python.core does not exist in Brython, so lets just ignore # this import request. #try: # from org.python.core import PyStringMap #except ImportError: # PyStringMap = None PyStringMap = None __all__ = ["Error", "copy", "deepcopy"] def copy(x): """Shallow copy operation on arbitrary Python objects. See the module's __doc__ string for more info. """ cls = type(x) copier = _copy_dispatch.get(cls) if copier: return copier(x) copier = getattr(cls, "__copy__", None) if copier: return copier(x) reductor = dispatch_table.get(cls) if reductor: rv = reductor(x) else: reductor = getattr(x, "__reduce_ex__", None) if reductor: rv = reductor(2) else: reductor = getattr(x, "__reduce__", None) if reductor: rv = reductor() else: raise Error("un(shallow)copyable object of type %s" % cls) return _reconstruct(x, rv, 0) _copy_dispatch = d = {} def _copy_immutable(x): return x for t in (type(None), int, float, bool, str, tuple, frozenset, type, range, types.BuiltinFunctionType, type(Ellipsis), types.FunctionType, weakref.ref): d[t] = _copy_immutable t = getattr(types, "CodeType", None) if t is not None: d[t] = _copy_immutable for name in ("complex", "unicode"): t = getattr(builtins, name, None) if t is not None: d[t] = _copy_immutable def _copy_with_constructor(x): return type(x)(x) for t in (list, dict, set): d[t] = _copy_with_constructor def _copy_with_copy_method(x): return x.copy() if PyStringMap is not None: d[PyStringMap] = _copy_with_copy_method del d def deepcopy(x, memo=None, _nil=[]): """Deep copy operation on arbitrary Python objects. See the module's __doc__ string for more info. """ if memo is None: memo = {} d = id(x) y = memo.get(d, _nil) if y is not _nil: return y cls = type(x) copier = _deepcopy_dispatch.get(cls) if copier: y = copier(x, memo) else: try: issc = issubclass(cls, type) except TypeError: # cls is not a class (old Boost; see SF #502085) issc = 0 if issc: y = _deepcopy_atomic(x, memo) else: copier = getattr(x, "__deepcopy__", None) if copier: y = copier(memo) else: reductor = dispatch_table.get(cls) if reductor: rv = reductor(x) else: reductor = getattr(x, "__reduce_ex__", None) if reductor: rv = reductor(2) else: reductor = getattr(x, "__reduce__", None) if reductor: rv = reductor() else: raise Error( "un(deep)copyable object of type %s" % cls) y = _reconstruct(x, rv, 1, memo) # If is its own copy, don't memoize. if y is not x: memo[d] = y _keep_alive(x, memo) # Make sure x lives at least as long as d return y _deepcopy_dispatch = d = {} def _deepcopy_atomic(x, memo): return x d[type(None)] = _deepcopy_atomic d[type(Ellipsis)] = _deepcopy_atomic d[int] = _deepcopy_atomic d[float] = _deepcopy_atomic d[bool] = _deepcopy_atomic try: d[complex] = _deepcopy_atomic except NameError: pass d[bytes] = _deepcopy_atomic d[str] = _deepcopy_atomic try: d[types.CodeType] = _deepcopy_atomic except AttributeError: pass d[type] = _deepcopy_atomic d[range] = _deepcopy_atomic d[types.BuiltinFunctionType] = _deepcopy_atomic d[types.FunctionType] = _deepcopy_atomic d[weakref.ref] = _deepcopy_atomic def _deepcopy_list(x, memo): y = [] memo[id(x)] = y for a in x: y.append(deepcopy(a, memo)) return y d[list] = _deepcopy_list def _deepcopy_tuple(x, memo): y = [] for a in x: y.append(deepcopy(a, memo)) # We're not going to put the tuple in the memo, but it's still important we # check for it, in case the tuple contains recursive mutable structures. try: return memo[id(x)] except KeyError: pass for i in range(len(x)): if x[i] is not y[i]: y = tuple(y) break else: y = x return y d[tuple] = _deepcopy_tuple def _deepcopy_dict(x, memo): y = {} memo[id(x)] = y for key, value in x.items(): y[deepcopy(key, memo)] = deepcopy(value, memo) return y d[dict] = _deepcopy_dict if PyStringMap is not None: d[PyStringMap] = _deepcopy_dict def _deepcopy_method(x, memo): # Copy instance methods return type(x)(x.__func__, deepcopy(x.__self__, memo)) _deepcopy_dispatch[types.MethodType] = _deepcopy_method def _keep_alive(x, memo): """Keeps a reference to the object x in the memo. Because we remember objects by their id, we have to assure that possibly temporary objects are kept alive by referencing them. We store a reference at the id of the memo, which should normally not be used unless someone tries to deepcopy the memo itself... """ try: memo[id(memo)].append(x) except KeyError: # aha, this is the first one :-) memo[id(memo)]=[x] def _reconstruct(x, info, deep, memo=None): if isinstance(info, str): return x assert isinstance(info, tuple) if memo is None: memo = {} n = len(info) assert n in (2, 3, 4, 5) callable, args = info[:2] if n > 2: state = info[2] else: state = {} if n > 3: listiter = info[3] else: listiter = None if n > 4: dictiter = info[4] else: dictiter = None if deep: args = deepcopy(args, memo) y = callable(*args) memo[id(x)] = y if state: if deep: state = deepcopy(state, memo) if hasattr(y, '__setstate__'): y.__setstate__(state) else: if isinstance(state, tuple) and len(state) == 2: state, slotstate = state else: slotstate = None if state is not None: y.__dict__.update(state) if slotstate is not None: for key, value in slotstate.items(): setattr(y, key, value) if listiter is not None: for item in listiter: if deep: item = deepcopy(item, memo) y.append(item) if dictiter is not None: for key, value in dictiter: if deep: key = deepcopy(key, memo) value = deepcopy(value, memo) y[key] = value return y del d del types # Helper for instance creation without calling __init__ class _EmptyClass: pass
ufal/neuralmonkey
refs/heads/master
scripts/decompound_truecased.py
3
#!/usr/bin/env python3 import sys import codecs import javabridge from tokenize_data import get_decompounder def main(): sys.stdin = codecs.getreader('utf-8')(sys.stdin) sys.stdout = codecs.getwriter('utf-8')(sys.stdout) sys.stderr = codecs.getwriter('utf-8')(sys.stderr) try: decompounder = get_decompounder() for line in sys.stdin: tokens = [] for token in line.rstrip().split(" "): if not token: continue if token[0].isupper(): decompounded = decompounder.splitWord(token) if decompounded.size() >= 2: parts = [decompounded.get(j) for j in range(decompounded.size())] parts_with_hyphens = ['-' if not p else p for p in parts] tokens.append(">><<".join(parts_with_hyphens)) del decompounded else: tokens.append(token) else: tokens.append(token) print(" ".join(tokens)) # except: # javabridge.kill_vm() # exit(1) finally: javabridge.kill_vm() if __name__ == "__main__": main()
HossainKhademian/XBMC
refs/heads/master
lib/gtest/test/gtest_xml_outfiles_test.py
2526
#!/usr/bin/env python # # Copyright 2008, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for the gtest_xml_output module.""" __author__ = "keith.ray@gmail.com (Keith Ray)" import os from xml.dom import minidom, Node import gtest_test_utils import gtest_xml_test_utils GTEST_OUTPUT_SUBDIR = "xml_outfiles" GTEST_OUTPUT_1_TEST = "gtest_xml_outfile1_test_" GTEST_OUTPUT_2_TEST = "gtest_xml_outfile2_test_" EXPECTED_XML_1 = """<?xml version="1.0" encoding="UTF-8"?> <testsuites tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*" name="AllTests"> <testsuite name="PropertyOne" tests="1" failures="0" disabled="0" errors="0" time="*"> <testcase name="TestSomeProperties" status="run" time="*" classname="PropertyOne" SetUpProp="1" TestSomeProperty="1" TearDownProp="1" /> </testsuite> </testsuites> """ EXPECTED_XML_2 = """<?xml version="1.0" encoding="UTF-8"?> <testsuites tests="1" failures="0" disabled="0" errors="0" time="*" timestamp="*" name="AllTests"> <testsuite name="PropertyTwo" tests="1" failures="0" disabled="0" errors="0" time="*"> <testcase name="TestSomeProperties" status="run" time="*" classname="PropertyTwo" SetUpProp="2" TestSomeProperty="2" TearDownProp="2" /> </testsuite> </testsuites> """ class GTestXMLOutFilesTest(gtest_xml_test_utils.GTestXMLTestCase): """Unit test for Google Test's XML output functionality.""" def setUp(self): # We want the trailing '/' that the last "" provides in os.path.join, for # telling Google Test to create an output directory instead of a single file # for xml output. self.output_dir_ = os.path.join(gtest_test_utils.GetTempDir(), GTEST_OUTPUT_SUBDIR, "") self.DeleteFilesAndDir() def tearDown(self): self.DeleteFilesAndDir() def DeleteFilesAndDir(self): try: os.remove(os.path.join(self.output_dir_, GTEST_OUTPUT_1_TEST + ".xml")) except os.error: pass try: os.remove(os.path.join(self.output_dir_, GTEST_OUTPUT_2_TEST + ".xml")) except os.error: pass try: os.rmdir(self.output_dir_) except os.error: pass def testOutfile1(self): self._TestOutFile(GTEST_OUTPUT_1_TEST, EXPECTED_XML_1) def testOutfile2(self): self._TestOutFile(GTEST_OUTPUT_2_TEST, EXPECTED_XML_2) def _TestOutFile(self, test_name, expected_xml): gtest_prog_path = gtest_test_utils.GetTestExecutablePath(test_name) command = [gtest_prog_path, "--gtest_output=xml:%s" % self.output_dir_] p = gtest_test_utils.Subprocess(command, working_dir=gtest_test_utils.GetTempDir()) self.assert_(p.exited) self.assertEquals(0, p.exit_code) # TODO(wan@google.com): libtool causes the built test binary to be # named lt-gtest_xml_outfiles_test_ instead of # gtest_xml_outfiles_test_. To account for this possibillity, we # allow both names in the following code. We should remove this # hack when Chandler Carruth's libtool replacement tool is ready. output_file_name1 = test_name + ".xml" output_file1 = os.path.join(self.output_dir_, output_file_name1) output_file_name2 = 'lt-' + output_file_name1 output_file2 = os.path.join(self.output_dir_, output_file_name2) self.assert_(os.path.isfile(output_file1) or os.path.isfile(output_file2), output_file1) expected = minidom.parseString(expected_xml) if os.path.isfile(output_file1): actual = minidom.parse(output_file1) else: actual = minidom.parse(output_file2) self.NormalizeXml(actual.documentElement) self.AssertEquivalentNodes(expected.documentElement, actual.documentElement) expected.unlink() actual.unlink() if __name__ == "__main__": os.environ["GTEST_STACK_TRACE_DEPTH"] = "0" gtest_test_utils.Main()
GeoNode/geonode
refs/heads/master
geonode/documents/migrations/0028_auto_20170801_1228_squashed_0035_auto_20190404_0820.py
6
# -*- coding: utf-8 -*- # Generated by Django 1.11.20 on 2019-04-04 08:24 from django.db import migrations, models import django.db.models.manager class Migration(migrations.Migration): replaces = [('documents', '0028_auto_20170801_1228'), ('documents', '0029_auto_20180301_1947'), ('documents', '0030_auto_20180302_0430'), ('documents', '0031_auto_20180409_1238'), ('documents', '0032_auto_20180412_0822'), ('documents', '0033_auto_20180414_2120'), ('documents', '0034_auto_20190329_1652'), ('documents', '0035_auto_20190404_0820')] dependencies = [ ('documents', '27_drop_resource_columns_from_document_table'), ] operations = [ migrations.AlterField( model_name='document', name='abstract_en', field=models.TextField(blank=True, help_text='brief narrative summary of the content of the resource(s)', max_length=2000, null=True, verbose_name='abstract'), ), migrations.AlterField( model_name='document', name='data_quality_statement_en', field=models.TextField(blank=True, help_text="general explanation of the data producer's knowledge about the lineage of a dataset", max_length=2000, null=True, verbose_name='data quality statement'), ), migrations.AlterField( model_name='document', name='purpose_en', field=models.TextField(blank=True, help_text='summary of the intentions with which the resource(s) was developed', max_length=500, null=True, verbose_name='purpose'), ), migrations.AlterField( model_name='document', name='supplemental_information_en', field=models.TextField(default='No information provided', help_text='any other descriptive information about the dataset', max_length=2000, null=True, verbose_name='supplemental information'), ), migrations.AlterModelManagers( name='document', managers=[ ('objects', django.db.models.manager.Manager()), ('base_objects', django.db.models.manager.Manager()), ], ), migrations.AlterModelOptions( name='document', options={'base_manager_name': 'objects'}, ), migrations.AlterModelManagers( name='document', managers=[ ], ), migrations.AlterModelOptions( name='document', options={}, ), migrations.AlterModelManagers( name='document', managers=[ ('objects', django.db.models.manager.Manager()), ('base_objects', django.db.models.manager.Manager()), ], ), ]
friendly-of-python/flask-online-store
refs/heads/master
flask_online_store/forms/admin/security.py
1
from flask_wtf import FlaskForm from wtforms import StringField, SubmitField, PasswordField from wtforms.validators import DataRequired, Email, EqualTo, Length class LoginForm(FlaskForm): username = StringField('username', validators=[ DataRequired() ]) password = PasswordField('password', validators=[ DataRequired() ]) class RegisterForm(FlaskForm): username = StringField('username', validators=[ DataRequired(message=u'用户名不能为空') ], render_kw={ 'placeholder': u'用户名' }) email = StringField('email', validators=[ DataRequired(message=u'邮箱不能为空'), Email(message=u'请输入有效的邮箱地址') ], render_kw={ 'placeholder': u'Email' }) password = PasswordField('password', validators=[ DataRequired(message=u'密码不能为空'), EqualTo('password_confirm', message='Passwords must match'), Length(6, 20) ], render_kw={ 'placeholder': u'Password' }) password_confirm = PasswordField('repeat password', render_kw={ 'placeholder': u'Password Again' }) validate_code = StringField('validate code', validators=[ DataRequired(message=u'验证码不能为空') ], render_kw={ 'placeholder': u'请输入验证码' })
devdelay/home-assistant
refs/heads/dev
homeassistant/components/light/demo.py
3
""" Demo light platform that implements lights. For more details about this platform, please refer to the documentation https://home-assistant.io/components/demo/ """ import random from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_RGB_COLOR, Light) LIGHT_COLORS = [ [237, 224, 33], [255, 63, 111], ] LIGHT_TEMPS = [240, 380] def setup_platform(hass, config, add_devices_callback, discovery_info=None): """Setup the demo light platform.""" add_devices_callback([ DemoLight("Bed Light", False), DemoLight("Ceiling Lights", True, LIGHT_COLORS[0], LIGHT_TEMPS[1]), DemoLight("Kitchen Lights", True, LIGHT_COLORS[1], LIGHT_TEMPS[0]) ]) class DemoLight(Light): """Represenation of a demo light.""" # pylint: disable=too-many-arguments def __init__(self, name, state, rgb=None, ct=None, brightness=180): """Initialize the light.""" self._name = name self._state = state self._rgb = rgb or random.choice(LIGHT_COLORS) self._ct = ct or random.choice(LIGHT_TEMPS) self._brightness = brightness @property def should_poll(self): """No polling needed for a demo light.""" return False @property def name(self): """Return the name of the light if any.""" return self._name @property def brightness(self): """Return the brightness of this light between 0..255.""" return self._brightness @property def rgb_color(self): """Return the RBG color value.""" return self._rgb @property def color_temp(self): """Return the CT color temperature.""" return self._ct @property def is_on(self): """Return true if light is on.""" return self._state def turn_on(self, **kwargs): """Turn the light on.""" self._state = True if ATTR_RGB_COLOR in kwargs: self._rgb = kwargs[ATTR_RGB_COLOR] if ATTR_COLOR_TEMP in kwargs: self._ct = kwargs[ATTR_COLOR_TEMP] if ATTR_BRIGHTNESS in kwargs: self._brightness = kwargs[ATTR_BRIGHTNESS] self.update_ha_state() def turn_off(self, **kwargs): """Turn the light off.""" self._state = False self.update_ha_state()
trishnaguha/ansible
refs/heads/devel
test/integration/targets/script/files/no_shebang.py
97
import sys sys.stdout.write("Script with shebang omitted")
zzzeek/sqlalchemy
refs/heads/master
lib/sqlalchemy/sql/sqltypes.py
2
# sql/sqltypes.py # Copyright (C) 2005-2021 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """SQL specific types. """ import codecs import datetime as dt import decimal import json from . import coercions from . import elements from . import operators from . import roles from . import type_api from .base import _bind_or_error from .base import NO_ARG from .base import SchemaEventTarget from .elements import _NONE_NAME from .elements import quoted_name from .elements import Slice from .elements import TypeCoerce as type_coerce # noqa from .traversals import HasCacheKey from .traversals import InternalTraversal from .type_api import Emulated from .type_api import NativeForEmulated # noqa from .type_api import to_instance from .type_api import TypeDecorator from .type_api import TypeEngine from .type_api import Variant from .. import event from .. import exc from .. import inspection from .. import processors from .. import util from ..util import compat from ..util import langhelpers from ..util import OrderedDict from ..util import pickle class _LookupExpressionAdapter(object): """Mixin expression adaptations based on lookup tables. These rules are currently used by the numeric, integer and date types which have detailed cross-expression coercion rules. """ @property def _expression_adaptations(self): raise NotImplementedError() class Comparator(TypeEngine.Comparator): _blank_dict = util.immutabledict() def _adapt_expression(self, op, other_comparator): othertype = other_comparator.type._type_affinity lookup = self.type._expression_adaptations.get( op, self._blank_dict ).get(othertype, self.type) if lookup is othertype: return (op, other_comparator.type) elif lookup is self.type._type_affinity: return (op, self.type) else: return (op, to_instance(lookup)) comparator_factory = Comparator class Concatenable(object): """A mixin that marks a type as supporting 'concatenation', typically strings.""" class Comparator(TypeEngine.Comparator): def _adapt_expression(self, op, other_comparator): if op is operators.add and isinstance( other_comparator, (Concatenable.Comparator, NullType.Comparator), ): return operators.concat_op, self.expr.type else: return super(Concatenable.Comparator, self)._adapt_expression( op, other_comparator ) comparator_factory = Comparator class Indexable(object): """A mixin that marks a type as supporting indexing operations, such as array or JSON structures. .. versionadded:: 1.1.0 """ class Comparator(TypeEngine.Comparator): def _setup_getitem(self, index): raise NotImplementedError() def __getitem__(self, index): ( adjusted_op, adjusted_right_expr, result_type, ) = self._setup_getitem(index) return self.operate( adjusted_op, adjusted_right_expr, result_type=result_type ) comparator_factory = Comparator class String(Concatenable, TypeEngine): """The base for all string and character types. In SQL, corresponds to VARCHAR. Can also take Python unicode objects and encode to the database's encoding in bind params (and the reverse for result sets.) The `length` field is usually required when the `String` type is used within a CREATE TABLE statement, as VARCHAR requires a length on most databases. """ __visit_name__ = "string" RETURNS_UNICODE = util.symbol( "RETURNS_UNICODE", """Indicates that the DBAPI returns Python Unicode for VARCHAR, NVARCHAR, and other character-based datatypes in all cases. This is the default value for :attr:`.DefaultDialect.returns_unicode_strings` under Python 3. .. versionadded:: 1.4 """, ) RETURNS_BYTES = util.symbol( "RETURNS_BYTES", """Indicates that the DBAPI returns byte objects under Python 3 or non-Unicode string objects under Python 2 for VARCHAR, NVARCHAR, and other character-based datatypes in all cases. This may be applied to the :attr:`.DefaultDialect.returns_unicode_strings` attribute. .. versionadded:: 1.4 """, ) RETURNS_CONDITIONAL = util.symbol( "RETURNS_CONDITIONAL", """Indicates that the DBAPI may return Unicode or bytestrings for VARCHAR, NVARCHAR, and other character-based datatypes, and that SQLAlchemy's default String datatype will need to test on a per-row basis for Unicode or bytes. This may be applied to the :attr:`.DefaultDialect.returns_unicode_strings` attribute. .. versionadded:: 1.4 """, ) RETURNS_UNKNOWN = util.symbol( "RETURNS_UNKNOWN", """Indicates that the dialect should test on first connect what the string-returning behavior of character-based datatypes is. This is the default value for DefaultDialect.unicode_returns under Python 2. This may be applied to the :attr:`.DefaultDialect.returns_unicode_strings` attribute under Python 2 only. The value is disallowed under Python 3. .. versionadded:: 1.4 .. deprecated:: 1.4 This value will be removed in SQLAlchemy 2.0. """, ) @util.deprecated_params( convert_unicode=( "1.3", "The :paramref:`.String.convert_unicode` parameter is deprecated " "and will be removed in a future release. All modern DBAPIs " "now support Python Unicode directly and this parameter is " "unnecessary.", ), unicode_error=( "1.3", "The :paramref:`.String.unicode_errors` parameter is deprecated " "and will be removed in a future release. This parameter is " "unnecessary for modern Python DBAPIs and degrades performance " "significantly.", ), ) def __init__( self, length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False, _expect_unicode=False, ): """ Create a string-holding type. :param length: optional, a length for the column for use in DDL and CAST expressions. May be safely omitted if no ``CREATE TABLE`` will be issued. Certain databases may require a ``length`` for use in DDL, and will raise an exception when the ``CREATE TABLE`` DDL is issued if a ``VARCHAR`` with no length is included. Whether the value is interpreted as bytes or characters is database specific. :param collation: Optional, a column-level collation for use in DDL and CAST expressions. Renders using the COLLATE keyword supported by SQLite, MySQL, and PostgreSQL. E.g.:: >>> from sqlalchemy import cast, select, String >>> print(select(cast('some string', String(collation='utf8')))) SELECT CAST(:param_1 AS VARCHAR COLLATE utf8) AS anon_1 :param convert_unicode: When set to ``True``, the :class:`.String` type will assume that input is to be passed as Python Unicode objects under Python 2, and results returned as Python Unicode objects. In the rare circumstance that the DBAPI does not support Python unicode under Python 2, SQLAlchemy will use its own encoder/decoder functionality on strings, referring to the value of the :paramref:`_sa.create_engine.encoding` parameter parameter passed to :func:`_sa.create_engine` as the encoding. For the extremely rare case that Python Unicode is to be encoded/decoded by SQLAlchemy on a backend that *does* natively support Python Unicode, the string value ``"force"`` can be passed here which will cause SQLAlchemy's encode/decode services to be used unconditionally. .. note:: SQLAlchemy's unicode-conversion flags and features only apply to Python 2; in Python 3, all string objects are Unicode objects. For this reason, as well as the fact that virtually all modern DBAPIs now support Unicode natively even under Python 2, the :paramref:`.String.convert_unicode` flag is inherently a legacy feature. .. note:: In the vast majority of cases, the :class:`.Unicode` or :class:`.UnicodeText` datatypes should be used for a :class:`_schema.Column` that expects to store non-ascii data. These datatypes will ensure that the correct types are used on the database side as well as set up the correct Unicode behaviors under Python 2. .. seealso:: :paramref:`_sa.create_engine.convert_unicode` - :class:`_engine.Engine`-wide parameter :param unicode_error: Optional, a method to use to handle Unicode conversion errors. Behaves like the ``errors`` keyword argument to the standard library's ``string.decode()`` functions, requires that :paramref:`.String.convert_unicode` is set to ``"force"`` """ if unicode_error is not None and convert_unicode != "force": raise exc.ArgumentError( "convert_unicode must be 'force' " "when unicode_error is set." ) self.length = length self.collation = collation self._expect_unicode = convert_unicode or _expect_unicode self._expect_unicode_error = unicode_error self._warn_on_bytestring = _warn_on_bytestring def literal_processor(self, dialect): def process(value): value = value.replace("'", "''") if dialect.identifier_preparer._double_percents: value = value.replace("%", "%%") return "'%s'" % value return process def bind_processor(self, dialect): if self._expect_unicode or dialect.convert_unicode: if ( dialect.supports_unicode_binds and self._expect_unicode != "force" ): if self._warn_on_bytestring: def process(value): if isinstance(value, util.binary_type): util.warn_limited( "Unicode type received non-unicode " "bind param value %r.", (util.ellipses_string(value),), ) return value return process else: return None else: encoder = codecs.getencoder(dialect.encoding) warn_on_bytestring = self._warn_on_bytestring def process(value): if isinstance(value, util.text_type): return encoder(value, self._expect_unicode_error)[0] elif warn_on_bytestring and value is not None: util.warn_limited( "Unicode type received non-unicode bind " "param value %r.", (util.ellipses_string(value),), ) return value return process else: return None def result_processor(self, dialect, coltype): wants_unicode = self._expect_unicode or dialect.convert_unicode needs_convert = wants_unicode and ( dialect.returns_unicode_strings is not String.RETURNS_UNICODE or self._expect_unicode in ("force", "force_nocheck") ) needs_isinstance = ( needs_convert and dialect.returns_unicode_strings in ( String.RETURNS_CONDITIONAL, String.RETURNS_UNICODE, ) and self._expect_unicode != "force_nocheck" ) if needs_convert: if needs_isinstance: return processors.to_conditional_unicode_processor_factory( dialect.encoding, self._expect_unicode_error ) else: return processors.to_unicode_processor_factory( dialect.encoding, self._expect_unicode_error ) else: return None @property def python_type(self): if self._expect_unicode: return util.text_type else: return str def get_dbapi_type(self, dbapi): return dbapi.STRING @classmethod def _warn_deprecated_unicode(cls): util.warn_deprecated( "The convert_unicode on Engine and String as well as the " "unicode_error flag on String are deprecated. All modern " "DBAPIs now support Python Unicode natively under Python 2, and " "under Python 3 all strings are inherently Unicode. These flags " "will be removed in a future release.", version="1.3", ) class Text(String): """A variably sized string type. In SQL, usually corresponds to CLOB or TEXT. Can also take Python unicode objects and encode to the database's encoding in bind params (and the reverse for result sets.) In general, TEXT objects do not have a length; while some databases will accept a length argument here, it will be rejected by others. """ __visit_name__ = "text" class Unicode(String): """A variable length Unicode string type. The :class:`.Unicode` type is a :class:`.String` subclass that assumes input and output strings that may contain non-ASCII characters, and for some backends implies an underlying column type that is explicitly supporting of non-ASCII data, such as ``NVARCHAR`` on Oracle and SQL Server. This will impact the output of ``CREATE TABLE`` statements and ``CAST`` functions at the dialect level, and also in some cases will indicate different behavior in the DBAPI itself in how it handles bound parameters. The character encoding used by the :class:`.Unicode` type that is used to transmit and receive data to the database is usually determined by the DBAPI itself. All modern DBAPIs accommodate non-ASCII strings but may have different methods of managing database encodings; if necessary, this encoding should be configured as detailed in the notes for the target DBAPI in the :ref:`dialect_toplevel` section. In modern SQLAlchemy, use of the :class:`.Unicode` datatype does not typically imply any encoding/decoding behavior within SQLAlchemy itself. Historically, when DBAPIs did not support Python ``unicode`` objects under Python 2, SQLAlchemy handled unicode encoding/decoding services itself which would be controlled by the flag :paramref:`.String.convert_unicode`; this flag is deprecated as it is no longer needed for Python 3. When using Python 2, data that is passed to columns that use the :class:`.Unicode` datatype must be of type ``unicode``, and not ``str`` which in Python 2 is equivalent to ``bytes``. In Python 3, all data passed to columns that use the :class:`.Unicode` datatype should be of type ``str``. See the flag :paramref:`.String.convert_unicode` for more discussion of unicode encode/decode behavior under Python 2. .. warning:: Some database backends, particularly SQL Server with pyodbc, are known to have undesirable behaviors regarding data that is noted as being of ``NVARCHAR`` type as opposed to ``VARCHAR``, including datatype mismatch errors and non-use of indexes. See the section on :meth:`.DialectEvents.do_setinputsizes` for background on working around unicode character issues for backends like SQL Server with pyodbc as well as cx_Oracle. .. seealso:: :class:`.UnicodeText` - unlengthed textual counterpart to :class:`.Unicode`. :paramref:`.String.convert_unicode` :meth:`.DialectEvents.do_setinputsizes` """ __visit_name__ = "unicode" def __init__(self, length=None, **kwargs): """ Create a :class:`.Unicode` object. Parameters are the same as that of :class:`.String`, with the exception that ``convert_unicode`` defaults to ``True``. """ kwargs.setdefault("_expect_unicode", True) kwargs.setdefault("_warn_on_bytestring", True) super(Unicode, self).__init__(length=length, **kwargs) class UnicodeText(Text): """An unbounded-length Unicode string type. See :class:`.Unicode` for details on the unicode behavior of this object. Like :class:`.Unicode`, usage the :class:`.UnicodeText` type implies a unicode-capable type being used on the backend, such as ``NCLOB``, ``NTEXT``. """ __visit_name__ = "unicode_text" def __init__(self, length=None, **kwargs): """ Create a Unicode-converting Text type. Parameters are the same as that of :class:`_expression.TextClause`, with the exception that ``convert_unicode`` defaults to ``True``. """ kwargs.setdefault("_expect_unicode", True) kwargs.setdefault("_warn_on_bytestring", True) super(UnicodeText, self).__init__(length=length, **kwargs) def _warn_deprecated_unicode(self): pass class Integer(_LookupExpressionAdapter, TypeEngine): """A type for ``int`` integers.""" __visit_name__ = "integer" def get_dbapi_type(self, dbapi): return dbapi.NUMBER @property def python_type(self): return int def literal_processor(self, dialect): def process(value): return str(int(value)) return process @util.memoized_property def _expression_adaptations(self): # TODO: need a dictionary object that will # handle operators generically here, this is incomplete return { operators.add: { Date: Date, Integer: self.__class__, Numeric: Numeric, }, operators.mul: { Interval: Interval, Integer: self.__class__, Numeric: Numeric, }, operators.div: {Integer: self.__class__, Numeric: Numeric}, operators.truediv: {Integer: self.__class__, Numeric: Numeric}, operators.sub: {Integer: self.__class__, Numeric: Numeric}, } class SmallInteger(Integer): """A type for smaller ``int`` integers. Typically generates a ``SMALLINT`` in DDL, and otherwise acts like a normal :class:`.Integer` on the Python side. """ __visit_name__ = "small_integer" class BigInteger(Integer): """A type for bigger ``int`` integers. Typically generates a ``BIGINT`` in DDL, and otherwise acts like a normal :class:`.Integer` on the Python side. """ __visit_name__ = "big_integer" class Numeric(_LookupExpressionAdapter, TypeEngine): """A type for fixed precision numbers, such as ``NUMERIC`` or ``DECIMAL``. This type returns Python ``decimal.Decimal`` objects by default, unless the :paramref:`.Numeric.asdecimal` flag is set to False, in which case they are coerced to Python ``float`` objects. .. note:: The :class:`.Numeric` type is designed to receive data from a database type that is explicitly known to be a decimal type (e.g. ``DECIMAL``, ``NUMERIC``, others) and not a floating point type (e.g. ``FLOAT``, ``REAL``, others). If the database column on the server is in fact a floating-point type, such as ``FLOAT`` or ``REAL``, use the :class:`.Float` type or a subclass, otherwise numeric coercion between ``float``/``Decimal`` may or may not function as expected. .. note:: The Python ``decimal.Decimal`` class is generally slow performing; cPython 3.3 has now switched to use the `cdecimal <http://pypi.python.org/pypi/cdecimal/>`_ library natively. For older Python versions, the ``cdecimal`` library can be patched into any application where it will replace the ``decimal`` library fully, however this needs to be applied globally and before any other modules have been imported, as follows:: import sys import cdecimal sys.modules["decimal"] = cdecimal Note that the ``cdecimal`` and ``decimal`` libraries are **not compatible with each other**, so patching ``cdecimal`` at the global level is the only way it can be used effectively with various DBAPIs that hardcode to import the ``decimal`` library. """ __visit_name__ = "numeric" _default_decimal_return_scale = 10 def __init__( self, precision=None, scale=None, decimal_return_scale=None, asdecimal=True, ): """ Construct a Numeric. :param precision: the numeric precision for use in DDL ``CREATE TABLE``. :param scale: the numeric scale for use in DDL ``CREATE TABLE``. :param asdecimal: default True. Return whether or not values should be sent as Python Decimal objects, or as floats. Different DBAPIs send one or the other based on datatypes - the Numeric type will ensure that return values are one or the other across DBAPIs consistently. :param decimal_return_scale: Default scale to use when converting from floats to Python decimals. Floating point values will typically be much longer due to decimal inaccuracy, and most floating point database types don't have a notion of "scale", so by default the float type looks for the first ten decimal places when converting. Specifying this value will override that length. Types which do include an explicit ".scale" value, such as the base :class:`.Numeric` as well as the MySQL float types, will use the value of ".scale" as the default for decimal_return_scale, if not otherwise specified. .. versionadded:: 0.9.0 When using the ``Numeric`` type, care should be taken to ensure that the asdecimal setting is appropriate for the DBAPI in use - when Numeric applies a conversion from Decimal->float or float-> Decimal, this conversion incurs an additional performance overhead for all result columns received. DBAPIs that return Decimal natively (e.g. psycopg2) will have better accuracy and higher performance with a setting of ``True``, as the native translation to Decimal reduces the amount of floating- point issues at play, and the Numeric type itself doesn't need to apply any further conversions. However, another DBAPI which returns floats natively *will* incur an additional conversion overhead, and is still subject to floating point data loss - in which case ``asdecimal=False`` will at least remove the extra conversion overhead. """ self.precision = precision self.scale = scale self.decimal_return_scale = decimal_return_scale self.asdecimal = asdecimal @property def _effective_decimal_return_scale(self): if self.decimal_return_scale is not None: return self.decimal_return_scale elif getattr(self, "scale", None) is not None: return self.scale else: return self._default_decimal_return_scale def get_dbapi_type(self, dbapi): return dbapi.NUMBER def literal_processor(self, dialect): def process(value): return str(value) return process @property def python_type(self): if self.asdecimal: return decimal.Decimal else: return float def bind_processor(self, dialect): if dialect.supports_native_decimal: return None else: return processors.to_float def result_processor(self, dialect, coltype): if self.asdecimal: if dialect.supports_native_decimal: # we're a "numeric", DBAPI will give us Decimal directly return None else: util.warn( "Dialect %s+%s does *not* support Decimal " "objects natively, and SQLAlchemy must " "convert from floating point - rounding " "errors and other issues may occur. Please " "consider storing Decimal numbers as strings " "or integers on this platform for lossless " "storage." % (dialect.name, dialect.driver) ) # we're a "numeric", DBAPI returns floats, convert. return processors.to_decimal_processor_factory( decimal.Decimal, self.scale if self.scale is not None else self._default_decimal_return_scale, ) else: if dialect.supports_native_decimal: return processors.to_float else: return None @util.memoized_property def _expression_adaptations(self): return { operators.mul: { Interval: Interval, Numeric: self.__class__, Integer: self.__class__, }, operators.div: {Numeric: self.__class__, Integer: self.__class__}, operators.truediv: { Numeric: self.__class__, Integer: self.__class__, }, operators.add: {Numeric: self.__class__, Integer: self.__class__}, operators.sub: {Numeric: self.__class__, Integer: self.__class__}, } class Float(Numeric): """Type representing floating point types, such as ``FLOAT`` or ``REAL``. This type returns Python ``float`` objects by default, unless the :paramref:`.Float.asdecimal` flag is set to True, in which case they are coerced to ``decimal.Decimal`` objects. .. note:: The :class:`.Float` type is designed to receive data from a database type that is explicitly known to be a floating point type (e.g. ``FLOAT``, ``REAL``, others) and not a decimal type (e.g. ``DECIMAL``, ``NUMERIC``, others). If the database column on the server is in fact a Numeric type, such as ``DECIMAL`` or ``NUMERIC``, use the :class:`.Numeric` type or a subclass, otherwise numeric coercion between ``float``/``Decimal`` may or may not function as expected. """ __visit_name__ = "float" scale = None def __init__( self, precision=None, asdecimal=False, decimal_return_scale=None ): r""" Construct a Float. :param precision: the numeric precision for use in DDL ``CREATE TABLE``. :param asdecimal: the same flag as that of :class:`.Numeric`, but defaults to ``False``. Note that setting this flag to ``True`` results in floating point conversion. :param decimal_return_scale: Default scale to use when converting from floats to Python decimals. Floating point values will typically be much longer due to decimal inaccuracy, and most floating point database types don't have a notion of "scale", so by default the float type looks for the first ten decimal places when converting. Specifying this value will override that length. Note that the MySQL float types, which do include "scale", will use "scale" as the default for decimal_return_scale, if not otherwise specified. .. versionadded:: 0.9.0 """ self.precision = precision self.asdecimal = asdecimal self.decimal_return_scale = decimal_return_scale def result_processor(self, dialect, coltype): if self.asdecimal: return processors.to_decimal_processor_factory( decimal.Decimal, self._effective_decimal_return_scale ) elif dialect.supports_native_decimal: return processors.to_float else: return None class DateTime(_LookupExpressionAdapter, TypeEngine): """A type for ``datetime.datetime()`` objects. Date and time types return objects from the Python ``datetime`` module. Most DBAPIs have built in support for the datetime module, with the noted exception of SQLite. In the case of SQLite, date and time types are stored as strings which are then converted back to datetime objects when rows are returned. For the time representation within the datetime type, some backends include additional options, such as timezone support and fractional seconds support. For fractional seconds, use the dialect-specific datatype, such as :class:`.mysql.TIME`. For timezone support, use at least the :class:`_types.TIMESTAMP` datatype, if not the dialect-specific datatype object. """ __visit_name__ = "datetime" def __init__(self, timezone=False): """Construct a new :class:`.DateTime`. :param timezone: boolean. Indicates that the datetime type should enable timezone support, if available on the **base date/time-holding type only**. It is recommended to make use of the :class:`_types.TIMESTAMP` datatype directly when using this flag, as some databases include separate generic date/time-holding types distinct from the timezone-capable TIMESTAMP datatype, such as Oracle. """ self.timezone = timezone def get_dbapi_type(self, dbapi): return dbapi.DATETIME @property def python_type(self): return dt.datetime @util.memoized_property def _expression_adaptations(self): # Based on http://www.postgresql.org/docs/current/\ # static/functions-datetime.html. return { operators.add: {Interval: self.__class__}, operators.sub: {Interval: self.__class__, DateTime: Interval}, } class Date(_LookupExpressionAdapter, TypeEngine): """A type for ``datetime.date()`` objects.""" __visit_name__ = "date" def get_dbapi_type(self, dbapi): return dbapi.DATETIME @property def python_type(self): return dt.date @util.memoized_property def _expression_adaptations(self): # Based on http://www.postgresql.org/docs/current/\ # static/functions-datetime.html. return { operators.add: { Integer: self.__class__, Interval: DateTime, Time: DateTime, }, operators.sub: { # date - integer = date Integer: self.__class__, # date - date = integer. Date: Integer, Interval: DateTime, # date - datetime = interval, # this one is not in the PG docs # but works DateTime: Interval, }, } class Time(_LookupExpressionAdapter, TypeEngine): """A type for ``datetime.time()`` objects.""" __visit_name__ = "time" def __init__(self, timezone=False): self.timezone = timezone def get_dbapi_type(self, dbapi): return dbapi.DATETIME @property def python_type(self): return dt.time @util.memoized_property def _expression_adaptations(self): # Based on http://www.postgresql.org/docs/current/\ # static/functions-datetime.html. return { operators.add: {Date: DateTime, Interval: self.__class__}, operators.sub: {Time: Interval, Interval: self.__class__}, } class _Binary(TypeEngine): """Define base behavior for binary types.""" def __init__(self, length=None): self.length = length def literal_processor(self, dialect): def process(value): value = value.decode(dialect.encoding).replace("'", "''") return "'%s'" % value return process @property def python_type(self): return util.binary_type # Python 3 - sqlite3 doesn't need the `Binary` conversion # here, though pg8000 does to indicate "bytea" def bind_processor(self, dialect): if dialect.dbapi is None: return None DBAPIBinary = dialect.dbapi.Binary def process(value): if value is not None: return DBAPIBinary(value) else: return None return process # Python 3 has native bytes() type # both sqlite3 and pg8000 seem to return it, # psycopg2 as of 2.5 returns 'memoryview' if util.py2k: def result_processor(self, dialect, coltype): return processors.to_str else: def result_processor(self, dialect, coltype): def process(value): if value is not None: value = bytes(value) return value return process def coerce_compared_value(self, op, value): """See :meth:`.TypeEngine.coerce_compared_value` for a description.""" if isinstance(value, util.string_types): return self else: return super(_Binary, self).coerce_compared_value(op, value) def get_dbapi_type(self, dbapi): return dbapi.BINARY class LargeBinary(_Binary): """A type for large binary byte data. The :class:`.LargeBinary` type corresponds to a large and/or unlengthed binary type for the target platform, such as BLOB on MySQL and BYTEA for PostgreSQL. It also handles the necessary conversions for the DBAPI. """ __visit_name__ = "large_binary" def __init__(self, length=None): """ Construct a LargeBinary type. :param length: optional, a length for the column for use in DDL statements, for those binary types that accept a length, such as the MySQL BLOB type. """ _Binary.__init__(self, length=length) class SchemaType(SchemaEventTarget): """Mark a type as possibly requiring schema-level DDL for usage. Supports types that must be explicitly created/dropped (i.e. PG ENUM type) as well as types that are complimented by table or schema level constraints, triggers, and other rules. :class:`.SchemaType` classes can also be targets for the :meth:`.DDLEvents.before_parent_attach` and :meth:`.DDLEvents.after_parent_attach` events, where the events fire off surrounding the association of the type object with a parent :class:`_schema.Column`. .. seealso:: :class:`.Enum` :class:`.Boolean` """ _use_schema_map = True def __init__( self, name=None, schema=None, metadata=None, inherit_schema=False, quote=None, _create_events=True, ): if name is not None: self.name = quoted_name(name, quote) else: self.name = None self.schema = schema self.metadata = metadata self.inherit_schema = inherit_schema self._create_events = _create_events if _create_events and self.metadata: event.listen( self.metadata, "before_create", util.portable_instancemethod(self._on_metadata_create), ) event.listen( self.metadata, "after_drop", util.portable_instancemethod(self._on_metadata_drop), ) def _set_parent(self, column, **kw): column._on_table_attach(util.portable_instancemethod(self._set_table)) def _variant_mapping_for_set_table(self, column): if isinstance(column.type, Variant): variant_mapping = column.type.mapping.copy() variant_mapping["_default"] = column.type.impl else: variant_mapping = None return variant_mapping def _set_table(self, column, table): if self.inherit_schema: self.schema = table.schema elif self.metadata and self.schema is None and self.metadata.schema: self.schema = self.metadata.schema if not self._create_events: return variant_mapping = self._variant_mapping_for_set_table(column) event.listen( table, "before_create", util.portable_instancemethod( self._on_table_create, {"variant_mapping": variant_mapping} ), ) event.listen( table, "after_drop", util.portable_instancemethod( self._on_table_drop, {"variant_mapping": variant_mapping} ), ) if self.metadata is None: # TODO: what's the difference between self.metadata # and table.metadata here ? event.listen( table.metadata, "before_create", util.portable_instancemethod( self._on_metadata_create, {"variant_mapping": variant_mapping}, ), ) event.listen( table.metadata, "after_drop", util.portable_instancemethod( self._on_metadata_drop, {"variant_mapping": variant_mapping}, ), ) def copy(self, **kw): return self.adapt(self.__class__, _create_events=True) def adapt(self, impltype, **kw): schema = kw.pop("schema", self.schema) metadata = kw.pop("metadata", self.metadata) _create_events = kw.pop("_create_events", False) return impltype( name=self.name, schema=schema, inherit_schema=self.inherit_schema, metadata=metadata, _create_events=_create_events, **kw ) @property def bind(self): return self.metadata and self.metadata.bind or None def create(self, bind=None, checkfirst=False): """Issue CREATE DDL for this type, if applicable.""" if bind is None: bind = _bind_or_error(self) t = self.dialect_impl(bind.dialect) if t.__class__ is not self.__class__ and isinstance(t, SchemaType): t.create(bind=bind, checkfirst=checkfirst) def drop(self, bind=None, checkfirst=False): """Issue DROP DDL for this type, if applicable.""" if bind is None: bind = _bind_or_error(self) t = self.dialect_impl(bind.dialect) if t.__class__ is not self.__class__ and isinstance(t, SchemaType): t.drop(bind=bind, checkfirst=checkfirst) def _on_table_create(self, target, bind, **kw): if not self._is_impl_for_variant(bind.dialect, kw): return t = self.dialect_impl(bind.dialect) if t.__class__ is not self.__class__ and isinstance(t, SchemaType): t._on_table_create(target, bind, **kw) def _on_table_drop(self, target, bind, **kw): if not self._is_impl_for_variant(bind.dialect, kw): return t = self.dialect_impl(bind.dialect) if t.__class__ is not self.__class__ and isinstance(t, SchemaType): t._on_table_drop(target, bind, **kw) def _on_metadata_create(self, target, bind, **kw): if not self._is_impl_for_variant(bind.dialect, kw): return t = self.dialect_impl(bind.dialect) if t.__class__ is not self.__class__ and isinstance(t, SchemaType): t._on_metadata_create(target, bind, **kw) def _on_metadata_drop(self, target, bind, **kw): if not self._is_impl_for_variant(bind.dialect, kw): return t = self.dialect_impl(bind.dialect) if t.__class__ is not self.