input
stringlengths
10
828
output
stringlengths
5
107
public void clear error list error list clear
clears the list of errors
protected double inner product double x double y double sum 0 for int i 0 i x length i sum x i y i return sum
return the inner product of x and y x
public double get c return c
gets the complexity constant of the svm
protected void prune linked list integer basis set create phit double phi t array new double basis set size for int j 0 j basis set size j phi t array j phi basis set get j phi t new matrix phi t array create diagonal matrix a a new matrix basis set size basis set size for int j 0 j basis set size j a set j j alpha basis set get j
create pruned versions of all important matrices vectors so that
protected void update sigma matrix sigma inv phi t times phi t transpose sigma inv times equals beta sigma inv plus equals a update the factor secholesky decomposition cd new secholesky decomposition sigma inv get array matrix u cd get ptr times cd get l sigma chol u inverse update sigma sigma sigma chol transpose times sigma chol
update the covariance matrix of the weight posterior distribution sigma
public void set alpha int pos double alpha alphas pos alpha
sets an alpha value
protected void reestimate alpha int selected basis alpha selected basis s s q q s
reestimate alpha by setting it to the value which maximizes the
protected void include basis int selected basis basis set add integer value of selected basis reestimate alpha selected basis
include a basis function into the model
protected void delete basis int selected basis basis set remove integer value of selected basis alpha selected basis 1 0d
delete a basis function from the model
public string to string return constructive regression rvm
identify the rvm
public string to string return regression rvm
identify the rvm
protected void project to constraint project alphas to match the constraint double alpha sum sum alpha int svcount 0 double alpha int i for i 0 i examples total i alpha alphas i alpha sum alpha if alpha is zero alpha c neg i is zero alpha is zero alpha c pos i is zero svcount if svcount 0 project alpha sum svcount for i 0 i examples total i alpha alphas i if alpha is zero alpha c neg i is zero alpha is zero alpha c pos i is zero alphas i alpha sum
project variables to constraints
public void add warning string message log warning this get name message error list add message
adds a warning message to the error list
public double sigmoid double x return 1 0 1 0 math exp x
sigmoid link function
public string to string return classification rvm
identify the rvm
public performance vector get estimated performance throws operator exception if pattern throw new user error this 912 this cannot calculate leave one out estimation of error for regression tasks double est vector svmpattern get svm get xi alpha estimation get kernel performance vector pv new performance vector pv add criterion new estimated performance xialpha error est vector 0 1 true pv add criterion new estimated performance xialpha precision est vector 1 1 false pv add criterion new estimated performance xialpha recall est vector 2 1 false pv set main criterion name xialpha error return pv
returns the estimated performances of this svm
protected kernel get kernel return kernel
returns the kernel of this svm
protected svminterface get svm return svm
returns the used svm
public boolean should deliver optimization performance return get parameter as boolean parameter return optimization performance
returns the value of the corresponding parameter
protected void init working set calculate sum int i j project to constraint skip kernel calculation as all alphas 0 for i 0 i examples total i sum i 0 at bound i 0 first working set is random j 0 i 0 while i working set size j examples total working set i j if is alpha neg j which alpha i true else which alpha i false i j update working set
initialises the working set
public performance vector get optimization performance double final fitness get fitness svm examples get alphas svm examples get ys kernel performance vector result new performance vector result add criterion new estimated performance svm objective function final fitness 1 false result add criterion new estimated performance no support vectors svm examples get number of support vectors 1 true return result
returns the optimization performance of the best result
public boolean should calculate weights return get parameter as boolean parameter calculate weights
returns true if the user has specified that weights should be calculated
public attribute weights get weights example set example set throws operator exception if get parameter as int parameter kernel type kernel dot throw new user error this 916 this cannot create weights for nonlinear kernel double weights svm get weights attribute weights weight vector new attribute weights int i 0 for attribute attribute example set get attributes weight vector set weight attribute get name weights i return weight vector
returns the weights for all features
public performance vector get optimization performance return optimization get optimization performance
returns the optimization performance of the best result
public boolean supports capability learner capability lc if lc learner capability numerical attributes return true if lc learner capability binominal class return true if lc learner capability numerical class return true if lc learner capability weighted examples return true if lc learner capability formula provider return true return false
