code
stringlengths
3
1.05M
repo_name
stringlengths
5
104
path
stringlengths
4
251
language
stringclasses
1 value
license
stringclasses
15 values
size
int64
3
1.05M
#!/usr/bin/python3 # -*- coding: utf-8 -*- '''Pychemqt, Chemical Engineering Process simulator Copyright (C) 2009-2017, Juan José Gómez Romera <jjgomera@gmail.com> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>.''' from unittest import TestCase from lib import unidades from lib.meos import MEoS class C1Oleate(MEoS): """Multiparameter equation of state for methyl oleate""" name = "methyl oleate" CASNumber = "112-62-9" formula = "C19H36O2" synonym = "" _refPropName = "MOLEATE" _coolPropName = "MethylOleate" rhoc = unidades.Density(241.000222029) Tc = unidades.Temperature(782.0) Pc = unidades.Pressure(1246.0, "kPa") M = 296.48794 # g/mol Tt = unidades.Temperature(253.47) Tb = unidades.Temperature(627.18) f_acent = 0.91 momentoDipolar = unidades.DipoleMoment(1.63, "Debye") # id = 919 f = 8.314472 CP1 = {"an": [90.2385/f], "pow": [0.146118], "ao_exp": [234.797/f, 335.768/f, 431.66/f], "exp": [613.529, 1405.31, 2867.76]} huber = { "__type__": "Helmholtz", "__name__": "Helmholtz equation of state for methyl oleate of Huber " "et al. (2009).", "__doi__": {"autor": "Huber, M.L., Lemmon, E.W., Kazakov, A., Ott, " "L.S., Bruno, T.J.", "title": "Model for the Thermodynamic Properties of a " "Biodiesel Fuel", "ref": "Energy Fuels, 23 (7) (2009) 3790–3797", "doi": "10.1021/ef900159g"}, "R": 8.314472, "cp": CP1, "ref": "NBP", "Tmin": Tt, "Tmax": 1000.0, "Pmax": 50000.0, "rhomax": 3.05, "nr1": [0.4596121e-1, 2.2954, -3.554366, -0.2291674, 0.6854534e-1], "d1": [4, 1, 1, 2, 3], "t1": [1, 0.34, 1.14, 1.4, 0.6], "nr2": [-1.535778, -0.7334697, 1.712700, -1.471394, -0.1724678e-1], "d2": [1, 3, 2, 2, 7], "t2": [3.3, 4.1, 1.9, 3.8, 1.3], "c2": [2, 2, 1, 2, 1], "gamma2": [1]*5, "nr3": [0.2115470e1, -0.7555374, -0.4134269], "d3": [1, 1, 3], "t3": [3.4, 3.8, 4.0], "alfa3": [1.1, 1.6, 1.1], "beta3": [0.9, 0.65, 0.75], "gamma3": [1.14, 0.65, 0.77], "epsilon3": [0.79, 0.9, 0.76], "nr4": []} eq = huber, _vapor_Pressure = { "eq": 3, "n": [-0.13900e2, 0.16246e2, -0.15568e2, -0.73568e1, -0.48739e1], "t": [1.0, 1.5, 1.93, 4.2, 8.0]} _liquid_Density = { "eq": 1, "n": [-0.19920e2, 0.12230e3, -0.23582e3, 0.21009e3, -0.73435e2], "t": [0.461, 0.6, 0.75, 0.91, 1.05]} _vapor_Density = { "eq": 2, "n": [-13.426, 1.8069e2, -1.1108e3, 1.3265e3, -4.6421e2, -2.1070e2], "t": [0.667, 1.71, 2.2, 2.46, 3.0, 9.7]} thermo0 = {"__name__": "Perkins (2010)", "__doi__": { "autor": "Perkins, R.A., Huber, M.L.", "title": "Measurement and Correlation of the Thermal " "Conductivities of Biodiesel Constituent Fluids: " "Methyl Oleate and Methyl Linoleate", "ref": "Energy Fuels 25(5) (2011) 2383-2388", "doi": "10.1021/ef200417x"}, "eq": 1, "Toref": 782.0, "koref": 1, "no": [-2.7125e-4, 2.59365e-3, 0.0350241, -9.02273e-3], "to": [0, 1, 2, 3], "Tref_res": 782.0, "rhoref_res": 241, "kref_res": 1., "nr": [-0.0410106, 0.0606657, 0.0328443, -0.0498407, -0.00418506, 0.0121752], "tr": [0, 1, 0, 1, 0, 1], "dr": [1, 1, 2, 2, 3, 3], "critical": 3, "gnu": 0.63, "gamma": 1.239, "R0": 1.03, "Xio": 0.194e-9, "gam0": 0.0496, "qd": 8.75e-10, "Tcref": 1173} _thermal = thermo0, class Test(TestCase): def test_Perkins(self): # Critical enhancement can differ because the viscosity correlation # in paper is not implemented in pychemqt # Table 3, Pag 2386 st = C1Oleate(T=450, P=1e2) self.assertEqual(round(st.rho, 8), 0.00792666) self.assertEqual(round(st.k, 7), 0.0111019) st = C1Oleate(T=450, P=1e6) self.assertEqual(round(st.rho, 3), 764.716) # self.assertEqual(round(st.k, 6), 0.123794) st = C1Oleate(T=450, P=2e7) self.assertEqual(round(st.rho, 3), 787.080) # self.assertEqual(round(st.k, 6), 0.133856)
jjgomera/pychemqt
lib/mEoS/C1Oleate.py
Python
gpl-3.0
5,129
# PyeNalysis __author__ = "Edwin Dalmaijer" import copy import numpy from scipy.interpolate import interp1d # DEBUG # #from matplotlib import pyplot # # # # # def interpolate_blink(signal, mode='auto', velthresh=5, maxdur=500, margin=10, invalid=-1, edfonly=False): """Returns signal with interpolated results, based on a cubic or linear interpolation of all blinks detected in the signal; based on: https://github.com/smathot/exparser/blob/master/exparser/TraceKit.py arguments signal -- a vector (i.e. a NumPy array) containing a single trace of your signal; alternatively a trial gaze data dict as is returned by edfreader can be passed; in this case the blink ending events will be used to find blinks before the pupil size velocity algorithm will be used (NOTE: this means both will be used successively!) keyword arguments mode -- string indicating what kind of interpolation to use: 'linear' for a linear interpolation 'cubic' for a cubic interpolation 'auto' for a cubic interpolation is possible (i.e. when more than four data points are available) and linear when this is not the case (default = 'auto') velthresh -- pupil size change velocity threshold in arbitrary units per sample (default = 5) maxdur -- maximal duration of the blink in samples (default = 500) margin -- margin (in samples) to compensate for blink duration underestimatiom; blink is extended for detected start minus margin, and detected end plus margin (default = 10) edfonly -- Boolean indicating whether blinks should ONLY be detected using the EDF logs and NOT algorithmically returns signal -- a NumPy array containing the interpolated signal """ # # # # # # input errors # wrong interpolation method if mode not in ['auto','linear','cubic']: raise Exception("Error in pyenalysis.interpolate_missing: mode '%s' is not supported, please use one of the following: 'auto','linear','cubic'" % mode) # wrong signal dimension if type(signal) != dict: if signal.ndim != 1: raise Exception("Error in pyenalysis.interpolate_missing: input is not a single signal trace, but has %d dimensions; please provide a 1-dimension array" % signal.ndim) # # # # # # find blinks # empty lists, to store blink starts and endings starts = [] ends = [] # edfreader data if type(signal) == dict: # loop through blinks for st, et, dur in signal['events']['Eblk']: # Eblk - list of lists, each containing [starttime, endtime, duration] # edf time to sample number st = numpy.where(signal['edftime']==st)[0] et = numpy.where(signal['edftime']==et)[0] # if the starting or ending time did not appear in the trial, # correct the blink starting or ending point to the first or # last sample, respectively if len(st) == 0: st = 0 else: st = st[0] if len(et) == 0: et = len(signal['edftime']) else: et = et[0] # compensate for underestimation of blink duration if st-margin >= 0: st -= margin if et+margin < len(signal['size']): et += margin # do not except blinks that exceed maximal blink duration if et-st <= maxdur: # append start time and ending time starts.append(st) ends.append(et) # extract pupil size data from signal signal = signal['size'] if not edfonly: # signal in NumPy array # create a velocity profile of the signal vprof = signal[1:]-signal[:-1] # start detection ifrom = 0 while True: # blink onset is detected when pupil size change velocity exceeds # threshold l = numpy.where(vprof[ifrom:] < -velthresh)[0] # break when no blink start is detected if len(l) == 0: break # blink start index istart = l[0]+ifrom if ifrom == istart: break # reversal (opening of the eye) is detected when pupil size # starts to increase with a super-threshold velocity l = numpy.where(vprof[istart:] > velthresh)[0] # if no reversal is detected, start detection process at istart # next run if len(l) == 0: ifrom = istart # reloop continue # index number of somewhat halfway blink process imid = l[0] + istart # a blink ending is detected when pupil size increase velocity # falls back to zero l = numpy.where(vprof[imid:] < 0)[0] # if no ending is detected, start detection process from imid # next run if len(l) == 0: ifrom = imid # reloop continue # blink end index iend = l[0]+imid # start detection process from current blink ending next run ifrom = iend # compensate for underestimation of blink duration if istart-margin >= 0: istart -= margin if iend+margin < len(signal): iend += margin # do not except blinks that exceed maximal blink duration if iend-istart > maxdur: # reloop continue # if all is well, we append start and ending to their respective # lists starts.append(istart) ends.append(iend) # # DEBUG # # pyplot.figure() # pyplot.title("" % ()) # pyplot.plot(signal,'ko') # pyplot.plot(vprof,'b') # # # # # # # # # # # # interpolate # loop through all starting and ending positions for i in range(len(starts)): # empty list to store data points for interpolation pl = [] # duration in samples duration = ends[i]-starts[i] # starting point if starts[i] - duration >= 0: pl.extend([starts[i]-duration]) # central points (data between these points will be replaced) pl.extend([starts[i],ends[i]]) # ending point if ends[i] + duration < len(signal): pl.extend([ends[i]+duration]) # choose interpolation type if mode == 'auto': # if our range is wide enough, we can interpolate cubicly if len(pl) >= 4: kind = 'cubic' # if not, we use a linear interpolation else: kind = 'linear' else: kind = mode[:] # select values for interpolation function x = numpy.array(pl) y = signal[x] # replace any invalid values with trial average y[y==invalid] = numpy.mean(signal[signal!=invalid]) # create interpolation function intfunc = interp1d(x,y,kind=kind) # do interpolation xint = numpy.arange(starts[i],ends[i]) yint = intfunc(xint) # insert interpolated values into signal signal[xint] = yint # # DEBUG # # y = numpy.zeros(len(pl)) + max(signal) # pyplot.plot(pl,y,'ro') # pyplot.plot(signal,'r') # # # # # # return signal def interpolate_missing(signal, mode='auto', mindur=5, margin=10, invalid=-1): """Returns signal with interpolated results, based on a cubic or linear interpolation of the invalid data in the signal arguments signal -- a vector (i.e. a NumPy array) containing a single trace of your signal keyword arguments mode -- string indicating what kind of interpolation to use: 'linear' for a linear interpolation 'cubic' for a cubic interpolation 'auto' for a cubic interpolation is possible (i.e. when more than four data points are available) and linear when this is not the case (default = 'auto') mindur -- minimal amount of consecutive samples to interpolate cubically; otherwise a linear interpolation is used; this is to prevent weird results in the interpolation of very short strings of missing data (default = 5) margin -- margin (in samples) to compensate for missing duration underestimatiom; missing is extended for detected start minus margin, and detected end plus margin; this helps in reducing errors in blink interpolation that has not been done by interpolate_blink (default = 10) invalid -- a single value coding for invalid data, e.g. -1 or 0.0 (default = -1) returns signal -- a NumPy array containing the interpolated signal """ # # # # # # input errors # wrong interpolation method if mode not in ['auto','linear','cubic']: raise Exception("Error in pyenalysis.interpolate_missing: mode '%s' is not supported, please use one of the following: 'auto','linear','cubic'" % mode) # wrong signal dimension if signal.ndim != 1: raise Exception("Error in pyenalysis.interpolate_missing: input is not a single signal trace, but has %d dimensions; please provide a 1-dimension array" % signal.ndim) # # # # # # find successive strings of missing data # empty lists for starting and ending indexes starts = [] ends = [] # check if beginning sample is missing, and add to starting indexes if # needed (algorithm does not pick up changes before the start or after # the end if the signal) if signal[0] == invalid: starts.append(0) si = 1 else: si = 0 # find invalid data inval = signal == invalid # code connected strings of missing data 1 # (by substracting the previous number from the current, for every # missing data index number: this will produce a value of 1 for # successive index numbers, and higher values for nonsuccessive ones) diff = numpy.diff(inval) # find out what the index numbers of changes are # (i.e.: every difference that is 1) changes = numpy.where(diff==True)[0] # loop through changes, finding start and begining index numbers for # strings of successive missings for i in range(si,len(changes),2): ns = changes[i]-margin if ns < 0: ns = 0 starts.append(ns) for i in range(1-si,len(changes),2): ne = changes[i]+1+margin if ne >= len(signal): ne = len(signal)-1 ends.append(ne) # if the signal ended on an invalid sample, add the ending index number if signal[-1] == invalid: ends.append(len(signal)-1) # # # # # # interpolate # correct start and end point if these are invalid, by replacing them # with the trial average if signal[0] == invalid: signal[0] = numpy.mean(signal[signal != invalid]) if signal[-1] == invalid: signal[-1] = numpy.mean(signal[signal != invalid]) # loop through all starting and ending positions for i in range(len(starts)): # empty list to store data points for interpolation pl = [] # duration in samples duration = ends[i]-starts[i] # starting point if starts[i] - duration >= 0 and signal[starts[i]-duration] != invalid: pl.extend([starts[i]-duration]) # central points (data between these points will be replaced) pl.extend([starts[i],ends[i]]) # ending point if ends[i] + duration < len(signal) and signal[ends[i]+duration] != invalid: pl.extend([ends[i]+duration]) # if the duration is too low, use linear interpolation if duration < mindur: kind = 'linear' # if the duration is long enough, choose interpolation type else: if mode == 'auto': # if our range is wide enough, we can interpolate cubicly if len(pl) >= 4: kind = 'cubic' # if not, we use a linear interpolation else: kind = 'linear' else: kind = mode[:] # create interpolation function x = numpy.array(pl) y = signal[x] intfunc = interp1d(x,y,kind=kind) # do interpolation xint = numpy.arange(starts[i],ends[i]) yint = intfunc(xint) # insert interpolated values into signal signal[xint] = yint return signal def remove_outliers(signal, maxdev=2.5, invalid=-1, interpolate=True, mode='auto', allowp=0.1): """Replaces every outlier with a missing value, then interpolates missing values using pyenalysis.interpolate_missing arguments signal -- a vector (i.e. a NumPy array) containing a single trace of your signal keyword arguments maxdev -- maximal distance between a single sample and the signal average in standard deviations (default = 2.5) invalid -- a single value coding for invalid data, e.g. -1 or 0.0; outliers will be replaced by this value (default = -1) interpolate -- Boolean indicating whether outliers should be should be interpolated (True) or replaced by missing values (False) (default = True) mode -- string indicating what kind of interpolation to use: 'linear' for a linear interpolation 'cubic' for a cubic interpolation 'auto' for a cubic interpolation is possible (i.e. when more than four data points are available) and linear when this is not the case (default = 'auto') allowp -- is the standard deviation is below this proportion of the mean, outliers will not be removed; this is to prevent erroneous removal of outliers in a very steady signal (default = 0.1) returns signal -- signal with outliers replaced by missing or interpolated (depending on interpolate keyword argument) """ # # # # # # input errors # wrong interpolation method if mode not in ['auto','linear','cubic']: raise Exception("Error in pyenalysis.interpolate_missing: mode '%s' is not supported, please use one of the following: 'auto','linear','cubic'" % mode) # wrong signal dimension if signal.ndim != 1: raise Exception("Error in pyenalysis.interpolate_missing: input is not a single signal trace, but has %d dimensions; please provide a 1-dimension array" % signal.ndim) # # # # # # outlier removal # calculate signal average and standard deviation mean = numpy.mean(signal) sd = numpy.std(signal) # stop if SD is too low if sd < mean*allowp: return signal # calculate bounds lower = mean - maxdev*sd upper = mean + maxdev*sd # find outliers outlier = (signal > upper) | (signal < lower) # replace outliers by invalid code signal[outlier] = invalid # interpolate if interpolate: signal = interpolate_missing(signal, mode=mode, invalid=invalid) return signal def hampel(signal, winlen=12, T=3, focus='centre'): """Performs a Hampel filtering, a median based outlier rejection in which outliers are detected based on a local median, and are replaced by that median (local median is determined in a moving window) arguments signal -- a vector (i.e. a NumPy array) containing a single trace of your signal keyword arguments winlen -- integer indicating window length (default = 12) T -- floating point or integer indicating the maximal distance from the surrounding signal that defines outliers; distance is measured in a standard deviation like measure (S0), based on the local median; a T of 3 means that any point outside of the range -3*S0 to 3*S0 is considered an outlier (default = 3) focus -- string indicating where the focus (i.e. the point that is being corrected) of the window should be; one of: 'centre' (window = winlen/2 + i + winlen/2) 'left' '(window = i + winlen) 'right' (window = winlen + i) """ if focus == 'centre': # half a window length hampwinlen = winlen/2 for i in range(hampwinlen, len(signal)-hampwinlen+1): # median for this window med = numpy.median(signal[i-hampwinlen:i+hampwinlen]) # check S0 (standard deviation like measure) s0 = 1.4826 * numpy.median(numpy.abs(signal[i-hampwinlen:i+hampwinlen] - med)) # check outliers if signal[i] > T*s0 or signal[i] < T*s0: # replace outliers by median signal[i] = med # if the focus is not the centre else: # determine the starting position if focus == 'left': start = 0 stop = len(signal) - winlen elif focus == 'right': start = winlen stop = len(signal) else: start = winlen/2 stop = len(signal) - winlen/2 + 1 # loop through samples for i in range(start, stop): # determine window start and stop if focus == 'left': wstart = i wstop = i + winlen elif focus == 'right': wstart = i - winlen wstop = i else: wstart = i - winlen/2 wstop = i + winlen/2 # median for this window med = numpy.median(signal[wstart:wstop]) # check S0 (standard deviation like measure) s0 = 1.4826 * numpy.median(numpy.abs(signal[wstart:wstop] - med)) # check outliers if signal[i] > T*s0 or signal[i] < T*s0: # replace outliers by median signal[i] = copy.deepcopy(med) return signal def smooth(signal, winlen=11, window='hanning', lencorrect=True): """Smooth a trace, based on: http://wiki.scipy.org/Cookbook/SignalSmooth arguments signal -- a vector (i.e. a NumPy array) containing a single trace of your signal keyword arguments winlen -- integer indicating window length (default = 11) window -- smoothing type, should be one of the following: 'flat', 'hanning', 'hamming', 'bartlett', or 'blackman' (default = 'hanning') lencorrect -- Boolean indicating if the output (the smoothed signal) should have the same length as the input (the raw signal); this is not necessarily so because of data convolution (default = True) returns signal -- smoothed signal """ # # # # # # input errors # really small window if winlen < 3: return signal # non-integer window length if type(winlen) != int: try: winlen = int(winlen) except: raise Exception("Error in pyenalysis.smooth: provided window length ('%s') is not compatible; please provide an integer window length" % winlen) # wrong type of window if window not in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise Exception("Error in pyenalysis.smooth: windowtype '%s' is not supported; please use one of the following: 'flat', 'hanning', 'hamming', 'bartlett', or 'blackman'" % window) # wrong signal dimension if signal.ndim != 1: raise Exception("Error in pyenalysis.smooth: input is not a single signal trace, but has %d dimensions; please provide a 1-dimension array" % signal.ndim) # too small a trace if signal.size < winlen: raise Exception("Error in pyenalysis.smooth: input signal has too few datapoints (%d) for provided window length (%d)" % (signal.size,winlen)) # # # # # # smoothing # slice to concatenation s = numpy.r_[signal[winlen-1:0:-1],signal,signal[-1:-winlen:-1]] # this is equivalent to: # p1 = signal[winlen-1:0:-1].tolist() # first part of signal reversed # p2 = signal.tolist() # p3 = signal[-1:-winlen:-1].tolist() # last part of signal reversed # s = p1 + p2 + p3 # moving average if window == 'flat': w = numpy.ones(winlen, 'd') # bit more sophisticated smoothing algorithms else: w = eval("numpy.%s(%d)" % (window,winlen)) # convolve signal, according to chosen smoothing type smoothed = numpy.convolve(w/w.sum(), s, mode='valid') # correct length if necessary if lencorrect: smoothed = smoothed[(winlen/2-1):(-winlen/2)] try: smoothed = smoothed[:len(signal)] except: raise Exception("Error in pyenalysis.smooth: output array is too short (len(output)=%d, len(signal)=%d)" % (len(smoothed),len(signal))) return smoothed # DEBUG # if __name__ == '__main__': from matplotlib import pyplot # constants N = 200 INVAL = -1 # create random data a = numpy.random.random_sample(N) # manipulate radom data to look like somewhat realictic data a = 10 + a*5 # introduce some missing values a[0:10] = INVAL a[50:66] = INVAL a[150:190] = INVAL a[-1] = INVAL # introduce ouliers for i in [15,16,18,40,197]: a[i] = a[i] + numpy.random.random()*30 # plot the raw data pyplot.figure() pyplot.plot(a,'ko', label='raw') # smooth the data # a = smooth(a,winlen=5,lencorrect=True) # plot the smoothed data # pyplot.plot(a,'y', label='pre-smooth') # interpolate 'blinks' (artificial, due to smoothing of fake data and missing) # a = interpolate_blink(a, mode='auto', velthresh=5, maxdur=500, margin=10) # plot interpolated data # pyplot.plot(a,'b', label='blinks_interpolated') # interpolate missing data a = interpolate_missing(a,mode='linear',invalid=INVAL) # plot interpolated data pyplot.plot(a,'g', label='missing_interpolated') # remove outliers a = remove_outliers(a, maxdev=5, invalid=INVAL, interpolate=True, mode='auto') # plot data without outliers pyplot.plot(a,'m', label='outliers_removed') # smooth the data a = smooth(a,winlen=5,window='hanning',lencorrect=True) # plot the smoothed data pyplot.plot(a,'r', label='smooth') # finish the plot pyplot.legend(loc='upper right') pyplot.show() # # # # #
esdalmaijer/PyGazeAnalyser
pygazeanalyser/traces.py
Python
gpl-3.0
19,865
#### ##functions for running tune_main.py ##dpaiton import os import re ## Generator (most times) function to return a range of values with a float step ## This is inclusive, which is different from Python's range() function def frange(start, stop, step): if start == stop or stop == 0 or step == 0: yield start else: r = start while r <= stop: yield r r += step ## Function to enable a layer or conn def enable_block(start_line_num, output_lines): for line_num in range(start_line_num,0,-1): if 'disable' in output_lines[line_num]: output_lines[line_num] = re.sub('true','false',output_lines[line_num],count=0) break return output_lines ## Function to uncomment a block of code from the given start line to the first time a blank line is found def uncomment_block(start_line_num, output_lines): for line_num in range(start_line_num,len(output_lines)): com_line = output_lines[line_num] if com_line == '\n': return output_lines output_lines[line_num] = com_line[2:] return output_lines
dpaiton/OpenPV
projects/HyPerRetina/tuning/tune_functions.py
Python
epl-1.0
1,131
import unittest from webtest import TestApp import helloworld import printenv class TestModules(unittest.TestCase): nosegae_modules = True nosegae_user = True nosegae_user_kwargs = { 'USER_IS_ADMIN': '1', 'USER_EMAIL': 'josh@example.org' } def test_frontend(self): """Tests the main module in app.yaml""" frontend = TestApp(helloworld.APP) response = frontend.get('/') self.assertEqual(response.content_type, 'text/plain') self.assertIn('Hello, webapp2 World!', response.body) def test_mobile_frontend(self): mobile = TestApp(printenv.APP) response = mobile.get('/mobile/') self.assertEqual(response.content_type, 'text/html') self.assertIn('josh@example.org', response.body) def test_static_backend(self): work = TestApp(printenv.APP) response = work.get('/work/') self.assertEqual(response.content_type, 'text/html') self.assertIn('josh@example.org', response.body)
Trii/NoseGAE
examples/modules_example/test.py
Python
bsd-2-clause
1,022
# Copyright (c) 2013 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from oslo_config import cfg import murano.common.messaging as messaging CONF = cfg.CONF def create_rmq_client(): rabbitmq = CONF.rabbitmq connection_params = { 'login': rabbitmq.login, 'password': rabbitmq.password, 'host': rabbitmq.host, 'port': rabbitmq.port, 'virtual_host': rabbitmq.virtual_host, 'ssl': rabbitmq.ssl, 'ca_certs': rabbitmq.ca_certs.strip() or None } return messaging.MqClient(**connection_params)
sajuptpm/murano
murano/engine/system/common.py
Python
apache-2.0
1,076
"""This module imports all tests/unittests for the pyfrp_gmsh_geometry.""" from pyfrp.modules import pyfrp_gmsh_geometry from pyfrp.modules import pyfrp_misc_module from pyfrp.modules import pyfrp_gmsh_IO_module import numpy as np def test_surfaceFuse(): """Test surface fuse function. Reads in .stl, tries to fuse a few surfaces and checks if new surface lineLoop has proper number of vertices.""" d=pyfrp_gmsh_IO_module.readStlFile(pyfrp_misc_module.fixPath(pyfrp_misc_module.getMeshfilesDir()+"tests/surfaceFuse.stl")) sfID=1 toFuseIDs=[2,3,4,5,6,7] # Grab first surface sf1=d.getRuledSurfaceById(sfID)[0] # Try to successively fuse for ID in toFuseIDs: sf1.fuse(d.getRuledSurfaceById(ID)[0],debug=True) assert pyfrp_misc_module.objAttrToList(sf1.lineLoop.getVertices(),'Id') == [1, 2, 4, 5, 6, 7, 8, 9, 3] def test_domainSimplifySurfaces(): """Test domain's simplify surfaces method. Reads in .stl, tries to the geometry and checks if it has been simplified properly.""" d=pyfrp_gmsh_IO_module.readStlFile(pyfrp_misc_module.fixPath(pyfrp_misc_module.getMeshfilesDir()+"tests/surfaceFuse.stl")) d.simplifySurfaces(triangIterations=0,addPoints=False,fixSurfaces=False,debug=False,iterations=3) sameNormal=d.getAllObjectsWithProp("ruledSurfaces","normal",np.array([0,-1.,0])) assert len(sameNormal) == 1 def test_getAllSubElements(): """Test gmshElement's getAllSubElements. Creates cuboid domain and checks that sub-elements of first surface have the right number. """ # Create domain d=pyfrp_gmsh_geometry.domain() # Add Cuboid d.addCuboidByParameters([0,0,0],100,150,50,30.,plane="z",genLoops=True,genSurfaces=True,genVol=True) assert len(d.ruledSurfaces[0].getAllSubElements())==13
mueller-lab/PyFRAP
pyfrp/tests/modules/test_gmsh_geometry.py
Python
gpl-3.0
1,754
#!/usr/bin/python # Author: Zion Orent <zorent@ics.com> # Copyright (c) 2015 Intel Corporation. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from __future__ import print_function import time, sys, signal, atexit from upm import pyupm_mpr121 as upmMpr121 def main(): I2C_BUS = upmMpr121.MPR121_I2C_BUS DEFAULT_I2C_ADDR = upmMpr121.MPR121_DEFAULT_I2C_ADDR # Instantiate an MPR121 touch sensor on I2C myTouchSensor = upmMpr121.MPR121(I2C_BUS, DEFAULT_I2C_ADDR) ## Exit handlers ## # This stops python from printing a stacktrace when you hit control-C def SIGINTHandler(signum, frame): raise SystemExit # This function lets you run code on exit, # including functions from myTouchSensor def exitHandler(): print("Exiting") sys.exit(0) # Register exit handlers atexit.register(exitHandler) signal.signal(signal.SIGINT, SIGINTHandler) def printButtons(touchSensor): buttonPressed = False outputStr = "Buttons Pressed: " for i in range(12): if (touchSensor.m_buttonStates & (1 << i)): outputStr += (str(i) + " ") buttonPressed = True if (not buttonPressed): outputStr += "None" print(outputStr) if (touchSensor.m_overCurrentFault): print("Over Current Fault detected!") while(1): myTouchSensor.readButtons() printButtons(myTouchSensor) time.sleep(1) if __name__ == '__main__': main()
whbruce/upm
examples/python/mpr121.py
Python
mit
2,534
# Copyright (c) 2010-2014, GEM Foundation. # # OpenQuake Risklib is free software: you can redistribute it and/or # modify it under the terms of the GNU Affero General Public License # as published by the Free Software Foundation, either version 3 of # the License, or (at your option) any later version. # # OpenQuake Risklib is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU Affero General Public # License along with OpenQuake Risklib. If not, see # <http://www.gnu.org/licenses/>. import unittest from openquake.risklib import scientific class RiskCommonTestCase(unittest.TestCase): def test_compute_bcr(self): # numbers are proven to be correct eal_orig = 0.00838 eal_retrofitted = 0.00587 retrofitting_cost = 0.1 interest = 0.05 life_expectancy = 40 expected_result = 0.43405 result = scientific.bcr( eal_orig, eal_retrofitted, interest, life_expectancy, 1, retrofitting_cost) self.assertAlmostEqual(result, expected_result, delta=2e-5)
g-weatherill/oq-risklib
openquake/risklib/tests/benefit_cost_ratio_test.py
Python
agpl-3.0
1,272
# -*- encoding: utf-8 -*- import os from abjad.tools.abctools import ContextManager class TemporaryDirectoryChange(ContextManager): r'''A context manager for temporarily changing the current working directory. ''' ### CLASS VARIABLES ### __documentation_section__ = 'Context managers' __slots__ = ( '_directory', '_original_directory', '_verbose', ) ### INITIALIZER ### def __init__(self, directory=None, verbose=None): if directory is None: pass elif os.path.isdir(directory): pass elif os.path.isfile(directory): directory = os.path.dirname(directory) self._directory = directory self._original_directory = None if verbose is not None: verbose = bool(verbose) self._verbose = bool(verbose) ### SPECIAL METHODS ### def __enter__(self): r'''Enters context manager and changes to `directory`. ''' self._original_directory = os.getcwd() if self._directory is not None: os.chdir(self.directory) if self.verbose: print('Changing directory to {}.'.format(self.directory)) return self def __exit__(self, exc_type, exc_value, traceback): r'''Exits context manager and returns to original working directory. ''' if self._directory is not None: os.chdir(self._original_directory) if self.verbose: print('Returning to {}.'.format(self.original_directory)) self._original_directory = None def __repr__(self): r'''Gets interpreter representation of context manager. Returns string. ''' return '<{}()>'.format(type(self).__name__) ### PUBLIC PROPERTIES ### @property def directory(self): r'''Gets temporary directory of context manager. Returns string. ''' return self._directory @property def original_directory(self): r'''Gets original directory of context manager. Returns string. ''' return self._original_directory @property def verbose(self): r'''Is true if context manager prints verbose messages on entrance and exit. Otherwise false. Returns boolean. ''' return self._verbose
mscuthbert/abjad
abjad/tools/systemtools/TemporaryDirectoryChange.py
Python
gpl-3.0
2,390
# -*- coding: utf-8 -*- ## Copyright 2008-2009 Luc Saffre. ## This file is part of the Lino project. ## Lino is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## Lino is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ## or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ## License for more details. ## You should have received a copy of the GNU General Public License ## along with Lino; if not, write to the Free Software Foundation, ## Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA import os import codecs from models import Unit, Entry, Units #from menu import Units from django.core import serializers from django.test import TestCase from django import forms from lino.utils.validatingmodel import ModelValidationError # convert a django.forms.util.ErrorDict object to a str #~ def errordict2str(errordict): #~ d={} #~ for fieldname,errorlist in errordict.items(): #~ d[fieldname] = list(*errorlist) #~ return d class TestCase(TestCase): def test01(self): u1 = Unit(title="First Chapter") u1.save() self.assertEqual(u1.seq,1) u = Unit(title="First Section",parent=u1) u.save() self.assertEqual(u.seq,1) u = Unit(title="Second Section",parent=u1) u.save() self.assertEqual(u.seq,2) self.assertEqual(u.pk,3) try: #print "set parent to self" u.parent=u u.save() print "save() : done" except ModelValidationError,e: #s="\n".join([e.as_text() for m in e.messages]) self.assertEqual(str(e),"Parent cannot be self") else: self.fail("Expected ModelValidationError") class PkkTestCase(TestCase): fixtures=[ 'demo' ] def setUp(self): for u in Unit.objects.all(): u.save() def test01(self): unit=Unit.objects.get(pk=5) # unit.save() entries=unit.entry_set.all() s="\n".join([e.word1 for e in entries]) #print s self.assertEquals(s.split(), u""" grand, grande gentil, gentille petit, petite méchant, méchante sale, sale propre, propre est-ce que oui non """.split()) #~ def test02(self): #~ entries=Entry.objects.all() #~ self.assertEquals(len(entries),192) #~ entries=Entry.objects.filter(word1__startswith="p") #~ self.assertEquals(len(entries),20) #~ s="\n".join([e.word1 for e in entries]) #~ print s #~ #print "test00",entries #~ self.assertEquals(s,"""\ #~ père #~ """) def test03(self): # total number of rows in each table: units=Unit.objects.all() self.assertEqual(len(units),6) self.assertEqual(len(Entry.objects.all()),9) pkk=unit=Unit.objects.get(pk=1) self.assertEqual(len(pkk.children.all()),1) # # prettyprint() # s=pkk.prettyprint() #print s self.assertEqual(s,u"""\ 1. Prantsuse keele kurs algajatele 1.1. Esimene tund 1.1.1. Sissejuhatus 1.1.2. Olema 1.1.3. Esimesed laused 1.1.4. Mees või naine?""") # # # entries=Entry.objects.filter(word1__startswith="p") self.assertEquals(len(entries),2) s="\n".join([e.word1 for e in entries]) #print s self.assertEquals(s.split(),u""" petit, petite propre, propre """.split()) # # The first Report # rpt=Units() s=rpt.as_text(column_widths=dict(id=3,title=30,parent=20,seq=3)) #print "\n"+s self.assertEquals(s.split(),u""" Units ===== ID |title |name |parent |seq|format ---+------------------------------+---------+--------------------+---+--------- 1 |Prantsuse keele kurs |pkk | |1 |R |algajatele | | | | 2 |Esimene tund |u1 |1. Prantsuse keele |1 |R | | |kurs algajatele | | 3 |Sissejuhatus | |1.1. Esimene tund |1 |R 4 |Olema | |1.1. Esimene tund |2 |R 5 |Esimesed laused | |1.1. Esimene tund |3 |R 6 |Mees või naine? | |1.1. Esimene tund |4 |R """.split(),"Units().as_text() has changed in demo") # Run these tests using "python manage.py test". # see http://docs.djangoproject.com/en/dev/topics/testing/#topics-testing
MaxTyutyunnikov/lino
obsolete/voc/tests.py
Python
gpl-3.0
5,073
# import bpy # def draw_wire(context): # area = context.area # if context.area.type == 'VIEW_3D': # target = bpy.context.area.spaces.active # # target.draw_handler_add()
TriumphLLC/FashionProject
modules/draw/wires.py
Python
gpl-3.0
183
"""User API""" import arrow from flask import render_template, request from flask_mail import Message from werkzeug.security import generate_password_hash, check_password_hash from purepage.ext import r, db, abort, g, auth, mail def gen_pwdhash(password): """生成密码hash""" return generate_password_hash(password, method='pbkdf2:sha256') class User: """ 用户 $shared: user: id?str: 用户ID role?str: 角色 github?url&optional: Github地址 avatar?url&default="http://purepage.org/static/avatar-default.png": 头像 date_create?datetime&optional: 创建时间 date_modify?datetime&optional: 修改时间 lastlogin_date?datetime&optional: 最近登录时间 """ # noqa def post_signup(self, id, email, password): """ 注册 $input: id?str: 用户ID email?email&optional: 邮箱 password?str: 密码 $output: @message $error: 400.IDConflict: 用户ID已存在 400.EmailConflict: 邮箱已存在 """ if db.run(r.table("user").get(id)): abort(400, "IDConflict", "%s already exists" % id) if email and db.first(r.table("user").get_all(email, index="email")): abort(400, "EmailConflict", "%s already exists" % email) db.run(r.table("user").insert({ "id": id, "email": email, "pwdhash": gen_pwdhash(password), "role": "normal", "date_create": arrow.utcnow().datetime, "date_modify": arrow.utcnow().datetime, "timestamp": arrow.utcnow().timestamp })) return {"message": "OK"} def check_password(self, user, password): if not user: abort(403, "UserNotFound", "帐号不存在") if not check_password_hash(user["pwdhash"], password): abort(403, "WrongPassword", "密码错误") def post_login(self, account, password): """ 登录 $input: account?str: 用户ID或邮箱 password?str: 密码 $output: @user $error: 403.UserNotFound: 帐号不存在 403.WrongPassword: 密码错误 """ user = db.run(r.table("user").get(account)) if not user: user = db.first(r.table("user").get_all(account, index="email")) if not user: abort(403, "UserNotFound", "帐号不存在") self.check_password(user, password) db.run( r.table("user") .get(user["id"]) .update({ "lastlogin_date": arrow.utcnow().datetime, "lastlogin_ip": request.remote_addr, "lastlogin_ua": request.headers.get('User-Agent'), "timestamp": arrow.utcnow().timestamp }) ) g.token = {"type": "login", "id": user["id"]} return user def get_me(self): """ 获取自己的信息 $output: @user """ return g.user def get(self, id): """ 查看用户信息 $input: id?str: ID $output: @user """ user = db.run(r.table("user").get(id)) if not user: abort(404, "NotFound", "用户不存在") return user def put(self, github, avatar): """ 修改个人信息 $input: github?url&optional: Github地址 avatar?url&optional: 头像 $output: @message """ db.run( r.table("user") .get(g.user["id"]) .update({ "github": github, "avatar": avatar, "date_modify": arrow.utcnow().datetime, "timestamp": arrow.utcnow().timestamp }) ) return {"message": "OK"} def put_email(self, email, password): """ 修改邮箱地址 $input: email?email: 邮箱 password?str: 密码 $output: @message """ self.check_password(g.user, password) db.run(r.table("user").get(g.user["id"]).update({ "email": email, "date_modify": arrow.utcnow().datetime, "timestamp": arrow.utcnow().timestamp })) return {"message": "OK"} def put_password(self, new_password, password): """ 修改密码 $input: new_password?str: 新密码 password?str: 密码 $output: @message """ self.check_password(g.user, password) db.run(r.table("user").get(g.user["id"]).update({ "pwdhash": gen_pwdhash(new_password), "date_modify": arrow.utcnow().datetime, "timestamp": arrow.utcnow().timestamp })) return {"message": "OK"} def post_forgot(self, email): """ 忘记密码,Token有效时间为2小时 $input: email?email: 邮箱 $output: @message $error: 400.UserNotFound: 用户不存在 """ user = db.first(r.table("user").get_all(email, index="email")) if not user: abort(400, "UserNotFound", "用户不存在") token = auth.encode_token({ "type": "reset", "id": user["id"], "exp": arrow.utcnow().replace(hours=2).timestamp, "timestamp": user["timestamp"] }) token = token.decode("ascii") msg = Message("PurePage重置密码", recipients=[email]) msg.html = render_template( "user-reset.html", token=token, userid=user["id"]) mail.send(msg) return {"message": "重置链接已发送至邮箱,请查收"} def post_reset(self, token, password): """ 重置密码 $input: token?str: 重置链接中的Token password?str: 密码 $output: @message $error: 403.InvalidToken: Token无效 """ token = auth.decode_token(token) if token is None or token.get("type") != "reset": abort(403, "InvalidToken", "Token无效") user = db.run(r.table("user").get(token["id"])) if ( user is None or "timestamp" not in token or user["timestamp"] != token["timestamp"] ): abort(403, "InvalidToken", "Token无效") db.run( r.table("user") .get(token["id"]) .update({ "pwdhash": gen_pwdhash(password), "timestamp": arrow.utcnow().timestamp }) ) return {"message": "OK"}
guyskk/kkblog
api/purepage/views/user.py
Python
mit
6,802
import hmac from functools import wraps from flask import make_response from flask import request import config import logger from middleware import received_message from middleware import received_postback from middleware import validate_token LOGGER = logger.getLogger(__name__) APP_SECRET = bytes(config.facebook['APP_SECRET'], 'utf-8') def initalize_routes(app): if app is None: raise ValueError('Application is required!') context_root = '/v1.0/' app.add_url_rule(context_root + 'webhook', 'webhook_validation', webhook_validation, methods=['GET']) app.add_url_rule(context_root + 'webhook', 'webhook_callback', webhook_callback, methods=['POST']) def verify_request_signature(func): @wraps(func) def decorated(*args, **kwargs): signature = request.headers.get('x-hub-signature', None) if signature: elements = signature.split('=') method = elements[0] signature_hash = elements[1] expected_hash = hmac.new(APP_SECRET, msg=request.get_data(), digestmod=method).hexdigest() if signature_hash != expected_hash: LOGGER.error('Signature was invalid') return make_response('', 403) else: LOGGER.error('Could not validate the signature') return func(*args, **kwargs) return decorated def webhook_validation(): mode = request.args.get('hub.mode') token = request.args.get('hub.verify_token') challenge = request.args.get('hub.challenge', '') if validate_token(mode, token): LOGGER.info('Token was successfully validated') return make_response(challenge, 200) else: LOGGER.warning('Token was invalid!') return make_response('', 403) @verify_request_signature def webhook_callback(): data = request.json if data['object'] == 'page': for page_entry in data['entry']: page_id = page_entry['id'] time_of_event = page_entry['time'] for message_event in page_entry['messaging']: if 'optin' in message_event: LOGGER.info('Webhook received message event: option from page %s at %d', page_id, time_of_event) elif 'message' in message_event: received_message(message_event) elif 'delivery' in message_event: LOGGER.info('Webhook received message event: delivery from page %s at %d', page_id, time_of_event) elif 'postback' in message_event: received_postback(message_event) elif 'read' in message_event: LOGGER.info('Webhook received message event: read from page %s at %d', page_id, time_of_event) elif 'account_linking' in message_event: LOGGER.info('Webhook received message event: account linking from page %s at %d', page_id, time_of_event) else: LOGGER.info('Webhook received unknown message event: %s from page %s at %d', message_event, page_id, time_of_event) return make_response('', 200)
nico-arianto/dota2-messenger-platform
route.py
Python
gpl-3.0
3,193
from setuptools import setup, find_packages setup( name='django-wakawaka', version='0.4.dev7', description='A super simple wiki app written in Python using the Django Framwork', long_description=open('README.rst').read(), author='Martin Mahner', author_email='martin@mahner.org', url='http://github.com/bartTC/django-wakawaka/tree/master', packages=find_packages('src', exclude=('wakawaka_project',)), package_dir = {'': 'src'}, classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Framework :: Django', ], package_data = { 'wakawaka': [ 'templates/wakawaka/*.html', ] }, zip_safe=False, )
pinax-archives/django-wakawaka
setup.py
Python
bsd-3-clause
911
#!/usr/bin/env python # -*- coding: UTF-8 -*- ############################################################################### # chirribackup/actions/SnapshotDetails.py # # Print details about an snapshot # # ----------------------------------------------------------------------------- # Chirri Backup - Cheap and ugly backup tool # Copyright (C) 2016 Gerardo Garcia Peña <killabytenow@gmail.com> # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### from chirribackup.exceptions import ChirriException from chirribackup.Config import CONFIG from chirribackup.Logger import logger import chirribackup.actions.BaseAction import chirribackup.LocalDatabase import chirribackup.snapshot import sys class SnapshotDelete(chirribackup.actions.BaseAction.BaseAction): help = { "synopsis": "Delete snapshot", "description": [ "Delete snapshot and data related to it.", ], "args": [ [ "{snapshot_id}", "The snapshot_id of the selected snapshot." ], ] } def parse_args(self, argv): return { "snapshot_id": int(argv.pop(0)), } def go(self, snapshot_id): self.ldb = chirribackup.LocalDatabase.LocalDatabase(CONFIG.path) chirribackup.snapshot.Snapshot(self.ldb).load(snapshot_id).delete()
killabytenow/chirribackup
chirribackup/actions/SnapshotDelete.py
Python
gpl-3.0
2,024
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('userprofile', '0001_initial'), ] operations = [ migrations.AddField( model_name='user', name='first_name', field=models.CharField(blank=True, max_length=50), ), migrations.AddField( model_name='user', name='last_name', field=models.CharField(blank=True, max_length=50), ), ]
taedori81/e-commerce-template
saleor/userprofile/migrations/0002_auto_20150902_1728.py
Python
bsd-3-clause
571
# -*- mode: python; coding: utf-8 -*- # Copyright 2013-2016 Peter Williams <peter@newton.cx> and collaborators. # Licensed under the MIT License. """Insert a simple polarized point source model into a dataset. """ from __future__ import absolute_import, division, print_function, unicode_literals __all__ = str ('Config polmodel polmodel_cli').split () import six, numpy as np, tempfile from six.moves import range from ...astutil import A2R, D2R, sphdist from ...cli import check_usage, die from ...io import Path from ...kwargv import ParseKeywords, Custom from . import util from .util import sanitize_unicode as b polmodel_doc = \ """ casatask polmodel vis=<MS> field=<field specification> Insert polarization information for a model into a Measurement Set. Uses a built-in table of polarization properties to generate Stokes QUV information from CASA's built-in Stokes I models. The only currently supported source is 3C286 in C band. """ class Config (ParseKeywords): vis = Custom (str, required=True) field = Custom (str, required=True) class PolSource (object): name = None # fed to imager.predictcomp(objname) ra = None # rad dec = None # rad models = None def __init__ (self, **kwargs): self.__dict__.update (kwargs) class PolModel (object): name = None fmin = None # GHz fmax = None # GHz polfrac = None # [0,1] polpa = None # degr def __init__ (self, **kwargs): self.__dict__.update (kwargs) def getquv (self, i): # In the future, we might have different models that derive QUV # from I in a different way. Probably won't, though. a = self.polpa * D2R p = i * self.polfrac return p * np.cos (a), p * np.sin (a), 0. position_tolerance = 1 * A2R fluxscale_standard = 'Perley-Butler 2010' sources = [ PolSource (name='3C286', ra=-2.74392753, dec=0.53248521, models=[PolModel (name='C', fmin=3.9, fmax=8.1, polfrac=0.112, polpa=66.)]) ] def polmodel (cfg): ms = util.tools.ms () tb = util.tools.table () im = util.tools.imager () cl = util.tools.componentlist () vis = Path (cfg.vis) # Set up MS selection so we know what data we actually care about. ms.open (b(cfg.vis)) ms.msselect (b(dict (field=cfg.field))) rangeinfo = ms.range (b'data_desc_id field_id'.split ()) ddids = rangeinfo['data_desc_id'] fields = rangeinfo['field_id'] # Check that we know the field and pull up its model if fields.size != 1: die ('selection should pick exactly one field, but got %d', fields.size) tb.open (b(vis / 'FIELD')) refdir = tb.getcell (b'REFERENCE_DIR', fields[0]) tb.close () if refdir.shape[1] != 1: die ('selected field %s has a time-variable reference direction, which I can\'t handle', cfg.field) ra, dec = refdir[:,0] for source in sources: if sphdist (dec, ra, source.dec, source.ra) < position_tolerance: break else: die ('found no match in my data table for field %s', cfg.field) # Now we can get the spws and check that we have a model for them. tb.open (b(vis / 'DATA_DESCRIPTION')) ddspws = tb.getcol (b'SPECTRAL_WINDOW_ID') tb.close () spws = list (set (ddspws[ddid] for ddid in ddids)) freqranges = {} models = {} allfreqs = [] tb.open (b(vis / 'SPECTRAL_WINDOW')) for spw in spws: freqs = tb.getcell (b'CHAN_FREQ', spw) freqranges[spw] = (freqs[0], freqs[-1]) allfreqs += [freqs[0], freqs[-1]] for model in source.models: if freqs[0] >= model.fmin * 1e9 and freqs[-1] <= model.fmax * 1e9: models[spw] = model break else: die ('spw %d is out of frequency bounds for all of my models of ' 'field %s (%s): spw range is (%f, %f) GHz', spw, cfg.field, source.name, freqs[0] * 1e-9, freqs[-1] * 1e-9) tb.close () # Now it's worth using predictcomp() to get the Stokes I fluxes. workdir = tempfile.mkdtemp (prefix='mspolmodel') try: cp = im.predictcomp ( objname = b(source.name), standard = b(fluxscale_standard), freqs = allfreqs, pfx = b(workdir + '/') ) cl.open (cp) if cl.length () != 1: die ('expected one component in predicted list; got %d (%s)', cl.length (), cp) stokesi = cl.getcomponent (0)['spectrum']['ival'] # log=False: we'll have to run the risk that the user won't be aware that # we closed the component list structure. Scary. cl.close (log=False) finally: Path (workdir).rmtree () # And now we have everything we need. Invoke setjy() a bunch. im.open (b(vis), usescratch=False) for i, spw in enumerate (spws): model = models[spw] f1, f2 = freqranges[spw] i1, i2 = stokesi[i*2:i*2+2] spindex = np.log (i2 / i1) / np.log (f2 / f1) q, u, v = model.getquv (i1) reffreq = '%.3fMHz' % (f1 * 1e-6) #print ('%2d/%d: %d %.3f-%.3f %.3f-%.3f [%.3f %.3f %.3f %3f] %.3f %s' \ # % (i + 1, len (spws), spw, f1*1e-9, f2*1e-9, i1, i2, # i1, q, u, v, spindex, reffreq)) im.setjy ( field = b(cfg.field), spw = b(str(spw)), modimage = b'', fluxdensity = [i1, q, u, v], spix = spindex, standard = b(fluxscale_standard), scalebychan = True, reffreq = b(reffreq), ) im.close () def polmodel_cli (argv): check_usage (polmodel_doc, argv, usageifnoargs=True) cfg = Config ().parse (argv[1:]) polmodel (cfg)
pkgw/pwkit
pwkit/environments/casa/polmodel.py
Python
mit
5,781