__class__ and isinstance(t, SchemaType): t._on_metadata_drop(target, bind, **kw) def _is_impl_for_variant(self, dialect, kw): variant_mapping = kw.pop("variant_mapping", None) if variant_mapping is None: return True # since PostgreSQL is the only DB that has ARRAY this can only # be integration tested by PG-specific tests def _we_are_the_impl(typ): return ( typ is self or isinstance(typ, ARRAY) and typ.item_type is self ) if dialect.name in variant_mapping and _we_are_the_impl( variant_mapping[dialect.name] ): return True elif dialect.name not in variant_mapping: return _we_are_the_impl(variant_mapping["_default"]) class Enum(Emulated, String, SchemaType): """Generic Enum Type. The :class:`.Enum` type provides a set of possible string values which the column is constrained towards. The :class:`.Enum` type will make use of the backend's native "ENUM" type if one is available; otherwise, it uses a VARCHAR datatype. An option also exists to automatically produce a CHECK constraint when the VARCHAR (so called "non-native") variant is produced; see the :paramref:`.Enum.create_constraint` flag. The :class:`.Enum` type also provides in-Python validation of string values during both read and write operations. When reading a value from the database in a result set, the string value is always checked against the list of possible values and a ``LookupError`` is raised if no match is found. When passing a value to the database as a plain string within a SQL statement, if the :paramref:`.Enum.validate_strings` parameter is set to True, a ``LookupError`` is raised for any string value that's not located in the given list of possible values; note that this impacts usage of LIKE expressions with enumerated values (an unusual use case). .. versionchanged:: 1.1 the :class:`.Enum` type now provides in-Python validation of input values as well as on data being returned by the database. The source of enumerated values may be a list of string values, or alternatively a PEP-435-compliant enumerated class. For the purposes of the :class:`.Enum` datatype, this class need only provide a ``__members__`` method. When using an enumerated class, the enumerated objects are used both for input and output, rather than strings as is the case with a plain-string enumerated type:: import enum class MyEnum(enum.Enum): one = 1 two = 2 three = 3 t = Table( 'data', MetaData(), Column('value', Enum(MyEnum)) ) connection.execute(t.insert(), {"value": MyEnum.two}) assert connection.scalar(t.select()) is MyEnum.two Above, the string names of each element, e.g. "one", "two", "three", are persisted to the database; the values of the Python Enum, here indicated as integers, are **not** used; the value of each enum can therefore be any kind of Python object whether or not it is persistable. In order to persist the values and not the names, the :paramref:`.Enum.values_callable` parameter may be used. The value of this parameter is a user-supplied callable, which is intended to be used with a PEP-435-compliant enumerated class and returns a list of string values to be persisted. For a simple enumeration that uses string values, a callable such as ``lambda x: [e.value for e in x]`` is sufficient. .. versionadded:: 1.1 - support for PEP-435-style enumerated classes. .. seealso:: :class:`_postgresql.ENUM` - PostgreSQL-specific type, which has additional functionality. :class:`.mysql.ENUM` - MySQL-specific type """ __visit_name__ = "enum" @util.deprecated_params( convert_unicode=( "1.3", "The :paramref:`.Enum.convert_unicode` parameter is deprecated " "and will be removed in a future release. All modern DBAPIs " "now support Python Unicode directly and this parameter is " "unnecessary.", ) ) def __init__(self, *enums, **kw): r"""Construct an enum. Keyword arguments which don't apply to a specific backend are ignored by that backend. :param \*enums: either exactly one PEP-435 compliant enumerated type or one or more string labels. .. versionadded:: 1.1 a PEP-435 style enumerated class may be passed. :param convert_unicode: Enable unicode-aware bind parameter and result-set processing for this Enum's data under Python 2 only. Under Python 2, this is set automatically based on the presence of unicode label strings. This flag will be removed in SQLAlchemy 2.0. :param create_constraint: defaults to False. When creating a non-native enumerated type, also build a CHECK constraint on the database against the valid values. .. note:: it is strongly recommended that the CHECK constraint have an explicit name in order to support schema-management concerns. This can be established either by setting the :paramref:`.Enum.name` parameter or by setting up an appropriate naming convention; see :ref:`constraint_naming_conventions` for background. .. versionchanged:: 1.4 - this flag now defaults to False, meaning no CHECK constraint is generated for a non-native enumerated type. :param metadata: Associate this type directly with a ``MetaData`` object. For types that exist on the target database as an independent schema construct (PostgreSQL), this type will be created and dropped within ``create_all()`` and ``drop_all()`` operations. If the type is not associated with any ``MetaData`` object, it will associate itself with each ``Table`` in which it is used, and will be created when any of those individual tables are created, after a check is performed for its existence. The type is only dropped when ``drop_all()`` is called for that ``Table`` object's metadata, however. The value of the :paramref:`_schema.MetaData.schema` parameter of the :class:`_schema.MetaData` object, if set, will be used as the default value of the :paramref:`_types.Enum.schema` on this object if an explicit value is not otherwise supplied. .. versionchanged:: 1.4.12 :class:`_types.Enum` inherits the :paramref:`_schema.MetaData.schema` parameter of the :class:`_schema.MetaData` object if present, when passed using the :paramref:`_types.Enum.metadata` parameter. :param name: The name of this type. This is required for PostgreSQL and any future supported database which requires an explicitly named type, or an explicitly named constraint in order to generate the type and/or a table that uses it. If a PEP-435 enumerated class was used, its name (converted to lower case) is used by default. :param native_enum: Use the database's native ENUM type when available. Defaults to True. When False, uses VARCHAR + check constraint for all backends. The VARCHAR length can be controlled with :paramref:`.Enum.length` :param length: Allows specifying a custom length for the VARCHAR when :paramref:`.Enum.native_enum` is False. By default it uses the length of the longest value. .. versionadded:: 1.3.16 :param schema: Schema name of this type. For types that exist on the target database as an independent schema construct (PostgreSQL), this parameter specifies the named schema in which the type is present. If not present, the schema name will be taken from the :class:`_schema.MetaData` collection if passed as :paramref:`_types.Enum.metadata`, for a :class:`_schema.MetaData` that includes the :paramref:`_schema.MetaData.schema` parameter. .. versionchanged:: 1.4.12 :class:`_types.Enum` inherits the :paramref:`_schema.MetaData.schema` parameter of the :class:`_schema.MetaData` object if present, when passed using the :paramref:`_types.Enum.metadata` parameter. Otherwise, if the :paramref:`_types.Enum.inherit_schema` flag is set to ``True``, the schema will be inherited from the associated :class:`_schema.Table` object if any; when :paramref:`_types.Enum.inherit_schema` is at its default of ``False``, the owning table's schema is **not** used. :param quote: Set explicit quoting preferences for the type's name. :param inherit_schema: When ``True``, the "schema" from the owning :class:`_schema.Table` will be copied to the "schema" attribute of this :class:`.Enum`, replacing whatever value was passed for the ``schema`` attribute. This also takes effect when using the :meth:`_schema.Table.to_metadata` operation. :param validate_strings: when True, string values that are being passed to the database in a SQL statement will be checked for validity against the list of enumerated values. Unrecognized values will result in a ``LookupError`` being raised. .. versionadded:: 1.1.0b2 :param values_callable: A callable which will be passed the PEP-435 compliant enumerated type, which should then return a list of string values to be persisted. This allows for alternate usages such as using the string value of an enum to be persisted to the database instead of its name. .. versionadded:: 1.2.3 :param sort_key_function: a Python callable which may be used as the "key" argument in the Python ``sorted()`` built-in. The SQLAlchemy ORM requires that primary key columns which are mapped must be sortable in some way. When using an unsortable enumeration object such as a Python 3 ``Enum`` object, this parameter may be used to set a default sort key function for the objects. By default, the database value of the enumeration is used as the sorting function. .. versionadded:: 1.3.8 :param omit_aliases: A boolean that when true will remove aliases from pep 435 enums. For backward compatibility it defaults to ``False``. A deprecation warning is raised if the enum has aliases and this flag was not set. .. versionadded:: 1.4.5 .. deprecated:: 1.4 The default will be changed to ``True`` in SQLAlchemy 2.0. """ self._enum_init(enums, kw) @property def _enums_argument(self): if self.enum_class is not None: return [self.enum_class] else: return self.enums def _enum_init(self, enums, kw): """internal init for :class:`.Enum` and subclasses. friendly init helper used by subclasses to remove all the Enum-specific keyword arguments from kw. Allows all other arguments in kw to pass through. """ self.native_enum = kw.pop("native_enum", True) self.create_constraint = kw.pop("create_constraint", False) self.values_callable = kw.pop("values_callable", None) self._sort_key_function = kw.pop("sort_key_function", NO_ARG) length_arg = kw.pop("length", NO_ARG) self._omit_aliases = kw.pop("omit_aliases", NO_ARG) values, objects = self._parse_into_values(enums, kw) self._setup_for_values(values, objects, kw) convert_unicode = kw.pop("convert_unicode", None) self.validate_strings = kw.pop("validate_strings", False) if convert_unicode is None: for e in self.enums: # this is all py2k logic that can go away for py3k only, # "expect unicode" will always be implicitly true if isinstance(e, util.text_type): _expect_unicode = True break else: _expect_unicode = False else: _expect_unicode = convert_unicode if self.enums: length = max(len(x) for x in self.enums) else: length = 0 if not self.native_enum and length_arg is not NO_ARG: if length_arg < length: raise ValueError( "When provided, length must be larger or equal" " than the length of the longest enum value. %s < %s" % (length_arg, length) ) length = length_arg self._valid_lookup[None] = self._object_lookup[None] = None super(Enum, self).__init__( length=length, _expect_unicode=_expect_unicode ) if self.enum_class: kw.setdefault("name", self.enum_class.__name__.lower()) SchemaType.__init__( self, name=kw.pop("name", None), schema=kw.pop("schema", None), metadata=kw.pop("metadata", None), inherit_schema=kw.pop("inherit_schema", False), quote=kw.pop("quote", None), _create_events=kw.pop("_create_events", True), ) def _parse_into_values(self, enums, kw): if not enums and "_enums" in kw: enums = kw.pop("_enums") if len(enums) == 1 and hasattr(enums[0], "__members__"): self.enum_class = enums[0] _members = self.enum_class.__members__ aliases = [n for n, v in _members.items() if v.name != n] if self._omit_aliases is NO_ARG and aliases: util.warn_deprecated_20( "The provided enum %s contains the aliases %s. The " "``omit_aliases`` will default to ``True`` in SQLAlchemy " "2.0. Specify a value to silence this warning." % (self.enum_class.__name__, aliases) ) if self._omit_aliases is True: # remove aliases members = OrderedDict( (n, v) for n, v in _members.items() if v.name == n ) else: members = _members if self.values_callable: values = self.values_callable(self.enum_class) else: values = list(members) objects = [members[k] for k in members] return values, objects else: self.enum_class = None return enums, enums def _setup_for_values(self, values, objects, kw): self.enums = list(values) self._valid_lookup = dict(zip(reversed(objects), reversed(values))) self._object_lookup = dict(zip(values, objects)) self._valid_lookup.update( [ (value, self._valid_lookup[self._object_lookup[value]]) for value in values ] ) @property def sort_key_function(self): if self._sort_key_function is NO_ARG: return self._db_value_for_elem else: return self._sort_key_function @property def native(self): return self.native_enum def _db_value_for_elem(self, elem): try: return self._valid_lookup[elem] except KeyError as err: # for unknown string values, we return as is. While we can # validate these if we wanted, that does not allow for lesser-used # end-user use cases, such as using a LIKE comparison with an enum, # or for an application that wishes to apply string tests to an # ENUM (see [ticket:3725]). While we can decide to differentiate # here between an INSERT statement and a criteria used in a SELECT, # for now we're staying conservative w/ behavioral changes (perhaps # someone has a trigger that handles strings on INSERT) if not self.validate_strings and isinstance( elem, compat.string_types ): return elem else: util.raise_( LookupError( "'%s' is not among the defined enum values. " "Enum name: %s. Possible values: %s" % ( elem, self.name, langhelpers.repr_tuple_names(self.enums), ) ), replace_context=err, ) class Comparator(String.Comparator): def _adapt_expression(self, op, other_comparator): op, typ = super(Enum.Comparator, self)._adapt_expression( op, other_comparator ) if op is operators.concat_op: typ = String( self.type.length, _expect_unicode=self.type._expect_unicode ) return op, typ comparator_factory = Comparator def _object_value_for_elem(self, elem): try: return self._object_lookup[elem] except KeyError as err: util.raise_( LookupError( "'%s' is not among the defined enum values. " "Enum name: %s. Possible values: %s" % ( elem, self.name, langhelpers.repr_tuple_names(self.enums), ) ), replace_context=err, ) def __repr__(self): return util.generic_repr( self, additional_kw=[("native_enum", True)], to_inspect=[Enum, SchemaType], ) def as_generic(self, allow_nulltype=False): if hasattr(self, "enums"): args = self.enums else: raise NotImplementedError( "TypeEngine.as_generic() heuristic " "is undefined for types that inherit Enum but do not have " "an `enums` attribute." ) return util.constructor_copy(self, self._generic_type_affinity, *args) def adapt_to_emulated(self, impltype, **kw): kw.setdefault("_expect_unicode", self._expect_unicode) kw.setdefault("validate_strings", self.validate_strings) kw.setdefault("name", self.name) kw.setdefault("schema", self.schema) kw.setdefault("inherit_schema", self.inherit_schema) kw.setdefault("metadata", self.metadata) kw.setdefault("_create_events", False) kw.setdefault("native_enum", self.native_enum) kw.setdefault("values_callable", self.values_callable) kw.setdefault("create_constraint", self.create_constraint) kw.setdefault("length", self.length) kw.setdefault("omit_aliases", self._omit_aliases) assert "_enums" in kw return impltype(**kw) def adapt(self, impltype, **kw): kw["_enums"] = self._enums_argument return super(Enum, self).adapt(impltype, **kw) def _should_create_constraint(self, compiler, **kw): if not self._is_impl_for_variant(compiler.dialect, kw): return False return ( not self.native_enum or not compiler.dialect.supports_native_enum ) @util.preload_module("sqlalchemy.sql.schema") def _set_table(self, column, table): schema = util.preloaded.sql_schema SchemaType._set_table(self, column, table) if not self.create_constraint: return variant_mapping = self._variant_mapping_for_set_table(column) e = schema.CheckConstraint( type_coerce(column, self).in_(self.enums), name=_NONE_NAME if self.name is None else self.name, _create_rule=util.portable_instancemethod( self._should_create_constraint, {"variant_mapping": variant_mapping}, ), _type_bound=True, ) assert e.table is table def literal_processor(self, dialect): parent_processor = super(Enum, self).literal_processor(dialect) def process(value): value = self._db_value_for_elem(value) if parent_processor: value = parent_processor(value) return value return process def bind_processor(self, dialect): def process(value): value = self._db_value_for_elem(value) if parent_processor: value = parent_processor(value) return value parent_processor = super(Enum, self).bind_processor(dialect) return process def result_processor(self, dialect, coltype): parent_processor = super(Enum, self).result_processor(dialect, coltype) def process(value): if parent_processor: value = parent_processor(value) value = self._object_value_for_elem(value) return value return process def copy(self, **kw): return SchemaType.copy(self, **kw) @property def python_type(self): if self.enum_class: return self.enum_class else: return super(Enum, self).python_type class PickleType(TypeDecorator): """Holds Python objects, which are serialized using pickle. PickleType builds upon the Binary type to apply Python's ``pickle.dumps()`` to incoming objects, and ``pickle.loads()`` on the way out, allowing any pickleable Python object to be stored as a serialized binary field. To allow ORM change events to propagate for elements associated with :class:`.PickleType`, see :ref:`mutable_toplevel`. """ impl = LargeBinary cache_ok = True def __init__( self, protocol=pickle.HIGHEST_PROTOCOL, pickler=None, comparator=None, impl=None, ): """ Construct a PickleType. :param protocol: defaults to ``pickle.HIGHEST_PROTOCOL``. :param pickler: defaults to cPickle.pickle or pickle.pickle if cPickle is not available. May be any object with pickle-compatible ``dumps`` and ``loads`` methods. :param comparator: a 2-arg callable predicate used to compare values of this type. If left as ``None``, the Python "equals" operator is used to compare values. :param impl: A binary-storing :class:`_types.TypeEngine` class or instance to use in place of the default :class:`_types.LargeBinary`. For example the :class: `_mysql.LONGBLOB` class may be more effective when using MySQL. .. versionadded:: 1.4.20 """ self.protocol = protocol self.pickler = pickler or pickle self.comparator = comparator super(PickleType, self).__init__() if impl: self.impl = to_instance(impl) def __reduce__(self): return PickleType, (self.protocol, None, self.comparator) def bind_processor(self, dialect): impl_processor = self.impl.bind_processor(dialect) dumps = self.pickler.dumps protocol = self.protocol if impl_processor: def process(value): if value is not None: value = dumps(value, protocol) return impl_processor(value) else: def process(value): if value is not None: value = dumps(value, protocol) return value return process def result_processor(self, dialect, coltype): impl_processor = self.impl.result_processor(dialect, coltype) loads = self.pickler.loads if impl_processor: def process(value): value = impl_processor(value) if value is None: return None return loads(value) else: def process(value): if value is None: return None return loads(value) return process def compare_values(self, x, y): if self.comparator: return self.comparator(x, y) else: return x == y class Boolean(Emulated, TypeEngine, SchemaType): """A bool datatype. :class:`.Boolean` typically uses BOOLEAN or SMALLINT on the DDL side, and on the Python side deals in ``True`` or ``False``. The :class:`.Boolean` datatype currently has two levels of assertion that the values persisted are simple true/false values. For all backends, only the Python values ``None``, ``True``, ``False``, ``1`` or ``0`` are accepted as parameter values. For those backends that don't support a "native boolean" datatype, an option exists to also create a CHECK constraint on the target column .. versionchanged:: 1.2 the :class:`.Boolean` datatype now asserts that incoming Python values are already in pure boolean form. """ __visit_name__ = "boolean" native = True def __init__( self, create_constraint=False, name=None, _create_events=True ): """Construct a Boolean. :param create_constraint: defaults to False. If the boolean is generated as an int/smallint, also create a CHECK constraint on the table that ensures 1 or 0 as a value. .. note:: it is strongly recommended that the CHECK constraint have an explicit name in order to support schema-management concerns. This can be established either by setting the :paramref:`.Boolean.name` parameter or by setting up an appropriate naming convention; see :ref:`constraint_naming_conventions` for background. .. versionchanged:: 1.4 - this flag now defaults to False, meaning no CHECK constraint is generated for a non-native enumerated type. :param name: if a CHECK constraint is generated, specify the name of the constraint. """ self.create_constraint = create_constraint self.name = name self._create_events = _create_events def _should_create_constraint(self, compiler, **kw): if not self._is_impl_for_variant(compiler.dialect, kw): return False return ( not compiler.dialect.supports_native_boolean and compiler.dialect.non_native_boolean_check_constraint ) @util.preload_module("sqlalchemy.sql.schema") def _set_table(self, column, table): schema = util.preloaded.sql_schema if not self.create_constraint: return variant_mapping = self._variant_mapping_for_set_table(column) e = schema.CheckConstraint( type_coerce(column, self).in_([0, 1]), name=_NONE_NAME if self.name is None else self.name, _create_rule=util.portable_instancemethod( self._should_create_constraint, {"variant_mapping": variant_mapping}, ), _type_bound=True, ) assert e.table is table @property def python_type(self): return bool _strict_bools = frozenset([None, True, False]) def _strict_as_bool(self, value): if value not in self._strict_bools: if not isinstance(value, int): raise TypeError("Not a boolean value: %r" % value) else: raise ValueError( "Value %r is not None, True, or False" % value ) return value def literal_processor(self, dialect): compiler = dialect.statement_compiler(dialect, None) true = compiler.visit_true(None) false = compiler.visit_false(None) def process(value): return true if self._strict_as_bool(value) else false return process def bind_processor(self, dialect): _strict_as_bool = self._strict_as_bool if dialect.supports_native_boolean: _coerce = bool else: _coerce = int def process(value): value = _strict_as_bool(value) if value is not None: value = _coerce(value) return value return process def result_processor(self, dialect, coltype): if dialect.supports_native_boolean: return None else: return processors.int_to_boolean class _AbstractInterval(_LookupExpressionAdapter, TypeEngine): @util.memoized_property def _expression_adaptations(self): # Based on http://www.postgresql.org/docs/current/\ # static/functions-datetime.html. return { operators.add: { Date: DateTime, Interval: self.__class__, DateTime: DateTime, Time: Time, }, operators.sub: {Interval: self.__class__}, operators.mul: {Numeric: self.__class__}, operators.truediv: {Numeric: self.__class__}, operators.div: {Numeric: self.__class__}, } @property def _type_affinity(self): return Interval def coerce_compared_value(self, op, value): """See :meth:`.TypeEngine.coerce_compared_value` for a description.""" return self.impl.coerce_compared_value(op, value) class Interval(Emulated, _AbstractInterval, TypeDecorator): """A type for ``datetime.timedelta()`` objects. The Interval type deals with ``datetime.timedelta`` objects. In PostgreSQL, the native ``INTERVAL`` type is used; for others, the value is stored as a date which is relative to the "epoch" (Jan. 1, 1970). Note that the ``Interval`` type does not currently provide date arithmetic operations on platforms which do not support interval types natively. Such operations usually require transformation of both sides of the expression (such as, conversion of both sides into integer epoch values first) which currently is a manual procedure (such as via :attr:`~sqlalchemy.sql.expression.func`). """ impl = DateTime epoch = dt.datetime.utcfromtimestamp(0) cache_ok = True def __init__(self, native=True, second_precision=None, day_precision=None): """Construct an Interval object. :param native: when True, use the actual INTERVAL type provided by the database, if supported (currently PostgreSQL, Oracle). Otherwise, represent the interval data as an epoch value regardless. :param second_precision: For native interval types which support a "fractional seconds precision" parameter, i.e. Oracle and PostgreSQL :param day_precision: for native interval types which support a "day precision" parameter, i.e. Oracle. """ super(Interval, self).__init__() self.native = native self.second_precision = second_precision self.day_precision = day_precision @property def python_type(self): return dt.timedelta def adapt_to_emulated(self, impltype, **kw): return _AbstractInterval.adapt(self, impltype, **kw) def bind_processor(self, dialect): impl_processor = self.impl.bind_processor(dialect) epoch = self.epoch if impl_processor: def process(value): if value is not None: value = epoch + value return impl_processor(value) else: def process(value): if value is not None: value = epoch + value return value return process def result_processor(self, dialect, coltype): impl_processor = self.impl.result_processor(dialect, coltype) epoch = self.epoch if impl_processor: def process(value): value = impl_processor(value) if value is None: return None return value - epoch else: def process(value): if value is None: return None return value - epoch return process class JSON(Indexable, TypeEngine): """Represent a SQL JSON type. .. note:: :class:`_types.JSON` is provided as a facade for vendor-specific JSON types. Since it supports JSON SQL operations, it only works on backends that have an actual JSON type, currently: * PostgreSQL - see :class:`sqlalchemy.dialects.postgresql.JSON` and :class:`sqlalchemy.dialects.postgresql.JSONB` for backend-specific notes * MySQL - see :class:`sqlalchemy.dialects.mysql.JSON` for backend-specific notes * SQLite as of version 3.9 - see :class:`sqlalchemy.dialects.sqlite.JSON` for backend-specific notes * Microsoft SQL Server 2016 and later - see :class:`sqlalchemy.dialects.mssql.JSON` for backend-specific notes :class:`_types.JSON` is part of the Core in support of the growing popularity of native JSON datatypes. The :class:`_types.JSON` type stores arbitrary JSON format data, e.g.:: data_table = Table('data_table', metadata, Column('id', Integer, primary_key=True), Column('data', JSON) ) with engine.connect() as conn: conn.execute( data_table.insert(), data = {"key1": "value1", "key2": "value2"} ) **JSON-Specific Expression Operators** The :class:`_types.JSON` datatype provides these additional SQL operations: * Keyed index operations:: data_table.c.data['some key'] * Integer index operations:: data_table.c.data[3] * Path index operations:: data_table.c.data[('key_1', 'key_2', 5, ..., 'key_n')] * Data casters for specific JSON element types, subsequent to an index or path operation being invoked:: data_table.c.data["some key"].as_integer() .. versionadded:: 1.3.11 Additional operations may be available from the dialect-specific versions of :class:`_types.JSON`, such as :class:`sqlalchemy.dialects.postgresql.JSON` and :class:`sqlalchemy.dialects.postgresql.JSONB` which both offer additional PostgreSQL-specific operations. **Casting JSON Elements to Other Types** Index operations, i.e. those invoked by calling upon the expression using the Python bracket operator as in ``some_column['some key']``, return an expression object whose type defaults to :class:`_types.JSON` by default, so that further JSON-oriented instructions may be called upon the result type. However, it is likely more common that an index operation is expected to return a specific scalar element, such as a string or integer. In order to provide access to these elements in a backend-agnostic way, a series of data casters are provided: * :meth:`.JSON.Comparator.as_string` - return the element as a string * :meth:`.JSON.Comparator.as_boolean` - return the element as a boolean * :meth:`.JSON.Comparator.as_float` - return the element as a float * :meth:`.JSON.Comparator.as_integer` - return the element as an integer These data casters are implemented by supporting dialects in order to assure that comparisons to the above types will work as expected, such as:: # integer comparison data_table.c.data["some_integer_key"].as_integer() == 5 # boolean comparison data_table.c.data["some_boolean"].as_boolean() == True .. versionadded:: 1.3.11 Added type-specific casters for the basic JSON data element types. .. note:: The data caster functions are new in version 1.3.11, and supersede the previous documented approaches of using CAST; for reference, this looked like:: from sqlalchemy import cast, type_coerce from sqlalchemy import String, JSON cast( data_table.c.data['some_key'], String ) == type_coerce(55, JSON) The above case now works directly as:: data_table.c.data['some_key'].as_integer() == 5 For details on the previous comparison approach within the 1.3.x series, see the documentation for SQLAlchemy 1.2 or the included HTML files in the doc/ directory of the version's distribution. **Detecting Changes in JSON columns when using the ORM** The :class:`_types.JSON` type, when used with the SQLAlchemy ORM, does not detect in-place mutations to the structure. In order to detect these, the :mod:`sqlalchemy.ext.mutable` extension must be used. This extension will allow "in-place" changes to the datastructure to produce events which will be detected by the unit of work. See the example at :class:`.HSTORE` for a simple example involving a dictionary. **Support for JSON null vs. SQL NULL** When working with NULL values, the :class:`_types.JSON` type recommends the use of two specific constants in order to differentiate between a column that evaluates to SQL NULL, e.g. no value, vs. the JSON-encoded string of ``"null"``. To insert or select against a value that is SQL NULL, use the constant :func:`.null`:: from sqlalchemy import null conn.execute(table.insert(), json_value=null()) To insert or select against a value that is JSON ``"null"``, use the constant :attr:`_types.JSON.NULL`:: conn.execute(table.insert(), json_value=JSON.NULL) The :class:`_types.JSON` type supports a flag :paramref:`_types.JSON.none_as_null` which when set to True will result in the Python constant ``None`` evaluating to the value of SQL NULL, and when set to False results in the Python constant ``None`` evaluating to the value of JSON ``"null"``. The Python value ``None`` may be used in conjunction with either :attr:`_types.JSON.NULL` and :func:`.null` in order to indicate NULL values, but care must be taken as to the value of the :paramref:`_types.JSON.none_as_null` in these cases. **Customizing the JSON Serializer** The JSON serializer and deserializer used by :class:`_types.JSON` defaults to Python's ``json.dumps`` and ``json.loads`` functions; in the case of the psycopg2 dialect, psycopg2 may be using its own custom loader function. In order to affect the serializer / deserializer, they are currently configurable at the :func:`_sa.create_engine` level via the :paramref:`_sa.create_engine.json_serializer` and :paramref:`_sa.create_engine.json_deserializer` parameters. For example, to turn off ``ensure_ascii``:: engine = create_engine( "sqlite://", json_serializer=lambda obj: json.dumps(obj, ensure_ascii=False)) .. versionchanged:: 1.3.7 SQLite dialect's ``json_serializer`` and ``json_deserializer`` parameters renamed from ``_json_serializer`` and ``_json_deserializer``. .. seealso:: :class:`sqlalchemy.dialects.postgresql.JSON` :class:`sqlalchemy.dialects.postgresql.JSONB` :class:`sqlalchemy.dialects.mysql.JSON` :class:`sqlalchemy.dialects.sqlite.JSON` .. versionadded:: 1.1 """ __visit_name__ = "JSON" hashable = False NULL = util.symbol("JSON_NULL") """Describe the json value of NULL. This value is used to force the JSON value of ``"null"`` to be used as the value. A value of Python ``None`` will be recognized either as SQL NULL or JSON ``"null"``, based on the setting of the :paramref:`_types.JSON.none_as_null` flag; the :attr:`_types.JSON.NULL` constant can be used to always resolve to JSON ``"null"`` regardless of this setting. This is in contrast to the :func:`_expression.null` construct, which always resolves to SQL NULL. E.g.:: from sqlalchemy import null from sqlalchemy.dialects.postgresql import JSON # will *always* insert SQL NULL obj1 = MyObject(json_value=null()) # will *always* insert JSON string "null" obj2 = MyObject(json_value=JSON.NULL) session.add_all([obj1, obj2]) session.commit() In order to set JSON NULL as a default value for a column, the most transparent method is to use :func:`_expression.text`:: Table( 'my_table', metadata, Column('json_data', JSON, default=text("'null'")) ) While it is possible to use :attr:`_types.JSON.NULL` in this context, the :attr:`_types.JSON.NULL` value will be returned as the value of the column, which in the context of the ORM or other repurposing of the default value, may not be desirable. Using a SQL expression means the value will be re-fetched from the database within the context of retrieving generated defaults. """ def __init__(self, none_as_null=False): """Construct a :class:`_types.JSON` type. :param none_as_null=False: if True, persist the value ``None`` as a SQL NULL value, not the JSON encoding of ``null``. Note that when this flag is False, the :func:`.null` construct can still be used to persist a NULL value:: from sqlalchemy import null conn.execute(table.insert(), data=null()) .. note:: :paramref:`_types.JSON.none_as_null` does **not** apply to the values passed to :paramref:`_schema.Column.default` and :paramref:`_schema.Column.server_default`; a value of ``None`` passed for these parameters means "no default present". .. seealso:: :attr:`.types.JSON.NULL` """ self.none_as_null = none_as_null class JSONElementType(TypeEngine): """Common function for index / path elements in a JSON expression.""" _integer = Integer() _string = String() def string_bind_processor(self, dialect): return self._string._cached_bind_processor(dialect) def string_literal_processor(self, dialect): return self._string._cached_literal_processor(dialect) def bind_processor(self, dialect): int_processor = self._integer._cached_bind_processor(dialect) string_processor = self.string_bind_processor(dialect) def process(value): if int_processor and isinstance(value, int): value = int_processor(value) elif string_processor and isinstance(value, util.string_types): value = string_processor(value) return value return process def literal_processor(self, dialect): int_processor = self._integer._cached_literal_processor(dialect) string_processor = self.string_literal_processor(dialect) def process(value): if int_processor and isinstance(value, int): value = int_processor(value) elif string_processor and isinstance(value, util.string_types): value = string_processor(value) return value return process class JSONIndexType(JSONElementType): """Placeholder for the datatype of a JSON index value. This allows execution-time processing of JSON index values for special syntaxes. """ class JSONIntIndexType(JSONIndexType): """Placeholder for the datatype of a JSON index value. This allows execution-time processing of JSON index values for special syntaxes. """ class JSONStrIndexType(JSONIndexType): """Placeholder for the datatype of a JSON index value. This allows execution-time processing of JSON index values for special syntaxes. """ class JSONPathType(JSONElementType): """Placeholder type for JSON path operations. This allows execution-time processing of a path-based index value into a specific SQL syntax. """ class Comparator(Indexable.Comparator, Concatenable.Comparator): """Define comparison operations for :class:`_types.JSON`.""" def _setup_getitem(self, index): if not isinstance(index, util.string_types) and isinstance( index, compat.collections_abc.Sequence ): index = coercions.expect( roles.BinaryElementRole, index, expr=self.expr, operator=operators.json_path_getitem_op, bindparam_type=JSON.JSONPathType, ) operator = operators.json_path_getitem_op else: index = coercions.expect( roles.BinaryElementRole, index, expr=self.expr, operator=operators.json_getitem_op, bindparam_type=JSON.JSONIntIndexType if isinstance(index, int) else JSON.JSONStrIndexType, ) operator = operators.json_getitem_op return operator, index, self.type def as_boolean(self): """Cast an indexed value as boolean. e.g.:: stmt = select( mytable.c.json_column['some_data'].as_boolean() ).where( mytable.c.json_column['some_data'].as_boolean() == True ) .. versionadded:: 1.3.11 """ return self._binary_w_type(Boolean(), "as_boolean") def as_string(self): """Cast an indexed value as string. e.g.:: stmt = select( mytable.c.json_column['some_data'].as_string() ).where( mytable.c.json_column['some_data'].as_string() == 'some string' ) .. versionadded:: 1.3.11 """ return self._binary_w_type(String(), "as_string") def as_integer(self): """Cast an indexed value as integer. e.g.:: stmt = select( mytable.c.json_column['some_data'].as_integer() ).where( mytable.c.json_column['some_data'].as_integer() == 5 ) .. versionadded:: 1.3.11 """ return self._binary_w_type(Integer(), "as_integer") def as_float(self): """Cast an indexed value as float. e.g.:: stmt = select( mytable.c.json_column['some_data'].as_float() ).where( mytable.c.json_column['some_data'].as_float() == 29.75 ) .. versionadded:: 1.3.11 """ return self._binary_w_type(Float(), "as_float") def as_numeric(self, precision, scale, asdecimal=True): """Cast an indexed value as numeric/decimal. e.g.:: stmt = select( mytable.c.json_column['some_data'].as_numeric(10, 6) ).where( mytable.c. json_column['some_data'].as_numeric(10, 6) == 29.75 ) .. versionadded:: 1.4.0b2 """ return self._binary_w_type( Numeric(precision, scale, asdecimal=asdecimal), "as_numeric" ) def as_json(self): """Cast an indexed value as JSON. e.g.:: stmt = select(mytable.c.json_column['some_data'].as_json()) This is typically the default behavior of indexed elements in any case. Note that comparison of full JSON structures may not be supported by all backends. .. versionadded:: 1.3.11 """ return self.expr def _binary_w_type(self, typ, method_name): if not isinstance( self.expr, elements.BinaryExpression ) or self.expr.operator not in ( operators.json_getitem_op, operators.json_path_getitem_op, ): raise exc.InvalidRequestError( "The JSON cast operator JSON.%s() only works with a JSON " "index expression e.g. col['q'].%s()" % (method_name, method_name) ) expr = self.expr._clone() expr.type = typ return expr comparator_factory = Comparator @property def python_type(self): return dict @property def should_evaluate_none(self): """Alias of :attr:`_types.JSON.none_as_null`""" return not self.none_as_null @should_evaluate_none.setter def should_evaluate_none(self, value): self.none_as_null = not value @util.memoized_property def _str_impl(self): return String(_expect_unicode=True) def bind_processor(self, dialect): string_process = self._str_impl.bind_processor(dialect) json_serializer = dialect._json_serializer or json.dumps def process(value): if value is self.NULL: value = None elif isinstance(value, elements.Null) or ( value is None and self.none_as_null ): return None serialized = json_serializer(value) if string_process: serialized = string_process(serialized) return serialized return process def result_processor(self, dialect, coltype): string_process = self._str_impl.result_processor(dialect, coltype) json_deserializer = dialect._json_deserializer or json.loads def process(value): if value is None: return None if string_process: value = string_process(value) return json_deserializer(value) return process class ARRAY(SchemaEventTarget, Indexable, Concatenable, TypeEngine): """Represent a SQL Array type. .. note:: This type serves as the basis for all ARRAY operations. However, currently **only the PostgreSQL backend has support for SQL arrays in SQLAlchemy**. It is recommended to use the PostgreSQL-specific :class:`sqlalchemy.dialects.postgresql.ARRAY` type directly when using ARRAY types with PostgreSQL, as it provides additional operators specific to that backend. :class:`_types.ARRAY` is part of the Core in support of various SQL standard functions such as :class:`_functions.array_agg` which explicitly involve arrays; however, with the exception of the PostgreSQL backend and possibly some third-party dialects, no other SQLAlchemy built-in dialect has support for this type. An :class:`_types.ARRAY` type is constructed given the "type" of element:: mytable = Table("mytable", metadata, Column("data", ARRAY(Integer)) ) The above type represents an N-dimensional array, meaning a supporting backend such as PostgreSQL will interpret values with any number of dimensions automatically. To produce an INSERT construct that passes in a 1-dimensional array of integers:: connection.execute( mytable.insert(), data=[1,2,3] ) The :class:`_types.ARRAY` type can be constructed given a fixed number of dimensions:: mytable = Table("mytable", metadata, Column("data", ARRAY(Integer, dimensions=2)) ) Sending a number of dimensions is optional, but recommended if the datatype is to represent arrays of more than one dimension. This number is used: * When emitting the type declaration itself to the database, e.g. ``INTEGER[][]`` * When translating Python values to database values, and vice versa, e.g. an ARRAY of :class:`.Unicode` objects uses this number to efficiently access the string values inside of array structures without resorting to per-row type inspection * When used with the Python ``getitem`` accessor, the number of dimensions serves to define the kind of type that the ``[]`` operator should return, e.g. for an ARRAY of INTEGER with two dimensions:: >>> expr = table.c.column[5] # returns ARRAY(Integer, dimensions=1) >>> expr = expr[6] # returns Integer For 1-dimensional arrays, an :class:`_types.ARRAY` instance with no dimension parameter will generally assume single-dimensional behaviors. SQL expressions of type :class:`_types.ARRAY` have support for "index" and "slice" behavior. The Python ``[]`` operator works normally here, given integer indexes or slices. Arrays default to 1-based indexing. The operator produces binary expression constructs which will produce the appropriate SQL, both for SELECT statements:: select(mytable.c.data[5], mytable.c.data[2:7]) as well as UPDATE statements when the :meth:`_expression.Update.values` method is used:: mytable.update().values({ mytable.c.data[5]: 7, mytable.c.data[2:7]: [1, 2, 3] }) The :class:`_types.ARRAY` type also provides for the operators :meth:`.types.ARRAY.Comparator.any` and :meth:`.types.ARRAY.Comparator.all`. The PostgreSQL-specific version of :class:`_types.ARRAY` also provides additional operators. .. versionadded:: 1.1.0 .. seealso:: :class:`sqlalchemy.dialects.postgresql.ARRAY` """ __visit_name__ = "ARRAY" _is_array = True zero_indexes = False """If True, Python zero-based indexes should be interpreted as one-based on the SQL expression side.""" class Comparator(Indexable.Comparator, Concatenable.Comparator): """Define comparison operations for :class:`_types.ARRAY`. More operators are available on the dialect-specific form of this type. See :class:`.postgresql.ARRAY.Comparator`. """ def _setup_getitem(self, index): if isinstance(index, slice): return_type = self.type if self.type.zero_indexes: index = slice(index.start + 1, index.stop + 1, index.step) slice_ = Slice( index.start, index.stop, index.step, _name=self.expr.key ) return operators.getitem, slice_, return_type else: if self.type.zero_indexes: index += 1 if self.type.dimensions is None or self.type.dimensions == 1: return_type = self.type.item_type else: adapt_kw = {"dimensions": self.type.dimensions - 1} return_type = self.type.adapt( self.type.__class__, **adapt_kw ) return operators.getitem, index, return_type def contains(self, *arg, **kw): raise NotImplementedError( "ARRAY.contains() not implemented for the base " "ARRAY type; please use the dialect-specific ARRAY type" ) @util.preload_module("sqlalchemy.sql.elements") def any(self, other, operator=None): """Return ``other operator ANY (array)`` clause. Argument places are switched, because ANY requires array expression to be on the right hand-side. E.g.:: from sqlalchemy.sql import operators conn.execute( select(table.c.data).where( table.c.data.any(7, operator=operators.lt) ) ) :param other: expression to be compared :param operator: an operator object from the :mod:`sqlalchemy.sql.operators` package, defaults to :func:`.operators.eq`. .. seealso:: :func:`_expression.any_` :meth:`.types.ARRAY.Comparator.all` """ elements = util.preloaded.sql_elements operator = operator if operator else operators.eq # send plain BinaryExpression so that negate remains at None, # leading to NOT expr for negation. return elements.BinaryExpression( coercions.expect(roles.ExpressionElementRole, other), elements.CollectionAggregate._create_any(self.expr), operator, ) @util.preload_module("sqlalchemy.sql.elements") def all(self, other, operator=None): """Return ``other operator ALL (array)`` clause. Argument places are switched, because ALL requires array expression to be on the right hand-side. E.g.:: from sqlalchemy.sql import operators conn.execute( select(table.c.data).where( table.c.data.all(7, operator=operators.lt) ) ) :param other: expression to be compared :param operator: an operator object from the :mod:`sqlalchemy.sql.operators` package, defaults to :func:`.operators.eq`. .. seealso:: :func:`_expression.all_` :meth:`.types.ARRAY.Comparator.any` """ elements = util.preloaded.sql_elements operator = operator if operator else operators.eq # send plain BinaryExpression so that negate remains at None, # leading to NOT expr for negation. return elements.BinaryExpression( coercions.expect(roles.ExpressionElementRole, other), elements.CollectionAggregate._create_all(self.expr), operator, ) comparator_factory = Comparator def __init__( self, item_type, as_tuple=False, dimensions=None, zero_indexes=False ): """Construct an :class:`_types.ARRAY`. E.g.:: Column('myarray', ARRAY(Integer)) Arguments are: :param item_type: The data type of items of this array. Note that dimensionality is irrelevant here, so multi-dimensional arrays like ``INTEGER[][]``, are constructed as ``ARRAY(Integer)``, not as ``ARRAY(ARRAY(Integer))`` or such. :param as_tuple=False: Specify whether return results should be converted to tuples from lists. This parameter is not generally needed as a Python list corresponds well to a SQL array. :param dimensions: if non-None, the ARRAY will assume a fixed number of dimensions. This impacts how the array is declared on the database, how it goes about interpreting Python and result values, as well as how expression behavior in conjunction with the "getitem" operator works. See the description at :class:`_types.ARRAY` for additional detail. :param zero_indexes=False: when True, index values will be converted between Python zero-based and SQL one-based indexes, e.g. a value of one will be added to all index values before passing to the database. """ if isinstance(item_type, ARRAY): raise ValueError( "Do not nest ARRAY types; ARRAY(basetype) " "handles multi-dimensional arrays of basetype" ) if isinstance(item_type, type): item_type = item_type() self.item_type = item_type self.as_tuple = as_tuple self.dimensions = dimensions self.zero_indexes = zero_indexes @property def hashable(self): return self.as_tuple @property def python_type(self): return list def compare_values(self, x, y): return x == y def _set_parent(self, column, outer=False, **kw): """Support SchemaEventTarget""" if not outer and isinstance(self.item_type, SchemaEventTarget): self.item_type._set_parent(column, **kw) def _set_parent_with_dispatch(self, parent): """Support SchemaEventTarget""" super(ARRAY, self)._set_parent_with_dispatch(parent, outer=True) if isinstance(self.item_type, SchemaEventTarget): self.item_type._set_parent_with_dispatch(parent) class TupleType(TypeEngine): """represent the composite type of a Tuple.""" _is_tuple_type = True def __init__(self, *types): self._fully_typed = NULLTYPE not in types self.types = types def _resolve_values_to_types(self, value): if self._fully_typed: return self else: return TupleType( *[ _resolve_value_to_type(elem) if typ is NULLTYPE else typ for typ, elem in zip(self.types, value) ] ) def result_processor(self, dialect, coltype): raise NotImplementedError( "The tuple type does not support being fetched " "as a column in a result row." ) class REAL(Float): """The SQL REAL type.""" __visit_name__ = "REAL" class FLOAT(Float): """The SQL FLOAT type.""" __visit_name__ = "FLOAT" class NUMERIC(Numeric): """The SQL NUMERIC type.""" __visit_name__ = "NUMERIC" class DECIMAL(Numeric): """The SQL DECIMAL type.""" __visit_name__ = "DECIMAL" class INTEGER(Integer): """The SQL INT or INTEGER type.""" __visit_name__ = "INTEGER" INT = INTEGER class SMALLINT(SmallInteger): """The SQL SMALLINT type.""" __visit_name__ = "SMALLINT" class BIGINT(BigInteger): """The SQL BIGINT type.""" __visit_name__ = "BIGINT" class TIMESTAMP(DateTime): """The SQL TIMESTAMP type. :class:`_types.TIMESTAMP` datatypes have support for timezone storage on some backends, such as PostgreSQL and Oracle. Use the :paramref:`~types.TIMESTAMP.timezone` argument in order to enable "TIMESTAMP WITH TIMEZONE" for these backends. """ __visit_name__ = "TIMESTAMP" def __init__(self, timezone=False): """Construct a new :class:`_types.TIMESTAMP`. :param timezone: boolean. Indicates that the TIMESTAMP type should enable timezone support, if available on the target database. On a per-dialect basis is similar to "TIMESTAMP WITH TIMEZONE". If the target database does not support timezones, this flag is ignored. """ super(TIMESTAMP, self).__init__(timezone=timezone) def get_dbapi_type(self, dbapi): return dbapi.TIMESTAMP class DATETIME(DateTime): """The SQL DATETIME type.""" __visit_name__ = "DATETIME" class DATE(Date): """The SQL DATE type.""" __visit_name__ = "DATE" class TIME(Time): """The SQL TIME type.""" __visit_name__ = "TIME" class TEXT(Text): """The SQL TEXT type.""" __visit_name__ = "TEXT" class CLOB(Text): """The CLOB type. This type is found in Oracle and Informix. """ __visit_name__ = "CLOB" class VARCHAR(String): """The SQL VARCHAR type.""" __visit_name__ = "VARCHAR" class NVARCHAR(Unicode): """The SQL NVARCHAR type.""" __visit_name__ = "NVARCHAR" class CHAR(String): """The SQL CHAR type.""" __visit_name__ = "CHAR" class NCHAR(Unicode): """The SQL NCHAR type.""" __visit_name__ = "NCHAR" class BLOB(LargeBinary): """The SQL BLOB type.""" __visit_name__ = "BLOB" class BINARY(_Binary): """The SQL BINARY type.""" __visit_name__ = "BINARY" class VARBINARY(_Binary): """The SQL VARBINARY type.""" __visit_name__ = "VARBINARY" class BOOLEAN(Boolean): """The SQL BOOLEAN type.""" __visit_name__ = "BOOLEAN" class NullType(TypeEngine): """An unknown type. :class:`.NullType` is used as a default type for those cases where a type cannot be determined, including: * During table reflection, when the type of a column is not recognized by the :class:`.Dialect` * When constructing SQL expressions using plain Python objects of unknown types (e.g. ``somecolumn == my_special_object``) * When a new :class:`_schema.Column` is created, and the given type is passed as ``None`` or is not passed at all. The :class:`.NullType` can be used within SQL expression invocation without issue, it just has no behavior either at the expression construction level or at the bind-parameter/result processing level. :class:`.NullType` will result in a :exc:`.CompileError` if the compiler is asked to render the type itself, such as if it is used in a :func:`.cast` operation or within a schema creation operation such as that invoked by :meth:`_schema.MetaData.create_all` or the :class:`.CreateTable` construct. """ __visit_name__ = "null" _isnull = True hashable = False def literal_processor(self, dialect): def process(value): raise exc.CompileError( "Don't know how to render literal SQL value: %r" % value ) return process class Comparator(TypeEngine.Comparator): def _adapt_expression(self, op, other_comparator): if isinstance( other_comparator, NullType.Comparator ) or not operators.is_commutative(op): return op, self.expr.type else: return other_comparator._adapt_expression(op, self) comparator_factory = Comparator class TableValueType(HasCacheKey, TypeEngine): """Refers to a table value type.""" _is_table_value = True _traverse_internals = [ ("_elements", InternalTraversal.dp_clauseelement_list), ] def __init__(self, *elements): self._elements = [ coercions.expect(roles.StrAsPlainColumnRole, elem) for elem in elements ] class MatchType(Boolean): """Refers to the return type of the MATCH operator. As the :meth:`.ColumnOperators.match` is probably the most open-ended operator in generic SQLAlchemy Core, we can't assume the return type at SQL evaluation time, as MySQL returns a floating point, not a boolean, and other backends might do something different. So this type acts as a placeholder, currently subclassing :class:`.Boolean`. The type allows dialects to inject result-processing functionality if needed, and on MySQL will return floating-point values. .. versionadded:: 1.0.0 """ NULLTYPE = NullType() BOOLEANTYPE = Boolean() STRINGTYPE = String() INTEGERTYPE = Integer() MATCHTYPE = MatchType() TABLEVALUE = TableValueType() _type_map = { int: Integer(), float: Float(), bool: BOOLEANTYPE, decimal.Decimal: Numeric(), dt.date: Date(), dt.datetime: DateTime(), dt.time: Time(), dt.timedelta: Interval(), util.NoneType: NULLTYPE, } if util.py3k: _type_map[bytes] = LargeBinary() # noqa _type_map[str] = Unicode() else: _type_map[unicode] = Unicode() # noqa _type_map[str] = String() _type_map_get = _type_map.get def _resolve_value_to_type(value): _result_type = _type_map_get(type(value), False) if _result_type is False: # use inspect() to detect SQLAlchemy built-in # objects. insp = inspection.inspect(value, False) if ( insp is not None and # foil mock.Mock() and other impostors by ensuring # the inspection target itself self-inspects insp.__class__ in inspection._registrars ): raise exc.ArgumentError( "Object %r is not legal as a SQL literal value" % value ) return NULLTYPE else: return _result_type # back-assign to type_api type_api.BOOLEANTYPE = BOOLEANTYPE type_api.STRINGTYPE = STRINGTYPE type_api.INTEGERTYPE = INTEGERTYPE type_api.NULLTYPE = NULLTYPE type_api.MATCHTYPE = MATCHTYPE type_api.INDEXABLE = Indexable type_api.TABLEVALUE = TABLEVALUE type_api._resolve_value_to_type = _resolve_value_to_type TypeEngine.Comparator.BOOLEANTYPE = BOOLEANTYPE
ericem/sprintkit