returns true for numerical attributes binominal classes and numerical
public performance vector evaluate individual double individual double fitness optimization function get fitness individual ys kernel 0 performance vector result new performance vector result add criterion new estimated performance svmopt value fitness 1 false return result
evaluates the individuals of the given population
protected void logln int level string message if param operator null param operator get log log message rapid miner verbosity level 1 else log service get global log message rapid miner verbosity level 1
log the output plus newline
public boolean supports capability learner capability lc if lc learner capability numerical attributes return true if lc learner capability binominal class return true if lc learner capability formula provider return true return false
returns true for numerical attributes binominal classes and numerical
public evo svmmodel train throws operator exception optimize return get model get best values ever
trains the svm
public performance vector get optimization performance double best values ever get best values ever double final fitness optimization function get fitness best values ever ys kernel performance vector result new performance vector result add criterion new estimated performance svm objective function final fitness 0 1 false result add criterion new estimated performance no support vectors 1 final fitness 1 1 true return result
delivers the fitness of the best individual as performance vector
public performance vector get optimization performance double best values ever get best values ever double final fitness optimization function get fitness best values ever ys kernel performance vector result new performance vector if final fitness length 1 result add criterion new estimated performance svm objective function final fitness 0 1 false else result add criterion new estimated performance alpha sum final fitness 0 1 false result add criterion new estimated performance svm objective function final fitness 1 1 false if final fitness length 3 result add criterion new estimated performance alpha label sum final fitness 2 1 false return result
delivers the fitness of the best individual as performance vector
public string to string string type null if get operator description null type get operator class name else type get class get name return break point 0 break point 1 name type
returns the name
public void predict svmexamples to predict int i double prediction svmexample s vmexample int size the examples count examples im 04 02 12 int size to predict count examples for i 0 i size i s vmexample to predict get example i prediction predict s vmexample to predict set y i prediction logln 4 prediction generated
predict values on the testset with model
public double predict svmexample s vmexample int i int sv index double sv att double the sum the examples get b double alpha for i 0 i examples total i alpha alphas i if alpha 0 sv index the examples index i sv att the examples atts i the sum alpha the kernel calculate k sv index sv att s vmexample index s vmexample att return the sum
predict a single example
public string create process tree int indent return create process tree indent null null
returns this operators name and class
public string to string return gauss regression gp
identify the gp
public model learn example set example set throws operator exception attribute label example set get attributes get label if label is nominal if label get mapping size 2 throw new user error this 114 get name label get name init neural net example set train example set return new neural net model example set neural net example set get attributes size this min label this max label
learns and returns a model
public boolean supports capability learner capability lc if lc learner capability numerical attributes return true if lc learner capability polynominal class return true if lc learner capability binominal class return true if lc learner capability numerical class return true if lc learner capability weighted examples return true return false
returns true for all types of attributes and numerical and binominal labels
public boolean supports capability learner capability lc if lc learner capability polynominal attributes return true if lc learner capability binominal attributes return true if lc learner capability numerical attributes return true if lc learner capability binominal class return true if lc learner capability numerical class return true return false
returns true for all types of attributes and numerical and binominal labels
public string create marked process tree int indent string mark operator mark operator return create process tree indent mark operator mark
returns this operators name and class
public boolean supports capability learner capability lc if lc learner capability numerical attributes return true if lc learner capability binominal class return true if lc learner capability numerical class return true return false
returns true for all types of attributes and numerical and binominal labels
protected boolean connect input node i int n if super connect input i n return false double new weights new double weights length 1 system arraycopy weights 0 new weights 0 weights length new weights new weights length 1 this random generator next double 0 1d 0 05d weights new weights double new weight changes new double weight changes length 1 system arraycopy weight changes 0 new weight changes 0 weight changes length new weight changes new weight changes length 1 0 weight changes new weight changes return true
