repo_name
stringlengths
5
92
path
stringlengths
4
221
copies
stringclasses
19 values
size
stringlengths
4
6
content
stringlengths
766
896k
license
stringclasses
15 values
hash
int64
-9,223,277,421,539,062,000
9,223,102,107B
line_mean
float64
6.51
99.9
line_max
int64
32
997
alpha_frac
float64
0.25
0.96
autogenerated
bool
1 class
ratio
float64
1.5
13.6
config_test
bool
2 classes
has_no_keywords
bool
2 classes
few_assignments
bool
1 class
FilipeMaia/arrayfire-python
arrayfire/array.py
1
30063
####################################################### # Copyright (c) 2015, ArrayFire # All rights reserved. # # This file is distributed under 3-clause BSD license. # The complete license agreement can be obtained at: # http://arrayfire.com/licenses/BSD-3-Clause ######################################################## """ arrayfire.Array class and helper functions. """ import inspect from .library import * from .util import * from .util import _is_number from .bcast import _bcast_var from .base import * from .index import * from .index import _Index4 def _create_array(buf, numdims, idims, dtype): out_arr = ct.c_void_p(0) c_dims = dim4(idims[0], idims[1], idims[2], idims[3]) safe_call(backend.get().af_create_array(ct.pointer(out_arr), ct.c_void_p(buf), numdims, ct.pointer(c_dims), dtype.value)) return out_arr def _create_empty_array(numdims, idims, dtype): out_arr = ct.c_void_p(0) c_dims = dim4(idims[0], idims[1], idims[2], idims[3]) safe_call(backend.get().af_create_handle(ct.pointer(out_arr), numdims, ct.pointer(c_dims), dtype.value)) return out_arr def constant_array(val, d0, d1=None, d2=None, d3=None, dtype=Dtype.f32): """ Internal function to create a C array. Should not be used externall. """ if not isinstance(dtype, ct.c_int): if isinstance(dtype, int): dtype = ct.c_int(dtype) elif isinstance(dtype, Dtype): dtype = ct.c_int(dtype.value) else: raise TypeError("Invalid dtype") out = ct.c_void_p(0) dims = dim4(d0, d1, d2, d3) if isinstance(val, complex): c_real = ct.c_double(val.real) c_imag = ct.c_double(val.imag) if (dtype.value != Dtype.c32.value and dtype.value != Dtype.c64.value): dtype = Dtype.c32.value safe_call(backend.get().af_constant_complex(ct.pointer(out), c_real, c_imag, 4, ct.pointer(dims), dtype)) elif dtype.value == Dtype.s64.value: c_val = ct.c_longlong(val.real) safe_call(backend.get().af_constant_long(ct.pointer(out), c_val, 4, ct.pointer(dims))) elif dtype.value == Dtype.u64.value: c_val = ct.c_ulonglong(val.real) safe_call(backend.get().af_constant_ulong(ct.pointer(out), c_val, 4, ct.pointer(dims))) else: c_val = ct.c_double(val) safe_call(backend.get().af_constant(ct.pointer(out), c_val, 4, ct.pointer(dims), dtype)) return out def _binary_func(lhs, rhs, c_func): out = Array() other = rhs if (_is_number(rhs)): ldims = dim4_to_tuple(lhs.dims()) rty = implicit_dtype(rhs, lhs.type()) other = Array() other.arr = constant_array(rhs, ldims[0], ldims[1], ldims[2], ldims[3], rty.value) elif not isinstance(rhs, Array): raise TypeError("Invalid parameter to binary function") safe_call(c_func(ct.pointer(out.arr), lhs.arr, other.arr, _bcast_var.get())) return out def _binary_funcr(lhs, rhs, c_func): out = Array() other = lhs if (_is_number(lhs)): rdims = dim4_to_tuple(rhs.dims()) lty = implicit_dtype(lhs, rhs.type()) other = Array() other.arr = constant_array(lhs, rdims[0], rdims[1], rdims[2], rdims[3], lty.value) elif not isinstance(lhs, Array): raise TypeError("Invalid parameter to binary function") c_func(ct.pointer(out.arr), other.arr, rhs.arr, _bcast_var.get()) return out def _ctype_to_lists(ctype_arr, dim, shape, offset=0): if (dim == 0): return list(ctype_arr[offset : offset + shape[0]]) else: dim_len = shape[dim] res = [[]] * dim_len for n in range(dim_len): res[n] = _ctype_to_lists(ctype_arr, dim - 1, shape, offset) offset += shape[0] return res def _slice_to_length(key, dim): tkey = [key.start, key.stop, key.step] if tkey[0] is None: tkey[0] = 0 elif tkey[0] < 0: tkey[0] = dim - tkey[0] if tkey[1] is None: tkey[1] = dim elif tkey[1] < 0: tkey[1] = dim - tkey[1] if tkey[2] is None: tkey[2] = 1 return int(((tkey[1] - tkey[0] - 1) / tkey[2]) + 1) def _get_info(dims, buf_len): elements = 1 numdims = len(dims) idims = [1]*4 for i in range(numdims): elements *= dims[i] idims[i] = dims[i] if (elements == 0): if (buf_len != 0): idims = [buf_len, 1, 1, 1] numdims = 1 else: raise RuntimeError("Invalid size") return numdims, idims def _get_indices(key): S = Index(slice(None)) inds = _Index4(S, S, S, S) if isinstance(key, tuple): n_idx = len(key) for n in range(n_idx): inds[n] = Index(key[n]) else: inds[0] = Index(key) return inds def _get_assign_dims(key, idims): dims = [1]*4 for n in range(len(idims)): dims[n] = idims[n] if _is_number(key): dims[0] = 1 return dims elif isinstance(key, slice): dims[0] = _slice_to_length(key, idims[0]) return dims elif isinstance(key, ParallelRange): dims[0] = _slice_to_length(key.S, idims[0]) return dims elif isinstance(key, BaseArray): # If the array is boolean take only the number of nonzeros if(key.dtype() is Dtype.b8): dims[0] = int(sum(key)) else: dims[0] = key.elements() return dims elif isinstance(key, tuple): n_inds = len(key) for n in range(n_inds): if (_is_number(key[n])): dims[n] = 1 elif (isinstance(key[n], BaseArray)): # If the array is boolean take only the number of nonzeros if(key[n].dtype() is Dtype.b8): dims[n] = int(sum(key[n])) else: dims[n] = key[n].elements() elif (isinstance(key[n], slice)): dims[n] = _slice_to_length(key[n], idims[n]) elif (isinstance(key[n], ParallelRange)): dims[n] = _slice_to_length(key[n].S, idims[n]) else: raise IndexError("Invalid type while assigning to arrayfire.array") return dims else: raise IndexError("Invalid type while assigning to arrayfire.array") def transpose(a, conj=False): """ Perform the transpose on an input. Parameters ----------- a : af.Array Multi dimensional arrayfire array. conj : optional: bool. default: False. Flag to specify if a complex conjugate needs to applied for complex inputs. Returns -------- out : af.Array Containing the tranpose of `a` for all batches. """ out = Array() safe_call(backend.get().af_transpose(ct.pointer(out.arr), a.arr, conj)) return out def transpose_inplace(a, conj=False): """ Perform inplace transpose on an input. Parameters ----------- a : af.Array - Multi dimensional arrayfire array. - Contains transposed values on exit. conj : optional: bool. default: False. Flag to specify if a complex conjugate needs to applied for complex inputs. Note ------- Input `a` needs to be a square matrix or a batch of square matrices. """ safe_call(backend.get().af_transpose_inplace(a.arr, conj)) class Array(BaseArray): """ A multi dimensional array container. Parameters ---------- src : optional: array.array, list or C buffer. default: None. - When `src` is `array.array` or `list`, the data is copied to create the Array() - When `src` is None, an empty buffer is created. dims : optional: tuple of ints. default: (0,) - When using the default values of `dims`, the dims are caclulated as `len(src)` dtype: optional: str or arrayfire.Dtype. default: None. - if str, must be one of the following: - 'f' for float - 'd' for double - 'b' for bool - 'B' for unsigned char - 'i' for signed 32 bit integer - 'I' for unsigned 32 bit integer - 'l' for signed 64 bit integer - 'L' for unsigned 64 bit integer - 'F' for 32 bit complex number - 'D' for 64 bit complex number - if arrayfire.Dtype, must be one of the following: - Dtype.f32 for float - Dtype.f64 for double - Dtype.b8 for bool - Dtype.u8 for unsigned char - Dtype.s32 for signed 32 bit integer - Dtype.u32 for unsigned 32 bit integer - Dtype.s64 for signed 64 bit integer - Dtype.u64 for unsigned 64 bit integer - Dtype.c32 for 32 bit complex number - Dtype.c64 for 64 bit complex number - if None, Dtype.f32 is assumed Attributes ----------- arr: ctypes.c_void_p ctypes variable containing af_array from arrayfire library. Examples -------- Creating an af.Array() from array.array() >>> import arrayfire as af >>> import array >>> a = array.array('f', (1, 2, 3, 4)) >>> b = af.Array(a, (2,2)) >>> af.display(b) [2 2 1 1] 1.0000 3.0000 2.0000 4.0000 Creating an af.Array() from a list >>> import arrayfire as af >>> import array >>> a = [1, 2, 3, 4] >>> b = af.Array(a) >>> af.display(b) [4 1 1 1] 1.0000 2.0000 3.0000 4.0000 Creating an af.Array() from numpy.array() >>> import numpy as np >>> import arrayfire as af >>> a = np.random.random((2,2)) >>> a array([[ 0.33042524, 0.36135449], [ 0.86748649, 0.42199135]]) >>> b = af.Array(a.ctypes.data, a.shape, a.dtype.char) >>> af.display(b) [2 2 1 1] 0.3304 0.8675 0.3614 0.4220 Note ----- - The class is currently limited to 4 dimensions. - arrayfire.Array() uses column major format. - numpy uses row major format by default which can cause issues during conversion """ def __init__(self, src=None, dims=(0,), dtype=None): super(Array, self).__init__() buf=None buf_len=0 if dtype is not None: if isinstance(dtype, str): type_char = dtype else: type_char = to_typecode[dtype.value] else: type_char = None _type_char='f' backend.lock() if src is not None: if (isinstance(src, Array)): safe_call(backend.get().af_retain_array(ct.pointer(self.arr), src.arr)) return host = __import__("array") if isinstance(src, host.array): buf,buf_len = src.buffer_info() _type_char = src.typecode numdims, idims = _get_info(dims, buf_len) elif isinstance(src, list): tmp = host.array('f', src) buf,buf_len = tmp.buffer_info() _type_char = tmp.typecode numdims, idims = _get_info(dims, buf_len) elif isinstance(src, int) or isinstance(src, ct.c_void_p): buf = src numdims, idims = _get_info(dims, buf_len) elements = 1 for dim in idims: elements *= dim if (elements == 0): raise RuntimeError("Expected dims when src is data pointer") if (type_char is None): raise TypeError("Expected type_char when src is data pointer") _type_char = type_char else: raise TypeError("src is an object of unsupported class") if (type_char is not None and type_char != _type_char): raise TypeError("Can not create array of requested type from input data type") self.arr = _create_array(buf, numdims, idims, to_dtype[_type_char]) else: if type_char is None: type_char = 'f' numdims = len(dims) idims = [1] * 4 for n in range(numdims): idims[n] = dims[n] self.arr = _create_empty_array(numdims, idims, to_dtype[type_char]) def copy(self): """ Performs a deep copy of the array. Returns ------- out: af.Array() An identical copy of self. """ out = Array() safe_call(backend.get().af_copy_array(ct.pointer(out.arr), self.arr)) return out def __del__(self): """ Release the C array when going out of scope """ if self.arr.value: backend.get().af_release_array(self.arr) def device_ptr(self): """ Return the device pointer held by the array. Returns ------ ptr : int Contains location of the device pointer Note ---- - This can be used to integrate with custom C code and / or PyCUDA or PyOpenCL. - No mem copy is peformed, this function returns the raw device pointer. """ ptr = ct.c_void_p(0) backend.get().af_get_device_ptr(ct.pointer(ptr), self.arr) return ptr.value def elements(self): """ Return the number of elements in the array. """ num = ct.c_ulonglong(0) safe_call(backend.get().af_get_elements(ct.pointer(num), self.arr)) return num.value def dtype(self): """ Return the data type as a arrayfire.Dtype enum value. """ dty = ct.c_int(Dtype.f32.value) safe_call(backend.get().af_get_type(ct.pointer(dty), self.arr)) return to_dtype[typecodes[dty.value]] def type(self): """ Return the data type as an int. """ return self.dtype().value def dims(self): """ Return the shape of the array as a tuple. """ d0 = ct.c_longlong(0) d1 = ct.c_longlong(0) d2 = ct.c_longlong(0) d3 = ct.c_longlong(0) safe_call(backend.get().af_get_dims(ct.pointer(d0), ct.pointer(d1), ct.pointer(d2), ct.pointer(d3), self.arr)) dims = (d0.value,d1.value,d2.value,d3.value) return dims[:self.numdims()] def numdims(self): """ Return the number of dimensions of the array. """ nd = ct.c_uint(0) safe_call(backend.get().af_get_numdims(ct.pointer(nd), self.arr)) return nd.value def is_empty(self): """ Check if the array is empty i.e. it has no elements. """ res = ct.c_bool(False) safe_call(backend.get().af_is_empty(ct.pointer(res), self.arr)) return res.value def is_scalar(self): """ Check if the array is scalar i.e. it has only one element. """ res = ct.c_bool(False) safe_call(backend.get().af_is_scalar(ct.pointer(res), self.arr)) return res.value def is_row(self): """ Check if the array is a row i.e. it has a shape of (1, cols). """ res = ct.c_bool(False) safe_call(backend.get().af_is_row(ct.pointer(res), self.arr)) return res.value def is_column(self): """ Check if the array is a column i.e. it has a shape of (rows, 1). """ res = ct.c_bool(False) safe_call(backend.get().af_is_column(ct.pointer(res), self.arr)) return res.value def is_vector(self): """ Check if the array is a vector i.e. it has a shape of one of the following: - (rows, 1) - (1, cols) - (1, 1, vols) - (1, 1, 1, batch) """ res = ct.c_bool(False) safe_call(backend.get().af_is_vector(ct.pointer(res), self.arr)) return res.value def is_complex(self): """ Check if the array is of complex type. """ res = ct.c_bool(False) safe_call(backend.get().af_is_complex(ct.pointer(res), self.arr)) return res.value def is_real(self): """ Check if the array is not of complex type. """ res = ct.c_bool(False) safe_call(backend.get().af_is_real(ct.pointer(res), self.arr)) return res.value def is_double(self): """ Check if the array is of double precision floating point type. """ res = ct.c_bool(False) safe_call(backend.get().af_is_double(ct.pointer(res), self.arr)) return res.value def is_single(self): """ Check if the array is of single precision floating point type. """ res = ct.c_bool(False) safe_call(backend.get().af_is_single(ct.pointer(res), self.arr)) return res.value def is_real_floating(self): """ Check if the array is real and of floating point type. """ res = ct.c_bool(False) safe_call(backend.get().af_is_realfloating(ct.pointer(res), self.arr)) return res.value def is_floating(self): """ Check if the array is of floating point type. """ res = ct.c_bool(False) safe_call(backend.get().af_is_floating(ct.pointer(res), self.arr)) return res.value def is_integer(self): """ Check if the array is of integer type. """ res = ct.c_bool(False) safe_call(backend.get().af_is_integer(ct.pointer(res), self.arr)) return res.value def is_bool(self): """ Check if the array is of type b8. """ res = ct.c_bool(False) safe_call(backend.get().af_is_bool(ct.pointer(res), self.arr)) return res.value def __add__(self, other): """ Return self + other. """ return _binary_func(self, other, backend.get().af_add) def __iadd__(self, other): """ Perform self += other. """ self = _binary_func(self, other, backend.get().af_add) return self def __radd__(self, other): """ Return other + self. """ return _binary_funcr(other, self, backend.get().af_add) def __sub__(self, other): """ Return self - other. """ return _binary_func(self, other, backend.get().af_sub) def __isub__(self, other): """ Perform self -= other. """ self = _binary_func(self, other, backend.get().af_sub) return self def __rsub__(self, other): """ Return other - self. """ return _binary_funcr(other, self, backend.get().af_sub) def __mul__(self, other): """ Return self * other. """ return _binary_func(self, other, backend.get().af_mul) def __imul__(self, other): """ Perform self *= other. """ self = _binary_func(self, other, backend.get().af_mul) return self def __rmul__(self, other): """ Return other * self. """ return _binary_funcr(other, self, backend.get().af_mul) def __truediv__(self, other): """ Return self / other. """ return _binary_func(self, other, backend.get().af_div) def __itruediv__(self, other): """ Perform self /= other. """ self = _binary_func(self, other, backend.get().af_div) return self def __rtruediv__(self, other): """ Return other / self. """ return _binary_funcr(other, self, backend.get().af_div) def __div__(self, other): """ Return self / other. """ return _binary_func(self, other, backend.get().af_div) def __idiv__(self, other): """ Perform other / self. """ self = _binary_func(self, other, backend.get().af_div) return self def __rdiv__(self, other): """ Return other / self. """ return _binary_funcr(other, self, backend.get().af_div) def __mod__(self, other): """ Return self % other. """ return _binary_func(self, other, backend.get().af_mod) def __imod__(self, other): """ Perform self %= other. """ self = _binary_func(self, other, backend.get().af_mod) return self def __rmod__(self, other): """ Return other % self. """ return _binary_funcr(other, self, backend.get().af_mod) def __pow__(self, other): """ Return self ** other. """ return _binary_func(self, other, backend.get().af_pow) def __ipow__(self, other): """ Perform self **= other. """ self = _binary_func(self, other, backend.get().af_pow) return self def __rpow__(self, other): """ Return other ** self. """ return _binary_funcr(other, self, backend.get().af_pow) def __lt__(self, other): """ Return self < other. """ return _binary_func(self, other, backend.get().af_lt) def __gt__(self, other): """ Return self > other. """ return _binary_func(self, other, backend.get().af_gt) def __le__(self, other): """ Return self <= other. """ return _binary_func(self, other, backend.get().af_le) def __ge__(self, other): """ Return self >= other. """ return _binary_func(self, other, backend.get().af_ge) def __eq__(self, other): """ Return self == other. """ return _binary_func(self, other, backend.get().af_eq) def __ne__(self, other): """ Return self != other. """ return _binary_func(self, other, backend.get().af_neq) def __and__(self, other): """ Return self & other. """ return _binary_func(self, other, backend.get().af_bitand) def __iand__(self, other): """ Perform self &= other. """ self = _binary_func(self, other, backend.get().af_bitand) return self def __or__(self, other): """ Return self | other. """ return _binary_func(self, other, backend.get().af_bitor) def __ior__(self, other): """ Perform self |= other. """ self = _binary_func(self, other, backend.get().af_bitor) return self def __xor__(self, other): """ Return self ^ other. """ return _binary_func(self, other, backend.get().af_bitxor) def __ixor__(self, other): """ Perform self ^= other. """ self = _binary_func(self, other, backend.get().af_bitxor) return self def __lshift__(self, other): """ Return self << other. """ return _binary_func(self, other, backend.get().af_bitshiftl) def __ilshift__(self, other): """ Perform self <<= other. """ self = _binary_func(self, other, backend.get().af_bitshiftl) return self def __rshift__(self, other): """ Return self >> other. """ return _binary_func(self, other, backend.get().af_bitshiftr) def __irshift__(self, other): """ Perform self >>= other. """ self = _binary_func(self, other, backend.get().af_bitshiftr) return self def __neg__(self): """ Return -self """ return 0 - self def __pos__(self): """ Return +self """ return self def __invert__(self): """ Return ~self """ return self == 0 def __nonzero__(self): return self != 0 # TODO: # def __abs__(self): # return self def __getitem__(self, key): """ Return self[key] Note ---- Ellipsis not supported as key """ try: out = Array() n_dims = self.numdims() inds = _get_indices(key) safe_call(backend.get().af_index_gen(ct.pointer(out.arr), self.arr, ct.c_longlong(n_dims), inds.pointer)) return out except RuntimeError as e: raise IndexError(str(e)) def __setitem__(self, key, val): """ Perform self[key] = val Note ---- Ellipsis not supported as key """ try: n_dims = self.numdims() if (_is_number(val)): tdims = _get_assign_dims(key, self.dims()) other_arr = constant_array(val, tdims[0], tdims[1], tdims[2], tdims[3], self.type()) del_other = True else: other_arr = val.arr del_other = False out_arr = ct.c_void_p(0) inds = _get_indices(key) safe_call(backend.get().af_assign_gen(ct.pointer(out_arr), self.arr, ct.c_longlong(n_dims), inds.pointer, other_arr)) safe_call(backend.get().af_release_array(self.arr)) if del_other: safe_call(backend.get().af_release_array(other_arr)) self.arr = out_arr except RuntimeError as e: raise IndexError(str(e)) def to_ctype(self, row_major=False, return_shape=False): """ Return the data as a ctype C array after copying to host memory Parameters --------- row_major: optional: bool. default: False. Specifies if a transpose needs to occur before copying to host memory. return_shape: optional: bool. default: False. Specifies if the shape of the array needs to be returned. Returns ------- If return_shape is False: res: The ctypes array of the appropriate type and length. else : (res, dims): tuple of the ctypes array and the shape of the array """ if (self.arr.value == 0): raise RuntimeError("Can not call to_ctype on empty array") tmp = transpose(self) if row_major else self ctype_type = to_c_type[self.type()] * self.elements() res = ctype_type() safe_call(backend.get().af_get_data_ptr(ct.pointer(res), self.arr)) if (return_shape): return res, self.dims() else: return res def to_array(self, row_major=False, return_shape=False): """ Return the data as array.array Parameters --------- row_major: optional: bool. default: False. Specifies if a transpose needs to occur before copying to host memory. return_shape: optional: bool. default: False. Specifies if the shape of the array needs to be returned. Returns ------- If return_shape is False: res: array.array of the appropriate type and length. else : (res, dims): array.array and the shape of the array """ if (self.arr.value == 0): raise RuntimeError("Can not call to_array on empty array") res = self.to_ctype(row_major, return_shape) host = __import__("array") h_type = to_typecode[self.type()] if (return_shape): return host.array(h_type, res[0]), res[1] else: return host.array(h_type, res) def to_list(self, row_major=False): """ Return the data as list Parameters --------- row_major: optional: bool. default: False. Specifies if a transpose needs to occur before copying to host memory. return_shape: optional: bool. default: False. Specifies if the shape of the array needs to be returned. Returns ------- If return_shape is False: res: list of the appropriate type and length. else : (res, dims): list and the shape of the array """ ct_array, shape = self.to_ctype(row_major, True) return _ctype_to_lists(ct_array, len(shape) - 1, shape) def __repr__(self): """ Displays the meta data of the arrayfire array. Note ---- Use arrayfire.display(a) to display the contents of the array. """ # Having __repr__ directly print things is a bad idea # Placeholder for when af_array_to_string is available # safe_call(backend.get().af_array_to_string... return 'Type: arrayfire.Array()\nShape: %s\nType char: %s' % \ (self.dims(), to_typecode[self.type()]) def __array__(self): """ Constructs a numpy.array from arrayfire.Array """ import numpy as np res = np.empty(self.dims(), dtype=np.dtype(to_typecode[self.type()]), order='F') safe_call(backend.get().af_get_data_ptr(ct.c_void_p(res.ctypes.data), self.arr)) return res def display(a): """ Displays the contents of an array. Parameters ---------- a : af.Array Multi dimensional arrayfire array """ expr = inspect.stack()[1][-2] try: if (expr is not None): st = expr[0].find('(') + 1 en = expr[0].rfind(')') print('%s' % expr[0][st:en]) safe_call(backend.get().af_print_array(a.arr)) except: safe_call(backend.get().af_print_array(a.arr)) from .algorithm import sum
bsd-3-clause
-5,315,669,486,786,941,000
27.30791
100
0.520939
false
3.725279
false
false
false
ethansshaw/stellavitrum
ScienceFairProcess.py
1
10349
#!/usr/bin/env python """ Written by Ethan Shaw """ from astropy.io import fits import sys, png, math, os colors = ['red', 'green', 'blue'] # Build x_axis_len rows, each containing y_axis_len columns # access with PNG_data[row][column] def buildMatrix(x_axis_len, y_axis_len, greyscale=True): # set up empty list (matrix) to hold pixels PNG_data = [] for row in range(0, x_axis_len): PNG_data.append([]) #start out with an empty list, then put another list in it so it looks like [[]] #gives the value of x_axis_len empty lists inside the list PNG_data for column in range (0, y_axis_len): if ( greyscale ): PNG_data[row].append(0) #this is the grayscale value else: #Red,Green,Blue values PNG_data[row].append(0) PNG_data[row].append(0) PNG_data[row].append(0) return PNG_data #Function defines ONLY color def setPixel(PNG_data, red, green, blue, row, column): PNG_data[row][column*3] = red PNG_data[row][column*3 + 1] = green PNG_data[row][column*3 + 2] = blue def getPixelRange(PNG_data, x_axis_len, y_axis_len): # determine the PNG_data range for scaling purposes pixel_max = 0 pixel_min = pow(2,16) for row in range(0, x_axis_len): for column in range (0, y_axis_len): pixel_max = max(pixel_max, PNG_data[row][column]) pixel_min = min(pixel_min, PNG_data[row][column]) print "Pixel max: {0:.20f}, Pixel min: {0:.20f}".format(pixel_max, pixel_min) return (pixel_max, pixel_min) def getRawDataFromFile(file, color): #this reads the file and structures into useable format hdulist = fits.open(file) entry = hdulist[0] bits_per_pixel = entry.header['BITPIX'] number_axis = entry.header['NAXIS'] x_axis_len = entry.header['NAXIS2'] y_axis_len = entry.header['NAXIS1'] print "Data dimensions: (%d x %d) - %d axes, %d bpp" % (x_axis_len, y_axis_len, number_axis, bits_per_pixel) # data is a bunch of columns, each containing one row data = entry.data pixelData = buildMatrix(x_axis_len, y_axis_len, greyscale=False) for row in range(0, x_axis_len): for column in range (0, y_axis_len): try: image_value = data[row][column] red, green, blue = ( 0,0,0 ) if ( color == 'red' ): red = image_value elif ( color == 'green' ): green = image_value elif ( color == 'blue' ): blue = image_value setPixel(pixelData, red, green, blue, row, column) except Exception as e: print "Error accessing (%d, %d) : %s" % (row, column, e) raise SystemExit return pixelData def combineTwoDataSets(dataSet1, dataSet2): print "Combining two data sets" # step 1, make a new data set the size of the two x_axis_len = len(dataSet1) y_axis_len = len(dataSet1[0]) combinedData = buildMatrix(x_axis_len, y_axis_len) # step 2, step over each pixel in the sets and ADD to the combined pixel value for row in range(0, x_axis_len): for column in range (0, y_axis_len): combinedData[row][column] = dataSet1[row][column] + dataSet2[row][column] # step 3, return the combined data set return combinedData def writePNGFile(PNGData, output_directory, dataset_name): filename = '%s/out_data_%s.png' % ( output_directory, dataset_name) f = open(filename, 'wb') # binary mode is important w = png.Writer(len(PNGData[0])/3, len(PNGData), greyscale=False,alpha=False, bitdepth=16) w.write(f, PNGData) print "Image written to file %s" % filename def linearScale(value, min_value, max_value): pixel_range = abs(max_value - min_value) #2 to the 16th means a 16 bit image (using 16 bits of data to describe each pixel) ratio = (pow(2, 16)*1.0 - 1) / pixel_range #This gives us a linearly scaled value between 0 (black) and 2^16 (white) val = int(round(value * ratio)) return val def logarithmicScalePixel(value, min_value, max_value): try: val = abs(math.log(value)) # for min and max we use 0, 100 for now return linearScalePixel(val, 0, 100) except Exception as e: return 0 def linearScalePixel(value, min_value, max_value): pixel_range = abs(max_value - min_value) #2 to the 16th means a 16 bit image (using 16 bits of data to describe each pixel) ratio = (pow(2, 16)*1.0 -1 ) / pixel_range #This gives us a linearly scaled value between 0 (black) and 2^16 (white) val = int(round(value * ratio)) if ( val < 0 or val > 65535 ): print "value %d (orig: %f was outside range %.e, %.e" % ( val, value, min_value, max_value ) raise SystemExit return val def scaleDataSet(scalingFunction, dataSet): x_axis_len = len(dataSet) y_axis_len = len(dataSet[0]) pixel_max, pixel_min = getPixelRange(dataSet, x_axis_len, y_axis_len) print "Max: %f, Min: %f" % (pixel_max, pixel_min) for row in range(0, x_axis_len): for column in range (0, y_axis_len): dataSet[row][column] = scalingFunction(dataSet[row][column], pixel_min, pixel_max) return dataSet def linearScaleDataSet(dataSet): return scaleDataSet(linearScalePixel, dataSet) def logScaleDataSet(dataSet): return scaleDataSet(logarithmicScalePixel, dataSet) def zeroOutliersInDataSet(dataSet, interQuartileScaleFactor=1.5): (firstQuartile, median, thirdQuartile, interQuartile) = getQuartileValues(dataSet) minAllowedValue = max(0, firstQuartile - (interQuartileScaleFactor * interQuartile)) maxAllowedValue = thirdQuartile + (interQuartileScaleFactor * interQuartile) x_axis_len = len(dataSet) y_axis_len = len(dataSet[0]) for row in range(0, x_axis_len): for column in range (0, y_axis_len): dataValue = dataSet[row][column] if (dataValue < minAllowedValue or dataValue > maxAllowedValue): dataSet[row][column] = 0 return dataSet def histogramData(dataSet, output_directory, dataset_folder="data"): pixel_max, pixel_min = getPixelRange(dataSet, len(dataSet), len(dataSet[0])) histogram = {} number_of_groups = 10 group_size = (pixel_max - pixel_min) / (number_of_groups *1.0) for i in range(0, number_of_groups): histogram[int(i*group_size)] = 0 histogramKeys = histogram.keys() histogramKeys.sort() histogramKeys.reverse() for x in range(0, len(dataSet)): for y in range(0, len(dataSet[0])): pixel = dataSet[x][y] for key in histogramKeys: if pixel < key: histogram[key] = int(histogram[key] + 1) continue histogramKeys.reverse() output_path = "%s/%s_histogram.csv" % (output_directory, dataset_folder) outf = open(output_path, "w") for key in histogramKeys: kname = "Bucket %d" % key outf.write("%s,%d\n" % (kname, histogram[key])) outf.close() print "Histogram written to file %s" % output_path def getMean(dataSet): sum = 0.0 count = 0 x_axis_len = len(dataSet) y_axis_len = len(dataSet[0]) for row in range(0, x_axis_len): for column in range (0, y_axis_len): if dataSet[row][column] > 0: sum = sum + dataSet[row][column] count = count + 1 return sum/count def getMedian(dataSet): dataList = [] x_axis_len = len(dataSet) y_axis_len = len(dataSet[0]) for row in range(0, x_axis_len): for column in range (0, y_axis_len): if (dataSet[row][column] > 0): dataList.append(dataSet[row][column]) dataList.sort() middleNumber = len(dataList)/2 return dataList[middleNumber] def getQuartileValues(dataSet): median = getMedian(dataSet) x_axis_len = len(dataSet) y_axis_len = len(dataSet[0]) valuesLessThanMedian = [] valuesGreaterThanMedian = [] for row in range(0, x_axis_len): for column in range (0, y_axis_len): if dataSet[row][column] > median: valuesGreaterThanMedian.append(dataSet[row][column]) else: valuesLessThanMedian.append(dataSet[row][column]) valuesGreaterThanMedian.sort() valuesLessThanMedian.sort() firstQuartile = valuesLessThanMedian[len(valuesLessThanMedian)/2] thirdQuartile = valuesGreaterThanMedian[len(valuesGreaterThanMedian)/2] interQuartile = thirdQuartile - firstQuartile print "Quartiles: ", firstQuartile, median, thirdQuartile, interQuartile return (firstQuartile, median, thirdQuartile, interQuartile) def getMode(dataSet): dataPoints = {} x_axis_len = len(dataSet) y_axis_len = len(dataSet[0]) for row in range(0, x_axis_len): for column in range (0, y_axis_len): point = dataSet[row][column] if (point > 0): if dataPoints.has_key(point): dataPoints[point] = dataPoints[point] + 1 else: dataPoints[point] = 1 maxCount = 0 maxValue = None for (value, count) in dataPoints.items(): if count > maxCount: maxCount = count maxValue = value print "%f was the max value and occurred %d times" % (maxValue, maxCount) return maxValue def outputToCSVFile(filename, dataSet): outf = open(filename, 'w') x_axis_len = len(dataSet) y_axis_len = len(dataSet[0]) for row in range(0, x_axis_len): line = "" for column in range (0, y_axis_len): line = "%s%.7e," % (line, dataSet[row][column]) line = line + "\n" outf.write(line) outf.close() print "Wrote to %s" % filename if __name__ == "__main__": if len(sys.argv) < 2: print "Usage: %s <file1> <file2> ..." % sys.argv[0] raise SystemExit files = sys.argv[1:] i = 0 PNGDataSets = [] #rData = getRawDataFromFile(files[0], "red") #writePNGFile(rData, "red") #raise SystemExit full_path1 = os.path.abspath(files[0]) folder_path = os.path.split(full_path1)[0] dataset_folder = os.path.basename(folder_path) for file in files: dataSet = getRawDataFromFile(file, colors[i]) i = i + 1 dataSetNormalized = zeroOutliersInDataSet(dataSet) PNGDataSets.append(dataSetNormalized) combinedSet = None for dataSet in PNGDataSets: if (combinedSet == None): combinedSet = dataSet else: combinedSet = combineTwoDataSets(combinedSet, dataSet) parent_directory = os.path.split(os.path.abspath(sys.argv[0]))[0] output_directory = os.path.join(parent_directory, "Results") if not os.path.exists(output_directory): os.makedirs(output_directory) print "Created directory %s" % output_directory else: print "Output directory %s exists" % output_directory # now linear scale the outlier set scaledSet = linearScaleDataSet(combinedSet) histogramData(scaledSet, output_directory, dataset_folder) #raise SystemExit filename = "%s/dataset_%s.csv" % (output_directory, dataset_folder) outputToCSVFile(filename, scaledSet) writePNGFile(scaledSet, output_directory, dataset_folder) #old was writePNGFile(combinedSet, "combined") print "Process complete"
mit
1,193,926,610,286,185,000
30.081081
109
0.689439
false
2.839232
false
false
false
sbelskie/symplicity
Symplicity/local_settings.py
1
2695
""" Django settings for Symplicity project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ import os import dj_database_url # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'i+acxn5(akgsn!sr4^qgf(^m&*@+g1@u^t@=8s@axc41ml*f=s' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'symptom_tracker', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'Symplicity.urls' WSGI_APPLICATION = 'Symplicity.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'symplicity', 'USER':'postgres', 'PASSWORD': 'password', 'HOST': 'localhost', 'PORT': '5432' } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Honor the 'X-Forwarded-Proto' header for request.is_secure() SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # Allow all host headers ALLOWED_HOSTS = ['*'] # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ BASE_DIR = os.path.dirname(os.path.abspath(__file__)) STATIC_ROOT = 'staticfiles' STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), ) STATICFILES_STORAGE = 'django.contrib.staticfiles.storage.StaticFilesStorage'
apache-2.0
5,726,592,050,074,065,000
24.683168
77
0.687199
false
3.294621
false
false
false
oldm/OldMan
oldman/schema/hydra.py
1
1520
from uuid import uuid4 from rdflib import URIRef, RDF, RDFS from oldman.vocabulary import OLDM_CORRESPONDING_CLASS class HydraSchemaAdapter(object): """Updates some Hydra patterns in the schema graph: - hydra:Link: create a hydra:Class, subclass of the link range that support the same operations """ def update_schema_graph(self, graph): graph = graph.skolemize() graph = self._update_links(graph) return graph @staticmethod def _update_links(graph): links = list(graph.subjects(RDF.type, URIRef(u"http://www.w3.org/ns/hydra/core#Link"))) for link_property in links: new_class_iri = URIRef(u"http://localhost/.well-known/genid/link_class/%s" % uuid4()) graph.add((new_class_iri, RDF.type, URIRef(u"http://www.w3.org/ns/hydra/core#Class"))) graph.add((link_property, URIRef(OLDM_CORRESPONDING_CLASS), new_class_iri)) # Ranges --> upper classes ranges = list(graph.objects(link_property, RDFS.range)) for range in ranges: graph.add((new_class_iri, RDFS.subClassOf, range)) # supported Operations supported_operation_property = URIRef(u"http://www.w3.org/ns/hydra/core#supportedOperation") operations = list(graph.objects(link_property, supported_operation_property)) for operation in operations: graph.add((new_class_iri, supported_operation_property, operation)) return graph
bsd-3-clause
-5,559,144,035,788,686,000
35.190476
105
0.646053
false
3.653846
false
false
false
blackshirt/dompetku
dompetku/handler/services.py
1
3750
#!/usr/bin/env python # # Copyright @2014 blackshirtmuslim@yahoo.com # Licensed: see Python license """Module to handle json services.""" import datetime import json import peewee import tornado.web import tornado.escape from dompetku.handler import base from dompetku.utils import jsonify from dompetku.model import Transaksi, User from dompetku.form import TransaksiForm class TransaksiContainer(object): def __init__(self, user): self.user = user def find_one(self, tid): cur_user = User.select().where(User.name == self.user) if cur_user.exists(): user = cur_user.get() trn = Transaksi.select().where(Transaksi.user == user.uid, Transaksi.tid == tid) if trn.exists(): data = trn.get() # Transaksi instance return data return None def find_data(self, *expr): cur_user = User.select().where(User.name == self.user) if cur_user.exists(): user = cur_user.get() trn = Transaksi.select().where(Transaksi.user == user.uid, *expr) return trn # Transaksi QueryResultWrapper return None class DataSources(TransaksiContainer): def __init__(self, user): self.user = user super().__init__(self.user) def get_one(self, tid): data = self.find_one(tid) if data is not None: results = { 'tid': data.tid, 'user': data.user.name, 'info': data.info, 'amount': data.amount, 'transdate': data.transdate, 'memo': data.memo } return results # dict of transaksi item def get_data(self, *expr): temporary = {} results = [] data = self.find_data(*expr) for item in data: temporary = { 'tid': item.tid, 'user': item.user.name, 'info': item.info, 'transdate': item.transdate, 'amount': item.amount, 'memo': item.memo } results.append(temporary) return results # list of dict of transaksi item class ApiTransactions(base.BaseHandler): def initialize(self): self.dsc = DataSources(self.current_user) @tornado.web.authenticated def get(self, *kondisi): if kondisi: data = self.dsc.get_data(*kondisi) else: # get data bulan sekarang today = datetime.date.today() cur_month = today.month expr = (Transaksi.transdate.month == cur_month,) data = self.dsc.get_data(expr) self.write(jsonify(data)) def post(self): data = tornado.escape.json_decode(self.request.body) info = data.get('info') amount = data.get('amount') memo = data.get('memo') try: active_user = User.get(User.name == self.current_user) except peewee.DoesNotExist: active_user = None return item = Transaksi.insert(info = info, amount=amount, tipe=10, user=active_user.uid, memo=memo ) last_id = item.execute() transaksi = Transaksi.get(Transaksi.tid == last_id) response = {'info': transaksi.info, 'user': transaksi.user.name, 'amount': transaksi.amount, 'memo': transaksi.memo, 'transdate': transaksi.transdate} self.write(jsonify(response))
bsd-2-clause
-4,487,325,386,750,957,000
29.241935
92
0.524267
false
4.002134
false
false
false
spel-uchile/SUCHAI-Flight-Software
sandbox/log_parser.py
1
1956
import re import argparse import pandas as pd # General expressions re_error = re.compile(r'\[ERROR\]\[(\d+)\]\[(\w+)\](.+)') re_warning = re.compile(r'\[WARN \]\[(\d+)\]\[(\w+)\](.+)') re_info = re.compile(r'\[INFO \]\[(\d+)\]\[(\w+)\](.+)') re_debug = re.compile(r'\[DEBUG\]\[(\d+)\]\[(\w+)\](.+)') re_verbose = re.compile(r'\[VERB \]\[(\d+)\]\[(\w+)\](.+)') # Specific expressions re_cmd_run = re.compile(r'\[INFO \]\[(\d+)]\[Executer\] Running the command: (.+)') re_cmd_result = re.compile(r'\[INFO \]\[(\d+)]\[Executer\] Command result: (\d+)') def get_parameters(): """ Parse script arguments """ parser = argparse.ArgumentParser() # General expressions parser.add_argument('file', type=str, help="Log file") parser.add_argument('--error', action="store_const", const=re_error) parser.add_argument('--warning', action="store_const", const=re_warning) parser.add_argument('--info', action="store_const", const=re_info) parser.add_argument('--debug', action="store_const", const=re_debug) parser.add_argument('--verbose', action="store_const", const=re_verbose) # Specific expressions parser.add_argument('--cmd-run', action="store_const", const=re_cmd_run) parser.add_argument('--cmd-result', action="store_const", const=re_cmd_result) return parser.parse_args() def parse_text(text, regexp): return regexp.findall(text) def save_parsed(logs, file, format=None): df = pd.DataFrame(logs) # print(df) df.to_csv(file) if __name__ == "__main__": args = get_parameters() print("Reading file {}...".format(args.file)) with open(args.file) as logfile: text = logfile.read() args = vars(args) print(args) for type, regexp in args.items(): if type is not "file" and regexp is not None: print("Parsing {}...", type) logs = parse_text(text, regexp) save_parsed(logs, args["file"]+type+".csv")
gpl-3.0
7,759,135,881,385,060,000
30.548387
83
0.599182
false
3.233058
false
false
false
pombreda/ruffus
ruffus/test/test_verbosity.py
1
8627
#!/usr/bin/env python from __future__ import print_function """ test_verbosity.py """ temp_dir = "test_verbosity/" import unittest import os import sys # add grandparent to search path for testing grandparent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..")) sys.path.insert(0, grandparent_dir) # module name = script name without extension module_name = os.path.splitext(os.path.basename(__file__))[0] # funky code to import by file name parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) ruffus_name = os.path.basename(parent_dir) ruffus = list(map(__import__, [ruffus_name]))[0] import shutil try: from StringIO import StringIO except: from io import StringIO import re ruffus = __import__ (ruffus_name) for attr in "pipeline_run", "pipeline_printout", "suffix", "transform", "split", "merge", "dbdict", "follows", "mkdir", "originate", "Pipeline": globals()[attr] = getattr (ruffus, attr) RethrownJobError = ruffus.ruffus_exceptions.RethrownJobError RUFFUS_HISTORY_FILE = ruffus.ruffus_utility.RUFFUS_HISTORY_FILE CHECKSUM_FILE_TIMESTAMPS = ruffus.ruffus_utility.CHECKSUM_FILE_TIMESTAMPS #--------------------------------------------------------------- # create initial files # @mkdir(temp_dir + 'data/scratch/lg/what/one/two/three/') @originate([ [temp_dir + 'data/scratch/lg/what/one/two/three/job1.a.start', temp_dir + 'job1.b.start'], [temp_dir + 'data/scratch/lg/what/one/two/three/job2.a.start', temp_dir + 'job2.b.start'], [temp_dir + 'data/scratch/lg/what/one/two/three/job3.a.start', temp_dir + 'job3.b.start'] ]) def create_initial_file_pairs(output_files): # create both files as necessary for output_file in output_files: with open(output_file, "w") as oo: pass #--------------------------------------------------------------- # first task @transform(create_initial_file_pairs, suffix(".start"), ".output.1") def first_task(input_files, output_file): with open(output_file, "w"): pass #--------------------------------------------------------------- # second task @transform(first_task, suffix(".output.1"), ".output.2") def second_task(input_files, output_file): with open(output_file, "w"): pass test_pipeline = Pipeline("test") test_pipeline.originate(output = [ [temp_dir + 'data/scratch/lg/what/one/two/three/job1.a.start', temp_dir + 'job1.b.start'], [temp_dir + 'data/scratch/lg/what/one/two/three/job2.a.start', temp_dir + 'job2.b.start'], [temp_dir + 'data/scratch/lg/what/one/two/three/job3.a.start', temp_dir + 'job3.b.start'] ], task_func = create_initial_file_pairs) test_pipeline.transform(task_func = first_task, input = create_initial_file_pairs, filter = suffix(".start"), output = ".output.1") test_pipeline.transform(input = first_task, filter = suffix(".output.1"), output = ".output.2", task_func= second_task) decorator_syntax = 0 oop_syntax = 1 class Test_verbosity(unittest.TestCase): #___________________________________________________________________________ # # test_printout_abbreviated_path1 #___________________________________________________________________________ def test_printout_abbreviated_path1(self): """Input file exists, output doesn't exist""" for syntax in decorator_syntax, oop_syntax: s = StringIO() if syntax == oop_syntax: test_pipeline.printout(s, [second_task], verbose = 5, verbose_abbreviated_path = 1) else: pipeline_printout(s, [second_task], verbose = 5, verbose_abbreviated_path = 1, wrap_width = 500, pipeline= "main") ret = s.getvalue() self.assertTrue(re.search('Job needs update:.*Missing files.*' '\[\.\.\./job2\.a\.start, test_verbosity/job2\.b\.start, \.\.\./job2.a.output.1\]', ret, re.DOTALL) is not None) #___________________________________________________________________________ # # test_printout_abbreviated_path2 #___________________________________________________________________________ def test_printout_abbreviated_path2(self): """Input file exists, output doesn't exist""" for syntax in decorator_syntax, oop_syntax: s = StringIO() if syntax == oop_syntax: test_pipeline.printout(s, [second_task], verbose = 5, verbose_abbreviated_path = 2, wrap_width = 500) else: pipeline_printout(s, [second_task], verbose = 5, verbose_abbreviated_path = 2, wrap_width = 500, pipeline= "main") ret = s.getvalue() self.assertTrue('[.../three/job1.a.start, test_verbosity/job1.b.start, .../three/job1.a.output.1]' in ret) #___________________________________________________________________________ # # test_printout_abbreviated_path3 #___________________________________________________________________________ def test_printout_abbreviated_path3(self): """Input file exists, output doesn't exist""" for syntax in decorator_syntax, oop_syntax: s = StringIO() if syntax == oop_syntax: test_pipeline.printout(s, [second_task], verbose = 5, verbose_abbreviated_path = 3, wrap_width = 500) else: pipeline_printout(s, [second_task], verbose = 5, verbose_abbreviated_path = 3, wrap_width = 500, pipeline= "main") ret = s.getvalue() self.assertTrue('[.../two/three/job1.a.start, test_verbosity/job1.b.start, .../two/three/job1.a.output.1]' in s.getvalue()) #___________________________________________________________________________ # # test_printout_abbreviated_path9 #___________________________________________________________________________ def test_printout_abbreviated_path9(self): """Input file exists, output doesn't exist""" for syntax in decorator_syntax, oop_syntax: s = StringIO() if syntax == oop_syntax: test_pipeline.printout(s, [second_task], verbose = 5, verbose_abbreviated_path = 9, wrap_width = 500) else: pipeline_printout(s, [second_task], verbose = 5, verbose_abbreviated_path = 9, wrap_width = 500, pipeline= "main") ret = s.getvalue() self.assertTrue('[%sdata/scratch/lg/what/one/two/three/job2.a.start, test_verbosity/job2.b.start,' % temp_dir in ret) #___________________________________________________________________________ # # test_printout_abbreviated_path0 #___________________________________________________________________________ def test_printout_abbreviated_path0(self): """Input file exists, output doesn't exist""" for syntax in decorator_syntax, oop_syntax: s = StringIO() if syntax == oop_syntax: test_pipeline.printout(s, [second_task], verbose = 5, verbose_abbreviated_path = 0, wrap_width = 500) else: pipeline_printout(s, [second_task], verbose = 5, verbose_abbreviated_path = 0, wrap_width = 500, pipeline= "main") ret = s.getvalue() path_str = os.path.abspath('%sdata/scratch/lg/what/one/two/three/job2.a.start' % temp_dir) path_str = '[[%s' % path_str self.assertTrue(path_str in ret) self.assertTrue(temp_dir + 'job2.b.start]' in ret) #___________________________________________________________________________ # # test_printout_abbreviated_path_minus_60 #___________________________________________________________________________ def test_printout_abbreviated_path_minus_60(self): """Input file exists, output doesn't exist""" for syntax in decorator_syntax, oop_syntax: s = StringIO() if syntax == oop_syntax: test_pipeline.printout(s, [second_task], verbose = 5, verbose_abbreviated_path = -60, wrap_width = 500) else: pipeline_printout(s, [second_task], verbose = 5, verbose_abbreviated_path = -60, wrap_width = 500, pipeline= "main") ret = s.getvalue() self.assertTrue('[<???> ne/two/three/job2.a.start, test_verbosity/job2.b.start]' in ret) # # Necessary to protect the "entry point" of the program under windows. # see: http://docs.python.org/library/multiprocessing.html#multiprocessing-programming # if __name__ == '__main__': unittest.main()
mit
8,074,170,189,742,017,000
44.405263
144
0.534833
false
3.688328
true
false
false
ewilazarus/snnm
snnm.py
1
2886
#!/usr/bin/python """ snnm ~~~~ This module contains the source code for `snnm` Snnm is an utility tool created to fetch synonyms for a given expression from the web and print them to the console. """ import bs4 import click import requests BASE_URL = 'http://www.thesaurus.com/browse/' def _fetch_html(expression): """ Returns the HTML containing the synonyms for the given expression """ response = requests.get(BASE_URL + expression) response.raise_for_status() return response.text def _parse_html(html): """ Returns a parsed list of synonyms out of a given HTML """ parser = bs4.BeautifulSoup(html, 'html.parser') synonyms = [] divs = parser.find_all('div', class_='relevancy-list') for div in divs: spans = div.find_all('span', class_='text') synonyms += [str(span.string) for span in spans] return synonyms def fetch_synonyms(expression): """ Returns a list of synonyms for a given expression """ try: return _parse_html(_fetch_html(expression)) except requests.exceptions.HTTPError: return [] def clean(synonyms): """ Returns the deduped, sorted list of synonyms """ deduped_synonyms = list(set([s.strip() for s in synonyms])) deduped_synonyms.sort() return deduped_synonyms def print_synonyms_ugly(synonyms): """ Prints the list of synonyms to the screen """ for synonym in synonyms: print(synonym) def print_synonyms(synonyms): """ Prints the list of synonyms to the screen, using colors and breakpoints """ if not synonyms: click.secho('-- NO RESULTS --', fg='red') click.echo() else: height = click.get_terminal_size()[1] - 3 batch = [synonyms[i:i+height] for i in range(0, len(synonyms), height)] for synonyms in batch: for synonym in synonyms: click.secho(synonym, fg='yellow') click.echo() if batch.index(synonyms) != len(batch) - 1: click.echo('Press any key to continue ...', nl=False) key = click.getchar() if key == '\x03': raise KeyboardInterrupt() click.echo() @click.command(name='snnm') @click.argument('expression') @click.option('-u', '--ugly-output', is_flag=True) def main(expression, ugly_output): """ List synonyms for an expression """ try: if not ugly_output: click.echo('Synonyms for {}:'.format(click.style(expression, fg='blue'))) synonyms = clean(fetch_synonyms(expression)) if ugly_output: print_synonyms_ugly(synonyms) else: print_synonyms(synonyms) except KeyboardInterrupt: pass if __name__ == '__main__': main()
mit
-3,771,467,267,364,749,000
24.767857
79
0.592862
false
3.6075
false
false
false
vmalloc/gossip
gossip/utils.py
2
2484
import itertools from .exceptions import CannotResolveDependencies from .helpers import DONT_CARE, FIRST def topological_sort_registrations(registrations, unconstrained_priority=DONT_CARE): graph = _build_dependency_graph(registrations, unconstrained_priority=unconstrained_priority) returned_indices = _topological_sort(range(len(registrations)), graph) assert len(returned_indices) == len(registrations) return [registrations[idx] for idx in returned_indices] def _topological_sort(indices, graph): independent = sorted(set(indices) - set(m for n, m in graph), reverse=True) returned = [] while independent: n = independent.pop() returned.append(n) for m in indices: edge = (n, m) if m == n: assert edge not in graph continue if edge in graph: graph.remove(edge) # check if m is now independent for edge in graph: if edge[1] == m: # not indepdendent break else: # no other incoming edges to m independent.append(m) if graph: raise CannotResolveDependencies('Cyclic dependency detected') return returned def _build_dependency_graph(registrations, unconstrained_priority): providers_by_name = {} for index, registration in enumerate(registrations): for name in registration.provides: providers = providers_by_name.get(name) if providers is None: providers = providers_by_name[name] = [] providers.append(index) graph = set() for needer_index, registration in enumerate(registrations): for need in registration.needs: for provider_index in providers_by_name.get(need, []): graph.add((provider_index, needer_index)) if unconstrained_priority != DONT_CARE: caring_indices = set([idx for idx, r in enumerate(registrations) if r.needs or r.provides]) non_caring_indices = set(range(len(registrations))) - caring_indices for caring_index, uncaring_index in itertools.product(caring_indices, non_caring_indices): if unconstrained_priority == FIRST: pair = (uncaring_index, caring_index) else: pair = (caring_index, uncaring_index) graph.add(pair) return graph
bsd-3-clause
8,597,037,287,050,342,000
36.636364
99
0.612721
false
4.388693
false
false
false
philanthropy-u/edx-platform
openedx/core/djangoapps/user_authn/views/tests/test_login.py
1
29762
# coding:utf-8 """ Tests for student activation and login """ import json import unicodedata import unittest import ddt import six from django.conf import settings from django.contrib.auth.models import User from django.core import mail from django.core.cache import cache from django.http import HttpResponse, HttpResponseBadRequest from django.test.client import Client from django.test.utils import override_settings from django.urls import NoReverseMatch, reverse from mock import patch from six import text_type from six.moves import range from openedx.core.djangoapps.external_auth.models import ExternalAuthMap from openedx.core.djangoapps.password_policy.compliance import ( NonCompliantPasswordException, NonCompliantPasswordWarning ) from openedx.core.djangoapps.user_api.config.waffle import PREVENT_AUTH_USER_WRITES, waffle from openedx.core.djangoapps.user_authn.cookies import jwt_cookies from openedx.core.djangoapps.user_authn.tests.utils import setup_login_oauth_client from openedx.core.djangolib.testing.utils import CacheIsolationTestCase from student.tests.factories import RegistrationFactory, UserFactory, UserProfileFactory from xmodule.modulestore.tests.django_utils import ModuleStoreTestCase from xmodule.modulestore.tests.factories import CourseFactory @ddt.ddt class LoginTest(CacheIsolationTestCase): """ Test login_user() view """ ENABLED_CACHES = ['default'] LOGIN_FAILED_WARNING = 'Email or password is incorrect' ACTIVATE_ACCOUNT_WARNING = 'In order to sign in, you need to activate your account' username = 'test' user_email = 'test@edx.org' password = 'test_password' def setUp(self): """Setup a test user along with its registration and profile""" super(LoginTest, self).setUp() self.user = UserFactory.build(username=self.username, email=self.user_email) self.user.set_password(self.password) self.user.save() RegistrationFactory(user=self.user) UserProfileFactory(user=self.user) self.client = Client() cache.clear() try: self.url = reverse('login_post') except NoReverseMatch: self.url = reverse('login') def test_login_success(self): response, mock_audit_log = self._login_response( self.user_email, self.password, patched_audit_log='student.models.AUDIT_LOG' ) self._assert_response(response, success=True) self._assert_audit_log(mock_audit_log, 'info', [u'Login success', self.user_email]) @patch.dict("django.conf.settings.FEATURES", {'SQUELCH_PII_IN_LOGS': True}) def test_login_success_no_pii(self): response, mock_audit_log = self._login_response( self.user_email, self.password, patched_audit_log='student.models.AUDIT_LOG' ) self._assert_response(response, success=True) self._assert_audit_log(mock_audit_log, 'info', [u'Login success']) self._assert_not_in_audit_log(mock_audit_log, 'info', [self.user_email]) def test_login_success_unicode_email(self): unicode_email = u'test' + six.unichr(40960) + u'@edx.org' self.user.email = unicode_email self.user.save() response, mock_audit_log = self._login_response( unicode_email, self.password, patched_audit_log='student.models.AUDIT_LOG' ) self._assert_response(response, success=True) self._assert_audit_log(mock_audit_log, 'info', [u'Login success', unicode_email]) def test_last_login_updated(self): old_last_login = self.user.last_login self.test_login_success() self.user.refresh_from_db() assert self.user.last_login > old_last_login def test_login_success_prevent_auth_user_writes(self): with waffle().override(PREVENT_AUTH_USER_WRITES, True): old_last_login = self.user.last_login self.test_login_success() self.user.refresh_from_db() assert old_last_login == self.user.last_login def test_login_fail_no_user_exists(self): nonexistent_email = u'not_a_user@edx.org' response, mock_audit_log = self._login_response( nonexistent_email, self.password, ) self._assert_response(response, success=False, value=self.LOGIN_FAILED_WARNING) self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'Unknown user email', nonexistent_email]) @patch.dict("django.conf.settings.FEATURES", {'SQUELCH_PII_IN_LOGS': True}) def test_login_fail_no_user_exists_no_pii(self): nonexistent_email = u'not_a_user@edx.org' response, mock_audit_log = self._login_response( nonexistent_email, self.password, ) self._assert_response(response, success=False, value=self.LOGIN_FAILED_WARNING) self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'Unknown user email']) self._assert_not_in_audit_log(mock_audit_log, 'warning', [nonexistent_email]) def test_login_fail_wrong_password(self): response, mock_audit_log = self._login_response( self.user_email, 'wrong_password', ) self._assert_response(response, success=False, value=self.LOGIN_FAILED_WARNING) self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'password for', self.user_email, u'invalid']) @patch.dict("django.conf.settings.FEATURES", {'SQUELCH_PII_IN_LOGS': True}) def test_login_fail_wrong_password_no_pii(self): response, mock_audit_log = self._login_response(self.user_email, 'wrong_password') self._assert_response(response, success=False, value=self.LOGIN_FAILED_WARNING) self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'password for', u'invalid']) self._assert_not_in_audit_log(mock_audit_log, 'warning', [self.user_email]) @patch.dict("django.conf.settings.FEATURES", {'SQUELCH_PII_IN_LOGS': True}) def test_login_not_activated_no_pii(self): # De-activate the user self.user.is_active = False self.user.save() # Should now be unable to login response, mock_audit_log = self._login_response( self.user_email, self.password ) self._assert_response(response, success=False, value="In order to sign in, you need to activate your account.") self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'Account not active for user']) self._assert_not_in_audit_log(mock_audit_log, 'warning', [u'test']) def test_login_not_activated_with_correct_credentials(self): """ Tests that when user login with the correct credentials but with an inactive account, the system, send account activation email notification to the user. """ self.user.is_active = False self.user.save() response, mock_audit_log = self._login_response( self.user_email, self.password, ) self._assert_response(response, success=False, value=self.ACTIVATE_ACCOUNT_WARNING) self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'Account not active for user']) @patch('openedx.core.djangoapps.user_authn.views.login._log_and_raise_inactive_user_auth_error') def test_login_inactivated_user_with_incorrect_credentials(self, mock_inactive_user_email_and_error): """ Tests that when user login with incorrect credentials and an inactive account, the system does *not* send account activation email notification to the user. """ nonexistent_email = 'incorrect@email.com' self.user.is_active = False self.user.save() response, mock_audit_log = self._login_response(nonexistent_email, 'incorrect_password') self.assertFalse(mock_inactive_user_email_and_error.called) self._assert_response(response, success=False, value=self.LOGIN_FAILED_WARNING) self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'Unknown user email', nonexistent_email]) def test_login_unicode_email(self): unicode_email = self.user_email + six.unichr(40960) response, mock_audit_log = self._login_response( unicode_email, self.password, ) self._assert_response(response, success=False) self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', unicode_email]) def test_login_unicode_password(self): unicode_password = self.password + six.unichr(1972) response, mock_audit_log = self._login_response( self.user_email, unicode_password, ) self._assert_response(response, success=False) self._assert_audit_log(mock_audit_log, 'warning', [u'Login failed', u'password for', self.user_email, u'invalid']) def test_logout_logging(self): response, _ = self._login_response(self.user_email, self.password) self._assert_response(response, success=True) logout_url = reverse('logout') with patch('student.models.AUDIT_LOG') as mock_audit_log: response = self.client.post(logout_url) self.assertEqual(response.status_code, 200) self._assert_audit_log(mock_audit_log, 'info', [u'Logout', u'test']) def test_login_user_info_cookie(self): response, _ = self._login_response(self.user_email, self.password) self._assert_response(response, success=True) # Verify the format of the "user info" cookie set on login cookie = self.client.cookies[settings.EDXMKTG_USER_INFO_COOKIE_NAME] user_info = json.loads(cookie.value) self.assertEqual(user_info["version"], settings.EDXMKTG_USER_INFO_COOKIE_VERSION) self.assertEqual(user_info["username"], self.user.username) # Check that the URLs are absolute for url in user_info["header_urls"].values(): self.assertIn("http://testserver/", url) def test_logout_deletes_mktg_cookies(self): response, _ = self._login_response(self.user_email, self.password) self._assert_response(response, success=True) # Check that the marketing site cookies have been set self.assertIn(settings.EDXMKTG_LOGGED_IN_COOKIE_NAME, self.client.cookies) self.assertIn(settings.EDXMKTG_USER_INFO_COOKIE_NAME, self.client.cookies) # Log out logout_url = reverse('logout') response = self.client.post(logout_url) # Check that the marketing site cookies have been deleted # (cookies are deleted by setting an expiration date in 1970) for cookie_name in [settings.EDXMKTG_LOGGED_IN_COOKIE_NAME, settings.EDXMKTG_USER_INFO_COOKIE_NAME]: cookie = self.client.cookies[cookie_name] self.assertIn("01-Jan-1970", cookie.get('expires')) @override_settings( EDXMKTG_LOGGED_IN_COOKIE_NAME=u"unicode-logged-in", EDXMKTG_USER_INFO_COOKIE_NAME=u"unicode-user-info", ) def test_unicode_mktg_cookie_names(self): # When logged in cookie names are loaded from JSON files, they may # have type `unicode` instead of `str`, which can cause errors # when calling Django cookie manipulation functions. response, _ = self._login_response(self.user_email, self.password) self._assert_response(response, success=True) response = self.client.post(reverse('logout')) expected = { 'target': '/', } self.assertDictContainsSubset(expected, response.context_data) @patch.dict("django.conf.settings.FEATURES", {'SQUELCH_PII_IN_LOGS': True}) def test_logout_logging_no_pii(self): response, _ = self._login_response(self.user_email, self.password) self._assert_response(response, success=True) logout_url = reverse('logout') with patch('student.models.AUDIT_LOG') as mock_audit_log: response = self.client.post(logout_url) self.assertEqual(response.status_code, 200) self._assert_audit_log(mock_audit_log, 'info', [u'Logout']) self._assert_not_in_audit_log(mock_audit_log, 'info', [u'test']) def