import pyfits import numpy as np import psycopg2 as mdb import csv import os import fnmatch import cPickle as pickle from scipy import spatial import ftputil import getpass import copy from sclip.sclip import sclip from scipy.interpolate import UnivariateSpline import scipy from scipy import signal #from pyflann import * class spectrum: def __init__(self, name, kind='norm', extension=4, wavelength='default', linearize=True): #set atributes if isinstance(name, basestring): pass else: name=str(int(name)) self.name = name self.ccd=int(self.name[-1]) self.date=int(self.name[:6]) self.run=int(self.name[6:10]) self.combine_method=int(self.name[10:12]) self.pivot=int(self.name[12:15]) #read spectrum self.l=-1 self.f=-1 self.fe=-1 if setup.folder_is_root: if name[10:12]=='01': path=setup.folder+str(self.date)+'/standard/com/'+self.name+'.fits' elif name[10:12]=='02': path=setup.folder+str(self.date)+'/standard/com2/'+self.name+'.fits' else: path=None else: path=setup.folder+self.name+'.fits' try:#read if it exists hdulist = pyfits.open(path) except:#otherwise download if setup.download: print ' - Spectrum %s not found. Serching in downloaded spectra.' % self.name try: path=setup.folder+self.name+'.fits' hdulist = pyfits.open(path) print ' + Spectrum %s already downloaded.' % self.name except: print ' - Spectrum %s not found. Downloading from the ftp.' % self.name try: with ftputil.FTPHost('site-ftp.aao.gov.au', 'galah', getpass.getpass()) as host: if self.combine_method>=1: host.download('reductions/Iraf_5.0/%s/combined/%s.fits' % (self.date, self.name), setup.folder+self.name+'.fits') else: host.download('reductions/Iraf_5.0/%s/individual/%s.fits' % (self.date, self.name), setup.folder+self.name+'.fits') path=setup.folder+self.name+'.fits' hdulist = pyfits.open(path) print ' + Spectrum %s succesfully downloaded.' % self.name except: print ' + Spectrum %s failed to download.' % self.name else: print ' - Spectrum %s not found. Enable download to get it from the ftp site.' % self.name #set l, f, and fe instance={'norm':4, 'normalized':4, 'normalised':4, 'flux':0, 'fluxed':0} #set radial velocity if it will be needed in the future: #if is here because reading a spectrum is faster if read in its original velocity frame if (wavelength=='observer' and instance[kind]==4) or (wavelength=='object' and instance[kind]<4) or instance[kind]==4: con=setup.con if con!='': cur=con.cursor() cur.execute("select rv_guess from sobject_iraf_53 where sobject_id=%s" % self.name[:-1]) try: self.v=float(cur.fetchone()[0]) except TypeError: print ' ! Warning: no velocity in the database. Assuming v=0.' self.v=0.0 else: try: self.v=float(setup.db_dict[self.name[:-1]]['rv_guess']) except: print ' ! Warning: no velocity in the database. Assuming v=0.' self.v=0.0 try: self.f=hdulist[instance[kind]].data if instance[kind]==4: self.fe=hdulist[1].data else: self.fe=hdulist[instance[kind]+1].data crval=hdulist[instance[kind]].header['CRVAL1'] crdel=hdulist[instance[kind]].header['CDELT1'] self.l=np.linspace(crval, crval+crdel*len(self.f), len(self.f)) if instance[kind]==4: #because normalized spec doesn't has its error, we use the fluxed error, but have to shift and interpolate it to normalized l: crval=hdulist[1].header['CRVAL1'] crdel=hdulist[1].header['CDELT1'] naxis=hdulist[1].header['NAXIS1'] error_l=np.linspace(crval, crval+crdel*naxis, naxis) error_l=error_l*(1-self.v/299792.458) self.fe=np.interp(self.l,error_l,self.fe) except: raise RuntimeError('Cannot read spectrum. Fits extension might be missing.') #shift into correct velocity frame if wavelength=='default': pass elif wavelength=='observer' and instance[kind]==4: self.l=self.l*(1+self.v/299792.458) elif wavelength=='object' and instance[kind]<4: self.l=self.l*(1-self.v/299792.458) else: pass #linearize if linearize==True: self.f=np.interp(np.linspace(self.l[0],self.l[-1],num=len(self.l)),self.l,self.f) self.fe=np.interp(np.linspace(self.l[0],self.l[-1],num=len(self.l)),self.l,self.fe) else: pass def linearize(self): """ take whatever the sampling is and linearize it """ self.f=np.interp(np.linspace(self.l[0],self.l[-1],num=len(self.l)),self.l,self.f) self.fe=np.interp(np.linspace(self.l[0],self.l[-1],num=len(self.l)),self.l,self.fe) self.l=np.linspace(self.l[0],self.l[-1],num=len(self.l)) def logarize(self): """ take whatever the sampling is and make a logaritmic sampling """ self.f=np.interp(np.logspace(np.log10(self.l[0]),np.log10(self.l[-1]),num=int(len(self.l)*1.15)),self.l,self.f) self.fe=np.interp(np.logspace(np.log10(self.l[0]),np.log10(self.l[-1]),num=int(len(self.l)*1.15)),self.l,self.fe) self.l=np.logspace(np.log10(self.l[0]),np.log10(self.l[-1]),num=int(len(self.l)*1.15)) def shift(self, rv, linearize=True): """ shift the spectrum for radial velocity rv, given in km/s if linearize=True, the returned wavelength array will be linearized and flux interpolated """ l=self.l*(1+rv/299792.458) if linearize==True: self.f=np.interp(np.linspace(l[0],l[-1],num=len(l)),l,self.f) self.fe=np.interp(np.linspace(l[0],l[-1],num=len(l)),l,self.fe) self.l=np.linspace(l[0],l[-1],num=len(l)) else: self.l=l return self def add_noise(self, snr, target_snr,skip=True): """ Adds poissonian noise to make a spectrum with snr into a spectrum with target_snr. """ if skip and target_snr>snr:#do not raise error if target_snr is larger than snr. Do nothing instead return self if target_snr>snr: raise RuntimeError('Target SNR cannot be larger than the original SNR.') elif target_snr==snr: return self else: sigma=np.sqrt((1.0/target_snr)**2-(1.0/snr)**2) noise=np.random.poisson((1.0/sigma)**2, size=len(self.f)) noise=noise/((1.0/sigma)**2) self.f+=noise self.f=self.f-1.0 self.fe+=1.0/noise self.fe=self.fe-1.0 return self def interpolate(self,space): """ interpolate the spectrum to a wavelength space defined in space. """ space=np.array(space) self.f=np.interp(space,self.l,self.f) self.fe=np.interp(space,self.l,self.fe) self.l=space return self def normalize(self,deg,n,func,sl,su,grow=0,smooth=4e6): """ calculate the normalization for the spectrum and normalize """ functions.deg=deg if func=='cheb' or func=='chebyshev': result=sclip((self.l,self.f),chebyshev,int(n),su=su,sl=sl,min_data=100,verbose=False) self.f=self.f/result[0] if func=='poly': result=sclip((self.l,self.f),poly,int(n),su=su,sl=sl,min_data=100,verbose=False) self.f=self.f/result[0] if func=='spline': functions.smooth=smooth result=sclip((self.l,self.f),spline,int(n),su=su,sl=sl,min_data=100,verbose=False) self.f=self.f/result[0] return result[0] def convolve(self,fwhm,extend=False): """ decrease resolution by convolving the spectrum with a gaussian returns the kernel """ #check if wavelength calibration is linear: if (self.l[1]-self.l[0])==(self.l[-1]-self.l[-2]): linear=True else: l=self.l self.linearize() linear=False step=self.l[1]-self.l[0] kernel=gauss_kern(fwhm/step) add_dim=len(kernel) if extend==True: f=np.insert(self.f,0,np.ones(add_dim)*self.f[0]) f=np.append(f,np.ones(add_dim)*self.f[-1]) fe=np.insert(self.fe,0,np.ones(add_dim)*self.fe[0]) fe=np.append(fe,np.ones(add_dim)*self.fe[-1]) self.f=signal.fftconvolve(f,kernel,mode='same')[add_dim:-add_dim] self.fe=signal.fftconvolve(fe**2,kernel,mode='same')[add_dim:-add_dim] self.fe=np.sqrt(self.fe) else: self.f=signal.fftconvolve(self.f,kernel,mode='same') self.fe=signal.fftconvolve(self.fe**2,kernel,mode='same') self.fe=np.sqrt(self.fe) if linear==False: self.interpolate(l) return kernel def res_degradation(self,r,target_r): """ degradate resolution from resolving power r to resolving power target_r """ if r==target_r: pass elif target_r>r: raise RuntimeError('Cannot increase the resolution.') else: l=np.average(self.l) s=l/r s_target=l/target_r s_conv=np.sqrt(s_target**2-s**2) self.convolve(s_conv,extend=True) def equalize_resolution(self): """ convolves a spectrum with a kernel with a variable width. Works by warping the data, performing the convolution and unwarping the data, so it is vectorized (mostly) and fast """ #check if the correct resolution map is already in the memory: if self.ccd==1: if resolution_maps.map_ccd_1==False: resolution_maps(self.ccd) map_l,map_f=resolution_maps.map_ccd_1 else: map_l,map_f=resolution_maps.map_ccd_1 if self.ccd==2: if resolution_maps.map_ccd_2==False: resolution_maps(self.ccd) map_l,map_f=resolution_maps.map_ccd_2 else: map_l,map_f=resolution_maps.map_ccd_2 if self.ccd==3: if resolution_maps.map_ccd_3==False: resolution_maps(self.ccd) map_l,map_f=resolution_maps.map_ccd_3 else: map_l,map_f=resolution_maps.map_ccd_3 if self.ccd==4: if resolution_maps.map_ccd_4==False: resolution_maps(self.ccd) map_l,map_f=resolution_maps.map_ccd_4 else: map_l,map_f=resolution_maps.map_ccd_4 #check if wavelength calibration is linear: if (self.l[1]-self.l[0])==(self.l[-1]-self.l[-2]): linear=True else: l=self.l self.linearize() linear=False #extract the correct pivot number from the map: map_f=map_f[self.pivot-1] #current sampling: sampl=self.l[1]-self.l[0] #target sigma coresponds to the R=22000. We want the constant sigma, not constant R, so take the sigma that corresponds to the average R=22000 s_target=np.ones(len(map_l))*np.average(map_l)/22000. #the sigma of the kernel is: s=np.sqrt(s_target**2-np.divide(map_l,map_f)**2) #fit it with the polynomial, so we have a function instead of sampled values: map_fit=np.poly1d(np.polyfit(map_l, s/sampl, deg=6)) #create an array with new sampling. The first point is the same as in the spectrum: l_new=[map_l[0]] #and the sigma in pixels with which to convolve is sampl=self.l[1]-self.l[0] s_new=s/sampl/min(s/sampl) #now create the non linear sampling. It should be finer where sigma is larger and sparser where sigma is smaller #IS THERE A WAY TO VECTORIZE THIS??? for i in range(int(len(self.l)*np.max(s_new)*min(s/sampl))): l_new.append(l_new[i]+sampl/map_fit(l_new[i])) #interpolate the spectrum to the new sampling: new_f=np.interp(np.array(l_new),self.l,self.f) new_fe=np.interp(np.array(l_new),self.l,self.fe) #the kernel is min(s_orig/sampl) pixels large, so we oversample as little as possible (for the very best precision we should oversample more, but this takes time) kernel=gauss_kern(min(s/sampl)) #convolve the warped spectrum: con_f=signal.fftconvolve(new_f,kernel,mode='same') con_fe=signal.fftconvolve(new_fe**2,kernel,mode='same') #inverse the warping: self.f=np.interp(self.l,np.array(l_new),con_f) self.fe=np.interp(self.l,np.array(l_new),con_fe) self.fe=np.sqrt(self.fe) if linear==False: self.interpolate(l) return self def median_filter(self,size, extend=False): """ do a standard median filtering. give size in Angstroms, will be translated to nearest odd number of pixels. """ #check if wavelength calibration is linear: if (self.l[1]-self.l[0])==(self.l[-1]-self.l[-2]): linear=True else: linear=False l=self.l self.linearize() step=self.l[1]-self.l[0] add_dim=int(np.ceil(size/step // 2 * 2 + 1)) if extend==True: f=np.insert(self.f,0,np.ones(add_dim)*self.f[0]) f=np.append(f,np.ones(add_dim)*self.f[-1]) fe=np.insert(self.fe,0,np.ones(add_dim)*self.fe[0]) fe=np.append(fe,np.ones(add_dim)*self.fe[-1]) self.f=signal.medfilt(f,add_dim)[add_dim:-add_dim] self.fe=signal.medfilt(fe,add_dim,)[add_dim:-add_dim] self.fe=self.fe/np.sqrt(add_dim) else: self.f=signal.medfilt(self.f,add_dim) self.fe=signal.medfilt(self.fe,add_dim) self.fe=self.fe/np.sqrt(add_dim) if linear==False: self.interpolate(l) def knn(self,method='FLANN', K=10, d='euclidean', windows='', pickle_folder='pickled_spectra'): """ find nearest neighbours. spectra2pickle must be run first windows is a filename with the description of windows to use or a 1D np.ndarray """ if pspectra.names==0: pspectra(pickle_folder) spectra=pspectra.spectra names=pspectra.names l=pspectra.space f=np.interp(l,self.l,self.f) #check if window function already exists: if type(windows).__name__=='ndarray':#if given as an array only check if format is right if type(window).__name__!='ndarray': raise RuntimeError('windows is not type numpy.ndarray') if len(window)!=len(l): raise RuntimeError('windows has wrong size') window=windows window_function.window=windows window_function.l=l elif len(window_function.window)==0:#if it doesnt exist create it window_function(l, windows) window=window_function.window else:#if it exists just use it window=window_function.window #create a mask where window==0, because there we don't have to comapre the vectors, because the difference is always 0: mask=np.array(window,dtype=bool) if method=='FLANN': from pyflann import flann_index distance={'manhattan': 'manhattan', 'euclidean': 'euclidean'} if flann_index.flann==False: flann_index(spectra[:,mask]*window[mask], distance[d]) ind,dist=flann_index.flann.nn_index(f[mask]*window[mask],K,checks=flann_index.index['checks']) if distance[d]=='euclidean': return names[ind], np.sqrt(dist) else: return names[ind], dist if method=='KDTree': distance={'manhattan': 1, 'euclidean': 2} if kdtree_index.index==False: kdtree_index(spectra[:,mask]*window[mask]) dist,ind=kdtree_index.index.query(f[mask]*window[mask],K,p=distance[d]) return names[ind], dist def save_fits(self, fname=None): """ save the spectrum into a 2D fits file """ if fname==None: fname=setup.folder+self.name+'.fits' hdu = pyfits.PrimaryHDU(self.f) hdu.writeto(fname) hdulist = pyfits.open(fname,mode='update') prihdr = hdulist[0].header prihdr['COMMENT']='File written by galah_tools.py' prihdr.set('CRVAL1', self.l[0]) prihdr.set('CDELT1', self.l[1]-self.l[0]) prihdr.set('CRPIX1', 1) prihdr.set('CUNIT1', 'Angstroms') hdulist.flush() hdulist.close() pyfits.append(fname,self.fe) hdulist = pyfits.open(fname,mode='update') prihdr = hdulist[1].header prihdr['COMMENT']='File written by galah_tools.py' prihdr.set('CRVAL1', self.l[0]) prihdr.set('CDELT1', self.l[1]-self.l[0]) prihdr.set('CRPIX1', 1) prihdr.set('CUNIT1', 'Angstroms') hdulist.flush() hdulist.close() def save_ascii(self, fname=None): """ save the spectrum into an ascii text file with three columns; wavelength, flux, error """ if fname==None: fname=setup.folder+self.name+'.txt' np.savetxt(fname,zip(self.l,self.f,self.fe)) class pspectra: spectra=0 names=0 space=[] def __init__(self,pickle_folder): if pickle_folder[-1]=='/': pickle_folder=pickle_folder[:-1] try: pspectra.space=pickle.load(open('%s/space.pickle' % (pickle_folder), 'rb')) #f=np.interp(space,self.l,self.f) #l=space except: raise RuntimeError('Pickle spectra first if you want to use nearest neighbour search. No wavelength samling is saved.') blocks=[] for path, dirs, files in os.walk(os.path.abspath(pickle_folder)): for filename in fnmatch.filter(files, 'b*.pickle'): blocks.append(filename) if len(blocks)==0: raise RuntimeError('Pickle spectra first if you want to use nearest neighbour search. No pickled spectra saved.') spectra_frompickle=[] for i in blocks: spectra_frompickle=spectra_frompickle+pickle.load(open('%s/%s' % (pickle_folder,i), 'rb')) names=[] spectra=[] for i in spectra_frompickle: names.append(i[0]) spectra.append(i[1]) pspectra.spectra=np.array(spectra) pspectra.names=np.array(names) class window_function: window=[] l=[] def __init__(self,l,windows): if windows=='': window_function.window=np.array([1]*len(l))#if no file is given window function is constant 1 else: window_function.window=read_windows(windows,l) window_function.l=l def plot_window(self): """ Plot the window function """ import matplotlib.pyplot as pl fig=pl.figure('Window function (close to continue)') pl.plot(window_function.l, window_function.window,'k-') pl.xlabel('Wavelength / Angstroms') pl.ylabel('Window value') pl.title('Window function') pl.show() def clear(self): """ Clears a saved window function """ window_function.window=[] window_function.l=[] class functions: def __init__(self): deg=0 smooth=1000 class flann_index: flann=False index=0 def __init__(self, spectra, d): set_distance_type(d) flann_index.flann=FLANN() flann_index.index=flann_index.flann.build_index(spectra, algorithm='autotuned', target_precision=0.9) def clear(self): flann_index.flann=False flann_index.index=0 class kdtree_index: index=False def __init__(self, spectra): kdtree_index.index=spatial.cKDTree(spectra) def clear(self): kdtree_index.index=False class resolution_maps: map_ccd_1=False map_ccd_2=False map_ccd_3=False map_ccd_4=False def __init__(self, ccd): hdulist = pyfits.open('resolution_maps/ccd%s_piv.fits' % ccd) res=hdulist[0].data crval=hdulist[0].header['CRVAL1'] crdel=hdulist[0].header['CDELT1'] naxis=hdulist[0].header['NAXIS1'] l=np.linspace(crval, crval+crdel*naxis, naxis) hdulist.close() if ccd==1: resolution_maps.map_ccd_1=(l,res) if ccd==2: resolution_maps.map_ccd_2=(l,res) if ccd==3: resolution_maps.map_ccd_3=(l,res) if ccd==3: resolution_maps.map_ccd_3=(l,res) class setup: folder='' folder_is_root=False con='' csv='' db_dict={} download=False def __init__(self, **kwargs): for key in kwargs: if key=='folder': setup.folder=kwargs['folder'] if setup.folder[-1]!='/': setup.folder=setup.folder+'/' elif key=='root_folder': setup.folder=kwargs['root_folder'] setup.folder_is_root=True if setup.folder[-1]!='/': setup.folder=setup.folder+'/' if key=='con': setup.con=kwargs['con'] if key=='download': setup.download=kwargs['download'] if key=='csv': setup.csv=kwargs['csv'] reader = csv.DictReader(open(setup.csv)) for row in reader: key = row.pop('sobject_id') if key in setup.db_dict: pass setup.db_dict[key] = row def read_windows(filename,l): windows=[] cwindows=[] #initially the window is set to constant 1 window=np.ones(len(l)) #read the file and save windows separately to those specified by lower and upepr limit and those specified by center and width writeto=0 for line in open(filename, 'r'): if len(line[:-1])==0: writeto=1 continue if line[0]=='#': pass else: data=line[:-1].split('\t') sign=data[-1][0] data=map(float,data) data=data+[sign] if writeto==0: windows.append(data) else: cwindows.append(data) #transform one format into the other for i in windows: cwindows.append([(i[0]+i[1])/2.0, i[1]-i[0], i[2], i[3], i[4]]) for w in cwindows: if w[4]!='-': for n,i in enumerate(l): if abs(w[0]-i)<=(w[1]/2.0*(1-w[2])): window[n]*=w[3] elif (w[0]+w[1]/2.0*(1-w[2]))<i<(w[0]+w[1]/2.0): window[n]*=(2-2*w[3])/(w[1]*w[2])*i+1-(1-w[3])/w[2]*(2*w[0]/w[1]+1) elif (w[0]-w[1]/2.0*(1-w[2]))>i>(w[0]-w[1]/2.0): window[n]*=(2*w[3]-2)/(w[1]*w[2])*i+1-(w[3]-1)/w[2]*(2*w[0]/w[1]-1) else: pass else: for n,i in enumerate(l): if abs(w[0]-i)>=(w[1]/2.0): window[n]*=abs(w[3]) elif (w[0]+w[1]/2.0*(1-w[2]))<i<(w[0]+w[1]/2.0): window[n]*=(2*abs(w[3])-2)/(w[1]*w[2])*i+abs(w[3])-(abs(w[3])-1)/w[2]*(1+2.0*w[0]/w[1]) elif (w[0]-w[1]/2.0*(1-w[2]))>i>(w[0]-w[1]/2.0): window[n]*=(2-2*abs(w[3]))/(w[1]*w[2])*i+abs(w[3])-(1-abs(w[3]))/w[2]*(2.0*w[0]/w[1]-1) else: pass return window def read(name, **kwargs): """ reads one spectrum """ spec=spectrum(name, **kwargs) return spec def spectra2pickle(spectra=[], ccd=1, space=[], limit=999999999999, pickle_folder='pickled_spectra'): """ Translate all spectra into blocks of pickle objects. Blocks are used, because only 10000 spectra can be in one object. After the pickle blocks are read they can be combined into a single table again. This is used by nearest neighbour search, because spectra must be read fast. """ if pickle_folder[-1]=='/': pickle_folder=pickle_folder[:-1] #using pickle to store data can be dangerous. Display warning print ' ! Warning: using pickle to store data can be dangerous. Use at your own risk!' #check if defined space is valid for the given ccd: if ccd==1: if space==[]: space=np.linspace(4713,4903,4100) if not any(4713<i<4903 for i in space): raise RuntimeError('Space is out of boundary for ccd 1') if ccd==2: if space==[]: space=np.linspace(5600,5875,4100) if not any(5600<i<5875 for i in space): raise RuntimeError('Space is out of boundary for ccd 2') if ccd==3: if space==[]: space=np.linspace(6477,6740,4100) if not any(6477<i<6740 for i in space): raise RuntimeError('Space is out of boundary for ccd 3') if ccd==4: if space==[]: space=np.linspace(7584,7887,4100) if not any(7584<i<7887 for i in space): raise RuntimeError('Space is out of boundary for ccd 4') #create a folder to store pickled spectra: if not os.path.exists('pickled_spectra'): os.makedirs('pickled_spectra') #create a list of spectra: if spectra==[]: for path, dirs, files in os.walk(os.path.abspath(setup.folder)): for filename in fnmatch.filter(files, '*%s.fits' % (ccd)): spectra.append(filename[:-5]) #read and interpolate spectra one by one: block=[] block_num=0 n=0 nn=0 for i in spectra: if n==9999:#only 10000 spectra can be saved in one file pickle.dump(block,open('%s/b%s.pickle' % (pickle_folder,block_num), 'wb')) block_num+=1 n=0 block=[] try:#if there is no normalized spectrum skip it s=read(i, kind='norm', wavelength='default').interpolate(space) block.append([i,s.f]) n+=1 except RuntimeError: pass nn+=1 if nn>=limit: break# stop reading spectra if limit is reached (to spare the memory or time when testing) if nn%10 == 0: print nn, '/', len(spectra), "pickled." pickle.dump(block,open('%s/b%s.pickle' % (pickle_folder,block_num+1), 'wb')) pickle.dump(space,open('%s/space.pickle' % (pickle_folder), 'wb')) return space def cc(i1,i2): """ Cross correlate spectra in array s1 with spectrum s2. Returns the shift between spectra (an array if s1 is an array) in km/s """ s1=copy.deepcopy(i1) s2=copy.deepcopy(i2) s2.logarize() if isinstance(s1, spectrum): s1=[s1] ccs=[] for s in s1: s.interpolate(s2.l) ccf=np.correlate(s.f[10:-10]-np.average(s.f[10:-10]),s2.f[10:-10]-np.average(s2.f[10:-10]),mode='same') max_index=np.argmax(ccf) max_fit=np.polyfit(range(max_index-3,max_index+4),ccf[max_index-3:max_index+4],2) max_fit= -max_fit[1]/(max_fit[0]*2.0) diff=max_fit-len(ccf)/2.0 dl=s.l[1]-s.l[0] ccs.append(dl*diff/s.l[0]*299792.458) if len(ccs)==1: return ccs[0] else: return np.array(ccs) def chebyshev(p,ye,mask): coef=np.polynomial.chebyshev.chebfit(p[0][mask], p[1][mask], functions.deg) cont=np.polynomial.chebyshev.chebval(p[0],coef) return cont def poly(p,ye,mask): r=np.polyfit(p[0][mask], p[1][mask], deg=functions.deg) f=np.poly1d(r) return f(p[0]) def spline(p,ye,mask): spl = UnivariateSpline(p[0][mask], p[1][mask],k=functions.deg) spl.set_smoothing_factor(5000000) return spl(p[0]) def gauss_kern(fwhm): """ Returns a normalized 1D gauss kernel array for convolutions """ size=2*(fwhm/2.355)**2 size_grid = int(size) # we limit the size of kernel, so it is as small as possible (or minimal size) for faster calculations if size_grid<7: size_grid=7 x= scipy.mgrid[-size_grid:size_grid+1] g = scipy.exp(-(x**2/float(size))) return g / np.sum(g)
sheliak/galah_tools
old_versions/galah_tools.py
Python
gpl-2.0
24,308
import pytest import networkx as nx from networkx.generators.classic import barbell_graph, cycle_graph, path_graph from networkx.testing.utils import assert_graphs_equal #numpy = pytest.importorskip("numpy") class TestConvertNumpy(object): @classmethod def setup_class(cls): global np global np_assert_equal try: import numpy as np np_assert_equal = np.testing.assert_equal except ImportError: pytest.skip('Numpy not available', allow_module_level=True) def setup_method(self): self.G1 = barbell_graph(10, 3) self.G2 = cycle_graph(10, create_using=nx.DiGraph) self.G3 = self.create_weighted(nx.Graph()) self.G4 = self.create_weighted(nx.DiGraph()) def test_exceptions(self): G = np.array("a") pytest.raises(nx.NetworkXError, nx.to_networkx_graph, G) def create_weighted(self, G): g = cycle_graph(4) G.add_nodes_from(g) G.add_weighted_edges_from((u, v, 10 + u) for u, v in g.edges()) return G def assert_equal(self, G1, G2): assert sorted(G1.nodes()) == sorted(G2.nodes()) assert sorted(G1.edges()) == sorted(G2.edges()) def identity_conversion(self, G, A, create_using): assert(A.sum() > 0) GG = nx.from_numpy_matrix(A, create_using=create_using) self.assert_equal(G, GG) GW = nx.to_networkx_graph(A, create_using=create_using) self.assert_equal(G, GW) GI = nx.empty_graph(0, create_using).__class__(A) self.assert_equal(G, GI) def test_shape(self): "Conversion from non-square array." A = np.array([[1, 2, 3], [4, 5, 6]]) pytest.raises(nx.NetworkXError, nx.from_numpy_matrix, A) def test_identity_graph_matrix(self): "Conversion from graph to matrix to graph." A = nx.to_numpy_matrix(self.G1) self.identity_conversion(self.G1, A, nx.Graph()) def test_identity_graph_array(self): "Conversion from graph to array to graph." A = nx.to_numpy_matrix(self.G1) A = np.asarray(A) self.identity_conversion(self.G1, A, nx.Graph()) def test_identity_digraph_matrix(self): """Conversion from digraph to matrix to digraph.""" A = nx.to_numpy_matrix(self.G2) self.identity_conversion(self.G2, A, nx.DiGraph()) def test_identity_digraph_array(self): """Conversion from digraph to array to digraph.""" A = nx.to_numpy_matrix(self.G2) A = np.asarray(A) self.identity_conversion(self.G2, A, nx.DiGraph()) def test_identity_weighted_graph_matrix(self): """Conversion from weighted graph to matrix to weighted graph.""" A = nx.to_numpy_matrix(self.G3) self.identity_conversion(self.G3, A, nx.Graph()) def test_identity_weighted_graph_array(self): """Conversion from weighted graph to array to weighted graph.""" A = nx.to_numpy_matrix(self.G3) A = np.asarray(A) self.identity_conversion(self.G3, A, nx.Graph()) def test_identity_weighted_digraph_matrix(self): """Conversion from weighted digraph to matrix to weighted digraph.""" A = nx.to_numpy_matrix(self.G4) self.identity_conversion(self.G4, A, nx.DiGraph()) def test_identity_weighted_digraph_array(self): """Conversion from weighted digraph to array to weighted digraph.""" A = nx.to_numpy_matrix(self.G4) A = np.asarray(A) self.identity_conversion(self.G4, A, nx.DiGraph()) def test_nodelist(self): """Conversion from graph to matrix to graph with nodelist.""" P4 = path_graph(4) P3 = path_graph(3) nodelist = list(P3) A = nx.to_numpy_matrix(P4, nodelist=nodelist) GA = nx.Graph(A) self.assert_equal(GA, P3) # Make nodelist ambiguous by containing duplicates. nodelist += [nodelist[0]] pytest.raises(nx.NetworkXError, nx.to_numpy_matrix, P3, nodelist=nodelist) def test_weight_keyword(self): WP4 = nx.Graph() WP4.add_edges_from((n, n + 1, dict(weight=0.5, other=0.3)) for n in range(3)) P4 = path_graph(4) A = nx.to_numpy_matrix(P4) np_assert_equal(A, nx.to_numpy_matrix(WP4, weight=None)) np_assert_equal(0.5 * A, nx.to_numpy_matrix(WP4)) np_assert_equal(0.3 * A, nx.to_numpy_matrix(WP4, weight='other')) def test_from_numpy_matrix_type(self): A = np.matrix([[1]]) G = nx.from_numpy_matrix(A) assert type(G[0][0]['weight']) == int A = np.matrix([[1]]).astype(np.float) G = nx.from_numpy_matrix(A) assert type(G[0][0]['weight']) == float A = np.matrix([[1]]).astype(np.str) G = nx.from_numpy_matrix(A) assert type(G[0][0]['weight']) == str A = np.matrix([[1]]).astype(np.bool) G = nx.from_numpy_matrix(A) assert type(G[0][0]['weight']) == bool A = np.matrix([[1]]).astype(np.complex) G = nx.from_numpy_matrix(A) assert type(G[0][0]['weight']) == complex A = np.matrix([[1]]).astype(np.object) pytest.raises(TypeError, nx.from_numpy_matrix, A) G = nx.cycle_graph(3) A = nx.adj_matrix(G).todense() H = nx.from_numpy_matrix(A) assert all(type(m) == int and type(n) == int for m, n in H.edges()) H = nx.from_numpy_array(A) assert all(type(m) == int and type(n) == int for m, n in H.edges()) def test_from_numpy_matrix_dtype(self): dt = [('weight', float), ('cost', int)] A = np.matrix([[(1.0, 2)]], dtype=dt) G = nx.from_numpy_matrix(A) assert type(G[0][0]['weight']) == float assert type(G[0][0]['cost']) == int assert G[0][0]['cost'] == 2 assert G[0][0]['weight'] == 1.0 def test_to_numpy_recarray(self): G = nx.Graph() G.add_edge(1, 2, weight=7.0, cost=5) A = nx.to_numpy_recarray(G, dtype=[('weight', float), ('cost', int)]) assert sorted(A.dtype.names) == ['cost', 'weight'] assert A.weight[0, 1] == 7.0 assert A.weight[0, 0] == 0.0 assert A.cost[0, 1] == 5 assert A.cost[0, 0] == 0 def test_numpy_multigraph(self): G = nx.MultiGraph() G.add_edge(1, 2, weight=7) G.add_edge(1, 2, weight=70) A = nx.to_numpy_matrix(G) assert A[1, 0] == 77 A = nx.to_numpy_matrix(G, multigraph_weight=min) assert A[1, 0] == 7 A = nx.to_numpy_matrix(G, multigraph_weight=max) assert A[1, 0] == 70 def test_from_numpy_matrix_parallel_edges(self): """Tests that the :func:`networkx.from_numpy_matrix` function interprets integer weights as the number of parallel edges when creating a multigraph. """ A = np.matrix([[1, 1], [1, 2]]) # First, with a simple graph, each integer entry in the adjacency # matrix is interpreted as the weight of a single edge in the graph. expected = nx.DiGraph() edges = [(0, 0), (0, 1), (1, 0)] expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges]) expected.add_edge(1, 1, weight=2) actual = nx.from_numpy_matrix(A, parallel_edges=True, create_using=nx.DiGraph) assert_graphs_equal(actual, expected) actual = nx.from_numpy_matrix(A, parallel_edges=False, create_using=nx.DiGraph) assert_graphs_equal(actual, expected) # Now each integer entry in the adjacency matrix is interpreted as the # number of parallel edges in the graph if the appropriate keyword # argument is specified. edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)] expected = nx.MultiDiGraph() expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges]) actual = nx.from_numpy_matrix(A, parallel_edges=True, create_using=nx.MultiDiGraph) assert_graphs_equal(actual, expected) expected = nx.MultiDiGraph() expected.add_edges_from(set(edges), weight=1) # The sole self-loop (edge 0) on vertex 1 should have weight 2. expected[1][1][0]['weight'] = 2 actual = nx.from_numpy_matrix(A, parallel_edges=False, create_using=nx.MultiDiGraph) assert_graphs_equal(actual, expected) def test_symmetric(self): """Tests that a symmetric matrix has edges added only once to an undirected multigraph when using :func:`networkx.from_numpy_matrix`. """ A = np.matrix([[0, 1], [1, 0]]) G = nx.from_numpy_matrix(A, create_using=nx.MultiGraph) expected = nx.MultiGraph() expected.add_edge(0, 1, weight=1) assert_graphs_equal(G, expected) def test_dtype_int_graph(self): """Test that setting dtype int actually gives an integer matrix. For more information, see GitHub pull request #1363. """ G = nx.complete_graph(3) A = nx.to_numpy_matrix(G, dtype=int) assert A.dtype == int def test_dtype_int_multigraph(self): """Test that setting dtype int actually gives an integer matrix. For more information, see GitHub pull request #1363. """ G = nx.MultiGraph(nx.complete_graph(3)) A = nx.to_numpy_matrix(G, dtype=int) assert A.dtype == int class TestConvertNumpyArray(object): @classmethod def setup_class(cls): global np global np_assert_equal np = pytest.importorskip('numpy') np_assert_equal = np.testing.assert_equal def setup_method(self): self.G1 = barbell_graph(10, 3) self.G2 = cycle_graph(10, create_using=nx.DiGraph) self.G3 = self.create_weighted(nx.Graph()) self.G4 = self.create_weighted(nx.DiGraph()) def create_weighted(self, G): g = cycle_graph(4) G.add_nodes_from(g) G.add_weighted_edges_from((u, v, 10 + u) for u, v in g.edges()) return G def assert_equal(self, G1, G2): assert sorted(G1.nodes()) == sorted(G2.nodes()) assert sorted(G1.edges()) == sorted(G2.edges()) def identity_conversion(self, G, A, create_using): assert(A.sum() > 0) GG = nx.from_numpy_array(A, create_using=create_using) self.assert_equal(G, GG) GW = nx.to_networkx_graph(A, create_using=create_using) self.assert_equal(G, GW) GI = nx.empty_graph(0, create_using).__class__(A) self.assert_equal(G, GI) def test_shape(self): "Conversion from non-square array." A = np.array([[1, 2, 3], [4, 5, 6]]) pytest.raises(nx.NetworkXError, nx.from_numpy_array, A) def test_identity_graph_array(self): "Conversion from graph to array to graph." A = nx.to_numpy_array(self.G1) self.identity_conversion(self.G1, A, nx.Graph()) def test_identity_digraph_array(self): """Conversion from digraph to array to digraph.""" A = nx.to_numpy_array(self.G2) self.identity_conversion(self.G2, A, nx.DiGraph()) def test_identity_weighted_graph_array(self): """Conversion from weighted graph to array to weighted graph.""" A = nx.to_numpy_array(self.G3) self.identity_conversion(self.G3, A, nx.Graph()) def test_identity_weighted_digraph_array(self): """Conversion from weighted digraph to array to weighted digraph.""" A = nx.to_numpy_array(self.G4) self.identity_conversion(self.G4, A, nx.DiGraph()) def test_nodelist(self): """Conversion from graph to array to graph with nodelist.""" P4 = path_graph(4) P3 = path_graph(3) nodelist = list(P3) A = nx.to_numpy_array(P4, nodelist=nodelist) GA = nx.Graph(A) self.assert_equal(GA, P3) # Make nodelist ambiguous by containing duplicates. nodelist += [nodelist[0]] pytest.raises(nx.NetworkXError, nx.to_numpy_array, P3, nodelist=nodelist) def test_weight_keyword(self): WP4 = nx.Graph() WP4.add_edges_from((n, n + 1, dict(weight=0.5, other=0.3)) for n in range(3)) P4 = path_graph(4) A = nx.to_numpy_array(P4) np_assert_equal(A, nx.to_numpy_array(WP4, weight=None)) np_assert_equal(0.5 * A, nx.to_numpy_array(WP4)) np_assert_equal(0.3 * A, nx.to_numpy_array(WP4, weight='other')) def test_from_numpy_array_type(self): A = np.array([[1]]) G = nx.from_numpy_array(A) assert type(G[0][0]['weight']) == int A = np.array([[1]]).astype(np.float) G = nx.from_numpy_array(A) assert type(G[0][0]['weight']) == float A = np.array([[1]]).astype(np.str) G = nx.from_numpy_array(A) assert type(G[0][0]['weight']) == str A = np.array([[1]]).astype(np.bool) G = nx.from_numpy_array(A) assert type(G[0][0]['weight']) == bool A = np.array([[1]]).astype(np.complex) G = nx.from_numpy_array(A) assert type(G[0][0]['weight']) == complex A = np.array([[1]]).astype(np.object) pytest.raises(TypeError, nx.from_numpy_array, A) def test_from_numpy_array_dtype(self): dt = [('weight', float), ('cost', int)] A = np.array([[(1.0, 2)]], dtype=dt) G = nx.from_numpy_array(A) assert type(G[0][0]['weight']) == float assert type(G[0][0]['cost']) == int assert G[0][0]['cost'] == 2 assert G[0][0]['weight'] == 1.0 def test_to_numpy_recarray(self): G = nx.Graph() G.add_edge(1, 2, weight=7.0, cost=5) A = nx.to_numpy_recarray(G, dtype=[('weight', float), ('cost', int)]) assert sorted(A.dtype.names) == ['cost', 'weight'] assert A.weight[0, 1] == 7.0 assert A.weight[0, 0] == 0.0 assert A.cost[0, 1] == 5 assert A.cost[0, 0] == 0 def test_numpy_multigraph(self): G = nx.MultiGraph() G.add_edge(1, 2, weight=7) G.add_edge(1, 2, weight=70) A = nx.to_numpy_array(G) assert A[1, 0] == 77 A = nx.to_numpy_array(G, multigraph_weight=min) assert A[1, 0] == 7 A = nx.to_numpy_array(G, multigraph_weight=max) assert A[1, 0] == 70 def test_from_numpy_array_parallel_edges(self): """Tests that the :func:`networkx.from_numpy_array` function interprets integer weights as the number of parallel edges when creating a multigraph. """ A = np.array([[1, 1], [1, 2]]) # First, with a simple graph, each integer entry in the adjacency # matrix is interpreted as the weight of a single edge in the graph. expected = nx.DiGraph() edges = [(0, 0), (0, 1), (1, 0)] expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges]) expected.add_edge(1, 1, weight=2) actual = nx.from_numpy_array(A, parallel_edges=True, create_using=nx.DiGraph) assert_graphs_equal(actual, expected) actual = nx.from_numpy_array(A, parallel_edges=False, create_using=nx.DiGraph) assert_graphs_equal(actual, expected) # Now each integer entry in the adjacency matrix is interpreted as the # number of parallel edges in the graph if the appropriate keyword # argument is specified. edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)] expected = nx.MultiDiGraph() expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges]) actual = nx.from_numpy_array(A, parallel_edges=True, create_using=nx.MultiDiGraph) assert_graphs_equal(actual, expected) expected = nx.MultiDiGraph() expected.add_edges_from(set(edges), weight=1) # The sole self-loop (edge 0) on vertex 1 should have weight 2. expected[1][1][0]['weight'] = 2 actual = nx.from_numpy_array(A, parallel_edges=False, create_using=nx.MultiDiGraph) assert_graphs_equal(actual, expected) def test_symmetric(self): """Tests that a symmetric array has edges added only once to an undirected multigraph when using :func:`networkx.from_numpy_array`. """ A = np.array([[0, 1], [1, 0]]) G = nx.from_numpy_array(A, create_using=nx.MultiGraph) expected = nx.MultiGraph() expected.add_edge(0, 1, weight=1) assert_graphs_equal(G, expected) def test_dtype_int_graph(self): """Test that setting dtype int actually gives an integer array. For more information, see GitHub pull request #1363. """ G = nx.complete_graph(3) A = nx.to_numpy_array(G, dtype=int) assert A.dtype == int def test_dtype_int_multigraph(self): """Test that setting dtype int actually gives an integer array. For more information, see GitHub pull request #1363. """ G = nx.MultiGraph(nx.complete_graph(3)) A = nx.to_numpy_array(G, dtype=int) assert A.dtype == int
sserrot/champion_relationships
venv/Lib/site-packages/networkx/tests/test_convert_numpy.py
Python
mit
17,291
import argparse import smtplib from email import charset from email.MIMEText import MIMEText import sys import socks import random from twitter import * def base64_char(i): if 0 <= i <= 25: # A-Z return chr(i + ord('A')) elif 26 <= i <= 51: # a-z return chr(i + ord('a') - 26) elif 52 <= i <= 61: # 0-9 return chr(i + ord('0') - 52) elif i == 62: return '+' else: return '/' def fake_pgp_msg(): body = """\ -----BEGIN PGP MESSAGE----- Version: GnuPG v1.4.12 (GNU/Linux) """ for i in xrange(random.randrange(2000,5000)): body += base64_char(random.randrange(64)) if (i + 1) % 64 == 0: body += '\n' body += "==\n=" for i in xrange(0,4): body += base64_char(random.randrange(64)) body +="\n-----END PGP MESSAGE-----" return body class noise_dispatcher(object): def __init__(self,argv): self.config_parser(argv) def config_parser(self,argv): if type(argv) == dict: argd = argv argv = [] for k,v in argd.iteritems(): argv.append('--' + k) argv.append(v) return argv def dispatch(self,noise): pass class twitter_dispatcher(noise_dispatcher): def config_parser(self,argv): argv = super(twitter_dispatcher,self).config_parser(argv) parser = argparse.ArgumentParser(description='This is the NOISE Twitter dispatch program.',prog='noise_tweet.py') parser.add_argument('-a','--app-name',type=str,required=True,help="Name of the application used to tweet") parser.add_argument('-k','--consumer-key',type=str,required=True,help="Consumer key specific to the application used to tweet") parser.add_argument('-c','--consumer-secret',type=str,required=True,help="Consumer secret specific to the application used to tweet") parser.add_argument('-t','--oauth-token',type=str,help="OAuth token authorizing the user to the application. If missing, you will be promted to generate one.") parser.add_argument('-s','--oauth-secret',type=str,help="OAuth secret authorizing the user to the application. If missing, you will be promted to generate one.") parser.add_argument('-b','--status',type=str,help="Status/text to tweet") parser.add_argument('--proxy',type=int,const=9050,nargs='?',help="Require the use of a proxy, optionally specifying the port. Default port: %(const)s.") self.args = parser.parse_args(argv) if not self.args.oauth_token and not self.args.oauth_secret: self.oauth_token, self.oauth_secret = oauth_dance(self.args.app_name,self.args.consumer_key,self.args.consumer_secret) print """Add the following lines to your NOISE configuration file (e.g. noise.conf) under the [TwitterDispatch] section: oauth-token = %s oauth-secret = %s """ % (self.oauth_token, self.oauth_secret) else: self.oauth_token, self.oauth_secret = self.args.oauth_token, self.args.oauth_secret def dispatch(self,noise=None): if noise and len(noise) > 140: return if self.args.proxy: # Let's use a Tor SOCKS proxy, if available. Obviously, start Tor before running this program socks.setdefaultproxy(socks.PROXY_TYPE_SOCKS4, 'localhost', self.args.proxy) s = socks.socksocket() s.connect(('example.com', 80)) s.close() socks.wrapmodule(twitter) t = Twitter( auth=OAuth(self.oauth_token, self.oauth_secret, self.args.consumer_key, self.args.consumer_secret) ) t.statuses.update(status = noise if noise else self.args.status) return "Successfully tweeted" class email_dispatcher(noise_dispatcher): def config_parser(self,argv): argv = super(email_dispatcher,self).config_parser(argv) parser = argparse.ArgumentParser(description='This is the NOISE Email dispatch program.',prog='noise_dispatch.py') parser.add_argument('-f','--from',dest='sender',type=str,help="Sender (doubles as username), e.g. myemail@gmail.com", required=True) parser.add_argument('-t','--to',type=str,help="Recipient email address, e.g. foo@hotmail.com", required=True) parser.add_argument('-r','--server',type=str,help="Remote SMTP server, e.g. smtp.gmail.com", required=True) parser.add_argument('-p','--pass',dest='passwd',type=str,help="Account passphrase on remote server", required=True) parser.add_argument('-s','--subject',type=str,help="Email subject field", required=True) parser.add_argument('-b','--body',type=str,help="Email body text") parser.add_argument('-e','--encrypted',const=True,default=False,nargs='?',help="Generate fake encrypted emails instead of generating plaintext") parser.add_argument('--proxy',type=int,const=9050,nargs='?',help="Require the use of a proxy, optionally specifying the port. Default port: %(const)s.") self.args = parser.parse_args(argv) def dispatch(self,noise=None): charset.add_charset('utf-8', charset.SHORTEST) if self.args.encrypted and self.args.encrypted.lower() not in ['false','no','0']: msg = MIMEText(fake_pgp_msg(), _charset='utf-8') else: msg = MIMEText(noise if noise else self.args.body, _charset='utf-8') msg['Subject'] = self.args.subject msg['From'] = self.args.sender if ',' in self.args.to: random.seed() msg['To'] = random.choice(self.args.to.split(', ')) else: msg['To'] = self.args.to if self.args.proxy: # Let's use a Tor SOCKS proxy, if available. Obviously, start Tor before running this program socks.setdefaultproxy(socks.PROXY_TYPE_SOCKS4, 'localhost', self.args.proxy) s = socks.socksocket() s.connect(('example.com', 80)) s.close() socks.wrapmodule(smtplib) # Use STARTTLS for added security smtpserver = smtplib.SMTP(self.args.server) smtpserver.starttls() smtpserver.set_debuglevel(True) smtpserver.login(self.args.sender,self.args.passwd) try: smtpserver.sendmail(self.args.sender, [self.args.to], msg.as_string()) finally: smtpserver.close() return "Successfully sent mail" if __name__ == '__main__': d = email_dispatcher(sys.argv[1:]) print d.dispatch()
dismantl/NOISE
noise_dispatch.py
Python
gpl-3.0
6,128
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import contextlib import weakref import pyarrow as pa @contextlib.contextmanager def allocate_bytes(pool, nbytes): """ Temporarily allocate *nbytes* from the given *pool*. """ arr = pa.array([b"x" * nbytes], type=pa.binary(), memory_pool=pool) # Fetch the values buffer from the varbinary array and release the rest, # to get the desired allocation amount buf = arr.buffers()[2] arr = None assert len(buf) == nbytes try: yield finally: buf = None def check_allocated_bytes(pool): """ Check allocation stats on *pool*. """ allocated_before = pool.bytes_allocated() max_mem_before = pool.max_memory() with allocate_bytes(pool, 512): assert pool.bytes_allocated() == allocated_before + 512 new_max_memory = pool.max_memory() assert pool.max_memory() >= max_mem_before assert pool.bytes_allocated() == allocated_before assert pool.max_memory() == new_max_memory def test_default_allocated_bytes(): pool = pa.default_memory_pool() with allocate_bytes(pool, 1024): check_allocated_bytes(pool) assert pool.bytes_allocated() == pa.total_allocated_bytes() def test_proxy_memory_pool(): pool = pa.proxy_memory_pool(pa.default_memory_pool()) check_allocated_bytes(pool) wr = weakref.ref(pool) assert wr() is not None del pool assert wr() is None def test_logging_memory_pool(capfd): pool = pa.logging_memory_pool(pa.default_memory_pool()) check_allocated_bytes(pool) out, err = capfd.readouterr() assert err == "" assert out.count("Allocate:") > 0 assert out.count("Allocate:") == out.count("Free:") def test_set_memory_pool(): old_pool = pa.default_memory_pool() pool = pa.proxy_memory_pool(old_pool) pa.set_memory_pool(pool) try: allocated_before = pool.bytes_allocated() with allocate_bytes(None, 512): assert pool.bytes_allocated() == allocated_before + 512 assert pool.bytes_allocated() == allocated_before finally: pa.set_memory_pool(old_pool)
xhochy/arrow
python/pyarrow/tests/test_memory.py
Python
apache-2.0
2,890
""" Unit tests for django-registration. These tests assume that you've completed all the prerequisites for getting django-registration running in the default setup, to wit: 1. You have ``registration`` in your ``INSTALLED_APPS`` setting. 2. You have created all of the templates mentioned in this application's documentation. 3. You have added the setting ``ACCOUNT_ACTIVATION_DAYS`` to your settings file. 4. You have URL patterns pointing to the registration and activation views, with the names ``registration_register`` and ``registration_activate``, respectively, and a URL pattern named 'registration_complete'. """ import datetime import sha from django.conf import settings from django.contrib.auth.models import User from django.core import mail from django.core import management from django.core.urlresolvers import reverse from django.test import TestCase from commoner.registration import forms from commoner.registration.models import RegistrationProfile from commoner.registration import signals class RegistrationTestCase(TestCase): """ Base class for the test cases; this sets up two users -- one expired, one not -- which are used to exercise various parts of the application. """ def setUp(self): self.sample_user = RegistrationProfile.objects.create_inactive_user(username='alice', password='secret', email='alice@example.com') self.expired_user = RegistrationProfile.objects.create_inactive_user(username='bob', password='swordfish', email='bob@example.com') self.expired_user.date_joined -= datetime.timedelta(days=settings.ACCOUNT_ACTIVATION_DAYS + 1) self.expired_user.save() class RegistrationModelTests(RegistrationTestCase): """ Tests for the model-oriented functionality of django-registration, including ``RegistrationProfile`` and its custom manager. """ def test_new_user_is_inactive(self): """ Test that a newly-created user is inactive. """ self.failIf(self.sample_user.is_active) def test_registration_profile_created(self): """ Test that a ``RegistrationProfile`` is created for a new user. """ self.assertEqual(RegistrationProfile.objects.count(), 2) def test_activation_email(self): """ Test that user signup sends an activation email. """ self.assertEqual(len(mail.outbox), 2) def test_activation_email_disable(self): """ Test that activation email can be disabled. """ RegistrationProfile.objects.create_inactive_user(username='noemail', password='foo', email='nobody@example.com', send_email=False) self.assertEqual(len(mail.outbox), 2) def test_activation(self): """ Test that user activation actually activates the user and properly resets the activation key, and fails for an already-active or expired user, or an invalid key. """ # Activating a valid user returns the user. self.failUnlessEqual(RegistrationProfile.objects.activate_user(RegistrationProfile.objects.get(user=self.sample_user).activation_key).pk, self.sample_user.pk) # The activated user must now be active. self.failUnless(User.objects.get(pk=self.sample_user.pk).is_active) # The activation key must now be reset to the "already activated" constant. self.failUnlessEqual(RegistrationProfile.objects.get(user=self.sample_user).activation_key, RegistrationProfile.ACTIVATED) # Activating an expired user returns False. self.failIf(RegistrationProfile.objects.activate_user(RegistrationProfile.objects.get(user=self.expired_user).activation_key)) # Activating from a key that isn't a SHA1 hash returns False. self.failIf(RegistrationProfile.objects.activate_user('foo')) # Activating from a key that doesn't exist returns False. self.failIf(RegistrationProfile.objects.activate_user(sha.new('foo').hexdigest())) def test_account_expiration_condition(self): """ Test that ``RegistrationProfile.activation_key_expired()`` returns ``True`` for expired users and for active users, and ``False`` otherwise. """ # Unexpired user returns False. self.failIf(RegistrationProfile.objects.get(user=self.sample_user).activation_key_expired()) # Expired user returns True. self.failUnless(RegistrationProfile.objects.get(user=self.expired_user).activation_key_expired()) # Activated user returns True. RegistrationProfile.objects.activate_user(RegistrationProfile.objects.get(user=self.sample_user).activation_key) self.failUnless(RegistrationProfile.objects.get(user=self.sample_user).activation_key_expired()) def test_expired_user_deletion(self): """ Test that ``RegistrationProfile.objects.delete_expired_users()`` deletes only inactive users whose activation window has expired. """ RegistrationProfile.objects.delete_expired_users() self.assertEqual(RegistrationProfile.objects.count(), 1) def test_management_command(self): """ Test that ``manage.py cleanupregistration`` functions correctly. """ management.call_command('cleanupregistration') self.assertEqual(RegistrationProfile.objects.count(), 1) def test_signals(self): """ Test that the ``user_registered`` and ``user_activated`` signals are sent, and that they send the ``User`` as an argument. """ def receiver(sender, **kwargs): self.assert_('user' in kwargs) self.assertEqual(kwargs['user'].username, u'signal_test') received_signals.append(kwargs.get('signal')) received_signals = [] expected_signals = [signals.user_registered, signals.user_activated] for signal in expected_signals: signal.connect(receiver) RegistrationProfile.objects.create_inactive_user(username='signal_test', password='foo', email='nobody@example.com', send_email=False) RegistrationProfile.objects.activate_user(RegistrationProfile.objects.get(user__username='signal_test').activation_key) self.assertEqual(received_signals, expected_signals) class RegistrationFormTests(RegistrationTestCase): """ Tests for the forms and custom validation logic included in django-registration. """ fixtures = ['test_codes.json',] def test_registration_form(self): """ Test that ``RegistrationForm`` enforces username constraints and matching passwords. """ invalid_data_dicts = [ # Non-alphanumeric username. { 'data': { 'username': 'foo/bar', 'email': 'foo@example.com', 'password1': 'foo', 'password2': 'foo', 'agree_to_tos': 'on',}, 'error': ('username', [u"Enter a valid value."]) }, # Already-existing username. { 'data': { 'username': 'alice', 'email': 'alice@example.com', 'password1': 'secret', 'password2': 'secret', 'agree_to_tos': 'on', }, 'error': ('username', [u"This username is already taken. Please choose another."]) }, # Mismatched passwords. { 'data': { 'username': 'foo', 'email': 'foo@example.com', 'password1': 'foo', 'password2': 'bar', 'agree_to_tos': 'on', }, 'error': ('__all__', [u"You must type the same password each time"]) }, # Must agree to TOS { 'data': { 'username': 'foo', 'email': 'foo@example.com', 'password1': 'foo', 'password2': 'foo', 'agree_to_tos': False, }, 'error': ('agree_to_tos', [u"You must agree to the terms to register"]) }, ] for invalid_dict in invalid_data_dicts: form = forms.RegistrationForm(data=invalid_dict['data']) self.failIf(form.is_valid()) self.assertEqual(form.errors[invalid_dict['error'][0]], invalid_dict['error'][1]) form = forms.RegistrationForm(data={ 'username': 'foo', 'email': 'foo@example.com', 'password1': 'foo', 'password2': 'foo', 'agree_to_tos':'on', 'promo_code':'12345678'}) self.failUnless(form.is_valid()) class RegistrationViewTests(RegistrationTestCase): """ Tests for the views included in django-registration. """ def _test_registration_view(self): """ Underscored to prevent running while free accounts are prohibited Test that the registration view rejects invalid submissions, and creates a new user and redirects after a valid submission. """ # Invalid data fails. response = self.client.post(reverse('registration_register'), data={ 'username': 'alice', # Will fail on username uniqueness. 'email': 'foo@example.com', 'password1': 'foo', 'password2': 'foo' }) self.assertEqual(response.status_code, 200) self.failUnless(response.context[0]['form']) self.failUnless(response.context[0]['form'].errors) response = self.client.post(reverse('registration_register'), data={ 'username': 'foo', 'email': 'foo@example.com', 'password1': 'foo', 'password2': 'foo', 'agree_to_tos':'on'}) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'registration/check_inbox.html') self.assertEqual(RegistrationProfile.objects.count(), 3) def test_activation_view(self): """ Test that the activation view activates the user from a valid key and fails if the key is invalid or has expired. """ # Valid user puts the user account into the context. response = self.client.get(reverse('registration_activate', kwargs={ 'activation_key': RegistrationProfile.objects.get(user=self.sample_user).activation_key })) self.assertEqual(response.status_code, 200) self.assertEqual(response.context[0]['account'].pk, self.sample_user.pk) # Expired user sets the account to False. response = self.client.get(reverse('registration_activate', kwargs={ 'activation_key': RegistrationProfile.objects.get(user=self.expired_user).activation_key })) self.assertEqual(response.status_code, 404) # Invalid key gets to the view, but sets account to False. response = self.client.get(reverse('registration_activate', kwargs={ 'activation_key': 'foo' })) # hmmm, need an assertion here # Nonexistent key sets the account to False. response = self.client.get(reverse('registration_activate', kwargs={ 'activation_key': sha.new('foo').hexdigest() })) self.assertEqual(response.status_code, 404)
cc-archive/commoner
src/commoner/registration/tests.py
Python
agpl-3.0
12,845
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # def make_name(name: str) -> str: # Sample function parameter name in get_model_evaluation_image_object_detection_sample name = name return name
googleapis/python-aiplatform
.sample_configs/param_handlers/get_model_evaluation_image_object_detection_sample.py
Python
apache-2.0
735
# Definitions file for server API variables/strings. # Make calls to these variables in code instead of explicit definitions. # Definitions file for server API variables/strings. # Make calls to these variables in code instead of explicit definitions. class client_api: data_separator = "|" # Client message codes login_code = "login" register_code = "register" upload_code = "upload" retrieve_code = "retrieve" search_code = "search" delete_code = "delete" # Server message codes login_status_code = "login_status"
operant/knowledge-management
Server/server_c.py
Python
mit
577
import configparser import cv2 import numpy as np from Image.Cannify import Cannify from Image.IsolateDigits import IsolateDigits from Image.Straighten import Straighten class Pipeline: def __init__(self, filename: str): self.file = filename self.img = cv2.imread(self.file, 0) self.height, self.width = self.img.shape """ :var Canny """ self.cannify = None config = configparser.ConfigParser() config.read('config.ini') self.config: map = config['Pipeline'] self.debug: bool = bool(self.config['debug']) self.sample_size = eval(self.config['sample_size']) print('sample_size', type(self.sample_size), self.sample_size) def process(self): if self.debug: cv2.imwrite('1-original.png', self.img) edges = cv2.Canny(self.img, int(self.config['canny.threshold1']), int(self.config['canny.threshold2'])) if self.debug: cv2.imwrite('2-edges.png', edges) straighten = Straighten(edges, debug=self.debug) straight = straighten.process() if self.debug: cv2.imwrite('4-straight.png', straight) self.cannify = Cannify(straight, debug=self.debug) contimage = self.cannify.process() contours = self.cannify.getDigits() isolated = np.zeros((self.height, self.width, 3), np.uint8) cv2.drawContours(isolated, contours, contourIdx=-1, color=(255, 255, 255)) # thickness=cv2.FILLED) if self.debug: cv2.imwrite('7-isolated.png', isolated) # alternatively fill the contours # todo: this does not let openings # for c in contours: # cv2.fillPoly(isolated, pts=[c], color=(255, 255, 255)) isolator = IsolateDigits(isolated) digits = isolator.isolate(contours) return straight, edges, contimage, isolated, digits def resizeReshape(self, digits): """ Reformat from 2D image with 3 color channels to a single line of pixels for machine learning (actually x*y features of a single pixel) @param digits: @return: """ print('original shape', len(digits), digits[0].shape) dimentions = self.sample_size[0] * self.sample_size[1] samples = np.zeros((0, dimentions)) for d in digits: d30 = cv2.resize(d, self.sample_size, interpolation=cv2.INTER_LANCZOS4) gray = cv2.cvtColor(d30, cv2.COLOR_BGR2GRAY) features = np.reshape(gray, dimentions) samples = np.append(samples, [features], 0) print('resulting shape', len(samples), samples[0].shape) return samples
spidgorny/energy-monitor
python/Image/Pipeline.py
Python
unlicense
2,753
""" Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left to right, level by level from leaf to root). For example: Given binary tree [3,9,20,null,null,15,7], 3 / \ 9 20 / \ 15 7 return its bottom-up level order traversal as: [ [15,7], [9,20], [3] ] """ # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def levelOrderBottom(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ if root == None: return [] ret = [] queue = [root] count_of_one_level = 1 while queue: tmp = [] count_of_next_level = 0 while count_of_one_level: node = queue.pop(0) tmp.append(node.val) if node.left: queue.append(node.left) count_of_next_level += 1 if node.right: queue.append(node.right) count_of_next_level += 1 count_of_one_level -= 1 count_of_one_level = count_of_next_level ret.append(tmp) return ret[::-1]
danielsunzhongyuan/my_leetcode_in_python
binary_tree_level_order_traversal_ii_107.py
Python
apache-2.0
1,341
import os, sys sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)) + "/../") import bz2 from pymcda.types import * from pymcda.generate import generate_criteria from pymcda.generate import generate_categories from pymcda.generate import generate_categories_profiles from pymcda.electre_tri import MRSort from pymcda.learning.mip_mrsort_weights import MipMRSortWeights from pymcda.learning.mip_mrsort_mobius import MipMRSortMobius from pymcda.utils import print_pt_and_assignments from coalition_additive_weights import generate_binary_performance_table_and_assignments f = bz2.BZ2File(sys.argv[1]) tree = ElementTree.parse(f) root = tree.getroot() xmcda_criteria = root.find(".//criteria") criteria = Criteria().from_xmcda(xmcda_criteria) xmcda_csets = root.findall(".//criteriaSets") f.close() ## Weights w = CriteriaValues() for c in criteria: w.append(CriterionValue(c.id, 0.2)) ## Profiles and categories bp1 = AlternativePerformances('b1', {c.id: 0.5 for c in criteria}) bpt = PerformanceTable([bp1]) cat = generate_categories(2, names = ['good', 'bad']) cps = generate_categories_profiles(cat) ## Model model = MRSort(c, w, bpt, 0.6, cps) fmins = [] results = [] for i, xmcda in enumerate(xmcda_csets): result = {} fmins = CriteriaSets().from_xmcda(xmcda) result['fmins'] = fmins result['vector'] = "".join(map(str, sorted([len(fmin) for fmin in sorted(fmins, key = len)]))) print("\n%d. Fmin: %s" % (i + 1, ', '.join("%s" % f for f in fmins))) pt, aa = generate_binary_performance_table_and_assignments(criteria, cat, fmins) aa.id = 'aa' a = Alternatives([Alternative(a.id) for a in aa]) model = MRSort(criteria, None, bpt, None, cps) mip = MipMRSortWeights(model, pt, aa) obj = mip.solve() aa2 = model.pessimist(pt) aa2.id = 'aa_add' print("MipMRSortWeights: Objective: %d (/%d)" % (obj, len(aa))) anok = [a.id for a in aa if a.category_id != aa2[a.id].category_id] print("Alternative not restored: %s" % ','.join("%s" % a for a in anok)) print(model.cv) print("lambda: %s" % model.lbda) result['obj_weights'] = obj mip = MipMRSortMobius(model, pt, aa) obj = mip.solve() aa3 = model.pessimist(pt) aa3.id = 'aa_capa' print("MipMRSortMobius: Objective: %d (/%d)" % (obj, len(aa))) anok = [a.id for a in aa if a.category_id != aa3[a.id].category_id] print("Alternative not restored: %s" % ','.join("%s" % a for a in anok)) print(model.cv) print("lambda: %s" % model.lbda) result['obj_capa'] = obj a = Alternatives([Alternative(a.id) for a in aa]) print_pt_and_assignments(a.keys(), criteria.keys(), [aa, aa2, aa3], pt) results.append(result) results.sort(key = lambda x: x['vector']) results.sort(key = lambda x: len(x['vector'])) maxlen = max([len(', '.join("%s" % f for f in result['fmins'])) for result in results]) print("\n%*s obj_weights obj_capa" % (maxlen, "Fmin")) for result in results: print("%*s %*s %*s" % (maxlen, ', '.join("%s" % f for f in sorted(result['fmins'], key = len)), len('obj_weights'), result['obj_weights'], len('obj_capa'), result['obj_capa']))
oso/pymcda
apps/test_coalition_additive_weights.py
Python
gpl-3.0
3,364
__all__ = ["bumbledriver", "dummydriver", "printcoredriver", "s3gdriver"]
qharley/BotQueue
bumblebee/drivers/__init__.py
Python
gpl-3.0
73
#!/usr/bin/python # -*- coding: utf-8 -*- # # (c) 2015, René Moser <mail@renemoser.net> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: ipify_facts short_description: Retrieve the public IP of your internet gateway. description: - If behind NAT and need to know the public IP of your internet gateway. version_added: '2.0' author: "René Moser (@resmo)" options: api_url: description: - URL of the ipify.org API service. - C(?format=json) will be appended per default. required: false default: 'https://api.ipify.org' timeout: description: - HTTP connection timeout in seconds. required: false default: 10 version_added: "2.3" validate_certs: description: - When set to C(NO), SSL certificates will not be validated. required: false default: "yes" version_added: "2.4" notes: - "Visit https://www.ipify.org to get more information." ''' EXAMPLES = ''' # Gather IP facts from ipify.org - name: get my public IP ipify_facts: # Gather IP facts from your own ipify service endpoint with a custom timeout - name: get my public IP ipify_facts: api_url: http://api.example.com/ipify timeout: 20 ''' RETURN = ''' --- ipify_public_ip: description: Public IP of the internet gateway. returned: success type: string sample: 1.2.3.4 ''' import json from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.urls import fetch_url from ansible.module_utils._text import to_text class IpifyFacts(object): def __init__(self): self.api_url = module.params.get('api_url') self.timeout = module.params.get('timeout') def run(self): result = { 'ipify_public_ip': None } (response, info) = fetch_url(module=module, url=self.api_url + "?format=json", force=True, timeout=self.timeout) if not response: module.fail_json(msg="No valid or no response from url %s within %s seconds (timeout)" % (self.api_url, self.timeout)) data = json.loads(to_text(response.read())) result['ipify_public_ip'] = data.get('ip') return result def main(): global module module = AnsibleModule( argument_spec=dict( api_url=dict(default='https://api.ipify.org/'), timeout=dict(type='int', default=10), validate_certs=dict(type='bool', default=True), ), supports_check_mode=True, ) ipify_facts = IpifyFacts().run() ipify_facts_result = dict(changed=False, ansible_facts=ipify_facts) module.exit_json(**ipify_facts_result) if __name__ == '__main__': main()
fernandezcuesta/ansible
lib/ansible/modules/net_tools/ipify_facts.py
Python
gpl-3.0
2,944
def makeTextFile(): import os ls = os.linesep # get filename while True: fname = raw_input('Enter file name: ') if os.path.exists(fname): print"*** ERROR: '%s' already exists" % fname else: break # get file content (text) lines all = [] print "\nEnter lines ('.' by itself to quit).\n" # loop until user terminates input while True: entry = raw_input('> ') if entry == '.': break else: all.append(entry) # write lines to file with proper line-ending fobj = open(fname, 'w') fobj.writelines(['%s%s' % (x, ls) for x in all]) fobj.close() print 'DONE!' print call() def readTextFile(): # get filename fname = raw_input('Enter file name: ') print # attempt to open file for reading try: fobj = open(fname, 'r') except IOError, e: print"*** file open error:", e else: # display contents to the screen for eachLine in fobj: print eachLine, fobj.close() print call() def call(): t=raw_input("Input 'm' for make,'r' for read:") if t=='r': readTextFile() elif t=='m': makeTextFile() else: t=raw_input("Wrong answer!Input 'm' for make,'r' for read:") print call()
github641/python-journey
summarry read and make text.py
Python
bsd-2-clause
1,404
# This file is part of PyBuilder # # Copyright 2011-2014 PyBuilder Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import subprocess from pybuilder.core import use_plugin, task, init, description use_plugin('python.core') @init def init_pytddmon_plugin(project): project.build_depends_on('pytddmon', '>=1.0.2') @task @description('Start monitoring tests.') def pytddmon(project, logger): import os unittest_directory = project.get_property('dir_source_unittest_python') environment = os.environ.copy() python_path_relative_to_basedir = project.get_property('dir_source_main_python') absolute_python_path = os.path.join(project.basedir, python_path_relative_to_basedir) environment['PYTHONPATH'] = absolute_python_path # necessary because of windows newlines in the pytddmon shebang - must fix upstream first python_interpreter = subprocess.check_output('which python', shell=True).rstrip('\n') pytddmon_script = subprocess.check_output('which pytddmon.py', shell=True).rstrip('\n') subprocess.Popen([python_interpreter, pytddmon_script, '--no-pulse'], shell=False, cwd=unittest_directory, env=environment)
shakamunyi/pybuilder
src/main/python/pybuilder/plugins/python/pytddmon_plugin.py
Python
apache-2.0
1,683
## # # Copyright 2013 Netflix, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ## import sys import os import json import urllib2 import random class EurekaClient(object): # Users can either set the EUREKA_URL environment variable # or pass it as a parameter (which takes precedence) def __init__(self, eurekaUrl=None): self._eurekaUrl = eurekaUrl if self._eurekaUrl is None or len(self._eurekaUrl) == 0: self._eurekaUrl = os.getenv('EUREKA_URL') # If appName is not set, then use NETFLIX_APP env, and finally default to 'genie' def _getInstances(self, appName=None, status='UP'): # if appName is not set, try to infer it from the environment - else default to 'genie' if appName is None or len(appName) == 0: appName = os.getenv("NETFLIX_APP") if appName is None or len(appName) == 0: appName = 'genie' # ensure that we can find Eureka if self._eurekaUrl is None or len(self._eurekaUrl) == 0: raise RuntimeError("EUREKA_URL is not provided via env or constructor") # get the response from Eureka restUrl = self._eurekaUrl + '/' + appName req = urllib2.Request(url=restUrl) req.add_header('Accept', 'application/json') assert req.get_method() == 'GET' response = urllib2.urlopen(req) # parse the json response json_str = response.read() json_obj = json.loads(json_str) # get a list of all instances instances = json_obj['application']['instance'] # check to see if this is a list or a singleton isList = isinstance(instances, list) # filter out the instances as specified by status instancesList = [] if (isList): for i in instances: if i['status'] == status: instancesList.append(i) else: # singleton instance if instances['status'] == status: instancesList.append(instances) # ensure that we have at least 1 instance that is UP assert len(instancesList) > 0, \ "No " + appName + " instances found that were " + status + " on " + self._eurekaUrl # return each one return instancesList # If the SERVICE_BASE_URL environment variable is set, return it - e.g. http://localhost:7001 # Else use Eureka to find an instance that is UP def getServiceBaseUrl(self, appName=None): service_url = os.getenv('SERVICE_BASE_URL') if service_url is not None and len(service_url) != 0: print "Returning SERVICE_BASE_URL provided by environment variable:", service_url print return service_url else: print "Getting UP instance from Eureka: " + self._eurekaUrl print instancesUp = self._getInstances(appName, status='UP') # pick a random one instance = instancesUp[random.randrange(0, len(instancesUp), 1)] service_url = 'http://' + instance['hostName'] + ':' + instance['port']['$'] return service_url # Use Eureka to find instances that are OUT_OF_SERVICE def getOOSInstances(self, appName=None): return self._getInstances(appName, status='OUT_OF_SERVICE') # Use Eureka to find instances that are UP def getUPInstances(self, appName=None): return self._getInstances(appName, status='UP') if __name__ == "__main__": client = EurekaClient() print "Getting base URL for Genie Service from Eureka:" print client.getServiceBaseUrl() print print "Getting list of all Genie OOS instances" print client.getOOSInstances()
korrelate/genie
genie-web/src/test/python/utils/eureka.py
Python
apache-2.0
4,342
from .performance import Performance from .junction import * def compare(args): if not args.multiclass: rp = set() rn = set() ref_entries = 0 if not args.labels: rp, ref_entries = Junction.createJuncSet(args.reference[0], use_strand=args.use_strand) else: rp, rn, ref_entries = Junction.createMarkedupJuncSets(args.reference[0], use_strand=args.use_strand) print() print("Reference:") print(" - # total junctions:", ref_entries) if args.labels: print(" - # distinct positive junctions:", len(rp)) print(" - # distinct negative junctions:", len(rn)) else: print(" - # distinct junctions:", len(rp)) print() # Load all junction files print("\t".join( ["File", "distinct", "total", Performance.longHeader() if args.labels else Performance.shortHeader()])) recall = 0 precision = 0 f1 = 0 for f in args.input: junc_set, bed_entries = Junction.createJuncSet(f, use_strand=args.use_strand) # Build table tab = list() p = Performance() if args.labels: p.tp = len(junc_set & rp) p.fp = len(junc_set & rn) p.fn = len(rp - junc_set) p.tn = len(rn - junc_set) else: p.tp = len(rp & junc_set) p.fp = len(junc_set - rp) p.fn = len(rp - junc_set) print("\t".join([f, str(len(junc_set)), str(bed_entries), p.longStr() if args.labels else str(p)])) recall += p.recall() precision += p.precision() f1 += p.F1() if len(args.input) > 1: print() print("Mean recall: ", format(recall / len(args.input), '.2f')) print("Mean precision: ", format(precision / len(args.input), '.2f')) print("Mean f1: ", format(f1 / len(args.input), '.2f')) else: ref_set, ref_entries = Junction.createJuncSet(args.reference[0], use_strand=args.use_strand) ref_ss = Junction.createSpliceSiteSet(args.reference[0], use_strand=args.use_strand) print() print("Reference:") print(" - # distinct junctions:", len(ref_set)) print(" - # total junctions:", ref_entries) print(" - # distinct splice sites:", len(ref_ss)) print() # Load all bed files print("Result legend:") print("Class 1 = Intron in ref") print("Class 2 = Both splice sites in ref") print("Class 3 = Only 1 splice site in ref") print("Class 4 = Novel") print() print("\t".join(["file", "class1", "class2", "class3", "class4"])) for jf in args.input: juncs, entries = Junction.createDict(jf, use_strand=args.use_strand, fullparse=True) class1 = 0 class2 = 0 class3 = 0 class4 = 0 for key, value in juncs.items(): key1 = value.startSplicesiteKey() key2 = value.endSplicesiteKey() if value.key in ref_set: class1 += 1 elif key1 in ref_ss and key2 in ref_ss: class2 += 1 elif key1 in ref_ss or key2 in ref_ss: class3 += 1 else: class4 += 1 print("\t".join([jf, str(class1), str(class2), str(class3), str(class4)])) def add_options(parser): parser.add_argument("reference", nargs=1, help="The junction file to treat as the reference") parser.add_argument("input", nargs="+", help="One or more junction files to compare against the reference") parser.add_argument("-s", "--use_strand", action='store_true', default=False, help="Whether to use strand information when building keys") parser.add_argument("-l", "--labels", help="Path to a file containing labels for the reference indicating whether or not each reference junction is genuine (as generated using the markup tool). If provided this script produces a much richer performance analysis. Not compatible with '--multiclass'") parser.add_argument("-m", "--multiclass", action='store_true', default=False, help="""Breakdown results into multiple classes: 1) Matching intron 2) Two matching splice sites but no matching intron (i.e. splice sites from different introns) 3) One matching splice site 4) No matching splice sites""")
maplesond/portcullis
scripts/junctools/junctools/compare.py
Python
gpl-3.0
3,895
''' Copyright (C) 2005-17 www.interpss.org Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from datetime import datetime import tensorflow as tf import numpy as np import sys sys.path.insert(0, '..') import lib.common_func as cf train_points = 50 # # load the IEEE-14Bus case # filename = 'c:/temp/temp/ieee14-1.ieee' busIdMappingFilename = 'c:/temp/temp/ieee14_busid2no.mapping' branchIdMappingFilename = 'c:/temp/temp/ieee14_branchid2no.mapping' intAry = cf.ipss_app.loadCase(filename, 'BranchPLoadChangeTrainCaseBuilder', busIdMappingFilename, branchIdMappingFilename) noBus, noBranch = intAry print(filename, ' loaded, no of Buses, Branches:', noBus, ', ', noBranch) # define model size size = noBus * 2 #print('size: ', size) # define model variables W1 = tf.Variable(tf.zeros([size,noBranch])) b1 = tf.Variable(tf.zeros([noBranch])) init = tf.initialize_all_variables() # define model def nn_model(data): output = tf.matmul(data, W1) + b1 return output # define loss x = tf.placeholder(tf.float32, [None, size]) y = tf.placeholder(tf.float32) error = tf.square(nn_model(x) - y) loss = tf.reduce_sum(error) # define training optimization optimizer = tf.train.GradientDescentOptimizer(cf.learning_rate) train = optimizer.minimize(loss) # run the computation graph with tf.Session() as sess : sess.run(init) # run the training part # ===================== print('Begin training: ', datetime.now()) # retrieve training set trainSet = cf.ipss_app.getTrainSet(train_points) train_x, train_y = cf.transfer2PyArrays(trainSet) #print2DArray(train_x, 'train_xSet', 'train_x') #print2DArray(train_y, 'train_ySet', 'train_y') # run the training part for i in range(cf.train_steps): if (i % 1000 == 0) : print('Training step: ', i) sess.run(train, {x:train_x, y:train_y}) print('End training: ', datetime.now()) #print('W1: ', sess.run(W1)) #print('b1: ', sess.run(b1)) # run the verification part # ========================= # retrieve a test case testCase = cf.ipss_app.getTestCase(); test_x, test_y = cf.transfer2PyArrays(testCase) #printArray(test_x, 'test_x') #printArray(test_y, 'test_y') # compute model output (network voltage) model_y = sess.run(nn_model(x), {x:test_x}) #printArray(model_y[0], 'model_y') print('max error: ', np.sqrt(np.max(np.abs(np.square(model_y - test_y)))))
interpss/DeepMachineLearning
lfGenNPred/py/single_net_mapping/predict_branchp2.py
Python
apache-2.0
3,105
""" Test everything related to contents """ from gabbletest import sync_stream from servicetest import ( make_channel_proxy, assertEquals, EventPattern) import constants as cs from jingletest2 import ( JingleTest2, JingleProtocol015, JingleProtocol031, test_dialects) from twisted.words.xish import xpath def worker(jp, q, bus, conn, stream): def make_stream_request(stream_type): media_iface.RequestStreams(remote_handle, [stream_type]) e = q.expect('dbus-signal', signal='NewStreamHandler') stream_id = e.args[1] stream_handler = make_channel_proxy(conn, e.args[0], 'Media.StreamHandler') stream_handler.NewNativeCandidate("fake", jt2.get_remote_transports_dbus()) stream_handler.Ready(jt2.get_audio_codecs_dbus()) stream_handler.StreamState(cs.MEDIA_STREAM_STATE_CONNECTED) return (stream_handler, stream_id) jt2 = JingleTest2(jp, conn, q, stream, 'test@localhost', 'foo@bar.com/Foo') jt2.prepare() self_handle = conn.GetSelfHandle() remote_handle = conn.RequestHandles(cs.HT_CONTACT, ["foo@bar.com/Foo"])[0] # Remote end calls us jt2.incoming_call() # FIXME: these signals are not observable by real clients, since they # happen before NewChannels. # The caller is in members e = q.expect('dbus-signal', signal='MembersChanged', args=[u'', [remote_handle], [], [], [], 0, 0]) # We're pending because of remote_handle e = q.expect('dbus-signal', signal='MembersChanged', args=[u'', [], [], [self_handle], [], remote_handle, cs.GC_REASON_INVITED]) media_chan = make_channel_proxy(conn, e.path, 'Channel.Interface.Group') signalling_iface = make_channel_proxy(conn, e.path, 'Channel.Interface.MediaSignalling') media_iface = make_channel_proxy(conn, e.path, 'Channel.Type.StreamedMedia') # S-E gets notified about new session handler, and calls Ready on it e = q.expect('dbus-signal', signal='NewSessionHandler') assert e.args[1] == 'rtp' session_handler = make_channel_proxy(conn, e.args[0], 'Media.SessionHandler') session_handler.Ready() media_chan.AddMembers([self_handle], 'accepted') # S-E gets notified about a newly-created stream e = q.expect('dbus-signal', signal='NewStreamHandler') id1 = e.args[1] stream_handler = make_channel_proxy(conn, e.args[0], 'Media.StreamHandler') # We are now in members too e = q.expect('dbus-signal', signal='MembersChanged', args=[u'', [self_handle], [], [], [], self_handle, cs.GC_REASON_NONE]) # we are now both in members members = media_chan.GetMembers() assert set(members) == set([self_handle, remote_handle]), members stream_handler.NewNativeCandidate("fake", jt2.get_remote_transports_dbus()) stream_handler.Ready(jt2.get_audio_codecs_dbus()) stream_handler.StreamState(cs.MEDIA_STREAM_STATE_CONNECTED) # First one is transport-info e = q.expect('stream-iq', predicate=jp.action_predicate('transport-info')) assertEquals('foo@bar.com/Foo', e.query['initiator']) # stream.send(gabbletest.make_result_iq(stream, e.stanza)) stream.send(jp.xml(jp.ResultIq('test@localhost', e.stanza, []))) # S-E reports codec intersection, after which gabble can send acceptance stream_handler.SupportedCodecs(jt2.get_audio_codecs_dbus()) # Second one is session-accept e = q.expect('stream-iq', predicate=jp.action_predicate('session-accept')) # stream.send(gabbletest.make_result_iq(stream, e.stanza)) stream.send(jp.xml(jp.ResultIq('test@localhost', e.stanza, []))) # Here starts the interesting part of this test # Remote end tries to create a content we can't handle node = jp.SetIq(jt2.peer, jt2.jid, [ jp.Jingle(jt2.sid, jt2.peer, 'content-add', [ jp.Content('bogus', 'initiator', 'both', [ jp.Description('hologram', [ jp.PayloadType(name, str(rate), str(id)) for (name, id, rate) in jt2.audio_codecs ]), jp.TransportGoogleP2P() ]) ]) ]) stream.send(jp.xml(node)) # In older Jingle, this is a separate namespace, which isn't # recognized, but it's a valid request, so it gets ackd and rejected if jp.dialect == 'jingle-v0.15': # Gabble should acknowledge content-add q.expect('stream-iq', iq_type='result') # .. and then send content-reject for the bogus content e = q.expect('stream-iq', iq_type='set', predicate=lambda x: xpath.queryForNodes("/iq/jingle[@action='content-reject']/content[@name='bogus']", x.stanza)) # In new Jingle, this is a bogus subtype of recognized namespace, # so Gabble returns a bad request error else: q.expect('stream-iq', iq_type='error') # Remote end then tries to create a content with a name it's already used node = jp.SetIq(jt2.peer, jt2.jid, [ jp.Jingle(jt2.sid, jt2.peer, 'content-add', [ jp.Content(jt2.audio_names[0], 'initiator', 'both', [ jp.Description('audio', [ jp.PayloadType(name, str(rate), str(id)) for (name, id, rate) in jt2.audio_codecs ]), jp.TransportGoogleP2P() ]) ]) ]) stream.send(jp.xml(node)) # Gabble should return error (content already exists) q.expect('stream-iq', iq_type='error') # We try to add a stream (stream_handler2, id2) = make_stream_request(cs.MEDIA_STREAM_TYPE_VIDEO) # Gabble should now send content-add e = q.expect('stream-iq', iq_type='set', predicate=lambda x: xpath.queryForNodes("/iq/jingle[@action='content-add']", x.stanza)) c = e.query.firstChildElement() assert c['creator'] == 'responder', c['creator'] stream.send(jp.xml(jp.ResultIq('test@localhost', e.stanza, []))) # We try to add yet another stream (stream_handler3, id3) = make_stream_request(cs.MEDIA_STREAM_TYPE_VIDEO) # Gabble should send another content-add e = q.expect('stream-iq', iq_type='set', predicate=lambda x: xpath.queryForNodes("/iq/jingle[@action='content-add']", x.stanza)) d = e.query.firstChildElement() assertEquals('responder', d['creator']) stream.send(jp.xml(jp.ResultIq('test@localhost', e.stanza, []))) # Remote end rejects the first stream we tried to add. node = jp.SetIq(jt2.peer, jt2.jid, [ jp.Jingle(jt2.sid, jt2.peer, 'content-reject', [ jp.Content(c['name'], c['creator'], c['senders'], []) ]) ]) stream.send(jp.xml(node)) # Gabble removes the stream q.expect('dbus-signal', signal='StreamRemoved', interface=cs.CHANNEL_TYPE_STREAMED_MEDIA) # Remote end tries to add a content with the same name as the second one we # just added node = jp.SetIq(jt2.peer, jt2.jid, [ jp.Jingle(jt2.sid, jt2.peer, 'content-add', [ jp.Content(d['name'], 'initiator', 'both', [ jp.Description('audio', [ jp.PayloadType(name, str(rate), str(id)) for (name, id, rate) in jt2.audio_codecs ]), jp.TransportGoogleP2P() ]) ]) ]) stream.send(jp.xml(node)) # Because stream names are namespaced by creator, Gabble should be okay # with that. q.expect_many( EventPattern('stream-iq', iq_type='result', iq_id=node[2]['id']), EventPattern('dbus-signal', signal='StreamAdded'), ) # Remote end thinks better of that, and removes the similarly-named stream # it tried to add. node = jp.SetIq(jt2.peer, jt2.jid, [ jp.Jingle(jt2.sid, jt2.peer, 'content-remove', [ jp.Content(d['name'], 'initiator', d['senders'], []) ]) ]) stream.send(jp.xml(node)) q.expect_many( EventPattern('stream-iq', iq_type='result', iq_id=node[2]['id']), EventPattern('dbus-signal', signal='StreamRemoved'), ) # Remote end finally accepts. When Gabble did not namespace contents by # their creator, it would NAK this IQ: # - Gabble (responder) created a stream called 'foo'; # - test suite (initiator) created a stream called 'foo', which Gabble # decided would replace its own stream called 'foo'; # - test suite removed its 'foo'; # - test suite accepted Gabble's 'foo', but Gabble didn't believe a stream # called 'foo' existed any more. node = jp.SetIq(jt2.peer, jt2.jid, [ jp.Jingle(jt2.sid, jt2.peer, 'content-accept', [ jp.Content(d['name'], d['creator'], d['senders'], [ jp.Description('video', [ jp.PayloadType(name, str(rate), str(id)) for (name, id, rate) in jt2.audio_codecs ]), jp.TransportGoogleP2P() ]) ]) ]) stream.send(jp.xml(node)) # We get remote codecs e = q.expect('dbus-signal', signal='SetRemoteCodecs') # Now, both we and remote peer try to remove the content simultaneously: # Telepathy client calls RemoveStreams... media_iface.RemoveStreams([id3]) # ...so Gabble sends a content-remove... e = q.expect('stream-iq', iq_type='set', predicate=lambda x: xpath.queryForNodes("/iq/jingle[@action='content-remove']", x.stanza)) # ...but before it's acked the peer sends its own content-remove... node = jp.SetIq(jt2.peer, jt2.jid, [ jp.Jingle(jt2.sid, jt2.peer, 'content-remove', [ jp.Content(c['name'], c['creator'], c['senders'], []) ]) ]) stream.send(jp.xml(node)) # ...and we don't want Gabble to break when that happens. sync_stream(q, stream) # Now we want to remove the first stream media_iface.RemoveStreams([id1]) # Since this is the last stream, Gabble will just terminate the session. e = q.expect('stream-iq', iq_type='set', predicate=lambda x: xpath.queryForNodes("/iq/jingle[@action='session-terminate']", x.stanza)) if __name__ == '__main__': test_dialects(worker, [JingleProtocol015, JingleProtocol031])
community-ssu/telepathy-gabble
tests/twisted/jingle/test-content-complex.py
Python
lgpl-2.1
10,117
#!/usr/bin/env python import vtk from vtk.test import Testing from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() ren1 = vtk.vtkRenderer() renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren1) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) # create a scene with one of each cell type # Voxel voxelPoints = vtk.vtkPoints() voxelPoints.SetNumberOfPoints(8) voxelPoints.InsertPoint(0,0,0,0) voxelPoints.InsertPoint(1,1,0,0) voxelPoints.InsertPoint(2,0,1,0) voxelPoints.InsertPoint(3,1,1,0) voxelPoints.InsertPoint(4,0,0,1) voxelPoints.InsertPoint(5,1,0,1) voxelPoints.InsertPoint(6,0,1,1) voxelPoints.InsertPoint(7,1,1,1) aVoxel = vtk.vtkVoxel() aVoxel.GetPointIds().SetId(0,0) aVoxel.GetPointIds().SetId(1,1) aVoxel.GetPointIds().SetId(2,2) aVoxel.GetPointIds().SetId(3,3) aVoxel.GetPointIds().SetId(4,4) aVoxel.GetPointIds().SetId(5,5) aVoxel.GetPointIds().SetId(6,6) aVoxel.GetPointIds().SetId(7,7) aVoxelGrid = vtk.vtkUnstructuredGrid() aVoxelGrid.Allocate(1,1) aVoxelGrid.InsertNextCell(aVoxel.GetCellType(),aVoxel.GetPointIds()) aVoxelGrid.SetPoints(voxelPoints) aVoxelMapper = vtk.vtkDataSetMapper() aVoxelMapper.SetInputData(aVoxelGrid) aVoxelActor = vtk.vtkActor() aVoxelActor.SetMapper(aVoxelMapper) aVoxelActor.GetProperty().BackfaceCullingOn() # Hexahedron hexahedronPoints = vtk.vtkPoints() hexahedronPoints.SetNumberOfPoints(8) hexahedronPoints.InsertPoint(0,0,0,0) hexahedronPoints.InsertPoint(1,1,0,0) hexahedronPoints.InsertPoint(2,1,1,0) hexahedronPoints.InsertPoint(3,0,1,0) hexahedronPoints.InsertPoint(4,0,0,1) hexahedronPoints.InsertPoint(5,1,0,1) hexahedronPoints.InsertPoint(6,1,1,1) hexahedronPoints.InsertPoint(7,0,1,1) aHexahedron = vtk.vtkHexahedron() aHexahedron.GetPointIds().SetId(0,0) aHexahedron.GetPointIds().SetId(1,1) aHexahedron.GetPointIds().SetId(2,2) aHexahedron.GetPointIds().SetId(3,3) aHexahedron.GetPointIds().SetId(4,4) aHexahedron.GetPointIds().SetId(5,5) aHexahedron.GetPointIds().SetId(6,6) aHexahedron.GetPointIds().SetId(7,7) aHexahedronGrid = vtk.vtkUnstructuredGrid() aHexahedronGrid.Allocate(1,1) aHexahedronGrid.InsertNextCell(aHexahedron.GetCellType(),aHexahedron.GetPointIds()) aHexahedronGrid.SetPoints(hexahedronPoints) aHexahedronMapper = vtk.vtkDataSetMapper() aHexahedronMapper.SetInputData(aHexahedronGrid) aHexahedronActor = vtk.vtkActor() aHexahedronActor.SetMapper(aHexahedronMapper) aHexahedronActor.AddPosition(2,0,0) aHexahedronActor.GetProperty().BackfaceCullingOn() # Tetra tetraPoints = vtk.vtkPoints() tetraPoints.SetNumberOfPoints(4) tetraPoints.InsertPoint(0,0,0,0) tetraPoints.InsertPoint(1,1,0,0) tetraPoints.InsertPoint(2,.5,1,0) tetraPoints.InsertPoint(3,.5,.5,1) aTetra = vtk.vtkTetra() aTetra.GetPointIds().SetId(0,0) aTetra.GetPointIds().SetId(1,1) aTetra.GetPointIds().SetId(2,2) aTetra.GetPointIds().SetId(3,3) aTetraGrid = vtk.vtkUnstructuredGrid() aTetraGrid.Allocate(1,1) aTetraGrid.InsertNextCell(aTetra.GetCellType(),aTetra.GetPointIds()) aTetraGrid.SetPoints(tetraPoints) aTetraMapper = vtk.vtkDataSetMapper() aTetraMapper.SetInputData(aTetraGrid) aTetraActor = vtk.vtkActor() aTetraActor.SetMapper(aTetraMapper) aTetraActor.AddPosition(4,0,0) aTetraActor.GetProperty().BackfaceCullingOn() # Wedge wedgePoints = vtk.vtkPoints() wedgePoints.SetNumberOfPoints(6) wedgePoints.InsertPoint(0,0,1,0) wedgePoints.InsertPoint(1,0,0,0) wedgePoints.InsertPoint(2,0,.5,.5) wedgePoints.InsertPoint(3,1,1,0) wedgePoints.InsertPoint(4,1,0,0) wedgePoints.InsertPoint(5,1,.5,.5) aWedge = vtk.vtkWedge() aWedge.GetPointIds().SetId(0,0) aWedge.GetPointIds().SetId(1,1) aWedge.GetPointIds().SetId(2,2) aWedge.GetPointIds().SetId(3,3) aWedge.GetPointIds().SetId(4,4) aWedge.GetPointIds().SetId(5,5) aWedgeGrid = vtk.vtkUnstructuredGrid() aWedgeGrid.Allocate(1,1) aWedgeGrid.InsertNextCell(aWedge.GetCellType(),aWedge.GetPointIds()) aWedgeGrid.SetPoints(wedgePoints) aWedgeMapper = vtk.vtkDataSetMapper() aWedgeMapper.SetInputData(aWedgeGrid) aWedgeActor = vtk.vtkActor() aWedgeActor.SetMapper(aWedgeMapper) aWedgeActor.AddPosition(6,0,0) aWedgeActor.GetProperty().BackfaceCullingOn() # Pyramid pyramidPoints = vtk.vtkPoints() pyramidPoints.SetNumberOfPoints(5) pyramidPoints.InsertPoint(0,0,0,0) pyramidPoints.InsertPoint(1,1,0,0) pyramidPoints.InsertPoint(2,1,1,0) pyramidPoints.InsertPoint(3,0,1,0) pyramidPoints.InsertPoint(4,.5,.5,1) aPyramid = vtk.vtkPyramid() aPyramid.GetPointIds().SetId(0,0) aPyramid.GetPointIds().SetId(1,1) aPyramid.GetPointIds().SetId(2,2) aPyramid.GetPointIds().SetId(3,3) aPyramid.GetPointIds().SetId(4,4) aPyramidGrid = vtk.vtkUnstructuredGrid() aPyramidGrid.Allocate(1,1) aPyramidGrid.InsertNextCell(aPyramid.GetCellType(),aPyramid.GetPointIds()) aPyramidGrid.SetPoints(pyramidPoints) aPyramidMapper = vtk.vtkDataSetMapper() aPyramidMapper.SetInputData(aPyramidGrid) aPyramidActor = vtk.vtkActor() aPyramidActor.SetMapper(aPyramidMapper) aPyramidActor.AddPosition(8,0,0) aPyramidActor.GetProperty().BackfaceCullingOn() # Pixel pixelPoints = vtk.vtkPoints() pixelPoints.SetNumberOfPoints(4) pixelPoints.InsertPoint(0,0,0,0) pixelPoints.InsertPoint(1,1,0,0) pixelPoints.InsertPoint(2,0,1,0) pixelPoints.InsertPoint(3,1,1,0) aPixel = vtk.vtkPixel() aPixel.GetPointIds().SetId(0,0) aPixel.GetPointIds().SetId(1,1) aPixel.GetPointIds().SetId(2,2) aPixel.GetPointIds().SetId(3,3) aPixelGrid = vtk.vtkUnstructuredGrid() aPixelGrid.Allocate(1,1) aPixelGrid.InsertNextCell(aPixel.GetCellType(),aPixel.GetPointIds()) aPixelGrid.SetPoints(pixelPoints) aPixelMapper = vtk.vtkDataSetMapper() aPixelMapper.SetInputData(aPixelGrid) aPixelActor = vtk.vtkActor() aPixelActor.SetMapper(aPixelMapper) aPixelActor.AddPosition(0,0,2) aPixelActor.GetProperty().BackfaceCullingOn() # Quad quadPoints = vtk.vtkPoints() quadPoints.SetNumberOfPoints(4) quadPoints.InsertPoint(0,0,0,0) quadPoints.InsertPoint(1,1,0,0) quadPoints.InsertPoint(2,1,1,0) quadPoints.InsertPoint(3,0,1,0) aQuad = vtk.vtkQuad() aQuad.GetPointIds().SetId(0,0) aQuad.GetPointIds().SetId(1,1) aQuad.GetPointIds().SetId(2,2) aQuad.GetPointIds().SetId(3,3) aQuadGrid = vtk.vtkUnstructuredGrid() aQuadGrid.Allocate(1,1) aQuadGrid.InsertNextCell(aQuad.GetCellType(),aQuad.GetPointIds()) aQuadGrid.SetPoints(quadPoints) aQuadMapper = vtk.vtkDataSetMapper() aQuadMapper.SetInputData(aQuadGrid) aQuadActor = vtk.vtkActor() aQuadActor.SetMapper(aQuadMapper) aQuadActor.AddPosition(2,0,2) aQuadActor.GetProperty().BackfaceCullingOn() # Triangle trianglePoints = vtk.vtkPoints() trianglePoints.SetNumberOfPoints(3) trianglePoints.InsertPoint(0,0,0,0) trianglePoints.InsertPoint(1,1,0,0) trianglePoints.InsertPoint(2,.5,.5,0) aTriangle = vtk.vtkTriangle() aTriangle.GetPointIds().SetId(0,0) aTriangle.GetPointIds().SetId(1,1) aTriangle.GetPointIds().SetId(2,2) aTriangleGrid = vtk.vtkUnstructuredGrid() aTriangleGrid.Allocate(1,1) aTriangleGrid.InsertNextCell(aTriangle.GetCellType(),aTriangle.GetPointIds()) aTriangleGrid.SetPoints(trianglePoints) aTriangleMapper = vtk.vtkDataSetMapper() aTriangleMapper.SetInputData(aTriangleGrid) aTriangleActor = vtk.vtkActor() aTriangleActor.SetMapper(aTriangleMapper) aTriangleActor.AddPosition(4,0,2) aTriangleActor.GetProperty().BackfaceCullingOn() # Polygon polygonPoints = vtk.vtkPoints() polygonPoints.SetNumberOfPoints(4) polygonPoints.InsertPoint(0,0,0,0) polygonPoints.InsertPoint(1,1,0,0) polygonPoints.InsertPoint(2,1,1,0) polygonPoints.InsertPoint(3,0,1,0) aPolygon = vtk.vtkPolygon() aPolygon.GetPointIds().SetNumberOfIds(4) aPolygon.GetPointIds().SetId(0,0) aPolygon.GetPointIds().SetId(1,1) aPolygon.GetPointIds().SetId(2,2) aPolygon.GetPointIds().SetId(3,3) aPolygonGrid = vtk.vtkUnstructuredGrid() aPolygonGrid.Allocate(1,1) aPolygonGrid.InsertNextCell(aPolygon.GetCellType(),aPolygon.GetPointIds()) aPolygonGrid.SetPoints(polygonPoints) aPolygonMapper = vtk.vtkDataSetMapper() aPolygonMapper.SetInputData(aPolygonGrid) aPolygonActor = vtk.vtkActor() aPolygonActor.SetMapper(aPolygonMapper) aPolygonActor.AddPosition(6,0,2) aPolygonActor.GetProperty().BackfaceCullingOn() # Triangle Strip triangleStripPoints = vtk.vtkPoints() triangleStripPoints.SetNumberOfPoints(5) triangleStripPoints.InsertPoint(0,0,1,0) triangleStripPoints.InsertPoint(1,0,0,0) triangleStripPoints.InsertPoint(2,1,1,0) triangleStripPoints.InsertPoint(3,1,0,0) triangleStripPoints.InsertPoint(4,2,1,0) aTriangleStrip = vtk.vtkTriangleStrip() aTriangleStrip.GetPointIds().SetNumberOfIds(5) aTriangleStrip.GetPointIds().SetId(0,0) aTriangleStrip.GetPointIds().SetId(1,1) aTriangleStrip.GetPointIds().SetId(2,2) aTriangleStrip.GetPointIds().SetId(3,3) aTriangleStrip.GetPointIds().SetId(4,4) aTriangleStripGrid = vtk.vtkUnstructuredGrid() aTriangleStripGrid.Allocate(1,1) aTriangleStripGrid.InsertNextCell(aTriangleStrip.GetCellType(),aTriangleStrip.GetPointIds()) aTriangleStripGrid.SetPoints(triangleStripPoints) aTriangleStripMapper = vtk.vtkDataSetMapper() aTriangleStripMapper.SetInputData(aTriangleStripGrid) aTriangleStripActor = vtk.vtkActor() aTriangleStripActor.SetMapper(aTriangleStripMapper) aTriangleStripActor.AddPosition(8,0,2) aTriangleStripActor.GetProperty().BackfaceCullingOn() # Line linePoints = vtk.vtkPoints() linePoints.SetNumberOfPoints(2) linePoints.InsertPoint(0,0,0,0) linePoints.InsertPoint(1,1,1,0) aLine = vtk.vtkLine() aLine.GetPointIds().SetId(0,0) aLine.GetPointIds().SetId(1,1) aLineGrid = vtk.vtkUnstructuredGrid() aLineGrid.Allocate(1,1) aLineGrid.InsertNextCell(aLine.GetCellType(),aLine.GetPointIds()) aLineGrid.SetPoints(linePoints) aLineMapper = vtk.vtkDataSetMapper() aLineMapper.SetInputData(aLineGrid) aLineActor = vtk.vtkActor() aLineActor.SetMapper(aLineMapper) aLineActor.AddPosition(0,0,4) aLineActor.GetProperty().BackfaceCullingOn() # Poly line polyLinePoints = vtk.vtkPoints() polyLinePoints.SetNumberOfPoints(3) polyLinePoints.InsertPoint(0,0,0,0) polyLinePoints.InsertPoint(1,1,1,0) polyLinePoints.InsertPoint(2,1,0,0) aPolyLine = vtk.vtkPolyLine() aPolyLine.GetPointIds().SetNumberOfIds(3) aPolyLine.GetPointIds().SetId(0,0) aPolyLine.GetPointIds().SetId(1,1) aPolyLine.GetPointIds().SetId(2,2) aPolyLineGrid = vtk.vtkUnstructuredGrid() aPolyLineGrid.Allocate(1,1) aPolyLineGrid.InsertNextCell(aPolyLine.GetCellType(),aPolyLine.GetPointIds()) aPolyLineGrid.SetPoints(polyLinePoints) aPolyLineMapper = vtk.vtkDataSetMapper() aPolyLineMapper.SetInputData(aPolyLineGrid) aPolyLineActor = vtk.vtkActor() aPolyLineActor.SetMapper(aPolyLineMapper) aPolyLineActor.AddPosition(2,0,4) aPolyLineActor.GetProperty().BackfaceCullingOn() # Vertex vertexPoints = vtk.vtkPoints() vertexPoints.SetNumberOfPoints(1) vertexPoints.InsertPoint(0,0,0,0) aVertex = vtk.vtkVertex() aVertex.GetPointIds().SetId(0,0) aVertexGrid = vtk.vtkUnstructuredGrid() aVertexGrid.Allocate(1,1) aVertexGrid.InsertNextCell(aVertex.GetCellType(),aVertex.GetPointIds()) aVertexGrid.SetPoints(vertexPoints) aVertexMapper = vtk.vtkDataSetMapper() aVertexMapper.SetInputData(aVertexGrid) aVertexActor = vtk.vtkActor() aVertexActor.SetMapper(aVertexMapper) aVertexActor.AddPosition(0,0,6) aVertexActor.GetProperty().BackfaceCullingOn() # Poly Vertex polyVertexPoints = vtk.vtkPoints() polyVertexPoints.SetNumberOfPoints(3) polyVertexPoints.InsertPoint(0,0,0,0) polyVertexPoints.InsertPoint(1,1,0,0) polyVertexPoints.InsertPoint(2,1,1,0) aPolyVertex = vtk.vtkPolyVertex() aPolyVertex.GetPointIds().SetNumberOfIds(3) aPolyVertex.GetPointIds().SetId(0,0) aPolyVertex.GetPointIds().SetId(1,1) aPolyVertex.GetPointIds().SetId(2,2) aPolyVertexGrid = vtk.vtkUnstructuredGrid() aPolyVertexGrid.Allocate(1,1) aPolyVertexGrid.InsertNextCell(aPolyVertex.GetCellType(),aPolyVertex.GetPointIds()) aPolyVertexGrid.SetPoints(polyVertexPoints) aPolyVertexMapper = vtk.vtkDataSetMapper() aPolyVertexMapper.SetInputData(aPolyVertexGrid) aPolyVertexActor = vtk.vtkActor() aPolyVertexActor.SetMapper(aPolyVertexMapper) aPolyVertexActor.AddPosition(2,0,6) aPolyVertexActor.GetProperty().BackfaceCullingOn() # Pentagonal prism pentaPoints = vtk.vtkPoints() pentaPoints.SetNumberOfPoints(10) pentaPoints.InsertPoint(0,0.25,0.0,0.0) pentaPoints.InsertPoint(1,0.75,0.0,0.0) pentaPoints.InsertPoint(2,1.0,0.5,0.0) pentaPoints.InsertPoint(3,0.5,1.0,0.0) pentaPoints.InsertPoint(4,0.0,0.5,0.0) pentaPoints.InsertPoint(5,0.25,0.0,1.0) pentaPoints.InsertPoint(6,0.75,0.0,1.0) pentaPoints.InsertPoint(7,1.0,0.5,1.0) pentaPoints.InsertPoint(8,0.5,1.0,1.0) pentaPoints.InsertPoint(9,0.0,0.5,1.0) aPenta = vtk.vtkPentagonalPrism() aPenta.GetPointIds().SetId(0,0) aPenta.GetPointIds().SetId(1,1) aPenta.GetPointIds().SetId(2,2) aPenta.GetPointIds().SetId(3,3) aPenta.GetPointIds().SetId(4,4) aPenta.GetPointIds().SetId(5,5) aPenta.GetPointIds().SetId(6,6) aPenta.GetPointIds().SetId(7,7) aPenta.GetPointIds().SetId(8,8) aPenta.GetPointIds().SetId(9,9) aPentaGrid = vtk.vtkUnstructuredGrid() aPentaGrid.Allocate(1,1) aPentaGrid.InsertNextCell(aPenta.GetCellType(),aPenta.GetPointIds()) aPentaGrid.SetPoints(pentaPoints) aPentaMapper = vtk.vtkDataSetMapper() aPentaMapper.SetInputData(aPentaGrid) aPentaActor = vtk.vtkActor() aPentaActor.SetMapper(aPentaMapper) aPentaActor.AddPosition(10,0,0) aPentaActor.GetProperty().BackfaceCullingOn() # Hexagonal prism hexaPoints = vtk.vtkPoints() hexaPoints.SetNumberOfPoints(12) hexaPoints.InsertPoint(0,0.0,0.0,0.0) hexaPoints.InsertPoint(1,0.5,0.0,0.0) hexaPoints.InsertPoint(2,1.0,0.5,0.0) hexaPoints.InsertPoint(3,1.0,1.0,0.0) hexaPoints.InsertPoint(4,0.5,1.0,0.0) hexaPoints.InsertPoint(5,0.0,0.5,0.0) hexaPoints.InsertPoint(6,0.0,0.0,1.0) hexaPoints.InsertPoint(7,0.5,0.0,1.0) hexaPoints.InsertPoint(8,1.0,0.5,1.0) hexaPoints.InsertPoint(9,1.0,1.0,1.0) hexaPoints.InsertPoint(10,0.5,1.0,1.0) hexaPoints.InsertPoint(11,0.0,0.5,1.0) aHexa = vtk.vtkHexagonalPrism() aHexa.GetPointIds().SetId(0,0) aHexa.GetPointIds().SetId(1,1) aHexa.GetPointIds().SetId(2,2) aHexa.GetPointIds().SetId(3,3) aHexa.GetPointIds().SetId(4,4) aHexa.GetPointIds().SetId(5,5) aHexa.GetPointIds().SetId(6,6) aHexa.GetPointIds().SetId(7,7) aHexa.GetPointIds().SetId(8,8) aHexa.GetPointIds().SetId(9,9) aHexa.GetPointIds().SetId(10,10) aHexa.GetPointIds().SetId(11,11) aHexaGrid = vtk.vtkUnstructuredGrid() aHexaGrid.Allocate(1,1) aHexaGrid.InsertNextCell(aHexa.GetCellType(),aHexa.GetPointIds()) aHexaGrid.SetPoints(hexaPoints) aHexaMapper = vtk.vtkDataSetMapper() aHexaMapper.SetInputData(aHexaGrid) aHexaActor = vtk.vtkActor() aHexaActor.SetMapper(aHexaMapper) aHexaActor.AddPosition(12,0,0) aHexaActor.GetProperty().BackfaceCullingOn() ren1.SetBackground(.1,.2,.4) ren1.AddActor(aVoxelActor) aVoxelActor.GetProperty().SetDiffuseColor(1,0,0) ren1.AddActor(aHexahedronActor) aHexahedronActor.GetProperty().SetDiffuseColor(1,1,0) ren1.AddActor(aTetraActor) aTetraActor.GetProperty().SetDiffuseColor(0,1,0) ren1.AddActor(aWedgeActor) aWedgeActor.GetProperty().SetDiffuseColor(0,1,1) ren1.AddActor(aPyramidActor) aPyramidActor.GetProperty().SetDiffuseColor(1,0,1) ren1.AddActor(aPixelActor) aPixelActor.GetProperty().SetDiffuseColor(0,1,1) ren1.AddActor(aQuadActor) aQuadActor.GetProperty().SetDiffuseColor(1,0,1) ren1.AddActor(aTriangleActor) aTriangleActor.GetProperty().SetDiffuseColor(.3,1,.5) ren1.AddActor(aPolygonActor) aPolygonActor.GetProperty().SetDiffuseColor(1,.4,.5) ren1.AddActor(aTriangleStripActor) aTriangleStripActor.GetProperty().SetDiffuseColor(.3,.7,1) ren1.AddActor(aLineActor) aLineActor.GetProperty().SetDiffuseColor(.2,1,1) ren1.AddActor(aPolyLineActor) aPolyLineActor.GetProperty().SetDiffuseColor(1,1,1) ren1.AddActor(aVertexActor) aVertexActor.GetProperty().SetDiffuseColor(1,1,1) ren1.AddActor(aPolyVertexActor) aPolyVertexActor.GetProperty().SetDiffuseColor(1,1,1) ren1.AddActor(aPentaActor) aPentaActor.GetProperty().SetDiffuseColor(.2,.4,.7) ren1.AddActor(aHexaActor) aHexaActor.GetProperty().SetDiffuseColor(.7,.5,1) ren1.ResetCamera() ren1.GetActiveCamera().Azimuth(30) ren1.GetActiveCamera().Elevation(20) ren1.GetActiveCamera().Dolly(1.25) ren1.ResetCameraClippingRange() renWin.Render() cellPicker = vtk.vtkCellPicker() pointPicker = vtk.vtkPointPicker() worldPicker = vtk.vtkWorldPointPicker() cellCount = 0 pointCount = 0 ren1.IsInViewport(0,0) x = 0 while x <= 265: y = 100 while y <= 200: cellPicker.Pick(x,y,0,ren1) pointPicker.Pick(x,y,0,ren1) worldPicker.Pick(x,y,0,ren1) if (cellPicker.GetCellId() != "-1"): cellCount = cellCount + 1 pass if (pointPicker.GetPointId() != "-1"): pointCount = pointCount + 1 pass y = y + 6 x = x + 6 # render the image # iren.Initialize() # --- end of script --
HopeFOAM/HopeFOAM
ThirdParty-0.1/ParaView-5.0.1/VTK/Rendering/Core/Testing/Python/pickCells.py
Python
gpl-3.0
16,540
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. import logging from collections import defaultdict from datetime import datetime, time from dateutil import relativedelta from itertools import groupby from json import dumps from psycopg2 import OperationalError from odoo import SUPERUSER_ID, _, api, fields, models, registry from odoo.addons.stock.models.stock_rule import ProcurementException from odoo.exceptions import UserError, ValidationError from odoo.osv import expression from odoo.tools import float_compare, frozendict, split_every _logger = logging.getLogger(__name__) class StockWarehouseOrderpoint(models.Model): """ Defines Minimum stock rules. """ _name = "stock.warehouse.orderpoint" _description = "Minimum Inventory Rule" _check_company_auto = True _order = "location_id,company_id,id" @api.model def default_get(self, fields): res = super().default_get(fields) warehouse = None if 'warehouse_id' not in res and res.get('company_id'): warehouse = self.env['stock.warehouse'].search([('company_id', '=', res['company_id'])], limit=1) if warehouse: res['warehouse_id'] = warehouse.id res['location_id'] = warehouse.lot_stock_id.id return res @api.model def _domain_product_id(self): domain = "('type', '=', 'product')" if self.env.context.get('active_model') == 'product.template': product_template_id = self.env.context.get('active_id', False) domain = f"('product_tmpl_id', '=', {product_template_id})" elif self.env.context.get('default_product_id', False): product_id = self.env.context.get('default_product_id', False) domain = f"('id', '=', {product_id})" return f"[{domain}, '|', ('company_id', '=', False), ('company_id', '=', company_id)]" name = fields.Char( 'Name', copy=False, required=True, readonly=True, default=lambda self: self.env['ir.sequence'].next_by_code('stock.orderpoint')) trigger = fields.Selection([ ('auto', 'Auto'), ('manual', 'Manual')], string='Trigger', default='auto', required=True) active = fields.Boolean( 'Active', default=True, help="If the active field is set to False, it will allow you to hide the orderpoint without removing it.") snoozed_until = fields.Date('Snoozed', help="Hidden until next scheduler.") warehouse_id = fields.Many2one( 'stock.warehouse', 'Warehouse', check_company=True, ondelete="cascade", required=True) location_id = fields.Many2one( 'stock.location', 'Location', index=True, ondelete="cascade", required=True, check_company=True) product_tmpl_id = fields.Many2one('product.template', related='product_id.product_tmpl_id') product_id = fields.Many2one( 'product.product', 'Product', index=True, domain=lambda self: self._domain_product_id(), ondelete='cascade', required=True, check_company=True) product_category_id = fields.Many2one('product.category', name='Product Category', related='product_id.categ_id', store=True) product_uom = fields.Many2one( 'uom.uom', 'Unit of Measure', related='product_id.uom_id') product_uom_name = fields.Char(string='Product unit of measure label', related='product_uom.display_name', readonly=True) product_min_qty = fields.Float( 'Min Quantity', digits='Product Unit of Measure', required=True, default=0.0, help="When the virtual stock equals to or goes below the Min Quantity specified for this field, Odoo generates " "a procurement to bring the forecasted quantity to the Max Quantity.") product_max_qty = fields.Float( 'Max Quantity', digits='Product Unit of Measure', required=True, default=0.0, help="When the virtual stock goes below the Min Quantity, Odoo generates " "a procurement to bring the forecasted quantity to the Quantity specified as Max Quantity.") qty_multiple = fields.Float( 'Multiple Quantity', digits='Product Unit of Measure', default=1, required=True, help="The procurement quantity will be rounded up to this multiple. If it is 0, the exact quantity will be used.") group_id = fields.Many2one( 'procurement.group', 'Procurement Group', copy=False, help="Moves created through this orderpoint will be put in this procurement group. If none is given, the moves generated by stock rules will be grouped into one big picking.") company_id = fields.Many2one( 'res.company', 'Company', required=True, index=True, default=lambda self: self.env.company) allowed_location_ids = fields.One2many(comodel_name='stock.location', compute='_compute_allowed_location_ids') rule_ids = fields.Many2many('stock.rule', string='Rules used', compute='_compute_rules') json_lead_days_popover = fields.Char(compute='_compute_json_popover') lead_days_date = fields.Date(compute='_compute_lead_days') allowed_route_ids = fields.Many2many('stock.location.route', compute='_compute_allowed_route_ids') route_id = fields.Many2one( 'stock.location.route', string='Preferred Route', domain="[('id', 'in', allowed_route_ids)]") qty_on_hand = fields.Float('On Hand', readonly=True, compute='_compute_qty') qty_forecast = fields.Float('Forecast', readonly=True, compute='_compute_qty') qty_to_order = fields.Float('To Order', compute='_compute_qty_to_order', store=True, readonly=False) _sql_constraints = [ ('qty_multiple_check', 'CHECK( qty_multiple >= 0 )', 'Qty Multiple must be greater than or equal to zero.'), ] @api.depends('warehouse_id') def _compute_allowed_location_ids(self): loc_domain = [('usage', 'in', ('internal', 'view'))] # We want to keep only the locations # - strictly belonging to our warehouse # - not belonging to any warehouses for orderpoint in self: other_warehouses = self.env['stock.warehouse'].search([('id', '!=', orderpoint.warehouse_id.id)]) for view_location_id in other_warehouses.mapped('view_location_id'): loc_domain = expression.AND([loc_domain, ['!', ('id', 'child_of', view_location_id.id)]]) loc_domain = expression.AND([loc_domain, ['|', ('company_id', '=', False), ('company_id', '=', orderpoint.company_id.id)]]) orderpoint.allowed_location_ids = self.env['stock.location'].search(loc_domain) @api.depends('warehouse_id', 'location_id') def _compute_allowed_route_ids(self): route_by_product = self.env['stock.location.route'].search([ ('product_selectable', '=', True), ]) self.allowed_route_ids = route_by_product.ids @api.depends('rule_ids', 'product_id.seller_ids', 'product_id.seller_ids.delay') def _compute_json_popover(self): for orderpoint in self: if not orderpoint.product_id or not orderpoint.location_id: orderpoint.json_lead_days_popover = False continue dummy, lead_days_description = orderpoint.rule_ids._get_lead_days(orderpoint.product_id) orderpoint.json_lead_days_popover = dumps({ 'title': _('Replenishment'), 'icon': 'fa-area-chart', 'popoverTemplate': 'stock.leadDaysPopOver', 'lead_days_date': fields.Date.to_string(orderpoint.lead_days_date), 'lead_days_description': lead_days_description, 'today': fields.Date.to_string(fields.Date.today()), 'trigger': orderpoint.trigger, 'qty_forecast': orderpoint.qty_forecast, 'qty_to_order': orderpoint.qty_to_order, 'product_min_qty': orderpoint.product_min_qty, 'product_max_qty': orderpoint.product_max_qty, 'product_uom_name': orderpoint.product_uom_name, 'virtual': orderpoint.trigger == 'manual' and orderpoint.create_uid.id == SUPERUSER_ID, }) @api.depends('rule_ids', 'product_id.seller_ids', 'product_id.seller_ids.delay') def _compute_lead_days(self): for orderpoint in self: if not orderpoint.product_id or not orderpoint.location_id: orderpoint.lead_days_date = False continue lead_days, dummy = orderpoint.rule_ids._get_lead_days(orderpoint.product_id) lead_days_date = fields.Date.today() + relativedelta.relativedelta(days=lead_days) orderpoint.lead_days_date = lead_days_date @api.depends('route_id', 'product_id', 'location_id', 'company_id', 'warehouse_id', 'product_id.route_ids') def _compute_rules(self): for orderpoint in self: if not orderpoint.product_id or not orderpoint.location_id: orderpoint.rule_ids = False continue orderpoint.rule_ids = orderpoint.product_id._get_rules_from_location(orderpoint.location_id, route_ids=orderpoint.route_id) @api.constrains('product_id') def _check_product_uom(self): ''' Check if the UoM has the same category as the product standard UoM ''' if any(orderpoint.product_id.uom_id.category_id != orderpoint.product_uom.category_id for orderpoint in self): raise ValidationError(_('You have to select a product unit of measure that is in the same category as the default unit of measure of the product')) @api.onchange('location_id') def _onchange_location_id(self): warehouse = self.location_id.get_warehouse().id if warehouse: self.warehouse_id = warehouse @api.onchange('warehouse_id') def _onchange_warehouse_id(self): """ Finds location id for changed warehouse. """ if self.warehouse_id: self.location_id = self.warehouse_id.lot_stock_id.id else: self.location_id = False @api.onchange('product_id') def _onchange_product_id(self): if self.product_id: self.product_uom = self.product_id.uom_id.id @api.onchange('company_id') def _onchange_company_id(self): if self.company_id: self.warehouse_id = self.env['stock.warehouse'].search([ ('company_id', '=', self.company_id.id) ], limit=1) def write(self, vals): if 'company_id' in vals: for orderpoint in self: if orderpoint.company_id.id != vals['company_id']: raise UserError(_("Changing the company of this record is forbidden at this point, you should rather archive it and create a new one.")) return super().write(vals) @api.model def action_open_orderpoints(self): return self._get_orderpoint_action() def action_replenish(self): self._procure_orderpoint_confirm(company_id=self.env.company) notification = False if len(self) == 1: notification = self._get_replenishment_order_notification() # Forced to call compute quantity because we don't have a link. self._compute_qty() self.filtered(lambda o: o.create_uid.id == SUPERUSER_ID and o.qty_to_order <= 0.0 and o.trigger == 'manual').unlink() return notification def action_replenish_auto(self): self.trigger = 'auto' return self.action_replenish() @api.depends('product_id', 'location_id', 'product_id.stock_move_ids', 'product_id.stock_move_ids.state', 'product_id.stock_move_ids.product_uom_qty') def _compute_qty(self): orderpoints_contexts = defaultdict(lambda: self.env['stock.warehouse.orderpoint']) for orderpoint in self: if not orderpoint.product_id or not orderpoint.location_id: orderpoint.qty_on_hand = False orderpoint.qty_forecast = False continue orderpoint_context = orderpoint._get_product_context() product_context = frozendict({**self.env.context, **orderpoint_context}) orderpoints_contexts[product_context] |= orderpoint for orderpoint_context, orderpoints_by_context in orderpoints_contexts.items(): products_qty = orderpoints_by_context.product_id.with_context(orderpoint_context)._product_available() products_qty_in_progress = orderpoints_by_context._quantity_in_progress() for orderpoint in orderpoints_by_context: orderpoint.qty_on_hand = products_qty[orderpoint.product_id.id]['qty_available'] orderpoint.qty_forecast = products_qty[orderpoint.product_id.id]['virtual_available'] + products_qty_in_progress[orderpoint.id] @api.depends('qty_multiple', 'qty_forecast', 'product_min_qty', 'product_max_qty') def _compute_qty_to_order(self): for orderpoint in self: if not orderpoint.product_id or not orderpoint.location_id: orderpoint.qty_to_order = False continue qty_to_order = 0.0 rounding = orderpoint.product_uom.rounding if float_compare(orderpoint.qty_forecast, orderpoint.product_min_qty, precision_rounding=rounding) < 0: qty_to_order = max(orderpoint.product_min_qty, orderpoint.product_max_qty) - orderpoint.qty_forecast remainder = orderpoint.qty_multiple > 0 and qty_to_order % orderpoint.qty_multiple or 0.0 if float_compare(remainder, 0.0, precision_rounding=rounding) > 0: qty_to_order += orderpoint.qty_multiple - remainder orderpoint.qty_to_order = qty_to_order def _set_default_route_id(self): """ Write the `route_id` field on `self`. This method is intendend to be called on the orderpoints generated when openning the replenish report. """ self = self.filtered(lambda o: not o.route_id) rules_groups = self.env['stock.rule'].read_group([ ('route_id.product_selectable', '!