overwrites the super method and also adds weight handling
public model learn example set example set throws operator exception parameter params get parameters example set if example set size 2 throw new user error this 110 2 linear reset random linear disable debug output problem problem get problem example set liblinear model model linear train problem params return new fast margin model example set model get parameter as boolean parameter use bias
learns a new svm model with the lib svm package
protected string create process tree int indent string self prefix string child prefix operator mark operator string mark if mark operator null get name equals mark operator get name return indent indent mark length mark self prefix get name apply count get operator class name else return indent indent self prefix get name apply count get operator class name
returns this operators name and class
private boolean deselect attribute with highest coefficient boolean selected attributes double coefficients double standard deviations double class standard deviation throws undefined parameter error double min coefficient get parameter as double parameter min standardized coefficient int attribute2 deselect 1 int coefficient index 0 for int i 0 i selected attributes length i if selected attributes i double standardized coefficient math abs coefficients coefficient index standard deviations i class standard deviation if standardized coefficient min coefficient min coefficient standardized coefficient attribute2 deselect i coefficient index if attribute2 deselect 0 selected attributes attribute2 deselect false return true return false
this method removes the attribute with the highest standardized coefficient
private double get squared error example set example set boolean selected attributes double coefficients boolean use intercept double error 0 iterator example i example set iterator while i has next example example i next double prediction regression prediction example selected attributes coefficients use intercept double diff prediction example get label error diff diff return error
calculates the squared error of a regression model on the training data
private double regression prediction example example boolean selected attributes double coefficients boolean use intercept double prediction 0 int index 0 int counter 0 for attribute attribute example get attributes if selected attributes counter prediction coefficients index example get value attribute index if use intercept prediction coefficients index return prediction
calculates the prediction for the given example
public double confidence intervall double total weight double total positive weight hypothesis hypo double delta if total weight large return conf small m total weight delta else return conf total weight total positive weight hypo delta
calculates the the confidence intervall for a specific hypothesis
public squared double priors int large super priors large
constructs a new squared with the given default probability
public abstract utility double priors int large this priors new double priors length system arraycopy priors 0 this priors 0 2 this large large
constructor for all utilities
public double utility double total weight double total positive weight hypothesis hypo double g hypo get covered weight total weight double p hypo get positive weight hypo get covered weight if hypo get prediction hypothesis positive class return g g p this priors hypothesis positive class else return g g p this priors hypothesis negative class
calculates the utility for the given number of examples positive examples and hypothesis
public double conf double total weight double delta return inverse normal 1 delta 2 2 math sqrt total weight
calculate confidence intervall without a specific rule for instance averaging functions
public double calculate m double delta double epsilon double i 1 perfomance start with step 10000 while conf i delta epsilon 2 0d i i 10000 if i 1 i i 10000 has been executed at least once i i 10000 while conf i delta epsilon 2 0d i return math ceil i
calculates the m value needed for the gss algorithm
public double conf double total weight double delta double inverse normal inverse normal 1 delta 2 return 3 0d 2 0d math sqrt total weight inverse normal total weight math sqrt total weight 4 0d total weight math sqrt total weight math pow inverse normal 2 0d math pow inverse normal 3 0d 8 0d total weight math sqrt total weight
calculate confidence intervall without a specific rule
public double conf double total weight double total positive weight hypothesis hypo double delta return inverse normal 1 delta 2 variance total weight total positive weight hypo
calculate confidence intervall for a specific rule for instance averaging functions
public double confidence intervall double total weight double delta if total weight large return conf small m total weight delta else return conf total weight delta
calculates the the unspecific confidence intervall
private double variance double p double total weight return p 1 p total weight
calculates the variance for a binomial distribution
private string indent int indent string buffer s new string buffer for int i 0 i indent i s append return s to string
returns a whitespace with length indent