test_login_ratelimited_success(self): # Try (and fail) logging in with fewer attempts than the limit of 30 # and verify that you can still successfully log in afterwards. for i in range(20): password = u'test_password{0}'.format(i) response, _audit_log = self._login_response(self.user_email, password) self._assert_response(response, success=False) # now try logging in with a valid password response, _audit_log = self._login_response(self.user_email, self.password) self._assert_response(response, success=True) def test_login_ratelimited(self): # try logging in 30 times, the default limit in the number of failed # login attempts in one 5 minute period before the rate gets limited for i in range(30): password = u'test_password{0}'.format(i) self._login_response(self.user_email, password) # check to see if this response indicates that this was ratelimited response, _audit_log = self._login_response(self.user_email, 'wrong_password') self._assert_response(response, success=False, value='Too many failed login attempts') @patch.dict("django.conf.settings.FEATURES", {"DISABLE_SET_JWT_COOKIES_FOR_TESTS": False}) def test_login_refresh(self): def _assert_jwt_cookie_present(response): self.assertEqual(response.status_code, 200) self.assertIn(jwt_cookies.jwt_refresh_cookie_name(), self.client.cookies) setup_login_oauth_client() response, _ = self._login_response(self.user_email, self.password) _assert_jwt_cookie_present(response) response = self.client.post(reverse('login_refresh')) _assert_jwt_cookie_present(response) @patch.dict("django.conf.settings.FEATURES", {'PREVENT_CONCURRENT_LOGINS': True}) def test_single_session(self): creds = {'email': self.user_email, 'password': self.password} client1 = Client() client2 = Client() response = client1.post(self.url, creds) self._assert_response(response, success=True) # Reload the user from the database self.user = User.objects.get(pk=self.user.pk) self.assertEqual(self.user.profile.get_meta()['session_id'], client1.session.session_key) # second login should log out the first response = client2.post(self.url, creds) self._assert_response(response, success=True) try: # this test can be run with either lms or studio settings # since studio does not have a dashboard url, we should # look for another url that is login_required, in that case url = reverse('dashboard') except NoReverseMatch: url = reverse('upload_transcripts') response = client1.get(url) # client1 will be logged out self.assertEqual(response.status_code, 302) @patch.dict("django.conf.settings.FEATURES", {'PREVENT_CONCURRENT_LOGINS': True}) def test_single_session_with_no_user_profile(self): """ Assert that user login with cas (Central Authentication Service) is redirect to dashboard in case of lms or upload_transcripts in case of cms """ user = UserFactory.build(username='tester', email='tester@edx.org') user.set_password(self.password) user.save() # Assert that no profile is created. self.assertFalse(hasattr(user, 'profile')) creds = {'email': 'tester@edx.org', 'password': self.password} client1 = Client() client2 = Client() response = client1.post(self.url, creds) self._assert_response(response, success=True) # Reload the user from the database user = User.objects.get(pk=user.pk) # Assert that profile is created. self.assertTrue(hasattr(user, 'profile')) # second login should log out the first response = client2.post(self.url, creds) self._assert_response(response, success=True) try: # this test can be run with either lms or studio settings # since studio does not have a dashboard url, we should # look for another url that is login_required, in that case url = reverse('dashboard') except NoReverseMatch: url = reverse('upload_transcripts') response = client1.get(url) # client1 will be logged out self.assertEqual(response.status_code, 302) @patch.dict("django.conf.settings.FEATURES", {'PREVENT_CONCURRENT_LOGINS': True}) def test_single_session_with_url_not_having_login_required_decorator(self): # accessing logout url as it does not have login-required decorator it will avoid redirect # and go inside the enforce_single_login creds = {'email': self.user_email, 'password': self.password} client1 = Client() client2 = Client() response = client1.post(self.url, creds) self._assert_response(response, success=True) # Reload the user from the database self.user = User.objects.get(pk=self.user.pk) self.assertEqual(self.user.profile.get_meta()['session_id'], client1.session.session_key) # second login should log out the first response = client2.post(self.url, creds) self._assert_response(response, success=True) url = reverse('logout') response = client1.get(url) self.assertEqual(response.status_code, 200) def test_change_enrollment_400(self): """ Tests that a 400 in change_enrollment doesn't lead to a 404 and in fact just logs in the user without incident """ # add this post param to trigger a call to change_enrollment extra_post_params = {"enrollment_action": "enroll"} with patch('student.views.change_enrollment') as mock_change_enrollment: mock_change_enrollment.return_value = HttpResponseBadRequest("I am a 400") response, _ = self._login_response( self.user_email, self.password, extra_post_params=extra_post_params, ) response_content = json.loads(response.content) self.assertIsNone(response_content["redirect_url"]) self._assert_response(response, success=True) def test_change_enrollment_200_no_redirect(self): """ Tests "redirect_url" is None if change_enrollment returns a HttpResponse with no content """ # add this post param to trigger a call to change_enrollment extra_post_params = {"enrollment_action": "enroll"} with patch('student.views.change_enrollment') as mock_change_enrollment: mock_change_enrollment.return_value = HttpResponse() response, _ = self._login_response( self.user_email, self.password, extra_post_params=extra_post_params, ) response_content = json.loads(response.content) self.assertIsNone(response_content["redirect_url"]) self._assert_response(response, success=True) @override_settings(PASSWORD_POLICY_COMPLIANCE_ROLLOUT_CONFIG={'ENFORCE_COMPLIANCE_ON_LOGIN': True}) def test_check_password_policy_compliance(self): """ Tests _enforce_password_policy_compliance succeeds when no exception is thrown """ enforce_compliance_path = 'openedx.core.djangoapps.password_policy.compliance.enforce_compliance_on_login' with patch(enforce_compliance_path) as mock_check_password_policy_compliance: mock_check_password_policy_compliance.return_value = HttpResponse() response, _ = self._login_response(self.user_email, self.password) response_content = json.loads(response.content) self.assertTrue(response_content.get('success')) @override_settings(PASSWORD_POLICY_COMPLIANCE_ROLLOUT_CONFIG={'ENFORCE_COMPLIANCE_ON_LOGIN': True}) def test_check_password_policy_compliance_exception(self): """ Tests _enforce_password_policy_compliance fails with an exception thrown """ enforce_compliance_on_login = 'openedx.core.djangoapps.password_policy.compliance.enforce_compliance_on_login' with patch(enforce_compliance_on_login) as mock_enforce_compliance_on_login: mock_enforce_compliance_on_login.side_effect = NonCompliantPasswordException() response, _ = self._login_response( self.user_email, self.password ) response_content = json.loads(response.content) self.assertFalse(response_content.get('success')) self.assertEqual(len(mail.outbox), 1) self.assertIn('Password reset', mail.outbox[0].subject) @override_settings(PASSWORD_POLICY_COMPLIANCE_ROLLOUT_CONFIG={'ENFORCE_COMPLIANCE_ON_LOGIN': True}) def test_check_password_policy_compliance_warning(self): """ Tests _enforce_password_policy_compliance succeeds with a warning thrown """ enforce_compliance_on_login = 'openedx.core.djangoapps.password_policy.compliance.enforce_compliance_on_login' with patch(enforce_compliance_on_login) as mock_enforce_compliance_on_login: mock_enforce_compliance_on_login.side_effect = NonCompliantPasswordWarning('Test warning') response, _ = self._login_response(self.user_email, self.password) response_content = json.loads(response.content) self.assertIn('Test warning', self.client.session['_messages']) self.assertTrue(response_content.get('success')) @ddt.data( ('test_password', 'test_password', True), (unicodedata.normalize('NFKD', u'Ṗŕệṿïệẅ Ṯệẍt'), unicodedata.normalize('NFKC', u'Ṗŕệṿïệẅ Ṯệẍt'), False), (unicodedata.normalize('NFKC', u'Ṗŕệṿïệẅ Ṯệẍt'), unicodedata.normalize('NFKD', u'Ṗŕệṿïệẅ Ṯệẍt'), True), (unicodedata.normalize('NFKD', u'Ṗŕệṿïệẅ Ṯệẍt'), unicodedata.normalize('NFKD', u'Ṗŕệṿïệẅ Ṯệẍt'), False), ) @ddt.unpack def test_password_unicode_normalization_login(self, password, password_entered, login_success): """ Tests unicode normalization on user's passwords on login. """ self.user.set_password(password) self.user.save() response, _ = self._login_response(self.user.email, password_entered) self._assert_response(response, success=login_success) def _login_response(self, email, password, patched_audit_log=None, extra_post_params=None): """ Post the login info """ if patched_audit_log is None: patched_audit_log = 'openedx.core.djangoapps.user_authn.views.login.AUDIT_LOG' post_params = {'email': email, 'password': password} if extra_post_params is not None: post_params.update(extra_post_params) with patch(patched_audit_log) as mock_audit_log: result = self.client.post(self.url, post_params) return result, mock_audit_log def _assert_response(self, response, success=None, value=None): """ Assert that the response had status 200 and returned a valid JSON-parseable dict. If success is provided, assert that the response had that value for 'success' in the JSON dict. If value is provided, assert that the response contained that value for 'value' in the JSON dict. """ self.assertEqual(response.status_code, 200) try: response_dict = json.loads(response.content) except ValueError: self.fail("Could not parse response content as JSON: %s" % str(response.content)) if success is not None: self.assertEqual(response_dict['success'], success) if value is not None: msg = ("'%s' did not contain '%s'" % (unicode(response_dict['value']), unicode(value))) self.assertIn(value, response_dict['value'], msg) def _assert_audit_log(self, mock_audit_log, level, log_strings): """ Check that the audit log has received the expected call as its last call. """ method_calls = mock_audit_log.method_calls name, args, _kwargs = method_calls[-1] self.assertEquals(name, level) self.assertEquals(len(args), 1) format_string = args[0] for log_string in log_strings: self.assertIn(log_string, format_string) def _assert_not_in_audit_log(self, mock_audit_log, level, log_strings): """ Check that the audit log has received the expected call as its last call. """ method_calls = mock_audit_log.method_calls name, args, _kwargs = method_calls[-1] self.assertEquals(name, level) self.assertEquals(len(args), 1) format_string = args[0] for log_string in log_strings: self.assertNotIn(log_string, format_string) class ExternalAuthShibTest(ModuleStoreTestCase): """ Tests how login_user() interacts with ExternalAuth, in particular Shib """ def setUp(self): super(ExternalAuthShibTest, self).setUp() self.course = CourseFactory.create( org='Stanford', number='456', display_name='NO SHIB', user_id=self.user.id, ) self.shib_course = CourseFactory.create( org='Stanford', number='123', display_name='Shib Only', enrollment_domain='shib:https://idp.stanford.edu/', user_id=self.user.id, ) self.user_w_map = UserFactory.create(email='withmap@stanford.edu') self.extauth = ExternalAuthMap(external_id='withmap@stanford.edu', external_email='withmap@stanford.edu', external_domain='shib:https://idp.stanford.edu/', external_credentials="", user=self.user_w_map) self.user_w_map.save() self.extauth.save() self.user_wo_map = UserFactory.create(email='womap@gmail.com') self.user_wo_map.save() @unittest.skipUnless(settings.FEATURES.get('AUTH_USE_SHIB'), "AUTH_USE_SHIB not set") def test_login_page_redirect(self): """ Tests that when a shib user types their email address into the login page, they get redirected to the shib login. """ response = self.client.post(reverse('login'), {'email': self.user_w_map.email, 'password': ''}) self.assertEqual(response.status_code, 200) obj = json.loads(response.content) self.assertEqual(obj, { 'success': False, 'redirect': reverse('shib-login'), }) @unittest.skipUnless(settings.FEATURES.get('AUTH_USE_SHIB'), "AUTH_USE_SHIB not set") def test_login_required_dashboard(self): """ Tests redirects to when @login_required to dashboard, which should always be the normal login, since there is no course context """ response = self.client.get(reverse('dashboard')) self.assertEqual(response.status_code, 302) self.assertEqual(response['Location'], '/login?next=/dashboard') @unittest.skipUnless(settings.FEATURES.get('AUTH_USE_SHIB'), "AUTH_USE_SHIB not set") def test_externalauth_login_required_course_context(self): """ Tests the redirects when visiting course-specific URL with @login_required. Should vary by course depending on its enrollment_domain """ target_url = reverse('courseware', args=[text_type(self.course.id)]) noshib_response = self.client.get(target_url, follow=True, HTTP_ACCEPT="text/html") self.assertEqual(noshib_response.redirect_chain[-1], ('/login?next={url}'.format(url=target_url), 302)) self.assertContains(noshib_response, (u"Sign in or Register | {platform_name}" .format(platform_name=settings.PLATFORM_NAME))) self.assertEqual(noshib_response.status_code, 200) target_url_shib = reverse('courseware', args=[text_type(self.shib_course.id)]) shib_response = self.client.get(**{'path': target_url_shib, 'follow': True, 'REMOTE_USER': self.extauth.external_id, 'Shib-Identity-Provider': 'https://idp.stanford.edu/', 'HTTP_ACCEPT': "text/html"}) # Test that the shib-login redirect page with ?next= and the desired page are part of the redirect chain # The 'courseware' page actually causes a redirect itself, so it's not the end of the chain and we # won't test its contents self.assertEqual(shib_response.redirect_chain[-3], ('/shib-login/?next={url}'.format(url=target_url_shib), 302)) self.assertEqual(shib_response.redirect_chain[-2], (target_url_shib, 302)) self.assertEqual(shib_response.status_code, 200)
agpl-3.0
-3,259,418,563,379,477,500
44.621538
118
0.643859
false
3.836223
true
false
false
bruteforce1/cryptopals
set2/ch10/implement_aes_cbc.py
1
2510
#!/usr/bin/python3 """ CBC mode is a block cipher mode that allows us to encrypt irregularly- sized messages, despite the fact that a block cipher natively only transforms individual blocks. In CBC mode, each ciphertext block is added to the next plaintext block before the next call to the cipher core. The first plaintext block, which has no associated previous ciphertext block, is added to a "fake 0th ciphertext block" called the initialization vector, or IV. Implement CBC mode by hand by taking the ECB function you wrote earlier, making it encrypt instead of decrypt (verify this by decrypting whatever you encrypt to test), and using your XOR function from the previous exercise to combine them. The file here is intelligible (somewhat) when CBC decrypted against "YELLOW SUBMARINE" with an IV of all ASCII 0 (\x00\x00\x00 &c) """ import argparse import os import sys from utils.cpset2 import aes_cbc, make_b64_printable def main(filename, key, iv): print('Input File: ' + str(filename)) print('Key: ' + str(key)) print('IV: ' + str(iv)) crypt = '' if not os.path.isfile(filename): print(filename + ' is not a valid file.') return -1 with open(filename, 'r') as infile: for line in infile: crypt += line ret = aes_cbc(crypt, key, iv, 0) if ret: print('Decrypted Contents in: ' + filename + '.dec') with open(filename + '.dec', 'w') as tf: tf.write(ret.decode('utf-8')) un_ret = make_b64_printable(aes_cbc(ret, key, iv)) if un_ret: print('Encrypted Contents in: ' + filename + '.enc') with open(filename + '.enc', 'w') as tf: tf.write(un_ret.decode('utf-8')) return 0 print('Error.') return -1 if __name__ == '__main__': parser = argparse.ArgumentParser( description='Implements AES CBC encryption and decryption manually.') parser.add_argument('-f', '--inputfile', help='opt. file encrypted \ with AES in CBC mode', default='10.txt') parser.add_argument('-i', '--iv', help='opt. 16 byte initialization \ vector', default=chr(0) * 16) parser.add_argument('-k', '--key', help='opt. 16 byte encryption or \ decryption key', default='YELLOW SUBMARINE') args = parser.parse_args() sys.exit(main(args.inputfile, args.key, args.iv))
mit
5,468,502,557,935,550,000
34.352113
77
0.61753
false
3.808801
false
false
false
charanpald/features
features/test/PrimalCCATest.py
1
3226
import unittest import numpy import scipy.linalg from features.PrimalCCA import PrimalCCA from features.KernelCCA import KernelCCA from kernel.LinearKernel import LinearKernel import logging class PrimalCCATest(unittest.TestCase): def setUp(self): numpy.seterr(all='ignore') pass def testLearnModel(self): numExamples = 50 numFeatures = 10 X = numpy.random.rand(numExamples, numFeatures) Y = X tau = 0.0 tol = 10**--6 cca = PrimalCCA(tau) u, v, lmbdas = cca.learnModel(X, Y) self.assertTrue(numpy.linalg.norm(u-v) < tol) self.assertTrue(numpy.linalg.norm(lmbdas-numpy.ones(numFeatures)) < tol) Y = X*2 cca = PrimalCCA(tau) u, v, lmbdas = cca.learnModel(X, Y) self.assertTrue(numpy.linalg.norm(u-v) < tol) self.assertTrue(numpy.linalg.norm(lmbdas-numpy.ones(numFeatures)) < tol) #Rotate X to form Y Z = numpy.random.rand(numFeatures, numFeatures) ZZ = numpy.dot(Z.T, Z) (D, W) = scipy.linalg.eig(ZZ) Y = numpy.dot(X, W) u, v, lmbdas = cca.learnModel(X, Y) self.assertTrue(numpy.linalg.norm(lmbdas-numpy.ones(numFeatures)) < tol) def testProject(self): #Test if it is the same as KCCA numExamples = 50 numFeatures = 10 X = numpy.random.rand(numExamples, numFeatures) Y = numpy.random.rand(numExamples, numFeatures) tau = 0.0 tol = 10**--6 k = 5 cca = PrimalCCA(tau) u, v, lmbdas = cca.learnModel(X, Y) XU, YU = cca.project(X, Y, k) kernel = LinearKernel() kcca = KernelCCA(kernel, kernel, tau) alpha, beta, lmbdas2 = kcca.learnModel(X, Y) XU2, YU2 = kcca.project(X, Y, k) #Seem to get an error in this for some reason #self.assertTrue(numpy.linalg.norm(XU-XU2) < tol) #self.assertTrue(numpy.linalg.norm(YU-YU2) < tol) #Now try with different tau tau = 0.5 cca = PrimalCCA(tau) u, v, lmbdas = cca.learnModel(X, Y) XU, YU = cca.project(X, Y, k) kernel = LinearKernel() kcca = KernelCCA(kernel, kernel, tau) alpha, beta, lmbdas = kcca.learnModel(X, Y) XU2, YU2 = kcca.project(X, Y, k) self.assertTrue(numpy.linalg.norm(XU-XU2) < tol) self.assertTrue(numpy.linalg.norm(YU-YU2) < tol) self.assertTrue(numpy.linalg.norm(numpy.dot(XU.T, XU) - numpy.ones(k)) < tol) self.assertTrue(numpy.linalg.norm(numpy.dot(YU.T, YU) - numpy.ones(k)) < tol) def testGetY(self): #Test if we can recover Y from X numExamples = 10 numFeatures = 5 X = numpy.random.rand(numExamples, numFeatures) Z = numpy.random.rand(numFeatures, numFeatures) ZZ = numpy.dot(Z.T, Z) (D, W) = scipy.linalg.eig(ZZ) Y = numpy.dot(X, W) tau = 0.0 cca = PrimalCCA(tau) U, V, lmbdas = cca.learnModel(X, Y) Yhat = X.dot(U).dot(V.T).dot(numpy.linalg.inv(numpy.dot(V, V.T))) logging.debug((numpy.abs(Yhat- Y))) if __name__ == '__main__': unittest.main()
gpl-3.0
-873,620,248,228,570,200
27.298246
85
0.579045
false
3.060721
true
false
false
myt00seven/svrg
cifar/alexnet_lasagne/lasagne-googlenet-master/googlenet/layers/bn.py
1
4243
import numpy as np import theano.tensor as T import theano from lasagne import init # from .. import init from lasagne import nonlinearities # from .. import nonlinearities from lasagne.layers.base import Layer # from .base import Layer __all__ = [ "BNLayer", ] class BNLayer(Layer): """ lasagne.layers.BNLayer(incoming, nonlinearity=lasagne.nonlinearities.rectify, **kwargs) A batch normalization layer. Parameters ---------- incoming : a :class:`Layer` instance or a tuple The layer feeding into this layer, or the expected input shape W : Theano shared variable, numpy array or callable An initializer for the weights of the layer. If a shared variable or a numpy array is provided the shape should be (num_inputs, num_units). See :meth:`Layer.create_param` for more information. b : Theano shared variable, numpy array, callable or None An initializer for the biases of the layer. If a shared variable or a numpy array is provided the shape should be (num_units,). If None is provided the layer will have no biases. See :meth:`Layer.create_param` for more information. nonlinearity : callable or None The nonlinearity that is applied to the layer activations. If None is provided, the layer will be linear. Examples -------- >>> from lasagne.layers import InputLayer, DenseLayer >>> l_in = InputLayer((100, 20)) >>> l1 = BNLayer(l_in) Notes ----- If the input to this layer has more than two axes, it will flatten the trailing axes. This is useful for when a dense layer follows a convolutional layer, for example. It is not necessary to insert a :class:`FlattenLayer` in this case. """ def __init__(self, incoming, gamma=1.0, beta=0., nonlinearity=None, epsilon=1e-6, **kwargs): super(BNLayer, self).__init__(incoming, **kwargs) self.nonlinearity = (nonlinearities.identity if nonlinearity is None else nonlinearity) # get output shape of incoming #self.n_channels = self.input_shape[1] #print self.input_shape #raise NameError("Hi") self.epsilon = epsilon if len(self.input_shape) is 4: self.gamma = self.add_param(init.Constant(gamma), (self.input_shape[1],), name='gamma', regularizable=False).dimshuffle(('x',0,'x','x')) self.beta = self.add_param(init.Constant(beta), (self.input_shape[1],), name='beta', regularizable=False).dimshuffle(('x',0,'x','x')) elif len(self.input_shape) is 2: self.gamma = self.add_param(init.Constant(gamma), (self.input_shape[1],), name='gamma', regularizable=False).dimshuffle(('x',0)) self.beta = self.add_param(init.Constant(beta), (self.input_shape[1],), name='beta', regularizable=False).dimshuffle(('x',0)) else: # input should be 4d tensor or 2d matrix raise ValueError('input of BNLayer should be 4d tensor or 2d matrix') # done init def get_output_shape_for(self, input_shape): #return (input_shape[0], self.num_units) return input_shape def get_output_for(self, input, **kwargs): if input.ndim is 4: # 4d tensor self.mean = T.mean(input, axis=[0, 2, 3], keepdims=True) #self.mean = T.mean(input, axis=[0, 2, 3]).dimshuffle(('x', 0, 'x', 'x')) #self.var = T.std(input, axis=[0, 2, 3], keepdims=True) self.var = T.sum(T.sqr(input - self.mean), axis=[0, 2, 3], keepdims=True) / np.array([self.input_shape[0] * self.input_shape[2] * self.input_shape[3]], dtype=theano.config.floatX) else: # elif input.ndim is 2: # 2d matrix self.mean = T.mean(input, axis=0, keepdims=True) #self.mean = T.mean(input, axis=0).dimshuffle(('x',0)) #self.var = T.std(input, axis=0, keepdims=True) self.var = T.sum(T.sqr(input - self.mean), axis=0, keepdims=True) / np.array([self.input_shape[0]], dtype=theano.config.floatX) activation = (input - self.mean) / T.sqrt(self.var + self.epsilon) activation = self.gamma * activation + self.beta return self.nonlinearity(activation)
mit
4,750,715,369,948,741,000
40.194175
191
0.634928
false
3.638937
false
false
false
qrsforever/workspace
python/learn/thinkstats/rankit.py
1
1807
#!/usr/bin/python3 # -*- coding: utf-8 -*- """This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ import random import thinkstats import myplot import matplotlib.pyplot as pyplot def Sample(n=6): """Generates a sample from a standard normal variate. n: sample size Returns: list of n floats """ t = [random.normalvariate(0.0, 1.0) for i in range(n)] t.sort() return t def Samples(n=6, m=1000): """Generates m samples with size n each. n: sample size m: number of samples Returns: list of m samples """ t = [Sample(n) for i in range(m)] return t def EstimateRankits(n=6, m=1000): """Estimates the expected values of sorted random samples. n: sample size m: number of iterations Returns: list of n rankits """ t = Samples(n, m) t = zip(*t) means = [thinkstats.Mean(x) for x in t] return means def MakeNormalPlot(ys, root=None, line_options={}, **options): """Makes a normal probability plot. Args: ys: sequence of values line_options: dictionary of options for pyplot.plot options: dictionary of options for myplot.Save """ # TODO: when n is small, generate a larger sample and desample n = len(ys) xs = [random.normalvariate(0.0, 1.0) for i in range(n)] pyplot.clf() pyplot.plot(sorted(xs), sorted(ys), 'b.', markersize=3, **line_options) myplot.Save(root, xlabel = 'Standard normal values', legend=False, **options) def main(): means = EstimateRankits(84) print(means) if __name__ == "__main__": main()
mit
151,881,123,661,949,600
21.308642
75
0.614278
false
3.461686
false
false
false
baliga-lab/weeder_patched
python/seqtools.py
1
3069
HAMMING_MAX = 9999 def read_sequences_from_fasta_string(fasta_string): """reads the sequences contained in a FASTA string""" lines = fasta_string.split('\n') sequences = [] seqbuffer = "" seqname = None for line in lines: line = line.strip() if line.startswith('>'): if len(seqbuffer) > 0: sequences.append((seqname, seqbuffer)) seqbuffer = "" seqname = line[1:] elif line and len(line) > 0: seqbuffer += line # add the last line if len(seqbuffer) > 0: sequences.append((seqname, seqbuffer)) return sequences def read_sequences_from_fasta_file(filepath): """Read the sequences from the specified FASTA file""" with open(filepath) as inputfile: fasta_string = inputfile.read() return read_sequences_from_fasta_string(fasta_string) def revcomp(sequence): """compute the reverse complement of the input string""" return "".join([revchar(c) for c in sequence[::-1]]) def overlap(str1, str2, checkreverse): result = False overlapping = True for l in range(1, 3): for i in range(len(str1) - l): if i >= len(str2) or str1[i + l] != str2[i]: overlapping = False break if overlapping: result = True overlapping = True for i in range(len(str1) - l): if (i + l) >= len(str2) or str1[i] != str2[i + l]: overlapping = False break if overlapping: result = True if checkreverse: rev_result = overlap(str1[::-1], str2, False) if rev_result: result = True return result def hamming_distance(str1, str2, checkreverse): dist_forward = 0 dist_reverse = HAMMING_MAX if len(str1) != len(str2) or str1 == str2: return HAMMING_MAX for i in range(len(str1)): if str1[i] != str2[i]: dist_forward += 1 if not checkreverse: return dist_forward else: rev = str1[::-1] for i in range(len(str1)): if rev[i] != str2[i]: dist_reverse += 1 if dist_reverse < dist_forward: return dist_reverse else: return dist_forward def inside(str1, str2, checkreverse): len1 = len(str1) len2 = len(str2) result = False if (len2 - len1) != 2: return False for i in range(len2 - len1 + 1): match = True for j in range(i, i + len1): if str1[j - i] != str2[j]: match = False break if match: result = True if checkreverse: rev_result = inside(str1[::-1], str2, False) if rev_result: result = True return result def char_to_int(c): c = c.lower() if c == 'a': return 0; elif c == 'c': return 1; elif c == 'g': return 2; elif c == 't': return 3; elif c == '$': return 4; else: return -1;
gpl-3.0
-7,517,009,544,331,105,000
24.789916
62
0.525904
false
3.675449
false
false
false
mohanprasath/Course-Work
data_analysis/uh_data_analysis_with_python/hy-data-analysis-with-python-spring-2020/part03-e05_correlation/test/test_correlation.py
1
2795
#!/usr/bin/env python3 import unittest from unittest.mock import patch from tmc import points from tmc.utils import load, get_out module_name="src.correlation" correlations = load(module_name, "correlations") lengths = load(module_name, "lengths") def patch_name(m, d): import importlib parts=d.split(".") try: getattr(importlib.import_module(m), parts[-1]) p=".".join([m, parts[-1]]) except ModuleNotFoundError: raise except AttributeError: if len(parts) == 1: raise try: getattr(importlib.import_module(m), parts[-2]) p=".".join([m] + parts[-2:]) except AttributeError: if len(parts) == 2: raise getattr(importlib.import_module(m), parts[-3]) p=".".join([m] + parts[-3:]) return p class Correlation(unittest.TestCase): @points('p03-05.1') def test_lengths(self): result = lengths() self.assertAlmostEqual(result, 0.8717537758865832, places=4, msg="Wrong correlation!") @points('p03-05.1') def test_lengths_calls(self): with patch(patch_name(module_name, "scipy.stats.pearsonr")) as pcorr: result = lengths() pcorr.assert_called() @points('p03-05.2') def test_correlations(self): result = correlations() n, m = result.shape for r in range(n): for c in range(r): self.assertAlmostEqual(result[r,c], result[c,r], places=4, msg="The correlation matrix is not symmetric!") self.assertAlmostEqual(result[r,r], 1, places=4, msg="Values on the diagonal should be one!") self.assertAlmostEqual(result[0,1], -0.11756978, places=4, msg="Incorrect value in position [0,1]!") self.assertAlmostEqual(result[0,2], 0.87175378, places=4, msg="Incorrect value in position [0,2]!") self.assertAlmostEqual(result[0,3], 0.81794113, places=4, msg="Incorrect value in position [0,3]!") self.assertAlmostEqual(result[1,2], -0.4284401, places=4, msg="Incorrect value in position [1,2]!") self.assertAlmostEqual(result[1,3], -0.36612593, places=4, msg="Incorrect value in position [1,3]!") self.assertAlmostEqual(result[2,3], 0.96286543, places=4, msg="Incorrect value in position [2,3]!") @points('p03-05.2') def test_lengths_calls(self): with patch(patch_name(module_name, "np.corrcoef")) as pcorr: result = correlations() pcorr.assert_called() if __name__ == '__main__': unittest.main()
gpl-3.0
-656,753,270,546,592,900
33.085366
105
0.563148
false
3.813097
true
false
false
NeoRazorX/ubuntufaq
public.py
1
15820
#!/usr/bin/env python # -*- coding: utf-8 -*- # # This file is part of ubuntufaq # Copyright (C) 2011 Carlos Garcia Gomez neorazorx@gmail.com # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os, logging # cargamos django 1.2 os.environ['DJANGO_SETTINGS_MODULE'] = 'settings' from google.appengine.dist import use_library use_library('django', '1.2') from google.appengine.ext.webapp import template from google.appengine.ext import db, webapp from google.appengine.ext.webapp.util import run_wsgi_app from google.appengine.api import users, memcache from recaptcha.client import captcha from base import * from preguntas import * from enlaces import * class Portada(Pagina): def get(self): Pagina.get(self) mixto = self.sc.get_portada( users.get_current_user() ) tags = self.get_tags_from_mixto( mixto ) template_values = { 'titulo': 'Ubuntu FAQ', 'descripcion': APP_DESCRIPTION, 'tags': tags, 'mixto': mixto, 'urespuestas': self.sc.get_ultimas_respuestas(), 'searches': self.sc.get_allsearches(), 'url': self.url, 'url_linktext': self.url_linktext, 'mi_perfil': self.mi_perfil, 'formulario' : self.formulario, 'usuario': users.get_current_user(), 'notis': self.get_notificaciones(), 'error_dominio': self.error_dominio, 'stats': self.sc.get_stats() } path = os.path.join(os.path.dirname(__file__), 'templates/portada.html') self.response.out.write( template.render(path, template_values) ) class Populares(Pagina): def get(self): Pagina.get(self) mixto = self.sc.get_populares() tags = self.get_tags_from_mixto( mixto ) template_values = { 'titulo': 'Populares - Ubuntu FAQ', 'descripcion': 'Listado de preguntas y noticias populares de Ubuntu FAQ. ' + APP_DESCRIPTION, 'tags': tags, 'mixto': mixto, 'stats': self.sc.get_stats(), 'url': self.url, 'url_linktext': self.url_linktext, 'mi_perfil': self.mi_perfil, 'formulario' : self.formulario, 'usuario': users.get_current_user(), 'notis': self.get_notificaciones(), 'error_dominio': self.error_dominio } path = os.path.join(os.path.dirname(__file__), 'templates/populares.html') self.response.out.write( template.render(path, template_values) ) class Ayuda(Pagina): def get(self): Pagina.get(self) template_values = { 'titulo': 'Ayuda de Ubuntu FAQ', 'descripcion': u'Sección de ayuda de Ubuntu FAQ. ' + APP_DESCRIPTION, 'tags': 'ubuntu, kubuntu, xubuntu, lubuntu, problema, ayuda, linux, karmic, lucid, maverick, natty, ocelot', 'url': self.url, 'url_linktext': self.url_linktext, 'mi_perfil': self.mi_perfil, 'usuario': users.get_current_user(), 'notis': self.get_notificaciones(), 'formulario': self.formulario, 'error_dominio': self.error_dominio, 'karmalist': memcache.get('pending-users'), 'foco': 'ayuda' } path = os.path.join(os.path.dirname(__file__), 'templates/ayuda.html') self.response.out.write(template.render(path, template_values)) class Nueva_publicacion(Pagina): def get(self): Pagina.get(self) # el captcha if users.get_current_user(): chtml = '' else: chtml = captcha.displayhtml( public_key = RECAPTCHA_PUBLIC_KEY, use_ssl = False, error = None) if self.request.get('tipo') == 'pregunta': foco = 'pregunta' elif self.request.get('tipo') == 'enlace': foco = 'enlace' else: foco = 'pensamiento' template_values = { 'titulo': 'Publicar...', 'descripcion': u'Formulario de publicación de Ubuntu FAQ. ' + APP_DESCRIPTION, 'tags': 'ubuntu, kubuntu, xubuntu, lubuntu, problema, ayuda, linux, karmic, lucid, maverick, natty, ocelot', 'url': self.url, 'url_linktext': self.url_linktext, 'mi_perfil': self.mi_perfil, 'usuario': users.get_current_user(), 'notis': self.get_notificaciones(), 'formulario': self.formulario, 'error_dominio': self.error_dominio, 'captcha': chtml, 'tipo': self.request.get('tipo'), 'contenido': self.request.get('contenido'), 'url2': self.request.get('url'), 'foco': foco } path = os.path.join(os.path.dirname(__file__), 'templates/nueva.html') self.response.out.write(template.render(path, template_values)) class Pagina_buscar(Pagina): def get(self, tag=None): Pagina.get(self) # para corregir fallos de codificación en el tag if isinstance(tag, str): tag = unicode( urllib.unquote(tag), 'utf-8') else: tag = unicode( urllib.unquote(tag) ) template_values = { 'titulo': 'Ubuntu FAQ: ' + tag, 'descripcion': u'Páginas relacionadas con ' + tag, 'tag': tag, 'tags': 'problema, duda, ayuda, ' + tag, 'relacionadas': self.sc.paginas_relacionadas(tag, True), 'alltags': self.sc.get_alltags(), 'searches': self.sc.get_allsearches(), 'url': self.url, 'url_linktext': self.url_linktext, 'mi_perfil': self.mi_perfil, 'formulario' : self.formulario, 'usuario': users.get_current_user(), 'notis': self.get_notificaciones(), 'error_dominio': self.error_dominio, 'foco': 'buscar' } path = os.path.join(os.path.dirname(__file__), 'templates/search.html') self.response.out.write(template.render(path, template_values)) def post(self, ntag=None): Pagina.get(self) query = urllib.unquote( self.request.get('query') ) template_values = { 'titulo': 'Ubuntu FAQ: ' + query, 'descripcion': u'Resultados de: ' + query, 'tag': query, 'buscando': True, 'tags': 'problema, duda, ayuda, ' + query, 'relacionadas': self.sc.buscar( query ), 'searches': self.sc.get_allsearches(), 'url': self.url, 'url_linktext': self.url_linktext, 'mi_perfil': self.mi_perfil, 'formulario' : self.formulario, 'usuario': users.get_current_user(), 'notis': self.get_notificaciones(), 'error_dominio': self.error_dominio, 'foco': 'buscar' } path = os.path.join(os.path.dirname(__file__), 'templates/search.html') self.response.out.write(template.render(path, template_values)) class Guardar_voto(Pagina): def get(self, tipo='x', keye=None, voto='-1'): try: if self.request.environ['HTTP_USER_AGENT'].lower().find('googlebot') != -1: logging.info('Googlebot!') self.redirect('/') else: if tipo == 'r': elemento = Respuesta.get( keye ) elif tipo == 'c': elemento = Comentario.get( keye ) else: elemento = False if not elemento: # no hay elemento a votar logging.warning('Elemento no encontrado!') self.redirect('/error/404') elif self.request.remote_addr in elemento.ips and self.request.remote_addr != '127.0.0.1': # ya se ha votado desde esta IP logging.info('Voto ya realizado') self.redirect( elemento.get_link() ) else: # voto válido ips = elemento.ips ips.append( self.request.remote_addr ) elemento.ips = ips if voto == '0': elemento.valoracion -= 1 logging.info('Voto negativo') elif voto == '1': elemento.valoracion += 1 logging.info('Voto positivo') else: logging.info('Voto no válido: ' + str(voto)) elemento.put() elemento.borrar_cache() # actualizamos la estadistica stats = self.sc.get_stats() if voto in ['0', '1']: try: stats['votos'] += 1 except: stats['votos'] = 1 memcache.replace('stats', stats) self.redirect( elemento.get_link() ) except: self.redirect('/error/503') class Rss(Pagina): def get(self): template_values = { 'portada': self.sc.get_portada(), 'domain': APP_DOMAIN, 'title': APP_NAME, 'descripcion': APP_DESCRIPTION } path = os.path.join(os.path.dirname(__file__), 'templates/rss.html') self.response.out.write(template.render(path, template_values)) class Rssr(Pagina): def get(self): template_values = { 'respuestas': self.sc.get_ultimas_respuestas(), 'comentarios': self.sc.get_ultimos_comentarios(), 'domain': APP_DOMAIN, 'title': APP_NAME, 'descripcion': APP_DESCRIPTION } path = os.path.join(os.path.dirname(__file__), 'templates/rss-respuestas.html') self.response.out.write(template.render(path, template_values)) class Sitemap(Pagina): def get(self): portada = self.sc.get_portada() print 'Content-Type: text/xml' print '' print '<?xml version="1.0" encoding="UTF-8"?>' print '<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">' for p in portada: print '<url><loc>' + p['link'] + '</loc><lastmod>' + str(p['fecha']).split(' ')[0] + '</lastmod><changefreq>always</changefreq><priority>0.9</priority></url>' print '</urlset>' class Perror(Pagina): def get(self, cerror='404'): Pagina.get(self) derror = { '403': 'Permiso denegado', '403c': 'Permiso denegado - error en el captcha', '404': u'Página no encontrada en Ubuntu FAQ', '503': 'Error en Ubuntu FAQ', '606': 'Idiota detectado' } merror = { '403': '403 - Permiso denegado', '403c': u'<img src="/img/fuuu_face.png" alt="fuuu"/><br/><br/>403 - Permiso denegado: debes repetir el captcha.<br/>Evita los captchas iniciando sesión.', '404': u'404 - Página no encontrada en Ubuntu FAQ', '503': '<img src="/img/fuuu_face.png" alt="explosi&oacute;n"/><br/><br/>503 - Error en Ubuntu FAQ,<br/>consulta el estado en: http://code.google.com/status/appengine', '606': u'<img src="/img/troll_face.png" alt="troll"/><br/><br/>606 - ¿Por qué no pruebas a escribir algo diferente?' } if cerror == '503': logging.error( '503' ) else: logging.warning( cerror ) template_values = { 'titulo': str(cerror) + ' - Ubuntu FAQ', 'descripcion': derror.get(cerror, 'Error desconocido'), 'tags': 'ubuntu, kubuntu, xubuntu, lubuntu, problema, ayuda, linux, karmic, lucid, maverick, natty, ocelot', 'url': self.url, 'url_linktext': self.url_linktext, 'mi_perfil': self.mi_perfil, 'formulario': self.formulario, 'error': merror.get(cerror, 'Error desconocido'), 'cerror': cerror, 'usuario': users.get_current_user(), 'notis': self.get_notificaciones(), 'error_dominio': self.error_dominio, 'foco': 'buscar' } path = os.path.join(os.path.dirname(__file__), 'templates/portada.html') self.response.out.write(template.render(path, template_values)) def main(): application = webapp.WSGIApplication([('/', Portada), ('/inicio', Todas_preguntas), ('/preguntas', Todas_preguntas), (r'/preguntas/(.*)', Todas_preguntas), ('/populares', Populares), ('/sin-solucionar', Sin_solucionar), ('/actualidad', Actualidad), (r'/actualidad/(.*)', Actualidad), (r'/p/(.*)', Redir_pregunta), (r'/question/(.*)', Detalle_pregunta), ('/nueva', Nueva_publicacion), ('/add_p', Nueva_pregunta), ('/mod_p', Detalle_pregunta), ('/del_p', Borrar_pregunta), ('/add_r', Responder), ('/mod_r', Modificar_respuesta), ('/del_r', Borrar_respuesta), (r'/e/(.*)', Acceder_enlace), (r'/de/(.*)', Redir_enlace), (r'/story/(.*)', Detalle_enlace), ('/add_e', Actualidad), ('/mod_e', Detalle_enlace), ('/hun_e', Hundir_enlace), ('/del_e', Borrar_enlace), ('/add_c', Comentar), ('/mod_c', Modificar_comentario), ('/del_c', Borrar_comentario), ('/ayuda', Ayuda), (r'/search/(.*)', Pagina_buscar), (r'/votar/(.*)/(.*)/(.*)', Guardar_voto), ('/rss', Rss), ('/rss-respuestas', Rssr), ('/sitemap', Sitemap), ('/sitemap.xml', Sitemap), (r'/error/(.*)', Perror), ('/.*', Perror), ], debug=DEBUG_FLAG) webapp.template.register_template_library('filters.filtros_django') run_wsgi_app(application) if __name__ == "__main__": main()
agpl-3.0
-7,409,657,376,595,017,000
43.784703
179
0.49864
false
3.704077
false
false
false
DataDog/integrations-core
openstack_controller/tests/common.py
1
14615
# (C) Datadog, Inc. 2018-present # All rights reserved # Licensed under Simplified BSD License (see LICENSE) import datetime import os CHECK_NAME = 'openstack' FIXTURES_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'fixtures') ALL_IDS = ['server-1', 'server-2', 'other-1', 'other-2'] EXCLUDED_NETWORK_IDS = ['server-1', 'other-.*'] EXCLUDED_SERVER_IDS = ['server-2', 'other-.*'] FILTERED_NETWORK_ID = 'server-2' FILTERED_SERVER_ID = 'server-1' FILTERED_BY_PROJ_SERVER_ID = ['server-1', 'server-2'] CONFIG_FILE_INSTANCE = { 'name': 'test_name', 'user': {'name': 'test_name', 'password': 'test_pass', 'domain': {'id': 'test_id'}}, 'ssl_verify': False, 'exclude_network_ids': EXCLUDED_NETWORK_IDS, 'openstack_config_file_path': os.path.abspath('./tests/fixtures/openstack_config.yaml'), 'openstack_cloud_name': 'test_cloud', } KEYSTONE_INSTANCE = { 'name': 'test_name', 'keystone_server_url': 'http://10.0.2.15:5000', 'user': {'name': 'test_name', 'password': 'test_pass', 'domain': {'id': 'test_id'}}, 'ssl_verify': False, 'exclude_network_ids': EXCLUDED_NETWORK_IDS, } MOCK_CONFIG = {'init_config': {}, 'instances': [KEYSTONE_INSTANCE]} EXAMPLE_AUTH_RESPONSE = { u'token': { u'methods': [u'password'], u'roles': [ {u'id': u'f20c215f5a4d47b7a6e510bc65485ced', u'name': u'datadog_monitoring'}, {u'id': u'9fe2ff9ee4384b1894a90878d3e92bab', u'name': u'_member_'}, ], u'expires_at': u'2015-11-02T15: 57: 43.911674Z', u'project': { u'domain': {u'id': u'default', u'name': u'Default'}, u'id': u'0850707581fe4d738221a72db0182876', u'name': u'admin', }, u'catalog': [ { u'endpoints': [ { u'url': u'http://10.0.2.15:8774/v2.1/0850707581fe4d738221a72db0182876', u'interface': u'internal', u'region': u'RegionOne', u'region_id': u'RegionOne', u'id': u'354e35ed19774e398f80dc2a90d07f4b', }, { u'url': u'http://10.0.2.15:8774/v2.1/0850707581fe4d738221a72db0182876', u'interface': u'public', u'region': u'RegionOne', u'region_id': u'RegionOne', u'id': u'36e8e2bf24384105b9d56a65b0900172', }, { u'url': u'http://10.0.2.15:8774/v2.1/0850707581fe4d738221a72db0182876', u'interface': u'admin', u'region': u'RegionOne', u'region_id': u'RegionOne', u'id': u'de93edcbf7f9446286687ec68423c36f', }, ], u'type': u'compute', u'id': u'2023bd4f451849ba8abeaaf283cdde4f', u'name': u'nova', }, { u'endpoints': [ { u'url': u'http://10.0.3.111:8776/v1/***************************4bfc1', u'interface': u'public', u'region': u'RegionOne', u'region_id': u'RegionOne', u'id': u'***************************2452f', }, { u'url': u'http://10.0.2.15:8776/v1/***************************4bfc1', u'interface': u'admin', u'region': u'RegionOne', u'region_id': u'RegionOne', u'id': u'***************************8239f', }, { u'url': u'http://10.0.2.15:8776/v1/***************************4bfc1', u'interface': u'internal', u'region': u'RegionOne', u'region_id': u'RegionOne', u'id': u'***************************7caa1', }, ], u'type': u'volume', u'id': u'***************************e7e16', u'name': u'cinder', }, { u'endpoints': [ { u'url': u'http://10.0.2.15:9292', u'interface': u'internal', u'region': u'RegionOne', u'region_id': u'RegionOne', u'id': u'7c1e318d8f7f42029fcb591598df2ef5', }, { u'url': u'http://10.0.2.15:9292', u'interface': u'public', u'region': u'RegionOne', u'region_id': u'RegionOne', u'id': u'afcc88b1572f48a38bb393305dc2b584', }, { u'url': u'http://10.0.2.15:9292', u'interface': u'admin', u'region': u'RegionOne', u'region_id': u'RegionOne', u'id': u'd9730dbdc07844d785913219da64a197', }, ], u'type': u'network', u'id': u'21ad241f26194bccb7d2e49ee033d5a2', u'name': u'neutron', }, ], u'extras': {}, u'user': { u'domain': {u'id': u'default', u'name': u'Default'}, u'id': u'5f10e63fbd6b411186e561dc62a9a675', u'name': u'datadog', }, u'audit_ids': [u'OMQQg9g3QmmxRHwKrfWxyQ'], u'issued_at': u'2015-11-02T14: 57: 43.911697Z', } } EXAMPLE_PROJECTS_RESPONSE = { "projects": [ { "domain_id": "1789d1", "enabled": True, "id": "263fd9", "links": {"self": "https://example.com/identity/v3/projects/263fd9"}, "name": "Test Group", } ], "links": {"self": "https://example.com/identity/v3/auth/projects", "previous": None, "next": None}, } # .. server/network SERVERS_CACHE_MOCK = { 'servers': { "server-1": {"id": "server-1", "name": "server-name-1", "status": "ACTIVE", "project_name": "testproj"}, "server-2": {"id": "server-2", "name": "server-name-2", "status": "ACTIVE", "project_name": "testproj"}, "other-1": {"id": "other-1", "name": "server-name-other-1", "status": "ACTIVE", "project_name": "blacklist_1"}, "other-2": {"id": "other-2", "name": "server-name-other-2", "status": "ACTIVE", "project_name": "blacklist_2"}, }, 'change_since': datetime.datetime.utcnow().isoformat(), } EMPTY_NOVA_SERVERS = [] # One example from MOCK_NOVA_SERVERS to emulate pagination MOCK_NOVA_SERVERS_PAGINATED = [ { "OS-DCF:diskConfig": "AUTO", "OS-EXT-AZ:availability_zone": "nova", "OS-EXT-SRV-ATTR:host": "compute", "OS-EXT-SRV-ATTR:hostname": "server-1", "OS-EXT-SRV-ATTR:hypervisor_hostname": "fake-mini", "OS-EXT-SRV-ATTR:instance_name": "instance-00000001", "OS-EXT-SRV-ATTR:kernel_id": "", "OS-EXT-SRV-ATTR:launch_index": 0, "OS-EXT-SRV-ATTR:ramdisk_id": "", "OS-EXT-SRV-ATTR:reservation_id": "r-iffothgx", "OS-EXT-SRV-ATTR:root_device_name": "/dev/sda", "OS-EXT-SRV-ATTR:user_data": "IyEvYmluL2Jhc2gKL2Jpbi9zdQplY2hvICJJIGFtIGluIHlvdSEiCg==", "OS-EXT-STS:power_state": 1, "OS-EXT-STS:task_state": 'null', "OS-EXT-STS:vm_state": "active", "OS-SRV-USG:launched_at": "2017-02-14T19:24:43.891568", "OS-SRV-USG:terminated_at": 'null', "accessIPv4": "1.2.3.4", "accessIPv6": "80fe::", "hostId": "2091634baaccdc4c5a1d57069c833e402921df696b7f970791b12ec6", "host_status": "UP", "id": "server-1", "metadata": {"My Server Name": "Apache1"}, "name": "new-server-test", "status": "ACTIVE", "tags": [], "tenant_id": "6f70656e737461636b20342065766572", "updated": "2017-02-14T19:24:43Z", "user_id": "fake", } ] # Example response from - https://developer.openstack.org/api-ref/compute/#list-servers-detailed # ID and server-name values have been changed for test readability MOCK_NOVA_SERVERS = [ { "OS-DCF:diskConfig": "AUTO", "OS-EXT-AZ:availability_zone": "nova", "OS-EXT-SRV-ATTR:host": "compute", "OS-EXT-SRV-ATTR:hostname": "server-1", "OS-EXT-SRV-ATTR:hypervisor_hostname": "fake-mini", "OS-EXT-SRV-ATTR:instance_name": "instance-00000001", "OS-EXT-SRV-ATTR:kernel_id": "", "OS-EXT-SRV-ATTR:launch_index": 0, "OS-EXT-SRV-ATTR:ramdisk_id": "", "OS-EXT-SRV-ATTR:reservation_id": "r-iffothgx", "OS-EXT-SRV-ATTR:root_device_name": "/dev/sda", "OS-EXT-SRV-ATTR:user_data": "IyEvYmluL2Jhc2gKL2Jpbi9zdQplY2hvICJJIGFtIGluIHlvdSEiCg==", "OS-EXT-STS:power_state": 1, "OS-EXT-STS:task_state": 'null', "OS-EXT-STS:vm_state": "active", "OS-SRV-USG:launched_at": "2017-02-14T19:24:43.891568", "OS-SRV-USG:terminated_at": 'null', "accessIPv4": "1.2.3.4", "accessIPv6": "80fe::", "hostId": "2091634baaccdc4c5a1d57069c833e402921df696b7f970791b12ec6", "host_status": "UP", "id": "server-1", "metadata": {"My Server Name": "Apache1"}, "name": "new-server-test", "status": "DELETED", "tags": [], "tenant_id": "6f70656e737461636b20342065766572", "updated": "2017-02-14T19:24:43Z", "user_id": "fake", }, { "OS-DCF:diskConfig": "AUTO", "OS-EXT-AZ:availability_zone": "nova", "OS-EXT-SRV-ATTR:host": "compute", "OS-EXT-SRV-ATTR:hostname": "server-2", "OS-EXT-SRV-ATTR:hypervisor_hostname": "fake-mini", "OS-EXT-SRV-ATTR:instance_name": "instance-00000001", "OS-EXT-SRV-ATTR:kernel_id": "", "OS-EXT-SRV-ATTR:launch_index": 0, "OS-EXT-SRV-ATTR:ramdisk_id": "", "OS-EXT-SRV-ATTR:reservation_id": "r-iffothgx", "OS-EXT-SRV-ATTR:root_device_name": "/dev/sda", "OS-EXT-SRV-ATTR:user_data": "IyEvYmluL2Jhc2gKL2Jpbi9zdQplY2hvICJJIGFtIGluIHlvdSEiCg==", "OS-EXT-STS:power_state": 1, "OS-EXT-STS:task_state": 'null', "OS-EXT-STS:vm_state": "active", "OS-SRV-USG:launched_at": "2017-02-14T19:24:43.891568", "OS-SRV-USG:terminated_at": 'null', "accessIPv4": "1.2.3.4", "accessIPv6": "80fe::", "hostId": "2091634baaccdc4c5a1d57069c833e402921df696b7f970791b12ec6", "host_status": "UP", "id": "server_newly_added", "metadata": {"My Server Name": "Apache1"}, "name": "newly_added_server", "status": "ACTIVE", "tags": [], "tenant_id": "6f70656e737461636b20342065766572", "updated": "2017-02-14T19:24:43Z", "user_id": "fake", }, ] EXAMPLE_GET_FLAVORS_DETAIL_RETURN_VALUE = [ {'id': u'10', 'disk': 10, 'vcpus': 2, 'ram': 1024, 'OS-FLV-EXT-DATA:ephemeral': 0, 'swap': 0}, { 'id': u'625c2e4b-0a1f-4236-bb67-5ceee1a766e5', 'disk': 48, 'vcpus': 8, 'ram': 5934, 'OS-FLV-EXT-DATA:ephemeral': 0, 'swap': 0, }, ] EXAMPLE_GET_OS_AGGREGATES_RETURN_VALUE = [{'hosts': ["compute"], 'name': "name", 'availability_zone': "london"}] EXAMPLE_GET_OS_HYPERVISORS_RETURN_VALUE = [ { "cpu_info": { "arch": "x86_64", "model": "Nehalem", "vendor": "Intel", "features": ["pge", "clflush"], "topology": {"cores": 1, "threads": 1, "sockets": 4}, }, "current_workload": 0, "status": "enabled", "state": "up", "disk_available_least": 0, "host_ip": "1.1.1.1", "free_disk_gb": 1028, "free_ram_mb": 7680, "hypervisor_hostname": "host1", "hypervisor_type": "fake", "hypervisor_version": 1000, "id": 2, "local_gb": 1028, "local_gb_used": 0, "memory_mb": 8192, "memory_mb_used": 512, "running_vms": 0, "service": {"host": "host1", "id": 7, "disabled_reason": None}, "vcpus": 2, "vcpus_used": 0, } ] EXAMPLE_GET_PROJECT_LIMITS_RETURN_VALUE = { "maxImageMeta": 128, "maxPersonality": 5, "maxPersonalitySize": 10240, "maxSecurityGroupRules": 20, "maxSecurityGroups": 10, "maxServerMeta": 128, "maxTotalCores": 20, "maxTotalFloatingIps": 10, "maxTotalInstances": 10, "maxTotalKeypairs": 100, "maxTotalRAMSize": 51200, "maxServerGroups": 10, "maxServerGroupMembers": 10, "totalCoresUsed": 0, "totalInstancesUsed": 0, "totalRAMUsed": 0, "totalSecurityGroupsUsed": 0, "totalFloatingIpsUsed": 1, "totalServerGroupsUsed": 0, } EXAMPLE_GET_NETWORKS_RETURN_VALUE = [ { 'id': u'2755452c-4fe8-4ba1-9b26-8898665b0958', 'name': u'net2', 'tenant_id': u'680031a39ce040e1b81289ea8c73fb11', 'admin_state_up': True, } ] DEFAULT_METRICS = [ 'openstack.controller', 'openstack.nova.current_workload', 'openstack.nova.disk_available_least', 'openstack.nova.free_disk_gb', 'openstack.nova.free_ram_mb', 'openstack.nova.hypervisor_load.1', 'openstack.nova.hypervisor_load.15', 'openstack.nova.hypervisor_load.5', 'openstack.nova.limits.max_image_meta', 'openstack.nova.limits.max_personality', 'openstack.nova.limits.max_personality_size', 'openstack.nova.limits.max_security_group_rules', 'openstack.nova.limits.max_security_groups', 'openstack.nova.limits.max_server_meta', 'openstack.nova.limits.max_total_cores', 'openstack.nova.limits.max_total_floating_ips', 'openstack.nova.limits.max_total_instances', 'openstack.nova.limits.max_total_keypairs', 'openstack.nova.limits.max_total_ram_size', 'openstack.nova.limits.total_cores_used', 'openstack.nova.limits.total_floating_ips_used', 'openstack.nova.limits.total_instances_used', 'openstack.nova.limits.total_ram_used', 'openstack.nova.limits.total_security_groups_used', 'openstack.nova.local_gb', 'openstack.nova.local_gb_used', 'openstack.nova.memory_mb', 'openstack.nova.memory_mb_used', 'openstack.nova.running_vms', 'openstack.nova.vcpus', 'openstack.nova.vcpus_used', ]
bsd-3-clause
3,778,650,173,125,150,700
37.159269
119
0.515156
false
3.039725
true
false
false
asimshankar/tensorflow
tensorflow/python/saved_model/save.py
1
34278
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Exports a SavedModel from a Checkpointable Python object.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import os from tensorflow.core.protobuf import meta_graph_pb2 from tensorflow.core.protobuf import saved_model_pb2 from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.eager import function as defun from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import meta_graph from tensorflow.python.framework import ops from tensorflow.python.lib.io import file_io from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.saved_model import builder_impl from tensorflow.python.saved_model import constants from tensorflow.python.saved_model import function_serialization from tensorflow.python.saved_model import saved_object_graph_pb2 from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import signature_def_utils from tensorflow.python.saved_model import tag_constants from tensorflow.python.saved_model import utils_impl from tensorflow.python.training.checkpointable import base from tensorflow.python.training.checkpointable import tracking from tensorflow.python.training.checkpointable import util from tensorflow.python.util import compat from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export DEFAULT_SIGNATURE_ATTR = "_default_save_signature" def _find_function_to_export(root): """Iterate over `root`'s attributes, finding traced functions.""" exported_function = None previous_attribute_name = None for attribute_name in dir(root): attribute_value = getattr(root, attribute_name, None) if isinstance(attribute_value, def_function.PolymorphicFunction): if exported_function is not None: raise ValueError( ("Exporting an object with no " "tf.saved_model.save(..., signatures=...) " "argument specified, and with more than one " "@tf.function-decorated method attached to it: {}. The signature " "keys for these functions are ambiguous. Specify signature " "functions explicitly.").format( [previous_attribute_name, attribute_name])) exported_function = attribute_value previous_attribute_name = attribute_name if exported_function is None: exported_function = getattr(root, DEFAULT_SIGNATURE_ATTR, None) if exported_function is None: raise ValueError( ("Exporting an object with no tf.saved_model.save(..., signatures=...) " "argument specified, and with no @tf.function-decorated methods " "attached to it. In the future this will be a supported use-case for " "Python re-import, but at the moment saving a SavedModel without " "signatures does not make sense, as the only consumers will expect " "signatures. Either decorate a method or specify a signature function " "explicitly.")) return exported_function def _canonicalize_signatures(signatures): """Converts `signatures` into a dictionary of concrete functions.""" if not isinstance(signatures, collections.Mapping): signatures = { signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signatures} concrete_signatures = {} for serving_key, signature_function in signatures.items(): if isinstance(signature_function, (defun.PolymorphicFunction, def_function.PolymorphicFunction)): input_signature = signature_function._input_signature # pylint: disable=protected-access if input_signature is None: raise ValueError( ("Unable to use the function {} as a signature directly. Functions " "used to generate serving signatures must either have an " "`input_signature=` specified when constructed, or must be " "converted to concrete functions using " "`f.get_concrete_function(...)`.").format(signature_function)) signature_function = signature_function.get_concrete_function() elif not isinstance(signature_function, defun.Function): raise ValueError( ("Expected a TensorFlow function to generate a signature for, but " "got {}. Python functions may be decorated with " "`@tf.function(input_signature=...)` and passed as signatures " "directly, or created without a signature using `@tf.function` " "and then converted to a concrete TensorFlow function using " "`f.get_concrete_function(...)