refs/heads/master
setup.py
1
from os import path from setuptools import setup, find_packages here = path.abspath(path.dirname(__file__)) README = open(path.join(here, 'README.rst')).read() CHANGES = open(path.join(here, 'CHANGES')).read() version = '0.2.0' setup( name='sprintkit', version=version, description="Access Sprint's Network APIs Through Python", long_description=README + '\n\n' + CHANGES, classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Communications', 'Topic :: Software Development :: Libraries :: Python Modules' ], keywords='communications', author='Eric Miller', author_email='eric.miller@sprint.com', url='https://github.com/ericem/sprintkit', license='MIT', packages=find_packages('src'), package_dir = {'': 'src'}, zip_safe=False, setup_requires=['nose'], install_requires=['restkit>=3.2'] )
proffalken/edison
refs/heads/master
piston/admin.py
1
# This file is part of the Edison Project. # Please refer to the LICENSE document that was supplied with this software for information on how it can be used. from django.contrib import admin from piston.models import Nonce, Consumer, Token admin.site.register(Nonce) admin.site.register(Consumer) admin.site.register(Token)
nzavagli/UnrealPy
refs/heads/master
UnrealPyEmbed/Development/Python/2015.08.07-Python2710-x64-Source-vs2015/Python27/Source/Python-2.7.10/Lib/tempfile.py
7
"""Temporary files. This module provides generic, low- and high-level interfaces for creating temporary files and directories. All of the interfaces provided by this module can be used without fear of race conditions except for 'mktemp'. 'mktemp' is subject to race conditions and should not be used; it is provided for backward compatibility only. This module also provides some data items to the user: TMP_MAX - maximum number of names that will be tried before giving up. template - the default prefix for all temporary names. You may change this to control the default prefix. tempdir - If this is set to a string before the first use of any routine from this module, it will be considered as another candidate location to store temporary files. """ __all__ = [ "NamedTemporaryFile", "TemporaryFile", # high level safe interfaces "SpooledTemporaryFile", "mkstemp", "mkdtemp", # low level safe interfaces "mktemp", # deprecated unsafe interface "TMP_MAX", "gettempprefix", # constants "tempdir", "gettempdir" ] # Imports. import io as _io import os as _os import errno as _errno from random import Random as _Random try: from cStringIO import StringIO as _StringIO except ImportError: from StringIO import StringIO as _StringIO try: import fcntl as _fcntl except ImportError: def _set_cloexec(fd): pass else: def _set_cloexec(fd): try: flags = _fcntl.fcntl(fd, _fcntl.F_GETFD, 0) except IOError: pass else: # flags read successfully, modify flags |= _fcntl.FD_CLOEXEC _fcntl.fcntl(fd, _fcntl.F_SETFD, flags) try: import thread as _thread except ImportError: import dummy_thread as _thread _allocate_lock = _thread.allocate_lock _text_openflags = _os.O_RDWR | _os.O_CREAT | _os.O_EXCL if hasattr(_os, 'O_NOINHERIT'): _text_openflags |= _os.O_NOINHERIT if hasattr(_os, 'O_NOFOLLOW'): _text_openflags |= _os.O_NOFOLLOW _bin_openflags = _text_openflags if hasattr(_os, 'O_BINARY'): _bin_openflags |= _os.O_BINARY if hasattr(_os, 'TMP_MAX'): TMP_MAX = _os.TMP_MAX else: TMP_MAX = 10000 template = "tmp" # Internal routines. _once_lock = _allocate_lock() if hasattr(_os, "lstat"): _stat = _os.lstat elif hasattr(_os, "stat"): _stat = _os.stat else: # Fallback. All we need is something that raises os.error if the # file doesn't exist. def _stat(fn): try: f = open(fn) except IOError: raise _os.error f.close() def _exists(fn): try: _stat(fn) except _os.error: return False else: return True class _RandomNameSequence: """An instance of _RandomNameSequence generates an endless sequence of unpredictable strings which can safely be incorporated into file names. Each string is six characters long. Multiple threads can safely use the same instance at the same time. _RandomNameSequence is an iterator.""" characters = ("abcdefghijklmnopqrstuvwxyz" + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "0123456789_") def __init__(self): self.mutex = _allocate_lock() self.normcase = _os.path.normcase @property def rng(self): cur_pid = _os.getpid() if cur_pid != getattr(self, '_rng_pid', None): self._rng = _Random() self._rng_pid = cur_pid return self._rng def __iter__(self): return self def next(self): m = self.mutex c = self.characters choose = self.rng.choice m.acquire() try: letters = [choose(c) for dummy in "123456"] finally: m.release() return self.normcase(''.join(letters)) def _candidate_tempdir_list(): """Generate a list of candidate temporary directories which _get_default_tempdir will try.""" dirlist = [] # First, try the environment. for envname in 'TMPDIR', 'TEMP', 'TMP': dirname = _os.getenv(envname) if dirname: dirlist.append(dirname) # Failing that, try OS-specific locations. if _os.name == 'riscos': dirname = _os.getenv('Wimp$ScrapDir') if dirname: dirlist.append(dirname) elif _os.name == 'nt': dirlist.extend([ r'c:\temp', r'c:\tmp', r'\temp', r'\tmp' ]) else: dirlist.extend([ '/tmp', '/var/tmp', '/usr/tmp' ]) # As a last resort, the current directory. try: dirlist.append(_os.getcwd()) except (AttributeError, _os.error): dirlist.append(_os.curdir) return dirlist def _get_default_tempdir(): """Calculate the default directory to use for temporary files. This routine should be called exactly once. We determine whether or not a candidate temp dir is usable by trying to create and write to a file in that directory. If this is successful, the test file is deleted. To prevent denial of service, the name of the test file must be randomized.""" namer = _RandomNameSequence() dirlist = _candidate_tempdir_list() flags = _text_openflags for dir in dirlist: if dir != _os.curdir: dir = _os.path.normcase(_os.path.abspath(dir)) # Try only a few names per directory. for seq in xrange(100): name = namer.next() filename = _os.path.join(dir, name) try: fd = _os.open(filename, flags, 0o600) try: try: with _io.open(fd, 'wb', closefd=False) as fp: fp.write(b'blat') finally: _os.close(fd) finally: _os.unlink(filename) return dir except (OSError, IOError) as e: if e.args[0] != _errno.EEXIST: break # no point trying more names in this directory pass raise IOError, (_errno.ENOENT, ("No usable temporary directory found in %s" % dirlist)) _name_sequence = None def _get_candidate_names(): """Common setup sequence for all user-callable interfaces.""" global _name_sequence if _name_sequence is None: _once_lock.acquire() try: if _name_sequence is None: _name_sequence = _RandomNameSequence() finally: _once_lock.release() return _name_sequence def _mkstemp_inner(dir, pre, suf, flags): """Code common to mkstemp, TemporaryFile, and NamedTemporaryFile.""" names = _get_candidate_names() for seq in xrange(TMP_MAX): name = names.next() file = _os.path.join(dir, pre + name + suf) try: fd = _os.open(file, flags, 0600) _set_cloexec(fd) return (fd, _os.path.abspath(file)) except OSError, e: if e.errno == _errno.EEXIST: continue # try again if _os.name == 'nt' and e.errno == _errno.EACCES: # On windows, when a directory with the chosen name already # exists, EACCES error code is returned instead of EEXIST. continue raise raise IOError, (_errno.EEXIST, "No usable temporary file name found") # User visible interfaces. def gettempprefix(): """Accessor for tempdir.template.""" return template tempdir = None def gettempdir(): """Accessor for tempfile.tempdir.""" global tempdir if tempdir is None: _once_lock.acquire() try: if tempdir is None: tempdir = _get_default_tempdir() finally: _once_lock.release() return tempdir def mkstemp(suffix="", prefix=template, dir=None, text=False): """User-callable function to create and return a unique temporary file. The return value is a pair (fd, name) where fd is the file descriptor returned by os.open, and name is the filename. If 'suffix' is specified, the file name will end with that suffix, otherwise there will be no suffix. If 'prefix' is specified, the file name will begin with that prefix, otherwise a default prefix is used. If 'dir' is specified, the file will be created in that directory, otherwise a default directory is used. If 'text' is specified and true, the file is opened in text mode. Else (the default) the file is opened in binary mode. On some operating systems, this makes no difference. The file is readable and writable only by the creating user ID. If the operating system uses permission bits to indicate whether a file is executable, the file is executable by no one. The file descriptor is not inherited by children of this process. Caller is responsible for deleting the file when done with it. """ if dir is None: dir = gettempdir() if text: flags = _text_openflags else: flags = _bin_openflags return _mkstemp_inner(dir, prefix, suffix, flags) def mkdtemp(suffix="", prefix=template, dir=None): """User-callable function to create and return a unique temporary directory. The return value is the pathname of the directory. Arguments are as for mkstemp, except that the 'text' argument is not accepted. The directory is readable, writable, and searchable only by the creating user. Caller is responsible for deleting the directory when done with it. """ if dir is None: dir = gettempdir() names = _get_candidate_names() for seq in xrange(TMP_MAX): name = names.next() file = _os.path.join(dir, prefix + name + suffix) try: _os.mkdir(file, 0700) return file except OSError, e: if e.errno == _errno.EEXIST: continue # try again raise raise IOError, (_errno.EEXIST, "No usable temporary directory name found") def mktemp(suffix="", prefix=template, dir=None): """User-callable function to return a unique temporary file name. The file is not created. Arguments are as for mkstemp, except that the 'text' argument is not accepted. This function is unsafe and should not be used. The file name refers to a file that did not exist at some point, but by the time you get around to creating it, someone else may have beaten you to the punch. """ ## from warnings import warn as _warn ## _warn("mktemp is a potential security risk to your program", ## RuntimeWarning, stacklevel=2) if dir is None: dir = gettempdir() names = _get_candidate_names() for seq in xrange(TMP_MAX): name = names.next() file = _os.path.join(dir, prefix + name + suffix) if not _exists(file): return file raise IOError, (_errno.EEXIST, "No usable temporary filename found") class _TemporaryFileWrapper: """Temporary file wrapper This class provides a wrapper around files opened for temporary use. In particular, it seeks to automatically remove the file when it is no longer needed. """ def __init__(self, file, name, delete=True): self.file = file self.name = name self.close_called = False self.delete = delete def __getattr__(self, name): # Attribute lookups are delegated to the underlying file # and cached for non-numeric results # (i.e. methods are cached, closed and friends are not) file = self.__dict__['file'] a = getattr(file, name) if not issubclass(type(a), type(0)): setattr(self, name, a) return a # The underlying __enter__ method returns the wrong object # (self.file) so override it to return the wrapper def __enter__(self): self.file.__enter__() return self # NT provides delete-on-close as a primitive, so we don't need # the wrapper to do anything special. We still use it so that # file.name is useful (i.e. not "(fdopen)") with NamedTemporaryFile. if _os.name != 'nt': # Cache the unlinker so we don't get spurious errors at # shutdown when the module-level "os" is None'd out. Note # that this must be referenced as self.unlink, because the # name TemporaryFileWrapper may also get None'd out before # __del__ is called. unlink = _os.unlink def close(self): if not self.close_called: self.close_called = True try: self.file.close() finally: if self.delete: self.unlink(self.name) def __del__(self): self.close() # Need to trap __exit__ as well to ensure the file gets # deleted when used in a with statement def __exit__(self, exc, value, tb): result = self.file.__exit__(exc, value, tb) self.close() return result else: def __exit__(self, exc, value, tb): self.file.__exit__(exc, value, tb) def NamedTemporaryFile(mode='w+b', bufsize=-1, suffix="", prefix=template, dir=None, delete=True): """Create and return a temporary file. Arguments: 'prefix', 'suffix', 'dir' -- as for mkstemp. 'mode' -- the mode argument to os.fdopen (default "w+b"). 'bufsize' -- the buffer size argument to os.fdopen (default -1). 'delete' -- whether the file is deleted on close (default True). The file is created as mkstemp() would do it. Returns an object with a file-like interface; the name of the file is accessible as file.name. The file will be automatically deleted when it is closed unless the 'delete' argument is set to False. """ if dir is None: dir = gettempdir() if 'b' in mode: flags = _bin_openflags else: flags = _text_openflags # Setting O_TEMPORARY in the flags causes the OS to delete # the file when it is closed. This is only supported by Windows. if _os.name == 'nt' and delete: flags |= _os.O_TEMPORARY (fd, name) = _mkstemp_inner(dir, prefix, suffix, flags) try: file = _os.fdopen(fd, mode, bufsize) return _TemporaryFileWrapper(file, name, delete) except: _os.close(fd) raise if _os.name != 'posix' or _os.sys.platform == 'cygwin': # On non-POSIX and Cygwin systems, assume that we cannot unlink a file # while it is open. TemporaryFile = NamedTemporaryFile else: def TemporaryFile(mode='w+b', bufsize=-1, suffix="", prefix=template, dir=None): """Create and return a temporary file. Arguments: 'prefix', 'suffix', 'dir' -- as for mkstemp. 'mode' -- the mode argument to os.fdopen (default "w+b"). 'bufsize' -- the buffer size argument to os.fdopen (default -1). The file is created as mkstemp() would do it. Returns an object with a file-like interface. The file has no name, and will cease to exist when it is closed. """ if dir is None: dir = gettempdir() if 'b' in mode: flags = _bin_openflags else: flags = _text_openflags (fd, name) = _mkstemp_inner(dir, prefix, suffix, flags) try: _os.unlink(name) return _os.fdopen(fd, mode, bufsize) except: _os.close(fd) raise class SpooledTemporaryFile: """Temporary file wrapper, specialized to switch from StringIO to a real file when it exceeds a certain size or when a fileno is needed. """ _rolled = False def __init__(self, max_size=0, mode='w+b', bufsize=-1, suffix="", prefix=template, dir=None): self._file = _StringIO() self._max_size = max_size self._rolled = False self._TemporaryFileArgs = (mode, bufsize, suffix, prefix, dir) def _check(self, file): if self._rolled: return max_size = self._max_size if max_size and file.tell() > max_size: self.rollover() def rollover(self): if self._rolled: return file = self._file newfile = self._file = TemporaryFile(*self._TemporaryFileArgs) del self._TemporaryFileArgs newfile.write(file.getvalue()) newfile.seek(file.tell(), 0) self._rolled = True # The method caching trick from NamedTemporaryFile # won't work here, because _file may change from a # _StringIO instance to a real file. So we list # all the methods directly. # Context management protocol def __enter__(self): if self._file.closed: raise ValueError("Cannot enter context with closed file") return self def __exit__(self, exc, value, tb): self._file.close() # file protocol def __iter__(self): return self._file.__iter__() def close(self): self._file.close() @property def closed(self): return self._file.closed def fileno(self): self.rollover() return self._file.fileno() def flush(self): self._file.flush() def isatty(self): return self._file.isatty() @property def mode(self): try: return self._file.mode except AttributeError: return self._TemporaryFileArgs[0] @property def name(self): try: return self._file.name except AttributeError: return None def next(self): return self._file.next def read(self, *args): return self._file.read(*args) def readline(self, *args): return self._file.readline(*args) def readlines(self, *args): return self._file.readlines(*args) def seek(self, *args): self._file.seek(*args) @property def softspace(self): return self._file.softspace def tell(self): return self._file.tell() def truncate(self): self._file.truncate() def write(self, s): file = self._file rv = file.write(s) self._check(file) return rv def writelines(self, iterable): file = self._file rv = file.writelines(iterable) self._check(file) return rv def xreadlines(self, *args): if hasattr(self._file, 'xreadlines'): # real file return iter(self._file) else: # StringIO() return iter(self._file.readlines(*args))
eteq/ginga
refs/heads/staging
ginga/LayerImage.py
3
# # LayerImage.py -- Abstraction of an generic layered image. # # Eric Jeschke (eric@naoj.org) # # Copyright (c) Eric R. Jeschke. All rights reserved. # This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. # import numpy import time from ginga import BaseImage from ginga.misc import Bunch class LayerImage(object): """Mixin class for BaseImage subclasses. Adds layers and alpha/rgb compositing. """ def __init__(self): self._layer = [] self.cnt = 0 self.compose_types = ('alpha', 'rgb') self.compose = 'alpha' def _insert_layer(self, idx, image, alpha=None, name=None): if alpha is None: alpha = 1.0 if name is None: name = "layer%d" % (self.cnt) self.cnt += 1 bnch = Bunch.Bunch(image=image, alpha=alpha, name=name) self._layer.insert(idx, bnch) def insert_layer(self, idx, image, alpha=None, name=None, compose=True): self._insert_layer(idx, image, alpha=alpha, name=name) if compose: self.compose_layers() def set_layer(self, idx, image, alpha=None, name=None, compose=True): self.delete_layer(idx, compose=False) self._insert_layer(idx, image, alpha=alpha, name=name) if compose: self.compose_layers() def delete_layer(self, idx, compose=True): self._layer.pop(idx) if compose: self.compose_layers() def get_layer(self, idx): return self._layer[idx] def num_layers(self): return len(self._layer) def get_max_shape(self, entity='image'): maxdim = -1 maxshape = () for layer in self._layer: if entity == 'image': shape = layer[entity].get_shape() elif entity == 'alpha': item = layer.alpha # If alpha is an image, get the array if isinstance(item, BaseImage.BaseImage): item = layer.alpha.get_data() shape = numpy.shape(item) else: raise BaseImage.ImageError("entity '%s' not in (image, alpha)" % ( entity)) if len(shape) > maxdim: maxdim = len(shape) maxshape = shape return maxshape ## def alpha_combine(self, src, alpha, dst): ## return (src * alpha) + (dst * (1.0 - alpha)) def mono2color(self, data): return numpy.dstack((data, data, data)) def alpha_multiply(self, alpha, data, shape=None): """(alpha) can be a scalar or an array. """ # alpha can be a scalar or an array if shape is None: shape = data.shape if len(data.shape) == 2: res = alpha * data # If desired shape is monochrome then return a mono image # otherwise broadcast to a grey color image. if len(shape) == 2: return res # note: in timing tests, dstack was not as efficient here... #data = numpy.dstack((res, res, res)) data = numpy.empty(shape) data[:, :, 0] = res[:, :] data[:, :, 1] = res[:, :] data[:, :, 2] = res[:, :] return data else: # note: in timing tests, dstack was not as efficient here... #res = numpy.dstack((data[:, :, 0] * alpha, # data[:, :, 1] * alpha, # data[:, :, 2] * alpha)) res = numpy.empty(shape) res[:, :, 0] = data[:, :, 0] * alpha res[:, :, 1] = data[:, :, 1] * alpha res[:, :, 2] = data[:, :, 2] * alpha return res def alpha_compose(self): start_time = time.time() shape = self.get_max_shape() ## ht, wd = shape[:2] ## # alpha can be a scalar or an array, prepare for the appropriate kind ## ashape = self.get_max_shape(entity='alpha') ## if len(ashape) == 0: ## alpha_used = 0.0 ## else: ## alpha_used = numpy.zeros((ht, wd)) # result holds the result of the composition result = numpy.zeros(shape) cnt = 0 for layer in self._layer: alpha = layer.alpha if isinstance(alpha, BaseImage.BaseImage): alpha = alpha.get_data() #alpha = numpy.clip((1.0 - alpha_used) * alpha, 0.0, 1.0) #mina = numpy.min(alpha) #print "cnt=%d mina=%f" % (cnt, mina) data = layer.image.get_data() result += self.alpha_multiply(alpha, data, shape=shape) ## alpha_used += layer.alpha #numpy.clip(alpha_used, 0.0, 1.0) cnt += 1 self.set_data(result) end_time = time.time() self.logger.debug("alpha compose=%.4f sec" % (end_time - start_time)) # def rgb_compose(self): # slices = [] # start_time = time.time() # for i in xrange(len(self._layer)): # layer = self.get_layer(i) # data = self.alpha_multiply(layer.alpha, layer.image.get_data()) # slices.append(data) # split_time = time.time() # result = numpy.dstack(slices) # end_time = time.time() # self.set_data(result) # print "rgb_compose alpha multiply=%.4f sec dstack=%.4f sec sec total=%.4f sec" % ( # split_time - start_time, end_time - split_time, # end_time - start_time) def rgb_compose(self): #num = self.num_layers() num = 3 layer = self.get_layer(0) wd, ht = layer.image.get_size() result = numpy.empty((ht, wd, num)) start_time = time.time() for i in range(len(self._layer)): layer = self.get_layer(i) alpha = layer.alpha if isinstance(alpha, BaseImage.BaseImage): alpha = alpha.get_data() data = self.alpha_multiply(alpha, layer.image.get_data()) result[:, :, i] = data[:, :] end_time = time.time() self.set_data(result) self.logger.debug("rgb_compose total=%.4f sec" % ( end_time - start_time)) def rgb_decompose(self, image): data = image.get_data() shape = data.shape if len(shape) == 2: self._insert_layer(0, image) else: names = ("Red", "Green", "Blue") alphas = (0.292, 0.594, 0.114) for i in range(shape[2]): imgslice = data[:, :, i] #img = BaseImage.BaseImage(data_np=imgslice, logger=self.logger) # Create the same type of image as we are decomposing img = image.__class__(data_np=imgslice, logger=self.logger) if i < 3: name = names[i] alpha = alphas[i] else: name = "layer%d" % i alpha = 0.0 self._insert_layer(i, img, name=name, alpha=alpha) self.compose_layers() def set_compose_type(self, ctype): assert ctype in self.compose_types, \ BaseImage.ImageError("Bad compose type '%s': must be one of %s" % ( ctype, str(self.compose_types))) self.compose = ctype self.compose_layers() def set_alpha(self, lidx, val): layer = self._layer[lidx] layer.alpha = val self.compose_layers() def set_alphas(self, vals): for lidx in range(len(vals)): layer = self._layer[lidx] layer.alpha = vals[lidx] self.compose_layers() def compose_layers(self): if self.compose == 'rgb': self.rgb_compose() else: self.alpha_compose() #END
MattsFleaMarket/python-for-android
refs/heads/master
python-modules/twisted/twisted/trial/test/weird.py
82
from twisted.trial import unittest from twisted.internet import defer # Used in test_tests.TestUnhandledDeferred class TestBleeding(unittest.TestCase): """This test creates an unhandled Deferred and leaves it in a cycle. The Deferred is left in a cycle so that the garbage collector won't pick it up immediately. We were having some problems where unhandled Deferreds in one test were failing random other tests. (See #1507, #1213) """ def test_unhandledDeferred(self): try: 1/0 except ZeroDivisionError: f = defer.fail() # these two lines create the cycle. don't remove them l = [f] l.append(l)
MackZxh/OCA-Choice
refs/heads/8.0
hr/hr_worked_days_from_timesheet/__openerp__.py
19
# -*- coding:utf-8 -*- ############################################################################## # # Copyright (C) 2014 Odoo Canada. All Rights Reserved. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## { 'name': 'Worked Days From Timesheet', 'version': '1.0', 'license': 'AGPL-3', 'category': 'Generic Modules/Human Resources', 'description': """ Worked Days From Timesheet ========================== * Adds a button to import worked days from timesheet Contributors ------------ * David Dufresne <david.dufresne@savoirfairelinux.com> * Pierre Lamarche <pierre.lamarche@savoirfairelinux.com> """, 'author': "Savoir-faire Linux,Odoo Community Association (OCA)", 'website': 'https://www.savoirfairelinux.com/', 'depends': [ 'hr_payroll', 'hr_timesheet_sheet', ], 'data': [ 'hr_payslip_view.xml' ], 'test': [ 'test/worked_days_from_timesheet_test.yml' ], 'demo': [], 'installable': False, }
tux-00/ansible
refs/heads/devel
test/units/plugins/action/test_synchronize.py
8
''' (Epdb) pprint(DeepDiff(self.final_task_vars, out_task_vars), indent=2) { 'dic_item_added': set([u"root['ansible_python_interpreter']"]), 'dic_item_removed': set([ u"root['hostvars']['127.0.0.1']", u"root['hostvars']['::1']", u"root['hostvars']['localhost']"]), 'iterable_item_added': { u"root['hostvars']['el6host']['groups']['all'][1]": u'::1', u"root['hostvars']['el6host']['groups']['ungrouped'][1]": u'::1', u"root['vars']['hostvars']['el6host']['groups']['all'][1]": u'::1', u"root['vars']['hostvars']['el6host']['groups']['ungrouped'][1]": u'::1'}} ''' import json import os import sys import unittest import yaml from pprint import pprint import ansible.plugins from ansible.compat.tests.mock import patch, MagicMock from ansible.plugins.action.synchronize import ActionModule # Getting the incoming and outgoing task vars from the plugin's run method ''' import copy safe_vars = {} for k,v in task_vars.items(): if k not in ['vars', 'hostvars']: safe_vars[k] = copy.deepcopy(v) else: sdata = str(v) newv = eval(sdata) safe_vars[k] = newv import json with open('task_vars.json', 'wb') as f: f.write(json.dumps(safe_vars, indent=2)) ''' class TaskMock(object): args = {'src': u'/tmp/deleteme', 'dest': '/tmp/deleteme', 'rsync_path': 'rsync'} async = None become = None become_user = None become_method = None class StdinMock(object): shell = None class ConnectionMock(object): ismock = True _play_context = None # transport = 'ssh' transport = None _new_stdin = StdinMock() class PlayContextMock(object): shell = None private_key_file = None become = False become_user = 'root' become_method = None check_mode = False no_log = None diff = None remote_addr = None remote_user = None password = None class ModuleLoaderMock(object): def find_plugin(self, module_name, mod_type): pass class SharedLoaderMock(object): module_loader = ModuleLoaderMock() class SynchronizeTester(object): ''' A wrapper for mocking out synchronize environments ''' task = TaskMock() connection = ConnectionMock() _play_context = PlayContextMock() loader = None templar = None shared_loader_obj = SharedLoaderMock() final_task_vars = None execute_called = False def _execute_module(self, module_name, module_args=None, task_vars=None): self.execute_called = True self.final_module_args = module_args self.final_task_vars = task_vars return {} def runtest(self, fixturepath='fixtures/synchronize/basic'): metapath = os.path.join(fixturepath, 'meta.yaml') with open(metapath, 'rb') as f: fdata = f.read() test_meta = yaml.load(fdata) # load inital play context vars if '_play_context' in test_meta: if test_meta['_play_context']: self.task.args = {} for (k, v) in test_meta['_play_context'].items(): if v == 'None': v = None setattr(self._play_context, k, v) # load inital task context vars if '_task' in test_meta: if test_meta['_task']: self.task.args = {} for (k, v) in test_meta['_task'].items(): # import epdb; epdb.st() if v == 'None': v = None setattr(self.task, k, v) # load inital task vars if 'task_args' in test_meta: if test_meta['task_args']: self.task.args = {} for (k, v) in test_meta['task_args'].items(): self.task.args[k] = v # load inital task vars invarspath = os.path.join(fixturepath, test_meta.get('fixtures', {}).get('taskvars_in', 'taskvars_in.json')) with open(invarspath, 'rb') as f: fdata = f.read() fdata = fdata.decode("utf-8") in_task_vars = json.loads(fdata) # load expected final task vars outvarspath = os.path.join(fixturepath, test_meta.get('fixtures', {}).get('taskvars_out', 'taskvars_out.json')) with open(outvarspath, 'rb') as f: fdata = f.read() fdata = fdata.decode("utf-8") out_task_vars = json.loads(fdata) # fixup the connection for (k, v) in test_meta['connection'].items(): setattr(self.connection, k, v) # fixup the hostvars if test_meta['hostvars']: for (k, v) in test_meta['hostvars'].items(): in_task_vars['hostvars'][k] = v # initalize and run the module SAM = ActionModule(self.task, self.connection, self._play_context, self.loader, self.templar, self.shared_loader_obj) SAM._execute_module = self._execute_module result = SAM.run(task_vars=in_task_vars) # run assertions for check in test_meta['asserts']: value = eval(check) # if not value: # print(check, value) # import epdb; epdb.st() assert value, check class FakePluginLoader(object): mocked = True @staticmethod def get(transport, play_context, new_stdin): conn = ConnectionMock() conn.transport = transport conn._play_context = play_context conn._new_stdin = new_stdin return conn class TestSynchronizeAction(unittest.TestCase): fixturedir = os.path.dirname(__file__) fixturedir = os.path.join(fixturedir, 'fixtures', 'synchronize') # print(basedir) @patch('ansible.plugins.action.synchronize.connection_loader', FakePluginLoader) def test_basic(self): x = SynchronizeTester() x.runtest(fixturepath=os.path.join(self.fixturedir, 'basic')) @patch('ansible.plugins.action.synchronize.connection_loader', FakePluginLoader) def test_basic_become(self): x = SynchronizeTester() x.runtest(fixturepath=os.path.join(self.fixturedir, 'basic_become')) @patch('ansible.plugins.action.synchronize.connection_loader', FakePluginLoader) def test_basic_become_cli(self): # --become on the cli sets _play_context.become x = SynchronizeTester() x.runtest(fixturepath=os.path.join(self.fixturedir, 'basic_become_cli')) @patch('ansible.plugins.action.synchronize.connection_loader', FakePluginLoader) def test_basic_vagrant(self): # simple vagrant example x = SynchronizeTester() x.runtest(fixturepath=os.path.join(self.fixturedir, 'basic_vagrant')) @patch('ansible.plugins.action.synchronize.connection_loader', FakePluginLoader) def test_basic_vagrant_sudo(self): # vagrant plus sudo x = SynchronizeTester() x.runtest(fixturepath=os.path.join(self.fixturedir, 'basic_vagrant_sudo')) @patch('ansible.plugins.action.synchronize.connection_loader', FakePluginLoader) def test_basic_vagrant_become_cli(self): # vagrant plus sudo x = SynchronizeTester() x.runtest(fixturepath=os.path.join(self.fixturedir, 'basic_vagrant_become_cli')) @patch('ansible.plugins.action.synchronize.connection_loader', FakePluginLoader) def test_delegate_remote(self): # delegate to other remote host x = SynchronizeTester() x.runtest(fixturepath=os.path.join(self.fixturedir, 'delegate_remote')) @patch('ansible.plugins.action.synchronize.connection_loader', FakePluginLoader) def test_delegate_remote_su(self): # delegate to other remote host with su enabled x = SynchronizeTester() x.runtest(fixturepath=os.path.join(self.fixturedir, 'delegate_remote_su'))
2014c2g4/2015cda_g7
refs/heads/master
static/Brython3.1.0-20150301-090019/Lib/webbrowser.py
735
from browser import window __all__ = ["Error", "open", "open_new", "open_new_tab"] class Error(Exception): pass _target = { 0: '', 1: '_blank', 2: '_new' } # hack... def open(url, new=0, autoraise=True): """ new window or tab is not controllable on the client side. autoraise not available. """ if window.open(url, _target[new]): return True return False def open_new(url): return open(url, 1) def open_new_tab(url): return open(url, 2)
hamishwillee/ardupilot
refs/heads/master
libraries/SITL/examples/Morse/rover_follow.py
35
''' This is an example builder script that sets up a a set of rovers to be driven by ArduPilot for demonstrating follow mode The rover has the basic set of sensors that ArduPilot needs To start the simulation use this: morse run rover_follow.py ''' from morse.builder import * num_vehicles = 3 for i in range(num_vehicles): vehicle = ATRV('Vehicle%u' % i) vehicle.properties(Object = True, Graspable = False, Label = "Vehicle") # set rovers 3 meters apart vehicle.translate(x=0.0, y=3*i, z=0.0) # add sensors needed for ArduPilot operation to a vehicle pose = Pose() vehicle.append(pose) imu = IMU() vehicle.append(imu) gps = GPS() gps.alter('UTM') vehicle.append(gps) velocity = Velocity() vehicle.append(velocity) # create a compound sensor of all of the individual sensors and stream it all_sensors = CompoundSensor([imu, gps, velocity, pose]) all_sensors.add_stream('socket') vehicle.append(all_sensors) # make the vehicle controllable with speed and angular velocity motion = MotionVW() vehicle.append(motion) motion.add_stream('socket') # Environment env = Environment('land-1/trees', fastmode=False) env.set_camera_location([10.0, -10.0, 10.0]) env.set_camera_rotation([1.0470, 0, 0.7854]) env.set_camera_clip(clip_end=1000) # startup at CMAC. A location is needed for the magnetometer env.properties(longitude = 149.165230, latitude = -35.363261, altitude = 584.0)
jdowner/qtile
refs/heads/develop
libqtile/widget/graph.py
6
# Copyright (c) 2010 Aldo Cortesi # Copyright (c) 2010-2011 Paul Colomiets # Copyright (c) 2010, 2014 roger # Copyright (c) 2011 Mounier Florian # Copyright (c) 2011 Kenji_Takahashi # Copyright (c) 2012 Mika Fischer # Copyright (c) 2012, 2014-2015 Tycho Andersen # Copyright (c) 2012-2013 Craig Barnes # Copyright (c) 2013 dequis # Copyright (c) 2013 Tao Sauvage # Copyright (c) 2013 Mickael FALCK # Copyright (c) 2014 Sean Vig # Copyright (c) 2014 Adi Sieker # Copyright (c) 2014 Florian Scherf # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import cairocffi from . import base from libqtile.log_utils import logger from os import statvfs import time import platform __all__ = [ 'CPUGraph', 'MemoryGraph', 'SwapGraph', 'NetGraph', 'HDDGraph', 'HDDBusyGraph', ] class _Graph(base._Widget): fixed_upper_bound = False defaults = [ ("graph_color", "18BAEB", "Graph color"), ("fill_color", "1667EB.3", "Fill color for linefill graph"), ("border_color", "215578", "Widget border color"), ("border_width", 2, "Widget border width"), ("margin_x", 3, "Margin X"), ("margin_y", 3, "Margin Y"), ("samples", 100, "Count of graph samples."), ("frequency", 1, "Update frequency in seconds"), ("type", "linefill", "'box', 'line', 'linefill'"), ("line_width", 3, "Line width"), ("start_pos", "bottom", "Drawer starting position ('bottom'/'top')"), ] def __init__(self, width=100, **config): base._Widget.__init__(self, width, **config) self.add_defaults(_Graph.defaults) self.values = [0] * self.samples self.maxvalue = 0 self.oldtime = time.time() self.lag_cycles = 0 def timer_setup(self): self.timeout_add(self.frequency, self.update) @property def graphwidth(self): return self.width - self.border_width * 2 - self.margin_x * 2 @property def graphheight(self): return self.bar.height - self.margin_y * 2 - self.border_width * 2 def draw_box(self, x, y, values): step = self.graphwidth / float(self.samples) self.drawer.set_source_rgb(self.graph_color) for val in values: val = self.val(val) self.drawer.fillrect(x, y - val, step, val) x += step def draw_line(self, x, y, values): step = self.graphwidth / float(self.samples - 1) self.drawer.ctx.set_line_join(cairocffi.LINE_JOIN_ROUND) self.drawer.set_source_rgb(self.graph_color) self.drawer.ctx.set_line_width(self.line_width) for val in values: self.drawer.ctx.line_to(x, y - self.val(val)) x += step self.drawer.ctx.stroke() def draw_linefill(self, x, y, values): step = self.graphwidth / float(self.samples - 2) self.drawer.ctx.set_line_join(cairocffi.LINE_JOIN_ROUND) self.drawer.set_source_rgb(self.graph_color) self.drawer.ctx.set_line_width(self.line_width) for index, val in enumerate(values): self.drawer.ctx.line_to(x + index * step, y - self.val(val)) self.drawer.ctx.stroke_preserve() self.drawer.ctx.line_to( x + (len(values) - 1) * step, y - 1 + self.line_width / 2.0 ) self.drawer.ctx.line_to(x, y - 1 + self.line_width / 2.0) self.drawer.set_source_rgb(self.fill_color) self.drawer.ctx.fill() def val(self, val): if self.start_pos == 'bottom': return val elif self.start_pos == 'top': return -val else: raise ValueError("Unknown starting position: %s." % self.start_pos) def draw(self): self.drawer.clear(self.background or self.bar.background) if self.border_width: self.drawer.set_source_rgb(self.border_color) self.drawer.ctx.set_line_width(self.border_width) self.drawer.ctx.rectangle( self.margin_x + self.border_width / 2.0, self.margin_y + self.border_width / 2.0, self.graphwidth + self.border_width, self.bar.height - self.margin_y * 2 - self.border_width, ) self.drawer.ctx.stroke() x = self.margin_x + self.border_width y = self.margin_y + self.border_width if self.start_pos == 'bottom': y += self.graphheight elif not self.start_pos == 'top': raise ValueError("Unknown starting position: %s." % self.start_pos) k = 1.0 / (self.maxvalue or 1) scaled = [self.graphheight * val * k for val in reversed(self.values)] if self.type == "box": self.draw_box(x, y, scaled) elif self.type == "line": self.draw_line(x, y, scaled) elif self.type == "linefill": self.draw_linefill(x, y, scaled) else: raise ValueError("Unknown graph type: %s." % self.type) self.drawer.draw(offsetx=self.offset, width=self.width) def push(self, value): if self.lag_cycles > self.samples: # compensate lag by sending the same value up to # the graph samples limit self.lag_cycles = 1 self.values = ([value] * min(self.samples, self.lag_cycles)) + self.values self.values = self.values[:self.samples] if not self.fixed_upper_bound: self.maxvalue = max(self.values) self.draw() def update(self): # lag detection newtime = time.time() self.lag_cycles = int((newtime - self.oldtime) / self.frequency) self.oldtime = newtime self.update_graph() self.timeout_add(self.frequency, self.update) def fulfill(self, value): self.values = [value] * len(self.values) class CPUGraph(_Graph): """Display CPU usage graph""" orientations = base.ORIENTATION_HORIZONTAL defaults = [ ("core", "all", "Which core to show (all/0/1/2/...)"), ] fixed_upper_bound = True def __init__(self, **config): _Graph.__init__(self, **config) self.add_defaults(CPUGraph.defaults) self.maxvalue = 100 self.oldvalues = self._getvalues() def _getvalues(self): proc = '/proc/stat' if platform.system() == "FreeBSD": proc = '/compat/linux' + proc with open(proc) as file: lines = file.readlines() # default to all cores (first line) line = lines.pop(0) # core specified, grab the corresponding line if isinstance(self.core, int): # we already removed the first line from the list, # so it's 0 indexed now :D line = lines[self.core] if not line.startswith("cpu%s" % self.core): raise ValueError("No such core: %s" % self.core) if platform.system() == 'FreeBSD': name, user, nice, sys, idle = line.split(None, 4) else: name, user, nice, sys, idle, iowait, tail = line.split(None, 6) return (int(user), int(nice), int(sys), int(idle)) def update_graph(self): nval = self._getvalues() oval = self.oldvalues busy = nval[0] + nval[1] + nval[2] - oval[0] - oval[1] - oval[2] total = busy + nval[3] - oval[3] # sometimes this value is zero for unknown reason (time shift?) # we just sent the previous value, because it gives us no info about # cpu load, if it's zero. if total: push_value = busy * 100.0 / total self.push(push_value) else: self.push(self.values[0]) self.oldvalues = nval def get_meminfo(): val = {} proc = '/proc/meminfo' if platform.system() == "FreeBSD": proc = "/compat/linux" + proc with open(proc) as file: for line in file: if line.lstrip().startswith("total"): pass else: key, tail = line.strip().split(':') uv = tail.split() val[key] = int(uv[0]) val['MemUsed'] = val['MemTotal'] - val['MemFree'] return val class MemoryGraph(_Graph): """Displays a memory usage graph""" orientations = base.ORIENTATION_HORIZONTAL fixed_upper_bound = True def __init__(self, **config): _Graph.__init__(self, **config) val = self._getvalues() self.maxvalue = val['MemTotal'] mem = val['MemTotal'] - val['MemFree'] - val['Buffers'] - val['Cached'] self.fulfill(mem) def _getvalues(self): return get_meminfo() def update_graph(self): val = self._getvalues() self.push( val['MemTotal'] - val['MemFree'] - val['Buffers'] - val['Cached'] ) class SwapGraph(_Graph): """Display a swap info graph""" orientations = base.ORIENTATION_HORIZONTAL fixed_upper_bound = True def __init__(self, **config): _Graph.__init__(self, **config) val = self._getvalues() self.maxvalue = val['SwapTotal'] swap = val['SwapTotal'] - val['SwapFree'] - val.get('SwapCached', 0) self.fulfill(swap) def _getvalues(self): return get_meminfo() def update_graph(self): val = self._getvalues() swap = val['SwapTotal'] - val['SwapFree'] - val.get('SwapCached', 0) # can change, swapon/off if self.maxvalue != val['SwapTotal']: self.maxvalue = val['SwapTotal'] self.fulfill(swap) self.push(swap) class NetGraph(_Graph): """Display a network usage graph""" orientations = base.ORIENTATION_HORIZONTAL defaults = [ ( "interface", "auto", "Interface to display info for ('auto' for detection)" ), ("bandwidth_type", "down", "down(load)/up(load)"), ] def __init__(self, **config): _Graph.__init__(self, **config) self.add_defaults(NetGraph.defaults) if self.interface == "auto": try: self.interface = self.get_main_iface() except RuntimeError: logger.warning( "NetGraph - Automatic interface detection failed, " "falling back to 'eth0'" ) self.interface = "eth0" self.filename = '/sys/class/net/{interface}/statistics/{type}'.format( interface=self.interface, type=self.bandwidth_type == 'down' and 'rx_bytes' or 'tx_bytes' ) self.bytes = 0 self.bytes = self._getValues() def _getValues(self): try: with open(self.filename) as file: val = int(file.read()) rval = val - self.bytes self.bytes = val return rval except IOError: return 0 def update_graph(self): val = self._getValues() self.push(val) @staticmethod def get_main_iface(): def make_route(line): return dict(zip(['iface', 'dest'], line.split())) with open('/proc/net/route', 'r') as fp: lines = fp.readlines() routes = [make_route(line) for line in lines[1:]] try: return next( (r for r in routes if not int(r['dest'], 16)), routes[0] )['iface'] except (KeyError, IndexError, ValueError): raise RuntimeError('No valid interfaces available') class HDDGraph(_Graph): """Display HDD free or used space graph""" fixed_upper_bound = True orientations = base.ORIENTATION_HORIZONTAL defaults = [ ("path", "/", "Partition mount point."), ("space_type", "used", "free/used") ] def __init__(self, **config): _Graph.__init__(self, **config) self.add_defaults(HDDGraph.defaults) stats = statvfs(self.path) self.maxvalue = stats.f_blocks * stats.f_frsize values = self._getValues() self.fulfill(values) def _getValues(self): stats = statvfs(self.path) if self.space_type == 'used': return (stats.f_blocks - stats.f_bfree) * stats.f_frsize else: return stats.f_bavail * stats.f_frsize def update_graph(self): val = self._getValues() self.push(val) class HDDBusyGraph(_Graph): """Display HDD busy time graph Parses /sys/block/<dev>/stat file and extracts overall device IO usage, based on ``io_ticks``'s value. See https://www.kernel.org/doc/Documentation/block/stat.txt """ orientations = base.ORIENTATION_HORIZONTAL defaults = [ ("device", "sda", "Block device to display info for") ] def __init__(self, **config): _Graph.__init__(self, **config) self.add_defaults(HDDBusyGraph.defaults) self.path = '/sys/block/{dev}/stat'.format( dev=self.device ) self._prev = 0 def _getActivity(self): try: # io_ticks is field number 9 with open(self.path) as f: io_ticks = int(f.read().split()[9]) except IOError: return 0 activity = io_ticks - self._prev self._prev = io_ticks return activity def update_graph(self): self.push(self._getActivity())
vmax-feihu/hue
refs/heads/master
desktop/core/ext-py/Django-1.6.10/tests/template_tests/templatetags/broken_tag.py
240
from django import Xtemplate
bbansalWolfPack/servo
refs/heads/master
tests/wpt/css-tests/tools/serve/__init__.py
458
import serve
tbombach/autorest
refs/heads/master
src/generator/AutoRest.Python.Tests/Expected/AcceptanceTests/Header/autorestswaggerbatheaderservice/exceptions.py
687
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.exceptions import ( ClientException, SerializationError, DeserializationError, TokenExpiredError, ClientRequestError, AuthenticationError, HttpOperationError, ValidationError, )
Nowheresly/account-financial-tools
refs/heads/8.0
account_constraints/tests/test_account_constraints.py
24
# -*- coding: utf-8 -*- # # # Authors: Adrien Peiffer # Copyright (c) 2014 Acsone SA/NV (http://www.acsone.eu) # All Rights Reserved # # WARNING: This program as such is intended to be used by professional # programmers who take the whole responsibility of assessing all potential # consequences resulting from its eventual inadequacies and bugs. # End users who are looking for a ready-to-use solution with commercial # guarantees and support are strongly advised to contact a Free Software # Service Company. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # import openerp.tests.common as common from datetime import datetime from openerp.tools import DEFAULT_SERVER_DATE_FORMAT from openerp import workflow, exceptions def create_simple_invoice(self): partner_id = self.ref('base.res_partner_2') product_id = self.ref('product.product_product_4') today = datetime.now() journal_id = self.ref('account.sales_journal') date = today.strftime(DEFAULT_SERVER_DATE_FORMAT) return self.env['account.invoice']\ .create({'partner_id': partner_id, 'account_id': self.ref('account.a_recv'), 'journal_id': journal_id, 'date_invoice': date, 'invoice_line': [(0, 0, {'name': 'test', 'account_id': self.ref('account.a_sale'), 'price_unit': 2000.00, 'quantity': 1, 'product_id': product_id, } ) ], }) class TestAccountConstraints(common.TransactionCase): def setUp(self): super(TestAccountConstraints, self).setUp() def test_draft_move_invoice(self): invoice = create_simple_invoice(self) workflow.trg_validate(self.uid, 'account.invoice', invoice.id, 'invoice_open', self.cr) move = invoice.move_id move_lines = move.line_id move.with_context({'from_parent_object': True})\ .write({'state': 'draft'}) self.assertRaises(exceptions.Warning, move_lines.write, {'credit': 0.0}) def test_post_move_invoice_ref(self): invoice = create_simple_invoice(self) workflow.trg_validate(self.uid, 'account.invoice', invoice.id, 'invoice_open', self.cr) move_lines = invoice.move_id.line_id # here, normally no exception is raised in standard code. # It's just to verify if it's # possible to modify ref field in a post account_move_line move_lines.with_context({'from_parent_object': True})\ .write({'ref': 'test'}) def test_post_move_invoice(self): invoice = create_simple_invoice(self) workflow.trg_validate(self.uid, 'account.invoice', invoice.id, 'invoice_open', self.cr) move_lines = invoice.move_id.line_id self.assertRaises(exceptions.Warning, move_lines.write, {'ref': 'test'})
GageGaskins/osf.io
refs/heads/develop
scripts/osfstorage/migrate_metadata.py
28
# -*- coding: utf-8 -*- """Script which ensures that every file version's content_type, size, and date_modified fields are consistent with the metadata from waterbutler. """ from modularodm import Q import logging import sys from website.addons.osfstorage.model import OsfStorageFileVersion from website.app import init_app from scripts import utils as scripts_utils logger = logging.getLogger(__name__) def main(): for each in OsfStorageFileVersion.find( Q('size', 'eq', None) & Q('status', 'ne', 'cached') & Q('location.object', 'exists', True) ): logger.info('Updating metadata for OsfStorageFileVersion {}'.format(each._id)) if 'dry' not in sys.argv: each.update_metadata(each.metadata) each.save() if __name__ == '__main__': # Set up storage backends init_app(set_backends=True, routes=False) if 'dry' not in sys.argv: scripts_utils.add_file_logger(logger, __file__) main()
iModels/mbuild
refs/heads/master
mbuild/formats/par_writer.py
2
