text
stringlengths 0
828
|
|---|
return self._parser_func(desired_type, file_path, encoding, logger, **opts)
|
else:
|
return self._parser_func(desired_type, file_path, encoding, logger, **self.function_args, **opts)"
|
1228,"def queryByPortSensor(portiaConfig, edgeId, port, sensor, strategy=SummaryStrategies.PER_HOUR, interval=1, params={ 'from': None, 'to': None, 'order': None, 'precision': 'ms', 'fill':'none', 'min': True, 'max': True, 'sum': True, 'avg': True, 'median': False, 'mode': False, 'stddev': False, 'spread': False }):
|
""""""Returns a pandas data frame with the portia select resultset""""""
|
header = {'Accept': 'text/csv'}
|
endpoint = '/summary/device/{0}/port/{1}/sensor/{2}/{3}/{4}{5}'.format( edgeId, port, sensor, resolveStrategy(strategy), interval, utils.buildGetParams(params) )
|
response = utils.httpGetRequest(portiaConfig, endpoint, header)
|
if response.status_code == 200:
|
try:
|
dimensionSeries = pandas.read_csv( StringIO(response.text), sep=';' )
|
if portiaConfig['debug']:
|
print( '[portia-debug]: {0} rows'.format( len(dimensionSeries.index) ) )
|
return dimensionSeries
|
except:
|
raise Exception('couldn\'t create pandas data frame')
|
else:
|
raise Exception('couldn\'t retrieve data')"
|
1229,"def _process_counter_example(self, mma, w_string):
|
""""""""
|
Process a counterexample in the Rivest-Schapire way.
|
Args:
|
mma (DFA): The hypothesis automaton
|
w_string (str): The examined string to be consumed
|
Returns:
|
None
|
""""""
|
diff = len(w_string)
|
same = 0
|
membership_answer = self._membership_query(w_string)
|
while True:
|
i = (same + diff) / 2
|
access_string = self._run_in_hypothesis(mma, w_string, i)
|
if membership_answer != self._membership_query(access_string + w_string[i:]):
|
diff = i
|
else:
|
same = i
|
if diff - same == 1:
|
break
|
exp = w_string[diff:]
|
self.observation_table.em_vector.append(exp)
|
for row in self.observation_table.sm_vector + self.observation_table.smi_vector:
|
self._fill_table_entry(row, exp)
|
return 0"
|
1230,"def get_dfa_conjecture(self):
|
""""""
|
Utilize the observation table to construct a Mealy Machine.
|
The library used for representing the Mealy Machine is the python
|
bindings of the openFST library (pyFST).
|
Args:
|
None
|
Returns:
|
MealyMachine: A mealy machine build based on a closed and consistent
|
observation table.
|
""""""
|
dfa = DFA(self.alphabet)
|
for s in self.observation_table.sm_vector:
|
for i in self.alphabet:
|
dst = self.observation_table.equiv_classes[s + i]
|
# If dst == None then the table is not closed.
|
if dst == None:
|
logging.debug('Conjecture attempt on non closed table.')
|
return None
|
obsrv = self.observation_table[s, i]
|
src_id = self.observation_table.sm_vector.index(s)
|
dst_id = self.observation_table.sm_vector.index(dst)
|
dfa.add_arc(src_id, dst_id, i, obsrv)
|
# Mark the final states in the hypothesis automaton.
|
i = 0
|
for s in self.observation_table.sm_vector:
|
dfa[i].final = self.observation_table[s, self.epsilon]
|
i += 1
|
return dfa"
|
1231,"def _init_table(self):
|
""""""
|
Initialize the observation table.
|
""""""
|
self.observation_table.sm_vector.append(self.epsilon)
|
self.observation_table.smi_vector = list(self.alphabet)
|
self.observation_table.em_vector.append(self.epsilon)
|
self._fill_table_entry(self.epsilon, self.epsilon)
|
for s in self.observation_table.smi_vector:
|
self._fill_table_entry(s, self.epsilon)"
|
1232,"def learn_dfa(self, mma=None):
|
""""""
|
Implements the high level loop of the algorithm for learning a
|
Mealy machine.
|
Args:
|
mma (DFA): The input automaton
|
Returns:
|
MealyMachine: A string and a model for the Mealy machine to be learned.
|
""""""
|
logging.info('Initializing learning procedure.')
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.