=', False), ('location_id', 'in', self.location_id.ids), ('action', 'in', ['pull_push', 'pull']) ], ['location_id', 'route_id'], ['location_id', 'route_id'], lazy=False) for g in rules_groups: if not g.get('route_id'): continue orderpoints = self.filtered(lambda o: o.location_id.id == g['location_id'][0]) orderpoints.route_id = g['route_id'] def _get_product_context(self): """Used to call `virtual_available` when running an orderpoint.""" self.ensure_one() return { 'location': self.location_id.id, 'to_date': datetime.combine(self.lead_days_date, time.max) } def _get_orderpoint_action(self): """Create manual orderpoints for missing product in each warehouses. It also removes orderpoints that have been replenish. In order to do it: - It uses the report.stock.quantity to find missing quantity per product/warehouse - It checks if orderpoint already exist to refill this location. - It checks if it exists other sources (e.g RFQ) tha refill the warehouse. - It creates the orderpoints for missing quantity that were not refill by an upper option. return replenish report ir.actions.act_window """ action = self.env["ir.actions.actions"]._for_xml_id("stock.action_orderpoint_replenish") action['context'] = self.env.context # Search also with archived ones to avoid to trigger product_location_check SQL constraints later # It means that when there will be a archived orderpoint on a location + product, the replenishment # report won't take in account this location + product and it won't create any manual orderpoint # In master: the active field should be remove orderpoints = self.env['stock.warehouse.orderpoint'].with_context(active_test=False).search([]) # Remove previous automatically created orderpoint that has been refilled. to_remove = orderpoints.filtered(lambda o: o.create_uid.id == SUPERUSER_ID and o.qty_to_order <= 0.0 and o.trigger == 'manual') to_remove.unlink() orderpoints = orderpoints - to_remove to_refill = defaultdict(float) all_product_ids = [] all_warehouse_ids = [] qty_by_product_warehouse = self.env['report.stock.quantity'].read_group( [('date', '=', fields.date.today()), ('state', '=', 'forecast')], ['product_id', 'product_qty', 'warehouse_id'], ['product_id', 'warehouse_id'], lazy=False) for group in qty_by_product_warehouse: warehouse_id = group.get('warehouse_id') and group['warehouse_id'][0] if group['product_qty'] >= 0.0 or not warehouse_id: continue all_product_ids.append(group['product_id'][0]) all_warehouse_ids.append(warehouse_id) to_refill[(group['product_id'][0], warehouse_id)] = group['product_qty'] if not to_refill: return action # Recompute the forecasted quantity for missing product today but at this time # with their real lead days. key_to_remove = [] # group product by lead_days and warehouse in order to read virtual_available # in batch pwh_per_day = defaultdict(list) for (product, warehouse), quantity in to_refill.items(): product = self.env['product.product'].browse(product).with_prefetch(all_product_ids) warehouse = self.env['stock.warehouse'].browse(warehouse).with_prefetch(all_warehouse_ids) rules = product._get_rules_from_location(warehouse.lot_stock_id) lead_days = rules.with_context(bypass_delay_description=True)._get_lead_days(product)[0] pwh_per_day[(lead_days, warehouse)].append(product.id) for (days, warehouse), p_ids in pwh_per_day.items(): products = self.env['product.product'].browse(p_ids) qties = products.with_context( warehouse=warehouse.id, to_date=fields.datetime.now() + relativedelta.relativedelta(days=days) ).read(['virtual_available']) for qty in qties: if float_compare(qty['virtual_available'], 0, precision_rounding=product.uom_id.rounding) >= 0: key_to_remove.append((qty['id'], warehouse.id)) else: to_refill[(qty['id'], warehouse.id)] = qty['virtual_available'] for key in key_to_remove: del to_refill[key] if not to_refill: return action # Remove incoming quantity from other origin than moves (e.g RFQ) product_ids, warehouse_ids = zip(*to_refill) dummy, qty_by_product_wh = self.env['product.product'].browse(product_ids)._get_quantity_in_progress(warehouse_ids=warehouse_ids) rounding = self.env['decimal.precision'].precision_get('Product Unit of Measure') # Group orderpoint by product-warehouse orderpoint_by_product_warehouse = self.env['stock.warehouse.orderpoint'].read_group( [('id', 'in', orderpoints.ids)], ['product_id', 'warehouse_id', 'qty_to_order:sum'], ['product_id', 'warehouse_id'], lazy=False) orderpoint_by_product_warehouse = { (record.get('product_id')[0], record.get('warehouse_id')[0]): record.get('qty_to_order') for record in orderpoint_by_product_warehouse } for (product, warehouse), product_qty in to_refill.items(): qty_in_progress = qty_by_product_wh.get((product, warehouse)) or 0.0 qty_in_progress += orderpoint_by_product_warehouse.get((product, warehouse), 0.0) # Add qty to order for other orderpoint under this warehouse. if not qty_in_progress: continue to_refill[(product, warehouse)] = product_qty + qty_in_progress to_refill = {k: v for k, v in to_refill.items() if float_compare( v, 0.0, precision_digits=rounding) < 0.0} lot_stock_id_by_warehouse = self.env['stock.warehouse'].search_read([ ('id', 'in', [g[1] for g in to_refill.keys()]) ], ['lot_stock_id']) lot_stock_id_by_warehouse = {w['id']: w['lot_stock_id'][0] for w in lot_stock_id_by_warehouse} # With archived ones to avoid `product_location_check` SQL constraints orderpoint_by_product_location = self.env['stock.warehouse.orderpoint'].with_context(active_test=False).read_group( [('id', 'in', orderpoints.ids)], ['product_id', 'location_id', 'ids:array_agg(id)'], ['product_id', 'location_id'], lazy=False) orderpoint_by_product_location = { (record.get('product_id')[0], record.get('location_id')[0]): record.get('ids')[0] for record in orderpoint_by_product_location } orderpoint_values_list = [] for (product, warehouse), product_qty in to_refill.items(): lot_stock_id = lot_stock_id_by_warehouse[warehouse] orderpoint_id = orderpoint_by_product_location.get((product, lot_stock_id)) if orderpoint_id: self.env['stock.warehouse.orderpoint'].browse(orderpoint_id).qty_forecast += product_qty else: orderpoint_values = self.env['stock.warehouse.orderpoint']._get_orderpoint_values(product, lot_stock_id) orderpoint_values.update({ 'name': _('Replenishment Report'), 'warehouse_id': warehouse, 'company_id': self.env['stock.warehouse'].browse(warehouse).company_id.id, }) orderpoint_values_list.append(orderpoint_values) orderpoints = self.env['stock.warehouse.orderpoint'].with_user(SUPERUSER_ID).create(orderpoint_values_list) for orderpoint in orderpoints: orderpoint.route_id = orderpoint.product_id.route_ids[:1] orderpoints.filtered(lambda o: not o.route_id)._set_default_route_id() return action @api.model def _get_orderpoint_values(self, product, location): return { 'product_id': product, 'location_id': location, 'product_max_qty': 0.0, 'product_min_qty': 0.0, 'trigger': 'manual', } def _get_replenishment_order_notification(self): return False def _quantity_in_progress(self): """Return Quantities that are not yet in virtual stock but should be deduced from orderpoint rule (example: purchases created from orderpoints)""" return dict(self.mapped(lambda x: (x.id, 0.0))) def _prepare_procurement_values(self, date=False, group=False): """ Prepare specific key for moves or other components that will be created from a stock rule comming from an orderpoint. This method could be override in order to add other custom key that could be used in move/po creation. """ date_planned = date or fields.Date.today() return { 'route_ids': self.route_id, 'date_planned': date_planned, 'date_deadline': date or False, 'warehouse_id': self.warehouse_id, 'orderpoint_id': self, 'group_id': group or self.group_id, } def _procure_orderpoint_confirm(self, use_new_cursor=False, company_id=None, raise_user_error=True): """ Create procurements based on orderpoints. :param bool use_new_cursor: if set, use a dedicated cursor and auto-commit after processing 1000 orderpoints. This is appropriate for batch jobs only. """ self = self.with_company(company_id) orderpoints_noprefetch = self.read(['id']) orderpoints_noprefetch = [orderpoint['id'] for orderpoint in orderpoints_noprefetch] for orderpoints_batch in split_every(1000, orderpoints_noprefetch): if use_new_cursor: cr = registry(self._cr.dbname).cursor() self = self.with_env(self.env(cr=cr)) orderpoints_batch = self.env['stock.warehouse.orderpoint'].browse(orderpoints_batch) orderpoints_exceptions = [] while orderpoints_batch: procurements = [] for orderpoint in orderpoints_batch: if float_compare(orderpoint.qty_to_order, 0.0, precision_rounding=orderpoint.product_uom.rounding) == 1: date = datetime.combine(orderpoint.lead_days_date, time.min) values = orderpoint._prepare_procurement_values(date=date) procurements.append(self.env['procurement.group'].Procurement( orderpoint.product_id, orderpoint.qty_to_order, orderpoint.product_uom, orderpoint.location_id, orderpoint.name, orderpoint.name, orderpoint.company_id, values)) try: with self.env.cr.savepoint(): self.env['procurement.group'].with_context(from_orderpoint=True).run(procurements, raise_user_error=raise_user_error) except ProcurementException as errors: for procurement, error_msg in errors.procurement_exceptions: orderpoints_exceptions += [(procurement.values.get('orderpoint_id'), error_msg)] failed_orderpoints = self.env['stock.warehouse.orderpoint'].concat(*[o[0] for o in orderpoints_exceptions]) if not failed_orderpoints: _logger.error('Unable to process orderpoints') break orderpoints_batch -= failed_orderpoints except OperationalError: if use_new_cursor: cr.rollback() continue else: raise else: orderpoints_batch._post_process_scheduler() break # Log an activity on product template for failed orderpoints. for orderpoint, error_msg in orderpoints_exceptions: existing_activity = self.env['mail.activity'].search([ ('res_id', '=', orderpoint.product_id.product_tmpl_id.id), ('res_model_id', '=', self.env.ref('product.model_product_template').id), ('note', '=', error_msg)]) if not existing_activity: orderpoint.product_id.product_tmpl_id.activity_schedule( 'mail.mail_activity_data_warning', note=error_msg, user_id=orderpoint.product_id.responsible_id.id or SUPERUSER_ID, ) if use_new_cursor: cr.commit() cr.close() return {} def _post_process_scheduler(self): return True
rven/odoo
addons/stock/models/stock_orderpoint.py
Python
agpl-3.0
27,180
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-06-13 05:07 from __future__ import unicode_literals import datetime from django.conf import settings from django.db import migrations, models import django.db.models.deletion import tagging.fields class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('wolf', '0001_initial'), ] operations = [ migrations.CreateModel( name='Entry', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=250)), ('excerpt', models.TextField(blank=True)), ('body', models.TextField()), ('pub_date', models.DateTimeField(default=datetime.datetime.now)), ('slug', models.SlugField(unique_for_date='pub_date')), ('enable_comments', models.BooleanField(default=True)), ('featured', models.BooleanField(default=False)), ('status', models.IntegerField(choices=[(1, 'Live'), (2, 'Draft'), (3, 'Hidden')], default=1)), ('tags', tagging.fields.TagField(blank=True, default=b'', help_text='Separate tags with spaces.', max_length=255)), ('excerpt_html', models.TextField(blank=True, editable=False)), ('body_html', models.TextField(blank=True, editable=False)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['-pub_date'], 'verbose_name_plural': 'Entries', }, ), migrations.AlterModelOptions( name='category', options={'ordering': ['title'], 'verbose_name_plural': 'Categories'}, ), migrations.AlterField( model_name='category', name='slug', field=models.SlugField(help_text='Suggested value automatically generated from title. Must be unique.', unique=True), ), migrations.AlterField( model_name='category', name='title', field=models.CharField(help_text='Maximum 250 characters.', max_length=250), ), migrations.AddField( model_name='entry', name='categories', field=models.ManyToManyField(to='wolf.Category'), ), ]
ericchan2012/django-cms
cms/wolf/migrations/0002_auto_20160613_1307.py
Python
gpl-3.0
2,534
from itertools import repeat import numpy as np from tensorflow import keras import sys sys.path.append("../../Lekhaka") import telugu as lang from Lekhaka import Scribe, Deformer, Noiser from Lekhaka import DataGenerator as Gen from lab.model_by_function import build_model from banti2chamanti import banti2chamanti import utils # Initialize from default_args import scribe_args, elastic_args, noise_args alphabet_size = len(lang.symbols) batch_size = 32 scriber = Scribe(lang, **scribe_args) printer = utils.Printer(lang.symbols) deformer = Deformer(**elastic_args) noiser = Noiser(**noise_args) gen = Gen(scriber, deformer, noiser, batch_size) print(scriber) # CRNN Params convpool_specs, convpool_wts = banti2chamanti(sys.argv[1]) num_lstm_out = 66 # Model model = build_model(alphabet_size, scribe_args["height"], scriber.width, batch_size, gen.labelswidth, num_lstm_out, convpool_specs, convpool_wts) feature_model = keras.models.Model(model.get_layer(name="image").input, [model.get_layer(name="dense1").input, model.get_layer(name="dense1").output]) model.summary() feature_model.summary() from PIL import Image def as255(v): return (255*(v-v.min())/(v.max()-v.min())).T.astype('uint8') def repea8(a, times): h, w = a.shape b = np.vstack(repeat(a, times)) return b.T.reshape((w*times, h)).T image, labels, image_lengths, label_lengths = gen.get() cpfs, features = feature_model.predict(image) _, fw, fh = features.shape print(image.shape, cpfs.shape, features.shape) for i in range(batch_size): img = as255(1-image[i, :, :, 0]) cpf = repea8(as255(cpfs[i]), model.width_scaled_down_by) feat = repea8(as255(features[i]), model.width_scaled_down_by) img = np.vstack((img, cpf, feat)) Image.fromarray(img).save(f'features/{i}_aimg.png')
rakeshvar/chamanti_ocr
lab/show_features.py
Python
apache-2.0
1,882
import os import re import time import logging from autotest.client import utils from autotest.client.shared import error from virttest import virsh from virttest import utils_libvirtd from virttest import utils_config from virttest import utils_misc from virttest import utils_libguestfs from virttest.libvirt_xml import vm_xml from virttest.utils_test import libvirt from virttest.staging.service import Factory from virttest.staging.utils_memory import drop_caches def run(test, params, env): """ Test command: virsh managedsave. This command can save and destroy a running domain, so it can be restarted from the same state at a later time. """ vm_name = params.get("main_vm") vm = env.get_vm(vm_name) managed_save_file = "/var/lib/libvirt/qemu/save/%s.save" % vm_name # define function def vm_recover_check(option, libvirtd, check_shutdown=False): """ Check if the vm can be recovered correctly. :param guest_name : Checked vm's name. :param option : managedsave command option. """ # This time vm not be shut down if vm.is_alive(): raise error.TestFail("Guest should be inactive") # Check vm managed save state. ret = virsh.dom_list("--managed-save --inactive") vm_state1 = re.findall(r".*%s.*" % vm_name, ret.stdout.strip())[0].split()[2] ret = virsh.dom_list("--managed-save --all") vm_state2 = re.findall(r".*%s.*" % vm_name, ret.stdout.strip())[0].split()[2] if vm_state1 != "saved" or vm_state2 != "saved": raise error.TestFail("Guest state should be saved") virsh.start(vm_name) # This time vm should be in the list if vm.is_dead(): raise error.TestFail("Guest should be active") # Restart libvirtd and check vm status again. libvirtd.restart() if vm.is_dead(): raise error.TestFail("Guest should be active after" " restarting libvirtd") # Check managed save file: if os.path.exists(managed_save_file): raise error.TestFail("Managed save image exist " "after starting the domain") if option: if option.count("running"): if vm.is_dead() or vm.is_paused(): raise error.TestFail("Guest state should be" " running after started" " because of '--running' option") elif option.count("paused"): if not vm.is_paused(): raise error.TestFail("Guest state should be" " paused after started" " because of '--paused' option") else: if params.get("paused_after_start_vm") == "yes": if not vm.is_paused(): raise error.TestFail("Guest state should be" " paused after started" " because of initia guest state") if check_shutdown: # Resume the domain. if vm.is_paused(): vm.resume() vm.wait_for_login() # Shutdown and start the domain, # it should be in runing state and can be login. vm.shutdown() vm.wait_for_shutdown() vm.start() vm.wait_for_login() def vm_undefine_check(vm_name): """ Check if vm can be undefined with manage-save option """ #backup xml file xml_backup = vm_xml.VMXML.new_from_inactive_dumpxml(vm_name) if not os.path.exists(managed_save_file): raise error.TestFail("Can't find managed save image") #undefine domain with no options. if not virsh.undefine(vm_name, options=None, ignore_status=True).exit_status: raise error.TestFail("Guest shouldn't be undefined" "while domain managed save image exists") #undefine domain with managed-save option. if virsh.undefine(vm_name, options="--managed-save", ignore_status=True).exit_status: raise error.TestFail("Guest can't be undefine with " "managed-save option") if os.path.exists(managed_save_file): raise error.TestFail("Managed save image exists" " after undefining vm") #restore and start the vm. xml_backup.define() vm.start() def check_flags_parallel(virsh_cmd, bash_cmd, flags): """ Run the commands parallel and check the output. """ cmd = ("%s & %s" % (virsh_cmd, bash_cmd)) output = utils.run(cmd, ignore_status=True).stdout.strip() logging.debug("check flags output: %s" % output) lines = re.findall(r"flags:.+%s" % flags, output, re.M) logging.debug("Find lines: %s" % lines) if not lines: raise error.TestFail("Checking flags %s failed" % flags) def check_multi_guests(guests, start_delay, libvirt_guests): """ Check start_delay option for multiple guests. """ # Destroy vm first if vm.is_alive(): vm.destroy(gracefully=False) # Clone given number of guests timeout = params.get("clone_timeout", 360) for i in range(int(guests)): dst_vm = "%s_%s" % (vm_name, i) utils_libguestfs.virt_clone_cmd(vm_name, dst_vm, True, timeout=timeout) virsh.start(dst_vm) # Wait 10 seconds for vm to start time.sleep(10) libvirt_guests.restart() # libvirt-guests status command read messages from systemd # journal, in cases of messages are not ready in time, # add a time wait here. def wait_func(): return not utils.run("service libvirt-guests status" " | grep 'Resuming guest'", ignore_status=True).exit_status utils_misc.wait_for(wait_func, 5) ret = utils.run("service libvirt-guests status", ignore_status=True) logging.info("status output: %s", ret.stdout) pattern = r'(.+ \d\d:\d\d:\d\d).+: Resuming guest.+done' resume_time = re.findall(pattern, ret.stdout, re.M) if not resume_time: raise error.TestFail("Can't see messages of resuming guest") # Convert time string to int resume_seconds = [time.mktime(time.strptime( tm, "%b %y %H:%M:%S")) for tm in resume_time] logging.info("Resume time in seconds: %s", resume_seconds) # Check if start_delay take effect for i in range(len(resume_seconds)-1): if resume_seconds[i+1] - resume_seconds[i] < int(start_delay): raise error.TestFail("Checking start_delay failed") def wait_for_state(vm_state): """ Wait for vm state is ready. """ utils_misc.wait_for(lambda: vm.state() == vm_state, 10) def check_guest_flags(bash_cmd, flags): """ Check bypass_cache option for single guest. """ # Drop caches. drop_caches() virsh_cmd = "service libvirt-guests stop" check_flags_parallel(virsh_cmd, bash_cmd % (managed_save_file, managed_save_file, "1", flags), flags) ret = utils.run("service libvirt-guests status", ignore_status=True) logging.info("status output: %s", ret.stdout) if any(["Suspending %s" % vm_name not in ret.stdout, "stopped, with saved guests" not in ret.stdout]): raise error.TestFail("Can't see messages of suspending vm") # status command should return 3. if ret.exit_status != 3: raise error.TestFail("The exit code %s for libvirt-guests" " status is not correct" % ret) # Wait for VM in shut off state wait_for_state("shut off") virsh_cmd = "service libvirt-guests start" check_flags_parallel(virsh_cmd, bash_cmd % (managed_save_file, managed_save_file, "0", flags), flags) # Wait for VM in running state wait_for_state("running") def vm_msave_remove_check(vm_name): """ Check managed save remove command. """ if not os.path.exists(managed_save_file): raise error.TestFail("Can't find managed save image") virsh.managedsave_remove(vm_name) if os.path.exists(managed_save_file): raise error.TestFail("Managed save image still exists") virsh.start(vm_name) # The domain state should be running if vm.state() != "running": raise error.TestFail("Guest state should be" " running after started") def vm_managedsave_loop(vm_name, loop_range, libvirtd): """ Run a loop of managedsave command and check its result. """ if vm.is_dead(): virsh.start(vm_name) for i in range(int(loop_range)): logging.debug("Test loop: %s" % i) virsh.managedsave(vm_name) virsh.start(vm_name) # Check libvirtd status. if not libvirtd.is_running(): raise error.TestFail("libvirtd is stopped after cmd") # Check vm status. if vm.state() != "running": raise error.TestFail("Guest isn't in running state") def build_vm_xml(vm_name, **dargs): """ Build the new domain xml and define it. """ try: # stop vm before doing any change to xml if vm.is_alive(): vm.destroy(gracefully=False) vmxml = vm_xml.VMXML.new_from_dumpxml(vm_name) if dargs.get("cpu_mode"): if "cpu" in vmxml: del vmxml.cpu cpuxml = vm_xml.VMCPUXML() cpuxml.mode = params.get("cpu_mode", "host-model") cpuxml.match = params.get("cpu_match", "exact") cpuxml.fallback = params.get("cpu_fallback", "forbid") cpu_topology = {} cpu_topology_sockets = params.get("cpu_topology_sockets") if cpu_topology_sockets: cpu_topology["sockets"] = cpu_topology_sockets cpu_topology_cores = params.get("cpu_topology_cores") if cpu_topology_cores: cpu_topology["cores"] = cpu_topology_cores cpu_topology_threads = params.get("cpu_topology_threads") if cpu_topology_threads: cpu_topology["threads"] = cpu_topology_threads if cpu_topology: cpuxml.topology = cpu_topology vmxml.cpu = cpuxml if dargs.get("sec_driver"): seclabel_dict = {"type": "dynamic", "model": "selinux", "relabel": "yes"} vmxml.set_seclabel([seclabel_dict]) vmxml.sync() vm.start() except Exception, e: logging.error(str(e)) raise error.TestNAError("Build domain xml failed") status_error = ("yes" == params.get("status_error", "no")) vm_ref = params.get("managedsave_vm_ref", "name") libvirtd_state = params.get("libvirtd", "on") extra_param = params.get("managedsave_extra_param", "") progress = ("yes" == params.get("managedsave_progress", "no")) cpu_mode = "yes" == params.get("managedsave_cpumode", "no") test_undefine = "yes" == params.get("managedsave_undefine", "no") test_bypass_cache = "yes" == params.get("test_bypass_cache", "no") autostart_bypass_cache = params.get("autostart_bypass_cache", "") multi_guests = params.get("multi_guests", "") test_libvirt_guests = params.get("test_libvirt_guests", "") check_flags = "yes" == params.get("check_flags", "no") security_driver = params.get("security_driver", "") remove_after_cmd = "yes" == params.get("remove_after_cmd", "no") option = params.get("managedsave_option", "") check_shutdown = "yes" == params.get("shutdown_after_cmd", "no") pre_vm_state = params.get("pre_vm_state", "") move_saved_file = "yes" == params.get("move_saved_file", "no") test_loop_cmd = "yes" == params.get("test_loop_cmd", "no") if option: if not virsh.has_command_help_match('managedsave', option): # Older libvirt does not have this option raise error.TestNAError("Older libvirt does not" " handle arguments consistently") # Backup xml file. vmxml_backup = vm_xml.VMXML.new_from_inactive_dumpxml(vm_name) # Get the libvirtd service libvirtd = utils_libvirtd.Libvirtd() # Get config files. qemu_config = utils_config.LibvirtQemuConfig() libvirt_guests_config = utils_config.LibvirtGuestsConfig() # Get libvirt-guests service libvirt_guests = Factory.create_service("libvirt-guests") try: # Destroy vm first for setting configuration file if vm.state() == "running": vm.destroy(gracefully=False) # Prepare test environment. if libvirtd_state == "off": libvirtd.stop() if autostart_bypass_cache: ret = virsh.autostart(vm_name, "", ignore_status=True) libvirt.check_exit_status(ret) qemu_config.auto_start_bypass_cache = autostart_bypass_cache libvirtd.restart() if security_driver: qemu_config.security_driver = [security_driver] if test_libvirt_guests: if multi_guests: start_delay = params.get("start_delay", "20") libvirt_guests_config.START_DELAY = start_delay if check_flags: libvirt_guests_config.BYPASS_CACHE = "1" # The config file format should be "x=y" instead of "x = y" utils.run("sed -i -e 's/ = /=/g' " "/etc/sysconfig/libvirt-guests") libvirt_guests.restart() # Change domain xml. if cpu_mode: build_vm_xml(vm_name, cpu_mode=True) if security_driver: build_vm_xml(vm_name, sec_driver=True) # Turn VM into certain state. if pre_vm_state == "transient": logging.info("Creating %s..." % vm_name) vmxml_for_test = vm_xml.VMXML.new_from_inactive_dumpxml(vm_name) if vm.is_alive(): vm.destroy(gracefully=False) vm.undefine() if virsh.create(vmxml_for_test.xml, ignore_status=True).exit_status: vmxml_backup.define() raise error.TestNAError("Cann't create the domain") # Wait for vm in stable state if params.get("start_vm") == "yes": if vm.state() == "shut off": vm.start() vm.wait_for_login() # run test case domid = vm.get_id() domuuid = vm.get_uuid() if vm_ref == "id": vm_ref = domid elif vm_ref == "uuid": vm_ref = domuuid elif vm_ref == "hex_id": vm_ref = hex(int(domid)) elif vm_ref.count("invalid"): vm_ref = params.get(vm_ref) elif vm_ref == "name": vm_ref = vm_name # Ignore exception with "ignore_status=True" if progress: option += " --verbose" option += extra_param # For bypass_cache test. Run a shell command to check fd flags while # excuting managedsave command bash_cmd = ("let i=1; while((i++<200)); do if [ -e %s ]; then (cat /proc" "/$(lsof -w %s|awk '/libvirt_i/{print $2}')/fdinfo/*%s* |" "grep 'flags:.*%s') && break; else sleep 0.1; fi; done;") # Flags to check bypass cache take effect flags = "014" if test_bypass_cache: # Drop caches. drop_caches() virsh_cmd = "virsh managedsave %s %s" % (option, vm_name) check_flags_parallel(virsh_cmd, bash_cmd % (managed_save_file, managed_save_file, "1", flags), flags) # Wait for VM in shut off state wait_for_state("shut off") virsh_cmd = "virsh start %s %s" % (option, vm_name) check_flags_parallel(virsh_cmd, bash_cmd % (managed_save_file, managed_save_file, "0", flags), flags) # Wait for VM in running state wait_for_state("running") elif test_libvirt_guests: logging.debug("libvirt-guests status: %s", libvirt_guests.status()) if multi_guests: check_multi_guests(multi_guests, start_delay, libvirt_guests) if check_flags: check_guest_flags(bash_cmd, flags) else: ret = virsh.managedsave(vm_ref, options=option, ignore_status=True) status = ret.exit_status # The progress information outputed in error message error_msg = ret.stderr.strip() if move_saved_file: cmd = "echo > %s" % managed_save_file utils.run(cmd) # recover libvirtd service start if libvirtd_state == "off": libvirtd.start() if status_error: if not status: raise error.TestFail("Run successfully with wrong command!") else: if status: raise error.TestFail("Run failed with right command") if progress: if not error_msg.count("Managedsave:"): raise error.TestFail("Got invalid progress output") if remove_after_cmd: vm_msave_remove_check(vm_name) elif test_undefine: vm_undefine_check(vm_name) elif autostart_bypass_cache: libvirtd.stop() virsh_cmd = ("(service libvirtd start)") check_flags_parallel(virsh_cmd, bash_cmd % (managed_save_file, managed_save_file, "0", flags), flags) elif test_loop_cmd: loop_range = params.get("loop_range", "20") vm_managedsave_loop(vm_name, loop_range, libvirtd) else: vm_recover_check(option, libvirtd, check_shutdown) finally: # Restore test environment. if vm.is_paused(): virsh.resume(vm_name) elif vm.is_dead(): vm.start() # Wait for VM in running state wait_for_state("running") if autostart_bypass_cache: virsh.autostart(vm_name, "--disable", ignore_status=True) if vm.is_alive(): vm.destroy(gracefully=False) vmxml_backup.sync() if multi_guests: for i in range(int(multi_guests)): virsh.remove_domain("%s_%s" % (vm_name, i), "--remove-all-storage") qemu_config.restore() libvirt_guests_config.restore() libvirtd.restart()
will-Do/tp-libvirt_v2v
libvirt/tests/src/virsh_cmd/domain/virsh_managedsave.py
Python
gpl-2.0
19,904
# dog http://www.image-net.org/api/text/imagenet.synset.geturls?wnid=n02084071 # cat import shutil import requests import uuid import os dog_url="http://www.image-net.org/api/text/imagenet.synset.geturls?wnid=n02084071" dog_response=requests.get(dog_url, stream=True) dogs=dog_response.text.split() for url in dogs: response = requests.get(url, stream=True) file_name= '{}.jpg'.format(uuid.uuid4()) with open( os.path.join("dataset","dog", file_name), 'wb') as out_file: shutil.copyfileobj(response.raw, out_file) del response
wasit7/cs634
2017/cs634_project/image_loader.py
Python
bsd-2-clause
537
#! /usr/bin/env python import sys g = {} n = {} for line in sys.stdin: (n1, n2, p, q, t, tg, x) = line.strip().split(' ') t = int(t) x = float(x) key = ' '.join((n1,n2,p,q)) if not key in n: n[key] = 0 g[key] = 0 n[key] += t g[key] += x*t for key in n: print key, n[key], g[key]/n[key]
vbeffara/Simulations
tools/massage-box.py
Python
gpl-3.0
341
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.paging import Paged class TriggerPaged(Paged): """ A paging container for iterating over a list of :class:`Trigger <azure.mgmt.edgegateway.models.Trigger>` object """ _attribute_map = { 'next_link': {'key': 'nextLink', 'type': 'str'}, 'current_page': {'key': 'value', 'type': '[Trigger]'} } def __init__(self, *args, **kwargs): super(TriggerPaged, self).__init__(*args, **kwargs)
Azure/azure-sdk-for-python
sdk/edgegateway/azure-mgmt-edgegateway/azure/mgmt/edgegateway/models/trigger_paged.py
Python
mit
919
# Copyright (c) 2016 PyWPS Project Steering Committee # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from pywps import Process, LiteralInput, LiteralOutput from pywps.app.Common import Metadata class Sleep(Process): SUCCESS_MESSAGE = 'done sleeping' def __init__(self): inputs = [LiteralInput('delay', 'Delay between every update', data_type='float')] outputs = [LiteralOutput('sleep_output', 'Sleep Output', data_type='string')] super(Sleep, self).__init__( self._handler, identifier='sleep', version='None', title='Sleep Process', abstract="The process will sleep for a given delay \ or 10 seconds if not a valid value", profile='', metadata=[Metadata('Sleep'), Metadata('Wait'), Metadata('Delay')], inputs=inputs, outputs=outputs, store_supported=True, status_supported=True ) def _handler(self, request, response): import time sleep_delay = request.inputs['delay'][0].data if sleep_delay: sleep_delay = float(sleep_delay) else: sleep_delay = 10 time.sleep(sleep_delay) response.update_status('PyWPS Process started. Waiting...', 20) time.sleep(sleep_delay) response.update_status('PyWPS Process started. Waiting...', 40) time.sleep(sleep_delay) response.update_status('PyWPS Process started. Waiting...', 60) time.sleep(sleep_delay) response.update_status('PyWPS Process started. Waiting...', 80) time.sleep(sleep_delay) response.outputs['sleep_output'].data = self.SUCCESS_MESSAGE return response def main(): """Example of how to debug this process, running outside a PyWPS instance. """ sleep = Sleep() (request, response) = sleep.build_request_response() literal_in = sleep.inputs[0] literal_in.data = 10 request.inputs["delay"].append(literal_in) sleep._handler(request, response) assert response.outputs["sleep_output"].data == sleep.SUCCESS_MESSAGE print("All good!") if __name__ == "__main__": main()
PyWPS/pywps-4-demo
processes/sleep.py
Python
mit
3,360
# Weights layers from .cauchysimilarity import CauchySimilarity from .dropout import Dropout from .embed import Embed from .expand_window import expand_window from .hashembed import HashEmbed from .layernorm import LayerNorm from .linear import Linear from .lstm import LSTM, PyTorchLSTM from .logistic import Logistic from .maxout import Maxout from .mish import Mish from .multisoftmax import MultiSoftmax from .parametricattention import ParametricAttention from .pytorchwrapper import PyTorchWrapper, PyTorchWrapper_v2 from .pytorchwrapper import PyTorchRNNWrapper from .relu import Relu from .resizable import resizable from .sigmoid_activation import sigmoid_activation from .sigmoid import Sigmoid from .softmax_activation import softmax_activation from .softmax import Softmax from .sparselinear import SparseLinear from .tensorflowwrapper import TensorFlowWrapper, keras_subclass from .mxnetwrapper import MXNetWrapper # Combinators from .add import add from .bidirectional import bidirectional from .chain import chain from .clone import clone from .concatenate import concatenate from .map_list import map_list from .noop import noop from .residual import residual from .uniqued import uniqued from .siamese import siamese from .tuplify import tuplify # Pooling from .reduce_first import reduce_first from .reduce_last import reduce_last from .reduce_max import reduce_max from .reduce_mean import reduce_mean from .reduce_sum import reduce_sum # Array manipulation from .array_getitem import array_getitem # Data-type transfers from .list2array import list2array from .list2ragged import list2ragged from .list2padded import list2padded from .ragged2list import ragged2list from .padded2list import padded2list from .remap_ids import remap_ids from .strings2arrays import strings2arrays from .with_array import with_array from .with_array2d import with_array2d from .with_cpu import with_cpu from .with_flatten import with_flatten from .with_padded import with_padded from .with_list import with_list from .with_ragged import with_ragged from .with_reshape import with_reshape from .with_getitem import with_getitem from .with_debug import with_debug from .with_nvtx_range import with_nvtx_range __all__ = [ "CauchySimilarity", "Linear", "Dropout", "Embed", "expand_window", "HashEmbed", "LayerNorm", "LSTM", "Maxout", "Mish", "MultiSoftmax", "ParametricAttention", "PyTorchLSTM", "PyTorchWrapper", "PyTorchWrapper_v2", "PyTorchRNNWrapper", "Relu", "sigmoid_activation", "Sigmoid" "softmax_activation", "Softmax", "SparseLinear", "TensorFlowWrapper", "add", "bidirectional", "chain", "clone", "concatenate", "noop", "residual", "uniqued", "siamese", "reduce_first", "reduce_last", "reduce_max", "reduce_mean", "reduce_sum", "resizable", "list2array", "list2ragged", "list2padded", "ragged2list", "padded2list", "with_reshape", "with_getitem", "with_array", "with_array2d", "with_cpu", "with_list", "with_ragged", "with_padded", "with_flatten", "with_debug", "with_nvtx_range", "remap_ids", ]
spacy-io/thinc
thinc/layers/__init__.py
Python
mit
3,230
# Standard Library Imports import logging # 3rd Party Imports from twilio.rest import TwilioRestClient # Local Imports from PokeAlarm.Alarms import Alarm from PokeAlarm.Utils import parse_boolean, require_and_remove_key, \ reject_leftover_parameters log = logging.getLogger('Twilio') try_sending = Alarm.try_sending replace = Alarm.replace # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ATTENTION! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # ONLY EDIT THIS FILE IF YOU KNOW WHAT YOU ARE DOING! # You DO NOT NEED to edit this file to customize messages! Please ONLY EDIT the # the 'alarms.json'. Failing to do so can cause other feature to break! # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ATTENTION! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! class TwilioAlarm(Alarm): _defaults = { 'monsters': { 'message': "A wild <mon_name> has appeared! <gmaps> " "Available until <24h_time> (<time_left>)." }, 'stops': { 'message': "Someone has placed a lure on a Pokestop! <gmaps>" "Lure will expire at <24h_time> (<time_left>)." }, 'gyms': { 'message': "A Team <old_team> gym has fallen! <gmaps>" "It is now controlled by <new_team>." }, 'eggs': { 'message': "A level <egg_lvl> raid is incoming! <gmaps>" "Egg hatches <24h_hatch_time> (<hatch_time_left>)." }, 'raids': { 'message': "Level <raid_lvl> raid against <mon_name>! <gmaps>" " Available until <24h_raid_end> (<raid_time_left>)." } } # Gather settings and create alarm def __init__(self, settings): # Required Parameters self.__account_sid = require_and_remove_key( 'account_sid', settings, "'Twilio' type alarms.") self.__auth_token = require_and_remove_key( 'auth_token', settings, "'Twilio' type alarms.") self.__from_number = require_and_remove_key( 'from_number', settings, "'Twilio' type alarms.") self.__to_number = require_and_remove_key( 'to_number', settings, "'Twilio' type alarms.") self.__client = None # Optional Alarm Parameters self.__startup_message = parse_boolean( settings.pop('startup_message', "True")) # Optional Alert Parameters self.__pokemon = self.set_alert( settings.pop('monsters', {}), self._defaults['monsters']) self.__pokestop = self.set_alert( settings.pop('stops', {}), self._defaults['stops']) self.__gym = self.set_alert( settings.pop('gyms', {}), self._defaults['gyms']) self.__egg = self.set_alert( settings.pop('eggs', {}), self._defaults['eggs']) self.__raid = self.set_alert( settings.pop('raids', {}), self._defaults['raids']) # Warn user about leftover parameters reject_leftover_parameters(settings, "'Alarm level in Twilio alarm.") log.info("Twilio Alarm has been created!") # (Re)establishes Twilio connection def connect(self): self.__client = TwilioRestClient(self.__account_sid, self.__auth_token) # Send a message letting the channel know that this alarm started def startup_message(self): if self.__startup_message: self.send_sms( to_num=self.__to_number, from_num=self.__from_number, body="PokeAlarm activated!" ) log.info("Startup message sent!") # Set the appropriate settings for each alert def set_alert(self, settings, default): alert = { 'to_number': settings.pop('to_number', self.__to_number), 'from_number': settings.pop('from_number', self.__from_number), 'message': settings.pop('message', default['message']) } reject_leftover_parameters(settings, "'Alert level in Twilio alarm.") return alert # Send Pokemon Info def send_alert(self, alert, info): self.send_sms( to_num=alert['to_number'], from_num=alert['from_number'], body=replace(alert['message'], info) ) # Trigger an alert based on Pokemon info def pokemon_alert(self, pokemon_info): self.send_alert(self.__pokemon, pokemon_info) # Trigger an alert based on Pokestop info def pokestop_alert(self, pokestop_info): self.send_alert(self.__pokestop, pokestop_info) # Trigger an alert based on Gym info def gym_alert(self, gym_info): self.send_alert(self.__gym, gym_info) # Trigger an alert when a raid egg has spawned (UPCOMING raid event) def raid_egg_alert(self, raid_info): self.send_alert(self.__egg, raid_info) # Trigger an alert based on Raid info def raid_alert(self, raid_info): self.send_alert(self.__raid, raid_info) # Send a SMS message def send_sms(self, to_num, from_num, body): if not isinstance(to_num, list): to_num = [to_num] for num in to_num: args = { 'to': num, 'from_': from_num, 'body': body } try_sending( log, self.connect, "Twilio", self.__client.messages.create, args)
blsmit5728/PokeAlarm
PokeAlarm/Alarms/Twilio/TwilioAlarm.py
Python
agpl-3.0
5,378
from django.db import models from django.utils import timezone import json CHARFIELD_LEN_SMALL=128 CHARFIELD_LEN_LONG = 1024 class CreatedModel(models.Model): #When it was created/modified modified=models.DateTimeField(auto_now=True) created=models.DateTimeField(auto_now_add=True) #Properties of the problem the model was created with max_score=models.IntegerField() prompt=models.TextField() problem = models.ForeignKey("freeform_data.Problem") target_number = models.IntegerField(default=0) #Properties of the model file model_relative_path=models.CharField(max_length=CHARFIELD_LEN_LONG) model_full_path=models.CharField(max_length=CHARFIELD_LEN_LONG) #Properties of the model itself number_of_essays=models.IntegerField() #CV is cross-validation, which is a statistical technique that ensures that #the models are trained on one part of the data and predicted on another. #so the kappa and error measurements are not biased by the data that was used to create the models #being used to also evaluate them. (ie, this is "True" error) #Kappa is interrater agreement-closer to 1 is better. #If the actual scores and the predicted scores perfectly agree, kappa will be 1. cv_kappa=models.DecimalField(max_digits=10,decimal_places=9, default=1) #Mean absolute error is mean(abs(actual_score-predicted_score)) #A mean absolute error of .5 means that, on average, the predicted score is +/- .5 points from the actual score cv_mean_absolute_error=models.DecimalField(max_digits=15,decimal_places=10, default=1) creation_succeeded=models.BooleanField(default=False) creation_started =models.BooleanField(default=False) #Amazon S3 stuff if we do use it model_stored_in_s3=models.BooleanField(default=False) s3_public_url=models.TextField(default="") s3_bucketname=models.TextField(default="") def get_submission_ids_used(self): """ Returns a list of submission ids of essays used to create the model. Output: Boolean success, list of ids/error message as appropriate """ try: submission_id_list=json.loads(self.submission_ids_used) except: return False, "No essays used or not in json format." return True, submission_id_list
vdt/ml-service-api
ml_grading/models.py
Python
agpl-3.0
2,344
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "yevent.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
BdEINSALyon/yevent
manage.py
Python
gpl-3.0
804
#!/usr/bin/env python # Copyright (c) 2012 Cloudera, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest import sys import re from copy import copy from tests.beeswax.impala_beeswax import ImpalaBeeswaxException from tests.common.test_vector import * from tests.common.impala_test_suite import * class TestQueryMemLimitScaling(ImpalaTestSuite): """Test class to do functional validation of per query memory limits. """ QUERY = ["select * from lineitem where l_orderkey = -1", "select min(l_orderkey) from lineitem", "select * from lineitem order by l_orderkey limit 1"] # These query take 400mb-1gb if no mem limits are set MEM_LIMITS = ["-1", "400m", "150m"] @classmethod def get_workload(self): return 'tpch' @classmethod def add_test_dimensions(cls): super(TestQueryMemLimitScaling, cls).add_test_dimensions() # add mem_limit as a test dimension. new_dimension = TestDimension('mem_limit', *TestQueryMemLimitScaling.MEM_LIMITS) cls.TestMatrix.add_dimension(new_dimension) if cls.exploration_strategy() != 'exhaustive': cls.TestMatrix.add_constraint(lambda v:\ v.get_value('table_format').file_format in ['parquet']) # Test running with different mem limits to exercise the dynamic memory # scaling functionality. def test_mem_usage_scaling(self, vector): mem_limit = copy(vector.get_value('mem_limit')) table_format = vector.get_value('table_format') exec_options = copy(vector.get_value('exec_option')) exec_options['mem_limit'] = mem_limit for query in self.QUERY: self.execute_query(query, exec_options, table_format=table_format) class TestExprMemUsage(ImpalaTestSuite): @classmethod def get_workload(cls): return 'tpch' @classmethod def add_test_dimensions(cls): super(TestExprMemUsage, cls).add_test_dimensions() cls.TestMatrix.add_dimension(create_single_exec_option_dimension()) if cls.exploration_strategy() != 'exhaustive': cls.TestMatrix.add_constraint(lambda v:\ v.get_value('table_format').file_format in ['parquet']) def test_scanner_mem_usage(self, vector): exec_options = vector.get_value('exec_option') # This value was picked empircally based on the query. exec_options['mem_limit'] = '300m' self.execute_query_expect_success(self.client, "select count(*) from lineitem where lower(l_comment) = 'hello'", exec_options, table_format=vector.get_value('table_format')) class TestMemLimitError(ImpalaTestSuite): # Different values of mem limits and minimum mem limit the queries are expected to run # without problem. MEM_IN_MB = [20, 50, 100, 115, 120, 125, 140, 145, 150] MIN_MEM_FOR_TPCH_Q1 = 145 MIN_MEM_FOR_TPCH_Q4 = 150 EXPECTED_ERROR_MSG = "Memory limit exceeded" @classmethod def get_workload(self): return 'tpch' @classmethod def add_test_dimensions(cls): super(TestMemLimitError, cls).add_test_dimensions() cls.TestMatrix.add_dimension( TestDimension('mem_limit', *TestMemLimitError.MEM_IN_MB)) cls.TestMatrix.add_constraint(lambda v:\ v.get_value('table_format').file_format in ['parquet']) @classmethod def setup_class(cls): super(TestMemLimitError, cls).setup_class() cls.client.execute('compute stats tpch_parquet.lineitem'); cls.client.execute('compute stats tpch_parquet.orders'); def test_low_mem_limit_q1(self, vector): mem = vector.get_value('mem_limit') # If memory limit larger than the minimum threshold, then it is not expected to fail expects_error = mem < TestMemLimitError.MIN_MEM_FOR_TPCH_Q1; new_vector = copy(vector) new_vector.get_value('exec_option')['mem_limit'] = str(mem) + "m" try: self.run_test_case('tpch-q1', new_vector) except ImpalaBeeswaxException as e: if (expects_error == 0): raise if (TestMemLimitError.EXPECTED_ERROR_MSG in str(e)): print str(e) assert TestMemLimitError.EXPECTED_ERROR_MSG in str(e) def test_low_mem_limit_q4(self, vector): mem = vector.get_value('mem_limit') # If memory limit larger than the minimum threshold, then it is not expected to fail expects_error = mem < TestMemLimitError.MIN_MEM_FOR_TPCH_Q4; new_vector = copy(vector) new_vector.get_value('exec_option')['mem_limit'] = str(mem) + "m" try: self.run_test_case('tpch-q4', new_vector) except ImpalaBeeswaxException as e: if (expects_error == 0): raise if (TestMemLimitError.EXPECTED_ERROR_MSG in str(e)): print str(e) assert TestMemLimitError.EXPECTED_ERROR_MSG in str(e)
grundprinzip/Impala
tests/query_test/test_mem_usage_scaling.py
Python
apache-2.0
5,147
import unittest from solution import * class Test_228_Easy(unittest.TestCase): def test_order(self): self.assertEqual(order("billowy"), "IN ORDER") self.assertEqual(order("defaced"), "NOT IN ORDER") self.assertEqual(order("sponged"), "REVERSE ORDER") if __name__ == "__main__": unittest.main()
marcardioid/DailyProgrammer
solutions/228_Easy/test_solution.py
Python
mit
327
#!/usr/bin/python import gst_player import clock import time import gobject import glob import os import random import RPi.GPIO as GPIO GPIO.setmode(GPIO.BCM) GPIO.setup(4, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(17, GPIO.IN, pull_up_down=GPIO.PUD_UP) # some global variables, will be moved elsewhere in the future probably SUPPORTED_AUDIO_FORMATS = ['.mp3', '.ogg', '.flac'] MUSIC_FOLDER = './music' def generate_random_music_file_list(music_folder): try: music_file_list = [] for filename in glob.glob(os.path.join(music_folder, '*.*')): if os.path.splitext(filename)[1] in SUPPORTED_AUDIO_FORMATS: #music_file_list.append(os.path.realpath(filename)) # insert the files on random positions music_file_list.insert(random.randrange(len(music_file_list)+1), os.path.realpath(filename)) return music_file_list except IOError as e: print 'Error when generating the music file list from the directory {0}, {[1]}'.format(MUSIC_FOLDER, e) except Exception, e: pass def main(): # the main part of the program # # Get audio files from the music folder in random order # music_files = generate_random_music_file_list(MUSIC_FOLDER) # print music_files #player = gst_player.Player(music_files) #player.play() # for vol_lvl in range(1, 20): # player.set_volume(vol_lvl*0.1) # time.sleep(2) # initialize the led clock alarm_clock = clock.LedAlarmClock() # set up some alarm print 'Alarm ringing:', alarm_clock.check_if_alarm_on() print 'Alarm enabled', alarm_clock.is_alarm_active() # define some callbacks # the callback which reacts on the clock pulse def clock_alarm_callback(channel): print 'Alarm ringing:', alarm_clock.check_if_alarm_on() print 'Alarm enabled', alarm_clock.is_alarm_active() alarm_clock.on_alarm() # the callback which reacts on the alarm def clock_pulse_callback(channel): #print "Clock tick" alarm_clock.update_display() # assign the callbacks to the GPIO events GPIO.add_event_detect(4, GPIO.FALLING, callback=clock_alarm_callback, bouncetime=100) GPIO.add_event_detect(17, GPIO.FALLING, callback=clock_pulse_callback, bouncetime=100) try: h, m = input('Enter the alarm hour and minute (with a comma in between hh,mm): ') alarm_clock.set_alarm_time(h, m) print 'Daily alarm set for {0}:{1}'.format(h, m) alarm_clock.activate_alarm() print 'Alarm enabled', alarm_clock.is_alarm_active() raw_input('Press Enter to exit\n>') #loop = gobject.MainLoop() #player.set_loop(loop) #loop.run() except KeyboardInterrupt: GPIO.cleanup() # clean up GPIO on CTRL+C exit #player.set_volume(0.,1) #Execution starts here if __name__ == '__main__': main() print 'END!' GPIO.cleanup()
karlitos/Raspberry-Wake-Up-Light
main.py
Python
mit
2,963
import nose from nose.plugins.attrib import attr import logging import colorguard import os bin_location = str(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../binaries')) @attr(speed='slow') def test_cromu_00070_caching(): # Test exploitation of CROMU_00070 given an input which causes a leak. Then test that we can do it again restoring # from the cache. for _ in range(2): payload = bytes.fromhex("06000006020a00000000000000000000000c030c00000100e1f505000000000000eb") cg = colorguard.ColorGuard(os.path.join(bin_location, "tests/cgc/CROMU_00070"), payload) pov = cg.attempt_exploit() nose.tools.assert_not_equal(pov, None) nose.tools.assert_true(pov.test_binary()) def run_all(): functions = globals() all_functions = dict(filter((lambda kv: kv[0].startswith('test_')), functions.items())) for f in sorted(all_functions.keys()): if hasattr(all_functions[f], '__call__'): all_functions[f]() if __name__ == "__main__": logging.getLogger("colorguard").setLevel("DEBUG") logging.getLogger("povsim").setLevel("DEBUG") import sys if len(sys.argv) > 1: globals()['test_' + sys.argv[1]]() else: run_all()
mechaphish/colorguard
tests/test_cromu70_caching.py
Python
bsd-2-clause
1,245