`.").format(signature_function)) concrete_signatures[serving_key] = signature_function return concrete_signatures def _is_flat(sequence): sequence_flat = nest.flatten(sequence) try: nest.assert_same_structure(sequence_flat, sequence) return True except ValueError: return False except TypeError: return False def _normalize_outputs(outputs, function_name, signature_key): """Construct an output dictionary from unnormalized function outputs.""" if isinstance(outputs, collections.Mapping): for key, value in outputs.items(): if not isinstance(value, ops.Tensor): raise ValueError( ("Got a dictionary containing non-Tensor value {} for key {} " "in the output of the function {} used to generate a SavedModel " "signature. Dictionaries outputs for functions used as signatures " "should have one Tensor output per string key.") .format(value, key, compat.as_str_any(function_name))) return outputs else: original_outputs = outputs if not isinstance(outputs, collections.Sequence): outputs = [outputs] if not _is_flat(outputs): raise ValueError( ("Got non-flat outputs '{}' from '{}' for SavedModel " "signature '{}'. Signatures have one Tensor per output, so " "to have predictable names Python functions used to generate " "these signatures should avoid outputting Tensors in nested " "structures.") .format(original_outputs, function_name, signature_key)) return {("output_{}".format(output_index)): output for output_index, output in enumerate(outputs)} def _tensor_dict_to_tensorinfo(tensor_dict): return {key: utils_impl.build_tensor_info(value) for key, value in tensor_dict.items()} def _map_captures_to_created_tensors( original_captures, resource_map): """Maps eager tensors captured by a function to Graph resources for export. Args: original_captures: A dictionary mapping from tensors captured by the function to interior placeholders for those tensors (inside the function body). resource_map: A dictionary mapping from resource tensors owned by the eager context to resource tensors in the exported graph. Returns: A list of stand-in tensors which belong to the exported graph, corresponding to the function's captures. Raises: AssertionError: If the function references a resource which is not part of `resource_map`. """ export_captures = [] for exterior, interior in original_captures.items(): mapped_resource = resource_map.get(exterior, None) if mapped_resource is None: if exterior.dtype == dtypes.resource: raise AssertionError( ("Tried to export a function which references untracked stateful " "object {}. Stateful TensorFlow objects (e.g. tf.Variable) must " "be tracked by the main object. Objects may be tracked by " "assigning them to an attribute of another tracked object, or to " "an attribute of the main object directly.") .format(interior)) else: # This is a captured Tensor, but it's not a resource. We'll just add it # to the graph as a constant. mapped_resource = constant_op.constant(exterior.numpy()) export_captures.append(mapped_resource) return export_captures def _map_function_arguments_to_created_inputs( function_arguments, signature_key, function_name): """Creates exterior placeholders in the exported graph for function arguments. Functions have two types of inputs: tensors captured from the outside (eager) context, and arguments to the function which we expect to receive from the user at each call. `_map_captures_to_created_tensors` replaces captured tensors with stand-ins (typically these are resource dtype tensors associated with variables). `_map_function_inputs_to_created_inputs` runs over every argument, creating a new placeholder for each which will belong to the exported graph rather than the function body. Args: function_arguments: A list of argument placeholders in the function body. signature_key: The name of the signature being exported, for error messages. function_name: The name of the function, for error messages. Returns: A tuple of (mapped_inputs, exterior_placeholders) mapped_inputs: A list with entries corresponding to `function_arguments` containing all of the inputs of the function gathered from the exported graph (both captured resources and arguments). exterior_argument_placeholders: A dictionary mapping from argument names to placeholders in the exported graph, containing the explicit arguments to the function which a user is expected to provide. Raises: ValueError: If argument names are not unique. """ # `exterior_argument_placeholders` holds placeholders which are outside the # function body, directly contained in a MetaGraph of the SavedModel. The # function body itself contains nearly identical placeholders used when # running the function, but these exterior placeholders allow Session-based # APIs to call the function using feeds and fetches which name Tensors in the # MetaGraph. exterior_argument_placeholders = {} mapped_inputs = [] for placeholder in function_arguments: # `export_captures` contains an exhaustive set of captures, so if we don't # find the input there then we now know we have an argument. user_input_name = compat.as_str_any( placeholder.op.get_attr("_user_specified_name")) # If the internal placeholders for a function have names which were # uniquified by TensorFlow, then a single user-specified argument name # must refer to multiple Tensors. The resulting signatures would be # confusing to call. Instead, we throw an exception telling the user to # specify explicit names. if user_input_name != placeholder.op.name: # This should be unreachable, since concrete functions may not be # generated with non-unique argument names. raise ValueError( ("Got non-flat/non-unique argument names for SavedModel " "signature '{}': more than one argument to '{}' was named '{}'. " "Signatures have one Tensor per named input, so to have " "predictable names Python functions used to generate these " "signatures should avoid *args and Tensors in nested " "structures unless unique names are specified for each. Use " "tf.TensorSpec(..., name=...) to provide a name for a Tensor " "input.") .format(signature_key, compat.as_str_any(function_name), user_input_name)) arg_placeholder = array_ops.placeholder( shape=placeholder.shape, dtype=placeholder.dtype, name="{}_{}".format(signature_key, user_input_name)) exterior_argument_placeholders[user_input_name] = arg_placeholder mapped_inputs.append(arg_placeholder) return mapped_inputs, exterior_argument_placeholders def _call_function_with_mapped_captures(function, args, resource_map): """Calls `function` in the exported graph, using mapped resource captures.""" export_captures = _map_captures_to_created_tensors( function.graph.captures, resource_map) mapped_inputs = args + export_captures # Calls the function quite directly, since we have new captured resource # tensors we need to feed in which weren't part of the original function # definition. # pylint: disable=protected-access outputs = function._build_call_outputs( function._inference_function.call(context.context(), mapped_inputs)) return outputs def _generate_signatures(signature_functions, resource_map): """Validates and calls `signature_functions` in the default graph. Args: signature_functions: A dictionary mapping string keys to concrete TensorFlow functions (e.g. from `_canonicalize_signatures`) which will be used to generate SignatureDefs. resource_map: A dictionary mapping from resource tensors in the eager context to resource tensors in the Graph being exported. This dictionary is used to re-bind resources captured by functions to tensors which will exist in the SavedModel. Returns: Each function in the `signature_functions` dictionary is called with placeholder Tensors, generating a function call operation and output Tensors. The placeholder Tensors, the function call operation, and the output Tensors from the function call are part of the default Graph. This function then returns a dictionary with the same structure as `signature_functions`, with the concrete functions replaced by SignatureDefs implicitly containing information about how to call each function from a TensorFlow 1.x Session / the C++ Loader API. These SignatureDefs reference the generated placeholders and Tensor outputs by name. The caller is expected to include the default Graph set while calling this function as a MetaGraph in a SavedModel, including the returned SignatureDefs as part of that MetaGraph. """ signatures = {} for signature_key, function in sorted(signature_functions.items()): if function.graph.captures: argument_inputs = function.graph.inputs[:-len(function.graph.captures)] else: argument_inputs = function.graph.inputs mapped_inputs, exterior_argument_placeholders = ( _map_function_arguments_to_created_inputs( argument_inputs, signature_key, function.name)) outputs = _normalize_outputs( _call_function_with_mapped_captures( function, mapped_inputs, resource_map), function.name, signature_key) signatures[signature_key] = signature_def_utils.build_signature_def( _tensor_dict_to_tensorinfo(exterior_argument_placeholders), _tensor_dict_to_tensorinfo(outputs)) return signatures def _trace_resource_initializers(accessible_objects): """Create concrete functions from `TrackableResource` objects.""" resource_initializers = [] def _wrap_initializer(obj): obj.initialize() return constant_op.constant(1.) # Dummy control output for obj in accessible_objects: if isinstance(obj, tracking.TrackableResource): resource_initializers.append(def_function.function( functools.partial(_wrap_initializer, obj), # All inputs are captures. input_signature=[]).get_concrete_function()) return resource_initializers _AssetInfo = collections.namedtuple( "_AssetInfo", [ # List of AssetFileDef protocol buffers "asset_defs", # Map from asset variable resource Tensors to their init ops "asset_initializers_by_resource", # Map from base asset filenames to full paths "asset_filename_map", # Map from TrackableAsset to index of corresponding AssetFileDef "asset_index"]) def _process_asset(trackable_asset, asset_info, resource_map): """Add `trackable_asset` to `asset_info` and `resource_map`.""" original_variable = trackable_asset.asset_path with context.eager_mode(): original_path = original_variable.numpy() path = builder_impl.get_asset_filename_to_add( asset_filepath=original_path, asset_filename_map=asset_info.asset_filename_map) # TODO(andresp): Instead of mapping 1-1 between trackable asset # and asset in the graph def consider deduping the assets that # point to the same file. asset_path_initializer = array_ops.placeholder( shape=original_variable.shape, dtype=dtypes.string, name="asset_path_initializer") asset_variable = resource_variable_ops.ResourceVariable( asset_path_initializer) asset_info.asset_filename_map[path] = original_path asset_def = meta_graph_pb2.AssetFileDef() asset_def.filename = path asset_def.tensor_info.name = asset_path_initializer.name asset_info.asset_defs.append(asset_def) asset_info.asset_initializers_by_resource[original_variable.handle] = ( asset_variable.initializer) asset_info.asset_index[trackable_asset] = len(asset_info.asset_defs) - 1 resource_map[original_variable.handle] = asset_variable.handle def _map_resources(accessible_objects): """Makes new resource handle ops corresponding to existing resource tensors. Creates resource handle ops in the current default graph, whereas `accessible_objects` will be from an eager context. Resource mapping adds resource handle ops to the main GraphDef of a SavedModel, which allows the C++ loader API to interact with variables. Args: accessible_objects: A list of objects, some of which may contain resources, to create replacements for. Returns: A tuple of (object_map, resource_map, asset_info): object_map: A dictionary mapping from object in `accessible_objects` to replacement objects created to hold the new resource tensors. resource_map: A dictionary mapping from resource tensors extracted from `accessible_objects` to newly created resource tensors. asset_info: An _AssetInfo tuple describing external assets referenced from accessible_objects. """ # TODO(allenl): Handle MirroredVariables and other types of variables which # may need special casing. object_map = {} resource_map = {} asset_info = _AssetInfo( asset_defs=[], asset_initializers_by_resource={}, asset_filename_map={}, asset_index={}) for obj in accessible_objects: if isinstance(obj, tracking.TrackableResource): new_resource = obj.create_resource() resource_map[obj.resource_handle] = new_resource elif resource_variable_ops.is_resource_variable(obj): new_variable = resource_variable_ops.copy_to_graph_uninitialized(obj) object_map[obj] = new_variable resource_map[obj.handle] = new_variable.handle elif isinstance(obj, tracking.TrackableAsset): _process_asset(obj, asset_info, resource_map) return object_map, resource_map, asset_info def _fill_meta_graph_def(meta_graph_def, obj, signature_functions, object_saver): """Generates a MetaGraph which calls `signature_functions`. Args: meta_graph_def: The MetaGraphDef proto to fill. obj: The checkpointable object being exported. signature_functions: A dictionary mapping signature keys to concrete functions containing signatures to add to the MetaGraph. object_saver: A CheckpointableSaver to add to the MetaGraph. Returns: An _AssetInfo, which contains information to help creating the SavedModel. """ signatures = {} # List objects from the eager context to make sure Optimizers give us the # right Graph-dependent variables. accessible_objects = util.list_objects(obj) resource_initializer_functions = _trace_resource_initializers( accessible_objects) exported_graph = ops.Graph() resource_initializer_ops = [] with exported_graph.as_default(): object_map, resource_map, asset_info = _map_resources(accessible_objects) for resource_initializer_function in resource_initializer_functions: asset_dependencies = [] for capture in resource_initializer_function.graph.external_captures: asset_initializer = asset_info.asset_initializers_by_resource.get( capture, None) if asset_initializer is not None: asset_dependencies.append(asset_initializer) with ops.control_dependencies(asset_dependencies): resource_initializer_ops.append( _call_function_with_mapped_captures( resource_initializer_function, [], resource_map)) with ops.control_dependencies(resource_initializer_ops): init_op = control_flow_ops.no_op() # Add the same op to the main_op collection and to the init_op # signature. The collection is for compatibility with older loader APIs; # only one will be executed. meta_graph_def.collection_def[constants.MAIN_OP_KEY].node_list.value.append( init_op.name) meta_graph_def.signature_def[constants.INIT_OP_SIGNATURE_KEY].CopyFrom( signature_def_utils.op_signature_def( init_op, constants.INIT_OP_SIGNATURE_KEY)) # Saving an object-based checkpoint again gathers variables. We need to do the # gathering from the eager context so Optimizers save the right set of # variables, but want any operations associated with the save/restore to be in # the exported graph (thus the `to_graph` argument). saver = object_saver.freeze(object_map=object_map, to_graph=exported_graph) # We must resolve the concrete function to add to MetaGraph while in eager # mode. concrete_functions = [] for accessible_object in accessible_objects: for function in function_serialization.list_all_polymorphic_functions( accessible_object).values(): concrete_functions.extend( function_serialization.list_all_concrete_functions(function)) with exported_graph.as_default(): signatures = _generate_signatures(signature_functions, resource_map) for concrete_function in concrete_functions: concrete_function.add_to_graph() saver_def = saver.to_proto() meta_graph_def.saver_def.CopyFrom(saver_def) graph_def = exported_graph.as_graph_def(add_shapes=True) # Clean reference cycles so repeated export()s don't make work for the garbage # collector. ops.dismantle_graph(exported_graph) meta_graph_def.graph_def.CopyFrom(graph_def) meta_graph_def.meta_info_def.tags.append(tag_constants.SERVING) meta_graph_def.asset_file_def.extend(asset_info.asset_defs) for signature_key, signature in signatures.items(): meta_graph_def.signature_def[signature_key].CopyFrom(signature) meta_graph.strip_graph_default_valued_attrs(meta_graph_def) return asset_info def _write_object_graph(root, export_dir, asset_file_def_index): """Save a SavedObjectGraph proto for `root`.""" # SavedObjectGraph is similar to the CheckpointableObjectGraph proto in the # checkpoint. It will eventually go into the SavedModel. proto = saved_object_graph_pb2.SavedObjectGraph() checkpointable_objects, node_ids, slot_variables = util.find_objects(root) util.fill_object_graph_proto(checkpointable_objects, node_ids, slot_variables, proto) for obj, obj_proto in zip(checkpointable_objects, proto.nodes): _write_object_proto(obj, obj_proto, asset_file_def_index) function_serialization.add_polymorphic_functions_to_object_graph_proto( checkpointable_objects, proto) extra_asset_dir = os.path.join( compat.as_bytes(export_dir), compat.as_bytes(constants.EXTRA_ASSETS_DIRECTORY)) file_io.recursive_create_dir(extra_asset_dir) object_graph_filename = os.path.join( extra_asset_dir, compat.as_bytes("object_graph.pb")) file_io.write_string_to_file(object_graph_filename, proto.SerializeToString()) def _write_object_proto(obj, proto, asset_file_def_index): """Saves an object into SavedObject proto.""" if isinstance(obj, tracking.TrackableAsset): proto.asset.SetInParent() proto.asset.asset_file_def_index = asset_file_def_index[obj] else: proto.user_object.SetInParent() @tf_export("saved_model.save", v1=["saved_model.experimental.save"]) def save(obj, export_dir, signatures=None): # pylint: disable=line-too-long """Exports the Checkpointable object `obj` to [SavedModel format](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md). Example usage: ```python class Adder(tf.train.Checkpoint): @tf.function(input_signature=[tf.TensorSpec(shape=None, dtype=tf.float32)]) def add(self, x): return x + x + 1. to_export = Adder() tf.saved_model.save(to_export, '/tmp/adder') ``` The resulting SavedModel is then servable with an input named "x", its value having any shape and dtype float32. The optional `signatures` argument controls which methods in `obj` will be available to programs which consume `SavedModel`s, for example serving APIs. Python functions may be decorated with `@tf.function(input_signature=...)` and passed as signatures directly, or lazily with a call to `get_concrete_function` on the method decorated with `@tf.function`. If the `signatures` argument is omitted, `obj` will be searched for `@tf.function`-decorated methods. If exactly one `@tf.function` is found, that method will be used as the default signature for the SavedModel. This behavior is expected to change in the future, when a corresponding `tf.saved_model.load` symbol is added. At that point signatures will be completely optional, and any `@tf.function` attached to `obj` or its dependencies will be exported for use with `load`. When invoking a signature in an exported SavedModel, `Tensor` arguments are identified by name. These names will come from the Python function's argument names by default. They may be overridden by specifying a `name=...` argument in the corresponding `tf.TensorSpec` object. Explicit naming is required if multiple `Tensor`s are passed through a single argument to the Python function. The outputs of functions used as `signatures` must either be flat lists, in which case outputs will be numbered, or a dictionary mapping string keys to `Tensor`, in which case the keys will be used to name outputs. Since `tf.keras.Model` objects are also Checkpointable, this function can be used to export Keras models. For example, exporting with a signature specified: ```python class Model(tf.keras.Model): @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.string)]) def serve(self, serialized): ... m = Model() tf.saved_model.save(m, '/tmp/saved_model/') ``` Exporting from a function without a fixed signature: ```python class Model(tf.keras.Model): @tf.function def call(self, x): ... m = Model() tf.saved_model.save( m, '/tmp/saved_model/', signatures=m.call.get_concrete_function( tf.TensorSpec(shape=[None, 3], dtype=tf.float32, name="inp"))) ``` `tf.keras.Model` instances constructed from inputs and outputs already have a signature and so do not require a `@tf.function` decorator or a `signatures` argument. If neither are specified, the model's forward pass is exported. ```python x = input_layer.Input((4,), name="x") y = core.Dense(5, name="out")(x) model = training.Model(x, y) tf.saved_model.save(model, '/tmp/saved_model/') # The exported SavedModel takes "x" with shape [None, 4] and returns "out" # with shape [None, 5] ``` Variables must be tracked by assigning them to an attribute of a tracked object or to an attribute of `obj` directly. TensorFlow objects (e.g. layers from `tf.keras.layers`, optimizers from `tf.train`) track their variables automatically. This is the same tracking scheme that `tf.train.Checkpoint` uses, and an exported `Checkpoint` object may be restored as a training checkpoint by pointing `tf.train.Checkpoint.restore` to the SavedModel's "variables/" subdirectory. Currently variables are the only stateful objects supported by `tf.saved_model.save`, but others (e.g. tables) will be supported in the future. `tf.function` does not hard-code device annotations from outside the function body, instead using the calling context's device. This means for example that exporting a model which runs on a GPU and serving it on a CPU will generally work, with some exceptions. `tf.device` annotations inside the body of the function will be hard-coded in the exported model; this type of annotation is discouraged. Device-specific operations, e.g. with "cuDNN" in the name or with device-specific layouts, may cause issues. Currently a `DistributionStrategy` is another exception: active distribution strategies will cause device placements to be hard-coded in a function. Exporting a single-device computation and importing under a `DistributionStrategy` is not currently supported, but may be in the future. SavedModels exported with `tf.saved_model.save` [strip default-valued attributes](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes) automatically, which removes one source of incompatibilities when the consumer of a SavedModel is running an older TensorFlow version than the producer. There are however other sources of incompatibilities which are not handled automatically, such as when the exported model contains operations which the consumer does not have definitions for. The current implementation of `tf.saved_model.save` targets serving use-cases, but omits information which will be necessary for the planned future implementation of `tf.saved_model.load`. Exported models using the current `save` implementation, and other existing SavedModels, will not be compatible with `tf.saved_model.load` when it is implemented. Further, `save` will in the future attempt to export `@tf.function`-decorated methods which it does not currently inspect, so some objects which are exportable today will raise exceptions on export in the future (e.g. due to complex/non-serializable default arguments). Such backwards-incompatible API changes are expected only prior to the TensorFlow 2.0 release. Args: obj: A checkpointable object to export. export_dir: A directory in which to write the SavedModel. signatures: Optional, either a `tf.function` with an input signature specified or the result of `f.get_concrete_function` on a `@tf.function`-decorated function `f`, in which case `f` will be used to generate a signature for the SavedModel under the default serving signature key. `signatures` may also be a dictionary, in which case it maps from signature keys to either `tf.function` instances with input signatures or concrete functions. The keys of such a dictionary may be arbitrary strings, but will typically be from the `tf.saved_model.signature_constants` module. Raises: ValueError: If `obj` is not checkpointable. @compatibility(eager) Not supported when graph building. From TensorFlow 1.x, `tf.enable_eager_execution()` must run first. May not be called from within a function body. @end_compatibility """ if not context.executing_eagerly(): with ops.init_scope(): if context.executing_eagerly(): raise AssertionError( "tf.saved_model.save is not supported inside a traced " "@tf.function. Move the call to the outer eagerly-executed " "context.") else: raise AssertionError( "tf.saved_model.save is not supported when graph building. " "tf.enable_eager_execution() must run first when calling it from " "TensorFlow 1.x.") # pylint: enable=line-too-long if not isinstance(obj, base.CheckpointableBase): raise ValueError( "Expected a Checkpointable object for export, got {}.".format(obj)) if signatures is None: # Note that we run this before saving the checkpoint, since looping over # attributes may have the side effect of creating variables in some cases. signatures = _find_function_to_export(obj) signatures = _canonicalize_signatures(signatures) # TODO(allenl): Factor out some subset of SavedModelBuilder which is 2.x # compatible (no sessions) and share it with this export API rather than # making a SavedModel proto and writing it directly. saved_model = saved_model_pb2.SavedModel() meta_graph_def = saved_model.meta_graphs.add() object_saver = util.CheckpointableSaver(obj) asset_info = _fill_meta_graph_def( meta_graph_def, obj, signatures, object_saver) saved_model.saved_model_schema_version = ( constants.SAVED_MODEL_SCHEMA_VERSION) # So far we've just been generating protocol buffers with no I/O. Now we write # the checkpoint, copy assets into the assets directory, and write out the # SavedModel proto itself. utils_impl.get_or_create_variables_dir(export_dir) object_saver.save(utils_impl.get_variables_path(export_dir)) builder_impl.copy_assets_to_destination_dir(asset_info.asset_filename_map, export_dir) path = os.path.join( compat.as_bytes(export_dir), compat.as_bytes(constants.SAVED_MODEL_FILENAME_PB)) file_io.write_string_to_file(path, saved_model.SerializeToString()) _write_object_graph(obj, export_dir, asset_info.asset_index)
apache-2.0
-1,015,136,350,667,706,800
45.010738
162
0.722212
false
4.222989
false
false
false
stephane-caron/ijhr-2016
pymanoid/cone.py
1
2305
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2015 Stephane Caron <stephane.caron@normalesup.org> # # This file is part of pymanoid. # # pymanoid is free software: you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation, either version 3 of the License, or (at your option) any later # version. # # pymanoid is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # pymanoid. If not, see <http://www.gnu.org/licenses/>. from cdd import Matrix, Polyhedron, RepType from numpy import array, hstack, zeros NUMBER_TYPE = 'float' # 'float' or 'fraction' class ConeException(Exception): def __init__(self, M): self.M = M class NotConeFace(ConeException): def __str__(self): return "Matrix is not a cone face" class NotConeSpan(ConeException): def __str__(self): return "Matrix is not a cone span" def face_of_span(S): """ Returns the face matrix S^F of the span matrix S, that is, a matrix such that {x = S z, z >= 0} if and only if {S^F x <= 0}. """ V = hstack([zeros((S.shape[1], 1)), S.T]) # V-representation: first column is 0 for rays V_cdd = Matrix(V, number_type=NUMBER_TYPE) V_cdd.rep_type = RepType.GENERATOR P = Polyhedron(V_cdd) H = array(P.get_inequalities()) b, A = H[:, 0], H[:, 1:] for i in xrange(H.shape[0]): if b[i] != 0: raise NotConeSpan(S) return -A def span_of_face(F): """ Compute the span matrix F^S of the face matrix F, that is, a matrix such that {F x <= 0} if and only if {x = F^S z, z >= 0}. """ b, A = zeros((F.shape[0], 1)), -F # H-representation: A x + b >= 0 F_cdd = Matrix(hstack([b, A]), number_type=NUMBER_TYPE) F_cdd.rep_type = RepType.INEQUALITY P = Polyhedron(F_cdd) V = array(P.get_generators()) for i in xrange(V.shape[0]): if V[i, 0] != 0: # 1 = vertex, 0 = ray raise NotConeFace(F) return V[:, 1:]
gpl-3.0
8,395,834,680,207,245,000
25.802326
79
0.625163
false
3.153215
false
false
false
cs98jrb/Trinity
mysite/events/forms/booking.py
1
2961
__author__ = 'james' from django.utils.translation import ugettext as _ from django import forms from django.core.exceptions import ValidationError from django.contrib.auth.models import User from django.contrib.auth import login, authenticate from events.models import Booking from orders.models import Order, OrderItem class BookingForm(forms.ModelForm): # set the css of required fields required_css_class = 'required' email = forms.EmailField( max_length=254, label="Contact email", required=True, help_text="This is required so we can contact you." ) tandc = forms.BooleanField( label="Accept terms and conditions", required=True, ) def __init__(self, request, *args, **kwargs): booking = super(BookingForm, self).__init__(*args, **kwargs) # add label self.fields['quantity'].label = "Number of people" try: if not request.user.is_anonymous(): self.fields['email'].initial = request.user.email except User.DoesNotExist: pass class Meta: model = Booking fields = ['email', 'quantity', ] def save(self, event, price, user, commit=True): from django.contrib.contenttypes.models import ContentType # booking = super(BookingForm, self).save(commit=False) booking.booked_by = user booking.event = event booking.price = price total_booked = 0 open_order_list = Order.objects.open_order(user=user) if open_order_list: order = open_order_list[0] for item in order.orderitem_set.all(): total_booked += item.content_object.quantity if not(event.pricing_set.all().filter(online_book=True) and not event.fully_booked): raise ValidationError( _('This event is fully booked'), code='Fully Booked' ) commit = False elif event.num_spaces < (booking.quantity + total_booked): places = booking.quantity + total_booked raise ValidationError( _('Not enough spaces for %(places)s people.'), code='No Space', params={'places': places}, ) commit = False if commit: booking.save() # Add to open order if not open_order_list: order = Order(ordered_by=user) order.save() order_item = OrderItem( order=order, description=event.__unicode__(), value=(price.value*booking.quantity), vat=price.vat, content_type=ContentType.objects.get_for_model(booking), object_id=booking.id ) order_item.save() return booking def clean(self): return self.cleaned_data
gpl-2.0
-287,810,376,454,806,340
28.039216
72
0.570078
false
4.367257
false
false
false
Midnighter/pyorganism
setup.py
1
2511
#!/usr/bin/env python # -*- coding: utf-8 -*- """ ================== PyOrganism Package ================== :Authors: Moritz Emanuel Beber :Date: 2012-05-22 :Copyright: Copyright(c) 2012 Jacobs University of Bremen. All rights reserved. :File: setup.py """ import sys from os.path import join from setuptools import (setup, Extension) try: from Cython.Distutils import build_ext except ImportError as err: sys.exit("Apologies, you need 'Cython' to install 'pyorganism'.") if __name__ == "__main__": # continuous sources = ["continuous_wrapper.pyx", "continuous.c"] c_path = join("pyorganism", "regulation", "src") continuous = Extension("pyorganism.regulation.continuous_wrapper", sources=[join(c_path, src) for src in sources], include_dirs=[c_path] ) setup( name="pyorganism", version="0.2.5", license="BSD", description="analyze organisational principles in living organisms", author="Moritz Emanuel Beber", author_email="moritz (dot) beber (at) gmail (dot) com", url="http://github.com/Midnighter/pyorganism", zip_safe=False, install_requires=[ "future", "networkx", "numpy", "pandas" ], packages=["pyorganism", "pyorganism.io", "pyorganism.metabolism", "pyorganism.regulation", ], # package_data = {"pyorganism": ["data/*.xml", "data/*.txt", "data/*.tsv"]}, ext_modules=[continuous], cmdclass={"build_ext": build_ext}, classifiers=[ # complete classifier list: http://pypi.python.org/pypi?%3Aaction=list_classifiers "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Natural Language :: English", "Operating System :: Unix", "Operating System :: POSIX", "Operating System :: Microsoft :: Windows", "Programming Language :: Python", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Scientific/Engineering :: Bio-Informatics", ], )
bsd-3-clause
7,473,944,302,607,792,000
29.621951
94
0.562724
false
3.966825
false
false
false
abice-sbr/adaptsearch
blastalign.py
1
4394
import string, re # Written by Robert Belshaw (School of Biomedical & Healthcare Sciences, University of Plymouth) & Aris Katzourakis (Department of Zoology, University of Oxford) # For more information and to cite see Belshaw, R & Katzourakis, A (2005) BlastAlign: a program that uses blast to align problematic nucleotide sequences. Bioinformatics 21:122-123. # Please send any comments to robert.belshaw@plymouth.ac.uk or aris.katzourakis@zoo.ox.ac.uk file = open('blast_out', 'r') buffer = file.readlines() def Calculate_hits(): Number_of_landmarks = len(Permanent_dictionary[KeyList[0]]) # use legth of first entry counter = 1 while counter < Number_of_landmarks: # Less than because list starts from zero number_of_hits = 0 for item in KeyList: list = Permanent_dictionary[item] landmark = list[counter] if landmark != '*': number_of_hits = number_of_hits + 1 List_of_hits.append(number_of_hits) counter = counter +1 return List_of_hits def doInsertRoutine(list, value): no_ast = 0 old_diff = 0 switch = 0 for item in list: if item == '*': no_ast = no_ast+1 else: new_diff = (item - value)*(item - value) if item < value: no_ast = 0 else: i = list.index(item) if new_diff > old_diff: i = i-no_ast list.insert(i, value) else: list.insert(i, value) switch = 1 break old_diff = new_diff if switch == 0: no_ast = 0 for item in list: if item == '*': no_ast = no_ast+1 else: no_ast = 0 i = len(list) - no_ast # Finds position before any trailing asterisks list.insert(i, value) return list, i def go_through_Library(Library_dictionary, tempKey, LandmarkInsertPos): tempKeyList = [] for item in KeyList: tempKeyList.append(item) tempKeyList.remove(tempKey) for item in tempKeyList: tempList = [] for subitem in Permanent_dictionary[item]: tempList.append(subitem) if Library_dictionary.has_key(item): tempList.insert(LandmarkInsertPos, Library_dictionary[item]) Permanent_dictionary[item] = tempList else: tempList.insert(LandmarkInsertPos, '*') Permanent_dictionary[item] = tempList def process_previous_block(tempKey, tempValue, Library_dictionary): landmark = 0 tempList = [] for item in (Permanent_dictionary[tempKey]): tempList.append(item) for item in (Permanent_dictionary[tempKey]): if item != '*': if (tempValue >= item-30) and (tempValue <= item+30): landmark = 1 else: pass if landmark == 0: theAnswer = doInsertRoutine(tempList, tempValue) tempList = theAnswer[0] LandmarkInsertPos = theAnswer[1] Permanent_dictionary[tempKey] = tempList go_through_Library(Library_dictionary, tempKey, LandmarkInsertPos) def makeOutFile(): theOutFile = open('blast_out_python', 'w') theOutFile.write('\t\t') # Just to line up entries for ease of viewing for item in List_of_hits: theOutFile.write('%s\t' %item) theOutFile.write('\n') for item in KeyList: theOutFile.write('%s\t' %item) for listItem in Permanent_dictionary[item]: theOutFile.write('%s\t' %listItem) theOutFile.write('\n') Query_dictionary = {} Library_dictionary = {} Permanent_dictionary = {} KeyList = [] list = [0] List_of_hits = [] # To note whether entries are unique or not for line in buffer: if line[0] == '*': entry = "" entry = line[1:-1] Permanent_dictionary[entry] = list KeyList.append(entry) n=0 previousKey = "null" # Need in case have identical sequences & then need to avoid unassigned variable for line in buffer: tempList = [] if line[0:5] == 'Query': if n >= 1: process_previous_block(QueryKey, QueryValue, Library_dictionary) Library_dictionary = {} line = string.split(line) QueryKey = (line[0])[5:] QueryValue = string.atoi(line[1]) Query_dictionary[QueryKey] = QueryValue n=n+1 elif line[0:7] == 'Library': line = string.split(line) LibraryKey = (line[0])[7:] LibraryValue = string.atoi(line[1]) if LibraryKey != QueryKey: if previousKey == LibraryKey: previousDist = (previousValue-QueryValue)*(previousValue-QueryValue) currentDist = (LibraryValue-QueryValue)*(LibraryValue-QueryValue) if currentDist < previousDist: Library_dictionary[LibraryKey] = LibraryValue else: Library_dictionary[LibraryKey] = LibraryValue previousKey = (line[0])[7:] previousValue = string.atoi(line[1]) Calculate_hits() makeOutFile()
gpl-3.0
5,974,816,698,575,030,000
28.891156
181
0.69117
false
2.913793
false
false
false
chrismamil/chowda
test/test_chowda.py
1
2201
import unittest import os import chowda.parsing as parse import datetime import pandas as pd from chowda.load import load_file DATA_DIR = os.path.join(os.path.dirname(__file__), "data") TEST_FILE = "CTL1 wk3 exp1 RAW data.txt" TEST_1 = os.path.join(DATA_DIR, TEST_FILE) class TestChowda(unittest.TestCase): def setup(self): test_file = os.path.join(DATA_DIR, TEST_FILE) with open(test_file) as in_handle: self.in_data = in_handle.readlines() def test_parse_experiment_time(self): result = parse.parse_experiment_time(self.in_data[0]) self.assertEquals(result.keys()[0], "Experiment Started") def test_parse_subject(self): result = parse.parse_subject(self.in_data[1]) self.assertEquals(result["Subject"], "CNS1") def test_parse_mass(self): result = parse.parse_subject_mass(self.in_data[2]) self.assertEquals(result["Subject Mass"], 34.26) def test_load_file(self): from chowda.load import load_file result = load_file(TEST_1) self.assertEquals(result[0].strip(), '"Oxymax Windows V 2.30 Data File"') def test_get_header(self): from chowda.load import get_header result = get_header(TEST_1) self.assertEquals(result[0].strip(), '"Oxymax Windows V 2.30 Data File"') self.assertEquals(result[-1].split(",")[0].strip(), '"========"') def test_get_data(self): from chowda.load import get_data result = get_data(TEST_1) self.assertEquals(result[0].split(",", 1)[0], "Interval") def test_partition_file(self): from chowda.load import partition_file header, data = partition_file(TEST_1) self.assertEquals(header[0].strip(), '"Oxymax Windows V 2.30 Data File"') self.assertEquals(header[-1].split(",")[0].strip(), '"========"') self.assertEquals(data[0].split(",", 1)[0], "Interval") def test_load_dataframe(self): from chowda.load import load_dataframe result = load_dataframe(parse.get_data(self.in_data)) self.assertEquals(result["Interval"].ix[0], "001")
mit
-1,276,954,630,114,679,000
35.081967
73
0.613358
false
3.510367
true
false
false
CDKGlobal/cd-performance-promotion
cd_perf_promotion/engines/comparisonengine.py
1
19434
import json import operator class ComparisonEngine: """ Queries the performance tools' APIs and determines if the build passes the target requirements. """ def check_health_severity(self, violation): """ Fails the build if the defined severity is found in the health rule violations Keyword arguments: violation - dictionary that contains all of the information for a single violation (as determined by AppDynamics) """ # Add the violation to the output file after removing unecessary data self.output_json["appdynamics"]["healthrule_violations"].append(violation) # Fail the build self.output_json["promotion_gates"]["appdynamics_health"] = False self.build_status_passed = False def compare_appdynamics(self, healthrule_violations, warning, critical): """ Performs the comparison between the defined violation severity settings and the violations that occurred Keyword arguments: healthrule_violations - Dictionary that contains all of the AppDynamics health violations warning - Boolean that indicates whether the user thinks that health rule violations with a status of "WARNING" are important enough to evaluate critical - Boolean that indicates whether the user thinks that health rule violations with a status of "CRITICAL" are important enough to evaluate """ # Set the health to True by default and flip it if necessary self.output_json["promotion_gates"]["appdynamics_health"] = True for violation in healthrule_violations: # Check if the severity settings that we care about exist in the health rule violations if ((warning == True) and (violation["severity"] == "WARNING")): self.check_health_severity(violation) if ((critical == True) and (violation["severity"] == "CRITICAL")): self.check_health_severity(violation) def compare_blazemeter(self, metric_title, target_data, metric_data, transaction_index, operator): """ Performs the comparison between configuration promotion gates and the actual blazemeter test data Keyword arguments: metric_title - String title that indicates the data item that is being evaluated target_data - Number that indicates the cutoff point for the specific metric as determined by the user in the config metric_data - The actual performance data number that is compared against transaction_index - The index of the transaction in the list of transactions operator - <, >, <=, >, == which is used to compare the real data against the config """ if (target_data > 0): # Metric is set in config, begin comparison # Add the data to the output file self.output_json["blazemeter"]["transactions"][transaction_index][metric_title] = metric_data # Get the "passed" JSON key name ready metric_title_passed = metric_title + "_passed" # Determine if promotion gate was met # Uses the operator module so that the process_performance_data function can determine # what operator (<, >, <=, >=, etc.) should be used if operator(metric_data, target_data): # Success if metric_title_passed not in self.output_json["promotion_gates"]: # Not mentioned before, add it in # Not necessary to make the overall status True again if it's True # and if it was False for one transaction the overall status should still be False self.output_json["promotion_gates"][metric_title_passed] = True # Regardless, add it into the transaction data self.output_json["blazemeter"]["transactions"][transaction_index][metric_title_passed] = True else: # Failure self.output_json["promotion_gates"][metric_title_passed] = False self.output_json["blazemeter"]["transactions"][transaction_index][metric_title_passed] = False self.build_status_passed = False def compare_webpagetest(self, metric_title, target_data, metric_data, run_index, view, operator): """ Performs the comparison between configuration promotion gates and the actual WebPageTest test data Keyword arguments: metric_title - String title that indicates the data item that is being evaluated target_data - Number that indicates the cutoff point for the specific metric as determined by the user in the config metric_data - The actual performance data number that is compared against view - Either first_view or repeat_view operator - <, >, <=, >, == which is used to compare the real data against the config """ if (target_data > 0): # Metric is set in config, begin comparison # Convert the metric data to an int (WebPageTest's XML output makes everything a string) metric_data = int(metric_data) # Add the data to the output file if (run_index == None): # Data from the averages section self.output_json["webpagetest"]["average"][view][metric_title] = metric_data else: # Data from the runs section self.output_json["webpagetest"]["runs"][run_index][view][metric_title] = metric_data # Get the "passed" JSON key name ready metric_title_passed = metric_title + "_passed" # Determine if promotion gate was met # Uses the operator module so that the process_performance_data function can determine # what operator (<, >, <=, >=, etc.) should be used if operator(metric_data, target_data): # Success if metric_title_passed not in self.output_json["promotion_gates"]: # Not mentioned before, add it in # Not necessary to make the overall status True again if it's True # and if it was False for one transaction the overall status should still be False if ((metric_title_passed in self.output_json["promotion_gates"] and self.output_json["promotion_gates"][metric_title_passed] != False) or (metric_title_passed not in self.output_json["promotion_gates"])): self.output_json["promotion_gates"][metric_title_passed] = True # Regardless, add it into the transaction data if (run_index == None): self.output_json["webpagetest"]["average"][view][metric_title_passed] = True else: self.output_json["webpagetest"]["runs"][run_index][view][metric_title_passed] = True else: # Failure self.output_json["promotion_gates"][metric_title_passed] = False if (run_index == None): self.output_json["webpagetest"]["average"][view][metric_title_passed] = False else: self.output_json["webpagetest"]["runs"][run_index][view][metric_title_passed] = False self.build_status_passed = False def process_data(self, config_data, perf_data): """ Determines if the build meets promotion gate criteria based off of the information in the config file (retrieved by configengine) and the data from the modules (retrieved by dataengine) Keyword Arguments: config_data - dictionary that contains all of the information retrieved by the config engine perf_data - dictionary that contains all of the information retrieved by the data engine """ # Prepare the output file promotion gates section self.output_json["promotion_gates"] = {} # AppDynamics Module if (config_data["appdynamics"]["exists"] == True): # Check for AppDynamics Health Violations (only if the user cares) if ((config_data["promotion_gates"]["warning"] == True) or (config_data["promotion_gates"]["critical"] == True)): # Output something so that the user isn't confused, regardless of whether health violations were found self.output_json["appdynamics"] = {"healthrule_violations": []} if (perf_data["appdynamics"]["healthrule_violations"] != []): # Uh-oh, there's something wrong with the build self.compare_appdynamics(perf_data["appdynamics"]["healthrule_violations"], config_data["promotion_gates"]["warning"], config_data["promotion_gates"]["critical"]) else: # No health violations, good to go! self.output_json["promotion_gates"]["appdynamics_health"] = True # BlazeMeter Module if (config_data["blazemeter"]["exists"] == True): # Compare BlazeMeter metrics # Add BlazeMeter into the output file self.output_json["blazemeter"] = {"transactions": []} for index, transaction in enumerate(perf_data["blazemeter"]["transactions"]): # Add transaction information into the output self.output_json["blazemeter"]["transactions"].append({"transaction_id": transaction["transaction_id"], "transaction_name": transaction["transaction_name"]}) # Average Response Time self.compare_blazemeter("response_time_avg", config_data["promotion_gates"]["response_time_avg"], transaction["response_time_avg"], index, operator.lt) # Max Response Time self.compare_blazemeter("response_time_max", config_data["promotion_gates"]["response_time_max"], transaction["response_time_max"], index, operator.lt) # Response Time Geometric Mean self.compare_blazemeter("response_time_geomean", config_data["promotion_gates"]["response_time_geomean"], transaction["response_time_geomean"], index, operator.lt) # Response Time Standard Deviation self.compare_blazemeter("response_time_stdev", config_data["promotion_gates"]["response_time_stdev"], transaction["response_time_stdev"], index, operator.lt) # Response Time 90% Line self.compare_blazemeter("response_time_tp90", config_data["promotion_gates"]["response_time_tp90"], transaction["response_time_tp90"], index, operator.lt) # Response Time 95% Line self.compare_blazemeter("response_time_tp95", config_data["promotion_gates"]["response_time_tp95"], transaction["response_time_tp95"], index, operator.lt) # Response Time 99% Line self.compare_blazemeter("response_time_tp99", config_data["promotion_gates"]["response_time_tp99"], transaction["response_time_tp99"], index, operator.lt) # Maximum Latency self.compare_blazemeter("latency_max", config_data["promotion_gates"]["latency_max"], transaction["latency_max"], index, operator.lt) # Average Latency self.compare_blazemeter("latency_avg", config_data["promotion_gates"]["latency_avg"], transaction["latency_avg"], index, operator.lt) # Latency Standard Deviation self.compare_blazemeter("latency_stdev", config_data["promotion_gates"]["latency_stdev"], transaction["latency_stdev"], index, operator.lt) # Average Bandwidth self.compare_blazemeter("bandwidth_avg", config_data["promotion_gates"]["bandwidth_avg"], transaction["bandwidth_avg"], index, operator.lt) # Transaction Rate self.compare_blazemeter("transaction_rate", config_data["promotion_gates"]["transaction_rate"], transaction["transaction_rate"], index, operator.gt) # WebPageTest Module if (config_data["webpagetest"]["exists"] == True): # Compare WebPageTest metrics # Add WebPageTest into the output file self.output_json["webpagetest"] = {"average": {}, "runs": []} # Keep track of the views for looping purposes views = ["first_view", "repeat_view"] # Make sure that we care about the data before processing it if (("first_view" in config_data["promotion_gates"]) or ("repeat_view" in config_data["promotion_gates"])): # Check out the averages for the runs # This is less for failing the build and more for adding the data into the output file for view in views: if (view in config_data["promotion_gates"]): # Set up average first_view self.output_json["webpagetest"]["average"][view] = {} # Speed Index (Average) self.compare_webpagetest("speed_index", config_data["promotion_gates"][view]["speed_index"], perf_data["webpagetest"]["average"][view]["SpeedIndex"], None, view, operator.gt) # Time to First Paint (Average) self.compare_webpagetest("first_paint", config_data["promotion_gates"][view]["first_paint"], perf_data["webpagetest"]["average"][view]["firstPaint"], None, view, operator.lt) # Time to First Byte (Average) self.compare_webpagetest("first_byte", config_data["promotion_gates"][view]["first_byte"], perf_data["webpagetest"]["average"][view]["TTFB"], None, view, operator.lt) # Time to Fully Loaded (Average) self.compare_webpagetest("fully_loaded", config_data["promotion_gates"][view]["fully_loaded"], perf_data["webpagetest"]["average"][view]["fullyLoaded"], None, view, operator.lt) # Time to Visual Complete (Average) self.compare_webpagetest("visual_complete", config_data["promotion_gates"][view]["visual_complete"], perf_data["webpagetest"]["average"][view]["visualComplete"], None, view, operator.lt) # Time to Start Render (Average) self.compare_webpagetest("start_render", config_data["promotion_gates"][view]["start_render"], perf_data["webpagetest"]["average"][view]["render"], None, view, operator.lt) # Time to Last Visual Change (Average) self.compare_webpagetest("last_visual_change", config_data["promotion_gates"][view]["last_visual_change"], perf_data["webpagetest"]["average"][view]["lastVisualChange"], None, view, operator.lt) # Time to <title></title> Tags Loaded self.compare_webpagetest("title_time", config_data["promotion_gates"][view]["title_time"], perf_data["webpagetest"]["average"][view]["titleTime"], None, view, operator.lt) # Page Size (Bytes In) self.compare_webpagetest("page_size", config_data["promotion_gates"][view]["page_size"], perf_data["webpagetest"]["average"][view]["bytesIn"], None, view, operator.lt) # Loop over all of the runs # Most of the time there will likely be only one for run_id, run in enumerate(perf_data["webpagetest"]["runs"]): # Add transaction information into the output self.output_json["webpagetest"]["runs"].append({"run_id": run["run_id"]}) # Loop over all of the views for each run for view in views: if (view in config_data["promotion_gates"]): # Set up first_view for the run self.output_json["webpagetest"]["runs"][run_id][view] = {} # Speed Index self.compare_webpagetest("speed_index", config_data["promotion_gates"][view]["speed_index"], perf_data["webpagetest"]["runs"][run_id][view]["SpeedIndex"], run_id, view, operator.gt) # Time to First Paint self.compare_webpagetest("first_paint", config_data["promotion_gates"][view]["first_paint"], perf_data["webpagetest"]["runs"][run_id][view]["firstPaint"], run_id, view, operator.lt) # Time to First Byte self.compare_webpagetest("first_byte", config_data["promotion_gates"][view]["first_byte"], perf_data["webpagetest"]["runs"][run_id][view]["TTFB"], run_id, view, operator.lt) # Time to Fully Loaded self.compare_webpagetest("fully_loaded", config_data["promotion_gates"][view]["fully_loaded"], perf_data["webpagetest"]["runs"][run_id][view]["fullyLoaded"], run_id, view, operator.lt) # Time to Visual Complete self.compare_webpagetest("visual_complete", config_data["promotion_gates"][view]["visual_complete"], perf_data["webpagetest"]["runs"][run_id][view]["visualComplete"], run_id, view, operator.lt) # Time to Start Render self.compare_webpagetest("start_render", config_data["promotion_gates"][view]["start_render"], perf_data["webpagetest"]["runs"][run_id][view]["render"], run_id, view, operator.lt) # Time to Last Visual Change self.compare_webpagetest("last_visual_change", config_data["promotion_gates"][view]["last_visual_change"], perf_data["webpagetest"]["runs"][run_id][view]["lastVisualChange"], run_id, view, operator.lt) # Time to <title></title> Tags Loaded self.compare_webpagetest("title_time", config_data["promotion_gates"][view]["title_time"], perf_data["webpagetest"]["runs"][run_id][view]["titleTime"], run_id, view, operator.lt) # Page Size (Bytes In) self.compare_webpagetest("page_size", config_data["promotion_gates"][view]["page_size"], perf_data["webpagetest"]["runs"][run_id][view]["bytesIn"], run_id, view, operator.lt) # Set the overall status in the output JSON file self.output_json["promotion_gates"]["passed"] = self.build_status_passed # We're done! print("Processed performance data") return self.output_json def __init__(self): """ Class starting point """ # Build Status self.build_status_passed = True # Output JSON report data # Later appended by the AppDynamics and BlazeMeter processing functions self.output_json = {}
mit
-1,119,515,072,854,985,200
64.877966
229
0.591129
false
4.58241
true
false
false
Frky/scat
src/shell/memory/addrtable.py
1
1331
#-*- coding: utf-8 -*- class AddrTable(object): TABLE_SIZE = 10000 def __init__(self, dic=False): self.__addr = list() self.__dic = dic for i in xrange(AddrTable.TABLE_SIZE): if self.__dic: self.__addr.append(dict()) else: self.__addr.append(list()) self.__curr_key = None self.__curr_addr = None def contains(self, addr): key = addr % AddrTable.TABLE_SIZE if self.__dic: return addr in self.__addr[key].keys() else: return addr in self.__addr[key] def add(self, addr): key = addr % AddrTable.TABLE_SIZE if self.__dic: self.__addr[key][addr] = list() else: self.__addr[key].append(addr) def remove(self, addr): key = addr % AddrTable.TABLE_SIZE self.__addr[key].remove(addr) def add_dic(self, addr, fid): if not self.__dic: raise Exception key = addr % AddrTable.TABLE_SIZE self.__addr[key][addr].append(fid) def items(self): for key in self.__addr: if self.__dic: for addr, call in key.items(): yield addr, call else: for addr in key: yield addr
mit
-7,471,110,895,551,581,000
26.163265
50
0.486852
false
3.996997
false
false
false
BenjaminSchubert/web-polls
backend/errors/http.py
1
1737
""" This module contains a collection of commonly encountered HTTP exceptions. This allows all these http exceptions to be treated in the same way and simplifies the return of errors to the user. """ from errors import ErrorMessage __author__ = "Benjamin Schubert <ben.c.schubert@gmail.com>" class BaseHTTPException(Exception): """ This is the base HTTP Exception. It should not be used as is, as it signifies that the server had an unexpected error. """ status_code = 500 # type: int def __init__(self, payload: ErrorMessage = None, status_code: int = None): """ Create a new `BaseHTTPException`. :param payload: payload to send to explain the error to the user. :param status_code: HTTP status code to send. If not given, will fallback to `self.status_code`. """ super().__init__(self) if payload is None: payload = dict() self.payload = payload if status_code is not None: self.status_code = status_code class ForbiddenException(BaseHTTPException): def __init__(self): super().__init__({}, 401) class BadRequestException(BaseHTTPException): """This is an exception to throw to return a 400 BAD REQUEST to the user.""" def __init__(self, payload: ErrorMessage): """ Create a new `BadRequestException`. :param payload: payload to send to explain the error to the user. """ super().__init__(payload, 400) class NotFoundException(BaseHTTPException): """This is an exception to throw to return a 404 NOT FOUND to the user.""" def __init__(self): """Create a new `NotFoundException`.""" super().__init__(None, 404)
mit
-7,086,277,074,543,223,000
27.95
116
0.639033
false
4.320896
false
false
false
ralbayaty/KaggleRetina
testing/censureHistCalc.py
1
4517
from skimage.feature import CENSURE from skimage.color import rgb2gray import matplotlib.pyplot as plt import numpy as np import cv2 import sys from PIL import Image, ImageDraw def draw_keypoints(img, kp, scale): draw = ImageDraw.Draw(img) # Draw a maximum of 300 keypoints for i in range(min(len(scale),300)): x1 = kp[i,1] y1 = kp[i,0] x2 = kp[i,1]+2**scale[i] y2 = kp[i,0]+2**scale[i] coords = (x1, y1, x2, y2) draw.ellipse(coords, fill = None, outline ='white') if __name__ == '__main__': try: file_name = sys.argv[1] except: print("Didn't give me a file...") file_name = "Lenna.png" def nothing(*arg): pass # Create sliderbars to change the values of CENSURE parameters online # Defaults: min_scale=1, max_scale=7, mode='DoB', non_max_threshold=0.15, line_threshold=10 cv2.namedWindow('censure') cv2.createTrackbar('min_scale', 'censure', 1, 10, nothing) cv2.createTrackbar('max_scale', 'censure', 7, 20, nothing) cv2.createTrackbar('mode', 'censure', 2, 2, nothing) cv2.createTrackbar('non_max_threshold', 'censure', 6, 1000, nothing) cv2.createTrackbar('line_threshold', 'censure', 10, 100, nothing) # Read image from file, then inspect the image dimensions img = cv2.imread(file_name,1) height, width, channels = img.shape # Pull the different color channels from the image blue = img[:,:,0] green = img[:,:,1] red = img[:,:,2] gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Make a PIL image from each channel so we can use PIL.Iamge.thumbnail to resize if needed blue1 = Image.fromarray(blue) green1 = Image.fromarray(green) red1 = Image.fromarray(red) gray1 = Image.fromarray(gray) # Check if dimensions are above desired, if so then resize keepig aspect ratio m, n = 512, 512 if height > m or width > n: blue1.thumbnail((m,n), Image.ANTIALIAS) green1.thumbnail((m,n), Image.ANTIALIAS) red1.thumbnail((m,n), Image.ANTIALIAS) gray1.thumbnail((m,n), Image.ANTIALIAS) # CENSURE related mode_dict = {"0": "DoB", "1": "Octagon", "2": "STAR"} last_num_kp = 0 while True: vis = gray.copy() img = img1.copy() # Read the values of the sliderbars and save them to variables min_scale = cv2.getTrackbarPos('min_scale', 'censure') max_scale = cv2.getTrackbarPos('max_scale', 'censure') if min_scale is 0: min_scale = 1 if min_scale + max_scale < 3: max_scale = min_scale + 2 mode = mode_dict[str(cv2.getTrackbarPos('mode', 'censure'))] non_max_threshold = float(cv2.getTrackbarPos('non_max_threshold', 'censure'))/1000 line_threshold = cv2.getTrackbarPos('line_threshold', 'censure') # Create a CENSURE feature detector censure = CENSURE(min_scale=min_scale, max_scale=max_scale, mode=mode, non_max_threshold=non_max_threshold, line_threshold=line_threshold) # Obtain the CENSURE features censure.detect(blue1) kp_blue, scale_blue = censure.keypoints, censure.scales censure.detect(green1) kp_green, scale_green = censure.keypoints, censure.scales censure.detect(red1) kp_red, scale_red = censure.keypoints, censure.scales censure.detect(gray1) kp_gray, scale_gray = censure.keypoints, censure.scales # Print the # of features if it has changed between iterations num_kp = len(censure.keypoints) if last_num_kp != num_kp: print("Number of keypoints: " + str(len(censure.keypoints))) last_num_kp = num_kp # Draw the feature points on the images draw_keypoints(blue1, kp_blue, scale_blue) draw_keypoints(green1, kp_green, scale_green) draw_keypoints(red1, kp_red, scale_red) draw_keypoints(gray1, kp_gray, scale_gray) # Obtain the histogram of scale values plt.clf() # clear the figure from any previous plot scale_hist, bin_edges = np.histogram(censure.scales,max_scale-min_scale, (min_scale,max_scale+1)) plt.bar(bin_edges[:-1]-0.5, scale_hist, width = 1) plt.show(block=False) plt.draw() # Show the image with keypoints drawn over image = cv2.cvtColor(np.asarray(img),cv2.COLOR_BGR2RGB) cv2.imshow('censure', image) if 0xFF & cv2.waitKey(500) == 27: break cv2.destroyAllWindows()
gpl-2.0
159,560,390,159,278,880
36.032787
102
0.629179
false
3.210377
false
false
false
qiou/Dev
python/edf.py
1
4511
#========================================================================= # Dependencies / Libraries #========================================================================= import time import serial import MySQLdb import subprocess from time import sleep import datetime #========================================================================= # Fonction Tableau/Dictionnaire #========================================================================= def checksum (etiquette, valeur): sum = 32 for c in etiquette: sum = sum + ord(c) for c in valeur: sum = sum + ord(c) sum = (sum & 63) + 32 return chr(sum) #========================================================================= # Fonction LireTeleinfo #========================================================================= def ReadTeleinfo (): # Attendre le debut du message while ser.read(1) != chr(2): pass message = "" fin = False while not fin: char = ser.read(1) if char != chr(2): message = message + char else: fin = True trames = [ trame.split(" ") for trame in message.strip("\r\n\x03").split("\r\n") ] tramesValides = dict([ [trame[0],trame[1]] for trame in trames if (len(trame) == 3) and (checksum(trame[0],trame[1]) == trame[2]) ]) return tramesValides # print('Lecture des trames Teleinformation avec la carte RPIDOM') #========================================================================= # Connexion au port #========================================================================= ser = serial.Serial( port='/dev/ttyAMA0', baudrate=1200, parity=serial.PARITY_EVEN, stopbits=serial.STOPBITS_ONE, bytesize=serial.SEVENBITS ) #========================================================================= # Definition variables de trame et chargement d'une valeur initiale #========================================================================= vIINST = 0 vMOTDETAT = 0 vOPTARIF = 0 vISOUSC = 0 vADCO = 0 vPAPP = 0 vIMAX = 0 vBASE = 0 vADPS = 0 #========================================================================= # Read serial data #========================================================================= #print '\nPremiere voie' ser.write('A') sleep(1) ser.flushInput() tramesOk = ReadTeleinfo() trouve = False for etiquette in tramesOk: if etiquette == 'IINST': #print etiquette , ":", tramesOk[etiquette] vIINST = tramesOk[etiquette] if etiquette == 'MOTDETAT': #print etiquette , ":", tramesOk[etiquette] vMOTDETAT = tramesOk[etiquette] if etiquette == 'OPTARIF': #print etiquette , ":", tramesOk[etiquette] vOPTARIF = tramesOk[etiquette] if etiquette == 'ISOUSC': #print etiquette , ":", tramesOk[etiquette] vISOUSC = tramesOk[etiquette] if etiquette == 'ADCO': #print etiquette , ":", tramesOk[etiquette] vADCO = tramesOk[etiquette] if etiquette == 'PAPP': #print etiquette , ":", tramesOk[etiquette] vPAPP = tramesOk[etiquette] if etiquette == 'IMAX': #print etiquette , ":", tramesOk[etiquette] vIMAX = tramesOk[etiquette] if etiquette == 'BASE': #print etiquette , ":", tramesOk[etiquette] vBASE = tramesOk[etiquette] if etiquette == 'ADPS': #print etiquette , ":", tramesOk[etiquette] vADPS = tramesOk[etiquette] #========================================================================= # Date and Hour #========================================================================= vHEURE = datetime.datetime.now().strftime('%H:%M') vDATE = datetime.datetime.today().strftime('%Y-%m-%d') #========================================================================= # Connect and insert into DB #========================================================================= db = MySQLdb.connect(host="192.168.1.250",port=3307,user="root",passwd="MariaQiou",db="edf" ) cursor = db.cursor() if vBASE > 0: cursor.execute("""INSERT INTO teleinfo(DATE, HEURE, IINST, MOTDETAT, OPTARIF, ISOUSC, ADCO, PAPP, IMAX, BASE, ADPS) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)""" ,(vDATE, vHEURE, vIINST, vMOTDETAT, vOPTARIF, vISOUSC, vADCO, vPAPP, vIMAX, vBASE, vADPS)) # Write into DB db.commit() db.rollback() db.close() #========================================================================= ser.close()
gpl-2.0
3,979,199,428,035,871,000
35.379032
265
0.441809
false
3.617482
false
false
false
rithms/hearthstone
xml_to_json.py
1
4835
#!/usr/bin/env python from bs4 import BeautifulSoup import glob import json ############################################# # Convert Hearthstone card data XML to JSON # ############################################# __author__ = "Taylor Caldwell - http://github.com/rithms" __copyright__ = "Copyright 2015, Taylor Caldwell" __license__ = "MIT" __version__ = "1.0.0" __maintainer__ = "Taylor Caldwell" __email__ = "tcaldwel@nmsu.edu" __status__ = "Production" # EnumIds - Non-Boolean enum_dict = { 45 : "health", 47 : "attack", 48 : "cost", 183 : "cardSet", 184 : "cardTextInHand", 185 : "cardName", 187 : "durability", 199 : "class", 200 : "race", 201 : "faction", 202 : "cardType", 203 : "rarity", 251 : "attackVisualType", 252 : "cardTextInPlay", 268 : "devState", 325 : "targetingArrowText", 330 : "enchantmentBirthVisual", 331 : "enchantmentIdleVisual", 342 : "artistName", 351 : "flavorText", 365 : "howToGetThisGoldCard", 364 : "howToGetThisCard", #377 : "unknownHasOnDrawEffect", #380 : "unknownBlackrockHeroes", #389 : "unknownDuneMaulShaman", #402 : "unknownIntenseGaze", #401 : "unknownBroodAffliction" } # EnumIds - Boolean bool_dict = { 32 : "Trigger Visual", 114 : "elite", 321 : "collectible", 189 : "Windfury", 190 : "Taunt", 191 : "Stealth", 192 : "Spell Power", 194 : "Divine Shield", 197 : "Charge", 205 : "Summoned", 208 : "Freeze", 212 : "Enrage", 215 : "Overload", 217 : "Deathrattle", 218 : "Battlecry", 219 : "Secret", 220 : "Combo", 240 : "Can't Be Damaged", 293 : "Morph", 335 : "Invisible Deathrattle", 338 : "One Turn Effect", 339 : "Silence", 340 : "Counter", 349 : "Immune To Spell Power", 350 : "Adjacent Buff", 361 : "Heal Target", 362 : "Aura", 363 : "Poisonous", 367 : "AI Must Play", 370 : "Affected By Spell Power", 388 : "Spare Part", } # Card Class IDs class_dict = { 0 : "Developer", 2 : "Druid", 3 : "Hunter", 4 : "Mage", 5 : "Paladin", 6 : "Priest", 7 : "Rogue", 8 : "Shaman", 9 : "Warlock", 10 : "Warrior", 11 : "Dream" } # Card Set IDs set_dict = { 2 : "Basic", 3 : "Classic", 4 : "Reward", 5 : "Missions", 7 : "System", 8 : "Debug", 11 : "Promotion", 12 : "Curse of Naxxramas", 13 : "Goblin vs Gnomes", 14 : "Blackrock Mountain", 16 : "Credits" } # Card Type IDs type_dict = { 3 : "Hero", 4 : "Minion", 5 : "Spell", 6 : "Enchantment", 7 : "Weapon", 10 : "Hero Power" } # Card Race IDs race_dict = { 14 : "Murloc", 15 : "Demon", 17 : "Mechanical", 20 : "Beast", 21 : "Totem", 23 : "Pirate", 24 : "Dragon" } # Card Faction IDs faction_dict = { 1 : "Horde", 2 : "Alliance", 3 : "Neutral" } # Card Rarity IDs rarity_dict = { 0 : "Developer", 1 : "Common", 2 : "Free", 3 : "Rare", 4 : "Epic", 5 : "Legendary" } # Get the name of the corresponding enum ID def get_name(enum_id, d): if enum_id in d: return d[enum_id] for f in glob.glob('cardxml0/CAB-cardxml0/TextAsset/*.txt'): with open(f) as cardfile: file_name = f.split('/')[-1].split('.')[0] cardsoup = BeautifulSoup(cardfile.read(), features="xml") cards = cardsoup.find_all('Entity') json_dict = { 'data' : {} } for card in cards: card_id = card.get('CardID') json_dict['data'][card_id] = { 'id' : card_id, 'mechanics' : [] } tags = card.find_all('Tag') for tag in tags: enum_id = int(tag.get('enumID')) if(tag.get('type') == 'String'): enum_name = tag.text else: enum_name = tag.get('value') if enum_id in enum_dict: field = enum_dict[enum_id] if field == 'class': enum_name = get_name(int(enum_name), class_dict) elif field == 'cardSet': enum_name = enum_name = get_name(int(enum_name), set_dict) elif field == 'cardType': enum_name = get_name(int(enum_name), type_dict) elif field == 'race': enum_name = get_name(int(enum_name), race_dict) elif field == 'faction': enum_name = get_name(int(enum_name), faction_dict) elif field == 'rarity': enum_name = get_name(int(enum_name), rarity_dict) json_dict['data'][card_id][enum_dict[enum_id]] = enum_name elif enum_id in bool_dict: field = bool_dict[enum_id] if field == 'collectible' or field == 'elite': if enum_name == '1': json_dict['data'][card_id][field] = True elif enum_name == '0': json_dict['data'][card_id][field] = False else: if enum_name == '1': json_dict['data'][card_id]['mechanics'].append(field) for key in bool_dict: field = bool_dict[key] if field == 'collectible' or field == 'elite': if field not in json_dict['data'][card_id]: json_dict['data'][card_id][field] = False if not json_dict['data'][card_id]['mechanics']: del json_dict['data'][card_id]['mechanics'] with open(file_name+'.json', 'w') as outfile: json.dump(json_dict, outfile, sort_keys=True)
mit
7,331,306,430,884,571,000
20.20614
67
0.588211
false
2.512994
false
false
false
bodedev/prospera
plataforma/management/commands/atualizar_saldos.py
1
2085
# -*- coding: utf-8 -*- from django.conf import settings from django.core.management.base import BaseCommand from plataforma.constants import ETHER_DIVISOR from plataforma.models import Saldo import requests def buscar_saldo(carteira): try: r = requests.get("https://api.etherscan.io/api?module=account&action=tokenbalance&contractaddress=%s&address=%s&tag=latest&apikey=%s" % (settings.ETHERSCAN_CONTRACT_ADDRESS, carteira, settings.ETHERSCAN_APIKEY)) if r.status_code == 200: data = r.json() if data["status"] == "1": saldo = float(data["result"]) / float(ETHER_DIVISOR) _, created = Saldo.objects.update_or_create(carteira=carteira, defaults={"total": saldo}) print "%s: %0.6f (%s)" % (carteira, saldo, str(created)) return True return False except Exception, e: print "Nao consegui pegar o saldo da carteira %s" % carteira return None class Command(BaseCommand): help = u"Atualiza o saldo de todas as carteiras de um contrato." def handle(self, *args, **options): url = "https://api.etherscan.io/api?module=logs&action=getLogs&fromBlock=%s&toBlock=latest&address=%s&apikey=%s" % (settings.ETHERSCAN_START_BLOCK_NUMBER, settings.ETHERSCAN_CONTRACT_ADDRESS, settings.ETHERSCAN_APIKEY) r = requests.get(url) data = r.json() saldos_atualizados = [] for transacion in data["result"]: carteira_from = transacion["topics"][1].replace("0x000000000000000000000000", "0x") if carteira_from not in saldos_atualizados: if buscar_saldo(carteira_from): saldos_atualizados.append(carteira_from) if len(transacion["topics"]) >= 3: carteira_to = transacion["topics"][2].replace("0x000000000000000000000000", "0x") if carteira_to not in saldos_atualizados: if buscar_saldo(carteira_to): saldos_atualizados.append(carteira_to) print "Fim de processo!"
mit
-6,934,085,334,793,678,000
44.326087
226
0.632134
false
3.434926
false
false
false
jas0n1ee/SonyCameraAPI
takePicture.py
1
1212
#!/usr/bin/env python from sonyAPI2 import API2 import cv2 import urllib2 import numpy as np import time import struct api = API2() api.update_api_list() try: result = api.do('getAvailableCameraFunction') current = result['result'][0] availavle = result['result'][1] if current != "Remote Shooting": if "Remote Shooting" in availavle: api.do('setCameraFunction',["Remote Shooting"]) api.update_api_list() else: print "Remote Shooting not availavle" except KeyError: print result try: result = api.do('getAvailableShootMode') current = result['result'][0] availavle = result['result'][1] if current != "still": if "still" in availavle: api.do('setShootMode',["still"]) api.update_api_list() else: print "stil Shooting not availavle" except KeyError: print result try: result = api.do('actTakePicture') url = result['result'][0][0] except KeyError: print result except TypeError: print result f = urllib2.urlopen(url) d = np.asarray(bytearray(f.read()), dtype='uint8') img = cv2.imdecode(d,cv2.IMREAD_COLOR) cv2.imshow('postview',img) time.sleep(10)
apache-2.0
5,010,609,995,021,559,000
23.734694
59
0.640264
false
3.338843
false
true
false
junhe/chopper
src/MWpyFS/Monitor.py
1
44187
# Chopper is a diagnostic tool that explores file systems for unexpected # behaviors. For more details, see paper Reducing File System Tail # Latencies With Chopper (http://research.cs.wisc.edu/adsl/Publications/). # # Please send bug reports and questions to jhe@cs.wisc.edu. # # Written by Jun He at University of Wisconsin-Madison # Copyright (C) 2015 Jun He (jhe@cs.wisc.edu) # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # The monitor is used to monitor the FS fragmentation status. # What I want to see is, generally, how's the metadata. This may include: # # SIZE of inode and extent tree. (number of inode block and extent tree # block). This can be find by debugfs "dump_extents [-n] [-l] filespec". # But you have to do it for ALL files in the file system, which might be # slow. I haven't got a better approach. A good indicator of metadata # problem is #_metadata_block/#_data_block. This should be very informative # about the aging of a file system which causes metadata disaster. # I expect the following from the output of this per file: # # filepath create_time n_metablock n_datablock metadata_ratio filebytes # # Extent fragmentation overview. This can be obtained by e2freefrag. This # should give me a good sense of how fragemented the FS is. The acceleration # rate of fragmentation might be a good indicator of whether a workload # can cause metadata problem. (Because of fragmentation, physical blocks # might not be able to allocated contiguously, then it needs two or more # extents to the logically contiguous blocks.) # I expect the following from the output of this per FS: # JUST LIKE THE ORIGINAL OUTPUT BUT FORMAT IT A LITTLE BIT # # # # # TODO: # 1. I need to figure out a good way to figure out # dspan of the interested files. # 2. Is there a better way in btrfs to find only the # interested file, other than deleting all the # uninteresting file. # import subprocess from time import strftime, localtime, sleep import re import shlex import os import pprint import shutil import fnmatch import itertools import glob import btrfs_db_parser import xfs_db_parser import dataframe class cd: """Context manager for changing the current working directory""" def __init__(self, newPath): self.newPath = newPath def __enter__(self): self.savedPath = os.getcwd() os.chdir(self.newPath) def __exit__(self, etype, value, traceback): os.chdir(self.savedPath) def fill_white_space(path, filler="_"): path.strip() return path.replace(" ", filler) class FSMonitor: """ This monitor probes the ext4 file system and return information I want in a nice format. """ def __init__(self, dn, mp, ld="/tmp", cw=20, filesystem='ext4'): self.devname = dn # this should be the device name of the partition self.mountpoint = mp # please only provide path without mountpoint # when using this class. self.col_width = cw self.logdir = ld self.resetMonitorTime() self.resetJobID() self.filesystem = filesystem # the file system this monitor monitors def resetMonitorTime(self, monitorid=""): "monitor_time is used to identify each data retrieval" if monitorid == "": self.monitor_time = strftime("%Y-%m-%d-%H-%M-%S", localtime()) else: self.monitor_time = monitorid def resetJobID(self, jobid="DefaultJOBID"): self.jobid = jobid def _spliter_dumpfs(self, line): line = line.replace(",", " ") elems = line.split(":")[1] elems = elems.split() new_elems = [] # [[a0,a1],[b0,b1]...] for elem in elems: e = elem.split("-") elen = len(e) if elen == 2: new_elems.append(e) elif elen == 1: e = e*2 new_elems.append(e) else: print "wrong split", elem exit(1) return new_elems def dumpfsSummary(self): if self.filesystem != 'ext4': return print "dumpfs..." cmd = ["dumpe2fs", "-h", self.devname] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE) print "dumpfs finished. Parsing results..." proc.wait() return proc.communicate()[0] def dumpfs(self): if self.filesystem != 'ext4': return print "dumpfs..." cmd = ["dumpe2fs", self.devname] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE) print "dumpfs finished. Parsing results..." freeblocks = [] freeinodes = [] for line in proc.stdout: if line.startswith(" Free blocks:"): freeblocks += self._spliter_dumpfs(line) elif line.startswith(" Free inodes:"): freeinodes += self._spliter_dumpfs(line) else: pass proc.wait() # initialize freeblocks_df = dataframe.DataFrame(header=['start', 'end'], table=freeblocks) freeinodes_df = dataframe.DataFrame(header=['start', 'end'], table=freeinodes) # add additional columns freeblocks_df.addColumn(key="monitor_time", value=self.monitor_time) freeblocks_df.addColumn(key="jobid", value=self.jobid) freeblocks_df.addColumn(key="HEADERMARKER_freeblocks", value="DATAMARKER_freeblocks") freeinodes_df.addColumn(key="monitor_time", value=self.monitor_time) freeinodes_df.addColumn(key="jobid", value=self.jobid) freeinodes_df.addColumn(key="HEADERMARKER_freeinodes", value="DATAMARKER_freeinodes") return {"freeblocks":freeblocks_df, "freeinodes":freeinodes_df} def e2freefrag(self): if self.filesystem != 'ext4': return cmd = ["e2freefrag", self.devname] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE) proc.wait() part = 0 sums_dict = {} hist_table = "" hist_df = dataframe.DataFrame() for line in proc.stdout: if part == 0: if "HISTOGRAM" in line: part = 1 continue mo = re.search( r'(.*): (\d+)', line, re.M) if mo: keyname = mo.group(1) keyname = keyname.replace('.', '') keyname = "_".join(keyname.split()) sums_dict[keyname] = mo.group(2) elif part == 1: # This part is the histogram. line = line.strip() if "Extent Size" in line: hist_table = "Extent_start Extent_end Free_extents Free_Blocks Percent" hist_df.header = hist_table.split() continue fline = re.sub(r'[\-:\n]', "", line) fline = re.sub(r'\.{3}', "", fline) row = fline.split() hist_df.addRowByList(row) hist_df.addColumns(keylist = ["HEADERMARKER_freefrag_hist", "monitor_time", "jobid"], valuelist = ["DATAMARKER_freefrag_hist", self.monitor_time, self.jobid]) # convert dict to data frame sums_df = dataframe.DataFrame(header=sums_dict.keys(), table=[sums_dict.values()]) sums_df.addColumn(key="HEADERMARKER_freefrag_sum", value="DATAMARKER_freefrag_sum") sums_df.addColumn(key="monitor_time", value=self.monitor_time) sums_df.addColumn(key="jobid", value=self.jobid) return {"FragSummary":sums_df, "ExtSizeHistogram":hist_df} def imap_of_a_file(self, filepath): if self.filesystem != 'ext4': return #cmd = "debugfs " + self.devname + " -R 'imap " + filepath + "'" cmd = ['debugfs', self.devname, '-R', 'imap "' + filepath + '"'] print cmd, '......' #cmd = shlex.split(cmd) proc = subprocess.Popen(cmd, stdout = subprocess.PIPE) imapdict = {} for line in proc.stdout: #print line if "block group" in line: nums = re.findall(r'\d+', line) if len(nums) != 2: print "Error parsing imap" exit(1) imapdict['inode_number'] = nums[0] imapdict['group_number'] = nums[1] elif 'located at block' in line: items = line.split() imapdict['block_number'] = items[3].rstrip(',') imapdict['offset_in_block'] = items[5] proc.wait() #print imapdict return imapdict def dump_extents_of_a_file(self, filepath): "This function only gets ext list for this file" if self.filesystem != 'ext4': return #print "filepath:", filepath #cmd = "debugfs " + self.devname + " -R 'dump_extents " + filepath + "'" cmd = ['debugfs', self.devname, '-R', 'dump_extents "' + filepath + '"'] #print cmd, '......' #cmd = shlex.split(cmd) proc = subprocess.Popen(cmd, stdout = subprocess.PIPE) ext_list = [] # Use list here in case I want to extract data in Python header = [] max_level = 0 df_ext = dataframe.DataFrame() header = ["Level_index", "Max_level", "Entry_index", "N_Entry", "Logical_start", "Logical_end", "Physical_start", "Physical_end", "Length", "Flag"] df_ext.header = header for line in proc.stdout: #print "LLL:", line, if "Level" in line: pass else: savedline = line line = re.sub(r'[/\-]', " ", line) tokens = line.split() if len(tokens) == 8: # there is no physical end tokens.insert(7, tokens[6]) #TODO: this is dangerous d = {} for i in range(9): try: d[ header[i] ] = tokens[i] except: print savedline print "token:", tokens print "header:", header # having a try-except can grant you # the opportunity to do something # after bad thing happen if len(tokens) == 10: d["Flag"] = tokens[10] else: d["Flag"] = "NA" df_ext.addRowByDict(d) proc.wait() # Put the location of the inode the df_ext, level_index as -1 to # indicate that it is a inode imapdict = self.imap_of_a_file(filepath) d = {} d['Level_index'] = '-1' d['Max_level'] = '-1' d['Entry_index'] = 'NA' d['N_Entry'] = 'NA' d['Logical_start'] = 'NA' d['Logical_end'] = 'NA' d['Physical_start'] = imapdict['block_number'] d['Physical_end'] = imapdict['block_number'] d['Length'] = '1' d['Flag'] = 'NA' df_ext.addRowByDict(d) df_ext.addColumn(key = "filepath", value = fill_white_space(filepath)) df_ext.addColumn(key = "HEADERMARKER_extlist", value = "DATAMARKER_extlist") df_ext.addColumn(key = "jobid", value = self.jobid) df_ext.addColumn(key = "monitor_time", value = self.monitor_time) return df_ext def setBlock(self, blockn, count): if self.filesystem != 'ext4': return cmd = "debugfs " + self.devname + \ " -w -R 'setb " + str(blockn) + " " + str(count) + "'" cmd = shlex.split(cmd) proc = subprocess.Popen(cmd, stdout = subprocess.PIPE) proc.wait() return proc.returncode def isAllBlocksInUse(self, blockn, count): "if any of the blocks is not in use, return false. return true otherwise" if self.filesystem != 'ext4': return cmd = "debugfs " + self.devname + \ " -w -R 'testb " + str(blockn) + " " + str(count) + "'" cmd = shlex.split(cmd) proc = subprocess.Popen(cmd, stdout = subprocess.PIPE) for line in proc.stdout: if 'not' in line: return False proc.wait() return True def dumpextents_sum(self, filepath): "TODO: merge this with dump_extents_of_a_file()" if self.filesystem != 'ext4': return #cmd = "debugfs " + self.devname + " -R 'dump_extents " + filepath + "'" #cmd = ['debugfs', self.devname, '-R', '"dump_extents ' + filepath + '"'] cmd = ['debugfs', self.devname, '-R', 'dump_extents "' + filepath + '"'] #print cmd, "........." #cmd = shlex.split(cmd) proc = subprocess.Popen(cmd, stdout = subprocess.PIPE) header = [] n_entries = [0] * 3 # n_entries[k] is the number of entries at level k # it can be used to calculate number of # internal/leaf nodes max_level = 0 exttable = "" header = ["Level_index", "Max_level", "Entry_index", "N_Entry", "Logical_start", "Logical_end", "Physical_start", "Physical_end", "Length", "Flag"] for line in proc.stdout: #print "LLL:", line, if "Level" in line: pass else: savedline = line line = re.sub(r'[/\-]', " ", line) tokens = line.split() if len(tokens) == 8: # there is no physical end tokens.insert(7, "NA") #TODO: this is dangerous d = {} for i in range(9): try: d[ header[i] ] = tokens[i] except: print savedline print "token:", tokens print "header:", header # having a try-except can grant you # the opportunity to do something # after bad thing happen if len(tokens) == 10: d["Flag"] = tokens[10] else: d["Flag"] = "NA" n_entries[ int(d["Level_index"]) ] = int( d["N_Entry"] ) max_level = int( d["Max_level"] ) #print "..... finished stdout parsing .... " proc.terminate() #print "..... after terminating .... " # calculate number of meatadata blocks # only 1st and 2nd levels takes space. # How to calculate: # if there is only 1 level (root and level 1). # the number of entires in level 0 indicates the # number of nodes in level 1. # Basically, the number of entries in level i # equals the number of ETB of the next level n_metablock = 0 if max_level == 0: # the tree has no extent tree block outside of the inode n_metablock = 0 else: for n in n_entries[0:max_level]: n_metablock += n dumpdict = {} dumpdict["filepath"] = fill_white_space(filepath) dumpdict["n_metablock"] = n_metablock others = self.filefrag(filepath) if others.has_key('nblocks'): dumpdict["n_datablock"] = others["nblocks"] else: dumpdict["n_datablock"] = 'NA' if others.has_key('nbytes'): dumpdict["filebytes"] = others["nbytes"] else: dumpdict["filebytes"] = 'NA' #print "Reached end of debugfs...." return dumpdict def filefrag(self, filepath): if self.filesystem != 'ext4': return fullpath = os.path.join(self.mountpoint, filepath) cmd = ["filefrag", "-sv", fullpath] #print cmd proc = subprocess.Popen(cmd, stdout=subprocess.PIPE) mydict = {} for line in proc.stdout: if line.startswith("File size of"): #print line line = line.split(" is ")[1] #print line nums = re.findall(r'\d+', line) if len(nums) != 3: print "filefrag something wrong" exit(1) mydict["nbytes"] = nums[0] mydict["nblocks"] = nums[1] mydict["blocksize"] = nums[2] return mydict def getAllInodePaths(self, target="."): "it returns paths of all files and diretories" rootpath = os.path.join(self.mountpoint) paths = [] with cd(rootpath): cmd = ['find', target] print cmd proc = subprocess.Popen(cmd, stdout = subprocess.PIPE) for line in proc.stdout: paths.append(line.replace("\n", "")) proc.wait() return paths def getExtentList_of_a_dir(self, target): """ this only works for absolute path """ if self.filesystem != 'ext4': return #files = self.getAllInodePaths(target) files = get_all_my_files(target) #print files #exit(1) df = dataframe.DataFrame() for f in files: f = os.path.relpath(f, target) if len(df.header) == 0: df = self.dump_extents_of_a_file(f) else: df.table.extend( self.dump_extents_of_a_file(f).table ) return df def getPerFileBlockCounts(self, rootdir="."): if self.filesystem != 'ext4': return files = self.getAllInodePaths(rootdir) counts_df = dataframe.DataFrame() for f in files: d = self.dumpextents_sum(f) if len(counts_df.header) == 0: counts_df.header = d.keys() counts_df.addRowByDict(d) counts_df.addColumns(keylist=["HEADERMARKER_extstats", "monitor_time", "jobid"], valuelist=["DATAMARKER_extstats", self.monitor_time, self.jobid]) return counts_df def getFSBlockCount(self, df_files): "df_files has number of metablocks datablocks of each file" if self.filesystem != 'ext4': return if len(df_files.table) == 0: return "" fs_nmetablocks = 0 fs_ndatablocks = 0 nmetaindex = df_files.header.index('n_metablock') ndataindex = df_files.header.index('n_datablock') for row in df_files.table: if row[nmetaindex] == 'NA' or row[ndataindex] == 'NA': fs_nmetablocks = 'NA' fs_ndatablocks = 'NA' break fs_nmetablocks += int(row[nmetaindex]) fs_ndatablocks += int(row[ndataindex]) headerstr = "fs_nmetablocks fs_ndatablocks monitor_time HEADERMARKER_extstatssum jobid" valuelist = [fs_nmetablocks, fs_ndatablocks, self.monitor_time, 'DATAMARKER_extstatssum', self.jobid] fsblkcount_df = dataframe.DataFrame( header=headerstr.split(), table=[valuelist]) return fsblkcount_df def widen(self, s): return s.ljust(self.col_width) def dict2table(self, mydict): mytable = "" header = "" for keyname in mydict: header += self.widen(keyname) + " " header += self.widen("monitor_time") + " HEADERMARKER_freefrag_sum\n" vals = "" for keyname in mydict: vals += self.widen(mydict[keyname]) + " " vals += self.widen(str(self.monitor_time)) + " DATAMARKER_freefrag_sum\n" return header + vals def display(self, savedata=False, logfile="", monitorid="", jobid="myjobid"): self.resetMonitorTime(monitorid=monitorid) self.resetJobID(jobid=jobid) ret_dict = {'d_span':'NA', 'physical_layout_hash':'NA'} if savedata: if logfile == "": filename = self.monitor_time + ".result" else: filename = logfile fullpath = os.path.join(self.logdir, filename) f = open(fullpath, 'w') if self.filesystem == 'ext3': extlist = ext34_getExtentList_of_myfiles(target=self.mountpoint) df_ext = extlist_block_to_byte(extlist) if savedata and extlist != None: h = "---------------- extent list -------------------\n" f.write(extlist.toStr()) elif self.filesystem == 'ext4': ###################### # get extents of all files extlist = self.getExtentList_of_a_dir(target=self.mountpoint) df_ext = extlist_translate_new_format(extlist) #print df_ext.toStr() #exit(1) if savedata and extlist != None: h = "---------------- extent list -------------------\n" f.write(extlist.toStr()) ###################### # e2freefrag #frag = self.e2freefrag() #if savedata and frag != None: #frag0_header = "----------- Extent summary -------------\n" #frag1_header = "----------- Extent Histogram -------------\n" #f.write(frag0_header + frag["FragSummary"].toStr()) #f.write(frag1_header + frag["ExtSizeHistogram"].toStr()) ###################### # dumpfs #freespaces = self.dumpfs() #if savedata and frag != None: #dumpfs_header = "----------- Dumpfs Header ------------\n" #f.write(dumpfs_header + freespaces['freeblocks'].toStr()) #f.write(dumpfs_header + freespaces['freeinodes'].toStr()) elif self.filesystem == 'xfs': df_ext = self.xfs_getExtentList_of_a_dir(self.mountpoint) #df_ext = self.xfs_getExtentList_of_a_dir('./dir.1/') #df_ext.table.extend(df_ext0.table) df_ext = extlist_translate_new_format(df_ext) #print df_ext.toStr() #exit(1) if savedata and df_ext != None: df_ext.addColumns(keylist=["HEADERMARKER_extlist", "monitor_time", "jobid"], valuelist=["DATAMARKER_extlist", self.monitor_time, self.jobid]) h = "---------------- extent list -------------------\n" f.write( h + df_ext.toStr() ) elif self.filesystem == 'btrfs': # too many files thera sometimes, let me remove some remove_unecessary(self.mountpoint) tree_lines = btrfs_db_parser.btrfs_debug_tree(self.devname) tree_parser = btrfs_db_parser.TreeParser(tree_lines) df_dic = tree_parser.parse() df_rawext = df_dic['extents'] df_chunk = df_dic['chunks'] paths = get_all_my_files(self.mountpoint) df_map = btrfs_db_parser.get_filepath_inode_map2(paths) #print df_rawext.toStr() #print df_chunk.toStr() #print df_map.toStr() #exit(0) df_ext = btrfs_convert_rawext_to_ext(df_rawext, df_chunk, df_map) if savedata: df_ext.addColumns(keylist=["HEADERMARKER_extlist", "monitor_time", "jobid"], valuelist=["DATAMARKER_extlist", self.monitor_time, self.jobid]) h = "---------------- extent list -------------------\n" f.write( h + df_ext.toStr()) else: print "Unsupported file system." exit(1) if savedata: f.flush() f.close() # calculate return value print df_ext.toStr() #exit(0) ret_dict['d_span'] = get_d_span_from_extent_list(df_ext, '.file') ret_dict['distance_sum'] = \ get_distant_sum_from_extent_list(df_ext, '.file') if ret_dict['distance_sum'] < 0: print 'distance_sum should be >=0' allpaths = get_paths_in_df(df_ext) myfiles = [os.path.basename(path) for path in allpaths \ if '.file' in path] myfiles.sort( key=lambda x:int(x.split('.')[0]) ) #sort by file id ret_dict['datafiles'] = '|'.join( myfiles ) dspans = [] for f in myfiles: dspans.append( get_d_span_from_extent_list(df_ext, f) ) dspans = [str(x) for x in dspans] ret_dict['datafiles_dspan'] = '|'.join( dspans ) num_extents = [] for f in myfiles: num_extents.append( get_num_ext_from_extent_list(df_ext, f) ) num_extents = [str(x) for x in num_extents] ret_dict['num_extents'] = '|'.join( num_extents ) ret_dict['physical_layout_hash'] \ = get_physical_layout_hash(df_ext, 'file', merge_contiguous=True) return ret_dict def stat_a_file(self, filepath): filepath = os.path.join(self.mountpoint, filepath) cmd = ["stat", filepath] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE) output = proc.communicate()[0] # communicate() uses buffer. Don't use it lines = output.strip() lines = lines.split('\n') stat_dict = {} for line in lines: #print line if not "Inode" in line: continue mo = re.search( r'Inode:\s(\d+)', line, re.M) if mo: print mo.group(1) inode_number = mo.group(1) stat_dict['inode_number'] = inode_number return stat_dict def xfs_get_extentlist_of_a_file(self, filepath): inode_number = self.stat_a_file(filepath)['inode_number'] df = xfs_db_parser.xfs_get_extent_tree(inode_number, self.devname) df.addColumn(key = "filepath", value = fill_white_space(filepath)) return df def xfs_getExtentList_of_a_dir(self, target="."): "rootdir is actually relative to mountpoint. Seems bad" #files = self.getAllInodePaths(target) files = get_all_my_files(target) df = dataframe.DataFrame() for f in files: #print "UU____UU" if len(df.header) == 0: df = self.xfs_get_extentlist_of_a_file(f) else: df.table.extend( self.xfs_get_extentlist_of_a_file(f).table ) return df ############################################ SECTORSIZE=512 def get_num_sectors(length): return int((length+SECTORSIZE-1)/SECTORSIZE) def get_distant_sum(extentlist): """ extentlist is a list like: [ {'off':xxx, 'len':xxx}, {..}, ..] This unit is byte. """ #print extentlist # for each extent distsum = 0 n = 0 for ext in extentlist: distsum += extent_distant_sum(ext) n += get_num_sectors(ext['len']) for ext1, ext2 in itertools.combinations(extentlist, 2): distsum += extent_pair_distant_sum(ext1, ext2) return distsum def extent_distant_sum(extent): """ The sum of all pair distance inside the extent is: n(n-1)(n+1)/6 """ # doing a trick to get ceiling without floats n = get_num_sectors(extent['len']) # hmm.. define the distance of 1 sector # to be 1. if n == 1: return 1 #print "n:", n ret = n*(n-1)*(n+1)/6 #print extent, ret return ret def extent_pair_distant_sum( extent1, extent2 ): "ext1 and ext2 cannot overlap!" if extent1['off'] > extent2['off']: extent1, extent2 = extent2, extent1 m = get_num_sectors(extent1['len']) n = get_num_sectors(extent2['len']) k = (extent2['off']-extent1['off']-extent1['len'])/SECTORSIZE ret = m*n*(m+n+2*k)/2 #print extent1, extent2, ret return ret if __name__ == '__main__': print get_distant_sum( [ {'off':0, 'len':512}, #{'off':512, 'len':512}] ) {'off':512*10, 'len':512}] ) def remove_unecessary(top): objlist = os.listdir(top) for name in objlist: if name.endswith('.file') or name.startswith('dir.'): continue path = os.path.join(top, name) if os.path.isfile(path): os.remove(path) #print 'remove FILE:', path else: shutil.rmtree(path) #print 'remove DIR:', path subprocess.call('sync') def get_all_my_files( target ): matches = [] for root, dirnames, filenames in os.walk(target): for filename in fnmatch.filter(filenames, '*.file'): matches.append(os.path.join(root, filename)) dirnames[:] = fnmatch.filter(dirnames, 'dir.*') return matches def ext34_getExtentList_of_myfiles(target): files = get_all_my_files(target) df = dataframe.DataFrame() for f in files: if len(df.header) == 0: df = filefrag(f) else: df.table.extend( filefrag(f).table ) return df def get_physical_layout_hash(df_ext, filter_str, merge_contiguous=False): """ It only cares about physical block positions. It has nothing to do with filename, logical address of blocks.. Just sort the physical block start and end, then do a hash Inlcuding inode, ETB, and data extent! Another way to find layout is to get all the free blocks and do hash on them. It is more straight free space. """ hdr = df_ext.header phy_blocks = [] for row in df_ext.table: if filter_str in row[hdr.index('filepath')]: #print row physical_start = int(row[hdr.index('Physical_start')]) physical_end = int(row[hdr.index('Physical_end')]) phy_blocks.append( physical_start ) phy_blocks.append( physical_end ) # There can be over lap between extents for inode and only for inode # block number can be overlapped in extent # block number of the same extent always next to each other phy_blocks.sort() if merge_contiguous: # the block number are ALWAYS in pair, even after sorting # [start, end, start, end, start, end, ...] # This may not work for BTRFS! merged = [] n = len(phy_blocks) assert n % 2 == 0 for i in range(0, n, 2): # i is start of an extent if i == 0: # the first extent merged.append( phy_blocks[i] ) merged.append( phy_blocks[i+1] ) continue if phy_blocks[i] == phy_blocks[i-1] + 1: # can be merged merged[-1] = phy_blocks[i+1] elif phy_blocks[i] == phy_blocks[i-2] and \ phy_blocks[i+1] == phy_blocks[i-1]: # hmm... duplicated extent. can only happen to inode pass # do nothing else: # cannot be merged merged.append( phy_blocks[i] ) merged.append( phy_blocks[i+1] ) phy_blocks = merged return hash( str(phy_blocks) ) def get_inode_num_from_dfmap(filepath, df_map): hdr = df_map.header for row in df_map.table: if row[hdr.index('filepath')] == filepath: return row[hdr.index('inode_number')] return None def get_all_vir_ranges_of_an_inode(inode_number, df_rawext): hdr = df_rawext.header ranges = [] for row in df_rawext.table: if str(row[hdr.index('inode_number')]) == str(inode_number): d = { 'virtual_start': int(row[hdr.index('Virtual_start')]), 'length': int(row[hdr.index('Length')]) } ranges.append( d ) return ranges def btrfs_df_map_to_dic(df_map): d = {} hdr = df_map.header for row in df_map.table: filepath = row[hdr.index('filepath')] inode_number = row[hdr.index('inode_number')] d[str(inode_number)] = filepath return d def btrfs_convert_rawext_to_ext(df_rawext, df_chunk, df_map): #print df_rawext.toStr() #print df_chunk.toStr() #print df_map.toStr() dic_map = btrfs_df_map_to_dic(df_map) hdr = df_rawext.header devices = set() df_ext = dataframe.DataFrame() df_ext.header = ['Level_index', 'Max_level', 'Entry_index', 'N_Entry', 'Virtual_start', 'Logical_start', 'Logical_end', 'Physical_start', 'Physical_end', 'Length', 'Flag', 'filepath'] for row in df_rawext.table: rowdic = {} for col in hdr: rowdic[col] = row[hdr.index(col)] #print rowdic phy_starts = btrfs_db_parser.virtual_to_physical( rowdic['Virtual_start'], df_chunk ) for stripe in phy_starts: devices.add( stripe['devid'] ) assert len(devices) == 1, 'we only allow one device at this time' rowdic['Physical_start'] = stripe['physical_addr'] rowdic['Physical_end'] = stripe['physical_addr'] + \ int( rowdic['Length'] ) rowdic['Logical_end'] = int(rowdic['Logical_start']) + \ int( rowdic['Length'] ) rowdic['Level_index'] = 0 rowdic['Max_level'] = 0 rowdic['Entry_index'] = 0 rowdic['N_Entry'] = 0 rowdic['filepath'] = dic_map[str( rowdic['inode_number'] )] rowdic['Flag'] = "NA" df_ext.addRowByDict( rowdic ) return df_ext def extlist_translate_new_format(df_ext): """ Use ending of file and new unit(byte) Only df_ext of ext4 and xfs need this, btrfs already uses byte as unit. But does btrfs use the new style of ending? """ df_ext = extlist_lastblock_to_nextblock(df_ext) df_ext = extlist_block_to_byte(df_ext) return df_ext def extlist_lastblock_to_nextblock(df_ext): """ for ext4 and xfs, the Logical_end and Physical_end point to the last block of the file. This is not convenient when we translate the unit from block to byte. so in this function, we shift the _end to point to the next block of the file (out of the file), kind of like the .end() of iterator in C++. For example, it was 8,8 for a file, indicating, the first and the last block of the file is 8. After the translating of this file, it is 8,9. """ colnames = ['Logical_end', 'Physical_end'] hdr = df_ext.header for row in df_ext.table: for col in colnames: x = row[hdr.index(col)] if x != 'NA': x = int(x) + 1 row[hdr.index(col)] = x return df_ext def extlist_block_to_byte(df_ext): """ Translate the unit from block to byte for extent list Translated: Logical_start Logical_end Physical_start Physical_end This function should be used as soon as the df_ext is created so all the later functions that use this df_ext can treat it as byte. """ BLOCKSIZE = 4096 colnames = ['Logical_start', 'Logical_end', 'Physical_start', 'Physical_end', 'Length'] hdr = df_ext.header for row in df_ext.table: for col in colnames: x = row[hdr.index(col)] if x != 'NA': x = int(x) * BLOCKSIZE row[hdr.index(col)] = x return df_ext def get_num_ext_from_extent_list(df_ext, filename): "Get number of extents" hdr = df_ext.header cnt = 0 for row in df_ext.table: if filename == os.path.basename(row[hdr.index('filepath')]) and \ row[hdr.index('Level_index')] != '-1': cnt += 1 return cnt def get_paths_in_df(df_ext): hdr = df_ext.header paths = set() for row in df_ext.table: paths.add( row[hdr.index('filepath')] ) return list(paths) def get_d_span_from_extent_list(df_ext, filepath): hdr = df_ext.header byte_max = -1 byte_min = float('Inf') for row in df_ext.table: if filepath in row[hdr.index('filepath')] and \ row[hdr.index('Level_index')] != '-1' and \ row[hdr.index('Level_index')] == row[hdr.index('Max_level')]: #print row physical_start = int(row[hdr.index('Physical_start')]) physical_end = int(row[hdr.index('Physical_end')]) mmin = min(physical_start, physical_end) mmax = max(physical_start, physical_end) if mmin < byte_min: byte_min = mmin if mmax > byte_max: byte_max = mmax if byte_max == -1: # no extent found return 'NA' else: return byte_max - byte_min def get_distant_sum_from_extent_list(df_ext, filepath): hdr = df_ext.header extlist = [] for row in df_ext.table: if filepath in row[hdr.index('filepath')] and \ row[hdr.index('Level_index')] != '-1' and \ row[hdr.index('Level_index')] == row[hdr.index('Max_level')]: #print row physical_start = int(row[hdr.index('Physical_start')]) physical_end = int(row[hdr.index('Physical_end')]) d = { 'off': physical_start, 'len': physical_end - physical_start } extlist.append( d ) distsum = get_distant_sum( extlist ) return distsum def stat_a_file(filepath): filepath = os.path.join(filepath) cmd = ["stat", filepath] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE) output = proc.communicate()[0] # communicate() uses limited buffer lines = output.strip() lines = lines.split('\n') stat_dict = {} for line in lines: #print line if not "Inode" in line: continue mo = re.search( r'Inode:\s(\d+)', line, re.M) if mo: #print mo.group(1) inode_number = mo.group(1) stat_dict['inode_number'] = inode_number return stat_dict def get_all_paths(mountpoint, dir): "it returns paths of all files and diretories" paths = [] with cd(mountpoint): cmd = ['find', dir] proc = subprocess.Popen(cmd, stdout = subprocess.PIPE) for line in proc.stdout: paths.append(line.replace("\n", "")) proc.wait() return paths def isfilefrag_ext_line(line): if 'Filesystem' in line or \ 'blocksize' in line or \ ('logical' in line and 'length' in line) or\ ('extent' in line and 'found' in line): return False else: return True def filefrag(filepath): cmd = ["filefrag", "-sv", filepath] #print cmd proc = subprocess.Popen(cmd, stdout=subprocess.PIPE) df_ext = dataframe.DataFrame() header = ["Level_index", "Max_level", "Entry_index", "N_Entry", "Logical_start", "Logical_end", "Physical_start", "Physical_end", "Length", "Flag", "filepath"] df_ext.header = header #ext logical physical expected length flags #0 0 1545 12 merged for line in proc.stdout: if isfilefrag_ext_line(line): items = line.split() # it is 4 because there might be some line without # both expected and flags assert len(items) >= 4, line if len(items) == 5 or len(items) == 4: items.insert(3, -1) #print items d = { 'Level_index': 0, 'Max_level' : 0, 'Entry_index': int(items[0]), 'N_Entry' : 'NA', 'Logical_start': int(items[1]), 'Logical_end': int(items[1]) + int(items[4]), 'Physical_start': int(items[2]), 'Physical_end': int(items[2]) + int(items[4]), 'Length' : int(items[4]), 'Flag' : 'NA', 'filepath' : filepath } df_ext.addRowByDict(d) #pprint.pprint(d) #print df_ext.toStr() proc.wait() return df_ext def get_possible_cpu(): f = open("/sys/devices/system/cpu/possible", 'r') line = f.readline() f.close() return line.strip() def get_available_cpu_dirs(): "Counting dirs is more accurate than */cpu/possible, at least on emulab" cpudirs = [name for name in glob.glob("/sys/devices/system/cpu/cpu[0-9]*") \ if os.path.isdir(name)] return cpudirs def get_online_cpuids(): with open('/sys/devices/system/cpu/online', 'r') as f: line = f.readline().strip() # assuming format of 0-2,4,6-63 items = line.split(',') cpus = [] for item in items: if '-' in item: a,b = item.split('-') a = int(a) b = int(b) cpus.extend(range(a, b+1)) else: cpus.append(int(item)) return cpus def switch_cpu(cpuid, mode): path = "/sys/devices/system/cpu/cpu{cpuid}/online" path = path.format(cpuid=cpuid) modedict = {'ON':'1', 'OFF':'0'} f = open(path, 'w') f.write(modedict[mode]) f.flush() f.close() return
gpl-2.0
4,359,682,231,986,908,700
33.280062
95
0.512707
false
3.906206
false
false
false
isaachenrion/jets
src/proteins/train/validation.py
1
1461
import logging import time import torch from src.data_ops.wrapping import unwrap from ..loss import loss def half_and_half(a,b): a = torch.stack([torch.triu(x) for x in a], 0) b = torch.stack([torch.tril(x, diagonal=-1) for x in b], 0) return a + b def validation(model, data_loader): t_valid = time.time() model.eval() valid_loss = 0. yy, yy_pred = [], [] half = [] mask = [] hard_pred = [] for i, batch in enumerate(data_loader): (x, y, y_mask, batch_mask) = batch y_pred = model(x, mask=batch_mask) vl = loss(y_pred, y, y_mask, batch_mask) valid_loss = valid_loss + float(unwrap(vl)) yy.append(unwrap(y)) yy_pred.append(unwrap(y_pred)) mask.append(unwrap(batch_mask)) half.append(unwrap(half_and_half(y, y_pred))) hard_pred.append(unwrap(half_and_half(y, (y_pred > 0.5).float()))) del y; del y_pred; del y_mask; del x; del batch_mask; del batch valid_loss /= len(data_loader) #grads = torch.cat([p.grad.view(-1) for p in model.parameters() if p.grad is not None], 0) logdict = dict( yy=yy, yy_pred=yy_pred, half=half, hard_pred=hard_pred, mask=mask, valid_loss=valid_loss, model=model, #grads=grads, ) model.train() t1=time.time() logging.info("Validation took {:.1f} seconds".format(time.time() - t_valid)) return logdict
bsd-3-clause
-3,322,496,645,558,040,600
23.762712
94
0.578371
false
3.069328
false
false
false
byteface/sing
core/PyPal.py
1
16532
""" PyPal.py @author: byteface """ class PyPal(object): """ PyPal is the heart for all pypals :) """ # TODO - tell command to pass messages to other pypals. non conflicting. saves having to quit out of current one # TODO - list commands # TODO - learn from. quick command to copy commands between pypals may be useful. save moving between dirs and copying # memory? - obj with funcitons for loading data etc. # dictionary that stores object from _meta.json o = None # TODO - if current context is gone should be able to go through history # MULTIPLE CONTEXT OBJECT MAY NEED TO EXISTS. searching for relevant ones is a requirement context=None # TODO - should every statement should carry certainty?. for now maybe store number 0-1 on here? #certainty=0 # TODO third person, you, actor???... you can 'be' another person #perspective={} # the natural language processing engine. eventually will live on a brain object nlp=None # TODO - should be an array # natural language generation. used for output nlg=None # TODO - as above def __init__(self,data): """ data param is obj with unique name. i.e {'name':'pypal'} """ import json with open("bin/%s/_meta.json" % data['name']) as json_file: self.o = json.load(json_file)['object'] # TODO - externalise the class self.nlp=NLP( self ) # TODO - externalise the class self.nlg=NLG( self ) #self.context=Context( [self], [self] ) # talk to self def introduce(self): """ introduce - when a pypal is first created this is what it says """ self.nlg.say( "Hi my name is %s, Thankyou for creating me!" % self.o['name'] ) self.listen() def welcome(self): """ welcome - whenever you init a pypal """ self.nlg.say( "%s I see you have returned!" % self.o['friend'] ) # TODO - display stats? self.listen() # TODO - listen should really be an open stream at the moment this is just a friend channel. # TODO - create channels for pypal>pyal comms # TODO - event should be created # TODO - should be having thoughts def listen(self): # NOTE - listen currently considers it to be friend who is talking #self_obj = self.nlp.runWordAsFunction( 'bin/%s/brain/perception/self/' % self.o['name'], self.o['name'] ) #friend_obj = self.nlp.runWordAsFunction( 'bin/%s/brain/perception/physical/animal/human/' % self.o['name'], self.o['friend'] ) #friend_obj={} try: # THIS IS A APPARENTLY nix ONLY SOLUTION FOR AUTO PROCESSING # IT WILL TIME OUT IF NO INPUT RESPONSE AND RUN AUTOMATIONS # steps towards automation. I looked and using mulitprocessing and thread but non can stop a raw_input # for now i'm doing this way just as I'm building some content bots and need it sorting # the timeout for automation #import signal #signal.signal(signal.SIGALRM, self.automate) #signal.alarm(10) #from threading import Timer #t=Timer(10,self.automate) #t.start() self.nlg.say( "I am listening..." ) import sys from select import select # TODO - keys presses should reset the timeout timeout = 10000 # TODO - add to a pypal config?? - make timeout longer. for testing type automate. have flag/config for autobots? rlist, _, _ = select([sys.stdin], [], [], timeout) if rlist: s = sys.stdin.readline().strip() self.process(s) self.listen() else: self.nlg.say( "No input. Automating..." ) # TODO - just run as bg proccess self.automate() self.listen() return # NOTE - DOESNT RUN ANYMORE # NOTE - old way. preserving here for now until figure this all out #self.nlg.say( "I am listening..." ) #information = raw_input("> ") #self.process( information ) # TODO - parralell process for automation whilst listening? except: self.nlg.log( "FAIL :::::listen" ) def automate(self,*args,**kwargs): """ automate is a super simple task runner it executes tasks listed in brain/automation/tasks.json """ self.nlg.log( "automate" ) try: # add and run automation.py path = 'bin/%s/brain/automation' % self.o['name'] import sys sys.path.append( path ) task_runner = __import__( 'automate' ) task_runner.run(self,path) except Exception: self.nlg.log( "AUTOMATE FAIL!" ) # TODO - what when automations are complete?. currently returns to listening #self.listen() return history=[] # TODO - should the history go on the context obj? ## TODO - this should be a HEAR function and should process chunks # TODO - this is something that would be also good to parrallel process and decide which streams of informtion to listen to or ignore def process(self,information,caller=None,callee=None): self.context=Context( self, information ) # FOR NOW JUST FOR STORING PATHS self.history.append(information) # update the context object #self.context=Context( [caller], [callee] ) # bust all into words, squash whitespace words = information.split(None) # if its a one letter answer. some helpers/shortcuts if len(words)==1: # added a repeat function if information == 'r': print self.history[len(self.history)-2] self.process( self.history[len(self.history)-2] ) return # show command history if information == 'h': for h in history: print h return # TODO - some more 1 key helpers # 'r' - repeat last command # 'h' - history # 'c' - show all available commands in pypal self.nlp.processOneWord( information ) #self.listen() return self.nlp.processSentence( information ) #self.listen() return # TODO - need to ask meaning of words. to at least put it into memory for considering # should also be able to check dictionary / nltk sources. but needs to build a program for the word def ask_word_meaning(self,word): self.nlp.say( "What is '%s'?" % word ) answer = raw_input("> ") # TODO - NO - should probs be processess response self.nlp.addNewWord( word, answer ) # when the bot is not active could explore data sources # using a decorator pattern for behaviours on data # def explore(self): # TODO - let bot decide/choose which data source to consume # TODO - can bot find new data sources? from interaction with other bots # TODO - to begin with will attempt to buid knowledge graph data sets # from webpages/ relational object maps from text # can also explore things in the world # theres various ways of determining what to explore in the world # TODO - create a discover function?... # do this by going into unknown. i.e. inventing urls to read. # figure out how to chain commands? # how to 'think of something to do' # def spawn(self): # def merge(self,pypal): # the first job of the context object is to store caller, callee information # Who is talking and who are they talking to # NOTE / TODO - this may evolve with time class Context(object): """ Context still to be fully defined. Will hold things like conversation history and caller/callee information and is used to aid comprehension not just personable but subject context i.e. if i say show list, then add to list should add to the one ive shown hmmmm caller callee is perspective and incorreclty stubbed here. probably why i removed the implementation. unless perspective is an object that also resides in a context object? NOW GIVES SOME PATH INFO. can access in a command like o.context.COMMAND_PATH Also forces app into running 1 command at a time. which is good. as thats how a brain kinda works. you could probably still spin threads in commands if requried. but we context we have 1 train of thought which is the running command """ # both can be lists of animals caller=None callee=None # useful for commands to know where they are loading from # so can dump/store stuff there directly when scraping etc. #BASEPATH = './bin/%s/brain/commands/add/grades/files3' % o.o['name'] #BASEPATH = './bin/%s/brain/commands/add/grades/files3' % o.o['name'] BASEPATH='' # TODO - may move these 3 onto the NLP. and make context more of a caretaker pattern extended to surmise and store sessions. LAST_COMMAND ='' COMMAND_PATH ='' #PARAMS='' def __init__(self, parent, command, caller=None,callee=None): # self.caller=caller # self.callee=callee self.BASEPATH = './bin/%s/brain/commands' % parent.o['name'] self.LAST_COMMAND = command path = '/'.join( self.LAST_COMMAND.split(' ') ) file = '_'.join( self.LAST_COMMAND.split(' ') ) + '.py' #self.COMMAND_PATH = '%s/%s/%s' % ( self.BASEPATH, path, file ) self.COMMAND_PATH = '%s/%s' % ( self.BASEPATH, path ) #self.PARAMS='' # NOTE - gets updated once string is parsed class NLP(object): """ NLP are processes for word parsing. Generating functions for words. Essentially a custom module loader """ owner=None # TODO - #TIME #PLACE #BASEPATH = './bin/%s/brain/commands/add/grades/files3' % o.o['name'] def __init__(self,owner): self.owner=owner def addNewWord( self, word, answer ): # TODO - addNewWord. store what friend thinks/says it is return def processOneWord( self, word ): """ parse single word commands. basically runs a command from the command folder """ #TODO - check that the word is clean #TODO - see if we know the word #TODO - deal with inuendo #TODO - lemmatiser maybe required. or we re-routing manually? knows_word=False; c_path = 'bin/%s/brain/commands' % self.owner.o['name'] if self.has_command(c_path+"/"+word+"/"+word+".py"): self.owner.nlg.log( "command detected" ) knows_word=True return self.runWordAsFunction( c_path, word ) if knows_word == False: self.owner.nlg.say( "I don't yet know that word" ) # now that we know input function we can run it.. # TODO - should probably create new problem though and process that way # TODO - all the meta properties need updating def runWordAsFunction(self,path,word): import sys sys.path.append( "%s/%s" % (path,word) ) try: # TODO - check and update all the meta props command_module = __import__( word ) reload(command_module) # reload class without restarting pypal return command_module.run(self.owner) except Exception, e: self.owner.nlg.say( "Sorry, I can't do that, I tried but it didn't work" ) self.owner.nlg.log( "CHECK YOUR VIRUTAL ENVIRONMENT IS RUNNING." ) pass # TODO - try to find the finite verb # NOTE - AT THE MOMENT ONLY PROCESSING COMMANDS def processSentence( self, sentence ): # print "processSentence" words = sentence.split(None) word_count = len(words) basepath = 'bin/%s/brain/commands' % self.owner.o['name'] word_path_arr=[] # walk up the sentence for word in words: root = basepath+"/"+'/'.join(word_path_arr) has_path = self.has_path( root +"/"+ word ) # if next word is the last word. check for a command and run it without params. if (len(word_path_arr)+1)==word_count: path = root+"/"+word function = '_'.join( word_path_arr ) + "_" + word if self.has_command(path+"/"+function+".py"): return self.runSentenceAsFunction( path, function ) # if nowhere to go. but there's a command at current path. run it and pass the rest as param if (False==has_path): function = '_'.join( word_path_arr ) if self.has_command(root+"/"+function+".py"): # get params by removing where we were up to params = sentence.replace( ' '.join( word_path_arr ), '' ) # REMOVE THE WHITE SPACE FROM START OF PARAMS params = params[1:] # TODO - note. i see i built up to path to strip param. problem here is param is on the command_path. and doesn't get parsed off until here. during execution. # TODO - will have a rethink about how want context to work before changing this. so for now will operate on the context obj here # TODO - when doing change, nlp ref should probs get given to context. or context keeps them all in array. self.owner.context.COMMAND_PATH = self.owner.context.COMMAND_PATH.replace( params, '' ) #self.owner.context.PARAMS = params # TODO - throw error if no param is passed if params == None or params == '': print 'ERROR:parameter expected. none recieved' # run the function return self.runSentenceAsFunction( root, function, params ) else: break word_path_arr.append(word) # TODO - if no command, attempt gnerating reponse from the self compiled programs. # TODO - integrate memory, world states, schemas and emotions # A LAD is a KAD : cognitive learning return self.owner.nlg.say( "No command found" ) # params at the moment are 'rest of string' # long term might break around finite verb and pass whole string? def runSentenceAsFunction(self,path,function,params=None): #print "runSentenceAsFunction" #print path, function, params import sys sys.path.append( path ) try: # TODO - check all the meta props # TODO - may need to also write to some of the meta # TODO - if no meta create a default one command_module = __import__( function ) reload(command_module) # reload class without restarting pypal if(params!=None): return command_module.run(self.owner,params) else: return command_module.run(self.owner) pass except Exception, e: self.owner.nlg.log( "runSentenceAsFunction FAIL!! \ \n happens when : \ \n failing code in the command. i.e imports used by the command not intalled \ \n venv not running \ \n not passing params when required" ) return False #self.owner.listen() pass # run several possibilities. decide which is most relevant? # the listener as to suppose an ontological truth in each word as they hear it # when that doesn't happen even over sets of words things have to be considered # and find more context or information. even lead to questioning def suppose(): pass ## ---------------------------- NLP LANGUGAGE UTILS ----------------------------------- # check a lookup table of yes words. program needs to be able to expand that list # TODO - if one word use lookup, else use NLTK sentimement tool # NOTE - false DOES NOT MEAN it is negative, it could be neutral def is_string_positive( s ): pass # check a lookup table of no words. program needs to be able to expand that list # TODO - if one word use lookup, else use NLTK sentimement tool # NOTE - false DOES NOT MEAN it is positive, it could be neutral def is_string_negative( s ): pass # check a lookup table of # TODO - building lookup tables on the fly is something we need to do # RETURN THE NUMBER OR WORD FALSE def is_string_number( s ): # TODO - check if NLTK can do this pass def is_math_operator(): # TODO - check if NLTK can do this pass ## ---------------------------- NLP FILE UTILS ----------------------------------- # TODO - may get rid of this lookup and have root words as delegators def hasParams( self, path, word ): """ check if parameters True """ try: #TODO - shoud just check if folder has param folder import Program program = Program.Program( path, word ); canHasParams = program.meta.get_property( 'rules', 'parameters' ); return canHasParams except: print "no meta or param found" return False # force false if passing a non command. TODO- BUT. we shouldn't be calling if the case. def has_path( self, path_to_directory ): import os.path return os.path.isdir(path_to_directory) def has_command(self, path_to_py_file): import os.path return os.path.isfile(path_to_py_file) class NLG(object): """ NLG - generates sentences in the natural language at moment just logs strings to output. from now on all output should come through here """ owner=None def __init__(self,owner): self.owner=owner def say( self, words ): """ output helps distinguish pypals when in the console """ print "%s : %s" % ( self.owner.o['name'], words ) return # TODO - setup python logger # TODO - pass ref to pypal? # TODO - logs should write to a file and be accessible by events. i.e. evt12345 - created variable xxx def log( self, words ): """ log differs to the 'say' method. log should be more about debugging. say should be user comms """ return # NOTE <<<<<<<<<<<<<<<<<<<<<< im not running # TOOD - if debug is true import logging logging.warning( "------------------------------------- %s : %s" % ( self.owner.o['name'], words ) ) return
gpl-2.0
2,327,574,827,839,849,000
27.259829
163
0.67578
false
3.362897
false
false
false
gfyoung/numpy
numpy/lib/twodim_base.py
2
27180
""" Basic functions for manipulating 2d arrays """ from __future__ import division, absolute_import, print_function import functools from numpy.core.numeric import ( absolute, asanyarray, arange, zeros, greater_equal, multiply, ones, asarray, where, int8, int16, int32, int64, empty, promote_types, diagonal, nonzero ) from numpy.core import overrides from numpy.core import iinfo, transpose __all__ = [ 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'tri', 'triu', 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', 'tril_indices_from', 'triu_indices', 'triu_indices_from', ] array_function_dispatch = functools.partial( overrides.array_function_dispatch, module='numpy') i1 = iinfo(int8) i2 = iinfo(int16) i4 = iinfo(int32) def _min_int(low, high): """ get small int that fits the range """ if high <= i1.max and low >= i1.min: return int8 if high <= i2.max and low >= i2.min: return int16 if high <= i4.max and low >= i4.min: return int32 return int64 def _flip_dispatcher(m): return (m,) @array_function_dispatch(_flip_dispatcher) def fliplr(m): """ Flip array in the left/right direction. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array, must be at least 2-D. Returns ------- f : ndarray A view of `m` with the columns reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- flipud : Flip array in the up/down direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to m[:,::-1]. Requires the array to be at least 2-D. Examples -------- >>> A = np.diag([1.,2.,3.]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.fliplr(A) array([[ 0., 0., 1.], [ 0., 2., 0.], [ 3., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.fliplr(A) == A[:,::-1,...]) True """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must be >= 2-d.") return m[:, ::-1] @array_function_dispatch(_flip_dispatcher) def flipud(m): """ Flip array in the up/down direction. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- out : array_like A view of `m` with the rows reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- fliplr : Flip array in the left/right direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to ``m[::-1,...]``. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag([1.0, 2, 3]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.flipud(A) array([[ 0., 0., 3.], [ 0., 2., 0.], [ 1., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.flipud(A) == A[::-1,...]) True >>> np.flipud([1,2]) array([2, 1]) """ m = asanyarray(m) if m.ndim < 1: raise ValueError("Input must be >= 1-d.") return m[::-1, ...] def eye(N, M=None, k=0, dtype=float, order='C'): """ Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to `N`. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. order : {'C', 'F'}, optional Whether the output should be stored in row-major (C-style) or column-major (Fortran-style) order in memory. .. versionadded:: 1.14.0 Returns ------- I : ndarray of shape (N,M) An array where all elements are equal to zero, except for the `k`-th diagonal, whose values are equal to one. See Also -------- identity : (almost) equivalent function diag : diagonal 2-D array from a 1-D array specified by the user. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]]) >>> np.eye(3, k=1) array([[ 0., 1., 0.], [ 0., 0., 1.], [ 0., 0., 0.]]) """ if M is None: M = N m = zeros((N, M), dtype=dtype, order=order) if k >= M: return m if k >= 0: i = k else: i = (-k) * M m[:M-k].flat[i::M+1] = 1 return m def _diag_dispatcher(v, k=None): return (v,) @array_function_dispatch(_diag_dispatcher) def diag(v, k=0): """ Extract a diagonal or construct a diagonal array. See the more detailed documentation for ``numpy.diagonal`` if you use this function to extract a diagonal and wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you are using. Parameters ---------- v : array_like If `v` is a 2-D array, return a copy of its `k`-th diagonal. If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th diagonal. k : int, optional Diagonal in question. The default is 0. Use `k>0` for diagonals above the main diagonal, and `k<0` for diagonals below the main diagonal. Returns ------- out : ndarray The extracted diagonal or constructed diagonal array. See Also -------- diagonal : Return specified diagonals. diagflat : Create a 2-D array with the flattened input as a diagonal. trace : Sum along diagonals. triu : Upper triangle of an array. tril : Lower triangle of an array. Examples -------- >>> x = np.arange(9).reshape((3,3)) >>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.diag(x) array([0, 4, 8]) >>> np.diag(x, k=1) array([1, 5]) >>> np.diag(x, k=-1) array([3, 7]) >>> np.diag(np.diag(x)) array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ v = asanyarray(v) s = v.shape if len(s) == 1: n = s[0]+abs(k) res = zeros((n, n), v.dtype) if k >= 0: i = k else: i = (-k) * n res[:n-k].flat[i::n+1] = v return res elif len(s) == 2: return diagonal(v, k) else: raise ValueError("Input must be 1- or 2-d.") @array_function_dispatch(_diag_dispatcher) def diagflat(v, k=0): """ Create a two-dimensional array with the flattened input as a diagonal. Parameters ---------- v : array_like Input data, which is flattened and set as the `k`-th diagonal of the output. k : int, optional Diagonal to set; 0, the default, corresponds to the "main" diagonal, a positive (negative) `k` giving the number of the diagonal above (below) the main. Returns ------- out : ndarray The 2-D output array. See Also -------- diag : MATLAB work-alike for 1-D and 2-D arrays. diagonal : Return specified diagonals. trace : Sum along diagonals. Examples -------- >>> np.diagflat([[1,2], [3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ try: wrap = v.__array_wrap__ except AttributeError: wrap = None v = asarray(v).ravel() s = len(v) n = s + abs(k) res = zeros((n, n), v.dtype) if (k >= 0): i = arange(0, n-k) fi = i+k+i*n else: i = arange(0, n+k) fi = i+(i-k)*n res.flat[fi] = v if not wrap: return res return wrap(res) def tri(N, M=None, k=0, dtype=float): """ An array with ones at and below the given diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the array. M : int, optional Number of columns in the array. By default, `M` is taken equal to `N`. k : int, optional The sub-diagonal at and below which the array is filled. `k` = 0 is the main diagonal, while `k` < 0 is below it, and `k` > 0 is above. The default is 0. dtype : dtype, optional Data type of the returned array. The default is float. Returns ------- tri : ndarray of shape (N, M) Array with its lower triangle filled with ones and zero elsewhere; in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise. Examples -------- >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> np.tri(3, 5, -1) array([[ 0., 0., 0., 0., 0.], [ 1., 0., 0., 0., 0.], [ 1., 1., 0., 0., 0.]]) """ if M is None: M = N m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), arange(-k, M-k, dtype=_min_int(-k, M - k))) # Avoid making a copy if the requested type is already bool m = m.astype(dtype, copy=False) return m def _trilu_dispatcher(m, k=None): return (m,) @array_function_dispatch(_trilu_dispatcher) def tril(m, k=0): """ Lower triangle of an array. Return a copy of an array with elements above the `k`-th diagonal zeroed. Parameters ---------- m : array_like, shape (M, N) Input array. k : int, optional Diagonal above which to zero elements. `k = 0` (the default) is the main diagonal, `k < 0` is below it and `k > 0` is above. Returns ------- tril : ndarray, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu : same thing, only for the upper triangle Examples -------- >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k, dtype=bool) return where(mask, m, zeros(1, m.dtype)) @array_function_dispatch(_trilu_dispatcher) def triu(m, k=0): """ Upper triangle of an array. Return a copy of a matrix with the elements below the `k`-th diagonal zeroed. Please refer to the documentation for `tril` for further details. See Also -------- tril : lower triangle of an array Examples -------- >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k-1, dtype=bool) return where(mask, zeros(1, m.dtype), m) def _vander_dispatcher(x, N=None, increasing=None): return (x,) # Originally borrowed from John Hunter and matplotlib @array_function_dispatch(_vander_dispatcher) def vander(x, N=None, increasing=False): """ Generate a Vandermonde matrix. The columns of the output matrix are powers of the input vector. The order of the powers is determined by the `increasing` boolean argument. Specifically, when `increasing` is False, the `i`-th output column is the input vector raised element-wise to the power of ``N - i - 1``. Such a matrix with a geometric progression in each row is named for Alexandre- Theophile Vandermonde. Parameters ---------- x : array_like 1-D input array. N : int, optional Number of columns in the output. If `N` is not specified, a square array is returned (``N = len(x)``). increasing : bool, optional Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. .. versionadded:: 1.9.0 Returns ------- out : ndarray Vandermonde matrix. If `increasing` is False, the first column is ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is True, the columns are ``x^0, x^1, ..., x^(N-1)``. See Also -------- polynomial.polynomial.polyvander Examples -------- >>> x = np.array([1, 2, 3, 5]) >>> N = 3 >>> np.vander(x, N) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> np.column_stack([x**(N-1-i) for i in range(N)]) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> x = np.array([1, 2, 3, 5]) >>> np.vander(x) array([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) >>> np.vander(x, increasing=True) array([[ 1, 1, 1, 1], [ 1, 2, 4, 8], [ 1, 3, 9, 27], [ 1, 5, 25, 125]]) The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector: >>> np.linalg.det(np.vander(x)) 48.000000000000043 >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 48 """ x = asarray(x) if x.ndim != 1: raise ValueError("x must be a one-dimensional array or sequence.") if N is None: N = len(x) v = empty((len(x), N), dtype=promote_types(x.dtype, int)) tmp = v[:, ::-1] if not increasing else v if N > 0: tmp[:, 0] = 1 if N > 1: tmp[:, 1:] = x[:, None] multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) return v def _histogram2d_dispatcher(x, y, bins=None, range=None, normed=None, weights=None, density=None): return (x, y, bins, weights) @array_function_dispatch(_histogram2d_dispatcher) def histogram2d(x, y, bins=10, range=None, normed=None, weights=None, density=None): """ Compute the bi-dimensional histogram of two data samples. Parameters ---------- x : array_like, shape (N,) An array containing the x coordinates of the points to be histogrammed. y : array_like, shape (N,) An array containing the y coordinates of the points to be histogrammed. bins : int or array_like or [int, int] or [array, array], optional The bin specification: * If int, the number of bins for the two dimensions (nx=ny=bins). * If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). * If [int, int], the number of bins in each dimension (nx, ny = bins). * If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). * A combination [int, array] or [array, int], where int is the number of bins and array is the bin edges. range : array_like, shape(2,2), optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range will be considered outliers and not tallied in the histogram. density : bool, optional If False, the default, returns the number of samples in each bin. If True, returns the probability *density* function at the bin, ``bin_count / sample_count / bin_area``. normed : bool, optional An alias for the density argument that behaves identically. To avoid confusion with the broken normed argument to `histogram`, `density` should be preferred. weights : array_like, shape(N,), optional An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights are normalized to 1 if `normed` is True. If `normed` is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray, shape(nx, ny) The bi-dimensional histogram of samples `x` and `y`. Values in `x` are histogrammed along the first dimension and values in `y` are histogrammed along the second dimension. xedges : ndarray, shape(nx+1,) The bin edges along the first dimension. yedges : ndarray, shape(ny+1,) The bin edges along the second dimension. See Also -------- histogram : 1D histogram histogramdd : Multidimensional histogram Notes ----- When `normed` is True, then the returned histogram is the sample density, defined such that the sum over bins of the product ``bin_value * bin_area`` is 1. Please note that the histogram does not follow the Cartesian convention where `x` values are on the abscissa and `y` values on the ordinate axis. Rather, `x` is histogrammed along the first dimension of the array (vertical), and `y` along the second dimension of the array (horizontal). This ensures compatibility with `histogramdd`. Examples -------- >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt Construct a 2-D histogram with variable bin width. First define the bin edges: >>> xedges = [0, 1, 3, 5] >>> yedges = [0, 2, 3, 4, 6] Next we create a histogram H with random bin content: >>> x = np.random.normal(2, 1, 100) >>> y = np.random.normal(1, 1, 100) >>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges)) >>> H = H.T # Let each row list bins with common y range. :func:`imshow <matplotlib.pyplot.imshow>` can only display square bins: >>> fig = plt.figure(figsize=(7, 3)) >>> ax = fig.add_subplot(131, title='imshow: square bins') >>> plt.imshow(H, interpolation='nearest', origin='low', ... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) :func:`pcolormesh <matplotlib.pyplot.pcolormesh>` can display actual edges: >>> ax = fig.add_subplot(132, title='pcolormesh: actual edges', ... aspect='equal') >>> X, Y = np.meshgrid(xedges, yedges) >>> ax.pcolormesh(X, Y, H) :class:`NonUniformImage <matplotlib.image.NonUniformImage>` can be used to display actual bin edges with interpolation: >>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated', ... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]]) >>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear') >>> xcenters = (xedges[:-1] + xedges[1:]) / 2 >>> ycenters = (yedges[:-1] + yedges[1:]) / 2 >>> im.set_data(xcenters, ycenters, H) >>> ax.images.append(im) >>> plt.show() """ from numpy import histogramdd try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = asarray(bins) bins = [xedges, yedges] hist, edges = histogramdd([x, y], bins, range, normed, weights, density) return hist, edges[0], edges[1] def mask_indices(n, mask_func, k=0): """ Return the indices to access (n, n) arrays, given a masking function. Assume `mask_func` is a function that, for a square array a of size ``(n, n)`` with a possible offset argument `k`, when called as ``mask_func(a, k)`` returns a new array with zeros in certain locations (functions like `triu` or `tril` do precisely this). Then this function returns the indices where the non-zero values would be located. Parameters ---------- n : int The returned indices will be valid to access arrays of shape (n, n). mask_func : callable A function whose call signature is similar to that of `triu`, `tril`. That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. `k` is an optional argument to the function. k : scalar An optional argument which is passed through to `mask_func`. Functions like `triu`, `tril` take a second argument that is interpreted as an offset. Returns ------- indices : tuple of arrays. The `n` arrays of indices corresponding to the locations where ``mask_func(np.ones((n, n)), k)`` is True. See Also -------- triu, tril, triu_indices, tril_indices Notes ----- .. versionadded:: 1.4.0 Examples -------- These are the indices that would allow you to access the upper triangular part of any 3x3 array: >>> iu = np.mask_indices(3, np.triu) For example, if `a` is a 3x3 array: >>> a = np.arange(9).reshape(3, 3) >>> a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> a[iu] array([0, 1, 2, 4, 5, 8]) An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of the main one: >>> iu1 = np.mask_indices(3, np.triu, 1) with which we now extract only three elements: >>> a[iu1] array([1, 2, 5]) """ m = ones((n, n), int) a = mask_func(m, k) return nonzero(a != 0) def tril_indices(n, k=0, m=None): """ Return the indices for the lower-triangle of an (n, m) array. Parameters ---------- n : int The row dimension of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- triu_indices : similar function, for upper-triangular. mask_indices : generic function accepting an arbitrary mask function. tril, triu Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main diagonal, and one starting two diagonals further right: >>> il1 = np.tril_indices(4) >>> il2 = np.tril_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[il1] array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) And for assigning values: >>> a[il1] = -1 >>> a array([[-1, 1, 2, 3], [-1, -1, 6, 7], [-1, -1, -1, 11], [-1, -1, -1, -1]]) These cover almost the whole array (two diagonals right of the main one): >>> a[il2] = -10 >>> a array([[-10, -10, -10, 3], [-10, -10, -10, -10], [-10, -10, -10, -10], [-10, -10, -10, -10]]) """ return nonzero(tri(n, m, k=k, dtype=bool)) def _trilu_indices_form_dispatcher(arr, k=None): return (arr,) @array_function_dispatch(_trilu_indices_form_dispatcher) def tril_indices_from(arr, k=0): """ Return the indices for the lower-triangle of arr. See `tril_indices` for full details. Parameters ---------- arr : array_like The indices will be valid for square arrays whose dimensions are the same as arr. k : int, optional Diagonal offset (see `tril` for details). See Also -------- tril_indices, tril Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) def triu_indices(n, k=0, m=None): """ Return the indices for the upper-triangle of an (n, m) array. Parameters ---------- n : int The size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple, shape(2) of ndarrays, shape(`n`) The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. Can be used to slice a ndarray of shape(`n`, `n`). See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ return nonzero(~tri(n, m, k=k-1, dtype=bool)) @array_function_dispatch(_trilu_indices_form_dispatcher) def triu_indices_from(arr, k=0): """ Return the indices for the upper-triangle of arr. See `triu_indices` for full details. Parameters ---------- arr : ndarray, shape(N, N) The indices will be valid for square arrays. k : int, optional Diagonal offset (see `triu` for details). Returns ------- triu_indices_from : tuple, shape(2) of ndarray, shape(N) Indices for the upper-triangle of `arr`. See Also -------- triu_indices, triu Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
bsd-3-clause
-2,810,006,162,861,620,700
26.289157
79
0.551214
false
3.448363
false
false
false
greyshell/Pen-Test
leetcode/factorial.py
1
1129
#!/usr/bin/python # author: greyshell """ [+] problem description ======================= find the factorial of a number 1) recursive two_sum 2) tail recursive two_sum [+] reference ============= TBD """ def tail_recursion_driver(n): """ tail recursive two_sum :param n: int :return: int """ return factorial_tail_recursion(n, 1) # 1 is used to start the first accumulation def factorial_tail_recursion(n, a): """ better than normal recursion as it could be optimized by the compiler by not saving the current stack frame :param n: int :param a: int => it accumulates the result :return: int """ if n == 1 or n == 0: return a # it carries the final result else: return factorial_tail_recursion(n - 1, n * a) def factorial(n): """ normal recursive two_sum :return: int """ if n == 1 or n == 0: # base case for n = 0, 1 return 1 else: # recursive case when n > 1 return n * factorial(n - 1) def main(): print tail_recursion_driver(12) print factorial(0) if __name__ == '__main__': main()
mit
5,056,837,605,008,551,000
18.135593
111
0.581045
false
3.528125
false
false
false
timothyclemansinsea/smc
src/k8s/smc-hub/control.py
1
9152
#!/usr/bin/env python3 """ Hub management script """ import os, shutil, sys, tempfile join = os.path.join # Boilerplate to ensure we are in the directory fo this path and make the util module available. SCRIPT_PATH = os.path.split(os.path.realpath(__file__))[0] sys.path.insert(0, os.path.abspath(os.path.join(SCRIPT_PATH, '..', 'util'))) os.chdir(SCRIPT_PATH) import util # For now in all cases, we just call the container the following; really it should # maybe be smc-webapp-static#sha1hash, which makes switching between versions easy, etc. NAME='smc-hub' SECRETS = os.path.abspath(join(SCRIPT_PATH, '..', '..', 'data', 'secrets')) def build(tag, rebuild, upgrade=False, commit=None): """ Build Docker container by installing and building everything inside the container itself, and NOT using ../../static/ on host. """ # First build smc-hub-base, which is generic install of ubuntu packages, so we should rarely # clear the cache for this. v = ['sudo', 'docker', 'build', '-t', '{name}-base'.format(name=NAME)] if upgrade: v.append("--no-cache") v.append(".") util.run(v, path=join(SCRIPT_PATH, 'image-base')) # Next build smc-hub, which depends on smc-hub-base. v = ['sudo', 'docker', 'build', '-t', tag] if commit: v.append("--build-arg") v.append("commit={commit}".format(commit=commit)) if rebuild: # will cause a git pull to happen v.append("--no-cache") v.append('.') util.run(v, path=join(SCRIPT_PATH,'image')) def build_docker(args): if args.commit: args.tag += ('-' if args.tag else '') + args.commit[:6] tag = util.get_tag(args, NAME) build(tag, args.rebuild, args.upgrade, args.commit) if not args.local: util.gcloud_docker_push(tag) def run_on_kubernetes(args): if args.test: rethink_cpu_request = hub_cpu_request = '10m' rethink_memory_request = hub_memory_request = '200Mi' else: hub_cpu_request = '300m' hub_memory_request = '1Gi' rethink_cpu_request = '300m' rethink_memory_request = '1Gi' util.ensure_secret_exists('sendgrid-api-key', 'sendgrid') util.ensure_secret_exists('zendesk-api-key', 'zendesk') args.local = False # so tag is for gcloud if args.replicas is None: args.replicas = util.get_desired_replicas(NAME, 2) tag = util.get_tag(args, NAME, build) opts = { 'image_hub' : tag, 'replicas' : args.replicas, 'pull_policy' : util.pull_policy(args), 'min_read_seconds' : args.gentle, 'smc_db_hosts' : args.database_nodes, 'smc_db_pool' : args.database_pool_size, 'smc_db_concurrent_warn' : args.database_concurrent_warn, 'hub_cpu_request' : hub_cpu_request, 'hub_memory_request' : hub_memory_request, 'rethink_cpu_request' : rethink_cpu_request, 'rethink_memory_request' : rethink_memory_request } if args.database_nodes == 'localhost': from argparse import Namespace ns = Namespace(tag=args.rethinkdb_proxy_tag, local=False) opts['image_rethinkdb_proxy'] = util.get_tag(ns, 'rethinkdb-proxy', build) filename = 'smc-hub-rethinkdb-proxy.template.yaml' else: filename = '{name}.template.yaml'.format(name=NAME) t = open(join('conf', filename)).read() with tempfile.NamedTemporaryFile(suffix='.yaml', mode='w') as tmp: r = t.format(**opts) #print(r) tmp.write(r) tmp.flush() util.update_deployment(tmp.name) if NAME not in util.get_services(): util.run(['kubectl', 'expose', 'deployment', NAME]) def stop_on_kubernetes(args): util.stop_deployment(NAME) def load_secret(name, args): path = args.path if not os.path.exists(path): os.makedirs(path) if not os.path.isdir(path): raise RuntimeError("path='{path}' must be a directory".format(path=path)) file = join(path, name) if not os.path.exists(file): raise RuntimeError("'{file}' must exist".format(file=file)) util.create_secret(name+'-api-key', file) def status(args): # Get all pod names v = util.get_pods(run=NAME) print("Getting last %s lines of logs from %s pods"%(args.tail, len(v))) for x in v: lg = util.get_logs(x['NAME'], tail=args.tail, container='smc-hub').splitlines() blocked = concurrent = 0 for w in lg: if 'BLOCKED for' in w: # 2016-07-07T17:39:23.159Z - debug: BLOCKED for 1925ms b = int(w.split()[-1][:-2]) blocked = max(blocked, b) if 'concurrent]' in w: # 2016-07-07T17:41:16.226Z - debug: [1 concurrent] ... concurrent = max(concurrent, int(w.split()[3][1:])) x['blocked'] = blocked x['concurrent'] = concurrent bad = util.run("kubectl describe pod {name} |grep Unhealthy |tail -1 ".format(name=x['NAME']), get_output=True, verbose=False).splitlines() if len(bad) > 0: x['unhealthy'] = bad[-1].split()[0] else: x['unhealthy'] = '' print("%-30s%-12s%-12s%-12s%-12s%-12s"%('NAME', 'CONCURRENT', 'BLOCKED', 'UNHEALTHY', 'RESTARTS', 'AGE')) for x in v: print("%-30s%-12s%-12s%-12s%-12s%-12s"%(x['NAME'], x['concurrent'], x['blocked'], x['unhealthy'], x['RESTARTS'], x['AGE'])) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='Control deployment of {name}'.format(name=NAME)) subparsers = parser.add_subparsers(help='sub-command help') sub = subparsers.add_parser('build', help='build docker image') sub.add_argument("-t", "--tag", default="", help="tag for this build") sub.add_argument("-c", "--commit", default='', help="build a particular sha1 commit; the commit is automatically appended to the tag") sub.add_argument("-r", "--rebuild", action="store_true", help="re-pull latest hub source code from git and install any dependencies") sub.add_argument("-u", "--upgrade", action="store_true", help="re-install the base Ubuntu packages") sub.add_argument("-l", "--local", action="store_true", help="only build the image locally; don't push it to gcloud docker repo") sub.set_defaults(func=build_docker) sub = subparsers.add_parser('run', help='create/update {name} deployment on the currently selected kubernetes cluster'.format(name=NAME)) sub.add_argument("-t", "--tag", default="", help="tag of the image to run") sub.add_argument("-r", "--replicas", default=None, help="number of replicas") sub.add_argument("-f", "--force", action="store_true", help="force reload image in k8s") sub.add_argument("-g", "--gentle", default=30, type=int, help="how gentle to be in doing the rolling update; in particular, will wait about this many seconds after each pod starts up (default: 30)") sub.add_argument("-d", "--database-nodes", default='localhost', type=str, help="database to connect to. If 'localhost' (the default), will run a local rethindkb proxy that is itself pointed at the rethinkdb-cluster service; if 'rethinkdb-proxy' will use that service.") sub.add_argument("-p", "--database-pool-size", default=50, type=int, help="size of database connection pool") sub.add_argument("--database-concurrent-warn", default=300, type=int, help="if this many concurrent queries for sustained time, kill container") sub.add_argument("--rethinkdb-proxy-tag", default="", help="tag of rethinkdb-proxy image to run") sub.add_argument("--test", action="store_true", help="using for testing so make very minimal resource requirements") sub.set_defaults(func=run_on_kubernetes) sub = subparsers.add_parser('delete', help='delete the deployment') sub.set_defaults(func=stop_on_kubernetes) sub = subparsers.add_parser('load-sendgrid', help='load the sendgrid password into k8s from disk', formatter_class=argparse.ArgumentDefaultsHelpFormatter) sub.add_argument('path', type=str, help='path to directory that contains the password in a file named "sendgrid"') sub.set_defaults(func=lambda args: load_secret('sendgrid',args)) sub = subparsers.add_parser('load-zendesk', help='load the zendesk password into k8s from disk', formatter_class=argparse.ArgumentDefaultsHelpFormatter) sub.add_argument('path', type=str, help='path to directory that contains the password in a file named "zendesk"') sub.set_defaults(func=lambda args: load_secret('zendesk',args)) util.add_deployment_parsers(NAME, subparsers, default_container='smc-hub') sub = subparsers.add_parser('status', help='display status info about concurrent and blocked, based on recent logs') sub.add_argument("-t", "--tail", default=100, type=int, help="how far back to go in log") sub.set_defaults(func=status) args = parser.parse_args() if hasattr(args, 'func'): args.func(args)