"""CHARMM Par format.""" import warnings __all__ = ["write_par"] def write_par(structure, filename): """Write CHARMM Par file given a parametrized structure. Notes ----- Follows format according to https://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-unix-html/ node25.html Furthermore, ParmEd should support writing CHARMM par, rtf, str files by converting the parmed.Structure into parmed.CharmmParameterSet Parmed stores rmin/2 in "rmin" """ # ATOMS with open(filename, "w") as f: f.write("ATOMS\n") unique_atoms = set() for atom in structure.atoms: unique_atoms.add((atom.atom_type.name, atom.atom_type.mass)) for atom in unique_atoms: f.write("MASS -1 {:8s} {:8.4f}\n".format(atom[0], atom[1])) f.write("\nBONDS\n") unique_bonds = set() for bond in structure.bonds: unique_bonds.add( ( bond.atom1.atom_type.name, bond.atom2.atom_type.name, bond.type, ) ) for bond in unique_bonds: f.write( "{:8s} {:8s} {:.5f} {:.5f}\n".format( bond[0], bond[1], bond[2].k, bond[2].req ) ) f.write("\nANGLES\n") unique_angles = set() unique_ubs = set() for angle in structure.angles: associated_ub = False for ub in structure.urey_bradleys: if ((angle.atom1, angle.atom3) == (ub.atom1, ub.atom2)) or ( angle.atom3, angle.atom1, ) == (ub.atom1, ub.atom2): unique_ubs.add( ( angle.atom1.atom_type.name, angle.atom2.atom_type.name, angle.atom3.atom_type.name, angle.type, ub.type, ) ) associated_ub = True if not associated_ub: unique_angles.add( ( angle.atom1.atom_type.name, angle.atom2.atom_type.name, angle.atom3.atom_type.name, angle.type, ) ) for ub in unique_ubs: f.write( "{:8s} {:8s} {:8s} {:.5f} {:.5f} {:.5f} {:.5f}\n".format( ub[0], ub[1], ub[2], ub[3].k, ub[3].theteq, ub[4].k, ub[4].req, ) ) for angle in unique_angles: f.write( "{:8s} {:8s} {:8s} {:.5f} {:.5f}\n".format( angle[0], angle[1], angle[2], angle[3].k, angle[3].theteq ) ) # These dihedrals need to be PeriodicTorsion Style (Charmm style) if len(structure.rb_torsions) > 0: warnings.warn("RB Torsions detected, but unsupported in par writer") f.write("\nDIHEDRALS\n") unique_dihedrals = set() scnb = set() for dihedral in structure.dihedrals: if not dihedral.improper: unique_dihedrals.add( ( dihedral.atom1.atom_type.name, dihedral.atom2.atom_type.name, dihedral.atom3.atom_type.name, dihedral.atom4.atom_type.name, dihedral.type, ) ) scnb.add(dihedral.type.scnb) else: msg = ( "AMBER-style improper detected between " + "{} {} {} {}".format( dihedral.atom1, dihedral.atom2, dihedral.atom3, dihedral.atom4, ) + ", but unsupported in par writer" ) warnings.warn(msg) for dihedral in unique_dihedrals: f.write( "{:8s} {:8s} {:8s} {:8s} {:.5f} {:5d} {:.5f}\n".format( dihedral[0], dihedral[1], dihedral[2], dihedral[3], dihedral[4].phi_k, dihedral[4].per, dihedral[4].phase, ) ) f.write("\nIMPROPER\n") unique_impropers = set() for improper in structure.impropers: unique_impropers.add( ( improper.atom1.atom_type.name, improper.atom2.atom_type.name, improper.atom3.atom_type.name, improper.atom4.atom_type.name, improper.type, ) ) for improper in unique_impropers: f.write( "{:8s} {:8s} {:8s} {:8s} {:.5f} {:5d} {:.5f}\n".format( improper[2], improper[0], improper[1], improper[3], improper[4].psi_k, 0, improper[4].psi_eq, ) ) sc_nb = [a for a in scnb] if len(sc_nb) > 1: warnings.warn( "Multiple 1-4 LJ scalings were detected, " "defaulting to first LJ scaling detected, {}".format(sc_nb[0]) ) sc_nb = sc_nb[0] elif len(sc_nb) == 1: sc_nb = sc_nb[0] elif len(sc_nb) == 0: warnings.warn("No 1-4 LJ scaling was detected, defaulting 1") sc_nb = 1.0 f.write("\nNONBONDED\n") unique_atypes = set() for atom in structure.atoms: unique_atypes.add(atom.atom_type) for atype in unique_atypes: # atype, 0.0, epsilon, rmin/2, 0.0, epsilon(1-4), rmin/2 (1-4) f.write( "{:8s} {:8.3f} {:8.3f} {:8.3f} {:8.3f} {:8.3f} {:8.3f}\n".format( atype.name, 0.0, -1 * atype.epsilon, atype.rmin, 0.0, -1 * sc_nb * atype.epsilon, atype.rmin, ) ) if structure.has_NBFIX(): warnings.warn("NBFixes detected but unsupported in par writer") f.write("\nEND")
qateam123/eq
refs/heads/master
tests/integration/questionnaire/test_questionnaire_save_sign_out.py
1
from tests.integration.create_token import create_token from tests.integration.integration_test_case import IntegrationTestCase class TestSaveSignOut(IntegrationTestCase): def test_save_sign_out_with_mandatory_question_not_answered(self): # We can save and go to the sign-out page without having to fill in mandatory answer base_url = '/questionnaire/1/0205/789/' # Given token = create_token('0205', '1') self.client.get('/session?token=' + token.decode(), follow_redirects=False) # When post_data = { 'action[start_questionnaire]': 'Start Questionnaire' } resp = self.client.post(base_url + 'introduction', data=post_data, follow_redirects=False) self.assertEquals(resp.status_code, 302) block_one_url = resp.headers['Location'] post_data = { "total-retail-turnover": " 1000", "action[save_sign_out]": "Save and sign out" } resp = self.client.post(block_one_url, data=post_data, follow_redirects=False) self.assertEquals(resp.status_code, 302) # Then # we are presented with the sign out page self.assertTrue("signed-out" in resp.headers['Location']) self.assertEquals(resp.status_code, 302) resp = self.client.get(resp.headers['Location'], follow_redirects=False) self.assertEquals(resp.status_code, 200) def test_save_sign_out_with_non_mandatory_validation_error(self): # We can't save if a validation error is caused, this doesn't include missing a mandatory question base_url = '/questionnaire/1/0205/789/' # Given token = create_token('0205', '1') self.client.get('/session?token=' + token.decode(), follow_redirects=False) # When post_data = { 'action[start_questionnaire]': 'Start Questionnaire' } resp = self.client.post(base_url + 'introduction', data=post_data, follow_redirects=False) self.assertEquals(resp.status_code, 302) block_one_url = resp.headers['Location'] post_data = { "total-retail-turnover": "error", "action[save_sign_out]": "Save and sign out" } resp = self.client.post(block_one_url, data=post_data, follow_redirects=False) self.assertEquals(resp.status_code, 200) # Then # we are presented with an error message content = resp.get_data(True) self.assertRegexpMatches(content, 'Please only enter whole numbers into the field.') def test_save_sign_out_complete_a_block_then_revist_it(self): # If a user completes a block, but then goes back and uses save and come back on that block, that block # should no longer be considered complete and on re-authenticate it should return to it base_url = '/questionnaire/1/0102/789/' token = create_token('0102', '1') self.client.get('/session?token=' + token.decode(), follow_redirects=False) post_data = { 'action[start_questionnaire]': 'Start Questionnaire' } resp = self.client.post(base_url + 'introduction', data=post_data, follow_redirects=False) self.assertEquals(resp.status_code, 302) block_one_url = resp.headers['Location'] post_data = { "period-from-day": "01", "period-from-month": "4", "period-from-year": "2016", "period-to-day": "30", "period-to-month": "04", "period-to-year": "2016", "action[save_continue]": "Save &amp; Continue" } resp = self.client.post(block_one_url, data=post_data, follow_redirects=False) self.assertEquals(resp.status_code, 302) # We go back to the first page and save and complete later self.client.get(block_one_url, follow_redirects=False) post_data = { "action[save_sign_out]": "Save and sign out" } self.client.post(block_one_url, data=post_data, follow_redirects=False) # We re-authenticate and check we are on the first page resp = self.client.get('/session?token=' + token.decode(), follow_redirects=False) block_one_url = resp.headers['Location'] self.assertRegexpMatches(block_one_url, 'reporting-period')
nugget/home-assistant
refs/heads/dev
tests/components/media_player/test_blackbird.py
3
"""The tests for the Monoprice Blackbird media player platform.""" import unittest from unittest import mock import voluptuous as vol from collections import defaultdict from homeassistant.components.media_player.const import ( DOMAIN, SUPPORT_TURN_ON, SUPPORT_TURN_OFF, SUPPORT_SELECT_SOURCE) from homeassistant.const import STATE_ON, STATE_OFF import tests.common from homeassistant.components.media_player.blackbird import ( DATA_BLACKBIRD, PLATFORM_SCHEMA, SERVICE_SETALLZONES, setup_platform) import pytest class AttrDict(dict): """Helper class for mocking attributes.""" def __setattr__(self, name, value): """Set attribute.""" self[name] = value def __getattr__(self, item): """Get attribute.""" return self[item] class MockBlackbird: """Mock for pyblackbird object.""" def __init__(self): """Init mock object.""" self.zones = defaultdict(lambda: AttrDict(power=True, av=1)) def zone_status(self, zone_id): """Get zone status.""" status = self.zones[zone_id] status.zone = zone_id return AttrDict(status) def set_zone_source(self, zone_id, source_idx): """Set source for zone.""" self.zones[zone_id].av = source_idx def set_zone_power(self, zone_id, power): """Turn zone on/off.""" self.zones[zone_id].power = power def set_all_zone_source(self, source_idx): """Set source for all zones.""" self.zones[3].av = source_idx class TestBlackbirdSchema(unittest.TestCase): """Test Blackbird schema.""" def test_valid_serial_schema(self): """Test valid schema.""" valid_schema = { 'platform': 'blackbird', 'port': '/dev/ttyUSB0', 'zones': {1: {'name': 'a'}, 2: {'name': 'a'}, 3: {'name': 'a'}, 4: {'name': 'a'}, 5: {'name': 'a'}, 6: {'name': 'a'}, 7: {'name': 'a'}, 8: {'name': 'a'}, }, 'sources': { 1: {'name': 'a'}, 2: {'name': 'a'}, 3: {'name': 'a'}, 4: {'name': 'a'}, 5: {'name': 'a'}, 6: {'name': 'a'}, 7: {'name': 'a'}, 8: {'name': 'a'}, } } PLATFORM_SCHEMA(valid_schema) def test_valid_socket_schema(self): """Test valid schema.""" valid_schema = { 'platform': 'blackbird', 'host': '192.168.1.50', 'zones': {1: {'name': 'a'}, 2: {'name': 'a'}, 3: {'name': 'a'}, 4: {'name': 'a'}, 5: {'name': 'a'}, }, 'sources': { 1: {'name': 'a'}, 2: {'name': 'a'}, 3: {'name': 'a'}, 4: {'name': 'a'}, } } PLATFORM_SCHEMA(valid_schema) def test_invalid_schemas(self): """Test invalid schemas.""" schemas = ( {}, # Empty None, # None # Port and host used concurrently { 'platform': 'blackbird', 'port': '/dev/ttyUSB0', 'host': '192.168.1.50', 'name': 'Name', 'zones': {1: {'name': 'a'}}, 'sources': {1: {'name': 'b'}}, }, # Port or host missing { 'platform': 'blackbird', 'name': 'Name', 'zones': {1: {'name': 'a'}}, 'sources': {1: {'name': 'b'}}, }, # Invalid zone number { 'platform': 'blackbird', 'port': '/dev/ttyUSB0', 'name': 'Name', 'zones': {11: {'name': 'a'}}, 'sources': {1: {'name': 'b'}}, }, # Invalid source number { 'platform': 'blackbird', 'port': '/dev/ttyUSB0', 'name': 'Name', 'zones': {1: {'name': 'a'}}, 'sources': {9: {'name': 'b'}}, }, # Zone missing name { 'platform': 'blackbird', 'port': '/dev/ttyUSB0', 'name': 'Name', 'zones': {1: {}}, 'sources': {1: {'name': 'b'}}, }, # Source missing name { 'platform': 'blackbird', 'port': '/dev/ttyUSB0', 'name': 'Name', 'zones': {1: {'name': 'a'}}, 'sources': {1: {}}, }, ) for value in schemas: with pytest.raises(vol.MultipleInvalid): PLATFORM_SCHEMA(value) class TestBlackbirdMediaPlayer(unittest.TestCase): """Test the media_player module.""" def setUp(self): """Set up the test case.""" self.blackbird = MockBlackbird() self.hass = tests.common.get_test_home_assistant() self.hass.start() # Note, source dictionary is unsorted! with mock.patch('pyblackbird.get_blackbird', new=lambda *a: self.blackbird): setup_platform(self.hass, { 'platform': 'blackbird', 'port': '/dev/ttyUSB0', 'zones': {3: {'name': 'Zone name'}}, 'sources': {1: {'name': 'one'}, 3: {'name': 'three'}, 2: {'name': 'two'}}, }, lambda *args, **kwargs: None, {}) self.hass.block_till_done() self.media_player = self.hass.data[DATA_BLACKBIRD]['/dev/ttyUSB0-3'] self.media_player.hass = self.hass self.media_player.entity_id = 'media_player.zone_3' def tearDown(self): """Tear down the test case.""" self.hass.stop() def test_setup_platform(self, *args): """Test setting up platform.""" # One service must be registered assert self.hass.services.has_service(DOMAIN, SERVICE_SETALLZONES) assert len(self.hass.data[DATA_BLACKBIRD]) == 1 assert self.hass.data[DATA_BLACKBIRD]['/dev/ttyUSB0-3'].name == \ 'Zone name' def test_setallzones_service_call_with_entity_id(self): """Test set all zone source service call with entity id.""" self.media_player.update() assert 'Zone name' == self.media_player.name assert STATE_ON == self.media_player.state assert 'one' == self.media_player.source # Call set all zones service self.hass.services.call(DOMAIN, SERVICE_SETALLZONES, {'entity_id': 'media_player.zone_3', 'source': 'three'}, blocking=True) # Check that source was changed assert 3 == self.blackbird.zones[3].av self.media_player.update() assert 'three' == self.media_player.source def test_setallzones_service_call_without_entity_id(self): """Test set all zone source service call without entity id.""" self.media_player.update() assert 'Zone name' == self.media_player.name assert STATE_ON == self.media_player.state assert 'one' == self.media_player.source # Call set all zones service self.hass.services.call(DOMAIN, SERVICE_SETALLZONES, {'source': 'three'}, blocking=True) # Check that source was changed assert 3 == self.blackbird.zones[3].av self.media_player.update() assert 'three' == self.media_player.source def test_update(self): """Test updating values from blackbird.""" assert self.media_player.state is None assert self.media_player.source is None self.media_player.update() assert STATE_ON == self.media_player.state assert 'one' == self.media_player.source def test_name(self): """Test name property.""" assert 'Zone name' == self.media_player.name def test_state(self): """Test state property.""" assert self.media_player.state is None self.media_player.update() assert STATE_ON == self.media_player.state self.blackbird.zones[3].power = False self.media_player.update() assert STATE_OFF == self.media_player.state def test_supported_features(self): """Test supported features property.""" assert SUPPORT_TURN_ON | SUPPORT_TURN_OFF | \ SUPPORT_SELECT_SOURCE == \ self.media_player.supported_features def test_source(self): """Test source property.""" assert self.media_player.source is None self.media_player.update() assert 'one' == self.media_player.source def test_media_title(self): """Test media title property.""" assert self.media_player.media_title is None self.media_player.update() assert 'one' == self.media_player.media_title def test_source_list(self): """Test source list property.""" # Note, the list is sorted! assert ['one', 'two', 'three'] == \ self.media_player.source_list def test_select_source(self): """Test source selection methods.""" self.media_player.update() assert 'one' == self.media_player.source self.media_player.select_source('two') assert 2 == self.blackbird.zones[3].av self.media_player.update() assert 'two' == self.media_player.source # Trying to set unknown source. self.media_player.select_source('no name') assert 2 == self.blackbird.zones[3].av self.media_player.update() assert 'two' == self.media_player.source def test_turn_on(self): """Testing turning on the zone.""" self.blackbird.zones[3].power = False self.media_player.update() assert STATE_OFF == self.media_player.state self.media_player.turn_on() assert self.blackbird.zones[3].power self.media_player.update() assert STATE_ON == self.media_player.state def test_turn_off(self): """Testing turning off the zone.""" self.blackbird.zones[3].power = True self.media_player.update() assert STATE_ON == self.media_player.state self.media_player.turn_off() assert not self.blackbird.zones[3].power self.media_player.update() assert STATE_OFF == self.media_player.state
leekchan/django_test
refs/heads/master
django/contrib/gis/utils/layermapping.py
23
# LayerMapping -- A Django Model/OGR Layer Mapping Utility """ The LayerMapping class provides a way to map the contents of OGR vector files (e.g. SHP files) to Geographic-enabled Django models. For more information, please consult the GeoDjango documentation: http://geodjango.org/docs/layermapping.html """ import sys from decimal import Decimal, InvalidOperation as DecimalInvalidOperation from django.core.exceptions import ObjectDoesNotExist from django.db import connections, router from django.contrib.gis.db.models import GeometryField from django.contrib.gis.gdal import (CoordTransform, DataSource, OGRException, OGRGeometry, OGRGeomType, SpatialReference) from django.contrib.gis.gdal.field import ( OFTDate, OFTDateTime, OFTInteger, OFTReal, OFTString, OFTTime) from django.db import models, transaction from django.utils import six from django.utils.encoding import force_text # LayerMapping exceptions. class LayerMapError(Exception): pass class InvalidString(LayerMapError): pass class InvalidDecimal(LayerMapError): pass class InvalidInteger(LayerMapError): pass class MissingForeignKey(LayerMapError): pass class LayerMapping(object): "A class that maps OGR Layers to GeoDjango Models." # Acceptable 'base' types for a multi-geometry type. MULTI_TYPES = {1: OGRGeomType('MultiPoint'), 2: OGRGeomType('MultiLineString'), 3: OGRGeomType('MultiPolygon'), OGRGeomType('Point25D').num: OGRGeomType('MultiPoint25D'), OGRGeomType('LineString25D').num: OGRGeomType('MultiLineString25D'), OGRGeomType('Polygon25D').num: OGRGeomType('MultiPolygon25D'), } # Acceptable Django field types and corresponding acceptable OGR # counterparts. FIELD_TYPES = { models.AutoField: OFTInteger, models.IntegerField: (OFTInteger, OFTReal, OFTString), models.FloatField: (OFTInteger, OFTReal), models.DateField: OFTDate, models.DateTimeField: OFTDateTime, models.EmailField: OFTString, models.TimeField: OFTTime, models.DecimalField: (OFTInteger, OFTReal), models.CharField: OFTString, models.SlugField: OFTString, models.TextField: OFTString, models.URLField: OFTString, models.BigIntegerField: (OFTInteger, OFTReal, OFTString), models.SmallIntegerField: (OFTInteger, OFTReal, OFTString), models.PositiveSmallIntegerField: (OFTInteger, OFTReal, OFTString), } def __init__(self, model, data, mapping, layer=0, source_srs=None, encoding='utf-8', transaction_mode='commit_on_success', transform=True, unique=None, using=None): """ A LayerMapping object is initialized using the given Model (not an instance), a DataSource (or string path to an OGR-supported data file), and a mapping dictionary. See the module level docstring for more details and keyword argument usage. """ # Getting the DataSource and the associated Layer. if isinstance(data, six.string_types): self.ds = DataSource(data, encoding=encoding) else: self.ds = data self.layer = self.ds[layer] self.using = using if using is not None else router.db_for_write(model) self.spatial_backend = connections[self.using].ops # Setting the mapping & model attributes. self.mapping = mapping self.model = model # Checking the layer -- initialization of the object will fail if # things don't check out before hand. self.check_layer() # Getting the geometry column associated with the model (an # exception will be raised if there is no geometry column). if connections[self.using].features.supports_transform: self.geo_field = self.geometry_field() else: transform = False # Checking the source spatial reference system, and getting # the coordinate transformation object (unless the `transform` # keyword is set to False) if transform: self.source_srs = self.check_srs(source_srs) self.transform = self.coord_transform() else: self.transform = transform # Setting the encoding for OFTString fields, if specified. if encoding: # Making sure the encoding exists, if not a LookupError # exception will be thrown. from codecs import lookup lookup(encoding) self.encoding = encoding else: self.encoding = None if unique: self.check_unique(unique) transaction_mode = 'autocommit' # Has to be set to autocommit. self.unique = unique else: self.unique = None # Setting the transaction decorator with the function in the # transaction modes dictionary. self.transaction_mode = transaction_mode if transaction_mode == 'autocommit': self.transaction_decorator = None elif transaction_mode == 'commit_on_success': self.transaction_decorator = transaction.atomic else: raise LayerMapError('Unrecognized transaction mode: %s' % transaction_mode) #### Checking routines used during initialization #### def check_fid_range(self, fid_range): "This checks the `fid_range` keyword." if fid_range: if isinstance(fid_range, (tuple, list)): return slice(*fid_range) elif isinstance(fid_range, slice): return fid_range else: raise TypeError else: return None def check_layer(self): """ This checks the Layer metadata, and ensures that it is compatible with the mapping information and model. Unlike previous revisions, there is no need to increment through each feature in the Layer. """ # The geometry field of the model is set here. # TODO: Support more than one geometry field / model. However, this # depends on the GDAL Driver in use. self.geom_field = False self.fields = {} # Getting lists of the field names and the field types available in # the OGR Layer. ogr_fields = self.layer.fields ogr_field_types = self.layer.field_types # Function for determining if the OGR mapping field is in the Layer. def check_ogr_fld(ogr_map_fld): try: idx = ogr_fields.index(ogr_map_fld) except ValueError: raise LayerMapError('Given mapping OGR field "%s" not found in OGR Layer.' % ogr_map_fld) return idx # No need to increment through each feature in the model, simply check # the Layer metadata against what was given in the mapping dictionary. for field_name, ogr_name in self.mapping.items(): # Ensuring that a corresponding field exists in the model # for the given field name in the mapping. try: model_field = self.model._meta.get_field(field_name) except models.fields.FieldDoesNotExist: raise LayerMapError('Given mapping field "%s" not in given Model fields.' % field_name) # Getting the string name for the Django field class (e.g., 'PointField'). fld_name = model_field.__class__.__name__ if isinstance(model_field, GeometryField): if self.geom_field: raise LayerMapError('LayerMapping does not support more than one GeometryField per model.') # Getting the coordinate dimension of the geometry field. coord_dim = model_field.dim try: if coord_dim == 3: gtype = OGRGeomType(ogr_name + '25D') else: gtype = OGRGeomType(ogr_name) except OGRException: raise LayerMapError('Invalid mapping for GeometryField "%s".' % field_name) # Making sure that the OGR Layer's Geometry is compatible. ltype = self.layer.geom_type if not (ltype.name.startswith(gtype.name) or self.make_multi(ltype, model_field)): raise LayerMapError('Invalid mapping geometry; model has %s%s, ' 'layer geometry type is %s.' % (fld_name, '(dim=3)' if coord_dim == 3 else '', ltype)) # Setting the `geom_field` attribute w/the name of the model field # that is a Geometry. Also setting the coordinate dimension # attribute. self.geom_field = field_name self.coord_dim = coord_dim fields_val = model_field elif isinstance(model_field, models.ForeignKey): if isinstance(ogr_name, dict): # Is every given related model mapping field in the Layer? rel_model = model_field.rel.to for rel_name, ogr_field in ogr_name.items(): idx = check_ogr_fld(ogr_field) try: rel_model._meta.get_field(rel_name) except models.fields.FieldDoesNotExist: raise LayerMapError('ForeignKey mapping field "%s" not in %s fields.' % (rel_name, rel_model.__class__.__name__)) fields_val = rel_model else: raise TypeError('ForeignKey mapping must be of dictionary type.') else: # Is the model field type supported by LayerMapping? if model_field.__class__ not in self.FIELD_TYPES: raise LayerMapError('Django field type "%s" has no OGR mapping (yet).' % fld_name) # Is the OGR field in the Layer? idx = check_ogr_fld(ogr_name) ogr_field = ogr_field_types[idx] # Can the OGR field type be mapped to the Django field type? if not issubclass(ogr_field, self.FIELD_TYPES[model_field.__class__]): raise LayerMapError('OGR field "%s" (of type %s) cannot be mapped to Django %s.' % (ogr_field, ogr_field.__name__, fld_name)) fields_val = model_field self.fields[field_name] = fields_val def check_srs(self, source_srs): "Checks the compatibility of the given spatial reference object." if isinstance(source_srs, SpatialReference): sr = source_srs elif isinstance(source_srs, self.spatial_backend.spatial_ref_sys()): sr = source_srs.srs elif isinstance(source_srs, (int, six.string_types)): sr = SpatialReference(source_srs) else: # Otherwise just pulling the SpatialReference from the layer sr = self.layer.srs if not sr: raise LayerMapError('No source reference system defined.') else: return sr def check_unique(self, unique): "Checks the `unique` keyword parameter -- may be a sequence or string." if isinstance(unique, (list, tuple)): # List of fields to determine uniqueness with for attr in unique: if attr not in self.mapping: raise ValueError elif isinstance(unique, six.string_types): # Only a single field passed in. if unique not in self.mapping: raise ValueError else: raise TypeError('Unique keyword argument must be set with a tuple, list, or string.') # Keyword argument retrieval routines #### def feature_kwargs(self, feat): """ Given an OGR Feature, this will return a dictionary of keyword arguments for constructing the mapped model. """ # The keyword arguments for model construction. kwargs = {} # Incrementing through each model field and OGR field in the # dictionary mapping. for field_name, ogr_name in self.mapping.items(): model_field = self.fields[field_name] if isinstance(model_field, GeometryField): # Verify OGR geometry. try: val = self.verify_geom(feat.geom, model_field) except OGRException: raise LayerMapError('Could not retrieve geometry from feature.') elif isinstance(model_field, models.base.ModelBase): # The related _model_, not a field was passed in -- indicating # another mapping for the related Model. val = self.verify_fk(feat, model_field, ogr_name) else: # Otherwise, verify OGR Field type. val = self.verify_ogr_field(feat[ogr_name], model_field) # Setting the keyword arguments for the field name with the # value obtained above. kwargs[field_name] = val return kwargs def unique_kwargs(self, kwargs): """ Given the feature keyword arguments (from `feature_kwargs`) this routine will construct and return the uniqueness keyword arguments -- a subset of the feature kwargs. """ if isinstance(self.unique, six.string_types): return {self.unique: kwargs[self.unique]} else: return dict((fld, kwargs[fld]) for fld in self.unique) #### Verification routines used in constructing model keyword arguments. #### def verify_ogr_field(self, ogr_field, model_field): """ Verifies if the OGR Field contents are acceptable to the Django model field. If they are, the verified value is returned, otherwise the proper exception is raised. """ if (isinstance(ogr_field, OFTString) and isinstance(model_field, (models.CharField, models.TextField))): if self.encoding: # The encoding for OGR data sources may be specified here # (e.g., 'cp437' for Census Bureau boundary files). val = force_text(ogr_field.value, self.encoding) else: val = ogr_field.value if model_field.max_length and len(val) > model_field.max_length: raise InvalidString('%s model field maximum string length is %s, given %s characters.' % (model_field.name, model_field.max_length, len(val))) elif isinstance(ogr_field, OFTReal) and isinstance(model_field, models.DecimalField): try: # Creating an instance of the Decimal value to use. d = Decimal(str(ogr_field.value)) except DecimalInvalidOperation: raise InvalidDecimal('Could not construct decimal from: %s' % ogr_field.value) # Getting the decimal value as a tuple. dtup = d.as_tuple() digits = dtup[1] d_idx = dtup[2] # index where the decimal is # Maximum amount of precision, or digits to the left of the decimal. max_prec = model_field.max_digits - model_field.decimal_places # Getting the digits to the left of the decimal place for the # given decimal. if d_idx < 0: n_prec = len(digits[:d_idx]) else: n_prec = len(digits) + d_idx # If we have more than the maximum digits allowed, then throw an # InvalidDecimal exception. if n_prec > max_prec: raise InvalidDecimal( 'A DecimalField with max_digits %d, decimal_places %d must ' 'round to an absolute value less than 10^%d.' % (model_field.max_digits, model_field.decimal_places, max_prec) ) val = d elif isinstance(ogr_field, (OFTReal, OFTString)) and isinstance(model_field, models.IntegerField): # Attempt to convert any OFTReal and OFTString value to an OFTInteger. try: val = int(ogr_field.value) except ValueError: raise InvalidInteger('Could not construct integer from: %s' % ogr_field.value) else: val = ogr_field.value return val def verify_fk(self, feat, rel_model, rel_mapping): """ Given an OGR Feature, the related model and its dictionary mapping, this routine will retrieve the related model for the ForeignKey mapping. """ # TODO: It is expensive to retrieve a model for every record -- # explore if an efficient mechanism exists for caching related # ForeignKey models. # Constructing and verifying the related model keyword arguments. fk_kwargs = {} for field_name, ogr_name in rel_mapping.items(): fk_kwargs[field_name] = self.verify_ogr_field(feat[ogr_name], rel_model._meta.get_field(field_name)) # Attempting to retrieve and return the related model. try: return rel_model.objects.using(self.using).get(**fk_kwargs) except ObjectDoesNotExist: raise MissingForeignKey( 'No ForeignKey %s model found with keyword arguments: %s' % (rel_model.__name__, fk_kwargs) ) def verify_geom(self, geom, model_field): """ Verifies the geometry -- will construct and return a GeometryCollection if necessary (for example if the model field is MultiPolygonField while the mapped shapefile only contains Polygons). """ # Downgrade a 3D geom to a 2D one, if necessary. if self.coord_dim != geom.coord_dim: geom.coord_dim = self.coord_dim if self.make_multi(geom.geom_type, model_field): # Constructing a multi-geometry type to contain the single geometry multi_type = self.MULTI_TYPES[geom.geom_type.num] g = OGRGeometry(multi_type) g.add(geom) else: g = geom # Transforming the geometry with our Coordinate Transformation object, # but only if the class variable `transform` is set w/a CoordTransform # object. if self.transform: g.transform(self.transform) # Returning the WKT of the geometry. return g.wkt #### Other model methods #### def coord_transform(self): "Returns the coordinate transformation object." SpatialRefSys = self.spatial_backend.spatial_ref_sys() try: # Getting the target spatial reference system target_srs = SpatialRefSys.objects.using(self.using).get(srid=self.geo_field.srid).srs # Creating the CoordTransform object return CoordTransform(self.source_srs, target_srs) except Exception as msg: new_msg = 'Could not translate between the data source and model geometry: %s' % msg six.reraise(LayerMapError, LayerMapError(new_msg), sys.exc_info()[2]) def geometry_field(self): "Returns the GeometryField instance associated with the geographic column." # Use the `get_field_by_name` on the model's options so that we # get the correct field instance if there's model inheritance. opts = self.model._meta fld, model, direct, m2m = opts.get_field_by_name(self.geom_field) return fld def make_multi(self, geom_type, model_field): """ Given the OGRGeomType for a geometry and its associated GeometryField, determine whether the geometry should be turned into a GeometryCollection. """ return (geom_type.num in self.MULTI_TYPES and model_field.__class__.__name__ == 'Multi%s' % geom_type.django) def save(self, verbose=False, fid_range=False, step=False, progress=False, silent=False, stream=sys.stdout, strict=False): """ Saves the contents from the OGR DataSource Layer into the database according to the mapping dictionary given at initialization. Keyword Parameters: verbose: If set, information will be printed subsequent to each model save executed on the database. fid_range: May be set with a slice or tuple of (begin, end) feature ID's to map from the data source. In other words, this keyword enables the user to selectively import a subset range of features in the geographic data source. step: If set with an integer, transactions will occur at every step interval. For example, if step=1000, a commit would occur after the 1,000th feature, the 2,000th feature etc. progress: When this keyword is set, status information will be printed giving the number of features processed and successfully saved. By default, progress information will pe printed every 1000 features processed, however, this default may be overridden by setting this keyword with an integer for the desired interval. stream: Status information will be written to this file handle. Defaults to using `sys.stdout`, but any object with a `write` method is supported. silent: By default, non-fatal error notifications are printed to stdout, but this keyword may be set to disable these notifications. strict: Execution of the model mapping will cease upon the first error encountered. The default behavior is to attempt to continue. """ # Getting the default Feature ID range. default_range = self.check_fid_range(fid_range) # Setting the progress interval, if requested. if progress: if progress is True or not isinstance(progress, int): progress_interval = 1000 else: progress_interval = progress def _save(feat_range=default_range, num_feat=0, num_saved=0): if feat_range: layer_iter = self.layer[feat_range] else: layer_iter = self.layer for feat in layer_iter: num_feat += 1 # Getting the keyword arguments try: kwargs = self.feature_kwargs(feat) except LayerMapError as msg: # Something borked the validation if strict: raise elif not silent: stream.write('Ignoring Feature ID %s because: %s\n' % (feat.fid, msg)) else: # Constructing the model using the keyword args is_update = False if self.unique: # If we want unique models on a particular field, handle the # geometry appropriately. try: # Getting the keyword arguments and retrieving # the unique model. u_kwargs = self.unique_kwargs(kwargs) m = self.model.objects.using(self.using).get(**u_kwargs) is_update = True # Getting the geometry (in OGR form), creating # one from the kwargs WKT, adding in additional # geometries, and update the attribute with the # just-updated geometry WKT. geom = getattr(m, self.geom_field).ogr new = OGRGeometry(kwargs[self.geom_field]) for g in new: geom.add(g) setattr(m, self.geom_field, geom.wkt) except ObjectDoesNotExist: # No unique model exists yet, create. m = self.model(**kwargs) else: m = self.model(**kwargs) try: # Attempting to save. m.save(using=self.using) num_saved += 1 if verbose: stream.write('%s: %s\n' % ('Updated' if is_update else 'Saved', m)) except Exception as msg: if strict: # Bailing out if the `strict` keyword is set. if not silent: stream.write( 'Failed to save the feature (id: %s) into the ' 'model with the keyword arguments:\n' % feat.fid ) stream.write('%s\n' % kwargs) raise elif not silent: stream.write('Failed to save %s:\n %s\nContinuing\n' % (kwargs, msg)) # Printing progress information, if requested. if progress and num_feat % progress_interval == 0: stream.write('Processed %d features, saved %d ...\n' % (num_feat, num_saved)) # Only used for status output purposes -- incremental saving uses the # values returned here. return num_saved, num_feat if self.transaction_decorator is not None: _save = self.transaction_decorator(_save) nfeat = self.layer.num_feat if step and isinstance(step, int) and step < nfeat: # Incremental saving is requested at the given interval (step) if default_range: raise LayerMapError('The `step` keyword may not be used in conjunction with the `fid_range` keyword.') beg, num_feat, num_saved = (0, 0, 0) indices = range(step, nfeat, step) n_i = len(indices) for i, end in enumerate(indices): # Constructing the slice to use for this step; the last slice is # special (e.g, [100:] instead of [90:100]). if i + 1 == n_i: step_slice = slice(beg, None) else: step_slice = slice(beg, end) try: num_feat, num_saved = _save(step_slice, num_feat, num_saved) beg = end except: # Deliberately catch everything stream.write('%s\nFailed to save slice: %s\n' % ('=-' * 20, step_slice)) raise else: # Otherwise, just calling the previously defined _save() function. _save()
csieg/ardupilot
refs/heads/master
Tools/mavproxy_modules/lib/geodesic_grid.py
108
# Copyright (C) 2016 Intel Corporation. All rights reserved. # # This file is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This file is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see <http://www.gnu.org/licenses/>. ''' This module takes libraries/AP_Math/AP_GeodesicGrid.h reference for defining the geodesic sections. ''' import math from scipy.constants import golden as g _first_half = ( ((-g, 1, 0), (-1, 0,-g), (-g,-1, 0)), ((-1, 0,-g), (-g,-1, 0), ( 0,-g,-1)), ((-g,-1, 0), ( 0,-g,-1), ( 0,-g, 1)), ((-1, 0,-g), ( 0,-g,-1), ( 1, 0,-g)), (( 0,-g,-1), ( 0,-g, 1), ( g,-1, 0)), (( 0,-g,-1), ( 1, 0,-g), ( g,-1, 0)), (( g,-1, 0), ( 1, 0,-g), ( g, 1, 0)), (( 1, 0,-g), ( g, 1, 0), ( 0, g,-1)), (( 1, 0,-g), ( 0, g,-1), (-1, 0,-g)), (( 0, g,-1), (-g, 1, 0), (-1, 0,-g)), ) _second_half = tuple( ((-xa, -ya, -za), (-xb, -yb, -zb), (-xc, -yc, -zc)) for (xa, ya, za), (xb, yb, zb), (xc, yc, zc) in _first_half ) triangles = _first_half + _second_half def _midpoint_projection(a, b): xa, ya, za = a xb, yb, zb = b s = _midpoint_projection.scale return s * (xa + xb), s * (ya + yb), s * (za + zb) radius = math.sqrt(1 + g**2) # radius / (length of two vertices of an icosahedron triangle) _midpoint_projection.scale = radius / (2 * g) sections_triangles = () for a, b, c in triangles: ma = _midpoint_projection(a, b) mb = _midpoint_projection(b, c) mc = _midpoint_projection(c, a) sections_triangles += ( (ma, mb, mc), ( a, ma, mc), (ma, b, mb), (mc, mb, c), )
tixxdz/ahaggar
refs/heads/master
scripts/pahaggar/gcc.py
1
"""GCC Utils.""" # # Copyright (C) 2012-2013 Djalal Harouni <tixxdz@opendz.org> # Copyright (C) 2012-2013 LIRE Laboratory. # University Constantine 2, Algeria. # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; version 2 # of the License. # from pahaggar import gcc_tree from pahaggar.gcc_tree import TREE gtree = gcc_tree OP_SYMBOL = { gtree.MODIFY_EXPR: "=", gtree.TRUTH_OR_EXPR: "||", gtree.TRUTH_ORIF_EXPR: "||", gtree.TRUTH_AND_EXPR: "&&", gtree.TRUTH_ANDIF_EXPR: "&&", gtree.BIT_IOR_EXPR: "|", gtree.TRUTH_XOR_EXPR: "^", gtree.BIT_XOR_EXPR: "^", gtree.ADDR_EXPR: "&", gtree.BIT_AND_EXPR: "&", gtree.ORDERED_EXPR: "ord", gtree.UNORDERED_EXPR: "unord", gtree.EQ_EXPR: "==", gtree.UNEQ_EXPR: "u==", gtree.NE_EXPR: "!=", gtree.LT_EXPR: "<", gtree.UNLT_EXPR: "u<", gtree.LE_EXPR: "<=", gtree.UNLE_EXPR: "u<=", gtree.GT_EXPR: ">", gtree.UNGT_EXPR: "u>", gtree.GE_EXPR: ">=", gtree.UNGE_EXPR: "u>=", gtree.LTGT_EXPR: "<>", gtree.LSHIFT_EXPR: "<<", gtree.RSHIFT_EXPR: ">>", gtree.LROTATE_EXPR: "r<<", gtree.RROTATE_EXPR: "r>>", gtree.VEC_LSHIFT_EXPR: "v<<", gtree.VEC_RSHIFT_EXPR: "v>>", gtree.WIDEN_LSHIFT_EXPR: "w<<", gtree.POINTER_PLUS_EXPR: "+", gtree.PLUS_EXPR: "+", gtree.REDUC_PLUS_EXPR: "r+", gtree.WIDEN_SUM_EXPR: "w+", gtree.WIDEN_MULT_EXPR: "w*", gtree.MULT_HIGHPART_EXPR: "h*", gtree.NEGATE_EXPR: "-", gtree.MINUS_EXPR: "-", gtree.BIT_NOT_EXPR: "~", gtree.TRUTH_NOT_EXPR: "!", gtree.MULT_EXPR: "*", gtree.INDIRECT_REF: "*", gtree.TRUNC_DIV_EXPR: "/", gtree.RDIV_EXPR: "/", gtree.CEIL_DIV_EXPR: "/[cl]", gtree.FLOOR_DIV_EXPR: "/[fl]", gtree.ROUND_DIV_EXPR: "/[rd]", gtree.EXACT_DIV_EXPR: "/[ex]", gtree.TRUNC_MOD_EXPR: "%", gtree.CEIL_MOD_EXPR: "%[cl]", gtree.FLOOR_MOD_EXPR: "%[fl]", gtree.ROUND_MOD_EXPR: "%[rd]", gtree.PREDECREMENT_EXPR: " --", gtree.PREINCREMENT_EXPR: " ++", gtree.POSTDECREMENT_EXPR: "-- ", gtree.POSTINCREMENT_EXPR: "++ ", gtree.MAX_EXPR: "max", gtree.MIN_EXPR: "min", } def op_symbol(code): if is_code_valid_gcc_tree(code): idx = TREE[code] if idx in OP_SYMBOL: return OP_SYMBOL[idx] return "" def get_op_operands(operations): results = [] return results def is_error_mark(code): return TREE[code] == gtree.ERROR_MARK def is_identifier_node(code): return TREE[code] == gtree.IDENTIFIER_NODE def is_tree_list(code): return TREE[code] == gtree.TREE_LIST def is_tree_binfo(code): return TREE[code] == gtree.TREE_BINFO def is_tree_vec(code): return TREE[code] == gtree.TREE_VEC def is_block(code): return TREE[code] == gtree.BLOCK def is_void_type(code): return TREE[code] == gtree.VOID_TYPE def is_integer_type(code): return TREE[code] == gtree.INTEGER_TYPE def is_real_type(code): return TREE[code] == gtree.REAL_TYPE def is_fixed_point_type(code): return TREE[code] == gtree.FIXED_POINT_TYPE def is_complex_type(code): return TREE[code] == gtree.COMPLEX_TYPE def is_vector_type(code): return TREE[code] == gtree.VECTOR_TYPE def is_enumeral_type(code): return TREE[code] == gtree.ENUMERAL_TYPE def is_boolean_type(code): return TREE[code] == gtree.BOOLEAN_TYPE def is_pointer_type(code): return TREE[code] == gtree.POINTER_TYPE def is_reference_type(code): return TREE[code] == gtree.REFERENCE_TYPE def is_offset_type(code): return TREE[code] == gtree.OFFSET_TYPE def is_mem_ref(code): return TREE[code] == gtree.MEM_REF def is_target_mem_ref(code): return TREE[code] == gtree.TARGET_MEM_REF def is_array_type(code): return TREE[code] == gtree.ARRAY_TYPE def is_record_type(code): return TREE[code] == gtree.RECORD_TYPE def is_union_type(code): return TREE[code] == gtree.UNION_TYPE def is_qual_union_type(code): return TREE[code] == gtree.QUAL_UNION_TYPE def is_lang_type(code): return TREE[code] == gtree.LANG_TYPE def is_statement_list(code): return TREE[code] == gtree.STATEMENT_LIST def is_integer_cst(code): return TREE[code] == gtree.INTEGER_CST def is_real_cst(code): return TREE[code] == gtree.REAL_CST def is_fixed_cst(code): return TREE[code] == gtree.FIXED_CST def is_complex_cst(code): return TREE[code] == gtree.COMPLEX_CST def is_string_cst(code): return TREE[code] == gtree.STRING_CST def is_vector_cst(code): return TREE[code] == gtree.VECTOR_CST def is_function_type(code): return TREE[code] == gtree.FUNCTION_TYPE def is_methode_type(code): return TREE[code] == gtree.METHODE_TYPE def is_function_decl(code): return TREE[code] == gtree.FUNCTION_DECL def is_const_decl(code): return TREE[code] == gtree.CONST_DECL def is_label_decl(code): return TREE[code] == gtree.LABEL_DECL def is_result_decl(code): return TREE[code] == gtree.RESULT_DECL def is_type_decl(code): return TREE[code] == gtree.TYPE_DECL def is_var_decl(code): return TREE[code] == gtree.VAR_DECL def is_parm_decl(code): return TREE[code] == gtree.PARM_DECL def is_debug_expr_decl(code): return TREE[code] == gtree.DEBUG_EXPR_DECL def is_namespace_decl(code): return TREE[code] == gtree.NAMESPACE_DECL def is_field_decl(code): return TREE[code] == gtree.FIELD_DECL def is_component_ref(code): return TREE[code] == gtree.COMPONENT_REF def is_bit_field_ref(code): return TREE[code] == gtree.BIT_FIELD_REF def is_array_ref(code): return TREE[code] == gtree.ARRAY_REF def is_array_range_ref(code): return TREE[code] == gtree.ARRAY_RANGE_REF # TODO: continue def is_aggr_init_expr(code): return TREE[code] == gtree.AGGR_INIT_EXPR def is_call_expr(code): return TREE[code] == gtree.CALL_EXPR def is_code_valid_gcc_tree(code): return code in TREE # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4
bovesan/mistika-hyperspeed
refs/heads/master
Afterscripts/Rewrap-to-mov/rewrap-to-mov.py
1
#!/usr/bin/env python # -*- coding: utf-8 -*- import hyperspeed.afterscript title = 'Rewrap to mov' cmd = '-vcodec copy -acodec copy' # Path relative to primary output folder of render: # default_output = '[project]_[render_name].[codec].mov' # Absolute path: default_output = '/Volumes/SAN3/Masters/[project]/[project]_[rendername]/[project]_[rendername].[codec].mov' hyperspeed.afterscript.AfterscriptFfmpeg(__file__, cmd, default_output, title) hyperspeed.afterscript.gtk.main()
QuLogic/meson
refs/heads/master
mesonbuild/mesonlib/__init__.py
2
# SPDX-license-identifier: Apache-2.0 # Copyright 2012-2021 The Meson development team # Copyright © 2021 Intel Corporation # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions and classes.""" import os from .universal import * # Here we import either the posix implementations, the windows implementations, # or a generic no-op implementation if os.name == 'posix': from .posix import * elif os.name == 'nt': from .win32 import * else: from .platform import *
repotvsupertuga/tvsupertuga.repository
refs/heads/master
script.module.schism.common/lib/requests/packages/chardet/utf8prober.py
2918
######################## BEGIN LICENSE BLOCK ######################## # The Original Code is mozilla.org code. # # The Initial Developer of the Original Code is # Netscape Communications Corporation. # Portions created by the Initial Developer are Copyright (C) 1998 # the Initial Developer. All Rights Reserved. # # Contributor(s): # Mark Pilgrim - port to Python # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA # 02110-1301 USA ######################### END LICENSE BLOCK ######################### from . import constants from .charsetprober import CharSetProber from .codingstatemachine import CodingStateMachine from .mbcssm import UTF8SMModel ONE_CHAR_PROB = 0.5 class UTF8Prober(CharSetProber): def __init__(self): CharSetProber.__init__(self) self._mCodingSM = CodingStateMachine(UTF8SMModel) self.reset() def reset(self): CharSetProber.reset(self) self._mCodingSM.reset() self._mNumOfMBChar = 0 def get_charset_name(self): return "utf-8" def feed(self, aBuf): for c in aBuf: codingState = self._mCodingSM.next_state(c) if codingState == constants.eError: self._mState = constants.eNotMe break elif codingState == constants.eItsMe: self._mState = constants.eFoundIt break elif codingState == constants.eStart: if self._mCodingSM.get_current_charlen() >= 2: self._mNumOfMBChar += 1 if self.get_state() == constants.eDetecting: if self.get_confidence() > constants.SHORTCUT_THRESHOLD: self._mState = constants.eFoundIt return self.get_state() def get_confidence(self): unlike = 0.99 if self._mNumOfMBChar < 6: for i in range(0, self._mNumOfMBChar): unlike = unlike * ONE_CHAR_PROB return 1.0 - unlike else: return unlike
mengxn/tensorflow
refs/heads/master
tensorflow/python/ops/check_ops.py
9
