text
stringlengths 0
828
|
|---|
Calculate $x$-position according to:
|
__ | C |
|
β²β± a β
| - - c_f |
|
| a |
|
x = ββββββββββββββ
|
c_d - c_f
|
where:
|
- $C$ is the measured capacitance.
|
- $c_f$ is the capacitance of the filler medium per unit area
|
_(e.g., air)_.
|
- $c_d$ is the capacitance of an electrode completely covered in
|
liquid per unit area.
|
- $a$ is the area of the actuated electrode(s).
|
Note that this equation for $x$ assumes a single drop moving across an
|
electrode with a length along the x-axis of Lx. If no value is provided
|
for Lx, the electrode is assumed to be square, i.e.,
|
Lx=Ly=sqrt(area)
|
'''
|
if self.calibration._c_drop:
|
c_drop = self.calibration.c_drop(self.frequency)
|
else:
|
c_drop = self.capacitance()[-1] / self.area
|
if self.calibration._c_filler:
|
c_filler = self.calibration.c_filler(self.frequency)
|
else:
|
c_filler = 0
|
if Lx is None:
|
Lx = np.sqrt(self.area)
|
return (self.capacitance(filter_order=filter_order,
|
window_size=window_size, tol=tol) / self.area \
|
- c_filler) / (c_drop - c_filler) * Lx"
|
952,"def mean_velocity(self, tol=0.05, Lx=None):
|
'''
|
Calculate the mean velocity for a step (mm/ms which is equivalent to
|
m/s). Fit a line to the capacitance data and get the slope.
|
'''
|
dx = None
|
dt = None
|
p = None
|
ind = None
|
t_end = None
|
if self.area == 0:
|
return dict(dx=dx, dt=dt, p=p, ind=ind, t_end=t_end)
|
x = self.x_position(Lx=Lx)
|
# find the first and last valid indices
|
ind_start = mlab.find(x.mask==False)[0]
|
ind_last = mlab.find(x.mask==False)[-1]
|
# if the original x value is within tol % of the final x value, include
|
# all samples
|
if x[ind_start] > (1 - tol) * x[ind_last] or x[ind_last] < 0:
|
ind_stop = ind_last
|
else: # otherwise, stop when x reaches (1 - tol) % of it's final value
|
ind_stop = mlab.find(x > (1 - tol) * x[ind_last])[0]
|
ind = [ind_start, ind_stop]
|
# if we have at least 2 valid samples
|
if len(ind) >=2:
|
dx = np.diff(x[ind])[0]
|
dt = np.diff(self.time[ind])[0] # ms
|
# suppress polyfit warnings
|
with warnings.catch_warnings():
|
warnings.simplefilter(""ignore"")
|
# fit a line to the data
|
p = np.polyfit(self.time[ind[0]:ind[1]], x[ind[0]:ind[1]], 1)
|
# find time when the the line intercepts x[ind_last]
|
ind_stop = mlab.find(self.time > \
|
(x[ind_last] - p[1]) / p[0])
|
if len(ind_stop):
|
t_end = self.time[ind_stop[0]]
|
else:
|
t_end = self.time[-1]
|
return dict(dx=dx, dt=dt, p=p, ind=ind, t_end=t_end)"
|
953,"def to_frame(self, filter_order=3):
|
""""""
|
Convert data to a `pandas.DataFrame`.
|
Parameters
|
----------
|
filter_order : int
|
Filter order to use when filtering Z_device, capacitance, x_position, and dxdt.
|
Data is filtered using a Savitzky-Golay filter with a window size that is adjusted
|
based on the mean velocity of the drop (see _get_window_size).
|
Returns
|
-------
|
pandas.DataFrame
|
This DataFrame is indexed by a utc_timestamp and contains the following columns:
|
frequency: actuation frequency (Hz)
|
target_voltage: target voltage (V)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.