gpl-3.0
-8,445,299,926,647,956,000
46.419689
275
0.633086
false
3.521354
false
false
false
Yuecai/com-yuecai-dream
src/nodelay/forms.py
1
9690
# coding=utf-8 ######################################################################### # File Name: forms.py # Original Author: 段凯强 # Mail: duankq@ios.ac.cn # Created Time: 2013-12-26 # Update: ######################################################################### ######################################################################### # Copyright (c) 2013~2014 by 段凯强 # Reand the file "license" distributed with these sources, or XXXX # XXXXXXXXXXXXXXXXXX switch for additional information, such as how # to use, copy, modify, sell and/or distribute this software and its # documentation any purpose anyway. ######################################################################### import datetime, time import re from django import forms class BasicTaskForm(forms.Form): taskType = forms.CharField() date = forms.DateField() time = forms.IntegerField() title = forms.CharField() content = forms.CharField() def clean_taskType(self): taskType = self.cleaned_data['taskType'] if taskType == u'Basic': return taskType raise forms.ValidationError('taskType_err') def clean_date(self): date = self.cleaned_data['date'] today = datetime.date.today() if date < today + datetime.timedelta(days = 8) and date > today: return date raise forms.ValidationError('date_err') def clean_time(self): time = self.cleaned_data['time'] if time >= 1 and time <= 3: return time raise forms.ValidationError('time_err') def clean_title(self): pattern = re.compile(u'^[a-zA-Z0-9\u4e00-\u9fa5]+$') title = self.cleaned_data['title'] l = len(title) if l >= 1 and l <= 10 and pattern.match(title): return title raise forms.ValidationError('title_err') def clean_content(self): pattern = re.compile(u'^[()!¥?。,《》{}【】“”·、:;‘’……\s\x21-\x7e\u4e00-\u9fa5]+$') pattern_blank = re.compile(u'^\s+$') content = self.cleaned_data['content'] l = len(content) if l >= 1 and l <= 100 and pattern.match(content) and not pattern_blank.match(content): return content raise forms.ValidationError('content_err') class BookTaskForm(forms.Form): taskType = forms.CharField() date = forms.DateField() time = forms.IntegerField() bookName = forms.CharField() readFrom = forms.CharField() readTo = forms.CharField() def clean_taskType(self): taskType = self.cleaned_data['taskType'] if taskType == u'Book': return taskType raise forms.ValidationError('taskType_err') def clean_date(self): date = self.cleaned_data['date'] today = datetime.date.today() if date < today + datetime.timedelta(days = 8) and date > today: return date raise forms.ValidationError('date_err') def clean_time(self): time = self.cleaned_data['time'] if time >= 1 and time <= 3: return time raise forms.ValidationError('time_err') def clean_bookName(self): pattern = re.compile(u'^[()!¥?。,《》{}【】“”·、:;‘’……\s\x21-\x7e\u4e00-\u9fa5]+$') pattern_blank = re.compile(u'^\s+$') bookName = self.cleaned_data['bookName'] l = len(bookName) if l >= 1 and l <= 50 and pattern.match(bookName) and not pattern_blank.match(bookName): return bookName raise forms.ValidationError('bookName_err') def clean_readFrom(self): pattern = re.compile(u'^[()!¥?。,《》{}【】“”·、:;‘’……\s\x21-\x7e\u4e00-\u9fa5]+$') pattern_blank = re.compile(u'^\s+$') readFrom = self.cleaned_data['readFrom'] l = len(readFrom) if l >= 1 and l <= 50 and pattern.match(readFrom) and not pattern_blank.match(readFrom): return readFrom raise forms.ValidationError('readFrom_err') def clean_readTo(self): pattern = re.compile(u'^[()!¥?。,《》{}【】“”·、:;‘’……\s\x21-\x7e\u4e00-\u9fa5]+$') pattern_blank = re.compile(u'^\s+$') readTo = self.cleaned_data['readTo'] l = len(readTo) if l >= 1 and l <= 50 and pattern.match(readTo) and not pattern_blank.match(readTo): return readTo raise forms.ValidationError('readTo_err') class WorkTaskForm(forms.Form): taskType = forms.CharField() date = forms.DateField() time = forms.IntegerField() summary = forms.CharField() goal = forms.CharField() def clean_taskType(self): taskType = self.cleaned_data['taskType'] if taskType == u'Work': return taskType raise forms.ValidationError('taskType_err') def clean_date(self): date = self.cleaned_data['date'] today = datetime.date.today() if date < today + datetime.timedelta(days = 8) and date > today: return date raise forms.ValidationError('date_err') def clean_time(self): time = self.cleaned_data['time'] if time >= 1 and time <= 3: return time raise forms.ValidationError('time_err') def clean_summary(self): pattern = re.compile(u'^[()!¥?。,《》{}【】“”·、:;‘’……\s\x21-\x7e\u4e00-\u9fa5]+$') pattern_blank = re.compile(u'^\s+$') summary = self.cleaned_data['summary'] l = len(summary) if l >= 1 and l <= 50 and pattern.match(summary) and not pattern_blank.match(summary): return summary raise forms.ValidationError('summary') def clean_goal(self): pattern = re.compile(u'^[()!¥?。,《》{}【】“”·、:;‘’……\s\x21-\x7e\u4e00-\u9fa5]+$') pattern_blank = re.compile(u'^\s+$') goal = self.cleaned_data['goal'] l = len(goal) if l >= 1 and l <= 50 and pattern.match(goal) and not pattern_blank.match(goal): return goal raise forms.ValidationError('goal_err') class HomeworkTaskForm(forms.Form): taskType = forms.CharField() date = forms.DateField() time = forms.IntegerField() courseName = forms.CharField() introduction = forms.CharField() def clean_taskType(self): taskType = self.cleaned_data['taskType'] if taskType == u'Homework': return taskType raise forms.ValidationError('taskType_err') def clean_date(self): date = self.cleaned_data['date'] today = datetime.date.today() if date < today + datetime.timedelta(days = 8) and date > today: return date raise forms.ValidationError('date_err') def clean_time(self): time = self.cleaned_data['time'] if time >= 1 and time <= 3: return time raise forms.ValidationError('time_err') def clean_courseName(self): pattern = re.compile(u'^[a-zA-Z0-9\u4e00-\u9fa5]+$') courseName = self.cleaned_data['courseName'] l = len(courseName) if l >= 1 and l <= 10 and pattern.match(courseName): return courseName raise forms.ValidationError('courseName_err') def clean_introduction(self): pattern = re.compile(u'^[()!¥?。,《》{}【】“”·、:;‘’……\s\x21-\x7e\u4e00-\u9fa5]+$') pattern_blank = re.compile(u'^\s+$') introduction = self.cleaned_data['introduction'] l = len(introduction) if l >= 1 and l <= 100 and pattern.match(introduction) and not pattern_blank.match(introduction): return introduction raise forms.ValidationError('introduction_err') class TaskIdForm(forms.Form): taskId = forms.IntegerField() def clean_taskId(self): taskId = self.cleaned_data['taskId'] if taskId > 0: return taskId raise forms.ValidationError('taskId_err') class ChangeDateForm(forms.Form): taskId = forms.IntegerField() date = forms.DateField() time = forms.IntegerField() def clean_taskId(self): taskId = self.cleaned_data['taskId'] if taskId > 0: return taskId raise forms.ValidationError('taskId_err') def clean_date(self): date = self.cleaned_data['date'] today = datetime.date.today() if date < today + datetime.timedelta(days = 8) and date > today: return date raise forms.ValidationError('date_err') def clean_time(self): time = self.cleaned_data['time'] if time >= 1 and time <= 3: return time raise forms.ValidationError('time_err') class ExchangeTaskForm(forms.Form): taskId1 = forms.IntegerField() taskId2 = forms.IntegerField() def clean_taskId1(self): taskId1 = self.cleaned_data['taskId1'] if taskId1 > 0: return taskId1 raise forms.ValidationError('taskId1_err') def clean_taskId2(self): taskId2 = self.cleaned_data['taskId2'] if taskId2 > 0: return taskId2 raise forms.ValidationError('taskId2_err') class DelayShiftTaskForm(forms.Form): fromId = forms.IntegerField() toId = forms.IntegerField() def clean_fromId(self): fromId = self.cleaned_data['fromId'] if fromId > 0: return fromId raise forms.ValidationError('fromId_err') def clean_toId(self): toId = self.cleaned_data['toId'] if toId > 0: return toId raise forms.ValidationError('toId_err')
bsd-3-clause
8,940,460,477,779,460,000
33.025362
105
0.577787
false
3.504104
false
false
false
quantopian/zipline
zipline/data/in_memory_daily_bars.py
1
5363
from six import iteritems import numpy as np import pandas as pd from pandas import NaT from trading_calendars import TradingCalendar from zipline.data.bar_reader import OHLCV, NoDataOnDate, NoDataForSid from zipline.data.session_bars import CurrencyAwareSessionBarReader from zipline.utils.input_validation import expect_types, validate_keys from zipline.utils.pandas_utils import check_indexes_all_same class InMemoryDailyBarReader(CurrencyAwareSessionBarReader): """ A SessionBarReader backed by a dictionary of in-memory DataFrames. Parameters ---------- frames : dict[str -> pd.DataFrame] Dictionary from field name ("open", "high", "low", "close", or "volume") to DataFrame containing data for that field. calendar : str or trading_calendars.TradingCalendar Calendar (or name of calendar) to which data is aligned. currency_codes : pd.Series Map from sid -> listing currency for that sid. verify_indices : bool, optional Whether or not to verify that input data is correctly aligned to the given calendar. Default is True. """ @expect_types( frames=dict, calendar=TradingCalendar, verify_indices=bool, currency_codes=pd.Series, ) def __init__(self, frames, calendar, currency_codes, verify_indices=True): self._frames = frames self._values = {key: frame.values for key, frame in iteritems(frames)} self._calendar = calendar self._currency_codes = currency_codes validate_keys(frames, set(OHLCV), type(self).__name__) if verify_indices: verify_frames_aligned(list(frames.values()), calendar) self._sessions = frames['close'].index self._sids = frames['close'].columns @classmethod def from_panel(cls, panel, calendar, currency_codes): """Helper for construction from a pandas.Panel. """ return cls(dict(panel.iteritems()), calendar, currency_codes) @property def last_available_dt(self): return self._calendar[-1] @property def trading_calendar(self): return self._calendar @property def sessions(self): return self._sessions def load_raw_arrays(self, columns, start_dt, end_dt, assets): if start_dt not in self._sessions: raise NoDataOnDate(start_dt) if end_dt not in self._sessions: raise NoDataOnDate(end_dt) asset_indexer = self._sids.get_indexer(assets) if -1 in asset_indexer: bad_assets = assets[asset_indexer == -1] raise NoDataForSid(bad_assets) date_indexer = self._sessions.slice_indexer(start_dt, end_dt) out = [] for c in columns: out.append(self._values[c][date_indexer, asset_indexer]) return out def get_value(self, sid, dt, field): """ Parameters ---------- sid : int The asset identifier. day : datetime64-like Midnight of the day for which data is requested. field : string The price field. e.g. ('open', 'high', 'low', 'close', 'volume') Returns ------- float The spot price for colname of the given sid on the given day. Raises a NoDataOnDate exception if the given day and sid is before or after the date range of the equity. Returns -1 if the day is within the date range, but the price is 0. """ return self.frames[field].loc[dt, sid] def get_last_traded_dt(self, asset, dt): """ Parameters ---------- asset : zipline.asset.Asset The asset identifier. dt : datetime64-like Midnight of the day for which data is requested. Returns ------- pd.Timestamp : The last know dt for the asset and dt; NaT if no trade is found before the given dt. """ try: return self.frames['close'].loc[:, asset.sid].last_valid_index() except IndexError: return NaT @property def first_trading_day(self): return self._sessions[0] def currency_codes(self, sids): codes = self._currency_codes return np.array([codes[sid] for sid in sids]) def verify_frames_aligned(frames, calendar): """ Verify that DataFrames in ``frames`` have the same indexing scheme and are aligned to ``calendar``. Parameters ---------- frames : list[pd.DataFrame] calendar : trading_calendars.TradingCalendar Raises ------ ValueError If frames have different indexes/columns, or if frame indexes do not match a contiguous region of ``calendar``. """ indexes = [f.index for f in frames] check_indexes_all_same(indexes, message="DataFrame indexes don't match:") columns = [f.columns for f in frames] check_indexes_all_same(columns, message="DataFrame columns don't match:") start, end = indexes[0][[0, -1]] cal_sessions = calendar.sessions_in_range(start, end) check_indexes_all_same( [indexes[0], cal_sessions], "DataFrame index doesn't match {} calendar:".format(calendar.name), )
apache-2.0
-1,749,134,559,772,530,400
30.547059
78
0.611039
false
4.222835
false
false
false
suizokukan/dchars-fe
kshortcuts.py
1
2929
#!./python_link # -*- coding: utf-8 -*- ################################################################################ # DChars-FE Copyright (C) 2008 Xavier Faure # Contact: faure dot epistulam dot mihi dot scripsisti at orange dot fr # # This file is part of DChars-FE. # DChars-FE is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # DChars-FE is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with DChars-FE. If not, see <http://www.gnu.org/licenses/>. ################################################################################ """ ❏DChars-FE❏ kshortcuts.py (keyboard) shortcuts """ ################################################################################ class KeyboardShortcut(object): """ class KeyboardShortcut Use this class to store two representations of shortcuts : the Qt one and the "human readable" one. """ #/////////////////////////////////////////////////////////////////////////// def __init__(self, qstring, human_readeable_string): """ KeyboardShortcut.__init__ """ self.qstring = qstring self.human_readeable_string = human_readeable_string KSHORTCUTS = { "open" : \ KeyboardShortcut( qstring = "CTRL+O", human_readeable_string = "CTRL+O" ), "save as" : \ KeyboardShortcut( qstring = "CTRL+S", human_readeable_string = "CTRL+S" ), "exit" : \ KeyboardShortcut( qstring = "CTRL+Q", human_readeable_string = "CTRL+Q" ), "display help chars" : \ KeyboardShortcut( qstring = "CTRL+H", human_readeable_string = "CTRL+H" ), "apply" : \ KeyboardShortcut( qstring = "CTRL+SPACE", human_readeable_string = "CTRL+SPACE" ), "add trans" : \ KeyboardShortcut( qstring = "CTRL++", human_readeable_string = "CTRL + '+'" ), "sub trans" : \ KeyboardShortcut( qstring = "CTRL+-", human_readeable_string = "CTRL + '-'" ), }
gpl-3.0
-7,099,916,806,350,500,000
38.527027
82
0.454701
false
4.695024
false
false
false
akniffe1/fsf
fsf-server/daemon.py
1
3798
#!/usr/bin/env python # # All credit for this class goes to Sander Marechal, 2009-05-31 # Reference: http://www.jejik.com/articles/2007/02/a_simple_unix_linux_daemon_in_python/ # # import sys, os, time, atexit from signal import SIGTERM class Daemon: """ A generic daemon class. Usage: subclass the Daemon class and override the run() method """ def __init__(self, pidfile, stdin='/dev/null', stdout='/dev/null', stderr='/dev/null'): self.stdin = stdin self.stdout = stdout self.stderr = stderr self.pidfile = pidfile def daemonize(self): """ do the UNIX double-fork magic, see Stevens' "Advanced Programming in the UNIX Environment" for details (ISBN 0201563177) http://www.erlenstar.demon.co.uk/unix/faq_2.html#SEC16 """ try: pid = os.fork() if pid > 0: # exit first parent sys.exit(0) except OSError, e: sys.stderr.write("fork #1 failed: %d (%s)\n" % (e.errno, e.strerror)) sys.exit(1) # decouple from parent environment os.chdir("/") os.setsid() os.umask(0) # do second fork try: pid = os.fork() if pid > 0: # exit from second parent sys.exit(0) except OSError, e: sys.stderr.write("fork #2 failed: %d (%s)\n" % (e.errno, e.strerror)) sys.exit(1) # redirect standard file descriptors sys.stdout.flush() sys.stderr.flush() si = file(self.stdin, 'r') so = file(self.stdout, 'a+') se = file(self.stderr, 'a+', 0) os.dup2(si.fileno(), sys.stdin.fileno()) os.dup2(so.fileno(), sys.stdout.fileno()) os.dup2(se.fileno(), sys.stderr.fileno()) # write pidfile atexit.register(self.delpid) pid = str(os.getpid()) file(self.pidfile,'w+').write("%s\n" % pid) def delpid(self): os.remove(self.pidfile) def start(self): """ Start the daemon """ # Check for a pidfile to see if the daemon already runs try: pf = file(self.pidfile,'r') pid = int(pf.read().strip()) pf.close() except IOError: pid = None if pid: message = "pidfile %s already exists. Daemon already running?\n" sys.stderr.write(message % self.pidfile) sys.exit(1) # Start the daemon self.daemonize() self.run() def stop(self): """ Stop the daemon """ # Get the pid from the pidfile try: pf = file(self.pidfile,'r') pid = int(pf.read().strip()) pf.close() except IOError: pid = None if not pid: message = "pidfile %s does not exist. Daemon not running?\n" sys.stderr.write(message % self.pidfile) return # not an error in a restart # Try killing the daemon process try: while 1: os.kill(pid, SIGTERM) time.sleep(0.1) except OSError, err: err = str(err) if err.find("No such process") > 0: if os.path.exists(self.pidfile): os.remove(self.pidfile) else: print str(err) sys.exit(1) def restart(self): """ Restart the daemon """ self.stop() self.start() def run(self): """ You should override this method when you subclass Daemon. It will be called after the process has been daemonized by start() or restart(). """
apache-2.0
6,438,743,217,424,489,000
27.343284
110
0.511848
false
3.931677
false
false
false
immanetize/nikola
nikola/filters.py
1
7187
# -*- coding: utf-8 -*- # Copyright © 2012-2015 Roberto Alsina and others. # Permission is hereby granted, free of charge, to any # person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the # Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the # Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice # shall be included in all copies or substantial portions of # the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS # OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Utility functions to help you run filters on files.""" from .utils import req_missing from functools import wraps import os import io import shutil import subprocess import tempfile import shlex try: import typogrify.filters as typo except ImportError: typo = None # NOQA def apply_to_binary_file(f): """Take a function f that transforms a data argument, and returns a function that takes a filename and applies f to the contents, in place. Reads files in binary mode.""" @wraps(f) def f_in_file(fname): with open(fname, 'rb') as inf: data = inf.read() data = f(data) with open(fname, 'wb+') as outf: outf.write(data) return f_in_file def apply_to_text_file(f): """Take a function f that transforms a data argument, and returns a function that takes a filename and applies f to the contents, in place. Reads files in UTF-8.""" @wraps(f) def f_in_file(fname): with io.open(fname, 'r', encoding='utf-8') as inf: data = inf.read() data = f(data) with io.open(fname, 'w+', encoding='utf-8') as outf: outf.write(data) return f_in_file def list_replace(the_list, find, replacement): "Replace all occurrences of ``find`` with ``replacement`` in ``the_list``" for i, v in enumerate(the_list): if v == find: the_list[i] = replacement def runinplace(command, infile): """Run a command in-place on a file. command is a string of the form: "commandname %1 %2" and it will be execed with infile as %1 and a temporary file as %2. Then, that temporary file will be moved over %1. Example usage: runinplace("yui-compressor %1 -o %2", "myfile.css") That will replace myfile.css with a minified version. You can also supply command as a list. """ if not isinstance(command, list): command = shlex.split(command) tmpdir = None if "%2" in command: tmpdir = tempfile.mkdtemp(prefix="nikola") tmpfname = os.path.join(tmpdir, os.path.basename(infile)) try: list_replace(command, "%1", infile) if tmpdir: list_replace(command, "%2", tmpfname) subprocess.check_call(command) if tmpdir: shutil.move(tmpfname, infile) finally: if tmpdir: shutil.rmtree(tmpdir) def yui_compressor(infile): yuicompressor = False try: subprocess.call('yui-compressor', stdout=open(os.devnull, 'w'), stderr=open(os.devnull, 'w')) yuicompressor = 'yui-compressor' except Exception: pass if not yuicompressor: try: subprocess.call('yuicompressor', stdout=open(os.devnull, 'w'), stderr=open(os.devnull, 'w')) yuicompressor = 'yuicompressor' except: raise Exception("yui-compressor is not installed.") return False return runinplace(r'{} --nomunge %1 -o %2'.format(yuicompressor), infile) def closure_compiler(infile): return runinplace(r'closure-compiler --warning_level QUIET --js %1 --js_output_file %2', infile) def optipng(infile): return runinplace(r"optipng -preserve -o2 -quiet %1", infile) def jpegoptim(infile): return runinplace(r"jpegoptim -p --strip-all -q %1", infile) def html_tidy_nowrap(infile): return _html_tidy_runner(infile, r"-quiet --show-info no --show-warnings no -utf8 -indent --indent-attributes no --sort-attributes alpha --wrap 0 --wrap-sections no --tidy-mark no -modify %1") def html_tidy_wrap(infile): return _html_tidy_runner(infile, r"-quiet --show-info no --show-warnings no -utf8 -indent --indent-attributes no --sort-attributes alpha --wrap 80 --wrap-sections no --tidy-mark no -modify %1") def html_tidy_wrap_attr(infile): return _html_tidy_runner(infile, r"-quiet --show-info no --show-warnings no -utf8 -indent --indent-attributes yes --sort-attributes alpha --wrap 80 --wrap-sections no --tidy-mark no -modify %1") def html_tidy_mini(infile): return _html_tidy_runner(infile, r"-quiet --show-info no --show-warnings no -utf8 --indent-attributes no --sort-attributes alpha --wrap 0 --wrap-sections no --tidy-mark no -modify %1") def _html_tidy_runner(infile, options): """ Warnings (returncode 1) are not critical, and *everything* is a warning """ try: status = runinplace(r"tidy5 " + options, infile) except subprocess.CalledProcessError as err: status = 0 if err.returncode == 1 else err.returncode return status @apply_to_text_file def minify_lines(data): return data @apply_to_text_file def typogrify(data): if typo is None: req_missing(['typogrify'], 'use the typogrify filter') data = typo.amp(data) data = typo.widont(data) data = typo.smartypants(data) # Disabled because of typogrify bug where it breaks <title> # data = typo.caps(data) data = typo.initial_quotes(data) return data @apply_to_text_file def typogrify_sans_widont(data): # typogrify with widont disabled because it caused broken headline # wrapping, see issue #1465 if typo is None: req_missing(['typogrify'], 'use the typogrify_sans_widont filter') data = typo.amp(data) data = typo.smartypants(data) # Disabled because of typogrify bug where it breaks <title> # data = typo.caps(data) data = typo.initial_quotes(data) return data @apply_to_text_file def php_template_injection(data): import re template = re.search('<\!-- __NIKOLA_PHP_TEMPLATE_INJECTION source\:(.*) checksum\:(.*)__ -->', data) if template: source = template.group(1) with io.open(source, "r", encoding="utf-8") as in_file: phpdata = in_file.read() _META_SEPARATOR = '(' + os.linesep * 2 + '|' + ('\n' * 2) + '|' + ("\r\n" * 2) + ')' phpdata = re.split(_META_SEPARATOR, phpdata, maxsplit=1)[-1] phpdata = re.sub(template.group(0), phpdata, data) return phpdata else: return data
mit
-9,010,117,883,076,772,000
31.369369
198
0.660868
false
3.594797
false
false
false
Arzaroth/python_rapidxml
tests/test_basic.py
1
5638
#!/usr/bin/env python # -*- coding: utf-8 -*- # # File: simple.py # by Arzaroth Lekva # arzaroth@arzaroth.com # import os import rapidxml def test_unparse(init_rapidxml): assert init_rapidxml.unparse() == ('<root><test attr1="one" attr2="two" attr3="three"/>' '<test2><node id="1"/><node id="2"/><node id="3"/></test2>' '<test>some text</test></root>') assert init_rapidxml.unparse() == repr(init_rapidxml) assert init_rapidxml.unparse(False, False) == repr(init_rapidxml) assert init_rapidxml.unparse(raw=False) == repr(init_rapidxml) assert init_rapidxml.unparse(pretty=False) == repr(init_rapidxml) assert init_rapidxml.unparse(pretty=False, raw=False) == repr(init_rapidxml) assert init_rapidxml.unparse(True) == str(init_rapidxml) assert init_rapidxml.unparse(True, False) == str(init_rapidxml) assert init_rapidxml.unparse(pretty=True) == str(init_rapidxml) assert init_rapidxml.unparse(pretty=True, raw=False) == str(init_rapidxml) assert init_rapidxml.unparse(True, raw=False) == str(init_rapidxml) def test_parse(init_rapidxml): r = rapidxml.RapidXml() try: data = init_rapidxml.unparse().encode('utf-8') except UnicodeDecodeError: data = init_rapidxml.unparse() r.parse(data) assert str(r) == str(init_rapidxml) def test_parse_from_file(init_rapidxml, tmpdir): f = tmpdir.join("dump.xml") f.write(init_rapidxml.unparse()) r = rapidxml.RapidXml(str(f), from_file=True) assert str(r) == str(init_rapidxml) def test_equals(init_rapidxml): assert init_rapidxml == init_rapidxml root = init_rapidxml.first_node() assert root == root assert root == init_rapidxml.first_node() assert root.first_node() != root.first_node("test2") assert (root != root) == (not (root == root)) def test_parent(init_rapidxml): assert init_rapidxml.parent is None assert init_rapidxml.first_node().parent == init_rapidxml def test_assign(init_rapidxml): root = init_rapidxml.first_node() root.name = "new_root" assert root.name == "new_root" test = root.first_node() test.name = "new_test" test.first_attribute().name = "new_attr1" test.first_attribute().next_attribute().value = "new_two" test = root.first_node("test") test.value = "some new text" assert test.value == "some new text" assert init_rapidxml.unparse() == ('<new_root><new_test new_attr1="one" attr2="new_two" attr3="three"/>' '<test2><node id="1"/><node id="2"/><node id="3"/></test2>' '<test>some new text</test></new_root>') def test_init_cdata(init_rapidxml_with_CDADA): datra_str =('<root><test attr1="one" attr2="two" attr3="three"/>' '<test2><node id="1"/><node id="2"/><node id="3"/></test2>' '<test>some text</test>' "<ns2:AdditionalData><ns2:Data TID=\"AD_1\">" "<![CDATA[{\"Cart\":{\"expirationTime\":\"2017-04-22T09:40\"," "\"id\":\"b469df3b-f626-4fe3-898c-825373e546a2\",\"products\":[\"1223\"]," "\"creationTime\":\"2017-04-21T09:40\",\"totalPrice\":" "{\"currencyCode\":\"EUR\",\"amount\":\"138.000\"}}}]]>" "</ns2:Data></ns2:AdditionalData></root>") assert init_rapidxml_with_CDADA.unparse() == rapidxml.RapidXml(datra_str, from_file=False, attribute_prefix='@', cdata_key='#text', always_aslist=False, parse_cdata=True).unparse() assert init_rapidxml_with_CDADA.unparse() == repr(init_rapidxml_with_CDADA) assert init_rapidxml_with_CDADA.unparse(True) == str(init_rapidxml_with_CDADA) def test_parse_cdata(init_rapidxml_with_CDADA): r = rapidxml.RapidXml() try: data = init_rapidxml_with_CDADA.unparse().encode('utf-8') except UnicodeDecodeError: data = init_rapidxml_with_CDADA.unparse() r.parse(data, from_file=False, parse_cdata=True) assert str(r) == str(init_rapidxml_with_CDADA) def test_parse_from_file_cdata(init_rapidxml_with_CDADA, tmpdir): f = tmpdir.join("dump.xml") f.write(init_rapidxml_with_CDADA.unparse()) r = rapidxml.RapidXml(str(f), from_file=True, parse_cdata=True) assert str(r) == str(init_rapidxml_with_CDADA) def test_equals_cdata(init_rapidxml_with_CDADA): assert init_rapidxml_with_CDADA == init_rapidxml_with_CDADA root = init_rapidxml_with_CDADA.first_node() assert root == root assert root == init_rapidxml_with_CDADA.first_node() assert root.first_node() != root.first_node("test2") assert (root != root) == (not (root == root)) def test_parent_cdata(init_rapidxml_with_CDADA): assert init_rapidxml_with_CDADA.parent is None assert init_rapidxml_with_CDADA.first_node().parent == init_rapidxml_with_CDADA def test_assign_cdata(init_rapidxml_with_CDADA): root = init_rapidxml_with_CDADA.first_node() root.name = "new_root" assert root.name == "new_root" test = root.first_node() test.name = "new_test" test.first_attribute().name = "new_attr1" test.first_attribute().next_attribute().value = "new_two" test = root.first_node("test") test.value = "some new text" assert test.value == "some new text"
mit
6,300,679,868,644,704,000
44.104
108
0.595956
false
3.130483
true
false
false
OpenNetworkingFoundation/PIF-Open-Intermediate-Representation
pif_ir/bir/tests/test_common.py
1
1166
# single BIRStruct description yaml_eth_struct_dict = { 'type' : 'struct', 'fields' : [ {'dst' : 48}, {'src' : 48}, {'type_' : 16} ] } yaml_udp_struct_dict = { 'type' : 'struct', 'fields' : [ {'sport' : 16}, {'dport' : 16}, {'len' : 16}, {'chksum' : 16} ] } yaml_req_struct_dict = { 'type' : 'struct', 'fields' : [ {'type_' : 16} ] } yaml_resp_struct_dict = { 'type' : 'struct', 'fields' : [ {'hit' : 1}, {'p4_action' : 2}, {'action_0_arg0' : 16}, {'action_1_arg0' : 16} ] } # single MetadataInstance description yaml_eth_meta_dict = { 'type' : 'metadata', 'values' : 'eth_t', 'visibility' : 'inout' } yaml_req_meta_dict = { 'type' : 'metadata', 'values' : 'req_t', 'visibility' : 'inout' } yaml_resp_meta_dict = { 'type' : 'metadata', 'values' : 'resp_t', 'visibility' : 'inout' } # single Table description yaml_table_dict = { 'type' : 'table', 'match_type' : 'ternary', 'depth' : 64, 'request' : 'req_t', 'response' : 'resp_t', 'operations' : None }
apache-2.0
-2,003,529,813,339,534,800
17.21875
37
0.465695
false
2.823245
false
true
false
specter119/custodian
custodian/feff/handlers.py
1
4398
# coding: utf-8 from __future__ import unicode_literals, division from custodian.custodian import ErrorHandler import re from custodian.utils import backup from pymatgen.io.feff.sets import FEFFDictSet from custodian.feff.interpreter import FeffModder import logging """ This module implements specific error handler for FEFF runs. """ __author__ = "Chen Zheng" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "0.1" __maintainer__ = "Chen Zheng" __email__ = "chz022@ucsd.edu" __date__ = "Oct 18, 2017" FEFF_BACKUP_FILES = ["ATOMS", "HEADER", "PARAMETERS", "POTENTIALS", "feff.inp", "*.cif", "pot.bin"] logger = logging.getLogger(__name__) class UnconvergedErrorHandler(ErrorHandler): """ Correct the unconverged error of FEFF's SCF calculation. """ is_monitor = False def __init__(self, output_filename='log1.dat'): """ Initializes the handler with the output file to check Args: output_filename (str): Filename for the log1.dat file. log1.dat file contains the SCF calculation convergence information. Change this only if it is different from the default (unlikely). """ self.output_filename = output_filename def check(self): """ If the FEFF run does not converge, the check will return "TRUE" """ return self._notconverge_check() def _notconverge_check(self): # Process the output file and get converge information not_converge_pattern = re.compile("Convergence not reached.*") converge_pattern = re.compile('Convergence reached.*') for _, line in enumerate(open(self.output_filename)): if len(not_converge_pattern.findall(line)) > 0: return True elif len(converge_pattern.findall(line)) > 0: return False def correct(self): backup(FEFF_BACKUP_FILES) feff_input = FEFFDictSet.from_directory(".") scf_values = feff_input.tags.get("SCF") nscmt = scf_values[2] ca = scf_values[3] nmix = scf_values[4] actions = [] #Add RESTART card to PARAMETERS if not "RESTART" in feff_input.tags: actions.append({"dict": "PARAMETERS", "action": {"_set": {"RESTART": []}}}) if nscmt < 100 and ca == 0.2: scf_values[2] = 100 scf_values[4] = 3 # Set nmix = 3 actions.append({"dict": "PARAMETERS", "action": {"_set": {"SCF": scf_values}}}) FeffModder().apply_actions(actions) return {"errors": ["Non-converging job"], "actions": actions} elif nscmt == 100 and nmix == 3 and ca > 0.01: # Reduce the convergence accelerator factor scf_values[3] = round(ca / 2, 2) actions.append({"dict": "PARAMETERS", "action": {"_set": {"SCF": scf_values}}}) FeffModder().apply_actions(actions) return {"errors": ["Non-converging job"], "actions": actions} elif nmix == 3 and ca == 0.01: # Set ca = 0.05 and set nmix scf_values[3] = 0.05 scf_values[4] = 5 actions.append({"dict": "PARAMETERS", "action": {"_set": {"SCF": scf_values}}}) FeffModder().apply_actions(actions) return {"errors": ["Non-converging job"], "actions": actions} elif nmix == 5 and ca == 0.05: # Set ca = 0.05 and set nmix scf_values[3] = 0.05 scf_values[4] = 10 actions.append({"dict": "PARAMETERS", "action": {"_set": {"SCF": scf_values}}}) FeffModder().apply_actions(actions) return {"errors": ["Non-converging job"], "actions": actions} elif nmix == 10 and ca < 0.2: # loop through ca with nmix = 10 scf_values[3] = round(ca * 2, 2) actions.append({"dict": "PARAMETERS", "action": {"_set": {"SCF": scf_values}}}) FeffModder().apply_actions(actions) return {"errors": ["Non-converging job"], "actions": actions} # Unfixable error. Just return None for actions. else: return {"errors": ["Non-converging job"], "actions": None}
mit
-3,734,159,296,317,997,000
35.65
99
0.555707
false
3.775107
false
false
false
ActiveState/code
recipes/Python/271607_fiber_scheduler/recipe-271607.py
1
5269
import sys, select, time, socket, traceback class SEND: def __init__( self, sock, timeout ): self.fileno = sock.fileno() self.expire = time.time() + timeout def __str__( self ): return 'SEND(%i,%s)' % ( self.fileno, time.strftime( '%H:%M:%S', time.localtime( self.expire ) ) ) class RECV: def __init__( self, sock, timeout ): self.fileno = sock.fileno() self.expire = time.time() + timeout def __str__( self ): return 'RECV(%i,%s)' % ( self.fileno, time.strftime( '%H:%M:%S', time.localtime( self.expire ) ) ) class WAIT: def __init__( self, timeout = None ): self.expire = timeout and time.time() + timeout or None def __str__( self ): return 'WAIT(%s)' % ( self.expire and time.strftime( '%H:%M:%S', time.localtime( self.expire ) ) ) class Fiber: def __init__( self, generator ): self.__generator = generator self.state = WAIT() def step( self, throw=None ): self.state = None try: if throw: assert hasattr( self.__generator, 'throw' ), throw self.__generator.throw( AssertionError, throw ) state = self.__generator.next() assert isinstance( state, (SEND, RECV, WAIT) ), 'invalid waiting state %r' % state self.state = state except KeyboardInterrupt: raise except StopIteration: del self.__generator pass except AssertionError, msg: print 'Error:', msg except: traceback.print_exc() def __repr__( self ): return '%i: %s' % ( self.__generator.gi_frame.f_lineno, self.state ) class GatherFiber( Fiber ): def __init__( self, generator ): Fiber.__init__( self, generator ) self.__chunks = [ '[ 0.00 ] %s\n' % time.ctime() ] self.__start = time.time() self.__newline = True def step( self, throw=None ): stdout = sys.stdout stderr = sys.stderr try: sys.stdout = sys.stderr = self Fiber.step( self, throw ) finally: sys.stdout = stdout sys.stderr = stderr def write( self, string ): if self.__newline: self.__chunks.append( '%6.2f ' % ( time.time() - self.__start ) ) self.__chunks.append( string ) self.__newline = string.endswith( '\n' ) def __del__( self ): sys.stdout.writelines( self.__chunks ) if not self.__newline: sys.stdout.write( '\n' ) class DebugFiber( Fiber ): id = 0 def __init__( self, generator ): Fiber.__init__( self, generator ) self.__id = DebugFiber.id sys.stdout.write( '[ %04X ] %s\n' % ( self.__id, time.ctime() ) ) self.__newline = True self.__stdout = sys.stdout DebugFiber.id = ( self.id + 1 ) % 65535 def step( self, throw=None ): stdout = sys.stdout stderr = sys.stderr try: sys.stdout = sys.stderr = self Fiber.step( self, throw ) if self.state: print 'Waiting at', self finally: sys.stdout = stdout sys.stderr = stderr def write( self, string ): if self.__newline: self.__stdout.write( ' %04X ' % self.__id ) self.__stdout.write( string ) self.__newline = string.endswith( '\n' ) def spawn( generator, port, debug ): try: listener = socket.socket( socket.AF_INET, socket.SOCK_STREAM ) listener.setblocking( 0 ) listener.setsockopt( socket.SOL_SOCKET, socket.SO_REUSEADDR, listener.getsockopt( socket.SOL_SOCKET, socket.SO_REUSEADDR ) | 1 ) listener.bind( ( '', port ) ) listener.listen( 5 ) except Exception, e: print 'error: failed to create socket:', e return False if debug: myFiber = DebugFiber else: myFiber = GatherFiber print ' .... Server started' try: fibers = [] while True: tryrecv = { listener.fileno(): None } trysend = {} expire = None now = time.time() i = len( fibers ) while i: i -= 1 state = fibers[ i ].state if state and now > state.expire: if isinstance( state, WAIT ): fibers[ i ].step() else: fibers[ i ].step( throw='connection timed out' ) state = fibers[ i ].state if not state: del fibers[ i ] continue if isinstance( state, RECV ): tryrecv[ state.fileno ] = fibers[ i ] elif isinstance( state, SEND ): trysend[ state.fileno ] = fibers[ i ] elif state.expire is None: continue if state.expire < expire or expire is None: expire = state.expire if expire is None: print '[ IDLE ]', time.ctime() sys.stdout.flush() canrecv, cansend, dummy = select.select( tryrecv, trysend, [] ) print '[ BUSY ]', time.ctime() sys.stdout.flush() else: canrecv, cansend, dummy = select.select( tryrecv, trysend, [], max( expire - now, 0 ) ) for fileno in canrecv: if fileno is listener.fileno(): fibers.append( myFiber( generator( *listener.accept() ) ) ) else: tryrecv[ fileno ].step() for fileno in cansend: trysend[ fileno ].step() except KeyboardInterrupt: print ' .... Server terminated' return True except: print ' .... Server crashed' traceback.print_exc( file=sys.stdout ) return False
mit
-389,809,782,214,965,100
23.281106
132
0.571076
false
3.621306
false
false
false
DeanThompson/pyelong
pyelong/request.py
1
6017
# -*- coding: utf-8 -*- import hashlib import json import time import urllib import requests from requests import RequestException, ConnectionError, Timeout from tornado import gen from tornado.httpclient import AsyncHTTPClient from .api import ApiSpec from .exceptions import ElongException, ElongAPIError, \ RetryableException, RetryableAPIError from .response import RequestsResponse, TornadoResponse, logger from .util.retry import retry_on_error, is_retryable class Request(object): def __init__(self, client, host=ApiSpec.host, version=ApiSpec.version, local=ApiSpec.local): self.client = client self.verify_ssl = self.client.cert is not None self.host = host self.version = version self.local = local def do(self, api, params, https, raw=False): raise NotImplementedError() def prepare(self, api, params, https, raw): timestamp = str(int(time.time())) data = self.build_data(params, raw) scheme = 'https' if https else 'http' url = "%s://%s" % (scheme, self.host) params = { 'method': api, 'user': self.client.user, 'timestamp': timestamp, 'data': data, 'signature': self.signature(data, timestamp), 'format': 'json' } return url, params def build_data(self, params, raw=False): if not raw: data = { 'Version': self.version, 'Local': self.local, 'Request': params } else: data = params return json.dumps(data, separators=(',', ':')) def signature(self, data, timestamp): s = self._md5(data + self.client.app_key) return self._md5("%s%s%s" % (timestamp, s, self.client.secret_key)) @staticmethod def _md5(data): return hashlib.md5(data.encode('utf-8')).hexdigest() def check_response(self, resp): if not resp.ok and self.client.raise_api_error: # logger.error('pyelong calling api failed, url: %s', resp.url) if is_retryable(resp.code): raise RetryableAPIError(resp.code, resp.error) raise ElongAPIError(resp.code, resp.error) return resp def timing(self, api, delta): if self.client.statsd_client and \ hasattr(self.client.statsd_client, 'timing'): self.client.statsd_client.timing(api, delta) class SyncRequest(Request): @property def session(self): if not hasattr(self, '_session') or not self._session: self._session = requests.Session() if self.client.proxy_host and self.client.proxy_port: p = '%s:%s' % (self.client.proxy_host, self.client.proxy_port) self._session.proxies = {'http': p, 'https': p} return self._session @retry_on_error(retry_api_error=True) def do(self, api, params, https, raw=False): url, params = self.prepare(api, params, https, raw) try: result = self.session.get(url=url, params=params, verify=self.verify_ssl, cert=self.client.cert) except (ConnectionError, Timeout) as e: logger.exception('pyelong catches ConnectionError or Timeout, ' 'url: %s, params: %s', url, params) raise RetryableException('ConnectionError or Timeout: %s' % e) except RequestException as e: logger.exception('pyelong catches RequestException, url: %s,' ' params: %s', url, params) raise ElongException('RequestException: %s' % e) except Exception as e: logger.exception('pyelong catches unknown exception, url: %s, ' 'params: %s', url, params) raise ElongException('unknown exception: %s' % e) resp = RequestsResponse(result) self.timing(api, resp.request_time) return self.check_response(resp) class AsyncRequest(Request): @property def proxy_config(self): if not getattr(self, '_proxy_config', None): if self.client.proxy_host and self.client.proxy_port: self._proxy_config = { 'proxy_host': self.client.proxy_host, 'proxy_port': self.client.proxy_port } else: self._proxy_config = {} return self._proxy_config @staticmethod def _encode_params(data): """ :param dict data: params Taken from requests.models.RequestEncodingMixin._encode_params """ result = [] for k, vs in data.iteritems(): if isinstance(vs, basestring) or not hasattr(vs, '__iter__'): vs = [vs] for v in vs: if v is not None: result.append( (k.encode('utf-8') if isinstance(k, str) else k, v.encode('utf-8') if isinstance(v, str) else v)) return urllib.urlencode(result, doseq=True) def _prepare_url(self, url, params): if url.endswith('/'): url = url.strip('/') return '%s?%s' % (url, self._encode_params(params)) @gen.coroutine def do(self, api, params, https, raw=False): url, params = self.prepare(api, params, https, raw) # use the default SimpleAsyncHTTPClient resp = yield AsyncHTTPClient().fetch(self._prepare_url(url, params), validate_cert=self.verify_ssl, ca_certs=self.client.cert, **self.proxy_config) resp = TornadoResponse(resp) self.timing(api, resp.request_time) raise gen.Return(self.check_response(resp))
mit
-2,665,918,147,271,490,000
35.466667
78
0.553266
false
4.172677
true
false
false
lordmos/blink
Source/bindings/scripts/unstable/idl_compiler.py
1
5668
#!/usr/bin/python # Copyright (C) 2013 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Compile an .idl file to Blink V8 bindings (.h and .cpp files). FIXME: Not currently used in build. This is a rewrite of the Perl IDL compiler in Python, but is not complete. Once it is complete, we will switch all IDL files over to Python at once. Until then, please work on the Perl IDL compiler. For details, see bug http://crbug.com/239771 """ import optparse import os import pickle import posixpath import shlex import sys import code_generator_v8 import idl_reader module_path, _ = os.path.split(__file__) source_path = os.path.normpath(os.path.join(module_path, os.pardir, os.pardir, os.pardir)) def parse_options(): parser = optparse.OptionParser() parser.add_option('--additional-idl-files') # FIXME: The --dump-json-and-pickle option is only for debugging and will # be removed once we complete migrating all IDL files from the Perl flow to # the Python flow. parser.add_option('--dump-json-and-pickle', action='store_true', default=False) parser.add_option('--idl-attributes-file') parser.add_option('--include', dest='idl_directories', action='append') parser.add_option('--output-directory') parser.add_option('--interface-dependencies-file') parser.add_option('--verbose', action='store_true', default=False) parser.add_option('--write-file-only-if-changed', type='int') # ensure output comes last, so command line easy to parse via regexes parser.disable_interspersed_args() options, args = parser.parse_args() if options.output_directory is None: parser.error('Must specify output directory using --output-directory.') if options.additional_idl_files is None: options.additional_idl_files = [] else: # additional_idl_files is passed as a string with varied (shell-style) # quoting, hence needs parsing. options.additional_idl_files = shlex.split(options.additional_idl_files) if len(args) != 1: parser.error('Must specify exactly 1 input file as argument, but %d given.' % len(args)) options.idl_filename = os.path.realpath(args[0]) return options def get_relative_dir_posix(filename): """Returns directory of a local file relative to Source, in POSIX format.""" relative_path_local = os.path.relpath(filename, source_path) relative_dir_local = os.path.dirname(relative_path_local) return relative_dir_local.replace(os.path.sep, posixpath.sep) def write_json_and_pickle(definitions, interface_name, output_directory): json_string = definitions.to_json() json_basename = interface_name + '.json' json_filename = os.path.join(output_directory, json_basename) with open(json_filename, 'w') as json_file: json_file.write(json_string) pickle_basename = interface_name + '.pkl' pickle_filename = os.path.join(output_directory, pickle_basename) with open(pickle_filename, 'wb') as pickle_file: pickle.dump(definitions, pickle_file) def main(): options = parse_options() idl_filename = options.idl_filename basename = os.path.basename(idl_filename) interface_name, _ = os.path.splitext(basename) output_directory = options.output_directory verbose = options.verbose if verbose: print idl_filename relative_dir_posix = get_relative_dir_posix(idl_filename) reader = idl_reader.IdlReader(options.interface_dependencies_file, options.additional_idl_files, options.idl_attributes_file, output_directory, verbose) definitions = reader.read_idl_definitions(idl_filename) code_generator = code_generator_v8.CodeGeneratorV8(definitions, interface_name, options.output_directory, relative_dir_posix, options.idl_directories, verbose) if not definitions: # We generate dummy .h and .cpp files just to tell build scripts # that outputs have been created. code_generator.write_dummy_header_and_cpp() return if options.dump_json_and_pickle: write_json_and_pickle(definitions, interface_name, output_directory) return code_generator.write_header_and_cpp() if __name__ == '__main__': sys.exit(main())
mit
4,028,016,241,521,882,600
42.937984
163
0.728652
false
3.971969
false
false
false
zhlinh/leetcode
0173.Binary Search Tree Iterator/test.py
1
1230
#!/usr/bin/env python # -*- coding: utf-8 -*- from solution import TreeNode from solution import BSTIterator def constructOne(s): s = s.strip() if s == '#': return None else: return TreeNode(int(s)) def createTree(tree): q = [] tree = tree.split(",") root = constructOne(tree[0]); q.append(root); idx = 1; while q: tn = q.pop(0) if not tn: continue if idx == len(tree): break left = constructOne(tree[idx]) tn.left = left q.append(left) idx += 1 if idx == len(tree): break right = constructOne(tree[idx]) idx += 1 tn.right = right q.append(right) return root def printNode(tn, indent): sb = "" for i in range(indent): sb += "\t" sb += str(tn.val) print(sb) def printTree(root, indent): if not root: return printTree(root.right, indent + 1) printNode(root, indent) printTree(root.left, indent + 1) # root = createTree("1, 2, 5, 3, 4, #, 6") root = createTree("4, 3, 5, 2, #, #, 7") i, v = BSTIterator(root), [] while i.hasNext(): v.append(i.next()) for node in v: print(node.val)
apache-2.0
-6,259,950,088,596,226,000
20.206897
43
0.523577
false
3.245383
false
false
false
spl0k/supysonic
tests/base/test_cache.py
1
8007
# This file is part of Supysonic. # Supysonic is a Python implementation of the Subsonic server API. # # Copyright (C) 2018 Alban 'spl0k' Féron # 2018-2019 Carey 'pR0Ps' Metcalfe # # Distributed under terms of the GNU AGPLv3 license. import os import unittest import shutil import time import tempfile from supysonic.cache import Cache, CacheMiss, ProtectedError class CacheTestCase(unittest.TestCase): def setUp(self): self.__dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.__dir) def test_existing_files_order(self): cache = Cache(self.__dir, 30) val = b"0123456789" cache.set("key1", val) cache.set("key2", val) cache.set("key3", val) self.assertEqual(cache.size, 30) # file mtime is accurate to the second time.sleep(1) cache.get_value("key1") cache = Cache(self.__dir, 30, min_time=0) self.assertEqual(cache.size, 30) self.assertTrue(cache.has("key1")) self.assertTrue(cache.has("key2")) self.assertTrue(cache.has("key3")) cache.set("key4", val) self.assertEqual(cache.size, 30) self.assertTrue(cache.has("key1")) self.assertFalse(cache.has("key2")) self.assertTrue(cache.has("key3")) self.assertTrue(cache.has("key4")) def test_missing(self): cache = Cache(self.__dir, 10) self.assertFalse(cache.has("missing")) with self.assertRaises(CacheMiss): cache.get_value("missing") def test_delete_missing(self): cache = Cache(self.__dir, 0, min_time=0) cache.delete("missing1") cache.delete("missing2") def test_store_literal(self): cache = Cache(self.__dir, 10) val = b"0123456789" cache.set("key", val) self.assertEqual(cache.size, 10) self.assertTrue(cache.has("key")) self.assertEqual(cache.get_value("key"), val) def test_store_generated(self): cache = Cache(self.__dir, 10) val = [b"0", b"12", b"345", b"6789"] def gen(): yield from val t = [] for x in cache.set_generated("key", gen): t.append(x) self.assertEqual(cache.size, 0) self.assertFalse(cache.has("key")) self.assertEqual(t, val) self.assertEqual(cache.size, 10) self.assertEqual(cache.get_value("key"), b"".join(val)) def test_store_to_fp(self): cache = Cache(self.__dir, 10) val = b"0123456789" with cache.set_fileobj("key") as fp: fp.write(val) self.assertEqual(cache.size, 0) self.assertEqual(cache.size, 10) self.assertEqual(cache.get_value("key"), val) def test_access_data(self): cache = Cache(self.__dir, 25, min_time=0) val = b"0123456789" cache.set("key", val) self.assertEqual(cache.get_value("key"), val) with cache.get_fileobj("key") as f: self.assertEqual(f.read(), val) with open(cache.get("key"), "rb") as f: self.assertEqual(f.read(), val) def test_accessing_preserves(self): cache = Cache(self.__dir, 25, min_time=0) val = b"0123456789" cache.set("key1", val) cache.set("key2", val) self.assertEqual(cache.size, 20) cache.get_value("key1") cache.set("key3", val) self.assertEqual(cache.size, 20) self.assertTrue(cache.has("key1")) self.assertFalse(cache.has("key2")) self.assertTrue(cache.has("key3")) def test_automatic_delete_oldest(self): cache = Cache(self.__dir, 25, min_time=0) val = b"0123456789" cache.set("key1", val) self.assertTrue(cache.has("key1")) self.assertEqual(cache.size, 10) cache.set("key2", val) self.assertEqual(cache.size, 20) self.assertTrue(cache.has("key1")) self.assertTrue(cache.has("key2")) cache.set("key3", val) self.assertEqual(cache.size, 20) self.assertFalse(cache.has("key1")) self.assertTrue(cache.has("key2")) self.assertTrue(cache.has("key3")) def test_delete(self): cache = Cache(self.__dir, 25, min_time=0) val = b"0123456789" cache.set("key1", val) self.assertTrue(cache.has("key1")) self.assertEqual(cache.size, 10) cache.delete("key1") self.assertFalse(cache.has("key1")) self.assertEqual(cache.size, 0) def test_cleanup_on_error(self): cache = Cache(self.__dir, 10) def gen(): # Cause a TypeError halfway through yield from [b"0", b"12", object(), b"345", b"6789"] with self.assertRaises(TypeError): for x in cache.set_generated("key", gen): pass # Make sure no partial files are left after the error self.assertEqual(list(os.listdir(self.__dir)), list()) def test_parallel_generation(self): cache = Cache(self.__dir, 20) def gen(): yield from [b"0", b"12", b"345", b"6789"] g1 = cache.set_generated("key", gen) g2 = cache.set_generated("key", gen) next(g1) files = os.listdir(self.__dir) self.assertEqual(len(files), 1) for x in files: self.assertTrue(x.endswith(".part")) next(g2) files = os.listdir(self.__dir) self.assertEqual(len(files), 2) for x in files: self.assertTrue(x.endswith(".part")) self.assertEqual(cache.size, 0) for x in g1: pass self.assertEqual(cache.size, 10) self.assertTrue(cache.has("key")) # Replace the file - size should stay the same for x in g2: pass self.assertEqual(cache.size, 10) self.assertTrue(cache.has("key")) # Only a single file self.assertEqual(len(os.listdir(self.__dir)), 1) def test_replace(self): cache = Cache(self.__dir, 20) val_small = b"0" val_big = b"0123456789" cache.set("key", val_small) self.assertEqual(cache.size, 1) cache.set("key", val_big) self.assertEqual(cache.size, 10) cache.set("key", val_small) self.assertEqual(cache.size, 1) def test_no_auto_prune(self): cache = Cache(self.__dir, 10, min_time=0, auto_prune=False) val = b"0123456789" cache.set("key1", val) cache.set("key2", val) cache.set("key3", val) cache.set("key4", val) self.assertEqual(cache.size, 40) cache.prune() self.assertEqual(cache.size, 10) def test_min_time_clear(self): cache = Cache(self.__dir, 40, min_time=1) val = b"0123456789" cache.set("key1", val) cache.set("key2", val) time.sleep(1) cache.set("key3", val) cache.set("key4", val) self.assertEqual(cache.size, 40) cache.clear() self.assertEqual(cache.size, 20) time.sleep(1) cache.clear() self.assertEqual(cache.size, 0) def test_not_expired(self): cache = Cache(self.__dir, 40, min_time=1) val = b"0123456789" cache.set("key1", val) with self.assertRaises(ProtectedError): cache.delete("key1") time.sleep(1) cache.delete("key1") self.assertEqual(cache.size, 0) def test_missing_cache_file(self): cache = Cache(self.__dir, 10, min_time=0) val = b"0123456789" os.remove(cache.set("key", val)) self.assertEqual(cache.size, 10) self.assertFalse(cache.has("key")) self.assertEqual(cache.size, 0) os.remove(cache.set("key", val)) self.assertEqual(cache.size, 10) with self.assertRaises(CacheMiss): cache.get("key") self.assertEqual(cache.size, 0) if __name__ == "__main__": unittest.main()
agpl-3.0
539,294,049,317,192,400
28.112727
67
0.569323
false
3.558222
true
false
false
cpn18/track-chart
desktop/gps_smoothing.py
1
1313
import sys import json import math THRESHOLD = 10 data = [] with open(sys.argv[1], "r") as f: used = count = 0 for line in f: if line[0] == "#": continue items = line.split() if items[1] == "TPV": obj = json.loads(" ".join(items[2:-1])) obj['used'] = used obj['count'] = count elif items[1] == "SKY": obj = json.loads(" ".join(items[2:-1])) used = 0 count = len(obj['satellites']) for i in range(0, count): if obj['satellites'][i]['used']: used += 1 continue else: continue if used >= THRESHOLD and 'lon' in obj and 'lat' in obj: data.append(obj) print("Longitude Latitude dx epx dy epy used count") for i in range(1, len(data)): dx = abs((data[i]['lon'] - data[i-1]['lon']) * 111120 * math.cos(math.radians(data[i]['lat']))) dy = abs((data[i]['lat'] - data[i-1]['lat']) * 111128) # degrees to meters try: if dx > 3*data[i]['epx'] or dy > 3*data[i]['epy']: continue print("%f %f %f %f %f %f %d %d" % (data[i]['lon'], data[i]['lat'], dx, data[i]['epx'], dy, data[i]['epy'], data[i]['used'], data[i]['count'])) except KeyError: pass
gpl-3.0
-8,348,637,999,380,964,000
29.534884
150
0.476009
false
3.241975
false
false
false
kgori/treeCl
treeCl/parutils.py
1
9550
from abc import ABCMeta, abstractmethod from .constants import PARALLEL_PROFILE from .utils import setup_progressbar, grouper, flatten_list import logging import multiprocessing import sys logger = logging.getLogger(__name__) __author__ = 'kgori' """ Introduced this workaround for a bug in multiprocessing where errors are thrown for an EINTR interrupt. Workaround taken from http://stackoverflow.com/a/5395277 - but changed because can't subclass from multiprocessing.Queue (it's a factory method) """ import errno def retry_on_eintr(function, *args, **kw): while True: try: return function(*args, **kw) except IOError as e: if e.errno == errno.EINTR: continue else: raise def get_from_queue(queue, block=True, timeout=None): return retry_on_eintr(queue.get, block, timeout) """ End of workaround """ def fun(f, q_in, q_out): while True: (i, x) = get_from_queue(q_in) if i is None: break q_out.put((i, f(*x))) def async_avail(): from IPython import parallel try: client = parallel.Client(PARALLEL_PROFILE) return len(client) > 0 except IOError: return False except Exception: return False def get_client(): from IPython import parallel try: client = parallel.Client(profile=PARALLEL_PROFILE) return client if len(client) > 0 else None except IOError: return None except Exception: return None def tupleise(args): for a in args: if isinstance(a, (tuple, list)): yield a else: yield (a,) def get_njobs(nargs, args): if nargs is not None: njobs = nargs elif isinstance(args, (tuple, list)): njobs = len(args) else: njobs = int(sys.maxsize / 1000000) # sys.maxsize is too large for progressbar to display ETA (datetime issue) return njobs def parallel_map(client, task, args, message, batchsize=1, background=False, nargs=None): """ Helper to map a function over a sequence of inputs, in parallel, with progress meter. :param client: IPython.parallel.Client instance :param task: Function :param args: Must be a list of tuples of arguments that the task function will be mapped onto. If the function takes a single argument, it still must be a 1-tuple. :param message: String for progress bar :param batchsize: Jobs are shipped in batches of this size. Higher numbers mean less network traffic, but longer execution time per job. :return: IPython.parallel.AsyncMapResult """ show_progress = bool(message) njobs = get_njobs(nargs, args) nproc = len(client) logger.debug('parallel_map: len(client) = {}'.format(len(client))) view = client.load_balanced_view() if show_progress: message += ' (IP:{}w:{}b)'.format(nproc, batchsize) pbar = setup_progressbar(message, njobs, simple_progress=True) if not background: pbar.start() map_result = view.map(task, *list(zip(*args)), chunksize=batchsize) if background: return map_result, client while not map_result.ready(): map_result.wait(1) if show_progress: pbar.update(min(njobs, map_result.progress * batchsize)) if show_progress: pbar.finish() return map_result def sequential_map(task, args, message, nargs=None): """ Helper to map a function over a sequence of inputs, sequentially, with progress meter. :param client: IPython.parallel.Client instance :param task: Function :param args: Must be a list of tuples of arguments that the task function will be mapped onto. If the function takes a single argument, it still must be a 1-tuple. :param message: String for progress bar :param batchsize: Jobs are shipped in batches of this size. Higher numbers mean less network traffic, but longer execution time per job. :return: IPython.parallel.AsyncMapResult """ njobs = get_njobs(nargs, args) show_progress = bool(message) if show_progress: pbar = setup_progressbar(message, njobs, simple_progress=True) pbar.start() map_result = [] for (i, arglist) in enumerate(tupleise(args), start=1): map_result.append(task(*arglist)) if show_progress: pbar.update(i) if show_progress: pbar.finish() return map_result def threadpool_map(task, args, message, concurrency, batchsize=1, nargs=None): """ Helper to map a function over a range of inputs, using a threadpool, with a progress meter """ import concurrent.futures njobs = get_njobs(nargs, args) show_progress = bool(message) batches = grouper(batchsize, tupleise(args)) batched_task = lambda batch: [task(*job) for job in batch] if show_progress: message += ' (TP:{}w:{}b)'.format(concurrency, batchsize) pbar = setup_progressbar(message, njobs, simple_progress=True) pbar.start() with concurrent.futures.ThreadPoolExecutor(max_workers=concurrency) as executor: futures = [] completed_count = 0 for batch in batches: futures.append(executor.submit(batched_task, batch)) if show_progress: for i, fut in enumerate(concurrent.futures.as_completed(futures), start=1): completed_count += len(fut.result()) pbar.update(completed_count) else: concurrent.futures.wait(futures) if show_progress: pbar.finish() return flatten_list([fut.result() for fut in futures]) def processpool_map(task, args, message, concurrency, batchsize=1, nargs=None): """ See http://stackoverflow.com/a/16071616 """ njobs = get_njobs(nargs, args) show_progress = bool(message) batches = grouper(batchsize, tupleise(args)) def batched_task(*batch): return [task(*job) for job in batch] if show_progress: message += ' (PP:{}w:{}b)'.format(concurrency, batchsize) pbar = setup_progressbar(message, njobs, simple_progress=True) pbar.start() q_in = multiprocessing.Queue() # Should I limit either queue size? Limiting in-queue q_out = multiprocessing.Queue() # increases time taken to send jobs, makes pbar less useful proc = [multiprocessing.Process(target=fun, args=(batched_task, q_in, q_out)) for _ in range(concurrency)] for p in proc: p.daemon = True p.start() sent = [q_in.put((i, x)) for (i, x) in enumerate(batches)] [q_in.put((None, None)) for _ in range(concurrency)] res = [] completed_count = 0 for _ in range(len(sent)): result = get_from_queue(q_out) res.append(result) completed_count += len(result[1]) if show_progress: pbar.update(completed_count) [p.join() for p in proc] if show_progress: pbar.finish() return flatten_list([x for (i, x) in sorted(res)]) class JobHandler(object): """ Base class to provide uniform interface for all job handlers """ metaclass = ABCMeta @abstractmethod def __call__(self, task, args, message, batchsize): """ If you define a message, then progress will be written to stderr """ pass class SequentialJobHandler(JobHandler): """ Jobs are handled using a simple map """ def __call__(self, task, args, message, batchsize, nargs=None): if batchsize > 1: logger.warn("Setting batchsize > 1 has no effect when using a SequentialJobHandler") return sequential_map(task, args, message, nargs) class ThreadpoolJobHandler(JobHandler): """ Jobs are handled by a threadpool using concurrent.futures """ def __init__(self, concurrency): self.concurrency = concurrency def __call__(self, task, args, message, batchsize, nargs=None): return threadpool_map(task, args, message, self.concurrency, batchsize, nargs) class ProcesspoolJobHandler(JobHandler): """ Jobs are handled by a threadpool using concurrent.futures """ def __init__(self, concurrency): self.concurrency = concurrency def __call__(self, task, args, message, batchsize, nargs=None): return processpool_map(task, args, message, self.concurrency, batchsize, nargs) class IPythonJobHandler(JobHandler): """ Jobs are handled using an IPython.parallel.Client """ def __init__(self, profile=None): """ Initialise the IPythonJobHandler using the given ipython profile. Parameters ---------- profile: string The ipython profile to connect to - this should already be running an ipcluster If the connection fails it raises a RuntimeError """ import IPython.parallel try: self.client=IPython.parallel.Client(profile=profile) logger.debug('__init__: len(client) = {}'.format(len(self.client))) except (IOError, IPython.parallel.TimeoutError): msg = 'Could not obtain an IPython parallel Client using profile "{}"'.format(profile) logger.error(msg) raise RuntimeError(msg) def __call__(self, task, args, message, batchsize): logger.debug('__call__: len(client) = {}'.format(len(self.client))) return list(parallel_map(self.client, task, args, message, batchsize))
mit
559,474,478,483,958,140
32.745583
118
0.638325
false
3.926809
false
false
false
anbangr/trusted-juju
juju/unit/tests/test_charm.py
1
5922
from functools import partial import os import shutil from twisted.internet.defer import inlineCallbacks, returnValue, succeed, fail from twisted.web.error import Error from twisted.web.client import downloadPage from juju.charm import get_charm_from_path from juju.charm.bundle import CharmBundle from juju.charm.publisher import CharmPublisher from juju.charm.tests import local_charm_id from juju.charm.tests.test_directory import sample_directory from juju.errors import FileNotFound from juju.lib import under from juju.state.errors import CharmStateNotFound from juju.state.tests.common import StateTestBase from juju.unit.charm import download_charm from juju.lib.mocker import MATCH class CharmPublisherTestBase(StateTestBase): @inlineCallbacks def setUp(self): yield super(CharmPublisherTestBase, self).setUp() yield self.push_default_config() self.provider = self.config.get_default().get_machine_provider() self.storage = self.provider.get_file_storage() @inlineCallbacks def publish_charm(self, charm_path=sample_directory): charm = get_charm_from_path(charm_path) publisher = CharmPublisher(self.client, self.storage) yield publisher.add_charm(local_charm_id(charm), charm) charm_states = yield publisher.publish() returnValue((charm, charm_states[0])) class DownloadTestCase(CharmPublisherTestBase): @inlineCallbacks def test_charm_download_file(self): """Downloading a charm should store the charm locally. """ charm, charm_state = yield self.publish_charm() charm_directory = self.makeDir() # Download the charm yield download_charm( self.client, charm_state.id, charm_directory) # Verify the downloaded copy checksum = charm.get_sha256() charm_id = local_charm_id(charm) charm_key = under.quote("%s:%s" % (charm_id, checksum)) charm_path = os.path.join(charm_directory, charm_key) self.assertTrue(os.path.exists(charm_path)) bundle = CharmBundle(charm_path) self.assertEquals(bundle.get_revision(), charm.get_revision()) self.assertEqual(checksum, bundle.get_sha256()) @inlineCallbacks def test_charm_missing_download_file(self): """Downloading a file that doesn't exist raises FileNotFound. """ charm, charm_state = yield self.publish_charm() charm_directory = self.makeDir() # Delete the file file_path = charm_state.bundle_url[len("file://"):] os.remove(file_path) # Download the charm yield self.assertFailure( download_charm(self.client, charm_state.id, charm_directory), FileNotFound) @inlineCallbacks def test_charm_download_http(self): """Downloading a charm should store the charm locally. """ mock_storage = self.mocker.patch(self.storage) def match_string(expected, value): self.assertTrue(isinstance(value, basestring)) self.assertIn(expected, value) return True mock_storage.get_url(MATCH( partial(match_string, "local_3a_series_2f_dummy-1"))) self.mocker.result("http://example.com/foobar.zip") download_page = self.mocker.replace(downloadPage) download_page( MATCH(partial(match_string, "http://example.com/foobar.zip")), MATCH(partial(match_string, "local_3a_series_2f_dummy-1"))) def bundle_in_place(url, local_path): # must keep ref to charm else temp file goes out of scope. charm = get_charm_from_path(sample_directory) bundle = charm.as_bundle() shutil.copyfile(bundle.path, local_path) self.mocker.call(bundle_in_place) self.mocker.result(succeed(True)) self.mocker.replay() charm, charm_state = yield self.publish_charm() charm_directory = self.makeDir() self.assertEqual( charm_state.bundle_url, "http://example.com/foobar.zip") # Download the charm yield download_charm( self.client, charm_state.id, charm_directory) @inlineCallbacks def test_charm_download_http_error(self): """Errors in donwloading a charm are reported as charm not found. """ def match_string(expected, value): self.assertTrue(isinstance(value, basestring)) self.assertIn(expected, value) return True mock_storage = self.mocker.patch(self.storage) mock_storage.get_url( MATCH(partial(match_string, "local_3a_series_2f_dummy-1"))) remote_url = "http://example.com/foobar.zip" self.mocker.result(remote_url) download_page = self.mocker.replace(downloadPage) download_page( MATCH(partial(match_string, "http://example.com/foobar.zip")), MATCH(partial(match_string, "local_3a_series_2f_dummy-1"))) self.mocker.result(fail(Error("400", "Bad Stuff", ""))) self.mocker.replay() charm, charm_state = yield self.publish_charm() charm_directory = self.makeDir() self.assertEqual(charm_state.bundle_url, remote_url) error = yield self.assertFailure( download_charm(self.client, charm_state.id, charm_directory), FileNotFound) self.assertIn(remote_url, str(error)) @inlineCallbacks def test_charm_download_not_found(self): """An error is raised if trying to download a non existant charm. """ charm_directory = self.makeDir() # Download the charm error = yield self.assertFailure( download_charm( self.client, "local:mickey-21", charm_directory), CharmStateNotFound) self.assertEquals(str(error), "Charm 'local:mickey-21' was not found")
agpl-3.0
-8,211,216,513,305,947,000
34.461078
78
0.651807
false
3.733922
true
false
false
bcantoni/ccm
ccmlib/dse_node.py
1
22234