public double confidence intervall double total weight double total positive weight hypothesis hypo double delta if hypo get covered weight large return conf small m total weight delta else return conf total weight total positive weight hypo delta
calculates the the confidence intervall for a specific hypothesis
public double conf small m double total weight double delta double term math log 4 0d delta 2 0d total weight return math pow term 1 5d 3 0d term 3 0d math sqrt term
calculate confidence intervall without a specific rule for small m
public linear double priors int large super priors large
constructs a new linear with the given default probability
public double get upper bound double total weight double total positive weight hypothesis hypo double delta double p0 if hypo get prediction hypothesis positive class p0 this priors hypothesis positive class else p0 this priors hypothesis negative class utility cov new coverage this priors this large hypothesis h hypo clone h set covered weight hypo get positive weight all fp become tn double g cov utility total weight total positive weight h double conf cov confidence intervall total weight delta return g conf g conf 1 0d p0
returns an upper bound for the utility of refinements for the given hypothesis
public double utility double total weight double total positive weight hypothesis hypo double g hypo get covered weight total weight double p hypo get positive weight hypo get covered weight if hypo get prediction hypothesis positive class return g p this priors hypothesis positive class else return g p this priors hypothesis negative class
calculates the utility for the given number of examples positive examples and hypothesis
public coverage double priors int large super priors large
constructs a new coverage with the given default probability
public wracc double priors int large super priors large
constructs new wracc with the given default probability
public double conf double total example weight double delta double inverse normal inverse normal 1 delta 4 return inverse normal math sqrt total example weight math pow inverse normal 2 0d 4 0d total example weight
calculate confidence intervall without a specific rule
public double utility double total weight double total positive weight hypothesis hypo return hypo get positive weight total weight
calculates the utility for the given number of examples positive examples and hypothesis
public double variance double total weight double total positive weight hypothesis hypo double p0 if hypo get prediction hypothesis positive class p0 this priors hypothesis positive class else p0 this priors hypothesis negative class double mean this utility total weight total positive weight hypo double inner term hypo get positive weight math pow 1 0 p0 mean 2 hypo get covered weight hypo get positive weight math pow 0 0 p0 mean 2 total weight hypo get covered weight math pow 0 0 mean 2 return math sqrt inner term total weight
calculates the empirical variance
public double variance double total weight double total positive weight hypothesis hypo double mean this utility total weight total positive weight hypo double inner term hypo get positive weight math pow 1 0d mean 2 0d total weight hypo get positive weight math pow 0 0d mean 2 0d return math sqrt inner term total weight
calculates the empirical variance
public double get upper bound double total weight double total positive weight hypothesis hypo double delta double p0 if hypo get prediction hypothesis positive class p0 this priors hypothesis positive class else p0 this priors hypothesis negative class utility cov new coverage this priors this large hypothesis h hypo clone h set covered weight hypo get positive weight all fp become tn double g cov utility total weight total positive weight h double conf cov confidence intervall total weight delta return g conf 1 0 p0
returns an upper bound for the utility of refinements for the given hypothesis
private double variance double p double total example weight return p 1 0d p total example weight
calculates the variance for a binomial distribution
public double get upper bound double total weight double total positive weight hypothesis hypo double delta never needed return 1 0d
returns an upper bound for the utility of refinements for the given hypothesis
public double conf small m double total example weight double delta return 3 0d math sqrt math log 4 0d delta 2 0d total example weight
calculate confidence intervall without a specific rule for small m
public double utility double total example weight double total positive weight hypothesis hypo double fp hypo get covered weight hypo get positive weight double tn total example weight total positive weight fp return hypo get positive weight tn total example weight
calculates the utility for the given number of examples positive examples and hypothesis
public binomial double priors int large super priors large
constructs a new binomial with the given default probability
public double get upper bound double total weight double total positive weight hypothesis hypo double delta double p0 if hypo get prediction hypothesis positive class p0 this priors hypothesis positive class else p0 this priors hypothesis negative class utility cov new coverage this priors this large hypothesis h hypo clone h set covered weight hypo get positive weight all fp become tn double g cov utility total weight total positive weight h double conf cov confidence intervall total weight delta return g conf 1 0d p0