"""Support for MyQ-Enabled Garage Doors.""" import logging import time from pymyq.const import ( DEVICE_STATE as MYQ_DEVICE_STATE, DEVICE_STATE_ONLINE as MYQ_DEVICE_STATE_ONLINE, DEVICE_TYPE as MYQ_DEVICE_TYPE, DEVICE_TYPE_GATE as MYQ_DEVICE_TYPE_GATE, KNOWN_MODELS, MANUFACTURER, ) import voluptuous as vol from homeassistant.components.cover import ( DEVICE_CLASS_GARAGE, DEVICE_CLASS_GATE, PLATFORM_SCHEMA, SUPPORT_CLOSE, SUPPORT_OPEN, CoverEntity, ) from homeassistant.config_entries import SOURCE_IMPORT from homeassistant.const import ( CONF_PASSWORD, CONF_TYPE, CONF_USERNAME, STATE_CLOSED, STATE_CLOSING, STATE_OPENING, ) from homeassistant.core import callback from homeassistant.helpers import config_validation as cv from homeassistant.helpers.event import async_call_later from .const import ( DOMAIN, MYQ_COORDINATOR, MYQ_GATEWAY, MYQ_TO_HASS, TRANSITION_COMPLETE_DURATION, TRANSITION_START_DURATION, ) _LOGGER = logging.getLogger(__name__) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, # This parameter is no longer used; keeping it to avoid a breaking change in # a hotfix, but in a future main release, this should be removed: vol.Optional(CONF_TYPE): cv.string, }, ) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the platform.""" hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data={ CONF_USERNAME: config[CONF_USERNAME], CONF_PASSWORD: config[CONF_PASSWORD], }, ) ) async def async_setup_entry(hass, config_entry, async_add_entities): """Set up mysq covers.""" data = hass.data[DOMAIN][config_entry.entry_id] myq = data[MYQ_GATEWAY] coordinator = data[MYQ_COORDINATOR] async_add_entities( [MyQDevice(coordinator, device) for device in myq.covers.values()], True ) class MyQDevice(CoverEntity): """Representation of a MyQ cover.""" def __init__(self, coordinator, device): """Initialize with API object, device id.""" self._coordinator = coordinator self._device = device self._last_action_timestamp = 0 self._scheduled_transition_update = None @property def device_class(self): """Define this cover as a garage door.""" device_type = self._device.device_json.get(MYQ_DEVICE_TYPE) if device_type is not None and device_type == MYQ_DEVICE_TYPE_GATE: return DEVICE_CLASS_GATE return DEVICE_CLASS_GARAGE @property def name(self): """Return the name of the garage door if any.""" return self._device.name @property def available(self): """Return if the device is online.""" if not self._coordinator.last_update_success: return False # Not all devices report online so assume True if its missing return self._device.device_json[MYQ_DEVICE_STATE].get( MYQ_DEVICE_STATE_ONLINE, True ) @property def is_closed(self): """Return true if cover is closed, else False.""" return MYQ_TO_HASS.get(self._device.state) == STATE_CLOSED @property def is_closing(self): """Return if the cover is closing or not.""" return MYQ_TO_HASS.get(self._device.state) == STATE_CLOSING @property def is_opening(self): """Return if the cover is opening or not.""" return MYQ_TO_HASS.get(self._device.state) == STATE_OPENING @property def supported_features(self): """Flag supported features.""" return SUPPORT_OPEN | SUPPORT_CLOSE @property def unique_id(self): """Return a unique, Home Assistant friendly identifier for this entity.""" return self._device.device_id async def async_close_cover(self, **kwargs): """Issue close command to cover.""" self._last_action_timestamp = time.time() await self._device.close() self._async_schedule_update_for_transition() async def async_open_cover(self, **kwargs): """Issue open command to cover.""" self._last_action_timestamp = time.time() await self._device.open() self._async_schedule_update_for_transition() @callback def _async_schedule_update_for_transition(self): self.async_write_ha_state() # Cancel any previous updates if self._scheduled_transition_update: self._scheduled_transition_update() # Schedule an update for when we expect the transition # to be completed so the garage door or gate does not # seem like its closing or opening for a long time self._scheduled_transition_update = async_call_later( self.hass, TRANSITION_COMPLETE_DURATION, self._async_complete_schedule_update, ) async def _async_complete_schedule_update(self, _): """Update status of the cover via coordinator.""" self._scheduled_transition_update = None await self._coordinator.async_request_refresh() async def async_update(self): """Update status of cover.""" await self._coordinator.async_request_refresh() @property def device_info(self): """Return the device_info of the device.""" device_info = { "identifiers": {(DOMAIN, self._device.device_id)}, "name": self._device.name, "manufacturer": MANUFACTURER, "sw_version": self._device.firmware_version, } model = KNOWN_MODELS.get(self._device.device_id[2:4]) if model: device_info["model"] = model if self._device.parent_device_id: device_info["via_device"] = (DOMAIN, self._device.parent_device_id) return device_info @callback def _async_consume_update(self): if time.time() - self._last_action_timestamp <= TRANSITION_START_DURATION: # If we just started a transition we need # to prevent a bouncy state return self.async_write_ha_state() @property def should_poll(self): """Return False, updates are controlled via coordinator.""" return False async def async_added_to_hass(self): """Subscribe to updates.""" self.async_on_remove( self._coordinator.async_add_listener(self._async_consume_update) ) async def async_will_remove_from_hass(self): """Undo subscription.""" if self._scheduled_transition_update: self._scheduled_transition_update()
nkgilley/home-assistant
homeassistant/components/myq/cover.py
Python
apache-2.0
6,868
#!/usr/bin/python # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .datacatalog_metadata_cleaner import DataCatalogMetadataCleaner __all__ = ('DataCatalogMetadataCleaner',)
GoogleCloudPlatform/datacatalog-connectors
google-datacatalog-connectors-commons/src/google/datacatalog_connectors/commons/cleanup/__init__.py
Python
apache-2.0
708
#!/usr/bin/env python from __future__ import print_function import os import sys import cubit cubit.init([""]) try: from geocubitlib import boundary_definition from geocubitlib import cubit2specfem3d except: import boundary_definition import cubit2specfem3d # two volumes separating 134000x134000x60000 block horizontally cubit.cmd('reset') cubit.cmd('brick x 67000 y 134000 z 60000') cubit.cmd('volume 1 move x 33500 y 67000 z -30000') cubit.cmd('brick x 67000 y 134000 z 60000') cubit.cmd('volume 2 move x 100500 y 67000 z -30000') cubit.cmd('merge all') # Meshing the volumes elementsize = 3750.0 cubit.cmd('volume 1 size '+str(elementsize)) cubit.cmd('volume 2 size '+str(elementsize)) cubit.cmd('mesh volume 1 2') #### End of meshing ###### This is boundary_definition.py of GEOCUBIT #..... which extracts the bounding faces and defines them into blocks boundary_definition.entities=['face'] boundary_definition.define_bc(boundary_definition.entities,parallel=True) #### Define material properties for the 3 volumes ################ cubit.cmd('#### DEFINE MATERIAL PROPERTIES #######################') cubit.cmd('block 1 name "elastic" ') # elastic material region cubit.cmd('block 1 attribute count 6') cubit.cmd('block 1 attribute index 1 1') # flag for material: 1 for 1. material cubit.cmd('block 1 attribute index 2 2800') # vp cubit.cmd('block 1 attribute index 3 1500') # vs cubit.cmd('block 1 attribute index 4 2300') # rho cubit.cmd('block 1 attribute index 5 9000.0') # Qmu cubit.cmd('block 1 attribute index 6 1 ') # anisotropy_flag cubit.cmd('block 2 name "elastic" ') # elastic material region cubit.cmd('block 2 attribute count 6') cubit.cmd('block 2 attribute index 1 1') # flag for material: 1 for 1. material cubit.cmd('block 2 attribute index 2 2800') # vp cubit.cmd('block 2 attribute index 3 1500') # vs cubit.cmd('block 2 attribute index 4 2300') # rho cubit.cmd('block 2 attribute index 5 9000.0') # Q_mu cubit.cmd('block 2 attribute index 6 0 ') # anisotropy_flag cubit.cmd('export mesh "top.e" dimension 3 overwrite') cubit.cmd('save as "meshing.cub" overwrite') #### Export to SPECFEM3D format using cubit2specfem3d.py of GEOCUBIT os.system('mkdir -p MESH') cubit2specfem3d.export2SPECFEM3D('MESH') # all files needed by SCOTCH are now in directory MESH
geodynamics/specfem3d
EXAMPLES/homogeneous_halfspace_HEX8_elastic_no_absorbing/block_mesh-anisotropic.py
Python
gpl-3.0
2,355
# # spyne - Copyright (C) Spyne contributors. # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 # # # FIXME: Supports e.g. # MULTIPOINT (10 40, 40 30, 20 20, 30 10) # # but not: # MULTIPOINT ((10 40), (40 30), (20 20), (30 10)) # from spyne.model import SimpleModel from spyne.model.primitive.string import Unicode FLOAT_PATTERN = r'-?[0-9]+\.?[0-9]*(e-?[0-9]+)?' _rinse_and_repeat = r'\s*\(%s\s*(,\s*%s)*\)\s*' def _get_one_point_pattern(dim): return ' +'.join([FLOAT_PATTERN] * dim) def _get_point_pattern(dim): return r'POINT\s*\(%s\)' % _get_one_point_pattern(dim) def _get_one_multipoint_pattern(dim): one_point = _get_one_point_pattern(dim) return _rinse_and_repeat % (one_point, one_point) def _get_multipoint_pattern(dim): return r'MULTIPOINT\s*%s' % _get_one_multipoint_pattern(dim) def _get_one_line_pattern(dim): one_point = _get_one_point_pattern(dim) return _rinse_and_repeat % (one_point, one_point) def _get_linestring_pattern(dim): return r'LINESTRING\s*%s' % _get_one_line_pattern(dim) def _get_one_multilinestring_pattern(dim): one_line = _get_one_line_pattern(dim) return _rinse_and_repeat % (one_line, one_line) def _get_multilinestring_pattern(dim): return r'MULTILINESTRING\s*%s' % _get_one_multilinestring_pattern(dim) def _get_one_polygon_pattern(dim): one_line = _get_one_line_pattern(dim) return _rinse_and_repeat % (one_line, one_line) def _get_polygon_pattern(dim): return r'POLYGON\s*%s' % _get_one_polygon_pattern(dim) def _get_one_multipolygon_pattern(dim): one_line = _get_one_polygon_pattern(dim) return _rinse_and_repeat % (one_line, one_line) def _get_multipolygon_pattern(dim): return r'MULTIPOLYGON\s*%s' % _get_one_multipolygon_pattern(dim) class Point(Unicode): """A point type whose native format is a WKT string. You can use :func:`shapely.wkt.loads` to get a proper point type. It's a subclass of the :class:`Unicode` type, so regular Unicode constraints apply. The only additional parameter is the number of dimensions. :param dim: Number of dimensons. """ __type_name__ = None class Attributes(Unicode.Attributes): dim = None @staticmethod def Value(x, y, prec=15): return ('POINT(%%3.%(prec)sf %%3.%(prec)sf)' % {'prec': prec}) % (x,y) def __new__(cls, dim=None, **kwargs): assert dim in (None, 2, 3) if dim is not None: kwargs['dim'] = dim kwargs['pattern'] = _get_point_pattern(dim) kwargs['type_name'] = 'point%dd' % dim retval = SimpleModel.__new__(cls, **kwargs) retval.__namespace__ = 'http://spyne.io/schema' retval.__extends__ = Unicode retval.__orig__ = Unicode return retval class Line(Unicode): """A line type whose native format is a WKT string. You can use :func:`shapely.wkt.loads` to get a proper line type. It's a subclass of the :class:`Unicode` type, so regular Unicode constraints apply. The only additional parameter is the number of dimensions. :param dim: Number of dimensons. """ __type_name__ = None class Attributes(Unicode.Attributes): dim = None def __new__(cls, dim=None, **kwargs): assert dim in (None, 2, 3) if dim is not None: kwargs['dim'] = dim kwargs['pattern'] = _get_linestring_pattern(dim) kwargs['type_name'] = 'line%dd' % dim retval = SimpleModel.__new__(cls, **kwargs) retval.__namespace__ = 'http://spyne.io/schema' retval.__extends__ = Unicode retval.__orig__ = Unicode return retval LineString = Line class Polygon(Unicode): """A polygon type whose native format is a WKT string. You can use :func:`shapely.wkt.loads` to get a proper polygon type. It's a subclass of the :class:`Unicode` type, so regular Unicode constraints apply. The only additional parameter is the number of dimensions. :param dim: Number of dimensons. """ __type_name__ = None class Attributes(Unicode.Attributes): dim = None def __new__(cls, dim=None, **kwargs): assert dim in (None, 2, 3) if dim is not None: kwargs['dim'] = dim kwargs['pattern'] = _get_polygon_pattern(dim) kwargs['type_name'] = 'polygon%dd' % dim retval = SimpleModel.__new__(cls, **kwargs) retval.__namespace__ = 'http://spyne.io/schema' retval.__extends__ = Unicode retval.__orig__ = Unicode return retval class MultiPoint(Unicode): """A MultiPoint type whose native format is a WKT string. You can use :func:`shapely.wkt.loads` to get a proper MultiPoint type. It's a subclass of the :class:`Unicode` type, so regular Unicode constraints apply. The only additional parameter is the number of dimensions. :param dim: Number of dimensons. """ __type_name__ = None class Attributes(Unicode.Attributes): dim = None def __new__(cls, dim=None, **kwargs): assert dim in (None, 2, 3) if dim is not None: kwargs['dim'] = dim kwargs['pattern'] = _get_multipoint_pattern(dim) kwargs['type_name'] = 'multiPoint%dd' % dim retval = SimpleModel.__new__(cls, **kwargs) retval.__namespace__ = 'http://spyne.io/schema' retval.__extends__ = Unicode retval.__orig__ = Unicode return retval class MultiLine(Unicode): """A MultiLine type whose native format is a WKT string. You can use :func:`shapely.wkt.loads` to get a proper MultiLine type. It's a subclass of the :class:`Unicode` type, so regular Unicode constraints apply. The only additional parameter is the number of dimensions. :param dim: Number of dimensons. """ __type_name__ = None class Attributes(Unicode.Attributes): dim = None def __new__(cls, dim=None, **kwargs): assert dim in (None, 2, 3) if dim is not None: kwargs['dim'] = dim kwargs['pattern'] = _get_multilinestring_pattern(dim) kwargs['type_name'] = 'multiLine%dd' % dim retval = SimpleModel.__new__(cls, **kwargs) retval.__namespace__ = 'http://spyne.io/schema' retval.__extends__ = Unicode retval.__orig__ = Unicode return retval MultiLineString = MultiLine class MultiPolygon(Unicode): """A MultiPolygon type whose native format is a WKT string. You can use :func:`shapely.wkt.loads` to get a proper MultiPolygon type. It's a subclass of the :class:`Unicode` type, so regular Unicode constraints apply. The only additional parameter is the number of dimensions. :param dim: Number of dimensons. """ __type_name__ = None class Attributes(Unicode.Attributes): dim = None def __new__(cls, dim=None, **kwargs): assert dim in (None, 2, 3) if dim is not None: kwargs['dim'] = dim kwargs['pattern'] = _get_multipolygon_pattern(dim) kwargs['type_name'] = 'multipolygon%dd' % dim retval = SimpleModel.__new__(cls, **kwargs) retval.__namespace__ = 'http://spyne.io/schema' retval.__extends__ = Unicode retval.__orig__ = Unicode return retval
deevarvar/myLab
baidu_code/soap_mockserver/spyne/model/primitive/geo.py
Python
mit
8,026
import unittest from mox import MoxTestBase, IsA from slimta.relay.smtp.static import StaticSmtpRelay from slimta.relay.smtp.client import SmtpRelayClient class TestStaticSmtpRelay(MoxTestBase, unittest.TestCase): def test_add_client(self): static = StaticSmtpRelay('testhost') ret = static.add_client() self.assertIsInstance(ret, SmtpRelayClient) def test_add_client_custom(self): def fake_class(addr, queue, **kwargs): self.assertEqual(('testhost', 25), addr) return 'success' static = StaticSmtpRelay('testhost', client_class=fake_class) self.assertEqual('success', static.add_client()) # vim:et:fdm=marker:sts=4:sw=4:ts=4
slimta/python-slimta
test/test_slimta_relay_smtp_static.py
Python
mit
713
import sys import unittest from argparse import ArgumentParser from collections import namedtuple from pprint import pprint from unittest.mock import patch from unittest.mock import MagicMock from python_bindings import constants from tests.harness import instrumentGooey from gooey.tests import * class TestGooeyApplication(unittest.TestCase): def testFullscreen(self): parser = self.basicParser() for shouldShow in [True, False]: with self.subTest('Should set full screen: {}'.format(shouldShow)): with instrumentGooey(parser, fullscreen=shouldShow) as (app, frame, gapp): self.assertEqual(frame.IsFullScreen(), shouldShow) @patch("gui.containers.application.modals.confirmForceStop") def testGooeyRequestsConfirmationWhenShowStopWarningModalTrue(self, mockModal): """ When show_stop_warning=False, Gooey should immediately kill the running program without additional user confirmation. Otherwise, Gooey should show a confirmation modal and, dependending on the user's choice, either do nothing or kill the running program. """ Case = namedtuple('Case', ['show_warning', 'shouldSeeConfirm', 'userChooses', 'shouldHaltProgram']) testcases = [ Case(show_warning=True, shouldSeeConfirm=True, userChooses=True, shouldHaltProgram=True), Case(show_warning=True, shouldSeeConfirm=True, userChooses=False, shouldHaltProgram=False), Case(show_warning=False, shouldSeeConfirm=False, userChooses='N/A', shouldHaltProgram=True), ] for case in testcases: mockModal.reset_mock() parser = self.basicParser() with instrumentGooey(parser, show_stop_warning=case.show_warning) as (app, frame, gapp): mockClientRunner = MagicMock() mockModal.return_value = case.userChooses gapp.clientRunner = mockClientRunner gapp.handleInterrupt() if case.shouldSeeConfirm: mockModal.assert_called() else: mockModal.assert_not_called() if case.shouldHaltProgram: mockClientRunner.stop.assert_called() else: mockClientRunner.stop.assert_not_called() # @patch("gui.containers.application.modals.confirmForceStop") # def testOnCloseShutsDownActiveClients(self, mockModal): # """ # Issue 592: Closing the UI should clean up any actively running programs # """ # parser = self.basicParser() # with instrumentGooey(parser) as (app, frame): # frame.clientRunner = MagicMock() # frame.destroyGooey = MagicMock() # # mocking that the user clicks "yes shut down" in the warning modal # mockModal.return_value = True # frame._instance.handleClose() # # mockModal.assert_called() # frame.destroyGooey.assert_called() def testTerminalColorChanges(self): ## Issue #625 terminal panel color wasn't being set due to a typo parser = self.basicParser() expectedColors = [(255, 0, 0, 255), (255, 255, 255, 255), (100, 100, 100,100)] for expectedColor in expectedColors: with instrumentGooey(parser, terminal_panel_color=expectedColor) as (app, frame, gapp): foundColor = gapp.consoleRef.instance.GetBackgroundColour() self.assertEqual(tuple(foundColor), expectedColor) def testFontWeightsGetSet(self): ## Issue #625 font weight wasn't being correctly passed to the terminal for weight in [constants.FONTWEIGHT_LIGHT, constants.FONTWEIGHT_BOLD]: parser = self.basicParser() with instrumentGooey(parser, terminal_font_weight=weight) as (app, frame, gapp): terminal = gapp.consoleRef.instance.textbox self.assertEqual(terminal.GetFont().GetWeight(), weight) def testProgressBarHiddenWhenDisabled(self): options = [ {'disable_progress_bar_animation': True}, {'disable_progress_bar_animation': False}, {} ] for kwargs in options: parser = self.basicParser() with instrumentGooey(parser, **kwargs) as (app, frame, gapp): mockClientRunner = MagicMock() frame.clientRunner = mockClientRunner # transition's Gooey to the running state using the now mocked processor. # so that we can make assertions about the visibility of footer buttons gapp.onStart() # the progress bar flag is awkwardly inverted (is_disabled, rather than # is_enabled). Thus inverting the expectation here. When disabled is true, # shown should be False, expect_shown = not kwargs.get('disable_progress_bar_animation', False) self.assertEqual(gapp.state['progress']['show'], expect_shown) def basicParser(self): parser = ArgumentParser() parser.add_argument('--foo') return parser if __name__ == '__main__': unittest.main()
chriskiehl/Gooey
gooey/tests/test_application.py
Python
mit
5,268
# -*- coding: utf-8 -*- import os import glob # Import Data Resampling Class from user library from lib.pyoval import CS2RefOrbit from lib.pyoval import CS2OrbitResData from lib.data import read_embird_dat from lib.data import read_OIB from lib.helpers import EmptyObject class PathInfo(): """ Definition of pathes and filenames for tests """ def __init__(self): # Path to reference orbit files self.dir = EmptyObject() self.dir.workspace = '/Volumes/Data/OneDrive/CryoVal-SI/GoldenDays/' self.dir.SampleData = os.path.join(self.dir.workspace,'20130424') self.dir.RefOrbit = self.dir.SampleData self.dir.RefCCOrbit = self.dir.SampleData self.dir.SampleFigures = self.dir.SampleData # Files self.file = EmptyObject() #self.file.example_orbit = r'Location_file_21011_20140326T090003_20140326T102353.txt' #self.file.example_des_orbit = r'Location_file_10520_20120402T110853_20120402T124403_L1B_vBC.txt' #self.file.example_aem = r'20140321_allfinal.dat' self.file.example_oib = r'OIB_20130424_IDCSI2.txt' def example_calc_corner_coordinates(orbit=10520,lon_limit=[-180.1, 180.1], lat_limit=[60., 88.]): """Calculate Corner Coordinates from reference orbit files""" # Read examplary reference orbit data (center locations of footprint) # Initialize RefOrbit Class # Required for setting projection, initial ROI etc. info = PathInfo() reforbit = CS2RefOrbit() # Limit reference orbit data to region of interest # (Speed things up for corner coordinate caluclation and resampling) # ! Needs to be called before from_file # This example: Lincoln Sea (CryoVex 2011) # Note: longitude limits in range between -180 and 180 reforbit.set_sin_detection(False) reforbit.limit_region(lat_limit=lat_limit, lon_limit=lon_limit) reforbit_file= str(os.path.join(info.dir.RefOrbit, info.file.example_orbit)) print reforbit_file # Read center coordinates (files provided from UCL for CryoVal-SI) # Input parameter: Full file name reforbit.from_file(reforbit_file) reforbit.debug_map() # Save corner coordinates to file (in specified folder) reforbit.to_CCfile(folder=info.dir.RefCCOrbit) def example_resample_oib(orbit=10520): """ Example of how to resample arbitrary validation data onto CryoSat-2 footprints (no drift correction applied) """ #=================================================================================== # 1) Get Corner coordinates #=================================================================================== # Read Reference coorner coordinates from ascii file # Retrieve corner coordinates from orbit 5399 # (Example, can be customized) info = PathInfo() cc_file = glob.glob(os.path.join(info.dir.RefCCOrbit, '*'+str(orbit)+'*'))[0] # Initialize reference orbit data object and read corner coordinate file reforbit = CS2RefOrbit() reforbit.from_file(cc_file, corner_coords=True) # Example: Read EM-Bird data # Data structure of Cal/Val data can be arbitrary as long as # * data is organized as vectors/array with identical shape # * arrays exist for time, longitude, latitude, value (e.g. thickness, freeboard, ....) # * time information is available as python datetime object (time zone UTC()) oib_file = os.path.join(info.dir.SampleData, info.file.example_oib) print oib_file oib = read_OIB(oib_file) #=================================================================================== # 2) Resample Cal/Val Data to CryoSat-2 orbits #=================================================================================== # Initialize object # Required for projection and sanity checks resdata = CS2OrbitResData() # Add the Orbit Corner Coordinates resdata.add_cs2orbit(reforbit) # Add the Cal/Val data resdata.add_calval_data(oib.dt_time, # time info as datetime object vector oib.longitude, # longitude vector oib.latitude, # latitude vector oib.freeboard) # cal/val data vector # make use of pre-defined bins from progress meeting 1 # user bins can be added by the method pyoval.CS2OrbitResData.set_pdf_bins(bins) resdata.set_data_type('freeboard') # Resample Cal/Val Data resdata.resample() #=================================================================================== # 3) Generate output (data files and summary plots) #=================================================================================== # Define Labels etc for output resdata.set_data_label('oibql') resdata.set_data_extlabel("OIB freeboard") resdata.set_parameter_extlabel('Freeboard') resdata.set_data_unit('Meter') # Write ASCII data output resdata.to_file(info.dir.SampleFigures) # Create summary plot (in specified folder) resdata.summary_plot(info.dir.SampleFigures) def example_resample_embird(orbit=10520): """ Example of how to resample arbitrary validation data onto CryoSat-2 footprints (no drift correction applied) """ #=================================================================================== # 1) Get Corner coordinates #=================================================================================== # Read Reference coorner coordinates from ascii file # Retrieve corner coordinates from orbit 5399 # (Example, can be customized) info = PathInfo() cc_file = glob.glob(os.path.join(info.dir.RefCCOrbit, '*'+str(orbit)+'*'))[0] # Initialize reference orbit data object and read corner coordinate file reforbit = CS2RefOrbit() reforbit.from_file(cc_file, corner_coords=True) # Example: Read EM-Bird data # Data structure of Cal/Val data can be arbitrary as long as # * data is organized as vectors/array with identical shape # * arrays exist for time, longitude, latitude, value (e.g. thickness, freeboard, ....) # * time information is available as python datetime object (time zone UTC()) aem_file = os.path.join(info.dir.SampleData, info.file.example_aem) aem = read_embird_dat(aem_file) #=================================================================================== # 2) Resample Cal/Val Data to CryoSat-2 orbits #=================================================================================== # Initialize object # Required for projection and sanity checks resdata = CS2OrbitResData() # Add the Orbit Corner Coordinates resdata.add_cs2orbit(reforbit) # Add the Cal/Val data resdata.add_calval_data(aem.dt_time, # time info as datetime object vector aem.longitude, # longitude vector aem.latitude, # latitude vector aem.thickness) # cal/val data vector # make use of pre-defined bins from progress meeting 1 # user bins can be added by the method pyoval.CS2OrbitResData.set_pdf_bins(bins) resdata.set_data_type('thickness') # Resample Cal/Val Data resdata.resample() #=================================================================================== # 3) Generate output (data files and summary plots) #=================================================================================== # Define Labels etc for output resdata.set_data_label('aem') resdata.set_data_extlabel("EM-Bird sea-ice thickness") resdata.set_parameter_extlabel('Sea-Ice Thickness') resdata.set_data_unit('Meter') # Write ASCII data output resdata.to_file(info.dir.SampleFigures) # Create summary plot (in specified folder) resdata.summary_plot(info.dir.SampleFigures) def test_asscending_orbit(): """ Test of SARin position corrections for descending orbits """ info = PathInfo() reforbit = CS2RefOrbit() reforbit.set_sin_detection(False) reforbit.limit_region(lat_limit=[82., 88.], lon_limit=[-120., -40.]) reforbit.from_file(os.path.join(info.dir.RefOrbit, info.file.example_orbit)) reforbit.to_CCfile(folder=info.dir.RefCCOrbit) def test_descending_orbit(): """ Test of SARin position corrections for descending orbits """ info = PathInfo() reforbit = CS2RefOrbit() reforbit.set_sin_detection(False) reforbit.limit_region(lat_limit=[82., 88.], lon_limit=[-120., -40.]) reforbit.from_file(os.path.join(info.dir.RefOrbit, info.file.example_des_orbit)) reforbit.to_CCfile(folder=info.dir.RefCCOrbit) if __name__ == '__main__': #example_calc_corner_coordinates(orbit=21011, # lat_limit=[60., 88.], # lon_limit=[-180.1, 180.1]) #example_resample_embird(orbit=16139) #example_resample_embird(orbit=21077) example_resample_oib(orbit=16139) #example_resample_oib(orbit=21092) #test_descending_orbit() #test_asscending_orbit()
shendric/pyoval
tests_resample_uofa_orbits.py
Python
gpl-3.0
9,128
""" steward_salt client commands """ from pprint import pprint def do_salt(client, tgt, cmd, *args, **kwargs): """ Run a command using salt Parameters ---------- tgt : str The servers to run the command on cmd : str The salt module to run timeout : int, optional How long to wait for a response from the minions expr_form : str, optional The format of the target str (default 'glob') args : list List of positional arguments to pass to the command kwargs : dict Dict of keyword arguments to pass to the command """ timeout = kwargs.pop('timeout', None) expr_form = kwargs.pop('expr_form', None) data = { 'tgt': tgt, 'cmd': cmd, 'arg': args, 'kwarg': kwargs, } if timeout is not None: data['timeout'] = timeout if expr_form is not None: data['expr_form'] = expr_form response = client.cmd('salt', **data) pprint(response.json()) def do_salt_ssh(client, tgt, cmd, *args, **kwargs): """ Run a command using salt Parameters ---------- tgt : str The servers to run the command on cmd : str The salt module to run timeout : int, optional How long to wait for a response from the minions expr_form : str, optional The format of the target str (default 'glob') args : list List of positional arguments to pass to the command kwargs : dict Dict of keyword arguments to pass to the command """ timeout = kwargs.pop('timeout', None) expr_form = kwargs.pop('expr_form', None) data = { 'tgt': tgt, 'cmd': cmd, 'arg': args, 'kwarg': kwargs, } if timeout is not None: data['timeout'] = timeout if expr_form is not None: data['expr_form'] = expr_form response = client.cmd('salt/ssh', **data) pprint(response.json()) def do_salt_call(client, mod, *args, **kwargs): """ Run a salt command on the server Parameters ---------- mod : str The salt module to run *args : list List of positional arguments to pass to the command **kwargs : dict Dict of keyword arguments to pass to the command """ response = client.cmd('salt/call', cmd=mod, arg=args, kwarg=kwargs) pprint(response.json()) def do_omnishell(client): """ Activate the OMNISHELL """ from .omnishell import load_dotfile, SaltTerm def delegate(transport, tgt, cmd, arg, timeout, expr_form): """ Delegates commands to the salt endpoints """ if transport == 'zmq': return client.cmd('salt', tgt=tgt, cmd=cmd, arg=arg, timeout=timeout, expr_form=expr_form).json() elif transport == 'ssh': return client.cmd('salt/ssh', tgt=tgt, cmd=cmd, arg=arg, timeout=timeout, expr_form=expr_form).json() else: return "Unknown transport '%s'" % transport SaltTerm().start(delegate, load_dotfile())
mathcamp/steward_salt
steward_salt/client.py
Python
mit
3,087
# Copyright 2014 Red Hat Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_serialization import jsonutils from nova import db from nova import exception from nova.objects import base from nova.objects import fields as obj_fields from nova.virt import hardware # TODO(berrange): Remove NovaObjectDictCompat @base.NovaObjectRegistry.register class InstanceNUMACell(base.NovaObject, base.NovaObjectDictCompat): # Version 1.0: Initial version # Version 1.1: Add pagesize field # Version 1.2: Add cpu_pinning_raw and topology fields VERSION = '1.2' fields = { 'id': obj_fields.IntegerField(), 'cpuset': obj_fields.SetOfIntegersField(), 'memory': obj_fields.IntegerField(), 'pagesize': obj_fields.IntegerField(nullable=True), 'cpu_topology': obj_fields.ObjectField('VirtCPUTopology', nullable=True), 'cpu_pinning_raw': obj_fields.DictOfIntegersField(nullable=True) } obj_relationships = { 'cpu_topology': [('1.2', '1.0')] } cpu_pinning = obj_fields.DictProxyField('cpu_pinning_raw') def __init__(self, **kwargs): super(InstanceNUMACell, self).__init__(**kwargs) if 'pagesize' not in kwargs: self.pagesize = None self.obj_reset_changes(['pagesize']) if 'cpu_topology' not in kwargs: self.cpu_topology = None self.obj_reset_changes(['cpu_topology']) if 'cpu_pinning' not in kwargs: self.cpu_pinning = None self.obj_reset_changes(['cpu_pinning_raw']) def __len__(self): return len(self.cpuset) def _to_dict(self): # NOTE(sahid): Used as legacy, could be renamed in # _legacy_to_dict_ to the future to avoid confusing. return {'cpus': hardware.format_cpu_spec(self.cpuset, allow_ranges=False), 'mem': {'total': self.memory}, 'id': self.id, 'pagesize': self.pagesize} @classmethod def _from_dict(cls, data_dict): # NOTE(sahid): Used as legacy, could be renamed in # _legacy_from_dict_ to the future to avoid confusing. cpuset = hardware.parse_cpu_spec(data_dict.get('cpus', '')) memory = data_dict.get('mem', {}).get('total', 0) cell_id = data_dict.get('id') pagesize = data_dict.get('pagesize') return cls(id=cell_id, cpuset=cpuset, memory=memory, pagesize=pagesize) @property def siblings(self): cpu_list = sorted(list(self.cpuset)) threads = 0 if self.cpu_topology: threads = self.cpu_topology.threads if threads == 1: threads = 0 return list(map(set, zip(*[iter(cpu_list)] * threads))) @property def cpu_pinning_requested(self): return self.cpu_pinning is not None def pin(self, vcpu, pcpu): if vcpu not in self.cpuset: return pinning_dict = self.cpu_pinning or {} pinning_dict[vcpu] = pcpu self.cpu_pinning = pinning_dict def pin_vcpus(self, *cpu_pairs): for vcpu, pcpu in cpu_pairs: self.pin(vcpu, pcpu) # TODO(berrange): Remove NovaObjectDictCompat @base.NovaObjectRegistry.register class InstanceNUMATopology(base.NovaObject, base.NovaObjectDictCompat): # Version 1.0: Initial version # Version 1.1: Takes into account pagesize # Version 1.2: InstanceNUMACell 1.2 VERSION = '1.2' fields = { # NOTE(danms): The 'id' field is no longer used and should be # removed in the future when convenient 'id': obj_fields.IntegerField(), 'instance_uuid': obj_fields.UUIDField(), 'cells': obj_fields.ListOfObjectsField('InstanceNUMACell'), } obj_relationships = { 'cells': [('1.0', '1.0'), ('1.2', '1.2')], } @classmethod def obj_from_primitive(cls, primitive, context=None): if 'nova_object.name' in primitive: obj_topology = super(InstanceNUMATopology, cls).obj_from_primitive( primitive, context=None) else: # NOTE(sahid): This compatibility code needs to stay until we can # guarantee that there are no cases of the old format stored in # the database (or forever, if we can never guarantee that). obj_topology = InstanceNUMATopology._from_dict(primitive) obj_topology.id = 0 return obj_topology @classmethod def obj_from_db_obj(cls, instance_uuid, db_obj): primitive = jsonutils.loads(db_obj) obj_topology = cls.obj_from_primitive(primitive) if 'nova_object.name' not in db_obj: obj_topology.instance_uuid = instance_uuid # No benefit to store a list of changed fields obj_topology.obj_reset_changes() return obj_topology # TODO(ndipanov) Remove this method on the major version bump to 2.0 @base.remotable def create(self): self._save() # NOTE(ndipanov): We can't rename create and want to avoid version bump # as this needs to be backported to stable so this is not a @remotable # That's OK since we only call it from inside Instance.save() which is. def _save(self): values = {'numa_topology': self._to_json()} db.instance_extra_update_by_uuid(self._context, self.instance_uuid, values) self.obj_reset_changes() # NOTE(ndipanov): We want to avoid version bump # as this needs to be backported to stable so this is not a @remotable # That's OK since we only call it from inside Instance.save() which is. @classmethod def delete_by_instance_uuid(cls, context, instance_uuid): values = {'numa_topology': None} db.instance_extra_update_by_uuid(context, instance_uuid, values) @base.remotable_classmethod def get_by_instance_uuid(cls, context, instance_uuid): db_extra = db.instance_extra_get_by_instance_uuid( context, instance_uuid, columns=['numa_topology']) if not db_extra: raise exception.NumaTopologyNotFound(instance_uuid=instance_uuid) if db_extra['numa_topology'] is None: return None return cls.obj_from_db_obj(instance_uuid, db_extra['numa_topology']) def _to_json(self): return jsonutils.dumps(self.obj_to_primitive()) def __len__(self): """Defined so that boolean testing works the same as for lists.""" return len(self.cells) def _to_dict(self): # NOTE(sahid): Used as legacy, could be renamed in _legacy_to_dict_ # in the future to avoid confusing. return {'cells': [cell._to_dict() for cell in self.cells]} @classmethod def _from_dict(cls, data_dict): # NOTE(sahid): Used as legacy, could be renamed in _legacy_from_dict_ # in the future to avoid confusing. return cls(cells=[ InstanceNUMACell._from_dict(cell_dict) for cell_dict in data_dict.get('cells', [])]) @property def cpu_pinning_requested(self): return all(cell.cpu_pinning_requested for cell in self.cells)
scripnichenko/nova
nova/objects/instance_numa_topology.py
Python
apache-2.0
7,900
# Copyright 2012 Rackspace # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from utils import DoesNotExist, MultipleObjectsReturned from utils import parse_query from utils import QueryStringQuery from store import ElasticsearchClient from queryset import ElasticsearchQueryset class ElasticsearchUtils(object): """ useful but scary methods not appropriate to be on the model/managers """ _client = None _index = None _type = None def __init__(self, model_cls): self._client = model_cls._client self._index = model_cls._get_index() self._type = model_cls._get_doctype() def delete_index(self): return self._client.delete_index(self._index) def create_index(self): return self._client.create_index(self._index) def optimize(self): return self._client.optimize(self._index) def refresh(self): return self._client.refresh(self._index) def delete_all_documents(self): return self.delete_by_query("*:*") def delete_by_query(self, query): return self._client.delete_by_query(self._index, self._type, QueryStringQuery(query).to_json()) class ElasticsearchManager(object): """ base manager class for elasticsearch documents """ _model = None def _get_queryset(self, query): return ElasticsearchQueryset(self._model, query) def filter(self, query_string=None, **kwargs): return self._get_queryset(parse_query(query_string, **kwargs)) # TODO: Allow getting documents directly by id, saving the query def get(self, query_string=None, **kwargs): qs = self._get_queryset(parse_query(query_string, **kwargs)) if qs.count() > 1: raise MultipleObjectsReturned if qs.count() < 1: raise DoesNotExist return qs[0] def create(self, **kwargs): return self._model(**kwargs).save() def all(self): return self._get_queryset(parse_query('*:*')) class ElasticsearchBaseModel(type): # triumph of metaprogramming </sarcasm> # this feels lame, but the only way I could figure out how to generically # define the base manager class to know what model it was for but not require an instance of # said model. def __getattribute__(mcs, name): # intercept the manager and populate it with the correct class if name == 'objects': objects = type.__getattribute__(mcs, name) objects._model = mcs return objects else: # otherwise, business as ususal return type.__getattribute__(mcs, name) class ElasticsearchModel(object): """ object representing an elasticsearch document. Works pretty much exactly like the django model/manager pattern except you don't specify attributes for the model because everything is all schemaless and shit. TODO: object mappings TODO: document validation TODO: document primary keys? (hardcoded to 'id') """ __metaclass__ = ElasticsearchBaseModel _document = None _client = ElasticsearchClient() objects = ElasticsearchManager() def __init__(self, **kwargs): self._document = {} for k, v in kwargs.iteritems(): self._document[k] = v def __setattr__(self, name, value): if name.startswith('_'): super(ElasticsearchModel, self).__setattr__(name, value) else: self._document[name] = value def __getattr__(self, name): try: return self._document.get(name) except KeyError: raise AttributeError def __str__(self): return 'instance at %s' % hex(id(self)) def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.__str__()) def __dict__(self): return self._document @classmethod def _get_index(cls): return '%ss' % cls.__name__.lower() @classmethod def _get_doctype(cls): return cls.__name__.lower() def save(self): self._client.index(self._document, self._get_index(), self._get_doctype()) return self
racker/slogger
elasticsearch/core/models.py
Python
apache-2.0
4,651
# -*- coding: utf-8 -*- ############################################################################### # # MoneyReceived # Retrieves a list of successful charge events. # # Python versions 2.6, 2.7, 3.x # # Copyright 2014, Temboo Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific # language governing permissions and limitations under the License. # # ############################################################################### from temboo.core.choreography import Choreography from temboo.core.choreography import InputSet from temboo.core.choreography import ResultSet from temboo.core.choreography import ChoreographyExecution import json class MoneyReceived(Choreography): def __init__(self, temboo_session): """ Create a new instance of the MoneyReceived Choreo. A TembooSession object, containing a valid set of Temboo credentials, must be supplied. """ super(MoneyReceived, self).__init__(temboo_session, '/Library/Stripe/Events/MoneyReceived') def new_input_set(self): return MoneyReceivedInputSet() def _make_result_set(self, result, path): return MoneyReceivedResultSet(result, path) def _make_execution(self, session, exec_id, path): return MoneyReceivedChoreographyExecution(session, exec_id, path) class MoneyReceivedInputSet(InputSet): """ An InputSet with methods appropriate for specifying the inputs to the MoneyReceived Choreo. The InputSet object is used to specify input parameters when executing this Choreo. """ def set_APIKey(self, value): """ Set the value of the APIKey input for this Choreo. ((required, string) The API Key provided by Stripe) """ super(MoneyReceivedInputSet, self)._set_input('APIKey', value) def set_Count(self, value): """ Set the value of the Count input for this Choreo. ((optional, integer) A limit on the number of events to be returned. Count can range between 1 and 100 items. Defaults to 10.) """ super(MoneyReceivedInputSet, self)._set_input('Count', value) def set_Created(self, value): """ Set the value of the Created input for this Choreo. ((optional, date) Filters the result based on the event created date (a UTC timestamp).) """ super(MoneyReceivedInputSet, self)._set_input('Created', value) def set_GreaterThanEqualTo(self, value): """ Set the value of the GreaterThanEqualTo input for this Choreo. ((optional, date) Returns events that have been created after or equal to this UTC timestamp.) """ super(MoneyReceivedInputSet, self)._set_input('GreaterThanEqualTo', value) def set_GreaterThan(self, value): """ Set the value of the GreaterThan input for this Choreo. ((optional, date) Returns events that have been created after this UTC timestamp.) """ super(MoneyReceivedInputSet, self)._set_input('GreaterThan', value) def set_LessThanEqualTo(self, value): """ Set the value of the LessThanEqualTo input for this Choreo. ((optional, date) Return events that were created before or equal to this UTC timestamp.) """ super(MoneyReceivedInputSet, self)._set_input('LessThanEqualTo', value) def set_LessThan(self, value): """ Set the value of the LessThan input for this Choreo. ((optional, date) Return events that were created before this UTC timestamp.) """ super(MoneyReceivedInputSet, self)._set_input('LessThan', value) def set_Offset(self, value): """ Set the value of the Offset input for this Choreo. ((optional, integer) An offset into your events array. The API will return the requested number of events starting at that offset.) """ super(MoneyReceivedInputSet, self)._set_input('Offset', value) def set_ResponseMode(self, value): """ Set the value of the ResponseMode input for this Choreo. ((optional, string) Used to simplify the response. Valid values are: simple and verbose. When set to simple, an array of charge amounts is returned. Verbose mode returns an array of charge objects. Defaults to "simple".) """ super(MoneyReceivedInputSet, self)._set_input('ResponseMode', value) class MoneyReceivedResultSet(ResultSet): """ A ResultSet with methods tailored to the values returned by the MoneyReceived Choreo. The ResultSet object is used to retrieve the results of a Choreo execution. """ def getJSONFromString(self, str): return json.loads(str) def get_Response(self): """ Retrieve the value for the "Response" output from this Choreo execution. ((json) The response from Stripe) """ return self._output.get('Response', None) def get_TotalCount(self): """ Retrieve the value for the "TotalCount" output from this Choreo execution. ((integer) The total number of results. This can be used to determine whether or not you need to retrieve the next page of results.) """ return self._output.get('TotalCount', None) class MoneyReceivedChoreographyExecution(ChoreographyExecution): def _make_result_set(self, response, path): return MoneyReceivedResultSet(response, path)
jordanemedlock/psychtruths
temboo/core/Library/Stripe/Events/MoneyReceived.py
Python
apache-2.0
5,733
############################################################################### # Copyright (c) Intel Corporation - All rights reserved. # # This file is part of the LIBXSMM library. # # # # For information on the license, see the LICENSE file. # # Further information: https://github.com/hfp/libxsmm/ # # SPDX-License-Identifier: BSD-3-Clause # ############################################################################### # Hans Pabst (Intel Corp.) ############################################################################### import sphinx_rtd_theme import os project = 'LIBXSMM' copyright = '2009-2021, Intel Corporation.' author = 'Intel Corporation' user = os.environ.get('USER') extensions = [ #"recommonmark", "m2r2" ] master_doc = "index" source_suffix = [ ".rst", #".md" ] exclude_patterns = [ "*-" + user + "-*.md", "Thumbs.db", ".DS_Store", "_build" ] html_theme = "sphinx_rtd_theme" html_theme_options = { "navigation_depth": 2 } html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_static_path = ["../.theme"] templates_path = ["_templates"] pygments_style = "sphinx" language = None
hfp/libxsmm
documentation/conf.py
Python
bsd-3-clause
1,370
#!/usr/bin/python def message(to, text): print "this is ", to, ":\n", text def add(a, b): return a + b; message('xichen', 'eyu') print add(1,2); def mul(a, b): return a * b; print mul(2, 3); print mul('a', 3); print mul(b=2, a='dd'); print 2 ** 100; print message; func = add; print func(1, 2);
cxsjabc/basic
python/message.py
Python
agpl-3.0
308
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Tests for :module:'heat.engine.clients.os.cinder'.""" import uuid import mock from heat.common import exception from heat.engine.clients.os import cinder from heat.tests import common from heat.tests import utils class CinderClientPluginTest(common.HeatTestCase): """Basic tests for :module:'heat.engine.clients.os.cinder'.""" def setUp(self): super(CinderClientPluginTest, self).setUp() self.cinder_client = mock.MagicMock() con = utils.dummy_context() c = con.clients self.cinder_plugin = c.client_plugin('cinder') self.cinder_plugin._client = self.cinder_client def test_get_volume(self): """Tests the get_volume function.""" volume_id = str(uuid.uuid4()) my_volume = mock.MagicMock() self.cinder_client.volumes.get.return_value = my_volume self.assertEqual(my_volume, self.cinder_plugin.get_volume(volume_id)) self.cinder_client.volumes.get.assert_called_once_with(volume_id) def test_get_snapshot(self): """Tests the get_volume_snapshot function.""" snapshot_id = str(uuid.uuid4()) my_snapshot = mock.MagicMock() self.cinder_client.volume_snapshots.get.return_value = my_snapshot self.assertEqual(my_snapshot, self.cinder_plugin.get_volume_snapshot(snapshot_id)) self.cinder_client.volume_snapshots.get.assert_called_once_with( snapshot_id) class VolumeConstraintTest(common.HeatTestCase): def setUp(self): super(VolumeConstraintTest, self).setUp() self.ctx = utils.dummy_context() self.mock_get_volume = mock.Mock() self.ctx.clients.client_plugin( 'cinder').get_volume = self.mock_get_volume self.constraint = cinder.VolumeConstraint() def test_validation(self): self.mock_get_volume.return_value = None self.assertTrue(self.constraint.validate("foo", self.ctx)) def test_validation_error(self): self.mock_get_volume.side_effect = exception.EntityNotFound( entity='Volume', name='bar') self.assertFalse(self.constraint.validate("bar", self.ctx)) class VolumeSnapshotConstraintTest(common.HeatTestCase): def setUp(self): super(VolumeSnapshotConstraintTest, self).setUp() self.ctx = utils.dummy_context() self.mock_get_snapshot = mock.Mock() self.ctx.clients.client_plugin( 'cinder').get_volume_snapshot = self.mock_get_snapshot self.constraint = cinder.VolumeSnapshotConstraint() def test_validation(self): self.mock_get_snapshot.return_value = 'snapshot' self.assertTrue(self.constraint.validate("foo", self.ctx)) def test_validation_error(self): self.mock_get_snapshot.side_effect = exception.EntityNotFound( entity='VolumeSnapshot', name='bar') self.assertFalse(self.constraint.validate("bar", self.ctx)) class VolumeTypeConstraintTest(common.HeatTestCase): def setUp(self): super(VolumeTypeConstraintTest, self).setUp() self.ctx = utils.dummy_context() self.mock_get_volume_type = mock.Mock() self.ctx.clients.client_plugin( 'cinder').get_volume_type = self.mock_get_volume_type self.constraint = cinder.VolumeTypeConstraint() def test_validation(self): self.mock_get_volume_type.return_value = 'volume_type' self.assertTrue(self.constraint.validate("foo", self.ctx)) def test_validation_error(self): self.mock_get_volume_type.side_effect = exception.EntityNotFound( entity='VolumeType', name='bar') self.assertFalse(self.constraint.validate("bar", self.ctx)) class VolumeBackupConstraintTest(common.HeatTestCase): def setUp(self): super(VolumeBackupConstraintTest, self).setUp() self.ctx = utils.dummy_context() self.mock_get_volume_backup = mock.Mock() self.ctx.clients.client_plugin( 'cinder').get_volume_backup = self.mock_get_volume_backup self.constraint = cinder.VolumeBackupConstraint() def test_validation(self): self.mock_get_volume_backup.return_value = 'volume_backup' self.assertTrue(self.constraint.validate("foo", self.ctx)) def test_validation_error(self): ex = exception.EntityNotFound(entity='Volume backup', name='bar') self.mock_get_volume_backup.side_effect = ex self.assertFalse(self.constraint.validate("bar", self.ctx))
jasondunsmore/heat
heat/tests/clients/test_cinder_client.py
Python
apache-2.0
5,085
# -*-python-*- # # Copyright (C) 1999-2013 The ViewCVS Group. All Rights Reserved. # # By using this file, you agree to the terms and conditions set forth in # the LICENSE.html file which can be found at the top level of the ViewVC # distribution or at http://viewvc.org/license-1.html. # # For more information, visit http://viewvc.org/ # # ----------------------------------------------------------------------- import sys import time import types import re import compat import MySQLdb # set to 1 to store commit times in UTC, or 0 to use the ViewVC machine's # local timezone. Using UTC is recommended because it ensures that the # database will remain valid even if it is moved to another machine or the host # computer's time zone is changed. UTC also avoids the ambiguity associated # with daylight saving time (for example if a computer in New York recorded the # local time 2002/10/27 1:30 am, there would be no way to tell whether the # actual time was recorded before or after clocks were rolled back). Use local # times for compatibility with databases used by ViewCVS 0.92 and earlier # versions. utc_time = 1 def DateTimeFromTicks(ticks): """Return a MySQL DATETIME value from a unix timestamp""" if utc_time: t = time.gmtime(ticks) else: t = time.localtime(ticks) return "%04d-%02d-%02d %02d:%02d:%02d" % t[:6] _re_datetime = re.compile('([0-9]{4})-([0-9][0-9])-([0-9][0-9]) ' '([0-9][0-9]):([0-9][0-9]):([0-9][0-9])') def TicksFromDateTime(datetime): """Return a unix timestamp from a MySQL DATETIME value""" if type(datetime) == types.StringType: # datetime is a MySQL DATETIME string matches = _re_datetime.match(datetime).groups() t = tuple(map(int, matches)) + (0, 0, 0) elif hasattr(datetime, "timetuple"): # datetime is a Python >=2.3 datetime.DateTime object t = datetime.timetuple() else: # datetime is an eGenix mx.DateTime object t = datetime.tuple() if utc_time: return compat.timegm(t) else: return time.mktime(t[:8] + (-1,)) def connect(host, port, user, passwd, db): return MySQLdb.connect(host=host, port=port, user=user, passwd=passwd, db=db)
marcellodesales/svnedge-console
svn-server/lib/viewvc/dbi.py
Python
agpl-3.0
2,184
