text
stringlengths 0
828
|
|---|
int: Slope between self and other.
|
""""""
|
X1, Y1, X2, Y2 = self.X, self.Y, other.X, other.Y
|
Y3 = Y1 - Y2
|
X3 = X1 - X2
|
return (Y3 * self.inverse(X3)) % self.P"
|
675,"def to_jacobian(self):
|
""""""
|
Converts this point to a Jacobian representation.
|
Returns:
|
JacobianPoint: The Jacobian representation.
|
""""""
|
if not self:
|
return JacobianPoint(X=0, Y=0, Z=0)
|
return JacobianPoint(X=self.X, Y=self.Y, Z=1)"
|
676,"def import_model(self, name, path=""floyd.db.models""):
|
""""""imports a model of name from path, returning from local model
|
cache if it has been previously loaded otherwise importing""""""
|
if name in self._model_cache:
|
return self._model_cache[name]
|
try:
|
model = getattr(__import__(path, None, None, [name]), name)
|
self._model_cache[name] = model
|
except ImportError:
|
return False
|
return model"
|
677,"def parse_md(self):
|
""""""Takes a post path and returns a dictionary of variables""""""
|
post_content = _MARKDOWN.convert(self.raw_src)
|
if hasattr(_MARKDOWN, 'Meta'):
|
# 'Meta' in _MARKDOWN and _MARKDOWN.Meta:
|
for key in _MARKDOWN.Meta:
|
print ""\t meta: %s: %s (%s)"" % (key, _MARKDOWN.Meta[key][0], type(_MARKDOWN.Meta[key][0]))
|
if key == 'pubdate':
|
setattr(self, key, datetime.datetime.fromtimestamp(float(_MARKDOWN.Meta[key][0])))
|
else:
|
setattr(self, key, _MARKDOWN.Meta[key][0])
|
self.content = post_content
|
self.stub = self.__key__
|
# set required fields
|
# @TODO required in schema rather than here
|
if not hasattr(self, 'pubdate'):
|
print '\t Notice: setting default pubdate'
|
setattr(self, 'pubdate', datetime.datetime.now())"
|
678,"def filter(self, **kwargs):
|
# @TODO refactor with models as dicts
|
""""""filter results of dataset eg.
|
Query('Posts').filter(post_type='post')
|
""""""
|
f_field = kwargs.keys()[0]
|
f_value = kwargs[f_field]
|
_newset = []
|
for m in self._dataset:
|
if hasattr(m, f_field):
|
if getattr(m, f_field) == f_value:
|
_newset.append(m)
|
self._dataset = _newset
|
return self"
|
679,"def sort_by(self, sb):
|
""""""Sort results""""""
|
self._dataset = self._dataset.sort(key=lambda x: x.pubdate, reverse=True)
|
return self"
|
680,"def execute_train_task_with_dependencies(self, task_cls, **kwargs):
|
""""""
|
Run the training, as well as any dependencies of the training
|
task_cls - class of a task
|
""""""
|
log.info(""Task {0}"".format(get_task_name(task_cls)))
|
#Instantiate the task
|
task_inst = task_cls()
|
#Grab arguments from the task instance and set them
|
for arg in task_inst.args:
|
if arg not in kwargs:
|
kwargs[arg] = task_inst.args[arg]
|
#Check for dependencies defined by the task
|
if hasattr(task_inst, ""dependencies""):
|
deps = task_inst.dependencies
|
dep_results = []
|
#Run the dependencies through recursion (in case of dependencies of dependencies, etc)
|
for dep in deps:
|
log.info(""Dependency {0}"".format(get_task_name(dep)))
|
dep_results.append(self.execute_train_task_with_dependencies(dep.cls, **dep.args))
|
trained_dependencies = []
|
#Add executed dependency to trained_dependencies list on the task
|
for i in xrange(0,len(deps)):
|
dep = deps[i]
|
dep_result = dep_results[i]
|
name = dep.name
|
namespace = dep.namespace
|
category = dep.category
|
trained_dependencies.append(TrainedDependency(category=category, namespace=namespace, name = name, inst = dep))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.