# ccm node from __future__ import absolute_import, with_statement import os import re import shutil import signal import stat import subprocess import time import yaml from six import iteritems, print_ from ccmlib import common, extension, repository from ccmlib.node import (Node, NodeError, ToolError, handle_external_tool_process) class DseNode(Node): """ Provides interactions to a DSE node. """ def __init__(self, name, cluster, auto_bootstrap, thrift_interface, storage_interface, jmx_port, remote_debug_port, initial_token, save=True, binary_interface=None, byteman_port='0', environment_variables=None): super(DseNode, self).__init__(name, cluster, auto_bootstrap, thrift_interface, storage_interface, jmx_port, remote_debug_port, initial_token, save, binary_interface, byteman_port, environment_variables=environment_variables) self.get_cassandra_version() self._dse_config_options = {} if self.cluster.hasOpscenter(): self._copy_agent() def get_install_cassandra_root(self): return os.path.join(self.get_install_dir(), 'resources', 'cassandra') def get_node_cassandra_root(self): return os.path.join(self.get_path(), 'resources', 'cassandra') def get_conf_dir(self): """ Returns the path to the directory where Cassandra config are located """ return os.path.join(self.get_path(), 'resources', 'cassandra', 'conf') def get_tool(self, toolname): return common.join_bin(os.path.join(self.get_install_dir(), 'resources', 'cassandra'), 'bin', toolname) def get_tool_args(self, toolname): return [common.join_bin(os.path.join(self.get_install_dir(), 'resources', 'cassandra'), 'bin', 'dse'), toolname] def get_env(self): (node_ip, _) = self.network_interfaces['binary'] return common.make_dse_env(self.get_install_dir(), self.get_path(), node_ip) def get_cassandra_version(self): return common.get_dse_cassandra_version(self.get_install_dir()) def node_setup(self, version, verbose): dir, v = repository.setup_dse(version, self.cluster.dse_username, self.cluster.dse_password, verbose=verbose) return dir def set_workloads(self, workloads): self.workloads = workloads self._update_config() if 'solr' in self.workloads: self.__generate_server_xml() if 'graph' in self.workloads: (node_ip, _) = self.network_interfaces['binary'] conf_file = os.path.join(self.get_path(), 'resources', 'dse', 'conf', 'dse.yaml') with open(conf_file, 'r') as f: data = yaml.load(f) graph_options = data['graph'] graph_options['gremlin_server']['host'] = node_ip self.set_dse_configuration_options({'graph': graph_options}) self.__update_gremlin_config_yaml() if 'dsefs' in self.workloads: dsefs_options = {'dsefs_options': {'enabled': True, 'work_dir': os.path.join(self.get_path(), 'dsefs'), 'data_directories': [{'dir': os.path.join(self.get_path(), 'dsefs', 'data')}]}} self.set_dse_configuration_options(dsefs_options) if 'spark' in self.workloads: self._update_spark_env() def set_dse_configuration_options(self, values=None): if values is not None: self._dse_config_options = common.merge_configuration(self._dse_config_options, values) self.import_dse_config_files() def watch_log_for_alive(self, nodes, from_mark=None, timeout=720, filename='system.log'): """ Watch the log of this node until it detects that the provided other nodes are marked UP. This method works similarly to watch_log_for_death. We want to provide a higher default timeout when this is called on DSE. """ super(DseNode, self).watch_log_for_alive(nodes, from_mark=from_mark, timeout=timeout, filename=filename) def get_launch_bin(self): cdir = self.get_install_dir() launch_bin = common.join_bin(cdir, 'bin', 'dse') # Copy back the dse scripts since profiling may have modified it the previous time shutil.copy(launch_bin, self.get_bin_dir()) return common.join_bin(self.get_path(), 'bin', 'dse') def add_custom_launch_arguments(self, args): args.append('cassandra') for workload in self.workloads: if 'hadoop' in workload: args.append('-t') if 'solr' in workload: args.append('-s') if 'spark' in workload: args.append('-k') if 'cfs' in workload: args.append('-c') if 'graph' in workload: args.append('-g') def start(self, join_ring=True, no_wait=False, verbose=False, update_pid=True, wait_other_notice=True, replace_token=None, replace_address=None, jvm_args=None, wait_for_binary_proto=False, profile_options=None, use_jna=False, quiet_start=False, allow_root=False, set_migration_task=True): process = super(DseNode, self).start(join_ring, no_wait, verbose, update_pid, wait_other_notice, replace_token, replace_address, jvm_args, wait_for_binary_proto, profile_options, use_jna, quiet_start, allow_root, set_migration_task) if self.cluster.hasOpscenter(): self._start_agent() def _start_agent(self): agent_dir = os.path.join(self.get_path(), 'datastax-agent') if os.path.exists(agent_dir): self._write_agent_address_yaml(agent_dir) self._write_agent_log4j_properties(agent_dir) args = [os.path.join(agent_dir, 'bin', common.platform_binary('datastax-agent'))] subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) def stop(self, wait=True, wait_other_notice=False, signal_event=signal.SIGTERM, **kwargs): if self.cluster.hasOpscenter(): self._stop_agent() return super(DseNode, self).stop(wait=wait, wait_other_notice=wait_other_notice, signal_event=signal_event, **kwargs) def _stop_agent(self): agent_dir = os.path.join(self.get_path(), 'datastax-agent') if os.path.exists(agent_dir): pidfile = os.path.join(agent_dir, 'datastax-agent.pid') if os.path.exists(pidfile): with open(pidfile, 'r') as f: pid = int(f.readline().strip()) f.close() if pid is not None: try: os.kill(pid, signal.SIGKILL) except OSError: pass os.remove(pidfile) def nodetool(self, cmd, username=None, password=None, capture_output=True, wait=True): if password is not None: cmd = '-pw {} '.format(password) + cmd if username is not None: cmd = '-u {} '.format(username) + cmd return super(DseNode, self).nodetool(cmd) def dsetool(self, cmd): env = self.get_env() extension.append_to_client_env(self, env) node_ip, binary_port = self.network_interfaces['binary'] dsetool = common.join_bin(self.get_install_dir(), 'bin', 'dsetool') args = [dsetool, '-h', node_ip, '-j', str(self.jmx_port), '-c', str(binary_port)] args += cmd.split() p = subprocess.Popen(args, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE) return handle_external_tool_process(p, args) def dse(self, dse_options=None): if dse_options is None: dse_options = [] env = self.get_env() extension.append_to_client_env(self, env) env['JMX_PORT'] = self.jmx_port dse = common.join_bin(self.get_install_dir(), 'bin', 'dse') args = [dse] args += dse_options p = subprocess.Popen(args, env=env) #Don't redirect stdout/stderr, users need to interact with new process return handle_external_tool_process(p, args) def hadoop(self, hadoop_options=None): if hadoop_options is None: hadoop_options = [] env = self.get_env() env['JMX_PORT'] = self.jmx_port dse = common.join_bin(self.get_install_dir(), 'bin', 'dse') args = [dse, 'hadoop'] args += hadoop_options p = subprocess.Popen(args, env=env) #Don't redirect stdout/stderr, users need to interact with new process return handle_external_tool_process(p, args) def hive(self, hive_options=None): if hive_options is None: hive_options = [] env = self.get_env() env['JMX_PORT'] = self.jmx_port dse = common.join_bin(self.get_install_dir(), 'bin', 'dse') args = [dse, 'hive'] args += hive_options p = subprocess.Popen(args, env=env) #Don't redirect stdout/stderr, users need to interact with new process return handle_external_tool_process(p, args) def pig(self, pig_options=None): if pig_options is None: pig_options = [] env = self.get_env() env['JMX_PORT'] = self.jmx_port dse = common.join_bin(self.get_install_dir(), 'bin', 'dse') args = [dse, 'pig'] args += pig_options p = subprocess.Popen(args, env=env) #Don't redirect stdout/stderr, users need to interact with new process return handle_external_tool_process(p, args) def sqoop(self, sqoop_options=None): if sqoop_options is None: sqoop_options = [] env = self.get_env() env['JMX_PORT'] = self.jmx_port dse = common.join_bin(self.get_install_dir(), 'bin', 'dse') args = [dse, 'sqoop'] args += sqoop_options p = subprocess.Popen(args, env=env) #Don't redirect stdout/stderr, users need to interact with new process return handle_external_tool_process(p, args) def spark(self, spark_options=None): if spark_options is None: spark_options = [] env = self.get_env() env['JMX_PORT'] = self.jmx_port dse = common.join_bin(self.get_install_dir(), 'bin', 'dse') args = [dse, 'spark'] args += spark_options p = subprocess.Popen(args, env=env) #Don't redirect stdout/stderr, users need to interact with new process return handle_external_tool_process(p, args) def import_dse_config_files(self): self._update_config() if not os.path.isdir(os.path.join(self.get_path(), 'resources', 'dse', 'conf')): os.makedirs(os.path.join(self.get_path(), 'resources', 'dse', 'conf')) common.copy_directory(os.path.join(self.get_install_dir(), 'resources', 'dse', 'conf'), os.path.join(self.get_path(), 'resources', 'dse', 'conf')) self.__update_yaml() def copy_config_files(self): for product in ['dse', 'cassandra', 'hadoop', 'hadoop2-client', 'sqoop', 'hive', 'tomcat', 'spark', 'shark', 'mahout', 'pig', 'solr', 'graph']: src_conf = os.path.join(self.get_install_dir(), 'resources', product, 'conf') dst_conf = os.path.join(self.get_path(), 'resources', product, 'conf') if not os.path.isdir(src_conf): continue if os.path.isdir(dst_conf): common.rmdirs(dst_conf) shutil.copytree(src_conf, dst_conf) if product == 'solr': src_web = os.path.join(self.get_install_dir(), 'resources', product, 'web') dst_web = os.path.join(self.get_path(), 'resources', product, 'web') if os.path.isdir(dst_web): common.rmdirs(dst_web) shutil.copytree(src_web, dst_web) if product == 'tomcat': src_lib = os.path.join(self.get_install_dir(), 'resources', product, 'lib') dst_lib = os.path.join(self.get_path(), 'resources', product, 'lib') if os.path.isdir(dst_lib): common.rmdirs(dst_lib) if os.path.exists(src_lib): shutil.copytree(src_lib, dst_lib) src_webapps = os.path.join(self.get_install_dir(), 'resources', product, 'webapps') dst_webapps = os.path.join(self.get_path(), 'resources', product, 'webapps') if os.path.isdir(dst_webapps): common.rmdirs(dst_webapps) shutil.copytree(src_webapps, dst_webapps) src_lib = os.path.join(self.get_install_dir(), 'resources', product, 'gremlin-console', 'conf') dst_lib = os.path.join(self.get_path(), 'resources', product, 'gremlin-console', 'conf') if os.path.isdir(dst_lib): common.rmdirs(dst_lib) if os.path.exists(src_lib): shutil.copytree(src_lib, dst_lib) def import_bin_files(self): common.copy_directory(os.path.join(self.get_install_dir(), 'bin'), self.get_bin_dir()) cassandra_bin_dir = os.path.join(self.get_path(), 'resources', 'cassandra', 'bin') shutil.rmtree(cassandra_bin_dir, ignore_errors=True) os.makedirs(cassandra_bin_dir) common.copy_directory(os.path.join(self.get_install_dir(), 'resources', 'cassandra', 'bin'), cassandra_bin_dir) if os.path.exists(os.path.join(self.get_install_dir(), 'resources', 'cassandra', 'tools')): cassandra_tools_dir = os.path.join(self.get_path(), 'resources', 'cassandra', 'tools') shutil.rmtree(cassandra_tools_dir, ignore_errors=True) shutil.copytree(os.path.join(self.get_install_dir(), 'resources', 'cassandra', 'tools'), cassandra_tools_dir) self.export_dse_home_in_dse_env_sh() def export_dse_home_in_dse_env_sh(self): ''' Due to the way CCM lays out files, separating the repository from the node(s) confs, the `dse-env.sh` script of each node needs to have its DSE_HOME var set and exported. Since DSE 4.5.x, the stock `dse-env.sh` file includes a commented-out place to do exactly this, intended for installers. Basically: read in the file, write it back out and add the two lines. 'sstableloader' is an example of a node script that depends on this, when used in a CCM-built cluster. ''' with open(self.get_bin_dir() + "/dse-env.sh", "r") as dse_env_sh: buf = dse_env_sh.readlines() with open(self.get_bin_dir() + "/dse-env.sh", "w") as out_file: for line in buf: out_file.write(line) if line == "# This is here so the installer can force set DSE_HOME\n": out_file.write("DSE_HOME=" + self.get_install_dir() + "\nexport DSE_HOME\n") def _update_log4j(self): super(DseNode, self)._update_log4j() conf_file = os.path.join(self.get_conf_dir(), common.LOG4J_CONF) append_pattern = 'log4j.appender.V.File=' log_file = os.path.join(self.get_path(), 'logs', 'solrvalidation.log') if common.is_win(): log_file = re.sub("\\\\", "/", log_file) common.replace_in_file(conf_file, append_pattern, append_pattern + log_file) append_pattern = 'log4j.appender.A.File=' log_file = os.path.join(self.get_path(), 'logs', 'audit.log') if common.is_win(): log_file = re.sub("\\\\", "/", log_file) common.replace_in_file(conf_file, append_pattern, append_pattern + log_file) append_pattern = 'log4j.appender.B.File=' log_file = os.path.join(self.get_path(), 'logs', 'audit', 'dropped-events.log') if common.is_win(): log_file = re.sub("\\\\", "/", log_file) common.replace_in_file(conf_file, append_pattern, append_pattern + log_file) def __update_yaml(self): conf_file = os.path.join(self.get_path(), 'resources', 'dse', 'conf', 'dse.yaml') with open(conf_file, 'r') as f: data = yaml.load(f) data['system_key_directory'] = os.path.join(self.get_path(), 'keys') # Get a map of combined cluster and node configuration with the node # configuration taking precedence. full_options = common.merge_configuration( self.cluster._dse_config_options, self._dse_config_options, delete_empty=False) # Merge options with original yaml data. data = common.merge_configuration(data, full_options) with open(conf_file, 'w') as f: yaml.safe_dump(data, f, default_flow_style=False) def __generate_server_xml(self): server_xml = os.path.join(self.get_path(), 'resources', 'tomcat', 'conf', 'server.xml') if os.path.isfile(server_xml): os.remove(server_xml) with open(server_xml, 'w+') as f: f.write('<Server port="8005" shutdown="SHUTDOWN">\n') f.write(' <Service name="Solr">\n') f.write(' <Connector port="8983" address="%s" protocol="HTTP/1.1" connectionTimeout="20000" maxThreads = "200" URIEncoding="UTF-8"/>\n' % self.network_interfaces['thrift'][0]) f.write(' <Engine name="Solr" defaultHost="localhost">\n') f.write(' <Host name="localhost" appBase="../solr/web"\n') f.write(' unpackWARs="true" autoDeploy="true"\n') f.write(' xmlValidation="false" xmlNamespaceAware="false">\n') f.write(' </Host>\n') f.write(' </Engine>\n') f.write(' </Service>\n') f.write('</Server>\n') f.close() def __update_gremlin_config_yaml(self): (node_ip, _) = self.network_interfaces['binary'] conf_file = os.path.join(self.get_path(), 'resources', 'graph', 'gremlin-console', 'conf', 'remote.yaml') with open(conf_file, 'r') as f: data = yaml.load(f) data['hosts'] = [node_ip] with open(conf_file, 'w') as f: yaml.safe_dump(data, f, default_flow_style=False) def _get_directories(self): dirs = [] for i in ['data', 'commitlogs', 'saved_caches', 'logs', 'bin', 'keys', 'resources', os.path.join('data', 'hints')]: dirs.append(os.path.join(self.get_path(), i)) return dirs def _copy_agent(self): agent_source = os.path.join(self.get_install_dir(), 'datastax-agent') agent_target = os.path.join(self.get_path(), 'datastax-agent') if os.path.exists(agent_source) and not os.path.exists(agent_target): shutil.copytree(agent_source, agent_target) def _write_agent_address_yaml(self, agent_dir): address_yaml = os.path.join(agent_dir, 'conf', 'address.yaml') if not os.path.exists(address_yaml): with open(address_yaml, 'w+') as f: (ip, port) = self.network_interfaces['thrift'] jmx = self.jmx_port f.write('stomp_interface: 127.0.0.1\n') f.write('local_interface: %s\n' % ip) f.write('agent_rpc_interface: %s\n' % ip) f.write('agent_rpc_broadcast_address: %s\n' % ip) f.write('cassandra_conf: %s\n' % os.path.join(self.get_path(), 'resources', 'cassandra', 'conf', 'cassandra.yaml')) f.write('cassandra_install: %s\n' % self.get_path()) f.write('cassandra_logs: %s\n' % os.path.join(self.get_path(), 'logs')) f.write('thrift_port: %s\n' % port) f.write('jmx_port: %s\n' % jmx) f.close() def _write_agent_log4j_properties(self, agent_dir): log4j_properties = os.path.join(agent_dir, 'conf', 'log4j.properties') with open(log4j_properties, 'w+') as f: f.write('log4j.rootLogger=INFO,R\n') f.write('log4j.logger.org.apache.http=OFF\n') f.write('log4j.logger.org.eclipse.jetty.util.log=WARN,R\n') f.write('log4j.appender.R=org.apache.log4j.RollingFileAppender\n') f.write('log4j.appender.R.maxFileSize=20MB\n') f.write('log4j.appender.R.maxBackupIndex=5\n') f.write('log4j.appender.R.layout=org.apache.log4j.PatternLayout\n') f.write('log4j.appender.R.layout.ConversionPattern=%5p [%t] %d{ISO8601} %m%n\n') f.write('log4j.appender.R.File=./log/agent.log\n') f.close() def _update_spark_env(self): try: node_num = re.search(u'node(\d+)', self.name).group(1) except AttributeError: node_num = 0 conf_file = os.path.join(self.get_path(), 'resources', 'spark', 'conf', 'spark-env.sh') env = self.get_env() content = [] with open(conf_file, 'r') as f: for line in f.readlines(): for spark_var in env.keys(): if line.startswith('export %s=' % spark_var) or line.startswith('export %s=' % spark_var, 2): line = 'export %s=%s\n' % (spark_var, env[spark_var]) break content.append(line) with open(conf_file, 'w') as f: f.writelines(content) # set unique spark.shuffle.service.port for each node; this is only needed for DSE 5.0.x; # starting in 5.1 this setting is no longer needed if self.cluster.version() > '5.0' and self.cluster.version() < '5.1': defaults_file = os.path.join(self.get_path(), 'resources', 'spark', 'conf', 'spark-defaults.conf') with open(defaults_file, 'a') as f: port_num = 7737 + int(node_num) f.write("\nspark.shuffle.service.port %s\n" % port_num) # create Spark working dirs; starting with DSE 5.0.10/5.1.3 these are no longer automatically created for e in ["SPARK_WORKER_DIR", "SPARK_LOCAL_DIRS"]: dir = env[e] if not os.path.exists(dir): os.makedirs(dir)
apache-2.0
-8,702,722,111,606,709,000
46.105932
232
0.580777
false
3.44073
true
false
false
Microvellum/Fluid-Designer
win64-vc/2.78/Python/bin/2.78/scripts/addons_contrib/mesh_extra_tools/pkhg_faces.py
1
32230
bl_info = { "name": "PKHG faces", "author": " PKHG ", "version": (0, 0, 5), "blender": (2, 7, 1), "location": "View3D > Tools > PKHG (tab)", "description": "Faces selected will become added faces of different style", "warning": "not yet finished", "wiki_url": "", "category": "Mesh", } import bpy import bmesh from mathutils import Vector, Matrix from bpy.props import BoolProperty, StringProperty, IntProperty, FloatProperty, EnumProperty class AddFaces(bpy.types.Operator): """Get parameters and build object with added faces""" bl_idname = "mesh.add_faces_to_object" bl_label = "new FACES: add" bl_options = {'REGISTER', 'UNDO', 'PRESET'} reverse_faces = BoolProperty(name="reverse_faces", default=False, description="revert the normal of selected faces") name_source_object = StringProperty( name="which MESH", description="lets you chose a mesh", default="Cube") remove_start_faces = BoolProperty(name="remove_start_faces", default=True, description="make a choice, remove or not") base_height = FloatProperty(name="base_height faces", min=-20, soft_max=10, max=20, default=0.2, description="sets general base_height") use_relative_base_height = BoolProperty(name="rel.base_height", default=False, description=" reletive or absolute base_height") relative_base_height = FloatProperty(name="relative_height", min=-5, soft_max=5, max=20, default=0.2, description="PKHG>TODO") relative_width = FloatProperty(name="relative_width", min=-5, soft_max=5, max=20, default=0.2, description="PKHG>TODO") second_height = FloatProperty(name="2. height", min=-5, soft_max=5, max=20, default=0.2, description="2. height for this and that") width = FloatProperty(name="wds.faces", min=-20, max=20, default=0.5, description="sets general width") repeat_extrude = IntProperty(name="repeat", min=1, soft_max=5, max=20, description="for longer base") move_inside = FloatProperty(name="move inside", min=0.0, max=1.0, default=0.5, description="how much move to inside") thickness = FloatProperty(name="thickness", soft_min=0.01, min=0, soft_max=5.0, max=20.0, default=0) depth = FloatProperty(name="depth", min=-5, soft_max=5.0, max=20.0, default=0) collapse_edges = BoolProperty(name="make point", default=False, description="collapse vertices of edges") spike_base_width = FloatProperty(name="spike_base_width", default=0.4, min=-4.0, soft_max=1, max=20, description="base width of a spike") base_height_inset = FloatProperty(name="base_height_inset", default=0.0, min=-5, max=5, description="to elevate/or neg the ...") top_spike = FloatProperty(name="top_spike", default=1.0, min=-10.0, max=10.0, description=" the base_height of a spike") top_extra_height = FloatProperty(name="top_extra_height", default=0.0, min=-10.0, max=10.0, description=" add extra height") step_with_real_spike = BoolProperty(name="step_with_real_spike", default=False, description=" in stepped a real spike") use_relative = BoolProperty(name="use_relative", default=False, description="change size using area, min of max") face_types = EnumProperty( description="different types of faces", default="no", items=[ ('no', 'choose!', 'choose one of the other possibilies'), ('open inset', 'open inset', 'holes'), ('with base', 'with base', 'base and ...'), ('clsd vertical', 'clsd vertical', 'clsd vertical'), ('open vertical', 'open vertical', 'openvertical'), ('spiked', 'spiked', 'spike'), ('stepped', 'stepped', 'stepped'), ('boxed', 'boxed', 'boxed'), ('bar', 'bar', 'bar'), ]) strange_boxed_effect = BoolProperty(name="strange effect", default=False, description="do not show one extrusion") use_boundary = BoolProperty(name="use_boundary", default=True) use_even_offset = BoolProperty(name="even_offset", default=True) use_relative_offset = BoolProperty(name="relativ_offset", default=True) use_edge_rail = BoolProperty(name="edge_rail", default=False) use_outset = BoolProperty(name="outset", default=False) use_select_inset = BoolProperty(name="inset", default=False) use_interpolate = BoolProperty(name="interpolate", default=True) @classmethod def poll(cls, context): result = False active_object = context.active_object if active_object: mesh_objects_name = [el.name for el in bpy.data.objects if el.type == "MESH"] if active_object.name in mesh_objects_name: result = True return result def draw(self, context): # PKHG>INFO Add_Faces_To_Object operator GUI layout = self.layout col = layout.column() col.label(text="ACTIVE object used!") col.prop(self, "face_types") col.prop(self, "use_relative") if self.face_types == "open inset": col.prop(self, "move_inside") col.prop(self, "base_height") elif self.face_types == "with base": col.prop(self, "move_inside") col.prop(self, "base_height") col.prop(self, "second_height") col.prop(self, "width") elif self.face_types == "clsd vertical": col.prop(self, "base_height") elif self.face_types == "open vertical": col.prop(self, "base_height") elif self.face_types == "boxed": col.prop(self, "move_inside") col.prop(self, "base_height") col.prop(self, "top_spike") col.prop(self, "strange_boxed_effect") elif self.face_types == "spiked": col.prop(self, "spike_base_width") col.prop(self, "base_height_inset") col.prop(self, "top_spike") elif self.face_types == "bar": col.prop(self, "spike_base_width") col.prop(self, "top_spike") col.prop(self, "top_extra_height") elif self.face_types == "stepped": col.prop(self, "spike_base_width") col.prop(self, "base_height_inset") col.prop(self, "top_extra_height") col.prop(self, "second_height") col.prop(self, "step_with_real_spike") def execute(self, context): bpy.context.scene.objects.active obj_name = self.name_source_object face_type = self.face_types if face_type == "spiked": Spiked(spike_base_width=self.spike_base_width, base_height_inset=self.base_height_inset, top_spike=self.top_spike, top_relative=self.use_relative) elif face_type == "boxed": startinfo = prepare(self, context, self.remove_start_faces) bm = startinfo['bm'] top = self.top_spike obj = startinfo['obj'] obj_matrix_local = obj.matrix_local distance = None base_heights = None t = self.move_inside areas = startinfo['areas'] base_height = self.base_height if self.use_relative: distance = [min(t * area, 1.0) for i, area in enumerate(areas)] base_heights = [base_height * area for i, area in enumerate(areas)] else: distance = [t] * len(areas) base_heights = [base_height] * len(areas) rings = startinfo['rings'] centers = startinfo['centers'] normals = startinfo['normals'] for i in range(len(rings)): make_one_inset(self, context, bm=bm, ringvectors=rings[i], center=centers[i], normal=normals[i], t=distance[i], base_height=base_heights[i]) bpy.ops.mesh.select_mode(type="EDGE") bpy.ops.mesh.select_more() bpy.ops.mesh.select_more() bpy.ops.object.mode_set(mode='OBJECT') # PKHG>INFO base extrusion done and set to the mesh # PKHG>INFO if the extrusion is NOT done ... it looks straneg soon! if not self.strange_boxed_effect: bpy.ops.object.mode_set(mode='EDIT') obj = context.active_object bm = bmesh.from_edit_mesh(obj.data) bmfaces = [face for face in bm.faces if face.select] res = extrude_faces(self, context, bm=bm, face_l=bmfaces) ring_edges = [face.edges[:] for face in res] bpy.ops.object.mode_set(mode='OBJECT') # PKHG>INFO now the extruded facec have to move in normal direction bpy.ops.object.mode_set(mode='EDIT') obj = bpy.context.scene.objects.active bm = bmesh.from_edit_mesh(obj.data) todo_faces = [face for face in bm.faces if face.select] for face in todo_faces: bmesh.ops.translate(bm, vec=face.normal * top, space=obj_matrix_local, verts=face.verts) bpy.ops.object.mode_set(mode='OBJECT') elif face_type == "stepped": Stepped(spike_base_width=self.spike_base_width, base_height_inset=self.base_height_inset, top_spike=self.second_height, top_extra_height=self.top_extra_height, use_relative_offset=self.use_relative, with_spike=self.step_with_real_spike) elif face_type == "open inset": startinfo = prepare(self, context, self.remove_start_faces) bm = startinfo['bm'] # PKHG>INFO adjust for relative, via areas t = self.move_inside areas = startinfo['areas'] base_height = self.base_height base_heights = None distance = None if self.use_relative: distance = [min(t * area, 1.0) for i, area in enumerate(areas)] base_heights = [base_height * area for i, area in enumerate(areas)] else: distance = [t] * len(areas) base_heights = [base_height] * len(areas) rings = startinfo['rings'] centers = startinfo['centers'] normals = startinfo['normals'] for i in range(len(rings)): make_one_inset(self, context, bm=bm, ringvectors=rings[i], center=centers[i], normal=normals[i], t=distance[i], base_height=base_heights[i]) bpy.ops.object.mode_set(mode='OBJECT') elif face_type == "with base": startinfo = prepare(self, context, self.remove_start_faces) bm = startinfo['bm'] obj = startinfo['obj'] object_matrix = obj.matrix_local # PKHG>INFO for relative (using areas) t = self.move_inside areas = startinfo['areas'] base_height = self.base_height distance = None base_heights = None if self.use_relative: distance = [min(t * area, 1.0) for i, area in enumerate(areas)] base_heights = [base_height * area for i, area in enumerate(areas)] else: distance = [t] * len(areas) base_heights = [base_height] * len(areas) next_rings = [] rings = startinfo['rings'] centers = startinfo['centers'] normals = startinfo['normals'] for i in range(len(rings)): next_rings.append(make_one_inset(self, context, bm=bm, ringvectors=rings[i], center=centers[i], normal=normals[i], t=distance[i], base_height=base_heights[i])) prepare_ring = extrude_edges(self, context, bm=bm, edge_l_l=next_rings) second_height = self.second_height width = self.width vectors = [[ele.verts[:] for ele in edge] for edge in prepare_ring] n_ring_vecs = [] for rings in vectors: v = [] for edgv in rings: v.extend(edgv) # PKHF>INFO no double verts allowed, coming from two adjacents edges! bm.verts.ensure_lookup_table() vv = list(set([ele.index for ele in v])) vvv = [bm.verts[i].co for i in vv] n_ring_vecs.append(vvv) for i, ring in enumerate(n_ring_vecs): make_one_inset(self, context, bm=bm, ringvectors=ring, center=centers[i], normal=normals[i], t=width, base_height=base_heights[i] + second_height) bpy.ops.object.mode_set(mode='OBJECT') else: if face_type == "clsd vertical": obj_name = context.active_object.name ClosedVertical(name=obj_name, base_height=self.base_height, use_relative_base_height=self.use_relative) elif face_type == "open vertical": obj_name = context.active_object.name OpenVertical(name=obj_name, base_height=self.base_height, use_relative_base_height=self.use_relative) elif face_type == "bar": startinfo = prepare(self, context, self.remove_start_faces) result = [] bm = startinfo['bm'] rings = startinfo['rings'] centers = startinfo['centers'] normals = startinfo['normals'] spike_base_width = self.spike_base_width for i, ring in enumerate(rings): result.append(make_one_inset(self, context, bm=bm, ringvectors=ring, center=centers[i], normal=normals[i], t=spike_base_width)) next_ring_edges_list = extrude_edges(self, context, bm=bm, edge_l_l=result) top_spike = self.top_spike fac = top_spike object_matrix = startinfo['obj'].matrix_local for i in range(len(next_ring_edges_list)): translate_ONE_ring(self, context, bm=bm, object_matrix=object_matrix, ring_edges=next_ring_edges_list[i], normal=normals[i], distance=fac) next_ring_edges_list_2 = extrude_edges(self, context, bm=bm, edge_l_l=next_ring_edges_list) top_extra_height = self.top_extra_height for i in range(len(next_ring_edges_list_2)): move_corner_vecs_outside(self, context, bm=bm, edge_list=next_ring_edges_list_2[i], center=centers[i], normal=normals[i], base_height_erlier=fac + top_extra_height, distance=fac) bpy.ops.mesh.select_mode(type="VERT") bpy.ops.mesh.select_more() bpy.ops.object.mode_set(mode='OBJECT') return {'FINISHED'} class ReverseFacesOperator(bpy.types.Operator): """Reverse selected Faces""" bl_idname = "mesh.revers_selected_faces" bl_label = "reverse normal of selected faces1" bl_options = {'REGISTER', 'UNDO', 'PRESET'} reverse_faces = BoolProperty(name="reverse_faces", default=False, description="revert the normal of selected faces") def execute(self, context): name = context.active_object.name ReverseFaces(name=name) return {'FINISHED'} class pkhg_help(bpy.types.Operator): bl_idname = 'help.pkhg' bl_label = '' def draw(self, context): layout = self.layout layout.label('To use:') layout.label('Make a selection or selection of Faces') layout.label('Extrude, rotate extrusions & more') layout.label('Toggle edit mode after use') def invoke(self, context, event): return context.window_manager.invoke_popup(self, width=300) class VIEW3D_Faces_Panel(bpy.types.Panel): bl_label = "Face Extrude" bl_space_type = "VIEW_3D" bl_region_type = "TOOLS" bl_category = 'Tools' bl_options = {'DEFAULT_CLOSED'} @classmethod def poll(cls, context): result = False active_object = context.active_object if active_object: mesh_objects_name = [el.name for el in bpy.data.objects if el.type == "MESH"] if active_object.name in mesh_objects_name: if active_object.mode == "OBJECT": result = True return result def draw(self, context): layout = self.layout layout.operator(AddFaces.bl_idname, "Selected Faces!") layout.label("Use this to Extrude") layout.label("Selected Faces Only") layout.label("---------------------------------------") layout.operator(ReverseFacesOperator.bl_idname, "Reverse faceNormals") layout.label("Only Use This") layout.label("After Mesh Creation") layout.label("To Repair Normals") layout.label("Save File Often") def find_one_ring(sel_vertices): ring0 = sel_vertices.pop(0) to_delete = [] for i, edge in enumerate(sel_vertices): len_nu = len(ring0) if len(ring0 - edge) < len_nu: to_delete.append(i) ring0 = ring0.union(edge) to_delete.reverse() for el in to_delete: sel_vertices.pop(el) return (ring0, sel_vertices) class Stepped: def __init__(self, spike_base_width=0.5, base_height_inset=0.0, top_spike=0.2, top_relative=False, top_extra_height=0, use_relative_offset=False, with_spike=False): obj = bpy.context.active_object bpy.ops.object.mode_set(mode='EDIT') bpy.ops.mesh.inset(use_boundary=True, use_even_offset=True, use_relative_offset=False, use_edge_rail=False, thickness=spike_base_width, depth=0, use_outset=True, use_select_inset=False, use_individual=True, use_interpolate=True) bpy.ops.mesh.inset(use_boundary=True, use_even_offset=True, use_relative_offset=use_relative_offset, use_edge_rail=False, thickness=top_extra_height, depth=base_height_inset, use_outset=True, use_select_inset=False, use_individual=True, use_interpolate=True) bpy.ops.mesh.inset(use_boundary=True, use_even_offset=True, use_relative_offset=use_relative_offset, use_edge_rail=False, thickness=spike_base_width, depth=0, use_outset=True, use_select_inset=False, use_individual=True, use_interpolate=True) bpy.ops.mesh.inset(use_boundary=True, use_even_offset=True, use_relative_offset=False, use_edge_rail=False, thickness=0, depth=top_spike, use_outset=True, use_select_inset=False, use_individual=True, use_interpolate=True) if with_spike: bpy.ops.mesh.merge(type='COLLAPSE') bpy.ops.object.mode_set(mode='OBJECT') class Spiked: def __init__(self, spike_base_width=0.5, base_height_inset=0.0, top_spike=0.2, top_relative=False): obj = bpy.context.active_object bpy.ops.object.mode_set(mode='EDIT') bpy.ops.mesh.inset(use_boundary=True, use_even_offset=True, use_relative_offset=False, use_edge_rail=False, thickness=spike_base_width, depth=base_height_inset, use_outset=True, use_select_inset=False, use_individual=True, use_interpolate=True) bpy.ops.mesh.inset(use_boundary=True, use_even_offset=True, use_relative_offset=top_relative, use_edge_rail=False, thickness=0, depth=top_spike, use_outset=True, use_select_inset=False, use_individual=True, use_interpolate=True) bm = bmesh.from_edit_mesh(obj.data) selected_faces = [face for face in bm.faces if face.select] edges_todo = [] bpy.ops.mesh.merge(type='COLLAPSE') bpy.ops.object.mode_set(mode='OBJECT') class ClosedVertical: def __init__(self, name="Plane", base_height=1, use_relative_base_height=False): obj = bpy.data.objects[name] bm = bmesh.new() bm.from_mesh(obj.data) # PKHG>INFO deselect chosen faces sel = [f for f in bm.faces if f.select] for f in sel: f.select = False res = bmesh.ops.extrude_discrete_faces(bm, faces=sel) # PKHG>INFO select extruded faces for f in res['faces']: f.select = True lood = Vector((0, 0, 1)) # PKHG>INFO adjust extrusion by a vector! test just only lood factor = base_height for face in res['faces']: if use_relative_base_height: area = face.calc_area() factor = area * base_height else: factor = base_height for el in face.verts: tmp = el.co + face.normal * factor el.co = tmp me = bpy.data.meshes[name] bm.to_mesh(me) bm.free() class ReverseFaces: def __init__(self, name="Cube"): obj = bpy.data.objects[name] me = obj.data bpy.ops.object.mode_set(mode='EDIT') bm = bmesh.new() bm.from_mesh(me) bpy.ops.object.mode_set(mode='OBJECT') sel = [f for f in bm.faces if f.select] bmesh.ops.reverse_faces(bm, faces=sel) bm.to_mesh(me) bm.free() class OpenVertical: def __init__(self, name="Plane", base_height=1, use_relative_base_height=False): obj = bpy.data.objects[name] bm = bmesh.new() bm.from_mesh(obj.data) # PKHG>INFO deselect chosen faces sel = [f for f in bm.faces if f.select] for f in sel: f.select = False res = bmesh.ops.extrude_discrete_faces(bm, faces=sel) # PKHG>INFO select extruded faces for f in res['faces']: f.select = True # PKHG>INFO adjust extrusion by a vector! test just only lood factor = base_height for face in res['faces']: if use_relative_base_height: area = face.calc_area() factor = area * base_height else: factor = base_height for el in face.verts: tmp = el.co + face.normal * factor el.co = tmp me = bpy.data.meshes[name] bm.to_mesh(me) bm.free() bpy.ops.object.editmode_toggle() bpy.ops.mesh.delete(type='FACE') bpy.ops.object.editmode_toggle() class StripFaces: def __init__(self, use_boundary=True, use_even_offset=True, use_relative_offset=False, use_edge_rail=True, thickness=0.0, depth=0.0, use_outset=False, use_select_inset=False, use_individual=True, use_interpolate=True): bpy.ops.object.mode_set(mode='EDIT') bpy.ops.mesh.inset(use_boundary=use_boundary, use_even_offset=True, use_relative_offset=False, use_edge_rail=True, thickness=thickness, depth=depth, use_outset=use_outset, use_select_inset=use_select_inset, use_individual=use_individual, use_interpolate=use_interpolate) bpy.ops.object.mode_set(mode='OBJECT') # PKHG>IMFO only 3 parameters inc execution context supported!! if False: bpy.ops.mesh.inset(use_boundary, use_even_offset, use_relative_offset, use_edge_rail, thickness, depth, use_outset, use_select_inset, use_individual, use_interpolate) elif type == 0: bpy.ops.mesh.inset(use_boundary=True, use_even_offset=True, use_relative_offset=False, use_edge_rail=True, thickness=thickness, depth=depth, use_outset=False, use_select_inset=False, use_individual=True, use_interpolate=True) elif type == 1: bpy.ops.mesh.inset(use_boundary=True, use_even_offset=True, use_relative_offset=False, use_edge_rail=True, thickness=thickness, depth=depth, use_outset=False, use_select_inset=False, use_individual=True, use_interpolate=False) bpy.ops.mesh.delete(type='FACE') elif type == 2: bpy.ops.mesh.inset(use_boundary=True, use_even_offset=False, use_relative_offset=True, use_edge_rail=True, thickness=thickness, depth=depth, use_outset=False, use_select_inset=False, use_individual=True, use_interpolate=False) bpy.ops.mesh.delete(type='FACE') elif type == 3: bpy.ops.mesh.inset(use_boundary=True, use_even_offset=False, use_relative_offset=True, use_edge_rail=True, thickness=depth, depth=thickness, use_outset=False, use_select_inset=False, use_individual=True, use_interpolate=True) bpy.ops.mesh.delete(type='FACE') elif type == 4: bpy.ops.mesh.inset(use_boundary=True, use_even_offset=False, use_relative_offset=True, use_edge_rail=True, thickness=thickness, depth=depth, use_outset=True, use_select_inset=False, use_individual=True, use_interpolate=True) bpy.ops.mesh.inset(use_boundary=True, use_even_offset=False, use_relative_offset=True, use_edge_rail=True, thickness=thickness, depth=depth, use_outset=True, use_select_inset=False, use_individual=True, use_interpolate=True) bpy.ops.mesh.delete(type='FACE') bpy.ops.object.mode_set(mode='OBJECT') def prepare(self, context, remove_start_faces=True): """Start for a face selected change of faces select an object of type mesh, with activated severel (all) faces """ obj = bpy.context.scene.objects.active bpy.ops.object.mode_set(mode='OBJECT') selectedpolygons = [el for el in obj.data.polygons if el.select] # PKHG>INFO copies of the vectors are needed, otherwise Blender crashes! centers = [face.center for face in selectedpolygons] centers_copy = [Vector((el[0], el[1], el[2])) for el in centers] normals = [face.normal for face in selectedpolygons] normals_copy = [Vector((el[0], el[1], el[2])) for el in normals] vertindicesofpolgons = [[vert for vert in face.vertices] for face in selectedpolygons] vertVectorsOfSelectedFaces = [[obj.data.vertices[ind].co for ind in vertIndiceofface] for vertIndiceofface in vertindicesofpolgons] vertVectorsOfSelectedFaces_copy = [[Vector((el[0], el[1], el[2])) for el in listofvecs] for listofvecs in vertVectorsOfSelectedFaces] bpy.ops.object.mode_set(mode='EDIT') bm = bmesh.from_edit_mesh(obj.data) selected_bm_faces = [ele for ele in bm.faces if ele.select] selected_edges_per_face_ind = [[ele.index for ele in face.edges] for face in selected_bm_faces] indices = [el.index for el in selectedpolygons] selected_faces_areas = [bm.faces[:][i] for i in indices] tmp_area = [el.calc_area() for el in selected_faces_areas] # PKHG>INFO, selected faces are removed, only their edges are used! if remove_start_faces: bpy.ops.mesh.delete(type='ONLY_FACE') bpy.ops.object.mode_set(mode='OBJECT') obj.data.update() bpy.ops.object.mode_set(mode='EDIT') bm = bmesh.from_edit_mesh(obj.data) bm.verts.ensure_lookup_table() bm.faces.ensure_lookup_table() start_ring_raw = [[bm.verts[ind].index for ind in vertIndiceofface] for vertIndiceofface in vertindicesofpolgons] start_ring = [] for el in start_ring_raw: start_ring.append(set(el)) bm.edges.ensure_lookup_table() bm_selected_edges_l_l = [[bm.edges[i] for i in bm_ind_list] for bm_ind_list in selected_edges_per_face_ind] result = {'obj': obj, 'centers': centers_copy, 'normals': normals_copy, 'rings': vertVectorsOfSelectedFaces_copy, 'bm': bm, 'areas': tmp_area, 'startBMRingVerts': start_ring, 'base_edges': bm_selected_edges_l_l} return result def make_one_inset(self, context, bm=None, ringvectors=None, center=None, normal=None, t=None, base_height=0): """a face will get 'inserted' faces to create (normaly) a hole it t is > 0 and < 1) """ tmp = [] for el in ringvectors: tmp.append((el * (1 - t) + center * t) + normal * base_height) tmp = [bm.verts.new(v) for v in tmp] # the new corner bmvectors # PKHG>INFO so to say sentinells, ot use ONE for ... tmp.append(tmp[0]) vectorsFace_i = [bm.verts.new(v) for v in ringvectors] vectorsFace_i.append(vectorsFace_i[0]) myres = [] for ii in range(len(vectorsFace_i) - 1): # PKHG>INFO next line: sequence important! for added edge bmvecs = [vectorsFace_i[ii], vectorsFace_i[ii + 1], tmp[ii + 1], tmp[ii]] res = bm.faces.new(bmvecs) myres.append(res.edges[2]) myres[-1].select = True # PKHG>INFO to be used later selected! return (myres) def extrude_faces(self, context, bm=None, face_l=None): """ to make a ring extrusion! """ all_results = [] res = bmesh.ops.extrude_discrete_faces(bm, faces=face_l)['faces'] for face in res: face.select = True return res def extrude_edges(self, context, bm=None, edge_l_l=None): """ to make a ring extrusion! """ all_results = [] for edge_l in edge_l_l: for edge in edge_l: edge.select = False res = bmesh.ops.extrude_edge_only(bm, edges=edge_l) tmp = [ele for ele in res['geom'] if isinstance(ele, bmesh.types.BMEdge)] for edge in tmp: edge.select = True all_results.append(tmp) return all_results def translate_ONE_ring(self, context, bm=None, object_matrix=None, ring_edges=None, normal=(0, 0, 1), distance=0.5): """ translate a ring in given (normal?!) direction with given (global) amount """ tmp = [] for edge in ring_edges: tmp.extend(edge.verts[:]) # PKHG>INFO no double vertices allowed by bmesh! tmp = set(tmp) tmp = list(tmp) bmesh.ops.translate(bm, vec=normal * distance, space=object_matrix, verts=tmp) return ring_edges # PKHG>INFO relevant edges will stay selected def move_corner_vecs_outside(self, context, bm=None, edge_list=None, center=None, normal=None, base_height_erlier=0.5, distance=0.5): """ move corners (outside meant mostly) dependent on the parameters """ tmp = [] for edge in edge_list: tmp.extend([ele for ele in edge.verts if isinstance(ele, bmesh.types.BMVert)]) # PKHG>INFO to remove vertices, they are all twices used in the ring! tmp = set(tmp) tmp = list(tmp) for i in range(len(tmp)): vec = tmp[i].co direction = vec + (vec - (normal * base_height_erlier + center)) * distance tmp[i].co = direction def register(): bpy.utils.register_module(__name__) def unregister(): bpy.utils.unregister_module(__name__) if __name__ == "__main__": register()
gpl-3.0
-9,101,845,059,198,115,000
42.85034
278
0.57403
false
3.667501
false
false
false
laissezfarrell/rl-bitcurator-scripts
python/accession-reporter.py
1
3754
#!/usr/bin/env python3 #Script (in progress) to report high-level folder information for offices transferring records to the University Archives. #Dependencies: argparse, pathlib, python3.6 or above, csv, datetime #Assumptions: # 1. import argparse, csv, datetime from pathlib import Path, PurePath from datetime import datetime def walkPath(): startingPath = Path(inputDir) #uncomment when ready for arguments #csvOut = Path('/home/bcadmin/Desktop/accession-report-test.csv') #startingPath = Path('/home/bcadmin/Desktop/test-data/objects') #comment when ready for arguments spChild = [x for x in startingPath.iterdir() if x.is_dir()] #create a list of the children directories in startingPath. with open (csvOut, 'w') as m: writer = csv.writer(m) writer.writerow(['path','foldersize '+ labelUnits,'Earliest Timestamp','Latest Timestamp']) for i in spChild: operatingDirectory = Path(i) print("the next directory to process is ",operatingDirectory)#sanity check fileList = list(operatingDirectory.glob('**/*')) #fileList = [x for x in operatingDirectory.iterdir() if x.is_file()] #print(fileList) #sanity check folderSize = 0 fModTime = datetime.now() oldestTime = fModTime newestTime = datetime.strptime("Jan 01 1950", "%b %d %Y") for f in fileList: fSizeBytes = (Path.stat(f).st_size / repUnits) folderSize = folderSize + fSizeBytes fModTime = datetime.fromtimestamp(Path.stat(f).st_mtime) if fModTime >= oldestTime: pass else: oldestTime = fModTime if fModTime <= newestTime: pass else: newestTime = fModTime #print(folderSize) #print(oldestTime) #print(newestTime) writer.writerow([i,folderSize,oldestTime,newestTime]) #end of day May 15: above function calculates the size of the files in a folder, as well as the most recent and oldest date modified. Next steps: 1) add arguments back in and test function. Mostly compied/pasted writer stuff from another script, so potentially doesn't work yet. # Main body to accept arguments and call the three functions. parser = argparse.ArgumentParser() parser.add_argument("output", help="Path to and filename for the CSV to create.") parser.add_argument("input", help="Path to input directory.") parser.add_argument("-u", "--units", type=str, choices=["b", "kb", "mb", "gb"], help="Unit of measurement for reporting aggregate size") args = parser.parse_args() if args.output: csvOut = args.output if args.input: inputDir = args.input if args.units == "kb": repUnits = 1024 labelUnits = "(kilobytes)" print("Reporting sizes in kilobytes") elif args.units == "mb": repUnits = 1024*1024 labelUnits = "(megabytes)" print("Reporting sizes in megabytes") elif args.units =="gb": repUnits = 1024*1024*1024 labelUnits = "(gigabytes)" print("Reporting sizes in gigabytes") elif args.units == "b": repUnits = 1 labelUnits = "(bytes)" print("Reporting sizes in bytes, the purest way to report sizes.") else: repUnits = 1 labelUnits = "(bytes)" print("Your inattentiveness leads Self to default to reporting size in bytes, the purest yet least human readable way to report sizes. Ha ha, puny human. Bow before Self, the mighty computer. 01000100 01000101 01010011 01010100 01010010 01001111 01011001 00100000 01000001 01001100 01001100 00100000 01001000 01010101 01001101 01000001 01001110 01010011 00101110") walkPath()
gpl-3.0
-5,533,678,024,818,261,000
43.690476
368
0.660629
false
3.894191
false
false
false
alirizakeles/zato
code/zato-server/src/zato/server/service/internal/security/openstack.py
1
6547
# -*- coding: utf-8 -*- """ Copyright (C) 2013 Dariusz Suchojad <dsuch at zato.io> Licensed under LGPLv3, see LICENSE.txt for terms and conditions. """ from __future__ import absolute_import, division, print_function, unicode_literals # stdlib from contextlib import closing from traceback import format_exc from uuid import uuid4 # Zato from zato.common import SEC_DEF_TYPE from zato.common.broker_message import SECURITY from zato.common.odb.model import Cluster, OpenStackSecurity from zato.common.odb.query import openstack_security_list from zato.server.service.internal import AdminService, AdminSIO, ChangePasswordBase, GetListAdminSIO class GetList(AdminService): """ Returns a list of OpenStack definitions available. """ _filter_by = OpenStackSecurity.name, class SimpleIO(GetListAdminSIO): request_elem = 'zato_security_openstack_get_list_request' response_elem = 'zato_security_openstack_get_list_response' input_required = ('cluster_id',) output_required = ('id', 'name', 'is_active', 'username') def get_data(self, session): return self._search(openstack_security_list, session, self.request.input.cluster_id, False) def handle(self): with closing(self.odb.session()) as session: self.response.payload[:] = self.get_data(session) class Create(AdminService): """ Creates a new OpenStack definition. """ class SimpleIO(AdminSIO): request_elem = 'zato_security_openstack_create_request' response_elem = 'zato_security_openstack_create_response' input_required = ('cluster_id', 'name', 'is_active', 'username') output_required = ('id', 'name') def handle(self): input = self.request.input input.password = uuid4().hex with closing(self.odb.session()) as session: try: cluster = session.query(Cluster).filter_by(id=input.cluster_id).first() # Let's see if we already have a definition of that name before committing # any stuff into the database. existing_one = session.query(OpenStackSecurity).\ filter(Cluster.id==input.cluster_id).\ filter(OpenStackSecurity.name==input.name).first() if existing_one: raise Exception('OpenStack definition [{0}] already exists on this cluster'.format(input.name)) auth = OpenStackSecurity(None, input.name, input.is_active, input.username, input.password, cluster) session.add(auth) session.commit() except Exception, e: msg = 'Could not create an OpenStack definition, e:[{e}]'.format(e=format_exc(e)) self.logger.error(msg) session.rollback() raise else: input.action = SECURITY.OPENSTACK_CREATE.value input.sec_type = SEC_DEF_TYPE.OPENSTACK self.broker_client.publish(input) self.response.payload.id = auth.id self.response.payload.name = auth.name class Edit(AdminService): """ Updates an OpenStack definition. """ class SimpleIO(AdminSIO): request_elem = 'zato_security_openstack_edit_request' response_elem = 'zato_security_openstack_edit_response' input_required = ('id', 'cluster_id', 'name', 'is_active', 'username') output_required = ('id', 'name') def handle(self): input = self.request.input with closing(self.odb.session()) as session: try: existing_one = session.query(OpenStackSecurity).\ filter(Cluster.id==input.cluster_id).\ filter(OpenStackSecurity.name==input.name).\ filter(OpenStackSecurity.id!=input.id).\ first() if existing_one: raise Exception('OpenStack definition [{0}] already exists on this cluster'.format(input.name)) definition = session.query(OpenStackSecurity).filter_by(id=input.id).one() old_name = definition.name definition.name = input.name definition.is_active = input.is_active definition.username = input.username session.add(definition) session.commit() except Exception, e: msg = 'Could not update the OpenStack definition, e:[{e}]'.format(e=format_exc(e)) self.logger.error(msg) session.rollback() raise else: input.action = SECURITY.OPENSTACK_EDIT.value input.old_name = old_name input.sec_type = SEC_DEF_TYPE.OPENSTACK self.broker_client.publish(input) self.response.payload.id = definition.id self.response.payload.name = definition.name class ChangePassword(ChangePasswordBase): """ Changes the password of an OpenStack definition. """ password_required = False class SimpleIO(ChangePasswordBase.SimpleIO): request_elem = 'zato_security_openstack_change_password_request' response_elem = 'zato_security_openstack_change_password_response' def handle(self): def _auth(instance, password): instance.password = password return self._handle(OpenStackSecurity, _auth, SECURITY.OPENSTACK_CHANGE_PASSWORD.value) class Delete(AdminService): """ Deletes an OpenStack definition. """ class SimpleIO(AdminSIO): request_elem = 'zato_security_openstack_delete_request' response_elem = 'zato_security_openstack_delete_response' input_required = ('id',) def handle(self): with closing(self.odb.session()) as session: try: auth = session.query(OpenStackSecurity).\ filter(OpenStackSecurity.id==self.request.input.id).\ one() session.delete(auth) session.commit() except Exception, e: msg = 'Could not delete the OpenStack definition, e:[{e}]'.format(e=format_exc(e)) self.logger.error(msg) session.rollback() raise else: self.request.input.action = SECURITY.OPENSTACK_DELETE.value self.request.input.name = auth.name self.broker_client.publish(self.request.input)
gpl-3.0
-7,917,064,679,736,714,000
36.626437
116
0.607148
false
4.312912
false
false
false
10239847509238470925387z/tmp123
app.py
1
2195
#!/usr/bin/env python import urllib import json import os import constants import accounts from flask import Flask from flask import request from flask import make_response # Flask app should start in global layout app = Flask(__name__) PERSON = constants.TEST_1 @app.route('/webhook', methods=['POST']) def webhook(): req = request.get_json(silent=True, force=True) print("Request:") print(json.dumps(req, indent=4)) res = makeWebhookResult(req) res = json.dumps(res, indent=4) print(res) r = make_response(res) r.headers['Content-Type'] = 'application/json' return r def makeWebhookResult(req): if req.get("result").get("action") != "account-balance": return constants.ERR_DICT(req.get("result").get("action")) result = req.get("result") parameters = result.get("parameters") acct = parameters.get("account-type") acct = acct.strip() if acct=='401k': acct='WI' qual = parameters.get("qualifier") speech = str(req.get("result").get("action")) if acct: if acct in constants.ACCT_TYPES: speech = "The value of your {ACCT_TYPE} accounts is {VALU} dollars.".format(VALU=accounts.get_balance(PERSON, acct), ACCT_TYPE=acct) else: speech = "You don't have any accounts of that type. The total value of your other accounts is {VALU} dollars.".format( VALU=accounts.get_balance(PERSON)) elif qual: speech = "The total value of your accounts is {VALU} dollars.".format(VALU=accounts.get_balance(PERSON)) else: speech = "The total value of your accounts is {VALU} dollars.".format(VALU=accounts.get_balance(PERSON)) # speech = "The cost of shipping to " + zone + " is " + str(cost[zone]) + " euros." print("Response:") print(speech) speech += "\nAnything else I can help you with today?" return { "speech": speech, "displayText": speech, #"data": {}, # "contextOut": [], "source": "home" } if __name__ == '__main__': port = int(os.getenv('PORT', 5000)) print "Starting app on port %d" % port app.run(debug=True, port=port, host='0.0.0.0')
apache-2.0
-4,790,441,292,185,734,000
26.098765
144
0.625513
false
3.540323
false
false
false
Lind-Project/native_client
src/trusted/validator_arm/validation-report.py
1
3575
#!/usr/bin/python2 # # Copyright (c) 2012 The Native Client Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # import sys import textwrap from subprocess import Popen, PIPE _OBJDUMP = 'arm-linux-gnueabi-objdump' def _objdump(binary, vaddr, ctx_before, ctx_after): args = [ _OBJDUMP, '-d', '-G', binary, '--start-address=0x%08X' % (vaddr - (4 * ctx_before)), '--stop-address=0x%08X' % (vaddr + 4 + (4 * ctx_after))] highlight = ctx_before lines = 0 for line in Popen(args, stdout=PIPE).stdout.read().split('\n'): if line.startswith(' '): if highlight == 0: print '--> ', line else: print ' ', line highlight -= 1 lines += 1 if not lines: print ' (not found)' def _problem_info(code): return { 'kProblemUnsafe': ['Instruction is unsafe', 0, 0], 'kProblemBranchSplitsPattern': ['The destination of this branch is ' 'part of an instruction sequence that must be executed in full, ' 'or is inline data', 0, 0], 'kProblemPatternCrossesBundle': ['This instruction is part of a ' 'sequence that must execute in full, but it spans a bundle edge ' '-- so an indirect branch may target it', 1, 1], 'kProblemBranchInvalidDest': ['This branch targets a location that is ' 'outside of the application\'s executable code, and is not a valid ' 'trampoline entry point', 0, 0], 'kProblemUnsafeLoadStore': ['This store instruction is not preceded by ' 'a valid address mask instruction', 1, 0], 'kProblemUnsafeBranch': ['This indirect branch instruction is not ' 'preceded by a valid address mask instruction', 1, 0], 'kProblemUnsafeDataWrite': ['This instruction affects a register that ' 'must contain a valid data-region address, but is not followed by ' 'a valid address mask instruction', 0, 1], 'kProblemReadOnlyRegister': ['This instruction changes the contents of ' 'a read-only register', 0, 0], 'kProblemMisalignedCall': ['This linking branch instruction is not in ' 'the last slot of its bundle, so when its LR result is masked, the ' 'caller will not return to the next instruction', 0, 0], }[code] def _safety_msg(val): return { 0: 'UNKNOWN', # Should not appear 1: 'is undefined', 2: 'has unpredictable effects', 3: 'is deprecated', 4: 'is forbidden', 5: 'uses forbidden operands', }[val] def _explain_problem(binary, vaddr, safety, code, ref_vaddr): msg, ctx_before, ctx_after = _problem_info(code) if safety == 6: msg = "At %08X: %s:" % (vaddr, msg) else: msg = ("At %08X: %s (%s):" % (vaddr, msg, _safety_msg(safety))) print '\n'.join(textwrap.wrap(msg, 70, subsequent_indent=' ')) _objdump(binary, vaddr, ctx_before, ctx_after) if ref_vaddr: print "Destination address %08X:" % ref_vaddr _objdump(binary, ref_vaddr, 1, 1) def _parse_report(line): vaddr_hex, safety, code, ref_vaddr_hex = line.split() return (int(vaddr_hex, 16), int(safety), code, int(ref_vaddr_hex, 16)) for line in sys.stdin: if line.startswith('ncval: '): line = line[7:].strip() _explain_problem(sys.argv[1], *_parse_report(line))
bsd-3-clause
2,495,468,691,190,867,000
36.631579
80
0.59021
false
3.685567
false
false
false
core-code/LibVT
Dependencies/Core3D/Preprocessing/generateOctreeFromObj.py
1
10849
#!/usr/bin/env python # # generateOctreeFromObj.py # Core3D # # Created by Julian Mayer on 16.11.07. # Copyright (c) 2010 A. Julian Mayer # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitationthe rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import sys, bz2 from struct import * from vecmath import * TEXTURING = 1 GENTEX = 0 MAX_FLOAT = 1e+308 MIN_FLOAT = -1e308 MAX_USHORT = 0xFFFF MAX_FACES_PER_TREELEAF = 1000 MAX_RECURSION_DEPTH = 10 SCALE = 1.0 vertices = [] faces = [] normals = [] texcoords = [] def faceContent(f, i): if i == 0: if f.count("/") == 0: return f else: return f[:f.find("/")] elif i == 1: if f.count("/") == 0 or f.count("//") == 1: return 0 else: if f.count("/") == 2: return f[f.find("/")+1:f.rfind("/")] else: return f[f.find("/")+1:] else: if f.count("/") != 2: return 0 else: return f[f.rfind("/")+1:] def calculateAABB(faces): mi = [MAX_FLOAT, MAX_FLOAT,MAX_FLOAT] ma = [MIN_FLOAT, MIN_FLOAT, MIN_FLOAT] for face in faces: for i in range(3): for v in range(3): ma[i] = max(ma[i], vertices[face[v]][i]) mi[i] = min(mi[i], vertices[face[v]][i]) return mi,ma def classifyVertex(vertex, splitpoint): #TODO: do splitting or other funny things if vertex[0] > splitpoint[0] and vertex[1] > splitpoint[1] and vertex[2] > splitpoint[2]: return 0 if vertex[0] <= splitpoint[0] and vertex[1] > splitpoint[1] and vertex[2] > splitpoint[2]: return 1 if vertex[0] > splitpoint[0] and vertex[1] > splitpoint[1] and vertex[2] <= splitpoint[2]: return 2 if vertex[0] > splitpoint[0] and vertex[1] <= splitpoint[1] and vertex[2] > splitpoint[2]: return 3 if vertex[0] <= splitpoint[0] and vertex[1] > splitpoint[1] and vertex[2] <= splitpoint[2]: return 4 if vertex[0] > splitpoint[0] and vertex[1] <= splitpoint[1] and vertex[2] <= splitpoint[2]: return 5 if vertex[0] <= splitpoint[0] and vertex[1] <= splitpoint[1] and vertex[2] > splitpoint[2]: return 6 if vertex[0] <= splitpoint[0] and vertex[1] <= splitpoint[1] and vertex[2] <= splitpoint[2]:return 7 def classifyFace(face, splitpoint): return max(classifyVertex(vertices[face[0]], splitpoint), classifyVertex(vertices[face[1]], splitpoint), classifyVertex(vertices[face[2]], splitpoint)) #TODO: random instead of max? def buildOctree(faces, offset, level): mi,ma = calculateAABB(faces) ournum = buildOctree.counter buildOctree.counter += 1 childoffset = offset if len(faces) > MAX_FACES_PER_TREELEAF and level < MAX_RECURSION_DEPTH: splitpoint = [mi[0] + (ma[0] - mi[0])/2, mi[1] + (ma[1] - mi[1])/2, mi[2] + (ma[2] - mi[2])/2] newfaces = [[],[],[],[],[],[],[],[]] newnodes = [] childnums = [] for face in faces: x = classifyFace(face, splitpoint) newfaces[x].append(face) for newface in newfaces: a,b = buildOctree(newface, childoffset, level+1) childoffset += len(newface) childnums.append(a) newnodes.extend(b) faces[:] = newfaces[0]+newfaces[1]+newfaces[2]+newfaces[3]+newfaces[4]+newfaces[5]+newfaces[6]+newfaces[7] newnodes.insert(0, [offset, len(faces), mi[0], mi[1], mi[2], ma[0] - mi[0], ma[1] - mi[1], ma[2] - mi[2], childnums[0], childnums[1], childnums[2], childnums[3], childnums[4], childnums[5], childnums[6], childnums[7]]) return ournum, newnodes else: return ournum, [[offset, len(faces), mi[0], mi[1], mi[2], ma[0] - mi[0], ma[1] - mi[1], ma[2] - mi[2], MAX_USHORT, MAX_USHORT, MAX_USHORT, MAX_USHORT, MAX_USHORT, MAX_USHORT, MAX_USHORT, MAX_USHORT]] try: if (len(sys.argv)) == 1: raise Exception('input', 'error') f = open(sys.argv[len(sys.argv) - 1], 'r') of = 0 for i in range(1, len(sys.argv) - 1): if sys.argv[i].startswith("-s="): SCALE = float(sys.argv[i][3:]) elif sys.argv[i].startswith("-t"): TEXTURING = 0 elif sys.argv[i].startswith("-g="): GENTEX = int(sys.argv[i][3:]); TEXTURING = 0 elif sys.argv[i].startswith("-m="): MAX_FACES_PER_TREELEAF = int(sys.argv[i][3:]) elif sys.argv[i].startswith("-r="): MAX_RECURSION_DEPTH = int(sys.argv[i][3:]) elif sys.argv[i].startswith("-o="): of = open(sys.argv[i][3:], 'w') else: raise Exception('input', 'error') if of == 0: of = open(sys.argv[len(sys.argv) - 1][:sys.argv[len(sys.argv) - 1].rfind(".")] + ".octree.bz2", 'w') except: print """Usage: generateOctreeFromObj [options] obj_file Options: -t Ignore texture coordinates, produce an untextured Octree -s=<scale> Scale all coordinates by <scale> -m=<max_faces> Limit faces per leafnode to <max_faces> (Default: 1000) -r=<max_recursion> Limit tree depth to <max_recursion> (Default: 10) -o=<octree_file> Place the output octree into <octree_file> -g=<0,1,2,3,4> Texture coordinate generation: 0 = off, 1 = on, 2 = swap X, 3 = swap Y, 4 = swap XY""" sys.exit() print "Info: Reading the OBJ-file" lines = f.readlines() for line in lines: i = line.strip().split(" ")[0] c = line[2:].strip().split(" ") if i == "v": vertices.append([float(c[0]) * SCALE, float(c[1]) * SCALE, float(c[2]) * SCALE]) elif i == "vn": normals.append(normalize([float(c[0]), float(c[1]), float(c[2])])) elif i == "vt": texcoords.append([float(c[0]), float(c[1]), 0.0]) #TODO: if we discard W anyway we shouldnt store it elif i == "f": if (len(c) > 4): print "Error: faces with more than 4 edges not supported" sys.exit() elif (len(c) == 4): #triangulate faces.append([int(faceContent(c[0],0))-1, int(faceContent(c[1],0))-1, int(faceContent(c[2],0))-1, int(faceContent(c[0],2))-1, int(faceContent(c[1],2))-1, int(faceContent(c[2],2))-1, int(faceContent(c[0],1))-1, int(faceContent(c[1],1))-1, int(faceContent(c[2],1))-1]) faces.append([int(faceContent(c[0],0))-1, int(faceContent(c[2],0))-1, int(faceContent(c[3],0))-1, int(faceContent(c[0],2))-1, int(faceContent(c[2],2))-1, int(faceContent(c[3],2))-1, int(faceContent(c[0],1))-1, int(faceContent(c[2],1))-1, int(faceContent(c[3],1))-1]) else: faces.append([int(faceContent(c[0],0))-1, int(faceContent(c[1],0))-1, int(faceContent(c[2],0))-1, int(faceContent(c[0],2))-1, int(faceContent(c[1],2))-1, int(faceContent(c[2],2))-1, int(faceContent(c[0],1))-1, int(faceContent(c[1],1))-1, int(faceContent(c[2],1))-1]) print "Info: Building the Octree" buildOctree.counter = 0 a,nodes = buildOctree(faces, 0, 0) if len(nodes) > MAX_USHORT: print "Error: too many octree nodes generated, increase MAX_FACES_PER_TREELEAF" sys.exit() print "Info: Unifying and Uniquing Vertices, Normals and Texcoords" normalwarning = 0 newvertices = [] newvertices_dict = {} #it's perhaps not the most intuitive way to have the newvertices stored twice, but it prevents a quadratic runtime for face in faces: for i in range(3): if face[i+3] == -1: normalwarning += 1 normals.append(normalize(crossProduct(substract(vertices[face[0]],vertices[face[1]]), substract(vertices[face[2]],vertices[face[0]])))) face[i+3] = len(normals)-1 if TEXTURING and face[i+6] == -1: print "Warning: some face without a texcoord detected, turning texturing off" TEXTURING = 0 for i in range(3): if len(vertices[face[i]]) == 3: vertices[face[i]].extend(normals[face[i+3]]) if TEXTURING: vertices[face[i]].extend(texcoords[face[i+6]]) elif vertices[face[i]][3:6] != normals[face[i+3]] or (TEXTURING and vertices[face[i]][6:] != texcoords[face[i+6]]): #if this vertex has a different normal/texcoord we have to duplicate it because opengl has only one index list sf = face[i] if TEXTURING: key = vertices[face[i]][0], vertices[face[i]][1], vertices[face[i]][2], normals[face[i+3]][0], normals[face[i+3]][1], normals[face[i+3]][2], texcoords[face[i+6]][0], texcoords[face[i+6]][1], texcoords[face[i+6]][2] else: key = vertices[face[i]][0], vertices[face[i]][1], vertices[face[i]][2], normals[face[i+3]][0], normals[face[i+3]][1], normals[face[i+3]][2] if newvertices_dict.has_key(key): face[i] = len(vertices)+newvertices_dict[key] if sf == face[i]: #or create duplicate newvertices.append(list(key)) newvertices_dict[key] = len(newvertices)-1 face[i] = len(vertices)+len(newvertices)-1 #don't forget to update the index to the duplicated vertex+normal vertices.extend(newvertices) if normalwarning: print "Warning: some face without a normal detected, calculating it (x" + str(normalwarning) +")" print "Info: Writing the resulting Octree-file" dummywarning = 0 out = pack('III', 0xDEADBEEF if (TEXTURING or GENTEX) else 0x6D616C62, len(nodes), len(vertices)) for node in nodes: out += pack('IIffffffHHHHHHHH', node[0], node[1], node[2], node[3], node[4], node[5], node[6], node[7], node[8], node[9], node[10], node[11], node[12], node[13], node[14], node[15]) for vert in vertices: try: if TEXTURING: out += pack('ffffffff', vert[0], vert[1], vert[2], vert[3], vert[4], vert[5], vert[6], vert[7]) elif GENTEX: xcoord = (vert[0] - nodes[0][2]) / nodes[0][5] ycoord = (vert[2] - nodes[0][4]) / nodes[0][7] out += pack('ffffffff', vert[0], vert[1], vert[2], vert[3], vert[4], vert[5], (1.0 - xcoord) if (GENTEX == 2 or GENTEX == 4) else xcoord, (1.0 - ycoord) if (GENTEX == 3 or GENTEX == 4) else ycoord) else: out += pack('ffffff', vert[0], vert[1], vert[2], vert[3], vert[4], vert[5]) #the vertex includes the normal now, if not the vertex is unreferenced and this throws except: dummywarning += 1 if TEXTURING: out += pack('ffffffff', 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) else: out += pack('ffffff', 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) if (len(vertices) <= MAX_USHORT): type = 'HHH' else: type = 'III' for face in faces: out += pack(type, face[0], face[1], face[2]) of.write(bz2.compress(out)) if dummywarning: print "Warning: unreferenced vertex detected, writing dummy vertex (x" + str(dummywarning) +")" print "\nSUCCESS:\n\nnodes:\t\t", len(nodes), "\nvertices:\t", len(vertices), "\t( duplicatesWithDifferentNormalsOrTexcoords:", len(newvertices), ")", "\nfaces:\t\t", len(faces), "\n"
mit
7,716,171,793,022,086,000
49.696262
462
0.660337
false
2.678765
false
false
false
Effective-Quadratures/Effective-Quadratures
equadratures/scalers.py
1
7167
""" Classes to scale data. Some of these classes are called internally by other modules, but they can also be used independently as a pre-processing stage. Scalers can fit to one set of data, and used to transform other data sets with the same number of dimensions. Examples -------- Fitting scaler implicitly during transform >>> # Define some 1D sample data >>> X = np.random.RandomState(0).normal(2,0.5,200) >>> (X.mean(),X.std()) >>> (2.0354552465705806, 0.5107113843479977) >>> >>> # Scale to zero mean and unit variance >>> X = eq.scalers.scaler_meanvar().transform(X) >>> (X.mean(),X.std()) >>> (2.886579864025407e-17, 1.0) Using the same scaling to transform train and test data >>> # Define some 5D example data >>> X = np.random.RandomState(0).uniform(-10,10,size=(50,5)) >>> y = X[:,0]**2 - X[:,4] >>> # Split into train/test >>> X_train, X_test,y_train,y_test = eq.datasets.train_test_split(X,y,train=0.7,random_seed=0) >>> (X_train.min(),X_train.max()) >>> (-9.906090476149059, 9.767476761184525) >>> >>> # Define a scaler and fit to training split >>> scaler = eq.scalers.scaler_minmax() >>> scaler.fit(X_train) >>> >>> # Transform train and test data with same scaler >>> X_train = scaler.transform(X_train) >>> X_test = scaler.transform(X_test) >>> (X_train.min(),X_train.max()) >>> (-1.0, 1.0) >>> >>> # Finally, e.g. of transforming data back again >>> X_train = scaler.untransform(X_train) >>> (X_train.min(),X_train.max()) >>> (-9.906090476149059, 9.767476761184525) """ import numpy as np class scaler_minmax(object): """ Scale the data to have a min/max of -1 to 1. """ def __init__(self): self.fitted = False def fit(self,X): """ Fit scaler to data. Parameters ---------- X : numpy.ndarray Array with shape (number_of_samples, number_of_dimensions) containing data to fit scaler to. """ if X.ndim == 1: X = X.reshape(-1,1) self.Xmin = np.min(X,axis=0) self.Xmax = np.max(X,axis=0) self.fitted = True def transform(self,X): """ Transforms data. Calls :meth:`~equadratures.scalers.scaler_minmax.fit` fit internally if scaler not already fitted. Parameters ---------- X : numpy.ndarray Array with shape (number_of_samples, number_of_dimensions) containing data to transform. Returns ------- numpy.ndarray Array with shape (number_of_samples, number_of_dimensions) containing transformed data. """ if X.ndim == 1: X = X.reshape(-1,1) if not self.fitted: self.fit(X) Xtrans = 2.0 * ( (X[:,:]-self.Xmin)/(self.Xmax - self.Xmin) ) - 1.0 return Xtrans def untransform(self,X): """ Untransforms data. Parameters ---------- X : numpy.ndarray Array with shape (number_of_samples, number_of_dimensions) containing data to untransform. Returns ------- numpy.ndarray Array with shape (number_of_samples, number_of_dimensions) containing untransformed data. Raises ------ Exception scaler has not been fitted """ if X.ndim == 1: X = X.reshape(-1,1) if not self.fitted: raise Exception('scaler has not been fitted') Xuntrans = 0.5*(X[:,:]+1)*(self.Xmax - self.Xmin) + self.Xmin return Xuntrans class scaler_meanvar(object): """ Scale the data to have a mean of 0 and variance of 1. """ def __init__(self): self.fitted = False def fit(self,X): """ Fit scaler to data. Parameters ---------- X : numpy.ndarray Array with shape (number_of_samples, number_of_dimensions) containing data to fit scaler to. """ if X.ndim == 1: X = X.reshape(-1,1) self.Xmean = np.mean(X,axis=0) self.Xstd = np.std(X,axis=0) self.fitted = True def transform(self,X): """ Transforms data. Calls :meth:`~equadratures.scalers.scaler_meanvar.fit` fit internally if scaler not already fitted. Parameters ---------- X : numpy.ndarray Array with shape (number_of_samples, number_of_dimensions) containing data to transform. Returns ------- numpy.ndarray Array with shape (number_of_samples, number_of_dimensions) containing transformed data. """ if X.ndim == 1: X = X.reshape(-1,1) if not self.fitted: self.fit(X) eps = np.finfo(np.float64).tiny Xtrans = (X[:,:]-self.Xmean)/(self.Xstd+eps) return Xtrans def untransform(self,X): """ Untransforms data. Parameters ---------- X : numpy.ndarray Array with shape (number_of_samples, number_of_dimensions) containing data to untransform. Returns ------- numpy.ndarray Array with shape (number_of_samples, number_of_dimensions) containing untransformed data. Raises ------ Exception scaler has not been fitted """ if X.ndim == 1: X = X.reshape(-1,1) if not self.fitted: raise Exception('scaler has not been fitted') eps = np.finfo(np.float64).tiny Xuntrans = X[:,:]*(self.Xstd+eps) + self.Xmean return Xuntrans class scaler_custom(object): """ Scale the data by the provided offset and divisor. Parameters ---------- offset : float, numpy.ndarray Offset to subtract from data. Either a float, or array with shape (number_of_samples, number_of_dimensions). div : float, numpy.ndarray Divisor to divide data with. Either a float, or array with shape (number_of_samples, number_of_dimensions). """ def __init__(self, offset, div): self.offset = offset self.div = div self.fitted = True def transform(self,X): """ Transforms data. Parameters ---------- X : numpy.ndarray Array with shape (number_of_samples, number_of_dimensions) containing data to transform. Returns ------- numpy.ndarray Array with shape (number_of_samples, number_of_dimensions) containing transformed data. """ if X.ndim == 1: X = X.reshape(-1,1) eps = np.finfo(np.float64).tiny Xtrans = (X - self.offset)/(self.div + eps) return Xtrans def untransform(self,X): """ Untransforms data. Parameters ---------- X : numpy.ndarray Array with shape (number_of_samples, number_of_dimensions) containing data to untransform. Returns ------- numpy.ndarray Array with shape (number_of_samples, number_of_dimensions) containing untransformed data. """ if X.ndim == 1: X = X.reshape(-1,1) eps = np.finfo(np.float64).tiny Xuntrans = X * (self.div + eps) + self.offset return Xuntrans
lgpl-2.1
3,159,541,299,082,102,300
31.425339
128
0.571588
false
3.773565
true
false
false
cloudconductor/cloud_conductor_gui
gui_app/views/applicationDeployViews.py
1
8093
# -*- coding: utf-8 -*- from django.shortcuts import render, redirect, render_to_response import ast from ..forms import selecttForm from ..forms import applicationForm from ..utils import ApplicationUtil from ..utils import ApplicationHistoryUtil from ..utils import EnvironmentUtil from ..utils import StringUtil from ..utils.PathUtil import Path from ..utils.PathUtil import Html from ..enum.FunctionCode import FuncCode from ..enum.ApplicationType import ApplicaionType from ..enum.ProtocolType import ProtocolType from ..utils import SessionUtil from ..utils import SystemUtil from ..logs import log def applicationSelect(request): try: session = request.session code = FuncCode.appDep_application.value token = session.get('auth_token') project_id = session.get('project_id') application = '' list = '' list = ApplicationUtil.get_application_version( code, token, project_id) if request.method == "GET": application = request.session.get('w_app_select') return render(request, Html.appdeploy_applicationSelect, {'list': list, 'application': application, 'message': ''}) elif request.method == "POST": param = request.POST # -- Session add application = selectPut(param) form = selecttForm(application) if not form.is_valid(): return render(request, Html.appdeploy_applicationSelect, {'list': list, 'application': application, 'form': form, 'message': ''}) request.session['w_app_select'] = application return redirect(Path.appdeploy_environmentSelect) except Exception as ex: log.error(FuncCode.appDep_application.value, None, ex) return render(request, Html.appdeploy_applicationSelect, {'list': list, 'application': application, 'message': str(ex)}) def applicationCreate(request): code = FuncCode.applicationCreate.value apptype = list(ApplicaionType) protocol = list(ProtocolType) systems = None try: if not SessionUtil.check_login(request): return redirect(Path.logout) if not SessionUtil.check_permission(request, 'application', 'create'): return render_to_response(Html.error_403) token = request.session['auth_token'] project_id = request.session['project_id'] systems = SystemUtil.get_system_list2(code, token, project_id) if request.method == "GET": return render(request, Html.appdeploy_applicationCreate, {'app': '', 'history': '', 'apptype': apptype, 'protocol': protocol, 'message': '', 'systems': systems, 'save': True}) else: # -- Get a value from a form p = request.POST cpPost = p.copy() # -- Validate check form = applicationForm(p) form.full_clean() if not form.is_valid(): return render(request, Html.appdeploy_applicationCreate, {'app': cpPost, 'history': cpPost, 'apptype': apptype, 'protocol': protocol, 'form': form, 'message': '', 'systems': systems, 'save': True}) # -- 1.Create a application, api call app = ApplicationUtil.create_application(code, token, form.data) # -- 2.Create a applicationhistory, api call ApplicationHistoryUtil.create_history( code, token, app.get('id'), form.data) request.session['w_app_select'] = {"id": app.get("id"), "name": app.get("name")} return redirect(Path.appdeploy_environmentSelect) except Exception as ex: log.error(FuncCode.applicationCreate.value, None, ex) return render(request, Html.appdeploy_applicationCreate, {'app': request.POST, 'history': request.POST, 'apptype': apptype, 'protocol': protocol, 'form': '', 'systems': systems, 'message': str(ex), 'save': True}) def environmentSelect(request): list = '' try: code = FuncCode.appDep_environment.value session = request.session environment = session.get('w_env_select') token = session['auth_token'] project_id = session['project_id'] app = ApplicationUtil.get_application_detail( code, token, session.get('w_app_select').get('id')) list = EnvironmentUtil.get_environment_list_system_id( code, token, project_id, app.get("system_id")) if request.method == "GET": return render(request, Html.appdeploy_environmentSelect, {"list": list, 'environment': environment, 'message': ''}) elif request.method == "POST": param = request.POST environment = selectPut(param) form = selecttForm(environment) if not form.is_valid(): return render(request, Html.appdeploy_environmentSelect, {"list": list, 'environment': environment, 'form': form, 'message': ''}) request.session['w_env_select'] = environment return redirect(Path.appdeploy_confirm) except Exception as ex: log.error(FuncCode.appDep_environment.value, None, ex) return render(request, Html.appdeploy_environmentSelect, {"list": '', 'environment': '', 'message': str(ex)}) def confirm(request): try: code = FuncCode.appDep_confirm.value session = request.session app_session = session.get('w_app_select') env_session = session.get('w_env_select') if request.method == "GET": return render(request, Html.appdeploy_confirm, {'application': app_session, 'environment': env_session, 'message': ''}) elif request.method == "POST": session = request.session code = FuncCode.newapp_confirm.value token = session.get('auth_token') env_id = env_session.get('id') app_id = app_session.get('id') # -- application deploy ApplicationUtil.deploy_application(code, token, env_id, app_id) # -- session delete sessionDelete(session) return redirect(Path.top) except Exception as ex: log.error(FuncCode.newapp_confirm.value, None, ex) session = request.session return render(request, Html.appdeploy_confirm, {"application": session.get('application'), 'environment': session.get('environment'), 'message': str(ex)}) def selectPut(req): if StringUtil.isEmpty(req): return None select_param = req.get('id', None) if StringUtil.isNotEmpty(select_param): select_param = ast.literal_eval(select_param) param = { 'id': str(select_param.get('id')), 'name': select_param.get('name'), } return param else: return select_param def putBlueprint(param): blueprint = param.get('blueprint', None) if not (blueprint is None) and not (blueprint == ''): blueprint = ast.literal_eval(blueprint) param['blueprint_id'] = blueprint.get('id') param['version'] = blueprint.get('version') return param def sessionDelete(session): if 'w_env_select' in session: del session['w_env_select'] if 'w_app_select' in session: del session['w_app_select']
apache-2.0