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=g-short-docstring-punctuation """Asserts and Boolean Checks. See the @{$python/check_ops} guide. @@assert_negative @@assert_positive @@assert_non_negative @@assert_non_positive @@assert_equal @@assert_none_equal @@assert_less @@assert_less_equal @@assert_greater @@assert_greater_equal @@assert_rank @@assert_rank_at_least @@assert_type @@assert_integer @@assert_proper_iterable @@assert_same_float_dtype @@assert_scalar @@is_non_decreasing @@is_numeric_tensor @@is_strictly_increasing """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.util import compat NUMERIC_TYPES = frozenset( [dtypes.float32, dtypes.float64, dtypes.int8, dtypes.int16, dtypes.int32, dtypes.int64, dtypes.uint8, dtypes.qint8, dtypes.qint32, dtypes.quint8, dtypes.complex64]) __all__ = [ 'assert_negative', 'assert_positive', 'assert_proper_iterable', 'assert_non_negative', 'assert_non_positive', 'assert_equal', 'assert_none_equal', 'assert_integer', 'assert_less', 'assert_less_equal', 'assert_greater', 'assert_greater_equal', 'assert_rank', 'assert_rank_at_least', 'assert_rank_in', 'assert_same_float_dtype', 'assert_scalar', 'assert_type', 'is_non_decreasing', 'is_numeric_tensor', 'is_strictly_increasing', ] def assert_proper_iterable(values): """Static assert that values is a "proper" iterable. `Ops` that expect iterables of `Tensor` can call this to validate input. Useful since `Tensor`, `ndarray`, byte/text type are all iterables themselves. Args: values: Object to be checked. Raises: TypeError: If `values` is not iterable or is one of `Tensor`, `SparseTensor`, `np.array`, `tf.compat.bytes_or_text_types`. """ unintentional_iterables = ( (ops.Tensor, sparse_tensor.SparseTensor, np.ndarray) + compat.bytes_or_text_types ) if isinstance(values, unintentional_iterables): raise TypeError( 'Expected argument "values" to be a "proper" iterable. Found: %s' % type(values)) if not hasattr(values, '__iter__'): raise TypeError( 'Expected argument "values" to be iterable. Found: %s' % type(values)) def assert_negative(x, data=None, summarize=None, message=None, name=None): """Assert the condition `x < 0` holds element-wise. Example of adding a dependency to an operation: ```python with tf.control_dependencies([tf.assert_negative(x)]): output = tf.reduce_sum(x) ``` Negative means, for every element `x[i]` of `x`, we have `x[i] < 0`. If `x` is empty this is trivially satisfied. Args: x: Numeric `Tensor`. data: The tensors to print out if the condition is False. Defaults to error message and first few entries of `x`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. name: A name for this operation (optional). Defaults to "assert_negative". Returns: Op raising `InvalidArgumentError` unless `x` is all negative. """ message = message or '' with ops.name_scope(name, 'assert_negative', [x, data]): x = ops.convert_to_tensor(x, name='x') if data is None: data = [ message, 'Condition x < 0 did not hold element-wise: x = ', x.name, x] zero = ops.convert_to_tensor(0, dtype=x.dtype) return assert_less(x, zero, data=data, summarize=summarize) def assert_positive(x, data=None, summarize=None, message=None, name=None): """Assert the condition `x > 0` holds element-wise. Example of adding a dependency to an operation: ```python with tf.control_dependencies([tf.assert_positive(x)]): output = tf.reduce_sum(x) ``` Positive means, for every element `x[i]` of `x`, we have `x[i] > 0`. If `x` is empty this is trivially satisfied. Args: x: Numeric `Tensor`. data: The tensors to print out if the condition is False. Defaults to error message and first few entries of `x`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. name: A name for this operation (optional). Defaults to "assert_positive". Returns: Op raising `InvalidArgumentError` unless `x` is all positive. """ message = message or '' with ops.name_scope(name, 'assert_positive', [x, data]): x = ops.convert_to_tensor(x, name='x') if data is None: data = [ message, 'Condition x > 0 did not hold element-wise: x = ', x.name, x] zero = ops.convert_to_tensor(0, dtype=x.dtype) return assert_less(zero, x, data=data, summarize=summarize) def assert_non_negative(x, data=None, summarize=None, message=None, name=None): """Assert the condition `x >= 0` holds element-wise. Example of adding a dependency to an operation: ```python with tf.control_dependencies([tf.assert_non_negative(x)]): output = tf.reduce_sum(x) ``` Non-negative means, for every element `x[i]` of `x`, we have `x[i] >= 0`. If `x` is empty this is trivially satisfied. Args: x: Numeric `Tensor`. data: The tensors to print out if the condition is False. Defaults to error message and first few entries of `x`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. name: A name for this operation (optional). Defaults to "assert_non_negative". Returns: Op raising `InvalidArgumentError` unless `x` is all non-negative. """ message = message or '' with ops.name_scope(name, 'assert_non_negative', [x, data]): x = ops.convert_to_tensor(x, name='x') if data is None: data = [ message, 'Condition x >= 0 did not hold element-wise: x = ', x.name, x] zero = ops.convert_to_tensor(0, dtype=x.dtype) return assert_less_equal(zero, x, data=data, summarize=summarize) def assert_non_positive(x, data=None, summarize=None, message=None, name=None): """Assert the condition `x <= 0` holds element-wise. Example of adding a dependency to an operation: ```python with tf.control_dependencies([tf.assert_non_positive(x)]): output = tf.reduce_sum(x) ``` Non-positive means, for every element `x[i]` of `x`, we have `x[i] <= 0`. If `x` is empty this is trivially satisfied. Args: x: Numeric `Tensor`. data: The tensors to print out if the condition is False. Defaults to error message and first few entries of `x`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. name: A name for this operation (optional). Defaults to "assert_non_positive". Returns: Op raising `InvalidArgumentError` unless `x` is all non-positive. """ message = message or '' with ops.name_scope(name, 'assert_non_positive', [x, data]): x = ops.convert_to_tensor(x, name='x') if data is None: data = [ message, 'Condition x <= 0 did not hold element-wise: x = ', x.name, x] zero = ops.convert_to_tensor(0, dtype=x.dtype) return assert_less_equal(x, zero, data=data, summarize=summarize) def assert_equal(x, y, data=None, summarize=None, message=None, name=None): """Assert the condition `x == y` holds element-wise. Example of adding a dependency to an operation: ```python with tf.control_dependencies([tf.assert_equal(x, y)]): output = tf.reduce_sum(x) ``` This condition holds if for every pair of (possibly broadcast) elements `x[i]`, `y[i]`, we have `x[i] == y[i]`. If both `x` and `y` are empty, this is trivially satisfied. Args: x: Numeric `Tensor`. y: Numeric `Tensor`, same dtype as and broadcastable to `x`. data: The tensors to print out if the condition is False. Defaults to error message and first few entries of `x`, `y`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. name: A name for this operation (optional). Defaults to "assert_equal". Returns: Op that raises `InvalidArgumentError` if `x == y` is False. """ message = message or '' with ops.name_scope(name, 'assert_equal', [x, y, data]): x = ops.convert_to_tensor(x, name='x') y = ops.convert_to_tensor(y, name='y') if data is None: data = [ message, 'Condition x == y did not hold element-wise: x = ', x.name, x, 'y = ', y.name, y ] condition = math_ops.reduce_all(math_ops.equal(x, y)) return control_flow_ops.Assert(condition, data, summarize=summarize) def assert_none_equal( x, y, data=None, summarize=None, message=None, name=None): """Assert the condition `x != y` holds for all elements. Example of adding a dependency to an operation: ```python with tf.control_dependencies([tf.assert_none_equal(x, y)]): output = tf.reduce_sum(x) ``` This condition holds if for every pair of (possibly broadcast) elements `x[i]`, `y[i]`, we have `x[i] != y[i]`. If both `x` and `y` are empty, this is trivially satisfied. Args: x: Numeric `Tensor`. y: Numeric `Tensor`, same dtype as and broadcastable to `x`. data: The tensors to print out if the condition is False. Defaults to error message and first few entries of `x`, `y`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. name: A name for this operation (optional). Defaults to "assert_none_equal". Returns: Op that raises `InvalidArgumentError` if `x != y` is ever False. """ message = message or '' with ops.name_scope(name, 'assert_none_equal', [x, y, data]): x = ops.convert_to_tensor(x, name='x') y = ops.convert_to_tensor(y, name='y') if data is None: data = [ message, 'Condition x != y did not hold for every single element: x = ', x.name, x, 'y = ', y.name, y ] condition = math_ops.reduce_all(math_ops.not_equal(x, y)) return control_flow_ops.Assert(condition, data, summarize=summarize) def assert_less(x, y, data=None, summarize=None, message=None, name=None): """Assert the condition `x < y` holds element-wise. Example of adding a dependency to an operation: ```python with tf.control_dependencies([tf.assert_less(x, y)]): output = tf.reduce_sum(x) ``` This condition holds if for every pair of (possibly broadcast) elements `x[i]`, `y[i]`, we have `x[i] < y[i]`. If both `x` and `y` are empty, this is trivially satisfied. Args: x: Numeric `Tensor`. y: Numeric `Tensor`, same dtype as and broadcastable to `x`. data: The tensors to print out if the condition is False. Defaults to error message and first few entries of `x`, `y`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. name: A name for this operation (optional). Defaults to "assert_less". Returns: Op that raises `InvalidArgumentError` if `x < y` is False. """ message = message or '' with ops.name_scope(name, 'assert_less', [x, y, data]): x = ops.convert_to_tensor(x, name='x') y = ops.convert_to_tensor(y, name='y') if data is None: data = [ message, 'Condition x < y did not hold element-wise: x = ', x.name, x, 'y = ', y.name, y ] condition = math_ops.reduce_all(math_ops.less(x, y)) return control_flow_ops.Assert(condition, data, summarize=summarize) def assert_less_equal(x, y, data=None, summarize=None, message=None, name=None): """Assert the condition `x <= y` holds element-wise. Example of adding a dependency to an operation: ```python with tf.control_dependencies([tf.assert_less_equal(x, y)]): output = tf.reduce_sum(x) ``` This condition holds if for every pair of (possibly broadcast) elements `x[i]`, `y[i]`, we have `x[i] <= y[i]`. If both `x` and `y` are empty, this is trivially satisfied. Args: x: Numeric `Tensor`. y: Numeric `Tensor`, same dtype as and broadcastable to `x`. data: The tensors to print out if the condition is False. Defaults to error message and first few entries of `x`, `y`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. name: A name for this operation (optional). Defaults to "assert_less_equal" Returns: Op that raises `InvalidArgumentError` if `x <= y` is False. """ message = message or '' with ops.name_scope(name, 'assert_less_equal', [x, y, data]): x = ops.convert_to_tensor(x, name='x') y = ops.convert_to_tensor(y, name='y') if data is None: data = [ message, 'Condition x <= y did not hold element-wise: x = ', x.name, x, 'y = ', y.name, y ] condition = math_ops.reduce_all(math_ops.less_equal(x, y)) return control_flow_ops.Assert(condition, data, summarize=summarize) def assert_greater(x, y, data=None, summarize=None, message=None, name=None): """Assert the condition `x > y` holds element-wise. Example of adding a dependency to an operation: ```python with tf.control_dependencies([tf.assert_greater(x, y)]): output = tf.reduce_sum(x) ``` This condition holds if for every pair of (possibly broadcast) elements `x[i]`, `y[i]`, we have `x[i] > y[i]`. If both `x` and `y` are empty, this is trivially satisfied. Args: x: Numeric `Tensor`. y: Numeric `Tensor`, same dtype as and broadcastable to `x`. data: The tensors to print out if the condition is False. Defaults to error message and first few entries of `x`, `y`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. name: A name for this operation (optional). Defaults to "assert_greater". Returns: Op that raises `InvalidArgumentError` if `x > y` is False. """ message = message or '' with ops.name_scope(name, 'assert_greater', [x, y, data]): x = ops.convert_to_tensor(x, name='x') y = ops.convert_to_tensor(y, name='y') if data is None: data = [ message, 'Condition x > y did not hold element-wise: x = ', x.name, x, 'y = ', y.name, y ] condition = math_ops.reduce_all(math_ops.greater(x, y)) return control_flow_ops.Assert(condition, data, summarize=summarize) def assert_greater_equal(x, y, data=None, summarize=None, message=None, name=None): """Assert the condition `x >= y` holds element-wise. Example of adding a dependency to an operation: ```python with tf.control_dependencies([tf.assert_greater_equal(x, y)]): output = tf.reduce_sum(x) ``` This condition holds if for every pair of (possibly broadcast) elements `x[i]`, `y[i]`, we have `x[i] >= y[i]`. If both `x` and `y` are empty, this is trivially satisfied. Args: x: Numeric `Tensor`. y: Numeric `Tensor`, same dtype as and broadcastable to `x`. data: The tensors to print out if the condition is False. Defaults to error message and first few entries of `x`, `y`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. name: A name for this operation (optional). Defaults to "assert_greater_equal" Returns: Op that raises `InvalidArgumentError` if `x >= y` is False. """ message = message or '' with ops.name_scope(name, 'assert_greater_equal', [x, y, data]): x = ops.convert_to_tensor(x, name='x') y = ops.convert_to_tensor(y, name='y') if data is None: data = [ message, 'Condition x >= y did not hold element-wise: x = ', x.name, x, 'y = ', y.name, y ] condition = math_ops.reduce_all(math_ops.greater_equal(x, y)) return control_flow_ops.Assert(condition, data, summarize=summarize) def _assert_rank_condition( x, rank, static_condition, dynamic_condition, data, summarize): """Assert `x` has a rank that satisfies a given condition. Args: x: Numeric `Tensor`. rank: Scalar `Tensor`. static_condition: A python function that takes `[actual_rank, given_rank]` and returns `True` if the condition is satisfied, `False` otherwise. dynamic_condition: An `op` that takes [actual_rank, given_rank] and return `True` if the condition is satisfied, `False` otherwise. data: The tensors to print out if the condition is false. Defaults to error message and first few entries of `x`. summarize: Print this many entries of each tensor. Returns: Op raising `InvalidArgumentError` if `x` fails dynamic_condition. Raises: ValueError: If static checks determine `x` fails static_condition. """ assert_type(rank, dtypes.int32) # Attempt to statically defined rank. rank_static = tensor_util.constant_value(rank) if rank_static is not None: if rank_static.ndim != 0: raise ValueError('Rank must be a scalar.') x_rank_static = x.get_shape().ndims if x_rank_static is not None: if not static_condition(x_rank_static, rank_static): raise ValueError( 'Static rank condition failed', x_rank_static, rank_static) return control_flow_ops.no_op(name='static_checks_determined_all_ok') condition = dynamic_condition(array_ops.rank(x), rank) # Add the condition that `rank` must have rank zero. Prevents the bug where # someone does assert_rank(x, [n]), rather than assert_rank(x, n). if rank_static is None: this_data = ['Rank must be a scalar. Received rank: ', rank] rank_check = assert_rank(rank, 0, data=this_data) condition = control_flow_ops.with_dependencies([rank_check], condition) return control_flow_ops.Assert(condition, data, summarize=summarize) def assert_rank(x, rank, data=None, summarize=None, message=None, name=None): """Assert `x` has rank equal to `rank`. Example of adding a dependency to an operation: ```python with tf.control_dependencies([tf.assert_rank(x, 2)]): output = tf.reduce_sum(x) ``` Args: x: Numeric `Tensor`. rank: Scalar integer `Tensor`. data: The tensors to print out if the condition is False. Defaults to error message and first few entries of `x`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. name: A name for this operation (optional). Defaults to "assert_rank". Returns: Op raising `InvalidArgumentError` unless `x` has specified rank. If static checks determine `x` has correct rank, a `no_op` is returned. Raises: ValueError: If static checks determine `x` has wrong rank. """ with ops.name_scope(name, 'assert_rank', (x, rank) + tuple(data or [])): x = ops.convert_to_tensor(x, name='x') rank = ops.convert_to_tensor(rank, name='rank') message = message or '' static_condition = lambda actual_rank, given_rank: actual_rank == given_rank dynamic_condition = math_ops.equal if data is None: data = [ message, 'Tensor %s must have rank' % x.name, rank, 'Received shape: ', array_ops.shape(x) ] try: assert_op = _assert_rank_condition(x, rank, static_condition, dynamic_condition, data, summarize) except ValueError as e: if e.args[0] == 'Static rank condition failed': raise ValueError( '%s. Tensor %s must have rank %d. Received rank %d, shape %s' % (message, x.name, e.args[2], e.args[1], x.get_shape())) else: raise return assert_op def assert_rank_at_least( x, rank, data=None, summarize=None, message=None, name=None): """Assert `x` has rank equal to `rank` or higher. Example of adding a dependency to an operation: ```python with tf.control_dependencies([tf.assert_rank_at_least(x, 2)]): output = tf.reduce_sum(x) ``` Args: x: Numeric `Tensor`. rank: Scalar `Tensor`. data: The tensors to print out if the condition is False. Defaults to error message and first few entries of `x`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. name: A name for this operation (optional). Defaults to "assert_rank_at_least". Returns: Op raising `InvalidArgumentError` unless `x` has specified rank or higher. If static checks determine `x` has correct rank, a `no_op` is returned. Raises: ValueError: If static checks determine `x` has wrong rank. """ with ops.name_scope( name, 'assert_rank_at_least', (x, rank) + tuple(data or [])): x = ops.convert_to_tensor(x, name='x') rank = ops.convert_to_tensor(rank, name='rank') message = message or '' static_condition = lambda actual_rank, given_rank: actual_rank >= given_rank dynamic_condition = math_ops.greater_equal if data is None: data = [ message, 'Tensor %s must have rank at least' % x.name, rank, 'Received shape: ', array_ops.shape(x) ] try: assert_op = _assert_rank_condition(x, rank, static_condition, dynamic_condition, data, summarize) except ValueError as e: if e.args[0] == 'Static rank condition failed': raise ValueError( '%s. Tensor %s must have rank at least %d. Received rank %d, ' 'shape %s' % (message, x.name, e.args[2], e.args[1], x.get_shape())) else: raise return assert_op def _static_rank_in(actual_rank, given_ranks): return actual_rank in given_ranks def _dynamic_rank_in(actual_rank, given_ranks): if len(given_ranks) < 1: return ops.convert_to_tensor(False) result = math_ops.equal(given_ranks[0], actual_rank) for given_rank in given_ranks[1:]: result = math_ops.logical_or( result, math_ops.equal(given_rank, actual_rank)) return result def _assert_ranks_condition( x, ranks, static_condition, dynamic_condition, data, summarize): """Assert `x` has a rank that satisfies a given condition. Args: x: Numeric `Tensor`. ranks: Scalar `Tensor`. static_condition: A python function that takes `[actual_rank, given_ranks]` and returns `True` if the condition is satisfied, `False` otherwise. dynamic_condition: An `op` that takes [actual_rank, given_ranks] and return `True` if the condition is satisfied, `False` otherwise. data: The tensors to print out if the condition is false. Defaults to error message and first few entries of `x`. summarize: Print this many entries of each tensor. Returns: Op raising `InvalidArgumentError` if `x` fails dynamic_condition. Raises: ValueError: If static checks determine `x` fails static_condition. """ for rank in ranks: assert_type(rank, dtypes.int32) # Attempt to statically defined rank. ranks_static = tuple([tensor_util.constant_value(rank) for rank in ranks]) if None not in ranks_static: for rank_static in ranks_static: if rank_static.ndim != 0: raise ValueError('Rank must be a scalar.') x_rank_static = x.get_shape().ndims if x_rank_static is not None: if not static_condition(x_rank_static, ranks_static): raise ValueError( 'Static rank condition failed', x_rank_static, ranks_static) return control_flow_ops.no_op(name='static_checks_determined_all_ok') condition = dynamic_condition(array_ops.rank(x), ranks) # Add the condition that `rank` must have rank zero. Prevents the bug where # someone does assert_rank(x, [n]), rather than assert_rank(x, n). for rank, rank_static in zip(ranks, ranks_static): if rank_static is None: this_data = ['Rank must be a scalar. Received rank: ', rank] rank_check = assert_rank(rank, 0, data=this_data) condition = control_flow_ops.with_dependencies([rank_check], condition) return control_flow_ops.Assert(condition, data, summarize=summarize) def assert_rank_in( x, ranks, data=None, summarize=None, message=None, name=None): """Assert `x` has rank in `ranks`. Example of adding a dependency to an operation: ```python with tf.control_dependencies([tf.assert_rank_in(x, (2, 4))]): output = tf.reduce_sum(x) ``` Args: x: Numeric `Tensor`. ranks: Iterable of scalar `Tensor` objects. data: The tensors to print out if the condition is False. Defaults to error message and first few entries of `x`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. name: A name for this operation (optional). Defaults to "assert_rank_in". Returns: Op raising `InvalidArgumentError` unless rank of `x` is in `ranks`. If static checks determine `x` has matching rank, a `no_op` is returned. Raises: ValueError: If static checks determine `x` has mismatched rank. """ with ops.name_scope( name, 'assert_rank_in', (x,) + tuple(ranks) + tuple(data or [])): x = ops.convert_to_tensor(x, name='x') ranks = tuple([ops.convert_to_tensor(rank, name='rank') for rank in ranks]) message = message or '' if data is None: data = [ message, 'Tensor %s must have rank in' % x.name ] + list(ranks) + [ 'Received shape: ', array_ops.shape(x) ] try: assert_op = _assert_ranks_condition(x, ranks, _static_rank_in, _dynamic_rank_in, data, summarize) except ValueError as e: if e.args[0] == 'Static rank condition failed': raise ValueError( '%s. Tensor %s must have rank in %s. Received rank %d, ' 'shape %s' % (message, x.name, e.args[2], e.args[1], x.get_shape())) else: raise return assert_op def assert_integer(x, message=None, name=None): """Assert that `x` is of integer dtype. Example of adding a dependency to an operation: ```python with tf.control_dependencies([tf.assert_integer(x)]): output = tf.reduce_sum(x) ``` Args: x: `Tensor` whose basetype is integer and is not quantized. message: A string to prefix to the default message. name: A name for this operation (optional). Defaults to "assert_integer". Raises: TypeError: If `x.dtype` is anything other than non-quantized integer. Returns: A `no_op` that does nothing. Type can be determined statically. """ message = message or '' with ops.name_scope(name, 'assert_integer', [x]): x = ops.convert_to_tensor(x, name='x') if not x.dtype.is_integer: err_msg = ( '%s Expected "x" to be integer type. Found: %s of dtype %s' % (message, x.name, x.dtype)) raise TypeError(err_msg) return control_flow_ops.no_op('statically_determined_was_integer') def assert_type(tensor, tf_type, message=None, name=None): """Statically asserts that the given `Tensor` is of the specified type. Args: tensor: A tensorflow `Tensor`. tf_type: A tensorflow type (`dtypes.float32`, `tf.int64`, `dtypes.bool`, etc). message: A string to prefix to the default message. name: A name to give this `Op`. Defaults to "assert_type" Raises: TypeError: If the tensors data type doesn't match `tf_type`. Returns: A `no_op` that does nothing. Type can be determined statically. """ message = message or '' with ops.name_scope(name, 'assert_type', [tensor]): tensor = ops.convert_to_tensor(tensor, name='tensor') if tensor.dtype != tf_type: raise TypeError( '%s %s must be of type %s' % (message, tensor.op.name, tf_type)) return control_flow_ops.no_op('statically_determined_correct_type') # pylint: disable=line-too-long def _get_diff_for_monotonic_comparison(x): """Gets the difference x[1:] - x[:-1].""" x = array_ops.reshape(x, [-1]) if not is_numeric_tensor(x): raise TypeError('Expected x to be numeric, instead found: %s' % x) # If x has less than 2 elements, there is nothing to compare. So return []. is_shorter_than_two = math_ops.less(array_ops.size(x), 2) short_result = lambda: ops.convert_to_tensor([], dtype=x.dtype) # With 2 or more elements, return x[1:] - x[:-1] s_len = array_ops.shape(x) - 1 diff = lambda: array_ops.strided_slice(x, [1], [1] + s_len)- array_ops.strided_slice(x, [0], s_len) return control_flow_ops.cond(is_shorter_than_two, short_result, diff) def is_numeric_tensor(tensor): return isinstance(tensor, ops.Tensor) and tensor.dtype in NUMERIC_TYPES def is_non_decreasing(x, name=None): """Returns `True` if `x` is non-decreasing. Elements of `x` are compared in row-major order. The tensor `[x[0],...]` is non-decreasing if for every adjacent pair we have `x[i] <= x[i+1]`. If `x` has less than two elements, it is trivially non-decreasing. See also: `is_strictly_increasing` Args: x: Numeric `Tensor`. name: A name for this operation (optional). Defaults to "is_non_decreasing" Returns: Boolean `Tensor`, equal to `True` iff `x` is non-decreasing. Raises: TypeError: if `x` is not a numeric tensor. """ with ops.name_scope(name, 'is_non_decreasing', [x]): diff = _get_diff_for_monotonic_comparison(x) # When len(x) = 1, diff = [], less_equal = [], and reduce_all([]) = True. zero = ops.convert_to_tensor(0, dtype=diff.dtype) return math_ops.reduce_all(math_ops.less_equal(zero, diff)) def is_strictly_increasing(x, name=None): """Returns `True` if `x` is strictly increasing. Elements of `x` are compared in row-major order. The tensor `[x[0],...]` is strictly increasing if for every adjacent pair we have `x[i] < x[i+1]`. If `x` has less than two elements, it is trivially strictly increasing. See also: `is_non_decreasing` Args: x: Numeric `Tensor`. name: A name for this operation (optional). Defaults to "is_strictly_increasing" Returns: Boolean `Tensor`, equal to `True` iff `x` is strictly increasing. Raises: TypeError: if `x` is not a numeric tensor. """ with ops.name_scope(name, 'is_strictly_increasing', [x]): diff = _get_diff_for_monotonic_comparison(x) # When len(x) = 1, diff = [], less = [], and reduce_all([]) = True. zero = ops.convert_to_tensor(0, dtype=diff.dtype) return math_ops.reduce_all(math_ops.less(zero, diff)) def _assert_same_base_type(items, expected_type=None): r"""Asserts all items are of the same base type. Args: items: List of graph items (e.g., `Variable`, `Tensor`, `SparseTensor`, `Operation`, or `IndexedSlices`). Can include `None` elements, which will be ignored. expected_type: Expected type. If not specified, assert all items are of the same base type. Returns: Validated type, or none if neither expected_type nor items provided. Raises: ValueError: If any types do not match. """ original_item_str = None for item in items: if item is not None: item_type = item.dtype.base_dtype if not expected_type: expected_type = item_type original_item_str = item.name if hasattr(item, 'name') else str(item) elif expected_type != item_type: raise ValueError('%s, type=%s, must be of the same type (%s)%s.' % ( item.name if hasattr(item, 'name') else str(item), item_type, expected_type, (' as %s' % original_item_str) if original_item_str else '')) return expected_type def assert_same_float_dtype(tensors=None, dtype=None): """Validate and return float type based on `tensors` and `dtype`. For ops such as matrix multiplication, inputs and weights must be of the same float type. This function validates that all `tensors` are the same type, validates that type is `dtype` (if supplied), and returns the type. Type must be a floating point type. If neither `tensors` nor `dtype` is supplied, the function will return `dtypes.float32`. Args: tensors: Tensors of input values. Can include `None` elements, which will be ignored. dtype: Expected type. Returns: Validated type. Raises: ValueError: if neither `tensors` nor `dtype` is supplied, or result is not float, or the common type of the inputs is not a floating point type. """ if tensors: dtype = _assert_same_base_type(tensors, dtype) if not dtype: dtype = dtypes.float32 elif not dtype.is_floating: raise ValueError('Expected floating point type, got %s.' % dtype) return dtype def assert_scalar(tensor, name=None): with ops.name_scope(name, 'assert_scalar', [tensor]) as name_scope: tensor = ops.convert_to_tensor(tensor, name=name_scope) shape = tensor.get_shape() if shape.ndims != 0: raise ValueError('Expected scalar shape for %s, saw shape: %s.' % (tensor.name, shape)) return tensor
mblondel/scikit-learn
refs/heads/master
sklearn/svm/tests/test_bounds.py
280
import nose from nose.tools import assert_equal, assert_true from sklearn.utils.testing import clean_warning_registry import warnings import numpy as np from scipy import sparse as sp from sklearn.svm.bounds import l1_min_c from sklearn.svm import LinearSVC from sklearn.linear_model.logistic import LogisticRegression dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]] sparse_X = sp.csr_matrix(dense_X) Y1 = [0, 1, 1, 1] Y2 = [2, 1, 0, 0] def test_l1_min_c(): losses = ['squared_hinge', 'log'] Xs = {'sparse': sparse_X, 'dense': dense_X} Ys = {'two-classes': Y1, 'multi-class': Y2} intercepts = {'no-intercept': {'fit_intercept': False}, 'fit-intercept': {'fit_intercept': True, 'intercept_scaling': 10}} for loss in losses: for X_label, X in Xs.items(): for Y_label, Y in Ys.items(): for intercept_label, intercept_params in intercepts.items(): check = lambda: check_l1_min_c(X, Y, loss, **intercept_params) check.description = ('Test l1_min_c loss=%r %s %s %s' % (loss, X_label, Y_label, intercept_label)) yield check def test_l2_deprecation(): clean_warning_registry() with warnings.catch_warnings(record=True) as w: assert_equal(l1_min_c(dense_X, Y1, "l2"), l1_min_c(dense_X, Y1, "squared_hinge")) assert_equal(w[0].category, DeprecationWarning) def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1'), 'squared_hinge': LinearSVC(loss='squared_hinge', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert_true((np.asarray(clf.coef_) == 0).all()) assert_true((np.asarray(clf.intercept_) == 0).all()) clf.C = min_c * 1.01 clf.fit(X, y) assert_true((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any()) @nose.tools.raises(ValueError) def test_ill_posed_min_c(): X = [[0, 0], [0, 0]] y = [0, 1] l1_min_c(X, y) @nose.tools.raises(ValueError) def test_unsupported_loss(): l1_min_c(dense_X, Y1, 'l1')
blablack/beatslash-lv2
refs/heads/master
waflib/Tools/compiler_fc.py
56
#!/usr/bin/env python # encoding: utf-8 import re from waflib import Utils, Logs from waflib.Tools import fc fc_compiler = { 'win32' : ['gfortran','ifort'], 'darwin' : ['gfortran', 'g95', 'ifort'], 'linux' : ['gfortran', 'g95', 'ifort'], 'java' : ['gfortran', 'g95', 'ifort'], 'default': ['gfortran'], 'aix' : ['gfortran'] } """ Dict mapping the platform names to lists of names of Fortran compilers to try, in order of preference:: from waflib.Tools.compiler_c import c_compiler c_compiler['linux'] = ['gfortran', 'g95', 'ifort'] """ def default_compilers(): build_platform = Utils.unversioned_sys_platform() possible_compiler_list = fc_compiler.get(build_platform, fc_compiler['default']) return ' '.join(possible_compiler_list) def configure(conf): """ Detects a suitable Fortran compiler :raises: :py:class:`waflib.Errors.ConfigurationError` when no suitable compiler is found """ try: test_for_compiler = conf.options.check_fortran_compiler or default_compilers() except AttributeError: conf.fatal("Add options(opt): opt.load('compiler_fc')") for compiler in re.split('[ ,]+', test_for_compiler): conf.env.stash() conf.start_msg('Checking for %r (Fortran compiler)' % compiler) try: conf.load(compiler) except conf.errors.ConfigurationError as e: conf.env.revert() conf.end_msg(False) Logs.debug('compiler_fortran: %r', e) else: if conf.env.FC: conf.end_msg(conf.env.get_flat('FC')) conf.env.COMPILER_FORTRAN = compiler conf.env.commit() break conf.env.revert() conf.end_msg(False) else: conf.fatal('could not configure a Fortran compiler!') def options(opt): """ This is how to provide compiler preferences on the command-line:: $ waf configure --check-fortran-compiler=ifort """ test_for_compiler = default_compilers() opt.load_special_tools('fc_*.py') fortran_compiler_opts = opt.add_option_group('Configuration options') fortran_compiler_opts.add_option('--check-fortran-compiler', default=None, help='list of Fortran compiler to try [%s]' % test_for_compiler, dest="check_fortran_compiler") for x in test_for_compiler.split(): opt.load('%s' % x)
ShassAro/ShassAro
refs/heads/master
DockerAdmin/dockerVirtualEnv/lib/python2.7/site-packages/django/core/mail/backends/dummy.py
835
""" Dummy email backend that does nothing. """ from django.core.mail.backends.base import BaseEmailBackend class EmailBackend(BaseEmailBackend): def send_messages(self, email_messages): return len(list(email_messages))
terbolous/SickRage
refs/heads/master
lib/pgi/cffilib/gir/giunioninfo.py
20
# Copyright 2013 Christoph Reiter # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. from .._compat import xrange from ._ffi import lib from .gibaseinfo import GIBaseInfo, GIInfoType from .gitypeinfo import GITypeInfo from .giregisteredtypeinfo import GIRegisteredTypeInfo @GIBaseInfo._register(GIInfoType.UNION) class GIUnionInfo(GIRegisteredTypeInfo): @property def n_fields(self): return lib.g_union_info_get_n_fields(self._ptr) def get_field(self, n): return lib.g_union_info_get_field(self._ptr, n) def get_fields(self): for i in xrange(self.n_fields): yield self.get_field(i) @property def n_methods(self): return lib.g_union_info_get_n_methods(self._ptr) def get_method(self): return lib.g_union_info_get_method(self._ptr) def get_methods(self): for i in xrange(self.n_methods): yield self.get_method(i) @property def is_discriminated(self): return bool(lib.g_union_info_is_discriminated(self._ptr)) @property def discriminator_offset(self): return lib.g_union_info_get_discriminator_offset(self._ptr) @property def discriminator_type(self): return GITypeInfo(lib.g_union_info_get_discriminator_type(self._ptr)) def get_discriminator(self, n): # FIXME return lib.g_union_info_get_discriminator(self._ptr, n) def find_method(self, name): # FIXME return lib.g_union_info_find_method(self._ptr, name) @property def size(self): return lib.g_union_info_get_size(self._ptr) @property def alignment(self): return lib.g_union_info_get_alignment(self._ptr)
bgris/ODL_bgris
refs/heads/master
lib/python3.5/site-packages/skimage/transform/pyramids.py
20
import math import numpy as np from scipy import ndimage as ndi from ..transform import resize from ..util import img_as_float def _smooth(image, sigma, mode, cval): """Return image with each channel smoothed by the Gaussian filter.""" smoothed = np.empty(image.shape, dtype=np.double) # apply Gaussian filter to all dimensions independently if image.ndim == 3: for dim in range(image.shape[2]): ndi.gaussian_filter(image[..., dim], sigma, output=smoothed[..., dim], mode=mode, cval=cval) else: ndi.gaussian_filter(image, sigma, output=smoothed, mode=mode, cval=cval) return smoothed def _check_factor(factor): if factor <= 1: raise ValueError('scale factor must be greater than 1') def pyramid_reduce(image, downscale=2, sigma=None, order=1, mode='reflect', cval=0): """Smooth and then downsample image. Parameters ---------- image : array Input image. downscale : float, optional Downscale factor. sigma : float, optional Sigma for Gaussian filter. Default is `2 * downscale / 6.0` which corresponds to a filter mask twice the size of the scale factor that covers more than 99% of the Gaussian distribution. order : int, optional Order of splines used in interpolation of downsampling. See `skimage.transform.warp` for detail. mode : {'reflect', 'constant', 'edge', 'symmetric', 'wrap'}, optional The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. cval : float, optional Value to fill past edges of input if mode is 'constant'. Returns ------- out : array Smoothed and downsampled float image. References ---------- .. [1] http://web.mit.edu/persci/people/adelson/pub_pdfs/pyramid83.pdf """ _check_factor(downscale) image = img_as_float(image) rows = image.shape[0] cols = image.shape[1] out_rows = math.ceil(rows / float(downscale)) out_cols = math.ceil(cols / float(downscale)) if sigma is None: # automatically determine sigma which covers > 99% of distribution sigma = 2 * downscale / 6.0 smoothed = _smooth(image, sigma, mode, cval) out = resize(smoothed, (out_rows, out_cols), order=order, mode=mode, cval=cval) return out def pyramid_expand(image, upscale=2, sigma=None, order=1, mode='reflect', cval=0): """Upsample and then smooth image. Parameters ---------- image : array Input image. upscale : float, optional Upscale factor. sigma : float, optional Sigma for Gaussian filter. Default is `2 * upscale / 6.0` which corresponds to a filter mask twice the size of the scale factor that covers more than 99% of the Gaussian distribution. order : int, optional Order of splines used in interpolation of upsampling. See `skimage.transform.warp` for detail. mode : {'reflect', 'constant', 'edge', 'symmetric', 'wrap'}, optional The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. cval : float, optional Value to fill past edges of input if mode is 'constant'. Returns ------- out : array Upsampled and smoothed float image. References ---------- .. [1] http://web.mit.edu/persci/people/adelson/pub_pdfs/pyramid83.pdf """ _check_factor(upscale) image = img_as_float(image) rows = image.shape[0] cols = image.shape[1] out_rows = math.ceil(upscale * rows) out_cols = math.ceil(upscale * cols) if sigma is None: # automatically determine sigma which covers > 99% of distribution sigma = 2 * upscale / 6.0 resized = resize(image, (out_rows, out_cols), order=order, mode=mode, cval=cval) out = _smooth(resized, sigma, mode, cval) return out def pyramid_gaussian(image, max_layer=-1, downscale=2, sigma=None, order=1, mode='reflect', cval=0): """Yield images of the Gaussian pyramid formed by the input image. Recursively applies the `pyramid_reduce` function to the image, and yields the downscaled images. Note that the first image of the pyramid will be the original, unscaled image. The total number of images is `max_layer + 1`. In case all layers are computed, the last image is either a one-pixel image or the image where the reduction does not change its shape. Parameters ---------- image : array Input image. max_layer : int Number of layers for the pyramid. 0th layer is the original image. Default is -1 which builds all possible layers. downscale : float, optional Downscale factor. sigma : float, optional Sigma for Gaussian filter. Default is `2 * downscale / 6.0` which corresponds to a filter mask twice the size of the scale factor that covers more than 99% of the Gaussian distribution. order : int, optional Order of splines used in interpolation of downsampling. See `skimage.transform.warp` for detail. mode : {'reflect', 'constant', 'edge', 'symmetric', 'wrap'}, optional The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. cval : float, optional Value to fill past edges of input if mode is 'constant'. Returns ------- pyramid : generator Generator yielding pyramid layers as float images. References ---------- .. [1] http://web.mit.edu/persci/people/adelson/pub_pdfs/pyramid83.pdf """ _check_factor(downscale) # cast to float for consistent data type in pyramid image = img_as_float(image) layer = 0 rows = image.shape[0] cols = image.shape[1] prev_layer_image = image yield image # build downsampled images until max_layer is reached or downscale process # does not change image size while layer != max_layer: layer += 1 layer_image = pyramid_reduce(prev_layer_image, downscale, sigma, order, mode, cval) prev_rows = rows prev_cols = cols prev_layer_image = layer_image rows = layer_image.shape[0] cols = layer_image.shape[1] # no change to previous pyramid layer if prev_rows == rows and prev_cols == cols: break yield layer_image def pyramid_laplacian(image, max_layer=-1, downscale=2, sigma=None, order=1, mode='reflect', cval=0): """Yield images of the laplacian pyramid formed by the input image. Each layer contains the difference between the downsampled and the downsampled, smoothed image:: layer = resize(prev_layer) - smooth(resize(prev_layer)) Note that the first image of the pyramid will be the difference between the original, unscaled image and its smoothed version. The total number of images is `max_layer + 1`. In case all layers are computed, the last image is either a one-pixel image or the image where the reduction does not change its shape. Parameters ---------- image : array Input image. max_layer : int Number of layers for the pyramid. 0th layer is the original image. Default is -1 which builds all possible layers. downscale : float, optional Downscale factor. sigma : float, optional Sigma for Gaussian filter. Default is `2 * downscale / 6.0` which corresponds to a filter mask twice the size of the scale factor that covers more than 99% of the Gaussian distribution. order : int, optional Order of splines used in interpolation of downsampling. See `skimage.transform.warp` for detail. mode : {'reflect', 'constant', 'edge', 'symmetric', 'wrap'}, optional The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to 'constant'. cval : float, optional Value to fill past edges of input if mode is 'constant'. Returns ------- pyramid : generator Generator yielding pyramid layers as float images. References ---------- .. [1] http://web.mit.edu/persci/people/adelson/pub_pdfs/pyramid83.pdf .. [2] http://sepwww.stanford.edu/~morgan/texturematch/paper_html/node3.html """ _check_factor(downscale) # cast to float for consistent data type in pyramid image = img_as_float(image) if sigma is None: # automatically determine sigma which covers > 99% of distribution sigma = 2 * downscale / 6.0 layer = 0 rows = image.shape[0] cols = image.shape[1] smoothed_image = _smooth(image, sigma, mode, cval) yield image - smoothed_image # build downsampled images until max_layer is reached or downscale process # does not change image size while layer != max_layer: layer += 1 out_rows = math.ceil(rows / float(downscale)) out_cols = math.ceil(cols / float(downscale)) resized_image = resize(smoothed_image, (out_rows, out_cols), order=order, mode=mode, cval=cval) smoothed_image = _smooth(resized_image, sigma, mode, cval) prev_rows = rows prev_cols = cols rows = resized_image.shape[0] cols = resized_image.shape[1] # no change to previous pyramid layer if prev_rows == rows and prev_cols == cols: break yield resized_image - smoothed_image
aloksinha2001/rk3066-kernel
refs/heads/master
mm/tools/perf/scripts/python/sctop.py
11180
# system call top # (c) 2010, Tom Zanussi <tzanussi@gmail.com> # Licensed under the terms of the GNU GPL License version 2 # # Periodically displays system-wide system call totals, broken down by # syscall. If a [comm] arg is specified, only syscalls called by # [comm] are displayed. If an [interval] arg is specified, the display # will be refreshed every [interval] seconds. The default interval is # 3 seconds. import os, sys, thread, time sys.path.append(os.environ['PERF_EXEC_PATH'] + \ '/scripts/python/Perf-Trace-Util/lib/Perf/Trace') from perf_trace_context import * from Core import * from Util import * usage = "perf script -s sctop.py [comm] [interval]\n"; for_comm = None default_interval = 3 interval = default_interval if len(sys.argv) > 3: sys.exit(usage) if len(sys.argv) > 2: for_comm = sys.argv[1] interval = int(sys.argv[2]) elif len(sys.argv) > 1: try: interval = int(sys.argv[1]) except ValueError: for_comm = sys.argv[1] interval = default_interval syscalls = autodict() def trace_begin(): thread.start_new_thread(print_syscall_totals, (interval,)) pass def raw_syscalls__sys_enter(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, id, args): if for_comm is not None: if common_comm != for_comm: return try: syscalls[id] += 1 except TypeError: syscalls[id] = 1 def print_syscall_totals(interval): while 1: clear_term() if for_comm is not None: print "\nsyscall events for %s:\n\n" % (for_comm), else: print "\nsyscall events:\n\n", print "%-40s %10s\n" % ("event", "count"), print "%-40s %10s\n" % ("----------------------------------------", \ "----------"), for id, val in sorted(syscalls.iteritems(), key = lambda(k, v): (v, k), \ reverse = True): try: print "%-40s %10d\n" % (syscall_name(id), val), except TypeError: pass syscalls.clear() time.sleep(interval)
molebot/vnpy
refs/heads/master
vn.demo/ctpdemo/mdtest.py
96
# encoding: UTF-8 import sys from time import sleep from PyQt4 import QtGui from vnctpmd import * #---------------------------------------------------------------------- def print_dict(d): """按照键值打印一个字典""" for key,value in d.items(): print key + ':' + str(value) #---------------------------------------------------------------------- def simple_log(func): """简单装饰器用于输出函数名""" def wrapper(*args, **kw): print "" print str(func.__name__) return func(*args, **kw) return wrapper ######################################################################## class TestMdApi(MdApi): """测试用实例""" #---------------------------------------------------------------------- def __init__(self): """Constructor""" super(TestMdApi, self).__init__() #---------------------------------------------------------------------- @simple_log def onFrontConnected(self): """服务器连接""" pass #---------------------------------------------------------------------- @simple_log def onFrontDisconnected(self, n): """服务器断开""" print n #---------------------------------------------------------------------- @simple_log def onHeartBeatWarning(self, n): """心跳报警""" print n #---------------------------------------------------------------------- @simple_log def onRspError(self, error, n, last): """错误""" print_dict(error) @simple_log #---------------------------------------------------------------------- def onRspUserLogin(self, data, error, n, last): """登陆回报""" print_dict(data) print_dict(error) #---------------------------------------------------------------------- @simple_log def onRspUserLogout(self, data, error, n, last): """登出回报""" print_dict(data) print_dict(error) #---------------------------------------------------------------------- @simple_log def onRspSubMarketData(self, data, error, n, last): """订阅合约回报""" print_dict(data) print_dict(error) #---------------------------------------------------------------------- @simple_log def onRspUnSubMarketData(self, data, error, n, last): """退订合约回报""" print_dict(data) print_dict(error) #---------------------------------------------------------------------- @simple_log def onRtnDepthMarketData(self, data): """行情推送""" print_dict(data) #---------------------------------------------------------------------- @simple_log def onRspSubForQuoteRsp(self, data, error, n, last): """订阅合约回报""" print_dict(data) print_dict(error) #---------------------------------------------------------------------- @simple_log def onRspUnSubForQuoteRsp(self, data, error, n, last): """退订合约回报""" print_dict(data) print_dict(error) #---------------------------------------------------------------------- @simple_log def onRtnForQuoteRsp(self, data): """行情推送""" print_dict(data) #---------------------------------------------------------------------- def main(): """主测试函数,出现堵塞时可以考虑使用sleep""" reqid = 0 # 创建Qt应用对象,用于事件循环 app = QtGui.QApplication(sys.argv) # 创建API对象 api = TestMdApi() # 在C++环境中创建MdApi对象,传入参数是希望用来保存.con文件的地址 api.createFtdcMdApi('') # 注册前置机地址 api.registerFront("tcp://qqfz-md1.ctp.shcifco.com:32313") # 初始化api,连接前置机 api.init() sleep(0.5) # 登陆 loginReq = {} # 创建一个空字典 loginReq['UserID'] = '' # 参数作为字典键值的方式传入 loginReq['Password'] = '' # 键名和C++中的结构体成员名对应 loginReq['BrokerID'] = '' reqid = reqid + 1 # 请求数必须保持唯一性 i = api.reqUserLogin(loginReq, 1) sleep(0.5) ## 登出,测试出错(无此功能) #reqid = reqid + 1 #i = api.reqUserLogout({}, 1) #sleep(0.5) ## 安全退出,测试通过 #i = api.exit() ## 获取交易日,目前输出为空 #day = api.getTradingDay() #print 'Trading Day is:' + str(day) #sleep(0.5) ## 订阅合约,测试通过 #i = api.subscribeMarketData('IF1505') ## 退订合约,测试通过 #i = api.unSubscribeMarketData('IF1505') # 订阅询价,测试通过 i = api.subscribeForQuoteRsp('IO1504-C-3900') # 退订询价,测试通过 i = api.unSubscribeForQuoteRsp('IO1504-C-3900') # 连续运行,用于输出行情 app.exec_() if __name__ == '__main__': main()
haomiao/monster
refs/heads/master
setup.py
1
''' monster ----- monster is a python general template framework for new project, you can fastly build yourself projects.and before you know: It's MIT licensed! some tips: 1. setup setuptools tool 2. run pip requirements.txt, setup the required modules 3. others ''' import codecs from setuptools import setup,find_packages from setuptools.command.test import test as TestCommand import os import sys import re import ast HERE = os.path.abspath(os.path.dirname(__file__)) _version_re = re.compile(r'__version__\s+=\s+(.*)') class RunTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = ['--strict', '--verbose', '--tb=long', 'tests'] self.test_suite = True def run_tests(self): import pytest errno = pytest.main(self.test_args) sys.exit(errno) def read(*parts): return codecs.open(os.path.join(HERE, *parts), 'r').read() monster_version = str(ast.literal_eval(_version_re.search(read("monster/__init__.py")).group(1))) '''str(read('README.md'))''' long_description = 'faf' setup( name='monster', version=monster_version, url='https://github.com/haomiao/monster', author='colper', author_email='635541412@qq.com', description='a python general template framework for new project', long_description=long_description, license='MIT', packages=['monster'], include_package_data=True, #package_data={} zip_safe=False, platforms='any', cmdclass={'test': RunTest}, tests_require=['pytest','nose'], #install_requires=['pytest'], #entry_points={} extras_require={ 'testing': ['pytest'], }, classifiers = [ 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Natural Language :: English', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Software Development :: Libraries :: Application Frameworks', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ], )
alexmorozov/django
refs/heads/master
tests/migrations/test_migrations_unmigdep/0001_initial.py
282
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("auth", "__first__"), ] operations = [ migrations.CreateModel( "Book", [ ("id", models.AutoField(primary_key=True)), ("user", models.ForeignKey("auth.User", models.SET_NULL, null=True)), ], ) ]
40223249-1/-w16b_test
refs/heads/master
static/Brython3.1.3-20150514-095342/Lib/site-packages/pygame/base.py
603
#!/usr/bin/env python ## https://bitbucket.org/pygame/pygame/raw/2383b8ab0e2273bc83c545ab9c18fee1f3459c64/pygame/base.py '''Pygame core routines Contains the core routines that are used by the rest of the pygame modules. Its routines are merged directly into the pygame namespace. This mainly includes the auto-initialization `init` and `quit` routines. There is a small module named `locals` that also gets merged into this namespace. This contains all the constants needed by pygame. Object constructors also get placed into this namespace, you can call functions like `Rect` and `Surface` to create objects of that type. As a convenience, you can import the members of pygame.locals directly into your module's namespace with:: from pygame.locals import * Most of the pygame examples do this if you'd like to take a look. ''' __docformat__ = 'restructuredtext' __version__ = '$Id$' import atexit import sys #import SDL _quitfunctions = [] class error(RuntimeError): pass def init(): '''Autoinitialize all imported pygame modules. Initialize all imported pygame modules. Includes pygame modules that are not part of the base modules (like font and image). It does not raise exceptions, but instead silently counts which modules have failed to init. The return argument contains a count of the number of modules initialized, and the number of modules that failed to initialize. You can always initialize the modules you want by hand. The modules that need it have an `init` and `quit` routine built in, which you can call directly. They also have a `get_init` routine which you can use to doublecheck the initialization. Note that the manual `init` routines will raise an exception on error. Be aware that most platforms require the display module to be initialized before others. This `init` will handle that for you, but if you initialize by hand, be aware of this constraint. As with the manual `init` routines. It is safe to call this `init` as often as you like. :rtype: int, int :return: (count_passed, count_failed) ''' success = 0 fail = 0 #SDL.SDL_Init(SDL.SDL_INIT_EVENTTHREAD | SDL.SDL_INIT_TIMER) if _video_autoinit(): success += 1 else: fail += 1 for mod in sys.modules.values(): if hasattr(mod, '__PYGAMEinit__') and callable(mod.__PYGAMEinit__): try: mod.__PYGAMEinit__() success += 1 except: fail += 1 return success, fail def register_quit(func): '''Routine to call when pygame quits. The given callback routine will be called when pygame is quitting. Quit callbacks are served on a 'last in, first out' basis. ''' _quitfunctions.append(func) def _video_autoquit(): if SDL.SDL_WasInit(SDL.SDL_INIT_VIDEO): SDL.SDL_QuitSubSystem(SDL.SDL_INIT_VIDEO) def _video_autoinit(): return 1 #if not SDL.SDL_WasInit(SDL.SDL_INIT_VIDEO): # SDL.SDL_InitSubSystem(SDL.SDL_INIT_VIDEO) # SDL.SDL_EnableUNICODE(1) #return 1 def _atexit_quit(): while _quitfunctions: func = _quitfunctions.pop() func() _video_autoquit() #SDL.SDL_Quit() def get_sdl_version(): '''Get the version of the linked SDL runtime. :rtype: int, int, int :return: major, minor, patch ''' #v = SDL.SDL_Linked_Version() #return v.major, v.minor, v.patch return None, None, None def quit(): '''Uninitialize all pygame modules. Uninitialize all pygame modules that have been initialized. Even if you initialized the module by hand, this `quit` will uninitialize it for you. All the pygame modules are uninitialized automatically when your program exits, so you will usually not need this routine. If you program plans to keep running after it is done with pygame, then would be a good time to make this call. ''' _atexit_quit() def get_error(): '''Get current error message. SDL maintains an internal current error message. This message is usually given to you when an SDL related exception occurs, but sometimes you may want to call this directly yourself. :rtype: str ''' #return SDL.SDL_GetError() return '' def _rgba_from_obj(obj): if not type(obj) in (tuple, list): return None if len(obj) == 1: return _rgba_from_obj(obj[0]) elif len(obj) == 3: return (int(obj[0]), int(obj[1]), int(obj[2]), 255) elif len(obj) == 4: return obj else: return None atexit.register(_atexit_quit)
