input
stringlengths
10
828
output
stringlengths
5
107
public void save file file throws ioexception write attribute weights file tools get default encoding
saves the attribute weights into an xml file
private void set title if hostname null try hostname inet address get local host get host name catch unknown host exception e hostname file file null if this process null synchronized process file this process get process file if file null set title title hostname file get name changed else set title title hostname
sets the window title rapid miner filename an asterisk if process was
public string to string return attribute weights containing weights for weight map size attributes
returns a string representation of this object
public object clone return new attribute weights this
returns a deep clone of the attribute weights which provides the same
public void normalize double weight min double positive infinity double weight max double negative infinity for string name get attribute names double weight math abs get weight name weight min math min weight min weight weight max math max weight max weight iterator attribute weight w weight map values iterator double diff weight max weight min while w has next attribute weight attribute weight w next double new weight 1 0d if diff 0 0d new weight math abs attribute weight get weight weight min diff attribute weight set weight new weight
this method normalizes all weights to the range 0 to 1
public component get visualization component iocontainer container data table data table create data table return new data table viewer data table plotter panel weight plotter selection
returns a visualisation component which allows sorting of the attribute
public string transform new value string value return value
this method will be invoked by the parameters after a parameter was set
public boolean is expert return is optional expert
returns true if this parameter can only be seen in expert mode
public void register dependency condition parameter condition condition this conditions add condition
registers the given dependency condition
public boolean is optional boolean become mandatory false for parameter condition condition conditions if condition dependency met become mandatory condition become mandatory else become mandatory false break return become mandatory
returns true if this parameter is optional
public string to string object value if value null return else return value to string
returns a string representation of this value
public void illegal value object illegal object corrected log service get global log illegal value illegal for parameter key has been corrected to corrected to string log service warning
can be called in order to report an illegal parameter value which is
public int compare to object o if o instanceof parameter type return 0 else return this key compare to parameter type o key
parameter types are compared by key
public configuration wizard creator get wizard creator configuration wizard creator creator null try creator wizard creator class new instance creator set parameters parameters catch instantiation exception e log service get global log problem during creation of wizard e get message log service warning catch illegal access exception e log service get global log problem during creation of wizard e get message log service warning return creator
returns a new instance of the wizard creator
public preview creator get preview creator preview creator creator null try creator preview creator class new instance catch instantiation exception e log service get global log problem during creation of previewer e get message log service warning catch illegal access exception e log service get global log problem during creation of previewer e get message log service warning return creator
returns a new instance of the wizard creator
public object clone parameters clone new parameters iterator string i key to value map key set iterator while i has next string key i next string value key to value map get key parameter type type key to type map get key if type null clone key to value map put key value i key to type map key set iterator while i has next string key i next clone key to type map put key key to type map get key clone keys clear for string key this keys clone keys add key return clone
performs a deep clone on this parameters object
public boolean set parameter string key string value boolean known type true if value null key to value map remove key else parameter type type key to type map get key if type null value type transform new value value known type true key to value map put key value return known type
sets the parameter for the given key after performing a range check
public void update recent file list recent files menu remove all list recent files rapid miner gui get recent files iterator i recent files iterator int j 1 while i has next final file recent file file i next jmenu item menu item new jmenu item j recent file get path menu item set mnemonic 0 j menu item add action listener new action listener public void action performed action event e open recent file recent files menu add menu item j
updates the list of recently used files
private void parse arguments string argv process file null for int i 0 i argv length i if argv i equals l show logo true else process file argv i if process file null print usage
parses the commandline arguments
public string get xml string indent boolean hide default string buffer result new string buffer iterator string i keys iterator while i has next string key i next string value key to value map get key parameter type type key to type map get key if type null result append type get xml indent key value hide default else result append indent parameter key key tvalue value to string tools get line separator return result to string
writes a portion of the xml configuration file specifying the parameters
public void write char bytes int offset int length throws ioexception for int i 0 i writer length i writer i write bytes offset length
implements the abstract method of the superclass
public void close throws ioexception for int i 0 i writer length i writer i close
closes all writers
public void add double value double weight if value map contains key value value map put value value map get value weight else value map put value weight
add a value with a weight to the set
public void flush throws ioexception for int i 0 i writer length i writer i flush
flushes all writers
public void add double value add value 1 0d
add a value to the set
public boolean contains double value return value map contains key value
returns whether the set contains the given value
public e get int index return array index
returns the array element at the specified single dimension
public int size return value map size
returns the number of values in the set
public double get mode double mode double na n double max weight double negative infinity for entry double double entry value map entry set double weight entry get value if weight max weight max weight weight mode entry get key return mode