from bucket.local import LocalProvider import config import statestore import logging import os import threading import traceback import messages from send2trash import send2trash from worker import BaseWorker class Download(BaseWorker): def __init__(self, objectStore, outputQueue): BaseWorker.__init__(self) self.objectStore = objectStore self.outputQueue = outputQueue self.localStore = LocalProvider() c = config.Config() self.localSyncPath = c.get_home_folder() self.tempDownloadFolder = c.get_temporary_folder() self.state = statestore.StateStore(c.username) self.lock = threading.Lock() self.running = True self.trashFolder = c.get_trash_folder() def stop(self): logging.info('Download::stop') self.objectStore.stop() self.running = False def _get_working_message(self): return messages.Status('Looking for files to download') def perform(self): # get the current directory #logging.debug('Download::perform') self.outputQueue.put(self._get_working_message()) files = self.objectStore.list_dir(None) for f in files: if not self.running: break #logging.debug('f.path = %r' % f.path) if f.isFolder: if f.name == self.trashFolder: # we don't download the trash folder continue else: skipChildren = self.download_folder(f) # if we deleted a bunch of stuff - it might # mean our files list is out of wack # so lets rather just break out - and restart # next time round if skipChildren: logging.info('break') break else: self.download_file(f) self.outputQueue.put(messages.Status('Local files up to date')) def download_file(self, f): localPath = self.get_local_path(f.path) if not os.path.exists(localPath): self._set_hadWorkToDo(True) #logging.debug('does not exist: %s' % localPath) if self.already_synced_file(f.path): # if we've already downloaded this file, # it means we have to delete it remotely! logging.info('delete remote version of %s' % localPath) self.delete_remote_file(f.path) else: # lets get the file head, tail = os.path.split(localPath) self.outputQueue.put(messages.Status('Downloading %s' % tail)) tmpFile = self.get_tmp_filename() if os.path.exists(tmpFile): # if a temporary file with the same name # exists, delete it os.remove(tmpFile) self.objectStore.download_object(f.path, tmpFile) os.rename(tmpFile, localPath) localMD = self.localStore.get_last_modified_date(localPath) self.state.markObjectAsSynced(f.path, f.hash, localMD) self.outputQueue.put(self._get_working_message()) else: # the file already exists - do we overwrite it? syncInfo = self.state.getObjectSyncInfo(f.path) if syncInfo: localMD = self.localStore.get_last_modified_date(localPath) if syncInfo.dateModified != localMD: # the dates differ! we need to calculate the hash! localFileInfo = self.localStore.get_file_info(localPath) if localFileInfo.hash != f.hash: # hmm - ok, if the online one, has the same hash # as I synced, then it means the local file # has changed! if syncInfo.hash == f.hash: # online and synced have the same version! # that means the local one has changed # so we're not downloading anything # the upload process should handle this pass else: logging.warn('TODO: the files differ - which ' 'one do I use?') else: # all good - the files are the same # we can update our local sync info self.state.markObjectAsSynced(f.path, localFileInfo.hash, localMD) else: # dates are the same, so we can assume the hash # hasn't changed if syncInfo.hash != f.hash: # if the sync info is the same as the local file # then it must mean the remote file has changed! get_file_info = self.localStore.get_file_info localFileInfo = get_file_info(localPath) if localFileInfo.hash == syncInfo.hash: self.replace_file(f, localPath) else: logging.info('remote hash: %r' % f.hash) logging.info('local hash: %r' % localFileInfo.hash) logging.info('sync hash: %r' % syncInfo.hash) logging.warn('sync hash differs from local hash!') else: # sync hash is same as remote hash, and the file date # hasn't changed. we assume this to mean, there have # been no changes pass else: # TODO: we need to do something here! # the file exists locally, and remotely - but we don't have any # record of having downloaded it localFileInfo = self.localStore.get_file_info(localPath) if localFileInfo.hash == f.hash: localMD = self.localStore.get_last_modified_date(localPath) self.state.markObjectAsSynced(f.path, localFileInfo.hash, localMD) else: # we don't have any history of this file - and the hash # from local differs from remote! WHAT DO WE DO! logging.error('TODO: HASH differs! Which is which????: %r' % f.path) pass def replace_file(self, f, localPath): self._set_hadWorkToDo(True) head, tail = os.path.split(localPath) self.outputQueue.put(messages.Status('Downloading %s' % tail)) tmpFile = self.get_tmp_filename() if os.path.exists(tmpFile): # if a temporary file with the same name exists, remove it os.remove(tmpFile) self.objectStore.download_object(f.path, tmpFile) send2trash(localPath) os.rename(tmpFile, localPath) localMD = self.localStore.get_last_modified_date(localPath) self.state.markObjectAsSynced(f.path, f.hash, localMD) self.outputQueue.put(self._get_working_message()) def get_tmp_filename(self): return os.path.join(self.tempDownloadFolder, 'tmpfile') def download_folder(self, folder): if not self.running: # return true, to indicate that children can be skipped return True # does the folder exist locally? #logging.debug('download_folder(%s)' % folder.path) localPath = self.get_local_path(folder.path) downloadFolderContents = True skipChildren = False if not os.path.exists(localPath): self._set_hadWorkToDo(True) # the path exists online, but NOT locally # we do one of two things, we either # a) delete it remotely # if we know for a fact we've already downloaded this folder, # then it not being here, can only mean we've deleted it # b) download it # if we haven't marked this folder as being downloaded, # then we get it now if self.already_downloaded_folder(folder.path): logging.info('we need to delete %r!' % folder.path) self.delete_remote_folder(folder.path) downloadFolderContents = False skipChildren = True logging.info('done deleting remote folder') else: #logging.info('creating: %r' % localPath) os.makedirs(localPath) localMD = self.localStore.get_last_modified_date(localPath) self.state.markObjectAsSynced(folder.path, None, localMD) #logging.info('done creating %r' % localPath) if downloadFolderContents: try: #logging.debug('downloading folder # 'contents for %s' % folder.path) files = self.objectStore.list_dir(folder.path) #logging.debug('got %r files' % len(files)) for f in files: if folder.path.strip('/') != f.path.strip('/'): if f.isFolder: skipChildren = self.download_folder(f) if skipChildren: break else: self.download_file(f) except: logging.error('failed to download %s' % folder.path) logging.error(traceback.format_exc()) return skipChildren def get_local_path(self, remote_path): return os.path.join(self.localSyncPath, remote_path) def already_downloaded_folder(self, path): """ Establish if this folder was downloaded before typical use: the folder doesn't exist locally, but it does exist remotely - that would imply that if we'd already downloaded it, it can only be missing if it was deleted, and thusly, we delete it remotely. """ alreadySynced = False syncInfo = self.state.getObjectSyncInfo(path) if syncInfo: # if we have sync info for this path - it means we've # already download # or uploaded it logging.info('we have sync info for %s' % path) alreadySynced = True else: # if we don't have sync info for this path # - it means we haven't downloaded it yet #logging.info('no sync info for %s' % path) pass return alreadySynced def already_synced_file(self, path): """ See: already_downloaded_folder """ syncInfo = self.state.getObjectSyncInfo(path) if syncInfo: remoteFileInfo = self.objectStore.get_file_info(path) if remoteFileInfo.hash == syncInfo.hash: # the hash of the file we synced, is the # same as the one online. # this means, we've already synced this file! return True return False else: return False def delete_remote_folder(self, path): logging.info('delete_remote_folder(path = %r)' % path) # a folder has children - and we need to remove those! self._set_hadWorkToDo(True) children = self.objectStore.list_dir(path) #for child in children: # logging.info('%s [child] %s' % (path, child.path)) for child in children: if child.isFolder: # remove this child folder self.delete_remote_folder(child.path) else: # remove this child file self.delete_remote_file(child.path) logging.info('going to attempt to delete: %r' % path) self.delete_remote_file(path) def delete_remote_file(self, path): self._set_hadWorkToDo(True) logging.info('delete remote file: %s' % path) head, tail = os.path.split(path) self.outputQueue.put(messages.Status('Deleting %s' % tail)) self.objectStore.delete_object(path, moveToTrash=True) self.state.removeObjectSyncRecord(path) self.outputQueue.put(self._get_working_message())
Sybrand/digital-panda
panda-tray/download.py
Python
mit
12,881
#!/usr/bin/python2 """ A loopback bot example using LibTeletap The following code waits for users to send messages. Upon receiving them, the program will send the same text message back to the sender. In case of group messages, the message is sent to the original sender and to the group. http://github.com/rohit-h/teletap """ from teletap import libteletap import time def user_responder(action, user, message): print ' >>> Incoming message from {0} : {1}'.format(user.user_name, message) print ' <<< Outgoing message for {0} : {1}'.format(user.user_name, message) action.send_typing(user); time.sleep(2) action.send_message(user, message) def group_responder(action, group, user, message): print ' >>> Incoming message from {0} on {1} : {2}'.format(user.user_name, group.group_id, message) action.send_message(user, message) # Send to user #action.send_message(group, message) # Send to group [Use responsibly!] if __name__ == '__main__': CLIENT = libteletap.Teletap(binary='/usr/bin/telegram-cli', keyfile='/etc/telegram-cli/server.pub', logs='pingbot.log', quiet=False) CLIENT.attach_user_responder(user_responder) # Attach message handler for user chats CLIENT.attach_group_responder(group_responder) # Attach message handler for group chats try: CLIENT.begin() # Connect & start main event loop except KeyboardInterrupt: CLIENT.shutdown() # Gracefully terminate client and daemon
rohit-h/teletap
examples/loopback.py
Python
gpl-2.0
1,498
#!/usr/bin/env python3 """Example that shows how to easily save a variable number of atoms with a VLArray.""" import numpy as np import tables as tb N = 100 shape = (3, 3) np.random.seed(10) # For reproductible results f = tb.open_file("vlarray4.h5", mode="w") vlarray = f.create_vlarray(f.root, 'vlarray1', tb.Float64Atom(shape=shape), "ragged array of arrays") k = 0 for i in range(N): l = [] for j in range(np.random.randint(N)): l.append(np.random.randn(*shape)) k += 1 vlarray.append(l) print("Total number of atoms:", k) f.close()
avalentino/PyTables
examples/vlarray4.py
Python
bsd-3-clause
626
# -*- coding: utf-8 -*- from module.plugins.internal.DeadHoster import DeadHoster, parseFileInfo class DodanePl(DeadHoster): __name__ = "DodanePl" __type__ = "hoster" __version__ = "0.03" __pattern__ = r'http://(?:www\.)?dodane\.pl/file/\d+' __description__ = """Dodane.pl hoster plugin""" __license__ = "GPLv3" __authors__ = [("z00nx", "z00nx0@gmail.com")] getInfo = create_getInfo(DodanePl)
sebdelsol/pyload
module/plugins/hoster/DodanePl.py
Python
gpl-3.0
442
import osgtest.library.core as core import osgtest.library.files as files import osgtest.library.osgunittest as osgunittest class TestLcMaps(osgunittest.OSGTestCase): required_rpms = ['lcmaps', 'lcmaps-db-templates', 'vo-client', 'vo-client-lcmaps-voms'] def test_01_configure(self): core.config['lcmaps.db'] = '/etc/lcmaps.db' core.config['lcmaps.gsi-authz'] = '/etc/grid-security/gsi-authz.conf' core.skip_ok_unless_installed(*self.required_rpms) template = files.read('/usr/share/lcmaps/templates/lcmaps.db.vomsmap', as_single_string=True) files.write(core.config['lcmaps.db'], template, owner='lcmaps') files.write(core.config['lcmaps.gsi-authz'], "globus_mapping liblcas_lcmaps_gt4_mapping.so lcmaps_callout\n", owner='lcmaps') def test_02_old_xrootd_policy(self): core.skip_ok_unless_installed('xrootd-lcmaps', *self.required_rpms) self.skip_ok_if(core.PackageVersion('xrootd-lcmaps') >= '1.4.0') files.append(core.config['lcmaps.db'], '''xrootd_policy: verifyproxynokey -> banfile banfile -> banvomsfile | bad banvomsfile -> gridmapfile | bad gridmapfile -> good | vomsmapfile vomsmapfile -> good | defaultmapfile defaultmapfile -> good | bad ''', backup=False)
efajardo/osg-test
osgtest/tests/test_140_lcmaps.py
Python
apache-2.0
1,373
# encoding: utf8 from django.db import models, migrations import oluch.models class Migration(migrations.Migration): dependencies = [ ('oluch', '0014_contest_statement_file'), ] operations = [ migrations.AddField( model_name='contest', name='criteria_file', field=models.FileField(upload_to=oluch.models.criteria_filepath, null=True, verbose_name='Criteria', blank=True), preserve_default=True, ), migrations.AlterField( model_name='contest', name='statement_file', field=models.FileField(upload_to=oluch.models.solutions_filepath, null=True, verbose_name='Statements', blank=True), ), ]
gurovic/oluch2
oluch/migrations/0015_auto_20140214_2153.py
Python
gpl-2.0
736
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2016 Jérémie DECOCK (http://www.jdhp.org) # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # See also: http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/tkFileDialog.html # http://tkinter.unpythonic.net/wiki/tkFileDialog # Intended for cases where the user wants to select an existing file. If the # user selects a nonexistent file, a popup will appear informing them that the # selected file does not exist. import os import tkinter as tk import tkinter.filedialog HOME = os.path.expanduser("~") root = tk.Tk() def open_file(): path = tk.filedialog.askdirectory(parent=root, initialdir=HOME, # optional mustexist=True, # optional title='Select your directory') # optional print("PATH:", path) open_button = tk.Button(root, text="Select a directory", command=open_file) open_button.pack() tk.mainloop()
jeremiedecock/snippets
python/tkinter/python3/file_dialog_open_directory.py
Python
mit
2,048
from django.core.management.base import BaseCommand from django.core.management.base import CommandError from kolibri.core.auth.management.utils import confirm_or_exit from kolibri.core.auth.models import FacilityUser class Command(BaseCommand): help = "To allow administrators to comply with GDPR requests, this command initiates the deletion process for a user." def add_arguments(self, parser): parser.add_argument( "username", action="store", type=str, help="Username of user to delete" ) parser.add_argument( "--facility", action="store", type=str, help="Facility ID that user is associated with", ) def handle(self, *args, **options): try: if options["facility"]: user = FacilityUser.objects.get( username=options["username"], facility_id=options["facility"] ) else: user = FacilityUser.objects.get(username=options["username"]) except FacilityUser.DoesNotExist: raise CommandError( "User with username `{username}` does not exist.".format( username=options["username"] ) ) except FacilityUser.MultipleObjectsReturned: raise CommandError( ( "There is more than one user on this device with the username `{username}`. " "Please specify the facility ID for this user.".format( username=options["username"] ) ) ) # ensure the user REALLY wants to do this! confirm_or_exit( "Are you sure you wish to permanently delete this user? This will DELETE ALL DATA FOR THIS USER." ) confirm_or_exit( "ARE YOU SURE? If you do this, there is no way to recover the user data on this device." ) print( "Proceeding with user deletion. Deleting all data for user <{}>".format( options["username"] ) ) user.delete(hard_delete=True) print("Deletion complete. All data for this user has been deleted.")
learningequality/kolibri
kolibri/core/auth/management/commands/deleteuser.py
Python
mit
2,266
# -*- encoding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (c) 2011 Cubic ERP - Teradata SAC. (http://cubicerp.com). # # WARNING: This program as such is intended to be used by professional # programmers who take the whole responsability of assessing all potential # consequences resulting from its eventual inadequacies and bugs # End users who are looking for a ready-to-use solution with commercial # garantees and support are strongly adviced to contract a Free Software # Service Company # # This program is Free Software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # ############################################################################## import invoice from openerp.report import *
Jgarcia-IAS/SAT
openerp/addons-extra/l10n_co_account/__init__.py
Python
agpl-3.0
1,428
#!/usr/bin/env python # -*- coding: utf-8 -*- from core.lib.linkedin.token import Reaction class ReactionCopy(Reaction): def __init__(self, *args, **kwargs): """docstring for __init__""" super(ReactionCopy, self).__init__()
vsilent/smarty-bot
core/brain/update/linkedin/token/reaction.py
Python
mit
247
import struct from .mm.addr import * class Proxy: def __init__(self, obj): self.__obj = obj def __getattr__(self, name): return getattr(self.__obj, name) class String(Proxy): pass class Integer(Proxy): pass class RawDump: instance = None def __init__(self, file): f = open(file, "rb") self.mem = f.read() f.close() RawDump.instance = self @classmethod def setFile(cls, file): cls(file) @classmethod def getInstance(cls): if cls.instance is None: raise Exception(cls.__name__ + " has not been instanciated!") return cls.instance @staticmethod def little_endian(dword_string): return struct.unpack("=L", dword_string)[0] @staticmethod def little_endian_qword(qword_string): return struct.unpack("=Q", qword_string)[0] def read_dword(self, addr): if isinstance(addr, Address): addr = addr.pa() try: return Integer(RawDump.little_endian(self.mem[addr : addr+4])) except Exception as e: raise Exception("RawDump: Unable to read physical memory at offset %x" %addr) def read_qword(self, addr): if isinstance(addr, Address): addr = addr.pa() try: return Integer(RawDump.little_endian_qword(self.mem[addr : addr+8])) except Exception as e: raise Exception("RawDump: Unable to read physical memory at offset %x" %addr) def read_string(self, addr, maxlen=100): if isinstance(addr, Address): addr = addr.pa() string = "" for i in range(addr, addr + maxlen): if self.mem[i] != "\x00": string += self.mem[i] else: break return String(string) def read_bytes(self, addr_begin, l): # Get physical address if isinstance(addr_begin, Address): addr_begin = addr_begin.pa() return self.mem[addr_begin : addr_begin+l]
byeoksan/MemScope
memscope/volatilitux_android_x86/core/raw_dump.py
Python
gpl-2.0
1,914
import theano.tensor as tt from theano import function
Delosari/dazer
bin/lib/Math_Libraries/functions_for_theano.py
Python
mit
55
from django.shortcuts import render # Create your views here. def about(request): return render(request, 'sitepages/about.html')
bestafubana/blogn
blogn/blogn/sitepages/views.py
Python
gpl-3.0
133
artist_answer = input("Search for an artist") import requests response = requests.get('https://api.spotify.com/v1/search?q='+artist_answer+'&type=artist&market=US&limit=50') #https://api.spotify.com/v1/search?type=artist artist = response.json() #print(artist.keys()) #print(artist['artists'].keys()) #print(type(artist['artists']['items'])) artist_count = 0 for artist in artist['artists']['items']: artist_name = artist['name'] artist_id= artist['id'] artist_count = artist_count + 1 #artist_dictionary[artist_count]= artist_name artist_dictionary = {} artist_dictionary['number'] = artist_count artist_dictionary['name'] = artist['name'] artist_dictionary['id'] = artist['id'] print(artist_dictionary['name'],artist_dictionary['number'] ) selection= input("Get more info about one of this artists by inputing its number") if selection for artist in artist_dictionary['number']: print(artist_dictionary['name']) #for item in artist_dictionary[number] #if number == artist_dictionary['number']: #for item in number: #print(item) #selected_number = artist_dictionary['id'] #print(selected_number) import requests response = requests.get('https://api.spotify.com/v1/artists/'+selected_number+'/top-tracks?country=US') artist_toptracks= response.json() top_tracks = artist_toptracks['tracks'] for tracks in top_tracks: print("These are", artist_dictionary['name'],"top tracks:", tracks['name'])
mercybenzaquen/foundations-homework
foundations_hw/benzaquen_search_engine.py
Python
mit
1,470
from google.appengine.ext import ndb from google.appengine.api import memcache from google.appengine.api import urlfetch import urllib import logging import json #db table for pattern class DbNews(ndb.Model): pair = ndb.StringProperty() pr = ndb.StringProperty() alexa = ndb.StringProperty() positive = ndb.IntegerProperty() negative = ndb.IntegerProperty() raatio = ndb.IntegerProperty() def search(q,pair): #if (!type || type == '') type = 'all+types'; url = 'http://pipes.yahoo.com/pipes/pipe.run?_id=16f66113a9aa9c39dd93df8806949159&_render=json&filterinput=' + type + '&maininput=' + q urlfetch.set_default_fetch_deadline(45) result = urlfetch.fetch(url) if result.status_code == 200: resJSON = json.loads(result.content) items = resJSON.value.items cnt = 0 for i in items: link = i.link title = i.title url_link = 'http://dotfornote.appspot.com/?url=' + link + '&wrds=1' urlfetch.set_default_fetch_deadline(45) result = urlfetch.fetch(url) if result.status_code == 200: resItems = json.loads(result.content) pos += int(resItems['positive']) neg += int(resItems['negative']) cnt += 1 return '<p> pos = [' + str((pos/cnt)) + '] Neg [' + str((neg/cnt)) + ']<br />' else: return '<p> No Resilt for this request <br/>'
alibaba0507/fx-monitor
News.py
Python
gpl-2.0
1,355
# # Adapted from https://github.com/petewarden/pyparallelcurl/blob/master/pyparallelcurl.py # # This class is designed to make it easy to run multiple curl requests in parallel, rather than # waiting for each one to finish before starting the next. Under the hood it uses curl_multi_exec # but since I find that interface painfully confusing, I wanted one that corresponded to the tasks # that I wanted to run. # # To use it, first create the ParallelCurl object: # # parallel_curl = ParallelCurl(10); # # The first argument to the constructor is the maximum number of outstanding fetches to allow # before blocking to wait for one to finish. You can change this later using setMaxRequests() # The second optional argument is an array of curl options in the format used by curl_setopt_array() # # Next, start a URL fetch: # # parallel_curl.startrequest('http://example.com', onrequestdone, {'somekey': 'somevalue'}) # # The first argument is the address that should be fetched # The second is the callback function that will be run once the request is done # The third is a 'cookie', that can contain arbitrary data to be passed to the callback # # This startrequest call will return immediately, as long as less than the maximum number of # requests are outstanding. Once the request is done, the callback function will be called, eg: # # onrequestdone(content, 'http://example.com', ch, {'somekey': 'somevalue'}) # # The callback should take four arguments. The first is a string containing the content found at # the URL. The second is the original URL requested, the third is the curl handle of the request that # can be queried to get the results, and the fourth is the arbitrary 'cookie' value that you # associated with this object. This cookie contains user-defined data. # # By Pete Warden <pete@petewarden.com>, freely reusable, see http://petewarden.typepad.com for more import sys import pycurl import cStringIO import time # Pete- Not quite sure what this is all about, but seems important, so copied from # retriever-multi.py :) # # We should ignore SIGPIPE when using pycurl.NOSIGNAL - see # the libcurl tutorial for more info. try: import signal from signal import SIGPIPE, SIG_IGN signal.signal(signal.SIGPIPE, signal.SIG_IGN) except ImportError: pass class ParallelCurl: max_requests = 10 options = {} outstanding_requests = {} multi_handle = None def __init__(self, in_max_requests = 10, in_options = {}): self.max_requests = in_max_requests self.options = in_options self.outstanding_requests = {} self.multi_handle = pycurl.CurlMulti() # Ensure all the requests finish nicely def __del__(self): print 'self.max_requests='+str(self.max_requests) self.finishallrequests() # Sets how many requests can be outstanding at once before we block and wait for one to # finish before starting the next one def setmaxrequests(self, in_max_requests): self.max_requests = in_max_requests # Sets the options to pass to curl, using the format of curl_setopt_array() def setoptions(self, in_options): self.options = in_options # Start a fetch from the 'url' address, calling the 'callback' function passing the optional # 'user_data' value. The callback should accept 3 arguments, the url, curl handle and user # data, eg on_request_done(url, ch, user_data). force_get is to make the custom request # GET instead of POST def startrequest(self, url, callback, user_data = {}, post_fields=None, force_get=False): if self.max_requests > 0: self.waitforoutstandingrequeststodropbelow(self.max_requests) ch = pycurl.Curl() for option, value in self.options.items(): ch.setopt(option, value) ch.setopt(pycurl.URL, url) result_buffer = cStringIO.StringIO() ch.setopt(pycurl.WRITEFUNCTION, result_buffer.write) if post_fields is not None: if not force_get: ch.setopt(pycurl.POST, True) else: ch.setopt(pycurl.CUSTOMREQUEST, 'GET') ch.setopt(pycurl.POSTFIELDS, post_fields) self.multi_handle.add_handle(ch) self.outstanding_requests[ch] = { 'handle': ch, 'result_buffer': result_buffer, 'url': url, 'callback': callback, 'user_data':user_data } self.checkforcompletedrequests() # You *MUST* call this function at the end of your script. It waits for any running requests # to complete, and calls their callback functions def finishallrequests(self): self.waitforoutstandingrequeststodropbelow(1) # Checks to see if any of the outstanding requests have finished def checkforcompletedrequests(self): # Call select to see if anything is waiting for us if self.multi_handle.select(1.0) == -1: return; # Since something's waiting, give curl a chance to process it while True: ret, num_handles = self.multi_handle.perform() if ret != pycurl.E_CALL_MULTI_PERFORM: break # Now grab the information about the completed requests while True: num_q, ok_list, err_list = self.multi_handle.info_read() for ch in ok_list: if ch not in self.outstanding_requests: raise RuntimeError("Error - handle wasn't found in requests: '"+str(ch)+"' in " +str(self.outstanding_requests)) request = self.outstanding_requests[ch] url = request['url'] content = request['result_buffer'].getvalue() callback = request['callback'] user_data = request['user_data'] callback(content, url, ch, user_data) self.multi_handle.remove_handle(ch) del self.outstanding_requests[ch] for ch, errno, errmsg in err_list: if ch not in self.outstanding_requests: raise RuntimeError("Error - handle wasn't found in requests: '"+str(ch)+"' in " +str(self.outstanding_requests)) request = self.outstanding_requests[ch] url = request['url'] content = None callback = request['callback'] user_data = request['user_data'] callback(content, url, ch, user_data) self.multi_handle.remove_handle(ch) del self.outstanding_requests[ch] if num_q < 1: break # Blocks until there's less than the specified number of requests outstanding def waitforoutstandingrequeststodropbelow(self, max): while True: self.checkforcompletedrequests() if len(self.outstanding_requests) < max: break time.sleep(0.01)
zynga/zperfmon
server/db_cron/parallelcurl.py
Python
apache-2.0
7,312
BROKER_URL = 'amqp://couchbase:couchbase@172.23.97.73:5672/broker' BROKER_POOL_LIMIT = None CELERY_RESULT_BACKEND = 'amqp' CELERY_RESULT_EXCHANGE = 'perf_results' CELERY_RESULT_PERSISTENT = False CELERYD_HIJACK_ROOT_LOGGER = False
pavel-paulau/perfrunner
perfrunner/celeryremote.py
Python
apache-2.0
231
# # A script to find functional loci in cancer genes, using # reconstructed ancestors of kinase genes and a library # of mutations obeserved in many real cancer strains. # # Victor Hanson-Smith # 2014 # victorhansonsmith@gmail.com # import os, sys, re from argParser import * ap = ArgParser(sys.argv) msa_path = "../2014-Feb25/msaprobs/cmgc.msaprobs.phylip" seed_cbiopath = {"Homo.sapiens.CDK1":"cBioPortal/cdk1.txt", "Homo.sapiens.CDK2":"cBioPortal/cdk2.txt", "Homo.sapiens.CDK4":"cBioPortal/cdk4.txt", "Homo.sapiens.CDK6":"cBioPortal/cdk6.txt", "Homo.sapiens.MAPK1":"cBioPortal/mapk1.txt", "Homo.sapiens.MAPK3":"cBioPortal/mapk3.txt", "Homo.sapiens.MAP2K1":"cBioPortal/map2k1.txt", "Homo.sapiens.MAP2k2":"cBioPortal/map2k2.txt"} branch_dirs = [] # a list of directories, one directory for each branch, containing mutation information for d in os.listdir("../2014-Feb25"): if d.startswith("Anc") and d.__contains__("to"): branch_dirs.append("../2014-Feb25/" + d) from string import uppercase def col_idx2str(idx): idx += 1 col = '' while (idx > 0): mod = (idx - 1) % 26 col = uppercase[mod] + col idx = (idx - mod) / 26 return col def build_site_map(mpath): """Returns (ref2seed, seed2ref)""" """mpath is the filepath to a PHYLIP aligned file.""" if False == os.path.exists(mpath): print "\n. Error: I can't find your MSA file at", msapth exit() seed2ref = {} # key = taxa name, value = hash; key = site, value = site ref2seed = {} fin = open(mpath, "r") line1 = fin.readline() nsites = int( line1.split()[1] ) for l in fin.xreadlines(): tokens = l.split() this_taxa = tokens[0] this_seq = tokens[1] seed2ref[this_taxa] = {} ref2seed[this_taxa] = {} jj = -1 for ii in range(0, nsites): c = this_seq[ii] if c == "-": continue else: jj += 1 ref2seed[this_taxa][ii] = jj seed2ref[this_taxa][jj] = ii return (ref2seed, seed2ref) def read_cbio_file(cpath): if False == os.path.exists(cpath): print "\n. Error, I cannot find your cBioPortal data file at", cpath exit() mu_data = {} # key = site fin = open(cpath, "r") for l in fin.xreadlines(): if l.__len__() <= 1: continue tokens = l.split() if tokens.__len__() <= 8: continue mu_name = tokens[0] type_ii = None for tt in range(0, tokens.__len__()): if tokens[tt] == "Missense" or tokens[tt] == "Nonsense": type_ii = tt if type_ii == None: #print tokens continue next = 1 study = "" mu_ii = None if tokens[type_ii-1] == "3D": study = " ".join( tokens[next:type_ii-2] ) mu_ii = type_ii-2 else: study = " ".join( tokens[next:type_ii-1] ) mu_ii = type_ii - 1 mu = tokens[mu_ii] fromstate = mu[0] tostate = mu[ mu.__len__()-1 ] #print fromstate, tostate, l site = None if mu.__len__() == 3: site = int( mu[1] ) else: site = int( mu[1:mu.__len__()-1] ) type = tokens[type_ii] next = type_ii + 1 copy = tokens[next] next += 1 if tokens[next] != "U" and tokens[next] != "V": next += 2 else: next += 1 #print l #print tokens #print next, fromstate, tostate, site, type, copy #print tokens[next] if tokens.__len__() - next == 3: next += 1 # skip mutation assessor allele_freq = tokens[next] next += 1 n_in_sample = tokens[next] mu_data[mu_name] = (study, fromstate, tostate, site, type, allele_freq, n_in_sample) return mu_data def collapse_mu_data(mu_data): site_mu_data = {} # key = site, value = mu_data hashes corresponding to that site for muname in mu_data: site = mu_data[muname][3] if site not in site_mu_data: site_mu_data[site] = {} site_mu_data[site][muname] = mu_data[muname] return site_mu_data def parse_df(dpath): if False == os.path.exists(dpath): print "\n. Error, I cannot find your Df path at", dpath exit() key_model = "msaprobs.PROTCATLG" refsite_df = {} refsite_fromstate = {} refsite_frompp = {} refsite_tostate = {} refsite_topp = {} fin = open(dpath, "r") last_df = None last_refsite = None keyc = 0 for l in fin.xreadlines(): if l.startswith("-->"): tokens = l.split() last_df = float(tokens[3]) last_ref = None last_refsite = None elif l.startswith( key_model ): #print key_model, l tokens = l.split() last_refsite = int( tokens[2] ) refsite_df[last_refsite] = last_df keyc = 2 elif keyc == 2: #print 2, l keyc = 1 tokens = l.split() refsite_fromstate[ last_refsite ] = tokens[3] refsite_frompp[ last_refsite ] = tokens[4] elif keyc == 1: #print 1, l keyc = 0 tokens = l.split() refsite_tostate[ last_refsite ] = tokens[3] refsite_topp[ last_refsite ] = tokens[4] #print "174:", refsite_topp[ last_refsite ], refsite_frompp[ last_refsite ] return (refsite_df, refsite_fromstate, refsite_frompp, refsite_tostate, refsite_topp) (ref2seed, seed2ref) = build_site_map(msa_path) def get_branch_data(branchname): """x = (refsite_df, refsite_fromstate, refsite_frompp, refsite_tostate, refsite_topp)""" x = parse_df( branchname + "/Df.details.txt") return x def get_branch_musites(branchname, ppthresh = 0.6): """x = (refsite_df, refsite_fromstate, refsite_frompp, refsite_tostate, refsite_topp)""" x = parse_df( branchname + "/Df.details.txt") branch_musites[branchname] = [] for site in x[0]: if x[1][site] != x[3][site]: if float( x[2][site] ) > 0.6 or float( x[4][site] ) > 0.6: branch_musites[branchname].append( site ) return branch_musites # # branch_data # branch_data = {} branch_musites = {} for branchname in branch_dirs: branch_data[branchname] = get_branch_data(branchname) branch_musites = get_branch_musites(branchname) branches_sorted = branch_data.keys() branches_sorted.sort() for branch in branch_musites: print branch, branch_musites[branch].__len__() # # Excel styles: # from xlwt import Workbook, easyxf, Borders, Formula, XFStyle hit_style1 = easyxf('pattern: pattern solid, fore_colour orange;') hit_style2 = easyxf('pattern: pattern solid, fore_colour yellow;') hit_style3 = easyxf('pattern: pattern solid, fore_colour yellow;') stripe_style1 = easyxf('pattern: pattern solid, fore_colour white;') stripe_style2 = easyxf('pattern: pattern solid, fore_colour white;') header_style = easyxf('font: bold True;') wrap_style = easyxf('align: wrap 1;') center_style = easyxf('alignment: horizontal center;') stats_style = XFStyle() stats_style.num_format_str = "0.0000" # # # book = Workbook() for seed in seed_cbiopath: if seed not in ref2seed: print "\n. I can't find the taxa", seed, "in your MSA. I'm skipping it!" continue mu_data = read_cbio_file( seed_cbiopath[seed] ) if mu_data.__len__() <= 0: print "\n. I didn't find any data in", seed_cbiopath[seed] site_mu_data = collapse_mu_data( mu_data ) branch_counthits = {} for branch in branches_sorted: branch_counthits[branch] = 0 branch_countvalidsites = {} # count the number of cBio sites that actually existed on this branch for branch in branches_sorted: branch_countvalidsites[branch] = 0 """Open an Excel file and write data as we gather it.""" sheet1 = book.add_sheet(seed) sheet1.write(0,0,"Site (cBioPortal)", header_style) sheet1.col(0).width = 3700 sheet1.write(0,1,"Observed mutations (cBioPortal)", header_style) sheet1.col(1).width = 7000 sheet1.write(0,2,"site (MSAProbs)", header_style) sheet1.col(2).width = 3800 col = 3 for branch in branches_sorted: btok = branch.split("/") branch_short = btok[ btok.__len__()-1 ] sheet1.write(0,col,branch_short, header_style) sheet1.col(col).width = 6000 col += 1 sheet1.write(0,col,"N hits", header_style) row = 1 col = None """One site per row.""" for site in site_mu_data: count_mu_branches = 0 # count the number of branches that have a mutation at this site. found_mu_for_row = False found_convergent_mu_for_row = False sheet1.write(row,0,site,center_style) fromaas = [] toaas = [] mutations = [] for muname in site_mu_data[site]: data = mu_data[muname] fromaa = data[1] toaa = data[2] if fromaa not in fromaas: fromaas.append( fromaa ) if toaa not in toaas: toaas.append( toaa ) mutations.append( fromaa + "->" + toaa) sheet1.write(row,1, ", ".join( mutations ), wrap_style) """site, to state, from state""" refsite = seed2ref[seed][ site_mu_data[site][ site_mu_data[site].keys()[0] ][3] - 1] sheet1.write(row, 2, refsite+1, center_style) col = 2 branch_count = 0 for branch in branches_sorted: branch_count += 1 if refsite+1 in branch_data[branch][0]: branch_countvalidsites[branch] += 1 this_df = branch_data[branch][0][refsite+1] from_state = branch_data[branch][1][refsite+1] from_pp = branch_data[branch][2][refsite+1] to_state = branch_data[branch][3][refsite+1] to_pp = branch_data[branch][4][refsite+1] if from_state == "-": from_pp = "n/a" from_state = "-" if to_state == "-": to_pp = "n/a" to_state = "-" """Reversion?""" if to_state in fromaas and from_state != to_state: found_convergent_mu_for_row = True count_mu_branches += 1 branch_counthits[branch] += 1 col += 1 sheet1.write(row, col, from_state + "(" + from_pp + ") -> " + to_state + "(" + to_pp + ")", hit_style1) elif (from_state != to_state) and to_pp != "n/a" and ( float(to_pp) > 0.6 ): found_mu_for_row = True count_mu_branches += 1 branch_counthits[branch] += 1 col += 1 sheet1.write(row, col, from_state + "(" + from_pp + ") -> " + to_state + "(" + to_pp + ")", hit_style2) else: st = stripe_style2 if branch_count%2 == 0: st = stripe_style1 col += 1 sheet1.write(row, col, from_state + "(" + from_pp + ") -> " + to_state + "(" + to_pp + ")", st) else: st = stripe_style2 if branch_count%2 == 0: st = stripe_style1 col += 1 sheet1.write(row,col, "NA", st) if count_mu_branches > 0: sheet1.write(row,col+1, count_mu_branches, center_style) row += 1 row += 1 col = 2 sheet1.write(row, col, "hits:") for branch in branches_sorted: col += 1 sheet1.write(row,col, branch_counthits[branch], st) row += 1 col = 2 sheet1.write(row, col, "hit max possible:", wrap_style) for branch in branches_sorted: col += 1 sheet1.write(row,col, branch_countvalidsites[branch], st) row += 1 col = 2 sheet1.write(row, col, "Count mu on branch:", wrap_style) for branch in branches_sorted: col += 1 sheet1.write(row,col, branch_musites[branch].__len__(), st) row += 1 col = 2 sheet1.write(row, col, "Count sites in ancestors:", wrap_style) for branch in branches_sorted: col += 1 sheet1.write(row,col, branch_data[branch][0].keys().__len__(), st) row += 1 col = 2 sheet1.write(row, col, "Hypergeometric Test:", wrap_style) for branch in branches_sorted: col += 1 # the previous row is 'row' fstring = "HYPGEOMDIST(" + col_idx2str(col) + (row-3).__str__() fstring += "," + col_idx2str(col) + (row-2).__str__() fstring += "," + col_idx2str(col) + (row-1).__str__() fstring += "," + col_idx2str(col) + (row).__str__() fstring += ")" sheet1.write(row,col, Formula(fstring), stats_style) row += 1 col = 2 sheet1.write(row, col, "Sanity Check:", wrap_style) for branch in branches_sorted: col += 1 # the previous row is 'row' fstring = "0 " for ii in range(0, branch_countvalidsites[branch]+1): fstring += "+ HYPGEOMDIST(" + ii.__str__() fstring += "," + col_idx2str(col) + (row-3).__str__() fstring += "," + col_idx2str(col) + (row-2).__str__() fstring += "," + col_idx2str(col) + (row-1).__str__() fstring += ")" sheet1.write(row,col, Formula(fstring), stats_style) row += 1 col = 2 sheet1.write(row, col, "<= Cummu. HG Test:", wrap_style) for branch in branches_sorted: col += 1 # the previous row is 'row' fstring = "0 " for ii in range(0, branch_counthits[branch]+1): fstring += "+ HYPGEOMDIST(" + ii.__str__() fstring += "," + col_idx2str(col) + (row-4).__str__() fstring += "," + col_idx2str(col) + (row-3).__str__() fstring += "," + col_idx2str(col) + (row-2).__str__() fstring += ")" sheet1.write(row,col, Formula(fstring), stats_style) row += 1 col = 2 sheet1.write(row, col, ">= Cummu. HG Test:", wrap_style) for branch in branches_sorted: col += 1 # the previous row is 'row' fstring = "0 " for ii in range(branch_counthits[branch], branch_countvalidsites[branch]+1): fstring += "+ HYPGEOMDIST(" + ii.__str__() fstring += "," + col_idx2str(col) + (row-5).__str__() fstring += "," + col_idx2str(col) + (row-4).__str__() fstring += "," + col_idx2str(col) + (row-3).__str__() fstring += ")" sheet1.write(row,col, Formula(fstring), stats_style) book.save("ASR-cBio.11-7-2014.xls") exit()
vhsvhs/ratflic
runme.py
Python
gpl-2.0
15,185
""" The legend module defines the Legend class, which is responsible for drawing legends associated with axes and/or figures. The Legend class can be considered as a container of legend handles and legend texts. Creation of corresponding legend handles from the plot elements in the axes or figures (e.g., lines, patches, etc.) are specified by the handler map, which defines the mapping between the plot elements and the legend handlers to be used (the default legend handlers are defined in the :mod:`~matplotlib.legend_handler` module). Note that not all kinds of artist are supported by the legend yet (See :ref:`plotting-guide-legend` for more information). """ from __future__ import division, print_function import warnings import numpy as np from matplotlib import rcParams from matplotlib.artist import Artist, allow_rasterization from matplotlib.cbook import is_string_like, iterable, silent_list, safezip from matplotlib.font_manager import FontProperties from matplotlib.lines import Line2D from matplotlib.patches import Patch, Rectangle, Shadow, FancyBboxPatch from matplotlib.collections import LineCollection, RegularPolyCollection, \ CircleCollection, PathCollection from matplotlib.transforms import Bbox, BboxBase, TransformedBbox from matplotlib.transforms import BboxTransformTo, BboxTransformFrom from matplotlib.offsetbox import HPacker, VPacker, TextArea, DrawingArea from matplotlib.offsetbox import DraggableOffsetBox from matplotlib.container import ErrorbarContainer, BarContainer, StemContainer from matplotlib import MatplotlibDeprecationWarning as mplDeprecation import legend_handler class DraggableLegend(DraggableOffsetBox): def __init__(self, legend, use_blit=False, update="loc"): """ update : If "loc", update *loc* parameter of legend upon finalizing. If "bbox", update *bbox_to_anchor* parameter. """ self.legend = legend if update in ["loc", "bbox"]: self._update = update else: raise ValueError("update parameter '%s' is not supported." % update) DraggableOffsetBox.__init__(self, legend, legend._legend_box, use_blit=use_blit) def artist_picker(self, legend, evt): return self.legend.contains(evt) def finalize_offset(self): loc_in_canvas = self.get_loc_in_canvas() if self._update == "loc": self._update_loc(loc_in_canvas) elif self._update == "bbox": self._update_bbox_to_anchor(loc_in_canvas) else: raise RuntimeError("update parameter '%s' is not supported." % self.update) def _update_loc(self, loc_in_canvas): bbox = self.legend.get_bbox_to_anchor() # if bbox has zero width or height, the transformation is # ill-defined. Fall back to the defaul bbox_to_anchor. if bbox.width == 0 or bbox.height == 0: self.legend.set_bbox_to_anchor(None) bbox = self.legend.get_bbox_to_anchor() _bbox_transform = BboxTransformFrom(bbox) self.legend._loc = tuple( _bbox_transform.transform_point(loc_in_canvas)) def _update_bbox_to_anchor(self, loc_in_canvas): tr = self.legend.axes.transAxes loc_in_bbox = tr.transform_point(loc_in_canvas) self.legend.set_bbox_to_anchor(loc_in_bbox) class Legend(Artist): """ Place a legend on the axes at location loc. Labels are a sequence of strings and loc can be a string or an integer specifying the legend location The location codes are:: 'best' : 0, (only implemented for axis legends) 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10, loc can be a tuple of the noramilzed coordinate values with respect its parent. """ codes = {'best': 0, # only implemented for axis legends 'upper right': 1, 'upper left': 2, 'lower left': 3, 'lower right': 4, 'right': 5, 'center left': 6, 'center right': 7, 'lower center': 8, 'upper center': 9, 'center': 10, } zorder = 5 def __str__(self): return "Legend" def __init__(self, parent, handles, labels, loc=None, numpoints=None, # the number of points in the legend line markerscale=None, # the relative size of legend markers # vs. original scatterpoints=3, # TODO: may be an rcParam scatteryoffsets=None, prop=None, # properties for the legend texts fontsize=None, # keyword to set font size directly # the following dimensions are in axes coords pad=None, # deprecated; use borderpad labelsep=None, # deprecated; use labelspacing handlelen=None, # deprecated; use handlelength handletextsep=None, # deprecated; use handletextpad axespad=None, # deprecated; use borderaxespad # spacing & pad defined as a fraction of the font-size borderpad=None, # the whitespace inside the legend border labelspacing=None, # the vertical space between the legend # entries handlelength=None, # the length of the legend handles handleheight=None, # the height of the legend handles handletextpad=None, # the pad between the legend handle # and text borderaxespad=None, # the pad between the axes and legend # border columnspacing=None, # spacing between columns ncol=1, # number of columns mode=None, # mode for horizontal distribution of columns. # None, "expand" fancybox=None, # True use a fancy box, false use a rounded # box, none use rc shadow=None, title=None, # set a title for the legend bbox_to_anchor=None, # bbox that the legend will be anchored. bbox_transform=None, # transform for the bbox frameon=None, # draw frame handler_map=None, ): """ - *parent*: the artist that contains the legend - *handles*: a list of artists (lines, patches) to be added to the legend - *labels*: a list of strings to label the legend Optional keyword arguments: ================ ==================================================== Keyword Description ================ ==================================================== loc a location code prop the font property fontsize the font size (used only if prop is not specified) markerscale the relative size of legend markers vs. original numpoints the number of points in the legend for line scatterpoints the number of points in the legend for scatter plot scatteryoffsets a list of yoffsets for scatter symbols in legend frameon if True, draw a frame around the legend. If None, use rc fancybox if True, draw a frame with a round fancybox. If None, use rc shadow if True, draw a shadow behind legend ncol number of columns borderpad the fractional whitespace inside the legend border labelspacing the vertical space between the legend entries handlelength the length of the legend handles handleheight the length of the legend handles handletextpad the pad between the legend handle and text borderaxespad the pad between the axes and legend border columnspacing the spacing between columns title the legend title bbox_to_anchor the bbox that the legend will be anchored. bbox_transform the transform for the bbox. transAxes if None. ================ ==================================================== The pad and spacing parameters are measured in font-size units. E.g., a fontsize of 10 points and a handlelength=5 implies a handlelength of 50 points. Values from rcParams will be used if None. Users can specify any arbitrary location for the legend using the *bbox_to_anchor* keyword argument. bbox_to_anchor can be an instance of BboxBase(or its derivatives) or a tuple of 2 or 4 floats. See :meth:`set_bbox_to_anchor` for more detail. The legend location can be specified by setting *loc* with a tuple of 2 floats, which is interpreted as the lower-left corner of the legend in the normalized axes coordinate. """ # local import only to avoid circularity from matplotlib.axes import Axes from matplotlib.figure import Figure Artist.__init__(self) if prop is None: if fontsize is not None: self.prop = FontProperties(size=fontsize) else: self.prop = FontProperties(size=rcParams["legend.fontsize"]) elif isinstance(prop, dict): self.prop = FontProperties(**prop) if "size" not in prop: self.prop.set_size(rcParams["legend.fontsize"]) else: self.prop = prop self._fontsize = self.prop.get_size_in_points() propnames = ["numpoints", "markerscale", "shadow", "columnspacing", "scatterpoints", "handleheight"] self.texts = [] self.legendHandles = [] self._legend_title_box = None self._handler_map = handler_map localdict = locals() for name in propnames: if localdict[name] is None: value = rcParams["legend." + name] else: value = localdict[name] setattr(self, name, value) # Take care the deprecated keywords deprecated_kwds = {"pad": "borderpad", "labelsep": "labelspacing", "handlelen": "handlelength", "handletextsep": "handletextpad", "axespad": "borderaxespad"} # convert values of deprecated keywords (ginve in axes coords) # to new vaules in a fraction of the font size # conversion factor bbox = parent.bbox axessize_fontsize = min(bbox.width, bbox.height) / self._fontsize for k, v in deprecated_kwds.iteritems(): # use deprecated value if not None and if their newer # counter part is None. if localdict[k] is not None and localdict[v] is None: warnings.warn("Use '%s' instead of '%s'." % (v, k), mplDeprecation) setattr(self, v, localdict[k] * axessize_fontsize) continue # Otherwise, use new keywords if localdict[v] is None: setattr(self, v, rcParams["legend." + v]) else: setattr(self, v, localdict[v]) del localdict handles = list(handles) if len(handles) < 2: ncol = 1 self._ncol = ncol if self.numpoints <= 0: raise ValueError("numpoints must be > 0; it was %d" % numpoints) # introduce y-offset for handles of the scatter plot if scatteryoffsets is None: self._scatteryoffsets = np.array([3. / 8., 4. / 8., 2.5 / 8.]) else: self._scatteryoffsets = np.asarray(scatteryoffsets) reps = int(self.scatterpoints / len(self._scatteryoffsets)) + 1 self._scatteryoffsets = np.tile(self._scatteryoffsets, reps)[:self.scatterpoints] # _legend_box is an OffsetBox instance that contains all # legend items and will be initialized from _init_legend_box() # method. self._legend_box = None if isinstance(parent, Axes): self.isaxes = True self.set_axes(parent) self.set_figure(parent.figure) elif isinstance(parent, Figure): self.isaxes = False self.set_figure(parent) else: raise TypeError("Legend needs either Axes or Figure as parent") self.parent = parent if loc is None: loc = rcParams["legend.loc"] if not self.isaxes and loc in [0, 'best']: loc = 'upper right' if is_string_like(loc): if loc not in self.codes: if self.isaxes: warnings.warn('Unrecognized location "%s". Falling back ' 'on "best"; valid locations are\n\t%s\n' % (loc, '\n\t'.join(self.codes.iterkeys()))) loc = 0 else: warnings.warn('Unrecognized location "%s". Falling back ' 'on "upper right"; ' 'valid locations are\n\t%s\n' % (loc, '\n\t'.join(self.codes.iterkeys()))) loc = 1 else: loc = self.codes[loc] if not self.isaxes and loc == 0: warnings.warn('Automatic legend placement (loc="best") not ' 'implemented for figure legend. ' 'Falling back on "upper right".') loc = 1 self._mode = mode self.set_bbox_to_anchor(bbox_to_anchor, bbox_transform) # We use FancyBboxPatch to draw a legend frame. The location # and size of the box will be updated during the drawing time. self.legendPatch = FancyBboxPatch( xy=(0.0, 0.0), width=1., height=1., facecolor=rcParams["axes.facecolor"], edgecolor=rcParams["axes.edgecolor"], mutation_scale=self._fontsize, snap=True ) # The width and height of the legendPatch will be set (in the # draw()) to the length that includes the padding. Thus we set # pad=0 here. if fancybox is None: fancybox = rcParams["legend.fancybox"] if fancybox: self.legendPatch.set_boxstyle("round", pad=0, rounding_size=0.2) else: self.legendPatch.set_boxstyle("square", pad=0) self._set_artist_props(self.legendPatch) self._drawFrame = frameon if frameon is None: self._drawFrame = rcParams["legend.frameon"] # init with null renderer self._init_legend_box(handles, labels) self._loc = loc self.set_title(title) self._last_fontsize_points = self._fontsize self._draggable = None def _set_artist_props(self, a): """ set the boilerplate props for artists added to axes """ a.set_figure(self.figure) if self.isaxes: a.set_axes(self.axes) a.set_transform(self.get_transform()) def _set_loc(self, loc): # find_offset function will be provided to _legend_box and # _legend_box will draw itself at the location of the return # value of the find_offset. self._loc_real = loc if loc == 0: _findoffset = self._findoffset_best else: _findoffset = self._findoffset_loc #def findoffset(width, height, xdescent, ydescent): # return _findoffset(width, height, xdescent, ydescent, renderer) self._legend_box.set_offset(_findoffset) self._loc_real = loc def _get_loc(self): return self._loc_real _loc = property(_get_loc, _set_loc) def _findoffset_best(self, width, height, xdescent, ydescent, renderer): "Helper function to locate the legend at its best position" ox, oy = self._find_best_position(width, height, renderer) return ox + xdescent, oy + ydescent def _findoffset_loc(self, width, height, xdescent, ydescent, renderer): "Helper function to locate the legend using the location code" if iterable(self._loc) and len(self._loc) == 2: # when loc is a tuple of axes(or figure) coordinates. fx, fy = self._loc bbox = self.get_bbox_to_anchor() x, y = bbox.x0 + bbox.width * fx, bbox.y0 + bbox.height * fy else: bbox = Bbox.from_bounds(0, 0, width, height) x, y = self._get_anchored_bbox(self._loc, bbox, self.get_bbox_to_anchor(), renderer) return x + xdescent, y + ydescent @allow_rasterization def draw(self, renderer): "Draw everything that belongs to the legend" if not self.get_visible(): return renderer.open_group('legend') fontsize = renderer.points_to_pixels(self._fontsize) # if mode == fill, set the width of the legend_box to the # width of the paret (minus pads) if self._mode in ["expand"]: pad = 2 * (self.borderaxespad + self.borderpad) * fontsize self._legend_box.set_width(self.get_bbox_to_anchor().width - pad) # update the location and size of the legend. This needs to # be done in any case to clip the figure right. bbox = self._legend_box.get_window_extent(renderer) self.legendPatch.set_bounds(bbox.x0, bbox.y0, bbox.width, bbox.height) self.legendPatch.set_mutation_scale(fontsize) if self._drawFrame: if self.shadow: shadow = Shadow(self.legendPatch, 2, -2) shadow.draw(renderer) self.legendPatch.draw(renderer) self._legend_box.draw(renderer) renderer.close_group('legend') def _approx_text_height(self, renderer=None): """ Return the approximate height of the text. This is used to place the legend handle. """ if renderer is None: return self._fontsize else: return renderer.points_to_pixels(self._fontsize) # _default_handler_map defines the default mapping between plot # elements and the legend handlers. _default_handler_map = { StemContainer: legend_handler.HandlerStem(), ErrorbarContainer: legend_handler.HandlerErrorbar(), Line2D: legend_handler.HandlerLine2D(), Patch: legend_handler.HandlerPatch(), LineCollection: legend_handler.HandlerLineCollection(), RegularPolyCollection: legend_handler.HandlerRegularPolyCollection(), CircleCollection: legend_handler.HandlerCircleCollection(), BarContainer: legend_handler.HandlerPatch( update_func=legend_handler.update_from_first_child), tuple: legend_handler.HandlerTuple(), PathCollection: legend_handler.HandlerPathCollection() } # (get|set|update)_default_handler_maps are public interfaces to # modify the defalut handler map. @classmethod def get_default_handler_map(cls): """ A class method that returns the default handler map. """ return cls._default_handler_map @classmethod def set_default_handler_map(cls, handler_map): """ A class method to set the default handler map. """ cls._default_handler_map = handler_map @classmethod def update_default_handler_map(cls, handler_map): """ A class method to update the default handler map. """ cls._default_handler_map.update(handler_map) def get_legend_handler_map(self): """ return the handler map. """ default_handler_map = self.get_default_handler_map() if self._handler_map: hm = default_handler_map.copy() hm.update(self._handler_map) return hm else: return default_handler_map @staticmethod def get_legend_handler(legend_handler_map, orig_handle): """ return a legend handler from *legend_handler_map* that corresponds to *orig_handler*. *legend_handler_map* should be a dictionary object (that is returned by the get_legend_handler_map method). It first checks if the *orig_handle* itself is a key in the *legend_hanler_map* and return the associated value. Otherwise, it checks for each of the classes in its method-resolution-order. If no matching key is found, it returns None. """ legend_handler_keys = legend_handler_map.keys() if orig_handle in legend_handler_keys: handler = legend_handler_map[orig_handle] else: for handle_type in type(orig_handle).mro(): if handle_type in legend_handler_map: handler = legend_handler_map[handle_type] break else: handler = None return handler def _init_legend_box(self, handles, labels): """ Initialize the legend_box. The legend_box is an instance of the OffsetBox, which is packed with legend handles and texts. Once packed, their location is calculated during the drawing time. """ fontsize = self._fontsize # legend_box is a HPacker, horizontally packed with # columns. Each column is a VPacker, vertically packed with # legend items. Each legend item is HPacker packed with # legend handleBox and labelBox. handleBox is an instance of # offsetbox.DrawingArea which contains legend handle. labelBox # is an instance of offsetbox.TextArea which contains legend # text. text_list = [] # the list of text instances handle_list = [] # the list of text instances label_prop = dict(verticalalignment='baseline', horizontalalignment='left', fontproperties=self.prop, ) labelboxes = [] handleboxes = [] # The approximate height and descent of text. These values are # only used for plotting the legend handle. descent = 0.35 * self._approx_text_height() * (self.handleheight - 0.7) # 0.35 and 0.7 are just heuristic numbers. this may need to be improbed height = self._approx_text_height() * self.handleheight - descent # each handle needs to be drawn inside a box of (x, y, w, h) = # (0, -descent, width, height). And their coordinates should # be given in the display coordinates. # The transformation of each handle will be automatically set # to self.get_trasnform(). If the artist does not uses its # default trasnform (eg, Collections), you need to # manually set their transform to the self.get_transform(). legend_handler_map = self.get_legend_handler_map() for orig_handle, lab in zip(handles, labels): handler = self.get_legend_handler(legend_handler_map, orig_handle) if handler is None: warnings.warn( "Legend does not support %s\nUse proxy artist " "instead.