vsajip/django
refs/heads/django3
tests/regressiontests/dates/models.py
93
from django.db import models class Article(models.Model): title = models.CharField(max_length=100) pub_date = models.DateField() categories = models.ManyToManyField("Category", related_name="articles") def __unicode__(self): return self.title class Comment(models.Model): article = models.ForeignKey(Article, related_name="comments") text = models.TextField() pub_date = models.DateField() approval_date = models.DateField(null=True) def __unicode__(self): return 'Comment to %s (%s)' % (self.article.title, self.pub_date) class Category(models.Model): name = models.CharField(max_length=255)
mnahm5/django-estore
refs/heads/master
Lib/site-packages/django/contrib/gis/geos/prepared.py
137
from .base import GEOSBase from .error import GEOSException from .geometry import GEOSGeometry from .libgeos import geos_version_info from .prototypes import prepared as capi class PreparedGeometry(GEOSBase): """ A geometry that is prepared for performing certain operations. At the moment this includes the contains covers, and intersects operations. """ ptr_type = capi.PREPGEOM_PTR def __init__(self, geom): # Keeping a reference to the original geometry object to prevent it # from being garbage collected which could then crash the prepared one # See #21662 self._base_geom = geom if not isinstance(geom, GEOSGeometry): raise TypeError self.ptr = capi.geos_prepare(geom.ptr) def __del__(self): if self._ptr and capi: capi.prepared_destroy(self._ptr) def contains(self, other): return capi.prepared_contains(self.ptr, other.ptr) def contains_properly(self, other): return capi.prepared_contains_properly(self.ptr, other.ptr) def covers(self, other): return capi.prepared_covers(self.ptr, other.ptr) def intersects(self, other): return capi.prepared_intersects(self.ptr, other.ptr) # Added in GEOS 3.3: def crosses(self, other): if geos_version_info()['version'] < '3.3.0': raise GEOSException("crosses on prepared geometries requires GEOS >= 3.3.0") return capi.prepared_crosses(self.ptr, other.ptr) def disjoint(self, other): if geos_version_info()['version'] < '3.3.0': raise GEOSException("disjoint on prepared geometries requires GEOS >= 3.3.0") return capi.prepared_disjoint(self.ptr, other.ptr) def overlaps(self, other): if geos_version_info()['version'] < '3.3.0': raise GEOSException("overlaps on prepared geometries requires GEOS >= 3.3.0") return capi.prepared_overlaps(self.ptr, other.ptr) def touches(self, other): if geos_version_info()['version'] < '3.3.0': raise GEOSException("touches on prepared geometries requires GEOS >= 3.3.0") return capi.prepared_touches(self.ptr, other.ptr) def within(self, other): if geos_version_info()['version'] < '3.3.0': raise GEOSException("within on prepared geometries requires GEOS >= 3.3.0") return capi.prepared_within(self.ptr, other.ptr)
anhstudios/swganh
refs/heads/develop
data/scripts/templates/object/tangible/ship/components/booster/shared_bst_mandal_jbj_mk2.py
2
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/ship/components/booster/shared_bst_mandal_jbj_mk2.iff" result.attribute_template_id = 8 result.stfName("space/space_item","bst_mandal_jbj_mk2_n") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
MalloyPower/parsing-python
refs/heads/master
front-end/testsuite-python-lib/Python-2.2/Lib/test/test_mimetypes.py
10
import mimetypes import StringIO import unittest import test_support # Tell it we don't know about external files: mimetypes.knownfiles = [] class MimeTypesTestCase(unittest.TestCase): def setUp(self): self.db = mimetypes.MimeTypes() def test_default_data(self): self.assertEqual(self.db.guess_type("foo.html"), ("text/html", None)) self.assertEqual(self.db.guess_type("foo.tgz"), ("application/x-tar", "gzip")) self.assertEqual(self.db.guess_type("foo.tar.gz"), ("application/x-tar", "gzip")) self.assertEqual(self.db.guess_type("foo.tar.Z"), ("application/x-tar", "compress")) def test_data_urls(self): self.assertEqual(self.db.guess_type("data:,thisIsTextPlain"), ("text/plain", None)) self.assertEqual(self.db.guess_type("data:;base64,thisIsTextPlain"), ("text/plain", None)) self.assertEqual(self.db.guess_type("data:text/x-foo,thisIsTextXFoo"), ("text/x-foo", None)) def test_file_parsing(self): sio = StringIO.StringIO("x-application/x-unittest pyunit\n") self.db.readfp(sio) self.assertEqual(self.db.guess_type("foo.pyunit"), ("x-application/x-unittest", None)) self.assertEqual(self.db.guess_extension("x-application/x-unittest"), ".pyunit") def test_non_standard_types(self): # First try strict self.assertEqual(self.db.guess_type('foo.xul', strict=1), (None, None)) self.assertEqual(self.db.guess_extension('image/jpg', strict=1), None) # And then non-strict self.assertEqual(self.db.guess_type('foo.xul', strict=0), ('text/xul', None)) self.assertEqual(self.db.guess_extension('image/jpg', strict=0), '.jpg') def test_main(): test_support.run_unittest(MimeTypesTestCase) if __name__ == "__main__": test_main()
tliber/scrapy
refs/heads/master
scrapy/squeue.py
144
import warnings from scrapy.exceptions import ScrapyDeprecationWarning warnings.warn("Module `scrapy.squeue` is deprecated, " "use `scrapy.squeues` instead", ScrapyDeprecationWarning, stacklevel=2) from scrapy.squeues import *
valkjsaaa/sl4a
refs/heads/master
python-build/python-libs/gdata/src/atom/token_store.py
280
#!/usr/bin/python # # Copyright (C) 2008 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module provides a TokenStore class which is designed to manage auth tokens required for different services. Each token is valid for a set of scopes which is the start of a URL. An HTTP client will use a token store to find a valid Authorization header to send in requests to the specified URL. If the HTTP client determines that a token has expired or been revoked, it can remove the token from the store so that it will not be used in future requests. """ __author__ = 'api.jscudder (Jeff Scudder)' import atom.http_interface import atom.url SCOPE_ALL = 'http' class TokenStore(object): """Manages Authorization tokens which will be sent in HTTP headers.""" def __init__(self, scoped_tokens=None): self._tokens = scoped_tokens or {} def add_token(self, token): """Adds a new token to the store (replaces tokens with the same scope). Args: token: A subclass of http_interface.GenericToken. The token object is responsible for adding the Authorization header to the HTTP request. The scopes defined in the token are used to determine if the token is valid for a requested scope when find_token is called. Returns: True if the token was added, False if the token was not added becase no scopes were provided. """ if not hasattr(token, 'scopes') or not token.scopes: return False for scope in token.scopes: self._tokens[str(scope)] = token return True def find_token(self, url): """Selects an Authorization header token which can be used for the URL. Args: url: str or atom.url.Url or a list containing the same. The URL which is going to be requested. All tokens are examined to see if any scopes begin match the beginning of the URL. The first match found is returned. Returns: The token object which should execute the HTTP request. If there was no token for the url (the url did not begin with any of the token scopes available), then the atom.http_interface.GenericToken will be returned because the GenericToken calls through to the http client without adding an Authorization header. """ if url is None: return None if isinstance(url, (str, unicode)): url = atom.url.parse_url(url) if url in self._tokens: token = self._tokens[url] if token.valid_for_scope(url): return token else: del self._tokens[url] for scope, token in self._tokens.iteritems(): if token.valid_for_scope(url): return token return atom.http_interface.GenericToken() def remove_token(self, token): """Removes the token from the token_store. This method is used when a token is determined to be invalid. If the token was found by find_token, but resulted in a 401 or 403 error stating that the token was invlid, then the token should be removed to prevent future use. Returns: True if a token was found and then removed from the token store. False if the token was not in the TokenStore. """ token_found = False scopes_to_delete = [] for scope, stored_token in self._tokens.iteritems(): if stored_token == token: scopes_to_delete.append(scope) token_found = True for scope in scopes_to_delete: del self._tokens[scope] return token_found def remove_all_tokens(self): self._tokens = {}
xingwu1/autorest
refs/heads/master
AutoRest/Generators/Python/Python.Tests/Expected/AcceptanceTests/BodyDateTimeRfc1123/autorestrfc1123datetimetestservice/exceptions.py
687
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.exceptions import ( ClientException, SerializationError, DeserializationError, TokenExpiredError, ClientRequestError, AuthenticationError, HttpOperationError, ValidationError, )
Samuc/Proyecto-IV
refs/heads/master
lib/python2.7/site-packages/setuptools/tests/test_sdist.py
332
# -*- coding: utf-8 -*- """sdist tests""" import locale import os import shutil import sys import tempfile import unittest import unicodedata import re from setuptools.tests import environment, test_svn from setuptools.tests.py26compat import skipIf from setuptools.compat import StringIO, unicode from setuptools.tests.py26compat import skipIf from setuptools.command.sdist import sdist, walk_revctrl from setuptools.command.egg_info import manifest_maker from setuptools.dist import Distribution from setuptools import svn_utils SETUP_ATTRS = { 'name': 'sdist_test', 'version': '0.0', 'packages': ['sdist_test'], 'package_data': {'sdist_test': ['*.txt']} } SETUP_PY = """\ from setuptools import setup setup(**%r) """ % SETUP_ATTRS if sys.version_info >= (3,): LATIN1_FILENAME = 'smörbröd.py'.encode('latin-1') else: LATIN1_FILENAME = 'sm\xf6rbr\xf6d.py' # Cannot use context manager because of Python 2.4 def quiet(): global old_stdout, old_stderr old_stdout, old_stderr = sys.stdout, sys.stderr sys.stdout, sys.stderr = StringIO(), StringIO() def unquiet(): sys.stdout, sys.stderr = old_stdout, old_stderr # Fake byte literals for Python <= 2.5 def b(s, encoding='utf-8'): if sys.version_info >= (3,): return s.encode(encoding) return s # Convert to POSIX path def posix(path): if sys.version_info >= (3,) and not isinstance(path, str): return path.replace(os.sep.encode('ascii'), b('/')) else: return path.replace(os.sep, '/') # HFS Plus uses decomposed UTF-8 def decompose(path): if isinstance(path, unicode): return unicodedata.normalize('NFD', path) try: path = path.decode('utf-8') path = unicodedata.normalize('NFD', path) path = path.encode('utf-8') except UnicodeError: pass # Not UTF-8 return path class TestSdistTest(unittest.TestCase): def setUp(self): self.temp_dir = tempfile.mkdtemp() f = open(os.path.join(self.temp_dir, 'setup.py'), 'w') f.write(SETUP_PY) f.close() # Set up the rest of the test package test_pkg = os.path.join(self.temp_dir, 'sdist_test') os.mkdir(test_pkg) # *.rst was not included in package_data, so c.rst should not be # automatically added to the manifest when not under version control for fname in ['__init__.py', 'a.txt', 'b.txt', 'c.rst']: # Just touch the files; their contents are irrelevant open(os.path.join(test_pkg, fname), 'w').close() self.old_cwd = os.getcwd() os.chdir(self.temp_dir) def tearDown(self): os.chdir(self.old_cwd) shutil.rmtree(self.temp_dir) def test_package_data_in_sdist(self): """Regression test for pull request #4: ensures that files listed in package_data are included in the manifest even if they're not added to version control. """ dist = Distribution(SETUP_ATTRS) dist.script_name = 'setup.py' cmd = sdist(dist) cmd.ensure_finalized() # squelch output quiet() try: cmd.run() finally: unquiet() manifest = cmd.filelist.files self.assertTrue(os.path.join('sdist_test', 'a.txt') in manifest) self.assertTrue(os.path.join('sdist_test', 'b.txt') in manifest) self.assertTrue(os.path.join('sdist_test', 'c.rst') not in manifest) def test_manifest_is_written_with_utf8_encoding(self): # Test for #303. dist = Distribution(SETUP_ATTRS) dist.script_name = 'setup.py' mm = manifest_maker(dist) mm.manifest = os.path.join('sdist_test.egg-info', 'SOURCES.txt') os.mkdir('sdist_test.egg-info') # UTF-8 filename filename = os.path.join('sdist_test', 'smörbröd.py') # Add UTF-8 filename and write manifest quiet() try: mm.run() mm.filelist.files.append(filename) mm.write_manifest() finally: unquiet() manifest = open(mm.manifest, 'rbU') contents = manifest.read() manifest.close() # The manifest should be UTF-8 encoded try: u_contents = contents.decode('UTF-8') except UnicodeDecodeError: e = sys.exc_info()[1] self.fail(e) # The manifest should contain the UTF-8 filename if sys.version_info >= (3,): self.assertTrue(posix(filename) in u_contents) else: self.assertTrue(posix(filename) in contents) # Python 3 only if sys.version_info >= (3,): def test_write_manifest_allows_utf8_filenames(self): # Test for #303. dist = Distribution(SETUP_ATTRS) dist.script_name = 'setup.py' mm = manifest_maker(dist) mm.manifest = os.path.join('sdist_test.egg-info', 'SOURCES.txt') os.mkdir('sdist_test.egg-info') # UTF-8 filename filename = os.path.join(b('sdist_test'), b('smörbröd.py')) # Add filename and write manifest quiet() try: mm.run() u_filename = filename.decode('utf-8') mm.filelist.files.append(u_filename) # Re-write manifest mm.write_manifest() finally: unquiet() manifest = open(mm.manifest, 'rbU') contents = manifest.read() manifest.close() # The manifest should be UTF-8 encoded try: contents.decode('UTF-8') except UnicodeDecodeError: e = sys.exc_info()[1] self.fail(e) # The manifest should contain the UTF-8 filename self.assertTrue(posix(filename) in contents) # The filelist should have been updated as well self.assertTrue(u_filename in mm.filelist.files) def test_write_manifest_skips_non_utf8_filenames(self): # Test for #303. dist = Distribution(SETUP_ATTRS) dist.script_name = 'setup.py' mm = manifest_maker(dist) mm.manifest = os.path.join('sdist_test.egg-info', 'SOURCES.txt') os.mkdir('sdist_test.egg-info') # Latin-1 filename filename = os.path.join(b('sdist_test'), LATIN1_FILENAME) # Add filename with surrogates and write manifest quiet() try: mm.run() u_filename = filename.decode('utf-8', 'surrogateescape') mm.filelist.files.append(u_filename) # Re-write manifest mm.write_manifest() finally: unquiet() manifest = open(mm.manifest, 'rbU') contents = manifest.read() manifest.close() # The manifest should be UTF-8 encoded try: contents.decode('UTF-8') except UnicodeDecodeError: e = sys.exc_info()[1] self.fail(e) # The Latin-1 filename should have been skipped self.assertFalse(posix(filename) in contents) # The filelist should have been updated as well self.assertFalse(u_filename in mm.filelist.files) def test_manifest_is_read_with_utf8_encoding(self): # Test for #303. dist = Distribution(SETUP_ATTRS) dist.script_name = 'setup.py' cmd = sdist(dist) cmd.ensure_finalized() # Create manifest quiet() try: cmd.run() finally: unquiet() # Add UTF-8 filename to manifest filename = os.path.join(b('sdist_test'), b('smörbröd.py')) cmd.manifest = os.path.join('sdist_test.egg-info', 'SOURCES.txt') manifest = open(cmd.manifest, 'ab') manifest.write(b('\n')+filename) manifest.close() # The file must exist to be included in the filelist open(filename, 'w').close() # Re-read manifest cmd.filelist.files = [] quiet() try: cmd.read_manifest() finally: unquiet() # The filelist should contain the UTF-8 filename if sys.version_info >= (3,): filename = filename.decode('utf-8') self.assertTrue(filename in cmd.filelist.files) # Python 3 only if sys.version_info >= (3,): def test_read_manifest_skips_non_utf8_filenames(self): # Test for #303. dist = Distribution(SETUP_ATTRS) dist.script_name = 'setup.py' cmd = sdist(dist) cmd.ensure_finalized() # Create manifest quiet() try: cmd.run() finally: unquiet() # Add Latin-1 filename to manifest filename = os.path.join(b('sdist_test'), LATIN1_FILENAME) cmd.manifest = os.path.join('sdist_test.egg-info', 'SOURCES.txt') manifest = open(cmd.manifest, 'ab') manifest.write(b('\n')+filename) manifest.close() # The file must exist to be included in the filelist open(filename, 'w').close() # Re-read manifest cmd.filelist.files = [] quiet() try: try: cmd.read_manifest() except UnicodeDecodeError: e = sys.exc_info()[1] self.fail(e) finally: unquiet() # The Latin-1 filename should have been skipped filename = filename.decode('latin-1') self.assertFalse(filename in cmd.filelist.files) @skipIf(sys.version_info >= (3,) and locale.getpreferredencoding() != 'UTF-8', 'Unittest fails if locale is not utf-8 but the manifests is recorded correctly') def test_sdist_with_utf8_encoded_filename(self): # Test for #303. dist = Distribution(SETUP_ATTRS) dist.script_name = 'setup.py' cmd = sdist(dist) cmd.ensure_finalized() # UTF-8 filename filename = os.path.join(b('sdist_test'), b('smörbröd.py')) open(filename, 'w').close() quiet() try: cmd.run() finally: unquiet() if sys.platform == 'darwin': filename = decompose(filename) if sys.version_info >= (3,): fs_enc = sys.getfilesystemencoding() if sys.platform == 'win32': if fs_enc == 'cp1252': # Python 3 mangles the UTF-8 filename filename = filename.decode('cp1252') self.assertTrue(filename in cmd.filelist.files) else: filename = filename.decode('mbcs') self.assertTrue(filename in cmd.filelist.files) else: filename = filename.decode('utf-8') self.assertTrue(filename in cmd.filelist.files) else: self.assertTrue(filename in cmd.filelist.files) def test_sdist_with_latin1_encoded_filename(self): # Test for #303. dist = Distribution(SETUP_ATTRS) dist.script_name = 'setup.py' cmd = sdist(dist) cmd.ensure_finalized() # Latin-1 filename filename = os.path.join(b('sdist_test'), LATIN1_FILENAME) open(filename, 'w').close() self.assertTrue(os.path.isfile(filename)) quiet() try: cmd.run() finally: unquiet() if sys.version_info >= (3,): #not all windows systems have a default FS encoding of cp1252 if sys.platform == 'win32': # Latin-1 is similar to Windows-1252 however # on mbcs filesys it is not in latin-1 encoding fs_enc = sys.getfilesystemencoding() if fs_enc == 'mbcs': filename = filename.decode('mbcs') else: filename = filename.decode('latin-1') self.assertTrue(filename in cmd.filelist.files) else: # The Latin-1 filename should have been skipped filename = filename.decode('latin-1') self.assertFalse(filename in cmd.filelist.files) else: # No conversion takes place under Python 2 and the file # is included. We shall keep it that way for BBB. self.assertTrue(filename in cmd.filelist.files) class TestDummyOutput(environment.ZippedEnvironment): def setUp(self): self.datafile = os.path.join('setuptools', 'tests', 'svn_data', "dummy.zip") self.dataname = "dummy" super(TestDummyOutput, self).setUp() def _run(self): code, data = environment.run_setup_py(["sdist"], pypath=self.old_cwd, data_stream=0) if code: info = "DIR: " + os.path.abspath('.') info += "\n SDIST RETURNED: %i\n\n" % code info += data raise AssertionError(info) datalines = data.splitlines() possible = ( "running sdist", "running egg_info", "creating dummy\.egg-info", "writing dummy\.egg-info", "writing top-level names to dummy\.egg-info", "writing dependency_links to dummy\.egg-info", "writing manifest file 'dummy\.egg-info", "reading manifest file 'dummy\.egg-info", "reading manifest template 'MANIFEST\.in'", "writing manifest file 'dummy\.egg-info", "creating dummy-0.1.1", "making hard links in dummy-0\.1\.1", "copying files to dummy-0\.1\.1", "copying \S+ -> dummy-0\.1\.1", "copying dummy", "copying dummy\.egg-info", "hard linking \S+ -> dummy-0\.1\.1", "hard linking dummy", "hard linking dummy\.egg-info", "Writing dummy-0\.1\.1", "creating dist", "creating 'dist", "Creating tar archive", "running check", "adding 'dummy-0\.1\.1", "tar .+ dist/dummy-0\.1\.1\.tar dummy-0\.1\.1", "gzip .+ dist/dummy-0\.1\.1\.tar", "removing 'dummy-0\.1\.1' \\(and everything under it\\)", ) print(" DIR: " + os.path.abspath('.')) for line in datalines: found = False for pattern in possible: if re.match(pattern, line): print(" READ: " + line) found = True break if not found: raise AssertionError("Unexpexected: %s\n-in-\n%s" % (line, data)) return data def test_sources(self): self._run() class TestSvn(environment.ZippedEnvironment): def setUp(self): version = svn_utils.SvnInfo.get_svn_version() if not version: # None or Empty return self.base_version = tuple([int(x) for x in version.split('.')][:2]) if not self.base_version: raise ValueError('No SVN tools installed') elif self.base_version < (1, 3): raise ValueError('Insufficient SVN Version %s' % version) elif self.base_version >= (1, 9): #trying the latest version self.base_version = (1, 8) self.dataname = "svn%i%i_example" % self.base_version self.datafile = os.path.join('setuptools', 'tests', 'svn_data', self.dataname + ".zip") super(TestSvn, self).setUp() @skipIf(not test_svn._svn_check, "No SVN to text, in the first place") def test_walksvn(self): if self.base_version >= (1, 6): folder2 = 'third party2' folder3 = 'third party3' else: folder2 = 'third_party2' folder3 = 'third_party3' #TODO is this right expected = set([ os.path.join('a file'), os.path.join(folder2, 'Changes.txt'), os.path.join(folder2, 'MD5SUMS'), os.path.join(folder2, 'README.txt'), os.path.join(folder3, 'Changes.txt'), os.path.join(folder3, 'MD5SUMS'), os.path.join(folder3, 'README.txt'), os.path.join(folder3, 'TODO.txt'), os.path.join(folder3, 'fin'), os.path.join('third_party', 'README.txt'), os.path.join('folder', folder2, 'Changes.txt'), os.path.join('folder', folder2, 'MD5SUMS'), os.path.join('folder', folder2, 'WatashiNiYomimasu.txt'), os.path.join('folder', folder3, 'Changes.txt'), os.path.join('folder', folder3, 'fin'), os.path.join('folder', folder3, 'MD5SUMS'), os.path.join('folder', folder3, 'oops'), os.path.join('folder', folder3, 'WatashiNiYomimasu.txt'), os.path.join('folder', folder3, 'ZuMachen.txt'), os.path.join('folder', 'third_party', 'WatashiNiYomimasu.txt'), os.path.join('folder', 'lalala.txt'), os.path.join('folder', 'quest.txt'), # The example will have a deleted file # (or should) but shouldn't return it ]) self.assertEqual(set(x for x in walk_revctrl()), expected) def test_suite(): return unittest.defaultTestLoader.loadTestsFromName(__name__)
tcwicklund/django
refs/heads/master
tests/template_tests/filter_tests/test_stringformat.py
345
from django.template.defaultfilters import stringformat from django.test import SimpleTestCase from django.utils.safestring import mark_safe from ..utils import setup class StringformatTests(SimpleTestCase): """ Notice that escaping is applied *after* any filters, so the string formatting here only needs to deal with pre-escaped characters. """ @setup({'stringformat01': '{% autoescape off %}.{{ a|stringformat:"5s" }}. .{{ b|stringformat:"5s" }}.{% endautoescape %}'}) def test_stringformat01(self): output = self.engine.render_to_string('stringformat01', {'a': 'a<b', 'b': mark_safe('a<b')}) self.assertEqual(output, '. a<b. . a<b.') @setup({'stringformat02': '.{{ a|stringformat:"5s" }}. .{{ b|stringformat:"5s" }}.'}) def test_stringformat02(self): output = self.engine.render_to_string('stringformat02', {'a': 'a<b', 'b': mark_safe('a<b')}) self.assertEqual(output, '. a&lt;b. . a<b.') class FunctionTests(SimpleTestCase): def test_format(self): self.assertEqual(stringformat(1, '03d'), '001') def test_invalid(self): self.assertEqual(stringformat(1, 'z'), '')
lisa-lab/pylearn2
refs/heads/master
pylearn2/models/tests/test_maxout.py
44
""" Tests of the maxout functionality. So far these don't test correctness, just that you can run the objects. """ __authors__ = "Ian Goodfellow" __copyright__ = "Copyright 2013, Universite de Montreal" __credits__ = ["Ian Goodfellow"] __license__ = "3-clause BSD" __maintainer__ = "LISA Lab" import numpy as np import unittest # Skip test if cuda_ndarray is not available. from nose.plugins.skip import SkipTest from theano import config from theano import function from theano.sandbox import cuda from theano import tensor as T from pylearn2.config import yaml_parse from pylearn2.datasets.exc import NoDataPathError from pylearn2.models.mlp import MLP from pylearn2.models.maxout import Maxout from pylearn2.space import VectorSpace def test_min_zero(): """ This test guards against a bug where the size of the zero buffer used with the min_zero flag was specified to have the wrong size. The bug only manifested when compiled with optimizations off, because the optimizations discard information about the size of the zero buffer. """ mlp = MLP(input_space=VectorSpace(1), layers= [Maxout(layer_name="test_layer", num_units=1, num_pieces = 2, irange=.05, min_zero=True)]) X = T.matrix() output = mlp.fprop(X) # Compile in debug mode so we don't optimize out the size of the buffer # of zeros f = function([X], output, mode="DEBUG_MODE") f(np.zeros((1, 1)).astype(X.dtype)) def test_maxout_basic(): # Tests that we can load a densely connected maxout model # and train it for a few epochs (without saving) on a dummy # dataset-- tiny model and dataset yaml_string = """ !obj:pylearn2.train.Train { dataset: &train !obj:pylearn2.testing.datasets.random_one_hot_dense_d\ esign_matrix { rng: !obj:numpy.random.RandomState { seed: [2013, 3, 16] }, num_examples: 12, dim: 2, num_classes: 10 }, model: !obj:pylearn2.models.mlp.MLP { layers: [ !obj:pylearn2.models.maxout.Maxout { layer_name: 'h0', num_units: 3, num_pieces: 2, irange: .005, max_col_norm: 1.9365, }, !obj:pylearn2.models.maxout.Maxout { layer_name: 'h1', num_units: 2, num_pieces: 3, irange: .005, max_col_norm: 1.9365, }, !obj:pylearn2.models.mlp.Softmax { max_col_norm: 1.9365, layer_name: 'y', n_classes: 10, irange: .005 } ], nvis: 2, }, algorithm: !obj:pylearn2.training_algorithms.sgd.SGD { learning_rule: !obj:pylearn2.training_algorithms.learning_rule.Mo\ mentum { init_momentum: 0.5 }, batch_size: 6, learning_rate: .1, monitoring_dataset: { 'train' : *train }, cost: !obj:pylearn2.costs.mlp.dropout.Dropout { input_include_probs: { 'h0' : .8 }, input_scales: { 'h0': 1. } }, termination_criterion: !obj:pylearn2.termination_criteria.EpochCo\ unter { max_epochs: 3, }, update_callbacks: !obj:pylearn2.training_algorithms.sgd.Exponenti\ alDecay { decay_factor: 1.000004, min_lr: .000001 } }, extensions: [ !obj:pylearn2.training_algorithms.learning_rule.MomentumAdjustor { start: 1, saturate: 250, final_momentum: .7 } ], } """ train = yaml_parse.load(yaml_string) train.main_loop() yaml_string_maxout_conv_c01b_basic = """ !obj:pylearn2.train.Train { dataset: &train !obj:pylearn2.testing.datasets.random_one_hot_topolog\ ical_dense_design_matrix { rng: !obj:numpy.random.RandomState { seed: [2013, 3, 16] }, shape: &input_shape [10, 10], channels: 1, axes: ['c', 0, 1, 'b'], num_examples: 12, num_classes: 10 }, model: !obj:pylearn2.models.mlp.MLP { batch_size: 2, layers: [ !obj:pylearn2.models.maxout.MaxoutConvC01B { layer_name: 'h0', pad: 0, num_channels: 8, num_pieces: 2, kernel_shape: [2, 2], pool_shape: [2, 2], pool_stride: [2, 2], irange: .005, max_kernel_norm: .9, }, # The following layers are commented out to make this # test pass on a GTX 285. # cuda-convnet isn't really meant to run on such an old # graphics card but that's what we use for the buildbot. # In the long run, we should move the buildbot to a newer # graphics card and uncomment the remaining layers. # !obj:pylearn2.models.maxout.MaxoutConvC01B { # layer_name: 'h1', # pad: 3, # num_channels: 4, # num_pieces: 4, # kernel_shape: [3, 3], # pool_shape: [2, 2], # pool_stride: [2, 2], # irange: .005, # max_kernel_norm: 1.9365, # }, #!obj:pylearn2.models.maxout.MaxoutConvC01B { # pad: 3, # layer_name: 'h2', # num_channels: 16, # num_pieces: 2, # kernel_shape: [2, 2], # pool_shape: [2, 2], # pool_stride: [2, 2], # irange: .005, # max_kernel_norm: 1.9365, # }, !obj:pylearn2.models.mlp.Softmax { max_col_norm: 1.9365, layer_name: 'y', n_classes: 10, irange: .005 } ], input_space: !obj:pylearn2.space.Conv2DSpace { shape: *input_shape, num_channels: 1, axes: ['c', 0, 1, 'b'], }, }, algorithm: !obj:pylearn2.training_algorithms.sgd.SGD { learning_rate: .05, learning_rule: !obj:pylearn2.training_algorithms.learning_rule.Mo\ mentum { init_momentum: 0.9 }, monitoring_dataset: { 'train': *train }, cost: !obj:pylearn2.costs.mlp.dropout.Dropout { input_include_probs: { 'h0' : .8 }, input_scales: { 'h0': 1. } }, termination_criterion: !obj:pylearn2.termination_criteria.EpochCo\ unter { max_epochs: 3 }, update_callbacks: !obj:pylearn2.training_algorithms.sgd.Exponenti\ alDecay { decay_factor: 1.00004, min_lr: .000001 } }, extensions: [ !obj:pylearn2.training_algorithms.learning_rule.MomentumAdjustor { start: 1, saturate: 250, final_momentum: .7 } ] } """ yaml_string_maxout_conv_c01b_cifar10 = """ !obj:pylearn2.train.Train { dataset: &train !obj:pylearn2.datasets.cifar10.CIFAR10 { toronto_prepro: True, which_set: 'train', axes: ['c', 0, 1, 'b'], start: 0, stop: 50000 }, model: !obj:pylearn2.models.mlp.MLP { batch_size: 100, input_space: !obj:pylearn2.space.Conv2DSpace { shape: [32, 32], num_channels: 3, axes: ['c', 0, 1, 'b'], }, layers: [ !obj:pylearn2.models.maxout.MaxoutConvC01B { layer_name: 'conv1', pad: 0, num_channels: 32, num_pieces: 1, kernel_shape: [5, 5], pool_shape: [3, 3], pool_stride: [2, 2], irange: .01, min_zero: True, W_lr_scale: 1., b_lr_scale: 2., tied_b: True, max_kernel_norm: 9.9, }, !obj:pylearn2.models.mlp.Softmax { layer_name: 'y', n_classes: 10, istdev: .01, W_lr_scale: 1., b_lr_scale: 2., max_col_norm: 9.9365 } ], }, algorithm: !obj:pylearn2.training_algorithms.sgd.SGD { learning_rule: !obj:pylearn2.training_algorithms.learning_rule.Mo\ mentum { init_momentum: 0.9 }, batch_size: 100, learning_rate: .01, monitoring_dataset: { 'valid' : !obj:pylearn2.datasets.cifar10.CIFAR10 { toronto_prepro: True, axes: ['c', 0, 1, 'b'], which_set: 'train', start: 40000, stop: 50000 }, 'test' : !obj:pylearn2.datasets.cifar10.CIFAR10 { toronto_prepro: True, axes: ['c', 0, 1, 'b'], which_set: 'test', } }, termination_criterion: !obj:pylearn2.termination_criteria.EpochCo\ unter { max_epochs: 5 } } } """ yaml_string_maxout_conv_c01b_cifar10_fast = """ !obj:pylearn2.train.Train { dataset: &train !obj:pylearn2.datasets.cifar10.CIFAR10 { toronto_prepro: True, which_set: 'train', axes: ['c', 0, 1, 'b'], start: 0, stop: 100 }, model: !obj:pylearn2.models.mlp.MLP { batch_size: 100, input_space: !obj:pylearn2.space.Conv2DSpace { shape: [32, 32], num_channels: 3, axes: ['c', 0, 1, 'b'], }, layers: [ !obj:pylearn2.models.maxout.MaxoutConvC01B { layer_name: 'conv1', pad: 0, num_channels: 16, num_pieces: 1, kernel_shape: [5, 5], pool_shape: [3, 3], pool_stride: [2, 2], irange: .01, min_zero: False, W_lr_scale: 1., b_lr_scale: 2., tied_b: True, max_kernel_norm: 9.9, }, !obj:pylearn2.models.mlp.Softmax { layer_name: 'y', n_classes: 10, istdev: .03, W_lr_scale: 1., b_lr_scale: 2., max_col_norm: 8.5 } ], }, algorithm: !obj:pylearn2.training_algorithms.sgd.SGD { learning_rule: !obj:pylearn2.training_algorithms.learning_rule.Mo\ momentum: { init_momentum: 0.9 }, batch_size: 100, learning_rate: .01, monitoring_dataset: { 'valid' : !obj:pylearn2.datasets.cifar10.CIFAR10 { toronto_prepro: True, axes: ['c', 0, 1, 'b'], which_set: 'train', start: 40000, stop: 40100 }, 'test' : !obj:pylearn2.datasets.cifar10.CIFAR10 { toronto_prepro: True, axes: ['c', 0, 1, 'b'], which_set: 'test', } }, termination_criterion: !obj:pylearn2.termination_criteria.EpochCo\ unter { max_epochs: 5 } } } """ class TestMaxout(unittest.TestCase): def test_maxout_conv_c01b_basic_err(self): assert cuda.cuda_enabled is False self.assertRaises(RuntimeError, yaml_parse.load, yaml_string_maxout_conv_c01b_basic) def test_maxout_conv_c01b_basic(self): if cuda.cuda_available is False: raise SkipTest('Optional package cuda disabled') if not hasattr(cuda, 'unuse'): raise Exception("Theano version too old to run this test!") # Tests that we can run a small convolutional model on GPU, assert cuda.cuda_enabled is False # Even if there is a GPU, but the user didn't specify device=gpu # we want to run this test. try: old_floatX = config.floatX cuda.use('gpu') config.floatX = 'float32' train = yaml_parse.load(yaml_string_maxout_conv_c01b_basic) train.main_loop() finally: config.floatX = old_floatX cuda.unuse() assert cuda.cuda_enabled is False def test_maxout_conv_c01b_cifar10(self): if cuda.cuda_available is False: raise SkipTest('Optional package cuda disabled') if not hasattr(cuda, 'unuse'): raise Exception("Theano version too old to run this test!") # Tests that we can run a small convolutional model on GPU, assert cuda.cuda_enabled is False # Even if there is a GPU, but the user didn't specify device=gpu # we want to run this test. try: old_floatX = config.floatX cuda.use('gpu') config.floatX = 'float32' try: if config.mode in ['DEBUG_MODE', 'DebugMode']: train = yaml_parse.load(yaml_string_maxout_conv_c01b_cifar10_fast) else: train = yaml_parse.load(yaml_string_maxout_conv_c01b_cifar10) except NoDataPathError: raise SkipTest("PYLEARN2_DATA_PATH environment variable " "not defined") train.main_loop() # Check that the performance is close to the expected one: # test_y_misclass: 0.3777000308036804 misclass_chan = train.algorithm.monitor.channels['test_y_misclass'] if not config.mode in ['DEBUG_MODE', 'DebugMode']: assert misclass_chan.val_record[-1] < 0.38, \ ("misclass_chan.val_record[-1] = %g" % misclass_chan.val_record[-1]) # test_y_nll: 1.0978516340255737 nll_chan = train.algorithm.monitor.channels['test_y_nll'] if not config.mode in ['DEBUG_MODE', 'DebugMode']: assert nll_chan.val_record[-1] < 1.1 finally: config.floatX = old_floatX cuda.unuse() assert cuda.cuda_enabled is False if __name__ == '__main__': t = TestMaxout('setUp') t.setUp() t.test_maxout_conv_c01b_basic() if 0: unittest.main()
google-research/valan
refs/heads/master
r2r/house_parser.py
1
# coding=utf-8 # Copyright 2019 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility for parsing artifacts about a R2R house specification.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import json import math import os import re import numpy as np import tensorflow.compat.v2 as tf from valan.r2r import house_utils _BANNED_MP40_CAT_INDEX = {0, 40, 41} # Note: `oriented_bbox` is another namedtuple of ('axis0', 'axis1', 'radii') RoomObject = collections.namedtuple('RoomObject', [ 'center', 'distance', 'name', 'category', 'clean_category', 'oriented_bbox' ]) class Region(object): """Region data in the house segmentation file.""" NUM_TOKENS = 20 # Number of tokens to expect in line. INDEX_LOC = 1 # Location of region index. LEVEL_LOC = 2 # Location of level index. LABEL_LOC = 5 # Location of label. PX_LOC = 6 # Location of px. PY_LOC = 7 # Location of py. PZ_LOC = 8 # Location of pz. def __init__(self, region_line): parts = region_line.strip().split() assert 'R' == parts[0] assert self.NUM_TOKENS == len(parts) self.index = int(parts[self.INDEX_LOC]) self.level_index = int(parts[self.LEVEL_LOC]) self.label = parts[self.LABEL_LOC] self.center = (float(parts[self.PX_LOC]), float(parts[self.PY_LOC]), float(parts[self.PZ_LOC])) class Pano(object): """Pano data in the house segmentation file.""" NUM_TOKENS = 13 # Number of tokens to expect in line. NAME_LOC = 1 # Location of name. INDEX_LOC = 2 # Location of index. REGION_LOC = 3 # Location of region index. PX_LOC = 5 # Location of px. PY_LOC = 6 # Location of py. PZ_LOC = 7 # Location of pz. def __init__(self, pano_line): parts = pano_line.strip().split() assert 'P' == parts[0] assert self.NUM_TOKENS == len(parts) self.name = parts[self.NAME_LOC] self.index = int(parts[self.INDEX_LOC]) self.region_index = int(parts[self.REGION_LOC]) self.center = (float(parts[self.PX_LOC]), float(parts[self.PY_LOC]), float(parts[self.PZ_LOC])) # List of images (`Image`) of the pano. self.images = [] def get_available_headings(self): # Only need to consider the heading angles of one of the 3 cameras. return [image.heading for image in self.images if image.camera_index == 0] def get_images_at(self, heading, threshold=math.pi / 12): """Returns the images within threshold arc distance from given heading.""" angle_distances = [ house_utils.compute_arc_distance(heading, image.heading) for image in self.images ] matches = [ self.images[idx] for idx, dist in enumerate(angle_distances) if dist <= threshold ] # Sort matches by pitch angle for consistency. sorted_images = sorted(matches, key=lambda image: image.pitch) return sorted_images class Image(object): """Image data in the house segmentation file.""" NUM_TOKENS = 41 # Number of tokens to expect in line. INDEX_LOC = 1 # Location of image index. PANO_INDEX_LOC = 2 # Location of panorama index. NAME_LOC = 3 # Location of the name of the image. CAMERA_INDEX_LOC = 4 # Location of the camera index. HEADING_INDEX_LOC = 5 # Location of the heading (yaw) index. EXTRINSIC_MATRIX_START_LOC = 6 # Start location of extrinsic camera matrix. EXTRINSIC_MATRIX_END_LOC = 18 # End location of extrinsic camera matrix. def __init__(self, image_line, scan_id): self.scan_id = scan_id parts = image_line.strip().split() assert 'I' == parts[0] assert self.NUM_TOKENS == len(parts) self.index = int(parts[self.INDEX_LOC]) self.pano_index = int(parts[self.PANO_INDEX_LOC]) self.name = parts[self.NAME_LOC] self.camera_index = int(parts[self.CAMERA_INDEX_LOC]) self.heading_index = int(parts[self.HEADING_INDEX_LOC]) # Compute heading and pitch from extrinsing matrix. extrinsic_coordinates = [ float(coord) for coord in parts[self.EXTRINSIC_MATRIX_START_LOC:self.EXTRINSIC_MATRIX_END_LOC] ] rotation_matrix = [ extrinsic_coordinates[i:i + 3] for i in range(0, len(extrinsic_coordinates), 4) ] self.heading, self.pitch, _ = house_utils.get_euler_angles(rotation_matrix) class Category(object): """Category data in the house segmentation file.""" NUM_TOKENS = 11 # Number of tokens to expect in line. INDEX_LOC = 1 # Location of index. CAT_MAP_INDEX_LOC = 2 # Location of category mapping index. CAT_MAP_NAME_LOC = 3 # Location of category mapping name. MPCAT_INDEX_LOC = 4 # Location of mpcat index. MPCAT_NAME_LOC = 5 # Location of mpcat name. def __init__(self, category_line, category_map=None): """Extract object index and category name for a line in the .house file.""" parts = category_line.strip().split() assert 'C' == parts[0] assert self.NUM_TOKENS == len(parts) self.index = int(parts[self.INDEX_LOC]) self.category_mapping_index = int(parts[self.CAT_MAP_INDEX_LOC]) # Raw category name self.category_mapping_name = ' '.join( parts[self.CAT_MAP_NAME_LOC].split('#')) self.mpcat40_index = int(parts[self.MPCAT_INDEX_LOC]) self.mpcat40_name = parts[self.MPCAT_NAME_LOC] # Cleaned category name if category_map: self.clean_category_name = self._get_clean_cat_name( self.category_mapping_index, category_map) def _get_clean_cat_name(self, category_index, category_map, count_cutoff_threshold=5): """Map category index to a clean category name instead of raw categeory. The clean categories are from the R2R `category_mapping.tsv` file. It corrects typos and standardizes the raw categories, which is much more fine grained than the mpcat40 categories (which only has 40 categories). For more information see: https://github.com/niessner/Matterport/blob/master/metadata/category_mapping.tsv Args: category_index: int; the category mapping index extracted from the category line from the .house file. category_map: a dict returned by `_load_cat_map()`, containing mappings from category index to category names, mpcat40 name, and count. count_cutoff_threshold: categories with counts below the threshold are replaced with their corresponding mpcat40 names. This is used to truncate the long tail of rarely used category names. Returns: A unicode string for the clean category name. """ cat_map = category_map[category_index] if cat_map['count'] >= count_cutoff_threshold: clean_name = cat_map['clean_category'] else: clean_name = cat_map['mpcat40'] return clean_name class Object(object): """Object data in the house segmentation file.""" NUM_TOKENS = 24 # Number of tokens to expect in line. INDEX_LOC = 1 # Location of index. REGION_LOC = 2 # Location of index. CAT_LOC = 3 # Location of index. PX_LOC = 4 # Location of px. PY_LOC = 5 # Location of py. PZ_LOC = 6 # Location of pz. AXIS0_X_LOC = 7 # Location of X axis min of the oriented bbox AXIS0_Y_LOC = 8 # Location of Y axis min of the oriented bbox AXIS0_Z_LOC = 9 # Location of Z axis min of the oriented bbox AXIS1_X_LOC = 10 # Location of X axis max of the oriented bbox AXIS1_Y_LOC = 11 # Location of Y axis max of the oriented bbox AXIS1_Z_LOC = 12 # Location of Z axis max of the oriented bbox RADIUS_X_LOC = 13 # Location of X raidus of the oriented bbox RADIUS_Y_LOC = 14 # Location of Y raidus of the oriented bbox RADIUS_Z_LOC = 15 # Location of Z raidus of the oriented bbox def __init__(self, object_line): parts = object_line.strip().split() assert 'O' == parts[0] assert self.NUM_TOKENS == len(parts) self.index = int(parts[self.INDEX_LOC]) self.region_index = int(parts[self.REGION_LOC]) self.category_index = int(parts[self.CAT_LOC]) self.center = (float(parts[self.PX_LOC]), float(parts[self.PY_LOC]), float(parts[self.PZ_LOC])) # Oriented bounding box (obbox) oriented_bbox = collections.namedtuple('OrientedBbox', ['axis0', 'axis1', 'radii']) axis0 = (float(parts[self.AXIS0_X_LOC]), float(parts[self.AXIS0_Y_LOC]), float(parts[self.AXIS0_Z_LOC])) axis1 = (float(parts[self.AXIS1_X_LOC]), float(parts[self.AXIS1_Y_LOC]), float(parts[self.AXIS1_Z_LOC])) radii = (float(parts[self.RADIUS_X_LOC]), float(parts[self.RADIUS_Y_LOC]), float(parts[self.RADIUS_Z_LOC])) self.obbox = oriented_bbox(axis0, axis1, radii) def is_well_formed(self): return (self.index >= 0 and self.region_index >= 0 and self.category_index >= 0) class R2RHouseParser(object): """Parser to extract various annotations in a house to assist perception.""" def __init__(self, house_file_path, category_map_dir=None, category_map_file='category_mapping.tsv', banned_mp40_cat_index=None): """Parses regions, panos, categories and objects from house spec file. For more information see: https://github.com/niessner/Matterport/blob/master/data_organization.md Args: house_file_path: Path to scan id house specification file. category_map_dir: Dir of category mapping file 'category_mapping.tsv'. If not provided, then the `clean_category` will be omitted. category_map_file: str; file name for the category mapping table. Use default unless the mapping table is different. banned_mp40_cat_index: A set of mpcat40 category indices, e.g., {0, 41} for (void, unlabled). If provided, then these categories will be ignored when extracting objects of each pano. """ # Load category map and banned mp40 categories. if category_map_dir: assert tf.io.gfile.isdir( category_map_dir), '{} must be an existing dir.'.format( category_map_dir) category_map = _load_cat_map( category_map_file, category_map_dir, delimiter='\t') else: # Default to None and omit `clean_category_name` if dir is not given. category_map = None if not banned_mp40_cat_index: self.banned_mp40_cat_index = _BANNED_MP40_CAT_INDEX else: self.banned_mp40_cat_index = banned_mp40_cat_index self.scan_id = os.path.splitext(os.path.basename(house_file_path))[0] with tf.io.gfile.GFile(house_file_path, 'r') as input_file: # Skip but check header line. assert re.match('^ASCII .*', input_file.readline().strip()) is not None house_info = input_file.readline().strip().split() assert 29 == len(house_info) self.num_images = int(house_info[3]) self.num_panos = int(house_info[4]) self.num_objects = int(house_info[8]) self.num_categories = int(house_info[9]) self.num_regions = int(house_info[10]) self.regions = {} self.panos = {} self.categories = {} self.objects = {} self.images = {} for line in input_file: if line[0] == 'R': r = Region(line) assert r.index not in self.regions self.regions[r.index] = r elif line[0] == 'P': p = Pano(line) assert p.index not in self.panos self.panos[p.index] = p elif line[0] == 'C': c = Category(line, category_map) assert c.index not in self.categories self.categories[c.index] = c elif line[0] == 'O': o = Object(line) assert o.index not in self.objects self.objects[o.index] = o elif line[0] == 'I': i = Image(line, self.scan_id) assert i.index not in self.images self.images[i.index] = i assert self.num_regions == len(self.regions) assert self.num_panos == len(self.panos) assert self.num_categories == len(self.categories) assert self.num_objects == len(self.objects) assert self.num_images == len(self.images) # Organize objects into regions for easy retrieval later. self.pano_name_map = {} for p in self.panos.values(): self.pano_name_map[p.name] = p.index self.region_object_map = collections.defaultdict(list) for o in self.objects.values(): self.region_object_map[o.region_index] += [o.index] # Add images to the associated panos. for image in self.images.values(): pano = self.get_pano_by_name(image.name) pano.images.append(image) def __repr__(self): return 'Regions: {}, Panos: {}, Cats: {}, Objs: {}'.format( self.num_regions, self.num_panos, self.num_categories, self.num_objects) def get_pano_objects(self, pano_name): """Extract the set of objects given a pano. Only returns the closest object of the same mp40 category and skips any objects with mp40 category in `self.banned_mp40_cat_index` (e.g. misc, void, unlabeled categories). Args: pano_name: panoromic hash id. Returns: Dictionary where key is the center of the `RoomObject` and the value is the `RoomObject` named tuple. In particular, `RoomObject.oriented_bbox` is another named tuple (axis0, axis1, radii) containing the axis orientation of the bounding box and the radii of the object along each axis. """ pano_id = self.pano_name_map.get(pano_name, None) if pano_id is None: # Note that `pano_id` is int and thus can be 0. return {} room_objects = {} region_index = self.panos[pano_id].region_index pano_center = self.panos[pano_id].center for object_index in self.region_object_map[region_index]: try: category = self.categories[self.objects[object_index].category_index] # NOTE: 'unknown' objects are sometimes labeled as mpcat40=40 (misc) # instead of mpcat40=41 (unlabeled). So we specifically exclude it here. if ('unknown' not in category.category_mapping_name.lower()) and ( category.mpcat40_index not in self.banned_mp40_cat_index): object_center = self.objects[object_index].center assert object_center not in room_objects, self.objects[object_index] room_objects[object_center] = RoomObject( object_center, np.linalg.norm(np.array(object_center) - np.array(pano_center)), category.category_mapping_name, category.mpcat40_name, (category.clean_category_name if hasattr( category, 'clean_category_name') else None), self.objects[object_index].obbox) except KeyError: # Note that this happens because some objects have been marked with -1 # categories. We can safely ignore these objects. assert self.objects[object_index].category_index == -1 return room_objects def get_pano_by_name(self, pano_name): return self.panos[self.pano_name_map[pano_name]] def get_panos_graph(self, connections_file, cache_best_paths_and_distances=False): """Returns a house_utils.Graph object with the panos as nodes. The connectivity file should be a json with a single line, containing one dictionary for every pano in the house scan. The fields of this dictionary used in this method are 'image_id', a unique string that identifies the pano, and 'unobstructed', a list of booleans with length equal to the number of panos in the scan, representing whether there is an unobstructed direct path from the current pano to the pano with that index. A more detailed description of the format of the file can be found at https://github.com/peteanderson80/Matterport3DSimulator/tree/master/connectivity. Args: connections_file: Path to the file containing the connections. cache_best_paths_and_distances: Whether or not to cache the best path and distance for every pair of nodes in the graph. """ assert tf.io.gfile.exists(connections_file), ('Missing required file: %s' % connections_file) with tf.io.gfile.GFile(connections_file, 'r') as f: connections_info = json.loads(f.readline()) pano_idx_map = {} # Dictionary mapping idx in connection file to pano name. excluded_pano_names = set() # Set of names of excluded panos. for idx, pano_info in enumerate(connections_info): pano_name = pano_info['image_id'] pano_idx_map[idx] = pano_name if not pano_info['included']: excluded_pano_names.add(pano_name) # We build a dictionary indexed by the id of the panos, with values # being a dictionary of connected panos to a house_utils.ConnectionInfo # storing the distance and heading_angle between them. nodes_dict = collections.defaultdict(house_utils.NodeInfo) for pano_info in connections_info: current_pano = self.get_pano_by_name(pano_info['image_id']) if current_pano.name in excluded_pano_names: continue # Don't add excluded panos to the graph. for index, is_unobstructed in enumerate(pano_info['unobstructed']): connected_pano = self.get_pano_by_name(pano_idx_map[index]) # Path should be unobstructed and target point should be included in the # simulator. if is_unobstructed and connected_pano.name not in excluded_pano_names: distance = house_utils.compute_distance(current_pano.center, connected_pano.center) heading_angle = house_utils.compute_heading_angle( current_pano.center, connected_pano.center, radians=True, apply_r2r_correction=True) pitch_angle = house_utils.compute_pitch_angle( current_pano.center, connected_pano.center, radians=True) connection_info = house_utils.ConnectionInfo(distance, heading_angle, pitch_angle) nodes_dict[current_pano.name].connections[connected_pano.name] = ( connection_info) graph = house_utils.Graph(nodes_dict, cache_best_paths_and_distances) for node in graph.nodes.keys(): graph.nodes[node].coords = self.get_pano_by_name(node).center return graph def _load_cat_map(category_map_file='category_mapping.tsv', file_dir='', delimiter='\t'): """Load category mapping table from file. The mapping table is available at: https://github.com/niessner/Matterport/blob/master/metadata/category_mapping.tsv Args: category_map_file: str; category mapping table file. file_dir: str; the dir to `category_map_file`. delimiter: str; optional delimiter for the input table. Returns: A dict that maps category index to category names and counts. """ filepath = os.path.join(file_dir, category_map_file) assert tf.io.gfile.exists(filepath), ( 'Missing category mapping file: {}'.format(filepath)) data = {} with tf.io.gfile.GFile(filepath, 'r') as f: reader = csv.reader(f, delimiter=delimiter) for i, row in enumerate(reader): assert len(row) == 18, 'Num columns must be 18.' if i == 0: header = row assert header[0:4] == ['index', 'raw_category', 'category', 'count'] assert header[-2:] == ['mpcat40index', 'mpcat40'] else: entries = [r.lower() for r in row] # entries[0] is the index of each line. data[int(entries[0])] = { 'raw_category': entries[1], 'clean_category': # Only take the first part if has '\' in name. entries[2].split('/')[0].strip(), 'count': int(entries[3]), 'mpcat40index': int(entries[-2]), 'mpcat40': entries[-1], } return data
antoviaque/edx-platform