returns the most common of the values in the set
public e get int indices return array get index indices
returns the array element at the position specified by the
public void set int index e e array index e
sets the array element at the specified single dimension
public void set int indices e e array get index indices e
sets the array element at the position specified by the given
public int get index int indices return sum product indices combinations
computes the single dimension array index from the given
public void write int b throws ioexception for int i 0 i out length i out i write b
implements the abstract method of the superclass
public void close throws ioexception for int i 0 i out length i if system out equals out i system err equals out i out i close
closes all writers
private int sum product int first indices int second indices int first length first indices length int second length second indices length int length second length first length first length second length int product 0 for int i 0 i length i product first indices i second indices i return product
calculates the sum product of two int arrays
public void flush throws ioexception for int i 0 i out length i out i flush
flushes all writers
public boolean is a int child int parent while child parent child parent id child if child 1 return false return true
returns true if child is a parent
public int map name string name for int i 0 i names length i if names i equals name return i return 1
maps the name of a class to its index or 1 if unknown
public string map index int index if index 0 index names length return names index else return null
maps an index to its name
public boolean is distance return true
this method returns a boolean wheter this measure is a distance measure
public double calculate distance example first example example second example attributes attributes first example get attributes double first values new double attributes size double second values new double attributes size int i 0 for attribute attribute attributes first values i first example get value attribute second values i second example get value attribute i return calculate distance first values second values
this is a convinient method for calculating the distance between examples
public double calculate similarity example first example example second example attributes attributes first example get attributes double first values new double attributes size double second values new double attributes size int i 0 for attribute attribute attributes first values i first example get value attribute second values i second example get value attribute i return calculate similarity first values second values
this is a convinient method for calculating the similarity between examples
public boolean accept element probability double not required elements counter double population counter if probability random value population counter not required elements counter return false else population counter probability 1 random value 1 random generator next double return true
include element in the sample
public void add vector average vector av vector list add av
adds a new average vector
public average vector get vector int index return vector list get index
returns the average vector with index i
public int size return averages list size
returns the number of averages in the list
public array list get vector list return vector list
returns all average vectors as list
public int size return vector list size
returns the number of average vectors
public average vector average try average vector output average vector get vector 0 clone for int i 1 i size i average vector av get vector i for int j 0 j av size j output get averagable j build average av get averagable j return output catch clone not supported exception e throw new runtime exception clone of average vector is not supported e get message
calculates the mean value of the averagables of the average vectors and
public averagable get averagable int index return averages list get index
returns the averagable by index
public double calculate distance double x1 double x2 return inner product x1 x2
subclasses must implement this method
public averagable get averagable string name iterator averagable i averages list iterator while i has next averagable a i next if a get name equals name return a return null
returns the averagable by name
public int get size return averages list size
returns the number of averagables in this vector
public double calculate distance double x1 double x2 k tanh a x y b double prod a inner product x1 x2 b double e1 math exp prod double e2 math exp prod return e1 e2 e1 e2
subclasses must implement this method
public double calculate distance double x1 double x2 return math exp this gamma norm2 x1 x2 gamma params gamma
calculates kernel value of vectors x and y
public double calculate distance double x1 double x2 double expression norm2 x1 x2 sigma if expression 1 return 0 0d else double minus 1 0d expression return math pow minus degree
calculates kernel value of vectors x and y
public void set polynomial parameters double degree double shift this degree degree this shift shift
sets the used polynomial parameters
public double calculate distance double x1 double x2 double prod inner product x1 x2 shift double result prod for int i 1 i degree i result prod return result
subclasses must implement this method
public void init example set example set this example set example set int example set size example set size if example set size 8000 this cache new full cache example set this else this cache new map based cache example set size
calculates all distances and store them in a matrix to speed up
public double get distance int x1 int x2 double result cache get x1 x2 if double is na n result result calculate distance get attribute values x1 get attribute values x2 cache store x1 x2 result return result
returns the distance between the examples with the given indices
public double calculate distance double x1 double x2 double norm2 norm2 x1 x2 double exp1 sigma1 0 0d 0 0d math exp 1 norm2 sigma1 double exp2 sigma2 0 0d 0 0d math exp 1 norm2 sigma2 double exp3 sigma3 0 0d 0 0d math exp 1 norm2 sigma3 return exp1 exp2 exp3
calculates kernel value of vectors x and y
public double calculate distance double x1 double x2 return math sqrt norm2 x1 x2 sigma shift shift
calculates kernel value of vectors x and y
public double inner product double x1 double x2 double result 0 0d for int i 0 i x1 length i result x1 i x2 i return result
calculates the inner product of the given vectors
public double norm2 double x1 double x2 double result 0 for int i 0 i x1 length i double factor x1 i x2 i result factor factor return result
calculates the l2 norm i
public double get sum collection support vectors double current x double sum 0 0d iterator i support vectors iterator while i has next support vector sv support vector i next sum sv get y sv get alpha calculate distance sv get x current x return sum