7,722,206,676,188,103,000
34.034632
78
0.561596
false
4.503617
false
false
false
dan-cristian/haiot
gpio/io_common/__init__.py
1
3453
from common import Constant from storage.model import m from main.logger_helper import L import abc from common import utils # update in db (without propagatting the change by default) def update_custom_relay(pin_code, pin_value, notify=False, ignore_missing=False): relay = m.ZoneCustomRelay.find_one({m.ZoneCustomRelay.gpio_pin_code: pin_code, m.ZoneCustomRelay.gpio_host_name: Constant.HOST_NAME}) if relay is not None: relay.relay_is_on = pin_value relay.save_changed_fields(broadcast=notify) L.l.info('Updated relay {} val={}'.format(pin_code, pin_value)) else: if not ignore_missing: L.l.warning('Unable to find relay pin {}'.format(pin_code)) # update in db (without propagatting the change by default) def update_listener_custom_relay(relay, is_on): relay.relay_is_on = is_on relay.save_changed_fields(broadcast=True) L.l.info('Updated listener relay {} val={}'.format(relay, is_on)) class Port: _port_list = [] type = None TYPE_GPIO = 'gpio' TYPE_PIFACE = 'piface' TYPE_PCF8574 = 'pcf8574' _types = frozenset([TYPE_GPIO, TYPE_PIFACE, TYPE_PCF8574]) def __init__(self): pass class OutputPort(Port): def __init__(self): pass class InputPort(Port): def __init__(self): pass class IOPort(InputPort, OutputPort): def __init__(self): pass class GpioBase: __metaclass__ = abc.ABCMeta @staticmethod @abc.abstractmethod def get_current_record(record): return None, None @staticmethod @abc.abstractmethod def get_db_record(key): return None def record_update(self, record, changed_fields): # record = utils.json_to_record(self.obj, json_object) current_record, key = self.get_current_record(record) if current_record is not None: new_record = self.obj() kwargs = {} for field in changed_fields: val = getattr(record, field) # setattr(new_record, field, val) kwargs[field] = val if record.host_name == Constant.HOST_NAME and record.source_host != Constant.HOST_NAME: # https://stackoverflow.com/questions/1496346/passing-a-list-of-kwargs self.set(key, **kwargs) # do nothing, action done already as it was local # save will be done on model.save # record.save_changed_fields() @staticmethod @abc.abstractmethod def set(key, values): pass @staticmethod @abc.abstractmethod def save(key, values): pass @staticmethod @abc.abstractmethod def get(key): return None @staticmethod @abc.abstractmethod def sync_to_db(key): pass @staticmethod @abc.abstractmethod def unload(): pass def __init__(self, obj): self.obj = obj def format_piface_pin_code(board_index, pin_direction, pin_index): return str(board_index) + ":" + str(pin_direction) + ":" + str(pin_index) # port format is x:direction:y, e.g. 0:in:3, x=board, direction=in/out, y=pin index (0 based) def decode_piface_pin(pin_code): ar = pin_code.split(':') if len(ar) == 3: return int(ar[0]), ar[1], int(ar[2]) else: L.l.error('Invalid piface pin code {}'.format(pin_code)) return None, None, None
gpl-2.0
1,524,281,052,770,179,800
25.775194
99
0.609036
false
3.638567
false
false
false
pimoroni/unicorn-hat-hd
examples/show-png.py
1
1382
#!/usr/bin/env python import time from sys import exit try: from PIL import Image except ImportError: exit('This script requires the pillow module\nInstall with: sudo pip install pillow') import unicornhathd print("""Unicorn HAT HD: Show a PNG image! This basic example shows use of the Python Pillow library. The tiny 16x16 bosses in lofi.png are from Oddball: http://forums.tigsource.com/index.php?topic=8834.0 Licensed under Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. Press Ctrl+C to exit! """) unicornhathd.rotation(0) unicornhathd.brightness(0.6) width, height = unicornhathd.get_shape() img = Image.open('lofi.png') try: while True: for o_x in range(int(img.size[0] / width)): for o_y in range(int(img.size[1] / height)): valid = False for x in range(width): for y in range(height): pixel = img.getpixel(((o_x * width) + y, (o_y * height) + x)) r, g, b = int(pixel[0]), int(pixel[1]), int(pixel[2]) if r or g or b: valid = True unicornhathd.set_pixel(x, y, r, g, b) if valid: unicornhathd.show() time.sleep(0.5) except KeyboardInterrupt: unicornhathd.off()
mit
-8,984,369,968,961,083,000
24.592593
89
0.583213
false
3.30622
false
false
false
stuartlangridge/raspi-recorder
listener_daemon.py
1
2508
import threading, time, subprocess from bluetooth import * server_sock=BluetoothSocket( RFCOMM ) server_sock.bind(("",PORT_ANY)) server_sock.listen(1) port = server_sock.getsockname()[1] uuid = "c3091f5f-7e2f-4908-b628-18231dfb5034" advertise_service( server_sock, "PiRecorder", service_id = uuid, service_classes = [ uuid, SERIAL_PORT_CLASS ], profiles = [ SERIAL_PORT_PROFILE ], ) print "Waiting for connection on RFCOMM channel %d" % port client_sock, client_info = server_sock.accept() print "Accepted connection from ", client_info lock = threading.Lock() def mainthread(sock): try: with lock: sock.send("\r\nWelcome to recorder. [1] start recording, [2] stop.\r\n\r\n") while True: data = sock.recv(1) if len(data) == 0: break if data == "1": with lock: sock.send("Starting sound recorder\r\n") os.system("supervisorctl -c ./supervisor.conf start sound_recorder") elif data == "2": with lock: sock.send("Stopping sound recorder\r\n") os.system("supervisorctl -c ./supervisor.conf stop sound_recorder") else: print "received [%s]" % data with lock: output = "unrecognised [%s]\r\n" % (data,) sock.send(output) except IOError: print "got io error" def heartbeat(sock): while True: time.sleep(5) o = subprocess.check_output(["supervisorctl", "-c", os.path.join(os.path.split(__file__)[0], "supervisor.conf"), "status"]) procs = {} for parts in [x.split() for x in o.split("\n")]: if len(parts) > 1: procs[parts[0]] = parts[1] sr = procs.get("sound_recorder", "ABSENT") svfs = os.statvfs(".") bytes_remaining = svfs.f_frsize * svfs.f_bavail bytes_total = svfs.f_frsize * svfs.f_blocks with lock: sock.send("heartbeat %s %s %s\r\n" % ( sr, bytes_remaining, bytes_total)) mainthread = threading.Thread(target=mainthread, args=(client_sock,)) mainthread.start() heartbeatthread = threading.Thread(target=heartbeat, args=(client_sock,)) heartbeatthread.setDaemon(True) heartbeatthread.start() mainthread.join() print "disconnected" client_sock.close() server_sock.close() print "all done"
mit
294,923,898,243,346,560
33.356164
88
0.570175
false
3.582857
false
false
false
Azure/azure-sdk-for-python
sdk/communication/azure-communication-sms/azure/communication/sms/_models/_models.py
1
2064
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import msrest.serialization class SmsSendResult(msrest.serialization.Model): """Response for a single recipient. All required parameters must be populated in order to send to Azure. :param to: Required. The recipient's phone number in E.164 format. :type to: str :param message_id: The identifier of the outgoing Sms message. Only present if message processed. :type message_id: str :param http_status_code: Required. HTTP Status code. :type http_status_code: int :param successful: Required. Indicates if the message is processed successfully or not. :type successful: bool :param error_message: Optional error message in case of 4xx/5xx/repeatable errors. :type error_message: str """ _validation = { 'to': {'required': True}, 'http_status_code': {'required': True}, 'successful': {'required': True}, } _attribute_map = { 'to': {'key': 'to', 'type': 'str'}, 'message_id': {'key': 'messageId', 'type': 'str'}, 'http_status_code': {'key': 'httpStatusCode', 'type': 'int'}, 'successful': {'key': 'successful', 'type': 'bool'}, 'error_message': {'key': 'errorMessage', 'type': 'str'}, } def __init__( self, **kwargs ): super(SmsSendResult, self).__init__(**kwargs) self.to = kwargs['to'] self.message_id = kwargs.get('message_id', None) self.http_status_code = kwargs['http_status_code'] self.successful = kwargs['successful'] self.error_message = kwargs.get('error_message', None)
mit
8,139,079,774,969,169,000
37.943396
94
0.593508
false
4.212245
false
false
false
twoolie/ProjectNarwhal
narwhal/core/profile/admin.py
1
1124
# -*- coding: utf-8 -*- from django.contrib import admin from django.utils.translation import ugettext_lazy as _ from sorl.thumbnail.admin import AdminImageMixin from treebeard.admin import TreeAdmin from models import Profile class ProfileAdmin(AdminImageMixin, admin.ModelAdmin): search_fields = ('user__username', 'extra_data') list_display = (#'user__username', 'user__date_joined', 'user', 'uploaded', 'downloaded',) list_filter = ('user__is_staff',) fields = ('user', 'avatar', 'key', 'downloaded', 'uploaded' ) #fieldsets = ( # (None, { # 'fields': ( ('title', 'slug'), # ('user', 'comments_enabled'), # 'description', ) # }), # (_('Files'), { # 'fields': ( ('torrent', 'image'), ), # }), #(_('Quick Stats'), { # 'classes': ('collapse',), # 'fields': ( ('size', 'files'), # ('seeders', 'leechers'), # ('pub_date', 'comment_count'), ) #}), #) admin.site.register(Profile, ProfileAdmin)
gpl-3.0
3,874,579,077,347,851,300
31.114286
65
0.508007
false
3.849315
false
false
false
cappatar/knesset-data-pipelines
datapackage_pipelines_knesset/members/processors/load_members.py
1
1419
from datapackage_pipelines_knesset.common.base_processors.add_resource import AddResourceBaseProcessor # only loads members with the following positionId: SUPPORTED_POSITION_IDS = [43, 61] class Processor(AddResourceBaseProcessor): def _get_schema(self, resource_descriptor): return resource_descriptor.get("schema", { "fields": [ {"name": "url", "type": "string", "description": "url to download protocol from"}, { "name": "kns_person_id", "type": "integer", "description": "primary key from kns_person table"} ], "primaryKey": ["kns_person_id"] }) def _get_new_resource(self): person_table = self.db_meta.tables.get("kns_person") persontoposition_table = self.db_meta.tables.get("kns_persontoposition") if person_table is None or persontoposition_table is None: raise Exception("processor requires kns person tables to exist") for db_row in self.db_session\ .query(person_table, persontoposition_table)\ .filter(persontoposition_table.p.PersonID==person_table.p.PersonID)\ .filter(persontoposition_table.p.PositionID.in_(SUPPORTED_POSITION_IDS))\ .all(): row = db_row._asdict() yield {"kns_person_id": row["PersonID"]} if __name__ == "__main__": Processor.main()
mit
-2,604,610,188,792,806,400
40.735294
102
0.613813
false
3.898352
false
false
false
valentinmetraux/hierophis
hierophis/maths/statistics/basic.py
1
2080
#!/usr/bin/env python # -*- coding: utf 8 -*- """ Utility functions. :copyright: 2015 Agile Geoscience :license: Apache 2.0 """ import numpy as np import scipy.signal def rms(a): """ Calculates the RMS of an array. :param a: An array. :returns: The RMS of the array. """ return np.sqrt(np.sum(a**2.0)/a.size) def normalize(a, new_min=0.0, new_max=1.0): """ Normalize an array to [0,1] or to arbitrary new min and max. :param a: An array. :param new_min: A float to be the new min, default 0. :param new_max: A float to be the new max, default 1. :returns: The normalized array. """ n = (a - np.amin(a)) / float(np.amax(a - np.amin(a))) return n * (new_max - new_min) + new_min def moving_average(a, method = "convolve", length=9, mode='valid'): """ Computes the mean in a moving window. Methods: naive, fft, convolve Length: Kernel length Modes: full, valid, same """ if method == "fft": boxcar = np.ones(length)/length return scipy.signal.fftconvolve(a, boxcar, mode="valid") elif method == "convolve": boxcar = np.ones(length)/length return np.convolve(a, boxcar, mode="valid") else: pad = np.floor(length/2) if mode == 'full': pad *= 2 # Make a padded version, paddding with first and last values r = np.empty(a.shape[0] + 2*pad) r[:pad] = a[0] r[pad:-pad] = a r[-pad:] = a[-1] # Cumsum with shifting trick s = np.cumsum(r, dtype=float) s[length:] = s[length:] - s[:-length] out = s[length-1:]/length # Decide what to return if mode == 'same': if out.shape[0] != a.shape[0]: # If size doesn't match, then interpolate. out = (out[:-1, ...] + out[1:, ...]) / 2 return out elif mode == 'valid': return out[pad:-pad] else: # mode=='full' and we used a double pad return out
apache-2.0
-7,067,858,668,146,052,000
23.77381
68
0.533173
false
3.338684
false
false
false
all-of-us/raw-data-repository
tests/api_tests/test_ppi_data_check_api.py
1
2788
from rdr_service.model.code import CodeType from tests.helpers.unittest_base import BaseTestCase class CheckPpiDataApiTest(BaseTestCase): def setUp(self): super(CheckPpiDataApiTest, self).setUp(with_consent_codes=True) self.participant_summary = self.data_generator.create_database_participant_summary(email='test@example.com') questions_and_answers = [ ('first_question_code', 'first_answer_code'), ('Second_CODE', 'ANOTHER_ANSWER'), ('LAST_CODE', 'Final_Answer|with_additional_option') ] questionnaire = self.data_generator.create_database_questionnaire_history() for question_code_value, _ in questions_and_answers: question_code = self.data_generator.create_database_code( value=question_code_value, codeType=CodeType.QUESTION ) self.data_generator.create_database_questionnaire_question( questionnaireId=questionnaire.questionnaireId, questionnaireVersion=questionnaire.version, codeId=question_code.codeId ) questionnaire_response = self.data_generator.create_database_questionnaire_response( participantId=self.participant_summary.participantId, questionnaireId=questionnaire.questionnaireId, questionnaireVersion=questionnaire.version ) for question_index, (_, answer_code_values) in enumerate(questions_and_answers): question = questionnaire.questions[question_index] for answer_value in answer_code_values.split('|'): answer_code = self.data_generator.create_database_code(value=answer_value) self.data_generator.create_database_questionnaire_response_answer( questionnaireResponseId=questionnaire_response.questionnaireResponseId, questionId=question.questionnaireQuestionId, valueCodeId=answer_code.codeId ) def test_case_insensitive_answer_code_matching(self): """Make sure case doesn't matter when matching answer codes against what the server has""" ppi_check_payload = { 'ppi_data': { self.participant_summary.email: { 'fIrSt_QuEsTiOn_CoDe': 'First_Answer_Code', 'SECOND_CODE': 'another_answer', 'last_code': 'Final_ANSWER|WITH_ADDITIONAL_OPTION' } } } response = self.send_post('CheckPpiData', ppi_check_payload) response_error_count = response['ppi_results']['test@example.com']['errors_count'] self.assertEqual(0, response_error_count, 'Differences in case should not cause errors')
bsd-3-clause
-8,436,569,744,233,131,000
45.466667
116
0.638451
false
4.173653
true
false
false
wooga/airflow
airflow/example_dags/example_nested_branch_dag.py
1
2019
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Example DAG demonstrating a workflow with nested branching. The join tasks are created with ``none_failed_or_skipped`` trigger rule such that they are skipped whenever their corresponding ``BranchPythonOperator`` are skipped. """ from airflow.models import DAG from airflow.operators.dummy_operator import DummyOperator from airflow.operators.python import BranchPythonOperator from airflow.utils.dates import days_ago with DAG(dag_id="example_nested_branch_dag", start_date=days_ago(2), schedule_interval="@daily") as dag: branch_1 = BranchPythonOperator(task_id="branch_1", python_callable=lambda: "true_1") join_1 = DummyOperator(task_id="join_1", trigger_rule="none_failed_or_skipped") true_1 = DummyOperator(task_id="true_1") false_1 = DummyOperator(task_id="false_1") branch_2 = BranchPythonOperator(task_id="branch_2", python_callable=lambda: "true_2") join_2 = DummyOperator(task_id="join_2", trigger_rule="none_failed_or_skipped") true_2 = DummyOperator(task_id="true_2") false_2 = DummyOperator(task_id="false_2") false_3 = DummyOperator(task_id="false_3") branch_1 >> true_1 >> join_1 branch_1 >> false_1 >> branch_2 >> [true_2, false_2] >> join_2 >> false_3 >> join_1
apache-2.0
-1,070,214,598,085,398,900
47.071429
104
0.740961
false
3.631295
false
false
false
mojolab/LivingData
lib/livdatops.py
1
1153
import pandas def getColRenameDict(mergersheet,sheet): colrenamedict={} originalcolnames=mergersheet[sheet].fillna("NA") newcolnames=mergersheet[mergersheet.columns[0]] for i in range(0,len(originalcolnames)): colrenamedict[originalcolnames[i]]=newcolnames[i] # if originalcolnames[i]!="NA": # colrenamedict[originalcolnames[i]]=newcolnames[i] return colrenamedict def createMergedDFList(dflist,mergersheetname): altereddfs={} for sheet,matrix in dflist.iteritems(): if sheet == mergersheetname: altereddfs[sheet]=matrix mergersheet=matrix else: df=matrix print df.columns columnrenamedict=getColRenameDict(mergersheet,sheet) print columnrenamedict altereddf=df.rename(columns=columnrenamedict) for key,value in columnrenamedict.iteritems(): if key =="NA": altereddf[value]=0 print df,altereddf altereddfs[sheet]=altereddf finalsheet=[] for sheet,matrix in altereddfs.iteritems(): if sheet!=mergersheetname: finalsheet.append(matrix.fillna(0)) finalsheetm=pandas.concat(finalsheet) finalsheetname=mergersheet.columns.values[0] altereddfs[finalsheetname]=finalsheetm return altereddfs
apache-2.0
-1,906,478,291,639,418,000
30.162162
55
0.774501
false
2.987047
false
false
false
CSC-IT-Center-for-Science/pouta-blueprints
pebbles/views/authorize_instances.py
1
3153
from flask import abort, request, Response, Blueprint import datetime import logging import re from pebbles.models import InstanceToken from pebbles.server import restful authorize_instances = Blueprint('authorize_instances', __name__) class AuthorizeInstancesView(restful.Resource): def get(self): token = '' instance_id = '' # The idea here is to check if the original-token and instance-id headers are already present, sent by the nginx proxy of the openshift app, # if the headers are present that means the authentication had taken place previously and a cookie exists for the openshift app, # in this case - obtain the info contained in the headers if 'ORIGINAL-TOKEN' in request.headers and 'INSTANCE-ID' in request.headers: token = request.headers['ORIGINAL-TOKEN'] instance_id = request.headers['INSTANCE-ID'] # otherwise, the x-original-uri consists of the query string info (which is sent by the openshift driver to the nginx of the openshift app) # The query string has the token info and instance id # NOTE: This is only used when the authentication is being done for the first time! elif 'X-ORIGINAL-URI' in request.headers: h_uri = request.headers['X-ORIGINAL-URI'] regex_query_capture = re.search('.*\\?(.*)=(.*)&(.*)=(.*)', h_uri) # parse the query string if regex_query_capture and len(regex_query_capture.groups()) == 4: if regex_query_capture.group(1) == 'token' and regex_query_capture.group(3) == 'instance_id': token = regex_query_capture.group(2) instance_id = regex_query_capture.group(4) elif regex_query_capture.group(1) == 'instance_id' and regex_query_capture.group(3) == 'token': instance_id = regex_query_capture.group(2) token = regex_query_capture.group(4) if not token and not instance_id: logging.warn('No instance token or id found from the headers') return abort(401) instance_token_obj = InstanceToken.query.filter_by(token=token).first() if not instance_token_obj: logging.warn("instance token object %s not found" % token) return abort(401) curr_time = datetime.datetime.utcnow() expires_on = instance_token_obj.expires_on if curr_time > expires_on: logging.warn("instance token %s has expired" % token) return abort(403) if instance_token_obj.instance_id != instance_id: logging.warn("instance id %s from the token does not match the instance_id %s passed as a parameter" % (instance_token_obj.instance_id, instance_id)) return abort(403) resp = Response("Authorized") # send the headers back to nginx proxy running on the openshift based instance, # which is going to store it as a cookie for the next time, the authorization takes place resp.headers["TOKEN"] = instance_token_obj.token resp.headers["INSTANCE-ID"] = instance_id return resp
mit
2,302,791,649,978,159,000
49.047619
161
0.64732
false
4.121569
false
false
false
weiqiangdragonite/blog_tmp
python/baidu/myip.py
1
1085
#!/usr/bin/env python # -*- coding: utf-8 -*- # http://ip.taobao.com/instructions.php import socket # common_headers = \ "Host: ip.taobao.com\r\n" + \ "Connection: Keep-Alive\r\n" + \ "Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n" + \ "User-Agent: Mozilla/5.0 (X11; Linux) AppleWebKit/538.1 (KHTML, like Gecko) Chrome/18.0.1025.133 Safari/538.1 Midori/0.5\r\n" + \ "Accept-Language: en-us;q=0.750\r\n" # 通过 GET get_headers = \ "GET /service/getIpInfo.php?ip=myip HTTP/1.1\r\n" + \ common_headers + \ "\r\n" # 通过 POST post_headers = \ "POST /service/getIpInfo2.php HTTP/1.1\r\n" + \ common_headers + \ "Content-Length: 7\r\n" + \ "\r\n" + \ "ip=myip"; if __name__ == "__main__": s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect(("ip.taobao.com", 80)) s.send(get_headers) buffer = [] while True: d = s.recv(1024) if d: buffer.append(d) else: break data = ''.join(buffer) s.close() print data
gpl-2.0
-721,930,583,678,637,200
21.93617
133
0.563603
false
2.51049
false
false
false
dhanababum/accessdb
accessdb/utils.py
1
8395
# -*- coding: utf-8 -*- # Copyright 2017 Dhana Babu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import random import string import tempfile import shutil import pypyodbc as odbc from .access_api import create _MS_ACCESS_TYPES = { 'BIT', 'BYTE', 'SHORT', 'LONG', 'CURRENCY', 'SINGLE', 'DOUBLE', 'DATETIME', 'TEXT', 'MEMO', 'PRIMARY', # CUSTOM Type for handling AUTOINCREMENT } SCHEMA_FILE = 'schema.ini' _TEXT_SEPARATORS = { r',': 'CSVDelimited', r'\t': 'TabDelimited' } def _text_formater(sep): separator = _TEXT_SEPARATORS.get(sep, 'Delimited({})') return separator.format(sep) def _stringify_path(db_path): dtr, path = os.path.split(db_path) if dtr == '': db_path = os.path.join('.', path) return db_path def _push_access_db(temp_dir, text_file, data_columns, header_columns, dtype, path, table_name, sep, append, overwrite, delete='file'): table = Table(temp_dir, text_file, table_name, data_columns, header_columns, dtype, sep, append) schema_file = os.path.join(temp_dir, SCHEMA_FILE) try: with SchemaWriter(temp_dir, text_file, data_columns, header_columns, dtype, sep, schema_file) as schema: schema.write() with AccessDBConnection(path, overwrite) as con: cursor = con.cursor() if not append: cursor.execute(table.create_query()) cursor.execute(table.insert_query()) con.commit() finally: if delete == 'folder': shutil.rmtree(temp_dir) else: os.unlink(schema_file) def _get_random_file(): return ''.join(random.choice(string.ascii_lowercase) for _ in range(10)) class DataTypeNotFound(Exception): pass class SchemaWriter(object): def __init__(self, temp_dir, text_file, df_columns, columns, dtype, sep, schema_file): self.temp_dir = temp_dir self.text_file = text_file self.df_columns = df_columns self.columns = columns self.dtype = dtype self.sep = sep self.path = schema_file def __enter__(self): self.fp = open(self.path, 'w') return self def __exit__(self, *args): self.fp.close() def formater(self): yield '[%s]' % self.text_file yield 'ColNameHeader=True' yield 'Format=%s' % _text_formater(self.sep) self.dcols = {col: ('Col%s' % (i + 1)) for i, col in enumerate(self.df_columns)} if not isinstance(self.dtype, dict): self.dtype = {} for col in self.df_columns: ctype = self.dtype.get(col, 'text').upper() if ctype not in _MS_ACCESS_TYPES: raise DataTypeNotFound( 'Provided Data Type Not Found %s' % ctype) if ctype == 'PRIMARY': ctype = 'TEXT' yield '{c_col}="{d_col}" {c_type}'.format( c_col=self.dcols[col], d_col=col, c_type=ctype.capitalize()) def write(self): for line in self.formater(): self.fp.write(line) self.fp.write('\n') class Table(object): def __init__(self, temp_dir, text_file, table_name, df_columns, columns, dtype, sep, append): self.temp_dir = temp_dir self.text_file = text_file self.df_columns = df_columns self.table_name = table_name self.df_columns = df_columns self.columns = columns self.dtype = dtype self.sep = sep self.append = append if not isinstance(self.dtype, dict): self.dtype = {} def _get_colunm_type(self, col): ctype = self.dtype.get(col, 'TEXT').upper() if ctype not in _MS_ACCESS_TYPES: raise Exception return ctype def formater(self): for col in self.df_columns: c_type = self._get_colunm_type(col) if c_type == 'PRIMARY': c_type = 'AUTOINCREMENT PRIMARY KEY' if self.columns: if col not in self.columns: continue col = self.columns[col] yield '`{c_col}` {c_type}'.format(c_col=col, c_type=c_type) def insert_formater(self): for col in self.df_columns: if self._get_colunm_type(col) == 'PRIMARY': continue if not self.columns: self.columns = dict(zip(self.df_columns, self.df_columns)) if self.columns: if col not in self.columns: continue cus_col = self.columns[col] yield col, cus_col def built_columns(self): return '(%s)' % ','.join(self.formater()) def create_query(self): return "CREATE TABLE `{table_name}`{columns}".format( table_name=self.table_name, columns=self.built_columns()) @staticmethod def required_columns(cols): return ','.join('`%s`' % c for c in cols) def insert_query(self): custom_columns = [] columns = [] for col1, col2 in self.insert_formater(): columns.append(col1) custom_columns.append(col2) return """ INSERT INTO `{table_name}`({columns}) SELECT {required_cols} FROM [TEXT;HDR=YES;FMT={separator}; Database={temp_dir}].{text_file} """.format(temp_dir=self.temp_dir, text_file=self.text_file, columns=self.required_columns(custom_columns), required_cols=self.required_columns(columns), table_name=self.table_name, separator=_text_formater(self.sep)) class AccessDBConnection(object): def __init__(self, db_path, overwrite): self.overwrite = overwrite self.db_path = _stringify_path(db_path) def __enter__(self): if not os.path.isfile(self.db_path) or self.overwrite: create(self.db_path) odbc_conn_str = '''DRIVER={Microsoft Access Driver (*.mdb, *.accdb)}; DBQ=%s''' % (self.db_path) self.con = odbc.connect(odbc_conn_str) return self.con def __exit__(self, *args): self.con.close() def to_accessdb(self, path, table_name, header_columns=None, dtype='str', engine='text', sep=',', append=False, overwrite=False): if self.empty: return temp_dir = tempfile.mkdtemp() text_file = '%s.txt' % _get_random_file() text_path = os.path.join(temp_dir, text_file) self.to_csv(text_path, index=False) _push_access_db(temp_dir, text_file, self.columns.tolist(), header_columns, dtype, path, table_name, sep, append, overwrite, 'folder') def create_accessdb(path, text_path, table_name, header_columns=None, dtype='str', engine='text', sep=',', append=False, overwrite=False): temp_dir, text_file = os.path.split(os.path.abspath(text_path)) with open(text_path) as fp: file_columns = fp.readline().strip('\n').split(sep) _push_access_db(temp_dir, text_file, file_columns, header_columns, dtype, path, table_name, sep, append, overwrite)
apache-2.0
6,640,736,085,775,844,000
31.921569
79
0.534485
false
3.901022
false
false
false
jimsize/PySolFC
pysollib/games/harp.py
1
13061
#!/usr/bin/env python # -*- mode: python; coding: utf-8; -*- # ---------------------------------------------------------------------------## # # Copyright (C) 1998-2003 Markus Franz Xaver Johannes Oberhumer # Copyright (C) 2003 Mt. Hood Playing Card Co. # Copyright (C) 2005-2009 Skomoroh # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # ---------------------------------------------------------------------------## # imports # PySol imports from pysollib.gamedb import registerGame, GameInfo, GI from pysollib.mfxutil import kwdefault from pysollib.game import Game from pysollib.layout import Layout from pysollib.hint import CautiousDefaultHint from pysollib.hint import KlondikeType_Hint from pysollib.games.spider import Spider_RowStack, Spider_SS_Foundation, \ Spider_Hint from pysollib.util import ACE, KING from pysollib.stack import \ AC_RowStack, \ BO_RowStack, \ KingAC_RowStack, \ SS_FoundationStack, \ Spider_SS_RowStack, \ StackWrapper, \ WasteStack, \ WasteTalonStack, \ SS_RowStack # ************************************************************************ # * Double Klondike (Klondike with 2 decks and 9 rows) # ************************************************************************ class DoubleKlondike(Game): Layout_Method = staticmethod(Layout.harpLayout) Foundation_Class = SS_FoundationStack RowStack_Class = KingAC_RowStack Hint_Class = KlondikeType_Hint def createGame(self, max_rounds=-1, num_deal=1, **layout): # create layout l, s = Layout(self), self.s kwdefault(layout, rows=9, waste=1, texts=1, playcards=19) self.Layout_Method(l, **layout) self.setSize(l.size[0], l.size[1]) # create stacks s.talon = WasteTalonStack(l.s.talon.x, l.s.talon.y, self, max_rounds=max_rounds, num_deal=num_deal) s.waste = WasteStack(l.s.waste.x, l.s.waste.y, self) for r in l.s.foundations: s.foundations.append( self.Foundation_Class(r.x, r.y, self, suit=r.suit)) for r in l.s.rows: s.rows.append(self.RowStack_Class(r.x, r.y, self)) # default l.defaultAll() # extra if max_rounds > 1: anchor = 'nn' if layout.get("texts"): anchor = 'nnn' l.createRoundText(s.talon, anchor) return l def startGame(self, flip=0): for i in range(len(self.s.rows)): self.s.talon.dealRow(rows=self.s.rows[i+1:], flip=flip, frames=0) self._startAndDealRowAndCards() shallHighlightMatch = Game._shallHighlightMatch_AC # ************************************************************************ # * Double Klondike by Threes # ************************************************************************ class DoubleKlondikeByThrees(DoubleKlondike): def createGame(self): DoubleKlondike.createGame(self, num_deal=3) # ************************************************************************ # * Gargantua (Double Klondike with one redeal) # * Pantagruel # ************************************************************************ class Gargantua(DoubleKlondike): def createGame(self): DoubleKlondike.createGame(self, max_rounds=2) class Pantagruel(DoubleKlondike): RowStack_Class = AC_RowStack def createGame(self): DoubleKlondike.createGame(self, max_rounds=1) # ************************************************************************ # * Harp (Double Klondike with 10 non-king rows and no redeal) # ************************************************************************ class BigHarp(DoubleKlondike): RowStack_Class = AC_RowStack def createGame(self): DoubleKlondike.createGame(self, max_rounds=1, rows=10) # # game overrides # # no real need to override, but this way the layout # looks a little bit different def startGame(self): for i in range(len(self.s.rows)): self.s.talon.dealRow(rows=self.s.rows[:i], flip=0, frames=0) self._startAndDealRowAndCards() # ************************************************************************ # * Steps (Harp with 7 rows) # ************************************************************************ class Steps(DoubleKlondike): RowStack_Class = AC_RowStack def createGame(self): DoubleKlondike.createGame(self, max_rounds=2, rows=7) # ************************************************************************ # * Triple Klondike # * Triple Klondike by Threes # * Chinese Klondike # ************************************************************************ class TripleKlondike(DoubleKlondike): def createGame(self): DoubleKlondike.createGame(self, rows=13) class TripleKlondikeByThrees(DoubleKlondike): def createGame(self): DoubleKlondike.createGame(self, rows=13, num_deal=3) class ChineseKlondike(DoubleKlondike): RowStack_Class = StackWrapper(BO_RowStack, base_rank=KING) def createGame(self): DoubleKlondike.createGame(self, rows=12) # ************************************************************************ # * Lady Jane # * Inquisitor # ************************************************************************ class LadyJane(DoubleKlondike): Hint_Class = Spider_Hint RowStack_Class = Spider_SS_RowStack def createGame(self): DoubleKlondike.createGame(self, rows=10, max_rounds=2, num_deal=3) def startGame(self): DoubleKlondike.startGame(self, flip=1) shallHighlightMatch = Game._shallHighlightMatch_RK getQuickPlayScore = Game._getSpiderQuickPlayScore class Inquisitor(DoubleKlondike): RowStack_Class = SS_RowStack def createGame(self): DoubleKlondike.createGame(self, rows=10, max_rounds=3, num_deal=3) def startGame(self): DoubleKlondike.startGame(self, flip=1) shallHighlightMatch = Game._shallHighlightMatch_SS # ************************************************************************ # * Arabella # ************************************************************************ class Arabella(DoubleKlondike): Hint_Class = Spider_Hint RowStack_Class = StackWrapper(Spider_SS_RowStack, base_rank=KING) def createGame(self): DoubleKlondike.createGame(self, rows=13, max_rounds=1, playcards=24) def startGame(self): DoubleKlondike.startGame(self, flip=1) shallHighlightMatch = Game._shallHighlightMatch_RK getQuickPlayScore = Game._getSpiderQuickPlayScore # ************************************************************************ # * Big Deal # ************************************************************************ class BigDeal(DoubleKlondike): RowStack_Class = KingAC_RowStack def createGame(self, rows=12, max_rounds=2, XOFFSET=0): l, s = Layout(self), self.s self.setSize(l.XM+(rows+2)*l.XS, l.YM+8*l.YS) x, y = l.XM, l.YM for i in range(rows): s.rows.append(self.RowStack_Class(x, y, self)) x += l.XS for i in range(2): y = l.YM for j in range(8): s.foundations.append( SS_FoundationStack(x, y, self, suit=j % 4)) y += l.YS x += l.XS x, y = l.XM, self.height-l.YS s.talon = WasteTalonStack(x, y, self, max_rounds=max_rounds) l.createText(s.talon, 'n') x += l.XS s.waste = WasteStack(x, y, self) s.waste.CARD_XOFFSET = XOFFSET l.createText(s.waste, 'n') if max_rounds > 1: l.createRoundText(s.talon, 'nnn') self.setRegion(s.rows, (-999, -999, l.XM+rows*l.XS-l.CW//2, 999999), priority=1) l.defaultStackGroups() # ************************************************************************ # * Delivery # ************************************************************************ class Delivery(BigDeal): Hint_Class = CautiousDefaultHint RowStack_Class = StackWrapper(SS_RowStack, max_move=1) def createGame(self): dx = self.app.images.CARDW//10 BigDeal.createGame(self, rows=12, max_rounds=1, XOFFSET=dx) shallHighlightMatch = Game._shallHighlightMatch_SS def startGame(self): self._startDealNumRows(2) self.s.talon.dealRow() self.s.talon.dealCards() # deal first card to WasteStack # ************************************************************************ # * Double Kingsley # ************************************************************************ class DoubleKingsley(DoubleKlondike): Foundation_Class = StackWrapper(SS_FoundationStack, base_rank=KING, dir=-1) RowStack_Class = StackWrapper(KingAC_RowStack, base_rank=ACE, dir=1) def createGame(self): DoubleKlondike.createGame(self, max_rounds=1) # ************************************************************************ # * Thieves of Egypt # ************************************************************************ class ThievesOfEgypt(DoubleKlondike): Layout_Method = staticmethod(Layout.klondikeLayout) def createGame(self): DoubleKlondike.createGame(self, rows=10, max_rounds=2) def startGame(self): # rows: 1 3 5 7 9 10 8 6 4 2 row = 0 for i in (0, 2, 4, 6, 8, 9, 7, 5, 3, 1): for j in range(i): self.s.talon.dealRow(rows=[self.s.rows[row]], frames=0) row += 1 self._startAndDealRowAndCards() # ************************************************************************ # * Brush # ************************************************************************ class Brush(DoubleKlondike): Layout_Method = staticmethod(Layout.klondikeLayout) Foundation_Class = Spider_SS_Foundation RowStack_Class = Spider_RowStack Hint_Class = Spider_Hint def createGame(self): DoubleKlondike.createGame(self, rows=10, max_rounds=1) def startGame(self): self._startDealNumRows(3) self.s.talon.dealRow() self.s.talon.dealCards() # deal first card to WasteStack shallHighlightMatch = Game._shallHighlightMatch_RK getQuickPlayScore = Game._getSpiderQuickPlayScore # register the game registerGame(GameInfo(21, DoubleKlondike, "Double Klondike", GI.GT_KLONDIKE, 2, -1, GI.SL_BALANCED)) registerGame(GameInfo(28, DoubleKlondikeByThrees, "Double Klondike by Threes", GI.GT_KLONDIKE, 2, -1, GI.SL_MOSTLY_LUCK)) registerGame(GameInfo(25, Gargantua, "Gargantua", GI.GT_KLONDIKE, 2, 1, GI.SL_BALANCED)) registerGame(GameInfo(15, BigHarp, "Big Harp", GI.GT_KLONDIKE, 2, 0, GI.SL_BALANCED)) registerGame(GameInfo(51, Steps, "Steps", GI.GT_KLONDIKE, 2, 1, GI.SL_BALANCED)) registerGame(GameInfo(273, TripleKlondike, "Triple Klondike", GI.GT_KLONDIKE, 3, -1, GI.SL_BALANCED)) registerGame(GameInfo(274, TripleKlondikeByThrees, "Triple Klondike by Threes", GI.GT_KLONDIKE, 3, -1, GI.SL_MOSTLY_LUCK)) registerGame(GameInfo(495, LadyJane, "Lady Jane", GI.GT_KLONDIKE, 2, 1, GI.SL_BALANCED)) registerGame(GameInfo(496, Inquisitor, "Inquisitor", GI.GT_KLONDIKE, 2, 2, GI.SL_BALANCED)) registerGame(GameInfo(497, Arabella, "Arabella", GI.GT_KLONDIKE, 3, 0, GI.SL_BALANCED)) registerGame(GameInfo(545, BigDeal, "Big Deal", GI.GT_KLONDIKE | GI.GT_ORIGINAL, 4, 1, GI.SL_BALANCED)) registerGame(GameInfo(562, Delivery, "Delivery", GI.GT_FORTY_THIEVES | GI.GT_ORIGINAL, 4, 0, GI.SL_BALANCED)) registerGame(GameInfo(590, ChineseKlondike, "Chinese Klondike", GI.GT_KLONDIKE, 3, -1, GI.SL_BALANCED, suits=(0, 1, 2))) registerGame(GameInfo(591, Pantagruel, "Pantagruel", GI.GT_KLONDIKE, 2, 0, GI.SL_BALANCED)) registerGame(GameInfo(668, DoubleKingsley, "Double Kingsley", GI.GT_KLONDIKE, 2, 0, GI.SL_BALANCED)) registerGame(GameInfo(678, ThievesOfEgypt, "Thieves of Egypt", GI.GT_KLONDIKE, 2, 1, GI.SL_BALANCED)) registerGame(GameInfo(689, Brush, "Brush", GI.GT_2DECK_TYPE | GI.GT_ORIGINAL, 2, 0, GI.SL_MOSTLY_SKILL))
gpl-3.0
6,819,752,331,048,072,000
34.3
79
0.537861
false
3.414641
false
false
false
etherkit/OpenBeacon2
client/linux-arm/venv/lib/python3.6/site-packages/PyInstaller/hooks/hook-gi.repository.GdkPixbuf.py
1
6760
#----------------------------------------------------------------------------- # Copyright (c) 2005-2020, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License (version 2 # or later) with exception for distributing the bootloader. # # The full license is in the file COPYING.txt, distributed with this software. # # SPDX-License-Identifier: (GPL-2.0-or-later WITH Bootloader-exception) #----------------------------------------------------------------------------- """ Import hook for PyGObject's "gi.repository.GdkPixbuf" package. """ import glob import os import subprocess from PyInstaller.config import CONF from PyInstaller.compat import ( exec_command_stdout, is_darwin, is_win, is_linux, open_file, which) from PyInstaller.utils.hooks import ( collect_glib_translations, get_gi_typelibs, get_gi_libdir, logger) loaders_path = os.path.join('gdk-pixbuf-2.0', '2.10.0', 'loaders') destpath = "lib/gdk-pixbuf-2.0/2.10.0/loaders" cachedest = "lib/gdk-pixbuf-2.0/2.10.0" # If the "gdk-pixbuf-query-loaders" command is not in the current ${PATH}, or # is not in the GI lib path, GDK and thus GdkPixbuf is unavailable. Return with # a non-fatal warning. gdk_pixbuf_query_loaders = None try: libdir = get_gi_libdir('GdkPixbuf', '2.0') except ValueError: logger.warning( '"hook-gi.repository.GdkPixbuf" ignored, ' 'since GdkPixbuf library not found' ) libdir = None if libdir: # Distributions either package gdk-pixbuf-query-loaders in the GI libs # directory (not on the path), or on the path with or without a -x64 suffix # depending on the architecture cmds = [ os.path.join(libdir, 'gdk-pixbuf-2.0/gdk-pixbuf-query-loaders'), 'gdk-pixbuf-query-loaders-64', 'gdk-pixbuf-query-loaders', ] for cmd in cmds: gdk_pixbuf_query_loaders = which(cmd) if gdk_pixbuf_query_loaders is not None: break if gdk_pixbuf_query_loaders is None: logger.warning( '"hook-gi.repository.GdkPixbuf" ignored, since ' '"gdk-pixbuf-query-loaders" is not in $PATH or gi lib dir.' ) # Else, GDK is available. Let's do this. else: binaries, datas, hiddenimports = get_gi_typelibs('GdkPixbuf', '2.0') datas += collect_glib_translations('gdk-pixbuf') # To add support for a new platform, add a new "elif" branch below with # the proper is_<platform>() test and glob for finding loaders on that # platform. if is_win: ext = "*.dll" elif is_darwin or is_linux: ext = "*.so" # If loader detection is supported on this platform, bundle all # detected loaders and an updated loader cache. if ext: loader_libs = [] # Bundle all found loaders with this user application. pattern = os.path.join(libdir, loaders_path, ext) for f in glob.glob(pattern): binaries.append((f, destpath)) loader_libs.append(f) # Sometimes the loaders are stored in a different directory from # the library (msys2) if not loader_libs: pattern = os.path.join(libdir, '..', 'lib', loaders_path, ext) for f in glob.glob(pattern): binaries.append((f, destpath)) loader_libs.append(f) # Filename of the loader cache to be written below. cachefile = os.path.join(CONF['workpath'], 'loaders.cache') # Run the "gdk-pixbuf-query-loaders" command and capture its # standard output providing an updated loader cache; then write # this output to the loader cache bundled with this frozen # application. # # On OSX we use @executable_path to specify a path relative to the # generated bundle. However, on non-Windows we need to rewrite the # loader cache because it isn't relocatable by default. See # https://bugzilla.gnome.org/show_bug.cgi?id=737523 # # To make it easier to rewrite, we just always write # @executable_path, since its significantly easier to find/replace # at runtime. :) # # If we need to rewrite it... if not is_win: # To permit string munging, decode the encoded bytes output by # this command (i.e., enable the "universal_newlines" option). # Note that: # # * Under Python 2.7, "cachedata" will be a decoded "unicode" # object. * Under Python 3.x, "cachedata" will be a decoded # "str" object. # # On Fedora, the default loaders cache is /usr/lib64, but the # libdir is actually /lib64. To get around this, we pass the # path to the loader command, and it will create a cache with # the right path. cachedata = exec_command_stdout(gdk_pixbuf_query_loaders, *loader_libs) cd = [] prefix = '"' + os.path.join(libdir, 'gdk-pixbuf-2.0', '2.10.0') plen = len(prefix) # For each line in the updated loader cache... for line in cachedata.splitlines(): if line.startswith('#'): continue if line.startswith(prefix): line = '"@executable_path/' + cachedest + line[plen:] cd.append(line) # Rejoin these lines in a manner preserving this object's # "unicode" type under Python 2. cachedata = u'\n'.join(cd) # Write the updated loader cache to this file. with open_file(cachefile, 'w') as fp: fp.write(cachedata) # Else, GdkPixbuf will do the right thing on Windows, so no changes # to the loader cache are required. For efficiency and reliability, # this command's encoded byte output is written as is without being # decoded. else: with open_file(cachefile, 'wb') as fp: fp.write(subprocess.check_output(gdk_pixbuf_query_loaders)) # Bundle this loader cache with this frozen application. datas.append((cachefile, cachedest)) # Else, loader detection is unsupported on this platform. else: logger.warning( 'GdkPixbuf loader bundling unsupported on your platform.' )
gpl-3.0
-3,919,858,749,350,087,700
39.969697
79
0.569822
false
4.222361
false
false
false
all-of-us/raw-data-repository
rdr_service/alembic/versions/72365b7c0037_add_gender_identity_enums.py
1
1232
"""add gender identity enums Revision ID: 72365b7c0037 Revises: 9c957ce496bf Create Date: 2019-06-05 08:56:34.278852 """ import model.utils import sqlalchemy as sa from alembic import op from rdr_service.participant_enums import GenderIdentity # revision identifiers, used by Alembic. revision = "72365b7c0037" down_revision = "9c957ce496bf" branch_labels = None depends_on = None def upgrade(engine_name): globals()["upgrade_%s" % engine_name]() def downgrade(engine_name): globals()["downgrade_%s" % engine_name]() def upgrade_rdr(): # ### commands auto generated by Alembic - please adjust! ### op.add_column("participant_summary", sa.Column("gender_identity", model.utils.Enum(GenderIdentity), nullable=True)) # ### end Alembic commands ### def downgrade_rdr(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column("participant_summary", "gender_identity") # ### end Alembic commands ### def upgrade_metrics(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ### def downgrade_metrics(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ###
bsd-3-clause
7,862,067,207,526,346,000
23.64
119
0.685065
false
3.602339
false
false
false
joshfriend/memegen
tests/test_routes_templates.py
1
2217
# pylint: disable=unused-variable # pylint: disable=misplaced-comparison-constant from .conftest import load def describe_get(): def when_default_text(client): response = client.get("/templates/iw") assert 200 == response.status_code assert dict( name="Insanity Wolf", description="http://knowyourmeme.com/memes/insanity-wolf", aliases=['insanity', 'insanity-wolf', 'iw'], styles=[], example="http://localhost/iw/does-testing/in-production", ) == load(response) def when_no_default_text(client): response = client.get("/templates/keanu") assert 200 == response.status_code assert "http://localhost/keanu/your-text/goes-here" == \ load(response)['example'] def when_alternate_sytles_available(client): response = client.get("/templates/sad-biden") assert 200 == response.status_code assert ['down', 'scowl', 'window'] == load(response)['styles'] def when_dashes_in_key(client): response = client.get("/templates/awkward-awesome") assert 200 == response.status_code def it_returns_list_when_no_key(client): response = client.get("/templates/") assert 200 == response.status_code data = load(response) assert "http://localhost/templates/iw" == data['Insanity Wolf'] assert len(data) >= 20 # there should be many memes def it_redirects_when_text_is_provided(client): response = client.get("/templates/iw/top/bottom") assert 302 == response.status_code assert '<a href="/iw/top/bottom">' in load(response, as_json=False) def it_redirects_when_key_is_an_alias(client): response = client.get("/templates/insanity-wolf") assert 302 == response.status_code assert '<a href="/templates/iw">' in load(response, as_json=False) def describe_post(): def it_returns_an_error(client): response = client.post("/templates/") assert 403 == response.status_code assert dict( message="https://raw.githubusercontent.com/jacebrowning/memegen/master/CONTRIBUTING.md" ) == load(response)
mit
-5,729,464,290,669,171,000
31.602941
99
0.626071
false
3.770408
false
false
false
JIC-CSB/dtoolcore
docs/source/conf.py
1
5148
# -*- coding: utf-8 -*- # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u"dtoolcore" copyright = u"2017, Tjelvar Olsson" author = u"Tjelvar Olsson" repo_name = u"dtoolcore" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u"3.13.0" # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'default' # Set the readthedocs theme. on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally print('using readthedocs theme...') import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # otherwise, readthedocs.org uses their theme by default, so no need to specify # it # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = '{}doc'.format(repo_name) # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, '{}.tex'.format(repo_name), u'{} Documentation'.format(repo_name), author, 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, repo_name, u'{} Documentation'.format(repo_name), [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, repo_name, u'{} Documentation'.format(repo_name), author, repo_name, u'Core API for managing (scientific) data', 'Miscellaneous'), ]
mit
835,693,816,536,538,400
30.012048
79
0.673271
false
3.833209
false
false
false
praekelt/vumi-go
go/billing/migrations/0009_auto__chg_field_messagecost_tag_pool__add_index_messagecost_message_di.py
1
10898
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Changing field 'MessageCost.tag_pool' db.alter_column(u'billing_messagecost', 'tag_pool_id', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['billing.TagPool'], null=True)) # Adding index on 'MessageCost', fields ['message_direction'] db.create_index(u'billing_messagecost', ['message_direction']) # Adding unique constraint on 'MessageCost', fields ['account', 'tag_pool', 'message_direction'] db.create_unique(u'billing_messagecost', ['account_id', 'tag_pool_id', 'message_direction']) # Adding index on 'MessageCost', fields ['account', 'tag_pool', 'message_direction'] db.create_index(u'billing_messagecost', ['account_id', 'tag_pool_id', 'message_direction']) def backwards(self, orm): # Removing index on 'MessageCost', fields ['account', 'tag_pool', 'message_direction'] db.delete_index(u'billing_messagecost', ['account_id', 'tag_pool_id', 'message_direction']) # Removing unique constraint on 'MessageCost', fields ['account', 'tag_pool', 'message_direction'] db.delete_unique(u'billing_messagecost', ['account_id', 'tag_pool_id', 'message_direction']) # Removing index on 'MessageCost', fields ['message_direction'] db.delete_index(u'billing_messagecost', ['message_direction']) # User chose to not deal with backwards NULL issues for 'MessageCost.tag_pool' raise RuntimeError("Cannot reverse this migration. 'MessageCost.tag_pool' and its values cannot be restored.") # The following code is provided here to aid in writing a correct migration # Changing field 'MessageCost.tag_pool' db.alter_column(u'billing_messagecost', 'tag_pool_id', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['billing.TagPool'])) models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'base.gouser': { 'Meta': {'object_name': 'GoUser'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'unique': 'True', 'max_length': '254'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '254'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '254'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'billing.account': { 'Meta': {'object_name': 'Account'}, 'account_number': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}), 'alert_credit_balance': ('django.db.models.fields.DecimalField', [], {'default': "'0.0'", 'max_digits': '20', 'decimal_places': '6'}), 'alert_threshold': ('django.db.models.fields.DecimalField', [], {'default': "'0.0'", 'max_digits': '10', 'decimal_places': '2'}), 'credit_balance': ('django.db.models.fields.DecimalField', [], {'default': "'0.0'", 'max_digits': '20', 'decimal_places': '6'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['base.GoUser']"}) }, u'billing.lineitem': { 'Meta': {'object_name': 'LineItem'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'message_direction': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '20', 'blank': 'True'}), 'statement': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['billing.Statement']"}), 'tag_name': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '100', 'blank': 'True'}), 'tag_pool_name': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '100', 'blank': 'True'}), 'total_cost': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, u'billing.messagecost': { 'Meta': {'unique_together': "[['account', 'tag_pool', 'message_direction']]", 'object_name': 'MessageCost', 'index_together': "[['account', 'tag_pool', 'message_direction']]"}, 'account': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['billing.Account']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'markup_percent': ('django.db.models.fields.DecimalField', [], {'default': "'0.0'", 'max_digits': '10', 'decimal_places': '2'}), 'message_cost': ('django.db.models.fields.DecimalField', [], {'default': "'0.0'", 'max_digits': '10', 'decimal_places': '3'}), 'message_direction': ('django.db.models.fields.CharField', [], {'max_length': '20', 'db_index': 'True'}), 'session_cost': ('django.db.models.fields.DecimalField', [], {'default': "'0.0'", 'max_digits': '10', 'decimal_places': '3'}), 'tag_pool': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['billing.TagPool']", 'null': 'True', 'blank': 'True'}) }, u'billing.statement': { 'Meta': {'object_name': 'Statement'}, 'account': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['billing.Account']"}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'from_date': ('django.db.models.fields.DateField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'to_date': ('django.db.models.fields.DateField', [], {}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '40'}) }, u'billing.tagpool': { 'Meta': {'object_name': 'TagPool'}, 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}) }, u'billing.transaction': { 'Meta': {'object_name': 'Transaction'}, 'account_number': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'credit_amount': ('django.db.models.fields.DecimalField', [], {'default': "'0.0'", 'max_digits': '20', 'decimal_places': '6'}), 'credit_factor': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'markup_percent': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'message_cost': ('django.db.models.fields.DecimalField', [], {'default': "'0.0'", 'null': 'True', 'max_digits': '10', 'decimal_places': '3'}), 'message_direction': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'message_id': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'session_cost': ('django.db.models.fields.DecimalField', [], {'default': "'0.0'", 'null': 'True', 'max_digits': '10', 'decimal_places': '3'}), 'session_created': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'default': "'Pending'", 'max_length': '20'}), 'tag_name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'tag_pool_name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['billing']
bsd-3-clause
-5,296,161,936,349,393,000
75.216783
188
0.569279
false
3.626622
false
false
false
cajone/pychess
lib/pychess/System/TaskQueue.py
1
2187
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/475160 # Was accepted into Python 2.5, but earlier versions still have # to do stuff manually import threading from pychess.compat import Queue def TaskQueue(): if hasattr(Queue, "task_done"): return Queue() return _TaskQueue() class _TaskQueue(Queue): def __init__(self): Queue.__init__(self) self.all_tasks_done = threading.Condition(self.mutex) self.unfinished_tasks = 0 def _put(self, item): Queue._put(self, item) self.unfinished_tasks += 1 def task_done(self): """Indicate that a formerly enqueued task is complete. Used by Queue consumer threads. For each get() used to fetch a task, a subsequent call to task_done() tells the queue that the processing on the task is complete. If a join() is currently blocking, it will resume when all items have been processed (meaning that a task_done() call was received for every item that had been put() into the queue). Raises a ValueError if called more times than there were items placed in the queue. """ self.all_tasks_done.acquire() try: unfinished = self.unfinished_tasks - 1 if unfinished <= 0: if unfinished < 0: raise ValueError('task_done() called too many times') self.all_tasks_done.notifyAll() self.unfinished_tasks = unfinished finally: self.all_tasks_done.release() def join(self): """Blocks until all items in the Queue have been gotten and processed. The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down whenever a consumer thread calls task_done() to indicate the item was retrieved and all work on it is complete. When the count of unfinished tasks drops to zero, join() unblocks. """ self.all_tasks_done.acquire() try: while self.unfinished_tasks: self.all_tasks_done.wait() finally: self.all_tasks_done.release()
gpl-3.0
3,400,890,274,600,280,000
33.171875
79
0.622771
false
4.263158
false
false
false
deter-project/magi
magi/messaging/transportTCP.py
1
2821
import socket import logging import time from asyncore import dispatcher from transport import Transport import transportStream from magimessage import DefaultCodec log = logging.getLogger(__name__) class TCPServer(Transport): """ Simple TCP Server that returns new TCP clients as 'messages' """ def __init__(self, address = None, port = None): Transport.__init__(self) self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.set_reuse_addr() self.bind((address, port)) self.listen(5) def handle_accept(self): pair = self.accept() if pair is None: return sock, addr = pair log.info('Incoming connection from %s', repr(addr)) newTrans = TCPTransport(sock) newTrans.saveHost = addr[0] newTrans.savePort = addr[1] self.inmessages.append(newTrans) def serverOnly(self): return True def __repr__(self): return "TCPServer %s:%d" % (self.addr[0], self.addr[1]) __str__ = __repr__ class TCPTransport(transportStream.StreamTransport): """ This class implements a TCP connection that streams MAGI messages back and forth. It uses the StreamTransport for most work, extending it just for the connecting and reconnecting portion. """ def __init__(self, sock = None, codec=DefaultCodec, address = None, port = None): """ Create a new TCP Transport. If sock is provided, it is used, otherwise starts with an unconnected socket. """ transportStream.StreamTransport.__init__(self, sock=sock, codec=codec) self.closed = False self.saveHost = "" self.savePort = -1 if address is not None and port is not None: self.connect(address, port) def connect(self, host, port): """ Attempt to connect this socket. """ self.saveHost = host self.savePort = port self.closed = False log.info("connect %s:%d", self.saveHost, self.savePort) self.create_socket(socket.AF_INET, socket.SOCK_STREAM) log.info("If connection fails, it will retry shortly.") dispatcher.connect(self, (self.saveHost, self.savePort)) def reconnect(self): """ Attempt a reconnect of a socket that was closed or never fully connected """ self.connect(self.saveHost, self.savePort) def handle_write(self): """ Override stream version so we can add hosttime to outgoing packets """ if self.txMessage.isDone(): try: msg = self.outmessages.pop(0) msg.hosttime = int(time.time()) self.txMessage = transportStream.TXTracker(codec=self.codec, msg=msg) except IndexError: return #keep sending till you can while not self.txMessage.isDone(): bytesWritten = self.send(self.txMessage.getData()) self.txMessage.sent(bytesWritten) #if no more can be written, break out if bytesWritten == 0: break def __repr__(self): return "TCPTransport %s:%d" % (self.saveHost, self.savePort) __str__ = __repr__
gpl-2.0
-4,412,502,271,619,851,000
25.613208
95
0.698688
false
3.26883
false
false
false
drtuxwang/system-config
bin/battery.py
1
3916
#!/usr/bin/env python3 """ Monitor laptop battery """ import argparse import signal import sys from typing import List import power_mod class Options: """ Options class """ def __init__(self) -> None: self._args: argparse.Namespace = None self.parse(sys.argv) def get_summary_flag(self) -> bool: """ Return summary flag. """ return self._args.summary_flag def _parse_args(self, args: List[str]) -> None: parser = argparse.ArgumentParser(description='Monitor laptop battery.') parser.add_argument( '-s', action='store_true', dest='summary_flag', help='Show summary' ) self._args = parser.parse_args(args) def parse(self, args: List[str]) -> None: """ Parse arguments """ self._parse_args(args[1:]) class Main: """ Main class """ def __init__(self) -> None: try: self.config() sys.exit(self.run()) except (EOFError, KeyboardInterrupt): sys.exit(114) except SystemExit as exception: sys.exit(exception) @staticmethod def config() -> None: """ Configure program """ if hasattr(signal, 'SIGPIPE'): signal.signal(signal.SIGPIPE, signal.SIG_DFL) @staticmethod def _show_battery(battery: power_mod.Battery) -> None: model = ( battery.get_oem() + ' ' + battery.get_name() + ' ' + battery.get_type() + ' ' + str(battery.get_capacity_max()) + 'mAh/' + str(battery.get_voltage()) + 'mV' ) if battery.get_charge() == '-': state = '-' if battery.get_rate() > 0: state += str(battery.get_rate()) + 'mA' if battery.get_voltage() > 0: power = '{0:4.2f}'.format(float( battery.get_rate()*battery.get_voltage()) / 1000000) state += ', ' + str(power) + 'W' hours = '{0:3.1f}'.format(float( battery.get_capacity()) / battery.get_rate()) state += ', ' + str(hours) + 'h' elif battery.get_charge() == '+': state = '+' if battery.get_rate() > 0: state += str(battery.get_rate()) + 'mA' if battery.get_voltage() > 0: power = '{0:4.2f}'.format(float( battery.get_rate()*battery.get_voltage()) / 1000000) state += ', ' + str(power) + 'W' else: state = 'Unused' print( model + " = ", battery.get_capacity(), "mAh [" + state + "]", sep="" ) @staticmethod def _show_summary(batteries: List[power_mod.Battery]) -> None: capacity = 0 rate = 0 for battery in batteries: if battery.is_exist(): capacity += battery.get_capacity() if battery.get_charge() == '-': rate -= battery.get_rate() elif battery.get_charge() == '+': rate += battery.get_rate() if capacity: if rate: print("{0:d}mAh [{1:+d}mAh]".format(capacity, rate)) else: print("{0:d}mAh [Unused]".format(capacity)) def run(self) -> int: """ Start program """ options = Options() batteries = power_mod.Battery.factory() if options.get_summary_flag(): self._show_summary(batteries) else: for battery in batteries: if battery.is_exist(): self._show_battery(battery) return 0 if __name__ == '__main__': if '--pydoc' in sys.argv: help(__name__) else: Main()
gpl-2.0
-5,714,600,251,821,818,000
26.384615
79
0.470123
false
3.904287
false
false
false
karllessard/tensorflow
tensorflow/python/keras/layers/preprocessing/text_vectorization.py
1
29394
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras text vectorization preprocessing layer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_spec from tensorflow.python.keras import backend as K from tensorflow.python.keras.engine import base_preprocessing_layer from tensorflow.python.keras.layers.preprocessing import category_encoding from tensorflow.python.keras.layers.preprocessing import string_lookup from tensorflow.python.keras.utils import layer_utils from tensorflow.python.keras.utils import tf_utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gen_string_ops from tensorflow.python.ops import string_ops from tensorflow.python.ops.ragged import ragged_functional_ops from tensorflow.python.ops.ragged import ragged_string_ops from tensorflow.python.util.tf_export import keras_export LOWER_AND_STRIP_PUNCTUATION = "lower_and_strip_punctuation" SPLIT_ON_WHITESPACE = "whitespace" TFIDF = category_encoding.TFIDF INT = category_encoding.INT BINARY = category_encoding.BINARY COUNT = category_encoding.COUNT # This is an explicit regex of all the tokens that will be stripped if # LOWER_AND_STRIP_PUNCTUATION is set. If an application requires other # stripping, a Callable should be passed into the 'standardize' arg. DEFAULT_STRIP_REGEX = r'[!"#$%&()\*\+,-\./:;<=>?@\[\\\]^_`{|}~\']' # The string tokens in the extracted vocabulary _VOCAB_NAME = "vocab" # The inverse-document-frequency weights _IDF_NAME = "idf" # The IDF data for the OOV token _OOV_IDF_NAME = "oov_idf" # The string tokens in the full vocabulary _ACCUMULATOR_VOCAB_NAME = "vocab" # The total counts of each token in the vocabulary _ACCUMULATOR_COUNTS_NAME = "counts" # The number of documents / examples that each token appears in. _ACCUMULATOR_DOCUMENT_COUNTS = "document_counts" # The total number of documents / examples in the dataset. _ACCUMULATOR_NUM_DOCUMENTS = "num_documents" @keras_export( "keras.layers.experimental.preprocessing.TextVectorization", v1=[]) class TextVectorization(base_preprocessing_layer.CombinerPreprocessingLayer): """Text vectorization layer. This layer has basic options for managing text in a Keras model. It transforms a batch of strings (one sample = one string) into either a list of token indices (one sample = 1D tensor of integer token indices) or a dense representation (one sample = 1D tensor of float values representing data about the sample's tokens). If desired, the user can call this layer's adapt() method on a dataset. When this layer is adapted, it will analyze the dataset, determine the frequency of individual string values, and create a 'vocabulary' from them. This vocabulary can have unlimited size or be capped, depending on the configuration options for this layer; if there are more unique values in the input than the maximum vocabulary size, the most frequent terms will be used to create the vocabulary. The processing of each sample contains the following steps: 1. standardize each sample (usually lowercasing + punctuation stripping) 2. split each sample into substrings (usually words) 3. recombine substrings into tokens (usually ngrams) 4. index tokens (associate a unique int value with each token) 5. transform each sample using this index, either into a vector of ints or a dense float vector. Some notes on passing Callables to customize splitting and normalization for this layer: 1. Any callable can be passed to this Layer, but if you want to serialize this object you should only pass functions that are registered Keras serializables (see `tf.keras.utils.register_keras_serializable` for more details). 2. When using a custom callable for `standardize`, the data received by the callable will be exactly as passed to this layer. The callable should return a tensor of the same shape as the input. 3. When using a custom callable for `split`, the data received by the callable will have the 1st dimension squeezed out - instead of `[["string to split"], ["another string to split"]]`, the Callable will see `["string to split", "another string to split"]`. The callable should return a Tensor with the first dimension containing the split tokens - in this example, we should see something like `[["string", "to", "split], ["another", "string", "to", "split"]]`. This makes the callable site natively compatible with `tf.strings.split()`. Attributes: max_tokens: The maximum size of the vocabulary for this layer. If None, there is no cap on the size of the vocabulary. Note that this vocabulary contains 1 OOV token, so the effective number of tokens is `(max_tokens - 1 - (1 if output == "int" else 0))`. standardize: Optional specification for standardization to apply to the input text. Values can be None (no standardization), 'lower_and_strip_punctuation' (lowercase and remove punctuation) or a Callable. Default is 'lower_and_strip_punctuation'. split: Optional specification for splitting the input text. Values can be None (no splitting), 'whitespace' (split on ASCII whitespace), or a Callable. The default is 'whitespace'. ngrams: Optional specification for ngrams to create from the possibly-split input text. Values can be None, an integer or tuple of integers; passing an integer will create ngrams up to that integer, and passing a tuple of integers will create ngrams for the specified values in the tuple. Passing None means that no ngrams will be created. output_mode: Optional specification for the output of the layer. Values can be "int", "binary", "count" or "tf-idf", configuring the layer as follows: "int": Outputs integer indices, one integer index per split string token. When output == "int", 0 is reserved for masked locations; this reduces the vocab size to max_tokens-2 instead of max_tokens-1 "binary": Outputs a single int array per batch, of either vocab_size or max_tokens size, containing 1s in all elements where the token mapped to that index exists at least once in the batch item. "count": As "binary", but the int array contains a count of the number of times the token at that index appeared in the batch item. "tf-idf": As "binary", but the TF-IDF algorithm is applied to find the value in each token slot. output_sequence_length: Only valid in INT mode. If set, the output will have its time dimension padded or truncated to exactly `output_sequence_length` values, resulting in a tensor of shape [batch_size, output_sequence_length] regardless of how many tokens resulted from the splitting step. Defaults to None. pad_to_max_tokens: Only valid in "binary", "count", and "tf-idf" modes. If True, the output will have its feature axis padded to `max_tokens` even if the number of unique tokens in the vocabulary is less than max_tokens, resulting in a tensor of shape [batch_size, max_tokens] regardless of vocabulary size. Defaults to True. vocabulary: An optional list of vocabulary terms, or a path to a text file containing a vocabulary to load into this layer. The file should contain one token per line. If the list or file contains the same token multiple times, an error will be thrown. Example: This example instantiates a TextVectorization layer that lowercases text, splits on whitespace, strips punctuation, and outputs integer vocab indices. >>> text_dataset = tf.data.Dataset.from_tensor_slices(["foo", "bar", "baz"]) >>> max_features = 5000 # Maximum vocab size. >>> max_len = 4 # Sequence length to pad the outputs to. >>> embedding_dims = 2 >>> >>> # Create the layer. >>> vectorize_layer = TextVectorization( ... max_tokens=max_features, ... output_mode='int', ... output_sequence_length=max_len) >>> >>> # Now that the vocab layer has been created, call `adapt` on the text-only >>> # dataset to create the vocabulary. You don't have to batch, but for large >>> # datasets this means we're not keeping spare copies of the dataset. >>> vectorize_layer.adapt(text_dataset.batch(64)) >>> >>> # Create the model that uses the vectorize text layer >>> model = tf.keras.models.Sequential() >>> >>> # Start by creating an explicit input layer. It needs to have a shape of >>> # (1,) (because we need to guarantee that there is exactly one string >>> # input per batch), and the dtype needs to be 'string'. >>> model.add(tf.keras.Input(shape=(1,), dtype=tf.string)) >>> >>> # The first layer in our model is the vectorization layer. After this >>> # layer, we have a tensor of shape (batch_size, max_len) containing vocab >>> # indices. >>> model.add(vectorize_layer) >>> >>> # Now, the model can map strings to integers, and you can add an embedding >>> # layer to map these integers to learned embeddings. >>> input_data = [["foo qux bar"], ["qux baz"]] >>> model.predict(input_data) array([[2, 1, 4, 0], [1, 3, 0, 0]]) Example: This example instantiates a TextVectorization layer by passing a list of vocabulary terms to the layer's __init__ method. input_array = np.array([["earth", "wind", "and", "fire"], ["fire", "and", "earth", "michigan"]]) expected_output = [[2, 3, 4, 5], [5, 4, 2, 1]] input_data = keras.Input(shape=(None,), dtype=dtypes.string) layer = get_layer_class()( max_tokens=None, standardize=None, split=None, output_mode=text_vectorization.INT, vocabulary=vocab_data) int_data = layer(input_data) model = keras.Model(inputs=input_data, outputs=int_data) output_dataset = model.predict(input_array) >>> vocab_data = ["earth", "wind", "and", "fire"] >>> max_len = 4 # Sequence length to pad the outputs to. >>> >>> # Create the layer, passing the vocab directly. You can also pass the >>> # vocabulary arg a path to a file containing one vocabulary word per >>> # line. >>> vectorize_layer = TextVectorization( ... max_tokens=max_features, ... output_mode='int', ... output_sequence_length=max_len, ... vocabulary=vocab_data) >>> >>> # Because we've passed the vocabulary directly, we don't need to adapt >>> # the layer - the vocabulary is already set. The vocabulary contains the >>> # padding token ('') and OOV token ('[UNK]') as well as the passed tokens. >>> vectorize_layer.get_vocabulary() ['', '[UNK]', 'earth', 'wind', 'and', 'fire'] """ # TODO(momernick): Add an examples section to the docstring. def __init__(self, max_tokens=None, standardize=LOWER_AND_STRIP_PUNCTUATION, split=SPLIT_ON_WHITESPACE, ngrams=None, output_mode=INT, output_sequence_length=None, pad_to_max_tokens=True, vocabulary=None, **kwargs): # This layer only applies to string processing, and so should only have # a dtype of 'string'. if "dtype" in kwargs and kwargs["dtype"] != dtypes.string: raise ValueError("TextVectorization may only have a dtype of string.") elif "dtype" not in kwargs: kwargs["dtype"] = dtypes.string # 'standardize' must be one of (None, LOWER_AND_STRIP_PUNCTUATION, callable) layer_utils.validate_string_arg( standardize, allowable_strings=(LOWER_AND_STRIP_PUNCTUATION), layer_name="TextVectorization", arg_name="standardize", allow_none=True, allow_callables=True) # 'split' must be one of (None, SPLIT_ON_WHITESPACE, callable) layer_utils.validate_string_arg( split, allowable_strings=(SPLIT_ON_WHITESPACE), layer_name="TextVectorization", arg_name="split", allow_none=True, allow_callables=True) # 'output_mode' must be one of (None, INT, COUNT, BINARY, TFIDF) layer_utils.validate_string_arg( output_mode, allowable_strings=(INT, COUNT, BINARY, TFIDF), layer_name="TextVectorization", arg_name="output_mode", allow_none=True) # 'ngrams' must be one of (None, int, tuple(int)) if not (ngrams is None or isinstance(ngrams, int) or isinstance(ngrams, tuple) and all(isinstance(item, int) for item in ngrams)): raise ValueError(("`ngrams` must be None, an integer, or a tuple of " "integers. Got %s") % (ngrams,)) # 'output_sequence_length' must be one of (None, int) and is only # set if output_mode is INT. if (output_mode == INT and not (isinstance(output_sequence_length, int) or (output_sequence_length is None))): raise ValueError("`output_sequence_length` must be either None or an " "integer when `output_mode` is 'int'. " "Got %s" % output_sequence_length) if output_mode != INT and output_sequence_length is not None: raise ValueError("`output_sequence_length` must not be set if " "`output_mode` is not 'int'.") # If max_tokens is set, the value must be greater than 1 - otherwise we # are creating a 0-element vocab, which doesn't make sense. if max_tokens is not None and max_tokens < 1: raise ValueError("max_tokens must be > 1.") self._max_tokens = max_tokens # In INT mode, the zero value is reserved for padding (per Keras standard # padding approaches). In non-INT modes, there is no padding so we can set # the OOV value to zero instead of one. self._oov_value = 1 if output_mode == INT else 0 self._standardize = standardize self._split = split self._ngrams_arg = ngrams if isinstance(ngrams, int): self._ngrams = tuple(range(1, ngrams + 1)) else: self._ngrams = ngrams self._output_mode = output_mode self._output_sequence_length = output_sequence_length self._pad_to_max = pad_to_max_tokens self._vocab_size = 0 self._called = False super(TextVectorization, self).