\n\n" "http://matplotlib.sourceforge.net/users/legend_guide.html#using-proxy-artist\n" % (str(orig_handle),)) handle_list.append(None) continue textbox = TextArea(lab, textprops=label_prop, multilinebaseline=True, minimumdescent=True) text_list.append(textbox._text) labelboxes.append(textbox) handlebox = DrawingArea(width=self.handlelength * fontsize, height=height, xdescent=0., ydescent=descent) handle = handler(self, orig_handle, #xdescent, ydescent, width, height, fontsize, handlebox) handle_list.append(handle) handleboxes.append(handlebox) if len(handleboxes) > 0: # We calculate number of rows in each column. The first # (num_largecol) columns will have (nrows+1) rows, and remaining # (num_smallcol) columns will have (nrows) rows. ncol = min(self._ncol, len(handleboxes)) nrows, num_largecol = divmod(len(handleboxes), ncol) num_smallcol = ncol - num_largecol # starting index of each column and number of rows in it. largecol = safezip(range(0, num_largecol * (nrows + 1), (nrows + 1)), [nrows + 1] * num_largecol) smallcol = safezip(range(num_largecol * (nrows + 1), len(handleboxes), nrows), [nrows] * num_smallcol) else: largecol, smallcol = [], [] handle_label = safezip(handleboxes, labelboxes) columnbox = [] for i0, di in largecol + smallcol: # pack handleBox and labelBox into itemBox itemBoxes = [HPacker(pad=0, sep=self.handletextpad * fontsize, children=[h, t], align="baseline") for h, t in handle_label[i0:i0 + di]] # minimumdescent=False for the text of the last row of the column itemBoxes[-1].get_children()[1].set_minimumdescent(False) # pack columnBox columnbox.append(VPacker(pad=0, sep=self.labelspacing * fontsize, align="baseline", children=itemBoxes)) if self._mode == "expand": mode = "expand" else: mode = "fixed" sep = self.columnspacing * fontsize self._legend_handle_box = HPacker(pad=0, sep=sep, align="baseline", mode=mode, children=columnbox) self._legend_title_box = TextArea("") self._legend_box = VPacker(pad=self.borderpad * fontsize, sep=self.labelspacing * fontsize, align="center", children=[self._legend_title_box, self._legend_handle_box]) self._legend_box.set_figure(self.figure) self.texts = text_list self.legendHandles = handle_list def _auto_legend_data(self): """ Returns list of vertices and extents covered by the plot. Returns a two long list. First element is a list of (x, y) vertices (in display-coordinates) covered by all the lines and line collections, in the legend's handles. Second element is a list of bounding boxes for all the patches in the legend's handles. """ # should always hold because function is only called internally assert self.isaxes ax = self.parent vertices = [] bboxes = [] lines = [] for handle in ax.lines: assert isinstance(handle, Line2D) path = handle.get_path() trans = handle.get_transform() tpath = trans.transform_path(path) lines.append(tpath) for handle in ax.patches: assert isinstance(handle, Patch) if isinstance(handle, Rectangle): transform = handle.get_data_transform() bboxes.append(handle.get_bbox().transformed(transform)) else: transform = handle.get_transform() bboxes.append(handle.get_path().get_extents(transform)) return [vertices, bboxes, lines] def draw_frame(self, b): 'b is a boolean. Set draw frame to b' self.set_frame_on(b) def get_children(self): 'return a list of child artists' children = [] if self._legend_box: children.append(self._legend_box) children.extend(self.get_lines()) children.extend(self.get_patches()) children.extend(self.get_texts()) children.append(self.get_frame()) if self._legend_title_box: children.append(self.get_title()) return children def get_frame(self): 'return the Rectangle instance used to frame the legend' return self.legendPatch def get_lines(self): 'return a list of lines.Line2D instances in the legend' return [h for h in self.legendHandles if isinstance(h, Line2D)] def get_patches(self): 'return a list of patch instances in the legend' return silent_list('Patch', [h for h in self.legendHandles if isinstance(h, Patch)]) def get_texts(self): 'return a list of text.Text instance in the legend' return silent_list('Text', self.texts) def set_title(self, title, prop=None): """ set the legend title. Fontproperties can be optionally set with *prop* parameter. """ self._legend_title_box._text.set_text(title) if prop is not None: if isinstance(prop, dict): prop = FontProperties(**prop) self._legend_title_box._text.set_fontproperties(prop) if title: self._legend_title_box.set_visible(True) else: self._legend_title_box.set_visible(False) def get_title(self): 'return Text instance for the legend title' return self._legend_title_box._text def get_window_extent(self, *args, **kwargs): 'return a extent of the the legend' return self.legendPatch.get_window_extent(*args, **kwargs) def get_frame_on(self): """ Get whether the legend box patch is drawn """ return self._drawFrame def set_frame_on(self, b): """ Set whether the legend box patch is drawn ACCEPTS: [ *True* | *False* ] """ self._drawFrame = b def get_bbox_to_anchor(self): """ return the bbox that the legend will be anchored """ if self._bbox_to_anchor is None: return self.parent.bbox else: return self._bbox_to_anchor def set_bbox_to_anchor(self, bbox, transform=None): """ set the bbox that the legend will be anchored. *bbox* can be a BboxBase instance, a tuple of [left, bottom, width, height] in the given transform (normalized axes coordinate if None), or a tuple of [left, bottom] where the width and height will be assumed to be zero. """ if bbox is None: self._bbox_to_anchor = None return elif isinstance(bbox, BboxBase): self._bbox_to_anchor = bbox else: try: l = len(bbox) except TypeError: raise ValueError("Invalid argument for bbox : %s" % str(bbox)) if l == 2: bbox = [bbox[0], bbox[1], 0, 0] self._bbox_to_anchor = Bbox.from_bounds(*bbox) if transform is None: transform = BboxTransformTo(self.parent.bbox) self._bbox_to_anchor = TransformedBbox(self._bbox_to_anchor, transform) def _get_anchored_bbox(self, loc, bbox, parentbbox, renderer): """ Place the *bbox* inside the *parentbbox* according to a given location code. Return the (x,y) coordinate of the bbox. - loc: a location code in range(1, 11). This corresponds to the possible values for self._loc, excluding "best". - bbox: bbox to be placed, display coodinate units. - parentbbox: a parent box which will contain the bbox. In display coordinates. """ assert loc in range(1, 11) # called only internally BEST, UR, UL, LL, LR, R, CL, CR, LC, UC, C = range(11) anchor_coefs = {UR: "NE", UL: "NW", LL: "SW", LR: "SE", R: "E", CL: "W", CR: "E", LC: "S", UC: "N", C: "C"} c = anchor_coefs[loc] fontsize = renderer.points_to_pixels(self._fontsize) container = parentbbox.padded(-(self.borderaxespad) * fontsize) anchored_box = bbox.anchored(c, container=container) return anchored_box.x0, anchored_box.y0 def _find_best_position(self, width, height, renderer, consider=None): """ Determine the best location to place the legend. `consider` is a list of (x, y) pairs to consider as a potential lower-left corner of the legend. All are display coords. """ # should always hold because function is only called internally assert self.isaxes verts, bboxes, lines = self._auto_legend_data() bbox = Bbox.from_bounds(0, 0, width, height) consider = [self._get_anchored_bbox(x, bbox, self.get_bbox_to_anchor(), renderer) for x in range(1, len(self.codes))] #tx, ty = self.legendPatch.get_x(), self.legendPatch.get_y() candidates = [] for l, b in consider: legendBox = Bbox.from_bounds(l, b, width, height) badness = 0 badness = legendBox.count_contains(verts) badness += legendBox.count_overlaps(bboxes) for line in lines: if line.intersects_bbox(legendBox): badness += 1 ox, oy = l, b if badness == 0: return ox, oy candidates.append((badness, (l, b))) # rather than use min() or list.sort(), do this so that we are assured # that in the case of two equal badnesses, the one first considered is # returned. # NOTE: list.sort() is stable.But leave as it is for now. -JJL minCandidate = candidates[0] for candidate in candidates: if candidate[0] < minCandidate[0]: minCandidate = candidate ox, oy = minCandidate[1] return ox, oy def contains(self, event): return self.legendPatch.contains(event) def draggable(self, state=None, use_blit=False, update="loc"): """ Set the draggable state -- if state is * None : toggle the current state * True : turn draggable on * False : turn draggable off If draggable is on, you can drag the legend on the canvas with the mouse. The DraggableLegend helper instance is returned if draggable is on. The update parameter control which parameter of the legend changes when dragged. If update is "loc", the *loc* paramter of the legend is changed. If "bbox", the *bbox_to_anchor* parameter is changed. """ is_draggable = self._draggable is not None # if state is None we'll toggle if state is None: state = not is_draggable if state: if self._draggable is None: self._draggable = DraggableLegend(self, use_blit, update=update) else: if self._draggable is not None: self._draggable.disconnect() self._draggable = None return self._draggable
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/lib/matplotlib/legend.py
Python
mit
37,156
import os import logging import report import problem import problem.config class DBusProxy(object): __instance = None def __init__(self, dbus): self._proxy = None self._iface = None self.dbus = dbus self.connected = False self.connect() def __new__(cls, *args, **kwargs): if not cls.__instance: cls.__instance = super(DBusProxy, cls).__new__(cls) return cls.__instance def connect(self): self.connected = False if self._proxy: self._proxy.close() try: self._proxy = self.dbus.SystemBus().get_object( 'org.freedesktop.problems', '/org/freedesktop/problems') except self.dbus.exceptions.DBusException as e: logging.debug('Unable to get dbus proxy: {0}'.format(e)) return try: self._iface = self.dbus.Interface(self._proxy, 'org.freedesktop.problems') except self.dbus.exceptions.DBusException as e: logging.debug('Unable to get dbus interface: {0}'.format(e)) return self.connected = True def _dbus_call(self, fun_name, *args): try: logging.debug('Calling {0} with {1}'.format(fun_name, args)) return getattr(self._iface, fun_name)(*args) except self.dbus.exceptions.DBusException as e: dbname = e.get_dbus_name() if dbname == "org.freedesktop.DBus.Error.ServiceUnknown": self.connect() return getattr(self._iface, fun_name)(*args) if dbname == 'org.freedesktop.problems.AuthFailure': raise problem.exception.AuthFailure(e) if dbname == 'org.freedesktop.problems.InvalidProblemDir': raise problem.exception.InvalidProblem(e) raise def get_item(self, dump_dir, name): val = self._dbus_call('GetInfo', dump_dir, [name]) if name not in val: return None return str(val[name]) def set_item(self, dump_dir, name, value): return self._dbus_call('SetElement', dump_dir, name, str(value)) def del_item(self, dump_dir, name): return self._dbus_call('DeleteElement', dump_dir, name) def create(self, problem_dict): return self._dbus_call('NewProblem', problem_dict) def delete(self, dump_dir): return self._dbus_call('DeleteProblem', [dump_dir]) def list(self): return [str(prob) for prob in self._dbus_call('GetProblems')] def list_all(self): return [str(prob) for prob in self._dbus_call('GetAllProblems')] class SocketProxy(object): def create(self, problem_dict): import socket sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) sock.settimeout(5) try: sock.connect('/var/run/abrt/abrt.socket') sock.sendall("PUT / HTTP/1.1\r\n\r\n") for key, value in problem_dict.items(): sock.sendall('{0}={1}\0'.format(key.upper(), value)) sock.shutdown(socket.SHUT_WR) resp = '' while True: buf = sock.recv(256) if not buf: break resp += buf return resp except socket.timeout as exc: logging.error('communication with daemon failed: {0}'.format(exc)) return None def get_item(self, *args): raise NotImplementedError def set_item(self, *args): raise NotImplementedError def del_item(self, *args): raise NotImplementedError def delete(self, *args): raise NotImplementedError def list(self, *args): raise NotImplementedError def list_all(self, *args): return self.list(*args) def get_problem_watcher(self): raise NotImplementedError class FsProxy(object): def __init__(self, directory=problem.config.DEFAULT_DUMP_LOCATION): self.directory = directory def create(self, problem_dict): probd = report.problem_data() for key, value in problem_dict.items(): probd.add(key, value) ddir = probd.create_dump_dir(self.directory) ret = ddir.name ddir.close() problem.notify_new_path(ret) return ret def _open_ddir(self, dump_dir, readonly=False): flags = 0 if readonly: flags |= report.DD_OPEN_READONLY ddir = report.dd_opendir(dump_dir, flags) if not ddir: raise problem.exception.InvalidProblem( 'Can\'t open directory: {0}'.format(dump_dir)) return ddir def get_item(self, dump_dir, name): ddir = self._open_ddir(dump_dir, readonly=True) flags = (report.DD_FAIL_QUIETLY_EACCES | report.DD_FAIL_QUIETLY_ENOENT | report.DD_LOAD_TEXT_RETURN_NULL_ON_FAILURE) val = ddir.load_text(name, flags).encode('utf-8', errors='ignore') ddir.close() return val def set_item(self, dump_dir, name, value): ddir = self._open_ddir(dump_dir) ddir.save_text(name, str(value)) ddir.close() def del_item(self, dump_dir, name): ddir = self._open_ddir(dump_dir) ddir.delete_item(name) ddir.close() def delete(self, dump_dir): ddir = report.dd_opendir(dump_dir) if not ddir: return not os.path.isdir(dump_dir) ddir.delete() return True def list(self, _all=False): for dir_entry in os.listdir(self.directory): dump_dir = os.path.join(self.directory, dir_entry) if not os.path.isdir(dump_dir) or not os.access(dump_dir, os.R_OK): continue uid = os.getuid() gid = os.getuid() dir_stat = os.stat(dump_dir) if not _all and (dir_stat.st_uid != uid and dir_stat.st_gid != gid): continue ddir = report.dd_opendir(dump_dir, report.DD_OPEN_READONLY) if ddir: ddir.close() yield dump_dir def list_all(self, *args, **kwargs): kwargs.update(dict(_all=True)) return self.list(*args, **kwargs) def get_proxy(): try: import dbus wrapper = DBusProxy(dbus) if wrapper.connected: return wrapper except ImportError: logging.debug('DBus not found') return FsProxy()
airtimemedia/abrt
src/python-problem/problem/proxies.py
Python
gpl-2.0
6,562
from snakebite.client import Client client = Client('localhost', 9000) for f in client.copyToLocal(['/input/input.txt'], '/tmp'): print f
MinerKasch/HadoopWithPython
python/HDFS/copy_to_local.py
Python
mit
141
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command to set IAM policy for an instance resource.""" from googlecloudsdk.api_lib.compute import iam_base_classes from googlecloudsdk.calliope import base @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class SetIamPolicy(iam_base_classes.RegionalSetIamPolicy): """Set the IAM policy for a Google Compute Engine subnetwork resource.""" @staticmethod def Args(parser): iam_base_classes.RegionalSetIamPolicy.Args(parser, 'compute.subnetworks') @property def service(self): return self.compute.subnetworks @property def resource_type(self): return 'subnetworks' SetIamPolicy.detailed_help = iam_base_classes.SetIamPolicyHelp('subnetwork')
Sorsly/subtle
google-cloud-sdk/lib/surface/compute/networks/subnets/set_iam_policy.py
Python
mit
1,265
import cs50 def main(): # Get inputs from user print("Key: ", end="") key = str.upper(cs50.get_string()) print("Text: ", end="") text = str.upper(cs50.get_string()) # Initialise cipher variable cipher = "" for i in text: if i.isalpha() == True: c = ord(i) + (key % 26) while c > 90: c -= 26 while c < 64: c += 26 cipher += chr(c) else: cipher += i print(cipher) if __name__ == "__main__": main()
Caleb-Ellis/CS50
pset6/vigenere.py
Python
mit
556
from __future__ import print_function, division import warnings def flip_sublat(opstr,indx,lat=0): sign = 1 opstr = [str(s) for s in opstr] for s,i,j in zip(opstr,indx,range(len(indx))): if ((i % 2) == (lat % 2)): if (s in ['z','y']): sign *= -1 elif (s == "+"): opstr[j] = '-' elif (s == "-"): opstr[j] = '+' return sign,"".join(opstr) def check_T(sort_opstr,operator_list,L,a): missing_ops=[] for i in range(0,L//a,1): for op in operator_list: opstr = str(op[0]) indx = list(op[1]) for j,ind in enumerate(indx): indx[j] = (ind+i*a)%L new_op = list(op) new_op[1] = indx new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return missing_ops def check_Z(sort_opstr,operator_list): missing_ops=[] odd_ops=[] for op in operator_list: opstr = str(op[0]) indx = list(op[1]) if opstr.count("|") == 1: i = opstr.index("|") else: i = len(opstr) z_count = opstr[:i].count("z") y_count = opstr[:i].count("y") if ((y_count + z_count) % 2) != 0: odd_ops.append(op) new_op = list(op) new_op[0] = new_op[0][:i].replace("+","#").replace("-","+").replace("#","-") + op[0][i:] new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return odd_ops,missing_ops def check_P(sort_opstr,operator_list,L): missing_ops = [] for op in operator_list: indx = list(op[1]) for j,ind in enumerate(indx): indx[j] = (L-1-ind) % L new_op = list(op) new_op[1] = indx new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return missing_ops def check_PZ(sort_opstr,operator_list,L): missing_ops = [] for op in operator_list: opstr = str(op[0]) indx = list(op[1]) if opstr.count("|") == 1: i = opstr.index("|") else: i = len(opstr) for j,ind in enumerate(indx): indx[j] = (L-1-ind) % L sign = (-1)**(opstr[:i].count('z')+opstr.count('y')) new_op = list(op) new_op[0] = new_op[0][:i].replace("+","#").replace("-","+").replace("#","-") + op[0][i:] new_op[1] = indx new_op[2] *= sign new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return missing_ops def check_ZA(sort_opstr,operator_list): missing_ops=[] odd_ops=[] for op in operator_list: opstr = str(op[0]) indx = list(op[1]) if opstr.count("|") == 1: i = opstr.index("|") else: i = len(opstr) sign,new_opstr = flip_sublat(opstr[:i],indx[:i],lat=0) if sign == -1: odd_ops.append(op) new_op = list(op) new_op[0] = new_opstr + opstr[i:] new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return odd_ops,missing_ops def check_ZB(sort_opstr,operator_list): missing_ops=[] odd_ops=[] for op in operator_list: opstr = str(op[0]) indx = list(op[1]) if opstr.count("|") == 1: i = opstr.index("|") else: i = len(opstr) sign,new_opstr = flip_sublat(opstr[:i],indx[:i],lat=1) if sign == -1: odd_ops.append(op) new_op = list(op) new_op[0] = new_opstr + opstr[i:] new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return odd_ops,missing_ops
weinbe58/QuSpin
quspin/basis/basis_1d/_check_1d_symm.py
Python
bsd-3-clause
3,277
# -*- coding: utf-8 -*- """ Created on Mon Feb 8 15:10:34 2016 Script to plot the results of RoBoCoP and RockyCoastCRN Martin Hurst, March 7th 2016 @author: mhurst """ #import modules import numpy as np import numpy.ma as ma import matplotlib.pyplot as plt from matplotlib import cm from matplotlib import rc # Customise figure style # rc('font',size=12) rc('ytick.major',pad=5) rc('xtick.major',pad=5) #rc('font',**{'family':'serif','serif':['Helvetica']}) #rc('text', usetex=True) padding = 5 #create blank figure plt.figure(1,figsize=(16,9)) #First load the morphology through time # declare the file and the axis ProfileName = "../results/Kaikoura/Kaikoura_ShoreProfiles.xz" f = open(ProfileName,'r') MorphLines = f.readlines() NoLines = len(MorphLines) f.close() dx = 0.1 dy = 0.1 EndTime = 10001 f = open("../results/Kaikoura/filelist.txt","w") #Get figure extent Line = MorphLines[5000].strip().split(" ") #Read morphology X = np.array(MorphLine[1:],dtype="float64") print X XMin = np.min(X) XMax = np.max(X) print XMin, XMax #Loop through time and make each plot j=1 for Time in range(0,EndTime+1,10): print Time, j #Get header info and setup X coord MorphLine = (MorphLines[j].strip().split(" ")) j += 1 #Read morphology X = np.array(MorphLine[1:],dtype="float64") Z = np.arange(10.,-10.01,-0.1) HighTideInd = np.argmin(np.abs(0.5-Z)) SLTideInd = np.argmin(np.abs(0-Z)) LowTideInd = np.argmin(np.abs(-0.5-Z)) SkyFillX = np.concatenate((np.array([-10,1000,1000]),X, np.array([-10]))) SkyFillZ = np.concatenate((np.array([100,100,10]),Z, np.array([-100]))) plt.fill(SkyFillX,SkyFillZ,color=[0.9,0.95,1.]) WaterFillX = np.concatenate((np.array([-10]),X[HighTideInd:],np.array([-10]))) WaterFillZ = np.concatenate((np.array([Z[HighTideInd]]),Z[HighTideInd:],np.array([Z[-1]]))) plt.fill(WaterFillX,WaterFillZ,color=[0.7,0.85,1.]) plt.plot([-10,X[HighTideInd]],[0.5,0.5],'--',color=[0.4,0.6,0.8]) plt.plot([-10,X[SLTideInd]],[0.,0.],'-',color=[0.4,0.6,0.8]) plt.plot([-10,X[LowTideInd]],[-0.5,-0.5],'--',color=[0.4,0.6,0.8]) plt.plot(X,Z,'k-') plt.plot([X[0],1000],[Z[0],Z[0]],'k-') # tweak the plot #ax1.set_xticklabels([]) plt.xlabel(r"Distance (m)") plt.ylabel(r"Elevation (m)") plt.xlim(XMin,XMax) plt.ylim(-10,10) #write the time on the plot plt.text(-8,14,"Time in years: "+str(Time)) #save plot and mark earthquake FigName = "../results/Kaikoura/Out"+str(Time)+".png" f.write(FigName+"\n") plt.savefig(FigName,dpi=100) if (Time == 5000): plt.text(10,9,'EARTHQUAKE') for i in range(0,26): FigName = "../results/Kaikoura/Out"+str(Time)+"_EQ"+str(i)+".png" f.write(FigName+"\n") plt.savefig(FigName,dpi=100) plt.clf() f.close()
mdhurst1/RoBoCoP_CRN
plotting_functions/plot_kaikoura_animation.py
Python
gpl-3.0
2,926
__author__ = 'Eden Thiago Ferreira' import cProfile as cp import pstats as pst from collections import OrderedDict from grafos import * from banco_dados import * from caminhos_minimos import * class Coletor: def __init__(self,grafo,nome_mapa=None,path_grafos=None): """se path_grafo é None ele gera o grafo aleatoriamente""" self.nome_mapa = nome_mapa if path_grafos is None: self.path_grafos = {} else: self.path_grafos = path_grafos self.grafo = grafo if nome_mapa is None: self.grafo.gerar_grafo(rnd.randint(1200,1600),rnd.randint(1200,1600), rnd.uniform(800,1200),rnd.uniform(800,1200),rnd.uniform(0.02,0.1)) else: self.grafo.gerar_grafo_mapa(path_grafos[nome_mapa],nome_mapa) self.profiler = cp.Profile() self.pt_ori, self.pt_dest = rnd.sample(self.grafo.pontos,2) self.dij, self.ast = Dijkstra(self.grafo), AStar(self.grafo) self.executou = False def get_tempo(self): with open('status.txt','w') as arq: dados = pst.Stats(self.profiler,stream=arq) dados.strip_dirs().print_stats('(start)') stat = list() with open('status.txt','r') as arq: for li in arq.readlines(): if 'start' in li: stat.append((li.split())) return stat[1][4] def exec_dij(self): self.dij.pt_ori, self.dij.pt_dest = self.pt_ori, self.pt_dest self.profiler.enable() self.dij.start() self.profiler.disable() self.dij.tempo = self.get_tempo() def exec_ast(self): self.ast.pt_ori, self.ast.pt_dest = self.pt_ori, self.pt_dest self.profiler.enable() self.ast.start() self.profiler.disable() self.ast.tempo = self.get_tempo() def start(self): self.exec_dij() self.exec_ast() self.executou = True def dump_dados(self,con): if self.executou: if self.nome_mapa is None: con.inserir_grafo(self.grafo) else: con.inserir_grafo_mapa(self.grafo) dados_dij = OrderedDict() dados_dij['ponto_origem'] = self.dij.pt_ori dados_dij['ponto_destino'] = self.dij.pt_dest dados_dij['caminho'] = str(self.dij.caminho) dados_dij['num_passos'] = self.dij.num_passos dados_dij['distancia_total'] = self.dij.dist_total dados_dij['tempo'] = self.dij.tempo dados_ast = OrderedDict() dados_ast['ponto_origem'] = self.ast.pt_ori dados_ast['ponto_destino'] = self.ast.pt_dest dados_ast['caminho'] = str(self.ast.caminho) dados_ast['num_passos'] = self.ast.num_passos dados_ast['distancia_total'] = self.ast.dist_total dados_ast['tempo'] = self.ast.tempo con.inserir_dijkstra((dados_dij['ponto_origem'],dados_dij['ponto_destino'], dados_dij['caminho'],dados_dij['num_passos'], dados_dij['distancia_total'],dados_dij['tempo'],self.grafo.ident)) con.inserir_astar((dados_ast['ponto_origem'],dados_ast['ponto_destino'], dados_ast['caminho'],dados_ast['num_passos'], dados_ast['distancia_total'],dados_ast['tempo'],self.grafo.ident))
edenferreira/Grafo-e-Caminhos-Minimos
coletar_dados.py
Python
bsd-2-clause
3,475
""" Base class for UserStore """ from abc import ABC, abstractmethod import traceback from logging import getLogger from datetime import datetime from pytz import timezone as tz from ..serializer import dumps, loads from ..models import User class UserStore(ABC): """ Base class for UserStore to read/write user information Attributes ---------- config : minette.Config Configuration timezone : pytz.timezone Timezone logger : logging.Logger Logger table_name : str Database table name for read/write user data sqls : dict SQLs used in ContextStore """ def __init__(self, config=None, timezone=None, logger=None, table_name="user", **kwargs): """ Parameters ---------- config : minette.Config, default None Configuration timezone : pytz.timezone, default None Timezone logger : logging.Logger, default None Logger table_name : str, default "user" Database table name for read/write user data """ self.config = config self.timezone = timezone or ( tz(config.get("timezone", default="UTC")) if config else tz("UTC")) self.logger = logger if logger else getLogger(__name__) self.table_name = table_name self.sqls = self.get_sqls() @abstractmethod def get_sqls(self): pass def prepare_table(self, connection, prepare_params=None): """ Check and create table if not exist Parameters ---------- connection : Connection Connection for prepare query_params : tuple, default tuple() Query parameters for checking table """ cursor = connection.cursor() cursor.execute(self.sqls["prepare_check"], prepare_params or tuple()) if not cursor.fetchone(): cursor.execute(self.sqls["prepare_create"]) connection.commit() return True else: return False def get(self, channel, channel_user_id, connection): """ Get user by channel and channel_user_id Parameters ---------- channel : str Channel channel_user_id : str Channel user ID connection : Connection Connection Returns ------- user : minette.User User """ user = User(channel=channel, channel_user_id=channel_user_id) if not channel_user_id: return user try: cursor = connection.cursor() cursor.execute(self.sqls["get_user"], (channel, channel_user_id)) row = cursor.fetchone() if row is not None: # convert to dict if isinstance(row, dict): record = row else: record = dict( zip([column[0] for column in cursor.description], row)) # convert type record["data"] = loads(record["data"]) # restore user user.id = record["user_id"] user.name = record["name"] user.nickname = record["nickname"] user.profile_image_url = record["profile_image_url"] user.data = record["data"] if record["data"] else {} else: cursor.execute(self.sqls["add_user"], ( channel, channel_user_id, user.id, datetime.now(self.timezone), user.name, user.nickname, user.profile_image_url, None) ) connection.commit() except Exception as ex: self.logger.error( "Error occured in restoring user from database: " + str(ex) + "\n" + traceback.format_exc()) return user def save(self, user, connection): """ Save user Parameters ---------- user : minette.User User to save connection : Connection Connection """ user_dict = user.to_dict() serialized_data = dumps(user_dict["data"]) cursor = connection.cursor() cursor.execute(self.sqls["save_user"], ( datetime.now(self.timezone), user.name, user.nickname, user.profile_image_url, serialized_data, user.channel, user.channel_user_id) ) connection.commit()
uezo/minette-python
minette/datastore/userstore.py
Python
apache-2.0
4,577
# Copyright (c) 2001-2014, Canal TP and/or its affiliates. All rights reserved. # # This file is part of Navitia, # the software to build cool stuff with public transport. # # Hope you'll enjoy and contribute to this project, # powered by Canal TP (www.canaltp.fr). # Help us simplify mobility and open public transport: # a non ending quest to the responsive locomotion way of traveling! # # LICENCE: This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Stay tuned using # twitter @navitia # IRC #navitia on freenode # https://groups.google.com/d/forum/navitia # www.navitia.io import logging import logging.config import celery from configobj import ConfigObj, flatten_errors from validate import Validator from flask import current_app import os import sys def configure_logger(app): """ initialize logging """ if 'LOGGER' in app.config: logging.config.dictConfig(app.config['LOGGER']) else: # Default is std out handler = logging.StreamHandler(stream=sys.stdout) app.logger.addHandler(handler) app.logger.setLevel('INFO') def make_celery(app): celery_app = celery.Celery(app.import_name, broker=app.config['CELERY_BROKER_URL']) celery_app.conf.update(app.config) TaskBase = celery_app.Task class ContextTask(TaskBase): abstract = True def __init__(self): pass def __call__(self, *args, **kwargs): with app.app_context(): return TaskBase.__call__(self, *args, **kwargs) celery_app.Task = ContextTask return celery_app class InstanceConfig(object): def __init__(self): self.source_directory = None self.backup_directory = None self.target_file = None self.exchange = None self.synonyms_file = None self.aliases_file = None self.pg_host = None self.pg_dbname = None self.pg_username = None self.pg_password = None self.pg_port = None self.name = None def load_instance_config(instance_name): confspec = [] confspec.append('[instance]') confspec.append('source-directory = string()') confspec.append('backup-directory = string()') confspec.append('target-file = string()') confspec.append('exchange = string(default="navitia")') confspec.append('synonyms_file = string(default="")') confspec.append('aliases_file = string(default="")') confspec.append('name = string()') confspec.append('is-free = boolean(default=False)') confspec.append('[database]') confspec.append('host = string()') confspec.append('dbname = string()') confspec.append('username = string()') confspec.append('password = string()') confspec.append('port = string(default="5432")') ini_file = '%s/%s.ini' % \ (current_app.config['INSTANCES_DIR'], instance_name) if not os.path.isfile(ini_file): raise ValueError("File doesn't exists or is not a file %s" % ini_file) config = ConfigObj(ini_file, configspec=confspec, stringify=True) val = Validator() res = config.validate(val, preserve_errors=True) #validate retourne true, ou un dictionaire ... if type(res) is dict: error = build_error(config, res) raise ValueError("Config is not valid: %s in %s" % (error, ini_file)) instance = InstanceConfig() instance.source_directory = config['instance']['source-directory'] instance.backup_directory = config['instance']['backup-directory'] instance.target_file = config['instance']['target-file'] instance.exchange = config['instance']['exchange'] instance.synonyms_file = config['instance']['synonyms_file'] instance.aliases_file = config['instance']['aliases_file'] instance.name = config['instance']['name'] instance.is_free = config['instance']['is-free'] instance.pg_host = config['database']['host'] instance.pg_dbname = config['database']['dbname'] instance.pg_username = config['database']['username'] instance.pg_password = config['database']['password'] instance.pg_port = config['database']['port'] return instance def build_error(config, validate_result): """ construit la chaine d'erreur si la config n'est pas valide """ result = "" for entry in flatten_errors(config, validate_result): # each entry is a tuple section_list, key, error = entry if key is not None: section_list.append(key) else: section_list.append('[missing section]') section_string = ', '.join(section_list) if error is False: error = 'Missing value or section.' result += section_string + ' => ' + str(error) + "\n" return result def get_instance_logger(instance): """ return the logger for this instance get the logger name 'instance' as the parent logger For file handler, all log will be in a file specific to this instance """ logger = logging.getLogger('instance.{0}'.format(instance.name)) # if the logger has already been inited, we can stop if logger.handlers: return logger for handler in logger.parent.handlers: #trick for FileHandler, we change the file name if isinstance(handler, logging.FileHandler): #we use the %(name) notation to use the same grammar as the python module log_filename = handler.stream.name.replace('%(name)', instance.name) new_handler = logging.FileHandler(log_filename) new_handler.setFormatter(handler.formatter) handler = new_handler logger.addHandler(handler) logger.propagate = False return logger def get_named_arg(arg_name, func, args, kwargs): if kwargs and arg_name in kwargs: return kwargs[arg_name] else: idx = func.func_code.co_varnames.index(arg_name) if args and idx < len(args): return args[idx] else: return None
ballouche/navitia
source/tyr/tyr/helper.py
Python
agpl-3.0
6,649
# Rewritten by RayzoR import sys from com.l2scoria.gameserver.model.quest import State from com.l2scoria.gameserver.model.quest import QuestState from com.l2scoria.gameserver.model.quest.jython import QuestJython as JQuest qn = "140_ShadowFoxPart2" # NPCs KLUCK = 30895 XENOVIA = 30912 # ITEMs CRYSTAL = 10347 OXYDE = 10348 CRYPT = 10349 # MONSTERs NPC=[20789,20790,20791,20792] class Quest (JQuest) : def __init__(self,id,name,descr): JQuest.__init__(self,id,name,descr) self.questItemIds = [CRYSTAL,OXYDE,CRYPT] def onEvent (self,event,st) : htmltext = event id = st.getState() cond = st.getInt("cond") if event == "30895-02.htm" : st.set("cond","1") st.playSound("ItemSound.quest_accept") elif event == "30895-05.htm" : st.set("cond","2") st.playSound("ItemSound.quest_middle") elif event == "30895-09.htm" : st.playSound("ItemSound.quest_finish") st.unset("talk") st.exitQuest(False) st.giveItems(57, 18775) if st.getPlayer().getLevel() >= 37 and st.getPlayer().getLevel() <= 42: st.addExpAndSp(30000,2000) st.setState(COMPLETED) elif event == "30912-07.htm" : st.set("cond","3") st.playSound("ItemSound.quest_middle") elif event == "30912-09.htm" : st.takeItems(CRYSTAL, 5) if st.getRandom(100) <= 60 : st.giveItems(OXYDE,1) if st.getQuestItemsCount(OXYDE) >= 3 : htmltext = "30912-09b.htm" st.set("cond","4") st.playSound("ItemSound.quest_middle") st.takeItems(CRYSTAL, -1) st.takeItems(OXYDE, -1) st.giveItems(CRYPT,1) else: htmltext = "30912-09a.htm" return htmltext def onTalk (self,npc,player): htmltext = "<html><body>You are either not on a quest that involves this NPC, or you don't meet this NPC's minimum quest requirements.</body></html>" st = player.getQuestState(qn) if not st : return htmltext npcId = npc.getNpcId() id = st.getState() cond = st.getInt("cond") if id == CREATED : return htmltext if id == COMPLETED : htmltext = "<html><body>This quest has already been completed.</body></html>" elif npcId == KLUCK : if cond == 0 : if player.getLevel() >= 37: htmltext = "30895-01.htm" else: htmltext = "30895-00.htm" elif cond == 1 : htmltext = "30895-02.htm" elif cond in [2,3] : htmltext = "30895-06.htm" elif cond == 4 : if st.getInt("talk"): htmltext = "30895-08.htm" else: htmltext = "30895-07.htm" st.takeItems(CRYPT, -1) st.set("talk","1") elif npcId == XENOVIA : if cond == 2 : htmltext = "30912-01.htm" elif cond == 3 : if st.getQuestItemsCount(CRYSTAL) >= 5 : htmltext = "30912-08.htm" else: htmltext = "30912-07.htm" elif cond == 4 : htmltext = "30912-10.htm" return htmltext def onKill(self,npc,player,isPet): st = player.getQuestState(qn) if not st : return if st.getState() != STARTED : return if st.getInt("cond")==3 and st.getRandom(100) <= 80 : st.playSound("ItemSound.quest_itemget") st.giveItems(CRYSTAL,1) return def onFirstTalk (self,npc,player): st = player.getQuestState(qn) if not st : st = self.newQuestState(player) qs = player.getQuestState("139_ShadowFoxPart1") if qs : if qs.getState().getName() == 'Completed' and st.getState() == CREATED : st.setState(STARTED) npc.showChatWindow(player) return QUEST = Quest(140,qn,"Shadow Fox - 2") CREATED = State('Start', QUEST) STARTED = State('Started', QUEST) COMPLETED = State('Completed', QUEST) QUEST.setInitialState(CREATED) QUEST.addFirstTalkId(KLUCK) #this quest doesnt have starter npc, quest will appear in list only when u finish quest 139 QUEST.addTalkId(KLUCK) QUEST.addTalkId(XENOVIA) for mob in NPC : QUEST.addKillId(mob)
zenn1989/scoria-interlude
L2Jscoria-Game/data/scripts/quests/140_ShadowFoxPart2/__init__.py
Python
gpl-3.0
4,120
""" Etymology plugin Authors: - GhettoWizard - Scaevolus - linuxdaemon <linuxdaemon@snoonet.org> """ import re import requests from bs4 import BeautifulSoup from requests import HTTPError from cloudbot import hook @hook.command("e", "etymology") def etymology(text, reply): """<word> - retrieves the etymology of <word> :type text: str """ response = requests.get('https://www.etymonline.com/search', params={"q": text}) try: response.raise_for_status() except HTTPError as e: reply("Error reaching etymonline.com: {}".format(e.response.status_code)) raise soup = BeautifulSoup(response.text, "lxml") result = soup.find('a', class_=re.compile("word--.+")) if not result: return 'No etymology found' title = result.div.p.text.strip() etym = result.div.section.text.strip() url = result['href'] # Strip ellipsis if etym.endswith(" …"): etym = etym[:-2] out = '[h1]{}:[/h1] {}'.format(title, etym) if len(out) > 400: out = out[:out.rfind(' ', 0, 400)] + ' ...' return "{} [div] [h3]http://www.etymonline.com{}[/h3]".format(out, url)
valesi/CloudBot
plugins/etymology.py
Python
gpl-3.0
1,175
#!/usr/bin/python # (c) 2018-2019, NetApp, Inc # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' module: na_ontap_vscan_scanner_pool short_description: NetApp ONTAP Vscan Scanner Pools Configuration. extends_documentation_fragment: - netapp.na_ontap version_added: '2.8' author: NetApp Ansible Team (@carchi8py) <ng-ansibleteam@netapp.com> description: - Configure a Vscan Scanner Pool options: state: description: - Whether a Vscan Scanner pool is present or not choices: ['present', 'absent'] default: present vserver: description: - the name of the data vserver to use. required: true hostnames: description: - List of hostnames of Vscan servers which are allowed to connect to Data ONTAP privileged_users: description: - List of privileged usernames. Username must be in the form "domain-name\\user-name" scanner_pool: description: - the name of the virus scanner pool required: true scanner_policy: description: - The name of the Virus scanner Policy choices: ['primary', 'secondary', 'idle'] ''' EXAMPLES = """ - name: Create and enable Scanner pool na_ontap_vscan_scanner_pool: state: present username: '{{ netapp_username }}' password: '{{ netapp_password }}' hostname: '{{ netapp_hostname }}' vserver: carchi-vsim2 hostnames: ['name', 'name2'] privileged_users: ['sim.rtp.openeng.netapp.com\\admin', 'sim.rtp.openeng.netapp.com\\carchi'] scanner_pool: Scanner1 scanner_policy: primary - name: Delete a scanner pool na_ontap_vscan_scanner_pool: state: absent username: '{{ netapp_username }}' password: '{{ netapp_password }}' hostname: '{{ netapp_hostname }}' vserver: carchi-vsim2 scanner_pool: Scanner1 """ RETURN = """ """ import traceback from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_native import ansible.module_utils.netapp as netapp_utils HAS_NETAPP_LIB = netapp_utils.has_netapp_lib() class NetAppOntapVscanScannerPool(object): def __init__(self): self.argument_spec = netapp_utils.na_ontap_host_argument_spec() self.argument_spec.update(dict( state=dict(choices=['present', 'absent'], default='present'), vserver=dict(required=True, type='str'), hostnames=dict(requried=False, type='list'), privileged_users=dict(required=False, type='list'), scanner_pool=dict(required=True, type='str'), scanner_policy=dict(required=False, choices=['primary', 'secondary', 'idle']) )) self.module = AnsibleModule( argument_spec=self.argument_spec, supports_check_mode=True ) parameters = self.module.params self.hostnames = parameters['hostnames'] self.vserver = parameters['vserver'] self.privileged_users = parameters['privileged_users'] self.scanner_pool = parameters['scanner_pool'] self.state = parameters['state'] self.scanner_policy = parameters['scanner_policy'] if HAS_NETAPP_LIB is False: self.module.fail_json(msg="the python NetApp-Lib module is required") else: self.server = netapp_utils.setup_na_ontap_zapi(module=self.module, vserver=self.vserver) def create_scanner_pool(self): """ Create a Vscan Scanner Pool :return: nothing """ scanner_pool_obj = netapp_utils.zapi.NaElement('vscan-scanner-pool-create') if self.hostnames: string_obj = netapp_utils.zapi.NaElement('hostnames') scanner_pool_obj.add_child_elem(string_obj) for hostname in self.hostnames: string_obj.add_new_child('string', hostname) if self.privileged_users: users_obj = netapp_utils.zapi.NaElement('privileged-users') scanner_pool_obj.add_child_elem(users_obj) for user in self.privileged_users: users_obj.add_new_child('privileged-user', user) scanner_pool_obj.add_new_child('scanner-pool', self.scanner_pool) try: self.server.invoke_successfully(scanner_pool_obj, True) except netapp_utils.zapi.NaApiError as error: self.module.fail_json(msg='Error creating Vscan Scanner Pool %s: %s' % (self.scanner_pool, to_native(error)), exception=traceback.format_exc()) def apply_policy(self): """ Apply a Scanner policy to a Scanner pool :return: nothing """ apply_policy_obj = netapp_utils.zapi.NaElement('vscan-scanner-pool-apply-policy') apply_policy_obj.add_new_child('scanner-policy', self.scanner_policy) apply_policy_obj.add_new_child('scanner-pool', self.scanner_pool) try: self.server.invoke_successfully(apply_policy_obj, True) except netapp_utils.zapi.NaApiError as error: self.module.fail_json(msg='Error applying policy %s to pool %s: %s' % (self.scanner_policy, self.scanner_pool, to_native(error)), exception=traceback.format_exc()) def get_scanner_pool(self): """ Check to see if a scanner pool exist or not :return: True if it exist, False if it does not """ scanner_pool_obj = netapp_utils.zapi.NaElement('vscan-scanner-pool-get-iter') scanner_pool_info = netapp_utils.zapi.NaElement('scan-scanner-pool-info') scanner_pool_info.add_new_child('scanner-pool', self.scanner_pool) scanner_pool_info.add_new_child('vserver', self.vserver) query = netapp_utils.zapi.NaElement('query') query.add_child_elem(scanner_pool_info) scanner_pool_obj.add_child_elem(query) try: result = self.server.invoke_successfully(scanner_pool_obj, True) except netapp_utils.zapi.NaApiError as error: self.module.fail_json(msg='Error searching for Vscan Scanner Pool %s: %s' % (self.scanner_pool, to_native(error)), exception=traceback.format_exc()) if result.get_child_by_name('num-records') and int(result.get_child_content('num-records')) >= 1: if result.get_child_by_name('attributes-list').get_child_by_name('vscan-scanner-pool-info').get_child_content( 'scanner-pool') == self.scanner_pool: return result.get_child_by_name('attributes-list').get_child_by_name('vscan-scanner-pool-info') return False return False def delete_scanner_pool(self): """ Delete a Scanner pool :return: nothing """ scanner_pool_obj = netapp_utils.zapi.NaElement('vscan-scanner-pool-delete') scanner_pool_obj.add_new_child('scanner-pool', self.scanner_pool) try: self.server.invoke_successfully(scanner_pool_obj, True) except netapp_utils.zapi.NaApiError as error: self.module.fail_json(msg='Error deleting Vscan Scanner Pool %s: %s' % (self.scanner_pool, to_native(error)), exception=traceback.format_exc()) def asup_log_for_cserver(self, event_name): """ Fetch admin vserver for the given cluster Create and Autosupport log event with the given module name :param event_name: Name of the event log :return: None """ results = netapp_utils.get_cserver(self.server) cserver = netapp_utils.setup_na_ontap_zapi(module=self.module, vserver=results) netapp_utils.ems_log_event(event_name, cserver) def apply(self): self.asup_log_for_cserver("na_ontap_vscan_scanner_pool") changed = False scanner_pool_obj = self.get_scanner_pool() if self.state == 'present': if not scanner_pool_obj: self.create_scanner_pool() if self.scanner_policy: self.apply_policy() changed = True # apply Scanner policy if scanner_pool_obj: if self.scanner_policy: if scanner_pool_obj.get_child_content('scanner-policy') != self.scanner_policy: self.apply_policy() changed = True if self.state == 'absent': if scanner_pool_obj: self.delete_scanner_pool() changed = True self.module.exit_json(changed=changed) def main(): """ Execute action from playbook """ command = NetAppOntapVscanScannerPool() command.apply() if __name__ == '__main__': main()
thaim/ansible
lib/ansible/modules/storage/netapp/na_ontap_vscan_scanner_pool.py
Python
mit
9,108
# -*- coding: utf-8 -*- # Generated by Django 1.9.5 on 2017-01-24 03:41 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('product', '0004_overview_slideproduct_techspec'), ] operations = [ migrations.RemoveField( model_name='overview', name='product', ), migrations.AddField( model_name='overview', name='category', field=models.ForeignKey(blank=True, default='', null=True, on_delete=django.db.models.deletion.CASCADE, related_name='overcat', to='product.Category', verbose_name='Category'), ), ]
skylifewww/pangolin-fog
product/migrations/0005_auto_20170124_0341.py
Python
mit
741