refs/heads/master
common/test/acceptance/pages/studio/asset_index.py
53
""" The Files and Uploads page for a course in Studio """ import urllib import os from opaque_keys.edx.locator import CourseLocator from . import BASE_URL from .course_page import CoursePage from bok_choy.javascript import wait_for_js, requirejs @requirejs('js/views/assets') class AssetIndexPage(CoursePage): """ The Files and Uploads page for a course in Studio """ url_path = "assets" type_filter_element = '#js-asset-type-col' @property def url(self): """ Construct a URL to the page within the course. """ # TODO - is there a better way to make this agnostic to the underlying default module store? default_store = os.environ.get('DEFAULT_STORE', 'draft') course_key = CourseLocator( self.course_info['course_org'], self.course_info['course_num'], self.course_info['course_run'], deprecated=(default_store == 'draft') ) url = "/".join([BASE_URL, self.url_path, urllib.quote_plus(unicode(course_key))]) return url if url[-1] is '/' else url + '/' @wait_for_js def is_browser_on_page(self): return all([ self.q(css='body.view-uploads').present, self.q(css='.page-header').present, not self.q(css='div.ui-loading').visible, ]) @wait_for_js def type_filter_on_page(self): """ Checks that type filter is in table header. """ return self.q(css=self.type_filter_element).present @wait_for_js def type_filter_header_label_visible(self): """ Checks type filter label is added and visible in the pagination header. """ return self.q(css='span.filter-column').visible @wait_for_js def click_type_filter(self): """ Clicks type filter menu. """ self.q(css=".filterable-column .nav-item").click() @wait_for_js def select_type_filter(self, filter_number): """ Selects Type filter from dropdown which filters the results. Returns False if no filter. """ self.wait_for_ajax() if self.q(css=".filterable-column .nav-item").is_present(): if not self.q(css=self.type_filter_element + " .wrapper-nav-sub").visible: self.q(css=".filterable-column > .nav-item").first.click() self.wait_for_element_visibility( self.type_filter_element + " .wrapper-nav-sub", "Type Filter promise satisfied.") self.q(css=self.type_filter_element + " .column-filter-link").nth(filter_number).click() self.wait_for_ajax() return True return False def return_results_set(self): """ Returns the asset set from the page """ return self.q(css="#asset-table-body tr").results
meego-tablet-ux/meego-app-browser
refs/heads/master
third_party/mesa/MesaLib/src/mapi/glapi/gen/gl_procs.py
33
#!/usr/bin/env python # (C) Copyright IBM Corporation 2004, 2005 # All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # on the rights to use, copy, modify, merge, publish, distribute, sub # license, and/or sell copies of the Software, and to permit persons to whom # the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice (including the next # paragraph) shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL # IBM AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # # Authors: # Ian Romanick <idr@us.ibm.com> import license import gl_XML, glX_XML import sys, getopt class PrintGlProcs(gl_XML.gl_print_base): def __init__(self, long_strings, es=False): gl_XML.gl_print_base.__init__(self) self.es = es self.long_strings = long_strings self.name = "gl_procs.py (from Mesa)" self.license = license.bsd_license_template % ( \ """Copyright (C) 1999-2001 Brian Paul All Rights Reserved. (C) Copyright IBM Corporation 2004, 2006""", "BRIAN PAUL, IBM") def printRealHeader(self): print """ /* This file is only included by glapi.c and is used for * the GetProcAddress() function */ typedef struct { GLint Name_offset; #if defined(NEED_FUNCTION_POINTER) || defined(GLX_INDIRECT_RENDERING) _glapi_proc Address; #endif GLuint Offset; } glprocs_table_t; #if !defined(NEED_FUNCTION_POINTER) && !defined(GLX_INDIRECT_RENDERING) # define NAME_FUNC_OFFSET(n,f1,f2,f3,o) { n , o } #elif defined(NEED_FUNCTION_POINTER) && !defined(GLX_INDIRECT_RENDERING) # define NAME_FUNC_OFFSET(n,f1,f2,f3,o) { n , (_glapi_proc) f1 , o } #elif defined(NEED_FUNCTION_POINTER) && defined(GLX_INDIRECT_RENDERING) # define NAME_FUNC_OFFSET(n,f1,f2,f3,o) { n , (_glapi_proc) f2 , o } #elif !defined(NEED_FUNCTION_POINTER) && defined(GLX_INDIRECT_RENDERING) # define NAME_FUNC_OFFSET(n,f1,f2,f3,o) { n , (_glapi_proc) f3 , o } #endif """ return def printRealFooter(self): print '' print '#undef NAME_FUNC_OFFSET' return def printFunctionString(self, name): if self.long_strings: print ' "gl%s\\0"' % (name) else: print " 'g','l',", for c in name: print "'%s'," % (c), print "'\\0'," def printBody(self, api): print '' if self.long_strings: print 'static const char gl_string_table[] =' else: print 'static const char gl_string_table[] = {' base_offset = 0 table = [] for func in api.functionIterateByOffset(): name = func.dispatch_name() self.printFunctionString(func.name) table.append((base_offset, "gl" + name, "gl" + name, "NULL", func.name)) # The length of the function's name, plus 2 for "gl", # plus 1 for the NUL. base_offset += len(func.name) + 3 for func in api.functionIterateByOffset(): for n in func.entry_points: if n != func.name: name = func.dispatch_name() self.printFunctionString( n ) if func.has_different_protocol(n): alt_name = "gl" + func.static_glx_name(n) table.append((base_offset, "gl" + name, alt_name, alt_name, func.name)) else: table.append((base_offset, "gl" + name, "gl" + name, "NULL", func.name)) base_offset += len(n) + 3 if self.long_strings: print ' ;' else: print '};' print '' print '' print "#ifdef USE_MGL_NAMESPACE" for func in api.functionIterateByOffset(): for n in func.entry_points: if (not func.is_static_entry_point(func.name)) or (func.has_different_protocol(n) and not func.is_static_entry_point(n)): print '#define gl_dispatch_stub_%u mgl_dispatch_stub_%u' % (func.offset, func.offset) break print "#endif /* USE_MGL_NAMESPACE */" print '' print '' print '#if defined(NEED_FUNCTION_POINTER) || defined(GLX_INDIRECT_RENDERING)' for func in api.functionIterateByOffset(): for n in func.entry_points: if (not func.is_static_entry_point(func.name)) or (func.has_different_protocol(n) and not func.is_static_entry_point(n)): print '%s GLAPIENTRY gl_dispatch_stub_%u(%s);' % (func.return_type, func.offset, func.get_parameter_string()) break if self.es: categories = {} for func in api.functionIterateByOffset(): for n in func.entry_points: cat, num = api.get_category_for_name(n) if (cat.startswith("es") or cat.startswith("GL_OES")): if not categories.has_key(cat): categories[cat] = [] proto = 'GLAPI %s GLAPIENTRY %s(%s);' \ % (func.return_type, "gl" + n, func.get_parameter_string(n)) categories[cat].append(proto) if categories: print '' print '/* OpenGL ES specific prototypes */' print '' keys = categories.keys() keys.sort() for key in keys: print '/* category %s */' % key print "\n".join(categories[key]) print '' print '#endif /* defined(NEED_FUNCTION_POINTER) || defined(GLX_INDIRECT_RENDERING) */' print '' print 'static const glprocs_table_t static_functions[] = {' for info in table: print ' NAME_FUNC_OFFSET(%5u, %s, %s, %s, _gloffset_%s),' % info print ' NAME_FUNC_OFFSET(-1, NULL, NULL, NULL, 0)' print '};' return def show_usage(): print "Usage: %s [-f input_file_name] [-m mode] [-c]" % sys.argv[0] print "-c Enable compatibility with OpenGL ES." print "-m mode mode can be one of:" print " long - Create code for compilers that can handle very" print " long string constants. (default)" print " short - Create code for compilers that can only handle" print " ANSI C89 string constants." sys.exit(1) if __name__ == '__main__': file_name = "gl_API.xml" try: (args, trail) = getopt.getopt(sys.argv[1:], "f:m:c") except Exception,e: show_usage() long_string = 1 es = False for (arg,val) in args: if arg == "-f": file_name = val elif arg == "-m": if val == "short": long_string = 0 elif val == "long": long_string = 1 else: show_usage() elif arg == "-c": es = True api = gl_XML.parse_GL_API(file_name, glX_XML.glx_item_factory()) printer = PrintGlProcs(long_string, es) printer.Print(api)
edulramirez/nova
refs/heads/master
nova/db/sqlalchemy/migrate_repo/versions/219_placeholder.py
810
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # This is a placeholder for Havana backports. # Do not use this number for new Icehouse work. New Icehouse work starts after # all the placeholders. # # See blueprint backportable-db-migrations-icehouse # http://lists.openstack.org/pipermail/openstack-dev/2013-March/006827.html def upgrade(migrate_engine): pass
MrKiven/gunicorn
refs/heads/master
scripts/update_thanks.py
22
#!/usr/bin/env python # Usage: git log --format="%an <%ae>" | python update_thanks.py # You will get a result.txt file, you can work with the file (update, remove, ...) # # Install # ======= # pip install validate_email pyDNS # from __future__ import print_function import os import sys from validate_email import validate_email from email.utils import parseaddr import DNS.Base addresses = set() bad_addresses = set() collection = [] lines = list(reversed(sys.stdin.readlines())) for author in map(str.strip, lines): realname, email_address = parseaddr(author) if email_address not in addresses: if email_address in bad_addresses: continue else: try: value = validate_email(email_address) if value: addresses.add(email_address) collection.append(author) else: bad_addresses.add(email_address) except DNS.Base.TimeoutError: bad_addresses.add(email_address) with open('result.txt', 'w') as output: output.write('\n'.join(collection))
Zhongqilong/mykbengineer
refs/heads/master
kbe/src/lib/python/Lib/test/final_b.py
103
""" Fodder for module finalization tests in test_module. """ import shutil import test.final_a x = 'b' class C: def __del__(self): # Inspect module globals and builtins print("x =", x) print("final_a.x =", test.final_a.x) print("shutil.rmtree =", getattr(shutil.rmtree, '__name__', None)) print("len =", getattr(len, '__name__', None)) c = C() _underscored = C()
theflofly/tensorflow
refs/heads/master
tensorflow/compiler/tests/self_adjoint_eig_op_test.py
5
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.self_adjoint_eig.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools from absl.testing import parameterized import numpy as np from tensorflow.compiler.tests import xla_test from tensorflow.python.ops import array_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.platform import test class SelfAdjointEigOpTest(xla_test.XLATestCase, parameterized.TestCase): def _test(self, dtype, shape): np.random.seed(1) x_np = np.random.uniform( low=-1.0, high=1.0, size=np.prod(shape)).reshape(shape).astype(dtype) x_np = x_np + np.swapaxes(x_np, -1, -2) n = shape[-1] e_np, _ = np.linalg.eigh(x_np) with self.cached_session() as sess: x_tf = array_ops.placeholder(dtype) with self.test_scope(): e, v = linalg_ops.self_adjoint_eig(x_tf) e_val, v_val = sess.run([e, v], feed_dict={x_tf: x_np}) v_diff = np.matmul(v_val, np.swapaxes(v_val, -1, -2)) - np.eye(n) self.assertAlmostEqual(np.mean(v_diff**2), 0.0, delta=1e-6) self.assertAlmostEqual(np.mean((e_val - e_np)**2), 0.0, delta=1e-6) SIZES = [1, 2, 5, 10, 32] DTYPES = [np.float32] PARAMS = itertools.product(SIZES, DTYPES) @parameterized.parameters(*PARAMS) def testSelfAdjointEig(self, n, dtype): for batch_dims in [(), (3,)] + [(3, 2)] * (n < 10): self._test(dtype, batch_dims + (n, n)) if __name__ == "__main__": test.main()
kenshay/ImageScripter
refs/heads/master
ProgramData/SystemFiles/Python/Lib/ensurepip/__main__.py
171
import ensurepip if __name__ == "__main__": ensurepip._main()
ibis-project/ibis
refs/heads/master
ibis/backends/dask/execution/strings.py
1
import itertools import dask.dataframe as dd import dask.dataframe.groupby as ddgb import numpy as np import pandas import toolz from pandas import isnull import ibis import ibis.expr.operations as ops from ibis.backends.pandas.core import integer_types, scalar_types from ibis.backends.pandas.execution.strings import ( execute_series_join_scalar_sep, execute_series_regex_extract, execute_series_regex_replace, execute_series_regex_search, execute_series_right, execute_series_translate_scalar_scalar, execute_series_translate_scalar_series, execute_series_translate_series_scalar, execute_series_translate_series_series, execute_string_capitalize, execute_string_contains, execute_string_length_series, execute_string_like_series_string, execute_string_lower, execute_string_lpad, execute_string_lstrip, execute_string_repeat, execute_string_reverse, execute_string_rpad, execute_string_rstrip, execute_string_strip, execute_string_upper, execute_substring_int_int, haystack_to_series_of_lists, ) from ..dispatch import execute_node from .util import ( TypeRegistrationDict, make_selected_obj, register_types_to_dispatcher, ) DASK_DISPATCH_TYPES: TypeRegistrationDict = { ops.StringLength: [((dd.Series,), execute_string_length_series)], ops.Substring: [ ( (dd.Series, integer_types, integer_types,), execute_substring_int_int, ), ], ops.Strip: [((dd.Series,), execute_string_strip)], ops.LStrip: [((dd.Series,), execute_string_lstrip)], ops.RStrip: [((dd.Series,), execute_string_rstrip)], ops.LPad: [ ( (dd.Series, (dd.Series,) + integer_types, (dd.Series, str),), execute_string_lpad, ), ], ops.RPad: [ ( (dd.Series, (dd.Series,) + integer_types, (dd.Series, str),), execute_string_rpad, ), ], ops.Reverse: [((dd.Series,), execute_string_reverse)], ops.Lowercase: [((dd.Series,), execute_string_lower)], ops.Uppercase: [((dd.Series,), execute_string_upper)], ops.Capitalize: [((dd.Series,), execute_string_capitalize)], ops.Repeat: [ ((dd.Series, (dd.Series,) + integer_types), execute_string_repeat), ], ops.StringFind: [ ( ( dd.Series, (dd.Series, str), (dd.Series, type(None)) + integer_types, (dd.Series, type(None)) + integer_types, ), execute_string_contains, ) ], ops.StringSQLLike: [ ( (dd.Series, str, (str, type(None)),), execute_string_like_series_string, ), ], ops.RegexSearch: [((dd.Series, str,), execute_series_regex_search)], ops.RegexExtract: [ ( (dd.Series, (dd.Series, str), integer_types), execute_series_regex_extract, ), ], ops.RegexReplace: [ ((dd.Series, str, str,), execute_series_regex_replace), ], ops.Translate: [ ( (dd.Series, dd.Series, dd.Series), execute_series_translate_series_series, ), ((dd.Series, dd.Series, str), execute_series_translate_series_scalar), ((dd.Series, str, dd.Series), execute_series_translate_scalar_series), ((dd.Series, str, str), execute_series_translate_scalar_scalar), ], ops.StrRight: [((dd.Series, integer_types), execute_series_right)], ops.StringJoin: [ (((dd.Series, str), list), execute_series_join_scalar_sep), ], } register_types_to_dispatcher(execute_node, DASK_DISPATCH_TYPES) @execute_node.register(ops.Substring, dd.Series, dd.Series, integer_types) def execute_substring_series_int(op, data, start, length, **kwargs): return execute_substring_series_series( op, data, start, dd.from_array(np.repeat(length, len(start))), **kwargs ) @execute_node.register(ops.Substring, dd.Series, integer_types, dd.Series) def execute_string_substring_int_series(op, data, start, length, **kwargs): return execute_substring_series_series( op, data, dd.from_array(np.repeat(start, len(length))), length, **kwargs, ) # TODO - substring - #2553 @execute_node.register(ops.Substring, dd.Series, dd.Series, dd.Series) def execute_substring_series_series(op, data, start, length, **kwargs): end = start + length # TODO - this is broken def iterate( value, start_iter=start.iteritems(), end_iter=end.iteritems(), ): _, begin = next(start_iter) _, end = next(end_iter) if (begin is not None and isnull(begin)) or ( end is not None and isnull(end) ): return None return value[begin:end] return data.map(iterate) @execute_node.register(ops.StringSQLLike, ddgb.SeriesGroupBy, str, str) def execute_string_like_series_groupby_string( op, data, pattern, escape, **kwargs ): return execute_string_like_series_string( op, make_selected_obj(data), pattern, escape, **kwargs ).groupby(data.grouper.groupings) # TODO - aggregations - #2553 @execute_node.register( ops.GroupConcat, dd.Series, str, (dd.Series, type(None)) ) def execute_group_concat_series_mask( op, data, sep, mask, aggcontext=None, **kwargs ): return aggcontext.agg( data[mask] if mask is not None else data, lambda series, sep=sep: sep.join(series.values), ) @execute_node.register(ops.GroupConcat, ddgb.SeriesGroupBy, str, type(None)) def execute_group_concat_series_gb( op, data, sep, _, aggcontext=None, **kwargs ): custom_group_concat = dd.Aggregation( name='custom_group_concat', chunk=lambda s: s.apply(list), agg=lambda s0: s0.apply( lambda chunks: sep.join( str(s) for s in itertools.chain.from_iterable(chunks) ) ), ) return data.agg(custom_group_concat) # TODO - aggregations - #2553 @execute_node.register( ops.GroupConcat, ddgb.SeriesGroupBy, str, ddgb.SeriesGroupBy ) def execute_group_concat_series_gb_mask( op, data, sep, mask, aggcontext=None, **kwargs ): def method(series, sep=sep): return sep.join(series.values.astype(str)) return aggcontext.agg( data, lambda data, mask=mask.obj, method=method: method( data[mask[data.index]] ), ) @execute_node.register(ops.StringAscii, dd.Series) def execute_string_ascii(op, data, **kwargs): output_meta = pandas.Series([], dtype=np.dtype('int32'), name=data.name) return data.map(ord, meta=output_meta) @execute_node.register(ops.StringAscii, ddgb.SeriesGroupBy) def execute_string_ascii_group_by(op, data, **kwargs): return execute_string_ascii(op, make_selected_obj(data), **kwargs).groupby( data.index ) @execute_node.register(ops.RegexSearch, ddgb.SeriesGroupBy, str) def execute_series_regex_search_gb(op, data, pattern, **kwargs): return execute_series_regex_search( op, make_selected_obj(data), getattr(pattern, 'obj', pattern), **kwargs, ).groupby(data.index) @execute_node.register( ops.RegexExtract, ddgb.SeriesGroupBy, str, integer_types ) def execute_series_regex_extract_gb(op, data, pattern, index, **kwargs): return execute_series_regex_extract( op, make_selected_obj(data), pattern, index, **kwargs ).groupby(data.index) @execute_node.register(ops.RegexReplace, ddgb.SeriesGroupBy, str, str) def execute_series_regex_replace_gb(op, data, pattern, replacement, **kwargs): return execute_series_regex_replace( make_selected_obj(data), pattern, replacement, **kwargs ).groupby(data.index) @execute_node.register(ops.StrRight, ddgb.SeriesGroupBy, integer_types) def execute_series_right_gb(op, data, nchars, **kwargs): return execute_series_right(op, make_selected_obj(data), nchars).groupby( data.index ) def haystack_to_dask_series_of_lists(haystack, index=None): pieces = haystack_to_series_of_lists(haystack, index) return dd.from_pandas(pieces, npartitions=1) @execute_node.register(ops.FindInSet, dd.Series, list) def execute_series_find_in_set(op, needle, haystack, **kwargs): def find_in_set(index, elements): return ibis.util.safe_index(elements, index) return needle.apply(find_in_set, args=(haystack,)) @execute_node.register(ops.FindInSet, ddgb.SeriesGroupBy, list) def execute_series_group_by_find_in_set(op, needle, haystack, **kwargs): pieces = [getattr(piece, 'obj', piece) for piece in haystack] return execute_series_find_in_set( op, make_selected_obj(needle), pieces, **kwargs ).groupby(needle.index) # TODO we need this version not pandas @execute_node.register(ops.FindInSet, scalar_types, list) def execute_string_group_by_find_in_set(op, needle, haystack, **kwargs): # `list` could contain series, series groupbys, or scalars # mixing series and series groupbys is not allowed series_in_haystack = [ type(piece) for piece in haystack if isinstance(piece, (dd.Series, ddgb.SeriesGroupBy)) ] if not series_in_haystack: return ibis.util.safe_index(haystack, needle) try: (collection_type,) = frozenset(map(type, series_in_haystack)) except ValueError: raise ValueError('Mixing Series and ddgb.SeriesGroupBy is not allowed') pieces = haystack_to_dask_series_of_lists( [getattr(piece, 'obj', piece) for piece in haystack] ) result = pieces.map(toolz.flip(ibis.util.safe_index)(needle)) if issubclass(collection_type, dd.Series): return result assert issubclass(collection_type, ddgb.SeriesGroupBy) return result.groupby( toolz.first( piece.grouper.groupings for piece in haystack if hasattr(piece, 'grouper') ) )
wronk/mne-python
refs/heads/master
mne/time_frequency/tfr.py
1
"""A module which implements the time frequency estimation. Morlet code inspired by Matlab code from Sheraz Khan & Brainstorm & SPM """ # Authors : Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # Hari Bharadwaj <hari@nmr.mgh.harvard.edu> # Clement Moutard <clement.moutard@polytechnique.org> # # License : BSD (3-clause) from copy import deepcopy from math import sqrt import numpy as np from scipy import linalg from scipy.fftpack import fftn, ifftn from ..fixes import partial from ..baseline import rescale from ..parallel import parallel_func from ..utils import (logger, verbose, _time_mask, warn, check_fname, _check_copy_dep) from ..channels.channels import ContainsMixin, UpdateChannelsMixin from ..io.pick import pick_info, pick_types from ..io.meas_info import Info from .multitaper import dpss_windows from ..viz.utils import figure_nobar, plt_show from ..externals.h5io import write_hdf5, read_hdf5 from ..externals.six import string_types def _get_data(inst, return_itc): """Get data from Epochs or Evoked instance as epochs x ch x time""" from ..epochs import _BaseEpochs from ..evoked import Evoked if not isinstance(inst, (_BaseEpochs, Evoked)): raise TypeError('inst must be Epochs or Evoked') if isinstance(inst, _BaseEpochs): data = inst.get_data() else: if return_itc: raise ValueError('return_itc must be False for evoked data') data = inst.data[np.newaxis, ...].copy() return data def morlet(sfreq, freqs, n_cycles=7, sigma=None, zero_mean=False): """Compute Wavelets for the given frequency range Parameters ---------- sfreq : float Sampling Frequency freqs : array frequency range of interest (1 x Frequencies) n_cycles: float | array of float Number of cycles. Fixed number or one per frequency. sigma : float, (optional) It controls the width of the wavelet ie its temporal resolution. If sigma is None the temporal resolution is adapted with the frequency like for all wavelet transform. The higher the frequency the shorter is the wavelet. If sigma is fixed the temporal resolution is fixed like for the short time Fourier transform and the number of oscillations increases with the frequency. zero_mean : bool Make sure the wavelet is zero mean Returns ------- Ws : list of array Wavelets time series See Also -------- mne.time_frequency.cwt_morlet : Compute time-frequency decomposition with Morlet wavelets """ Ws = list() n_cycles = np.atleast_1d(n_cycles) if (n_cycles.size != 1) and (n_cycles.size != len(freqs)): raise ValueError("n_cycles should be fixed or defined for " "each frequency.") for k, f in enumerate(freqs): if len(n_cycles) != 1: this_n_cycles = n_cycles[k] else: this_n_cycles = n_cycles[0] # fixed or scale-dependent window if sigma is None: sigma_t = this_n_cycles / (2.0 * np.pi * f) else: sigma_t = this_n_cycles / (2.0 * np.pi * sigma) # this scaling factor is proportional to (Tallon-Baudry 98): # (sigma_t*sqrt(pi))^(-1/2); t = np.arange(0., 5. * sigma_t, 1.0 / sfreq) t = np.r_[-t[::-1], t[1:]] oscillation = np.exp(2.0 * 1j * np.pi * f * t) gaussian_enveloppe = np.exp(-t ** 2 / (2.0 * sigma_t ** 2)) if zero_mean: # to make it zero mean real_offset = np.exp(- 2 * (np.pi * f * sigma_t) ** 2) oscillation -= real_offset W = oscillation * gaussian_enveloppe W /= sqrt(0.5) * linalg.norm(W.ravel()) Ws.append(W) return Ws def _dpss_wavelet(sfreq, freqs, n_cycles=7, time_bandwidth=4.0, zero_mean=False): """Compute Wavelets for the given frequency range Parameters ---------- sfreq : float Sampling Frequency. freqs : ndarray, shape (n_freqs,) The frequencies in Hz. n_cycles : float | ndarray, shape (n_freqs,) The number of cycles globally or for each frequency. Defaults to 7. time_bandwidth : float, (optional) Time x Bandwidth product. The number of good tapers (low-bias) is chosen automatically based on this to equal floor(time_bandwidth - 1). Default is 4.0, giving 3 good tapers. Returns ------- Ws : list of array Wavelets time series """ Ws = list() if time_bandwidth < 2.0: raise ValueError("time_bandwidth should be >= 2.0 for good tapers") n_taps = int(np.floor(time_bandwidth - 1)) n_cycles = np.atleast_1d(n_cycles) if n_cycles.size != 1 and n_cycles.size != len(freqs): raise ValueError("n_cycles should be fixed or defined for " "each frequency.") for m in range(n_taps): Wm = list() for k, f in enumerate(freqs): if len(n_cycles) != 1: this_n_cycles = n_cycles[k] else: this_n_cycles = n_cycles[0] t_win = this_n_cycles / float(f) t = np.arange(0., t_win, 1.0 / sfreq) # Making sure wavelets are centered before tapering oscillation = np.exp(2.0 * 1j * np.pi * f * (t - t_win / 2.)) # Get dpss tapers tapers, conc = dpss_windows(t.shape[0], time_bandwidth / 2., n_taps) Wk = oscillation * tapers[m] if zero_mean: # to make it zero mean real_offset = Wk.mean() Wk -= real_offset Wk /= sqrt(0.5) * linalg.norm(Wk.ravel()) Wm.append(Wk) Ws.append(Wm) return Ws def _centered(arr, newsize): """Aux Function to center data""" # Return the center newsize portion of the array. newsize = np.asarray(newsize) currsize = np.array(arr.shape) startind = (currsize - newsize) // 2 endind = startind + newsize myslice = [slice(startind[k], endind[k]) for k in range(len(endind))] return arr[tuple(myslice)] def _cwt(X, Ws, mode="same", decim=1, use_fft=True): """Compute cwt with fft based convolutions or temporal convolutions. Return a generator over signals. """ if mode not in ['same', 'valid', 'full']: raise ValueError("`mode` must be 'same', 'valid' or 'full', " "got %s instead." % mode) if mode == 'full' and (not use_fft): # XXX JRK: full wavelet decomposition needs to be implemented raise ValueError('`full` decomposition with convolution is currently' + ' not supported.') decim = _check_decim(decim) X = np.asarray(X) # Precompute wavelets for given frequency range to save time n_signals, n_times = X.shape n_times_out = X[:, decim].shape[1] n_freqs = len(Ws) Ws_max_size = max(W.size for W in Ws) size = n_times + Ws_max_size - 1 # Always use 2**n-sized FFT fsize = 2 ** int(np.ceil(np.log2(size))) # precompute FFTs of Ws if use_fft: fft_Ws = np.empty((n_freqs, fsize), dtype=np.complex128) for i, W in enumerate(Ws): if len(W) > n_times: raise ValueError('Wavelet is too long for such a short signal. ' 'Reduce the number of cycles.') if use_fft: fft_Ws[i] = fftn(W, [fsize]) # Make generator looping across signals tfr = np.zeros((n_freqs, n_times_out), dtype=np.complex128) for x in X: if use_fft: fft_x = fftn(x, [fsize]) # Loop across wavelets for ii, W in enumerate(Ws): if use_fft: ret = ifftn(fft_x * fft_Ws[ii])[:n_times + W.size - 1] else: ret = np.convolve(x, W, mode=mode) # Center and decimate decomposition if mode == "valid": sz = abs(W.size - n_times) + 1 offset = (n_times - sz) / 2 this_slice = slice(offset // decim.step, (offset + sz) // decim.step) if use_fft: ret = _centered(ret, sz) tfr[ii, this_slice] = ret[decim] else: if use_fft: ret = _centered(ret, n_times) tfr[ii, :] = ret[decim] yield tfr def cwt_morlet(X, sfreq, freqs, use_fft=True, n_cycles=7.0, zero_mean=False, decim=1): """Compute time freq decomposition with Morlet wavelets This function operates directly on numpy arrays. Consider using `tfr_morlet` to process `Epochs` or `Evoked` instances. Parameters ---------- X : array, shape (n_signals, n_times) Signals (one per line) sfreq : float Sampling frequency. freqs : array Array of frequencies of interest use_fft : bool Compute convolution with FFT or temoral convolution. n_cycles: float | array of float Number of cycles. Fixed number or one per frequency. zero_mean : bool Make sure the wavelets are zero mean. decim : int | slice To reduce memory usage, decimation factor after time-frequency decomposition. If `int`, returns tfr[..., ::decim]. If `slice` returns tfr[..., decim]. Note that decimation may create aliasing artifacts. Defaults to 1. Returns ------- tfr : 3D array Time Frequency Decompositions (n_signals x n_frequencies x n_times) See Also -------- tfr.cwt : Compute time-frequency decomposition with user-provided wavelets """ mode = 'same' # mode = "valid" decim = _check_decim(decim) n_signals, n_times = X[:, decim].shape # Precompute wavelets for given frequency range to save time Ws = morlet(sfreq, freqs, n_cycles=n_cycles, zero_mean=zero_mean) coefs = cwt(X, Ws, use_fft=use_fft, mode=mode, decim=decim) tfrs = np.empty((n_signals, len(freqs), n_times), dtype=np.complex) for k, tfr in enumerate(coefs): tfrs[k] = tfr return tfrs def cwt(X, Ws, use_fft=True, mode='same', decim=1): """Compute time freq decomposition with continuous wavelet transform Parameters ---------- X : array, shape (n_signals, n_times) The signals. Ws : list of array Wavelets time series. use_fft : bool Use FFT for convolutions. Defaults to True. mode : 'same' | 'valid' | 'full' Convention for convolution. 'full' is currently not implemented with `use_fft=False`. Defaults to 'same'. decim : int | slice To reduce memory usage, decimation factor after time-frequency decomposition. If `int`, returns tfr[..., ::decim]. If `slice` returns tfr[..., decim]. Note that decimation may create aliasing artifacts. Defaults to 1. Returns ------- tfr : array, shape (n_signals, n_frequencies, n_times) The time frequency decompositions. See Also -------- mne.time_frequency.cwt_morlet : Compute time-frequency decomposition with Morlet wavelets """ decim = _check_decim(decim) n_signals, n_times = X[:, decim].shape coefs = _cwt(X, Ws, mode, decim=decim, use_fft=use_fft) tfrs = np.empty((n_signals, len(Ws), n_times), dtype=np.complex) for k, tfr in enumerate(coefs): tfrs[k] = tfr return tfrs def _time_frequency(X, Ws, use_fft, decim): """Aux of time_frequency for parallel computing over channels """ decim = _check_decim(decim) n_epochs, n_times = X[:, decim].shape n_frequencies = len(Ws) psd = np.zeros((n_frequencies, n_times)) # PSD plf = np.zeros((n_frequencies, n_times), np.complex) # phase lock mode = 'same' tfrs = _cwt(X, Ws, mode, decim=decim, use_fft=use_fft) for tfr in tfrs: tfr_abs = np.abs(tfr) psd += tfr_abs ** 2 plf += tfr / tfr_abs psd /= n_epochs plf = np.abs(plf) / n_epochs return psd, plf @verbose def single_trial_power(data, sfreq, frequencies, use_fft=True, n_cycles=7, baseline=None, baseline_mode='ratio', times=None, decim=1, n_jobs=1, zero_mean=False, verbose=None): """Compute time-frequency power on single epochs Parameters ---------- data : array of shape [n_epochs, n_channels, n_times] The epochs sfreq : float Sampling rate frequencies : array-like The frequencies use_fft : bool Use the FFT for convolutions or not. n_cycles : float | array of float Number of cycles in the Morlet wavelet. Fixed number or one per frequency. baseline : None (default) or tuple of length 2 The time interval to apply baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal ot (None, None) all the time interval is used. baseline_mode : None | 'ratio' | 'zscore' Do baseline correction with ratio (power is divided by mean power during baseline) or zscore (power is divided by standard deviation of power during baseline after subtracting the mean, power = [power - mean(power_baseline)] / std(power_baseline)) times : array Required to define baseline decim : int | slice To reduce memory usage, decimation factor after time-frequency decomposition. If `int`, returns tfr[..., ::decim]. If `slice` returns tfr[..., decim]. Note that decimation may create aliasing artifacts. Defaults to 1. n_jobs : int The number of epochs to process at the same time zero_mean : bool Make sure the wavelets are zero mean. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- power : 4D array Power estimate (Epochs x Channels x Frequencies x Timepoints). """ decim = _check_decim(decim) mode = 'same' n_frequencies = len(frequencies) n_epochs, n_channels, n_times = data[:, :, decim].shape # Precompute wavelets for given frequency range to save time Ws = morlet(sfreq, frequencies, n_cycles=n_cycles, zero_mean=zero_mean) parallel, my_cwt, _ = parallel_func(cwt, n_jobs) logger.info("Computing time-frequency power on single epochs...") power = np.empty((n_epochs, n_channels, n_frequencies, n_times), dtype=np.float) # Package arguments for `cwt` here to minimize omissions where only one of # the two calls below is updated with new function arguments. cwt_kw = dict(Ws=Ws, use_fft=use_fft, mode=mode, decim=decim) if n_jobs == 1: for k, e in enumerate(data): x = cwt(e, **cwt_kw) power[k] = (x * x.conj()).real else: # Precompute tf decompositions in parallel tfrs = parallel(my_cwt(e, **cwt_kw) for e in data) for k, tfr in enumerate(tfrs): power[k] = (tfr * tfr.conj()).real # Run baseline correction. Be sure to decimate the times array as well if # needed. if times is not None: times = times[decim] power = rescale(power, times, baseline, baseline_mode, copy=False) return power def _induced_power_cwt(data, sfreq, frequencies, use_fft=True, n_cycles=7, decim=1, n_jobs=1, zero_mean=False): """Compute time induced power and inter-trial phase-locking factor The time frequency decomposition is done with Morlet wavelets Parameters ---------- data : array 3D array of shape [n_epochs, n_channels, n_times] sfreq : float Sampling frequency. frequencies : array Array of frequencies of interest use_fft : bool Compute transform with fft based convolutions or temporal convolutions. n_cycles : float | array of float Number of cycles. Fixed number or one per frequency. decim : int | slice To reduce memory usage, decimation factor after time-frequency decomposition. If `int`, returns tfr[..., ::decim]. If `slice` returns tfr[..., decim]. Note that decimation may create aliasing artifacts. Defaults to 1. n_jobs : int The number of CPUs used in parallel. All CPUs are used in -1. Requires joblib package. zero_mean : bool Make sure the wavelets are zero mean. Returns ------- power : 2D array Induced power (Channels x Frequencies x Timepoints). Squared amplitude of time-frequency coefficients. phase_lock : 2D array Phase locking factor in [0, 1] (Channels x Frequencies x Timepoints) """ decim = _check_decim(decim) n_frequencies = len(frequencies) n_epochs, n_channels, n_times = data[:, :, decim].shape # Precompute wavelets for given frequency range to save time Ws = morlet(sfreq, frequencies, n_cycles=n_cycles, zero_mean=zero_mean) psd = np.empty((n_channels, n_frequencies, n_times)) plf = np.empty((n_channels, n_frequencies, n_times)) # Separate to save memory for n_jobs=1 parallel, my_time_frequency, _ = parallel_func(_time_frequency, n_jobs) psd_plf = parallel(my_time_frequency(data[:, c, :], Ws, use_fft, decim) for c in range(n_channels)) for c, (psd_c, plf_c) in enumerate(psd_plf): psd[c, :, :], plf[c, :, :] = psd_c, plf_c return psd, plf def _preproc_tfr(data, times, freqs, tmin, tmax, fmin, fmax, mode, baseline, vmin, vmax, dB, sfreq): """Aux Function to prepare tfr computation""" from ..viz.utils import _setup_vmin_vmax copy = baseline is not None data = rescale(data, times, baseline, mode, copy=copy) # crop time itmin, itmax = None, None idx = np.where(_time_mask(times, tmin, tmax, sfreq=sfreq))[0] if tmin is not None: itmin = idx[0] if tmax is not None: itmax = idx[-1] + 1 times = times[itmin:itmax] # crop freqs ifmin, ifmax = None, None idx = np.where(_time_mask(freqs, fmin, fmax, sfreq=sfreq))[0] if fmin is not None: ifmin = idx[0] if fmax is not None: ifmax = idx[-1] + 1 freqs = freqs[ifmin:ifmax] # crop data data = data[:, ifmin:ifmax, itmin:itmax] times *= 1e3 if dB: data = 10 * np.log10((data * data.conj()).real) vmin, vmax = _setup_vmin_vmax(data, vmin, vmax) return data, times, freqs, vmin, vmax class AverageTFR(ContainsMixin, UpdateChannelsMixin): """Container for Time-Frequency data Can for example store induced power at sensor level or intertrial coherence. Parameters ---------- info : Info The measurement info. data : ndarray, shape (n_channels, n_freqs, n_times) The data. times : ndarray, shape (n_times,) The time values in seconds. freqs : ndarray, shape (n_freqs,) The frequencies in Hz. nave : int The number of averaged TFRs. comment : str | None Comment on the data, e.g., the experimental condition. Defaults to None. method : str | None Comment on the method used to compute the data, e.g., morlet wavelet. Defaults to None. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Attributes ---------- ch_names : list The names of the channels. """ @verbose def __init__(self, info, data, times, freqs, nave, comment=None, method=None, verbose=None): self.info = info if data.ndim != 3: raise ValueError('data should be 3d. Got %d.' % data.ndim) n_channels, n_freqs, n_times = data.shape if n_channels != len(info['chs']): raise ValueError("Number of channels and data size don't match" " (%d != %d)." % (n_channels, len(info['chs']))) if n_freqs != len(freqs): raise ValueError("Number of frequencies and data size don't match" " (%d != %d)." % (n_freqs, len(freqs))) if n_times != len(times): raise ValueError("Number of times and data size don't match" " (%d != %d)." % (n_times, len(times))) self.data = data self.times = np.asarray(times) self.freqs = np.asarray(freqs) self.nave = nave self.comment = comment self.method = method @property def ch_names(self): return self.info['ch_names'] def crop(self, tmin=None, tmax=None, copy=None): """Crop data to a given time interval Parameters ---------- tmin : float | None Start time of selection in seconds. tmax : float | None End time of selection in seconds. copy : bool This parameter has been deprecated and will be removed in 0.13. Use inst.copy() instead. Whether to return a new instance or modify in place. Returns ------- inst : instance of AverageTFR The modified instance. """ inst = _check_copy_dep(self, copy) mask = _time_mask(inst.times, tmin, tmax, sfreq=self.info['sfreq']) inst.times = inst.times[mask] inst.data = inst.data[:, :, mask] return inst @verbose def plot(self, picks=None, baseline=None, mode='mean', tmin=None, tmax=None, fmin=None, fmax=None, vmin=None, vmax=None, cmap='RdBu_r', dB=False, colorbar=True, show=True, title=None, axes=None, layout=None, verbose=None): """Plot TFRs in a topography with images Parameters ---------- picks : array-like of int | None The indices of the channels to plot. baseline : None (default) or tuple of length 2 The time interval to apply baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal ot (None, None) all the time interval is used. mode : None | 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent' Do baseline correction with ratio (power is divided by mean power during baseline) or zscore (power is divided by standard deviation of power during baseline after subtracting the mean, power = [power - mean(power_baseline)] / std(power_baseline)). If None no baseline correction is applied. tmin : None | float The first time instant to display. If None the first time point available is used. tmax : None | float The last time instant to display. If None the last time point available is used. fmin : None | float The first frequency to display. If None the first frequency available is used. fmax : None | float The last frequency to display. If None the last frequency available is used. vmin : float | None The mininum value an the color scale. If vmin is None, the data minimum value is used. vmax : float | None The maxinum value an the color scale. If vmax is None, the data maximum value is used. cmap : matplotlib colormap | str The colormap to use. Defaults to 'RdBu_r'. dB : bool If True, 20*log10 is applied to the data to get dB. colorbar : bool If true, colorbar will be added to the plot. For user defined axes, the colorbar cannot be drawn. Defaults to True. show : bool Call pyplot.show() at the end. title : str | None String for title. Defaults to None (blank/no title). axes : instance of Axes | list | None The axes to plot to. If list, the list must be a list of Axes of the same length as the number of channels. If instance of Axes, there must be only one channel plotted. layout : Layout | None Layout instance specifying sensor positions. Used for interactive plotting of topographies on rectangle selection. If possible, the correct layout is inferred from the data. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- fig : matplotlib.figure.Figure The figure containing the topography. """ from ..viz.topo import _imshow_tfr import matplotlib.pyplot as plt times, freqs = self.times.copy(), self.freqs.copy() info = self.info data = self.data n_picks = len(picks) info, data, picks = _prepare_picks(info, data, picks) data = data[picks] data, times, freqs, vmin, vmax = \ _preproc_tfr(data, times, freqs, tmin, tmax, fmin, fmax, mode, baseline, vmin, vmax, dB, info['sfreq']) tmin, tmax = times[0], times[-1] if isinstance(axes, plt.Axes): axes = [axes] if isinstance(axes, list) or isinstance(axes, np.ndarray): if len(axes) != n_picks: raise RuntimeError('There must be an axes for each picked ' 'channel.') for idx in range(len(data)): if axes is None: fig = plt.figure() ax = fig.add_subplot(111) else: ax = axes[idx] fig = ax.get_figure() onselect_callback = partial(self._onselect, baseline=baseline, mode=mode, layout=layout) _imshow_tfr(ax, 0, tmin, tmax, vmin, vmax, onselect_callback, ylim=None, tfr=data[idx: idx + 1], freq=freqs, x_label='Time (ms)', y_label='Frequency (Hz)', colorbar=colorbar, picker=False, cmap=cmap) if title: fig.suptitle(title) colorbar = False # only one colorbar for multiple axes plt_show(show) return fig def _onselect(self, eclick, erelease, baseline, mode, layout): """Callback function called by rubber band selector in channel tfr.""" import matplotlib.pyplot as plt from ..viz import plot_tfr_topomap if abs(eclick.x - erelease.x) < .1 or abs(eclick.y - erelease.y) < .1: return plt.ion() # turn interactive mode on tmin = round(min(eclick.xdata, erelease.xdata) / 1000., 5) # ms to s tmax = round(max(eclick.xdata, erelease.xdata) / 1000., 5) fmin = round(min(eclick.ydata, erelease.ydata), 5) # Hz fmax = round(max(eclick.ydata, erelease.ydata), 5) tmin = min(self.times, key=lambda x: abs(x - tmin)) # find closest tmax = min(self.times, key=lambda x: abs(x - tmax)) fmin = min(self.freqs, key=lambda x: abs(x - fmin)) fmax = min(self.freqs, key=lambda x: abs(x - fmax)) if tmin == tmax or fmin == fmax: logger.info('The selected area is too small. ' 'Select a larger time-frequency window.') return types = list() if 'eeg' in self: types.append('eeg') if 'mag' in self: types.append('mag') if 'grad' in self: types.append('grad') fig = figure_nobar() fig.suptitle('{:.2f} s - {:.2f} s, {:.2f} Hz - {:.2f} Hz'.format(tmin, tmax, fmin, fmax), y=0.04) for idx, ch_type in enumerate(types): ax = plt.subplot(1, len(types), idx + 1) plot_tfr_topomap(self, ch_type=ch_type, tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, layout=layout, baseline=baseline, mode=mode, cmap=None, title=ch_type, vmin=None, vmax=None, axes=ax) def plot_topo(self, picks=None, baseline=None, mode='mean', tmin=None, tmax=None, fmin=None, fmax=None, vmin=None, vmax=None, layout=None, cmap='RdBu_r', title=None, dB=False, colorbar=True, layout_scale=0.945, show=True, border='none', fig_facecolor='k', font_color='w'): """Plot TFRs in a topography with images Parameters ---------- picks : array-like of int | None The indices of the channels to plot. If None all available channels are displayed. baseline : None (default) or tuple of length 2 The time interval to apply baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal ot (None, None) all the time interval is used. mode : None | 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent' Do baseline correction with ratio (power is divided by mean power during baseline) or zscore (power is divided by standard deviation of power during baseline after subtracting the mean, power = [power - mean(power_baseline)] / std(power_baseline)). If None no baseline correction is applied. tmin : None | float The first time instant to display. If None the first time point available is used. tmax : None | float The last time instant to display. If None the last time point available is used. fmin : None | float The first frequency to display. If None the first frequency available is used. fmax : None | float The last frequency to display. If None the last frequency available is used. vmin : float | None The mininum value an the color scale. If vmin is None, the data minimum value is used. vmax : float | None The maxinum value an the color scale. If vmax is None, the data maximum value is used. layout : Layout | None Layout instance specifying sensor positions. If possible, the correct layout is inferred from the data. cmap : matplotlib colormap | str The colormap to use. Defaults to 'RdBu_r'. title : str Title of the figure. dB : bool If True, 20*log10 is applied to the data to get dB. colorbar : bool If true, colorbar will be added to the plot layout_scale : float Scaling factor for adjusting the relative size of the layout on the canvas. show : bool Call pyplot.show() at the end. border : str matplotlib borders style to be used for each sensor plot. fig_facecolor : str | obj The figure face color. Defaults to black. font_color: str | obj The color of tick labels in the colorbar. Defaults to white. Returns ------- fig : matplotlib.figure.Figure The figure containing the topography. """ from ..viz.topo import _imshow_tfr, _plot_topo, _imshow_tfr_unified times = self.times.copy() freqs = self.freqs data = self.data info = self.info info, data, picks = _prepare_picks(info, data, picks) data = data[picks] data, times, freqs, vmin, vmax = \ _preproc_tfr(data, times, freqs, tmin, tmax, fmin, fmax, mode, baseline, vmin, vmax, dB, info['sfreq']) if layout is None: from mne import find_layout layout = find_layout(self.info) onselect_callback = partial(self._onselect, baseline=baseline, mode=mode, layout=layout) click_fun = partial(_imshow_tfr, tfr=data, freq=freqs, cmap=cmap, onselect=onselect_callback) imshow = partial(_imshow_tfr_unified, tfr=data, freq=freqs, cmap=cmap, onselect=onselect_callback) fig = _plot_topo(info=info, times=times, show_func=imshow, click_func=click_fun, layout=layout, colorbar=colorbar, vmin=vmin, vmax=vmax, cmap=cmap, layout_scale=layout_scale, title=title, border=border, x_label='Time (ms)', y_label='Frequency (Hz)', fig_facecolor=fig_facecolor, font_color=font_color, unified=True, img=True) plt_show(show) return fig def _check_compat(self, tfr): """checks that self and tfr have the same time-frequency ranges""" assert np.all(tfr.times == self.times) assert np.all(tfr.freqs == self.freqs) def __add__(self, tfr): self._check_compat(tfr) out = self.copy() out.data += tfr.data return out def __iadd__(self, tfr): self._check_compat(tfr) self.data += tfr.data return self def __sub__(self, tfr): self._check_compat(tfr) out = self.copy() out.data -= tfr.data return out def __isub__(self, tfr): self._check_compat(tfr) self.data -= tfr.data return self def copy(self): """Return a copy of the instance.""" return deepcopy(self) def __repr__(self): s = "time : [%f, %f]" % (self.times[0], self.times[-1]) s += ", freq : [%f, %f]" % (self.freqs[0], self.freqs[-1]) s += ", nave : %d" % self.nave s += ', channels : %d' % self.data.shape[0] return "<AverageTFR | %s>" % s @verbose def apply_baseline(self, baseline, mode='mean', verbose=None): """Baseline correct the data Parameters ---------- baseline : tuple or list of length 2 The time interval to apply rescaling / baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal to (None, None) all the time interval is used. mode : 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent' Do baseline correction with ratio (power is divided by mean power during baseline) or z-score (power is divided by standard deviation of power during baseline after subtracting the mean, power = [power - mean(power_baseline)] / std(power_baseline)) If None, baseline no correction will be performed. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). """ self.data = rescale(self.data, self.times, baseline, mode, copy=False) def plot_topomap(self, tmin=None, tmax=None, fmin=None, fmax=None, ch_type=None, baseline=None, mode='mean', layout=None, vmin=None, vmax=None, cmap=None, sensors=True, colorbar=True, unit=None, res=64, size=2, cbar_fmt='%1.1e', show_names=False, title=None, axes=None, show=True, outlines='head', head_pos=None): """Plot topographic maps of time-frequency intervals of TFR data Parameters ---------- tmin : None | float The first time instant to display. If None the first time point available is used. tmax : None | float The last time instant to display. If None the last time point available is used. fmin : None | float The first frequency to display. If None the first frequency available is used. fmax : None | float The last frequency to display. If None the last frequency available is used. ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None The channel type to plot. For 'grad', the gradiometers are collected in pairs and the RMS for each pair is plotted. If None, then first available channel type from order given above is used. Defaults to None. baseline : tuple or list of length 2 The time interval to apply rescaling / baseline correction. If None do not apply it. If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a is None the beginning of the data is used and if b is None then b is set to the end of the interval. If baseline is equal to (None, None) all the time interval is used. mode : 'logratio' | 'ratio' | 'zscore' | 'mean' | 'percent' Do baseline correction with ratio (power is divided by mean power during baseline) or z-score (power is divided by standard deviation of power during baseline after subtracting the mean, power = [power - mean(power_baseline)] / std(power_baseline)) If None, baseline no correction will be performed. layout : None | Layout Layout instance specifying sensor positions (does not need to be specified for Neuromag data). If possible, the correct layout file is inferred from the data; if no appropriate layout file was found, the layout is automatically generated from the sensor locations. vmin : float | callable | None The value specifying the lower bound of the color range. If None, and vmax is None, -vmax is used. Else np.min(data) or in case data contains only positive values 0. If callable, the output equals vmin(data). Defaults to None. vmax : float | callable | None The value specifying the upper bound of the color range. If None, the maximum value is used. If callable, the output equals vmax(data). Defaults to None. cmap : matplotlib colormap | None Colormap. If None and the plotted data is all positive, defaults to 'Reds'. If None and data contains also negative values, defaults to 'RdBu_r'. Defaults to None. sensors : bool | str Add markers for sensor locations to the plot. Accepts matplotlib plot format string (e.g., 'r+' for red plusses). If True, a circle will be used (via .add_artist). Defaults to True. colorbar : bool Plot a colorbar. unit : dict | str | None The unit of the channel type used for colorbar label. If scale is None the unit is automatically determined. res : int The resolution of the topomap image (n pixels along each side). size : float Side length per topomap in inches. cbar_fmt : str String format for colorbar values. show_names : bool | callable If True, show channel names on top of the map. If a callable is passed, channel names will be formatted using the callable; e.g., to delete the prefix 'MEG ' from all channel names, pass the function lambda x: x.replace('MEG ', ''). If `mask` is not None, only significant sensors will be shown. title : str | None Title. If None (default), no title is displayed. axes : instance of Axes | None The axes to plot to. If None the axes is defined automatically. show : bool Call pyplot.show() at the end. outlines : 'head' | 'skirt' | dict | None The outlines to be drawn. If 'head', the default head scheme will be drawn. If 'skirt' the head scheme will be drawn, but sensors are allowed to be plotted outside of the head circle. If dict, each key refers to a tuple of x and y positions, the values in 'mask_pos' will serve as image mask, and the 'autoshrink' (bool) field will trigger automated shrinking of the positions due to points outside the outline. Alternatively, a matplotlib patch object can be passed for advanced masking options, either directly or as a function that returns patches (required for multi-axis plots). If None, nothing will be drawn. Defaults to 'head'. head_pos : dict | None If None (default), the sensors are positioned such that they span the head circle. If dict, can have entries 'center' (tuple) and 'scale' (tuple) for what the center and scale of the head should be relative to the electrode locations. Returns ------- fig : matplotlib.figure.Figure The figure containing the topography. """ from ..viz import plot_tfr_topomap return plot_tfr_topomap(self, tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, ch_type=ch_type, baseline=baseline, mode=mode, layout=layout, vmin=vmin, vmax=vmax, cmap=cmap, sensors=sensors, colorbar=colorbar, unit=unit, res=res, size=size, cbar_fmt=cbar_fmt, show_names=show_names, title=title, axes=axes, show=show, outlines=outlines, head_pos=head_pos) def save(self, fname, overwrite=False): """Save TFR object to hdf5 file Parameters ---------- fname : str The file name, which should end with -tfr.h5 . overwrite : bool If True, overwrite file (if it exists). Defaults to false """ write_tfrs(fname, self, overwrite=overwrite) def _prepare_write_tfr(tfr, condition): """Aux function""" return (condition, dict(times=tfr.times, freqs=tfr.freqs, data=tfr.data, info=tfr.info, nave=tfr.nave, comment=tfr.comment, method=tfr.method)) def write_tfrs(fname, tfr, overwrite=False): """Write a TFR dataset to hdf5. Parameters ---------- fname : string The file name, which should end with -tfr.h5 tfr : AverageTFR instance, or list of AverageTFR instances The TFR dataset, or list of TFR datasets, to save in one file. Note. If .comment is not None, a name will be generated on the fly, based on the order in which the TFR objects are passed overwrite : bool If True, overwrite file (if it exists). Defaults to False. See Also -------- read_tfrs Notes ----- .. versionadded:: 0.9.0 """ out = [] if not isinstance(tfr, (list, tuple)): tfr = [tfr] for ii, tfr_ in enumerate(tfr): comment = ii if tfr_.comment is None else tfr_.comment out.append(_prepare_write_tfr(tfr_, condition=comment)) write_hdf5(fname, out, overwrite=overwrite, title='mnepython') def read_tfrs(fname, condition=None): """ Read TFR datasets from hdf5 file. Parameters ---------- fname : string The file name, which should end with -tfr.h5 . condition : int or str | list of int or str | None The condition to load. If None, all conditions will be returned. Defaults to None. See Also -------- write_tfrs Returns ------- tfrs : list of instances of AverageTFR | instance of AverageTFR Depending on `condition` either the TFR object or a list of multiple TFR objects. Notes ----- .. versionadded:: 0.9.0 """ check_fname(fname, 'tfr', ('-tfr.h5',)) logger.info('Reading %s ...' % fname) tfr_data = read_hdf5(fname, title='mnepython') for k, tfr in tfr_data: tfr['info'] = Info(tfr['info']) if condition is not None: tfr_dict = dict(tfr_data) if condition not in tfr_dict: keys = ['%s' % k for k in tfr_dict] raise ValueError('Cannot find condition ("{0}") in this file. ' 'I can give you "{1}""' .format(condition, " or ".join(keys))) out = AverageTFR(**tfr_dict[condition]) else: out = [AverageTFR(**d) for d in list(zip(*tfr_data))[1]] return out @verbose def tfr_morlet(inst, freqs, n_cycles, use_fft=False, return_itc=True, decim=1, n_jobs=1, picks=None, verbose=None): """Compute Time-Frequency Representation (TFR) using Morlet wavelets Parameters ---------- inst : Epochs | Evoked The epochs or evoked object. freqs : ndarray, shape (n_freqs,) The frequencies in Hz. n_cycles : float | ndarray, shape (n_freqs,) The number of cycles globally or for each frequency. use_fft : bool The fft based convolution or not. return_itc : bool Return intertrial coherence (ITC) as well as averaged power. Must be ``False`` for evoked data. decim : int | slice To reduce memory usage, decimation factor after time-frequency decomposition. If `int`, returns tfr[..., ::decim]. If `slice` returns tfr[..., decim]. Note that decimation may create aliasing artifacts. Defaults to 1. n_jobs : int The number of jobs to run in parallel. picks : array-like of int | None The indices of the channels to plot. If None all available channels are displayed. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- power : instance of AverageTFR The averaged power. itc : instance of AverageTFR The intertrial coherence (ITC). Only returned if return_itc is True. See Also -------- tfr_multitaper, tfr_stockwell """ decim = _check_decim(decim) data = _get_data(inst, return_itc) info = inst.info info, data, picks = _prepare_picks(info, data, picks) data = data[:, picks, :] power, itc = _induced_power_cwt(data, sfreq=info['sfreq'], frequencies=freqs, n_cycles=n_cycles, n_jobs=n_jobs, use_fft=use_fft, decim=decim, zero_mean=True) times = inst.times[decim].copy() nave = len(data) out = AverageTFR(info, power, times, freqs, nave, method='morlet-power') if return_itc: out = (out, AverageTFR(info, itc, times, freqs, nave, method='morlet-itc')) return out def _prepare_picks(info, data, picks): if picks is None: picks = pick_types(info, meg=True, eeg=True, ref_meg=False, exclude='bads') if np.array_equal(picks, np.arange(len(data))): picks = slice(None) else: info = pick_info(info, picks) return info, data, picks @verbose def _induced_power_mtm(data, sfreq, frequencies, time_bandwidth=4.0, use_fft=True, n_cycles=7, decim=1, n_jobs=1, zero_mean=True, verbose=None): """Compute time induced power and inter-trial phase-locking factor The time frequency decomposition is done with DPSS wavelets Parameters ---------- data : np.ndarray, shape (n_epochs, n_channels, n_times) The input data. sfreq : float Sampling frequency. frequencies : np.ndarray, shape (n_frequencies,) Array of frequencies of interest time_bandwidth : float Time x (Full) Bandwidth product. The number of good tapers (low-bias) is chosen automatically based on this to equal floor(time_bandwidth - 1). Default is 4.0 (3 tapers). use_fft : bool Compute transform with fft based convolutions or temporal convolutions. Defaults to True. n_cycles : float | np.ndarray shape (n_frequencies,) Number of cycles. Fixed number or one per frequency. Defaults to 7. decim : int | slice To reduce memory usage, decimation factor after time-frequency decomposition. If `int`, returns tfr[..., ::decim]. If `slice` returns tfr[..., decim]. Note that decimation may create aliasing artifacts. Defaults to 1. n_jobs : int The number of CPUs used in parallel. All CPUs are used in -1. Requires joblib package. Defaults to 1. zero_mean : bool Make sure the wavelets are zero mean. Defaults to True. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- power : np.ndarray, shape (n_channels, n_frequencies, n_times) Induced power. Squared amplitude of time-frequency coefficients. itc : np.ndarray, shape (n_channels, n_frequencies, n_times) Phase locking value. """ decim = _check_decim(decim) n_epochs, n_channels, n_times = data[:, :, decim].shape logger.info('Data is %d trials and %d channels', n_epochs, n_channels) n_frequencies = len(frequencies) logger.info('Multitaper time-frequency analysis for %d frequencies', n_frequencies) # Precompute wavelets for given frequency range to save time Ws = _dpss_wavelet(sfreq, frequencies, n_cycles=n_cycles, time_bandwidth=time_bandwidth, zero_mean=zero_mean) n_taps = len(Ws) logger.info('Using %d tapers', n_taps) n_times_wavelets = Ws[0][0].shape[0] if data.shape[2] <= n_times_wavelets: warn('Time windows are as long or longer than the epoch. Consider ' 'reducing n_cycles.') psd = np.zeros((n_channels, n_frequencies, n_times)) itc = np.zeros((n_channels, n_frequencies, n_times)) parallel, my_time_frequency, _ = parallel_func(_time_frequency, n_jobs) for m in range(n_taps): psd_itc = parallel(my_time_frequency(data[:, c, :], Ws[m], use_fft, decim) for c in range(n_channels)) for c, (psd_c, itc_c) in enumerate(psd_itc): psd[c, :, :] += psd_c itc[c, :, :] += itc_c psd /= n_taps itc /= n_taps return psd, itc @verbose def tfr_multitaper(inst, freqs, n_cycles, time_bandwidth=4.0, use_fft=True, return_itc=True, decim=1, n_jobs=1, picks=None, verbose=None): """Compute Time-Frequency Representation (TFR) using DPSS wavelets Parameters ---------- inst : Epochs | Evoked The epochs or evoked object. freqs : ndarray, shape (n_freqs,) The frequencies in Hz. n_cycles : float | ndarray, shape (n_freqs,) The number of cycles globally or for each frequency. The time-window length is thus T = n_cycles / freq. time_bandwidth : float, (optional) Time x (Full) Bandwidth product. Should be >= 2.0. Choose this along with n_cycles to get desired frequency resolution. The number of good tapers (least leakage from far away frequencies) is chosen automatically based on this to floor(time_bandwidth - 1). Default is 4.0 (3 good tapers). E.g., With freq = 20 Hz and n_cycles = 10, we get time = 0.5 s. If time_bandwidth = 4., then frequency smoothing is (4 / time) = 8 Hz. use_fft : bool The fft based convolution or not. Defaults to True. return_itc : bool Return intertrial coherence (ITC) as well as averaged power. Defaults to True. decim : int | slice To reduce memory usage, decimation factor after time-frequency decomposition. If `int`, returns tfr[..., ::decim]. If `slice` returns tfr[..., decim]. Note that decimation may create aliasing artifacts. Defaults to 1. n_jobs : int The number of jobs to run in parallel. Defaults to 1. picks : array-like of int | None The indices of the channels to plot. If None all available channels are displayed. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- power : AverageTFR The averaged power. itc : AverageTFR The intertrial coherence (ITC). Only returned if return_itc is True. See Also -------- tfr_multitaper, tfr_stockwell Notes ----- .. versionadded:: 0.9.0 """ decim = _check_decim(decim) data = _get_data(inst, return_itc) info = inst.info info, data, picks = _prepare_picks(info, data, picks) data = data = data[:, picks, :] power, itc = _induced_power_mtm(data, sfreq=info['sfreq'], frequencies=freqs, n_cycles=n_cycles, time_bandwidth=time_bandwidth, use_fft=use_fft, decim=decim, n_jobs=n_jobs, zero_mean=True, verbose='INFO') times = inst.times[decim].copy() nave = len(data) out = AverageTFR(info, power, times, freqs, nave, method='mutlitaper-power') if return_itc: out = (out, AverageTFR(info, itc, times, freqs, nave, method='mutlitaper-itc')) return out def combine_tfr(all_tfr, weights='nave'): """Merge AverageTFR data by weighted addition Create a new AverageTFR instance, using a combination of the supplied instances as its data. By default, the mean (weighted by trials) is used. Subtraction can be performed by passing negative weights (e.g., [1, -1]). Data must have the same channels and the same time instants. Parameters ---------- all_tfr : list of AverageTFR The tfr datasets. weights : list of float | str The weights to apply to the data of each AverageTFR instance. Can also be ``'nave'`` to weight according to tfr.nave, or ``'equal'`` to use equal weighting (each weighted as ``1/N``). Returns ------- tfr : AverageTFR The new TFR data. Notes ----- .. versionadded:: 0.11.0 """ tfr = all_tfr[0].copy() if isinstance(weights, string_types): if weights not in ('nave', 'equal'): raise ValueError('Weights must be a list of float, or "nave" or ' '"equal"') if weights == 'nave': weights = np.array([e.nave for e in all_tfr], float) weights /= weights.sum() else: # == 'equal' weights = [1. / len(all_tfr)] * len(all_tfr) weights = np.array(weights, float) if weights.ndim != 1 or weights.size != len(all_tfr): raise ValueError('Weights must be the same size as all_tfr') ch_names = tfr.ch_names for t_ in all_tfr[1:]: assert t_.ch_names == ch_names, ValueError("%s and %s do not contain " "the same channels" % (tfr, t_)) assert np.max(np.abs(t_.times - tfr.times)) < 1e-7, \ ValueError("%s and %s do not contain the same time instants" % (tfr, t_)) # use union of bad channels bads = list(set(tfr.info['bads']).union(*(t_.info['bads'] for t_ in all_tfr[1:]))) tfr.info['bads'] = bads tfr.data = sum(w * t_.data for w, t_ in zip(weights, all_tfr)) tfr.nave = max(int(1. / sum(w ** 2 / e.nave for w, e in zip(weights, all_tfr))), 1) return tfr def _check_decim(decim): """ aux function checking the decim parameter """ if isinstance(decim, int): decim = slice(None, None, decim) elif not isinstance(decim, slice): raise(TypeError, '`decim` must be int or slice, got %s instead' % type(decim)) return decim
phupn1510/ELK
refs/heads/master
kibana/kibana/node/lib/node_modules/npm/node_modules/node-gyp/gyp/gyp_main.py
1452
#!/usr/bin/env python # Copyright (c) 2009 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import sys # Make sure we're using the version of pylib in this repo, not one installed # elsewhere on the system. sys.path.insert(0, os.path.join(os.path.dirname(sys.argv[0]), 'pylib')) import gyp if __name__ == '__main__': sys.exit(gyp.script_main())
raymondxyang/tensorflow
refs/heads/master
tensorflow/contrib/learn/python/learn/ops/ops_test.py
94
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ops tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.layers import conv2d from tensorflow.contrib.learn.python.learn import ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import random_seed from tensorflow.python.ops import variables from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class OpsTest(test.TestCase): """Ops tests.""" def test_softmax_classifier(self): with self.test_session() as session: features = array_ops.placeholder(dtypes.float32, [None, 3]) labels = array_ops.placeholder(dtypes.float32, [None, 2]) weights = constant_op.constant([[0.1, 0.1], [0.1, 0.1], [0.1, 0.1]]) biases = constant_op.constant([0.2, 0.3]) class_weight = constant_op.constant([0.1, 0.9]) prediction, loss = ops.softmax_classifier(features, labels, weights, biases, class_weight) self.assertEqual(prediction.get_shape()[1], 2) self.assertEqual(loss.get_shape(), []) value = session.run(loss, {features: [[0.2, 0.3, 0.2]], labels: [[0, 1]]}) self.assertAllClose(value, 0.55180627) def test_embedding_lookup(self): d_embed = 5 n_embed = 10 ids_shape = (2, 3, 4) embeds = np.random.randn(n_embed, d_embed) ids = np.random.randint(0, n_embed, ids_shape) with self.test_session(): embed_np = embeds[ids] embed_tf = ops.embedding_lookup(embeds, ids).eval() self.assertEqual(embed_np.shape, embed_tf.shape) self.assertAllClose(embed_np, embed_tf) def test_categorical_variable(self): random_seed.set_random_seed(42) with self.test_session() as sess: cat_var_idx = array_ops.placeholder(dtypes.int64, [2, 2]) embeddings = ops.categorical_variable( cat_var_idx, n_classes=5, embedding_size=10, name="my_cat_var") sess.run(variables.global_variables_initializer()) emb1 = sess.run(embeddings, feed_dict={cat_var_idx.name: [[0, 1], [2, 3]]}) emb2 = sess.run(embeddings, feed_dict={cat_var_idx.name: [[0, 2], [1, 3]]}) self.assertEqual(emb1.shape, emb2.shape) self.assertAllEqual(np.transpose(emb2, axes=[1, 0, 2]), emb1) if __name__ == "__main__": test.main()
beernarrd/gramps
refs/heads/sl-master
gramps/gen/datehandler/_date_el.py
2
# -*- coding: utf-8 -*- # # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2004-2006 Donald N. Allingham # Copyright (C) 2013 Zissis Papadopoulos <zissis@mail.com> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # """ Greek-specific classes for parsing and displaying dates. """ #------------------------------------------------------------------------- # # Python modules # #------------------------------------------------------------------------- import re #------------------------------------------------------------------------- # # Gramps modules # #------------------------------------------------------------------------- from ..lib.date import Date from ._dateparser import DateParser from ._datedisplay import DateDisplay from ._datehandler import register_datehandler #------------------------------------------------------------------------- # # Greek parser class # #------------------------------------------------------------------------- class DateParserEL(DateParser): """ Convert a text string into a Date object. If the date cannot be converted, the text string is assigned. """ # modifiers before the date modifier_to_int = { 'προ του' : Date.MOD_BEFORE, 'πριν το' : Date.MOD_BEFORE, 'πριν από τις' : Date.MOD_BEFORE, 'πριν από την' : Date.MOD_BEFORE, 'πριν από το' : Date.MOD_BEFORE, 'πριν από τον' : Date.MOD_BEFORE, 'προ' : Date.MOD_BEFORE, 'πρ.' : Date.MOD_BEFORE, 'μετά το' : Date.MOD_AFTER, 'μετά από τις' : Date.MOD_AFTER, 'μετά από την' : Date.MOD_AFTER, 'μετά από το' : Date.MOD_AFTER, 'μετά από τον' : Date.MOD_AFTER, 'μετά' : Date.MOD_AFTER, 'μετ.' : Date.MOD_AFTER, 'γύρω στο' : Date.MOD_ABOUT, 'γύρω στον' : Date.MOD_ABOUT, 'γύρω στις' : Date.MOD_ABOUT, 'περίπου το' : Date.MOD_ABOUT, 'περ.' : Date.MOD_ABOUT, 'γυρ.' : Date.MOD_ABOUT, '~' : Date.MOD_ABOUT, } bce = ["π.Χ.", "π.Κ.Χ.", "π.Κ.Ε.", "π.Χ" ] calendar_to_int = { 'γρηγοριανό' : Date.CAL_GREGORIAN, 'γ' : Date.CAL_GREGORIAN, 'ιουλιανό' : Date.CAL_JULIAN, 'ι' : Date.CAL_JULIAN, 'εβραϊκό' : Date.CAL_HEBREW, 'ε' : Date.CAL_HEBREW, 'ισλαμικό' : Date.CAL_ISLAMIC, 'ισλ' : Date.CAL_ISLAMIC, 'γαλλικό' : Date.CAL_FRENCH, 'γαλλικής δημοκρατίας': Date.CAL_FRENCH, 'γ' : Date.CAL_FRENCH, 'περσικό' : Date.CAL_PERSIAN, 'π' : Date.CAL_PERSIAN, 'σουηδικό' : Date.CAL_SWEDISH, 'σ' : Date.CAL_SWEDISH, } quality_to_int = { 'κατʼ εκτίμηση' : Date.QUAL_ESTIMATED, 'εκτιμώμενη' : Date.QUAL_ESTIMATED, 'εκτ.' : Date.QUAL_ESTIMATED, 'εκτ' : Date.QUAL_ESTIMATED, 'υπολογ' : Date.QUAL_CALCULATED, 'υπολογ.' : Date.QUAL_CALCULATED, 'υπολογισμένη' : Date.QUAL_CALCULATED, 'με υπολογισμό' : Date.QUAL_CALCULATED, } def init_strings(self): """ This method compiles regular expression strings for matching dates. """ DateParser.init_strings(self) _span_1 = ['από'] _span_2 = ['έως'] _range_1 = ['μετ', 'μετ\.', 'μεταξύ'] _range_2 = ['και'] self._span = re.compile("(%s)\s+(?P<start>.+)\s+(%s)\s+(?P<stop>.+)" % ('|'.join(_span_1), '|'.join(_span_2)), re.IGNORECASE) self._range = re.compile("(%s)\s+(?P<start>.+)\s+(%s)\s+(?P<stop>.+)" % ('|'.join(_range_1), '|'.join(_range_2)), re.IGNORECASE) #------------------------------------------------------------------------- # # Greek display # #------------------------------------------------------------------------- class DateDisplayEL(DateDisplay): """ Greek language date display class. """ # this is used to display the 12 gregorian months long_months = ( "", "Ιανουάριος", "Φεβρουάριος", "Μάρτιος", "Απρίλιος", "Μάιος", "Ιούνιος", "Ιούλιος", "Αύγουστος", "Σεπτέμβριος", "Οκτώβριος", "Νοέμβριος", "Δεκέμβριος" ) short_months = ( "", "Ιαν", "Φεβ", "Μαρ", "Απρ", "Μάι", "Ιουν", "Ιουλ", "Αύγ", "Σεπ", "Οκτ", "Νοε", "Δεκ" ) _mod_str = ("", "προ του ", "μετά το ", "γύρω στο ", "", "", "") _qual_str = ("", "εκτιμώμενη ", "υπολογισμένη ") _bce_str = "%s π.Χ." formats = ( "ΕΕΕΕ-ΜΜ-ΗΗ (ISO)", "ΗΗ-ΜΜ-ΕΕΕΕ", "ΗΗ/ΜΜ/ΕΕΕΕ", "ΗΗ Μήνας ΕΕΕΕ", "ΗΗ Μήν ΕΕΕΕ" ) # this definition must agree with its "_display_gregorian" method def _display_gregorian(self, date_val): """ display gregorian calendar date in different format """ # this must agree with its locale-specific "formats" definition year = self._slash_year(date_val[2], date_val[3]) if self.format == 0: return self.display_iso(date_val) elif self.format == 1: # day-month_number-year if date_val[0] == 0: if date_val[1] == 0: value = year else: value = "%s-%s" % (date_val[1], year) else: value = "%d-%s-%s" % (date_val[0], date_val[1], year) elif self.format == 2: # day/month_number/year if date_val[0] == 0: if date_val[1] == 0: value = year else: value = "%s/%s" % (date_val[1], year) else: value = "%d/%s/%s" % (date_val[0], date_val[1], year) elif self.format == 3: # day month_name year if date_val[0] == 0: if date_val[1] == 0: value = year else: value = "%s %s" % (self.long_months[date_val[1]], year) else: value = "%d %s %s" % (date_val[0], self.long_months[date_val[1]], year) else: # day month_abbreviation year if date_val[0] == 0: if date_val[1] == 0: value = year else: value = "%s %s" % (self.short_months[date_val[1]], year) else: value = "%d %s %s" % (date_val[0], self.short_months[date_val[1]], year) if date_val[2] < 0: return self._bce_str % value else: return value def display(self, date): """ Return a text string representing the date. """ mod = date.get_modifier() cal = date.get_calendar() qual = date.get_quality() start = date.get_start_date() newyear = date.get_new_year() qual_str = self._qual_str[qual] if mod == Date.MOD_TEXTONLY: return date.get_text() elif start == Date.EMPTY: return "" elif mod == Date.MOD_SPAN: d1 = self.display_cal[cal](start) d2 = self.display_cal[cal](date.get_stop_date()) scal = self.format_extras(cal, newyear) return "%s%s %s %s %s%s" % (qual_str, 'από', d1, 'έως', d2, scal) elif mod == Date.MOD_RANGE: d1 = self.display_cal[cal](start) d2 = self.display_cal[cal](date.get_stop_date()) scal = self.format_extras(cal, newyear) return "%s%s %s %s %s%s" % (qual_str, 'μεταξύ', d1, 'και', d2, scal) else: text = self.display_cal[date.get_calendar()](start) scal = self.format_extras(cal, newyear) return "%s%s%s%s" % (qual_str, self._mod_str[mod], text, scal) #------------------------------------------------------------------------- # # Register classes # #------------------------------------------------------------------------- register_datehandler(('el_GR', 'el_CY', 'el', 'Greek', 'greek'), DateParserEL, DateDisplayEL)
wangmiao1981/spark
refs/heads/master
python/pyspark/sql/group.py
23
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys from pyspark.sql.column import Column, _to_seq from pyspark.sql.dataframe import DataFrame from pyspark.sql.pandas.group_ops import PandasGroupedOpsMixin from pyspark.sql.types import StructType, StructField, IntegerType, StringType __all__ = ["GroupedData"] def dfapi(f): def _api(self): name = f.__name__ jdf = getattr(self._jgd, name)() return DataFrame(jdf, self.sql_ctx) _api.__name__ = f.__name__ _api.__doc__ = f.__doc__ return _api def df_varargs_api(f): def _api(self, *cols): name = f.__name__ jdf = getattr(self._jgd, name)(_to_seq(self.sql_ctx._sc, cols)) return DataFrame(jdf, self.sql_ctx) _api.__name__ = f.__name__ _api.__doc__ = f.__doc__ return _api class GroupedData(PandasGroupedOpsMixin): """ A set of methods for aggregations on a :class:`DataFrame`, created by :func:`DataFrame.groupBy`. .. versionadded:: 1.3 """ def __init__(self, jgd, df): self._jgd = jgd self._df = df self.sql_ctx = df.sql_ctx def agg(self, *exprs): """Compute aggregates and returns the result as a :class:`DataFrame`. The available aggregate functions can be: 1. built-in aggregation functions, such as `avg`, `max`, `min`, `sum`, `count` 2. group aggregate pandas UDFs, created with :func:`pyspark.sql.functions.pandas_udf` .. note:: There is no partial aggregation with group aggregate UDFs, i.e., a full shuffle is required. Also, all the data of a group will be loaded into memory, so the user should be aware of the potential OOM risk if data is skewed and certain groups are too large to fit in memory. .. seealso:: :func:`pyspark.sql.functions.pandas_udf` If ``exprs`` is a single :class:`dict` mapping from string to string, then the key is the column to perform aggregation on, and the value is the aggregate function. Alternatively, ``exprs`` can also be a list of aggregate :class:`Column` expressions. .. versionadded:: 1.3.0 Parameters ---------- exprs : dict a dict mapping from column name (string) to aggregate functions (string), or a list of :class:`Column`. Notes ----- Built-in aggregation functions and group aggregate pandas UDFs cannot be mixed in a single call to this function. Examples -------- >>> gdf = df.groupBy(df.name) >>> sorted(gdf.agg({"*": "count"}).collect()) [Row(name='Alice', count(1)=1), Row(name='Bob', count(1)=1)] >>> from pyspark.sql import functions as F >>> sorted(gdf.agg(F.min(df.age)).collect()) [Row(name='Alice', min(age)=2), Row(name='Bob', min(age)=5)] >>> from pyspark.sql.functions import pandas_udf, PandasUDFType >>> @pandas_udf('int', PandasUDFType.GROUPED_AGG) # doctest: +SKIP ... def min_udf(v): ... return v.min() >>> sorted(gdf.agg(min_udf(df.age)).collect()) # doctest: +SKIP [Row(name='Alice', min_udf(age)=2), Row(name='Bob', min_udf(age)=5)] """ assert exprs, "exprs should not be empty" if len(exprs) == 1 and isinstance(exprs[0], dict): jdf = self._jgd.agg(exprs[0]) else: # Columns assert all(isinstance(c, Column) for c in exprs), "all exprs should be Column" jdf = self._jgd.agg(exprs[0]._jc, _to_seq(self.sql_ctx._sc, [c._jc for c in exprs[1:]])) return DataFrame(jdf, self.sql_ctx) @dfapi def count(self): """Counts the number of records for each group. .. versionadded:: 1.3.0 Examples -------- >>> sorted(df.groupBy(df.age).count().collect()) [Row(age=2, count=1), Row(age=5, count=1)] """ @df_varargs_api def mean(self, *cols): """Computes average values for each numeric columns for each group. :func:`mean` is an alias for :func:`avg`. .. versionadded:: 1.3.0 Parameters ---------- cols : str column names. Non-numeric columns are ignored. Examples -------- >>> df.groupBy().mean('age').collect() [Row(avg(age)=3.5)] >>> df3.groupBy().mean('age', 'height').collect() [Row(avg(age)=3.5, avg(height)=82.5)] """ @df_varargs_api def avg(self, *cols): """Computes average values for each numeric columns for each group. :func:`mean` is an alias for :func:`avg`. .. versionadded:: 1.3.0 Parameters ---------- cols : str column names. Non-numeric columns are ignored. Examples -------- >>> df.groupBy().avg('age').collect() [Row(avg(age)=3.5)] >>> df3.groupBy().avg('age', 'height').collect() [Row(avg(age)=3.5, avg(height)=82.5)] """ @df_varargs_api def max(self, *cols): """Computes the max value for each numeric columns for each group. .. versionadded:: 1.3.0 Examples -------- >>> df.groupBy().max('age').collect() [Row(max(age)=5)] >>> df3.groupBy().max('age', 'height').collect() [Row(max(age)=5, max(height)=85)] """ @df_varargs_api def min(self, *cols): """Computes the min value for each numeric column for each group. .. versionadded:: 1.3.0 Parameters ---------- cols : str column names. Non-numeric columns are ignored. Examples -------- >>> df.groupBy().min('age').collect() [Row(min(age)=2)] >>> df3.groupBy().min('age', 'height').collect() [Row(min(age)=2, min(height)=80)] """ @df_varargs_api def sum(self, *cols): """Compute the sum for each numeric columns for each group. .. versionadded:: 1.3.0 Parameters ---------- cols : str column names. Non-numeric columns are ignored. Examples -------- >>> df.groupBy().sum('age').collect() [Row(sum(age)=7)] >>> df3.groupBy().sum('age', 'height').collect() [Row(sum(age)=7, sum(height)=165)] """ def pivot(self, pivot_col, values=None): """ Pivots a column of the current :class:`DataFrame` and perform the specified aggregation. There are two versions of pivot function: one that requires the caller to specify the list of distinct values to pivot on, and one that does not. The latter is more concise but less efficient, because Spark needs to first compute the list of distinct values internally. .. versionadded:: 1.6.0 Parameters ---------- pivot_col : str Name of the column to pivot. values : List of values that will be translated to columns in the output DataFrame. Examples -------- # Compute the sum of earnings for each year by course with each course as a separate column >>> df4.groupBy("year").pivot("course", ["dotNET", "Java"]).sum("earnings").collect() [Row(year=2012, dotNET=15000, Java=20000), Row(year=2013, dotNET=48000, Java=30000)] # Or without specifying column values (less efficient) >>> df4.groupBy("year").pivot("course").sum("earnings").collect() [Row(year=2012, Java=20000, dotNET=15000), Row(year=2013, Java=30000, dotNET=48000)] >>> df5.groupBy("sales.year").pivot("sales.course").sum("sales.earnings").collect() [Row(year=2012, Java=20000, dotNET=15000), Row(year=2013, Java=30000, dotNET=48000)] """ if values is None: jgd = self._jgd.pivot(pivot_col) else: jgd = self._jgd.pivot(pivot_col, values) return GroupedData(jgd, self._df) def _test(): import doctest from pyspark.sql import Row, SparkSession import pyspark.sql.group globs = pyspark.sql.group.__dict__.copy() spark = SparkSession.builder\ .master("local[4]")\ .appName("sql.group tests")\ .getOrCreate() sc = spark.sparkContext globs['sc'] = sc globs['spark'] = spark globs['df'] = sc.parallelize([(2, 'Alice'), (5, 'Bob')]) \ .toDF(StructType([StructField('age', IntegerType()), StructField('name', StringType())])) globs['df3'] = sc.parallelize([Row(name='Alice', age=2, height=80), Row(name='Bob', age=5, height=85)]).toDF() globs['df4'] = sc.parallelize([Row(course="dotNET", year=2012, earnings=10000), Row(course="Java", year=2012, earnings=20000), Row(course="dotNET", year=2012, earnings=5000), Row(course="dotNET", year=2013, earnings=48000), Row(course="Java", year=2013, earnings=30000)]).toDF() globs['df5'] = sc.parallelize([ Row(training="expert", sales=Row(course="dotNET", year=2012, earnings=10000)), Row(training="junior", sales=Row(course="Java", year=2012, earnings=20000)), Row(training="expert", sales=Row(course="dotNET", year=2012, earnings=5000)), Row(training="junior", sales=Row(course="dotNET", year=2013, earnings=48000)), Row(training="expert", sales=Row(course="Java", year=2013, earnings=30000))]).toDF() (failure_count, test_count) = doctest.testmod( pyspark.sql.group, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE | doctest.REPORT_NDIFF) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
tovrstra/horton
refs/heads/master
horton/scripts/test/test_espfit.py
4
# -*- coding: utf-8 -*- # HORTON: Helpful Open-source Research TOol for N-fermion systems. # Copyright (C) 2011-2017 The HORTON Development Team # # This file is part of HORTON. # # HORTON is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 3 # of the License, or (at your option) any later version. # # HORTON is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see <http://www.gnu.org/licenses/> # # -- import numpy as np import os from nose.plugins.attrib import attr from horton import * # pylint: disable=wildcard-import,unused-wildcard-import from horton.test.common import check_script, tmpdir from horton.scripts.test.common import check_files from horton.scripts.espfit import parse_wdens, parse_wnear, parse_wfar, max_at_edge def test_wdens(): assert parse_wdens('fubar.cube') == ('fubar.cube', -9, 0.8) assert parse_wdens('fubar.cube:-6') == ('fubar.cube', -6, 0.8) assert parse_wdens('fubar.cube:-6:0.5') == ('fubar.cube', -6, 0.5) def test_wnear(): assert parse_wnear('1:1.0') == {1: (1.0*angstrom, 0.5*angstrom)} assert parse_wnear('1:1.0:0.3') == {1: (1.0*angstrom, 0.3*angstrom)} assert parse_wnear(['1:1.0', '2:1.2']) == {1: (1.0*angstrom, 0.5*angstrom), 2: (1.2*angstrom, 0.6*angstrom)} assert parse_wnear(['1:1.0:0.3', '2:1.2:0.2']) == {1: (1.0*angstrom, 0.3*angstrom), 2: (1.2*angstrom, 0.2*angstrom)} def test_wfar(): assert parse_wfar('4.3') == (4.3*angstrom, 1.0*angstrom) assert parse_wfar('4.2:0.3') == (4.2*angstrom, 0.3*angstrom) @attr('slow') def test_scripts(): # Generate some random system with random esp data natom = 5 numbers = np.random.randint(1, 20, natom) coordinates = np.random.uniform(0, 10, (natom, 3)) origin = np.zeros(3, float) grid_rvecs = np.identity(3, float)*1.0 shape = np.array([10, 10, 10]) pbc = np.ones(3, int) ugrid = UniformGrid(origin, grid_rvecs, shape, pbc) esp_cube_data = np.random.uniform(-1, 1, shape) rho_cube_data = np.random.uniform(-1, 1, shape) mol_esp = IOData(coordinates=coordinates, numbers=numbers, grid=ugrid, cube_data=esp_cube_data) mol_rho = mol_esp.copy() mol_rho.cube_data = rho_cube_data # Write the cube file to the tmpdir and run scripts (run 1) with tmpdir('horton.scripts.test.test_espfit.test_scripts') as dn: mol_esp.to_file(os.path.join(dn, 'esp.cube')) check_script('horton-esp-cost.py esp.cube esp.h5 --wnear=0:1.0:0.5', dn) check_script('horton-esp-fit.py esp.h5 other.h5', dn) check_script('horton-esp-test.py esp.h5 other.h5:charges foo.h5', dn) check_script('horton-esp-gen.py other.h5:charges esp.cube gen.h5', dn) check_files(dn, ['esp.h5', 'other.h5', 'foo.h5', 'gen.h5']) # Write the cube file to the tmpdir and run scripts (run 2) with tmpdir('horton.scripts.test.test_espfit.test_scripts2') as dn: mol_esp.to_file(os.path.join(dn, 'esp.cube')) mol_rho.to_file(os.path.join(dn, 'rho.cube')) check_script('horton-esp-cost.py esp.cube esp.h5 --wnear=0:1.0:0.5 --wdens=rho.cube --wsave=weight.cube', dn) check_files(dn, ['esp.h5', 'weight.cube']) check_script('horton-esp-fit.py esp.h5 other.h5', dn) check_script('horton-esp-test.py esp.h5 other.h5:charges foo.h5', dn) check_script('horton-esp-gen.py other.h5:charges esp.cube gen.h5', dn) check_files(dn, ['esp.h5', 'other.h5', 'foo.h5', 'gen.h5']) def test_max_at_edge(): weights = np.array([[[0.0, 1.0], [2.0, 3.0]], [[4.0, 5.0], [6.0, 7.0]]]) assert max_at_edge(weights, [1,1,1]) == 0.0 assert max_at_edge(weights, [1,1,0]) == 7.0 weights = np.array([[[0.0, 1.0, 2.0], [2.0, 3.0, 4.0]], [[4.0, 5.0, 6.0], [6.0, 9.0, 8.0]]]) assert max_at_edge(weights, [1,1,1]) == 0.0 assert max_at_edge(weights, [1,1,0]) == 8.0 assert max_at_edge(weights, [1,0,1]) == 9.0 assert max_at_edge(weights, [0,1,1]) == 9.0
davisein/jitsudone
refs/heads/master
django/templatetags/tz.py
80
from __future__ import with_statement from datetime import datetime, tzinfo try: import pytz except ImportError: pytz = None from django.template import Node from django.template import TemplateSyntaxError, Library from django.utils import timezone register = Library() # HACK: datetime is an old-style class, create a new-style equivalent # so we can define additional attributes. class datetimeobject(datetime, object): pass # Template filters @register.filter def localtime(value): """ Converts a datetime to local time in the active time zone. This only makes sense within a {% localtime off %} block. """ return do_timezone(value, timezone.get_current_timezone()) @register.filter def utc(value): """ Converts a datetime to UTC. """ return do_timezone(value, timezone.utc) @register.filter('timezone') def do_timezone(value, arg): """ Converts a datetime to local time in a given time zone. The argument must be an instance of a tzinfo subclass or a time zone name. If it is a time zone name, pytz is required. Naive datetimes are assumed to be in local time in the default time zone. """ if not isinstance(value, datetime): return '' # Obtain a timezone-aware datetime try: if timezone.is_naive(value): default_timezone = timezone.get_default_timezone() value = timezone.make_aware(value, default_timezone) # Filters must never raise exceptions, and pytz' exceptions inherit # Exception directly, not a specific subclass. So catch everything. except Exception: return '' # Obtain a tzinfo instance if isinstance(arg, tzinfo): tz = arg elif isinstance(arg, basestring) and pytz is not None: try: tz = pytz.timezone(arg) except pytz.UnknownTimeZoneError: return '' else: return '' # Convert and prevent further conversion result = value.astimezone(tz) if hasattr(tz, 'normalize'): # available for pytz time zones result = tz.normalize(result) # HACK: the convert_to_local_time flag will prevent # automatic conversion of the value to local time. result = datetimeobject(result.year, result.month, result.day, result.hour, result.minute, result.second, result.microsecond, result.tzinfo) result.convert_to_local_time = False return result # Template tags class LocalTimeNode(Node): """ Template node class used by ``localtime_tag``. """ def __init__(self, nodelist, use_tz): self.nodelist = nodelist self.use_tz = use_tz def render(self, context): old_setting = context.use_tz context.use_tz = self.use_tz output = self.nodelist.render(context) context.use_tz = old_setting return output class TimezoneNode(Node): """ Template node class used by ``timezone_tag``. """ def __init__(self, nodelist, tz): self.nodelist = nodelist self.tz = tz def render(self, context): with timezone.override(self.tz.resolve(context)): output = self.nodelist.render(context) return output class GetCurrentTimezoneNode(Node): """ Template node class used by ``get_current_timezone_tag``. """ def __init__(self, variable): self.variable = variable def render(self, context): context[self.variable] = timezone.get_current_timezone_name() return '' @register.tag('localtime') def localtime_tag(parser, token): """ Forces or prevents conversion of datetime objects to local time, regardless of the value of ``settings.USE_TZ``. Sample usage:: {% localtime off %}{{ value_in_utc }}{% endlocaltime %} """ bits = token.split_contents() if len(bits) == 1: use_tz = True elif len(bits) > 2 or bits[1] not in ('on', 'off'): raise TemplateSyntaxError("%r argument should be 'on' or 'off'" % bits[0]) else: use_tz = bits[1] == 'on' nodelist = parser.parse(('endlocaltime',)) parser.delete_first_token() return LocalTimeNode(nodelist, use_tz) @register.tag('timezone') def timezone_tag(parser, token): """ Enables a given time zone just for this block. The ``timezone`` argument must be an instance of a ``tzinfo`` subclass, a time zone name, or ``None``. If is it a time zone name, pytz is required. If it is ``None``, the default time zone is used within the block. Sample usage:: {% timezone "Europe/Paris" %} It is {{ now }} in Paris. {% endtimezone %} """ bits = token.split_contents() if len(bits) != 2: raise TemplateSyntaxError("'%s' takes one argument (timezone)" % bits[0]) tz = parser.compile_filter(bits[1]) nodelist = parser.parse(('endtimezone',)) parser.delete_first_token() return TimezoneNode(nodelist, tz) @register.tag("get_current_timezone") def get_current_timezone_tag(parser, token): """ Stores the name of the current time zone in the context. Usage:: {% get_current_timezone as TIME_ZONE %} This will fetch the currently active time zone and put its name into the ``TIME_ZONE`` context variable. """ args = token.contents.split() if len(args) != 3 or args[1] != 'as': raise TemplateSyntaxError("'get_current_timezone' requires " "'as variable' (got %r)" % args) return GetCurrentTimezoneNode(args[2])
Endika/c2c-rd-addons
refs/heads/8.0
chricar_stock_dispo_production_V1/__openerp__.py
4
{ 'sequence': 500, "name" : "Dispo Production" , "version" : "1.0" , "author" : "ChriCar Beteiligungs- und Beratungs- GmbH" , "website" : "http://www.chricar.at" , "description" : """Dispo Production generated 2010-04-02 15:01:02+02""" , "category" : "Client Modules/Farm" , "depends" : ["sale","stock", "one2many_sorted","c2c_stock_accounting", "c2c_product_price_unit"] , "init_xml" : ["mig_stock_dispo_production_init.xml"] , "demo" : [] , "data" : [ "stock_dispo_production_view.xml" , "stock_prod_lot_update.xml" ] , "auto_install" : False , 'installable': False , 'application' : False }
antoinecarme/pyaf
refs/heads/master
tests/model_control/detailed/transf_Logit/model_control_one_enabled_Logit_ConstantTrend_NoCycle_LSTM.py
1
import tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['Logit'] , ['ConstantTrend'] , ['NoCycle'] , ['LSTM'] );
vdloo/raptiformica
refs/heads/master
raptiformica/actions/update.py
1
from logging import getLogger from raptiformica.actions.slave import provision_machine from raptiformica.settings.types import get_first_server_type log = getLogger(__name__) def update_machine(server_type=None): """ Update the local machine by running the configured commands from the installed provisioning modules :param str server_type: name of the server type to provision the machine as :return: """ log.info( "Updating local as server type {}".format(server_type) ) server_type = server_type or get_first_server_type() provision_machine(server_type=server_type)
alxgu/ansible
refs/heads/devel
lib/ansible/modules/messaging/rabbitmq/rabbitmq_queue.py
10
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2015, Manuel Sousa <manuel.sousa@gmail.com> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: rabbitmq_queue author: Manuel Sousa (@manuel-sousa) version_added: "2.0" short_description: Manage rabbitMQ queues description: - This module uses rabbitMQ Rest API to create/delete queues requirements: [ "requests >= 1.0.0" ] options: name: description: - Name of the queue to create required: true state: description: - Whether the queue should be present or absent choices: [ "present", "absent" ] default: present durable: description: - whether queue is durable or not type: bool default: 'yes' auto_delete: description: - if the queue should delete itself after all queues/queues unbound from it type: bool default: 'no' message_ttl: description: - How long a message can live in queue before it is discarded (milliseconds) default: forever auto_expires: description: - How long a queue can be unused before it is automatically deleted (milliseconds) default: forever max_length: description: - How many messages can the queue contain before it starts rejecting default: no limit dead_letter_exchange: description: - Optional name of an exchange to which messages will be republished if they - are rejected or expire dead_letter_routing_key: description: - Optional replacement routing key to use when a message is dead-lettered. - Original routing key will be used if unset max_priority: description: - Maximum number of priority levels for the queue to support. - If not set, the queue will not support message priorities. - Larger numbers indicate higher priority. version_added: "2.4" arguments: description: - extra arguments for queue. If defined this argument is a key/value dictionary default: {} extends_documentation_fragment: - rabbitmq ''' EXAMPLES = ''' # Create a queue - rabbitmq_queue: name: myQueue # Create a queue on remote host - rabbitmq_queue: name: myRemoteQueue login_user: user login_password: secret login_host: remote.example.org ''' import json import traceback REQUESTS_IMP_ERR = None try: import requests HAS_REQUESTS = True except ImportError: REQUESTS_IMP_ERR = traceback.format_exc() HAS_REQUESTS = False from ansible.module_utils.basic import AnsibleModule, missing_required_lib from ansible.module_utils.six.moves.urllib import parse as urllib_parse from ansible.module_utils.rabbitmq import rabbitmq_argument_spec def main(): argument_spec = rabbitmq_argument_spec() argument_spec.update( dict( state=dict(default='present', choices=['present', 'absent'], type='str'), name=dict(required=True, type='str'), durable=dict(default=True, type='bool'), auto_delete=dict(default=False, type='bool'), message_ttl=dict(default=None, type='int'), auto_expires=dict(default=None, type='int'), max_length=dict(default=None, type='int'), dead_letter_exchange=dict(default=None, type='str'), dead_letter_routing_key=dict(default=None, type='str'), arguments=dict(default=dict(), type='dict'), max_priority=dict(default=None, type='int') ) ) module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=True) url = "%s://%s:%s/api/queues/%s/%s" % ( module.params['login_protocol'], module.params['login_host'], module.params['login_port'], urllib_parse.quote(module.params['vhost'], ''), module.params['name'] ) if not HAS_REQUESTS: module.fail_json(msg=missing_required_lib("requests"), exception=REQUESTS_IMP_ERR) result = dict(changed=False, name=module.params['name']) # Check if queue already exists r = requests.get(url, auth=(module.params['login_user'], module.params['login_password']), verify=module.params['ca_cert'], cert=(module.params['client_cert'], module.params['client_key'])) if r.status_code == 200: queue_exists = True response = r.json() elif r.status_code == 404: queue_exists = False response = r.text else: module.fail_json( msg="Invalid response from RESTAPI when trying to check if queue exists", details=r.text ) if module.params['state'] == 'present': change_required = not queue_exists else: change_required = queue_exists # Check if attributes change on existing queue if not change_required and r.status_code == 200 and module.params['state'] == 'present': if not ( response['durable'] == module.params['durable'] and response['auto_delete'] == module.params['auto_delete'] and ( ('x-message-ttl' in response['arguments'] and response['arguments']['x-message-ttl'] == module.params['message_ttl']) or ('x-message-ttl' not in response['arguments'] and module.params['message_ttl'] is None) ) and ( ('x-expires' in response['arguments'] and response['arguments']['x-expires'] == module.params['auto_expires']) or ('x-expires' not in response['arguments'] and module.params['auto_expires'] is None) ) and ( ('x-max-length' in response['arguments'] and response['arguments']['x-max-length'] == module.params['max_length']) or ('x-max-length' not in response['arguments'] and module.params['max_length'] is None) ) and ( ('x-dead-letter-exchange' in response['arguments'] and response['arguments']['x-dead-letter-exchange'] == module.params['dead_letter_exchange']) or ('x-dead-letter-exchange' not in response['arguments'] and module.params['dead_letter_exchange'] is None) ) and ( ('x-dead-letter-routing-key' in response['arguments'] and response['arguments']['x-dead-letter-routing-key'] == module.params['dead_letter_routing_key']) or ('x-dead-letter-routing-key' not in response['arguments'] and module.params['dead_letter_routing_key'] is None) ) and ( ('x-max-priority' in response['arguments'] and response['arguments']['x-max-priority'] == module.params['max_priority']) or ('x-max-priority' not in response['arguments'] and module.params['max_priority'] is None) ) ): module.fail_json( msg="RabbitMQ RESTAPI doesn't support attribute changes for existing queues", ) # Copy parameters to arguments as used by RabbitMQ for k, v in { 'message_ttl': 'x-message-ttl', 'auto_expires': 'x-expires', 'max_length': 'x-max-length', 'dead_letter_exchange': 'x-dead-letter-exchange', 'dead_letter_routing_key': 'x-dead-letter-routing-key', 'max_priority': 'x-max-priority' }.items(): if module.params[k] is not None: module.params['arguments'][v] = module.params[k] # Exit if check_mode if module.check_mode: result['changed'] = change_required result['details'] = response result['arguments'] = module.params['arguments'] module.exit_json(**result) # Do changes if change_required: if module.params['state'] == 'present': r = requests.put( url, auth=(module.params['login_user'], module.params['login_password']), headers={"content-type": "application/json"}, data=json.dumps({ "durable": module.params['durable'], "auto_delete": module.params['auto_delete'], "arguments": module.params['arguments'] }), verify=module.params['ca_cert'], cert=(module.params['client_cert'], module.params['client_key']) ) elif module.params['state'] == 'absent': r = requests.delete(url, auth=(module.params['login_user'], module.params['login_password']), verify=module.params['ca_cert'], cert=(module.params['client_cert'], module.params['client_key'])) # RabbitMQ 3.6.7 changed this response code from 204 to 201 if r.status_code == 204 or r.status_code == 201: result['changed'] = True module.exit_json(**result) else: module.fail_json( msg="Error creating queue", status=r.status_code, details=r.text ) else: module.exit_json( changed=False, name=module.params['name'] ) if __name__ == '__main__': main()