__init__( combiner=None, **kwargs) base_preprocessing_layer._kpl_gauge.get_cell("V2").set("TextVectorization") mask_token = "" if output_mode in [None, INT] else None self._index_lookup_layer = self._get_index_lookup_class()( max_tokens=max_tokens, mask_token=mask_token, vocabulary=vocabulary) # If this layer is configured for string or integer output, we do not # create a vectorization layer (as the output is not vectorized). if self._output_mode in [None, INT]: self._vectorize_layer = None else: if max_tokens is not None and self._pad_to_max: max_elements = max_tokens else: max_elements = None self._vectorize_layer = self._get_vectorization_class()( max_tokens=max_elements, output_mode=self._output_mode) # These are V1/V2 shim points. There are V1 implementations in the V1 class. def _get_vectorization_class(self): return category_encoding.CategoryEncoding def _get_index_lookup_class(self): return string_lookup.StringLookup # End of V1/V2 shim points. def _assert_same_type(self, expected_type, values, value_name): if dtypes.as_dtype(expected_type) != dtypes.as_dtype(values.dtype): raise RuntimeError("Expected %s type %s, got %s" % (value_name, expected_type, values.dtype)) def _convert_to_ndarray(self, x): return np.array(x) if isinstance(x, (list, tuple)) else x def compute_output_shape(self, input_shape): if self._output_mode != INT: return tensor_shape.TensorShape([input_shape[0], self._max_tokens]) if self._output_mode == INT and self._split is None: if len(input_shape) == 1: input_shape = tuple(input_shape) + (1,) return tensor_shape.TensorShape(input_shape) if self._output_mode == INT and self._split is not None: input_shape = list(input_shape) if len(input_shape) == 1: input_shape = input_shape + [self._output_sequence_length] else: input_shape[1] = self._output_sequence_length return tensor_shape.TensorShape(input_shape) def compute_output_signature(self, input_spec): output_shape = self.compute_output_shape(input_spec.shape.as_list()) output_dtype = dtypes.int64 if self._output_mode == INT else K.floatx() return tensor_spec.TensorSpec(shape=output_shape, dtype=output_dtype) def adapt(self, data, reset_state=True): """Fits the state of the preprocessing layer to the dataset. Overrides the default adapt method to apply relevant preprocessing to the inputs before passing to the combiner. Arguments: data: The data to train on. It can be passed either as a tf.data Dataset, as a NumPy array, a string tensor, or as a list of texts. reset_state: Optional argument specifying whether to clear the state of the layer at the start of the call to `adapt`. This must be True for this layer, which does not support repeated calls to `adapt`. """ if not reset_state: raise ValueError("TextVectorization does not support streaming adapts.") # Build the layer explicitly with the original data shape instead of relying # on an implicit call to `build` in the base layer's `adapt`, since # preprocessing changes the input shape. if isinstance(data, (list, tuple, np.ndarray)): data = ops.convert_to_tensor_v2_with_dispatch(data) if isinstance(data, ops.Tensor): if data.shape.rank == 1: data = array_ops.expand_dims(data, axis=-1) self.build(data.shape) preprocessed_inputs = self._preprocess(data) elif isinstance(data, dataset_ops.DatasetV2): # TODO(momernick): Replace this with a more V2-friendly API. shape = dataset_ops.get_legacy_output_shapes(data) if not isinstance(shape, tensor_shape.TensorShape): raise ValueError("The dataset passed to 'adapt' must contain a single " "tensor value.") if shape.rank == 0: data = data.map(lambda tensor: array_ops.expand_dims(tensor, 0)) shape = dataset_ops.get_legacy_output_shapes(data) if shape.rank == 1: data = data.map(lambda tensor: array_ops.expand_dims(tensor, -1)) self.build(dataset_ops.get_legacy_output_shapes(data)) preprocessed_inputs = data.map(self._preprocess) else: raise ValueError( "adapt() requires a Dataset or an array as input, got {}".format( type(data))) self._index_lookup_layer.adapt(preprocessed_inputs) if self._vectorize_layer: if isinstance(data, ops.Tensor): integer_data = self._index_lookup_layer(preprocessed_inputs) else: integer_data = preprocessed_inputs.map(self._index_lookup_layer) self._vectorize_layer.adapt(integer_data) def get_vocabulary(self): return self._index_lookup_layer.get_vocabulary() def get_config(self): # This does not include the 'vocabulary' arg, since if the vocab was passed # at init time it's now stored in variable state - we don't need to # pull it off disk again. config = { "max_tokens": self._max_tokens, "standardize": self._standardize, "split": self._split, "ngrams": self._ngrams_arg, "output_mode": self._output_mode, "output_sequence_length": self._output_sequence_length, "pad_to_max_tokens": self._pad_to_max, } base_config = super(TextVectorization, self).get_config() return dict(list(base_config.items()) + list(config.items())) def count_params(self): # This method counts the number of scalars in the weights of this layer. # Since this layer doesn't have any /actual/ weights (in that there's # nothing in this layer that can be trained - we only use the weight # abstraction for ease of saving!) we return 0. return 0 def set_vocabulary(self, vocab, df_data=None, oov_df_value=None): """Sets vocabulary (and optionally document frequency) data for this layer. This method sets the vocabulary and DF data for this layer directly, instead of analyzing a dataset through 'adapt'. It should be used whenever the vocab (and optionally document frequency) information is already known. If vocabulary data is already present in the layer, this method will replace it. Arguments: vocab: An array of string tokens. df_data: An array of document frequency data. Only necessary if the layer output_mode is TFIDF. oov_df_value: The document frequency of the OOV token. Only necessary if output_mode is TFIDF. Raises: ValueError: If there are too many inputs, the inputs do not match, or input data is missing. RuntimeError: If the vocabulary cannot be set when this function is called. This happens when "binary", "count", and "tfidf" modes, if "pad_to_max_tokens" is False and the layer itself has already been called. """ if self._output_mode != TFIDF and df_data is not None: raise ValueError("df_data should only be set if output_mode is TFIDF. " "output_mode is %s." % self._output_mode) if (self._output_mode in [BINARY, COUNT, TFIDF] and self._called and not self._pad_to_max): raise RuntimeError(("When using TextVectorization in {mode} mode and " "pad_to_max_tokens is False, the vocabulary cannot " "be changed after the layer is " "called.").format(mode=self._output_mode)) self._index_lookup_layer.set_vocabulary(vocab) # When doing raw or integer output, we don't have a Vectorize layer to # manage. In this case, we can return directly. if self._output_mode in [None, INT]: return if not self._pad_to_max or self._max_tokens is None: num_tokens = self._index_lookup_layer.vocab_size() self._vectorize_layer.set_num_elements(num_tokens) if self._output_mode == TFIDF: if df_data is None: raise ValueError("df_data must be set if output_mode is TFIDF") if len(vocab) != len(df_data): raise ValueError("df_data must be the same length as vocab. " "len(df_data) is %s, len(vocab) is %s" % (len(vocab), len(df_data))) if oov_df_value is None: raise ValueError("You must pass an oov_df_value when output_mode is " "TFIDF.") df_data = self._convert_to_ndarray(df_data) if not isinstance(oov_df_value, np.ndarray): oov_df_value = np.array([oov_df_value]) df_data = np.insert(df_data, 0, oov_df_value) self._vectorize_layer.set_tfidf_data(df_data) def build(self, input_shape): # We have to use 'and not ==' here, because input_shape[1] !/== 1 can result # in None for undefined shape axes. If using 'and !=', this causes the # expression to evaluate to False instead of True if the shape is undefined; # the expression needs to evaluate to True in that case. if self._split is not None: if input_shape.ndims > 1 and not input_shape[-1] == 1: # pylint: disable=g-comparison-negation raise RuntimeError( "When using TextVectorization to tokenize strings, the innermost " "dimension of the input array must be 1, got shape " "{}".format(input_shape)) super(TextVectorization, self).build(input_shape) def _set_state_variables(self, updates): if not self.built: raise RuntimeError("_set_state_variables() must be called after build().") if self._output_mode == TFIDF: self.set_vocabulary( updates[_VOCAB_NAME], updates[_IDF_NAME], updates[_OOV_IDF_NAME]) else: self.set_vocabulary(updates[_VOCAB_NAME]) def _preprocess(self, inputs): if self._standardize == LOWER_AND_STRIP_PUNCTUATION: if tf_utils.is_ragged(inputs): lowercase_inputs = ragged_functional_ops.map_flat_values( gen_string_ops.string_lower, inputs) # Depending on configuration, we may never touch the non-data tensor # in the ragged inputs tensor. If that is the case, and this is the # only layer in the keras model, running it will throw an error. # To get around this, we wrap the result in an identity. lowercase_inputs = array_ops.identity(lowercase_inputs) else: lowercase_inputs = gen_string_ops.string_lower(inputs) inputs = string_ops.regex_replace(lowercase_inputs, DEFAULT_STRIP_REGEX, "") elif callable(self._standardize): inputs = self._standardize(inputs) elif self._standardize is not None: raise ValueError(("%s is not a supported standardization. " "TextVectorization supports the following options " "for `standardize`: None, " "'lower_and_strip_punctuation', or a " "Callable.") % self._standardize) if self._split is not None: # If we are splitting, we validate that the 1st axis is of dimension 1 and # so can be squeezed out. We do this here instead of after splitting for # performance reasons - it's more expensive to squeeze a ragged tensor. if inputs.shape.ndims > 1: inputs = array_ops.squeeze(inputs, axis=-1) if self._split == SPLIT_ON_WHITESPACE: # This treats multiple whitespaces as one whitespace, and strips leading # and trailing whitespace. inputs = ragged_string_ops.string_split_v2(inputs) elif callable(self._split): inputs = self._split(inputs) else: raise ValueError( ("%s is not a supported splitting." "TextVectorization supports the following options " "for `split`: None, 'whitespace', or a Callable.") % self._split) # Note that 'inputs' here can be either ragged or dense depending on the # configuration choices for this Layer. The strings.ngrams op, however, does # support both ragged and dense inputs. if self._ngrams is not None: inputs = ragged_string_ops.ngrams( inputs, ngram_width=self._ngrams, separator=" ") return inputs def call(self, inputs): if isinstance(inputs, (list, tuple, np.ndarray)): inputs = ops.convert_to_tensor_v2_with_dispatch(inputs) self._called = True inputs = self._preprocess(inputs) # If we're not doing any output processing, return right away. if self._output_mode is None: return inputs indexed_data = self._index_lookup_layer(inputs) if self._output_mode == INT: # Once we have the dense tensor, we can return it if we weren't given a # fixed output sequence length. If we were, though, we have to dynamically # choose whether to pad or trim it based on each tensor. # We need to convert to dense if we have a ragged tensor. if tf_utils.is_ragged(indexed_data): dense_data = indexed_data.to_tensor(default_value=0) else: dense_data = indexed_data if self._output_sequence_length is None: return dense_data else: sequence_len = K.shape(dense_data)[1] pad_amt = self._output_sequence_length - sequence_len pad_fn = lambda: array_ops.pad(dense_data, [[0, 0], [0, pad_amt]]) slice_fn = lambda: dense_data[:, :self._output_sequence_length] output_tensor = control_flow_ops.cond( sequence_len < self._output_sequence_length, true_fn=pad_fn, false_fn=slice_fn) output_shape = output_tensor.shape.as_list() output_shape[-1] = self._output_sequence_length output_tensor.set_shape(tensor_shape.TensorShape(output_shape)) return output_tensor # If we're not returning integers here, we rely on the vectorization layer # to create the output. return self._vectorize_layer(indexed_data)
apache-2.0
7,755,867,636,308,005,000
44.082822
101
0.666667
false
3.958255
true
false
false
entropyx/callme
callme/proxy.py
1
9608
# Copyright (c) 2009-2014, Christian Haintz # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # * Neither the name of callme nor the names of its contributors # may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import logging import socket import time import uuid import kombu from callme import base from callme import exceptions as exc from callme import protocol as pr LOG = logging.getLogger(__name__) REQUEST_TIMEOUT = 60 class Proxy(base.Base): """This Proxy class is used to handle the communication with the rpc server. :keyword server_id: default id of the Server (can be declared later see :func:`use_server`) :keyword amqp_host: the host of where the AMQP Broker is running :keyword amqp_user: the username for the AMQP Broker :keyword amqp_password: the password for the AMQP Broker :keyword amqp_vhost: the virtual host of the AMQP Broker :keyword amqp_port: the port of the AMQP Broker :keyword ssl: use SSL connection for the AMQP Broker :keyword timeout: default timeout for calls in seconds :keyword durable: make all exchanges and queues durable :keyword auto_delete: delete server queues after all connections are closed not applicable for client queues """ def __init__(self, server_exchange_name, server_queue_name=None, server_routing_key=None, amqp_host='localhost', amqp_user='guest', amqp_password='guest', amqp_vhost='/', amqp_port=5672, ssl=False, timeout=REQUEST_TIMEOUT, durable=False, auto_delete=True, ): super(Proxy, self).__init__(amqp_host, amqp_user, amqp_password, amqp_vhost, amqp_port, ssl) self._uuid = str(uuid.uuid4()) self._server_exchange_name = server_exchange_name self._server_queue_name = server_queue_name self._server_routing_key = server_routing_key self._timeout = timeout self._is_received = False self._corr_id = None self._response = None self._exchange_name = 'client_{0}_ex_{1}'.format(self._server_exchange_name, self._uuid) self._queue_name = 'client_{0}_queue_{1}'.format(self._server_queue_name, self._uuid) if self._server_queue_name else '' self._durable = durable self._auto_delete = auto_delete # create queue queue = self._make_queue(self._queue_name, None, durable=self._durable, auto_delete=True) # create consumer consumer = kombu.Consumer(channel=self._conn, queues=queue, callbacks=[self._on_response], accept=['pickle']) consumer.consume() def use_server(self, exchange_name=None, queue_name=None, timeout=None): """Use the specified server and set an optional timeout for the method call. Typical use: >> my_proxy.use_server('foo_exchange','foo.receive').a_remote_func() :keyword exchange_name: the exchange_name where the call will be made :keyword queue_name: the queue_name where the call will be made :keyword timeout: set or overrides the call timeout in seconds :rtype: return `self` to cascade further calls """ if exchange_name is not None: self._server_exchange_name= exchange_name if queue_name is not None: self._server_queue_name= queue_name if timeout is not None: self._timeout = timeout return self def _on_response(self, response, message): """This method is automatically called when a response is incoming and decides if it is the message we are waiting for - the message with the result. :param response: the body of the amqp message already deserialized by kombu :param message: the plain amqp kombu.message with additional information """ LOG.debug("Got response: {0}".format(response)) try: message.ack() except Exception: LOG.exception("Failed to acknowledge AMQP message.") else: LOG.debug("AMQP message acknowledged.") # check response type if not isinstance(response, pr.RpcResponse): LOG.warning("Response is not a `RpcResponse` instance.") return # process response try: if self._corr_id == message.properties['correlation_id']: self._response = response self._is_received = True except KeyError: LOG.error("Message has no `correlation_id` property.") def __request(self, func_name, func_args, func_kwargs): """The remote-method-call execution function. :param func_name: name of the method that should be executed :param func_args: arguments for the remote-method :param func_kwargs: keyword arguments for the remote-method :type func_name: string :type func_args: list of parameters :rtype: result of the method """ self._corr_id = str(uuid.uuid4()) request = pr.RpcRequest(func_name, func_args, func_kwargs) LOG.debug("Publish request: {0}".format(request)) # publish request with kombu.producers[self._conn].acquire(block=True) as producer: type = 'topic' exchange = self._make_exchange( self._server_exchange_name, type=type, durable=self._durable, auto_delete=self._auto_delete) producer.publish(body=request, serializer='pickle', exchange=exchange, reply_to=self._queue_name, correlation_id=self._corr_id, routing_key=self._server_routing_key) # start waiting for the response self._wait_for_result() self._is_received = False # handler response result = self._response.result LOG.debug("Result: {!r}".format(result)) if self._response.is_exception: raise result return result def _wait_for_result(self): """Waits for the result from the server, checks every second if a timeout occurred. If a timeout occurred - the `RpcTimeout` exception will be raised. """ start_time = time.time() while not self._is_received: try: self._conn.drain_events(timeout=1) except socket.timeout: if self._timeout > 0: if time.time() - start_time > self._timeout: raise exc.RpcTimeout("RPC Request timeout") def __getattr__(self, name): """This method is invoked, if a method is being called, which doesn't exist on Proxy. It is used for RPC, to get the function which should be called on the Server. """ # magic method dispatcher LOG.debug("Recursion: {0}".format(name)) return _Method(self.__request, name) # =========================================================================== class _Method(object): """This class is used to realize remote-method-calls. :param send: name of the function that should be executed on Proxy :param name: name of the method which should be called on the Server """ # some magic to bind an XML-RPC method to an RPC server. # supports "nested" methods (e.g. examples.getStateName) def __init__(self, send, name): self._send = send self._name = name def __getattr__(self, name): return _Method(self._send, "{0}.{1}".format(self._name, name)) def __call__(self, *args, **kw): return self._send(self._name, args, kw) # ===========================================================================
bsd-3-clause
4,423,005,917,173,876,700
38.216327
128
0.600125
false
4.508681
false
false
false
etamponi/resilient-protocol
resilient/ensemble.py
1
6786
import hashlib import numpy from sklearn.base import BaseEstimator, ClassifierMixin, clone from sklearn.tree.tree import DecisionTreeClassifier from sklearn.utils.fixes import unique from sklearn import preprocessing from sklearn.utils.random import check_random_state from resilient.logger import Logger from resilient.selection_strategies import SelectBestPercent from resilient.train_set_generators import RandomCentroidPDFTrainSetGenerator from resilient.weighting_strategies import CentroidBasedWeightingStrategy __author__ = 'Emanuele Tamponi <emanuele.tamponi@diee.unica.it>' MAX_INT = numpy.iinfo(numpy.int32).max class TrainingStrategy(BaseEstimator): def __init__(self, base_estimator=DecisionTreeClassifier(max_features='auto'), train_set_generator=RandomCentroidPDFTrainSetGenerator(), random_sample=None): self.base_estimator = base_estimator self.train_set_generator = train_set_generator self.random_sample = random_sample def train_estimators(self, n, inp, y, weighting_strategy, random_state): classifiers = [] weight_generator = self.train_set_generator.get_sample_weights( n, inp, y, random_state ) for i, weights in enumerate(weight_generator): if self.random_sample is not None: ix = random_state.choice( len(y), size=int(self.random_sample*len(y)), p=weights, replace=True ) weights = numpy.bincount(ix, minlength=len(y)) s = weights.sum() weights = numpy.array([float(w) / s for w in weights]) Logger.get().write("!Training estimator:", (i+1)) est = self._make_estimator(inp, y, weights, random_state) weighting_strategy.add_estimator(est, inp, y, weights) classifiers.append(est) return classifiers def _make_estimator(self, inp, y, sample_weights, random_state): seed = random_state.randint(MAX_INT) est = clone(self.base_estimator) est.set_params(random_state=check_random_state(seed)) est.fit(inp, y, sample_weight=sample_weights) return est class ResilientEnsemble(BaseEstimator, ClassifierMixin): def __init__(self, pipeline=None, n_estimators=10, training_strategy=TrainingStrategy(), weighting_strategy=CentroidBasedWeightingStrategy(), selection_strategy=SelectBestPercent(), multiply_by_weight=False, use_prob=True, random_state=None): self.pipeline = pipeline self.n_estimators = n_estimators self.training_strategy = training_strategy self.weighting_strategy = weighting_strategy self.selection_strategy = selection_strategy self.multiply_by_weight = multiply_by_weight self.use_prob = use_prob self.random_state = random_state # Training time attributes self.classes_ = None self.n_classes_ = None self.classifiers_ = None self.precomputed_probs_ = None self.precomputed_weights_ = None self.random_state_ = None def fit(self, inp, y): self.precomputed_probs_ = None self.precomputed_weights_ = None self.classes_, y = unique(y, return_inverse=True) self.n_classes_ = len(self.classes_) self.random_state_ = check_random_state(self.random_state) if self.pipeline is not None: inp = self.pipeline.fit_transform(inp) self.weighting_strategy.prepare(inp, y) self.classifiers_ = self.training_strategy.train_estimators( self.n_estimators, inp, y, self.weighting_strategy, self.random_state_ ) # Reset it to null because the previous line uses self.predict self.precomputed_probs_ = None self.precomputed_weights_ = None return self def predict_proba(self, inp): # inp is array-like, (N, D), one instance per row # output is array-like, (N, n_classes_), each row sums to one if self.precomputed_probs_ is None: self._precompute(inp) prob = numpy.zeros((len(inp), self.n_classes_)) for i in range(len(inp)): active_indices = self.selection_strategy.get_indices( self.precomputed_weights_[i], self.random_state_ ) prob[i] = self.precomputed_probs_[i][active_indices].sum(axis=0) preprocessing.normalize(prob, norm='l1', copy=False) return prob def predict(self, inp): # inp is array-like, (N, D), one instance per row # output is array-like, N, one label per instance if self.pipeline is not None: inp = self.pipeline.transform(inp) p = self.predict_proba(inp) return self.classes_[numpy.argmax(p, axis=1)] def _precompute(self, inp): self.precomputed_probs_ = numpy.zeros( (len(inp), len(self.classifiers_), self.n_classes_) ) self.precomputed_weights_ = numpy.zeros( (len(inp), len(self.classifiers_)) ) for i, x in enumerate(inp): Logger.get().write( "!Computing", len(inp), "probabilities and weights:", (i+1) ) for j, cls in enumerate(self.classifiers_): prob = cls.predict_proba(x)[0] if not self.use_prob: max_index = prob.argmax() prob = numpy.zeros_like(prob) prob[max_index] = 1 self.precomputed_probs_[i][j] = prob self.precomputed_weights_[i] = ( self.weighting_strategy.weight_estimators(x) ) if self.multiply_by_weight: for j in range(len(self.classifiers_)): self.precomputed_probs_[i][j] *= ( self.precomputed_weights_[i][j] ) def get_directory(self): current_state = self.random_state current_selection = self.selection_strategy self.random_state = None self.selection_strategy = None filename = hashlib.md5(str(self)).hexdigest() self.random_state = current_state self.selection_strategy = current_selection return filename def get_filename(self): return self.get_directory() + "/ensemble" def __eq__(self, other): return isinstance(other, ResilientEnsemble) and ( self.get_directory() == other.get_directory() ) def __hash__(self): return hash(self.get_directory())
gpl-2.0
4,599,996,119,543,902,700
37.338983
77
0.600796
false
4.110236
false
false
false
andrewschaaf/pj-closure
js/goog/array.py
1
3829
#<pre>Copyright 2006 The Closure Library Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.</pre> # TODO the rest from goog import bind, isString ARRAY_PROTOTYPE_ = Array.prototype def concat(var_args): return ARRAY_PROTOTYPE_.concat.apply(ARRAY_PROTOTYPE_, arguments) def forEach(arr, f, opt_obj): #DIFF: goog runs this if-statement at load-time if ARRAY_PROTOTYPE_.forEach: # TODO assert(arr.length != None) ARRAY_PROTOTYPE_.forEach.call(arr, f, opt_obj) else: arr2 = (arr.split('') if isString(arr) else arr) for i in range(len(arr)): if i in arr2: f.call(opt_obj, arr2[i], i, arr) def map(arr, f, opt_obj): #DIFF: goog runs this if-statement at load-time if ARRAY_PROTOTYPE_.map: #TODO goog.asserts.assert(arr.length != null); return ARRAY_PROTOTYPE_.map.call(arr, f, opt_obj) else: l = len(arr) res = Array(l) arr2 = (arr.split('') if isString(arr) else arr) for i in range(l): if i in arr2: res[i] = f.call(opt_obj, arr2[i], i, arr) return res def reduce(arr, f, val, opt_obj): if arr.reduce: if opt_obj: return arr.reduce(bind(f, opt_obj), val) else: return arr.reduce(f, val) rval = val def f(val, index): rval = f.call(opt_obj, rval, val, index, arr) forEach(arr, f) return rval def slice(arr, start, opt_end): #goog.asserts.assert(arr.length != null); # passing 1 arg to slice is not the same as passing 2 where the second is # null or undefined (in that case the second argument is treated as 0). # we could use slice on the arguments object and then use apply instead of # testing the length if arguments.length <= 2: return ARRAY_PROTOTYPE_.slice.call(arr, start) else: return ARRAY_PROTOTYPE_.slice.call(arr, start, opt_end) def splice(arr, index, howMany, var_args): #goog.asserts.assert(arr.length != null) return ARRAY_PROTOTYPE_.splice.apply( arr, slice(arguments, 1)) def insertAt(arr, obj, opt_i): splice(arr, opt_i, 0, obj) def filter(arr, f, opt_obj): if ARRAY_PROTOTYPE_.filter: #goog.asserts.assert(arr.length != null); return ARRAY_PROTOTYPE_.filter.call(arr, f, opt_obj) else: res = [] resLength = 0 arr2 = arr.split('') if isString(arr) else arr for i in range(len(arr)): if i in arr2: val = arr2[i] if f.call(opt_obj, val, i, arr): # Is this better than .push? resLength += 1 res[resLength] = val return res def indexOf(arr, obj, opt_fromIndex): if ARRAY_PROTOTYPE_.indexOf: #goog.asserts.assert(arr.length != null); return ARRAY_PROTOTYPE_.indexOf.call(arr, obj, opt_fromIndex) else: fromIndex = ( 0 if opt_fromIndex == None else ( Math.max(0, arr.length + opt_fromIndex) if opt_fromIndex < 0 else opt_fromIndex)) if isString(arr): # Array.prototype.indexOf uses === so only strings should be found. if not isString(obj) or len(obj) != 1: return -1 return arr.indexOf(obj, fromIndex) for i in range(fromIndex, len(arr)): if (i in arr) and (arr[i] == obj): return i return -1
apache-2.0
-2,837,759,687,464,881,000
25.226027
76
0.628362
false
3.255952
false
false
false
ilastik/ilastik-0.5
ilastik/modules/unsupervised_decomposition/core/unsupervisedMgr.py
1
7290
from ilastik.core.baseModuleMgr import BaseModuleDataItemMgr, BaseModuleMgr import numpy import traceback, sys from ilastik.core import jobMachine from PyQt4 import QtCore import os import algorithms from ilastik.core.volume import DataAccessor from ilastik.core.overlayMgr import OverlayItem """ Import all algorithm plugins""" pathext = os.path.dirname(__file__) try: for f in os.listdir(os.path.abspath(pathext + '/algorithms')): module_name, ext = os.path.splitext(f) # Handles no-extension files, etc. if ext == '.py': # Important, ignore .pyc/othesr files. module = __import__('ilastik.modules.unsupervised_decomposition.core.algorithms.' + module_name) except Exception, e: print e traceback.print_exc() pass for i, c in enumerate(algorithms.unsupervisedDecompositionBase.UnsupervisedDecompositionBase.__subclasses__()): print "Loaded unsupervised decomposition algorithm:", c.name #******************************************************************************* # U n s u p e r v i s e d I t e m M o d u l e M g r * #******************************************************************************* class UnsupervisedItemModuleMgr(BaseModuleDataItemMgr): name = "Unsupervised_Decomposition" def __init__(self, dataItemImage): BaseModuleDataItemMgr.__init__(self, dataItemImage) self.dataItemImage = dataItemImage self.overlays = [] self.inputData = None def setInputData(self, data): self.inputData = data #******************************************************************************* # U n s u p e r v i s e d D e c o m p o s i t i o n M o d u l e M g r * #******************************************************************************* class UnsupervisedDecompositionModuleMgr(BaseModuleMgr): name = "Unsupervised_Decomposition" def __init__(self, dataMgr): BaseModuleMgr.__init__(self, dataMgr) self.dataMgr = dataMgr self.unsupervisedMethod = algorithms.unsupervisedDecompositionPCA.UnsupervisedDecompositionPCA if self.dataMgr.module["Unsupervised_Decomposition"] is None: self.dataMgr.module["Unsupervised_Decomposition"] = self def computeResults(self, inputOverlays): self.decompThread = UnsupervisedDecompositionThread(self.dataMgr, inputOverlays, self.dataMgr.module["Unsupervised_Decomposition"].unsupervisedMethod) self.decompThread.start() return self.decompThread def finalizeResults(self): activeItem = self.dataMgr[self.dataMgr._activeImageNumber] activeItem._dataVol.unsupervised = self.decompThread.result #create overlays for unsupervised decomposition: if self.dataMgr[self.dataMgr._activeImageNumber].overlayMgr["Unsupervised/" + self.dataMgr.module["Unsupervised_Decomposition"].unsupervisedMethod.shortname] is None: data = self.decompThread.result[:,:,:,:,:] myColor = OverlayItem.qrgb(0, 0, 0) for o in range(0, data.shape[4]): data2 = OverlayItem.normalizeForDisplay(data[:,:,:,:,o:(o+1)]) # for some strange reason we have to invert the data before displaying it ov = OverlayItem(255 - data2, color = myColor, alpha = 1.0, colorTable = None, autoAdd = True, autoVisible = True) self.dataMgr[self.dataMgr._activeImageNumber].overlayMgr["Unsupervised/" + self.dataMgr.module["Unsupervised_Decomposition"].unsupervisedMethod.shortname + " component %d" % (o+1)] = ov # remove outdated overlays (like PCA components 5-10 if a decomposition with 4 components is done) numOverlaysBefore = len(self.dataMgr[self.dataMgr._activeImageNumber].overlayMgr.keys()) finished = False while finished != True: o = o + 1 # assumes consecutive numbering key = "Unsupervised/" + self.dataMgr.module["Unsupervised_Decomposition"].unsupervisedMethod.shortname + " component %d" % (o+1) self.dataMgr[self.dataMgr._activeImageNumber].overlayMgr.remove(key) numOverlaysAfter = len(self.dataMgr[self.dataMgr._activeImageNumber].overlayMgr.keys()) if(numOverlaysBefore == numOverlaysAfter): finished = True else: numOverlaysBefore = numOverlaysAfter else: self.dataMgr[self.dataMgr._activeImageNumber].overlayMgr["Unsupervised/" + self.dataMgr.module["Unsupervised_Decomposition"].unsupervisedMethod.shortname]._data = DataAccessor(self.decompThread.result) #******************************************************************************* # U n s u p e r v i s e d D e c o m p o s i t i o n T h r e a d * #******************************************************************************* class UnsupervisedDecompositionThread(QtCore.QThread): def __init__(self, dataMgr, overlays, unsupervisedMethod = algorithms.unsupervisedDecompositionPCA.UnsupervisedDecompositionPCA, unsupervisedMethodOptions = None): QtCore.QThread.__init__(self, None) self.reshapeToFeatures(overlays) self.dataMgr = dataMgr self.count = 0 self.numberOfJobs = 1 self.stopped = False self.unsupervisedMethod = unsupervisedMethod self.unsupervisedMethodOptions = unsupervisedMethodOptions self.jobMachine = jobMachine.JobMachine() self.result = [] def reshapeToFeatures(self, overlays): # transform to feature matrix # ...first find out how many columns and rows the feature matrix will have numFeatures = 0 numPoints = overlays[0].shape[0] * overlays[0].shape[1] * overlays[0].shape[2] * overlays[0].shape[3] for overlay in overlays: numFeatures += overlay.shape[4] # ... then copy the data features = numpy.zeros((numPoints, numFeatures), dtype=numpy.float) currFeature = 0 for overlay in overlays: currData = overlay[:,:,:,:,:] features[:, currFeature:currFeature+overlay.shape[4]] = currData.reshape(numPoints, (currData.shape[4])) currFeature += currData.shape[4] self.features = features self.origshape = overlays[0].shape def decompose(self): # V contains the component spectra/scores, W contains the projected data unsupervisedMethod = self.unsupervisedMethod() V, W = unsupervisedMethod.decompose(self.features) self.result = (W.T).reshape((self.origshape[0], self.origshape[1], self.origshape[2], self.origshape[3], W.shape[0])) def run(self): self.dataMgr.featureLock.acquire() try: jobs = [] job = jobMachine.IlastikJob(UnsupervisedDecompositionThread.decompose, [self]) jobs.append(job) self.jobMachine.process(jobs) self.dataMgr.featureLock.release() except Exception, e: print "######### Exception in UnsupervisedThread ##########" print e traceback.print_exc(file=sys.stdout) self.dataMgr.featureLock.release()
bsd-2-clause
-7,100,022,085,646,028,000
48.598639
213
0.610288
false
4.074902
false
false
false
Jason-Gew/Python_modules
authenticate.py
1
2754
#!/usr/bin/env python # # authenticate.py module is create by Jason/Ge Wu # Purpose to fast set up and verify username & password # for system or software access. from getpass import getpass # Disable password display on console import base64 # If necessary, use more advanced encryption such as AES, MD5 encryp_pass = "" def set_authentication(pass_length, set_timeout): global encryp_pass while set_timeout > 0: select1 = raw_input("\nWould you like to setup a new Password for Login? (Y/n): ") if select1 == 'Y' or select1 == 'y': while set_timeout > 0: buff1 = getpass(prompt = "\nPlease Enter your Password: ") if not buff1.isspace(): buff2 = getpass(prompt = "Please Enter your Password again: ") if buff1 == buff2: if len(buff2) < pass_length: print "-> Password must have {} characters or more!".format(pass_length) set_timeout -= 1 print "-> You have {} chance(s)...".format(set_timeout) continue else: encryp_pass = base64.b64encode(buff2) print "\n ==== Password Setup Success ====\n" del buff1, buff2 return True else: print "-> Password does not match! Please Try Again!\n" set_timeout -= 1 print "-> You have {} chance(s)...".format(set_timeout) continue else: print "-> Invalid Password!\n" set_timeout -= 1 print "-> You have {} chance(s)...".format(set_timeout) continue elif select1 == 'N' or select1 == 'n': return False break else: if set_timeout > 0: print "-> Please enter \'Y\' or \'n\' character only!" set_timeout -= 1 print "-> You have {} chance(s)...".format(set_timeout) else: print "\nTime Out, please re-run the program and Try Carefully!\n" exit(1) def console_authenticate(set_timeout): while set_timeout > 0: buff = getpass(prompt = "\nPlease enter your Password: ") encryp_buffer = base64.b64encode(buff) if encryp_buffer == encryp_pass: print "\n ==== Authentication Success ==== \n" del buff, encryp_buffer return True elif buff == '': print "-> Password cannot be empty!\n" set_timeout -= 1 print "-> You have {} chance(s)...".format(set_timeout) else: set_timeout -= 1 if set_timeout > 0: print "-> Invalid Password, Please Try Again!" print "-> You still have {} chance(s)...".format(set_timeout) else: print "\n ==== Authentication Fail ==== \n" return False # For testing purpose... if __name__ == "__main__": if set_authentication(6,4): if console_authenticate(3): print "Done" else: print "Failed" exit(1) else: print "No Authentication!" exit(0)
gpl-3.0
333,663,628,608,991,300
28.94382
84
0.603849
false
3.263033
false
false
false
uclouvain/osis
base/migrations/0054_scoresencoding.py
1
2269
# -*- coding: utf-8 -*- # Generated by Django 1.9 on 2016-05-02 15:06 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('base', '0053_auto_20160529_2355'), ] operations = [ migrations.RunSQL( """ DROP VIEW IF EXISTS app_scores_encoding; CREATE OR REPLACE VIEW app_scores_encoding AS SELECT row_number() OVER () as id, base_programmanager.id as program_manager_id, program_manager_person.id as pgm_manager_person_id, base_offeryear.id as offer_year_id, base_learningunityear.id as learning_unit_year_id, count(base_examenrollment.id) as total_exam_enrollments, sum(case when base_examenrollment.score_final is not null or base_examenrollment.justification_final is not null then 1 else 0 end) exam_enrollments_encoded from base_examenrollment join base_sessionexam on base_sessionexam.id = base_examenrollment.session_exam_id join base_learningunityear on base_learningunityear.id = base_sessionexam.learning_unit_year_id join base_offeryearcalendar on base_offeryearcalendar.id = base_sessionexam.offer_year_calendar_id join base_learningunitenrollment on base_learningunitenrollment.id = base_examenrollment.learning_unit_enrollment_id join base_offerenrollment on base_offerenrollment.id = base_learningunitenrollment.offer_enrollment_id join base_offeryear on base_offeryear.id = base_offerenrollment.offer_year_id join base_programmanager on base_programmanager.offer_year_id = base_offeryear.id join base_person program_manager_person on program_manager_person.id = base_programmanager.person_id where base_offeryearcalendar.start_date <= CURRENT_TIMESTAMP::date and base_offeryearcalendar.end_date >= CURRENT_TIMESTAMP::date group by base_programmanager.id, program_manager_person.id, base_offeryear.id, base_learningunityear.id ; """, elidable=True ), ]
agpl-3.0
3,287,373,462,270,548,000
39.517857
172
0.654473
false
3.839255
false
false
false
314r/joliebulle
joliebulle/view/base.py
1
1815
#joliebulle 3.6 #Copyright (C) 2010-2016 Pierre Tavares #Copyright (C) 2012-2015 joliebulle's authors #See AUTHORS file. #This program is free software; you can redistribute it and/or #modify it under the terms of the GNU General Public License #as published by the Free Software Foundation; either version 3 #of the License, or (at your option) any later version. #This program is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. #You should have received a copy of the GNU General Public License #along with this program; if not, write to the Free Software #Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. from PyQt5 import QtGui from base import ImportBase from view.yeastview import * def getFermentablesQtModel(): model = QtGui.QStandardItemModel() for f in ImportBase().listeFermentables: item = QtGui.QStandardItem(f.name) item.setData(f, view.constants.MODEL_DATA_ROLE) model.appendRow(item) return model def getHopsQtModel(): model = QtGui.QStandardItemModel() for h in ImportBase().listeHops : item = QtGui.QStandardItem(h.name) item.setData(h, view.constants.MODEL_DATA_ROLE) model.appendRow(item) return model def getMiscsQtModel(): model = QtGui.QStandardItemModel() for m in ImportBase().listeMiscs: item = QtGui.QStandardItem(m.name) item.setData(m, view.constants.MODEL_DATA_ROLE) model.appendRow(item) return model def getYeastsQtModel(): model = QtGui.QStandardItemModel() for y in ImportBase().listeYeasts: item = QtGui.QStandardItem(YeastView(y).yeastDetailDisplay()) item.setData(y, view.constants.MODEL_DATA_ROLE) model.appendRow(item) return model
gpl-3.0
553,826,155,992,883,500
32.018182
76
0.770799
false
3.264388
false
false
false
shawncaojob/LC
QUESTIONS/44_wildcard_matching.py
1
1859
# 44. Wildcard Matching My Submissions QuestionEditorial Solution # Total Accepted: 59032 Total Submissions: 333961 Difficulty: Hard # Implement wildcard pattern matching with support for '?' and '*'. # # '?' Matches any single character. # '*' Matches any sequence of characters (including the empty sequence). # # The matching should cover the entire input string (not partial). # # The function prototype should be: # bool isMatch(const char *s, const char *p) # # Some examples: # isMatch("aa","a") false # isMatch("aa","aa") true # isMatch("aaa","aa") false # isMatch("aa", "*") true # isMatch("aa", "a*") true # isMatch("ab", "?*") true # isMatch("aab", "c*a*b") false class Solution(object): def isMatch(self, s, p): """ :type s: str :type p: str :rtype: bool """ print(s, p) m, n = len(s), len(p) dp = [ [ False for y in xrange(n + 1) ] for x in xrange(m + 1) ] dp[0][0] = True for j in xrange(1, n + 1): if p[j-1] == "*" and dp[0][j-1]: dp[0][j] = True for i in xrange(1, m + 1): for j in xrange(1, n + 1): if (s[i-1] == p[j-1] or p[j-1] == "?") and dp[i-1][j-1]: #Cur char matching dp[i][j] = True if p[j-1] == "*": if dp[i][j-1] or dp[i-1][j]: # Matching 0 or more dp[i][j] = True for row in dp: print(row) return dp[-1][-1] if __name__ == "__main__": print(Solution().isMatch("aa","a")) print(Solution().isMatch("aa","aa")) print(Solution().isMatch("aaa","aa")) print(Solution().isMatch("aa", "*")) print(Solution().isMatch("aa", "a*")) print(Solution().isMatch("ab", "?*")) print(Solution().isMatch("aab", "c*a*b"))
gpl-3.0
-199,543,660,837,520,030
30.508475
94
0.507262
false
3.150847
false
false
false
caioariede/pyq
sizzle/match.py
1
3323
from .selector import Selector class MatchEngine(object): pseudo_fns = {} selector_class = Selector def __init__(self): self.register_pseudo('not', self.pseudo_not) self.register_pseudo('has', self.pseudo_has) def register_pseudo(self, name, fn): self.pseudo_fns[name] = fn @staticmethod def pseudo_not(matcher, node, value): return not matcher.match_node(matcher.parse_selector(value)[0], node) @staticmethod def pseudo_has(matcher, node, value): for node, body in matcher.iter_data([node]): if body: return any( matcher.match_data(matcher.parse_selector(value)[0], body)) def parse_selector(self, selector): return self.selector_class.parse(selector) def match(self, selector, data): selectors = self.parse_selector(selector) nodeids = {} for selector in selectors: for node in self.match_data(selector, data): nodeid = id(node) if nodeid not in nodeids: nodeids[nodeid] = None yield node def match_data(self, selector, data): for node, body in self._iter_data(data): match = self.match_node(selector, node) if match: next_selector = selector.next_selector if next_selector: if body: for node in self.match_data(next_selector, body): yield node else: yield node if body and not selector.combinator == self.selector_class.CHILD: for node in self.match_data(selector, body): yield node def match_node(self, selector, node): match = all(self.match_rules(selector, node)) if match and selector.attrs: match &= all(self.match_attrs(selector, node)) if match and selector.pseudos: match &= all(self.match_pseudos(selector, node)) return match def match_rules(self, selector, node): if selector.typ: yield self.match_type(selector.typ, node) if selector.id_: yield self.match_id(selector.id_, node) def match_attrs(self, selector, node): for a in selector.attrs: lft, op, rgt = a yield self.match_attr(lft, op, rgt, node) def match_pseudos(self, selector, d): for p in selector.pseudos: name, value = p if name not in self.pseudo_fns: raise Exception('Selector not implemented: {}'.format(name)) yield self.pseudo_fns[name](self, d, value) def _iter_data(self, data): for tupl in self.iter_data(data): if len(tupl) != 2: raise Exception( 'The iter_data method must yield pair tuples containing ' 'the node and its body (empty if not available)') yield tupl def match_type(self, typ, node): raise NotImplementedError def match_id(self, id_, node): raise NotImplementedError def match_attr(self, lft, op, rgt, no): raise NotImplementedError def iter_data(self, data): raise NotImplementedError
mit
5,607,412,709,546,960,000
30.951923
79
0.563948
false
4.227735
false
false
false
beyoungwoo/C_glibc_Sample
_Algorithm/ProjectEuler_python/euler_42.py
1
2038
#!/usr/bin/python -Wall # -*- coding: utf-8 -*- """ <div id="content"> <div style="text-align:center;" class="print"><img src="images/print_page_logo.png" alt="projecteuler.net" style="border:none;" /></div> <h2>Coded triangle numbers</h2><div id="problem_info" class="info"><h3>Problem 42</h3><span>Published on Friday, 25th April 2003, 06:00 pm; Solved by 46003; Difficulty rating: 5%</span></div> <div class="problem_content" role="problem"> <p>The <i>n</i><sup>th</sup> term of the sequence of triangle numbers is given by, <i>t<sub>n</sub></i> = &frac12;<i>n</i>(<i>n</i>+1); so the first ten triangle numbers are:</p> <p style="text-align:center;">1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...</p> <p>By converting each letter in a word to a number corresponding to its alphabetical position and adding these values we form a word value. For example, the word value for SKY is 19 + 11 + 25 = 55 = <i>t</i><sub>10</sub>. If the word value is a triangle number then we shall call the word a triangle word.</p> <p>Using <a href="project/resources/p042_words.txt">words.txt</a> (right click and 'Save Link/Target As...'), a 16K text file containing nearly two-thousand common English words, how many are triangle words?</p> </div><br /> <br /></div> """ import re tri=[ ] for i in range (1, 50): res = (i*(i+1)/2) tri.append(res) def is_triangle(num): global tri tri_len = len(tri) for i in range(0, tri_len): if (num == tri[i]): return True elif (num < tri[i]): return False return False count = 0 fread = open("p42words.txt", "r") for line in fread: text = re.split("\"", line) total_text = list(text) len_t = len(total_text) for i in range(0, len_t): if total_text[i].startswith(','): continue ret = [ord(c) for c in total_text[i]] len_ret = len(ret) if (is_triangle(sum(ret) - (64 * len_ret)) == True): count += 1 print total_text[i], sum(ret) - (64 * len_ret) print "total=", count #a = 'hi' #print [ord(c) for c in a]
gpl-3.0
-5,037,118,179,064,823,000
37.45283
309
0.626104
false
2.903134
false
false
false
Squishymedia/feedingdb
src/feeddb/feed/migrations/0058_muscleowl_emg_sono.py
1
40048
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'SonoSensor.muscle' db.add_column(u'feed_sonosensor', 'muscle', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['feed.MuscleOwl'], null=True), keep_default=False) # Adding field 'EmgSensor.muscle' db.add_column(u'feed_emgsensor', 'muscle', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['feed.MuscleOwl'], null=True), keep_default=False) def backwards(self, orm): # Deleting field 'SonoSensor.muscle' db.delete_column(u'feed_sonosensor', 'muscle_id') # Deleting field 'EmgSensor.muscle' db.delete_column(u'feed_emgsensor', 'muscle_id') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'feed.ageunit': { 'Meta': {'ordering': "['label']", 'object_name': 'AgeUnit'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'ageunit_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.anatomicallocation': { 'Meta': {'ordering': "['label']", 'object_name': 'AnatomicalLocation'}, 'category': ('django.db.models.fields.IntegerField', [], {}), 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'anatomicallocation_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.anteriorposterioraxis': { 'Meta': {'object_name': 'AnteriorPosteriorAxis'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'anteriorposterioraxis_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.behavior': { 'Meta': {'ordering': "['label']", 'object_name': 'Behavior'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'behavior_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.behaviorowl': { 'Meta': {'object_name': 'BehaviorOwl'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '1000'}), 'obo_definition': ('django.db.models.fields.TextField', [], {}), 'rdfs_comment': ('django.db.models.fields.TextField', [], {}), 'rdfs_subClassOf_ancestors': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['feed.BehaviorOwl']", 'symmetrical': 'False'}), 'uri': ('django.db.models.fields.CharField', [], {'max_length': '1500'}) }, u'feed.channel': { 'Meta': {'object_name': 'Channel'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'channel_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'notes': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'rate': ('django.db.models.fields.IntegerField', [], {}), 'setup': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Setup']"}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.channellineup': { 'Meta': {'ordering': "['position']", 'object_name': 'ChannelLineup'}, 'channel': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Channel']", 'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'channellineup_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'position': ('django.db.models.fields.IntegerField', [], {}), 'session': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Session']"}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.depthaxis': { 'Meta': {'object_name': 'DepthAxis'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'depthaxis_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.developmentstage': { 'Meta': {'ordering': "['label']", 'object_name': 'DevelopmentStage'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'developmentstage_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.dorsalventralaxis': { 'Meta': {'object_name': 'DorsalVentralAxis'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'dorsalventralaxis_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.electrodetype': { 'Meta': {'ordering': "['label']", 'object_name': 'ElectrodeType'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'electrodetype_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.emgchannel': { 'Meta': {'object_name': 'EmgChannel', '_ormbases': [u'feed.Channel']}, u'channel_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Channel']", 'unique': 'True', 'primary_key': 'True'}), 'emg_amplification': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'emg_filtering': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Emgfiltering']"}), 'sensor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.EmgSensor']"}), 'unit': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Unit']"}) }, u'feed.emgfiltering': { 'Meta': {'ordering': "['label']", 'object_name': 'Emgfiltering'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'emgfiltering_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.emgsensor': { 'Meta': {'ordering': "['id']", 'object_name': 'EmgSensor', '_ormbases': [u'feed.Sensor']}, 'axisdepth': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.DepthAxis']", 'null': 'True', 'blank': 'True'}), 'electrode_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.ElectrodeType']", 'null': 'True', 'blank': 'True'}), 'location_controlled': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.AnatomicalLocation']"}), 'muscle': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.MuscleOwl']", 'null': 'True'}), u'sensor_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Sensor']", 'unique': 'True', 'primary_key': 'True'}) }, u'feed.emgsetup': { 'Meta': {'object_name': 'EmgSetup', '_ormbases': [u'feed.Setup']}, 'preamplifier': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), u'setup_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Setup']", 'unique': 'True', 'primary_key': 'True'}) }, u'feed.eventchannel': { 'Meta': {'object_name': 'EventChannel', '_ormbases': [u'feed.Channel']}, u'channel_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Channel']", 'unique': 'True', 'primary_key': 'True'}), 'unit': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}) }, u'feed.eventsetup': { 'Meta': {'object_name': 'EventSetup', '_ormbases': [u'feed.Setup']}, u'setup_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Setup']", 'unique': 'True', 'primary_key': 'True'}) }, u'feed.experiment': { 'Meta': {'object_name': 'Experiment'}, 'accession': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'bookkeeping': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'experiment_related'", 'null': 'True', 'to': u"orm['auth.User']"}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'end': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'impl_notes': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'start': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'study': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Study']"}), 'subj_age': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '19', 'decimal_places': '5', 'blank': 'True'}), 'subj_ageunit': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.AgeUnit']", 'null': 'True', 'blank': 'True'}), 'subj_devstage': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.DevelopmentStage']"}), 'subj_tooth': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'subj_weight': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '19', 'decimal_places': '5', 'blank': 'True'}), 'subject': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Subject']"}), 'subject_notes': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.forcechannel': { 'Meta': {'object_name': 'ForceChannel', '_ormbases': [u'feed.Channel']}, u'channel_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Channel']", 'unique': 'True', 'primary_key': 'True'}), 'sensor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.ForceSensor']"}), 'unit': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Unit']", 'null': 'True'}) }, u'feed.forcesensor': { 'Meta': {'object_name': 'ForceSensor', '_ormbases': [u'feed.Sensor']}, u'sensor_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Sensor']", 'unique': 'True', 'primary_key': 'True'}) }, u'feed.forcesetup': { 'Meta': {'object_name': 'ForceSetup', '_ormbases': [u'feed.Setup']}, u'setup_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Setup']", 'unique': 'True', 'primary_key': 'True'}) }, u'feed.illustration': { 'Meta': {'object_name': 'Illustration'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'illustration_related'", 'null': 'True', 'to': u"orm['auth.User']"}), 'experiment': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Experiment']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'notes': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'picture': ('django.db.models.fields.files.FileField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'setup': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Setup']", 'null': 'True', 'blank': 'True'}), 'subject': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Subject']", 'null': 'True', 'blank': 'True'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.kinematicschannel': { 'Meta': {'object_name': 'KinematicsChannel', '_ormbases': [u'feed.Channel']}, u'channel_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Channel']", 'unique': 'True', 'primary_key': 'True'}), 'sensor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.KinematicsSensor']"}), 'unit': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Unit']", 'null': 'True'}) }, u'feed.kinematicssensor': { 'Meta': {'object_name': 'KinematicsSensor', '_ormbases': [u'feed.Sensor']}, u'sensor_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Sensor']", 'unique': 'True', 'primary_key': 'True'}) }, u'feed.kinematicssetup': { 'Meta': {'object_name': 'KinematicsSetup', '_ormbases': [u'feed.Setup']}, u'setup_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Setup']", 'unique': 'True', 'primary_key': 'True'}) }, u'feed.mediallateralaxis': { 'Meta': {'object_name': 'MedialLateralAxis'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'mediallateralaxis_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.muscleowl': { 'Meta': {'object_name': 'MuscleOwl'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '1000'}), 'obo_definition': ('django.db.models.fields.TextField', [], {}), 'rdfs_comment': ('django.db.models.fields.TextField', [], {}), 'rdfs_subClassOf_ancestors': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['feed.MuscleOwl']", 'symmetrical': 'False'}), 'uri': ('django.db.models.fields.CharField', [], {'max_length': '1500'}) }, u'feed.pressurechannel': { 'Meta': {'object_name': 'PressureChannel', '_ormbases': [u'feed.Channel']}, u'channel_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Channel']", 'unique': 'True', 'primary_key': 'True'}), 'sensor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.PressureSensor']"}), 'unit': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Unit']", 'null': 'True'}) }, u'feed.pressuresensor': { 'Meta': {'object_name': 'PressureSensor', '_ormbases': [u'feed.Sensor']}, u'sensor_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Sensor']", 'unique': 'True', 'primary_key': 'True'}) }, u'feed.pressuresetup': { 'Meta': {'object_name': 'PressureSetup', '_ormbases': [u'feed.Setup']}, u'setup_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Setup']", 'unique': 'True', 'primary_key': 'True'}) }, u'feed.proximaldistalaxis': { 'Meta': {'object_name': 'ProximalDistalAxis'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'proximaldistalaxis_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.restraint': { 'Meta': {'ordering': "['label']", 'object_name': 'Restraint'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'restraint_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.sensor': { 'Meta': {'object_name': 'Sensor'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'sensor_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'loc_ap': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.AnteriorPosteriorAxis']", 'null': 'True', 'blank': 'True'}), 'loc_dv': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.DorsalVentralAxis']", 'null': 'True', 'blank': 'True'}), 'loc_ml': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.MedialLateralAxis']", 'null': 'True', 'blank': 'True'}), 'loc_pd': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.ProximalDistalAxis']", 'null': 'True', 'blank': 'True'}), 'loc_side': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Side']"}), 'location_freetext': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'notes': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'setup': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Setup']"}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.session': { 'Meta': {'ordering': "['position']", 'object_name': 'Session'}, 'accession': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'bookkeeping': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'channels': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['feed.Channel']", 'through': u"orm['feed.ChannelLineup']", 'symmetrical': 'False'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'session_related'", 'null': 'True', 'to': u"orm['auth.User']"}), 'end': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'experiment': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Experiment']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'position': ('django.db.models.fields.IntegerField', [], {}), 'start': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'subj_anesthesia_sedation': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'subj_notes': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'subj_restraint': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Restraint']"}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.setup': { 'Meta': {'object_name': 'Setup'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'setup_related'", 'null': 'True', 'to': u"orm['auth.User']"}), 'experiment': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Experiment']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'notes': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'sampling_rate': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'technique': ('django.db.models.fields.IntegerField', [], {}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.side': { 'Meta': {'ordering': "['label']", 'object_name': 'Side'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'side_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.sonochannel': { 'Meta': {'object_name': 'SonoChannel', '_ormbases': [u'feed.Channel']}, u'channel_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Channel']", 'unique': 'True', 'primary_key': 'True'}), 'crystal1': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'crystals1_related'", 'to': u"orm['feed.SonoSensor']"}), 'crystal2': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'crystals2_related'", 'to': u"orm['feed.SonoSensor']"}), 'unit': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Unit']"}) }, u'feed.sonosensor': { 'Meta': {'object_name': 'SonoSensor', '_ormbases': [u'feed.Sensor']}, 'axisdepth': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.DepthAxis']", 'null': 'True', 'blank': 'True'}), 'location_controlled': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.AnatomicalLocation']"}), 'muscle': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.MuscleOwl']", 'null': 'True'}), u'sensor_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Sensor']", 'unique': 'True', 'primary_key': 'True'}) }, u'feed.sonosetup': { 'Meta': {'object_name': 'SonoSetup', '_ormbases': [u'feed.Setup']}, u'setup_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Setup']", 'unique': 'True', 'primary_key': 'True'}), 'sonomicrometer': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}) }, u'feed.strainchannel': { 'Meta': {'object_name': 'StrainChannel', '_ormbases': [u'feed.Channel']}, u'channel_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Channel']", 'unique': 'True', 'primary_key': 'True'}), 'sensor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.StrainSensor']"}), 'unit': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Unit']", 'null': 'True'}) }, u'feed.strainsensor': { 'Meta': {'object_name': 'StrainSensor', '_ormbases': [u'feed.Sensor']}, u'sensor_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Sensor']", 'unique': 'True', 'primary_key': 'True'}) }, u'feed.strainsetup': { 'Meta': {'object_name': 'StrainSetup', '_ormbases': [u'feed.Setup']}, u'setup_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['feed.Setup']", 'unique': 'True', 'primary_key': 'True'}) }, u'feed.study': { 'Meta': {'ordering': "['title']", 'object_name': 'Study'}, 'accession': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'approval_secured': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'bookkeeping': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'study_related'", 'null': 'True', 'to': u"orm['auth.User']"}), 'description': ('django.db.models.fields.TextField', [], {}), 'end': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'funding_agency': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'resources': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'start': ('django.db.models.fields.DateTimeField', [], {}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.studyprivate': { 'Meta': {'object_name': 'StudyPrivate'}, 'approval': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'studyprivate_related'", 'null': 'True', 'to': u"orm['auth.User']"}), 'funding': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'lab': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'notes': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'organization': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'pi': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'study': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Study']"}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.subject': { 'Meta': {'object_name': 'Subject'}, 'breed': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'subject_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'notes': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'sex': ('django.db.models.fields.CharField', [], {'max_length': '2', 'null': 'True', 'blank': 'True'}), 'source': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'study': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Study']"}), 'taxon': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Taxon']"}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.taxon': { 'Meta': {'ordering': "['genus']", 'object_name': 'Taxon'}, 'common_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'taxon_related'", 'null': 'True', 'to': u"orm['auth.User']"}), 'genus': ('django.db.models.fields.CharField', [], {'max_length': '255'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'species': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) }, u'feed.trial': { 'Meta': {'object_name': 'Trial'}, 'accession': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'behavior_notes': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'behavior_primary': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Behavior']"}), 'behavior_secondary': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'bookkeeping': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'trial_related'", 'null': 'True', 'to': u"orm['auth.User']"}), 'data_file': ('django.db.models.fields.files.FileField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'end': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'estimated_duration': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'food_property': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'food_size': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'food_type': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'position': ('django.db.models.fields.IntegerField', [], {}), 'session': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['feed.Session']"}), 'start': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'subj_notes': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'subj_treatment': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}), 'waveform_picture': ('django.db.models.fields.files.FileField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}) }, u'feed.unit': { 'Meta': {'ordering': "['technique', 'label']", 'object_name': 'Unit'}, 'created_at': ('django.db.models.fields.DateTimeField', [], {}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'unit_related'", 'null': 'True', 'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'technique': ('django.db.models.fields.IntegerField', [], {}), 'updated_at': ('django.db.models.fields.DateTimeField', [], {}) } } complete_apps = ['feed']
gpl-3.0
-4,522,338,344,012,879,000
81.40535
195
0.546519
false
3.521632
false
false
false
alphagov/notifications-api
migrations/versions/0321_drop_postage_constraints.py
1
2423
""" Revision ID: 0321_drop_postage_constraints Revises: 0320_optimise_notifications Create Date: 2020-06-08 11:48:53.315768 """ import os from alembic import op revision = '0321_drop_postage_constraints' down_revision = '0320_optimise_notifications' environment = os.environ['NOTIFY_ENVIRONMENT'] def upgrade(): if environment not in ["live", "production"]: op.execute('ALTER TABLE notifications DROP CONSTRAINT IF EXISTS chk_notifications_postage_null') op.execute('ALTER TABLE notification_history DROP CONSTRAINT IF EXISTS chk_notification_history_postage_null') op.execute('ALTER TABLE templates DROP CONSTRAINT IF EXISTS chk_templates_postage') op.execute('ALTER TABLE templates_history DROP CONSTRAINT IF EXISTS chk_templates_history_postage') def downgrade(): # The downgrade command must not be run in production - it will lock the tables for a long time if environment not in ["live", "production"]: op.execute(""" ALTER TABLE notifications ADD CONSTRAINT "chk_notifications_postage_null" CHECK ( CASE WHEN notification_type = 'letter' THEN postage is not null and postage in ('first', 'second') ELSE postage is null END ) """) op.execute(""" ALTER TABLE notification_history ADD CONSTRAINT "chk_notification_history_postage_null" CHECK ( CASE WHEN notification_type = 'letter' THEN postage is not null and postage in ('first', 'second') ELSE postage is null END ) """) op.execute(""" ALTER TABLE templates ADD CONSTRAINT "chk_templates_postage" CHECK ( CASE WHEN template_type = 'letter' THEN postage is not null and postage in ('first', 'second') ELSE postage is null END ) """) op.execute(""" ALTER TABLE templates_history ADD CONSTRAINT "chk_templates_history_postage" CHECK ( CASE WHEN template_type = 'letter' THEN postage is not null and postage in ('first', 'second') ELSE postage is null END ) """)
mit
3,433,414,074,737,906,700
34.115942
118
0.574907
false
4.723197
false
false
false
jayc0b0/Projects
Python/Security/caesarCypher.py
1
1545
# Jacob Orner (jayc0b0) # Caesar Cypher script def main(): # Declare variables and take input global alphabet alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] global messageArray messageArray = [] choice = int(input("Enter 1 to encode. 2 to decode.\n>> ")) if choice == 1: encode() elif choice == 2: pass # Implement decode() and add here else: print "Invalid choice" main() def encode(): message = raw_input("Enter a string to encode (letters only):\n>> ") cypherShift = int(input("Enter an integer from 1-25 for the shift:\n>> ")) # Verify input if not message.isalpha(): print "Please enter only letters into your message." main() else: pass if cypherShift < 1 or cypherShift > 25: print "Invalid number. Please enter a valid shift value." main() else: pass # Break string into an array of letters and shift messageArray = list(message) for letter in messageArray: if alphabet.index(letter) + cypherShift < 25: messageArray[letter] = alphabet[alphabet.index(letter) + cypherShift] else: letter = alphabet[(alphabet.index(letter) + cypherShift) % 25] # Output cyphered text message = " ".join(messageArray) print "Your cyphered message is:" print message main()
mit
5,803,349,331,164,338,000
26.105263
81
0.552104
false
3.669834
false
false
false
chrispitzer/toucan-sam
toucansam/core/models.py
1
5910
import re from urlparse import urlparse, parse_qs from datetime import timedelta from django.core.urlresolvers import reverse from django.core.validators import MinValueValidator, MaxValueValidator from django.db import models from django.utils.safestring import mark_safe from durationfield.db.models.fields.duration import DurationField class ActiveSongsManager(models.Manager): def get_query_set(self): qs = super(ActiveSongsManager, self).get_query_set() qs = qs.filter(active=True) return qs class Song(models.Model): title = models.CharField(max_length=255, blank=True) short_title = models.CharField(max_length=30, blank=True) artist = models.CharField(max_length=255, blank=True) key = models.CharField(max_length=25, blank=True) singers = models.CharField(max_length=255, blank=True) cheat_sheet = models.CharField(max_length=255, blank=True) lyrics_with_chords = models.TextField(blank=True) video_link = models.URLField(max_length=255, blank=True) run_time = DurationField(default=2*60*1000000) # default: two minutes difficulty = models.IntegerField(default=3, choices=( (1, 'Real Easy'), (2, 'Easy'), (3, 'Normal'), (4, 'Hard'), (5, 'Real Hard'), ), validators=[ MinValueValidator(1), MaxValueValidator(5), ]) proposed = models.BooleanField(default=True) active = models.BooleanField(default=True) objects = models.Manager() active_objects = ActiveSongsManager() def save(self, *args, **kwargs): if not self.short_title and self.title: self.short_title = self.title[-30:] super(Song, self).save(*args, **kwargs) @property def milliseconds(self): return self.run_time.total_seconds() * 1000 @property def column_width(self): return reduce(lambda a, b: max(a, len(b)), re.split("[\r\n]+", self.lyrics_with_chords), 0) @property def lyrics_formatted(self): """ Assumes that lyrics with chords interleaves lines with chords and lines with lyrics """ def tokenize(s): return re.split(r'(\w+)', s) def chordify(chord, cssclass="chord"): return '<span class="{}">{}</span>'.format(cssclass, chord) def lineify(line): return u"<p>{}</p>".format(line) output = [] chord_line = None chord_regex = re.compile(r"^(\W*[ABCDEFG]b?(m|min|maj|maj)?\d*\W*)+$", flags=re.IGNORECASE) for line in re.split("[\r\n]+", self.lyrics_with_chords): line = line.rstrip() if chord_regex.match(line): if chord_line: formatted_line = "" for chord in tokenize(chord_line): if re.match("\W", chord): formatted_line += chord else: formatted_line += chordify(chord, cssclass="chord inline") output.append(lineify(formatted_line)) chord_line = line continue if chord_line: formatted_line = "" #make sure line is as long as chords line = line.ljust(len(chord_line)) #replace spaces at the beginning & end of the line with &nbsp; -- but not the middle! frontspaces, line, endspaces = re.split(r"(\S[\s\S]*\S|\S)", line) space = '&nbsp;&nbsp;' line = [space]*len(frontspaces) + list(line) + [space]*len(endspaces) chords = tokenize(chord_line) for chord in chords: l = len(chord) if not (chord+" ").isspace(): formatted_line += chordify(chord) formatted_line += "".join(line[:l]) line = line[l:] line = formatted_line + "".join(line) chord_line = None output.append(lineify(line)) return mark_safe(u"\n".join(output)) # todo: sanitize input def has_no_lyrics(self): return len(self.lyrics_with_chords) < 50 def youtube_video_id(self): try: parsed = urlparse(self.video_link) if parsed.netloc.endswith('youtube.com'): query = parse_qs(parsed.query) return query.get('v', [None])[0] except: return None def __unicode__(self): return self.title def get_absolute_url(self): return reverse('song', args=[self.id]) class Meta: ordering = ["title"] class Gig(models.Model): name = models.CharField(max_length=255) date = models.DateTimeField(null=True) def __unicode__(self): return self.name or "undefined" class SetItem(models.Model): song = models.ForeignKey(Song, related_name='setitems') set_list = models.ForeignKey("SetList", related_name='setitems') order = models.IntegerField() class SetList(models.Model): gig = models.ForeignKey(Gig) songs = models.ManyToManyField(Song, related_name="set_lists", through=SetItem) show_proposed = models.BooleanField(default=False) @property def name(self): return self.gig.name @property def ordered_songs(self): return self.songs.order_by('setitems__order') @property def run_time(self): microseconds = int(self.songs.aggregate(s=models.Sum('run_time'))['s']) return timedelta(microseconds=microseconds) def __unicode__(self): return self.name or "undefined"
gpl-2.0
8,150,954,551,318,501,000
34.39521
101
0.558545
false
3.998647
false
false
false