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=protected-access """Recurrent layers and their base classes. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.eager import context from tensorflow.python.framework import tensor_shape from tensorflow.python.keras import activations from tensorflow.python.keras import backend as K from tensorflow.python.keras import constraints from tensorflow.python.keras import initializers from tensorflow.python.keras import regularizers from tensorflow.python.keras.engine.base_layer import InputSpec from tensorflow.python.keras.engine.base_layer import Layer from tensorflow.python.keras.utils import generic_utils from tensorflow.python.keras.utils import tf_utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import state_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training.checkpointable import base as checkpointable from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export @tf_export('keras.layers.StackedRNNCells') class StackedRNNCells(Layer): """Wrapper allowing a stack of RNN cells to behave as a single cell. Used to implement efficient stacked RNNs. Arguments: cells: List of RNN cell instances. Examples: ```python cells = [ keras.layers.LSTMCell(output_dim), keras.layers.LSTMCell(output_dim), keras.layers.LSTMCell(output_dim), ] inputs = keras.Input((timesteps, input_dim)) x = keras.layers.RNN(cells)(inputs) ``` """ def __init__(self, cells, **kwargs): for cell in cells: if not hasattr(cell, 'call'): raise ValueError('All cells must have a `call` method. ' 'received cells:', cells) if not hasattr(cell, 'state_size'): raise ValueError('All cells must have a ' '`state_size` attribute. ' 'received cells:', cells) self.cells = cells # reverse_state_order determines whether the state size will be in a reverse # order of the cells' state. User might want to set this to True to keep the # existing behavior. This is only useful when use RNN(return_state=True) # since the state will be returned as the same order of state_size. self.reverse_state_order = kwargs.pop('reverse_state_order', False) if self.reverse_state_order: logging.warning('reverse_state_order=True in StackedRNNCells will soon ' 'be deprecated. Please update the code to work with the ' 'natural order of states if you reply on the RNN states, ' 'eg RNN(return_state=True).') super(StackedRNNCells, self).__init__(**kwargs) @property def state_size(self): # States are a flat list of the individual cell state size. # e.g. states of a 2-layer LSTM would be `[h1, c1, h2, c2]`. # (assuming one LSTM has states [h, c]) # In the case of reverse_state_order=True, the state_size will be # [h2, c2, h1, c1]. state_size = [] for cell in self.cells[::-1] if self.reverse_state_order else self.cells: if _is_multiple_state(cell.state_size): state_size += list(cell.state_size) else: state_size.append(cell.state_size) return tuple(state_size) @property def output_size(self): if getattr(self.cells[-1], 'output_size', None) is not None: return self.cells[-1].output_size elif _is_multiple_state(self.cells[-1].state_size): return self.cells[-1].state_size[0] else: return self.cells[-1].state_size def get_initial_state(self, inputs=None, batch_size=None, dtype=None): # The init state is flattened into a list because state_size is a flattened # list. initial_states = [] for cell in self.cells[::-1] if self.reverse_state_order else self.cells: get_initial_state_fn = getattr(cell, 'get_initial_state', None) if get_initial_state_fn: initial_states.append(get_initial_state_fn( inputs=inputs, batch_size=batch_size, dtype=dtype)) else: initial_states.append(_generate_zero_filled_state_for_cell( cell, inputs, batch_size, dtype)) return nest.flatten(initial_states) def call(self, inputs, states, constants=None, **kwargs): # Recover per-cell states. nested_states = [] for cell in self.cells[::-1] if self.reverse_state_order else self.cells: if _is_multiple_state(cell.state_size): nested_states.append(states[:len(cell.state_size)]) states = states[len(cell.state_size):] else: nested_states.append([states[0]]) states = states[1:] if self.reverse_state_order: nested_states = nested_states[::-1] # Call the cells in order and store the returned states. new_nested_states = [] for cell, states in zip(self.cells, nested_states): if generic_utils.has_arg(cell.call, 'constants'): inputs, states = cell.call(inputs, states, constants=constants, **kwargs) else: inputs, states = cell.call(inputs, states, **kwargs) new_nested_states.append(states) # Format the new states as a flat list new_states = [] if self.reverse_state_order: new_nested_states = new_nested_states[::-1] for cell_states in new_nested_states: new_states += cell_states return inputs, new_states @tf_utils.shape_type_conversion def build(self, input_shape): if isinstance(input_shape, list): constants_shape = input_shape[1:] input_shape = input_shape[0] for cell in self.cells: if isinstance(cell, Layer): if generic_utils.has_arg(cell.call, 'constants'): cell.build([input_shape] + constants_shape) else: cell.build(input_shape) if getattr(cell, 'output_size', None) is not None: output_dim = cell.output_size elif _is_multiple_state(cell.state_size): output_dim = cell.state_size[0] else: output_dim = cell.state_size input_shape = tuple([input_shape[0]] + tensor_shape.as_shape(output_dim).as_list()) self.built = True def get_config(self): cells = [] for cell in self.cells: cells.append({ 'class_name': cell.__class__.__name__, 'config': cell.get_config() }) config = {'cells': cells} base_config = super(StackedRNNCells, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top cells = [] for cell_config in config.pop('cells'): cells.append( deserialize_layer(cell_config, custom_objects=custom_objects)) return cls(cells, **config) @property def trainable_weights(self): if not self.trainable: return [] weights = [] for cell in self.cells: if isinstance(cell, Layer): weights += cell.trainable_weights return weights @property def non_trainable_weights(self): weights = [] for cell in self.cells: if isinstance(cell, Layer): weights += cell.non_trainable_weights if not self.trainable: trainable_weights = [] for cell in self.cells: if isinstance(cell, Layer): trainable_weights += cell.trainable_weights return trainable_weights + weights return weights def get_weights(self): """Retrieves the weights of the model. Returns: A flat list of Numpy arrays. """ weights = [] for cell in self.cells: if isinstance(cell, Layer): weights += cell.weights return K.batch_get_value(weights) def set_weights(self, weights): """Sets the weights of the model. Arguments: weights: A list of Numpy arrays with shapes and types matching the output of `model.get_weights()`. """ tuples = [] for cell in self.cells: if isinstance(cell, Layer): num_param = len(cell.weights) weights = weights[:num_param] for sw, w in zip(cell.weights, weights): tuples.append((sw, w)) weights = weights[num_param:] K.batch_set_value(tuples) @property def losses(self): losses = [] for cell in self.cells: if isinstance(cell, Layer): losses += cell.losses return losses + self._losses @property def updates(self): updates = [] for cell in self.cells: if isinstance(cell, Layer): updates += cell.updates return updates + self._updates @tf_export('keras.layers.RNN') class RNN(Layer): """Base class for recurrent layers. Arguments: cell: A RNN cell instance or a list of RNN cell instances. A RNN cell is a class that has: - a `call(input_at_t, states_at_t)` method, returning `(output_at_t, states_at_t_plus_1)`. The call method of the cell can also take the optional argument `constants`, see section "Note on passing external constants" below. - a `state_size` attribute. This can be a single integer (single state) in which case it is the size of the recurrent state. This can also be a list/tuple of integers (one size per state). The `state_size` can also be TensorShape or tuple/list of TensorShape, to represent high dimension state. - a `output_size` attribute. This can be a single integer or a TensorShape, which represent the shape of the output. For backward compatible reason, if this attribute is not available for the cell, the value will be inferred by the first element of the `state_size`. - a `get_initial_state(inputs=None, batch_size=None, dtype=None)` method that creates a tensor meant to be fed to `call()` as the initial state, if user didn't specify any initial state via other means. The returned initial state should be in shape of [batch, cell.state_size]. Cell might choose to create zero filled tensor, or with other values based on the cell implementations. `inputs` is the input tensor to the RNN layer, which should contain the batch size as its shape[0], and also dtype. Note that the shape[0] might be None during the graph construction. Either the `inputs` or the pair of `batch` and `dtype `are provided. `batch` is a scalar tensor that represent the batch size of the input. `dtype` is `tf.dtype` that represent the dtype of the input. For backward compatible reason, if this method is not implemented by the cell, RNN layer will create a zero filled tensors with the size of [batch, cell.state_size]. In the case that `cell` is a list of RNN cell instances, the cells will be stacked on after the other in the RNN, implementing an efficient stacked RNN. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. return_state: Boolean. Whether to return the last state in addition to the output. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. input_dim: dimensionality of the input (integer or tuple of integers). This argument (or alternatively, the keyword argument `input_shape`) is required when using this layer as the first layer in a model. input_length: Length of input sequences, to be specified when it is constant. This argument is required if you are going to connect `Flatten` then `Dense` layers upstream (without it, the shape of the dense outputs cannot be computed). Note that if the recurrent layer is not the first layer in your model, you would need to specify the input length at the level of the first layer (e.g. via the `input_shape` argument) time_major: The shape format of the `inputs` and `outputs` tensors. If True, the inputs and outputs will be in shape `(timesteps, batch, ...)`, whereas in the False case, it will be `(batch, timesteps, ...)`. Using `time_major = True` is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. Input shape: N-D tensor with shape `(batch_size, timesteps, ...)` or `(timesteps, batch_size, ...)` when time_major is True. Output shape: - if `return_state`: a list of tensors. The first tensor is the output. The remaining tensors are the last states, each with shape `(batch_size, state_size)`, where `state_size` could be a high dimension tensor shape. - if `return_sequences`: N-D tensor with shape `(batch_size, timesteps, output_size)`, where `output_size` could be a high dimension tensor shape, or `(timesteps, batch_size, output_size)` when `time_major` is True. - else, N-D tensor with shape `(batch_size, output_size)`, where `output_size` could be a high dimension tensor shape. # Masking This layer supports masking for input data with a variable number of timesteps. To introduce masks to your data, use an [Embedding](embeddings.md) layer with the `mask_zero` parameter set to `True`. # Note on using statefulness in RNNs You can set RNN layers to be 'stateful', which means that the states computed for the samples in one batch will be reused as initial states for the samples in the next batch. This assumes a one-to-one mapping between samples in different successive batches. To enable statefulness: - specify `stateful=True` in the layer constructor. - specify a fixed batch size for your model, by passing if sequential model: `batch_input_shape=(...)` to the first layer in your model. else for functional model with 1 or more Input layers: `batch_shape=(...)` to all the first layers in your model. This is the expected shape of your inputs *including the batch size*. It should be a tuple of integers, e.g. `(32, 10, 100)`. - specify `shuffle=False` when calling fit(). To reset the states of your model, call `.reset_states()` on either a specific layer, or on your entire model. # Note on specifying the initial state of RNNs You can specify the initial state of RNN layers symbolically by calling them with the keyword argument `initial_state`. The value of `initial_state` should be a tensor or list of tensors representing the initial state of the RNN layer. You can specify the initial state of RNN layers numerically by calling `reset_states` with the keyword argument `states`. The value of `states` should be a numpy array or list of numpy arrays representing the initial state of the RNN layer. # Note on passing external constants to RNNs You can pass "external" constants to the cell using the `constants` keyword argument of `RNN.__call__` (as well as `RNN.call`) method. This requires that the `cell.call` method accepts the same keyword argument `constants`. Such constants can be used to condition the cell transformation on additional static inputs (not changing over time), a.k.a. an attention mechanism. Examples: ```python # First, let's define a RNN Cell, as a layer subclass. class MinimalRNNCell(keras.layers.Layer): def __init__(self, units, **kwargs): self.units = units self.state_size = units super(MinimalRNNCell, self).__init__(**kwargs) def build(self, input_shape): self.kernel = self.add_weight(shape=(input_shape[-1], self.units), initializer='uniform', name='kernel') self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), initializer='uniform', name='recurrent_kernel') self.built = True def call(self, inputs, states): prev_output = states[0] h = K.dot(inputs, self.kernel) output = h + K.dot(prev_output, self.recurrent_kernel) return output, [output] # Let's use this cell in a RNN layer: cell = MinimalRNNCell(32) x = keras.Input((None, 5)) layer = RNN(cell) y = layer(x) # Here's how to use the cell to build a stacked RNN: cells = [MinimalRNNCell(32), MinimalRNNCell(64)] x = keras.Input((None, 5)) layer = RNN(cells) y = layer(x) ``` """ def __init__(self, cell, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, time_major=False, **kwargs): if isinstance(cell, (list, tuple)): cell = StackedRNNCells(cell) if not hasattr(cell, 'call'): raise ValueError('`cell` should have a `call` method. ' 'The RNN was passed:', cell) if not hasattr(cell, 'state_size'): raise ValueError('The RNN cell should have ' 'an attribute `state_size` ' '(tuple of integers, ' 'one integer per RNN state).') super(RNN, self).__init__(**kwargs) self.cell = cell if isinstance(cell, checkpointable.CheckpointableBase): self._track_checkpointable(self.cell, name='cell') self.return_sequences = return_sequences self.return_state = return_state self.go_backwards = go_backwards self.stateful = stateful self.unroll = unroll self.time_major = time_major self.supports_masking = True # The input shape is unknown yet, it could have nested tensor inputs, and # the input spec will be the list of specs for flattened inputs. self.input_spec = None self.state_spec = None self._states = None self.constants_spec = None self._num_constants = None self._num_inputs = None @property def states(self): if self._states is None: state = nest.map_structure(lambda _: None, self.cell.state_size) return state if nest.is_sequence(self.cell.state_size) else [state] return self._states @states.setter def states(self, states): self._states = states def compute_output_shape(self, input_shape): if isinstance(input_shape, list): input_shape = input_shape[0] # Check whether the input shape contains any nested shapes. It could be # (tensor_shape(1, 2), tensor_shape(3, 4)) or (1, 2, 3) which is from numpy # inputs. try: input_shape = tensor_shape.as_shape(input_shape) except (ValueError, TypeError): # A nested tensor input input_shape = nest.flatten(input_shape)[0] batch = input_shape[0] time_step = input_shape[1] if self.time_major: batch, time_step = time_step, batch if _is_multiple_state(self.cell.state_size): state_size = self.cell.state_size else: state_size = [self.cell.state_size] def _get_output_shape(flat_output_size): output_dim = tensor_shape.as_shape(flat_output_size).as_list() if self.return_sequences: if self.time_major: output_shape = tensor_shape.as_shape([time_step, batch] + output_dim) else: output_shape = tensor_shape.as_shape([batch, time_step] + output_dim) else: output_shape = tensor_shape.as_shape([batch] + output_dim) return output_shape if getattr(self.cell, 'output_size', None) is not None: # cell.output_size could be nested structure. output_shape = nest.flatten(nest.map_structure( _get_output_shape, self.cell.output_size)) output_shape = output_shape[0] if len(output_shape) == 1 else output_shape else: # Note that state_size[0] could be a tensor_shape or int. output_shape = _get_output_shape(state_size[0]) if self.return_state: def _get_state_shape(flat_state): state_shape = [batch] + tensor_shape.as_shape(flat_state).as_list() return tensor_shape.as_shape(state_shape) state_shape = nest.map_structure(_get_state_shape, state_size) return generic_utils.to_list(output_shape) + nest.flatten(state_shape) else: return output_shape def compute_mask(self, inputs, mask): if isinstance(mask, list): mask = mask[0] output_mask = mask if self.return_sequences else None if self.return_state: state_mask = [None for _ in self.states] return [output_mask] + state_mask else: return output_mask def build(self, input_shape): # Note input_shape will be list of shapes of initial states and # constants if these are passed in __call__. if self._num_constants is not None: constants_shape = input_shape[-self._num_constants:] # pylint: disable=invalid-unary-operand-type constants_shape = nest.map_structure( lambda s: tuple(tensor_shape.TensorShape(s).as_list()), constants_shape) else: constants_shape = None if isinstance(input_shape, list): input_shape = input_shape[0] # The input_shape here could be a nest structure. # do the tensor_shape to shapes here. The input could be single tensor, or a # nested structure of tensors. def get_input_spec(shape): if isinstance(shape, tensor_shape.TensorShape): input_spec_shape = shape.as_list() else: input_spec_shape = list(shape) batch_index, time_step_index = (1, 0) if self.time_major else (0, 1) if not self.stateful: input_spec_shape[batch_index] = None input_spec_shape[time_step_index] = None return InputSpec(shape=tuple(input_spec_shape)) def get_step_input_shape(shape): if isinstance(shape, tensor_shape.TensorShape): shape = tuple(shape.as_list()) # remove the timestep from the input_shape return shape[1:] if self.time_major else (shape[0],) + shape[2:] # Check whether the input shape contains any nested shapes. It could be # (tensor_shape(1, 2), tensor_shape(3, 4)) or (1, 2, 3) which is from numpy # inputs. try: input_shape = tensor_shape.as_shape(input_shape) except (ValueError, TypeError): # A nested tensor input pass if not nest.is_sequence(input_shape): # This indicates the there is only one input. if self.input_spec is not None: self.input_spec[0] = get_input_spec(input_shape) else: self.input_spec = [get_input_spec(input_shape)] step_input_shape = get_step_input_shape(input_shape) else: flat_input_shapes = nest.flatten(input_shape) flat_input_shapes = nest.map_structure(get_input_spec, flat_input_shapes) assert len(flat_input_shapes) == self._num_inputs if self.input_spec is not None: self.input_spec[:self._num_inputs] = flat_input_shapes else: self.input_spec = flat_input_shapes step_input_shape = nest.map_structure(get_step_input_shape, input_shape) # allow cell (if layer) to build before we set or validate state_spec if isinstance(self.cell, Layer): if constants_shape is not None: self.cell.build([step_input_shape] + constants_shape) else: self.cell.build(step_input_shape) # set or validate state_spec if _is_multiple_state(self.cell.state_size): state_size = list(self.cell.state_size) else: state_size = [self.cell.state_size] if self.state_spec is not None: # initial_state was passed in call, check compatibility self._validate_state_spec(state_size, self.state_spec) else: self.state_spec = [ InputSpec(shape=[None] + tensor_shape.as_shape(dim).as_list()) for dim in state_size ] if self.stateful: self.reset_states() self.built = True @staticmethod def _validate_state_spec(cell_state_sizes, init_state_specs): """Validate the state spec between the initial_state and the state_size. Args: cell_state_sizes: list, the `state_size` attribute from the cell. init_state_specs: list, the `state_spec` from the initial_state that is passed in call() Raises: ValueError: When initial state spec is not compatible with the state size. """ validation_error = ValueError( 'An `initial_state` was passed that is not compatible with ' '`cell.state_size`. Received `state_spec`={}; ' 'however `cell.state_size` is ' '{}'.format(init_state_specs, cell_state_sizes)) if len(cell_state_sizes) == len(init_state_specs): for i in range(len(cell_state_sizes)): if not tensor_shape.TensorShape( # Ignore the first axis for init_state which is for batch init_state_specs[i].shape[1:]).is_compatible_with( tensor_shape.TensorShape(cell_state_sizes[i])): raise validation_error else: raise validation_error def get_initial_state(self, inputs): get_initial_state_fn = getattr(self.cell, 'get_initial_state', None) if nest.is_sequence(inputs): # The input are nested sequences. Use the first element in the seq to get # batch size and dtype. inputs = nest.flatten(inputs)[0] input_shape = array_ops.shape(inputs) batch_size = input_shape[1] if self.time_major else input_shape[0] dtype = inputs.dtype if get_initial_state_fn: init_state = get_initial_state_fn( inputs=None, batch_size=batch_size, dtype=dtype) else: init_state = _generate_zero_filled_state(batch_size, self.cell.state_size, dtype) # Keras RNN expect the states in a list, even if it's a single state tensor. if not nest.is_sequence(init_state): init_state = [init_state] # Force the state to be a list in case it is a namedtuple eg LSTMStateTuple. return list(init_state) def __call__(self, inputs, initial_state=None, constants=None, **kwargs): inputs, initial_state, constants = _standardize_args(inputs, initial_state, constants, self._num_constants, self._num_inputs) # in case the real inputs is a nested structure, set the size of flatten # input so that we can distinguish between real inputs, initial_state and # constants. self._num_inputs = len(nest.flatten(inputs)) if initial_state is None and constants is None: return super(RNN, self).__call__(inputs, **kwargs) # If any of `initial_state` or `constants` are specified and are Keras # tensors, then add them to the inputs and temporarily modify the # input_spec to include them. additional_inputs = [] additional_specs = [] if initial_state is not None: additional_inputs += initial_state self.state_spec = [ InputSpec(shape=K.int_shape(state)) for state in initial_state ] additional_specs += self.state_spec if constants is not None: additional_inputs += constants self.constants_spec = [ InputSpec(shape=K.int_shape(constant)) for constant in constants ] self._num_constants = len(constants) additional_specs += self.constants_spec # at this point additional_inputs cannot be empty is_keras_tensor = K.is_keras_tensor(additional_inputs[0]) for tensor in additional_inputs: if K.is_keras_tensor(tensor) != is_keras_tensor: raise ValueError('The initial state or constants of an RNN' ' layer cannot be specified with a mix of' ' Keras tensors and non-Keras tensors' ' (a "Keras tensor" is a tensor that was' ' returned by a Keras layer, or by `Input`)') if is_keras_tensor: # Compute the full input spec, including state and constants full_input = [inputs] + additional_inputs # The original input_spec is None since there could be a nested tensor # input. Update the input_spec to match the inputs. full_input_spec = [None for _ in range(len(nest.flatten(inputs))) ] + additional_specs # Perform the call with temporarily replaced input_spec original_input_spec = self.input_spec self.input_spec = full_input_spec output = super(RNN, self).__call__(full_input, **kwargs) self.input_spec = original_input_spec return output else: if initial_state is not None: kwargs['initial_state'] = initial_state if constants is not None: kwargs['constants'] = constants return super(RNN, self).__call__(inputs, **kwargs) def call(self, inputs, mask=None, training=None, initial_state=None, constants=None): # input shape: `(samples, time (padded with zeros), input_dim)` # note that the .build() method of subclasses MUST define # self.input_spec and self.state_spec with complete input shapes. if isinstance(inputs, list): # get initial_state from full input spec # as they could be copied to multiple GPU. if self._num_constants is None: initial_state = inputs[1:] else: initial_state = inputs[1:-self._num_constants] constants = inputs[-self._num_constants:] if len(initial_state) == 0: initial_state = None inputs = inputs[0] if initial_state is not None: pass elif self.stateful: initial_state = self.states else: initial_state = self.get_initial_state(inputs) if isinstance(mask, list): mask = mask[0] if len(initial_state) != len(self.states): raise ValueError( 'Layer has ' + str(len(self.states)) + ' states but was passed ' + str(len(initial_state)) + ' initial states.') if nest.is_sequence(inputs): # In the case of nested input, use the first element for shape check. input_shape = K.int_shape(nest.flatten(inputs)[0]) else: input_shape = K.int_shape(inputs) timesteps = input_shape[0] if self.time_major else input_shape[1] if self.unroll and timesteps in [None, 1]: raise ValueError('Cannot unroll a RNN if the ' 'time dimension is undefined or equal to 1. \n' '- If using a Sequential model, ' 'specify the time dimension by passing ' 'an `input_shape` or `batch_input_shape` ' 'argument to your first layer. If your ' 'first layer is an Embedding, you can ' 'also use the `input_length` argument.\n' '- If using the functional API, specify ' 'the time dimension by passing a `shape` ' 'or `batch_shape` argument to your Input layer.') kwargs = {} if generic_utils.has_arg(self.cell.call, 'training'): kwargs['training'] = training # TF RNN cells expect single tensor as state instead of list wrapped tensor. is_tf_rnn_cell = getattr(self.cell, '_is_tf_rnn_cell', None) is not None if constants: if not generic_utils.has_arg(self.cell.call, 'constants'): raise ValueError('RNN cell does not support constants') def step(inputs, states): constants = states[-self._num_constants:] # pylint: disable=invalid-unary-operand-type states = states[:-self._num_constants] # pylint: disable=invalid-unary-operand-type states = states[0] if len(states) == 1 and is_tf_rnn_cell else states output, new_states = self.cell.call( inputs, states, constants=constants, **kwargs) if not nest.is_sequence(new_states): new_states = [new_states] return output, new_states else: def step(inputs, states): states = states[0] if len(states) == 1 and is_tf_rnn_cell else states output, new_states = self.cell.call(inputs, states, **kwargs) if not nest.is_sequence(new_states): new_states = [new_states] return output, new_states last_output, outputs, states = K.rnn( step, inputs, initial_state, constants=constants, go_backwards=self.go_backwards, mask=mask, unroll=self.unroll, input_length=timesteps, time_major=self.time_major) if self.stateful: updates = [] for i in range(len(states)): updates.append(state_ops.assign(self.states[i], states[i])) self.add_update(updates, inputs) if self.return_sequences: output = outputs else: output = last_output # Properly set learning phase if getattr(last_output, '_uses_learning_phase', False): output._uses_learning_phase = True for state in states: state._uses_learning_phase = True if self.return_state: if not isinstance(states, (list, tuple)): states = [states] else: states = list(states) return generic_utils.to_list(output) + states else: return output def reset_states(self, states=None): if not self.stateful: raise AttributeError('Layer must be stateful.') if self.time_major: batch_size = self.input_spec[0].shape[1] else: batch_size = self.input_spec[0].shape[0] if not batch_size: raise ValueError('If a RNN is stateful, it needs to know ' 'its batch size. Specify the batch size ' 'of your input tensors: \n' '- If using a Sequential model, ' 'specify the batch size by passing ' 'a `batch_input_shape` ' 'argument to your first layer.\n' '- If using the functional API, specify ' 'the batch size by passing a ' '`batch_shape` argument to your Input layer.') # initialize state if None if self.states[0] is None: if _is_multiple_state(self.cell.state_size): self.states = [ K.zeros([batch_size] + tensor_shape.as_shape(dim).as_list()) for dim in self.cell.state_size ] else: self.states = [ K.zeros([batch_size] + tensor_shape.as_shape(self.cell.state_size).as_list()) ] elif states is None: if _is_multiple_state(self.cell.state_size): for state, dim in zip(self.states, self.cell.state_size): K.set_value(state, np.zeros([batch_size] + tensor_shape.as_shape(dim).as_list())) else: K.set_value(self.states[0], np.zeros( [batch_size] + tensor_shape.as_shape(self.cell.state_size).as_list())) else: if not isinstance(states, (list, tuple)): states = [states] if len(states) != len(self.states): raise ValueError('Layer ' + self.name + ' expects ' + str(len(self.states)) + ' states, ' 'but it received ' + str(len(states)) + ' state values. Input received: ' + str(states)) for index, (value, state) in enumerate(zip(states, self.states)): if _is_multiple_state(self.cell.state_size): dim = self.cell.state_size[index] else: dim = self.cell.state_size if value.shape != tuple([batch_size] + tensor_shape.as_shape(dim).as_list()): raise ValueError( 'State ' + str(index) + ' is incompatible with layer ' + self.name + ': expected shape=' + str( (batch_size, dim)) + ', found shape=' + str(value.shape)) # TODO(fchollet): consider batch calls to `set_value`. K.set_value(state, value) def get_config(self): config = { 'return_sequences': self.return_sequences, 'return_state': self.return_state, 'go_backwards': self.go_backwards, 'stateful': self.stateful, 'unroll': self.unroll, 'time_major': self.time_major } if self._num_constants is not None: config['num_constants'] = self._num_constants cell_config = self.cell.get_config() config['cell'] = { 'class_name': self.cell.__class__.__name__, 'config': cell_config } base_config = super(RNN, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top cell = deserialize_layer(config.pop('cell'), custom_objects=custom_objects) num_constants = config.pop('num_constants', None) layer = cls(cell, **config) layer._num_constants = num_constants return layer @property def trainable_weights(self): if not self.trainable: return [] if isinstance(self.cell, Layer): return self.cell.trainable_weights return [] @property def non_trainable_weights(self): if isinstance(self.cell, Layer): if not self.trainable: return self.cell.weights return self.cell.non_trainable_weights return [] @property def losses(self): layer_losses = super(RNN, self).losses if isinstance(self.cell, Layer): return self.cell.losses + layer_losses return layer_losses @property def updates(self): updates = [] if isinstance(self.cell, Layer): updates += self.cell.updates return updates + self._updates @tf_export('keras.layers.SimpleRNNCell') class SimpleRNNCell(Layer): """Cell class for SimpleRNN. Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. bias_initializer: Initializer for the bias vector. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. """ def __init__(self, units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., **kwargs): super(SimpleRNNCell, self).__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1., max(0., dropout)) self.recurrent_dropout = min(1., max(0., recurrent_dropout)) self.state_size = self.units self.output_size = self.units self._dropout_mask = None self._recurrent_dropout_mask = None @tf_utils.shape_type_conversion def build(self, input_shape): self.kernel = self.add_weight( shape=(input_shape[-1], self.units), name='kernel', initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), name='recurrent_kernel', initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint) if self.use_bias: self.bias = self.add_weight( shape=(self.units,), name='bias', initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.built = True def call(self, inputs, states, training=None): prev_output = states[0] if 0 < self.dropout < 1 and self._dropout_mask is None: self._dropout_mask = _generate_dropout_mask( array_ops.ones_like(inputs), self.dropout, training=training) if (0 < self.recurrent_dropout < 1 and self._recurrent_dropout_mask is None): self._recurrent_dropout_mask = _generate_dropout_mask( array_ops.ones_like(prev_output), self.recurrent_dropout, training=training) dp_mask = self._dropout_mask rec_dp_mask = self._recurrent_dropout_mask if dp_mask is not None: h = K.dot(inputs * dp_mask, self.kernel) else: h = K.dot(inputs, self.kernel) if self.bias is not None: h = K.bias_add(h, self.bias) if rec_dp_mask is not None: prev_output *= rec_dp_mask output = h + K.dot(prev_output, self.recurrent_kernel) if self.activation is not None: output = self.activation(output) # Properly set learning phase on output tensor. if 0 < self.dropout + self.recurrent_dropout: if training is None and not context.executing_eagerly(): # This would be harmless to set in eager mode, but eager tensors # disallow setting arbitrary attributes. output._uses_learning_phase = True return output, [output] def get_initial_state(self, inputs=None, batch_size=None, dtype=None): return _generate_zero_filled_state_for_cell(self, inputs, batch_size, dtype) def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout } base_config = super(SimpleRNNCell, self).get_config() return dict(list(base_config.items()) + list(config.items())) @tf_export('keras.layers.SimpleRNN') class SimpleRNN(RNN): """Fully-connected RNN where the output is to be fed back to input. Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass None, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. bias_initializer: Initializer for the bias vector. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. activity_regularizer: Regularizer function applied to the output of the layer (its "activation").. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. return_state: Boolean. Whether to return the last state in addition to the output. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. """ def __init__(self, units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, **kwargs): if 'implementation' in kwargs: kwargs.pop('implementation') logging.warning('The `implementation` argument ' 'in `SimpleRNN` has been deprecated. ' 'Please remove it from your layer call.') cell = SimpleRNNCell( units, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout) super(SimpleRNN, self).__init__( cell, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, unroll=unroll, **kwargs) self.activity_regularizer = regularizers.get(activity_regularizer) self.input_spec = [InputSpec(ndim=3)] def call(self, inputs, mask=None, training=None, initial_state=None): self.cell._dropout_mask = None self.cell._recurrent_dropout_mask = None return super(SimpleRNN, self).call( inputs, mask=mask, training=training, initial_state=initial_state) @property def units(self): return self.cell.units @property def activation(self): return self.cell.activation @property def use_bias(self): return self.cell.use_bias @property def kernel_initializer(self): return self.cell.kernel_initializer @property def recurrent_initializer(self): return self.cell.recurrent_initializer @property def bias_initializer(self): return self.cell.bias_initializer @property def kernel_regularizer(self): return self.cell.kernel_regularizer @property def recurrent_regularizer(self): return self.cell.recurrent_regularizer @property def bias_regularizer(self): return self.cell.bias_regularizer @property def kernel_constraint(self): return self.cell.kernel_constraint @property def recurrent_constraint(self): return self.cell.recurrent_constraint @property def bias_constraint(self): return self.cell.bias_constraint @property def dropout(self): return self.cell.dropout @property def recurrent_dropout(self): return self.cell.recurrent_dropout def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout } base_config = super(SimpleRNN, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): if 'implementation' in config: config.pop('implementation') return cls(**config) @tf_export('keras.layers.GRUCell') class GRUCell(Layer): """Cell class for the GRU layer. Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass None, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. Default: hard sigmoid (`hard_sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. bias_initializer: Initializer for the bias vector. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. reset_after: GRU convention (whether to apply reset gate after or before matrix multiplication). False = "before" (default), True = "after" (CuDNN compatible). """ def __init__(self, units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=1, reset_after=False, **kwargs): super(GRUCell, self).__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.recurrent_activation = activations.get(recurrent_activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1., max(0., dropout)) self.recurrent_dropout = min(1., max(0., recurrent_dropout)) self.implementation = implementation self.reset_after = reset_after self.state_size = self.units self.output_size = self.units self._dropout_mask = None self._recurrent_dropout_mask = None @tf_utils.shape_type_conversion def build(self, input_shape): input_dim = input_shape[-1] self.kernel = self.add_weight( shape=(input_dim, self.units * 3), name='kernel', initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units * 3), name='recurrent_kernel', initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint) if self.use_bias: if not self.reset_after: bias_shape = (3 * self.units,) else: # separate biases for input and recurrent kernels # Note: the shape is intentionally different from CuDNNGRU biases # `(2 * 3 * self.units,)`, so that we can distinguish the classes # when loading and converting saved weights. bias_shape = (2, 3 * self.units) self.bias = self.add_weight(shape=bias_shape, name='bias', initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) if not self.reset_after: self.input_bias, self.recurrent_bias = self.bias, None else: self.input_bias = K.flatten(self.bias[0]) self.recurrent_bias = K.flatten(self.bias[1]) else: self.bias = None self.built = True def call(self, inputs, states, training=None): h_tm1 = states[0] # previous memory if 0 < self.dropout < 1 and self._dropout_mask is None: self._dropout_mask = _generate_dropout_mask( array_ops.ones_like(inputs), self.dropout, training=training, count=3) if (0 < self.recurrent_dropout < 1 and self._recurrent_dropout_mask is None): self._recurrent_dropout_mask = _generate_dropout_mask( array_ops.ones_like(h_tm1), self.recurrent_dropout, training=training, count=3) # dropout matrices for input units dp_mask = self._dropout_mask # dropout matrices for recurrent units rec_dp_mask = self._recurrent_dropout_mask if self.implementation == 1: if 0. < self.dropout < 1.: inputs_z = inputs * dp_mask[0] inputs_r = inputs * dp_mask[1] inputs_h = inputs * dp_mask[2] else: inputs_z = inputs inputs_r = inputs inputs_h = inputs x_z = K.dot(inputs_z, self.kernel[:, :self.units]) x_r = K.dot(inputs_r, self.kernel[:, self.units:self.units * 2]) x_h = K.dot(inputs_h, self.kernel[:, self.units * 2:]) if self.use_bias: x_z = K.bias_add(x_z, self.input_bias[:self.units]) x_r = K.bias_add(x_r, self.input_bias[self.units: self.units * 2]) x_h = K.bias_add(x_h, self.input_bias[self.units * 2:]) if 0. < self.recurrent_dropout < 1.: h_tm1_z = h_tm1 * rec_dp_mask[0] h_tm1_r = h_tm1 * rec_dp_mask[1] h_tm1_h = h_tm1 * rec_dp_mask[2] else: h_tm1_z = h_tm1 h_tm1_r = h_tm1 h_tm1_h = h_tm1 recurrent_z = K.dot(h_tm1_z, self.recurrent_kernel[:, :self.units]) recurrent_r = K.dot(h_tm1_r, self.recurrent_kernel[:, self.units:self.units * 2]) if self.reset_after and self.use_bias: recurrent_z = K.bias_add(recurrent_z, self.recurrent_bias[:self.units]) recurrent_r = K.bias_add(recurrent_r, self.recurrent_bias[self.units: self.units * 2]) z = self.recurrent_activation(x_z + recurrent_z) r = self.recurrent_activation(x_r + recurrent_r) # reset gate applied after/before matrix multiplication if self.reset_after: recurrent_h = K.dot(h_tm1_h, self.recurrent_kernel[:, self.units * 2:]) if self.use_bias: recurrent_h = K.bias_add(recurrent_h, self.recurrent_bias[self.units * 2:]) recurrent_h = r * recurrent_h else: recurrent_h = K.dot(r * h_tm1_h, self.recurrent_kernel[:, self.units * 2:]) hh = self.activation(x_h + recurrent_h) else: if 0. < self.dropout < 1.: inputs *= dp_mask[0] # inputs projected by all gate matrices at once matrix_x = K.dot(inputs, self.kernel) if self.use_bias: # biases: bias_z_i, bias_r_i, bias_h_i matrix_x = K.bias_add(matrix_x, self.input_bias) x_z = matrix_x[:, :self.units] x_r = matrix_x[:, self.units: 2 * self.units] x_h = matrix_x[:, 2 * self.units:] if 0. < self.recurrent_dropout < 1.: h_tm1 *= rec_dp_mask[0] if self.reset_after: # hidden state projected by all gate matrices at once matrix_inner = K.dot(h_tm1, self.recurrent_kernel) if self.use_bias: matrix_inner = K.bias_add(matrix_inner, self.recurrent_bias) else: # hidden state projected separately for update/reset and new matrix_inner = K.dot(h_tm1, self.recurrent_kernel[:, :2 * self.units]) recurrent_z = matrix_inner[:, :self.units] recurrent_r = matrix_inner[:, self.units:2 * self.units] z = self.recurrent_activation(x_z + recurrent_z) r = self.recurrent_activation(x_r + recurrent_r) if self.reset_after: recurrent_h = r * matrix_inner[:, 2 * self.units:] else: recurrent_h = K.dot(r * h_tm1, self.recurrent_kernel[:, 2 * self.units:]) hh = self.activation(x_h + recurrent_h) # previous and candidate state mixed by update gate h = z * h_tm1 + (1 - z) * hh if 0 < self.dropout + self.recurrent_dropout: if training is None and not context.executing_eagerly(): # This would be harmless to set in eager mode, but eager tensors # disallow setting arbitrary attributes. h._uses_learning_phase = True return h, [h] def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation, 'reset_after': self.reset_after } base_config = super(GRUCell, self).get_config() return dict(list(base_config.items()) + list(config.items())) def get_initial_state(self, inputs=None, batch_size=None, dtype=None): return _generate_zero_filled_state_for_cell(self, inputs, batch_size, dtype) @tf_export('keras.layers.GRU') class GRU(RNN): """Gated Recurrent Unit - Cho et al. 2014. There are two variants. The default one is based on 1406.1078v3 and has reset gate applied to hidden state before matrix multiplication. The other one is based on original 1406.1078v1 and has the order reversed. The second variant is compatible with CuDNNGRU (GPU-only) and allows inference on CPU. Thus it has separate biases for `kernel` and `recurrent_kernel`. Use `'reset_after'=True` and `recurrent_activation='sigmoid'`. Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. Default: hard sigmoid (`hard_sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. bias_initializer: Initializer for the bias vector. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. activity_regularizer: Regularizer function applied to the output of the layer (its "activation").. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. return_state: Boolean. Whether to return the last state in addition to the output. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. reset_after: GRU convention (whether to apply reset gate after or before matrix multiplication). False = "before" (default), True = "after" (CuDNN compatible). """ def __init__(self, units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=1, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, reset_after=False, **kwargs): if implementation == 0: logging.warning('`implementation=0` has been deprecated, ' 'and now defaults to `implementation=1`.' 'Please update your layer call.') cell = GRUCell( units, activation=activation, recurrent_activation=recurrent_activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, implementation=implementation, reset_after=reset_after) super(GRU, self).__init__( cell, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, unroll=unroll, **kwargs) self.activity_regularizer = regularizers.get(activity_regularizer) self.input_spec = [InputSpec(ndim=3)] def call(self, inputs, mask=None, training=None, initial_state=None): self.cell._dropout_mask = None self.cell._recurrent_dropout_mask = None return super(GRU, self).call( inputs, mask=mask, training=training, initial_state=initial_state) @property def units(self): return self.cell.units @property def activation(self): return self.cell.activation @property def recurrent_activation(self): return self.cell.recurrent_activation @property def use_bias(self): return self.cell.use_bias @property def kernel_initializer(self): return self.cell.kernel_initializer @property def recurrent_initializer(self): return self.cell.recurrent_initializer @property def bias_initializer(self): return self.cell.bias_initializer @property def kernel_regularizer(self): return self.cell.kernel_regularizer @property def recurrent_regularizer(self): return self.cell.recurrent_regularizer @property def bias_regularizer(self): return self.cell.bias_regularizer @property def kernel_constraint(self): return self.cell.kernel_constraint @property def recurrent_constraint(self): return self.cell.recurrent_constraint @property def bias_constraint(self): return self.cell.bias_constraint @property def dropout(self): return self.cell.dropout @property def recurrent_dropout(self): return self.cell.recurrent_dropout @property def implementation(self): return self.cell.implementation @property def reset_after(self): return self.cell.reset_after def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation, 'reset_after': self.reset_after } base_config = super(GRU, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): if 'implementation' in config and config['implementation'] == 0: config['implementation'] = 1 return cls(**config) @tf_export('keras.layers.LSTMCell') class LSTMCell(Layer): """Cell class for the LSTM layer. Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. Default: hard sigmoid (`hard_sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`).x use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. bias_initializer: Initializer for the bias vector. unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate at initialization. Setting it to true will also force `bias_initializer="zeros"`. This is recommended in [Jozefowicz et al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. """ def __init__(self, units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=1, **kwargs): super(LSTMCell, self).__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.recurrent_activation = activations.get(recurrent_activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.unit_forget_bias = unit_forget_bias self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1., max(0., dropout)) self.recurrent_dropout = min(1., max(0., recurrent_dropout)) self.implementation = implementation self.state_size = (self.units, self.units) self.output_size = self.units self._dropout_mask = None self._recurrent_dropout_mask = None @tf_utils.shape_type_conversion def build(self, input_shape): input_dim = input_shape[-1] self.kernel = self.add_weight( shape=(input_dim, self.units * 4), name='kernel', initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units * 4), name='recurrent_kernel', initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint) if self.use_bias: if self.unit_forget_bias: def bias_initializer(_, *args, **kwargs): return K.concatenate([ self.bias_initializer((self.units,), *args, **kwargs), initializers.Ones()((self.units,), *args, **kwargs), self.bias_initializer((self.units * 2,), *args, **kwargs), ]) else: bias_initializer = self.bias_initializer self.bias = self.add_weight( shape=(self.units * 4,), name='bias', initializer=bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.built = True def call(self, inputs, states, training=None): if 0 < self.dropout < 1 and self._dropout_mask is None: self._dropout_mask = _generate_dropout_mask( array_ops.ones_like(inputs), self.dropout, training=training, count=4) if (0 < self.recurrent_dropout < 1 and self._recurrent_dropout_mask is None): self._recurrent_dropout_mask = _generate_dropout_mask( array_ops.ones_like(states[0]), self.recurrent_dropout, training=training, count=4) # dropout matrices for input units dp_mask = self._dropout_mask # dropout matrices for recurrent units rec_dp_mask = self._recurrent_dropout_mask h_tm1 = states[0] # previous memory state c_tm1 = states[1] # previous carry state if self.implementation == 1: if 0 < self.dropout < 1.: inputs_i = inputs * dp_mask[0] inputs_f = inputs * dp_mask[1] inputs_c = inputs * dp_mask[2] inputs_o = inputs * dp_mask[3] else: inputs_i = inputs inputs_f = inputs inputs_c = inputs inputs_o = inputs x_i = K.dot(inputs_i, self.kernel[:, :self.units]) x_f = K.dot(inputs_f, self.kernel[:, self.units:self.units * 2]) x_c = K.dot(inputs_c, self.kernel[:, self.units * 2:self.units * 3]) x_o = K.dot(inputs_o, self.kernel[:, self.units * 3:]) if self.use_bias: x_i = K.bias_add(x_i, self.bias[:self.units]) x_f = K.bias_add(x_f, self.bias[self.units:self.units * 2]) x_c = K.bias_add(x_c, self.bias[self.units * 2:self.units * 3]) x_o = K.bias_add(x_o, self.bias[self.units * 3:]) if 0 < self.recurrent_dropout < 1.: h_tm1_i = h_tm1 * rec_dp_mask[0] h_tm1_f = h_tm1 * rec_dp_mask[1] h_tm1_c = h_tm1 * rec_dp_mask[2] h_tm1_o = h_tm1 * rec_dp_mask[3] else: h_tm1_i = h_tm1 h_tm1_f = h_tm1 h_tm1_c = h_tm1 h_tm1_o = h_tm1 i = self.recurrent_activation( x_i + K.dot(h_tm1_i, self.recurrent_kernel[:, :self.units])) f = self.recurrent_activation( x_f + K.dot(h_tm1_f, self.recurrent_kernel[:, self.units: self.units * 2])) c = f * c_tm1 + i * self.activation( x_c + K.dot(h_tm1_c, self.recurrent_kernel[:, self.units * 2: self.units * 3])) o = self.recurrent_activation( x_o + K.dot(h_tm1_o, self.recurrent_kernel[:, self.units * 3:])) else: if 0. < self.dropout < 1.: inputs *= dp_mask[0] z = K.dot(inputs, self.kernel) if 0. < self.recurrent_dropout < 1.: h_tm1 *= rec_dp_mask[0] z += K.dot(h_tm1, self.recurrent_kernel) if self.use_bias: z = K.bias_add(z, self.bias) z0 = z[:, :self.units] z1 = z[:, self.units:2 * self.units] z2 = z[:, 2 * self.units:3 * self.units] z3 = z[:, 3 * self.units:] i = self.recurrent_activation(z0) f = self.recurrent_activation(z1) c = f * c_tm1 + i * self.activation(z2) o = self.recurrent_activation(z3) h = o * self.activation(c) if 0 < self.dropout + self.recurrent_dropout: if training is None and not context.executing_eagerly(): # This would be harmless to set in eager mode, but eager tensors # disallow setting arbitrary attributes. h._uses_learning_phase = True return h, [h, c] def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation } base_config = super(LSTMCell, self).get_config() return dict(list(base_config.items()) + list(config.items())) def get_initial_state(self, inputs=None, batch_size=None, dtype=None): return list(_generate_zero_filled_state_for_cell( self, inputs, batch_size, dtype)) @tf_export('keras.layers.LSTM') class LSTM(RNN): """Long Short-Term Memory layer - Hochreiter 1997. Note that this cell is not optimized for performance on GPU. Please use `tf.keras.layers.CuDNNLSTM` for better performance on GPU. Arguments: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. Default: hard sigmoid (`hard_sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs.. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state.. bias_initializer: Initializer for the bias vector. unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate at initialization. Setting it to true will also force `bias_initializer="zeros"`. This is recommended in [Jozefowicz et al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. activity_regularizer: Regularizer function applied to the output of the layer (its "activation").. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. return_sequences: Boolean. Whether to return the last output. in the output sequence, or the full sequence. return_state: Boolean. Whether to return the last state in addition to the output. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. """ def __init__(self, units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=1, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, **kwargs): if implementation == 0: logging.warning('`implementation=0` has been deprecated, ' 'and now defaults to `implementation=1`.' 'Please update your layer call.') if context.executing_eagerly() and context.num_gpus() > 0: logging.warn('%s: Note that this layer is not optimized for performance. ' 'Please use tf.keras.layers.CuDNNLSTM for better ' 'performance on GPU.', self) cell = LSTMCell( units, activation=activation, recurrent_activation=recurrent_activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, unit_forget_bias=unit_forget_bias, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, implementation=implementation) super(LSTM, self).__init__( cell, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, unroll=unroll, **kwargs) self.activity_regularizer = regularizers.get(activity_regularizer) self.input_spec = [InputSpec(ndim=3)] def call(self, inputs, mask=None, training=None, initial_state=None): self.cell._dropout_mask = None self.cell._recurrent_dropout_mask = None return super(LSTM, self).call( inputs, mask=mask, training=training, initial_state=initial_state) @property def units(self): return self.cell.units @property def activation(self): return self.cell.activation @property def recurrent_activation(self): return self.cell.recurrent_activation @property def use_bias(self): return self.cell.use_bias @property def kernel_initializer(self): return self.cell.kernel_initializer @property def recurrent_initializer(self): return self.cell.recurrent_initializer @property def bias_initializer(self): return self.cell.bias_initializer @property def unit_forget_bias(self): return self.cell.unit_forget_bias @property def kernel_regularizer(self): return self.cell.kernel_regularizer @property def recurrent_regularizer(self): return self.cell.recurrent_regularizer @property def bias_regularizer(self): return self.cell.bias_regularizer @property def kernel_constraint(self): return self.cell.kernel_constraint @property def recurrent_constraint(self): return self.cell.recurrent_constraint @property def bias_constraint(self): return self.cell.bias_constraint @property def dropout(self): return self.cell.dropout @property def recurrent_dropout(self): return self.cell.recurrent_dropout @property def implementation(self): return self.cell.implementation def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation } base_config = super(LSTM, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): if 'implementation' in config and config['implementation'] == 0: config['implementation'] = 1 return cls(**config) def _generate_dropout_mask(ones, rate, training=None, count=1): def dropped_inputs(): return K.dropout(ones, rate) if count > 1: return [ K.in_train_phase(dropped_inputs, ones, training=training) for _ in range(count) ] return K.in_train_phase(dropped_inputs, ones, training=training) def _standardize_args( inputs, initial_state, constants, num_constants, num_inputs=1): """Standardizes `__call__` to a single list of tensor inputs. When running a model loaded from a file, the input tensors `initial_state` and `constants` can be passed to `RNN.__call__()` as part of `inputs` instead of by the dedicated keyword arguments. This method makes sure the arguments are separated and that `initial_state` and `constants` are lists of tensors (or None). Arguments: inputs: Tensor or list/tuple of tensors. which may include constants and initial states. In that case `num_constant` must be specified. initial_state: Tensor or list of tensors or None, initial states. constants: Tensor or list of tensors or None, constant tensors. num_constants: Expected number of constants (if constants are passed as part of the `inputs` list. num_inputs: Expected number of real input tensors (exclude initial_states and constants). Returns: inputs: Single tensor or tuple of tensors. initial_state: List of tensors or None. constants: List of tensors or None. """ if isinstance(inputs, list): # There are several situations here: # In the graph mode, __call__ will be only called once. The initial_state # and constants could be in inputs (from file loading). # In the eager mode, __call__ will be called twice, once during # rnn_layer(inputs=input_t, constants=c_t, ...), and second time will be # model.fit/train_on_batch/predict with real np data. In the second case, # the inputs will contain initial_state and constants, and more importantly, # the real inputs will be in a flat list, instead of nested tuple. # # For either case, we will use num_inputs to split the input list, and # restructure the real input into tuple. assert initial_state is None and constants is None if num_constants is not None: constants = inputs[-num_constants:] inputs = inputs[:-num_constants] if num_inputs is None: num_inputs = 1 if len(inputs) > num_inputs: initial_state = inputs[num_inputs:] inputs = inputs[:num_inputs] if len(inputs) > 1: inputs = tuple(inputs) else: inputs = inputs[0] def to_list_or_none(x): if x is None or isinstance(x, list): return x if isinstance(x, tuple): return list(x) return [x] initial_state = to_list_or_none(initial_state) constants = to_list_or_none(constants) return inputs, initial_state, constants def _is_multiple_state(state_size): """Check whether the state_size contains multiple states.""" return (hasattr(state_size, '__len__') and not isinstance(state_size, tensor_shape.TensorShape)) def _generate_zero_filled_state_for_cell(cell, inputs, batch_size, dtype): if inputs is not None: batch_size = array_ops.shape(inputs)[0] dtype = inputs.dtype return _generate_zero_filled_state(batch_size, cell.state_size, dtype) def _generate_zero_filled_state(batch_size_tensor, state_size, dtype): """Generate a zero filled tensor with shape [batch_size, state_size].""" if batch_size_tensor is None or dtype is None: raise ValueError( 'batch_size and dtype cannot be None while constructing initial state: ' 'batch_size={}, dtype={}'.format(batch_size_tensor, dtype)) def create_zeros(unnested_state_size): flat_dims = tensor_shape.as_shape(unnested_state_size).as_list() init_state_size = [batch_size_tensor] + flat_dims return array_ops.zeros(init_state_size, dtype=dtype) if nest.is_sequence(state_size): return nest.map_structure(create_zeros, state_size) else: return create_zeros(state_size)
alshedivat/tensorflow
tensorflow/python/keras/layers/recurrent.py
Python
apache-2.0
100,102