text
stringlengths 0
828
|
|---|
The padding that was used for the ``eyes`` source in :py:func:`bounding_box_from_annotation`, has a proper default.
|
**Returns:**
|
``eyes`` : {'reye' : (rey, rex), 'leye' : (ley, lex)}
|
A dictionary containing the average left and right eye annotation.
|
""""""
|
if padding is None:
|
padding = default_paddings['eyes']
|
top, left, right = padding['top'], padding['left'], padding['right']
|
inter_eye_distance = (bounding_box.size[1]) / (right - left)
|
return {
|
'reye':(bounding_box.top_f - top*inter_eye_distance, bounding_box.left_f - left/2.*inter_eye_distance),
|
'leye':(bounding_box.top_f - top*inter_eye_distance, bounding_box.right_f - right/2.*inter_eye_distance)
|
}"
|
1054,"def parallel_part(data, parallel):
|
""""""parallel_part(data, parallel) -> part
|
Splits off samples from the the given data list and the given number of parallel jobs based on the ``SGE_TASK_ID`` environment variable.
|
**Parameters:**
|
``data`` : [object]
|
A list of data that should be split up into ``parallel`` parts
|
``parallel`` : int or ``None``
|
The total number of parts, in which the data should be split into
|
**Returns:**
|
``part`` : [object]
|
The desired partition of the ``data``
|
""""""
|
if parallel is None or ""SGE_TASK_ID"" not in os.environ:
|
return data
|
data_per_job = int(math.ceil(float(len(data)) / float(parallel)))
|
task_id = int(os.environ['SGE_TASK_ID'])
|
first = (task_id-1) * data_per_job
|
last = min(len(data), task_id * data_per_job)
|
return data[first:last]"
|
1055,"def quasi_random_indices(number_of_total_items, number_of_desired_items = None):
|
""""""quasi_random_indices(number_of_total_items, [number_of_desired_items]) -> index
|
Yields an iterator to a quasi-random list of indices that will contain exactly the number of desired indices (or the number of total items in the list, if this is smaller).
|
This function can be used to retrieve a consistent and reproducible list of indices of the data, in case the ``number_of_total_items`` is lower that the given ``number_of_desired_items``.
|
**Parameters:**
|
``number_of_total_items`` : int
|
The total number of elements in the collection, which should be sub-sampled
|
``number_of_desired_items`` : int or ``None``
|
The number of items that should be used; if ``None`` or greater than ``number_of_total_items``, all indices are yielded
|
**Yields:**
|
``index`` : int
|
An iterator to indices, which will span ``number_of_total_items`` evenly.
|
""""""
|
# check if we need to compute a sublist at all
|
if number_of_desired_items is None or number_of_desired_items >= number_of_total_items or number_of_desired_items < 0:
|
for i in range(number_of_total_items):
|
yield i
|
else:
|
increase = float(number_of_total_items)/float(number_of_desired_items)
|
# generate a regular quasi-random index list
|
for i in range(number_of_desired_items):
|
yield int((i +.5)*increase)"
|
1056,"def exception_class(self, exception):
|
""""""Return a name representing the class of an exception.""""""
|
cls = type(exception)
|
if cls.__module__ == 'exceptions': # Built-in exception.
|
return cls.__name__
|
return ""%s.%s"" % (cls.__module__, cls.__name__)"
|
1057,"def request_info(self, request):
|
""""""
|
Return a dictionary of information for a given request.
|
This will be run once for every request.
|
""""""
|
# We have to re-resolve the request path here, because the information
|
# is not stored on the request.
|
view, args, kwargs = resolve(request.path)
|
for i, arg in enumerate(args):
|
kwargs[i] = arg
|
parameters = {}
|
parameters.update(kwargs)
|
parameters.update(request.POST.items())
|
environ = request.META
|
return {
|
""session"": dict(request.session),
|
'cookies': dict(request.COOKIES),
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.