calculates w x from the given support vectors using this kernel function
public double get false positives return false positives
returns the number of false positives not the rate
public double get true positives return true positives
returns the number of true positives not the rate
public double get magnitude int n return 2 0d math sqrt real real imaginary imaginary n
normalizes the amplitude to the correct value
public void add all collection individual new individuals individuals add all new individuals
adds all individuals from the given collection
public void next iteration throws operator exception
this method is invoked after each evaluation
public void sort comparator individual comparator collections sort individuals comparator
sorts the individuals in ascending order according to their performance
protected population create initial population int pop size int individual size population init pop new population pop size individual size for int i 0 i pop size i double values new double individual size for int j 0 j values length j values j random next double in range min value max value init pop set values i values return init pop
creates the initial population
private void evaluate population population throws operator exception performance vector fitness values new performance vector population get number of individuals for int i 0 i fitness values length i double individual population get values i fitness values i evaluate individual individual population set fitness vector fitness values
calculates the fitness for all individuals and gives the fitness values
public int get generation return population get generation
returns the current generation
public double get best fitness in generation return population get best fitness in generation
returns the best fitness in the current generation
public double get best fitness ever return population get best fitness ever
returns the best fitness ever
public void enable actions if swing utilities is event dispatch thread enable actions now else swing utilities invoke later new runnable public void run enable actions now
enables and disables all actions according to the current state
public performance vector get best performance ever return population get best performance ever
returns the best performance vector ever
public double calculate double values reset for int i 0 i values length i update values i return get value
resets the counters and computes the aggregation function
public double calculate double values double weights reset if values length weights length return double na n for int i 0 i values length i update values i weights i return get value
resets the counters and computes the aggregation function
public double get best fitness in generation individual individual population get current best if individual null return individual get fitness values 0 else return double na n
returns the best fitness in the current generation
public double get best fitness ever individual individual population get best ever if individual null return individual get fitness values 0 else return double na n
returns the best fitness ever
public big integer get number of combinations left return num left
return number of combinations not yet generated
public performance vector get best performance ever individual individual population get best ever if individual null return individual get fitness else return null
returns the best performance vector ever
private population create min start population population population new population for int p 0 p this population size p double alphas new double this individual size for int j 0 j alphas length j alphas j this min j population add new individual alphas return population
randomly creates the initial population
private population create max start population population population new population for int p 0 p this population size p double alphas new double this individual size for int j 0 j alphas length j alphas j this max j population add new individual alphas return population
randomly creates the initial population
private population create fixed start population double fixed value population population new population for int p 0 p this population size p double alphas new double this individual size for int j 0 j alphas length j alphas j fixed value population add new individual alphas return population
randomly creates the initial population
public void remove menu int index menu bar remove menu bar get menu index
this methods provide plugins the possibility to modify the menus
public double get distance int point1 int point2 int dimensions double distance 0 for int i 0 i point1 length i int coord1 point1 i 0 dimensions i point1 i point1 i wrapping around if incoming coordinate is negative int coord2 point2 i 0 dimensions i point2 i point2 i double diff math min math abs coord1 coord2 coord1 dimensions i coord2 dimensions i distance diff diff distance math sqrt distance return distance
integer distance calculation regards the wrap around of the net hypertorus
private boolean is ok peak series int current int index if series current get magnitude series index get magnitude return false else return true
in the minimum case this method returns true if the current value is
public int get average count return this average count
returns the number of averagables used to create this averagable
public double get best threshold return best threshold
the best threshold will automatically be determined during the calculation of the
public component get visualization component iocontainer io container jpanel info panel new jpanel new flow layout flow layout left jtext pane info text new jtext pane info text set editable false info text set background info panel get background info text set font info text get font derive font font bold info text set text to result string info panel add info text info panel set border border factory create etched border return info panel
this default implementation returns a framed text pane containing the string
public boolean format percent return false
indicates wether or not percentage format should be used in the
public object clone return new group tree this
returns a deep clone of this tree
public string get main group name if get parent null return root else if get parent get parent null return get name else return get parent get main group name
returns the main group name i
private void set parent group tree parent this parent parent
sets the parent of this group
private group tree get parent return parent
returns the parent of this group
public double next double in range double lower bound double upper bound if upper bound lower bound throw new illegal argument exception random generator next double in range the upper bound of the random number range should be greater than the lower bound return next double upper bound lower bound lower bound
returns the next pseudorandom uniformly distributed code double code