returns an upper bound for the utility of refinements for the given hypothesis
public double utility double total weight double total positive weight hypothesis hypo double g hypo get covered weight total weight double p hypo get positive weight hypo get covered weight if hypo get prediction hypothesis positive class return math sqrt g p this priors hypothesis positive class else return math sqrt g p this priors hypothesis negative class
calculates the utility for the given number of examples positive examples and hypothesis
public double variance double total weight double total positive weight hypothesis hypo double fp hypo get covered weight hypo get positive weight double tn total weight total positive weight fp double correct predictions hypo get positive weight tn double mean correct predictions total weight double inner term correct predictions math pow 1 0d mean 2 total weight correct predictions math pow 0 0d mean 2 return math sqrt inner term total weight
calculates the empirical variance
public hypothesis get hypothesis return hypo
returns the stored hypothesis
public double conf double total weight double delta double inverse normal inverse normal 1 delta 4 return math sqrt inverse normal 2 math sqrt total weight inverse normal 2 math sqrt total weight math pow inverse normal 2 math sqrt total weight 1 5d
calculate confidence intervall without a specific rule
public double get utility return utility
returns the stored utility
public double get upper bound double total weight double total positive weight hypothesis hypo double delta hypothesis h hypo clone h set covered weight hypo get positive weight all fp become tn double util this utility total weight total positive weight h double conf this confidence intervall total weight delta return util conf
returns an upper bound for the utility of refinements for the given hypothesis
public double get confidence return confidence
returns the stored size of the confidence intervall
public double get total positive weight return total positive weight
returns the stored positive weight
public double conf small m double total example weight double delta double term math log 4 delta 2 total example weight return math sqrt term math pow term 0 25 math pow term 0 75
calculate confidence intervall without a specific rule for small m
public double get total weight return total weight
returns the stored total weight
public boolean equals object o if o instanceof result return false result other result result o if other result get hypothesis equals this get hypothesis return true else return false
returns true if the same hypothesis is stored by both results
public double get upper bound double total weight double total positive weight hypothesis hypo double delta double p0 if hypo get prediction hypothesis positive class p0 this priors hypothesis positive class else p0 this priors hypothesis negative class utility cov new coverage this priors this large hypothesis h hypo clone h set covered weight hypo get positive weight all fp become tn double g cov utility total weight total positive weight h double conf cov confidence intervall total weight delta return math sqrt g conf 1 0d p0
returns an upper bound for the utility of refinements for the given hypothesis
public hypothesis clone rule clone new rule this literals this prediction clone set covered weight this get covered weight clone set positive weight this get positive weight return clone
clones the rule with covered and positive weight
public boolean equals object o if o instanceof literal return false literal other literal literal o if this attribute equals other literal attribute this value other literal value return true else return false
returns true if both attributes and both values are equal
public void apply example e if this applicable e if rejection sampling covered weight if int e get label this prediction positive weight else covered weight e get weight if int e get label this prediction positive weight e get weight
applies the rule to the given examples
public string to string string str this attribute get mapping map index value return attribute get name str
returns a string represenation of this literal
public hypothesis attribute regulars attribute l boolean rs boolean create all rejection sampling rs create all hypothesis create all label l
create a new dummy hypothesis to allow calling the init method
public boolean equals object o if o instanceof gssmodel return false gssmodel other model gssmodel o if other model hypothesis equals this hypothesis return true else return false
returns true if the hypothesis contained in the model are equal
public boolean can be refined no literals can be appended if the last literal tests the last attribute if literals literals length 1 get index all literals length 1 return false else return true
returns true only if this hypothesis can still be refined
public attribute get label return label
returns the label
public void reset this covered weight 0 0d this positive weight 0 0d
sets covered weight and positive weight back to 0
public int get prediction index if this confidences hypothesis positive class this confidences hypothesis negative class return hypothesis positive class else return hypothesis negative class
returns the most probable label index for this model
public double get covered weight return this covered weight
returns the covered weight of this hypothesis
public int get prediction return this prediction
returns the index of prediction of this rule