sadickam's picture
Upload README.md with huggingface_hub
22f1571 verified
metadata
license: mit
task_categories:
  - text-retrieval
  - question-answering
language:
  - en
tags:
  - building-defects
  - construction-quality
  - ncc
  - vba
  - rag
  - embeddings
  - bge
pretty_name: Building Defects RAG Index
size_categories:
  - 1K<n<10K

Building Defects RAG Index

This dataset contains pre-built retrieval artifacts for the Building Defects & Quality chatbot. It includes chunked documents, embeddings, and search indexes ready for deployment.

Purpose

This dataset enables Retrieval-Augmented Generation (RAG) for answering questions about building defects, construction tolerances, NCC Volume Two requirements, and VBA Guide to Standards and Tolerances.

Embedding Model

  • Model: BAAI/bge-small-en-v1.5
  • Dimension: 384
  • Storage: float16 for 50% compression

Dataset Schema

chunks.parquet

Document chunks with metadata for retrieval.

Column Type Description
chunk_id string Unique identifier for the chunk
text string The chunk text content
heading_path list[string] Hierarchical heading context
source string Source PDF filename
page int Page number in source document
chunk_hash string SHA-256 hash (first 16 chars)

embeddings.parquet

Embedding vectors for semantic search.

Column Type Description
chunk_id string Matches chunk_id in chunks.parquet
chunk_hash string SHA-256 hash for deduplication
embedding fixed_size_list[float16] Embedding vector

faiss_index.bin

Serialized FAISS index for fast approximate nearest neighbor search. Uses IndexFlatIP (inner product) for cosine similarity search.

bm25_index.pkl

Serialized BM25 index for lexical/keyword search. Used in hybrid retrieval with reciprocal rank fusion.

source_manifest.json

Manifest of source files with hashes for change detection.

Field Type Description
sources list[SourceFile] Source file metadata
created_at string ISO 8601 creation timestamp
total_chunks int Total chunk count
total_embeddings int Total embedding count

index_version.txt

Single-line version identifier for cache invalidation. Format: {timestamp}_{hash} (e.g., 20240115_123456_abc123)

Statistics

  • Total Chunks: 1,523
  • Total Embeddings: 1,523
  • Embedding Dimension: 384
  • Source Documents: 0
  • Storage Format: Parquet with Snappy compression

Usage

Loading with HuggingFace Datasets

from datasets import load_dataset

# Load chunks
chunks = load_dataset("sadickam/BuildingDefect_index", data_files="chunks.parquet")

# Load embeddings
embeddings = load_dataset("sadickam/BuildingDefect_index", data_files="embeddings.parquet")

Loading with huggingface_hub

from huggingface_hub import hf_hub_download

# Download FAISS index
faiss_path = hf_hub_download(
    repo_id="sadickam/BuildingDefect_index",
    filename="faiss_index.bin",
    repo_type="dataset",
)

# Download BM25 index
bm25_path = hf_hub_download(
    repo_id="sadickam/BuildingDefect_index",
    filename="bm25_index.pkl",
    repo_type="dataset",
)

Loading FAISS Index

import faiss

index = faiss.read_index(faiss_path)

License

This dataset is released under the MIT License.

Sources

This dataset is based on:

  • NCC Volume Two (2022) - National Construction Code, Australian Building Codes Board
  • VBA Guide to Standards and Tolerances - Victorian Building Authority